
General UniFLEX$ Information

I. General Information

The UniFLEX$ Operating System (®UniFLEX Registered in DoS. Patf:'?1t.,and
Trademark Office) is a state-of-the-art operat-Lllg l'ly(>U"1Il fo:~,:
microcomputers. The system's design has been influenced pri1Mrily-:by
two other operating systems, FLEX'" and UNIX'" ("'FLEX is a t:i7Stdemark.:9f
Technical Systems Consultants; "'UNIX is a trademark of AT&T Be1.~.,
Laboratories). UniFLEX retains the flexibility and ease of 'use o~ FLEX.
while incorporating some of the widely accepted structures of UNIX.

UniFLEX is a true nrulti-tasking, multi-user operating syatem. Each user ':;~

c01lDD.unicates with the system through a terminal and may execute any of;::.",.:
the available system programs. This implies that one U9f:!I' may bE;i'. : ..
running the text editor while another is running BASIC while still
another is running the C compiler. Not only may different Ufi:ers ·run,.
different programs simultaneously, but one user may be running:, f!everal
programs at a time. For example, a compiler run on one Hie co:uld be
started, while making changes in another file with the editor".8,LThe
system would inform the user when the compilation is completed.

Each user must 'log in' before being permitted to use the syste.m. Th.e
log in process requires the user to enter a user name, follOW,ed by a,·
password. The system checks the validity of the password, and:if·. '.'{,
accepted, the system command language program (the 'shell') is run. >:
Full system accounting is supported by UniFLEX which will keep tr.!\\ck: 'Qf,: ~_c. ,
user log-in and log-out times, as well as the user's utilization of
system resources. This is ideal for an educational enviro:ament since
individual student's system time can be closely accounted for.

UniFLEX is a very complete operating system and hall no practical.·" .' ..
limitations built into the software; almost all of them aI"t"I hardware ,;
imposed. It supports a hierarchical file system allowing f He sizes up .:::
to one billion bytes and disk capacities of over eight billion bytes .. '::'!::"
All files are fully protected. A user may read, write, or execute
protect files on an individual basis. All system I/O is device
independent since I/O devices and files are treated in all identi(!al:
fashion. Any combination of interrupt driven devices may be attachg~Lto
the system. Any running task may initiate another task in~.,t ~n
asynchronous manner. Inter-task communication is also supported. Tas1.t
swapping may take place on those systems incorporating ail apPlSQ~li,iate
swapping device. In real time applications, where sW3ppil;l~l)IFay be
detrimental, it is possible to lock a task in main m~mory. Virtual
memory versions of the operating system also exist.

-1-

The user's main connection with the system is through the command
language. This is the vehicle for inputting commands to the system. It
support'S, a wide variety of features including parameter passing and
various: types of name pattern matching. Input to the command language
may be from the terminal or from any file (including other devices).
This enables very complex command files to be created and run at will.

We will not claim that UniFLEX is the 'ultimate' operating system. It
is impossible to create a program such as an operating system with which
no one can find fault. We do feel, however, that, UniFLEX does represent
the s'tate of the art in operating systems and incorporates as many
'large system' features as is practical without losing the friendliness
of the" smaller system.

II. Documentation Description

The UniFLEX documents contained in this volume cover all aspects of the
operating system. A brief description of each follows.

A. Introduction to UniFLEX

This manual is oriented towards the beginning user of UniFLEX. It
provides enough information for the novice to start using the
operating syStem efficiently. Topics such as logging in and logging
out are covered, as well as an introduction toa wide variety of
system commands and features.

B. UniFLEX Utility Commands

All of the standard UniFLEX commands are described in detail. The
command's syntax, use, and examples are all given. The commands are
arranged alphabetically for easy teference.

C. UniFLEX Text Editor

The UniFLEX text editor is probably used more than any other
program. This manual contains a tutorial on the editor as well as a
complete description of all editor commands and features. The
tutorial should be read by all system beginners.

-2-

D. UniFLEX 68xxx Assembler and Linking-Loader

Assembly language programmers will want to make use of this manual.
It describes all of the features and capabilities of the 68xxx
relocating assembler and linking-loader.

E. The UniFLEX Operating System

A general overview of UniFLEX is presented in this document. A
discussion of the file system structure, task structure, and system
features is included. This is recommended reading for those
desiring more information on the details of the operating system.

F. Introduction to UniFLEX System Calls

This manual describes the system interface at the assembler level.
System call structure, system errors, and system definition files
are all described. All of the UniFLEX system calls are completely
defined and appear in alphabetical order for easy reference.

G. UniFLEX Programmer's Guide

This ~s essential reading for those writing programs which need to
interface with the system. Examples are given for most of the
system calls. File manipulation, task control, and program
interrupts are some of the topics discussed.

H. Miscellaneous UniFLEX Documents

This is a catch all and should be used for the variety of UniFLEX
notes which will likely appear in the future. Those with
maintenance will occasionally receive 'Product Bulletins' which may
conveniently be filed in this section.

III. Acknowledgements

UniFLEX is a result of various motivations. The FLEX~ Operating System,
a standard in the field for 6800 and 6809 microcomputers, was certainly
an influence. Monitoring its many years of use has given us insight
into the needs and wants of microcomputer users. The UNIXm Operating
System was a major influence on the design of UniFLEX. The structure of
'pipes', 'forks', and most of the other internal features of the
operating system were modeled after those of UNIX. UNIX has been around
for over a decade and has proved to be a solid design. UniFLEX does
offer a few 'improvements' not found in UNIX systems. One of these,
which is quite important in this day of complex data base management
systems, is the file record 'lock' mechanism.

-3-

The UniFLEX Text Editor is a descendent of the FLEX editor which is a
model of the editor, 'QED', in wide use at Purdue University. This
editor has proved to be very 'usable' and continues to be the standard
editor provided with the operating system.

-4-

Introduction to UniFLEX ®

COPYR IGHT © 1984 by
Technical Systems Consultants, Inc.

111 Providence Road
Chapel Hill, North Carolina 27514

All Righ ts Reserved

LnlFLEX@regrstered In U.S. Pa1'art a'ld Trcr:fanark Offlcs.

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enj oyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibi ted. Use of this program and manual, or any part
thereof, for any purpose other than single end use by the purchaser is prohibited.

DISClAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

Introduction to UniFLEX®

UniFLEX~ (®UniFLEX Registered in U.S. Patent and Trademark Office) is a
very friendly and powerful operating system. Its applications include
systems development, text processing, business applications, and
educational use. This document is intended to be an introduction to the
system, providing the reader with enough information to start using the
system effectively. Many of the examples are presented in a form which
may be exactly duplicated on the system; therefore, it is highly
recommended that this manual be used in conjunction with one of the
system computer terminals. The best way to learn is by doing, so feel
free to experiment with the. various topics presented here.

To get started, find a system connected terminal which no one is using
and power it on, if it is not already. At the bottom of the screen (or
page) there should be a message "Login:". UniFLEX is requesting your
"user name" which should have been assigned to you by the system
manager. Without a valid user name, you will not be able to obtain
access to the syst em. In response to the "login" message, type your
user name in all lowercase letters if possible. After the name, you
must type the RETURN key. This tells the system that all of your name
has been entered. If all goes well, the system will now respond with
"Password:". When you were assigned your user name, you should also
have received a password. This password is the key to your protection
on the system, so guard it with your life. Type your password into the
system at this time, followed by the usual RETURN. Notice that the
characters of your password are not displayed on the terminal as you
type them. This is to keep some passerby from discovering it. The
system will now check the validity of your name and password, and if all
is well, you will see the "message of the day" printed at your terminal,
followed by the system prompt "++". The two plus signs signify that
UniFLEX is ready to accept commands. If the system does not respond
this way, you probably better seek out someone familiar with the system
to get assistance.

After using the system you will eventually want to quit. Terminating an
operating session is known as "logging out". To do this, simply type
"log" and a RETURN in response to the prompt. The terminal should end
up in the state you first found it, with the "Login:" message displayed.
It is very important for you log out of the system before leaving the
terminal. If you do not, someone may start using the terminal with your
user name. They may damage information you have entered into the system
or do other nasty things, so always log out!

-1-

Once you have successfully logged in, and the two plus sign prompt is
displayed, try typing "date". Again, type the RETURN key after "date"
to inform the system you have completely entered your· request. The
system should respond with something like this:

++ date
10:51:46 Tue July 8 1980
++

This demonstrates the execution of the "date" command. Notice that the
name of the command gave you an idea ahead of time as to what might
happen. This is true of most of the commands on the system. What would
have happened if you would have mistyped "date". Try it! For example:

++ datf
Can't execute 'datf'
++

Of course you may mistype a command name which ends up being another
existing command name in the system. If this happens, more or less
unpredictable results may occur.

It is possible to correct typing mistakes on an entered line before the
RETURN is typed. The control-H character will act as a backspace.
Typing one will delete the previous character typed, typing two will
delete the· previous two characters typed, etc. The control-H is entered
by holding down the control key while typing the letter 'H'. Some
keyboards may also have a "backspace" key to perform the same operation.
A second special character for typing corrections is the line-cancel
character def ined as a control-X. Typing a line-cancel character will
effectively delete all of the characters entered so far on the current
line. The system's "ttyset" command may be used to redefine these two
characters but details will not be given here.

One other special character you should be familiar with is the
control-C. If at any time you enter a command which you need to 'stop
prior to its completion, type a control-C. This is known as the
"interrupt character" and is quite useful. To show that the program
stopped prematurely, the string "INTERRUPTI" will be displayed on your
terminal. In some programs, such as the text editor, the interrupt
character will stop what the program is doing but leave you in the
program. If you wish to momentarily stop a program which is printing on
the terminal, the "escape" key may be typed. Pressing "escape" once
will stop the output; pressing it again will restart it. One last
feature concerning typing at your terminal is "type-ahead". This allows
you to type data at any time, even if the system is printing on your
terminal at the same time. Since the characters you type are displayed
as you enter them, they will be mixed in with the characters the system
is printi'ng, but the system will get them in the correct sequence. This
feature means you may type in commands before the previous command has
finished!

-2-

Much of the time spent on the system will be spent creating or modifying
files. A file is simply a collection of information or data kept on the
system and given a name for later reference. The "text editor" is the
program which allows you to easily work with these files. There is a
complete manual describing the use of the editor (The UniFLEX Text
Editor) but for right now, we will use.it simply to create some short
files. Let's start with a file'named "myfile" by typing the command
"edit myfile". The screen should look like this:

++ edit myfile
New file being created

1.00=

The command name is "edit" and you are telling the system to edit the
file "myfile". The system reports that you are creating a new file and
prompts with line numbers to let you know which line you are entering.
In this file, type your name on one line, then your address on the next.
Since you typed two lines (each ending with the RETURN key) the system
will now be prompting for line 3 (3.00=). As the first 2 characters on
this line, type "1Is" followed by the RETURN key. This tells the editor
you are all finished. Your screen should now look something like this:

++ edit myfile
New file being created

1.00=Your name here
2.00=Your address here
3.00=1Is

++

Note that the two plus signs are back, signifying the system is ready to
accept another command. Now that you have mastered this, try creating
another file in exactly the same manner, but give this one the name
"f il e2".

You have now created two files, "myfile" and "file2". To verify this,
type the "dir" command. The results should be something like this:

++ dir
file2
++

myfile

The dir command tells the system to display the contents of your
directory. A directory LS simply a place in the system where a
collection of files is kept. Notice that your two files are listed by
name, and sorted in alphabetical order. Now type "dir +1" ("el", not
one) which should produce something like:

-3-

++ dir +1
file2
myfile
++

1
1

1 rw-rw- user
1 rw-rw- user

11:52 Jul 16 1980
11:48 Jul 16 1980

The '+' 1S normally used to specify optional additional information to a
command. This method of specifying options is very common in most of
the UniFLEX commands. In this case, the "+1" informs the dir command to
produce a long listing of your files. Notice that not only have the
file names been displayed, but also the date it was last changed, the
file owner's name (in this example, "user"), a file size indicator (the
number after the name), and the sequence "rw-rw-" which designates the
permissions associated with each file. In this case, the owner of the
file and all other users may read and write the file.

As time goes on, you will probably collect many files in your directory.
It is often desirable to display or list the contents of a file to
refresh your memory as to its contents. The "list" command will do this
for you. Typing the command:

++ list myfile

will display the contents of the file you previously created using the
editor. This same command may be used to list several files, one right
after the other. As an example:

++ list myfile file2

will display the contents of both files as if they were one larger file.
The "page" command is another command which will display the contents of
files. Not only will each line be listed, but the lines will be grouped
into pages, each page having a header which includes the file's name,
the date and time, and a page number. For example, the command

++ page myfile file2

will display your files in a page-formatted form. This command does not
run the files together as the "list" command does, but instead, will
start each file at the top of a new page.

It is often desirable to rename existing files. Let's suppose you
decide the name "file2" is not very descriptive. A better name might be
"testf ile". Instead of having to use the text editor and re-typing the
entire file, you can use the rename command.

++ rename file2 testfile

-4-

The file that used to be called "file2 11 now has the new name. To verify
this fact, execute the dir command again. You should see the following:

++ dir
myfile testfile

You can also try to list "testfile" just to prove the file is unchanged.
Another way to rename a file is to move it. This has exactly the same
effect as renaming it but may be looked at a little differently. The
''move'' command will move a specified file to another file. Therefore,
we could have done our file renaming this way:

++ move file2 testfile

You would have ended up with exactly the same results. It is also
possible to make a copy, or exact duplicate of a file. The copy will of
course have to have a different name, but the contents of the file will
be the same. If you type the command:

++ copy myfile junk

Doing a
"my file" •
to keep
should be

IIlist" of junk will show that it is exactly the same as
Note that ''myfile'' still exists. Since it is not a good idea

a lot of unused files around in the system, the ''kill'' command
used to delete them. For example, the command

++ kill junk

will delete the copy of the file which was just made. You are now back
to your original two files, "myfile" and "testfile". It should be noted
that the "kill" command will delete the files you specify without any
prompting, so be sure you really want a file deleted before using this
command. Once it is gone, there is no getting it back!

As you use the system, more and more of its features will become useful
to you. One of the very convenient offerings is the mail service
provided. This service allows you to send mail or messages to other
users on the system. In order to receive mail, it is necessary to
install a mailbox in which your mail will be placed. A mailbox is
nothing more than a file which has the special name ".mail". To create
this mail box file, type:

++ create .mail

The "create ll command will create an empty fil e and give it the name
specified. Once you have done this, anyone on the system may send you
mail. Notice that the dir command will normally not display this file
name. This will be explained shortly.

-5-

How do you know when you have received mail? Thats easy! Every time
you log in, the system automatically checks to see if there is anything
in your mailbox (.mail file). If it finds something, the message:

You have mail.

will be printed on your terminal immediately following the message of
the day. To view your mail, simply type the", command ''mail''. Your
messages will be displayed on your terminal and then you will be asked
if you want your mail saved. Usually you will respond with an 'n' for
no and a RETURN, but other responses are possible. You should consult
the complete description of the mail command in the manual UniFLEX
Utility Commands for complete details.

Sending mail to someone else is also very easy.
is to go to john, and "john" is his user name.

++ mail john

Let's suppose the mail
Typing the command:

will allow you to type your message. No prompts will be issued until
your message is complete. To signify the end of the message, type a
control-D as the first character ofa new line. The UniFLEX prompt
should then be displayed. The control-D is a common character in the
system and is used to signify "end of file". It tells the mail command
that there is no more information. You will not be able to send mail to
someone who has not installed a mail box (created a file named" • mail ")
and the mail command will issue a message if this is the case. For
practice, you can send mail to yourself (which is also a handy way to
send yourself little reminders). This is not the only way to send mail.
There are more detail s in the complete description of the "mail" command
as mentioned earlier.

After creating your ".mail II file, you might notice that executing the
"dir" command does not display that fil e name. This is a feature of the
"dir" command, and is provided to avoid cluttering up your display with
files you do not need constant reminding of. Normally, this command

. will not display any file name which starts with a period. If you use
the "+a" option with "dir", you will see a list of the names of all the
files in the directory:

++ dir +a
.mail myfile testfile

Notice that not only your ".mail" file is there, but also two additional
files, "." and " •• ". These files are in every directory and are
provided for convenience. The "." file .represents the directory, and
the " •• " file represents its parent. More on these two files later.

-6-

The mail command is used to send a message to another user who 1S not
necessarily on the system at the time. The "send" command may be used
to communicate directly with another user who is currently logged in.
To find out who is currently on the system, type the "who" command,
which will display something like:

++ who
john
jane
user

tty06
tty08
tty09

10:42 Ju1 16 1980
12:13 Ju1 16 1980
12:17 Jul 16 1980

This will tell you the user names of those logged in, as well as the
system's name for their terminal and the time at which they started. To
send a message to user "john", type:

++ send john

Then type your message. If john were to send to you, the string:

Message from john

would appear on your terminal, followed by his message. It is possible
to carryon a two-way communication if each user sends to the other.
See the full description of this command for more details.

As you learn to use more commands on the system, it
remember the exact calling sequence of some of them.
is available to offer assistance. For example:

++ help who

may be hard to
The "help" command

will provide a short description of the "who" command and how to call
it.

++ help list date

will give you information about the "list" and "date" commands. If you
forget a command name you can type:

++ help

which will give you the names of most of the commands on the system. It
will then prompt you for the name of a command with which you need help.
Typing only a RETURN will exit the help command.

Back when the original two files were created, we more or less picked
arbitrary names for them. File names may be just about anything but can
not contain more than 55 characters. It is normally a good idea to make
the name meaningful or somewhat descriptive of the file's contents. It
is also wise to avoid certain characters in names which have special
meaning elsewhere. Some examples of this are the '+' character, which
1S used to specify options, and the characters '*', '?', and '[' which

-7-

will be described shortly. There are other special characters you will
run into as time goes on, but for the most part, these are the ones to
avoid. Some common sense can also be put to good use when assigning
file names. For example, if you are writing a book, you may want to
make each chapter a different file for easy reference. Naming the files
"chapter1", "chapter2", "chapter3", and so forth, would keep them neatly
organized. If you wanted to list all of the chapters you could type:

++ list chapterl chapter2 chapter3 ••••

but as you can see, if your book contained 25 chapters, this would be
quite tedious. An easier way to accomplish this is by typing:

++ list chapter*

The '*' tells UniFLEX to look for anything in this part of the file
name. Since the string "chapter" was specified, only file names which
start with "chapter" will be looked at, but the names may end with
anything. In this way, all of the fi1 e names we want will be prov ided .
to the list command for processing. It should be noted that once the
qualifying file names are found, they are sorted alphabetically before
being passed on to the command. In this case, "chapter!" will come
before "chapter2" and so on, just as we wantl This feature is not
particular to the "list" command but is system wide. We could have just
as easily typed:

++ page chapter*

to get a page formatted listing of the chapters. As another example:

++ list *

will display the contents of all files in your directory.
just as easy, and very, very dangerous is:

++ kill *

Something

which will delete all of your filesl Do not experiment with this one,
it really works I Another example of the name-matching feature is the
following command:

++ list *file*

which will list all files which contain the string "file" as any part of
the file name. The asterisk is very useful, and you should learn to
make good use of it. There are some other name-matching characters
ava{lab1e. One of these is the '1' which will match any single
character. For example:

-8-

++ list test?

will list all files whose names start with the string "test" and have
exactly one additional character in the name. The command:

++ list ?

will list all files whose names consist of a single character. There is
one more name matching facility which allows you to specify a class of
characters. For example, if you wanted to list chapters 3 through 7 and
chapter 9 of your book you could type:

++ list chapter[345679]

The square brackets inform UniFLEX to match any of the characters
between them. Another way to do the same thing is:

++ list chapter[3-79]

A range of consecutive letters or digits may be specified by separating
them with a hyphen. This feature can be quite a time saver!

Now that you understand the basics of file names we will look at them a
little closer. As mentioned earlier, all of your files are in a
directory, which is nothing more than a collection of files. The system
has many directories in it. Each user has a directory specifically
assigned to him or her. This directory is called your home directory
and usually has the same name as your login name. Yes, directories have
names, just as do regular files. The fact that you have your own
directory, different from another user's, is why you can be assured that
typing "list myfile" will list your file called "myfile" and not someone
else's. This implies that there can be more than one file with the same
name in the system, as long as they reside in different directories.
Whenever you create a file, it will be placed in your current directo~y,
unless you instruct the system otherwise.

The directories of the system are arranged like a family tree. All
directories have a "parent" directory with the exception of the "root"
directory which forms the root or base of the tree. To get an idea of
this structure, type the command "path". You should get something
similar to:

++ path
/usr/your-name

The path command prints the complete "path name" of your current
directory. A path name, is the path you need to take through the tree
to get to a directory or fil e. In this example, you must start at the
"root" directory which is designated by the first ' /' in the patb name.
Following is the name "usr" which is the name of a directory in the root
directory. In this case, the root is the parent directory of the
directory "usr". The next ' /' character is simply a path name separator

-9-

and is only a convention used by the system. Only a leading '1'
represents the root. The next item in the path is "your-name" which
should be the name of your directory (the same name as your login name).
Its parent is "usr". To get a feel for the path name, type:

++ dir lusr/your-name

Of course you should substitute your actual user name for the string
"your-name". This instructs the system to display the contents of the
directory specified, in this case, your login directory. The results
should be exactly the same as typing "dir" without a name since this
command displays your current directory by default.

You can verify your path through the tree by first typing "dir I" to
display the root directory. You will get back something like:

++ dir I
act
tmp

bin
usr

dev
usr2

etc lib

The files you will see may vary slightly since they are system
dependent. The key here is that you will find a file named "usr" which
was the second element of your home directory's path name. Now enter
the command "dir lusr". You should see a list (sometimes quite long)· of
all of the various user names on your system. Among the names you
should find your own. This completes the path! As another example of
path names, type:

++ list lusr/your-name/myfile

This should display the contents of your "myfile" (assuming it still
exists). Since a picture is worth a thousand words, and this manual
should be kept brief, here is a pictorial representation of the
directory tree structure.

, /' - (root)

~\~
bin l/i\:t tmp

peter i\ ma\
myfile junk myfile

-10-

This is just a partial picture but you should be able to get an idea of
how the different names are related. Notice that the file "myfile" in
"paul" is completely different than the file "myfile" in "mary".

The two file names "." and " •• " were mentioned previously. These are
primarily for convenience. If you remember, the file "." represents the
directory in which it is contained, and the file " " represents its
parent. If you type the commands "dir ." and "dir •• " you will see how
these work. Remember that the directory "usr" is the parent of your
home directory.

Now that the directory structure is becoming clear, let's look at some
things we can do with it. If you wish to look at someone else's
directory, you simply need to specify the path name of the directory to
"dir". As an example:

++ dir /usr/mary

will display the contents of mary's directory. To copy a file from
mary's directory:

++ copy /usr/mary/file yourfile

The last two examples assume that you have permission to look. at this
directory and permission to read mary's file. If you remember back to
the long listing obtained from dir using the "+1" option, you saw the
characters "rw-rw-" associated with each file. The full set of
characters you will run into is

rwxrwx

which represent the permissions associated with a file or directory.
The first three characters are the permissions for the owner of the file
and represent "read", "write", and "execute" permission respectively.
The second set of three characters represent the permissions for all
others. If you want to copy or list someone else's file, you will have
to have "read" permission :In that file. If you want do a "dir" on
someone else's directory, you will need read permission for the
directory. In this way, you may protect your files from others by
setting the permissions as desired. The command to set or change
permissions is "perms" and is covered separately in the manual UniFLEX
Utility Commands.

As the number of files you collect grows, you will probably find your
directory getting quite cluttered. UniFLEX offers the ability to create
subdirectories in your home directory to help organize your files. For
example, when writing your book, it might be desirable to create a
directory which will contain nothing but your book. To do this, try:

-11-

++ crdir book

You will now have a subdirectory in your home directory named book. If
you now execute "dir +1" you will see the name ''book'' listed. Notice
that after the size number (the 1 right after the name) there is the
character 'd'. The 'd' informs you that ''book'' is not a regular file,
but instead a directory. If you execute:"

++ dir book

you will see that no files· are displayed, showing that the directory is
empty.

From your home directory, it would be necessary to type a path name to
specify a file contained in your new subdirectory "book". For example:

++ list lusr/your-name/book/file-name
or

++ list book/file-name

Both of these will give the same results. The first example specifies
the entire path name. Since the first character in the path name is
'1', which represents the root, the system will start the file name
search at the root, then go to "usr", then "your-name", followed by
"book", and finally to thefil e. The second example will start in your
current directory since the root directory was not specified. As you
can see, this second form is much more convenient. It is also possible
to. change your current directory. If you are going to access a lot of
files in "book", it would be even more efficient to change directories.
For exampl e :

++ chd lusr/your-name/book
or

++ chd book

will change your current directory to "book". Now if you type "dir"
without specifying a directory name, you will be shown the contents of
''book''. You can also execute "dir •• " which will display the contents
of your home directory since it is the "parent" directory of "book".
Feel free to create as many directories as needed to keep your files
organized. This directory structure is one area which makes the system
so efficient and easy to use.

You can also delete a directory if you decide it is no longer needed.
You can change back to your home directory by typing

++ chd
or

++ chd lilsr/your-name

-12-

If a directory is empty (no files contained in it except for the two
special files "." and " •• "), you may delete it with the "kill" command:

++ kill book +d

Notice that an option was specified ("+d ") which tells "kill" it should
delete directories. Without the "+d", the directory would not be
deleted.

Now that you have a good understanding of files and directories, let's
look at some more advanced ways of executing commands. The program
which is running and accepting your commands is called the shell
program. It is the one which is printing the "++" on your terminal and
issuing your entered commands to the system. The shell program will let
you enter commands in a variety of ways. For example:

++ date; list myfile

will execute the date command, and when it is finished, execute the
"list" command. The semicolon (';') tells the shell program that there
is another command following. You may string as many commands together
as you desire using the semicolon.

Another feature of the shell program is called I/O redirection. The
term "I/O" refers to "input/output". As you noticed, most of the
commands you have executed so far produce some sort of printing or
output on your terminal. It is possible to redirect this output into a
file. For example:

++ who >outfile

will not display anything on your terminal because the output has been
redirected to the file named "outfile". The '>' is a special character
to the shell program which causes it to take all standard output from
the command it is going to execute and put it in the file specified. As
another example:

++ list myfile testfile >junk

will put the contents of the files "myfile" and "testfile" one after the
other in the file named "junk". This is a method of concatenating two
or more files.

We can also group several commands together and put all of their output
into one common file.

++ (date; who) »status

-13-

The parentheses group the two commands together so that both of their
outputs go into the file named "status". Without them, only the output
from the command ''who'' would have been redirected into the file. Notice
that in this example, the redirection symbol was "»" instead of '>'.
This mechanism provides essentially the same results with one exception.
The '>' symbol will always create a new file when it operates, so if a
file by the same name previously existed, its contents will be deleted
before the command is run. The "»" symbol will not delete the file if
it exists, but will append the new output to the end of the file. This
can be demonstrated by entering

++ (date; who) »status

several times and then list the file "status" to see the results. Input
to a command can also be redirected. As an example, the text editor may
be used to make a variety of changes to a file. Let's suppose that the
same set of changes had to be made to an entire set of files. It would
be tedious to have to repeat the same operations for each file involved.
Instead, we may create a file which contains all of the editor commands
to be used, entered exactly as they would be entered to the editor.
Let's call this file "script". We can now type the command:

++ edit some-file <script

The argument which starts with the "<" tells the shell program to send
the contents of the file named "script" to the editor to be used as
input, as opposed to using data entered from the keyboard. This
demonstrates input redirection.

In the previous example, the files we may be editing with the script
file may be quite large, and therefore, time consuming. Entering the
command as shown will mean you will have to sit and wait for the command
to finish. An alternative is to type the command as follows:

++ edit some-file <script &

Notice that the only difference is the ampersand character, '&', at the
end of the line. The ampersand tells the shell program that it should
not wait for the command to finish, but should immediately issue the
prompt. This form of command execution is called background execution.
When a command is run in the background, the shell program will report
back with a line similar to:

** T2451 running.

The 'T' stands for "task" and the number following is the "task
identifier" number, known as the task ID for short. When the command
finally does finish, the system will report back with a similar line:

-14-

** T245l - ended.

to signify that the task has completed. If you decide you do want to
wait for the command after all, typing:

++ wait

will cause the system to act exactly as if the ampersand were not
specified initially. In other words, the shell program will not accept
any more commands until your background task has completed. It is
possible to execute more than one background task at a time. If you get
several going, the "jobs" command will give you a list of your current
background tasks, their task IDs, and the date and time they were
started. If you need to stop a task running in the background, you will
quickly find out that the control C described earlier does not work.
The "int" command is used for this purpose. It can be used to interrupt
or terminate a background task. As an example:

++ int 2451

will interrupt the background task number 2451.

Another very powerful feature of the shell program is pipes. Pipes are
used to connect small programs which are usually "filter" type programs.
A filter is a program which is provided some form of input, alters the
data in some way or another, and then outputs this changed data. The
"page" command is an example of a fil ter. As an example:

++ page filel file2 file3

will list each file starting at the top of a new page. Suppose you want
the page formatting that the "page" command performs, but you want the
files all run together, as if they were one file. One way to accomplish
this is as follows:

++ list filel file2 file3 >temp
++ page <temp
++ kill temp

This sequence will concatenate the three files (using "list") and put
the output into a file called "temp". The next line will run the "page"
command, which will get its input from the file "temp" (input
redirection). Finally, since we don't really need the "temp" file, it
~s deleted using "kill". This is fine, but there is a much easier way
to accomplish this:

++ list fil el fil e2 fil e3 I page

-15-

The vertical bar character (the ,~, character may also be used) sets up
a pipe and tells the system to take the output from the "list" command
and use it as input to the "page" command. The page command will then
output the information directly to the terminal. The fact that the data
are routed through several commands is where the name pipe comes from.
Another example of a pipe is

++ dir +1 I page

which will give you a page-formatted directory listing. Remember that
the "+1" specifies the long listing. Pipes may of course be run in the
background.

++ commandl I command2 &

Again the ampersand character is used, as described previously.

Another feature of the shell program is the "startup" service. You may
find yourself repeating the same sequence of commands every time you log
in to the system. As an example, you may run the "who" command to see
who else is on the system, followed by the "dir" command to check the
contents of your directory. This can be done automatically by creating
a file named ".startup" in your home directory. This file should
contain the list of commands you want executed. For example:

++ edit .startup
New file being created

1.00=who; dir
2.00=#s

++

You now have a file which lists the two commands you run each time you
login. The next time you login, the system will read your ". startup"
file and execute the commands you have listed automaticallyl

The shell program can execute other file~ containing lists of commands
as well. Create a file in the following manner:

++ edit dw
New file being created

l.OO=date
2.00=who
3.00=4,1:s

++

To execute this file, simply type:

-16-

++ shell <dw

which runs the shell program (after all, it is just another program) but
gets its input from the file named "dw" rather than the terminal. Both
of the commands, "date" and "who" will be executed, just as if you had
typed them in. . We can make this even more convenient by telling the
system that the file "dw" is to be made executable. This can be done
by:

++ perms u+x dw

which sets the "execute" permission for the user (owner) of the file
"dw". Now all you need to do is enter:

++ dw

and the date and "who" information will be displayed.

Quite a bit has been presented in this introduction. Hopefully you have
tried most of the examples. If everything is not clear, don't worry.
Reread the parts you had trouble with, and experiment. The best way to
learn what the system can and cannot do is by experimenting. In a short
time you will probably be calling yourself an expert!

-17-

