AN/ TG¥E-1

A YSTORED LOGICY” MULTIPLE PURPOSE COMPUTER

AN/UYK-1 (TRW-130)
PROGRAM ASSEMBLER
FOR PAPER TAPE
SYSTEM

M250-2U20

20 JULY 1862

A

Thompson Ramo Wooldridge Inc.

R w DIVISION

8433 FALLBROOK AVENUE « CANOGA PARK. CALIFORNIA + DIAMOND 6-6000

1.0 Introduction

CONTENTS

2.0 Input to the Program Assembler

2.1 LocationField

2.2 Remarks Field

2.3 AN/UYK-1 (TRW-130) Logand Fields

2.3.1 Operation Field

2.3.2 Address Option Field

2.3.3 Control Field

2.3.4 Secondary Field

3.0 Use of the Program Assembler

3.1 Input Preparation e e e e e e

3.2 System Symbols e e

3.3 ErrorAlarms e e e e

Output of the Program Assembler

5.0 Sample Program¢cc.oao..- N

6.0 Details of Operationo

6.1 PassONE e e e e e e e e e e e

6.2 Pass TWO i ity

6.3 Input-Output Operation e e e e e

6.3.1 Input e e e e e e e .

6.3.2 Output i e e

7.0 Tables v i v it it it et st o e e e e e e
7.1 AN/UYK-1 (TRW-130) Scratchpad

Allocation e e e e e e e e

7.2 Error Alarms e e e e e e e e e e

7.3 Primary Command Mnemonics

7.4 Pseudo-Operations« o oo

7.5 Address Option Mnemonics« .

7.6 Secondary Command Mnemonics

7.7 Condition Mnemonics 0o oo

7.8 Control Field Mnemonics« .

7.9 Character Code Sets« o o v o o o oo « o

Appendix I.
Appendix II.

Program Assembler Operational Procedures

5-Level Loader v

Appendix III. 8-Level Loader

ii

............................

© U G R WWWWEN NV =

1.0 INTRODUCTION

The Program Assembler is a program for the AN/UYK-1
(TRW-130) Computer. It translates operational programs from
symbolic language specified by the programmer to the binary lan-
guage used in the Computer. | ;

In principle, the Program As sembier resembles a bilingual
dictionary. By use of ce‘rtain internal program-control instructions
it initiates table-search operations. These determine the machine-
language equivalent of each programmer-language step in the opera-
tional program. Since the Program Assembler requires that each
symbol in a program be defined with that program, the ''dictionary"
is revised for every program assembled. The programmer can use
any symbology he prefers. -

© With the 8, 192-word memory of the AN/UYK-1 (TRW-130),
the Program Assembler requires two passes to assemble a prégram.
During the first pass, the symbol table '"dictionary' is compiled.
During the second pass, the program is assembled.

The actual operations in each of the Program Assembler's two
passes are uncomphcated However, to provide a fuller understand-
ing of how thls program operates, the theory of operation is discussed
in detail below. ‘ ‘

Use of the Program Assembler requires that the program be
prevpared on punched paper tape. One way to do this is to write the
program, using the logramming sheets described below, punch ‘the
program on cards, then convert the cards to punched paper tape by
use of an IBM 063 or equ1va1ent card-to-tape converter. (See

' Flgure 6.5 for plugboard wiring.) ''Cards" mentioned in this dis- "
cussion refer to the cards involved in this step. (See Figure 3.1
for typical operatlon) | '

As the program is assembled it is output, as directed by
setting toggle switches or by use of pseudo-operation PCH, onto
punched paper tape for future use. It may also be typed out as
printed copy. Type-out may be suppres sed by toggle switch setting

or by use of pseudo-operation SUP.

2.0 INPUT TO THE PROGRAM ASSEMBLER

Each card prepared for Assembler input is divided into six

fields, as follows:

Location Field (columns 1 through 6)
Operation Field (columns 7 through 10)

. _Address Option Field (columns 11 and 12)
.- Control Field (coiumn 13)

Secondary Field (columns 14 through 30)
Remarks Field (columns 30 through 60)

SR - R R - S ¥

The fields located in columns 7 through 30, inclusive , are
recognized as AN/UYK-1 (TRW-130) Logand fields. The remain-
ing two fields on each card (location and remarks) provide control
and information functions necessary to operation of the Program

Assembler.

- 2.1 LOCATION FIELD

The location field controls the ''dictionary-revision' function
mentioned in paragraph 1.0. Each symbol used in the program
must appear in the location field of one card, and only one, in the
input deck. If a symbol does not appear in any location field, it is
said to be undefined. If it appears in more than one location field,
it is said to be multiply-defined. Either situation results in an
error alarm (see Table 7.2). The locé.tion field of a card may be
blank; in fact, most location fields in a typical input deck are blank.
- If the location field is used, it must contain a single symbol (a sym-
bol is any sequence of one to six non-blank characters, at least one
of which is non-numeric). A special case is the inclusion of an
asterisk in column 1. When this symbol is encountered, the entire
card is ihterpreted as a remark and its contents are not included in
the 'operationa.l program. The field is terminated at column 6 or a

blank, whichever occurs first.

2.2 REMARKS FIELD

The remarks field does not affect assembly of the program.
Its function is to preserve notes which indicate the programmer's
intentions, and to print these out during the printout portion of the

run.

2.3 AN/UYK-1 (TRW-130) LOGAND FIELDS

The four Logand fields have certain special characteristics.
These characteristics are primarily concerned with the translating
abilities of the Program Assembler. Information in these four
fields is entered alphanumerically; numeric quantities are written
in the decimal system unless otherwise specified. The Assembler
recognizes certain pseudo-operations (see Table 7.4) in addition
to the primary commands (Table 7.3), address options (Table 7. 5),
control field entries (Table 7.8), and secondary commands (Table
7.6). When pseudo-operations are used, columns 11 through 30

control and extend their functions.

2.3.1 Operation Field

The operation field contains alphabetic characters; these repre-
sent either the AN/UYK-1 (TRW—130) primary commands (Table 7. 3)
or the pseudo-operations listed in Table 7.4. Each primary command
causes the location counter to be incremented by one, keeping the
program in sequence. Pseudo-operations may or may not cause the
" location counter to be incremented; the increment may be greater

than one.

2.3.2 Address Option Field

The address option field contains alphanumeric characters that
represent Computer address options (Table 7.5) or it may also con-

trol certain pseudo-operations.

2.3.3 Control Field

o The control field may be blank or alphanumeric. It represents
the Computer logand control field, and extends the function of certain

pseudo-operations. (Refer to Table 7.8.)

0 2.3.4 Secondary Field

The secondary field may contain Computer éecondary commands,
test condiﬁons, scratchpad addresses, operands for some pseudo-
_operations, or symbols. (Refer to paragraph 2.1 for definition of the
term '"'symbol".) If a primary command occuré in thebﬁoperation field,
symbols or scratchpad addresses are permitted only if the address
6ption is IL or DL. If a shift-type primary command occurs in the
operation field, the secondary field must contain either the letter
"R'" or the letter '"L" to specify direction of shift, and a decimal
integer between 0 and 15 inclusive, specifying the number of shifts.
When symbols are used, they may be combined in any one of six
ways: "ABCt5", 'iSiABC", or "ABC+LMN", where letters repre-
sent symbols and integers represent fixed numerical quantities.

The special symbol * is defined as "the present value of the
instruction counter'. Another special symbol, *%, representing
binary zero, may also be used. ;

The range of address magnitﬁde allowed in the scratchpad for
the secondary field is 00-63 when the operation field includes a
primary command. If scratchpad addresses exceed these values,

only the least-significant six bits of the binary equivalent are retained.

3.0 USE OF THE PROGRAM ASSEMBLER (See Figure 3-1)

3.1 INPUT PREPARATION

In using the Program Assembler, the programmer must first
prepare his program. A '"Logramming Sheet, ' similar to that
shown in Figure 5-1 is convenient for this purpose. After the
logands necessary to perform each ultimate machine operation
are determined and logrammed, each logram may be assigned a
symbol. The symbols used may be arbitrarily chosen by the pro-
grammer, and need only satisfy the requirement that at least one
character be non-numeric and that no character be an asterisk,

a dollar sign (except in the case of system symbols that use the

dollar sign) a plus, or a minus. The next step in preparing the
program is to arrange the symbolic lograms in the desired se-
‘quence to accomplish the aim of the program, and then to have
cards punched for input to the Program Assembler.

Each program for assembly must contain, in order, a title
card, an origin card, the logand cards which contain the symbolic
program, and an end-of-assembly card. These cards must all
be supplied by the programmer. (See Figure 3-2.)

The title card, which supplies the name of the program for
printing on the final listing and punching on paper tape, contains
the title desired by the programmer. |

The origin card (actually the first or second logand card)
contains the pseudo-operation ORG and the desired starting loca-
tion of the program.

The end-of-assembly card contains the pseudo-operation
END and the desired starting address of the program.

When the input deck has been punched and converted to tape,

it is run through the Program Assembler.

CODE
SHEETS

KEY PUNCH

VERIFY

THIS IS THE ASSEMBLY

OPERATION

OUTPUT IS
OPTIONAL

Ve

|

'

SYMBOLIC
DECK

TYPEWRITER

ouT

LISTING

Figure 5.2

'

PREPARE
TAPE

(PAPER)
1BM 063

PAPER
TAPE
(symBoLiC)

COMPUTER
ASSEMBLE

ouT

THESE OPERATIONS DEPEND
ON THE EQUIPMENT
CONFIGURATION.

THE OBJECTIVE IS TO
PREPARE SYMBOLIC
PUNCHED TAPE.

TAPE
PUNCH

PUNCHED
TAPE :
PROGRAM

—_————— ————-

EXECUTE
ASSEMBLED
PROGRAM

COMPUTER
EXECUTE

(END CARD
/ . //’

SYMBOLIC PROGRAM
¢ ORe camD e

(PCH CARD ¥
—

(x. D. CARD

The first card is an identification card.

%*The next card is an optional card. If included, it will control
punching the output. Following the PCH card if included, or the
I. D.card if the PCH card is not included, are the symbolic pro-
gram cards. The first card of the symbolic program deck is
the "ORG" pseudo-operation and the last card of the symbolic
program deck must be an "END'" pseudo-operation.

Figure 3-2. Typical Symbolic Deck

3.2 SYSTEM SYMBOLS

Certain '"'system symbols' have been included in the Program
Assembler; these symbols are denoted by a dollar sign ($) as the lead-
ing character of the symbol. Many of these symbols provide internal
instruction to the Program Assembler, but others may be used by the
~ programmer within the operational program. These symbols are
permanently defined, and so need not be defined for each individual
program; thus, they may appear only in the secondary field of logé,nd
cards. (See Table 7.1 for system symbols.) However, the contents
of these cells are not loaded. A total of 1015 symbols may be gen-

erated (including system symbols).

3.3 ERROR ALARMS

Seven different error alarms are provided in the Program Assem-
bler. Errors, if present, are indicated only on the printout program
listing; program assembly is continued despite an error. Error alarms

and their meanings are listed in Table 7.2.

4.0 OUTPUT OF THE PROGRAM ASSEMBLER

Output of the Program Assembler is a printout listing of the
program as as serhbled, including all remarks, and all error alarms
developed. If a PCH pseudo-operation is included in the symbolic
deck, the punched paper tape is also output at this time. The list-
ing may be inspected to insure accuracy of the punched-tape pro-
gram, and to determine the causes of any error alarms.

Two punched-tape output formats are possible. One is a
five-level teletype code; the other is an eight-level binary code.

Toggle switch four controls the selection of format.

5.0 SAMPLE PROGRAM

To illustrate in detail the use of the Program Assembler,.a sample
program is shown in Figures 5-1 and 5-2 and is discussed in the fol-
lowing paragraphs.

The problem which this program is designed to solve is expressed
in words as follows: '"Multiply the sum of three parameters by a fourth
parameter, storing for future reference the sum of the first two, the
sum of the three, and the final product."

Algebraically, the problem may be stated: "Find Z (A+B+C),
storing (A + B), (A + B + C), and the final product.' '

From the algebraic statement of the problem, the programmer
decides that lograms for computing (A + B), for adding C to the sum,
for multiplication, and ,for(storing results, suffice. He then, by use
of a logram library, ''lograms" sequences of logands which accom-
plish these four operations.

By reference to the logram library, he finds that the necessary
lograms are: ADi, LD1, MPI1, and STH{.

In addition to these four symbols, which roughly correspond to
the "operation codes'' of other types of computers, other symbols must
also be defined. These symbols include G1, G2, G3, and G4, repre-
senting the locations of the four parameters of the problem; H1i, H2,
and H3 representing the locations for storage of the results; and START,
representing the start of the prbgram.

| With all symbols chosen, the programmer's next step is the writ-

ing of his program. This results in the following symbol sequence:

OPERATION QUANTITY or LOCATION
LDt | G1 |

AD1 Gi + G2

ST1 at H1

AD1 G3

ST1 at H2

MP1 by G4

ST1 at H3

The pvrogrammer is now ready to prepare his input deck. As
described in pai-agraph 3.1, certain additional cards must be added
to the above symbol sequence. The listing, which the input deck gen-
erates, . is shown in Figure 5-2. It has been prepared on the '"Logram-
ﬁxiﬁg Sheet'" of Figure 5-1, on which each line represents a single
- card and field division is indicated. ‘

A punched tape is prepared from the logramming sheets. This |
tape is then run through the Program Assembler.: Assuming that the
second logand card contains the pseudo-operation PCH, and printing
‘has not been suppressed with a SUP card, output from the assemblerv '
is the printout listing and the punched paper tape. The printout list-
ing contains the information on the output punched paper tape, the |
‘information entered on the input cards, and diagnostic information

"in case ‘of errors. The printout listing for the sample problem is
shown iﬁ’Figure 5-2: | ‘ , S ' _

The column at the extreme left of Figure 5-2 shows the mem--
ory locations assigned to each line; addresses of these locations are
expressed in octal notation. The column of numerals appelar,ing sec-
ond from the left is the Computer program punched in the paper tape;
on the tape, it appears as a sequence of octal digits rather than being
broken dp-ﬁve digits to a line as it is in the printout. The other en-
tries, for the most part, duplicate the card entries shown in Figure
5-1. N

One entry which does not duplicate Figure 5-1 is that on line
31, sheet 1, _identified b'y' "PAC' at the extreme left of the line. This
is an error alarm. The entry, "ILLEGAL", appearing in the opera-
tion fieid of this card is not an allowable entry. As a result, the

error alarms were set.

10

T

KRG COLOK | |
RED GREEN . WANILA % LEFT mg‘g LO G RAM M l N G S H E E T “ RAMO-WOOLDRIDGE
XX XX A oivision of Thompson Ramo Wooldridge Inc.
YO BE FILLED IN BY DISPATCHER: TO BE FILLED IN BY PROGRAMMER! DATE PAGE OF
SEQUENCE NO. PROGRAMMER'S NAME Dr. Reebe 3
PROBLEM NO. KEYPUNCHED BY.____ . VERIFIED BY
DATE: PRIORITY: 1 DATE DATE
TIME: NO.OF CARDS TIME TIME
K : REMARKS SEQUENCE
OCATION |OPERATION|ORESS| SECONDARY FIELD NUMBER
‘ orrion ¥ 1l L L E | A | P | M | OT
' i ol 12]i3fie 267 28| [30 37 44 81 88 o8 7|72)
I T 1 1 1 1
Identification Infofrmatioh { | I 1 | |
1
PCH | Punch ,ll"ape Desgred ! ! !
1 ¥ T ¥ T
*Sample Pfoblem : L | | | | |
] i | | |
@RG 100 I ! " | | |
i 1 1 Y T T
Start LP D NG@ , Start the Interpretive Mode | |
) |
PZE #42 | ' ! ' ! |
l I 1 I T T
LP DP| | NO 1 | 1 | | |
K [
| | | | |
PZE LD1 1 N ! 1 1
I 1 1 T 1 t
G1 ' I I I I I
| | |
PZE ADI ! I ! ! . .
I T 1 1 T 1
G2) | I I I |
1
| | |
PZE ST1 | . i ' \ !
l ¥ T '[1 1
Hi1 1 | | | | |
I | I | | |
PZE AD1 1 ! 1 ! 1
‘ L] 1 T T T
G3 ,] | |] |
- 1
| 1 | i
PZE STt | . | . ! N
: 0 1 1 T t t
H2 N | | | | |
1
PZE | MP1 1 ! ! l ! !
T 1 t t t t
G4 \ | 1 | i |
1] 1 | |
PZE ST1 | 1 | | |

FORM 2204

Figure 5-1

27

CARD_COLOR

T

MANILA

LEFT | RiGuY

LOGRAMMING SHEET

” RAMO-WOOLDRIDGE
A owision or Thompson Ramo Wooldridge Inc.

TO BE FILLED IN BY DISPATCHER:

TO BE FILLED IN BY PROGRAMMER!

DATE

PAGE

OF

SEQUENCE NO. _{» MMER'S NAME z 3
PROBLEM NO. KEYPUNCMED BY VERIFIED BY.
OATE: PRIORITY: OATE DATE
TIME: , NO.OF CARDS TIME TIME
. | j ;
LOCATION |oPEmATION geggs‘lg SECONDARY FIELD T L E LA “‘l'“""P | M VI o/T ouBER.
' sfr i 12]isfe |so 37 4 8 (89 K 7lrz 00|
| - T 1 T v T
H3 } | | | i |
PZE *+1 | ! | | ! !
1 T 1 T | T
BR | DM|F UN 1 | | I A |
H] | I T
Gi ACT 5 | ! i 1 1 1
- 1 T T 4 T v
G2 @CT 6 | | |] | 1
K L
G3 PZE 4 | ! ! ' !)
1 T T 1 T T
G4 BCIH | 1 AB) | I | | |
1 l B
Hi BCIS | -- A I 1 ! ! ! : !
l N 1 T 1 ¥
H2 BCIT | 1 4 ! | | i | |
1
H3 NAD Start | ! ! | ! !
' T) T] 1
Illegal Ope rg}ion Code ' | | | | |
. i | |
*Load - Sihgle } = : ; : :
LDt NQ P NQ ; | I | 1 [
SE DL| | $AL | ! l ! ! !
| 1 1 1 T L
SP DL} | $IiC) | | 1 | |
. [
| | l | {
LP DP NQ 1 1 1 M "
! i i | i i
*Store Logfram N
=¥ ! [[1 I I
ST1 LA DM| | $AL 1 N . X N .
T T T 1 1
st ||| no : [l [! X
|] 1 1 1
SP DL $I1CI | :] | | |
FORM 2204
Figure 5-1. continued

€T

CARD COLOK T TOY
RED GREEN MANILA LEFT | RIGHT LOG RAM M I N G S H E E T “ RAMO-WOOLDRIDGE
A owvision of Thompson Ramo Wooldridge Inc.
TO BE FILLED IN BY DISPATCHER: TO BE FILLED IN BY PROGRAMMER! DATE PAGE oF
SEQUENCE NO. PROGRAMMER'S NAME 3 3
PROBLEM NO. NKEYPUNCHED BY ______ VERIFIED BY
PATE: PRIORITY: DATE DATE
TIME: NO. OF CARDS TIME TIME
Ao 1§ ! REMARKS SEQUENCE
LOCATION |OPERATION| DRESS| 2 SECONDARY FIELD | NUMBER
OPTION L E A P M D/T
[s|7 ol 2| sl aefer 28] |30 !:1 !« !sl 88 !u nir2 90

LP DP N@
*Add Logrdm
AD1 NG P NO

AS | pL| | $AL
SA pL| | $AL

SP DL | | $1CI

LP DP NQ@

| MP1 NO P ccC
*The Multiply Logrlam Wopld Be in Here

* The Code| Is Left|Out

LP IL $ICI

END START

- - -3+ J—-—F J-+—-]—F=]—t —=[—F—~—+ —
—_—d —_—t - —t |-+ |-t =t = — =4 —]— 4

—— |- = -t -4 - |-+ -+ - |-4+=[-F—-T— |- |— T

e] e e e e e e A | e | e e e e — e | — o
—m e o | e e | — [e e = e e e — |-

e | e ——] — . —— e —— e —— e — [[— g o [— e o | — anfe cvine | o—

FORM 2204

Figure 5-1. continued

* IDENTIFICATION INFORMATION =~

PCH PUNCH TAPE DESIRED
¥SAMPLE PROBLEM

Q014Y ORG 100
00144 62000 START LP DM NO START THE INTERPRETIVE
00145 00147 PZE %42 MODE
00146 62200 LP DP NO
00147 00177 PZE Lol
00150 00167 61
00151 00207 PZE AD1
00152 00170 62
00153 00203 PZE sT1
00154 00173 - nl
00155 00207 PZE AD 1
0015¢ 00171 63 ,
00127 0020 PZE st "
00160 0017 , H2
00161 00214 PZE Mp 1
00162 00172 al
00163 00203 PZE sT1
0016 oo1g2 H3
00165 001 PZE *+1
00166 20060 BR DM F UN
00167 0000 el ocT 2
00170 0000 G2 ocT
00171 0000k Gﬁ PZE il
00172 02122 G BCIHI AB
00173 00537 Hl scis | A
0017 6620u H2 BCIT] 4
0017 34 w3 NAD START

pac 0017 0000 ILLEGA L OPERATION CODE

¥LOAD = SINGLE
00177 606Q0 o1 NO 1P NO

00200 22162 SE DL AL
00201 2171 SP DL ic
00202 62200 LP DP NO

¥STORE LOGRAM
00203 75162 sT1 LA oL $AL
0020 2600 SE 1P NO
0020 2171 sp oL $ic
00208 62200 LP DP NO

*ADD LOGRAM
00207 60600 apl NO IP NO

00210 73162 AS DL AL
00211 50162 SA DL AL
00212 2171 ‘ SP DL 51 ¢
00213 62200 LP DP NO

00214 60607 wmp1 NO 1P cC
®¥THE MULTIPLY LOGRAM WOULD BE IN HERE
¥THE CODE 1S LEFT OUT ‘

00215 62571 LPoIL $ic
00714y END START
Figure 5~2

14

6.0 DETAILS OF OPERATION

The purpose of the Program As serhbler is to translate a cbm-)
puter program from an arbitrary language specified by the user info
the machine language of the AN/UYK-1 (TRW-130) Corhputer. This
purpose is accomplished thfough "dictionéry look-up' techniques.

‘ As mentioned earlier, memory size requires that the aséem-
bler operate in two '"passes'. During the first pass, the 'dictionary'}
. or symbol table, is compiledby sorting out all definition entires and
listing them in memory. During the second pass, all "translation"
is accomplished and the program is assembled as a series of octal
numbers which specify the Computer actions desired in the opera-
tional program. The actions occurring during each pass are described
in detail below.

. Since it may be undesirable to have any ''splices'' in the final
punched tape, a ''tape copy'' routine is included in the Pro‘gram
Assembler. The purpose of this tape copy routine is to read a
""load' routine and punch the '"load' routine on the output tape. Toggle

switch five controls the selection of this routine.

6.1 PASS ONE

The first step of Pass One is to read, print out, and punch out
the first entry on the input tape. This is invariably the "’he‘rad‘ing card",
which contains the title of the program being assembled, and éhy other
information deemed pertinent by the programmer. B .»

- The assembler then reads in the second entry on the tape and
- inspects the operation field to see if this is a PCH card. If it is_,y a
flag is set which causes the output to be punched out on paper tape
duiing Pass Two; "PCH'' is printed out; and the assembler enters a
loop which begins with the reading of the next card. Note thap in order
to get punched output, the PCH card must be the second entrgr on the
input tape. |

15

If the fir st non remarks card is not an ORG card, the comment

"no ORG Card", along with the contents of the ¢ard ias printed out, the loca- '

tion counter is set to 64, and the card is processed.

The assembler checks each card for the presence of an asterisk
in card column 1, indicating a remarks card. With a remarks card
the assembler merely skips back to read the next entry,

A table search is made to determine if each card contains one

of the. féllowing pseudo-operations:

a. Read
“ b. 'Dump
"¢, PRT
d. PCH
e. SUP
f. ORG
g. DECD
h. BCIH, BCIS, BCIT
i. RES
j. EQU, EQUB
k. END
1. PAUS "

If the entry is one of the first five in the table above, it is skipped
over and the next entry is read in,

If the entry is an ORG card, the secdndary field is inspected. If
the secondary field is an allowable entry, it is converted to its octal
} equivaleﬁt, then stored in the location counter. If the secondary field
- is not an allowable entry, the secondary field error code S is printed
out, along with the contents of the card, and the location counter is set
to 64. In either case, the next action is to jump out of this loop to proc-
ess the rest of the cards. ,

On a DECD entry, the location counter is incremented by two..

On a BCIH BCIS, or BCIT entry, the location counter is incre-
mented by the value in the address option field of the card.

16

A RES entry causes the location counter to be incremented
by the value in the secondary field. ' '

If the entry is either EQU or EQUB, the location counte.’r is not
modified, and the symbol in the location field is entered in the sym-
bol table equated to the value in the secondary field.

In all cases, the location field is checked and any symbols de-
tected there are inserted in the symbol table. If the symbol table
is full when an entry is attempted, a cell which is normally clear is
filled with the address of the first symbol that failed to load in the
symbol table.

- A PAUS pseudo-operation causes the Computer to stop.
Processing is continued when the operator presses the FLAG button.
The location counter is fmchanged. ' ' '

- When the END card is detected, all multiply-defined symbols
are printed out, and if the symbol table is full, the address of the
first symbol that failed to load is also printed out. ‘

Any errors detected during this pass result in the contents of
~the card being printed out, along with a code S, A, or L, designating
whether the error was in the secondary field, address option field,
or location field of the card. '

Before each entry is read from the symbolic tape, toggle switches
15 and 1 are interrogated. If both switches are up, this assembly is

terminated, and the computer will await the next assembly.

6.2 PASS TWO

The second pass performs three functions before entering its loop.
In order, the second pass sets the location counter to 64, reads the first
entry (title card) and sets the '""Print'' switch to ""on''. It then enters
'its loop by initializing. ’ ,

The first step of the loop is to zero the data word cell and error

alarm cells. The next entry is then read into memory. If toggle switch 15

17

is Mup" (1), the assembler interrogates toggle switch 1. If one is up,
the assembler transfers to the end pseudo-operation routine. If an
asterisk code is present in the first card column, the entire entry is
printed and the loop is closed.

If the asterisk code is not present, the assembler checks the
location field for a permissible symbol. If the symbol is not permis-
sible, error alarm L is set.' The assembler checks the operation
field of the entry for any of the 20 pseudo-operations codes. If any
one of the codes is present, the assembler transfers control to the
appropriate pseudo-operation routine (Paragraph 1-21).

If none of the codes are present, the assembler checks the code
for any of the 54 primary command codes. If none of the codes are
present, error alarm "P" is set, and the assembler treats the entry
as if it were a "No'" primary command.

If a pfimary command code is present, the appropriate logand
code is retrieved from a table of logands and set into the data word
cell. The Assembler then transfers to one of eight routines to proc-

ess one of eight classes of logands.

The eight classes of logands (for purposes of the Program
Assembler) are: | '

a. Class I NO, LA, LP, LT, LM, RA, RP, RT, RM, AP,

AT, ZE, XA, MA, XE, ME, DX, CS, CC, CH,
SE, SA, SP, ST, HA, HP, HT, HM, WI, W@

Class Ia Class I address options
DM, IM, DP, IP, DA or IA

Class Ib Class I address option
DL or IL

b. Class II AS, AL, Al or AM

c. Class III SO, SC, NR, or FL

d. Class IV MS, MP, DV

e. Class V BR, SK, MV, TB, MH, SR, BI, B®

f. Class VI EF, CF

18

g. Class VII RC

h. Class VIII IT, TM

6.2.1 Class I Logands

The address Optibn field is checked for one of eight permissible
codes: DL, IL, DM, IM, DP, IP, DA or IA. If none of the codes are
present, error alarm "A'" is set, address option DM is set into the
data word, and the assembler proceeds to the class Ia logand routine.

If any of the codes are present, the appropriate machine code
is set into the data word cell. If the address option is DL or IL, the
- assembler transfers to the logand class Lb routine; otherwise, the

assembler transfers to the logand class Ia routine.
o
Class Ia logands - Class I, DM, IM, DP, IP, DA, IA
Address Options

The assembler checks the control field of the entry for the pres-
ence of a blank, C, B, N, or H code. If none of these codes is present,
error alarm "C'" is set, and the machine code for "C'" (0) is set into
the data word (bits 5 and 6). If any of the codes are present, the ap-
propriate machine code is set into the data word. ‘

The assembler then checks the secondary field for a secondary
command code. If the code is not permissible, error alarm "S" is
set and the machine code for "NO' (00) secondary command is set
into the data word (bits 1-4). If the code is permissible, the appro-
priate machine code is set for the secondary command. The assem-

bler then transfers to the output routine.
Class Ib logands - Class I, Address options DL or IL

The secondary field of this class of logands consists of three
quantities: 1) address, 2) operation, and 3) modifier. The address
and modifier may be either a symbol or a decimal integer. The oper-
ation may be either add or subtract. For example, the secondary

field may be x+1, f+x, x+x, x-1, etc.

19

If either the address and/or modifier is a symbol, the '"diction-
ary'" is searched for the binary equivalent of the symbol. If the symbol
is not found in the "dictionary", errof alarm '"S" is set. If either the
address or the modifier is a decimal integer, the integer is converted
to an octal integer.
| The address and modifier are then combine.d' as indicated byv the.
operation and entered into the data word, modulo 64. The assembler

then transfers to the output routine.

6.2.2 Class II Logands - Add Type

The assembler checks the address option field for a p'ermissible
code. If the code is not permissible, error alarm "A'" is set. If the
address option field is IL or DL the assembler transfers to the class lb
logand routine. If the address option is neither a DL nor an IL code,
the assembler checks the secondary operation code. If the code is a
"NO' secondary operation code, the assembler transfers to theclass Ia.
logand routine. If the code is not a '"NO'" code, error alarm "S'" is

set and the assembler transfers to the class I, logand routine.

6.2.3 Class IIl Logands - Shift Type

Since the address option field must contain a DM address option,
no check is made of the address option field. The logand is always
assembled with the DM address option machine code.

The control field is checked for an S or D code. If either is
present, the appropriate machine code is set into the data word (bit 6).
If neither is present, error alarm ""C'" is set and the code for S (0) is
set into the data word. |

The assembler then checks the code in card column 14 of the
entry, for an R or an L. If neither is present, error alarm '""C" is
set and the machine code (0) for a right shift is set into the data word
cell. If either is present, the appropriate machine code is set into
the data word cell (bit 5).

20

The assembler then checks the remainder of the secondary
field for a decimal integer. This integer is converted to an octal
integer and set into the data word cell, modulo 16. If a decimal in-
teger is not present, error alarm "S" is set, and 0 is set into the

data word cell. The assembler then transfers to the output routine.

6.2.4 Class IV - MS, MP or DV Logands

This class of logands is assembled with a DM address option
regardless of the contents of the address option field of the entry.
The secondary field is checked for a decimal integer. If no decimal
integer is found, error alarm ''S" is set, and zero is set into bits 1-4
of the data word cell. If a decimal integer is present, it is converted
to an octal integer, and set into the data word cell, modulo 16." 'I_‘he

assembler then transfers to the output routine.

6.2.5 Class V - Logands Requiring a Condition in the Secondary Field

The assembler checks the address option field for a permissible
code (DM, IM, DA, IA, DP or IP). If the code is not permissible, er-
ror alarm "A" is set. If the logand is an MV, SR, TB, BI, B®, or
MH, address option IP is set into the data word cell; if the logand is
a BR or SK address option, DM is set.

If the address option field is permissible, the appropriate ad-
dress option machine code is set. For this class logands, DL and IL
address options are not permissible. v
: The assembler then checks the control field for a blank code or
an F code. If neither code is present, error alarm "'C" is set and
the machine code (0) for a blank is set into the data word cell (bit 6).
Finally, the secondary field is checked for a permissible condition

~code. If a permissible code is not found, error alarm "S'" is set
and the machine code (00) for an ""UN" code is set into the data word
cell. If a permissible code is found, the appropriate code is set into

the data word cell, The assembler transfers to the output routine.

21

6.2.6 Class VI - CF or EF Logands

- The address option field is checked for a permissible code. If
the code is not permissible, error alarm "A" is set. If a permissible
code is present, the appropriate machine code is set into the data word
cell. '

The logand is then treated as a Class Ib logand.

6.2.7 Class VII - RC

The logand is assembled as a regular (Class I) logand, except

~that a decimal integer must be found in the seconda'ry field.

6.2.8 Class VIII - IT or TM Logands

Since these logands require an IL address option, the address
option field is not checked. The secondary fields of these logands
are treated as the class Ib logands.
, The output routine accomplishes the following functions: 1)prints
- the hard copy listing of the assembled program; 2) punches a paper
tape of the assembled program; 3) adds one (modulo 8192) to the loca-
tion counter. At the conclusion of these functions, the assembler

transfers to the beginning of its loop and initilizes for the next entry.

6.2,9 Pseudo-Operation Subroutines

If pseudo-operations are used by the programmer, they are in-
dicated by special coding in the operation field of each entry. Upon
detecting this coding, the assembler transfers to the appropriate sub-

routine of the following twenty.

6.2.9.1 ORG
If an "ORG" code is present, the next action is to check the
‘secondary field. If the entry is permissible, the location counter and

data word cells are set to the value contained in the entry. The routine

22

then prints output, clears any alarm indicators, clears the data word
cell, and closes the loop by reading the next entry.

If the secondary field entry is not permissible, the S error indi-
cator is set and the program jumps to "LOOP CLOSE". If the entry
is undefined, the U error indicator is set and the jump to "LLOOP CLOSE"

made. The entry is treated as ORG 64 on any error alarm.

6.2.9.2 EQU or EQUB

If either an '"EQU" or an "EQUB" code is éresent, the location
field is then checked. If its entry is permissible, the address is set
into the data word cell. The routine then performs the "LOOP CLOSE"
subroutine except that the location counter is not incremented.

If the location field entry is either blank or is not permissible, -
the L error indicator is set, the output is printed, and loop is closed

by reading the next entry.

- 6.2.9.3 RES

If a "RES'" code is present, the contents of the location counter
are set into the data word cell. The secondary field is then checked.
If its entry is permissible, the location counter is incremented by the
value contained in the secondary field, printed and punched, the alarm
indicators and the data word cell are cleared, and the loop is closed
by reading the next entry. ,

If the secondary field entry is not permissible or is ﬁhdeﬁned,
the appropriate indicator is set as described in subroutine "ORG" and
the routine jumps to "LOOP CLOSE". ' |

6.2.9.4 OCT or DEC

If either "OCT" or a "DEC' code is present, the secondary field
is checked. If it is in any way erroneous, the S error indicator is set
and the routine jumps to "LOOP CLOSE". If the code is proper, its
value is set in the data word cell and thé routine jumps to "LOOP CLOSE"™.

23

6.2.9.5 DECD

If a "DECD" code is present, the secondary field is checked. If
it is in any Way erroneous, the S error indicator is set, the location
counter is incremented by two, and the loop is closed by reading the
next éntry. If the field entry is proper, the first part of the secondary
field value is set into the data word cell and the second part ié placed
in temporary storage.‘ Then, the output is printed and punched, the
alarm indicator is cleared, the data word cell is cleared, the location
counter is incremented by one, the second part of the entry is set from
temporary storage into the data word cell, and the routine jumps to
"LLOOP CLOSE'. ‘ ’)

6.2.9.6 PZE or BLANK

I a'PZE" or "BLANK" code is present, the secondary field is
checked. If the entry is undefined, the S error indicator is set and
the routine jumps to '""LOOP CLOSE". If the entry is not permissible,
the S error indicator is set and the routine jumps to "LOOP CLOSE".
If the entry is proper, the data word cell is set to the value contained
in the secondary field, the loop is closed in the same manner as de-
~ scribed in "ORG".

6.2.9.7 NAD

- If a '"NAD" code is present, the secondary field is checked. Any
errors are treated as described above under "PZE". If the entry is
proper, the two's complement of the secondary field value is set into
the data word cell and the sign bit of the symbol table address checked
and the loop closed as described under "ORG".

6.2.9.8 END

If an "END" code is present, the secondary field is checked. If

it is undefined, the S error indicator is set and the program halts. If

24

it is too large, the S error indicator is set and the program halts.

If it is not permissible, the S error indicator is set and the program
halts. If the entry is proper, the seconda.ry field value is set into

the data word cell, the outpuf printéd and punched, any alarm indi-
cators cleared, the data word cell cleared, the location counter incre-
mented by one, and the program halts with an optioh to‘ continue for the

next assembly.

6.2.9.9 PAUS

If a "PAUS" code is present, the assembler stops. When the
"ELAG'" switch is depressed, the assembler reads the next entry.
This pseudo-operation permits the assembling of more than one reel

of paper tape.

6.2.9.10 PRT

If a "PRT" code is present, the "PRINT" switch is set to ''on"

and the assembler reads the next entry.

6.2.9.11 SUP

If a "SUP" code is present, the "PRINT" switch is set to "off"
and the assembler reads the next entry.

The above two pseudo-operations permit the programmer to
print under program control. The "PRINT'" switches are altered each
time either of the pseudo-operations are encountered, thus the pro-

grammer may print certain portions of his assembly.

6.2.9.12 PCH, READ, DUMP

If any of these codes are present, PASS TWQ ignorés the entry.
If a PCH is present, the PCH switch is set to "on'" during Pass 1.
The READ and DUMP pseudo-operations are used during simulation

and are meaningless on the machine.

25

6.2.9.13 BCIH, BCIS, BCIT

These three pseudo-operations permit the programmer to enter
binary coded information into memory. The basic difference between
these pseudo-operations is the final code set into memory. The BCIS
pseudo-operation packs Soroban code and the BCIT pseudo-operation
packs teletype code. - The BCIH pseudo-operation packs Hollerith cbde.
(See Table 7.9.)

The assembler first checks the address option field for a decimal
integer. If a decimal integer is not found, error alarm "A' is set, and
one word of the BCI information will be formed.

If the pseudo-operations code is BCIH, two characters of Hollerith
code are packed in each word. The first character occupies bits 7-12
and the second bits 1-6.

If the pseudo-operation is BCIS, or BCIT, three 5 bit characters
are packed per word into bits 11-15, A6—10, and 1-5. The code packed-
is either Soroban or teletype code. Character shifts are emitted as

necessary.

6.3 INPUT-OUTPUT

The I-0's of the Program Assembler are written so that they are
as independent of the assembler as possible. The input routines mu.st
convert from one code (teletype) to another (Hollerith). The output
routines convert from Hollerith code to either Soroban code for the
typewriter or teletype code for the tape punch. The I-0 routines were
written as lograms so that a logram is executed each time an input or

an output is desired.

6.3.1 Input Routine

Upon entry to the input routine, the routine reads a punched paper
‘tape., The data it reads represents the information contained on one
symbolic logand card. The format of each tape entry is as shown in

Figure 6-1. The routine converts from teletype code to Hollerith code

26

The symbohc tape format produced by the IBM 063

using the control panel of Figure 6-5 is as follows:

f1§::gscgfu$;telrs } symbol in card column {

symbolic information
from card; character
shifts as necessary,

'

*card column 50
carriage return
line feed } |
letters end of card symbols
figures

Figure 6-1. SymbolichapebFOrmat

"‘ThlS card column is controlled by Hub A in the Flgure
6-5 plugboard which produces the last column read
by the assembly program. :

27

and creates a card 'image' in core. Each cell in the image contains
the character of (right adjusted) one column on the input card. The
Program Assembler operates on this image after return from the input

routine.

6.3.2 Output

Output from the Program Assembler is typed on hard copy listings,
or is punched on tape. The Program Assembler enters each routine, as
necessary, to produce output. The output routines check to see if out-

put is desired.

6.3.2.1 Typed Output Routine

When the Program Assembler enters this routine, . it checks the
toggle switches to see if output is desired. If toggle switches 15 and 2"
are up, no output is desired, so the Program Assembler exits from
the routine.

If 2 is down, the routine checks the print switch. If the pyrint
switch has been set (as a result of the PRT pseudo-operation), the
routine prints the current entry. . If the print switch is off (as a result
 of the SUP pseudo-operation) no printing is desired, so an exit is made.

Two entrances to the typed output routine can be made. If one
entry is made, the routine outputs an entire entry, including the sym-
bolic information and the computer-generated data. If the second entry
is taken, the location counter is not printed. If the routine detects an

asterisk code in card column 1, only the symbolic information is typed.

6.3.2.2 Punched Tape Output

Upon entry to this routine, the 'punch" switéh is checked. If
it is "'on", (as a result of a PCH pseudo-operation as the second 'logand),
a punched tape is to be prepared. If it is "off", a punched tape is not
to be prepared.

28

Two tape formats can be punched. If toggle switch 4 is down,
the five level teletype format described below is punched. If toggle
switches 4 and 15 are up, the eight level format described below is

punched.

6.3.2.2.1 Five Level Teletype Format. The three entrances

to this routine are: 1) normal, 2) reserve, and 3) end of assembly.

At the normal entry, the above check is made. If output is
not desired, an exit is made, If output is desired, the output word
is saved until 10 words have been accumulated. If the previous entry
to the routine produced output, the location of the entry is saved.

In either event, the check sum is formed.

When 10 data words have been accumulated or when a reserve
entrance has been made, the routine punches a tape. ' Up to 10 data
words, the location of the first data word and the check sum are
punched in the format shown in Figure 6-2. |

After the tape has been punched, the routine checks the togglé
switches to see if further punching is desired. If toggle switches 15
and 3 are up, the punch switch is turned off. If either is down, the
punch switch is left as it is. o

If the end of assembly entrance is made, the routine outputs
40 letter shift codes (37). Then the end or branch con’trbl card is
punched as shown in Paragraph 1-27. ‘

In addition to teletype control characters, the punched paper
tape contains the following: |

a. An ID block containing in teletype code the information

punched on the ID card, followed by:

b. A series of program blocks, each of 'whi_ch- has the
following format: ‘ R

Characters 1 - 3: $DB
Character . 4: Space
Characters 5 - 6: The data word count

Characters 7 -11: The octal address into which the first
data word on the card is to be stored.

Character 12: Space

29

figures)

]) 3

letters

D

B

space (or N, if a corrected card was inserted)
figures

nr. of data words on card

address into which data is to be stored

R R B B

space

figures
D
D
D
D
D
space

figures

{st data word to be stored

2nd data word to be stored

%UUUUU

etc.
space
figures
C
C
C
C
C
carriage return

check sum

N N e S

- line feed

letters

Figure 6-2. Punched Output Tape Format

30

Characters 13 - 72: Up to ten words of data in octal fol-
lows character 12. Each word is
five octal digits and is followed by
a space. If less than ten words of
real data are in the card, the check
sum will follow the last data word.
Note that characters 5-6 give the
count of real data words.

Characters 73 - 77: A check sum formed by summing
the octal address in characters 7-11
and the words of real data, treating
each as a 15-bit positive number with
end carry from bit 15 into bit 1. This
check sum was formed while the words
were still in binary form.

¢. The last program block is followed by an end (or transfer)

' block which contains $S as characters 1 and 2, followed by
four spaces and the location address (in octal) of the first
logand to bé executed.

The paper tape contains this information in teletype code. An AN/UYK-1
(TRW-130) loader and translator is available to load this program tape
into the Computer and convert it into binary. Thus, the paper tape can
. be used as input to the Computer or to produce IBM cards through the

- use of the 047. If cards are produced from the paper tape, the deck
congists of an ID card followed by program cards, with the last card
being a transfer card. Punching an "N'" in column 4 of any program

- card causes the check sum to be ignored. Correction cards can be hand
., punched and added before the transfer card. If an octal deck is to bé

- used on the Computer, the ID card must be the head of the deck, when
the cards are translated to paper tape via the 063. When the 063 card-
to~-tape machine reaches column 80 of the input octal card, the fbllovi/ing

‘telbetype codes are aut’omatically punched on the tape:

‘Carriage Return (02)

Line Feed (10)

Letters ‘ (37) ‘
Translation of the next card begins in column 1, and the ¢ard image on
tape appears as: (See Figure 6-4 for Assembled Card Input Format 063
Plugbdard.) N

31

6.3.2.2.2 Eight Level Binary Format. The same process

described under the teletype section is performed, except as notéd;
At normal entry, more than 10 words are accumulated. The
core memory following the symbol table is filled with the data words.
When the storage area is filled, the tape is punched. Since this stor-
age area allotment varies from one assembly to the next, it is impos-
sible to tell how many words will be punched. The format of the tape
is shown in Figure 6-3.
| At the end of assembly entranée, the routine simply outputs

the segment to that point, then outpits a final segment.

Each word on tape is as follows
15 87 i

Frame 1 Frame 2

That is, each 15 bit AN/UYK-1 (TRW-130) word occupies

two frames on the tape. The first frame contains the high
order 8 bits. The second frame contains the low order 7

bits, with the high order bit of that frame being zero.

The tape consists of N+1 segments. The first n segments
consist of Mp+4 words. The last segment consists of 2
words. The format of the ith segment is as follows:

37776 | Identification Word

B. Bi BiBiBi Beginning Address of Segment
EiEiEiEiEi Ending Address of Segment
DDDDD |

Mi Data Words

DDDDD
CiCiCiCiC' Check Sum of the Data Words
t 4 Inch Gap (40 Frames of Zero

Words)

The N+1 st segment is as follows: v
371710 Identification Word
S SSSS Address of Program Execution

Figure 6-3., Eight Level Binary Format

32

IBM INTERNATIONAL BUSINESS MACHINES CORPORATION o - FORM X24-8130-1

IBM 63 CARD-CONTROLLED TAPE PUNCH PRINTED IN U.S.A.
CONTROL PANEL
5 CARD COLUMNS 15
25 30
45 50
e
I———BUS ' BUS I
o—~o—o0—o0——o0 | o—o—0—o0—0 g
OM-GARD-= 8 2
° .0
129 1 0 129 1P o
m| 12l WO s s 3| HI AT 4
8 8 8@ @ 8¢ 8 8
sH— ““"‘9‘\
’ 999 79 6@ 59 49 39| 20\
- J” TO] TARE (PUNCH) .
96|89 70 59 50 40 3|2
S ,
N[O uo YO 10 RO E@iw
Ne se-c5 b0 FO \'\o 1p Ko\ L M‘o :
| BUS o \—ZT5— :C OF,|
.- 110—0 120—0 o—-o———o o‘x—”o o—o—go o—o
CCS \.OLUMN CQDE i
'o—-o——o———o PUg 90 80 70 60 50/40 30 20 10 o\s\'no}ol
SELECTORS—T—
Ioﬂo‘oiu—o oo i 0% L 020 § o—0 vx’oﬂ’—o oY § 0% \o Pl
Hoto | Howo | Hoip Hotp | Howp | Hoip/] Howd HOLD HOLD . oLp
o0 |o»0|O0>0]O>0]| O»>0 0-70 o0 | 0>0 | 0> 0 o
e
ot1oloto|oto|loToloroforoloTrTojotroloTo T
onNno|oNoO|oNO|ONO|]OKO|ONO|jONO]|ONO
4
ocolocolocolocolfocoloco oco loed
~ENTRY £ DISTRIBUTQRS-
olo|o|ojolo|lo|ldjo|lelolojojo|o]o
L EXIT——3——4——5—46——7 78— 91011 =124 13 14~15 416
o|lolololo|o|lolWo|lo]lo]o}o olo
olololo o
o w
Figure 6-4. ASSEMBLED CARD INPUT FORMATS

33

IBM INTERNATIONAL BUSINESS MACHINES CORPORATION FORM X24-8130-1

IBM 63 CARD-CONTROLLED TAPE PUNCH PRINTED IN US.A.
CONTROL PANEL
5— CARD COLUMNS — 15— 0.
0 0 S O O 0 0 O A A O A O O
(o] [e] [e) o S
25 ‘ |
I o o o) o)
[ITDT]] 1111
o 45
I o O o] o)
[TIT]] 1111
65
(o] (o] lo] fo) ‘
I o o I‘o I I o) I 1 I I
BUS BUS —BU
!c O o—c'olc O—O o .
FROM CARD g 2
1Jo 120"49,'?' o] 12¥ -\ __\i 142
Fadne ,"
'——SP——-1
9 8 7 4 3
~ T T Tom (PYNCH)
ollselse 70/ ¢co s0\49 3

o] | U

Y T E

——C—BUS X

O

N B CO DOi FO G® ul . kP

|

| o—0—0—0—o0

29 2\

—— COLUMN SPLIT SN CBC 0T
110——o0 120—0 | o—o—0 o%*0o o0—O0—0 | 0—0
PU CCS COLUMN CODE
| o—o0—o—0 | 0% 90 80 70 60 50 40 30 20|10 00 110 120 |
ELECTORS
I pu- % PU : PU 10PUOISCS’1'.)E<'(? o; PU PU sla PU 1|o PU
HOLD HOLD HOLD HOLD HOLD HOLD HOLD HOLD HOLD HOLD
o— O O—» O O—>» O O O Oo—» O O—» O o> O O o O o O

oro|loto|loto|loro|lotTo|loto|otT0ol|lo/fioloTo|loto
oNo|oNO|ONO|ONO|ONO|ONO|ONO |f/OoONO|ONO|ONO

oOCO o0 cCo ocCco ocCo oOcCOo oco OC(/OCO ocCco o0OcCo

~rENTRY T DISTRIBUTORS ENTRYH
(0] (O3NS BN ¢] o [e] (o} o} O o (¢] [0} O (e] O o (@] o [¢) o (o]

—EXIT—1+3 4—1-5 6—1-7 8—1-9 1011 12113 14115116 T-17118—1+—EXIT—
@) O (o] (¢] o o (o] o} o o O (@] o |0 o O o} o (¢]
O O (o] (o] (@] e} o] o (o] O O

NAME
USE

[¢]
BUS CARD READ ON——yl’—AUTO SKIP—-I—GP CHAR
l O—-=O0—0 O | r O O O O O O- O O—0 l —l

This diagram shows the wiring for card to taping 50 columns of in-
formation. If n columns are desired place wire A to the top of the hub
n. This causes a carriage return, line feed. Then place wire B to the
top of hub M+1. This causes letter, figure codes.

Figure 6-5. IBM Card-Controlled Tape Punch

34

7.0 Tables

35

Table 7.1. AN/UYK-1 (TRW-130) Scratchpad Allocation

Octal | System
Location| Symbol | - Use

00 $MIA Interrupt Control registers for Type II

01 $MIB (Miscellaneous) Interrupts

02 $PFA BR/DM/F/UN

03 $PFB PZE 00002

04 | $QCA Interrupt Control registers for Type I

05 $@CB Output Channel Interrupts

06 $ICA Interrupt Control registers for Type I

07 $ICB Input Channel Interrupts

10 $MIT Miscellaneous interrupt temporary storage
(Type II) :

11 $@CT Output Channel interrupt temporary storage
(Type I)

12 | $ICT Input Channel interrupt temporary storage
(Type I)

13 $T1

14 $T2

15 $T3

16 $T4

17 $T5

20 $T6

21 $T7

22 $T8

23 $T9

24 $T10

25 $T11 Logram Temporary Storage

26 $T12 .

27 $T13

30 $T14

31 $T15

32 $T16

33 $T17

- 34 $T18

35 $T19

36 $T20

37 $T21

40 $T22

41 $T23

42 $T24

43 | $T25

-36

Table 7. 1 AN/UYK-1 (TRW-130) Scratchpad Allocation

(Continued)

Oc tal

System
Location | Symbol Use
44 |s$ct
45 $C2
46 $C3
47 $C4
50 $C5
51 $C6 | -
52 $C7 Common Storage for Operational Programs
53 | $cs
54 $C9
- 55 ($C10
56 $C1t
57 $C12
60 $C13
61 | $AE AC exponent for Floating Point
62 $AL " |
63 - $AR AC ' o
64 $AT Least Significant Part of AC for Triple
Precision
65 $QE MQ exponent for Floating Point
66 $QL
67 $QR MQ ;
70 $QT Least Significant Part of MQ for Triple
Precision
71 $1C Instruction Counter - Primary
72 $1C2 Instruction Counter - Second Level Ldgrams
73 $RET Interpretive Return Address
74 $QV Pseudo Overflow Indicator
75 $DK Divide Check Indicator
76 $@NE 00001 (plus one)
77 ’$M¢N 77777 (minus one)

37

Table 7.2. Error Alarms

Alarm | ' Meaning

M ‘ Multiply defined address; supplied when the second
' definition for a previously defined symbol appears..

U Undefined address; supplied when an address appear-
ing in a secondary field does not appear in any loca-
tion field.

P | Operafidn' field error; supplied when the operation
- field does not contain a legal code.

A Address option field error; supplied when the address
-~ option field does not contain a legal address option.

C Control field error; supplied when the control field
does not contain an allowable control-field character.

S Secondary field error; supplied when the secondary
: field contains some nonallowable combination of
characters.
L | Location field error.

38

*

Table 7.3. Primary Command Mnemonics
o Machine Mne -
Mnemonic Code _ monic Machine
Code Bits (11-15) Function Code Code Function
NOQ . 60 No operation ST 40 | Store T
‘LA 75 Load A HA 51 Hold A
. LP 62 Load P HP 43 Hold P
LT 70 Load T HT 41 Holt T
LM 72 - Load M HM 53 Hold M
LA . 55 Replace A BR 20 Branch
LP 47 Replace P SK 24 Skip
LT 45 Replace T (0] 11 Shift Open
LM 57 Replace M SC - 03 Shift Closed
AP 66 Exchange A NR 13 | Numeric Right
' and P ' FL 01 Float Left
AT 64 Exchange A RC 07 - | Repeat Count
and T MP 15 Multiply
ZE 44 Clear E MS 17 Multiply Signed
XA 76 Extract TQ A DV 05 Divide
MA 74 Merge TQ A MV 32 | Move
XE 46 Extract TQ E MH 30 Match
ME 54 Merge TQ E TB 36 | Table Search
DX 56 Double Extract SR " 34 Sort
AS 73 Add Single CF . 25 Control
v Function
AL 63 Add Least EF 21 External
B ' Function
Al 61 Add Intermediate WI 27 Word Input
AM 71 Add Most WO 23 | Word Output
-CC 65 Complement, Cleay BI 37 Block Input
- CS 67 Complement, Set BQ 33 | Block Output
CH 77 Complement Hold IT 00 Interrupt
SE 52 Store E IM 10 Terminate
= Input
SA 50 Store A -
SP 42 Store P

Primary Command Mnemonics recognized by the Program Assembler. The

mnemonic code occupies card columns 7 and 8.

39

Table 7.4. Pseudo-Operations

Octal Data

" present value of location counter.
- zeros need not be supplied. Secondary’

Code Néme Operation

ORG | Origin Sets location counter to value indicated in
secondary field of card. If no legal quan-
tity exists in secondary field, location

' counter is set to 64.
% .

EQU Equals Defines symbol appearing in location field
of card to have value specified in secondary
field, and enters definition in symbol table.
Secondary field may contain either a pre-
viously defined symbol or a decimal integer.

. Symbols may be combined as specified in
paragraph 1-5. ,

EQUB | Equals Same as EQU except that secondary field

’ {Octal) contains an octal integer rather than a
symbol or a decimal integer. '

READ | Used for READ and DUMP cards are ignored, i.e.,

DUMP 7990 . they are treated as if they did not exist.

: Simulation
Program
RES Reserve Reserves a block of cells within object
: program. Number of cells reserved is
specified by secondary field; if no numbexr
or legal symbol appears in secondary
- field, only one cell is reserved.

PZE Plus Zero Clears one memory cell and enters into
it a 15-bit maximum address specified
by secondary field.

OCT " Converts number in secondary field to

binary and enters it in cell specified by
Leading

field may contain maximum of five digits,
each within range 0-7, and the sign + or -;
absence of sign indicates +. If sign is -,
two's complement of number is entered in
cell. -0 is assembled as 40000.

40

Table 7. 4. vaeudo-Operations (Continued)

Code Name Operation

BCIH Binary- Enters up to 23 words of binary coded information: -
Coded number of words to be entered must be specified
Information, | in address option field as decimal integer between
Code Hol- 1 and 23. Binary coded information itself consists
lerith of continuous string of any set of Hollerith charac-

ters, including hlanks. Two 6-bit Hollerith codes
are packed per word in bits 12 - 1.

BCIS Binary- Enters up to 14 words of binary-coded information
Coded using Soroban Code. Three 5-bit Soroban Codes
Information, | are packed per word.

Soroban ‘
Code

BCIT Binary- Enters up to 14 words of binary-coded information
Coded using five-level teletype code. Three 5-bit tele-
Information, { type codes are packed per word.

Teletype If, in any of the BCI operations, the word count in
Code the address option field is one digit only, this digit
may be punched in either column 11 or column 12.

DEC Decimal Converts number in secondary field to binary and

Data enters it in cell specified by present value of

location counter. Number in secondary field must
be entered as fraction and exponent: for example,
2450E3 = 245.0; and 2450E-2 = 0.002450. Actual
binary scale factor to contrpl position of word in
machine must be indicated by a letter B and a num-
ber between 29 and -29 inclusive which specifies
number of bits to be allowed for integral portion of
number, starting from bit 14. (Bit 15 is the sign
bit.) If signigicant high-order bits would be lost
from the left as a result of scaling, error indica-
tion is given and the word is entered as all zeros.
Secondary field may contain a maximum of five
decimal digits; decimal exponent is restricted to
range t9. Binary scale is restricted to range +29.

41

Table 7.4. Pseudo-Operations (Continued)

Code Name Operation

DECD Double Same as DEC except that word length is
Precision extended to 29 bits plus sign. '
Decimal

NAD Negative Provides word containing full 15-bit two's
Address complement of address specified in

secondary field, so that one address may
be '"'subtracted' from another to obtain
zero. ‘

PAUS Pause Program Assembler stops. Used if the
symbolic tape consists of more than one
reel of tape. . This pseudo-operation
generates no data.

BLANK None This pseudo-—o‘pe ration causes the same
effect as a PZE.

END End of Indicates end of object program. This
Assembly card must be last card of an assembly.
Secondary field contains starting address
of program.

PCH Punch If this pseudo-operation is the second card
of the symbolic deck, the Program Assembler
punches a binary tape. " ‘

PRT Print This pseudo-operation causes the print
' switch to be set to '"on''. That is, the
Program Assembler prints the side-by-
side listing.

SUP Suppress This pseudo-operation causes the print
Printing switch to be set to "off'. That is, the
Program Assembler stops the printing of
the side-by-side listing.

42

Table 7.5. Address Option Mnemonics

Mnemonic Machine Code

Code (Bits 7 - 9) Description
DM 0 Direct M
DL 1 Direct L
DP 2 Direct P
DA 3 Direct A
M 4 Indirect M
IL 5 Indirect L
IP 6 Indirect P
1A 7 Indirect A

¥ ‘ :
Address Option Mnemonics recognized by the Program
Assembler. The mnemonic codes must occupy card col-

umns {1 and 12.

o
Table 7.6. Secondary Command Mnemonics

Mnemonic Machine Code

Code (Bits 1-4) Description
NO 00 No Operation -
LA 15 Load A
LP 02 Load P
LT 10 Load T
LM 12 Load M R

AP 06 Exchange A and P

AT - 04 Exchange A and T
XA 16 Extract to A
MA 14 Merge to A
AS 13 Add Single
AL 03 Add Least-
Al 01 Add Intermediate
AM 11 Add Most
CC 05 Complement Clear.
CSs 07 Complement Set
CH 17 Complement Hold

*® :
Secondary Command Mnemonics recognized by the Program
Assembler. The mnemonic codes must occupy card columns

14 and 15.

43

Table 7. 7. Condition Mnemonics

BR or SK Other's

Mnemonic | Octal Code Octal Code

Code (Bits 1-5) (Bits 1-4) Description
UN 20 - Unconditional
AD 21 - - A Odd
PY 25 - Parity Error
AZ 24 . - A Zero
NV 23 03 Never
EQ 26 06 ‘ Equal
NQ 27 07 Not Equal
EN 30 10 E Negative
Qv 31 . - Overflow
CYy 32 - Carry
TL 33 - T Register in Use
AN 34 - A Negative
AP : 35 - A Positive
NH 36 16 Numeric High
NL 37 17 Numeric Low

*
Mnemonic Codes for Conditions recognized by the Program Assem-
bler. The mnemonic codes must occupy card columns 14 and 15.

Table 7.8. Control Field Mnemonics

Octal
Mnemonic Card Code
Code Columns (Bits 5, 6) ' Description
BLANK 13 0
C 13 0
N 13 2 No Access
H i3 1 Hold Count
B 13 3 Both No Access,
‘ Hold Count
F ' 13 1 (Bit 6) FLAG
SR 13,14 0 Single Right
SL 13,14 b Single Left
DR 13,14 2 Double Right
DL 13,14 3 Double Left

= ‘
Control Field Mnemonics recognized by the Program Assembler.
The mnemonic codes occupy card columns as indicated.

44

Table 7.9. Character Code Sets

Hollerith Teletype Soroban) Hollerith Teletype Soroban
Character Code Code Code Character Code Code Code
BLANK 00 04 27 - - 40 30 13
1 (131 35 ot J 41 32 04
2 02 31 02 K 42 36 25
3 03 20 23 L 43 11 26
4 04 12 04 M 44 07 01
5 05 01 25 N 45 06 20
6 06 25 - 26 (0] 46 03 31
7 07 34 07 P 47 15 16
8 10 14 10 Q 50 35 33
9 11 03 31 R 51 12 11
12 05 24 52
= 13 23 $ 53 22 05
? 14 26 * 54 17 12
% 15 24 06 55
16 56
17 16 22 Carr Ret 57 02 15
+ 20 13 32 0 60 15 20
A 21 30 12 / 61 27 16
B 22 23 35 S 62 24 24
C 23 16 22 T 63 ot 36
D 24 22 05 U 64 34 07
E 25 20 30 \' 65 17 03
F 26 26 06 . w 66 31 27
G 27 13 14 X 67 27 21
H 30 05 32 Y 70 25 13
1 31 14 10 z 71 21 17
' 32 32 36 72 03
. 33 07 34 , 73 06 34%
) 34 11 23% (74 36 02%
" 35 21 17 75 35
& 36 14 76 33
figures 37 33 37 letters 77 37 00

% . N
These are lower case figures.

45

APPENDIX 1
PROGRAM ASSEMBLER
OPERATIONAL PROCEDURES

PROGRAM ASSEMBLER
OPERATING INSTRUCTIONS

t. AN/UYK-1 System Power Settings.
1.1 Turn computer power switch to ON,

- 1,2 Move lever on underside of right front: corner of typewriter
to turn on the typewriter,

1,3 TRW-140 System switch settings.
| 1.3.1 Tape Reader

1.3.1.1 Power: ' on’
1,3.1,2 Forward-Rewind: forward

1.3.2 System |
1.3,2.1 Code-Convert: off
1.3.2,2 On-Line, Off-Line: on-line
1:3.2,3 Power: on |
1.3.2.4 Rotary Switch: paper tape

1.3.3 Paper Tape
1.3.3.1 Binary
1.3.3.2 Reader power on
1.3, 3. 3 Punch power on

1, 3.4 Keypunch ‘
1.3.4.1 Power Off

1.3.5 TypeWriterA
1.3.5,1 Echo check: off
1.3.5.2 Power on o

1.3.6 Send-Receive Set
1.3.6.1 Power off

2. Output Equipment Check ,
2.1 Check for sufficient tape in paper ta.pe punch
2. 2 Check for sufficient paper in typewriter.

2.3 Set typewriter margins to allow for at least 87 type positions.

I-1

3. Computer Console Settings
3,1 Set Continuous -Interrupt switch to Interrupt.
3.2 Set Stop-Run switch to Stop.

4. Loading Procedure
4.1 Mount program assembler program reel in the tape reader,
4,2 Raise Load switch on computer to Load, then release.
4.2.1 The bootstrap loader will now be loaded into core.
. 4.2,2 The M Register should read 00002.
4,3 Press the Flag button on the computer.

4.3.1 The loader for the program as sembler will be read
' into core. '

4. 3.2 Upon completion of loading, the M Register should
read 00101.

4.4 Press Flag button.
4.4.1 The program assembler will now be read into core.

4.4.2 The M Register should read 15417 upon completion
: of loading. '

4.4.3 The loading procedure is now completed. Rewind and
remove the program assembler tape from the tape
reader,

5. Pass I Operation ‘ \
5.1 Check toggle switches for desired setting.
Switch 15 down - ignore switch settings.
Switch 15 up - interrogate switches 1 through 5.

Switch 1 up - abort run.

Switch 2 up - suppress printing.
Switch 3 up - suppress punching.
Switch 4 up - punch output in 8-level binary.
Switch 5 up - bypass copying loader.

5.2 Loader Copy Procedure o

5,2.1 1If a loader is to be copied on to the output tape,

' mount loader tape on tape reader, ensure that
toggle switches 15 and/or 5 are down, and press
Flag. The loader will be read, punched, then
stop with 4334 in the M Register. A block of 275
words will be copied. v

I-2

5.2.2 To bypass this loader copy procedure, set toggle
switches 15 and 5 up, and proceed to step 5. 3.

Mount Symbolic Tape on Tape Reader
Press Flag Button

5.4.1 The assembler will now read and process one entry
at a time from the symbolic tape.

5.4, 2 The punch will punch the contents of the first entry
on the symbolic tape for 5-level paper tape.output;
no punching will occur during Pass I for 8-level
paper tape output.

5.4.3 The typéwriter will type the contents of the first
entry, then only those entries where an error was
detected by Pass I.

5.4.4 Program stops.

5.4.4.1 00601 in the M Register indicates that Pass I
is complete. Rewind the symbolic tape and
- proceed to Pass II.

5.4.4.2 04057 in the M Register indicates that this.
is an intermediate reel of a multi-reel
symbolic tape. Remove this reel and mount
the following reel on the tape reader.
Press Flag to resume Pass I.

6. Pass II Operation

6.

6.

1

2

If this is an assembly of a multi-reel symbolic tape, mount
the first reel on the tape reader.

Press Flag Button.

6.2.1 The assembler will now read, process and type each
entry on the symbolic tape.

6. 2. 2 Punching.

6.2.2.1 5-Level Tape: Punching will occur at
approximately every tenth instruction.

6.2,2.2 8-Level Tape: Punching will occur in
various length segments.

6. 2.3 Printing and punching may be suppressed‘under
program or toggle switch control.

6.2.4 Program stops.

6.2.4.1 15417 in the M Register indicates that
Pass Il is completed. Remove printout
and punched output. Proceed to execute
Pass I if another program is to be
assembled.

I-3

6.2.4.2

7. Error Procedures

7.1

02013 in the M Register indicates that this
is an intermediate reel of a multi-reel
symbolic tape. Remove this reel, then
mount the next reel on the tape reader.
After tape is positioned press Flag to
resume Pass II. : :

Computation may be stopped at any time by depressing the

Logand button on the computer. Any corrections can now be

made to the peripheral gear. To resume processing, press

Flag.
7.2.1

Stop while loading program assembly tape. (See
9. 2. 3.3 for more detail,)

7.2.1.1

7.2.1.2

7.2.1.3

7.2.1.4

Indicates check sum or illegal character
error.

Note contents of A Register which displays
location where error was detected.

Rewind tape approximately one foot to try

- section again. Press Flag to continue,

Upon completion of loading, verify the
next 10 cells beginning with the location
displayed in the A Register at stop.

If stops continue, rewind the program
assembler tape and attempt loading again.
If stops persist, it indicates mechanical
malfunctions.

Stop while executing Pass I or Pass IL.

7.2.2. 1

7.2.2.2

7.2.2.3

7.2.2.4
70 ;20 2» 5
7.2.2.6

7.2.2.7

Rewind symbolic tape.

Set toggle switches to:
a. 15416 if stop in Pass I.
b. 00600 if stop in Pass II.

Depress in order, SW—E, E—M, and

. Display buttons.

Reset toggle switches to desired setting.
Depress Flag.

If stop persists, reload program assembler
tape and attempt to execute assembly again.

If condition does not clear up, it indicates
a machine malfunction. ‘

1-4

Typewriter attempting to type is inhibited.

- 7.3.1 Generally indicates margins not set wide enough,

or typewriter power is off. Correct, then reload
program assembler.

7. 3.2 If condition persists, it indicates a machine
malfunction.

8. Input to the Program Assembler

8.1

8.4

The symbolic input to the Program Assembler must be five
level teletype coded information on paper tape, generally
produced from cards through an IBM 063 or other suitable
card to tape equipment.

The first card of the symbolic deck must be an identifica-
tion card.

Instruction card format.

8.3.1 Location field (columns 1-6)

8. 3.2 Operation field (columns 7-10)

8.3.3 Address option field (columns 11, 12)
8.3.4 Control field (column 13)

8.3.5 Secondary field (columns 14-29)
8.3.6 Remarks field (columns 30-60)

Card to tape operation.

8.4.1 A wiring diagram for the IBM 063 is attached
(Figure 6.5)

9. Output from the Program Assembler

9.1

Typewriter output.
9.1.1 Format - 5 fieclds.
Error alarm field.
Five digit location counter field.
Five digit instruction field.
Symbolic instruction field.
Remarks field.
Punched paper tape output.
9 2.1 5-level teletype or 8-level binary tape is produced.

9.2.2 These tapes may then be loaded for execution on the
AN/UYK-1.

I-5

9.2.3 b5-level Loader (Appendix IIj.

9.2.3,1 The loader is designed to load job programs
in teletype code into the computer, convert
the teletype codes to binary and store them
in the specified locations. Programs to be
loaded must be prepared in the format
specified.

The load programs for lower and upper core
are identical in the symbolic program, Only
the origin is different.

9.2.3.2 Core usage. ,
The origin of the low core loader is 200
(octal) and extends to location 550 (octal).
The high core loader occupies cells 17055
(octal) through 17425 (octal).

9.2.3.3 Program specifications.

1. Operating instructions.

" The Loader is read into core by the
wired:in-bootstrap. This is done by
setting the RUN-STOP BUTTON to
STOP, raising the LOAD BUTTON and
depressing the FLAG BUTTON. When
the loader has been read in, the com-
puter then stops on a flag branch to
symbolic address BCOV of the load
program (octal location 200 for lower
core and 17055 for upper core). The
M Register will be reading 201 and
17056, respectively. To proceed,
depress the flag button and the loader
will load in the job program and stop
on a flag branch to the address specified
by the job program (on the END card).

2. Special program stops.

a. Illegal check sum.

~ The load program makes use of two
special halts, or flag branches. If
an illegal check sum is obtained
during the loading process, the pro-
program disconnects the reader
from the computer, displays in the
A Register, the last address in
which an input data word was stored,
and stops on a flag branch (octal
location 423 for lower core, 17300
for upper core) to the next instruction.

1-6

(

To continue loading regardless of
the error, depress the flag button.
The program reconnects the reader
to the computer and continues.

b. Illegal characters.
If an illegal teletype code is detected

by the program during the load opera-

tion, the program disconnects the
reader from the computer, displays,
in the A Register, the last address
in which data was stored, and halts
on a flag branch (octal location 474t
for the low core loader, 17346 for
the upper core loader). To con-
tinue loading regardless of the
error, depress the flag button.

The program reconnects the reader
to the computer, ignores the re-
mainder of that card (or block) and
searches for the next card.

9. 2.4 8-Level Loader (Appendix III)

9.2.4.1

9.2.4.2

9.2.4.3

This loader is designed to load and store
in specified:locations job programs punched
in the 8-level binary format specified by the
Program Assembler. .

The load programs for lower and upper core
are identical in the symbolic program. Only
the origin is different. ’

Core Usage

The origin of the low core loader is 200
(octal) and extends to 326 (octal). The
high core loader occupies cells 17055
(octal) to 17203 (octal).

Program Specifications

1.

Operating instructions.

The loader is read into core by the
wired-in-bootstrap. This is done by
setting the Run-Stop button to stop,
raising the Load button and depressing
the Flag button. When the loader has
been read in, the computer then stops
on a flag branch to symbolic location
LOAD of the load program (octal loca-
tion 200 for lower core and 17055 for
upper core). The M Register will be

I-7

2'

reading 201 and 17056, respectively,
To proceed, depress the Flag button
and the loader will load in the job

program and stop on a flag branch to
the address specified by the job pro-

"gram (on the END card).

Illegal check sum stop.

If an illegal check sum is obtained
during the loading process, the pro-
gram disconnects the reader from the
computer, displays in the A Register
the beginning address of the segment,
and halts on a flag branch (octal loca-
tion 215 for lower core, 17072 for
upper core). To continue loading
regardless of the error, depress the
Flag button. The program reconnects
the reader to the computer and
continues.,

1-8

APPENDIX II
5-LEVEL LOADER

S S EMBLY

00200
00201
00202
002063
00204
00265

00206

60207
00210
00211
00212
00213
00214
00215
00216
00217
00220
006221
00222

00223

00224
06225
0D226
00227
00230
00231
00232
00233
00234
00235
002346
00237
00240
00241
00242
00243
00244
00245
00246
00247
00250
06251
60252

00200

75000

C0204

50101
00500
67015
00210
50107
00506

25110
21010

40001
27173
75173
20827
77775
00213
27173
75173
20827
7774y
00220
27173
75173
20827
77742
00456
27173
75173
20827

77740 -

00us56
27173
75173
20826
77755
00251

20426

TT753
00u26
20020
ooL56
271713
75173

8COV

BCOV1

BCOV2

BCOV5

BCOVY

BCovVs

BCOV?

BCOV1O -

BCOVI

FORMAT

LOADER
GRG * 128
1PLCIO7C 0 B1
LA DM C ¥
PZIE BLOVI
SA DL $41IB
IT It o
cC DM LA
PZE BCOYZ2
SA DL N 4
iT 1L 1
CF DL 8
EF DM B
oCcT L0001
Wi DL $RET
La pL $RET
BR iw NG
O0CY 17775
PZIE BCOVS
Wl DL RET
LA DL $RET
. BR iM NQ
00T T17hy
PIE BLOVY
Wl DL $REY
LA DL SRET
BR Iy NG
- 0CT 77742
PZE BCONTD
Wi DL $RET
LA DL 3RET
B8R M’ NG
LT TT7u0
PLE ECONTD
Wl bL SRET
LA DL $RET
BR IM EQ
0CT 77755
PZE BCOVH]
BR M EQ
oCcY 77753
PZE BLOVY27
BR D¥ UN
PZE BCONTD
Wi oL $RETY
LA DL $RETY

LOW CORE

»LOWER CORE LOADER.

INHIBIT INTERRUPY TYPE 2

CHANNEL SELECT

Tit COMMAND
PAPER TAPE (ONNECT
READ A CHAR
LOA REG A WITH A CHAR

CARRIAGE RETURN (OCT 02)

READ A CHAR
LOAD CHAR INTO REG A

FIGS (0CT 33)

NG)

READ A CHAR

LOA A CHAR INTO REG A
NOT= |

Q@ ,0CT 35 .

BRANCH NOT EQUAL TO ERROR
READ A CHAR

LOA A REG WITH THE CHAR

LETTERS {0OCT 37}

BRANCH NOT EQUAL 'TO ERROR
READ A CHAR

LOAD REG A WITH THE CHAR

0=0CT 22

IF 'S BRANCH
END

BRANCH NOT EQUAL 'TO ERROR
READ A CHAR
LOADA A REG ‘WITH THE (HAR

PAGE

00232

jm

1070010
1070600
1070620 -
1070030
1070040
1070050
1070040
1070070
1070080
1070090
1070100
1070110
1070120
1070130
1070140

1070150

1070160
1070170
1070180
1070190 -
1070200
1070210
1070220 -
1070230
1070240
1070250
1070260 -
1070270
1070280
1070290

1070300

1070310
107032

1070330
1070340
1070350
1070360
1070370
1070380
1070390
1070400
1070410
1070420
1070430
1070440

A'SSEMBLY FORBMAT LOADER - LOWCORE

00253

00254

- 00255
0D256
00257

00260 -

00261

00262

00263

00264

00285
00266
00267

00270 -

00271
00272
00273

00274

- 00275

00276

00277

00300 -

00301
00302
00303
00304
00305
00306

00307

00310
00311
00312
00313
00314
00315
00316
00317
00320
00321
00322
00323
00324
00325
00326
00327

20827
71754

00ub6

27400
00371
27173
27173
5173
20426
77774
00213
67015
00274
50400
00455
20020
00437
11023
50407
00307
27173

75000

00306
50400
Cous5
20020

- 0037

73000
00000
67013
00001

50400

00526
byu00
00540
Y7407
00537

‘75162

50400
00335

73400 -
00540,
50400

00580
27173

BCOV12

BCOV13

BCOVIY

BCOVIiS

BCOV16

BCOV17

BR

ocTY
PIE
Wi
PZE
Wi
Wi
LA
BR

ocT

PLE
cC
PLE
SA
PZE
BR

PZE

SO
SA
PZE
Wl
LA
PZE
SA
PZE
8R
PZE
AS
ocT
cC
ocT
SA
PLE
it
PZE
RP
PIE
LA
SA
PLE
AS

PLIE

SA
PZE
Wl

iM:

M

DL

DL

DL

M

DM~

M

DM -

DM 'S
M

DL
DM -

1M
DM
DM
DM
IM
M

M

DL

M

M

M

DL

NQ

77754
BCONTD.
NO -
BCOV30+)
$RET
$SRET
$RET
EQ
77778
BCOVS
LA

BCONTL+2
uN
BCONTB
L3

cC

BCOVIu+]

$RET
NO

BCOV1Y

NG
BCONTC+2
UN
BCONTS
NO

Y
AS

i

NO
BCONZ
NO -
BCONY
cC
gLONZ

- SAL

NO
BCOVIY
NO
BLONY
NO
BLONY
$RET

PAGE 2

8= {0OCT 23) : :
BRANCH 'NOT EQUAL 'TO ERROR

- READ CHECK 'SUM INDICATOR

FIGS
FIRST CHAR. OF NO. OF WORDS ON CARD

IS IT=9
LOAD RETURN ADDRESS
STORE RETURN ADDRESS

PERFORM TABLF LOOK UP ON CHAR
XXX000=1AL)

READ NEM CHAR

SET EXIT

NR OF "WORDS/CARD COMPLEMENTED

Luu00

SPACE

1070450
- 1070460
1070470

1070480
1070490
1070500
1070510

- 1070520

1070530
1070540
1070550
1070560

- 1070570

1070580

1070590
- 1070600

1070610
1070620
1070630
1070640
1070650

1070660

1070670

1070680

1070690
1070700
1070710
70720
1070730
1670740

1070750

1070760
1670770
1070780
1070790
1070800
1070810
1070820
1070830
1070840
1070850
1070860
1070870
1070880
1070890

ASSEMBLY FORMAT

00330
00331
00332
00333
00334
00335
00336
00337
00340
00341
00342
00313
003y
00345
00346
00347
00350
00351
00352
00353
00354
00355
00356
00357
00360
00361
00362
D0363

- 00364

00365
00366
00367
00370
00371
00372
00373
00374
00375
00376
00377

00400 -

00401

00402

00403
0040y

27173
L7407
00537
75162
50400
000060
52400
00335
73400
00540

50400
DOSKD -

20032
00360
15400
00526

73000 -

GGo01
20024
00270

50500

00526
20020
00327

75400

00540

73000 -

00021

50400 -
00540

20020
00346
67015
00000
20427
77773
006213
27173
75173
20427
T1744
00375
L7u07
00537
75507

BCCOVIB

BCOV1Y

BCOV20

BCCOV2]

BCGV22

RCOV3Z0

BRCOV35

BLOVZ3

BCOVZ2h

W1
RP

PIE

LA
SA
PlE
SE

PLE

AS
PZE

SA

P1E
BR
PLE
LA

AS
ocT
BR
PIE
SA
PZ1E
BR

- PZE

LA
PZE
AS
oCT
SA
PZE
BR
PZE

L

PLE
BR
oCcT
PZE
Wl
LA
BR
6165)
PIE
RP
PZE
LA

PZE

L 0ADE 2

DL
M

DL
IR

i

ix

i

bM

v

DM

DM

Iw

DM

IM

DM

¥

DM

DM

M

DL

DL

in

¥

i

SRET
£
BCONZ1
$AL
ND

G

ND
ECOVIY
KD
ECONY
O
SCONY
ey
2C0V22
NO

i

8z
2COY30
MO
BCONZ
UN
BCOVIT
NO
SCONY
NG

1
NO
BCONY
i
8CoV21
14

¢

NG
77773
BCOYS
$RET
$RET
NG
77744
BECOY35
cC
BCONZ 1
cc

—

LOW CORE

PAGE

FIGS

LOAD CONYERTED WORD
STORE

INCREMENTED ADDRESS
ADD TO CHECK 'SuM

STORE AT CHECK SUM LOCATION

CHECK CARRY
YESs END-ARCUND-CARRY
NOy, COUNT NR WDS/CARD

IS 1T THE LAST %D ON CARD
YES ‘
NGOy, STORE NR BACK

"ADD 1 TO CHECK SuM

STORE CHECK SUM

HRETURN TO ‘LOOP

PERFUORM CHECK 'SUM OR NOT
{O4=3PACE)

NG

READ A CHAR

LOAD A REG 'WITH THE CHAR

IS IT FIGS

COMPLEMENT CHECK SUM

iG7T09C0
1070910
1670920
1070930
1070940
1070950
1070966
1576970
1670980
1570990
in710C0
Icrigie
iC71020
1871030
1071040
17i050
1071660
ariere
1271080
16710690
1671160
1571110
1071120
107113¢C
1671140
1271150
1071160
1671170
1671180
18071190

1871200

1871210
iC71220
1671230
1671240
1671250
1071260
16731270
1071280
1671290
10671300
1871310
1671320
1071330
1071340

ASSERMBLY FORMAT LOADER - LOWCORE

00u¥GS5
00LGH
00407
00Lu10

0011
00412

0Cu13
00L 14
00415
ooL1s
ooul7
00420

o021

00422
00423
00424
00425
00426
00427
00430
00431
00432
00433
0043y
00435
00436

00437

00440

oouuY
OCuyu2

00443
00LLY
o0uu5
00uL6

00LLT

0050

0051

0ou52
00453
00454
00u55

Q0us6

00457

O0u60
00u61 .

00540

50600
00812
75162

20626

00000

00220

21010
40000
75400
00335
20060
00822
21810
50001
20020
00220

27173

75173
20427
TT74h
D0L2é
B7u07
00537

20020 -

00541
20031

- DOBEY

75173
67064
75007

00540

66015
00527
36606
20031
O0u50

73000 -

17250
20020

00000 -
21010
50000 -
75000 -

00u76

PLE
SA
PIE

LA

- BCOV25

BCOV26

BCOV27

BCov28

BCOVZ29

BCONTB.-

BCONTC

BCONTD:

BR
PIE
PIE
EF

OCT

LA
PL1E
BR
PZE
EF
ocT
BR
PIE
Wl
LA
BR
LT
PIE

RP

PIE
BR
PZE
BR
PZE
LA
cC
1A
PLE
AP

PIE

8
BR
PZE
AS

NAD -

BR
PIE

EF -
ocT

LA

PIE

iM

DL

M

oM

M

DM

DM

I

DL

DL

M

M

DM

DM

DL

DM B

DM

DM

1P

DM

DM

DM
DM

DM

BLONY
NGO
BCOV2S
$AL
EQ

0
BCOVY
8
80000 -
ND
BCOVID

Uy

PR |

g
500013
LN
BLOYT
SREY
$RET
NG
7774k
BLOV2T
e
BLONZI
UN
BRLOY36
oy

%41
$RET
AT

Lo
BTABL+9
LA
BTABL
EQ

oy
BLONTD
NG
BTABL+1
Ul
8

‘BO00O

KO
BCOVH

PAGE b

1071350

1071360

1071370

CHECK SUKS=
CHECK SUM THIS PROGRAM OBTAINED {LOMP)

YES, JUMP TO READ NEXT CARD
ILLEGAL CHECK SuM -

NEXT ADDRESS FOR STORAGE

LGAD A REG ®ITH THE CHAR

=FiGS
RO

1071380
1071398
1071400

1071410
1071420
1071430
107 1440

1071450

1071460
1071470
1071480
1071490
1071500
1071510

1071520
1071530

1071540
1871550

1071560

1071570
1071580

1071590

1071600

TURN OFF CVFLO

LOAD A ¥ITH SEARCH WORD (03}

{(TI=$RET {OCT 03) 77742

LOAD P WITH LAST 'ADDRESS AND COMPLEMENT IT
{P)=BTABL+YD ‘
LOAD A WITH ADDRESS OF '‘FIRST ENTRY IN TABLE
{AY=BTABL :

DO TABLE SEARCH

CHECK WHETHER EQUALITY FOUND OR NOT

EXIT {BRESET)
ILLEGAL CHARA

1071610

1071620
1071630
1071640
1071650
1071660

1071670
1071680

1071690
1071700
1071710
1071720
1071730
1071740
1071750
1071760
1071770
1071780
1071790

ASSEMBLY

0ok62
00463

O0L6y

00u65
00u66

CousT -

00470
00KT1
oou72
00u73

ooLTY

00475

00u76

0ou77
00500
00501
00502
00503
00504
00505
00506
00507

00510 -
00511

00512
00513
00514
00515
00516

00517
00520 -

00521
00522

00523

00524
00525
00526
00527

00530 -

00531
00532
00533
00534
00535

00536

50400 -

60537

75400 -

00335
20060
00470
21010
50001

20020 -

00213
bTH07
00537
L 162

75000 -

77773
50170
27173
67015
00511
50500
00455
20020
00437
73162
50162
75170
73000
00001

50170 -

20024
oouvy
75162
11023
50162
20020
00502

00000 -

00015

00035

foe3l

00020

00012
00001
00025
00024

FORMAT

kY

- PLE

LA
PZE
BR
PZE
EF

- oCcT

BCOVH

BCOVW]

BCOVH2

BCOVH3

BCONZ
BYABL

BR
PZE
RP
PZE

LE
LA
oCT
SA

Wi
cc

PIE

SA
PZE
BR
PLE
AS
SA
LA
AS
oCY

SA

BR
P1E
LA

e

SA
BR
PZE
PLE

ocT

ocT
ocT

OCT

ocT
ocT
ocT

oCT

L' 0CADER -
IM ND
BCONZ1
iM NO
BLOV19
DM F UN
=+1
DM - 8
D001
DM UnN
-BLOYS
Iy CC
BCONZ1
DL $AL
DM - ND
77772
DL 56
DL $REY
DM LA
‘ BLOVK2
v NG
. BCONTL+2
DM Un
‘ BCONTE
DL fAL
DL $AL
DL 56
DM NO -
1
DL 56
DM A2
BCOVW-2
DL $AL
DM'S T L3
DL $AL
DM LN
BLCOVH]
L
15
Z5
21
12
01
25
34

1LOW CORE

PAGE

READ AND CONVERT, PACK A WORD

LOAD NR TIMES TO SHIFT
(4) o '

50170

READ A CHAR

LOAD RETURN ADDRESS

STORE RETURN ADDRESS -

JUMP TO TABLE LOOK-UP

- 75170

73000

00001

50170

IS WORD PACKED FULL

NGO
SHIFT LEFT 3 PLACES

NR WDS PER CARD

wd O L B L N e

>

1071800
1071810
1071820
1071830
1071840
1071850
1071860
1071870
1071880
1071890
1071900
1071910
1071920
1071930
1071940
1071950
1071960
1071970
1071980

1071990

1672000
1072010
1072020

1072030

1072040
1072050

- 1072060

1072070
1072080
1072090
1072100
1072110
1072120
1072130
1072140
1072150
1072160
1072170
1072180
1072190

1072200

1672210
1072220

- 1072230

1072240

ASSEMBLY FORMAT

00537
- 00540
00541

00542

00543
0054k
00545
00546
00547

- 00550

00u76

00000
75162
50400

00547

21010

40000 -
20060 -

00000
00200

BCONZ T
BCONY
BCOV36

PLE
ocT

LA
SA
PLE
EF ¢

0T

BCOV3?
BCOVED -

BR

PZE -

END

L' 0OADER - LOW CORE

DL
im

DM

OMF

BLCOVH

0

$AL
NO
BCOVLOD
8
50000
U

o

128

CHECK SUM ADDRESS

PAGE

6"

1072250
1072260
1072270
1072280

1072290
1072300

1072310

- 1072320
1072330
1072340

ASSEMNBLY

17055

17056

17057
17060

17061
17062

- 17063
17064
17665
17066

17067

17070
17071
17072
17073
17074
17075

17076

17077

17160

17101
17102

17103

17104

17105

17106
17107
17110
17111

17112
17113
IFARE

17115
17116
17117
17120
17121
17122
17123
17124
17125
17126
17127
17130

17055

75000
17061

FORMNA

BCovY

501G

00500
67015
17045
50107
005046
25110

BLOY]

BCOV2

21090

uhony
27173
TH173
20427
TITT5
17070
27173
75173
20827
7774
171075
27173
T5173
20827
TTT42
17332
27173
75173
20527
TTTL0
17333
27173
75173
20426
177155
17124
20828
77753
17303
20020
17333
27173
75173
20427

BCOVS

BCOVY

Blove

BLOY9

BCOVIO

BCOV1Y

T

CRG

LA

PZE

SA

CiIT

cC
PZE
SA

IT

CF
EF

(08 B

Wl
LA
BR
oLy
PIE
Wl
LA

BR

oy
PLE
Wi
LA
BR
oCY
PLE
Wi
LA
BR
oCcTY
PLE
Wi
LA
BR
E108 §
PIE
BR
cCT
PLE
BR
PIE
Wi
LA
BR

L'CADER
77125
DM L NO
BCOVY
DL $¥IB
1L ¢
DwM LA
BLOV2
DL G7
It 0o
DL 8
oM &
0001
DL $RETY
DL $REY
IM: nQ
17775
BLOVS
bL SRET
DL SRET
iM NG
TTT44
BLOYT
DL BRET
DL $RET
iM HE
77782
BLONTD
DL 3RET
DL RET
v NG
7740
BCONTD
oL $RET
DL SRET
M EG
71155
BLOY1
im EQ
77753
BLOwWZ27
oM Ul
BLONTD
DL PRET
DL $RET
iM EG

HIGH CORE

INHIBIT INTERRUPT TYPE 2

- LHANNEL SELECT
TIE COMMAND
PAPER TAPE CONNECT
READ A CHAR
LCA REG A WITH A CHaR

CARRIAGE RETURN [O0CY 02}

READ A CHAR
LOAD CHAR TINTO REG A

FIGS (0CT 33)

NO

READ A CHAR

LOA A CHAR INTO REG A
NOT=

0 s0GLT 35 .

BRANCH NOT EQUAL TO ERROR
READ A CHAR

LOA A& REG WITH THE CHAR

Li??ﬁ?ﬁ {607 373

BRANCH NOT "EQUAL ‘TG ERROR
READ A CHAR

iﬁ&ﬁ REG A WITH THE CHAR

=

=00V 22

IF S BRANCH
END -

ERANCH NOT COQUAL TO ERRDR

HEAD A CHAR
LOADA A REG WITH THE CHAR

PAGE

1

1060010
1060020

1060030

1060040
1060050
1060060
1060070
1060080
10600690
1060100
1060110
1060120
1060130
10607140
1060150
1060160
1060170
1060180
1060190
1060200
1060270
1060220

10606230

1060240
1060250
1060260
1060270
10606280
1060290
1060300

1060310

1060320
1660330
1060340
1060350
1060360
1060370
1060380

- 1060390

1060400
1060410
1060420
1060430
1060440
1060450

ASSSEMBLY

17131 0

17132
17133
17134
17135
17136
17137
17140
17141

17142

17143

1714

17145
17146
17147
17150
17151
17152
17153

17154
17155 -

17156
17157

17160
17161

17162
17163

17164

17165
17166
17167
17170

17171

17172
17173

17174
17175 -

17176

17177

17200

17201
17202

17203
17204
17205

F'ORMA

77754

17333

27800

17256
27173
27173
75173
20426
7777x
17070
67615
17151
50400
17332
20020
17314
11023
50407
17164
27173

BCOV12

BCOV13

75000 -

17163
50400

17332

20020
17314

73000

00000
67013
600G

BCOV1Y

50400 -

17403

400
17415
47407
1741y
75162
50400
17212
73400
17415
50400
17415
27173
27173

BCOVIS
BCOV1H

BCOV17

T

oCcTY
PLE
Wi
PIE
Wi
Wi
LA
BR
ocT
PLE
cC
PIE
SA
PIE
BR
PIE
S0
SA
PZE
Wi
La
PIE
SA
PiE
BR
PIE
AS

oY

cC
ocT

- SA

PZE
1lE
PLE
RrP
PIE
LA
SA
PZE
AS
PZE
SA
PLE
Wi
Wl

L CADER -

M

bL
DL
DL

M

DM

1M

D

DMS

I

DL
b#

™
DM~
DM

oM -

i

M
¥

31
IM

iM
“IM

DL
DL

77754
BCONTD
KO
BLGY30+1
SRET
3RET
SRET

QG
77774
BLOYS

LA
BLOVIA
NO
LCONTL42
Lk
BCLNTER
L2

co
ECO¥ih+ 1
$RET
NG
BLOVIR
ND
BLONTL4+2
1N
BCONTER
NG

{3

AS

3

NG
BCONL
NO

BLONY

(.
BCONZY
$AL

NO
BCOVIY
NO

BCONY

NO
BLONY
$RET
$RET

HIGH CORE

PAGE 2
B= 10CT 23)

BRANCH NOT EQUAL TO ERROR

READ CHECK SUM INDICATOR

FIGS

FIRST CHAR. OF NO. OF WORDS ON CARD

is 1v=9

CLUAD RETURNMN ADDRESS

STORE RETURN ADDRESS

PERFORM TABLE LCOK UP ON CHAR

XAXCCO={AL}
READ NEW CHAR

SET EXIT

NR OF WORDS/CARD COMPLEMENTED

B4 00

SPALE
FIGS

1060460
1060470

1060480
1060890
1060500

- 1060510

1060520
1060530

1060540

1060550
1060560
1060570
1660580
1060590

1060600

10604610
1060620
1060630

1060640

1060650

1060660
1060670
10460680

1060690

1040700

1066710

1060720

1060730
1060750
1060750
1060760
1060770

1060780
1060790
1060800

1060810
1060820

- 1060830
1060840
1060850

1060860

- 1060870

1660880
1060890
1060900

ASSEMBLY FORMAT L UCA B'ﬁiﬁ - HIGH CORE

17206

17207

17210
17211
17212

17213
17214

17215 -

17216
17217
17220

17221
17222

17223
17224
17225
17226
17227

17230

17231
17232
17233

17234
17235

C 17236
17237

17240 -

17241
17242
17243

17244
17245
17246

17247
17250
17251
17252

17253
17254
17255

17256

17257

17260 -
17261

17262

yI807

1741y
75162
50500
00000 -

52400

17212

73400
17415
50400
17415
20032
17235

75600

17503
73000
00001
20024
17245
50400
17403

20020

17204
75400
17415

73000

00001
50400
17415
20020
17223
67015

00000 -

20827
77773
17070
27173
75173
20427

- TT7uy
17252

47407
17814
75407
17415

BCOVISB

BCOVIY

BCOV20

BCOV21

BCOV22

BCCV30

BCOV35

BCOVZ23

BCOV2hL

RP
PIE

LA

SA

PLE
SE_
PZE

AS
PLE
SA

PLE

BR
PLE
LA
PZE
AS
16105 1
BR

PLE

Sa

- BIE

BR
PZE
LA
PLE
AS
ocT
SA
PZE
BR
PLE

e

P1E
BR

oY

PIE
Wl
LA
BR
oCcT
PLE
ap

PLE

LA
PIE

1M

DL

IM

I%

in

iM

DM
iM

D

DM

im-

DM

D¥
M

DM

b¥

M

DL

pL -
M.

in

iM

cc
BLONZ1
FAL
NG

4]

NG
BCOV19
NO -
BLONY
NO -
ECONY
cy
BECOV22
NG

BLONZ

ND

1

AZ
BLOV3O
ND
BCONZ
UN
BCOVIT
NO
BCONY -

NO

1
NO
BCONY
Un
BLOV21
La

4]
NQ
77773
2LOVS
$RET
$RET
NG
777k

- BCOY3E

(e
BCONZT
cC

BCONY &

LOAD CONVERTED WORD
STORE

IMCREMENTED ADDRESS
ADD ‘'TO CHECK SuM-

PAGE

STORE AT CHECK SUM LOCATION

{HECK CARRY
YES, END-AROCUND-CARRY
NO, COUNT NR wWDS/CARD

IS IT THE LAST WD OM CARD

YES
NG, STORE NR BACK.

ADD 1 TO CHECK SUM

STORE CHECK SUM

RETURN TO LOOP

PERFORM CHECK SUM OR NOT
{D4=SPACE)

ND -

READ A CHAR

LOAD A REG WITH THE CHAR

15 IT FIGS

COMPLEMENT CHECK 5UM

3

1060910

1060920

1066930
1060940
1060950

1060960

1060970
1060980
1060990
1061000
1061010
1061020
1061030
1061040
1061050
1061060
1061070
1061080
1061090
1061100
1061110
1061120
1061130
1061140
1061150
1061160
1061170

1061180

1061190
1061200
1061210

1061220

1061230
1061240
1061250
1061260
1061270

- 1061280

1061290

1061300

1061310
1061320
1061330

1061340

1061350

AS SSEMIBLYS

- 17263

17266

17267
17270 -

17271

17272

C 17273

17274

17275

17276

17277

- 17300 -

- 17301
17302
17303
17304

17305

17306

17307

17310 -

17311
17312

17313

17314

17315

17316

17317
17320

17321

17322

17323
17324
17325

17326

17327

- 17330 -

17331
17332
17333

17334
- 75000
© 17336

17335
17337

17267
75162
204826

00000 -

17075

21010

40000

F'OR M'A

- 50800 -
17264
17265

BCOV25

75400 -

171212

20060

17277

21010

50001

20020

17075
27173
75173
20427
TTThy
17303
BTR07

BCOV27

BCOV28

1781

20020

17416
20031
17316
75173
67064
5007

~1T415

66015
17404
36606

- 20031

17333

BCOV2?
BCONTSB

73000 -

60373
20020
00000

21010 :

40000
17353

" BCONTC

BCONTD

50400 -

SA -
PZE
LA
BR

PZE
- PLE
BCOV26

EF
ocT
LA

PIE

BR
PZE
EF
ocT
BR
PZE
%1

LA

BR

ocT

PZE
RP

‘- PZE

BR

PIE
BR
' PZE

LA

cC

LA
pZE
AP

- PZE
1B

BR

- PZE

AS

‘NAD
BR

PZE

EF |
ocT

La
PZE
S5A

"L'OADER -
IM NO
siﬁgﬁﬁ“
pL $AL
IMT EQ:
o
BCOVY
DM° 8
50000
i NO
BCOV19
DM F° UN
#4+]
DM 8
40001
DM UN
- BCOV?
DL $RET
DL S$RET
IM° NQ°
77744
BCOV27
IM CC
BCONZ1
DM UN
BCOV36
DM oV
w1
oL $RET
oM AT
DM CC
BTABL+9
DM LA
BTABL
1P EQ
DM OV
BCONTD
DM NO
BTABL+1
DM’ UN
Q .
DM 8
%0000
DM' NO -
BCOVH
“IM NO-

HIGH CORE
PAGE &

CHEQK Sﬁ%S"‘

CﬁECK Sﬁﬁ ‘THIS Pﬁ&ﬁﬁﬁﬁ ﬁﬁféiﬁﬁﬁ {COMP)
YES, JUMP TO READ NEXT CARD
ILLEGAL CHECK 'SuM~

1061360
1061370

- 1061380
1061390
1061400

- 1061410

1061420

1061830

1061440

NEXT ADDRESS FOR STORAGE

LOAD A REG ‘WITH THE CHAR
=FIGS
NG ©

TURN OFF OVFLO

LOAD A WITH SEARCH WORD (03]}

{TY=$RET {OCT 03) 77742

LOAD P WITH LAST QEBRESS AND COMPLEMENT" 1T
{P}=BTABL+9

LOAD A WITH ADDRESS OF FIRS? E&TR? IN TABLE
{A)=BTABL ‘

DO TABLE SEARCH

CHECK WHETHER EQUALITY FOUND OR NOT

EXIT {PRESET)
TLLEGAL CHARA

1061450

1061460
1061470
1061480
1061490
1061500
1061510
1061520

- 1061530

1061540
1061550
1061560
1061570
1061580
1061590

‘1061600

1061610
1061620
1061630
1061640
1061650
1061660
1061670
1061680
1061690
1061700
1061710
1061720
1061730

- 1061740
- 1061750
1061740

1061770

1061780
1061790
1061800

ASSE¥BLY

17340
173u1
17342
17343
17344
17345
17345
17347
17350
17351
17352
17353
- 17354
17355
17356
17357
17360
17361
17362
17363
- 17364
17365
17366
17367
- 173706
17371
17372
17373
17374
17375

17376

17377
17400
17401
17402
17403
17404
17405
17406
17407
17410
178117
17412
174813

17u1y

17414

75500

17212
20060
17345
21210
L0001

20020 -

17070
BTH07
1741y
Luje2

75000 -

17773
50170

27173

67015
17368
50400
17332
20020
17314
73162
50162
75170
73000
00001

50170

20024
17351
75162
11023
50162
20020
17357
coooD
20015
00035
000631
go020

go012

00001

00025

0002y
17353

FORMATY

PIE

LA
PIE
B8R

PLE

EF .
oCT
BR

pLE

RP
PZE
BCOVW ~ ZE
LA
ocT
~ SA
BCOVW] WI
cc
PIE
SA
PIE
 PIE
BCOVW2 AS
SA
LA
AS
ocT
SA
BR
BCOVW3 PZE

LA

So
SA
BR
- PLE
BCONZ PIE
BTABL OCT
GCT
108 }
oCT
oCT
0CT
[t
oCcY
BCONZ1 PZE

LG ADER

o

DM F

oM
DM
g
DL
DM
DL

DL
DM

¥
DE-

DL
DL
DL
DM

DL
DM

DL
DM s
DL
DM

BCONIN
NG
BCOVIR
UGN

=4]

g
50001
Ul
BLOVS
ce
BLONZ
5AL

ND
17773
56
$RET
LA
BCOYEZ
Bi
§£G§T£ﬁ%§
UN S

"ECONTB
- $AL
$AL

2" -
NO

1

56

Az
BCOVK-2
$AL

L3

$AL
UN
BECOVWT
0

15

35

31

20

12

o1

25

34
BCOVE

= HIGH CORE

PAGE

READ AND CONVERT, PACK A WORD
LOAD NR TIMES TO SHIFY

1}

56170

READ A CHAR

LOAD RETURN ADDRESS
STORE RETURN ADDRESS
JUMP TO TABLE LOOK-UP
75170 :
73000 -

00001

50170

IS WORD PACKED FULL

NO
SHIFT LEFT 3 PLALES

NR ®WDS PER CARD

5

1061810
1661820
1061830

1061840

1061850
1061860
1061870

- 1061880

1061890
1061900
1061910
1061920
1061930
1061940
1061950
1061960
1061970
1061980
1061990
1062000
1062010
1062020
1062030
1062040
1062050
1062060
1062070
1062080
1062090

1062100

1062110
1062120
1062130
1062140
1062150
1062160
1062170
1062180
1062190
1062200
1062210
1662220
1062230
1062240
1062250

ASSSEMBLY FORMAT LOADER - HIGH CORE’

17415
~ 17816
17817

17420 -
S 1TH2Y

17822
17423
17424

17125

00000 -,

75162
50400
17424

21010
© 30000 -

20060

00000

17055

BCONY
“ BCOV36

BCOV39

AN

B8COVLD

N

ocT

LA
SA
PZE
EF -
ocT
BR
PZE

END -

DM

DM F -

o
$AL -
NO -
BCOVAO
8
40000
UN

LY
7725

CHECK SUM "ADDRESS

PAGE

6

1062260
1062270

- 1062280

1062290
1062300
1062310
1062320
1062330
1062340

APPENDIX III
8 -LEVEL LOADER

3 LEVEL BINARY LOADER-LOYW CORE

00200
00203
00202
002032
00204
00205
00206
00207
go210

00211
00212

006213
0021%
00215
00216

60217

00220
00221

00222

00223
00224
00225
00226
00227

00230

00231
00232
00233
00234
00235
00236
00237
00240
00241
00242
00243
00244

00245

00246
00247
00250
00251
00252
00253

00200 -
75000 -

00204
50101
00500
87015
0021C

50107
00508

25110
21010
40001
Lulbl
27162

By062

75162
11045
20426
77773
00234
20427

- TT772

00214

20020

00234
27162
Ly062
75162
11045
50163
42164
20426

77170 -
00230

27162

Ludb2

75162
11045
73163
50163

66060

11005

73164

50164
27162

HEHL

ORG -

LA
PZE
SA

SIT

. HEHL1

cC
PLE

SA

1T
CF
EF

ocT

ZE
WI
ZE
LA
50
BR

- OCT

HEHLS

HEHL2

HEHL3 -

PIE
BR
ocT
PIE
BR
PZE
Wl
e
LA
SO
SA
sp
BR

ocT

PLE
Wi

- 1E

LA
SO
AS
SA
AP
SO
AS
SA
Wl

DM C

DL

IL
DM

- DU

IL
DL

DM

DL
brL~
DM B
DL
DM D
M

'Iﬁk

DM

DL
DM B
DL
DM D
DL
DL
M

bL
DM B
bL
DM D
DL
DL
DM B

DM 'S5

oL
DL
DL

+ 128

NO
#+3
$MIB
$MIA
LA
%43
$ICg
$ICA
ol

g
50001
$AE
$AL
ip
$AL
RE

EQ

77773
HEHL3

NQ

17772
HEHL T+
uN
HEHLR

- $AL

ip
$AL
R5
$AR
$AT
EQ
77770
HEHLZ
$AL
Lp
$AL
RS
$AR
$AR
NO -
R5
5AT
$AT
$AL

CINHIBIT

ALL

INPUT
INTERRUPTS
AND '
CLEAR
CARRY.

TIE CHANNEL €
AND o
READER

0 TO SUM CHECK.
GET NEXT
CHARACTER.

BITS Be7+6 IN A
AND 5-1 IN P.
WAIT FOR
ADDRESS

GET NEXT

- CHARACTER.

BITS ByTs6 IN A
AND 5-1 IN P,

IS 17T
7-CODE DELETE

GET NEXT
CHARACTER.

BITS B:;7s6 IN A
ASSEMBLED WORD IS
STORED '

In

$AT

GET HEXT

PAGE

H

0890010
0890020
0890030
0890040
0890050
0890060
0890070
0890080
0890090
0890100
0890110
0890120
0890130

0890140
- 0890150

0890160
0890170
0890180
0890190

- 0890200

0890210
0890220
0890230
0890250
0890250
0890260
0890270
0890280
0890290
0890300
0890310

0890320

0890330
0890340
0890350
0890360

0890370

4890380
0890390
0890400
089010
0890420
0B904u 30
0890440
0890450

B“L'EVEL BINARY LOADER-LOW CORE

00254

00255
00256
00257

00260 -

00261

00262
00263
~ 63161
61000
00000 -

00264
00265
00266

00267
00270 -

00271
00272
00273
00274

00275 -
00276

00277
00300

00301

00302
00303

00304

00305
00306

00307
00310 -

00311
00312
00313
00314

00315
00316

00317

00320
00321

00322

00323
00324
00325

00326 -

00327

- 00330 -

BU062
£ 75162
11045

73163

66060

11012
73164
50164

67067
50161

- 66060

20024
00354
20426
77771
00316
20426
77763
00325

20826
77760

00332
20426
77755

00341
754800 -

00320
21010
30000

20060 -
00210 -

75164
50407
66666
52400
00320
20020

00230
- 75164

50407
00320

20020 -

ZE

LA
S0

AS
AP
SO
AS
SA
AL
Al

ocT

CcC

SA
AP
BR-
PZE
BR
ocT
PLE
BR

ocTY

PZE
BR -

ocT

PLE
BR
0198)
Plt
LA
PZE
EF ¢
oct
BR

- PLE

HEHL S

HEHLY

HEHL 1Y

LA
SA

OoCT !

SE
PZE
BR

PZE

LA
SA
PZE
BR.

DM
oL
DM~
DL
DM~
DM
DL
oL
DL

DM

v o

DM B
oL
DM B
DM

“IM

M

M

DM

DM F -

DL~
M

M
by

oL~

M

DM

e

$AL
R5
$AR

NO

R10
$AT
$AT
$AE
NO -
0

cC

$AE

NO -

Az

BCOV

EQ
77771

HEHLS

EQ
77763
HEHL T4
EQ
77760 -
HEHL17

EQ

71755
HEHL22

NO
HEHLY

g
80000
UN
HEHL1

SAT

cc
66666

CND

-2

© UN

HEHL?Z
$AT

€L

HEHLY
UN

CHARACTER. '
BITS 8576 IN A~
AND 5-1 1IN P.

SUM 'OF CONTROL BUTS

IN P.

SUM
CHECK -
IN

$AE.

O-TELETYPE.

6~DATA

15-1L0AD ADDRESS -

17-<BR ADDRESS.
22-SUM CHECK

ERROR, CODE -
IN 6,7,8 LEVELS

INVALID. CONTENT OF -
A=LOCATION.

DATA, SO -
STORE IN

" STORE ADDRESS LOADED.
BUMP STORE

ADDRESS.

LOAD *
ADDRESS S0

RESET STORE 'ADDRESS.

PAGE

2

0890460

0890470

0890480

- 0890490

0890500

-0B9QG510
- 0890520
0890530
0890540
-0B90550

0890560
0890570
0890580

0890590

0890600
0890610
0890620
0890630

0890640

08920650
0890660

0890670

0890680

0890690
0890700
0890710

0890720
0890730
0890740

- 0890750
0890760

0890770

0890780
- 0890790

0890800
0890810

0890820

0890830

- 0890840
0890850
0890860

0890870
0890880
0890890
0890900

3 " LUEVEL BINARY LOADER-LOW CORE

00331

00332
00333

00334

00335
00336
00337
00340
00341

00342

00343

D034

00345

- 00348

00347

- 00350

00351
00352
00353
00354
00355
00356

00230

75164

50400
00350

21010

uo000

20060

66666
75161
54161
20426
77776
00230

754800
00320

21010
40000
20060
00211
20060
00200

- 40200

HEHL1Y LA

PZE

SA

Pt

EF

BR

oCT

HEHL22 LA

BCOV

ZE

BR
ocT
PIE

LA

. PIE

S ocT

BR

- PLE

BR

- PIE

END

DL

i

| oM
ocT

oM F

DL
DL
M

1IN

DM

DM F

DM F

HEHLZ
BAT
NG
w4l

8
EO000
UN
66666
$AE
$4E
EQ -
TI776
HEHKLZ
8O
HEHLA
g
KxO000
UN
HEHLT+1
UM
HEHL
HEHL

PAGE
FLAG BRANCH

10C

BR ADD LOADED.
IS SUM

0K

BR IF 'YES
NO

STOP.

L

0890910
0890920
0890930
0890940
0890950
0890960
0890970

- 0890980
0890990

0891000
0891010
0891020
0891030
0891040
0891050
0891060
0891070
0891080
0891090
0891100
p891110
0891120

8 LEVEL BI

17055
17056

17057
17060
17061

17062

17063
17064
17065
17066
17067
17070
17071
17¢72
17073
170674
17075
17076
Y7077

17100
17101
17102 -

17103
17104
17105
A7106
17107

17110

17111
17112
17113

17114

17115
17116
17117

17120

17121
17122
17123
17124
17125
17126
17127
17130

17055

75000

17061
50101

00500

67015

17065

50107
00506
25110

HEHL

ORG
LA
PZE

SA

1T

e
PLE

- SA
1T

HEHL]

21010

50001
L4161
27162
LyDe2
75162

11045

20426
77773
17111

2027

77772
17071
20020
17111
27162
B4062
75162
11045
50163

2164

20426

CF

EE

oCcT

A =

W1
ZE

LA

HEHLS

HEHLZ2

HEHL 3

17770

17105
27162

10462

75162
11045
73163
50163
66060
11605
73164
50164
27162

s¢

BR
- ocT
PIE

BR

0T

PZE
BR

PZE

w1
1E

1A

S0
SA

- SP

BR
oCcT
PLE
K1
1E
LA
SC
AS
SA
AP
SO
AS
SAa
Wi

DM

DL
It

C

DM

DL

IL
DL

DM

DL
DL

DM

DL
D#

M

IM

DM
oL
DM

DL

oM/

DL
DL

inm:

oL

DM
DL
DM

DL
DL
DM
DM
DL
DL
DL

o

o

[T lR ==

7725
NG
w43
&MIB
$MIA
La
543
$ILE
$1CA
8

g .
LOODY

$AF

341

P

$AL

5

EQ-
77773
HEHL3

NG

T¥T772

HEHL I+,

UN

HEHL3
$AL
LP
AL
RS
SAR
$AT
EQ
77770
HEHLZ
$AL
iy
$AL
RS
$AR
$AR
NO

- RS

AT
AT
$AL

NARY LOADER-HIGH CORE

INHIBIT
ALL

INPUT :
INTERRUPTS
AND '
CLEAR

CARREY.

TIE CHANNEL C
AND

READER -
0 TO SUM CHECK.
BET NEXT
CHARACTER.
BITS 8,7,6 IN A

AND 5-1 IN P.

¥AIY FOR
ADDEESS

GEY NEXT
CHARACTER.
BITS 8)?5& iIN A
AND 5-1 IN P.

IS IT :
7-CODE DELETE

GET NEXT
CHARACTER,

BITS Be7,6 IN A
AND 5-1 IN P,

ASSEMBLED WORD 15

STORED
inN
$AT

GET NEXT

PAGE

0890010
0890020

0890030

0890040
0890065¢C
0890060
0890071
(890080
0890090
2890100
0890110
890%12¢
0890130
0890140
6890150
0890160
04890170
£89018¢0
2890190

- 3890200

0890210

- p89022¢

0890230
0890240
0890250
0890260
0890270
0890280
0890290
0890300
0690310
0890320
0890330
0890340
0890350
0890360
0890370
0890380
0890390
0890400
08904 10
0890420
0890430
0890440
0890450

8" LEVEL BINARY LOADER-HIGH CORE

1731
17132
- 17133
17134
17135
17136
17137
17140
17141
17142
1T 143
17 1uy
17145
YT 1N6
RSl
17150
17151
17152

17153
- 17154,
£ Y7155 ¢

17156
17157
17160
171610

17162

17163
17164

17165 -

17166
17167
17170
17171
17172

17173

7174
17175
17176
17177

17200 -

17201

17202

17203
17204
17205

By062
75162
11045
73163
66060
11012
73164
50164
63161
61000
00000

- 67067

50161
66060
20024
17231

20826

77771
17173

20426

77763

- 17202

204256
71760
17207
20426

CTT7755

17216

754800 -

17175

21010

40000

20060

170465
75164

50407

66666

52400

17175
20020
17105
75164
50407
17175

20020

HEHLS

HEHLY

HEHL 14

1E

LA
SO

AS

AP
50
AS
SA-

AL

Al
oCcT
cc
SA
AP
BR

- DM

DL
DM
DL
DM
DM

pL

oL

. DL
- DM

DM~

DL
DM
DM

PiE

BR
ocT
PZE
BR
ocT
PIE
BR
ocT
PZE
BR

ocY
- PLE

LA
PZE

EF

oCcT
BR
PLE
LA
SA
ocT
SE
PZE
BR
PLE
LA
SA
PZE

- BR

1IN

iM:

M

M

iM

DM

DM

- DL
i

IM:

DM

DL

M

DM

o W

oy

S LP

$AL
R5
$AR
NO -
R10
$AT
$AT
$AE
NO

0

cC
3AE
NO -
AZ
BgLov-
EQ
71771
HEHLS
EQ
77763
HEHL T4
EQ
71760
HEHL1T
EQ
77755
HEHL22
NO ¢
HEHLL
8
50000

¢ LN

HEHLT
$AT

- CC

L6666
NG
w2
un
HEHLZ
$AT
cC
HEHLY
N

CHARACTER.
BITS 85736 IN A"

- AND 5-1 IN P.

SUM "OF :CONTROL BUTS
IN P,

SUM
CHECK
IN

$AE.

O-TELETYPE.

6-DATA

14-LOAD ADDRESS

- 17-BR ADDRESS.

22-SUM CHECK

ERROR, CODE
IN 69748 LEVELS

INVALID. CONTENT OF -
A=LOCATION.
DATA, SO~

STORE IN
STORE ADDRESS LOADED.

BUMP STORE
ADDRESS.

LOAD
ADDRESS SO
RESET STORE ADDRESS.

PAGE

2

0890460
0890470

0890480
0890590

0890500
0890510
0890520
0890530
0890540
0890550
0890560

0890570

0890580

0890590

0890600
0890610
0890620

0890630

0890640

0890650
- 0890860

0890670
0890680
0890690

- 0890700

0890710

- 0890720

0890730
0890740
0890750
0890760
0890770
0890780

- 0890790
0890800

0890810
0890820

- 0890830

0890840
p8908s50
0890850

- -0B90BTO

0890880
0890890
0890900

8 LEVEL BINARY LOADER-HIGH CORE

17206

17207
17210

17211

17212
17213
17214
17215
17216
17217
17220
17221

17222

17223

17224

17225

17226

17227
17230
17231

17232

17233

17105 -
75164

50400
17215
21010
40000
20060
66666
75161
1161
20426
71776
17105

75400

17175
21010
50000
20060
17066
20060
17055
17055

HEHL 17

PLE
LA

SA
PIE
EF

S oCT

HEHL22

BR

oCY
LA

1E

BR
oCT

- PLE

BCOV

- PLE

LA
PZE

EF
ocT

BR
PIE
BR

END

pL
im

DM

DM F

- DL

bL

M

M
oM

DM F

DM F-

HEHLZ
AT
NQ
*+Y

B
50000 -
Uy
L6664
$AE
$AE
EQ
17776
HEHL?Z
ND
HEHLY

i
50000
UN
HEHLT+1
UN
HEHL
HEHL

FLAG BRANCH

- 10

BR ADD LOADED.
IS SUM

oK

BR IF YES
NO

STOP.

PAGE

-

0890910
0890920
0890930
0890940
0890950
0890960
0890970
0890980
0890990
0891000
0891010
6891020
0891030
0891040
0891050

0891060

0891070
0891080
0891090
0891100
0891110
0891120

