USE OF AUTOMATIC PROGRAMMING
by

Walter I'. Bauer

THE RAMO~WOOLDRIDGE CORPORATION

LOS ANGELES, CALITFORNIA

Thers are many definitions of the term "automatic programming'. One
rossible definition is as follows: Automatcic programming consists of devising
and organizing computer programs which will allow the utilizetion of the computer
in the periformence of certain clerical tasks which would otherwise need to be
dene manvally by the programmer. Automatic programming can he considered as
involving only the organization of subroutines in the library or it can be re-
garded as the organization of an eppropriate compiler or assembly program to-
gether with a comprehensive system for using the compiler to prepare and check
out problems. '

Motivations and History

There are four principle motivations for sutomatic orogramming: the ;
high cost of programming, the programning manpower shoriags, the desire to reduce
elapsed time from presentation until production of a problen, and the desire and
necessity to overcome certain computer shortcomings. The first of these, the
“high cost of programming, is important for it is egtimated that the cost of pro-
gramming and checking a problem for high speed electroanic digital computer lies
somevhere between $2 and $10 per instruction. In view of the fact that a thou-
sand word program is a relatively shozt program, one sees this cost is far from
trivial. Ancther commonly accepbed statistic applied espscially to scientific
compucation groups, bubt probavly gensrally appliceble, is that the manpower
expense (not counting overhead and costs) supporting the compuiter is as great
as the cosv of running or renting the computer. Certainly the cost of renting
a modern computer is a considerable matter, renging upwards of $20,000 per
monvh for the more powerful ones.

The programmer menpower shortage has been a serious matter for approxi-
mately two years and will continue to plague computer groups. During the year

* These notes result from a series of lectures given by the author at the
Special Surmmer Session on Digital Computers at the University of Michigen in

1954, 1955 and 1956.

-2 -

1956 the amount of computer time available (considering the increased speeds of
the modern computers) will probably increase by a factor of at least L4, It is
diffficult to see how the manpower training problem will keep pace with this expan-
siocn rate. The need then is great to meke good use of programmer time.

The third item, the elapsed time from problem origination to production
of enswers, is especially important in a conputer laboratory which has, as its
main function, the programming of many "one-shot" problems. t is only slightly
less dnmportant in the case of the business dato handling group which continually
makes progrenming changes on its standard bill-of-fare programs. Once the decision
~has been made as to the logical steps involved, it becomes seriously aggravating
to the originator and the programmer alike to accept the long drawn out period
until the production state is reached.

The University of Cambridge in England was probably the first group which
used auvtomatic programming to any significant degree. The RDSAC computer had a
very limited memory size of 256 words and computer word length of 16 binary digits
and most nproblems needed special attention to overcome these difficulties. The
clever and imsginative scientists operating the computer built a system of sub-
routines and a method for handling them vwhich to this date serves as a model for
this type of work. The organization and a description of the computer is contained
in a book by Wilkes, Wheeler, and Gill.* Similarly the Whirlwind computer at the
Massachusetts Institute of Technology had the limited word length of 16 bits and
double precision interpretive programs were required to perform almost all nunerical
- operations. Here agein the scientists working with the Whirlwind computer contin-
- ued and expanded upon the work of the Cambridge people snd developed o comprehen-
sive progromming systen for the commuter. This system involves o conplete scheme
for progranuing problems in mony forms (e.g. fixed point or rfloating point) and
for debugging the programs end performing the necessary input and output. The
aubtomatic progrorxming performed at M.I.T. has probably had more influence on
computer use than the activity of eny other group in the United States.

Composition of Automatic Progrerming : (

There are many items which can be included under the topic '"Composition
of Automatic Progremming'. The [irst of these and the most elemental is sub-
routines. Subroutines themselves do not warrant considerable discussion here
except to remark thaet the subroutine is the basic building block of automatic
programming. Recently, subroutines have been "glorified"” by appending to them,
certain prelude routines which "particulerize" the routine. ﬁs e simple exemple,
a prelude routine may particularize the routine for finding X +to obtain a routine
for rfinding the square root of a number X. In the seme general vein, routines
have been prepared which generate subroutines. TFor exemple, an output subroutine
generating routine would construct a subroutine to provide output in a given format.

Perhaps the most common element of automatic programming is the use of
interpretive type programs. These programs take instructions written in extra-
machine logic, logic foreign to the internal computer logic, to perform certain
desired operations. One of the most frequently used routines of this type is a
routine for performing floating point arithmetic operations on a computer which

* Wilkes, M.V., Wheeler, D.J., Gill, S., The Preparation of Programs for an
Llectronic Digital Computer, Addison-Wesley Press, Cambridge, Mass., L1951,

. . -3-

can perform only fixed voint arithmetic. Other interpretive programs allow the
programmer to write programs in 3-address instruction logic for performance on

a single address computer. Still other types can be found such as one programmed
for the UNIVAC computer which enzbles the performence of enalytic differentiation
avtomatically by the computer. With the interpretive type program the psuedo
instructions to the computer are stored internally and are translated to machine
language as the program is run. Each instruction is translated each time the
instruction is performed. The ebility to perform such a function is the quint-
esgence of the high-speed digital computer.

Currently the point of focus cf an automatic programming schewe is the
assembly program, alternatively called "compiler'" or "executive routine! We shall
use the term "assenmbly program" here for that neme emphasizes the central function.
By meens of such a program, esscntially a synthetic machine is created, a machine
vhich is easier to progrom for and easier to check oul prepared-programs. As with
the interpretive type of program mentioned zbove, programming is performed in a
language foreign to the computer itself, the computer performs the translation
into its own language by meens of the assenmbly program. The important difference
between the interpretive type program and the compiler is that the translation is
done once and for all upon input of the program data. The program information in
machine language is then either storsd in the computer for immediate computation or
it is read out of the computer onto megnetic tape, papver punched tapve or punched
cards, for later inout. The advanbage cf outputting the data for storage outside
the computer is that it may then be vlaced in a form for read-in into the computer
at much higher speads than the untronsliated data. For example, untranslated pro-
gram data at one instruction per 80-column card is read in at the rate of two
instructions per second with the conventional cerd reader, while "binary cards",
cards punched with translated dats can be read into the computer at 48 words per
second with the TOL and 1103 computers. The fact that the binary card can not be
read and printed with conventional tebulating equipment is of little counsequence
since the original cerd is on hand and available. Since the cosewbly ond trans-
lation function is performed, once-and-for-all, on .nuvut, 56 is sometines re-
ferred to as an “input translation vrogram’.

Some further asvects of the detailed form of the assembly progrem are
discussed below. However, en lmportont ovexr-all aspect should be brought forth.
The first assembly programs were such that each instructlon 1o be performed by
thie corputer was explicitly written. In other words, a one~to-one correspondence
existed between untranslated and mechine instructions. As techniques improved,
it was seen to be desirable from many points of view to design a scheme to cause
one line of wntranslated program date to generate many mechine instructions. As
an example, one psuedo instruction speciiying the merging of two sequences could
generate a 50-100 word progrem. This one-to-many correspondence allowed the
wrograwmer to write fewer instructions snd, as a consequence, reduced the number
of programming errcrs. However, Drogrenning ervors became harder to find with
such a scheme since the trenslated machine date held Little resewblance to the
originsl. Also, compilers with the one-bo-many philosophy often produced pro-
grams which ran less economicel of mechine time then the "hand-tailored"” ones,
much tco the distress of the experienced programmer.

The main functions performed in the assembly operation are as follows:

1. Subroutine inclusion

2. DbMnemonic devices

Number conversion

otendardized automatic data read-in
. Cursory error analysis

-

W

- L -

The first of these, subroutine inclusion, implies that the assembly program can
alter subroutines, usuwally routines relative to some fixed address so that they
can operate in any chosen spot in the memory. In certain cases the assembly
program changes or particularizes the subroutine as mentioned above. The sub-
routines may be read into the computer in a straightforward fashion from punched
cerds or punched tapes, or they mey be compiled into the progrem in a more auto-
matic manner from a higher volume storage such as magnetic tape or magnetic drum.
The second item, mnemonic devices, implies that the assembly program allows the
programmer to write in a language easiexr to use and easier to remember. For
example, the symbel WL could be used for the address of the cell containing the
aircraft weight in the first period, and W2 for the aircraft weight during the
second period instead of using the hard to remember numerical notation such as
12968 and 12969. Number conversion refers tc some method of converting decimal
numbers to binary for fixed point or floating point operations. Standardized
data read-in implies that all progrems are read in in substantially the same
fashion, thus allowing a non-professional machine operator to operszte the computer
and obviating the necessity of the programmer's presence during program check.
Cursory error analysis refers to a "quick look" by the assembly program as it
translates to ferret out any obvious errors. An example of this is a scaling
error which scales the number so high so as to make it "run out" of the left side
of the register. In this case, the computer would indicate the error to the
programmer .

Recently, the USE organization (Univac Scientific Exchenge), & national
organization which exists for cooperative programming among 1103A computer users
nuch the same as the SHARE orgenization exists for IBM-TO4k users, discussed
assembly programs at considerable length. The result of this discussion was a
list of 17 features of a compiler deemed desireble by the members present. The
17 features, just as they were written in the minutes of that meeting, are
included here in an Appendix.

More recently there has been a trend toward the integrated computation
system which involves an assembly program only as an important but rather small
part. The 5 items mentioned akove refer only to the language, that is the means
by which the programmer communicates information to the machine on the detailed
level of his program data. In the integrated computation system this amount of
information comnunicated is expanded to include items which otherwise would have to
be communicated by word of mouth or by written instructiocas to the machine operator.
In the integrated computation system, the following four broad areas are important:

1. The program language

2. Computing mode selection
3. Program alteration

L. Flexible error analyses

As mentioned above, the language refers to the five items of the above paragraph.
Computing mode selection refers to the selection of the various possibilities

_in the computation system which the programmer has at his disposal.. He may choose
‘automatically, for example, the fixed point cr the floating point computing nrode,
he may wish to tramslate his program data and immediately compute,..or he may wish
to translate and output the translated information for later input. Program alter-
ation is, of course, necessary after mistakes are found, or in case the problem
originator wishes to change certain procedures. Program alteration could involve
deletions, corrections, or insertions, or, as is usuelly the case, verious com-
binations of these. Flexible error analysis implies the selection of the means
by which the programmer does a detailed analysis to find programming errors.

-5 -

He may, for example, signal the computation system to store the data as it comes
into the computer for a later 'changed word post mortem" analysis. He may, for
exanple, ask the system to monitor the computation on breskpoints or on each in-
struction. The important concept here is that all items are integrated together
to form one computation system to the exclusion of the use of the machine with
isolated subsystems. The integrated computation system almost certainly implies

a more economical use of the computer, especially for code check operations which
normally require about one-third of the computing time. It allows the programmers
to use the computer for short lengths of time and receive the data they need for
program check in a very short time. TFurther, it allows "unattended runs" with the
resultant greater flexibility of computer operation and scheduling since the pro-
granmer does not have to be present.

Present Systems

One of the most important developments along the lines of automatic pro-
gramming has been that of the Programming Research Group under Dr. Grace Hopper of
Remington Rand. This group produced the A-1 compiler and its successor the A-2
compiler for the Univac computer. The A~2 compiler allows the programmer to
communicate with the machine in a language much simpler than the machine language,
allows him to generate many machine instructions by a relatively few A-2 instructions,
allows automatic segmentation of the problem between the magnetic tapes and high-
speed storage of the Univac, and allows a number of computing options such as
floating point operation. More recently this group has prepared the B-O compiler
which is an extension of the A-2 in two directions: it allows for certain opera-
tions which are more frequently used in business or commercial applications, and
it is so designed to allow flexibility for future applications, making possible
modifications and additions as may be necessary. The philosophy of the B-0 compiler
is such that it translates various verbs of the imperative mode into computer
lenguage and would allow such translations for verbs such as "merge", "collate",
"sort", "find the sine of", "find the nth root of", etc.

As another branch of Remington Rand's activities, Dr. Herbert Mitchell's
New York group has prepared the BIOR (Business Tnpui-Output Re-run) compiling
system. This system, oriented toward commercial applications, provides the means
for the programmer to take various blocks of his own coding and move them around
and use them conveniently and simply. The design of the BIOR system took cogni-
zance of the fact that the typical commercial problem involves large records of
data which are read in from bulk storage such as magnetic tape, processed, and
returned to magnetic tape or read out in another fashion.

When the IBM TOl computer appeared on the scene in 1954, a number of so-
called "regional programming" schemes were prepared for the computer. These
schemes designated certain regions of the computer memory for subroutines, instruc-
tions, and data. They involved mnemonic devices at least to the extent that cells
belonging to different regions could be distinguished. Usually they allowed for
inserting instructions by means of a type of "Dewey Decimal system" which would
allow nine instructions, 129.1 to 129.9, to be inserted between instructions
numbered 129.0 and 130.0.

About the same time that the regional programming schemes were being
developed, the IBM SPEEDCO system was developed by a group at New York under
John Backus. It allowed for easy programming since floating point arithmetic was
used but suffered from the fact that the resulbting interpretive program ran very
slowly on the computer. Meanwhile, a number of customers of IBM were preparing

-6 -

interpretive schemes which allowed entrance and exit from the interpretive floating
point mode. ILos Alamos' DUAL, Douglas' (El Segundo) QUICK, and Lockheed's FLOP

are examples of these routines. More recently, John Backus' group at IBM has pre-
pared FORTRAN (FORmula TRANslation) for the IBM-T04 computer. FORTRAN will trans-
late into computer language a program written very close to the language of the
mathematician or scientist. This is an example of the so-called "algebraic

coding system" which allows translation of indices, swmation signs, parentheses,
and arithmetic operation symbols of mathematical language.

In early 1955, a group of IBM TOL users in the Southern Cslifornia area
‘began the preparation of a compiler called PACT. This assembly program emphasizes
index notation for operation on sequences of data and a scheme for simplifying the
scale iactoring operation. The PACT compiler is being modified to be used with
the T04.

The automatic programming developments at M.I.T. and the University of
Michigan are notable. Both of these systems include an assembly program or input
translation device which uses symbolic notation, free addresses, and pseudo-machine
commands. The emphasis, however, remains on the broad scops aspects of the entire
system. Both systems place heavy emphasis on unattended computer runs and conse-
quently allow automatic selection of computing modes and error diagnosis devices.

The activities with the integrated computation system at The Ramo-Wool-
dridge Corporation follow the lines of the M.I.T. and the University of Michigen
system. In current use for the 1103 computer is a system which stores all service
routines and subroutines (a total of about 8,000 words) on the 16,000-word drum
and backed up on megnetic tape in the case of inadvertent destruction of drum data.
The assembly program automatically assembles subroutines from the drum into the
main progrem. During program check-out the operator has at his disposal the
various service routines (dump routines, input and ouiput routines, etc.) stored
on the drum end can call upon them and use them quickly without recourse to any
menual operation involving reading the program into the computer. The result is
that only progremmed data originested by the progremmer is stored on punched cards
external to the computer. All other routines, service and subroutines, are stored
accurately and economically inside the computer where they can be quickly and
automatically summoned to use.

Future Systems

Two trends are in evidence in future systems for computer use: the first
is the increasing use and development of the automatic, comprehensive computation
system referred to above, and the beginning uses of "microprogramming' technigues.

The completely autometic, comprehensive computation system is born of
two central motivations: first, the desire to decrease the clerical work of the
programmer, up-grade his level of work, and generally increase his effectiveness;
end second, the desire to decrease the amount of non-productive computer time. In
the face of the development of machines which will be extraordinarily complex and
extraordinarily expensive to own and operate by today's standards, this second
potivation looms important. This writer believes that the computation system used
for most large-scale computers will, within 2-3 years, evolve into one with the
following characteristics:

-7 -

1. The computer will run automatically end without interruption
for 3-5 hours, handling many different types of computer
runs such as code checks and production computation of many
different types.

2. The programmer will handle no computer storage media whatsoever
but will deal only with printed pages of programming material
he originates or with printed material giving the results of a
computer run. He will submit his programming meterial to a
data preparation room and, soon thereafter, receive on his
desk the results of a computer run.

3. The computer will be gcheduled L4-6 hours in advence by preparing
"run tapes", magnetic tapes on which all of the information for
running the various problems, in orde?j_is recorded. Deviations
from the 4-6 hour schedule to higher priority problems which arise
will be possible.

k., Since progremmers’ run instructions and program alterations will
be recorded on tape and handled automatically by the machine,
running and checking out the 50-100 current programs of the
scientific computer installation will become a file maintenance
Pproblem having many of the characteristics of that of the commer-
cial installations today and, in many respects, considerably more
difficult.

5. The computaticn system wilil find almost all clerical programming
errors and, in most cases, will perform the operation the pro-
gramer "most Likely" meant. In all cases the machine will inform
the programmer of errors discovered and interpretations made through
print-outs.

6. Machine operators will do nothing but change magnetic tape reels
and actuate cerbain specisl routines in case of computer error,
prograzmer error in using the computation system, or in exercising
options to change the computer schedule to allow interjection of
higher priority problems. Issentially, the programmer will operate
the computer from his desk.

T. The system will check the operator's actions to a considerable
extent. TFor exemple, the placing of a wrong tape reel on a tape
unit would, in many cases, bring a remark to that effect printed
out on the monitor typewriter.

8. Output tape units will be periodically removed from tape reels
and placed on high-snced (500-1000 line per minute) printers for
outputting information to be returned to the programmer. In many
cases, output will be initiated automatically by the computer as
needed, with no operator handling necessary.

Certainly much of the onus for the development of a system such as that
deecribed above rests with the computer manufacturer. TFor the system to operate
as described, certain design features must be included into computer systems which
‘have not been included to date. In particular, tape unit operation must become
much more flexible. Independent tape operation (preferably independent tape search)
and the operation of many tape units simultanecusly will be mandatory. The ability

-8 -

to erase and re-record within a block of previously recorded data will be of
great importance. Another item is that all computer switches must be controllable
by the internal program. Although no computer at present has these cgpabilities,
the IBM has recently announced changes in the IBM-TOL4 along these lines.

In the design of the computation system now in preparation for the 1103A
computer to be delivered to The Ramo-Wooldridge Corporation certain steps have
been taken toward the "ultimate system". The programmer writes :un instructions,
program alterations, program error diagnosis procedures, and oubput instructions
on his prograxming form. This information is transcribed directly to magnetic
tape and placed on the compuber. The system assenmbles the program, includes all
program changes, runs the program, performs the error analysis, and produces
appropriate and complete print-outs for all these occurrences. The programmer
submits the instructions for the entire operation in written form and waits until
the computer results are returned to him. The file maintenance problem will be
avoided during the first design by having an individual tape reel for each program.
In a somevhat abridged form, the system will be in operation by the end of 1956.

The next couple of years will see the first uses of a technique in
computer design and computer use called "microprogramming'. Many computer users
have long chafed under the use of instruction logics which were not well suited
for their application. Microprogranmming would allow the programmer to synthesize:
his own computer instructions from "microinstructions". Bssentially, then, with
microprogremming the programmer would "construct" his own control unit, the "con-
struction" taking the form of a plugboard or assimilation at electronic speeds by
means of computer program.

As of this date, most work in microprogramming is in the "talking stage".
To this writer's knowledge, only one paper on microprograrming has heen published,
that by Herbert T. Glantz¥*. In the article Glantz presents a plan for a micro-
programming facility which would provide for the computer to leave its normal
(conventional) mode and jump to a "Micro Mode". In this mode, the computer would
perform instructions made up of microinstructions according Lo a sequence as indi-
cated in a special magnetic core memory. At the commend of the programmer, the
computer would jump back to the normel mode, performing arithmetic and logicel
operations in a conventional fashion.

One of the first meetings on microvrogramming wes held at Massachusetts
Institute of Technology in March, 1956. At this informal meeting Dr. David
Wheeler of Cambridge University, England, spoke of Cambridge's activities in the
field. The Cambridge group, operating the EDSAC II computer, plans to encode
subroutines in a magnetic core control matrix to allow the subroutines to operate
at speeds comparable to normal instruction speeds. This technique could be
characterized as meking certain machine changes which would allow 'macroprogramming',
the synthesizing of complex instructions from common ones. Their activities along
the microprogramming lines apparently will make use of a megnetic core matrix
forming the heart of the computer control.

Glantz, H. T., "A Note on Microprogramming”, Journal of the Association for
Computing Machinery, Vol. 3, No. 2, April 1956.

-9 -

Two university groups in this country are interested in microprogramming
and are formulating plans: M.I.T. and University of California at Los Angeles,
the Numerical Analysis Research group which operates the SWAC. M.I.T. has ideas
vhich would meke available an additional microinstruction on the Whirlwind I
computer as part of its regular instruction repertoire. The address part of this
instruction would control 120 subcommend lines of the control matrix of the com-
puter. Presumably, the programmer would contrive his own instruction by using
the 120 lines as he wishes.

The activity at the University of Californiz at Los Angeles has resulted
in the writing of a master's degree-level thesis by Robert Mercer (to be published)
under the direction of C. B. Tompkins. If present plans materialize the Numerical
Analysis Research group will meke extensive studies of the SWAC control system,
followed by extensive changes which will probably result in a plugboard to allow
the selection of sub-commands. The group hopes to complete the next step which
would allow the choice of sub-commends at electronic speeds under stored program
control.

The future possibilities of microprogramming are considerable. With

microprogramming one visualizes a three-level hierarchy of programming. At the
production level programmers would use subroutines periorming operations llLe
"find sine of", "m evge , ete., prcbably bJ means of elaborate compiling routines.

t the next level "subroutine programmers" would prepare the subroutines which
would be composed of instructions made up of micro-commands. A number of pro-
gropmers would program instructions from microinstructions. At each level, the
programmers would prescribe the routines or instructions necessary; it would
be the responsibility of the next "lower" level group to fashion these tools so
that they are in some sense optimum. Most likely programmers at the production
level would know nothing of the activity at the microprogramming level, and vice-
versa. This is nearly the case at the vpresent time between production programmers
and those programmers preparing compiling routines and the computation system.
Future computation system design will largely integrate the activities of the
three levels.

There seems little doubt that the degree of success of microprogramming
will be primerily a function of the sweed with which synthesized instructions
can be executed. I'ive years ago, most computer people were satisfied that floating
point could be performed interpretively and that the slow speeds were acceptable.
As computer usage increased, it became evident that floating point operation in
this fashion was much too slow, that floating point as built-in hardware wvas
necessary. This mey prove to be the experience again with microprogramming. As
soon &s an instruction is synthesized, used, and appreciated, users will want it
included as hardware so that it will operate faster. Microprogrammed instructions
must operate at speeds competitive with their permsnent, wired-in counterparts
or the whole technique will fall into disfavor and die of atrophy.

APPENDIX

The following is a list of desirable compiler features which the Univac
Scientific Exchange (USE) organization recently adopted.

l’

Cormmile subroutines from pseudo-instruections. A pseudo instruction
requiring the use of some librery subroutine would appear in the main
program. The subroutine necessary to carry out the desired function
would then be automatically compiled into a so-called compiled region.
The line of coding which originally contained the pseudo-instruction
would be replaced by the approovriate calling sequence of one or more
instructions.

Assign cell numbers to otherwise undefined symbolic addresses.
Ordinarily these cell numbers will be assigned addresses in a compiled
region. This feature allows easy assignment of working storage
locetions.

Use numericael constants as addresses. The compiler should be able to
detect that an address section of an instruction is actually a numeri-
cal constant. The value of this number would then be stored in an
otherwise unused cell in the compiled region-~the address of that

cell would be filled in as the appropriate address section of the
instruction. :

Symbolic addresses. The compiler should be able to accept symbolic
addresses similar to those now accepted as standard for subroutines
by the USE Organization. Implicit in the phrase symbolic addresses
is the concept of free addressing.

Easy method of writing auwrbers. In this sense a number is a numerical
constant which occupies one or more full registers and is ordinarily
thought of as a nuber--this is in contrest to the writing of numeri-
cal addresses. It is expected that both stated point and floating
point single and double precision decimel nunbers will he acceptable
to the compiler as well as octel numbers.

Ability to generate in-out routines. The thought here is that the
programmer could meke relatively simple specificetionsiiof the form
of the numerical output which he desires and that the compiler
would generate and assemble automatically the routine necessary to
do the particular Jjob specified.

Ability to make any type of change easily with both card and tape
input. This is obviously a worthwhile and noncontroversial objective.
However, the discussion showed that there may be considerable compro-
mise necessary to work out the details of Just how such generalized
changes would be made.

Generate calling sequences. This ability of the compiler was alluded
to in point number 1 above. A calling sequence may very well require
more Tthan just an RJ--the common compiler should be able to generate
auvtomatically these calling sequences in a predictable fashion.

lO'

1.

iz.

13.

1k,

15.

16.

17.

Provide binary tape output. In some installations a binary tape
output may be the most common form of output, in others, it may

be provided as an option. In any case the compiler should have this
aovility.

Provide symbolic side-by-side listing. Some Instaliations have found
this type of listing a most useful form of output, particularly
during trouble-shooting periods. The symbolic side~by-side listing
is to be contrasted with the present method at some installations
where the original keypunched cards are Listed on one plece of paper;
subsequently a related Llisting showing the translated code (usually
in octal) is produced on ancther plece of paper.

Detect errors during inpub corversion. Clearly typing or syntactical
errors may be made in preparing the code sad the input cards or tape.
A good compiler should bs able to detect such errors, make a list of
them for use by the programper, ond still contiouwe the conversion if
at all possible. This then allows the vrogramer to study the list
of errors and correct as many as possible before returning to the
machine.

The compiler must be able to handle syuwbolic programs which are input
on elther cards or tape--in other words bobh forms of input must be
possible and convenient. :

Compatibility with mistake diagnostic routines. The form of the
input and the provisions mads for the programers use of mistalke
diagnostic routines mmst be completely compatible. That is, informa-
tion which the progrommer musht specify in order to diegnose ccding
errors, must be in a form which can be handled by the compiler and is
compatible with the crdinery form of inpub. '

Can incorvorate USE subroutines. The compilesr should be able to handle
a USE subroutine unchanged firom its origlnsl symbolic form end incor-
porate such a subroutine iato The main body of a program when thab
symbelic subroutine iz included as part of the originsl manuscript.

Tdentification of Outpult. Any material which the compiler produces
as output should he completely jdentified as a matber of roubine.

For example, the sywbolic side-by-side Listing should be identified--
this would include the progiruamser's nawme, the date if possible,
program awiber, ebe.

Dircct input. Afber the compiler has compleied the read-in and compil-
ing of a program, along with any changes which might have been incor-
porated, the tronslated program will finelly be stored in its operating
position so that the program may ve execubed inmediately after
compilation has been completed without any intermediste steps being
necessary.

Compatibility with operational proceduvres. There should be built into
the compiler some provision for handling simple operational instruc-
tions having to do with the sequencing and bubtton pushing which are
necessary to complete a run on the mechine. It is not intended that

the inclusion of this point requires that the cormon compiler shall
have buwilt into 1t autematic operational features--rather the com-
piler should be planned so that when a particular installation decides:
that they want to incorporate automatic operational procedures, the
compiler will be able to accept these changes without any major
modifications.

