TYMSHARE MANUALS

REFERENCE SERIES

'R’efér_gnce Manual

ARPAS/DDT

DDT
Reference Manual

"DDT COMMAND

SUMMARY ."
TYMSHARE, INC.
, ;:745 Distel Drive]
Los Altos, California 94022
334 East Kelso Street a o 464 Hudson Terrace
Inglewood, California 90301 Englewood Cliffs, New Jersey 07632

!

Please send all comments about thls manual to:
Library & Documentatlon Department, Tymshare, Inc. * 745 Dnstel Dnve *Los Altos Cahfornla 94022

Y

ARPAS |
REFERENCE MANUAL

For The Tymshare Assembler

1.0

2.0

3.0

k.0

5.0
6.0

TABLE OF CONTENTS

Introduction . « ¢« ¢« ¢ ¢ ¢ « & o .

1.1 Basic Description of the Assembler

1.2 Symbols . . & ¢ ¢ o o o .0 « @
1.3 Instructions, Directives, and
1.4 Subprograms . . ¢ ¢ ¢
1.5 Literals
1.6 Relocation . « « « ¢ « o . .
1.7 Basic Assembly Procedure . .
1.8 Notation . . . « 4+ &« 4 . . .
The Assembly Language . . « . . .
2.1 Character Set
2.2 Statements
2.3 Programs . . ¢ ¢ ¢ o o o o
The Syhtax of Instructions
3.1 Their Classification
3.2 TUse of the Label Field . . .
3.3 Operand Field . « « o « « . .

. . ® o o o o =

Comments

¢ e o . o o .

3.4 Alternate Conventions for Expressing
: Indexed and Indirect Addresses

3.5 Comment Field . « .« « o « .+ &
Expression Syntax
4.1 Operators « ..
4,2 Constants
4.3 Classification of Symbols . .
Lt Terms . . ¢ v o o o o 0 0 .

4.5 Expressions « . .

Lh.6 Constraints of Relocatability

4.7 Special Relocation
Literals +« « « v ¢« &« o « &

DirectivesS ¢ ¢« ¢ ¢ o ¢ « o ¢ ¢ o @

6.2 DATA Generate Data
6.3 TEXT Generate Text

of Expressions

. . o . e o .

6.1 COPY Generalized Register Change Command . .

. o . o o o o .

. . o o . . e o

6.4 ASC Generate Text with Three Characters per Word

6.5 EQU Equals . + « « « « « o

1-1

1-1.

1-1
1-2
1-2
1-2
1-2
1-3
1-k
2-1

2.1

2-1
2-3
3-1
3-1
3-2
3-2

3-2
3-3
L1
o1
Yo

. b2

-3
L Y
Ly
b5
5-1

. 6-1

6-2
6-3
6-3

6-4

R-26

7.0

6.6
6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

.21
.22
.23
6.24
6.5
6.26
6.27
6.28

AN O O

EXT Define External Symbol « ¢« « . . .

NARG Equate Symbol to Number of Arguments
inrMacrolcall e e e e e e e e e e e e s e e

NCHR Equate Symbol to- the Number of 5
Characters in Operand . . . « +. « o o o« o« 4 &

OPD Operation Code Definition
POPD Programmed Operator Definition
BES Block Ending Symbol . « & v v 4 o o . .
BSS Block Starting Symbol
ORG Program Origin « « ¢« ¢« & o o« &
END End of Assembly . ¢ ¢ ¢ o « o o « s « o o
DEC Interpret Integers as Decimal
OCT TInterpret Integers as Octal
RAD Set Special Relocation Radix

-FRGT Forget Name of Symbol
IDENT Program Identification

DELSYM Delete Output of Symbol Table and
Defined Op-codes c e 2 s s e e s .

RELORG Assemble Relative with Absolute Origin .

RETREL Return to Relocatable Assembly .
FREEZE Preserve Symbols, Op-codes, and Macros
NOEXT Do Not Create Ixternal Symbols
LIST Turn Specified Listing Controls On . . .
NOLIST Turn Specified Listing Controls Off .
.PAGE Begin New Page on Assembly Listing -
REM Type Out Remarks in Pass 2

Macros and Conditional Assembly « « &« « &

7.1

.7.2

Introduction to Macros e e e e e s s e e o

Macro Definition . « +« ¢ ¢ « o ¢ o o« o o o o

FIGURE 1: Information.Flow During Macro Processing .

7.3
7.4
7.5
7.6
77
7.8
7.9

Macro Expansion . . « « . & ¢ ¢ ¢ ¢ o 4 o o .
Macro Arguments ¢ . . 0 . . .
The Use of Dummy Arguments in Macro Definitions
Concatenation . . « .« « . « v o ¢ 4 o o o . . .
Generated Symbols . . « v ¢« ¢ . ¢ . 4 o 0 . . .
Conversion of a Value to a Digit String . . .

The NARG and NCHR Directives o . « &

6-6
6-7
6-7
6-8
6-9

6-9

6-10
6-10
6-10

.. 6-11

6-11

. 6-12.
. 6-12
. 6-13

6-14
6-15
6-15
6-15
6-16

7-11
7-12
7-13
7-1k

8.0

9.0

7.10 Conditional Assembly . . .
7.11 The RPT Directive
EXAMPIE 7-6 . . « « « +
EXAMPLE 7=T7 ¢ ¢ « ¢ o ¢« o o o »
EXAMPIE 7-8 ¢ . ..
EXAMPLE 7-9 « ¢ ¢ v ¢ o o & & &
7.12 CRPT, Conditional Repeat .
7.13 TIF Capebility
7.14 IF, Assemble if Expression
EXAMPIE 7-10 . «. ¢ ¢« ¢ v & « .« &
EXAMPIE 7-11 « « .« &

' 7.15 Special Symbols in Conditional Assembly

Assembler Error Messages

8.1 Error Messages . . « « « . . .

8.2 Interpretation of the Error Listing

Assembler Operating Instructions

9.1 Assembler Parameters

APPENDIX A: Extended List of Instructions. , .
APPENDIX B: Table of Trimmed ASCII Code for the SDS 930.

. . . .

.

7-15
7-16
T7-17
7-18
7-19'
7-20
7-21
7-21
7-22
7-24
7-26
7-3h4

8-1
8-3
9-1
9-1

A-1
B-1

R-26
1-1

1.0 Introduction

An assembler is a translator whose source language is assembly language

and whose object code is actual machine language. Assembly langﬁage is mostly
a one-for-one representation of machine language written in a symbolic form.
Its value comes from being easier to read and from the facilities provided by

the assembler for doing calculetions at assembly time. These range from simple

address calculations to complex conditional assemblies in which totally
different object programs may be genersted, with the choice among them
depending on the values of a few‘parameters.

This section serves to define the terminology used. Tt is assﬁmed that
the programmer is familiar with the basic characteristics of the SDS 9h0*.

1.1 Basic Description of the Assembler

The assembler is a two-pass assembler with subprogram, literal, .
macro, and conditional essembly capabilities.
1.2 Symbols

Numbers héy be represented symbolicaliy in;assembly language by
symbols. A symbol is any string of letters and digits not forming a
constant. (Constants sre defined in Section h.25. In particuler, it
is not necessary that a symbol begin with a letter. Although symbols
as written may be arbitrarily long, only the first six characters of a
symbol are used to distinguish it from others. When a symbol is used to
represent a memory addresg, it is called a label. Examples of symbols
are:

START 21C Al2 CALCULATE

* Ref. to SDS 940 Computer Reference Manual, No. 90 06 LOA, August, 1966.

R-26
1-2

1.3 Instructions, Directives, and Comments

Input to the assembler takes the form of a sequence of statements

called instructions, directives, or comments. Instructions are symbolic

representations of machine commands and are translated by the assemﬁler
into machine language. Directives, by contrast, are messages which serve
to control the assembly process or creafe data. They may or ma& not
generate output. Comments are ignored by the assembler, and serve only
to clarify the meaning of a program.
1.4 Subprograms

Prograﬁs oftén become quite large or fall into logical divisions
which are almost independent. 1In either case it is convenient to break
them into pieceé and assemble (and even debug) them separately. Separately
assembled parts of the same program are called subprograms..

. Before a program assembled in pieces as ;ubprograms can be run it is
necessary to load the.pieces into memory and link them. The symbols used
in a given subprogram are generally local to that subprogram. Subprograms
do, however, need to refer to symbols defined in other subprograms. The
linking process takes care of such cross references. Symbols used for it

are called external symbols.

1.5 Literals

Often data is placed in programs'at assembly time. Tt is frequently
convenient to refer to constants by value than by label. A literal is a
symbolic reference to a datum by value. .The assembler allows any type of
expression to be used as a literal. Some examples of literals are:

5. =3w-2 ='END' =EXTERN

1.6 Relocation

A relocatable program is one in which memory locations have been

computed relative to the first word or origin of the program. A loader

R-26
1-3
(for this assewbler, DDT) can then place the assembled program into
core beginning at whatever location may be specified at load time.
Placement of the program involves a small calculation. For example,
if a‘memory reference is to the nth word of a program, and if the program
is loaded beginning at location k, the loader must transform the reference
into absolute location n+k.
This calculation should not be done t§ each word of a program since
some machine instructions (shifts, for example) do not refer to memory
locations. It is therefore necessary to iﬁform the loader whether or not
to relocate the address for each word of the program. Relocation infor-
mation is determined automatically by the assembler and transmitted to

the loader as & binary quantity called the relocation value. If R = 1

the operand is to be relocated; if R ='0 the operand is absolute.

Constants or data may similarly require relocation, the difference
here being that the relocation calculation should apply to all 24 bits of the
ako wopd, not just to the address field. The assembler accounts for this
difference automatically.

It is possible t§ disable relocation in the assembler and to do

absolute assembly. In this event there is an option which produces a

paper tape which can be loaded using the 940 fill switch.

1.7 Basic Assembly Procedure

During pass 1 of the two-pass process the operands of instructions and
some directives are scanned for the presence of single symbols. If a single
symbol is present, a table of symbols is searched. If absent, the symbol is
added to the table but marked as not yet defined, i.e., having no value.
Labels are placed into the symbol table in shnilarbfashion, except that

they are assigned the current value of the location counter, a word within

the assembler which contains the relative address of the instruction. If

a label has been previously defined, it is marked as a duplicate syﬁbol

R-26
1-4

(this is taken to be an error).

At the end of pass 1 the symbol table is sorted. All symbols present
having no value are assumed to be external. These symbols are then output
by the assembler for later use by the loader.. During pass 2 the labels
are not computed; raﬁher, the operand fields of instructions and directives
are evaluated using the now known symbol.values.

In absolute assemblies the scan for single symbols in pass 1 is
disabled. This has the effect of doing away with external symbols,

1.8 Notation .
In the following pages, square brackets [] aré used to indicate the

presence of optional quantities.

R-26
2-1

2.0 The Assembly Language

2.1 Character Set

The classes of charécters recognized by the assembler are as follows:
(a) digits
(1) octal 0-7
(2) decimal 0-9
(v) 1letters A-Z
(¢) "alphanumerics 0-9 and A-Z
(8¥ delimiters + - * / , ' () = . $ blank «
“(e) special characters : ;<> 2 [1"
Note that the characters ! # % & @ \ * which are normally found on standard
Teletypes are not recognized by the assembler. Use of them in a program
will result in their being replaced by blanks.
2.2 Statements
Statements are logical units of input. They may be delimited either
by being placed on separate lines or by being separated with semi-colons.
Semi-colons do not serve as statement delimiters when used between singlev
quotes (as in the TEXT directive) or inside of matched parentheses (as in

arguments of macro calls). Examples of statements are

START IDA DAT21
MUL 21B
STA ANSWER

or
START IDA DAT2l; MUL 21B; STA ANSWER
If a sﬁatement requires more than one line for any reason, it can be
continued on the next line by typing a + in the first column of the next liﬁe.
Thus: |

START IDA DAT2l; MUL 21B; STA ANSWER THE QOM
AMENT ON THIS LINE REQUIRES A CONTINUARTON

This kind of continuation may be done for about five lines (320 characters).

Each non-blank statement is an instruction, a directive, or a

comment. Blank statements are ignored. Comments begin with an asterisk;
they have absolutely no effect on the program being assembled and serve
only as annotations to clarify the meaning of the assembly language.

Directives and instructions are divided into four fields. The
fields are, from left to right, the label field,'the operation field, the
operand field, and the comment field. The assembler is a free-form
assembler; its various fields are delimited by blanks rather than
restricting them to fixed placesAin a line. This is explained in more
detail below.

The label field is used mostly for symbol definitions. It begins
with the first character in the statement and ends on the first non-
alphanumeric character. (The blank is usually the only legal terminator.)
Thus,. in the followiﬁg statements the symbol XYZ appears in label fields.

XYz LDA =10 :
STA DEF;XYZ LDA =10; LDB* IMN

'The operation field contains (usually) a symbolic operation code §r
directive namé. It begins with the first non-blank character after the
termination of the label field. In the statements above, each operation
field begins in a different bosition. Like the label field, the operation
field terminates on the first non—alphaﬁumeric character. Legal
terminators are the blank, asterisk, Semi-colon, and carriage return.

The operand and comment fields eéch begin with the first non-blank
character after ﬁhe fermination of the preceding field. The operand
fiéld terminates oﬁ the first blénk or semi-colon not between matched
single quoﬁes or parentheses. The carriage réturn always terminates the

field (and the statement). The comment field terminates on a semi-colon

R-26
2-3

or carriige return. This field, like the comment statement, is not used

by the assembler; it may contain anything.
2.3 Programs

A program consists of a sequence of statements terminaged by an END
directive. Normally programs are assembled in relocatable form. A
program is éséembledbin absolute self-loading form if it begins with an
ORG directive. Tt is possible (by using RELORG) to make an absolute

assembly to be loaded by DDT.

R-26

3.0 The Syntax of Instructions

3.1 Their Classification

(a) cClass 1 (normal instructions).

Class 1 instructions in general use the operand field. TIts

absence implies the value zero. It is possible to specify for each

Class 1 instruction whether or not the operand field must be present.

It is also possible to specify that bit O of the instruction word is

to be set to one (as in SYSPOPs). There are two types of Class 1

instructions:

(v)

(1) type O
1

The address is formed mod 2~ . All instructions

making memory references are of this type.

(2) type 1
The operand is formed mod 29. This type is used for
shift instructions. If indirect addressing is used with
this type, the address is formed mod 21“.
Class 1 instructions have the following form:
[[$]1abel] opcode[*] [operand[,tag]] [comment]
Indirect addressing is signified by an asterisk immediately
following the operation code or by preceding the operand}with “ .
The use of the dollar sign is explained in 3.2 The tag is used
to specify bits 0, 1 and 2 of the 940 instruction word.
Class 2 (compleﬁe or full word instructions).
Class 2 instructions have no operand field. Indirect addressing
is signified by an asterisk immediately following the operation

code. Class 2 instructions have the following form:

[[$]labé1] opcode([*] [comment]

R-26
3-2

(¢) Numeric op codes.
Operation codes may be specified as decimal or octal numbers,
as for‘example:
[[$]1avel] 76B[*] [operand[,tag]] [comment]
The assembler shifts the numeric'op code (modulo 1778) left to
the correct position in the instructioﬁ word. In such cases, the
op code is assumed to be Class 1, type O, no operand required,
and with bit O not set. |

3.2 Use of the Label Field

A label identifies the instruction or data word being generated. The
symbol used in the label field is given the current value of the location
counter. Instructions will have labels normally if they are referred to
elsewhere in the program, although it is not necessary that symbols defined
in this way be used in references. Symbols defined but not used are called
Eﬂlli; they are marked as such in the assembly listing and explicitly
typed out at the end of an assembly.

If the same symbol appears in the labelAfield of more than one
instrﬁction, it is marked as a duplicate and given the newer value.

A $ preceding a iabel causes an external symbol definition (cf. 6.6).

3.3 Operand Field

The operand field contains at most two arithmetic expressions (or a
literal and one expression) used to determine the operand and tag of the

3

machine command. The tag, if present, is evaluated mod 2~ and must be
absolute (i.e. non-relocatable).

3.4 Alternate Conventions for Expressing Indexéd & Indirect Addresses

It is possible to express both the use of indexing and indirect

addressing in an alternative manner. In each case a special character

is placed at the beginning of the operand field. These characters are /
for indexing and « for indirect addressing. Thus, for example,

LDA VECTOR, 2 is the seme as IDA /VECTOR

and
STA* POINTR is the same as STA ~POINTR
Similarly, .
IDA* COMPLX, 2 may be written either as
LDA /«COMPLX
or LDA /COMPLX

Anything normally uséful may follow the initial « or /, for example

LDA« =CHAIN (LDA* =CHAIN)

This alternate way of expressing indexing and indirect addressing
may be used by programmers as'they choose. It was devised to $implify

the indication of these operations in the use of macros (see chapter 7).

3.5 Comment Field
The comment field is not processed by the assembler, but is copied

to the assembly listing.

R-26
L1

4.0 Expression Syntax

The assembler evaluates expressions as 24-bit, signed integers. Expressions
consist of constants and symbols connected by operators. .Examples of expressions
are:

100-2%ABC (OR)DEF/27B
22 -
C12>D19

Expressions are evaluated ffom left to right, some operators taking precedence
over others. .As anAexpression is evaluated, a parallel calpulatiog of its
relocation value R. is made. Only absolute expressions (R = 0) and relocatable
expxessiéns (R = 1) are 1legal (cf. 4.7). .
4.1 Operators
| The operators recognized by the assembler and their precedence are
given below. Operators of highest precedence are applied first in

evaluation of expressions.

Operator Precedence
(a) unaiy
+ L
- b
(NoT) L
(R) 4 (ef. 4.7)

(b) relational

(LsS) or < 3

(GRT) or > 3

| (EQU) or = 3
(¢) binary

* 2

/ 2

(AnD) 2

+ 1

] 1

(0R) 1

(EOR) 1

R-26
h.2
Note that some operators are more than one character long. These
are enclosed in baréntheses to avbid cdnfusion with symbols which would
otherwise look the same. Parenﬁheses ére‘thérefore hot allowed in
expressions to delineate terms and modify the order of evaluation.
The relational operators give rise to a value 1 if the relation is

true and O if false. There may be only one relational operator in an

expression.
4.2 Constants
Constants are of three types}.
(a) decimal integers: one or more decimal characters possibly
terminated with the letter D.
2129, 600D, -217
(b) octal integers: one or more octal characters possibly terminated
with the letter B and optionally a single-digit octal scaling
factor. .
217, 32B, UB3 (which is the same as 40005

(¢) string: '1-b4 characters (except ')’

A1l constants are absolute, i.e., their relocation value is O.

The assembler normally expects integers to be decimal. This caﬁ
be changed, however, by using a directive (OCT or DEC). In any case,
integers may be terminated with B or D, overriding the normal inter-
pretation of integers. String constants are not nérmally useful in the
direct computation of memory addresses, but exist basically to be used
in literals (cf. 5.0).

k.3 Classification of Symbols

The assembler recognizes the following types of symbols:
(2) 1local symbols: These symbols are defined by their use in the

label field of instructions and in some directives. Their

R-26
4-3

value is that of the location counter at their definition. They
are thus symbolic addresses of memory cells. These symbols are
relocatable (R = 1) if the assembly is relocatable; if the
assembly is absolute, they are absolute. Once having been
defined, a local symbol may not be redefined. Attempts to do so
are considered errors, and diégnostics result.

(b) equated symbols: Equated symbols may be defined by equating
‘them to an expression (using directives EQU, NARG, or NCHR).
Their relocation value will be that of the eipression. Unlike
local symbols, equated symbols may be given new values at any
point in the program.

(c) current location counter symbol (*): The character *, if used
in the proper context, is understood to mean the curfént value
of the location counter. Tt is relocatable or absolute
depending on the nature of the assembly;

(@) external éymbols: External symbols are those which are uéed-
but not defined in a given subprogram. They can be assigned
no value, and it is not reasonable to ;egard them either as
absolute or relocatable. External symbols may be used only as
the sole object in an expression; other than its appearance as
a sole object, the external symbol may not be used in an
expression.

L.t Terms
Terms are either constants or symbols, optionally preceded by a unary

operator. The unary operator serves to modify both the value of the term

R-26
L1

and its relocation value. One ﬁnary operator -- special relocation, (R) -
may set the relocation value of a term to any value. This feature is
explained in much more detail in L4.7.

h»5' Expressions

Expressions may consist of one or more'terms connected by binary operators,
or they may be just a single external symbol. Their evaluation proceeds
from left to right using operators of decreasing precedence. For example,
let A = 100, B = 200, and C = -1. Then
A+B*C/A = 98
Again, letting A = 543215, B = hhbllg, and C = 00077g, then
A(OR)B(AND)C = 5&3658

4.6 Constraints of Relocatability of Expressions

The implementation of the assembler forces the following constraints

on the use of expressiohs:

(2) No relocatable term (R = 1) may occur in conjunction with the
operatofs * or /. In other'words, no‘reiocatable symbol méy
multiply, be multiplied by, divide; or be divided by anything.

(b) In the absence of the special relocation operafbr.(R) the
final relocation value of an expression may be only O or 1.

It is possible that the relocation value may attain other
values in the course of evaluation.

(¢) 1If the special relocation operator (R) apbearsbin an expression,
then the relocation value of the expression ﬁay'be either O or
some other value K, Qhere KAis tﬁé special relocation radix. DDT
is inforﬁedvby the assembler that special relocation is being used
in this case. DDT will then @ultiply the base address by K

before adding it to the value of the expression (see next section).

R-26
h-5

4.7 Special Relocation

‘The special relocation feature has been provided to permit the
programmer limited use of expressions which are not absolute or singly
relocatéble. To sée why this is desirable, and how it works, consider
the process of assembling and loading a relocatable program. Iet the
symbol A have value a. If one writes

IDA A
the assembler produces“

| 076 a

andvharks the instruction's address as being relocatable. Later when
ﬁold to load the p#ogram beginning at base address b, DDT will form

076 a+b |
Thus no matter where the program is loaded, the memory reference wili be to
the ath word from the base address. |

Now suppose one writes

IDA 2%A.
The assembler, of course, can form

076 2%a
‘and presumably what DDT should form is

076 D%a+2¥D = 076 2%(a+b)
To do this, it must be told that b is to be multiplied specifically by 2.
Only one bit is reserved;'however; for such information in the assembler's
binary output; it is this'fact.which‘causes the restriction that
expréssions may have only‘the relocation values O and 1. And this
restriction can be gotten around (inelegantly) by the use of (R).
Tﬂe following example gives one of the main reasons for which (R) was.

put into the assembler.

R-26

Programs may make use of the string-handling SYSPOPs of the 9ko.

These instructions use string pointers, two-word objects containing

starting and ending character addresses. Now characters are“packed

three pér word. A character address therefore consists of the memory
address containing the character multiplied By 3 plus O, l? or 2 |
depending on the position of the charactef in tﬁe word. If a character
a&dress is divided by 3, the quotient gives the word address and the
remainder the character position in the word.
To form a character addresé at assembly fime, one must be able to
multiply a word address (a relocatable’item) by a consﬁant (in this
. case, 3). This is the reaéon for special relocation. The statement
DATA (R)A+L
will produce the value-
3¥%a+1l
together with a notétion to DDT that special relocation apﬁlies to that
value. .
DDT will then form the value
(3*a+1)+3%¥b = 3*(a+b)+l
symbol, representing a relocatable word address, may thus be used to form
character addresses in string pointers. There are other examples for the
need for special relocation, but they will not be mentioned here.. Iet it
sﬁffice to say that special relocation is merely a devicé‘to make up
partially for the rgther severe reiocation cbnstraints the ﬁséembler
imposes upon programmers. |
It should bé pointedﬂ@ut tﬁat the multiplicative constant associated
with (R) in the examplé above was 3 because of the nature of‘string

pointers. This constant is called the special relocation radix. It need

not be 3 always. In fact, it may be changed to any value by the directive

'R-26

RAD. Because of the relative importance of string pointers, however,
the assembler is initialized with this value set to 3; it is hence

unnecessary to use RAD to set it to 3 unless it has been changed for

some reason.

R-26
5-1

5.0 Literals

Programmers frequently write such things as

IDA FIVE
where FIVE ié the name of a cell conﬁaining the constant 5. The programmer
must remember to include the datum FIVE in his program somewhere. This can
be avoided by the use of a literal.
LDA =5

will p:oduce automatically a location containing the correct constant in the
program. Spch a construcF is called a literal.

Literals are of the form

=expression

When encountering a‘literal, the assembler first evaluates the exﬁression and
léoks up its value in a table of literals constructed for each subprogram.
If it is not found in the table, the value is placed there. In any case the
literal itself if replaced by the location of its value in the.literal table.
At the end of assembly the literal table is placed after the sub-program.

The following are examples of literals:

210 =4B6 =ABC*20-DEF/12 ='HELP'-

=2=AB (This is a conditional literal. TIts value will be 1 or O
depending on whether 2=AB at assembly time.)

Some programmers tend to forget that the literal table follows the
subprogram. This could be harmful if the program ended with the declaration
of a large array using the statement

ARRAY BSS 1
It is not strictly correct tq do this, but some programmers attempt it anyway
on the theory that all they want to do is to name the first cell of the array.
The above statement wil} do that, of course, but only one cell will be resérved

for the array. If any literals were used in the subprogram, they would be

R-26

placed in the foilowing cells which now fall into the array. This is, of
course, an error. Other than the above exception, the programmer need not

concern himself with the locations of the literal wvalues.

6.0 Directives

There is a large number of directives associated with this assembler.

Although many of the directives are similar, each in general has its own

syntax. A concise summary is given below:

Class

Data Generation:

Value Declaration:

Assembler Control:

Output & Listing
Control:

Macro Generation
& Conditional
Assembly:

Directive Use/Function

COPY ~Facilitates use of RCH command
DATA Generation of data

TEXT Generation of text

ASC * Generation of text

EQU Setting or changing symbol values
EXT Defining external symbols
NARG See

NCHR - See . \

OFD Defining new op codes

POPD Defining pon codes

BES Block ending symbol

BSS Block starting symbol

ORG : Origin: absolute assembly

END End of program

DEC Interpret integers as decimal
oCcT Interpret integers as octal
RAD Set special relocation radix
FRGT . Forget name of symbol

IDENT Identify name of program .
" DELSYM Do not transmit symbols to loader
RELORG See ‘6.21 ‘

RETREL : See 6.22

FREEZE Preserve symbols and macros
NOEXT Do not create external symbols
LIST Set listing flags

NOLIST Reset listing flags

PAGE Skip to new page on listing
REM Type out remarks in pass 2
MACRO Head of macro body -

ENDM ' - End of macro body

RPT Begin repeat body

CRPT Begin conditional repeat body
ENDR End repeat body

IF ' Begin if body

ELSF Alternative if body

ELSE- Alternative if body

ENDF End of if body

6.1 COPY Generalized Register Change Command

[($]1abel] copPY 515551835+ [comment]

where s. are symbols from a special
set assdciated with the COPY directive

The COPY directive produces an RCH instruction. It takes in its operand
field a series of special symbols, each standing for a bit in the address
field of the instruction. The bits selected by a given choice of symbols
vare merged together to form the address. For example, instead of using
the instruction CAB (O4600004), one could write COPY AB.. The special
symbol AB has the value 0000000L.

The advantage of the directive is that unusual combinations of bits
in the address field -; thoée for which there exist normally no operation
codes -- may be created quite naturally. The special symbols are mnemonics
for the functions of the various bits. Moreover, these symbols have this
special meaning only when used with this directive; there is no restriction
on their use either as symbols or op codes elsewhere in a program. The

symbols are:

Symbol Bit Function
A 23 Clear A
B 22 Clear B
AB 21 Copy (A) - B
BA 20 Copy (B) - A
BX 19 Copy (B) »X
XB 18 Copy (X) - B
E 17 Bits 15-23 (exponent part) only
XA 16 Copy (X) - A
AX 15 Copy (A) - X
N 14 Copy -(A) — A (negate A)
X 2 Clear X

To exchange the contents of the B and X registers, negate A, and only
for bits 15-23 of all registers, one would write

COPY BX,XB,N,E

R-26
6-3

Of course, the symbols may be written in any order.
Clever programmers please note: This direétive facilitates nicely
some special RCH functions which hight not otherwise be attempted (it
is usually too much trouble).. For example,
COPY AX,BX
has the effect of loading into X the 1ogical'OR (merging) of the A and B
regiéters. Interested readers are referred to the SDS 9h6 manual for more

details of the RCH instruction.

6.2 DATA Generate Data

[[$]1abel] DATA el,e24e3,... [comment)
The DATA directive is used to produce data in programs. Each expression
in the opeiand field is evaluated and the 24-bit values assigngd to
increasing memory locations. 'One or more expressions may be present.
fhe l&bei is assigned to the location of the first expression. The effect
of this directive is to create a list of data, the first word of which may
be labeled.

Since the expressions are not restricted in any way, any type of

'

data can be created with this directive. For example:

DATA 100,-217B, START, AB*2/DEF, 'NUTS',5

6.3 TEXT Generate Text

[[$]11label] TEXT ‘'text' [comment]-
or, , ' .

[[$]1abel] TEXT expression,text f comment] |
The TEXT directive is used to create a stfing of 65bit trimmedvASCII
characters, packed four to a wérd and assigned to increésing ﬁemdry
locétions.' Therfirst word of the string may be 1abe1éd. The string to be

packed may be delineated either by enclosing it ih quotes (as in the first

R-26
6-4

case above) or by preceding it with a word count (as in the second case).
The second form of the directive must be used, of course, if»the string
contains one or more quotes. A potential hazard arising here shoﬁld be
pointed out. If a staotement contains a single quote (or any odd numbér
of them), it will not terminate with a semi-colén; a carriage return must
be used.

TEXT 4, THIS WON'T.WQRK; TEXT L4,DISASTER AHEAD
In the line above the_semi-colon will be part of the text,vand the second
- statement will be.interpreted as being in the comment field,

TEXT U4,THIS WILL '
TEXT 1,A-OK
In the first form of the directive, characters in the last word are
left-justified and remaining positions filled in by blanks (octal 00).

In the second form, sufficient characters are pucked to satisfy the word

count.

6.4 ASC Generate Text with Three Characters per Word

This directive is identical in form and use to TEXT, except that

8-bit characters are packed three per word. The 940 string processing

system normally deals with such text.

6.5 EQU Equals
[$]symbol EQU expression [comment]

The EQU directive causes the symbol in its label.field to be defined
and/or given the value of the expression. The expression must have a
value when EQU is first encoﬁntered; i.e., symbols present in it must have
been previously defined. It is permissible to redefine by EQU‘any symbol
previoﬁsly defined by EQU (or NARG or ﬁCHR, cf. below). This ability is

particularly useful in macros and conditional assembly.

R-26

6.6 EXT Define External Symbol

There are four ways which may be used to define external symbols.
(a) $1abel opcode or directive operand, etc.
The $ preceding the label causes the symbol in the label field
to be defined externally at the same time it is defined locally.
(b) symbol EXT (comment not permitted)
The symbol given in the label field is defined externally.
This symbol must have been defined previously in the program.
The operand and comment fields must be absent.
Both of the above forms have the same effect; the name and value of a local
symbbl is given to fhe loader for externalvpurposes.

Occasionally it is desirable to define an external symbol whose name
is different from that of a local symbol; or an external symbol may be
defined in terms of an expression involving local symbols. There are
two ways of doing this.

(c) $symbol EQU expression [comment]

(d) symbol EXT expression [comment]

In (c) above the symbol is defined both locally and externally at the same
time. (d) differs subtly in that the symbol in the label field is defined
only externally; its name and Qalue are completely unknown to the local
program.

The feature (d) above is particularly useful in situations where two or
more subprograms loaded together have name.conflicté. Fof example, suppose
programs A and B both make use of the symbol START, aﬁd A not only refers
to its own START but B's as well. The latter references can be changed to
BEGIN. Then into program B can be inserted the line

BEGIN EXT START

No other changes need be made either to A or B.

Occasionally, after having written a program, one would like to make
a list of local symbols to be externally defined. A built-in macro ENTRY
serves this function. That it is a built-in macro is irrelevant; the
programmer may think of it as a related directive. Thus
ENTRY A,B,C,D,...

is precisely equivalent to

A EXT
B EXT
C EXT
D EXT

6.7 NAﬁG Equate Symbol to Numﬁer of Arguments in Macro Call

[$]symBol NARG [comment] |
This directive may be used only in macro definitions. It is mentioned
here only for completeness. It operates exactly as EQU except that in
place of an expression in the operand field, the value of the symbol is
set to the number of arguments used in calling the macro currently being

expanded. Cf. 7.9 below.

6.8 NCHR Equate Symbol to the Number of Characters in Operand

[$]symbol NCHR operand [comment]
This directive is intended for use mostly in macro definitions, but it
may be used elsewhere. It operates exactly as EQU except fhat in place
of an expression in the operand field, the value ofrthe symbol is set to
" the number of characters included in the operand field. A further

explanation of the utility of this directi&e is deferred to section 7.

R-26
6-6

6.9 OPD Operation Code Definition

The OPD directive gives the programmer the facility to add to the
existing table of operation codes kept in the assembler new codes or to
change tﬁe equivalences of current ones. The form of OPﬁ is:

opcode OPD expression,class[,ar[,typel,sb]]] [comment]

where: 1) class must be 1 or 2 (cf. Section 3.1).
2) ar (address required) may be O or 1
3) type may be O or 1 (cf. Section 3.1).
4) sb (sign bit) may be O or 1
Quantities governed by the optional ﬁerms above (2,3 and L) are set to
zero if the terms afe missing. As examples of how the directive is used,
some standard machine instructions are defined as follows:

CILA OPD 0L600001B, 2

ILDA . OPD 7685,1,1

RCY OFD 662B4,1,1,1 (TYPE 1 = SHIFT)

A hypothetical SYSPOP LLA might be defined by

LLA OPD 11085,1,1,0,1
(élass 1, address required, type O, sign bit set).

In operation, the assembler simply adds new op codes defined by OFD
to its opcode table. This fable is always searched backward, so the new
codes are seen first. At the beginning of the second pass the original
table boundary is reset; thus if an opcode is redefined sqmewhere during

assembly, it is treated identiéally in both passes.

6.10 POPD Programmed Operator Definition
In programs containing POPs it is desirable to provide the POPD
directive. This directive works exactly like OPD and is used in the same

way. Its essentiai difference from OFD is that it places aﬁtomatically

R-26
6-8

in the POP transfer vector (1008 - 1778) a branch instruction to the body
of the POP routine.

In order to do this the assembler must know two things:

(1) the location for the branch instruction in the transfer vector and

(2) the location of the POP routine (i.e. the address of the branch

instruction). |
Ttem (1) is given by the POP code itself. Item (2) is provided by the
convention that the POPD must immediately precede the body of the POP
routinef The.address of the brénch instructién placed in the transfer
vector is the current ?alue of the location counter.

If the automatic insertion of a word in the POP transfer vector is
not desired, then OPD should be used instead. An example of this case
would occur in a subprogram containing a POP whose routine is found in
another subprogram.

6.11 BES Block Ending Symbol

[[$]1abel]r BES expression [comment]
The use of BES reserves a block of storage for which the first location
after the block may be labeled (i.e. if the label is giﬁén). The block
size is determined by the value of the expression; it must therefore be
absolute, and it must have a value when BES is first encountered, (s&mbols
present must have been previousl& defined). BES is most useful for
labeling a block which is to be referred to by indexing using the BRS
instruction (where the contents of X are usually negative). For example,
to add together the contents of an array one might write:

IpX =-100 ARRAY HAS 100 ENTRIES

CLA :
LOOP ADD ARRAY,2 NEGATIVE INDEXING HERE
BRX *-1
STA RESULT
HLT

ARRAY BES 100

R-26
6-9

6.12 BSS Block .Starting Symbol

[[$]1abel] BSS expression [comment]
The use of BSS reserves a block of storage for which the first word may
be labeléd (if the label is given). The block.sizé is determined by the
value of the expression; it must therefore be absolpte, and it must have
a value when BSS is first encountered. :The difference between BSS and BES
is that in the case of BSS the first word of the block is labeled, whereas

for BES the first word after the block is labeled by the associated symbol.

BSS is most useful for labeling a block which is referred to by p031t1ve

1ndex1ng (cf '6.11 above).

6.13 ORG Program Origin

ORG expression { comments]
The use of ORG forces an absolute assembly. The location counter is
initialized to the value of the expression. The expression must therefore
be absolute, and it must have a value when ORG is first encountered.
An ORG must precede'thé first instruction or data item in an absolute
program, although it does not necessarily have to be the first statement.
The outbut of thé assembler will ﬁave a bootstrap loader at the front
which is capablé of loading the program after initiation by the 94O

FILL switch.

6.14 END End of Assembly

END [expre581on]
The END dlrectlve termlnates the assembly. For‘relocatable assemblies,
no expression is used. TFor absolute assemblies the expréssion gives the
startiﬁg location for the program. When assembling in absolute mode,
the'éssembler pfqduces a paﬁer tape which can be read into the macﬁine
with the FILL swifch, i. e., out of the time~sharihg mode.i If the

expression is not included with the END directive, the bootstrap loader

R-26
6-10

on this paper tape will hzlt after the tape has read in. Otherwise, control

will automatically transfer to the location designated in the expression.

~6.15 DEC Interoret Integers as Decimal
DEC [comments] A
Integers terminated with B or D are always interpreted respectivel& as
being octzl or decimal. On the other hand, integers not terminated with
these letters.may be interpreted either as decimal or octal depending on
the setting of a switch inside the assembler. The mode controlled by thls
switch is set to decimal by the above dlrectlve
When the assembler is started this mode is initialized to decimal;
Thus, the DEC directive is not really necessary unless the mode has been

changed to octal and it is desired to return it to decimal.

6.16 OCT Interpret Integers as Octal

oCT [comments]
As noted in 6.15 above, this directive sets a mode within the assemblei
to interpfet unterminated integers as octal. When the assembler is-
started this mode is initialized to decimal. .Thus, the OCT directive

must be used before unterminated octal integers can be wfitten.

6.17 RAD Set Special Relocation Radix

RAD expression [comment]
As explained in 4.7 it is possible in a limited way to‘have‘multiple-
relocated symbols. This act1on 1s performed when the special relocatlon
operator (R) is used. The value of a symbol preceded by'(R) is multlplled
by a constant called the radlx of the spec1al relocation. The loader is
informed of this 31tuat10n so that 1t can multiply the base address by thls

same constant before performing the relocation. Because the spe01al

relocation was déveloped specifically to facilitate the assembly of string
pointers (cf. h.?), this constant is initialized.to 3. If it is desired
to change its value, however, the RAD directive must be used. The value
of the expression in the operand field sets the new value of the radix.

It must be absolute, and the expression must have a value when it is

first encountered.

6.18 FRGT Forget Name of Symbol

FRGT 51580835+ [comment]
where Sy are previously defined symbols
The use of FRGT prevents the symbdl(s) named in its operand field from
being listed or delivered to DDT. FRGT is especially useful in situationms,
for example, where symbols have been used in macro expansions or conditional
assemblies. Frequently such symbols have meaning only at assembly time;
they have ho connection whatever with the program being assembled. When
DDT is later used, however, memory locations sometimes are printed out
in terms of these méaningless symbols. It is desirable to be able £o :

keep these symbolé from being delivered to DDT.

6.19 TIDENT Program Identification

symbol IDENT [comment]

IDENT causes the symbol found in its label field to be delivered to DDT
as a special identification record. DDT uses the IDENT name in conjunction
with its treatment of local symbols:_in the‘eQent of a naﬁe conflict
between local symbols in two different subprograms, DDT resolves the
ambiguit& by allowing the user to concateﬁate the preceding IDENT name
to the symbél in-Question;. |

IDENT statements are otherwise useful for editing purposes. They

are always listed on pass 2, usually on the teletype.

R-26
6-12

6.20 DELSYM Delete Output of Symbol Table and Defined Op-codes

DELSYM [comment]
DELSYM inhibits the symbol table and opcodes defined in the course of
assembly from being output for later ﬁse ﬁy.DDT. Tts main purpose is to
shorten the object code output from the assembler. This might be
especially desirable for an absolute gssembly which produces a paper tape

which is to be filled into the machine.

6.21 RELORG Assemble Relative with Absolute Origin

RELORG expression [comment]
On occasion it is desirable to assemble in the midst of otherwise normal
program a batch of code which, although loaded into core in some position,

is destined to run from another position in memory. (Tt will first

have to be moved there in a block.) This is particularly useful when
preparing program overlays.

RELORG, like ORG, takes an absolute expression deﬁoting some origin

in memory. It ha;_the following effects:

(2) The current value of the iocation counter is saved, i.e._the
value of the expression %nd in its place is put the absolute
origin. This fac£ is noﬁrrevealed‘to DDT, however; during
loading the next instruction assembled will be placed in tﬁe
next memory cell available as if nothing had happened. |

(b) The mode of assembly is switched to absolute without changing
the objeéﬁ codé formaﬁ; it still looks like relocatable binary
program to DDT. Ail symbols defined iﬁ terms of the location
counter will be absolute. Rules'for computing the relocation
value of expressions are those for absolute assemblies.

It is possible to restore normal relocatable assembly (cf. 6.22, RETREL).

Some examples of the use of RELdRG follow:

(1) A program begins with RELORG 300B and ends with END. The
assembler's output represents an absolute program whose origin is 003008
but which can be loaded anywhere using DDT in the usual fashion. (Tt
is, of course, necessary to move the program to location 003008 before
executing it.)

(2) A program starts and continues normally as a relocatable program.
Theﬁ theré is a series of REIORGs and some RETRELs. The effect is as

shown below:

;} Normal relocatable program.
RELORG '
—_— ;} Absolute program origined to 100
RELORG

;} Absolute program origined to 200
RETREL

;%. Normal relocatable program
RELORG

Absolute program origined to 300

END

6.22 RETREL Return to Relocatable Assembly

RETREL [qomment]
This directive is used when it is desired to return to relocatable assembly
after having done a RELORG. It is not necessary to use RETREL unless one

desires more relocétable program. The use of RETREL is shown in 6.21.

R-26
6-1k4
The effects of RETREL are
(s) to restore the Iocation counter to what it would have been
had the RELORG(s) never been used, and

(b) to return the acsembly to relocatable ﬁode.

6.23 TFREEZE Preserve Symbols, Op-codes, and Macros

FREEZE [comment]

It is sometimes true when zssembling various sub-prégrams that they share
definitions of symbols, op-codes, and macros. It is possible to cause the
assembler to take note of the current contents.of its symbol aﬁd opcode
tables and the currently defined macros and include them in future
assemblies, elimihating the need for including copies of this information
in every subprogrém's source language. This greatly facilitates the
editing of this information. |

When the FREEZE directive is used, the curreﬁt table boundaries for
symbols and opcodes and the storage area for macros is noted and saved away
for later use. These tables may then continue to expand during the current
assembly. (A separate sub-program may be used to make these definitions.
It will then end with FREEZE; END.) The next assembly may then be started
with the table boundaries returned to what they were when FREEZE was last
executed. This is done by entering the assembier at its continue entry
point, i.e. one types

(@ CONTINUE ARPAS.

Note that when the assembler has been pre-loaded with symbols, opcodés
and macros, it cannoﬁ be released (i.e. one cannot use.another‘sub—system

like DDT, QED, etc.) without the loss of this information.

R-26
6-15

6.24 NOEXT Do Not Create External Symbols

Because of its subprogram capability, the assembler assumes auto-
matically that symbols which are not defined in a given program are external
and will be defined in another subprogram. It does not therefore list out
the use of such symbols as errors.

If a program is in fact a free-standing program, i.e. if it is
supposed to be complete, thgn clearly symbols which are ndt defined are’
errors and should be so noted in assembly. The NOEXT directive‘simply
prEVénts external symbols from being established; thus undefined symbols
are noted as errors. ‘The directive must be used at the beginning of a
program before instructions or data have been assembled. TIts use affects
the entire program. Its form is

NOEXT [comment]

6.25 LIST Turn Specified Listing Controls On

6.26 NOLIST Turn Specified Listing Controls Off

Mpst_assemblers provide'a means of listing a program during asSembly,
i.e. printing out such items as the location counter, binary code being
assembled, source program statement, etc. The aSsociation of these items
on one page is frequently of great ﬁelp to programmers. Two directives,
LIST and NOLIST, control this process. Their form is as follows:

LIST s .s_.s
NOLIST 122ty

[comment]
where the s; are from a set of special symbols ha#ing
meaning only when used with these directives.
There are many listing options for this assembler. A list of special

mnemonic symbols used in conjunction with these two directives is given

below. The symbols have special meaning only when used with LIST and

R-26

6-16
NOLIST.‘ They may be used at any other time for any particular purpose.
| The special symbols are:
Symbol Meaning
1 Listing during pass 1. Listing format will be
controlled by other parameters.
2 Listing during pass 2. Listing format will be
controlled by other parameters.
ICT Listing of location counter value (see below)
BIN Listing of binary objecﬁ_code or values (see below)
SRC Listing of source language (see below)
COM - Listing of comments (see below)
MC ' Listing of macro calls (see below)
ME Listing of certain directives during macro

‘expansions (EQU, NCHR, NARG, RPT, CRPT, ENDR, IF,
ELSF, ELSE, ENDF, ENDM).

EXT Listing of external symbols at end of assembly
NUL Listing of null & duplicate symbols at end of
assembly.

As an example of the meanings of various symbols above, consider the line
of code A2l STB OUTCHR SAVE POINTER.

It might list as

{ngj} 0 36 00217 A21 STB OUTCHR (SAVE POINTER

_.__\(,‘_J ~— __,\,.___,/
BIN coM

ICT SRC

It is not necessary to include each symbol possible, but rather only those
parameters for which changes are desired. It is, in fact, not necessary
to give any symbols.

LIST is equivalent to LIST 2

When the assembler is started, it initializes itself in the following
ways’
LIST LCT, BIN, SRC, COM, MC, EXT, NUL
NOLIST 1,2,ME,SYT
The actual format of the assembly listing is controlled by the current
combination of parameter values. The parametérs are independent items
except for the parameters MC and ME. " In this case it is more reasonable -

to think of their combination. Thus:

MC ME Effect
0 0 List outer level macro calls only
1 0 List all macro calls and code generated, but

suppress listing of certain directives (see ME

in table above).

0 1 List no macro calls, but rather all code generated

except for certain directives.

1 1 List everything involved in macro expansions.

Regardless of £he list control parameters which have been given to
the assembler, it can be made to begin listing at any time in either pass
simply by typing a single rubout (typing a second rubout in succession will
abort the assembly). Lisﬁing having been started in this manner can be
stopped by typing the letter S.

6.27 PAGE Begin New Page on Assembly Listing

PAGE [comment]
This diréctive causes a page eject on the assembly listing medium
unless a page ejeét has just beeﬁ given. It is used to improve the
appearance>of the assembly listing.

6.28 REM Type Out Remarks in Pass 2

REM remark to be typed

This directive, when encountered in pass 2, causes the contents of

R-26
6-18
its operand.and commen£s fields to be typed out either on the Teletype
or whateverAfile has been designated és the oufput message device. This
typeout occurs regardless qf whet listing modes are set. The directive
may be used for a variety of purposes. It may inform the user of the
progress of assembly. It may give him instrucﬁions on what to do next
(this might be especially nice for Eomplicated assemblies). It might
announce the last date ﬁhe»soﬁrce languagé was updated. Or, it might be
used within complex macros to show which argument substrings have been
created during expansion of a highly nested macro (this for debugging

purposes).

R-26

7.0 Macros and Conditional Assembly

Assemblers with good macro and conditional assembly capability can have
surprising power. This assembler features such capability. In this section
the facilities for dealing with macros and conditional assembly will be
discussed. Many examples will be given.

7.1 Introduction to Macros

On the simplest level a2 macro name may be thought of as an abbreviation
or shorthand notation for one or more assembly language stateménts. In
this respect it is like an opcode. The opcode is the name of a binary
machine command, and the macro name is the ﬁame of a sequence of assembly
language statements.

EXAMPLE 7-1.

The 940 has an instruction for skipping if the contents of a specified
location are negative, but none for testing the accumulator. SKA (skip
if mémory and accumulator do not compare ones) will serve when used with
a cell whose contents mask all but the sign bpit. The meaning of SKA used
in this way is "skip if A positive." Thus a programer will write

SKA =L4B7
BRU NEGCAS NEGATIVE CASE

Programs, however, are more than likely to have a logical need for
skipping if the accumulator is negative. 1In these situations the programmer

must write

SKA =UBT7
BRU #+2

BRU POSCAS POSITIVE CASE

Both of these situations are awkward in terms of assembly-language

programming.

R-26

But we have, in effect, just developed simple conventions for doing
the operations SKAP and SKAN (skip if accumulator positive or negative).
Let these operations be defined as maéros.

SKAP MACRO
SKA =4B7
ENDM
SKAN MACRO
SKA =4B7
BRU *+42
ENDM
Now -- more in keeping with the operations the programmer has in mind --
he may write

A22 SKAN
BRU POSCAS

The advantages of being able to use SKAP or SKAN should be apparent.

The amount of code written in the course of a program is reduced. This

in itself tends to reduce errors. A greater advantage is that SKAP and
SKAN are more indicative of the action that the érogrammer has in mind.
Programs written in this way tend to be easier to read. Note, incidentally,
as shown above that a label may be used in conjunction with a macro. Labels
used in this way are usually treated like labels on instructions; they are
assigned the current value of the location counter. This will be discussed
in more detail later.

7.2 Macro Definition

Before discussing more complicated use of macros, some additional
vocabulary should be established. A macro is an arbitrary sequence of

assembly-language statements together with a symbolic name. During

assembly it is held in an area of memory called text storage. Macros
may be created or defined. To do this one must give (l) a name and

(2) the sequence of statements comprising the macro. The name and the

beginning of the sequence of statements in a macro are designated by
the use of the MACRO directive (see ex. 7-1 above).

name MACRO

.
.

-

ENDM
The end of the sequence of statements in a maéro is signalled by the
ENDM directive.
The reader should now refer to Figure 1. When the assembler en-
counters a macro definition (i.e., when it sees a MACRO directive), switch
B is thrown to position 1. The prbgrammer's source language is merely

copied into text storage; note in particular that the assembler does not

do any processing during the definition of a macro. Switch B is put back
to position O when EﬁDM is encountered.

It is possible that within a macro definition other definitions may
be imbedded. The macro defining machinery counts the occurrences of the
MACRO directive and matches them against the occurrences of ENDM. éwitch
B is placed back in position O actually only when the ENDM matching the |
last MACRO is seen. Thus MACRO and ENDM constitﬁte opening and closing
brackets around a segment of source language. Structures like the

following are possible:

SOURCE
LANGUAGE

Binary Machine

Language >
ASSEMBLER
N
. SYMBOLIC
0 ~ ASSEMBLY
A LANGUAGE
B ‘.
S S
AP
l .
- , TEXT
- s STORAGE
A B Effect
0 0 normal assembly
0 1 macro definition
1 o macro éxpansion
1 1

macro definition during macro expansion

(to be explained in more detail later).

Figure 1: Information Flow During Macro Processing

R-26
7-k4

R-26
7-5

namel MACRO =

name2 MACRO ~

name3 MACRO —
aon

namel4 MACRO 7
E@DM .
ENDM _

name5 MACRO 7

ENDM -

ENDM .
The utility of this structure will not be discussed here. Use of this
feature of imbedded definitions should in fact be kept to a minimum since
the implementation of this assembler is such that it uses large amounts
of text storage in this case. What is important, however, is an under-
standing of when the various macros are defined. In particular, when .
namel is being defined, name2,3, etc. will not be defined; they are
merely copied unchanged into text storage. Name2 will not be defined
until namel is used*.

7.3 Macro Expansion

The use of a macro name in the opcode field of a statement is referred
to as a call. The assembler, upon recognizing a macro éall, moves switch A
to position 1 (again see Figure 1). Input to the assembler from the
original source language ceases temporarily and comes instead from.text

storage. During this period the macro is said to be undergoing expansion.

¥ Tt should be noted that macros -- like opcodes -- may be redefined.

R-26

It i8 clear that a macro must first be défined before it is called.

An expanding macro may include other macro calls; and these, in
turn, may call still others. 1In fact, macros may even call themselves
(when this makes sense). This is called recursion. Examples of the
recursive use of macros are given later. When within a macro expansion
a new macro expansion begins, information about tﬁe progress of the current
expension is put away. Successive macro calls cause similar information
to be saved. At the end of each expansion the.information about each
previous expansion is restored in inverse fashion. When the final
expansion terminates, switch A is placed back in position 0. Input then
resumes from the source language program.

7.4 Macro Arguments

Now let us carry example 7-1 one step further. One might argué that
the action of skipping is itself awkward. It might be preferable to write
macros BRAP and BRAN (branch to specified location if contents of accunulator
are positive or negative). How is one to do this? The location to which
the branch should go is nbt known when the macro is defined; in fact,
different locations will be used from call tp call. The ﬁécro processor,
therefore, must enable the programmer to provide some of the information
for the macro expansion at call time. This is done by permitting dummy
argygents in macro definitions to be replaced by arguments (i.e., arbitrary

substrings) supplied at call time. Each dummy argument is referred to in

the macro definition by a subscripted symbol. This symbol or dummy name

is given in the operand field of the MACRO directive.

EXAMPLE 7-2

Let us define the macro BRAP.
BRAP MACRO DUM
SKAN
BRU DuM(1)
ENDM
When called by the statement BRAP POSCAS
the macro will expand to give the statements
SKA =By
BRU *42
BRU POSCAS
Note that BRAP was defined in terms of another macro SKAN (a matter

of choice in this example). Also note that as defined, BRAP was intended

to take only one argument. Other macros may use more than one argument.

EXAMPIE 7-3

The macro CBE.(compare and branch if equal) takes two arguments.

R-26
7-7

The first argument is the location of a cell to be compared for equality

with the accumulator; the second is a branch location in case of equality.

The definition is

CBE MACRO D

Sk D(1)
BRU =~ *42
BRU p(2)
ENDM

When called by the statement
CBE =21B,EQLOC
the statements generated will be
SKE =21B

BRU *+42
BRU EQLOC

R-26

Note that arguments furnished at call time are separated by commas.
It is possible to include both commas and spaces in arguments by enclosing
the arguménts in paréntheses; the macro processor strips off the outermost
parentheses of any substring used in a call. For example in the call of
the macro MUMBLE
MUMBLE A, (B,C),(D E)

we have

U\?‘J>
Q

W

7.5 The Use of Dummy Arguments in Macro Definitions

Before giving further examples of the use of macros, the various -
ways that dummy arguments may be used in macro definitions will be
discussed. In general a dumy may be referred to by the symbolism

dummy(expression)
The only restriction on the expression above is that it must not contain
~other dummies or generated symbols (see 7.7). Furthermore, for obvious
reasons it must have a known value when the macro is called*.

More than one dummy may be referred to by the notation

dummy (expression,expression)
In the case of the call
MUMBLE .A,B,C,D,E
then
D(3,5)= C,D,E
But it is possible to have confusion in this situation. If we have the call

MUMBLE A,B,C, (D,E),F

%It should be noted that a macro call may deliver more arguments than are referred
to in its definition, but the converse is not true. A dummy argument not supplied
with an argument at call time is considered an error.

R-26
7-9

then
DWM(3,5)= C,D,E,F
But which are DUM(3), DUM(4), and DUM(5)? To resolve this ambiguity, the
assembler produces in place of DUM(3,5) the string
(¢),(n,E), (F)
The notation
dunmy ()
produces all of ﬁhe arguments supplied in a macro call. Each is surrounded
by parentheses as in the example above.

The symbolism

dummy (0)
is legal and meaningful. Tt refers to the label field of the macro call.
Normally a label used with a macro call is assigned the current value of
the location counter (as with any instruction). Explicit use of dummy(0),
i.e., literal zero in parentheses, causes the label field not to be
handled in the normal way. It serves merely to transmit another argument.
There are three possible cases. .

(1) Macro contains no references to dummy(b). Label field is
treated normally.

(2) Macro contains at least one reference to dummy(0). ILabel field
merely transmits an argument which replaces dummy(O) in the
expansion. |

(3) 'Macro contains no references to dummy(0) explicitly but does
contaiﬁ dummy(expressipn) where, at call time, the value of the
expression is zero. 1In this case the labél field is handled as
in case (1) and also used to transmit the argument referred to by

dumy (expression) as in case (2).

The symbolism
dummy (-1)
is used to represent the terminal chafacter of the opcode field, i. e., to
determine whether the macro name terminated with a blank or a * (in case
of indirect address). Tt allows macros to be called with or without

"indirect addressing" specified. Thus in a typical call we have the

following relationships:

M17, CALIX* | ABC,DEF, 'GHI', JKL
T»-' T V N &_v_/
. /h
dunmy (0) dummy (L) a;;i;fii\ durmy (3, 4)
dummy()) ;

Note that dummy(-1) is always one character long.

Sometimes in a macro definition it is desirable to refer only to a
portion of an argument, perhaps to a character or a few characters. In the
case of a single character this may be done by writing

dummy(e#pression$expression)
The first expression designates Vhich argument; the second determines
which character of that argument. If a substring of an argument is
desired, one writes

dummy (expression$expression,expression)
The second and third expressions determine thegfirst and last characters
of the substring. For example, if we have the call

MUMﬁLE A,BCDE, 'FGHIJ'
then »

DUM(2 $3) = D

DUM(3 $4,7) = HIJ'

R-26
7-11
Beginning with the ith character the latter part of an argument can be
obtained by specifying aﬁ overlarge terminal bound. Thus
- DUM(2$4,1000) = HIJ!

7.6 Concatenation

It is frequently useful to compose statements out of macro arguments
(or parts of them) and other information given in the macro definition.

This is done by concatenating the various objects together, i.e. simply

writing them next to each other. It is possible to confuse the assembler
when doing this, however. For example, let the dumﬁy name in a definition
be C, and suppose we wish to concatenate the strings AB and c(3). If we
write ABC(3), then do we mean AB concatenated with C(3), A concatenated
with BC(3) (whatever that is), ABC(3), or what?

To avoid ambiguity we use the character "." (dot or period) as a
concaﬁenation delimiter. For.the example just above we would write
AB.C(3), and no ambiguity then exists. The assembler uses the dot to
delineate objects it must deal with; in producing output the macro expgnsion
machinery.after having recognized the various objects simply skips over

the dots. The dot character cannot therefore be used literally in a macro

definition.

EXAMPLE 7-U
Iet us define a macro STORE. Suppose we have established the
convention that certain temporary storage cells begin with the letters
A,B,'or X, depending on from what 940 register information is to’be stored
there. The definition is
STORE MACRO D

ST.D(1$1).p(-1) (1)

ENDM :
If called by the statements

STORE B17
STORE* XLl

the macro will expand as
STB Bl7 or STX* | x&h
The dot is not actually needed in evefy incidence of concatenatiqn.
Some programmers may readily determine for themselves when it is aétually
needed. As a matter of good practice, however, when in doubt, use it!

T.7 Generated Symbols

A macro should not, of course, have in its definition an instruction
having a label. Successive'ca;ls of the macro would produce a multiply
defined symbol. Sometimes, however, it is convenient to put a label on
an instruction within a macro. There are at least two ways of doing this.
The first involves transmitting the label as a macfo argument when it is
called. This is most reasonable in many éases; it is in fact often
desirable so that the Programmer can control the label being defined .
and can refer to it elsewhere in the program.

However, situations do arise in which the label is used purely for
reasons local to the macro and will not be referred to elsewhere. In
cases like this it is desirable to allow for the automatig creation of
labels so that the programmer is freea from worrying about this task.

This may be done by means of the generated symbol.

A generated symbol name may be declared when a macro is defined. To

do this requires two things; (1) the name and (2) the maximum number of
generated symbols which will be encountered during an expansion. . -These
two items may follow the dummy symbol name given in the MACRO directive.
The actual format used is

name MACRO dummyname,generatedname,expression
For example, we might have

MUMBLE MACRO D,G,4

ENDM

In the definition of this macro there might be references to
(1), ¢(2), 6(3), and c(4), these being individual generated symbols.

With regard to generated symbols the macro expansion machinery
operates in the following fashion. A generated symbol Eggg.zglgg'for each
macro is initialized to zero at the beginning of assembly. As each
generated symbol is encountered, the expression constituting its subscript
is evaluated. This value is added to the base value, and the sum is pro-
duced as a string of digits concatenated to the generated symbol name.
Enough digits are produced to make the resultant symbol six characters
long. Thus, the first time MUMBIE is called, for example, G(2) will be
transformed into G00002, G(4) into GOOOOM, etec.

At the end of a macro expansion, the generated symbol base value is
incremented by the amount designated by the expression following the
generated.symbol name in the MACRO directive. (This-was 4 in the
definition of MUMBLE above.) Thus the second call of MUMBLE will produce
in place of G(2), (.;00006,‘ the third call will produce GO001l0, etc. It
should be clear that a generated symbol name should be kept as short as
possible. It cannot be longer than 5 characters:

7.8 Conversion of a Value to a Digit String

As an adjunct to the automatic generation of symbols or for any other
purposes for which it may be suitable a capability is provided in the
assembler's macro expansion machinery for conﬁersioﬁ of the value of an
expression at call time to a string of decimal digits. The construct

($expression)

will be replaced by a string of digits equal in value to the ekpression..

R-26
7-14

For example, let X = 5. Then
AB. ($2%x-1)
 will be transformed into
AB9
Further examples of the use of this facility appear below.

7.9 The NARG and NCHR Directives

Macroé can be more useful if the number of arguments supplied at
call time is not fixed. The precise meaning of a macro (and indeed, the
results of its expansion) may depend on the number or the arrangement of
its arguments. In order'to permit this the macro undergoing expansion must
be able to determine at call time the number of arguments supplied. The
NARG directive makes this possible.

NARG functions basically like EQU, except that no expression is used
with it. Its basic form is

symbol NARG [comment]
The function of the directive is to equate the wvalue df the symbol to the
number of arguménts supplied to the macro currently undergoing expension.
The symbol can then be used by itself or in expressions'fér any required
purpose. Ekamples of the use of NARG appear later. o -

It is also useful to be able to determine at call time the number of
characters in an argument. NCHR functions by equating the symbol in its
label field to the number of characters in its operand field. Its form is

symbol NCHR characterstring [comment]
The notion of "operand field" must be elaborated on here. The operand field
normally terminates on the first blank after thevbeginning of the field.

This rule is rescinded if a macro argument containing blanks appears in

the operand field. For example, in the statement

XYZ IDA VECTOR,2 THIS IS A COMMENT
? 1

R-26
7-15

the arrows delineate the operand field. Alternatively, if a statement like
TEXT X,D(1).ERROR

is placed in a macro definition and the ﬁacro is called by
MUMBLE (NON-FATAL)

then the above statement will turn out to be

TEXT X,NON-FATAL ERROR
t t

Notice how the operand field terminates in this case.

In the'séme4éxamp1e notice that the message produced by the text
directive is of unspecified length at definition time. Clearly, X must
depend on the number of characters in D(1). Accordingly, MUMBLE might be

defined as

EXAMPLE 7-5
MUMBLE MACRO D
X NCHR D(1) ,
X EQU X+9 5 FOR 'ERROR',4 TO ROUND UP
- TEXT X/4,D(1).ERROR
ENDM

7.10 Conditional Assembly

The reader should see by now that the ﬁacro is a powerful tbol.
Its power, however, is considerably multiplied when combined with the
features explained in this and the following sections. These features --
basically the if and feEeat capabilities -- are called conditional .
assembly capébilities becéuse they pefmit assembly-time célculations
to determine the source language actually assembled. They are, however,
not strictly a part of the macro.facilities énd may be ﬁsed quite apart

from macros.

R-26
7-16

7.11 The RPT Directive

The RPT (repeat)_diréctive is, like the MACRO directive, én opening
bracket for a segment of program. Its form is

(1) [1abel] RPT expression [comment]
or, using s for symbol, e for expression, and ¢ for comment

(2) [1abel] RPT (s:el,[ee,]e3) (e]

(3) [1avel] RP? | (S=el,[ez,]e3)(s=el[,e2])(s=el[,e2])... [e]
Form (1) says to repeat the following sequence of statements down to the
matching ENDR (end repeat} as many times as given by the value of the
expression. Forms (2) and (3) are really the same form; they are shown
separately to emphasize that only the first parenthesized group in the
operand field must ﬁe present. Their meaning is as follows:

(1) Set the symbol s to the value of e,.

(2) 1Issue the sequénce of statements down to the matching ENDR.

(3) Increment s by the value of e, or by one (if e, is not present).

2

If the new value of s has not passed the limit, go back

to (2). When the limit is passed, quit.

In other words, for symbol=el step e, until e3 do ...

or for symbol=el Eﬂfil e3 gg oo
The first parenthesized group (l) determines the number of times the
repeat is executed and (2);controls the initial value and increment of a
symbol. Subsequent groups (there may be up to ten of them)>merely éontrol
the initial value and increments of other symbols carried along in the

recent operation.

EXAMPLE 7-6

It is desired to create an area of storage which is cleared to zero.

The BSS directive cannot be used for this purpose since its function (that

of reserving storage) is basically to advance the assembler's location

counter. The problem is readily solved by

ABC RPT
DATA
ENDR

which is equivalent to

ABC DATA
DATA
DATA
DATA

DATA

100

0

(oNodeoNe]

0

T

100 statements

!

Note that the label is applied effectively only to the first statement.

EXAMPLE 7-7

It is desired to fill an area of storage with data starting with O
and increasing by 5 for each cell. We may write

X EQU 0

RPT 20
DATA ~ X

X EQU X5
ENDR

Alternatively (and more simply) -one can write-

RPT (x=0,5,100)

DATA X

ENDR
Note that in the latter form the terminal value (i.e., e3) does not have
to be positive or greater than the initial value of the symbol being

incremented.

" RPT (x=100,-5,20)
and RPT (X=Iv1T,-5,-30)
are both permissible.

Also note that a repeat directive followed by other statements and

an associated ENDR (referred to as a repeat block) may be imbedded in other

repeat blocks. This is similar to the imbedding of macro definitions in
other macro definitions, and repeat structures similar to that shown in

section 7.2 may be used.

EXAMPLE 7-8

It is desired to'have a.pair of mécros SAVE and RESTOR for purposes
of saving and restoring active r;gisters at the‘beginning and end of
subroutines. These macros should take a varisble number of arguments
so ;hat'one éan write, for exaﬁple,

SAVE A, SUBRS
or perhaps .
| RESTOR A,B,X, SUBRS

These calls are intended to generate the code

STA SUBRSA
and

LDA SUBRSA

LDB - SUBRSB

IDX = SUBRSX
We first define a generalized macro MOVE which is called by the same
arguments delivered fo SAVE and RESTOR plus the strings 'ST' and 'LD’
which determine whether one wishes to store or load.

MOVE MACRO D

X NARG
RPT (r=2,%-1)
p(1).p(Y) p(x).D(Y)
ENDR
ENDM

Then, in terms of MOVE, SAVE and RESTOR are readily defined as

SAVE MACRO' D

MOVE sT,D()
ENDM

RESTOR MACRO D
MOVE 1D,D()

ENDM

R-26
7-20

EXAMPLE 7-9

Many programs<make use of 21355, memory cells which are used és
binary indicators. The SKN (skip if memory negative) makes it easy to
test these flags. ILet us adopt the conventioh that a flag is set if it
contains the value -1 and reset if it contains zero. We want to develop
the macros SET and RESET to manipulate flags. Tt is further desirable
to deliver at call time the name of an active register which will be used
for the action, together with a variable-length list of flag loéations.
Calls of these macros will look like

SET A,FLG1,FLG2,FLG3
or |
RESET X,FLG37,FLGl2

As in example 7-8 we make use of an intermediate macro STORE wﬁich

' takes_the same arguments.

STORE MACRO D

X NARG
RPT (Y=2,X)
sT.p(1) Dp(Y)
ENDR ’
ENDM

Thus SET and RESET are defined as

SET MACRO D

LD.D(1) =-
STORE D()
ENDM

RESET MACRO D
cL.D(1)
STORE D()

ENDM

R-26
7-21

7.12 CRPT, Conditional Repeat

Occasionally one wishes to perform an indefinite number of repeats,
termination coming on an obscure condition determined iq the course of the
repeat operation. The conditional repeat directive, CRPT, serves this
function. Its effect is like that of RPT (and its repeat block -- like
RPT -- is closed off by a matching ENDR) except that iﬂstead of giving
a number of repeats its associated expression is evaluated each time in
a Boolean sense to determine whether the repeat should occur again. Its
form is |

[label] CRPT expression[,(s=el[,e2]),(s=el[;e2])...]
{comment]
One may wrife, for éxample,
_ CRPT x>Y
or B CRPT STOP, (X=1,2)(Y=-3)
Note that the statement
CRPT 10
will cause an infinite numbervof repeats.

The termination of a CRPT operation is governed by Qhether the value
of the exprgssion is one or greater. Zero or negative quantities are
taken to mean don't repeat (Boolezn O or fglgg). Values of one or greater
mean do repeat (Boolean 1 or true).

‘An example of the use of CRPT is shown in example 7-11.

7.13 IF Capability

It is frequently desirable to permit the assembler either to assemble
or mefely skip blocks of statements dépeﬁding on the value of an expression
at assembly time. This is primarily what is meant by the term conditional

assembly. Conditional assembly can be done (inelegantly) with CRPT.

R-26
7-22

Let the condition be given by an expression. (Once again a Boolean
value is ascribed to an expression in the manner

0 if e<0

1 if e0.)

Then one may write

EXAMPLE 7-10

c EQU condition
CRPT C
: arbitrary block of statements
C EQU 0 :

ENDR
Note that the line.before ENDR is required to prevent the CRPT from going
forever. By using the structure above, however, conditional assembly may
be done; the arbitrary block of statements enclosed in the repeat body

may be assembled on condition.

7.1+ IF, Assemble if Expression True(i.e., > 0)

The same function shown in example 7-10 is performed much more
conveniently by the IF directive. Its form is

[lebel] IF expression [comment]

ENDF
As with RPT and CRPT, the IF directive defines the beginning of a block
of statements (called the if EEQX) terminated by a matching ENDF. The
if body may contain other if bodies.
When doing conditional assembly there are often alternative if bodies
to be assembled in case a certain if body does not assemble. This situation
is most eésily dealt with by the use of the ELSF and ELSE directives.

These provide an end to the if body and also begin another body which is

to be assembled (again possibly on condition) in case the first body did

not. For example, consider the following structure:

r e,

} bodyl

ELSF e,

} body2

ELSF e
3

} body3

ELSE -

ENEF

If e, >0, body, is assembled and bodies are skipped (regardless of
I 1 2,3,l

e, and e3. |
If elgo and e2>0, body2 is assembled and bodlesl,3,,+ are skipped.

If e, and e2§_O and e3>0, body3 is assembled and bodlesl’ e are skipped.

1

Finally if e , and e <0, bodyh is assembled.

1 %2 3
An example of the use of IF (and other features) follows.

EXAMPLE 7-10

This example serves to illustrate several of the preceding featﬁres
and also the power of macros used recursively. The macro MOVE is intended
to take any number of pairs of arguments. The firét argument of each pair
is to be moved to the second. Each argument, however, may itself be a
pair of arguments, which may themselves be pairs, etc.

We first define MOVE. Basically it extracts pairs of argumenﬁ
structures and transmits such a pair to another macro MOVEL.

MOVE" MACRO D

X NARG
RPT (YE1,2,xg(z=2,2)
MOVEL D(Y),n(z
ENDR
ENDM

We now define MOVEl. It calls itself recursively until it comes up
with a single pair of arguments. Then it generates code.

MOVEL MACRO D,G,2

a(1) NARG
a(2) EQU
IF a(1)=2
1DA nélg
STA p(2)
ELSE
RPT G(1)/2
a(2) EQU g(2)+1
U EQU c(1
s EQU a(2
MOVEL D(V),D(v+u/2)
ENDR
ENDF
ENDM
Thus when called by the line
MOVE A,B
the code generated will be
. IDA A

STA B

When called by
MOVE 4,B,C,D

the code generated is‘
LDA
STA
LDA
STA

oQw >

When called by
MOVE (a,B),(c,D)

the code generated is
LDA
STA
LDA
STA

O ar

Finally when called by
MOVE ((a,B), (p,D)), ((E,F), (G,H))

the code generated is
LDA
STA
LDA
STA
LDA
STA
LDA
STA

moaoaaaHwWHE >

In this case the main call results in the call
MOVEL (A,B),(C,D), (E,F),(G,H)

MOVEL calls itself by
' MOVEL A,B,E,F

and again:
MOVEL1 AE

where the first code is generated. Then we get
MOVEL B,F
Recursion then pops up to the call
. MOVEL C,D,G,H

and so on.

EXAMPLE 7-11

The following example makes use of virtually every feature in the macro
and conditional assembly machinery. It is presented as a demonstration of
the power inherent in the use of mécros but not as a'practical tool (critics
have justly termed it the world's slowest compiler). The macro COMPILE when
called with an arithmetic expression for its argument produces assembly
language which computes the valué of the ekpression in a minimum npmber of
steps (subject to the left-to-right scan technique used). COMPIIE in turn
calls a large number of other macros. Their functions are explained by comments
in the text below:

The COMPILE macro itself merely initializes some variables and calls
EXPAND where the more difficult work is doﬁe. J is the total number of
characters in the expression. K is used to keep track of the recursioﬁ level
on which the work is being done (EXEAND calls itself recursively when it sees
an opening bracket [). AVAIL is the counter for available temporary storage.

NPTR and PPTR are stack pointers for the operand and operator stacks respectively.

~

COMPILE MACRO D;J NCHR D(1)3;K EGU O3AVAIL EQU 13NPTR EQU -13PPTR EQU -I
EXPAND D(1); ENDM :

EXPAND initializes I, the current character pointer. Tt p;aces
the value zero on the operator stack (marking its beginning on the current
level) and fetches the first operand. It then sets a switch (G(1)) and goes
into a cycle of fétching operators (GETP) and operands (GETN). ' If the.
precedence of new operators is less than of equal to that of the previous
operators, code is generated. Otherwise the information is stacked and the

scan continued.

EYPAND MACRG D,G,131 EGU 13K EQU K+1j STACK 0,P; GETN DCLD3 SET G(1)
CRPT G(1) :
IF I<J: GETP DCISD)
FLSE; OPTOR £qU 113 RESET GC1)
ENDF S
:PSTAK EQU PST.(3PPTR) .
CRPT OPTOR/10<PSTAK/10+1; GEN DCID
ENDR
LF GPTOR=11;PPTR FQU PPTR-1; RESET G(1);K EQU K-131 EQU I.(3Ky+I-l
ELSE; STACK CPTCR,P
"1F NPTR>O
IF NST.($HPTR-1) <0 :
IF NST.(3NPTR-1)=-13 STA TEMP.(SAVAIL)
FLSF; RSH 1; STB TEMP.(SAVAIL)
ENDF
“NST.($NPTR-1) EGU AVAIL;AVAIL EGU AVAIL+I
ENDF
ENDF
GETM DC(1$I,d)
ENDF
ENDR
ENDM

SET and RESET change the setting of flags. STACK is used to put values

and pointers on "stacks." (These are not, of course, physical stacks in
memory but rather conceptual ones existing in the assembler's symbol table)
STACK functions by creating an ordered progression of names and assigning

values to the names by means of the EQU directive.

SET MACRO D3 DC1) EOU 15 ENDM

RESET MACRO Dj; DCI)D EQ U O; ENDM

STACK MACRO D3 TS EQU D(2).,PTR+13;D(2).PTR EQU TS3D o o .
EADM : *13 S3D(2).ST.($TS) EQU D(1)

R-26
7-28

GETN fetches the next operand. Its complexity is due to the fact that
it must recognize symbols (in this example using the assembler's symbol rules)
and numbers. .Wheﬁ this recognition is complete it puts in the operand stack
a pair of pointers to the head and tail of the operand (i.e., character numbers
in the string and a flag bit which denotes whether the object is a symbol or

a number. Note that if an opening bracket is seen, GETN calls EXPAND recursively.

GETN MACRG D;TC FQU I; RESET SRROR; GETC DC13I-TO+1)
IF CHAR="[";1.($K) EQU I; FXPAND D(1$2,J)
FLSE

1F LETTER; RESET NUMBER
ELSE; SET NUMEER
ENDF
IF DIGIT; SET SWITCH
CRPT SWITCH; GETC D(1$I-TO+1)
IF DIGIT
ELSF LETTER; RESET SWITCH
IF CHAR='E'; GETC D(1$I-TO+1)
IF LETTER; RESET NUMBER
ELSF DIGIT; RESET HUMRER
EXDF
ELSF; RESET NUMBER
ENDF
ELSE; RESET SWITCH
ENDF '
ENDR
ELSF LETTER
ELSE; SET ERRCR
ENDF
IF NUMBER
ELSE; SET SWITCH
CRPT SWITCH; GETC D(15I-TC+1)
IF LETTER
FLSF DIGIT
ELSE; RESET SWITCH
ENDF
ENDR
ENDF
IF ERROR; ERROR; STACK O,N :
ELSE; STACK TO%1PB4+1-2+4F 3% NUMPER, N
ENDF
;1 EGU I-1
ENDF
ENDHM

GETC's main function is to determine whether a given character is a
letter, digit, or other type of character. GETP fetches the next operator.
It does some checking of the results and if valid sets OPTOR to a value

carrying both operator and precedence information.

GETC MACRC D3CHAR EQU 'DC1)"3;1 EQU I+13A EQU CHAR>'Z';E EQU CHAR<'A'

IF ACORYE;A ECGU CHAR>'9";P [QU CHAR<'C'
IF FC(CR)F; RESET LETTER; RESET DIGIT
ELSE; SET DIGIT; RESET LETTER
CNDF
ELSF; SET LETTER; RESET DIGIT
ENDF S
ENDM

GETP MACRO D3 GETC DC1)
IF LETTER(OR)DIGIT; FRROR
ELSE;A ECU CHAR>11E63FE EQU CHAR<20E6
IF ACAND)R; OPTOR EGY OPS.(SCHAR/IEG)
ELSF CHAR="1';OPTCR FGU 11
ELSE; OPTCR ECU -1
ENDF
IF OPTOR=-13; ERROR;OPTOR EGU 40
ENDF
ENDF
ENDM

GEN and GENA serve to reconstruct the operands from the string pointers

/
and call generators which actually produce code.

GEN MACRGC D3R EQU -13PP2 EQU PST.($PPTR);PP3 EQU NST.(SNPTR-1)
sPP4 EQU PP3/1F43PP5 ECU PP3-PP4x*xlEA4
1F PP5>4E33;PP5 EQU PP5-4E3; SET LITl; RESET LIT2
FLSE; RESET LITl; RESET LIT2
CNDF '
IF PP3>1R4; GEMA DC1),D(1$PP4,PP5)
ELSF PP3>0; GENA DC1),TEMP.($PP3);AVAIL EGU PP3
ELSF PP3=-1; GENf D(1),AREG
ELSF PP3=-2; GENA D(1),FREG
ENDF

ENDM

s NPTR EQU NPTR-2; STACK R,M;PPTR EQU PPTR-1;PSTAK ECU PST.($PPTIR)

R-26
7-29

GEMA MACRO D;PP5 EGU NST.($NPTR);PP6 EQU PP5/1P4
;PP7 EQU PP5-PP6&*1E4 ~
IF PP7>4E3;PP7 EQU PP7-4R3; SET LIT2
ENDF ‘
I® PP5>1E4; GEN,($SPP2) D(2),D(1%PP6,PPT)
ELSF PP5>05 GEN.($PP2) D(2),TEMP.($PP5)3AVAIL EQU PP5
ELSF PP5z-1; GEN.($PP2) D(2),AREG
ELSF PP5:=-2; GEN,($PP2) D(2),RREG
ENDF §
ENDM

GEN20, 21, 30, 31 and 40 are the code producing macros. They make
reference to LIT1 and LIT2 (flags set by GEN and GENA) and call macros
TEST, LA, LB, and ST. The purpose of the latter macros is to worry about
the meaning of the contents of the A and B registers so as not to inject

superfluous code.

GEN20 MACRO D3 TEST DC1),D(2),X3 LA D(X),LIT.(SX)
IF X=zI :
IF LIT23 ADD =.D(2)
ELSE; ADD D(2)
ENDF
ELSE" :) _
IF LITI; ADD =,DC1)
ELSE; 2DD D(1)
ENDF
ENDF
ENDM

GENZ2]1 MACRO D; TEST D(2),X .
IF X3 LA D(2),LIT2
IF LITl; CN&; ADD =.DC1)
ELSE; CNpA; ADD DCI)
ENDF
ELSE; LA DC(1),LITI
IF L1T2y SUB =.,D(2)
ELSE; SUR D(2)
, ENDF :
ENDF
ENDM

GEN3O MACRG D; TEST D(1),D(2),Xs LA D(X),LIT.(3X)
IF ¥zl .
IF LIT2; ™MUL =.0(C2)
ELSE; MUL D(2)
ENDF
ELSE
IF LITl; MUL =.DC1)
ELSE; MUL DC1)
ENDF
ENDF
sR EGU -2
ENDM

GEN31 MECRO D; TEST D(2),X
IF X3 ST D(2%1>3 LB D(1),LITl; DIV TEMP.(SAVAIL)
ELSE; LB D(1),LITI
" IF LIT2; DIV =.D(2)
ELSE; DIV D(2)
ENDF
ENDF
ENDM

GEN4C MACRO D3 NOP D(1); NCP D(2)
ENDM ' '

LA MACRG D
IF "D(1)'="AREG"
ELSF 'D(1)"="BREG'; LSH 23
ELSE |
IF D(2); LDA =.DC1)
" ELSE; LDA DCI)
ENDF
ENDF
ENDM

LE MACRO D
IF 'DC1)"="BREG"

ELSE
IF "DC1) "="AREG'
ELSE
IF D(2); LDA =.DCL)
ELSE; LDA D(1)
ENDF
ENDF
RSH 23
ENDF
ENDM
ST MACRC D
IF 'D(1)"="BREG"; RSH 1
ENDF

ST.DC(1%1) TEMP.C($AVAIL)D
ENDM

TEST MACRC D;Y NARG; DCY) EGU O

RPT (Z=1,Y-1) .
IF "D(Z%1,4) ="AREG"; D(Y) EQU Z
ELSF 'D(Z$l,4)':'EREG';D(Y) EQU -Z
ENDF :

ENDR

I1F Y>2
IF DCY)>=C3; D(Y) EQU I
EMDF

ERDF

ENDM

The following lines establish precedence information for the'arithmetic‘

operators.

OPS10 EQU 30;0PS11 EQU 20;0PS12 EQU -13;CPSI3 EQ . CP3
OPS15 EGU 31 . ’ c EQU 21;CP514 EQU -1 .

When called by the following lines, the macro generates code as shown:

Call: COMPILE X+200%Y
Result: ILDA =200

MUL Y

ADD X
Call: COMPILE AB-[C+D]/[E+F]
Result: IDA C

ADD D

STA TEMP1

ILDA E

ADD F

STA TEMP2

LDA TEMP1

RSH 23

DIV TEMP2

CNA

ADD AB

Call:

Result:

COMPILE

1DA
MUL
LSH
ADD
STA
1DA
RSH
DIV
STA
1DA
MUL
LSH
ADD
MUL
DIV
CNA
ADD
SUB
RSH
DIV
CNA
ADD
SUB

A+200%34C21~ [DEF/ 34B-HT*[J+20%K] /IM33B - N]/0RQ-22

=200
34c21
23 -
A
TEMP1
DEF
23

TEMP2
=20
K

23

J

HT
IM33B

TEMP2
N

23

10) 2]

TEMPL
=22

7.15 Special Symbols in Conditional Assembly
Although in the introduction it is stated that symbols consist

only of letters and digits, it is possible to include the colon in

symbols. DDT, however, does not regard the colon as part of a symbol.

The meaning of this is that DDT will type out such symbols but they
cannot be typed in. 1In effect this makes tﬁem useless, and it is for
this reason that the legality of coloﬁs in symbols has jﬁst now been
mentioned. '

Yet by judiciously choosingAwhen to use ﬁhe colon in a symbol
the feature can become worthwhile. In particular it can be used in
macros and other obscure places in the program to avoid possible
conflicts with other nemes. This might be particularly useful to
distinguish between symbols used in assembly-time calculations and

those used at runétime.

R-26
8-1

8.0 Assembler Error Messages

Upon discovering an error in the syntax of a program being assembled, the
assembler will list the statement in question and information about the
character of the errdr. The listing of errors will occur regardless of whéther
regular listing is being done. |

8.1 Error Messages

Error messages and their interpretations are given below. The first

group deals with difficulties found in a single statement.

Error Meaning
D Duplicate symbol.
L Error in label field; most likely not a wvalid symbol.
M Missing field in statement.
0 Invalid or undefined opcode.
R - Relocation error in expression.
S General syntax error.
U Undefined symbol.

If when calling a macro the user fails to deliver an argument required
dﬁring expansion, the assembler will replace the argument with the character t
and issue an undefined symbol message at that point.

The second group of error messages deal with more complicated difficulties.

Error Message Meaning
SYMBOL TABLE FULL. ERROR Too many symbols and/or opcodes have
CHECK CONTINUES. been defined. Assembly will continue,

but no new symbols or opcodes will be
recognized. Break the program into
sub-programs or otherwise reduce the
number of symbols present.

Error Message

LITERAL TABLE FULL. FUR~
THER LITERALS IGNOREID-

MUST ASSEMBLE ABSPGM ON
PAPER TAFPE

INPUT STACK OVERFLOW

EOF -- END CARD ASSUMEZD

TLIEGAL COMMAND

INFUT FILE NOT TEXT

BAD CHAR

EOF IN MACRO DEFINITION
INPUT STACK UNDERFLOW.

INPUT BUFFER FULL.

R-26
8-2

MEaning

Similar to the case above. Reduce the
number of literals present.

The bootstrap loader for self-filling,
absolute assemblies is intended for paper
tape only. Designating any other form on
output file (except NOTHING and TELETYPE
(another form of paper tape)) results in
this message. It is possible to assemble
an absolute program for loading by DDT.
See 6.21 RELORG.

There are too many nested macro calls,
repeats, and ifs in combination. The stack
provided for storing the previous source

of input is full. This is a disaster.

The program must be reorganized.

No-END statement was found at the end of
the program. The assembler (except for
typing this message) takes the same action
as if it found the END statement.

The assembler does not recognize a command
typed in by a user upon start-up. It
makes him start again.

The input file described to the assembler
is not a type 3 file (i.e., text).

An unrecognizable character (or one
otherwise out of place) is found in the
text. The character is typed out in octal
following the message, replaced by a blank
in the text, and assembly continues.

The end of the program is reached, but the
assembler is still defining a macro. Look
for a missing ENDM.

The opposite problem to the one above. Not
terribly serious. Iook for the presence of
an extra ENDM, ENDR, or ENDF in the program.

An input statement must be less than 320
characters long. This message occurs when
the rule is violated. It usually happens
when macros run wild. ILook carefully at
the program near where the error occurred.

R-26

8-3
Error Message Meaning
TOO MUCH MACRO RECURSION. Too many nested macro calls have occurred,

resulting in filling availeble pushdown
storage. Reorganize program.

TOO MUCH RPT RECURSION. Similar to above.

TOO MANY ARGS IN MACRO. The macro is being called with more
arguments than there is space for.
Reduce the number of arguments in the call.

TOO MANY REPEAT ARGS. ‘ In beginning a repeat block, too many
' requests for automatic incrementing of
symbols have been made. Reorganize the
block.

STRING STORE EXCEEDED. No space remains to store new macro
definitions or to do repeats. Caution:
old macro definitions are not thrown away.
Do not redefine macros indiscriminately.
Reorganize program.

EOF IN TEXT. The end of the input file has occurred
' in the middle of a statement.

8.2 Interpretation of the Error Listing

When an error is listed on any file other t?an TELETYPE, the single-
letter error message (first group above) is listed in the line below at
the point where the error was detected. Other information is given.

This is all depicted in the examples below.

In the following line there are errors in the label and operand fields.

00172 0O 76 00000 UG IDA 2%7,
R
EEK+T7 |
Current value of Label cannot ' Relocation 'Expression
location counter is terminate with error. cannot terminate
7 cells past the /- with - .

symbol EEK.

R-26

20117 O 35 10761 STA zo'r1 [
Missing tag:

ﬁIKES+J | MUMBLE |

Location Name of Name of outermost

counter innermost macro macro in which

value. in which offense offense occurred.
occurred.

Thus along with each error the location counter is printed out relative

to the symbol most recently defined. In addition, if the error occurs

during macro expansion the names of the innermost and outermost macros

are printed to give a clue on where to look for the error. If only

one level of macro expansion is involved, then only that name is listed.
In order to save time when errof listings are made on the teletype,

the single-letter error messages are typed out at the left margin.

9-1

9.9 ASSEMBLER OPERATING INSTRUCTICNS

ARPAS is called in the EXEC by typing
- ARPAS

followed by depressing the return key on the teleprinter. The systera
responds with

 INPUT:

reguesting the user to type the file name of the symbolic f11e to be
assembled.

INPUT: /SYM:/

After typing his file name /SYM/ followed by a line feed, the system
responds with BINA RY:

BINARY: /BIN/

The user types h1s selected f11e name, /BIN/ for stormg the bmary
output of his assembly and again depresses the line feed ke;y on his
teleprinter. The system will respond with OLD FILE if the file name
already exists in his file directory. Depressing the line feed key at
this point will cause all existing information in this file to be replaced
with the binary output from this assembly. Depressing Alt Mode or

Tiscape will permit the. selﬂchon of a new file name. When the system
types NEW FILE, typm a line feed will confirm the file name or typing
an Alt Mode will permit the selection of a different file name. The
teleprinter page appears as: : ‘

BINARY: /BIN/
OLD FILE

or
RINARY: /BIN/
NEW FILE

If a carriage return is depressed after either OLD FILE or NEW FILE,
the system responds with

OK)
and pass one of the assembly begins.

If a line feed is depressed after cither OLD FILE or NEW FILE, an
option is available to the user.

=XT OUTPUT: TEL

9-2

If the option, TEXT CUTPUT, is selected, the user types TEL followed
by a Carriage Rce¢turn. The system responds with

CK

and pass cne of the assembly begins. A program listing of the assembly
will appear on the user's teletype.

Typing a carriage refurn rather than TEL aborts the text output option
and bcgms the asscmbly by typing

CK
ASSEMBLY EXECUTION

If the text output option was not selected by the uscr, the system continually
transmits non-printing characters to the user's teleprinter, giving him an
audible indication the assembly is in process. At any time during thc
assembly, the user may type a single A1t Iode or Escape to activate listing.
The listing will begin at the point in the program that is currently being
assembled. It will continue to list on the teleprinter until the assembly is
complete or the user types

S

to stop the listing. This process may be repeated throughout the assembly
process to determine how far the assembly has progressed.

“/hen the assembly is complete, the number of cells used by the program
is typed out as well as a table of symbols by the program. For example:

3453 CELLS USED BY PROGEAM

BS N 45+ EBSM3 N 1466+
ENDBRS N 3335+ SMB N O+

°RB N 13+ XSP N 21+

EXTERNAL SYMRBCLS USED: N

ACTR ADMSX ARD AWD BPTEST .BRRL3
BRSTV CARRY CBRF CET CHRL CIB

CKBUF CLR8P COB CPARW CPUPC CcO
CRASH CRSW :

Mnemonic
Load/Store

DA
STA
1LDB
STB
IDX
STX
EAX
XMA

Arithmetic
ADD
ADC
ADM
MIN
SUB
suc
MUL
DIV

Iogical
ETR
MRG
ECR

Register Change
RCH
CIA
CIB
CLAB
CIX
CLEAR
CAB

APPENDIX A

EXTENDED LIST OF INSTRUCTIONS

Operation- Code

76
»
(P
36
71
37
7
62

55
57
63
61

SRR AR 4

14
16
17

46
0 46 00001
0 46 00002
0 46 00003
2 46 00000
2 46 00003
0 46 0000k

Function

Toad A

Store A

Load B

Store B

Ioad X

Store iIndex

Copy effective address into index
Exchange M and A

Add M to A
Add with carry

Add A to M

Memory increment
Subtract M from A
Subtract with carry
Multiply

Divide -

Extract (AND)
Merge (OR)

Fxclusive or

Register change
Clear A

Clear B

Clear AB

Clear X

Clear A, B and X
Copy A into B

R-26

“Inemonic

CBA
XAB
BAC
ABC
CXA
CAX
XXA
CBX
CXB
XXB
STE
LDE
XEE
CNA
AXC

Branch
BRU
BRX
BRM
BRR
BRI

Test/Skip
SKS
SKE
SKG
SKR
SKM
SKN
SKA
SKB
SKD

Operation Code

0 46 00010
0 46 0001k
0 46 00012
0 46 00005
0 46 00200
0 46 00400
0 46 00600
0 46 00020
0 46 00040
0 46 00060
0 46 00122
0 46 00140
0 46 00160

‘0 46 01000

0 46 oohkol

01
L1
43
51

11

Lo
50
73
.60
70
53
72
52
Th

R-26
A-2

Function

Copy B into A

Exchange A into B

Copy B into A, Clearing B
Copy A into B, Clearing A
Copy X into A

Copy A into X

Exchange X and A

Copy B into X

Copy X into B

Exchange X and B

Store Exponent

Load Exponent

Exchange Exponents

Copy negative into A
Copy A to X, clear A

Branch uncbnditionally
Increment index and branch
Mark place and branch
Return branch

Branch and return from interrupt

Skip if signal not set

Skip if A equals M

Skip if A greater than M

Reduce M, skip if negative

Skip if A = M on B mask

Skip if M negative

Skip if M and A do not compare ones
Skip if M and B do not cbmpare ones

Difference exponents and skip

Mnemonic

Shift
RSH
RCY
IRSH
LSH
ICY

" NOD

Control
HLT, ZRO
NOP
EXU

Breakpoint Tests
- BPTx

Overflow
ROV
REO
ovr
0oTO

Interrupt
ETR
DIR
ATR
IET
T

Channel Tests
CATW
CETW
CZTW
CITW

Tnput/Output
EOD

Operation Code

0 66 00xxx

"0 66 20xxx

0 66 2hxxx

0
0
o

O O O O O O O O O

© O O O

67
67
67

00

20

23

4o

22
22
22
22

06

O0xxx
20xxx
10xoxx

20xx0

00001
00010
00101
00100

20002
20004
20020
20002
20004

14000
11000
12000

10000

R-26
A-3

Function

Right shift AB
Right cycle AB
Logical right shift
left shift AB
Ieft cycle AB

Normalize and decrement X

Halt
No operation
Execute

Breakpoint test

Reset overflow
Record exponent overflow
Overflow test and reset

Overflow test only

Enable interrupts
Disable interrupts
Arm/disarm interrupts
Interrupt enabled test
Interrupt disabled test

Channel W active test
Channel W error test
Channel W zero count test

Channel W inter-record test

Energize output D

Mnemonic

Operation Code

/&nput/Output (920 Compatible)

MIW
WIM
PIN
POT
EOM
BETW
BRTW

Syspops
BIO
BRS
CIO
CTRL
DBI
DBO
DWI
DWO
EXS
FAD
FDV
FMP
FSB
GCD
GCI
ISC
IST
IAS
LDP
LIO
OST
SAS
SBRM
SBRR
SIC
SKSE

SKSG

12
32
33
13
02
0 40 20010

0 k0 21000

576
573
561
572
542
543
54L
545
552
556
553
554
555
537
565
5k1
550
546
566
552
551
547
570
51*
540
563
562

R-26
A-4

Function

M. into W buffer when empty

W buffer into M when full
Parallel input

Parallel output

Energize output M

W buffer error test

W buffer ready test

Block I/O

Branch to system

Character I/O0

Control

Drum block input

Drum block output

Drum word input

Drum word output

Execute instruction in system mode
Floating add

Floating divide

Floating multiply

Floating subtract

Get character and decrement

Get character and increment

Internal to string conversion (flgﬁ%%g%)
Input from specified teletype

Load from secondary memory

Load pointer (AB)

Link I/0

Output to specified teletype

Store in secondary memory

Systém BRM

System BRR (prestored macro)

String to internal conversion (floating
Skip on string equal 1nput%
Skip on string greater

Mnemonic

STI
STP
TCI
TCO
WCD
- WCH
WCI
WIO

Operation Code

536
567
574
575
53
564

557
560

R-Z2

Function

Simulate teletype input

Store pointer

Teletype character input
Teletype character output
Write character and decrement
Write character

Write character and increment
Word I/0

APPENDIX B
TABLE OF TRIMMED ASCII CODE FOR THE SDS 930%
(NUMERIC ORDER)

0 SPACE 31
1 [E] 32
2 " 33
3 3h
b $ 35
5 [%] 36
6 37
7 ' 4o
10 (b3
11) k2
12 * 43
i3 + uh
1k s 45
15 - 46
16 . 47
17 / 50
20 0 51
21 1 52
o2 2 53
23 3 Sk
2k b 55
25 5 56
26 6 57
27 7 60
30 8 61

O W o= EHKUHEQOYEL O >-]E§Lo VoA e

62
63
64
65
66
67
70
71
72
73
Th
75
76
7
1hh
145
146
147
152
155

R-26
B-1

gy HAN—D = Al N KX s <3 0w
4531 |

BELL

CR

*The Teletype characters enclosed in boxes cannot be handled by
ARPAS and are converted to blanks when present.

DDT
REFERENCE MANUAL

For The Tymshare Debugging System

30.40.10
TABLE OF CONTENTS

1.0 General e 1-1
Ll Symbols . . & v 4 i i e e e e e e e e e e e e e e e 11
1.2 Block Structure
1.3 Literals . . . v o v v v v v v e e e e e e e . Lk
1B Constants .« v v v v v e e e e e e e e e e e e e . 15
1.5 Commands T B
1.6 EXPressions . . « 4 v v e e e e e e e e e e 1-5
1.7 The Open Register 1-7
1.8 Memory Allocation and DDT . +« « &« = « « « « « « « « . 1-7

2.0 DDT Commands « « « « « « & o o« o « o o o o o o o 4 0 e . . 2-1
2.1 Register Opening Commands 2-1
2.2 Type Value Commands .
2.3 Symbol Definition Commands . . . « . «« . . . 2=k
2.4 Mode Changing Commeands
2.5 Breakpoint Commands e e e e e e e e e e e e e e e 2-5
2.6 TInput-Output Commands « v « « & o « & « « « . 27
2.7 Search Commands . « « « « « « o o o & o o o« o o o « 2-7
2.8 The Patch Command « « « « + ¢« & v ¢« « « . . 2-8
2.9 Miscellaneous CommandsS . « « + &« & ¢ « o« o o o o+ & 2-9
2.10 Special Symbols T T 2-10
2.11 PanicCs « ¢« v v v h e e e e e e e e e e e e e e e e s ‘2-11

2.12 Multiple Program Debugging « « « « . . . 2-12

30.40.10
1-1
December 2, 1966

1.0 General

DDT is the debugging system for the SDS 930 Time-Sharing System. It has
facilities for symbolic reference to and typeout of memory locations and centrul
registers. Furtﬁermore, it permits the use of literals in the same manner a8 in
the assembler. Tt can also insert breakpoints into programs, pérform a trace,

' and search prﬁgrams for specified words and specified effective addresses. There
is a command to facilitate program patching. ¥Finally, DDT can load both absolute
and relocatable files iﬁ tﬁe format produced by the assembler.

The system has a language for communication between DDT and its users. The

basic components of this language are symbols, constants, and commands.

1.1 Symbols

A symbol is any string of letters, digits, and dots (.) containing at
least one letter. (However, a digit string followed by B or D is interpreted
as an octal or decimal number respectively). In symbols of more than six
characters, only the first six are significanﬁ: thus, ALPHABET is equivalent
to ALPHAB. All opcodes recognized by the assembler are built-in symbols,
except for some I/O instructions. Other symbols are ;1, ;2, ;A, ;B,.;F,
3L, ;M, 3Q, 3X, and dot. Their meanings are explained below.

Every symbol may have a value. This value is a ol-bit integer; for
most symbols it will be either an address in memory or thé octal encoding of
an operation code. Examples:

ABC

AB12L4

12XYZ

The following are not symbols:

135B
AB*CD

Symbols may be introduced to DDT in two basically different ways:
(A) They may be written out by the assembler and read in from

the binary program file by DDT.

30.40.10
1-2 .
December 2, 1966

(B) They may be typed in and assigned values during debugging.

It is possible for a’symbol to be undefined. This may occur if & program
is loaded which references an external symbol not defined in a breviously
loaded program. It may also occur if an undefined symhol is typed in an
expression. In general, undefined symbols are legal input to DDT except
when their values would be required immediately for the execution of a
command. Thus, for example, the ;G (GO TO) command could not have an un-
defined symbol asg its argument.

Undefined symbols may become defined in several ways. They may be
defined as external in the assembler (i.e. with EXT, ENTRY, or $) and read
by DDT as part of a binary program. Alternatively, they may be defined by
one of the symbol definition commands available in DDT. When the definition
occurs, the value of the symbol will be substituted in éll the expressions
in which the gymbol has appeared.

If DDT type [U] after typing out the contents of a register, it means
that the régister contains an undefined symbol. The register is closed at
once so that its contents cannot be erroneously changed.‘

The only restriction on this facility is that, as for ARPAS, the
undefined symbol must be the only thing in the address field of the word
in which it appears. Incorrect uses of undefined symbols will be detected
by DDT and will result in the error comment (U).

DDT keeps track of references to undefined symbols by building a
pointer chain through the address fields of the words referring to the éymbol.

Thus, suppose that the symbol A is undefined and appears as follows

51 LDA A
s2 STA A
S3 MRG A

and nowhere else in the program. After loading, the entry for A in DDT's

30.40.10
1-3
December 2, 1966

symbol table will contain a flag indicating that it is undefined and a pointer

to 3. The above locations will contain:
S1 LDA 0o
s2 STA s1
53 MRG s2

When the symbol is defined, DDT goes through the pointer chain and fills in
the valug. It recpgnizes the end of the pointer chain by a O address.

From this description it should be obvious what will happen if the
pointer cﬁain is destroyed. A probable consequence is that a search down the
pointer chain will not terminate. DDT does such searches whenevef it prints
an address. If the chain it is searching hés more than 256 links, it will
print the symbol followed by (U) and continue. Fixing up an undefined symbol
iointer chain which has been clobbered is an exercise which we leave to

the reader.

1.2 Block Structure

A limited facility called the block structure facility is provided to

simplify the referencing of local symbols which are defined in more than one
program. Note that DDT's block structure has only a tenuous connection
with the block structure of ALGOL. The block struéture of a progrem is
organized in the following manner: every IDENT read by DDT as part of a
binary program file begins a new block. Any local symbol known to DDT hag a
block number associated with it; global symbols do not have a block number.
Undefined symbols are always treated as global.

The name of a block is the symbol in the label field of the IDENT. TIf
two IDENTs with the same symboi are read, the message (AIREADY DEFINED) is

printed, and the local symbol tables from the two blocks will be merged.

30.40.10
1-4

December 2, 1966

Global symbols must be unique within an entire program and are recognized

at all times. If a multiple definition is encountered, the latest one takes

precedence. Iocal symbols are recognized according to the following rules:

(1)

(2)

(3)

(L)

At any given time one block is called the primary block. All local
symbols associated with the primary block will be recognized.
If a symbol is used which is neither global nor in the primury

block, the entire symbol table is scanned for it. If it occurs

in only one block, the symbol is recognized properly. If it occurs

in more than one block, the error message (A) is printéd.
A symbol may be explicitly quélified by writing:
SYMA&S YMB
SYMA must be the name of a block. SYMB is then referenced as though
the block whose name is SYMA were primary.
When a register is opened (see section 2.1), the block to which
the symbolic part of its location belongs becomes primary. Thus,
NN&XYZ/ causes block NN to become primary; if ABC is a unique local

symbol in block PQ, then ABC/ causes block PQ to become primary.

1.3 Literals

Literals have the same format and meaning in DDT as in the assembler,

i.e. the two characters' =' signal the beginning of a literal, which is

terminated by any of the characters which ordinarily terminate an expression.

In contrast to the assembler, the expression in a DDT literal must be defined.

The literal is looked up in the literal table. If it is fbund, the

address which has been assigned to it is the value of the symbol. If it

does not appear in the literal table, it is stored at the address which is:

the current value of ;F, and this address is taken as the value of the

literal.

;F is increased by 1. For example, if the literal -1 does not

already exist in the literal table and j;F is 1000B, then ILDA =-1 causes -1

to be stored at 1000B, and is equivalent to LDA 1000B; the new value of ;F

30.40.10
1-5
December 2, 1966

is 1001B. Exception: 1In patch mode, literals are saved nnd not stored
until the patch is completed since otherwise they would interfere with
the patch.

When DDT types out a symbol whose value is an address in the literal
table, it will type out in the same format in which it would be input; that
is, us = followed by the numeric value of the literal.

1.4 Constants

& constant is any string of digits, possibly followed by a B or D. The
number represented by the string is evaluated, truncated to 24 bits and then
used just like the wvalue of a symbol. The radix for numbers is normally 5
(octal), but may be changed arbitrarily by the commands described in section
2.4 velow. If a number is terminated by B or D, it is interpreted as octal
or decimal respectively regardless of the current radix. Constants are
always printed by DDT in the current radix.

It is possible to enter numeric op codes by typing the number followed
by an ¢ sign. Thus 100¢ =14400000B if the current radix is decimal (100D=1LLB).
1.5 Commands

A command is an order typed to DDT which instructs it to do something.

The commands are listea and their functions explained in the taﬁle below.
1.6 Expressions -

An expression is a string of numbers or symbols cbnnected with blanks,

+, -, 3%, 3/, 3&, <, 3=, 3>, and ;%. These operators have the following

significance: 4+ addition
- subtraction

;* (integer) multiplication
;/ (integer) division

;& (AND)

;< (1LSs)

;= (EQL) as in ARPAS

> (GTR)

3% (OR)

Expressions are.evaluated strictly left to right: all operators have the

same precedence. Parentheses are not allowed. The first symbol or number

30.40.10

1-6

December 2, 1966
may be preceded by a minus sign. Blank acts like plus, except that the
fcllowing operand is truncated to 1Lk bits before being added to the

accumulated value of the expression. The value of an expression is a ¢h-bit

integer. An expression may be & single symbol or constant.

Examples: LDA has the value 7600000
LbA 10 has the value 7600010 if the
radix is octal
1DA 10D has the value 7600012
If SYM is a symbol with the value 1212, then
SYM has the value 1212
SYM 10 has the value 1722
ILDA SYM has the value 07601217

If this last expression were put into a memory register and later
executed by the program the effect would be to load the contents of 5YM,
register 1212, into the A register.

When DDT types out expressions, two mode switches control the format of
the output. Commands for setting these modes are described in section Q;h
below. The C-S mode determines whether quantities will he printed as constants
or as ;ymbolic expressions. In the latter case, the 6pcode (if any) and the
address will be put into symbolic form. If the first nine bits of the value
are 0 or 1, no opcode will be printed; in the latter case a negative integer
will be printed. If the opcode is not recognizable as a symbol, it will be
typed as a number followed by an (& sign.

The R-V mode controls the format in which addresses are typed. DDT
types addresses when asked to open the previous or the next register, when
it reports the results of word and address searches, and on breakpoints.

In relative mode, addresses are typed in symbolic form, i.e., as the largest
defined symbol sﬁaller than the address plus a constant if necessary. If
the constant is bigger than 206 octal, or if the value of the symbol is

less than the first location of the progrem, the entire address is typed &s

a constant. In absolute mode, addresses are always typed as constant.

30.40.10
1-7
December 2, 1966

1.7 The Open Register

One other major ingredient of the DDT language is the open register.

Certain commands cause a register to be "opened". This means that its
contents are typed out (except in enter mode, for which gee the \ command),
followed by a tab. Any expression the user types will theh be inserted into
the open register in place of its current contents. After’ihis insertion the
register is closed at once. Note that the string‘LDA ABC= is>a éOmmand, end
does not cause LDA ABC to be entered into the current open register. The

current location is given by the symbol "." (dot) which always has as its

value the address of the last register'opened, whether or not it is still -men.

Note'

(1) Comma and star (for indirect addressing) may be used in expressions
as they are used in the assembler; e.g. LDA¥ 0,2 has the value
27640000.

(2) DDT will respond to any illegal input with the character ? followed
by a tab (if a register is open) or carriage return (otherwise),
after which it will behave as if nothing had been typed since the
last tab or carriage return. The command ? also erases everything
typed since the last tab or carriage return.

1.8 Memory Allocation and DDT

DDT may cause the time—sharing system to assign memory for use either
by DDT itself or by the user's progrem. DDT's memory is used to hold the
symbol table, which starts in block O and grows upward in memory. The
symbol table contracts at the end of each load of a binary file and when
symbols are killed; this contraction may cause memory to be released.

DDT grabs program memory when it is required for loading a binary‘file,

or when a ;U (execute) command is given and the value of ;F is such that

30.40.10
1-8
December 2, 1966

a new block is needed to hold the instruction to be executed. For executing
an instruction, DDT requires location ;F, ;F+l and ;F+2. Memory is never
grabbed for examination of a register; however, entering information with \
can cause memory to be assigned. Attempts to open locations not assigned
will cause DDT to type ?. This means that upon initial entry to DDT no
registers are available for examination._ The easiest way to obtain memory
18 to simply_start typing In a program using the \ command .

If an attempt to acquire or reference memory leads to & trap, DDT types
(M) and abandons whatever it is doing. This can happen if the machine size

is exceeded, or if an attempt is made to change read-only memory.

30.&0.10
2-1
December 2, 1966

2.0 DDT Commands

In the following descriptions of DDT commands, <3 will be used to denote
an arbitrary symbol. <E> or <W> will be used to denote an arbitrary expression
which may be typed by the user: <E> will be used when the value of this expression
is truncated to 14 bits before it is used by DDT, while <W> will denote a full
2h-bit expression. <A> will be used to denote an optional 14-=bit expression.
If none is typed, the last expression printed out will usually be used; deviations
from this rule will be described under the individual commands. <F> will denote

a file name followed by a dot: DDT will type a tab whenever it expects a file

name.
2.1 Register Opening Commands

<>/ This opens the register addressed by the value of <A>. DDT will give
a tab, type an expression whose value is equal to the contents of the
register, give another tab and await further commands. The precise form of
the expression typed is dependent on the setting of the S-C and R-V modes.
If the user types in an expression, DDT will insert its value into the
register. Typing another command closes the register, unless it is a type
value‘or symbol definition command. Note that in a command that requires
é preceding expression, the expression is regarded as part of the command
and would not, for instance, be inserted into the open register. ‘If another
/ is given as the next command with no preceding expression the contents
of the register addressed by the expression typed by DDT are typed out. A
further / repeats this process. Note, however, that the original register

opened remains the open register; any changes made will go into that register.

carriage This command does not necessarily have any effect. If the specified
return

conditions are present, however, any of the following actions may occur:

30.40.10
2-2
December 2, 1966

(1) 1If there is an open register, the register is closed.
(#) 1If DDT is in enter mode, it leaves it.

(3) 1If DDT is in patch mode, the patch is terminated (for a
fuller description of this effect, see the patch command).

<>] This command has the same effect as /, except that the contents of
the register opened are always typed in symbolic form.

<r> This command has the same effect as /, except that the coﬁtents of
the register opened are typed in constant form.

<> $ This command has the seame effect as /, except that the contents of
the register opened aré typed as a signed integer.

< " This command acts like /, except that the register constants are typed
in ASCII. Unprintable characters, as in QFED, are pfeceded by &, e.g. 141
(control-A) prints out as &A.

line This command opens.the register whose address is tﬁe current location

rees plus one, ilJe. the register after the one just opened. The outputAof DDT on
this command is carriage return, register address (format controlled by
the R-V mode), /, tab, value of contenté, tab.

;w(w=space) This is equivalent to line feed except that nothing is printed.
Its main use is in entering programs or data, e.g.

1000 1;02;,3 - (carriage return) |

is equivalent to

1000\ 1 (carriage return)
1001\ 2 (carriage return) '
1002\ 3 (carriage return)
1 This command opens the register whose address is the current location

minus one, i.e. the previous register. The output is the same as for the

line feed command.

Example:

ABC/ LDA ALPHA (Line feed)
ABC+1/ STA BETA STA GAMMA (line feed)
ABC+2/ IDB DELTA ¢t

ABC+1/ STA GAMMA

5\

30.40.10
December 2, 1966

Thié command opens the register whose address is the last lh‘bits
of the value of the last expression typed. The output is ﬁhe same as for
line feed. |

This command is the same as /, except that the contents of the register
are not typed. DDT goes into enter mode, in which tﬁe contents of registers
opened by line feed, t, or (are not typed. Any other command caused DDT
to go out of enter mode. 1In particular, carriage return has this effect.
When a register has been opened with \, DDT thinks that it has typed out
the contents. The type valuve commands will, therefore, work on the contents
of the register.

The type register in special mode characters [, }, $ (type as a negative

integer), " (type in ASCII) are also preserved by line feed, up arrow and (.

This command suppresses typeout of register addresses durinpg line feed,

up arrow and (chains. Carriage return cancels the command.

2.2 Type Value Commands

This command types the value of the last expression typed (;Q) in .
constant form. It may appear in the form <W> =, in which case the valve
of the <W> is typed. Otherwise, tﬁe expregsion referred to is the one most
recently typed, either by DDT or by the user.

' This command types the valve of ;Q as a signed integer.

This command types the valﬁe of ;@ in symbolic form.

This command types the value of ;Q typed as a word of text (see " command
on ﬁrevious page). ‘

This commahd types the address paft of ;Q in symbolic form. If, for
instance, the program has executedABRM X, then X\@ will cause DDT to print

the address of the BRM.

30.40.10
2-4
December 2, 1966

Example:

LDA= 7600000
ILDA 10= 7600010
LDA « LDA
7600000 LDA

-1= 71777777
-1 -1
TTTTTTTT# -1

10221043' ABC

2.3 Symbol Definition Commands
<& This command defines the.value of the symbol <S> to be the
current location. If <S> has been used but is undefined, it becomes global;
otherwise it becomes local and associated with the block which is primafy

vhen the : command is given.

<S> & This command defines the value of <S> to be the address of the lasgt

expression typed by DDT or the user. The symbol is local and associated with
the block which is primary when the (@ command is given.

<<S>> This defines <S> to have the valve of <E>, and to be global.

2.4 Mode Changing Commands

This command is followed by a string of arbitrary characters terminated
by D¢ (control D). 1If a register is open, the string will be inserted into
successive locations packed 3 characters per word; otherwise characters
beyond the third will be thrown away.‘ For example, if no register is open,
"ABCDED®= yields 10221043.

;D (DECIMAL) This command changes the current radix (see section 1.4).

;0 (OCTAL) This changes the current radix to octal.

<E> ;R (RADIX) sets the current radix to the value of the expression, wﬁ#;ﬁﬂm9§t 7
be >2.

H . (CONSTANT) This command changes the S-C mode to constant, i.e. makes /

equivalent to [.

30.40.10
2=5
December 2, 1966

3] (SYMBOLIC) This command changes the S-C mode to symbolic, i.e.

makes / equivalent to J.

3" (ASCII) This makes / equivalent to ".
;$ (SIGNED INTEGER) This makes / equivalent to $.
;R (RELATIVE) This command changes the R-V mode to relative. This

mode determines the format for the output of addresses, both in symbolic
expression and when generated by line feed and *.

3V (ABSOLUTE) This command changes the R-V mode to absolute.

2.5‘ Breakpoint Commands

<p>,<E>! (BREAKPOINT) <E>! sets breakpoint O at‘the uddress pgiven by the value
of the expression; <>, <E>! sets breakpoint N (N must be between O and 3
inclusive). The effect is that if the program executes the instruction at
this address control feturns to DDT, which will print the address and the
contents of the A, B and X fegisters and await further commands (see below).
The break occurs before execution of the instruction in the breakpoint

location. ;L is set to the location at which the break occurred.

! (CLEAR ALL BREAKPOINTS). ! alone causes all breakpoints to be cleared.
<>t (LIST OR CLEAR BREAKPOINTS)
<>;! causes breakpoint N to be removed, where N lies between O and 3

inclusive. ;! alone causes all breakpoints to be listed: if breakpoint 1
is set at ABC+3, and no other breakpoints are set, then ;! produces the
printout * ABC+3 * % .
<A>;P (PROCEED) This command restarts the program after a break. The

program executes the instruction at the break and goes on from there. No
breakpoint is removed unless this is specifically done by ! or ;. so that,
if the prbgram arrives at this location again, another break will occur.
If ;P is given,'another break will not occur until some breakpoint has

been reached that many times.

30.40.10
2-6
December 2, 1966

<A>3N (NEXT) This command executes the instruction at ;L and breaks.
This program provides a trace facility in that repeated executions of sN
will provide a running print out of the contents of the significant internal
registers, instruction by instruction. The function ‘is esséntially the same
as that of the step switch on the consocle. <E>;N will cause <E> instructions
to be executed before the next break occurs.

The ;N command follows the flow of control in the user's program. In
particular, it will normally trace the execution of users' POPs (see ;0
below). The execution of SYSPOPB,‘however, is not traced. 1In other words,
a SYSPOP such as FAD (floating add) is regarded as one instruction by ;N.
Cells ;F, ;F+l, and ;F+2 are used by ;N and ;P.

<E>;8S (STEP). This is equivalent to <E> repetitions of ;N. Note that this

is not the same as <E>;N.

<B;V (ADVANCE). This is equivalent to <E> repetitions of <P, and is not
the same as <E>;P.

<> ;0 (POP TRACE MODE). If <@b>0, programmed operators (POPs) together

' with their associated subroutines will be treated like machine instructions

for the ;N and ;S commands, i.e. the break will not occur until control
returns to the location following the POP. Since DDT determines when it
should break by counting POPs, BRMs, SBRMs, BRRs and SBRRs, it can be
fooled by POPs which do sufficiently peculiar things. TIf <¥><0, POP
subroutines will be traced, i.e. the first»break after the POP will be at
the first instruction of the subroutine.

<>3;U (SUBROUTINE TRACE MODE). If <N>=1, BRMs or SBRMs together with the
subroutine called will be treated as single instructions by ;N. The same
algorithm is used as in ;0 to determine when to break. If %N>=0, subroutines

will be traced explicitly.

30.40.10

2-7
December 2, 1966

Attempts to proceed through certain instructions having to do with
forks will produce erroneous results, and breakpoints encountered when
the program is running in a fork will not do the right thing. Attempts:

to proceed through unreasonable instructions will cause the error comment

$>> .

2.6 Input/Output Commands

< Y<F> DDT expects to find a binary program on the file <F>. I the

program is absolute it is read in. If it is relocatable it is read in and

relocated at the‘location specified by <k>; If the expression is omitted,
relocatable loading commences at location 24LOB and continues by bepginning
each program in the first aviailable location after the precediﬁg one.
After reading is complete, the first location not used by the program is
typed out. Any local symbols on the binary file are ignored.
<L T<F> This command is identical to ;Y except that is also reads local
symbols from the file and adds them to DDT's symbol table. Any symbols on
the file will be recognized by DDT thereafter. .
The following two points should be noted in connection with ;Y and ;T
commands. |
1) The use of an expression before ;T or ;Y when the file is
absolute (i.e. SAVE file or self-loading paper tape) is in error.

2) The block read in becomes the primary block.

s W<F> Causes all global symbols to be written on the specified file, in a
format which can be read back in with ;T.

3 C<F> Causes all symbols to be written on the specified file.
2.7 Search Commands

<> W (WORD SEARCH) <W>;W searches memory between the limits ;1 and ;

cells whose contents match <W> when both are masked by the value of ;

30.40.10
2-8
December 2, 1964

The locations and contents of all such cells are typed out.

<> # (NOT-WORD SEARCH). This is the same as ;W, except that all registers
which do not match <W> will be printed. This is useful, for example, in
finding and printing all non-zero registers in a given part of memory.

<E>3E (EFFECTIVE ADDRESS SEARCH). <E>;E searches memory between the limits
31 and ;2 for effective addresses equal to <E>. Indexing, if specified, ig
done with the vualue of ;X. Indirect address chains are followed to a depth
of 64. The addresses and contents of all words found aré typed out. When
;W or ;E is complete, . is left pointiné to the lést register whefe the

expression was found.

2.8 The Patch Command

<5) <p>) causes a patch to be inserted. If a register is open and an
expression is given, the expression is entered into the register. If a
register is open, or if no expression is typed, the patch is made at .
Otherwise, the patch is made at <A>. DDT inserts in this location a
branch to the current value of ;F. When the patch is done, ;F is updated.
it then gives a carriage return and a) and waits for the user to type
in the patch. Legal input consists of a series of expressions whose
valves are inserted in successive locations in memory. Each of these
expressions should be terminated by line feed or ;e&, exactly as though the
program were being typed in with' the \ command instead of as a patch. The *
command may be given in piace of the line feed and has 1ts usual meaning,
except that the contents of the previous 1oc#tion are not typed. Two
othe% commends are legal in patch mode. They are:

(1) Ccolon, which may be used to define a local symbol with value

equél to the current location.

30.40.10

2-9
December 2, 1966

(2) cCarriage return, which terminates the patch. When the

patch is termiﬁated, DDT inserts in the next available
location the original contents of the location at which the
patch was inserted. It then inserts in the following two
locations branch instructlons to the first and second locations
following the patch. This means that if the patch command is a
skip instruction, the program will continue to operate correctly.
Any other command given in patch mode may cause unpredictable
errors. '

<A1 Is identical to the) command except that it puts the instruction

being patched before the new code inserted by the programmer instead of after.

2.9 Miscellaneous Commands

3?2 and ? This commands erase everything typed since the last tab or carriage
return. Tt is always legal.

<E>;G (GO TO) <E>;C restores the A, B and X registers which were saved when
DDT was entered (unless they have been modified) and transfers to the
location specified by the value of the expression.

;K (KILL) This command resets DDT's symbol table to its initial state.
DDT will type back --OK and wait for a confirming dot. Any other character
will abort the command.

<S>;K (KTLL). Removes only the symbol <S> from the table.

,<E>;I, Sets ;1 and ;2 (the loﬁer and upper brounds for searcheé) to the
values oflthe first and second expressions respectively.

;U . (UNDEFINED). This command causes all undefined symbols to be listed.

<E>;U (EXECUTE). This causes the value of the expression to be executed as
an instruction. If it is a branch, control goes to the location branched to.

In all other cases control remains with DDT. A single carriage return is

typed before execution of the instruction. If the instruction does not

H)
3B

3 X

30.40.10
2-10
December 2, 1966

branch and does not skip, or returns to the following 1ocatioh, a $ and
another carriage return are typed afﬁer ité execution. TIf the instruction
does skip, two dollar signs ($$) are typed followed by a carriage return.
(7ERO) <E>,<BE>;Z sets to zero all locations between the value of the
first expression and that of the second. ;Z alone releases all memory
accessible to the user's program. DDT will type back --OK and wait for a
confirming dot. Any other characters will abort the command. If this
memory is returned, due to later access by DDT or a program, it will be

cleared to zero.

(LIST BLOCKS). The names of all blocks are printed.

2.10 Special Symbols

The valué of "." is the current location, i.e. the address of the
last register opened.

The following symbols refer to various special registers of the machine.
Their value is the contents of these registers as saved by DDT: ;X= will
print the saved contents of the X register. To change the contents of a
register, a command of the form <E>;A is used. This command sets the A
register to the value of the expression. Whenever DDT executes any command
involving execution of instructions in the user's program, it restores the
values of all machine registers. If any of these values have been changed
by the user, it is the changed value which will be restored.

The value of this symbol is the contents of the A register.

The value of thi; symbol is the conténts of the B register.

The value of this symbol is the contents of the X register.

The value of this SymBol i3 the contents of the program counter.

The only reason for chanéing 3L is to set the location from which ;N will

begin execution.

3Q

30.40.10
~-11
December 2, 1966

The values of the foliowing special symbols are used by DDT in certain
commands or are available to the programmér for his general enlightenment.
These values may be changed in the same way that the values of the symbols
for the central registers of the machine may be changed.

The value of this symbol is the mask for word searches.

The value of this symbol is the lower bound for word and effective

‘address searches. It may also he set by the ;L command.

The value of this symbol is the upper bound for word and effective
addresg searches. It may also be set by using ;L.

This symbol has a value equal to the value of the last expression
typed by DDT or the user. It is useful, for instance, if the programmer
wishes to add one to the contents of the open register; he need only type
3Q + 1.

The value of this symbol is the address of the lowest location in core
not used by the program. New literalé and patches are inserted starting
at this address. Note: like all other special symbols, ;F may be changed
by thé command <E>;F. Tt is also updated as necessary by patches and

literal definitions.

2.11 Panics
DDT recognizes four kinds of panic conditions:
(1) Illegal instruction panics from the user's program.
(2) Memory allocation exceeded panics from the user's program.
'(3) Panics generated by pushing the rubout button.
(4) Panics generated by the execution of BRS 10 in the user's program.
' For the first two of these conditions DDT prints out a message, the
location of the instruction at which the panic occurred, and the contents of

this location. The messages are as follows:

30.40.10
2-12
December 2, 1966

(1) 1Illegal instruction panic I>>

(2) Memory allocation exceeded M>>

(3) The other two types of panics cause DDT to type bell and

carriage return. ;L and . will both be equal to the location
at which the panic occurred.

If 1 memory allocation exceeded panic is caused by a transfer to an
illegal location, the contents of the location causing the panic 18 not
available and DDT, therefore, types a 2.

Two other panic conditions are possible in DDT.

(1) 1If the rubout button is pushed twice with no intervening typing

A by the user, control returns to the executive.

(?) 1If the rubout button is pushed while DDT is executing a command,

execution and typeout are terminated and DDT types carriage return

and bell and then awaits further commands.

2.12 Multiple Program Debugging
| It is occasionally desirable to hold several programs with different
maps and symbol tables in DDT simultaneously. This situstion could be
appro¥imated using the DUMP and RECOVER commands in the time-sharing
executive, but several commands are provided in DDT itself to facilitate
the process.
<Wi>,<Wé>;R (SET MAP). The pseudo-relabeling for the program is set accérding
to the value of <Wi> and <Wé>. This command is essentially equivalent to
executing BRS 44 with <W,> in A and <W> in B.
%E | (ERASE). DDT types --OK and waits for a confirming dot. Any other
character will abort the command. DDT then resets itself to its initial

state, i.e. the symbol table, program map, breakpoints and modes are all

reset. The program memory, however, is not released.

30.40.10
13
December 2, 1966
7D (DUMP). This command also requires a confirming dot. The
éntire state of DDT is saved away and a number typed out which will allow
this state to be retrieved by the R command (see below). DDT then
resets itself as described under 4E above.
“E>7R (RECOVER). This command requires a confirming dot. Tf the present
state of DDT hag ever been dumped (i.e. was produced by 9R), it is dumped
again. Then the state is restored exactly as it was when the 4D was piven,

whose number was the value of <E>. Using an illegal number for 4R can

lead to chaos.

DDT COMMAND
SUMMARY

(5

DDT SUMMARY (DDT1, 3-30-68)
(THERE ARE 245 LINES IN THIS FILE)

KEY?:
E SYMBOLIC OR NUMERIC EXPRESSION
S SYMBOLIC EXPRESSION
N NUMERIC
(N> GROUP NUMBER
R OPEN REGISTER
0 APPLIES TO JPERAND

GROUPS:

1 COMMANDS CONCERNING RADIX

2) COMMANDS TO EVALUATE EXPRESSIONS

3 OPENING REGISTERS

4) COMMANDS CONCERNING MODES

5 CLOSING REGISTERS AND INDIRECT ADDKESSING
(6 CENTRAL REGISTERS

«n SPECIAL REGISTERS

8> SYMBOL DEFINITION

(3 SYMBOL CONTROL

(10) WORD SEARCH

(1) PROGRAM ALTERATION

12) PROGRAM EXECUTION AND TRACING
(3 170

(14 ARITHMETIC

(15 LOGICAL

(16 DDT STATE & RELABELLING

(1D MISCELANEOUS:

(18) STRING PROCESSING

(1) RADIX

N3R SETS RADIX TO N

3D SETS RADIX TO 10

50 SETS RADIX TO 8

NB TAKES N AS BINARY (J3CTALD

ND TAKES N AS DECIMAL

2) EVALUATE EXPRESSIONS

(THE E BELOW MAY ALSO BE R OR JOPEN REGISTER)

E= TYPES VALUE OF E AS AN UNSIGNED INTEGER

E* TYPES VALUE OF E AS A SIGNED INTEGER

E~ TYPES E IN SYMBOLIC

E* TYPES E AS TEXT (3 OR 4 CHARS«3; SEEC4))

RO e TYPES OPERAND IN SYMBOLIC

Es~ TYPES E AS SYMBOLIC STRING POINTER (SEE (18)) :
Es* ASSUMES E IS ADDRESS J3F A PAIR JOF STRING POINTEKRS; TYPES STRING

O

(3> OPENING REGISTERS

E/ OPENS LOCATION E AND TYPES ITS CONTENTS IN THE CURRENT MODE
t OPENS PREVIOUS LOCATION IN SAME MODE USED FOR CURRENT REGISThr
LF OPENS FOLLOVWING LOCATION IN SAME MODE USED FOR CURRENT REGISTEK

3SPACE SAME AS LF
ECL OPENS LOCATION E AND TYPES ITS CONTENTS AS AN UNSIGNED INTEGER
E 1] OPENS LOCATION E AND TYPES ITS CONTENTS IN SYMBOLIC
E S$ OPENS LOCATION E AND TYPES ITS CONTENTS AS A SIGNED INTEGER
E* OPENS LOCATION E AND TYPES ITS CONTENTS AS TEXT (3 OR 4 CHARS.)
EN OPENS LOCATION E WITHOUT TYPING CONTENTS

(ONLY OPEN REGISTER COM. THAT APPLIES TO NEW MEMORY) .

(4) MODES (SETS THE CURRENT MODE AS INDICATED)
(4+1) REGISTERS
5] SYMBOLIC (SIGNED INTEGER IF MORE THAN 200 FROM SYMBOLIC LOC.)
(MODE USED WHEN ENTERING DD
;L UNSIGNED INTEGER
5% SIGNED INTEGER
3" ASCI1 (TEXT) (3 OR 4 CHARS. PER WIORD (SEE (4¢3))
(4.2) LABELS

R LABELS TYPED IN RELATIVE SYMBOLIC-(MODE UPON ENTERING DDT)

PRy, LABELS TYPED AS INTEGER .
C4.3) TEXT - i
53 THREE CHARACTERS PER WORD

;4 FOUR CHARACTERS PER WORD (DOES NOT APPLY TO ' COMMAND)

(5) REGISTER CLOSING AND INDIRECT ADDRESSING
(CONTENTS OF OPEN REGISTER PLACED BACK IN MEMORY)

RO « OPENS LOCATION O (OPERAND) OF THE LAST EXPRESSION TYPED OR
OF THE OPEN REGISTER (WHETHER TYPED OR NOT)

1 CLOSES CURRENT REGISTER AND OPENS PREVIOJOUS
LF CLOSES CURRENT REGISTER AND OPENS FOLLOWING
CR CLOSES CURRENT REGISTER

(6) CENTRAL REGISTERS

5A(2) TYPES THE CONTTENS OF THE A REGISTER IN MODE OF COMMAND (2)

EsA STORES THE VALUE OF E IN THE A REGISTER

3B(2) TYPES THE CONTENTS OF THE B REGISTER

E3B STORES THE VALUE OF E IN THE B REGISTER

;X(2) TYPES THE CONTENTS OF THE X REGISTER

E3X STORES THE VALUE OF E IN THE X REGISTER

3L(2) TYPES THE CONTENTS OF THE LOCATION COUNTER
E;L . STORES THE VALUE OF E IN THE LOCATION COUNTER

(7> SPECIAL REGISTERS

3F(2) TYPES THE CONTENTS OF THE FIRST AVAILABLE MEMORY REGISTER

ES3F STORES THE VALUE OF E AS THE FIRST AVAILABLE MEMORY
%#3(2) TYPES THE CONTENTS OF THE ORIGIN REGISTER (FIRST USED MEMORY)
S%3 STORE THE VALUE OF E AS THE CURRENT ORIGIN

(JPERANDS AND LABELS BELOW ORIGIN ARE TYPED AS INTEGERS)
2

(’.

C)\ h

[\

(8) SYMBOL OR LABEL DEFINITION

E<S> ASSIGNS THE VALUE OF E AS THE VALUE OF THE SYMBOL S

St ASSIGNS THE CURRENT LOCATION (.) AS THE VALUE OF THE SYMBOL
RO Se ASSIGNS THE OPERAND OF THE OPEN REGISTER AS THE VALUE OF THE
SYMBOL

(9) SYMBOL CONTROL

S3K KILLS SYMBOL S (IF S IS UNDEFINED, THE UNDEFINED QUEUE
IS LEFT IN MEMORY BUT THE SYMBOL IS KILLED)

;K KILLS ALL SYMBOLS (TYPE CR AFTER --0K)

35U LISTS ALL UNDEFINED SYMBOLS

% & TYPES BLOCK IDENTS.

E&3K KILLS ALL LOCAL SYMBOLS IN BLOCK
(10) WORD SEARCH

EsM SET THE MASK (USED BY ;W) TO THE VALUE JF E

Esl SETS THE LOVWER BOUND FOR A SEARCH TO THE VALUE OF E

Es2 SETS THE UPPER BOUND TO THE VALUE OF E

E1,E25L SETS THE LOWER BOUND TO E1 AND THE UFPPER BOUWND THE E2

EsW SEARCHES MEMORY BETVWEEN LOWER AND UPPER BOUNDS FOk LOCATIONS
WHICH MATCH E WHEN BOTH ARE MASKED BY THE VALUE QF ;M

ESE SEARCH MEMORY BETWEEN LOWER AND UPPER BOUNDS FOR EFFECTIVE
ADDRESS EQUAL TO E

E;# SAME AS ;W EXCEPT THAT ALL WORDS NOT MATCHING ARE TYPED

s # TYPES ALL WIRDS THAT ARE NOT ZERO

JE TYPEL ALL WORDS THAT HAVE OPERANDS EQUAL T3 ZERJ

(11) PROGRAM ALTERATION (PATCHES)

E) CAUSES INSTRUCTIONS TO BE INSERTED BEFORE LOCATION E

) CAUSES INSTRUCTIONS TO BE INSERTED BEFORE CURRENT LOCs (o)
E3l CAUSES INSTRUCTIONS TO BE INSERTED AFTER LOCATION E

3 CAUSES INSTRUCTIONS TO BE INSERTED AFTER CURRENT LOCATION

(INSTRUCTIONS PATCHED, PATCHES, AND LITERALS GJ ‘AT
LOCATION 3F WHICH MOVES F)

E1,E232Z CLEARS LOCATIONS BETWEEN E1 AND E2

(12) PKIGRAM EXECUTION

E! SETS BREAKPFOINT O TO THE ADDRESS E

NSE! SETS BREAKPJINT N (WHERE N CAN BE 0-3) TO THE ADDRESS E

! CLEARS ALL BREAKPJOINTS

3! LISTS ALL BREAKPOINTS

Ns! CLEARS BREAKPOINT N

E5;G STARTS EXECUTION AT LOCATION E

EZG REPLACES A WITH CURRENT INPUT FILE (COMMANDS -FROM OR TTY)

AND THEN STARTS EXECUTION AT LOCATION E
;P RESTARTS EXECUTION AT THE VALUE OF THE LOCATION COUNTER
N3P RESTARTS EXECUTION AT 3L AND BREAKS AFTER N BREAKPOINTS
HAVE BEEN REACHED

N EXECUTES THE NEXT INSTRUCTION AND THEN BREAKS

N3N EXECUTES N INSTRUCTIONS AND BREAKS

NsS EXECUTES THE NEXT INSTRUCTION, BREAKS, AND REPEATS THIS
SEQUENCE N TIMES ‘

N5V RESTARTS EXECUTION AT ;L AND THEN BREAKS AT EACH BREAKPOINT
FOR N BREAKPOINTS

0;0 CAUSES POP'S TO BE TREATED AS ONE INSTRUCTION FOR 3N & 3S

150 TRACES ALL POP°'S

050 CAUSES BRM'S AND SBRM'S TO BE TREATED AS ONE INSTRUCTION

15U TRACES ALL BRM'S AND SBRM'S

(13 INPUT/0UTPUT

5T /FILE/ LOADS BINARY FILE AND SYMBOL TABLE AT LOCATION
(ALSO LOADS SAVE OR GO T3 TYPE FILES)

E;T /FILE/ LOADS BINARY FILE AND SYMBOL TABLE AT LOCATION E

5Y LOADS BINARY FILE AND EXTERNAL SYMBOLS AT LOCATION ;F

E3Y LOADS BINARY FILE AND EXTERNAL SYMBOLS AT LOCATION E

W /FILE/ CAUSES ALL GLOBAL SYMBOLS TO BE WRITTEN ON THE SPECIFIED FILE

5C /FILE/ CAUSES ALL SYMBOLS TO BE WRITTEN ON THE SPECIFIED FILE

F

e

(14) ARITHMETIC (FOR EXPRESSIONS)

E1+E2 PERFORMS INTEGER ADDITION

E1-E2 SUBTRACTS E2 FROM EIl

E13/E2 DIVIDES Ei1 BY E2

El13;%xE2 MULTIPLIES El1 BY E2

E1 E2 (SPACE) SAME AS +

E13:N TAKES El MOD N (DIVIDES Ei1 BY N AND TAKES REMAINDER)

(15) LOGICAL (FOR EXPRESSIONS)
(RESULTS ARE 1 FOR TRUE AND O FOR FALSE)

E1;<E2 MAKES COMPARISON E1<E2
E13>E2 MAKES COMPARISON E1>E2

E1;=E2 MAKES COMPARISON E1=E2

E1;%E2 PERFORMS LOGICAL "OR'" (MERGES El AND E2)

E1;&E2 PERFORMS LOGICAL '"AND" (EXTRACTS E! AND E2)

E13.E2 PERFORMS LOGICAL EXCLUSIVE OR (DOES MACHINE INST. EOR)

(16> DDT STATE AND RELABELLING

E1,E23R SETS PROGRAM RELABELLING REGISTERS TO E1 AND E2

3z RELEASES PROGRAM MEMORY AND RESETS DDT TO ORIGINAL STATE

JK KILLS ALL SYMBOLS

%ZE RESETS DDT TO ORIGINAL STATE WITHOUT RELEASING PROGRAM MEMORY
2D SAVES CURRENT DDT STATE BY RELABELLING OUT SYMBOL TABLE

(TYPES N FOR THE FOLLOVWING)
NZ%ZR RESTORES DDT TO STATE SAVED BY 2D COMMAND

(17) MISCELANEQUS

;e STOPS TYPING OF CARRIAGE RETURNS & REDUCES TAB FROM 3 TO 1 SPACE
(USED WHEN DDT RUNNING UWNDER COMMAND-FROM PRO:GRAMS)
Z'"STRING'" COMMANDS-FROM COMMENT MODE, COPIES ALL CHARACTERS FROM THE
INPUT FILE TO THE OUTPUT FILE UNTIL THE SECOND " :

? I GNORES LAST TYPED INSTRUCTION OR STRING

* INDIRECT C(USED AFTER AN OP CODE, VALUE OF 40000B)
. CURRENT LOCATION

s SEPARATOR

ZF RETURN TO THE EXEC

"ASC DtC X ENTERS ASCII WORD OF 3 OR 4 CHARACTERS DEPENDING UPON MODE
WHERE X IS A COMMAND FROM GROUPS (2),(6)»(10)> ETC.
(DtC) IS CONTROL D

Ne OPERATION CODE DEFINITION
E5U EXECUTE INSTRUCTION (INSTRUCTION STORED AT ;F)
%V TYPES VERSION NOe.

¢18) STRING

E3- TYPES E AS A SYMBOLIC STRING POINTER IN THE FORM
E13+N WHERE El1 1S THE SYMBOL OF E/3 AND N IS THE REMAINDER
A ASSUMES E 1S ADDRESS OF A PAIR OF STRING POINTERS3 TYPES STRING

E3+N MAKES A STRING POINTER BY TAKING E * 3 + N
E5;-N MAKES A STRING POINTER BY TAKING E *x 3 - N

	001
	1_001_ARPAS
	1_002
	1_003
	1_004
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_2-01
	1_2-02
	1_2-03
	1_3-01
	1_3-02
	1_3-03
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_4-05
	1_4-06
	1_4-07
	1_5-01
	1_5-02
	1_6-01
	1_6-02
	1_6-03
	1_6-04
	1_6-05
	1_6-06
	1_6-07
	1_6-08
	1_6-09
	1_6-10
	1_6-11
	1_6-12
	1_6-13
	1_6-14
	1_6-15
	1_6-16
	1_6-17
	1_6-18
	1_7-01
	1_7-02
	1_7-03
	1_7-04
	1_7-05
	1_7-06
	1_7-07
	1_7-08
	1_7-09
	1_7-10
	1_7-11
	1_7-12
	1_7-13
	1_7-14
	1_7-15
	1_7-16
	1_7-17
	1_7-18
	1_7-19
	1_7-20
	1_7-21
	1_7-22
	1_7-23
	1_7-24
	1_7-25
	1_7-26
	1_7-27
	1_7-28
	1_7-29
	1_7-30
	1_7-31
	1_7-32
	1_7-33
	1_7-34
	1_8-01
	1_8-02
	1_8-03
	1_8-04
	1_9-01
	1_9-02
	1_A-01
	1_A-02
	1_A-03
	1_A-04
	1_A-05
	1_B-01
	2_001_DDT
	2_002
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_2-11
	2_2-12
	2_2-13
	3_00
	3_01
	3_02
	3_03
	3_04
	3_05

