
68xxx
UnlFLEX®
IY/tem managerl
Guide .

COPYRIGHT © 1987 by
Technical Systems Consultants, Inc.

111 Providence Road
Chapel Hill, North Carolina 27514

All rights reserved

qy UnlFLEX registered In U.S. Patent and Trademark Office.

Revision Date

A 03/87

MANUAL REVISION HISTORY

Change

Original Release, 68xxx UniFLEX System Manager's
Guide, for Version 2.1 of 68xxx UniFLEX

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enj oyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program and manual, or any part
thereof, for any purpose other than single end use by the purchaser is prohibited.

DISQAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

Contents

Preface xi

Chapter 1 Getting Started

Building an Operating System 1.1

Booting a System
Automatic-Boot Mode
Manual-Boot Mode

1.5

Initializations 1.9

1.6
1.6

Updating a System Disk 1.9

Adding UniFLEX Support Software to Your System 1.10

Updating UniFLEX Support Software 1.10

Chapter 2 The Init-Control File

Introduction 2.1

Executing a Shell Command 2.2

Flags 2.2

Control Commands 2.3

Essential Elements of the Init-Control File 2.5

Error Messages 2.6
Fatal Errors 2.7
Nonfatal Errors 2.8

Chapter 3 Starting the System

Day-to-Day Procedures 3.1
Booting to Single-User Mode 3.1
Booting Directly to Multi-User Mode 3.2

Setting the Date 3.2
Using a Built-in Clock 3.3
Setting the Date Manually 3.3

Message of the Day 3.4

Formatting a Disk 3.5

iii

Contents

Sequestering Bad Blocks 3.6
Formatting with the '1' or 'L' Option 3.7
The "badblocks" command 3.7

Routine Verification of the Logical Structure of the MedillIIi 3.8

Maintaining Backup Files 3.8

Mounting Devices 3.9

Taking a Memory Dump 3.11

The History File 3.12

Adding New Programs 3.13

The File "/etc/startup" 3.13

Shutting Down the System 3 .14
Step One 3.14
Step Two 3.15

Chapter 4 Using a Printer Spooler

Introduction 4.1

Configuring a Printer Spooler 4.1
Selecting a Device 4.1

Using a terminal driver for a serial printer 4.2
Creating a spooler command 4.2
Creating a spooler directory 4.2
Initiating a printer spooler 4.3

Using the Spooler Command 4.4

Shutting Down a Printer Spooler 4.5

Summary of Routine Spooler Use 4.6

Repairing a Damaged Printer Spooler 4.6

lV

68xxx UniFLEX System Manager

Chapter 5 The Password File

Introduction 5.1

Structure of the Password File 5.1
User Name 5.1
Password 5.2
User ID 5.3
Home Directory 5.3
Login Program 5.4

Original Password File 5.4

Adding a User to the System 5.4

Deleting a User 5.5

Chapter 6 Files and Devices

Introduction 6.1

Regular File 6.1

Contiguous File 6.1

Directory 6.2

Pipe 6.2

Device 6.2
Character Device 6.3
Block Device 6.3
Pseudoterminal Device 6.4
Network Devices 6.4

Creating Devices 6.4

Chapter 7 Important Directories

Introduction 7.1

/uniflex 7.1

/.badblocks 7.1

fact 7.2

/bin 7.2

v

Contents

/dev 7.2

/etc 7.3
/etc/tty1ist 7.3
/etc/ttycap 7.5
/etc/termcap 7.5
/etc/.init.contro1 7.6
/etc/format.contro1 7.6
/etc/1og 7.7

/etc/1og/motd 7.7
/etc/1og/password 7.7

/gen 7.7
/ gen / error s
/gen/he1p
/gen/spoo1 er

/lib 7.8

7.7
7.7

7.8

/ lib /re120. errs
/lib/re168k.errs
/ lib /Sys1 ib68k
/ lib/sysacct
/lib/sysdef

7.8
7.8

7.8
7.9

7.9
/ lib/syserrors
/lib/sysfcnt1
/lib/sysints

7.9
7.9

7.9
/ lib/sysmessages 7.9
/lib/syspty 7.10
/lib/sysrump 7.10
/lib/sysstat 7.10
/lib/systime 7.10
/lib/systty 7.10
/lib/sys68881 7.10
/ lib/std_env 7.11

/lost+found 7.11

/tmp 7.11

/usr 7.12

/usrO, /usr1, /usr2, /usr3 7.12

Chapter 8 Errors Fatal to the Operating System

Intro"duction 8.1

Errors during Initialization 8.1

After Loading the Operating System 8.2

vi

68xxx UniFLEX System Manager

Chapter 9 Fine-tuning the UniFLEX Operating System

Introduction 9.1

Invoking the "tune" Command 9.1
Arguments 9.1
Format for Arguments 9.2
Options Available 9.2
Modes of Operation 9.2

Read-only mode 9.2
Interactive mode 9.3
Automatic mode 9.3

Adjustable Parameters--an Overview 9.4
Functions of the Adjustable Parameters 9.4
Limits and Defaults for Adjustable Parameters 9.6

Parameters Adjustable in Automatic Mode
System Buffers 9.8
Lists of I/O Characters 9.9
Daylight-Savings-Time Flag 9.9
Last Day of Daylight Savings Time
First Day of Daylight Savings Time
Time of Day for Daylight Savings Time
Maximum Number of Open Files 9.10

9.8

9.9
9.10

9.10

Maximum Number of Locked Records 9.11
Maximum Number of Mounted Devices 9.11
Maximum Number of l-1essage Buffers 9.11
Maximum Number of Message Exchanges 9.12
Size of Message Buffers 9.12
Paging Device 9.12
Default Paging Space
Pipe Device 9.13
Root Device 9.14
Seek Rate of the Floppy
Maximum Number of Tasks
Shared-text Programs
Time Limit for Tasks
Number of Time-outs
Setting the Time Zone
Number of Tasks per User

9.13

Disk Drives
Supported

9.15
9.15

9.15
9.15

9.16

9.14
9.14

Parameters Associated with "phys" Segments 9.16
Physical Address 9.17
Logical Address 9.17
Segment Size 9.17

vii

Contents

Parameters Associated with Scheduling 9.17
Functions of the Scheduler 9.17
A Task's Personality 9.18
Determining Priorities 9.19

Max CPU utilization 9.20
CPU utilization increment per hit 9.20
CPU utilization decay 9.20

Determining Duration of Stay in the CPU 9.20
Max quantum 9.21
Quantum increment 9.21

Examples 9.21

Error Messages 9.22

Chapter 10 Repairing a Damaged Disk

Introduction 10.1
Structure of a UniFLEX Disk
Physical Errors on the Disk
Limitations of "diskrepair"

The Command Line 10.4
The '-a' Option 10.5
The 'b' Option 10.6
The 'B' Option 10.6
The ' f' Option 10.6
The 'm , Option 10.6
The 'M' Option 10.7
The 'n' Option 10.7
The 'p , Option 10.7
The

,
q
,

Option 10.7
The 'r' Option 10.8
The

,
u

,
Option 10.8

The 'v , Option 10.8

Preliminary Checks 10.8
Command-line Options 10.9
Specified Device 10.9
Backup Devices 10.10
Permissions 10.10
Unmounting a Mounted Disk
Checking the Root Device
Status of the Root Directory

Calling "blockcheck" 10.12

10.2
10.3
10.4

10.10
10.11

10.12

Abnormal Termination of "blockcheck"
Improper I/O Redirection 10.13

viii

10.13

68xxx UniFLEX System Manager

Preliminary Checks on the SIR 10.14
Accessing the SIR 10.14
Size of Disk 10.14
Fdn Count 10.15
First Block of Paging Space 10.15
First Block of Contiguou~-File Space

The File "/.badb1ocks" 10.17
Accessing the Bad-Blocks File
Validating the Bad-Blocks File
Checking the Size 10.18

Phase 1--Check Allocated Blocks
File Size 10.18

10.17
10.17

10.18

Noncontiguous files 10.19
Contiguous files 10.19

Out-of-Range Blocks in Fdns
Blocks Duplicated in Fdns

10.19
10.20

Transition between Phase 1 and Phase 2
Calling "fdncheck" 10.21

10.16

10.21

Abnormal Termination of "fdncheck" 10.21
The File "/.badblocks" 10.22
Reading the Root Directory 10.22

Phase 2--Scan Directories 10.23
Size of Directory 10.23
Nesting Directories 10.24
Invalid File Name 10.24
File Size 10.25
Out-of-Range Blocks in Files 10.26
Blocks Duplicated in Files 10.27
The Files "." and " •• " 10.28
Unknown File Type 10.28
Inactive Fdn 10.29
Out-of-range Fdns 10.29

Phase 3--Check Unreferenced Directories 10.30

Phase 4--Check File and Directory Links 10.32
Unreferenced Files 10.33
Link Count 10.34
In-core Fdn List 10.35

Phase 5--Check Free Lists 10.35
Volume Space 10.36

Missing blocks 10.36
Duplicate blocks 10.36
Out-of-range blocks 10.36
Out-of-range pointers 10.36
In-core block list 10.37

1X

Contents

Summary of the status of the free list 10.37
Rebuilding the free list 10.37

Checking the Contiguous-File Free-List 10.38
Similarities to the free list for the volume space 10.38
Out-of-order free. list 10.39
Extraneous data 10.39
Summary of the status of the contiguous-file free-list 10.39
Rebuilding the contiguous-file free-list 10.40

Phase Six--Check SIR Information 10.41
Free Fdn Count 10.41
Free Block Count 10.41
Checking the ''Mount Flag" 10.41
State of the Disk 10.42
Updating the SIR 10.43

I/O Errors 10.43

Index of Error Messages 10.46

Chapter 11 Recovering from Problems

Introduction 11.1

After a Crash 11.1

Notes 11.8

Recovering Files Containing I/O Errors

Miscellaneous Repairs 11.12
Fixing Missing "." and " •• " Files
Expanding the Directory "lost+found"

Who Owns What? 11.14

Setting the User ID Bit 11.14

Appendix A A Generic Init-Contro1 File

Appendix B Program Interrupts

Index

x

11.11

11.12
11.13

Preface

This manual provides the system manager with the information necessary
for building and booting a UniFLEX operating system, maintaining the
system from day to day, updating the system, and recovering from
problems that may damage the operating system.

The UniFLEX® Operating System is available in a variety of
configurations. Each configuration consists of the kernel of the
operating system plus a subset of all the modules that the operating
system can support. These modules include features like contiguous
files, pseudoterminals, interprocess communication, and a real-time task
scheduler. The manual is written to accomodate the most complex system.
You may therefore find yourself reading about features which your system
does not appear to support. If you have any doubt about whether or not
your system supports a particular feature, you can invoke the command

info /uniflex

which sends to standard output, among other things, a list of the
optional features that your system does support.

®UniFLEX registered ln u.S. Patent and Trademark Office.

xi

Preface

xii

Chapter 1

Getting Started

1.1 Building ~ Operating System

The UniFLEX Operating System is supplied either on a series of floppy
disks or on a streaming tape. However, before the software can be of
much use to you, you must copy it to your hard disk. This procedure,
known as building an operating system, is described in this section. We
strongly recommend that you read the entire section before trying to
build your system.

When you are ready to build your system, carry out the following steps:

1. Turn on the machine and all associated hardware, such as
the console (the terminal used to boot the system). The
ROM assumes that the console is configured for 8 data
bits, 1 stop bits, and no parity. It assumes a baud
rate of 9600 or 19200 (see 68xxx Hardware Setup Notes).

2. If the following message appears on the screen of the
console (the terminal used to boot the system)

UniFLEX AUTO-BOOT - Hit AC to Abort

type control-C (to type a control character depress the
key marked "control" or "ctrl" and hold it down while
typing either the upper- or lowercase version of the
appropriate character, ln this case 'c' or 'c'). You
have 30 seconds to type control-C before the system
automatically boots. If for some reason you miss the
chance to abort from auto-boot mode, a series of error
messages will appear on the screen, and you will have to
reset the system.

3. The following message appears either immediately after
you turn the system on or after you type control-C in
response to the previous message:

<hardware_description> UniFLEX ROM <release_date>
?

The question mark, '?', is a prompt from the ROM that
indicates it is waiting for your instructions.

1.1

68xxx UniFLEX System Manager's Guide

4. Insert the disk labeled "System Floppy" in the primary
floppy disk drive (see 68xxx UniFLEX Hardware Setup
Notes). Do not write protect this disk. When the disk
is in place, type the sequence escape-B (type the key
labeled "escape" or "esc" followed by an uppercase 'B').

5. In response, the ROM issues the following prompt:

$Boot from disk/tape
File name?

You should type

<dev_name>: un if I ex

followed by a carriage return. The term <dev_name> is a
hardware-specific designation for the device that
contains the system disk or tape (see 68xxx UniFLEX
Hardware Setup Notes); "uniflex" is the name of the file
to load from the root directory of the system disk into
main memory. As it loads the file, the ROM displays
three messages:

Text segment <size> bytes at <address>
Data segment <size> bytes at <address>
Bss segment <size> bytes at <address>

The process of loading the system should take no more
than a minute. If the system does not appear to be
loading and you do not receive any message from the ROM
describing the problem, check to be sure that the floppy
disk is correctly inserted. On most systems the label
on the floppy disk should face the lever on the floppy
disk drive.

6. When the ROM finishes loading the file (indicated by the
appearance of the ROM prompt ('?') below the message
about the bss segment), type

This command starts
ready for further
banner:

control-A

the operating system. When it is
input, it displays the following

1.2

Getting Started

<hardware_description> UniFLEX Operating System
Copyright (C) [<year_list>] by
Technical Systems Consultants, Inc.

Version <version_number> - Created: <release date>
Configuration: <configuration_information>

Total user memory = <memory_after_loadins-UniFLEX>

The banner is followed by the system prompt, "++" , which
indicates that the operating system is ready to accept
commands.

The amount of memory left after loading the operating
system depends on the particular configuration of the
computer and the amount of memory installed in it. The
operating system typically consumes between 128 and
512 K.

Record the version number and the release date in a safe
place. Also record the serial number of the computer
and the serial number of your copy of the UniFLEX
Operating System (located on the label on the master
disk). If you ever need to contact either the
manufacturer of your hardware or Technical Systems
Consultants, you will need this information.

7. Next, you must use a shell script (see "shell" in 68xxx
UniFLEX Utility Commands) to format the hard disk,
establish a file system on it, and copy the operating
system to it. To execute this shell script type

/etc/crdisk[.ST] [<options_list>]<model_spec> 50

If you are building your system from a streaming tape,
use the optional suffix, ".ST", when you invoke the
command. The number 50 tells the operating system to
reserve 50 cylinders for paging (you can alter the
amount of paging space later if necessary with the
"alterJage" command) and <model_spec> provides the
operating system with coded information about the
particular drive. The optional list of options can
consist of any of the single-character options (those
that do not take an argument) to the "formatw" command
(~ee 68xxx UniFLEX Utility Commands). If you -use the
option list, be sure that you do not put a space
character between the list and the model specification.

We recommend the 'v' option to check the disk for bad
blocks and the 'L' option, which prompts yq.u for the

1.3

68xxx UniFLEX System Manager's Guide

location of any bad blocks you already know about either
from previous experience with the disk or from a list
supplied by the manufacturer. Including the 'v' option
significantly increases the length of time required to
build the system t but it provides a thorough check of
the hard disk, which is well worth the extra time when
you are building a system.

You may provide the model specification in one of three
ways--a lowercase 'm' followed by an equals sign, '=',
and a model code; an uppercase 'M'j or an uppercase 'P'.
These letters each correspond to an option to the
"formatw" command. See the documentation for this
command for a complete explanation of these options.
Note that your choice here should not be preceded by a
plus sign, '+'.

8. When the system prompt (two plus signs) appears, stop
the system with the following command:

stop

The system responds with the message

System Shutdown Complete •••

9. Remove the master disk or tape from the drive and store
it 1n a safe place. If you are building your system
from a tape, the operating system on your hard disk is
now complete.

10. If your machine is set to enable automatic-boot mode
(see your hardware documentation), the system issues the
following message after a delay of at most 5 to 10
seconds:

UniFLEX AUTO-BOOT - Hit AC to Abort

Do not type a response; allow the system to boot
automatically.

If your system has a switch which allows you to disable
automatic boot and that switch is set, you must boot the
system yourself. To do so, first type the sequence
escape-B. When the ROM prompts you for the name of the
file to load, type

1.4

Getting Started

<hard_dis~drive>:uniflex

followed by a carriage return. The term
<hard~disk_drive> is a hardware-specific designation for
the drive that contains the system disk (see 68xxx
UniFLEX Hardware Setup Notes); "uniflex" is the name of
the file to load from the root directory of the system
disk (now the hard disk) into main memory. If you type
only a carriage return in response to the prompt for a
file name, the ROM loads the default file that is
appropriate for your hardware (see 68xxx UniFLEX
Hardware Setup Notes). In most cases this file 1S the
one you want.

When the ROM finishes loading the file (indicated by the
appearance of the ROM prompt below the message about the
bss segment), type

control-A

11. When the system has booted, UniFLEX issues prompts that
lead you through the procedure of putting the rest of
the operating system on the hard disk. Follow the
instructions, inserting each floppy disk it requests
into the same dr ive you ini tially used to boot the
system.

12. After copying the information from all the floppy disks
to the hard disk, the operating system executes the
"set_termcap" command, which prompts for information on
the configuration of all the terminal ports on your
system. Consult the documentation for "set_termcap" for
more information. When it finishes configuring the
ports, the operating system automatically shuts down.

13. Your UniFLEX Operating System is now complete.

1.2 Booting ~ System

Before you can use the operating system, you must boot it. Booting a
system consists of executing a special program, called the boot program,
which resides in the monitor ROM (read-only memory). The boot program
loads the executable file "/uniflex", which is the kernel of the
operating system, into main memory and starts to execute it.

1.5

68xxx UniFLEX System Manager's Guide

In general you can boot the operating system in one of two ways:
manually or automatically. However, when you are booting the system for
the first time, or whenever you are rebuilding the operating system, you
must boot the system manually. .

1.2.1 Automatic-Boot Mode

By default, the operating system enters automatic-boot mode whenever you
either turn the machine on or reset it. Unless your hardware allows you
to bypass the automatic-boot mode, you see the following message
whenever you start or reset the machine:

UniFLEX AUTO-BOOT - Hit ~C to Abort

If you do not type control-C within 30 seconds, the system boots itself.

Some machines have a switch which forces the system into manual-boot
mode. Normally, however, automatic-boot mode is the mode of choice.

1.2.2 Manual-Boot Mode

If you set your system for manual-boot mode or if you type control-C to
interrupt the automatic 'procedure, the system sends you the following
message:

<hardware_description> UniFLEX ROM <release_date>

This message indicates that the ROM is waiting for your instructions.
The ROM supports a variety of commands ,which are described here. A
carriage return must follow any command that is neither an escape
sequence nor a control sequence.

a
control-A

escape-B

Access memory one byte at a time.
Continue execution at the current program counter.
The program counter points to either the entry
point of a program just loaded with the "escape-Btl
command or to the last breakpoint.
Load a file containing the operating system from a
disk. The sequence escape-B is entered by typing

1.6

escape-D

e

Getting Started

the "escape" key, followed by an uppercase 'B'.
When the ROM receives this command, it prompts you
for the name of the file it is to load:

$Boot from disk or tape
File name?

In response, you must specify both the name of the
file and the device on which it is located. The
format of the response is

where <dev_name> is one of the device names that
the ROM can recognize and <file_name> is the name
of the file containing the appropriate version of
the operating system. A device name 1S of the
form "w<num>", "fd<num>", "smd<num>", or
"stO"--for a mini-Winchester) a floppy disk, a
storage module device, or a streaming tape. In
all ca ses the minimum value of <num> is 0; the
maximum is system-dependent (see 68xxx UniFLEX
Hardware Setup Notes). The argument <file_name>
specifies the name of an executable file to load
into memory. Although the name of a fil e may, in
general, contain up to 55 characters, the name
used here may contain no more than 14 characters.
The file referenced by this name must be in the
root directory of the specified device. If you
are loading an operating system, the name of the
file is "uniflex". You may, however, load any
executable fil e. Your response must be fol.lowed
by a carriage return.

As it loads the file, the ROM displays three
messages:

Text segment <size> bytes at <address>
Data segment <size> bytes at <address>
Bss segment <size> bytes at <address>

When the ROM finishes loading the file (indicated
by completion of the message about the bss
segment), it waits for another command.
Dump memory to a device. For a detailed
explanation of how to take a memory dump, see
Section 3.9.
Access only bytes with even addresses.

1.7

68xxx UniFLEX System Man~ger's Guide

o
1
control-S
escape-V

w

Access only .bytes with odd addresses.
Access memory a long word (32 bits) at a time.
Execute a single instruction.
Compare the contents of memory to the contents
the specified file. The ROM prompts you for
name of the file to use in the comparison.
must specify both the name of the file and
device on which it is located. The format of
response is

of
the
You
the
the

where <dev_name> is one of the device names that
the ROM can recognize and <file_name> is the name
of the file containing the appropriate version of
the operating system. A device name is of the
form "w<num>", "fd<num>", "smd<num>", or
"stO"--for a mini-Winchester, a floppy disk, a
storage module device, or a streaming tape. In
all cases the minimum value of <num> is OJ the
maximum is system-dependent (see 68xxx UniFLEX
Hardware Setup Notes). The argument <file_name>
specifies the name of the file to compare memory
to. Although the name of a file may, in general,
contain up to 55 characters, the name used here
may contain no more than 14 characters. The file
referenced by this name must be in the root
directory of the specified device.
Access memory a word (16 bits) at a time. This
mode of access is the default.

The ROM supports some additional commands, which are a subset of the
commands supported by the machine-language debugging system ("qdb") that
comes with the operating system. These commands are briefly described
here. For more detailed information about these commands, see the
documentation for "qdb ll in 68xxx UniFLEX Utility Commands. A carriage
return must follow a IIqdb ll command.

b Set a breakpoint.
B List the breakpoints that are currently set.
c Clear one or all breakpoints.
d Dump a section of memory.
g Continue execution at the current program counter. The

program counter points to either the entry point of a
program just loaded with the "escape-Bit command or to the
last breakpoint (equivalent to control-A).

i Disassemble instructions.

1.8

m Modify bytes in memory.
M Display current memory map.
r Display the contents of all registers.
R Set the contents of a register.

Getting Started

s Execute a single instruction (equivalent to control-S).

1.3 Initializations

Whether you boot your system automatically or manually, the boot
procedure ends when the file "uni£lex" is loaded into main memory and
starts to run. When it starts running, it first allocates memory for
the various tables it needs, then initializes the hardware associated
with the operating system. After it completes these initializations,
the operating system is completely functional.

1.4 Updating ~ System Disk

Periodically the operating system is revised either to improve its
performance or to remove bugs. If your maintenance is current at the
time of a revision, you can obtain a free version of the revised
operating system by returning your set of master disks to Technical
Systems Consultants. We will update the disks and return them to you as
quickly as possible.

When you receive your updated disks, follow the procedure in this
section to update your hard disk:

1. Place the new master disk in floppy drive O.
2. Boot the system manually from the new master disk (see

Section 1.2.2).
3. Type the following command:

fete/update_system

4. From this point on, the master disk instructs you on
updating your hard disk.

1.9

68xxx Uni.FLEX System Manager's Guide

1.5 Adding UniFLEX Support Software 1£ Your System

The procedure for adding UniFLEX Support Software, such as utilities
packages and compilers, to your operating system is simple and is the
same in all cases:

1. Boot from the existing system disk.
2. Login, if necessary, as the system manager.
3. Type the following command:

install

4. The operating system responds with a prompt telling you
which drive to use. Insert the disk containing the
support software into the appropriate drive and type a
carriage return.

5. If the software spans more than One disk, the system
tells you when to put the next disk into the drive.

6. When the system completes the installation procedure, it
sends a message to the screen telling you that you may
remove the disk from the drive. When you remove the
master disk, store it in a safe place.

7. The product is now available on your system disk.
8. If for some reason the installation procedure fails, you

will receive a message to that effect. In such a case
telephone Technical Systems Consultants for assistance.

1.6 Updating UniFLEX Support Software

Periodically support software is revised either to improve its
performance or to remove bugs. If your maintenance is current at the
time of a revision, you can obtain a free version of the revised
software by returning the corresponding master disk or disks to
Technical Systems Consultants. We will send the updated version of the
software to you as soon as possible.

Once you have the revised software, you can install it on your hard disk
by following the procedure described in Section 1.5.

1.10

Chapter 2

The Init-Control File

2.1 Introduction

When the operating system finishes initializing the system (see Section
1.3), it executes the first task, "init". This task is the progenitor
of all other tasks on the system. If the immediate parent of a task
dies, "init" acts like the next of kin, becoming the task's foster
parent.

The "init" program can do a wide variety of things. Precisely what it
does is controlled by the contents of the file "/etc/.init.contro1"
(also called the init-contro1 file) when the system is booted. The
operating system is provided with a standard version of
"/etc/.init.contro1", but you can tailor the program to suit your needs,
or rewrite it completely. When modifying the file, however, exercise
extreme caution because the usefulness of a system with a damaged
init-contro1 file is limited (see Section 2.6.1). Always keep a copy of
the standard init-contro1 file so that you can run your system if you
inadvertently damage the copy on your hard disk.

The init-control file is a series of commands that the "init" program
automatically executes each time you boot the system. Each line of code
is either a shell command (see 68xxx UniFLEX Utility Commands) or a
specially constructed line beginning with a flag that indicates to
"init" the purpose of that particular line. One of these flags, the
plus sign ('+'), must be followed by one of several "control commands".
This chapter explains the execution of a shell command from the
init-contro1 file and describes the meaning of each flag and of each
control command. It also discusses the elements that are crucial to any
init-contro1 file as well as the error messages returned by "init".

Theoretically, the init-control file may consist of between 0 and 256
lines of code inclusive. Practically speaking, however, even a minimal
init-control file contains fifty or sixty lines of code. Each line may
contain a maximum of 80 characters. Appendix A provides a line-by-line
description of a generic init-control file similar to the one shipped
with your operating system.

2.1

68xxx UniFLEX System Manager's Guide

2.2 Executing ~ Shell Command

The ability to execute a shell command from the init-control file allows
you to perform routine tasks automatically when you boot the system.
For instance, you can set the date, initiate any spoolers the system
supports, and check the integrity of your disks by embedding the
appropriate commands in the init-control file.

If a line of code in the init-control fil~e does not begin with one of
the flags discussed in the next section, the "init" program first opens
the device "/dev/console" (or "/dev/ttyOO if "/dev/console" does not
exist) as file descriptors 0, 1, and 2 (standard input, standard output,
and standard error), then executes the specified shell command. This
method is the more common way of invoking a shell command from the
init-control file.

You can also execute a shell command without opening any standard I/O
channels. To do so, precede the shell command with an exclamation
point, '1'. You should invoke a shell command in this fashion if the
standard I/O channels are either unnecessary or unidentified . (a
possibility if your hardware allows you to change the location of
"/dev/console").

2.3 Flags

The "init" program recognizes four flags: the colon (:), the plus sign
(+), the exclamation point (!), and the arrow (->, a hyphen followed by
a greater-than sign). The flag tells "init" how to interpret the code
which follows the flag. If a line of code in the init-control file does
not begin with one of these flags, "init" interprets that line as a
shell command (see Section 2.2). Descriptions of the four flags follow:

:<label> Assign the specified label to this line of
the script. A label may contain between 1
and 32 characters inclusive.

-> <label> Jump to the line referenced by the label.
The label must be assigned to the line
with the ':' command.

+<control_command> Execute the specified control command (see
Section 2.4).

!<shell_command> Execute the specified shell command
without opening any standard I/O channels
(see Section 2.2). You should use this

2.2

2.4 Control Commands

The Init-Control File

form of invoking a shell command if the
standard I/O channels are either
unnecessary or unidentified (a possibility
if your hardware allows you to change the
location of "/dev/console").

The commands that can follow a plus sign (the control commands) are as
follows:

* Ignore this line; it is a comment.

c -> <label>

f -> <label>

h <history_entry>

Branch to the specified label if the
system disk is not "clean". A disk is
clean if it has been properly unmounted
since the last time it was mounted.
Because a "dirty" disk may be corrupted)
it must be cleaned by the "diskrepair"
command before being used.

Branch to the specified
last shell command failed
with a nonzero status).

label if the
(terminated

Start (with a plus sign) '+) or exit
from (with a minus sign) '-') a "ghost"
shell program. Executing a ghost shell
program improves the performance of
subsequent shell commands because once
the system loads the text of the shell
program) it 1S there for other shell
programs to use (the shell is a
shared-text program). If it 1S not
running a ghost shell) the system must
load the text of the shell program each
time it executes a shell command.

Put the specified two-character
sequence) followed by a time stamp) into
the history file) "/act/history". The
following table shows the valid entries.

2.3

68xxx UniFLEX System Manager's Guide

m

Entry Heaning
==

bt System was booted.
su System entered single-user mode.
mu System 'entered multi-user mode.
st System was stopped.
bd Time and date just before date

waS set.
ad Time and date set with "date"

command.

The "history" command is indifferent to
the entries, but the accounting programs
balk at any entry that is not a terminal
number or an entry from this table.
Entries signifying logging in and
logging out should not be made from the
init-control file. The "login" program
makes the appropriate entry when a user
logs in (if the history file exists),
and "init" makes the appropriate entry
when a user logs out.

Log the user in as the specified user,
but stay in single-user mode. You may
not invoke this command if the system is
in multi-user mode. The name specified
must be in the password file,
"/etc/log/password". The system prompts
for a password if that user has one.

Enter multi-user mode. The "init"
program starts a "login" task for each
terminal that is enabled for login (has
a plus sign in the first column of its
entry in the file "/etc/ttylist"). It
watches these "login" programs, and if
one of them terminates, it replaces it
with another one.

Open (with a plus sign, '+') or close
(with a minus sign, '-') the device
"/dev/console" (or "/dev/ttyOO" if
"/dev/console" does not exist) as file
descriptors 0,1, and 2 (standard input,
standard output, and standard error).
Opening the console device speeds. the
performance of the "init" program if it
must print many messages on the console
because "init" need not open the console
each time it prints a message. You

2.4

p <message>

The lnit-Control File

should close the device before doing any
interactive procedures, so that you do
not inadvertently jeopardize the "init"
program.

Print the string specified by
on the console, followed by a
return (hexadecimal OD) and a
character (hexadecimal OA).

<message>
carriage

line-feed

s Shut the system down. Shutting down the
system consists of updating and
unmounting all mounted disks (including
the system disk), killing all tasks
running on the system, printing a
message on the console saying that the
system shutdown is complete, and
restarting the ROM boot process if
automatic-boot mode is enabled •

. <si&-num> -> <label> Branch to the specified label when
receiving the specified signal. . The
label must be assigned to the line with
the '.' command. At present, "init"
accepts only the numbers"!!l, 4, 6, and 8
as signal numbers. The "shutup"
command, when invoked without a minus
sign, generates the signal 4; when
invoked without it, an 8. The "stop"
command, when invoked without a minus
sign, generates the signal 6; when
invoked without it, a 1. A list of
signals and their corresponding numbers
appears in Appendix B.

t <+_or_-> Enable (with a plus sign, '+') or
disable (with a minus sign, ' -') the
tracing of the execution of the control
commands. When tracing the commands,
"init" displays each control command on
the console in the following format

INIT: EXEC <line_number> - <code>

before beginning to execute
default init-control file
tracing feature.

2.5

it. The
disables

68xxx UniFLEX System Manager's Guide

u <seconds>

w <seconds>

if

Update the file system at the interval
specified by <seconds>. When the
operating system updates the file
system, it flushes each modified buffer
to the appropriate disk. The value of
<seconds> must be greater than or equal
to O. The default init-control file
sets the interval to 30 seconds, which
is appropriate for most situations. A
value of 0 disables the update feature.
We recommend that you use an interval
between 10 and 60. Setting the interval
below 10 is likely to impede system
performance; setting it above 60 results
in infrequent updates that leave you
highly vulnerable in the event of a
system crash.

Pause for the
seconds. The value
greater than O.

specified number of
of <seconds> must be

2.5 Essential Elements ~ the Init-Control File

Under no circumstances should you remove the code that automatically
invokes the "diskrepair" command if the system disk has not been
properly unmounted (see the descriptions of line 16 and lines 111-119 in
Appendix A). Also, it is essential for the command that shuts the
system down to appear in an appropriate place in the init-control file.
Otherwise, you have no clean way of shutting down the system.

2.6 Error Messages

The "init" program
begins execution.
standard error. A
each one follows.

processes the entire init-control file before it
If it finds an error, it sends an error message to
list of possible error messages and an explanation of

2.6

The Init-Control File

2.6.1 Fatal Errors

If the "init" program encounters a fatal error, it executes a
single-user shell program, giving you an opportunity to edit the
"init-control" file and fix the problem. When this shell program
terminates, the system automatically shuts down.

Bad command.
<line_number> - <code>

This error should not occur. If it does, contact Technical Systems
Consultants.

Control file syntax error.
<line_number> - <code>

The "init" program could not parse the code at the specified line
number.

Error allocating memory for a label: <reason>
<line_number> - <code>

The operating system returned an error when it tried to allocate
memory for a label. This message is followed by an interpretation
of the error returned by the operating system.

Error allocating memory: <reason>
The operating system returned an
memory for the code in the
followed by an interpretation of
system.

error when "init" tried to allocate
in it-control file. This message is
the error returned by the operating

Error opening "<file_name>": <reason>
The operating system returned an error when "init" tried to open the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

Error shutting down system : <reason>
The operating system returned an error when "init" tried to halt the
system. This message is followed by an interpretation of the error
returned by the operating system.

Inval id argument "<arg>".
This message indicates that something is wrong with the operating
system. Contact Technical Systems Consultants for assistance.

Invalid option '<char>'.
This message indicates that something is wrong
system. Contact Technical Systems Consultants

Too many labels.

with the operating
for assistance.

An init-control file may define no more than 32 labels.

2.7

68xxx UniFLEX System Manager's Guide

Too many lines in "<f i1 e_name>".
An init-control file may not contain more than 256 lines of code.

Undefined label "<string>".
<line_number> - <code>

The specified string was used as a label, but was not defined with
the ';' command.

2.6.2 Nonfatal Errors

Error executing the "login" program: <reason>
The operating system returned an error when "init" tried to execute
the "login" program. This message is followed by an interpretation
of the error returned by the operating system.

Error executing the shell program.
The operating system returned an error when "init" tried to execute
the shell program. This message is followed by an interpretation of
the error returned by the operating system.

Error getting parameters associated with "<dev_name>"; <reason>
The operating system returned an error when "init" tried to adjust
the parameters (e.g., the baud rate) associated with the specified
device. This message is followed by an interpretation of the error
returned by the operating system. Most likely, the specified device
is not a terminal.

Error opening "<dev_name>": <reason>
The operating system returned an error when "init" tried to open the
specified device. This message is followed by an interpretation of
the error returned by the operating system. t-lost likely, one of the
entries in the file "/etc/ttylist" is not in the directory "/dev".

Error opening" /etc/ttylist": <reason>
'm' command ignored.

The operating system returned an error when "init" tried to open the
file "/etc/ttylist". This message is followed by an interpretation
of the error returned by the operating system. The operating system
does not enter multi-user mode.

Illegal baud rate
The baud rate
"/etc/ttylist ")
from 'a' to 'f'

<code> for "<dev_name>".
(specified in the second column of each entry in

must be a number from 1 to 9 inclusive, a character
inclusive, or a blank (see Section 7.7.1).

2.8

The Init-Control File

Invalid argument to 'k' command: <si&-num>
Command ignored.

The number specified for the 'k' control command is not a valid
signal number. At· present, "init" accepts only the numbers 1, 4, 6,
and 8 as signal numbers. A list of all signals supported by the
operating system and their corresponding numbers appears in Appendix
B.

No handling instructions for signal <si&-num>.
Signal ignored.

The "init" program received a signal for which it has no handling
instructions. It ignores the signal. By default, "init" catches
and ignores all catchable signals (see Appendix B).

Syntax error. Command ignored.
<line_number> - <code>

The control command 'g', '0',

other than a plus or minus sign.
line of code.

Too many lines in "/etc/ttylist".

or 't' was followed by a character
The "init" program ignores this

The file "/etclttylist" may contain
"init" program ignores any lines beyond

no more than 64 lines.
line 6 4.

The

2.9

2.10

Chapter 3

Starting the System

3.1 Day-to-Day Procedures

Mo st operating systems support two modes of operation: s ingl e-user mode
and multi-user mode. In single-user mode, the only active terminal is
the console; in multi-user mode, a user may log in at any terminal that
is enabled for login (see Section 7.7.1).

The standard init-control file, which comes with the operating system,
boots the system into single-user mode. This mode of operation ~s

useful at times when you want to be certain that you are the only user
on the system. Such times may include the time immediately after
booting the system when you perform certain daily operations and times
when you are performing system maintenance.

Booting to single-user mode may jeopardize the security of your system.
By default, when the system comes up in this mode, it logs the user ~n

as "system" without requesting a password. Thus, any user who can get
to the hardware and knows how to boot it can access all the software as
system manager without knowing the system password. In an environment
in which this presents a problem, you have two choices: you can direct
the operating system to request a password in single-user mode, or you
can boot directly to multi-user mode.

3.1.1 Booting to Single-User Mode

The standard init-control file executes a single-user shell program as
the last step in establishing single-user mode (see line 51 of the
sample init-control program in Appendix A). You can replace this line
of code with the following command:

+1 system

Doing so logs the user in as "system", but if a password exists, the
operating system asks for it. The operating system does not execute the
shell program until it receives the correct password. Thus, a user who
does not know the password cannot access. the operating system.

3.1

68xxx UniFLEX System Manager's Guide

Putting this command in the file at this point also ensures that if the
system is taken to single-user mode during shutdown, the user who does
so must know the system manager's password in order to proceed.

In single-user mode only one terminal,
default the console is "/dev/console". If
exists, the console is "/dev/ttyOO".

the console, is active. By
no device by that name

When you are ready to put the system into multi-user mode so that other
users may log in, simply execute the following command:

log

3.1.2 Booting Directly to Multi-User Mode

Depending on your environment, you may prefer to have your system boot
directly to multi-user mode. It is possible to bypass single-user mode
entirely by performing routine operations and maintenance from commands
in the init-control file. In multi-user mode each user must log in with
a valid combination of a user name and password.

" 3.2 Setting the Date

The first thing you should do after booting the system (if you do not do
so automatically in the init-control file) is to set the date and time.
Most hardware comes equipped with a built-in clock from which the
operating system can read the date and time. Other systems require you
to set the date and time yourself. You can determine whether or not
your system has a built-in clock by invoking the command

info Ibin/da te

If and only if the information field returned by this command contains a
line of the form

-- Hardware configuration: <hardware_designation>

your system supports a built-in clock.

3.2

Starting the System

3.2.1 Using a Built-in Clock

If your system has a built-in clock, you can set the date directly from
this clock with the following command:

date +s

If your system does not have a buil t-in clock, this form of the "dat e"
command has no effect.

If for any reason you wish to bypass the built-in clock, you may set the
date manually, following the directions in the next section. Setting
the date manually not only sets the date for the system but also sets
the date in the built-in clock.

3.2.2 Setting the Date Manually

The "date" command has two forms: one with an argument and one without.
Any user may execute the "date" command without an argument. In
response, the system returns the current date and time. The system
manager may also use the "date" command with an argument. This form of
the command sets the date both for the built-in clock, if one exists,
and for the operating system. The syntax for this version of the
command is as follows:

date [<mm>-<dd>-<yy>] <hr>:<min>[:<sec>]

where <mm> is a number from 1 to 12 inclusive representing the month,
<dd> is a number from 1 to 31 inclusive representing the day, and <yy>
1S a two-digit number representing the last two digits of the year. The
time must be 24-hour-clock time where <hr> is a number from 0 to 23
inclusive representing the hour, <min> is a number from 0 to 59
inclusive representing minutes, and <sec> is a number from 0 to 59
inclusive representing seconds. For example, the following command sets
the date to 7:30 AM on April 17, 1987:

date 4-17-87 7:30:00

If the system has only been down a short time, it may not be necessary
to set the month, day, and year. If you do, you may include jtlst the
day, the day and the month, or the day, month, and year. The operating
system takes values for the day, month, and year from the disk if you do
not specify them.

3.3

68xxx UniFLEX System Manager's Guide

It is,
seconds
specify

however, always necessary to set the time (if you omit the
argument, the system assumes a value of 0). If you do not
a time, the system responds with the message

Syntax: date [[<mm>-<dd>-<yy>] <hr>:<min>[:<sec>]]

Even though it ~s not always necessary, it is a good idea to specify
both arguments to the "date" command. Because other parts of the
operating system reference the date, it is important for the date to be
correct. The consequences of having the date set incorrectly range from
a minor inconvenience to a serious problem.

You should enter the local time when you set the date. The system
stores the time internally in seconds since January 1, 1980, at the
zeroth meridian (in Greenwich, England). As it makes this conversion,
it adjusts the result for the local time zone and for Daylight Savings
Time if it is in effect (see Section 9.4.3).

3.3 Message..2i the Day

Whenever a user logs in, in response to the login prompt, the
program reads the file" /etc/log/motd" and sends it to standard
before issuing the system prompt. Thus, if you want to send a
to all users, you can enter it in this file.

login
output

message

You can edit the message-of-the-day file just as you would edit any
other file. An example follows:

++ chd /etc/log
++ edit motd +b
"d!
1H

++

1.00=April 18, 1987: A new Pascal compiler was
2.00=installed on the system today. Documents which
3.00=describe its use are available in the main office.
4.00=All users are welcome to use this new compiler.
5.00=4fs

The first line of this example changes your working directory from the
root directory (your default location on booting) to the directory
"/etc/log". The next line invokes the editor, telling it to edit the
file ''motd'' without creating a backup file. The next command deletes

3.4

Starting the System

the contents of the entire file. (You may not always want to delete old
messages. In such a case simply leave out the' d' and po si tion
yourself at the bottom of the file with the command '1' instead.) The
letter 'i' in response to the editor's prompt puts you in insert mode.
Now you can enter your message.

It is a good idea to date your messages so that both you and the users
know when they were first issued. When you finish typing your message,
you can exit the editor by typing a pound sign, '1;', as the first
character on a line, followed by an's' for "stop". (See the
documentation on the editor in The UniFLEX Operating System for more
detailed instructions on the use of the editor.)

3.4 Formatting ~ Disk

Any disk that is to be used with the UniFLEX Operating System must first
be properly formatted. The "format" commands not only establish the
physical boundaries of the sectors on the disk but also set up the
UniFLEX file system by writing both the boot sector (sector 0) and the
system information record (SIR), by establishing the root directory, by
initializing the file descriptor nodes (fdns), and by reserving paging
space. The precise funct ion of a "format" command can be al tered by the
many available options. These commands are documented with other
UniFLEX utilities in 68xxx UniFLEX Utility Commands.

If you are formatting a disk that is to be used as a system disk, be
sure to use the 'r' option to reserve some paging space. Paging space
is a section of the disk that is reserved for storing portions of tasks
that the operating system removes from memory to make room for tasks of
higher priority. When the system runs out of memory, it selects as many
4K pages as it needs from tasks that are currently in memory, and writes
them to the paging space.

A system disk cannot function without paging space. The amount of
paging space you need depends on the individual nature of your
system--in what ways it is used and how heavily it is used. It is
impossible to give a single amount of paging space that serves all
systems. However, the following factor s should be considered when
determining the amount of paging space to reserve:

1. The maximum task size the machine permits (see the
documentation for your hardware).

3.5

68xxx UniFLEX System Manager's Guide

2. A system is usually running a number of tasks which may
not be obvious to any users. Such tasks include the
login program, the initialization program ("init"), and
extra shell programs.

3. A compiler may cal1 the assembler and loader. Doing so
may cause the compiler to be paged out.

4. The more random access memory (RAM) you have, the less
paging space you need.

5. The more users on your system, the more paging space you
need.

6. The argument to the 'r' option specifies how many
cylinders to reserve for paging space. A cylinder
consists of all the data tracks that can be accessed by
all the read-write heads without mechanically moving the
head assembly. The operating system always formats such
a disk with 512 bytes per sector. The number of sectors
per track is hardware-dependent. You can easily
calculate the number of bytes per track. The following
example assumes 17 sectors per track.

17 sectors/track * 512 bytes/sector = 8704 bytes/track

To convert to the number of bytes per cylinder, you must
mUltiply by the number of tracks per cylinder. For a
hard disk the number of tracks per cylinder is equal to
the number of heads in the disk.

For further detail s about formatting a disk, see 68xxx UniFLEX Utility
Commands.

3.5 Sequestering Bad Blocks

Almost inevitably, some parts of a disk become physically damaged. A
block that is physically damaged is referred to as a bad block. The
operating system cannot use a bad block. If the operating system tries
to read from or write to such a block, it fails and sends the user an
I/O error. Depending on the location of the bad block, an I/O error may
range from a minor inconvenience to a serious problem that causes the
system to crash. It is therefore wise to remove a bad block from use as
soon as it is detected. The UniFLEX Operating System supports two
methods of doing so: one during the formatting of a disk; the other

3 .• 6

Starting the System

after the disk has been formatted. In either case the bad block is
placed in a file named ". badb10cks" in the root directory (also known as
the bad-blocks file). The operating system knows not to allocate any of
the blocks in this file.

3.5.1 Formatting with the '1' or 'L' Option

The "format" commands support two options which allow you to specify
that certain blocks should be placed in the bad-blocks file. The use of
these options is described in detail in 68xxx UniFLEX Utility Commands.
Basically, you should look at the list of~ blocks supplied by the
manufacturer of the disk. This list should specify a head, a cylinder,
and either a range or a sector number for each bad block. In order to
put a block in the bad-blocks file, the "format" command must be told
either the head, cylinder, and logical 512-byte sector of the bad block
or its logical block-number. The tables in Appendix B and Appendix C of
the format documentation enable you to convert the information supplied
by the manufacturer to the information needed by the operating system.

If you know of additional bad blocks on the disk, you should specify
them to the "format" command as well. Alternatively, you can format the
disk without using either of these options and follow the procedure
described in the next section.

3.5.2 The "badblocks" command

If at any time after
error, you should locate
isolate them from the
The most thorough way to

the disk is formatted the system reports an I/O
the block or blocks causing the problem and

system by placing them in the bad-blocks file.
do so is first to invoke the following command:

/etc/devcheck <dev_name> +V

The "devcheck" command checks the entire disk for I/O errors. By
default, it tries to read each block on the disk. It reports to
standard error the address (in decimal) of each block it cannot read.
With the 'V' option in effect, "devcheck" checks the disk more
thoroughly by nondestructively reading from and writing to each block.
This form of the command is extremely time-consuming, but it provides a
meticulous check of the quality of the disk.

3.7

68xxx UniFLEX System Manager's Guide

If the "devcheck" command reports any bad blocks, you should immediately
invoke the "badblocks" command. This command, which is documented in
68xxx UniFLEX Utility Commands, reads a list of decimal addresses from
the command line, places the .corresponding blocks in the bad-blocks
file, and by default, executes the "diskrepair" command (see Chapter 10)
to clean up any damage to the disk caused by sequestering the bad
blocks.

You can automatically invoke the "badblocks" command from "devcheck".
For further details, see 68xxx UniFLEX Utility Commands.

3.6 Routine Verification ~ the Logical Structure £i the Medium

Whenever you boot your system, it ~s wise to make certain that the
logical structure of the disk Or disks you are using is intact. Any
errors are best detected before you start to use the system. You can
check the logical structure of the disk with the "diskrepair" command
(see Chapter 10).

3.7 Maintaining Backup Files

One of the hazards of working with computers is that they do not always
behave perfectly. Power failures and overheating are just two of the
things which may cause a system to malfunction. Whenever a system shuts
down in any but the prescribed fashion (see Section 3.13), the structure
of the system disk and any disks mounted on the system may be damaged.
Although complete recovery from such an event is often possible (see
Chapters 10 and 11), sometimes it it not. Some or all of the files on
the system can be irreparably damaged.

Your best protection against disaster is the maintenance of a proper
backup system, which consists of a copy of every file in use on your
system. You will never know how important the maintenance of a good
backup system is until you need, but do not have, one. It is a good
idea to maintain two backup copies of everything and to store one copy
at a different site. This precaution ensures you of an intact copy of
the files even if a fire, flood, nuclear accident, or some other
catastrophe destroys your primary site.

3.8

Starting the Systeo

We strongly recommend that you back up your system every day. You can
make backup copies by using the "backup" or "copy" command (see 68xxx
UniFLEX Utility Commands).

It is particularly important for you to maintain an up-to-date copy of
all important files if your hardware supports only one floppy disk drive
and have neither a streaming tape or a second hard disk. With such a
configuration you run a greater risk of being unable to salvage any data
from a damaged disk. If your system includes a streaming tape, a second
hard disk, or more than one floppy disk drive, you might be able to
salvage some data, but it is far easier to back up regularly than to try
to piece together data from a shattered disk.

3.8 Mounting Devices

By default, when you boot your system, you "come up" in the root
directory on the root device. The root directory is the directory at
the top of the directory tree. It has no parent directory; all other
directories are descendants of the root directory.

You may need to use devices other than the root device. For instance,
users may need to access information stored on another disk. In order
to make that information available, you must mount the device containing
the disk on a node of the directory tree with the following command:

/etc/mount <dev_name> <dir_name>

mounts <dev_name> at the directory <dir_name>.

As long as the device is mounted, any references to <dir_name> actually
access the root directory of the disk in the device mounted there. Any
files in the directory at which the device is mounted are inaccessible
as long as the device is mounted. Only the system manager may execute
the "mount" command.

When the operating system mounts a device, it sets a flag on the disk ~n
the dev ice. Norma lly, the "unmoun t" command

/etc/unmount <dev_name>

clears the flag. If you remove the disk from a mounted device without

3.9

68xxx UniFLEX System,Manager's Guide

first tmmounting it, the flag remains set, and the "mount" command
refuses any further at tempt s to mount a device containing that disk.
Instead, it returns the message:

Error mounting "<dev_name>" in "<dir_name>": Device may be corrupted.

If you receive this error message, invoke the command "diskrepair +M"
the problem disk. The 'M' option tells "diskrepair" to do nothing but
clear the "mount flag" on the specified disk (see Section 10.2.6).

A block device can be mounted on any directory in the file system.
However, because any files in a directory on which a device is mounted
are inaccessible, it is good practice to mount a device, on an empty
directory. For convenience, it is also a good idea to mount the device
on a directory in the root directory, in order to minimize the length of
the reference to the mounted device. The operating system comes with
four anpty directories called "usrO", "usrl", "usr2", and "usr3". These
directories, which reside in the root directory, are convenient nodes on
which to mount devices. You can create additional directories for this
purpose if you need them.

For instance, suppose that you have a file called "billinLinfo" in the
root directory of a removable-cartridge disk and that users regularly
need access to the information in this file. You can mount the disk by
placing it in drive "rcO" and invoking the following command:

/etc/mount /dev/rcO /usrO

This command tells the operating system to
at the node "/usrO" in the root device.
file as "/usrO/billinLinfo".

place the device "/dev/rcO"
Users can now reference this

The "mount" command supports one option, 'r', which tells the system to
mount the device for reading only. Use of this option allows users to
read files on the mounted device but prohibits them from writing to the
device.

3.10

Starting the System

3 .9 Taking.! Memo ry Dump

A memory dump is essentially a picture of the contents of a portion of
the system's random-access memory (RAM). You may find yourself in the
unfortunate position of needing a memory dump because your operating
system is nonfunctional. In such a case, we can help you most
efficiently if you can take a memory dump and send it to us on floppy
disks or tape.

The ROM can obtain a memory dump for you as long as you have the
appropriate medium available. If your system supports streaming tape,
you need not make any special preparations in advance because you can
always dump to a tape. However, if your system does not support
streaming tape, you should always have on hand a set of formatted floppy
disks that can hold the entire contents of your RAM. The disks should
be labeled and numbered so that all you need to do is take the dump and
send it to us. It is unlikely that you will ever need to use these
disks, but you should have them available as insurance. In some
instances a memory dump provides the only means by which we can help you
solve a problem.

If you do need to take a memory dump, follow this procedure:

1. Press the "abort" switch on your machine. Do not reset
the machine! Resetting clears the RAM.

2. When you see the prompt from the ROM ("? "), type

escape-D

(that is, type the key labeled "escape" or "esc",
followed by an uppercase 'D').

3. The ROM then prompts you for information about the
device to dump to.

4. When you finish selecting the device, the ROM prompts
you to insert the first volume of the medium into the
specified device. Put your tape or floppy disk in the
appropriate drive and type a carriage return. The ROM
prompts you for additional volumes if necessary.

3.11

68xxx UniFLEX System Manager's Guide

5. Send the dump to

Technical Systems Consultants
III Providence Rd.
Chapel Hill, NC 27514

Please include a description of the circumstances that
led to the failure of the system.

3.10 The History File

The root directory contains a directory called "act", which is initially
empty. This directory is a place to store accounting information. (The
optional software package, User/System Accounting System, makes
extensive use of this directory.) As shipped, the only accounting
procedure the UniFLEX Operating System performs is the maintenance of
the history fil e, "/act /history", if it exists. The standard
init-control file directs the operating system to make an entry in the
history file each time the system is booted or stopped and each time it
goes from single-user mode to multi-user mode or from multi-user mode to
single-user mode. In addition, the "date" command writes an entry to
the file each time the system manager sets the date, and the "login"
command writes an entry each time any user logs in or out.

A listing of the history file is unintelligible. If you want to extract
information from the file, you must execute the "history" command. For
an explanation of the output from this command see 68xxx UniFLEX Utility
Commands.

If you want to maintain a history file, all you need to do is create a
file named "/act/history" with the following command:

create fact/history

After creating the file you should alter the permissions so that other
users cannot accidentally destroy it by creating a file with the same
name. To do so, you must deny other users write permission in the file:

perms o-w fact/history

The history file can rapidly grow and occupy a
system disk. Therefore, you may want to

3.12

lot of space on your
start a new history file

Starting the System

periodically. If you want to save the old information, you can copy the
file to a backup device. It is a good idea to rename the file in some
way so that the name indicates the period of time covered by that
particular file. For instance, if you start a new history file once a
month, you may append the name of the month to the file as you back it
up. When you have backed up the file, simply create the file
"/act /history" again. This command truncates the existing file of that
name to length O.

3.11 Adding New Programs

When you add a new executable program to your system, you must decide
what directory to put it in. The decision depends, in part, on who is
to have access to the program. System-wide programs can conveniently go
1.n one of two p1aces--the directory "/bin" or the directory "/usr/bin".
By default, the shell program automatically searches both these
directories when it is looking for an executable fi1 e (see "addpath" and
"setpath" commands in 68xxx UniFLEX Utility Commands). Commonly used
programs should go in "/bin" because, by default, the shell program
searches that directory before it searches "/usr/bin". Less commonly
used programs belong in "/usr/bin".

3.12 The File "/etc/startup"

The standard init-contro1 file is constructed so that when you type ehe
"log" command to take the system from single-user mode to multi-user
mode, the operating system looks for the file "/etc/startup" (the
start-up file), and if it exists, executes all the commands it contains
before entering multi-user mode. By default, if any of the commands in
the file fails, the operating system terminates execution of the file
and executes another single-user shell program. From this shell program
you can edit the start-up file and fix the problem.

A sample start-up file, which initiates two printer spoo1ers, might look
like this:

/etc/insp letter
/etc/insp ppr +f

3.13

68xxx UniFLEX System Manager's Guide

The feature of automatically executing the start-up file during the
transition from single- to multi-user mode mimics the behavior of the
6809 UniFLEX Operating System. With a 68xxx UniFLEX Operating System
you can bypass this step by putting the commands directly into the
init-control file and removing from it the line that executes the
start-up file.

3.13 Shutting Down the System

You should routinely use one or more of the commands supplied with the
operating system to shut it down. Do not reset the computer unless
forced to by a system crash. Failure to use the software to shut down
the system may r.esult in damage to the system disk and any disks mounted
on the system.

The standard init-control file establishes a procedure for shutting down
the system that mimics the 6809 UniFLEX Operating System. That two-step
procedure is described in this section. You can, however, proceed
directly to the second step. In addition, if security at your site
warrants it, you can alter the init-control file so that you cannot get
to single-user mode from multi-user mode or so that you must give a
password in order to do anything in single-user mode (see Section 2.4).

3.13.1 Step One

The "shutup" command, which only the system manager
the system from multi-user to single-user mode.
command is

/etc/shutup [[-]<minutes>]

may invoke, ~akes
The format for this

By default, the "shutup" command takes the system from multi-user to
single-user mode by sending a hang-up interrupt to all tasks. This
interrupt is followed by a IS-second delay before the system actually
enters single-user mode. If any tasks are being executed when the
"shutup" command is run, the hang-up interrupt permits many of them
(those that recognize and honor the interrupt) to terminate cleanly
without the loss of any data. You may suppress both the interrupt and
the lS-second delay by using the optional minus sign.

3.14

Starting the System

The argument <minutes> is a number between 0 and 60 inclusive, which
specifies the number of minutes the system should wait before beginning
to shut down. The default argument is 15.

If you invoke the "shutup" cOII1ll1and with an argument other than 0, the
system executes the command in the background and sends the task ID to
standard output so that you can subsequently terminate the "shutup"
program with the "int" command if necessary. The "shutup" command sends
a message announcing the impending shutdown to all terminals that are
logged in (even if they have normal messages locked out). It repeats
this message at intervals until the system actually shuts down. In the
default case of fifteen minutes, the message is sent fifteen, ten, five,
three, two, and one minute prior to shutdown.

3.13.2 Step Two

To bring the system to a halt from single-user mode, issue the following
command:

/etc/stop [[-]<minutes>]

By default, before stopping the system the "stop" command sends a hangup
interrupt to all tasks. This interrupt is followed by a IS-second delay
before the system actually shuts down. If any tasks are running when
the "stop" command is invoked, the hang-up interrupt permits many of
them (those that recognize and honor the interrupt) to terminate cleanly
without the loss of any data. You may suppress both the interrupt and
the IS-second delay by using the optional minus sign. Only the system
manager may invoke the "stop" command.

After you shut down your system, it is advisable to reset it in order to
withdraw the read-write heads from the surface of the disk. If the
auto-boot message appears, type control-C to interrupt the boot
procedure. When the ROM prompt appears on your screen, shut off the
power to the computer. Also shut off the power to any peripherals
attached to the computer.

3.15

3.16

Chapter 4

Using a Printer Spooler

4.1 Introduction

The UniFLEX Operating System is shipped with a general-purpose
printer-spooler which must be configured before use. A printer spooler
coordinates the printing of files in response to requests by users. The
operating system also supports a more sophisticated spooler, the 68xxx
UniFLEX Enhanced Spooler, which is available as a separate product.

4.2 Configuring ~ Printer Spooler

Before you can use the general spooler you must do four things: select a
device; create a spooler command; create a spooler directory to contain
the files you send to the spooler; and initiate the spooler.

4.2.1 Selecting a Device

The first step in making a spooler functional is selecting the
appropriate device from those in the file" /dev". A UniFLEX device is a
special kind of file that channels the data sent to it to a particular
device driver, in this case a printer or terminal driver. The driver
processes the data and passes it to a physical device, in this case a
printer. The links from a device to a particular driver and from a
driver to a particular physical device are determined by the device's
major and minor device numbers (see Section 6.6). Therefore, when you
select the device to associate with your spooler, you select the port
that you must connect your printer to. It is not essential to connect
the printer to the port before you configure the spooler.

Each system comes with its own set of devices and drivers for various
kinds of printers (see 68xxx UniFLEX Hardware Setup Notes). If the
device you need is not in already on the system, you can create it with
the "makdev" command (see 68xxx UniFLEX Utility Commands).

4.1

68xxx UniFLEX System Manager's Guide

4.2.1.1 Using a terminal driver for a serial printer

All systems can support a serial printer on any terminal port except the
console. If you do connect a 'serial printer to a terminal port, you may
for the sake of convenience wish to give the port an alternative name
that suggests to the user a printer rather than a terminal. You can do
so by creating a link between the terminal port and a device .with a more
appropriate name. For example, to create the alternative name "spr" for
terminal port "ttyl3", you would invoke the following command:

link /dev/tty13 /dev/spr

You can now access the port by either name, but you would most likely
want to configure the spooler for the port based on the name "spr".

4.2.2 Creating a spooler command

Let us assume that you have decided to create a spooler for a parallel
printer and to associate that spooler with the device "/dev/ppr".

The command you create to send things to the spooler is simply a link to
the executable file "/etc/print", which is a part of the UniFLEX
Operating System. However, the last component of the name of the file
to which you link "/etc/print" must match the last component of the name
of the device you have selected ("ppr"). Because many people may be
using the command, it is convenient to place it in the directory "/bin"
so that the users do not have to specify the full file specification or
the path name every time they invoke the spooler. You can accomplish
all this with the following command:

link /etc/print /bin/ppr

which puts into the directory II /bin" an entry which points to the file
"/etc/print ".

4.2.3 Creating a spooler directory

The next step is to create a directory for
component of the name of this directory
component of the name of the device driver,
reside in the directory II /gen!spooler". This

4.2

the spooler. The
must also match the
and the directory

is simply done:

last
last
must

Using a Printer Spooler

crdir /gen/spooler/ppr

In general it is wise to set the permissions in this directory so as to
deny access to all users except the system manager. The following
command does so:

perms o-rwx /gen/spooler/ppr

Your system now contains a new command, "ppr", which spools files to the
parallel printer. If you want to change the name of the command to
something more memorable, such as an abbreviation for the name of the
manufacturer of the printer, you can do so by renaming or linking the
device to "/dev/<new_name>", renaming or linking the executable file
II/bin/ppr" to "/bin/<new_name>lI, and creating a directory of the
appropriate name in II/gen/spoolerll (you should not rename or link a
directory). If you choose to link rather than to rename the device and
the executable file, you must be careful to avoid having different users
accessing the same device by different names at the same time. If this
should happen, the files may be sent to the same device simultaneously,
resulting in the intermingling of the files as they are printed.

4.2.4 Initiating a printer spooler

Now you have a spooler command and a spooler directory, but before you
can actually execute the command, you must initiate the spooler. In
fact, each time you boot the system, you must initiate each standard
spooler you want to use. (You can simplify this task by putting the
relevant commands in the file II /etc/startup"-see Section 3 .12) A
spooler is initiated by a command of the following form:

/etc/insp <splr_name> [+f]

where <splr_name> must match the last component of the file
specification of the corresponding device. The 'f' option suppresses
the banner page and the form-feed character which are both normally
printed before each print job. In this example the appropriate command
is

When you execute this
which runs continuously
command. In addition, it

/etc/insp ppr

command, the system creates a background task,
until you deliberately stop it with a "pstop"

creates a file in the spooler directory called

4.3

68xxx UniFLEX System Manager's Guide

I'~ mrk*splr?", which contains the task ID of the background task. The
background task checks the contents of the spooler directory
approximately every 20 seconds. It sends any files present to the
printer and deletes them from the spooler directory. Note that the
original copies of the files are still intact; only the references to
them in the spooler directory are deleted.

4.3 Using the Spooler Command

To use this spooler a user simply types

When a user invokes the spooler command, the command generates a name
for the file being spooled. It does so by appending a three-digit
number to the user name of the person who invoked the spooler. Once it
has created the new name, the spooler command makes an entry in the
corresponding spooler directory. This entry is 1 ike any other entry in
a directory; it contains a pointer to the file descriptor node (fdn) of
the file being spooled and the newly generated name of the file. If the
file is on the same disk as the spooler directory and it is sent
directly to the spooler, the entry in the spooler directory is simply a
link to the original file. If the file is on another disk, the
operating system makes a copy of the original file on the same disk as
the spooler directory and makes an entry for that copy of that file in
the spooler directory. Finally, if the user sends the file through a
pipe, the spooler command copies the output from the pipe into a file
and makes the corresponding entry in the spooler directory.

One consequence of having the entry in the spooler directory be a link
to an existing file is that the linking process causes the date and time
of the last modification of the file to change whereas the copying
process does not. Thus, the spooler command updates the date and time
of a file that is on the same disk as the spooler directory and is sent
directly to the spooler. A user who wishes to avoid changing the date
and time can always force the spooler to make a copy - of the file by
sending the file to the spooler through a pipe:

If you do send a file directly toa spooler, be careful not to make any
changes in the text of the original file before printing is complete.
Because the directory entry is a link in such a case, any changes in the

4.4

Using a Printer Spooler

original are also changes in the file being spooled. Once again, if you
wish to force the spooler to make a copy of the original file so that
you can change it, send the file through a pipe as illustrated ~n the
previous paragraph.

Once you have initiated a spooler, you can spool files even if a printer
is not attached to the appropriate port. The files remain in the
spooler directory until the printer is functional.

4.4 Shutting ~~ Printer Spooler

Under normal conditions you should initiate a standard printer spooler
each time you boot the system. Before shutting down the system you
should send a "pstop" command to each active spooler. The spooler
finishes printing any active job before it stops. The syntax of the
"pstop" command is

pstop <splr_name>

The "pstop" command, like the "/etc/insp" command, acts on only one
device at a time. You must issue a separate command for each spooler.
In response to a "pstop" command the system sends an interrupt to the
background task created by the "/etc/insp" command. The background task
finishes printing the current file (if one exists), then deletes the
".mrk*splr?" file in the appropriate spooler directory.

If either you forget to issue the "pstop" command before shutting down
the system or the system crashes, the spoolers may be left in a peculiar
state. When the system goes down, through normal shut-down procedure or
through a crash, all tasks are, of course, interrupted. Thus, even if
you do not issue a "pstop" command, the background tasks associated with
each spooler disappear whenever the system shuts down. However, the
". mrk*splr?"· files are not automatically deleted when the system shuts
down. You may, therefore, find yourself in the situation of having
". mrk*splr?" files, but no background tasks associated with the task IDs
the files contain. If you try to issue the" /etc/insp" command in such
a case, the operating system responds

File' .mrk*splr?' already exists - spooler not invoked.

If this happens, simply
question. In such a case,
receive the interrupt or to

issue a "pstop" command to the spooler in
because there is no background task to
delete the appropriate ". mrk*splr" file, the

4.5

68xxx UniFLEX System Manager's Guide

"pstop" command assumes the responsibil ity of finding and deleting the
troublesome file. Once this f He is deleted, the "/etc /insp" command
can successfully invoke the spooler.

4.5 Summary of Routine Spooler Use

The following table summarizes the steps in making a printer spooler
functional.

Table 4-1. Spooler-related Tasks for the System Manager

Task

Select a device

Create command

Create directory

Activate spooler

Terminate spooler

Frequency

Once

Once

Once

Every boot

Every shutdown

Command

"makdev" or "link"if necessary
(See Section 4.2.1)

link /etc/print /bin/<splr_name>

crdir /gen/spooler/<splr_name>

/etc/insp <splr_name>

pstop <splr_name>

4.6 Repairing ~ Damaged Printer Spooler

Occasionally, the necessary links between the files that control your
printer spoolers may be broken. This problem is most likely to manifest
itself when you update the spooler program. You may find, after
updating your system disk, that the bugs which were supposed to have
been fixed are not fixed, or that the enhancements which were supposed
to have been made are not on your system.

In either case you should first check to see if the links that are
essential to the functioning of the spooler have been broken. You can
establish this by doing a "dir +1" on the directory "/etc".The entries
for the files "prcon" and "print" should look I ike this (of course, the
date and time differ from those shown here):

4.6

prcon
print

25 6
28 <N>

rwx-x
rwx-x

system
system

Using a Printer Spooler

14: 14 Apr 16 1987
14: 14 Apr 16 1987

The link count for each file is the second number in the entry. The
link count for "prcon" should always be 6. The link count for "print",
<N>, varies depending on the number of spooler commands you create. The
number <N> should be 1 plus the number of spooler commands you have
linked to that file. If either link count is incorrect, you should
completely remove the spooler from the system and recreate it from the
master disk. The following series of commands deletes the necessary
files:

chd /etc
kill insp prcon print
chd /usr/bin
kill end idle next pstop purge rerun

In addition you must delete any spooler commands that you created.
These commands are the ones in "/bin" that you linked to "/etc/print".
It may be wise also to delete the spooler directories such as
"/gen/spooler/ppr". Before you can delete them with the "kill +d"
command, you need to delete all the files they contain.

Once you have completely removed the old spooler from your system, you
must reconstruct the spooler. To do so, place the master system disk in
a floppy drive and execute the following commands:

chd /
backup <drive_name> +lRnp

The "backup" command prompts you for permission before restoring to the
hard disk any file on the floppy disk which is newer than the file of
the same name on the hard disk or for which no corresponding file exists
on the hard disk. These files may include files that are not at all
related to the spooler and which you mayor may not choose to restore.
However, you should type a 'y' in response when it asks for permission
to restore the following files:

/etc/insp
fete/print
/etc/prcon
/usr/bin/purge

When the "backup" command terminates, you must perform the usual_ steps,
described earlier in this section, to create your own individual spooler
commands and spooler directories.

4.7

4.8

Chapter 5

The Password File

5.1 Introduction

As system manager you are responsible for maintaining the list of users,
which is stored in the file "/etc/log/password". This file must contain
an entry for each user.

5.2 Structure of the Password File

Each entry in the password file has following form:

<user_name>: [<password>J:<ID>: <home_dir>: [<login_program >]

To add a user to the system you must edit the password file and place an
entry for that user in the file. This entry must contain a user name, a
user ID, and a home directory. The other fields in the entry are
optional.

5.2.1 User Name

A user name is the name that a user types in response to a login prompt
in order to gain access to the system. It is best to assign a user name
which actually identifies the person to whom it refers. Obvious choices
are the user's first name, last name, or initials. The operating system
imposes certain restrictions on a user name:

1. The name must consist entirely of lowercase letters.

2. The name must contain no more than thirty-one
characters.

3. The name must be unique.

The operating system does not check the validity of a user name.
However, it assumes that these restrictions have been honored.
Violation of the rules may therefore cause unpredictable results.

5.1

68xxx UniFLEX System Manager's Guide

You can assign a user name by editing the password file.

5.2.2 Password

A password is a safeguard against unauthorized access to the system.
While a password is not essential, it is recommended that you assign one
to each user. The user then has the option of changing the password by
using the "password" command.

The operating system imposes no restrictions on passwords. The
following guidelines, however, help ensure the security of the system:

1. Passwords should be five or six characters long.
(Longer passwords are accepted, but in any case only the
first sixteen characters are significant.)

2. Passwords should be a random mixture of letters and
numbers.

3. The letters used should always be lowercase.

You assign a password to a user by invoking the "password" command with
an argument. The syntax for the command is

password [<user_name>]

Only the system manager may use the optional argument. In response to
this command the operating system asks for the password. When you type
the password, the letters do not appear on the screen. They are
deliberately suppressed in order to maintain the secrecy of the
password. The operating system asks you to retype the password in order
to verify the entry. If what you type the second time does not match
what you typed the first time, it responds

Retry different - password unchanged.
++

If, however, you type the same password both times, the operating system
enters an encrypted form of the password in the password file. Thus,
when a user lists the password file, it is obvious which users have
passwords because their password fields are not empty. However, because
the passwords are encrypted, it is not obvious what they are.

5.2

The Password File

If any user ever forgets his or her password, you can assign a new one
by invoking the "password" command with an argument.

5.2.3 User ID

You must assign a user ID to each user. User IDs can be in the range
from 1 to 32,000 inclusive. The system manager's ID must always be O.
The system comes with a second user, "bin", whose user ID is 1; however,
that ID can be changed.

You can assign an ID by editing the password file.

5.2.4 Home Directory

The fourth field in each entry in the password file contains the name of
the user's home directory. The home directory is the directory that a
user enters by default upon logging in. Each user must have a home
directory. In general, the home directory is named "/usr I <user_name>".
If no home directory is in the password file, the user receives the
following message when attempting to log in:

Cannot access login directory.

The operating system then sends another login prompt to the terminal.

You can assign a home directory by editing the password file. However,
you must also create the home directory using the following command:

crdir lusr/<user_name>

It is a good idea to make the user the owner of the home directory with
the following command:

owner <user_name> lusr/<user_name>

Otherwise, the user cannot set the permissions for the home directory.
By default, when setting the permissions on a newly created dir-ectory,
the system grants read, write, and execute permissions to all users.
Whether or not the default permissions are acceptable depends entirely
on your environment.

5.3

68xxx UniFLEX System Manager's Guide

5.2.5 Login Program

The last field in an entry in the password file contains the name of the
login program, which is the program that begins execution when the user
logs in. If the login program does not exist, or if for any reason the
operating system cannot execute the specified program, a message to that
effect is sent to the terminal, followed by a login prompt. If the
field is empty, the default is the shell program.

You can assign a login program by editing the password file.

5.3 Original Password File

As shipped the UniFLEX Operating System has two entries in the password
file:

system: :0: /:
bin::l:/:

Each of these entries contains only the required fields; the optional
fields are absent. Thus, as created, your system recognizes two users:
"system" and "bin". Neither user has a password. The user ID for
system is 0 (as it must be); the user ID for bin is 1. The home
directory for both users is the root directory. The login program for
both is, by default, the shell program.

One of your first tasks as system manager should be to assign passwords
to these users. Use the "password" command to make these assignments.

5.4 Adding.! User .!.2 the System

To add a user to the system you must make an entry in the password file
that contains three things: a unique user name, a unique user ID, and a
home directory. In addition you must be sure to create the appropriate
home directory, to set the permissions on that directory as befits your
working environment, and to make the user its owner. It is also wise to
assign a password to the new user.

5.4

The Password File

Suppose you want to add a user with the user name "laurie" to the
system. You can maintain complete control over the choice of user ID,
the name of the home directory, and the permissions on the home
directory by following the procedure described in this section.
Alternatively, you can use the "addusr" connnand (see 68xxx UniFLEX
Utility Commands).

To add a new user yourself, you must first make a new entry in the
password file. Before adding the new user to the file, select a user ID
which is not already in use. If you selected the number 100, you would
add the following line to the password file (see UniFLEX Text Editor for
information on editing a file):

1aurie::100:/usr/1aurie:

Next you should create the directory "/usr/1aurie" and make "laurie" the
owner of that directory:

crdir /usr/laurie
owner laurie /usr/laurie

The operating system creates a directory with read, write, and execute
permissions for all users. Whether or not you feel a need to make the
permissions more restrictive will depend on your environment. The
"addusr" command denies other users write permissions in a user's home
directory.

Now the new user can log in. Her home directory is "/usr/laurie"; her
login program is, by default, the shell program.

To assign a password use the "password" connnand, which enters an
encrypted form of the password in the password file.

5.5 Deleting ~ User

Eventually, for one reason or another, you will need to remove a user
from your system. First, you must determine if you want to save any of
the files in that user's directories. If you do, copy them to another
directory. Next, delete the unwanted files and directories from the
system. It is not actually essential to sort through the files this way
before removing the user from the system. However, it is wise to do so

5.5

68xxx Uni~FLEX System Manager's Guide

before much time has elapsed so that the content and purpose of the
f i1 es are fresh in your mind.

The process of removing the user from the system is quite simple. All
you need to do is edit the file" /etc/log/password" and delete the line
which contains the relevant entry. You may want to use the "delusr"
command to automate the whole procedure (see ~ UniFLEX Utility
Commands).

5.6

Chapter 6

Files and Devices

6.1 Introduction

Information on the operating system is organized into files. A file is
a collection of information or data kept on the system and given a name
for later reference. You can store information in several kinds of
files: regular files (also referred to as ordinary files), contiguous
files, directories, pipes, and devices (also referred to as special
fil es).

Whenever you create any kind of file, the operating system assigns to it
a file descriptor node (fdn). The fdn contains all the information that
the operating system needs to know about a file. This information
includes but is not limited to the type of file, the owner of the file,
the size of the file, and, if appropriate, the addresses of all the
blocks that are a part of the file.

6.2 Regular File

A regular file ~s simply a collection of data which resides either in
memory or on a mass-storage hardware-device. The operating system
allocates space for the data one block (512 bytes) at a time, as data
are added to the file. Thus, the data may be scattered abou~ the disk,
depending on the sequence in which blocks are released from the free
list. You can create a regular file by invoking either the "create"
command or the "edit" command, or by redirecting output from any command
to a nonexistent file (see "shell" in 68xxx UniFLEX Utility Commands).

6.3 Contiguous File

A contiguous file is similar to a regular file, but the blocks allocated
for data are contiguous. You specify how much space the operating
system should reserve for contiguous files when you format the disk (see
68xxx UniFLEX Utility Commands). An assembly language program can
create a contiguous file with the "create_contiguous" system call.

6.1

68xxx UniFLEX System Manager's Guide

Not all versions of the operating system support contiguous files.

6.4 Directory

A directory is a specially constructed file that contains the names and
identifies the location of other files. Directories provide a means of
organizing a group of related files in one place. For instance, the
directory "bin" contains the name and identifies the location of many of
the binary files provided with the operating system. You can create a
directory with the "crdir" command. When "crdir" creates a directory,
it puts two entries in it: one called ". ", which references the
directory itself; one called " •• ", which references its parent
directory.

6.5 Pipe

A pipe is a special kind of file that allows one-way communication
between a task and one of its child tasks (see Section 6.3 of the 68xxx
UniFLEX Programmer's Guide). A pipe takes output from one task and uses
it as input to the other task connected to the pipe. An assembly
language program uses the "crpipe" system call to create a pipe. You
can create a pipe from a UniFLEX command line by redirecting output to a
pipe with the symbol ".., or ' I' (see "shell" in 68xxx UniFLEX Utility
Commands). A pipe that is created from the command line uses the output
from one task as the input to another task. For instance, the command

page test ... spr

tells the operating system to use the output from the "page" command as
the input to the "spr" command.

6.6 Device

A UniFLEX device is a special kind of file. Like other kinds of files,
a device has an fdn, but the information in the fdn tells the operating
system that this particular file does not contain any data. Rather, the
first byte of the fdn of a device identifies the device as a character,
block, pseudoterminal, or network device. This byte is followed by two

6.2

Files and Devices

numbers: a major device number and a minor device number. The major
device number identifies the type of device within the broader
classification determined by the character--for example, a block device
could be a hard disk ora floppy disk. The minor device number is an
identification number which associates the device with one of several
devices of the same type--for example, the third floppy disk device.

Each version of the UniFLEX Operating System is capable of supporting a
particular array of devices. (Consult the table of standard devices
that comes with the 68xxx Hardware Setup Notes to determine which
devices your system can support.) Both the number and kind of devices
that an operating system supports are system-dependent. This section
describes each type of device supported by UniFLEX. Your operating
system may not support all of them.

6.6.1 Character Device

A character device is a device which the
character at a time, such as a terminal.
also character devices. All versions
support character devices.

6.6.2 Block Device

operating system accesses one
Printers and tape devices are

of the UniFLEX operating system

A block device is a device which the operating system accesses a block
(512 bytes) at a time. Each block device must have a character device
associated with it so as to support some functions, such as formatting,
which are not block-oriented.

In general, block devices are random-access mass-storage devices. For
example, all disks are block devices. However, some versions of the
operating system support a special kind of block device called a RAM
disk that allows the operating system to use available random-access
memory (RAM) to emulate a disk. The system can access a copy of a file
that 1S on a RAM disk much more quickly than it can access the original
copy on a hard disk.

All versions of the UniFLEX operating system support block devices, but
not all versions support RAM disks.

6.3

68xxx UniFLEX System Manager's Guide

6.6.3 Pseudoterminal Device

A pseudo terminal device is a device which allows one program to
communicate with another task as if it were communicating with a
terminal. The task which creates the pseudoterminal is the "master
task"; the task or tasks with which the master task communicates are the
"slave tasks" (see "create_pty" in 68xxx UniFLEX Introduction.!Q. UniFLEX
System Calls). Not all versions of the UniFLEX operating system support
pseudoterminal devices.

6.6.4 Network Devices

A network device is a device used by the operating system to support
distributed file systems. Not all versions of the UniFLEX operating
system support network devices.

6.7 Creating Devices

Some devices are "made" when
operating system places them
listing of these devices shows
ma j or and minor dev ice number s •
the command

you first create your system. The
in the device directory, "/dev". A long
not only the type of device but also the
You can see a long listing by invoking

ls /dev +1

Every operating system can support more devices than it initially
creates. You can, within system-dependent limits, add more devices to
your system with the "makdev" command (see "makdev" in 68xxx UniFLEX
Utility Commands). It is not enough to create a RAM disk; you must also
format it with the "ramdisk" command (see 68xxx UniFLEX Utility
Commands).

6.4

Chapter 7

Important Directories

7.1 Introduction

The procedure which builds a system disk creates several files and
subdirectories in the root directory. This chapter describes the kind
of material found in each of them.

7.2 /uniflex

The file "uniflex" contains the kernel of the operating system. In
addition, it defines certain system parameters--such as the identities
of the root device, the paging device, and the pipe device--which you
can alter with the "tune" command (see Chapter 9).

The information field of this file details which UniFLEX modules are
supported by your operating system (e.g., pseudoterminals, networks, RAM
disks). You can read the information field by invoking the following
command:

info /uniflex

For more information on the various UniFLEX modules see the Preface.

7.3 /.badblocks

The file If. badblocks" (the bad-blocks file) is created as an empty file
with all permissions turned of f. The "bad blocks " command uses it whil e
sequestering damaged blocks from the operating system (see Section
3.5.2). Because the bad-blocks file must always be in a particular
location on the disk, the operating system will not let you delete,
rename, or move it.

7.1

68xxx UniFLEX System Manager's Guide

7.4 fact

The directory "act" contains files related to system accounting. By
default, when you boot the system, the operating system creates a file
in "/act" called "utmp". When the system is in multi-user mode, the
operating system writes the name and terminal number of each user who is
using the system in this file. It also enters the time at which the
user logged in. When the system enters single-user mode, the file is
truncated to a length of O.

The "who" command reads this file to obtain its output. If you ever
forget which mode you are in, you can simply execute the ''who'' conunand.
If the only response is a system prompt, no 'information is in the file
"utmp", so the system is in single-user mode. Or, you can execute the
following command:

dir +1 fact

If the length of the file "utmp" is 0, the system is in single-user
mode.

If you create a file named "history" in the directory "/act", the
operating system uses it to maintain an account of the use of the system
(see Section 3.10). Additional accounting software (available in the
package User/System Accounting) makes extensive use of this directory.

7.5 /bin

The name "bin" is short for binary fil es. This directory contains the
most conunonly used UniFLEX commands, such as "ls", "copy", and "kill".

7.6 /dev

The directory "/dev" contains the names of
available on your system. These devices
as disks, terminals, and printers, as well
pseudoterminals and RAM disks.

7.2

all the devices that are
include physical devices such
as logical devices, such as

Important Directories

You can, within the limits of your operating system, add devices to this
directory with the "makdev" command. A list of devices that your
operating system can support accompanies the ~ Hardware. Setup Notes.

Several devices are common to all systems:

DISK A link to the root device, which is defined in the file
"/uniflex". If you want to chang~ the identity of the
root device, you must use the "tune" command (see
Chapter 9).

null The system's bit bucket. You can always write to the
bit bucket, but when you do, the data are lost from the
system. If you try to read from the bit bucket, the
operating system returns an end-of-file condition.

pmem A device which allows certain utility programs to
access physical memory as if it were a file.

smem A device which allows certain utility programs to
access system memory as if it were a file.

swap A link to the paging device, which is defined in the
file" /uniflex". If you want to change the identity of
the paging device, you must use the "tune" command (see
Chapter 9).

7.7 /etc

Except for the commands "login" and "print", the commands in
directory "/etc" are intended for use only by the system manager.
commands include "diskrepair", "makdev", and "shutup".

the
Such

This directory also includes several important files and a subdirectory.

7.7.1 /etc/ttylist

The "ttylist" file, "/etc/ttylist", contains an entry for each terminal
port on the system, up to a maximum of sixty-four entries. Each entry
is created with the following format:

<sign><baud_rate><nn>: [<terminal_type>}: [<optional_info >1

7.3

68xxx UniFLEX System Manager's Guide

A brief explanation of this format follows. For more information see
"set_termcap" and "crt_termcap" in 68xxx UniFLEX Utility Commands.

<sign> A plus sign, '+', or a minus sign, '-' A
plus sign enables the port for login; a
minus, disables it. When the operating
system enters multi-user mode, the "init"
program sends a login prompt to every
terminal port that is enabled for login.

<baud_rate> A code specifying the baud rate for the
terminal port in question. The code must be
a value from the following table:

Code Speed Code Speed

space Hardware default 8 1200
1 7 5 or 38400 9 1800
2 110 a 2400
3 134.5 b 3600
4 150 c 4800
5 200 d 7200
6 300 e 9600
7 600 f 19200

nn A two-digit number representing the terminal
port.

<terminal_type> The type of terminal attached to the port.
Initially, this field is blank. In order to
use display-oriented software on a terminal,
you must define the terminal type as one of
those defined in the file "/etc/ttycap" (see
Section 7.7.2).

If you define a terminal as ''modem'', a
"login" command from that terminal prompts
for the terminal type after verifying the
combination of user name and password. You
may respond to the prompt in one of three
ways: by typing one of the strings defined in
the file "/etc/ttycap"; by typing a carriage
return, which leaves the terminal type as
"modem" (see Section 7.7.2); or by typing a
question mark, '?', which tells the "login"

7.4

Important Directories

command to display a list of all terminals
defined for the system.

Once you have logged in, you can change the
terminal type by invoking the "env" command
(see 68xxx UniFLEX Utility Commands).

<optional_info> Optional information, which is normally the
name of the person most commonly using the
terminal. This field has no functional
meaning and need not be present.

Each time you add a terminal to the system you should edit this file so
as to enable the port for login and to add an entry describing the type
of the terminal.

7.7.2 letc/ttycap

The file "ttycap" is a specially constructed file which defines the
capabilities of a variety of terminals. As supplied with the operating
system, this file contains entries only for the terminals we have
experience with. If the type of terminal you need is not in the file,
you can add it (see "crt_termcap" in 68xxx UniFLEX Utility Commands).

The default "ttycap" file contains an entry for the terminal type
"modem", which it def ines as an ANSI standard terminal.

7.7.3 letc/termcap

The termcap file, IIJetc/termcapll, is a file created by combining the
information in the files "/etc/ttycap" and "/etc /ttylist". This file
makes it possible for the same program to operate on many different
terminals regardless of their individual characteristics. The operating
system creates this file when you build your original system. You can
alter the file by using either the "crt_termcap" or the "set_termcap"
command.

7.S

68xxx UniFLEX System Manager's Guide

7.7.4 /etc/.init.control

The init-control file, "/etc/.init-control", controls the functioning of
the first task ("init") execu'ted by the operating system. The contents
of the init-control file determines, for example, the interval at which
the operating system updates all disks; the action the system takes on
receiving a particular interrupt; and whether the system comes up in
single-user mode or goes directly to multi-user mode. You can alter the
init-control file supplied with your system to suit your needs, but you
should do so only with extreme caution (see Chapter 2).

7.7.5 /etc/format.control

The format-control file, "/etc/format. control ", defines a
command for each standard disk likely to be used on the
file is used by the "backup" and "format" commands.
override the default.

default format
system. This
You can always

The format-control file may contain either instructions for formatting
all media in all drives the same way or different instructions for
formatting media in different drives. In the first case, the first line
of the file should contain the file specification of the formatting
program (e. g., "/etc/formatfd"); the second, the model name. (For a
discussion of file specifications see page 6 of The UniFLEX Operating
System.) In the second case, the first character of the first line of
the file must be an asterisk, '*'. The file specification for a device
must immediately follow the asterisk. The second and third lines of the
file should then contain the file specification of the formatting
program and the model name, respectively, for formatting media in the
specified device. This pattern of three lines may be repeated to
specify formatting instructions for other devices. The first character
of any line specifying a device must be an asterisk. A sample
format-control file, which defines format connnands for the devices "fdO"
and "fdl", follows.

*/dev/fdO
/etc/formatfd
IFD-DD
*/dev/fdl
/etc/formatfd5
IFD-S-OS'

7.6

7.7.6 /etc/log

The directory "/etc"
contains several files
daily operations.

7.7.6.1 /etc/log/motd

Important Directories

contains a subdirectory called "log", which
used by the ·operating system in the course of its

The fil e "motd" contains the message of the day. Whenever a user logs
in, in response to a login prompt, the "login" program reads this file
and sends its contents to standard output before issuing the system
prompt. Thus, if you want to send a message to all users, you can enter
it in this file (see Section 3.3).

7.7.6.2 /etc/log/password

The password file, "/etc/log/password", contains a list of users, their
passwords (encrypted), their user IDs, their home directories, and their
login programs. Because many UniFLEX programs use the password file, it
is essential to maintain its integrity (see Chapter 5).

7.8 /gen

The directory "/gen" contains three directories: "errors", "help", and
"s pool er".

7.8.1 /gen/errors

The directory "errors" contains one file, "system", which is a binary
listing of UniFLEX error numbers and their corresponding messages.

7.8.2 Igen/help

The directory "help"
UniFLEX commands.
directory.

contains brief descriptions of the usage of the
The "help" command uses the information in this

7.7

68xxx UniFLEX System Manager's Guide

7.8.3 /gen/spooler

The directory "/gen/spooler" is the directory in which you must create a
directory for each of the spoolers on your system (see Chapter 4) in
order for them to function properly.

This directory also contains the subdirectory "at", which is used by the
"atexecute" command. The "at" directory contains a file called
"holidays" which defines holidays for the "at" daemon (see 68xxx UniFLEX
Utility Commands).

7.9 /lib

The directory "/lib" contains files which are
definitions of both symbols and structures that can
language programs. Run-time libraries for compilers
in "/lib".

7.9.1 /lib/reI20.errs

sources containing
be used by assembly
are usually located

The file "rel20.errs" is a binary listing of error messages used by the
"reI20" command. It is present only on 68020 systems.

7.9.2 /lib/reI68k.errs

The file "reI68k. errs" is a binary listing of error messages used by the
"reI68k" command.

7.9.3 /lib/Syslib68k

The file "Syslib68k" contains relocatable versions of all the files in
"/lib" whose names begin with the string "sys". The linking-loader may
search this file in a final attempt to resolve externals--see Section
8.1 of 68xxx Relocating Assembler ~ Linking-Loader.

7.8

Important Directories

7.9.4 /lib/sysacct

The file "sysacct" defines a structure for storing and retrieving
accounting information.

7.9.5 /lib/sysdef

The file "sysdef" defines the correspondence between the names and
numbers of UniFLEX system calls.

7.9.6 /lib/syserrors

The file "syserrors" defines the correspondence between the names and
numbers of UniFLEX errors. It also contains a brief definition of the
most general cause of each error.

7.9.7 /lib/sysfcntl

The file "sysfcntl" def ines the correspondence between the names and
numbers of the subfunctions used by the "fcnt1" system call. It also
defines the constants used by this system call.

7.9.8 /lib/sysints

The file "sysints" defines
numbers of UniFLEX interrupts.
each interrupt.

7.9.9 /lib/sysmessages

the correspondence between the names and
It also contains a brief definition of

The file "sysmessages" defines the structure of the buffer returned by
the "msL-status" system call.

7.9

68xxx UniFLEX System Manager's Guide

7.9.10 /lib/syspty

The file "syspty" defines the correspondence between the names and the
numbers of the subfunctions' used by the. "controlJty" system call. It
also defines the constants used by this system call.

7.9.11 /lib/sysrump

The file "sysrump" defines the correspondence between the names and the
numbers of the subfunctions used by the "rump" system call.

7.9.12 /lib/sysstat

The file "sysstat" defines the structure of the buffer returned by the
"of stat" and "status" system calls. It also defines the file-permission
flags.

7.9.13 /lib/systime

The file "systime" defines the structures of the buffers returned .by the
"time" and "ttime" system calls.

7.9.14 /lib/systty

The file "systty" defines ,the structure of the buffer returned by the
"ttyget" and "ttyset" system calls. It also defines the constants used
by these system calls.

7.9.15 /lib/sys68881

The file "sys68881" defines the structure of the buffer used by the
"FPU_exception" system call.

7 .10

Important Directories

7.9.16 /lib/std_env

The file "std_env ll describes the standard hardware-specific environment
of your particular system. It contains a series of options which the
linking-loader (1lIoad68k") automatically processes before it processes
any options from the command line. The options specify information
about such things as the hardware page-size and the starting address of
the text and data segments. The linking-loader uses the file to get the
basic information it needs in order to load any module. If necessary,
you can override those options in the file that take arguments by
specifying the same options with different arguments on the command
line. You can negate the effect of a single-character option specified
in the standard-environment by using the same option on the command
line, preceded by a minus sign, '-' (see Chapter 7 in 68xxx UniFLEX
Relocating Assembler and Linking-Loader).

The directory "/lost +found" is for use by the "diskrepair" command (see
Chapter n. If "diskrepair" finds any unreferenced files while it is
checking the disk, it places them, by default, in" /lost+found".
Although the files are no longer where they belong, the information they
contain is preserved, as is the name of the owner.

7.11 /tmp

The directory "/tmp" is for use by programs which need to create
temporary files--that is, files that you do not need after you execute
the program. Some UniFLEX commands use this directory. Any programs
you write may also use it. Thus, if the system happens to crash while
any programs that use temporary files are running, the temporary files
are all in one place and you can easily delete them all when you reboot
the system. You can automatically do so by putting the following
command in your startup file (see 3.12):

kill /tmp/*

Alternatively, you can put the equivalent command in your init-control
file (see Chapter 2).

7.11

68xxx UniFLEX System Manager's Guide

7.12 /usr

The directory "/usr" is the directory in which you will generally create
a home directory for each user on the system (see Section 5.2.4). As
created by the procedure that builds the operating system, however,
"/usr" contains only one file--the subdirectory "/usr/bin". This
subdirectory contains the less commonly used UniFLEX commands, such as
"history", "free", and "info".

7 .13 /usrO, /usr1, /usr2, /usr3

The empty directories "/usrO", "/usr1", "/usr2", and "/usr3" provide
nodes for the mounting of devices on the system (see Section 3.8).

7 .12

Chapter 8

Errors Fatal to the Operating System

8.1 Introduction

The errors documented in this chapter are fatal to the operating
system--that is, you must reboot to gain control. Each error first
sends an error message to the console then cleanly halts the system so
that the disk remains intact.

8.2 Errors during Initialization

The following errors may occur when you try to boot the system:

Invalid license.
The file "/uniflex" is not licensed for the machine you are using.

I/O error on root device during initialization.
The operating system could not read the root device. First, verify
that the disk in the root device is not write-protected. If it is
not, boot from your master disk, mount the hard disk, and use the
"tune" command (see Chapter 9) to determine whether or not the
specification of the root device is correct (see Section 9.4.16).
If it is incorrect, change it. If the specification is correct, the
message indicates a hardware failure.

No paging space.
The disk in the paging device does not have any paging space. The
operating system cannot function without paging space. Boot from
your master disk, mount the hard disk, and invoke the "al terpage"
command from the hard disk to adjust the size of the paging space
(see 68xxx UniFLEX Utility Commands).

Out of memory during initialization.
The operating system was able to set up all the internal tables it
needed, but it ran out of memory when it tried to initialize the
first task. Either the system does not have sufficient memory or
the sizes assigned to the various tables are unreal istically _ large.
You can ascertain how much memory is available by using the 'M'
command while you are still in the ROM (see Section 1.2.2). If
sufficient memory is available, boot to your master disk and invoke
the "tune" command to determine how much memory is allocated for the

8.1

68xxx UniFLEX System Manager's Guide

tables. Then use "tune" to change the parameters--such as "buffers"
and "locked_recs"-which control the tables' sizes (see Section
9.4).

Overflow in system table.
While the operating system was establishing its internal tables, it
ran out of memory. Either the system does not have sufficient
memory or the sizes assigned to the various tables are
unrealistically large. You can ascertain how much memory is
available by using the 'M' command while you are still in the ROM
(see Section 1.2.2). If sufficient memory is available, boot to
your master disk and invoke the "tune" command (see Chapter 9) to
determine how much memory is allocated for the tables. Then use
"tune" to change the parameters--such as "buffers" and
"locked_recs "-which control the tables'" sizes (see Section 9 .4).

8.3 After Loading ~ Operating System

The errors described in this section occur only after the file
"/uniflex" is successfully loaded in memory.

All pages are locked.
Certain parts of the. operating system are always locked in memory.
In addition, a task can lock pages in memory. This error occurs if
the system needs memory but finds that all pages are locked. You
can allevi~te the problem by reducing the number of pages locked by
tasks under your control. If the problem persists, please take a
memory dump if possible (see Section 3.9) and send it to Technical
Systems Consultants for analysis.

Error reading system information record '(SIR).
The operating system attempted to update a mounted device but was
unable either to read from or to write to the SIR even though it had
been able both to read from and write to it when mounting the
device. This error is indicative of a hardware failure.

Error reading system information record (SIR) on paging device.
The operating system detected an I/O error when it tried to read the
SIR on the disk in the paging device. Use the "tune" command (see
Chapter 9) to determine whether or not the specification of the
paging device is correct (see Section'9.4.13). If it is incorrect,
change it. If the specification is correct, the message is
indicative of physical damage on the disk in the paging device. You
must reformat the disk.

8.2

Errors Fatal to the Operating System

File descriptor node (fdn) gone.
The internal data structure that the system uses to keep track of
files is damaged. This error is indicative of a hardware failure.
Please take a memory dump if possible (see Section 3.9) and send it
to Technical Systems Consultants for analysis.

Memory page already free.
One part of the operating system tried to release a page of memory
that some task indicated was in use. However, another part of the
operating system indicated that the memory was already free. This
error is the result of a logical inconsistency and probably
indicates a hardware failure. Please take a memory dump if possible
(see Section 3.9) and send it to Technical Systems Consultants for
analysis.

Mount gone.
The operating system was following the file specification of a file
that is on a mounted device, but the information about the mounted
device was damaged. This error is indicative of a hardware failure.
Please take a memory dump if possible (see Section 3.9) and send it
to Technical Systems Consultants for analysis.

No buffer available for the name of the program.
When system accounting is enabled, the operating system must store
the name of each program that is executing so that it can write the
appropriate information to the accounting files. The operating
system allocates buffers for this purpose--establishing as many
buffers as t~e number of tasks that can simultaneously run on the
system. This error indicates that all of these buffers are in use.
It is the result of a logical inconsistency and probably indicates a
hardware failure. Please take a memory dump if possible (see
Section 3.9) and send it to Technical Systems Consultants for
analysis.

No destination page during fork.
When the operating system executes a "fork" system call, it first
makes a complete copy of the task. It puts as much of this copy as
possible in memory; the rest goes in the paging space. This error
indicates that the operating system was unable to locate the part of
the task that it wrote to the paging space. It is the result of a
logical inconsistency and probably indicates a hardware failure.
Please take a memory dump if possible (see Section 3.9) and send it
to Technical Systems Consultants for analysis.

Out of memory and paging space.
No memory is available to the operating system, and no paging space
is available to free up some memory.

8.3

68xxx UniFLEX. System Manager' s Guide

Out of paging space.
The system needed to transfer some data from memory to the paging
space and thought that paging space was available. However, it was
unable to find any. You,can either increase the size of the paging
space with the "alterpage" command or use the "tune" command (see
Chapter 9) to decrease the number of tasks the system can support at
one time.

Overflow in task table.
The operating system thought it could create an entry in the task
table for a task, but when it tried to do so, it found that the task
table was full. This error is the result of a logical inconsistency
and probably indicates a hardware failure. Please take a memory
dump if possible (see Section 3.9) and send it to Technical Systems
Consultants for analysis.

Overflow in text table.
The users tried to execute too many shared-text
simultaneously. You can change the number of shared-text
allowed with the "tune" command (see Section 9.4.19).

Paging page already free.

programs
programs

One part of the operating system tried to free a page on the paging
device, but another part of the operating system thought that that
page was already free. This error is the result of a logical
inconsistency and probably indicates a hardware failure. Please
take a memory dump if possible (see Section 3.9) and send it to
Technical Systems Consultants for analysis. •

Underflow in TMAT page counter.
One of the internal data structures for the task (the task memory
allocation table) has been damaged. This error is indicative of a
hardware failure. Please take a memory dump if possible (see
Section 3.9) and send it to Technical Systems Consultants for
analysis.

8.4

Chapter 9

Fine-tuning the UniFLEX Operating System

9.1 Introduction

The "tune" command alters certain parameters which govern the behavior
and performance of the UniFLEX Operating System. Because different
systems are used and stressed in different ways, the optimal settings
for these parameters vary from site to site. Careful tuning of the
operating system allows you to get the best performance from your
system.

The "tune" command only changes the values of the parameters in the
specified file. It does not alter the copy of that file that is ~n
memory. Therefore, the changes have no effect until you boot the
operating system from the modified version.

9.2 Invoking the "tune" Command

The syntax for the "tune" command is

/etc/tune <file_name> [<param_list>] [+pPq]
/etc/tune <file_name> [+pPr]

9.2.1 Arguments

The "tune" command takes one obligatory and one optional argument:

The name of a file that contains a copy
of the operating system.
An optional list of the parameters to
change and of the values to assign to
them.

9.1

68xxx UniFLEX System Manager's Guide

9.2.2 Format for Arguments

The format of each element of the optional argument, <param_list> , is as
follows:

<param_name>=<num>

Sections 9.3 through 9.6 explain what parameters you can adjust.

9.2.3 Options Available

r Operate
for the
invokes
the use

in read-only mode. If you lack write permission
specified file, the "tune" command automatically
this option. The 'r' option is incompatible with
of a list of parameters. If you specify both,

"tune" returns an error.
p Include parameters associated with scheduling (see Section

9.6). You may change these parameters only if you invoke
the "tune" command in interactive mode.

P Include parameters associated with "phys" segments (see
Section 9.5). You may change these parameters only if you
invoke the "tune" command in interactive mode.

q Operate in quiet mode--that is, suppress all messages. You
can use this option only when you invoke the "tune" command
in automatic mode.

9.2.4 Modes of Operation

The "tune" command operates in three modes: read-only, interactive, and
automatic. The syntax you use to invoke the command determines the
mode.

9.2.4.1 Read-only mode

In read-only mode "tune" displays the current value, in the specified
file, of the parameters you select by your choice of options. You
cannot adjust any parameters in read-only mode.

9.2

Fine-tuning the UniFLEX Operating System

As system manager you can execute "tune" in read-only mode by specifying
the 'r' option. A user who does not have write permission for the file
being tuned can execute "tune" only in read-only mode. In such a case
the 'r' option is not necessary; "tune" automatically executes 1n
read-only mode.

9.2.4.2 Interactive mode

If you have write permission for the specified file and specify neither
a parameter list nor the 'r' option, "tune" executes in interactive
mode. In this mode it displays current values one by one. To change
the value of a parameter, enter the new value and a carriage return
following the display. To leave the value as is, type just a carriage
return.

Two kinds of adjustable parameters, those associated with scheduling and
those associated with "phys" segments, can only be changed from
interactive mode. However, the "tune" command does not prompt for
values for these parameters unless you use the appropriate options to
request it to do so (see Section 9.2.3).

The "tune" command imposes certain restrictions on the values of the
parameters it alters. If you try to set the value of a parameter
outside restrictions limits from interactive mode, "tune" responds with
an error message and does not let you proceed until you enter a valid
value.

9.2.4.3 Automatic mode

Instead of going through the entire list of parameters interactively,
you can specify values for most of them from the command line. (As
mentioned previously, you cannot change parameters related to scheduling
or to "phys" segments from the command 1 ine.) If you specify a value for
any parameter on the command line, the values of parameters not
specified do not change. After making the changes, "tune" displays a
list of all parameters and the values you specified. If any value
violates the restrictions mentioned previously, "tune" displays a
message to that effect and sends a bell (control-G) to the terminal.
Although the display shows whatever values you specified, "tune" does
not change the value of a parameter in the file unless the change is
valid.

9.3

68xxx UniFLEX System Manager's Guide

9.3 Adjustable Parameters--~ Overview

The object of adjusting parameters is to make your operating system
perform optimally. This section summarizes the functions of all the
adjustable parameters and gives the minimum, maximum, and default values
for each one. Detailed descriptions of the parameters and of the
advantages and disadvantages of changing them are discussed in the
following sections.

9.3.1 Functions of the Adjustable Parameters

Table 9-1 briefly describes the parameters that the "tune" connnand can
alter in automatic mode (from the connnand line). They are discussed in
more detail later in Section 9.4.

9.4

Fine-tuning the UniFLEX Operating System

Table 9-1. Parameters Adjustable in Automatic Mode

buffers
DST

files
io1ists
locked_recs

mounts

mS~Lbuf fer s

ms&....exchanges
ms&....size
page_dev
page_space
pipe_dev
root_dev
seelLrate
tasks
text_segs

timeouts
time_limit
time_zone

Description

Number of system buffers.
Flag for the observation of Daylight Savings Time

<0 indicates it is not observed locally; 1, that
it is).

The last day in the year that Daylight Savings Time can
end.

The first day in the year that Daylight Savings Time can
start.

The time of day at which the switch to or from Daylight
Savings Time occurs.

~~ximum number of files that can be open at one time.
Maximum number of lists of I/O characters.
Maximum number of entries allowed in the table of

locked files.
Naximum number of devices that can be mounted at one

time.
Maximum number of message buffers that can be used at one

time.
Maximum number of message exchanges.
Maximum size of each message buffer.
Device number or name of the paging device.
Default size of the paging space.
Device number or name of the pipe device.
Device number or name of the root device.
Seek rate of the floppy disk drive.
Maximum number of active tasks the system can support.
Maximum number of unique shared-text programs that

the operating system can execute at one time.
Maximum number of pending timed-events.
Maximum CPU time allowed per user task.
Time difference in minutes between local time and

Universal Time. A positive value of "time_zone"
indicates the number of minutes west of Greenwich;
a negative value, the number of minutes east.

Maximum number of active tasks each user can create.

In addition, you can change the parameters associated with "phys"
segments if you invoke the "tune" command in interactive mode with the
'P' option. (If you specify the 'P' option with either the 'r' option
or with a list of parameters to change from the command line, "tune"
displays the values of these parameters but does not allow you to change
them.) Table 9-2 gives a brief description of these parameters.

9.5

68xxx UniFLEX System Manager's Guide

Table 9-2. "Phys" Parameters

Name Description
-----------------~-----~-------------------------------------
Logical Address
Physical Address
Segment Size

The base logical-address of the segment.
The base physical-address of the segment.
The number of 4-Kbyte pages per segment.

Finally, you can change the values of certain parameters associated with
scheduling. These parameters are used in determining two dynamic
variables for each task: "CPU utilization", which directly influences a
task's priority (see Section 9.6.3); and "quantum", the number of ticks
a task have in the CPU before a task of equal priority can displace it
(see Section 9.6.4). A tick is 10 milliseconds.

Table 9-3. Scheduling Parameters

Name

Max CPU Utilization

CPU Utilization
Increment/Hit

CPU Utilization Decay

Quantum Increment

Max Quantum

Description

The maximum value to which "CPU utilization" can
increase.

Measure of how fast a task's "CPU utilization"
increases each time the system catches it in
the CPU.

Measure of how quickly the value for "CPU
utilization" decays when a task is not using
the, CPU.

Number of ticks to add to "quantum" each time a
task gains access to the CPU.

The maximum value to which "quantum" can
increase.

9.3.2 Limits and Defaults for Adjustable Parameters

The operating system originally sets the values for all adjustable
parameters when it copies the file" /uniflex" from the master disk or
tape to a system disk. Table 9-4 shows the original values for all
parameters that you can tune in automatic mode, as well as the limits
the operating system imposes on them. You can determine the default
values for your particular system by running the "tune"connnand in
read-only mode on the "uniflex" file on your master disk.

9.6

Fine-tuning the UniFLEX Operating System

Table 9-4. Defaults and Limits for Parameters Adjustable in
Automatic Mode

<par am_name> Default Minimum Maximum
--
buffers sd 8 192
DST 0 0 1
DST_end 303 0 364
DST_start 96 0 364
DST_time 120 0 1439
files sd 16 1024
iol ists sd 0 512
locked_recs 32 0 Value of IIf il es"
mounts 5 2 32
mSLbuffers 256 0 32767
mSLexchanges 64 0 256
mSLsize 64 0 4096
page_ dev sd 0 sd
page_space 5000 256 1000000
pipe_ dev sd 0 sd
root_ dev sd 0 sd
seek_rate 0 0 sd
tasks sd 8 128
time_ limit 0 0 32767
text_segs 20 2 20
timeouts 32 2 256
time_ zone 300 -1440 1440
user_ tasks 10 5 Value of "tasks"
--
Notes: sd = system-dependent

The default value for every parameter associated with a "phys" segtJlent
is system dependent.

The operating system defines each of the scheduling parameters for each
class of task it recognizes (see Section 9.6.2). The minimum, maximum,
and default values for each of these parameters are shown in Table 9-5.
The values shown as maximum values are not, strictly speaking, maxima.
The "tune II command does allow you to exceed them. However, if you
choose larger values, the behavior exhibited by the operating system may
not be what you expect.

9.7

68xxx UniFLEX System Manager's Guide

Table 9-5. Default Values and Limits for Scheduling Parameters

Name Default Minimum Maximum

CPU Personal ity

Max CPU Utilization 120 4 200
CPU Utilization Increment/Hit 5 1 20
CPU Utilization Decay 4 1 10
Quantum Increment 100 10 200
Max Quantum 100 10 400

TTY Personality
Max CPU Utilization 35 4 200
CPU Utilization ~ncrement/Hit 2 1 20
CPU Utilization Decay 2 1 10
Quantum Increment 50 10 200
Max Quantum '-20'0 ·");/00 10 400

DISK p'ersonality
Max CPU Utilization 75 4 200
CPU Utilization Increment/Hit 3 1 20
CPU Utilization Decay 3 1 10
Quantum. Increment 75 10 200
Max Quantum 150 10 400

PIPE Personality
Max CPU Utilization 50 4 200
CPU Utilization Increment/Hit 3 1 20
CPU Utilization Decay 4 1 10
Quantum Increment 125 10 200
Max Quantum -*75 t> 375' 10 400

9.4 Parameters Adjustable in Automatic Mode

9.4.1 System Buffers

The parameter "buffers" determines the number of blocks reserved for the
buffer cache. The minimum number of blocks in the buffer cache is 8;
the maximum, 192. The default is system-dependent. The number of
blocks reserved for the buffer cache must be a mUltiple of 8.

When the operating system searches the
block, it must search sequentially. Thus,
the greater the time spent searching it.
system is used, you may see a degradation
increase the size of the cache.

9.8

buf fer cache for a particular
the larger the buffer cache,
Depending on how heavily your
in system response as you

Fine-tuning the UniFLEX Operating System

The advantage of increasing the size of the buffer
system does not need to access the disk as often.
operation may therefore increase.

9.4.2 Lists of I/O Characters

cache is that the
The overall speed of

The operating system buffers both input to and output from terminals.
The parameter "iolists" refers to the maximum number of buffers of I/O
characters the system can support. The number of I/O buffers supplied
with the operating system is system-dependent. The minimum is 0; the
maximum, 512.

A single terminal can access no more than 20 buffers. The maximum
useful value for "iolists" is, therefore, the number of terminals on the
system multiplied by 20. All systems, however, are limited to the
max~mum of 512. If your system slows down noticeably when terminal
activity is high, increase the value of "iolists".

9.4.3 Daylight-Savings-Time Flag

The Daylight-Savings-Time flag, IIDST", indicates whether or not Daylight
Savings Time is observed locally. A value of 0 indicates that it is
not; a value of 1, that it is. The default value is O.

9.4.4 Last Day of Daylight Savings Time

The parameter liD ST_endII specifies the latest day in the year on which
Daylight Savings Time can end, ignoring the effect of the extra day in a
leap year (the system automatically makes that adjustment if
appropriate). The default value is 303. The minimum value is 0
(January 1); the maximum, 364 (December 31).

For example, the algorithm currently in use in the United States ends
Daylight Savings Time on the last Sunday in October. The latest date
that day can be is October 31, which is the 304th day of the year.
Because the parameter is zero-based, the appropriate value for "DST_end"
in this case is 303.

9.9

68xxx UniFLEX System Manager's Guide

9.4.5 First Day of Daylight Savings Time

The parameter "DST_start" specifies the latest day in the year on which
Daylight Savings Time can start, ignoring the effect of the extra day in
a leap year (the system automatically makes that adjustment if
appropriate). The default value is 96. The minimum value is 0 (January
1); the maximum, 364 (December 31).

For example, the algorithm currently in use in the United States starts
Daylight Savings Time on the first Sunday in April. The latest date
that day can be is April 7, which is the 97th day of the year. Because
the parameter is zero-based, the appropriate value for "DST_start" in
this ca se is 96.

9.4.6 Time of Day for Daylight Savings Time

The parameter ''DST_time'' specifies the time of day (expressed as then
number of minutes past midnight) at which the switch to or from Daylight
Savings Time occurs. The minimum value is 0; the maximum, 1439. The
default is 120 (i.e., 2:00 A.M.).

9.4.7 Maximum Number of Open Files

The parameter "files" refers to the number of open files that the
operating system can support at one time. The default value is
system-dependent. The minimum value is 16; the maximum, 1024.

The operating system maintains a table that tells which files are open.
As the number of entries in the table increases, the time required to
search the table also increases. You may, therefore, see some
degradation in system response as you increase the value of "files".

On the other hand, you may see an improvement in performance as you
increase the value of this parameter. The information about an open
file, is stored in memory in a cache of file descriptor nodes (the fdn
cache). Even when ,a user closes the file, the information about the
file stays in this cache until it is full. When a user opens a file,
the operating system first looks in the fdn cache for the information it
needs about the file. If the information is already there, the system
need not access the disk. Thus, as the size of the fdn cache increases,
the speed of the operating system may increase.

9.10

The point at which the
balance each other
used.

Fine-tuning the UniFLEX Operating System

increase and decrease in system performance
depends on the way in which a particular system is

Although you can change the number of open files that the system can
support, you cannot change the number of files that one task can open.
That number is restricted to 32.

9.4.8 Maximum Number of Locked Records

Whenever a user locks a record (by invoking the "lrec" system call), the
operating system makes an entry in its table of locked records so that
other users can check to see whether or not the records they want to
access are locked. The parameter "locked recs" determines how many
entries this table can contain. If you try to lock a record when the
table is full, the operating system returns an error.

If the users on your system lock records frequently, you may want to
increase the value of "locked_recs" above the default value of 3 2. The
minimum value you can use for this parameter is 0; the theoretical
maximum, 128. However, for any given system the practical maximum is
the same as the value of the parameter "files" (see Section 9.4.7).

9.4.9 Maximum Number of Mounted Devices

The value of the parameter ''mounts'' determines how many mount.ed devices
the operating system can support at one time. The default value for
"mounts" is 5. The minimum value is 2; the maximum, 32. Although you
cannot unmount the root directory, it is a mounted device.

9.4.10 Maximum Number of Message Buffers

The value of the parameter ''mss-buffers'' determines how many buffers the
operating system can use at one time for intertask communication (see
the documentation for "mss-receive" in the Introduction ~ UniFLEX
System Calls).

9.11

68xxx UniFLEX System Manager's Guide

The default value is 256. The minimum value is 0; the maximum, 32767.

9.4.11 Maximum Number of Message Exchanges

The value of
exchanges the
documentation
Cal1s) •

the parameter ''ms&.-exchange" determines how many message
operating system can open at one time (see the

for "ms&.-attach" in the Introduction!.Q. UniFLEX System

The default value is 64. The minimum is 0; the maximum, 256. No matter
how many exchanges the system can support, an individual task can attach
to no more than thirty-two message exchanges at a time.

9.4.12 Size of Message Buffers

The value of "ms &.-size" determines the maximum length of a message that
you can send from one task to another (see the documentation for
"ms&.-receive" in the Introduction!.Q. UniFLEX System Cal1s).

The default value is 64. The minimum is 0; the maximum, 4096.

9.4.13 Paging Device

The value of the parameter "page_dev" describes which block device the
operating system is to use for paging. It stores the number as a 2-byte
hexadecimal number whose first byte is the major device number of the
page device and whose second byte is the minor device number of the page
device (see ~ UniFLEX Hardware Setup Notes). To specify the value
in decimal, use the following format:

To specify the value in hexadecimal use the same format, but place a
dol1ar sign, '$', before the major device number.

You can also specify the page device by name:

9.12

Fine-tuning the UniFLEX Operating System

The default value for "page_dev" is system dependent. Reasonable
minimum and maximum values are also system dependent (see ~ UniFLEX
Hardware Setup Notes). The "tune" command, however, does not have
enough information to determine whether or not the number you specify is
a reasonable value. It is, therefore, safer to specify the device by
name.

Changing the paging device to a device reserved for paging may improve
system performance because the head of that disk drive always remains
over the paging space.

9.4.14 Default Paging Space

The parameter "page_space" tells the operating system how many 4-Kbyte
pages to allocate for paging in its internal tables. The minimum value
is 256; the maximum 1,000,000. The default is 5,000.

The operating system builds the internal tables before it can read the
disk to determine how much paging space ~s truly available. If
"page_space" is greater than the amount of actual paging space, you get
no more space but only build a table that is larger than necessary. If
"page_space" is less than the actual paging space, you cannot access all
the paging space on the disk. You should therefore tune your system so
that "page_space" is the same as the amount of paging space on the disk.

9.4.15 Pipe Device

The parameter "pipe_dev" tells the operating system which device to use
for creating pipes. You specify the value of "pipe_dev" just as you
specify the value of "page_dev" (see Section 9 .4.13). The default,
minimum, and maximum values are also the same.

In order for the system to function properly, the pipe device must
always be the same as either the root device or the paging device.

9.13

68xxx UniFLEX System Manager's Guide

9.4.16 Root Device

The parameter "root_devil tells the operating system which device
contains the root directory. You specify the value of "root_devil just
as you specify the value of "page_dev" (see Section 9.4.13). The
default, minimum, and maximum values are also the same. Changing the
root device does not affect the performance of the operating system.

9.4.17 Seek Rate of the Floppy Disk Drives

The floppy disk driver tells the hardware how fast to try to move the
heads of the floppy disk drives from one track to an adjacent track.
The parameter "see!Lrate" specifies this rate. If the rate is too fast,
the system does not function properly. If it is too slow, the system
wastes time.

The def aul t value of "see!Lrate" is O. The minimum is also 0; the
maximum is system-dependent, but the largest value for any system is
255. Consult the 68xxx UniFLEX Hardware Setup Notes for the
correspondence between the value of "seek_rate" and the seek rate of
your system.

9.4.18 Maximum Number of Tasks Supported

Although only one task can occupy the CPU at any given time, the
operating system can support more than one "active task". An a~tive
task is simply a task to which the operating system has assigned a task
ID. The operating system maintains a table of active tasks. The
parameter "tasks" determines how many entries this table can hold. The
default value of the number of tasks supported is system-dependent. The
minimum is 8; the maximum, 128.

Changing the maximum number of tasks that the system can support incurs
some overhead even if the number of active tasks does not change. As
the number of tasks that can be supported increases, the system may slow
down.

The parameter "tasks" determines the number of tasks that the system can
support. The number of active tasks allowed to an individual user is
determined by a different parameter, "user_tasks".

9.14

Fine-tuning the UniFLEX Operating System

9.4.19 Shared-text Programs

Certain UniFLEX programs that are both moderately large and frequently
used--such as the shell program and the editor--are shared-text
programs. No matter how many people are using these programs, the
operating system needs only one copy of the program in memory. The
parameter "text_segs" determines how many shared-text programs the
operating system can support. The default value is 20. The minimum is
2; the maximum, 20.

9.4.20 Time Limit for Tasks

The parameter "time_limit" determines the total number of
may spend in the CPU. If a task exceeds the time limit,
system terminates it abnormally.

seconds a task
the operating

The default value, which is 0, specifies that no time limit be imposed.
The minimum value is 0; the maximum, 32767.

9.4.21 Number of Time-outs

The parameter "time_outs" specifies the maximum number of pending
timed-events the system can support at one time. A pending timed-event
is something that the system knows it must perform after a specific
amount of time has passed. Waiting for a disk to come up to speed, for
instance, establishes a pending timed-event.

The default value of "time_outs" is 32. The minimum is 2; the maximum,
256. If the number of time-outs is insufficient, the operating system
may crash.

9.4.22 Setting the Time Zone

When you use the "date" command to set the date and time, the operating
system converts the time you enter into the number of seconds that have
passed since midnight, January 1, 1980, at the zeroth meridian (in
Greenwich, England). As it makes this conversion it must adjust the
result for the local time zone and for Daylight Savings Time, if it ~s
in effect. The value of the parameter "time_zone" is the number of

9.15

68xxx UniFLEX System Manager's Guide

minutes difference between local time and Greenwich Mean Time (Universal
Time). The value must represent a
is, it must be a mUltiple of 60.
indicates the number of minutes west
number of minutes east.

nonfractional number of hours--that
A positive value of "time_zone"
of Greenwich; a negative value, the

The default value of "time_zone" is 300 (the correct value for
Lafayette, Indiana, the birthplace of Technical Systems Consultants).
The minimum is -1440; the maximum, 1440.

9.4.23 Number of Tasks per User

The parameter "user_tasks" determines the maximum number of active tasks
an individual user can create. The default value is 10. The minimum is
5; the theoretical maximum, 25. However, for any given system the
practical maximum is the same as the value of "tasks". The same number
applies to all users except the system manager, who may run as many
tasks as the system can support.

The cost of increasing the value of "user_tasks" is negligible. You may
want to lower the number of tasks allowed to each user if your system
seems to be overloaded by a particular user.

Although varying the parameter "user_tasks" allows you to vary the
number of tasks each user can simultaneously execute, you cannot alter
the fact that anyone shell program supports a maximum of five
background tasks.

9.5 Parameters Associated with "~" Segments

If you invoke the "tune" command in interactive mode and specify the 'P'
option, you can alter the parameters associated with "phys" segments. A
"phys" segment is a section of memory that a task can readily access by
a system-dependent code. The default values for all parameters
associated with "phys" segments are system dependent, as is the number
of "phys" segments a system can support. The "tune" command prompts you
for information relating to each "phys" segment.

9.16

Fine-tuning the UniFLEX Operating System

9.5.1 Physical Address

You can specify the physical addr ess of a "phys" segment either as a
decimal number or as a hexadecimal number preceded by a dollar sign,
, $' .

9.5.2 Logical Address

If your system does not have a memory management unit (MMU), the value
you specify as the logical address of a "phys" segment should be the
same as the value of its physical address. If your system does have an
MMU, you can use any value for the logical address because the system
calculates the correct address when you boot it. You can specify the
address either as a decimal number or as a hexadecimal number preceded
by a dollar sign, '$'.

9.5.3 Segment Size

The value you specify as the size of a "phys" segment must be a number
between 1 and 32,767 inclusive. This number is the number of 4-Kbyte
pages in the "phys" segment. A value of 0 indicates that the "phys"
segment is not defined.

9.6 Parameters Associated with Scheduling

If you invoke the "tune" command in interactive mode and specify the 'p'
option, you can alter the adjustable parameters associated with task
scheduling.

9.6.1 Functions of the Scheduler

The scheduler determines which task controls the CPU. In order to
understand how the scheduler functions (and, therefore, how the
adjustable parameters influence scheduling) , you must be famil iar. with a
bit of scheduler jargon. An active ~ is any task to which the
operating system has assigned a task ID. The system assigns a priority
to each task and periodically reevaluates the priorities of all active

9.17

68xxx UniFLEX System Manager's Guide

tasks, giving control of the CPU to the task with the highest priority
(only one task can control the CPU at a time). The task that controls
the CPU is the currently executing~. While in control of the CPU a
task can execute system calls-- instructions which are executed by the
system on behalf of the user and which can access system resources
reserved for the operating system--or ~ instructions--instructions
written by the user which access only system resources that are
accessible to that user. A task that is waiting to use the CPU is an
executable~. A task that relinquishes the CPU to wait for the
completion of a system call is a suspended task. A task remains
suspended until the system call is complete; it cannot regain control of
the CPU while it is suspended.

The primary functions of the scheduler are to evaluate priorities and to
regulate the amount of time a task can spend in the CPU before being
displaced by a task of equal priority. Both of these functions require
the scheduler to assess the "personal ity" of each task in the system.

9.6.2 A Task's Personality

In order to make the scheduling algorithm more flexible, the scheduler
classifies each active task according to the kinds of demands it makes
on the system's resources. The classification ref lect s the scheduler's
best guess about the kind of system resources a task is 1 ikely to use.
The operating system recognizes four classes (personalities) of task:
tty (terminal) intensive, disk intensive, pipe intensive, and CPU
intensive. A tty-intensive task is one whose most recently executed
system call performed a character-oriented function such as writing to a
terminal. A disk-intensive task is one whose most recently executed
system call performed a disk-oriented function such as retrieving a
block of data from a disk. Similarly, a pipe-intensive task is one that
most recently performed a pipe-oriented function such as writing to a
pipe. A CPU-intensive task, on the other hand, is one that during its
last stay in the CPU either executed only user instructions or executed
system calls that accessed more than one type of system resource (e.g.,
disks and terminals).

The scheduler reevaluates, but does not necessarily change, the
classification of a task each time the task gains control of the CPU and
each time it executes a system call. Each time the scheduler changes a
task's classification, it also recalculates that task's priority.
Because priority calculations consume valuable system resources, the
scheduler reclassifies a task a maximum of once during any given stay in
the CPU. The scheduler follows these rules:

9.18

Fine-tuning the UniFLEX Operating System

1. When a task gains control of the CPU for the first time,
the scheduler classifies it as CPU-intensive.

2. If a CPU-intensive task executes a device-oriented
system call (one that accesses a terminal, disk, or
pipe), the scheduler immediately reclassifies the task
according to the type of device accessed.

3. If a non-CPU-intensive task executes a system call that
accesses a different type of device from the one on
which the classification is based (e.g. , if a
disk-intensive task writes to a pipe), the
classification does not immediately change.· Instead,
the scheduler notes that the task performed more than
one kind of device-oriented system call while it was in
control of the CPU.

4. When a task regains control of the CPU, the scheduler
does not change its classification unless the task
executed more than one kind of device-oriented system
call during its last stay in the CPU. Because the
scheduler has no way of guessing what kind of resources
such a task is likely to use, it gives the task its
original classification--CPU intensive.

9.6.3 Determining Priorities

Once each second the scheduler evaluates the priorities of all
executable tasks. In addition, it evaluates the priority of a task
whenever it switches from executing a system call to executing a user
instruction. Of the factors that go into the determination of a task's
priority, you can influence two: the bias and the "CPU utilization".

You can set the bias with either the "setpr" system call (see
Introduction £.Q. UniFLEX System Calls) or the "nice" command (see lli!!
UniFLEX Utility Commands).

"CPU utilization" is a dynamic parameter associated with each task. A
task begins with its value of "CPU utilization" equal to O. However,
this value changes depending on how much time the task spends in the
CPU. An increase in the value of "CPU utilization" lowers a task's
priority. You cannot directly alter the "CPU utilization", but you can
adjust several parameters that determine how quickly it changes. Each
of the parameters discussed here is defined four times--once for each
personality (see Section 9.6.2).

9.19

68xxx UniFLEX System Manager's Guide

9.6.3.1 Max CPU utilization

The adjustable parameter "max CPU util ization" sets an upper limit on
the value of "CPU utilization" for tasks of a given personality and,
therefore, on how much use of the CPU can affect the priority of those
tasks. The larger this number is, the more adversely use of the CPU can
affect the priority.

9.6.3.2 CPU utilization increment per hit

Each time the system clock ticks (every 10 milliseconds), the operating
system increments the "CPU utilization" of the task that is in the CPU
unless it has already reached the maximum. The value of the adjustable
parameter "CPU utilization increment per hit" defines the size of· the
increment for tasks of a given personality. It is a measure of the
price paid in terms of priority for use of the CPU. The larger this
number is, the more adversely each use of the CPU can affect the
priority.

9.6.3.3 CPU utilization decay

Whenever the operating system evaluates the priority of an executable
task, it decrements .the value of "CPU utilization" for that task. The
value of the adjustable parameter "CPU utilization decay" defines the
size of the decrement for tasks of a given personality. It is a measure
of the reward to a task's priority of not using the CPU. The larger
this number is, the more favorably inactivity affects the priority.

9.6.4 Determining Duration of Stay in the CPU

The length of time (measured in system ticks) that a task can stay in
the CPU before being displaced by a task of equal priority is determined
by its value of "quantum". "Quantum" is a dynamic parameter associated
with each task. A task begins with its value of "quantum" equal to O.
The value increases, up to a maximum, each time the task gains access to
the CPU. Each time the system clock ticks (every 10 milliseconds), the
oper:ating system decrements the value of "quantum" for the task in the
CPU by 1 tick •. When the value of "quantum" falls to 0, the task must
relinquish the CPU to an executable task of equal priority if one
exists. Although you cannot directly alter the value of "quantum", you
can adjust the parameters that determine how quickly it increases and
what its maximum value can be. Each of these parameters is defined four
times--once for each personal ity.

9.20

Fine-tuning the UniFLEX Operating System

9.6.4.1 Max quantum

The adjustable parameter ''max quantum" sets an upper limit on the value
of "quantum" for tasks of a given personality and, therefore, on how
long those tasks can remain in the CPU before being. displaced by a task
of equal priority.

9.6.4.2 Quantum increment

Each time a task gains access to the CPU, the operating system
increments its value of "quantum" unless it has already reached the
maximum. The value of the adjustable parameter "quantum increment"
defines the size of the increment for tasks of a given personality.

9.7 Examples

The following examples illustrate some uses of the "tune" command.

1. /etc/tune /uniflex +r
2. /etc/tune /usr2/uniflex tasks=32 page_dev=/dev/fdO +pP

The first example displays a list of
The current value of each item
directory appears in parentheses.

the items that "tune" can adjust.
ln the file "uniflex" in the root

The second example changes the specified parameters in the file
"uniflex" in the directory "/usr2". Presumably, a system disk is
mounted on "/usr2". This command sets the maximum number of tasks
allowed on the system to 32 and defines floppy drive 0 as the paging
device. In order for this particular version of the operating system to
be able to perform paging, a floppy disk formatted with paging space
must be in floppy drive O. This command also allows you to modify the
parameters related to both "phys" segments and task personal ity.

9.21

68xxx UniFLEX System Manager's Guide

9.8 Error Messages

This section describes the error messages returned by "tune".

"<dev_name> is not a block device.
The device specified is not a block device.

Illegal character in number: <num>
The value specified contains a character that is neither a digit
nor, if appropriate, a valid hexadecimal character.

Invalid option: '<char>'
The option specified by <char> is not a valid option to the
"tune" command.

Inval id parameter: "<par am>"
The parameter specified is not an adjustable parameter.

Invalid pipe device.
The pipe device must be the same as either the root device or
the paging device.

Not a configurable 68xxx UniFLEX(R) file.
The file specified must contain a copy of the UniFLEX Operating
System.

Syntax: /etc/tune <file_name> [<param_list>J [+pP]
/etc/tune <file_name> [+pPr]

The "tune" command requires exactly one argument. This message
indicates that the argument count is wrong.

The 'q' option is incompatible with interactive and read-only
modes.
You may specify the 'q' option only when you are changing
parameters from the command line.

The 'r' option is incompatible with command-line parameters.
The 'r' option, which tells "tune" to operate in read-only mode,
conflicts with the specification of parameters on the command
line. The command is aborted.

***Value must be a mUltiple of <num>.
The value for the number of buffers in the system must be a
multiple of 8. The value for the time zone must be a multiple
of 60.

***Value out of range
The value specified
acceptable values.
square brackets.

[nuni l, num 2]
for ~ param;ter is not within the range of
The limits of the range are shown inside the

9.22

Fine-tuning the UniFLEX Operating System

You must be system manager to change or adjust values.
Only the system manager can alter an adjustable parameter.

9.23

9.24

Chapter 10

Repairing a Damaged Disk

10.1 Introduction

The UniFLEX Operating System includes a utility, "diskrepair", which
checks the structure of the disk or disks specified on the command line.
The structure of a disk refers to the layout of and the connections
among files, directories, free space, paging space, and other
information that makes up the file system. "Diskrepair" detects any
inconsistencies in the structure of the disk and, optionally, repairs
them. Although "diskrepair" does not methodically search for and repair
media (I/O) errors, it can take care of any bad blocks it discovers. If
the' a' option is in effect when "diskrepair" encounters an I/O error,
it calls the utility "/etc/badblocks", which places the offending block
in the bad-blocks file, "/. badblocks" (see 68xxx UniFLEX Utilities
Commands).

While it is operating, "diskrepair" calls two other
utilities--"blockcheck" and "fdncheck", which are both located in the
directory "/etc". "Blockcheck" is concerned with the allocation of
blocks on the disk. It locates problems such as duplicate blocks,
missing blocks, and invalid block addresses. "Fdncheck" is concerned
with the directories on the disk. It locates problems such as
unreferenced files, directory entries with invalid associated files, and
so forth. These errors are discussed in more detail later 1n this
chapter.

l'Diskrepair" performs some tasks that are not directly related to the
logical structure of the disk. These prel iminary tasks are essential to
the proper performance of the utility. The heart of the program, which
actually checks the structure of the disk, consists of the following six
phases:

Phase I--Gheck allocated blocks
Phase 2--Scan directories
Phase 3--Gheck unreferenced directories
Phase 4--Check file and directory links
Phase 5--Check free lists
Phase 6--Gheck SIR information

10.1

68xxx UniFLEX System Manager's Guide

This chapter discusses each of the phases, as well as the other tasks
performed by "diskrepair", in chronological order. The appropriate
error messages, with the exception of the messages resulting from
physical errors, are documented with each section. Messages resulting
from physical errors are documented in Section 10.14. In addition,
Section 10.15 consists of an index of error messages which directs you
to the page on which each message is explained.

10.1.1 Structure of a UniFLEX Disk

Before you can understand what "diskrepair" does, you must understand
some things about the structure of a UniFLEX disk. When the operating
system formats a disk, it writes the system information record (SIR) to
the second block on the disk, block 1. The SIR contains information
describing the layout of the remainder of the disk. This information is
essential to the successful execution of the operating system. The rest
of the disk consists of contiguous-file space, paging space, volume
space, and file descriptor nodes.

Paging space is a section of the disk that is reserved for storing
portions of tasks that the operating system removes from memory to make
room for tasks of higher priority. Paging space is not necessary on a
disk that is to contain only data, but every system disk needs some
paging space (see Section 3.4).

Normally when a disk is formatted, most blocks on it are available for
storing data in regular files and directories. The addresses of these
available blocks are maintained in a "free list". When a noncontiguous
file needs a block, the operating system removes an address from the
free list and associates the block at that address with the file Ln
question. The combination of the blocks used in files and the blocks in
the free list is known as the volume space.

The addresses of blocks available for contiguous files are maintained in
a separate free list. When a contiguous file needs a block, the
operating system removes an address from the contiguous-file free-list
and associates the block at that address with the file in question. The
combination of the blocks used in contiguous files and the blocks in the
contiguous-file free-list is known as the contiguous-file space. Not
all operating systems support contiguous files (see Preface).

When you format a disk (using one of the versions of the "format"
command), the operating system reserves a certain number of blocks
(determined by the 'f' option) for file descriptor nodes (fdns). An fdn

10.2

Repairing a Damaged Disk

contains all the information that the operating system needs to know
about a file. This information includes but is not limited to the type
of file, the owner of the file, the size of the file, and the address of
each block that is part of the file.

Whenever the operating system creates a file, it makes an entry in the
parent directory. The entry contains the name of the file and the
number of the fdn assigned to that file. It is possible for more than
one directory entry to point to the same fdn; each of these entries is
called a link. Each link results in another name for a file which
already exists. However, no matter how many links there are to a file,
only one fdn describes the file itself. Thus, each file on the disk
should correspond to exactly one fdn.

The information in the SIR and the fdns establishes the logical
structure of the disk. "Diskrepair" checks this structure and,
optionally, repairs the errors it finds. It is able to do so because
some of the information on the disk is redundant. For instance, the
link count for a file (the number of directory entries that point to the
fdn for that file) is stored in the fdn itself for quick reference.
However, as "diskrepair" looks at the structure of the disk, it checks
every directory entry and keeps track of how many times each fdn is
referenced. If the number of direct references (or links) to an fdn
does not agree with the the number stored in the fdn itself,
"diskrepairll can easily change the number in the fdn.

10.1.2 Physical Errors on the Disk

''Diskrepairll is not a substitute for maintaining proper backups. For
one thing, it cannot repair physical errors. A physical error ~s an
error from the hardware, usually caused by physical damage to the
medium, which prevents the operating system from reading from or writing
to the medium. If at any time IIdiskrepair" encounters a physical error
on the disk, it prints one of the following messages:

Error reading block <block_num>.
Error writing block <block_num>.
Error reading fdn <fdn_num> in block <block_ntml>.
Error writing fdn <fdn_ntnn> in block <block_num>.

followed by the prompt:

-----> Continue?

10.3

68xxx UniFLEX System Manager's Guide

If you see one of these messages, your disk is probably physically
damaged. In general, if you choose to continue with "diskrepair", the
results are entirely unpredictable. They depend on precisely which
block is damaged. Continuing, with "diskrepair" may cause further damage
to the disk, but in some cases it may be the qesired course of action.
If you choose not to continue, "diskrepair" aborts.

We suggest that you respond negatively to the prompt to continue the
first time "diskrepair" reports an I/O error and that you iIlDD.ediate1y
rerun "diskrepair". It is possib1e--though unlike1y--that the I/O error
is a soft one and will not recur. If the error does recur, respond
negatively to the prompt to continue and iIlDD.ediate1y rerun "diskrepair"
with the 'a' option (see Section 10.2.1).

In many cases if you choose to continue, you receive another message
which describes what "diskrepair" was trying to do when it encountered
the I/O error (see Section 10.14).

10.1.3 Limitations of "diskrepair"

''Diskrepair'' cannot solve all the prob1 ems your disk may have. As
mentioned in the preceding section, it cannot fix physical problems on
your media (but see Section 10.2.1). As for problems with the logical
structure of the disk, "diskrepair" can only repair an error if the
damaged information is redundant--that is, if there is some way of
determining what the information should be. It cannot, f.or example,
repair a badly damaged SIR; nor can it repair a disk if the root
directory is severely damaged.

Now that you have been warned that "diskrepair" cannot fix all the
problems that may arise when a disk is damaged, let's look at how it
functions and at the large number of things that it can do.

10.2 lli Command Line

The syntax for "diskrepair" is as follows:

/etc/diskrepair [<dev_name_1ist>] [+<abBfmMnpqruv>]

where <dev_name_list> is a list of the names of the devices to check.

10.4

Repairing a Damaged Disk

Brief descriptions of the options which are available follow:

a Automatically place in the file "f.badblocks" any bad
blocks encountered. Continue to run "diskrepair" until
the disk is repaired or the program has executed ten
times.

b Perform "blockcheck" only.
B Ignore sector zero.
f Perform "fdncheck" only.
m Ignore missing blocks is both free lists.
M Check only to see whether or not the "mount flag" on the

disk is set. If it is, clear it.
n Do not attempt to fix errors.
p Prompt for permission to repair.
q Use quiet mode.
r Rebuild both free lists whether or not they are in error.
u Report on the usage of disk blocks.
v Use verbose mode.

If you execute "diskrepair" without any opt ions, it does what it can to
repair structural errors on your disk. You can, however, modify its
behavior by specifying various options on the command line. In
particular, if you invoke the 'p' and 'v' options, "diskrepair" reports
its progress in greater detail and prompts you for permission before
making any repairs. In order to give you a more detailed explanation of
the "diskrepair" command, this chapter assumes that you have specified
both the 'p' and 'v' options on the command line. In the absence of the
'p' option, "diskrepair" behaves as if it had prompted you for a
response before each repair and you had answered positively.

Detailed descriptions of the options follow.

10.2.1 The 'a' Option

The 'a' option tells "diskrepair" to call the "badblocks" command
whenever it encounters a bad block. "Badblocks" then sequesters the
block in the file "f.badblocks". Each time it calls "badblocks",
"diskrepair" sends the following message to standard error:

Calling "fetc /badblocks" to remove bad block.

The 'a' option also tells "diskrepair" to run continuously until either
the disk is fixed or the program has executed ten times. Each time
"diskrepair" starts over, it sends the following message to standard
error:

10.5

68xxx UniFLEX System Manager's Guide

Rerunning "diskrepair" on "<dev_name>".

10.2.2 The 'b' Option

The 'b' option instructs "diskrepair" to run only the "blockcheck"
portion of the utility. This procedure is often considerably faster,
but still provides a fairly complete assessment of the validity of the
structure of the disk.

10.2.3 The 'B' Option

Normally "diskrepair" tries to read sector zero to make sure that the
disk being checked was not created by the "backup" command. You can, if
necessary, bypass this check by specifying the 'B' option, which
instructs "diskrepair" to ignore sector zero. You should only do so if
"diskrepair" aborts because it cannot read sector zero.

10.2.4 The 'f' Option

The 'f' option instructs "diskrepair" to run only the "fdncheck" portion
of the utility. This option is useful if you suspect a problem exists
in the directory structure, but the result is by no means a thorough
check of the structure of the disk.

10.2.5 The 'm' Option

The operating system maintains a list of blocks available for use by
noncontiguous files called the free list and a list of blocks available
for use by contiguous files called the contiguous-file free-list. A
missing block is any block in the volume space or the contiguous-file
space which is not a part of any file and is not in one of the free
lists. The existence of such blocks is a harmless error in the
structure of the disk. "Diskrepair" generally places missing blocks in
the appropriate free list. The 'm' option, however, instructs
"diskrepair" not to rebuild either free list solely on account of
missing blocks. This option reduces the time required for "diskrepair"
to run if missing blocks are the only problem in one or both of the free
lists.

10.6

Repairing a Damaged Disk

10.2.6 The 'M' Option

The 'M' option instructs "diskrepair" to bypass all but one of its usual
functions. If you specify the 'M' option, "diskrepair" simply checks to
see whether or not the ''mount flag" on the disk it is examining is set.
If the flag is not set, "diskrepair" terminates. If it is set,
"diskrepair" clears it, then terminates. This option may be useful if
your system crashes (see Chapter 11).

10.2.7 The 'n' Option

The 'n' option tells "diskrepair" to report all errors but to make no
attempt to fix them. Therefore, "diskrepair" opens the device for
reading only. This option is useful for checking the structure of a
disk without risking the loss of data during repairs.

10.2.8 The 'p' Option

If you specify the 'p' option, "diskrepair" reports each error, followed
by a prompt requesting permission for the proposed repair. All prompts
require an answer of either 'y' ("yes") or 'n' ("no").

Many repairs result in the loss of data. (You can generally infer what
has been lost from the messages "diskrepair" displays.) Judicious use of
the 'n' and 'p' options not only allows you to assess the damage to the
disk and to decide which information you are willing to sacrifice during
the repair process but also gives you the opportunity to try to salvage
the data (if salvage is possible on your system) before repairing the
disk. Methods of salvaging data from a damaged disk are discussed in
Chapter 11.

10.2.9 The 'q' Option

The 'q' option suppresses certain warnings and messages from
"diskrepair". Several conditions exist which, while not technically
errors in the structure of the disk, may cause problems. These
conditions usually result 1n a warning message; the 'q' option
suppresses such messages.

10.7

68xxx UniFLEX System Manager's Guide

10.2.10 The 'r'Option

By default, if "diskrepair" finds that either free list is in error, it
rebuilds it. The 'r' option i..nstructs "diskrepair" to rebuild both free
lists whether or not they contain errors. This option may save some
time if you know that one of the free lists is bad. You can also use it
to reduce fragmentation within the free lists.

10.2.11 The 'u' Option

The 'u' option generates a report on the block usage of the specified
device. This report is printed at the end of the "diskrepair"
operation. It contains statistics on (1) the number of each type of
file in the file system and the total number of files in the system, (2)
the number of unused blocks and the number of used blocks in the volume
space, including a breakdown of how the used blocks are allocated, (3)
the number of unused blocks and the number of used blocks in the
contiguous-file space, and (4) the number of free fdns and the number of
fdns in use.

10.2.12 The 'v' Option

"Diskrepair" operates in one of two modes: simple or verbose. Simple
mode is selected by default; verbose mode is selected by the 'v' option.
In simple mode "diskrepair" reports only those errors which require the
deletion of either directory entries or files. In verbose mode
"diskrepair" reports all errors. In addition, it sends to standard
output informative messages telling you which phase it is in.

In verbose mode the 'p' option causes "diskrepair" to prompt for
permission to make any changes to the disk. In simple mode "diskrepair"
prompts you only for permission to make changes which require the
deletion of either directory entries or files; it automatically repairs
all other errors without prompting.

10.3 Preliminary Checks

Before "diskrepair" even begins to check the structure of the disk, it
makes several pr,eliminary checks, which are necessary to ensure that the
utility can function properly.

10.8

10.3.1 Command-line Options

First of all, "diskrepair" checks the
specified as an option on the command line.
valid option, "diskrepair" tells you

Invalid option: '<char>'.

Repairing a Damaged Disk

validity of each character
If any character is not a

If the options you specify conflict with each other, it tells you

Conflicting options.

In either case, "diskrepair" aborts.

10.3.2 Specified Device

Next, "diskrepair" looks at the device or devices you specified on the
command line. If you specify a nonexistent device or if you fail to
specify a device, "diskrepair" responds with the appropriate message:

No such device.
"<dev_name>" ignored.

or
No device specified.

The first of these messages is not fatal unless you specified only one
device on the command line. The second is always fatal.

''Diskrepair'' can only
determine whether or not
block device. If it is

Not a block device.

operate on a block device. Therefore, it must
the device specified on the command line is a
not, "diskrepair" issues the following message:

This message, too, is fatal to "diskrepair".

10.9

68xxx UniFLEX System Manager's Guide

10.3.3 Backup Devices

If you have correctly specified a device,
first sector of the disk to make sure that
the "backup" command. If that sector is
you

Cannot read sector zero.

"diskrepair" looks at the
the disk was not created by
damaged, "diskrepair" informs

It then aborts. If you are certain that the disk is was not created by
the "backup" command, it is safe to invoke "diskrepair" with the 'B'
option, which tells it to ignore sector zero (see Section 10.2.3).

If "diskrepair" can read the first sector of the disk and discovers that
it is a disk created by "backup", it sends the following message to
standard error:

Cannot check a "backup" disk.

The program then aborts.

10.3.4 Permissions

If you execute "diskrepair" without the 'n' option, you must have both
read and write permission on the specified device; with the 'n' option,
you need only read permission. If you do not have the necessary
permissions, "diskrepair" informs you:

Permission denied.

The program then aborts.

10.3.5 Unmounting a Mounted Disk

With the exception of the root device (see Section 9.4.16) "diskrepair"
cannot alter a disk if it is in use. Therefore, when checking any other
device, "diskrepair" determines whether or not the specified disk is
mounted, and, unless you specify the 'n' option, it unmounts a mounted
disk before proceeding. If any user's working directory is on the
device or if any file on the device is being accessed when "diskrepair"

10.10

Repairing a Damaged Disk

tries to unmount it, the unmount procedure fails and the following
message appears on your screen:

Device is busy.

Although "diskrepair" can unmount a mounted disk,
user from mounting the disk while "diskrepair" is
yourself must assume that responsibility.

it cannot prevent a
in progress. You

If "diskrepair" encounters some other problem when it tries to tmmount
the device, it responds

Unmount error <error_num>.

where <error_num> is the number of the UniFLEX error that caused the
failure. Consult the operating system manual for an explanation of the
error.

If the 'n' option is in effect, "diskrepair" does not need to tmmount a
mounted disk because it cannot write to the disk. However, when running
"diskrepair" with the 'n' option, you should make sure that no one else
is using the disk that you are testing. The results of running
"diskrepair" while someone is using the disk are unreliable.

10.3.6 Checking the Root Device

You can use "diskrepair" to check the structure of the root device, but
in order to perform correctly, the utility must suspend all other tasks
running on the system. After invoking the system call to do so,
"diskrepai.r" waits for 5 seconds to give all tasks a chance to handle
the suspension gracefully. During those 5 seconds any input to
"diskrepair" (such as a control-C) is lost. We recommend that you
refrain from typing (except to interrupt or respond to "diskrepair")
until "diskrepair" releases all tasks from suspension. Although the
operating system can continue to accept input, the suspended tasks
cannot process it, and if you type more than 255 characters, you will
lose some data.

If for some reason "diskrepair" cannot suspend all tasks, it returns the
following message before either aborting or proceeding to the next
device:

10.11

68xxx UniFLEX System Manager's Guide

Cannot suspend running tasks.
"<dev_name>" ignored.

When "diskrepair" is done, it first updates the disk if necessary, then
allows all suspended tasks to resume. Of course, if "diskrepair" shuts
down the system, the suspended tasks cannot resume; they are lost.

10.3.7 Status of the Root Directory

As its final preliminary check, "diskrepair" tries to read the fdn which
describes the root directory. If, for any reason, it cannot access this
fdn, it reports

Cannot access fdn for root device.

This error is fatal to "diskrepair". It is unlikely that you will be
able to salvage data from the disk (see Chapter 11), and you must
eventually rebuild the system.

10.4 Calling "blockcheck"

At this point, "diskrepair" calls the utility "/etc/blockcheck". If it
cannot read or execute that file, it tells you

Cannot call "/etc/blockcheck".

It then proceeds to the next device, if you specified one. • Otherwise,
it aborts.

After successfully accessing "blockcheck", "diskrepair" checks to make
sure that it is the proper version of the utility. If it is not, it
aborts after reporting:

"/etc/blockcheck" is invalid.

Next, "blockcheck" tries to open the specified device. If it fails, it
reports

10.12

Repairing a Damaged Disk

Cannot open device.

If you
aborts.

specified only one device on the command line, "diskrepair"
Otherwise, it prints the message

"<dev_name>" ignored.

It then proceeds to the next device.

10.4.1 Abnormal Termination of "b1ockcheck"

If for any reason "b1ockcheck" terminates abnormally--that is, receives
a program interrupt from the operating system--"diskrepair" issues the
following message before it aborts:

"B1ockcheck" terminated abnormally (status = <num».
"Diskrepair" aborted for "<dev_name>".

Such a message is not indicative of a problem with either "diskrepair"
or the device. You should try to run "diskrepair" again, for the
problem may not recur. If the problem persists, it is probably caused
by malfunctioning hardware. Contact Technical Systems Consultants for
assistance.

10.4.2 Improper I/O Redirection

When testing the structure of
redirect either standard output or
test) to a file on the disk you
you receive the following message:

a disk, it is impractical to try to
standard error (the results of the
are testing. If you do try to do so,

Output directed to device under test.

In such a case, "diskrepair" aborts.

While it is checking the validity of any I/O redirection, "diskrepair"
must access the fdns of whatever files are open as standard error and
standard output. If for any reason "diskrepair" cannot read one or both
of these fdns, it prints whichever of the following messages LS

appropriate:

10.13

68xxx UniFLEX System Manager's Guide

Cannot access fdn for standard error.
Cannot access fdn for standard output.

In such a case you should reinvoke "diskrepair" with the terminal as the
standard I/O channel that caused the problem.

10.5 Preliminary Checks .2!! the. SIR

10.5.1 Accessing the SIR

Before proceeding with the tests on the structural integrity of the
disk, "blockcheck" tries to read the SIR. If the SIR has been damaged
so badly that "blockcheck" cannot read it, it reports:

Cannot read System Information Record.

This error is fatal to "diskrepair". You may be able to salvage some
information from the disk (see Chapter 11), but you must reformat it.

10.5.2 Size of Disk

"Diskrepair" checks to see that the size of the disk is within the range
that it can handle. The current limit is approximately 400 Megabytes.
If the data in the SIR indicate that the disk is larger than this limit,
"diskrepair" issues the following message:

Disk too large or bad size in SIR.
"<dev_name>" ignored.

This error, too, is fatal to "diskrepair". You may be able to salvage
some information from the disk (Chapter 11), but you must reformat it.

10.14

Repairing a Damaged Disk

10.5.3 Fdn Count

"Diskrepair" reads the SIR to determine how many blocks on the disk are
reserved for use as fdns. It checks to see that (1) the number of fdns
does not exceed 65,528 (the maximum allowed by the operating system) and
(2) the number of blocks allocated for fdns does not exceed the size of
the disk. If either limit is exceeded, "diskrepair" issues the
following message:

Too many fdn blocks: <num>.
"<dev_name>" ignor ed.

This error is fatal to "diskrepair". You may be able to salvage some
information from the disk (see Chapter 11), but you must reformat it.

10.5.4 First Block of Paging Space

The SIR contains the address of the first block of the paging space. It
also contains information that allows "diskrepair" to calculate
independently what that address should be. If the calculated address is
less than the address stored in the SIR, a contradiction exists: some
blocks that are in the volume space are also in the paging space. If
this situation arises, "diskrepair" issues the following message:

Volume space overlaps paging space.
-----> Assume volume space correct and fix?

If you respond
, ,
n , "diskrepair" aborts with the message

"<dev_name>" ignored.

If you respond 'y', "diskrepair" assumes that the address it calculated
is correct and rewrites the SIR with the calculated address as the
address of the first block of the paging space.

If the calculated address is greater than the address stored in the SIR,
the net result is a hole in the map of the disk: the volume space ends
before the paging space begins. The intermediate blocks are
inaccessible. Although this situation wastes some disk space, it does
not cause any logical inconsistencies in the structure of the disk.
Therefore, "diskrepair" considers the disk intact, but it issues the

10.15

68xxx UniFLEX System Manager's Guide

following warning:

WARNING: <num> unassigned b19Cks between volume space and
paging space.

10.5.5 First Block of Contiguous-File Space

The SIR contains the address of the first block of the contiguous-file
space. It also contains information that allows "diskrepair" to
calculate independently what that address should be. If the calculated
address is less than the address stored in the SIR, a contradiction
exists: some blocks that are in the paging space (or the volume space
if the disk does not contain any paging space) are also in the
contiguous-file space. If this situation arises, "diskrepair" issues
one of the following messages:

Volume space overlaps contiguous-file space.
Paging space overlaps contiguous-file space.

The message is followed by whichever of the following prompts is
appropriate:

-----> As sume volume space correct and fix?
-----> Assume paging space correct and fix?

If you respond 'n', "diskrepair" aborts with the message

"<dev_name>" ignored.

If you respond 'y', "diskrepair" assumes that the address it calculated
is correct and rewrites the SIR with the calculated address as the
address of the first block of the contiguous-file space.

If the calculated address is greater than the address stored in the SIR,
the net result is a hole in the map of the disk: the volume or paging
space ends before the contiguous-file space begins. The intermediate
blocks are inaccessible. Although this situation wastes some disk
space, it does not cause any logical inconsistencies in the structure of
the disk. Therefore, "diskrepair" considers the disk intact, but it
issues the one of the following warnings:

10.16

Repairing a Damaged Disk

WARNING: <num> unassigned blocks between volume space and
contiguous-file space.

WARNING: <num> unassigned blocks between paging space and
contiguous-file space.

10.6 The File" /. badblocks"

You can effectively hide blocks that are known to be .bad by placing them
in the bad-blocks file, "/. badblocks", with either the "format" or
"badblocks" command (see Section 3.5). The operating system knows not
to allocate any of the blocks which are in this file. "Diskrepair",
too, must be aware of the presence of this file, so that it does not
inadvertently place the bad blocks in either free list. Therefore, the
last thing it tries to do before it starts to check the structure of the
disk is to read the bad-blocks file.

10.6.1 Accessing the Bad-Blocks File

If "diskrepair" encounters an I/O error while trying to read the
bad-blocks file, it reports the following error and continues:

Error checking ". badblocks" file. File ignored.

Although "diskrepair" continues to run, it does not know about the
blocks in the bad-blocks file. In such a situation the results are
unpredictable. If problems arise, you may be able to salvage some of
your data, (see Chapter 11), but you must eventually reformat the disk.

10.6.2 Validating the Bad-Blocks File

If "diskrepair" can read the bad-blocks f i1 e but finds that (1) it is
not a regular file or (2) the first block of the file is located where
the boot sector (sector zero), the SIR, or the root directory should be,
it issues the following message and tries to continue:

Bad ".badblocks" file. File ignored.

10.17

68xxx UniFLEX System Manager's Guide

Since "diskrepair" cannot read the bad-blocks file. it does not know
which blocks are bad. It might, therefore, try to access a bad block
for its own use. If it does so and if it detects the error, it notifies
you of the physical error. In such a case you should deny permission
for "diskrepair" to continue,· salvage whatever data you can (see Chapter
11). and rebuild your system.

10.6.3 Checking the Size

The bad-blocks file cannot contain more than 16,522 blocks. It is
unlikely that you will ever use a disk that contains that many bad
blocks. but it is possible for the fdn associated with the bad-blocks
file to be damaged in such a way that the operating system thinks that
the bad-blocks file is too large. In such a case "diskrepair" returns
the following message:

Bad-blocks file too large.

It then ignores the part of the file that appears to be beyond 16,522
blocks.

10.7 Phase 1--Check Allocated Blocks

During phase 1. "diskrepair" reads every fdn on the disk. From reading
the fdns it can determine which ones are inactive (do not describe a
file). which ones describe devices, and which ones describe regular
files. directories, or contiguous files. If an fdn refers to a regular
file, a directory. or a contiguous file. "diskrepair" continues reading
the fdn to see how many blocks and which blocks are allocated to that
file.

10.7.1 File Size

During phase 1, "diskrepair" evaluates the size of each file as recorded
in its fdn. If the size is logically inconsistent, "diskrepair" reports
an error. It does not attempt to fix the error until phase 2.

10.18

Repairing a Damaged Disk

10.7.1.1 Noncontiguous files

Once "diskrepair" knows how many blocks are allocated to a particular
noncontiguous file, it compares th"at number to the size that is written
in the fdn. Because the size is measured in bytes, this comparison can
only determine if the size and the number of allocated blocks are
compatible. For instance, if two blocks are allocated to the fdn, you
would normally expect the file to contain between 513 and 1,024 bytes.
If the size is not in this range, "diskrepair" reports

File size error in fdn <fdn_num> (size <nuDL1> , found <num_2».

10.7.1.2 Contiguous files

The only restriction that "diskrepair" places on
contiguous file is that it must be a multiple of 512.
"diskrepair" reports:

Contiguous-file size error in fdn <fdn_num>.

10.7.2 Out-of-Range Blocks in Fdns

the size
If it is

of a
not,

While "diskrepair" is reading fdns to determine which blocks are
allocated to which files, it checks to make sure that the address of
each block is a valid one. For noncontiguous files the addresses should
correspond to blocks within the volume space on the disk; for contiguous
files, to blocks within the contiguous-file space. If an address which
appears in an fdn corresponds to a block on an inappropriate part of the
disk, "diskrepair" reports

Out-of-range block in fdn <fdn_num>.

It does not, at this point, do anything to correct the problem (see
Section 10.9.5). The problem will be corrected later; however, the only
way to fix the structure of the disk in such a case is to delete the
file containing the out-of-range block. Before doing so, however, you
may be able to salvage most of the file (see Chapter 11).

10.19

68xxx UniFLEX System Manager's Guide

"Diskrepair" maintains a list containing the addresses of the
out-of-range blocks it encounters. Currently, the maximum length of
this list is forty blocks. If "diskrepair" encounters more than forty
out-of-range blocks, it continues to report each one, but it tells you

Too many out-of-range blocks.

This message means
list. Of course,
disk. Therefore,
"diskrepair" again.

that "diskrepair" cannot add any more blocks to the
under such conditions it cannot completely repair the
when "diskrepair" finishes, it tells you to run

10.7.3 Blocks Duplicated in Fdns

A given block from the volume space should be allocated either to the
free list or to exactly one fdn (hence, one file). If "diskrepair"
finds that a block is allocated to more than one fdn, it keeps track of
the number of the fdn in which the second, and any subsequent,
allocations occur. If it does find any blocks that are duplicated in
fdns, it enters phase lB, in which it scans the fdns again in order to
determine which fdn ·first claimed a duplicate block. It then prints a
message for each fdn which contains a duplicate block. The message has
the following form:

Duplicate block <b10ck_num> in fdn <fdn_num>.

At this point "diskrepair" does not do anything to correct the problem
(see Section 10.9.6). The problem will be corrected later; however, the
only way to fix the structure of the disk is to delete all but one of
the files that contain the duplicate block. Before doing so, however,
you may be able to salvage most of the data in the files (see Chapter
11) •

"Diskrepair" maintains a list containing the addresses of the duplicate
blocks it encounters. Currently, the maximum length of this list LS

sixty blocks. If "diskrepair" encounters more than sixty dup1 icate
blocks, it continues to report each one but also includes a message
saying

Too many duplicate blocks.

This message means that "diskrepair" cannot add any more blocks to the
list. Of course, under such conditions it cannot completely repair the
disk, and when it finishes, it tells you to run "diskrepair" again.

10.20

Repairing a Damaged Disk

10.8 Transition between Phase 1 and Phase ~

During the transition from phase 1 to phase 2 "diskrepair" calls the
utility "fdncheck", which does some prel iminary checking of its own
before proceeding with the evaluation of the logical structure of the
disk.

10.8.1 Calling "fdncheck"

If "diskrepair" cannot read or execute "fdncheck", it tells you

Cannot call "/etc/fdncheck".

It then proceeds to the next device, if you specified one. Otherwise,
it aborts.

After successfully accessing "fdncheck", "diskrepair" checks to make
sure that it is the proper version of the utility. If it is not, it
aborts after reporting

"/etc/fdncheck" is inval ide

10.8.2 Abnormal Termination of "fdncheck"

If for any reason
program interrupt
following message:

"fdncheck" terminates abnormally--that is, receives a
from the operating system--"diskrepair" issues the

"Fdncheck" terminated abnormally (status = <num».
"Diskrepair ll aborted for "<dev_name>".

It then proceeds to the next device, if you specified one. Otherwise,
it aborts.

Such a message is not indicative of a problem with either "diskrepair"
or the device. You should try to run "diskrepair" again, for the
problem may not recur. If the problem persists, it is probably caused
by malfunctioning hardware. Contact Technical Systems Consultants for
assistance.

10.21

68xxx UniFLEX System Manager's Guide

10.8.3 The File "/.badblocks"

The utility "fdncheck", like "blockcheck", tries to read the file
". badblocks" in the root directory. It is possible for "fdncheck" to
have trouble reading the bad-blocks file even if "blockcheck" does not.
If it does encounter a problem, it returns one of the error messages
described in Section 10.6.1.

10.8.4 Reading the Root Directory

Before entering the next phase, "fdncheck" tries to read the root
directory. If the root is so badly damaged that it cannot be read,
"diskrepair" issues the following message:

Cannot read root directory.

If the length of the root directory has been truncated to 0, you receive
a message to that effect:

Length of root directory ~s zero.

These messages are both fatal to "diskrepair". In either case the disk
cannot be repaired. Such a disk cannot be mounted; therefore, you
cannot even attempt to salvage the information on it.

If "fdncheck" tries to read the root directory and discovers that the
root fdn describes it as a regular file rather than a directory, it
reports

Root fdn is not a directory.
-----> Force into directory?

A negative response causes "diskrepair" to abort. Depending on the
extent of the damage, you may be able to salvage some of the information
on the disk (see Chapter 11). A positive response causes "diskrepair"
to force the fdn to describe a directory and to prompt for permission to
continue:

-----> Continue?

10.22

Repairing a Damaged Disk

If you respond negatively, "diskrepair" aborts. If you respond
positively, it tries to continue although the amount of success it has
depends on the exact nature of the damage. If the only part of the fdn
which is damaged is the part that describes the type of file associated
with the fdn, this repair should solve the problem. If, however, much
more of the fdn is damaged, other problems will arise. In a case where
the root directory is badly damaged, "diskrepair" cannot fix the disk.
Nor can you salvage any information from it. Your only choice is to
reformat the disk.

10.9 Phase 2--Scan Directories

During phase 2, "diskrepair" scans each directory for problems in
structure. A directory consists of a series of entries, each containing
the name of a file and the number of the fdn that describes that file.
The number of bytes in an entry is always a mUltiple of 16. Each entry
uses at least 16 bytes--two for the fdn number and fourteen or more for
the file name--and at most 64 bytes (see Section III of The UniFLEX
Operating System).

10.9.1 Size of Directory

Currently "diskrepair" cannot handle a directory of more that 4,416
entries. However, this theoretical limitation on the size of a
directory is unlikely to be a practical limitation. If you do have a
directory that appears to be too large, "diskrepair" prints the
following message:

Directory too large: "<dir_name>".
-----> Truncate and continue?

If you receive this message and you know that you do not have a
directory with more than 4,416 entries, chances are that the part of the
fdn for the directory which contains the size is damaged. In such a
case, it is safe to truncate because "diskrepair" simply sets the size
to 4,416. If, on the other hand, you do have a directory that really is
too large, you cannot successfully run "diskrepair" without losing the
files beyond the 4,4l6th entry in the directory.

10.23

68xxx UniFLEX System Manager's Guide

If the size of a directory is not a mul tiple of 16, "diskrepair" reports

Odd size for directory "<dir_name>".
fdn=<fdn_num> type=directory size=<bytes>
owner=<owner_name> time=<time_and_date>

-----> Truncate?

''Diskrepair'' corrects this error by truncating the size stored in the
fdn to the nearest multiple of 16. This repair should cause no harm.

10.9.2 Nesting Directories

''Diskrep"air'' can only function to the level of twelve subdirectories.
If your directory structure is more deeply nested than that,
"diskrepair" informs you

Nesting too deep at "<dir_name>".

The program then aborts.

10.9.3 Invalid File Name

While reading a directory, "diskrepair" checks the validity of the file
name that appears in each entry. If the file name is invalid, it
reports:

Invalid file name: "<file_name>".
-----> Fix?

When it displays an invalid file name, "diskrepair" uses the caret, '''',
followed by the appropriate character, to indicate any control character
except the null character. It uses the symbol ""'@" (a caret followed by
an "at" symbol) to indicate the null character. It displays a character
with the high-order bit set as the same character without the high-order
bit set. Thus, an invalid name may appear to be valid if the only
problem is that it contains one or more characters with the high-order
bit set.

10.24

Repairing a Damaged Disk

File names are discussed in detail in Section III of The UniFLEX
Operating System. Basically, a file name is invalid if the directory
entry which contains it (1) contains more than 55 characters,
(2) contains a slash character, 'I', within the name, (3) does not end
with a null character (unless the name of the file is exactly 14
characters long) (4) contains a control character, (5) contains only
null characters, (6) or contains a character with the high-order bit set
(unless mandated by the size of the file name). A file name is also
invalid if the way in which it is stored indicates that it should
contain more than 14 characters but it does not.

Although an invalid file name is extremely unlikely, the consequences
are serious. The operating system simply cannot access a file with an
invalid name. Unless you fix the error, the file remains on the disk,
inaccessible, until you reformat the disk. We therefore recommend that
you allow "diskrepair" to rename the file. Such a change has no effect
on anything else on the disk.

''Diskrepair'' uses the following rules when fixing an invalid file name:

1. If the name contains more than 55 characters,
"diskrepair" truncates it to 55 characters.

2. If the way in which the name is stored indicates that it
should contain more than 14 characters but it does not,
"diskrepair" shortens the name.

3. If the name contains an invalid character, "diskrepair"
replaces it with an 'X'.

4. If the name contains only null characters, "diskrepair"
names the file "file<fdn)".

It is possible for "diskrepair" to create a file name that matches the
name of another file. If a file name should happen to be duplicated,
you can change the name of one of the fil es with the "rename" command
(see 68xxx UniFLEX Utility Commands) as soon as "diskrepair" terminates.

10.9.4 File Size

During phase 1, "diskrepair" reports all errors in file size (see
Section 10.7.1) by telling you which fdn the error is in. It then
stores the fdn number in a list, which it refers to during phase 2 when
it is able to determine the name of the file associated with each fdn.
The list has room for twenty fdns. During phase 2, "diskrepair" repeats
its messages about errors in file size (for up to twenty files), but now
the message includes the name of the file and a prompt for permission to

10.25

68xxx UniFLEX System Manager's Guide

fix it:

File size error in fdn <fdn_num> , file "<file_name>".
----> Fix?

When "diskrepair" corrects a file size error in a noncontiguous file, it
counts the number of blocks allocated to the file, multiplies that
number by 512 (the number of bytes in a block), and puts that number in
the appropriate place in the fdn. Therefore, unless the file completely
uses the last block allocated to it, the number "diskrepair" writes to
the fdn is greater than the number of bytes in the file. Thus, the file
is 1 ike1y to contain some extraneous data. If the file is a text file,
you can remove the extra data with an editor. When you exit from the
editor, the operating system writes the correct size to the fdn. If the
file is a binary file, however, you may not be able to remove the
extraneous data and, if the file is not backed up, you may have to
sacrifice it.

When "diskrepair" corrects a file size error in a contiguous file, it
rounds the size up to the next mUltiple of 512.

If "diskrepair"
on your disk,
In such a case
you can fix the

encountered file-size errors in more than twenty files
it is unable to tell you the names of all of the files.

you should fix the error s and rerun "diskrepair" so that
remaining errors.

10.9.5 Out-of-Range Blocks in Files

During phase 1, "diskrepair" makes a record of all
block addresses that are out of range. As it
during phase 2, it watches for each of these fdns.
one, it prints the following message:

Out-of-range block iIi "<f il e_name>".

the fdns that contain
reads the directories

When it encounters

fdn=<fdn_num> type=<file_type> size=<bytes>
owner=<owner_name> time=<time_and_date>

-----> Delete?

If you do not delete a file containing an out-of-range block, the
structure of the disk remains damaged. However, you may want to defer
deleting the file, trying first to salvage what you can (see Chapter
11). If neither the. 'n' nor the 'p' option is in effect, "diskrepair"
automatically deletes all files that contain one or more out-of-range

10.26

Repairing a Damaged Disk

blocks unless the file is the root directory or the bad-blocks file.

If an out-of-range block occurs in either the bad-blocks file or
root directory, "diskrepair" cannot delete the offending file.
the program prints one of the following messages:

Cannot delete ".badblocks".
Cannot delete root directory.

in the
Rather,

To correct either of these situations you must eventually reformat the
disk. Of course, if the disk is not backed up, you should try to
salvage as much information as possible (see Chapter 11) before
reformatting it.

Now consider the case where more than one directory entry points to an
fdn which contains an out-of-range block (multiple links to a file).
The first time "diskrepair" encounters the out-of-range block in an fdn,
it asks if you want to delete the corresponding file. If you do delete
the file, "diskrepair" changes the fdn number in the directory entry to
o and changes the fdn itself so that it is inactive. Thus, the fdn
numbers in the directory entries for the other files which were linked
to the file you deleted now point to an inactive fdn. "Diskrepair"
handles this problem as it encounters each file (see Section 10.9.9).

Suppose, however, that you deny permission when "diskrepair" asks to
delete the first file corresponding to the fdn that contains an
out-of-range block. In that case, "diskrepair" finds the same
out-of-range block when it encounters the next file linked to that fdn.
Once again, it asks for permission to delete the file. If you deny
permission, the pattern repeats itself. If, on the other hand, you
grant permission to delete one of the linked files after having denied
it to one or more of them, you create a new problem. "Diskrepair"
changes the fdn number in the directory entry to 0 and makes the fdn
itself inactive. If it encounters any more files which had been linked
to the deleted file, it tells you, as it should, that their directory
entries point to an inactive fdn. It can fix this problem. However,
the directory entries for the files you did not delete that also contain
the out-of-range block now also point to the same inactive fdn. It LS

too late for "diskrepair" to fix this problem because it has already
checked those files. It can, nevertheless, alert you to the situation
and does so by printing the following message:

WARNING: Previous links to fdn <fdn_num>.

In addition, when "diskrepair" finishes, you receive a message telling

10.27

68xxx UniFLEX System Manager's Guide

you to run "diskrepair" again.

10.9.6 Blocks Duplicated in Files

During phase 1, "diskrepair" makes
duplicate block addresses. As it
it watches for each of these fdns.
the following message:

a record of all the fdns that contain
reads the directories during phase 2,

When it encounters one, it prints

Duplicate block in "<file_name>".
fdn=<fdn~num> type=<file_type> size=<bytes>
owner= <owner_nam e> time=<time_and_date>
Duplicated in fdn <fdn_num>.

-----> Delete?

Until you delete all but one file containing a duplicate block, the
structure of the disk remains damaged. If neither the 'n' option nor
the 'p' option is in effect, "diskrepair" inactivates every fdn except
the last one which claims a duplicated block, unless the corresponding
file is either the root directory or the bad-blocks file. The overall
effect is to delete the files described by these fdns and to return to
the free list all blocks they contain which are not duplicated in other
files. If, however, you first execute the program with the 'n' option,
"diskrepair" informs you which files contain duplicate blocks but
deletes no files. If you run it with the 'p' option, you can respond
'n' to all prompts for deleting files. Once you know which files
contain duplicated blocks, you can execute "diskrepair" again with the
'p' option, knowing which files you want to delete. In this way you can
save the file you want to save even if it is not the last one to claim
the block. In addition, you may be able to salvage some material before
deleting it (see Chapter 11).

If a duplicate block occurs in either the file ".badblocks"
root directory, "diskrepair" cannot delete the offending file.
the program prints one of the following messages:

Cannot delete ".badblocks".
Cannot delete root directory.

or in the
Rather,

Because you can keep one of the files that contains a duplicate block,
this situation may resolve itself cleanly--if the duplicate block really
belongs in the file in question. If it does not, you will encounter
other problems as well.

10.28

Repairing a Damaged Disk

10.9.7 The Files II II . and II II

The first two entries in every UniFLEX directory should be the files ". II
and " •• ". The name " •• " refers to the parent directory of the directory
in question; the name II II refers to the directory itself. If
"diskrepair" finds a directory that does not contain exactly one of each
of these files, it issues one of the following messages:

WARNING: Too many "." entries for "<dir_name>".
WARNING: Too many " •• " entries for "<dir_name>".
WARNING: No "." entry for II <d ir_name>".
WARNING: No " •• " entry for "<dir_name>".

These messages are only warnings. "Diskrepair" makes no effort to
correct any of these problems. You can usually fix the case of a
missing "." or " II directory after "diskrepair" is finished (see
Section 10.5.1). However, the case of nrultiple ". II or " •• II files cannot
be repaired without deleting the directory. After deleting it, you
should rerun "diskrepair", which will loca te an unreferenced directory
corresponding to the extra ". II or II II file. Do not place this
directory in the lost-and-found directory. Instead, delete it.

If the entr ies
checks their fdn
itself and its
whichever of the

". II and " •• II are present in the directory, "diskrepair"
numbers. They should match the fdns of the directory

parent directory. If they do not, "diskr epair" pr int s
following messages is appropriate:

Bad "." in II <dir_name>" •
Bad " •• " in II <d ir_name >" •

followed by the prompt

-----> Fix entry?

It is perfectly safe to fix the entry; the change has no other effect on
the disk.

10.9.8 Unknown File Type

The fdn contains information describing the type of file it refers to.
Nine valid types of file exist: regular file, directory, block device,
character device, network node, pseudoterminal, inactive, pipe,
contiguous file. If "diskrepair" does not recognize the file as one of

10.29

68xxx UniFLEX System Manager's Guide

these nine types, it notifies you:

Unknown file type for "<file_name>".
fdn=<fdn_num> type=unknown size=<bytes>
owner=<owner_name> time=<time_and_date>

-----> Delete?

If you see this message, you may as well delete the file because you
cannot salvage it.

10.9.9 Inactive Fdn

An inactive fdn is one that does not refer to any file; it is therefore
a "free" fdn. If a directory entry points to an inactive fdn,
"diskrepair" reports

Inactive fdn for "<file_name>".
fdn=<fdn_num> type=inactive size=<bytes>
owner=<owner_name> time=<time_and_date>

-----> Delete directory entry?

This message indicates that (1) the fdn describing the file has been
severely damaged, (2) the directory entry points to the wrong fdn--which
happens to be inactive, or (3) the fdn was previously cleared to fix
another problem, such as an out-of-range block. In any case, you may as
well delete the directory entry because "diskrepair" cannot determine
what the fdn should be. If the fdn is damaged, you cannot recover the
file; however, if the entry merely points to the wrong fdn, the correct
fdn is almost certainly unreferenced and will, therefore, show up later
in the course of repairing the disk (see Sections 10.10 and 10.11.1).

10.9.10 Out-of-range Fdns

The "format" command reserves a certain number of blocks for fdns. The
fdns are numbered from 1 to the appropriate number, which varies
depending on the exact form of the "format" command used (see 68xxx
UniFLEX Utility Commands). If the fdn number in any directory entry is
outside this range of numbers, "diskrepair" reports

Out-of-range fdn for "<f il e_name>".

10.30

Repairing a Damaged Disk

and prompts for permission to delete the directory entry. You may as
well give permission because the fdn that should have been pointed to is
now probably an unreferenced fdn and will show up at some other time in
the process of repairing the disk (see Sections 10.10 and 10.11.1).

10.10 Phase ~--Check Unreferenced Directories

During phase
unref erenced
entry in any
unref erenced

3, "diskrepair" looks for unreferenced directories. An
directory is a directory whose fdn is not pointed to by an

directory in the file system. If "diskrepair" finds an
directory it sends you the message

Unref erenced directory.
fdn=<fdn_num> type=directory size=<bytes>
owner=<owner_name> time=<time_and_date>

Put in "lost+found"?

If you respond to the prompt positively, "diskrepair"
directory "file<fdn_num>" and tries to add it to the
"lost+found". If it succeeds, it informs you

"<file_name>" put in "lost+found".
Parent fdn was <fdn_num>.

names the
directory

After "diskrepair" is finished, you can look at all the files in the
lost-and-found directory, decide where they belong, and reconstruct your
file system.

The directory "lost+found" is normally created by the command "crdisk"
when it creates a system disk. Of course, if for any reason this
directory is not on the damaged disk, "diskrepair" cannot put any files
in it. If the lost-and-found directory does not exist, "diskrepair"
tells you

Cannot connect: "lost+found" directory is missing or full.

It then prompts you for permission to delete the file.

''Diskrepair'' returns this same message if it discovers that the
lost-and-found directory is full except for the first time it makes the
discovery, when it prints the following message instead:

10.31

68xxx UniFLEX System Manager's Guide

No room in "lost+found".

It then prompts for permission to delete the file. Once "diskrepair"
discovers that the directory "lost+found" is full, it no longer asks you
if it should put an unreferenced file iIi "lost+found". Rather, it
simply asks for permission to delete the file.

If the lost-and-found directory is inaccessible (either nonexistent or
full), "diskrepair no longer asks you if it should put an tmreferenced
directory in "lost+found". Rather, it simply asks for permission to
delete the file.

If your lost-and-found directory does fill up, you should let
"diskrepair" finish, but do not allow it to delete any unreferenced
files. Mount the disk if possible and see what files are in
"lost+found". If the files are not backed up, you can try to copy them
to a backup device if one is available. Once you have successfully
copied them, you can delete all entries in "/lost+found" and run
"diskrepair" again. Once the disk is fixed, you may want to increase
the size of the lost-and-found directory (see Section 11.5.2).

If your disk does not have a lost-and-found directory, you cannot
reliably salvage the information in the tmreferenced directory or in any
of the files that are descendants of that directory. If you do not have
backup copies of the tmreferenced files, you may try, as a last resort,
to create a "lost+found" directory on the damaged disk. If you are
successful, you will be able to salvage the unreferenced files.
However, creating a file on a damaged disk may simply make the situation
worse. You should not try to create a lost-and-found directory until
you have salvaged as much information as possible from the disk and are
willing to reformat it if your attempt to create it fails.

10.11 Phase. !:--Check File and Directory Links

During phase 2, "diskrepair" builds a table which contains an entry for
each fdn. The entry shows whether or not the fdn is active and, if it
is, what type of file it describes. It also contains space for the link
count (the number of directory entries that point to that fdn). During
phase 4, "diskrepair" checks this table for certain inconsistencies.

10.32

Repairing a Damaged Disk

10.11.1 Unreferenced Files

Once the table of fdnsis made, it shows whether or not any unreferenced
files exist. If the table shows that the link count for a file is 0,
that file is unreferenced--that is, no directory entry points to that
fdn. Any unreferenced files and any unreferenced directories which were
not previously placed in the lost-and-found directory are reported to
the user as follows:

Unreferenced <file_or_directory>.
fdn=<fdn_num> type=<file_type> size=<bytes>
owner=<owner_name> time=<time_and_date>

If the file is a directory, "diskrepair" asks if you want to delete it
(you had a chance to put it in the lost-and-found directory in phase 3).
If it is a regular file and the disk contains a lost-and-found directory
that is not yet full, "diskrepair" asks

----->Put in lost+found?

If you respond negatively, "diskrepair" asks if it should delete the
file. If you neither delete it nor place it in the lost-and-found
directory, the structure of the disk remains damaged. If you respond
positively to the prompt to insert the file in the lost-and-found
directory, "diskrepair" names the file "file<fdn_num>" and adds it to
the directory. After "diskrepair" is finished, you can look at all the
files in the lost-and-found directory, decide where they belong, and
reconstruct your file system.

The directory "lost+found" is normally created by the command "crdisk"
when it creates a system disk. Of course, if for any reason this
directory is not on the damaged disk, "diskrepair" cannot put any files
in it. Instead of asking for permission to put the file in the
lost-and-found directory, it tells you

Cannot connect: "lost+found" directory is missing or full.

It then prompts you for permission to delete the file.

"Diskrepair" returns this same message if it discovers that the
lost-and-found directory is full except for the first time it makes the
discovery, when it prints the following message instead:

10.33

68xxx Un~FLEX System Manager's Guide

No room in "lost+found".

It then prompts for permission to delete the file. Once "diskrepair"
discovers that the directory "lost+found" is full, it no longer asks you
if it should put an unreferenced file in "lost+found". Rather, it
simply asks for permission to delete the file.

If your lost-and-found directory does fill up, you should let
"diskrepair" finish, but do not allow it to delete any unreferenced
files. Try to mount the disk and see what files are in "lost+found".
If the files are not backed up, you can try to copy them to a backup
device. Once you have successfully copied them, you can delete all
entries in "/lost+found" and run "diskrepair" again. Once the disk is
fixed, you may want to increase the size of the lost-and-found directory
(see Section 11.5.2).

If your disk does not have a lost-and-found directory, you cannot
reliably salvage the information in an unreferenced file. If you do not
have backup copies of the unref erenced files, you may try, as a last
resort, to create a "lost-and-found" directory on the damaged disk. If
you are 'successful, you will be able to salvage the unreferenced files.
However, creating a file on a damaged disk may simply make the situation
worse. You should not try to do so until you have salvaged as much
information as possible from the disk and you are willing to reformat it
if your attempt to create the directory fails.

10.11.2 Link Count

While it is building the table of fdns, "diskrepair" keeps track of the
link count for each file. If the actual link count as tallied by the
process of making the table does not agree with the link count appearing
in the fdn, "diskrepair" offers to fix the discrepancy:

Link count is <num_1>, should be <num_2>.
-----> Fix?

In response to a 'y', it changes the link count in the fdn to match the
one determined by the tally.· This change has no effect on the rest of
the' disk.

10.34

Repairing a Damaged Disk

10.11.3 In-core Fdn List

During phase 4, "diskrepair" also examines the in-core fdn 1 ist, which
is a partial list of fdns that are available for use (inactive). It
tries to verify the number of free fdns in the list. If this number is
in error, "diskrepair" responds

Bad in-core fdn count.

At this time "diskrepair" also checks to see if any in-core fdn which is
supposedly free is actually in use. In such a case "diskrepair" tells
you

Free in-core fdn in use.

Finally, "diskrepair" checks for in-core fdns that are duplicated in the
list or whose fdn numbers are outside the range of permissible numbers.
These errors are reported by the following messages:

Duplicate in-core fdns.
Out-of-range in-core fdn.

Each of these four messages is followed by the prompt

-----> Fix in-core fdn list?

There is no reason to deny permission to fix the in-core fdn list
because "diskrepair" can do so without aff ecting the rest of the disk.

10.12 Phase. 2--Check Free Lists

Dur ing phase 5, the "diskrepair" command makes several checks on the
structure of the two free 1ists--one for the volume space and one for
the contiguous-file space. (Because not all systems support contiguous
files, the free list for the volume space is usually referred to simply
as "the free list".) You can fix any problems encountered in either free
list by rebuilding it (see Sections 10.12.1.7 and 10.12.2.5).

10.35

68xxx UniFLEX System Manager's Guide

10.12.1 Volume Space

''Diskrepair'' first validates the structure of the free list for the
volume space.

10.12.1.1 Missing blocks

During phase 5, "diskrepair" uses the existing free list to complete the
table that it started in phase 1. This table consists of a bit map of
the volume space on the disk. Each block in the volume space is
represented by a particular bit. When "diskrepair" encounters a claim
to a block, it sets the corresponding bit to 1. When the map is
complete, all bits should be set to 1. Any bit that is still set to 0
represents a ''missing'' block-that is, it is allocated neither to a file
nor to the free list. "Diskrepair" does not inform you of any missing
blocks until it summarizes the status of the free list (see Section
10.12.1.6).

10.12.1.2 Duplicate blocks

If, while completing the bit map, "diskrepair" finds a bit that is
already set to 1, it knows that the block represented by that bit is
claimed by both the free list and a file. Each time "diskrepair"
encounters such a block it reports:

Block <block_num> duplicated in free list.

10.12.1.3 Out-af-range blocks

While "diskrepair" is evaluating the free list, it checks to make sure
that the address of each block is a valid one. All addresses should
correspond to blocks within the volume space on the disk. If
"diskrepair" discovers any out-of-range blocks, it informs you of them
when it summarizes the status of the free list (see Section 10.12.1.6).

10.12.1.4 Out-of-range pointers

Occasionally, "diskrepair" reports

Out-of-range pointer in free list.

10.36

Repairing a Damaged Disk

The pointer referred to has to do with the way the operating system
maintains the free list. If "diskrepair" finds an out-of-range pointer,
it stops checking the free list and immediately prints a summary of the
information in the bit map (see Section 10.12.1.1). Because the summary
is printed before the table is complete, the number of missing blocks is
apt to be large.

10.12.1.5 In-core block list

While it is checking the free list, "diskrepair" determines whether or
not the number in the SIR representing the number of free in-core blocks
is correct. If it is incorrect, "diskrepair" issues the following
message:

Bad in-core block count.

If the in-core block count is incorrect, "diskrepair" stops checking the
free list and immediately prints a summary of the information in the bit
map (see Section 10.12.1.1). Because the summary is printed before the
table is complete, the number of missing blocks is apt to be large.

10.12.1.6 Summary of the status of the free list

If "diskrepair" finds any problems during phase 5, it summarizes the
status of the free list with the following messages:

Missing blocks = <num>.
Duplicate blocks in free list = <num>.
Out-of-range blocks in free list = <num>.

10.12.1.7 Rebuilding the free list

After reporting any errors found in phase 5, "diskrepair" prompts for
permission to rebuild the free list:

Invalid free list.
-----> Rebuild?

''Diskrepair'' reconstructs the free 1 ist from the information in the bit
map. Rebuilding the free list does not affect any data on the disk.
Thus, it is a safe procedure unless "diskrepair" was tmable to read the

10.37

68xxx UniFLEX System Manager's Guide

file ". badblocks" (see
process may take a
minutes). If the only
you may wish to wait
inconvenience too many

Section 10.6). On a large disk, however, the
considerable amount of time (as much as fifteen
problem is missing blocks, which are harmless,
and rebuild the free list at a time that will not
people.

If you give permission for "diskrepair" to rebuild the free list, it
enters phase 5B. During this phase it places in the free list every
block that is in the volume space but is not allocated to a file and is
not in the bad-blocks file. When it finishes rebuilding the free list,
it prints the message

Free list rebuilt «num> blocks).

where <num> is the number of blocks in the reconstructed free list.

If "diskrepair" encounters an I/O error while it is rebuilding the free
list, it omits the block from the free list, sen~ing you the following
message:

Omitting block <block_num> from free list.

If you specified the' a' option, "diskrepair" will call the
command in order to place the block in the bad-blocks file.
the block becomes a missing block (see Section 10.12.1.1).
case, you should invoke the "badblocks" command as soon as
t ermina tes.

10.12.2 Checking the Contiguous-File Free-List

"badblocks"
Otherwise,

In such a
"diskrepair"

After checking and, if necessary, rebuilding the free list for r the
volume space, "diskrepair" checks the structure of the contiguous-file
free-list. Because the two free lists are maintained in different ways,
the checks are not identical.

10.12.2.1 Similarities to the free list for the volume space

First, "diskrepair" checks the contiguous-file free-list for missing,
duplicate, and out-of-range blocks. If it encounters any duplicate
blocks, it reports:

10.38

Repairing a Damaged Disk

Block <block_num> duplicated in contiguous-file free-list.

It reports the total number of duplicated blocks, as well as any other
problems, when it summarizes the status of the contiguous-file free-list
(see Section 10.12.2.4).

10.12.2.2 Out-of-order free list

The map of the contiguous-file free-list is an ordered list--that is,
the numbers of each block in the list should be greater than the
preceding one and less than the following one. If any block is out of
order, "diskrepair" sends the following message to standard output:

Contiguous-file free-list map is out of order.

An out-of-order free-list map may cause other problems in the free list,
such as a large number of missing blocks. You should allow "diskrepair"
to rebuild the free list.

10.12.2.3 Extraneous data

A portion of the contiguous-file free-list map should contain only
zeros. If "diskrepair" finds any other data in this part of the free
list, it returns the following message:

Extraneous data in contiguous-file free-list map.

You should allow "diskrepair" to rebuild the free list.

10.12.2.4 Summary of the status of the contiguous-file free-list

When "diskrepair" completes its check of the contiguous-file free-list,
it summarizes the status of this free list as follows:

Missing contiguous-file blocks = <num>.
Duplicate blocks in contiguous-file free-list = <num>.
Out-of-range blocks in contiguous-file free-list = <num>.

10.39

68xxx UniFLEX System Manager's Guide

10.12.2.5 Rebuilding the contiguous-file free-list

After reporting any errors it finds in the contiguous-file free-list,
"diskrepair" prompts for permission to rebuild it:

Invalid contiguous-file free-list.
----> Rebuild?

Rebuilding the contiguous-file free-list is a safe procedure unless
"diskrepair" was unable to read the bad-blocks file (see Section 10.6).
However, depending on the size of the contiguous-file space, the process
may take a considerable amount of time. If the only problem is missing
blocks, which are harmless, you may wish to wait and rebuild the free
list at a time that will not inconvenience too many people.

If you give permission for "diskrepair" to rebuild the contiguous-file
free list, "diskrepair" places in the list every block that is in the

. contiguous-file space but is not allocated to a file and is not in the
bad-blocks file. When it finishes rebuilding the free list, it prints
the message

Contiguous-file free-list rebuilt «num> blocks).

As you use the contiguous-file
fragmentation is excessive,
complete map of the free-list.
apparent to "diskrepair" as
free-list, and it reports

free-space, it may become fragmented. If
the operating system cannot maintain a
In such a case, the problem becomes
it tries to rebuild the contiguous-file

Contiguous-file free-list too fragmented to fit in map.
<num> blocks lost.

This degree of fragmentation is not considered a logical error on the
disk; however, you will not be able to access all the blocks in the
contiguous-file space.

If "diskrepair" encounters an I/O error in one of the blocks allocated
for the map of the contiguous-file free-space, it tells you

Error encountered rebuilding contiguous-file free-list map.

Although this problem is unlikely to arise, its consequences are
serious, for you must reformat the disk to correct the problem. You
may, however, be able to salvage some data first (see Chapter 11).

10.40

Repairing a Damaged Disk

10.13 Phase ..§.i!--Check SIR Information

During its final phase of operation, "diskrepair" makes several more
checks on the system information record (SIR).

10.13.1 Free Fdn Count

If the number stored in the SIR which represents the total number of
free' fdns on the disk does not agree with the number calculated by
"diskrepair" as it moves through the fdns one by one, "diskrepair"
reports

Incorrect count of free fdns in SIR.
---->Fix?

In response to a positive answer, "diskrepair" changes the number in the
SIR. This change has no effect on anything else on the disk.

10.13.2 Free Block Count

Similarly, if the number stored in the SIR which represents the total
number of free blocks on the disk does not agree with the number
calculated by "diskrepair" as it checks allocated blocks, "diskrepair"
reports

Incorrect count of free blocks ~n SIR.
----->Fix?

In response to a po sitive answer, "diskrepair" changes the number in the
SIR. This change has no affect on anything else on the disk.

10.13.3 Checking the ''Mount Flag"

Each time you mount a device, the operating system sets a flag
disk in the mounted device (see Section 3.8) Normally, the
cleared by the "unmount" command. If Someone removes a disk
mounted device without first unmounting it, the flag remains
"diskrepair" finds that this "mount flag" is set, it reports

10.41

on the
flag is
from a

set. If

68xxx UniFLEX System Manager's Guide

''Mount flag" in SIR should be cleared.
----> Clear "mount flag" in SIR?

In respon!;!e to a positive answer, "diskrepair" clears the flag. This
change has no affect on anything else on the disk.

10.13.4 State of the Disk

If "diskrepair" modifies the disk, it prints the following message on
completion of its tests:

=== Disk modified. ===

If it does not modify the disk-and the 'v' option was not in effect, it
prints whichever of the following messages is appropriate:

=== Disk OK. ===

=== Disk needs repair! ===

If you did specify the 'v' option, "diskrepair" assumes that its output
has already indicated whether or not you need to repair the disk.

"Diskrepair" may encounter more problems than it can fix during one run.
For example, it can only handle a certain number of duplicate or
out-of-range blocks (see Sections 10.7.2 and 10.7.3). If "diskrepair"
cannot fix all the errors it encounters, or if it encounters a read or
write error but you choose to continue operation, it prints the
following message when it is finished:

=== Problems encountered. Rerun "diskrepair".

If appropriate, this message occurs no matter what options you specify.

If the 'a' option is in effect and the disk is so badly damaged that all
the iterations of "diskrepair" fail to fix it, the following message
appears:

=== Repair of "<dev;...,name>" not complete af.ter <num> tries. ===

10.42

Repairing a Damaged Disk

10.13.5 Updating the SIR

When it is finished modifying the disk, "diskrepair" must update the SIR
so that it corresponds to the new structure of the disk. If the device
being checked is not the root device, "diskrepair" simply rewrites the
SIR with the correct information. If, however, the SIR of the root
device must be updated, "diskrepair" kills all tasks running on the
system and locks up the system so that no new tasks can begin. It then
modifies the SIR. This procedure is necessary to prevent conflicts
between the written data and similar data kept in memory. After
updating the SIR, "diskrepair" stops the system. and prints the following
message:

=== Intentional system stop. Reboot UniFLEX. ===

If you receive this message, you must reboot the system before you can
proceed.

If "diskrepair" encounters an I/O error when it tries to make any
changes in the SIR, it prints the following message:

ERROR UPDATING SIR. DISK IS BAD!

This error is not only fatal to "diskrepair", it also means that you
must rebuild your system. disk and that you cannot salvage any data from
it.

10.14 :l/S! Errors

If "diskrepair" encounters an I/O error, it first prints a generic
message telling you that it could not read from or write to the disk.
It then prompts you for permission to continue and, if you respond
positively, usually gives you a more detailed message which tells you
what it was trying to do when it encountered the error (see Section
10.14). We suggest that you respond negatively to the prompt to
continue the first time "diskrepair" reports an I/O error and that you
innnediately rerun "diskrepair". It is possible--though unlikely--that
the I/O error is a soft one and will not recur. If you receive the same
error message again, rerun "diskrepair" with the' a' opt ion.

10.43

68xxx U~iFLEX System Manager's Guide

An alphabetic list of the I/O error messages follows.
accompanies each message.

Cannot fix duplicated block.

An explanation

''Diskrepair'' found a duplicated block in an fdn, but when it
tried to read the fdn to find out the owner, the size, and so
forth, it encountered an I/O error.

Cannot fix error in file size.
''Diskrepair'' encountered an I/O error when it tried to change
the file size in the fdn of the file in question.

Cannot fix error in link count.
"Diskrepair" encountered an I/O error while t~ying to read the
link count from an fdn.

Cannot fix out-of-range block.
''Diskrepair'' found an out-of-range block 1.n a file, but was
unable to read the fdn to find out the owner, size, and so
forth.

Cannot fix unknown file.
''Diskrepair'' encountered an I/O error trying the read the fdn of
a file whose type was unknown.

Cannot fix unreferenced fdn.
"Diskrepair" found an unreferenced file or directory, but got an
I/O error while trying to read the fdn to determine the owner,
size, and so forth.

Cannot truncate directory.
''Diskrepair'' tried to truncate the size of a directory, but it
encountered an I/O error when it tried to write the new size in
the fdn.

Connect to "lost+found" unsuccessful.
''Diskrepair'' was unable to write to the directory ". lost+found"
and therefore could not put the unreferenced fdn into that
directory. If you receive this error message, "diskrepair"
cannot put any files in "/lost+found". Eventually, you must
delete the unreferenced files, but you may be able to salvage
some data first (see Chapter 8).

Error opening "<dir_name>".
Directory completely ignored 1

"Diskrepair" was trying to scan all the directories on the disk,
but due to an I/O error it was unable to open the directory
<dir_name>. All files and subdirectories in that directory, as
well as any files in the subdirectories (and so forth) are now
unreferenced.

10.44

Repairing a Damaged Disk

Directory partially ignored.
"Diskrepair" was trying to scan all directories on the disk, but
due to an I/O error in one of the blocks in <dir_name> it was
unable to read the entire directory. It therefore lacks
information on the directory entries that were maintained in
that particular block and 1n all subsequent blocks in
<dir_name>. Any descendants of these files are now
unref erenced.

Fdn not updated.
"Diskrepair" encounted an I/O error when it tried to write to an
fdn.

Fdns <fdn_num_l> to <fdn_num_2> skipped.
"Diskrepair" encountered an I/O error while reading a block of
fdns. It is, therefore, unable to read any of the fdns in that
block. Since each block contains eight fdns, as many as eight
files may be inaccessible. Such a situation usually causes
other problems, but you may be able to salvage some data. If
the error is in the first fdn block, you must reformat the disk.
You cannot salvage any data from the disk.

File or directory not deleted.
"Diskrepair" tried to delete a file or a directory but was
unable to write to the corresponding fdn.

Free list check aborted.
''Diskrepair'' encountered an I/O error while trying to read the
free list. It stops trying to read the free list, prints the
message, "Invalid free list", and tries to rebuild the free
list. The free list may, however, contain a bad block. When
"diskrepair" is done, you should rerun it with the 'a' option
(see Section 10.2.1).

Links for connected file may be bad.
When "diskrepair" put s a fil e in the lost-and-found directory,
it tries to correct the link count. This message appears if
"diskrepair" encountered an I/O error while trying to fix the
link count.

Omitting block <block_num> from free list.
In the process of rebuilding the free list, "diskrepair"
encountered an I/O error. By default, it leaves the offending
block out of the free list; therefore, that block becomes a
missing block. (If you specify the' a' opt ion, "diskrepair"
ca11s "badblocks" to place the block in the bad-blocks file.)
This situation causes no immediate problems; however, the next
time you run Hdiskrepair" it may put the bad block ba:ck in the
free list, thus creating the potential for an I/O error during
normal operation. You should use the "badblocks" command to put
the offending block in the file" /. badblocks ".

10.45

68xxx UniFLEX System Manager's Guide

Part of file may be ignored.
The operating system encount,ered an I/O error while trying to
read an fdn during phase 1. As a result "diskrepair" may not be
aware of all the blocks, that are supposed to be in the file and
may release them to the free list.

10.15 Index.2i Error Messages

This section contains an index to the error messages which are not
caused by I/O errors.

Bad ". II in "<di r_name>", 1 0.29
Bad " •• " in "<dir_name>", 10.29
Bad ".badblocks" file. File ignored, 10.17
Bad in-core block count, 10.37
Bad in-core fdn count, 10.35
Bad-blocks file too large, 10.18
Block <block_num> duplicated in contiguous-file free-list, 10.3'9
Block <block_num> duplicated in free list, 10.36
"Blockcheck" terminated abnormally (status = <num», 10.13

Cannot access fdn for root device, 10.12
Cannot access fdn for standard error, 10.14
Cannot access fdn for standard output, 10.14
Cannot call "/etc/blockcheck", 10.12
Cannot call "/etc/fdncheck", 10.21
Cannot check a "backup" disk, 10.10
Cannot connect: "lost+found" directory is missing or full, 10.31, 10.33
Cannot delete ".badblocks", 10.27,10.28
Cannot delete root directory, 10.27, 10.28
Cannot open device, 10.13
Cannot read root directory, 10.22
Cannot read sector zero, 10.10
Cannot read System Information Record, 10.14
Cannot suspend running tasks, 10.12
Conflicting options, 10.9
Contiguous-file free-list map is out of order, 10.39
Contiguous.;..file free-list too fragmented to fit in map, 10.40
Contiguous-file size error in fdn <fdn_num> , 10.19

Device is busy, 10.11
Directory too large: "<dir_name>", 10.23
Disk modified, 10.42
Disk needs repair, 10.42
Disk too large or bad size in SIR, 10.14
Duplicate block <block_num> in fdn <fdn_num>, 10.20

10.46

Repairing a Damaged Disk

Duplicate block in lI<file_name>lI, 10.28
Duplicate blocks in contiguous-file free-list = <num> , 10.39
Duplicate blocks in free list, 10.37
Duplicate in-corefdns, 10.35

Error checking ".badblocks" file. File ignored, 10.17
Error encountered rebuilding contiguous-file free-list map, 10.40
ERROR UPDATING SIR. DISK IS BAD, 10.43
"/etc/blockcheck" is invalid, 10.12
"/etc/fdncheck" is invalid, 10.21
Extraneous data in contiguous-file free-list map, 10.39

"Fdncheck" terminated abnormally (status = <num», 10.21
File size error in fdn <fdn_num> (size <num_1>, found <num_2», 10.19
File size error in fdn <fdn_num> , file "<file_name>", 10.26
"<file_name>" put in "lost+found", 10.31
Free in-core fdn in use, 10.35

Inactive fdn for "<file_name>'\ 10.30
Incorrect count of free blocks in SIR, 10.41
Incorrect count of free fdns in SIR, 10.41
Intentional system stop. Reboot UniFLEX, 10.43
Invalid contiguous-file free-list, 10.40
Invalid file name: "<file_name>", 10.24
Invalid free list, 10.37
Invalid option: '<char>', 10.9

Length of root directory is zero, 10.22
Link count is <num_1> , should be <num_2> , 10.34

Missing blocks = <num> , 10.37
Missing contiguous-file blocks = <num> , 10.39
"Mount flag" in SIR should be cleared, 10.42

Nesting too deep at "<dir_name>", 10.24
No device specified, 10.9
No room in IIlost+found", 10.32, 10.34
No such device, 10.9
Not a block device, 10.9

Odd size for directory n<dir_name>", 10.24
Omitting block <block_num> from free list, 10.38
Out-of-range block in "<file_name>", 10.26
Out-of-range block in fdn <fdn_num> , 10.19
Out-of-range blocks in contiguous-file free-list = <num> , 10.39
Out-of-range blocks in free list = <num> , 10.37
Out-of-range fdn for "<file_name>", 10.30
Out-of-range in-core fdn, 10.35
Out-of-range pointer in free list, 10.36
Output directed to device under test, 10.13

10.47

68xxx UniFLEX System Manager's Guide

Paging space overlaps contiguous-file space, 10.16
Parent fdn was <fdn_num> , 10.31
Permission denied, 10.10
Problems encountered. Rerun "diskrepair", 10.42

Repair of "<dev_name>" not complete after <num> tries, 10.42
Root fdn is not a directory, 10.22

Too many duplicate blocks, 10.20
Too many fdn blocks: <num> , 10.15
Too many out-of-range blocks, 10.20

Unknown file type for "<file_name>", 10.30
Unmount error <error_num>, 10.11
Unreferenced <file_or_directory>, 10.33
Unreferenced directory, 10.31

Volume space overlaps contiguous-file space, 10.16
Volume space overlaps paging space, 10.15

WARNING: <num> unassigned blocks between paging space and
contiguous-file space, 10.17

WARNING: <num> unassigned blocks between volume space and
contiguous-file space, 10.17

WARNING: <num> unassigned blocks between volume space and
paging space, 10.16

WARNING: No ".n entry for n<dir_name>", 10.29
WARNING: No " •• n entry for n<dir_name>", 10.29
WARNING: Previous links to fdn <fdn_num> , 10.27
WARNING: Too many n." entries for n<dir_name>", 10.29
WARNING: Too many II "entries for "<dir_name>", 10.29

10.48

Chapter 11

Recovering from Problems

11.1 Introduction

When a system crashes or a program malfunctions, some parts of the
system disk may be damaged. You can always rebuild the original UniFLEX
system by executing the "crdisk" conunand. If the damage is extensive,
you may have no other choice, but remember that "crdisk" reformats the
hard disk, removing any files you have added to the system. You may,
therefore, prefer to try to recover your damaged system.

This chapter describes how to proceed in the event of a system crash.
It also presents solutions for several other kinds of problems.

11.2 After ~ Crash

When your system crashes, your course of action depends on how badly the
system disk is damaged. This section provides a step-by-step procedure
for you to follow in assessing and, if possible, fixing the damage. As
you become more familiar with the system and with the "diskrepair"
command in particular, you will no doubt find shortcuts through this
procedure. However, it is presented here as a guide to the system
manager who is unfamiliar with the operating system.

Unfortunately, we cannot anticipate every possible failure, but in
constructing this procedure we have tried to anticipate the most likely
ones. Should something happen to your system that is not covered by
this procedure, feel free to call us for technical assistance.

1. Boot from your system disk (see Note 1).
A. If you cannot boot, go to 2.
B. If you can boot, go to 40.

2. Boot from your master floppy (see Notes 2 and 1)
Does the operating system return a prompt ("++")?
A. No--go to 3.
B. Yes--go to 6.

11.1

68xxx UniFLEX System Manager's Guide

3. Check your hardware.
A. If the hardware is not faulty, go to 4.
B. If the hardware is faulty, go to 5.

4. Replace your master floppy (see Note 3).
Go to 2.

5. Shutdown the operating system (see Note 4) •
Fix the hardware.
Go to 1.

6. Run "diskrepair" on the system disk from the master floppy (see
Note 5).
Does "diskrepair" enter phase 1 (see Note 6)?
A. No--go to 7.
B. Yes--go to 16.

7. Is your existing backup sufficient?
A. No--go· to 8.
B. Yes--go to 15.

8. Mount the system disk (see Note 7).
A. If you cannot mount the system disk, go to 9.
B. If you can mount the system disk, go to 11.

9. Clear the "mount flag" on the system disk (see Note 8).
Mount the system disk (see Note 7).
A. If you cannot mount the system disk, go to 10.
B. If you can mount the system disk, go to 11.

10. Rebuild your system disk (see Section 1.1). You cannot salvage
any data from the damaged disk.

11. Is a spare device available (see Note 9)?
A. No--go to 12.
B. Yes--go to 14.

12. Copy the kernel of the operating system from the master floppy to
the system disk (see Note 10).
A. If the command fails, go to 10.
B. If the command is successful, go to 13.

13. Tune the copy of the operating system that is on the system disk
(see Note 11).
Shut down the operating system (see Note 4).
Boot from your system disk (see Note 1).
A. If you still cannot boot from the system disk, go to 10.
B. If you can boot from the system disk, go to 40.

1l.2

Recovering from Problems

14. Prepare fresh backup medium.
Mount the system disk if it is not already mounted (see Note 7).
Back up files from the system disk to the backup device (see Note
12) •
A. If the backup procedure fail s, go to 12.
B. If the backup procedure is successful, go to 15.

15. Rebuild your system disk (see Section 1.1).

16.

Restore your own files from the backup (see Note 13).

Does "diskrepair" return an
system information record?
DISK IS BAD!")
A. No--go to 17.
B. Yes--go to 10.

error as it tries to rewrite the
(The message is "ERROR UPDATING SIR.

17. Does "diskrepair" need to delete data in order to repair the disk?
A. No--go to 18.
B. Yes--go to 19.

18. Let "diskrepair" fix the disk (see Note 14).
Shut down the operating system (see Note 4).
Boot from the system disk (see Note 1).
A. If you still cannot boot from the system disk, go to 11.
B. If you can boot from the system disk, go to 40.

19. Let "diskrepair" make any changes to the disk that it requests
permission for except changes that require deletions (see Note 15).
Make a list of files that "diskrepair" needs to delete in order to
repair the disk.
Is your existing backup sufficient?
A. No--go to 20.
B. Yes--go to 30.

20. Is a spare device available (see Note 9)?
A. No--go to 21.
B. Yes--go to 29.

21. Copy the kernel of the operating system from the master floppy to
the system disk (see Note 10).
A. If the command fails, go to 22.
B. If the command is successful, go to 25.

22. Let "diskrepair" fix the disk (see Note 14). You cannot salvage the
files it needs to delete.
Shut down the operating system (see Note 4).
Boot from the system disk.
A. If you still cannot boot from the system disk, go to 10.
B. If you can boot the system disk, go to 23.

11.3

68xxx UniFLEX System Manager's Guide

23. Does the operating system return a prompt ("++")?
A. No--go to 41.
B. Yes--go to 24.

24. The operating system should now be intact except for the files
that "diskrepair" deleted (see Note 13).

25. Tune the copy of the operating system that is on the system disk
(see Note ll).
Shut down the operating system (see Note 4).
Boot from the syst.em disk (see Note 1).
A. If you still cannot boot from the system disk, go to 26.
B. If you can boot from the system disk, go to 27.

26. Reset the hardware.
Boot from the master floppy (see Notes 2 and 1).
Go to 22.

27. Does the operating system return a prompt ("++")?
A. No--go to 28.
B. Yes--go to 41.

28. Back up the files that "diskrepair" needs to delete in order to
repair the disk (see Note 12).
Let "diskrepair" fix the disk (see Note 14).
Restore files from your backup (see Note 13).
The operating system should now be intact.

29. Prepare fresh backup medium (floppy disk or tape).
Back up the files that "diskrepair" needs to delete in order to
repair the disk (see Note 12).
A. If the backup procedure fails, go to 22.
B. If the backup procedure is successful, go to 30.

30. Let "diskrepair" fix the disk (see Note 14).
Restore files from backup (see Note 13).
Shut down the operating system (see Note 4).
Boot from the system disk (see Note 1).
A. If you still cannot boot the from system disk, go to 31.
B. If you can boot the system disk, go to 37.

31. Boot from the master floppy (see Notes 2 and 1).
Is your existing backup sufficient?
A. No--go to 32.
B. Yes--go to 36.

11.4

Recovering from Problems

32. Copy the kernel of the operating system from the master floppy to
the system disk (see Note 10).
A. If the command fails, go to 33.
B. If the command succeeds, go to 34.

33. If your existing backup is insufficient, prepare fresh backup medium
(tape or floppy disk) and back up the system disk (see Note 12).
Go to 15.

34. Tune the copy of the operating system that is on the system disk
(see Note 11).
Shut down the operating system (see Note 4).
Boot from the system disk (see Note 1).
A. If you still cannot boot from the system disk, go to 35.
B. If you can boot from the system disk, go to 37.

35. Reset the hardware.
Boot from the master floppy (see Notes 2 and 1).
Go to 33.

36. You can either go to 15, or, if you prefer, you can try to make
your system disk bootable by going to 32.

37. Does the operating system return a prompt ("++")1
A. No--go to 38.
B. Yes--system should be intact.

38. Reset the hardware.
Boot from the master floppy (see Note 12).
Mount the system disk (see Note 7).
Copy the files "/etc/init", "/etc/login", "/bin/shell", and "/dev"
from the master floppy to the system disk (see Note 16).
A. If the copy procedure fails, go to 33.
B. If the copy procedure is successful, go to 39.

39. Shut down the operating system (see Note 4).
Boot from the system disk (see Note 1).
Does the operating system return a prompt ("++")?
A. No--go to 33.
B. Yes--system should be intact.

40. Does the operating system return a prompt ("++")1
A. No--Go to 41.
B. Yes--go to 55.

41. Reset the hardware.
Boot from the master floppy (see Notes 2 and 1).
Does the operating system return a prompt ("++)"?
A. No--go to 42.
B. Yes--go to 45.

11.5

68xxx UniFLEX System Manager's Guide

42. Check your hardware.
A. If the hardware is not faulty, go to 43.
B. If the hardware is faulty, go to 44.

43. Replace your master floppy (see Note 3).
Go to 41.

44. Shut down the operating system (see Note 4).
Fix the hardware.
Go to 1.

45. Run "diskrepair" on the system disk from the .master floppy (see
Note 5).
Does "diskrepair" enter phase 1 (see Note 6)?
A. No--go to 46.
B. Yes--go to 51.

46. Is your existing backup sufficient?
A. No--go to 47.
B. Yes--go to IS.

47. Is a spare device available (see Note 9)?
A. No--go to 10.
B. Yes--go to 48.

48. Mount the system disk (see Note 7).
A. If you cannot mount the system disk, go to 49.
B. If you can mount the system disk, go to 50.

49. Clear the ''mount flag" (see Note 8).
Mount the system disk (see Note 7).
A. If you still cannot mount the system disk, go to 10.
B. If you can mount the system disk, go to SO.

SO. Prepare fresh backup medium.

51.

Back up files from the system disk to the backup device (see Note
12) •
Go to 15.

Does "diskrepair" return an
system information record?
DISK IS BAD!")
A. No--go to 52.
B. Yes--go to 10.

error as it tries to rewrite the
(The message is "ERROR UPDATING SIR.

52.. Let "diskrepair" make any changes to the disk that it request s
permission for except changes that require deletions (see Note IS).
Do not allow it to delete any files except "/etc/init",
"/etc/login", "/bin/shell", and any files in "/dev".
Mount the system disk (see Note 7).
Copy "/etc/init", "/etc/login", "/bin/shell", and "/dev" from the

11.6

Recovering from Problems

master floppy to the system disk (see Note 16).
A. If the copy procedure fails, go to 46.
B. If the copy procedure is successful, go to 53.

53. Shut down the operating system (see Note 4).
Boot from the system disk (see Note 1).
Does the operating system return a prompt ("++")1
A. No--go to 54.
B. Yes--go to 55.

54. Reset the hardware.
Boot from the master floppy (see Notes. 2 and 1).
Go to 2.

55. Run "diskrepair" on the system disk from the system disk (see Note
5).
Does "diskrepair" enter phase 1 (see Note 6) 1
A. No--go to 56.
B. Yes--go to 58.

56. Is your existing backup sufficient?
A. No--go to 57.
B. Yes--go to 15.

57. Prepare fresh backup medium.
Back up files from the system disk to the backup device (see Note
12) •
A. If the backup procedure fail s, go to 10.
B. If the backup procedure is successful, go to 15.

58. Does "diskrepair" return an
system information record?
DISK IS BADI")

error as it tries to rewrite the
(The message is "ERROR UPDATING SIR.

A. No--go to 59.
B. Yes--go to 56.

59. Does· "diskrepair" need to delete data in order to repair the
system disk?
A. No--go to 60.
B. Yes--go to 61.

60. Allow "diskrepair" to fix the system disk (see Note 14).
System should be intact.

61. Is your existing backup sufficient?
A. No--go to 62.
B. Yes--go to 64.

11.7

68xxx UniFLEX System Manager's Guide

62. Let "diskrepair" make any changes to the disk that it requests
permission for except changes that require deletions (s~e Note 15).
Make a list of files that "diskrepair" needs to delete 1n order to
repair the disk.
Prepare fresh backup medium.
Back up the files "diskrepair" needs to delete.
A. If the backup procedure fails, go to 63.
B. If the backup procedure is successful, go to 64.

63. Let "diskrepair" fix the system disk (see Note 14).
You cannot salvage the files it needs to delete.
System should be intact except for the deleted files' (see Note 13).

64. Let "diskrepair" fix the system disk (see Note 14).
Restore the deleted files from your backup.
System should be intact.

11.3 Notes

1. The system disk is the hard disk which you usually boot from. You
have succeeded in booting your system if the banner message tells
you how much user memory is available. If the system fails to
respond, if the ROM informs you that it cannot find the file
"/uniflex", or if the banner message stops short of telling you how
much user memory is available, the boot procedure has failed.

2. The master floppy is the disk from which you booted your system for
the first time. Its label designates it as the "System Floppy".

3. If you need to replace your master disk, send the disk and a note
describing the problem to

Technical Systems Consultants
III Providence Rd.
Chapel Hill, NC 27514

4. To shut down the system execute the following command:

stop

5. In this situation you are running "diskrepair" only to assess the
extent of the damage to the system disk. You should therefore
invoke the command with the 'n' and 'v' options as shown here:

diskrepair /dev/wO +nv

11.8

6.

Recovering from Problems

When the 'v' option is in effect, "diskrepair" sends to standard
output messages telling you what phase it is in. If "diskr epair"
aborts before printing any such messages, it did not enter phase 1.

7. Mount the system disk with the following command:

mount /dev/wO /usrO

8. To clear the ''mount flag", invoke "diskrepair" with only the 'M'
option:

diskrepair /dev/wO +M

9. Your system supports a spare device if it supports either a
streaming tape or enough hardware so that you can use one floppy
disk drive to boot from your master floppy and still have a disk
drive (for a floppy or a hard disk) available as a backup device.

10. To copy the kernel of the operating system from the master disk to
your system disk, invoke the following command:

11. Before you can try to boot to your system disk, you must tune the
copy of the operating system that is on that disk so that the root,
pipe, and paging devices are all the system disk. You can do so
with the following command:

tune /usrO/unif1ex root_dev=/dev/wO page_dev=/dev/wO swap_dev=/dev/wO

12. Rebuilding a system destroys all the data on the system disk. If
you need to rebuild your system and you are not well backed up, you
will want to try to copy all the data you need from your system
disk to the backup device. You should not copy files that are part
of the operating system itself because the process of building a
system will reconstruct them in their original form.

You must therefore perform a selective backup. You can do so
either by specifying every directory you want to back up or by
invoking the "backup" command with the 'P' option so that it
prompts you for permission to back up each file. Detailed
instructions on the use of the "backup" command are in the manual
entitled 68xxx UniFLEX Utility Commands.

If "diskrepair" failed to enter phase 1, you can have no idea of
which files contain out-of-range blocks or other I/O errors. The
"backup" command cannot continue to copy a file once it encounters
an I/O error in that file. Instead, it returns an I/O error. In

11.9

68xxx UniFLEX System Manager's Guide

such a case your backup includes only part of the damaged f il e--all
blocks up to but not including the damaged block. Sect~on 11.4
provides detailed instructions on trying to recover a f~le that
contains an I/O error.

13. If you need to restore files that. are part of the yniFLEX Operating
system, you should restore them directly from your master floppy
disks. The first of these floppy disks (the one labeled as System
Floppy) is a bootable disk; the others are backup disks--that is,
they were created by the "backup" command and can only be read by
that command. In order to determine which files are on the System
Floppy, mount it and invoke the following command:

dir +lda

In order to determine which files are on the rest of the disks,
invoke the "backup" command in catalog mode. Once you have located
the files you need to restore, you can copy those on the System
Floppy to your system disk with the "copy" command. To copy fil es
on any of the other floppy disks, you must invoke the "backup"
command in restore mode.

If a file you need to restore resides on both the disk labeled
"System Utilities for <type_of_hardware>" and on one of the disks
labeled "Standard System Utilities", restore the version on the
machine-specific disk. In addition, if you must restore your
init-control file, restore the version on the machine-specific
disk.

You restore your own files to the system disk by using the "backup"
command in restore mode (see Note 11). If any of the files you
backed up contained duplicate blocks, the restored versions of some
of those files will contain incorrect information. If the fil e is a
binary file, you probably cannot recover it. If it is a tex~ fil e,
you may be able to reconstruct (from memory or a hard copy) the
part of the file that is incorrect.

If you were able to run "diskrepair" on the damaged disk, you will
know which files contained duplicate blocks and can check each one
to assess the damage. If "diskrepair" failed to enter phase 1, you
will have no idea which files may cause problems.

14. When you need to let "diskrepair" repair the disk completely, you
can either invoke the command without any options, or invoke it in
the following way: .

/etc/diskrepair /dev/wO +pv

11.10

Recovering from Problems

and respond with a 'y' whenever it asks for permission to make a
repair.

15. To prevent "diskrepair" from deleting any data from the system
disk, invoke the command as follows:

/etc/diskrepair /dev/wO +pv

and respond with an 'n' to any request to delete a file or a
directory.

16. To copy these files to the system disk, invoke the following
commands:

copy +P /etc/login /usrO/etc/login
copy +P /etc/init /usrO/etc/init
copy +P /bin/shell /usrO/bin/shell
copy +dP /dev /usrO/dev

11.4 Recovering Files Containing l./Q Errors

If a file contains an out-of-range block or any other I/O error, you
cannot access the entire file. At the very least, that part of the file
that is associated with the out-of-range block is inaccessible. If the
file is a binary file, you cannot salvage any of it. If, however, the
file is a text file, you may be able to recover most of it with the
"head" and "tail" commands.

In order for you to be able to salvage a file containing an out-of-range
block, you must have a free disk device available to use as a backup
device. A streaming tape is insufficient.

If your system does not have a spare backup device, you must boot from
the damaged disk (see Section 1.2) and use your floppy disk drive as a
backup device. If you have a spare disk device, you should boot from
your master disk and mount the damaged disk for reading only with the
following command:

/etc/mount <dev_name> <dir_name> +r

11.11

68xxx UniFLEX System Manager's Guide

To salvage the file, use the "head" command repeatedly with different
arguments until you find the largest argument that you can successfully
use. Then, execute the command with this argument and redirect the
output to a temporary file on the undamaged disk.

Repeat the procedure for the "tail" command. Note that, because a file
always starts at the beginning of a block, the "head" command fails with
an argument whose value is a mUltiple of 512 (the number of bytes in a
block) plus 1. You cannot predict, however, where the "tail" command
will fail because the end of the file is not necessarily the end of a
block. Once you have found the limit of the "tail" command, repeat that
command and append the output to the temporary file containing the first
part of the fil e.

The temporary file now contains all but one block of the original file.
You cannot salvage the data associated with the out-of-range block, but
you have recovered the rest of the file. Now you can rerun "diskrepair"
and allow it to delete the file containing the out-of-range block. When
"diskrepair" is complete, rename your temporary file with the name of
the original file and move it back to the appropriate directory on the
newly repaired disk. The file is not complete, but it is a lot better
than no file.

If you have 68xxx UniFLEX Utilities Package I, you can simplify this
recovery procedure by invoking the "skipbad" command.

11.5 Miscellaneous Repairs

11.5.1 Fixing Missing "." and" II Files

If "diskrepair" finds a missing" II or " •• " file, it reports the error
(see Section 10.9.7) but makes no attempt to fix it. In general,
however, the situation is simple to fix. To create the correct "." file
you simply link the directory in question to the file "." in that
directory. Similarly, to create the correct " " file you link the
parent of the directory in question to the" "file in the directory.

For example, if the directory
and " " entr ies, you can
following two commands:

"/usr/larry/tests" is missing both the" "
probably correct the situation with the

11.12

Recovering from Problems

link /usr/larry/tests /usr/larry/tests/. +d
link /usr/larry /usr/larry/tests/ •• +d

11.5.2 Expanding the Directory "1ost+found II

When the operating system creates a directory, it allocates one block
for it. Because an entry in the lost-and-found directory uses 16 bytes,
(each name is of the form "f ile<fdn_num>"), the first block of this
directory can hold thirty-two entries. However, the first two entries
in the first block of any directory must be "." and " •• ". Thus, a newly
created lost-and-found directory has room for thirty entries before
another block must be allocated to that directory.

The directory "lost+found" is created by the program "crdisk". If you
wish to increase beyond thirty the number of entries it can hold, use
the following procedure. You should not try to increase the size of the
lost-and-found directory on a damaged disk unless the free space 1S

intact.

1. Boot the system with
lost-and-found directory
increase.

the disk
whose

containing
size you want

the
to

2. Change directories using the command

chd /lost+found

3. Create as many files as necessary to force the operating
system to allocate another block to the directory. If
the directory is empty (except for the "." and " "
entries) and is one block long, you must add thirty-one
files to allocate another block to the directory. After
that you must add thirty-two files for each block you
want to add.

4. Verify that the directory is as large as you want by
issuing the command

dir +1 /

Included in the information shown by this command is the
size of the directory in blocks.

5. Delete all the files you just created. The number of
unreferenced files that "diskrepair" can fit into the
directory is

11.13

68xxx UniFLEX System Manager's Guide

11.6 JihQ. Owns What?

Sometimes a program fails to perform as expected because the proper user
is no longer the owner. In the original version of the operating system
(the version shipped on the master floppies), the user "system" owns all
files.

11.7 Setting the User ID Bit

In order to function properly, some commands must have the user ID bit
set. Setting this bit grants to any user executing the program the same
privileges as the owner of the program for the duration of the task.
You can set or clear this bit, which is called the's' permission bit,
with the "perms" command.

If you rebuild any files, be sure that you use the set the's' bit on
the following files:

1. /bin/eopy
2. /bin/copy-dir
3. /bin/erdir
4. /etc/init
5. /ete/insp
6. Jete/login
7. /etc/print
8. /usr/bin/at
9. /usr/bin/backup

10. /usr/bin/info
11. /usr/bin/mail
12. /usr/bin/newuser
13. /usr/bin/password
14. /usr/bin/relinfo
15. /usr/bin/su

The correct form of the command is

11.14

Appendix A

A Generic Init-Control File

This appendix contains a line-by-line description of a generic
init-control which is similar to the init-control file shipped with your
operating system. Lines consisting solely of the sequence "+*"
(comments without text) are not documented.

Line 1: +* Keep terminal open
Comment describing line 2.

Line 2: +0 +
Open the console as standard input, standard output, and standard
error.

Line 4: +* Example /etc/.init.control
Comment describing this file.

Line 6: +* Automatically update all disks every 30 seconds
Comment describing line 7.

Line 7: +u 30
Update the file system every 30 seconds.

Line 9: +* Set up exit conditions
Comment describing lines 11-14.

Line 11: +01 -> shut_soft
On receipt of a HANGUP signal (signal number 1) branch to the line
labeled "shut_soft" (line 88).

Line 12: +04 -> shut_down
On receipt of a SIGEMT signal (signal number 4) branch to the line
labeled "shut_down" (line 97).

Line 13: +06 -> shut_down
On receipt of a SIGPIPE signal (signal number 6) branch to the line
labeled "shut_down" (line 97).

Line 14: +08 -> shut_soft
On receipt of a SIGTRACE signal (signal number 8) branch to the line
labeled "shut_soft" (line 88).

Line 15: +* Check if root device needs cleaning
Comment descr ibing line 16.

Line 16: +c -> diskrepair
Branch to the line labeled "diskrepair" (line 113) if the system
disk is not clean.

A.l

68xxx UniFLEX System Manager's Guide

Line 18: :boot
Assign the label "boot" to line 18.

Line 20: +* Update the history file
Comment describing line 22.

Line 22: +h bt
Put the entry "bt" (system was booted), followed by a time stamp,
into the f i1 e "/ act /history".

Line 24: +* Set date from hardware clock
Comment describing line 26.

Line 26: date +s
Execute the "date" command, taking the time from the system's
hardware clock. If the system does not have a hardware clock, this
command has no effect.

Line 28: +* Create the mount table
Comment describing line 30.

Line 30: create /etc/mtab
Create the file that contains the mount table for the system. The
operating system uses the mount table to keep track of which devices
are mounted.

Line 32: +* Enter single-user mode
Comment describing lines 34-51.

Line 34: :single_user
Assign the label "single_user" to line 34.

Line 35: +* Keep terminal open
Comment describing line 36.

Line 36: +0 +
Open the console as standard input, standard output, and standard
error.

Line 38: +* Set up exit conditions
Comment describing lines 40-44.

Line 40: +01 -> shut_soft
On receipt of a HANGUP signal (signal number 1) branch to the line
labeled "shut_soft" (line 88).

Line 41: +04 -> shut_down
On receipt of a SIGEMT signal (signal number 4) branch to the line
labeled "shut_down" (line 97).

A.2

A Generic Init-Control File

Line 42: +06 -> shut_down
On receipt of a SIGPIPE signal (signal number 6) branch to the line
labeled "shut_down" (line 97).

Line 43: +08 -> shut_soft On receipt of a SIGTRACE (signal number 8)
branch to the line labeled "shut_soft" (line 88).

Line 44: +* Update the history file
Comment describing line 45.

Line 45: +h su
Put the entry "su" (system entered single-user mode), followed by a
time stamp, into the file" /act/history".

Line 46: +* Establish single-user environment
Comment describing line 47.

Line 47: create /act/utmp
Create the file "/act/utmp". When the system is in multi-user mode,
the operating system writes the name and terminal number of each
user who is using the system to this file. It also enters the time
at which the user logged in. If the length of the file "utmp" is 0,
as it is at the time of its creation, the system is in single-user
mode.

Line 48: +* Close console to disassociate "init"
Comment describing line 49.

Line 49: +0 -
Close the console.

Line 50: +* Run single-user shell program
Comment describing line 51.

Line 51: shell
Execute an interactive shell program.
terminates, "init" proceeds to line 52.

Line 53: Enter multi-user mode
Comment describing lines 55-67.

Line 55: :mul ti_user
Assign the label "multi_user" to line 55.

Line 56: +* Run system "startup" script
Comment describing line 57.

Line 57: shell/etc/startup

When this shell program

Use the shell program to execute the file" /etc/startup".

A.3

68xxx UniFLEX System Manager's Guide

Line 58: +f -> single_user
If the. shell program fails to execute the system startup script,
branch to the line. labeled "single_user" (line 34). You will know
that the shell program failed if, on terminating the single-user
shell program, you receive only a system prompt, "++", rather than a
log-in banner.

Line 59: +* Update the history file
Comment describing line 60.

Line 60: +h mu
Put the entry "mu" (system entered multi-user mode}, followed by a
time stamp, into the file "/act/history".

Line 62: +* Modify exit conditions for multi-user mode
Comment describing lines 64-65.

Line 64: +01 -> hanL.up
On receipt of a HANGUP signal (signal number 1) branch to the line
labeled "hanL.up" (line 72).

Line 6 5: +04 -> no_multi
On receipt of a SIGEMI' signal (signal number 4) branch to the line
labeled "no_multi" (line 79).

Line 66: +* Enter multi-user mode
Comment describing line 67.

Line 67: +In
Enter multi-user mode.

Line 68: -> single_user
Branch to the line
"/etc/ttylist it does not
cannot enter multi-user
code.

labeled "single_user". If the file
exist, or if "init" cannot read the file, it
mode and, instead, executes this line of

Line 70: +* Exit multi-user mode
Comment describing lines 70-77.

Line 72: :hanL.up
Assign the label "hanL.up" to line 72.

Line 73: +p Issuing HANGUP, expect 15 second delay
Display the message, "Issuing HANGUP, expect 15 second delay",
followed by a carriage return and a line-feed character, on the
consol e.

Line 74: +* Send HANGUP signal to all tasks
Comment describing line 75.

A.4

A Generic Init-Control File

Line 75: +k 01
Send a HANGUP signal to all tasks running on the system.

Line 76: +* Wait for them to terminate cleanly
Comment describing line 77.

Line 77: +w 1 5
Pause for 15 seconds to give all tasks a chance to catch and handle
the HANGUP signal.

Line 79: :no_multi
Assign the label "no_multi" to line 79.

Line 80: +* Kill any outstanding tasks
Comment describing line 81.

Line 81: +k
Send a SIGKILL signal to all tasks running on the system.

Line 82: +* Return to single-user mode.
Comment describing line 83.

Line 83: -> single_user
Branch to the line labeled "single_user" (line 34).

Lines 85: +* Begin system shut down -- soft entry
Comment describing lines 88-93.

Line 88: :shut_soft
Assign the label "shut_soft" to line 88.

Line 89: +p Issuing HANGUP, expect 15 second delay
Display the message, "Issuing HANGUP, expect 15 second delay",
followed by a carriage return and a line-feed character, on the
consol e.

Line 91: +k 01
Send a HANGUP signal to all tasks running on the system.

Line 93: +w 15
Pause for 15 seconds to give all tasks a chance to catch and handle
the HANGUP signal.

Line 95: +* Shut down system
Comment describing lines 97-101.

Line 97: :shut_down
Assign the label "shut_down" to line 97.

A.5

68xxx UniFLEX System Manager's Guide

Line 98: +* Disable automatic-update feature
Comment describing line 99.

Line 99: +u 0
Disable the automatic-update feature.

Line 100: +* Update the history file
Comment describing line 101.

Line 101: +h st
Put the entry "st" (system stopped), followed by a time stamp, into
the file "/act /history".

Line 103: +* Stop_system
Comment describing lines 105-109.

Line 105: :stop_system
Assign the label "stop_system" to line 105.

Line 106: +* Kill all tasks
Comment describing line 107.

Line 107: +k
Send a SIGKILL signal to all tasks running on the system.

Line 109: +s
Shut the system down.

Line 111: +* Run "diskrepair" to clean root device
Comment describing lines 113-118.

Line 113: :diskrepair
Assign the label "diskrepair" to line 113.

Line 115: +p
Send the null string, followed by a carriage return and a lin'e-feed
character, to the console.

Line 116: +p Root device may be corrupted -­
Send the message '~oot device may
"diskrepair", followed by a carriage
character, to the console.

Line 117: +p

running "diskrepair"
be corrupted running

return and a line-feed

Send the null string, followed by a carriage return and a line-feed
character, to the console.

Line 118: /etc/diskrepair /dev/DISK +vp
Execute the "diskrepair" command on the root device. Use verbose
mode, and prompt for permission to make any repairs (repairs may
result in the loss of data from the disk-see Chapter 7).

A.6

A Generic Init-Control File

Line 119: +f -> stop_system
If the "diskrepair" command fails, branch to the line labeled
"stop_system" (line 105).

Line 120: -> boot
Branch to the line labeled "boot" (line 18).

A.7

A.8

Appendix B

Program Interrupts

Table B-1 contains the name, number, and a brief description of
program interrupt. The table also notes various attributes
interrupt. The file" /lib/sysints" def ines these interrupt s.

each of
of each

If not caught or ignored, the default behavior of each program interrupt
(except SIGDEAD and SIGDUMP) is to terminate the task to which it is
sent. As shown in the table, some also produce a "core dump". A core
dump is a file called "core" in the working directory which contains the
task's image of the contents of memory. Each byte in the program and
stack space is written to the core file immediately after receipt of the
interrupt. The user can examine this file to determine the state of
memory at the time the interrupt was received. A core file is often
useful for diagnostic pruposes. The operating system will not create a
core file if the working directory contains a file named "core" which
denies write permission to the current effective user or if the working
directory denies write permission to the current effective user.

The default action for the SIGDUMP interrupt is to create a core dump
and return control to the task. The task is not terminated.

A vendor may use a TRAP instruction with a number greater than 6. In
such a case the user should not issue the instruction.

User-defined interrupts are available to the end user.

For further information on program interrupts see Section 6.4 of the
68xxx UniFLEX Programmer'..§. Guide.

B.l

68xxx UniFLEX System Manager's Guide

Table B-1. Table of Program Interrupts

--~--
Name

SIGHUP
SIGINT
SIGQUIT
SIGEUr
SIGKILL
SIGPIPE
SIGSWAP
SIGTRACE
SIGTlME
SIGALRM
SIGTERN
SIGTRAPV
SIGCHK
SIGENT2
SIGTRAPI
SIGTRAP2
SIGTRAP3
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGPAR
SIGILL
SIGDIV
SIGPRIV
SIGADDR
SIGDEAD
SIGWRIT
SIGEXEC
SIGBND
SIGUSRI
SIGUSR2
SIGUSR3
SIGABORT
SIGSPLR
SIGINPUT
SIGDUMP

SIGUNORDERED

SIGINEXACT
SIGFPDIVIDE
SIGUNDERFLOW
SIGOPERAND
SIGOVERFLOW
SIGSNAN

Number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37-41
42

43
44
45
46
47
48

49-63

Description

Hangup
Keyboard
Quit
A-line (Axxx) emulation trap
Task kill
Broken pipe
Swap error
Trace
Time limit
Alarm
Task terminate
TRAPV instruction
CHK instruction
F-line (Fxxx) emulation trap
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6-14 instruction
Parity error
Illegal instruction
Division by 0
Privileged instruction
Address error
A child task terminated
Write to read-only memory
Data or stack space violation
Segmentation violation
User-defined interrupt #1
User-defined interrupt #2
User-defined interrupt #3
Program abort
,Spooler signal
Input is ready
Take memory dump
System-defined interrupts
MC68881 branch or set on
unordered operand
MC6888l inexact result
MC68881 division by 0
MC6888l underflow
MC68881 invalid operand
MC68881 overflow
HC68881 signaling not-a-number
Vendor-defined interrupts

B.2

A C D I R

+ + - + +
+ + - + +
+ + + + +
+ + + + +

+ - - - +
+ + - + +
+ + - - +
+ + - + -
+ + + - +
+ + - + +
+ + - + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + - +
+ + + - +
+ + + + +
+ + + - +
+ + + - +
- + - + +
+ + + - +
+ + + - +
+ + + - +
+ + - + +
+ + - + +
+ + - + +
+ - +
+ + - + +
+ + - + +
o + + + +

+ + - + +

+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +

Program Interrupts

Notes: A = Default state is "abort" (otherwise, "ignor e")
C = Interrupt can be caught
D = Produces a core dump
I = Interrupt can be ignored
R = Resets to default state when triggered
0 = See text

B.3

68xxx UniFLEX System Manager's Guide

B.4

Accounting directory, 7.2
Accounting information, storing

and retrieving, 7.9
Accounting software, 7.2
fact. ~ Accounting directory
fact/history. See History file
Active tasks

classification of, 9.18-19
definition of, 9.14, 9.17
killed by "diskrepair"

command, 10.43
maximum number per user. ~

Tune command, adjustable
parameters, user_tasks

maximum supported. ~ Tune
command, adjustable
parameters, tasks

priority of, reevaluating,
9.18

suspended by "diskrepair"
command, 10.11

table of, 9.14
/act/utmp, 7.2
Adding a user, 5.1, 5.4-5
Addpath command, 3.13
Addresses, invalid, 10.1
Addusr command, 5.5
Alterpage command, 1.3
ANSI standard terminal, 7.5
Arrow, in init-control file, 2.2
Asterisk, in format-control
file, 7.6

At daemon, 7.8
At directory, 7.8
At symbol, with caret to

indicate null character in
invalid file name, 10.24

Atexecute command, 7.8
Automatic-boot mode

aborting from, 1.1
disabling, 1.4
enabling, 1.4
entering, 1.6

Background tasks, supported by
shell program, 9.16

Backup command, 3.9,4.7,7.6,
10.6, 10.10, 11.9, 11.10

handling I/O error, 11.9-10
with 'p' option, 11.9

Backup device, 10.10, 11.9

Index

Index-1

Backup files
creating selectively, 11.9
maintaining, 3.8-9

Bad block
checking the disk for during
formatting, 1.3

definition of, 3.6
locating, 3.7
sequestering, 3.6-8

. specifying location to
"formatw" command, 1.3-4

/.badblocks. ~ Bad-blocks
file.·

Badblocks command, 3.7-8, 7.1,
10.1, 10.17, 10.38

called by "diskrepair", 10.5
function of, 3.8

Bad-blocks file, 3.6-8, 7.1,
10.1, 10.5, 10.17-18, 10.37,
10.40

duplicate block in, 10.28
function of, 7.1
I/O error in, 10.17
location of, 7.1
maximum size of, 10.18
out-of-range blocks in, 10.27
read by "fdncheck" command,

10.22
validating, 10.17

Banner message, from operating
system, 1.2-3, 11.8

Banner page, from printer
spooler, 4.3

Baud rate
of console, 1.1
specifying, 7.4
table of codes, 7.4

Bias, 9.19
/bin, 3.13, 4.2, 6.2, 7.2
Binary file

duplicate blocks in, 11.10
error in file size, 10.26
out-of-range block in,

11.11-12
/bin/shell. ~ Shell program
Bit bucket, 7.3
Bit map, 10.36, 10.37
Block device

definition of, 6.3
with "diskrepair" command,
10.9

68xxx ,UniFLEX System Manager's Guide

Block usage, report on, 10.5,
10.8

Blockcheck command, 10.1,10.5,
10.6, 10.14

abnormal termination of,
10.13

called by "diskrepair"
command, 10.12

Blocks
allocation of, 10.1
checking allocated, 10.18-20
duplicated. ~ Duplicate
block

free, count of, 10.41
inaccessible

in contiguous-file space,
10.40

in non-contiguous-file
space, 10.15-16

in-core list of, 10.37
missing. ~ Missing block
number unused

in contiguous-file space,
10.8 '

in volume space, 10.8
number used

in contiguous-file space,
10.8

in volume space, 10.8
out-of-range. See

Out-of-range block
siz e of, 6.1
unassigned, 10.16, 10.17

Boot mode, automatic. ~
Automatic-boot mode

Boot mode, manual. See
Manual-boot mode

Boot procedure, end of, 1.9
Boot program, 1.5
Boot sector, 3.5,10.17. See
also Sector zero

Booting an operating system, 1.5
default location on 3.4, 3.9
indication of success, 11.8

Breakpoint, 1.8
Bss segment

address of, 1.2, 1.7
size of, 1.2, 1.7

Buffer cache, 9.5, 9.8-9
Buffers, for I/O, 9.9
Built-in clock, 3.2-4

bypassing, 3.3-4

Index-2

Built-in clock (cont.)
setting, 3.3-4
using, 3.3

Cache, of file descriptor nodes,
9.10-11

Caret
with "at" symbol in invalid
file name, 10.24

to create pipe, 6.2
in invalid file name, 10.24

Carriage return, 2~5, 7.4
Character device, 6.3
Child task, 6.2
Clock. See Built-in clock
Colon, in init-control file, 2.2
Communic,ation between tasks,
6.2, 6.4, 9.5. ~ ~
Intertask communication

Console, 2.5, 3.1, 4.2
baud rate assumed by the ROM,

1.1
closing from init-control
file, 2.4

configuration assumed by the
ROM, 1.1

default device, 3.2
definition of, 1.1
opening from init-control
file, 2.4

opened as standard I/O
channels, 2.2

Contiguous file
creating, 6.1
definition of, 6.1
restriction on size, 10.19

Contiguous-file free-list. ~
Free list, for contiguous-file
space

Contiguous-file space, 10.2,
10 .1 9, 10.40

first block of, 10.16
fragmentation of, 10.40
inaccessible blocks in, 10.40
specify ing, 6.1

Control character, 1.6
in file name, 10.25
typing, 1.1

Control commands, 2.2, 2.3
branch

on abnormal termination,
2.3

Control commands, branch (cont.)
if disk is "dirty", 2.3
on signal, 2.5

close console, 2.4
comment, 2.3
enter multi-user mode, 2.4
log in in single-user mode,
2.4

make entry in history file,
2.3-4

open console, 2.4
pause, 2.6
print a string, 2.5
trace, 2.5
update file system, 2.6

Control sequence. See Control
character

Control-A, 1.2
Control-C, 1.1, 1.6, 10.11
Control_pty system call, 7.10
Copy command, 3.9, 7.2
Core dump, definition of, B.1
CPU. See also Max CPU
utilization; CPU utilization
increment per hit; CPU
utilization decay; CPU
utilization

regulating a task's time in,
9.6, 9.15, 9.18, 9.20, 9.21

relinquishing to a task of
equal priority, 9.20

time allowed in per user
task. See Tune command,
adjustable parameters,
time_limit

CPU utilization, 9.6, 9.19, 9.20
decrementing, 9.20
definition of, 9.19
effect on priority, 9.19
maximum value of, 9.6,9.20
rate of decrease of, 9.6
rate of increase of, 9.6

CPU utilization decay, 9.6, 9.8,
9.20

CPU utilization increment per
hit, 9.6,9.8,9.20

CPU-intensive task, definition
of, 9.18

Crdir command, 6.2 ..
Crdisk command, 1.3, 11.1, 11.13

creating "/lost + found It,

10.31, 10.33

Index-3

Index

Create command, 6.1
Create_contiguous system call,
6.1

Create_pty system call, 6.4
Crpipe system call, 6.2
Crt_termcap command, 7.4, 7.5
Currently executing task, 9.18
Cylinder, 3.6

Data, salvaging from system
disk, 11. 9-10

Data segment
address of, 1.2,1.7, 7.11
size of, 1.2, 1.7

Date
determining, 3.3
setting, 2.2, 3.2-4

Date command, 3.3, 9.15
bypassing built-in clock,
3.3-4

making entries in the history
file, 3.12

with built-in clock, 3.3
without built-in clock, 3.3-4

Daylight savings time, 3.4, 9.5,
9.15

first possible day, 9.5, 9.10
last possible day, 9.5, 9.9
time of day of switch, 9.5,
9.10

Daylight-savings-time flag, 9.9
Deleting a user, 5.5-6
De1usr command, 5.6
/dev. See Device directory
Devcheck command, 3.7-8
/dev/console. See..!U!g Console,
2.2, 2.3

Dev ice, 6.1, 6.2
adding, 7.3
backup. See Backup device
created by operating system,
6.4

created by system manager,
6.4

definition of, 4.1, 6.2
kinds of, 6.2,6.3
logical, location of, 7.2
mounted, number allowed, 9.11
physical, location of, 7.2
selecting for printer

spooler, 4.1-2
spare. See Backup device

68xxx UniFLEX System Manager's Guide

Device (cont.)
standard with a particular

system, 6.3
Device directory, 6.4, 7.2,

11.11
Device driver, 4.1
Device number, major, 4.1, 6.3,
6.4

Device number, minor, 4.1, 6.3,
6.4

/dev/ttyOO, 2.2, 3.2. See also
Console

Dir command, 4.6
Directory" 6.1, 10.2

contents of, 10.23
creating, 6.2
definition of, 6.2
entry in, ·10.3, 10.23
nesting, limit for
"diskr epair", 1 0.24

ownership of, 11.14
par en t, 6.2, 10.29
purpose of, 6.2
scanned by "diskrepair"

command, 10.23
size of, 10.19, 10.23-24,
11.13

unreferenced, 10.29,10.31-32
Disassembling instructions, 1.8
DISK, 7.3
Diskrepair command, 2.3, 2.6,
3.8, 3.10, 7.11, 10.1-48

for assessing damage, 11.8
called by "badblocks"

command, 3.8
checking file size of
contiguous files, 10.19

checking file size of
noncontiguous files, 10.19

checking free lists, 10.35-40
for contiguous-file space,
10.38-40

for volume space, 10.36-38
checking links, 10.32-35
checking system information
record, 10.41-43

checking unreferenced
directories, 10.31-32

file size error, 10.25-26
having to rerun, 10.20,
10.26, 10.27, 10.42

inactivating fdns, 10.28

Index-4

Diskrepair command (cont.)
index of error messages,

10.46-48
I/O errors

handling, 10.1, 10.38,
10.40, 10.43

returned by, 10.3-4,
10.44-46

I/O redirection during, 10.13
limit on errors in file size,
10.26

limitations of, 10.4
list of out-of-range blocks,
10.20

location of, 7.3
maximum size of directory,

10.23
maximum size of disk, 10.14
nesting directories, limit

on, 10.24
with options

'a', 10.1, 10.4, 10.5-6,
10.38, 10.42, 10.43

'b', 10.6
'B', 10.6, 10.10
brief descriptions of,

10.5
checking validity of, 10.9
conflicting, 10.9
'f', 10.6
'm', 10.6
'M', 10.7
'n', 10.7, 10.10, 10.11,
10.26, 10.28, 11.8

'p', 10.5, 10.7, 10.8,
10 • 26, 1 0 • 28, 11.1 0

'q', 10.7
'r', 10.8
'u', 10.8
, v', 10.5, 10.8, 11.8,
11.10,10.42

without options, 10.5
phase 1, 10.18-20, 10.21,
10.25,10.26,10.28,10.36,
11.8, 11.9

phase 1B, 10.20
phase 2, 10.21, 10.23-31,
10.25, 10.26, 10.28, 10.32

phase 3, 10.31-32
phase 4,10.32-35
phase 5, 10.35-40
phase 5B, 10.38

Diskrepair command (cont.)
phase 6, 10.41-43
phases

messages concerning, 11.9
synopsis of, 10.1

permissions required, 10.10
preventing deletion of data,
11.10-11

prompting for permission to
repair, 10.5, 10.7

read-only mode, 10.7
rebuilding free list for
contiguous-file space, 10.40

renaming a file with invalid
name, 10.25

rewriting system information
record, 10.41, 10.43

simple mode, 10.8
specifying device to, 10.9
suspending tasks, 10.11
syntax, 10.4
transition, phase 1 to phase
2, 10.21-23

unmounting a disk, 10.10
unreferenced directory,

handling of, 10.31
unreferenced file, handling
of, 10.33-34

updating the system
information record, 10.43

verbose mode, 10.5, 10.8
warnings from, 10.7

Disk
accessing a nonsystem disk,
3.9-10

block usage, report on, 10.8
causes of damage to, 3.8
checking integrity of, 2.2
formatting, 3.5-6,6.1,10.2
irreparable damage to, 10.22,
10.23

locating I/O errors on, 3.7
logical structure of" 10.1,
10.2-10.3

checking without changing,
10.7

logical verification of, 3.8,
10.1-48

maximum size for
"diskrepair", 10.14

physical damage to, 3.6-8
physical errors on, 10.3-4

Index-5

Index

Disk (cont.)
repairing. ~ Diskrepair

command
state of, 10.42
updating, 7.6

Disk-intensive task, definition
of, 9.18

Dollar sign, 9.12, 9.17
Duplicate block, 10.1

in bad-blocks file, 10.28
in fdns, 10.20
in files, 10.28, 11.10
fixing, 10.20
in free list for
contiguous-file space,
10.38, 10.39

in free list for volume
space, 10.36, 10.37

length of list of, 10.20
in root directory, 10.28

Edit command, 6.1
Edi tor, 9.15
End-of-file condition, 7.3
Env command, 7. 5
Environment, hardware-specific,

7.11
Error

correspondence between name
and number, 7.9

fatal to operating system,
8.1-4

during initi~lization,
8.1-2

after loading UniFLEX,
8.2-4

Error file, 7.7
Error messages

from "diskrepair" command,
index of, 10.46-48

from operating system
binary listing, used by

"re120", 7.8
binary listing, used by

"re16 8k", 7.8
listing of, 7.7

from "tune" command, 9.22-23
Error numbers, 7.7
Escape sequence, typing, 1.2,
1.6

Escape-B, 1.2, 1.4
/etc, 7.3-7, 10.1

68xxx UniFLEX System Manager's Guide

/etc/badblocks. ~ Badblocks
command

/etc/blockcheck. ~ Blockcheck
command

/etc/format.control. ~
Format-control file

/etc/.init.control. ~
Init-control file

/etc/log, 7.7
/etc/login, 11.11
/etc/log/motd. ~ Message of
the day

/etc/log/password. ~ Password
file

/etc/prcon, links to, 4.7
/etc/print, 4.2, 4.7
/etc/startup. See Start-up file
/etc/termcap. ~ Termcap file
/etc/ttycap. ~ Ttycap file
letc/ttylist. See Ttylist file
Exclamation point

in init-control file, 2.2
in text editor, 3.5

Executable file, loading into
memory, 1.6-7

Executable task, 9.18
External reference, resolving,
7.8

Extraneous data
in file, 10.26
in free list for
contiguous-file space, 10.39

Fcntl system call, 7.9
Fdn cache, 9.10-11
Fdncheck command, 10.1, 10.5,
10.6, 10.21-23

abnormal termination of,
10.21

reading bad-blocks file,
10.22

reading root directory, 10.22
Fdn. See File descriptor node
File, 6.1-4. See also Files
File descriptor node, 6.1, 10.2

contents of, 6.1, 10.3
of a device, 6.2
free, count of, 10.41
ina c t i v e , 1 0 • 27, 1 0 • 28, 1 0 • 3 0
initializing, 3.5
in-core list of, 10.35
location of, 10.23

Index-6

File descriptor node (cont.)
maximum allowed by the

operating system, 10.15
number unused, 10.8
number used, 10.8
out-of-range, 10.30
read by "diskrepair" command,
10.18

reserving space for, 10.2,
10.30

of root directory, 10.12
of standard error, 10.13
of standard output, 10.13
table of, 10.32
of unreferenced directory,

10.31
of ".", 1 0 • 2 9
of " •• ", 1 0 • 2 9

File name
changed by "diskrepair"

command, 10.25
invalid, 10.24-25
location of, 10.23
s iz e of, 1.7, 10.25

File size, error in, 10.25-26
File system

establishing, 1.3, 3.5
updating from init-control
file, 2.6

File type, 10.29-30
Files

contiguous. ~ Contiguous
file

definition of, 6.1
directory. ~ Directory
int ermingl ing of, 4.3
with I/O errors, recovering,
11.11-12

kinds of, 6.1
locked. ~ Tune command,
adjustable parameters,
locked_recs

maximum number open at once.
See Tune command, adjustable
parameters, files

number of each type in
system, 10.8

number open on system,
9.10-11

number open per task, 9.11
number (total) in system,
10.8

Files (cont.)
ordinary. See Regular file
ownership of, 11.14
pipe. See Pipe
regular. ~ Regular file
restoring, 11.10
special. See Device
unreferenced, 7.11, 10.1,
10.30, 10.33-34

Fine-tuning the UniFLEX
Operating System, 9.1-24

First task, 2.1
Flags. See Init-control file,
flags; Tune command, adjustable
parameters, DST; Permission
flag; Mount flag

Floppy disk drive, seek rate
for. See Tune command,
adjustable parameters,
seek_rate

Format command, 3.5-6, 7.6,
10.2, 10.17, 10.30

using with bad blocks, 3.7
Formatting a disk, 1.3-4, 3.5-6,
6.1

Formatw command, 1.3, 1.4
Format-control file, 7.6
FPU_exception system call, 7.10
Fragmentation

of contiguous-file space,
10.40

within free lists, 10.8
Free command, location of, 7.12
Free list, 6.1,10.20,10.28

for contiguous-file space,
10.2,10.5,10.6,10.17

checking, 10.38-40
duplicate blocks in,
10.38, 10.39

extraneous data in, 10.39
fragmentation in, 10.8
map of, 10.39
missing blocks in, 10.38,

10.39
out of order, 10.39
out-of-range blocks in,
10.38, 10.39

rebuilding, 10.5,10.6,
10.8, 10.40

summary of status, 10.39
for volume space, 10.2, 10.5,
10.6,10.17

Index-7

Index

Free list, volume space (cont.)
duplicate blocks in,
10.36, 10.37

fragmentation in, 10.8
I/O error during
rebuilding, 10.38

missing blocks in, 10.37,
10.38

omitting block from, 10.38
out-of-range blocks in,
10.36, 10.37

out-of-range pointers in,
10.36

rebuilding, 10.5, 10.6,
10.8, 10.37-38

summary of status, 10.37
validated by "diskrepair"

command, 10.36-38

/gen, 7.7
/gen/errors. See Error file
/gen/help. ~ Help directory
/gen/spooler. See Spooler
directory

/gen/spooler/at. See At
directory

Ghost shell program, 2.3
Greater-than sign, in
init-control file, 2.2

Hang-up interrupt, 3.14, 3.15
Hard disk, 1.3. See also System
disk

Hardware
initializing, 1.9
page size, 7.11

Head command, 11.12
Help directory, 7.7
High-order bit, set in file

nam e , 1 0 • 2 4, 1 0 • 2 5
History command, 2.4, 3.12, 7.12
History file, 3.12-13, 7.2

altering permissions, 3.12
creating, 3.12
entr ies made by "ini t"

program, 2.4
extracting information from,
3.12

making entry from
init-control file, 2.3-4

Holidays file, 7.8
Home directory, 5.1, 5.3, 5.4,

68xxx UniFLEX System Manager's Guide

Home directory (cont.)
7.7

assigning, 5.3
creating, 5.3
definition of, 5.3
location of, 7.12
owner of, 5.3

Hyphen, in init-control file,
2.2

Info command, 3.2, 7.1, 7.12
Init program, 2.1,3.6,7.4,
7.6,11.11

error messages from, 2.6-9
fatal, 2.7-8
nonfatal, 2.8-9

making entries in history
file, 2.4

signals accepted by, 2.5
Initializations, 1.9
Initializing hardware, 1.9
Init-control file, 2.1-9, 3.2,
3.14, 7.11

altering, 7.6
contents of, 2.1
essential elements of, 2.6
example, A.1-7
executing shell command from,
2.2

flags, 2.2-3
assign a label, 2.2
branch to a label, 2.2
exclamation point, 2.2.

See also Shell command,
executing from
init-control file

execute control command,
2.2. See ~ Control
commands

execute shell command,
2.2. See also Shell
command, executing from
init-control file

plus sign, 2.2. See also
Control commands

length of file, 2.1
length of line in, 2.1
purpose of, 7.6
standard, 3.1,3.12,3.13,
3.14

when executed, 2.1
Insp command, 4.3

Index-8

Install command, 1.10
Instruction, user, 9.18
Int command, 3.15
Interrupts, B.1-4

correspondence between name
and number, 7.9

sent by operating system,
10.13, 10.21

table of, B.l
where defined, 7.9

Intertask communication, 9.11-12
I/O characters, lists of. See
Tune command, adjustable
parameters, iolists

I/O error, 10.3
in badblocks file, 10.17
cause of, 3.6
from "diskrepair", 10.4,
10.43-46

handling by "diskrepair"
command, 10.1, 10.3-4, 10.17

location of, 3.7, 11.9-10
in map of contiguous~fi1e
space, 10.40

recovering files containing,
11.11-12

salvaging file, 11.11-12
while rebuilding free list

for volume space, 10.38
while updating system

information record, 10.43
I/O redirection, 6.1,6.2,10.13

Kernel, 1.5, 7.1, 11.9
Kill command, 7.2

Leap year, 9.9, 9.10
/lib, 7.8-11
/lib/reI20.errs, 7.8
/lib/re168k.errs, 7.8
/lib/std_env. See
Standard-envhonment file

/lib/sysacct, 7.9
/lib/sysdef, 7.9
/lib/syserrors, 7.9
/lib/sysfcntl, 7.9
/lib/sysints, 7.9, B.l
/lib/Syslib68k, 7.8
/lib/sysmessages, 7.9
/lib/syspty, 7.10
/lib/sysrump, 7.10
/lib/sysstat, 7.10

/lib/systime, 7.10
/lib/systty, 7.10
/lib/sys68881, 7.10
Line-feed character, 2.5
Link command, 11.13
Link count, 10.32, 10.34

from "dir" command, 4.7
Linked files, out-of-range

blocks in, 10.27
Linking-loader, 7.8, 7.11
Links

checked by "diskrepair"
command, 10.32-35

definition of, 10.3
Load68k command. See
Linking-loader

Log command, 3.2, 3.13
Logging in, in single-user mode,

2.4
Login command, 3.12, 7.3
Login program, 3.6, 5.1, 5.4,

7.7
assigning, 5.4
default, 5.4
definition of, 5.4

Login task, starting, 2.4
Long listing, of directory
entry, 6.4

Lost-and-found directory, 7.11,
10.29, 10.31

creating
on damaged disk, 10.32,
10.34

normally, 10.31, 10.33
expanding, 11.13-14
full, 10.31, 10.32, 10.33,
10.34

nonexistent, 10.31, 10.33
/lost+found. ~ Lost-and-found
directory

Lost+found directory. See
Lost-and-found directory

lrec system call, 9.11
Ls command, location of, 7.2

Major device number, 9.12-13
Makdev command, 4.1,6.4, 7.3
Manual-boot mode, 1.6
Master floppy, 11.8
Master task, 6.4
Max CPU utilization, 9.6, 9.8,

c 9.20

Index-9

Index

Max quantum, 9.6, 9.8, 9.21
Medium, logical verification of,

3 .8, 10 .1-48
Memory

accessing from ROM, 1.6, 1.7,
1.8,1.9

allocation of for tables, 1.9
amount available to users,

1.3
dumping, 1.7, 1.8
modifying, 1.9
physical, 7.3
system, 7.3

Memory dump, 1.7, 1.8,3.11-12
Memory management unit, 9.17
Memory map, displaying, 1.9
Message, sending to all users,
3.4, 7.7

Message buffers. See Tune
command, adjustable parameters,
ms&.....buffers

Message of the day, 3.4-5, 7.7
Message exchanges. See Tune

command, adjustable parameters,
ms&.....exchanges

Message size. See Tune command,
adjustable parameters, ms&.....size

Minor device number, 9.12-13
Minus sign

in init-control file, 2.3,
2.4, 2.5

with "shutup" command, 3.14
in standard environment file,
7.11

with "stop" command, 3.15
in tty1ist file, 7.4

Missing block, 10.1, 10.5, 10.6,
10.36

in contiguous-file space,
10.38, 10.39, 10.40

handling by "diskrepair"
command, 1 0 • 6

in volume space, 10.37, 10.38
MMU. See Memory management unit
Mode of operation of operating

system, 7.6. ~ .!l!2.
Multi-user mode; Single-user
mode

changing from multi-user to
single-user, 3.14-15

changing from single-user to
multi-user, 3.2

68xxx UniFLEX System Manager's Guide

Mode of operation (cont.)
determining, 7.2

Model code for "formatw"
command, 1.4

Modem, 7.4, 7.5
Modules supported by the system,
xi, 7.1

Mount command, 3.9-10, 11.9,
11.11

Mount flag
checking, 10.7,10.41-42
clearing

by "diskrepair" command,
3.10, 10.5, 10.7, 10.42,
11.9

by "unmount" command, 3.9,
10.41

setting, 3.9
Mounting a device, 3.9-3.10

maximum number. See Tune
command, adjustable
parameters, mounts

nodes for, 7.12
for reading only, 3.10, 11.11

.Mrk*splr? file, 4.4, 4.5
MSK-status system call, 7.9
Multi-user mode, 3.1, 7.6

booting directly to, 3.2
entering

from init-control file,
2.4, 3.2

from single-user mode,
3.2, 3.13

Network device, function of, 6.4
New programs, adding to the

system, 3.13
New_system command, 11.9
Nice command, 9.19
Null character, 10.24, 10.25
Null device, 7.3

Of stat system call, 7.10
Operating system

booting, 1.5
building, 1.1-5

from tape, 1.3, 1.4
copying to a hard disk, 1.1-5
kernel, 1.5, 7.1, 11.9
loading into memory, 1.2
making entries in the history

f i1 e, 3.12

Index-1 0

Operating system (cont.)
medium supplied on, 1.1
modes of operation, 3.1-2
optimizing performance, 9.1
prompt from, 1.3
release date, 1.3
setting date for, 3.3-4
shut down procedure, 2.5,
3.14-15

size 'of, 1.3
starting execution of, 1.2
tuning, 9.1
version number, 1.3

Ordered list, 10.39
Output, redirecting, 6.1, 6.2
Out-of-range block

in bad-blocks file, 10.27
in fdns, 10.19-20
in files, 10.26-28, 11.9-10,
11.11-12

f ixi ng, 10.1 9
in free list for
contiguous-file space,
10.38, 10.39

in free list for volume
space, 10.36, 10.37

in linked files, 10.27
list maintained by
"di skrepair" command, 10.20

recovering files containing,
11.11-12

in root directory, 10.27
salvaging file, 11.11-12

Out-of-range file descriptor
nodes, 10.30

Out-of-range pointers, in free
list for volume space, 10.36

Page size, hardware, 7.11
Paging device. ~~ Tune

command, adju~tab1e parameters,
page_dev

changing identity of, 7.3,
9.12-13

defining, 9.12-13
definition of, 7.3
identifying, 7.1
link to, 7.3
setting on system disk, 11.9

Paging space, 10.2. ~.!.l!.2
Tune command, adjustable
parameters, page_space

Paging space (cont.)
changing size of, 1.3
default, 9.13
definition of, 10.2
determining amount, 3.5
first block of, 10.15
overlapping contiguous-file
spa ce, 1 0 • 16

required, 10.2
reserving, 1.3,3.5

Parent directory, 6.2, 10.29
Parent task, 6.2
Password, 5.1,5.2-3, 7.7

assigning, 5.2
forgotten, 5.3
guidelines for, 5.2
restrictions on, 5.2
in single-user mode, 3.1, 3.2

Password command, 5.2
Password file, 2.4, 5.1-6

original, 5.4
structure of, 5.1-4

Pause, from init-control file,
2.6

Pending timed-event. See Timed
event, pending; Tune command,
adjustable parameters,
time_outs

Permission flag, 7.10
Permissions

default for a directory, 5.3
s+, 11.14

Perms command, 11.14
Personality of a task. See
Active tasks, classification of

Phys parameters, 9.3, 9.7,
9.16-17

Phys segments, 9.2, 9.5
definition of, 9.16
logical address of, 9.6, 9.17
physical address of, 9.6,

9.17
size of, 9.6, 9.17

Physical error. See I/O error
Pipe, 6.1, 6.2
Pipe device.· See also Tune

command, adjustable parameters,
pipe_dev

def ining, 9.13
identifying, 7.1
restrictions on, 9.13
setting on system disk, 11.9

Index-ll

Index

Pipe-intensive task, definition
of, 9.18

Plus sign, 1.4
in init-control file, 2.1,
2.2, 2.3, 2.4, 2.5

in ttylist file, 7.4
Pm em , 7.3
Print command, 7.3
Printer, 4.2, 6.3
Printer driver, 4.1
Printer spooler, 4.1-8

banner page from, 4.3
changing modification time of

spooled file, 4.4
changing the name of, 4.3
configuring, 4.1-4
creating directory for, 4.2-3
creating directory entry for

spooled file, 4.4
creating spooler command, 4.2
damage to, 4.6-7
the 'f' option, 4.3
function of, 4.1
initial form-feed character,
4.3

initiating, 4.3
links between files, 4.6-7
naming the spooled file, 4.4
reconstructing, 4.7
removing from the system, 4.7
selecting device for, 4.1-2
shutting down, 4.5-6
summary of use, 4.6
symptoms of damage to, 4.6
using the spooler command,
4.4-5

Printing, a string from
init-control file, 2.5

Priority, 9.6, 9.17
determining, 9.19
evaluating, 9.18, 9.20
price paid for using CPU,

9.20
reward to for not using CPU,

9.20
rules for calculating, 9.18

Program counter, 1.6, L8
Program space, B.1
Prompt

from operating system, 1.3
from ROM, 1.1

68xxx UniFLEX System Manager's Guide

Pseudoterminal device,
definition of; 6.4

Pstop command, 4.3, 4.5

Quantum, 9.6
decrementing value of, 9.20
definition of, ~.20
maximum value of, 9.6, 9.21
rate of increase of, 9.6,
9.21

Quantum increment, 9.6, 9.8,
9.21

Question mark, 1.1, 7.4-5

RAM, 3.6, 6.3
clearing, 3.11
looking at the contents of,
3.11

RAM disk, 6.3, 6.4
Ramdisk command, 6.4
Random access memory. ~ RAM
Read-only memory. ~ ROM
Rebuilding a system, 11.9, 11.10
Records, locked, 9.11
Register

displaying contents of, 1.9
setting contents of, 1.9

Regular file, 6.1, 10.2
checking size of, 10.19
definition of, 6.1

Release date, 1.3
Re120 command, 7.8
Re168k command, 7.8
Rename command, 10.25
Resetting the computer, 3.14,
3.15

Restoring files, 11.10
ROM, 1.5, 11.8

accessing memory from, 1.6
assumption about console, 1.1
commands supported by, 1.6-9
comparing conteritsto a file,
1.8

loading a file into, 1.5,
1.6-7

prompt from, 1.1
using to take memory dump,
3.11

Root device. See J!.1.!Q. Tune
command, adjustable parameters,
root_dev

changing identity of, 7.3

Index-l 2

Root device (cont.)
checking structure of, 10.11
definition of, 7.3
with "diskrepair" command,

10.10
identifying, 7.1
link to, 7.3
setting on system disk, 11.9
specifying, 9.14
updated by "diskrepair"

command, 10.43
Root directory, 3.4, 3.9, 5.4,

9.11, 9.14, 10.17
badly damaged, 10.4
checking status of, 10.12
duplicate block in, 10.28
establishing, 3.5
out-of-range block in, 10.27
read by "fdncheck" command,
10.22

Rump system call, 7.10
Run-time libraries, 7.8

Salvaging data
from file with I/O error,
11.11-12

from file with out-of-range
block, 11.11-12

from system disk, 11.9-10
Scheduler, 9.17-18
Scheduling parameters, 9.2, 9.3,
9.6, 9.17-21

default values for, 9.7
maximum values for, 9.7
minimum values for, 9.7

Search path, 3.13
Sector

physical boundaries of, 3.5
size of, 3.6

Sector zero, 10.5, 10.6, 10.7,
10.10, 10.17

ignoring, 1u.6
writing, 3.5

Seek rate of floppy drives,
9.14. ~ J!.1.!Q. Tune command,
adjustable parameters,
seek_rate

Serial number
of hardware, 1.3
of software, 1.3

Serial printer, attaching to a
terminal driver, 4.2

Setpath command, 3.13
Setpr system call, 9.19
Set_termcap command, 1.5, 7.4,

7.5
Shared-text programs, 9.15

maximum number supported. See.
Tune command, adjustable
parameters, text_segs

Shell command, 2.2-3
abnormal termination of, 2.3
executing from init-control
file, 2.2

Shell program, 3.6, 5.4,6.1,
6.2, 9.15, 11.11

background tasks supported
by, 9.16

ghost, 2.3
search path of, 3.13
single-user, 2.7,3.13

Shell script, 1.3
Shutting down the system, 2.5,
3.14-15

Shutup command, 2.5, 3.14-15,
7.3

Signal, branching on in
init-control file, 2.5

Single instruction, executing,
1.8,1.9

Single-user mode, 3.1, 7.2, 7.6
booting to, 3.1-2
bypassing, 3.2
exiting, 3.2, 3.13, 3.15
password in, 3.1, 3.2
when to use, 3.1

SIR. See System information
record.

Skipbad command, 11.12
Slash character, in file name,
10.25

Slave task, 6.4
Smem, 7.3
Spooled file, naming, 4.4
Spooler. ~. Printer spooler
Spooler command. Se~ Printer

spooler
Spooler directory, 7.8

creating, 4.2-3
entries in, 4.4

Stack space, B.l
Standard error, 2.2, 2.4, 2.6,
10.5, 10.13

Standard input, 2.2, 2.4

Index-13

Index

Standard I/O channels. ~
Standard input; Standard
output; Standard error

Standard output, 2.2, 2.4, 7.7,
10.13, 11.9

Standard-environment file, 7.11
Start-up file, 4.3, 7.11

abnormal termination of, 3.13
Status system call, 7.10
Stop command, 2.5, 3.15
Streaming tape, building an
operating system from, 1.3, 1.4

Support software
adding to a system, 1.10
updating, 1.10

Suspended task, 9.18
Swap, 7.3. ~~ Paging
device; Paging space

System buffers, 9.8-9
System call

correspondence between name
and number, 7.9·

definition of, 9.18
System crash, 11.1

course of action following,
11.1-11

effect on printer spooler,
4.5

System disk
building, 7.1
copying operating system to,
1.3

definition of, 11.8
formatting, 1.3-4, 3.5-6, 6.1
mounting, 11.9
salvaging data from, 11.9-10
setting paging device on,
11.9

setting pipe device on, 11.9
setting root device on, 11.9
updating, 1.9

System floppy, 1.2. See also
Master floppy

System information record,
10.17, 10.37

access by "diskrepair", 10.14
badly damaged, 10.4
checked by "diskrepair",
10.41-43

contents of, 10.2
preliminary checks by
"diskrepair", 10.14

6Sxxx UniFLEX System Manager's Guide

System information record (cont.)
rewritten by "diskrepair"

command, 10.15,10.16,
10.41, 10.43

updated by "diskrepair"
command, 10.43

writing, 3.5, 10.2
System-wide programs, home for,
3.13

S+ permission, 11.14

Tail command, 11.12
Tape, 6.3, 11.9, 11.11
Task

abnormal termination of, 9.15
active. ~ Active tasks
currently executing, 9.1S
executable, 9.1S
number supported by system,
9.i4

suspended, 9.1S
Task ID, 3.15, 4.4, 9.14, 9.17
Temporary directory, 7.11
Tempor ary fil es

deleting, 7.11
location for, 7.11

Termcap file, 7.5
Terminal, 6.3. ~ also Terminal
port, 7.4

ANSI standard, 7.5
buffering input to, 9.9
buffering output from, 9.9
defining capabilitie~ of, 7.5
maximum number supported, 7.3
as standard I/O channel,
10.14

Terminal driver, 4.1, 4.2
Terminal port

configuration of, 1.5
disabling for login, 7.4
enabling for login, 7.4
number for, 7.4
type of terminal associated
with, 7.4-5

Text editor, 9.15
Text file

duplicate blocks in, 11.10
out-of-range block in,

11.11-12
Text segment

address of, 1.2,1.7, 7.11
siz e of, 1.2, 1.7

Index-14

Tick, definition of, 9.6
Time

determining, 3.3
internal storage of, 3.4
setting, 3.2-4

Time limit for tasks, 9.15
Time system call, 7.10
Time zone, 3.4, 9.7, 9.15-16
Timed event, pending, 9.15
Time-outs, number of, 9.15
/tmp. See Temporary directory
Tracing, control commands, 2.5
Track

moving head from one to
another; 9.14

number of sectors in, 3.6
Trouble-shooting after a system
crash, 11.1-11

Ttime system call, 7.10
Ttycap file, 7.4, 7.5
Ttyget system call, 7.10
Ttylist file

contents of, 7.3-5
format of, 7.4-5

Ttyset system call, 7.10
Tty-intensive task, definition
of, 9.18

Tune command, 7.1, 7.3, 9.1-24,
11.9

adjustable parameters, 9.4-21
from automatic mode,
9.S-16

. buffers, 9.5, 9.7, .9.S-9
default values of, 9.7
determining current values
of, 9.21

DST, 9.5,9.7,9.9
DST_end, 9.5, 9.7,9.9
DST_start, 9.5, 9.7, 9.10
DST_time, 9.5, 9.7, 9.10
files, 9.5,9.7,9.10-11
functions of, 9.4
iolists, 9.5,9.7,9.9
locked_recs, 9.5, 9.7,
9.11

maximum values, 9.7
minimum values, 9.7
mounts, 9.5, 9.7,9.11
ms&-buffers, 9.5, 9.7,

9.11-12
ms&-exchanges, 9.5, 9.7,

9.12

Tune, adjustable parameters (cont.)
ms&-size, 9.5, 9.7, 9.12
page_dev, 9.5, 9.7,

9.12-13
page_space, 9.5, 9.7,9.13
pipe_dev, 9.5, 9.7, 9.13
root_dev, 9.5, 9.7, 9.14
see~rate, 9.5, 9.7, 9.14
tasks, 9.5, 9.7, 9.14,

9.16
text_segs, 9.5, 917, 9.15
time_limit, 9.5, 9.7, 9.15
time_outs, 9.5, 9.7,9.15
time_zone, 9.5, 9.7,
9.15-16

user_tasks, 9.5, 9.7,
9.14, 9.16

adjusting parameters in
interactive mode, 9.3

arguments, 9.1-2
automatic mode, 9.3, 9.8
default values for

parameters, 9.6, 9.7
error messages from, 9.22-23
exampl es, 9.21
function of, 9.1
interactive mode, 9.2, 9.3,
9.5, 9.16, 9.17

limits on values of
parameters, 9.7

list of parameters, 9.3
modes of operating, 9.2-3
options, 9.2. See also

individual names
'p' option, 9.2, 9.17
'P' option, 9.2, 9.5, 9.16
parameters associated with

scheduling. ~. Scheduling
parameters

parameters associated with
"phys" segments. See Phys
parameters

, q , opt ion, 9. 2
quiet mode, 9.2
'r' option, 9.2, 9.3, 9.5
read-only mode, 9.2-3
restrictions imposed on
parameters by, 9.3

syntax for, 9.1

/uniflex, 7.1,7.3,9.6,9.21,
11.8

Index-IS

Index

UniFLEX commands, location of,
7.2, 7.12

Unmount command, 3.9, 10.41
Unreferenced files, 7.11, 10.1,
10.30, 10.33-34

Updating support software, 1.10
Updating system disk, 1.9
User ID, 5.1, 5.3, 7.7

assigning, 5.3
for bin, 5.3
range of, 5.3
for system manager, 5.3

User ID bit, 11.14
User instruction, 9.18
User name, 5.1-2
Users, list of, 7.7
/usr, 7.12
/usr/bin, 3.13, 7.12
/usrO, 3.10, 7.12
/usr1, 3.10,7.12
/tisr2, 3.10, 7.12
/usr3, 3.10, 7~12
Utmp file, 7.2

Verification of the medium,
logical, 3.8

Version number, 1.3
Vertical bar, to create pipe,
6.2

Volume space, 10.2, 10.19, 10.20
bit map of, 10.36, 10.37
overlapping contiguous-file
space, 10.16

overlapping paging space,
10.15

Who command, 7.2

" " .
defin:tion of, 6.2
file descriptor node of,
10.29

missing entry, 10.29,
11.12-13

multiple entries, 10.29

" "
definition of, 6.2
file descriptor node of 10.29
missing entry, 10.29,
11.12-13

multiple entries, 10.29

68xxx UniFLEX System Manager's Guide

Index-16

