
If 1/'5
SERIAL NO. ____ _

RW-300 DIGITAL CONTROL COMPUTER

PROGRAMMING MANUAL

March, 1961

This manual is the property of the TRW Computers Company.
It is made available to customers, prospective customets,
and others, with the understanding that the contents of the
manual shall not ~e released to any third party.

TRW Computers Company

8" 3 3 FA L L B ROO K A V EN U E • CAN 0 G A PA R K. CAL IF 0 R N I A

The R W -300 Digital Control Computer

The RW ... 300 Digital Control Computer is used for closed-loop control of
industrial' proces se s, for autom.atic testing, for on-line
data interpretation, and for simulations.

In real~time control and test applications, the RW-300 communicates
directly with instruments which measure or sense operating
variable s. Under the direction of the program stored in
memory, the RW-300 uses information from these instru­
ments, performs calculations, reduces data, and generates
the control signals re quired to fulfill proce s s or te st
objectives. Fail-safe features incorporated in the system
equipment and program, coupled with the inherent reliability
of the R W -300, ensure dependable operation.

The computer operator is generally advised of operating conditions by
typed records -- printed out either periodically or on
demartd. Further, the operator is able to supply the RW -300
with special data whenever the process or test must be
operated under unusual conditions.

IN THIS PROGRAMMING MANUAL.

Section I . .. contains a general de scription of the R W -300 and
peripheral equipment.

Section II . describes the operation codes used in preparing
instructions for the computer.

Section III. tells how the instructions are assembled into programs.

Section IV. introduces a programming technique which make s
maximum use of 'computer time.,

Section V. .. contains detailed information relating to the digital
input and output equipment used with the RW -300.

Section VI tells how programs are loaded into the computer under
the direction of a program stored permanently in
computer memory.

Section VII . . details the functions of R W -300 controls and indicators.

Section VIII. . c'ontains reference material pertaining to number
systems and scaling.

A Glossary of computer terminology is included at the end of the manual.
\ '

The ,last pages of the manual contain reference tables that are useful in
preparing programs for the R W -300.

OTHER PUBLICATIONS ARE AVAILABLE.

A list of programming aids and mathematical subroutine s contained in
the RW -300 Program Library can be obtained by writing to TR W Computel\s
Company. \,

A manual describing Optimum Programming Using Symbols (OPUS)
in~ludes instructions for preparing programs in symbolic form.

An interpretive routine is available for applying the,R W -300 to general­
purpose and scientific calculations.

TABLE OF CONTENTS

SECTION ,I - - GENERAL DESCRIPTION

I,~'

CHARACTERISTICS
~t

EXTERNAL FEATURES

Il':lSTRUCTION SYSTEM

WORD LENGTH

MEMORY

Basic Memory ..

Expanded Memory

ARITHMETIC UNIT . •

A Register.

B Register.

C Register.

Adder

CONTROL UNIT

Y Register.

N Register.

Track Register

Instruction Register.

DIGITAL INPUT AND OUTPUT

ANALOG INPUT AND OUTPUT

.

Conver sion Capabilitie s . .

. . .

" .

Input Conver sion Range and Numbe r Repre sentation •

Input Storage Locations • ','

, Output Conver sion Range and Number Representation •.

Output Storage Locations

MAGNETIC TAPE UNIT

Introduction

.De scription . .

. . .

Operation "~,I •• • • • • • •
Specifications

PAGE

1-1

1-2

1-3

1-4

1-4

1-4

1-5

1-6

1-6

1-6

1-7

1-7

1-7

1-8

1-8

1-8

1-9

1-9

1-11

1-11

1-14

1-16

1-16

1-18

1-18

1-18

1-19

1-21
1 ... 23

·TABLE OF CONTENTS -- Continued

SECTION II -- INSTRUCTIONS

INTH.ODUCTION.
LOAD A • • • • e, •

LOAD B · .
LOAD A NEGATIVE .
STORE A

STORE B

ADD

·'. '.
· .

• •••••••••• '0 • • • '0' •••••••••••••••••••••

SUBTRACT

SHIFT

· .
·

TRANSFER ON NEGATIVE . . . '.' ~
TRANSFER ON ZERO ••••• . . . ".
TRANSFER ON OVERFLOW'
COMPARE MAGNITUDE .
EXTRACT · .
MERGE. ·
SWITCH · .
STOP .• · .
DIGITAL · .
NO OPERATION
TAPE • • • e· •

MULTIPLY · ..
DIVIDE · ". . . '.
EFFECTS ON REGISTERS .

ii

PAGE

2-1

2-2

2-2

2-3

2 .. 3

2-4

2-4

2-5

2-6

2-7

2-8

2-8

2-9

2-10

2-11

2-12

2-13

2-13

2-15

2-16

2-17

2-21

2-25

TABLE OF CONTENTS -- Continued

SECTION IU r BASIC PROGRAMMING

INTRODUC TION ••••••••••••••••••••••••

INSTRUCTION WORDS •••••••••••••••••••

FORMAT FOR LISTING INSTRUCTIONS ••••••••

DATA WORDS, OR CONSTANTS ••••••••••••••

FORMA T FOR LISTING CONSTANTS •••••••••••

USE OF MEMORY ••• . . • • • • • • • • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

·
• • • • • • • • • •

• • • • • • • • • •

General •

Reading Information from Memo~y •••••••••

Storing Information in Memory ••••••••••••

Organization of Li'stings ••••••••••••••••

Record Keeping •••••••••••••••••••••

SAMP LE PROGRAMS •••••••••••••••••••••••

Example I

Example U

Example m

............... ,'. ,
•

. '

• • • • • • • •

• • • • • • • •

• •••••••

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

PAGE

3-1

3-~

3-a
3-5

\t

3-5
3-7

3-7

3-8

3-8

3-10

3-10

3,-IZ

3-1Z

3-14

3-16

iii

TABLE OF CONTENTS -- Continued

SECTION IV -- OPTIMUM PROGRAMMING

INTRODUCTION 0 • • •• •

. MEMOR Y ORGANIZATION. • ..

Tracks 00 through 07 • .

Tracks 08 through 15' ...

Tracks 08 through 61 . .

Track 62

Track 63

.EXPANDED MEMORY

. SELECTING OPTIMUM MEMORY LOCATIONS. .

Load, Merge, and Extract o • •

Add and Subtract. 00

Multiply and Divide .

Compare .Magnitude .

Transfer

Switch I . ,. .

Shift

No Operation _0

. Store

Digital.

e, •• 0 ., • 0 ••

.. .

. . . ~

. COMPARISON OF OPTIMUM AND SEQUENTIAL PROGRAMMING

REVOLVER o 0 • 0 .,

EXPANDED MEMORY ..

OPTIMUM PROGRAMMING USING SYMBOLS

iv

PAGE

4-1

4-3

4-3

4-3

4-5

4~6·

4-7

4-7

4.-9

4~13

4-14

4-1.4

4.-15

4-15

4-16

4-17
.'{

4-17
: I.

4-17
" . .,

4-18

4-19

4-!9

4-21

4-21

'TABLE OF CONTENTS ... - Continued

DIGIT AL INPUT AND OUTPUT SECTION V

INTRODUCTION · . ·
DIGIT AL COMMAND. • • ·
BASIC INPUT -'OUTPUT CAPABILITIES ·

Inputs •••• • • · • • • • o' • • •

Inputs from Toggle Switches
Inputs from Flexowriter ••••••••••••••••••••••••

Output to Flexowrite r •••••••••••••••••••••••

Sample Printout Listing ••••••••••

EXPANDED INPUT-OUTPUT CAPABILITIES.

.

.
Inputs. ~

Outputs

.

.. • ct •

One - Bit Outputs ••••••••••••••• 0 •••••••••••••••

Multi-Bit Outputs .
INPUT -OUTPUT EQUIPMENT •••••••••••••••••••••••••

Digital Indicator s .•••••

Twenty-Four -Hour Clock

.

.
Manua 1 Inputs

Watchdog Timer

Ferranti Reader

Teletype Punch

FLEXOWRITER •••••

· .
· .
·' .

.
.

Mode s of Flexowrite r Ope ration ·
Gene ral Flexowrite r Characteristics .•••••••••••••••

Paper Tape. . • • • • • • • • • ••••••••••••••••••••

Parity Checking .
Flexowrite r Code s .
Flexowrite r Timing Conside rations

PAGE

5-1

5-2

5-3

5-3

5-4

5-5

5-6

5-7

.5-10

5-10

5-10

5-12.

5-13

5-13

5-13

5-14

5-15

5-17

5-17

5-18

5-19

5-19

5-23

5-25

5-27

5-30

5-30

v

TABLE OF CONTENTS -- Continued

SECTION VI -- PROGRAM LOADING

, INTRODUCTION. .

LOAD PROGRAM

'STANDARD PUNCHED TAPE FORMAT

DECIMAL PUNCHED TAPE FORMAT

OPERATING 00NDITIONS

MEMORY SUMS . .

BINAR Y LOADING

JUMP INSTRUCTION'.

vi

PAGE

6-1

6-1

6-4

6-6

6-7

6-9

6-10

6-11

'TABLE OF CONTENTS -- Continued

SECTION VII OPERATING CONTROLS AND INDICI,\.TORS PAQE
'.

OPERATOR'S PANEL. • • · • · • · · • 7-1

Power Controls · • · · • . • • • • · • • • • · • • ~ • • • • · • • • •
Operating Controls

,/

· • • · · · · · • · • · • · • • • • · • 7-2

TEST AND MAINTENANCE PANEL • 7-3

Program Loading. ••• 7-4

Maintenance · . . . • 7-4

Ope ration • 7-4

PROGRAM CHECK-OUT · . . • • • • • • • • • • • • • • • •• • • • • • ••• 7-6

Fetch and Exe cute Buttons • 7-7

Run Button . · . • · • • • • · · • • • • • • · • • • • • • • • • • • • • l-7

State Indicators · · · • • • • • · • • • • • • • • • • • • • • • · • 7-7

Oscilloscope · . · • • · • • • • · • • • • • • • • • • • · • • • • • • • · • 7-8

Tables for Interpreting Indicators. · · • • • • • • • • • • • • • • • 7-10

vii

TABLE OF CONTENTS -- Continued

SECTION VIII -- NUMBER SYSTEMS AND SCALING

READING COMPUTER NUMBERS •.•.•••••••••••••••••••

NUMBER SYSTEMS '.
CONVERSIONS

Binary to Decimal •.••••••••••••••••••••••••••

Decimal to Octal · .
Binary to Octal to Binary .
Decimal to Binary.
Octa 1 to De cimal · .

BINARY ARITHMETIC •••••••••••••••••.•••••••••••••

OCTAL ARITHMETIC •••••••••••••••••••••••••••••••

SCALING .

viii

Introduction ••••••••••••• ", •••••••••••••• ' •••••

Fixed-Point Notation and Scale, Factor •••••••••••••••

Shift Commands ·
Multiply Command

Divide Command

. '.
· ...

PAGE

8-1

8-4

8-4

8-6

8-6

8-7

8-7

8~S

8-9

8-10

8-10

8-11

8-13

8-14

8-1S

LIST OF ILLUSTRATIONS

,Figure 1-1

Figure 1-2

Figure 2-1

Figure 3-1

Figure 4-1

Figure 5-1

R W -300 and Peripheral Equipment 0 • 0 • 0

R W -300 and Magnetic Tape Unit

Commands and Registers

Flow Chart of Program Exa,mpleIII

RW-300Memory ... 0 •• ,0 •

Segment of Punched Tape •

Figure 5-2 Table of Flexowriter Codes

Figure 7 -1 Te st and Maintenance Panel

Figure 7-2 Oscilloscope Display

REFERENCE TABLES (last 3 pages in manual)

Table of Powers of 2

Table of Non-Parity Flexowriter Codes

Table of Powers of 8

Table of-Equivalent Revolver Locations

Table of R W -300 Instructions

. . . .

.
• • • 0 • • 0

PAGE

1-12

1-20

2-27

3-17

4-4

5-26

5-31

7-3

7,-9

ix

CHARACTERISTICS

SECTION I

GENERAL DESCRIPTION

The RW -300 Digital Control Computer is a stored-program, aerial

computer employing a magnetic drum memory with a total capacity of

8,080 wor.ds.' .~.~ -300 .compliters' with an· expand~d memory have a total

memory capacity of 15, 776 words. The R W-300 word is composed of

18 binary digits.

A word may represent either numerical data (17 bits, with a sign bit),

or one half of a computer instr,uction. Two words form a complete instruc­

tion; one half of the instruction specifie s the memory location of the operand,

and the other half of the instruction specifies the memor y location of the next

instruction. The half-instruction containing the next-instruction addre ss

includes one of 21 basic operation codes, and the half-instruction containing

the operand addre B s include 8 an execution code. The b~sic instr uction codes

are modified by the execution code and the operand address to provide a

flexible command structure.

Continuously variable voltages from measuring instruments and

transducers are automatically converted to digital for.m and stored in the

RW -300'.s memory .. -without programmed instructions. Up to 1,024 of these

continuously variable "analog" input· signals can be accommodated. Com­

putational results representing control information are automatically con­

verted from digital form to voltages which can be applied to conventional

1-,1

Characteristics - - Oontinued

controllers or other:control devices. Up to 12'8 of these "al1alog" output

s~gnals can be provided.

Up to 511 on-off signals from diffe rent source s can be accepted by

tp.e computer, permitting input from digital clocks, switches, paper-tape

readers, etc. A like number of digital output signals can be provided fO,r

the control of motors, indicators, alarms, logging typewriters, paper-tape

punche s, etc.

In addition to possessing the input-output capabilities necessary for

real-time control, the RW-300 has been designed to provide the reliability'

required for continuous service.

Subroutines and interpretive routines are available to extend the ap­

plication of the RW -300 to scientific and general-purpose computation.

EXTERNAL FEATURES

The console model of theRW -300 (see frontispiece) is desk size and

weighs approximately 600 pounds. It operates from 120-volt, 60-cps power,

and requires no special air conditioning. Power consumption is approxi­

mately 500 watts. Usually supplied in the console cabinet 36 inches high, 56

inches long, and 29 inches deep, the same basic computer can also, be fur­

nished in an upright, air -purged cabinet that is 84 inches high, 48 inches

long, and 24 inches deep.

Operating controls for the console model are mounted on the sloping

front edge of the cabinet and are accessible when the computer cover is

closed. The oper ating controls are pushbuttons for turning the R W -300 on

1-2

External Features - - Continued
, \

and off, f~r starting, stopping, and resuming the progr{im stored in memorx',

and for loading new programs into the memory. Beneath the cover, a test

and maintenance pane 1 contains controls, indicators, and displays which

facilitate program check-out and computer maintenance. The operating con-

trols and indicators are described in Section VII of this manual.

INSTRU:CTION SYSTEM

or commands, many of which can be modified to permit a large number of

distinct operations. The operation codes control arithmetic operations,

logical operations. and peripheral equipment. Section II contains a brief

description of the instruction format, followed by a complete description of

, the operation codes.

The time required to perform arithmetic and logical operations

depends upon the relative locations in memory of the instruction and the

operand. Using the optimum programming techniques describeq: in Section

. "

IV, the time s (in millise conds) required to complete typical instructions are

as follows:

Add or Subtract 0.78 mB

Multiply, full length 2.99 ms

Divide, fu 11 length 3.12ma,

Transfer 0.65 rna

Load Register 0.65 ms

Store O. 78 ma

l-l

Word Length

WORD LENGTH

In the RW-300, the basic unit of information is a worq! A \vord con-

sists of 18 binary digits, or bits: a sign bit and 17 bits of abso lute magnitude.

The sign bit is zero for positive and one for negative. (See S~ction VIII for

an explanation of the binary number system.)

[I. 11. r LL 1.:1 I I .L J J J J I.: I
18 17 16 15 14 13 l~ 11 10 9

Sign Bitl 'Most-Significant Bit

8 7654:3 a 1

Least-Significant Bit!

A word may represent: a numerical value, one half of an instruction,

typewriter or punch symbols, or a bit pattern that can be used for control

purposes. Section III describes the form of instruction words and data words.

MEMORY

The memor y of the R W -300 is a magnetic drum, nine inches in dialn-

et(~ r and nine inche slang, which rotate s at a speed of 3600 rpm. The mag-

nr-tic drum may contain a basic 8,080 word memory or an expanded melnory

of IS', 776 words .

. ~~sic Mer:nory

There are 7,936 words of general storage on 62, tracks of 128 words

each, 32 words of fast-access storage in a circulating register, and 128

words in one track for a permanently stored load program. A word titne

(the time required for one word on the drum to pass a given point) is O. 13

ntilliseconds. The "average" access time (time required to find a word) in

1-4

Memory -- Continued

general storage is 863 milliseconds. The 32-word circulating register, or

f'lrev.olver" p has an average access time of approxim,ately 2 milliseconds.

Any of the 7,936 word locations can be written into during program loaq­

ing by using control facilities on the RW-300 test and maintenance panel. In

the ,basic' computer, the 32-word revolver and l~ 024 word locations in eight

128-word tracks can be written into under pr'ogram control. Up to eight addi~

tional tracks of program-writable storage can be provided by adding a module

to the basic computer. However $ this additional program~writable storage is

r.educed by the number of tracks re served for the storage of analog input datao

The number of tracks re served for analog input data does not affect the 32·­

word revolver nor the 1 ~ 024 words of program~writable memory available in

the basic computero

Expanded Memory

RW~300computers with an expanded memory have 15$ 776 words of

storage on 123 tracks o Notmally~ 'e~panded memory ma,chines have 1/ 536.

words of program-writable storage, although up to 16 additional tracks (2,048

words) of program~writable storage can be provided by the addition of an

extra module to the basic computer. The 16 additio'nal tracks will be reduced

by the number of tracks reserved for the storage of analog input data ..

The method of identifying memory focations on the drum is de scribed in

connect~on with a desc::ription of basic programming in Section III. More de~

tailed drum characteristics are presented in connection with the optimum pro­

gramming tec,hniq.ues described in Section IV. Through the use of optimum

1-5

lYle mor y - - Continue d

programming techniques, access time in general storage can ,be greatly

reduced below the "average" access time of 8.3 milliseconds.

ARITHMETIC UNIT

The arithmetic unit is that part of the RW -300 which actually performs

arithmetic and logical operations under control of the program stored in

memory. The unit includes three circulating one-word registers (A, B, and

C) on the drum. In addition, it contains a serial adder and flip -flops used

for storage, time delay, and logical manipulations.

A Register

The A register, or accumulator. is located on the drum, and has a

capacity of 1 7 bits plus sign (one word). It is the principal arithmetic

register and holds the result of most operations. The A register can be

loaded from me mory, and the contents 'o[the A register can be stored in the

memory. It has the capability of shifting left or right one binary place per

word time. In the operations of addition, subtraction, left shifting, and

division, overflow from the A register is possible (i. e .. J the computer may

attempt to put a one to the left of the 17th bit). When overflow occurs, the

overflow indicator is tu:t:'ned on.

B Register

The B register, located on the drum, has a capacity of 17 bits plus

sign. It holds, at various times, the multiplier, remainder, or least­

significant half of the double -length product. As in the case of the 'A register J

the B register can be loaded from me mory, and the contents of the B register

1-6

Arithmetic Unit -- Continued

can be stored in the memory. It has the ability to shift left one binary place

per word time. When shifting left, it is coupled to the A register so that the

bit in position 17 of the B register is shifted into position 1 of the, A register,

C Register

The C register, located on the drum, also has a capacity of 17 bits

plus sign. Its operation is not under the control of the computer's program,

and therefore the programmer is se ldom concerned with, it. ,At various times.

the C register holds the multiplicand, divisor, subtrar.t.end, addend, or

execution code.

Adder

The adder forms; in one digit time, the sum of one bit from the

augend, one bit from the addend, and the carry bit from the p:revious addition.

It outputs the sum bit and the carry bit. Since the sum is formed serially,

bit by bit, the adder requires one word time to generate the sum of two 17 - '

bit numbers. (This should not be confused with the length of time required

to carry out an Add instruction.)

CONTROL UNIT

The control unit processes the instructions in the sequence dictated

by the program stored in memory. In processing an instruction, the control

unit pe rforms the following functions:

a. Obtains instructions from memory.

b. Decodes and interprets the instructions.

Control Unit -- Continued

c. Connects and activates other units by sending out i-q.dividual com­

mands to the other units in the prope rsequence to perform. the

desired function.

d. Initiates the transfer of information between units.

e. Stops the execution of the program.

f. Keeps track of time so that the various parts .of an instruction are

executed in the appropriate sequence.

pome of the components of the control unit are described below.

Y Register

The Y register is a one -word circulating register on the drum which

holds the operand address.

N Register

The N register is a one -word circulating register on the drum which

holds the address of the next instruction.

Track Register

The track register is a six-bit flip -flop register which holds the track

address when a program instruction refers to a memory location. The flip­

flops in this register also serve other purposes; for some instructions, the

track register supplements the instruction register. For digital input and

output instructions, the track register addre sses groups of input or output

line s.

1-8

Control Unit - - Continued

Instruction Register

The instructi,')n register isa five-bit flip-flop register which holds

the instruction code, but temporarily holds the executi0tl code when an in­

struction is being read from memory.

DIGIT AL INPUT AND OUTPUT

All digital input and output functions are accomplished by a single

operation code which controls the transfer of information between the A

register and external equipment. Digital outputs are in the form of relay ...

contact closures, and digital inputs are accomplished by sensing voltage

change s on input line s •

The RW -300 digital input-output facilities are extremely flexible.

The paragraphs which follow contain a description of the basic facilities and

a description of options available to customers. A more complete descrip­

tion, along with programming instructions, is included in Section V.

The basic digital input-output unit provided with the RW -300 is a

Flexowriter, which consists of an electric typewriter, a paper -tape and

edge -·punched card reader, and a paper -tape and edge -card punch. The

Flexowriter can read, punch, or print at the rate of 8 characters per second'.

In the basic computer, seven digital input line s are re se rved for accepting

information from the Flexowriter reader {or from some other input device},

. and 18 digital input lines are available for accepting information from digital

input switches or other devices dictated by the requirements of the installation.

1-9

Digital Input and OutPllt - - Continued

Relays within the basic computer convert Flt,xowriter signal levels

to levels compatible with the digital input circuits. A negative five volts

applied tc:;> one or more of the other 18 digital input lines causes the com­

puter to read a one on that line when a digital input instruction is executed,

anp an open or positive voltage L?2. 5 volts) causes a zero to be read.

Although a group of 18 digital-output control line s is available for

system expansion, the basic computer contains only eight relays for pro­

viding digital outputs to the Flexowriter printing or punching circuits.

Au~iliary control relays are provided within the basic computer for turn­

ing the Flexowriter motor on and off; for initiating printing when a logging·

typewriter is used; for initiating punching when a high-speed paper-tape

punch is used; and for accepting "ready" 'signals from these output devices.

A variety of optional digital input-output equipment is available.

Addit~onal typewriters, including line printers, can be supplied to log out

raw data and finished computations. A Ferranti high-speed paper-tape

reader (60 characters/ sec) and a Teletype paper-tape punch (60 characters/

sec) can alternat~ with or be substituted for the Flexowriter reader and punch.

When used in control applications, the computer's basic digital input

capabilities can be expanded to accept 29 additional groups of digital inpu.t

lines (with 18 lines in each group) for a maximum of 540 digital input lines.

In an expanded digital input system, a zero is read into the computer when

an input line is grounded; a one is read when an input line is open.

Basic digital output capabilities can be expanded to provide 29 addi­

tional groups of output lines (with 18 lines in each group) for a maximum of

540 digital output line s.

1-10

Digital Input aq.p. Output - - Continued

The, additional equipment required for expansion of digital input and

,output facilitie s is accommodated in an operator I s de sk-type console shown

in figure 1-1. ' The operator is shown with the Flexowriter, and a logging

typewriter is shown on top of the console control panel., Section V include s

a functional de scription of console operating controls.

ANALOG INPUT AND OUTPUT

Conver sion Capabilities,

The analog input-output equipment contained in the basi~ computer

converts voltages from measuring instruments into digital ,form, and con­

verts digital information from computer memory into voltage or current at

rates up to 3,840 conver sions per second~ Throughout this manual, the in­

puts from measuring instruments and transducers are called" analog inputs"

and the outputs to controllers, recording instruments, etc., are called "ana­

-log' outputs".

The basic computer accommodates the circuits required to accept

up to 32 analog inputs and provide up to 36 analog outputs. By installing re­

lays and associated circuits in an upright cabinet similaor to that shown in

figure 1-1, the nuomber of analog inputs can be expanded to 1,0024; 'installing

additional analog output modules in an output cabinet enable s the number of

analog outputs to be expanded to 128.

In most control installations, the auxiliary analog input cabinet

contains an oven for maintaining at a constant temperature the junctions be ...

tween the thermocouple leads and the system wiring. The auxiliary analog

1-11

· Analog Input and Output Continued

!

Figure 1-1

RW -300 and Peripheral Equipment

cabinet also accommodates amplifiers for raising the amplitude of low-

level instrument signals (e. g., thermocouple voltages) to a level com-

patible with the computer's analog-to-digital conversion circuits. The

cabinet also contains filter s for removing hum and noise from incoming

instrument lines.

Equipment in the computer (and in the auxiliary analog cabinet)

operates as an independent subsystem, so that information from

1-12

Analog Input and Output - - Continued

measuring instruments is constantly convert.ed to digital iprn1, and the latp.st

digital representation is stored in memory without programmed instructions.

Similarly, when new operating parameter s have been conlputed and stored

in memory by the progranl, these latest values are converted to analog form

and transmitted to control instrumentation. The digital-to-analog conver­

sions are also performed automatically, and do not have to be programmed.

The analog converter is time- shared among inputs and outputs.

A nalog outputs are updated (adjusted to correspond to a number stored

in memory under program control) automatically at least once every 1/30

second. The frequency at which analog inputs are updated (input voltages con­

verted to digital form and stored in memory) depends upon the particular in­

sta,llation. For a basic system (32 voltage gates, 0 relays). the inputs can

be updated every 1/30 second; for a system employing 1, 024 inputs, the in­

put information stored in memory can be updated every second, but under

severe noise conditions,' where filters are employed. the inputs may be up--:­

dated every two seconds, four seconds, or eight seconds to allow a stabiliza­

tion period for the noise filter s. Actually, ,the analog input-output system is

flexible and is furnished to meet the needs of each application. Analo'g input

information can be converted and stored at the maximum rate' of 3,840 sam ...

pIes 'per second. Longer delays between input samplings are also possible

to provide a stabilization period for transducer s.

Systems can be changed or expanded by means of field modi.fications.

Thus, a system can be installed initially as a computing data logger and

1-13

Analog Input and Output -- Continued

later, I?Y connecting' the analog outputs of the computer to controller s, can

pe expanded to an a~tomatic control system.

Analog signals other than d-c voltages, such as pressures, a-c volt-

ages, etc., are converted to d-c voltages by the use of transducers or spe-

cial converter s. Amplifier s and filter s are provided for low-level signals

from thermocouples and strain gages. Analog-to-digital and digital-to-

~nalog conversions are accurate to ± 0.,05 percent oi full scaleo

, '

Input Conve'rsion Rang~ and Number Representation

Two typ~\9.,of analo~ input capabilities are available: (1) a unipolar

converter which convert,s' to digital form voltages in the range from 0 to

+ 10. 23 volts d-c, and (2) a bi-polar 'converter whi~h converts to digital

form voltages in the range from -10 0 23 volts to't'lO. 23 volts.

When conver~~d to :~igital form" the ~nalog 'signals are represented

by 10 binar y digits,.; Be~aus,e. the leas.t.~ significant digit repre sents a con-

version resolution of 10 millivoltEi, the' conversions are accurate to t 5

millivolts, or ± O~ 05 percent ~f full scale.

In a unipolar system, the digital equivalent of the analog output sig-

nal is contained in bit-positions 8 through 17 of a comput~r wor"d, with the

most ... sigp.ificant bit in position 17. Using a bi-polar system, the magni-

tude, bits are in bit-positions 8 through 17" and the sign bit, is, ~n bit"'posi-

tion 18 .

. As an example~ assum,e that one of. the variables to be measurfJd is

temperature~ and assume that the' range of values for the temperature read-

ing is 200 to 700 degree s Fahrenheit. ,A continuous analog repre sentation

1-14

A nalog Input and 0 utput .. ,., Continued

of this variable can be developed by a thermocouple and art amplifier to take

the form of a volta~e with a rang'e O'fO to 10. 23 volts. Th~ analog subsystem

will sample this voitage s develop a 10 .. digit binary representation of the

voltage, and store it in a specified location on the magnetic d~um. The most

significant of these lO bits will be. in bit-position 17 of a compute,r word, the

least significant in bit-position 8. In a unipolar systems the sign bit and

bit positions 7 through 1 are set to zero for analog inputs and ignored for

analog outp.uts.. Since the exact memory location for eac'h input wHich is

conve,rted to digital for.m will be, krtown to th;e' progra:mmer, i.t will be neces ...

sar y for ,.the .p~ogr.a.m tp ~e.fer on,ly to that locati.on .and interpret the binar y

nut:rtbe·r storecl~

.A ssumlng a linear relationship between degrees F:ahrenheit and

voltage t a table of values for thes:e representations could be as follows:

Degrees Fahte,nheit Volts B i.na~ yRe pre sentation

2001i 0 0' • .00' 00 00 00 00 0.0

2'00.5 0.0..1 00 00 O~ 00 01

.to 5~ 0 0,10 00 00 00 . 10 10

.Z50 q, 0 l,O.o 00 01 I.O .01 0.0

325.0 2... 50 00 11 1 1 10 10

450~0 5,00 01' 11 "11 01 0,0

575. 0, 7. :50: lQ· 11 10 11 10

700;, 0 10:' . .0.0 .11 11 10 10 00

Analog Input and Output .. - Continued

Input Stor age LocatiQns

Analog inputs are stored in tracks OB through 15 of the drum. If 128.

iq.puts are required, only track OB would be used, but for 1~ 024 inputs, tracks

OB through 15 would be required. Not all sectors of a track need be used for

inputs. The exact number of sectors and tracks used depends upon the num­

ber and type of inputs required for a particular system, and assignments are

made to minimize equipment requirements, cost, and memory space for the

partic ular applicationo

In a track reserved for analog input data~ unassigned sectors cannot

be used for general program storageo

Output Conver sion Range and Number Repre s~ntation

Each analog output is capable of controlling the voltage or current in

its load to an accuracy of ± 0 0 05 percent, and is capable of supplying a cur­

rent of 5 milliamperes to a transducer or' controllero

A maximum analog output current of 20 milliamperes can be supplied

at the customer i s option.

A binary number to be converted to analog form is written into a spe~

cific memory location by the program. The binary number for analog outputs

occu.,pies bit~positions B through 17 of the computer word i with the most-sig~

nificant digit in bit'~position 17, and the least-significant digit in bit~position B.

For "voltage" type analog outputs, the voltage applied to a controller.

or trans.ducer may be from 0 to 100 23 volts. To apply 10. 23 volts to the load,

bit-p'ositions B through 11 of the correeponding memory sector are filled with

ones under program control. The relationship between a number in memory

1-16

Analog Input and Output .. ,- Continued

and an analog output voltage is line·ar, so that the output voltage is equal

to the decilVal equivalent of the number in mem'ory (taking bit-posi,tion 8 as

the least-significant bit) times 0.01 volt. Three of the 1,023 possible values

are tabulated below.,

Binary Number in Analog
'(Output Sector of Memo.x:·~

~ , "*=!

011111111110000000

010000000000000,000

.0000000011000'0000'0

Voltage Across Load
(max. current = 5 rna)

10 .. 23 volts d···c

5. 12 volts d-c

0.06 volts d ... c

In some applications the voltage applied to the load (controller) is

not as important as the current through the loado For these applications

a precision resistor is placed in series with the load, and the analog out ...

put is connected to control the voltage acros s the precisi.on re sistor s thereby
./

controlling the current through the load. Although the relationship between

the load current and the number in memory is linear~ the number in mem-

ory must be scaled an amount determined by the ratio of the load/'Inetering

resistance. If the load and metering re sistance s are eq~al. one half of the

analog output voltage appears across the load~ and the other half appears

across the metering resistance. In this case i maximum curr'ent :tibrough

the lTc'ad and metering resistances is obtained when the program writes:

18 1
010000000000000000

/

in.the appropriate analog output sector. Writing a larger nl,lmber into the

analog output sector could ca·use a nonlinear relationship between the output'

1-17

Analog Input and Output"" - Continued

and the number in rpemory, and in some extreme cases might'damage that

specific analog output circuit.

The exact configuration of the analog output circuits (voltage output

or current output) i!? determined by the type of controller; transducer» in~'

strumentj/ etc. g that forms the load for the analog output. During the plan-:­

ning stage of an installation, the programmer is advis,ed of the limits»

linearity~ re sponse time, and other factor s that affect the program. The

sector numbers that will control analog outputs are also determined during

the planning stageo

Output Storage Locations

Analog outputs are taken fro·m track 07 by the analog co'nverter.

Track 07 is program writable; any portion not used for writing analog out,,·

puts may be used by the program for other storage purposes.

MAGNETIC TAPE UNIT

Introduction

The R W ~300 Magnetic Tape Unit provides practically unlimited mem,·

ory capacity for data reduction and control applications requiring more stor­

age than the basic drum memory provides. The computer and mag.netic tape

unit ferm a system that is used for on~Hne data acquisition and processing J

for recording historical data, for table 100k.1 up, and for preparing tape s for

analysis ... by an IBM 700-series data processing system. Data is then trans·,

ferred from the drum to the tape for temporary or permanent storage. For

interpretation, analysis, and presentation with the R W ~,300 computers raw

1-18

Magnetic Tape Uni~ -- Continue'd

data is transfert'ed back to the compute,r. AUxiliary programs and subroutine~

~re also transferr.ed from 'tape' to the dru:rn. Transfer of digital data between

the tape 'unit and the computer is accomplished'through a magnetic core buffer.

Two models of the R W -300 Magnetic Tape Unit are available. If the

"standard" unit is employed, data stored on the tapes must be transferred

back to the R W - 300 for reduction and pre sentation. A nother model of the

R W -300 Magnetic Tape Unit, called the" compatible" tape unit, prepare s

magnetic tapes in a format that is acceptable to some models of IBM mag­

netic tape units. Thus, data stored by allcompatihle" R W -300' Magnetic Tape

Unit can be processed either by an IBM system; or by the R W -300.

De scription

The magnetic tape unit consists of one magnetic core buffer and from

one to eight magnetic tape transports. Figure 1- 2 shows the R W - 300 and

one element of a magnetic tape unit. In the figure; the six-foot rack contains

the buffer, buffer controls, and one tape transport with associated writing

and power supply circuits. Similar cabinets are used to accommodate ad~

ditional tape transports and associated writing and power supply circuits.

The buffer has a capacity of 128 computer words of 18 bits each.

This amount of information is commonly called a "block" in the standard

tape unit and a "record" in a compatible tape unit.

, In the ~:',ptandard" magnetic tape unit, a tape calibrator is used to

establish specific writable blocks (no defects) on the tape, and these blocks

may 1;>,e written into individually, without disturbing the contents of other

'1-19

Magnetic Tape Un~t - - Continued

Figure 1-2

R W -300 and Magnetic Tape Unit

blocks on the'tape. The tape calibrator automatically rejects any areas

of tape that are of low quality.

Format characteristics of a II compatible" magnetic tape unit

require that the entire length of the tape be used for sequential storage

1-20

Magnetic T~:pe Unit - - Continued

of all records. Therefore p when a record is rewritten on a tape fnth.e ;1I.com-

patible" system,. all succeeding records within a \I file" must also be rewrit-.

ten.
Each transport holds one reel of tape with a capacity of approximate-

ly 730, 000 c@mput.er words for the II standard" unit and 1, OOO~ 000 computer

words for the" compatible" unit. The magnetic tape unit transfer s data at

the maximum usabl~ rate of 1,9 536 words per secondo' An eight ... transport

. s,ystem can record data a.lltomatically at th.e maximum rate for nearly 70

minutes. Since the ~ape reels are easily replaced p 'the dataurecording per-

iod may be eXtended indefinitely.

The transports are modified Ampex FR-400 digital tape handlers

operating at 75 inches per second in the write) search, and read modes and

rewinding at 160 inches per second. Each transport accommodates 2400

feet of standard 1 / 2~inch magnetic tape wound on a 10 1 / 2~inch reel.

, ,

The buffer is a specially designed assembly» which in additio.n to

the core storage includes control» parity generation and chec~ing» error

se:nsing~ timing$ and power circuits. Parity checking~ncierror s\:l:rveillanc'e

are provided to prevent los·$ and inaccuracy of data during transfers to and·

from magnetic tape.

Operation

The c.omputer program controls the norrnaill,9 automatic operation of

th~ magrietic tape unit. The 'magnetic tape unit fU'rnishe s error -condition

signals ~o aid this controL» and has manual controls and indicator s for non-

auto\ro.atic ope,rations~\'

1 ... 21

Magnetic Tape Unit - Continued

A single co~nputer command with a number of variations dete14 mines

the mode of operation of the magnetic tape unit. This command causes the

unit to '~ransfer data$ search. rewind, or back spaceo Data is transferred

as follows:

a. from computer to buffer

b. from buffer to tape

c. from tape to buffer

d. from buffer to computer

To locate data recorded on tape g the computer searches the tape

while it is traveling either forward or in reverse until a ·specified record

address (first word of the record) is foundo

The tape unit provides the computer with indications of six conditions

that interfere with the transfer of data. The se conditions are:

a. buffer power supplies inoperative

b. buffer in use

c. tape error (parity violation)

d. transport inoperative

. e. end of reel

f4 write amplifiers disabled

During the last three conditions, the unit cause s the computer to st'op if it

attempts to transfe~ data.

Computer commands related to the magnetic tape unit are described

b:cie£ly in Section rI f and more complete operating information is contained

in a separate manuaL.

Magnetic Tape' Unit _ .. Continued

Specifications

Number of' buffers: one.

Number of transports: one to eight.

Power: 120 volts l 60 cps.

Type of buffer: magnetic care.

Physical characteristics of buffer: mounted in one tape transport.

Capacity of buffer: 128 words of 18 bits each (one block), or 64 words

of 36 bits each' (one II record" in a "compatible"

system).

Type of tape transport: modified Ampex FR-400 Digital Tape Handler.

Dimensions of transport: 72 in. highll 23 in. wide, and 24 in. deep.

Recordirig De'nsity

Number of data bits

Number of timing bits

Number of parity bits

Tape width

Tape length

Tape reel

Tape speed forward
or reverse

Tape rewind speed

Maximum bit rate

Minimum bit time

II Standard" Tape Unit
150 lines per inch,

8 bits per line

6'

I

1

1 / 2 in.

2400 feet

10 1/2 in.

75 i'n..,Iset:,., within
10/0

160 in. / sec.

11. 25 kps

89 J.ts.

"Compatible" Tape Unit
200 lines per inch,

7 bits per Litle

6

o

1

1 / 2 in.

2400 feet

10 1/2 in.

75 iri. / sec. $ within
, 10/0

160 in. / sec.

15 kps

66 J.ts.

.1-23

Magnetic Tape Unit - - Contif1u~d

"Standard" Tape Unit·
150 line $ per inch,

Recording Density 8 bits pet. line

Record length (128 words) 2. 58 in.

Inter-record spacing 2. 72 ih.

Records per 2400-foof tape 5440

Allowable record 'number s . 21~

Record time 34. 4 ms.

. Maximum us.able data 1, ~36 wordsJ s,e,c.
transfer rate:'

Number of heads

l-Z4

8 read;
8 write

"C'ornpatible lt Tape Unit
200':Unes,' per i~ch,

7 bits per line

1.9Zin.

0.75in •.

10.800

Z18

.25. 6 ms •

7 read;
7 write

SECTION II

INSTRUCTIONS

INTRODUCTION

An instruction in the RW -300 is composed of two computer words.

The first word contains an execution code. 'and an operand address. The sec-

ond word contains an operation code and the address 01 the next instruction

to be performed. An instruction is written by the programmer in the follow-

ing form:

execution operand operation next -instruction
code address code address,

The exact form taken by the instruction in the memory and the format for

listing instructions are described in Section III.

There are 21 basic operation codes in the instruction repertoire of

the RW -300. However, many more than 21 commands are available, because

computer response to certain operation codes is modified by the execution

code and the operand address.

In the paragraphs which follow, each of the operation codes is des-

cribed in conjunction with the variations made possible by execution codes

from 00 through 31 and by operand track addresses from 00 through 63. The

sector number associated with an operand address does not modify th:e op-

eration codes, nor are the operatiori codes modified by the track and sector

numbers of the next-instruction address. In describing the operations, the

following notation is us ed:

2-1

Introduction - - Continued

a. "A" is us~d to designate the A register.

b. "B" is used to designate the B register.

C. "Mil is used to designate the memory location specified by the

ope rand addre s s.

d. Pare nthe se s are us ed to de signate "contents of"; (A) means the

contents of the A register.

e. Arrows are used to d~signate "replaces "; (A) (B) means the

contents of the A register replace the contents of the B register.

Figure 2-1, located at the end of this section of the manual~ contains

examples which show how different operation codes affect the contents of

arithmetic _-registers and memory.

LOAD· A (M)"':""'-(A)

Decimal Code:

Mnemonic Code:

Operand Address:

Execution Code:

29

LA

specifies the location of the num-

her (M) which will replace the

contents of the A register.
() c:)

doe s not affect operation- -use a,.ny

The contents of M replace the contents of the A re'gister. The·B

register is unchanged.

LOAD B (M) ---- (B)

Decimal Code: 07

Mnemonic Code: LB

2-2

Operand Address:

Execution Code:

Load B - - Continued

specifies the' location of the num-

ber (M) whi~h will replace the

contents of the B reglster.

C'JC)

doe s not affect operation- -use aBy

The contents of M rel?lace the contents of the B registe r. The A

register is unchanged.

LOAD A NEGATIVE - (M) ---- (A)

Decimal Code: 21

Mnemonic Code: LN

Operand Addres s: ,specifies the location of the

number (M) which, with sign

changed, will replace the con-

tents of the A register.

Exe cut ion Code: does not affect operation--use (){J

The contents of M, with sign changed, replace the contents of the A

register. The B register is unchanged.

STORE A (A) ----(M)

Decimal Code: 30

Mnemonic Code: SA

Operand Address: spe cifie s the location M in which

the number in the A register will

be stored

2-3

Store A - - Continued

Execution Code:
00

doe s not affect operation- -use aay.

The contents of the A register replac~ the contents of M. The A

register and, the B registe r are unchanged.

STORE B (B)~(M)

Decimal Code:

Mnemonic Code:

Operand Address:

Execution Code:

20

SB

spe cifies the location M in which

the number in the B register will

be sto red.
OC_')

does not affect operation- -use afty.

The contents of the B register replace the contents of M. The A

register and theB register are unchanged.

ADD (A) + (M) ---(A)

Decimal Code:

Mnemonic Code:

Ope rand Addre s s:

Execution Code:

25

A

specifies location of addend, (M).

DC:>
doe s not affect operation- -use a&y

The contents of M are added algebraically to the contents of the A

register; the signed sum rep lace s the previous contents of the A register.

If the sum is zero, the sign of the A register is unchanged. The B register

is unchanged.

2-4

Add - - Continuecl

If the number of significant A-register. bits and/or the ~u~ber of

significant M bits is 17, an addi,tion command can re sult in a car ry bit that

cannot be accommodated in the A register. The carry bit, repre senting the

most~significant bit of the sum, "overflows" the· A register ,and is lost.

Overflow does not halt the computer, but turns on the overflow indicator •

. Overflow can be detected by use of the transfer command: Transfer on

Overflow.

To obtain meaningful results from an Add instruction, it" is necessary

that the augend (A) and the' addend (M) have the same scale factor. ' Scaling

considerations are described in Section VIII.

(A) - (M) ~ (A).

Decimal Code:

Mnemonic Code:

Operand Address:

Execution Code:

24 .

s

specifies location of subtrahend,

(M).
t.,)C)

does not affect operation- -use &A¥

The contentis- of M are subtracted algeb.raically from the contents of
. ,

, .
the A register; the signed differenc~ replaces the previous. contents of the

A regist~r. If the difference is zero, the sign of the A·registe·r is unchanged.

The B register is unchanged •.

Z-.S

Subtract - - Continued

Ove rflow can occur under the same conditions as specified, above for

the Add command. The minuend and subtrahend should have the same scale

factor, as 'discussed in Section VIII •.

5H1~T Decimal Code:

Mnemonic Code:

Ope rand. Addr e s s :

Execution Code:

01

SH

specifies the type of shift.

specifies number of places to be

shifted.

The track number in the operand address specifies the type of shift'

as follows:

Operand Track Address

Track 00 through 15

Track 16 through 31 .

Track.48 through 63

Type of Shift

shift (A) right; (B) unchanged.

shift (A) left; (B) unchanged.

shift (A) left; (B) left into A. ·

The execution code specifies the number of places to be ,shifted. Any

number from 00 through 31 can be used to obtain an instruction for shifting

from 00 through 31 places. The sign bits of th.e A and B registers are un­

changed by the Shift command.

The two types of shifts involving only the A register are open-ended,

so that bits shifted off either the right or the left end of the A 'register are

lost. When A is shifted right, the bit positions vacated at the Left end of the

A register are filled with zeros., When A is shifted left, the bit positions

vacated at the right end of the A register a're filled with zeros; any non-zero

2-6

Shift - - Continued

bits shifted off the left end of the A register tur,n on the overflow indicator.

(Overflow can be detected by usi~g the Transfer on Overflow command.)

When both the A register and B: register are shifted left, the two

registers are "coupled together so that the most-significant (I,7th) bit of the B

register mov~ s to the least-significant (1 st) bit position of the A register.

Bit positions vacated at the right end of ,the B register are fiUed with zeros.

Bits shifted off the left end of the A register are lO,st, but non-zero bits turn

'on the overflow indicator.
",.- .. ~--,,-~---... --.. -" '. I

,\The Sh~ft c~mmand m~y\also be usedto mtil~iply ~~." divide by/~owers
, /' \ ' ',"'/ ,,/7,

of two. Hting regi\r content8\~~ftone ,PJa:~e,i,~ eqUiVale~~ultiP1Ying

by two, and ifting ~igh~ one place "0.' -tvide s by tw~~\,,1 'F4te·~ u~~~;'~e.x-e'~~en,.:.-
'\, .:""" '-- ,,/ ,,\.

, ~ ,/ \ .' \," ~

/'" ·~e~~UA~,tJj£~\'!E!: ~,~. , ~,a.~!.~ ~ A~", d~ .. a c ri,b,e'6" 'in 'C onjUtl'~t6h"Wl£n"'"'s'ca:ling in
,/ ," '(' ,

I,I'~' • ...,.-

S~ctto~t~ -" ... , .. :,

TRANSFER ON NEGATIVE Decimal Code:

Mnemonic Code:

Oper~nd Address:

, Execution Code:

09

TN

·,becomes the next-

instructio:p. address if

t~ A register holds a

negative number. ,
...

do e s not affe ct
(2:)CJ

operation--us'e ~)'

~.

Trapsfer on Negative - - Continued

If the sign of the .A. register is negative, the operand address becomes

the next-instruction address. Otherwise, the next-instruction address re­

mains as specified in the program listing. The A register and the B register

are 4-nchan~ed. A zero with a negative sign causes transfer to occur.

TRANSFER ON ZERO Decimal Code:

Mnemonic Code:

Operand Address:

Execution Code:

11

TZ

becomes the next-instruction

addr e s s if the numbe r in the

. A regi~ter is zero.

does not affect operation- ;"use ~o

atry:?Immbe:r~£.r.:Ort.F(l0,,~tthr,o·lT'gh

If the contents of the A register are zero (plus or minus), the operand

address becomes the next-instruction address. Otherwise, the next­

instruction address remains as ·s.pecified in the program listing. The A

regIster and the B register. are unchanged.

TRANSFER;'ON OVE1~.FLdw· Decimal Code:

Mnemonic Code:

Operand Address:

2.-8

10

TF

becomes the next­

instruction addres s if

the ove rflow indi'cato r

is on.

Transfer on Overflow -- Continued

Execution Code: doe s not a££e ct

o c.:J
~!lPe·r ation.- -la.s··e: azssrf

If the overflow indicator has been turned on since the last Transfer on

Overflow command, the operand address becomes the next-instruction ad-

dress, and the overflow indicator is turned off. Otherwi~e, the next-

instruction address remains as specified in the program listing. The A

register and the B.regi·ster are unchanged.

COMP'ARE MAGNITU"1)E Decimal Code: 15

Mnemonic Code: .CM

Operand Addres.s: specifies the location of

the number (M) to be com - ,

pared' with the number in

. the A register.

Execution Code: if the comparison of ab-

solute values indicates

that.tp.e number in the A

register is smaller than
...

the .number in memory,

the next -instruction ad-

dress if formed by ad'ding

the execution code to the

2-9

COmpc.Lre Magnitude - - Continued

(A). , , 1---- (B) . lllltla

I(A)I ' 't'·l' - I (M) I ~ (A)£, 1 lnllalna

next -ins truction addre s s

specifiecl in the program

listing.

The magnitude of (A) is compare d with the magnitude of (M) by sub-

trfl,cting the absolute value of the number in the specified memory location

from the absolute value of the number in the A· re'gister. At the conclusion of

the instruction. the B register holds the number originally in the A register,

and the A register holds the (signed) difference between the absolute values

of (A) and (M). Ove rflow cannot occur.

If I (A) I is equal to or greater than l(M) I ' the final contents of the

A register will be positive, and the! computer will read the next instruction

from the location specified 'as the next-instruction address i~ the program

listing.

{{ Ifl(A) I is less than I(M)I, the final contents of the A register will

be negative, and the computer will read the next instruction from an address

formed by adding the execution code to the next-instruction ~ddress specified

in the progr·am listing. The addition performed to form a new next-instr~uction

address is modulo 128. meaning that the track number of thei\ext-instruction

address will be unchanged. and only the sector number will be modified.

(Example: if an execution code of 20 is added to sector 120, the new sector·

number will be 20 + 120 - 128. or sector 12 of the track originally specified.)

. EXTRACT (A) ® (M)·----(A)

Decimal Code: 05

Mnemonic Code: EX

2-10

Operand Address:

Execution Code:

Extract - - Continued

specifies the location of the num-

be r (M) to be used for logical

multiplication" of the contents of

theA register.
t){)

does not affect operation- -use a:ny,

The logical product of the contents of the A register and M replaces

the contents of the A register. AU f8 bits are used. Each bit (including the,

sign bit) of A is matched with the corresponding bit of M. When the corre ~

sponding bits of both A and M are ones, a one remains in that position of A.

When the co"rresponding bit of either A or M'is zero, a zero replaces the

contents of that position in A. (The Extract operation is described in Sec-

tion V.) The B registe r is unchanged.

MERGE (A) Ef) (M) ---- (A)

Decimal Code: 31

Mnemonic Code: "MG

Operand Address: specifie s the location of the num-

ber (M) to b~ logically added to the

contents of the A register.

Execution Code:
". " "C)C)

does not affect operation- -use aft)'

The logical sum of the contents of the A register and M replaces the

contents of the A register, Logical addition is performed bit-by-bit, and all

18 bits are used. Each bit of A is matched wi~h the corresponding bit of M.

2-11

Merge - - Continued

\V)len the cor'responding bit of eithe r A or M, or both, is a one, a one re-

p1a.ces the contents of that position in A. When the corresponding bits of both

.A'·~l.nd M are zeros, a zero replaces the contents of that position in A. The

Brcgister is unchanged.

SWITCH Decimal Code:

Mnemonic Code:

Operand Address:

Execution Code: .

Operand Track Address

Track 00 through 15

Track 16 through 31

Track 32 through 47

Track 48 through 63

02

SW

spe cifie s the type of switch

00
does not affect operation--use aB¥

T-xpe of Switch

(A) ____ (B) ; (A) unchanged

(B)~(A); (B) unchanged

(A) (B)

o ----- (A), (B)

Four types of switches are possible, depending upon the track number'

specified in the operand address.

For any track address from 00 through 15, the contents of the A reg-

ister replace the contents of the B register, and the A register remains

unchanged.

For any track addres s from 16 through 31, the contents of the B reg-

ister replace the contents of the A register, and the B register is unc;hanged.

For any track addres s from 32 through 47, the contents of the A and

B registers are intercha!lged.

2-12

Switch - - Continued

For any track addres's from 48 through' 63, the contents of the A and

B register s are cleared.

STOP (A) unchanged, (B) unchanged

Decimal Code:

:Mnemonic Code':

Operand Address: '

Execution Code:

00

SP

doe s not affe ct
oo-txJ

operation--use ~--,

doe s not affect

OiJ
ope ration - -us e any

The Stop command halts the pr.ogram. If. the RESUME button on the

operator's control panel is pressed, the computer reads the next instruction'

from the location specified as the next-instruction addr1ss in the program

listing. TheA andB registers are unchanged.

DIGITAL Decimal Code: 06

Mnemonic Code: DG

Operand Address: specifies the input or output device.

Execution Code: for digital input, specifies number

of bits taken in and their position

2-13

Digital - - Continued

in the A register; for "one -bit"

digital outputs, spe cifie s on or

off control.

Operand Track Address Type of Digital Command

00 through 31 Digital output from the A register

32 through 63 Digital input to the A register

e~~jjJ~ replace the' contents of the A register •

. Eighteen input lines form an "input group" that is assigned a specific

track address. An execution code of 18 results in all 18 lines being read into

the A register, replacing the previous contents of the A register.

Outp ts to d 'g'tal d v'c s "'L',,..,...'h-4-,..,.,,,,,, .. _-1_''''m· .''''::.''.''·,..x,.."t ·~''·t''s· .. ''·'''''P·l'e·'''''·o.· .. • .. •· ·t··er u 1 1 . e 1 e \ 11~,.....~;.A...' .. '0'", "",,,,,,1.;1.. ,L..,u. "',£'- .. " '\N .. .&."l· ,

legg-ing.,"'"tY"p'e:W"rite.r~;, .. ~etG.~ are controlled by the A register. The contents of

the A regis ter are unchanged by a Digital output command. Eighteen output

lines form an "output group" that is assigned a specific track address,. and

each line in the addres sed group has a corresponding bit position in the A

register.

In the case of "multi-bit" outputs, all 18 lines in an addressed group

are set on-or -off to correspond to the one -or -zero bit. pattern in the' A

register.

In the case of "one -bit" outputs, one or more lines in an addressed

group can be controlled without disturbing the other lines in the group. A

one is .placed in the A register hit position(s) of the line(s) to be affected by a

2-14

Digital - - Continued

specific Digital output instruction. An odd-numbered execution code turns

the affected Hne(s) c.'n; an even-numbered execution cqde turns the affected

line (s) off.

address assigned to specific equipment has ~ relationship to drum tracks in

computer memory. The track number in the operand address of a Digital

instruction doe s not refe r to me mory at all, and only has significance in the

se lection of 'the input or output device.

(A) unchanged, (B) unchanged

Decimal Code:

Mnemonic Code:

Operand Address:

. Execution Code:

03

NO

doe s not affe ct
oO--oD

operation--use Cfft)T

. doe s not affe c't

operation--use ~

2-15

No Operation - - Continued

This comll1and causes the computer to transfer unconditionaUy to the

next-instruction address in the program listing. The contents of the A reg­

,ister and the B register are not affected. The No Operation code is useful in

cqnjunction with exit instructions in arithmetic subroutine s.

T,ApE Decimal Code:

Mnemonic Code:

Operand Address:

Execution Code:

22

TA

specifies the tr,ack of the computer

memory that is to be transfer red

to magnetic tape;. specifies th~

mode of operation.

spe cifie s whethe r informa~ion

from the tape is to be placed in

track 14 or track 15 of the com-

puter memory; add'resses a spe­

cific tape transport.'

1!.he-c,fta~r--a:"ct·e·r·i·stic s,.and.applicatiQn,a""of.,,theo"magne-t.ie,'tap·e·,,'u'l1it·· are

de,.s.G.;ibe.Q,,,·erie'fty~ihS·e etlan L'

Information is transferred between the .computer drum and magnetic

tape through the magnetic tape unit's buffer. Information is transferred in

blocks of 128 words each~ . An identifying word, recorded as the first word

in a block of information on the magnetic tape, permits the tapes' to ,be

searched for specific blocks of information.

Detail-e d pr~ming...an.d.-ope'l!.a:tifl.g·"i~£er.m-a-tiOA.o/f.Q.r~t~·"·R""W·'a''3"O'O'

M.a.gne,ti·e'·'"T·a:pe-Unit'·is:,,·£.Qnt-a4:ne,Cil-.in~"fl;"""S"epctra1:e-·m-afi~~h

2-16

, MULTIPLY (A) X (M) --- (A, B)

Decimal Code:

Mnemonic Code:

Operand Address:

Execution Code:

16

M

Multiply

spe cifie s the location of the

multiplier (M).

specifies the number of multi­

plier bits'used to derive the

product, and specifies the num­

ber of product bits in the B

register.

The contents of the A register are mq.ltiplied by the contents of M.

The original contents of the A and B register s are rep laced by the product.

The signs of the A and B register's agree , and are the algebraic sign of the'

product~ To obtain a meaningful product, the execution code liE" must be

equal to, or gr~ater than, the number of significant multiplier bits in M.

Overflow cannot occur.

The number of product bits generated by a Multiply instruction is

equal to the total number of significant bits in the mUltiplicand (A) and multi­

plier (M). (Depending upon the magnitude of the multiplier and multiplicand,

the number of significant product bits may be one less than the sum of multi­

plicand and multiplier bits.) To accommodate all product bits, the B register

serves as an extension of the A register. There will always be "E tr low-order

product bits in the B register; the high-order product bits will be in the A

2-17

Multiply - - Continued

register. Thus, the execution code can be used to control the apportionment

of product bits betwe,en ~he A and B registers.

Section VIII of this manual tells how the execution code a~fects the

sfale factor' of ,the prc)duct. The paragraphs below contain examples which

show how different execution codes affect the 'results of a 'Multiply instruc-

~ion. In the examples, ·'0000 •••• " indicates leading zeros; "xxxx •••• "
!

indicates significant bits I which may be some combination of ones and zeros.

Sign bit s are not shown.

In the following example, the number of multiplicand (A) bits is 17,

and the number of multiplier (M) bits is 13. :

{\
.... A Bits = 17Mbits= 13 :..

, I • i I
• • I

Ix x x x x x x x.x x x x x x x x xltirheslO 0 0 O!x x x x x x x x x x x x xl , /'~----~I--------------------~
(A) (Mt

To obtain a meaningful product, the execution code "E" must always be equal

to or greater than the number of multiplier bits. In the example, there are a

total of 30 bits in the multiplier and multiplicand, so the number of product

bits will, be either 29 or 30. With a "minimum" execution code of 13, the B

register will contain 13 of the low -order product bits.

For E = 13, the product is:

I ~---------- A!+ !M·' Bit~ ::i:! 30 ------~-----~;a. :
I I

Ixxxxxxxxxxxxxxxxxi

---- ~ .-- " 16 or 17 bits (A)

I x x x x x x x x x x x x x:O 0 0 01

/--...---......... ---
(B) 13 bits

Depending upon the magnitude of the multiplier and the multiplicand in the

example, either 17 or 16 bits will be in the A register. For execution codes

2-18

Multiply - - Continued

greater than minimum, the product bits are shifted right; fewer product bits

are obtained in the A register, and more product bits are obtained in the B ,

re,gister. ,An execution code of 17 always results i~ complete multiplication,

using all 17 multiplier bits.

For E = 17, the product is:

I
I .. A + M Bits = 30 .. I

•
o:x x x x x x x x x x x x x I Ixxxxxxxxxxxxxxxxxi

I "
I "', 12 or 13 bits (A)

/ -----..",,---.........,...
(B) 1 7 bits ---

In the above example, it was shown that a minimum execution code (an

execution code equal to the number of multiplier bits) results in a maximum

number of product bit,s it). the A register. In the example, there were 17

, multiplicand bits in the A register before multiplication, and either 16 or 17

product bits in the A register after multiplication. rThe following generaliza .. ,

tion applies to any 'Multiply instruction: After multiplication, the number of,

significant bits in the A register remains the same, or is reduced by one~ if

the execution code doe s not exceed the number of multiplier bits. Also, IIE",

\

low-order product bits are always' shifted into the B register.

In the general case, the maximum execution code is 17. However, ,

higher execution c:odes can be used to shift insignificant product' bits (zeros) ,

off the right end of the B register. This is illustrated by the following

example:

'

I """"-Abits = 12--.... .-.-· M bits = 9---. t· , .• . , . :
10 0 0 0 O:x x x x x x xx xl 0 0 0 !times 10 0 0 00 0 0 O:x x x x Xl{ x 0 0 I

,/ . I

(A) .(M) •

2-19

rv1ultiply -- Continued

There are a total of 21 bits in the multiplier and multiplicand, so the nUlnber

of product bits will be either 20 or 21. Also, there are a total of 6 zero bits

in the least-significant bit positions of the multiplier and multiplicand; there

will 'be at l~ast 6 zeros in the least-significant bit positions of the product~

The 6 ze ro bits can be shifted off the right end of the B register by using an

e~ecution code E == 17 + 6 = 23.· For E = 23, the product is:

• (A + M Bits = 2l----~;):-1
, I

1 0 0 "0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 10 0 Ix x x x x xx x x x x x x x x 10 0 0 0 0 0:

I \ I ---.....--............... - ---_~~~---~_--..... t : (A) (B) -- 1 7 bits

:+ 6 zero bits

E = 23

Caution must be used in assigning an execution code greater than 17. If any ..

significant product bits (one s) are shifted off the right end of the B register,

the product is not simply truncated -- the bits that remain in the A andB

registers will be meaningless.

An execution code of 17 always results in a meaningful product. For

E :: 17, the product is:

l---.... ----A + M Bits == 21 :
r--------------------~I-------_ ,
"-, O_o_o_o_o_0_o_o_o_o_o_o_o-;:_x_x_x_x 1 I x x x x x x x x x x x ° ° ° ° ° 0

I ~" (/B) --- 17~bl'ts ----4 bits (A)

An execution code equal to the number of significant bits in the multiplier

alwa.ys results in a rncaningful product. For E :: 9, the product is:

:-.'l A + M Bits = 21)11

I 0 0 0 oo! x x x x x x x x x x x x 1\ ~""x-x-x-o-o-o-o-o-o-'l-o-o-o-o-o-o-o-o""'"J

1 2 bits (A) (B) 9 bits

DIVIDE

Divide

(A) + (M) ____ (A); remainder ___ (B)

Decimal Code: 26

Mnemonic Code:

Ope rand Addre s s:

Execution Code:

D

spe cifie s the location of the.

divisor (M).

specifies the number of

quotient bits.

The contents of the A register are divided by the contents of M. The

original contents of the A register are replaced by the quotient, and the

original contents of the B register are replaced by the remainder. The sign

of the A register is the algebraic sign of the quotient; the B register takes'

the sign of the dividend. If the ratio of dividend to divisor is one or greater,

the overflow indicator is turned on.

Basically, a Divide command yields one integer quotient bit, followed

by a serie s of fractional quotient bits. Thus, the maximum ~inary quotient

is 1. llll1. ..•• , and the ratio of the dividend (A) to divisor (M) must be less

than two. If (A) + (M) ~ 2, the quotient will not be meaningful.

The number of ;quotient bits generated is always equal to'the execu­

tion code "E". The execution code can be chosen to obtain a quotient with a

specific scale factor, as discussed in ~ection VIII. The effe~ct of different

execution codes on the quotient is illustrated by the examples which follow.

In the examples, "00000 •••• " is used to de signate leading zero bits, 'and

"xxxxx ..•. II is used to de signate some combination of one s and zer~s that

repre sent significant bits. Sign bits are not shown.

Consider dividend (A) with 8 significant bits, and divisor (M) with

1 2 significant bits.,

2-21

Divide - - Continued

:~Ab't = 8-)-: 1 (_- M . = 12) :

I
I 1 S • divided : bits •

o 0 0 0 0 0 0 0 0 :x x x x x x x xl by I 0 0 0 0 O:x x x x x x x x x x x x I ,. /' '-----:-.-~------.....
(A) + (M) I

Using an executionco9.e of 1cause·s only one quotient bit to be generated.

The first quotient bit· generated is the integer bit. In this· example, the di-

visor is much larger" than the dividend, and the integer bit is zero.

For E = 1, th~ quotient and remainder are:

E = 1 qu otient bit 3
10 00 000 0 0 0 0 0 0 0 0 0 001

Integer ---.!'(A)

Using an execution code of 7 causes seven quotient b~ts to be generated: an

integer quotient bit, and six fractional quotient bits.

For E = 7, the quotient is:

.1 0 0 0 0 0 0 0 0 0 0: 0 0 0 0 x x x I
Integ~r -.J --r- 'fA)

Fractlon -

t~ ;p.-a

:"E = 7 quotient:
, bits ,

•
:~ 17 remainder bits)at •

I XXXXXXXXXXXXXXXXXI

/
(B)

In the above example, the first four quotient bits are zeros because

the divisor has four more significant bits than the dividend. In general, the

minimum number of leading quotient bits that will be zero can be predicted

by subtracting the number of dividend (A) bits from the number of divisor

(M) bits. The execution code can then be chosen to eliminate M - A quotient

zeros by adding M - A to 17 to form the execution code.

2-22

Divide - - Continued

In the example: E = 17 + M - A = 21. For: E = 21, the quotient is:

I.......- E = 21 quotien:t bits
• t

--~}IIri:""', ,
,
• ---17 remainder bits~'

I . • •
:'~I xxxxxxxxxxxxxxxxx

<::::::::==::::;: ;;>

Integer 1 7 fractional
bit and quotient bits

I ,
(A)

xxxxxxxxxxxxxxxxx

(B)

3 leading
zero bits of
fractional
quotient

When an execution code greater than 17 is used, quotient bits are

lost o"£f the left end of the A register. In the example, E - 17, or 4 quotient

bits were shifted off the left end of the A register. An execution code as high

as 31 can be use d, with the result that 31 - 17, or 14 quotient bits will be

lost. For ,execution codes greater than 17, E - 17 quotient bits are always

lost off the left end of the A register.

The overflow indicator is never turned on when zero or non-z.ero

quotient bits are shifted off the left end of the A register during a divide in-

struction. The overflow indicator is only turned on when the quotient is one

or greater. A quotient greater than one always turns on the overflow indica-

tor, even if quotient bits are not shifted off the left end ·0£ the A register.

In the following example, the quotient will be less th.an two, but may

be >" 1 because there are as many bits in the dividend (A) as in the divisor

(M).

I ,
I~Ab' > .~M > ts ~ ~ b't ~ I 1 • I 1 S

10 0 0 0 0 0 0 0 o:x x x x x x x x I divided by .. 1_o_o_o_o_o_o_o_o_o..;!_X_X_X_x_x_x_.x_x 1
I "./

(A) {M}

2-23

Divide - - Continued

Exampl.es of quotients obtained using execution codes 1, 17, and 18 are tabu'"

lated below.

If the quotient is equal to, or greater "than one, the ove rflow indicator is

turned on.

for E = 1, the quotient is:

E = 1 quotient bit --:t ~17 remainder bits ____ : .,. .
ro 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x I.; ilemainder is Ixxxxx xxxxxx xxxxxx 1

J", /
Integer:: 1 if (A} >" 1---" (A) (BJ

(M)

For E = 17 ,the quotient is:

E = 1 7 quotient bits • ' 1 7 remainder bits • • • r4.l()I1IJio- ., I 'I11III()III- •

I x x x x x x x x x x x x x x x x x I; remainder is Ixxxxxxxxxxxxxxxxx I

~ -- ,"""", ----''(A) '(B(,
Integer = 16 fractional " '
1 if quotient bits

(A) .:> 1
(M)

For E = 18, the quotient is:

• I

I E = 18 ,quotient bits 1 7 re mainder. bits I
,,-c()lila I

jXlx x x x x x x x x x x x x x x x xI; remainder

~---- ' ---'-,
Integer 17 fractional (A)
,bit lost quotient bits
if (A) '.> 1

(M)

.--- ,
is Ixxxxx'xxxxxxxxxxxxi

I
B)

If there are mor e bits in the dividend than the divisor I the quotient may be

greater than two. If (A) + (M) < 2, the quotient will always be meaningful;

if (A) + (M);- 2, the quotient will be meaningless.

2-24

Divide - - . Continued

Special Cases:

If the dividend and the divisor are both zero, the "E" quotient bits will

be all ones (with the appropriate ·sign), and the remainder will be all zeros.

If th.e dividend :ts non-zero and the divisor is zero, the quotient (with

:g; = 18) will be all ones (with the appropriate sign) minus the dividend. The

remainder will be all zeros.

A .dividend and divisor having a quotient equal to or greater than two

can be used to obtain a valid remainder in the B register if the execution

code "E" is limited to 18 - A, where "A" is the number of significant bits in

the dividend. Under these conditions, there will be liE" quotient bits in the

A register; the bits will all be ones.

EFFECTS ON REGISTERS

The table in figure 2 -1 shows how the different operation codes affect

the contents of memory, the A register, and the B register. Because it is

cumbersome to write 18 binary digits to show the contents of M, A, and B,

the numbers are expressed in octal form. (Each octal digit represents 3

binary digits, as discussed in Section VIII.) Note that these .octal numbers

include the 18th or sign bit. Therefore, any octal number of 400000 or

greater has a one (-) in the sign bit. For example:

S 17 16 15 14 13 12 11' 10 9 8 '7 6 5 4 3 2 1

o· 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 O·

will be written as 360000 and

2-25

Effects 011 Registers ... Continued

S 17. 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l~

1 1 0 '0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

will be written as 624000.

The fir st co luron in the table indicate s the oper ation that is to be .

performed. The next four columns list the execution code (EX), the operand

address (OPRND), the operation code (OP), and the next .. instruction address

(NI). Although these codes and addresses are shown in the' sequence that

they would appear in a program listing, the series of instructions does not

represent a program.

The remaining columns of the table indicate the contents of memory,

the A register, and the :a register. The first line of each instruction repre­

sents the contents before the instruction is execu,ted; the second line repre­

sents the contents after the instruction is completed. The following symbols

are used:

a. XX means that the contents of the register or the memory loca­

tion are destroyed in the process of executing the instructio~.

b. SS means any sector number.

c. -- means that the register contents, operand address, and/or

execution code is of no importance in the instruction.

The table lists only operations that affect memory, registers, or

next-instruction addresses. Not included are: Stop, Digital, No Operation,

and Tape.

2-26

Figure 2-1. Commands and Registers

o Iperatlon EX OPRNDOP NI (M) (A) (B) NOTES

Load A -- -- -- ... 29 .. ---- 042500 XX ------
042500 042500

(M)~(A)

Load B -- ----- 07 - ---- 042500 ------ XX (M)~(:B)
042500 ------ 042500

Load A Neg -- -- --- 21 - ---- 042500 XX ------
042500 442500 -(M) (A)

Store A -- ----- 30 - ---- XX 042500 ------
042500 042500 (A) (M)

Store B -- .. --_ .. 20 - ---- XX ------ i042500
042500 042500

-(B) ~(M)

Add -- ----- 25 --- 230000 534000 ------ (M)+(A)---(A); note
230000 074000 that original (A) is

negative.

Add -- -_.- 25 .. ---- 230000 270000 ------ (M)+(A) (A T;ove r-
230000 120000 flow occurs; turns

on overflow indi-
cator.

Subtract -- .. ---- 24 .. -.--- 270000 230000 ------ (A)-(M) (A); since
270000 440000 (M»(A), answer is

negative.
Subtract -.. ----- 24 ----.- 670000 230000 ------ -(A)-(M)~(A); since

670000 120000 M is -, overflow
'0£ c ur s; t ur n son
overflow indicator.

Shift 05 15-5S 01 .. ---- .. ----- 042500 - -- - -- Track no • specifies
___ (A) 001052 right -shift of A; EX

specifies 5 place s.
Shift 07 31-55 01 ----- ------ 042500 ------ Track no. specifie s

(A) 120000 left shift of A; EX
specifies 7 places;
turns on overflow
indicator.

Shift 17 63-55 01 - ---- ------ 042500 406700 Track no. specifies
(A),(B)--- 006700 400000 left shift of A, B; EX

specifies 1.1 places;
turns on overflow.
indicator.

Transfer on -- ----- 09 45-75 - -_ .. - 042500 ... -_ - Sign of A is +; NI
Negative 45-75 '042500 remains as pro-

grammed.
Transfer on -- 46-73 09 45-75 ------ 442500 ------ Sign of A is -j

Negative 46-73 442500 OPRND becomes NI.
Transfer on -- _-- 1 1 45-75 ------- 042500 -- .. ---- (A) not zero; NI stays
Zero 042500 as programmed.

2- 27

Figure 2~1. COlnmands and Registers (continued)

Operation EX OPR1'tD OP NI (M) (A) (B) NOTES
Transfer on -- 46-73 11 45-75 ------ 400000 -~-- .. - (A) are (-) zero; ,
Zero 46-73 400000 OPRND.becorpes

NI.
Transfer on -- --_ .. 10 45-75 ------ ------ ------ ... Ove rflow indicator
Overflow 45-75 off; NI remains as

1?rogrammed.
Transfer on -- 46~73 10 45-75 ------ ------ ------ Overflow indicator
Overflow, 46-73 on; OPRND becomes

NI.
Compare 29 _ ... --- 15 TI-75 034200 042500 XX (A)-..{B); since '(M)
,Magnitude Tr-75 034200 006300 042500 < (A), NI is un-

changed.
Compare 29 -- --- 15 IT-I03 442500 034200 XX (A)~{B); since (M)
Magnitude 'IT-04 442500 406300 034200 > (A) se ctor of NI

becomes 103 + 29
-128 or 4.

Extract -- -- --- 05 -,.. - - 021415 234277 ------
(M) ® (A)~ (A)

021415 020015 "

Merge -- -- - -- 31 --- -- 021415 234277 ------
021415 235677 '

(M) G:> (A)--- (A)

Switch .. - 15-55 02 -- ... -- ------ 042500 XX Oprnd. track nos.
042500 042500 00 -,15 specify (A)

~(B).

Switch -.. 31-S8 02 - ---- ------ XX 400277 Oprnd. track nos.
400277 .tlO0277 16-31 specify (B)

~(A).

Switch .- - 47-S8 02 ----- - .. _--- 042500 400277 Oprnd. tra'ck nos.
400277 042500 32 .. 47 specify (B)

:=;t:(A) •
Switch, .. - 63-SS 02 -- ------ 042500 400277 Oprnd. track nos •

000000 000000 48",,63 specify
O~A) B.

Multiply 17 -_ .. 16 - 000012 000002 XX (M) X (A)-'-{A), (B)
000012 000000 000024 10 10 X 210' = 20 10

Multiply. 14 ---- - 16 ----- 400012 000002 XX -10
10

X 2
10

= -20
10

400012 400000 400240
Shiite d left 1 7 - :E :=

3 place s.
Multiply 17 ----- 16 - ---- 012000 000200 XX (M) X (A)-ll-(A), (B)

012000 000005 000000 10
10

X 2
10

= 20
10

Multiply 15 _ .. -- 16 - ---- 012000 000200 XX 10 10 X 210 = 20 10
012000 000024 000000

Shifte d left 1 7 - E
. = 2 places.

2- 28

Figure 2-1. Commands and Registers (continued)

Operation EX OPRND OP NI (M) (A) (B) NOTES
Multiply 12 -- -_ .. 16 .. -- -- 012000 000200 XX 10

10
X 210 = ?

012000 000040 000001 Execution code less
than number sig.
bits in M -- invalid
product.

Divide 18 ----- 26 .-- -- 300000 230000 XX (A) + (M)---A;
300000 312525 200000 remainder -'-(B)

Divide 18 ---_ .. 26 -_ 200000 300000 XX (A)+(M)> 1 turns
200000 200000 000000 on overflow indica-

tor; overflow
occurs, but frac-
tional quotient in
A register is valid.

Divide 17 -_ 26 -- 200000 300000 XX (A)+(M)> 1 turns
200000 300000 000000 on overflow indica~

i tor; however inte-
ger and fractional
quotient in A
register is valid.

Divide 10 _- 26 ... _- - 200000 002500 XX (A) + (M)--- A;
200000 000012 100000 remainder ~(B);

quotient shifted
right 18- E =8
places.

Divide 26 -- --- 26 --- -- 200000 002500 XX (A) + (M) A;
200000 100000 000000 remainder ~(B);

i quotient shifted
left E - 18 = 7
places; significant
bits are lost from
A register; does
not turn on overflow
indicator.

2.- 2.9

INTRODUCTION

SECTION III

BASIC PROGRAMMING

This, section tells how numbers and in~tructions are represented in the,

RW-30Q computer. The operations defined in the preceding section are used to

illustrate the, instruction format, and simple program listings are presented.

On the magnetic drum which serves as the computer's in.ternal memory,

,words are recorded' 'on tracks as variations in magnetic flux., There are 64 tracks

of interest 'to the programmer, and these track$ are numbered 00 through 63.

'Each track accommodates 128 words' in sectors that are numbered 00 through

127. ' A particular location in memory is specified by the track number and

'seC?tor number. For, example, 17-07 specifies sector 07 of track 17.

RW-300 computers with the expanded memory hav:e.'lZ3 tracks, or

15, 776 words, available to the programmer. Refer to Section IV forprogr,am­

ming'information for computers having this optional feature.

Data words (number s) and instruction words are represented in ,the com­

puter as binary number s. A word is 18 binary digits in length. Although there

are two space bits separating words on the drum, the space bits are of no con-

, cern to the programmer.

A word may represent numerical itlformatioft, half of au instruction,

or any pattern of 18 bits desired by theprOiramme1" (e. g., for program mod­

ification). Since the, comp~ter is a binary machine" the programmer

3-1

Introduction - - Continued

must have a working knowledge of the binary number system. (See Section

VIII.)

INSTRUCT10N WORDS

An instruction is two computer words, or 36 bits, in length. Two

addresses are included in each instruction: the addres s of the operand and

the addres s of the next instruction. This arrangement p·rovide s what is com-

monly called a lIone -plus-one" instruction form, which permits optimum

(i. e. t minimum-time) programming. The operation to be performed, OP,

is one of 21 different arithmetic or logical commands. The execution code,

EX, determines the number of bits in a product or quotient, the number of

place s shifted, or othe r special functions as de scribed in Section II.

Execution' ,
Code •
EX

WORD ONE

Operand Address
I
I

Track Sector

(Bit Positions)

WORD TWO

Operation: Next Instruction Address
Code I I

OP I Track : Sector

(Bit Positions)

FORMAT FOR LISTING INSTRUCTIONS

The series of instructions comprising a program are'\ usually listed

on a form similar to the one shown below.

CI EX OPERAND OP NI REMARKS

iA I I

IA I I

IA I I

--I • •• I 'I"
II 1'1 " I I
The columns of the listing have the following significance:

3-2

Format for Listing Instructions - - Continued

A is an "indicator" which, when read by the computer during loading,

announces that the number which follows is an address.

CI,is the location where the instruction is to be stored. CI stands

for "cur rent instruction".

!.. is an indicator which announces that the numbers whi,ch follow are

to be stored in the location previously specified.

EX is the execution code contained in the first word of the instruction.

OPERAND is the address of the operand that will be used in the in-

struction. (The operand address may specify a number in memory that will

be us ed in a computation, or may modify the instruction - - the exact signif-

icance of the operand address is explained in relation to each of the operation

codes.)

I is an indicator which announces that the numbers which follow are

to be stored in a sector whose number is one greater than that specified in '

the eI column. Thus, the entire instruction 'appears in two successive word

(sector) locations on the, drum, and the fir st word is located in the sector,

spe cifie d in the CI column.

OP is the operation code contained in the second word of the instruction.

NI is the address of the next inst~uction, i. e., the address of the in-

struction which will be read by the computer after the current instruction has

been comp leted. (In some case s, the next instruction will be read from the

address specified as the operand a'ddress, or will be formed by adding the

execution code to the address specified in the Nt column.)

3-3

Format for Listing Instructions - - Continued

The REMARKS column may be used by the programmer to make notes

that can be referred to when the program is being checked out or modified.

The program is punched on pape r tape using an off -line Flexowriter.

The typing (punching) format must be compatible with the RW -300 load pro-

gram contained in track 63 of memory. After the tape is prepared, it is

threaded through the Flexowriter tape reader. The operator presses the

LOAD button on the R W -300 contro 1 pane 1 to initiate loading. The load pro-

gram, tape -punching format, and related operating procedures are described

in Section VI.

Sector 00 of track 00 is called the "origin" because the RW -300 reads

. the instruction in sectors 00 and 01 whenever the START button is pressed.

If the following listing were punched on tape, loaded into the RW -300, and the

START button pre ssed, th~ first word of the instruction (execution code and

operand address) would be read from sector 00 of track 00, and the second

word of the instruction (operation code and next-instruction address) would

be read from sector 01 of track 00.

CIEX OPERAND OP NI REMARKS

R 00-00 111001 52-17

The instruction commands the computer to load the A register with

the ope rand located in sector 17 of track 52, and proceed to the next instruc-

tion in sector 06 of track 17. As noted in the remarks column, this instruc-

tion loads the .A register with the binary equivalent of the decimal number

460.

3-4

Data Words, or Constants

DATA W.ORDS, OR CONSTANTS

A data word, having numerical significance, is composed of 17 mag~

nitude bits, plus a sign bit. The sign bit is zero for positive numbers and

one for negative numbers.

Consider the decimal number + o. 9375, which i$ equivalent to + 0 .• 1111

in binary. If + 0.9375 were stored in the computer, it would appear in the

~ollowing form:

'Bit ~
Positions

0

18

1

17

f 1

16 15

1 0 0 0

14 13 12 11

0 0 0 0 0 0 0 0 0

10 9 8 7 6 5 4 3 2

If the number were negative, the binary digit in bit-position 18 would be a

one.

0

1

The bit pattern shown above might also represent the decimal number .

3. 75 if the programmer chose to think of the binary point as being between

bits 15 and 16 (3.75 in decimal = 11.11 in binary). Location of the binary.

point is a scaling consideration which is discussed in Section VIII.

FORMAT FOR LISTING.CONSTANTS

Constants must be placed in computer memory during the loading

operation. Constants are usually listed on a form similar to the one shown

below.

ADDR. CONST. REMARKS

A C

A C

A C ,
I

3- 5

Format for Listing Constants - - Continued

The columns of the, listing form have the following significance,:

!: is an indicator which, when read by the computer during loading,

announces that the number which follows is an address.

ADDR. is the location where the number is to be stored.

CONST .is the number, or constant.

,The REMARKS column may be used by the programmer to ,make notes

that can be referred to when the program is being checked out or modified. '

Constants are punched on paper tape along with the instructions of the pro-

gram, and the punching format must be compatible with the load program

described in Section VI.

If the decimal constant 460 were to be listed for storage in memory,

the number would first be converted to its six-digit octal equivalent, 000714.

See Section VIII for information on decimal-to -octal conversion., For storage

in sector 17 of track 52, the listing of the constant would take the following

form:

ADDR. CONST. REMARKS

bl s2- 17 C000714 460 10

The six-digit octal number representing a constant includes 17 mag-

nitude bits and one sign bit. In the listing of constants, the sign bit must be

included in the most-significan,t octal digit. Therefore, the most-significant

octal digit of a constant contains two magnltude bits and one sign bit.

3-6

Format for Listing Constants - - Continued

The octal equivalent of + 98304 is 300000, which would appear in

computer memory as follows:

~ - most-significant octal digit

1011111010101- - - - - 7
+ sign,/'

The octal equivalent of -98304 is -300000. Since the most-significant octal

digit must include a one to form the negative sign bit, the number would

have to be specified on the program listing as 700000. The number would

appear in computer memory as follows:

~most-significant octal digit
~ " .

USE OF MEMORY

General

In listing the instructions and constants, the programmer must choose

memory locations that are accessible to the computer when the program is

being loaded onto the drum and when the program is running. The choice of

these memory locations is governed by the characteristics of memory, the

characteristics of the load program, the configuration of the system, and

by conventions that have been established o"n the basis of operating experience.

The paragraphs which follow describe the constraints imposed upon

reading and storing information in memory, and describe how listings should

be organized so that punched tapes can be loaded easily. Suggestions for

keeping track of storage locations are also presented.

3-7

U;.:_~ of Merno~'y -- Continued

The choice of memory locations determines the time required fo:!'

the computer to complete calculations. These timing considerations relate

to "optimum programming" de scribed in Section IV.

Reading Information from Memory

A ny sector in tracks 00 through 63 can be j,"ead by the computer under

program control.

Tracks 08 through 15 mayor may not contain the digital equivalent

gf an analog input, depending upon the number of analog inputs accommodated

by the sy:stem. Also, tracks 14 and 15 may contain data being' transferred.

from the magnetic tape system.

Track 63 contains the load program which starts when the LOAD

button is pressed.

Storing Information in Memory

By mating the "tr.ack group selection plug" with an ··appropriate "track

group" jack, information can be stored in any sector of tracks 00 through 61.

The plug and jack, located on the test and maintenance panel, are described

in Se'ction VII. Each track group (except track groups 56 through 61) includes

eight tra"cks, as follows:

3-8

00 through 07

08 through 15

16 through 23

24 through 31

32 through 39

40 through 47

· Use ~f Memory '-- Continued

48 through 55

56, through 61

When the program is running, the track group selection plug on, the

R W -300 test and maintenance panel is usually connected to the jack -marked

0-7, because these tracks can b'e written into under program control. This

track group is sometime s referred to ,as II scratch pad" memory, because it

is most frequently used to hold the intermediate results of calculations. If

the program instructs the computer to store information in some track group

other than 00 through 07 , the computer ha1t~ and turns on the ERROR light.

The program will resume if the track group selection plug is moved to the

correct jack and the RESUME button is pressed. However,subsequent at­

tempts of the program to store in some other track group will be foiled by

another ERROR indication. Therefore, instructions and,constants are

usually loaded into track groups 08 through 61, and tracks 00 through 07 are

reserved for intermediate results of calculations.

Specific sectors of track 07 are reserved for analog outputs, ~.·J.d only

control information relating to specific output line s should be written into

the se sectors.

Specific tracks in track group 08-15 are reserved for,an~log inputs.

Instructions or constants cannot be loaded into' any sectors of these reserved

tracks.

Except during program loading, information can always be stored in

the 32-word recirculating register of track 62. The 32-word register is

3-9

U ~e of Memo ry - - Continued

deacribed in conjunction with optimum programming (Section IV). Informa-

tion can be stored in track 62 without reference to the track group selection

plug. However l the information must be ,vritten under program control, and

not'during loading, because certain sectors of track 62 are written int.o by

the load program, and any attempt to store in these' sectors during loading

will be fruitless because the load program will write other information there.

Information cannot be stored in track 63; any attempt to store in

track 63. causes the ERROR light to glow and halts the program.

Organization of Listings

The lists of instructions and constants should be organized so that in-

structions to be stored in specific track groups appear together.

When a program of instructions and constants is being loaded l the

compute r stores instructions and constants in the tracks specified in the CI

column ,of the instruction listing (and in the ADD~ column of the constant

listing). If the listing calls for storage in different track groups I the com-

puter signals ERROR1 and the track group selection plug must be moved to

the appropriate track group before the instruction or constant can be stored.,

Therefore l to speed up the loading process, the programmer should organize

his listings so that all of the instructions to be loaded into a track group ap-..
pear together on the pape r tape punched from the listings.

Record Keeping

Only one wo rd can be stored in any sector of memory. When a punched

tape of a pro gram listing is being loaded into the computer, new information

will be stored in the locations specified, thus destroying anything stored

3-10

Use of Memory -- Continued

earlier. Therefore. if two separate instructions are assigned the same

memory location, the instruction read last will be the instruction stored in

the memory location.

To avoid assigning the same memory location to separate information,

the programmer must keep a record of sectors in which instructions and con­

stants are to be stored. The form shown be low is convenient for record-

keeping purposes.

Channel

0 32 64 96

2 34 66 98

4 36 68 100

6 38 70 102

8 40 72 104

10 42 74 106

12 44 76 108

14 46' 78 110

16 48 80 112

18 50 82 114

20 52 84 116

22 ,54 86 118

24 56 88 120 \

26 58 90 122

28 60 92 124 '"

30 62 94 126

Note that only even-numbered sectors are listed on the form. Since

an instruction occupies two sectors, it is common practice when programming

the R W -300 to specify an even-nulubered sector location for instructions; in

3-11

Use of Memory -- Continued

this way, the first word of the instruction is stored in the even-numbered

sector, and the second word is stored in the following odd-numbered sector.

There is no restriction to preyent the programmer from as signing an

odd-numbered sector to the first word of an instruction--in which case the

second word will be stored in the following even-numbered sector. If sector-

location 127 is assigned to the first word of an instruction, the program list-

ing must specify that the second word of that instruction is to be stored in

sector 00 of the same track. In this special case, the complete instruction

is listed as two " half-instructions" :

CI EX OPERAND OP NI REMARKS

IA 01-127 I 00 52-17 I (Ex and Operand)
LOAD A

IA 01-00 I 00 17-06 I (Op and NI)

SAMPLE PROGRAMS

The following examples show how to construct computer programs

using the listing formats des cribed in the preceding paragraphs, and using

the commands described in Section II.

Example I

The following is a program to add two numbers, ~ a.lJ.f 1.' and store

the result in the memory location 01-02. Let ~ = +1273
8

and'y = -2438 • ..
CI EX OPERAND OP NI REMARKS

~ 00-00 I 00 01-00 I 29 00-02 x ~ A Register

~ 00-02 I 00 01-01 I 25 00-04 x + y -~ A Register

k\ 00-04 I 00 01-02 I 30 00-06 Store result in 01-02

k\ 00-06 IOO 00-00 I 00 38-124 Stop

3-12

ADDR.

1:1
01-00

01-01

CONST.

C001273

C400243

x

y

Sample Programs - - Continued

REMARKS

To prepare 'this program for loading into the computer, a pape r tape is

punched by typing the above listing on an off-line Flexowriter, using the

typing format de scribed in Section VI.

To load the program, the programmer first thre'ads the punched tape

through an on-line Flexowriter tape reader, and then presses the LOAD but­

ton on the computer's control panel. The tape is read under control of the

load program in track 63 of the computer, and under control of the load pro­

gram, the instructions and constants are stored in the locations specified in

the CI and ADDR. c.olumns of the program listing.

After the last symbol of the punched tape has been read, the computer.

will continue t'o read the blank trailing tape unle s s the last symbol punched on

, the tape is an "s". If an "s" is punched at the end of the tape, the computer

will stop. If the re is no "s" punched at the end of the tape, the loa?ing opera­

tion may be h.llted by pressing the STOP button.

Pushing the START button causes the computer to begin the progra~

by reading the first instruction contained in sectors 00 and 01 of track 00 •

. When the computer completes the sample program, it will halt. The

results of the addition (0010308) will be in the A register, as well as in

memory location 01-02. The contents of the A register may be observed on

the ,oscilloscope of the test and maintenance panel, as described in

Se ction VII.

3-13

Sample Programs - - Continued

When the computer halts in response to a Stop instruction (operation

code 00), it may be directed to proceed to the next-instruction address by

pr es sing the RESUME button. In the example J pres sing the RESUME button

(after the computer halts) causes the computer to proceed to the instruction

located in se ctor 124 of tr~ck 38.

The functions of the R W -300 control buttons are summarized in

Se ction VII.

Example II

This program calculates the average of the squares of ~ small num­

be rs: L .!. x.2, i = 1, ••• , n. In this .example, ~ = 4, and.!: is stored in
n 1

memory location 01-50. The numbers xl' ••• , x
4

are stored in locations

01-00- through 01 -03 , respectively.

When the Stop instruction is executed, the average of the squares will

be in the A register and in memory location 02-00. (See page 3-150)

Note 1: Multiplication results in a double-length product. Since this

example involves small numbers l the significant digits of the product are as-

sumed. to be in the B register, in which case the A register will contain zero·s.

This is not a general assumption, and it is the responsibility of the program-

mer to predetermine how significant product bits will be di~tributed. between

the A and B registers by adjusting the "scale factor" and execution code.

These considerations are discussed in conjunction with number systems and

scaling in Se ction VIII.

Note 2: The significant product bits in the B register are switched

into the A register and then stored. The two instructions that accomplish

3-14

Sample Programs - - Continued

CI EX OPERAND· OP NI REMARKS

lA 00-00 I 00 01-00 I 29 00-02 Load A X 1---{A)

Note 1 lA 00-02 I 17 01-00 I 16 00-04 Multiply X1~{A), (B)

Note 2 !A 00-04 I 00 32-00 I 02 00-06 Switch (A) !lIE III (B)

lA 00-06 I 00 02-00 I 30 00-08 Store A X12~Location 02-00

!A 00-08 I 00 01-01 I 29 00-10 Load A X2~(A)

k\ 00-10 I 17 01-01 I 16 00-12 Multiply X22~{A), (B)

lA 00-12 I 00 32-00 I 02 00-14 Switch (A) lIE .. (B)

!A 00-14 I 00 02-00 I 25 00-16 A.dd 2 2
Xl +X2 ~(A)

!A 00-16 I 00 02-00 I 30 00-18 Store A X 1
2

+ X
2

2
....... 1ocation 02-00

lA 00-18 I 00 01-02 I 29 00-20 Load A X
3

........ {A)

lA 00-20 I 17 01-02 I 16 00-22 Multiply 2
X3 --- (A), (B)

lA 00-22 I 00 32-00 I 02 00-24 Switch (A) •.. .. (B)

lA 00-24 I 00 02-00 I 25 00-26 Add 2 ·22
Xl +X2 +X3 ~(A)

~ 00 ... 26 I 00 02-00 I 30 00-28 Store A X12+X22+x3~lo~ation02-00
~ 00-28 I 00 01-03 I 29 00-30 Load A X4 ---(A)

~ 00-30 I 17 01-03 I 16 00-32 Multiply 2
X4 ~(A), (B)

~ 00-32 I 00 32-00 I 02 00-34 Switch (A) (B)

'A 00-34 I 00 02-00 I 25 00-36 Add
2' 2 2 2

Xl +X2 +X3 +X4 ___ (A)

Note 3 ~ 00-36 I 18 01-50 I 26 00-38 Divide 222 2
(Xl +X2 +X3 +X4)-+. 4 (A)

k\ 00-38 I 00 02-00 I 30 00-40 Store A Average---location 02-00

~ 00-40 I 00 -- -- I 00 ... - - .. Stop

~ 3-15

Sample Programs - - Continued

this (00 -04 and 00-06) could be replaced by a Store B instruction. Howeve r,

subsequent instructions use the switch-and-store sequence to form a running

sum. In tp,is exampl(~, all instructions are listed in the same pattern; in the

next exampie, the pattern is made a part of a repetitive routine.

Note 3: Division by 4, to obtain the average of the' sum of the squares,

could be accomplished in less time by using a Shift-right instruction (shift

right two places), which is equivalent to. dividing by 4.

Example III

The following program solves the same problem as the program in

Example II. However, it illustrates a "loopll, a repetitive routine that re-

duce s the num be r of ins tructions • The instructions fo r taking an x., squaring
1

it, adding this to a running sum, and storing the result, are written out only

once, as opposed to four times in the example above. Howeve,r, the program

r,eturns to this sequence of steps as many times as necessary. A loop can

handle virtually any numBer of x. 's without being lengthened. in proportion.
1

Locations 01 -00 through 01-03 again contain xl •.• x
4

• Locations

01-50 through 01-52 contain the constants 000004, 000003, and 000001, re­

'\
spectively. Location 01-54 is a "counter" which keeps track of the number

of times the computer has gone through the loop. Location 0'2.-00 contains

the running sum and, at the end, the final answer.

The flow chart in figure 3-1 shows how the program is to operate.

3-16

Sample Programs - - Continued

Clear A and B registers.

Set running sum to zero.

Load address of first x.
into loop.

1

Load loop counter con­
stant into A.

Store counter.

Compute x. and add to
• 1

runnlng sum.

Reset addresses in loop
to thos e of next x ..

1

Load counte r into A and
subtract one.

NO
'--------11 Test for negative.

Con1.pute average.

Figure 3 -1. Flow Chart of Progr am in Example III

3-17

Sample Programs - - Continued

Cl EX OPERAND OP Nl REMARKS
..

IA 00-00 I 00 50-00 I 02 00-02 Switcn OHa-{A)~ (B)

r-

Note 1 IA 00-02 I 00 021-0b I 30 00-04 Store A O~02-00

Note 2 IA 00-04 I 00 01'- 53 I 29 00-06 Load A 17 0,1-00~(A) .

IA 00-06 I 00 00-14 I 30 OO-OB Store A 17 0 1-00 ~00-14
,

IA OO-OB I 00 00-16 I 30 00-10 Store A 17 01-00 00-16

:A 00-10 I 00 01-51 I 29 00-12 Load A 000003~(A)

Note 3 :A 00-12 I 00 01-54 I 30 00-14 Store A 000003~01-54

Note 4 :A 00-14 lAX xx-xx I 29 00-16 Load A X.~(A) .;
1

IA 00-16 l~X xx-xx I 16 00-lB Multiply
2 X. ->-(A), (B):

1

iA 00-lB I 00 32-00 I 02 00- 20 Switch (A) (B)

~ 00-20 I 00 02-00 I 25 00-22 Add X. 2 + (02- 00) -JII-(A)
1 ' /

A 00-22 I 00 02-00 I 30 00-24 Store A X. 2 + (02 -00) (02- 00)
, 1

Note 5 A 00-24 I 00 00-14 I 29 00-26 Load A (00-14) ~ (A)

A 00-26 I 00 01-52 I 24 00- 2B Subtract (00-14) + 1~(A)

lA 00 ... 28 I 00 00-14 I 30 00-30 Store A (00-14) + 1~(00-14)

~ 00-30 I 00 00-16 I 30 00-32 Store A (00-14) + 1---(00-16)

Note 6 lA
/'1.

00-32 I 00 01-54 II 29 00-34 Load A counter~(A)
I

A 00.;.34 I 24 01-52 I 15 00-12 Compare counter - l~(A)
Magnitude if -, go to ~·00-36

A 00-36 I 00 02-00 2 I 29 00-3B Load A I, x. ____ (A)
1

A 00-38 I 1B 01-50 I 26 00-40 Divide I, x. 2
+4~{A)

1

A 00-40 I 00 02-00 I 30 00-42 Store A I,x.
2

+ 4---02-00
1

~ 00-42 I -- ----- I 00 ----- Stop

~ 01-53 I 17 01-00 Ha1f- 00.;.14 and 00-16
instruction

3-1B

Sample Programs - - Continued

ADDR. CONST. REMARKS

A 01- 50 COOOO04 n=4 -
A 01-51 COOOO03 counter

A 01-52 COOOO01 decrement

Note 1: The Switch command clears the A and B registers (fills the

registers with zeros), and the Store A command sets the running sum to

zero. Clearing the A and B registers and storing the result is equivalent to

loading the A register with zeros and storing the zeros. However, the clear-

and-store operations save drum space and computation time.

Setting the running sum to ze ro is an "initializing \I step which is nec-

essary to prepare the computer for entering the loop. Other initializing

steps include the storing of the first x. address in the loop (covered by Note
1

2) and setting the loop counter to 3 (covered by Note 3).

The initializing steps are necessary if the program is to be repeated

for different value s of x. Without the initializing steps, the progrq,m could

be run only once; the punched paper tape of the program would have to be

reloaded before the calculation could be repeated.

/\
Note 2: This and the next two steps set the operand addresses of the

instructions in 00-14 and 00-16 to the address of the first x .• The half-
1

instruction "17 01-00" (execution code and the operand address) are stored

in both 00-14 and 00 -16. Actually, what is required is "DO 01-00" in 00-14

and "17 01-00" in 00-16. However, instruction 00-14 is a Load A instruc-

tion, and the execution code is ignored. To load different half-instructions

into locations 00~14 and 00-16 would require several additional memory sectors.

3-19

Sample Programs - - Continued

Note 3: This initializing step establishes the counter in sector 01-54.

Each time through the loop, one will be subtracted from the counter. and a

test will be performed. When the counter becomes negative, the program

will have been through the loop four tim,es and th~ squaring-and-summing

calculations will be complete.

Note 4: XX XX-XX represents the execution code and operand ad-

dres s, of Xl •• x 4' which will be re set each time through the loop by adding

one to the operand address contained in 00-14 and 00-16. See Note 5.

Note 5: In this and the next three steps, the operand address of in-

structions 00-14 and 00-16 are increased by one, to form the operand address

of the next x.. The Subtract command is used because the half-instruction
1

"17 01-00" appears in memory as 420200
S

' a negative number. By subtract­

ing the constant 000001
S

' the half.-instruction becomes "17 O~ -01" the second

'time through the loop, "17 01-02" the third time through the loop, etc.

Note 6: The number in the counter is brought into the A register for

comparison with the stored constant 000001. The flow chart indicates that

one is subtracted from the counter J and if the result is negative, ,computation

is complete; if the result is not ,ne~ative, the new number is"stored in the

counter location. Although this operation could be performed by tw~ opera-

tions (Subtract and Transfer on Negative), the subtraction,,:,and-testing opera-

tion is performed in one operation by the Compare Magnitude instruction.

The Compare. Magnitude instruction subtracts one from the counter,

and the difference replaces the contents of the A register. The first three

times through the loop, the contents of the A register after the Compare

3- 20

Sample Programs - - Continued

Magnitude instruction are positive orzero t and the computer reads the next

instruction from location 00-12. The instruction at location 00-12 stor~s

the new -counter in preparation for the next pass through the loop. After the

loop has been repeated four times, the contents of the A register are negative

after the Compare Magnitude instruction, and the computer reads the next

instruction from the address forlned by adding the execution code (24) to the

next-instruction address (00-12). Thus t after passing through the loop the

fourth time J the program proceeds to divide the sum of the squares by four

(00-36).

3- 21

TIlE RW-300 HAS HAD THE FOLLOWING TRACK ASSIGNMENTS MADE:

11 digital input tracks:

33" 36, 37" 39, 40, . 41,

42, 43, 44, 45, 46.

9 digital output tracks:

0, 2, 4, 6, 7,

8, 9, 10, I.\."

Flexowriter, high speed teletype punch, trac~s:

0" 2.

Ferranti reader track:

32.

Magnetic tape units track:

39.

When reading the programming manual and the operations manual, the

various commands apparently have different n~~bers. This apparent

inconsistency results from showing the commands in the progr~mming
,

manual in the digital form and the operating manual in the octal

and binary forms.

INTRODUCTION

SECTION IV

OPTIMUM PROGRAMMING

The programming examples in Section III employ "sequential program"

listings; i. e., successive instructions are assigned consecutive locations in

memory. A sequential program causes the computer to spend an excessive

amount of time searching for instructions and operands. "Optimum program­

ming" is a technique for selecting storage locations so that a minimum amount

of computer time is lost in waiting.

To understand how optimum programming saves machine time, it is

necessary to consider the physical characteristics of the computer memory.

The magnetic drum used as memory is shown schematically in figure 4-1.

Zeros and ones ,representing instruction and data words, are recorded on

the drum as variations in magnetic flux.

The program can be loaded into tracks 00 through 61, and each of

these tracks has one head for reading information stored on the drum. The

track address determines which of the 61 heads is used when information is

taken from these "general storage" tracks.

Information is read from the drum serially (bit by bit) so that it

requires "one word time" to read one computer word from memory. One'

word time is the time required for one word, or sector, to pas sunde r a

read head. Since there are 128 sectors in ea'ch track, and the drum makes a

4-1

Introduction - - Continued

complete revolution in one sixtieth of a second, one word time is approxi-

mately 130 microseconds.

In performing a series of inst~uctions, the cOITlputer reads the f~rst

two -word instruction in two word times, but additional time is required to

carry out the instruction. For example, to load the A register requires five

word time s J and if the Load A ins truction is in sector 00 of some tr ack, the

computer will not be ready to read the next instruction until sector 05 is

passing under the read heads. If, using sequential programming, the next

instruction is located in sector 02, the drum must complete its revolution

before sector 02 again passes under the read heads. Thus, sequential pro-

gramming causes a delay of nearly one drum revolution (1/60 second) between

the readi'ng of each instruction. With optimum prograIl1Il1ing, Il10re than 20

instructions can be accoIl1plished in one drum revolution.

The above example describes the penalty paid for listing. instructions

in consecutive memory locations. The same type of time los's is incurred if

the operand is not in an optimum location. In the cas e of instru'ctions involv-

ing operands, about two drum revolutions could be required to complete a

A
single instruction. But if operands and next instructions are assigned opti-

m.um locations, more than 40 instructions can be carried out in those two

drum revolutions.

The paragraphs which follow des cribethe organization of the R W -300

internal memory and techniques for optimum programming.

4-2

Memory Organization

MEMORY ORGANIZATION

For gene,ral storage needs; the 7~ 936 words of tracks 00 through 61

are available. Each of these tracks is equipped with a read head$ thus per­

mitting data to be read from any sector of general storage. These read

heads are all align.e,d with respect totimingji. e. ~ at any given time the read

heads are all at the same sector of their respective tracks. Therefore, the

time at which informat.ion is read from a sector is indepe ndent of the track

number.

Tracks 00 through 07

Tracks 00 through 07 provide program-writable memory for tempo­

rary storage of data. Each of these tracks has a single head which functions

as both a read and a write head. Track 07 is fitted with an additiqnal head

,which reads data for conve r sion to analog output. If mor ethan 64 analog

outputs are'required, track 07 is fitted with two additional heads. However,

the program rea.d/write head of this track performs the same function as

other program read/writ.e heads.

Tracks 08 throug~~!:..~

Tracks 08 through 15 have read/write heads similar to those on tracks

00 through 07. These tracks may also be fitted with an extra analog write

head which is not under computer program control. However~ the computer

can be modified to make all or part of these tracks writable under program

control.'

4-3

Memor y Organization - - Continued

Tracks 08 through 61

Tracks 00 through 07
(Program Writable Group)

I~
I

I
I

I
I
I
I , ,

I
I
I
I , , ONE SECTOR OF

THE RW-300 DRUM t"'''' --,/
Least Significant Bit

Most SignHicant Bit
Sign Bit

Space Bits

TRACK 63 READ
TRACKS 16 through 61

1
1

/
/

/
/

I
1

I

/

/
1

/
I

y
1\

/ \
/ \ , ,

Program Read/ Write

Revolver

TRACKS 00 through 06

Track 62 Revolver

Track 63
Load Program

ONE TRACK OF
THE RW-300 DRUM

TRACK 62

Revol ver Read

TRACKS 08 through 15

A Program Read/Write

TRACK 07

A
,:,;,J, Program Read/Write Program Read

4-4

, Analog
Read

Figure 4-1. RW-300 Memory

Analog
-<I Write

Memory Organization Continued

When analog input facilities are employed, the digital equivalents of

voltage s from instruments are written into one or more of the se tracks,

starting with track '08. The number of tracks used to accomrnodate the analog

input data is determined by the number and type of analog inputs.'

A maximum of 128 analog inputs can be accommodated by each track,

so that with 12S analog inputs~ track OS would not be available for general

storage; with 256 analog inputsg tracks OS and 09 would be unavailable for

general storage g and so on. In some cases, to minimize the amount of

'"
equipment required, fewer than l2S inputs are ,accommodated on' each track,

but the analog inputs never occupy tracks other than tracks 08 through 15.

The, programmer must not attempt to store part of the program in

tracks OS through 15, which are reserved for analog inputs. Although the

program can be written into the reserved tracks during loading, the write

head that records analog input information will write converted analog in-

put information (or zeros) into the sectors, destroying the information writ-

ten during the loading operati~n. The tracks reserved for analog inputs

are specified during the planning stage of an installation, and any tracks

not reserved for analog inputs can be used for general program storage.

Tracks OS through 61

For loading information into the computer, it is necessary to be able

to write on tracks OS.through 61. Also, under special circumstances, it may

be desirable to use some of these tracks for writable space during program
J

operation. This can be accomplished by manually connecting the track selector

Me mor y Or ganization - - Continue d

plug on the test and maintenance panel to the jack representing the ap'~ropri ...

ate track group (00~07~ 08-15$ 16-23~ 24~31~ 32.···39~ 40~47~ 48~·55~ 56··61).

Any atten;.pt to w~ite on a track which has not been s~lected as writable

will cause the 'record ERROR light to turn on and the program to stop.

Track 62

'Track 62 is the' circ'ulating register, or "reyolver"~ which provides

32 words of fast,~access stbrage. 'rhe. ~~~Qlver~':has a r~ad h~adwhich'ls

aligned with the read heads of the other tracks. Track 62 also has a write:.

head and can always be written on by the program. The revolver write he~d

precedes the read head ~y 32 sectors; L e. ~ a word on the revolver passes·

. .
under the read head 32 word times after passing under the write head. (See

fig ure 4·,1.)

The revolver read and write heads als9 differ from the read (i,nd

write heads of genera.l writable storage ib.'that they are continually r.e.'aq~·J;lg
, ' .

. and writing~ As each sector of the revolver passes under the read head~ its

contents are read and immediately written 32 sectors later. For example~

if a word is written. into 62-04, then 32 word times later this sector will

pass under the read head and its contents will be read and .written into 62-36;

in another 32 word times 62~36wil~ pass under the read head and fts contents

will be written into 62-68 t etcQ

Be:cause each word is written in four: sectors around the track (Cl:t 3·2-

word intervals) within one drum revolution, the average access time for in-

formation on the revolver is one-fourth that of general. memory. The

4-6

Memory Organization -- Continued

circulation of data on the revolver is interrupted only by writing new data onto

this tr ack ..

, 'Track 62 is a convenient track to use for storing instructions» half~

instructions~ or information used repeatedly in any part of the program'. ThE

use of track 62 is de scribed near the end of this section.

Track 63

Track 63 has a read head which ,is aligned with ~he read heads of

other tracks$ but has 'no write heado This track is permanently reserved

for the load. program describe'd in' Section VI. Any attempt to write on track 63

will cause the ERROR light to turn on and will halt ,the program.

EXPANDED MEMORY

R W -300 computer s with the expanded memory drum have 123 tracks

of interest to the programmer o For identification purposes these tracks are

divided into two sets: track set A~ with tracks numbered from OOA through

63A$ and track set B~ with tracks numbered from OOB to 63B.

Five tracks of each set are common to each other. These common

tracks are OOp OS~ 06$ 07s- and the revolver» 62. Information written into

track OSA~ for example» is also written into track OSB. These five common

tracks are regarded as single tracks.

Track setA is identical to the tracks found on the 8» 000 word drum»

i. e. i track 63A contains the load program, and tracks OBA through 1SA are

reserved for analog 'input data.

4-7

,Expanded Memory ~~ Continued

Tracks D8B through l5B are available to the programmer without re ...

gard to the corresponding tra'cks in track set A which might be ,used for ana­

log input data.

Track 63B is n.ot a writable track. However g it may contain a service

routine which is available to the progratnmero

Switching computer re~d c,o_n.~rol JTomon~ t'~~ck set to .,~.h:~' o~hel;" .is ac­

complished by a digital output instruction us~ng a tra'Ck addr.ess .of 03 in the

operand address~ An 'od:d number in the execution code will transfer control

to the B set of tracks o An even number in thee:xecutibn code will transfer

control to the A set of tr ackso

Depressing the LOAD or START buttcnalways causes the computer

to read from the A. set of tracks.

A three·=position track set transfer switchs designated "A~B=REMOTE"

and locate d on the te st and main~enance panel$ provide s track set A or tr ack

set B writing optionso When the switch is placed i.n positionAl' a store in~

str \J.ction will cause the inforn1ation to be written into the corre sp~nding t:r-ack

and sector of tr ack set Ao When the switch is placed in position B ~ a store

instruction will cause the information to be written into the'corre sponding

track and sector of track set B, ' Common tracks are not affected by the drum

. transfer switch. The A and B positions of the switch would norm'ally be used

only when s~oring programs into the computer ,dllt'ing loadoperationso

No Record Error provisions exist if the operator should inadvertent·­

Iy Ie-ave the track set transfer switch in', the wrong. position during loading

Expanded Memory -- Continued'

operations. Under these circumstances the data will be entered into the

corre sponding tracks of the incorrect track s.et.

The REMOTE position of the track set transfer switch allows either

track set A or track set B to be selected for writing under program control.

A one - bit digital output instruction will transfer writing control from one

track set to the other. One~bit outputs are described in Section V. The

track addre s s and the corre sp~nding digit in the A register to affect the track

set relay are specified for each R W ~300 computer individually an,d may vary

from one machine to the other. A delay of 16.6 InS, or approximately one

. drum revolution~ should be allowed between the one bit digital output instruc-

tion and the next stor e instr uction.

SELECTING OPTIMUM MEl\AORY LOCATIONS

. ,.
To prepare a program that can be performed in a minimum amount

of time$ the programmer must select memory locations so that the next

instruction. to be executed is pas sing under the appropriate read head im-

mediately after the previous instruction has been executed" Similarly.t when

an operand is being read from memory.\> the operand should begin passing

under the appropriate read head the moment the computer's arithmetic cir-

cuits are ready to receive that operand~

, .. ' '" .. '.

A reference table of R ... W 300 instructions, the last page of this pro-

gramming manual~ contains a column labeled. II Execution Time'1.This

4-9

Selecting Optimum Memory Locations - - Continued·

column tells how long it takes the computer to get ready for the operand and

how long before the computer is ready to read the next instruction. The time

is specified in word times, which is directly equivalent to numbers of sectors.

Note the Add command in the table of RW -300 instructions. From the

table, "CI~Oprnd Add." is 3 word times; "Total CI~NI" is either 6 ,

or 7 word times. This means that the computer requires 3 word times to

prepare for receiving the operand, and either 6 or 7 word times to complete

the addition and be ready for the next instruction. Thus, if the first word of

an Add instruction is as signed the memory location 00 -00 (CI column in the

program listing), the operand should be stored in 00-00 + 3, or 00-03. The

first word of the next instruction should be assigned the location 00";00 + 6

or 00-00 + 7.

In the case of the Add and Subtract instructions, the next-instruction

address location depends upon the signs and magnitudes of the two numbers

to be added or subtracted. If the sign of the A register is' unchanged by the

operation, only 6 word times are required. If the sign of A changes, 7 word

times are required.

When determining optilllUITl s ector number s, the nutnber of word titne s

and current-instruction address are added "modulo 128." This llleans that

if the surn exceeds 128, then 128 is subtracted from the sum to obtain the

optimurn sector number: 114 + 17 - 128 = 03.

In the case of the three transfer commands, the computer will be

ready to read the next instruction in either 4 or 5 word times (table of

R W -300 instructions), depending upon whether or not transfer conditions

4-10

Selecting Optimum Memory Locations - - Continued

are met. If transfer conditions are not satisfied (not negative, no overflow, .'

not zero), the first word of the next instruction should be assigned a location

that is 4 word times greater than the current-instruction address'. If transfer

conditions are satisfied, the first word of the next instruction should be as-

signed a location that is 5 word times greater than the current-instruction

address. Note that when transfer conditions are satisfied, the operand ad-

dress becomes the next-instruction address (Section II).

In the case of a transfer command, it would not be possible to assign

absolutely optimum addresses to both operand and next-instruction addresses

within the same track. Absolutely optimum addresses would have consecu-

tive sector numbers~ and this is not possible, because each address repr.e-

sents a two-word instruction. However, optimum addresses can be assigned

by locating the two branches of the transfer instruction in different tracks.

No computer time is lost in switching from track to· track. A Transfer on

Negative instruction with optimum operand and next-instruction addres'ses

might be:

CI EX OPERAND OP NI

In the case of the Compare Magnitude command, the computer is

ready for the next instruction in 5 word times if .1 (M) I < I{A) I, but if

I (M) I > I(A) I, 7 word times must elapse before the co~puter is ready to

read the first word of the next instruction. Thus, an execution code of 02

should be used to form an absolutely optimum next-instruction address. An

'4-11

Selecting Optimum Memory Locations - - Continued

execution code of 01 or 00 would result in the los s of one drum revolution,

or 1/60 second of computing time.

The table of R W -300 instructions indicates that optimum next-instruc .

tion addres$es for some operations depend upon the execution code ("nn" in

the table). For these operations, the execution code is added (along with the

required number of word times) to the s ector number of the current-instruc-

tion address to form the optimum address of the next i.nstruction. A Multiply

instruction with an optimum operand and next-instruction address might be:

CI EX OPERAND OP NI

If the number of words in the program approaches the number of

words available" in general storage, it will not be possible for the programmer

to assign absolutely optimum memory locations to every instruction, because

the desired memory location may have been previously assigned. In this

event, more than the specified number of word times should be added to the

current -instruction addre s s .

Becaus e it is impos sible to optimize completely a prograITl which

uses all sectors in a given area of ITlemory, priority should be given to pro-

gram segments that are repeated many times. Frequently repeated program

loops sh~uld be more highly optimized than program segments that do not

contain loops. Therefore, frequently used loops should be programmed first

so that optimum storage locations can be chos en from a relatively empty

storage area. As the program:t:ning work progresses, the storage area will

begin to fill, and absolutely optimum meITlory locations will not be available.

4-12

Selecting Optimum Memory Locations - - Continued

Les s computing time is lost if the les s -than-optimum locations are as signed

to noniterative operations.

The general requirements for keeping a record of as signed memory

locations are discussed in conjunction with memory usage in Section III. The

procedure of assigning only even-numbered addresses to instructions will

aid in the record-keeping task. When only even-numbered addresses are

used for the first word of instructions, the optimum sector number is deter-

mined by adding more than the specified number of word times to the current-

instruction address. For example, the Switch instruction requires 5 word

times; with the first word of the Switch instruction in 00-00, the address of

the first word of the next instruction should be 00-06.

The preceding paragraphs describe the general procedures and phi-

los ophy for selecting optimum memory locations. In the paragraphs which

follow, similar commands are grouped together, and specific requirements

for each command are presented.

Load, Merge, and Extract

The load instructions (LA, LN, and LB) and the Merge and Extract

instructions all have identical timing requirements; only the LA instruction

will be discussed.

Example 1: Load (M) into A.

CI EX OPERAND OP NI

4-13

Selecting Optirnurn lvlem.ory LocatioJ'ls - - Continued

Since the COlnputer t.akes three v/ord tirnes to go frorn the current-instruction

a.ddl"e~;t:; tCl the fir~t a.ccessible storage cell, the optimurrl sector location of

M is the sector number of the current-instruction address plus three. T~e

computer requires tw'O word times to read the operand and load it into the

A register; therefore, the optirnum sector location for the next-instruction

address is the sector number of the operand plus two.

Add and Subtract

The Add and Subtract instructions have identical tirrling requirements i

only the Add instruction will be discussed.

Example 2: Add (M) to (A).

CI EX OPERAND OF NI

The optimum sector location for the operand is determined by adding three

to the current-instruction address sector number. The addition operation

requires three word times if the sign of A does not change as a result of the

operation, four word times if the sign of A changes. Therefore, unless the

program.m.er knows that the sign of A will not change, he should allow four

words between the operand addres s and the next-instruction address. The

penalty for not doing this could be the los s of a compl~te drum revolution.

Multiply and Divide

The Multiply and Divide instructions have identical timing require-

ments; only the Multiply instruction will be discussed.

4-14

Selecting Optimum Memory Locations - - Continued

Example 3: Multiply (A) by (M).

CI EX OPERAND OP NI

The optimum sector location for the operand is determined by adding three

to the current -instruction s ector number. The optimum sector location of

the next-instruction address is determined by adding"E" (execution code) plus

three to the sector number of the operand address.

Compar~ Magnitude

Example 4: Compare. I (M) I with I (A) I·
CI EX QFERANI2 o~ NI

The optimum sector location for the operand is determined by adding three

to the current-instruction sector number. The optimum next-instruction

address is determined by adding two to the operand address. However, if

the results of the comparison are negative, (M) > (A), the actual next~instruc-

tion address will be the listed next-instruction address plus the execution

code liE". Since seven word times are required before the computer is ready

to read from the modified next-instruction address, the minimum execution

code should be two.·

Transfer

The transfer instructions (TN, TZ, and TF) all have identical timing

requirements; only the TF instruction will be discussed.

4-15

Selecting Optimum Memory Locations Continued

Example 5: Take the operand address as the next-instruction address if the

overflow indicator is on; if the overflow indicator is off, read

the next instruction from the address specified in the NI column

of the lis ting .

CI EX OPERAND OP NI

Since the computer takes five word times to test the overflow indicator and

substitute the operand address for the next-instruction address, the optimum

sector location for the first word of the next instruction is the .sector number

of the current-instruction address plus five. The computer requires only

four word times to be ready for the next-instruction address if the overflow

indicator is off; therefore, the optim.um sector location of the next-instruc-

tion address is the sector number of the current-instruction address plus

four.

Switch

Example 6: Switch the contents of the A register into the B register.

CI EX OPERAND OP NI

15-00 II \02138 -491
The Switch command uses the track number of the operand address to specify

~he type of switch, and the sector number has no significance. Therefore.

any sector number can be assigned as the sector number of the operand ad-

dress. Since the computer requires five word times to complete the switch

instruction. the optimum sector location for the next-instruction address is

the sector number of the current-instruction address plus five.

4-16

Selecting Optimum Memory Locations - - Continued

Shift

Example 7: Shift the contents of the B and A registers left 3 places.

CI EX OPERAND OP NI

48-00

The Shift command uses the track number of the operand address to specify

the type of shift, and the sector number has no significance. Therefore, any

sector number can be assigned as the sector number of the operand a,ddress.

Since the execution code "E" specifies the number of places shifted, and since

one word time is required for each place shifted, the optimum sector loca-

tion for the next-instruction address is determined by adding "E" plus four

to the sector number of the current-instruction address.

No Operation

Example 8: Transfer unconditionally to the next-instruction address.

CI EX OPERAND OP NI

Since the operand address has no significance in the No Operation command,

any track and sector number can be assigned. The op~imum sector location

of the next-instruction address is determined by adding 4 to the sector num",

ber of the current-instruction address.

Store

The store instructions (SA and SB) have identical timing requirements;

only the SA instruction will be discussed:

4-17

Selecting Optimum Memor y Locations - ~ Continued

Example 9: Store (A) in {M~,

CI EX OPERAND OP . NY

The optimum operand address (storage sector M) for store instrut~

tions is determined by adding four to the sector number of the current~

instruction addresso The optimum location of the next instruction is deter.u

mined by adding six to the sector number of the current-instruction addre s.s.

Digital

The timing requirements of digital commands depend upon whether the

command is a digital input or a digital output$ and upon the type of input or out"",

put device addres sed by the commando Digital inputs and outputs as sociated .

with the Flexowriter ·(track address 00 or 32) require 110 milliseconds.~ All

other digital outputs require at least 10 milliseconds. Digital inputs from

switches re quire 6 word time s.

Example 10: Input to A register from toggle switches.

eI EX OPERAND OP NI

The Digital command uses the track number of the operand address to specify a

particular device; and the sector number has no significance. Therefore. any

sector number can be assigned as the sector number of the operand address.

For clearing the A register ~ for digital inputs from the toggle ,switches i and for

some other digital input instructions~ the .optimum sector location for the next~

instruction address is the sector number of the current",instruction address plus

sixo Section V de scribe s. timing considerations for digital output commandso

4-18

Comparison of Optimum and Sequential Programming

COMP,ARISON OF OPTIMUM AND SEQUENTIAL PROGRAMMING

The next=instruction address in each of the preceding examples

specifies the current-instruction address of the next exampleo If the ten

examples were as sembled to form a program~ the commands would be:

Load A1 Add~ Multiply~ Compare Magnitude, Transfer on Overflow~ Switch,

Shift, No Operations Store A9 and Digital Input. This optimum program

would be completed in approximately one=half of a drurn revolution (1/120

second~. However» if the instructions and constants used in the program

were assigne d sequential locations in memor y, approximate ly 15 dr urn

revolutions (1/4 second) would be required to com.plete the same programo

Although the optimum program formed by the ten examples could be

completed by the computer in about 1/30 the time required for a sequential

program, no general statement can be made concerning the amount of com­

puter time conserved by optimum programmingo It is difficult to program

a problem so that all memory locations are absolutely optimum because

instructions and constants in optimum locations for one segment of a prq­

gram may interfere with the selection of optimum locations for other seg­

ments of the same program.

REVOLVER

Track 629 the "revolver"9 provides fast~access storage for 32 com­

puter wordso Any word written into the revolver passes under the revolver

read head every 32 word times 1 thus making that word accessible four times

during each dr um re volutiono

4-19

Revolver -- Continued

A number used repeatedly in a calculation can be stored in the re-

volver so that it will be readily available. Also, frequently repeated in-

structions can be placed in the revolver. When instructions are placed in

the revolver, the two words that make up the instruction are stored in

sequential revolver locations so that the two half-instructions will be read

as a single instruction.

Each sector of the revolver has a separate address. Thus, if a num-

ber is stored in 62-00, it can be read next from sector 62-32, then 62-64,

etc. It is convenient to think of revolver locations as RO, Rl, ... R30, R31

and use the following table.

Table of Equivalent Revolver Locations

·,KO- I 0 32 64 96 R16 16 48 80 112
Rl 1 33 65 97 R17 17 49 81 113
R2 2 34 66 98 R18 18 50 82 114
R3 3 35 67 99 R19 19 51 83 115
R4 4 36 68 100 R20 20 52 84 116
1f5 5 37 69 101 R21 21 53 85 117
R6 6 38 70 102 . R22 22 54 86 118
R7 7 39 71 103 R23 23 55 87 119
R8 8 40 72 104 R24 24 56 88 120
R9 9 41 73 105 R25 25 57 89 1 ~ 1
RIO 10 42 74 106 R26 26 58 90 122
Rl1 11 43 75 107 R27 27 59 91 123
R12 12 44 76 108 R28 28 60 92 124
R13 13 45 77 109 R29 29 61 93 125
R14 14 46 78 110 R30 30 62 94 126
R15 15 47 79 III R31 31 63 95 127

If the optimum sector number for a Store A instruction were 53, the

programmer would use 62-53 as the operand address, and would note in the

REMARKS column of the program listing "(A)~R21". When the stored

number is to be read from the revolver, the sector number of the operand

address can be any sector number on the "R21" line in the table of revolver

locations.

4-20

Expanded 1v1.emory

EXPANDED MEMORY

The rules for optilTIUm merDcry locatlons apply to those R W 300

computer s having the optional expanded memory. Howeve:c. special consid~,

era,dons dictate that optirnllrn prog~lamming is also a function of the over-alL

p.rogram arl·ange.ment Frequent and unnecessary switching back and forth

fro·m one track set to the othe.,: can be tirne-consuming and wasteful o.f pro-

gr.am space.

O,nce the basic requirements of a specific process or problem have

been established. the programmer should plan track and track set locationp

ih such a manne!:' as ::0 keep track set 'switching at a minimum

OPTIMUM PROGRAMMING USING SYMBOLS

The R vV 300 Prog~'am Lib':'aty inc lude s an assenl.bly :,:-outine wh:ich

accepts p~tog~'ams coded in symboiic form The routine is called ··OPUS., "

Optimum Programnling USil"lg Symbols Copie s of the OPUS lnstruction

'manual are available from TR Vv' Cornpute:!:' s C'JITlpany

OPUS reduce s 'Che work. of the programITler by requiring chat only

m'ne·monic operation codes and some other information be listed In most

cases .. next instruction addresses need not oe SPecified; OPUS assigns an

optimum next· instruction addres s V/hen it is nece s sal' y to refer to an

address seve1.4 al tiITles within the pi4 0gram the programITler assigns letter

OE letter -number combinations as sYITlbolic addresses These symbolic

a.dd:r:e-sses l chosen arbit:carily by the programrne.t serve as mnemonic

4 21

Optimum Programm.ing Using Symbols --Ccntin,ued

device s for the P'l'" ogr ammer - - OPUS automaticallY' assigns ab. optimum

addres's toeach symbolically identified operand or ne.x.t-instruc~ion address.

Mnemon~c operation corles a;re used: LA for. Loa4.A.> A· for Add» SW for

Switch, etc ..

The Op·US package inchide.s· an instructionmar;lualand .a punched

paper tape .containing the piog:r·a·m..: After the q.P·P.5:l:t o U:tine, lq.q;S: bee'n

loaded into the R W -300$ th~.computer readsth~ tape' containing th~ sy'm~

bolically coded progranl,. optimizes ·the p:rogram~and punches arie~ tape

which is a lirie~·'for ~line $ ·machine..;lan·g uage:t~~Q.sl9-tion of the symbolically

coded program.

In additioq. to 9ptimizit:lg~he. syinbolic.al~Y·G?de.d program~: the OPUS

Routine provi.de s the progr~rrl1f1,er with- two ,pr·iritou:'t.~·:-an "A va,ilapility Table

Map" of storage sectors occup.iedb,y the opti.mi:ze'4ptpgr-an1~ and a "Sy-mbol

Table· Map" of memory sector'$assigned by OPl!S:.t:o: e'~·ch: 0.£ the symbolic

addre?ses.

Although OPUS simplifies program listing9.':qpt~rn,izi.ng» an'd rec.ord

keeping$ the programmerml.lst. have a cO!Xlplet~ kn:9wle.dge ofmachine·~lan­

guage instru'ctions in order to correct orl modifyany<t:>"rogramhe prepares in

s ym bolic fOTm.

4-22

SECTION V

DIGITAL INPUT AND OUTPUT

INTRODUCTION

The extremely flexible digital input and output capabilities of the R W-

300 are described briefly in Section 1. In the paragraphs which follow, the

input and output facilities of the RW -300 are described in detail, and sample

program listings are presented.

The bas,ic RVl-300 is provided with a Flexowriter, which consists of

three devices combined: an electric typewrite r, a paper -tape punch, and a

paper -tape reader. The Flexowriter is used to prepare punched tapes of

programs, and the tape reader on the Flexowriter is used to load the pro­

gram into computer ll1ernory. The Flexowriter is also used to obtain infor­

mation printouts or punched tape under program control. Flexowriter codes

and characteristics are des cribed in detail at the end of this section.

Six switches on the test and maintenance panel of the basic computer

can be used for "break-point" control of an operating program, or for in­

serting information under program control.

Ferranti paper -tape readers (60 characters per second) and Teletype

paper-tape punches (60 characters per second) are optional equipment used

with the R W -300 to obtain higher input-output speeds. Other paper -tape

equipment and punched-card readers and card punches can also be used with

the R VI-300.

5-1

Introduction - - Continued

The flexibility and expandability of the R W -300 digital input and output

system permit a wide variety of digital input and output devices to be speci- .

fied. In addition, to the high-speed readers and punches t special input

switches and indicators are available to aid the communication between the

operator and the comJ:luter. This section of the manual containl1:) a description

of some 6f the input-output equipment, and includes information needed by"

the pr ogr amme r wh<? will be us lng the equipment.

DIGIT AL COMMAND

The operation code for cOIru"nunication with digital input-output equip­

ment is 06. The operand track address specifies whether the Digital com­

mand is an input 0 r an output:

Operand Track Number

00 through 31

32 through 63

Type of Digital Com.mand

Output from computer's A register

Input to the cor.aputer's A register

In the' cas e of a Digital output instruction, the axe cution code is only signif ..

icant for the liane-bit" outputs described in conjuction with expanded input

and output capabilities.

In the case of a Digital input instruction, th.e execution code deter­

mines where the input bits will be in the A register. The number of lines

read into the A register is equal to the execution code. Execution codes

greater than 18 should not be used with the Digital instruction. The signif­

icance of the execution code for Digital input instructions is illustrated in

exalTIple s which follow.

5-2

Bas ic Input- Output Capabilitie s

BASIC INPUT -OUTPUT CAPABILITIES

Digital inputs permit the computer to accept on-off signals from two

groups of input lines. One of these groups (line L12 -L
I8

) is reserved for

the Flexowriter or other seven-bit input. The other group of 18 inputs'

(lines L
21

, - L
38

) is used to accept inputs from other external devices, or '

from toggle switches on the test and lTIaintenance panel.

If lines L21 through L38 are all set to one (connected to -5 volts), and

if the DIGITAL INPUT selector switch on the test and mainten~nce panel is

turned to EXTERNAL, the following instruction will cause 18 ones to be read

into the A register.

CI EX OPERAND OF NI REMARKS

The track and sector nu:mbers of the current instruction (CI column)

and the next instruction (NI colum.n) depend upon the relationship of the Digital

instruction to the rest of the program. The, track number of the operand ad-

dress is shown as 40, but any track address from 36 to 63 is satisfactory.

The sector number of the operand address does not affect a Digital'

instruction.

The execution code of 18 causes the 18 ones read into the A register

to appear in bit-positions 1 through 18 of the A register. An execution code

of 17 caus es the input frC?m L38 to appear in bit-position 17, and all succeed-

ing bits to be shifted one place to the right so that the input from L21 is los t.

5-3

Basic Input- Output Capabilities - - Continued

The effect of different execution codes is shown in the following table.

Execution
Code

18
17
16

4
3
2
1
o

18

L38
0
0

--
0
0
0
0
0

Bit Position in A Register
17 16........... 4

L37 L36 · · · L24
L38 L37 . · · · L25

0 L38 · · · . . e' L26

-- -- -- --
0 0 · · · · L38
0 0 . · · · · 0
0 0 · · · · · 0
0 0 · · · · 0
0 0 · · · · · · 0

3 2

LZ3 L2Z L21
LZ4 LZ3 LZ~

L2S' L24 Ll3
-- -- -..

L37 L36 L35
L38 L37 L36

0 L38 L37
0 0 L38
0 0 0

A useful application of the Digital input instruction is to clear the A

register. If the execution code specified is zero, no lines are read, and the

A register will contain all zeros.

Inputs from Toggle Switches

The six toggle switches on the test and maintenance panel can be

salTIpled on input lines L21 through L26 by turning the DIGITAL INPUT se-

lector switch on the panel to INTERNAL and using a Digital input instruction

similar to the one shown above. Using an execution code of 18 will fill the

least-significant bit positions of the A register with the bit pattern repre-

sented by the settings of the DIGITAL INPUT toggle switches. In addition to

the bit pattern obtained from the toggle switches, the A register will contain

any inputs that are applied to Lines L27 through L38.

The Extract operation (operation code 05) can be used to remove un-

wanted bits obtained during a Digital input instruction. In the following

example, it is .desired to preserve only the six bits read into the A register

from toggle switches L21 through L26. This is accomplished by an Extract

5-4

Basic Input-Output Capabilities - - Continued

instruction using the octal constant 000077. Because bit-positions 1 through

6 of the constant contain ones, the information read into those- A-register bit

positions will be preserved. However, bit-positions 7 through 18 of the 'COJl-

stant contain zeros, and the Extract operation will cause zeros to be placed

in bit-positions 7 throlJ,gh 18 of the A register.

CI EX OPERAND OP NI REMARKS

IA TT-SS I 18 40-SS I 06 17-08 DG in fromL21 through L38

--

IA 17-08 I 00 42-30 I 05 TT-SS Extract L21 through L26

At the conclusion of the second instruction, t,he A register will. contain one

bits only for DIGIT AL INPUT toggle switches set to ONE; all other bits in

the A register will be zeros.

Inputs froIn Flexowriter

To transmit inforInation from the paper tape in the Flexowriter

reader to the A register, a Digital instruction is used with an operand track

addres s of 32. An execution code of 07 is normally used so that the Flexo-

writer signals applied to lines LI2 through L18 appear in bit-positions 1

through 7 of the A register. A Digital input instruction with an operand track

address of 32 causes the Flexowriter to read one frame of paper tap'e and

then advance the tape one fram.e 'in preparation for a subsequent Digital input .
instruction. Flexowriter characteristics, Flexowriter codes, and the format

of the punched paper tape are described at the end of this section of the

manual.

5- 5

Basic Input- Output Capabilitie s - - Continued

Output to Flexowriter

To print or punch information on the F'lexowriter, the information

must first be loaded or shifted into the A register. The code in the A regis-

ter may then be transmitted to the Flexowriter by a Digital instruction with

an operand track address of 00; the execution code is of no consequence when

the Flexowriter is addressed in a Digital output command. The character ..

printed and/ or punched by the Flexowriter depends upon the contents of bit-

positions 1 through 8 of the A register during a digital output to the

Flexowriter.

The Flexowriter's response to digital outputs froIn the R W -300 de-

pends upon the· selected mode of Flexowriter operation, and depends upon the

pattern of bits in the A register. The mode of Flexowriter operation caIl be

controlled either by switches above the Flexowriter keyboard, or by digital

output signals sent to the Flexowriter froln the RW -300.

Bit patterns in the A register which control the Flexowriter',s mode

of operation are called "control codes". Specific bit patterns, or codes in

the A register activate a typewriter key or cause some other Flexowriter

response (carriage return, space, etc.). Codes which neither control the

Flexowriter nor cause some form of typewriter response, are considered
'J
"

"illegal" codes. "Legal" Flexowriter codes are tabulated in figure 5 -2.

Modes of Flexowriter operation include:

a. Print

b. Punch

c. Print -and-Punch

5-6

Basic Input- Output Capabilitie s - - Continued

The characteristics of these operating modes are explained in conjunction

with the detailed Flexowriter characteristics described at the end of this

section.

To effect printout of symbols from the A register, the Flexowriter

must be in the Print mode of operation.

Sample Printout Listing

The following example illustrates the use of Digital input and output

commands to obtain a signed, two-digit, octal printout of a specific memory

location. The octal number in this example is -35, which is s.tored in rrlerrl­

ory as 750000, but the printout listing is valid for the sign and the first two

octal digits of any numbe r.

To print and/or punch a symbol on the Flexowriter, the appropriate

Fle~·{owriter code for that symbol must be placed in bit -positions 1 through 8

of the A regis·ter, and the computer must execute a Digital output instruction

addressed (track 00) to the Flexowriter.

In the s ample listing, the num.ber in memory is loaded into the A

register, and the sign is exam.ined by means of a Transfer on Negative in­

struction. If the sign of the number is negative, the next instruction loads

the A register with the F'lexowriter code for a negative sign, and the follow-

~ng Digital output instruction causes the Flexowriter to print " _" If the sign

of the number is positive, the next instruction loads the A register with the

Flexow:t'iter code that caus es the Flexowriter to print "+".

After the sign has been printed, the A register is cleared using a

Digital input instruction with an execution code of zero; the two

5-7

Basic Input- O·l.ltput Capabilitie s - - Continued

rno;:;t -Sigllific ant bits of the nl..1l11ber to be print.ed are then shifted frovn the B

register into the.A register. If the first two bits are both zero, the Flexo-

writer will execute a space in response to the Digital output command which

follows. If the first two bits are not zero, the Flexowriter will print the

appropriate octal digit.

The A register is cleared in preparation for printing the second digit,

this time by a right shift. The right shift removes the two bits from the A

register, but does not shift the bits into the B register. The second octal

digit in the B register is brought into the A registe r by a left shift, and is

then printed.

CI EX OPERAN!J OF NI REMARKS

A 00-00 II 00 01-04· 1
1
29;: 00-06 M ~.l\.

'A 00-06 I 00 00-00 I 02 00-12 A~A7 B

~ 00-12 I 00 00-18 I 09 00-J.6 Test for negative sign

~ 00~'16 1'00 01-20 I 29 00-24 +-:~-A

lA 00-18 I 00 01-22 I 29 00-24 . --).-A

~ 00-24 I 00 00-00 I 06 00-34 print sign

A 00-34 I 00 32-00 I 06 00-40 o -'JJP'-A

~ 00-40 I 02 48-00 I 01 ,;.00-48
2 A_lS(-B

A 00-48 I 00 00-00 I 06 00-58 print first number

A 00-58 I 02 00-00 I 01 00-66 O~A

A 00-66 I 03 48-00 I 01 00-74 A-L-B

A 00-74 I 00 00-00 I 06 TT-SS print second numbE-~1:"
_, """"'.,W', .. ,

5-8

Basic Input- Output Capabilitie s - - Continued

ADDR. CONST. REMARKS

A 01-04 C750000 nu:rnber to be printed

A 01-20 COOOO40 :F'lex code for positive sign

A 01-22 COOO02l Flex code for negative sign

The above listing does not print zeros, but does print octal digits 1

through 7. The non-parity):c Flexowriter codes for syInbols 1 through 7 cor­

respond to those bits as they appear in the A register: 0000001 in the A

register causes a 1 to be printed on the Flexowriter; 0000010' in the A regis-·

ter causes a 2 to be printed, etc. However,· zero (0000000 in theA regisfer)

is the Flexowriter code for a space.

To print zeros, the above printout listing would have to be· Inodified

so that each octal digit would be tested to determ.ine whether it is zero. If

not zero, the next instruction would be a digital output to the]tlexowriter~·· If

the,A register contents were zero, the next instruction would load the A

register with the Flexowriter code for zero before the Digital output comma.nd

to the Flexowriter. As in the case of the sign printout, the Flexowriter code

for zero would have to be stored in s o:rne predeter:rnined location of m.emory.

The preceding example is not an exa:rnple of minimum-time program­

ming, but is presented to show a maximum number of com.mand variations.

The time required to execute a Flexowriter output is six word tim.es plus any

waiting tirne that is characteristic of the Flexowriter or other output device.·

):~IlParity" and "Non-Parity" Flexowriter codes are described in con ...

junction with Flexowrite r char acte ristics at the end of this section.

5-9

Ba sic Input-Output Capabilitie s - - Continued

The RW -300 Program Lihrary includes decimal as well as octal

printout routine s.

EXPA,NDED INPUT-OUTPUT CAPABILITIES

Inputs

The digital input capabilities of the R W -300 can be expanded to a max­

imunl of 28 additional grou~Js 0:: 18 line s each, 01' 504 additional on-off sig­

nals, with each group selected by a different track address (36 through 63) of

the DO command. ·The tra'ck addresses'3.re assigned to specific input- func­

tions or devices. If a Ferranti high-speed reader is used in additlo'n tc)·the

Flexowriter, 33 is the operand address track number

When any' one of the input groups 1S addressed (operand track address

36 through 63)i that group will be connect'ed to lines L21 through L38, but

the input will not be complete unless the DIGITAL INPUT selector switch on

the test and maintenance panel is turned to EXTERNAL. If the DIGITAL INPUT

selector switch is set' to INTERNAL~ any operaa1d track address from 36

, through 63- will cause the toggle Bwitche S to be read on line s L 21 through:, L26.

In. an expanded digital input syster:.'1, as contrasted to the basic digital

input systetn. grounded lines are read in as zeros, and open lines a'reread in

as ones. In all other respects, including the effect of the execution code;digltal

.inpt~t characteristics are the sam'e as those described for the basic computer.,

Some of the digital input equipment which has been used in R W - 300 ap­

plications is described in the paragraph titled lilnput-Output-Equipment. "

Outputs

The digital outputs provide a nleans of transmitting on-off signals to

external devices, The output signals may be llsed for turning the Flexowriter

Expanded Input-Output Capabilitie s - - Continued

on and off, acti vating indicator lights or alarm device s, etc. Up to 28 groups

of 18 rel-ay-cont:tolled output lines~ or 504 outputs) are available as optional

equipment with the basic computer. On special order, the output system may

be eXpanded to 30 'groups if no high- speed punch is included.

A la-millisecond delay cricuit allows time for the relays to change

their output state (ono~to~zero~ or zero-to-oneL and this lO-millisecond

period must elapse before a subsequent Digital command can be executed.

Once a relay has been set to one or zero~ it remains in that state until

changed by another Digital command affecting that particular relay.

Each group of output lines is selected by an operand address track

number (04 through 31).

If a logging typewriter is used in addition to the Flexowriter~ track

01 is the operand track number for this typewriter. If a high-speed punch is

used, 02 is the track number; track 03, in this latter case, may not be used as

a digital output address~ . and tracks 34 and 35 may not be used as digital input

addresses: RW-300 computers with the expanded memory and a high-speed

punch may use track 03 output address for selecting track set writing control.

The number of groups of output lines and the characteristics of the

output~line groups depend upon the needs of the installation. Each group of

18 output.lines may be connected in either one of two modes: rrn'1ulti~,bit" out-

put or "one-bit" output. The output modes are selected when the equipment
'4"

is fabricated for a particular installation. Characteristics of operation are

described in the paragraphs which follow.

5-11

Expanded Input- Output Capabilitie s - - Continued

One -Bit Outputs

"0ne-bit" outputs affect only those relays (in the addressed group)

which correspond to A-register bit positions containing a one. If the execu-

tion code is an even number, the affected relays are set to zero'. If the ,exe-

cution code is an odd l;lumbe~, the affected relays are set to one. Thus, any

or all of the 18 relays in a particular one -bit output group can be addres s ed

by a Digital output instruction. One -bit outputs are often employed to control

peripheral equipment as tabulated below:

Execution Operand Operation Contents of
Code Address Code A Register~:c Function

00 04-00 06 Al = 1 Turn Flexowriter Off

01 04-00 06 Al = 1 Turn F'lexowriter On

00 04-00 06 A =
2

1 Turn Logging Typewrite r Off

01 04-00 06 A =
2

1 Turn Logging Typewriter On

00 04-00 06 A =
9

1 Turn. Punch Off

01 04-00 06 A =
9

1 Turn Punch On

~:c A = 1 means: bit position n of the A register contains a one.
n

Although most applications require that a relay which has been set to

one or zero retain that state until changed by another digital output ~ddressed

to that relay, specific one -bit output lines may be connected to provide a

momentary signal. This latter configuration is used where tlset tl or "reset"

signals are required. When the momentary feature is provided, an even

execution code in the Digital instruction will cause a 10-millisecond contact

closure in the output line specified by a one in the A register. An odd execu-

tion time wHl cause nO output signal.

5-12

Expanded Input- Output Capabilities - - Continued

Multi-Bit Outputs

A "multi-bit" output is defined as one in which all relays in the ad­

dressed 18-bit group are set to one or zero, according to the contents of ,

each corresponding bit in the A register. In the 'case of multi-bit outputs,

the execution code is of no consequence. An installation usually employs both

lTIulti-bit and one-bit outputs, but these are separate output groups, activated

by separate operand track addresses.

Outputs to a logging typewriter are typical of multi-bit outputs, in

whic~ all output lines provide voltages corresponding to the contents of the

A register. In this application only 5 of the output lines would feed the logging

typewrite r, and the application is cons ide red a "five -bit" output.

INPUT -OUTPUT EQUIPMENT

The types of input-output equipment included in an RW-300 installation

depend upon the needs of the us er. Computer flexibility permits a wide 'choice

of display, attention-seeking, printing, punching, and data-ins ertion devices.

Several commonly used devices are described in the paragraphs which follow.

Digital Indicators

To display all or part of a computer word, Q. bank of 18 indicator

lights may be us ed to re pre sent the binary word in a spe cific re gis ter . A

light which is ON repres ents a one, and a light which is O~~' repres ents a

zero.

5-13

Expanded Input- Output Capabilitie s - - Continued

Twenty -F' our -Hour Clock

1vlounted in the upper right-hand corner of the control console shown

iri figure 1-1, the 24-hour clock provides a visual indication of time and pro­

vides the RW-300 with absolute time to the nearest minute or 1/10 minute.

The clock. is used as a time reference by the program for periodic control

calculations, data-logging cycles, instrument calibration checks, catalyst

che cks, etc.

Driven by a synchronous motor, the clock provides fourteen one -bit

signals from a system of stepper switches. Thirteen bits represent real

time in a compleITlented, binary-coded-decimal format. The fourteenth bit

is a "ready" signal to the computer, used to avoid incorrect time information

during changes from one time state to the next. When the' ready signal is

present, the time can be read into the A register in response to a Digital

input comITland. Memory as signITlents for clock information are as follows:

Operand Track Address = 37

Bit Position As s ignrne nt

1 Minutes

2 Minutes

3 Minutes

4 Minutes

5 Tens of Minutes

6 Tens of Minutes

7 Tens of Minutes

8 Hours

9 Hours

10 Hours

5-14

Expanded Input- Output Capabilitie s - - Continued

Bit Position Assignment

11 Hours

12 Tens of Hours

13 Tens of Hours

14 Unassigned

15 Unassigned

16 Unassigned

17 Unassigned

18 Clock "Ready" Signal

Visual indication of the time is given by a direct reading indicator in

peripheral equipment, with midnight as 0000 and the end of the day as 2359.

Each digit may be up-dated by one of four pushbutton switches to all'ow

adjustment of the clock to local titne.

Manual Inputs

Manual inputs are provided to permit the operator to enter instruc­

tions or data into the, control program.' Instructions a:'e sometimes used to

print out selected sectors of memory under program control. Data entries

are sometimes used to provide the control prograrrl with process operating

inforrrlation that is not fed in automatically through the analog input system.

This type of data rrlay represent a process variable that changes slowly and

is costly to instrument in analog forrrl; or the information may represent a

unique operating :mode.

A group of toggle switches is s o:metimes provided so that the infor­

rrlation or instruction can be entered in binary form by setting the toggle

switches to the desired binary pattern.

5-15

Expanded Input- Output Capabilitie s - - Continued

In figure 1-1, the white square in the center of the operating panel;

(below and to the right of the logging typewriter) is a ITlatrix indicator. Th,e.~

ITlatrix indic ator is COITlpOS ed of four rows and four coluITlns. Two. s ele ctor

switches, below and to the left of the ITlatrix indicator I are us ed to s ele ct

anyone of the sixteen possible inputs designated in the ITlatrix squares. The

ITlatrix switch and indicator enable the operator to select a specific input

function.

The inforITlation to be ins erted into the prograITl is set on Digitran

switches which are located on the control panel to the right of the ITlatrix.

The binary-coded equivalent of the decimal or octal number set into the

Digitran switches is inserted into the prograITl only after the operator presses

an EXECUTE MATRIX button on the control panel.

Programming considerations cause the information to be read in only

at a tirne acceptable to the program, so that control calculations are not in­

terrupted. If the operator desires that the inforITlation be read into the pro­

gram iITlmediately, he can accomplish this by pressing the START button on

the RW -300 control panel. The degree of priority assigned to manual inputs

is a programming consideration which depends upon the application. In SOITle

applications the computer accepts the new data on a tentative basis ,performs

pre dicti ve calculations to de te rmine how the new data will affe ct the proc e s s,

and prints out the result so that the operator can judge whether or not the

new data should be inserted.

5-16

Expanded Input- Output Capabilitie s - - Continued

Watchdog Timer

A watchdog timer is a £ail-s afe device which is incorporated to pro­

vide periodic checks of computer operation. The timer is of the; rundown.

type and must be reset periodically. The rundown time is adjustable from

approximately 1 second to 30 minutes.

The computer periodically sends a one -bit output to the timer for re­

. setting purposes. If the computer fails to send this one-bit output within the

required time, the timer will run down and generate an output which may be

us ed to halt the computer, s end it back to start, sound alarms, etc.

In a typical application of the watchdog timer, the program may in-

. clude instructions to perform periodically a series of operations (add, sub­

tract, shift, etc.) using a converted known analog voltage. The result of

these operations is compared with a stored constant which represents the

correct solution. If the comparison proves the cOlTIputations to be correct,

a one-bit output is executed to reset the timer. An error in analog input

conversion or in any of the arithmetic or logical operations would result in

failure to reset the timer. The timer would run down, signal the operator,

and ,send the computer to halt. The last correctly calculated control signals

would be maintained.

Ferranti Reader

When required, a Ferranti seven-level paper-tape reader provides

high-speed tape input. The input :f.~om this unit n1.ay be permanently substi­

tuted for the paper -tape reader' of the Flexowriter (i. e., it can be made the

only means for reading paper tape). However, it is also possible to retain

5-17

Expanded Input- Output Capabilitie s - - Continued

both the Flexowriter and Ferranti facilities, with selection being made by the

operand track addres s or by a one -bit digital output.

Use of the Ferranti tape reader requires additional circuits to make

the Ferranti. signal levels compatible with those of the R W -300. The Ferranti

is modified to provide an interlock feature ("ready" signal). The maximum

speed of the Ferranti used with the RW-300 is 60 frames per second; a

Digital input command must not be addressed to the Ferranti more frequently

than once per R W -300 drum revolution.

Teletype Punch

A Teletype seven-level paper-tape punch may be attached to the RW-

300 for high-speed tape output. This punch is controlled by the program

which ITlay choose between this unit and the Flexowriter by the use of the

operand track address, or by a one-bit digital output. The punch is modified

to provide an appropriate '!ready'! signal to the RW -300.

The Teletype high-speed tape punch uses a 3600-rpm, 60-cps, syn-

chronous motor and has a maximuITl punching rate of 60 characters per

second. This maximum rate can be achieved only when doing a series of

outputs with the following characteristics: the number of word times between

the Load A instructions and the corresponding Digital output instruction must

be equal tO,or less than, 17. If this time is exceeded, the punching rate

will be 30 characters per second. To be certain of achieving the required

rrlinimuITl timing, there must be no Digital input instructions between suc­

cessive Digital output instructions. If this latter requirement is not met,

the average punching rate will be from 30 to 60 characters per second.

5-18

Flexowriter

~LEXO·WRITER

Modes of :Flexowritcx Operation

The :Flexowriter operates under the control of the R W -300 when

paper -tape information is being re ad into the computer, and when information

from the computer is being recorded in printed form and/ or punched~tape_.

form on the Flexowriter. In addition, the Flexowriter is operated i.ndepend­

ently of the computer when program listings are being typed and/or punched,

and when punched tapes are being duplicated or printed.

The modes of Flexowriter operation include:

a. Print

b. Punch

c. Print -and-Punch

These modes of Flexowriter operation can be controlled either by the com­

puter, or by s\vitches located above the Flexowriter keyboard.

Each of the switches above the Flexowriter keyboard, as well as the

keys on the keyboard, represent some Flexowriter function. Each Flexo­

writer function has a corresponding :Flexowriter code which can be repre­

sented by a pattern of punched holes in the Flexowriter paper tape and by a

bit pattern in the cornputer's A register. Any hole pattern or bit pattern

which does not repres ent a Flexowriter function is called an "illegal" code.

Among the "legal" codes recognized by the Flexowriter are four control

codes:

a. Punch On

b. Punch Off

5-19

Flexowrite r - - Continued

c. Non-Print

d. Print Restore

These control codes affect the m.ode of Flexowriter operation in the sam.e. way

as the corresponding switches located above the Flexowriter keyboard. When

the Flexowriter is operating unde r computer control, a digital output instruc­

tion addressed to the Flexowriter is used to send the control codes from the

com.puter I s A register to the control circuits of the Flexowriter.

A digital output to the Flexowriter from the A register with the con­

trol code 224 (Print Restore) will cause the Flexowriter to operate in the

Print m.ode. In the Print m.ode, the Flexowriter does not respond to illegal

codes, nor does it respond to the two legal codes Tape Feed and Stop Code

when thes e codes are sent to the Flexowriter from the co:mputer. All other

legal Flexowriter codes are executed, regardless of the contents of the

parity~:~ bit. Flexowriter codes are tabulated in figure 5-2.

The Flexowriter , printing capability can be dis abled :manually by the

Non-Print switch on the Flexowriter, ·or by a digital output to the Flexowriter

from. the co:mputer with the control code 230 (Non-Print).

A digital output to the Flexowriter fro:m the co:mputer IS A register

with the control code 250 (Punch On) will put the Flexowriter in the Punch

m.ode. Subsequent digital outputs to the Flexowriter will punch out on tape

~:~The parity bit is used as an error -checking feature which can be in­

corporated in the standard Flexow:t;iter.Use of the error-checking feature

is des cribed along with other Ftexowriter characteristics near the end of

this section.

5- 20

Flexowriter - - Continued

any bit pattern except control codes contained in A-register bit-positions 1

through 8 - - provided the Flexowriter is not in the Print-and-Punch mode.

This feature is necessary to obtain a 11binary dump"t or copy of the bit

patterns in computer memory.

When in the Punch mode, a control code (such as Punch Off or Print

Re store) sent to the Flexowriter by the computer cause s the Flexowriter to

execute that code (change the mode of Flexowriter operation) and also punch

the pseudo code 377 on paper tape. A digital output from the A .register with

the control code 244 (Punch Off) will cause the Flexowriter to punch the

pseudo code, and then stop punchingo If the punch/non-punch function is

controlled by a one -bit digital output, Flexowriter re sponse to the punch/

non-punch codes can be elhninated ,l and bit patterns representing the

control codes may be punched without changing the mode of operation.

The Print-and-Punch m.ode of operation is achieved under computer

control by sending Punch On and Print Restore control signals to the Flexo­

writer. When in this mode of operation, the Flexowriter will respond only

to legal codes. Any character code, or functional code such as carriage re-

turn, will be executed by the typewriter and will be punched on tape. Illegal

codes are neither punched nor printed. The Tape ~eed code is punched, but

there is no typewriter response. The Stop Code is punched, but the Flexo­

writer does not stop. The fJUT Flexowriter control codes will be executed,

5- 21

fi'lexowriter -- Continued

and the 377 code will be punched.

The Flexowriter can be operated in any of the three modes independ­

ently of the computer. The Flexowriter I s Print Restore switch puts the

Flexowriter into the Print mode. In this mode, the contents of a paper tape

threaded through the Flexowritel' tape reader will be printed out when the

Flexowriter I s Start Read switch is pres sed. The Flexowriter stops reading

when it comes to a Stop Code punched on the paper tape, or when the Flexo­

writer's Stop Read switch is pressed. There is no typewriter response to

the Tape Feed Code, or to illegal code s .

In the Punch mode, a paper tape threaded through the Flexowriter

tape reader can be duplicated by the Flexowriter paper -tape punch. This in­

dependent operation is achieved by pressing the Flexowriter Punch On switch

and Start Read switch. The punch will duplicate all codes punched in the

tape, will respond to the four control codes, but will not respond to the Stop

Code -- provided the Flexowriter is not in the Print-and-Punch mode.

When operating iloff-line", independently of the computer, the Flexo­

writer can be placed in the Print-and-Punch m.ode by pressing the Print

Restore and Punch On switches on the ltlexowriter. I;n this independent

mode, a paper tape threaded through the Flexowriter can be duplicated and

its contents printed by- pre s sing the F lexowriter I s Start Re ad button . Only

legal codes will be typed and punched. Illegal codes will be ignored. The

Flexowriter will not re spond to the four control code s, but will stop reading

the tape when it comes to the Stop Code.

5-22

Flexowrite r - - Continued

When punched tapes are prepared on the Flexowriter, blank tape fol­

lowing the last punched frame n.lay be obtained by proceeding as follows:

a. Press Punch On switch a.bove the Flexowriter keyboard ..

b. Hold down Card Feed rnicroswitch near Flexowriter punching

mechanism.

c. Press,then release Tape Feed switch above the Flexowriter

keyboard.

Blank tape (with tape-:feed holes) will be produced until the Card Feed rnicro­

switch is released. The Punch Off switch above the Flexowriter keyboard

may then be pressed if the next Flexowriter operation (e. g., prograrn load­

ing) does not require the punch rnode of operation. However, if the Punch

Off switch is pressed before releasing the Card Feed rnicroswitch, the read

line s to the computer will be temporarily dis abled, and the next digital input

from the Flexowriter will be read as all zeros, regardless of the tape code

under the Flexowriter tape reader. Thus, the Card Feed D1icroswitch should

always be released before pressing the Flexowriter's Punch Off switch.

General FlexQwriter Characteristics

The Flexowriter normally supplied with the R W -300 has the following

features:

a. 16 -inch carriage

b. Reader and punch which handle paper tape and edge -punched cards

c. Separate "Red'! and "Black' : codes for color shift

d. Elite Gothic type

5- 23

Flexowrite r - - Continued

e. Large capital letters and numerals i~ lower case; small capital

letters and various symbols in upper case

f. Separate codes for Non-Print, Print Restore, Punch On, and

Punch Off modes of Flexowriter operation

g. Alphabet, numerals 0-9, and punctuation identical with IBM 705

standard code

h. Special keys carrying the numerals 10, 11,' and 12

i. Provisions to receive folded or roll paper up to 15 inches wide,

typing a line up to 13 1/2 inches long.

j. No special code -delete feature. Paper -tape frames can be de-

1eted using the Tape Feed switch above the Flexowriter keyboard

Information cannot be readily deleted from edge -punched cards.

k. Ability to duplicate tapes, regardless of code legality

The Flexowriter inhibits reading into the computer if the Flexowriter

is in the Print mode. Therefore, reading into the computer and printing

cannot be performed simultaneously.

The Flexowriter Punch mode is selected through the use of Flexo­

writer codes or digital outputs under program control, depending on the

Flexowriter wiring. The Flexowriter Print mode is s'elected through the use

of Flexowriter code s oni y.

In a basic (unexpanded) R W -300 systenl, a Digital command with an

operand track address of either 01 or 33 will turn the Flexowriter motor on

or off, depending upon whether the least-significant bit of the A register is

5- 24

Flexowrite r - - Continued

a one'or a zero, respectively. In an expanded system, the Flexowriter motor

is normally controlled by a one -bit output.

At the custolner's option, the Flexowriter can be provided with the

following features:

a. A No.2-pin feed platen can be used with the Flexowriter, giving a

maxim.um. usable paper width of 13-1/8".

b. By addition of a. selector bar tab from the Flexowriter, the

parity bit can be punched in the Print-and-Punch mode.

c. Removal of Input Relay No.7 prevents parity bits from entering

the com.puter.

d. Rem.oval of Output Relay No.7 prevents parity bits froIn being sent

out by the compute r.

e. A separate one -bit digital output to control the Flexowriter punch

can be supplied to avoid any undesired codes appearing on the tape

when turning the punch off.

f. Ins ertion of a parity channel permutation bar into the Flexowriter

will place the Flexowriter under complete parity control in the

Print and Print-and-Punch modes.

The paragraphs which follow describe the form of the punched paper

tape used with the Flexowriter, the "parity" option, Flexowriter codes, and

tim.ing cons ide rations.

Paper Tape

The paper tape used by the Flexowriter, and by most input-output units

is a standard eight-level paper tape, one inch wide. In the tape shown in "

5- 25

,Flexowrite r - - Continued

a @

{)}

@ G)

(9 (9

tr (}iler

~

0

0
Q .
le~der .

0

0

0

G

direction
of

travel

Figure 5-1 Segment of Punched Tape

Figure 5-1, a hole punched in the tape is used to represent a one, 'and a blank

(no punch) to represent a zero. Thus, a row across the tape (a "frarne ll
) may

be used to represent a binary number. The least-significant bit appears

along the right -hand edge of the tape shown in figure 5 -1. The small holes

which lie between level 3 and level 4 are sprocket holes which are used to

ti:me and guide the movement of the tape in all tape units. B lank tape ahe ad

of the first punched fram.e is called "leader'!, and blank tape behind the last

punched frame is called "trailer".

A frame of punched holes may be represented by a three -digit oct~l

nurnber. In this presentation, the sprocket holes separate the two least-

significant octal digits. The five non-zero fram.es shown in figure 5-1 repre-

sent, from top to bottom, the octal nUITlbers 143, 106, 144, 145, and 10.

Various combinations of punched holes are used to represent characters and,

to control the electric typewriter. From the list of Flexowriter codes in

5- 26

Flexowriter - - Continued

figure 5-2 it may be seen that the five punched frames in figure 5-1 represent

the letters itCH) "Oil, "DH, "E", and the decimal number "8".

Parity Che cking

The Flexowriter incorporates a seven-channel code for digital inputs.

Six of the channels contain the desired inplJ.t character, and the seventh

channel (level 5 on the tape)rnay be used for IIparityll checking.

In general, parity check makes use of a code employing binary digits

in which the total nUITIber of ones (or zeros) in each perrnis sible code is

always odd or always even. In the Flexowriter parity check, the total nUITl­

ber of ones must ah:vays be odd, Thus y if the character punched on the tape

contains an odd number of ones, the parity channel will contain a zero. Con­

vers ely, if the character punched on the tape contains an even nurnbe r of

ones, the parity channel will contain a one.

Any correctly punched tape employing parity checking will always con­

tain an odd number of ones for each character. This feature enables the COTIl-

puter to be programmed to detect errors that could occur during tape punching

or reading. However) parity checking is a pr ograrnrning option that is not

normally e:mployed simply to check the loading of a program punched on tape.

Program loading can be checked more easily using the check-sum capability

of the .load program (Section VI). However, a parity-checking capability is

desirable \,\Then inforITlation of urtcertain accuracy is being read into the com­

puter. For example, information translnitted over land lines to a paper -tape

punch can be verified by parity checking.

5-2.7

Flexowrite r - - Continued

System specifications usually indicate whether or not the parity-

che cking option is to be included in the features of the Flexowriter used with

the system. If parity checking is to be employed, the Flexowriter includes

provisions for handling a parity bit in level 5 of the punched tape. The

punched tape shown in figure 5-1 is without a parity bit; the fifth column

(level) from the right edge of the tape does not contain any punched holes,

even though some of the characters are represented by an even number of bits .

. The bits read from the seven levels of punched Flexowriter tape change

positions on entering the computer as shown,below.

A Register

bit pos itions

8 level

Tape Reader

This locates the parity bit (level .5 on the tape) in the highest position of the

A register (normally bit -position 7) where it can be readily extracted by the

program.

When parity checking is desired, the load program m.ust include in-

structions to deterITline whether the '''urn of the seven bits is odd or even.

The load program rnust also includ";; instructions specifying the desired action

in the event of a parity error. Furthermore, after the parity check has been

made, some action must be taken to ensure that the parity bit is zero before

entering the input information into the program.

5-28

Flexowrite r - - Continued

If the parity-checking feature is not included in the lflexowriter, the

parity bit is never present, and no special programming is required to elilni

nate that bit before the input character is interpreted by the load program.

However, if the parity feature is included in the Flexowriter, the parity bit

must be suppressed--whether or not the parity bit was employed to perform

a parity check. The Extract instruction provides a convenient technique for

suppressing the parity bit. The technique is outlined in conjunction with a

des cription of digital inputs from the toggle switches.

When a tape i~ punched with the Flexowriter under program control,

any seven-bit pattern in the A register of the computer will be punched on

the tape in response to a digital output command addressed to the lflexowriter.

Upon leaving the computer, bits 5, 6, and 7 in the A register change position

as shown below.

1---

I 18
L __

A Register

~L 7~ 5
yi--L/ -~-.'-'--i---I

8 7 654 2

bit po's ition

level

Tape Punch

The eighth line, or channel to the Flexowriter (corresponding to the

eighth level on the paper tape) is not used for character codes, but is used

in the four Flexowriter control codes: Non-Print, Print Restore, Punch

Off, and Punch On. Therefore, the programmer must be aware of the con-

tents of bit -position 8 in the A register when programming digital output

cOITlmands addressed to the Flexowriter.

5- 29

Flexowl"iter - - Continued

In this section of the manual, a s arrlple printout listing was us ed to

illustr ate the method of printing out non -z era octal nurnbe r s on the F lexo­

writer. The'technique described is valid if the Flexowriter is not equipped

for parity checking. However, if the parity-checking feature is incorporated

in the Flexowriter, parity conditions must be satisfied, and the A register

must contain an odd number of bits if the number is to be printed on the

Flexowriter. The s ample printout listing would have to be modified to test

for an even number- of bits in the A register prior to the digital output com­

ITland; if the number of bits were even, a one bit would have to be placed in

bit-positon 7 of the A register to form a legal Flexowriter code. A one may

be placed in bit-position 7 of the A register by merging (operation code 31)

the octal constant 000100 with the contents of the A register.

Flexowriter Codes

The octal numbers representing Flexowriter characters are tabulated

below. The octal numbers used by the programmer in conjunction with inputs

and outputs depend upon whether the system's Flexowriter uses the parity­

checking feature described above.

Flexowriter Timing Considerations

Typing, reading, punching, or punching-and-typing all occur at about

eight characters per second on the Flexowriter.

When a digital input command is sent to the Flexowriter, a frame of

paper tape in the Flexowriter tape reader is read into the cOITlputer's A reg­

ister. A series of digital input commands addres s ed to the Flexowriter are

executed at thenlne-Cl1.aracter-per- second rate established by the Flexowriter.

5-30

Flexowriter -- Continued

Figure 5-2. Table of Flexowriter Code s

FLEXOWRITER OCTAL CODES
CHARACTER ON TAPE IN A R~GISTER

UPPER LOWER WITH WITHOUT WITH WITHOUT
CASE CASE PARITY PARITY PARITY PARITY

A A Ill-I 141 61 61
8 B 142 11~2 62 62
c C .163 ll1-3 163 63
0 D 144 11l-4 64 64
E E 165 145 165 65
F F 166 146 166 66
G G 147 147 67 67
H H 150 150 70 70

I 171 151 171 71
J J 121 101 141 41
K K 122 102 142 42
L L 103 103 43 43
M M 124 104· 144 44
N N 105 105 11-5 11-5
0 0 106 106 46 46
p p 127 107 147 47
Q Q 130 110 150 50
n F~ III III 51 51
s S 62 42 122 22
T T 43 h.,3 23 23
u u 61~. 44 124 24
V V 45 45 25 25
'vi w 4·6 46 26 26
X X 67 47 127 27
y Y 70 50 130 50
z Z 51 51 31 31
) 0 40 40 20 20

1 1 1 1 1
11 2 2 2 '2 2

5-31

Flexowriter - - Continued

Figure 5-2. Table of Flexowriter Code s - - Continued

FLEXOWRITER OCTAL CODES
CHARACTER ON TAPE IN A REGISTER

UPPER LOWER WITI-f WITHOUT WITH WITHOUT
CASE CASE PARITY PARITY PARITY PARITY

If 3 23 :5 103 :5

$ 4 It 4 4 4

% 5 25 5 105 5

¢ 6 26 6 106 6

& 7 7 7 7 7

* 8 10 10 10 10

(9 31 11 III 11
0 10 112 112 52 52
? 11 133 113 153 53

12 511- 54 34 311-

, 73 53 133 33

153 153 73 73

/ 61 41 121 21

-. + 100 100 40 40
LOWER CASE 172 152 172 72
UPPER CASE 174 151,L 174 74

TAB 76 56 136 36
SPACE 20 00 100 00

BL;\CK 32 12 112 12

RED 111+ 111.J. 54 52 ...
CARR I f;,GE RETURN 136 116 156 56

PUNCH ON 250 250
PUNCH OFF 241 ... 244
NON PRINT 230 230

PHINT RESTORE 22'-1- 224

TAPE FEED 177 157 177 77
STOP CODE 13 13 13 13

5-.32

Flexowrite r - - Continued

When a digital output command is .sent to the Flexowriter, a 110-

millisecond timing circuit is activated. No more information can then be sent

to the Flexowriter or obtained from it until the 110 millis econds have pas sed.

The Flexowriter delay circuit constitutes an interlock which prevents the com­

puter from transmitting information to the Flexowriter before that information

can be accepted by the Flexowriter for printing and/ or punching., However,

other instructions can be executed during this time, and it remains the pro­

gramlller's option to lllake maximum use of cOlllputer time by inserting other

instructions in the program between digital output commands.

A digital input comllland sent to the Flexowriter must not be followed

immediately by. digital output commands to the Flexowriter. The program

must include a waiting time of at least seven drum revolutions between digi·tal

input and digital output instructions involving the F.~exowriter. If this waiting

time is not included in the program, the first pigital output instruction will

not be executed. There is no prograrnn'1ing restriction on placing digital in­

put instructions immediately after digital output instructions - -a delay circuit

within the computer prevents information loss.

On digital output to the Flexowriter, a longer delay than 110 lllilli­

seconds may be required for a long tab or a carriage return. This longer

delay can be programmed by inserting a trivial Flexowriter command, such

as lower-case shift. Because of the 16-inch carriage, the programmer must

output a number of dummy characters after each carriage return to permit a

full return of the carriage before furthe r printing. The same statement holds

5-33

Fle:·:owrite r - - Continued

true for execution of a tab. As a guide, the following will permit safe

.carriage returns:

Number of dummy
characters

1

2

3

4

5

6

Point from which
returning the carriage

2 inches

4 inches

7 inches

9 inches

10 inches

12 inches

These may vary slightly from system to systerrl.

5-34

INTRODUCTION

SECTION VI

PROGRAM LOADING

Procedures for preparing and organizing program listings are des­

cribed in Sections III, IV, and V. This section of the manual deals with load­

ing programs into the computer and typing the program listings on the Flexo­

writer. Certain typing, or format restrictions are necessary to enable the

computer I s load program to interpret the symbols punched on the tape.

The paragraphs which follow contain a brief description of the load

program, followed by a summary of typing format requirements and opera-:­

ting procedures.

LOAD PROGRAM

The load program, permanently stored on track 63 of computer mem­

ory, is started whenever the LOAD button on the cornputer's control panel is

pressed. The loa,I prograITl controls digital inputs froIn the F'lexowriter tape

reader (or sorne alterna.te tape- or card-reading device).

Each time the loaa. program perforITls a Digital input instruction, a

frame of tape (one symbol) is read into the A register, and the tape advances

so that the next fraITle can be read in response to the next Digital input

instruction.

6-1

Load PrograITl - - Continued

The load prograITl exam.ines each sYITlbol read into the computer from

the tape reader, and, upon receipt of certain "indicator" symbols, proceeds

to assemble the inforITlation for storage in specific memory locations.

The listings des cribed in Sections III, IV I and V contain indicators

having the following s ignific anc e:

Indicator

"A"

"I"

Significance

Address.

Constant.

The location in which an instruc­

tion or constant is to be stored.

An octal nUITlber to be stored in

the location specified.

Instruction. An execution code and operand

address, or operation code and

next -ins truction addre s s, to be

stored in the location specified.

A cOITlplete instruction requires two sequential s ector locations. Only

the first sector is specified in the listing (CI col~1!un) and is punched on the

t~pe; the load progralu stores the first word of the instruction in the specified

sector, adds one to that sector number, and stores the second word of the

instruction in the next sector. For sequential listings the storage location

need be specified only once, and all subsequent instructions (or constants)

will be stored in sequential sector nUITlbers by the load prograITl. After an

instruction is stored in sector 127, the next instruction is stored in sector

00 of the next higher track. Note that if the next -instruction addres s speci­

tied in a program listing is sector 127, the progralTI will read the first \vord

6-2

Load Prograrn - - Continued

of the instruction from sector 127, but will read the second word of the in­

struction from sector 00 of the same track. Therefore, in sequential listings,

it is necessary to assign specific addresses to instructions that will be stored

in sectors 127 or 00 in order to define the track number. In the case of an

optimum program, the location of the first word of each instruction must be

specified.

When a punched tape is threaded through the Flexowriter tape reader

and the LOAD button pressed, the load prograrn reads the blank tape leader

until a meaningful indicator is received. Upon receipt of the indicator, the

load program reads, interprets, and stores the instructions punched on the

paper tape. At the end of the punched instruction information, the load pro-

grarn continues to read the tape trailer until the stop indicator "5" is read.

Upon receipt of the "S" indicator the cOITlputer halts.

The load program can be halted while it is accepting information from

the Flexowriter by pressing the STOP button; by pressing the RESUME button,

loading can be resumed.

The load prograITl also recognizes indicators "L", "M", and "JIt. The

liMit indicator is used in conjunction with a memory check sum, a feature of

the load prograITl which perITlits loading accuracy to be verified. The" L" in­

dicator is used to specify that tape symbols are in binary format'. The ItJ"

indicator causes the computer to leave the load program and begin another

program at a specified address. The use of these indicators is described

following the dis cus s ion of the standard punched tape format.

6-3

Load Program - - Continued

As an equipment option, the RW-300 load program can be prepared to

recognize the indicator "D". Recognition of this indicator temporarily trans-

fers program-loading control to track 61. In track 61, a "Decimal Input

Routine" interprets constants that have been listed in a decimal format. The

Decimal Input Routine is part of the RW -300 Program Library.

STANDARD PUNCHED TAPE FORMAT

Punched tapes prepared for loading under the direction of the load

program are usually typed and punched using spaces, tabs, and carriage re-

turns for n"laximurn re adability. The basic format is as follows:

Normal Instruction :rormat

s s s

P t P t t P t
A a TT -SS a I a XX a TT -SS a I a XX a 'I'T -SS

c b c b b c b
e e e

Normal Octal Constants :r orInat

s

P t
A a T T -SS a CXXXXXX

c b
e

c
a
r.

r
e
t.

Thus, the listings

CI EX OPERAND OF NI

Q 42-126IJoa! 00- 11 0 11116120-1061
ADDR. CONST.

08-19 C437152

6-4

c
a
r.

r
e
t.

Standard Punched Tape Format -- Continued

would be typed

A 42 126

A 08-.19

I 08 00-110

C437152

I 16 20-ln?

Note that special Flexowriter keys are used so that only two characters are

required to obtain the numbers 106, 110 and 126.

Format requirements demand that no extra characters or spaces ap­

pear between characters shown as closely spaced groups in the above illus­

trations. For example, if 08-18 were typed 08-1 8, the address would not be

interpreted correctly by the load program; similarly, C437152 must not be

typed C 437152.

The spaces, tabs, and dashes suggested for the normal instruction

format can be replaced by any convenient character. Howeve'r, one character

or space lYlust appear in these positions on the punched tape. For exalYlple,

if 08-18 were typed as 08Q18, the address would not be n~isinterpreted'by the

load program.

Care must be exercised in correcting typing errors when preparing a

punched tape. A tape feed (octal 157) J:oust not be used to delete an incorrect

character in the six frames following an "A", nor in the nine frames following

an "I", nor in the six frames following a "e". If an error is made following

an indicator, the entire word, including the indicator, must be deleted.

The programmer should not enter data from the punched tape

directly into the revolver track during the load operation. Since the load

program itself uses the revolver extensively, any data entered from the

punched tape may be destroyed by the load program.

6-5

Decimal Punched Tape Format

DECIMAL PUNCHED TAI·E FORMAT

The load program~ when m~);..lifi8d and used in conju.nction with the

decimal input rOl1tine~ will accept numbers in either integral~ fractional,

or mixed form. The decimal numbers will be converted to their binary

equivale.nts, correctly scaled, and stored in. the indicated track. and sector.

The decimal numbers to be entered must be within the range O. 00001

N l31~ 07L

Two example s of the tape format used to enter decimal con.stants are

shown.

s s c

p P
AaTT=SSaD-I03,025

T,

r c c
e

e e .;..
~ ... 0

s c

c c c e
e e e ...

~. 0

The D indicator :i s re cognized by t:t~e load PI' ogl'a rn as r.:1e3. r .ing that

tb.e signed inforrnatJ.on to {ollow is i':1. decim.al form; and n1ust be converted

to the binary equiva.lent.

The sign of the decimal number immediately f'onaws tb.e D indicator,

A space is accepted as a positive sign~ and a hyphen is accepted as anega=

tive sign.

6-6

Decirnal Punched Tape Format -- Continued

When the format above is used, the binary scaling of the converted

number is a function of the toggle switches, 51 - 56, on the computer test

and maintenance panel. If the operator had previously set the switche s to

-6
the configuration, 000110, the decimal numuers entered would be scaled 2

after being converted to binary. (For scaling considerations, refer to 5ec-

tion VIII.)

When several decirnal constants are to be loaded, each having dif-

ferent scale factors, the scale factor of each may be entered following the

decimal nutnber in the following manner:

A TT -5S D - 20. 55-05 C/R

A TT -55 D 113. 092- 12 C /R

-5
The first number will be scaled 2 after conversion, and the second

number will be scaled 2- 12 after conversion.

The configuration, A TT -5S D O. C/R will load zero into the specified

track and sector.

OPERATING CONDITIONS

When loading a program, the punched ·paper tape is threaded through

the Flexowriter tape reader (or other tape-reading device). When using the

6-7

Operating Conditions - - Continued

Flexowriter, power rnust be applied, and the ~lexowriter must be in the non-

print and non-punch lTIodes.

The LOAD button is pres sed on the R \V -300 control panel to begin

loading. To stop loading, the STOP button is pressed. To resume after a

stop, the RESUME button is pressed.

When the LOAD button is pressed, the ERROR light on the test and

maintenance panel (Section VII) will glow if the track selection plug is not

mated with the appropriate jack on the track selection panel. Before the

loading operation can be resum.ed, the track selection plug must be moved to

the appropriate track group. Example: if some portion of the program is

written for track 33, the track selection plug must be connected to the jack

marked 32-39. Following a record-error indication, the track selection plug

is moved to the appropriate position, and the RESUlvIE button 1s pressed to

continue loading. A record-error indication obtained by attern}?ting to load

into track 63 cannot be cleared. The prop-ram must be corrected to eliminate ... '" . .,

any instructions as signed to track 63.

If the loading ope ration halts before the prograul has been loaded, and

if there is no record -error indication, and if the tape does not contain the in.-

dicator "S", the halt is probably du., to a format error. The loading operation

can be restarted by pressing the LOAD and/or RESUME buttons. Although

the faulty word that caused the halt will not be loaded correctly, subsequent

instructions will be loaded satisfactorily.

6-8

Memory Sums

MEMORY SUMS

The load program. keeps a running surn of all bits read from the

punched tape during the loading process. When a punched tape is loaded for

the first tim.e, the memory sum. can be noted for comparison with sums ob­

tained during subs equent loadings of the s arne tape.·

When the LOAD button is pressed, the m.ernory sum. is set to zero.

Each address, constant, and instruction that is read in by the load program

is algebraically added to form a running check surn.

To make use of the sum, the indicator "Mil is punched on the tape,

followed by six spaces (blank tape). The load program halts when the" Mil

indicator is read, and at this tin1.e the memory SU1TI appears in the A register.

The octal contents of the A register are read by the progranuner using the

oscilloscope on the test and ITlaintenance panel (Section VII). The octa.l con­

tents of the A register are then punched into the six blan ... ~ spaces on the paper

tape, immediately following the "M" indic ator.

Subsequent loading operations frorn the sallle tape will cause the load

program to halt if the running check. sunl. does not agree with the mem.ory

sum punched at the end of the tape. The running check sum appears in the

A register.

The memory sum can be placed anywhere along the tape. If the run­

ning check sum agrees with the memory sum read from the tape, the load

program sets the running check sum to zero and resumes the loading opera­

tion. If the sums disagree, the load program halts. If the RESUME button

6-9

Memory Sums - - Continued

is pressed, loading will resume and the running check sum will be set to zero

in preparation for cornparis on with the next memory sum.

Note that the running check sum and memory sum are neither true

sums of all the bits read from the tape nor of all the bits stored in memory,

but are nUlnbers generated by adding addresses, constants, indicators, etc.

BINARY LOADING

The II LII indicator tells the lqad progran'l that the hole patterns in the

following three tape frames are to be interpreted as the binary representation

of a computer word. Each frame following the indicator ilL" is read as six

binary digits.' with holes repres enting ones.

s
Ap TT-SSLBBBLBBB etc.

a
c
e

The address (TT -85) is the n'lernory location assigned to the first binary word

to be loaded. Following this location address a:re~ in consecutive order, the

words, 3 binary frames per word, each preceded by an "L". No other binary

format is acceptable to the load program.

Although it is not cO:J.venient for the programmer to translate constants

into the binary format, the trauslation is accomplished siInply and effectively

under program control.

Tapes can be prepared in the binary format by a programming aid

called the "Utility Package". A:mong the subroutines contained in the Utility

Package is a "binary d1..!mpll routine which can be used to punch a paper tape

6-10

Binary Loading - - Continued

repre,senting the contents of specific IllelTIOry tracks. The paper tape ob­

tained under the control of the Utility Package is called a "standard binary

dump". The load prograrrl in track 63 of the R W -300 reads tapes punched in

the standard binary dump forrnat J and loads the inforlTIation into the com.puter

in one-half to one-third the time required to load a tape prepared using the

standard punched tape format des cribed previously.

A tape prepared using the standard punched tape format is called a

lllistable" tape because it can be read by the Flexowriter (independent of the

computer) to obtain a printout of each instruction. Any printout of a standard

binary tape is rneaningles s .

The Utility Package can also be used to prepare a tape representing

:melTIory contents in the form of a IIfast binary dump", but tapes in this for­

mat can only be loaded using the Utility Package.

JUMP INSTRUCTION

If the first instruction of a program is located in 00-00 (the origin) of

memory, the first instruction will be read by the computer when the ST ART

button is pressed.

If the first instruction of a program. is not located at the origin, the

computer can be sent to the first instruction either by placing an unconditl.onal

transfer instruction in the origin) or by loading a jump instruction.

For unconditional transfer to a program beginning in ITleITlory location

56-96, the origin may be loaded with an instruction similar to the following:

6-11

Jump Instruction - - Continued

CI EX OPERAND OP NI

The above instruction us es the Transfer on Overflow operation code, but any

transfer operation code or the No Operation code could be used. The Trans-

fer on Overflow operation code is advantageous because it turns off the over-

flow indic ator .

The jump instruction is read by the load program. By preparing a

tape: A 56-96J z~nd pres sing the LOAD button, the programmer can cause

the computer to read the first instruction from. memory location 56-96 (or

any other memory location designated).

The jump instruction can be punched at the end of a program being

loaded so that the coxnputer will begin executing the progran as soon as the

loading operation is finished.

Because tapes must be loaded :l.::'l.to the computer with the Flexowriter

in the non-print and non-punch mode, it is S ornetimes desirable to halt the

computer just prior to the jump into the progl~ arn. The halt permits the pro-

grarnmer to set the Flexowrite:r to printing or punching conditions required

to obtain output information from the program. The halt feature can be in-

corporated by using the form: A 56-96SJ. The cOlTIputer halts after reading

the IISlt indicator,' When the programmer presses the RESUME button, the

load program reads the II JII indicator and jumps to the designated memory

location.

6.- 12

SECTION vn

OPERA TING CONTROLS AND INDICA TORS

OPERATORiS PAt-TEL

Only the operator~ s panel is accessible when the cove.,: is down

(See frOtltispiece, J Controls include:

b. POWER OFF

c. ST ... ~NDBY

d. I LOAD

e. START

L STOP

g, RESU?'I1E

Each control is a pll.shbutton s'~vitch containing a!1 indicator which

glows to indicate the operating rnode. The seven buttons m.ay be divided

in.to two categories: power controls 2x'.l.d opl':;r3.ting controL:"

Povver Controls

P:res:sing the POWER 01\T button connects the Ene voltage supply to

the RW 0,300 and turn.s on the STA}>TDBY At the end of a 2. 5~>nl.inute

waiting period, the POvVER ON button :must be pressed again to place the

computer in ope ratiorlo

Pressing the POV1ER OFF button disconnects the line voltage supply

fron'l the R W,300,

'Operator1s Panel -- Continued

Pressing the STANDBY button turns on the STANDBY light, turns off

the POWER ON light, and removes operating voltages from the computer ..

vVhen the STAN°DBY button is pressed, line voltage is not disconnected from

the compute r, and ope ration can be restored immediate l-y (no 2. 5 -minute

:delay) by pressing the POWER ON button ..

The prograrDrner is not normally concerned with the power controls,

but only with the operating controls ~

Operating Controts

Use of the operating controls~ described in conjunction with program

loading in Section VI, are summarized in the paragraphs which follow.

To load a prograril into the drum from. the paper-tape reader, the

track 63 load program °must be placed in operation" By pressing the LOAD

button, the next-instruction (N) re gis ter is set to all one s, the compute r is

placed in automatic operation, and the first instruction of the load program

(Section VI) is read from memory location 63 ~ 127"

When the START button is pressed, the next-instruction (N) register

is set to zero, the conlputer is placed in automatic operation, and the in-

struction located at the origin (address 00-00) is read.. Thus, the first

instruction in the prograrn must be located in 00-00 if the START button is used.

Pressing the STOP button causes the computer to cease execution of

the program after completion of the current instruction; the computer idles,

,and the STOP light is lit.. The STOP light is also turned on when a STOP

instruction is executed by the computer or when a record error occurs

° 7 -2

Operator's Panel -- Continued

(Section VI). The computer may be returned to continuous operation by

pre ssing the RESUME button.

If the computer has stopped as a result of a manual stop, program

stop, or record-error stop, it may be returned to continuous operation by

pre s sing the RESUME button (if the re cord-err or has been cleare d). This

action will cause the c?mputer to proceed to the location indicated by the

next-instruction address of the last instruction performed. When the pro-

gram resumes, the STOP and ERROR lights will be turned off.

TEST AND MAINTENANCE PANEL

The test and maintenance panel shown in Figure 7-1 is located under the

hinged lid of the R W -300 console cabinet. The panel contains controls and in-

dicators used during program loading, program check-out, and maintenance.

Figure 7-1. Test and Maintenance Panel

Note: Computers with an expanded memory have a three-way track set toggle
switch above the Track 0-7 socket on the te st and maintenance panel.

7-3

Test and Ma:nten2.nce Panel· .. ", Continl::.cd

The controls a rd. ir::dicator s used during program loading include;

aJ Track selectien plug and jacks

bo ERROR in.dicator light

Co Track set selection switch (expa_nded memory only:~

The use of thE·se in ccnjux).ction with p·togranl loading is described irlS6c'"

tion VI, In addition~ Section VI refer s to obtaini,:,g traCktrrilenlory sums from

the o13cilloscope on th.e test and mainten.ar::.ce panel, The interpretation of

the oscilloscope display is described in the paragraphs of this section ~

Mai :::.te nance

T he control s and indicator s provided for maintenance purpose s

include:

ao LINE VOLTAGE meter

bo \lOLTAGE rneter

c, METER S.ELECTOR sw:.tch

d, Sbc controls for adJust::.ng voltages and clock amplitu.des

eo PHASE MARC.:N

Thes(:: controls are uSE.d to adjl.i..s:t opE-l.~at.lng vcltages and to perform tes:s.

They are pot norm.::dJ.y adju.st.i:::d b'/ prcgrar:'lY"!11r:.g o:r C'perati~g pE':r sor\'.:eL

Th.e CO''ltrols of intc.ce s\:. to the p:cograITlmer and operator llnder normal

operating conditions i~c llkde ~

ao TRACK 0 &: 7 WRITE, ON/OFF toggle switch

Test and Maintenance Panel -- ConU.nL~ed.

b. 'DIGITAL INPUT selector switch

,c.L26$ L25~ L24~ L23~ L22, L21 toggle switches

d. ERROR indicator light

The TRACK 0 &'7 WRITE switch~ located near .. the track selection plug~ pro­

vides control over information written into tracks 00 and 07. Track 07 is

the analog output track (Sections I and III).

Momentary pO'wer dips can cause the write heads of tracks 00 through

07 to store spurious information in these tracks o If the power dips should

de stroy the contents of the origin (sector 00 of track OOL the program could

not be re started; or if spurious information should be introduced into the

analog output track~ fa.;) .. lty control signals would be gener atedo Therefore J

. in proces s control applicatio~lS, the TRACK 0 & 7 WRITE switch is normally

turned OFF. To write in tracks 00 or 07 when the TRACK 0 &. 7 WRITE

switch is :in the OFF position,) any store instr uction involving the se tracks

must be preceded by a one -bitd~igital output instruction which bypas ses

the protection circuito The store instruction must then be followed by

another one=bit digital utput instruction to re~tore the protection circuit.

Although power dips might destro~r in:Corr..'1ation in tracks 01 through

06, the loss of this inforn1.ation does not affect the control system because

the control calculation is restarted whenever a se'rious power=line~.transient

occurs.

Te st and lviaintenance Pane 1 - - Continued

The DIGITAL INPUT selector switch is normally set to EXT (external)

when the computer is controlling a process .. When set to INT (internal), in­

fOl'mation from the six toggle switches (L26 through L21) is read under

program controlo The progran1.ming requirements for obtaining inputs from

the toggle switches are given in 5e ction V.

The toggle switches are used in conjunction with certain programming

aids. The "Utility Package" referred to in Section VI is composed of several

subroutines which can be selected by means of the toggle switches on the test

and maintenance panel.

The ERROR light is turned on when a program or the load program

attempts to write (carry out a store instruction) into an address in track 63

or in a track not cu "rently connected through the track selector plug and

jack~ Program writing or loading into track 63 is impossible, regardless

of which group of tracks is connected.. Normal operation may be resumed

either by changing the programmed storage location, or by connecting the

track se lector plug to the appropriate jack.

PROGRAM CHECK-OUT

The controls and indicators of the tes~ and maintenance panel that are

used during program ch(:~ck-out include:

a. FETCH button

b. EXECUTE button

c. RUN button

d. ST ATE indicators

e. as ci 110s cope

7-6

Program Che ck -0 ut - - Continued

Fetch and Execute Buttons

These controls are used to suspend instruction processing for the

purpose of inspecting the contents of registers. Depressing the FETCH

button suspends operations at the mOITlent the next operand is selected, and

the coml)uter idles in this state ,=:~pres sing the EXECUTE button suspends

operat~ .. :::;::1S at the n10ment the next instruction is selected, and the computer

idles in this state. Hence, the effect of pressing either button during con­

tinuous operation is to stop program execution, and the effect when operating

in the FETCH-EXECUTE mode is to advance the program by "half" steps.

In either case, the appropriate light is turned on.

Run Button

Depressing the RUN button causes the corn.puter to resume automatic

high-speed execution after the computer has been in the FETCH or EXECUTE

mode Se

State Indicators

This portion of the test and maintenance panel may be u~ed both in

code checking and trouble-shooting. The STATE INDICATORS consists of

a bank of six neon lights, a three-position rotary switch called the STATE

SELECTOR and a REFERENCE toggle switch. The neon lights display the

status of specific flip-flops, as determined by the setting of the STATE

SELECTOR switch:

M Flip-flops Ml to M6 inclusive (track address)

7 -7

Progranl. Check-Out - - Continued

PE Flip-flops PI to P5 inclusive (operation code);

El (equality flip-flop)

5Z Flip-flops 51, 52, S3 (state counter); Z2 (overflow); Z4 (carry);

A3 (input s e,le ction)

When the f;uEFERENCE toggle is set to ONE, only flip-flops having

a current statue of one will light the neons. When set to ZERO the converse

is true. Failure of a neon to light on either setting of the Reference Switch

indicates that the corresponding flip-flop or neon indicator circuit is faulty.

The information displayed on the neon indicators is dependent upon

the setting of the STATE SELECTOR switch and is dependent upon whether

the computer is in the FETCH or EXECUTE mode. The interpretation of

displays is covered in the last paragraph of this section.

The six jacks located above the neon lights are used for trouble­

shooting in connection with the jack located under the oscilloscope.

Os ciUos cope

A smcill os cillos cope is provided to aid in code checking and main­

taining the computer. In code checking, its function is to display the con­

tents of various registers when operating in the FETCH-EXECUTE mode.

When register contents are displayed, the word is divided into two levels

on the 'oscilloscope face, 10 digits to a level, as shown in figure 7-2.

A dot in a low position is a one, and a dot in a high position is a

zero. The sweep is triggered so that the least-significant bit appears at

the bottom right of the display. The bits in position 19 and 20 (upper left)

are always zero.

7-8

Program Check-Out -- Continued

UPPER LEVEL

LOWER LEVEL

Figure 7-2. Oscilloscope Display

The octal number 123456 is displ.ayed infigure 7-2. Interpretation

is as follows:

Bit Position: 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Binary Rep- 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0
resentation:

,~ 1....--.-----..------" v

Octal Equiv- 1 2 3 4 5 6
alent:

When the oscilloscope is used to observe instruction words, parti-

tioning line s between 13 and 14 (on the 0 s ci Ho s cope mask) serve as an aid

in recognizing the operation code or execution code normally contained in

bit-positions 14 through 18. Partitioning lines between 7 and 8 aid in recog-

nizing track address (bit-positions 8 through 13) and sector number (bit-

positions 1 through 7).

Near the face of the oscilloscope are operating controls for horizontal.

positioning (H), vertical positioning (V), FOCUS, and brilliance control

(BEAM).

Below the face of the oscilloscope are INPUT and WORD selector

switches which can be used for displaying the contents of specific registers

on the oscilloscope. The information displayed on the oscilloscope is

7-9

Program Check-Out -- Continued

dependent upon the setting of the INPUT and WORD selector switches, and

is dependent upon whether the computer is in the FETCH or EXECUTE mode.

The interpretation of displays is covered in the last paragraph of this

section.

Also ·;)elow the face of the osci~l.oscope is an input JACK which can

be used by rnaintenance personnel to feed signals from the state-indicator

jacks to the oscilloscope. The CA INT. MOD. toggle switch provides the

beam intensification ne ce s sary to produce the dot pattern when a register is

viewed on the oscilloscope. The toggle switch is normally left in the ON

position.

Tables for Interpreting Indicators

When using the FETCH and EXECUTE buttons to observe the step-

by-step execution of a program, it is usually necessary to refer to the

original program listing. For the purpose of correlating the indicator dis­

plays with the program listing, as sume the following: The current instruc­

tion (CI column of the listing) has been acquired by the computer whenever

the computer is in the FETCH: m.ode. The tabulations which follow describe

the significance of the indicator displays when the computer is in the FETCh.

and EXECUTE modes.

7-10

Progran1 C:tieck-OuL -- Continue.J

FETCH MODE

--_
SELECTOR POSITIONS

Os',:illoscope OsciHoscope
Oscill"lscope 0'- Neon INPUT vvoa.D ST.A TE

Se lector I Se le ctor SELECTOR
Display

- -----
P. Every Sarne as previous EXECUTE

(Result of previous in-
structions)

B Eve 14y Same as p:e vious .EXECUTE

~
:1

(Res u 1 t 0 f p l' e vi 0 us in-
structions)

~
'....; Evet·y Execution code of CU·,'J."ent in-

sttuction in .)its 1-5

N Every Next-instruction address
in bits 1-13"

>-,-.

Y Every Current operand add:tess
in bits 1-,1 3

R1 1st Word Current operand

I M In M
l

_6, tr ack numbe r of

!
current operand

t

I
FE In PI-51 curr~'nt operation

code i -
, SZ In Z2, ove r flow s ta tus of
1 previous operations
(.

7 -J 1

Prograrn Check-Out - - Continued

EXECUTE MODE

SELECTOR POSITIONS

Os cilloscope Oscilloscope Os cillos cope or Neon
INPUT WORD STATE Display

Se lector Se lector SELE~TOR

A Every (A) afte r completion of cur rent
instruction

B Every (B) afte r completion of current
instruction

;

C -- I Zero

N Every N ext -ins truction addre s s

y -- Zero

Rl 1st Word First word of next instruction

Rl 2nd Word Second word of next instruction

M In Ml I'
track number of next

-0

I
ins truction

"

In PI-5' operation code of
PE

executed instruction

SZ In Z2, current overflow status

7-12

SECTION VIII

NUMBER SYSTEMS AND SI LING

READING COMPUTER NUMBERS

A familiarity with binary and octal number systems will simplify ,com-

munication with the R W -300 for the programITler, because the cOITlputer uses

the binary number system in its i,nternal operations. The binary nUITlber sys-

tern, which perITlits only the sylnbols 0 and 1, is particularly compatible with

the on-off type of circuits used in digital computers.

Since each computer word consists of 17 binary digits (bits), plus

sign, writing or working arithmetic with these numbers is cumbersome.

Therefore, program instructions are listed as decimal numbers; numerical

quantities, or constants, are entered in octal form.

If a computer instruction is

EX OPRND OP NI

00 62-110 29 00-112

then the two instruction words will appear in the computer in binary as

EX OPERAND
track sector

first word 00000 111110 1101110

OP NI
track sector

second word 11101 000000 1110000

8-1

Reading Conl.puter Nurnbers - - Continued

To use the oscilloscope (figure 7-2) or indicator lights to verify an ir.l.struction

in the cOlnputer, the programmer must be able to convert binary numbers to

their decimal equivalents.

A computer word may be a numerical quantity, rather than an opera­

tion or execution code and track address. These quantities must be converted

from decimal to octal form for listing in the program; the octal number is

stored in the computer in binary form. For example, C000325 would appear

in the computer as the binary nurnber 00000000011010101, To check this, the

programmer must be able to convert binary numbers to octal.

So that a maximum number of significant digits will be carried

through programmed calculations, the programmer will sometimes find it

neces s ary to perform preliminary calculations to determine what shifting in­

structions should be included in the program. Although these calculations

can be perforrned in decirnal, and the results converted to octal, program­

ming time is saved if the arithmetic operations can be performed using the

octal numbers that will be used by the' computer. In the paragraphs which

follow, binary and octal arithmetic are des cribed, along with numbering

systems and methods of converting from one nurnbering system to another.

NUMBER SYSTEMS

In the decimal number 213.75, the symbols 2, 1, 3, 7, and 5 repr~­

sent the SUln of

or

200 + 10 + 3 + 7/10 + 5/100

8-2

Number Systems -- Continued

Thus, in the decimal system each position in a number has the value of some

powe r of 10, and each digit is the coefficient of the power of ten repre s ented

by that pas ition. The place immediately to the left of the de cimal point is the

o· 1
power of 10 , the next is 10 , etc. The place immediately to the right of the

decimal point is the powe
-1

of 10 ,etc. Consequently, every time the deci-

mal point with.in a number is moved a place to the lef~, the number is divided

by 10; if the point is moved to the right it is multiplied by 10. Because there

are 10 symbols (0 through 9) permitted in the system, it operates with powers

of 10, and the base or radix of the system is 10.

The decimal number system is a "place" or positional notation sys-

tem; a similar system can be devised using any base or radix. Both the

binary and octal systems are parallel to the decimal system, but binary uses

only 2 symbols (0 and 1) and has a base of 2, while the octal system uses 8

symbols (0 through 7) and has a base of 8. The base of a number is indicated

by a subscript, as 11010101
2

(binary) or 325
8

(octal) or 213
10

(decimal).

Each place in a binary number represents a power of two. The binary

number 11010101.11 is the sum of

7 6 5 4 3 2 1 0 -1 2
1(2)+1(2 }+0(2)+1(2)+0(2)+1(2)+0(2)+1(2)+1(2)+1(2-)

or 128 + 64 + o + 16 + o + 4 + o + 2 + 1/2 + 1/4

or 213 3/4.

Each place in an octal number is a power of 8. The octal number

325.6 is the sum of

or

192 + 16 + 5 + 6/8 or 213 3/4.

8-3

NUlnber Systems - - Continued

Note that the zero power of any number is always 1 and the first power of

any number is the nUIJ.'?ber itself. As in the decimal system, every time the

point is shifted to the right, the numbe r is multiplied by the bas e for every

place moved. If the point is shifted to the left, the number is divided by the

base for every place moved. The programmer uses this principle in scaling

binary numbers.

CONVERSIONS

Binary to Decimal

In the above example, the binary number 11010101.11 was converted

to its decimal equivalent by adding the products of each digit times the power

of 2 as s ociated with its position. This method can be employed using the

table "powers of 2" at the end of this rnanual. The conversion can be tnade

more quickly by using the fact that every shift of the binary point one place

to the right ITlultiplies by two.

Convert binary numbers to decitnal by rnultiplying the tnost-significant

binary digit by two and adding the- next binary digit. Multiply this sum. by two,

add the next, and continue to the least-significant digit. A sitnilar procedure

follows for digits to the right of the point except that they are divided by two

instead of multiplied.

8-4

Example:

1

t
1
~

+ 1

o 1 o 1

t
lx2=2 +0 i I 3x2= 6 +1

6x2= 12 +0
l3x2= 26 +1

Conversions - - Continued

o 1 • 1 1

26x2= 52 +0
53x2= 106 +1

111010101.11
2

= 213 3/410

106 x 2 = 212
213 +

+1
1-:-2= 1/2

3/2~2=3/4

For an even faster conversion method, memorize the binary numbers

from 1 through 15. They are

1 = 1 3 = 11 5 = 101 7 = III

2 = 10 6 = 110 10 = 1010 14= 1110

4 = 100 12 = 1100 11 = 1011 15 ::: 1111

8 = 1000 13 = 1101

9 = 1001

When converting a binary number to d.ecimal, begin with the decimal equiva-

lent of the first three or four digits and multiply it by two for every succeed-

ing place to the point. Then add this num.ber to the decim.al equivalent of the

rest of the binary digits.

Exam.ple: Convert 11010101 to decim.aL

1101' 0101

l t
13 x 2 x 2 x 2 x 2 = 208 + 5 = 213

8-5

Conversions -- Continued

Decinlal'to Octal

The quickest way to convert a decimal number to octal is to divide the

decilnal nl.lluber successively by 8 and note the remainders. The remainders,

in reverse order, forn1 the octal equivalent. If all or part of the number is a

fraction, repeatedly multiply the fraction by 8) noting the integers resulting

fron1 each multiplication. The process is' continued until the fractional prod-

uct is zero, or until the desired accuracy has been obtained. The integers,

in the order obtained, form the octal equivalent.

Exanlple: Convert 213.75 to an octal number .

213 · 8 = 26 + 5 . 75x8= 6.00

26 . 8 = 3 + 2

213.75
10

= 325.6
8

Binary to Octal to Binary

The octal nUITlber s ysteITl is us ed for notation and for pe rforITling

arithITletic because it is easier to convert between binary and octal than it is

to convert between binary and decimal.
3

Since 8 = 2 , each octal digit is the

equivalent of three binary digits. To convert an octal number to binary,

write the binary equivalent of each octal digit.

ExaITlple: 3 2 5 . 6 in octal =
~

011 010 101 .110 or 11010101.11 in binary

To convert a binary nUITlber to octal) begin at the binary point and

divide the nUITlber into triads (groups of three digits each). Then write the

octal equivalent of each group.

8-6

Conversions - - Continued

Example: in binary = 1 1 • 6 in octal

Decimal to Binary

Decimal to binary conversion is like decimal to octal conversion ex-

cept that the decimal number is successively divided by 2, rather than 8. The

remainders from the divisions, in reverse order, form the binary number.

:Fractions are multiplied by 2 until a fractional product of zero is reached, or

until the required accuracy has been obtained. The integers resulting from

the multiplication, in the order obtained, form the binary equivalent.

Example: 213.75 in decimal = 213 · 2 = 106 + 1 .75 x 2 = 1. 50

106 2 = 53 + 0 .50 x 2 = 1.00

53 · 2 = 26 + 1

26 2 = 13 + 0

13 · 2 = 6 + 1

6 2 = 3 + 0

3 · 2 = 1 + 1

1 2 = o + 1 = 11010101.11 in binary

Octal to Decimal

Octal to decimal conversion is most convenie(ntly performed by adding

the products of each octal digit times the powe r of 8 as s ociated with its pos i-

tion. For.example: 325.6 in octal =

8-7

Conversions -- Continued

2
3 (8) = 192

2 (8
1

) = 16

5 (8
0

) = 5

6 (8- 1) = 6/8 or 3/4

= 2133/4 in decim.al

Powers of 8 are listed in a table at the end of this manual.

BINARY ARITHMETIC

The rules for binary arithmetic are:

Addition

o + 0 = 0

o + 1 = 1

1 + 1 = 0 (with 1
to carry)

Examples:

Subtr ac tio'n

o - 0 = 0

1 - 1 = 0

1 - 0 = 1

o - 1 = 1 (with 1
borrowed)

Addition

Multi plication

o x 0 = 0

o x 1 = 0

1 x 1 = 1

Subtr ac tion

Division

o + 0 = undefined

o + 1 = 0

1 + 1 = 1

1 +·0 = undefined

augend: 1 1 0 0 1 borrow: 0 1 1 10

addend: 1 101 lTIinuend: 1 0 0 0

carry: 11 1 subtrahend: 1 ------
sum: 1 0 0 1 1 0 difference: 1 1 1

8-8

Binary Arithmetic - - Continued

Examples: Multiplication Division

Multiplicand: 1 0 0 1 1 1. 1

Multiplie r: 1 1 0 1 101 Ill. 1
1 0 0 1 1 "101

0 0 0 0 0 10 1
1 0 0 1 1 10 1

1 0 0 1 1
Carry: 1 1
Product: 1 1 1 1 0 1 1 1

OCTAL ARITHMETIC

Octal arithmetic is like decimal arithmetic. To perform the arith-

metic operations quickly, octal addition and multiplication tables can be used,

or memorized. An alternative to this is to perform the operations mentally

in decirnal and convert the sum or product to octal before writing it. Below

I

are tables showing octal multiplication and addition.

OCTAL ADDITION TABLE OCTAL MULTIPLICATION TABLE

o 1 2 3 4 5 6 7 o 1 2 345 6 7

0 1 2 3 4 J 5 16 7

1 2 3 4 5~2- 10
!--

2 3 4 5 6 7 J~ 11
:---

o 0

1 1

2 2

0 0 "0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 2 4 6 10 12 14 16

3 4 5 6 7 10 11 12 3 3 0 3 6 11 14 17 22 25

4 5 6 7 10 11 12 13 4 4 0 4 10 14 20 24 30 34

5 6 7 10 11 12 13 14 5 5 0 5 12 17 24 31 36 43

6 7 10 11 12 13 14 15 6 6 0 6 14 22 30 36 44 52

7 10 11 12 13 14 15 16 7 7 0 7 16 25 34 43 52 61

In decimal addition, 7 + 7 = 14. The octal equivalent of 14 is 16 (1 x 8
1 +

o '
6 x 8); thus, in the octal addition table above 7 + 7 = ~ 6. In working an

addition problem, the 6 is written and the 1 is carried to the next column.

8-9

GLOSSARY

Specific examples used in these definitions usually refer to the RW-300 only.

Absolute Va~ue - the magnitude of a number without regard to the algebraic

sign of the number.

Acce s s Time - the time inte rval betwe en the ins tant at which inform ation is:

(a) called for from storage and the instant at which delivery

is completed, i. e. , the read time; or (b) ready for storage

and the instant at which storage is completed, i. e., the write

time.

Accumulator (A Register) - the register in the arithmetic unit in which sums

and other arithmetic and logical results are formed.

Adder - a device capable of forming the sum of two quantities plus a carry'

digit from a previous addition.

Address - a label (usually a set of numbers) which identifies a register or

location in which information is stored.

Analog - representing numerical quantities by means of continuous, physical

variables, e. g., translation, rotation, voltage, resistance;

contrasted with "digital".

Analog Conversion - the ope ratio~ of changing analog information to its

digital (numerical) equivalent, or vice-versa.

Glossary -1

Analog Input - the acceptance 'of analog voltages from transducers and the

conversion 6f this data to equivalent digital form for proces­

sing by the computer.

Analog Output - the conversion of digital information generated by the

computer into equivalent voltages or currents to operate con­

trols or indicato'rs.

Arithmetic Unit - that portion of an automatic digital compute r in which

arithmetic and 199ical operations are performed.

Base (Radix) - the fundamental number of a system of numbers. Thus, 10

is the base of the decimal number system, 2 of the binary,

8 of the octal.

Binary - involving the integer 2, as in a binary number system (base 2),

a binary choice (between two alternatives), or a binary opera­

tion (combining two q uantitie s).

Binary Number - a numerical value expressed·in binary notation.

Bi-Polar - in the R W -300, having to do with both negative and positive

analog input voltages; the bi-polar analog-digital converter.

Bit - a binary digit.

Bit Time - the length of time required for one bit to pass a given point on the

magnetic drum (approximately 6.5 microseconds in the RW":300).

Glossary - 2

Block - a group' of information recorded on magnetic tape corresponding to

one track of inform'ation recorded on the magnetic drum.

Branch - see Transfer.

Break-Point - a point in a routine at which the computer samples a manually

set switch to determine the subsequent course of the program.

Carry,w: (l) the digit to be added to the next higher column when the sum

of the digits in one column equals or exceeds the number base;

(2) the process of forwarding the carry digit.

Check - a means of verifying information during or after an operation.

Marginal Checking - a system or method of determining

computer circuit weaknesses by varying the

oper ating conditions of the circuits.

Circulating Register - see Register.

Code (noun) - a system of symbols and rule sfor use in computer

ope ration s.

Execution Code - a binary code used to modify certain opera­

tions in the RW -300 such as shifts, multiplication,

division, etc. More specifically, the five bits

contained in bit-positions 14 through 18 of the

first word of a two-word instruction.

Glossary - 3

Instru ction Code - the· symbo Is, names, and definitions of

instructions which are dire ctly inte lligihle to a

given computer.

Mnemonic Code - a code, usually alphabetic, chosen so that it

can be remembered easily. Example: MG for

Merge, LA for Load A, etc.

Code (verb) - to prepare problems in computer code for a specific computer.

Command - often used as' a synonym for Instruction or Operation. See

Instruction Code.

Computer - any device capable of accepting information, performing

sequences of arithmetic and logical operations, and supplying

the results of these operations.

Control Unit - that portion of an automatic digital computer whic:h directs

the sequence of operations, interprets coded instructions, and

initiates the proper commands to the computer circuits to

execute the instructions.

Convert - (I) change numerical information from one number base to another

(e. g., decimal to binary) and/or from some form of fixed-point

to some form of floating -point representation, or vice -versa;

Glossary - 4

(2) change analog information (e. g., dis,tances, rotations,

voltages, etc.) into digital information {numerical} or vice versa.

Core - a toroid of ferromagnetic material capable of being magnetized in

either of two directions, and therefore a binary device which
I ,

can store one bit for indefinite periods.

Core Storage - an array or matrix of cores capable of storing large numbers

of bits.

Core Buffer - a core storage and associated equipment to permit communi-

cation between the RW -300 and the magnetic tape transports.

Data- any information (usually numbers) take'n in, operated on, or obtained

from a computer.

Raw Data - unappraised information entered into the computer.

Data Word - a word containing or reserved for numerical information, as

opposed to an instruction word.

Digit - one of the- n symbols of integral values ranging from 0 to n - 1

inclusive in a scale of numbering-of base n, especially one of

the ten decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Digit Time - See Bit Time.

Digital - using discrete numbers in a given scale of notation to represent

all the quantitie s that occur in a problem or a calculation, as

opposed to analog.

Glossary - 5

Digital Input - the transfer of information from a digital source

(paper -tape reade r, digital switches, digital

clock, etc.) to the computer.

Digital Output - the transfer of information in digital form from

the computer to some external device such as a

typewriter, paper -tape punch, re lays, etc.

Double - Length Product - see Product.

Drum - cylinder with coating of ferromagnetic material used as a storage

device in digital computers; elementary lengths of a drum

track are magnetized to represent ones or zeros.

Exe cution Code - see Code.

Extract - an operation whereby some portion of the A register is retained

while the remaining portions are cleared by a logical multipli­

cation of the contents of a specified storage location.

Fixed Point - see Point.

Flip-Flop - an electronic circuit having two stable states. A flip-flop can

store one binary digit of information.

Flow Chart (Flow Diagram) - a graphical representation of a sequence of

op~rations which is usually drawn up before a program is

written to show how the program is to operate.

Glos sary - 6

Frame - on a pape r tape, one row of 6 or 8 binary digits.

General Storage - see Stor age.

Indicator - (1) on a panel, a light, oscilloscope, flag, or other device which

displays information visually. (2) in the format requirements

of a punched paper tape, a symbol which tells the RW -300

load program what kind of information is to follow.

Input - information accepted by the compute r from cards, punched tape,

magnetic tape, instruments, etc.

Input Group - digital input lines, normally 18, addressed by a specific

track number.

Input Line - a wire capable of assuming two discrete voltage levels for

representation of either a one or a zero.

Instruction - see Code.

Leader - that portion of a punched paper tape that precedes the input data.

It is usually left blank.

Load (verb) - (1) to enter data into the computer, as "to load a tape".

(2) to cause data to enter a register from a memory location,

as "Load A" •

. Load Program - a permanently .stored program on track 63 which controls

the loading of programs and data into the memory.

Glossary - 7

Logging T"ypewriter - an output device for keeping a runnin'g log of process

conditions.

Logical Operation - see Operation.

Logical Addition - by definition, 0 + 0 = Oi 1 + 0 = 1,0 + 1 = 1, 1 + 1 = 1.

Logical addition is performed bit by bit. Thus, if correspond­

ing bit positions of two registers are both zero, the result is

zero in that position. Otherwise, the result is a on~ in that

position.

Logical Product - by definition, 0 · 0 = 0, 0 • 1 = 0, 1 • 0 = 0, 1 • 1 = 1.

The logical product is formed bit by bit and has ones only in

those bit positions which had ones in the corresponding posi­

tions of both registers.

Loop - a portion of a program that is repeated until some predetermined

condition has been satisfied.

Magnetic Core - see Core.

Magnetic Tape - flexible tape coated with ferromagnetic material. In digital

computer applications, elementary lengths of the tape are

magnetized to represent ones or zeros.

Glossary - 8

, Magnetic Tape Handler (Transport) - device for moving tape so

that information can be magnetically recorded or

read.

Magnetic Tape Buffer - see Core Buffer.

Memory - any device into which units of information can be stored and from

which the information can be obtained at a later time; in the'

RW-300, the magnetic drum is the internal memory.

Memory Sum - a word consisting of the algebraic sum (modulo 217) of all

binary digits in a specified portion of a paper tape. The

memory sum is used to determine whether or not all the in­

formation on a tape has been stored in the computer correctly.

Merge - an operation whe reby any portion of the contents of a specified

storage location may be inserted into the corresponding

portion .of the A register by logical addition.

Microsecond - a millionth of a second.

Millisecond - a thousandth of a second.

Module ... in the RW-300, individual circuits are assembled and wired on

insert cards. Interconnections between circuits and physical

mounting for cards are provided by module s.

Modulo - an operator which denote s division by a base number; e. g., if

a = b modulo p, a is the remainder obtained after b is divided

by the base number p. 132 modulo 128 is 4.

Glossary -9

Multi ... Bit Output - a digital 'output circuit arrangement which, causes a group

of output lines to be' set to a one -and-zero pattern correspond­

ing to the contents of the A register when the Digital output

command is executed.

Octal - involving the integer 8, as in the octal number system (base 8).

On~ -Bit Output - a digital output circuit arrangement which pe rmits one or

more output lines to be controlled without disturbing other

lines in the group.

Operand - a number used in an operation.

Operation - (1) a defined action; (2) the action specified by a single complete

instruction.

Arithmetic Operations - operations in which numerical quan­

tities forln the elements of the calculation (e.g.,

addition, subtraction, multiplication, division).

Logical Operations - the operations of comparing, selecting,

matching, sorting, merging, etc.

Optimum Programming - see Program.

OPUS - Optimum Programming Using Symbols. An assembly routine for the

R W -300 which reads a symbolically coded program and as­

signs optimum 'memory locations and numerical operation and

exe cu tion co de s •

Glos sary - 10

Origin - RW -300 memory location from which the first program instruction

is read when the computer IS START button is pressed, location

00-00

Output - information sent from the computer to typewriters, punches~ mag­

netic tape, indicators, controllers, etc'.

Output Group - digital output lines, normally 18, addressed,bya specific

track number.

Output Line - a wire, or pairs of wires capable of assuming two discrete

'voltage levels for representing either a one or a zero.

Parallel - handled simultaneously, as opposed to serial.

Parity - in the R W -300, the condition- of a binary code in which the total

number of ones is always odd.

;Parity Che ck - a te st for data validity by examining the bin~ry

code to determine whether or not the total number

of one s is odd.

Peripheral Equipment - accessory and a~xiliary equipment used with. a

computer to form a complete system.

Glos sary - 11

Point - in positional notation, the location or symbo 1 separ ating the integral

part of a numbe r from its fractional part. In decimal notation

the point is called the decimal point. In binary notation it is

called the binary point.

Fixed-Point Repre sentation - a notation or system of arith­

metic in which all numerical quantities are

expressed by a predetermined number of digits

with the point implicitly located at some pre­

dete rmined position.

Product, Double -Length - the result of a multiplication in which twice as

many digits are retained as the computer normally holds in

one register; e. g., a computer whose basic word consists of

17 binary digits will have, as the result of a multiplication, a

34 -digit pr oduct.

Program (noun) - a list of instructions for the solution of a problem. See

Routine.

Program (verb) - to plan a computation or process from the initial problem

to the delivery of the results, including the integration of the

operation into an existing system. Thus, programming con­

sists of analyzing the problem, drawing a flow chart, and

coding the probleru. Also, it may include numerical analysis,

Glossary - 12

Program (verb) continued - systems analysis, specification ,of print formats

and any other functions necessary to the use of a computer in

a system.

Optimum Programming - arrangement of data and instructions

in such a way that minimum waiting time is re­

quired to obtain information from the memory.

Program-Writable - in the basic RW -300, those areas of

memory that can be written into unde r program

control without moving the track group selector

plug from, the jack marked 0 -7.

Radix - see Base.

Read - to copy, usually from memory, or from one form. of memory to

another I particularly from external or secondary storage

(paper tape or magnetic tape) to intern"al storage.

Read Head - an electronic device which is capable of sensing and tra:ns'­

mitting information recorded on a magnetic drum or on mag­

netic tape.

Register - device for storing one or more computer words, or parts thereof'

in the arithmetic and control units. In the RW -300 the A

register and the B register are circulating arithmetic registers.

The C, Y, and N registers are circulating control registers.

Glossary - 13

Register (continued) - The T, S, P, and M registers ,are non-circl,llating con­

trol registers.

Circulating Register - a register whose contents 'are con­

tinuall y read and re -written on the magnetic drum

surface.

Revolver - a register providing 32 words of fast-access storage; track 62.

of the RW -300.

Routine - a set of coded instructions arranged in prope r sequence to direct

the computer to perform a desired operation or series of

operations. See Program.

Scale - to change the units in which a variable is expressed (e. g., moving

the decimal point, or its binary equivalent) so as to bring it

within the capacity of the machine or routin~ at. hand.

Scale Factor - a magnitude indicating the number of places the

true point is to the left or right of an arbi~rary

fixed position in a data word.

S.ector - 1/128 of.a track, providing storage for one computer word.

Sector Number - an integer ranging from 00 through 127, any

one of which denotes a particular word on a track.

Serial - handled on by one in time, as opposed to paralle 1.

Glossary - 14

"Shift - to move' the contents of a register to the right or left.

Sign Bit (Sign Digit) - a one or a zero used to designate the algebraic sign

of a: quantity; a zero represents a plus and a one represents a

minus in the RW -300.

State - a name applied to each of several timing and control sequences the

computer must enter while performing instructions. There

are eight possible states in the RW-300.

Storage - information storage facilities that are controlled by the computer.

Also see Memory.

General Storage - R W -300 drum tracks 00 through 61.

Store - to transfer information to a storage location from which the in­

formation can be obtained at a later time.

Track - in the RW -300, a band around the magnetic drum. capable of storing

128 words.

Track Address - number designation specifying the track

number of a storage location.

Trailer - blank tape behind the last punched frame on paper tape. See

leader.

Glossary - 15

Transfer. - (1) to move data from one location to another; to copy, exchange,

read, re~ord, store, transmit, or write data; (2) to' transfer

control; to jump from one part of a program to another.

Utility Package - collection of routines which aid the programmer in loading

and checking programs.

Unipolar - in the RW -300, having to do with positive analog input voltages.

Word - a set of characters which occupies one storage location. In the

RW-300, a word consists of 18 bits. The control unit treats

two words or 36 bits as an instruction and the arithmetic unit

treats one word, or 17 bits plus sign, as a quantity.'

Word Time - the length of time required for a sector on the drum to pass

a given point. Approximately 0.13 milliseconds in the RW-300.

Write - to rec:ord information on any internal or external storage medium.

Write Head - an electronic device which records information on a magnetic

drum or on magnetic tape.

Glossary - 16

A register, 1-6
qccess time, 1-3
accumulator, 1-6
~dd, 2-4, 4-10, 4~14
adder, 1-7
analog input- output, 1-11
arithmetic unit, 1- 6

B reg i s te r , 1 - 6
bi-polar converter, 1-14
binary arithmetic, 8-8
binary dump, 6-10
binary loading, 6-10
binary to de cimal conver sions, 8-4
binar y to octal con ve r sion, 8- 6
bit po sitions, 3 .. 2

C register, 1-7
CI (current instructions), 3~3
circulating .registers, 1-4, 1-6
compare magnitude, 2-9, 4-15
constant, 3- 5
control panel, 7-1
control unit, 1-7
conti'ols

mainteniince, 7-4
operation, 7-4
prog.l.'am, 7-6

data words, 3-5
decimal to binary conversion, 8-7
decimal to octal conver sion, 8-6
digital command, 2-13, 4-18, 5- 2
digital indicator s, 5:-- 13
digital input, 5- 3

expanded capabilities, 5-10
from Flexowriter, 5-5
from toggle switches, 5-4
manual inputs, 5-15

digital input lines, 1;..9, 5-3, 5-10
digital input-output, 1-9, 5-1

ba sic input-output, 5- 3

INDEX

equipment, 5.-13
e xp and e d cap a b i li ti e s , 5 - I 0
sample printout, 5-7

digital input selector switch, 7-5,
7-6

digital output, 5-10
multi-bit outputs, 5-13
one -bit outputs, 5-12
to Flexowriter, 5-6

digital output lines, 1-9, 5-10
Digitran switch, 5-16
divide, 2-21,4-14

scaling, 8-18
drum, memory, 1-4,3-7,4-1

error light, 3-10, 6-6, 7-4, 7-5,7-6
execute (program control), 7-7, '7-10
execute matrix switch, 5-16
e Kec ution code, 2-1, 3-:-3
expanded digital input-output, 5-10
expanded memory, 1-5, 4-7
extract, 2-10, 4-13

Ferranti high- speed reader, 5-17
fe tch (pr ogr am control), 7 -1, 7 -1 °
fixed point, scaling, 8 -11
Flexowriter, 5- 5, 5-19
Flexowriter codes, 5-19, 5-31

general description, RW -300, 1-1

in di cat 0 r J 3 .. 3, 6 - 2 J 6 - 3
input conversion range, 1-14
input selector switch, 7-9
input storage locations, 1-16
instruction list, 2-27, 2-28, 2-29,

reference table :1
instruction register, 1-9
instruction words, 2-1, 3-2

jump instruction, 6-11

Index - 1

load A~ 2- 2, 4-13
load A". negatives 2-3, 4-13
load B, 2-2, 4-13
load button~ 3-4~~ 3-8~ 3-13, 6-8,

7-2
load instruction~ 4.,.13
load program, 3-8, 3 13, 4-8, 6-1
loading tape, 6-7
loop: 3-16

magnetic tape unit, 1-18
core buffer, 1-19
tape transport, 1-21

manual digital input, 5-15
matrix indicator, 5~ 16
memory, 1-4, 3~7
me;:por y organization ll 4-3
memory sums~ 6-9
merge, 2-11, 4-13
multi-bit digital output, 5-13
multiply, 2~ 18, 4-14, 8 -14

N register, 1-7
next instruction, 2-1
no operation, 2-15, 4-17
number systems, 8-1, 8-2

octal addition table, 8-9
octal arithmetic, 8-9
octal mul tiplication table, 8-9
octal to decimal conversion, 8-7
octal to binary conversion, 8-9
one -bit digital output, 5-12
operand, 3- 3,
operand address, 2 ... 1, 3-3
operating controls, 7 -1, 7-4
operation code s, 1 ~3, 2-1
optimum progr'amming, 4-1.
OPUS, 4-21
origin, 3-4, 7-2
oscilloscope, 7 =8
output conversion range, 1-16
output storage, 1-18

paper tape (c;ligital output), 5- 25
parity checking, 5-27
power controls, 7-1
power off button, 7-1
power on hutton, 7-1
power s of 2, reference table 1
powers of 8, reference table 2

Index'- 2

printout sample listing, 5-7
program check-out, 7-6
programming, basic, 3~1;

optimum, 4-1
punched tape format p 6-4

.... ·,·.r.e..cifrd keeping, 3-10
re sume button, 3-9 ~ 6-8, 7 - 3
revolver p 1-5, 4-6, 4-19
revolver locations, reference

table 2
r un button, 7-7

sample programs, 3-12
scaling, 8 -10
scratch pad, 3-9
s hif t, 2 ... 6, 4 ... 17, 8 - 13
shifting (scaling)ll 8-12

. sign bit, 1-4, 3- 6
standby button, 7-1
start button, 3~4, 3-13, 7-1
state indicator Sll 7-7
state selector switch, 7-7
stop, 2-13
stop button, 3-13, 6-8» 7-2
store A, 2-3 11 4-1:7

. store B, 2-411 4-17
subtract, 2-5, 4-14
switch, 2-12, 4-16

tape command, 1- 22, 2-16
Teletype punch, 5-18
te st and maintenance panel, 7 - 3
track. register, 1-8
track set transfer switch, 4--.8
transfer, 4-8, 4-15

\

transfer on negative, 2-7
. transfer on overflow, 2-8
transfer on zero, 2-8
twenty-four -hour clock, 5-14

unipolar convert~r, 1-14
Utility Package, 6-10

watchdog timer, 5-1 7
word, 1-4, 2-1,. 3-1
word selector switch, 7-9
write switch (track 00-07), 7-5

y register, 1-8

TABLE OF POWERS OF 2

2
n

n 2- n

1 0 1.0
2 1 O. 5
4 2 O. 25
8 "3 O. 125

16 4" O. 062 5
32 5 " O. 031 25
64 6 o. 015 625

128 7 0.007 812 5

256 8" 0.003 906 25
512 9 O. 001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 O. 000 244 140 625
8 192 13 O. 000 122 070 312 5

16 334 14 O. 000 061 035 "156 25
32 768 1/5 O. 000 030 517 578 125

65 536 16 O. 000 015 258 789 062 5
131 072 17 O. 000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 O. 000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 O. 000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 O. 000 000 000 1116 415 321 826 934 814 453 125

17 179869 184 34 O. 000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

Reference Tables - 1

Table of Non-Parity
' •• Flexowriter Codes

C~ARACTER OCTAL CODE

UPPER LOWER IN ON

CASE CASE COMPUTER TAPE

"

A A 61 141
B B 62 142
c C 63 143
0 0 64 144
E' E 65 145
F F 66 146
G G 67 147
H H. 70 150
I I 71 151
J J 41 101
K K 42 102
L L 43 103
M M 44 104
N N 45 105
0 0 46 106
p P 47 107
Q Q 50 110
R R 51 111
s S 22 42
T T 23 43
u U 24 44
v V 25 45
w W 26 46
x X 27 47
y Y 30 50
z Z 31 51 !

.) 0 20 40 . 1 1 1 .. 2 2 2
'# 3 3 3
$ 4 4 4
% 5 5 5 , 6 6 6
& 7 7 7
* 8 10 10
(9· 11 11
0 10 52 112
? 11 53 113
I 12 34 54 _. , 33 53

73 153
! . 21 41
= + 40 100

LOWER CASE 72 152
UPPER CASE 74 1.54
TAB 36 56
SPACE 00 00
BLACK 12 12
RED 54 114
C!RETURN 56 116
PUNCH ON 250 ·
PUNCH OFF 244 ·
NON PRINT 230 ·
PRINT RESTORE 224 · STOP CODE 13 13
TAPE FEED 77 157

Reference Table s - 2

Table of Powers of 8

8 n n 8- n

1 0 1.0
8 1 O. 125

64 2 0.015 625
512 3 0.001 953 125

4 096 4 O. 000 244 140 625
32 768 5 0.000 030 517 578 125

Table of Equivalent Revolver Locations

KU U jl. ~4 9b RIb Ib _4~_ tsU J.ll.
Rl 1 33 65 97 R17 17 49 81 11~_
Rl l 35_ _b~ 98 R18 18 5U ts~ ll~

R3 3 35 67 99 R19 19 51 ts..:s ll~
R4 4 36 68 100 R20 lU 52 84 IH
R5 5 37 _69 101 R21 21 53 85 11
R6 6 j~ 7U 102 R22 22 54 ~~ . 11 ts
R7 7 39 71 103 R23 (23 55 ... ~7 J~
RS ~ 4u 7t. 104 R24 24 :>b ~~ 1 ;GU

R9 9 41 7..:s 105 Rl5 l5 57 ts'l ,l!

RIO ' 1U 4t. 74 lOb Rlb GO 5~ IV (,~

Rll 11 ..!3 J5 107 R2 _':7. ' 59 Il ,('..$

R12 12 44, J~ 108 R28 28 DU It. (,4

Rl3 13 45 77 109 Rl9 ·l.9 b1 ~3 l('!)

R14 14 46 78 1 ro R30 ..:su b2 ~4 12b
R15 '15 ,47 79 III 1\3,1 31 03 ~~ _l~J

TABLE OF R W -300 INSTRUCTIONS

Instruction Time Standard Inst. Format

Description of Operation
Operation CI .. . Total Time 1st word 2nd word

Code Oprnd CI .. HI

Alpha Dec. {word times} {word times} EXOPA OP NIA

ADD: (A)+(M) A A 25 3 6 or 7 00 TT·SS I 25 TT·SS
SUBTRACT: (A) - (M) A S 24 3 6 or 7 00 TT·SS I 24 TT-SS
MUL TIPLY: (A) X (M) (A,B) M 16 3 6+ nn nn TT·SS I 16 TT.SS
DIVIDE (A) / (M) (A), remainder B D 26 3 6+ nn nn TT.SS I 26 TT·SS
LOAD A: (M) A LA 29 3 5 00 TT·SS I 29 TT·SS
LOAD B: (M) B LB 07 3 5 00 TT-SS i 07 TT·SS
LOAD A NEGATIVE: - (M) A LN 21 3 5 00 TT·SS I 21 TT·SS
STORE A: (A) (M) SA 30 4 6 00 TT·SS I 30 TT·SS
STORE B: (B) (M) SB 20 4 6 00 TT.SS I 20 TT·SS
TRANSFER NEG: If (A) <0, Oprnd Add I'll TN 09 · 4 or 5 00 TT·SS 109 TT·SS
TRANSFER OVERFLOW: If O.F., Oprnd Add I'll TF 10 · 4 or 5 I 00 TT.SS I 10 TT.SS
TRANSFER ZERO: If (A)= 0, Opmd Add I'll TZ 11 · 4 or 5 I 00 TT·SS 111 TT.SS
COMPARE MAGNITUDE: If I(A) I - I (M) I CM 15 3 5 or 7 Inn TT·SS I 15 TT·SS

< 0; Add nn to NI Sector Address
EXTRACT: (A)@(M) A EX 05 3 5 I 00 TT·SS I 05 TT·SS
MERGE: (A)e (M) A MG 31 3 5 I 00 TT.SS I 31 TT·SS
STOP: Stop; CI NI on RESUME SP 00 · 4 I 0000.00 I 00 TT·SS
NO OPERATION: CI I'll NO 03 · 4 I 00 TT~SS I 03 TT·SS
SHIFT: (A) , (A) +- , (A,B) +- SH 01

Operand Track
Address Variations

00·15 (A) right nn plac811 · 4+ nn Inn 00·00 101 TT-SS
16·31 (A) left nn places 4+ nn I nn 16·00 I 01 TJ·SS

48·63 (A, B) left nn places · 4+ nn Inn 48·00 I 01 TT·SS
SWITCH: SW 02

Operand Track
Address Variations

00·15 (A) (B) 5 I 0000·00 i 02 TT·SS
16.31 (B) (A) · 5 i 00 16·00 102 TT.SS

32·47 (A)-(B) · 5 i 00 32·00 I 02 TT·SS

48·63 0 (A,B) - 5 10048·00 I 02 TT.SS

DIGITAL DG 06
Operand Track

Address Variations

00 Output to FLex 5 I 0000·00 I 06 TT·SS

04·31 1 bit Outputs 5 I 0004·00 I 06 TT·SS

32 Input from Flex 6 i 07 32-00 i 06 TT·SS
36·63 1 bit Input. · 6 I 1836.00 I 06 TT·SS

MAGNETIC TAPE ADDRESS * TA .
22

Operand
Address Variations
n:ro- Read ComEuter: (TK TT) Buffer . 134 min • I tu TT·10 I 22 TT·SS

262 max.
TT·04 Write Computer: (Buffer) TK t; 5 I tu TT·04 I 22 TT·SS

t = 0 selects TK 14
t= 1 selects TK 15

TT.07 Read Tape: (1 tape Block) Buffer 5 i tu TT·07 I 22 TT·SS
TT·OS Write Tape: (Buffer) (1 tape Block) 5 I tu TT·05 i 22 TT·SS
TT·Ol Rewind: Rewind tape unit u to start 5 i tu TT·01 I 22 TT·SS
TT.06 Backspace: Backspace tape unit u

1 block 5 I tu TT·06 i 22 TT·SS
TT.03 Search Forward: Search forward for

key block 5 I tu TT·03 I 22 TT·SS
TT·02 Search Reverse: Search reverse far

key block 5 I tu TT.02 I 22 TT·SS

* NOTE: Mag tape Instruction times
assume tape unit I s ready

LEGEND:
CI Current Instruction NI Next Instruction ,Add. Address Oprnd. Operand
Of! Operation EX Execution Code A A.regl~ter () Contents of
Rn Revolver location n u Magnetic Tape Unit u B B.regllter OPA Operand Address

NIA Next Inst. Address

. Reference Table s - 3

10.4 states 1, 2, 3, and 4
DIGIT·
TDfES STATE

1

2

3

4

INSTR.

All

All

All G

l~OI
14 - 15

1 - 1

8 - 13

19

1 - 18

1.9
1 - 13

14 - 18

1 - 18

19

1 - 13

1 - 5 "'

14 - 18

1 - 18
1 - 18
6 - 18

19
19

11 - 13 \
11- 19 9,10

19

19

1 - 8,15,16 1 - 1
9,10 1 - 7

1 - 8,15,16 19

9,10 19

11 - 13 19
11 - 19
All 1 - 18
14 (00) d17

All Instructions

DESCRIPTION

Search for equality between Nr and 'Sector No.
Sect. No. El = o. If N = Sect. No. E1 = 1

Shift N(TRK) -4 M register M, -M6• .Ntl3
goes to Ml and N8 to ~

If E1 = 0 stay in State 1

If' ~ = 1 Go to State 2
A, and B registers recirculat1mg (20 bits)

Y, C do not recirculate.

Set El = 1, Set ZIt = 1

Put operand address (OSR) into Y regist~r
Kl'

Shift EX. Ttme----. P flip-flops (~l - P5)(El8 - E14)

A and B registers recirculating ,(20;bits)
Nand C do not recirculate

Go to St. 3

GSR ---+ Nw (Next lnstr.)

Shift P Register----&> 0 (Ex. Time -.-.0)
. w

GSR (Instr. Code) ~ P Reg. (PI - P
5
)

A and ~ 20 bits recirculate

Y Recirculate

C Recirculate
Go to Bt 4, j f FT = 1
Go to st. lJ

Go to St. 5, if FT = 0

o El

Search for equality between Y and Sect. No. (R66)
Search for equality between Y and store Sect. No.

If ~ = 0 Stay in st. 4
It = 1 Go to st. 5

I
It E' FT' (Record Error) I = 1 Go to st. 5
If Rm = 1 Go to St. 8

Go to St. 5

A,B,Y,C,and N Recirculate.

o -II El if all delays expired
-7-

(J9)

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-21a
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Glossary-10
	Glossary-11
	Glossary-12
	Glossary-13
	Glossary-14
	Glossary-15
	Glossary-16
	Index-01
	Index-02
	Ref_Tbls-01
	Ref_Tbls-02
	Ref_Tbls-03
	Ref_Tbls-04

