ON-LINE COMMAND AND CONTROL STUDY

D58=5U1

W. D. Wilkinson and G. Martins

PART I
Annual Progress Report

September 1965

Prepared for
Office of Naval Research
Information Systems Branch
Contract Nonr. 4182(00)

Lr

THE BUNKER-RAMO CORPORATION
DEFENSE SYSTEMS DIVISION
8433 FALLBROOK AVENUE « CANOGA PARK CALIFORNIA 91304

ABSTRACT

In most automated Command Information Systems, the military user is
hampered by the lack of convenient means for communication with the computer
system and by the inflexibility of the system to respond to a rapid change
either in the type of problemAto be solved or in the method of solving a
standard problem. It is in these areas that on-line techniques show promise
for improvement. The major objective of on-line techniques is to put the user
directly in the problem~-solving system loop in such a mamner that the ex-
perience and intuition of the user becomes closely coupled with the powerful
computational capabilities of the computer so that there is a balanced inter-

action between the capabilities of each.

On-Line techniques employ a functional approach to permit the user to:
1) communicate with the computer system conveniently in his

own terminology,
2) structure the problem solving process, and
3) maintain continuous control over the system.
Although Command and Control is emphasized in this study, the techniques

described are general and should be useful in a wide range of problem solving

applications.

—ii-

ACKNOWLEDGMENT

This research is supported by the Office of Navdl Research under Con=-

tract Nonr-4182(00).

The advice and assistance of Dr. W. Watson and Dr. G. Culler is acke

nowledged. Important contributions have been made by Jim Weaver and Tom Tack.

Naval personnel from CinCIANT, Cinc PAC, and NEL have been very helpful
in providing advice and constructive criticism in the Naval operational areas.

The opinions stated are those of the authors.

~iii-

TABLE OF CONTENTS

Abstract

Acknowledgement

List of Illustrations

I.
ITI.
III.

Iv.

Overview
Introduction
On~Line Systems
General
Objectives
B-R On-Line Techniques
Application of On~Line to Command and Control
Command Information Systems
On=Line Experimental System

Bibligraphy

Appendix Basic Programming System

- iVn

cii-
wiii-

-

Figgge

LIST OF ILLUSTRATIONS

Conventional System'struéture

On-Line System Structure

Bunker~Ramo 85 Display/Control Console
Overlay Keyboard

Data Base

Nouns

Verbs

F??

18
20
22
23
27
28
30

I. Overview

Contract Nonr 4182(00) was undertaken to investigate the feasibility
of applying on-line techniques to Navy Command and Control problems. The
problem area selected was that of a specified command such as CinCIANT. No
attempt was made to simulate a specific operation but rather the general
problem of automating the Command Information function was investigated to

determine if On-Line techniques would be applicable.

It was determined that On~Line techniques did indeed show promise

in overcoming some of the problems.

In June of 1964, a demonstration was given of an initial limited

system. Basically, the demonstration consisted of three elements:

(1) The data base, including area map.
(2) The basic building blocks, divided into two parts:

(a) Nouns, representing data to be retrieved,

entered, or operated on.

(b) Verbs, representing operations to be performed
on the data.

(3) An interpretive compiler, allowing the user to put

together instructions or queries.

The feasibility of the building block approach and of keyboard pro-
gramming by the user was demonstrated, and the applicability of available
display/control consoles suitable for providing convenient man-machine communica-

tion was verified.

One key product of the research to date has been the development of

a basic methodology for implementing on-line systems. The conflicting goals

l‘

of machine independence, on one hand, and problem independence, on the other,
were accepted as desirable characteristics of an ideal man-machine interface.

A machine-independent interface would be adaptable, with a minimum of costly
and time-consuming revisions, for use with whatever hardware might be avail-
able to the user. A problem-independent interface would provide the user

with a sufficient degree of flexibility and power to contend with a continually
changing set of needs without obliging the system developers to anticipate
these needs in every detail. Both of these properties would make a single
interface suitable for a broad class of user communities and problem areas

without substantial modification.

A solution to these problems is suggested which is adequate for
the current research and development requirements and which should provide a
firm basis for future methodological advances. This approach involves a
division of the interface (and its chronological development) into three
distinct packages:

(1) Base package, consisting of hand-coded, machine-language

subroutines of the utmost simplicity and generality.
This package provides, in effect, a low-level assembly
language for use by persons with considerable pro-
gramming experience. This package is entirely problem-
independent.

(2) Procedure-oriented package, consisting of a mumber of sub-

packages of subroutines of increasing specialization,
composed entirely of base-package camponents. This pack-
age provides a set of increasingly specialized and
sophisticated design languages for use by systems design
personnel with considerable programming knowledge. The
procedure-oriented package is entirely machine~independent.

(3) Problem-oriented package, providing an open-ended, strongly

-problem-oriented set of subroutines out of which members
of the intended user community will construct their own

operationally-adequate problem-solving system.
This report which is the first part of a two part‘report covers the
first 18 months of the contract or roughly through November 196L. Part Two
which will be published in December 1965 will cover the period November 1964

and November 1965.

II. Introduction

The parameters of the modern military enviromment are such
that man's reaction time and capabilities are no longer adequate to cope
with the situation alone. The response time available to.react to the
threat of a modern high performance aircraft or missile is short enough
to require automation of many control functions previously handled by
manual means. The danger of escalation of an incident into a major con-
flicty;. and the resulting requirement for more detailed information at
higher levels of command increase the amount of information. to be
handled by all echelons of command. This great increase in the amount
of information to be handled, coupled with the requirement for rapid
response, imposes the need for automated assistance in the information

handling function.

The initial efforts in automating command and control systems
were in the area of weapon control and tactical operational systems.
The NTDS system is a good example. In recent years considerable
attention and funds have been expended on what might be called strategic
operational systems. Strategic is used here to describe t;hose command
and control systems which are concerned primarily with planning for
future operations. Specified Conmands such as CinCLANT and CinCPAC fall
into this category. This investigation concentrates on the strategic
or Command Information Systems. In most Command Information Systems
there are two major problem areas: 3iInformation acquisition and infor-
mation utilization. The major emphasis of this woi'k has been toward
providing methodology for the use of computers to assist the military

in information utilization.
h,

Most current systems have enormously large and rigid programs as
part of their data processing function. The ﬁser interacts-with these
systems in a completely pre-determined way. That is, the system designer
has thought up as many as possible of the answers which the commander may
require from the system and then has programmed backward to define the
commander's (or his staff officer's) input (query) which would result in
retrieval and/or manipulation of the appropriate data. The more advanced
systems have a defined "query language" to initiate the inquiry process
which is more like English than a coded computer instruction. These are

still quite inflexible in character; must be completely pre-programmed;

and do not allow the user to control the level of detail of the answer,
the selection of alternative logical processes based on preliminary re-
sults, or the relevance of the material presented. Making changes to
existing large system programs in response to a changed(and usually un-
expected) military situation, to the introduction of new weapons, or to
changing command personalities'is a difficult and time-consuming task
because of the user-systems analyst~programmer-machine communication

chain., It is in these very areas of inflexibility of programming and

difficulty in communicating where the "on-line" techniques show the

greatest promise for improvement.

ITI. On-Line Systems

A. General
In the most general sense, an on-line data processing system
(as we shall use the term) comprises:
a=~ a central processing computer
b= a man-machine communications interface
¢~ peripheral I/0 and storage facilities

d- an operator expert in the field from which the
data to be processed is derived.

These terms will require some elaboration to render explicit what we have
in mind in talking of on;line data processing systems. The central pro;
cessing computer might be any of the various general purpose digital main
frames with which we are familiar. It need only be compatible with the
man;machine communications interface sub-system to be employed. Included
with the central processing computer we assume there is a working memory
facility, internal or external to the main frame, of reasonable size and

speed.

The heart of the on-line system is the man-machine communica-
tions interface. This may be viewed as consisting of two conceptually in-
dependent parts, a collection of command and data keys by which the operator
controls the computational processes, and an.output device (or set of such

devices) by which the hardware commnicates to the operator.

B. On=Line Objectives

There are in existence today, many different systems which are
called "on-line" systems. Each system designer had as his goal a specific

application and hence the term "On-Line" means something slightly different

6.

to each. In general, however, there is one specific objective of most of
these systems. That objective, simply stated, is to put the user (man)
directly in the system loop so that his experience and intuition can be
conveniently coupled with the powerful and rapid computational capability
of the computer in such a way that there is an optimal balance between

capabilities.

The key words in the statement are "directly" and "balance".
In previous implementations the user was faced with a choice in his
attempt to communicate his problem and his methods for solution to the com~
puter. He could either become a programming and computer expert sov that
he, himself, could communicate; or, more often, since most users have
neither the time nor the desire to become programmers, he was forced to
communicate through an interpreter of programmer. Most programmers are
experts in comﬁuter language; however, they are not experts in the user's
parﬁicular field, hence, the experience of the user often gets lost in the
translation. | The user wishes to communicate "directly" with the system

himself.

The technology upon which most Command Information Systems
have been designed and implemented grew out of expérience with control
systems such as SAGE. There has been a natural tendency to use many of
the same ground rules which have resulted in using the computers to per-
form functions which are difficult and costly for a computer to pérform,
but which can readily be performed by man. In work performed recently by

1)

Dr. Gagliardi, of Dunlap Associates, (he found that while it was

(1) "Development of Man-Computer Systems for Solving Targeting Problems".
Presented at Western States Navy Research and Development Clinic,
Boseman, Montana, July 196k.

7.

possible to program a 7090 to perform some particular functions in total,
it was cheaper and faster to allow a man to perform most of the functions
and use the computer to do only the tedious, routine calculations. The
user must have the ability to control the "balance" of functions performed
by himself and the computer if the on-line system is to provide the fléxi-
bility to serve as a tool for different users with different problems and
different methods of attack.

Perhaps the best known of the on=-line systems today is the MIT
CTSS System of Project MAC. Other systems include the SDC Time-Sharing
System, IBM's QuickTRAN, the JOSS System at RAND Corporation, the Stanford
Tiﬁe-Sharing System, the Bolt, Baranek and Neuman Hospital Computer System,
and the STL Scientific On-Line Center. In addition, many of the Universities
such as the Moore School of Engineering of the University of Pennsylvania, |
the University of California at Santa Barbara, Dartmouth University and

UCIA either have systems or are planning systems.

None of the above systems meet all of the desired characteristics
that an on~line system should provide. The major reason is that, for the
most part, the initial effort has been directed toward time-sharing of a
large system by many users. Secondly, most of the systems have been de-
signed with a highly technical and programming oriented user in mind, rather
than a non-programmer. Hence, the language of communication between the
user and the system has usually been a programming language such as: FOR-

TRAN, JOVIAL, LISP, ALGOL or modifications of these languages.

Considerable effort must still be expended to facilitate

flexible man-machine communications between a non-computer oriented pro-

8.

fessional and a data processing complex in non-technical enviromments.

C. Bunker-Ramo On-Line Techniques

The Bunker-Ramo Corporation has been working in the area of On-
Line techniques for several years. The initial work was sponsored by Rome
Air Development Center and began in 1962. This effort resulted in the Culler-
Fried On~Line Scientific System. There quickly emerged during this effort a
highly flexible man-machine processing system whose organization shows many

of the points we have raised in the foregoing discussion.

Briefly, this system employs two keyboards through which the
operator controls all computational processes; the results of these pro-
cesses are displayed to the operator on a CRT in alpha-numeric or graphic
form. One of the keyboards consiéts of process control keys, or operators,
and the other consists of data keys, or operands. There are several levels
of operator keys and data keys. Through this separation of keys into levels,
provision is made for the incorporation into the system of a great number of

individual keys.

The operator keys are labelled with familiar mathematical symbols
denoting a variety of fundamental operations; the data keys are labeled
with letters of the alphabet, suggestive of mathematical variable designators.
In general, the evaluation of a mathematical expression is accomplished by
the successive depression of operator and operand keys in the order in which
they appear in the expression. Intermediate or final results can then be diéw
played on the CRT for the user's evaluation and interpretation. Mathematically

meaningful expressions can be directly converted into permissible sequences

of operator and operand key depressions at the system console; thus, anyone

9.

with adequate mathematical background can make use of the Culler-Fried system
with a minimum of special training and the possibility of user "errors" is
minimized; most important of all, the system's user is able to concentrate
his attention on the mathematical problem at hand rather than on an intricate

processing language structure.

Flexibility in the Culler-Fried mathematical system is provided
through the system's console programming feature; this feature permits the
user to construct a virtually unlimited number of specialized operator keys,
and to modify these at will. There is no limit to the amount of crosse
referencing and embedding that is allowed in the construction of console Pro=-
gram keys, and as a result, single operator keys of tremendous power (whose
ultimate constituents are always members of the basic set of congole programs)
will generally be built up during a single user's experience with the system.
Once constructed, the individual user's complete set of console programs can
be quickly read out onto magnetic tape for permanent storage. At the beginn;
ing of each session with the system, this user is then able, with a minimum
of delay, to operate with the full range of programs he has specially tailored

to his purposes.

It should, of course, be pointed out that the problems facing
this system's designers were congsiderably less formidable than those which
will be encountered outside the domain of mathematical applications. In the
first place, the rigid formality of mathematics itself greatiy reduced the
problems of analyzing the requirements of the intended user community. It
could be assumed that this user community was familiar with, and would be
bound by, the conventions of modern mathematics. In the second place, and of
equal if not greater importance, the system designers did not have to be con-

10.

cerned with a large data base or with the inherent file maintenance and search
and retrieval problems. |
This system was operated experimentally for two years. The ex-~
perience gained from the Culler-Fried system led to a set of characteristics
which is believed to be basic. These are:
1) There should be direct and convenient two-way communica-
tions between the user and the computer, with a minimum of intermediate

people, procedures and programs. The user should be able to communicate

without the necessity of learning programming languages.

2) The computer should respond "immediately" insofar
as the user is concerned. A |

3) There should be the capability of continuous inter~
action or interplay during the problem-solving process.

4) The user should have the capability of structuring
the problem-solving process and changing its structure at will. This requires
that he be able to "program" with the tools provided him - - a keyboard using

his own vocabulary in "English-like" statements.

In designing an on-line system the importance of the particular
user must be emphasiied. The realization of the potential advantages of on-
line computation depends on the user's expertise in the subject matter field
from which the problem to be solved is derived. For he will himself develop
the higher levels of the processing language represented through the inter-
face sub-system to suit his own needs in extracting the information he re-
quires from the raw data. Ultimaﬁely, his own recognition of reasonable pro-
cedures in the processing of this specialized data will become embedded in
the syntax of the processing language itself. And since this syntax is a
function of his own competence in the subject matter field, the development

11.

of an efficient processing language will in the end depend upon the degree of

that special competence he possesses.

The principal problem faced by the designer of an on-line data
processing system is the specification of the initial configuration of the
interface sub-system. This problem involves three interrelated tasks:

a- Nspecification of foundation sub-routines to be
associated with the basic set of interface

command keys

b~ specification of the addressing function of the
basic data keys

¢c- provigion for the system's growth.

The specification of foundation sub-routines is the most crucial
of these tasks. First of all, a study must be made of the data processing
requirements of the user community for which the on-line system is intended.
The results of this study should be a small set of very general, relatively
low-level foundation sub-routines which satisfy the data processing require-
ments of the intended user community and which are, to the greatest possible
extent, mutually exclusive in their functions. The very nature of this task
suggests that there is no formal procedure for its accomplishment; Sound,
judgemént, deep understanding of the subject matter field, and a faculty for
insight into organizational problems are all called for, and the adequacy of

the results can only be confirmed through empirical testing.

The syntax of this initial configuration must be, to the greatest
possible extent, natural; i.e,, the rules gcverning'legitimate usage of the
command and data keys must correspond, as much as possible, to the operator's

notions of what sort of things can and cannot be done with the data at his

12.

disposal. To put it another way, forbidden sequences of basic operations
should correspond to meaningless or improper statements within the subject

matter field familiar to the user.

13.

IV. Application of On-Line to Command and Control

A. Command Information Systems

To begin this discussion of the problems to be dealt with in automae
ting Command and Control functions, we should examine some of the outstanding
characteristics of the modern Command and Control community. We shall con~
centrate in this section on those problems which are of particular relevance
to command staffs and shall not concern ourselves with problems peculiar
either to the other services or to strictly weapons~control aspects of the

Navy's overall Command and Control structure.

Because of the high speed of modern weapons delivery systems, the
long (and increasing) range of reconnaissance and surveillance systems, and
the growing interdependence among geographically distant areas in the realm
of mutual defense, a primary requirement of an effective command staff is the
ability to handle very large volumes of information at high speeds. The
need exists for ways to collect, catalogue, store, and selectively retrieve
this information on demand. Another requirement that must be met is that of
performing a number of (generally elementary) computations on portions of
this mass of raw data; here we are referring to direct mathematical opera-

tions such as statistical analysis or navigational computations.

These two major information-handling functions are subordinate to
the principal goals of the command staff: +to supervise the planning, train-
ing, support, deployment, and operation of forces within its area of
responsibility. All of these sub-functions involve extensive and complex

decision-making procedures.

During the initial portion of the contract period, we visited

1k,

several Naval Commands to obtain information. CinCLANT was utilized as the
prime source of information., Our objective for these visits was to determine
problems faced by the military today in automating their command information
function, and the limitations represented by the’current state~of-the-art in
information handling. We had, rather naively, expected to obtain enough in-
formation to enable us to pin-point ﬁhose problem areas where on=-line
techniques could be used to overcome some of the limitations of conventional

information processing.

We found that such information was not readily available. The
military personnel we talked to were most helpful. The problem is that while
the average military operational person is extremely competent in his field,
he simply does not know enough about the data processing field to understand
what assistance automated information processing can provide him in the per-
formance of his daily duties. Hence, he is unable to define his requirements

for an information processing system.

Three characteristics of present-day information processing technology
present obstacles to its adaptation to modern command staff information
handling applications: +the inflexibility of the man-machine communication,

the need for special operating skills, and dissimilarity of enviromments.

The normal man-machine communication medium in most automated infor-
mation systems consists of a variety of more or less rigidly structured pro-
gramming languages with varying design bases. However effective these
languages may be in facilitating programmer-machine communication for special

purposes, their utility in the command staff enviromment is greatly restricted

15.

by their requirement for training on the part of the user, and by their
built-in orientation toward narrowly specialized problem areas. FORTRAN,
vhile quite simple to learn and use, is not very well suited to symbol-
manipulation procedures and plain text processing, while AIGOL, which offers
more general capabilities, is more difficult both to implement and use. None
of the familiar programming languages possesses to any high degree the quality
of "naturalness" (with respect to the C + C community) by which man-machine

communication is greatly enhanced.

For most information handling systems a broad array of operating
skills is required, and this requirement itself poses an impediment to
optimal man-machine communication. One of the ways in which this hindrance
is traditionally overcome is through specialization of personnel functions- -
- operational personnel encounter problems, systems analysts reduce these to
computational terms, programmers flowchart this intermediate result for a
particular computer system, coders produce machine instruction lists from the
flowcharts, keypunch operators prepare machine-readable copies of the in-
struction lists, and, finally, machine operators "run the problem”. At the
end of the problem run, this sequence of specialized intermediaries is again
encountered in reverse (with some omissions, such as the keypunch operators)
~-=the programmer helps interpret the results for the systems expert, who
then explains what has happéned for the operational specialist, who, at last,
interpretsthe results at the level of actual application. Many skills are
required to maintain the integrity of this complex loop and, precisely because
the range of skills is generally greater than individuals care (or are able)

- to master, it is difficult to significantly reduce the number of links that

16.

make up the "long-distance" man-machine communication chain. As a result,

commnication is error-prone and slow.

The enviromment for which most contemporary information systems were
designed is often not comparable to that in which the command staff must
operate. In particular the constraints of response time, data volume, and
"data half-life" are more severe in the military command staff environment
than in many other areas of application. Consider the relative leisure with
which a physicist, for example, may pursue the solution to a given theoretical
problem; he has the advantage of being permitted numerous trial attacks on
his problem and of developing a body of data sufficient for the problem as
it is required. Moreover, his main emphasis is likely to be on method rather
than individual results (which, in fact, is the reason why so leisurely an
approach is justified). These working conditions contrast sharply with those
that confront the command staff which must make '"best available" decisions
on the basis of incomplete information (which itself must be quickly ex-
tracted from great quantities of irrelevant materials) under urgent time
constraints, and in a problem are so raggedly structured as to render most

problems more dissimilar than alike.

A schematic illustration of some of these considerations appears in
Figures 1 and 2. Figure 1 portrays the fragile and slow chain of communica-
tion that separates operational personnél from the data processing system in
typical applications. It should be borne in mind that modifications in this
chain, when required by changing problem patterns and trends, can be costly
indeed in terms of dollars and time; it may take months of intensive efforts
to "re~tool" such a system to handle new problem types or to achieve greater

operating speed.
17.

PROGRAMMER '

INPUT

-gT

w«—» |'|4—»|I|

COMPUTER
SYSTEM

COMMANDER STAFF
I ' OUTPUT

—

PROGRAMMER

FIGURE 1 CONVENTIONAL SYSTEM STRUCTURE

In Figure 2 the simplification in the communications chain through
on-line techniques is illustrated. The Bunker-Ramo Corporation's efforts to
design and test systems utilizing these techniques, based upon the principles

discussed earlier in this report, are described in the following sections.

B. On~Line Experimental System

In the course of the early portion of the study, we sought to pro-
duce a workable definition of the term, "On-Line" as applied to man-machine
interaction, to Jjustify the characteristic features of such on-line systems;
to determine classes of command problems to which the on«line technique is
well=suited; and to develop skeletal design parameters for a relatively sméll
scale onfline experimental information processing systém. The knowledge that
was accumulated as a result of these early studies, led us to record the
feasibility of application of on~line techniques to certain problems in

command and control as established.

To test the validity of this conclusion, a small scale on-line

system was developed.

Before discussing the features of this system, it is necessary to
describe the eqﬁipment complex so that the reader can better visualize the

discussions of man-machine interplay.

Bunker-Ramo On-ILine Experimental Center

The equipment complex used consists of the following:

Computer AN/UYK-3
Display/Control Console BR-85
I/0 Controller BR-141
Magnetic Tape Controller BR-192
Magnetic Tape Unit (2) BR-170

19,

‘oS

INPUT

Ilh_.lll i

COMMANDER

STAFF PROGRAMMER

OUTPUT

FIGURE 2 ON-LINE SYSTEM STRUCTURE

COMPUTER
SYSTEM

The computer is a 16K, 15 bit stored logic computer with a 2 micro-

seconds memory cycle. The BR-85 Display/Control Console is shown in Figure 3.

Text, symbols, point plots and lined drawings may be produced in
the 12-inch by 1l6-inch active display area on a 23-inch aluminized TV-type
screen. Each display element may be placéd at any one of 512 horizontal or
vertical positions. Up to 32 lines of 64 alpha-numeric symbols may be placed
on the screen. Symbols are generated at the rate of 100,000 per second, may

be produced in two different sizes, and may be caused to blink on the screen.

A 4096 word, 9 bits per word magnetic core memory retains the infor-
mation for the display and refreshes it at either 30 or 60 cycles per second.
The computer has random access to the memory and can transfer blocks of words

into or out of it at 100,000 words per second.

30 keys, labeled by thin, interchangeable, plastic overlays, are
used to send messages to the computer. The interchangeable overlays, (see
Figure 4) permit any one of 6k (or 128 with optional second program keyboard)
different pre-programmed routines to be activated. A light next to each pro-
gram key is identified by the overlay and independently cohtrolled by the
computer. These lights may be programmed to cue the 0perator as he uses the

keyboard.

A keyboard is provided to enter alpha-numeric information into the
memory, from which the data is displayed on the screen., The shift, carriage
return, backspace, and advance keys operate like those on an electric type-

writer.

2l1.

22.

*€e

20 keys and lights are provided to assist the operator in off-line
message composition and editing. The operator may create, delete, or change
the position of line segments or point plots; he may initiate a typewriter
mode of operation and copy or delete whole words or lines of text; he may
display different portions of the memory or clear portions of the memory.
The keyboard also has control and information functions related to the light

gun, the cursor, and the status of the console.

An electronically generated crosshair may be produced on the screen
and may be moved to any position through use of the cursor control. The
coordinates of the cursor may be used internally or sent to the computer.

The operator may select any display element on the screen with the
light gun. Operator aiming is verified by blinking of the element detected
by the light gun. The address in memory of the word producing that display

element may be used internally or sent to the computer.

25 status lights furnish the operator with status information and

other fixed messages.

Initial System Implementation

The initial of prototype system, while limited in
scope, illustrate many of the design features we have discussed. This
system was demonstrated in the lobby of the Main Navy Building in Washington,

D.C., in June of 196k.

It was of importance in the development of this
system to analyze the typical functions of the naval command staff in order
to (1) isolate those functions most immediately amenable to automation, to

receive our attention in this first-level effort, and (2) reduce these

2k,

chosen functions to a number of basic, clearly-statable '"building blocks"
capable of being programmed for the hardware at our disposal. Here, the
modesty of our goals in this first effort enabled us to circumvent many of
the more formidable problems which will be faced eventually as a deployable
system is developed. We concentrated our attention primarily upon elementary
data~retrieval problems and the simplest of useful mathematical operations.

A number of data categories appropriate to naval préblems were listed, per-
taining both to ships and to ports. To aid user acclimation to the system,

these data categories were assigned as the labels of our data keys.

The selection of operator functions was again made with a view
to attaining the greatest degree of simplicity in the system's structure com-
patible with our principal goal of demonstrating considerable flexibility in
retrieval of desired materials from the data base. The decision was made to
permit the user to specify the search parameters through the console's ine
put alphanumeric keyboard and to combine groups of such criteria by employing
a set of logical operator keys. Thus, the system's data keys were made to
correspond, one-to-one, to the data file categories; the system's operator
keys were made to correspond to elementary logical connectives (such as
"and", "or", "greater than", "less than", "equals", etc.) and to a small set
of direct output specifications (such as "display tabular", "display graphic",
etc). These made up the basic "building blocks" of our prototype on-line

system.

Simple minded as these basic functions were, quite complex single
operator keys could be constructed through console programming. In this

first-level system three operator keys were reserved for console programming;

25.

the basic features of the system's console programming can be described in
terms similar to those used above in the discussion of the Culler-Fried
system. While considerable power could be built up, through this meahs,
under a single console operator key, a good deal of ingenuity on the part of
the user was demanded in many instances to achieve his particular ends. This
was due to the somewhat inelegant syntactic structure of the processing
language embodied in the system; a number of rather artificial conventions
had to be borne in mind by the user, and certain more or lesc covert .
functional conflicts could be generated through the utilization of innocent-
appearing operator key sequences. These difficulties can be summed up simply
in stating that our console processing language was not sufficiently "natural".
The importance of this elusive property of 'naturalness" in on-line data pro-
cessing languages was forcefully brought home to us through our experiences

with the prototype command staff system.

The data base fdr the demonstration consisted of information on 15
ships--10 of which represented a U.S. Naval Task Group--and 10 ports, all
in an imaginary area resembling the Mediterranean. TFigure 5 shows the items

of information which were available on each ship and port.

Our method of operation for the demonstration was to divide the
basic building blocks into action items and operations which could be
structured into questions or instructions by depressing keys. The action
items or nouns shown in Figure 6 for the most part represent the file cate-
gories or specific items of information. Notice that we have some buttons
or keys which are labeled assignable nouns. These are for temporary storage.
Also notice that some of the buttons have dual meanings which are distinguished

by prior depression of either the ports mode or ships mode key at the lower

right.
26.

DATA BASE

SHIPS FILE PORTS FILE
NAME: NAME:
TYPE: REPAIR:
LOCATION, E: LOCATION, E:
LOCATION, N: LOCATION, W:
DISPLACEMENT: COUNTRY:
ASSIGNMENT: SECURITY:
SPECIAL CAPABILITIES: ACCESSIBILITY:
SUPPLIES: REPLENISHMENT:
PORTS SCHEDULED: S & R:
CASREP: SPECIAL PROBLEMS:
MAX. SPEED: FLAGS IN PORT:
MISSION PRIORITY:
READINESS:
CAPTAIN:
PASSENGERS (EMERGENCY):
COURSE:
SPEED:
ID:

FIGURE § DATA BASE

27.

‘g2

LEFT KEYBOARD -NOUNS

SHIP LOC SHIP LOC
SHIP TYPE SHIP NAME NORTH EAST DISPLACEMENT
PORT REPAIR PORT LOG PORT LOC
FACILITY PORT NAWE NORTH EAST PORT COUNTRY
SHIP SPECIAL SHIP SCHED.
SHIP TASK CAPABILITIES SHIP SUPPLIES PORTS CASREP
PORT SECURITY PORT PORT REPL PORTSS& R PORT SPECIAL
ACCESSIBILITY ABILITY CAPABILITY PROBLEMS
SHIP MAX SPEED CURSOR AN DATA SHIP MISSION
FLAGS IN PORT COORDINATES PRIORITY
SHIP SHIP SHIP EMER, SHIP SHIP CURRENT
READINESS COMMANDER PASSENGERS COURSE SPEED
ASSIGNABLE ASSIGNABLE ASSIGNABLE ASSIGNABLE
NOUN NOUN NOUN NOUN
SHIP
IDENTIFICATION
ASSIGNABLE ASSIGNABLE PORTS SHIPS
ASSIGNABLE NOUN NOUN MODE MODE
NOUN

FIGURE 6 LEFT KEYBOARD ~NOUNS

The operations or verbs shown in Figure 7 show the basic operations
which are available. Notice that there is a hard copy button which allows
printout of the requested information as well as a CRT display. There are
two special buttons which are of a higher level. These are "Distance Bew-
tween" which computes the distance between two locations and "ILocation
Within" which finds all ships or ports located within a defined area by
the user. The Program A, B, and C buttons located in the upper right are

programmable from the keyboard by combining a group of button pushes.

The low level of the basic operations was chosen purposely to show
that fairly complex operationél functions can be built up from these‘few
basic operations. As an example of how the basic elements can be combined
in the user language, a typical operational function which we used in the
demonstration was "Find the closest port to a given ship”. This was pro-
grammed from the keyboard and stored under one of the program buttons
because of the frequency of use of this function. The total number of steps
was 27. Once this program was stored we could then select a ship and find
the closest port to that ship by depressing 6nly the one button, or we could
add criteria such as finding the closest port having a repair capability

large enough to handle a particular ship.

This example points up the reference made to the difficulty of de-
termining the proper level for defining the basic elements on building blocks.
In the example shown 27 steps or button pushes were taken to structure the
desired results. If we had not had the special button "distance between"
the number would have increased. On the other hand, if we had added a few
more of these higher level special buttons such as 'find the minimum" the

number of steps would be significantly reduced.

29.

‘ot

RIGHT KEYBOARD -VERBS
CLEAR HARD PROGRAM A PROGRAM B PROGRAM C
TABULAR COPY
LESS THAN EQUAL ADD MULTIPLY AND THEN
GREATER THAN NOT EQUAL SUBTRACT DIVIDE OR
p— L X _| —_—
DISTANCE LOCATION STORE UNASSIGN. DISPLAY
AS ASSIGNABLE PREV. ASSIGNED TABULAR
BETWEEN WITHIN
TYPE NOUN NOUN
() CLEAR BLINK DISPLAY
LEFT PAREN RIGHT PAREN GRAPHIC GRAPHIC GRAPHIC
PROGRAM ONCE PROGRAM DISPLAY EXECUTE

FIGURE 7

RIGHT KEYBOARD - VERBS

A significant aspect which was demonstrated was that of more optimum
interaction between the user and the information processing system. During
the demonstration we had the opportunity to have several military personnel
solve a hypothetical problem using the system and the data base. It was
interesting to note that each one attacked the solution of the problem in a
slightly different way and used the system in different ways. Some did
quite a few calculations in their heads. Others used the systems to do
these calculations. The system was flexible enough to allow each user to

solve the problem in his own way.

The initial system consists basically of an interpreter of 1200
words, and a compiler of 1500 words. Flow charts for this system have not

been included as part of the report but are available.

Improved System Implementation

The initial implementation demonstrated the feasibility of a
military operational user interface. It also pointed out the need for a

more flexible systemn.

There are many different levels of users in a command information

system, just as there are many different types of problems to be solved.

For example, a user might be a programmer, a systems analyst, duty operations
personnel, or staff personnel concerned with planning. The requirements im-
posed by each of these on command information systems will differ, and more
important, different terminology will be needed by each to communicate with
the computer. A programmer will want to converse in some type of programming
language. The operations or planning personnel will wish to converse in

command and control terminology. A true on-line system should be flexible

31.

enough to serve all of these users. Therefore, there is no one set of basic

building blocks that will practically serve all users.

One key product of the research has been the development of a basic
methodology for implementing on-line systems. The conflicting goals of
machine independence, on one hand, and problem independence, on the other,
were accepted as desirable characteristics of an ideal man-machine interface.
A machine-independent interface would be adaptable, with a minimum of costly
and time-consuming revisions, for use with whatever hardware might be avail-
able to the user. A problem-independent interface would provide the user
with a sufficient degree of flexibility and power to contend with a continually
changing set of needs without obliging the system developers to anticipaté
these needs in every detail. Both of these properties would make a single
interface suitable for a broad class of user communities and problem areas

without substantial modification.

A solution to these problems is suggested which is adequate for the
current research and development requirements and which should provide a firm
basis for future methodological advances. This approach involves a division
of the interface (and its chronological development) into three distinct
packages: |

(1) Base package, consisting of hand-coded, machine-language

subroutines of the utmost simplicity and generality.
This package provides, in effect, a low-level assembly
language for use by persons with considerable pro-
gramming experience. This package is entirely problem-

independent.

32.

(2) Procedure-oriented package, consisting of a number of

sub-packages of subroutines of increasing specializa-
tion, composed entirely of base-package components.

This package provides a set of increasingly specialized
and sophisticated design languages for use by systems
design personnel with considerable programming knowledge.
The procedure-oriented package is entirely machine-

independent.

(3) Problem-oriented package, providing an open-ended,

strongly problem-oriented set of subroutines out of
which members of the intended user community will con-
struct their own operationally-adequate problem-solving

system.

Several advantages of this methodology are at once obvious. To
move a given full system, for example, from one central processor to another,
one must only recode the base package; the iest of the system can remain sub-
stantially intact. On the other hand, if the requirement is to prepare for
a new problem area and/or a new community of users while retaining the same
central processor, only the problem-oriented package and a greater or lesser
portion of the procedure-oriented package need be reprogrammed; the problem-
independent base package is used in its entirety. Furthermore, this re-
programming involves no machine-language coding but can be accomplisheg

through the highly efficient techniques of console programming.

The base package has been completed and is described in detail in
Appendix A. A description of the improved user level will be included in

Part Two of this report.
33.

BIBLOGRAPHY

"Application and Implementation of Deacon-Type Systems'" -
General Electric Company,
Santa Barbara, California

"Deacon Breadboard Processing" - General Electric Company, Santa
Barbara, California

"Lap-List Assembly Programming System"- General Electric Company,
Santa Barbara, California

"Deacon Breadboard Grammer'- General Electric Company, Santa
Bp.rbara s California

"Deacon Breadboard Summary" - General Electric Company, Santa
Barbara, California

"JOSS: A Designer's View of an Experimental On-Line Computing
System" - J. C. Shaw, Rand Corporation

"Research on Heuristic Problem Solving Machines" - Westinghouse
Electric Corporation

"Interim Technical Report:" A Statistical Optimization of Search
Time in an Information Retrieval
System - Philip Leslie Ieifer,
University of Pennsylvania,
Philadelphia, Pa.

"Transition to Command and Control Systems" - Parker L. Folson,
University of Calofirnia

"Studies for the Design of an English Command and Control Ianguage
System" - Arthur D. Little, Inc.
Cambridge, Mass.

"Interim Technical Report:" On a Study of Information Storage
and Retrieval” - D. S. Sharp and
J. E. McNulty, University of
Pennsylvania, Philadelphis, Pa.

"Verbal and Graphical ILanguage for the AED System; A Progress
Report" - Project MAC, Massachusetts
Institute of Technology, Cambridge,
Mass. -« Doublas T. Ross and Clarence
G. Feldman - May 1964

"Stress: A Problem-Oriented Ianguage for Structural Engineering" -
Project MAC, Massachusetts
Institute of Technology, Cambridge,
Mass - John M. Biggs and Robert D.
Logcher - May 1964

"OPL-I An Open Ended Programming System Within CTSS" - Project
MAC - Massachusetts Institute of
Technology, Cambridge, Mass. =
J. Weisenbaum - April 1964

3k.

BIBLOGRAPHIES (CONTINUED)

"System Requirements for Multiple Access, Time-Shared Computers"” =
Project MAC, Massachusetts Institute
of Technology, Cambridge, Mass =
By: F. J. Corbato

"Computer Augmentation of Human Reasoning" - Edited by: Margo
A. Sass, Office of Naval Research,
and William D. Wilkinson, Bunker-Ramo
Corporation, Canoga Park, California

"The TRW Two-Station, On-Line Scientific Computer" - G. J. Culler
and B. D. Fried, TRW Space Technology
Laboratories, Redondo Beach, Calif.

"An On-Line Computing Center for Scientific Problems M19-3U3" -
Glen J. Culler and Burton D. Fried,
TRW Computer Division, Thompson
Ramo Wooldridge Inc. Canoga Park, Calif.

"Research on Computer-Augmented Information Management" - D. C. Engel-
bart, Bonnie Huddart, Directorate of
Computers, Electronic Systems Division,
Air Force Systems Command, USAF,
L. G. Hanscom Field, Bedford, Mass.

"User's Guide - Man-Machine Informetion System" - Stanford Research
Institute, Menlo Park, Calif.

"An Experimental On-Line Data Storage and Retrieval System" -
J. F. Nolan, A. W. Armenti, Defense
Documentation Center, Defense Supply
Agency

"Utility of Information as a Predictor of Decision Adequacy in
Ambiguous Choice Situations" -
HRB-Singer, Inc. Science Park, State
College, Pa.

"The MAC System: A Progress Report" - Project MAC, by: R. M. Fano,
Massachusetts Institute of Technology,
Cambridge, Mass. October 64

"A New Methodology for Computer Simulation" - Project MAC, by: Martin
Greenberger, Massachusetts Institute
of Technology, Cambridge, Mass. Oct. 6k

"Program Structure in a Multi-Access Computer" - Project MAC, by:
J. B. Dennis, Massachusetts Intitute
of Technology, Cambridge, Mass.

"SIR: A Computer Program for Semantic Information Retrieval" -
by: Bertram Raphael, Project MAC,
Massachusetts Institute of Technology,
Cambridge, Mass. April 6

"THe OPS - 1 Manual" - Project MAC, by: Martin Greenberger,
Massachusetts Institute of Technology,
Canbridge, Mass. May 64

35.

APPENDIX

36.

I.

II.

APPENDIX A

Basic Programming System

Description

A'

B.

General Nature of the System

Description of the Pseudo Computer

Operation of the System

A.

B.

C.

D.

Control Functions

Input Output Functions
Storage Areas

Arithmetic Operations

1) Fixed Point

2) Floating Point
Branching Operations
Indirect Programming Operations
Miscellaneous Operations
Other System Festures

1) Tape Access Control

2) Debugging

B

A6

A6

A10
Al5
A16
A16
A21
A25
A27
A27
A29
A29

A29

APPENDIX A
BASIC PROGRAMMING SYSTEM

I. DESCRIPTION

A. (General Nature of the System

This appendix describes a programming system developed for use on
the BR 85 console as an on line input device to a BR 133 computer. One
communicates with the BR 85 through a matrix of thirty buttons. Although
only two matrices are physically available to the operator at any one time,
the machine has the ability to retain internally 64 different matrices, with
the operator having the ‘ability to change at will the matrices in effect on
the console.

These matrices are referred to as overlays and are mumbered octally
fram 00 to 77. The basic programming system reserves eight of these over-
lays, 00 to 07, to provide a language for programming the remaining 56 over=-
lays, 10 to 77. Within the basic system some buttons represent registers.
Other buttons represent memory blocks, programmable operations such as add,
subtract or transfer. Still other buttons represent switches controlling
the operation mode of the computer. Thus the basic overlay system can be
described as a pseudo-computer, where several of the basic system buttons
represent the switches on the computer, and the remainder of the buttons
represent keys on a keyboard for entering pseudo-machine language instructions
into the pseudo-computer.

The basic system programming system has within it such capabilities
as floating point arithmetic, fixed point arithmetic, and hardware control
functions such as magnetic tape control.

The camputer has two modes of operation - assemble mode and inter-

pretive mode. When in the assemble mode the computer is utilized to write pro-
grams for available keys and to assign other keys as storage area. When writing
a program for a key, one is essentially defining & single key to be a sequence
of other key pushes. This sequence may contain both basic system keys and other
previously defined keys. The computer is placed in the assemble mode by de-
pressing either the DEFINE (0513) or the ASSIGN (0525) key in order to initiate
respectively either the writing of a program or the definition of a storage

area..

In the interpretive mode, the computer is utilized to execute immediately any
and all defined keys. The computer is placed in the execute mode by depress-

ing the EXECUTE (0532) key.

B. Description of the Pseudo Computer

Within the basic programming system which defines the pseudo computer
are the following registers. These registers are programmable through buttons
on the 00 through 07 overlay levels:

a. Accumulator - fixed point or character

b. Accumulator - floating point

c. Index Registers - 9 each (labelled 1 thru 9)

d. Comparator Register - 1 bit

e. Overflow Indicator - 1 bit

f. Cursor X Register - contains X co-ordinates of display
console cursor

g. Cursor Y Register - contains Y co-ordinates of display
console cursor

h. Light Gun Address Register - contains address of
character last light gunned at the console

i. Special Register - a register for use in indirect programming
through which the computer can be directed to execute the
numbered button corresponding to the content of this register.

J. Mag Tape Address Register

The following registers are integral to the system but not

directly available to the programmer:

K. Instruction Counter Register

L. Secondary Floating Point Accumulator
M. Next Available Core Address Register
N. Current Tape Position Register

0. ©State Counter Register

In addition to the preceding registers the programmer has

at his command two 80-character (word) "buffers':

A. The mag tape buffer thru which all peripheral I/O except
console communication occurs

B. The display or digital module buffer which is used for
transfer of data to and from the display console's
memory unit. (Note: Cursor and light gun do not use

this buffer).

Two modes of arithmetic are provided, floating point and
fixed point. It is intended that the‘fixed point be used for cal-
culations such as index manipulation, character comparison and
generation, etc. The fixed point arithmetic is integer type, 1lh-bit
+ sign (modulo 16,384), Arithmetic is performed with true sign
control. However, when an overflow condition occurs the sign will

be opposite (overflow occurs into the sign position) and the fixed

A3

point overflow indicator will be set. Note that only add, subtract, and multiply
can cause overflow, Divide is truncated (i.e., if a fraction is generated it is

dropped -~ no rounding occurs).

Floating point arithmetic is carried out with 29 bits significance

1024 to 21024. Detached sign convention is used.

and exponent ranging from -2
It is necessary during certain move instructions for the programmer to realize

that floating point numbers are carried as 3 sequential fixed point numbers.

Conventional sign control is performed. Overflow conditions set the floating

point overflow indicator. Underflow results in zero.

Control of the computer at the console level is maintained through
the use of the overlay keys. The first two keys of every overlay have been
dedicated to a specific purpose. Key Ol is the "Increment Overlay Signature"
and kgy 02 is the "Decrement Overlay Signature". Overlays are physically
numbered by punching holes along the top border of the template. This gives
each specific overlay a '"basic" overlay number or "signature'. Because it is
frequently desirable to work with more than the 60 keys available with two
overlays the "increment-decrement system" has been devised to allow a method
of effectively changing overlays without physically doing so, thus saving much
time. To relieve the console programmer or user of keeping track of how far
he has "incremented" from the basic overlay a group of the console status
lights has been reserved as an increment indicator. When a new overlay is
placed on the console the computer is informed and sets its internal counters
properly. Also, one of the "Basic Overlay in Effect" lights is 1lit. If it
was the left overlay placed on the console, it is the "left" light and similarly,
if it was the right overlay inserted the "right" light is 1lit. Now, at any
time when the "Increment Overlay Signature" key of the left overlay is depressed,

the computer takes note of this fact and henceforth, will add one to the overlay

Al

portion of the signature when any other left-hand keyboard key is depressed.
Also, the light labelled "Basic Left-Hand Overlay Number +1" is 1it and the
"Basic Left-Hand Overlay Number in Effect" light is distinguished. As the
"increment overlay signature" key is depressed again and again, the lights
advance thru "...+2", ".,.+3", etc. When the "Increment" key is depressed the
fifth time the "Ieft-Hand Overlay Number +5 Plus Above" light is 1lit, the
"Basic Left-Hand Overlay Number in Effect" is 1it and the "Basic Left-Hand
Overlay Number +4" is extinguished. As the increment key is depressed again
and again the light advances as previously thru "...+1", "...+2", "...+3",
"...+4". When the increment key is depressed the tenth time, all lights re-~
ferring to the left-hand overlay are 1lit plus the "Left-Hand Overlay Number
out of Range" light. The computer continues to count and operate correctly.
The only differing result is that the status lights are no longer indicating
the increment count. The "Decrement Overlay Signature" key is similar to the
increment except it subtracts one from the computer's count of the overlay
number change and causes the indicating lights to retreat one from whatever
position they were in, e.g., from "...+t", to "...+3", ete. If the decrement
key is depressed when the computer is indicating "Basic Overlay in Effect" the
"Ieft-Hand Overlay Number out of Range" light will be the only light lit per-
taining to the left-~hand overlay. As with an increment out of range the com-
puter continues to count, the only difference being indication of the decrement
count is not given. The right-hand keyboard functions similarly to the left-
hand keyboard, using the right-~hand lights instead of the left-hand lights.
Should it be desirable to disable the light indicators toggle switch 14 on the
computer may be lowered. The only effect is to no longer indicate the overlay
differential count. Operation continues the same as before with the computer

correctly keeping count of the times the increment-decrement keys are depressed.

A5

II. Operation of the System

A. Control Functions

The following is a description of those keys which can be regarded as

switches on the pseudo computer.

Stop key - 0507 (Key mumber 07 (octal) on overlay 05 (octal))

Start

Carry

This key changes certain internal functions of the system
that cause the assembler to ignore all communication from
the console except the "Start! key (0506). This key is

provided to allow the console operator to perform off-line

console functions without the computer responding.

key - 0506
This key resets all internal functions of the system to the

states that existed before the stop key was depressed.

key - 0520

This key causes two subsequent keys to have a synonomous
meaning. The next key that is depressed (which must be
undefined) is given the meaning of the next key that is de-
bressed. Thus:

"Carry definition to key from key".

Undefine key - 0526

Occasionally it is convenient to unassign a key which has
been given a meaning previously. The undefine key provides
this function. Press "Undefine" and then the key to be
undefined. Certain "lock-out" protection features are
incorporated in the function of this key. One, no key
which 1s a system provided key may be undefined and two,

only keys which are located on an overlay which is two or

A6

more overlays higher than the overlay inserted in the
console may be undefined. Undefined keys may be undefined

providing the two or higher rule is followed.

Execute - 0532

Print

Punch

Paint

This key when depressed places the system in the interpretive
mode. The next key depressed causes the system to execute
the program defined for that key. The execute mode is termi-
nated whenever a key is depressed which causes an assembler

function to be initiated.

Program - O413
This key causes the program (or assignment) of the next key
depressed to be printed on the typewriter in the octal overlay-

key format suitable for reentry to the system at a later date.

Program - OLlk

Same as OU13 except Punch Paper Tape instead of type.

and Punch Program - O415

Same as OLl3 except Punch Paper Tape and Type.

Line Print Program - OL16

Punch

Same as O413 except Line Print instead of type.

and Line Print Program - OL17

Same as O413 except Line Print and Punch instead of type.

Display Program - OL20

Same as 0413 except Display on Crt instead of type.

AT

Purge - 0021

This key removes all useless information from the working
magnetic tape. This key should probably be used after a
session of console work and any other time after many "un-
assignments" have been accomplished or considerable usage
of different programs. Frequency of use can only be deter-
mined by experience. After purging the computer will stop.
To restart press the "flag" button on the computer control

panel (130) or the "start" switch on the computer control

panel (133).

Assign Storage - 0525
This key sets the assembler to a state that allows the
console programmer to specify a key that will henceforth
have the meaning of a data storage area. After the "Assign
Storage" key is depressed, the assembler expects the key
that is to be assigned to be depressed. This key must be
undefined. After the key to be assigned is pressed, the
assenbler must be given the dimension of the storage area
being defined. This is done by pressing the number keys
on overlay 05. After the proper numbers keys have been
pressed, the assembler is so informed by the console pro-
grammer pressing the key labeled "/ Stop Code" 0536.
Finally, the End key - 051k must be pressed. Thus, if
one wishes for key 27 of overlay 11 to represent an 80-

word storage area the following keys would be depressed in

the following order:

A8

Assign Storage - 0525, Key being defined - 1127, Number 8 - 0516,

number 0-0535, / Stop Code - 0536, End - 051k,
Note: ©Storage keys may be used in the assembling of a
program before they are assigned. However, if a program,
using an unassigned storage key is executed an interpre-
tive error will occur.
Note: An additional feature is provided whereby the
programmer may specify the contents of each word of the
assigned area. This is accomplished just as one would
insert constants into a program (see keys 0503-0504-0505)
prior to pressing the end -051k- key. If all words of the
operand are not specified in this manner, the remaining
words will be set to the value of the last specified word
If no contents are specified then zero is stored throughout

the operand.

Define - 0513
The define key starts the assembly of a console program.
The next key depressed will assume the title of the program
that is being defined. Whenever the "title" key is subse-
quently. depressed it will call for its program. During
the ensuing discussion of the various operation énd oper-
and keys the console programmer must keep it clearly in
mind that the key definition is being assembled into a
program which will not be executed until after assembly
is complete. That is, the operation and operand keys

cause no interpretive action at the time of assembly but

A9

simply go into a list for execution at a later time. For most opera-
tions it is more convenient to explain the action caused at execute

time and thus the reason for inclusion of an operation in the program.

End - 0514
This is always the last key depressed when DEFINEing a progrem or
ASSIGNing an operand. It instructs the computer that the program

definition of storage assigmment has been completed.

B. Input Output Funttions
The following instructions are programmgble and control the input-
output devices.

Read Mag Tape - 0603

This key causes (at execute time) a mag tape record (normally 80
characters) to be read and stored in the mag tape buffer. Access to
the information in the mag tape buffer is accomplished with various
operation keys to be described later. Should an EOF (End of file)
mark be read from tape the fixed point overflow indicator will be
set. If a record is read the fixed point overflow indicator will be

turned off (Unset).

Read Mag Tape EOF = 0604
This key causes (at execute time) the mag tape to be moved forward
until an EOF (End of file) mark is sensed. The tape is then in

position to read the record following the EOF.

Rewind Mag Tape - 0605
This key causes the mag tape to rewind to its "load point" (beginning

of tape).

Write Mag Tape - 0610
This key causes the information in the mag tape buffer

A10

(normally 80 characters) to be written onto the mag

tape.

Write Mag Tape EOF - 0611
When this key is executed an EOF (End of file) mark is

recorded on the mag tape.

Backspace Mag Tape - 0612
The mag tape is backed up one record length when this

key is executed.

Mag Tape Register - 0615
This is a special register used for mag tape designation.
Normally the mag tape manipulation is set up for controller
1 and transport 1. Data is handled in Alpha format. These
specifications may be changed under program control by stor-
ing a different pattern into this register. The octal coding

of the register is as follows:

5 4 3 2 1
0 for alpha
L4 for binary
0O O must be zero
X controller number O, 1, 2, 3

controller 4 is specified by O
X ‘transport number 0, 1, 2, 3
transport 4 is specified by O

O 0 O 1 1 normal set up - alpha-controller 1 - transport 1

All

Read Typer - 0625

Write

This key causes the typewriter keyboard (on 141 or 143)

to be connected as an input device. Characters are read
from the typewriter as the keys are actuated until either
80 characters and/br functions have been entered or until

a carriage return is executed. The characters and/or func-
tions are stored in the mag tape buffer starting at its
beginning position and continuing one character or function
per element in the buffer. If fewer than 80 entries are
made the remaining portion of the buffer is set to space

characters.

Typer - 0626

This key causes the contents of the magvtape buffer to be
output on the typewriter. At any time during this operation
that it is determined that the unoutput portion of the mag
tape buffer contains all space characters or that 80 char-
acters and/or functions have been output the typewriter is

caused to carriage return and the operation is terminated.

Read Paper Tape - 0630

This key is similar to the read typer - 0625 except the

paper tape reader is used as the input device.

Punch Paper Tape - 0631

This key is similar to the writer type - 0626 except the

paper tape punch is used as the output device.

Al?2

Read Card - 0632
This key causes a card to be read from the card reader and
the 80 columns of Hollerith coding to be stored as characters

(in the propsr code set) in the mag tape buffer.

Write Line Printer - 0627
This key, when executed, causes the contents of the specified
"operand" (see later description of "block operands”) to be
output on the line printer. The line printer will accommodate
120 characters per line, thus, the operand may be as long as
120 words. When printing from the opesrand the least significant
6 bits only, of each word, are translated to appropriate char-
acters. When the word containing the first character to be
output also contains a sign bit, the 1ine printer will skip
to the first line of the next page before printing. When
the sign bit of the first word is not present, the line
printer advances to the next line and prints. The next
line after the last line of a page is considered to be the
first line of the next page. Thus at page ends there is

about a 1" space of unprinted space.

Read Toggles - 0634
This key causes the left six computer toggle switch settings
to be transferred to the least significant 6 bits of the fixed
point (character) accumulator. A one bit is represented by

the toggle being up. A zero is indicated by the toggle

being down.

Al3

Write Display - 0636
This key, when executed, causes the contents of the dis-
play module buffer to be transferred to the display console
CRT. Because the display module memory is addressable the
system must supply beginning and ending addresses of where
the data is to be stored. This is accomplished by placing
the beginning address in the 79th position of the display
buffer and the ending address in the T8th position. The
ending address may be less than T8 greater than the begin-
ning address, in which case only a portion of the display
buffer will be output to the console. In the case of
the ending address being exactly T8 greater than the
beginning address the entire buffer contents will be output.
If the ending address is more than 78 greater than the be-
ginning address the contents of the display buffer will be
completely output and the operation terminated; i.e., never
will more than the complete buffer be output and no indica-
tion is given if more is called for. Never write in addresses

00 through 17 (octal).

Read Display - 0635
The key causes the display module's memory to be read into
the display buffer. As in the case of "Write Display" the
beginning and ending addresses, to be read from and to, must
be placed in the display buffer elements 79 and 78 respect-

ively. Never read from addresses 00 through 17 (octal).

C.

Storage Areas

Storage areas may be defined as explained under the "Assign
Storage" key ~ 0525, The assigmment discussion implies that
the size (number of Words) of a storage area may be controlled
by the console programmer. Because it is frequently convenient
to use only a portion of a storage area for a particular func-
tion, provision has been made in the system to allow this. It
1s possible to specify not only the element of the area to be

considered, but also the numter of elements.
i

The beginning element may be specified in a number of ways.
Perhaps the easiest method is by the use of a constant. This
is entered into the program immediately after the opsrand key
is pressed by pressing the "Decimal" key - 0504 and then a
sequence of the "numeric" keys - 0535 - 0527 through 0532 - 0522
through 0523 - and 0515 through 0517 = followed by the "stop
code" key - 0536. Note that the first element of a storage
area is referred to as the "zero" element or word. The
alternate method of specifying the first element to use is

by the use of one of the index registers or the fixed point
accumulator, Before execution of an operation needing an
indexed operand the contents of the index register must be
"set" to a meaningful value. Upon execution of the opera-
tion the contents of the index register are taken to mean

the beginning element of the storage area to be used. 1In

any case, where the element value exceeds the dimension of

the storage area an interpretive error will result at execution

time.

As mentioned above, the number of elements to be used may be
specified as well as the first element to use. If no limit is
imposed then it is assumed all elements to the end of the storage
area are to be used. A limit may be imposed by inserting a con-
stant (similar to the first element constant) after the first
element description. Also, any index register or the fixed

point accumulator may be specified as containing the count of
the number of elements to use. (Processing one element is

specified by one not zero).

In the case where two storage areas are used (such as in a block
transfer) termination of the operation will occur whenever the
end element of either area is processed or when the smallest
limit value (if any) has been exhausted, whichever occurs first;
i.e., it is impossible to process beyond the end of a storage

area.

D. Arithmetic Operation
1) Fixed Point
Transfer Non-Block - 0606
This transfer operation requires two single word operands.
These operands may be fixed point registers (index registers,
fixed point accumulator), assigned storage operands with a
dimension of one, assigned storage operands with a dimension

greater than one and an element index specified or the mag

A16

tape or digital module buffer with an element index specified.
The operation is to transmit the contents of the first speci-
fied operand into the second operand. Note that this operation
is both load and store, being defined by the order of the oper-
ands and also that data may be transmitted between assigned

storage elements without the need of loading the accumulator.

Exchange Non-Block - 0607
This operation is similar to the transfer operation above
except that data is transmitted both ways; i.e., an interchange

of the contents of the two specified operands occurs.

2's Complement - 0130
Convert the contents of the fixed point accumulator to 2's
complement form and store back in the character accumulator

(0 minus FXACC to FXACC).

1's Complement - 0131
Convert the contents of the fixed point accumulator to 1l's
complement form and store back in the fixed point accumulator

(reverse each bit).

Extract - 0135
Perform a logical "or" with each bit of the specified operand
and the corresponding bit of the fiked point accumulator, leave
the result in the fixed point accumulator. Example:
Acc Start 1100
Operand 0101

Acc Result 0100

ALT

Add - 0105
Add the contents of the specified operand to the fixed point
accumulator. If overflow results set the fixed point over-

flow indicator on.

Subtract - 0107
Subtract the contents of the specified operand from the
fixed point accumulator. If overflow results set the fixed

point overflow indicator on.

Multiply - 0113
Multiply the contents of the fixed point accumulator by the
contents of the specified operand. Place the product in
the fixed point accumulator. If overflow results set the

fixed point overflow indicator on.

Divide - 011k
Divide the fixed point accumulator by the contents of the
specified operand. Truncate the quotient placing the

integer portion in the fixed point accumulator.

Increment X - 0123
This operation must be followed by one of the nine index
registers. The operation adds one to the specified index

register's contents.

Decrement X - 0124
Subtract one from the contents of the specified index

register.

A18

BCD to FXACC - 0C35
The operand for this operand specifies the beginning of a
sequence of words containing decimal numbers. The operation
is to binarize the string of numbers and place the result in
the fixed point accumulator. The first valid character may
be preceded by spaces which are ignored. A sign + or - may
be anywhere in the string of numbers. If more than one sign
is presenﬁ the last one encountered will control the sign of
the result. No sign is taken to mean positive. Binarization
will continue until a non-numeric, non-sign character or until
the end of the operand containing the string is encountered.
If overflow results the fixed point overflow indicator will

be set.

FXACC to BCD - 0030
The operand for this operation specifies the beginning of a
sequence of words. The operation is to debinarize (convert
to a string of BCD characters) the contents of the fixed
point accumulator and store the result in the specified
string of words. The sign of the accumulator is stored in
the first word of the string (- for minus, space for plus).
The most significant character of the number is stored in
the next word, the next number in the next word, etc., until
up to five characters have been stored. If the specified
string has remaining words in it, they are filled with
spaces. Whenever the end of the string is encountered the

operation is terminated regardless of whether the complete

A19

debinarized number string has been stored. No provision

is made to indicate the fact, therefore, it is the responsi-
bility of the console programmer to provide a large enough
string for the number to be debinarized (six is always

sufficient).

Compare Fixed Greater Than - 0125
The contents of the specified operand are compared with the
fixed point accumulator. If the operand is greater than the
accumulator; the comparator register is set true. If the
operand is equal to or less than the accumulator; the com-

parator register is set false.

Compare Fixed Equal to - 0126
The contents of the specified operand are compared with the
fixed point accumulator. If the operand is equal to the
accumulator; the comparator register is set true. If the
operand is not equal to the accumulator; the comparator

register is set false,

Compare Fixed Less Than - 0127
The contents of the specified operand is compared with the
fixed point accumulator. If the operand is less than the
accumulator; the comparator register is set true. If the
operand is equal to or greater than the accumulator; the

comparator register is set false.

Set True - 0030

Set the comparator register true (no operand needed).

A20

Set False - 0031

Set the comparator register false (no operand needed).

2) Floating Point
Transfer Block - 0624
This transfer operation requires two multiple word operands.
These operands may be the floating point accumulator, assigned
storage operands with a dimension greater than one or the mag
tape or digital module buffer. In any case except the floating
point accumulator a first element specifier is required. This
may be in the form of a constant or index register. Optionally
an "n" number of elements to be transferred may be given with
either or both operand following the first element specifier.
The block transfer will continue until either of the operand's
n_n

last element has been processed (from or to) or until "n

number of elements has been processed, whichever is sooner.

It is interesting to note that the transfer is processed in
ascending order of the elements - thus, if the first element

of a block is specified to be transferred to the second ele~
ment of the same block and no "n" is given, then the entire
block will be set to the value in the first element. Conversely,
if the second element of a block is specified to be moved to

the first element of the same block the effect is to "ripple"
the contents of the entire block down one element. The last

element and the next to last element will contain identical

values.

A2l

When transferring floating point data the block transfer
mode should be employed. If the optional "n" value is used
it must be three times the number of floating point numbers

to move.

Fixed Point to Floating and Floating Point to Fixed

Add

To accomplish the operations of "float" and "unfloat" a
special connotation has been given to the Transfer-Non-Block -

0606 operation when the floating point accumulator is involved.

If a non-block transfer is made to the floating accumulator,
the operand is considered to be fixed point, is "floated" and

placed in the floating accumulator.

If a non-block transfer is made from the floating accumulator,
the floating accumulator is "unfloated" and the result stored
in the operand. Should overflow occur during the "unfloat"
operation the fixed point overflow accumulator is set for on
and the largest possible positive number is stored in the

operand. Underflow causes zero to be stored in the operand.

- 0006
Add the contents of the specified operand to the floating
point accumulator. If overflow results set the floating

point overflow indicator on.

Subtract - 0007

Subtract contents of the specified operand from the floating
point accumulator. If overflow results set the floating

A22

point overflow indicator on.

Multiply - 0013
Multiply the floating point accumulator by the contents of

the specified operand.

Divide - 001k
Divide the floating point accumulator by the contents of the

specified operand.

Sin - 0010
Compute the sine of the floating point accumulator (in radians)
and store the result in the floating accumulator. No operand

required.

Cos - 0015
Compute the cosine of the floating point accumulator (in radians)
and store result in the floating accumulator. No operand

required.

Atan - 0011
Compute the arctangent of the floating point accumlator and
store the result (in radians) in the floating accumulator.

(No operand required).

Sqrt - 0016
Compute the square root of the floating accumulator and
store the result in the floating accumulator. If the contents

of the accumulator was negative - terminate the operation and

n

execute the "executive error" function.

A23

Log - 0012
Computer the logarithm to base 10 and store the result in
the floating accumulator. If the argument was zero or
negative terminate the operation and execute the "executive

error" functions.

Exp - 0017
Compute the anti-logarithm to base 10 and store the result

in the floating accumulator.

Compare Floating Greater than or Equal - 0025
The contents of the specified operand are compared with the
floating accumulator. If the operand is greater than or
equal to the accumulator; the comparator register is set true.
If the operand is less than the accumulator; the comparator

register is set false.

Compare Floating Less than - 0027
The contents of the specified operand are compared with the
floating accumulator. If the operand is less than the
accumulator; the comparator register is set true. If the
operand is greater than or equal to the accumulator; the

comparator register is set false.

Change Sign Floating - 0023
Change the sign of the floating accumulator. No operand

required.

A2k

Absolute Floating - 0024
Make sign of the floating accumulator positive. No operand required.
E. Branching Operations

Ten "Jump" or branch functions are provided. When in the assemble mode
the next key depressed after a jump or branch function is not inter-
preted to mean assemble that key. Instead, this key is interpreted as

a label or reference point in the program. For convenience each label

is identified by its corresponding button number. A Jump operation is
always followed by a "label" designating where to jump to. A "label" may

" and "decrement" keys.

be any key on any overlay except the "incremen
(The key used as a "label" may also have another function). Keys used
as labels are only effective between a "define" and "end" function; i.e.,
"define" initializes such that no keys have a "label" meaning. In

order to place a "label" in a program for jumps to be meaningful the

following key has been implemented.

Label Follows - 0521
This key is always succeeded by a "lébel" key in order to establish a
reference point. The effect is to give previous or later Jump
operations a destination. That destination is the operation immediately
following the "label key" after a '"label follows" function. The "label
key" must conform exactly to the key used after the appropriate jump,

i.e., overlays must match.

Jump True - 0132
If the comparator register is true - jump to the labelled operation.

Otherwise, execute the next sequential operation.

Jump False = 0133

If the comparator register is false - jump.

A25

Jump Floating Plus -~ 0020

If the floating point accumulator is positive - Jump.

Jump Floating Minus - 0022

If the floating point accumulator is negative ~ Jump.

Jump Fix Plus - 0120

If the fixed point accumulator is positive - jump.

Jump Fix Zero - 0121

If the fixed point accumilator is zero - jump.

Jump Fix Minus - 0122

If the fixed point accumilator is negative - jump.

Jump Floating Overflow - 0032
If the floating point overflow indicator is on - set it off

and jump. Otherwise execute the next sequention operation.

Jump Fixed Overflow - 0033
If the fixed point overflow indicator is on - set it off and

Jump .

Jump Always - 0134

Always Jjump.

A26

/

F. Indirect Programming Operations

Carry at Execute - 0026
This operation must be followed by two keys. These keys must be
of the same format, i.e., either storage areas or executable pro-
grams, operations or functions. The decimal keys may not be used
for this purpose. The effect of the operation is to make the
second specified key take on the meaning of the first specified
key. This key is programmable and should not be confused with
the carry key. The carry key is a sﬁitch on the computer for
immediately accomplishing the same task.

Read Program Key - 0623
This key causes the computer to go into an idle mode waiting for
a program key to be pressed. When the key is pressed its signature
(in octal notation) is placed in the special register defined by
key 0003 and 0533.

Substitute - 0533
This key is replaced by the key whose signature is in the special
register (see 0003 and 0623). Thus, with the use of Read Program
Key - 0623 an operand or operation may be dynamically specified
at execution time.

Special Register = 0003
The contents of this register may be loaded with a non-block
transfer - 0606 or by Read Program Key - 0623. The important use
of this register is with the substitute - 0533 function. Thus
register is addressable from the fixed accumilator and as such
can be utilized in executing a calculated key number.

G. Miscellaneous Operations

Abort - O411

This key when executed causes the computer to return to idle

mode waiting for another key to be pressed for execution. This

A27

is useful when an error is diagnosed in a console program

and no recovery is possible.

Zeroize operand - 0412
Store a zero into every word of the specified operand. No

element index or optional "n" is allowed.

Break point 1 - 0L0O3
If toggle 1 on the computer is up then stop the computer.
Press start to restart and execute next sequential key. If
toggle 1 on the computer is down then execute the next sequential

key. This feature is useful for console program debugging.

Bresk point 2 - OLOL

Same as Break point 1 except use computer toggle 2.

Break point 3 - 0OLO5

Same as Break point 1 except use computer toggle 3.

Break point 4 - 0LO6

Same as Break point 1 except use computer toggle k.

Break point 5 - OLOT

Same as Break point 1 except use computer toggle 5.

Break point 6 - O410

Same as Break point 1 except use computer toggle 6.

Call Prbgram or operand - 0421

This key is used for optimization of console program.

A28

H. Other System Features
1. Tape Access Control

Console programs and operands are called into core from mag tape
when they are first required. They stay in core until the pro-
gram calling them has been finished. In order to prevent the
mag tape from "dancing" to get programs and operands in the
order needed this "call" key will allow programs and operands
known to be needed to be called in the order they appear on mag
tape. Each depression of the "call" key requires a key indicat-
ing a console program or console assignment to follow. No
execution of the "called" program or operand is implied or need

be done.

2. Debugging
If computer toggle switch 11 is up the computer will stop before
executing each console operation. Also “he computer may be
stopped by the use of Break point keys and corresponding com-

puter toggle switches.

When the computer is stopped for the above reasons the signature
of the key to be executed is displayed in the least significant
12 bits of the "A" register. The comparator register is dis-
played in bit 15 of the "A" register. (On = 1 or true,

off = 0 or false).

The contents of the fixed point accumulator is displayed in the
"P" register. The "T" register contains in bit 15 the sign of
the floating accumulator, in bits 6 thru 1 the 2's exponent

of the floating accumulator and in bits 1b thru the most signifi-

cant part of the floating accumulator in positive form. The

AZ9

"L" register contains (in binary) the program location of
the key stopped on. To restart the computer in order to
execute the next operation (or the one being displayed in
the case of switch 11 being up) press the computer start
switch. To abort the entife operation and return to the
"idle mode" place the computer in manual operation - press
"display" switch - place the computer in normal mode and

press the start switch.

A30

Overlay

any

any

00

00
00
00
00
00
00
00
00
00
00

00

00

00

00

00

00

00

00

Key

ol

03

05

o7
10
11
12
13
1
15
16

17
20

22

23

2h
25

Synopsis
Title Remarks
Increment Increase the overlay signature
in effect by 1

Decrement Decrease the overlay signature
in effect by 1

Special Register Used in conjunction with Read
program key and substitute

BCD - FLACC Binarize and Float String to F1 Acc
FLACC - BCP Unfloat and Debinarize Fl Acc to String
Floating ADD

Floating SUB

Floating SIN Radians

Floating ATN Radians

Floating LOG Base 10

Floating MUL

Floating DIV

Floating COS Radians

Floating Square

Root

Floating EXP Base 10 anti-log
Floating Jump

positive

Purge Remove discarded records from

mag tape press computer start to
continue after purge

Floating Jump
Negative

Floating Change
Sign

Floating Absolute
Compare Floating Set comparator true if operand

Greater than is greater than or equal to the
floating accumulator

A3l

Overlay

00

00

00
00

00

00

00

00

00

01

o1

01
0l
0l
ol
oL
o1
01
o1
01

oL

(113

Key

26
27

30
31
32

33

34
35

36

o1

02

03
ok
05
06
o7
10
1
12
13
L

15

Title

Carry At Execute
Compare Floating
Less Than

Set True

Set False

Jump Floating
overflow

Jump Fixed
overflow

Vacant

BCD - FXACC

FXACC - BCD

Increment
Decrement

Index 9
Index 8
Index 7
Fixed Add
Fixed Sub
Index 6
Index 5
Index L
Fixed Mul

Fixed Div

Index 3

Remarks

Carry to key from key

Set comparator true if operand
is less than the floating
accumulator

Set comparator true

Set comparator false

Binarize String to Fixed point
accumulator

Debinarize Fixed point accumulator

Increase the overlay signature
in effect by 1

Decrease the overlay signature
in effect by 1

Overlay

0l
0l

0l

01

0l

0l

oL

o1

01

o1

01
01
01
01
o1

01

o1

02

02

02

Key

16

17
20

21

22

23
2L

25

26

27

30

32

33

35

36

0ol

02

03

Title

Index 2
Index 1

Jump Fixed
positive

Jump Fixed
zZero

Jump Fixed
Negative

Increment Index
Decrement Index
Compare Fixed
greater

Compare Fixed
Equal

Compare Fixed
Less

2's Complement
1's Complement
Jump true

Jump false
Jump always

Extract

Vacant

Increment

Decrement

Remarks

Add 1 to specified index register

Subtract 1 from specified index
register

Set comparator true if operand
greater than accumulator

Set comparator true if operand
equal to accumulator

Set comparator true if operand
less than accumulator

Multiply accumulator by minus 1

Bit by bit and of operand and
accumulator

Increase the overlay signature
in effect by 1

Decrease the overlay signature
in effect by 1

For use in conjunction with ALF
key 0503

A33

Overlay Key Title Remarks

02 oh B
02 05 C
02 06 D
02 o7 E
02 10 F
02 11 G
02 12 H
02 13 I
02 1k J
02 15 K
02 16 L
02 17 M
02 20 N
02 21 0
02 22 P
02 23 Q
02 2k R
02 25 S
02 26 T
02 27 U
02 30 v
02 31 W
02 32 X
02 33 Y
02 3k Z
02 35 STOP CODE

A3k

Overlay

03

03

03

03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

Key

36

o1

o2

03

ok
05
06
o7
10

12
13
1k
15
16
17
20
21
22
23
2l
25
26

Title

SPACE

Increment

Decrement

Stop Code

/
t

(
)
=
D

I+

n

Remarks

Increase the overlay signature
in effect by 1

Decrease the overlay signature
in effect by 1

For use in conjunction with ALF
key 0503

Marker
Period

Straight line

slash

Number sign
comma

Left parenthesis
Right parenthesis
Epsilon

Delta

Minus sign

plus sign
plus-minus sign
asterisk

Quotes

degree mark

greater than mark

A3D

Overlay

03
03
03
03
03
03
03
03

Ok

(o)1
ok
ol
Ol
ok
ol
ol
ol

ol
ok
ok

ok

Key

27
30
31
32
33
3k

35
36

01

02

03
ok
05
06
o7
10

13
14

15

16

Title Remarks

% Per cent
<: less than mark

! apostrophe

- under line
Colon

? Question mark

' Plot symbol

Vacant

Increment Increase the signature of the
overlay in effect by 1

Decrement Decrease the signature of the
overlay in effect by 1

BP 1 Break point 1

BP 2 Break point 2

BP 3 Break point 3

BP 4 Break point k4

BP 5 Break point 5

BP 6 Break point 6

ABORT Terminate program being executed

Zeroize operand Store zero throughout specified
operand
- no element index or optional "n"
allowed

Print program
Punch program

Print and Punch
program

Line Print
program

A36

Overlay
o

ok
ok

ok
Ol
oh
ol

ok
o
ol
ok
oh
ob
ol
o4

05
05
05
05
05

05

Key

17

20

21

22

23
2k

25
26
27
30
31
32
33
34
35
36

01

o2

03

oL

05

06

Title Remarks
Punch and Line

print program

Display program

Call program or
operand

Binary Dump

2K operand

Punch 507
Executable stop
Revised paper tape

Assemble from 2K operand

Vacant

Vacant

Vacant

Vacant

Vacant

Vacant

Reserved

Increment Increase overlay signature
in effect by 1

Decrement Decrease overlay signature
in effect by 1

Alphabetic Prepare to insert alpha
constant

Decimal Prepare to insert decimal
constant

Octal Prepare to insert octal
constant

Start Reinitiate action after
Stop 0507

A3T

Overlay

05

05

05

05

05

05

05

05

05

05
05

05

05

05

05
05

05

05

05

Key
o7
10
11
12

13
14

15
16
17

20
21

22
23
24

25
26

27
30

31

THtle

Stop

Special Register

Define

End

Carry
label follow

6

Assign

Undefine

Remarks
Ignore all keys and light gun
except Start 0506

May be used for a computed
assign dimension

Meke the constant being
inserted positive

Meke the constant being
inserted negative

Initiate program definition

End assembly of a program or
assignment for an operand

For use in conjunction with
ALF or Dec, 0503-050k4

For use in conjunction with
ALF or Dec, 0503-050k4

For use in conjunction with ALF
or Dec, or OCT, 0503-0504-0505

Carry meaning to key from key
The next key is a label

For use in conjunction with ALF-
Dec or OCT, 0503-0504-0505

For use in conjunction with ALF-
Dec or OCT, 0503-0504-0505

For use in conjunction with ALF-
Dec or OCT, 0503-0504-0505

Initiate assignment of an operand

Undefine the next key - must be
2 overlay levels above

For use in conjunction with ALF-
Dec or OCT, 0503-0504-0505

For use in conjunction with ALF-
Dec or OCT, 0503-0504-0505

For use in conjunction with ALF-
Dec or OCT, 0503-0504-0505

A38

Overlay

05

05

05

05

05

06

06

06

06

06
06

06

06
06

06

Key

32

33

35

36

o1

03

ol

05
06

oT

10

11

12

13

Title

Execute

Substitute

Infinity

zero

Stop Code

Increment

Decrement

Read MT

Read MT EOF

Rewind MT

Transfer

Exchange

Write MT

Write MT EOF

Backspace MT

Floating
Accumulator

Remarks
Prepare to execute console
programs

Use the key whose signature is
in the special register

For use in conjunction with ALF-
Dec, OCT, 0503-0504-0505

For use in conjunction with ALF-
Dec, OCT, 0503-0504-0505

Terminates insertion of constant

initiated by ALF-Dec -OCT, 0503-
0504-0505

Increase the overlay signature
in effect by 1

Decrease the overlay signature
in effect by 1

Read a record from mag tape
into the mag tape buffer - 0617.
If EOF is read turn on fixed
point overflow

Read mag tape records until an
EOF is read

Rewind the mag tape

Transfer data from the next
operand to the next

Exchange data between the two
following operands

Write the mag tape buffer -
0617 onto mag tape

Write a mag tape EOF

Backspace over one mag tape
record

3 words

ASH

Overlay

06

06

06

06
06

06

06

06

06

06

06

Key

14

15

16

17
20

21

22

23

2

25

26

27

30

32

33

Title
Fixed point
Accumulator

Mag tape register

Digital Module
Buffer

Mag tape Buffer

Cursor X Register
Cursor 'Y Register
Light gun Address
Read Program Key

Block transfer
Read typewriter

Write typewriter
Write Line
Printer

Read paper tape
Punch paper tape

Read Card

Read Cursor

Remarks
1 word

Contents specify Controller -
Transport and binary or alpha
mode

78 = Ending address, T9 = .
beginning address

Hold cursor X co-ordinates when
read cursor 0633 is executed

Hold cursor Y co-ordinate when
read cursor 0633 is executed

Holds address of character
addressed

Idle till key can be read -
then sig. to special register

for transferring Blocks of data
from next operand to the next -
Floating point is 3 words

Read from typewriter for 80
characters or until CR into
mag tape buffer

Write contents of mag tape
buffer on typewriter

Write contents of next operand
on line printer

Similar to 0625 except for
source of data

Punch contents of mag tape buffer
into paper tape

Read Hollerith from card into
mag tape buffer

Store cursor co-ordinates in
X and Y registers 0620 and 0621

Ao

Overlay

06

06

Key

3k

35

36

Title

Read Toggles

Read Display

Write Display

Remarks

Computer toggles 1 thru 6
to fixed point accumulator
1l =up O = down

Digital Module Memory to
Digital Module buffer

Digital Module Buffer to
Digital Module Memory

AL}

‘Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report ia classified)

1. ORIGINATIN G ACTIVITY (Corporate author) ' 28. REPORT SECURITY C LLASSIFICATION

Unclassified

2b. GROUP

The Bunker-Ramo Corporation

3. REPORT TITLE

On-Line Command and Control Study

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Research Progress Report May 1963 through November 1964

5. AUTHOR(S) (Last name, first name, initial)

Martins, Gary R.
Wilkinson, William D.

6. REPORTYT DATE 78 TOTAL NO. OF PAGES 7b. NO. OF REFS
September 1965 7 1
8a. CONTRACT OR GRANT NO. §a. ORIGINATOR'S REPORT NUMBER(S)
Nonr 4182(00)
b. PROJECT NO. D58'5Ul
c. 9b. OTHER aféoa'r NO(8) (Any other numbers that may be assigned
this report,

. d

10. AVAIL ABILITY/LIMITATION NOTICES
"Qualified requesters may obtain copies of this report from DDC."

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

13. ABSTRACT

In most automated Command Information Systems, the military user is hampered by
the lack of convenient means for communication with the computer system and by
the inflexibility of the system to respond to a rapid change either in the type
of problem to be solved or in the method of solving a standard problem. It is
in these areas that-on-line techniques show promise for improvement. The major
objective of on-line techniques is to put the user directly in the problem-
solving system loop in such a manner that the experience and intuition of the
user becomes closely coupled with the powerful computational capabilities of
the computer so that there is a balanced interaction between the capabilities
of each.

On-Line techniques employ a functional approach to permit the user to:

1) communicate with the computer system conveniently in his own terminology,
2) structure the problem solving process, and
3) maintain continuous control over the system.

Although Command and Control is emphasized in this study, the techniques
described are general and should be useful in a wide range of problem solving
“applications.

DD .72, 1473 UNCLASSIFIED

Security Classification

UNCIASSIFIED

Security Classification

14.
KEY WORDS

LINK A LINK 3 LINK C

ROLE wT ROLE wT ROLE wT

On-Line Information Processing
Command and Control

Command Information Systems
On-Line Systems

Time-Sharing

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURTY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
‘“‘Restricted Data” is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 ‘as author-
ized. -

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

| 6. REPORT DATE: Enter the date of the report as day,
month, year; 6f month, year. If more than one date appears-
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written,

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity, This number must
be unique to this report. .

9b. OTHER REPORT NUMBER(S): If the report has been

assigned any other report numbers (either by the originator
or by the sponsor), also enter this number_(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) ‘“‘Qualified requesters may obtain copies of this
report from DDC.”’

(2) ‘“*Foreign announcement and dissemination of this
report by DDC is not authorized.’’

(3) ‘“U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

2
.

(4) *“‘U. S. military agencies may obtain copies of this
report directly from DDC., Other qualified users
shall request through

”
.

(5) ‘“‘All distribution of this report is controlled. Qual-
ified DDC users shall request through

”
»

If the report has been furnished tc the Office of Technical
Services, Department. of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for'additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development, Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation cn the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words-are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
prajeéct code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

GPO 886-551

UNCIASSIFIED

Security Classification

	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	B-01
	B-02

