SERIAL NO.____

RW-300 DIGITAL CONTROL COMPUTER

PROGRAMMING MANUAL

March, 1961

This manual is the property of the TRW Computers Company.
It is made available to customers, prospective customers,
and others, with the understanding that the contents of the
manual shall not be released to any third party.

'TRW Computers Company /\ -

a division of Thompson Ramo Wooldridge Inc.

8433 FALLBROOK AVENUE ¢« CANOGA PARXK, CALIFORNIA

The RW-300 Digital Control Computer

'I‘he RW-300 Digital Control Computer is used for closed -loop control of
industrial processes, for automatic testing, for on=-line
data interpretation, and for simulations.

In real-tlme control and test appllcatlons, the RW-300 communicates
d1rect1y with instruments which measure or sense operating
variables. Under the direction of the program stored in
memory, the RW-300 uses information from these instru-
ments, performs calculations, reduces data, and generates
the control signals required to fulfill process or test
objectives. Fail-safe features incorporated in the system
equipment and program, coupled with the inherent reliability
of the RW-300, ensure dependable operation,

The computer operator is generally advised of operating conditions by
typed records -- printed out either periodically or on
demand. Further, the operator is able to supply the RW-300
with special data whenever the process or test must be
operated under unusual conditions.

IN THIS PROGRAMMING MANUAL.

SectionI . . . contains a general description of the RW 300 and
peripheral equipment.

Section II . . ., describes the operation codes used in preparing
instructions for the computer. :

Section III. . . tells how the instructions are assembled into programs.

~ Section IV. ., . introduces a programming technique which makes
maximum use of computer time. ‘

Section V. . . contains detailed information relating to the digital
" input and output equipment used with the RW-300,

~Section VI . . tells how programs are loaded into the computer ‘under
the direction of a program stored permanently in '
computer memory.

Seqtion VII . . details the functions of RW-~300 controls and indicators.

Section VIII . . contains reference material pertaining to number
systems and scaling.

A Glossary of computer terminology is included at the end of the manual.
The last pagej‘s of the manual contain reference tables that are useful in
preparing programs for the RW-300.

OTHER PUBLICATIONS ARE AVAILABLE.

A list of programming aids and mathematical subroutines contained in
the RW-300 Program Library can be obtained by writing to TRW Computers
Company.

A manual describing Optimum Programming Using Symbols (OPUS)
includes instructions for preparing programs in symbolic form.

An interpretive routine is available for é.pplying,the»RW-&OO to general-
purpose and scientific calculations.

TABLE OF CONTENTS

SECTION I -- GENERAL DESCRIPTION

CHARACTERISTICS . . - .« o oottt R .
E%TERNAL,FEATURES e e e
IﬁSTRUCTKn¢SYSTEM e .
WORD LENGTHL: .
MEMORY e T

Basic Memory T

Expanded Memory e e e e e

ARITHMETIC UNIT « .+ v v v v v v e e e e e e e s s s s s S

A Register00 0000
B Register

C Register e ¢ a &+ s e & e« s & 0 ¢ e e s o '. . ¢ * s+ s + & e @

Adder
CONTROL UNIT * . . 0. - . . .’. . . - . . . - L] . - . [L] L] - L] l‘. L . -
YRegister 00000 v e
NRegister o v v v v v e it e e e e e e
Track Register e e e e e e e e . .
Instruction Register e e e e
DIGITAL INPUT AND OUTPUT e e e e e . .
ANALOG INPUT AND OUTPUT e e e e
Conversion Capabilities N

Input Conversion Range and Number Representation
Input Storage Locations

'Output Conversion Range and Number Representation

Output Storage Locations e e e e e e e e e e e ..
MAGNETIC TAPE UNIT ¢ - 2 x e s e e e e .
~ Introduction L L L e e e e e e e e e
‘Description T e e e e e e e e e v e e e e
Opel‘atiOn L O LI I e & * & & e e L B R AL e D

Specifications e e L e e e e e

1-8
1-8
1-9

1-9

1-11
1-11
1-14
1-16
1-16
1-18

1-18
1-18
1-19
1-21
1-23

"TABLE OF CONTENTS -~ Continued

SECTION II -- INSTRUCTIONS y PAGE
INTRODUGTION. « v v s o s v et s e enanensnenennsnsaene. 2-1
LOAD A v vttt ot estnessesaseennsoeneosneennnannss 2-2
LOAD B ottt it s ennesneennenoneesnsnnsneenennnens 2e2
LOAD A NEGATIVE &« ¢+t v e et evuuiueenesnnnnnneeeenns 223
STORE A &ttt vvnvnnsoeneenseaneasessansanenseess 2-3
STORE B 4 v o v v et eeseneasnenansecnsnseenenenens 2-4
ADD vttt ettt 24
SUBTRACT « ¢ vt vt evesennesneenneenesnessnesnennenss 2-5
TRANSFER ONNEGATIVE . .t vvvvernoennennnennneans 2=7
TRANSFER ON ZERO . v v vt v vt vt e taeoeeonenennenneess 2-8
TRANSFER ON OVERFLOW 2-8
" COMPARE MAGNITUDE &« s v vt vt snesoesneennanannnane 29
EXTRACT 4 ve vt oneneeesnsneeeesnosnneensosnnsans 210
MERGE. v v vt venernneaneeseennesonneseennenenns 2-11
SWITCH v v v e vt vseeennsenneeneeensnnsoeseennenes 2-12
3) = 1 K |
DIGITAL v vt eveeeneoeenesosnnenseoneseeanenanes 2-13
NO OPERATION 4 vt v vevvnsesnnsesnnnnennneensnns 2715
N T 8 1
MULTIPLY ¢ v s v e v oo oo vnnneenneeonnneeennnennnaees 2-17
DIVIDE & e vt oo vovenesnenseeaneneneesenennenenens 2-21
EFFECTS ONREGISTERS . .4 vveereneosasaoonsasnsass 2-25

ii

' TABLE OF CONTENTS -- Continued

SECTION III - BASIC PROGRAMMING

 INTRODUCTION. . .
INSTRUCTION WORDS

® & & 6 0o & @ 0 0 0 0 0 0o 0

e & o 8 ° 0 % 0 ¢ 0 9 9

FORMAT FOR LISTING INSTRUCTIONS

DATA WORDS, OR CONSTANTS ., « « s & »
FORMAT FOR LISTING CONSTANTS. ..
USE OF MEMORY . ..ot ceeecocs oo

General « v o v e o

® ® & o 0 ° v o ¢ 0

L

Reading Information from Memory

Storing Information in Memory. ..

Organization of Listings

Record Keeping

SAMPLE PROGRAMS . .
ExampleI
Exam}‘)le'II e e e
Example III ...

*

L]

.

L]

L]

.

.

PAGE

st

3-2

3-2

-5
>4

3-7

37

-8

3-8

3-10
3-10
- 3-12
3-12
3-14
3-16

iii

TABLE OF CONTENTS -- Continued
SECTION IV -- OPTIMUM PROGRAMMING

INTRODUCTION e ele e e e eiaieie e e s

MEMORY ORGANIZATION. e o

Tracks 08 through 61 e e e e e e e e e
Track 62 P

Track 63 e e e e e e e e e e e e e e s

Load, Merge, andExtract
Add and Subtract e e

' M‘ultiplyandDivide;.. e e e e e e e e e e
Compare Magnitude e e e e e e e e e e e e e e

Transfer0 000 Ce e e e

.Store T e e e e e e e e e .
Digital . . . o v v v it s e e e e e e e e e e e . Cew e ee e e
. COMPARISON OF OPTIMUM AND SEQUENTIAL PROGRAMM.ING”

"REVOLVER e e e e e

iv

PAGE

4-1
4-3
4-3
4-3
4-5
4-6.

4-7

TABLE OF CONTENTS -- Continued

SECTION V -- DIGITAL INPUT AND OUTPUT

INTRODUGTION. 4 v v e v v v oee s v nonnss

DIGITAL COMMAND. .+« v vvnvnennans
BASIC INPUT-EOUTPUT bAPABILITIES ‘e
' Inputs...............i.y.....
Inputs from qugle Switches . .., ..

Inputs from FleXowriter

Output to Flexowriter . « . . . ¢ o .o

. Sample Printout Listing ¢ & o o o o o 0

EXPANDED INPUT-OUTPUT CAPABILITIES

Inputs. o ¢ v et v v et et et e a s o n e
Outputst vt e vt evo v oo
One-Bit Outputs . v o o o et ¢ v 0 0 0o s e
Multi-Bit OQutputs
INPUT-OUTPUT EQUIPMENT
Digital Indicators. « « « o« ¢« v ¢ ¢ o o o
Twenty-Four~-Hour Clock
ManualInputs0 e v e v v e v
Watchdog Timer e oo v oeoon
Ferranti Reader v0a0.
Teletype Puncho v v e v v v
FLEXOWRITER . . .t v vttt oo vnvonnsas
Modes of Flexowriter Operation . , .
General Flexowriter Characteristics
PaperTape.............»....
Parity Checking .« . e ¢ o o s s o 0 0 s o
Flexowriter Codes . . . v v v v v v 0 v

Flexowriter Timing Considerations

.

PAGE
5-1
5-2
5-3
5-3
5-4
5-5
5-6
5-7
5-10
5-10
5-10
5-12
5-13
5-13
5-13
5-14
5-15
5-17
5-17
5-18
5-19
5-19
5-23
5-25
5-27
5-30
5-30

TABLE OF CONTENTS -- Continued

SECTION VI -~ PROGRAM LOADING

"INTRODUCTION v . v v .. J >

LOAD PROGRAM I e e e e C

'STANDARD PUNCHED TAPE FORMAT

DECIMAL PUNCHED TAPE FORMAT .

OPERATING CONDITIONS

ooooooooooooooooooo

MEMORY SUMS e e e e e B

vi

6-1
6-1
6-4
6-6
6-1
6-9
6-10
6-11

"TABLE OF CONTENTS -- Continued

SECTION VII -- OPERATING CONTROLS AND INDICATORS

OPERATOR'S PANEL . ¢ v ¢ ¢ 0 s v s

Power Controls + o o o o o o »

e

Opei‘ating Controls. e ...

TEST AND MAINTENANCE PANEL

Program Loading. .« «
Maintenance .. ¢« ¢« e oo oo
Operation , + « o s o s 60 s 0
PROGRAM CHECK-OUT ,
Fetch and Execute Buttons
Run Button . . ¢ ¢ e e v e v 0

State Indicators . . e ¢ o o o

L]

3

.

OscilloScope v v v o v s 0t v 0000 v

Tables for Interpreting Indicators.

"PAGE

7-1
7-1
7-2
7-3
7-4
7-4
7-4
7-6
7-7
7-7
7-7
7-8
- 7-10

vii

TABLE OF CONTENTS -~ Continued

SECTION VIII -- NUMBER SYSTEMS AND SCALING PAGE
READING COMPUTER NUMBERS . + v s ¢ 0 ¢ st e e oo os000aesacos 8-1
NUMBER SYSTEMS o o e ¢ o o 0 e % e & 0 & 0 ¢ & & 0 0 8 ¢ 2 8 0 & 2 0 0o O 0 0 8-;2

CONVERSIONS n.-oooocoaa-.oooo-ot.ooco.noo;ooolbo 8-4

BinarytoDecimal . . v vt v ¢ 0 v et e s oo s oa s oo oceenes 8-4
DecimaltoOctal . ..o v ot ottt st e nnoocoseosocas 8-6
‘Bina‘.rytoOctaltoBinary . 8-6
Decimal to Binary. o o v o o o o s o s 0 0 s 0 s s s o s e voosoacs 8-7
OctaltoDecimal . ..o v ot ittt vt et e ooraooososes 8-7

BINARYARITHMETICC...CC..Q‘....OVCDOU‘Q...DODOOODO 8-8
OCTALARITHMETIC.'Q.l.'....l...A.Ol..t....l..lii 8—9

SCALINGO..l.."O.l..00Q..0.000‘..0.0...00..0.... 8-10

I-nntroduCtionn L I I I R I R I L AR A e s e e 8—10
Fixed-POint Notation and Scale Factor e s 5 5 s 06 0 0 0 s e s e 8"1 1
Shift Commands © 5 8 6 6 6 6 % 6 8 06 s 8 6 08 0 08 00 8 s e s s e e s 8-13

Multiplycommand e & @ @ » & & 2 & & O 0 3 P O & O s 6 s 0 s e s s 0 0 8-14

“DiVidecommand-co.oQotonooooo'lcaoouooocotcc 8_18

viii

LIST OF ILLUSTRATIONS

Figure 1-1 RW-300 and Peripheral Equipment . . .

Figure 1-2 RW=-300 and Magnetic Tape Unit

Figure 2-1 Commands and Registers

Figure 3-1 Flow Chart of Program Example III

Figure 4-1 RW-300 Memory

Figure 5-1 Segment of Punched Tape . .

Figure 5-2 Table of Flexowriter Codes
Figuré :7-1 Test and Maintenance Panel

Figure 7-2 Oscilloscope Display . .

REFERENCE TABLES (last 3 pages in manual)

Table of Powers of 2
Table of Non-Parity Flex}owriterv Codes
‘i‘able of ?o@ers of 8
Table of Equivalent Revolver Locations

Table of RW-300 Instructions

.-

.

.

PAGE

1-12
1-20
2-217
3-17
4-4
5-26
5-31
7-3
7-9

ix

SECTION I

GENERAL DESCRIPTION

CHARACTERISTICS
The RW-300 Digital Control Computer is a stored-program, ;erial
co.trixputeremplovyingy a magnetic drum me'mory with a total capacity of
8,080 wqr.ds.' _R’W'-300 computers with an expanded mefnory have a total
memory ca‘pacvity of 15,776 words., The RW--300Y word is composed of
18:bina"ry digité. N
| A word .may represent either‘m’xmerical data (17 bits, with a sign bit),
or one half of a computer instruction. Two words form a complete instruc-
tion;{one half of the instruction specifies the memory location of the operand,
and the other half of the instruction specifies the memdi:y location of the next
insiruction. The half-instruction containing the next-instruction address |
includes one of 21 basic operation codes, and the half-instruction containing
the operand address incl,udéa an exefcution code. The basic instruction codes
are modified by the execution code and the operand address to provide a
| flexible command structure.

Continuously variable voltages from measuring instruments and
transducers are automatically conve:ted to digital form and stored in the
RW-300's memory--without programmed instructions. Up to 1,024 of these
continuously variable "analog'' input signals can be accommodated. Com-
putatidnal resﬁlts repre sénting control information are automatically con-.

verted from digital form to voltages which can be applied to conventional

1-1

Characteristics -- Gontinued
(iontrollers or other control devices. Up to 128 of these "ana’loé" output
A éignals can be provided. |

Up to 511 on-off signals from different sources can be accepted by
tile computer, permitting input from digital clocks, switches, papér;tape
readers, etc. A like number of digital output signals cé.n be provicied for
the control of motors, indicators, alarrris, logging typewﬁters, paper -tape
punches, etc.

In addition to possessing the input-output capabilities necessary for
real-time control, the RW=300 has been designed to provide the reliability
required for continuous service. |

Subroutines and interpretive routines are available to extend the ap-

plication of the RW-300 to scientific and general-purpose computation.

EXTERNAL FEATURES

The console model of the RW-300 (see ‘frontispiece) is desk size and
weighs approximately 600 pounds. It operates from 120-volt, 60-cps power,
and requires no special air conditioning. Power consumption is approxi- |
'mately 500 watts. Usually supplied in the console cabinet 36 inches high, 56
inches long, and 29 inches deep, the sarne basic computer can also be fur-
nished in an upright, air-purged cabinet that is 84 incheé high, 48 inches
long, and 24 inches deep.

Operating controls for the console model are mounted on the sloping
front edge of the cabinet and are accessible when the computer cover is

closed. The operating controls are pushbuttons for turning the RW-300 on

External Features -- Cont.i\nuedx.
~and off, for starting, stopping, and resuming the progrgm'stored in memori,
and for loading new programs into the memory. Benea?h £he cover, a test
and maintenance panel contains controls, indicators, and displays which

facilitate program check-out and computer maintenance. The operating con-

trols and indicators are described in Section VII of this manual.

INSTRUCTION SYSTEM

The RW-300 instruction system includes basic operatj

or commands, many of which can be modified to permit a large number of -
distinct operations., The operation codes control arithmetic operations,
logical operations, and peripheral equipment, Section II contains a brief
 description of the instruction format, followed by a complete description of
. the operation codes, |

The time required to perform arithmetic and logical opérations
f’depends‘upon the relative locations in memory of the instruction and the
operand. Using the optimum programming techniques described in Section
IV, the times (in milliseconds) requiréd to complete typical instructions;arek

as follows:

Add or Subtract | , Of 78 ms
Multiply, full length 2.99 ms
Divide, full length . 312ms
Transfer‘ | 0.65 ms
Load Register 0.65 ms

Store | ; _ © 0.78 ms

1-3

Word l.ength

WORD LENGTH

In the RW-300, the‘basic unit of information is a word2 A word con-
sists of 18 binary digits, or bits: a sign bit and 17 bits of absquute magnitude.
The sign bit is zero for positive and one for negative. (Sée Séction VIII for

an explanation of the binary number system,)

18 '17 16 15 14 13”’12 l‘lv 109 "8 | 7 6 5 ‘ 4 3 2‘ “1)
Sign Bit/ Most-Significant Bit Least-Significant Bit/ ’

A word may represent: a numerical value, one half of an instruction,
typewriter oripunch symbolé, or a bit pattern that can be used for control

purposes. Section III describes the form of instruction words and data words,

MEMORY

| The memory of the RW-300 is a magnetic drum, nine inches in diam-
eter and nine inches long, which rotates at a speed of 3600 rpm. The mag-
?}gztic drum may.contain a basic 8,080 word memory or an expanded memory
of 15, 776 words. |

Basic Memory

There are 7,936 words of general storage on 62 tracks of 128 words
‘each, 32 words of fast-access storage in a circulating register, and 1‘28
words in one track for a pefmanently stored load program. A word time
(thé time required for one word on the drum to pass a given poiﬁt) is 0, 13“

milliseconds. The "average" access time (time required to find a word) in

1-4

Memér y -~ Continued

general storage is 8. 3 milliseconds. The 32-word circulating register, or
"revolver', has an average acﬁess time of approkimately 2 milliseconds.

Any of the 7,936 word locations can be written into during pfogram load-
ir;g by using control facilities on the RW-300 fest and mainteﬁance panel, In
the basic' computer, the 32-word revolver and 1,024 wbrd locations in eight
128-word tracks can be written into under program control. Up to eight addi~
tional tracks of program-writable storage can be provided by adding a module
to the basic computer. However; this additional program-writable storage ig
reduced by the number of tracks reserved for the storage of analog input data.
‘The number of tracks reserved for analog input‘data does not affect the 32-
word revolver nor the 1,024 words of pfogramuwritable memory available in

the basic computer.

Expanded Memory

RW-300 computers with an expanded memory have 15, 776 words of
storage on 123 tracks. Normally, expanded memory machines have 1, 536
w.ord‘s of program-writable storage, although up to 16 additional tracks (2, 048
words) ‘of program-writable storage can be provided by the addition of an
extra module to the basic computer. The 16 additional tracks will be reduced
by the number of tracks reserved for the storage qf analog input data.

The method of identifying memory l:ocations on the drum is described in
counnection with a d;ascripti‘on of basic programming in Section III. More de-
tailed drum characteristics are presented in connection with the optimum pro-

gramming techniques described in Section IV, Through the use of optimum

1-5

Memory -- Continued

programming techniques, access time in general storage can be greatly

reduced below the '"average' access time of 8.3 milliseconds.

ARITHMETIC UNIT

The arithmetic unit is that part of the RW -300 which actually performs -
arithmetic and logical operations under control of the pfogram stored in |
memory. The unit includes three circulating one-word registers (A, B, and
C) on thé'drum. In addition, it contains a serial adder and flip-flops used
for storage, time delay, and logical manipulations.
A Register

The A register, or accumulator, is located on the drum, and has a
capacity of 17 bits plus sign (one word)., It is the principal arithmetic
register and holds the result of most operations, The A register can be
loadéd from memory, and the contents of the A register can be stored in the
memory, It has the capability of shifting left or right one binary place per
word time, In the operations of addition, subtraction, left shifting, and
division, overflo'w from the A register is possible (i.e., the computer may
attempt fo put a one tovthe left of the 17th bit), Whén overflow ocrcurs, the
overflow indicator is turned on.
B Register

- The B register, located on the drum, has a capacity of 17 bits plus

sign. It holds, at various times, the multiplier, remainder,‘ or least-
significant half of the double ~-length product. As in the case of the A register,

the B register can be loaded from memory, and the contents of the B register

1-6

Arithmetic Unit -- Continued
can be stored in the memory. It has the ability to shift left one binary place
per word time, When shifting left, it is coupled to the A rvevagistex" so that the
bit in position 17 of the B register is shifted into position 1 of the A‘ register, |
C Register

The C register, located on the drum, alsé has a capacity of 17 bits
plus sign.‘ Its operation is nét under the control of the computer's program,
and therefore the programmer is seldom concerned with it; - At various times,
the C register holds the multiplicand, divisor, éubtrahend, adde‘nd, or
execution code,

Adder

the adder forms, in one digit time, the sum of one bit from the
augend, one bit from the addend, gnd the car.ry bit from the previous addition.
It outputs the sum bit and the carry bit. Since the sum is formed serially, -
bit by bit, the adder requires one v'/or.d time to generate the sum of two 17~
bit numbers. (This should not be confused with the length of time required

to carry out an Add instruction.)

CONTROL UNIT
The control unit processes the instructions in the sequence dictated
by the program stored in memory. In processing an instruction; the control
uﬁit pé rforms the following functions:
"a. Obtains instructions from memory.

b, Decodes and interprets the instructions.

1-7°

Control Unit -- Continued
‘c. Connecte;; and activates other units by sending out individual com-
mands to the other units in the proper sequence to perform the
desired function.
d. Initiates the transfer of information between units,
e. Stops the execution of the program.
f. Keeps track of time so that the various parts .of an instruction are
executed in the appropriate sequence.
Some of the components of the control unit are described below.,
Y Register
The Y register is a one-word circulating register on the drum which
holds the operand address.
N Register ‘
The N register is a one-word circulating register on the drum which
holds the address of the next instruction,

Track Register

The track register is a six-bit flip -f'lop register which holds the track
address When a program instruction refers to a memory location. The flip-
flops in thié register also serve other purposes; for some instructions, the
track register supplements the instruction register. For digital inpgt and
output instructions, the track régister addressgs groups of input or "output

lines,

Contrpl Unit -- Continued

Instruction Register

The instruction register is a five-bit flip~flop register which holds
the instruction code, but temporarily holds the execution code when an in-

struction is being read from memory.

DIGITAL INPUT AND OUTPUT

All digital input and output functions are accomplished by a single
opération code which controls“the transfer of info,rmkation between the A
register and external equipment. Digital outputs are in the form of relay=-
contact closures, and digital inputs are accomplisklled by sensing voltage

changes on input lines.

The RW-éOO digital input-output facilities are extremely flexible.
The paragraphs which follow contain a description of the basic facilities and
a description of options available to customers, A more complete descrip-
tion, along with programming instructions, is included in Section V,

The basic digital input~-output unit provided with the RW-300 is a
Flexowriter, which consists of an electric typewriter, a paper-tape and
edge ~nunched card reader, and a paper -tape and edge-card punch. The
Flexowriter can read, punch, or print at the rate of 8 characters per second,

’In the basi;: ;omputer, seven digital input lines are reserved for accepting
information fro‘m the Flexowriter reader (or from some other input device),
.and 18 digital input lines are available .for accepting information from digital

input switches or other devices dictated by the requirements of the installation.

1-9

Digital Input and Outp;;t -- Continued

Relays within the basic computer convert Flexowriter sig‘nal levels
to levels compatible with the digital input circuits. A negative five volts
applied to one or more of the other 18 digital input lines cause’:si the com-
puter to read a one on that line when a digital input instruction is executed,
and an open or positive voltage (>2. 5 volts) causes a zero to be read.

- Although a group of 18 digital-output control lines ié available for
system expansion, the‘basic computer contains only eight relays for pro-
viding digital outputs to the Flexowriter printing or punching circuits.
Auxiliary control rélays are provided within the basic computer for turn-
ing the Flexowriter motor on and off; for initiating printing when a logging
typewriter is used; for initiating punching when a high-speed paper-tape
punch is used; and for accepting ""ready' signals from these output devices.

A variety bf optional digital input-output equipment is avvailable.'
Additional typewriters, including line printers, can be supplied to log out
raw data and ﬁ‘nished computations. A Ferranti high-speed paper-tape
reader (60 characters/sec) and a Teletype paper-tape punch (60 characters/
sec) can alternate with or be substituted for the Flexowriter reader and punch.

When used in control applications, the computer's basic digital input
capabilities can be expanded to accept 29 additional groups of digital input
lines (with 18 lines in each group) for a maximum of 540 digital input lines.
Iﬁ an expanded digital input system, a zero is read into the computer when
an input line is grolunded; a one is read when an input line is open.

Basic digital output capabilities can be expanded to provide 29 addi-
tional groups of output lines (with‘ 18‘1ines in eaph group) for a maximum of

540 digital output lines.

1-10°

Digital input and Output -- Continued
The additional equipment required for expansion of digital input and
output facilities is accommodated in an operator's desk-type console shown
- in figure 1-1. The operator is shown wit;h the Flexowr_iter‘, and a logging
typewriter is shown on top of the console control pénel.v Section A inc;ludes

a functional description of console operating countrols.

ANALOG INPUT AND OUTPUT

Conver sion Capabilities.

The analog ‘input-output e'quipment‘c,o'n.tained in the basic computer
converts voltages from measuring instruments into digital form, and con-
verts digital information from computer memory into voltage or curreunt at
- rates up to 3,840 conversions per second. Throughout this manual, the in-
puts from measuring instrumenﬁs and transducers are called "analog inpgts"
and the out?uts to controllers, recording instruments, etc., are called "ana-
log outputs''.

The basic computer accommodates the circuits re.quired to accept
"up to 32 aﬁalog inputs and provide up to 36 analég 6utbuts. By installing re-
lays and associated circuits in an upright cabinet similar to that shown in
figure 1-1, the number of analog inputs can be éxpanded to 1,024; installing
additional analog output modules in an output cabinet enables the number of
analog outputs to be expanded to 128.

In most control installations, the auxiliary analog input cabinet
contains an oven for maintaining at a constant temperature the junctions be-

tween the thermocouple leads and the syétem wiring. ‘The auxi'liar.y'analog

1-11

-Analog Input and Output -- Continued

Figure 1-1

RW-300 and Peripheral Equipment

cabinet also accommodates amplifiers for raising the amplitude of low-
level instrument signals (e. g., thermocouple voltages) to a level com-
patible with the computer's analog-to-digital conversion circuits., The
cabinet also contains filters for removing hum and noise vfrom incoming
instrument lines.

Equipment in the computer (and in the auxiliary analog cabinet)

operates as an independent subsystem, so that information from

1-12

Analog Input and Output -- Continued
measuring instruments is constantly converted to digital form, and the latest
digital representation is stored in memory without programmed instruc‘tions.
Siimilarly, when new operating parameters have been computed and stored
in memory by the program, these latest values are converted to analog form
and transmitted to control instrumentation. The digital-to-analog conver-
sions are also performed automatically, and do not héve to be programmed.
The analog converter is time-shared amon'g inputs and outputs.

Analog outputs are updated (adjusted to correspond to a number Vstor}e‘d
in memory under program control) automatically at least once every 1/30
second. The frequedcy at which analog inputs .are updated (input voltages con-
verted to digital form and stored in mémory) depends upon the particular in-
stallation. For a basic system (32 VOltage gates, 0 relays), the inputs can
be updated every 1/30 second; for a system‘employing 1, 024 inputs, the ‘in_-
pgt information stored in memory can be updated every second, but under
severe noise conditions, where filters are employed, the inputs may be up-
dated every two seconds, four seconds, or eight seconds to ai'léw a stabiliza~
tioq period for the noise filters. Actuall_ly, the analog input-output system is
flexible and is furni-shegl to meet the needs of each application. A‘nalo’g input
information can be converted and stored at the maximum rate of 3,840 sam-
ples per second. Longer delays between input samplings are also possible
to pi’ovide a stabilization period for transducers.

Systems can be changed or expanded by means of field modifications.

Thus, a system can be installed initially as a computing data logger and

1-13

Analog Input and Output ~-~ Continued
later, by connecting the analog outputs of the computer to c,Ontx"ollers, can
be expanded to an automatic control system.

Analog signals other than d-c voltages, such as pressures, a-c volt -
ages, etc., are converted to d-c voltages by the use of transducers or spe-
cial converters. Amplifiers and filters are provided for low-level signals
from ';hermocouples and strain gages. Analog»to«-digitai and digital-to-
?nalog conversions are accufate to i’ 0.~65 percent of fu.l'l'sca,l_e°

Input Conversion Range and Number Rlepre sentation

Two types of analog input capabilities are availabie: (l)‘ a unipolar
converter which converts to digital form voltaéeé i.n the range ffom 0 td |
| + 10. 23 volts d-c, and (2) a bi_=15613;r "corwel;t.e'r whiéh converts to digital
“forr:n voltages in the range from -10, 23 volts to'+‘10.‘23 volts.

When conve:?g@ tqv_‘.d_igital form, the analog :sigﬁals é,re represented
by 10 binary digits. Because the leas.t.;significant digit répresents a con-
version resolution .of 10 millivolts, the conversions are ac.curate‘ to t5
millivolts, or * 0. 05 percent of full sca.le.

.In a-unipolar system, the digital equivalent of the analog _output'sig—
nal is contained in bit-positions 8 through 17 of a computgr_ word, w1th the
most-significant bit in pbsition i7, Using a bi-polar system, the magni-
tude bits are in bit;positions 8 through 17,,.Aand the sign bit is in bit-posi-
tion 18. -.

.As an example, as'smime. that oﬁe of the Var'iableé to _be meaéuréd is
temperature, ar;d' as‘surr;e that the range of values for the temperatqrg read-

ing is 200 to 700 degrees Fahrenheit. A continuous analog representation

1-14

Analog Input and Output «- Continued,
of this variable can be developed by a thermocouple and an ampliﬁér to take
'tlhe form of a voltage with a range of 0 to 10. 23 volts. The analog s'ubsys,tem
will sample this vojltage’i develop a 10..digit binary representation of the
voltage, and store it in a specified location on the magnetic drum. The mdst
significant of these 10 bits will be in bit-éosition 17 of a computer word, the:
least significant in bit-position 8, In a upipolar system, the sign bit and
bit positions 7 through 1 are set to zero for analog inputs and ignored for
analog outputs. Since the exact memory lécation fo;' each input which is
converted to digital form will be knowa to the programmer, it will be nece4s-
sary for the program to refer only to that location and interpret the binary
aumber stored.

Assuming a linear relationship between degrees F:éhrenheit and

voltage, a table of values for these representations could be as follows:

Degrees Fahrenheit _ . Volts N }Bi,na:y_Representation
200, 0 - 6.00 | 00 00 00 00 00
200: 5 0.01 00 00 00 00 O}
205, 0 0.10 00 00 00 .10 10
250, 0 . 1.00 00 0L 10 01 00
325.0 250 .00 11 11 1Q 10
450,0 . 500 - ~0F 11 11 01 00
575.0 7. 50 1611 10 11 10

700, 0 10,00 d1 11 10 10 00

1-15

Analog Input and Output - Continued

Input Storage Locatigns

Analog inputs are stored in tracks 08 through 15 of the arum. If 128
'if;put»s are required, » only track 08 would be used, but for 1, 024 inputs, tracks
08 through 15 would be required. Not all sectors of a track need be used for
inputs, The exact number of seétors and tracks used depends upon the num-
ber and type of inputs required for a particular system, and assignments are
made to.minimize equipment requirements, cost, and memory space for the
p;articu‘lar application,

In a track reserved for analog input data, unassigned sectors cannot
be used for general program storage.

Output Conversion Range and Number Representation

Each analog output is capable of controlling the voltage or current in
its load to an accuracy of t 0. 05 percent, and is capable of supplying a cur-
rent of 5 milliamperes to a transducer or -controller.

A maximum analog output current of 20 milliamperes can be supplied
- at the customer'’s option.

A binary number to be convertéd to analog form is written into a spe-
cific memory location by the program. The binary number for analog outputs
occupies bit-positions 8 through 17 of the computer word; with the most-sig-
nificant digit in bit-position 17, and the least-significant digit in bit-position 8.

For '""voltage' type analog outputs, the voltage applied to a controller
or transducer may be from 0 to 10, 23 volts. To apply 10. 23 volts to the load,
bit-positions 8 through 17 of the corresponding me@ory sector are filled with

ones under program control. The relationship between a number in memory

1-16

Analog Input and Output -~ Continued
and an analog output voltage is linear, so that the output voitage is equal
to the decimal equivalent of the number in memory (taking i)it-posiﬂzidn 8 as
the least-significant bit) times 0, 01 volt. Three of the 1, 023 possible valueg

are tabulated below.

Binary Number in Analog Voltage Across Load
Output Sectqr of Memoxry (max, current = 5 ma)
011111111110000000 10, 23 volts d-c
010000000000000000 : "~ 5.12 volts d-c

- 000000001100000000 0.06 volts d-c

In some applications the voltage applied to the load (controller) is
not as important as the current through the load. For these applications
a precision resistor is placed in series with the load, and the analog out~-
put is connected to control the voltage across the precision resistor, thereby
controlling the current through the load. Although the relationship between
the. load current and the number in rﬁemory is 1inear, the number in mem-
ory must be scaled an amount determined by the ratio of the load/metering
resistance. If the load and metering resistances are equal, one half of the
analog output voltage appears across the load, and the other half appears
across the metering resistance. In this case, maximum current through
the load and metering resistances is obtained when the program writes:

18 o 1
010000000000000000

in the appropriate analog output sector. Writing a larger number into the

analog output sector could cause a nonlinear relationship between the output’

1-17

Anélog Input and Odtput ~=- Continued
and the number in memory, and in some extreme cases might'damage that
specific analog outp‘vut circuit,

The exact configuration of the analog c;utput circuits b(voltage output
or currént output) is determined by the type of controller, transducer; in-
strument, etc., thaf forms the load for the analog output. During the plan-
ning stage of an installation, the programmer is advised of the limits,
linearity, response time, and other factors that affect the program. The
éector numbers that will control analog outputs are also determined ‘during
the planning stage.

Output Storage Locations

Analog outputs are taken from track 07 by the analog converter.
Track 07 is program writable; any portion not used for writing analog out-

puts may be used by the program for other storage purposes.

MAGNETIC TAPE UNIT

Introduction

The RW-300 Magnetic Tape Unit provides practically unlimited mem-
ory capacity for data reduction and control applications requiring more stor«
age than the basic drum memory provides. The computer and magnetic tape
unit form a system that is used for on-line data acquisition and processing,
for recording historical data, for table look-up, and for preparing tapes for
analysis. by an IBM 700-series data processing system. Data is then trans-
ferred from the drum to the tape for temporary or permanent storage. For

interpretation, analysis, and presentation with the RW-300 computer, raw

1-18

Maguetic Tape Unit -- C§ntinue'd
data is transfe rrea back to the computer. Auxiliary pr'og‘:raijns and subroutines
aré also transferred from tape to tbe‘ ‘dru:m. Tranéfer of digital data between
the tape 'unit. and the computer is accorﬁplished'_through a magnetic core buffer.

Two mbéels of the RW-300 Magnetic Tape Unit are available. If the
"standard" unit is employed, data stor‘ed on the tapes must be transferred
- back to‘fhe' RW-300 for reduction and presentation. Another model of the
RW-300 Magnetic Tape Unit, called the '"compatible" tape unit, prepares
magﬁetic tapes in a format that is acceptable to some models of IBM mag-
netic tape units. Thus, data stored by a "‘compatible"'RW—300' Magnetic Tape
Unit can be processed either by an IBM system, or by the RW—300.
Description

The magnetic tape unit consists of one magnetic core buffer and from
one to eight magnetié tape transports. Figure 1-2 showsv the RW-~300 and
one element of a magnetic tape unit. In the figure, the six-foot rack contains
the buffer, buffer controls, and one tape transport with associated writing
and power supply circuits. Similar cabinets are used to accommodate ad-
ditional tape transports and associated writing and power supply circuits.

The buffer has a capacity of 128 computer word;; of 18 bits eéch.
This amount of information is commonly called a "block' in fhe standard
_ tap;a unit and a '""record' in a compatible tape unit.

-In the "standard" magnetic tape unit, a tape calibrator is used to
establish specific writable blocks (no defects) on the tape, and these blocks

may be written into individually, without disturbing the contents of other

-1-19

Magnetic Tape Unit -- Continued

Figure 1-2

RW-300 and Magnetic Tape Unit
blocks on the tape. The tape calibrator automatically rejects any areas
of tape that are of low quality. |
Format characteristics of a '"compatible' magnetic tape unit

réquire that the entire length of the tape be used for sequential storage

1-20

Magnetic Tape Unit -- Continued
of all records. Therefore, when a record is rewritten on a tape inthe 'com-
patible' system, all succeeding records within a 'file" must also be rewrit-

ten.
Each transport holds one reel of tape with a capacity of approximate-

ly 730, 000 cemputer words for the '"'standard" unit and 1, 000, 000 computer
woids for the ""compatible' unit, The magnetic tape unit transfers data at
the maximum usablé. rate of 1,536 words per second.: An eight-transport
s;yste‘m can record dat_a' _automatically at the maxirmum rate for nearly 70
minutes. Since the tape reels are easily reélaced, 'the' data-recording per-
iod may be extended indefinitely.

The transpoi’ts are modified Ampex FR-400 digital tape hvandlers
operating at 75 inches per second in the write, seafch, and read modes and
rewinding at 160 inches per second. Each transport accommodates 2400
feet of st.andard 1/2-inch magnetic tape wound on a 10 1/2-inch reel.

The buffer is:‘a specially de ‘s‘igr-led assembly, which in addition to
the core storage includes control, parity generation and chec%cing, error
- sensing, timing, and power circuits. Parity checking and error surveillance
are provided to prevent loss and inaccuracy of data during transfers to and k
from magnetic tape.

Operation

The computer program controls the norm_a;llg, a.utomaj:ic operatio’n of
the magnetic tape unit, Thg ‘magnefi'c tape unit furﬁishes errof—condition
signals 1%0 aid this control, and has manual controls and indicators for non-

automatic operations,

1-21

Magnetic Tape Unit ~- Continued
A single computer command with a number of varié?;ions determines
the mode of operation of the magnetic tape unit, This com;nand causes the
unit to transfer data, search, rewind, or back space., Data is tran;sferred
as follows:
a. from computer to buffer
b. from buffer to tape
¢c. from tape to buffer
d. from buffer to computer
To locate data recorded on tape, the computer searches the tape
while it is traveling either forward or in reverse uatil a specified r‘écord
address (first word‘of the record) is found.
The tape unit provides the computer with indications of six conditions
that interfere with the transfer of data. These conditions are:
a. buffer power supplies inoperative
b. buffer in use
c. tape error (parity violation)
" d. transport inoperative
‘e, end of reel
f, write amplifiers disabled
During- the last three conditions; the unit causes the computer to st‘op if it
attempts to transfex: data.
Computer commands related to the magnetic tape unit are described
briefly in Section II; andimore complete operating information is contained

in a separate manual,

1«22

Magnetic Tape Unit -~ Continued

Specifications

Number of buffers: one.

Numbef of transports: one to eight.

Power: 120 volts, 60 cps.

Type of buffer: rﬁagnetic cere,

P‘hysical characteristics of buffer: mounted in one tape transport.

Capacity of buffer: 128 words of 18 bits each (one block), or 64 wordé
| of 36 bits each (one '"record" in a 'compatible"

system).
Type of tape t?ansport: modified Ampex FR-400 Digital Tape Handler.

" Dimensions of transport: 72 in. high, 23 in. wide, and 24 in. deep.

"Standard" Tape Unit "Compatible'" Tape Unit

5 . 150 lines per inch, 200 lines per inch,
‘Recording Density 8 bits per line 7.bits per line
NumBer of data bits v 6 . 6
Nuxﬁber of timing bits 1 .0
Number of parity bits 1 | ; 1
Tape width 1/24in. 1/2 in.
Tape length 2400 feet 2400 feet
Tape reel 10 1/2 in. 10 1/2in.
Tape speed forward | 751n., /sec. , within "~ 75 1in. /sec., within
or reverse 1% ‘ 1%
Tape rewind speed 160 in. /sec. | 160 in. /sec.
Niax,imum bit rate | 11. 25 kps | 15 kps
Minimum bit time . 89 us. 66ps.

1-23

Magnetic Tape Unit -- Continued

"Compatible" Tape Unit
200 lines per inch,

""Standard" Tape Unit
150 lines per inch, -

Recording Density

8 bits per. line

7 bits per line

Record length (128 words) 2. 58 in, 1.92 in.
: Ir.xterb—record spacing 2. 72 in. 0. ’(5 in.
 Records per 2400-foot tape 5440 10, 800
Allowable record numbers 218 218
Record time 34,4 ms. 25, 6 ms.,

Maximum usable data
transfer rate’

- Number of heads _

1, 536 words/sec.

8 read;
8 write

1,536 words/sec,

7 read;

7 write

 SECTION II

INSTRUCTIONS

INTRODUCTION

An instruction in the RW-300 is composed of two computer words.
The first word contains an executiqn code and an operénd address. The sec-
ond word contains an operation code and the address of the next instruction
toibe performed. An instruction is written by the programmer in the_ follow-

ing form:

execution operand operation next-~instruction
code address code - - address .

The exact form taken by the instruction in the memory and the forinat for
listing instructions are described in Section III.

There are 21 basic operation codes in the instruction repertoire of
the RW-300. However, many more than 21 commands are available, because
computer response to certain operation codes is modified by the execution
code and the operand address.

In the paragraphs which follow, each of the operation codes is des -~
cribed in conjunction with the variations made possible by e:;ecution codes
from 00 through 31 and by operand track addresses from 00 through.63. The
sector number associated with an operand address does not modify the op-
eration codes, nor are the operation codes modified by the track and sector
numbers of the next-instruction address. In describing the operations, the

following notation is used:

Introduction -- Continued

‘ a, "A'is us;g-:d to designate the A register,
b, "B'"lis us;ed to designate the B register,
c. - '"M" is used to designate tﬁe memory location spgcified by the
6perand fa.;ddress.
- d .Parven‘theses are used to désignate "'cont’exv’xts of''; (A) means the
contents of the A register,
e. Arrows are used to designate ”replagesf'; (A)~>5(B) means the
contents of the A register replace the contents of the B rggister.
Figure 2-1, located at the end of this section of the manual, cpptains
‘examples which sh‘ow»howv different operation codes affect the contents of

arithmetic.registers and memory.

LOADA . . (M)—»(A)

Decimal Code: 29

Mnemonic Code: LA

Operand Address: specifies the location of the num-
ber (M) which will replace the -
contents of the A register,

_ R Y
Execution Code: does not affect operation--use any

- numberfrom-00-through-31
The contents of M replace the contents of the A register, The ‘B

register is-unchanged.

LOAD B C (M) =~ (B)
Decimal Code: 07
Mnemonic Code; LB

Operand Address:

Execution Code:

Load B -- Continued
specifies theﬁ 1oéation of the num-
ber (M) which Qm replace the
contents of the B register,

oD

does not affect operation--use any

number—from-06-threugh-31, »

The contents of M replace the contents of the B register., The A

register is unchanged.
LOAD A NEGATIVE = (M) =3 (A)
Decimal Code:

Mnemonic Code:

Operand Address:

Execution Code:

21

LN

‘spec.ifies the location of the
number (M) which, with sign
changed, will replace the con-
tents of the A register.

does not affect operation--use 0O

any-numberfrom-00-through-31.,

The contents of M, with sign changed, replace the contents of the A

register. The B register is unchanged.

STORE A (A) —=—(M)
Decimal Code: |
Mnemonic Code:

Operand Address:

30

SA

specifiés the location M in which
the number 1n the A register will

»be stored

Store A -- Continued

Execution Code:

doe s not affect operation--use aay

nmrberfmnrﬂ@“thrwghm .

The contents of the A register replace the contents of M. The A

register and the B register are unchanged.

STORE B

(B) == (M)
Décimal Code:
- Mnemonic Code:

Operand Address: .

Execdtion Code:

20

sB

specifies the locatién M in which
thetnu»mb’exl' ‘in the B 'register will
be stored.
) DD

does not affect operation--use mmy-

number- from..00.theough-31.

The contents of the B register replace the contents of M. The A

register and the B register are unchanged,

~ADD

(A) + (M) —=(A)
Decimal Code: |
Mnemonic Code:.
Operand Address:

Execution Code:

25

A

specifies location of addend, (M).
O

doe s not affect operation--use any

mrhbe.‘r.».fx{dm, 00 through-31,

The contents of M are added algebraically to the contents of the A

register; the signed sum replaces the previous contents of the A register.

If the sum is zero, the sign of the A register is unchanged. The B register

is unchanged.

2-4

Add -- Continued

If the number of significant A-register bits and/or ?he pun}ber‘of
significant M bits is 17, an éddi,t';on command can result iﬁ a carry bit that
éannot bé accémmodated in the Ali register. The carry bit, representing the
most;significant bit of the sum, "overﬂbws" the- A' register and is lost.
Overflow does not halt the computer, but turns on t{he‘overﬂ.ow indicator.

: OVerflow can be detected by :use of thé transfer command: VTY'ransfer on
Cverﬂow.

To obfain ;neaningful results from ah Add ipstruction', it is necessary

' ‘.that_th'e_‘a'ugen’dl(,A) and the addend (M) _have ihe same scale fact@r’.:. S.caling. ‘

conside r‘atiboné' are described in Section VIII,

SUBTRACT (A) - (M) —>=(A)
Decimal Code: | 24
Mnemonic Code: S
Operand Address: specifies. location of subt;jahend,
(M).
o O
Execution Code: - ' does not affect operation--use any

numaber.from<00-through-31,
The contents- of M are subtracted algéb,raically ffom the contents of
_ the A register;.the signed differeﬁce replaces the previous contents of the
A .regis‘te‘_r. If the difference is zero, the sign of the _‘A-v'registe'r is unchanged.

The B register is unchanged.

2-5

Subtract -- Continued

.Ove rflow can oc?:ur under the same conditions as specified above for
the Add command. The minuend and subtrahend should have the same scaleA
factor, as ‘discuséed in Se ction VIII, .
 SHIFT | Decimal Code: 01
| " Mnemonic Code: SH

Operand Address: | specifies thé type of shift,
Execution Code: | speciﬁés number of piaces to be ,‘

- shifted.
The track number in the operand address specifies the type of shift
' _as follows:

Operand Track Address - Type of Shift

Track 00 through 15 ‘ - shift (A) right; (B) unchanged.
~Track 16 through 31 - shift (A) left; (B) unchangéd.
Track 48 through 63 shift (A) left; (B) left into A.

The execution code specifies the number of places to be shifted. Any
“number from 00 through 31 can be used t§ obtain an instructién for shifting
- from 00 through 31 places. The sign bits of the A and B registers are un-
changed by the Shift command.

The twb types of shifts involving only the A register are opeh—ended,
so that ‘bits shifted off either the right or the left end of the A'regist;r are
| lost. When A is shifted right, the bit positions vacated at the left end of the
A register are filled with zeros.. When A is shifted left, the bit positions

vacated at the right end of the A register are filled with zeros; any non-zero

2-6

Shift -- Continued

bits shifted off the left end of the A register turn on the overflow indicator, -

(Overflow can be detected by using the Transfer on Overflow command.)

When both the A register and B regiéter are shifted left, the two

registers are coupled together so that the most-significant (17th) bit of the B -

' register moves to the least-significant (1st) bit position of the A register.

- Bit positions vacated at the right end of the B register are filled with zeros.,

Bits shifted off the left end of the A register are lost, but non-zero bits turn

.-on the overﬂow indicator. ‘

,,,,,, e P

of two.

/

7

The Shlft command may also be used to multiply or divide by/powers

e

iftmg regin\er contents left one place 15 equwalenl\to fﬂ'xuluplymg
J{

by two, 'and '1£t1ng r;g}xt one place d1v1des by two. TW’“@fWhe -execution-.

\

TRANSFER ON NEGATIVE

Yy

Decimal Code:
Mnemonic Code:

Operand Address:

~ Execution Code:

eedemMua;, t;hé\i cale factor is. degcribed in- conmndjsi‘bn w{"th scaling in

’

09

TN

‘becomes the next-
instruction address if
th@ A register holds a
negative number. J |

does n'et affect

[
operation--use any
numbesr.{rom-0¢-through

Traﬁéfer on Negative -- Continued

If the sign of the A register is negative, the operand address becomes
the n_ext—instruction address. Otherwise. the next-instruction address re-
mains as specified in the program lisfing. The A register and the B register .

are ynchanged, A zero with a negative sign causes transfer to occur.

TRANSFER ON ZERO Decimal Code: 11
Mnemonic Code: TZ
Operand Address: becomes the next-instruction

address if the number in the .
. A register is zero.

Execution Code: does not affect operation--use 0@

If the contents of the A register are zero (plus or minus), the operand
address becomes the next-instruction address, Otherwise, thé next -

instruction address remains as specified in the program listing. The A -

~ register and the B register are unchanged.

TRANSFER'ON OVERFLOW - Decimal Code: 10
Mnemonic Code: TF
| Operand Address: becomes the next~

instfuction address if
the overflow indicator

is on.

2-8

Transfer on Overflow -- Continued

Execution Gode:

does not affect
‘ o0

oper ation--use ammy

If the overflow indicator has been turned on since the last Transfer on

Overflow command, the operand address becomes the next-instruction ad-

dress, and the overflow indicator is turned off. Otherwise, the next-

instruction address remains as specified in the program listing. The A

register and the B register are unchanged.

COMPARE MAGNITUDE ..

Decimal Code:
- Mnemonic_Code:

‘Operand Address:

Execution Code:

15

.CM

specifies the location of
the number (M) to be com- -

pared' with the number in

-the A register.

if the comparison of ab-

solute values indicates

that,ﬁbe number in the A

register is smaller than
Y

the number in memory,

- the next-instruction ad-

dress if formed by adding

the execution code to the

- 2-9

Compare Magnitude -- Continued

(A) (B) ' next-instruction address

initial
specified in the program

l(A,! initial\- I(M)‘ '_"*(A)final

listing.
The magnitudek of (A) is compargd with the magnitude of (M) by sub-
’tracting fhe absolute valtJ;e of the number in the specified memory location
" from the absolute value ‘of the number in the A register. At the conclusion of
t?_,}xe instruction, the B register hoids the number originally in the A register, .
and the A regist‘ef holds the (signed) difference between the ébsolute values
of (A) and (M). Overflow éannot occur,
If I(A)I is equal to or greater than l.(M)| , the final contents of the
A register will be positive, and thve" cbmputer will read the next instruction
from the location‘specified‘as the next-instruction addx;ess .ip the program
listing, |
oI ’I(A) I is less than |(M)|, the final contents of the A ;'egister will
be negafive, and the computer will read the next instruction from aln address
- formed by adding the execution code to the next-instruction gddréss skpecified
‘in the program listing. The addition performed to form a név& next-instr’ﬁctiqn
address is modulo 128, meaning that the track number of the:/next-instru.ction '
address will be unchanged, and only the sector number will be mddif_ied.
(Example:‘ if an execution ’»c‘ode of 20 is added to sector 120, thg new sector

number will be 20 + 120 - 128, or sector 12 of the ﬁrack originally specified.)

'EXTRACT C(A) ® (M)——(A)
Decimal Code: 05

- Mnemonic Code: EX

Extract -- Continued

Operand Address: specifies the locétion of the num-
be»r (M) to be u;ed for 10gica}.
multiplication of 'the contents of
the A register,

' o0
Execution Code: = does not affect operation--use any

number%fom*‘%‘t}meughm}}. \
The logical prodﬁct of the contents of the A regis.;ter’ and M replaces
the contents of the A register. All 18 bits are used, Each bit (including .the,
sign bit) of A is matched with the corfes’ponding bit of M, When the corre-
sponding bits .Qf both A and M are ones, a one rema'i.ns in that position of A,
When the co'rresponding bit of eithejr A or M is zero, a zero replaces the

contents of that position in A, (The Extract operation is described in Sec-

' ‘t‘ion V.) The B register is unchanged.

MERGE - (A) @ (M)—=(A)

Decimal Code: 31

Mnemonic Code: MG |

Operand Address? specifies the location of the num-
ber (M) to b, logically added to the
contents of the A register,

N R o
Execution Code: does not affect operation--use any

numbe%—ffeiﬁ—&&thmghﬂ.
The logical sum of the contents of the A register and M replacés-the
contents of the A register, Logica-l addition is performed bit-by-bit, and all

18 bits are used. Each bit of A is matched with the corresponding bit of M.

2-11

Merge -- Continued

When the corresponding bit of either A or M, or both, is a one, a one re-

places the contents of that position in A, When the cor.responding bits of both

A";md M are zeros, a zero replaces the contents of that position in A, The

B register is unchanged.
SWITCH Decimal Code:
 Mnemonic Code:

Ope rand Address:

Execution Code:

Operand Track Address
I’?ack 00 through 15
Track 16 through 31
Track 32 through 47

Track 48 through 63

02
SwW
specifies the type of switch
0o

does not affect operation--use any

number.from-00-threugh-31,

Type of Switch

.(A)---)——(B); (A) un(lzhanged :

(B) —>»=(A); (B) unchanged
(A)—e>(B)

0 —»(A), (B)

Four types of switches are possible, depending upon the track number"

specified in the operand address.

For any track address from 00 through 15, the contents of the A‘reg-

ister replace the contents of the B register, and the A register remains

unchanged,

For any track address from 16 through 31, the contents of the B reg-

ister replace the contents of the A register, and the B register is uncl;hanged.‘

For any track address from 32 through 47, the contents of the A and ‘

B registers are interchanged.

2-12

Switch -- Continued

For any track address from 48 through 63, the contents of the A and

B registers are cleared.

STOP (A) unchanged, (B)» unchanged

Decimal Code: : : - .00

Mnemonic Cﬂode“: ‘ ~ SP

Opéréind Addres;s:‘ does not affect |

, , OO0 ~ 00
operation--use a®my.
2= £romi=00

theough-63-and.any
sector-number-from
00-through-127.

‘Execution Code: =~ | does not affect

Tz
operation--use any

m’xmbe«p;-r—emmoo
through 37,
The Stop coﬁmmd halts the pr.ogré._m. If the RESUME button on the
operator's control panel is pressed, the computer reads the next instruction
from the location specified as the nexf; -instruction addf’ié‘ss in the progrdm

iisting.' The'A and B registers are unchanged,

DIGITAL ~ Decimal Code: - 06
i Mnemonic Code: - DG
Operand Addre#s: specifies the input or output device.
Execution Code: for digital input, specifies number

of bits taken in and their position

2-13

Digital -- Continued
in the A register; for '"oune -bit"
digital outputs, specifies on or

off control,

Opei‘and Track Addreés Type of Digital Command
00 through 31 - Digital output from the A register
32 through 63 ' Digital input to the A register

Inputs .frorn digital devices NW&@M&WF-MMewr'i%e%‘;wj:jg;pq;jge@dﬁ:nsr,
e&@w:)}lreplace the contents of the A register,

- Eighteen input lines form an "inpﬁt group' that is assigned a specific
track address. An execution code of 18 results in all 18 lines being read into
the A registér, replacing the previous c.ontents of the A register.

Outputs to digital devicés (~l:i=gnhts::‘,‘::zrlammsgr-:dcsrﬁitrﬁl‘s..,‘:fE:lfe:xuwfi‘ii't-”er,
logging-typewriter, etc.§ are controlled by the A register.‘ The contents of |
the A register are unchanged by a Digital output command. E.ighteen output
lines form an 'output group'' that is assigned a specific track address,. and
each line in the addressed group has a corresponding ‘bit position in the A
. register, ‘

In the case of "multi-bit" outputs, all 18 lines in an addressed group
are set on-or-off to correspond to the one-or-zero bit. pattern in the A
register,

In the case of "one-~bit' outputs, one or more lines in an addressed
group can be controlled without disturbing the other lines iﬁ the group. A »

‘one is placed in the A register bit position(s) of the line(s) to be affected by a

Digital -- Continued

specific Digital output instruction. An odd-numbered execution code turns

‘the affected line(s) on; an even-numbered execution code turns the affected -

line(s) off.

The,..u.s.e..o‘fﬁ.the;mngita-1~~~e-omm“an'dv~inf conjunc -tieﬁ~»-rwithi:!~spe cifie-input-and-

outpu%ﬂeeqwipment::i;a;::dﬁ:ﬁﬁnibé,d?;»in;.-s ection-V;That-section-also-liste-track

a&drers:s#eﬁfmzeammonlywa:s"si“gﬁ‘é"d‘t‘0“"‘spé‘”éffi”éi"»‘é“éi“&iﬁmﬁ‘e’m.\ Note that the "track!'

address assigned to specific equipment has no relationship to drum tracks in

computer me'mory; The track number in the operand address of a Digital

instruction does not refer to memory at all, and only has significanée in the

selection of the input or output device.

NO OPERATION

(A) unchanged, (B) unchanged
Decimal Code:
Mnemoni‘c Code:

Operand Address:

"Execution Code:

03

NO

does not affect
o000

operation--use any

© treelk-nmumber-from-00
' thr«e‘urg‘h@é%wvand'-'a:ny

dector number -from

O6-threugh 127,

does not affect

< o
o

operation--use any

‘nuwmbexr-from 00

thmu»g»h«»&l .

2-15

| No Operation -- Continued

This command causes the computer to transfer uncox}ditionally to the
next-instruction add;~éss in the program listing. The coptents éf the A reg-
-ister and the B yegister are not affected. The No Operation code is useful in

conjunction with exit instructions in arithmetic subroutines.

TAPE . , Decimal Code: 22
Mnemonic Code: = TA
"Operand Address: specifies the track of the computer

memory that is to be tryans_f:e:rred'
to magnetic tape;_speqifies t.hc
mode of operation.

‘E;.cevcution Code: | _ . specifies whether informva.t‘ion_v
from the fape is to be placed in
track 14 or track 15 of the com-
.puter’memofy; addresses a spe~
cific tape 'tré,nsport.' ’

TFhe--characteristics.and applic ativvq,nfs .of the.magnetic tape-unit-are |
' de.su@;:ibe;émbrieﬂy““iﬁ“‘S"’é’ ction I. | '

I.nformatioﬁ is transferred between the computer drum and fnagnetic
tape through the magnetic tape unit's buffer-. Information is transferred in
blocks of 128 words each., An :i:denfifying word, recorded as the first word
in. a bloék of informéfion on the ﬁiagneti; tape, permits the tapes t‘o;’blye
searched for specific blocks of informatién.

De’eaa'r}e&pfegr.a,mming_a.n.d,,opé.r‘a«ting—»»»ixrfovmationwforethewR”W"“’W
Magneti'e“’f"ap‘e“tfnit“ismcont&iuneﬂd»-inﬁmp“afr’ate;maﬂua»l«

2-16

Multiply

- MULTIPLY (A) X (M)—(A, B)
| Decimal Code: 16
Mnemonic Code: | M
Operand Address: specifies the location of the
multiplier (M),
Execution Code: specifies the number of multi-

plier bits used to derive the
product, and specifies the num-
ber of product bits in the B
register. | |

The contents of the A re»giste'r are multiplied by thé contents of M.,
The 6rigina1 contents of the A and B registers are replaced by the product,
The signs of the A and B i'egister's agree, and are the algebraic sign of the -
product. To obtain a meaningful product, the execution code "E" must be
equal to, or greater than, the number of significant multiplier bits in M.
Overflow cannot occur.

The number of product bits generated by a Multiply instruction is
equal to the total number of significant bits in the multiplicénd (A) and multi-
plier (M). (Depéndi}ng upon the magnitude of ?he multiplier and multipli\c;and,
the number of significant product bits may be one less than éhe sum of mulf:i-
plicand and multiplier bits.)‘ To accommodate all product bits, theA’B registef

serves as an extension of the A register, There will always be "E!'' low-order

product bits in the B register; the high-order product bits will be in the A

2-17

' Multiply -- Continued

_ rggister. Thus, the execution code can be used to control the apportionment
of product bits between the A and B registers,
'Sec:t'ion VIII of this manual tells how the e#ecution code af;fects. the
'bsgzale factor of the product, The paragraphs below contain examples which
- show how different execution codes affect the results of a Multiply instruc-
tion, In ti’le examples, "0000; .«. ' indicates leading zeros; MXXKK, o 0o
ihdicates significant bits, which may be some combination of‘ones and zeros,
Sign bits.a.re not shown,
In tﬁe following example, thg number of multiplicand (A) bits is 17,

and the numbér of rﬁultiplief (M) bits is 13, -

&

}—4———- A Bits = 17 = | ,~=M bits = 13 ———3,
‘ : ')

] ' H

XXXXXXXXXXXXXXXXX|tirhes|]0 0 0 Olx X X X X X X X X X X X X

'

N /
(A) (M)

To obtain a meaningful product, the execution code "E'" must always be equal .
to or greater than the number of multiplier bits. In the example, there are a
total of 30 bits in the multiplier and multiplicand, so the nﬁ-mbei‘ of product
bits will be either 29 or 30. With a "minimum!'' execution code of 13, the B
register will contain 13 of the low-order product bits. 1

For E = 13, the product is:

| = A +'M Bits'#/30 - . e

{ }]
XXX XAXXXXXXXXXAXXX xxxxxxxxxxxxx:OOOO

16 or 17 bits (A) (B) 13 bits

Depending upon the magnitude of the multiplier and the multiplicand in the

example, either 17 or 16 bits will be in the A register. For execution codes

2-18

Multiply -- Continued

greater than minimum, the‘ product bits are shifted right; fewer product bits -
are obtained inthe A register, .and more product bits are obtained in the B .
fe_gister. An execution‘code of 17 always results in complete multiplication .
using all 17 multiplier bits.

: For E = 17, the product is:

| —— A + M Bits = 30 ' -
" ! ' ’
"0000:xxxx-xxxxxxxxx XXXXXXAXXXXXXXXXXX
.m WV‘
' 12 or 13 bits }A) (B)/ © 17 bits

In the above example,_ it was shown that a minimum execution code (an
execution code equal to the number of rﬁultiplier bits) results in a maximum »
number of product bits in thé' A register., In the .example, there were 17
-multipiicand bits ifx the A register before multiplication, .'emd either 16 or 17
product bits in the A register after 'multiplication.' ‘The following generaliéa- :
tion applies tova'ny'Multiply instruction: After multiplication, the numbér of
significant bits in the A register remains the same, br is reduced by one,' if
lthé eXeéu_tion code does not exceed the number of multipliér bits. Also'é ”E'Y';
1ow~or‘der prbdu_ct bits are always shifted into the B registér.

| In the general case, the maximum execution code is 17, Ho§vever,
higher execution codes can be used to shift insignificant product bits (zerés) :
off the right end of the B register., This is illustrated by tt;e following

example:

| —=—A bits = 12— 1~ M bits = 9~
U]

0000_0:xxxxxxx-xx)000 times |0 000000 Oixxxxxxx 00
1 \ . :
(A) (M)

2-19

Multiply -- Continued

There are a total of 21 bits in the multiplier and multiplicand, sg the number
of"product bifs will be either 20 or 21. Also, there are a total of 6 zero bits _
in the least~significant bit pdsitions of the multiplier and multiplicand; there
will be at least 6'zéros_ in the 1éést-signiﬁcant bit positions of thé éroductl

The 6 Zero bité can be shifted off thé right end of the B register by using an
executibn code E =17+ 6 = 23, f‘or E = 23, the product is:

:-<-——-—-—-—--A + M Bits = 21-—-—-—-—'?—:

. 1 : . |
00000000000000000| [00lkxxxxxxxxxxxxxx{000000
' / i '
T I e stntmtmar™
(A) (B) 17 bits T
+ b zero bits ,
E=23

Caution must be used in assigping an execution code gréater than 17, If any.’
significant product bits i(ones) are shifted off the righf end of the B register,
the product ié not éimply ‘truncatecvl. -~ the bits that remain in the A and B
registers will be meaningless.

An execution cpde of 17 always results in a meaningful product, For
E = 17, the product is:

st A + M Bits = 21 |
OOOOOOOOOOOOO:XXXX XxXxxxxxxxxx000000
4 bits (A) (B) 17 bits

An execution code equal to the number of significant bits in the multiplier

always results in a meaningful product, For E = 9, the product is:

[A + M Bits = 21 Som |

00000 XXX XXXXXXXXX xxx000000'00000000
. \ ,
12 bits - (A) B) 9 bits

220

Divide

DIVIDE (A) + (M) —(A); remainder —m= (B)
Decimal Code: 26
Mnemonic Code: D
Operand Address: - specifies the location of the.

divisor (M),

Execution Code: specifies the number of

quotient bits,

.'I‘_he contents of the A register are divided by the contents of M. The‘
‘original contents of the A register are réplaced byv’che quotient, and the
original contents of the B register are replaced by the rémainder. The sign
of the A register is the algebraic sign of the quotient; the B register takes -
the sign of the dividend. If the ratio of dividend to divisor is one or greater,
the overflow indicator is tﬁrned on,

Basically, a Divide command yields one integer quotient bit, followed
vby a sefies of fractional quotient bits, Thus, the maximum l?inary quotient
, is"l. 11111....., and fhe ratio of the dividend (A) to divisor (M) must be less 7
than two. If (A)+ (M) > 2, the q_uotient. will not be meaningful, |

The number of quotient bits generated is always equal to the execu-
tion code "E'". The execution code cax;i be chosen to obtain a quotient with a
specific scale factor, as discussed in Section VIII. The efféi;ct of different
execution codes on the quotient is illustrated by the examples which follow,
In the examples, '"00000....'" is used to designate leading zero bits; -and
"xxxxx....'" is used to designate- some combiﬁatioq of ones and zeros that
‘represent significant bits., Sign bits are not shown.

Counsider dividend (A.) with 8 significant bits, and divisor (M) with

12 significant bits.

2-21

Divide -- Continued

] ' =
i~=A = 8 je— M = 12—y
t
; bits divided : bits
000000000 IXXXXXXXX, by 00000 IXXxXXXXXXXXXX
1 \ . /)]
: (A) + (M) a

Using an execution code of 1 cau.é.e's only one quotient bit to be generated.
'i‘he first quotient bit generated is the integer bit. In this example, the di-
visor is much lafger' than the dividend, and the integer bit is zero,

For E = 1, the quotienf and remainder are:

E =1 quotient bit -—% : { =z——17 remainder bits——-——-—x--}

00000000000000000 XXXAXXXXXXXXXXXXXX
) AN /
Integer—-—f‘ (A) (B) .

Using an execution code of 7 causes seven quotient bits to be generated: an

integer quotient bit, and six fractional quotient bits.
For E = 7, the quotient is:

:E = 7qu%ti1teqnt: | === 17 remainder bits——!
0000000000/0000xxx ' XXXXXXXXXXXXXXXXX

Integer._! AN /
Fraction\f————-——A (A) (B)
In the above example, the first four quotient bits are zeros because
the divisor has four more significant bits than the dividend. In general, the
minimum number of leading quotient bits that will be zero can bevpredicted
by subtfacting the number of dividend (A) bits from the number of divisor
(M) bits. The execution colde can then be chosen to eliminate M - A quotient

zeros by adding M - A to 17 to form the execution code.

2-22

Divide -~ Continued

In the example: E =17+ M - A = 21, For E = 21, the quotient is:

| | . .
[]
-~—]7 remainder bits-—-;-:

—~—F = 21 qudtienf bits i

)
¢
! - - ‘
10, 00 0 | XX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX
| S
W
‘Integer 17 fractional \(A) (B)
bit and quotient bits
.3 leading '
zero bits of
fractional
quotient

~ When an execution code greater than 17 is used; quotient bits are
lost off the left end of vt.:he A register. In the example, E - 17, or 4 qtiotient
bits were shifted off the left end of the A registef. An execution code as high
as 31 can be used, with the reéult thaf 31 -~ 17, or 14 quotient bits will be
lost. For execution codes greater than 17, E - 17 quotient bits aﬂ,_re always
. lost off the left end of the A register.
The overflow indicator is never turned on when zero or non-zero
 quotient bits are shifted off the left end of the A‘registe’r ‘during a divide in-
struction, The overflow indicator is only turned on when the quotient is one
or greater. A quotient greater than one always turns on the overflow indica~-
tor, even if quotient bits are not shifted off the left end of the A register.

In the following example, the quotient will be less than two, but may

be > 1 because there are as many bits in the dividend (A) as in the divisor

L

(M).

]
:-<- Abits""""*‘i / : 1 < M —1

: L]
00000_0000:xxxxxxxx divided by 000000000:xxxxxx,xx

N 7
(A) (M)

2-23

Divide -- Continued

Examples of quotients obtained using execution codes 1, 17, and 18 are tabu-

lated below,

If the quotient is equal to, or greater than one, the overflow indicator is

turned on.

For E = 1, the quotient is:

E = 1 quotient bit_-;b : ' ;-4'17 remainder bits-—»-s
3
000000000000000O0x]|; emainder islxxxxxxxxXxxxXXXXXX
—= IS / |
Integer = 1 if (A) T 1 4 (A) (B)
(M) : :

For E = 17, the quotient is:.

E = 17 quotient bits : 'V 17 remainder bits :
|E B §)) —E T g
XXXXXXXXXXXXXXXXX|; remainder isfx XXXXXXXXXXXXXXXX
o N s —— ' !
A - , YA (8]
Integer = 16 fractional ’
1if . quotient bits '
(A) = ,
T
(M)
For E = 18, the quotient is:
. . |
E = 18 quotient bits . b 1 17 remainder.bits '
- S § § - T |

X¥x X X XX XXX XX XXXXXXX]; remainder is [X XXX XXXXXXXXXXXXX

Integer 17 fractional (A) B)
bit lost quotient bits

if (A) T

- (M)

If there are more bits in the dividend than the diviSor, the quotient may be |
greater than two. If (A) + (M) < 2,(the quotient will always be meaningful;

if (A)+ (M) > 2, the quotient will be meaningless.

Divide -- Continued

$pecia1 Cases:

If the dividend and the divisor are both zero, the "E'' quotient bits wﬂl
be all ones (with tl;1e appropriate sign), and the remainder will be all zeros,

If the dividend is non-zero and the divisor is zerc’>, the‘ quotient (with
E = 18) will be all ones (with the appropriate sign) minus. the dividen&. The
;‘emainder will be all zeros.

A,di';ridend and divisor .haying a quotient equal to or greater than two
can be used to obtain a valid remainder in the B register if the execution
code "E" is limited to 18 - A, where "A" is the number of significant bits in
the dividend. ﬁnder these conditions, there will be "E" quotient bits in the -

A register; the bits will all be ones.

EFFECTS ON REGISTERS

The table in figure 2-1 shows how the different operation codes affect
the contents of memory, the A register, and thé B register. Because it is |
cumbersome to write 18 binary digits to show the contents of M, A, and B,
the numbers are expressed in octal form. ('Ea.ch octal digit represents 3
binary digits, as discussed in Section \;III.) Note that these octal numbers
include the 18th or sign bit. Therefore, an)} octal number of 400000 or

greater has a one (-) in the sign bit. For example:

S |17 {1615 {1413 }12|11}]10 {9 8} 7|65} 4}3]2]!1

ol1J1}{1f1jojofjolo]ojojolofojojofjo]o

will be written as 360000 and

2-25

Effects on Registers -~ Continued

17116 f1s f14 J13 jaz farjiolots |7 le|s{4al|3]2]|r

[¢7]

will be written as 624000,

The first column in the table indicéteé the operation that is to be .
‘per'foxl'med. Thé next four columns 1isf the execution code (EX), .the operand
address (OPRND), the operation code (OP), band the next~instruction address
- (NI). .Although thése codes and addresses are shown in the sequence that
they would appear in a program listihg, the lseries of instructions does not

represent a program,

The remaining columns of the table indicéte the contents of memory,
the A register, and the B register., The first line of each instruction repre~
sents the contents before .the instruction is executed; the seconc.lviin‘e repre-
sents the contents after the instruction is completed. The following symbols
a're used: |

~a. XX means that the. contents of the register or the memory loca~-

tion are destroyed in the process of executing the instruction.

b. SS means any sector number.

. €. -- means that the register contents, operand address, and/or

execution éode is of no importar’xc‘ehin the instruction,

The table lists only operations that affect memory, registers, or
next-instruction addresses. Not in‘cluded are: Stop, Digital, No Operation,

and Tape,

2-26

Figure 2-1. Commands and Registers

Operation EX OPRNDOP NI (M) (A) (B) NOTES
Load A | 29 |- ----]042500] XX [|~-==--
' 042500042500 (M)—>(A)
Load B | mm———- 07 |~=-==- 042500}------ XX :
042500|- ooz 042500 | (M)~ (B)
Load A Neg - - 21 [~ = 042500 XX |e===--
0425004442500 -(M)=(A)
Store A - - 30f--=-~ XX 1042500)|--~---
St B 20 04}%?(00 242200 042500 bt
ore e [mmeee 20} XX |------
| 042500 042500 | (B)>=(M)
Add | e———— 25w 230000{534000{~--~-- (M)+(A)=>(A); note
- 230000}074000 that original (A) is
negative.
Add’ RN [25| =mm- 230000[270000|-=m-== (M)+(A)>(A);over -
2300001120000 flow occurs; turns
on overflow indi~
cator.
Subtract T 24 [==e == 270000/230000)~===~=~ (A)~(M)>(A); since
2700001440000 (M)>(A), answer is
negative,
Subtract o [2 670000(230000f-~=m~-=~ "(A)-(M) >(A); since
| 670000{120000 M is -, overflow
_‘oecurs; turns on
overflow indicator,
Shift 05 | 15-85 |0l |==-cn|-munmm= 042500]|==wnn- Track no. specifies
—(A) 001052 right shift of A; EX
specifies 5 places.
Shift 07 | 31-SS [0l }|----~]-=-=~- 042500|~=<--- Track no. specifies’
(A) ——e 120000 left shift of A; EX
specifies 7 places;
turns on overflow
indicator.
Shift - 17 {63-SS [Ol}|--===]-====- 042500/406700 | Track no. specifies
(A), (B) - 006700400000 | left shift of A, B; EX
specifies 17 places;
turns on overflow.
indicator.
Transfer on |-« [~=cw= 09 |45-75{-~~~- 042500}-~-~~~ Sign of A is +; NI
Negative 45-75 1042500 remains as pro-
grammed.
Transfer on |-- |46-73 |09 |45-75|= == === 442500) o= n Sign of A is -;
Negative 46-73 442500 OPRND becomes NI.
Transfer on |-= |=====~ 11145-75}--~=~~ 042500}~ wmmuw (A) not zero; NI stays
Zero 042500

as programmed.

2-27

Figure 2-1,

Commands and Registers (continued)

Operation EXOPRNDOP NI (M) (A) (B) NOTES
Transfer on |-- | 46-73|11|45-75}-~~~~-~ 400000|-~--~-~ (A) are (~) zero; .
Zero ‘ 46-73 400000 OPRND becomes
NI.
Transfer on|== | ~==-~ 10{45-75)-=====|-c=m=c]wmemn~ Overflow indicator
" Overflow 45=-75 off; NI remains as
' _programmed.,
Transfer on |-=- | 46-73 |10{45=-75|-==cucc]omcean] cnccax Overflow indicator
Overflow. 46-73]. on; OPRND becomes
NI.
Compare = |29 | ~=-=- 15| TT-75{034200{042500f XX (A)=>={B); since (M)
"Magnitude TT-7510342001006300{042500 | <(A), NI is un-
o changed.
Compare 29 | m=m=- 15{TT~103{442500({034200f XX (A)>(B); since (M)
‘Magnitude TT-04[442500{406300{034200 | > (A) sector of NI
' becomes 103 + 29
‘ -128 or 4.
" Extract] - 05 =~=== 021415234277 ~===== ' '
| | 021415/020015 (M) ® (A)=>=(A)
Merge =] e 3lj-==~~ 0214151234277 ~==~-~
e 021415(235677| (M) @ (A)>—(A)
Switch --115-8S |02 ~===mfmmumn= 042500 XX Oprnd. track nos,
042500{042500 { 00-15 specify (A)
‘ -—(B).
- Switch --131-S8 |02 ~=mmmlmmmmn- XX 1400277 | Oprnd. track mos,
’ 400277400277 | 16-31 specify (B)
-—(A).
Switch ~= | 47-8S5 | 02| == mm| === 042500{400277 | Oprnd, track nos.
400277|042500 | 32-47 specify (B)
. 3Z(A). -
Switch - -~ | 63-8S |02]-==-~]-m=m-~- 042500[400277 | Oprnd. track nos.
000000{000000 | 48+63 specify
O=mmA, B, ‘
Multiply 17 | m==e 16)-===- 000012000002 XX (M) X (A)=(A), (B)
4 000012{000000{000024 1010 X_Zlo. = 2010
‘Multiply 14 | ===-- 16-=-=-- 400012/000002| XX | -10,, X 2, = -zolo‘
400912 400000{400240 Shifted left 17 - E =
3 places.
Multiply 17 | —=-=- 16[----- 012000{000200] XX | (M) X (A)=—(4), (B)
: 0412000 000005{000000 1010 X 210 = 2010‘
Multiply 15) ~==~=- 16)~-==- 0120004000200 XX 1010 X 210 = 2010
012000{000024{000000 Shifted left 17 - E
-= 2 places,

2-28

Operation

Figure 2-1.

EX OPRNDOP NI

(M)

(A)

(B)

Commands and Registers (continued)

NOTES

Multiply

12 16

- e - - - -

012000
012000

000200
000040

XX
000001

= 9
1010X210 ?

Execution code less
than number sig.
bits in M -~ invalid
product,

Divide

18 26

300000
300000

230000
312525

XX
200000

(A)+ (M)=>A;
remainder—>(B)

Divide

18 26

- . - e - - e o e

200000
200000

300000
200000

XX
000000

(A)+(M)> 1 turns
on overflow indica-~
tor; overflow
occurs, but frac-
tional quotient in .
A register is valid,

Divide

17 26

200000
200000

300000
300000

XX
000000

(A)+=(M)> 1 turns
on overflow indica~-
tor; however inte -
ger and fractional
quotient in A
register is valid.

Divi de

10 26

- o o - - - - -

200000
200000

002500
000012

XX
100000

(A) + (M)=— A;
remainder == (B);
quotient shifted
right 18- E =8
places.

Divide

26 26

200000
200000

002500
100000

XX
000000

(A) + (M)=>A;
remainder - (B);
quotient shifted

Jleft E - 18 = 7

places; significant
bits are lost from
A register; does
not turn on overflow
indicator.

2-29

SECTION ar
BASIC PROGRAMMING
 INTRODUCTION |
| This section tells how 'number's and ingtriuctions are irep.i?esented in the
ARW-300 comﬁuter. The operations defined in the px"ecedi.ng’ secti&n.axe used to
illustrate the instruction fornia.t, and simple ﬁrogram' liétings are pfesented.
On the magnetic drum which serves as the computer's internal memory,
V>.WO-rds‘ a;e recorded'on tracks as variations-in magnetic flux. ’I‘here.rare 64 tracks
of interest to the.programm‘er,' and these tracks are numbered 00 through 63.
'Eac’h“track accofmmo‘dates 128 words idsecfo?s that are numbered ‘Oo.t,hrou'gh
127. A partiéﬁiér location in memory is specified iay the track n.umber and
‘sector number. For exa.mple, 17-07 specifies sectorVO'? of track 17.
RW-300 coniputers with the expanded memory have :12.3 tracks, ‘or
: 1.'5. 776 words, available to the programmer. Refer t§ Sectior; IV for program-
%n‘ihg, information for computers having this optional feature. |
| Data words (numbers) and instruction words are represeated in the com-
puter as ibinary r;ufnber‘s. A word is 18 binai’y digits in Iéngth. A‘lthough fhérc
: are two s.pace'bits separating wo;ds on the drum’, the spacé bits ar e of no c'c.m-
" cern to the programmér.
| ‘A word may represent numerical information, half of an instruction,
or afny'. pattefn of 18 bits desired by the prbgr'ammer' (e. g ’ for’ prbgram‘ mod-

ification). Since the computer is a binary machine, the pregrammer

Introduction -- Continued

must have a working knowledge of the binary number system. (See Section .

VIIL.)

INSTRUCTION WORDS

An instruction is two computer words, or 36 bits, in length, Two
addresses are included in each instruction: the a.ddress of the operand and
thé address of the next instruction. Tﬁis arrangement provides what is com-
monly called a "one -plus-one!'' instruction form, which"permits optimum
ki. e., minimum-time) programming. The ‘operationvto be performed, OP,
is one of 21 different arithmetic or logical cornma.ﬁds; The execution code,
EX, determines tkhe number of bits in a broduct or quotient, the number of

pla'ces shifted, or other special functions as described in Section II.

WORD ONE WORD TWO
T T .
Execution: Operand Address Operation: Next Instruction Address
Code " : Code :
EX 1 Track : Sector OoP 1 Track Sector
18-|-|-p4diy-1-|-|-18{7|-1-1-|-]-11] Qg -|-|-h4uw|-|-|-{-18]|7|-]1-]-|-|-]1

(Bit Positions) (Bit Positions)
FORMAT FOR LISTING INSTRUCTIONS
The series of instructions comprising a program arejusually listed

on a form similar to the one shown below.

CI EX OPERAND OP NI REMARKS

Al r I

Al 1 I

Al I I
| I |

! 1 !
i UL | vt ' '
The columns of the listing have the following significance:

Format for Listing Instructions -- Continued
‘ A is an "indicator' which, when read by the computer during loading,
announces that the number which follows is an address.
9____I_-is th‘e location where the instruction is to be stored, CI stands
for '"current instruction'',
I is an indicator which announces that the numbers which follow aré
to be stored in the location previously Specified.

EX is the execution code contained in the first word of the instruction,

OPERAND is the address of the operand that will be used in the in-
struction. (The operand addressbmay specify a number in memory that will
be \iS ed in a computation, or may modify thé instruction -- the exact signif-
icance of the operand address is explained in relation to each of the operation |
codes,)

I= is an indicator which announces that the numbers which follow are
" to be stored in a sector whose number is one greater than that specified in -
the CI column. Thus, the entire insfruction'appears in two sgccessivve' wo;rd
(sectOf) locations on the drum, and the first word is located in the sector. ‘,
speca“.fied in the CI column. |

9.__2.-.- is the opexjation codé contained in the second word‘of the instruction.

:ltl_i is the address of the next ins’cxjuctioh, i.e., the address of the :’gn-
struction which will be read by the computer after the ‘currenihz instruction has
been completed. (In some cases, the n.ext instruction will be read from bthe L
address specified as the operand address, or will be formed by adding the

execution code to the address specified in the NI column.)

3-3

Format for Listing Instructions -- Continued‘
The REMARKS columr_x may be used by the programmer to.make hotes
that can be referred to when the program is being checked out or modified.
The program is punched on paper tape using an off-line Flexowriter.
The typing (punching) format must be compatible with the RW-300 load p-r‘o—
gram contained in track 63 of memory. After the tape is prepared, it is
threaded through the Flexowriter tape readef. The operator presses the -
LOAD Button on the RW -300 control panel to initiate loading. The load p.ro—
gram, tape-punching format, and related operating procedures are described
. in Section VI,
Sector 00 of track 00 is-cé.iléd the "origin" becaﬁse the RW-300 reads
. the instruction in sectoré 00 and 041 whenever the START button is pressed.
If the following listing were punched on tape, loaded into the RW-300, and the
START button pressed, the first \%/ord of the instruction (execution code and
. operand address) would be read from sector 00 of track 00, and the second

word of the instruction (operation code and next-instruction address) would

"be read from sector 01 of track 00,

- CI EX OPERAND OP NI REMARKS‘

1A 00-00 [1/00] 52-17 [1]29{ 17-06 | Load A with 460,

The instruction commands the computer to load the A register with
the operand locatedlin sector 17 of track 52, and proceed to the next instruc-
tion in sector 06 of track 17. As noted in the remarks column, this instruc-
tion loads the A register with the binary equivalent of the decimal number

460,

3-4

DATA WORDS, OR CONSTANTS

Data Words, or Constants

A data word, having numerical significance, is composed of 17 mag-

nitude bits, plus a sign bit. The sign bit is zero for positive numbers and

one for negative numbers,

Consider the decimal number +0.9375, which is equivalent to +0,1111

in binary., If +0,9375 were stored in the computer, it would appear in the

following form:

0

1

¥

1

1

0

0

0

0

0

0

0

Bit -
Positions

18

17

16

15

14

13

12

11

10

9

8

7

If the number were negative, the binary digit in bit-position 18 would be a

one.

The bit pattern shown above might also represent the decimal number

- 3.75 if the programmer chose to think of the binary point as being between

bits 15 and 16 (3. 75 in decimal = 11.11 in binary). Location of the binary.

point is a scaling consideration which is discussed in Section VIII,

FORMAT FOR LISTING CONSTANTS

Constants must be placed in computer memory during the loading

operation. Constants are usually listed on a form similar to the one shown

below,
ADDR. CONST. REMARKS
C
A C
A C

Format for Listing Constants -- Continued
The columns of the listing form have the following significance:
é'is an indicator which, when read by the computer during loading,

announces that the number which follows is an address.

ADDR.is the location where the number is to be stored.

CONST. is the number, of constant.

‘The REMARKS‘ column méy be used by the programmer to.make notes
that can be referred to when the program is being checked out or modified.
Constants are punched on paper tape along with the instructions of the pro-
| gram, and the punching format muét be compatible with the load program ‘
described in Section VI, |

If the decimal constant 460 were to be listed for storage in memory,
the number would firét be converted to its six—digit octal equivalent, 000714.
See Section VIII for information oﬁ decimal-to-octal conversion,. For storage

in sector 17 of track 52, the listing of the constant would take the following

form:

ADDR. CONST. REMARKS

'52-17 | C000714 | 460,

The six-digit octal number representing a constant includes 17 mag-
nitude bits and one sign bit. In the listing of constants, the sign bit must be
included in the most-significant octal digit. Therefore, the most-significant

octal digit of a constant contains two magnitude bits and one sign bit.

3-6

‘Format for Listing Constants -- Continued

The octal equivalent of + 98304 is 300000, which would appear in
computer memory as follows:

most-significant octal digit
" g g

011000-----{
+sign/

The octal equivalent of -98304 is -300000, Since the most-significant octal

digit must include a one to form the negative sign bit, the number would
have to be specified on the program listing as 700000, The number would
appear in computer memory as follows:

most-significant octal digit
- . ‘

1y1§1304040 - - - ~- - f
-sign/

| USE OF MEMORY
General
In listing the instructions and constants, the programmer must choose
memory 1ocationé that are accessible to the computér wﬁen the program is
being loaded onto the drum and when the program is running, ’The choice of
these memory locations is governed by the characteristics of.memory, the
characteristics of the load program, the configuration of the system, and
by conventions that have been established oﬁ the basis of operating' experience,
The paragr;phs which follow describe the constraints imposed upon
reading aﬁd storing information in memory, and describe how listings should

be organized so that punched tapes can be loaded easily. Suggestions for

keeping track of storage locations are also presented.

Uze of Memovy -- Continued

The choice of memory locations determines the time required for
the computer to complete calculations'. These timing considerations relate
to "optimum programming' described in Section IV.

Reading Information from Memory

Any sector in tracks 00 through 63 can be read by the computer under
program control.

Tracks 08 through 15 may or may not contain thé digital equivalent
of an analog input, depending ﬁpon the‘ number of analog inputs accommodated
by the system. Also, tracks 14 and 15 may contain data béing‘ transferx"ed‘ ,.
from the magnetic tape system.

Track 63 contains the load progrém which starts whexi the LOAD

button is pressed.

Storing Information in Memory

By mating the 'track group selection plug' with an-appropriate '"track
~group" jack, information can be stored in any sector of tracksy 00 through 61.
The plug and jack, located on the test and maintenance panel, are described
in‘S‘e'ction VII. Each track group (éxce.pt track groups 56 through 61) includes

eight tracks, as follows:

00 through 07
08 through 15
16 through 23
24 through 31
32 through 39

40 through 47

3-8

‘Use of Memory -- Continued
48 through 55 |
56_through 61
Wben the program is running, the track "group selection plug on.-:the -

RW-300 test énd mainteﬂance panel i.s usually connected to the jack Ama‘rked
0-7, because these tracks can be wr'itten into under prografn control. This

track group is sometimes referfed to “as "scratch pad" memory, because it
is most frequently used to hold the intermediaté results of calculations. If
the érogram instructs the computer to store information in some track group
other than 00>through 07, the computer halts and turns on the ERROR light..

- The program will resume if the track gro‘up selectio’n plug is moved t.o the
correct jack and the RESUME bu?ton is pressed. However, subsequent g,t-
tempts ‘of‘the program to store in some other track group will be foiled by
another ERROR indication. Therefore, instructions and,conéténts are

| us;ually loaded into track groups 08 through 61, and tracks 00 through 07 are
reserved for intermediate results of calculations. |

Specific sectors of track 07 .are reserved for ahalog Qutputs, zad only
control informétion rela.tihg to specific output lines should be written into
these sectors. |

Specific tracks in track group 08-15 are reserved for analog inputs.
Instructions or constants cannot be loaaed int‘o‘any sectors of these reserved
tracks.

Except duringvprogram loading, information can always be stored in

the 32-word recirculating register of track 62. The 32-word register is

3-9

Use of Memory -- Continued

described in conjunction with optimum programming (Section IV). Informa-
tion can be stored in track 62 without reference to the track group selection
plug. However, the information must vbe written under program control, and
not during loading, becausé certain sectors of track 62 are written into By
the load program, and any attempt to store in these sectors during loading
will be fruitless because the load program wiil write other information there.
Information cannot be stored in track 63; any attempt to store in

track 63 causes the ERROR light to glow and halts the program,

Organization of Listings

The lists of instructions and constants should be organized so that in-
structions to be stored in specific track groups appeaf together.

When a program of instructions and coins’cants is being loaded, the
computer stores instructions and constants in the tracks specified in the CI
column of the instruction listing (and in the ADDR. column of the constant
listing). If the listing calls for storage in different track groups, the com-
pﬁter signals ERROR, and the track group selection plug must be moved to
the appropriate track group before the instruction or constant can be stored.
Therefore, to speed up the loading process, the programnier should organize
his 1‘istings so that all of the instructions to be loaded into a track group ap-
pear together on the paper tape punched from the listings.

Record Keeping

Only one word can be stored in any sector of memory. When a punched
tape of a program listing is being loaded into the computer, new information
will be stored in the locations specified, thus destroying anything stored

3-10

Use of Memory -- Continued

earlier. Therefore, if two separate instructions are assigned the same
memory loca;tion, the instruction read last will be the instruction stored in
the memory location.

To avoid assigning the same memory location to separate inférmation,
the programmer must keep a record of-sectors in whicéh instructions and con-
stants are to be] stored. The form shown below is convenientvfor record-

keeping purposes,

Channel

0 32 4] 96

2 34 66| 98

4 36 68 100

6 38 70 102

8 40 72 104

10 42 74 106

12 44 76 108

14 46| 78 110

16 48 80 112

18 50 82 114

20 52 - |84 116

22 54 86| 118
24 56 88 120] "

26 58 90| 122
28 60 92 124]°

130 62 94 126

Note that only even-numbered sectors are listed on the form. Since
an instruction occupies two sectors, it is common practice when programming

the RW-300 to specify an even-numbered sector location for instructions; in

3-11

Use of Memory -- Continued

this Way, the fi;‘st wbrd of the instruction is stored in the even.-numbered
sector, and the second word is stored in the following odd-numbered sector.
Thefe is no restriction to prevent the programmer from assigning an
v odd-numﬁéred sector to the first word of an instruction--in which case the
second word will be stored in the following even-numbered sector. If sector-
location 127 is assigned to the first word of an instruction, the program list- ‘
ing must specify that the second word of that instruction is to be stored in
sector 00 of the same track. In this special case, the complete instruction

is listed as two ""half-instructions'':

CI EX OPERAND OP NI REMARKS
Al01-127]1|00] 52-17 |I (Ex and Operand)
A LOAD A—
Al01-00 {Ij0O] 17-06]I , (Op and NI)

SAMPLE PROGRAMS
. The following examples' show how t§ construct computer programs
using the listing formats described in the preceding paragraph.s, and usiing ‘
the commands desbcribed in Section II.
Example I
The following is a program to add two numbers, x and y, and store

and_y_z -243

a

the result in the memory location 01-02. Let x = +12738 8

CI EX OPERAND OP NI REMARKS

1A} 00-001]1]00 01-00 |1|29| 00-02 | x - A Register

A] 00-021{1{00 01-01 1|25 00~04 | x + y == A Register

Al 00-04r]o0] 01-02 |1|30] 00-06 | Store result in 01-02

Al 00-06]1]00 00-00 1{00| 38-124}Stop

3-12

Sample Programs -- Continued

ADDR. CONST. REMARKS

Al 01-00 co01273 X

Al 01-01 | Cc400243 | y

To prepare this program for loa;iing into the computer, a papef tape is
.punch‘ed by typing the above listing on an off-line Flexov;.'riter, using the
. typing format de.scribed in Section VI,

To load the program, the prégrammer first threads the punched tapé
through an on-line Flexowriter tape reader, and then presses the LOAD but-
ton on t‘h'e cémputer's control panel. The tape is read under control of the
load program in tracki 63 of the compu‘t'er, and under control of the load pro-
gram, the instructions and constants arve stpred in the locations specified in
the CI and ADDR. columns of the program iisting. |

After the lastbsymbol of the punched tape has been réad‘, the computer
- will continue to read the blank trailing tape unless the last symbol punched on‘
‘ the tape is an "s!'', If anv"s“ is punched vat the end of the tape, the computer
will stop. If there is no ""s!'" punched at the end of the tapé, the loading opera-
tion may be halted by pressing the STOP button. ‘

Pushing the START button causes the computer to begin the program
by reading the first instruction contained in sectors 00 and 01 of track 00.

When the computer completes the sampl'e program, it will halt,” The
results of the addition (0010308) will be in the A register, as well as in
memory 1oca‘;ion 01-02. The contents of ’cﬁe A register may be observed on
~ the oscilloscope of the test and maintenance panel, as described in

Section VII.

3-13

Sample Programs -- Continued

| When the computer halts in response to a Stop instruction (operatioﬁ
" code 00), it may be directed to proceed to the next-instruction address.by
pressing the RESUME button. In the example, pressing the RESTLIME button
(after the computer halts) caus.es the computer to proceed to the instruction
located in sector 124 of track 38.

The functions of the RW-300 control buttons are summarized in
Section VII.
Example II

This prbgrafn calculates the avera;ge of the squares of n small num-
be;‘s: Z% xiz, i=1, ..., n. Inthis example, n = 4, and n is stored in

memory location 01-50, The numbers x_, ..., X

1 are stored in locations

4
01-00 through 01-03, respectively.

When the Stop instruction is executed, the average of the squares will
be in the A register and in memory location 02-00. (See page 3-15.)

Note 1: Multiplication results in a double-length product. Since this
example involves small numbers, the signiﬁcant digits of the product are as-
sumed to be in the B register, in which case the A register will contain zeros.
This is not a general assumption, and it is the requnsibili?y of the program-
mer to predetermine' how significant product bits will be di,stributed‘ between
the A and B registers by adjusting the ''scale factor' and execution code.
These considerations are discussed in conjunction with number systems and
scaling in Section VIII,

Note 2: The significant product bits in the B register are switched

into the A register and then stored. The two instructions that accomplish

3-14

Note 1

Note 2

Note 3

Sample Programs -- Continued

CI EX OPERAND OP NI REMARKS
Al 00-00 [rfoo| 01-00 [1[29] 00-02|Load A X -=—(A)
7[00-02 |1[17| 01-00 |1|16] 00-04|Multiply X ,-=(A), (B)
Al 00-04 |t|00| 32-00 |r|02| 00-06|Switch (A)~———(B)
Al 00-06 100 02-00 I{30| 00-08 | Store A X12->Locvation 02-00.
Al 00-08 [1/00| 01-01 |1[29] 00-10 |Load A X,~—(A)
Al00-10 [117| 01-01 [1[16] 00-12 |Multiply X,”=—(A), (B)
Al 00-12 [tloo| 32-00 |r|o2| 00-14 [Switch = (A)=~e——s—(B)
Al 00-14 [tjoo] o02-00 |1]25] 00-16 | Add R
Al 00-16 00 02-00 I 36 00-;18 Store A Xlz + X22->1'ocation 02-00
7l 00-18 [too| 01-02 |1[29]00-20 |Load A X, = (A)
Al 00-20 |I|17| 01-02 [1|16]00-22 | Multiply X3Z-»(A), (B)
Al 00-22 [I[00| 32-00 [t|02]|00-24 [Switch (A)==—s— (B)
Al 00-24 |1]o0| o02-00 125 00-26 | Add x, %+ x,% + §<32-»(A)
A[00-26 |1]00| 02-00 [1|30] 00-28 |store A X12+X22+X3%>_lo;:ation02-00
Al00-28 [1[00| 01-03 [1/29]00-30 |Load A x4-:;-(A) o
Al 00-30 [t]17] o01-03 |r|16|00-32 | Multiply X, % (A), (B)
Al00-32 [tfoo| 32-00 [f02] 00-34 |Switch (A)=~=——(B)
Al00-34 [1{00] 02-00 [1]25] 00-36 [Add x124x22+x32+x42-»(A)
A00-36 [1[18] 01-50 [[|26]00-38 |Divide (X 4X,24X 04X 2)4 4 (A)
A 00-38 100 02-00 1/30| 00-40 |Store A Average-»location 02-00 '
Al00-40 [1]00| -- == [tl00|-- -- |stop

S 3-15

Sample Programs -- Continued
this (00-04 and 00-06) could be replaced by a Store B instruction, However,
subsequent instruétions use the switch‘—and-store sequence to form a.‘running
sum, In this example, ‘all instructions are listed in the same pattern; in"the _
next example, the pattern is made a part of a i'epetitive routine,

Note 3: Division by 4, to obtain the average of the sum of the squares;
could be a.ccomplishe& in less time by using a Shift-right instruction (shift
right two places), which is equivalent to.dividing by 4.

Example III

The following program solves the same problem as the prograﬁ‘x in
Example II, However, it illuétrates a ''loop'", a repetitive routine that re -
duces the number of instructions. The ’instructions for taking an X, squaring‘
it, adding this to a running sum, and storing the result, are written out only
once, as opposed to four time s‘ in the example above. Howeve';', the program
returns to this sequence of steps as many times as necessary. A loop can

handle virtually any number of xi‘s without being lengthened in proporvtion.

Locations 01-00 through 01-03 again contain Kpoov oo Fye Locations
01-50 through 01-52 contain the constants 000004, 000003, and 000001, re- .
/“

spectively. Location 01-54 is a "counter' which keeps track of the number
of times the computer has gone through the loop. Location 02-00 contains
the running sum and, at the end, the final answer.

The flow chart in figure 3-1 shows how the program is to operate.

3-16

Sample Programs -- Continued

LClear A and B registers.

Set running sum to zero.

1

Load address of first Xi
into loop.

i

Lioad loop counter con-
stant into A.

a

Store counter,

i

Compute x, and add to
running sum,

i

Reset addresses in loop
to those of next ..

Y

L.oad counter into A and
subtract one,

NO % / ~
: (Test for negative;)——y'is—\

Y

Compute average.

‘Figure 3-1. Flow Chart of Program in Example III

3-17

‘Note 1

Note 2

Note 3

Note 4

Note 5

Note 6

Sample Programs -- Continued

CI EX OPERAND OP NI REMARKS
Al 00-00 [1j00 50-00 |If02 00-02 | Switch - 0rm—(X), (B)
A 00-021fo0o| 02-00 |1|30| 00-04|Store A 0-=02-00
Al 00-04[1f00| 01-53 |1/29| 00-06|Load A 17 01-00-==(A)
Al 00-06[1/00| 00-14 |1|30] 00-08|Store A 17 01-00 =—00-14
Al 00-08 [1/00{ 00-16 [1/30| 00-10|Store A 17 01-00-—00-16
A 00-10(zfoo| 01-51 [129] 00-12|Load A 000003 —(a)
Al 00-12{1{00] 01-54 [1|30] 00-14|Store A 000003 =01-54
Al 00-14|IKX] XX-XX [129] 00-16|Load A X =(A) -
Al 00-16 |Tjcx] XX-XX |1/16| 00-18 | Multiply X, 2 (A), (BY
A 00-181{00| 32-00 |1]02] 00-20|Switch (A)==(B)
Al 00-20 |1oo| o02-00 |1|25] 00-22|Add Xi2+(02-00tq-4AJ
Al 00-22 100 02-00 |1|30] 00-24|Store A xiZ+(oz-00)a—4oz-00)
Al 00-24{I{00{ 00-14 1|29 00-26 |Load A (00-14) == (A)
Al 00-26|1[00] 01-52 [1|24] 00-28 | Subtract (00-14) + 1-s=(A)
| 00-28 [z00| 00-14 |1|30] 00-30 | Store A (00-14) + 1-==—(00- 14)
sl 00-30 |1/00] 00-16 [1|30| 00-32 |Store A (00-14) + 1-=(00- 16)
Al 00-3211/00] 01-54 }1/29] 00-34 [Load A counter—s—(A)
Al 00-34[1/24| 01-52 [rl15| 00-12 | [OMIPATE | Sounter o FA)
Al 00-36 |100| 02-00 [1]29] 00-38 | Load A inz-)»(A) |
A 00-38(1/18| 01-50 [1|26] 00-40 |Divide ¥, ”+ 4-—(A)
Al 00-40 |1{00| 02-00 [130] 00-42 [Store A Tx,*+ 4-=—02-00
Al 00-42 [I|--] ----- lrjoo| ----- Stop
Al 01-53|1]17] 01-00 ekl .00-14 and 00-16

©3-18

Sample Programs -- Continued

ADDR. CONST. REMARKS

Al 01-50 C000004 | n=4

Al01-51 | C000003 | counter

Al 01-52 C000001 | decrement

Note 1: ‘The Switch command clears the A and B registers (fills the
registers with zeros), and the Store A command sets the running sum to
- zero., Clearing the A and B fegisters and storing the result is equivalent to
loading the A register with zeros and storing the zeros. However, the clear-
and-store operations save drum space and computation time.

‘Setting the running sum to zero is an "initializing'" step which is nec- -
essary to prepare the computer for entering the loop. Other initializing
steps inchide the storing of the first X, address in the loop (covered by Note
2) and setting the loop counter to 3 (covered by Note 3).

The initializing steps are necessary if the program is to be repeated
for different values of x. Without the initializing steps, the program coula
be run only once; the punched paper tape of the program would have to be
reloaded before the calculation could be repeated.v

Note 2: This and the next two steps set the operanf:i«addresses of the
instructions in 00-14 and 00-16 to the address of the first X The half-
instruction '"17 01-00" (execution code and the operand addressi are stored
in both 00-14 and 00-16. Actually, what is required is "00 01-00'" in 00-14
and ''17 01-00'" in 00-16, However, instruction 00-14‘is a L.oad A instruc~-
tion, and the execution code is ignored. To load different half-instructions

into locations 00-14 and 00-16 woﬁld require several additional memory sectors.

3-19

Sample Programs -- Continued

Note 3: This initializiné step establishes the counter in sector 01-54.
Each time through the loop, one will be subtracted from the counter, and a
test will be performed. When the counter becomes negative, the program
will have been through the loop four times and the équaring-and-summing-
calculations will be complete.

Note 4: XX XX-XX represenfs the éxecution code and operand ad-

dress. of Xpovoe Xy which will be reset each time through the loop by adding

one to the operar;d address contained in 00-14 and 00-16., See Note 5,

Note 5: In this and th¢ next three steps, the operand address of in-
structions 00-14 and 00-16 are increased by one, to form the operand address
.of the next xi.' The Subtract command is used because the half-instruction

"17 01-00'" appears in me'r’nory as 420200_, a negative number. By subtract-

8
g’ the half,-instruétion becomes "17 01-01'" the second
~‘time through the loop, "17 01-02" the third time through the loop, etc.

ing the constant 000001

Note 6: The number in the counter is brought into the A register for
comparison with the stored constant 000001. The flow chart indicates that
one is subtracted from the countef, and if the result is negative, vcompﬁtation
is complete; if the result is not negative, the new number is/\stored in the
counter location. Although this operation could be performed by two opera-
tions (Subtract and Transfer on Negative), the subtraction-_—and-te‘sting opera-
tion is performed in oﬁe operation by the Compare Magnitude instruction.

The Compare Magnitude instruction subtracts one from the counter,
and the difference replaces the contents of the A register. The first three |

times through the loop, the contents of the A register after the Compare

3-20

Sample Programs -- Continued

Magnitude instruction are positive or zero, and the computer reads the next
instruction from location 00-12. The instruction at location 00-1.2 stores

the new counter in preparation for the next pass through‘ the loop. Aft‘er the
loop has been repeated four times, the contents of the A register are negative
after the Compare Magnitude instruction, and the computer reads the next‘
instruction from the address formed by adding the execution code (24) to the
next-instruction address (00-12)., Thus, after passing through the loop fhe
fourth time, the program proceeds to divide the sum of the squares by four

(00-36).

3-21

THE RW-300 HAS HAD THE FOLLOWING TRACK ASSIGNMENTS MADE:

11 digital input tracks:
33, 36, 37, 39, 40, 41,

42, 43, 44, 45, 46,

9 digital output tracks:

Ferranti reader track:

32.

Magnetic tape units track:

39.

When reading the programming manual and the operations manual, the
various commands apparently have different numbers. This apparent
inconsistency results from shoﬁing the commands in the progrqmming
manual in the digitai form and the operating manual in the octal

and binary forms.

SECTION IV

OPTIMUM PROGRAMMING

INTRODUCTION

| The programming examples in Section III emplvoy ""sequential program!
listings; i. e., successive instructions are assigned consecutive locations in
memory. - A séquential prégram causes the computer to spend an excessive
amount of time Searching for instructions and operands. "Optimum program-
ming'" is a technique for selecting storage locations so that a minimum amount
of computer time is lost in waitiﬁg.

To understand how optimum programming saves machine time, it is
necessary to consider the physical characteristics of the computer memory.
The magnetic drum used as memory is shown schematically in figure 4-1.
Zeros and ones, representing instruction and data words, are z;ecorded on
the drum as variations in magnetic flux.

The program.can be loaded into tracks 00 through 61, and each of
these tracks has one head for reading informé,tion stored on the drum. The
track address determines which of the 61 heads is uséd when information is
taken fr01;n these '"general storage" tracks.

Information is read from the drum serially (kbit by bit) so that it

requires '"one word time' to read one computer word from memory. One’
word time is the time required for one word, or sector, to pass under a

read head. Since there are 128 sectors in each track, and the drum makes a

Introduction -- Continued

complete revolution _in one éixtieth of a second, one word time is approxi-
mately 130 micvroseconds .

In performing a series of instructions, the computer reads the first
two-word instruction in two word times, but additional time .is required to ’
carry out the instruction. For example, to load the A register requires fivé
word times, and if the Load A instruction is in sector 00 qf some track, the
computer will not be ready to read the next instrugtion until sector 05 is
passing under thebread heads. If, using sequential programming, the next
.instruction is located in sector 02, the drum must complete its revolution
before sector 02 again passes under the re_ad heads. Thus, sequential pro-
gramming causes a delay of nearly one drum revolution (1/60 second) between
the reading of each instruction. With optimum programming, more than 20
ins‘tructions can be accomplished in one drum revolution.

The above example describes the penalty paid for listix.'x'gvinstructi‘ons
in consecutive memory locaéions. bThe same type of time loss is incurred if
the operand is not in an optimum location. In the case of instructions involv-
iﬁg operands, about two drum revolutions could be required to complete a
single instruction. But if operands and neﬁct instructions are afgsigned opti-
mum locations, more thé.n 40 instructions can be carried out in those two
drum revolutions.

The paragraphs which follow describe the organization of the RW-300 .

internal memory and techniques for optimum programming.

. Memory Organization

MEMORY ORGANIZATION

For general storage needs, the 7,936 wordé of tracks 00 through 61
ére available. Eécl;x of these tr:‘acks is equipped with a read head; thus per-
mitting data to be read from any'sector of general storage. These read
heads are all aligned with respect to timing; i.e., at any given time the read
heads are all at the same sector of.their respective tracks, Therefore, the
time at which information is read from a sector ié independent of the track
" number,

Tracks 00 through 07

Tracks 00 through 07 provide program-writable memory for tempo-
rary storage of data. ‘Each of these tracks has a single head which functions °
as both’ a read and a write head. Track 07 is fitted with an additiqnal head
‘which reads data for conversion to analog outi:ut. If more thar_x 64 analog
outputs are'requii‘ed, track 07 is fitted with two addijtional heads. Howevef,
the program read/write head of this track performs the same function as
other program read/write heads.

Tracks 08 through 15

Tracks 08 through 15 have read/write heads similar to those on tracks
00 thréugh 07. These tracks may also be fitted with an extra analog write
head which i‘s not under computer program control. Howiever,v ’the computer
can be mc;difie.d to make all or part oflthese tracks writable under program

control,

4-3

Memory Organization -- Continued

Track 62 Revolver
Tracks 00 through 07— Track 63
racks roug ‘ Load Program
(Program Writable Group) /\ g

Tracks 08 through 61

~e

————————
ROTATION

ONE SECTOR OF
THE RW-300 DRUM

\
\
ey

ONE TRACK OF

Most Significant Bit THE RW-300 DRUM

Sign Bit
Space Bits

TRACK 63 READ ,
TRACKS 16 through 61 : _amTN TRACK 62

: 4 1

Program Read/Write //(’ ~ Revolver Read

, A
Y !
| / T
Revolver Write L"'W
TRACK 07 TRACKS 08 through 15

TRACKS 00 through 06
& Program Read

. A Program Read/Write A Program Read/Write
N ks : Analog
<g Write
‘ Analog
Read

V Analog
Read

4-4 Figure‘4—l. RW-300 Memory

Memory Organization -~ Continued

When analog input facilities are employed, the digital equivalents of
voltages from instruments are written into one or more of these tracks,
starting with track 08. The number of tracks used to accommodate the analog
input data is determined by the number and type of analog inputs.

A maximum of 128 analog inputs can be accomrﬁodated by each track,
so that with 128 analog inputs, track 08 would not be available for general
storage; with 256 analog inputs, tracks 08 and 09 would bé unavailable for
general storage, and so on. In some cases, to minimize the amount of
equipment required, fewer than 128 inputs are -accomrno'datec{. on'each tra;:k,
but the analog inputs never occupy tra.cks other than tracks 08 through 15.

'vI‘hel programme:‘r must not attempt to store part of the program in
tracks 08 through 15, which are reserﬁed for ahalqg inputs. Although the
program can be wrif.ten into the reserved tracks during loading, the .write
head that records analog input information will write converted analog in- _
put information (or zeros) iqto‘ the sectors, destroying t‘hevinformation writ-
ten dgring the loading operation. The tracks reserved for analog inputs
are specifieé‘l during the planning stage of an installation, and any tracks

not reserved for analog inputs can be used for general program storage.

Tracks 08 throqgh 61

For loading in formation into the computer, it is necessary to be able
to write on tracks 08 through 61. Also, under special circumstances, it may
be desirable to use some of th;ase tracks for writable space during program

J

operation. This can be accomplished by manually connecting the track selector

Memory Organization -- Continued
plug on the test and maintenance panel to the Vjack‘ represénting the ap}groprim :
ate track group (00-07, 08-15, 16-23, 24-31, 32-39, 40-47, 48-55, 56-61).

Any attefhéi to wi"iteion a track which has not been sélected as writable
will causc;: the record ERROR light to turn on and the program to stop.
Track 62 | |

‘Track 62 is the circulating riegister, or '"revolver", which provides
32 words of fast-access storage. The i:‘e,ﬁélv‘er“fhas a xjéaéi héad"wljxiéh‘is
aligned with the read heads of the other tracks. Track 62 also has a write.
head and can a.lways be written on by the program. The revolver write hg?_.d
precedes the read head by 32 sectors; i. e., a word on the revolver pé.sses;
under the read head 32‘Word times after passing under the write head. (See
figure 4-1.)

The revolver read and vyrite heads \alsq di_ffer from the read and
write heads of general writable storage tiﬁ"t:hat ;th>ey are continually f\efa@%’ng
~and writing. As each sector of the revolver passes under the read head, its
contents are read and immediately written 32 sectors later. For example,
if a‘word is wr‘it‘p‘en. into 62-04, then 32 word times later this sector will
pass under the' read head and its contents will be read and :W'ritten into 62-36;
in another 32 word times 62-36 will pass under the read head and its éonf.éﬁts
will be W’.ritten into 62-68, etc.

| ‘B'e;féa'use eac')l'ix wdrd is written in four: sectors around the track ‘(a:t 32-

yword intervals) within one drum revolution, the average access time for in-

formation on the revolver is one-fourth that of general memory. The

Me'fnory Organization -~ Continued
circulation of data on the revolver is interrupted ohly by writing new data onto
this .tr el).ck.., |

‘ 'TI.‘.rack 62 is a convenient track to use for storing instrucfions, halfu
instructions, or information used repeatedly in any parti of the pfogrém; The
. usé of track 62 is described neér the eqd of this section.
Track 63 |

‘Track 63 has é read- head whichis aligned with the read heads of
“other -tracgks., but has ln;) Qriié head., This track is permanently reserved
for the lc;ad pxio’gram described in Section VI. Any atterﬁpt to.vnwrite on track’ 63

will cause the ERROR light to tarn on and will halt the program.

EXPANDED MEMORY | |

‘1§W-300 computers with the expanded memory drum have 123 tracks
»of interest to the programmer, E‘or identification purpeses these fracks are
divic‘le'd into two sets: track set A, with tracks numbered from 00A through |
63A, én& track sef B, with tracks numbered from 00B to 63B.

Five tracks of each set are common to each other. These common
tracks are 00, 05, 06, 07, and the revolver, 62. Infbormation written into
track 05A, for éxample, is also written into track 05B. These’fi_ve common .
tfacks are regardéd as single tracks.

Trac'k‘)sA_e?‘; P;‘is identical to the tracks found on the 8, 000 word drum,

i, é. » track 63A contains the load program, and tr;cks 08A through 15A are

reserved forannalog 'inpuf data.

. Expanded Memory -~ Continued
Tracks 08B through 15B are available to tﬁe pArog'ramn"iér without re-
gard fo the corresponding tracks in track set .A which might be used for ana-
log input data‘.
Track 63B is not a writable track. However, it may contain a service
" routine which is a&ailable to the pi-ogrammer.,

Switching computer read control ﬁyém one track sét to the other is éc-
complished by a digital o.utp(ut instruction using a track add:ress of 03 in the
operand address. An odd nlirriber in the execution code will tr.a,’ns,f.er control
to the B set of tracks., An even number in the execution code will transfer
control to the A set of tracks. |

Depressing the LOAD or START button ._aiways causes the computer
to read from the A set of tracks.

A three--posiﬁon track set transfer switch, designated "A-B-REMOTE"
and located on the test and mainte‘nanvce panela provides track set A or track
| set B writing options. When the gwitch is placed in pOSition.A, a store in-
struction will cause the informaticn to be written into the co:;rre sponding track
and sector of track .set A. When the switch is placed in position B, a store
Iinsltruction will cause the information to be written into the corre sponding
track and sector of track set B. . Common tracks are not affected by the drum
‘transfer switch. The A and B positions of the switch would normally be used
only when storing programs into the computer during load operations.

No Record Error provisions exist if the operatl;or ‘should inadvertent-

ly leave the track set transfer switch in.the wrong position during loading

N
[00]

Expanded Memory -- Continued:

operatic.ms° Under these circumstances the data will be entered into the
corresponding tracks of the incorrect track set.

The REMOTE position of the track set transfer switch allows either
track set A or track set B to be selected f;)r writing under program control.
A one 7bit digital output instruction will transfer writing control from one
track set to the other. One-bit outputs are deécribed in Section V. The
track address and the corre sponding digit in the A register to affect the track
set relay are specifie& for each RW-~300 computer individually and may vary !
from one machi‘ne to the other. A delay of 16. 6 ms, or approximately one

~drum revolution, should be allowed between the one-bit digital output instruc-

tion and the next store instruction.

SELECTING OPTIMUM MEMORY LOCATIONS

To prepare a program that can be performea in a rriinimurrﬁ amount
of time, the programmer must select memory locations so that the next
instruction to be executed is passing under the appropriate read head im-~
mediately after the previous instruction has been executed. Similarly, when
an operand is being read from memory, the operand should begin passing
under the appropr’iaté read head the moment the computer's arithmetié cir-
cuits are ready to receive that operand. |

A reference table of R-W 30'0.in.s‘t'r \'J:.Cti‘.Ol"lS;, fhe last .p‘age of this pro-

gramming manual, contains a column labeled '""Execution Time'. This

4-9

Selecting Optimum Memory Locations -- Continued -
column tells how long it takes the computer to get ready for the operand and
how long before the computer is ready to read the next instfuction. The time
is sPeciﬁed‘in word times, which is directly equivalent to numbers of se;tor_s.

Note the Add command in the table of RW-300 instructions. From the
table, ""Cl——»~Oprnd Add." is 3 word times; "Total CI—=NI" is either 6 .
or 7 word times. This means that the computer requirés 3 word times to
prépa're for receiving the ope‘rand, and either 6 or 7 word times to complete
the addition and be ready for the next instruction. Thus, if the first word of
an Add instruction is assigned the memory location 00-00 (CI column in the
program listing), the operand should be stored in 00-00 + 3, or 00-03. | Thé
first word of the next instruction should be assigned the location 00-00 + 6
or 00-00 + 7. |

In the case of the Add and Subtract instructions, the next-instruction
address location depends upon the signs and magnitudes of the two numbers
tclabbe added or subtracteci. If the sign. éf the A register is unchanged by the
operation, only 6 word times are required. If the sign of A changes, 7 word
times are required.

When determining obtimum sector numbers, the number of word times
and current-instruction address are added ""modulo 128.' This means that
if the sum exceeds 128, then 128 is subtracted from the sum to obtain the
optimum sector number: 114 + 17 - 1v28 = 03.

In the case of the three transfer commands, the computer will be
ready to read the next instruction in ei‘chex; 4 or 5 word times (table of

RW-300 instructions), depending upon whether or not transfer conditions

4-10

Selecting Optimum Memory Locations -- Continued

are met. If transfer conditions are not satisfied (not negative, no overflow,
not zero), the first word of the next instruction should be assigned a location
that is 4 word times greater than the current-instruction address. If tran_sfer
conditions are satisfied, the first word of the next instruction should be as-
signed a location that is 5 word times greater than fhe current-instruction
address. Note that when transfer conditions are satisfied, the operand ad-
'di'ess becomes the next-instruction address (Section II).

In the case of a transfer command, it would not be possible to assign
abéolutely optimum addresses to both operand and next-instruction addresses
within the same track. Absolutely 6ptimum addresses would have consecu-
tive sector numbers, and this is not possible, becéuse each address repre;
sents a two-word instruction. However, optimum addresses can be assigned
by locating the two branches of the fransfer instruction in different tracks.
No computer time is lost in switching from track to track. A Transfer on
Negative instruction with optimum operand and next-instruction addresses

might be:

CI EX OPERAND OP NI

A] 43-00/1j00 14-05 1]09] 37-04

In the case of the Compare Magnitude command, the computer is
ready for the next instruction in 5 word times if . i (M) l_<_](A) l , but if
l (M)‘ > i(A)I , 7 word times must elapse before the cofnputer is ready to
read the first word of the next instruction. Thus, an execution code of 02

should be used to form an absolutely optimum next-instruction address. An

4-11

Selecting Optimum Memory Locations -- Continued

execution code of 01 or 00 would result in the loss of one drum revolution,
or 1/60 second of computing time.

The table of RW-300 instructions indicates that optimum next-instruc -
tion addresses for some operations depend upon the execution code (''nn'' in
the table). For these operations, the execution code is added (along with the
required number of word times) to the sector number of the current-instruc-
tion address to form the optimum address of the next instruction. A Multiply

instruction with an optimum operand and next-instruction address might be:

CI EX OPERAND OP NI

Al 43-00]1110 43-03 1116 43-16
If the number of words in the program approaches the number of
words available in general storage, it will not be possible for the programmer
to assign absolutely optimum memory logations to every instruction, because
_ the desired memory location may have been previously assigned. In this
event, more than the specified number of word times should be added to the
current-instruction address.
Because it is impossible to optimize completely a program which
uses all sectors in a given area of memory, 'priorit'y should be given to pro-
gram segments that are repeated many times. Frequently repeated program
loops should be more highly optimized than ‘program segments that do not
contain loops. ‘Therefore, frequently used loops should be programmed first
so that optimum storage locations can be chosen from a relatively empty
storage area. As the programming work progresses, the storage area will

begin to fill, and absolutely optimum memory locations will not be available.

4-12

Selecting Optimum Memory Locations -- Continued

Less computing time is lost if the less-than-optimum locations are assigned

to noniterative operations.

The general requirements for keeping a record of assigned memory

locations are discussed in conjunction with memory usage in Section III. The

procedure of assigning only even-numbered addresses to instructions will

aid in the record-keeping task. When only even-numbered addresses are

used for the first word of instructions, the optimum sector number is deter-

mined by adding more than the specified number of word times to the current-

instruction address. For example, the Switch instruction requires 5 word

times; with the first word of the Switch instruction in 00-00, the address of

the first word of the next instruction should be 00-06.

The preceding paragraphs describe the general procedures and phi-

losophy for selecting optimum memory locations.

In the paragraphs which

follow, similar commands are grouped together, and specific requirements

for each command are presented.

Load, Merge, and Extract

The load instructions (LA, LN, and LB) and the Merge and Extract

instructions all have identical timing requirements; only the LA instruction

will be discussed.

Example 1: Load (M) into A.

CIl

EX OPERAND OP NI

A

38-00

1

00

29

38-05

05-03

4-13

Selecting Optimum Memory Locations -- Continued

Since the computer takes three word times to go from the current-instruction
address to the first accessible storage cell, the optimum sector location of
M is the sector number of the current-instruction address plus three. The
computer requires two word times to read the operand and load it into the

A register; therefore, the optimum sector location for the next-instruction
address is the sector number of the operand plus two.

Add and Subtract

The Add and Subtract instructions have identical timing requirements;
only the Add instruction will be discussed.
Example 2: Add (M) to (A).

CI EX OPERAND OP NI

A}l 38-05(1100 05-08 1125 38-~12

The optimum sector location for the operand is determined by adding three
to the current-instruction address sector numberf The addition operation
requires three word times if the sign of A does not change as a result of the
operation, four word times if the sign of A changes. | Therefore, unless the
programmer knows that the sign of A will not change, he should allow four
words between the operand address and the next-instruction address. The
penalty for not doing this could be the loss of a complete drum revolution.

Multiply and Divide

The Multiply and Divide instructions have identical timing require-

ments; only the Multiply instruction will be discussed.

Selecting Optimum Memory Locations -- Continued

Example 3: Multiply (A) by (M).

CI EX OPERAND OP NI

Al 38-12(1}17 05-15 |I|16] 38-35

The optimum sector location for the operand is determined by adding three

to the current-instruction sector number. The optimum‘sector location of
the next-instruction address is determined by adding' E" (execution code) plus
three to the sector number of the operand address.

Compare Magnitude

Example 4: Compare. ‘ (M)I with I(A)I .

CI EX OPERAND OP NI

Al 38-350rl02] o05-38 lrl15] 38-40

The optimum sector locé.tion for the operand is determined by adding three
‘to the current-instruction sector number. The optimum ﬁext-ins£ruction
~address is determined by adding two to the operand address. However, if
the results of the comparison are negative, (M)>(A), the actual next-instruc -
‘ tion address will be the listed next-instruction address plus the executién
code "E'". Since seven word times are required before the computer is ready
to read from the modified next-instruction address, the minimum execution
code should be two.
Transfer

The transfer instructions (TN, TZ, and TF) all have identical timing

requirements; only the TF instruction will be discussed.

Selecting Optimum Memory Locations -- Continued

Example 5: Take the operand address as the next-instruction address if the
overflow indicator is om; if the overflow indicator is off, read
the next instruction from the address specified in the NI column

of the listing.

CI EX OPERAND OP NI

4 38-401 00 05-45 |1{10] 38-44

Since the computer takes five word times to test the overflow indicator and
substitute the operand address for the next-instruction address, the optimum
sector location for the first word of the next instruction is the sector number-
of the current-instruction address plus five. The computer requires only
four word times to be ready for the next-instruction address if the overflow
indicator is off; therefore, the optimum sector location of the next-instruc-
tion address is the sector number of the current-instruction address plus
four.

Switch

Example 6: Switch the contents of the A register into the B register.

Ci EX OPERAND OP NI

Al 38-44irloo] 15-00 |rloz] 38-49

The Switch command uses the tr.ack number of the operand address to specify
the type of sﬁritch, and the sector number has no significance. Therefore,
any sector number can be assigned as the sector number of the operand ad-
dress. Since the computer requires five word times to complete the switch
instruction, the optimum sector location for the next-instruction address is

the sector number of the current-instruction address plus five.

4-16

Selecting Optimum Memory Locations -- Continued
Shift
Example 7: Shift the contents of the B and A registers left 3 places. |

CI EX OPERAND OP NI

Al 38-49{1]03] 48-00 1|01} 38-56

The Shift commapd uses the track number of the operar}d\ address to specify
the type of shift, and the sector number has no siigniﬁcance. Therefofe, any
sector number can be assigned as the sector number of the operand aﬁddress..
Since the execution code "E' specifies the number of places shifted, and since
one word time is required for each place shifted, the optimum sector loca-
tion for the next -instruction address is .determined by adding "E'" plus four

to the sector number of the current ;instruction address.

No Operation

Example 8: Transfer unconditionally to the next-instruction address.

ClI EX OPERAND OP NI
Al 38-56[1100, 42-116 (1]03] 38-60

Since the operand address has no significance in the No Operation .command,
any track and sector number can be assigned. The optimum sec‘tor location
of the next-instruction address is determined by adding 4 to the sector num-
ber of the current-instruction address.

Store

The store instructions (SA and SB) have identical timing requirements;

only the SA instruction will be discussed:

Selecting Optimum Memory Locations -~ Continued

Example 9: Store (A) in {(M}.

Cl EX OPERAND OP Ni

A|38.60(11{00 05-32 1130 £38L~66

The optimum operand address (storage sector M) for store instruc=
tions is determined‘by adding four to the sector number of the current-
instruction address. The optimum location of the next instruction is deter-
mined by adding six to the sector number of the current-instruction address.

Dizital

The timing requirements of digital commands depend upon whether thé
command is a digital input or a digital output, and upon the type of input or out-
put device addressed by the command. Digital inputs and outputs associated
with the Flexowriter ({track address 00 or 32) require 110 milliseconds., All
other digital outputs require at least 10 milliseconds. Digital inputs from
switches require >6 word times.

Example 10: Input to A register from toggle switches,

CI EX OPERAND OP NI

A 382661 |18 3600 1106 | 38-72

The ‘Digital command uses the track number of the operand address to specify a
particular device; and the sector number has no significance, Therefore, any
sector number can be assigned as the sector number of the operand address.
For clearing the A regis‘sérn for digital inputs from the toggle ;switches, and for
some other digital input instructions, the optimum sector location for the next-
instruction address is the sector numbe"r of the current-instruction address plus

six, Section V describes timing considerations for digital output commands.

4-18

Comparison of Optimum and Sequential Programming
COMPARISON OF OPTIMUM AND SEQUENTIAL PROGRAMMING

The next-instruction address in each of the prec.eding examples
specifies the current-instruction address of the next example. If the ten
exa.mples were assembled to form a program, the commands would be:
Load A, Add, Multiply, Compare Magnitude, Transfer on Overflow, Switch,
Shift, ‘No Operation, Store A, and Digital Input. This optimum program
would bé completed in approximately one-half of a drum revolution { 1/120
" second). However, if the instructions and constants used in the program
were assigned sequential locations in memory, approximately 15 drum

revolutions (1/4 second) would be required to complete the same program.

Although the optimum program formed by the ten examples could be
completed by the computer in about 1/30 the time requtired for a sequential
program, no general statemer:;t can be made concerning the amount‘of com-
pu’cef time conserved by optimum programming. It is difficult to program
a problem so that all memory locations are absolutely optimum because
instructions and constants in optimum locations for one segment of a pro-
gram may interfere with the selection of optimum locations for other seg-

ments of the same program.

REVOLVER

Track 62, the "revolver", provides fast-access storage for 32 com-
puter words. Any word written into the revolver passes under the revolver
read head every 32 word times, thus making that word accessible four times

during each drum rewvolution.

4-19

Revolver -- Continued

A number used repeatedly in a calculation can be stored in the re-
volver so that it will be readily available. Alsé, frequently repeated in-
structions can be placed‘ in the revolver. When instructions are placed in
the revolver, the two words that make up the instruction are stored in
sequential revolver locations so that the two half-instfuctions will be read
as a single instruction.

Each sector of the revolver has a separate address. Thus, if a num-
ber is stored in 62-00, it can be read next from sector 62-32, then 62-64,
etc. It is convenient to think of revolver locations as RO, R1, ... R30, R31
and use the following table.

Table of Equivalent Revolver Locations

RO 0 32 64 96 TR16 16 48 80 112
R1 1 33 65 97 T R17 17 49 81 113
R2 2 34 66 98 || R18 18 50 82 114
R3 3 35 67 99 ([R19 19 51 83 115
R4 4 36 68 100 || R20 20 52 84 116
R5 5 37 69 101 [R21 2.1 53 85 117
R6 6 38 70 102 {{R22 22 54 86 118
R7 7 39 71 103 || R23 23 55 87 119
R8 8 40 72 104 || R24 24 56 88 120
R9 9 41 73 105 || R25 25 57 89 121
R10 10 42 74 106 | R26 26 58 90 122
R11 11 43 75 107 || R27 27 59 91 123
R12 12 44 76 108 [| R28 28 60 92 124
R13 13 45 77 109 [R29 29 61 93 125
R14 14 46 78 110 | R30 30 62 94 126
R15 15 47 79 111 I R31 31 63 95 127

If the optimum sector number for a Store A instruction were 53, the
programmer would use 62-53 as the operand address,‘ and would note in the
REMARKS column of the program listing '""(A)mp~R21'". When the stored
number is to be read from the revolver, the sector number of the operand
address can be any sector number on the "R21'" line in the table of revolver

locations.

Expanded Memory

EXPANDED MEMORY

The rules for optimum memcry locations apply to those RW 300
eomputers having the 6ptional expanded memorv. However. special consid- .
erations dictate that optimdm programming is also a function of ’chc; over -all
§-rog1*am arvangament Frequent and unnecessary switching back and forth
from one track set to the othev can be time-consuming and wasteful of »pr‘o~
gram space.

Once the basic requirements of a specific process or problem have
been established. the programmer should plan track and track set loéa-tiohs

in such a manner as o keep track set switching at a minimum.

OPTIMUM PROGRAMMING USING SYMBOLS

The RW 300 Frogram Library includes an assembly :..:outine wbzic'h‘
dccepts programs coded in symboiic form The routine is called "OPUS, "
Optimum Programming Using Symbols C:opies of the OPUS instruction
-manual are available from TRW Computers Company.

OPUS reduces the work of the programmer by requiring chat oaly
munemonic opertation codes and some other information be listed In most
cases, next instruction addresses nee& not pe specified; OPUS assigns an
opt‘imum next-instruction address When it is necessary to refer to an
address several times within the program the programmer assigns letter

or letter -number combinations as symbolic addresses These symbolic

addresses, chosen arbitrarily by the programmer serve as mnemonic

4 21

Optimum Programming Using Symbols -- Continued

devices for the programmer -- OPUS ‘automatica;l’*l':y"'as"jsign_s' ah optimum
address toéach symbolically identified operand or next-instruction address.
‘Mnemonic operation codes are used: LA for Loa.d A, A for Add, SW for
Switch, etc. | o

The OP-US'pack‘ag‘e includes an instruction man‘ua.l_ and a punéhed
paper tape containing the program, After the O,P'US;RQL‘J;_t-itié-’l{ias': been
loaded into the RW-300, the computer reads the tépé- containing the sym-
bolically coded program, optimizes the program, and punches a new tape
which is a line~for-line, machine~lang uage':ttanslétipn of the symbolically
coded program.

In addition to optimizing ithe,,s_yfnbolicﬁally' ::\c‘g“c..ie;d _program; the OPUS
Routine provides the programmer with two =pf17iritoti't_'$f’: an "AVaiiabil’i'ty Table
Map'' of storage sectors occupied by the optimized program, ‘and a "Symbol
Table Ma.p” of memory sectors assigned by OPUS .tiq'z é‘é,-ch of ih‘e symbolic
addréss,es; | | | |

Although OPUS simplifies program listing, v:qp;,f_im\izi(n‘g, aund record
keeping; the 'programmer? must have a complete knowledge of machine-lan-
guage instru‘ctions in order to correct or modify anyprogram he prepares in

symbolic form.

SECTION V

DIGITAL INPUT AND OUTPUT

 INTRODUCTION

The extremely‘ flexible digital input and output c‘apabilitiés of the. RW-
300 are described briefly in Section I. In the paragraphs which follow, the
input and output faciiities of the RW-300 ére described in détail, and sample
- program listings are presented. |

The basic RW-300 is provided with a Flexowriter, whiéh consists of
three devices combined: an electric tjrpewrit_er, a paper-tape punch, and a
~ paper -tape reader. The Flexowriter is used to prepare punched tapes of
progréms, and the tape reader on the Flexowriter is used to load the pro-
gram into computer memory. The Flexowriter is also used to obtain infor-
mation printouts or punched tape und‘er program control. Flexowriter codes
and characteristics are described in detail at the end of this section.

Six switches on the test and maintenance panel of the bas‘ic computer
can be used for '""break-point" control of an operating program, or fpr in.-
serting information under program control.

Ferranti paper-tape readers (60 characters per second) and Teletype
paper-tape punches (60 characters per secénd) are optional equipment used
with the RW-300 to. obtain higher input-output speeds. Other paper-tape
equipment‘ and punched-card readers and card punches can also be used with.

the RW -300.

Introduction -- Continued

The flexibility and expandability of the RW-300 digital input and output

system permit a wide variety of digital input and output devices to be speci~ .
fied. In addition to the high-speed readers and punches, special input

switches and indicators are available to aid the communication between the

operator and thebomputer. This section of the manual contains a description

of some of the input-output equipment, and includes information needed by -

the programmer who will be using the equipment.

DIGITAL COMMAND
The operation code for conﬁmunicatio'n with digital inpui—output equip-
ment is 06. The operand track address specifies whether the Digital com-

mand is an input or an output:

Operand Track Number Type of Digital Command
00 through 31 Output from computer's A register
32 through 63 , Input to the compuier's A register

In the case of a Digital ov;tput instruction, the‘execution code is only signifé
icant‘for the "one~-bit" outputé described in conjuction iyith expanded input
and output capabilities.

I_nvthe case of a Digital input instruction, the execution code deter-
: mines where the input bits will bé in the A register. The number of lines
read into the A register is equal to the execution code. Execution codes
greater than 18 should not be used with the Digital instx;uction. The signif-
icance of the execution code for Digital input instructions is illustrated in

examples which follow.

5-2

Basic Input-Output Capabilities

BASIC INPUT -OUTPUT CAPABILITIES

Inputs

Digital inputs permit the computer to accept on-off signals from two

) is reserved for

groups of input lines. One of these groups (line L Z-L

1 18

the Flexowriter or other seven-bit input. The other group of 18 inputs’

{lines LZl' - L38

) is used to accept inputs from other external devices, or
from toggle switches on the test and maintenance panel.

If lines L21 through L38 are all set to one (connected to -5 volts), and
if the DIGITAL INPUT selector switch on the test and maintenance panel is
turnéd to EXTERNAL, the following instruction will cause 18 ones to be read

into the A register.

CI EX OPERAND OP NI REMARKS

Al TT~-SS|I{18 40-SS 1]06| TT -3S

The track and sector numbers of the current instruction (CI column).
and the next instruction (NI column) depend upon the relationship of the bigital
instruction to the rest of vthe program. The track ﬁumber of the operand ad-
dress is shown as 40, but any track address from 36 to 63 is satisfactory.
The sector number of the operand address does not affect a Digital -
instruction.

The execution cbde of 18 causes the 18 énes read into the A register
to appear in bit-positions 1 through 18 of the A register. An execution code
of 17 causes the input from L38 to appear in bit—positio;x 17, and all succeed-

ing bits to be shifted one place to the right so that the input from L21 is lost.

5-3

Basic Input-Output Capabilities -- Continued

The effect of different execution codes is shown in the following table.

Execution Bit Position in A Register :
Code .18 17 16 4 3 2 1
18 L38f L37{L36 L24a| L23} L22} L21
17 0 | L38{1L37 L25|L24| L23} L22
16 0 0 {L38 L26|1L25|L24]| L23
4 0 0 0 L38]| L37| L36| L35
3 0 0 0 0 | L38| L37} L36
2 0 0§ o e e .. 0 0 | L38| L37
1 0 0 0 S 0 | o0 {L38
0 0 0 0 . 0 0 0 0

A useful application of the Digital input instruction is to clear the A
register. If the execution code specified is zero, no lines are read, and the
A register will contain all zeros.

Inputs from Toggle Switches

The six toggle switches on the tesbt and maintenance paﬁel can be
sampled on input lines L21 through L26 by turning the DIGITAL INPUT se-
lector switch on the panel to INTERNAL and using a Digital input instruction
similar to the one shown ébove. Usiné an execution code of 18 will fill the
least-significant bit positions‘ of the A register with the bit pattern repre-
sented'by the settings of the DIGITAL INPUT toggle switches. In addition to
the bit‘pattern obtained from the toggle switches, the A register will contain
-~ any inputé that are applied to Lin‘es 1.27 through L38.

The Extract opera‘tion (operation cc;de 05) can be used to remove un-
wanted bits obtained during a Digital input instrﬁction. In the following
example, it is desircd to preserve only the six bits read into the A register

from toggle switches L21 through L.26. This is accomplished by an Extract

5-4

Basic Input-Output Capabilities -- Continued

instruction using the octal constant 000077. Because bit-positions 1 through
6 of the constant contain ones, the information read into those A-register bit
positions will be preserved. However, bit-positions 7 through 18 of the con-
stant contain zeros, and the Extract operation will cause zeros to be placéd

in bit-positions 7 through 18 of the A register. ’
CI EX OPERAND OP NI REMARKS

Al TT-SS{I|18] 40-SS 1{06] 17-08 DG in from L21 through L38

Al 17-08(1{00] 42-30 [[05] TT-SS Extract L21 through L26

At the conclusion of the second instruction, the A register will contain one
. bits only for DIGITAL INPUT toggle switches set to ONE; all other bits in -

the A register will be zeros.

Inputs from Flexowriter

To transmit information from the paper tape in the Flexowriter
reader to the A register, a Digital instruction is used with an operand track
address of 32. An execution code of ‘07 is normally used so thaj: the Flexo-
writer signals applied to lines L.12 through L18 appear in bit-positions 1
. through 7 of the A register. A Digital input instruction with an operand track
address of 32 causeé the Flexowriter to read one frame of paper tape and
then advance the tape one frame in preparation for a subsgquent Digital in?ut
~instruction. Flexowriter characteristics, Flexowriter codes, and the format
of the punéhed paper tape are described at the end of this section of the

manual.

5-5

Basic Input-Output Capabilities -- Continued

Output to Flexowriter

To print or punch information on the Flexowriter, the information
must first be loaded or shifted into the A register. The code in the A regis-

ter may then be transmitted to the Flexowriter by a Digital instruction with

-

an operand track address of 00; the execution code is of no consequence when
the Flexowriter is addressed in a Digital output command. The character -
printed and/or punched by the Flexowriter depends upon the contents of bit-

v,

positions ‘1 througl‘l‘B of the A register during a digital output to the
Flexowriter. | |

The Flexowriter's response to digital outputs from the RW-300 de-
pends upon the selected mode of Flexowriter operation, anci depends upon the
pattern of bits in the A registef. The mode of Flexowriter operation ca;n be
controlled either by switches above the Flexowriter keyboard, or by digital
‘output signals sent to the Flexowriter from the RW-300.

Bit patterns in the A register which control the Flexowriter's mode
of operation are called ''control codes'. Specific bit patterns, or codes in
the A register activate a typewriter key or cause some other Flexqwriter
responsg (carriage return, space, etc.). Codes which neither con\trol the
Flexowriter nor cause some form of typewxiter response, are considered
"illegal' codes. ''Legal' Flexowriter codeg; are tabulated in figure 5-2.

Modes of Flexowriter operation include:

a. Print

b. Punch

c. Print-and-Punch

5-6

Basic Input-Output Capabilities -~ Continued
The characteristi‘cs of these operating modes are explained invconjunction
with the detailed Flexowrite.r characteﬂstics described at the end of this
section.
To effect printout of symbols from .the A register, the Flexowriter
must be in the Print mode of operation.

Sainple Printout Listing

‘The following example illustrates the use of Digital input and output
commands ‘to. obtain a signed, two-digit, octal printout of a specific memory‘
locatioﬁ. The octal number in this example is -35, which is stored in mem-
ory as 750000,> but the printout listing is valid for the sign and the first two
octal digits of any number.

To print and/or punch a symbol on the Flexowritef, the appropriate
Flexowriter code for that symbol must be placed in bit-positions 1 ﬁhrough 8
of the A register, and the computer must execute a Digital output instruction
éddressed {track 00) to the Flexowriter.

In the sample listing, the number in memory is loaded into the A
register, and the sign is examined by means of a Transfer on Negative in-
struction. If the sign of the humber is negative, the next instruction loads
the A register with the Flexowriter code for a negative sign, and the follow-
ing Digital outpuf instrﬁction causes the Flexowriter to print o, If the sign
of the number is positive, the next instruction loads the A register with the
Flexowriter code that causes the Flexowriter to print "4'',

After ';he sigﬁ has been printed, the A register is cleared using a

Digital input instruction with an execution code of zero; the two

5-7

Rasic Input- Output Capabilities -- Continued
most-significant bits of the number to be printed are then shifted from the B
register into the A register. If the first two bits are both zero, the Flexo-
writer will execute a space in response to the Digital output command which
follows. If the first two bits are not zcro, the Flexowriter will print the
appropriate octal digit.

The A register is cleared in preparation for printing the second digit,
this time by a right shift. Thé right shift removes the two bits from the A
register, but does not shift the bits into the B register. The second octal
digit in the‘B register is brought into the A register by a left shift, and is

then printed.

CI EX OPERAND OP NI REMARKS
A| 00-00 i1]00] 01-04 1‘29{00—06 M =3 A
Al 00-06 {1{00] 00-00 1j02]00-12 | A-=~A, B
A}l 00-12 {1100} 00-18 1{09/00-16 | T'est for negative sign
Al 00-16 [1]00; 01-20 1129]100~24 | +—==-A
Al 00-18 {1100 01-22 | 11291 00-24 | - w2 A
Al 00-24 111001 00-00 1{06]00-34 | print sign
Al 00-34 |I}100}] 32-00 1/06]00-40 | 0 —=~A
Al 00-40 [1]0z| 48-00 |1/01].00-48 | A & B
Al 00-48 {1100 00-00 I1{06{00-58 | print first number
Al 00-58 [1{02] 00-00 |I|01|00-66 | O~»—A
Al 00—6.6 I}03} 48-00 .|1j01}00-74 A-«%LB
Al 00-7441100[00-00 I|06{TT-SS print. second number

5-8

Basic Inpuf—Output Capabilities -- Continued

ADDR. CONST. REMARKS
A| 01-04 | C750000 number to be printed
Al 01-20 0600040 Flex code for positive sign
Al 01-22 | C000021 Flex code for negative sign

The above listing does not print zeros, but does print octal digits 1
through 7. The non-parity* Flexowriter codes for syrnbbls 1 through 7 cor-
- respond to those bits as they appear in the A register: 0000001 in the A
register causes a 1 to bke printed on the Flexowriter; 0000010 in the A regis~
ter causes a 2 to be pr;nted, etc. However, ‘zero (0000000 in the A registér)
is the Flexowriter code for a spéce. | |

T.O print zeros, the above printout listing would have to be modified
so that each octal digit would be tested to determine whether it is zero. If
not zero, the next instruction would be a digital output to the Flexowriter. If
the A register contents were zero, the next instruction would load the A
register vﬁth the Flexowriter code for zero before the Digital output command
to the Flexowriter. As in the case of the sign printout, the Flexowriter code
for zero would have to be stored in some predetermined location of memory. -

The preceding example is not an example of minimum-time program-
ming, but is presented to show a maximum number of command variations.
The time required to execute a ¥Flexowriter output is six word times plus any

waiting time that is characteristic of the Flexowriter or other output device..

*'Parity'' and "Non-Parity'' Flexowriter codes are described in con-
- junction with Flexowriter characteristics at the end of this section.

5-9

Basic Input-Output Capabilities -- Continued
The RW-300 Program Library inciudes decimal as well as octal

printout routines.

EXPANDED INPUT-OUTPUT CAPABILITIES
Inputs
The digital input capabilities of the RW-300 can be expanded to a max-
imum ‘of 28 additional grc’).u‘ps of 18 lir.ues each, or 504 addition‘al on-off sig-‘ ,
nals, with each group seiecteci by a different track address {36 through 63) of
‘the DG command, The ﬁra"ck addresses arée assigned to specific input func-
tions or devi;:es. If a Ferranti high-speed reader is used in addition to'the
Flexowriter, 33 is the operand address track number
| When any one of ‘the input groups is addressed (operand track address
36 through 63), that group will be connected to lines L2} through L38, but.
the ihput vwin not be ’complete unless the DIGITAL INPUT selector ‘s‘w,itch' on
the test an& maintenance panel is turned to EXTERNAL, Ifthe DICITAL INPUT
: selec’tor‘ switcﬁ ig set to INTERNAL, any operand track address from 36
“through 63 will cause the toggle switchee to be read on lines L21 through L26.
- In an expanded digital input system, as contrasted to the basic digital -
input system, grounded lines are read in a8 zeros, and open lines are read in
as dnes. In all‘ other respecis, including the effect of the execution code; digital
: jnpu‘t characteristics are the sameas those described for the basic computer..
Some of the digital input equipment which has been used in RW-300 ap-
v plications is described in the paragraph titled "Input-Output-Equipment. !
Outputs
| The digital ocutputs provide a means of transmitting on-off signals to

external devices. The ouiput signals may be used for turning the Flexowriter

Expanded Input-Output Capabilities -- Continued
on and off, activating indicator lights or alarm devices, etc. Up to 28 grovups
of 18 i‘el»ay«-controlled output lines, or 504 outputs, are available as optional»l
equipment with the basic computer. On special order, the output system may
be e%cpanded to 30 groups if no high-speed punch is included.

A loumillisecond_aelay cricuit allows time for the relays to change
their output state (ono-tofzerb, or zero-to;one), and this 10-millisecond
period must elapse before a subsequent Digital command can be executed.
Once a relay has been sét. fo one or zero, it remains in-tha't state until
changed by another Digital command affecting that particular relay.

- Each group uf outpu‘t iines is selected by an operand address track '
number (04 through 31).

If a logging typewriter is used in addition to the Flexowriter, track
01 is the opérand t.rack number for this typewriter. If a high-speed punch is
LiSed, 02 is the track number; track 03, in this latter case, may not be used as
a digital output address, 'am;l tracks 34 and 35 may not be used as digital input
addresses. RW-300 computers with the expanded memory and a high-speed
punch may use track 03 output address for selecting track set writing control.

The number of groups of output lines and the characteristics of the
output-line groups depend upon the needs of the installation. Each group of
18 output lines may be connected in either one of two modes: "multi-bit" out-
put or ''one-bit" output. ;I‘he output modes are selected when the equipment
is fabricated for a pé.rticular installation. C‘haracteristics of operatioﬁ are

described in the paragraphs which follow.

5-11

Expanded Input- Output Capabilities -- Continued

One -Bit Outputs

""One -bit"" outputs affect only those relays (in the addressed group)
which correspond tc A-register bit positions containing a one. If the exeéu;
tio;u code is an even number, the affected relays are set to zero. If the exe-
cution code is an ‘bdd number, the affected relays are vset to one.' Thus, any
or all of the 18 relays in a particular one-bit output group can be addressed
by a Digital output instruction. One-bit outputs are often employed to control

peripheral equipment as tabulated below:

Execution Operand Operation Contents of

- Code Address Code A Register:* Function

00 © 04-00 06 A1 =1 Turn Flexowriter Off

01 04-00 - 06 Al =1 Turn Flexowriter On

00 04-00 06 AZ =1 Turn Logging' Typewriter Off
01 04-00 06 A, =l Turn Logging Typewriter On
00 04-00 06 A9 =1 Turn Punch Off

01 - 04-00 06 A9 =1 Turn Punch On

* A = 1 means: bit position n of the A register contains a one.

n
Although most applications require that a relay which has been set to
one or zero retain that state until changed by another digi’tai output addressed -
to that relay, specific one-bit output lines may be connected to provide a
vmomentary signal. This latter configuration is used where '"set' or ireset! |
s;ignals are required. When the momentary feature is provided, an even
execution code in the Digital instruction will cause a lOl-millisecond contact
closure in the output line specified by a one in the A register. An odd execu-

tion time will cause no output signal.

5-12

Expanded Input-Output Capabilities ~- Continued

Multi-Bit Outputs

A "multi-bit"" output is defined as one in which all reléys in the ad-
dressed 18-bit group are set to one or zero, according to the contents of .
each corresponding bit in the A register. In the case of multi-bit outputs,
the execution code is of no consequence. An installation usually employs both
multi~bit and one-bit outputs, but these are separate output groups, activated
>by’.“s eparate operand track adaresses.

Outputs to a logging typewriter are typical of multi-bit outputs, in
Whi(;h. all output lines provide voltages. corresponding to the contents of the
A register. In this application only 5 of the output lines would feed the logging

typewriter, and the application is considered a ''five-bit!' output.

INPUT-OUTPUT EQUIPMENT ;

The types of input-output equipment included in an RW-300 installation
depend upon the needs of the user. Computer flexibility permits a wide choice
of display, attention-seeking, printing, punching, and data-insertion devices.

Several commonly used devices are described in the paragraphs which follow.

Digital Indicators

To display all or part of a computer word, a bank of 18 indicator
lights may be used to represent the binary word in a specific register. A
light which is ON represents a one, and a light which is OFF represents a

zZero.

5-13

Expanded Input-Output Capabilities -- Continued

Twenty-Four-Hour Clock

Mounted in the upper right-hand corner of the control coansole shown
id figure 1-1, the 24-hour clock provides a visual indication of time and pro-
vides the RW -300 with absolute time to the nearest minute or 1/10 minuté.
The clock is used as a time reference by the program for pefiodic control
calculations, data-logging cycles, instrument calibration checks, catalyst
checks, étc.

Driven by a synchrénous motor, th.e clock provides fourteen one-bit
signals from a system of stepper switches. Thirteen bits represent real
time in a complemented, binary-coded-decimal format. The fourteenth bit
is a "ready' signal to the computer, used‘to avoid incorrect time information
during changes from one time state to the next. When the ready signal is
present, the time can be read into the A register in response to a Digital
input command. Memory assignments for clock information are as follows:

| Operand Track Address = 37

Bit Position Assignment

1

Pt

Minutes
Minutes
Minutes
Minutes
Tens of Minutes
Tens of Minutes
Tens of Minutes
Hours

Hours

[BN e ¢ e 7 © AT ©) ' S GV AV]

—

Hours

5-14

Expanded Input-Output Capabilities -~ Continued

Bit Position Assignment
11 Hours
12 | Tens of Hours
13 Tens of Hours
14 Unassigned
15 Unassigned \
16 Unassigned
17 | Unassignéd
18 | Clock "Ready' Signal

Visual indication of the time is given by a direct reading indicator in
peripheral equipment, with midnight as 0000 and the end of the day as 2359.
Each digit may be up-dated by one of four pushbutton switches to allow
adjustment of the clock to local time.

Manual Inputs

Manual inputs are provided to permit the operator to enter instruc-~
tions or data into the control program. Instructions are sometimes used to
print out selected sectors of memory under program control. Data entries
are sometimes used to provide the control program with process operating
information that is not fed in automatically through the analog input system.
This type of data may represent a process variable that changes slowly and
is costly to instrument in analog form; or the informétion may represent a
unique operating mode.

A group of toggle switches is sometimes provided so that the infor-
mation or instruction can be entered in binary form:by setting the toggle

switches to the desired binary pattern.

Expanded Input-Output Capabilities -- Continued

In figure 1-1, the white square.in the center of the operating panel
(below and to the right of the logging typewriter) is a matrix indicator. The
matrix indicator is composed of four rows and four columns. Two}selectgr
switches, below and to thé left of the matrix indicator, are used to select
any one of the sixteen possible inputs designated in the matrix squares. The
matrix switch and indicator eﬁable the operator to select a épecific input.
function.

The information to be inserted into the program is set on Digitran
switches which are located on the control panel to the right of the matrix.
The binary-coded equivalent of the decimal or octal number set into the
Digitran switches is inserted into the prog¥am only after the operator presses
an EXECUTE MATRIX button on the control panel.

Programming considerations cause the information to be read in onl}r
at a time acceptable to the program, so that control calculations are not in-
terrupted. If the operator desires that the information be read into the pro-
gram immediately, he can accomplish this by pressing the START button on
the RW -300 control panel. The degree of priority assigned to manual inputs
is a programming consideration which depends upon the application. In some
applications the computer accepts the new data on a tentative basis, performs
predictive calculations to determine how the new data will affect the process,
and prints out the result so that the operator can judge whether or not the

new data should be inserted.

Expanded Input-Output Capabilities -~ Continued

Watchdog Timer

A watchdog timer is a fail-safe device which is incorporated to pro-
vide periodic checks of computer opei'ation. The timer is of the:rundown
type and must be reset periodically. The rundown time is adjustable fromv
approximately 1 second to 30 minutes.

The computer periodically sends a one-bit output to the timer for re-~
~setting purposes. If the computer fails to send this one-bit output within the
required time, the timer will run down and generate an output which may be
used to halt the computer, send it back to start, sound alarms, etc.

In a typical application of the watchdog timer, the program may in-
‘clude instructions to perform periodically a series'of operations (add, sub -
‘trac’c, shift, etc.) using a converted known analog voltage. The result of
these operations is compared with a stored constant which represents the
correct solution. If the comparison proves the cémputations to be correct,
a one-bit output is executed to reset the timer. An error in analog input
conversion or in any of the arithmetic or logical operations would result in‘
failure to reset the timer. The timer would run down, signal the operator,
and send the. computer to halt. The last correctly calculated control signals
would be maintained.

Ferranti Reader

When required, a Ferranti seven-level paper-tape reader provides
high-speed tape input. The input from this unit may be permanently substi-
tuted for the paper-tape reader of the Flexowriter (i.e., it can be made the

only means for reading paper tape). However, it is also possible to retain

5-17

Expanded Input-QOutput Capabilities -- Continued

both the Flexowriter and Ferranti facilities, with selection being made by the
operand track addréss or by a one-bit digital output.

Use of the Ferranti tape reader requrires additional circuits to make
the Ferranti signal levels compatible with those of the RW-300. The Ferranti
isAmodiﬁed‘ to provide an interlock feature (''ready' signal). The maximum
speed of the Ferranti used with the RW-300 is 60 frames per second; a
Digital input command must not be addressed to the Ferranti more frequently
than once per RW-300 drum revolution.

Teletype Punch

A Teletype seven-level paper-tape punch may be attached to the RW -
300 for high—speed. tape output. This puncﬁ is controlled by the program
which maf choose between this unit and the Flexowriter by the use of the
operand track address, or by a one-bit digital output. The punch is modified
to provide an appropriate ''ready' signal to the RW-300.

The Teletype high-speed tape punch uses a 3600-rpm, 60-cps, syn-
chronous motor and has a maximum punching rate of 60 characters per
second. This maximum rate can be achieved only when doing a series of
outputs with the following characteristics: ‘the number of word times between
the Load A instructions and the corresponding Digital output instruction must
be equal to, or less than, 17. If this time is exceeded, the punching rate |
will be 30 characters per second. To be certain of achieving the required
minimum timing, there must be no Digital input instructions between suc-
cessive Digital output instructions. If this latter requirement is not met,

the average punching rate will be from 30 to 60 characters per second.

5-18

Flexowriter

FLEXOWRITER

Modes of Flexowriter Operation

The Flexowriter operates under the control of the RW-300 when
paper-tape information is being read into the compuf:er, and when information
from the computer is being recorded in printed form and/or pun‘ched-/-tapem
form on the Flexowriter. In addition, the Flexowritér is operated independ-
ently of tfle computer when program listings are being typed and/or punched,
and when punched tapes are being duplicated or printed.

The mod@s of Flexowriter operation include:

~a. Print

| b. Punch

c. Frint-and—Punch
These modes of Flexowrite; operation caﬁ be controlled either by the com-
puter, or by switches located above the Flexowriter keyboafd.

Each of the switches above the Flexowriter keyboard, as well as the
keys on the keyboard, represent some Fle?cowriter function. Each Flexo-~
writer functicon has a corresponding FlexoWriter code which can be repre-
sented by a pattern of punched holes in the Flexowriter paper tape and by a
bit pattern in the computer's A register. Any hole pattern or bit pattern
which does not represent a Flexowriter function is called an "illegal' code.
Among the ''legal'' codes recognized by the Flexowriter are four control
codes:

a. Punch On

b. Punch Off

U1

-1

Flexowriter -- Continued

c. Non-Print

d. Print Restore
These control codes affect the mode of Flexéwriter operation in the same way
as the corrésponding switches located above the Flexowriter keyboard. When
the Flexowriter is operating under computer control, a digital output instruc-
tion addressed to the Flexowriter is used to send the control codes from the
computer's A register to the control circuits of the Flexowriter.

A digital output to the Flexowriter from the A register with the con-
trol code 224 (Print Restore) will cause the Flexowriter to operate in the
Print mode. In the Print mode, the Fle‘xowyriter does not respond to illegal
codes, nor does it respond to the two legal codes Tape Feed and Stop Code
when these cédes are sent to the Flexowriter from the computer. All other
legal F'lexowriter codes are executed, regardless of the contents of the
parity* bit. Flexowriter codes are tabulated in figure 5-2.

The Flexowriter, printing capability can ioe disabled manually by the
Non-Print switch on the Flexowriter, or by a digital output to the Flexowriter
from the computer with the control code 230 (Non-Print).

A digital output to the Flexowriter frofn the computer's A register
with the control code 250 (Punch On) will put the Flexowriter in the Punch

mode. Subsequent digital outputs to the Flexowriter will punch out on tape

*The parity bit is used as an error-checking feature which can be in-
corporated in the standard Flexowriter. Use of the error-checking feature
is described along with other Flexowriter charactefistics near the end Qf
this section.

5-20

Flexowriter -- Continued

any bit pattern except control codes contained in A-register bit-positions 1
through 8 -~ provided the Flexowriter is not in the Print-and-Punch mode.
" This feature is necessary to obtain & "'binary dump', or copy of the bit

patterns in computer memory.

Whén in the Pu;nch mode, a control code {such as Punch Off or Prin;
Restore) sent to the Flexowriter by the computer causes the Flexowriter to
éxecute that code (change the mode of Flexowriter operation) and also punch
the péeudo code 377 on paper tape. A digital output from the A register with
the control code 244 (Punch Off) will cause the Flexowriter\ to punch the
pseudo code, and then stop punching., If the punch/non~-punch function is
controlled by a one-bit digital output, Flexowriter re spoﬁse to the punéh/
non-punch codes caa be eliminated, aund bit patterns representing the

control codes may be punched without changing the mode of operation.

The Print-a;nd—Punch mode of operation is achieved under computer
control by sending Punch On and Print Restore control/signals to the Flexo-
writer. When in this mode of operation, the Flexowriter will respond only
to légal codes. Any character code, or functional code such as carriage re-
turn, will be executed by the typewriter and will be punched on tape. Illegal
‘codes are neither punched nor printed. The Tape Feed code is punched, but
there is no typewriter response. The Stop Code is punched, but the Flexo-

- writer does not stop. The four Flexowriter control codes will be executed,

flexowriter -- Continued

and the 377 code will be punched.

The Flexowriter can be operated in any of the three modes independ-
ently of the computer. The Flexowriter's Print Restore switch puts the
Flexowriter into the Print mode. In this mode, the contents of a paper tape
threaded through the Flexowriter tape réader will be printed out when the
Flexowriter's Start Read switch is pressed. The Flexowriter stops reading
when it comes to a Stop Code punched on the paper tape, or when the Fylexo‘-
writer's Stop Read switch is pressed. There is no typewriter response to
the Tape Feed Code, or to illegal codes.

In‘the Punch mode, a paper tape threaded through the Flexowriter
tape reader can be duplicated by the Flexowriter paper-tape punch. This in-
dependent operation is achieved by pressing the Flexowriter Punch On switch
and Start Read swit‘ch. The punch will duplicate all codes punched in the |
tape, will respond to the four control codes, but will not respond to the Stop
Code -- provided the Flexowriter is not in the Print-and-Punch mode.

When operating "foff-line', independently of the computer, the Flexo-
writer can be placed in the Print-and-Punch mode by pressing the Print
Restore and Punch On switches on the Flexowriter. In this independent
mode, a paper tape threaded through fhe Flexqwri’cer can be duplicated and
its contents printed by pressing the Flexowriter's Start Read button. Only
legal codes will be typed and punched. Illegal codes will be ignored. The
Flexowriter will not respond to the four control codes, but will stop reading

the tape when it comes to the Stop Code.

5-22

Flexowriter -- Continued

When punched tapes are prepared on the Flexowriter, blank tape .‘fol-
low.ing the last punched frame may bé obtained by proceeding as follov;/s:
a. Press Punch On switch above thé Flexowriter keyboard.
b. Hold down Card Feed microswitch near Flexowriter punching
mechanism.
c. Press, then release Tape Feed switch above the Flexowriter
keyboard.
Blank tape (with tape-feed holes) will be produced until the Card Feed micro-
switch is released. The- Punch Off switch above the Flexowriter keyboafd
may then be pressed if the next Flexowriter operation (e.g., program load-
ing) does not require the punch mode of operation. However, if the Punch
Off switch‘is pressed before releasing the Card Feed microswitch, the read
lines to the' computer will be temporarily disabled, and the next digital input
from the Flexowriter will be read as all zeros, regardless of the tape code
under the Flexowriter tape reader. Thus, the Card Feed microswitch should
always be released before pressing the Fiexowriter's Punch Off switch.

General Flexowriter Characteristics

The Flexowriter normally supplied with the RW -300 has the following
features:

a. lb6-inch carriage

b. Reader and punch which handle paper tape and edge-punched cards

c. Separate '""Red! and '""Black" codes for color shift

d. Elite Gothic type

Flexowriter -- Continued

e. Large capital letters and numerals in lower case; small capital
letters and various symbols in upper case

f. Separate codes for Non-Print, Print Restore, Punch On, and
Punch Off modes of Flexowriter operation

g. Alphabet, numerals 0;9, and punctuation identical with IBM 705
standard code

h. Special keys carrying the numerals 10, 11, and 12

i. Provisions to receive foided or roll paper up to 15 inches wide,
typing a line up to 13 1/2 inches long.

j. No special code-delete feature. Paper-tape frames can be de-
leted using the Tape Feed switch abqve the Flexowriter keyboard
Information cannot be readily deleted from edge-punched cards.

k. Ability to duplicate tapes, regardless of code legality

The Flexowriter inhibits reading into the computer if the Flexowriter
is in the Print mode. Therefore, reading into the computer and printing
cannot be performed simultaneously.

The Flexowriter Punch mode is selected through the use of Flexo-
writer codes or digital outputs under program countrol, depen.ding on the
Flexowriter wiring, The Flexowriter Print mode is selected through the use
of Flexowriter codes only.

In a basic (unexpanded) RW-300 syétem, a Digital command with an
operand track address of either 01 or 33 will turn the Flexowritex" motor on

or off, depending upon whether the least-significant bit of the A register is

5-24

Flexowriter -- Continued

a one or a zero, respectively. In an expanded system, the Flexowriter motor

is normally controlled by a one-bit output,

At the customer's option, the Flexowriter can be provided with the

following features:

a.

A No. 2-pin feed platen can be used with the Flexowriter, giving a
maximum usable paper width of 13-1/8".

By addition of a selector bar tab from the Flexowriter, the

parity bit can be punched in the Print-and-Punch mode.

Removal of Input Relay No. 7 prevents parity bits from entering
the computer.

Removal of Output Relay No.7 prevents parity bits from being sent
out by the computer.

A separate one-bit digital output to control the Flexowriter punch
can be supplied to avoid any undesired codes appearing on the tape
when turning the punch off.

Insertion of a parity channel permutation bar into the Flexowriter
will place the Flexowriter under complete parity control in the

Print and Print-and-Punch modes.

The paragraphs which follow describe the form of the punched paper

tape used with the Flexowriter, the '""parity' option, Flexowriter codes, and

timing considerations.

Paper Tape

The paper tape used by the Flexowriter, and by most input-output units

is a standard eight-level paper tape, one inch wide. In the tape shown in

5-25

Flexowriter -- Continued

trailer
o @ . @
o . O direction
- of

. travel

® o O i}

o - }

leéder

Figure 5-1 Segment of Punched Tape

Figure 5-1, a hoie punched in the tapé is used to represent a one, .\and a blank
{no punch)‘ to represent a zero. Thus, a row across the tape (a ""frame’) may
be used to represent a binary number. The least-significant bit appears
along the right-hand edge of the tape shown in figure 5-1. The small holes
) which lieb between level 3 and level 4 are sprocket:holes which are used to
time and guide the movement of the tape in all tape units. Blank tape ahead
of the first punched frame is called ''leader', and blank tape behind the last
punched frame is called "trailer'",

A frame of punched holes may be reprersented by a three-digit octal
number. In this presentation, the sprocket holes separate the two least-
significant octal digits. The five non-zero frames shown in figure 5-1 repre-
sent, from top to bottom, the octal numbers 143, 106, 144, 145, and 10.
Various combinations of punched holes are used to représent characters and

to control the electric typewriter. From the list of Flexowriter codes in

5-26

Flexowriter -- Continued

figure 5-2 it may be seen that the five punched frames in figure 5-1 represent

the letters Y'C*, ©Q', "D, "K', and the decimal number "'8'.

Parity Checking -

Tﬁe Flexowriter incorporates a seven-channel code for digital iﬁputs.
Six of the channels contain the desired input character, and the seventh
channel (level 5‘on f.he tape) may be used for "parity' checking.

In general, parity check makes use of a code employing binary digits
in which the total number of ones (or zeros) in each permissible code is
always odd or always even. In the Flexowriter parity check, the total num-
bér of ones must always be odd. Thus, if the character punched on the tape
contains an odd number of ones, the paﬁty channel will contain a zero. Con-
versely, if the character punched on the tape contains an even number of
ones, the parity channel will contain a one.

Any correctly punched tape employing parity checking will always con-
tain an odd number of ones for each character. This feafure enables the coxﬁ-
puter to be programmed to detect errors that could occur during tape punching
or reading. However, parity checking is a programming option that is not
normally employed simply to check the loading of a program punched on tape.
Program loading can be checked more easily using the check-sum capabil.ity
of the load program (Section VI). However, a parity-checking capability is
desirable when information of uﬁcertaiﬁ accuracy is being read into the com-
puter. For example, information transmitted over land lines to a paper-tape

punch can be verified by parity checking.

[63}
1

I~

~J

Flexowriter -- Continued

System specification_s usually indicate whether or not the parity-
checking option is to be included in the features of the Flexowriter used with
the system. If parity checking is to be employed, the Flexowriter includes
provisions for handling a parity bit in level 5 of the punched tape. The
punched tape shown in figure 5-1 is without a parity bit; the fifth column
(level) from the right edge of the tape does not contain any puﬁched holes,
even though some of the characters are represented by an even number of bits.

“The bits read from the seven levels of punched Flexowriter tape change

positions on entering the computer as shown below.

A Register.
.-
b 18] 81 716543 1 g bit positions
Vo o ol o % A A Al
: } [1

B

level

N
() e
BN e
pot

8 7 6 5

Tape Reader

This locates the parity bit (level 5 on the tape) in the highest positicn of the
A register {(normally bit-position 7) where it can be readily extracted by the
program.

When parity checking is desired, the load program must include in-
structions to determine whether the sum of the seven bits is odd or even.
":he load program must also includ=z instructions specifying the desired action
in the event of a parity error. Furthermore, after the parity check has been
made, some action must be taken to ensure that the parity bit is zero before

entéring the input information into the program.

-28

Ut

Flexowriter -- Continued

If the parity-checking feature is not included in the‘Flexowriter, the
parity bit is never present, and no special programming is requiredﬁ to elimi
nate that bit before the input character is interpreted by the 1oad; program.
However, if the parity feature is included in the Flexowriter, the parity bit
must be suppressed--whether or not the parity bit was employed to perform
a parity check. The Extract ins‘crpction provides a conx}enient technique for
suppressing the parity bit. The techniqﬁ.e is outlined in conjunction with a
description of digital inputs from the toggle switches.

When a tape is punched with the Flexowriter under program control,
any seven-bit pattern in the A register of the computei‘ will be punched on
the tape in respons‘e to a digital outi)ut command addressed to the Flexowriter.
Upon leaving the computer, bits 5, 6, and 7 in the‘ A register change position
as shown below.

A Register

-——
, . . es
'._._IEE._ ? 7\/6 /5 4;: Zg’) 2 % bit position
8 7 6 5 4 3 2 1 level
Tape Punch

The eighth line, or channel to the Flexowriter (corresponding to the
eighth level on the paper tape) is not used for character codes, but is used
in the four Flexowriter control codes: Non—Print, Print Restore, Punch
Off, and Punch On. Therefore, the programmér must be aware of the con-
tents of bit-position 8 in the A register when programming digital output

commands addressed to the Flexowriter.

5-29

Flexowriter -- Continued

In this section of the manual, a sample printout listing was used to
illustrate the method of printing out non-zero octal numbers on the Flexo-
writer. The technique described is valid if the Flexowriter is not equipped
for parity checking. However, if the parity-checking feature is incorporated
1n the Flexowriter, parity conditions must be satisfied, . and the A register
must contain an odd number of bits if the number is to be printed on the
Flexowriter. The sample printout listing would have to be modified to test
for an even number of bits in the A register prior to the digital output com-
mand; if the number of bits‘were even, a one bit would have to be placed iﬁ
bit-positon 7 of the A register to form a legal Flexowriter code. A one ﬁay
be placed in bit-position 7 of the A registe‘r by merging (operation code 31)
the octal constant 000100 with the contents of the A register.

Flexowriter Codes

The octal numbers representing Flexowriter characters are tabulated
below. The octal numbers used by the programmer in conjunction with inputs
and outputs depend upon whether the system's Flexowriter uses the parity-
checking feature described above.

Flexowriter Timing Considerations

Typing, reading, punching, or punching-and-typing all occur at about
eight characters per second on the Flexowriter.

When a digital input command is sent to the Flexowriter, a frame of
paper tape in the Flexowriter tape reader is read into the computer's A reg-
ister. A series _Of digital input commands addressed to the Flexowriter are

executed at the nine-character-per-second rate established by the Flexowriter.

5-30

Flexowriter -- Continued

Figure 5-2. Table of Flexowriter Codes

FLEXOWRITER | ' OCTAL CODES
CHARACTER ON TAPE IN A REGISTER.
UPPER LOWER WITH WITHOUT WITH WITHOUT
CASE CASE PARITY PARITY PARITY PARITY
A A 141 141 ' 61 61
8 B 142 142 62 | 62
¢ C 1163 143 163 63
o D 14k o 6L 6L
£ E 165 145 165 65
F F 166 - 146 166 66
a G 147 147 67 67
H H 150 150 70 70
n | - 151 kol 7
J o J . 121 101 ' 141 L1
K K 122 102 142 k2
L L 10% 103 L3 L3
M M 12k 10k 1hh bl
N N 105 105 45 L5
0 0 , 106 106 L6 L6
P P 127 107 C1hT L
Q Q 1%0 110 150 50
R R 111 111 51 51
s S 62 L2 122 22
T T L3 ' 43 23 23
U U & Ly 2L 2k
v v b5 L5 : 25 .25
W W 46 146 26 - 26
X X 67 L7 127 , o7
% Y 70 50 120 30
z Z 51 51 31 31
) 0 Lo 40 20 20
] 1 1
" 2 2 2 2

5-31

Flexowriter -~ Continued

Figure 5-2. Table of Flexowriter Codes -- Continued

FLEXOWRITER OCTAL CODES

CHARACTER ON TAPE IN A REGISTER
UPPER LOWER WITH WITHOUT WITH WITHOUT
CASE CASE PARITY PARITY PARITY PARITY
3 23 3 103 5
& ly 4 L b L
% p 25 p) 105 5
¢ 6 26 6 106 6
& T T T T T
* 8 10 10 10 10
(9 31, 11 111 11
? 10 112 112 52 e
? 1 1%5 113 153 23
: 12 - 54 5k 3k 3
_ , 73 53 133 33
. . 153 153 > 13
/ - 61 L1 121 21
= + 100 100 40 L0

LOWER CASE 172 152 172 72
UPPER CASE 17k 154 174 Th
TAB 76 56 136 36
SPACE 20 00 100 00
BLACK %0 12 112 12

RED 114 11k 54 54
CARRIAGE RETURN 136 116 156 56
PUNCH ON - - 250 f 250
PUNCH OFF - - ol -t
NON PRINT - - 230 230
PRINT RESTORE - - 2oh o2l
TAPE FEED 177 157 177 77
STOP CODE 1% 13 13 13

Flexowriter -~ Continued

~When a digital output corﬁmand is sent to the Flexowriter, a 110~
millisecond timing circuit is activated. No more .information can then be sent
to the Flexowriter or obtained from it.until the 110 milliseconds have passed.
The Flexowfiter delay circuit constitutes an interlock which prevents the com-
puter from transmitting information to the Flexowriter before that information
can be accepted by the Flexowriter for ‘printing and/or punching. However,
other instructions can be executed during this time, and it remains the pro-
grammer's option to make maximum use of computer time by inserting other
instructions in the program between digital output commands.

A digital input command sent to the Flexowriter must not be followed
immedia’cel? by digital output commands to the Fleé:owriter. The program
must include a waiting time of at least seven drum revolutions between digital
input and digital output instructions involving the F.exowriter. If this waiting
time is not included in the program, the first digital output instruction will
not be executed. There is no programming restriction on placing digital in-
put instructions immediately after digital output instructions--a delay circuit
within the computer prevents infiormation loss.

On digital output to the Flexowriter, a longer delay than 110 milli-
seconds may be required for a long tab or a carriage return. This longer
delay can be programmed by inserting a trivial Flexowriter command, such
as 1ower—éase shift. Because of the vlé—inch carriage, the programmer must
output a number of dummy characters after each carriage return to permit a

full return of the carriage before further printing. The same statement holds

5-33

Flexowriter -- Continued

true for execution of a tab.

carriage returns:

Number of dummy
characters

As a guide, the following will permit safe

Point from which
returning the carriage

2 inches
4 inches
7 inches
9 inches
10 inches‘

12 inches

These may vary slightly from system to system.

5-34

SECTION VI

PROGRAM LOADING

INTRODUCTION

Procedures for preparing and organizing program listings are des-
cribed in Sections III, IV, and V. This section of the manual deals with load-
ing programs into the computer and typing the program listings on the Flexo-
writer. Certain typing, or format restrictions are necessary to enable thé
computer's load program tq interpret the symbols punched on the tape.

The paragraphs which follow contain a brief description of the load
program, followed by a summary of typing format requirements and opera-

ting procedures.

LOAD PROGRAM

| ;I‘he load program, permanently stored on track 63 of computer mem-
ory, is started whenever the LLOAD button on the computer's control panel is
pressed. The loa.d program controls digital inputs from the Flexowriter tape
reader (or some alternate tape- or card-reading device).

Each time .the loaa program performs a Digital input instruction, a

frame of tape {one symbol) is reé;d into the A register, and the tape advances
so that the next frame can be read in response to the next Digital input

instruction.

Load Program -- Continued

The load program examines each symbol read into the computer from
the tape reader, and, upon receipt of certain "“indicator' symbols, proceeds
to assemble the information for storage in specific memory locations.

The listings described in Sections III, IV, and V contain indicat;)rs

having the following significance:

Indicator Significance
AN Address. The location in which an instruq-
tion or constant is to be stored.
nen Cbnstant. An octal numbexr to be stored in
the location specified.
" ' Instruction. ; An execution code and operand

address, or operation code and
next-instruction address, to be
stored in the location specified.

A complete instruction requires two sequential sector locations. Only
the first sector is specified in the listing (CI column) and is punched on the
tape; the load program stores the first word of the instruction in the specified
sector, adds one to that sector number, and stores thé second word of the
instruction in the next sector. For sequential listings the storage location
need be specified only once, and all subsequent instructions {or constants’)-
will be stored in sequential sector num:bers by the load program. After an
instruction is stored in sector 127, the next instruction is stored in sector

00 of the next higher track. Note that if the next-instruction address speci-

fied in a program listing is sector 127, the program will read the first word

6-2

Load Program -- Continued

of the instruction from sector 127, but will read the second word of the in-
struction from sector Od of the same track. Therefore, in sequential listings,
it is necessary fo assign specific addresses to instructions that will be stored
in sectors 127 or 00 in order to define the track number. In the case of an
optimum program, the location of the first word of each instruction must be
specified. |

When a punched tape is threaded through the Flexowriter tape reader
and the :LOAD button pressed, the load program reads the blank tape leader
until a meaningful indicator is received. Upon receipt of the indicator, the
load program reads, interprets, and stores the instructions punched on the
paper tape. At the end of the punched instruction information, the load pro-
gram continues to read the tape trailer until the stop indicator "S" is read.
Upon receipt of the ''S' indicator the computer halts.

The load program can be halted while it is accerting information from
the Flexowriter by pressing the STOP button; by ’pressing the RESUME button,
loading can be resumed.

The load program also recognizes indicators "'L'", "M'", and ""J". The
"M'" indicator is used in conjunction with a memory check sum, a feature of
the load program which permits loading accuracy to be verified. The "L" in-
dicator is used to specify that tape symbols are in binary format. The "J"
indicator causes the computer to leave the load program and begin another
program at a specified address. The use of these indicators is described

following the discussion of the standard punched tape format.

Lioad Program -- Continued

As an equipment option, the RW-300 load program can be prepared to
recognize the indicator "D'". Recognition of this indicator temporarily trans-
fers program-loading control to track 61. In track 61, a '"Decimal Input
Routine'' interprets consﬁa.nts that have been listed in a decimal format. The

Decimal Input Routine is part of the RW -300 Program Library.

STANDARD PUNCHED TAPE FORMAT

Punched tapes prepared for loading »under the direction of the load
program are ﬁsually typed and punched using spaces, tabs, and carri;ge re-
turns for maximum readability. The basic format is as follows:

Normal Instruction Format

s s S c

P t p t t p t 2
AaTT-SS alaXXaTT-SSalaXXaTT-SS

c b ¢ b b c b :

e e e t.

Normal Octal Constants Format

5 c

P £ £
A aTT-SS a CXXXXKXX

C b :

e t.

Thus, the listings
CI EX OPERAND OP NI

Al 42-126{1]08] 00-110 {I{16]20-106

ADDR. CONST.

Ay 08-19 C437152

6-4

Standard Punched Tape Format -- Continued

would be typed
A L2126 108 oo-l0 I 16 20-106

A 08-19 Ci37152
Note that special Flexowriter keys are used so that only two characters are
required to)obta.in the numbers 106, 110 and 126.

Format requirements demand that no extra characters or spaces ap-
pear between characters shown as closely spaced groups in the above illus-
trations. Fér example, if 08-18 were typed 08-1 8, the address would not be
interpreted cofrectly by the load program,; similarly, C437152 must not be
typed C 437152.

The spaces, tabs, and dashes suggested for the normal instruction
format can be replaced by any convenient character. However, one character
or space must appear in these positions on the punched tape. For example,
if 08-18 were typed as 08Q18, the address would not be misinterpreted by the
load program.

Carevmust be exercised in correcting typing errors when preparing a
punched tape. A tape feed (octal 157) must not be useq to delete an incorrect
character in the six frames following an "A", nor in the nine frames following
an "I, nor in the six frames following a "C'". If an error is made following
an indicator, the entire word, including the indicator, must be deleted.

The programmer shéuld not enter data from the punched tape
directly into the revolver track during the load operation. Since the load
program itself uses the revolver extensively, any data entered from the

punched tape may be destroyed by the load program.

Decimal Punched Tape Format

DECIMAL PUNCHED TAFE FORMAT
The load program, when modified and used in conjunction with the
decimal input routine, will accept numbers in either integral, fractional,
or mixed form. The decimal numbers will be converted to their binary
equivalents, correctly scaled, and stored in the indicated track and sector.
The decimal numbers to be entered must be within the range 0. 00001
N 131,071, |

Two examples of the tape format used to enter decimal counstants are

shown.

S S ‘C
p p ;
AaTT-5SaD-103, 025"
C C v

&

e e t.
s 5 8 C
P PP -
AaTT-SSaDald, 0275 °

The D indicator is recognized by the load program as meaning tnat
the signed in.formation»to follow is in decimal form, and must be converted
to the bir;ary equivalent.

The sign of the decimal number immediately follews the D indicator.
A space is ;ccepted as a positive sign, .and a hyphen is accepted as a nega-

tive sign.

6-6

Decimal Punched Tape Format -- Continued

When the format above is used, the binary scaling of the converted
number is a function of the toggle switches, Sl - S6, on the computer test
and maintenance panel. If the operator had previously set the switches to
the configuration, 000110, the decimal numwvers entered would be scaled 2.—6
after being ;:onverted to binary. (For scaling considex:ations, refer to Sec-
tion VIII.)

When several decimal constants are to be loaded, each having dif-

ferent scale factors, the scale factor of each may be entered following the

decimal number in the following manner:

A TT-SS D - 20.55-05 C/R

A TT-SS D 113.092-12 C/R

-5
The first number will be scaled 2 after conversion, and the second

number will be scaled 2"12 aiter conversion.

The configuration, A TT-SS D 0.C/R will load zero into the specified

track and sector.

OPERATING CONDITIONS

When loading a program, the punched paper tape is threaded through

the Flexowriter tape reader (or other tape-reading device)., When using the

Operating Conditions -- Continued

Flexowriter, power must be applied, and the Flexowriter must be in the non-
print and non-punch modes.

The LOAD button is pressed on the RW-300 control panel to begin
loading. To stop lbading, the STOP button is pressed. To resume after a
stop, the RESUME button is pressed.

When the LOAD button is pressed, the ERROR light on the test and
maintenance panel (Section VII) will glow if the track selection plug is not
mated with the appropriate jack on the track selection panel. Before the

~ loading operation can be resumed, the track selection plgg must be moved to
the appropriate track group. Example: if some portion of the program is
written for track 33, the track selection plug’ must be connected to the jack
marked 32-39. Following a record-error indication, the track selection plug
is moved to the appropriate position, and the RESUME button is pressed to
continue loading. A record-error indication obtained by attempting to load
into track 63 cannot be cleared. The program must be corrected to elirr;inate
any instructions assigned to track €3.

If the loading operation halts before the program has been loaded, and
if there is no record-error indication, emd if the tape does not contain the in-
dicator "S', the halt is probably du: to a format error. The loading operation
can be restarted by pressing the LOAD and/or RESUME buttons. Although
the faulty word that caused the halt will not be loaded correctly, subsequent

instructions will be loaded satisfactorily.

Memory Sums

MEMORY SUMS

The load program keeps a running sum of all bits read from the
punched tape during the loading process. When a punched tape is loaded for
the first time, the memory sum can be noted for compariscn with sums ob-
tained during subsequent loadings of the same tape.-

When the LOAD button is pressed, the memory sum is set to zero.
Each ad&ress, constant, and instruction that is read in by the load program
is algebraically added to form a running check sum.

To make use of the sum, the indicator "M'" is punched on the tape,
followed by six spaces (blank tape). The load program halts when the ""M"
indicator is read, and at this time th‘e memory sum appears in the A register.
The octal contents of the A register are read by the programmer using the
oscilloscope on the test and maintenance panel (Section VII). The octal con-
tents of the A register are then punched into the six blank spaces on the paper
tape, immediately following the "M'" indicator.

Subsequent loading operations from the same tape will cause the load
program to halt if the running check sum does not agree with the memory
sum punched at the end of the tape. The running check sum appears in the
A register.

The memory sum can be placed anywhere along the tape. If the run-
ning check éum agrees with the memory sum read from the tape, the load
program sets the running check sum to zero and resumeé the loading opera-

tion. If the sums disagree, the load program halts. If the RESUME button

Memory Sums -- Continued

is pressed, loading will resume and the running check sum will be set to zero
in preparation for comparison with the next memory sum.,

Necte that the runnin}g check sum and memozry sum ‘are neither true
sums of all the bits read frdm the tape nor of all the bits stored in memory,

but are numbers generated by adding addresses, constants, indicators, etc.

BINARY LCADING

The "L indiéator tells the load program that the hole patterns in the
following three tape frames are to be interpreted és the binary representation
cf a computer word. Each frame following the indicator "L" ié read as’six
birary digits, with holes representing ones.

s

Ap TT-SSLBBBLBBB.......... etc.

a

c

e
The address {TT -SS) is the memory location aséi.gned to the first binary word
to be _loaded. Following this location address are, in consecutive order, the
words, 3 binary frames per word, each preceded by an ""L'"". No other binary
format is acceptable to the load program.

Although it is not convenient for the programmer to translate constants
into the bihary format, the trauslation is accomplished simply and effectiv:el*;r
under program control.

Tapes can be prepared in the binary format by a programming aid

called the "Utility Package''. Among the subroutines contained in the Utility

Package is a ""binary dump'' routine which can be used to punch a paper tape

6-10

Binary Loading -- Continued

representing the contents of specific memory tracks. The paper tape ob-
tained under the control of the Utility Package is called a ''standard binary
dump'. The load program in track 63 of the RW-300 reads tapes punched iﬁ
tﬁé standard binary dump format, and loads the inforfna.tion into the computer
in one-half to one -third the time required to load a tape prepare& using the
standard punched tape format described previously. |

A tape prepared using the standard punched tape format is called a
""listable'' tape because it can be read by the Flexowriter (independent of the
computer) to obtain a printout of each instruction. Any printout of a standard
binary tape is meaningless.

The Utility Package can also be used to prepare a tape representing
memory contents in the form of a ''fast binary dump'’, but tapes in this for-

mat can only be loaded using the Utility Package.

JUMP INSTRUCTION

If the first instruction of a program is located in 00-00 {the origin} of
memory, the first instruction will be read by the computer when the START
button is pressed.

If the first instruction of a program is not located at the origin, the
computer can be sent to the first instruction either by placing an unconditional
transfer instruction in the origin, or by loading a jump instruction.

For unconditional transfer to a program beginning in memory location

56-96, the origin may be loaded with an instruction similar to the following:

6-11

Jump Instruction -- Continued

Cl EX OPERAND OP NI

Al 00-00C j1;00 56-96 1{10]56-96

The above instruction uses the Transfer on Cverflow operation code, but any
transfer operation code or the No Operation code could be used. The Trans-
fer on Overflow operation code is advantageoué because it turns off the over-
flow indicator.

“The jump ins‘truction is read by the load program. By preparing a
tape: A 56-96J znd pressing the LOAD button, the programmer can cause
the computer to read the first instruction from memory location 56-96 {or
any other memory location designated).

The jump instruction can be punched at the end of a program being
loaded so that the computer will begin executing the progran: as soon as the
loading operation is finished.

Bepause tapes must be loaded into the computer with the Flexowriter
in the non-print and non-punch mode, it is sometimes desirable to halt the
computer just prior to the jump into the program. The halt permits the pro-
grammer to set the Flexowriter to printing or punching conditions required
to obtain output information from the program. The halt feature can be in-
corporated by using the form: A 56-9653J. The computer halts after reading
the "S'' indicator. When the programmer presses the RES;IME button, the
load program reads the '"'J'" indicator and jumps to the designated memory

location,

SECTICN VII

OPERATING CONTROLS AND INDICATORS

OPERATOR'S PANEL

Only the operator's panel is accessible when the cove. is down
(See frontispiece.,) Controls include:

a. POWER ON

k. POWER OFF

c. STANDBY

d,r LOAD
e. START
f. STOCP

g. RESUME

Each contrel is a pushbutton switch containing an indicator which
glows tc indicate the operating mode. The seven buttons may be divided
inte two categories: power contrcols and operating controls.

Power Controls

Pressing the POWER ON button connects the line voltage supply to
the RW-300 and turns on tho; STANDRBY light, At the eand cf a 2. 5-minute
waiting period, the POWER ON buttcn must be preséed again to place the
computer in operation.

Pressing the POWER OFF button disconnects the line voltage supply

from the RW 300,

=J

Operator's Panel -- Continued

Pressing the STANDBY button turns on the STANDBY light, turns off
the POWER ON light, and removes operating vol‘gages from the computer,
When the STANDBY button is pressed, line voltage is not disconnected frorﬁ
the computer, and operation can be restored immediately (no 2.5-minute
‘:‘delay) by pressing the POWER ON button. |
| The programmer is not normally concerned with the power controis,

but only with the operating controls,

Operating Controjlé

Use of the operating controls, described in conjunction with program
loading in Section VI, are summarized in thé paragraphs which follow.

To load a prbgram into the drum from the paper-tape reader, the
track 63 load program must be placed in operation., By pressing the LOAD
button, the next-instruction (N) register is set to all ones, the computer is
placed in automatic operation, and the first instruction of the load program
(Section V1) is read from memory location 63~127,

When the START button is pressed, the next-instruction (N} register
is set to zero, the computer is placed in automatic operation, and the in-
struction located at the origin (address 00-00) is read. Thus, the first
instruction in the program must be located in 00-00 if the START button is used.

Pressing the STOP button causes the computer to cease execution of
the program after completion of the current instruction; the corriputer idles,
and the STOP light is lit, The STOP light is also turned on when a STOP

instruction is executed by the computer or when a record error occurs

Operator's Panel -- Continued

(Section VI). The computer may be returned to continuous operation by

pressing the RESUME button.

If the computer has stopped as a result of a manual stop, program
stop, or record-error stop, it may be returned to continuous operation by
pressing the RESUME button (if the record-error has been cleared). This

~action will cause the computer to proceed to the location indicated by the
next-instruction address of the last instruction performéd. When the pro-
gram resumes, the STOP and ERROR lights will be turned off.
TEST AND MAINTENANCE PANEL

The; test and maintenance panel shown in Figure 7-1 is located under the
hinged lid of the RW-300 console cabinet. The panel contains controls and in-

dicators used during program loading, program check-out, and maintenance.

Figure 7-1. Test and Maintenance Panel

Note: Computers with an expanded memory have a three-way track set toggle
switch above the Track 0-7 socket on the test and maintenance panel.

7-3

Test and Maintenznce Fanel -~ Continued
Program Lioading

The controls and indicaters used during program loading include:

a;, Track selectica plug and jacks

b. ERROR indicator light

c. Track set selection switch (expanded memory only!}

The use of these in conjunction with program loading is described inSec-
tion VI. In addition, Section VI refers to obtaining track memory sums from
the oszcilloscope on the test and maintenance pane!l. The interpretation of
the oscilloscope display is described in the paragraphs of this section,
Maintenance

The controls and indicators provided for maintenance purposes

a. LINE VOLTAGE meter

b. VOLTAGE meter

c. METER SELECTOR switch

d. " Six centrols for adjusting voltages and clock amplitudes

e. PHASE MARGIN
These countrols are used to adjust operating voltages and to perform tests,
They are nct normaezlliy adjusted by pregramming or operating personiel.
Operation

The coantrols of interest to the programmer and operator under normal
operating conditions include:

a. TRACK 0 & 7 WRITE, ON/OFF toggle switch

74

Test and Maintenance Fanel ~- Continued

b. DIGITAL INPUT selector switch

c. L26, LZS, 1.24, L.23, L22, 121 toggle switches

d. ERROR indicator light
The TRACK 0 & 7 WRITE switch, located near the track selection plug, pro-
vides control over information written into tracks 00 and 07. Track 07 is
the analog output track {Sections I and III}.

Momentary power dips can cause the write heads of tracks 00 through
'07 to stofe spurious infornﬁation in these tracks. If th‘e power dips should
destroy the coutents of the origin {sector 00 of track 00), the program‘could
not be restarted; or if spurious infofma’cion should be introduced into the
analog output track, fa:;zv:;ty control signals would be generated. Therefore,
| “in procesé control applicaﬁo;w; the TRACK 0 & 7 WRITE switch is normally
turned OFF. To write in tracks 00 or 07 when the TRACK 0 & 7 WRITE
switch is in the OFF position, any store instruction involving these tré.cks
must be preceded by a one-bit é’igital cutput instruction which by'pés ses
the protection circuit. Th; stocre instruction must then be followed by
another one-bit digital a.:eutpﬁt instruction to restore the protection circuit.

Although power dips might destroy iniormation in trécks 0l through
06, the loss of’ this information does not affect :i:he control system because

the control calculation is restarted whenever a serious power-line transient

occurs,

Test and Maintenance Panel -~ Continued

The DIGITAL INPUT selector switch is normally set to EXT (external)
when the computer is controlling a process., When set to INT (internal), in-‘
formation from the six toggle switches (1,26 through L21) is read under
pvrogram control., The programming requirements for obtaining inputs from
thé toggle switches are given in Section V.

The toggle switches are used in cénjunction with certain progr‘amming
aids. The '"Utility Package' referred to in Section VI is composed of several
subroutines which can be selected by means of the toggle switches on the test
and maintenance panel. |

The ERROR light is turned on when a program or the load program
attempts to wr}te {carry out a store instruction) into an address in track 63
or in a track nbf cu-rently connected through the track selector plug and
jack. Program writing or loading into track 63 is impossible, regardless
of which group of tracks is connected. Normal operation may be resumed
either by changing the programmed storage location, or by connecting the

track selector plug to the appropriate jack.

PROGRAM CHECK-0OUT
The controls and indicators of the test and maintenance panel that are

used during program check ~out include:

a. FETCH button

b, EXECUTE button
c. RUN button

d. STATE indicators

e. Oscilloscope

7-6

Program Check-Qut -- Continued

Fetch and Execute Buttons

These controls are used to suspend instruction processing for the
purpose of inspecting the contents of registers. D‘epressing the FETCH
button suspends operations at the moment the next operand is selected, and
the F:omlauter idles in this state. Tcpressing the EXECUTE lbutton suspends
operaticns at the moment the next instruction is selected,‘ and the computer
idles in this state., Hence, thé effect of pressing either button during con-
tinuous operation is to stop program execution, and the effect when operating
in the FETCH-EXECUTE mode is to advance the program by "half' steps.

In either case, the appropriate light is turned on.
‘Run Button

Depressing the RUN button causes the computer to resume automatic
high-speed execution after the computer has been in the FETCH or EXECUTE
modes,

State Indicators

This portion of the test and maintenance panel may be used both in
code checking and trouble-shooting. The STATE INDICATORS consists of
a bank of six neon lights, a three-position rotary switch called the STATE
SELECTOR and a REFERENCE toggle switch. The neon lights display the
status of specific flip-flops, as determined by the setting of the STATE
SELECTOR switch: |

M Flip-flops Ml to M6 inclusive (track address)

Program Check-Out ~-- Continued

PE Flip-flops Pl to P5 inclusive (operation code);
E1l {equality flip-flop)

SZ Flip-flops Sl, S2, S3 (state counter); Z2 (overflow); Z4 (carry);
A3 (input s‘e‘lection)

When the EEFERENCE toggle is set to ONE, only flip-flops having
a current status of one will light the neons. When set to ZERO the converse
is true. Failure of a neon to light on either setting of the Reference Switch
indicates that the corresponding flip-flop or neon indicator circuit is faulty.

The information displayed on the neon indicators is dependent upon
the setting of the STATE SELECTOR switch and is dependent upon whether
the computer is in the FETCH or EXECU‘I‘E‘mode. The interpretation of
displays is covered in the last paragraph of this section.

The six jacks located above the neon lights are used for trouble-
shooting in connection with the jack located under the oscilloscope.

Oscilloscope

A smazll oscilloscope is provided to aid in code checking and main-
taining the computer., In code checking, its function is to display the con-
tents of various registers when operating in the FETCH-EXECUTE mode.
When register contents are displayed, the word is divided into two levels
on the-oscilloscope face, 10 digits to a level, as shown in figure 7-2.

A dot in a low position is a one, and a dot in a high position is a
zero. The sweep is triggered so that the least-significant bit appears at
the bottom right of the display. The bits in position 19 and 20 (upper left)

are always zero.

7-8

Program Check-Out -- Continued

LOWER LEVEL

Figure 7-2. Oscilloscope Dispiay
The octal number 123456 is displayed in figure 7-2. Interpretation
is as follows:

Bit Position: 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

BinaryRep- o9 o 1 0 1 0 0 1 1 100101110
resentation: ' R R Y —, , —

Octal Equiv- 1 5 3 4 5 6
alent:

When the oscilloscope is used to observe instruction words, parti-
tioning lines between 13 and 14 (on the oscilloscope mask) serve as an aid
in recognizirig the operation code or execution code normally contained in
bit—positio'ns 14 through 18. Partitioning lines between 7 and 8 aid in recog-
nizing track address (bit-positions 8 thljough 13) and sector number (bit-
positions 1 through 7).

Near the face of the oscilloscope are operating controls for horizontal.
positioning (H), vertical positioning (V), FOCUS, .and brilliance control
(BEAM).

Below the face of the oscilloscope are INPUT and WORD selector
switches which can be used for displaying the contents of specific registers

on the oscilloscope. The information displayed on the oscilloscope is

7-9

Program Check-Out -- Continued

dependent upon the setting of the INPUT and WORD selector switches, and
is dependent upon whether the computer is in the FETCH or EXECUTE mode.
The interpretation of displays is covered in the last paragraph of this
section,

Also below the face of the oscilioscope is an input JACK which can
be used by maintenance personnel to feed signals from thé state -indicator
jacks to the oscilloscope. The CA INT. MOD. toggle switch provides the
Beam intensification necessary to produce the dot pattern when a register is
viewed on the oscilloscope. The toggle switch is normally left in the ON
position,

Tables for Interpreting Indicators

When using the FETCH and EXECUTvEF buttcsns to observe the step-.
by-steb execution of a program, it is usually 'necessar'y to refer to the
original program listing. For the purpose of correlating the indicator dis-
plays with the program listing, assume the following: The current instruc-
tion (CI column of the Iisting) has been acquired by the computer whenever
the computer is in the FETCH mode. The tabulations which follow describe
the significance of the indicator displays when the computer is in the FETCH

and EXECUTE modes.

Program Check-Out -- Coatinued

FETCH MODE

SELECTOR POSITIONS

Oszilloscope Oscilloscope P
INEFUT WORD STATE osu118§c?1pe o< Neon
Selector Selector SELECTOR 1spiay

A Every Same as previous EXECUTE
(Resuit of previous in-
structions) '

B Every Same as previous EXECUTE
(Result of previous in- “
structions)

C Every Execution code of cu-rent iny
struction in »its 1-5 ;

"N Every - Next-instruction address
in bits 1-13,
Y Every Current operand address
' in bits 1-13
R1 lst Word Current operand

M In Ml—b' track number of
: current operand

PE In P;_5, current operation

' code

SZ In Z2, overflow status of

previous operations

Program Check-Out -- Continued

EXECUTE MODE

SELECTOR POSITIONS

Oscilloscope | Oscilloscope Oscilloscope or Neon
INPUT WORD STATE Display
Selector Selector SELECTOR
A Every (A) after completion of current
instruction
B Every (B) after completion of current
instruction
C -- Zero
N Every Next-instruction address
- zZero
Rl ist Word First word of next instruction
R1 2nd Word Second word of next instruction
M In Ml Y track number of next
instruction
PE In p1~5’ operation code of
executed instruction
SZ In Z2, current overflow status

SECTION VIII

NUMBER SYSTEMS AND S¢ LING

READING COMPUTER NUMBERS

A familiarity with binary and octal number systems will simplify com-
munication with .the RW-300 for the programmer, because the computer uses
the binary number system in its internal operations. The binary number sys-
tem, which permits only the symbols 0 ;nd 1, is particularly compatible with
the on-off type of circuits used in digital computers.

Since each computer word consists of 17 binary digits (bits), plus
sign, writing or working arithmetic with these numbers is cumbersome.
Therefore, program instructions are listed as decimal numbers; numerical
quantities, or constants, are entered in octal form.

If a computer instruction is

EX © OPRND OP NI
00 62-110 29 00-112

then the two instruction words will appear in the computer in binary as

EX OPERAND -
track sector
first word 00000 111110 1101110
OoP NI
track sector
- second word 11101 000000 1110000

Reading Computer Numbers -- Continued

To use the oscilloscope (figure 7-2) or indicator lights to verify an instruction
in the computer, the vprogrammer must be able to convert binary numbers to
their decimal equivalents.

A computer word may be a numerical guantity, rather than an opera-
tion or execution code and track address. These quantities must be converted
from decima’l to octal form for listing in the program,; the octal number is
stored in the computer in binary form. For exampie, C000325 would appear
in the computer as the binary number 00000000011010101, To check this, the
programmer must be able to convert b:inary numbers to octal.

So that a maximum number of significant digits will be carried
through programmed calculations, the programmer will sometimes find it
necessary to perfprm preliminary caléulations_to determine what Vshifting 1n-
structions should be included in the program. Although these calculations
can be performed in decimal, and the results converted to octal, program-
ming time is saved if the arithmetic operations can be performed using the
octal numbers that will be used by the computer. In the paragraphs which
follow, binary and octal arithmetic are described, along with numbering

systems and methods of converting from one numbering system to another.

NUMBER SYSTEMS
In the decimal number 213. 75, the symbols 2, 1, 3, 7, anci 5 repre-
sent the sum of
2 (102) +1 (101).+ 3"(100) +7 (10"1) +5 (10'2) or

200 + 10 + 3 4+ 7/10 + 5/100

Number Systems -- Continued

Thus, in the decimal system each position in a number has the valué of some
power of 10, and each digit is the coefficient of the power of ten represented
by that positibn. The place immediately to the left of the decimal point is the
power of 100, thé next is lOl, etc. The place immediately to the right of the
decimal point is the powe of 10~1, etc. Consequently, every time the deci-
mal pcint within a number is moved a place to the left, the number is divided
by 10; if the point is moved to the right it is multiplied by 10. Because there
are 10 symbols (0 through 9) permitted in the system, it operates with powers
of 10, and the base or radix of the system is 10. |

The decimal number systém is a ''place'' or positional notation sys -
tem; a similar system can be devisea using any base or radix. Both the
binary and octal systems are parallel to the decimal system, but binary uses
only 2 symbols (0 and 1) and has a base of 2, while the octal system uses 8
symbols (0 through 7) and has a base of 8. The base of a number is indicated

by a subscript, as 11010101‘2 (binéry) or 3258 (octal) or 213 (decimal),

10

Each place in a binary number represents a power of two. The binary
number 11010101.11 is the sum of
1 (27) +1 (26) +0 (25) + 1 (24) +0 (23) +1 (22) +0 (zl) + 1 (zo) +1 (z'l) + 1(2'2)
orl1284+4 64 + 0 + 16 + 0 + 4 + 0 + 2 + 1/2+1/4
or 213 3/4.

Each place in an octal number is a power of 8. The octal number
325.6 is the sum of

385 +2(8+5(8% +6(87Y) or

192 + 16 + 5 + 6/8 or 213 3/4.

Number Systems -- Continued

Note that the zero power of any number is alwgys 1 and the first power of
any number is the number itself. As in the décimal system, every time the
- point is shifted to the right, the number is multiplied by the base for every
place moved. If the point is shifted to the left, the number is divided by the
base for every plaée moved. The i)rogrammer uses this principle in scaling

binary numbers.

CONVERSIONS

Binary to Decimal

In the above example, the binary number 11010101.11 was converted
to its decimal equivalent by adding the products of each digit times the power
of 2 associated with its position. This method can be employed using the
tablg "powers of 2'' at the end of this manual. The conversion can be made
more auickly by ‘using the fact that every shift of the binary point one place
to the right multiplies by two.

Convert binary numbers to decimal by multiplying the most-significant
binary digit by two and adding the next binary digit. Multiply this sum by two,
add the next, and continue to the least-significant digit. A §imilar procedure
follows for digits to t‘he right of the point except that they are divided by two

instead of multiplied.

Conversions -~ Continued

Example:
1 1 0 1 0 1 0 1.1 1
Vo %,
1x2=2 40 o
 3x2=6 +1 :
4 Z}‘z:_l_;_ +0
13x2=26 +1
26x2=52 +0 %
53x2=106 +1
T06x2=212 +1
21 +‘1+2=_1_{_§___
111010101.112 =213 3/410 . 3/2:2=3/4

For an even faster conversion method, memorize the binary numbers

from 1 through 15. They are

1=1 3= 11 5= 101 7= 111
2 =10 | 6= 110 10 = 1010 14 = 1110
4= 100 12 = 1100 11 = 1011 15 = 1111
8 = 1000 13 = 1101

9 = 1001

When converting a binary number to decimal, begin with the decimal equiva-
lent of the first three or four digits and multiply it by two for every succeed-
ing place to the point. Then add this number to the decimal equivalent of the
rest of the binary digits.

Example: Convert 11010101 to decimal.

1101 | 01€1
13 x2x2x2x2=208+5 = 213

Conversions -- Continued

Decimal to Octal

The quickest way to convert a decimal number to octal is to divide the
decimal number successively by 8 and note the remainders. The remainders,

in reverse order, form the octal equivalent. If all or part of the number is a

fraction, repeatedly multiply the fraction by 8, noting the integers resulting
from each multiplication. The process is’continued until the fractional prod-
uct is zero, or until the desired accuracy has been obtained. The integers,

in the order obtained, form the octal equivalent.

Example: Convert 213.75 to an octal number.

213 = 8

26 + 5 .75 x 8= 6.00

26 = 8

i

3+ 2
3:8= 0+3

213.7510 = 325. 68

Binary to Octal to Binary

The octal number system is used for notation and for performing
arithmetic because it is easier to convert between binary and octal thé.n it is
to convert between binary and decimal. Since 8 = 23, each octal digit is the
equivalent of three binary digits. To convert an octal nufnber to binary,
write the binary equivalent of each octal digit.

Examplezl 3 2 5 . 6 in octal =
011 010 101 .110 oxr 11010101.11 in binary

To convert a binary number to octal, begin at the binary point and
~ divide the number into triads (groups of three digit‘s each). Then write the
octal equivalent of each group.

8-6

Conversions -- Continued

Example: 1 1 OS;'/O 1 0 1. 1 ;/ in binary =
3 2 5 6 in octal

Decimal to Binary

Decimal to binary conversion is like decimal to octal conversion ex-

cept that the decimal number is successively divided by 2, rather than 8. The

remainders from the divisions, in reverse order, form the binary number.
Fractions are multiplied by 2 until a fractional product of zero is reached, or
until the required accuracy has been obtained. The integers resulting from

the multiplication, in the order obtained, form the binary equivalent.

Example: 213.75 in decimal = 213 :2= 106 + 1 .75 x 2= 1.50
106 + 2= 53+ 0 .50 x 2= 1.00
53 :+ 2= 26+ 1 | |
26 2= 1340
13 :2= 6 +1
6+2= 340
3:2= 141
1:2= 0+1 =11010101.11 in binary

Octal to Decimal

Octal to decimal conversion is most conveniently performed by adding
the products of each octal digit times the power of 8 associated with its posi-

tion. For example: 325.6 in octal =

Conversions -- Continued

3(8%) = 192
2(8Y) = 16
5(8% = 5
6 (87} = 6/8 or 3/4

i

213'3/4 in decimal

Powers of 8 are listed in a table at the end of this manual.

BINARY ARITHMETIC

The rules for binary arithmetic are:

Addition Subtraction Multiplication Division
0+0=0 0-0=0 0x0=0 0 + 0 = undefined
0+1=1 ' 1-1=0 O0x1=0 0+1=0
14+ 1=0(with 1 1-0=1 1x1=1 1+1=1
to carry) ‘
0-1=1(with 1 1 +.0 = undefined
borrowed)
Examples: Addition Subtraction
augend: 1 1 0 0 1 borrow: 0 1 1 10
addend: 11 01 minuend: 1 0 O O
carry: 11 1 subtrahend: 1
sum: 10 0 1 1 O difference: 11 1

Binary Arithmetic -- Continued

Examples: Multiplication Division

Multiplicand: 10011 ’ 1.1

" Multiplier: 11 01 - 101) 111.1

1 00 11 101
0 00O0°O 10 1
1 0011 10 1
1 00 1 1
Carry: 11 :
Product: 1 1 1 1 0 1 1 1

OCTAL ARITHMETIC

Octal arithmetic is like decimal arithmetic. To perform the arith-
metic operations quickly, octal addition and multiplication tables can be used,
or memorized. vAn alternative to this is to perform the operations mentally
in decimal and convert the sum or prbduct to octal before writing it. Below

are tables showing octal multiplication and addition.

OCTAL ADDITION TABLE OCTAL MULTIPLICATION TABLE
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 1
0 ol1]2 13 14a1i5 16 |7 0 oo jololo jo jolo
1 1{21]3 |4 {5 {6 |7 |10} 1 o1 {2 |3 |4 |5 |6 |7
2 21314 |5 |6 |7 |10}11 2 otz 14 |6 |10]12]14]16
3 304 (5 16 |7 |10{11]12f 3 03 |6 |11]14]17]22]25
4 4156 {7 l1oj11f12|13] 4 0|4 |10[14]|2024|30]34
5 516 |7 (10]11)12}13]14] 5 0ol5 |12]17|24|3136]43
6 617 |1ol11]12)13)14)15] 6 0ol6 |14]22]30]36]44]52
7 71 10111201314} 15]16] 7 017 |l16]25]|34}43|52]61

In decimal addition, 7 + 7 = 14. The octal equivalent of 14is 16 (1 x 81 +
0 .

6 x 8); thus, in the octal addition table above 7 + 7 = 16. In working an

addition problem, the 6 is written and the 1 is carried to the next column.

8-9

GLOSSARY
Specific examples used in these definitions usually refer to the RW-300 only.

Absolute Value - the magnitude of a number without regard to the algebraic

sign of the number,

Access Time - the time interval between the instant at which information is:
(a) called for from storage and the instant at which delivery
is completed, i.e., the read time; or (b) ready for storage
and the instant at which storage is completed, i.e., the write

time.,

Accumulator (A Register) - the register in the arithmetic unit in which sums

and other arithmetic and logical results are formed.,

Adder - a device capable of forming the sum of two quantities plus a carry -

digit from a previous addition.

Address - a label (usually a set of numbers) which identifies a register or

location in which information is stored.

Analog - representing numerical quantities by means of continuous, physical
variables, e.g., translation, rotation, voltage, resistance;

contrasted with ''digital'.

Analog Conversion - the operation of changing analog information to its

digital (numerical) equivalent, or vice-versa.

Glossary -1

Analog Input - the acceptance of analog voltages from transducers and the
conversion of this data to equivalent digital form for proces-

sing by the computer,

Analog Output - the conversion of digital information generated by the
computer into equivalent voltages or currents to operate con-

trols or indicators.,

Arithmetic Unit - that portion of an automatic digital computer in which

arithmetic and logical operations are performed.

Base (Radix) - the fundamental number of a system of numbers. Thus, 10
is the base of the decimal number system, 2 of the binary,

8 of the octal.

Binary - involving the integer 2, as in a binary number system (base 2),
a binary choice (between two alternatives), or a binary opera-

tion (combining two quantities).
Binary Number - a numerical value expressed in binary notation.

Bi-Polar - in the RW-300, having to do with both negative and positive

analog input voltages; the bi-polar analog-digital converter.
Bit - a binary digit.

Bit Time - the length of time required for one bit to pass a given point on the

magnetic drum (approximately 6.5 microseconds in the RW-300).

Glossary - 2

Block - a group of information recorded on magnetic tape corresponding to

one track of information recorded on the magnetic drum,

Branch - see Transfer.

Break-Point - a point in a routine at which the computer samples a manually

set switch to determine the subsequent course of the program.

Carry - (1) the digit to be added to the next higher column when the sum

of the digits in one column equals or exceeds the number base;

(2) the process of forwarding the carry digit.

’

Check - a means of verifying information during or after an operation.

Marginal Checking - a system or method of determining

computer circuit weaknesses by varying the

operating conditions of the circuits,

Circulating Register - see Register.

Code (noun) -~ a system of symbols and rules for use in computer

operations.

Execution Code - a binary code used to modify certain opera-

tions in the RW=-300 such as shifts, multiplication,
division, etc. More specifically, the five bits
contained in bit-positions 14 through 18 of the

first word of a two-word instruction.

Glossary - 3

Instruction Code - the symbols, names, and definitions of

instructions which are directly intelligible to a

given computer.

Mnemonic Code - a code, usually alphabetic, chosen so that it

can be remembered easily. Example: MG for

Merge, LA for Load A, etc.
Code (verb) - to prepare problems in computer code for a specific computer,

Command - often used as a synonym for Instruction or Operation. See

Instruction Code,.

Computer - any device capable of accepting information, performing
sequences of arithmetic and logical operations, and supplying

the results of these operations.

Control Unit - that portion of an automatic digital computer which directs -
the sequence of operations, interprets coded instructions, and
initiates the proper commands to the computer circuits to

execute the instructions.

Convert - (1) change numerical information from one number base to another
(e. g., decimal to binary) and/or from some form of fixed-point
to some form of floating -point representation, or vice-versa;

- (2) change analog information (e.g., distances, rotations,
voltages, etc.) into digital information (numerical) or vice versa.

Glossary - 4

Core - a toroid of ferromagnetic material capable of being magnetized in
ei)ther of two directions, and therefore a binary device which

can store one bit for indefinite periods.

Core Storage - an array or matrix of cores capable of storing large numbers

of bits.

Core Buffer - a core storage and associated equipment to permit communi-

cation between the RW-300 and the magnetic tape transports.

Data - any information (usually numbers) taken in, operated on, or obtained

from a computer,
Raw Data - unappraised information entered into the computer.

Data Word - a word containing or reserved for numerical information, as

opposed to an instruction word.

Digit - one of the n symbols of integral values ranging from 0 ton - 1
inclusive in a scale of numbering-of base n, especially one of
the ten decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Digit Time - See Bit Time.

Digital - using discrete numbers in a given scale of notation to represent
all the quantities that occur in a problem or a calculation, as

opposed to analog.

Glossary - 5

Digital Input - the transfer of information from a digital source

(paper-tape reader, digital switches, digital

clock, etc.) to the computer,

Digital Qutput - the transfer of information in digital form from

the computer to some external device such as a

typewriter, paper -tape punch, relays, etc.
Double - Length Product - see Product.

Drum - cylinder with coating of ferromagnetic material used as a storage
device in digital computers; elementary lengths of a drum

track are magnetized to represent ones or zeros.

Execution Code - see Code.

Extract - an operation whereby some portion of the A register is retained
while the remaining portions are cleared by a logical multipli-

cation of the contents of a specified storage location.

Fixed Point - see Point.

Flip~-Flop - an electronic circuit having two stable states. A flip-flop can

store one binary digit of information.

Flow Chart (Flow Diagram) - a graphical representation of a sequence of
operations which is usually drawn up before a program is

written to show how the program is to operate.

Glossary - 6

Frame - on a paper tape, one row of 6 or 8 binary digits,
General Storage - see Storage.

Indicai:or - (1) on a panel, a light, oscilloscope, flag, or other device which
displays information visually. (2) in the format requirements
of a punched paper tape, a symbol which tells the RW-300

load program what kind of information is to follow.

Input - information accepted by the computer from cards, punched tape,

magnetic tape, instruments, etc,

Input Gr\oup - digital input iines, normally 18, addressed by a specific

track number,

Input Line - a wire capable of as suming two discrete voltage levels for

representation of either a one or a zero.
Instruction - see Code.

Leader - that portion of a punched paper tape that precedes the input data.

It is usually left blank.

Load (vérb) - (1) to enter data into the computer, as 'to load a tape''.
(2) to cause data to enter a register from a memory location,

as '""I.oad A",

" Load Program - a permanently stored program on track 63 which controls

the loading of programs and data into the memory.

Glossary ~ 7

Logging Typewriter - an output device for keeping a running log of prvocess

conditions,
Logical Operation - see Operation.

Logical Additio_n - by definition, 0+ 0=0, 14+ 0=1, 0+ 1=1, 1+ 1=1,
Logical addition is performed bit by bit, Thus, if correspond=~
iﬁg bit positions of two registers are both zero, the result is
zero in that position, Otherwise, thev result is a one in that

~ position.

Logical Product - by definition, 0 +0=0, 0 +-1=0,1-0=0,1-+1=1,
The logical product is formed bit by bit and has ones only in
those bit positions which had ones in the corresponding posi-

tions of both registers.

Loop - a portion of a program that is repeated until some predetermined
condition has been satisfied.

Magnetic Core - see Core.

Magnetic Tape - flexible tape coated with ferromagnetic material. In digital
computer applications, elementary lengths of the tape are

magnetized to represent ones or zeros.

‘Magnetic Tape Handler (Transport) - device for moving tape so
that information can be magnetically recorded or

read.

Glossary - 8

Magnetic Tape Buffer - see Core Buffer.‘

Memory - any device into which units of information can be stored and from
which the information can be obtained at a later time; in the"

RW-300, the magnetic drum is the internal memory.

1
Memory Sum - a word consisting of the algebraic sum (modulo 2 7) of all
binary digits in a specified portion of a paper tape. The
memory sum is used to determine whether or not all the in-

formation on a tape has been stored in the computer correctly.

Merge - an operation whereby any pbrtion of the contents of a specified
storage location may be inserted into the corresponding

portion of the A register by logical addition.
Microsecond - a millionth of a second.
Millisecond -~ a thousandth of a second.

Module - in the RW-300, individual circuits are assembled and wired on
insert cards. Interconnections between circuits and physical

mounting for cards are provided by modules.

Modulo - an operator which denotes division by a base number; e.g., if
a = b modulo p, a is the remainder obtained after b is divided

by the base number p, 132 modulo 128 is 4,

Glossary -9

Multi=Bit QOutput - a digital output circuit arrangement which causes a group
of output lines to be set to a one~and-zero pattern correspond-
ing to the contents of the A register when the Digital output

~_command is executed.
Octal - involving the ihteger 8, as in the octal number systém-(base 8).

One -Bit Output - a digital output circuit arrangement which permits one or
more output lines to be controlled without disturbing other

lines in the group.
Operand - a number used in an operation.

Operation - (1) a defined action; (2) the action specified by a single c'omplete

instruction.

Arithmetic Operations - operations in which numerical quan-

tities form the elements of the calculation (e.g.,

addition, subtraction, multiplication, division).

Logical Operations - the operations of comparing, selecting,

matching, sorting, merging, etc.
Optimum Programming - see Program.

OPUS - Optimum Programming Using Symbols. An assembly routine for the
RW-300 which reads a symbolica‘lly coded program and as-
signs optimum memory locations and numerical operation and

execution codes,

Glossary - 10

Origin - RW=-300 memory location from which the first program instruction
is read when the computer's START button is pressed, location

00-00

Oufput - information sent from the computer to typewriters, punches, mag-

netic tape, indicators, controllers, etc.

Output Group - digital output lines, normally 18, addressed by a specific

track number,

Output Line - a wire, or pairs of wires capable of assuming two discrete

‘voltage levels for representing either a one or a zero.
Parallel - handled simultaneously, as opposed to serial,

Parity - in the RW-300, the condition of a binary code in which the total

number of ones is always odd.

Parity Check - a test for data validity by examining the binary

code to determine whether or not the total number

of ones is odd.

Peripheral Equipment - accessory and auxiliary equipment used with a

computer to form a complete system.

Glossary - 11

Point - in poéitional notation, the location or symbol separating the integral

part of a number from its fractional part. In decimal notation
the point is called the decimal point. In binary notation it is

called the binary point.

Fixed-Point Representation - a notation or system of arith-

metic in which all numerical Quantities are
expressed by a predetermined number of digits
with the point implicitly located at some pre-

determined position,

Product, Double-Length - the result of a multiplication in which twice as

many digits are retained as the compliter normally holds in
one register; e.g., a computer whose basic word consists of

17 binary digits will have, as the result of a multiplication, a

34-digit product.

Program (noun) - a list of instructions for the solution of a problem. See

Routine,

Program (verb) - to plan a computation or process from the initial problem

Glossary - 12

to the delivery of the results, including the integration of the
operation into an existing system. Thus, programming con~
sists of analyzing the problem, drawing a flow chart, and

coding the problem., Also, it may include numerical analysis,

Program (verb) continued - systems analysis, specification of print formats
and any other functions necessary to the use of a computer in

a system,

Optimum Programming - arrangement of data and instructions
in such a way that minimum waiting time is re- .

quired to obtain information from the memory.

Program-Writable - in the basic RW-300, those areas of

memory that can be written into under program
control without moving the track group selector

plug from the jack marked 0-7,
Radix - see Base,

Read - to copy, usually from memory, or from one form of memory to
another, particularly from external or secondary storage

(paper tape or magnetic tape) to internal storage.

Read Head - an electronic device which is capable of sensing and trans~-
mitting information recorded on a magnetic drum or on mag-

netic tape.

Register - device for storing one or more computer words, or parts thereof
in the arithmetic and control units. Inthe RW-300 the A
register and the B register are circulating arithmetic registers,
The C, Y, and N registers are circulating control registers.

Glossary -13

Register (continued) - The T, S, P, and M registe‘rs are non-circulating con-

trol registers.

Circulating Register - a register whose contents are con-

tinually read and re-written on the magnetic drum

surface.

Revolver - a register providing 32 words of fast~access storage; track 62

of the RW-300,

Routine - a set of coded instructions arranged in proper sequence to direct

the computer to perform a desired operation or series of

operations. See Program.,

1

Scale - to change the units in which a variable is expressed (e.g., moving
the decimal point, or its binary equivalent) so as to bring it

within the capacity of the machine or routine at hand.

Scale Factor - a magnitude indicating the number of places the

true point is to the left or right of an arbitrary

fixed position in a data word.

Sector - 1/128 of a track, providing storage for one computer word.

Sector Number - an integer ranging from 00 through 127, any

one of which denotes a particular word on a track.

Serial - handled on by one in time, as opposed to parallel.

Glossary - 14

¥Shift - to move the contents of a register to the right or left.

Sign Bit (Sign Digit) - a one or a zero used to designate the algebraic sign
of a quantity; a zero represents a plus and a one represents a

minus in the RW-300.

State - a name applied to each of several timing and control sequences the
computer must enter while performing instructions. There

are eight possible states in the RW-300.

Storage - information storage facilities that are controlled by the computer.

Also see Memory,

Gener:zl Storage - RW=300 drum tracks 00 through 61.

Store - to transfer information to a storage location from which the in-

formation can be obtained at a later time.

Track - in the R.W—300, a band around the magnetic drum, capéble of storing

: 128 words,

Track Address - number designation specifying the track

number of a storage location.

Trailer - blank tape behind the last punched frame on paper tape. See

leader.

Glossary - 15

Transfer - (1) to move data from one location to another; to copy, exchange,
read, record, store, transmit, or write data; (2) to transfer

control; to jump from one part of a program to another,

Utility Package - collection of routines which aid the programmer in loading

and checking programs,
Unipolar - in the RW~300, having to do with positive analog input voltages.

Word - a set of characters which occupies one storage location, In the
RW-300, a word consists of 18 bits. The control unit treats.
two words or 36 bits as an instruction and the arithmetic unit

treats one word, of 17 bits plus sign, as a quantity.

Word Time - the length of time required for a sector on the drum to pass

a given point. Approximately 0.13 milliseconds in the RW-300,
Write - to record information on any internal or external storage medium,

Write Head - an electronic device which records information on a magnetic

drum or on magnetic tape.

Glossary - 16

A register, 1-6

access time, 1-3
accumulator, 1-6

add, 2-4, 4-10, 4-14
adder, 1-7

analog input-output, 1-11
arithmetic unit, 1-6

B register, 1-6

bi-polar converter, 1-14

binary arithmetic, 8-8

binary dump, 6-10

binary loading, 6-10

binary to decimal conversiouns, 8 4
binary to octal conversion, 8-6

bit positions, 3-2

C register, 1-7
CI (current instructions), 3-3
circulating registers, 1-4, 1-6
compare magmtude, 2-9, 4-15
constant, 3-5
control panel, 7-1
control unit, 1-7
controls
maintenance, 7-4
operation, 7-4
progcsam, T7-6

data words, 3-5
“decimal to binary conversion, 8-7
decimal to octal conversion, 8-6
digital command, 2-13, 4-18, 5-2
digital indicators, 5-13 '
digital input, 5-3
expanded capabilities, 5-10
from Flexowriter, 5-5
from toggle switches, 5-4
manual inputs, 5-15
digital input lines, 1-9, 5-3, 5-10
digital input-output, 1-9, 5-1
basic input-output, 5-3

INDEX

equipment, 5-13
expanded capabilities, 5-10
sample printout, 5-7
digital input selector switch, 7-5,
7-6
digital output, 5-10 :
multi-bit outputs, 5-13
one -bit outputs, 5-12
to Flexowriter, 5-6
digital output lines, 1-9, 5-10
Digitran switch, 5-16
divide, 2-21, 4-14
scaling, 8-18
drum, memory, 1-4, 3-7, 4-1

error light, 3-10, 6-6, 7-4, 7-5, 7-6
execute (program control), 7-7, 7-10
execute matrix switch, 5-16

e xecution code, 2-1, 3-3

expanded digital input-output, 5-10
expanded memory, 1-5, 4-7

extract, 2-10, 4-13

Ferranti high-speed reader, 5-17
fetch (program control), 7-7, 7-10
fixed point, scaling, 8-11
Flexowriter, 5-5, 5-19
Flexowriter codes, 5-19, 5-31

general description, RW-300, -1

indicator, 3-3, 6-2, 6-3

input conversion range, 1-14

input selector switch, 7-9

input storage locations, 1-16

instruction list, 2-27, 2-28, 2-29,
reference table 3

instruction register, 1-9

instruction words, 2-1, 3-2

jump instruction, 6-11

Index ~ 1

load A, 2-2, 4-13 ’ "~ printout sample listing, 5-7

load A negative, 2-3, 4-13 - program check-out, 7-6
load B, 2-2, 4-13 programming, basic, 3-1;
load button, 3-4, 3-8, 3-13, 6-8, optimum, 4-1

7-2 punched tape format, 6-4

load instructions, 4-13

load program, 3-8, 3-13, 4-8, 6-1 recofd keeping, 3-10

igid}ng-tlaé)e, 6-17 - resume button, 3-9, 6-8, 7-3
Pf : revolver, 1-5, 4-6, 4-19
, revolver locations, reference
magnetic tape unit, 1-18 table 2
core buffer, 1-19 run button, 7-7

tape transport, 1-21
manual digital input, 5-15
matrix md1czto:§, 75=‘1€> scaling, 8-10
memory, 1-4, 3-7 scratch pad, 3-9
memory organization, 4-3 shift, 2-6. 4-17. 8-13
memory sums, 6-9 ' : ’ \
merge, 2-11, 4-13
multi-bit digital output, 5-13
multiply, 2-18, 4-14, 8-14

sample programs, 3-12

shifting (scaling), 8-12
-sign bit, 1-4, 3-6

standby button, 7-1

start button, 3-4, 3-13, 7-1
state indicators, 7-7

N register, 1-7 state selector switch, 7-7
next instruction, 2-1 stop, 2-13

no operation, 2-15, 4-17 stop button, 3-13, 6-8, 7-2
number systems, 8-1, 8-2 ' store A, 2-3, 4-17

.store B, 2-4, 4-17

octal addition table, 8-9 subtract, 2> S

octal arithmetic, 8-9
octal multiplication table, 8-9

octal to decimal conversion, 8-7 .tape command, 1-22, 2-16
octal to binary conversion, 8-6 Teletype punch, 5-18

one-bit digital output, 5 12 test and maintenance panel, 7-3
operand, 3-3, track register, 1-8

operand address, 2-1, 3-3 track set transfer switch, 4-\8
operating controls, 7-1, 7-4 transfer, 4-8, 4-15

operation codes, 1-3, 2-1 transfer on negative, 2-7
optimum programming, 4-1 transfer on overflow, 2-8
OPUS, 4-21 : transfer on zero, 2-8

origin, 3-4, 7-2 ‘ twenty-four-hour clock, 5-14
- oscilloscope, 7-8 ‘ :
output conversion range, 1-16

output storage, 1-18 unipolar converter, 1-14

Utility Package, 6-10

paper tape (digital output), 5-25 .
parity checking, 5-27 \v:atcdhd?g4t1n2exl', 2'17
power controls, 7-1 ’ - Ord, 1=2, &=, 9=

word selector switch, 7-9

gg\\::; gfxf};bx;ttt:r?’ 77.:11 write switch (track 00-07), 7-5

powers of 2, reference table 1
powers of 8, reference table 2 Y register, 1-8

Index - 2

17
34

16

32

65
131
262
524

048
097
194
388

777
554
108
217

435
870
741

483

967 -

934

. 869

738

W - O

10

11

12
13
14
15

16
17
18
19

20
21
22
23

24

25

26
27

28
29
30
31

32

33

34
35

~N o~ U
o O OO

O O OO

o oo o

2

[eNeNeNel

O O OO (e elNe e

O O OO

e eNoNe]

eeer

-n

- N OO

.062
. 031
.015
. 007

. 003
. 001
. 000
. 000

. 000
. 000
. 000

000

000

L 000
. 000
. 000

. 000
. 000
. 000
. 000

000
000

. 000
. 000

. 000
. 000
. 000
. 000

. 000
. 000
. 000
. 000

5

25

625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

25 -

125
562
281

140

070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

5

625
312

156

578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

TABLE OF POWERS OF 2

5

25

125
562
781

390
695
847
923

461
230
615
307
653
826

913
456

5
25

625
312
656
828

914
957
478
739

869
934
467
733

5
25
125

062
031
515
257

628
814
407
703

5

25
625
812 5

906 25
453 125
226 562 5
613 281 25

Reference Tables - 1

Table of Non-Parity
< Flexowriter Codes

CHARACTER OCTAL CODE
UPPER LOWER IN ON
CASE CASE COMPUTER TAPE
R A 6 v Table of Powers of 8
8 B 62 142
c c 63 143 n -n
o’ D 64 144 8 n 8.
E E 65 145
F F 66 146
G G 67 147 1 0 1.0
H H . 70 150
AR T
J J - 41 101
K K 42 102 ‘
L L 43 103 512 3 0.001 953 125
N N P Tos 4 096 4 0,000 244 140 625
° o 46 106 32 768 5 0.000 030 517 578 125
P P 47 107
Q Q 50 110 g
R R 51 m
s s 2 42
T T 23 43
u U 24 44
\" v 25 45
w w 26 46
X X 27 47
Y Y 30 50
z 51" .
) g g:) 40 Table of Equivalent Revolver Locations
' 1 1 1
” 2 2 2
3 3 3 RO 0 32 T 64 96 TR16 16 48 80 | 112
$ 4 4 4 1 1 33] 65 57 TRI7 17 1249 [81 [113
% 5 5 5 RZ z 74166 98 T R18 18 50 | 82 | 114
¢ 6 6 6 R3 3 35 | 67 95 T R19 19 5T [83 [115
& 7 7 7 R4 z 36 %8 100 R 20 20" | 52 | 34 |T1%
* 8 10 10 RS 537 | 69 | 101 | R21 21T 153 |85 | 117
{ 9" 1 n R6 3 38 | 70 | 102 | R2Z2 22 1 54 186 118
° 10 52 12 R7 7 39 71 | 103 || R23 23 | 55 | 87 | 119
? n 53 nus RS B 0 |72] 104 | R23 24 | 56 [88 | 120
: 12 34 54 R9 9 IT 73 105 [[R25 25T 57 189 [T2I
- : 33 53 R10 10 32T 74T 106 [[R2% 26 58 90 | 122
y : 7 153 RIT T 13 75 [107 [R27 A S I I D
Z + pH 100 R12 12 427 76| 108 K28 28 60 [92 | 122
UPPER CASE 74 154 R14 14 46 78 110 T R30 30 62 94 126
TAB 3% 56 R15 T 1 47 | 79 | 111 |[R31 31163 [95 | 127
SPACE 00 00 :
BLACK 12 12
RED " 54 114
C/RETURN 56 116
PUNCH ON : 250 -
PUNCH OFF 244 .
NON PRINT . 230 -
PRINT RESTORE 224 -
STOP CODE 13 13
TAPE FEED 77 157

Reference Tables - 2

TABLE OF RW-300 INSTRUCTIONS

. Instruction Time Stondard Inst. Format
. n . .
Description of Operation Opz:’:o %li,,-:,d :;?:INT;MO lst werd 2nd word
Alpha Dec. (word times) (word times) EX OPA OP NIA
ADD: (A)+{(M) » A A 25 3 6or7 " 100 TT.58 i 25 TT-S5
SUBTRACT: (A) = (M) » A B 24 3 6or7 i 00 TT-SS ° i 24 TT-SS
MULTIPLY: (A) X (M) » (A,B) M 16 3 6+ nn i nn TT-SS i 16 TT-SS
DIVIDE (A) / (M) » (A), remainder B D 26 3 6+ nn i nn TT-SS i 26 TT-SS
LOAD A: M) > A LA 29 3 5 i 00 TT-$S i29 TT-SS
LOAD B: M) » B LB 07 3 S5 i 00 TT-SS i 07 TT-SS
LOAD A'NEGATIVE: - (M) » A LN 21 3 5 i 00 TT-SS i 21 TT-SS
STORE A: (A) » (M) SA 30 4 [i 00 TT-SS i 30 TT.SS
STORE B: (B) » (M) - SB 20 4 6 i 00 TT-SS i 20 TT-SS
TRANSFER NEG: If (A) <O, Opmd Add. - NI ™ 09 - 4o0r$ i 00 TT-8§ i 09 TT-SS
TRANSFER OVERFLOW: 1f O.F., Oprnd Add. - NI TF 10 - 4or5 i 00 TT.SS i 10 TT.SS
TRANSFER ZERO: If (A)= O, Oprnd Add. - NI TZ " - 4o0r5 i 00 TT-SS i 11 TT.88
COMPARE MAGNITUDE: If {(A)| - | (w CM 15 3 S5or7 i nn TT-SS 115 TT-SS
< 0; Add nn to NI Sector Address
EXTRACT: (AD M) » A EX 05 3 5 i 00 TT.SS i 05 TT.SS
MERGE: (A)YB (M) > A MG 31 3 5 i 00 TT.S§ i 31 TT.SS
STOP: Stop; Cl - Nl on RESUME SP 00 - 4 i 00 00-00 i 00 TT-SS
NO OPERATION: Cl - NI NO 03 . 4 i00 TT.SS i 03 TT-SS
SHIFT: (A) » , (A) « , (A,B) « SH 01 .
Operand Track
Address Variations
00-15 (A) right nn places . 4+ nn i nn 00-00 i 01 TT-SS
16-31 (A) left nn places . 4+ nn i nn 16-00 i 01 TT.8§
48.63 (A, B) left nn places - 44 nn i nn 48-00 . 101 TT-SS
SWITCH: SW 02
Operand Track
Address Variations
00-15 (A)-» (B) - 5 i 00 00-00 i 02 TT-88
16-31 (B8)- (A) - 5 i 00 16-00 <102 TT-8S
32-47 (A) <> (B) . 5 i 00 32-00 i 02 TT-SS
48-63 0 - (A,B) - 5 i 00 48-00 i 02 TT.S8
DIGITAL DG 06
Operand Track
Address Variations
00 Output to Flex . 5 i 00 00-00 i 06 TT-SS
04.3} 1 bit Outputs . 5 i 00 04-00 i 06 TT.SS
32 Input from Flex - 6 i 07 32.00 i 06 TT-SS
36-63 1 bit Inputs - 6 i 18 36-00 i 06 TT-SS
MAGNETIC TAPE ADDRESS * TA ° 22
Operand !
Address Variations
TT-10 Read Computer: (TK TT) > Buffer - 134 min, it TT-10 i 22 TT-$$
262 max,
TT-04 Write Computer: (Buffer) » TK 1; . 5 ity TT-04 i 22 TT.SS
t=0 selects TK 14
t=1 selects TK 15
TT.07 Read Tope: (1 tape Block) -» Buffer . 5 it TT-07 i 22 TT-SS
TT-05 mpﬁ pe: (Buffer) » (1 tape Block) . 5 it TT-05 i 22 TT-$S
TT-01 Rewind: Rewind tape unitu to start - 5 itu TT-01 i 22 TT-$S
TT-06 Backspace: Backspace tape unitu
1 block . 5 i tv TT-06 i 22 TT-SS
TT.03 Search Forward: Search forward for
key block . 5 it TT-03 i 22 TT.88
TT.02 Search Reverse: Search reverse for
key block . 5 i TT-02 i22TT-S$8
* NOTE: Mag tape Instruction times .
assume tape unit is ready
LEGEND:
Cl Current Instruction NI Next instruction 1Add. Address Oprnd. Operand
OP Operation EX Execution Code A A-register () Contents of
Rn Revolver location n v Magnetic Tape Unitu B8 Beregister OPA Operand Address
NIA Next inst, Address

"Reference Tables

~ 10.4 States 1, 2, 3, and b

Al)l Instructions

. DIGIT
STATE INSTR. TIMES DESCRIPTION v
1 All l1-7 Search for equality between Nr and Sector No. {f N #
Sect. No. E1 = 0. If N = Sect. No. El = 1
8 - 13 Shift N(TRK) —» M register M, -Mg. .NLB
goes to Ml and N8 tO’M6
19 If El =0 Stay in State A
- If El =1 Go to State 2
1-18 A, end B registers recirculating (20 bits)
Y, C do not recirculate.
19 Set B, =1, Set 7, =1
2 A1l 1-13 Put operand address (GSR) into Y register .
, X
1k - 18 Shift EX. Time —p P flip-flops (1?l - PS)(EJ.B - Elh)’
1-18 A end B registers recirculating (20 bits)
N end C do not recirculate
19 Go to 8t. 3
3 ALl . 1-13 GSR —b N (Next Instr.)
1-5" Shift P Register—pC (Ex. Time—»C)
14 - 18 GSR (Instr. Code) —¥% P Reg. (Pl - P5)
1 -18 A and B 20 bits recirculate
1-18 Y Recirculate
Ol WEETEw
o to - Af =
i-10 19 Go to St.
1% - 15
1 - 13] 19 Go to St. 5, if FT = 0
17 -1
7.-19 9,10 19 0~ E
L 1-8,15,16 1-7 Search for equality between Y and Sect. No. (R66) :
9,10 1 - 17 Search for eqnality:bgtween Y and Store Sect. No. (J9)

1 - 8,15,16 19

9,10 19

11 - 13 19
17 - 19

All 1-18
1 (DG) a1t -

If E,. =0 Stay in St. b
Ir Bt

1 l Go to St. 5

If E; FT' (Record Error)' =1 Go to St. 5
If Rb =1 Go to St. 8

nu

Go to St. 5

A,B,Y;C,ﬂgnd N Recirculate.

O El if all delays expired

-T- |

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-21a
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Glossary-10
	Glossary-11
	Glossary-12
	Glossary-13
	Glossary-14
	Glossary-15
	Glossary-16
	Index-01
	Index-02
	Ref_Tbls-01
	Ref_Tbls-02
	Ref_Tbls-03
	Ref_Tbls-04

