RW-400 NOTES

The RW-400 is a 26 bit word stored program parallel machine. Its
basic configuration is a 1K compute module connected to a buffer module
containing two additional 1K banks. This connection is made through an
exchange unit which permits further buffer modules and peripheral devices
to be attached. The buffer modules are used as data sinks and are capable
of limited I/O and search instructions. Only one bank of one moc_iule can

be connected at one time.

The instruction logic is two address with most operations affecting

an accumulator or A register. The instruction format is

26 £ 21 20 O 1
| _function operand f

with the operand field divided as

20 g 11 10 h 1,
"take" address | “put" address|

on most instructions. There is an auxiliary arithmetic or B register used

with some operations.

The arithmetic instructions include the usual add, subtract, multiply,
and divide as well as square root and absolute subtract (absolute difference).
Each of these has result transferral variations which increase the repertoire.
The arithmetic used is ty o's complemént on 225- 1 with the high bit (26)
being a true sign bit, é
with the accumulator.

'here is an independent overflow indicator associated

Boolean operations are possible, but are somewhat irregular,

Addressing

Three modes of addressing are allowed. These are: 1, direct, referring
to locations in the compute module; 2, constant, in which the operand is
positive zerg and 3, indirect, which references a location in the connected

buffer module. Indirect addressing utilizes two registers in the buffer
module for final location. These are the "read" or R and "write" or W.

These registers are incremented by one after each use.

The addressing modes are selected by using 0 in the address field
for constant, 1--17768 for direct and M"'/‘?8 for indirect. Certain instructions
prohibit constant or indirect addressing and so these locations in memory

can be referenced.

Since there are two address flelds per instruction, this results in

up to nine addressing modes per instruction,

Result Transmittal

Each basic arithmetic operation (add, subtract, etc.) appears in
three Result Transmittal species., Results of operation always appear in
accumulator,

1. Store

Data from the location in g field is combined with contents of
the accumulator and result stored at location in h field.

2. Hold

Data from g location is combined with data from h location and
result stays in accumulator.

3. Replace

Data from g location is combined with data from h location and

result is also stored in h location.

RW-400 INSTRUCTION SET

Data Movement
There are only three specific data movement instructions available.

1, LOAD A Machine code: 33
Operands: contents of instruction operand field

Operation: Accumulator is cleared and contents of operand field
appear in bits 1-20 of A register. This instruction permits clearing of A

or setting it to any 20 bit constant. No memory referral is made.

Mnemonic: LAD

2. STORE A, B Machine Code: 34
Operation: Contents of B register is stored at g address, A contents
at h address., Indirect addressing applies via W register in buffer, with
B in first location. Constant mode of addressing inhibits A or B store but
if both g and h are constant, registers are interchanged with A contents going
to B and B contents to A,

Mnemonic: DAB

3. TRANSMIT Machine code: 31

Operation: Contents of g address are stored at h address. Accumulator
is not affected. Indirect addressing holds with g field using R register and
h using W register, Constant mode does not apply but location zero is

referenced.

Mnemonic: TRM

Examples: Machine code appears in octal with f, g, and h considered

separately,

Mnemonic
ILAD 0O
LAD 1, 1720

DAB 0, 100

DAB O, O
DAB 1777, 20

TRM 100, O

TRM 1777,1777

33
33

34

34
34

31

Code

0000
0001

0000

0000
1777

0100

1777

0000
1720

0100

000¢
0020

0000

1777

Action
A register cleared
A register set to
3720 (2000,)
A contents stored at
location 100
A and B contents interchanged
B contents stored in buffer
at W address and W register
incremented. A contents
stored at 20.
Contents of 100 stored at
0.100 and A unaffected
Contents of r address in
buffer stored at w address
in buffer. Rand W

registers incremented.

ARITHMETIC INSTRUCTIONS

The following instructions operate in the A or A and B registers.
The three addressing modes apply. The constant mode in the g field
giving an operand of +0 and constant in the h field giving an operand
of +0 and inhibiting a memory store of the results if applicable. When
indirect addressing is used, the R register is always associated with
the g field. Indirect of the "REPLACE" and "HOLD" varieties use the
R with the h field as well, incrementing it if the g is also indirect. The
"STORE" variety uses the W register with the h field.

1. STORE ADD Machine code: 05

Operation: Operand at g address is added to accumulator contents
and result stored at h address. constant mode g causes A contents to be
stored at h address. Constant mode h has result of adding g address
data to A with no memory change. Indirect g mode extracts data via R
register with consequent R incrementation. Indirect h mode stores result
via W register with W incrementation,

Mnemonic; SAD

2. HOLD ADD Machine code: 07

Operation: A register is cleared and g and h contents are summed in
A. Constant mode g or h results in only one operand coming to A, Indirect
addressing in either g or h uses R register with consequent incrementing. If
both g and h are indirect, two consecutive buffer iocations ave referenced

with R being incremented twice,

Mnemonic; HAD

3. REPLACE ADD Machine code: 06
Operation: A register is cleared and data at g and h addresses are

summed in A with result stored in h location also. Constant mode gorh

2
fields effectively bring the non-constant contents to A. If both are
constant, A is set zero. With indirect mode R register i3 used with
both fields. If both are indirect, sequential locations in the buffer
are used with the second location considered the h.

Mnemonic: RAD

4. STORE SUBTRACT Machine code: 01
Operation: Data from g is subtracted from A contents and results

stored at h, Constant and indirect addressing apply as in STORE ADD,

Mnemonic: SSB

S. HOLD SUBTRACT Machine code: 03

Operation: A is cleared, complement of g data is brought to A and
h data added to it. Constant g mode is not complemented. Other constant
- and indirect modes operate as HOLD ADD,

Mnemonic: HSB

6. REPLACE SUBTRACT Machine code: 02

Operation: A is cleared, complement of g data is brought to A and
h data added to it with result stored at h, Constant g is not complemented.
Otherwise addressing operates as REPLACE ADD, '

Mnemonic: RSB

7. STORE ABSOLUTE SUBTRACT Machine code: 11

Operation: The absolute value of A replaces A and the absolute value
of the g data is subtracted and resulit stored at h. This is the signed
difference, Memory mode applies as in other STORE operations. Double
constant mode sets A to 1Al, |

Mnemonic: SSA

3
8. HOLD ABSOLUTE SUBTRACT Machine code: 13
Operation: Complement of absolute g data is brought to A and

absolute value of h is added. Constant g is not complemented,

Mnemonic: HSA

9. REPLACE ABSOLUTE SUBTRACT Machine code: 12
Operation: A is cleared and absolute value of g data is subtracted

from absolute value of h data in A and result is stored in h.

Mnemonic: RSA

10, STORE MULTIPLY Machine code: 25

Operation: A contents are multiplied by g data with produce formed
in A and B registers considered as a 50 bit accumulator, Bit 26 in A and B
are the sign of the product., B is joined to the low order end of A and con-
tains the least significant portion of the answer. The A contents (the
most significant, high order) are stored in h, Constant g will clear A, B
and h, Constant h inhibits store, Indirect addressing holds as in other
“STORE's" .

Mnemonic: SMU

11, HOLD MULTIPLY Machine code: 27
Operation: A is cleared and product of g and h data is formed in the
combined A and B registers, Indirect and constant appl. as in other "HOLD"

operations,

Mnemonic: HMU

12, REPLACE MULTIPLY Machine code: 26

Operation: A is cleared, product of g and h data is formed in A and B
and A contents stored via h, Indirect and constant address modes follow
general rules for "REPLACE",

Mnemonic: RMU

W > 'me dividend-divisar inequality holds with same results as HOLD

4

13, STORE DIVIDE Machine code: 21

Operation: A contents are used as the divident and g as the divisor.
Division by computer is a shift-subtract process and on the RW-400 the
circuitry necessitates that the divisor appear larger than the dividend.
This involves checking that the first non-zero bit of the divisor be of
higher order than that of the dividend. The quotient appears in A with
the remainder in B, and the quotient is stored via h. Sign of quotient
and remainder will be the same. ‘

Indirect mode applies as in other "STORE" functions.

If the dividend is greater than or equal to the divisor, A and B are
unaffected and g data is stored via h. The overflow indicator is set.
Constant mode in g gives the same result as would division by zero,

. Consiant mode h inhibits store,

Mnemonic: SDV

14, HOLD DIVIDE Machine code: 23

Operation: A and B are cleared and h data is divided by g dzta in
A with remainder in B. The quotient (A result) is rounded by adding high
order bit (25) to A, Indirect applies as in other “HOLD" functions, d

A

DIVIDE on aborts.

Mnemonic: RDV

16, STORE SQUARE ROOT Machine code: 15

Operation: Sum of A contents and g data is made and a 25 bit
square of this is fcrmed in A with any remainder appearing in B. Sign
of root and remainder mctch, The low bit of the square root is always
set to 1 and is stored via h in this form.

Indirect and constant addressing modes apply.

Mnemonic: SSQ

S
17. HOLD SQUARE ROOT Machine code: 17
Operation: A and B are cleared and the g and h datq are summed.
The square root of this sum appears in A with remainder in B. The square
root has low bit set to 1. Constant and indirect addressing hold.

Mnemonic: HSQ

18. REPLACE SQUARE ROOT Machine code: 16
Operation: Same as HSQ but square root is also stored at h. Constant

and indirect apply.

Mnemonic: RSQ

The following two arithmetic instructions deal with the A register

~ontents and do not store results.

1. ADD TO ACCUMULATOR Machine code: 04
Operation: Data from g and h addresses are summed with accumulator
contents. Constant mode applies and R register is used exclusively for

indirect as in "HOLD" operations.

Mnemonic: AAC

2. MULTIPLY ADD Machine code: 24

Operation: The B register is cleared and the product of g and h.is formed
in A and B as in other multiply operations except the original A contents are
added to the high order half of the product.

Mnemonic: MAD

SHIFT OPERATIONS

Shifts in the RW-400 are end-off manipulations of the A contents or
of the combined A - B contents with the B register considered to the right
(i.e., low order) of A, Zeroes are introduced at either end of the shifted

register.

These instructions are single address, with the h field being used to
store the shifted operand. The g field is used to specify the type of shift
to be performed. Indirect and constant addressing applies to the h address

and the W register is used for indirect storage.

Instruction Format

26 21 <_ZQ.,T_L9._\,_L8_JJ 16 13 11.10 1
!f (30) [1;3 fr lo‘»{d{ m . h

1, (m) bits 11-15. This is a count of positions to shift, Counts of 1—3010
(1 -368) are true shifts, A count of 0 yields a rounding operationg (see 5). A
shift of 31 10 (378) causes not a true shift but a normalize or float operation.
This float shifts the register until a 1 appears in a specified end of the A
register or 51 positions have been shifted. The result is stored via h and

the count of shifts is transferred to the A register.

2. (d) direction bit 16, This bit indicates if the shift or float is to be
to the left or right. If bit is one, operand moves left, if zero, right, The
right float halts when a 1 appears as bit 1 of A,

3. (s) species bit 13. When this bit is 1 a logical shift occurs. The
logical shift considers the sign (bit 26) as an integral part of the data. When
this bit is 0, a magnitude shift is performed which operates only on the low
bits (1-25) of the data in a register. On left magnitude floats, shift halts

when a 1 reaches position 25; on logical position 26, On magnitude operations
bit 26 of both A and B are ignored.

2
4, (1) length bit 20. When this bit is one, the combined A and B registers
are shifted. On logical shifts bits pass between position 1 of A and position
26 of Band 1 of A and 25 of B on magnitude shifts. A zero in this position
limits the shift to the A contents. On either condition only the A contents

are stored, however,

5. (r) round bit 18. The general shift function (code 30) also performs
rounding of A contents separately (shift count 0) or in conjunction with actual
manipulation. This adds a round-off bit to A contents after the shift.

On left shifts this round bit is the next bit to enter bit 1 of the A and on
right shifts it is the last shifted out.

On single length left shifts this bit i3 always zero.

On all right shifts of zero count (single or double) the round bit is
bit 1 of A,

6. (o) overflow bit 17. The overflow indicator is associated with the
left (high order) end of the A register. This is usually set by arithmetical
operations, but it can be set by shifting ones past position 25. Rounding
will not set the overflow on right shift of 0,

Mnemonic: SHFT

BOOLEAN OPERATIONS

The Boolean operations in the RW-400 are distinguished as INSERT,
They are subdivided as HOLD, STORE, and REPLACE since they follow the

arithmetic instruction usage for data transmittal.

Three Boolean processes are involved in these operations: I Comple-
mentation symbolized " ~ " which changes 1's to 0's and 0's to 1's. II And

(logical product) symbolized " A " 1100

1000

III Or (logical sum) symbolizec"v" 1100
v1010

1110
In the Boolean operations the sica bit is not distinguished and

operations are performed on all 26 bits of A and B registers.

1. STORE INSERT Machine code: 35

The g data is "anded" with the A register contents and the result
stored in h address. Constant and indirect addressing hold as in arithmetic
“STORE".

Mnemonic: SIN

2. HOLD INSERT Machine code: 37

Operation: The logical product of the g data and A contents are
formed in B. The logical product of the h data and complement of g are
formed and this is logically summed in A. The end result of this is to
select bits from A positions corresponding to the 1 bits in g location and
substitute them for the correspondirag‘ bits of the h word. Svmbolically
resultis (H~ "~ G) v (A A G). Since the result appears only in A and B,
it could be considered as clearing bits in A where 0's appear in g and sub-
stituting corresponding bits from h,

Constant and indirect addressing modes are used as arithmetic "HOLD"

Mnemonic: HIN

2
3. REPLACE INSERT Machine code: 36
Operation: The combination is the same as the HOLD INSERT but the
A result is also stored via h. Constant and indirect addressing apply as in
arithmetic "REPLACE",
Mnemonic: RIN

The RW-400 allows interrupts from peripheral devices. These set
alert flip flops which can be treated as a twenty bit Interrupt Register I.
The S or sense register is used in conjunction with this to recognize these
alerts. (See Interrupt section for bit equivalence details) Bit 20 is the
enable bit in S which allows control to pass to location zero when an interrupt

occurs,

INSERT 8 Machine code: 77

Operand: Combined g and h field of instruction.

Operation: This instruction operates as does the REPLACE INSERT with
the S register used as the h location and the low 20 bits of the instruction
acting as the g data. Addressing modes do not apply but a special case
arises when the low 20 bits of the instruction are all zero. In this case A
and B are unaffected as are the low 13 bits of S but bit 20 in S is set to 1
thereby enabling any previous allowed interrupt to cause control transfer,

Mnemonic: INS

JUMP INSTRUCTIONS

There is no unconditional jump instruction (branch, transfer) in the
RW-400, but certain conditional jumps operate as such by proper choice of

parameters.

In all jump instructions the h field address is the jump location.
Neither indirect nor constant address mode apply since the jump must have

a termination,

Therefore jumps to 0000 and 1777 are possible.

In all jumps if condition is not met next sequential instruction is

taken.

The jumps can be roughly divided by g field usage. There are four
jump function codes of which three use the g field for memory referral. The

fourth (test) divides the g field sufficiently to be dealt with separately,

A, Memory reference jumps
1. Compare jump Machine code: 73
This uses the g fleld as a reference address to compare with
A contents. If the memory contents are greater than or equal to the
A contents, the condition is met. The indirect applies to the g field
using the R register. The constant mode in g senses for A being
positive 0. A contents are unaffected.

Mnemonic:

2. Tally Jump Machine code: 71
This instruction is comparable to index skip instructions on

other machines. There are no index registers available but memory

2
locations are used a s loop counters. Indirect addressing applies
using the R register. A constant g mode ylelds an unconditional jump.

The memory contents are sensed. If they are +0 or -0,they are
unaffected. If greater than 0, they are decremented, if less than,

incremented.

Jump contion is +0 or = -0, RW-400 arithmetic is two's
complement so ~2 is one less than -0. This instruction can give

a -0 result,

Mnemonic:

3. Link Jump Machine code: 72

This is a return jump or sub-routine entry on the 400. The
return address is the next sequential location (P+1), Using the g
field address, this address is stored in the h field (i.e., P+l g
1-10). Control then passes to the h field address. Neither constant
nor indirect modes apply to the g field. This allows the storage of

addresses in locations 0 and 1777 of the compute module.

Mnemonic:

B. Test Jump Machine Code: 70
This instruction uses the g field to specify the register or registers
to reference and also which bit in the register is to be sensed. This sense

occurs in the A register and so this could affect the A contents.

Instruction format
26 21 20 19 18 17 16 15 11 10
f (70) I S N J T M h

3
Bits 17-20 determine the register or registers referenced, If these
bits are all zero, the current A contents are sensed. If any bit is non-zero,

then the accumulator is cleared and the called-for data entered.

Bit 16 indicates the condition to be met, zero or non-zero, and bits

11-15 the bit position to check.

If the entire g field is zero, an unconditional jump is made toh

address.

1. M field bits 11-15. This count indicates the bit in A to be sensed.
| If bits 17-20 of instruction are non-zero, the called-for register data is
brought to A in the low order positions. If the position count is zero,

the condition is assumed not to be met.

' « Positions 27-31 are possible and refer to separate indicators.
Called-for data will be brought to A as determined by bits 17-20 of

the instruction, however.

These indicators will respond as non-zero if previously set.
They are turned off when sensed.

27 Overflow

28 Parity Error (memory)

29 Program Error (illegal function code)

30 Conditional Tape Read

31 Control Panel (manually or program set)

2. Special registers

Four special or pseudo registers can be sensed. They are:

I I. terrupt or Alert register. This is a twenty bit represen-

| tation of flip-flops set by I1/0 or internal concitions.

S Sense register. This is the register set internally to

allow automatic recognition of alerts. Also 20 bits,

4
N A set of sixteen flip-flops giving status of I/O lines

connected to exchange unit.

] Jump register. An eight bit representation of the control

panel jump or sense switches.

If more than one of these registers are called, they are "or"ed
to the accumulator. If this multi call includes both the Interrupt and
Sense register, then the S is "and"ed to the others.

e.g.: To sense S, I, and], the A contents will be (IV]) S.

1/0 AND BUFFER PROGRAMMING

Since th RW-400 is of modular design, various components are
connected through the exchange unit IX400 or CX400. This connects the
compute module or modules to the buffer modules for additional storage

and to most of the 1/0 devices.

These connections are effected by means of Command Output instruc-
tions to the Exchange Unit. This will be considered as the first class of

the Command OQOutput instructions.
Connect/Disconnect Command Output Instruction Format

26 21 20 19 18 17 14 13 1
42 w 2 D. T. S, F.

In absolute form of f, g, h, this is 42 x 4XX XXXX,

The W (bit 20) is the wait for ready or terminate when unready signal.
If this is 1, the commanding module will hang until the exchange accepts

the command. If zero, program error will be set and next instruction read up.

D.T. Device Type (bits 14-17). This gives the general type of

device which is to be connected. They are divided as to the data transfer

format.
Code
0 refers to a buffer module connection which transfers word data
1 refers to paper tape reader or mag tape controller which performs
an assembly.
2 signals Peripheral Buffers, Drum Controller, or digital clock.

3 is the display Buffer on CRT device
5 is for the printer
6 is the txchange itself

17 is a disconnect.

2
S.F. Specific Function (bits 1-13). This varies with the type of
exchange in use. The CX400 has a 1024 core memory reference file which
contains the actual select codes and locations in it are selected here. The

IX400 directly interprets these bits in making connections.

Disconnecting attached devices is accomplished implicitly by making
a new connect request or explicitly by making a connect request with all
zeroes in the low 13 bits. This explicit disconnect applies to both CX and
1X400.

Devices no longer needed should be disconnected explicitly to avoid

causing a program error on further connect requests.

Peripheral Devices, i.e., any but Buffer modules. Once the connection
has been made then the particular device must be signalled for input-output
by another command output instruction. This is an instruction of the following
form:

26 21 20 19 18 17 14 13 1
42 w 0 0 Y
where the W (wait) has the same meaning and Y defines the operation and
device. If the device is directly connected to the computer, only this

command is necessary as no Exchange connection is possible.

INPUT/OUTPUT

The computer 1nput/output instructions are a combined search and
transfer operation. In the first word of the 1/0 area as defined by the g
field of the instruction a search word is stored. Data from the peripheral
device will be compared with this before I/0 takes place. If this search
word is zero, then no comparison is made. The I/0 begins with word g+l

in either case.

The h field of the instruction contains a count of words to be trans-
ferred. If this is zero,no transfer takes place, but a search is performed.
The actual number of words is not needed with input transfers, if the device
will send a completion signal (e.g., record gap on mag tape). In this

case the word count need be only larger than expected data,

These instructions are used by the buffer as well as the computer.
They are also used to transfer data between computer and buffer but no
search is allowed. The W register is used as address location in buffer

to store data and R as location to extract data.

THE BUFFER MODULE

The BM400 consists of two banks of 1024 core memory locations,
There is sufficient circuitry associated for the Buffer to perform indepen-

dent 1/0 with associated register setting.

Once the compute module has made connection to the Buffer module
it can initiate these operations or use its own data channels to input or

output buffer locations.

These instructions also have the function code 42 for command
output
Format
26 £ 2 20 19 18 17 14 13 1
42 W 3 0 Y

or

42 X60Y YYYY
Bit 20 acts as in other Command Output instruction to stall the

computer until the device is ready or to set Program Error and continue.

The instructions assoclated with the buffer can be considered in
three groups. 1, Those that only the compute module can give to the
buffer. 2. Those that can be given by the compute or buffer module. .

3. Those which only the buffer can give to itself,

In the first category are the condition checks. These divide the Y

field as follows:
13 11 10 9 .4
Instruc. 1 0 0 0 Y

Bits 4-9 are ignored in the circuitry. The response is in 13 bit

form.

Y = 0 Send General Status. This puts a status response which can

be input for buffer condition check.

2

Y =1 Send L, The L register is a 10 bit count of words input or
output,

Y = 2 Send R. The R register is the 10 bit register associated with
g field on indirect addressing. It is also used as a program
register during independent buffer operations, i.e., address
of instruction,

Y = 3 Send W, The W register is the other 10 bit register used in
indirect addressing. It is also used for storage referral in

self instruction mode.

The other instruction legal only from the compute module is the
independent buffer initiation. This instruction is Set Rand start Self
Instruction. This is to give the initial location of the instructions since
the R register is used as P, The low ten bits of the instruction give the
quantity to set in R, Zero i3 a sreciol case and will cause no change in
the R register.

Y Format
13 11 10 1
XXXX
Shared instructions deal with setting registers and indicators.
Format Register set
13 11 10 1
Y XXXX

Where Y indicates register and the low 10 bits give quantity to store

Y =2 Set L. L gives count of words in or out

Y = 3 Set W. Write register

Y = 4 Set R. Read register

Associated with the Buffer module are indicators of buffer status.
These can be sensed by the buffer for branching, They are affected by

two instructions
Format

13 11 10 9 8 S 4 1
1 1 Y 0 X

3
Bits 5-8 are not sensed in this instruction
Y = 0 Reset indicators. There are 3 indicators - 1. Branch, 2. Program
Error, 3. Parity. This instruction will clear them. Any combina-
tion of the three is allowed by setting one's in the X field,
Bit 4 for branch, bit 3 for Program Error, and bit 1 for parity.
Bit 2 is unused,
Y = 1 Set Branch Indicator. For this the X field is 10,
There is a combination instruction which exchanges the R and W

contents and can also set the branch indicator.

Format
13 11 10 9 8 S 4 3 1
1 1 1 0 X 1

Bit 4 is used to set or not set branch indicator,

From information available at this time, the display system portion of
the LCP appears to lend itself to a COGS-like technique. In particular,
the need to drive devices with varying characteristics from a single source
can be fufilled by providing a pseudodisplay language capable of encom-
passing the operating specifications of all available (or known) devices.
This language can then be converted to the proper form by a subroutine
which is cognizant of both the pseudo and the "real" formats. Choosing
the correct subroutine (as there must be one for each device) would be a
trivial matter based on the output address of the message. This is assum-
ing there is a difference in addressing each device. The problems of com-
munication, characteristic research, pseudo language definition and conver-
sion techniques have been solved in COGS. This is not to say they can be
utilized without modification, but the theory is sound and probably at least

75% of the design would remain unchanged.

The problems associated with input via the display consoles include, in
addition to the reverse of the process discussed above, the need for handling
interrupts emanating from the consoles. Since interrupt processing is a some-
what cut-and-dried procedure, a central routine would probably suffice for
all consoles. Once a request to input has been granted, control could be

turned over to the input routine for the requesting console.

A central, bi-directional data handling routine will be required for con-
version to and from the universal code as defined in the executive system.
It is believed that by using a single routine which is cognizant of which raw
data code is involved would provide a substantial savings in core storage
space by eliminating duplicate housekeeping chores. It is also recommended
that this routine have knowledge go the existence of the microwave data link
in the disposition of a message, so that check sums may be attached during

conversion.

The attached block diagram may assist in visualizing the proposed sys-

tem.

PSEUDO
LANGQUAGE

ProcEssSOR

e

CONVERTOR

0

DATACOM

408

CONNERTOR DATACOM

415

CONVERTOR

RCA
320

i

TRW
85

R

CONNERTOR

RAYTHEON
QRCC

T

CONVERTOR '

NG

‘

cChC
161-8

INPUT
DRIVER

INPUT
DRIVER

INTERRUPT
PROCESSOR,

INPWUT
DRIVER

INPUT
DRIVEK

L DATA
CONVERTOR

INPLT
TENER,

TIIIL

400 Series is Underline Alpha/Numeric
1000 Series is Color Shift a

h
e

i

i.
‘.
P

s
. L
. | UNIVERSAL CHARACTER SET
Char Desc |Octal Char Dese loctal Char Desc
r - Zero 000 : P }. 052 : Colon
. One 001 P | i Lo 053 Semicolon
2 Two 002 Q i, 054 @ as/at
3 Three 003 q ! ' 055 KB Box-X
4 - Four 004 . R | ff 056 " . Quotes
o {057 ' . Apostr
5 Five 005 || Lo ;?‘ :
6 Six 006 ,!. 8 {10600 § Dollar
7 Seven | 007 s i 061 ¢ Cents
8 Eight | 010 , T (062 ¢ Summa.
9 Nine 01l | ¢ , 10063 1/4 one Qtr
‘ v 1068 < Eq or Less
Blank | 012!, u i 065 I/2 One Half
:(Space) 01351 : . ,
"Reserved" || V | 066 > Eg or Gtr
.] v 1 067 -~ 3/4 Three Frth
A . 014 { W b 070 = Infinite
a ©, 015 | W 071 v Arrow Down
B - 016 . X 1072 e Theta
‘b 017 . "~ x i+ 073 ¢ Arrow Up
c. 020 | ¥ o7k
' z 076 ~ Arrow Rt
D 022 z 077 K Kappa
a . 023 f ; “~ Arrow Lft
E 024 (Lft Paren 100] Rt Brack
d 025 ! Exclama 101 [Lft Brack
P 026 ? Question 102
f 027 # Numbers 103 3 - Cubes
‘ © Degree 104 2 Squared
G 030 4, / Slash 105 @ Esc Cde #2
g \ 031 ; : o Esc Cde #1
H ! 032 . % Percent 106 . -
h . 033 & And 107
I 034 # Asterisk . 110
i 035) Rt Paren 111
' . Period 112
J 036 , Comma’ 113
J 037 —_. ‘ Contr Dot
K 040 7 Pi i 114 Underline
k 041 - Minus. -115 Tab
L o042 w Omega, 116 C.R.
1 043 + Plus i 117
' « Alphal 120 Backspace
M Y044 X Multiply 121 U.C.
m 045 ' i ‘ L.C.
N 046 8 Beta | 122 End Msg
n 047 : Divide 123
0 050 = Equal 121
o 051 - Dash ' 125
/ Sq Root’ 126
(S Integral 127 -

vl
17/

. Octal Char Desc Octal
130 330
131 331
132 332
133 333
134 334
135 335

336
136 1 337
137
- 140 -+ Pls-Minus 340
141 3= Not Equal 341
142 %< Less Than 342
143 | Vert-Line 343
- > Greater 344
144 ~ Similar To 345
145 = Identity 346
146 y PSI 347
147 vy Gamma 350
150 r UC Gamma 351
151 6 Delta 352
4o . Delta 353
152 ¢ Epsilon 354
153 3 Part Deriv 355
154 7 R S1 Br - 356
155 £ L 81 Br 357
156 A And 360
157 Y Or 361
Es Cde #3 362
160 Es Cde #4 363
161 ,
162 364
163 365
366
164 367
165 .
166 /Clr Shift 370
167 Index 371
End Doc 372
170 Start Doc 373
171 Start Graphic374
172 Stop Graphic 375
173 ' 376
Conf Char 377
174 ; |
175 /
176
177

