
-){-

USE OF AUTOMKrIC PROGRAMMING

by

Halter F. Bauer

THE RAMO -'~'lOOLDHIDGE COHPORATION

LOS l\.1\IGELES, CPLIFORNIA

There aremal1ydefin.itions of the term II automatic progrrurJlling". One
pl)ss:Lble de£,j.nition is as follo"iis: Automat.ic progranulling consists of devising
and o:rganizing compute:c programs ,'rhich '\o1il1 allow the utilization of the computer
in the perf'ormance of certain clerical tasks "Thich ,{ould othe::'\vise need to be
done manually by the programmer. AU-C01D0.t ic progrannning ca."'). be considered as
involving only the organization of subroutines III the libr8-~ or it can be re
garded as the o:!,:"ganiza:'c.ion of an appropriate compiler or assembly program to
gether vTith a comprehensive system for' using the compiler to prepare and check
out problems.

Motivations and History

The:;:"e ~e four principle Ult::>tiv8.tions for automatic I)rogrUlnn~j,ng: the
high cost of prograrnming, the prograL'!intng manpower shortag.2 -' the desire to reduce
elapsed time from presente.tion u.ntil production of a proble!"t:., and the desire and
necessity to overcome certain computer shortcomings. 'TIne first of these, the
high cost of progreJTuning, is i1~port.al'lt for it is e:;~timated tha't the cost of pro
grarraning and checl{ing a IJroblem £'Ol" high speed electronic digital computer lies
somevrnere bet,'reen *2 and $lO per instruction. In view of the fs,ct that a thou
sand ',T01"a. program is a relatively short pl"ogrr:,:Ull, one sees this cost is. far from
trivial. Anothe:: co:arrnonly accepter} £"cati.:3tic applied especially to scientific
compu'C::::.-cion g:~oups) but probably generally applicable, is that the rnanpo"Ter
eXljense (not. counting overhead and costs) sU".ppo1"'ting the computer is as great
as the cost of running or rel'iting the computer. Ce:c"Gcdnly the cost of renting
a modern computer is a conside:"":;J.ble matter, ranging uIJ"vlards of *20,000 per
month for the more pOllerful ones.

The pzoograrmner manp01Jer shortage bas been a serious matter for approxi
mately tyro yeaJ.."s and "Till continue to plagv.e computer groups. D'J.ring the year

'x· These notes result from a series of lectures given by the author at the
Special Stunner Session on Digital Computers at the University of Michigal1 in

/1954, 1955 and 1956.

- 2 -

1956 the amount of c01llPuter tin:e available (considering the increased speeds of
the modern computers) '\vill probably increase by a factor of at least 4. It is
difficult to see how the manpm",er training problem will keep pace with this expan
sion rate. T'ne need then is great to make good use of programmer time.

The third item, the elapsed time from problem origination to production
of answers, is especially important in a computer laboratory 1",hich has, as its
main func't:i.on, the programming of many t1 onG - shot II problems. It is only slightly
less 2.nD?Or"Gant in the case of the business c.lata hand.ling group which continually
makes programming chonges on its standard bill-of'-fare programs. Once the decision

. has been made as to the logical steps involved, it becomes seriously aggravating
to ~che oi":i.g:i.nator and the prograrnmel" Dlil(e to accept the long d.ra-un out period
tul"cil the production state is re2.ched.

rrhe University of Ca.mbridge in England 1vas probably the first group 1vhich
used automatic prograIDlning to any significant degree. ~:he J~DSAC computer had. a
very limited memory size of 256 ",ords and computer "lOrd length of 16 binary digits
[~~d n10st yroblems needed special attention to overcome these difficulties. The
clever and imaginative scientists operating the computer built a system of 'Sub
routines and a method for hancUj.ng them vlhich to this dc.te serves as a model for
this tY,ge of ,,,ork. The organizat,ion and a description of the computer is contained
in a book by i-lilkes, '·!heeler, and Gill. ·x- Similarly the Whirlwind computer at the
Ma.ssachusetts Institute of Technology had the limited word length of' 16 bits and
clouble l)X'eciaion interpr:etive programs ",ere required to perform almost all numerical
operations. Here again the scientists '\'lorking ,V'ith the Hhirl'''ind COml)uter contin
ued andeX})8.nded upon the \-Tork of the Cambrid.ge people and developecl a comprehen
sive Pl'og1"Dll~m:Lnc~ system for the cOlJ1:qtrccr. 'J:hi s system involves c, complete schen~e

for progrun;li1ing lJroblems in many forms (e.e. f:i.xed l)oJ.nt or floating point) and
for debugging the pl'ogranls ond perfo:rming the necessary input and output.. The
automatic progr~Lrr:nling IJerformecl at N.I.T. has probably had more irifluence on
computer usc than the activity of any other groulJ :in the United states.

There are many items llhich CC:D. be included under the topic "Composition
of Automatic Programming". Thcfirst of these and the most elemental is sub
routines. Subroutines themselves do not uarrant considerable discussion here
except to rcmru:~l\. that the subroutine is the basic building block of' automatic
prograrr.ming. Hecently, subroutines have been "glorifiedi' by appendtng to them,
certain prelude routines 1·rhich Ifparticule.rize" the routine. f?s a simple example,
a prelude routine may lXl.rticularize the routine for fj.nding X C toobtai~ a routine
for f:lndj.ng the square root of a number X. In the se.me general vein, ro:utines
have been prepared "lhich senerate subrout:ines. For example, an output subroutine
generating routine \'lould construct a subroutine to l)rovide output in a given format.

Perhaps the most co:mmon element of automatic progrrunming is the! use of
interpretive type programs. These programs ta.~e instructions written in; extra
machine logic, logj.c foreign to the internal computer logic, to perform certain
desired operations. One of the most frequently used routines of this type is a
routine for performing floating point arithmetic operations on a computer which

·x- Hilkes, ~.V.J Wheeler, D.J., Gill, S., The Preparation of Programs for an
Electronic Dig} tal COll.lputer, Addison-Wesley Press, Cambridge J Mass., 1951.

, •
- 3 -

can perform only fixed point aritlm.etic. Other inte:::-pretive progl"anls alloH the
progre<lnmer to llrite progr8111S in 3-address instruction logic for performance on
a single address COlnputer. Still other types can be found such as one programmed
for the UNIVAC compu.ter 'Hhich enables the perform2nce of analytic differentiation
autoIDa .. tically by the computer. \-lith the interpretive type progrem the psuedo
:lnstrLlctions to the computer are stored internally and are translated to machine
lan~ruage as the progrrun is run. Each instruct.ion is translated each time the
j.nstruction is performed. The o.b:i.lity to perform such a fimct:i.on is the quint.
essence of the h:i.gh-s})eed d:i..git8.l compu.ter 4

Currently the pohlt of focus of' an automatic pl"ogramrning scheme j.s the
assembly program" alternatively called lIcompiler" or "executive routine!' He shall
use the term l1assembly p!'ogram" here for that name emphasizes the central function.
By means of such a progrB.m, essentiaJ..ly a synthetic machine is created, a machine
uhich is easier to program for OJ.1d easicT' to check out prepared· programs. As with
the interpretive type of program ment.ioned above, progranlIlling is performed in a
language foreign to the computer i tseli', the computer performs the translation
into its O1-m language by means of the assembly program. The important difference
bet"Teen the inteTpretive type prog!"cull and the compiler is that the translation is
done once and for all upon input of the program data. The program information in
machine language is then either stored in 'the computer for immediate computation or
j.t is 2"'ead out of the computer onto m.agnetic tape, pal)er punched tape or punched
cards) for later in~ut. 'rhe advantage of' outputting the data for storage outside
the computer is that it me.y then be placed. in a form for read-in into the computer
at much higher speed.s than the 'L-1Iltranslatec1 data. For exslllple" untranslated pro
gram data at one ins·(j!'u.ctj.on pel" 80 -COJ.'1.;Ulll1. card 18 read in at the rate of t"TO
instructions l)el'" seeond 1-Tlth the conventional ca.rd reacler, \vhj.le IIbinary cards tl

)

cards punched \lith translated data can be read into the computer at 1.~8 words per
second vTith the 701 and 1103 computers. The fact that the binary card can not be
read and prhltecl \·lith conventioncl te.bulating equiI)ment is of l:tttle consequence
since the original ca::':'d is on h£-l.l'ld an(1 available. S:Lnc!c) the C,sf~c1l1l)1;/ ~'jl(). tra.ns
lation function is pe::"'fOl'llled, on.ce··::trl\t-:CoJ:' ,,[} .. 11., on d.\II',)t. i ~:.;~ 5.!i SOJi:ct~·:.J.·;eu rc
ferred to as an :t j.nput translo.tton program".

Some further aspects of the detailed form of the assembly program are
discussed belo"l. However) an i!1Tgortant ove:t'-cUl aspect should be brought forth.
(:(1he first assembly programs 1-/ere such that ear.:h instruction to be performed by
the con{puter \,;ras ex:~)l ic :itly ,n .. i tten.. In other "lOrds, a one -to -one corre spondence
existed bet,{een untre.nsla.ted and machine :i.nstructions. J.~'cl techniques im)}roved,
it \lo,S seen to be desirable from many ~poj.nts of vie\'·, to design a scheffie to cause
one I1ne of u..~translated p:t'ogro.m ch.:>::'cG'.. to (~eneJ."ate many me.caine :Lnstl'uctj.ons. As
an example) one psueclo instruction spee:Li'ying the merging of tvTO sequences could
generate a 50-100 'Yio:rd prog:cmn. ThiG one-to-many cOrresl)ondence allo'T.-red the
rl'ogrLi.n-!l1'ler to "Trite :i.'e1·ler :i.nGt:;:uc:t:Lonn nnd, E.S a consccluence) reduced_ the number
of In'OC;1'Dl!;m::.rlG err(.;rG. JrO\levc:~') :proCJ;DJi;r)t~i.n.~:; e:cro:t'G bee[unc hn:cd.cr to :CJ..nd "lith
such a scheme since the t.ranslated L'lEChine dD;t~l, held l:.i .. ttlc re!3cliiblance to the
orig:i.ne~. JJ.so, compilers ,·dth the one·-to-many I)hilosophy often produced pro
grams "Thich ra.T]. less economical of machine time than the "hand-tailored" ones)
much to the distress of the exper:ienced programn:er.

The main functions performed in the assembly operation are as follows:

1. Subroutine inclusion
2. Mnemonic devices
3. N1.unber conversion
4. Standardized automatic data read-in
5. Cursory error analysis

- 4 -

The first of these, subroutine inclusion, implies that the assembly program can
alter subroutines, usuaJ.ly routines relative to some fixed address so that they
can operate in any chosen spot in the memory. In certain cases the assembly
program changes or particularizes the subroutine as mentioned above. The sub
routines may be read into the computer in a straightforward fashion from punched
cards or punched tapes, or they may be compiled into the program in a more auto
maticmanner from a higher volume storage such as magnetic tape or magnetic drum.
The second item, mnemonic devices, ilt[)lies that the assembly program allovlS the
prograzuller to 'Hri te in a language easier to use and easier to remember. For
example, the symbol Wl could be used for the address of the cell containing the
aircraft vTeight in the first I)eriod, and 1'12 for the aircraft w'eight during the
second period instead of using the hard to remember numerical notation such as
12968 and 12969. Nunilier conversion refers to some method of converting decimal
numbers to binary for fixed point or floating point operations. Standardized
data read-in implies that all programs are read in in substantially the same
fashion, thus allovTing a non-professional machine operator to operate the computer
and obviatjng the necessity of the programmer's presence during program check.
Cursory error analysiS refers to a "quick lookll by the as,sembly program as it
translates to ferret out any obvious errors. An example'of this is a scaling
error which scales the number so high so as to make it "run out II of the left side
of the register. In this case) the computer would indicate the error to the
programmer.

Recently, the USE organization (Univac Scientific Exchange), a national
organization vlhi'ch exists for cooperative programming runong 1103A computer users
much the same as the SHARE organization exists for IBM-704 users, discussed
assembly programs at considerable length. The result of this discussion 1'las a
list of 17 features of a COmlJiler deemecl desirable by the members present. The
17 features, just as they \oJ'ere written in the minutes of that meeting, .are
included here in an Appendix.

More recently there ha.s been a trend tOllard. the integrated computation
system which involves an assembly program only as an important but rather small
part. The 5 items mentioned above refer only to the IGl1guage, that is the means
by which the progr~Jer communicates information to the ~~chine on the detailed
level of his program data. In the integrated computation system this amount of
information communicated is expanded to include i terns which otherwise vlould have to
be communicated by vlord of mouth or by 1vrit.ten instructions to the machine operator.
In the integrated computation system, the fiollowing four broad areas are important;

1. lJ.'he program language
2. Computing mode selection
3. Program alteration
4. Flexible error analyses

As mentioned above, the language refers to the five items of the above paragraph.
Computing mode selection refers to the selection of the various possibilities

,in the computation system ,\-lhich the programmer has at his disposal. He may choose
automatically, for excunple, the fixed pOj,nt or the floating point computing n:ode,
he may wish to translate his program data and immediately compute i ,or he may 1,11sh
to translate ruld output the translated information for later input. Program alter
ation is, of course, necessary after mistakes are found, or in case the problem
originator wishes to change certain procedures. Program alteration could involve
deletions, corrections, or insertions, or, as is usually the case, various com
binations of these. Flexible error analysis implies the selection of the means
by 1vhich the programmer does a detailed analysis to find programming errors.

- 5 -

He may, for example, signal the computation system to store the data as it comes
into the COIllputer for a later "changed ''lord post mortemll analysis. He may, for
example, ask the system to monitor the computation on breakpoints or on each in
struction. The important concept here is that all items are integrated together
to form one computat:Lon system to the exclusion of the use of the machine with
isolat.ecl sUbsystems. The integrated computation sys·cem almost certainly implies
a more economical use of the com},:H).ter, especially for code check operations 'vhich
normally require about one -third of .Iche computinG time. It allow's the programmer s
to use the computer for short lengths of time and receive the data they need for
program check in a very short time. Further, it all01fs lIunattended runs II 'vi th the
resultant greater flexibility of computer operation and scheduling since the pro
granuner doe s not have to be pre sent.

Present Systems

One of the most important developments along the lines of automatic pro
granmrl.ng has been that of the Prograrnming Research Group under Dr. Grace Hopper of
Remington Rand. This group produced the A-I compiler and its successor the A-2
compiler for the Univac computer. The A-2 compiler allo,vs the programmer to
communicate with the machine in a language much simpler than the machine language,
allows him to generate many machine instructions by a relatively fe,v A-2 instructions,
allows automatic segmentation of the problem betvTeen the magnetic tapes and high
speed storage of the Univac, and allovTS a number of computing options such as
floating point operation. More recently this group has prepared the B-O compiler
1vhich is an extension of the A-2 in two directions : it allo1vs for certain opera
tions 'YThich are more frequently used in business or commercial applications, and
it is so designed to allow flexibility for ~tture applications, mru~ing possible
modifications and additions as may be necessary. The philosophy of the B-O compiler
is such that it translates various verbs of the imperative mode into computer
language and would allow such transle.tions for verbs such as Ifmerge If, If collate II ,
II sort It , lIfind the sine of", "find the nth root of It , etc.

As another branch of Remington Rand's activities, Dr. Herbert Mitchell's
New York group has prepared the BIOR (Business In:91,.1.t-Output Re-run) compiling
system. This system, oriented t01'lSXd commercial applications, provides the means
for the progr8lIJIIler to take various blocks of his own coding and move them around
and use them conveniently and simply. The design of the BIOR system took cogni
zance of the fact that the typical commercial problem involves large records of
data vThich are read in from bu.lk storage such as magnetic tape, processed, and
returned to magnetic tape or read out in another fashion.

When the IBM 701 computer appeared on the scene in 1954, a number of so
called "regional programming" schemes were prepared for the computer. These
schemes deSignated certain regions of the computer memory for subroutines, instruc
tions, and data. They involved ~nemonic devices at least to the extent that cells
belonging to different regions could be distinguished. UsuaJ..ly they allo,red for
inserting instructions by means of a type of "Dew'ey Decimal system" which would
allow nine instructions, 129.1 to 129.9, to be inserted betueen instructions
numbered 129.0 and 130.0.

About the same time that the regional progl'"a.nmling schemes were being
developed, the IBM SPEEDeO system was developed by a group at New York under
John Backus. It allowed for easy programming since floating point arithmetic was
used but suffered from the fact that the resulting interpretive program ran very
slowly on the computer. Meanwhile, a number of customers of IBM were preparing

- 6 -

interpretive schemes vThich aJ.lowed entrance and exit from the interpretive floating
point mode. Los Alamos' DUAL, Douglas I (El Segundo) QUICK, and Lockheed t s FLOP
are ex~les of these routines. More recently, John Backus' group at IBM has pre
pared FORTRAN (FORmula TRANslation) for the IBM-704 computer. FORTRAN will trans
late into computer language a program written very close to the language of the
mathematician or scientist. This is an example of the so-caJ.led "algebraic
coding system" which allows translation of indices, summation signs, parentheses,
and arithmetic operation symbols of mathematical language.

In early 1955, a group of IBM 701 users in the Southern California area
began the preparatton of a compiler called PACT. This assembly program-emphasizes
index notatio.n for operation on sequences of data and a Scheme for simplifying the
scale factoring operation. The PACT compiler is being modified to be used v1i th
the 704.

The automatic programming developments at M.l.T. and the University of
Michigan are notable. Both of these systems include an assembly progralll or input
translation device which uses symbolic notation, free addresses, and_ pseudo-machine
commands. The emphasis, how·ever, remains on the broad scope aspec"Cs of the entire
system. Both systems place l:1eavy emphasis on una.ttended computer runs and conse
quently allow automatic selection of computing modes and error diagnosis devices.

The activities \vith the integrated computation system at The Ramo-1-lool':'
dridge Corporation follow the lines of the M.I.T. and the University of Michigan
system. In current use for the 1103 computer is a system "Thich stores all service
routines and subroutines (a total of about 8,,000 "Tords) on the l6,OOO-word drum
and backed up on magnetic tape in the cas,e of inadvertent destruction of clrum data.
The assembly program automatically assembles subroutines from the dl"um into the
main program. During program check-out the operator has at his disposal the
various service routines (dump routines, input and output routines, etc.) stored
on the dl~ and can call upon them and use them quickly without recourse to any
manual operation involving reading the program into the computer. The result is
that only programmed data originated by the programmer is stored on punched cards
external to the computer. P~l other routines" service and subroutines" are stored
accurately and economically inside the computer ,vhere they can be quicltly and
automatically summoned to use.

Future Systems

'11'10 trends are in evidence in future systems for computer use: the first
is the increasing use and development of the automatic, comprehensj.ve computation
system referred to above, and the beginning uses of "microprogrenuning ll techniques.

The completely automa.tic, comprehensive computation system is born of
tw·o central motivations: first, the desire to decrease the clerical ,-lork of the
programmer, up-grade his level of work, and generally increase his effectiveness;
and second, the desire to decrease the amount of non-productive computer time. In
the face of the development of machines which \vill be extraordinarily complex and
extraordinarily expensive to own and operate by today's standards, this second
rcotivation looms important. This writer believes that the computation system used
for most large-scale computers "Till, within 2-3 years, evolve into one 1vith the
following characteristics:

- 7 -

1. The COml)uter vTill run automatically end without interruption
for 3-5 hours, handling :many different tYIles of compu.ter
runs such as code checks and production computation of many
different types.

2. The progranuner vTil.l handle no computer storage media whatsoever
but '\vill deal only 1vi th printed IJages of programming material
he originates or \vith printed material giving the results of a
computer run" He \vill subm.it his programming material to a
data preparation room end; soon thereafter, receive on his
desk the results of a cCJll1puter run ..

3. The computer vTill be scheduled 4-6 hours in advance by preparing
tlrun tapes II, magnetic tapes on which all of the information for
runni.l1g the various problems, in orcler, is recorded.. Deviations
from the 4-6 hour schedtlle to higher priorj.ty problems which arise
will be possi'ble ..

4. Since progra.mmers v run instructions and program alterations ,\.,il1
be recorded on tape and hal1dled automatically by the machine,
running and checking out the 50-100 current programs of the
scientific computer installation' '\dll become a file maintenance
problem having many of the characteristics of that of the commer
cj.al installations today and., in :many respects, considerably more
difficult.,

5. The computation system '\Jill. find almost all clerical programming
errors and, in most cases, vdll perform the operation the pro
grDJImler "most. likely" nlea:r. ... co In all cases the machine '\vill inform
the progrrumne1'" of' errors c1.iscovered and int.erpretations made through
print-outs 0

6. Machine operato:;::-s 11ill do nothing l)U'G chDnge ma.gnetic tape reels
and actuate certhin sIJeciaJ. routines in ease of computer error,
programmer er:;:o1'" in using the computa.tion system, or in exercising
options to change 'the l::omp1:~ter scheclule to allow interjection of
higher priority problems ~ Essential~y J the programrner wi.ll operate
the COll~l?ut.er frol1l his dedI ...

7. The system ,\-Till checl~ the operator's actions 'GO a considerable
extent. For eXDlllple" the placing of a 'lrong tape reel on a tape
unit 1{ould, in. rnany ca.ses, bring a rema:rk to that effect printed
out on the In.on.i tor typewriter 0

8. output tape units 'u:lll be periodicaJ.ly removed from tape reels
and placed. 011 high·,sll()cd (500-1000 line per minute) printers for
outputtinG ini'ol"r:lation to be returned to the programmer. In many
cases, output will be initiated automatically by the computer as
needed, "i4'ith no operator handling necessa.:..roy.

Certainly much of the onus for the development of a system such as that
described above rests with the computer manufacturer. For the system to operate
as described, certain deSign features must be included into computer systems which
have not been included to date. In particular, tape unit operation must become
much more flexible 0 Independent tape operation (preferably independent tape search)
and the operation of many ta.pe units simultaneously vTill be mandatoryo The ability

- 8 -

to erase and re-record within a bloc!\: of previously recorded data lvill be of
great inq:>ortance. Another item is that all computer S1'Ti tches must be controllable
by the internal program. .Although no computer at present has these capabilities,
the IBM has recently annoIDlced changes in the IBM-704 along these lines.

In the design of the computation system now in preparation for the l103A
computer to be delivered to T1le Ramo-Wooldridge Corporation certain steps have
been taken tmvard the Itultimate systemll

• The programmer vlrites ::un instructions,
prog-.cam. alterations, program error diagnosis procedures, and output instructions
on his prograrrmling form.. This information is tr3..llscrj.bed directly to magnetic
tape and placed on the computer. The system assembles the program, includes all
progr81n changes, runs the progra.m, performs the error analysis, and produces
appropriate and complete prll1t-outs for all these OCCU2~rences. Tile progrmnmer
submits the instructions for the entire operation in lvrit.ten form and lfaits until
the computer results are returned to him. The file main·Genance problem will be
avoided during the first design by having fID individual tape reel for each program.
In a somellhat abridged form, the system 1{ill be in operation by the end of 1956.

~1e next couple of years will see the first uses of a technique in
computer de sign and computer use called IIraicroprogramming ll

• Many computer users
have long chafed under the use of instruction logics 1Yhich vlere not well sui ted
for their application. lv1icroprogrrul1lning vlould allovT the programmer to synthesize'
his own cOIr.[)uter instructions from. I! micro instructions " • Essentially, then, with
microprogranuning the progra;rn:mer would "construct II his own control unit, the "con
struction" taking the form of a plugboard or assimilation at electronic speeds by
means of computer program.

As of thj.s date, most 1-Jork in microprograJml1ing is in the "tall{ing stage II •

To this 1vriter's YUlowledge, only one paper on microprogramming has been published,
that by Herbert T. Glantz*. In the article Glantz presents a pla.n for a micro
programming fac ili ty which \vould provide for the computer to leave it s normal
(conventional) mode e..nd junr.p to a "Micro Mode II. In this mode, the computer vlould
perform instructions made up of microi:.r:tstructions according to a sequence as indi
cated in a special magnetic core memory. At the COl.1Jllk'md of the programmer, the
cOIn]?uter would jump back to the normal mode, performing arithmetic and logical
operations in a conventional fashion.

One of the first meetin.gs on mj.cro:fJrogre.nrrning 1-re.S held at Massachusetts
Institute of Technology in Mm""ch, 1956. At this informal meeting Dl.... David
Wheeler of Cambridge University, England, spoke of Canfuridge's activities in the
field. The Cambridge group, operating the EDSAC II computer, plans to encode
subroutines in a magnetic core control matrix to all01-' the subroutines to operate
at speeds comparable to normal instruction speeds. This technique. could be
characterized as making certain machine changes lvhich would aJ.lO"i{ "macroprogrrunming",
the synthesizing of complex instructions from common ones. Their activities along
the microprograJnIl1ing lines apparently v1ill mal{e use of a magnetic core matrix
fOrming the heart of the computer control.

* Glantz, H. T., "A Note on Microprogrannning", Journal of the Association for
Computing Machinery, Vol. 3, No.2, April 1956.

- 9 -

Tl'TO university groups in this country are interested in microprogramming
and are fornru.lating plans: M.l.T. and University of California at Los Angeles,
the Numerical Analysis Research group which operates the SWAC. M.l.T. has ideas
vThich "Tould make available an. additional microinstruction on the Whirlwind I
computer as part of its regular instruction repertoire. The address part of this
instruction 'vould control 120 subcommand lines of' the control. matrix of the COlll

puter. Presumably, the progrmnmer would contrive his 0'"111. instruction by using
the 120 lines as he wishes.

The activity at the University of California at Los Angeles has resulted
in the writing of a master's degree-level thesis by Robert Mercer (to be pu.blished.)
under the direction of C. B. Tompkins. If present plans materialize the Numerical
.Analysis Resear'ch group will malte extensive studies of the SWAC control system,
followed by extensive changes vlhich vlill probably result in a plugboard to allovT
the selection of sub-commands. The group hopes to complete the next step which
'vould allo'tv the choice of sub-cormru:mds at electronic speeds under stored progra;m
control.

The future possibilities of microprogre.r.:aning are considerable. With
microprogramming one visualizes a three-level hierarchy of programming. At the
production level programmers 1fould use subroutines performing operations like
"fino. sine of" J "merge", etc., prcbably by means of elaborate compiling roU:tines.
At the nex·t level "subroutine programmers" 'tfould prepare the subroutines which
would be composed of instructions n1s.de up of micro-commands. A number of pro
SJ.'C.lHJlers \loul0. program inst:~:"Uctions from microinstructions. At each level, the
progCtUlll11erS I'Tould prescribe the routines or instructions necessa.ry; it 'tvould
be the responsibility of the next tflo't-Teru level group to fashion these tools so
that they ::1.re in some sense optinn.un. Nost likely progra.mmers at the production
level 1'Tould 1movT nothing of the activity at the microprogramming level, and vice
versa. This is nearly the case a.t the present time betlreen production programmers
and those programmers preparing compiling routines and the computation system.
Future computation system design vlill le .. rgely integrate the activities of the
three levels.

There seems litt~ doubt that the degree of' success of microprogrrunming
1vill be prime..rily a function of the s:peed "lith 1fhich synthesizecl instructions
can be executed. lrive years ago, most computer pe,ople ,'rere satisfied that floating
pOint could be performed interpretively and that the sl01v speeds '\vere acceptable .
. As .computer usage increased, it bec8Jl1e evident that floating point operation in
this fashi.on 1-TaS much too slo'tv, that floating point as built-in hardvlare "Tas
nece SSary . This may prove to be the experience again 'fi th microprogl:'amming. As
soon ~ an instruction is synthesized) usecl, and appreCiated, users will 1vaut it
included as hardl'lare so that it 1vill operate faster. MicroprogrSJDIIled instructions
must operate at speeds competitive ''lith their permanent, wired-in counterparts
or the whole technique 1vill f'aJ.l into disfavor and die of atrophy.

APPENDIX

The following is a list of desirable compiler features which the Univac
Scientific Exchange (USE) organization recently adopted.

1. Conroile subroutines from pseudo-instructions. A pseudo instruction
requiring the use of some library subroutine ,·rould appear :in the main
program. The subroutine necessary to ca~rry Ot1.t the desired fUnction
would then be autoID8xically compiled into a so-called compiled region.
The line of coding llhich ol"iginally contained the pseudo-j.nstruction
IVoulo. be replaced by the aI)prol")riate calling sequence of one or more
instructions.

2. Assign cell numbers to othcrvlise tUlo.efined symbolic addresses.
Ordinarily these cell m"ul1bers ,·rill be assigned addresses in a compiled
region. This feature allo"Js easy assignment of working storage
locations.

3. Use numer:i.cal constants as addresses. The compiler should be able to
detect that ari' add.ress section of an instruction is actually a nUllleri
cal constant. The vEUue of this number wou.ld then be stored in an
otherwise unused cell in the compj .. led region--the address of that
cell 'vould be fi.lled in as the appropriate address section of the
instruction.

4. Symbolic aC'ldresses. The compiler should be able to a.ccept symbolic
addresses similar to those no'·r accepted as standard foj." subroutines
by the USE Organization. Implicit in the phrase symbolic addresses
is the concept of free addressing.

5. Easy method of ,vriting nt1r11)crs. In this sense a. number is a numerical
constantllhich occupic-s oneOr mOl"e full registers and is ordj.narily
thought of as a 111.1l11ber--t!lis is in contro.st to the i,;rriting of ntur.eri
cal addresses. It is expeeted that both stated poj_nt and floe.ting
point single and double precision deellllE!.l nu.m1)ers 1-,i11 l)e acceptable
to the compiler as "ifell as oct2l numbers.

6. Ability to genera-ce :in-out rc)utines 0 The tho1.:~ght hel"c is that the
progran1l1ler could mal~e rela-t'iv.i1..y siinple specificv:tion[(,:.of the form
of' the ntullcricc:J_ OU.tl)ut ,vhich he desires and that the compiler
vrould generate al1.d a.s~emble 8.utomo:tically the routine necessary to
do the particular job specifiede

7. Ability to make any type of change easily 111th both card and tape
input. Tl1.is is obviously a wortlnlhile and noncontroversiaJ. objective.
However J the discussion sholled that there may be considerable compro
mise necessary to 'T,vork out the details of just how' such generalized
change s ,·[ould be made.

8. Generate calling secp .. 1.eEces. This ability of the compiler W'a8 alluded
to j.n point number 1· above. A calling sequence may very \-Tell require
more than just an. RJ --the connnon compiler should be able to generate
automatically the se calling sequences in a predicta.ble fashion ..

..

9. Provide binary tape outPt .. ,--~ 0 In some installD,"Gior.l.s a binary tape
output may "be the mont COllID10l1 fo:crn of out:9t'1..t, in others, it may
be provided an an option. In ony caGe the compiler should have this
ability 0

10. Provide symbolic s :Lc1e -by-side list.ing. Some instclJ.ations have found
this type of Ifs-Ging a 'moGt usef'l1.1 form of output, pa.rticularly
duri.T'lg trouble-shootjr.1g IJerioch;. fJ:Ile sj1iibolic side ·~by··side listing
is to be cont:casted 1<lith t:.'lG' pre~:,j(.nlt, r:l(::'Ghocl at some installations
1-There the origin8J. keYJ/LUwllee"l. C;:;~:!:'ll[; [~'(~~ listecl on one p:i~ece of paper j
subsequently a rele.tecl l:~stirlg shol,·!ing the 'crru1slatec1 code (usually
in octsJ.) is produced on aJ::~(/Gb.er :p.Lec0 of IJape:;: Q

11. Detect errors dV..1"~"1.g :in.pu·~ eonvcJ'.',)~ion 0 Clea:rly ty'ping or syntactical
errors may be :mae.le L"I1 preparing the code and the input cards or tape.
A good com;piler shoulcl be able to detec:-G such eX'rors, make a list of
them for use by the p:cogl:'8l..'lin.er; m.1Q. still cont,:Ln.ue 'che conve:osion if
at all possible 0 CJ.1J:lis then S~10ij18 the jJl'0 graJl1J11er' to study the list
of errors and cor!'ect as many ,!::1S J}oGsible 1)efore returning to the
machme ..

12. The cOIIT.Qile:r lIIlJ.Ed:; 'be able to hsndle symliolic :prog.;."'UlD.S 1'lhich are inl)ut
on ei:cher card.s or tC},lJe--:LYl other \-102"(ls both forms of input must be
possible and convenient.

13. CompatilJility with misto.J::c di~l.gnostic rout iiJ.e s " ~l1e fo:t.'"l!l of the
inl1ut and the !)j ... ,6vis:i~ons ma.c1i~ fo:;::· the progr8iiiilers use of mistake
diagnostic rO'L1."bine~l, nruBt be eOml?letely eOll1patible 0 1'hat is) in.forma
tion i'Tilich the progrant<ner mv.st spec:Lfy in ox-del:' "to dj.<?gnose coding
errors, :must be in 8. fo:c:rn \'Thich etm l)e haJJ.ciled "by the compiler and is
compat ible 1·rit~h the ord.inaxy form of inpu.t Q

14. Can ll1Carl}Orate iJSJ~ GvJx(,01.ttines. ~.hE! eOIIll1i1.e:c' shot'lld 118 al)le to handle
a US}.~-subroutiiletUlc.:haUli;ed"f'j::'OlU :it.;3 o:coigi:o.eJ.. symbolic fOl"m end incor
porD:te such a stlb::~·ot1..'~ine :Lnto the ma.:l.n. boiiy of' a I)rogrrun i'lhen that
syrabol:tc: subroutine j.3 inc11).dcd. as I)art of the original manu.script e

15. Iclentificat.io!l of' OLlt-'),l~t 0 P.J.1.y lnaterial 1-Th:Lch the compiler produces
Mot:lt]!ut ShC.YtLLcf l)e c"2;rrD?letely identified af3 a !l1[)"tte:t.~ of routine 0

For cxarnple) the syml)olJ.G ~:.L;"t!.n·":by.o[~~.llc 1~;,8ting shoul.cl be ia.ent:i.fied~

this vTov.ld include the lXL~O[£l·t'.mL1(n'" G !2~!..!ile) the c.ate if' possible.,
progrmn :'1.'lU1fIJe:-c) EtGC!.

16. Direct il1.puto Arter the eom:pilcl'" has cO!PJ?leted the read-in and compil
ing of a prosrrun, clonG ilith any chtmges 1,rhich mig..'ht have been incor
l)orated) the t!.:-r1.l:ls1o.:teo. progrnm \TilJd fin';lJ.ly l)e stored in its operating
position so that tIle pl"ogrmn may be executed ilr.~lnedi,,~tely after
compilation has "been cOlr~pletcd iIi thout any interrrediate steps being
necesscu"'y.

17. Compa-cibility with operational procedt.1Xes" There should be bu.ilt into
the compiler some prov~s~on for handling simple operational instruc
tions havin.g to do "lith the sequencing and button IJushing which are
necessary to complete a rtm on the machineQ It is not intended that

the :inclusion ol this ~Do:tnt l"equ~Lres thD.t the COlllI1lon comp:Ller she.ll
have bu:Llt :i.nto :Lt o,u-ccnmt:l.c operational features--rather t.he com,;.
piler should be planned so that '-Then a particular installation decides'
that they Wrult to incorporate uutoDlatic operational procedures, the
COInl):ller will be able to accept these changeG vrithout any major
moclifications.

