
68xxx
UnifLEX®
Progrommeri
Guide

COPYR IGHT e 1984 by

Technical Systems Consultants, Inc.
111 Providence Road

Chapel Hill, North Carolina 27514
All Rights Reserved

U1rFLEX~rE9fstered In U.S. PatEnt C!ld TrDlak Offfcs.

Revision Date

A 07/84

B 02/86

C 09/86

MANUAL REVISION HISTORY

Change

Original Release

Manual Update, Updated documentation for the
68xxx microprocessors and corrected
miscellaneous errors.

Manual Update for Version 2.0 of 68xxx UniFLEX.

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enj oyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in .
whole or in part, by any means is prohibited. Use of this program and manual, or any part
thereof, for any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and :ts documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

Contents

Chapter 1 Introduction 1

Chapter 2 General 3

How UniFLEX. Programs Run 3

Introduction to System Calls 4
The "sys" Instruction 4
Example of a System Call 6
Indirect System Calls 7

System Errors 9

The Task Environment 9
Address Space 10
Arguments 11

Chapter 3 Initiating and Terminating

Terminating a Task 15

The "wait" System Call 15

The "exec" System Call 16

The "fork" System Call 18

Chapter 4 Fil e Handling 21

General UniFLEX File
Device-independent
File Descriptors
Standard I/O Files

Definitions
I/O 21

21
22

Tasks

21

Opening, Closing, and Creating Files 23
The "open" System Call 23
The "close" System Call 23
The "cr ea te" Syst em Ca 11 24

Reading and Writing 25
The "read" System Call 25
The "write" System Call 27
Efficiency in Reading and Writing 28

-iii-

15

Contents

Seeking 28

File Status Information 30

Chapter 5 Directories and Linking 33

Chapter 6 Other System Functions 35

The "break" and "stack" System Calls 35

The "tty set " and "ttyget" System Calls 35

Pipes 42

Program Interrupts 43
Sending and Catching Program Interrupts 43
Interrupted System Calls 50

Locking and Unlocking Records 51

Shared-Text Programs 52

Chapter 7 General Programming Practices 55

Chapter 8 Debugging 57

Chapter 9 Sample UniFLEX Utility 59

-iv-

68xxx UniFLEX Programmer's Guide

1.0 Introduction

The UniFLEX Programmer's Guide describes how to develop programs and
utilities that execute under the UniFLEX Operating System. The language
used throughout the guide is 68000 assembly language; system programming
in higher level languages will be discussed in separate manuals
appropriate to those languages. The programmer's guide is not a
complete step-by-step instruction guide for the beginning programmer. A
beginning programmer should not attempt to write UniFLEX system programs
in assembly language. Rather. this guide is a brief and general
introduction to writing simple utilities. It assumes that a
knowledgeable systems programmer will be able to build on the
information provided here and with experience and the information
provided in the Introduction to UniFLEX System Calls be able eventually
to develop utilities of most any complexity.

-1-

68xxx UniFLEX Programmer's Guide

-2-

68xxx UniFLEX Programmer's Guide

2.0 General

We begin with a general introduction to assembly language programs under
UniFLEX: how they run, how they perform system calls, how they handle
errors, and what the task environment is like.

~.l How UniFLEX Programs Run

The most common way a program or utility is run under UniFLEX is by
typing the name of such a program in response to a prompt from the
UniFLEX shell program. The shell program assumes the name which was
typed is a file containing an executable binary program (exceptions such
as command text files and precompiled BASIC programs do exist, but we
will ignore those for now). This binary program is loaded into memory
and executed. If desired, this program can obtain parameters from the
calling I ine. When it is finished, the program terminates, returning
control to the shell program.

Every program that runs on the system is a task. There may be many
tasks active under UniFLEX at once, but in reality only one task is
running at any given instant. The system switches from task to task so
rapidly that the appearance is that all of the tasks are executing
concurrently. If you were to freeze the system at some point in time,
you would see a single task or program in the CPU's address space. The
task may not have all of RAM assigned to it, but it would have the
entire address space available. Other tasks may be resident in other
memory, but that memory is not mapped into the CPU's space. When the
task terminates, its allocated memory is returned to the system and
control passes to the parent task (the task which created or initiated
the terminating task).

Our question, then, is how to write the program which the shell program
can load and execute, how this program can communicate with the user,
system, other tasks, and so forth, and how to terminate the program's
execution.

-3-

68xxx UniFLEX Programmer's Guide

~.~ Introduction 1£ System Calls

When a user's program wishes to communicate with the user, a disk file,
another task, or anything else in the system, it does so through calls
to the UniFLEX Operating System. The UniFLEX Operating System, also
referred to as "the system", is essentially another task which is always
available and which has built-in routines to perform a multitude of
system-oriented functions. These functions include reading files,
writing files, seeking to file locations, setting permissions, creating
pipes, reporting task identification numbers (task IDs), creating tasks,
terminating tasks, mounting devices, reporting the time, and so forth.
A user program can execute these functions by making a call to the
system with a proper function code and input parameters. The technique
of making the call in the assembler code is the "sys" instruction
recognized by the 68xxx UniFLEX Assemblers.

2.2.1 The "sys" Instruction

The 68xxx UniFLEX Assemblers have a built-in instruction to make system
calls to UniFLEX. It is the "sys" instruction and has the following
format:

sys <function_code> [<param_list>]

where <function_code> is simply a numeric code for the desired system
call. The number and type of parameters required depend on the
particular system call. The number of parameters in the list may range
from 0 to 4 inclusive. The numeric code is a 16-bit value while
parameters are always 32-bit values. Many of the system calls also
require certain values or parameters to be in one or more of the 68xxx
CPU's registers before executing a "sys" instruction. This depends on
the particular system call involved. In those cases where some
parameters are required in registers, it is the programmer's
responsibility to see that the proper values are loaded before calling
on the system.

When the "sys" instruction has completed execution, control generally
passes to the next instruction in the program. In some cases it is
necessary for the system call to return one or more values to the
calling program. This is generally done by returning the values in
selected registers of the CPU. In some cases the returned value or
values will be placed at a location specified as one of the input
parameters.

The, possible system calls under UniFLEX are individually listed and
described in the manual called Introduction !Q UniFLEX System Calls.
Along with the description, the necessary parameters and r~turned values
are specified. As an example, look at the "read" system call in that
manual. The section on assembly language syntax shows the following:

-4-

68xxx UniFLEX Programmer's Guide

Expected

<f i1 e_des> in DO

Syntax

sys read,<buf_add>,<count>

Returns

<bytes_read> in DO

These statements should be interpreted as follows. Before executing the
"read'" system call, the programmer must ensure that the appropriate file
descriptor (we will find out what a file descriptor is later) is loaded
into the 68xxx's DO register. Next we see the actual "sys" instruction
and that in addition to the "read" function code itself, we must supply
a buffer address (32-bit address of a buffer to read into) and a count
(32-bit count of how many characters to read). After the "read" call
has been executed, the actual number of bytes read will be returned in
the 68xxx's DO register.

All user-accessible 68xxx registers except for
registers are left intact across system calls.
AO, and CCR registers upon return from a system
the particular call.

the DO, AO, and
The contents of the

call vary depending

CCR
DO,

on

The file "/lib/sysdef" defines the function code for each system call.
To see what a particular function code is, you can simply list the file
with the command:

list /lib/sysdef

This file was provided on disk, however, so that the programmer can
include those def initions in the source code by using a "1 ib sysdef"
instruction.

It is not necessary to know how the "sys" instruction works, but a brief
description might help the programmer's overall understanding. The
"sys" instruction generates a "trap :ff<num>" instruction where the value
of <num> is system-dependent but is usually 15. This instruction causes
the hardware to switch from user space to system space. The operating
system then picks up the handling routine for the specified trap,
executes the designated system call (which it obtains from the code
directly following the "sys" instruction), and switches back to user
space.

-5-

68xxx UniFLEX Programmer's Guide

2.2.2 Example of a System Call

First of all, let's try a sample program which requires the inclusion of
a system call. The simplest program we can write is one which does
nothing at all. As soon as it is initiated, it terminates. Thus, the
only system call we will need is the cali to terminate, "term". Looking
in the manual Introduction to UniFLEX System Calls we see that the "sys"
instruction itself requires no parameters besides the function code, but
that we must put a status value in the DO register before performing the
call. As the description states, if there are no errors this status
should be O. Thus, we can write the following extremely simple UniFLEX
program:

text
lib sysdef

start move. 1 IFO, dO Get status in DO
sys term Terminate task
end start

The "lib sysdef" includes the definitions of all system function codes
so that we can specify the "term" call as a symbol ("term") and not have
to type in the particular number for that call. The "move. 1 IFO,dO" puts
the status in DO as required by the "term" system call. Then we have
the system call itself, which terminates the program. In the case. of
the "term" system call, control does not return to the calling program
after execution. Of course, that is the reason for the system call; it
terminates the current task (the task which made the call) and returns
control to that task's parent. Notice that the program's "end"
instruction includes the symbol "start". This tells the assembler what
the beginning location for execution is.

Let's assume you call the source file "nothing.a" and assemble it with
the following command:

++ re168k nothing.a +ls +o=nothing.r
++ 10ad68k nothing.r +o=nothing

The result would be a binary file which when executed by the command:

++ nothing

would load, run, and immediately return to the shell program. This is,
of course, a meaningless example but it does show the rudimentary steps
in writing, assembling, and executing a UniFLEX program.

-6-

68xxx UniFLEX Programmer's Guide

2.2.3 Indirect System Calls

We have seen that the "sys" instruction in the assembler is the method
by which system calls are made. One quickly notices that in order to
use the "sys" instruction directly, all the parameters must be def ined
at assembly time. Often the parameters cannot be known at assembly time
because they will be determined or changed during the execution of the
program. Look at the "read" system call we examined earlier. Let's
assume we do not know how many characters to read when we are writing
the program. That number will be determined by some value the user of
our program inputs during its execution. Using the "sys" instruction,
our only recourse would be to have the program put the determined number
into the appropriate bytes of the program following the software
interrupt generated by the "sys" call. This is an unacceptable option
because the code would be self-modifying. A solution to this dilemma
has been built into UniFLEX in the form of indirect system calls. There
are two such forms, and they are themselves system functions which are
called with the normal "sys" instruction. They permit the programmer to
tell the system that the parameters do not actually follow the software
interrupt, but instead are placed at some other specified location in
memory. This memory location, specified by the programmer, can be in an
area of memory containing data but not program code. This allows the
executing program to put parameters into those locations without
creating self-modifying code.

The first of these indirect system calls is called "ind". As described
Ln the Introduction to UniFLEX System Calls, it syntax is as follows:

sys ind,<label>

where <label> is the address of the memory locations that will contain
the appropriate function code and its parameters. Thus when this system
call is executed, the system goes to location "label" and there picks up
the desired function code and any necessary parameters. That system
call is then executed and when it is complete, control returns to the
statement following the "sys ind,<label>" instruction.

To illustrate, let's assume we have a program which needs to read from a
file, but does not know how many characters to read until it LS

executing. We'll assume that somewhere in the first part of the
executing program the number of characters to read is determined and
stored in a label called "rcount". We will not show the entire program,
just those portions required to illustrate the indirect system call.

-7-

68xxx UniFLEX Programmer's Guide

text
move. I
move. I
sys
data

iread dc.w
dc.l

iread_cnt dc. 1
bss

buffer ds. b

rcount,iread_cnt
fd,dO
ind., iread

read
buffer
o

$4000

Get count to read
Get file descriptor
Do indirect read call

READ function code
Read buffer location
Read count (unknown)

Space for read buffer

At this point the reader should not be concerned with details of how the
"read" call really works or what the file descriptor is. We simply wish
to show how the indirect system call is made.

The second form of indirect system call is the "indx" system call. It
is similar to the "ind" system call, but instead of providing the label
to "ind" which points to the parameters in memory, the "indx" system
call assumes that the pointer to the parameters is in the AO register.
To see how this works, the previous sample for the "ind" system call can
be repeated changing the instruction "sys ind,iread" to:

lea
sys

iread,aO
indx·

Get address of parameter
Do indirect read call

An obvious use of "indx" is to push the parameters onto the system stack
and point AD to it, thereby obviating the need for the parameter buffer
in memory. For example:

buffer

· .. · ..
move. 1
move. 1
move.w
move. 1
move. 1
sys
lea

ds. b

· ..

rcount,-(a7)
#buf fer ,-(a7)
#read,-(a7)
fd,dO
a7,aO
indx
10(a7) ,a7

$4000

Set count to read
Set buffer address
Set.read function code
Get file descriptor
Point to parameters on stack
Do indirect read call
Clean parameters off stack

Space for read buffer

One important thing to note in this example is the importance of the
order in which the parameters are pushed onto the stack. It is also
important to note the "lea 10(a7) ,a7" instruction following the system
call. It removes the parameters which were pushed onto the stack so
that the stack is where it was before the section of code containing the
system calls.

-8-

68xxx UniFLEX Programmer's Guide

~.l System Errors

Upon completion, UniFLEX system calls return to the calling program with
an error flag. This flag is the carry bit in the 68xxx condition-code
register. If the bit is 0 on return, it implies that no error occurred.
If the bit is set (a 1), an error has occurred, and the DO register
contains an error number. The 68xxx UniFLEX Assemblers support two
special mnemonics for testing the error status on return from a system
call. They are "bes" for "branch if error set" and "bee" for "branch if
error cleared". These are equivalent to the standard mnemonics "bcs"
and "bee".

The file "/lib/syserrors" defines the correspondence between the names
and numbers of UniFLEX errors. It also contains a brief description of
the most general cause of each error. A user can incorporate the labels
from this file into a program by including the file in the source code
with a "lib syserrors" instruction. Note that UniFLEX does not report
errors directly to the user; rather, the system calls return errors in
the DO register. It is the responsibility of the program to report such
errors or to handle them as required by the specific application.

~.~ The Task Environment

Under UniFLEX, a "task" is a single program which has complete use of
the CPU's directly accessible address sj2sl"ce. " It can call on functions
in-- th;"-~-op~rating" sys-t-em"-'but'-~'Is"--'es"~"e~tial1y a single, stand-alone
program. Each time a program is run under UniFLEX, a new task is
generated and the program becomes that task. Several tasks may, of
course, be "active" in the system at once. By active we mean they have
been started, that the system knows about them, and that it is keeping
track of them. Only one task or program is actually executing at "any
given instant. Those tasks which are active but not executing are
mapped out of the Cpu's available address space. Whenever that
executing task performs some I/O or a system call that will require it
to wait, it is mapped out so that another waltlng active task may be
mapped in and executed. If the executing task does not perform any type
of system call which would cause it to be mapped out, it will eventually
run into a time-slice interrupt which will force it out so that other
tasks can get some execution time. In this manner, the operating system
can execute multiple tasks at what seems to be the same time. The
switching of tasks occurs so rapidly that the user is generally unaware
that the computer is being shared. To assist in keeping track of all
the active tasks, UniFLEX assigns a unique task identification number
(task ID) to each task. This 1S-bit unsigned value is used to identify
the task. The system call "gtid" may be used to obtain the task ID if
desired.

-9-

6Sxxx UniFLEX Programmer's Guide

2.4.1 Address Space

The addresses which can be generated by a 6Sxxx program make up what is
known as the logical address space. Under a UniFLEX system with
hardware memory management, these logical addresses are not presented
directly to the system memory. Instead, they are routed through the
hardware memory manager, which translates the logical addresses into
physical addresses. Memory management allows programs which reside at a
particular logical address to actually load into system memory at a
different physical address. The total range of physical addresses makes
up the physical address space. .

Although it would be possible to pass the addresses generated by the
program directly to the system memory, the use of a hardware memory
manager provides several benefits. First, and perhaps foremost, it
prevents one task from reading from or writing to the memory allocated
to another task. In addition, it allows multiple tasks to reside in
physical memory without the need for each task to reside in a different
area in the logical address space. Thus, all programs can be written to
execute at the same fixed logical address. No matter where, those
programs are loaded into physical memory when they are executed, the
memory management unit converts the logical addresses used by the
program to the proper physical addresses.

Under UniFLEX the logical address space is divided into three sections:
~xt, datal and stack. The program itself resides in the text section.
This section cannot De written to during execution of the program. The
data section contains any data used by the program. It can be both read
from and written to during execution. The system stack is located in
the stack section. The amount of memory assigned to the task is
determined when the program is loaded. The maximuIl1- mnouI!.t. that max be
assigned is hardware-de~ndent. Within th~~ of the hardware,
~user may select witS an option to the linking-loader or with the
"headset" command any of the following sizes: 12SK, 256K, 512K, 1M, 2M,
4M, SM, 16M, 32M, 64M, 128M, 256M, 5l2M, lG, 2G, 4G, S, M, L, small,
medium, or large. The size of a task specified by's' (or "small"), 'm'
(or "medium") , or ' l' (or "large") is vendor-dependent. Typica lly ,
however, 's' specifies 12SK; 'm', the size of physical memory; '1', the
maximum size allowed to a task. The default size is the larger of l2SK
or the sum of the sizes of the text, data, and bss segments at the time
of loading, rounded up to the nearest valid size. Unless otherwise
specified by an option to the linking-loader, the data segment starts at
the 4-Kbyte page-boundary follow ing the end of the text segment. The
data segment grows up in memory during execution as necessary. The
stack starts at the top of the memory allocated to the task and grows
down in memory during execution as necessary.

-10-

68xxx UniFLEX Programmer's Guide

2.4.2 Arguments

It is often desirable to pass arguments or parameters to a program when
you begin its execution. UniFLEX accomplishes this with the "execl"
system call, which is used to begin execution of a program or binary
file. At this point we are not concerned with how the arguments are
provided to "execl", but rather with how the program which is initiated
can obtain those arguments. In other words, if we assume our program
has somehow been loaded into memory and execution has started at the
beginning of the program, how do we get at the arguments which may have
been passed to us?

We find that the system passes arguments to a program by leaving them on
the system stack. When the program is initiated, the 68xxx's supervisor
stack-pointer (A7) is left pointing at some unknown location in the
stack page. Any arguments passed to the program are found in a special
format just above where the stack pointer points. The arguments
themselves are simply strings of characters which the program must know
how to use. In order to find these strings easily, we are also given a
list of pointers to the beginning of the strings. In addition,we are
given a count of how many arguments have been passed. This information
~s laid out as follows:

1) The stack pointer is pointing to the argument count. It is
a 4-byte value and should always be greater than O.

2) Just above the argument count (higher addresses in memory)
is the list of pointers to the argument strings. These
pointers are the 32-bit addresses of the actual strings.

3) At the end of the list of pointers are four null bytes which
signify the end of the list (a null pointer).

4) The actual string arguments begin above the null bytes.
Each argument string is the string of characters that make
up the argument followed by a null byte.

An actual example should help clarify this structure. Let's assume that
whoever started our task passed us three parameters, the name of our
program, the name of a file, and an option which starts with a plus
sign. It is a UniFLEX convention that the name of the program or
command being executed is always passed as the first argument (argument
number 0). Assume the program name is "pile", the specified file is
"data2", and the option is "+b". Our argument count will be three. Let
us arbitrarily say the system stack pointer is at $FFFFFDEO. We should
see the following data on the stack:

-11-

68xxx UniFLEX Programmer's Guide

item location contents

arg 2 terminator
argument 2
arg 1 terminator
argument 1
arg 0 terminator
argument 0
arg list terminator
pointer to arg 2
pointer to arg 1
pointer to arg 0
argument count

$FFFFFE01
$FFFFFDFF
$FFFFFDFE
$FFFFFDF9
$FFFFFDF8
$FFFFFDF4
$FFFFFDFO
$FFFFFDEC
$FFFFFDE8
$FFFFFDE4
$FFFFFDEO

$00
'+b'
$00
'data2'
$00
'pile'
$00000000
$FFFFFDFF
$FFFFFDF9
$FFFFFDF4
$00000003

Thus if we wish to get the second argument (argument number 1), we read
the pointer stored at the stack pointer + 8. That value is $FFFFFDF9.
That is the pointer to the argument string itself and there we find the
string of characters "data2" followed by a null byte.

In general, programs or utilities that a system programmer writes will
be initiated by the shell program. Specifically they will be started
when the user types the name of that program in response to the shell
program's prompt. The shell program starts the program by performing an
"execl" system call. The arguments that the shell program sets up for
the "exec1" call (which are those passed to the program) are the
arguments that are typed on the shell program's command line after the
program name. By convention, the shell program sets argument 0 to be
the command or program name itself. The arguments after the program
name are then numbered sequentially beginning with one. If our "pile"
program above were an executable binary file, the arguments described
above would result from a shell command line that looked like this:

++ pile data2 +b

Thus you can see how UniFLEX utilities obtain input arguments or
parameters from the calling line.

One further point might be made regarding
program passes arguments to a command. In
to pattern-matching. Three disk files
"filename" would all be listed in response

++ list f i1 e*

the method by which the shell
particular we are referring
named "filel", "file2", and

to the command:

This is due to the pattern-matching feature of the shell program, which
allows the asterisk, '*', to match any string of characters except one
beginning with a period, '.'. The interesting thing to note is how the
"list" command actually knows to list those three files. The answer is
that the shell program does not pass "fi1e*" as an argument to list but
rather searches the directory for all names that match and passes each
one as an individual argument. In response to the command "list file*",
the "list" program would see four arguments:

-12-

argument 0
argument 1
argument 2
argument 3

->
->
->
->

68xxx UniFLEX Programmer's Guide

list
filel
file2
filename

Recall that argument number 0 is always the name of the program or
command being executed.

-13-

68xxx UniFLEX Programmer's Guide

-14-

68xxx UniFLEX Programmer's Guide

3.0 Initiating and Terminating Tasks

Under the multi-tasking environment of UniFLEX, it is possible for one
task to spawn, or start, a new task. There must, of course, also be
means for terminating tasks and for the parent of a terminating task to
be informed of that termination. This section covers these techniques.

1.1 Terminating ~ Task

Tasks or programs under UniFLEX are terminated with the "term" system
call. When this system call is executed, the task is halted and its
memory is relinquished to the system. Before calling the "term" system
call, the programmer must place an error status value in the DO
register. When the task terminates, this value is passed to the task's
parent. A value of 0 indicates that the task terminated without error.
If the task is terminating due to a system error such as an I/O error,
the error number returned by that system call should be used as the
error status for the "term" system call. If the task is terminating due
to an error defined by the program (for example, the program expects an
argument but none was supplied), the recommended value to return is a
$OOOOOOFF. By convention the parent task would recognize this as a
user-defined error. The parent would know some error had occurred
causing the program to terminate, but would not be able to determine the
exact nature of the error. A user-defined error should not return a
termination status of greater than $OOOOOOFF.

1.1. The "wait" System Call

The "wait" system call is issued by a task when it wishes to wait for
one of the child tasks it has spawned to terminate. The parent task
receives the termination status of its child task through the "wait"
system call. The syntax of this call is as follows:

sys wait

When the system call returns, the termination status 1S found in the AO
register; the task ID of the terminated task is found in the DO
regi ster.

If there are no child tasks when a "wait" call is issued, the system
returns an error. If there is a child task that is still running when
the parent issues a "wait" call, the parent will be put to sleep until
the child task is finished and has terminated. If a child task finishes
and terminates before its parent has issued a "wait" call, the system
will save the child task's ID and termination status until the parent
does issue a "wai t". If several child tasks have been spawned, the

-15-

68xxx UniFLEX Programmer's Guide

parent must issue an individual "wah" call for each one.

The termination status is returned in the lower half of the AO register
and is comprised of two parts, the upper byte and the lower byte. The
lower byte (bits 0-7 of AO) is the low-order byte of the status value
passed by the "term" system call. If this byte is nonzero, an error
caused the task to terminate. Under normal conditions, the high-order
byte of the termination status (bits 8-15 of AO) is O. If the
high-order byte is nonzero, it indicates that the task was terminated by
a system interrupt. In such a case the least significant 7 bits of this
byte contain the interrupt number. If the most significant bit of this
byte is set, a core dump was produced as a result of the termination.
Interrupt numbers and core dumps will be described later.

J..J. The "exec" System Call

Generally a user's program will be a binary file on disk. To begin
execution of that program, the user simply types its name in response to
the shell program's prompt. The shell program then takes charge, loads
the program, and begins execution of it. There are times, however, when
a user-written program may wish to load and execute a program by itself
without going back to the shell program. The tool used to load and
execute another program or binary file is the "exec" system call. That
is the very function which the shell program uses when it loads and
executes a program (remember the shell program itself is just another
program). If the "exec" call is successful (that is, no errors occur),
the system discards the program which made the "exec" call, loads the
new program (a binary file) into memory, and executes it. The task ID
of the original task is retained for the new task. Thus, if the "exec"
call succeeds, it is impossible to return to the original task. If,
however, there is an error in attempting to perform the "exec" system
call, the system does not load the new program but rather returns an
error number to the calling program, which is still intact. Therefore,
a properly written program should follow any "sys exec" call with
error-handling code.

The "exec" call requires two arguments, a pointer to the name of the
file to be executed and a pointer to a list of arguments to be supplied
to the new program. The syntax is as follows:

sys exec,<file_name>,<ar&-list>

where <file_name> is a pointer to the name of the file (the name is a
string of appropriate characters somewhere in memory which is terminated
by a null byte) and <ar&-list> is a pointer to a list of argument
pointers. In other words, <ar~list> is an address at which is stored a
list of pointers. This list of pointers is composed of consecutive
4-byte addresses, or pointers, to the actual argument strings. The list
is terminated Qy four null bytes, which could be considered a pointer to
O. Each pointer in the list is the address of the actual argument
string which is terminated by a null byte. When the "exec" system call

-16-

68xxx UniFLEX Programmer's Guide

~s complete, the new program will have these arguments available ~n the
exact format described in Section 2.4.2.

Let's try an example of the use of "exec". As you know the "Is" command
can be run by typing the name and possible arguments on the command line
of the shell program. The shell program actually starts execution of
"Is" by performing an "exec" system call. As an exercise, let's write
our own program that executes the "Is" command automatically, always
providing an argument of "+ba". This will provide a long listing of all
files in the directory, with file sizes specified in bytes. We will not
specify any specific directory, so our command will always perform the
directory command on the working directory. The name of the file passed
to "exec" should be "/bin/ls". There will also be two arguments, "ls"
and "+ba". We supply "ls" as argument 0 because we remember that by
convention argument number 0 is the command name. Our program looks
like this:

text
lib sysdef

start sys exec.filen,args

* This point is reached only if the exec fails. There
* would normally be error-handling code here, but to keep
* things simple, we will just terminate if an error occurs.
* Note the DO regi st er al ready has the error from "exec".

sys term

* strings and data

data
filen fcc '/bin/ls'.O
argO fcc 'Is' ,0
args fcc '+ba' ,0
args ds.l argO,argl.O

end start

If we called this utility "ls-ba", after assembling we could execute it
by typing "Is-ba" as.a command to the shell program. Our program would
be loaded and executed by the shell program and it would in turn load
and execute the "ls" command with the option string "+ba". Thus typing
"ls-ba" would produce the same results as typing Ills +ba".

-17-

68xxx UniFLEX Programmer's Guide

J...4 The "fork" System Call

The "fork" system call provides the only way of spawning a new task
under UniFLEX. When a program invokes the "fork" system call, the
system creates a new task, which is almost identical to the old one (the
old task still exists). This new task has the same memory and stack
allocation, the same code in the memory space, the same open files,
pointers, and so forth. Immediately after forking you essentially have
two identical tasks or programs running on the system. Now, usually you
want the new task to do something different. Consequently, in most
cases the new task will immediately perform an "exec" call to load some
program from disk and execute it. This is the technique used by the
shell program to start a background job. When the shell program sees a
command ending with an ampersand ("&"), instead of directly doing an
"exec" it does a fork to create a second shell program. Now the newly
created shell program does an "exec" of the desired command while the
old shell program is still around to accept further commands.

The syntax of the "fork" system call is as follows:

sys fork

The "fork" call requires no parameters. The tricky part of the "fork"
call is in how the two, almost identical tasks know which is which. If
the two tasks have the same code, how can the new one do an "exec" while
the old one does not? The answer is in the return from a "fork" call.
After the fork operation, execution will resume in each of the two
programs. The difference is in where that execution resumes. In the
new task, execution resumes at the instruction immediately following the
"fork" call. The old task resumes execution at a point two bytes past
the system call. In this manner, the same program can be run in two
tasks by means of a fork, yet do different things after the fork. Since
the new task resumes directly after the "fork" call and the old task
resumes two bytes after the "fork" call, it is obvious that the first
instruction in the new task must be a short branch instruction
(requiring only 2 bytes). The reader should also note that the new
task's ID is made available to the old task by supplying the ID in the
DO register upon return from the fork. If an error occurs when
attempting a fork, the new task will not be created and the system
returns an error number to the old task (still 2 bytes past the "fork"
system call).

A section of code (not an entire program) will help illustrate the fork.

-18-

68xxx UniFLEX Programmer's Guide

...
sys fork spawn new task

* new task begins execution here
bra.s newtsk branch to code for new task

* old task resumes execution here
bes frkerr check for error, branch if so
move. I dO,dl save new task's ID

prwait sys wait wait for child task
cmp.l dO,dl right one?
bne.s prwait wait some more if not

continue code for old task

sys term
newtsk sys exec,name,args new task probably does exec

bra excerr branch if error in exec

...
In this example, the old task waits for the new one (its child) to
finish before continuing. That is the purpose of the "wait" system call
at "prwait". Note that the "wait" system call returns the terminated
task's ID in the 68xxx DO register.

-19-

68xxx UniFLEX Programmer's Guide

-20-

68xxx UniFLEX Programmer's Guide

4.0 File Handling

The manipulation of files, terminals, directories, printers, and any
other device is perhaps the most important part of the assembly language
interface to UniFLEX. It is, therefore, imperative for the system
programmer to have a good understanding of the material in this section.

~.~ General UniFLEX File Definitions

Before delving into the actual manipulation of files under UniFLEX, we
need to define and describe some of their characteristics.

4.1.1 Device-independent I/O

Under UniFLEX, anything outside the program's memory to which the
program can write or from which it can read is treated identically. A
file on disk is treated in the same way that a terminal is treated. A
terminal is treated exactly like a pipe or a printer spooler. This
feature, which is termed device-independent I/O, allows a program that
sends its output to a terminal to send its output to a disk file,
printer spooler, pipe, or any other device on the system.
Device-independent I/O lends a great amount of versatility to the system
and simplifies program development and maintenance.

Device-independence is made possible by the device driver routines.
Each of these routines creates a standard interface between the system
and the device for which it is written. One routine opens the device;
one closes it. These routines permit the system to do anything
necessary to the device to prepare it for reading and writing and to
finalize anything necessary when all I/O is complete. The two most
important device driver routines are the read and write routines. They
permit the caller to read data from or to write data to the device.

4.1.2 File Descriptors

A user who wishes to perform some operation on a UniFLEX file informs
the system which file to operate on by providing a "file descriptor".
(We use the term Iff ile", but because of device-independence it can refer
to a.disk file, terminal, pipe, or any other device). The UniFLEX file
descriptor is a 4-byte numeric representation of a specific file or
device. The system assigns the file descriptor when it opens or creates
the file. UniFLEX then keeps track of which file descriptors correspond
to which files. In this way, the user need only supply a number instead
of the name of the file each time the file is to be referenced.

-21-

68xxx UniFLEX Programmer's Guide

As an example, look back at the description of the "read" system call.
You will see that this system call requires the program to place a file
descriptor in the DO register before making the call. In general use,
we would have saved the file descriptor number of the file we wish to
read when it was opened. Now to do the read, we need only load the DO
register with that number.

File descriptors range from 0 to 31 inclusive. No task may have more
than thirty-two files open at a time.

4.1.3 Standard I/O Files

When the shell program begins execution of a task, it automatically
assigns three I/O files to that task: standard input, standard output,
and standard error. Standard input is the file from which a command
takes its input. Standard output is the file t which a command sends
its output. Standard error is the file to which many error messages are
directed. The system assigns a file descriptor of 0 to the standard
input file and opens the file for reading. It assigns a file descriptor
of 1 to the standard output file and opens that file for writing. It
assigns a file descriptor of 2 to the standard error file and opens that
file, too, for writing. By default, the system uses the user's keyboard
as standard input and the user's display for both standard output and
standard error.

Because the system opens these standard I/O files and assigns them each
a file descriptor, the program does not have to perform any "open" or
"create" calls in order to use them. As soon as a task begins running,
it can perform a "read" system call with a file descriptor of 0
(standard input) or a "write" system call with a file descriptor of 1 or
2 (standard output or error output).

One nice thing about the standard I/O files is that they can be
"redirected" without any change to the program whatsoever. The symbol
'<' tells the shell program to redirect standard input to the file whose
name follows the symbol. Similarly, the symbols '>' and '%' redirect
standard output and standard error. The file to which standard input is
redirected must already exist. However, if the file to which standard
output or ~standard error is redirected does not exist, the system
creates it. In fact, if the file does already exist, the system deletes
the contents of the file before executing the command. To avoid this
effect, the user may instead direct the shell program to append data to
the file specified as standard error or standard output by duplicating
the symbol used for redirection: "»" or "%%".

The program need not be concerned with the nature of the
are designated as the standard I/O files. They may be
terminal, a disk file, a pipe, or something else.
device-independence and the fact that the program knows that
device (whatever it may be) has previously been opened,
simply performs the I/O operations without caring what the
actually are.

-22-

devices that
the user's
Because of
the file or
the program

I/O files

68xxx UniFLEX Programmer's Guide

4.~ Opening, Closing, and Creating Files

file or device can be read from or written to, it must be
opened. When a program has completed all its I/O manipulations with a
file, it should generally close that file. A program also needs the
ability to create new files on the system. This section addresses those
operations in some detail.

Before a

4.2.1 The "open" System Call

In order to read or write to an existing file or device, we must first
open that fil e, no matter what the device is. The syntax of the "open"
system call is:

sys open,<file_name>,<mode>

where <file_name> is a pointer to a zero-terminated string containing
the name of the file to be opened, and <mode> is a number which
determines whether to open the file for reading, writing, or both. The
value of <mode> may be 0, 1, or 2. If <mode> is 0, the file is opened
for reading only; if 1, for writing only; if 2, for both reading and
writing. On return from the "open" call, the 68xxx DO register will
contain the 4-byte file descriptor assigned to that file. All future
references to the file will be made by means of this file descriptor.
An error will be returned from the "open" call if the file to be opened
does not exist, if the task opening the file does not have proper
permissions, if too many files are already open, or if the path leading
to the file cannot be searched.

4.2.2 The "close" System Call

When a task terminates, UniFLEX automatically closes any files that
remain open. It is wise, however, to manually close fil.es within a
program whenever possible. There are two reasons for doing so. Because
the system can have only a finite number of files at one time, closing a
file makes room for the system to open another file. Furthermore, in
the event of a system crash, you will be better off having' closed any
files which no longer required I/O. The "close" system call is
performed by loading the file descriptor of the file you wish to close
in the DO register, then performing a "sys close".

-23-

68xxx UniFLEX Programmer's Guide

4.2.3 The "create" System Call

The "create" system call is used to create disk files only. To create
directories, pipes, devices, and so forth, other system calls must be
used.

When the system creates a file, it sets a permission byte which
determines what type of access users will have to the file. The
permissions for the user who owns the file are independent of the
permissions for all other users on the system. The system manager
always has complete access to all files.

Every task has associated with it a default permissions byte, which may
be altered wi th either the "dperm" command or the "defacc" system call.
Every new file or task that is created by that task is subject to the
default permissions at the time the "create" system call is invoked.
The permission mask specified in the "create" call allows you to deny
permissions which the default permissions grant, but does not allow you
to grant permissions that the default permissions deny.

The syntax of the "create" system call is as follows:

sys create,<file_name>,<perm_mask>

Once again, <file_name> is a pointer to a zero-terminated string
containing the name of the file to create. The file will be created in
the working directory unless the user explicitly specifies another
directory. The argument <perm_mask> is a symbolic name or a numeric
value which permits the user to modify the default permissions on the
new file. If the file does not already exist, the system performs a
logical "and" of the default permissions byte and this permissions mask
to determine the actual permissions for the file.- The reader should
refer to the Introduction!Q UniFLEX System Calls for more details of
setting these permissions.

If the file already exists, the system truncates it ~o zero length by
deleting all existing data. In such a case, the file retains the
original permissions regardless of the <perm_mask> supplied to the
"create" call. In other words, if the file <file_name> already exists,
the system ignores the permission mask •

.... 24-

68xxx UniFLEX Programmer's Guide

~.~ Reading and Writing

Perhaps the most commonly used system calls are "read" and "write". A
program uses these system calls to communicate with the user, disk
files, printers, other tasks, and anything else in the outside world.
It is imperative for the would-be UniFLEX system programmer to have a
good understanding of these calls, their use, their requirements, and
their characteristics. Reading and writing under UniFLEX are elementary
procedures, and, as such, they permit great versatility 1n the way in
which files are accessed. When speaking of a disk file, a user can
begin at any particular point in the file (right down to a specific
character) and read or write as many characters as desired from that
point. Thus, both sequential and random access of files are quite
simple.

The "read" and "write" system calls assume that a "file posl.tl.on
pointer" has already been set. This is a pointer which the system
maintains to show the current position for reading and wrl.tl.ng in a
file. We will see how it can be set in the section on seeking. The
only parameters required, then, to read from or write to a file are the
file descriptor specifying the particular file, the count of characters
to be read or written, and a the address of a buffer in memory to read
into or write from. We shall look at each call separately.

4.3.1 The "read" System Call

To execute a "read" system call, the programmer must load the DO
register with the file descriptor number before making the call with the
following syntax:

sys read,<buf_add>,<count>

where <buf_add> specifies an address in the user program's memory where
the data read from the file should be placed and <count> is the maximum
number of characters the programmer wants the system to read. We say
maximum because, depending on the situation, the system may not actually
read as many characters as requested. On return from the "read" system
call, the number of bytes which was actually read is in the DO register.

When dealing with a regular disk file, the system will always read
<count> bytes if possible. In two cases it cannot do so. If the
program attempts to read past the end of the file, the ,system returns
the number of characters read. For example, if we have a file of only
120 characters, and a "read" call is issued with a <count> of 256, the
"read" call will succeed but will show that only 120 characters were
actually read. After this call the file position pointer will be left
pointing to the end of the file. Any subsequent "read" call will return
with no error, but the number of bytes read will be equal to O. In
fact, a program should detect an end-of-file condition by the successful
completion of a "read" system call with the number of characters read
being O.

-25-

68xxx UniFLEX Programmer's Guide

If a physical I/O error occurs, rather than returning the number of
bytes read, the system returns -1 to indicate the error.

Reading and writing to terminals is handled in the same manner as
reading and writing disk files. Identical system calls are used for
terminals and disk files. However, if the file being read is a
terminal, the system returns at most one line. A line is all the
characters up to and including the carriage return typed since the last
carriage return. Thus, even if the system executes a "read" system call
with a <count> of 1024, if the user is at a terminal and types the
letters "halt" followed by a carriage return, the "read" call would
return with 5 as the number of bytes read. If the user has not typed
anything when the call is issued, the calling program wili be required
to'wait until something is typed. As with regular disk files, it is
possible to detect an end-of-file condition from a terminal by
performing a "read" call and receiving no error and a count of O. An
end-of-file condition from a terminal is produced by typing a control-D
as the first character in a line. Note that the control-D itself is not
passed to UniFLEX, only the end-of-file condition.

As an example of the use of the "read" call, let's examine a section of
code that attempts to read 1,024 bytes of data, placing them in a buffer
named "buffer". We assume the file has already been opened for read and
that the file descriptor is stored at "fdsave".

buffer

· ..
move. 1
sys
bes.l
tst.l
beq.l
add.l
move.l

· ..
ds.b
· .. · ..

fdsave,dO
read, buffer ,1024
rderr
dO
endof
#buf fer ,dO
dO, bufend

1024

get file descriptor
read 1024 bytes into buffer
branch' if error
end of file condition?
special handling if so
point to end of data
save buffer end pointer

On return from the "read" system call, we first check to see if it
returned an error. If it did, we assume that the program handles it
properly at "rderr". If the call does not return an error, we check for
an end-of-file condition. Recall that an end-of-file condition is
recognized by a returned value of 0 from a successful "read" system cal.
If we are at the end of the file, the program jumps to "endof" where,
once again, we assume that such~a condition is properly handled. If we
did not receive an error and were not at the' end of the file, our
program calculates a pointer to 1 byte past the last byte read into the
buffer and stores that pointer at "buf end". Normally this pointer
should be "buffer+1024", but if the "read" call returned less than 1024
bytes it would be lower.

-26-

68xxx UniFLEX Programmer's Guide

4.3.2 The "write" System Call

The "write" system call is executed by first loading the DO register
with the appropriate file descriptor, then issuing an instruction of the
following form:

sys write,<buf_add>,count

where <buf_add> specifies an address in the user program's memory where
the data to write to the file are located and <count> is the number of
characters to write to the file. On return from a successful IIwr ite"
system call, the number of bytes written is in the DO register. It is
not necessary to compare this value with <count> because if the call was
successful, the values will be the same.

Let's look at a complete program to send the message ''Hello there!" to
the standard output file. If an error occurs while writing to that
file, we will send the message "Error writing standard output." to the
standard error file. Recall that the system assigns a file descriptor
of 1 to standard output and a file descriptor of 2 to standard error.

text
lib sysdef include system definitions

* start of main program

sayhi

done
done2

* strings

hello
hlng
erm
elng

move.l
sys
bec.s
move. I
move.l
sys
move.l
bra. s
move.l
sys

data
fcc
equ
fcc
equ

end

#l,dO write to std. output
write,hello,hlng send message
done exit if no error
dO,-(a7) else. save error number
#2,dO write to std. error output
write,erm,elng sen error message
(a7)+,dO restore error number
done2
#O,dO
term terminate program

'Hello there!',$d,O
*-hello compute length of string
'Error writing standard output.'.$d,O
*-erm compute length of string

sayhi give starting address

No 1I0pen" system I:all is necessary because we know that the standard
output and standard error files are already opened and ready for writing
when the program begins execution. The reader should note the
convenient method of providing the count of characters to be written.
Also note that we did not need to look for an error after the IIwrite ll

system call. We really have no recourse if an error does occur while
reporting an error, so we simply terminate.

-27-

68xxx UniFLEX Programmer's Guide

4.3.3 Efficiency in Reading and Writing

A system programmer can do several things to achieve efficient reading
and writing of files under UniFLEX. The first and most obvious is to
read or write as much of a disk file as possible with a single call.
Much less ~stem overhead is involv~d in executing one call to read
4,096 characters than in executing thirty-two calls to read 128
characters each. The most efficient "read" and "write" calls are those
made in multiples of 512 bytes. This is, of course, because the size of
a disk block under UniFLEX is 512 bytes. Due to the way the system
implements memory mapping, a programmer can achieve additional
efficiency by placing each buffer on a 5I2-byte boundary.

By all means do not perform single-character I/O with a system call for
each character. If you need single-character, the program should handle
the necessary buffering such that system calls are made only when a
buffer is full.

~.4 Seeking

UniFLEX maintains a pointer, which indicates the current position for
reading or writing, for each open disk file. The program can manipulate
this pointer to point to any character in the file by using the "seek"
system call. The "seek" call is really only useful on disk files.
Before making a system call to seek, the user must load the appropriate
file descriptor in the DO register. The syntax of the "seek" call is as
follows:

sys seek,<position>,<mode>

where <position> is a four-byte signed offset from the point of
reference in the file determined by <mode>. A positive number indicates
seeking toward the end of the file; a negative, toward the beginning.
The value of <mode> may be 0, 1, or 2, as shown in the following table:

Value of <mode> Meaning
==
o
1
2

Beginning of the file
Current position in file
End of the file

On return from the "seek" call, the new current position relative to the
beginning of the file is in the DO register. To find the current
position in a file, you can look at the value returned by the system
call "sys seek,O,l".

As an example, let's construct a simple random-access routine. Assume
we have a data file with fixed-length records of 256 characters per
record. ' We know we will never have more than 32,000 records in our
file, so the record number can be represented in 16 bits. We wish to

-28-

68xxx UniFLEX Programmer's Guide

write a subroutine which will read the record specified by the record
number in the DO register and leave the data at the location specified
by the AO register. The basic procedure will be to find the starting
position of the desired record in the file by multiplying the record
number by the record size of 256. We then seek to that position and
read 256 bytes. Our routine looks like this:

getrec move. 1
ext.1
1sl. 1

* seek to record

move. 1
move. 1
sys
bes.1

aO,iread_cnt
dO
{,8, dO

dO,iseek_cnt
fd,dO
ind,iseek
skerr

save address for read
make record number long
record*256 is offset

set seek address parameter
assume file descriptor at fd
indirect call to seek
branch if error

* file pointer positioned, now read record

iseek
iseek_cnt

iread
iread_cnt

move. 1
sys
bes.1
rts

dc.w
dc. I
dc.l
dc.w
dc.l
dc.1

fd,dO
ind,iread
rderr

seek
0
0
read
0
256

get file descriptor
indirect call to read
branch if error
all finished

seek function code
seek address (unknown)
type 0: position from begin
read function code
buffer location (unknown)
character count to read

Notice that we used indirect calls to "seek" and "read" because at
assembly time we know neither to what address we will need to seek nor
where in memory to place the data we read. By using indirect calls we
can set aside areas of memory (at "iseek" and "iread") where these
values can be stored when the program executes and determines just what
they are.

-29-

68xxx UniFLEX Programmer~s Guide

9;. • .2. File Status Information

Certain information about each file or device is available to the user
through the "status" and "of stat" system calls. The two calls differ in
that "of stat" is used to obtain information about an opened file whereas
"status" obtains information about an unopened file. The syntax for
"of stat" is as follows:

<file_des> in DO
sys ofstat,<buf_add>

where <buf_add> specifies an address in the user program's memory where
the system should place the data returned by "of stat". This buffer must
be at least 22 bytes long. The information returned in the buffer is
the same as that returned by the "status" system call except tha
"st_cnt" is not the link count but the number of tasks connected to a
pipe. The user must load the DO register with the appropriate file
descriptor before invoking the "of stat" system call.

The syntax for "status" is as follows:

sys status,<file_name>,<buf_add>

where <file_name> is a pointer to a zero-terminated string containing
the name of the appropriate file and <buf_add> specifies an address in
the user program's memory where the system should place the data
returned by "status". This buffer must be at least 22 bytes long.

When the "status" system call is completed, the buffer will contain all
the information available about the file. The file "/lib/sysstat"
defines this buffer as follows:

base 0 Set initial values

st _dev ds. w
,

Device number .L

st _fdn ds.w 1 Fdn number
ds. b 1 Filler

st _mod ds. b 1 File mode
stJrm ds.b 1 Permission bits
st _cnt ds. b 1 File link count
st _own ds. w 1 File owner's user ID
st _siz ds. 1 1 File Sl.ze l.n bytes
st -1Iltm ds.l 1 Time of file's last modification
st _spr ds. b 4 Spare--for future use only

ST_SIZ ds.w 0 Size of status buffer

The device number is a number assigned to the device on which the file
resides. The fdn number is the number of the file descriptor node
associated with the file. Every file on the system has a file
descriptor node, which is a block containing information about the file,
including its location. It is from the fdn that "status" and "of stat"

-30-

68xxx UniFLEX Programmer's Guide

obtain their information. The file and permissions will be explained in
the next paragraph. The link count is the number of directory entries
that are linked to the fdn. More information on linking can be found in
Section 5. The file owner's user ID is a 2-byte ID that was assigned to
the user by the system manager with the user's user name. The file size
in bytes is the exact number of characters in the file. The time of
last modification is the internal UniFLEX representation of the last
time someone wrote to the file.

The bytes describing both file type and permissions are flags in which
the state of the individual bits is used to convey information about the
file. The byte describing the file type looks like this:

file mode (st_mod):

!716!514131211101

regular file
block device
character device
directory
spare
spare
pipe

Notice that only five bits are used in this byte. The low-order bit is
always set. If it is the only bit set, the device is a regular file. A
block device is a device, such as a floppy disk drive, which handles
data in 512-byte blocks. A character device is one which handles data a
single character at a time. A terminal is an example of a character
device. If bits 0, 1, and 2 are set, the device is a pseudoterminal.

The permissions byte shows what permissions are granted or denied for
the file. Its format is as follows:

permissions (st-prm):

!7161514131211101

owner read permission
--------- owner write permission

------------- owner execute permission
----------------- others read permission

--------------------- others write permission
------------------------- others execute permission

----------------------------- user ID bit for execute

In this byte any or all of the seven bits used may be set at one time.
If a bit is set, it shows that the corresponding type of permission is
granted; if cleared, permission is denied.

-31-

68xxx UniFLEX Programmer's Guide

The "user ID" permission' bit requires further clarification. If this
bit is set, it gives the user of a file the same permissions as the
owner of the file while that file is executing. As. an example of the
usefulness of this feature, consider a user, "joe", who has a data-base
program which manipulates a large data file. Now, "joe" does not want
anybody on the system to be able to directly read from or write to his
data file, so he denies read and write permissions to others on that
file. He does, of course, grant read and write permissions for himself
(the owner). Even though he does not want anyone to be able to read and
write his data file directly, "joe" would like other users to be able to
run his data-base program, which manipulates the data file. All he
needs do is set the "user ID" permission bit in his data-base program.
With the "user ID" bit set, any Users who run the data-base program have
the same permissions as "joe". Thus, they can manipulate the data file
while running the data-base program. As soon as the data-base program
is terminated, however, the other user no longer has permissions of
"joe", the owner.

Another example of the use of the "user ID" bit can be seen in the
"crdir" or "create directory" command, which is available to all users
under UniFLEX. A directory is a special type of file, and the only way
to create one is by using the "crtsd" system call, which only the system
manager may do. Without the "user ID" bit set, the only person who
could use the "crdir" command (which contains a "cr tsd" system call)
would be the system manager. The "crdir" program has the "user ID" bit
set, however, so that anyone who runs it temporarily has the same
permissions as the owner. Because the owner of "crdir" is the system
manager, any user may create a directory.

-32-

68xxx UniFLEX Programmer's Guide

5.0 Directories and Linking

A UniFLEX directory entry is nothing more than the name of the file and
a pointer to the file descriptor node (fdn) for the file. The fdn is a
small unit on the disk which contains certain types of information about
a particular file. There is one and only one fdn on a disk for each
file which resides on the same disk. It is possible, however, for more
than one directory entry to point to the same fdn; each of these entries
is called a link. If you do a long directory listing on a directory (Is
+1), you will find one field in each entry, the link count, which is the
number of directory entries which point to, or are linked to, that file.
The link count should be one at a minimum; if it ever goes to 0, the
operating system deletes the file.

An example of linking can be seen in every directory on a UniFLEX disk.
Recall each directory contains two entries called "." and " •• " (they do
not appear in an "Is" listing unless you use the ' a' option). The
symbol "." represents the directory itself; the symbol " •• " represents
its parent. Thus, typing "." as a directory name is equivalent to
typing the file specification of the working directory. Typing " •. " is
equivalent to typing the file specification of the parent of the working
directory. These entries in the directory are not separate files, but
rather are links to the working directory and its parent. That is why
every directory on the system has a link count greater than 1.

The "link" and "unlink" system calls allow the programmer to create and
break links. The "link" system call is quite straightforward: the user
specifies a pointer to the name of the file to be linked to and a
pointer to the new name to put into the directory. The system call then
creates the appropriate link.

The "unlink" system call is a bit more complicated. The programmer
merely provides a pointer to the name of the file to unlink. ''Unlink''
first removes the specified name from the directory and decrements the
link count by 1. Next, it tests to see whether or not the link count is
O. If the link count is 0 and the file is closed, the operating system
deletes the file. Otherwise, the operating system does not delete it.

If a file is open at the time an "unlink" call is made, the unlink
operation will take place, but the operating system does not delete the
file. The user can still read or write to the file as long as it is
left open. When the user closes the file, the "close" system call
checks the link count. If the link count is 0 and no other user has the
file open, the operating system deletes the file. This behavior creates
interesting possibilities for a program. A program can open a file and
immediately unlink it. As long as the program leaves that file open, it
can read from it or write to it. When the program is finished with the
file, it has only to close it. If no one else is linked to the file,
the operating system will immediately delete it.

-33-

68xxx UniFLEX Programmer's Guide

68xxx UniFLEX Programmer's Guide

6.0 Other System Functions

This section is devoted to several specialized features and functions
which are available to the system programmer. Specific syntax
statements will not always be given. It is assumed that the reader can
obtain this information from the Introduction !Q UniFLEX System Calls.

2-..1. The "break" and "stack" System Calls

Earlier we learned that when a task is started, it is allocated text,
data, and stack memory according to the size of the program. A running
task may change the amount of memory allocated to its data or stack
space. It is also possible to relinquish allocated memory to the
system--that is, to deallocate data or stack memory. Stack allocation
and dealloca tion are performed by the "break" and "stack" commands.
When the user supplies an address to the "break" system call, the system
attempts to allocate memory so that there is RAM up through the
specified address. Because memory is allocated in sections, some memory
may exist beyond the specified address. If an address is specified
which falls below the amount of program memory already allocated, the
surplus memory is relinquished to the system. The "stack" command works
in much the same way, except that the stack grows downward in the CPU's
address space.

2-..£ The "ttyset" and "ttyget" System Cal1s

The user may alter and examine several configuration parameters of
terminals under UniFLEX. These parameters include such things as the
line-cancel character, the backspace character, the length of the delay
after carriage returns, mapping of upper- to lowercase, and tab
expansion. The configuration of all these parameters is represented in
6 bytes of data. These 6 bytes can be read with the "ttyget" system
call to examine the current configurations or can be set with the
"ttyset" system call to alter the current configuration. A 6-byte
buffer must be established in memory which contains the desired
configurations for "ttyset" or which will receive the information about
the current configuration from "ttyget". The file "/lib/systty" defines
this buffer as follows:

-35-

68xxx UniFLEX Programmer's Guide

base 0

tt_flg ds.b 1 Flags
tt_dly ds.b 1 Delays
tt_cnc ds. b 1 Line-cancel character (default is control-X)
tt_bks ds.b 1 Backspace character (default is control-H)
tt_spd ds. b 1 Terminal speed
tt_spr ds. b 1 Stop output byte

TT_SIZ ds.w 0 Size of buffer

The terminal speed byte presently implements only 4 bits. Bits 2, 3,
and 4 define the configuration of the terminal; bit 7 is a flag which,
when set, indicates that the terminal has input characters waiting to be
consumed by the program. This bit is only meaningful when read--that
is, the input ready condition cannot be set with this bit and "ttyset".
The entire byte looks like this:

terminal speed byte (tt_spd):

!7!6!5!4!3!2!1!O!

spare
spare
first bit of terminal configuration
second bit of terminal configuration
third bit of terminal configuration
spare
spare
input ready to be consumed

Under normal input operations the "input ready to be consumed" bit does
not come on until an entire line has been input and terminated by a
carriage return. Two special input modes can, however, be established
in which the "input ready to be consumed" bit will come on as soon as a
single character is input. These modes, known as "raw I/O mode" and
"single character input mode", are described later in this section.

The following table shows the configuration of the terminal for all
possible settings of the terminal configuration bits:

-36-

Terminal Configuration
(Bit Pattern)

Data Bits

68xxx UniFLEX Programmer's Guide

Stop Bits Parity

-==
000 7 2 Even
001 7 2 Odd
010 7 1 Even
011 7 1 Odd
100 8 2 None
1 0 1 8 1 None
110 8 1 Even
111 8 1 Odd

The stop output byte contains bits which control the stopping and
starting of output to terminals. A user can use one of two methods to
stop and start output to a terminal: the escape key and XON/XOFF
processing. The method which uses the escape key permits a user to type
an escape character (hexadecimal lB) to stop output. A subsequent
escape character restarts the output. The XON/XOFF method permits a
user to type an XOFF character (hexadecimal 13) to stop output and a
subsequent XON character (hexadecimal 11) to restart it. Many terminals
produce XON and XOFF characters automatically to prevent the computer
from sending too many characters to the terminal at once. The escape
and XON/XOFF mechanisms can be independently enabled or disabled by
setting or clearing the proper bits in the byte "tt_spr". The byte
looks 1 ike this:

stop output byte (tt_spr):

17161514131211101

first bit of baud rate
second bit of baud rate
third bit of baud rate
fourth bit of baud rate
spare
any character restarts output
enable XON/XOFF for I/O
disable ESC for stopping output

The following table shows the baud rate defined by all possible settings
of the first 4 bits of the stop output byte:

-37-

68xxx UniFLEX Programmer's Guide

Bit Pattern Baud Rate Bit Pattern Baud Rate
===

000 0 1 000 1200
000 1 75 1 001 1800
001 0 110 1 010 ,2400
001 1 134.5 1 011 3600
o 1 0 0 150 1 100 4800
o 1 0 1 200 1 1 0 1 7200
o 1 1 0 300 1 110 9600
o 1 1 1 600 1 111 19200

When set, the bit labeled "any character restarts output" instructs the
terminal drivers to restart the output if it has been stopped by either
an escape or XOFF.

The delay byte tells the system how long to delay after outputting
certain characters. A delay is useful in cases where a slow output
device such as a teleprinter, which requires a delay for carriage
returns, is attached to the system. Two of the delays can take on any
of four different values as specified by a 2-bit value. The other two
delays are represented by one bit each and are, therefore, either on or
off. The format of the delay byte is as follows:

delay byte (tt_dly):

1716151413!211!0!

new-line delay
" " "

------------- carriage return delay
" " "

horizontal-tab delay
form feed/vertical-tab delay
spare
spare

The new-line delay is performed after each line-feed character
(hexadecimal OA) is output. The length of the delay is determined by
the combination of bits set, as shown in the following table.

Bit 1 Bit 0 Length of Delay in Milliseconds
====================================:====::======:=

o
o
1
1

o
1
o
1

-38-

o
10
20
30

The carriage return delay is
character (hexadecimal OD)
determined by the combination
table.

Bit 3 Bit 2

68xxx UniFLEX Programmer's Guide

performed after
is output. The
of bits set, as

each "carriage return"
length of the delay is

shown ~n the following

Length of Delay in Milliseconds
===

o
o
1
1

o
1
o
1

o
10
20
30

The horizontal-tab delay may be either on or off. If on
the delay is 20 milliseconds long. The form-feed,
delay, may also be either on or off. If on (bit 5 set),
240 milliseconds long.

(bit 4 set),
or vertical-tab
the delay ~s

The 8 bits of the flag byte represent eight different modes of operation
for the terminal. When a bit is set, the corresponding mode is in
effect. The format of the flag byte is as follows:

flag byte (tt_flg):

1716!5!4!3!2!1!0!

----------------------~--

raw mode
echo input
expand tabs on output
map upper- to lowercase
automatic line-feed
echo backspace echo character
single character input mode
ignore control characters

We shall describe each of these modes separately in the following
paragraphs.

Bit 0: Raw Mode

By default, the terminal drivers process various characters on input and
output before passing on. However, when the terminal drivers are in raw
mode, they do no special processing of the input or output characters.
Each and every character typed on the terminal--including backspace
characters, line-cancel characters, tab characters, control-C and other
control characters--is directly input to UniFLEX. Similarly, every
character output to the terminal is output directly: no tab expansion is
performed, no line-feed characters are appended to carriage returns, and
so forth. In .ddition, the parity bit is not stripped on either input
or output. A program executing in raw mode has complete control of
every character input or output and must perform any special processing
itself •

-39-

68xxx UniFLEX Programmer's Guide

In raw mode a "read" system call will not have to wait for an entire
line to be input before it can read characters. If a single character
is available, the "read" call will return with just that character. It
is still possible to read more than one character with a single "read"
call but only -if the characters have already been typed into the input
buffer before the call is made.

Bit 1: Echo Input

By default, the terminal.drivers echo each character on the display
device as it is input. When the drivers are in echo-input mode, the
terminal should be operating in full-duplex. At times a user may wish
to disable the echo. For example, when a user logs in, the "login"
program writes the message "Password:" on the display, then turns the
echo-input bit off while the user enters the password, so that the
password is not echoed to the screen.

Bit 2: Expand Tabs on Output

By default, the terminal drivers expand tabs on output. If a terminal's
hardware cannot expand tab characters, setting expand-tabs mode allows
the terminal driver to do so. The system assumes that tab stops are at
8-column intervals. Thus, if this bit is on, each time a horizontal tab
character (hexadecimal 09) is output, UniFLEX will space over to the
next column which is a mUltiple of 8 (unless it is already at such a
column) •

Bit 3: Map Upper- to Lowercase

By default, the operating system assumes that a terminal has both upper­
and lowercase capability and that the user will type most commands and
input in lowercase characters. It is possible, however, to use a
terminal which supports only uppercase by instructing the terminal
drivers to map all input characters from upper- to lowercase and all
output characters from lower- to uppercase. To do so, the user simply
turns on the "map upper- to lowercase" bit in the "ttyset" flag byte.
The operating system automatically turns this bit on if the user name
typed in response to a "login" prompt begins with an uppercase letter.
Thus, a terminal which supports only uppercase can be connected to
UniFLEX without special considerations •

. Bit 4: Automatic Line-feed

By default, the terminal drivers will automatically output a line-feed
character (hexadecimal OA) after each carriage return.

Bit 5: Echo Backspace Echo Character

By default, if the backspace character is defined as control-H
(hexadecimal 08), the terminal drivers will echo the control-H, followed
by a space character and another control-H. This sequence of characters
will erase the incorrect character on terminals which do not do so
automatically.

-40-

68xxx UniFLEX Programmer's Guide

6) Single Character Input ~lode

By default, UniFLEX process I/O one line at a time. Under such
circumstances, a call to read a single character would have to wait
until an entire line terminated by a carriage return had been typed
before it would have access to a single character within the line.
However, for certain applications a program might prefer to input one
character at a time without having to wait for a carriage return. That
behavior is accomplished by putting the terminal drivers in "single
character input mode". When this mode is in effect, the program can
read a character as soon as it has been typed without having to wait for
an entire line and carriage return. It is possible to read multiple
characters while in single character input mode, if they are available.
When the terminal drivers are in single character input mode, they strip
the parity bit off all input characters, but only control-C, control-D,
and control-\ are treated as special characters. In other words, tabs,
backspaces, and line-cancel characters are ignored. Any processing of
these characters must be handled by the program.

Bit 7: Ignore Control Characters

By default, the terminal drivers do not ignore control characters. It
is possible, however, to put the drivers in "ignore control characters"
mode. When this mode is in effect, the drivers will ignore all control
characters which do not have special meaning--that is, all control
characters except the following ones:

Carriage Return
Hor izontal Tab
control-C
control-D
control-\
Backspace character (if defined as a control character)
Line-cancel character (if defined as a control character)

Those control characters which are ignored will still be echoed if "e·cho
input characters" mode is also in effect.

-41-

68xxx UniFLEX Programmer's Guide

§,..J,. Pipes

UniFLEX provides a mechanism called the pipe which permits a task to
communicate with a child task. A pipe allows communication in one
direction only; it allows one· task to send information to another. If a
pair of tasks needs two-way communication, the user must establish two
pipes--one to send information from the first task to the second, and
one to send from the second task to the first. Once the pipe is
established, the first task sends information to the second by using the
"write" system call just as it would in writing to any other device.
The second task receives information from the first by using the "read"
system call. The file descriptors necessary for these write and read
operations are provided by the system when it creates the pipe. A pipe
is created with the "crpipe" system call.

The pipe mechanism works similarly to'a holding tank with valves on the
input and output lines. If the tank is not full, the writing task can
pump data into it even if the reading task has the output valve closed
(is not actively reading). Likewise, if the tank is not empty, the
reading task can drain information out of it even if the writing task
has the input valve closed (is not currently writing). If the tank is
full, the writing task must wait until the reading task has emptied it
before it can pump in more data. If the tank is empty, the reading task
must obviously wait until the writing task has pumped in some data.
Under UniFLEX the holding tank is a 4-Kbyte buffer located on the disk
which has been configured as the pipe device. The "tune" command can be
used to designate a different pipe device. Each pipe has a buffer, but
none of these buffers shows up in any directory.

A section of code will provide a sample of how to establish a pipe
between a task 'A' and its child task, task 'B'. Firstly, the pipe is
created with the "crpipe" system call in task A. Next, we do a "fork"
system call to create task B. We then set up the file descriptors so
that we will be writing from task A to task B. The code would look
something like this:

text
sys
bes.l
move. I
move.l
sys
bra.s
bes.l
move.l
move.l
sys
move.l

crpipe
piperr
dO,rdfd
aO,wrtfd
fork
child
frkerr
dO,tskBid
rdfd,dO
close
wrtfd,pipefd

-42-

create pipe system call
branch if error
save read file descriptor
save write file descriptor
fork to spawn task B
new task B here
task A checks for error
save task ID of child
pipe read file descriptor
close read (A only writes)
save pipe write file descriptor

68xxx UniFLEX Programmer's Guide

* now task A can write to pipe using pipefd

...
sys term

* code for task B

child move.l wrtfd,dO
sys close

end of task A

pipe write file descriptor
close write (B only reads)
save pipe read file descriptor move.l rdfd,pipefd

* now task B can read from pipe using pipefd

The major point to learn from this example is how each task closes the
portion of the pipe that it cannot use. As previously stated. a pipe
only allows data to be transmitted in one direction. The "crpipe"
system call creates a pipe with two file descriptors--one for reading
and one for writing. After the system performs the "fork" system ca11,
both tasks have a pipe file open for reading and writing. We assume
that the writing task will eventually close the write file descriptor
and that the reading task will eventually close the read file
descriptor, but we must specifically ensure that the writing task closes
the read file descriptor and that the reading task closes the write file
descriptor. In fact, these closing operations should be performed as
soon as possible, before any reads or writes to the pipe are attempted.

~.~ Program Interrupts

allow one
timing and
gives the

UniFLEX supports a number of "program
program or task to interrupt another.
synchronization among the tasks in the
programmer the ability to terminate
software.

interrupts". which
This feature permits

sy stem. I tal so
tasks prematurely by means of

6.4.1 Sending and Catching Program Interrupts

Here is an example of how a program sends an interrupt.

text
move.l
sys
bes.l ...

#327,dO
spint,SIGQUIT
error

get task number in DO
send quit interrupt

If the effective user ID of the task executing this code ~~tches that of
task number 327 or if the task is owned by the system manager, the

-43-

68xxx UniFLEX Programmer's Guide

system will send a "quit" interrupt to task 327. We will define the
quit interrupt and other interrupts in.a moment. Notice that the system
call used to send program interrupts is "spint". This same system call
can be used to send an interrupt to all tasks associated with the
terminal executing the program. Consult the documentation of "spint" in
the Introduction to UniFLEX System Calls for details.

Often it is possible for' a task to "catch", or intercept, a program
interrupt when it receives one. The task may then permit the interrupt
to complete its default action (usually task termination), may ignore
the interrupt completely, or may take some special user-defined action.
The system call that provides the capability of catching a program
interrupt is called "cpint". In effect, this system call permits the
user to establish an interrupt-vector address so that if a program
interrupt is received, control passes to that address. The programmer
may place a routine at the address which handles the interrupt in some
special way. Certain addresses are specially treated. If the address
specified for the caught interrupt is $000000, the ~efault action of the
interrupt will be allowed to occur much as if the interrupt had not been
caught at all. If the address specified is $000001 or any other odd
address, the interrupt will be ignored much as if it had never been
sent. Note that no code is actually placed at these addresses; the
"cpint" system call recognizes them as special values and performs the
indicated interrupt handling without ever jumping to or using them as
real addresses. Any even address address other than $000000 is assumed
to be a valid address in the program's memory, and control passes to
that location. There the programmer places the desired
interrupt-handling routine, which must be exited with an "rtr"
instruction. When the system executes this "rtr" instruction, control
passes to the point in the program where the interrupt occurred.

Once a program interrupt has been caught and processed, the system
resets itself to the default condition where interrupts are no longer
intercepted. Therefore, to continue catching program interrupts it is
necessary to reissue the "cpint" call after each interrupt is processed.
Following is a list of the types of program interrupts possible under
UniFLEX.

-44-

68xxx UniFLEX Programmer's Guide

Name Number Description A C D I R
===
SIGHUP
SIGINT
SIGQUIT
SIGEMl'
SIGKILL
SIGPIPE
SIGSWAP
SIGTRACE
SIGTlME
SIGALRM
SIGTERM
SIGTRAPV
SIGCHK
SIGEMT2
SIGTRAP1
SIGTRAP2
SIGTRAP3
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGPAR
SIGILL
SIGDIV
SIGPRIV
SIGADDR
SIGDEAD
SIGWRIT
SIGEXEC
SIGBND
SIGUSR1
SIGUSR2
SIGUSR3
SIGABORT
SIGSPLR
SIGINPUT
SIGDUMP

SIGUNORDERED

SIGINEXACT
SIGFPDIVIDE
SIGUNDERFLOW
SIGOPERAND
SIGOVERFLOW
SIGSNAN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37-41
42

43
44
45
46
47
48

49-63

Hangup
Keyboard
Quit
A-line (Axxx) emulation trap
Task kill
Broken pipe
Swap error
Trace
Time limit
Alarm
Task terminate
TRAP V instruction
CHK instruction
F-line (Fxxx) emulation trap
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6-14 instruction
Parity error
Illegal instruction
Division by 0
Privileged instruction
Addr es s error
A child task terminated
Write to read-only memory
Data or stack space violation
Segmentation violation
User-defined interrupt #1
User-defined interrupt #2
User-defined interrupt #3
Program abort
Spooler signal
Input is ready
Take memory dump
System-defined interrupts
MC68881 branch or set on
unordered operand
MC68881 inexact result
MC68881 division by 0
MC6888l underflow
MC68881 invalid operand
MC68881 overflow
MC68881 signaling not-a-number
Vendor-defined interrupts

+ + - + +
+ + - + +
+ + + + +
+ + + + +
+ - - - +
+ + - + +
+ + - - +
+ + - + -
+ + + - +
+ + - + +
+ + - + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + - +
+ + + - +
+ + + + +
+ + + - +
+ + + - +
- + - + +
+ + + - +
+ + + - +
+ + + - +
+ + - + +
+ + - + +
+ + - + +
+ - - - +
+ + - + +
+ + - + +
o + + + +

+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +

Notes: A = Default state is "abort" (otherwise, "ignore")

C = Interrupt can be caught
D = Produces a core dump
I = Interrupt can be ignored
R Resets to default state when tr iggered
0 = See text

-45-

68xxx Uni-FLEX Programmer's Guide

SIGTlME is not currently implemented.

If not caught or ignored, all of these program interrupts (except
SIGDEAD) by default cause termination of the task to which they are
sent. As shown in the table, some also produce a "core dump". A core
dump is a disk file which contains a mirror image of the contents of
memory. Each byte in the program and stack space is written to a disk
file immediately after receipt of the interrupt. The user can examine
this file to determine the state of memory at the time the interrupt was
received. A core file is often useful for diagnostic purposes. The
operating system cannot create a core file if the working directory
contains a file named "core" which denies write permission to the
current effective user or if the working directory denies write
permission to the current effective user.

The default action for the SIGDUMP interrupt is to create a core dump
and return control to the task. The task is not terminated.

A vendor may use a TRAP instruction with a number greater than 6. In
such a case the user should not issue the instruction.

User-defined interrupts are available to the end user.

Many of the interrupts are initiated by 68xxx exception processing. The
cause of those interrupts can be understood by studying the
documentation of the 68xxx microprocessor. Certain interrupts in the
list are not directly initiated by the 68xxx and need further
definition.

1) Hangup: Generated by UniFLEX when a terminal driver loses the
carrier that it had previously established for modem operation.
This interrupt causes the user associated with the terminal to be
logged out. Certain programs (such as the text editor and BASIC)
intercept this interrupt and take proper actions to save current
files before logging out.

2) Keyboard: Generated by typing a control-C on the
interrupt terminates the foreground task of
terminal.

terminal. This
the associated

3) Quit: Generated by typing
interrupt is just like the
produces a core dump.

a control-\ on the terminal. This
keyboard interrupt except that it

4) A-line (Axxx) emulation trap: Generated by the 68xxx when it
encounters an instruction with the pattern 1010 in bits 15 through
12.

5) Task kill: Always kills the task to which it is sent. A task may
not catch or ignore this interrupt.

-46-

68xxx UniFLEX Programmer's Guide

6) Broken pipe: Generated when a pipe between two tasks is broken.
This occurs when the reader has closed the pipe and the writer
attempts to write to it.

8) Trace: An interrupt for use ~n tracing program execution.

9) Time limit: Generated when a task uses more system time than the
upper limit established by the system configuration.

10) Alarm: Generated
number of seconds.
terminate the task.

by the "alarm" system call after the specified
Unless caught or ignored, this interrupt will

11) Task termination: The normal means of interrupting and terminating
a task. Unlike the task-kill interrupt, the task-termination
interrupt may be caught or ignored.

14) F-line (Fxxx) emulation trap: Generated by the 68xxx when it
encounters an instruction with the pattern 1111 in bits 15 through
12.

21) Parity error: Generated when the system hardware detects a memory
parity error. This interrupt is not supported on all hardware.

26) A child task terminated: When a task terminates, it sends an
interrupt to its parent task, informing the parent that the child
has terminated. This interrupt is ignored by default--it must be
explicitly caught by the parent in order to function.

27) Write to read-only memory: Generated when an attempt ~s
write to a section of memory which has been reserved as
by the memory management system. This interrupt is not
on all hardware.

made to
read-only
supported

28) Data or stack space violation: Generated when a program attempts
to extend its stack below the limit specified in the most recent
"stack_limit" system call. Also generated when a program attempts
to execute a 68xxx instruction which resides in either the data or
stack space. Instructions should only be executed from the text
segment. This interrupt is not supported on all hardware.

29) Segmentation violation: Generated when an attempt is made to
access memory which is outside the address space allotted to a
task.

30-32) User-defined interrupts: These
meaning to UniFLEX. They are merely
the end user may use for any purpose.

interrupt s
additional

have no def ined
interrupts which

37-41) System-defined interrupts: These interrupts are reserved for
use by Technical Systems Consultants.

-47-

68xxx UniFLEX Programmer's Guide

42) MC68881 branch or set on unordered operand: Generated when an
MC68881 branch or set instruction was executed with an operand
equal to not-a-number (NAN).

43) MC68881 inexact result: Generated when either an MC68881 operation
results in a loss of precision or the conversion of a number from
packed-decimal to binary cannot be performed exactly.

44) MC68881 division by 0: Generated when an MC68881
instruction is executed with a divisor equal to O.

divide

45) MC68881 underflow: Generated when an MC68881 operation results
an answer that is nonzero but too small to be represented
normalized floating-point number in the specified precision.

1.n
as a

46) MC68881 invalid operand: Generated when an MC68881 operation is
attempted on an operand that is outside of the domain of that
operation (e.g., taking the square root of a negative number).

47) MC68881 overflow: Generated when an MC68881 operation results in
an answer that 1.S too large to be represented in the specified
precision.

48) MC68881 signaling not-a-number (NAN): Generated when an MC68881
operation is attempted on an operand of a special type called
"signaling NAN". The user must have supplied this operand because
the MC68881 cannot generate a "signaling NAN" as the result of an
operation.

49-63) Vendor-defined interrupts: These interrupts are reserved for
use by the vendor.

On return from a "cpint" system call, the address which the system used
on receipt of the program interrupt is returned to the 68xxx's DO
register. This address can be used to tell what kind of action a
program was taking on receipt of program interrupts before the current
"cpint" call. For example, assume we have a program that is ignoring
quit interrupts. If we now issue the instruction:

sys cpint,SIGQUIT,O

which says to take the default action on receipt of a quit interrupt, we
would find a 1 returned in the DO register. That 1 is the address which
was previously being used on receipt of a quit interrupt, and we know
that an address of 1 says to ignore the interrupt.

Knowing what type of action is being taken on receipt of a program
interrupt can be very useful in the case where one task starts another.
If one task is ignoring some particular interrupt and that task starts
some new task running, the new task should usually also ignore the
interrupt. Assume we have program "A" which starts program "B" by doing
a "fork" system call followed by an "exec" system call. Also assume
program "B" normally wishes to catch every keyboard interrupt
(control-C) and process it 1.n a special way. Program "B" should

-48-

68xxx UniFLEX Programmer's Guide

immediately check to see how program "A" was handling keyboard
interrupts. If program "A" was not intercepting keyboard interrupts or
was catching them, program "B" may catch and process them as desired.
If, however, program "A" was ignoring keyboard interrupt s, program "B"
should also ignore them. The code for program B to handle all this
properly would be:

contin

...
text
sys
cmp.l
beq
sys

cpint, SIGINT, 1
#l,dO
contin
cpint,SIGINT,handle

start by ignoring
was program A ignoring?
if so, then so should we
if not, ca tch it

Note that by ignoring the keyboard interrupt while checking what
"A" was doing, we avoid having a keyboard interrupt to through
the checking and being improperly handled.

program
during

As an example of catching a program interrupt let's examine a portion of
code that would put a program to sleep for 30 seconds. The technique
will be to send an alarm interrupt with the "alarm" system call, then to
put the task to sleep with the "stop" system call. In order to catch
the alarm interrupt and continue properly in our program, we will use
the "cpint" system call.

wake

text
sys
move. 1
sys
sys

rtr

cpint, SIGALRM, wake
#30,dO
alarm
stop

catch alarm & goto wake
delay 30 seconds

wait for alarm interrupt
continue with program

do nothing with interrupt

The "cpint" system call tells the task to catch any alarm interrupts
which come in and handle them as specified by the code at "wake". The
code at "wake" does absolutely nothing but return. Therefore, when the
program receives the alarm interrupt it simply continues execution where
it left off, which was just after the "stop" system call.

-49-

68xxx UniFLEX Programmer's Guide

6.4.2 Interrupted System Calls

Most system calls cannot be interrupted by a program interrupt. That
is, once a system call is executing, it will finish regardless of
whether or not a program interrupt is pending. Once that system call is
completed, the user's program 'will see any waiting program interrupt. A
few system calls, however, may be terminated by a program interrupt.
Those calls are the "read" and "write" system calls (if the device being
read from or written to is a slow device such as a terminal or printer)
and the "stop" and "wait" system calls. A "read" or "write" call to a
fast device, such as a disk file, cannot be terminated by a program
interrupt. If a program interrupt does get through to a "read",
''write'', "stop", or "wait" system call, the following action takes
place. First of all, the system call is immediately terminated and
control passes to the program-interrupt handling-code if the interrupt
is being caught. When the any special handling of the interrupt is
complete, control passes to the instruction immediately following the
interrupted system call and the system returns an error status
accompanied by an EINTR error (number 27). In this way, the program
which made the system call can detect that it was interrupted and
reissue the system call if desired.

For example, consider a program which prompts the user for a line of
data from the terminal. If a program interrupt is sent to that program
while the "read" system call that gets the data from the terminal is in
progress, that call may be prematurely terminated; that is, all the data
may not be returned. Once the program-interrupt handling-code was
complete, our program would continue right after the "read" call but
would show an EINTR error. Our program may choose to treat the EINTR
error like any other and terminate with an error message.
Alternatively, however, it could recognize the EINTR error and loop back
in the code to reissue the prompt and the "read" system call.

-50-

68xxx UniFLEX Programmer's Guide

~.~ Locking and Unlocking Records

In a multi-user, multi-tasking system such as UniFLEX, more than one
user or task may attempt to access the same file at the same time. In
some instances this is no cause for concern and, indeed, is often
beneficial. Sometimes, however, it could be disastrous. For example,
consider an airline reservation system. Assume one reservationist reads
in a record containing .information about the seats available on a
particular flight and finds that only one seat is left. Normally the
reservationist would type in the information necessary to reserve the
seat, and when the transaction was complete, the system would rewrite
that record to show that no more seats were available. A serious
problem might result if another reservationist read the record after the
first but before the first had written the new information out. Both
reservationists would see the empty seat and enter the data to reserve
it. There is no way of knowing just how the system would handle such a
situation, but one passenger would probably not really be booked.

UniFLEX supports a method of avoiding this problem. It permits a
program or task to "lock" a record of data until such time as it is
ready to "unlock" or release it for others to use. While that record is
locked, no other task can access it. In our previous example of the
airline reservations, the first reservationist would lock the record
just before reading it and not unlock it until the new information had
been written to the file. The second reservationist would be unable to
read the record until the first reservationist unlocked it.

UniFLEX maintains a table showing what records are locked. The length
of each locked record is specified by the task which performs the lock.
Note that a single task may only lock one record in a file. However,
other tasks may lock other records in that same file. A single task may
lock a record in more than one file at a time.

The system calls which enable this feature are "lrec", which locks a
record, and "urec", which unlocks a record. When a task issues an
"lrec" call to lock some record within a file, the system first checks
the locked-record table to see whether or not the calling task already
has a record locked in that file. If it does, the system unlocks it.
Next, the system checks to see if the record to be locked is available
or if some other task has locked some portion of it. If the record is
available for locking, the system makes an entry in the table of locked
records and returns to the calling task. If the desired record overlaps
some portion of a record that is already locked, the system returns with
an ELOCK error. The calling program must decide how to handle such an
error if it occurs.

A task may unlock a record it has locked in one of three ways. It may
use the "urec" system call, which unlocks whatever record the c~lling
program has locked in the specified file; it may lock another record in
the same file, which automatically causes the system to unlock any
record in that file which is currently locked by the task; or it may
close a file, which causes the system to unlock any records that were
locked by the task which opened the file.

-51-

68xxx UniFLEX Programmer's Guide

Now that you understand how locking and unlocking take place, we must
back up and tell you that locking a record does not really prevent
another task from accessing it. Any program that wishes to can still
read or write the data which some other program has locked in a record.
In order for locking to provide the desired results, all programs must
assume the responsibility of avoiding reading from or writing to a
locked record. This may be accomplished by attempting to lock a record
before reading from or writing to it. If the record is available, the
system does not return an error, and the program can safely proceed with
a "read" or "write" system call. If the system does return an error
(ELOCK), someone else already has the record locked, and the program
should not try to read from or write to it at the present time. One way
of handling an ELOCK error is to put the task to sleep for a few seconds
before trying to lock the record again. This can be done with the
"alarm" and "stop" system calls (see the example in Section 6.4.1 and
the Introduction to UniFLEX System Calls). Proper use of the "lock" and
"unlock" system calls yields the same results as if locking actually did
prevent another task from reading or writing. Note that locking and
unlocking are not necessary in all cases, only in those cases where a
data file is shared and conflicts can occur.

An example of record locking and unlocking exists in UniFLEX BASIC. The
BASIC interpreter. always performs record locking and unlocking when
accessing any record I/O file or virtual array (locking is not performed
on sequential files). If one user does a "get record" in BASIC, that
record is locked, and no other user may access it until the original
user unlocks it by getting a different record, explicitly unlocks the
record, or closes the file. Before any access to a random file, BASIC
attempts to lock the record. If BASIC receives an error from the "lrec"
system call because someone else has the record locked, it will pass
that error to the user as BASIC error number 49.

~.~ Shared-Text Programs

In a multi-user enviroDlIlent more than one user may be running the same
program simultaneously. Because it is wasteful of system resources for
each user to have a copy of that program in memory at the same time, it
makes good sense to let all the users share one copy of the program.
This approach is only feasible, however, if no~hing is ever altered in
the memory which contained the program. Now, seldom does such a program
exist, but an alternative is to separate a program into two portions,
one of which contains code that will never be changed and one which
consists of temporary storage and data that might require changes.
Users can then share the nonchanging portion and have their own
individual copies of the changing portion. This technique, which is
implemented by UniFLEX, is called shared-text.

In UniFLEX all assembly language programs are separated into two
sections: a lit ext" segment, which contains nonchanging memory or memory
which will only be read from, and a "data" segment. which can be changed
by writing into it. When a user runs a shared-text program, the system

-52-

68xxx UniFLEX Programmer's Guide

assigns a section of memory to each segment. If a second user runs the
program at the same time, the system will recognize that it already has
a copy of the text segment in memory and will load only the data segment
into memory for the second user. The system will then map the same
memory that contains the text segment for the first user into the
address space for the second user.

For details on how to produce a shared-text program, refer to the manual
68xxx Relocating Assembler and Linking-Loader.

-53-

68xxx UniFLEX Programmer's Guide

-54-

68xxx UniFLEX Programmer's Guide

7.0 General Programming Practices

Several
writing
section

general programming
assembly language

covers those points.

1) Starting Locations

practices should always be observed
programs to run under 68xxx UniFLEX.

when
This

Assembly language programs cannot have absolute origin addresses.
Rather, the load addresses for the text and data sections of a program
(as well as for the stack established by the system) should be specified
at load time. The user can explicitly specify these addresses to the
linking-loader, but in general they should assume the default values
found in the file "/lib/std_env". This file, which contains the proper
addresses for the hardware memory manager, is automatically read by the
linking-loader.

2) Stack Considerations

When a program begins execution under UniFLEX, the system assigns it a
portion of memory for the program stack. The 68xxx CPU's current
stack-pointer (register A7) is left pointing to some location within
this memory. The user's program should not write into locations in
memory higher than this initial location of the current stack-pointer.
The program may, of course, read the parameters which the system passes
to it and which lie directly above the stack pointer (higher in memory).

3) 68xxx Hardware Interrupts and Traps

In general, a user program need not perform any hardware-interrupt or
trap handling. Some traps can be handled in the same fashion as program
interrupts by using the "cpint" system call.

4) Delays

To maintain system efficiency, a user's program should not contain delay
routines which tie up the processor for long periods of time. The
preferred method is to use the "alarm" system call followed by a "stop"
system call (see Section 6.4.1). The program must also use the "cpint"
system call to catch the "alarm" interrupt and to continue with the
desired code.

5) Syst em "1 ib" Fil e s Prov ided

The master UniFLEX disk contains several system library files for the
convenience of the assembly language programmer. These files, which are
located in the directory "/lib", contain definitions for several
system-related calls, tables, buffers, and so forth. The programmer may
include these definitions in a program by using the "lib" instruction in
the 68xxx assembler. These files are as follows:

-55-

68xxx UniFLEX Programmer's Guide

sysacct Definition of structure for accounting record
sysdef Definitions of 68xxx UniFLEX system calls
syserrors Definitions of 68xxx UniFLEX system errors
sysfcntl Definitions of interface for "fcntl" system call
sysints Definitions of program interrupts
sysmessages Definition of interface for intertask communication
syspty Def inition of pseudoterminal interface
sysrump Definition of interface for resource manager
sysstat Def inition of buffer for "status" and "of stat"
systim Definition of buffers for "time" and "ttime"
systty Def inition of buffer for "ttyset" and "ttyget"
sys68881 Def inition of the MC68881 exception buffer

The library also contains the following file, which is used by the
linking-loader and which should not be included in an assembly language
program:

Standard environment for linking-loader

6) Generating Unique Names for Files

It is often necessary for a program to generate a name for a file. For
example, a program may need some sort of temporary file. In a
single-task environment, the program could just use some name defined at
assembly time. In a multi-user environment like UniFLEX, however, more
caution is required. If the program which generates the name is run by
more than one user or is run in the background and foreground by a
single user, conflicts may arise because each copy of the running
program would be attempting to create and manipulate the same file. The
proper technique to avoid this problem is to have the program include
the current task ID in the name of the file. Because each executing
copy of the program has a different task ID, they will each generate a
different name for the file. The program should use the "gtid" system
call to obtain the task ID, then convert the ID to ASCII and include it
as part of the name of the file.

-56-

68xxx UniFLEX Programmer's Guide

8.0 Debugging

Assembly language debugging under 68xxx UniFLEX is accomplished by the
"qdb" command. This command provides many tools such as memory dumps,
breakpointing, and single-stepping. Refer to the documentation on the
"qdb" command for further detail s.

-57-

68xxx UniFLEX Programmer's Guide

-58-

68xxx UniFLEX Programmer's Guide

9.0 Sample UniFLEX Utility

To demonstrate several of the calls and techniques in writing assembly
language utilities under UniFLEX, we shall provide the complete listing
of a sample utility. This utility reads a file (or list of files) and
strips out all control characters except for carriage returns
(hexadecimal OD) and horizontal tabs (hexadecimal 09). We will name the
utility "strip". The syntax of the command line is as follows:

The square brackets indicate that the list of file names is optional.
If the user does not supply the name of a file, "strip" will read
standard input. If the user supplies a list of names, the "strip"
utility will read all the files in order and write the stripped output
to standard output.

Our basic task, then, is to read either a list of files or the standard
input, strip the necessary control characters, and write the result to
the standard output device. In order to handle any size of file, we
shall read and write the data a buffer at a time. The question arises
as to what size of buffer to use. We know that for efficiency reasons
the buffer should be an even multiple of 512 bytes, but how big a
multiple? The code to implement this utility will obviously be quite
small; the program and the buffer could easily fit into one 4-Kbyte page
of memory (a common size for a page on a 68xxx memory management
device). Since this utility will probably not be frequently used, it
was decided to limit the program's memory to one 4-Kbyte page. We will
make the buffer for reading and writing the largest possible multiple of
512 that can fit in that 4-Kbyte space.

The printed listing of the "strip" utility follows shortly.
extensive comment and should be quite instructive in itself.
briefly talk through the code here, however, by referring
numbers printed on the left edge of the listing.

It contains
We shall

to the line

The first step after titling and describing the program is to include
the system definitions with the "lib" instruction (line 17). The actual
code section begins with the "text" statement in 1 ine 23. In 1 ine 27 we
load the "a6" register with a pointer to the list of arguments passed to
the program (the list is null if the user did not specify the name of a
file). Notice that the program skips 8 bytes--4 containing the argument
count and 4 containing argument 0, which is the name of the command
itself. Lines 28 through 31 check to see whether or not the user
specified any files on the command line. If so, the argument count
(what the system stack is pointing to) will be greater than 1 because
argument 0 (the command name) counts as an argument. If the argument
count is equal to 1, the user did not specify a file, and the program
must read standard input. Because the file descriptor for standard
input is 0, that value is saved in "ifd" and we jump ahead to process
that input. If a file was specified, we enter a loop to read through
all specified files. In line 35 we obtain the pointer to the 'next file

-59-

68xxxUniFLEX Programmer's Guide

in the list and store it at "opname ll • If that pointer is 0 (a null
pointer), we have reached the end of the list and we jump off to the
exit code at IIdone ll • If it is nonzero, it must be the address of a
string designating a file. Lines 40 through 42 open that file for read
and save the file descriptor in lIifd ll • Note that the open is done by
means of an indirect system call because at the time of writing we do
not know what name to specify in an "open" call. The pointer to the
name of the file to be opened is only discovered as we run the program.
When we stored the pointer to· the name of the file at "opname ll in line
35, we were actually storing it in the parameter list for the upcoming
indirect "open" system call. In line 46 we call a subroutine named
IIstrip" to read through the file whose descriptor is in "ifd ll , strip out
the control characters, and write the result to standard output. Line
47 branches back to the top of the loop to look for another input file.

The IIstrip" subroutine is where the actual stripping of control
characters takes place. In lines 67 through 6 9 we read "BUFSIZ"
characters into memory at IIbufferll. L{nes 73 and 74 check for end of
file. If we are at the end of the file, we jump to the next occurrence
of local label "90" and exit from the subroutine. Otherwise, we adjust
the count for the IIdbra" instruction (line 7 5) and go on to lines 80
through 91 where the control characters are stripped from the buffer.
The reader should not necessarily be concerned with this routine except
to note that after it strips the control characters, the program leaves
the resulting data in the same buffer. Because some characters may have
been stripped from the file, the location of the end of the data in the
buffer may be lower than it was before the stripping. After the
stripping, we fall into lines 96 through 101, which write the stripped
data to standard output. Lines 96 and 97 calculate the number of
characters to write. This number is equal to the difference between the
pointer to the end of the data in the buffer and the pointer to the
beginning of the buffer. The result is stored as a parameter for an
indirect "write" call. In line 98 we obtain the file descriptor for the
standard output file. The indirect "write" system call is carried out
in lines 99 and 100. In line 101 we jump back to the beginning of the
subroutine to read in another buffer-full of data.

Lines 113 through 134 contain the error-handling code. On receipt of an
error, we simply write an appropriate message to standard error (file
descriptor 2). The important thing to note about this code is that we
save the error status so that it may be passed on to the IIterm" system
call.

J
Lines 144 through 158 contain temporary storage and buffers. First are
the parameter lists for the indirect "open" and "write ll calls mentioned
earlier. Line 153 reserves storage space for the file descriptor of the
current input file. Lines 155 through 158 reserve space for the buffer.
As explained above, we decided to make the buffer as large a multiple of
512 bytes as possible and that will fit within 4 K. This is done by
ensuring the buffer starts on a S12-byte boundary and then making the
end of the buffer be the end of the 4-Kbyte page of memory. Recall that
efficiency in reading and writing is gained not only by a buffer size
which is a multiple of 512 bytes but also by beginning the buffer on a
5l2-byte boundary. Line 157 establishes the buf fer size by calculating

-60-

68xxx UniFLEX Programmer's Guide

the difference between the end of the 4-Kbyte page ($1000) and the
beginning of the buffer.

The "end" statement on line 161 specifies the starting address of the
utility in its operand field.

The best way to learn to program is to program, so it is highly
recommended that as a starting point the reader type in, assemble, and
execute this utility.

-61-

68xxx UniFLEX Programmer's Guide

1=
2-
3=
4=
5=
6-
7=
8=
9-

10=
11=
12-
13=
14=
15-
16=
17-
18-
19-
20=
21=
22=
23-
24=

**
* * UniFLEX "strip" Utility

* * Copyright (c) 1984 by
* Technical Systems Consultants, Inc.

* * Utility to strip all meaningless control characters from
* inp~t file and write stripped version to standard output.
* Accepts list of input files or defaults to standard input.
* For the purpose of this utility, "meaningless control
* characters" are all characters with an ASCII value between
* $00 and $lf inclusive except carriage return ($Od) and
* horizontal tab ($09).
**

lib sysdef read system definitions

**
* start of main program
**

text begin text segment

25- * start by seeing if any input files were specified
26=
27=
28-
29=
30=
31-
32=

start lea
cmp.l
bhi.s
move. I
bra.s

8(a7) ,a6
11, (a7)
main2
#O,ifd
main4

set arg ptr past count & argO
file specified only if argcnt
branch if filenames present
else use standard input
go process std. input

33= * check to see if any more files specified
34=
35= main2
36=

* open

* strip

main4

move. I
beq.s

specified

sys
bes.s
move.l

control

bsr.s
bra.s

(a6)+ ,opname
done

file for read

ind,iopen
opnerr
dO,ifd

get next argument in list
branch if no more args

do indirect open call
branch if error
save input file descriptor

characters from this file

strip
main2

subroutine to strip CTRLs
look for more files

37=
38-
39=
40=
41=
42=
43=
44=
45==
46-
47=
48=
49= * finished all input files, terminate task
50-
51= done
52=
53=
54=

move.l 10,dO show normal termination
sys term

-62-

>1

55=
56=
57=
58=
59=
60=
61-
62=
63=
64=
65=
66=
67=
68=
69=
70=
71=
72=
73=
74=
75=
76=
77=
78=
79=
80=
81=
82=
83=
84=
85=
86=
87=
88=
89=
90=
91=
92=
93=
94=
95=
96=
97-
98=
99=

100=
101=
102=
103=
104=
105=
106=
107=
108=

68xxx UniFLEX Programmer's Guide

**

* subroutine to strip meaningless control characters
* from the file specified by file descriptor in "ifd"
* and to write result to standard output.

* begin by reading a buffer full

strip move. I
sys
bes.s

ifd,dO get input file descriptor
read,buffer,BUFSIZ read buffer full
rderr branch if read error

* check for end of file (0 characters read)

tst.l dO end of input file?
beq.s 90f exit if so
sub.w #1,dO adjust count for dbra

* Do actual stripping of control characters. This will
* be done in place in the buffer by collapsing the data
* as meaningless control characters are stripped.

move.l #buffer,aO point to source buf fer
move. I aO ,al point a1 to destination
bra. s 60f enter DBcc loop

40 move. b (aO)+,dl get a character into dl
cmp. b i.k$lf,d1 a control character?
bhi.s 50f go keep character if not
cmp. b #$Od,dl a carriage return?
beq.s 50f keep if so
cmp.b #$09,dl a tab?
bne.s 60f if not, don't keep
move.b d1,(al)+ put char. in buffer

buffer

50
60 dbra dO,40b decrement count; loop if more

* finished stripping, al points to end of buffer of
* stripped data ready to be written

sub.l #buffer ,al find no. of chars to write
move .1 a1,wrtcnt store in parameters
move.l #l,dO write to standard output
sys ind,iwrite do indirect write
bes.s wrterr br anch if error
bra. s strip go read another section

90 rts exit routine

-63-

68xxx UniFLEX Programmer's Guide

109-
110-
111-
112=
113=
114=
115=
116-
117=
118-
119=
120-
121=
122=
123=
124-
125=
126=
127=
128=
129=
130-
131=
132=
133=
134=
135=
136=
137=
138=
139=
140=
141=
142=
143=
144=
145=
146=
147=
148=
149=
150=
151=
152=
153=
154=
155=
156=
157=
158=
159=
160=
161=

**

* error-handling routines

opnerr

rderr

wrterr

err

opners
opnerl
rderrs
rderrl
wrters
wrterl

move. 1
move. I
sys
bra.s
move. 1
move. I
sys
bra.s
move. I
move. I
sys

move. I
sys

fcc
equ
fcc
equ
fcc
equ

dO ,-(a7) save error status on stack
#2,dO . standard error output
write,opners,opnerl
err
dO,-(a7) save error status on stack
#2,dO standard error output
write,rderrs,rderrl
err
dO, -(a7) save error status on stack
#2,dO standard error output
write,wrters,wrterl

(a7)+,dO pull error status from stack
term exit program

"Can't open input file. " , $d , 0
*-opners
'Error reading input file.',$d,O
*-rderrs
'Error writing output file.

,
,$d,O

*-wrters

**

* temporary storage and buffers

data
start_of_data
* parameters for
iopen de.w
opname de.l
opmode de.l

* parameters for
iwrite de.w
wrtbuf de. I
wrtent de.l

ifd ds.l

ds.b
buffer equ
BUFSIZ equ

ds.b

end

indirect
open
o
o

indirect
write
buffer
o

1

begin data segment

"open" system call
open function code
name of file to open
open mode I (reading)

"write" system call
write function code
buffer to write from
byte count to write

input file descriptor

512-(*-start_of_data) reserve up to 512-byte
* start on 512-byte boundary
$1000-512 multiple of 512 bytes
BUFSIZ reserve space for buffer

start

-64-

boundary

Call

alarm

break

cdata

chacc

chdir

chown

chprm

close

controlJty

cpint

create

create_
contiguous

createJty

crpipe

68xxx UniFLEX Programmer's Guide

Appendix A
Alphabetic Summary of UniFLEX System Calls

No Description . Syntax·

43 Sleep for some seconds Exp: <seconds> in DO
sys alarm

6 Change amount of
memory

36 Request contiguous
memory

Rtn: <previous_seconds> in DO

sys break,<high_address>

sys cdata,<high_address>

25 Check access permission sys chacc,<file_name>,<perm_mask>

21 Change directory

23 Change file owner

24 Change access
permission

15 Close file

65 Adjust or report the
modes of a
pseudoterminal

8 Catch program
interrupt

11 Create a file

61 Create a contiguous
file

sys chdir,<dir_name>

sys chown,<file_name>,<owner_ID>

sys chprm,<file_name>,<perm~ask>

Exp: <file_des> in DO
sys close

Exp: <file_des> in DO
sys controlJty,<function_code>,<mode_flag:
Rtn: <state> in DO

sys cpint,<interrupt>,<address>
Rtn: <old_address> in DO

sys create,<file_name>,<perm_mask>
Rtn: <file_des> in DO

sys create_contiguous, <file_name>,<perm_m8!
<file_size>,<O_flag>

Rtn: <file_des> in DO

62 Create a pseudoterminal sys createJty

31 Create pipe

Rtn: <slave_file_des> in DO
<master_file_des> in AO

sys crpipe
Rtn: <read_file des> in DO

<write_file_des> in AO

-65-

68xxx UniFLEX Programmer's Guide

crtsd

deface

dup

dups

exec

20 Make special file or
directory

26 Set default access
permission

16 Duplicate open file

17 Duplicate specified
file

2 Execute a program

sys crtsd,<file_name>,<des_mask>,<address>

sys defacc,<perm_mask>

Exp: <file_des> in DO
sys dup
Rtn: <new_file_des> in DO

Exp: <current_file_des> in DO
<requested~file_des> in AO

sys dups
Rtn: <new_file_des> in DO

sys exec,<file_name>,<ar&-list>

exece 59 Execute a program with sys exece,<file_name>,<ar&-list>,<env_list>
specified environment

Eiltim 52 Set file time

Ecntl 69 Change or query
behavior of a file

:ork 3 Fork a task

~PU_exception 67 Access or update FPU
exception information

~PU_resume 68 Resume execution after
an FPU exception

~pid 60 Get parent task's ID

;tid 32 Get task ID

;uid 33 Get user ID

.nd o Indirect call

.ndx I Index indirect call

.ink 18 Link to file

.ock 22 Lock task in memory

Exp: <time> in DO
sys filtim,<file_name>

Exp: <file_des> in DO
sys fcntl,<functio~code>

sys fork
Rtn: new task starts just after call

old task start at call + 2 bytes
old task: <~ew_task's_ID> in DO

sys FPU_exception,<function_code>,<buf_add>

sys FPU_resume

sys gpid
Rtn: <parent_ID> in DO

sys gtid
Rtn: <task_ID> in DO

sys guid
Rtn: <actual_user ID> in DO
<effective_user_ID> in AO

sys ind,<call>

sys indx

sys lock, <flag>

-f>6-

lrec

make_realtime

mount

of stat

open

phys

profil

read

rump

sacct

seek

setpr

spint

stack

status

stime

stop

suid

47 Lock record

64 Make task "real time"

29 Mount device

27 Get open fil e status

10 Open file

54 Get physical resource

37 Profile task

12 Read file

66 Resource management

50 Enable or disable
system accounting

14 Seek to file position

35 Set priority bias

68xxx UniFLEX Programmer's Guide

Exp: <file_des> in DO
sys lrec,<count>

sys make_realtime

sys mount,<dev_oame>,<dir_oame>,<mode>

Exp: <file_des> in DO
sys ofstat,<buf_add>

sys open,<file_oame>,<mode>
Rtn: <file_des> in DO

sys phys,<res_code>

sys profil,<start_add>,<buf_add>,<size>,
<scale>

Exp: <file_des> in DO
sys read,<buf_add>,<count>
Rtn: <bytes_read> in DO

Exp: <function_code> in DO
<resource_name> in AO

sys rump

sys sacct,<file_name>

Exp: <file_des> in DO
sys seek,<position>,<mode>
Rtn: <position> in DO

Exp: <priority> in DO
sys setpr

9 Send program interrupt Exp: <task_ID> in DO
sys spint,<interrupt>

7 Grow stack

28 Get file status

40 Set time

Exp: <address> in AO
sys stack

sys status,<file_name>,<buf_add>

Exp: <time> in DO
sys stime

44 Stop until interrupted sys stop

34 Set user ID Exp: <user_ID> in DO
sys suid

-67-

68xxx UniFLEX Programmer's Guide

term

time

truncate

ttime

ttyget

ttynum

ttyset

unlink

unmnt

update

urec

vfork

wait

write

5 Terminate task

39 Get time

55 Truncate file

41 Get task time

45 Get terminal status

51 Get terminal number

46 Set terminal status

19 Unlink from file

30 Unmount device

42 Update file systems

48 Unlock record

56 Efficient fork on a
virtual-memory system

4 Wait

13 Write file

Exp: <term_ status> in
sys term

sys time, <buf_add>

Exp: <file_des> in DO
sys truncate

sys ttime, <buf_add>

Exp: <file_des> in DO
sys ttyget,ttbuf

sys ttynum
Rtn: <tty_num> in DO

Exp: <file_des> in DO
sys ttyset,<buf_add>

sys unlink,<file_name>

sys unmnt,<dev_name>

sys update

Exp: <file_des> 1n DO
sys urec

sys vfork

DO

Rtn: new task starts just after call
old task start at call + 2 bytes
old task: <new_task's_ID> in DO

sys wait
Rtn: <task_ID> in DO

<term_status> in AO

Exp: <file_des> in DO
sys write,<buf_add>,<count>
Rtn: <bytes_written> in DO

-68-

