(D TranyEra

MODEL 6400
AUXILIARY MENORY
REFERENCE MANUAL

(LA

LA

MODEL 6400
AUXILIARY MLENIORY
REFERENCE MANUAL

TransEra Corporation
3707 North Canyon Rd.
Provo, Utah 84604
Tel: 801-224-6550

Manual Part No. 070-6400-03

Copyright TransEra Corp., 1979, 1980, 1981, 1982, 1983
All Rights Rserved

Printed in the United States of America

Revision 03, November 1983

NOTICE

Transkra Corporation has prepared this manual for use by its personnei
and customers. The information contained herein is the property of
TransEra and shall not be reproduced in whole or in part without prior
written approval of TransEra Corporation.

TransEra reserves the right to make changes without notice in the
specifications and materials contained herein and shall not be responsible
for any damages, consequential or other, caused by reliance on the
material presented, including but not limited to typographical, arithmetic,
or listing errors. ’

Auxiliary Memory
Reference Manual
070-6400-03

Revision History:

Original Release March 1979
First Revision - September 1980
Second Revision June 1981

Third Revision - November 1983

PREFACE

This manual describes the TransEra 6400 Series Auxiliary Memory for
use with the 4050 Tektronix Graphic Computer Systems. This release
describes firmware level 5 of the Auxiliary Memory File Manager ROM.
The manual includes installation instructions, starting tutorial, command
and error message descriptions: It also includes a copy of the current
firmware Release Notes. These Release Notes contain information that
may not be found in the manual.

Section 1 provides a brief introduction and overview of the system
including installation procedures for first time set up. Instructions
are also provided for adding field installable memory cards, firmware
upgrades, and the battery back-up option.

Section 2 provides an overview of the Auxiliary Memory file identifiers,
file structures, and file types. It also includes is a getting started
tutorial for helping first time users become familiar with the Auxiliary
Memory file system.

Section 3 lists all Auxiliary Memory File Manager commands, statements,
and functions alphabetically. Each is explained in detail and illustrated

by an example. This includes all program and data file I/0, and general
file maintenance commands. Also included are special purpose and utility
routines.

Section 4 describes the DMA (Direct Memory Access) options to the
Auxiliary Memory. The operation and installation details are included
here along with descriptions of the routines used to operate the DMA.

Section 5 describes the Auxiliary Memory architecture, some advanced
programing techniques, and the use of the primitive read/write commands
used for data acquisition purposes.

Appendix A lists a summary of all the commands. Appendix B lists the
error messages with causes and corrective actions. Appendix C describes
the ROM Pack slot priority. Appendix D describes the hardware specifica—
tions. Appendix E is a glossary of terms. Appendix F contains a copy

of the current Firmware Release Notes.

070-6400-03 11/83 Auxiliary Memory Reference Manual iii

PLEASE NOTE: Conventions And Formats Used In This Manual

Most of the commands described in this manual are CALL routines. Some
are BASIC key words. The BASIC key words in general can be abbreviated
to 3 characters. The CALL names may be abbreviated to 6 characters.
Any names shorter than this must be spelled out.

The syntax of BASIC key words is checked at time of entry. CALL state—-
ments are not checked beyond the CALL key word and the required
name string. For this reason, you must exercisé greater care when
entering CALL statements both as to spelling of names, and listing of
arguments.

Some command arguments are optional and some are required. Some-
times you have your choice of a required argument. In this case the
choice might be listed in braces {}. For example: {a$,x} means you have
your choice of a$ or x, but you must choose one. Most of the time,
however, the formats will be listed separately when there is a choice of
required arguments.

The format used in this manual to designate optional arguments is to
enclose them in brackets []. When you see this, don't enter the brackets,
they only set off what's optional. Some optional arguments depend on
the order of other arguments in the list.

For example: x,y[,a$lalbl,c]] is an argument list that shows both nesting
and variable types to determine what optional arguments may be omitted.
In this case b cannot be omitted unless ¢ is also omitted.

However, a$ can be omitted regardless of the other arguments. The
rule is; you must eliminate everything within a ‘pair’ of brackets. Note
that a$ can be distinguished from the other arguments because it is a
string.

Sometimes the semi-colon is used in argument lists to flag the presence

of an optional argument. When you see this, you MUST include the
semicolon as part of the syntax. Example: f[r:]d1[,d2..] indicates that

r is optional only if it is followed by a semicolon. Note also that this
requires another argument to follow since a CALL statement cannot end with
a semicolon. In all other cases, do not use semicolons in place of commas
unless they are required.

Auxiliary Memory Reference Manual 070-6400-03 11/83

Throughout this manual you will see arguments listed in lower case and
some in upper case. Lower case means the argument is used to pass
information TO the routine and may be a literal, an expression, or a
variable. Upper case means the argument is for passing information
back FROM the routine and it must, therefore, be a variable only.

A simple variable is a scalar, versus a dimensioned array or vector or
array element. Numeric expressions are referred to throughout this
manual and they are intended to include simple variables, and literals.
In general, string arguments may be literals or variables. String
expressions are not allowed as command arguments.

When you see three dots ".." in an argument list, this means that you
may repeat the preceding entry or entries. The explanation will tell
you exactly what you may repeat.

There is one special case in argument formats that is used in most
of the commands throughout this manual. This is the argument for
specifying file identifiers. It is listed as ‘fi’ in the command argument
lists. Although this is not a valid variable format, it is used to
denote the fact that in general, files may be referenced by number
or name.

This format avoids using braces {f$.f} or listing the the two argument
formats separately for every command to identify the two choices. Make
sure you understand this designation. ‘

End of Preface

070-6400-03 11/83 Auxiliary Memory Reference Manual

Vi

Auxiliary Memory Reference Manual

070-6400-03 11/83

Table of Contents

Section 1 - Introduction

About This Section 1-1
Auxiliary Memory Overview 1-2
6400 Auxiliary Memory Installation Instructions 1-3
Field Installation of Memory Cards 1-4
Batter Back-up Description 1-6
Operating Instructions 1-6
Specifications 1-6
Installation, 1-7
Option 11 and 12 - DMA Board Installation 1-9
Installing Firmware Upgrades 1-10
Section 2 - Getting Started
About This Section 2-1

File Identifers 2-1

File Structures 2-2
Program Files 2-3
Random Files 2-4
Sequential Files 2-5
Getting Started Tutorial 2-6
Section 3 - Statements, Commands, and Functions
APLOT . . . o 3-2
CONCAT 3-5
COPY . . 3-7
DIR . . 3-9
EXCLUDE 3-11
FILHDR 3-13
FILTYP . . 3-15
FPLOT . . . 3-17
GETADD 3-20
GETIA . . . 3-22
GETIP 3-24
INIT .o 3-26
INSERT 3-27

070-6400-03 11/83 Auxiliary Memory Reference Manual vii

viii

KILL © oo e e e e e e 3-29
LSTIP © o o e e e e e e e e 3-31
MAPPEN . © o oottt e e 3-33
S 3-35
MCHECK . . o oo oo e e 3-37
MCREATE .« ot ot e e e 3-39
MCROSS .« . v o otee e e 3-43
MCSUM e 3-46
MDIF2 . . o oot e 3-48
MDIF3 . . o ot 3-50
MING - o e 3-52
MINT © oo e 3-54
MUNK . o oo e e e 3-56
MOLD . . o oo oo oo e e e 3-58
MOPEN . . oo e e e e e 3-60
MPLOT .« .« o v e e e e e e e e e e e e e 3-62
MSAVE . . oo oo e 3-65
MSPACE . . o oo e 3-68
MTEST .« @ e e e e 3-70
MUNIT/DUNIT . . o oo e 3-73
NXTFIL © o oot e e e e e e e e e e e 3-75
ON EOF(0) . o o ov e et e e e e e 3-77
PROT/UPROT . . oot oo N 3-79
RBYTES & o o oo et e e e e 3-81
RDELET & o ot o e e 3-83
READ . o o o oot e 3-85
RMPLOT .« .« o oot oo e e e 3-87
RPLOT - o o oot .. 3-91
SCALE . o oo 3-94
SEARCH .« o oottt e e 3-97
SETIP . o o o 3-100
SETLST & o vttt et e e e 3-102
SORT . o v e e e e 3-105
TBACK .« o o o oo e e 3-107
TLOAD .« o oo 3-109
TRESTORE . . o oot e 3-111
TSAVE © o e 3-113
WBYTES &« oot e e 3-115
WRITE . o o 3-117
TEAMEM . . oo 3-120

Auxiliary Memory Reference Manual

Section 3 - Statements, Commands, and Functions (continued)

070-6400-03 11/8!

Section 4 - Direct Memory Access Card Options

Introduction 4-1
DMA8S/DMA16 e e 4-2
DMACLR e 4-4
DMASTA 4-5
Option 11 - |EEE-488 8 Bit Parallel DMA Card 4-7
Data Transfer Examples 4-9
Option 12 - 8/16 Bit General Purpose DMA Card . . 4-12
Support Routines4-13
Signal Terminations e 4-13
Connector, 4-14
Section 5 - Memory Architecture
Introduction 5-1
Memory Organization 5-1
Directory Structure 5-2
Memory Map T
File Manager System Data Bytes 5-2
Directory Entries 5-3
Link Map 5-3
File Header 5-3
File Flags, 5-3
Contiguous File Space 5-4
Direct File Access 5-4
Examples, 5-5
External DMA Routine 5-5
A/D Data Acquisition 5-6
Direct Item Access 5-6

Appendix A - Command Summary
Appendix B - Error Messages '
Appendix C - ROM Pack Slot Priority
Appendix D - Hardware Specifications
Appendix E - Glossary of Terms
Appendix F - Firmware Release Notes

INDEX

070-6400-03 11/83 Auxiliary Memory Reference Manual

Section 1

System Overview and Installation

About This Section

This section provides a brief introduction and overview of the system
including installation procedures for first time set up. Instructions

are also provided for adding field installable memory cards, the Battery
Back-up Option 15, DMA Options 11 and 12, and firmware upgrades.

The installation guide should be followed the first time you set up the
equipment and any time it is de-installed for purposes of moving.

070-6400-03 11/83 Auxiliary Memory Reference Manual

1-1

Overview and Installation

Auxiliary Memory Overview

The TransEra Auxiliary Memory module is a high speed, random access
storage system that is functionaly equivalent to a solid state disk.

Both program and data files are allowed. Files created in binary format
result in the fastest possible transfer rates. Data files may be either
Random or Sequential.

Large application programs may be divided into overlay segments and

saved in separate files in the Auxiliary Memory. These program overlays
may then be rapidly accessed and linked or appended into user memory

as they are needed.

The Auxiliary memory also allows DMA (Direct Memory Access) from certain
peripheral devices such as the A/D converter. Data may also be stored or
retrieved by the user in an unformatted mode that ignores the file structure.
This is useful for certain data acquisition applications or for special
diagnostics.

The Auxiliary Memory is available in various memory sizes from 128K bytes

to 1024K bytes. It is field upgradeable in increments of 128K bytes with
plug—-in cards.

Equipment supplied with each Auxilary Memory System:
1) 6400 Memory Box with 8 memory slots
2) 1-8 Memory Cards
3) Memory File Manager ROM Pack
4) Ribbon Cable Interconnect (34 Conductor) with Connectors
5) Power Cord

6) Reference Manual

1-2 Auxiliary Memory Reference Manual 070-6400-03 11/83

Overview and Installation

6400 Auxiliary Memory Installation Instructions

070-6400~-03 11/83

If it is not already connected, the 34 pin D-type connector
on the end of the ribbon cable must be connected to the back
of the memory box.

The power cord to the Auxiliary Memory may be attached to

the receptacle at the back of the Memory Box. The memory

can operate from either a 120V 60Hz or a 240V 50Hz power source.
Make sure the proper power is applied to the memory or it will

not operate properly and may cause damage. A small PC card
located immediately below the fuse may be removed and oriented
in another direction to change the voltage setting.

After switching the 4050 system power OFF, the ROM pack file
manager/interface may be plugged into an available slot in the
firmware back-pack. The ROM Pack must be securely seated in the
receptacle connector.

NOTE: If a ROM expander unit is being used, it is best to try and
locate the memory interface ROM pack in the other back-pack slot
rather than in the ROM expander, as this will minimize data
transmission problems. Although the memory may work fine from the
ROM expander in most instances, there have been reported problems,
especially with 4054’s where the internal cabling is inherantly

longer.

The auxiliary memory box may now be placed at any convenient
location within reach of the cable such as on top of the 4050
cabinet so long as the cable is positioned such that it will re—
ceive a minimum of mechanical disturbance. It is also best to
avoid close proximity with any severe sources of electrical noise.

The 4050 system power may now be applied.

Auxiliary Memory Reference Manual 1-3

Overview and Installation

Field Installation of Memory Cards
1. Disconnect all power cords and cables.

2. To remove the chassis cover on units with serial numbers 2000 and
above, remove the screw at the back of the memory box, slide the
cover gently towards back of the memory box and pull up, then
skip to step 8. For serial numbers below 2000, follow steps 3-7.

3. With the memory box resting on its top (on a table or work surface)
remove the four screws that are closest to the rubber feet on the
bottom of the Memory box. (See figure 1)

’

4. Lift bottom cover upward to remove.

5. Remove the four (two each side) 1/4” nuts from the chassis.
(See figure 2.)

6. Lift chassis upward (lift one side then the other) to remove from
top cover. ;

7. Turn chassis over so the inside circuit boards are showing.

8. Locate an empty card slot next to an existing memory card.
The new memory boards must be installed in order sequentially
without skipping any slots. Note that the bottom bus board is
labeled by each connector, MEMORY CARD 0 to MEMORY CARD 7.

Slide the new RAM board(s) into the black card guides and
align the pins on the connector pressing down firmly, but
slowly until the pins are seated.

g. You may at this point wish to test the memory to make sure all
the connections were properly made before re-assembling. You
can do this by attatching the power cord making sure that every-
thing is well insulated and doing a CALL “MCHECK”. If MCHECK
does not return the correct memory size, then double check the
seating and position on the pins to connectors on all boards.

10. Reverse the dis—assembly steps above to re-assemble making sure

the vent holes in the top and bottom cover are toward the back
of the module.

1-4 Auxiliary Memory Reference Manual 070-6400-03 11/83

Overview ‘and Installation

Figure 1. Bottom of Memory Module

Figure 2. Chassis with Bottom Removed

070-6400-03 11/83 Auxiliary Memory Reference Manual 1-5

Overview and Installation

Option 15 - Battery Back-up Description

The Battery Back-up provides power to the Memory during brief power inter—
ruptions. Minimum support time for a fully configured memory is 50 minutes.
This allows the user to save programs and data during short power outages.
The Battery Back-up has five 1.2 volt batterys in series for a total charged
voltage of between 6.8 to 7.5 volts. When a black-out or brown-out occurs,
the battery takes over and provides power to the Memory.

If the power fails to come back on within the time the batteries are able to
sustain the installed memory, the battery back-up circuit will shut itself off
to protect the batteries from completely draining. When the power is finally
restored, the charging circuit senses the power increase and starts charging
the batteries for the next use of the batteries.

Operating Instructions

It is recommended that once the Option 15 Battery Back-up is installed in the
6400 Memory, that it be powered at all times to ensure that the battery is
fully charged in the event of a power failure. This also allows you to have
programs or data accessible at any time.

Specifications

o Minimum Hold Time For Fully Conﬁgured Memory: 50 minutes

o Maintenance-Free: The batteries have a sealed construction, contain no
free electrolyte, and require no service or maintenance except recharging.

o Overcharge Protection: Nickel-cadmium cells can be continuously overcharged,
without noticeably affecting life.

o Cycle Life: 300 to 1000 cycles of discharge, or 5 years of standby power
is common to NICAD cells.

o High-Rate Charging and Discharging: Cells can be charged in 3 to 6 hours
minimum time and 14 hours maximum.

1—6 _ Auxiliary Memory Reference Manual 070-6400-03 11/83

Overview and Installation

Field Installation of Battery Pack Option 15

Photo- #1 shows the inside of the TransEra memory with cover removed and
without a battery pack.

Step 1. Remove screw No. 1 holding red wire (+DC) and screw No. 2
holding green wire (-DC). (See separate instructions for
removal of memory cover).

Photo #2 shows battery pack partially in place with red wire No. 1 protruding
at right and green wire No. 2 protruding at left.

Step 2. Insert battery pack as shown with red and green wires
protruding toward the rear of the memory case.

Step 3. Fasten these two wires where the screws were removed by
placing them over the original two wires and replacing the
screws (red to red and green to green).

Photo #1 Photo #2

070-6400-03 11/83 Auxiliary Memory Reference Manual 1-7

Overview and Installation

Photo #3 shows battery pack in place with wires attached. The Battery pack
should be down as close as possible to perforated power supply housing.

vPhoto #4 shows screws through side of memory case holding battery pack.

Step 4. Place four screws (two on each side) through slots in
memory case to screw bolts in memory pack to hold battery
pack firmly in place.

Step 5. Insert fuse into Battery pack fuse holder (thus enabling the
battery to power up the memory). Test battery backup operation
by plugging the power cord in. If the LED (on Printed Circuit
Board) comes on when the memory is plugged in, then the Battery
pack is being charged.

Step 6. Reassemble case (see instructions) and memory is ready for
operation.

Photo #3 Photo #4

1-8 Auxiliary Memory Reference Manual 070-6400-03 11/83

Overview and Installation

Options 11 and 12 - DMA Board Installation Instructions

1.

2.

10.

11.

12.

Disconnect all power cords and cables.

To remove the chassis cover on units with serial numbers 2000 and
above, remove the screw at the back of the memory box, slide the
cover gently towards back of the memory box and pull up, then
skip to step 8. For serial numbers below 2000, follow steps 3-7.

With the memory box resting on-its top (on a table or work surface),
remove the four screws that are closest to the rubber feet on the
bottom of the Memory box. (See figure 1))

Lift bottom cover upward to remove.

Remove the four (two each side) 1/4” nuts from the chassis.
(See figure 2.)

Lift chassis upward (lift one side then the other) to remove from
top cover. i

Turn chassis over so the inside circuit boards are showing.

Remove the cover plate on back of memory for the DMA connector
and install the DMA connector.

Install the DMA card, in any of the three 564 BUS slots.

You may at this point wish to test the memory to make sure all
the connections were properly made before re-assembling. You
can do this by attatching the power cord making sure that every-
thing is well insulated and doing a CALL "MCHECK”. I MCHECK
does not return the correct memory size, then double check the
seating and position on the pins to connectors on all boards.

After memory is functioning properly, test DMA (see Section 4).
Reverse the dis-assembly steps above to re-assemble making sure

the vent holes in the top and bottom cover are toward the back
of the module.

Refer to Section 4 for operating instructions for the DMA options.

070-6400-03 11/83

Auxiliary Memory Reference Manual 1—9

Overview and Installation

1-10

Installing Firmware Upgrades

Before attempting to upgrade your ROM pack, first read the the Firmware
Release Notes. All changes are documented only in the release notes.
This will inform you of any changes that will affect your data, programs
or mode of operation. Then proceed with the following steps:

1. Remove the 4 screws and the ROM pack lid.

2. Lift the printed circuit board from the plastic box and hold
the board in front of you, component side up, with the gold
printed—circuit connector fingers at the bottom.

3. Carefully remove the old EPROM(s) by prying up from the edges.
A small screw driver works well.

4. Insert the new EPROM(s) into the socket(s). Please observe
the proper orientation, and pin locations. The EPROM is
inserted into its socket with the small notch in the EPROM
case pointed to the left as you hold the ROM pack board
upright with the gold printed circuit board connector fingers.
at the bottom. :

If you are supplied with more than one EPROM, they should be
marked with Roman Numerals. The EPROM socket nearest the bottom
is for the EPROM marked with Roman numeral . The next socket
location up is for number Il, and so on.

Note: You may have to apply considerable pressure to seat the
chip and it may snap into position. Do not be afraid of doing
this so long as you have carefully lined up all the pins with

the socket and you are applying even pressure. Also, make sure
all the pins on the chip are straight and not bent over from
shipment or handling before pressing the EPROM into position.

5. Replace the circuit board into the plastic case and line up
the screw holes.

6. Put the ROM pack lid back on and fasten it with the four screws.
After you have the new firmware working and have had a chance to test your

programs, please return the old EPROMY(s) at your earliest convenience.

Auxiliary Memory Reference Manual 070-6400-03 11/83

Section 2

Getting Started

About This Section

This section provides an overview of the Auxiliary Memory file
structures, file names, and command usage. It also includes is a
getting started tutorial for helping first time users become familiar
with the Auxiliary Memory file system.

You should read the following descriptions of the file identifier, and

the file structures used including the various file types from program

to random and sequential data files. This will help you to understand

the rest of the manual and generally improve your ability to program
efficiently by adding to your overall understanding of the memory system.

File Identifers

File Identifiers consist of a file number and an optional file name.
Before explaining file names, it must be understood that each file that
is created has a number assigned to it. It is ultimately by this file
number that the file is accessed. Unlike some other file management
systems, this arrangement precludes many of the formalities of creating,
opening, and closing files. There is no maximum number of files that
can be open for access at any one time. All files are inherantly open.

Both program and data files can be created ‘automatically’ upon the
first output reference, without formally using the CREATE command.
Files may, however, be created with optional characteristics when the
defaults are not applicable. This gives you the flexiblity when you
need it without imposing a mandatory compiexity when you don’t.

File names are purely optional and may be used on selected files or on
all files. They may be used strictly for labeling purposes for viewing

in the directory listings, or they may be used to actually reference

the files in the various commands. Since files have inherantly assigned
numbers, they are the primary means of referencing files. They offer
the greatest speed and efficiency in program execution since the file
manager knows instantly where to find a file referenced by number.

070-6400-03 11/83 Auxiliary Memory Reference Manual

Getting Started

The file name, therefore, is mainly for convenience purposes since names
are usually easier to remember than numbers. File names may be from
1 to 28 characters in length. The file manager is very permissive,
allowing almost any valid characters in names and retaining upper and
lower case. Duplicate file names are also allowed if they are used only
for labeling purposes.

The user is therefore responsible for avoiding duplicate names (if he
intends to reference those files by name), and for choosing appropriate
characters for names, remembering to enter the proper case (upper/lower)
when referencing files. If duplicate file names are assigned and later
referenced, only the first occurence or lowest numbered file will be

found.

Routines are provided for finding file numbers based on assigned names
(see MOPEN), and for finding the next lowest file number available (see
NXTFIL). It is best to choose file numbers for new files that are as

low as possible in order to conserve memory and speed access. Refer to
the next discussion on File Structures to better understand why this is so.

Also, refer to the Preface under the title, “Conventions And Formats
Used In This Manual”, for a description of the format and syntax used
to describe file identifiers throughout this manual.

File Structures

The Auxiliary Memory allocates memory in chunks of 256 bytes. This is
referred to as a block. Upon power-up, or after a CALL "“INIT” is executed,
the file manager will reserve a few blocks of memory for its use. The

first two blocks (512 bytes) are reserved for the directory. The first

16 bytes of the directory are actually reserved for file manager system
information.

Each directory entry consists of a two byte pointer which points to the
first block assigned to a new file when it is created. This means that
there is enough reserved directory space for 248 files. If more files
than this are created, or if file numbers higher than this are used, then
another block must be allocated to the directory.

2-2 Auxiliary Memory Reference Manual 070-6400-03 11/83

Getting Started

Following the two reserved directory blocks, there is a link map which
contains a two byte pointer for every block in memory. This means that
4 blocks of link map are required for every 128K bytes of memory
installed. The amount of memory is determined on power—-up and the
appropriate number of blocks are reserved for the directory and link
map respectively.

Since it is possible to select file numbers in any order and you are

not prevented from choosing arbitrarily high numbers, you must under-
stand the consequences. There is not too much of a speed penalty

in referencing high file numbers since the random access memory is
inherhantly fast.

However, unnecessarily high numbers will cause additional directory
memory to be allocated. Also, you may notice slight delays in directory
listings since every directory entry must be checked between the first
file and highest number. If you had two files, 1 and 1000, then the
directory lister would be forced to scan 998 empty directory entries.

There are three basic file types in the Auxiliary Memory. One is a
program file, and the other two are data files, random, and sequential.

Each of these files has a file header of 44 bytes. This inlcudes

space for a 28 character file name. Other bytes are used for file type
information, record size, current item pointer, and last item pointer.
For more details on this and general memory architecture, refer to
Section 5 of this manual.

Program Files

Programs are saved in a binary format. This is a partially compiled
format which the 4050 uses as its internal format for programs. This
is why loading and storing programs in this format is much faster than
the ASCIl format which must be fully interpreted and broken down

to the internal binary structure. All that is necessary in transferring
binary programs is to convert variable names to table pointers or
vice-versa depending on the direction of transfer.

When a program is saved, it is written to the first block of memory
assigned to the file starting after the 44 byte header. When that

070-6400-03 11/83 Auxiliary Memory Reference Manual 2—3

Getting Started

block is filled, another block is requested and chained to the preceding
biock through the link map. In this way the file dynamically expands
using as many biocks as are required. When a program is re-saved, its
file is implicitly deleted, releasing all blocks assigned to it. Therefore,
if the program is any smaller, it will only take as many blocks as re—
quired each time it is saved.

Random Files

Random files are the most flexible data file types and are required by
many of the utility or special purpose routines. It is therefore the
default file type created when writing to a previoulsy un—-referenced
file.

The random file is assigned a specific record size. This is the space
allocated for each individual data item. This is different from some
file systems which allow more than one data item per record. By
allowing only one data item per record, numeric and string arrays
become very easy to manage. You are allowed to perform array reads
and writes and the item pointer wili automatically move through the
file.

Since each record has a fixed length, they may be randomly accessed
very rapidly by computing their position. Also, selected items may
be overwritten, moved, or sorted without affecting neighboring records.

Random files can be created with any record size from 1 to 255.
Every record in a particular file will have the same length. The default
record size for numerics is 8 bytes. This is the space required by

the 4050 system representation for full precision floating point
numbers. The default for strings is 72 bytes. The type of data
written in a record is not saved with each data item. You must keep
track of what was written and where in order to properly read it back.

Strings are delimited by a zero byte, or by the end of the record.
Numerics are always 8 bytes or less. In larger record sizes, only
the first 8 bytes are read into target numeric variables. In records
smaller than 8 bytes, a reduced precision format is used with 1-3
byte records being integer format.

2-4 Auxiliary Memory Reference Manual 070-6400-03 11/83

Getting Started

Sequential Files

The sequential files main virtue is more efficient memory usage when
variable lengthed strings are used. Each data item begins where the pre-
vious item left off, with no wasted space in between. Each item in a
sequential file starts with two bytes that contain its length. When

an item in a sequential file is randomly accessed, its position is

found by starting with the first item and chaining forward using the
length pointers until the item addressed is found.

Because a current item pointer position is maintained, this process
can be slightly more efficient if the referenced item number is greater
than the last referenced position represented by the current item
pointer. In this case, the forward chaining process can be relative to
this position rather than the file's first item.

This item location process is transparent to the user and the same
read/write commands are used in exactly the same way to access both
random and sequential files. In sequential files, however, you cannot
write to the middle of the file without forcing a new end of file marker.
This is because the variable length fields may cause one item to write
over its neighbor, or fall short of the next chain (length) pointer.

070-6400-03 11/83 - Auxiliary Memory Reference Manual 2-5

Getting Started

Getting Started Tutorial

This section gives a brief overview of some of the more common Memory
File Manager commands. It gives examples and shows the file manager’s
response. It is recommended reading if you are unfamiliar with the

6400 Memory File Manager.

Let's start with a simple program that accesses the memory and that we
can save to the memory as well. Assume that we have just powered up
first the Auxiliary Memory, and ‘then the 4050. Then enter the following:

100 CcALL "WRITE",1,1,2,3,4,5,6,7,8,9,10
110 CALL "SETIP",1,1

120 FOR X=1 TO 10

130 CALL "READ",1,D

140 PRINT D;

150 NEXT X

160 END
Now run the program and type the following statements:

RUN
12345678910

CALL "MSAVE",10

CALL "DIR"
No. Name Type Rec Siz Size
1 Noname Random 8 124
10 Noname Program - 514

127234 Bytes Free

DELETE ALL
CALL "MOLD",10
RUN

123456782910

2-6 Auxiliary Memory Reference Manual 070-6400-03 11/83

Getting Started

LIST

100 CALL "WRITE",1,1,2,3,4,5,6,7,8,9,10
110 caLL "SeETIP",1,1

120 FOR X=1 TO 10

130 CALL "READ",1,D

140 PRINT D;

150 NEXT X

160 END

Now let's examine what we've done. The first line of this program is

a WRITE statement. Note that we did not have to formally create a data
file. The first argument in the list is a 1. This is the file number.

The remaining arguments are numbers from 1-10. These are data items
to be written to file 1, which is automatically created as a random file
with a record length of 8, and the 10 data items are written to this

file when line 100 is executed.

After running the program we can see that the data items were read back
out of the file and printed to the screen with the READ statement after
having reset the item pointer to 1 in line 110.

We next saved the file using the MSAVE command in file number 10 as the
file number. These two files are then listed by the directory command.

To convince ourselves that we have properly saved the program, we next
delete the program and data from memory and load it back in with the
MOLD command. We then run the program and list it back out noting

that everything is the same.

One thing is different, however. In running the program the first time,
the current item pointer was left at position 11 after reading the 10
items. So, in running the program a second time after loading it back,
that position was retained and 10 more items were written to file start-
ing at 11 for a total of twenty items.

Before reading begins the second time, the item pointer was set back

to 1. This means that if we run this program a few more times, it will

not add 10 items each time but will continue to over-write the second 10.
This is because each reading loop leaves the item pointer at position 11.

070-6400-03 11/83 Auxiliary Memory Reference Manual 2-7

Getting Started

2-8

You may want to insert CALL “GETIP” and CALL "LSTIP” after each
access to the memory in the above program to see the what happens
1o the current item pointer and last item pointer positions after each
operation. If these statements are entered without arguments the
pointer positions will be printed to the screen.

Now let’s try some arrays to check out the speed and storage capability
of the memory by entering the following;

DELETE: ALL
CALL "INIT"

DIM A(3000)

A=1

CALL "WRITE",1,A,A,A,A

You have just transferred 96,000 bytes to the memory. This is more than
can be resident in user memory at one time. Did you notice how fast this
happened? Now let’s read it back and verify the contents, again noting
the speed.

DELETE A

DIM A(3500)

CALL "READ",1,1;A
SUM(A)

3500

This shows that correct values were read back. Note that the item
pointer was set to record position 1 in the READ routine by the value of
1 following the following the file number and delimited by the semicolon.
Now check the current and last item pointers.

CALL "LSTIP"
12000
CALL "GETIP"

3501

The last item pointer reflects the total number of items written to the
file from the four 3000 element arrays. The current item pointer position
is the result of having read 3500 elements from the begmnmg and then
being ready to read the next location.

Auxiliary Memory Reference Manual 070-6400-03 11/83

Getting Started

You should now be able to do quite a lot both in saving and olding
programs and in reading and writing data files. But before we quit,
let's try one thing more that uses some specialty routines and some

of what we already know. This will be a random number plot.

DELETE ALL

CALL "INIT"

DIM A(1000)

A=-1

A=RND(A)

CALL "WRITE",1l,A
CALL "SCALE",1,100,3

CALL "MPLOT",1

This should produce a random line plot that fills most of the screen.
The SCALE routine uses the mulitply code of 3 and a value of 100 to
scale the random data in file 1 up to the window size. - The MPLOT
routine then plots this data to the screen using two numbers at a time
as a pair of x,y coordinates directly from the file.

You should now feel somewhat comfortable in working with the Auxiliary
Memory file system and be anxious to learn some of the more advanced
features awaiting you on the following pages.

070-6400-03 11/83

Auxiliary Memory Reference Manual 2‘9

Section 3

STATEMENTS, COMMANDS, AND FUNCTIONS

INTRODUCTION

This section describes all of the statements, commands, and functions
implemented in the Auxiliary Memory File Manager ROM pack. They are
listed in alphabetical order. The format for each is given followed

by a detailed description including exmples.

070-6400-03 11/83 Auxiliary Memory Reference Manual

3-1

APLOT

APLOT Plots absolute format UDU data directly from a file.

Format
CALL "APLOT"fLI-TioLi1Li211] format for x,y pairs in 1 file
CALL "APLOT”,f1,f2;[-]iOLi1[,i2]] format for x & y in 2 files
where: fi = file identifer for x,y values
f1 = file number for x values
f2 = file number for y values
[-l]io = I/0 device number (optional)
i1 = starting item position (optional)
i2 = ending item position (optional)
Arguments
file identifier can be either a file number represented by
a numeric expression, or a file name ex-
pressed as a string variable or literal.
This file contains x,y coordinate pairs.
file number for x a numeric expressioh designating the file
containing the x values to be plotted.
file number for y a numeric expression designating the file
containing the y values to be plotted.
device number a numeric expression designating either
the screen (device 32), or an external
plotting device on the GPIB.
starting position a numeric expression that specifies the
starting item position to be plotted.
ending position a numeric expression that specifies the
last item position to be plotted.

3-2 Auxiliary Memory Reference Manual 070-5400-03 11/83

APLOT

Why Use It?

If you have data already expressed in standard UDU format that
extends into the negative quadrants, APLOT will allow you to transfer
this data to files “as is’ for direct file plotting.

This is different from MPLOT in that APLOT uses the full range of
UDU data, whereas MPLOT treats each negative valued data point
as a move.

What It Does

The APLOT routine plots graphical information expressed in user
definable units directly from the specified file(s) to the specified 1/0
device or by default to the screen. The first coordinate plotted can
be flagged as a move by the sign of the I/0 device number, where
a negative value indicates the first coordinate should be a move.

How To Use It

Data to be plotted can be stored in one of two ways. A single file

may contain a series of x,y coordinate pairs. In this case, the APLOT
routine requires a single file identifier, which may be a name or number.
All other arguments are optional. If the I/O device number is omitted,
then the plot, by default, will be made to the screen.

The second way is where the x and y coordinates are stored in separate
files. In this case, the files must be referenced by number, where the
first file contains x values and the second file contains y values, and

the second file argument MUST be followed by a semicolon. This is
necessary as it is the only way to ditinguish between single file format
and dual file format. Also, since the CALL statement cannot end with a
semicolon, the 1/0 argument which comes next is not optional in this
case. Therefore, when a plot is targeted to the screen, the device
address of 32 must be inserted following the y file’s semicolon.

The optional range specifiers are the same for both file formats. If
the optional starting position is omitted, the default starting position
will be the first item, and the ending position will be the last item in
the file. If only the ending position is omitted, the starting point can
still be specified and the ending point will be the last item position.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-3

APLOT

Examples

100 PRINT "ENTER FILE NAME TO BE PLOTTED: "
110 INPUT F$

120 CALL "APLOT",FS$,-32

The contents of the file named in F$ are plotted to the screen. The
negative sign on the screen address specifies that the first coordinate
plotted will be interpreted as a move. Data in this file is stored in a
series of x and y coordinate values.

100 DIM X(100),Y(100)
110 WINDOW -1,1,-1,1
120 VIEWPORT 15,115,0,100

130 1=0
140 FOR A=0 TO 2*P| STEP 2*PI/99
150 I=I+1

160 X(I)=COS(A)

170 Y(1)=SIN(A)

180 NEXT A

200 CALL “"WRITE",1,X
210 CALL "WRITE",2,Y
220 CALL "APLOT",1,2;-32

This program computes 100 coordinates on a unit circle and saves the
x and y coordinates in separate files. Note that the first y coordinate
is made negative before the data is written to the file. This will

cause the first point to be a move. This circle is then plotted to

the screen, centered and expanded by the WINDOW and VIEWPORT.

Note that if it is desired to MOVE to location (0,0), it is not possible

to make either coordinate negative to flag the move since both are zero.
In this case you may solve the problem by making one value a small
negative number near zero, such as 1.0E-300.

100 MOVE 0,0
110 CALL “APLOT",10,1,51

This statement will plot x,y data from file number 10 to the external GPIB

address 1. The starting data location within the file is at record 51.
The first move is made in line 100 before APLOT is called.

3-4 Auxiliary Memory Reference Manual 070-6400-03 11/83

CONCAT

CONCAT Combines two files into one by concatination.

Format
CALL "CONCAT" 1,2

where: f1 = target file
f2 = source file-

Arguments
target file a numeric expression that specifies the file to
be added to. Must be an existing random file.
source file a numeric expression that specifies the file to
be copied from. Must be an existing random file.
Why Use 1t?

You may wish to combine 2 files into one in order to perform some
common operation on them such as scaling, sorting, plotting, or location
of min/max values. '

What It Does

CONCAT allows two random data files to be combined together into one
file. The second file is added to the end of the first file (f1=f1+f2). The
second file remains unaffected.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-5

CONCAT

How To Use It

Both files must be Random files with the same record lengths. The first
file indicated in the CONCAT command is the target file. The second
file is added to the end of the first file. The second file will then
remain unaffected and the first file will contain the information from
both. The Last ltem Pointer will be appropriately updated in the first
file to reflect the new total item count.

Example
100 CALL "CONCAT",8,4

File 8 is the target file. File 4 is joined to the end of file 8 and
file 4 remains unchanged while file 8 now has data from both.

3-6 Auxiliary Memory Reference Manual 070-6400-03 11/83

COPY

COPY Makes a copy of an existing file by creating a new one.

Format

CALL “COPY” 1,12

where: f1 = source file
f2 = target file
Arguments
source file a numeric expression that specifies the file to

be copied. Must be an existing random file.

target file a numeric expression that specifies the file to
be copied to. Must be an existing random file.

Why Use It?

You may want a copy of a file that you can alter without affecting the
original file. You might also want a back-up copy of important files.

What It Does

Makes a copy of an exisiting file by creating a new file and duplicating
the contents of the first file to the new file. The first file specified
is the file copied, the second file is the new file (f1-—>f2).

070-6400-02 11/83 Auxiliary Memory Reference Manual 3—7

CoPY

How To Use It

Any file type can be copied. The original file remains unaffected.
The destination file can be any valid file number that is currently
unused. If the file copied was write protected, then the new file

will also be write protected.

Example

100 CALL "COPY",3,4

File 3 is copied to file 4, which was a previously an un-used file number.

3'8 Auxiliary Memory Reference Manual 070-6400-03 11/83

DIR

DIR Prints a listing of all files currently in the directory.

Format

CALL "DIR"[,i0] Call format

DIR[ECTORY] [i0] Key word format

where: i0 = I/0 device-number (optional)

Arguments

i/o device a numeric expression that designates some 1I/0
device connected to the system such as a printer.
If omitted, the directory will be printed on the
screen.

Why Use it?

To print a directory of all files created to either the screen or a

selected I/0 device, such as tape drive or printer. This will enable

you to see what files have been created, how many there are, how much
space each file has used, how much memory is left, and the names,
numbers, and record sizes assigned to each.

What It Does

DIR prints a listing of all files currently in the directory to the 4050
screen or to the optionally specified 1/0 address. This listing inlcudes:
file number, file name, file type, record size, and file size. Write
protected files are also marked with a ‘'wp’. There are 3 file types:
Random, Sequential, and Program. The record size, for random files,
indicates the maximum string length allowed, and if less than 8, the
numeric format and accuracy. The record size does not apply to
Sequential or Program file types and is therefore listed as '~ in the
directory. The file size indicated is in bytes and includes 44 bytes
which is used as a file header on each file.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-9

DIR

How To Use It

This command has both a CALL format and a key word format. Either
may be used if no other file manger is present. If there is another file
manager present in the system, then the CALL format may always be used
exclusively, or the DIR key word may be used if the appropriate protcol

is observed. Refer to the description of MUNIT and DUNIT for an
explanation of this protocol.

The I/0 device is the only argument for this command and it is optional.
The default device is the 4050 system screen. Other devices you may

wish to use would be a printer, internal or external mag-tape, or other
GPIB device.

Examples
100 CALL "DIR",51

A directory is printed to the printer located at I/0O device address 51.

DIR

No. Name Type Rec Siz Size
1 -~ ADDRESS LIST Random 72 18044
2 STOCK NUMBERS Random 8 68

5 COMCODES Random -2 1044
7 GRAPH DATA Random 3 80

8 TITLES Sequential - 2000
9 GRAPHPROG Program - 8112

The directory is printed to the screen.

3-10 Auxiliary Memory Reference Manual 070-6400-03 11/83

EXCLUDE

EXCLUDE Sets the exclusion level for remarks in programs loaded.

Format

CALL "EXCLUDE" |

where: | = exclusion level
Arguments
exclusion level a numeric expression representin an integer

value of 0, 1, or 2 which sets the exclusion
for remarks when loading program files.

Why Use It?

This routine allows you to load program files from auxiliary memory
excluding remarks that are in the originally saved program. This
may be important to conserve user memory for additional data space.

What It Does

The EXCLUDE routine allows you to set the mode of exclusion to be used
prior to a program load instruction from the auxiliary memory such as OLD.
A value of zero will turn off the exclusion process allowing all remarks

present in the saved program to be loaded into user memory.

A value of one for the EXCLUDE argument, will cause REM statements to be
trimmed of any remark and keep only the line number and the REM code.

A value of two will cause any lines containing remark statements to be
entirely eliminated as the program is loaded.

This function is similar to the A series disk file manager function but
will work on all non-A machines including 4051.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-11

EXCLUDE

How To Use It

This routine must be called prior to the next program load instruction

such as OLD, LINK, or APPEND. If the program confains REMark statements
that are referenced by flow control statements such as GOTO, GOSUB, IF
THEN, etc., then an exclusion level of 1 should be used so that these
statement numbers will be retained for reference but trimmed of remark
contents.

If there are no referenced remarks, then exclude level 2 may used which
will eliminate all remark statements and save the most amount of user
space.

The program as saved in the file will still contain all the remarks and

may be loaded into user memory with remarks later for editing purposes.

Examples

900 CALL "EXCLUDE",2
910 CALL "MLINK",13,100

These program lines load the program file number 13 from the auxiliary
memory with all remark statements excluded.

CALL "EXCLUDE",O0
OLD "P-CALC"

These statements load the file named P-CALC into user memory with all
remarks intact and ready to be edited and re-saved.

3-12 Auxiliary Memory Reference Manual 070-6400-03 11/83

FILHDR

FILHDR Returns directory listing for specified file.

Format
CALL "FILHDR" fi,H$

where: fi = file identifier
H$ = target string

Arguments

file identifier can be either a file number represented by a
numeric expression, or a file name expressed as
a string variable or literal.

target string a string variable to receive directory information
about the specified file. Must not be dimensioned
smaller than 72.

Why Use It?

Use FILHDR to get the directory information on a single file, or on

a selected range of files. Since it returns the information in a string
variable, it may also be used to extract certain directory information
under program control.

What It Does

FILHDR returns the same information that would be output to the screen
or optional I/O device by the DIRECTORY command. The information,
however, is placed in a string variable and only for one selected file at

a time. If the file on which information is requested does not exist, then
a null string will be returned.

070-6400-03 11/83 ' Auxiliary Memory Reference Manual 3-13

FILHDR

How To Use It

Two arguments must be supplied with this function. The first argument
specifies the file desired either by name, or by number. The second
argument is a string variable which must be dimensioned large enough
to receive the information about the selected file. This function may be
incorporated into a loop to produce a directory listing over a selected
range. This is easily achieved both because no error is generated by
invalid file numbers (a null string is returned) and because the string
returned has a carriage return appended if valid. This allows the

string to be printed with a semicolon to suppress additional carriage
returns and produce listings without blank lines and without checking
for null strings. This is illustrated below.

Examples

100 FOR F=10 TO 35
110 CALL "FILHDR",F,F$
120 PRINT FS;

130 NEXT F

Produces a directory listing for any exisiting files between 10 and 35.

100 PRINT "ENTER FILE NAME YOU WISH TO CHECK FILE SIZE OF: ";
110 INPUT AS

120 CALL "FILHDR",AS$,BS

130 C$=SEG(BS$,66,6)

140 IF C$="" THEN 100

150 PRINT "FILE SIZE =";VAL(CS)

160 END

Prints the file size for the user selected file.

3-14 Auxiliary Memory Reference Manual 070-6400-03 11/83

FILTYP

FILTYP Returns a code for the file type of a specified file.

Format

CALL “FILTYP"fi, T

where: fi = file identifier
T = target variable

Arguments
file identifier can be either a file number represented by a
numeric expression, or a file name expressed

as a string variable or literal.

target variable a numeric variable to receive the file type
code for the specified file.

Why Use It?

It may be more convenient to get file type information about a selected
file in a numeric variable rather than a string as with FILHDR, or by

the DIRECTORY command. This could be valuable to determine if a
certain file number is available. Zero is returned for files that don't
exist.

What It Does

FILTYP returns one of 4 codes 0, 1, 2, or 3 indicating file type. Zero
indicates the file has not yet been created and is available. A value

of 1 = RANDOM, 2 = SEQUENTIAL, and 3 = PROGRAM file types. These
values correspond with the values used in the MCREATE command to
select the file type.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-15

FILTYP

3-16

How To Use It

This function requires two arguments, one to select the file to be typed,
and the second to receive the numeric value of the file type. If the
value returned is zero, then the file specified does not exist. After
CALLing this function, it may be followed by a conditonal IF/THEN state-
ment, or a computed GOTO, or the value may simply be reported back.

Example

100 FOR F=1 TO 10

110 CcALL "FILTYP",F,T
120 IF T>0 THEN 140

130 CALL "MCREATE",F,1,8
140 NEXT F

This program creates any files between 1 and 10 that are not already
created. '

Auxiliary Memory Reference Manual 070-6400-03 11/83

FPLOT = Fast plots GDU format data directly from a file.

file identifier

file number for x

file number for y

starting position

ending position

Format
CALL "FPLOT"fil,i1Li2]] format for x,y pairs in 1 file
CALL "FPLOT"f1,f2;i1[,i2] format for x & y in 2 files
where: fi = file identifer for x,y values

f1 = file number for x values

f2 = file number for y values

i1 = starting item position (optional)

i2 = ending item position (optional)
Arguments

can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal. This file
contains x,y coordinate pairs.

a numeric expression designating the file
containing the x values to be plotted.

a numeric expression designating the file
containing the y values to be plotted.

a numeric expression that specifies the
starting item position to be plotted.

a numeric expression that specifies the
last item position to be plotted.

Why Use It?

Use FPLOT to plot data expressed in graphic defined units {GDU’s), which

FPLOT

are not subject to WINDOW and VIEWPORT scaling. This is convenient for

placement of forms or other graphical information which is totally inde-

pendant of the window and viewport scale and offset.

070-6400-03 11/83

Auxiliary Memory Reference Manual

3-17

FPLOT

Since GDU data is positive only, negative values may be used to desig-
nate moves so that entire plots can be output from a file with a single
command having any number of embedded moves. This format will
also result in faster plotting speeds than if individual MOVE and DRAW
statements are utilized.

What It Does

The FPLOT routine plots graphical information expressed in Graphic
Display Units directly from the specified file(s) to the screen only.

The GDU format ignores any window or viewport definitions. Both the
window an viewport are effectively set at 0,130,0,100 or the actual
screen size.

This allows graphical information with fixed positions to be easily
placed on the screen using a single command plotting from a single
data file (or 2 files for separate x,y storage).

How To Use it

Data to be plotted can be stored in one of two ways. A single file

may contain a series of x,y coordinate pairs. In this case, the FPLOT
routine requires a single file identifier, which may be a name or number,
and all other arguments are optional.

The second way is where the x and y coordinates are stored in separate
files. In this case, the files must be referenced by number, where the
first file contains x values and the second file contains y values, and

the second file argument MUST be followed by a semicolon. This is
necessary as it is the only way to ditinguish between single file format -
and dual file format. Also, since the CALL statement cannot end with

a semicolon, the starting position argument which comes next is not
optional in this case.

In the single file format if the optional starting position is omitted,
the default starting position will be the first item, and the ending
position will be the last item in the file. If only the ending position
is omitted, the starting point can still be specified and the ending
point will be the last item position.

3-18 Auxiliary Memory Reference Manual 070-6400-03 11/83

FPLOT

Examples
100 CALL "FPLOT","FORMS OVERLAY"

The contents of the file named "FORMS OVERLAY” are plotted to the
screen. Data in this file is stored in a series of x and y coordinate values.

200 CALL "SCALE",1,1,10
210 CALL "SCALE",2,1,20

220 CALL "FPLOT",1,2;1

This program plots GDU format data with x values conained in file 1,
and y values conained in file 2. Before the files plotted, each axis

is shifted with the SCALE routine which adds 10 to every x coordinate
in line 100 and 20 to every y coordinate in line 110.

Note that if it is desired to MOVE to location {0,0), it is not possible

to make either coordinate negative to flag the move since both are zero.
In this case you may solve the problem by making one value a small
negative number near zero, such as 1.0E-300.

CALL "FPLOT",F1,S,S+999
This statement plots 500 x,y pairs from the file specified by F to the

screen. The starting position of the first data pair is specified by
the value in S.

070-6400-03 11/83 Auxiliary Memary Reference Manual 3-19

GETADD

GETADD Gets the address of the first data byte in a specified file.

Format

CALL "GETADD" fi,a

where: fi = file identifier

a = target variable for address

Arguments

file identifier a numeric expression that specifies the
file whose address is to be returned.

target variable a simple variable that will be assigned
the value of the address of the first
data byte in the specified file.

Why Use It?

Use the GETADD routine to find the physical memory address of the first
data byte location of a given file. It is the first byte beyond the 44

byte file header. This address may be used by the primitive routines
RBYTES and WBYTES, as well as the DMA routines, and data acquisition
ROM packs such as the A/D converter.

What It Does

GETADD returns the address of the first data byte in a file. The first
data byte is located just beyond the file header which is 44 bytes long.
This memory address is assigned to the target variable supplied and
passed back to the user or the program. If a file that does not exist
is referenced, an error will be produced.

3—20 _ Auxiliary Memory Reference Manual 070-8400-03 11/83

GETADD

How To Use It

GETADD must reference a valid file and provide a simple variable as
a target for the starting file address that is to be returned. If the
file header is to be accessed, the address returned minus 44 bytes
must be used to point to the beginning of the file header. Otherwise
the address will point to the first data byte which is just beyond the
header.

Examples

100 CALL "GETADD",11,A
110 CALL "RBYTES",A$,A-44,44

These 2 lines will get the starting data address of file 11 and then
read the 44 byte file header of that file into AS$.

100 CALL "GETADD",F,X
110 CALL "DMA8",X

These statements find the address of file F and passes that address to
the DMA option ready to take data at that address.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-21

GETIA

GETIA Gets the physical address of a data item in a file.

Format
CALL "GETIA" fi,a

where: fi = file identifier
a = target variable for item address

Arguments

file identifier a numeric expression that specifies the
file whose current item address is to be
returned.

target variable a simple variable that will be assigned
the address of the current item pointer
for the specified file.

Why Use It?

Use GETIA to get the physical memory address for the current item pointer
of a specified file. This will enable you to access that item location

with the primitive read and write routines. The item address may also

be used for DMA or data acquisition operations.

What It Does

GETIA uses the file identifier to look up the requested file and locate
its internal current item pointer address. This value is then assigned
to the simple variable provided as a target and is passed back to the
user or to the program.

3-22 Auxiliary Memory Reference Manual 070-6400-03 11/83

GETIA

How To Use It

To use GETIA, simply specify a file either by name or be number and
provide a target variable for the current item address to be passed back
in. You must provide a valid file specifier or an error will result.

Examples

100 CALL "GETIA",F,A
110 CALL "RBYTES",AS,A,S8

This program reads the address of the current item in line 100 and then
uses it to read the contents of that item location with RBYTES into a
string variable.

100 CALL "SETIP",1,10
110 CALL "GETIA",1,N
120 AS$="TEST"

120 CALL "WBYTES",AS,N
130 CALL "READ",1,10;BS

140 PRINT AS,BS

This program sets the current item position in file 1 to 10. It then

gets the address of that item and uses it to write the string “TEST”
assigned to A$ to that item location using the WBYTES routine. It then
uses the READ routine to read back the contents of item 10 into B$ and
prints both A$ and B$ to the screen to verify resulits.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-23

GETIP

GETIP Gets and returns a file's current item position.

Format
CALL “GETIP” f1]

where: fi = file identifier)
| = target for current item pointer (optional)

Arguments

file identifier can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal.

item pointer must be a simple variable that can receive
the value of the current Item Pointer. It will
be printed to the screen if omitted.

Why Use It?

Since the current item pointer position is automatically advanced by
one for each item read or written, it might be valuable after a series
of reads or writes to be able to read the current position. This might
be used to ascertain the position of an item after meeting a certain
criteria from a search.

Since a seperate item pointer is maintained for each file created, this
means that it is not necessary for the user to maintain a separate set
of variables to save the current item position for each file when
accessing a number of files at once.

3-24 Auxiliary Memory Reference Manual 070-8400-03 11/83

GETIP

What It Does

GETIP returns the position of the current Item Pointer for the specified
file. The current item pointer is positioned at the address of the next
item to be read or written. The value of the item pointer is the
position of that data item starting from the first item at position 1,

the second item at position 2, and so on.

This value will be assigned to the target variable, if one is supplied,
or printed to the screen if no target variable is supplied.

How To Use It

The initial value of the Item Pointer for a newly created file is 1.

This value is updated each time a READ or WRITE of an item occurs.
A separate item pointer is maintained for each file. The file referenced
may be either Random or Sequential. Any array reads or writes will
advance the pointer by 1 for each element in the array that is
transferred.

If you want to see the position of the item pointer for a given file,

you may issue the command with no target variable and the value will
be printed on the screen. If the position is to be used by the program,
then the value can be returned in a variable by supplying the optional
target variable as the second parameter in GETIP following the file
specifier.

Examples

100 CALL "GETIP",6,I

The position of the current ltem Pointer for file 8 will be assigned to
the variabie .

CALL "GETIP",10

The position of the current Item Pointer for file 10 is printed on the
screen.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-25

INIT

INIT Initializes the Auxiliary Memory, releasing all memory.

Format

CALL "INIT”

Arguments

none.

Why Use It?
Use it as a convenient way to delete all files and free all memory when

none of the existing files are to be preserved. It may also be used to
re-initialize if a corrupt memory is suspected.

What It Does

INIT deletes all existing files, re-formats the directory structure, re-
initializes the link table, makes all memory available for use.

How To Use It

This command should only be used when none of the currently open files
are to be preserved. It has no arguments and is simply CALLed by name.
Be sure to exercise caution when using this routine, as all files will be
deleted regardless of write protection and are not recoverable.

Example

100 CALL "INIT"

All files are deleted from the auxiliary memory and all available memory

is made free.

3—26 Auxiliary Memory Reference Manual 070-6400-03 11/83

INSERT

INSERT Inserts a blank record by expanding the data items in a file.

Format
CALL "INSERT" fi,i

where: fi = file identifier
i = item number to be inserted

Arguments
file identifier a numeric expression that specifies the
file that is to be expanded by inserting
a record.
item number a numeric expression that specifies the
position for the blank record to be inserted.
Why Use It?

You may want to add a data item to list of items that is already in
sorted order. This routine will automtically expand the existing list

by copying every record ahead one position from the specified position,
leaving that record open for a new data item. You may then add

a data item at the specified record location keeping the list in

sorted order.

What It Does

The INSERT routine allows you to insert a data item into a random file.
This is done by moving each item forward one position starting with the
last item and making it the new last item. The next to last item is then
moved to the old last item spot. This operation continues backwards
from there until the record at the specified item number location is
moved forward making that location free to accept a new data item.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-27

INSERT

After moving the records forward, the item pointer is set to the location
specified so that it may be followed immediately by a write operation
without separately using SETIP. -

How To Use It

To use INSERT, simply specify a file and the record position within that

file where a new data item is to be added. The records from there forward
will be moved up one position so that a new data item may be written to
the specified location without destroying any of the existing data.

Each time INSERT is called, the last item positicn will increase by one.

Examples

100 CALL "INSERT",8,21
110 CALL "WRITE",8,AS$

This program inserts the string data item contained in A$ at record

position 21 in file 8 after having moved all other data items in file
8 forward one position starting with record 21.

3—28 Auxiliary Memory Reference Manual 070-6400-03 11/83

KILL Deletes a specified file or list of files.

Format
KILL f$ Key word format
CALL “KILL" fi Call format
CALL “KILL”f1[f2..] Call format with file list
where: f$ = file name
fi = file identifier
f1,12,... = list of file numbers
Arguments
file name must be a string of 1 to 28 characters
expressed either as a variable or a literal.
file identifier can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal.
file list must be one or more numeric expressions
referencing files that are to be deleted.
Why Use It?

Use KILL to delete files that are no longer needed in order to clear
them from the directory listings and make the memory used by them
available for new files.

What It Does

Kill deletes the specified file(s) by removing them from the directory

list and then adding any memory blocks used by them back into the free
block list. If a specified file does not exist or has already been killed,
then it will be ignored and no error message will be generated.

070-6400-03 11/83 Auxiliary Memory Reference Manual

KILL

3-29

KILL

How To Use It

Once a file has been KlLLed, it is not possible to recover it. The
memory occupied by that file will be released for use by other files and
that file number may be re-used for another new file. Any attempt to
KILL a file that does not exist will be ignored.

To verify the existance of a file before KILL is attempted, the FILTYP
command may be used. If a non-zero file type is returned by FILTYP, then
that file identifier may be assumed valid and used in the KILL command.
This is only necessary if there is any question as to the validity of the

file identifier before KILL is used. FILHDR may also be used for this
purpose.

Example

100 PRINT "Enter file number to kill: ";

110 INPUT F

115 IF F=0 THEN 180

120 CALL "MOPEN",F,FS$S

125 IF F$="" THEN 100

130 CALL "MSPACE",6M1

140 CALL "KILL",F

150 CALL "MSPACE",M2

160 PRINT F$;" deleted. ";M1-M2;" bytes made free for use."”
170 GOTO 100

180 END
This pkogram asks for a file number and verifies its existance by finding

its name. It then deletes the file, checking the memory space before
and after to report the amount memory freed up.

3-30 Auxiliary Memory Reference Manual 070-6400-03 11/83

LSTIP

LSTIP Returns position of the last item pointer in a file.

Format
CALL "LSTIP” {[1]

where: fi = file identifier
| = target for last item pointer (optional)

Arguments

file identifier can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal.

item pointer must be a scalar varriable that can be assigned
the value of the current Item Pointer. It will be
printed to the screen if this variable is omitted.

Why Use It?

You may want to know how many total items are in a file. You may
want to use this value in the program to reset the current item pointer
to add more data to the file at the very end.

What It Does

It returns the position of the last item in the specified file. It is also
a total count of items written to the file. The value of the last item
pointer’s position will be printed to the screen if the optional target

varaible is omitted. The value will be assigned to a target variable if
one is supplied.

070-6400-03 11/83 _Auxiliary Memory Reference Manual 3-31

LSTIP

How To Use It

The initial value of the Last Item Pointer for a new file is 0. This
pointer is updated by 1 each time a new item is written to the file
beyond the old last item position. A separate Last Item Pointer is
maintained for each file. The file referenced may be either Random
or Sequential.

To add data to the end of file, the current item pointer must be moved
to last item pointer value plus one. Setting the item pointer to the
value of the last item pointer will allow you to read the last item,

but any attempt to write from that position will over-write the last
item. Therefore, the next item position beyond the last is available

for writing, but not reading.

Examples

100 CALL "LSTIP",1,I2

The position of the last item in file 1 is assigned to 12.

CALL "LSTIP",2

The position of the Last Item in file 2 is printed to the screen.

3-32 Auxiliary Memory Reference Manual 070-6400-03 11/83

MAPPEN Appends a sub-program to the exisiting program.

MAPPEN

Format

APP[END] 13;t[.i]

Arguments

file name

file identifier

target line

renumber increment

CALL "MAPPEN" fi t[,i]

Key word format
Call format

where: f$ = file name
fi = file identifier
t = target line
i = renumber increment (optional)

must be a string of 1 to 28 characters
expressed either as a variable or a literal.

can be either a file number represented
by a numeric expression, or a file name
expressed as a string variable or literal.

specifies a line number in the current
BASIC program where the new program
is to be appended.

a numeric expression that specifies the
increment to be used in renumbering the
program. The default value is 10.

Why Use It?

Use MAPPEND (or APPEND) to add or insert a program segment or

subroutine into the exisiting program currently resident in executable

memory. Variables currently defined are not affected.

This allows you to modularize your programs and bring in segments as
needed into the main program. This way, more than one main program

can access the module and append it where appropriate.

070-6400-03 11/83

Auxiliary Memory Reference Manual

3-33

MAPPEN

What It Does

MAPPEND loads a program from the Auxiliary Memory into user memory
by adding it to the currently resident program at a specified starting
target line number. This target line is the only line from the original
program that is deleted, as it becomes the new first line of the
appended program.

The remainder of the main program is moved down to follow after the
appended portion. This may produce a forced automatic re-numbering of
both the appended portion and the remainder of the main program. The
user may optionally specify a renumber icrement which will also force a
renumbering to occur.

How To Use It

The MAPPEN routine allows a new program segment to be appended to
the program currently in user memory. Renumbering occurs if the lines
following the target line in the current BASIC program do not allow enough
room for the incoming program segment. The renumbering increment may
be specified in the MAPPEN command, or it will default to a value of 10.
Since the target line is destroyed by the incoming program, it should

be a dummy statement set up for that purpose.

Examples
100 CALL "MAPPEN",4,1000,5

The program contained in file 4 of the Auxiliary Memory is appended
to the current program in user memory starting at line 1000, and the
program is renumbered thereafter in increments of 5.

APPEND "Maximum Value";100

The program in the Auxiliary Memory in the file named "Maximum Value” is
appended to the resident program starting at line 100. The renumbering
increment default is 10, and renumbering occurs if the next line line
number of the main program is not higher than the highest number of the
appended program. The program must be started manually since the
command was entered from the keyboard.

3-34 Auxiliary Memory Reference Manual 070-6400-03 11/83

MAX1 Finds the maximum value and its postion in a file.

Format

Arguments

file identifier

maximum value

position

starting point

ending point

i
i2

CALL "MAX1”fi,M,PLi1[i2]]

where: fi = file identifier
M = maximum value (target variable)
P = position (target variable)
= starting item position (optional)
ending item position (optional)

can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal.

must be a numeric variable that can be
assigned the value of the resulting
maximum number found.

must be a numeric variable that can be
assigned the value of the corresponding
item position of the maximum value found.

specifies the starting item position to
be searched. May be expressed as a
simple variable, a numeric expression,
or a literal value.

specifies the last item position to be
searched. May be expressed as a simple
variable, a numeric expression, or a
literal value.

070-6400-03 11/83

Auxiliary Memory Reference Manual

MAX1

3-35

MAX1

Why Use It?

You may wish to locate the maximum value and its position from a large
array of numbers very rapidly. This routine allows you to do so very
easily with a single statement.

What It Does

The MAX1 routine finds the maximum value and its position in a file.
The entire file can be searched or a selected range within the file.

How To Use [t

The file specified must be a Random, numeric data file. Sequential
files are not allowed. If the optional starting position is omitted from
the argument field, the default starting position will be the first item
and the ending position will be the last item in the file. If only the
ending position is omitted, the starting point can still be specified,
and the end point will default to the last item position.

The file may be designated either by its name or number. If numerous
accesses are to be made to the file, however, the file number should be
used instead of the file name in order to achieve a faster execution
speed. If the file is remembered by its name rather than its number,
then use the MOPEN command to find the number.

Examples

100 CALL "MAaX1",3,M,P

File 3 is searched for the maximum value which is assigned to the
variable M. The position in the file of this value is assigned to P.

100 CALL "MAX1",F,M,P,100,120

The file designated by F is searched from item 100 to item 120 for the
maximum value which is then assigned to M and its position to P.

3-36 Auxiliary Memory Reference Manual 070-6400-03 11/83

MCHECK

MCHECK Performs a diagnostic check of the memory.

Format

CALL “MCHECK"

Arguments

none.

Why Use It?

Use MCHECK to verify the integrity of the memory or the interfacing
hardware. The test will over-write any data currently in the memory
causing it to be permanently lost. Therefore, MCHECK should only be
invoked after any important data has been backed-up.

What It Does

MCHECK performs a diagnostic check of the auxiliary memory by exercising
each location and printing to the screen the number of bad locations
found in each block of 256 bytes, and the block number they occured in.

If there are no errors, then the total number of free bytes will be
printed at the end of the check. This is the same as the number of free
bytes reported by the MSPACE command.

The test performed is called a ‘'memory march’. This consists of writing
a binary value to a given location, incrementing that value by one, and
writing to the next physical memory location. This continues until each
location in memory has been written to. The process is then repeated,
only this time reading each location and comparing it with the value
that was previously written.

Although this method is able to catch most problems associated with a
bad memory chip or location within a chip, it cannot catch all problems.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-37

MCHECK

It is possible to find no errors with this routine and still have a problem
with the hardware. Some ‘hidden’ problems can be the result of an
intermittant problem, a speed related problem, a value that by chance
works for a given location but does not for a different value, and some
problems related to address lines or data lines from random noise or
borderline threshold, or loading problems.

In these situations, more extensive testing may be required, some of
which can be done with the MTEST routines. If this fails, then the
user may have to consult the factory for help. The factory may
supply a loaner during repairs, or supply a unit in trade to track
down the problem.

How To Use It

This command takes approximately 2~4 seconds per 128K bytes of
memory to run. It is for self diagnostic purposes only and is fatal to any
existing files. This routine should only be invoked to verify the memory
when hardware problems are suspected.’

If intermittant problems are present, you may expect to get different
results each time the test is performed.

If the interface cable is not plugged in, or the power cord is not plugged
in, or the memory cards are not installed, or some other hardware or
interface problem is preventing the file manger from communicating with
the memory, then this test will produce a series of block locations each
indicating 255 bad locations.

The reason why 255 bad values out of 256 are reported is that the
sequential test pattern that repeats every 256 bytes will contain one
value that compares correctly with the one bad value that is contiuously
read from the bad interface. This value is usually hex FF (decimal 255)
and indicates all data lines high.

This pattern may also be produced if the memory tries to address memory
beyond the amount actually installed. In this case the block number will
indicate that the supposedly bad memory is at a higher address than the
total amount of installed memory. This may happen if for any reason, the
ROM pack thinks there are more memory cards present, or the location

in the 4050 that stores the memory size has been glitched or otherwise
modified such that the MCHECK routine does not know where to quit.

3-38 Auxiliary Memory Reference Manual 070-6400-03 11/83

MCREATE

MCREATE

Creates a memory file with optional name and attributes.

Format

where:

Arguments

file number

file name

type of file

record size

CALL "MCREATE” f[,n$]t[,r] new syntax
CALL "OPEN"f[,n$]1tlr] former syntax (for compatibility)

f = file number-
n$ = file name (optional)
t = type of File
r = record size (optional)

a numeric expression with an integer value
greater than zero that specifies the file
number of the file to be created.

must be a string variable or a literal
containing a name of 1 to 28 characters.

a numeric expression with an integer value of 1, 2,
or 3 for Random, Sequential, or Program file types
respectively.

a numeric expression with an integer value between
1-255. It is the number of bytes reserved for

each item in a RANDOM file. If less than 8 bytes,
it also specifies a reduced precision format for
numerics.

The record size may be omitted for SEQUENTIAL
or PROGRAM files. If included, it will be ignored.

070-6400-03 11/83

Auxiliary Memory Reference Manual

3-39

MCREATE

Why Use It?

Use MCREATE to create sequential files, or to create random files with
special record sizes. It is also used to assign names to files.

What It Does

MCREATE generates a new entry in the directory listing, and allocates the
first block of memory (256 bytes) for the new file. As the file requires
additional memory space, it will dynamically expand. For existing files,
MCREATE allows the file's name and/or record size to be changed. The
current item pointer is also reset to 1.

How To Use It

It is not necessary to CREATE a file to be used as a PROGRAM file
except to reserve a particular file number for later use, since SAVE
will automatically create and name the file. Also, RANDOM data files
are created automatically by the WRITE statement. The default record
size for a random file is 8 bytes if the first item written to the file

is a numeric, and 72 bytes if the first item is a string.

Therefore, besides assigning a name to a file, the main function of the
CREATE routine is to specify a SEQUENTIAL file type, or to specify a
different record size for a RANDOM file. A RANDOM file with a record
size of less than 8 bytes will cause a reduced precision format to be

used for numerics with record sizes of 1-3 bytes being integer format
(negative indicating signed integer format) and 4-8 being floating point
format. Random records with more than 8 bytes may contain one numeric
item only (of 8 bytes) and the remaining bytes will be unused.

The record size in a RANDOM file fixes the number of bytes allowed for
both numerics and strings. Strings larger than the defined record size
will be truncated. Only one data item per record is allowed even if the
data item fills only part of the record. This makes RANDOM files faster
access but less memory efficient. SEQUENTIAL files are more memory
efficient but slower to randomly access.

3-40 Auxiliary Memory Reference Manual 070-6400-03 11/83

MCREATE

Since both upper and lower case characters of the file name are
retained, the name must be referenced accordingly to be subsequently
recognized. If the optional file name is omitted, the name field in the
directory will list the name as “Noname”.

Since every file has a unique file number, the name is used primarily
as a label in the directory listings to help identify the file usage.

For this reason it is possible to have more than one file with the same
name. The file manager will make no attempt to flag duplicate names.
Any file references made by name will result in the first occurance of
a file by that name being located. It is the responsablity of the user,
therefore, to ensure no duplicate names if he intends to reference the
files by name rather than by number.

Examples

100 CALL "MCREATE",1,"ADDRESS LIST",2

File 1 is created as a SEQUENTIAL file and assigned a name of
“ADDRESS LIST".

100 CALL "MCREATE",f,1,30

File f is opened as a RANDOM file with a record size of 30 which
is the space alloted for every data item, numeric or string.

The numeric accuracy used is 8 bytes. The default file name is
“Noname”.

100 CALL "MCREATE",2,"Signed Data",1,-3

File number 2 is assigned a name of “Signed Data”, and is created

as a RANDOM file with a record size of 3 that will accomodate
signed integers or strings of 1 to 3 bytes.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-41

MCREATE

3-42

Table of record sizes and numeric accuracies

Record Size

OO N ®

- N W

Numeric Accuracy In Decimal Digits
(Floating Point Range E+307)

14 digits

12

9.5

7

4.5

Integer Value Range
0 to 16,777,215

0 to 65,535

0 to 255

-8,388,608 to +8,388,607
-32,768 to +32,767
-128 to +127

Auxiliary Memory Reference Manual

070-6400-03 11/83

MCROSS Locates values in a file that ‘cross’ a threshold.

MCROSS

Format

I
n=
i
i2 =

Arguments

file identifier
threshold value
target cross

number of crosses

starting position

ending position

CALL "MCROSS" fi,vI[,nLi1[i211]

where: fi = file identifier

v = threshold value
= target for cross location
number of crosses {optional)
= starting position (optional)

ending position {optional)

a numeric expression or a string that
specifies the file number or name.

a numeric expression that specifies the
crossing threshold to compare against.

a simple variable that is assigned the
value of the interpolated crossing location.

a numeric expression that specifies the
crossing location to return. The default
is 1 if this argument is omitted.

a numeric expression that specifies
the starting position within the file
where differentiation is to occur.
The first item is the default if this
argument is omitted.

a numeric expression that specifies
the last position within the file
through which differentiation is to
occur. The last item is the default
position if this argument is omitted.

070-6400-03 11/83

Auxiliary Memory Reference Manual

3-43

MCROSS

Why Use It?

Use this routine to determine the location of a threshold crossing
within an array of numbers stored in a random file. This is useful
for signal processing applications.

What It Does

CROSS searches for a value in the specified file that crosses a given
threshold value. The crossing location is the first value that is
greater than or equal to the threshold value, if the file values are
increasing. It is the first value that is less than or equal to the
threshold value, if the file values are decreasing.

If the threshold is crossed more than once in the file, you can use
the optional fourth argument to specify which crossing location you
want. If that argument is omitted, the location of the first crossing
will be returned.

if no crossing is iocated, a value of -1 will be returned. When the
threshold value is crossed between file items, interpolation will be
performed to give a more accurate position.

How To Use It

You must specify the file to be searched, the threshold value to search
for, provide a target variable to receive the location, and optionally

a fourth argument which specifies which crossing location you want.
You may also optionally specify the range of items within the file to

be searched by either starting location or a starting and an ending
location.

3-44 Auxiliary Memory Reference Manual 070-6400-03 11/83

MCROSS

Examples

100 CALL "WRITE",1,5,10,15,20,25,30
110 CALL "MCROSS",1,17.5,P

The crossing location found from the data in this program will be 3.5.
This is the interpolated location between the values of 15 and 20 in
the 3rd and 4th locations for the threshold value of 17.5.

CALL "WRITE",1,100,21,17,13,9,2
CALL "MCROSS",1,50,N,2

The value returned here will be -1, indicating that there was not a

second crossing location, although there was one location between the
1st and 2nd elements.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3‘45

MCSuUmM

MCSUM Performs a checksum on contents of the auxiliary memory.

Format
CALL ”MCSUM",S,p

where: S = target for chekesum remainder
P = page count.

Arguments

checksum target a simple variable to be used as a target
for the checksum of specified portion of
memory.

page count @ numeric expression that specifies how
many pages of 65,536 bytes are to be
checksummed starting from the first page.

Why Use It?

This routine can be used for diagnostic purposes to determine if the
contents of memory have changed from one time to another. MCSUM is
primarily intended to verify data after performing a tape back-up and
restore operation. This will enable you to have confidence that the

data is still intact and was properly recorded on tape.

It may also be used to check data over a period of time such as over
night if there is any suspicion of noise or other problems causing data
losses.

What It Does

The MCSUM routine sums each data byte in the range of pages specified
or in the entire memory. The sum is Mmaintained in a single byte with over
flows being lost so that a remainder js effectively retained. This number
will always be between 0 and 255,

3_46 Auxiliary Memory Reference Manuai 070-6400-03 11/83

MCSUM

Although it is possible to have more than one data byte change and pro-
duce the same checksum, the chances are small and this method should
provide a reliable means of verifying memory validity.

How To Use It

You must supply MCSUM with two arguments: the target variable to receive
the checksum value, and the page count indicating how many pages are to
be summed. If the the Page count equals 2, then the first two pages

(128K bytes) will be summed.

Example

100 CALL "MCSUM", S, 4
110 FIND 1

120 CALL "TBACK"

130 FIND 1

140 CALL "TRESTORE"
150 CALL "MCSUM",S2,4

160 PRINT §,S2
The checksum of the first 4 pages (256K bytes) is performed before and

after a back-up/restore sequence and the two results are printed to the
screen.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-47

MDIF2

3-48

MDIF2 Performs 2 point differentiation on the specified file.

Format

CALL “"MDIF2"fi[,i1[,i2]1]

where: fi = file identifier

i1 = starting position (optional)
i2 = ending position (optional)

Arguments

file identifier a numeric expression or a string that
specifies the number or name of the
file that is to be differentiated.

starting position a numeric expression that specifies
the starting position within the file
where differentiation is to occur.
The first item is the default if this
argument is omitted.

ending position a numeric expression that specifies
the last position within the file
through which differentiation is to
occur. The last item is the default
position if this argument is omitted.

Why Use It?

Use this routine to perform 2 point differention directly on data stored
in a file. This is a function useful for signal processing applications.

The direct file access is useful b
be held in user memory and for

oth in handling larger arrays than can
processing data stored directly in the

auxiliary memory by data acquistion peripherals.

Auxiliary Memory Reference Manual

070-6400-03 11/83

MDIF2

What It Does

The DIF2 routine performs a 2 point differentiation on the specified
file with the original contents of the file being replaced with the results.
The difference calculation peformed is the following:

b(t) = a({tt1) - alt) fort = 1,2,...n-1
b(n) = a(n-1)

where: original file data
resulting file data

number of elements in file (or specified range)

a
b
n

1]

How To Use It

You must specify the file to be differentiated. It must be a random
numeric data file with 3 or more elements. The range of items to operate
on may optionally be specified. The default will be the entire file.

If you wish to maintain a copy of the original file data, you must make
a copy before performing the differentiation. You may do this most
easily using the COPY command.

Examples

100 FOR J=0 TO 2*PI STEP 2*PI/100
110 CALL "WRITE",1,SIN(J)

120 NEXT J

130 CALL "COPY",1,2

140 CALL "MDIF2",1

A file of 101 data elements is created here and a copy made before the
differentiation is performed on the original data.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-49

MDIF3

3-50

MDIF3 Performs 3 point differentiation on the specified file.

Format

Arguments

file identifier

starting position

ending position

CALL "MDIF3” fi[,i1[,i2]]

where: fi = file identifier
i1 = starting position (optional)
i2 = ending position {optional)

a numeric expression or a string that
specifies the number or name of the
file that is to be differentiated.

a numeric expression that specifies
the starting position within the fiie
where differentiation is to occur.
The first item is the default if this
argument is omitted.

a numeric expression that specifies
the last position within the file
through which differentiation is to
occur. The last item is the default
position if this argument is omitted.

Why Use It?

Use this routine to perform 3 point differention directly on data stored
in a file. This is a function useful for signal processing applications.

The direct file access is useful both in handling larger arrays than can
be held in user memory and for processing data stored directly in the
auxiliary memory by data acquistion peripherals.

Auxiliary Memory Reference Manual

070-6400-03 11/83

MDIF3

What It Does

The MDIF3 routine performs a 3 point differentiation on the specified
file with the original contents of the file being replaced with the
results. The difference calculation peformed is the following:

b(1) = (-3*a(1)+a(2)-a(3))/2
b{t) = (a(t+1)-a{t-1))/2 ' for t=2,3,...n-1
b(n) = (a(n-2)-4*a(n-1)+3*a(n))/2

where: a = original file data
b = resulting file data
n = number of elements in file (or specified range)

How To Use It

You must specify the file to be differentiated. It must be a random
numeric data file with 3 or more elements. The range of items to operate
on may optionally be specified. The default will be the entite file.

If you wish to maintain a copy of the original file data, you must make
a copy before performing the differentiation. You may do this most
easily using the COPY command.

The three-point differentiation should be used instead of the two—point
on data where large transitions occur over intervals greater than 3
elements. This will result in the least error for the derived slopes.

Examples

100 FOR J=0 TO 1 STEP .01
110 CALL "WRITE",1,EXP(J)
120 NEXT J

130 CALL "copY",1,2

140 CALL "MDIF3",1

A file of 101 data elements is created here and a copy made before the
differentiation is performed on the original data.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-51

MIN1

MIN1 Finds the minimum value and its postion in a file.

Format
CALL "MIN1”fi,M,PLi1[i2]1]

where: fi = file identifier
M = minimum value (target variable)
P = position (target variable)
i1 = starting item position (optional)
i2 = ending item position (optional)

Arguments

file identifier can be either a file number represented
by a numeric expression, or a file name ex-
pressed as a string variable or literal.

minimum value must be a numeric variable that can be
assigned the value of the resulting
minimum number found.

position must be a numeric variable that can be
assigned the value of the corresponding
item position of the minimum value found.

starting point specifies the starting item position to
be searched. May be expressed as a
simple variable, a numeric expression,
or a literal value.

ending point specifies the last item position to be
searched. May be expressed as a simple
variable, a numeric expression, or a
literal value.

3-52 Auxiliary Memory Reference Manual 070-5400-03 11/83

MIN1

Why Use It?

You may wish to locate the minimum value and its position from a large
array of numbers very rapidly. This routine allows you to do so very
easily with a single statement.

What It Does

The MIN1 routine finds the minimum value and its position in a file.
The entire file can be searched or a selected range within the file.

How To Use It

The file specified must be a Random, numeric data file. Sequential
files are not allowed. If the optional starting position is omitted from
the argument field, the default starting position will be the first item
and the ending position will be the last item in the file. If only the
ending position is omitted, the starting point can still be specified,
and the end point will default to the last item position.

The file may be designated either by its name or number. If numerous
accesses are to be made to the file, however, the file number should
be used instead of the file name in order to achieve a faster execution
speed. If the file is remembered by its name rather than its number,
then use the MOPEN command to find the number.

Examples

100 CALL "MIN1",3,M,P

File 3 is searched for the minimum value which is assigned to the
variable M. The position in the file of this value is assigned to P.

100 CALL "MIN1",F,M,P,100,120

The file designated by F is searched from item 100 to item 120 for the
minimum value which is then assigned to M and its position to P.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-53

MINT

MINT Performs integration on the specified file.

Format

CALL "MINT"fil,i1Li2]]

where: fi = file identifier

i1 = starting position (optional)
i2 = ending position (optional)

Arguments

file identifier a numeric expression or a string that
specifies the number or name of the
file that is to be integrated.

starting position a numeric expression that specifies
the starting position within the file
where integration is to occur.
The first item is the default if this
argument is omitted.

ending position a numeric expression that specifies
the last position within the file
through which integration is to
occur. The last item is the default
position if this argument is omitted.

Why Use It?

Use this routine to perform integration directly on data stored in a file.
This is a function useful for signal processing applications. The direct
file access is useful both in handling larger arrays than can be held in
user memory and for processing data stored directly in auxiliary memory
by data acquistion peripherals.

3-54 Auxiliary Memory Reference Manuyal 070-6400-03 11/83

MINT

What It Does

The MINT routine performs a integration on the specified file with the
original contents of the file being replaced with the results. The
integration is calculated using the trapezoidal rule for approximating
the definite integral as follows:

b(1) =0
b(t) = b(t-1)+(a(t-1)+a(t))/2 for t=2,3,..n

where: a = original file data
b = resulting file data
n = number of elements in file (or specified range)

How To Use It

You must specify the file to be integrated. It must be a random numeric
data file with 3 or more elements. The range of items to operate on may
optionally be specified. The default will be the entire file.

If you wish to maintain a copy of the original file data, you must make
a copy before performing the integration. You may do this most easily
using the COPY command.

Examples

100 FOR J=0 TO 2*PI STEP 2*PI/100
110 CALL "WRITE",1,SIN(J)

120 NEXT J

130 CALL "cCopY",1,2

140 CALL "MINT",1

A file of 101 data elements is created here and a copy made before the
integration is performed on the original data.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3—55

MLINK

MLINK Replaces current user program with a new program.

Format

CALL “"MLINK" £

where: fi = file identifier
I = line number
Arguments
file identifier ~can be either a file number represented

by a numeric expression, or a file name
expressed as a string variable or literal.

line number must be a valid BASIC line number in the
' program being loaded. It specifies where
execution is to begin.

Why Use It?

The MLINK routine allows large programs to be broken into smaller
segments that together with data will fit in the memory space available.
MLINK will then load these program segments into executable memory
as they are needed.

MLINK is convenient to use because it automatically deletes the resident
program segment without disturbing the variable definitions. It then
loads the next program overlay from the specified file and continues
running. This is done very rapidly so that it appears as though the
original program were entirely resident at once.

3-56 Auxiliary Memory Reference Manual 070-6400-03 11/83

MLINK

What It Does

The MLINK routine is used to bring the next segment of a large program
into user memory and continue running where the previous program
segment left off, with all variables still intact. This is done by first
deleting all lines of program currently in memory but retaining all
variables. The specified program file is then loaded into executable
memory and started at the specified line number.

While the program loading is done quite fast, the actual time required
to load a given program into user memory depends somewhat on the
number of variables encountered, since they must be ‘mapped’ into the
system variable table.

How To Use It

The MLINK routine requires a file identifier of either a file number or

a file name. It also requires a starting line number which is used to
indicate the first line of the program being loaded that is to be executed.
In loading the specified program, the previous program in user memory
is deleted, but the varibles are kept intact.

The program will automatically begin execution at the specified line
number only if MLINK is CALLed from a BASIC program. Otherwise, the
program must be started manually.

Example

100 CALL "MLINK',2,100

The program contained in file 2 of the Auxiliary Memory is loaded into
user memory and begins running at line 100. All variables from the
previous program remain unaffected.

CALL "MLINK","FFT",1

This line causes the program named FFT to be loaded into executable

memory, replacing the former program but keeping the data. It may then
be executed with the RUN statement.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-57

MOLD

MOLD Loads a program from an Auxiliary Memory file into user memory.
Format
CALL "MOLD” fi call format
OLD f$ key word format
where: fi = file identifier

f$ = file name

Arguments
file identifier can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal.
file name must be a string of ‘1 to 28 characters expressed
either as a variable or a literai.
Why Use It?

To transfer a binary program previously saved in the Auxiliary Memory
into the main user memory. An implicit DELETE ALL is performed in the
process.

What It Does

The MOLD (OLD) command loads a program stored in an Auxiliary Memory
file into the 4050 system memory. If the MOLD command is entered as an
immediate instruction from the keyboard, then the program must be run
manually. If the MOLD command is incorporated into a program, then the
designated program will run automatically as soon as it is loaded from

the Auxiliary Memory file.

Before loading the specified program file, all current program lines and
variables are deleted from the 4050 system. This is equivalent to a
DELETE ALL command.

3“58 Auxiliary Memory Reference Manual 070-6400-03 11/83

MOLD

How To Use It

The MOLD (or OLD) command will only work on a file containing a program
previously saved using the MSAVE (or SAVE) command. MOLD will accept
either a file number or a file name. The OLD (key word format) command
will only accept a file name. Either version may be invoked manually

from the keyboard or imbedded in a program. A file loaded manually from
the keyboard must be started manually with the RUN command. A file
loaded under program control will automatically begin execution at the

first line.

NOTE: In order to use the OLD command as a key word instead of

CALL "MOLD” in a configuration where another file manager besides the
Auxiliary Memory is present in the system, you must observe the unit
selection protocol described by the MUNIT and DUNIT commands.

Example

100 CALL "MOLD",?2

The program contained in file 2 is brought into main memory and

execution begins at the first line in the program.

OLD "INTERPOLATE"

This loads the program named INTERPOLATE into the system memory ready

to be run.

400 PRINT "Enter the name of the program you wish to run: ";
450 INPUT AS

500 CALL "MOLD",AS

This program prompts the user for a program name and then loads and runs
the program file referenced by the name entered into AS$.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-59

MOPEN

MOPEN Finds and returns the file number for the named file.

Format
CALL "MOPEN",F.n$

where: F = target variable
n$ = name string

Arguments
target variable must be a simple variable that will be used
to pass back the value of the file number
of the named file.
name string a string variable or literal containing the
name of the file whose number is to be found.
Why Use It?

The auxiliary memory file system has permanently assigned numbers for
referencing files as they are created. There is also an optional name
which may be assigned to the file. Since it is often times easier to
remember a file by its name rather than its number, this routine allows
the file number to found based on its name.

In most instances it is possible to reference a file directly either by

its name or number. However, if a file is to be accessed numerous
times, it is more efficient to use the number. In this case, the MOPEN
routine should be used to look up the file number so that it may be used
rather than the name for repeated accesses.

3-60 Auxiliary Memory Reference Manual 070-6400-03 11/83

MOPEN

What It Does

The MOPEN routine returns the file number of the named file. It takes
the name from the string literal or variable and compares it with each
name in the directory starting from the beginning and proceeding until
either the name is found, or the end of the directory is reached.

If the name is found, the number of that file is assigned to the simple
variable provided as the target in MOPEN and passed back to the user or
the program. If the end of the directory is reached before the file name
is found, a value of zero will be assigned to the target variable.

How To Use It

You must supply a valid file name from 1 to 28 characters in length
making sure that it is spelled correctly and that it has the same upper
and lower case characters as in the original name. MOPEN will then
scan the directory looking for this name. If there is more than one
file with this same name, the first one only will be located. The
number of that file will then be passed back in the target variable
provided. If the name was not found, the value returned will be zero.

Example

100 PRINT "ENTER FILE NAME TO BE OPENED: "
110 INPUT AS '

120 CALL "MOPEN",F,FS$

130 IF F=0 THEN 100

140 PRINT AS$;" IS ASSIGNED TO FILE NUMBER"; F

150 END

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-61

MPLOT

MPLOT Plots absolute format UDU data directly from a file.

Format
CALL "MPLOT"fiLiOLi1[i2]]] format for x,y pairs in 1 file
CALL "MPLOT"f1,12;i0[i1[,i2]] format for x & y in 2 files
where: fi = file identifer for x,y values
f1 = file number for x values
f2 = file number for y values
io = 1/0 device number (optional)
i1 = starting item position (optional)
i2 = ending item position (optional)
Arguments
file identifier can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal. This file
contains x,y coordinate pairs.
file number for x a numeric expression designating the file
containing the x values to be plotted.
file number for y a numeric expression designating the file
containing the y values to be plotted.
device number a numeric expression designating either
the screen (device 32), or an external
plotting device on the GPIB.
starting point a numeric expression that specifies the
starting item position to be plotted.
ending point | a numeric expression that specifies the
last item position to be plotted.

3-62 Auxiliary Memory Reference Manual 070-6400-03 11/83

MPLOT

Why Use It?

Use MPLOT to plot data expressed in user definable units (UDU'’s),
subject to WINDOW and VIEWPORT limits, but in the positive domain
only so that negative values, on either x or y values may be used

to designate moves.

This format allows you to have embedded moves in an array of data
so that entire plots can be output from a file with a single command.
This format may also result in faster plotting speeds than if individual
MOVE and DRAW statements are utilized.

What It Does

The MPLOT routine plots graphical information directly from the
specified file(s) to the specified I/0 device or by default to the
screen.

How To Use It

Data to be plotted can be stored in one of two ways. A single file
may contain a series of x,y coordinate pairs. In this case, the MPLOT
routine requires a single file identifier, which may be name or number,
and all other arguments are optional. If the 1/0 device number is
omitted, then the plot, by default, will be made to the screen.

The second way is where the x and y coordinates are stored in separate
files. In this case, the files must be referenced by number, where the
first file contains x values and the second file contains y values, and

the second file argument MUST be followed by a semicolon. This is
necessary as it is the only way to ditinguish between single file format
and dual file format. Also, since the CALL statement cannot end with a
semicolon, the I/0 argument which comes next is not optional in this
case. Therefore, when a plot is targeted to the screen, the device
address of 32 must be inserted following the vy file’s semicolon.

The optional range specifiers are the same for both file formats. If the
optional starting position is omitted, the default starting position will

be the first item, and the ending position will be the last item in the
file. If only the ending position is omitted, the starting point can still
be specified and the ending point will be the last item position.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-63

MPLOT

Examples
100 CALL "MPLOT", "CARTOON"

The contents of the file named CARTOON are plotted to the screen.
Data in this file is stored in a series of x and y coordinate values.

100 DIM X(100),¥Y(100)

110 WINDOW -1,1,-1,1

120 VIEWPORT 15,115,0,100
130 I=0

140 FOR A=0 TO 2*PI STEP 2*PI/99
150 I=I+1

160 X(1)=CoSs(Aa)

170 Y(I)=SIN(A)

180 NEXT A

190 Y(1)=-Y(1)

200 CALL "WRITE",1,X

210 CALL "WRITE",2,Y

220 CALL "MPLOT",1,2;32

This program computes 100 coordinates on a unit circle and saves the
x and y coordinates in separate files. Note that the first y coordinate

is made negative before the data is written to the file. This will cause
the first point to be a move. This circle is then plotted to the screen,
centered and expanded by the WINDOW and VIEWPORT.

Note that if it is desired to MOVE to location (0,0), it is not possible to
make either coordinate negative to flag the move since both are zero.
In this case you may solve the problem by making one value a small
negative number near zero, such as 1.0E-300.

CALL "MPLOT",F1,10,101,200
This statement will plot x,y data from the file specified by F1 to an

external GPIB address of 10. The data plotted is taken from the 100
data values starting at location 101, making up 50 x,y pairs.

3-64 Auxiliary Memory Reference Manual 070-6400-03 11/83

MSAVE Stores the current program in a memory file.

Format

where:

Arguments

file identifier

file name

beginning line

ending line

CALL "MSAVE"fil f$SIL11[12]] call format
SAVIE] f$[;11[,12]] key word format

fi = file identifier

f$ = file name

IT = beginning line number
12 = ending line number

can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal.

must be a string of 1 to 28 characters
expressed either as a variable or a literal.

a numeric expression designating the first
line of the current program to start from.

a numeric expression designating the last
line of the current program to save.

Why Use It?

MSAVE

Use MSAVE to save the program currently in user memory to the specified
file in the Auxiliary Memory. It may then be brought back into user
memory when needed at a later time very rapidly.

070-6400-03 11/83

Auxiliary Memory Reference Manual

3-65

MSAVE

What It Does

MSAVE sends a binary copy of the current user program to the specified
file in the Auxiliary Memory. If the optional beginning line humber is
present, then only that line will be saved. If both the beginning and
ending line numbers are supplied, then that range of program lines

will be saved.

‘How To Use It

Using the MSAVE command, you can supply a file number, a file name,
or both to designate the file. The key word version, SAVE, will only
accept a file name. |If a file name only is supplied, then the file manager
will automatically assign the next lowest un-used file number to the

file. If a name is not supplied, the file manager will assign a default
name of "Noname” to the file.

In order to use the SAVE command as a key word instead of CALL "MSAVE”
in a configuration where another file manager besides the Auxiliary

Memory is present in the system, you must observe the unit selection
protocol described by the MUNIT and DUNIT commands.

When a program is saved, an implicit KILL is performed on the old

copy of the file before the new copy is saved, if the file specified was
previously used as a program file. This frees up memory when a smaller
program is saved as the new version.

To find out what file number is assigned a file where a name only is
supplied, you can look at a directory listing or use the MOPEN command
to return the file number from the file name.

The optional line numbers may be used to save a selected range of program
lines. This may be useful for saving programs automatically where a

control program is located at line numbers beyond the range of numbers

to be saved.

3-66 Auxiliary Memory Reference Manual 070-6400-03 11/83

MSAVE

Examples
100 CALL "MSAVE",1,100,500

Lines 100 through 500 of the current user program will be saved in the
Auxiliary Memory in file 1. If file 1 previously existed as a program

file and was named, then that name will be retained. If it is a new file
number, then the name assigned will be “Noname”, since no name was
supplied.

SAVE "MYPROG";1,9999

This command creates a file named MYPROG, and saves any lines in the
current user program that are between 1 and 9999. If MYPROG already
existed as a program file, then the same file number will be used for
the new copy and the old copy will be deleted and over-written. If
MYPROG is a new file name, then a new file number will be selected by
the file manager. This number may be found by the MOPEN command.

CALL "MSAVE",10,"FILEPLOTTER"

This command saves all lines of the current program to file 10 and is
named “FILEPLOTTER".

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-67

MSPACE

3-68

MSPACE Gives the number of free bytes of memory.

Format

CALL "MSPACE"[,S]

where: S = target variable (optional)
Arguments
target variable must be a scalar variable that can be

assigned the value of the number of
free bytes currently available.

Why Use It?

MSPACE can be used to determine how much memory is available for
use. This can be done either directly by the user to see reported on the
screen the amount of memory available, or under program control the
memory space can be directed into a variable for use by the program

in file allocation and creation decisions.

What It Does

MSPACE returns the number of free bytes available in the Auxiliary
Memory. The Auxiliary Memory is mapped out into blocks of 256 bytes
each. The total number of free bytes indicated by the MSPACE routine
is really the number of free blocks available multiplied by 256.

This means that although there may not be any more free blocks available
for allocation to a file, there can still be partial blocks within other files
that can only be used by those particular files. Whenever a file fills

one entire block, it then requests another. Thus, when a memory full
condition occurs in the auxiliary memory, there can still be memory
available to existing files with partially filled blocks.

Auxiliary Memory Reference Manual 070-6400-03 11/83

MSPACE

How To Use It

MSPACE may be used with or without a target variable. If the target
variable is omitted, the number of free bytes will be printed to the
screen. If a target variable is present, the value of the number of
free bytes will be assigned to it.

Examples

100 CALL "MSPACE",M

The total number of free bytes (free blocks expressed in bytes)
currently available in the auxiliary memory is assigned to M.

CALL "MSPACE"

The current byte count is printed to the screen.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3"69

MTEST

MTEST Performs a set of diagnostic test routines.

Format

CALL "MTEST"1,c1,c2,c3 address counter test
CALL "MTEST",2,S0,S1 status register test
CALL "MTEST",3 ‘ read test

CALL "MTEST",4,d0,d1 write test

CALL "MTEST",5,a,n read test Il

CALL "MTEST",6,d0,d1,a,n write test Il

CALL "MTEST",7 read decoded locations
- CALL "MTEST",8,a,k memory card check
CALL "MTEST".9,r,v register write (poke)
CALL "MTEST",10,r,V register read (peek)

where: ¢1 = high order address register (65K)
¢2 = mid order address register (256)
c3 = low order address register (1)
SO = target for status (should return zeros)
S1 = target for status (should return ones)
d0 = even data byte to write
d1 = odd data byte to write
a = address to start read/write
n = number to read/write before repeating
k = number of cards to check
r
v

il

Il

register address
value to write (poke)
V = target for byte read

Arguments
address registers numeric expressions that specify the address
in memory where read/write operations are

to occur.

status targets simple variables to receive the status bytes.

3-70 Auxiliary Memory Reference Manual 070-6400-03 11/83

MTEST

MTEST Arguments (continued)

even/odd data numeric expressions with values from 0-255
that are to be written at even and odd
address locations alternately.

address a numeric expression that specifies a physical
memory address for data read/writes.

number of bytes a numeric expression that specifies the number
of data bytes to read or write before repeating.

number of cards a numeric expression that specifies how
many memory cards are installed and are to
‘be checked.

register a numeric expression that specifies the

address of the register to read or write.

value to write a numeric expression that is to be written
to a specified address.

target for value a simple variable that will receive the value
of a byte from a register location.

Why Use It?
Use this series of routines to perform tests or diagnostic checks of

the hardware. This may help you isolate problems and facilitate
coordination with the factory for repair parts or ideas.

What It Does
Test number 1 continuously loads the address registers with the specified

values. This should be used in conjunction with a scope probe to verlfy
register contents.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3—71

MTEST

Test 2 loads the status register with zeros and then ones reading after
each write and returning the results in two target variables.

Test 3 reads sequentially from the memory starting at address 0 and
proceding through 1M locations and then repeats continuously. The
address counters may be checked during this pattern.

Test 4 writes the same series of locations as test 3 using the data
bytes supplied, one for even address locations, and one for odd.

Test 5 is a read test similar to test 3 but allow you specify the
starting address and the number of bytes to read before repeating.

Test 6 is a write test similar to test 4 but like test 5 allows you
to specify the starting address and number of bytes to write.

Test 7 continously reads a series of decoded locations that may be probed.

Test 8 writes and reads two locations (even/odd) on a series of memory
cards. You specify the location within each card and the number of
cards to check. The resuits are printed in binary to the screen and
should consist of 16 ones and then 16 zeros.

Test 9 allows any value to be written to any register location.

Test 10 allows any register location to be read.

How To Use It

Some of the tests, as explained above, will print results to the screen

or return them in variables. For some tests that require probing, you may
need the use of an extender board to give you access to the locations
on the ROM interface board. In these situations you may want to refer
service to the factory.

If your facility is equipped to handle service you may want to purchase
or obtain a loaner extender board to perform these tests along with a
schematic and list of probe locations.

3-72 Auxiliary Memory Reference Manual 070-6400-03 11/83

MUNIT/DUNIT

MUNIT/DUNIT Selects the Memory or Disk as current File Manager.

Format

CALL "MUNIT” Select Memory File Manager
CALL “DUNIT” Select Disk File Manager

Arguments

none.

Why Use It?

You may want to use some of the BASIC key words available for the
memory file manager when a disk file manager is also present. These
commands let you switch back and forth between two file manager
ROM packs. ‘

What It Does

MUNIT writes the bank or slot address of the Auxiliary Memory ROM
pack file manager into a special 4050 system location for the currently
active file manager. This enables control of any file manager key word
commands to be routed to the Auxiliary Memory for processing.

Before writing its address into this location, the Auxiliary Memory file
manager reads the address of the other file manager presently in the system
and stores it in a reserved location in its own memory so that it can be
restored at a iater time by DUNIT.

DUNIT restores the address of the disk file manager ROM pack that was

active at the time MUNIT was last called. Therefore, MUNIT must always
be the first command executed.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3"73

MUNIT/DUNIT

How To Use It

When switching between 2 file managers, the MUNIT command must be
called prior to each access or series of accesses to the auxiliary memory.
The other resident file manager(s) can be selected by a combination of

the CALL "DUNIT” and UNIT commands. DUNIT must be CALLed only after
having first CALLed MUNIT which saves the Disk unit's file manager

address in its reserved memory.

NOTE: MUNIT and DUNIT do not need to be used if the Auxiliary Memory
is the only file manager present!

Examples

CALL "MUNIT"
DIR

Selects the Auxiliary Memory as the current file manager until the next
DUNIT command is issued. The directory for the auxiliary memory is then
printed on the screen.

CALL "DUNIT"
UNIT 13

OLD "@CALC"

Activates the disk file manager as the current file manager and loads in
a program from the disk unit 13.

3“74 Auxiliary Memory Reference Manual 070-6400-03 11/83

NXTFIL

NXTFIL Returns the next available file number.

Format

CALL "NXTFIL"F

where: F = target variable
Arguments
target variable a simple variable used to pass back the

value of the next lowest un—used file number.

Why Use It?

The Auxiliary Memory file structure pre-allocates enough directory space
for 248 files. If a file number greater than this is used, an additional
block of memory must be allocated and every reference to that file must
be made by linking through the block pointers to it. This means that
more memory is used and access to high file numbers is slightly slower.
It is therefore desireable to use the lowest file numbers avallable when
creating new files in order to maximize efficiency.

The NXTFIL routine will automatically locate the next lowest unused file
number for you. While file numbers may generally be chosen in any order
and need not be consecutive, this routine provides the capability to easily
locate the next best number to use.

What it Does

The NXTFIL routine searches for the next lowest un—used file number
that may be used to create a new file. This number is returned in the
target variable provided.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-75

NXTFIL

How To Use It

To use the NXTFIL routine, simply provide a target variable for the
value of the file number to be returned in.

Examples

100 CALL "NXTFIL",F
110 CALL "WRITE",F,X1,X2,X3

In these two lines of program, a new file number is found by the NXTFIL
routine, and a new file is created using that number with the WRITE
routine.

100 PRINT "ENTER A NAME FOR THIS NEW SEQUENTIAL DATA FILE: ";
110 INPUT NS
120 CALL "NXTFIL",N

130 CALL "MCREATE",N,NS,2
This program has the user enter a file name and then locates a new file

number for that name. A sequential file is then created using the
requested name and the newly found file number.

3-76 Auxiliary Memory Reference Manual 070-6400-03 11/83

ON EOF({0)

ON EOF(0) Traps end of file conditions.

Format

ON EOF(0) THEN I

where: | = line number of service routine
Arguments
line number a literal numeric integer that specifies

the line number in the current BASIC
program where control is passed if the
end of a data file is reached.

Why Use It?

The ON EOF statement allows you to trap end of file conditions under
program control and avoid errors that abort program flow.

What It Does

The ON EOF statement allows you to specify a line number of the
BASIC program where execution will continue when an end of file is
detected during a READ of a memory file. Transfer to this line is
equivalent to a gosub. This allows the program to return to the line
following the error after handling the end of file condition.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-77

ON EOF(0)

How To Use It

This statement requires a file number or unit number as the argument

in paranthesis. This must be a zero, which is the same unit as is used
for the internal tape files. This means that after this statement is
executed, an end of file on either mag-tape file or an auxiliary memory
file will cause the trap to occur. If it is desired to distinguish between
the two, then two statements must be present in the program, one before
each read operation to the two devices.

Examples

100 CALL "SETIP",11,1
110 S=0

120 ON EOF(0) THEN 160
130 CALL "READ",11,X
140 S=S+X

150 GOTO 130

160 PRINT S

This program sets the item pointer in file 11 to 1 and then reads
numbers until the end of file is reached. Each number read is summed
and the total is printed in line 160 after control is transferred there
after being trapped by the condition set up in line 120.

3-78 Auxiliary Memory Reference Manual 070-6400-03 11/83

PROT/UPROT

PROT/UPROT Protects and unprotects file from modification.

Format

CALL "PROT"fi
CALL "UNPROT" fi

where: fi = file identifier

Arguments

file identifier can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal.

Why Use It?

Use the PROT command to protect a file from inadvertant modification.
This will prevent another user from writing to or deleting your file. It
might also prevent you from accidently writing to a file that you would
like to keep un—-changed.

Use UNPROT to clear the write protect flag from a file you have
previously write protected to enable you to add to, modify, or delete it.

What It Does

The PROT command protects the specified file from modification by
setting a write protect bit in the file header. This bit is checked

by the file manager prior to any WRITE or KILL operation. If this

bit is on, than an error message will be printed to the screen
indicating that an attempt was made to modify a write—protected file.

UNPROT clears the write protect flag set by the PROT command allowing
the specified file to be KlLLed, written to, or otherwise modified.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-79

PROT/UPROT

The directory listing will also note any write-protected files by using
a ‘'wp’ designation following the file. :

Note that the file is not protected against the CALL “INIT” statement
which deletes all files, nor the MCHECK statement which over—-writes
all of memory. It is also possible to over-write a write protected
file with the WBYTES routine.

How To Use It

Any file can be write protected. Program files, Random data files, and
Sequential data files are all write protectable. To protect a file,

simply execute CALL “PROT” with the file name or file number of the file
you wish to protect. CALL "UNPROT” to remove the protection.

Examples

CALL "PROT", "DATATABLE"

This statement sets the write protect flag in file header of the file
named DATATABLE.

100 CALL "UNPROT",10
110 CALL "LSTIP",10,I
120 CALL "WRITE",10,I;A$

130 CALL "PROT", 10
This program un-protects file 10, locates the last item position and

adds a new item to the end of the file and then re—assigns the write
protect status.

CALL "UNPROT","DATAFILEl" -
KILL "DATAFILEl"

The write protection assigned to DATAFILE1 is removed and the file
is then deleted from the memory.

3"80 Auxiliary Memory Reference Manual 070-6400-03 11/83

RBYTES Reads data bytes into a string from a physical address.

RBYTES

Format

Arguments

target variable

address

number to read

CALL "RBYTES"”,A$,a,n

n

where: A$ = target variable
a = address
number to read

the string variable used as a target will be
automatically dimensioned to N bytes if it is
not previously dimensioned. An error will
result if the current dimension is not large
enough.

a numeric expression representing an absolute
address from 0 to the highest address of
installed memory.

a numeric expression that specifies the
number of data bytes to read into the target
string. Must be a value from 1 upto the
dimensioned length of the string.

Why Use It?

You can use the RBYTES routine to read data from the auxiliary memory
at any physical address. This may be necessary either to retrieve data
stored by a DMA peripheral such as the A/D converter ROM pack, or other
external device using Option 11 or 12.

RBYTES is also used to read data stored by the WBYTES routine. It may
be used in conjuction with the GETIA and GETADD commands to read data
from the file structure for special applications.

070-6400-03 11/83

Auxiliary Memory Reference Manual

3-81

RBYTES

What It Does

The RBYTES routine reads a specified number of data bytes from the
auxiliary memory starting at the specified address. This gives the user
complete access to every available memory location.

How To Use It

RBYTES reads data into a target string which must be dimensioned large
enough to receive the number of bytes requested. The string can be
dimensioned as large as desired up to the maximum amount of user
memory available. Any physical address address may be specified as first
address to read from. The addressing starts at zero and goes to the
highest address available for the amount of installed memory.

Example

100 CALL "RBYTES",AS$,0,1000

This statement causes 1000 bytes to be read starting at the first
possible address location. The data is stored in the target variable A$.

3-82 Auxiliary Memory Reference Manual 070-6400-03 11/83

RDELET

RDELET Deletes record from a file and compresses remaining items.

Format

CALL "RDELET" fi,i
where: fi = file identifier
i = item number to be deleted

Arguments
file identifier a numeric expression that specifies the
file that is to be compressed by deleting
a record.
item number a numeric expression that specifies the
position of the record to be deleted.
Why Use 1t?

Use the DELETE routine to delete a single record from a random data file
and compress the remaining items. This will enable you to remove a data
item from a list keeping the remaining items in order.

What It Does

The DELETE routine starts from the record following the record to be
deleted and moves it back one, overwriting the specified record.

This operation then proceeds forward copying each record back one
position until the iast item has been moved back one position.

Since the last item is copied back one position, it will occupy the

last two positions. The DELETE routine does not alter the last item
position. The same number of items will exist after DELETE as before,
only the order will be changed.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-83

RDELET

How To Use It

The DELETE routine may only be used on random data files. It requires
a file specifier and a record number for the record position to be
deleted. The record is deleted by moving the rest of the data list
down one position writing over the top of the record to be deleted.

Example

100 PRINT "ENTER THE NAME TO BE DELETED: ";
110 INPUT AS :

120 CALL "SETIP",1,1

130 CALL "LSTIP",1,L

140 FOR J=1 TO L

150 CALL "READ",1,BS

160 IF A$=BS THEN 200

170 NEXT J

180 PRINT "NAME NOT FOUND!"

190 GOTO 100

200 CALL "DELETE",1,J

This program searches file 1 for certain name and deletes that record if
it is found. :

3"84 Auxiliary Memory Reference Manual 070-6400-03 11/83

READ Reads numeric and string data from memory files.

Format

Arguments

file identifier

record number

r =

CALL "READ" fi[r;]D1[,D2...]

where: fi = file identifier
record number :
D, = input target variable list

can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal.

specifies record number to begin reading at

target variable{(s])

Why Use 1t?

any number of input variables: string or
numeric, scalar or array.

To read data items from the Auxiliary Memory file into the target

variables specified.

What It Does

The READ routine is used to read data into target variables from
auxiliary memory files. You can read data into array variables even
if the data was not written to the file as an array. This is because

each data element occupies one item position of the memory file. The
dimensioned size of the array will determine how many numbers are read.

String and numeric data may be accessed in any order. However, the
data type is not saved with each data item, so the user must know in

what order the data was saved in order to read it back.

070-6400-03 11/83

Auxiliary Memory Reference Manual

READ

3-85

READ

If the data item length is longer than the space available in the target variable, the
possible, the remaining bytes will be discarded, and the item pointer
will be advanced to the beginning of the next item.

How To Use It

The READ routine accepts any number of input variables, which can be
strings or numerics in any combination. Reading takes place from the
current position of the item pointer. The item pointer is updated after
each item is read. The current item pointer can be re—positioned to any
item with either the SETIP command, or the optional item pointer
parameter in the READ routine itself.

The file can be referenced either by number or by name. However, for
repeated accesses, it is faster to access the file by number. If the file
is remembered by name, then use the MOPEN command to find the file
number from the name.

Examples

100 PRINT "ENTER THE FILE YOU WISH TO READ FROM: "
110 INPUT FS$

120 CALL "MOPEN",F,FS$

130 IF F=0 THEN 100

140 CALL "SETIP",F,1

150 CALL "READ",F,I1,12,AS

The variables 11, 12, and A$ are read from file F starting with item 1.

100 DIM A(1000),B(1000)
110 FOR I=1 TO 100

120 CALL "READ",I,10;A
130 B=B+A

140 NEXT I

This program reads 1000 elements from 100 files starting in the 10th
item position of each file. Each array read is then summed in a
separate array. Note the semicolon following the second argument is
required to indicate that 10 is the record to read.

3-86 Auxiliary Memory Reference Manual 070-6400-03 11/83

RMPLOT Plots relatively positioned absolute format UDU data.

RMPLOT

Format

f2
io
il
i2

Arguments

file identifier

file number for x

file number for y

device number

starting position

ending position

CALL "RMPLOT"fi[,iOLi1[i2]]] format for x,y pairs in 1 file
CALL "RMPLOT",f1,£2;i0[,i1[,i2]] format for x & y in 2 files

where: fi = file identifer for x,y values
f1 = file number for x values

= file number for y values

]

I/0 device number (optional)
starting item position (optional)
ending item position {optional)

can be either a file number represented
by a numeric expression, or a file name
expressed as a string variable or literal.
This file contains x,y coordinate pairs.

a numeric expression designating the file
containing the x values to be plotted.

a numeric expression designating the file
containing the y values to be plotted.

a numeric expression designating either
the screen {device 32), or an external
plotting device on the GPIB.

a numeric expression that specifies the
starting item position to be plotted.

a numeric expression that specifies the
last item position to be plotted.

070-6400-03 11/83

Auxiliary Memory Reference Manual

3-87

RMPLOT

Why Use It?

Use RMPLOT to make reiative plots from absolute data origined about
(0.0). This can be positive domain UDU data with negative values
interpreted as moves (as in MPLOT). The last graphic position will be
used as the relative position for the plot.

This format will enable you to construct graphic images or symbols with
imbedded moves and described by easier to use absolute coordinates but
capable of being relatively positioned and rotated within any defined
window and viewport.

What It Does

The RMPLOT routine plots graphical information directly from the
specified file(s) to the specified 1/0 device or by default to the
screen.

The data is in the form of positive domain, User Definable Units,
absolutely referenced from an origin of (0,0). The RMPLOT routine takes
these coordinates, and based on the position of the last coordinate
plotted, will convert the data to relative format. They are then

rotated, scaled, and offsett according to the currently defined window,
viewport, and rotation angle. Any negative values encountered will

be interpreted as moves.

How To Use It

Data to be plotted can be stored in one of two ways. A single file may
contain a series of x,y coordinate pairs. In this case, the RMPLOT
routine requires a single file identifier, which may be name or number,
and all other arguments are optional. If the I/0 device number is
omitted, then the plot, by default, will be made to the screen.

The second way is where the x and y coordinates are stored in separate
files. In this case, the files must be referenced by number, where the
first file contains x values and the second file contains y values, and

the second file argument MUST be followed by a semicolon. This is
necessary as it is the only way to ditinguish between single file format
and dual file format. Also, since the CALL statement cannot end with a

3-88 Auxiliary Memory Reference Manual 070-6400-03 11/83

RMPLOT

semicolon, the I/0 argument which comes next is not optional in this
case. Therefore, when a piot is targeted to the screen, the device
address of 32 must be inserted following the vy file’s semicolon.

The optional range specifiers are the same for both file formats. If
the optional starting position is omitted, the default starting position
will be the first item, and the ending position will be the last item in
the file. If only the ending position is omitted, the starting point
can still be specified and the ending point will be the last item
position. :

Examples

100 SET DEGREES
110 ROTATE 90
120 MOVE 50,50

130 CALL "RMPLOT","G-SYMBOL"

The contents of the file named G-SYMBOL are plotted to the screen
after setting the rotation angle to 90 degrees and positioning the plot to
a starting location of (50,50).

500 CALL "SCALE",1,3,2

510 FOR D=0 TO 2*PI STEP 2*PI/5
520 MOVE X,Y

530 ROTATE D

530 CALL "RMPLOT",1,2;32

540 NEXT D

This program first scales the x data by muliplying each element by 2.
It then performs a series of rotations, plotting the contents of files

1 and 2 repeatedly at different rotations, each referenced to the
location defined by the values in X and Y.

Note that if it is desired to MOVE to location (0,0), it is not possible

to make either coordinate negative to flag the move since both are zero.
In this case you may solve the problem by making one value a small
negative number near zero, such as 1.0E-300.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-89

RMPLOT

100 CALL "SETIP",1,1

100 FOR I=1 TO 10

110 CALL "READ",1,X,Y,S,N
130 MOVE X,Y

140 CALL "RMPLOT",2,2,S,N

150 NEXT I

This program reads from a data file the x,y starting postions of 10
symbols and their starting and ending positions within the file. All
the symbols are contained in file 2 and are plotted to a plotter on the
GPIB with an address of 2.

3-90 Auxiliary Memory Reference Manual 070-6400-03 11/83

RPLOT Plots relative format UDU data directly from a file.

Format

Arguments

file identifier

file number for x

file number for y

device number

starting position

ending position

CALL "RPLOT" fil[-]JiOLi1Li2]]]

CALL "RPLOT"f1,f2;[-]i0Li1L[,i2]] format for x & y in 2 files
where: fi = file identifer for x,y values

f1 = file number for x values

f2 = file number for y values

[-lio = I/0 device number (optional)

i1 = starting item position (optional)

i2 = ending item position {optional)

can be either a file number represented
by a numeric expression, or a file name
expressed as a string variable or literal.
This file contains x,y coordinate pairs.

a numeric expression designating the file
containing the x values to be plotted.

a numeric expression designating the file
containing the y values to be plotted.

a numeric expression designating either
the screen (device 32), or an external
plotting device on the GPIB.

a numeric expression that specifies the
starting item position to be plotted.

a numeric expression that specifies the
last item position to be plotted.

format for x,y pairs in 1 file

070-6400-03 11/83

Auxiliary Memory Reference Manual

RPLOT

3-91

RPLOT

Why Use It?

Use RPLOT to plot relative format data expressed in user definable
units that will conform to the currently defined WINDOW and VIEWPORT.

This format allows objects or symbols to be relatively described,
positioned, and rotated. Plotting can then be performed directly from
a file without reading the data into user memory.

What It Does

The RPLOT routine plots graphical information expressed in relative UDU
format directly from the specified file(s) to the specified I/0 device or
by default to the screen.

How To Use It

Data to be plotted can be stored in one of two ways. A single file
may contain a series of x,y coordinate pairs. In this case, the RPLOT
routine requires a single file identifier, which may be name or number,
and all other arguments are optional. If the I/0 device number is
omitted, then the plot, by default, will be made to the screen.

The second way is where the x and y coordinates are stored in separate
files. In this case, the files must be referenced by number, where the
first file contains x values and the second file contains y values, and

the second file argument MUST be followed by a semicolon. This is
necessary as it is the only way to ditinguish between single file format
and dual file format. Also, since the CALL statement cannot end with

a semicolon, the 1/0 argument which comes next is not optional in this
case. Therefore, when a plot is targeted to the screen, the device
address of 32 must be inserted following the vy file's semicolon.

The optional range specifiers are the same for both file formats. If
the optional starting position is omitted, the default starting position
will be the first item, and the ending position will be the last item in
the file. If only the ending position is omitted, the starting point can
still be specified and the ending point will be the last item position.

3-92 Auxiliary Memory Reference Manual 070-6400-03 11/83

RPLOT

Examples

100 SET DEGREES
110 ROTATE A
120 MOVE X1,Y1

130 CALL "RPLOT","DESK",-32

This program plots the contents of the file named DESK to the screen
starting from a relative position defined by X1,Y1 and rotated to an
angle in degrees specified by the value in A. The minus sign on the
device number for the screen instructs the first coordinate be a move.

200 POINTER X,Y,Z$

210 IF Z$="S" THEN 250

220 MOVE X,Y '

230 CALL "RPLOT",11,12;-32,1171,2194
240 GOTO 200

250 END

This program uses the cross hairs to place a symbol at various locations
on the screen. The x data is contained in file 11, and the vy data is
contained in file 12. The device number 32 selects the screen, and the
minus sign causes the first coordinate plotted to be a move. The data
from the two files is taken from locations 1171 through 2194, for a

total of 1023 coordinates.

Note that if it is desired to MOVE to location (0,0), it is not possible to
make either coordinate negative to flag the move since both are zero.
In this case you may solve the problem by making one value a small
negative number near zero, such as 1.0E-300.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3“93

SCALE

SCALE Performs direct file add, subtract, multiply,

and divide operations.

Format

where: fi
S
o
il
i2

Arguments

file identifier

scalar operator

operation code

starting point

ending point

]

CALL "SCALE" fi,s,0,[i1,[i2]]

= file identifier

scalar operator
operation code

starting point (optional)
ending point (optional)

can be either a file number represented
by a numeric expression, or a file name
expressed as a string variable or literal.

the numeric value to be used in scaling
the specified file. Can be a simple
variable, a numeric expression, or a
literal value.

must be a value from 1-4 where 1=Add,
2=Subtract, 3=Multiply, and 4=Divide.
Can be a simple variable, a numeric
expression, or a literal value.

a numeric expression that specifies the
starting item position within the file
to be scaled.

a numeric expression that specifies the
last item position to be plotted within
the file that is to be scaled.

3-94

Auxiliary Memory Reference Manual

070-6400-03 11/83

SCALE

Why Use It?

Use the SCALE routine to perform arithmetic array like operations
on data directly in auxiliary memory files. This has the benefit

of being very fast, similar to math operations on array variables,

but can operate on much larger data arrays than possible in user
memory, plus it does not require any user memory data or program
space.

It can be used to scale or offset graphical data prior to plotting
-directly from the file without ever moving any data to main memory
for processing.

What It Does

The SCALE routine performs addition, subtraction, mulitplication,
or division of scalar values over entire files or a selected range of
data elements within a file.

How To Use It

The SCALE routine requires three arguments: the file identifier, the
scalar operand value, and the op-code. The file identifier may be the
file's name or number. If many accesses are made to the file, it is
recommended that the file number be used for faster access.

The operand may be any value or numeric expression. The opcode must
be an integer value of 1, 2, 3, or 4. This code specifies add, subtract,
multiply, or divide operations respectively.

The order of operands for the Add and Multiply operations is the
following: f{(i)=f(i)+S, and f(i)=f(i)*S. Note that subtraction of the »
scalar operand from the file element can be achieved by negating it,
and division of the file element by the scalar operator can be achieved
by inverting the scalar operand.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-95

SCALE

For this reason the opposite operand order was chosen for the Subtract
and Divide operations which are as follows: f(i)=S—1(i), and f(i)=S/f(i).
This permits the greatest flexibility in achieving the arithmetic

operation desired.

Examples

100 cALL "SCALE",2,1.5,1

The scalar value of 1.5 is added to all elements of file 2.

100 CALL "SCALE", "CURVE DATA",1,4,100,150

This line causes each of the elements from 100 to 500 in the file named
“CURVE DATA” to be inverted with the operand chosen being 1, and the
operation chosen being divide (so, f(i)=1/1(i)).

CALL "SCALE",1,-5,1

A value of -5 is added to all elements of file 1.

200 CALL "SCALE",F,1/N,2,100

This line causes each element beginning with item 100 in the file
specified by F, to be effectively divided by the value in N.
Multiplication is the operation selected, but N is inverted before
the multiply which gives the effect of dividing by N.

Note that if divide was selected and N was not inverted, the result
would be to divide N by each element.

3—96 Auxiliary Memory Reference Manual 070-6400-03 11/83

SEARCH Performs a conditional search for strings or numerics.

SEARCH

Format

n

Arguments

target variable

string key

numeric key

search code

starting position

starting item

ending item

i2

CALL “SEARCH"f,P,s$[,c$ls[i1[i2]]] format for strings
CALL “SEARCH"f,P,n[,c$],s[,i1Li2]l]] format for numerics

where: p = target variable for record number
s$ = string key to search for

numeric key to search for

c$ = search code string

s = starting character position

i1 = starting item number

ending item number

a simple variable that will receive the
record number that contains the item
matching the search requirements.

a string lieteral or variable containing
characters that are to be matched.

a numeric expression that is to be matched
by the conditions of the search code string.

a string literal or variable that contains
relational characters and symbols specifying
how the search is to take place.

a numeric expression that specifies the
starting character position in each record.

a numeric expression that specifies the
the first item in the file to search from.

a numeric expression that specifies the
last item in the file to be searched.

070-6400-03 11/83

Auxiliary Memory Reference Manual

3-97

SEARCH

Why Use 1t?

The SEARCH function enabies you to locate numeric or string data items
based on certain rules of comparison. You may want to do this to
locate related data by search keys or to maintain sorted lists. It is also
useful for locating strings when only part of the string is known by

wild cards. The position of numberic data that falls within a certain
range may also be lodated.

What It Does

This routine provides a great deal of flexibility in that it allows
searching within a range of items, and within a specified field of
the items. It also has several comparison rules that include greater
than, less than, equal to, wild cards, and case symbols that may be
used in any logical combination.

How To Use It

The type of search performed is first determined by the search key
provided whether it is string or numeric. Numeric searches use floating
point comparisons. String searches use character by character
comparisons.

The search code string may be composed of any logical combination of any
of the following characters:

‘<’ less than

'=" equals

'>" greater than

"' relative starting position in record

‘@’ exact match required (to end of record or item)

'C’ Case of characters must match (no case is the default)
7" Allows ?" as wild card character in string matches

The starting character position refers to string searches and determines
the field or starting position within a data item where a search is to
begin. If this argument is omitted, the search will begin from the

first character of each item.

3"98 Auxiliary Memory Reference Manual 070-6400-03 11/83

SEARCH

The starting and ending item positions to search on are also optional.
if these arguments are omitted, then ail items in the file will be
searched. If only the last item position is omitted, then the search
will go from the specified starting position to the end of the file.

The position of the record containing the data item that matches the

search requirements will be assigned to the target variable and passed
back to the user. If no items satisfy the search requirements, a value
of zero will be assigned to the target.

Examples
CALL "SEARCH",1,P,"JOHN"

This searches file 1 for a string that is exactly equal to JOHN. If
this string is located, its position will be assigned to P. If it is
not found, P will be set equal to zero.

CALL "SEARCH",F,N,10,">"

This finds the first item whose value is greater than 10 in file F and
returns its position in the target variable N.

CALL "SEARCH","OBJECTS",P0,AS,"C?*=",2,1,100

This searches the first 100 items in the file named OBJECTS for a string
contained in A$ that must match its case (upper and lower) but will look
for the occurrence of A$ at any position with in the item starting at or
after the 2nd character position. Also, any '?' characters in A$ will
automatically match corresponding character positions in the data item.
The position of the first matching item will be assigned to PO.

CALL "SEARCH",10,I,PI,100,200

This searches items 100 through 200 in file 10 for a value of Pl. The
position will be returned in I. Note that the search code is omitted and
the defualt is an exact ‘equal-to’ match. Also the starting character
position is not used for numeric searches.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3—99

SETIP

SETIP Sets the current item pointer for the specified file.

Format

CALL "SETIP"F,I

where: fi = file identifier

i = new item pointer position

Arguments

file identifier can be either a file number represented by a
numeric expression, or a file name expressed
as a string variable or literal.

item number must be an integer value between 1 and the
the value of the Last Item Pointer plus one.

Why Use It?

To re-position the current Item Pointer preparatory to a READ or a
WRITE. Allows random access to items within a file. The file may
be either a random or sequential file type.

What It Does

SETIP allows the current item pointer position to be moved to any
valid item in the specified file. Any subsequent READ or WRITE
commands will start from this position.

3_100 Auxiliary Memory Reference Manual 070-6400-03 11/83

SETIP

How To Use It

This routine may be used with either Random or Sequential files to
randomly re—position the current ltem Pointer. Although a Random file
is faster than a Sequential file, the SETIP routine is used the same for
both. A separate ltem Pointer is maintained for each file. The current
ltem Pointer can be set to the next available item position following
the Last ltem but not beyond. A WRITE can be performed from this
position but not a READ.

Examples

100 CALL "SETIP",1,10

Sets the current ltem Pointer in file 1 to 10.

CALL "SETIP",F3,1

Resets the current Item Pointer in file F3 to the first item.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-101

SETLST

SETLST Sets the last item pointer in a newly created file.

Format

CALL "SETLST" fi,n

where: fi = file identifier

n = new position for last item pointer

Arguments

file identifier a numeric expression that specifies the
file to be pre-extended by forcing its
last item pointer to some position.

new position a numeric expression that specifies the
new last item position in the NEW file.

Why Use It?

Use the SETLST routine to reserve a section of contiguous memory that
can be used by primitive commands without diturbing the file structure.

Since an artificial number of items is specified, the file manager routines
for random data files may be used to access the data written to this section
of memory from the DMA, data acquistion sequence, or primitive WBYTES
operation.

What It Does

The SETLST routine allows the last item pointer in a random data file
to be artificially set to some arbitrary position beyond its current
position forcing allocation of a certain amount of contiguous memory.
The memory allocated in this operation is first zeroed.

3-102 Auxiliary Memory Reference Manual 070-6400-03 11/83

SETLST

How To Use It

SETLST can only be used with random data files. The amount of memory
allocated will be the number of 256 byte blocks necessary to accomodate
the number of records indicated by the last item position specified.

This is the product of the record size times the last item position.

It is intended that SETLST be used only after creating a new random file
with some desired record length. This file must be created while memory
is still contiguous. This is only guaranteed after the INIT statement has
been executed. Several files may be created and pre-extended by SETLST
in sequence so long as no files are deleted or dynamcially expanded
during this sequence causing allocation to become non—contiguous.

If the space reserved in the file by SETLST is not to be used as a
random data file, it may be easiest to create the file with a record
length of 1. SETLST may then specify the last item pointer as the
actual number of bytes to be reserved. '

The GETADD command must be used to get the starting address in the file
that is needed to access the reserved memory by the primitive routines.

Examples

100 CALL "INIT"
110 CALL "MCREATE",1,1,1

120 CALL "SETLST",1,1000

This program first initializes the memory. This makes all memery
blocks contiguous. Line 110 then creates a random data file with

a record length of one byte. Line 120 then sets the last item pointer
to 1000. The file header of 44 bytes plus the 1000 one byte items
requires a minimum of 5 blocks (1280 bytes) since the 1044 bytes will
not fit in 4 blocks {1024 bytes).

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-1 03

SETLST

3-104

200
210
220
230
240
250
260
270
280

290

CALL

"INIT"

FOR F=10 TO 20 -

CALL "MCREATE",F,1,2
CALL "SETLST",F,5000
NEXT F

CALL "GETADD",10,A
CALL "WBYTES",AS,A
CALL "SETIP",10,24
CALL "READ",10,X
PRINT X

This program initializes the memory and then creates 11 random data
files numbered from 10 to 20, each with 5,000 records of 2 bytes each.
Line 250 then gets the starting physical memory address of file 10 which
is used by WBYTES to write a data string from A$. SETIP is then used to
select the 24th 2 byte record position in file 10. Line 280 then reads

this data item into X and prints the value to the screen.

Auxiliary Memory Reference Manual

070-6400-03 11/83

SORT Performs

an alphabetical sort on string data files.

Format

where: fi =
S =

-}
1

Arguments

file identifier

starting character

no. to compare

starting point

ending point

CALL "SORT",FIS,IN,[I1,[1211]

file identifier
starting character position (optional)
no. to compare (optional)

i1 = starting point {optional)
i2 =

ending point (optional)

can be either a file number represented
by a numeric expression, or a file name
expressed as a string variable or literal.

specifies the first character position
within the data item to be compared.
Can be a simple variable, a numeric
expression, or a literal value. Defaults
to the first characer if omitted.

specifies the maximum number of characters
to compare against from the starting
character position. Can be a simple
variable, a numeric expression, or a

literal value. Default is all characters.

a numeric expression that specifies the
starting item position within the file
to be sorted.

a numeric expression that specifies the
last item position within the file that
is to be sorted.

070-6400-03 11/83

Auxiliary Memory Reference Manual

SORT

3-105

SORT

Why Use It?

You may wish to sort a list of names, products, items, or any string
data. You can specify the field to sort on, so the list can be sorted a
variety of ways for various purposes. You can also sort numeric data as
long as it is positive signed.

What It Does

The SORT routine performs an alphabetic sort on the specified Random
data file. The algorithm used is a classic bubble sort, which requires

a minimum of memory overhead to sort in place. The comparisons are
made on a character by character basis from a specified starting character
position upto a specified number of characters. You may also specify
the starting and ending item within the file to sort.

Since numerics are stored in binary format, they will not always be
sorted correctly. This is because the sign bit causes negative numbers
to be considered greater than positive numbers.

How To Use it

The file specified must be a Random file with a record length not
greater than 100 bytes. By specifying the starting character position
within the data item, a list can be alphabetized by different fields

within the data item.

Examples

100 CALL "SORT",1

All items in file 1 are sorted in alphabetical order.
200 CALL "SORT",F,10,5,15,50

Items 15 through 50 are sorted according to the 5 characters starting in
the 10th field position of each item in the file specified by F.

3-106 Auxiliary Memory Reference Manual 070-6400-03 11/83

TBACK

TBACK Writes contents of auxiliary memory to tape.

Format

CALL "TBACK"[p]

where: p = memory page to back up (optional)
Arguments
memory page a numeric expression that specifies which

page of memory is to be backed up.

Why Use 1t?

TBACK allows you to back-up all or selected sections of memory with a
single command. This is useful if you have data in the memory that is
not in the file structure. It is also useful if you want to back-up all

files in the memory without saving them one-by-one.

What It Does

The TBACK routine writes the contents of the auxiliary memory to a tape

file so that it may later be restored. This does not a allow selective file
back-up or restoration. It is rather like taking a snap shot of memory

that can be restored at a later time. See the description of the TRESTORE
command for more details on restoring memory data backed-up with TBACK.

How To Use It

The TBACK command may be called without an argument, in which case it
will attempt to back-up all of memory. This means you must first mark a
file large enough to hold an equivalent number of bytes. For example, if

070-6400-03 11/83 Auxiliary Memory Reference Manual 3‘1 07

TBACK

3-108

your memory has one card of 128K bytes, then the tape file must be marked
at least this large. You must FIND the file before calling TBACK.

Since for larger memory sizes it may not be possible to fit the entire
memory contents on one tape file, an optional argument for TBACK is
provided. This allows you to place pages of memory in separate tape

files which are defined as 65,536 bytes each. This means there are
exactly 2 pages per memory card. A 256K byte memory (a 2 card system)
will then have 4 pages of memory which are numbered 1, 2, 3, and 4.

Also, if you know that your data is only contained within certain pages
of memory, then you may selectively back-up those pages.

Examples

FIND 1
MARK 1,130000
FIND 1

CALL "TBACK"

These statements first mark a file large enough to hold all of a 1 card
memory system and then the data from the entire memory is written to tape.

100 FIND 1

110 MARK 4,66000
120 FOR F=1 TO 4
130 FIND F

140 CALL "TBACK",F

150 NEXT F
This program starts by marking 4 files just larger than 65,536 bytes

which holds one memory page. It then goes through a loop to save 4
pages of memory to each of those 4 tape files.

Auxiliary Memory Reference Manual 070-6400-03 11/83

TLOAD

TLOAD Restores memory files from tape back to the auxiliary memory.

Format

- CALL "TLOAD"[f]

where: f = new file number (optional)
Arguments
file number a numeric expression that specifies the

new file number of the file being restored
in the auxiliary memory.

Why Use It?

You must use this command to restore files saved to tape from the
auxiliary memory with the TSAVE command. Since it is difficult to

save programs on the tape and then load them into the auxiliary memory
under program control, these commands make this operation easy and
automatic.

What It Does

Program or data files saved to tape with the TSAVE command may be
restored or re—loaded to the auxiliary memory with the TLOAD command.
If the optional new file number argument is omitted when this routine is
called, then the file will be restored at its original file number.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3‘1 09

TLOAD

How To Use It

You must first FIND the tape file where the auxiliary memory file was
saved with the TSAVE command. It may then be loaded back into the
auxiliary memory by calling the TLOAD command. If you are restoring
it to the same file location as before, then no argument is needed.

If you want to assign a new file number to the file when re-loading
it, then you must supply the new file number as the only argument
to TLOAD when calling it.

Examples

100 FOR F=1 TO 20
110 FIND F+10
120 CALL "TLOAD",F

130 NEXT F

The auxiliary memory files stored on tape files 11 through 30 are
restored to the auxiliary memory at files 1 to 20.

FIND 3
CALL "TLOAD"

This finds tape file 3 and re-loads the file saved there to its original
auxiliary memory file number.

3-110 Auxiliary Memory Reference Manual 070-6400-03 11/83

TRESTORE

TRESTORE Restores auxiliary memory from data saved on a tape file.

Format

CALL “TRESTORE"

Arguments

none.

Why Use It?

You must use this command to restore data to the auxiliary memory from a
tape file that was saved by the TBACK command. This commands allow you to
back-up and restore all program and data files or free formatted data

very easily.

You may want to do this routinely each day in starting up from a power
down condition, or periodically for archiving data sets or protecting
against power failures.

What It Does

TRESTORE reads data from a tape file that was stored by the TBACK
command and writes it back into the auxiliary memory in exactly the
same locations as it was originally taken from.

How To Use it

This command requires no arguments. It will only restore data in
exactly the same locations it was taken from. This information

about where the data came from and how much was stored is all saved
by the TBACK command. TRESTORE reads this from the header of the
tape file. This makes restoration of memory completely automatic.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-111

TRESTORE

You must first FIND the tape file before calling TRESTORE. Only tape
files with headers created by the TBACK command may be accessed
by TRESTORE.

Examples

100 FIND 1
110 CALL "TRESTORE"

The contents of memory are restored from tape file 1.

100 FOR T=1 TO 2
110 PRINT "INSERT TAPE";T;" AND PRESS RETURN"
120 INPUT AS
130 FOR I=1 TO 4
140 FIND I
150 CALL "TRESTORE"
160 NEXT 1
. 170 NEXT T

180 END

This program restores the memory from 8 separate pages of 65,536 bytes
each. Each page was stored in a separate file with 4 files per tape

on two tapes. The tapes may be inserted in any order since the file
headers contain the information for TRESTORE to properly address the
memory.

3-112 Auxiliary Memory Reference Manual 070-6400-03 11/83

TSAVE

TSAVE Writes to tape the specified memory file.

Format

CALL "TSAVE" fi

where: fi = file identifier
Arguments
file identifier a numeric expression that specifies the

file that is to be saved to the current
mag-tape file.

Why Use It?

The TSAVE routine allows you to save program or data files to the
internal mag-tape unit for back-up purposes or for routine storage so
they may be easily restored later under program control. This makes
it very convenient save and restore programs to the tape when power
failures or planned power-downs are contemplated.

What It Does

This routine saves a specified file in the auxiliary memory to the
last found tape file. The tape file header is marked as a memory
back-up file. The file number is stored as well so that it may
optionally be restored automatically to the same file if desired.

How To Use It

You must first MARK a tape file large enough to store the program
and then position the tape to the start of that file using the FIND
statement. You then simply call the TSAVE routine specifying the file
from the auxiliary memory to be saved.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3—1 13

TSAVE

If an existing tape file is to be used, it must either be NEW or
previously used by the TSAVE routine. Otherwise the file must first
be KilLled.

Examples

FIND 8
MARK 1,10000
FIND 8

CALL "TSAVE", "MAINPROG"

This series of statements prepares a tape file and then saves the
auxiliary memory file named MAINPROG to the tape file number 8.

100 FIND 10
110 CALL "TSAVE",113

This program saves file number 113 from the memory to file 10 on the tape.

3-114 Auxiliary Memory Reference Manual 070-6400-03 11/83

WBYTES

WBYTES Writes data bytes from a string to a physical address.

Format
CALL "WBYTES",a$,a

where: a$ = data string
a = address

Arguments

data string must be a string variable previously defined
with the data that is to be written to memory.

address must be an absolute address starting from 1
to 65,536 (for a 64K memory) This parameter
can be a variable, a numeric expression, or a
literal value.

Why Use It?

The WBYTES routine allows you to write data bytes to the memory at any
physical memory address, independant of the file structure. You may
wish to access the memory in this manner for special applications such
as data acquisition or other purposes requiring a more primitive and
straight forward method of accessing the auxiliary memory.

This is also the fastest method of access with the least amount of
overhead which may be critical to some time sensitive applications.

What It Does

The WBYTES routine writes a series of data bytes from a string to the
auxiliary memory starting at a specified absolute address. This gives
the user complete access to every available memory location, including
those normaily used by the file manager for the directory and allocation
map.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-11 5

WBYTES

How To Use It

The WBYTES routine requires only two arguments. The first is the string
of data bytes to be written, and the second is the starting address in
memory to begin writing.

If this routine is used in conjunction with the file structure, then

care must be taken not to damage any files or system data. The only
way this can be done is by using the GETADD and SETLST routines. The
GETADD routine enables you to find the beginning physical address of a
given file. The SETLST routine enables you to pre-extend a file with a
certain number of contiguous memory blocks. See pages 3-20 and 3-102
for more details on these routines. -

The user assumes all responsability with this routine to keep track of
how many bytes are written and where.

Example
100 CALL "WBYTES",AS$,100
The string of bytes in A$ will be written to the memory starting at the

100th memory location. The next available address would be 100 plus the
length of AS.

3-11 6 Auxiliary Memory Reference Manual 070-6400-03 11/83

WRITE

WRITE Writes numeric and/or string data to Auxiliary Memory files.

Format

CALL "WRITE" fi[i;ld1[,d2,...]

where: fi = file identifier
i = item number
d = data list
Arguments
file identifier can be either a file number represented

by a numeric expression, or a file name
expressed as a string variable or literal.

item number a numeric expression that specifies the
item position for both random and se-
quential files. This optional parameter,
if used, MUST be followed by a semicolon to
flag its presence.

data list can be any number of data items: numeric
expressions, array variables, string literals,
and variables. There must be at least one
data item in the list.

Why Use It?

Use the WRITE routine to create data files for numeric and/or string
data. The default random data file is analagous to a subscritped array,
but it accepts both numeric and string data types and, of course, can
accept much larger array sizes than possible in the 4050 system memory.

The optional sequential file type may also be referenced like an array,
with the file’s item pointer corresponding to the subscript of an array
element. The sequential file will be more memory efficient for string,
or mixed string/numeric data, but is slower to access randomly.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3"1 17

WRITE

What It Does

It is used to write data items to a specified file starting at the
position of the current-item—-pointer, or the optional user supplied
starting item position. Numeric arrays are written one element per
record, or item position, and the current item pointer is updated
once for each item in the array.

How To Use It

If the file referenced has not been previously created, it will be
automatcally created as a random file with a record length of 8

bytes when the first data item in the list is numeric, or 72 bytes if

the first data item is a string. A file name is not required, but if one

is desired, it must be assigned with the MCREATE command. Alternate
record sizes from 1-255 may also be assigned with MCREATE.

Record sizes smaller than 8 bytes cause numeric values to be saved in
a reduced precision format. This is useful when the normal 14 digit
(8 byte} accuracy is not needed. Data files may contain both numeric
and string data. However, the data type is not stored with the data
item and the user must keep track of the order of the data types.

You may optionally create a sequential file prior to the first WRITE.
This must also be done with the MCREATE command.

A unique item pointer is maintained for each data file. Each time a

data item is written to a file, the current item pointer for that file is
automatically advanced by 1. The last item position is updated whenever
the old last item position is passed. However, a new last item position
(end of file) is created every time a write is performed to a Sequential
file. Any data items after this point from previous writes will be lost.

The file can be referenced either by number or by name. However, for
repeated accesses, it is faster to access the file by number. If the file
is remembered by name, then use the MOPEN command to find the file
number from the name.

3-118 Auxiliary Memory Reference Manual 070-6400-03 11/83

WRITE

Examples

100 CALL "WRITE",5,A,X,BS

Three data items: A, X, and B$ are written to file 5. The default file
type is Random and the default Record Size is 8 bytes.

100 CALL "WRITE",F2,"LITERAL STRING"

The string in quotes is written to file F2 and a default record size of
72 is established.

070-6400-03 11/83 Auxiliary Memory Reference Manual 3-119

764MEM

764MEM Prints the current firmware revision message.

Format

CALL "764MEM”

Arguments

none.

Why Use It?

Use this routine to find the firmware version number and code for
your file manager. This may be useful when reporting problems to

the factory or in deciding if an upgrade is available and warranted.

The firmware version number is also referenced at times in this manual

in the firmware release notes. This may help you decide what features
you have and what the known problems are for you firmware version.

What It Does

This routine prints to the screen the firmware version number for your
Auxiliary Memory file manager ROM pack.

How To Use It

There are no arguments for this routine, you simply CALL “764MEM”,
and the firmware version number will be printed to the screen.

3‘120 Auxiliary Memory Reference Manual 070-6400-03 11/83

Section 4

Direct Memory Access Card Options

Introduction

This section explains the use of the DMA (Direct Memory Access) options.
These are plug-in cards that allow data from external devices or host
computers to transfer data to and from the Auxiliary Memory at very high
speeds (upto 750K bytes/second). Option 11 accepts 8 bit parallel data
from IEEE-488 (GPIB) format compatible interfaces. Option 12 accepts 8
or 16 bit parallel data from a general purpose interface using 4 control
lines.

The routines used to operate the DMA functions will be described first,
and then the two options will be discussed separately. Several examples
are also included.

Refer to Section 1 for installation instructions of the DMA options.

070-6400-03 11/83 Auxiliary Memory Reference Manual

DMAS8/DMA16

DMAB8/DMA16 Set the Auxiliary Memory in the DMA mode.

Format

CALL “DMAS8",a
CALL “DMA16”,a

where: a = beginning address

Arguments

beginning address a numeric expression that specifies the
beginning physical address in the auxiliary
memory where data is to be stored or re-
trieved.

Why Use It

Use DMAS to set up the memory to receive 8 bit data bytes from an
external device in a direct memory transfer. Use DMA16 to set up the
memory to receive 16 bit data words from an external device in a direct
memory transfer.

What It Does

These commands activate the DMA for standard 8-bit (byte), or 16 bit
(word) data transfers. The argument required indicates the starting
address in the Memory unit where the data being transferred is to be
stored or retrieved in sequential order.

How To Use It
If you are using the Auxiliary Memory strictly for data acquisition and

do not need the file structure used by the file manager, you may select
any physical address in the memory as the beginning data address.

4-2 Auxiliary Memory Reference Manual 070-6400-03 11/83

DMAS8/DMA16

You may then use the RBYTES and WBYTES routines described in Section 3
to access the DMA data.

If you wish to perform DMA transfers and preserve the file structure,

you must use the GETADD routine to give you the starting address of
the file you are using for the DMA data. This may also be used in con-
junction with the RBYTES and WBYTES routines. You will also want to
understand how to reserve some contiguous data space data space using
the SETLST routine to pre-extend a file. Refer to Section 3 for details
on all these routines before attempting to perform DMA transfers within
the file structure.

Examples
100 CALL "DMA8”,500
The DMA is activated to store data from the external device sequentially

in the memory starting at location 500, or to retrieve data sequentially
from the memory unit beginning at location 500.

CALL "DMA16",0

This sets the beginning memory address to zero and enables the interface
to initiate a 16 bit direct memory transfer.

100 CALL "GETADD",1,A
110 CALL "DMAS8",A

These two lines enable 8 bit DMA to occur starting at the first data
address in file 1 as returned by the GETADD routine.

076-6400-03-11/83 Auxiliary Memory Reference Manual 4-3

DMACLR

DMACLR Clears the DMA mode and enables 4050 to access the memory.

Format

CALL "DMACLR"

Arguments

none.

Why Use It
Use DMACLR to end a DMA transfer and return control of the Auxiliary

Memory to the File Manager. While in the DMA mode, it is not possible
to access the memory with the file manager commands.

What It Does

DMACLR clears the line which gives control of the memory to the DMA
interface.

How To Use It

Simply CALL this routine to return control of the memory to the 4050
after having initiated a DMA sequence with either DMA8 or DMA16. No
arguments are required.

Example

100 CALL “DMACLR”

This clears the DMA mode and allows the 4050 to read or write to the
memory with any of the file manager commands.

4-4 Auxiliary Memory Reference Manual 070-6400-03 11/83

DMASTA

DMASTA Returns DMA status information.

Format
CALL "DMASTA" x

where: X = target variable

Arguments

target variablea simple numeric variable that will
receive the value representing the
status of the DMA interface.

Why Use It

Use this routine to see if DMA mode is currently active or not.

What It Does

DMASTA enables the HOST to check the status of the DMA to see
if it is active or not. If X=1, the DMA is active. X=0 indicates that
the DMA is not active or that a transfer has been terminated.

How To Use It

This routine requires a simple scalar variable as its only argument
that can receive the vaiue of the DMA status. The value returned
will be 0 or 1, indicating not active or active. You may wish to
use this in a loop after activating the DMA to see when you are
allowed to continue with the part of the program that is to access
the memory from the 4050.

070-6400-0311/83 - Ce AuRitiaRy Memiory Reference Manual R 4-5

DMASTA

Examples

100 CALL "DMAS8~,100

110 CALL "DMASTA" X

120 IF X=1 THEN 110

130 PRINT "DMA TRANSFER COMPLETED”

The DMA has been activated and a loop is created to check to see if
the DMA transfer has finished. When X=0, signifying that the DMA is
inactive, a message is printed to the 4050 screen.

100 CALL “"GETADD",6,X

110 CALL "DMA16”,X

120 CALL "DMASTA",S

130 IF S<>0 THEN 120

140 CALL "RBYTES”,A$,X,100

The beginning absolute address of file 6 in the Memory unit is obtained
and then used as the starting address for a DMA transfer. Line 120
checks the status and waits for completion of the DMA transfer. Line
140 then reads 100 bytes from the same beginning address.

4

4-6 Auxiliary Memory Reference Manual 070-6400-03 11/83

Option 11

Option 11 - IEEE-488 8 Bit Parallel Direct Memory Access Card

The 8 bit IEEE-488 compatible DMA (Direct Memory Access) option for the
TransEra Memory module allows data transfers to or from the memory over
the industry standard |IEEE-4888 (GPIB) bus. Data may be stored or re-
trieved by the user in an unformatted mode that either honors or ignores
the memory’s file structure. This is useful for certain data aquisition”
applications or for special diagnostics.

The General Purpose Interface Bus (GPIB) allows the DMA to communicate
with any external device which has input/output (I/0) compatibility with

the standards of the IEEE Standard #488-1975 document. This standard
describes a byte-serial, bit parallel interface system. For further infor-
mation on how the GPIB is utilized by the Tektronix 4050 series computers,
please refer to Appendix C (Interfacing Information) in the Tektronix

4050 Series Reference Manual.

In the following descriptions and explanations, the term DMA USER refers
to the device/person reading or writing data to the DMA over the GPIB
bus. The term HOST COMPUTER, or just HOST, refers to the Tektronix
4051/4052/4054 to which the Memory unit with the DMA Option 11 is
connected.

All data transactions with the DMA Option 11 occur over the GPIB and are
similar to those done with any other peripheral device on this bus. The
DMA has been designed to respond to the General Purpose Interface
Addresses 9 and 10, and therefore all other devices on the bus should
have different addresses.

With the DMA configured as a device on the GPIB, it can be interrogated
by the DMA USER by using the PRINT@, INPUT@, WBYTE, and RBYTE
commands. Detailed information on these commands can be obtained from
the Tektronix 4050 Series Reference Manual under Section 7, Input/Output
Operations. Reading from device 9 will return the status of the DMA
(whether or not it has been activated from the HOST COMPUTER). Writing
a "0” or a "1” at device 9 indicates, from the USER, whether or not a

valid data transfer is to occur. Writing to device 10 stores data to the
memory through the DMA and reading from this device will retrieve data
from the memory.

070-6400-03 11/83 Auxiliary Memory Reference Manual 4-7

Option 11

These operations, performed by the USER, along with the corresponding
WBYTE and RBYTE commands are outlined in the following table.

DEVICE #9: STATUS/DATA VALID

Command Meaning

PRINT @9:"0"; Terminate Data transactions. Subsequent

(WBYTE @41:0;) data on the GPIB bus is no longer valid
for the DMA.

PRINT @9:"1”; Enables the Option 11 and indicates that

(WBYTE @41:1;) subsequent data on the GPIB is valid.

INPUT @9: X$ This will give the binary value of 1 or 0

(WBYTE @73: indicating whether Option 11 has been

RBYTE X) activated from the HOST. A ”1” indicates

that the DMA has been activated and transfers
to or from the memory are possible. A “0”
indicates that the memory is not available

for DMA transactions.

DEVICE #10: DATA READ/WRITE

Command Meaning

PRINT @10:A$; Stores A$ to the memory through the DMA.
(WBYTE @42:X)

INPUT @10: A$ Retrieves data from the memory and stores
(WBYTE @74: the result in A$.

RBYTE A)

These commands will be further illustrated later in several examples.
The command PRINT @9:"0”; from the USER terminates any DMA transaction,

and subsequent transfers must be preceeded by reactivating the DMA by
the call statement CALL "DMAS8", at the desired address.

4-8 Auxiliary Memory Reference Manual 070-6400-03 11/83

Option 11

Data Transfer Examples

Example 1: WRITING A STRING TO THE DMA

HOST DMA USER

100 CALL “DMAS8”, 100 100 INP @9:X$

110 CALL "STATUS" A 110 IF ASC(X$)=0 THEN 100
120 IF A=1 THEN 110 120 PRINT @9:"1%;

130 PRINT "TRANSFER DONE” 130 PRINT @10: A$;
140 PRINT @9:"0%;

in this example, the HOST COMPUTER activates the DMA to initiate
transfers at memory location 100. The HOST's program then checks the
DMA's status to see if the transfer initiated by the DMA USER has been
completed. The DMA USER first checks to see if the Memory has been set
up to receive a DMA transfer. This status is received as a binary 1 or

0, and must be converted to an ASCIl character to be checked.

When it has been verified that the DMA has been activated, the USER then
indicates that a valid transfer is to take place by printing a “1” to

device 9. It should be noted that this must be a string character

followed by a semicolon. The semicolon suppresses the carriage return
from being sent to the DMA, which would then be stored in the memory
unit. In line 130, the DMA USER then writes an ASCIl string to the
memory.

Any number of strings can be written without re-activating the DMA if
line 140 is not executed. All subsequent strings stored to the DMA will
be written in sequential order in the Memory unit. As mentioned, the
semicolon following the command in line 130 inhibits a <CR> (carriage
return) from being sent. If a carriage return at the end of the string

is desired, then the semicolon should be omitted.

070-6400-03 11/83 Auxiliary Memory Reference Manual 4-9

Option 11

Example 2: READING A STRING FROM THE DMA

HOST DMA USER

100 CALL "DMAS8”, 100 100 INPUT @9:X$

110 CALL "STATUS" A 110 IF ASC(X$)=0 THEN 100
120 IF A=1 THEN 110 120 PRINT @9:"17;

130 PRINT “DONE" 130 INPUT @10:B$

140 PRINT @9:"0%;

This example is identical to example 1 except for line 130 of the DMA
USER program. INPUT @10:B$ will read ASCIl data from the Memory unit
through the DMA to the target string variable B$. Only one string can

be read from the DMA at a time without re-initialization, therefore the
target string variable must be dimensioned large enough to accept the
entire data transfer. A single transfer will terminate when either a

<CR> (carriage return) is read or until the target string variable is full.

Example 3: WRITING DATA TO THE DMA

HOST DMA USER

100 CALL “DMAS8”, 100 100 INP @9:X$

110 CALL "STATUS" A 110 IF ASC(X$)=0 THEN 100
120 IF A=1 THEN 110 120 PRINT @9:"17;

130 PRINT “TRANSFER DONE” 130 PRINT @10: A
140 PRINT @9:"0%;

This example is identical to Example 1 with the exception that a numeric
variable (A) is being transferred instead of a string variable (A$).

This can be a scalar or an array variable. Any number of variables
(scalars or arrays) can be written without re-activating the DMA if line
140 is not executed. All subsequent data stored to the DMA will be
written in sequential order in the Memory unit.

4-10 Auxiliary Memory Reference Manual 070-6400-03 11/83

Option 11

Example 4: READING DATA FROM THE DMA _

HOST DMA USER

100 CALL "DMAS8", 100 100 INPUT @9:X$

110 CALL "STATUS" A 110 IF ASC(X$)=0 THEN 100
120 IF A=1 THEN 110 120 PRINT @9:"17;

130 PRINT "DONE”" 130 INPUT @10: B

140 PRINT @9:"0%;

This example in identical to Example 2 with the exception that a numeric
variable (B) is being read instead of a string variable (B$). As opposed to
reading a string variable, several consecutive reads are possible. Each
array variable will be filled to its dimensioned value, and each additional
read will retrieve data from the memory in the same sequential order that
it was written.

For example, assume that the values from 1-100 were stored in the Memory
beginning at location 100 and that the command CALL “DMAS8”,100 has been
executed from the HOST COMPUTER to set up the memory for a DMA transfer.
We then execute the following program:

100 DIM A(10),B(10),C(79)
110 PRINT @9:"17;

120 INPUT @10: AB,C,D,E
130 PRINT @9:"0%;

140 END

The values from 1-10 would be read into array A, 11-20 into B, 21-99 into
C. 100 into D and extraneous data would be read into E (since there were
only one hundred valid numbers).

070-6400-03 11/83 Auxiliary Memory Reference Manual 4-11

Option 11

Option 12 - 8/16 Bit General Purpose DMA

The Option 12 General Purpose Parallel DMA Interface uses four hand-
shake/control lines are that necessary for operation of the DMA. They
are: Clock (CLK), Directon (DIR), Data Valid (DAV), and DMA Available
(DMAAVL). The CLK, DIR, and DAV lines must be supplied by the user
whereas the DMAAVL is output from the DMA device. The following is
a description of these lines:
CLOCK (CLK) Clocks the data (8 or 16 bits per clock

pulse) on the DMA bus into the memory or

initiates a read from the memory on the

rising edge of the signal.

DIRECTION (DIR) Indicates which direction the transfer
is to occur: 1 = Retrieve from Memory,
0 = Store to Memory.

DATA VALID (DAV) Indicates whether there is valid data
on the DMA bus. A low level (0)
enables the option 12 and indicates
that subsequent data on the DMA bus is
valid. A high level (1) disables the
device. A low-to-high transition on
this line will terminate all DMA
transactions. Subsequent transfers can
be made without re-initiating the DMA
when this control line is held low.

DMA AVAILABLE This line, output from the option 12, tells
(DMAAVL) whether the option 12 has been activated. A
high level (1) indicates that the DMA is
disabled and that the memory is not available
for DMA transactions. A low level (0) indi-
cates that the DMA is active and transfers
to or from the memory are possible.

The DIR and DAV lines must be set and stable when the DMA is initiated

from the 4050. Please refer to the timing diagrams at the end of these
instructions.

4-12 Auxiliary Memory Reference Manual 070-6400-03 11/83

Option 12

Support Routines

- Information that has been transferred to the memory can be read by the
4050 using the CALL “RBYTES” routine. Information to be transferred out
from the memory can be first stored by the CALL “WBYTES” routine. These
two routines read and write data sequentially in the memory.

When data is to be accessed in the Auxiliary Memory within the file struc-
ture such that no files are disturbed, then you must make use of the GETADD
and SETLST routines. All these routines are explained in Section 3.

L4

Example 1: 100 A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
110 CALL “WBYTES”,A$,500
120 CALL “DMAS8”,500

The DIR line has been set to retrieve data from the memory. A$ is
given a value and stored in the memory beginning at location 500. The
Option 12 DMA is then activated to sequentially read this information
from the Memory unit.)

Example 2: 100 CALL "DMA16”,500
110 CALL "DMASTA",S
120 IF S<>0 THEN 110
200 CALL "RBYTES”,A$,500,50

The DIR line has been set to store data into the memory. The Option 12
is activated to store the in—coming data starting at location 500. After
the desired data is transferred, the user terminates the transfer and

the data (50 bytes in this example) is read from the memory into the
target string variable A$.

Signal Terminations And Loading
The standard termination for all lines except CLK is 3K ohms to +5VDC
and 6.2K chms to GND. The CLK line termination is 220 ohms to +5VDC and

330 ohms to GND. All signals to the DMA are loaded by no more than one
standard TTL load.

070-6400-03 11/83 Auxiliary Memory Reference Manual 4-13

Option 12

Connector

The Option 12 DMA uses a D-Type, 24 pin, female connector which has been
configured to allow both 8 and 16 bit parallel transfers. See Fig. 1.

When the routine CALL “DMAS8” is initiated from the 4050, all 8-bit (byte)

transfers are made over data lines 0 through 7. During these transfers,
data lines 8 through 15 are three-stated.

4-14 Auxiliary Memory Reference Manual 070-6400-03 11/83

Section 5 - Memory Architecture

Introduction

This section discusses the organization of the memory for those who wish
to access the memory using the primitive read/write commands without
disturbing the file structure. The space reserved for System Memory is
outlined, the procedure for reserving contiguous file space is discussed,
and some methods for doing data acquisition are presented.

Memory Organization

The memory is divided into Bytes, Blocks, and Pages. A Byte is the
smallest addressable unit and contains 8 bits (binary digits). A Block
contains 256 bytes, and a Page contains 256 blocks (65,536 bytes). The
File Manager allocates memory a block at a time.

Upon power-up for the first time, or whenever CALL “INIT” is executed,
the file manager will go through a process of counting the number of
memory cards installed to determine how much memory is available. It
then pre-allocates a certain number of blocks for use by the directory,
the link map, and some System data bytes.

The System data bytes always occupy the first 16 bytes of memory. The
directory immediately follows these bytes and uses the rest of the first
block plus the following block for a total reserved space of 496 bytes.

A link map immediately follows the directory.

The Auxiliary Memory File Manager employs a Link Map for allocating
blocks of memory. The Link Map is a series of 2-byte pointers, each one
corresponding to a block of memory in the system. These pointers are
initially set to zero, indicating all blocks of memory are free and

available to be allocated. Since each block in the link map contains

128 pointers that reference 128 blocks, four of these link map blocks

are required for each 128K byte memory card installed.

When a block is reserved or allocated to a file, the file manager scans
the link map for a zero pointer. If the 10th pointer is free, this
means the 1Cth block is free. It is allocated by setting the most

070-6400-03 11/83 Auxiliary Memory Reference Manual

Memory Architecture

significant bit of the link pointer high. If a block was previously
assigned to that file, its link pointer is then updated to point to the
new block assigned. This forms a chain with the link pointer of the
last block in the chain always having its MSB set high.

Directory Structure

As stated, the directory has 496 reserved bytes. At 2 bytes per entry,
this will accomodate 248 file entries. Each time a file is created, an
entry for it is made in the directory. This entry consists of a pointer
to the first block of memory assigned to that file. The first 44 bytes
of that block is the file header which contains the remainder of the
information about the file used by the directory.

The number assigned to a file determines its position in the directory.
When file 5 is created, it will occupy the 5th directory entry. File
numbers greater than 248 will cause dynamic allocation of 1 or more
additional memory blocks to the directory. Each additional block
allocated will accomodate 128 entries. The first extra block will be
for file numbers 249-376. Unused file numbers have null directory
entries. These structures are diagramed below:

Memory Map (128K Memory)

SYSDAT (low memory) (high memory)

DIRECTORY | LINK MAP FILE SPACE... (508 blocks, 130,048 bytes)

File Manager System Data Bytes (first 16 bytes of memory)

NOF(2) | PAGES(2)| NFB(2) PWRID(2) | UNIT(2) | Free(6)

NOF Number of Files

PAGES Number of Pages of installed memory

NFB Number of Free Blocks

PWRID Power—up ID

UNIT Address of the currently active file manager unit
Free Un-used system data bytes

5-2 Auxiliary Memory Reference Manual 070-6400-03 11/83

Memory Architecture

Directory Entries (file entries 1-248 reserved at addresses 16-511)

1123

Link Map (4 blocks, 1024 bytes reserved at addresses 512-1535)

Block 1 Block 2 Block 3 Block 4
1-128 129-256 257-383 385-512
File Header (44 bytes)
CIA(3) |CIN(3) | LIN(3) |FSIZE(3) |FFLAGS(1) RECSIZ(2) |NAME(28)+1
CiA Current Iltem Address
CIN Current Item Number
LIN Last Item Number
FSIZE File Size
FFLAGS File Flags (Attribute Bits)
RECSIZ Record Size
NAME File Name
File Flags (8 bits)
OPEN | RAND | SEQU | PROG | PACK | SGND | #wswx PROT
OPEN Valid open file flag
RAND Random file type
SEQU Sequential file type
PROG Program file type
PACK Packed integer data format
SGND Signed integer data format
folalaialed not used
PROT Write Protect status bit

070-6400-03 11/83

Auxiliary Memory Reference Manual

5-3

Memory Architecture

Contiguous File Space

The file manager allocates 1 block at a time as needed by a file. i

you create 2 files in succession, each will be one block long. If you

then write data into the first file causing it to dynamically expand,

its next allocated block will come after the second file's first block.

This means that normally you cannot expect a given file to have more
contiguous file space than 1 block (256 bytes). Unless you understand
the file system and take specific measures to force or deliberately arrange
for contiguous file space, it probably won't be.

Of course, under normal conditions you will have no need for a large
segment of contiguous file space. The file manager takes care of all
file pointers and chains together series of non-contiguous blocks so
that they appear contiguous. However, for data acquisition, or when
using the WBYTES routine to transfer long strings of data into memory,
you will need to guarantee actual contiguous file space. This will enable
you to use the file system at the same time as your direct access
Memory space.

Knowing that after CALL “INIT” is executed all blocks are free for
allocation, you can then create a single file and write data into it

to force it to some maximum size with a contiguous chain of blocks.
Another way to accomplish the same thing is to use the SETLST routine
after creating the file to artificially pre-extend the file to some desired
length. This is faster and easier than using a series of data writes

to fill the file. SETLST will fill the file with zero or null data. This
routine is described in greater detail in Section 3.

Direct File Access

The GETADD routine described in Section 3 can be used to conveniently
return the starting physical address of any file. The address returned

is the first data location after the file header. If you have need to
directly access the header information, then subtract the length of the
file header from the address returned by GETADD to point at the
beginning of the header or the first block assigned to the file. The
length of the header is 44 bytes in firmware version 5. You can also
compute the beginning of the header knowing that each file header
address begins on an even block boundary divisible by 256.

5-4 Auxiliary Memory Reference Manual 070-6400-03 11/83

Memory Architecture

Using the starting data address of a file obtained from GETADD, you can
perform direct file access with the primitive I/0 commands RBYTES and
WBYTES, or the DMA routines DMA8 and DMA16, or with other ROM packs
programed to access the Memory directly such as the TransEra A/D
converters.

Another routine which will give you direct file access to selected data
items within a file is the GETIA routine. This returns the physical
item address of a given item position. You may then use any of the
methods mentioned above to access the Memory using this address.

Examples

100 REM - EXTERNAL DMA ROUTINE

110 CALL "INIT"

120 CALL "MCREATE",1,"DIRECT ACCESS FILE",1,1
130 CALL "SETLST",1,10000

140 CALL "GETADD",1,A

150 CALL "DMA8",A

160 CALL "DMASTA",S

170 IF S<>0 THEN 150

180 DIM AS$(10000)

190 CALL "RBYTES",AS$,A,10000

200 PRINT AS

This routine first initializes the Memory to guarantee that contiguous

space is available. It then creates a random data file with a record

length of 1. The SETLST routine then specifies a last item position

of 10000 which gives exactly 10000 bytes (since the record length is 1).
GETADD then returns the starting data address of this file so that it

can be used by DMA8. The DMA hardware then takes over and line 150,
DMASTA, monitors the status, passing control to RBYTES in line 180

when the transfer is complete. RBYTES also uses the address obtained
from GETADD and reads 10000 bytes which are then printed on the screen.

070-6400-03 11/83 Auxiliary Memory Reference Manual 5-5

Memory Architecture

100 REM A/D DATA ACQUISTION WITH TRANSERA 752-ADC
110 CALL "INIT"

120 CALL "MCREATE",1,"A/D DATA",1,2

130 CALL "SETLST",1,5000

140 CALL "GETADD",1,A

150 CALL "BURST",A,5000,.001,1,0,1

160 CALL "MAXI",1,M,P

170 PRINT M,P

This program creates a random file with a record length of 2. SETLST
then sets the last item position at 5000. At 2 bytes per record this
again gives 10000 bytes of contiguous data space. The starting file
address used by GETADD is used by the A/D routine BURST. After
taking 5000 two byte (12 bit) samples, the MAXI routine is then called
to return the maximum value and its position of the data acquired. This
demonstrates the value of using the file structure for data acquisition.

100 REM - DIRECT ITEM ACCESS

110 CALL "INIT"

120 CALL "WRITE",10,"ITEM NUMBER ONE","ITEM NUMBER TWO"
130 CALL "GETIA",10,2,X

140 CALL "RBYTES",AS,X+12,3

150 PRINT AS

RUN

TWO

This program shows how to directly access a particular item within a
file. After writing two string items to file 10, the item address of the
second item is returned by GETIA in line 130. Rbytes is then used to
read that item starting with its 12th character and reading the last 3.

As you can see, this prints only the word “TWO” on the screen when the
program is run.

5-6 Auxiliary Memory Reference Manual 070-6400-03 11/83

Appendix A - Command Summary

CALL “APLOT”fi[-]i0Li1[i2]]] ..plots UDU format data to screen
CALL "APLOT" f1,f2;[-1i0Li1L,i2]]

fi = file identifier (number or name) of file with x,y pairs

f1 = file of x values

f2 = file of y values

i0 = I/0 device address
i1 = starting data record to plot
i2 = last data record to plot

APPEND n$,[i] ..file manager key word, functions same as CALL “MAPPEND"
n$ = name of program
| = target line to append to
i = optional line increment

CALL "CONCAT" f1,f2 ..combines 2 files into 1
f1 = file to be added to
f2 = file to be added

CALL “COPY“f1,f2 ..makes another copy a file creating a new one
f1 = file to copy
f2 = new file

DIR [i0] ..file manager key word, functions same as CALL "DIR"
[i0] = optional device address for output of directory

CALL "DUNIT” ..selects the alternate file manager

Note: MUNIT and DUNIT are not used if the Auxiliary Memory is the only
file manager present. If another file manager is in the system,
MUNIT must be called before each series of commands to the Auxiliary
Memory, and DUNIT must be called before each series of commands
to the other file manager.

070-6400-03 11/83 Auxiliary Memory Reference Manual A-1

Command Summary

CALL “EXCLUD” ..sets exclusion level for remarks in programs loaded
i = exciusion ievei

CALL “FILHDR"f,H$..returns directory listing for specified file
f = file number
H$ = target string for file information

CALL "FILTYP"fi,t ..get the file type code
fi = file identifier, either file number or name
t = target variable for file type

CALL "FPLOT"fi[i1[i2]] ..plots GDU format data to screen
CALL "FPLOT" f1,£2;i1[,i2]

fi = file identifier (number or name) of file with x,y pairs

f1 = file of x values :

f2 =-file of y values

i1 = starting data record to plot

i2 = last data record to plot

Note: negative valued GDU data flags moves

I

CALL "GETADD"fi,a ..get the starting physical address of a file
fi = file identifier, either file number or name
a = target variable for pshysical address of first data byte
in file (just after header)

CALL "GETIA"fi,a ..get the current physical item address
fi = file identifier, either file number or name
a = target variable for current phsysical item address

CALL “GETIP“fi[I]] ..get the current item pointer
fi = file identifier, either file number or name
| = target variable for item pointer

A-2 Auxiliary Memory Reference Manual 070-6400-03 11/83

Command Summary

CALL “INIT” ..initialize the Auxiliary Memory, erase all files

CALL "“INSERT"fii ..expands file at specified record position
fi = file identifier, either file number or name
i = item number to be inserted

KILL f$..delete a file referenced by name
f$ = name of file to delete :

CALL "KILL"fi[,f2[,f3[...]]] ..delete a file or list of file numbers
fi = file identifier, either file number or name
f2,13,... = list of file numbers to be deleted

CALL “"LSTIP"fi[ll ..get the last item position of a file
fi = file identifier, either file number or name
| = target variable for last item pointer

CALL "MAPPEND"fiLi] ..append a program from Memory to existing program
fi = file identifier, either file number or name
| = target line to append to
i = optional line increment

CALL "MAXI”fiM,PLi1[i2]] ..find maximum value and its position
fi = file identifier, either file number or name
M = target variable for maximum value
P = target variable for position of maximum value
i1 = optional starting position in file
i2 = optional ending position in file

CALL "MCHECK” ..performs a diagnostic check of the memory

070-6400-03 11/83 Auxiliary Memory Reference Manual A_3

Command Summary

CALL "MCREATE"f[,n$]tr ..create a file with specified name and attributes
f = file number
n$ = optional file name
t = file type (1=random,2=sequential,3=program)
r = record size (normally 0 for program and sequential file types)

Note: MCREATE replaces the former OPEN command. Besides the new
name for the command, it differs only in that it allows an optional

file name. This command can also be used to re-name a file that

is already created. It also has the affect of setting the current

item pointer in an existing file to one. '

Integer Data Types
Integer data types are specified by the record number being 1 or 2
for 8 or 16 bit integers respectively. Signed integers are specified
by making the record value -1, or -2.

CALL "MCREATE"f[,n$],1,-1 (signed integer data type range -128,127)
CALL "MCREATE" f[,n$],1,-2 (signed integer data type range -32768,32767)

CALL "MCROSS"fiv,I[,n] ..locates values in a file that ‘cross’ a threshold
fi = file identifier, either file number or name
v = threshold value
| = target for location of cross
n = optional number of cross desired (default=1)

CALL "MCSUM",S,p ..performs checksum on memory
S = target for chekcsum remainder
p = page count (number of pages to sum)
may be useful for verifying memory before and after
backup and restore operations from tape

CALL "MDIF2"fi ..performs 2 point differentiation on file specified
fi = file identifier, either file number or name
b(t)=a(t+1)-a(t) for t=1,2,.,n-1
b(n)=b(n-1)
where a=original file data, b=resulting file data

A-4 Auxiliary Memory Reference Manual 070-6400-03 11/83

Command Summary

CALL “MDIF3"fi ..performs 3 point differentiation on file specified
fi = file identifier, either file number or name
b(1)=(-3*a(1)+a(2)-a(3))/2
b(t)=(a{t+1)-a(t-1))/2 for t=2,3,..,.n-1
b(n)=(a({n-2)-4*a(n-1)+3%a(n))/2
where a=original file data, b=resulting file data

CALL "MINIfiM,P[i1[i2]] ..find minimum value and its position
fi = file identifier, either file number or name
M = target variable for minimum value
P = target variable for position of minimum value
i1 = optional starting position in file
i2 = optional ending position in file

CALL "MINT"fi ..performs integration on the specified file
fi = file identifier, either file humber or name
b(1)=0
b(t)=b(t-1)+(a(t-1)+a(t)}/2 for t=2,3,...n
where a=original file data, b=resulting file data

CALL "MLINK"fil ..load a program from Memory but keep all variables
fi = file identifier, either file number or name
| = program line number to begin execution at

CALL "MOLD"fi ..load a program from Memory
fi = file identifier, either file number or name

CALL "MOPEN”F,a$..finds and returns the file number for the named file
F = target variable for file number
a$= string literal or variable containig file name whose file
number is to be found

070-6400-03 11/83 Auxiliary Memory Reference Manual A-5

Command Summary

CALL "MPLOT"fi[,[-]i0,[i1,[i2]]] ..plots absolute UDU data
CALL "MPLOT"fi,f2;[-1i0[,i1[i2]] ..plots absolute UDU data
fi = file identifier (number or name) of file with X,y pairs
f1 = file of x values
f2 = file of y values
[-]i0 = 1/O device address {minus sign signals move on first coordinates)
i1 = starting data record to plot
i2 = last data record to plot

CALL "MSAVE"f[[n$] .. save current program in file number specified
f = file number
n$ = optional file name

CALL "MSAVE",n$..save the program with specified name
n$ = file name (file number will be next lowest unused number)

CALL "MTEST"n,... ..diagnostic test routines
n=1, address counter test, CALL “"MTEST",1,c1,c2,c3
n=2, status register test, CALL “"MTEST",2,t0,t2
n=3,

CALL "MUNIT” ..select the Auxiliary Memory as the current file manager

CALL “NXTFIL",F ..select the next unused file number
F = target for next available file number

OLD n$..file manager key word, functions same as CALL “MOLD”"
n$ = name of program

ON EOF(0) ..traps end of file conditions
Shares the same device address as the internal mag tape. If both
memory and tape files are to be trapped for end of file, then
two ON EOF statements are required, one preceding each input.

CALL "PROT"fi ..assign write protect status to file
fi = file identifier, either file number or name

Auxiliary Memory Reference Manual 070-6400-03 11/83

Command Summary

CALL "RBYTES”,A$,a,n ..reads a string of bytes from Memory
A$ = target string variable for data to be read
a = starting physical address in memory to begin read from
n = number of bytes to read

CALL "RDELET"fi,i ..deletes record and compresses remainder of file
fi = file identifier, either file number or name
i = item number to be deleted

CALL "READ"fi[r;v1[v2,..] ..reads data items from Memory
fi = file identifier, either file number or name
r = record number to read from

CALL "RMPLOT"fi,iOLi1[,i2]]] ..random plot from absolute data
CALL "RMPLOT~,£1,£2;i0Li1L,i21]

fi = file identifier (number or name) of file with X,y pairs

f1 = file of x values

f2 = file of y values

i0 = 1/0 device address
i1 = starting data record to plot
i2 = last data record to plot

CALL "RPLOT”fiL[-]i0Li1[i2]]] ..plots relative UDU data
CALL "RPLOT" fi,f2;[-]i0L,i1Li2]]
fi = file identifier (number or name) of file with x,y pairs
f1 = file of x values
f2 = file of y values
[-]i0 = I/O device address (minus sign signals move on first coordinates)
i1 = starting data record to plot
i2 = last data record to plot

SAVE N$..file manager key word, functions same as CALL “MSAVE”
n$ = name of program

070-6400-03 11/83 Auxiliary Memory Reference Manual A-7

Command Summary

CALL "SCALE"fis,0[i1[i2]] ..add, subtract, multiply, or divide

a value over a file

CALL “SEARCH"f,P {s$,n}[.c$ILsLi1[i2]]] ..match numbers or strings
p = target variable for record number of key item found
{s$.n} = string or numeric key to search for
c$ = search code string composed of any logical combination of the
following list of characters;
‘<’ less than
'=" equals
‘>’ greater than
"*" relative starting position in record
‘@’ exact match required (to end of record or item)
‘C’ Case of characters must match

"?" Allows ?" as wild card character in string matches
s = starting character position in each record
i1 = starting item number
i2 = ending item number

CALL "SETIP"fii ..set the current item pointer
fi = file identifier, either file number or name
i = position to set the item pointer to in file

CALL “SETLST"fi,;n ..set last item pointer to a new position
fi = file identifier, either file number or name
n = new position for last item pointer

CALL "SORT"fi[s[n[i1[i2]]] ..sort a file in alphabetic order
fi = file identifier, either file number or name
s = starting character (field) position

n = number (field length) to sort on
i1 = starting item position
i2 =

ending item position

CALL "TBACK"[,p] ..writes contents of memory to tape
[p] = optional page number to back up (65536 bytes)
entire memory is backed up to tape if ‘p’ is omitted

Auxiliary Memory Reference Manual 070-6400-03 11/83

Command Summary

CALL “TLOAD"Lf] ..reads memory file from tape and stores in back memory
£

t = new file number for file to be loaded from current tape file

CALL “TRESTORE” ..restores memory from current tape file
restores exactly the amount saved by TBACK

CALL "TSAVE"f _..writes to tape the specified memory file
fi = file identifier, either file number or name

CALL "UNPROT"fi ..remove write protect status from a file
fi = file identifier, either file number or name

CALL "WBYTES",a$,a ..write a string of bytes to a file
a$ = data string to write to file
a = physical address in the Memory to begin write at

CALL "WRITE" fi[r;lv1[,v2,..] ..write data items to a file
fi = file identifier, either file number or name
r = record number to write to

CALL "764MEM” ..firmware revision message printer

070-6400-03 11/83 Auxiliary Memory Reference Manual A-9

A-10 Auxiliary Memory Reference Manual 070-6400-03 11/83

Appendix B - Error Messages, Causes and Corrections

Error Message

Cause

Correction

Aux Memory Error #0
Invalid File Parameter

The first argument in
each call list must be a
numeric expression that
represents a legal file
number or a string that
represents a file name.

Make sure that the first
argument in the CALL
list is a defined variable,
literal, or expression that
represents a valid file
number or name.

Aux Memory Error #1
No Such File

A file has been refer-
enced that does not
exist such as request-
ing a plot at a file
number that has not
previously been used.

The file specified in the
statement producing the
error may be the wrong
file. If it is the correct file,
then you will have to re-
write the file according to
what is required for that
statement.

Aux Memory Error #2
File is Write Protected

An attempt has been
made to write to or
modify a file whose
write protect flag
has been set by the
PROT command.

You must first remove
the write protect status
from the file using the
UNPROT command if you
really intend to modify
the file.

Aux Memory Error #3
Aux Memory Full

All blocks of memory
have been alloctated
to existing files

and there are no more
available.

You must delete some
file that is not needed
to make more room for
dynamic file expansion.

070-6400-03 11/83

Auxiliary Memory Reference Manual

B-1

Error Messages

Error Message

Cause

Correction

Aux Memory Error #4
lllegal File Type

The attempted opera-
tion has referenced
an illegal file type
such as a SORT on a
sequential or program
file type.

Check the file number or
name you have used to
reference the particular
file. You may want to
check the directory list
to see the locate the

file in question.

Aux Memory Error #5
End of File Encountered

This error usually re-
sults from an attempt
to read beyond the
end of the data file.
Writes will dynamically
expand a file, but reads
are only good to last
valid item in a file.

The ON EOF command can
be used to trap end of file
conditions. You can also
use the LSTIP routine to
tell you how many items
are in a file so the
program will know when

to stop reading.

Aux Memory Error #7
No Program Found

This message will re-
sult from an attempt
to OLD, APPEND,

or LINK a file that
does not contain a
valid program.

Check the file you have
referenced to see if it is
the file you previously
used to store the program.
Check the length of the
file to see if it seems
reasonable.

Aux Memory Error #8
File Marked Too Small

The attempted tape
operation requires
a larger tape file

to store the speci-
fied file or memory
section.

You must choose a larger
tape file, re—mark the
existing tape file, or

mark a new tape file large
enough to hold the memory
data. Use the file size

plus an extra block or two
for determining tape file
size to mark.

Auxiliary Memory Reference Manual

070-6400-03 11/83

Error Messages

Error Message

Cause

Correction

Aux Memory Error #9
File Already Used

The file specified is
the wrong type for
the attempted opera-
tion which requires
either a new file or

a certain type.

The file must be a new
file or a certain type as
required by the routine.
Refer to the description
of the routine in question
for more details.

Aux Memory Error #10
Invalid Memory Data

This message will us-
ually occur when a
routine is expecting
certain data such as
during directory list-
ing where file headers
must contain certain
data to be valid.

Since this error message
indicates a possible corrupt
memory you may want to
reinitialize the memory, or
save whatever files that
can be accessed first,
avoiding whatever files or
commands produce the
error until the memory
can be re-initialized or
otherwise corrected.

Aux Memory Error #36
Undefined Variable

A variable in the
argument list is un—
defined that the
routine requires to
be defined.

Check the argument list
for the variable that is
un—defined. You may want
to refer to the description
of that routine to better
understand what is wanted.

Aux Memory Error #12
Invalid Command
Argument

An Argument in the
CALL list is the
wrong type, such
as a string where

a numeric was ex-—
pected.

Re—-enter the command
with the correct argument
list or type of arguments.
Refer to the detailed
description of the par-
ticular routine for more
information.

070-6400-03 11/83

Auxiliary Memory Reference Manual

Auxiliary Memory Reference Manual

070-6400-03 11/83

Appendix C - ROM Pack Slot Priority

The position of the 6400 File Manager ROM Pack in the slot priority scheme
may depend on what other ROM packs are present. In order to determine
which slot to use, you must first understand the slot priority order. This
may be somewhat confusing because the slot numbers do not represent the
priority order. Therefore, refer to the table below to select the appropriate
ROM Pack placement.

if a 4909 File Manager ROM Pack is present, the 6400 File Manager should be
located after (at a lower priority than) the 4909 File Manager. This is

to enable certain 4309 commands that are duplicated in the 6400 to be seen
first by the 4909. In this case, the alternate CALL names in the 6400 may

be used.

Otherwise, the preferred placement of the 6400 File Manager is in a back-pack
slot rather than a ROM Expander slot. This is because the 6400 File Manager

uses the ROM Pack slot as the data interface, and the back-pack slot provides
a more direct and cleaner data connection than the ROM Expander does.

If this causes the 6400 File Manager to be placed at a higher priority than
other file managers, this should present no problem (except for the above
stated 4909 conflict) even though it may be stated that they must be placed
at the highest priority.

Priority Backpack Slot ROM Bank
1 Highest 61 0

2 71 8

3 61-68 in 4050E01 16-23

4 71-78 in 4050E01 24-31

5 41 32

6 51 40

7 41-48 in 4050E01 48-55

8 Lowest 51-58 in 4050E01 56-63

The highest priority slot in a four slot backpack is number 61 and
number 41 in a two slot backpack.

070-6400-03 11/83 Auxiliary Memory Reference Manual C_1

ROM Pack Slot Priority

If you use the 4050E01 ROM expander the highest priority slot is as

follows:

Two Slot back Pack

41 with the ROM expander in slot 51
51 with the ROM expander in slot 41

Four Slot back Pack

71 with the ROM expander in slot 61

C"‘2 Auxiliary Memory Reference Manual

070-6400-03 11/83

Appendix D - Hardware Specifications

Transfer Rate:
Storage Capacity:

Expansion Card Size:

External DMA Transfer Rate:

Power Requirements:

Power Consumption:

Batter Pack Life:

Charge Time:

Physical Charactersitics:

Memory Module

ROM Pack

Operating Temperature:

070-6400-03 11/83

50K bytes/second

128K to 1024K bytes

128K bytes

750K bytes/second maximum

120 volts at 60 hertz
240 volts at 50 hertz

20 watts maximum (1024K bytes)

5 Minutes Minimum (1024K bytes)
3-6 hours minimum
16 hours maximum

Length 30.5 cm (12 in)
Width 24.6 cm (9.7 in)
Height 10.2 cm (4 in)
Weight 4 kg (9 Ib)

Length 6.6 cm (2.6 in)
Width 13.3 cm (5.5 in)
Height 2.3 cm (0.9 in)
Weight 115 g (4 oz)

10-40°C

Auxiliary Memory Reference Manuai

D-2

Auxiliary Memory Reference Manual

070-6400-03 11/83

Appendix E - Glossary

ASCII American Standard Code for Information

Interchange.
ARGUMENT A data variable or constant used for input or

output to a command, function, or routine.

BASIC Beginners All-Purpose Symbolic Instruction Code.
BASIC is the programming language used by
a Tektronix 4050 series computer graphic system.

BINARY Base 2 number representation.
BIT A binary digit, a 1 or a 0.
BLOCK A section of memory exactly 256 bytes long. May

be referred to as the next least significant
address part.

BYTE A group of 8 binary bits. Also the smallest data
item that can be addressed. May be referred to
as the least significant address part.

COMMAND A line of instructions containing a keyword(s)
address(es) and/or an argument.

CONSTANT Any entry in a field requiring a literal number
rather than a variable.

CONTIGUOUS FILE A file that is not scattered over different
locations in the memory but is contained within
one continuous area.

CURRENT DEVICE The device specified by UNIT, CALL "MUNIT",
or CALL "DUNIT” command.

DATA FILE A collection of data stored in the memory.

DEFAULT Value used when none is specified.

070-6400-03 11/83 Auxiliary Memory Reference Manual

Glossary

DELIMITER The character(s) or space(s) used to separate
one field from another.

DEVICE The Auxiliary Memory, a disk drive, or any similar
unit controlled by a file manager.

DEVICE ADDRESS The Device Address is an integer number
used to reference an external device.

DIMENSIONING - Enlarging or reducing of a string variable space
to accomodate more or less than the 72 character
default length.

DIRECTORY A collection or of files that are listed in order
of the numbers assinged to each for reference
purposes.

ENTRY The number or character or string placed in a field

or the variable or string variable representing it.
Entries are made through program operation or

keyboard.
ERROR An abnormal condition.
F.l. File Identifier. Refers to the name or number of

a program or data file by which it is referenced.
FIELD One data item in a record or a command parameter.

FILE A reserved block of storage for programs or data
referred to by a name.

FILE IDENTIFIER See F.l.
FILE NAME The name of a program or data file.
FILE NUMBER An integer value assigned to each file by which

the file can be referenced.

FILE POINTER An internal marker that specifies where an 170
operation is to begin.

E-2 Auxiliary Memory Reference Manual 070-6400-03 11/83

HEADER

HOST

INTERFACE

ITEM POINTER

KEYWORD

LAST ITEM POINTER

LINK MAP

MEMORY
NUMERIC EXPRESSION

PAGE

PARAMETER

RANDOM ACCESS

070-6400-03 11/83

Glossary

The area that begins each file which immediately
preceeds the data space for that file.

Normally the 4050 graphic system, or any other
computer that is in control.

The ROM pack that provides the control and ¢onnection
of the auxiliary memory to the computer system.

The number of the item in a given file which is
currently addressed or pointed to by the file
manager. It is stored in the header of each file.

The entry in the first field of all system commands.
Certain file manager commands are keywords while
others are routines implemented through the CALL
keyword.

The position of the last item stored in a given file.
It is stored in the header of each file created.

The space reserved in the auxiliary memory for
pointers that connect the series a blocks assigned
to each file.

May refer to the Auxiliary Memory Unit or to 4050
system memory depending on context.

A combination of constants and/or variables with
arithmetic operators or functions.

A section of memory exactly 65,536 bytes long.

A data variable or constant used for input or
output to a command, function, or routine.

The method of storing or locating data by specifying

a record number and directly accessing that record
only. Opposite of sequential access.

Auxiliary Memory Reference Manual E-3

Glossary

RANDOM FILE A type of file with two or more records of
identical length.

RECORD A defined storage space of from 1 to 255 characters
that holds exactly one data item.

SEQUENTIAL ACCESS The method of storing or locating data by placing

the file pointer at the beginning of the designated

file and reading or writing towards the end of the

file until the information is entered or encountered.
SEOUENTIAL FILE A type of file with no divisions or records.
STATEMENT A command preceded by a line number for program use.
STORAGE STRUCTURE A file or collection of files in a directory.

STRING VARIABLE A variable name ending in a ‘$’ that is used to assign
a character or characters to (usually ASCHI).

SYSTEM The “system” referred to in this manual includes
the Auxiliary Memory and the host graphic system.

E-4 Auxiliary Memory Reference Manual 070-6400-03 11/83

Appendix F - Firmware Release Notes

This appendix includes the release notes for firmware levels 5.0 and

above for the 6400 Auxiliary Memory File Manager ROM Pack. The release
notes document the firmware changes made and the known problems
discovered since the last release of the reference manual. This
information will be included in the next release of the memory manual.

070-6400-03 11/83 Auxiliary Memory Reference Manual F-1

Product: 6400 Auxiliary Memory and 764-MEM File Manager ROM Pack
For: 4052/54 and 4052A/54A

Firmware Level: 5.0

Release Date: 01-JUL-83

Change Description

1. MIN/MAX bug fixed that intermittantly returned bad values.

2. COPY/CONCATINATE fixed to work correctly on files larger than
1 block.

3. SECRET implemented so that programs may be saved to memory
and will have secret protection when OLDed back in.

4. KILL was modified to not produce an error message when attempts
are made to delete non-existant files.

5. DIR will now properly output to the tape drive.

6. APPEND and LINK have been fixed to prevent problems that
occurred under certain conditions.

7. SETIP was fixed to prevent a periodic problem in addressing
sequential data files when the item length attribute overlapped
a block boundary of a non-contiguous block.

8. MSPACE was adjusted to correctly report memory used by the
directory in extending itself for high file numbers beyond the
default size of 2 blocks

9. EXCLUDE had a bug that was fixed.

10. The firmware was made compatible with 4050 ‘A’ version.

11. File name facilities were added allowing names up to 28
characters.

Auxiliary Memory Reference Manual 070-6400-03 11/83

12. Selected system file manager keywords for disk are now
available for auxiliary memory access.

13. Signed integer data types were added.

14. Direct record addressing of item position is now allowed
in READ and WRITE.

15. Memory to tape back-up routines have been added for files
or memory sections. These are called TSAVE, TLOAD, TBACK,
and TRESTORE.

16. Signal processing routines have been added that are similar
to the Tektronix RO7 ROM Pack that allow direct file access.

17. New plotting routines have been added that include relative
format data files and optional single or dual file format
for storage of x,y data.

18. New, more descriptive error reporting formats have been added.

19. ON EOF error traping now available for end of file conditions.

20. Alternate CALL names have been added to avoid conflict with
4909 calls.

21. SAVE with beginning and ending line numbers no longer requires
exact matching line numbers.

22. SETIP now rounds instead of truncates non-integer pointer values.

070-6400-03 11/83 Auxiliary Memory Reference Manual

New or Modified Routines in version 5.0

764MEM
APPEND
DIR
DUNIT
EXCLUD
FILHDR
| FILTYP
FPLOT
GETADD
GETIA
INSERT
KILL

MAPPEND

MCREATE
MCROSS
MCSUM
IﬁDﬁi
MDIF3
MINT
MOLD
MOPEN
MPLOT
MSAVE
MTEST
MUNIT

NXTFIL

oLD

ON EOF(0)
RDELETE
READ
RPLOT
SAVE
SEARCH
SETLST
TBACK
TLOAD
TRESTORE
TSAVE

WRITE

Auxiliary Memory Reference Manual

070-6400-03 11/83

Product: 6400-764 Memory File Manager ROM Pack
For: 4052/54 and 4052A/54A

Firmware Level: 5.1

Release Date: 15-SEP-83

Change

Description

1.

2.

070-6400-03 11/83

Tape commands TSAVE and TLOAD were fixed.

A problem in reading numerics from sequential files when a record
size greater than 8 was specified has been fixed by no longer
allowing record sizes for sequential files to be specifed for
puposes of defining accuracy. The record size has no meaning
for sequntial file and is listed as =’ in directory listings.

Numerics are now stored with full precsion by default in

sequential files.

A bug was fixed that allowed the file size reported in directory
listings to be altered by SETIP followed by READ or WRITE.

A check was added to permit a wrap—around problem present on
older style memory units to be detected during the power—up
sequence that determines the memory size. This occurred on
older 512K memories causing MSPACE to report a larger memory
size.

The DMA routine CALL “STATUS” was changed to CALL "DMASTA”
in order to avoid a name conflict with 4909 file manager.

CALL "OPEN” was added back in by demand for compatibility with
exisiting software after it was replaced by CALL "MCREATE”

which was necessary avoid conflicts with the 4909 OPEN command.
Systems with 4909 file managers must now arrange the ROM pack
slot priority so that it will be seen first and then use the

MCREATE command to avoid this conflict. If a 4909 is not

present, either OPEN or MCREATE may be used.

CALL “764MEM” was fixed to print revsion number. A bug in
version 5.0 caused it to print nothing.

Auxiliary Memory Reference Manual F—5

F-6

10.

11.

A 3 byte integer format has been added that replaces the 3 byte
floating format. It may be signed or unsigned as with 1 and 2
byte integers.

CALL "RMPLOT” was added to allow relative plots from absolute
data. This format allows imbedded moves flaged by negative data.

CALL "APLOT” was added to allow plotting of UDU’s from all
quadrants. MPLOT was modified in 5.0 to have this feature but
APLOT has now been added to allow MPLOT to assume its former
function of plotting positive domain UDU data with negative
values that designate moves.

‘ DIR was modified to print ‘-’ instead of ‘0’ for the record size

in directory listings for sequential and program files types.

Auxiliary Memory Reference Manual 070-6400-03 11/83

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06

