
334 East Kelso Street
Inglewood, California, 9030.1

TYMSHARE MANUALS

RE:'FEftENQE SERIES

ARPAS/DDT

;qYMSHARE, INC.
" 745 Distel Drive

los""Altos, California 94022

. . ,." ..
, .

. "AReAs,:;, '.'
'R'efer~~~e 'lVi~nu~I'

DDT
Reference Manual

,-
"DDT COMMAN ti ' ·a.~"<;.<.'-.,.,, ..

SUMMARY."

464 Hudson Terrace
Englewood Cliffs, New Jersey 07~32

Please send all comments about -this manual to:
Library & ~ocumentation Department, Tymshare, Inc.- 7~5 Distel Drive - Los Altos, California 94022

ARPAS

REFERENCE MANUAL

For The Tymshare Assembler

1.0

2.0

3.0

TABLE OF CONTENTS

Introduction • • • • • · • 1-1
1.1

1.2

1.3

1.4

1.5

1.6

Basic Description of the Assembler . • • • • 1-1.
Symbols ••• ·
Instructions, Directives, and Comments

1·7
1.8

Subprograms .

Literals

Relocation

Basic Assembly Procedure

Notation

The Assembly Language

2.1 Character Set .
2.2 Statements . . . ·
2.3 Programs . · . .
The Syntax of Instructions .

Their Classification

3.2 Use of the Label Field

3.3 Operand Field •••••

. .

3.4 Alternate Conventions for Expressing
Indexed and Indirect Addresses •

. '.
· 1-1

1-2

1-2

• 1-2

1-2

· 1 ... 3

• 1-4

• 2-1

• 2-1

• 2-1

• • • • • 2- 3

• • 3-1

• 3-1

• 3-2

• 3-2

• 3-2
3.5 Comment Field

4.0 Expression Syntax
• • 3-3

4-1

5.0

6.0

4.1 Operators

Constants

Classification of Symbols

Terms

Expressions •

-. 4.2

4.3

4.4
4.5

4.6

4.7
Constraints of Re1ocat.ability of Expressions

Special Relocation

Literals ..

Directives .

'6.1 COPY Genera1iz~d Register Change Command •

6.2 DATA Generate Data •

• 4-1
4-2

· 4-2

· 4-3

· 4-4
· 4-4
· 4-5

• 5-1
· 6-1'

• 6-2

• 6-3
6.3 TEXT Generate Text • • • • • • 6-3

6.4 ASC Generate Text with Three Characters per Word • 6-4

6.5 EQU Equals • 6-4

R-26

6.6

6.7

6.8

EXT Define External Symbol •

NARG Equate Symbol to Number of Arguments
in· Macro Call•••

NCHR Equate Symbol to· the Number of
Characters in Operand • • . • . • • • •

6.9 OPD Operation Code Definition • • • .

6.10 POPD Programmed Operator Definition • •

. ,

6.11 BES Block Ending Symbol • • • •

6.12 BSS Block Starting Symbol ••••

6.13 ORG Program Origin . • • •

6.14 END End of Assembly •

6.15 DEC Interpret Integers as Decimal

6.16 OCT Interpret Integers as Octal

6.17 RAD Set Special Relocation Radix

6.18FRGT Forget Name of Symbol ..•.

6.19 IDENT Program Identification

6.20 DELSYM Delete Output of Symbol Table and

• • 6-5

· 6-6

• 6-6

• 6-7

• 6-7
6-8

• 6-9

• 6-9

• 6-9

• 6-10

• 6-10

•• 6-10

6-11

• 6-11

Defined Op-codes .•........••.•.. · 6-12,

6.21 RELORG Assemble Relative with Absolute Origin

6.22 RETREL Return to Relocatable Assembly •...•.

· 6-12

· 6-13
6.23 FREEZE Preserve Symbols, Op-codes, and Macros • 6-14

6.24 NOEXT Do Not Create External Symbols . • 6-15

6.25 LIST Turn Specified Listing Controls On • 6-15

6.26 NOLIST Turn Specified ,Listing Controls Off

6.27 PAGE Begin New Page on Assembly Listing

6.28 REM Type Out Remarks in Pass 2 '

7.0 Macros and Conditional Assembly

7.1 Introduction to Macros

7.2 Macro Definition

. ..

FIGURE 1: Information.F1ow During Macro Processing

7.3 Macro Expansion.

7.4 Macro Arguments.

7·5

7.6

The Use of Dwnmy Arguments in Nacro Definitions

• 6-15

• 6-16

6-17

• 7-1

· 7-1

.. 7-2

•• 7-4'

7-5

• 7-6

• 7-8

7-11

7.7

7.8

Concatenation . •

Generated Symbols .

Conversion of a Value to ~ Digit String •

The NARG and NCHR Directives

. • . . • 7-12

• 7-13

7·9 • • • • • • 7-14

7.10 Conditional Assembly ••

7.11 The RPT Directive

EXAMPLE 7-6 . . · .

• • 7-15
. 7-16

7-17
EXAMPLE 7-7
EXAMPLE 7-8

EXAMPLE 7-9

· · · · · · . . . · · · · · . 7-18
• • • . .• • • . . 7-19'

CRPT, Conditional Repeat

:IT Capability • • • • •

. . 7-20
• 7-21

7-21
7.14 :IT, Assemble if Expression True (i.e., > 0) ..• 7-22
EXAMPLE 7-10 • • • • • • • • • 7-24
EXAMPLE 7-11 • • • • • • • 7-26

. 7.15 Special. Symbols in Conditional Assembly ••••• 7-34
8.0 Assembler Error Messages'. • • • . • . . • • • •• • 8-1

8.1 Error Messages . • • • • • • . . • • . 8-1

8.2 Interpretation of the Error Listing 8-3
9.0 Assembler Operating Instructions

9.1 Assembler Parameters ••••.

APPENDIX A: Extended List of Instructions.

APPENDIX B: Table of Trimmed ASCII Code for-the SDS 930.

9-1
9-1

A-l

B-1

1.0 Introduction

An assembler is a translator whose source language is assembly language

R-26
1-1

and whose object code is actual machine language. Assembly language is mostly

a one-far-one representation of machine language written in a symbolic form.

Its value comes from being easier to read and from the facilities provided by

the assembler for doing calculations at assembly time. These range from simple

address calculations to complex conditional assemblies in which totally

different object programs may be generated, with the choice 8.JllOng them

depending on the values of a few parameters.

This section serves to define the terminology used. It is assumed that

* the programmer is fnmiliar with the basic characteristics of the SDS 940 .

1.1 Basic Description of the Assembler

The assembler is a two-pass assembler with subprogram, literal,

macro, and conditional assembly capabilities.

1.2 Symbols

Numbers may be represented symbolically in assembly language by

symbols. A symbol is any string of letters and digits not forming a

constant. (Constants are defined in Section 4.2). In particular, it

is not necessary that a symbol begin with a letter. Although symbols

as written may be arbitrarily long, only the first six characters of a

symbol are used to distinguish it from others. When a symbol is used to

represent a memory address, it is called a label. Examples of symbols

are:

START ZlC A12 CALCULATE

* Ref. to SDS 940 Computer Ref:erence M?nual, No. 90 06 40A, August, 1966.

1·3 Instructions, Directives, and Comments

Input to the assembler takes the form of a sequence of statements

called instructions, directives, or comments. Instructions are symbolic

representations of machine commands and are translated by the assembler

R-26
1-2

into machine language. Directives, by contrast, are messages which serve

to control the assembly process or create data. They mayor may not

generate output. Comments are ignored by the assembler, and serve only

to clarify the meanine of a program.

1.4 Subprograms

Programs often become quite large or fall into logical divisions

which are almost independent. In either case it is convenient to break

them into pieces and assemble (and even debug) them separately. Separately

assembled parts of the same program are called subprograms.

Before a program assembled in pieces as subprograms can be run it is

necessary to.load the pieces into memory and link them. The symbols used

in a given subprogram are generally local to that subprogram. Subprograms

do, however, need to refer to symbols defined in other subprograms. The

linking process takes care of such cross references. Symbols used for it

are called external symbols.

1.5 Literals

Often data is placed in programs at assembly time. It is frequently

convenient to refer to constants by value than by label. A literal is a

symbolic reference to a datum by value. The assembler allows any type of

expression to be used as a literal. Some examples of literals are:

=3*XYZ-2 . ='END' =EXTERN

1.6 Relocation

A relocatable program is one in which memory locations have been

computed relative to the first word or origin of the program. A loader

(for this ass~~Dler, DDT) can then place the assembled program into

core beginning at whatever location may be specified at load time.

Placement of the program involves a.small calculation. For example,

if a memory reference is to the nth word of a program, and if the program

is l08ded beginning at location k, the loader must transform the reference

into absQlute location n+k.

This calculatiQn should not be done to each word of a program since

sQme machine instructions (shifts, for example) do not refer to memory

locations. It is therefore necessary to inform the loader whether or not

to relocate the address for each word of the program. Relocation infor-

mation is determined automatically by the assembler and transmitted to

the loader as a binary quantity called the relocation value. If R = I

the operand is to be relocated; if R - 0 the operand is absolute.

Constants or data may similarly require relocation, the difference

R-26
1-3

here being that the relocation calculation should apply to all 24 bits of the

940 word, not just·to the address field. The assembler accounts for this

difference automatically.

It is possible to disable relocation in the assembler and to do

absolute assembly. In this event there is an option which produces a

paper tape which can be loaded using the 940 fill switch.

1.7 Basic Assembly Procedure

During pass 1 of the two-pass process the operands of instructions and

some directives are scanned for the presence of single symbols. If a single

symbol is present, a table of symbols is searched. If absent, the symbol is

added to the table but marked as not yet defined, i.e., having no value.

Labels are placed into the· symbol table in similar fashion, except that

they are assigned the current value of the location counter, a word within

the assembler which contains the relative Rddress of the instruction. If

a label has been previously defined, it is marked as a duplicate symbol

(this is taken to be an error).

R-26
1-4

At the end of pass 1 the symbol table is sorted. All symbols present'

h~ving no value are assumed to be external. These symbols are 'then output

by the assembler for later use by the loader. During pass 2 the labels

are not computed; rather, the operand fields of instructions and directives

are evaluated using the now known symbol values.

In absolute assemblies the scan for single symbols in pass 1 is

disabled. This has the effect of doing away with external symbols~

1.8 Notation

In the following pages, square brackets [] are used to indicate the

presence of optional quantities.

2.0 The Assembly Language

2.1 r.haracter Set

The classes of characters recognized by the assembler are as follows:

(a) digits

(1) octal 0-7

(2) decimal 0-9

(b) letters A-Z

(c) 'a1phanumerics 0-9 and A-Z

(d~ delimiters + - * / , I () =

(e) special characters < > ?

$ blank (-

] . "

R-26
2-1

Note that the characters ! # % & @ .' t which are normally found on standard

Teletypes are not recognized by the assembler. Us~ of them in a program

will result in their being replaced by blanks.

2.2 Statements

Statements are logical units of input. They may be delimited either

by being placed on separate lines or by being separated with semi-colons.

Semi-colons do not serve as statement delimiters when used between single

quotes (as in the TEXT directive) or inside of matched parentheses (as in

arguments of macro calls). Examples of statements are

or

START LDA

START

MUL
STA

LDA

DAT2l
2lB
ANSWER

DAT2l; MUL 2lB; STA ANSWER

If a statement requires more than one line for any reason, it can .be

continued on the next line'by typing a + in the first column of the next line.

Thus:

START LDA DAT21; MUL 2IB; STA ANSWER THE OOM
-+MENT ON THIS LINE REQUmES A CONTTIruJriITON

This kind of continuation may be done for about five lines (320 Characters).

R-26
2-2

Each non-blank statement is an instruction, a directive, or a

c0mment. Blank statements are ignored. Comments begin with an asterisk;

they have absolutely no effect on the program being assembled and serve

only as annotations to clarify the meaning of the assembly langu~ge.

Directives and instructions are divided into four fields. The

fields are, from left to right, the label field, the operation field, the

operand field, and the comment field. The assembler is a free-form

assembler; its various fields are delimited by blanks rather than

restricting them to fixed places in a line. This is explained in more

detail below.

The label field is used mostly for symbol definitions. It begins

with the first character in the statement and ends on the first non-

alphanlrmeric character. (The blank is usually the only legal terminator.)

Thus,. in the following statements the symbol XYZ appears in label fields.

XYZ LDA =10
STA DEF;XYZ LDA =10; LDB* LMN

The operation field contains (usually) a symbolic operation code or

directive name. It begins with the first non-blank character after the

termination of the label field. In the statements above, each operation

field begins in a different position. Like the label field, the operation

field terminates on the first non-alphanumeric character. Legal

terminators are the blank, asterisk, semi-colon, and carriage return.

The operand and comment fieldS each begin with the first non-blank

character after the termination of the preceding field. The oper~nd

field terminates on the first blank or semi-colon not between matched

single quotes or parentheses. The carriage return always terminates the

field (and the statement). The comment field terminates on a semi-colon

or carri~ge return. This field, like the comment statement, is not used

by the assembler; it may contain anything.

2.3 Programs

A program consists of a sequence of statements terminated by an END

directive. Normally programs are assembled in relocatable form. A

program is assembled in absolute self-loading. form if it begins with an

ORG directive. It is possible (by using RELORG) to make an absolute

assembly to be loaded by DDT.

R-26
2-3

3.0 The Syntax of Instructions

3.1 Their Classification

(a) Class 1 (normal instructions).

Class 1 instructions in general use the operand field. Its

absence implies the value zero. It is possible to specify for each

Class 1 instruction whether or not the operand field must be present.

It is also possible to 'specify that bit 0 of the instruction word is

to be set to one (as in SYSPOPs). There are two types of Class 1

instructions:

(1) type °
14 The address is formed mod 2 . All instructions

making memory references are of this type.

(2) type 1

The operand is formed mod 29. This type is used for

shift instructions. If indirect addressing is used with

this type, the address is formed mod 214.

Class 1 instructions have the following form:

[[$]label] opcode[*] [operand[,tag]]- [comment]

Indirect addressing is signified by an asterisk tmroediately

following the operation code or by preceding the operand with ~ •

The use of the dollar Sign is explained in 3.2 The tag is used

to specify bits 0, 1 and 2 of the 940 instruction word.

(b) Class 2 (complete or full word instructions).

Class 2 instructions have no operand field. Indirect addressing

is signified by an asterisk immediately following the operation

code. Class 2 instructions have the following form:

[[$]labei] opcode[*] [comment]

(c) Numeric op codes.

Operation codes 'may be specified as decimal or octal numb~rs,

as for example:

[[$]label] 76B[*] [operand[,tag]] [comment]

R-26
3-2

The assembler shi~ts the numeric op code (modulo 1778) left to

the correct position in the instruction word. In such cases, the

op code is assumed to be Class 1, type 0, no operand required,

and with bit 0 not set.

3·2 Use of the Label Field

A label identifies the instruction or data word being generated. The

symbol used in the label field is given the current value of the location

counter. Instructions will have labels normally if they are referred to

elsewhere in the program, although it is not necessary that symbols defined

in this way be used in references. Symbols defined but not used are called

nulls; they are marked as such in the assembly listing and explicitly

typed out at the end of an assembly.

If the same symbol appears in the label field of more than one
-

instruction, it is marked as a duplicate and given the newer value.

A $ preceding a label causes an external symbol definition (cf. 6.6).

3.3 Operand Field

The operand field contains at most two arithmetic expressions (or a

literal and one expression) used to determine the operand and tag of the

machine command. The tag, if present, is evaluHted mod 23 and must be

absolute (i.e~ non-relocatable).

3.4 Alternate Conventions for Expressing Indexed & Indirect Addresses

It is possible to express both the use of indexing and indirect

addressing in an alternative manner. In each case a special character

is placed at the beginning of the operand field. These characters are /

for indexing and ~ for indirect addressing. Thus, for example,

LDA VECTOR,2 is the same as LDA /VECTOR

and

STA* POINTR is the same as STA H?OINTR

Similarly,

LDA* COMPLX,2 may be written either as

LDA / f-COMPLX

or LDA ~COMPLX

Anything normally useful may follow the initial ~or /, for example

LDA 4- =CHA IN (LDA* =CHAIN)

This alternate way of expressing indexing and indirect addressing

may be used by programmers as they choose. It was devised to simplify

the indication of these operations in the use of macros (see chapter 7).

3.5 Comment Field

The comment field is not processed by the assembler, but is copied

to the assembly listing.

R-26
3-3

4.0 Expression Syntax

R-26
4-1

The assembler evaluates expressions as 24-bit, signed integers. Expressions

consist of constants and symbols connected by operators. Examples of expressions

are:

lOO-2*ABC(OR)DEF/27B

22

Cl2>DI9

Expressions are evaluated from left to right, some operators taking precedence

over others. As an expression is evaluated, a parallel cal.cu1atioz; of its

relocation value R. is made. Only absolute expressions (R = 0) and ·re1ocatable

expressions (R = 1) are 'legal (cf. 4.7).

4.1 Operators

The operators recognized by the assembler and their precedence are

given below. Operators of highest precedence are applied first in

evaluation of expressions.

Operator Precedence

(a) unary

+ 4

4

(NOT) 4

(R) 4 (cf. 4.7)

(b) re lat iona1
(LSS) or < 3
(GRT) or> 3

(EQU) or = 3

(c) binary

* 2

/ 2

(p,ND) 2

+ I

1

(OR) I

(EOR) 1

Note that some operators are more than one character long. These

are enclosed in parentheses to avoid confusion with symbols which would

~therwise look the same. Parentheses are therefore not allowed in

expressions to delineate terms and modify the order of evaluation.

The relational operators give rise to a value 1 if the relation is

true and ° if false. There may be only one relCltional operator in an

expression.

4.2 Constants

Constants are of three types: .

(a) decimal integers: one or more decimal cht.l.racters possibly

terminated with the letter D.

2129, 600D, -217

(b) octal integers: one or more octal characters possibly terminated

with the letter B and optionally a single-digit octal scaling

factor.

217, 32B, 4B3 (which is the same as 40008)

(c) string: '1-4 characters (except ,),

-
All constants are absolute, i.e., their relocation value is O.

The assembler normally expects integers to be decimal. This can

be changed, however, by using a directive (OCT or DEC). In any case~

integers may be terminated with B or D, overriding the normal inter-

pretation of, integers. string constants are not normally useful in the

direct comp~tation of memory addresses, but exist basically to be used

in lite~als (cf. 5.0).

4.3 Classification of SymbolS

The assembler recognizes the following types of symbols:

(a) local symbols: These symbols are defined by their use in the

label field of instructions and in some directives. Their

R-26
4-2

R-26
4-3

value is that of the location counter at their definition. They

are thus symbolic addresses of memory cells. These symbols are

relocatable (R = 1) if the assembly is relocatable; if the

assembly is absolute, they are absolute. Once having been

defined, a local symbol may not be redefined. Attempts to do so

are considered errors, and diagnostics result.

(b) equated symbols: Equated symbols may be defined by equating

them to an expression (using directives EQU, NARG, or NCHR).

Their relocation value will be that of the expression. Unlike

local symbols, equated symbols may be given new values' at any'

point in the program.

(c) current location counter symbol (*): The character *, if used

in the proper context, is understood to mean the current value

of the location counter. It is relocatable or absolute

depending on the nature of the assembly ..

(d) external symbols: External symbols are those which are used·

but not defined in a given subprogram. They can be assigned

no value, and it is not reasonable to regard them either as

absolute or relocatable. External symbols may be used only as

the sale object in an expression; other than its appearance as

a sole object, the external symbol may not be used in an

expression.

4.4 Terms

Terms are either constants or symbols, optionally preceded by a unary

op~rator. The unary operator serves to modify both the·value of the term

Qnd its relocation value. One unary operator -- special relocation, (R)

may set the relocation v3lue of a term to any value. This feature is

explained in much more detail in 4.7.

4.5· Expressions

R-26
4-4

Expressions may consist of one or more terms connected by binary operators,

or they may be .just a single external symbol. Their evaluation proceeds

from left to right using operators of decreasing precedence. For example,

let A = 100, B = 200, and C = -1. Then

A+B*C/A = 98

Again, letting A = 543218' B = 444448, and C = 000778, then

A(OR)B(AND)C = 543658

4.6 Constraints of Relocatability of Expressions

The implementation of the assembler forces the following constraints

on the use of expressions:

(a) No relocatable term (R = 1) may occur in conjunction with the

operators * or I. In other words, no relocatable symbol may

multiply, be multiplied by, divide, or be divided by anything.

(b) In the absence of the special relocation operator (R) the

final relocation value of an expression may be only 0 or 1.

It is possible that the relocation value may attain other

values in the course of evaluation.

(c) If the special relocation operator (R) appears in an expression,

then the relocation value of the expression may be either 0 or

some other value K, where K is the special relocation radix. DDT

is informed by the assembler that special relocation is being used

in this case. DDT will then multiply the base address by K

before adding it to the value of the expression (see next section).

4.7 Special Relocation

The special relocation feature has been provided to permit the

programmer limited use of expressions which are not absolute or singly

relocatable. To see why this is desirable, and how it works, consider

the process of assembling and loading a relocatable program. Let the

symbol A have value a. If one writes

LDA A

the assembler produces

076 a

and marks the· instruction's address as being relocatable. Late~ when

~old to load the program beginning at base address b, DDT will form

076 a+b

R-26
4-5

Thus no matter where the pr~grrum is loaded, the memory reference will be to

the ath word from the base address.

Now suppose one writes

LDA 2*A·

The assembler, of course, can form

076 2*a

.and presumab~ what DDT should form is

076 2*a+2*b = 076 2*(a+b)

To do this, it must be told that b is to be multiplied specifically by 2.

Only one bit is reserved, however, for such information in the assembler's

binary output; it is this fact which causes the restriction that

expressions may have only the relocation values 0 and 1. And this

restriction can be gotten around (inelegantly) by the use of (R).

The following example give·s one of the main reasons for which (R) was.

put into the assembler.

Programs may make use of the string-handling 8YBPOPs of the 940.
-

These instructions use string pointers, two-word objects containing

starting and ending character addresses. Now characters are packed

three per word. A character address therefore consists of the memory

address containing the ch~racter multiplied by 3 plus 0, 1, or 2

depending on the position of the character in the word. If a character

address is divided by 3, the quotient gives the word address and the

remainder the character position in the word.

To form a chara.cter address at assembly time, one must be able to

multiply a word ,address (a relocatable item) by a constant (in this

case, 3). This is the rea.son for special relocation. The statement

DATA (R)A+l

will produce the value

3*a+l

together with a notation to DDT that special relocation applies to that

value.

DDT will then form the value

(3*a+l)+3*b = 3*(a+b)+1

R-26
4-6

symbol, representing a relocatable word address, may thus be used to form

character addresses in string pointers. There are other e~amples for the

need for special relocation, but they will not be mentioned here. Let it

suffice to say that special relocation is merely a device to make up

partially for the rather severe relocation constraints the assembler

imposes upon programmers.

It should be pointed out that the multiplicative constant associated

with (R) in the example above was 3 because of the nature of string

pointers. This constant is called the special relocation rndix. It need

not be 3 always. In fact, it may be changed to any value by the directive

RAD. Because of the relative importance of string pointers, however,

the assembler is initialized with this value set to 3; it is hence

unnecessary to use RAD to set it to 3 unless it has been changed for

some reason.

R-26
4-7

5.0 Literals

Programmers frequently write such things as

LDA FIVE

where FIVE is the name of a cell cont~ining the constant 5. The programmer

must remember to include the datum FIVE in his program somewhere. This can

be avoided by the use of a literal.

LDA =5

will produce automatically a location containing the correct constant in the

program. Such a construct is called a literal.

Literals are of the form

=expression

When encountering a literal, the assembler first evaluates the expression and

looks up its vnlue in a table of literals constructed for each subprogram.

If it is not found in the table, the value is placed there. In any case the

literal itself if replaced by the location of its value in the literal table.

At the end of assembly the literal table is placed after the sub-program~

The following are examples of literals:

=10

=2=AB

=ABC*20-DEF/l2 ='HELP'-

(This is a conditional literal. Its value will be 1 or 0
depending on whether 2=AB at assembly time.) .

Some programmers tend to forget that the literal table follows the

subprogram. This could be harmful if the program ended with the declaration

of a large array using the statement

ARRAY BSS 1

It is not strictly correct to do this, but some programmers attempt it anyway

R-26
5-1

on the theory that all they wan.t to do is to name the first cell of the array.

The above statement will do that, of course, but only one cell will be reserved

for the array. If any literals were used in the subprogram, they would.be

plnced in the following cells which now fall into the array. This is, of

course, an error. Other th~n the above exception, the programmer need not

concern himself with the locations of the literal values.

R-26
5-2

6.0 Directives

There is a large number of directives associated with this assembler.

Although many of the directives are similar, ea·ch in general .has its own

syntax. A concise summary is given below:

Class

Data Generation:

Value Declaration:

Assembler Control:

Output & Listing
Control:

Macro Generation
& Conditional

Assembly:

Directive

COpy
DATA
TEXT
ASe

EQU
EXT
NARG
NCHR
OPD
FOPD

BES
BSS
ORG
END
DEC
OCT
RAn
FRGT
IDE NT
DELSYM
RELORG
RETHEL
FREEZE
NOEXT

LIST
NOLIST
PAGE
REM

MACRO
ENDM
RPr
eRPl'
ENDR
IF
ELSF
ELSE·
ENDF

Use/Function

Facilitates use of RCH command
Generation of data
Generation of text
Generation of text

Setting or changing symbol values
Defining external symbols
See
See.

\

Defining new op codes
Defin.ing po~ codes

Block ending symbol
Block starting symbol
Origin: absolute assembly
End of program
Interpret integers as decimal
Interpret integers as octal
Set special relocation radix
Forget name of symbol
Identify name of program
Do not transmit symbols to loader
See ·6.21
See 6.22
Preserve sYmbols and macros
Do not create external symbols

Set listing flags
Reset listing flags
Skip to new page on listing
Type out remarks in pass 2

Head of· macro body
End of macro body
Begin repeat body
Begin conditional repeat body
End repeat body
Begin if body
Alternative if body
Alternative if body
End of if body

R-26
6-1

6.1 COpy Generalized Register Change Command

[[$]label] COPY sl,s2,s3' ... [comment]

R-26
6-2

where s. are symbols from a special
set ass5ciated with the COpy directive

The COPY directive produces an RCH instruction. It takes in its operand

field a series of special symbols, each standin~ for a bit in the address

field of the instruction. The bits selected by a given choice of symbols

are merged together to form the address. For example, instead of using

the instruction CAB (04600004), one could write COpy AB. The special

symbol AB has the value 00000004.

The advantage of the directive is that unusual combinations of bits

in the address field -- those for which there exist normally no operation

codes -- may be created quite naturally. The special s~~bols are mnemonics

for the functions of the various bits. Moreover, these symbols have this

special meaning only when used with this directive; there is no restriction

on their use either as symbols or op codes elsewhere in a program. The

symbols are:

Symbol Bit Function

A 23 Clear A
B 22 Clear B
AB 21 Copy (A) -+B
BA 20 Copy (B) -+A
BX 19 Copy (B) -+X
XB 18 Copy (X) -+ B
E 17 Bits 15-23 (exponent part) only
XA 16 Copy (X) -+ A
AX. 15 Copy (A) -+ X
N 14 Copy - (A) -+ A (negate A)
X 2 Clear X

To exchange the contents of the B and X registers, negate A, and only

for bits 15-23 of all registers, one would write

COpy BX,XB,N,E

Of course, the symbols may be written in any order.

Clever programmers please note: This directive facilitates nicely

some special RCH functions which might not otherwise be .attempted (it

is usually too much trouble). For example,

COPY AX.,BX

has the effect of loading into X the logical ·OR (merging) of the A and B

registers. Interested readers are referred to the SDS 940 manual for more

details of the RCH instruction.

6.2 DATA Generate Data

[[$]label-] DATA [comment]

The DATA directive is used to produce data in. programs. Each expression

in the operand field is evaluated and the 24-bit values assigned to

increasing memory locations. One or more expressions may be present.

The label is assigned to the location of the first expression. The effect

of this directive is to create a list of data, the first word of which may

be labeled.

-
Since the expressions are not restricted in any way, any type of

data can be created with this directive. For example:

DATA lOO,-217B,START,AB*2/DEF, 'NUTS',5

6.3 TEXT Generate Text

[[$]label] TEXT 'text' [comment1·

or,

[[$]label] TEXT expression,text [comment]

The TEXT directive is used to create a string of 6-bit trimmed ASCII

cnaracters, packed four to a word and assigned to increasing memory

locations. The fi~st word of the string may be labeled. The string to be

packed may be delineated either by enclosing it in quotes (as in the first

R-26
6-3

case above)' or by preceding it with a word count (as in the second case).

The second form of the directive must be used, of course, if the string

contains one or more quotes. A pote~tial hazard arising here should be

pointed out. If a stntement contains a single quote (or any odd number

of them), it will not terminate with a semi-colon; a carriage return must

be used.

TEXT 4,THIS WON'T "WORK; TEXT 4,DISASTER AHEAD

In the line above the semi-colon will be part of the text, and the second

statement will be interpreted as being in the "comment field,

TEXT

TEXT

4, THIS WILL '

I,A-OK

In the first form of the directive, characters in the last word are

left-justified and remaining positions filled in by blanks (octal 00).

In the second form, sufficient characters are pucked to satisfy the word

count.

6.4 ASC Generate Text with Three Characters per Word

This directive is identical in form and use to TEXT, except that

8-bit characters are packed three per word". The 940 string processing

system normally deals with such text.

6.5 EQ,U Equals

[$]symbol EQU expression [comment]

The EQU directive causes the symbol in its label field to be defined

and/or given the value of the expression. The expression must have a

R-26
6-4

value when EQU is first encountered; i.e., symbols present in it must have

been previously"defined. It is permissible to redefine by EQ,U any symbol

previously defined by EQ,U (or NARG or NCHR, cf.below). This ability is

particularly useful in macros and conditional assembly.

6.6 EXT Define External Symbol

There are four ways whic? may be used to define external symbols.

(a) $label opcode or directive operand, etc.

The $ preceding the label causes the symbol in the label field

to be defined externally at the same time it is defined locally.

(b) symbol EXT (comment not permitte~)

The symbol given in the label field is defined externally.

This symbol must have been defined previously in the program.

The operand and comment fields must be absent.

Both of the above forms have the same effect; the name and value of a local

symbol is given to the loader for external purposes.

Occasionally it is desirable to define 'an external symbol whose name

is different from that of a local symbol; or an external symbol may be

defined in terms of an expression involving local symbols. There are

two ways of doing this.

(c) $symbolEQU expression

(d) symbol EXT exp.ression

[comment]

[comment]

In (c) above the symbol is defined both locally ~nd externally at the same

time. (d) differs subtly in that the symbol in the label field is defined

only externally; its name and value are completely unknown to the local

program.

R-26
6-5

The feature (d) above is particularly useful in situations where two or

more subprograms loaded together have name.conflicts. For example, suppose

programs A and B both make use of the symbol START, and A not only refers

to its own START but Bls as well. The latter references can be changed to

BEGIN. Then into program B can be inserted the line

BEGm EXT START

No other changes need be made either to A or B.

Occasionally, after having written a program, one would like to make

a list of local symbols to be externally defined. A built-in macro ENTRY

serves this function. That it is a built-in macro is irrelevant; the

programmer may think of it as a related directive. Thus

ENTRY A,B,C,D, ...

is precisely equivalent to

A EXT
B EXT
C EXT
D· EXT

6.7 NARG Equate Symbol to Number of Arguments in Macro Call

[$]symbol NARG [comment]

This directive may be used only in macro definitions. It is mentioned

here only for completeness. It operates exactly as EQU except that in

place of an expression in the operand field, the value of the symbol is

set to the number of arguments used in calling the macro currently being

e~anded. Cf. 7.9 below.

6.8 NCHR· Equate Symbol to the Number of Characters in Operand

[$]symbol NCHR operand [comment]

This directive is intended for use mostly in macro definitions, but it

may be used elsewhere. It operates exactly as EQU except that in place

of an expression in the operand field, the value of the symbol is set to

the number of characters included in the operand field. A further

explanation of the utility of this directive is deferred to section 7.

R-26
6-6

6.9 OPD Operat'ion Code Definition

The OPD directive gives the programmer the facility to add to the

existing table of operation codes kept in the assembler new codes or to

change the equivalences of current ones. The form of OPD is:

opcode OPD expression,class[,ar[,type[,sb]]] [comment]

where: 1) class must be 1 or 2 (cf. Section 3.1).

2) ar (address r'equired) may be 0 or 1

3) type may be 0 or 1 (cf. Section 3.1).

4) sb (sign bit) may be 0 or 1

Quantities governed by the optional terms above (2,3 and 4) are set to

zero if the terms are missing. As examples of how the directive is used,

some standard machine instructions are de'fined as follows:

CLA

LDA

RCY

OPD

OPD

OPD

0460000lB,2

76B5,1,1

662B4, 1, 1, 1 (TYPE 1 = SHIFT)

A hypothetical SY8POP LLA might be defined by

LLA OPD 110B5, 1, 1,0,1

(class 1, address required, type 0, Sign bit set}.

In operation, the assembler s imply adds new op codes def,ined by OPD

to its opcode table. This table is always searched backward, so the new

codes are seen first. At the beginning of the second pass the original

table boundary is reset; thus if an opcode is redefined somewhere during

assembly, it is treated identically in both passes.

6.10 POPD Programmed Operator Definition

In programs containing POPs it is desirable to provide the POPO

directive. This directive works exactly like OPO and is used in the same

way. Its essential difference from OPO is that it places automatically

R-26
6-7

in the pop transfer vector (1008 - 1778) a branch instruction to the body

of the pop routtne.

In order to do this the assembler must know two things:

R-26
6-8

(l) the location for "the branch instruction in the transfer vector and

(2) the location of the pop routine (i.e. the address of the branch

instruct ion) .

Item (l) is given by the pop code itself. Item (2) is provided by the

convention that the POPD must ~ediately precede the body of the pop

routine. The address of the branch instruction placed in the transfer

vector is the current value of the location counter.

If the automatic insertion of a word in the pop transfer vector is

not desired, then OPD should be used instead. An example of this case

would occur in a subprogram containing a pop whose routine is found in

another subprogram.

6.11 BES Block Ending Symbol

[[$]label] BES express~on [comment]

The use of BES reserves a block of storage for which the first location

after the block may be labeled (i.e. if the label is given). The block

size is determined "by the value of the expression; it must therefore be

absolute, and it must have a value when BES is first encountered, (symbols

present must have been previously defined). BES is most useful for

labeling a block which is to be referred to by indexing using the BRS

instruction (where the contents of X are usually negative). For example,

to add together the contents of an array one might write:

LDX =-100 ARRAY HAS 100 ENTRIES
CIA

LOOP ADD ARRAY,2 NEGATIVE mnEXmG HERE
BRX *-1
STA RESULT
HLT

ARRAY BES 100

6.12 BSS Block .Starting Symbol

[[$]label] BSS expression [comment]

The use of BSS reserves a block of storage for which the first word may

be labeled (if the label is given). The block size is determined by the

value of the expression; it must therefore be absolute, and it must have

R-26
6-9

a value when BSS is first encountered. ·The difference between BSS and BES

is that in the case of BSS the first word of the block is' labeled, whereas

for BES the first word after the block is labeled by the associated symbol.

BSS is most useful for labeling a block which is referred to by positive

indexing (cf. 6.11 above).

6.13 ORG Program Origin

ORG expression [comments]

The use of ORG forces an absolute assembly. The location counter is

initialized to the value of the expression. The expression must therefore

be absolute, and it must have a value when ORG is first encountered.

Pn ORG must precede·the first instruction or data item in an absolute

program, although it does not necessarily. have to be the first statement~

The output of the assembler will have a bootstrap loader at the front

which is capable of loading the program after initiation by the 940

FILL switch.

6.14 END End of Assembly

END [expression]

The END directive terminates the assembly. For'relocatable assemblies,

no expression is used. For absolute assemblies the expression gives the

starting location for the program. When assembling in absolute mode,

the 'assembler produces a paper tape which can be read into the machirte

with the FILL switch, i. e., out of the time-sharing mode. If the

expression is not included with the END directive, the bootstrap loader

R-26
6-10

on this paper tape .rill h~.lt after the tape has read in. Otherwise, control

will automatically transfer to the location designated in the expression •

. 6.15 DEC Interpret Integers as Decimal

DEC [comments]

Integers terminated with B or D are always interpreted respectively as

being oct2l or decim~l. On the other hHnd, integers not terminHted with

these letters may be interpreted either as decimal or octal depending on

the setting of a switch inside the assembler. The mode controlled by this

switch is set to decimal by the above directive.

When the assembler is started this mode is initialized to decimal .

. Thus, the DEC directive is not really necessary unless the mode has been

changed to octal and it is desired to return it to decimal.

6.16 OCT Interpret Integers as Octal

OCT [comments]

As noted in 6.15 above, this directive sets a mode within the assembler

to interpret unterminated integers as octal. When the assembler is

started this mode is initialized to decimal. Thus, the OCT directive

must be used before unterminated octal integers can be written.

6.17 RAD Set Special Relocation Radix

RAD expression [comment]

As explained in 4.7 it is possible in a limited way to have multiple-

relocated symbols. This action is performed when the special relocation

operntor (R) is used. The value of a symbol preceded by (R) is multiplied

by a constant called the radix of the special relocation. The loader is

informed of this situation so that it can· multiply the base address by this

same constant before performing the relocation. Because the special

R-26
6-11

relocation was developed specifically to facilitate the assembly of string

pointers (cf. 4.7), this constant is initialized to 3. It it is desired

to change its value, however, the RAD directive must be used. The value

of the expression in the opera~d field sets the new value of the radix.

It must be absolute, and the expression must have a value when it is

first encountered.

6.18 FRGT Forget Name of Symbol

FRGT [comment]

where s. are previously defined symb'ols
l.

The use of FRGT prevents the symbol(s) named in its operand field from

being listed or delivered to DDT. FRGT is especially useful in situations,

for example, where symbols have been used in macro expansions or conditional.

assemblies. Frequently such symbols have meaning only at assembly time;

they have no connection whatever with the program being assembled. When

DDT is later used, however, memory locations sometimes are printed out

in terms of these meaningless symbols. It is desirable to be able to .

keep these symbols from being delivered to DDT.

6.19 IDENT Program Identification

symbol IDE NT [comment]

IDENT causes the symbol found in its label field to be delivered to DDT

as a special identification record. DDT uses the IDENT name in conjunction

with its treatment of local symbols: in the event of a name conflict

between local symbols in two different subprograms, DDT resolves the

ambiguity by allowing the user to concatenate the preceding IDENT name

to" the symbol in question ..

IDENT statements are otherwise useful for editing purposes. They

are always listed on pass 2, usually on the teletype.

6.20 DELSYM Delete Output of SYmbol Table and Defined Op-codes

DELSYM [comment]

DELSYM inhibits the symbol table and opcodes defined in the course of

Hssembly from being output for later use by DDT. Its main purpose is to

shorten the object code output from the assembler. This might be

especially desirable for an absolute assembly which produces a paper tape

which is to be filled into the machine.

6.21 RELORG Assemble Relative with Absolute Origin

RELORG expression [comment]

On occasion it is desirable to assemble in the midst of otherwise normal

R-26
6-12

program a batch of code which, although loaded into core in some position,

is destined to run from another position in memory. (It will first

have to be moved there in a block.) This is particularly usefUl when

preparing program over~ays.

RELORG, like ORG, takes an absolute expression denoting some origin

in memory. It has the following effects:

(d.) The current value of .the location counter is saved, i.e. the

value of the expression and in its place is put the absolute

origin. This fact is not revealed to DDT, however; during

loading the next instruction assembled will be placed in the

next memory cell available as if nothing had happened.

(b) The mode of assembly is switched to absolute without changing

the object code format; it still looks like relocatable binary

program to DDT. All symbols defined in terms of the locHtion

counter will be absolute. Rules for computing the relocation

value of expressions are those for absolute assemblies.

It is possible to ~estore normal relocatab1eassembly _ (cf. 6.22, RETREL).

Some examples of the use of RELORG follow:

(l)· A program begins with RELORG 300B and ends with END. The

assembler's output represents an absolute program whose origin is 003008

but which can be loaded anywhere using DDT in the usual fashion. (It

is, of course, necessary to move the program to location 003008 before

executing it.)

R-26
6-13

(2) A progrrun starts and continues normally as a relocatable program.

Then there is a series of RELORGs and some RETRELs. The effect is as

shown below:

} Normal relocatable program .

RELORG . 100

J Absolute program origined to 100

RELORG ·200

} Absolute program origined to 200

RETREL

J Normal relocatable program

RELORG 300

J Absolute progrrun origined to 300

END

6.22 RETREL Return to Relocatable Assembly

RETREL [comment]

This directive is used when it is desired to return to relocatable assembly

after having done a RELORG. It is not necessary to use RETREL unless· one

desires more relocatable program. The use of RETREL is shown in 6.21.·

The effects of RETREL are

(a) to restore the L0cation counter to what it would have been

had the RELORG(S) never been used, and

(b) to return the aszemb1y to re1ocatab1e mode.

6.23 FREEZE Preserve Symbols, Op-codes, and Macros

FREEZE [comment]

It is' sometimes true when ~ssembling various sub-programs that they share

R-26
6-14

definitions of symbols, op-codes, and macros. It is possible to cause the

assembler to take note of the current contents of its symbol and opcode

tables and the currently defined macros and include them in future

assemblies, eliminating the need for including copies of-this information

in every subprogram's source language. This greatly facilitates the

editing of this information.

When the FREEZE directive is used, the current table boundaries for

symbols and opcodes and the storage area for macros is noted and s8ved away

for later use. These tables may then continue to expand during the current

assembly. (A separate sub-program may be used to make these definitions.

It will then end with FREEZE; END.) The next assembly may then be started

with the table boundaries returned to what they were when FREEZE was last

executed. This is done by entering the assembler at its continue entry

point, i.e. one types

(fJ CONTlliUE ARPAS.

Note that when the assembler has been pre-loaded with symbols, opcodes

and macros, it cannot be released (i.e. one cannot use another. SUb-system

like DDT, QED, etc.) without the loss of this information.

6.24 NOEXT Do Not Create External Symbols

Because of its subprogram capability, the assembler assumes auto-

R-26
6-15

matically that symbols which are not defined in a given program are external

and will be defined in another subprogram. It does not therefore list out

the use of. such symbols as errors.

If a program is in fact a free-standing program, i.e. if it is

supposed to be complete, then clearly symbols which are not defined are

errors and shouIa be so noted in assembly. The NOEXT directive simply

pr'events external symbols from being established; thus undefined symbols

are noted as errors. The directive must b~ used at the beginning of a .

program before instructions or data have been assembled. Its use affects

the entire program. Its form is

NOEXT [connnent)

6.25 LIST Turn Specified Listing Controls on

6.26 NOLIST Turn Specified Listing Controls Off

Most assemblers provide a means of listing a program during assembly,

i.e. printing out such items as the location counter, binary code being

assembled, source program statement, etc. The association of these items
,

on one page is frequently of great help to programmers. Twodirectivesj

LIST and NOLIST, control this process. Their form is as follows:

LIST}
NOLIST

[comment]

where the s. are from a set of special symbols having
l.

meaning only when used with these directives.

There' are many listing options for this assembler. A list of special

mnemonic symbols used in conjunction with these two directives is given

below. The symbol~ have special meaning only when used with LIST and

NOLIST. They may be used at any other time for any particular purpose.

The special symbols are:

Symbol·

1

2

LCT

BlN

SRe

COM

Me

ME

EXT

NUL

Meaning

Listing during pass 1. Listing format will be

controlled by other parameters.

Listing during pass 2. Listing format will be

controlled by other parameters.

Listing of location counter value (see below)

Listing of binary object code or values (see below)

Listing of source language (see below)

Listing of comments (see below)

Listing of macro calls· (see below)

Listing of certain directives during macro

expansions (EQU, NCHR, NARG, RPI', CRPl', ENDR, IF,

ELSF, ELSE, ENDF, ENDM).

Listing of external symbols at end of assembly

Listing of null & duplicate symbols at end of

assembly.

P.s ()n example of the meanings of various symbols above, consider the line

of code A21 STB OUTCHR SAVE POINTER.

It might list as

~236~2l~ ~2l S~ OUTC~ ~
LCT BIN SRC COM

R-26
6-16

It is not necessary to include each symbol"possib1e, but rather only those

parameters for which changes a.re desired. It is, in fact, not necessary

to give any symbols.

LIST is equivalent to LIST 2

R-26
6-17

When the assembler is started, it initializes itself in the followinB

LIST LCT,BIN,sRC,COM,MC,EXT,NUL

NOLIST 1,2,ME,SYT

The actual format of the assembly listing is controlled by the current

combination of par8meter values. The parameters are independent items

except for the parameters MC and ME. In this case it is more reasonable"

to think of their combination. Thus:

ME

o o

1 o

o 1

1 1

Effect

List outer level macro calls only

List all macro calls and code generated, but

suppress listing of certain directives (see ME

in table above).

List no macro calls, but rather all code generated

except for certain directives.

List everything involved in macro expansions.

Regardless of the list control parameters which have been given to

the assembler, it can be made to begin listing at- any time in either pass

simply by typing a single rubout (typing a second rubout in succession will

abort the assembly). Listing having been started in this manner can be

stopped by typing the letter S.

6.27 PAGE Begin New Page on Assembly Listing

PAGE [comment]

This directive causes a page eject on the assembly listing medium

unless a page eject has just been given. It is used to improve the

appearance of the assembly listing.

6.28 REM Type Out Remarks in Pass 2

REM remark to "be typed

This directive, when encountered in pass 2, causes the contents of

its operand and comments fields to be typed out either on the Teletype

or whatever file has been designated as the output message device. This

typeout occurs regardless of what listing modes are set. The directive

may be used for a variety of purposes. It may inform the user of the

progress of assembly. It may give him instructions on what to do next

(this might be especially nice for complicated assemblies). It might

announce the last date the source language was.updated. Or, it might be

used within complex macros to show which argument substrings have been

created during expansion of a highly nested macro (this for debugging

purposes).

R-26
6-18

7.0 Macros and Conditional Assembly

Assemblers with good macro and conditional assembly capability can have

surprising power. This assembler features such capability. In this section

the facilities for dealing with macros and conditional assembly will be

discussed. Many examples will be given.

7.1 Introduction to Macros

R-26
7-1

On the simplest level a" macro name may be thought of as an abbreviation

or shorthand notation for one or more assembly language statements. In

this respect it is like an opcode. The opcode is the name of a binary

machine command, and "the macro name is the name of a sequence of assembly

language statements.

EXAMPLE 7-1.

The 940 has an instruction for skipping if the contents of a specified

location are negative, but none for testing the accumulator. SKA (skip

if memory and accumulator do not compare ones) will serve when used with

a cell whose contents mask all but the sign bit. The meaning of SICA used

in this way is "skip if' A positive. n Thus a programmer will write

SKA
BRU

=4B7
NEGCAS NEGATIVE CASE

Programs, however, are more than likely to have a logical need for

skipping if the accumulator is negative. In these situations the programmer

must write
SKA
BRU
BRU

=4B7
*+2
roSCAS POSITIVE CASE

Both of these situations are awkward in terms of assembly-language

progrannning.

But we have, in effect, just developed simple conventions for doing

the operations SKAP and SKAN (skip if accumulator positive or negative).

Let these operations be defined as macros.

S~P MACRO
S~ =4B7
E~M

SAAN MACRO
8M =4B7
~U *+2
E~M

Now -- more in keeping with the operations the programmer has in mind --

he may write
A22 SMN

~U P08CAS

R-26
7-2

The advantages of being able to use S~P or 8KAN should be apparent.

The amount of code written in the course of a program is reduced. This

in itself tends to reduce errors. A greater advantage is that SKAP and

SKAN are more indicative of the action that the programmer has in mind.

Programs written in this way tend to be easier to read. Note, incidentally,

as shown above that a label may be used in conjunction with a macro. Labels

used in this way are usually treated like labels on instructions; they are ..

assigned the current value of the location counter. This will be discussed

in more detail later.

7.2 Macro Definition

Before discussing more complicated use of macros, some additional

vocabulary should be established. A macro is an arbitrary sequence of

assembly-language statements together with a symbolic~. During

assembly it is held in an area of memory called text storage. Macros

may be created or defined. To do this one must give (1) a name and

(2) the sequence of statements comprising the macro. The name and the

beginning of the sequence of statements in a macro are designated by

the use of the MACRO directive (see ex. 7-1 above).

name MACRO

ENDM

The end of the sequence of statements in a macro is signalled by the

ENDM directive.

The reader should now refer to Figure 1. When the assembler en-

R-26
7-3

counters a macro definition (i.e., when it sees a MACRO directive), switch

B is thrown to position 1. The programmer's source language is merely

copied into text storage; note in particular that the assembler does not

do any processing during the definition of a macro. Switch B is put back

to position 0 when ENDM is encountered.

It is possi~le that within a macro definition other definitions may

be imbedded. The macro defining machinery counts the occurrences of the

MACRO directive and matches them against the occurrences of ENDM. Switch

B is placed back in position 0 actually only when the ENDM matching the

last MACRO is seen. Thus MACRO and ENDM constitute opening and closing

brackets around a segment of source language. Structures like the

following are possible:

SOURCE
LANGUAGE

A

0

0

1

1

o

B

0

1

0

1

Binary Machine
Lan a e

r-----~~'----~

ASSEMBLER

SYMBOLIC
ASSEMBLY

LANGUAGE

1

1°

Effect

normal assembly

macro definition

macro expansion

macro definition

(to be explained

TEXT
STORAGE

during macro expansion

in more detail later).

Figure 1: Information Flow During Macro Processing

R-26
7-4

namel MACRO

name2 MACRO

name 3 MACRO

]
ENDM

name4 MACRO] ENDM

ENDM

name5 MACRO]
ENDM

ENDM

The utility of this structure will not be discussed here. Use of this

feature of imbedded definitions should in fact be kept to a minimum since

the implementation of this assembler is such that it uses large amounts

of text storage in this case. What is important, however, is an under-

standing of when the various macros are defined. In particular, when

namel is being defined, name2,3, etc. will not be defined; they are

merely copied unchanged into text storage. Name2 will not be defined

* until namel is used .

7.3 Macro Expansion

R-26
7-5

The use of a macro name in the opcode field of a statement is referred

to as a call. The assembler, upon recognizing a macro call, moves switch A

to position 1 (again see Figure 1). Input to the assembler from the

original source language ceases temporarily and comes instead from text

storage. During this period the macro is said to be undergoing expanSion.

* It should be noted that macros -- like opcodes -- may be redefined.

It is clear that a macrO must first be defined before it is called.

An expanding macro may include other macro calls; and these, in

turn·, may call still others. In fact,· macros may even call themselves

(when this makes sense). This is called recursion. Examples of the

recursive use o~ macros are given later. When within a macro expansion

R-26
7-6

a new macro expansion begins, information about the progress of the current

expansion is put away. Successive macro calls cause similar information

to be saved. At the end of each expansion the information about each

previous expansion is restored in inverse fashion. When the final

expansion terminates, switch A is placed back in position o. Input then

resumes from the source language program.

7.4 Macro Arguments

Now let us carry example 7-1 one step further. One might argue that

the action of skipping is. itself awkward. It might be preferable to write

macros BRAP and ~ (branch to specified location i~ contents of accumulator

are positive or negative). How is one to do this? The location to which

the branch should go is not known when the macro is de~ined; in fact,

different locations will be used from call to call. The macro processor,

therefore, must enable the programmer to provide some of the information

for the macro expansion at call time •. This is done by permitting dummy

arguments in macro definitions to be replaced by arguments (i.e., arbitrary

substrings) supplied at call time. Each dummy argument is referred to in

the macro definition by a subscripted symbol. This symbol or dummy ~

is given in the operand field of the MACRO directive.

EXAMPLE 7-2

Let us define the macro BRAP.

BRAP MACRO DUM
SKAN
BRU DUM(l)
ENDM

When called by the statement BRAP POSCAS

the macro will expand to give the statements

SKA =4B7
BRU *+2
BRU roSCAS

Note that BRAP was defined in terms of another macro SKAN (a matter

of choice in this example). Also note that as defined, BRAP was intended

to take only one 'argument. Other macros may use more than one argument.

EXAMPLE 7-3

The macro CBE ' (compare and branch if equal) takes two arguments.

The first argument is the location of a cell to be compared for equality

R-26
7-7

with'the accwnulator; the second is a branch location in case of equality.

The definition is

CBE MACRO
SKE
BRU
BRU
ENDM

When called by the statement

D
D(l)
*+2
D(2)

CBE =2lB,EQLOC

the statements generated will be

SKE =2lB
BRU *+2
BRU EQLOC

Note that arguments furnished at call time are separated by commas.

R-26
7-8

It is possible to include both commas and spaces in arguments by enclosing

the arguments in parentheses; the macro processor strips off the outermost

parentheses of any substring used in a call. For example in the call of

the macro MUMBLE

MUMBLE A,(B,C),(D E)

we have

~m: ~,C
D(3) = D E

7.5 The Use of Dummy Arguments in Macro Definitions

Before giving further examples of the use of macros, the various

ways that dummy arguments may be used in macro definitions will be

discussed. In general a dummy may be referred to by the symbolism

dummy(expression)

The only restriction on the expression above is that it must not contain

other dummies or generated symbols (see 7.7). Furthermore, for obvious

* reasons it must have a known value when the macro is called •

MOre than one dummy may be referred to by the notation

dummy(expression,expression)

In the case of the call

MUMBLE A,B,C,D,E

then

D(3,5)= C,D,E

But it is possible to have confusion in this situation. If we have the call

MUMBLE A,B,C,(D,E),F

*It should be noted that a macro call may deliver more arguments than are referred
to in its definition, but the converse is not true. A dummy a'rgument not supplied
with an argument at call time is considered an error.

then

DUM(3,5)= C,D,E,F

But which are DUM(3), DUM(4), and DUM(5)? To resolve this ambiguity, the

assembler produces in place of DUM(3,5) the string

(c), (D,E), (F)

The notation

dummy()

R-26
7-9

produces all of the arguments supplied in a macro call. Each is surrounded

by parentheses as in the example above.

The symbolism

dunnny(O)

is legal and meaningful. It refers to the label field of the macro call.

Normally a label used with a macro call is assigned the current value of

the location counter (as with any instruction). Explicit use of dummy(O),

i.e., literal zero in parentheses, causes the label field not to be

handled in the normal way. It serves merely to transmit another argument.

There are three possible cases.

(1) Macro contains no references to dummy(O). Label field is

treated norma~ly.

(2) Macro contains at least one reference to dummy(O). Label field

merely transmits an argument which replaces dummy(O) in the

expansion.

(3) 'Macro contains no references to dummy(O) explicitly but does

contain dummy(expressi~n) where, at call time, the value of the

expression is zero. In this case the label field is handled as

in case (1) and also used to transmit the argument referred to by

dummy(expression) as in case (2).

The symbolism

dummy(-l)

is used to represent the terminal character of the opcode field, i. e., to

determine whether the macro name terminated with a blank or a * (in case

of indirect address). It allows macros to be called with or without

"indirect addressing" specified. Thus in a typical call we have the

following relationships:

Ml7,
'-..-

1
dummy(O)

CALL*

r
dummy (-1)

ABC,DEF,'GHI',JKL
'-v-' ~

.~ r J
d~Y(1)\~dummY(3,4)

dummy() .

Note that dummy(-l) is always one character long.

Sometimes in a macro definition it is desirable to refer only to a

R-26
7-10

portion of an argument, perhaps to a character or a few characters. In the

case of a single character this may be done by writing

dummy(expression$expression)

The first expression designates which argument; the second determines

which character of that argument. If a substring of an. argument is

desired, one writes

dummy(expression$expression, expression)

The second and third expressions determine the first and last characters

of the substring. For example, if we have the call

then

MUMBLE A,BCDE, 'FGHIJ'

DUM(2 $3) = D

DUM(3 $4,7) = HIJ'

Beginning with the ith character the latter part of an argument can be

obtained by specifying an overlarge terminal bound. Thus

DUM(2$4,1000) = HIJ'

7.6 Concatenation

R-26
7-11

It is frequently useful to compose statements out of macro arguments

(or parts of them) and other information given in the macro definition.

This is done by concatenating the various objects together, i.e. simply

writing them next to each other. It is possible to confuse the assembler

when doing this, however. For example, let the dummy name in a definition

be C., and suppose we wish to conc atenate the strings AB and C (3) • If we

write ABC(3), then do we mean AB concatenated with C(3), A concatenated

with BC(3) (Whatever that is), ABC(3), or what?

To avoid ambiguity we use the character "." (dot or perio~) as a

concatenation delimiter. For. the example just above we would write

AB.C(3), and no ambiguity then exists. The assembler uses the dot to

delineate objects it must deal with; in producing output the macro expansion

machinery.after having recognized the various objects simply skips over

the dots. The dot character cannot therefore be-used literally in!:: macro

definition.

EXAMPLE 7-4

Let us define a macro STORE. Suppose we have established the
. .

convention that certain temporary storage cells begin with the letters

A,B, or X, depending on fram what 940 register information is to be stored

there. The definition is

STORE MACRO D
ST.D(l$l).D{-l) DCl)
ENDM

If called by the statements

STORE B17
STORE* x44

the macro will expand as

STB B17 or STX* x44

The dot is not actually needed in every incidence of concatenation.

R-26
7-12

Some progrrummers may readily determine for themselves when it is actually

needed. As a matter of good practice, however, when in doubt, use it!

7.7 Generated Symbols

A macro should not, of course, have in its definition an instruction

having a label. Successive calls of the macro would produce a multiply

defined symbol. Sometim~s, however, it is convenient to put a label on

an instruction within a macro. There are at least two ways of doing this.

The first involves transmitting the label as a macro argument when it is

called. This is most reasonable in many cases; it is in fact often

desirable so that the programmer can control the label being defined.

and can refer to it elsewhere in the program.

However, situations do arise in which the label is used purely for

reasons local to the macro and will not be referred to elsewhere. In

cases like this it is desirable to' allow for the automatic creation o~

labels so that the programmer is freed from worrying about this task.

This may be done by means of the generated symbol.

A generated symbol ~ may be declared when a macro is defined. To

do this requires two things; (1) the name and (2) the maximum number of

generated symbols which will be encountered during an expansion •. 'These

two items may follow the dummy symbol name given in the MACRO directive.

The actual format used is

name MACRO dummyname,generatedname,expression

For example, we might have

MUMBLE MACRO D,G,4

ENDM

In the definition of this macro there might be references to

G(l), G(2), G(3), and G(4), these being individual generated symbols.

With regard to generated symbols the macro expansion machinery

operates in the following fashion. A generated symbol base value for each

macro is initialized to zero at the beginning of assembly. As each

generat~d symbol is encountered, the expression constituting its subscript

is evaluated. This value is added to the base value, and the sum is pro-

duced ,as a string of digits concatenated to the generated symbol name.

Enough digits are produced to make the resultant symbol six characters

long. Thus, the first time MUMBLE is called, for example, G(2) will be

transformed into GOOOO2, G(4) into 000004, etc.

At the· end of a macro expansion, the generated symbol base value is

incremented by the amount designated by the expression following the

generated symbol name in the MACRO directive. (This was 4 in the

definition of MUMBLE above.) Thus the second call of MUMBLE will produce

in place of G(2), 000006, the third call will produce 000010, etc. It·

should be clear that a generated symbol name should be kept as short as

possible. It cannot be longer than 5 characters.

7.8 Conversion of a Value to a Digit string

As an adjunct to the automatic generation of symbols or for any other

purposes for which it may be suitable a capability is provided in the

assembler's macro expansion machinery for conversion of the value of an

expreSSion at call time to a string of decimal digits. The construct

($expression)

will be replaced by a string of digits equal in value to the expression.

R-26
7-13

For example, let X = 5. Then

AB. ($2*X-l)

will be transformed into

AB9

Further examples of the use of this facility appear below.

7.9 The NANG and NCHR Directives

Macros can be more useful if the number of arguments supplied at

call time is not fixed. The precise meaning of a macro (and indeed, the

results of its expansion) may depend on the number or the arrangement of

its arguments.- In order to permit this the macro undergoing expansion must

be able to determine at call time the.number of arguments supplied. The

NARG directive makes this possible.

NARG functions basically like EQU, except that no expression is used

with it. Its basic form is

symbol NARG [connnent]

The function of the directive is to _equate the value of the symbol to the

number of arguments supplied to the macro currently undergoing expansion.

The symbol can then be used by itself or in expressions for any required

purpose. Examples of the use of NARG appear later.

It is also useful to be able to determine at call time the number of

characters in an argument. NCHR functions by equating the symbol in ·its

label field to the number of characters in its operand field. Its form is

symbol NCHR characterstring [comment] -

R-26
7-14

The notion of "operand field'~ must be elaborated on here. The operand field

normally terminates on the first blank after the beginning of the field.

~ ~ is rescinded if ~ macro argument containing blanks aEPears ~

~ operand field. For example, in the statement

XIZ LDA VECTOR, 2 THIS IS A COMMENT
t t

R-26
7-15

the arrows delineate the operand field. Alternatively, if a statement like

TEXT X,D(l).ERROR

is placed in a macro definition and the macro is called by

MUMBLE (NON-FATAL)

then the above statement will turn out to be

TEXT X,NON-FATAL ERROR
t t

Notice how the operand field terminates in this case.

In the same example notice that the message produced by the text

directive is of unspecified length at definition time. Clearly, X must

depend on the number of characters in D(l). Accordingly, MUMBLE might be

defined as

EXAMPLE 7-5

MUMBLE MACRO
X NCHR
X EQU

TEXT
ENDM

7.10 Conditional Assembly

D
D(l)
X +9 5 FOR 'ERROR', 4 TO ROUND UP
X/4,D(1) . ERROR

The reader should see by now that the macro is a powerful too,l.

Its power, however, is considerably multiplied when combined with the

features explained in this and the following sections. These features

basically the if and repeat capabilities -- are called conditional.

assembly capabilities because they permit assembly-time calculations

to determine the source language actually ass~mbled. They are, however,

not strictly a part of the macro facilities and may be used quite apart

from macros.

7.11 The RPT Directive

The RPr (repeat) directive is, like the MACRO directive, an opening

bracket for a segment of program. Its form is

(1) [label] RPr expression [comment]

or, using s for symbol, e for expression, and c for comment

(2)

(3)

[label] RPr

[label] RPl'

(s~e1,[e2,]e3) [c]

(s=e1,[e2,]e3)(s=e1[,e2])(s=el[,e2])'" [c]

Form (1) says to repeat the follo~ing sequence ~f statements down to the

matching ENDR (end repeat) as many times as given by the value· of the

expressio~. Forms (2) and (3) are really the same form; they are shown

separately to emphasize that only the first parenthesized group in the

operand field must pe present. Their meaning is as follows:

(1) Set the symbol s to the value of e1 •

(2) Issue the sequence of statements down to the matching ENDR.

(3) Increment s by the value of e2 or by one (if. e2 is not present).

If the new value of s has not passed the limit, go back

to (2). When the limit is passed, quit.

In other words, ~ symbol=el step e2 until e 3 ~

or ~ symbol=el until e
3

do .••

The first parenthesized group (1) determines the number of times the

repeat is executed a~d (2) controls the initial value and increment of a

symbol. Subsequent groups (there may be up to ten of them) merely control

the initial value and increments of other symbols carried along in the

recent operation.

R-26
7-16

EXAMPLE 1-6

It is desired to' create an area of storage which is cleared to zero.

R-26
7-17

The BSS directive cannot be used for this purpose since its function (that

of reserving storage) is basically to advance the assembler's location

counter.· The problem is· readily solved by

ABC

which is equivalent to

ABC

RPI'
DATA
ENDR

DATA
DATA
DATA
DATA

DATA

100
o

o
o
o
o

o

1
100 statements

!
Note that the label is applied effectively only to the first statement.

EXAMPLE 7-7

It is desired to fill an area of storage with data starting with 0

and increasing by 5 for each cell. We may write

x EQU 0
RPr 20
DATA X

X EQU X-t5
ENDR

Alternatively (and more simply) ·one can write·

RPr
DATA
ENDR

Note that in the latter form the terminal value (i.e., e
3

) does not have

to be positive or greater than the initial value of the symbol bei~g

incremented.

RPT (X=100,-5,20)

and RPI' (X~:rnIT, -5, - 30)

are both permissible.

Also note that a repeat directive followed by other st?tements and

R-26
7-18

an associated ENDR (referred to as a repeat block) may be imbedded in other

repeat blocks. This is similar to the imbedding of macro definitions in

other macro definitions, and repeat structures similar to that shown in

section 7.2 may be used.

EXAMPLE 7-8

It is desired to· have a pair of macros SAVE and RESTOR for purposes

of saving and restoring active registers at the beginning and end of.

subroutines. These macros should take a variable number of arguments

so that 'one can write, for example,

SAVE A,SUBRS

or perhaps

RESTOR A,B,X,SUBRS

These calls are intended to generate the code

STA SUBRSA

and

LDA SUBRSA
LDB SUBRSB
LDX SUBRSX

We first define a generalized macro MOVE which is called by the same

arguments delivered to SAVE and RESTOR plus the strings 'ST' and 'LD'

which determine whether one wishes to store or 19ad.

MOVE MACRO D
X NARG

RPT (r=2,X-I)
n(I).D(Y) n(x).n(r)
ENDR
ENDM

Then, in terms of MOVE, SAVE and RESTOR are readily defined as

SAVE MACRO D
MOVE ST,n()
ENDM

RESTOR MACRO n
MOVE LD,n()
ENDM

EXAMPLE 7-9

Many programs ·make use of flags, memory cells which are used as

binary indicators. The SKN (skip if memory negative) makes it easy to

test. these flags. Let us adopt the convention that a flag is set if it

contains the value -1 and reset if it contains zero. We want to develop

the macros SET and RESET to manipulate flags. It is further desirable

to deliver at call time the name of an active register whic~ will be used

for the action, together with a variable-length list of flag locations.

Calls of these macros will look like

SET A,FLGl,FLG2,FLG3

or

RESET X, FLG37,FLG12

As in example 7-8 we make use of an intermediate macro STORE which

takes the same arguments.

STORE MACRO n
X NARG

RPT (Y=2,X)
ST.n(l) n(Y)
ENDR
ENDM

Thus SET and RESET are defined as

SET MACRO n
LD.D(I) =-1
STORE n()
ENDM

RESET MACRO D
CL.D(I)

DC) STORE
ENDM

R-26
7-20

7.12 CRPT, Conditional Repeat

Occasionally one wishes to perform an indefinite number of' repeats,

termination coming on an obscure condition determined in the course of the

repeat operation. The conditional repeat directive, CRPT, serves this

function. Its effect is like that of RPT (and its repeat block -- like

RPT -- is closed off by a matching ENDR) except that instead of giving

a number of repeats its associated expression is evaluated each time in

a Boolean sense to determine whether the repeat should occur again. Its

form is

[label] CRPI'

One may write, for example,

CRPI' X>Y

expression[,(s=el [,e2]),(s=el [,e2])···]

[comment]

or CRPr STOP, (X=1,2)(Y=-3)

Note that the statement

CRPT 10

will cause an infinite number of repeats.

The termination of a CRPT operation is governed by whether the value

of the expression is one or greater. Zero or negative quanttties are

R-26
7-21

taken to mean don't repeat (Boolean 0 or false). Values of one or greater

mean do repeat (Boolean 1 or true).

An example of the use of CRPT is shown in example 7-11.

7.13 IF Capability

It is frequently desirable to permit the assembler either to assemble

or merely skip blocks of statements depending on the value of an expression

at assembly time. This is primarily what is meant by the term conditional

assembly. Conditional assembly can be done (inelegantly) with CRPT.

Let the condition be given by an expression. (Once again a Boolean

value is ascribed to an expression in the manner

o if e<O

1 if e>0.)

Then one may write

EXAMPLE 7-10

c EQU condition
eRPr C

arbi trary block of statements
C EQU 0

ENDR

Note that the line before ENDR is required to prevent the CRPT from going

R-26
7-22

forever. By using the structure above, however, conditional assembly may

be done; the arbitrary block of statements enclosed in the repeat body

may be assembled on condition.

7.14 tF, Assemble if Expression True (i.e., > 0)

The same function shown in example 7-10 is performed much more

conveniently by the IF directive. Its form is

[label] IF expression [comment] "

ENDF

As with RPr and CRPT, the IF directive defines the beginning of a block

of statements (called the if body) terminated by a matching ENDF. The

if body may contain other if bodies.

When doing conditional assembly there are often alternative if bodies

to be assembled in case a certain if body" does not assemble. This situation

is most easily dealt with by the use of the ELSF and ELSE directives.

These provide an end to the if body and also begin another body which is

to be assembled (again possibly on condition) in case the first body did

not. For example, consider the following structure:

IF e
l

'} bodY1

ELSF e
2

} bodY2
ELSF e

3
} bodY3

ELSE

JFbodY4

If er>0, bodYl is assembled and bodies2,3,4 are skipped (regardless of

e2 and e
3

.

If el~O and e2>0, bodY2 is assembled and bodiesl ,3,4 are skipped.

If el and e2«s..o and era' bodY3
is assembled and bodiesl ,2,4 are skipped.

Finally if e1 , e2, and e3~O, bodY4 is assembled.

An example of the use of IF (and other features) follows.

R-26
7-23

EXAMPLE 7 -10

This example serves to illustrate. several of the preceding features

R-26
7-24

and also the power of macros used recursively. The macro MOVE is intended

to take any number of pairs of arguments. The first argument of each pair

is to be moved to the second. Each argument, however, may itself be a

pair of arguments, which may themselves be pairs, etc.

We first define MOVE. Basically it extracts pairs of argument

structures and transmits such a pair to another macro MOVEI.

MOVE"
X

MACRO
NARG
RPr
MOVEl
ENDR
ENDM

D

(Y=l,2,X)(Z=2,2)
D(Y),D(Z)

We now define MOVEl. It calls itself recursively until it comes. up

with a single pair of arguments. Then it generates code.

MOVEl
G(l)
G(2)

G(2)
U
V

Thus when c ailed by the line

the code generated will be

MACRO
NARG
EQU
IF
LDA
STA
ELSE
RPr
EQU
EQU
EQU
MOVE 1
ENDR
ENDF
ENDM

D,G,2

.¢

~m=2
D(2)

G(l)/2
G(2)+1
G(l)
G(2)
n(v), n(V+U/2)

MOVE A,B

LDA A
STA B

When called by

the code generated is

LDA A
STA B
LDA C
STA D

When called by

the code generated is
LDA A
STA C
LDA B
STA D

Finally when called by

the code generated is
LDA A
STA E
LDA B
STA F
tDA C
STA G
LDA D
STA H

In this case the main call results in the call

MOVE 1

MOVEI .calls itself by
MOVEI

and again:

where the first code is generated. Then we get

MOVE 1 B,F

Recursion then pops up to the call

MOVE 1

and so on.

R-26
7 -'C!5

EXAMPLE 7-11

The following example makes use of virtually every feature in the macro

and conditional assembly machinery. It is presented as a demonstration of

the power inherent in the use of macros but not as a practical tool (critics

have justly termed it the world's slowest compiler). The macro COMPILE when

called with an arithmetic expression for its argument produces assembly

language which computes the value of the expression in a minimum number of

steps (subject to the left-to-right scan technique used). COMPILE in turn

R-26
7-26

calls a large number of other macros. Their functions are explained by comments

in the text below:

The COMPILE macro itself merely initializes some variables and calls

EXPAND where the more difficult work is done. J is the total number of

characters in the expression. K is used to keep track of the recursion level

on which the work is being done (EXPAND calls itself recursively when it sees

an opening bracket [). AVAIL is the counter for available temporary storage.

NPTR and PPTR are stack pointers for the operand and operator stacks respectively.

COMPILE MACRO D;J NCHR D(1)';K EQU O;~.VAIL EQU l;NPTR EQU -l;PPTR EQU-l
EX p f~ t.} D D (1); E t, D M

EXPAND initializes I, the current character pointer. It places

the value zero on the operator stack (marking its beginning on the curre~t

level) and fetches the first operand. It then sets a switch (G(l) and goes

into a cycle of fetching operators (GETP) and operands (GETN). 'If the

precedence of new operators is less than or equal to that of the previous

operators, code is generated. Otherwise the information is stacked and the

scan continued.

EY P A ~l 11 Mfl C Reo , G , 1 ; I E QUI ; KEG' U K + 1; S T P. C K 0, P ; GET N 0 (1); SET G (1)

CRPT G(l)
IF I<J; GETP D(ISI)
ELSE;OPTOR EOlJ 11; BESET G(I)
ENDF
;PST~.K EQU PST.($PPTR)
CRPT OPTOR/IO<PSTPK/IO+I; GEtJ 0(1)

R-26
7-z(

E~DR $ I 1 IF OPTOR=11;PPTR FQU PPTP.-I; RESET G(I);K EC1U K-l;I EQU I.(K)+ -
ELSE; STPCK CPTOR, P

. I F NP TR>O
I F tJS T • (5J NP TP. - 1) <0

1 F N ST. (1 ~~ P T R - 1) = - 1; S TAT E r~ P • ($ A VA I L)
ELSF.; RSH 1; STE TEMP.($AVAIL)
ENDF
; N ST. ($ ~ r T R - 1) E Q U .0, VA I L; A VAl L E QUA. V AIL + 1

E~})F

E~'DF
GETN D(l$I,J)

ENDF
E~DR

ENOM

SET and RESET change the setting of flags. STACK is used to put values

and pointers on "stacks." (These are not, of course, physical stacks in

memory but rather conceptual ones existing in the assembler's symbol table~

STACK functions by creating an ordered progression of names and assigning

values to the names by means of the EQU directive.

SET MACRO D; D(1) EflU 1; ENDM

RESET MACRO D; D(I) EQU 0; [~;Dr~

STACK f'iACRO O;TS EQU 0(2).PTR+l;D(2).PTR EQU TS;D(2).5T.($TS) EQU 0(1)
END~1

GETN fetches ,the next operand. Its complexity is due to the fact that

it must recognize symbols (in this example using the assembler's symbol rules)

and numbers. .When this recogni~ion is complete it puts in the operand stack

R-26
7-28

a pair of pointers to the head and tail of the operand (i.e., character numbers

in the string and a flag bit which denot'es . whether the object is a symbol or

a number. Note that if an opening bracket is seen, GETN calls EXPAND recursively.

GETN ~1ACRO D;TO EQU I; RESET SRROR; GETC D(I$I-TO+l)
IF CHAH='[';I.($K) EQU I; F.XPAND D(IS2,J)
ELSE

I F LETTER; R.ES ET r~UMBER
ELS E; S ET ~JUr'1p EP
ENDF
I F DIG 1 T; SET S 1,~ I T C H

CRPT SWITCH; GETC O(I$1-TO+l)
. IF DIGIT

ENDR

~LSF LETTER; RESET SWI TCH
IF CH~R='8'; GETC D(ISI-TO+I)

IF LETTER; RESET NUMBER
ELSF DI G1 T; RESET r·JUr~8ER
E ~~J D F

ELS F.; RES ET NUnS ER
ENDF

ELS E; RES ET S \Ill TCH
E~~DF

ELSF LETTER
ELSE; SET ERROR
EtJDF
IF NUMBER
ELS E; SET SWI TCH

C R P T S \~ I T C H ; GET C D (1 $ I - TO + 1)
I F LET TF.r.

[~!DR

ENDF

ELS F DI G1 T
ELSE; RESET SWI TCH
ENDF

I F ERR OR; ERR OR; S TP.CK 0, ~l
ELS E; S TA CK TO* 1134+ 1- 2+ 4P 3* NUMBER, N
ENDF

; I EQ U 1-1
ENDF

ENDr1

GETC's main function is to determine ~hether a given character is a

letter, digit, or other type of character. GETP fetches the next operator.

It does some checking of the results and if valid sets OFTOR to a value

carrying both operator and precedence information.

GETC :'1ACRO D;CHPR EQU 'D(I)';I EC'U I+I;A'EQU CHAR>'Z';F. EQU CHAR<'A'
IF A(OR)[';A E(;,U CHAR>'9';F fQU CHAR<'O'

IF t-(CR)E-; J1ESET LETTER; RE~F.:T DIGIT
ELSE; SET DIGIT; ::\~SET LETTER
::NDF

ELSF.; SET LETTER; RESET DIGIT
ENDF

ENDM

G E TP ~1P C ROD; , GET C D (I)
IF LETTER(OR)DIGIT; fRROR
ELSE;A EG'LJ CHAR>1186;E EQU CHAR<20B6

IF P (A NO) 8; OrTOR EQ U OPS. ($CHA R/l E6)
ELSF CHAR=']';OPTCR Fr,U II
ELS E; OP TCR Er u -1
E~:0F

I F OP TOr = -I; ER R OR; OP TOR EQ. U 40
ENDF

ENDF
E~1 Dr-1

\'

GEN and GENA serve to reconstruct the operands from the string pointers

I
and call generators which actually produce code.

G E ~} I~A. C ROD; R E G.l U - 1 ; P P 2 EO U 'p ST. ($ P P T R) ; P P 3 E Q U N ST. ($ N P T R - 1)
;PP4 EQU PP3/lF4;PP5 EGU PP3-~P4*184

I F P P 5 > 4 p. 3 ; P P 5 E (.) U P P S - 4 [. 3; SET LIT 1; RES E T L I T2
ELS E; RES E T LI T 1; R ES E T L I T2
[NDF
IF PP3>lP4; GENA D(1),D(I$PP4,PP5)

EL S F P P 3 > 0 ; G E N A D (1) , T E r1l P • ($ P P 3) ; A VA I L E Q U P P 3
ELSF PP3=-I; GENt O(l),AREG
ELSF PP3=-2; GErJA, D(I),rREG
ENDF

; tJPTR EQU NPTR-2; STACK R,~-J;PPTR EQU PPTR-l;PSTAK EOU PST.($PPTR)
ENDM

R-26
7-29

GE~·lA ~CRO D;PP5 EQU NST.($NPTR);PP6 EQU PPS/IP4
; P P 7 EQ U P P 5 - P P 6 * 1 E 4
IF PP7>4P3;PP7 EOU PP7-4P3; SET LIT2
E~!9F

IF PP5>lP4; GEN.($PP2) D(2),D(l$PP6,PP7)
ELSF PP5>O; G~N.($?P2) D(2),TEMP.($PP5);AVAIL EQU PP5
ELS F P P 5 = - 1; GEt,) • ($ P P 2) 0 (2) ,A REG
ELSF PP5=-2; GEN. ($PP2) D(2) ,BREG
ENDF ~

~~Dr'l

GEN20, 21, 30, 31 and 40 are the code producing macros. They make

reference to LITI and LIT2 (flags set by GEN and GENA) and call macros

-TEST, LA, LB, and ST. The purpose of the latter macros is to worry about

the meaning of the contents of the A and B registers so as not to inject

superfluous code.

G E ~,12 0 ~1A C ROD; T EST D (1) , D (2) ,X; LA D.(X) ,L IT. (S X)
I F X = 1

I F LI T2; ADD =. D (2)
ELSE; ADD D(2)
ENDF

ELSE·

ENDF
EN~M

IF LITl; ADD =.D(I)
ELS E; ,~ D D D (1)
ENDF

GEN21 MACRO D; TEST D(2)",X.
I F X; LA D (2) ,L I T 2

I F LI T 1; C NA ; ADD =. D (1)
ELS E; C NA; ADD D (1)
ENDF

ELS E; LA D (1) , LI T 1

ENDF
ENDM

I F LI T2; S UB =. D (2)
ELS E; SUB D (2)
ENDF

R-26
7-30

GEN30 MACRO D; TEST D(1) ,0(2) ,Y.; LA D(X) ,LI T.($X)
I F X = 1

IF LI T2; :V;UL =. C (2)
ELSE; MUL D(2)
E~)~F

ELSE
I F LI T I; MUL =. D (1)
ELS E; MUL D (1)
ENDF

E~·~ DF
; R EQ U -2

ENOM

G E N3 1 MP C ROD; T ES T D (2) ,X
IF X; ST D(2$1); LP D(I),LITI; OIV TEMP.($AVAIL)
ELSE; LB D(I),LITI.

. I F LI T2; 0 I V =. D (2)
ELSE; 01 v D(2)
ENDF

ENDF
END~1

GEN40 MACRO D; NOP D(1); NOP D(2)
ENDM

LA MACRO D
IF "D(l)"='AREG"
ELSF 'D(I)"='BREG"; LSH 23
ELSE

IF .D(2); LDA =.D(I)
ELS E; LDA D (1) .

~NDF
ENDftl

ENOF

LH (\'lACRO 0
IF 'O(l)'='BREG'
ELSE

IF '[)(l)'='AHEG'
ELSE

ENDF
RSH 23
ENDF

ENn~1

5T MACRO 0

I F 0 (2); LDA =. D (1)
ELSE; LDA 0(1)
ENDF

IF 'D(l)'='BREG'; RSH
ENOF

ST. 0 (1 $1) TEMP. ($ A VA I L)
ENDM

R-26
7-31

TEST j"1t.CRC D;Y NARG; Dey) EQU 0
RPT eZ=l,Y-l) .

IF" D (Z l> 1 , 4) , = ' ARE G ' ; D (Y) E Q ·U Z
ELSF "D(Z$l ,4)"= 'E-REG'; Dey) EGU·Z
ENDF

E~nR
IF Y>2

I F D (Y) = (!; DC Y) EQ U 1
E~·IDF

EPDF
E~IDM

The rollowing lines establish precedence inrormation for the arithmetic

operators.

OPSIO EQU 30;OPSII EQU 20;OPS12 EQU -I;OPSI3 EQU 2I;CPSI4 EGU-I
DPS 1 5 EQ U 31

When called by the following lines, the macro generates code as shown:

Call: COMPILE X+200*Y

Result: LDA =200
MOL Y
ADD X

Call: CQMPILE AB-[C+D]![E+F]

Result: LDA C
ADD D
STA TEMPI
LDA E
ADD F
STA TEMP2
LDA TEMPI
RSH 23
DIV TEMP2
CNA
ADD AB

R-26
7-32

Call: COMPILE A+200~34c21-[DEF/34B-HI*[J~20*K]/LM33B - N]/OPQ-22

Result: LnA =200
MUL 34c21
LSH 23·
ADD A
STA TEMPI
LDA DEF
RSH 23
DIV =34~
STA TEMP2
LDA =20
MOL K
LSH 23
ADD J
MUL HI
DIV LM33B
CNA
ADD TEMP 2
SUB N
RSH 23
DIV OPQ
CNA
ADD TEMPI
SUB =22

R-26
7-33

7.15 Special Symbole in Conditional Assembly

Although in the introduction it is stated that symbols consist

only of letters and digits, it is possible to include the colon in

symbols. DDT, however, does not regard the colon as part of a symbol.

The meaning of this is that DDT will type out such symbols but they

cannot be typed in. In effect this makes them useless, and it is for

this reason that the legality of colons in symbols has just now been

mentioned.

yet by judiciously choosing when to use the colon in a symbol

the feature can become worthwhile. In particular it can be used in

macroS and other obscure places in t~e program to avoid possible

conflicts with other names. This might be particularly useful to

distinguish between symbols used in assembly-time calculations and

those used at run-time.

R-26
7-34

8.0 Assembler Error Messages

Upon discovering an error in the syntax of a program being assembled, the

assembler will list the statement in question and information about the

R-26
8-1

character of the error. The listing of errors will occur regardless of whether

regular listing is being done.

8.1 Error Messages

Error messages and their interpretations are given below. The first

group deals with difficulties found in a single statement.

Error Meaning

D Duplicate symbol.

L Error in label field; most likely not a valid symbol.

M Missing field in statement.

o Invalid or undefined opcode.

R Relocation error in expression.

S General syntax error.

u Undefined symbol.

If when calling a macro the user fails to deliver an argument required

during expansion, the assembler will replace the argume?t with the character t

and issue an undefined symbol message at that point.

The second group of error messages deal with more complicated difficulties ..

Error Message

SYMBOL TABLE FULL. ERROR
CHECK CONTJNUES.

Meaning

Too many symbols and/or opcodes have
been defined. Assembly will continue,
but no new symbols or opcodes will be
recognized. Break the program into
sub-programs or otherwise reduce the
number of symbols present.

Error Message

LITERAL TABLE FULL. .FUR
THER LITERALS 'IGNOREID ..

MUST ASSEMBLE ABSIQ.{ ON
PAPER TAPE

INRJT STACK OVERFLOW

EOF -- END CARD ASSUMED

ILLEGAL COMMAND

lNRJT FTIsE NOT TEXT

BAD CHAR

EOF IN MACRO DEF:mITION

INPUT STACK UNDERFLOW.

lliPUT BUFFER FULL.

Meaning

Similar to the case above. Reduce the
n~ber of literals present.

R-26
8-2

The bootstrap loader for self-filling,
absolute assemblies is intended for paper
tape only. Designating any other form on
output file (except NOTHING and TELETYPE
(another form of paper tape)) results in
this message. It is possible to assemble
an absolute program for loading by DDT.
See 6.21 RELORG.

There are too many nested macro calls,
repeats, and ifs in combination. The stack
provided for storing the previous source
of input is full. This is a disaster.
The program must be reorganized.

No·END statement was found at the end of
the program. The assembler (except for
typing this message) takes the same action
as if it found the END statement.

The assembler does not recognize a command
typed in by a user upon start-up. It
makes him start again.

The input file described to the assembler
is not a type 3 file (i.e., text).

An unrecognizable character (or one
otherwise out of place) is found in the
text. The character is typed out in octal
following the message, replaced by a blank
in the text, and assembly continues.

The end of the program is reached, but the
assembler is still defining a macr.o. Look
for a missing ENDM.

The opposite problem to the one above. Not
terribly serious. Look for the presence of
an extra ENDM, ENDR, or ENDF in the program.

An input statement must be less than 320
characters long. This message occurs when
the rule is violated. It usually happens
when macros run wild. Look carefully at
the program near where the error occurred.

Error Message

TOO MUCH MACRO RECURSION.

TOO MUCH RPT RECURSION.

TOO MANY ARGS IN MACRO.

TOO MANY REPEAT ARGS.

STRING STORE EXCEEDED.

EOF IN TEXT.

Meaning

R-26
8-3

Too many nested macro calls have occurred,
resulting in filling available pushdown
stornge. Reorganize program.

Similar to above.

The macro is being called with more
arguments than there is space for.
Reduce the number of arguments in the call.

In beginning a repeat block, too many
requests for automatic incrementing of
symbols have been made. Reorganize the
block.

No space remains to store new macro
definitions or to do repeats. Caution:
old macro definitions are not thrown away.
Do not redefine macros indiscriminately.
Reorganize program.

The end of the input file has occurred
in the middle of a statement.

8.2 Interpretation of the Error Listing

When an error is listed on any file other than TELETYPE, the single-

letter error message (first group above) is listed in the line below at

the point where the error was detected. Other information is given.

This is all depicted in the examples below.

In the following line there are errors in the label and operand fields.

00172 0

~EEK+71

Current value of
location counter is
7 cells past the
symbol EEK.

00000 UG~
Label cannot
terminate with
I·

LDA E]E;]
~~

Relocation Expression
error. cannot terminate

with - .

20117 0

I YIKES+l]
;/

Location

35 10761 STA

~~
Name of ~

counter
value.

innermost macro
in which offense

occurred.

ZOTn
~MiSSing tag·

Name of outermost
macro in which
offense occurred.

Thus along with each error·the location counter is printed out relative

to the symbol most recently defined. In addition, if the error occurs

during macro expansion the names of the innermost and outermost macros

are printed to give a clue on where to look for the error. If only

one level of macro expansion is involved, then only that name is listed.

In order to save time when error listings are made on the teletype,

the single-letter error messages are typed out at the left margin.

R-26
8-4

9. a ASSEMBLER O:?ERATI!'-JG INSTRUCTIO!'IS

.t.R·PAS is called in the EXEC by typing

- AR,PAS

9-1

followed by depressing the return key on the teleprinter. The syste!"ll
responds with

INPUT:

requesting the user to type the file name of the symbolic file to be
assembled.

INPUT: I SYi'fl. I
After typing his file name /SYM/ followed by a line feed, the syst€rn
responds with BIN~R,Y:

BINP-,RY: IEINI

The user types his selected file parne .. /BINI, for storingth~,binary
output of his assembly and' again' depresses the line feed key on his
t2leprinter. The systeln will res'pond with OLD FILE if 'th~ file name
already exists in his file directory. Depressing the line feed key at
this point will cause all existing information in this file to be replaced
\vith th.e b,inary output from th~s assembly. Depressing Alt Mode or
Escape' wil~ permit the. sele~·tion .of a new file name. \T/hen the sy~tem
types NEW FILE" typi~g 'a line feed ~n.ll confirm the file narne or typing
an' Alt lVlode will permit the selection of a different file name. The
teleprinter page appears as:

or

BINARY: IBII\J /
OLD FILE

BINARY: fBrN /
I'JEW FILE

If a carriage return is depressed after either OLD FILE or NEV\T FILE,
the' s'ystem responds with

OK

and pass one of the assenlbly begins.

If a line feed is depressed after either OLD FILE or T'-JEW FILEI an
option is available to the user.

TZXT OUTPUT:' TEL

9-2

If the option, TEXT CUT?UT, is selected, the user types TEL follo\ved
by 2. Carriage Re::turn. The system responds \vith

OI{

and pass one of the 8sscmbly begins. P, program listing of the assembly
vlill appear on the user's teletype.

Typing a carriage r01.Urn rather than TEL aborts the text output option
and begins the assC'mtly by 'bJping

OK

P; SSErv'lBL Y EXECUTION

If 'the text output option vias not' select~d by the user, the system continually
transmits non-printing characters to the use'r's teleprinter, giving hiIn an
audible indication the assembly is in process. P.t any time during the
assE:rnbly, . the user may type a single Alt I'Eode cr Escape to activate listing.
The' listing 'will begin at the point in the program that is currently being
assembled. It will continue to list on the teleprinter until the assembly is
complete' or' the user types' .

S

to stop the listing. This process may be repeated throughout the assembly
process to determine ho\v far the' assembly has progressed.

':,7hen the assembly is COHlplcte, the number of cells used by the program
is typed out as vlell as 8 table of symbols by the program. For example:

3453 CELLS USED BY PROGR.AIVI

BS N 45+
ENDBRS l\f 3335+
fRB N 13+

EBSM3
SlVIB
XSP

EXTERr·JAL SYr/~BOLS USED:

ACTR ADIVIS~(AR.D
BHSTV CARR.Y CBRF
CI(EUF CLR8P COB
CRAS!-I eR.S·I"

AWD
CET

N 1466+
N 0+
I\f 21 +'

BPTEST
CHRL

CPAR""/ CPUPC

,.BRRL3
CIB
CG,O

Mnemonic

wrul/Store

LDA

STA

LDB

STB

LDX

STX

EAX

XMA

Arithmetic

ADD

ADC

ADM

MIN

SUB

SUC

MUL

DIV

Logical

ETR

MRG

EOR

Register Change

RCH

CIA

CLB

CLAB

CLX

CLEAR

CAB

APPENDIX A

EXTENDED LIST OF INSTRUCTIONS

Operation· Code

76

35
75
36
71

37
77
62

55

57

63

61

54

56
64

65

14
16
17

46
o 46 00001

o 46 00002

o 46 00003

2 46 00000

2 46 00003

o 46 00004

Function

wad A

Store A

Load B

store B

wad X

Store :Index

Copy effective address

Exchange M and A

Add M to A

Add with ca:rry

Add A to M

Memory increment

Subtract M from A

Subtract. with

Multiply

Divide

Extract (AND)

Merge (OR)

Exclusive or

ca:rry

Register change

Clear A

Clear B

Clear AB

Clear X

Clear A, B and X

Copy A into B

into index

R-26
A-I

'fuemonic

CM

XAB

BAC

ABC

CXA

CAX

XXA

CBX

CXB

XXB

STE

LDE

XEE

CNA

AXC

Branch

BRU

BRX

BRM

ERR

ERI

Test/Skip

SKS

SKE

SKG

SKR

SKM

SKN

SKA

SKB

SKD

Operation Code

o 46 00010

o 46 00014

o 46 00012

o 46 00005

o 46 00200

o 46 00400

o 46 00600

o 46 00020

o 46 00040

o 46 00060

o 46 00122

o 46 00140

o 46 00160

·0 46 01000

o 46 00401

01

41

43

51
11

40

50

73
.60

70

53
72

52

74

Function

Copy B into A

Exchange A into B

Copy B into A, Clearing B

Copy A into B, Clearing A

Copy X into A

Copy A into X

Exchange X and A

Copy B into X

Copy X into B

Exchange X and B

Store Exponent

Load Exponent

Exchange Exponents

Copy negative into A

Copy A to X, clear A

Branch unconditionally

Increment index and branch

Mark place and branch

Return branch

Branch and return from interrupt

Skip if signal not set

Skip if A equals M

Skip if A greater than M

Reduce M, skip if negative

Skip if A = M on B mask

Skip if M negative

Skip if M and A do not compare ones

Skip if M and B do not compare ones

Difference exponents and skip

R-26
A-2

Mnemonic

Shif't

RSH

RCY

LRSH

ISH

LeY

NOD

Control

HLT, ZRO

Nap

EXU

Breakpoint Tests

BPrx

Overflow

ROV

REO

OVT

OTO

Interrupt

Em
Dm
AIR

IET

IDT

Channel Tests

CATW

CETW

CZTW

CITW

Input/Output

EOD

Operation ,Code

o 66 OOXXX

·066 20xxx

o 66 24xxx

o 67

o 67

o 67

00

20

23

OOXXX

20xxx

lOxxx

o 40 2OxxO

o 22 00001

o 22 00010

o 22 00101

o 22 00100

o 02 20002

o 02 20004

o 02 20020

o 40 20002

o 40 20004

o 40 14000

o 40 11000

o 40 12000

o 40 10000

06

Function

Right shift AB

Right cycle AB

Logical right shift

~ft shift AB

Left cycle AB

Normalize and decrement X

Halt

No operation

Execute

Breakpoint test

Reset overflow

Record exponent overflow

Overflow test and reset

Overflow test only

Enable interrupts

Disable interrupts

Arm/disarm interrupts

Interrupt enabled test

Interrupt disabled test

Channel W active test

Channel W error test

Channel W zero count test

Channel W inter-record test

Energize output D

R-26
A-3

~Mhemonic Operation Code

)InPutjoutput (920 Compatible)

MIW 12

WIM 32
pm 33
POT

EOM

BETW

BRTW

Syspops

BIO

BRS

CIa

CTRL

DBI

DBO

DWI

DWO

EXS

FAD

FDV

FMP

FSB

GCD

GCr

rsc
IST

LAS

LDP

LIO

OST

SAS

SBRM

SBRR

SIC

SKSE

SKSG

13
02

a 40 20010

a 40 21000

576

573
561
572
542

543
544
545
552
556
553
554
555
537
565

5~1

550
546
566
552
551
547
570
51*
540

563

562

Function

.M.into W buffer when empty

W buffer into M when full

Parallel input

Parallel output

Energize output M

W buffer error test

W buffer ready test

Block I/O

Branch to system

Character I/O

Control

Drum block input

Drum block output

Drum word input

Drum word output

Execute instruction in system mode

Floating add

Floating divide

Floating multiply

Floating subtract

Get character and decrement

Get character and increment

R-26
A-4

Internal to string conversion (floating)
'outpu"t

Input from specified teletype

Load from secondary memory

Load pointer (AB)

Link I/O

Output to specified teletype

Store in secondary memory

System BRM

System BRR (prestored macro)

String to internal conversion (flqatin£
lnput)

Skip on string equal

Skip on string greater

Mnemonic Operation Code

STl 536
STP 567
TCl 574
TCO 575
WCD 535
WCH 564

WCI 557
WIO 560

Function

Simulate teletype input

store pointer

Teletype character input

Teletype character output

Write character and decrement

Write character

Write character and increment

Word r/o

I

R-c\
A-

0
1

2

3
4

5
6

7
10
11
12
13
14
15
16

17
20
21
22
23
24
25
26

27
30

APPENDIX B

TABLE OF TRlliMED ASCII CODE FOR THE SDS 930*

(NUMERIC ORDER)

SPACE 31 9' 62

OJ 32 63
" 33 64 ,

fIJ 34 < 65
$ 35 = 66

l1J '36 > 67
[!J 37 ? 70

40 ~ 71
(41 A 72
) 42 B 73

* ,43 C 74
+ 44 D 75
, 45 E 76

46 F 77
47 G 144

/ 50 H 145
0 51 I 146
1 52 J 147
2 53 K 152
3 54 L 155
4 55 M

5 56 N

6 57 0

7 60 P

8 61 Q

R

S

T

u
V

w
X

y

Z

[

[S]
]

rtl
Ear
WRU

RU

BELL

LF

CR

*The Teletype characters enclosed in boxes cannot be handled by
ARPAS and are converted to' blanks when present.

R-26
B-1

DDT

REFERENCE MANUAL

For The Tymshare Debuggi.ng System

1.0 General

1.1 Symbols

1.2 Block structure

1.3 Literals .

1.4 ConstC1.nts

1.5 Commands

1.6 Expressions

1.7 The Open Register

TABLE OF CONTENTS

.

1.8 Memory Allocation and DDT

2.0 DDT Commands

2.1 Register Opening Commands ..

2.2 Type Value Commands . . .

2.3 Symbol Definition Commands

2.4 Mode Changing Commands

Breakpoint Commands

2.6 Input-Output Commands . .

2.7 Search Commands.

2.8 The Patch Command .

2.9 Miscellaneous Commands

2.10 Special Symbols

2.11 Panics

2.12 MUltiple Progrrum Debugging.

1-1

1-1

1-3

1-4

1-5

1-5

1-5

1-7

1-7

2-1

2-1

2-3

2-4

?-4

2-5

2-7

2-7

2-8

2-9

30.40.10

2-10

2-11

2-12

1.0 General

30.40.10
1-1

December 2, 1966

DDT is the debugging system for the SDS 930 Time-Sharing System. It has

facilities for symbolic reference to and typeout of memory locations and centrlil

registers. Furthermore, it permits the use of literals in the same manner ;is in

the assembler. It can also insert breakpoints into programs, perform 11 trace,

and search programs for specified words and specified effective addresses. There

is a command to facilj tate program patching. :rinally, DDT can load both absolute

and relocatable files in the format produced,by the assembler.

The system has a language for communication between DDT and its users. The

basic components of this language are symbols, constants, and commands.

1.1 Symbols

A symbol is any string of letters, digits, and dots (.) containing at

least one letter. (However, a digit string followed by B or D is interpreted

as an octal or decimal number respectively). In symbols of more than six

characters, only the first six are significant: thus, ALPHABET is eqlJivalent

to ALPHAB. All opcodes recognized by the assembler are built-in symbols,

except for some I/O instructions. Other symbols are ;1, ;2, ;A, ;B, ;F,

;L, ;M, ;Q, ;X, and dot. Their meanings are explained below.

Every symbol may have a value. This value is a 24-bit integer; for

most symbols it will be either an address in memory or the octal encoding of

an operation code. Examples:

ABC
ABl24
l2XYZ

The following are not symbols:

135B
AB*CD

Symbols may be introduced to DDT in two basically different ways:

(A) They may be written out by the assembler and read in from

the binary program file by DDT.

30.40.10
1-2 .
December 2, 1966

(B) They may be typed in and assigned values durjng.debugging.

It is pass ible for a symbol to be undefined. Thi s may occur if a pro~rwIl

is loaded which references an external symbol ~ot defi.ned in Ti previo1Jsly

loaded program. It may also occur if an undefined symbol is typed in an

expression. In general, undefined symbols ar~ legal input to DDT except

when their values would be required immedi:J.tely for the execution of a

command. Thus, for example, the ;G (GO TO) command could not have an un-

defined symbol as its argument.

Undefined symbols may become defined in several ways. They may be

defined as externa.l in the as sembler (i. e. with EXT , ENTRY, or $) a!ld re.a_~_

by DDT as part of a binary program. Alternatively, they may be defined by

one of the symbol definition commands available in DDT. When the definition

occurs, the value of the symbol will be substituted in all the expressjons

in which the symbol has appeared.

If DDT type [U] after typing out the contents of a register, it means

that the register contains an undefined symbol. The register is closed at

once so that its contents cannot be erroneously changed.

The only restriction on this facility is that, as for ARPAS, the

undefined symbol must be the only thing in the address field of the word

in which it appears. Incorrect uses of undefined symbols wj 11 be detected

by DDT and will result in the error comment (U).

DDT keeps track of references to undefined symbols by buildi.ne; u

pointer chain through the address fields of the words referring to the symbol.

Thus, suppose that the symbol A is undefined and appears as follows

Sl LDA A

82 8TA A

83 MRG A

and nowhere else in the program. After loading, the entry for A in DDT's

30.40.10
1-3

December 2, 1966

symbol table will contain a flag indicating that it is undefined and a pointer

to 3. The above locations will contain:

81 LDA o

S2 STA 81

S3 MRG S2

When the symbol is defined, DDT goes through the pointer chain and fills in

the value. It recognizes the end of the pointer chain by a 0 address.

From this description it should be obvious what will happen :tf the

pointer chain is destroyed. A probable consequence is that a search down the

pointer chain will not terminate. DDT does such searches whenever it prints

an address. If the chain it is searching has more than 256 links, it will

print the symbol followed by (U) and continue. 1ixing up an lmdefined symbol

pointer chain which has been clobbered is an exercise which we leave to

the reader.

1.2 Block structure

A limited facility called the block structure facility is provided to

simplify the referencing of local symbols which are defined in more than one

program. Note that DDT's block structure has only a tenuous connection

with the block structure of ALGOL. The block structure of a program is

organized in the following manner: every IDENT read by DDT as part of a

binary program file begins a new block. Any local symbol known to DDT hat:: a

block number associated with it; global symbols do not have a block number.

Undefined symbols are always treated as global.

The name of a block is the symbol in the label field of the IDENT. If

two !DENTs with the same symbol are read, the message (ALREADY DEFINED) is

printed, and the local symbol tables from the two blocks will be merged.

30.40.10
1-4
December 2, 1966

Global symbols must be un ique within an ent j re program and are rec0f~"i zed

at all times. If a multiple definition is encountered, the latest one takes

precedence. Local symbols are recognized according to the following rlJles:

(1) At any given time one block is called the primary block. All local

symbols associated with the primary block will be recognlzed.

(2) If a symbol is used which is neither global nor in the prim:.iry

block, the entire symbol table is scanned for tt. If it occurs

in only one block, the symbol is recognized properly. If it occurs

in more than one block, the error message (A) js prlnted.

(3) A symbol may be explicitly qualified by writing:

SYMA&SYMB

SYMA must be the name of a block. S1MB is then referenced :lS though

the block whose name is SYMA were prjmary.

(4) When a register is opened (see section 2.1), the block to which

the symbolic part of jts location belongs becomes primflry. Thus,

NN&XYZ/ causes block NN to become primary; if ABC is a unique local

symbol in block PQ, then ABC/ causes block PQ, to become primary.

1.3 Literals

Li terals have the same f'ormat and meaning in DDT as in the assembler,

i.e. the two characters' =' signal the beginning of a litera.l, which is

terminated by any of the characters which ordinarily terminate an expression.

In contrast to ,the assembler, the expression in a DDT literal must be defined.

The literal is looked up in the literal table. If it is f01Jnd, the

address which has been assigned to it is the value of the symbol. If it

does not appear in the literal table,' it is stored at the address which is '

the current value of ;F, and this address is taken as the value of the

literal. ;F is increased by 1. For examPle, if the literal -1 does not

already exist in the literal table and ;F is lOOOB, then LDA =-1 causes -1

to be stored at lOOOB, and is eq~ivalent to LDA lOOOB; the new value of ;F

30.40.10
1-5

December 2, 1966

is lOOlB. Except ion: In patch mode, 1j terals are saved rind not stored

until the patch is completed since otherwise they would interfere with

the patch.

When DDT types out a symbol whose value is an address in the Ii ter8.1

table, it will type out in the same format in which it w0uld be i.nput; that

is, us = followed by the numeric value of the literal.

1.4 Constants

A constant is any string of digits, possibly followed by n. B or D. The

number represented by the string is evaluated, truncated to 24 bits ~nd then

used just like the value of a symbol. The radix for n\~bers is normally 8

(octal), but may be changed arbitrarily by the commands deser ibed in sect i.on

2.4 below. If a number is terminated by B or D, lt is interpreted as octal

or decimal respectively regardless of the current radix. Constants are

always printed by DDT in the current radix.

It is possible to enter numeric op codes by typing the number followed

by an € sign. Thus loof=144ooo00B if the current radix is decimal (lOOD=lt~4B).

1.5 Corrunands

A command is an order typed to DDT which instructs it to do somethinr,.

The commands are listed and their functions explajned in the table below.

1.6 Expressions

An expression is a string of numbers or symbols connected with bl~nkA,

+, -, ;*, ";/, ;&, ;<, ;=, ;>, and ;%. These operators have the following

significance: +

;*
;/
;&
;<
;=
;>
;10

addition
subtraction
(integer) multiplication
(integer) division

~~~.} 
(EQ,L) as in ARPAS 
(GTR) 
(OR) 

Expressions are evaluated strictly left to right: all operators have the 

same precedence. Parentheses are not allowed. The first symbol or number 



30.40.10 
1-6 
December 2, 1966 

may be preceded by a minus sign. Blank acts like plus, except tha.t the 

follo"rin~ operand is trlmcated to 14 bits before being added to the 

accumulated value of the expression. The value of an expression js a ?)~-b·it 

integer. An expression may be a single symbol or constant. 

Examples: LDA has the value 7600000 
LDA 10 has the value 7600010 if the 

radix is ()(:tal 
LDA 10D has the value 7f)OOOl~ 

If S1M is a symbol with the value 1212, then 
SYM has the value 121? 
SYM 10 has the value 1~2? 

LDA SYM has the value 076012l? 

If this last expression were put into a memory register and later 

executed by the program the effect would be to load the contents of GY!Ia, 

register 1212, into the A register. 

When DDT types out expressions, two mode switches control the format of 

the output. Commands for setting these modes are described in sectj on 2.l~ 

below. The C-S mode determines whether q~antities will be printed as constllnts 

or as symbolic expressions. In the latter case, the opcode Cif any) rJ.nc1 the 

address will be put into symbolic form. If the first nine bits of the value 

are 0 or 1, no opcode will be printed; in the latter case a negative integer 

will be printed. If the opcode is not recognizable as a symbol; it will he 

typed as a number followed by an ~} sign. 

The R-V mode controls the format in which addresses are typed. DDT 

types addresses when asked to open the previous or the next register, when 

it reports the results of word and address searches, and on breakpoints. 

In relative mode, addresses are typed in symbolic form, i.e., as the largest 

defined symbol smaller than the address plus a constant if necessary. If 

the constant is bigger than 200 octal, or if the value of the symbol is 

less than the first location of the program, the entire address is typed p.s 

a constant. In absolute mode, addresses are always typed as constant. 



30.40.10 
l_r/ 

December 2, 1966 

1.7 The Open Register 

One other ma.ioringred ient of the DD'r language is the open rep';j ster. 

Certain commands cause a register to be "opened". Thja means that its 

contents are typed out (except in enter mode, for which see the \ comm~nd)J 

followed by a tab. Any expression the user types will then be inserted into 

the open register in place of its current contents. After thj s insert:i on the 

register is closed at once. Note that the string LDA ABC= is a comm:.lnd, and 

does not causeoLDA ABC to be entered into the current open re~ister. The 

current location is given by the symbol n." (dot) which always has as iots 

value the address of the last register opened, whether or not it is still '~€n. 

Note: 

(1) Comma and star (for indirect addressing) may be used in expressions 

as they are used in the assembler; e.g. LDA* 0,2 has the value 

27640000. 

(2) DDT will respond to any illegal input with the character ? followed 

by a tab (if a register is open) or carriage return (otherwise), 

after which it will behave as if nothing had been typed since the 

last tab or carriage return. The command ? also erases everything 

typ€d since the last tab or carriage return. 

1.8 Memory Allocation and DDT 

DDT may cause the time-sharing system to assign memory for use either 

by DDT itself or by the user's program. DDT's memory is used to hold the 

symbol table, which starts in block 0 and grows upward in memory. The 

symbol table contracts at the end of each load of a binary file and when 

symbols are k~lled; this contraction may cause memory to be released. 

DDT grabs program memory when it is required for loading a binary ftle, 

or when a ;U (execute) command is given and the value of ;F is such that 



30.40.10 
1-8 
December 2, 19.66 

a new block is needed to hold the instruction to be executed. For executing 

an instruction, DDT requires location ;F, ;1+1 and ;F+2. Memory is never 

grabbed for examination of a register; however, entering information with \ 

can cause memory to be assigned .. Attempts to open locations not assi.gned 

will cause DDT to type? This means that upon initial entry to DDT no 

registers are available for examination. The easiest way to obt8.in memory 

~s to simply start typing in a program using the \ connnand. 

If an attempt to acquire or reference memory leads to a. trap, DDT types 

(M) and abandons whatever it is doing. This can happen if the machine size 

is exceeded, or if an attempt is made to change read-only memory. 



30.40.10 
2-1 

December 2, 1966 

~.O DDT Commands 

In the following descriptions of DDT commands, <3> will be used to denote 

~n arbitrary symbol. <E> or <W> will be used to denote an arbitrary expression 

whi.ch may be typed by the user: <E> wtll be used when the value of this expression 

in truncated to 14 bits before it is used by DDT, while <W> will denote a full 

24-hit expression. <fI:> will be used to denote an optional l4~bit expressi.on. 

If none is typed, the last expression printed out will usually be used; devjat10ns 

from this rule will be described under the indiyidual corrnnands. <F> vIi 11 denote 

a file name followed by a dot: DDT will type a tab whenever it expects a file 

name. 

<It> / 

2.1 Register Opening Commands 

This opens the register addressed by the value of <A>. DDT will gjve 

a tab, type an expression whose value is equal to the contents of the 

register, give another tab and await further commands. The precise form of 

the expression typed is dependent on the setting of the S-C and R-V modes. 

If the user types in an expression, DDT will insert its value into the 

register. Typing another command closes the register, unless it is a type 

value or symbol definition command. Note that in a command that· requires 

a preceding expression, the expression is regarded as part of the command 

and. would not, for instance, be inserted into the open register. If another 

/ is given as the next command with no preceding expression the contents 

of the register addressed by the expression typed by DDT are typed out. A 

further / repeats thia process. Note, however, that the original register 

opened remains the open register; any changes made will go into that register. 

carriage This command does not necessarily have any effect. If the specified 
return 

conditions are present, however, any of the following actions may occur: 



30.40.10 
2-2 
December 2, 1966 

<t> ] 

<to> [ 

</» $ 

<E> II 

(1) If there is an open register, the register is closed. 

(?) If DDT is in enter mode, it leaves it. 

(3) If DDT is in patch mode, the patch is terminated (for a 
fuller descrjption of this effect, see the patch command). 

This command has the same effect as I, except that the contents of 

the register opened are always typed in symbolic form. 

This command has the same effect as /, except that the contents of 

the register opened are typed in constant form. 

This command has the same effect as /, except that the contents of 

the register opened are typed as a signed integer. 

This command acts like I, except that the register constants are typed 

in ASCII. Unprintable characters, as in QED, are preceded by &, e.g. 141 

(control-A) prints out as &A. 

line This command opens the register whose address is the current location 
feed 

plus one, i~e. the register after the one just .opened. The output of DDT on 

this command is carriage return, register address (format controlled by 

the R-V mode), I, tab, value of contents, tab. 

;o(o=space) This is equivalent to line feed except that nothing is prlnted. 

t 

Its main use is in entering programs or data, e.g. 

1000 l;~2;~3 . (carriage return) 

is equivalent to 

1000\ 1 
1001\ 2 
1002\ 3 

(carriage return) 
(carriage return) 
(carriage return) 

This command opens the register whose address is the current location 

minus one, i.e. the previous register. The output is the srune as for the 

line feed command. 

Example: 

ABCI LDA ALPHA (line feed) 

ABC +11 STA BETA STA GAMMA (line feed) 

ABC +2/ LDB DELTA t 

ABC +1/ STA OOMA 



( 

\ 

;\ 

30.1~O.lO 
. ~-3 

December 2, 1966 

This command opens the register whose address is the last 14 bits 

of the value of the last expression typed. The output is the arune as ~or 

line feed. 

This command is the snme as /, except that the contents of the rev.ister 

are not typed. DDT goes into enter mode, in which the contents of re~~jsters 

opened by line feed, t, or ( are not typed. Any other command caused DDT 

to go out of enter mode. In particular, carriage return has this effect. 

When a register has been opened with \, DDT thinks that it has typ~d 01Jt 

the contents. The type value commands will, therefore, work on the contents 

of the register. 

The type register in special mode characters (, ], $ (type as a ne~ative 

integer), ft (type in ASCII) are also preserved by line feed, up &.rrow ann (. 

This command suppresses typeout of register addresses during line feed, 

up arrow and ( chains. Carriage return cancels the command.. 

2.2 Type Value Commands 

= This command types the value of the last expression typed (;Q) in 

constant form. It may appear in the form <W> =, in which case the value 

~f the <W> is typed. otherwise, the expression referred to is the one most 

recently typed, either by DDT or by the user. 

"# ',. This connnand types the value of ;Q as a signed integer. 

~ This command types the value of ;Q in symbolic form. 

This command types the value of ;Q typed as a word of: text (see II command 

on previous page). 

@ This command types the address part of ;Q in symbolic form. If, for 

instance, the program has executed BRM X, then X\@ will cause DDT to print 

the address of the ERM. 



30.40.10 
2-4 
December 2, 1966 

Example: 

LDA= 7600000 

LDA 10= 7600010 

LDA (- LDA 

7600000f- LDA 

-1= 77777777 

-1# -1 

'17777777# -1 

10221043' ABC 

2·3 Symbol Definition Commands 

<8> This command defines the value of the symbol < S> to be the 

" 

;D 

;0 

current location. If <8> has been used but is undefined, it becomes ~lobal; 

otherwise it becomes local and associated with the block which is primary 

vmen the : command is given. 

This command defines the value of <S> to be the address of the last 

expression typed 1?y DIJI' or the user. The symbol is local and associated with 

the block which is primary when the @ command is given. 

This defines <s> to have the value of <E>, and to be global. 

2.4 Mode Changing Commands 

This command is followed by a string of arbitrary characters terminated 

by DC (control D). If a register is open, the string will be inserted into 

successive locations packed 3 characters per word; otherwise characters 

beyond the third will be thrown away. For example, if no register is open, 

"ABCDEDc = yields 1022104 3. 

(DECIMAL) This command changes the current radix (see sectlon 1.4). 

(OCTAL) This changes the current radix to octal. 

<E> ;R (RADIX) sets the current radix to the value of the expression, which must 

be >2. 

; [ (CONSTANT) This command changes the S-C mode to constant, i.e. makes I 

equivalent to [. 



30.40.10 
?-5 

December 2, 1966 

; ] (SYMBOLIC) This command changes the S-C mode to symbolic, i.e. 

makes / equivalent to ]. 

(ASCII) This makes / equivalent to n • . " , 

;$ (SIGNED INTEGER) This makes I equivalent to $. 

;R (RELATIVE) This command changes the R-V mode to relative. This 

mode determines the format for the output of addresses, both 1n symbolic 

expression and when generated by line feed and t. 

;V (P.BSOI1JTE) This command changes the R-V morle to absolute. 

2.5 Breakpoint Commands 

<P> ,<~! (BREP.KPOINT) <E>! sets breakpoint 0 at the address r;iven by the value 

<It>; ! 

~ ......... , 
'J.'(;" , • 

of the expression; <N>, <E>! sets breakpoint N (N must be between 0 find '3 

inclusive). The effect is that if the program executes the instruction at 

this address control returns to DDT, which will print the address and the 

contents of the A, B and X registers and await further commands (see below). 

The break occurs before execution of the instruction in the breakpoint 

location. ;L is set to the location at which the break occurred. 

(CLEAR ALL BREAKPOINTS). 

(LIST OR CLEAR BREAKPOINTS) 

alone causes all breakpoints to be cleared. 

causes breakpoint N to be removed, where N lies between 0 and 3 

inclusive. ;! alone causes all b~eakpoints to be listed: if breakpoint 1 

is set at ABC+3, and no other breakpoints are set, then ;! produces the 

printout * ABC+3 * * 
<ft>; P (PROCEED) This command restarts the program after a break. The 

program executes the instruction at the break and goes on from there. No 

breakpoint is removed unless this is specifically done by ! or ;! so that, 

if the program arrives at this location again, another break will occur. 

If <E>;P is given, another break will not occur until some breakpoint has 

been reached that many times. 



30.40.10 
2-6 
December 2, 1966 

<It> ;N (NEXT) This command executes the instruction at ;L and breaks. 

This program provides a trace facility in that repeated executions of ;N 

will provide a running print out of the contents of the si.gnificant i.nterna.l 

registers, instruction by instruction. The function ·is essentially the same 

as that of the step switch on the console. <E>;N will cause <E> instructions 

to be executed before the next break occurs. 

The ;N command follows the flow of control in the user's program. In 

particular, it will normally trace the execution of users' POPs (see ;0 

below). The execution of SYSPOPs, however, is not traced. In other words, 

a SYSPOP such as }PAD (floating add) is regarded as one instruction by ;N. 

Cells ;F, ;1+1, and ;~+2 are used by ;N and ;P. 

<E>;S (STEP). This is equivalent to <E> repetitions of ;N. Note that this 

is not the same as <E>;N. 

<E>;V (ADVANCE). This is equivalent to <E> repetitions of <P, and is not 

the same as <E>; P. 

<N>;O (POP TRACE MODE). If <N»O, programmed operators (poPs) together 

with their associated subroutines will be treated like machine instructions 

for the ;N and ;S commands, i.e. the break w~ll not occur until control 

returns to the location following the POP. Since DIYr determines when it 

should break by counting POPs, ERMs, SBRMs, ERRs and SBRRs, it can be 

fooled by POPs which do sufficiently peculiar things. If ~O, .POp 

subroutines will be traced, i.e. the first break after the pop will be at 

the first instruction of the subroutine. 

<N>;U (SUBROUTINE TRACE MODE). If <N'>=l, BRMs or SERMs top;ether with the 

subroutine called will be treated as single instructions by ;N. The same 

algorithm is used as in ;0 to determine when to break. If <N>=O, subroutines 

will be traced explicitly. 



30.40.10 
'?-7 

December ~, 1966 

Attempts to proceed through certain instructions having to do with 

frJrks will produce erroneous re suIts, and bre ~kpoj nts encountered when 

the progr:.un Is running tn a fork will not do the right thing. Attempts· 

tf) proceed through unreasonable instructions will cause the error comment 

$». 

2.6 Input/Output Corranands 

<fV;Y<F> DDT expects to find a binary program on the file <1>. If th~ 

program is absolute it is read in. If it is relocatable it is reH.d in ann. 

relocated at the location specified by <A>. If the expression is omitted, 

relocatable loading cormnences at locatj on 240B and continues by bep;inning 

each program in the first available loeation after the preced1.np; onp.. 

After reading is complete, the first location not used by the program is 

typed out. Any local symbols on the binary file are ignored. 

<P>;T<F> This command is identical to ;Y except that is also reads local 

symbols from the file and adds them to DDT's symbol table. lmy symbols on 

the file will be recognized by DDT thereafter. 

The following two points should be noted in connection with ; Y ano ;'1' 

commands. 

1) The use of an expression before ;T or ;Y when the file i.s 

absolute (i.e. SAVE file or self-loading paper tape) is in error. 

2) The block read in becomes the primary block. 

;W<F.> Causes all global symbols to be written on the specified file, i.n a 

format which can be read back in with ;T. 

;C<F.> Causes all symbols to be written on the specified file. 

2.1 Search Commands 

<W>;W (WORD SEARCH) <W>;W searches memory between the li~its ;1 and ;2 for 

cells whose contents match <W> when both are masked by the value of ;M. 



30.40.10 
2-8 
December 2, 19(,(; 

The locations ant.1 contents of &.11 such cells are typed out. 

<W>;# (NOT-WORD SE~~CH). This is the same as ;W, except that all regjsters 

which do not match <Vb will be prin,ted. This is useful, for example, i.n 

finding and printing all non-zero registers in a given pllrt of memory. 

<F>;E (EFFECTIVE ADDRESS SEARCH). <E>;E searches memory between the limjto 

;1 and ;2 for effectjve addresses equal to <E>. Indexing, if speclfic-:,d, to 

done with the value of ;X. Indirect address chains are followed to ~ depth 

of 64. The addresses and contents of all words found are typed out. When 

<ft> ) 

;W or ;E is complete, . is left pointing to the last register where the 

expression was fou.nd. 

2.8 The Patch Command 

<ft> ) causes a patch to be inserted. If a register 1.8 open and an 

expression is given, the expression is entered into the register. If a 

register is open, or if no expression is typed, the patch is made at . 

otherwise, the patch is made at <P>. DDT inserts in this location a 

branch to the current value of ;1'. When the patch is done, ;1' is updated. 

It then gives a carriage return and a ) and waits for the user to type 

in the patch., legal input consists of a series of expressions whose 

values are inserted in successive locations in memory. Each of these 

expressions should be terminated by line feed or ; b, exactly as though the 

program were'being typed in with'the \ command instead of as a patch. The t 

command may be given in place of the line feed and has its usual meaning, 

except that the contents of the previous location are not typed. Two 

other comm~nds are legal in patch mode. They are: 

(1) Colon, which may be used to define a local symbol with value 

equal to the current location. 



<ft>;I 

'30.40.10 
~~-9 

December 2, 1966 

(2) Carriage return, which terminates the patch. When the 

patch is terminated, DDT inserts in the next available 

location the original contents of the location at which the 

patch was inserted. It then inserts i.n the followjng two 

locations branch instructions to the first and second locations 

following the patch. This means that if the patch ~ommand 1S a 

skip instruction, the program will continue to operate correctly. 

Any other command given in patch mode may cause unpredictable 

errors. 

Is identical to the ) command except that it puts the instruction 

being patched before the new code inserted by the programmer instead of after. 

2.9 Miscellaneous Commands 

;? and? This commands erase everything typed since the last tab or carriage 

return. It is always legal. 

<E>;G (GO TO) <E>;G restores the A, B and X registers which were saved when 

DDT was entered (unless they have been modified) and transfers to the 

location specified by the value of the expression. 

;K (KILL) This command resets DDT's symbol table to its initial state. 

DDT will type back --OK and wait for a confirming dot. Any other character 

will abort the command. 

<S>;K (KILL). Removes only the symbol·<S> from the table. 

<E>,<E>;L Sets ;1 and ;2 (the lower and upper brounds for searches) to the 

values of the first and second expressions respectively. 

;U (UNDEFINED). This command causes all undefined symbols to be listed. 

<E>;U (EXECUTE). This causes the value of the expression to be executed as 

an instruction. If it is a branch, control goes to the location branched to. 

In all other cases control remains with DDT. A single carriage return is 

typed before execution of the instruction. If the instruction does not 



30.40.10 
2-10 
December 2, 1966 

branch and does not skip, or returns to the following location, a $ and 

another carria.ge return are 'typed after its execution. If the instruction 

does skip, two dollar signs ($$) are typed followed by a carriage return. 

;Z (7~O) <E>,<E>;Z sets to zero all locations between the value of the 

first expression and that of the second. ;Z alone releases all memory 

accessible to the user's program. DIYI' will type back --OK and walt "for a. 

confirming dot. Any other characters will abort the command. If this 

memory is returned, due to later access by DDT o:r a program, it will be 

cleared ,to zero. 

(LIST BLOCKS). The names of all blocks are printed. 

2.10 Special Symbols 

The value of "." is the current location, i.e. the ::iddress of the 

last register opened. 

The following symbols refer to various special registers of the machine. 

Their value is the contents of these registers as saved by DDT: ;X= will 

print the saved contents of the X register. To change the contents of a 

register, a command of the form <E>;A is used. This command sets the A 

register to the value of the expression. Whenever DDT executes any command 

involving execution of instructions in the user's program, it restores the 

values of all machine registers. If any of these values have been changed 

by the user, it is the chan'ged value which will be restored. 

;A The value of this symbol is the contents of the A register. 

;B The value of this symbol is the contents of the B register. 

;X The value of this symbol is the contents of the X register. 

;L The value of this symbol fs the contents of the program counter. 

The only reason for changing ;L is to set the location from which ;N will 

begin execution. 



;1 

;? 

;Q 

;F 

30.40.10 
?-11 

December 2, 19~6 

The values of' the following special symbols are used by DDT in certain 

cormnands or are available to the programmer for his general enlightenment. 

These values may be changed in the same way that the valllea of the nymb01s 

for the central registers of the machine may be changed. 

The value of this symbol is the mask for word searches. 

The value of this symbol is the lower bound for word and effective" 

address searches. It may also be set by the ;L command. 

The value of this symbol is the upper bound for word and effective 

address searches. It may also be set by using ;L. 

This symbol has a value equal to the value of the last expression 

typed by DDT or the user. It is useful, for instance, if the pro~rrnmner 

wishes to add one to the contents of the open register; he need only type 

;Q + 1. 

The value of this symbol is the address of the lowest location in core 

not used by the program. New literals and patches are inserted startlng 

at this address. Note: like all other special symbols, ;F may be changed 

by the command <E> ;.1. It is also updated as necessary by patches and 

literal definitions. 

2.11 Panics 

DDT recognizes four kin~s of panic conditions: 

(1) Illegal instruction panics from the user's program. 

(2) Memory allocation exceeded panics f'rom the 1lser' s program. 

"(3) Panics generated by pushing the rubout button. 

(4) Panics generated by the execution of ERS 10 in the user's program. 

ror the first two of these conditions DDT prints out a message, the 

location of the instruction at which the panic occurred, and the contents of 

this location. The messages are as follows: 



30.40.10 
2-12 
December 2, ]966 

(1) Illegal instruction panic 

(2) Memory allocation ex.ceeded 

I> > 

M» 

(3) The other two types of panics cause DDT to type bell B,nd 

carriage return. ;L and. will both be equal to the locatjon 

at which the panic occurred. 

If a memory allocation exceeded panic is caused by a transfer to an 

illegal location, the contents of the location causing the panic is not 

available and DDT, therefore, types a ? 

Two other panic conditions, are possible in DDT. 

(1) If the rubout button is pushed twice with no intervening typing 

by the user, control returns to the executive. 

(?) If the rubout button is pushed while DDT is executing a ~ommand, 

execution and typeout are terminated and DDT types carriage return 

and bell and then awaits further commands. 

2.12 Multiple Program Debugging 

It is occasionally desirable to hold several programs with different 

maps and symbol tables in DDT simultaneously. This sltuation could be 

approximated using the DUMP and RECOVER commands in the time-sharing 

executive, but several commands are provided in DDT itself to facilitate 

the process. 

(SET MAP). The pseudo-relabeling for the program is set according 

to the value of <Wi> and <W~. This command is essentially equivalent to 

executing BRS 44 with <WI> in A and <Wi> in B. 

(ERASE). DDT types --OK and waits for a confirming dot. Any other 

character will abort 'the command. DDT then resets itself to its initial 

state, i.e. the symbol table, program map, breakpoints and modes' are all 

reset. The program memory, however, is not released. 



30.~O. 10 
~'-11 

December ?, 19()G 

(DUMP). This command also requires a confirming dot. The 

entire state of DDT is saved away and a number typed out which wjll nllow 

this state to be retrieved by the r~ command (see below). DDT then 

resets itself as described under %E above. 

(RECOVER). This command requires a confirming dot. If the presr:nt 

state of DDT has ever been dumped (i. e. was produced by 1R), it in d1Jmpco 

again. Then the state is restored exactly as it was when the %D w~s ~ivcn, 

whose number was the value of <E>. Us ing an ille~al number for 1p. can 

lead to chaos. 



DDT COMMAND 

SUMMARY 



o ,~.--. ) 

DDT SUMMARY ( DDT 1, 3 - 30- 68 ) 

(THERE ARE 245 LINES IN THIS FI LE) 

KEY: 
E 
S 
N 
(N) 

R 
o 

GROUPS: 
C 1 ) 
(2) 
( 3) 
( 4) 
( 5) 
( 6) 
( 7) 
(8) 
( 9) 
( 10) 
( 11 ) 
( 12) 
( 13) 
( 14) 
( 1 5) 
( 16) 
( 1 7) 
(18) 

SYMBOLIC OR NUMERIC EXPRESSION 
SYMBOLIC EXPRESSION 
NUMERIC 
GROUP NUMBER 
OPEN REGISTER 
APPLIES TO OPERAND 

COMMA~DS CONCERNING RADIX 
COMMANDS TO EVALUATE EXPRESSIONS 
OPEN IN G REGI STERS 
CJMMANDS CONCERN ING MODES 
CLOSING REGISTERS AND INDIRECT ADDHESSING 
CENTRAL REGISTERS 
SPECIAL REGISTERS 
SYMBOL DEFINITION 
SYMBOL CONTROL 
WORD SEARCH 
PROGRAM ALTERATION 
PROGRAM EXECUTION AND TRACING 
I/O 
ARI THMETIC 
LO GICAL 
DDT STATE & RELABELLING 
MI SCELANEOUS· 
STRING PROCESSIN G 

(1) RADIX 

NJR SETS RADIX TO N 
JD SETS RADIX TO 10 
;0 SETS RADIX TO 8 
NB TAKES N AS BINARY (OCTAL) 
ND TAKES N AS DECIMAL 

(2) EVALUATE EXPRESSIONS 
(THE E BELO W MAY ALSO BE R OR OPEN REGI STER) 

E= 
E# 
E" 
E' 
RO @ 

E;" 
E,; • 

TYPES VALUE OF E AS AN UNSI GNED INTEGEH 
TYPES VALUE 0 F E AS A 51 G.~ ED INTEGER 
TYPES E IN SYMBDLIC 
TYPES E AS TEXT (3 OR 4 CHARS.; 5EE(4» 
TYPES OPER4ND IN SYMBOLIC 
TYPES E AS SYMBOLIC STRING POINTER (SEE (18» 
ASSUMES E IS ADDRESS OF A PAIR OF STRING POINTERS; TYPES STRING 

1 

.. -.,._-----------"-----,.,,-"--'''---------.. , .. 



0 

c 

o 

(3 ) OPENING REGISTERS 

EI OPENS LOCATION E AND TYPES I TS CONTENTS IN THE CURRENT MJDE 
t OPE.~S PREVIOUS LOCATION IN SAME MODE USED FOR CURHENT REGI STl=.~ 
LF OPENS FOLLO WIN G LOCATION IN SAME MODE USED FOR CURRENT REGISTE~ 
; SPACE SAME AS LF 
E ( OPENS LOCATION E AND TYPES ITS CONTENTS AS AN UN SI G.'J ED I NTE GE::C 
E ] OPENS LOCATION E AND TYPES ITS CONTENTS IN SYMBOLIC 
E $ OPE1\JS LOCATION E AND TYPES ITS CONTENTS AS A SIGNED INTEGER 
E" OPENS LOCATION E AND TYPES ITS CONTENTS AS TEXT (3 OR 4 CHAHS.) 
E\ OPENS LOCATION E wI THOUT TYPIN G CONTENTS 

(ONLY OPEN REGISTER COM. THAT APPLIES TO 1'3E YJ MEMORY) 

(4) MODES (SETS THE CURRENT MODE AS INDICATED) 

(4.1) REGISTERS 

;] SYMBOLIC (SIG~ED INTEGER IF MORE THAN 200 FROM SYMBOLIC LaC.) 
(MODE USED \t.Blli ENTERIN G DDT) 

;[ UNSIGNED INTEGER 
; $ SI G.~ED INTEGER 
';" ASCI I (TEXT) (3 OR 4 CHARS. PER "jORD (SEE (4.3» 

(4.2) LABELS 

LABELS TYPED IN RELATIVE SYMBOLIC (MODE UPON ENTERING DDT) 
LABELS TYPED A,S INTEGER -----
(4.3) TEXT 

THREE CHARACTERS PER waRD 
FOUR CHARACTERS PER WORD (DOES NOT .~PPLY TO ';' COMMAND) 

(5) REGI STER CLOSING AND INDIRECT ADDRESSING 
(CONTENTS OF OPEN REGISTER PLACED BACK IN MEMORY) 

. ' 

RO ( OP&'JS LOCATION 0 (OPERAND) 0 F THE LAST EXPRESSION TYPED OR 
OF THE OPE!.~ REGI STER (wHETHER TYPED OR NOT) 

t CLOSES CURRENT REGISTER AND OPENS PREVIOUS 
LF CLOSES CURRENT REGISTER AND OPENS FOLLO wI~G 
CR CLOSES CURRENT REGI STER 

(6) CENTRAL REGISTERS 

; A( 2) 

E';A 
,; B(2) 

E';B 
,; X(2) 

E;X 
;L(2) 
E;L 

TYPES THE CO~TTENS OF THE A REGISTER IN MODE OF COMMAND (2) 

STORES THE VALUE 0 FEIN THE A REG! STER 
TYPES THE CONTENTS OF THE B REGISTER 
STORES THE VALUE OF E IN THE B REGISTER 
TYPES THE CO~TENTS a F THE X REGI STER 
STORES THE VALUE OF E IN THE X REGISTER 
TYPES THE CONTENTS OF THE LOCATION COU~TER 
STORES THE VALUE' OF E IN THE LOCATION COU~TER 

(7) SPECIAL REGISTERS 

; F(2) 
E;F 
%0(2) 
S%O 

TYPES THE CONTENTS OF THE FIRST AVAILABLE MEMORY REGISTER 
STORES THE VALUE OF E AS THE FIRST AVAILABLE MEMORY 
TYPES THE CONTENTS OF THE ORI GIN REGISTER (FIRST USED MEMORY) 
STORE THE VALUE OF E AS THE CURRENT ORI GIN 

(OPERANDS AND LABELS BELD W OHI GIN ARE TYPED AS INTEGEHS) 

2 



D 

6 

Q) 

(8) SYMBOL OR LABEL DEFINITION 

E<S> ASSI GNS THE VALUE 0 F E AS THE VALUE a F THE SYMBOL S 
S: ASSI G"JS THE CURRENT LOCATION (.) AS THE VALUE 0 F THE SYMBOL 
HO S@ ASSI G.'JS THE OPERAND OF THE OPEN REGISTER AS THE V.4LUE OF THE 

SYMBOL 

(9) SYMBOL CONTROL 

KILLS SYMBOL 5 (IF S IS UNDEFINED, THE UNDEFINED QUEUE 
IS LEFT IN MEMORY BUT THE SYMBOL IS KILLED) 

KILLS ALL SYMBOLS (TYPE CR AFTEH --OK) 
LISTS ALL U~DEFINED SYMBOLS 
TYPES BLOCK IDu~TS. 
KILLS ALL LOCAL SYMBOLS IN BLOCK 

( 10) \t.URD SEARCH 

E;M SET THE MASK (USED BY ; \sJ) 1'J THE VALUE 0 F E 
E; 1 SETS THE LO\']ER BOUND FOR A SEARCH TO THE VALUE OF E 
E;2 SETS THE. UPPER BOUND TO THE VALUE OF E 
El,E2,;L SETS THE LO\t;~ER BOUND TO E1 AND THE UFPER BOLND THE E2 
E; VJ SEARCHES l'tlEMORY BE1'vJEEN LO WER AND UPPER BO U>J DS ·FOh LO CATIONS 

\.JHICH MATCH E v.HE."l BOTH ARE MASKED BY THE VALUE OF ;M 
E;E SEARCH MEMOHY BET\,;'EEN LO yiER AND UPPER BOUNDS FOR EFFECTl VE 

ADDRESS EQUAL TO E 
E;# SAME AS ; W EXCEPT THAT ALL "-OEDS NOT MATCHIN G ARE TYPED 
;# TYPES ALL WORDS THAT ARE NDT ZERO 
,; E TYFEL ALL \VORDS THAT HAVE OPERANDS EQUAL TO ZERO 

(11) PRO GRAM ALTERATION (PATCHES) 

E) CAUSES INSTRUCTIONS TO BE INSERTED BEfORE LOCATION E 
) CAUSES INSTRUCTIONS TO BE INSERTED BEFORE CURRENT LOC. (.) 
E;I CAUSES INSTRUCTIONS TO BE INSERTED AFTER LOCATION E 
;1 CAUSES INSTRUCTIONS TO BE INSERTED AFTER CURRENT LOCATION 

(INSTRUCTIONS P_4TCHED, PATCHES, AND LI TERALS G8 'AT 
LOCATION ; F v.'H I CH MO VES .; F) 

E1,E2;Z CLEARS LOCATIONS BETv.1EEN E1 AND £2 

3 



0 

o 

o 

(12) PhOGRA~ EXECUTION 

E! 
N; E! 
! 
,; ! 
N,; I 
E.iG 
E%G 

.iP 
N.iP 

.iN 
N.iN 
N.iS 

~;V 

0;0 
1;0 
O;U 
1;U 

(13) 

SETS BREAKPO I NT 0 TO THE ADDRESS E 
SETS BREAKPO INT N (w'HERE N CAN BE 0-3) TO THE ADDRESS E 
CLEARS ALL BREAKPOINTS 
LISTS ALL BREAKPOINTS 
CL~4RS BREAKPOINT N 
STARTS EXECUTION AT LOCATION E 
REPLACES ;A wITH CURRENT INPUT FILE (COMMANDS -FROM OR TTY) 

AND THEN STARTS EXECUTION AT LOCATION E 
RESTARTS EXECUTION AT THE VALUE OF THE LOCATION COUNTER 
RESTARTS EXECUTION AT .iL AND BREAKS AFTER N BREAKPO INTS 

HAVE BEEN REACHED 
EXECUTES THE NEXT INSTRUCTION AND THEN BREAKS 
EXECUTES N INSTRUCTIONS AND BREAKS 
EXECUTES THE NEXT INSTRUCTION, BREAKS, AND REPEATS THIS 
SEQUENCE N 1'1 MES 
RESTARTS EXECUTION AT .iL AND THEN BEEAKS AT EACH BREAKPO INT 
FOR N BHEAKPO INTS 
CAUSES POP'S TO BE TREATED AS ONE INSTRUCTION FOR ;N & .i S 
TRACES ALL POP'S 
CAUSES BRM'S AND SBRM'S TO BE TREATED AS ONE INSTRUCTION 
TRACES ALL BRM'S AND SBRM'S 

I NPUT/O UTPUT 

;T IFILEI LOADS BINARY FILE fu~D SYMBOL TABLE AT LOCATION ;F 
(ALSO LOADS SAVE OR GO TO TYPE FILES) 

E;T IFILEI LOADS BINARY FILE AND SYMBOL TABLE AT LOCATION E 
;Y LOADS BINARY FILE AND EXTERNAL SYMBOLS AT LOCATION .iF 
E;Y LOADS BIN.L\RY FILE AND EXTERNAL SYMBOLS AT LOCATION E 
; "-i I FILE! C.L\USES ALL GLOBAL SYMBOLS TO BE WHITTEN ON THE SPECI FI ED FILE 
.i C 1 FILEI CAUSES ALL SYMBOLS TO BE v.iRI TTEN ON THE SPEcr FI ED FILE 

(14) ARITHMETIC (FOR EXPRESSIONS) 

E1+E2 PERFORMS INTEGER ADDITION 
E1-E2 SUBTRACTS E2 FROM E1 
E1;/E2 DIVIDES E1 BY. E2 
E1;*E2 MULTIPLIES E1 BY E2 
E1 E2 (SPACE) SAME AS + 
El;:N TAKES E1 MOD N (DIVIDES E1 BY N AND TAKES REMAINDER) 

(15) LOGICAL (FOR EXPRESSIONS) 

( RESULTS ARE 1 FOR TRUE AND 0 FOR FALSE) 

E1;<E2 
E1;>E2 
E 1 .i =E2 
E1;%E2 
E1; &E2 
E1;.E2 

MAKES COMPARISON £1<E2 
MAKES COMPARISON E1>E2 
MAKES COMPARISO~ £1=E2 
PERFORMS LOGICAL "OR" (MERGES E1 AND E2) 
PERF~rRMS LO GICAL "AND" (EXTRACTS E1 AND E2) 
PERFORMS LO GICAL EXCLUSI VE OR (roES MACHINE INST. EaR) 

4 
o 



(16) DDT STATE AND RELABELLING 
I 

El,E2;R SETS PROGRAM RELABELLING REGISTERS TO El AND E2 
;Z RELEASES PROGRAM MEMORY AND RESETS DDT TO ORIGINAL STATE 
;K KILLS ALL SYMBOLS 
%E RESETS DDT TO ORI GINAL STATE WITHOUT RELEASING PROGRAM MEMORY 
%D SAVES CURRENT DDT STATE BY RELABELLING OUT SYMBOL TABLE 

(TYPES N FOR THE FaLLO WI N G) 
N%R RESTORES DDT TO STATE SAVED BY %D COMMAND 

( 1 7) MI SCELANEOUS 

; @ STOPS TYPING OF CARRIAGE RETURNS & REDUCES TABFRO'M 3 'TO 1 SPACE 
(USED WHEN DDT RUNNING lNDER COMMAND-FROM PRO:GRAMS'> 

%"STRING" COMMANDS- FROM COMMENT MODE, COPI ES ALL CHARACTERS "FROM THE 
INPUT FILE TO THE OUTPUT FILE UNTIL THE SECOND" 

1 I G'JORES LAST TYPED INSTRUCTION OR STRIN G 
* INDIRECT (USED AFTER AN OP CODE, VALUE OF 40000B) 
• CURRu~T LOCATION 

. , SEPARATOR 
%F RETURN TO THE EXEC 
"ASC Dt C X ENTERS ASC I I WORD 0 F 3 OR 4 CHARACTERS DEPENDIN G UPON MODE 

w'HERE X IS A COMMAND FROM GROUPS (2), (6), (10), ETC. 
( D t C ) I S CO N TRO L D 

N@ OPERATION CODE DEFINITION 
E;U EXECUTE INSTRUCTION (INSTRUCTION STORED AT ~F) 
%V TYPES VERSION NO. 

(18) STRING 

E; • 
EJ+N 
E;-N 

TYPES E AS A SYMBOLIC STRING POINTER IN THE FORM 
El;+N \r,7HERE E1 IS THE SYMBOL OF £13 AND N IS THE REMAINDER 
ASSUMES E IS ADDRESS OF A PAIR OF STRING POINTERS; TYPES STRING 
MAKES A STRING POINTER BY TAKING E *.3 + N 
MAKES A STRING POINTER BY TAKING E * 3 - N 

5 


	001
	1_001_ARPAS
	1_002
	1_003
	1_004
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_2-01
	1_2-02
	1_2-03
	1_3-01
	1_3-02
	1_3-03
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_4-05
	1_4-06
	1_4-07
	1_5-01
	1_5-02
	1_6-01
	1_6-02
	1_6-03
	1_6-04
	1_6-05
	1_6-06
	1_6-07
	1_6-08
	1_6-09
	1_6-10
	1_6-11
	1_6-12
	1_6-13
	1_6-14
	1_6-15
	1_6-16
	1_6-17
	1_6-18
	1_7-01
	1_7-02
	1_7-03
	1_7-04
	1_7-05
	1_7-06
	1_7-07
	1_7-08
	1_7-09
	1_7-10
	1_7-11
	1_7-12
	1_7-13
	1_7-14
	1_7-15
	1_7-16
	1_7-17
	1_7-18
	1_7-19
	1_7-20
	1_7-21
	1_7-22
	1_7-23
	1_7-24
	1_7-25
	1_7-26
	1_7-27
	1_7-28
	1_7-29
	1_7-30
	1_7-31
	1_7-32
	1_7-33
	1_7-34
	1_8-01
	1_8-02
	1_8-03
	1_8-04
	1_9-01
	1_9-02
	1_A-01
	1_A-02
	1_A-03
	1_A-04
	1_A-05
	1_B-01
	2_001_DDT
	2_002
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_2-11
	2_2-12
	2_2-13
	3_00
	3_01
	3_02
	3_03
	3_04
	3_05

