'STORED IOGIC REVISITED '

by Richard H. Hill

.Information Systems Department
Thompson Ramo Wooldridge Inc.

RW Division

December 4, 1961

Canoga. Park, California

A paper delivered to the Los Angeles Chapter of the Association for
Computing Machinery, December 6, 1961.

Stored logic is not a neW'concept; The Stored Logic idea has its roots
in the concept of micro-coding, expounded early in "modern" or post-ENIAC
computing history. It is my purpose here to describe the RW implementation
of these ideas, but since it was both refreshing and instructive to rummage
-about in computing history for somevbackground, this introductory section
presents the gleanings of a hasty research on the micro-coding concept.

M. V. Wilkes in England was apparently the first to devote serious
attention to the potential of micro-coding. In a paper delivered at the
Manchester University Computer Inaugural Conference in July, 1951, titled
"The Best Way to Design an Automatic Calculating Machine", Wilkes argued
for the micro-coding approach(l)f.;‘Wilkes and Stringer further expanded
these ideas in a paper published in England in 1953 undef the title "Micro-

- Programming and the Design of thé Control Circuits in an Electronic Digital
Computer". (2) About this‘same time in the United States, "Tommy" Tompkins,
now at UCLA but then ﬁith ERA, espoused microprogramming for the design of
a special purpose machine to handle permutations. (3) .

. The wellspring of this thinking appears to be a variant on the theme
proposed in Burks, Goldstine and von Neumann's famous memorandum of 1946
that started this. whole bloody mess. we call stored.programmingn(h) .In this
memorandum the advantage of instructing a computing machine with numbers
was held to be the ability of the machine to modify its own program in the
course of execution. - As computers havevdevéloped we have learned to appreci-
ate this advantage, but principally in terms of the ability to modify operand
addresses. There is considerable iﬁternal evidence to the effect that.Burks,
et. al., envisioned freely modifying the order code as well. Micro-coding

is a logical extension of this principle.

“1-

‘Order codes quickly grew beyond such amen=able proportions, however. As
programs were made to accommodate more, and more diversified, instructions the
need to modify order codes seemed to diminish.

Wilkes' ideas, much too complex to exesmine here, envisioned coding on
the micro-micro level, if there is such a thing. -Bits of an order code would
be assigned to the gates of a decoding matrix, much as is done in a conven-
tional computer, but the matrix itself would be variable. Thus not only would
the operations be decoded according to the effect of the order code on the
gates of the decode matrix, but the program could alter the state of the ma-
trix so that a given order code interpreted at one point in time would cause
completely different actions when interpreted at another point in time.

Skipping along through the years, we encounter "A Note on Microprogram-
ming” in the April, 1956 issue of the Journal of the ACM, by Herbert T.
Glantz. (5) The article might better be titled "A Manifesto for Microprogram-

". - Glantz observes that the control logic of a computer typically com-

ming
bines sets of subcommands to produce the "machine language" instructions.

One computer, he notes, uses subsets of a set of 35 subcommands to produce

62 machine instructions. - Programmer access directly to the subcommands would
eliminate the need to overgeneralize machine instructions and would give the
programmer unlimited flexibility in the preparation of special analytic in-
structions. He states: "BEach special problem could conceivably have its

own special purpose computer which would have an order code hand tailored

for efficient solution bf this particular case. For some jobs one or two
special instructions might serve to gréatly reduce the running time for

machine solution. Further, a 'general purpose computer' could also be easily

made available for the casual user or for the problem not requiring special

~care and plenning." One solution to.the problem of providing special order
cofles is through compilers, Glantz recognizes, and I assume by compiler he
means also interpretive routines. Compiler routines have an obvious advan-
tage in programming ease. "However, once the instructions have been compil-
~ed into a machine order code, we are faced with.two time-consuming defects.
-One is the repeated memory accesses which are necespary as the machine‘ébeys
the compiled 1list of instructions. This defect is compounded by the necessar-
ily less-than-optimum memory assignments which is effected by the executive
compiling routine. (Note that he is diécussing drum machines.) The second
effect is the'sﬁrongyposSibility*ofithe4repeated performance of: superflous
subcommands ‘which serve no useful function in the particular computation
involved.

"Both of these defects are obviated by the use of microprogramming tech-
‘niques. On one hand only one membgy access is called for and thereafter all
performance is. carried out in the hardware, and in the second case only the
required subcommands are carried Out“ Furthermoie, the substitution of one
microprogrammed instruction~for'many'machine instructions will permiﬁ a re-
duced usage of slower secondary memérvaith a corresponding'increase'in per-
-formance speed."

I hope these quotations do not do Mr. Glantz too great an injustice. In
- fairness, although some. of the concepts he presents seem anachronistic in
this era of large fast-access memories and sophisticated control logic, he
‘does recognize both the programming difficulties inherent in the micro-coding
approach and the need to provide pre-programmed packages for the poor'wight
he calls the "casual user". His proposed implementation,,however;,does.nct

fully carry out the general approach to the theme. " The machine he outlines

is a conventional computer with a micro-programmed attachment, as it were;

a special set of hardware that could be used optionally for microprogramming.
So far as I am aware, one of the very early practical approaches to
microprogrammed hardware had its beginnings about the same time that Glantz's
article appeared. -The April, 1957 issue of the ACM Journal carries a report

by Robert J. Mercer, (then with Thompson Remo Wooldridge, RW Division) that
proposes a feasible machine.(6). Mercer built heavily upon the work of Wilkes
and .Tompkins, in partiqular, adopting the latter's philosophy but the hard-
ware notions expressed by Wilkes. - He was aware of Glantz's opinions, but
appears to have given them little more than a pagsing Glantz, so to say. In
fact, Mercer began to develop his ideas at UC;A prior to joining RW.

A basic premise of the micro-programmed ﬁachine, according to Wilkes
and Tompkins, is the wholeness or integrity of operations occuring within
a single clock“§u15e« -In this concept a number of elementary operations may
occur simultaneously, but independentlj; and especially, the operations occur-
ing on a given clock pulse are not dependent upon the results of a previous
pulse (except for certain.control functions, such as branch or compare) nor
do they establish conditions for follo;ing sequen;es. Tompkins had written
that a micro-operation is any operation "whose total course of action is
dictated by pulses occuring simultaneoﬁsly without,reqniremenf for later gen-
eration of stimulus pulses.”

Now. let’s see if we can sinmplify and expand these remarks. FEach clock
pulse is a self-contained event. - Clock pulses must be long enough, then, to
.allow reasonably significant events to;occur. In particular, a single clock
must be long enough to permit carries to pfopagate through a full wofd paral-
1lel add. - Other events might include register transfers, address incrementations,

=l

shift steps, multiply and divide steps; and memory trangfers. -With the
long clock pulse, and with each pulse self-contained, we have inevitably
a completely synchronous machine. - ThenAI{/T;I‘YK-l,(TRW-lE»O); implementation
of this synchronizes all micg'o~operatzion execution to the memory cyele.
- A clock pulse is,-oné-ha.lf cycle in durati‘on.,‘ and. a memory. read or write
is .executed on every clock simultaneously with certain other standafd.
micro-operations and whatever optional micro-operations that are called
for ‘in the order code. -Every internal instruction requires either two
or three memory cycles (four or ‘six clock timea), for.v'execution, except
for iterative commands such as shift and multiply. - In these cases the
micro-operations of a particular clock repeai: a number of times specified
“in the ingstruction. |

- What does this buy us? -The primary advantage is a substantial lessen-
-ing in'the, amount of control logic required. - There are no conditional seg-
yences of control, since the events on each clock pulse are self-contained
~and predetemined. ‘Thus circuits to establish, hold and break delays are
gone, interlocks are virtually nonexistent, and many triggers usually re-
quired to hold test conditions may be ‘eliminated.

: SO{ there is a very real saving in computer hardware. This saving in
‘the AN/UYK-1.(TRW-130) has spproached the optimum, rather than the idealj;
‘Mercer, and Tompkins too, recognized that some compromises with true micro-
- programming . were necessary to. produce . acceptable operating speeds, as well
a8 to build in the mschine control Afun;:tions« that are messy but needed.
Tt's ha.rd to microprogram & commend like "get that cotton-pickin' card

Not long after Mercer's article appeared, the computing world went way
off on the~opposite track. If Glantz prepared a m@nifesto for microprogram-
-ming, then certainly Saul Gorn's Letter to the Editor in the inaugural issué
of the Communications of the ACM has to be the manifesto of the compilation-
ists. (7) Gorn wrote, in effect, "machine language programmers, breask your
bonds.™ OF single'addreSS‘machines’he'wroﬁe: "Sentences with only one verb
and one noun: simply do not express big enough thoughts for most people. We
‘want a language system in which each sentence has one or more verbs and an
. indefinite number of nouns . . . present codes should be considered to be
micro-codes ..."

Gorn wanted to achieve efficiency through a flexible order code, and
he felt the way to do this was through using the computer as an interpreter
-before the fact. - Of course, he was correct for a large class of applica-
tions and users. The four years since Gorh‘s letter will certainly be known
as the Age of the Compiler -- Fortran, Autocoder, Bacaic, IT, Flowmatic, B~
‘Zero, Cobol, and of course Algol in all of its bedazzling variety. Most
connoisseurs ‘agree that '60 is the vintage year, I believe.

Now there seems to be, not a swing away from compilers, useful and
capacious as they are, but an undercurrent of realization that there may
also be something else. Is it significant that the esteemed gentleman who
received the presentation award at the last ACM National Meeting spoke on
‘the topic, “There is Still a Place for Interpreters™ 2

The»RW,épproach to Stored Logic asserts that in fact there is still a
place for interpreters. -Program interpretation before execution - the com-
piler method - and interpretation during execution can achieve a peaceful

coexistence, as can machines that have more and more complex order codes and

-6

those that rely on an approach lineally descended from the microprogramming

‘proposals we have examined earlier. - The objective of RW's efforts is to
marry the virtues of these anti-stream concepts and at the same time minimize
what inherent defects as might be present. As Machol pointed out last Sept-
ember, interpretive operation has the virtues of simplicity and flexibility

. in the language sense; additionally ﬁ;has the virtue of feasibility on mach-
ines of any scale.

- Why associate stored logic with interpretative operation ? It is cer=
tainly not necessary to operate in the interpretive mode in a microporgram-
‘med computer; the user can, if he wishes, write every possible procedure in
the basic instruction language of thebmachine. But as Glantz ﬁoted, the
"Casual User" wants simplicity as well as flexibility, and interpretive oper-
ation, provided the speed penalties are‘not too great, is the way to give it
to him. - As we will see, the AN/UYK-1 (TRW-130) is4equipped with some special
.capabilities that make interpretive operation extremely efficient.

So at last we are ready to take a look at the AN/UYK;l.(TRw-13o) itself.

- Physically it is 60 inches high, about 20 inches wide and 16 inches deep. It
is housed in an aluminum casting that weights about 500 pounds, of course with-
out the peripheral gear, and is built completely to military specifications.
A1l circuits are solid~-state. - In the photograph it is shown with the front
cover off. The operator's panel appears at the top; immédiately below'that,
normally covered, is the maintenance console. All of the logic cards in the
computer afe visible in this piecture. The back panel wiring is Jjust behind
the visible rank of cards, and the power supplies occupy the space in the
back half of the machine. The core memory sits on a small shelf just behind

the operator's panel.

The memory contains 8,192 fifteen—bit words and can be expanded to 3ZK.
It reads and writes in parallel with an access time of 3 microseconds or a
cycle time of 6 microseconds. A clock pulse is also 3 microseconds, thus
the clock rate is 1/3 megacycle.

- A'minimal set of input-output equipment would consist of a typewriter,
a paper tape reader and a paper tape punch. - The typewriter operates in both
directions. - These peripheral devices are connected to the computer through
a 15-bit parallel information channel. Two. other information.channels,.both
30-bits wide, are provided for commuﬁication with devices in the Navy Tacti-
- cal Data System family, and if not needed for this purpose they can be used
with a wide variety of special equipments. A controller unit is available
that will allow the AN/UYK-l (TRW—l30) to be used not only with paper tape
and typewriter, but also with magnetic tapes, punched card equipment, print-
ers and Teletype send-receive units. - Some specialized equipments, including
buffers and code translators, have been developed for use with the AN/UYK-l
(TRW-130) on various projects, some of them classified.

Figure 1 shows the logical organization of the machine. The registers
-- the illustration shows all of the internal registers except the decode
matrix -- have been given deliberately non-committal names because few of
them have distinctive functions. .

The M _register controls all memory accesses except those made>through
the L register to scratchpad address 0-63. Right here it would be well to
poiQP out that most AN/UYK (TRW-130) instructions are addressless. Instead
théy,use an addressing option to. refer to the.preéet contents of the M,‘A or
P registers as an addréss. fBefofe:A or P is used as an address, its contents
are exchanged with M, and after use M is always restored. In this way M is

used to access operands, and also serves as the Instruction Counter. For this

-8-

Address 0-63

Address 0-32,767

- e wr we e —

ADDRESS
COUNTER

e e MEMORY - — — —~
)
\
]
!
\ - '
61 {—’
N A
INPUT - l—)
QUTPUT ov : ADDER | o ¢
DEVICES < |
A
| T — P A
I/0 et

* OnebWay path

Figure 1 -- AN/UYK-1 (TRW-130) Logical Organization

latter purpose M is always incremented at least once during each instruction.

- The ' E register is the memory exchange register, and is also an input—out-
put register. It holds operands during iterative instructions, and does a few
other odd jobs from time to time.

The L register holds instructions during execution, holds operands tempor-
arily between instructions on occasion, and’may,be used to address the 6L words
of scratchpad memory.

- A is the principal arithmetic register, behaving like a conventional accu-
“mulator under most circumstances. - The contents of A may be used as an address,
also.

P is a secondary arithmetic register, usually behaving like a multiplier-
quotient register. Its contents may also be used as an address, apd frequently
- P is employed to control a program sequence in the interpretive mode.

The T register is chiefly used as an input-output buffef for slow-speed
devices, but when not needed for this purpose it can be used to store inter-
‘mediate operands from A or E.

Note that the other registers are a full parallel adder, an overflow in-
-dicator and a carry flip-flop. Note also that,éll traﬁsfers-from the M regis-
ter pass through the address counter, where the previous contents of M may be
incremented by unity. The pfogrammer'controls this function éxcept when the
instruction address is incremented.

~Now it is time to look at the instruction format (Figure 2). ' The uncon-
ventional structure of the machine language instruction seems to invite a new
name. Consequently, we have called the machine language commands "logands",

a contraction of "logic commands".

1
u

——

- PRIMARY | ADDRESS SCRATCHPAD
COMMAND | OPTION | . ADDRESS
15 109 116 1
~A. DL/IL ADDRESS OPTIONS
{ T l
PRIMARY | ADDRESS ICON- |SECONDARY
COMMAND | OPTION W'ROL, |COMMAND
| WFIELD
15 1049 716 5tk 1
B. REGULAR LOGAND
{] |
PRIMARY ; ADDRESS ICON- ! R
COMMAND { OPTION \TROL | CONDITION
| -, FIELD|
15 1019 7,6 514 1
C. CONDITIONAL LOGAND
I I [
PRIMARY | ADDRESS |CON- |
COMMAND OPTION yTROL | PARAMETER
| FIELD,
15 10l 9 7.6 5.4 1
D. PARAMETER-CONTROLLED LOGAND '
(e.g. Shift)

Figure 2 - Logand Formats

The most common logand format is shown first. - It contains a six-bit
field for the primary.commaﬁd, a 3-bit field for addressing option, a con-
‘trol field, and 4-bits for the secondary command.

There are 32 regular primary commands, 16 of which may also be used as
secondary commands. In this format there are six addressing options, direct
or indirect from A, P or M. The control option determines whether or not
the address used should be incremented by unity, and whether or not a mem-
-ory access is made. Thus there are 32 x 16 x 6 x 4, or 12,288 different
instructions in this format. - Some of these are th useful, some are dowﬁ—
~right dangerous, but most are perfectly acceptable.

The regular commands control register transfers and do useful things
like add and the‘logical functions.

“The regular'command list is also available for use with the DL and IL
-address options, in which the secondary command field becomes an address in
the scratehpad area of memory. Note that an.L;addfess is not incremented.

So here we have availsble 32 x 2 equals 64 single address instructions to
add to our list of 12,288 other commands, for a total thusfar of 12,352 lo-
gands. ‘

- The special logands include the conditional control functions, shifting,
multiplication, division, I/Q; and so forth, including table search .and match
functions. There are 22 of these that may be used with the six address op-
tions, or 132 more logands, not counting all possible conditions. So we are
up to about 132 plus 12,352 equals 12,484 different machine language instruc-
tions, without considering all of the conditional possibilities.

Fortunately, of course, the logand structure is such that the logander
need not recall each as an entity. He uses fairly simple rules to construct

the logand he requires at a given instant. Inherent in the tremendous variety

. =10~

available, though, is unparalleled flexibility. - In most instances the lo-

- gander has available on each cycle exactly the micro-operation needed. This

was precisely the objective Wilkes wanted to achieve, and is a major point

of Glantz's manifesto. Writing in the language of the machine directly, it

is possible to tailor the machine operation quite closely to the problem.
Mostly, though, it is more convenient to program in the interpretive

mode, uéing'”instructions" created from sequences of logands. (Figure 3).

To distinguish these logands sequences from operational programs, we call

them "ngrams", s contraction of logic program. Programs, then, are made

up of sequences of entries to lograms. Given a logram library, the opera-

tional program coder concerns himself only with the preparation of calling

.

sequences.

There is no restriction whatever on what a logram might contain. The
AN/UYK-l (TRW-130) logram library at RW contains»perhaps a couple: of hundred
different lograms. Most of these simulate conventional single address mach-
ine functions in both single and double precision.data formats. Some are
much more extensive. For example: 2, 3, or n address instructions might be
used. The library includes a large number of transcendental functions, root-
finding and exponential "instructions", coordinate transformations and data
conversion operations. For another stored logic machine one of our program-
mers has written a generalized four-tape merge-sort logram. ‘As the logram
library grows, each programmer, of course, has a richer "instruction set” to
draw upon.

Interpretive operation typically is a function rather extravagant in its
use of machine time. The interpretive executive routine must keep track of
the interpretive program sequénce, and frequently must go through much mach-

ination to deliver to the proper interpretive subroutine the operands called

-11-

CALLING . SEQUENCES

!4,:

ADB2
CXYZ FROM PREVIOUS LOGRAM
ADB2 ‘b
RST ' -
Double Length
-3 -Address
‘MNO , - Add
E o
~ MPB2
XYZ
RST

S vy

- MPE2
Double Length H=MPBl| Single Length
2 Address 1 Address
Multiply - Multiply

 Figure 3 -- Logram Calling Sequences

out in the program. - In the RW stored'logic machines, on the other hand,
there is usually no time lost in finding operands, and the logram sequence
can be preserved automatically'without loss of time. 1In fact there is no
interpretive routine under present programming schemes, nor does there
appear to be a need for one. ' We have taken one precaution, however, in

the scratchpad memory a cell is set aside by convention to serve as a pseudo
instruction counter. It is updated by every logram, principally to provide
a trail in case of difficulty with the program. The "overhead" for this
averages 12 microseconds per logram, regardless of the logram's length or
‘complexity.

- In our experience with stored logic machines, we have found it conven-
~ient to simulate one, two, or three address machines, variable-length accumu-
lators, indexing and indirect addressing - these latter come virtually free -
and to use almost any data format involving an integral‘number of words.
-8ingle and double precision binary fixed point operations have been fully
“logrammed. Floating point operations are the next extension. - BCD operations
have been logrammed in wide variety for another stored;logic machine. - And,
of course, there is a profusion of the functional operations mentioned earlier.
-Plans for software entail further extensions:to the logram library, an assem-
‘bly routine, a full set of utility routines, and diagnostic programs for
maintenanceiuse. A considerable amount in .each of these areas already ex-
ists - for example, there is an assembly and computer simulation routine for
‘the AN/UYK-1 (TRW-130) now operational on the T090.

The . AN/UYK (TRW-130) is fitted with other capabilities, not directly
related to stored logic, that make it of interest. For example, to facili-
~tate multiple precision arithmetic there are four separate add commands (this

is a complement machine, thus no subtract). These commands differ only in

-12-

the way the carry and overflow triggers are treated, and are designed to han-
dle the low-order, intermediate or high order multiple precision operand parts.
There is also an add single, for single precision work.

The AN/UYK (TRW-130) also has an extensive interrupt facility directed
toward input and output operations. - This. capability, coupled with relisbility
and reasonable cost, has led directly to use of the AN/UYK (TRW-130) in a
variety of on-line situations. One example of this use is in the Atlantic
Missile Range in real-time missile tracking operations.

But the real concern here is with stored logic. How well is it proving
out in practice %

The basic single precision add time in the AN/UYK (TRW-130) is twelve
microseconds, or one direct logand cycle. In this length of time an operand
is read from the cell éddressed by the register selected in the address option,
added to the contents of the A register, and the result returned to the A
register.

For operations in the interpretive mode opefation times depended entire-
ly upon the kind of interpretive machine specified. The basic interpretive
package pretends that the AN/UYK (TRW—lSO)‘is a single-address machine with
just two registers, a double-length accumulator and a double-length multipl-
ier-quotient register, Both registers are actually locations in scratchpad
memory. Now, the single precision add logram is defined as adding the oper-
and to the low-order half of the pseudo-accumulator and replacing the low-
-order half of the‘pseudo—accumulator‘With the result. The execution time is
66 microseconds. The logram occupies five cells and the calling sequence two
cells. The logram includes all of the interpretive control required - that
is, it updates the pseudo instruction counter and transfers control to the
next logram in sequence. - These overhead functions require 2l of the 66 micro-

seconds.
-13-

Typically double precision operations take quite a bit longer to
execute than single precision. Because of the special facilities of the
AN/UYK.(TRW—130) for double precision operation, however, this rule of
thumb does not hold true. The single address double precision add logram
requires 9 cells and the calling sequence two cells. Again 24 microseconds
are devoted to overhead.

The "special facilities" used in this double‘precision logram are two-
fold. First, the opérand address in fhe calling sequence, which is the ad-. .
dress of the high-order word in the operand, is automatically counted to
produce the low-order word address, without loss of time. - Second, the
machine language add commands automatically provide for proper handling
of carry and overflow for multiple precision, so no time is lost sensing
and propagating a carry from,léast significant to most: significant half.

" The' logram package from which these two examples have been drawn in-
cludes a full set of single and double precision arithmetic operations,
data ﬁransmission operations for loading end storing the pseudo-registers,
logical operations, and a full set of‘controlvand braﬁchingYOPerations. Al-
so included in the package are lograms for binary to BCD conversion and the
reverse,‘and single and double precision square root, sine-cosine, arctangent
and arcsine instructions. The entire package comprises 77_logfams and oc-
cupies 2056 cells.

To prepare an operational program from this package the programmer sim-
ply writes calling sequences as if he were writing symbolic instructions for
another machine. A service routine assembles his program by translating the
calling sequences into machine language, and also selects for loading the lo-

grams used in his program.

s

-Here are a feW'eXecution times that might be of interest. These are

all double precision functions, yielding 29 bits in the result with an error

less than 2'28:

Function Time (msec)
- Square root 1.7

Sine-~cosine 3.8

Arctangent 2.5

Arcsine 5.9
The AN/UYK (TRW-130) is now fully operational. In its first customer

acceptance test it logged 74 consecutive hours of operation without failure.

Footnote to the Historical Discussion:

.Since preparing and delivering this paper, I have run across an internal
report of Microprogramming‘Seminai,held at M. I. T. March 1 and 2, 1956.
- This Seminar brought togethef repreéentatives of the ?arious streams of thought
on microprogrammed computers, including Wilkés' colleague, Dr. David Wheeler;
Professor Norman Scott of the University of Michigan, Lloyd Hubbard of IBM,
Dr. J. J. Eachus,,Doughlas Ross of M. I. T. and others who made importént
contributions to the concepts of microprogramming. Th full transcript of this
Seminar, if it is available, is a key document in the history of the techno-
logy reported heré. - The fact that I did not have access to it during prepara-
tion of this paper necessarily means that the historical discussion contained
here is incomplete :and probably inaccurate in some respects. My only hope is
that those whose contributions were not recognized will be sufficiently for-

giving to await a more definitive treatment.

RHH

.

REFERENCES

Wilkes, M. V., The Best Way to Design an Automatic Calculating Machine,

-Manchester University Computer Inaugural Conference, Proceeding, July,

1951.

‘Wilkes, M. V., and Stringer, J. B., Micro-programming and the Design of

the Control Circuits in an Electronlc Digital Computer, Proceedings of
the Cambrldge Philosophical Society, April, 1953, ,

‘Paige, L. J., and Tompkins, C.B., SCAMP Postscript No. 1, Systematic

Generation-of Permutations on an Automatic Computer and an Application
to a Problem Concerning Finite Groups; National Bureau of Standards,
Jalluaw; -1953' .

Burks, Arthur W., Goldstine, Herman H., and von Neumann, Joh, Prelimin-

-ary Discussion on the Design of an Electronic Computing. Instrument; In-
stitute for Advanced Study,‘June,.19h6.

Glantz, H. T., A Note on Microprogramming, Journal of the Association
for Computing Machlnery, April, 1956.

'Mercer, Robert J., Micro-Programming, Journél.of,the Association for
V,Cpggpting‘Machinery, April, 1957.

ary, 1958.

Gorn, Saul, Letter to the Editor, Commnnlcatlons of the ACM, T, l, Janu-

