
ARPAS 

REFERENCE MANUAL 

(tor the Tymshare assembler) 



This manual is a reprint of 
Document No. R .... 26 produced 
under ARPA Contract SD-185 
by thE:: University of Californic::. 
at Bc:=rkeley. 

Please address any 
comments to~ 
DIRECTOR OF 'tRAINING 
Tyn1sharei Inc. 
745 Distel Drive 
Los Altos, Calif.- 94022 



TABLE OF CON'TENTS 

1.0 Introduction • • • • • • • w • .. • • • • • · . . 1-1 
Basic Description of the Assembler · . 1 ... 1 1.1 

1.2 

1.3 
1.4 

Symbols ••• · . . ." . . " . . . " ... .. 1-1 

1.5 
1.6 
1.7 
1.8 

Instructions, Directives, and Comments 

Subprograms • • • • • 

Literals •••••• 

Relocation 

Basic Assembly Procedure 

Notation 

. . . . .. .. 
. . .. . .. . . . 

" .. . 1-2 

· • 1-2 

• 1-2 

• • 1-2 

• 1-3 
• . 1-4 

· . 2-1 
• 2-1 

2.0 The Assembly Language 

2.1 Charecter Set • 

2.2 Statements • 0 • • • • .. • • ••• 2-1 

2.3 Programs . . . . . . . . .. . . . . . . . 
The Syntax of Instructions • 

3.1 Their Classification 

oil • • • 

Use of the Label Field 

Operand Field • • • • • • • . . . 

3.5 

Alternate Conventions for Expressing 
Indexed and Indirect Addresses • 

Comment Field • . . · . . 

2-3 

• • 3-1 

• 3-1 
· 3-2 

• • 3-2 

. . . . 3-2 

• . • • 3-3 
4.0 Expression Syntax 

4.1 Operators ., .. . . .. 
· . 4-1 

... 4-1 

· • 4-2 

5.0 
G.o 

4.2 
4.3 
4.4 

Constants · . . 
Classification of Symbols • • 

Terms 

4.5 Expressions 

4-2 
4-3 
4-4 

4.6 Constraints of Relocatability of Expressions ••• 4-4 
4.7 Special Relocation 

Literals . . 

Directives ., . . .. " . . · . . 
6.1 
6.2 

COPY 

DATA 
Generalized Register Change Command • 

Generate Data 

6.3 TEXT Generate 'rext • 

4-5 
• • 5-1 

· 6-1 
· 6-2 
· 6-3 

· • 6-3 
6.4 ASC Generate Text with Three Characters per Word • 6-4 

6.5 t'QU Equals . . . .. . . . . . .. . . . .. • . .. .. . .. 6-4 

R-26 



6.6 EXT Define External Symbo-l • • • • • • • • 6-5 
6.7 NARG Equate Symbol to Number of Arguments 

in Macro Call . . • . • • • • • • • • • • · . . . . 6-6 
6.8 NCHR Equate Symbol to the Number of 

Characters in Operand • • • • • • • • • • • 

6.9 OPD Operation Code Definition •••• • • • 

6.10 POPD Programmed Operator Definition • 

6.11 BES Block Ending Symbol •••• 

6.12 

6.13 
6.14 

BSS 

ORG 

END 

Block Starting Symbol 

Program Origin 

End of Assembly • 

6.15 DEC Interpret Integers as Decimal • 

6.16 OCT Interpret Integers as Octal 

6.17 PAD Set Special Relocation Radix 

6.18 FRGT ForGet Name of Symbol 

6.19 !)ENT Program Identification • • • . 

6.20 DELSYM Delete Output of Symbol Table and 
Defined Op-codes . . • . . . • . . • • • 

• • 6-6 
. . • • 6-7 

· . . 6-7 
6-8 

· 6-9 
• •• 6-9 

6-9 

• 6-10 
· • 6-10 

• 6-10 
· . 6-11 

· 6-u 

· . 6-12 
6.21 P~LORG Assemble Relative with Absolute Origin •• 

6.22 RETREL Return to Relocatable Assembly • • . • 

6.23 FREEZE ~eserve Symbols, Op-codes, and Macros 

· 6-12 
· 6-13 

6-14 
6.24 NOEXT Do Not Create External Symbols 

6.:::.5 LIST Turn Specified Listing Controls On • 

6.26 NOLIST Turn Specified Listing Controls Off 

6.27 PAGE Begin New Page on Assembly Listing 

6.28 REM Type Out Remarks in Pass 2 

.. 0 Macros ana Conditional Assembly 

7.1 Introduction to Macros 

· • 6-15 
· .... 6-15 

6-15 . 

• •• tt • • 6-16 
. . •• 6-17 

· • 7-1 
7-1 

7.2 Macro Definitj.on • • • . • •• 7-2 
FIGURE 1: Information Flow During Macro Processing • • • • 7-4 
7.3 Macro Expansion ••••••••••••••.•••• 7-5 
'7.4 Macro Argtll"lents • • . • • • • • • • . • • • • . 

7·5 
7.6 
7.7 
7.8 

7.9 

The Use of Dummy Arguments in Macro Definitions 

Concatenation . • 

Generated Symbols • 

Conversion of a VRlue to n Digit String • • 

The NARG and NCHR Directives 

· 7-6 
· 7-8 

• 7-11 
7-12 

· . • 7-13 

• 7-14 



7.10 Conditionnl Assembly. 

7.11 The RPT Directive 

EXAMPLE 7-6 

EXAMPLE 7-7 

EXAMPLE 7-8 

EXAMPLE 7-9 

7.12 CRPT, Conditional Repeat ••••. 

7.13 :IT Capability . . • • . 

7.14 IF, Assemble if Expression True (i.e., > 0) 

EXAMPLE 7-10 . 

EXAMPLE 7-11 . . . . . 
7.15 Spec ial Symbols in Condit ional Assembly 

8.0 Assembler Error Messages ...•....•••• 

8.1 Error Messages . . . • . . • . • • • 

8.2 Interpretation of the Error Listing .•.• 

9.0 Assembler Operating Instructions 

9.1 Assembler Parameters .•••. 

APPENDIX A: Extended List of Instructions 

• • 7-15 
7-16 

7-17 

· 7-18 

· 7-19' 

· 7-20 
· 7-21 
· 7-21 

. • . 7-22 

7-24 

· . 7-26 

7-34 

· . 8-1 
8-1 

8-3 

9-1 
9-1 

APPENDIX B: Table of Trimmed ASCII Code for the SDS 930. 
A-I 

B-1 



1. 0 Introduction 

An assembler is a translator whose source language is assembll language 
, ' ¥ 

R-26 
~-~ 

and whose object code is actual machine language. Assembly langua~e is mostly 

a one-for~oL~ representation of machine language written in a symbolic form. 

Its value comes from being easier to read and from the facilities provided by 

the assembler for doing calculations at assembly time. These range from stmple -
address calcul?tions to complex conditional assemblies in whic,h totally 

different object programs may be generated, with the choice ?~ong them 

depending on the values of a few parRmeters. 

This section serves to define the terminology used. It is assumed that 
.,; 

* the p~ogramm~r is familiAr with the basic characteristics of the SD~ 940 . 

1.1 Basic Description of the Assembler 
, •.. p 

The assembler is a two-pass as~embler with subpro~r~~, literal, 

macro, and conditional assembly capabilities. 

1.2 SY!ebols 

Numbers m~y ~e represented symbolically in assembly language by 

symbols. A symbol is any string of letters and digits not forming a , 

constant. (Constants ere defined in Section 4.2). In particu~ar, it 

is not necessary that a symbol begin with a letter. Although symbols 

as written may be arbitrarilylOIlg, only the first six characters of a 

symbol are used to distinguish it from others. When A symbol is used to 

represent a memory address, it is called a label. Examples of symbols 

ar€-: 

START ZlC Al2 CALCULATE 

* Ref. to SDS 946 Computer Ref'erence Manual, No. 90 06 40A, August, 1966. 



1.3 Instructions, Directives. and Comments 

Input to the assembler takes the form of a sequence of statements 

callecl' instructions , directives, or comments. Instructions are symbolic 

representations 6f machine commands and are translated by the assembler 

R-26 
1-2 

into machine language. Directives, by contrast, are messages which serve 

to control the assembly process or create data. They mayor may not 

generate' output. Comments are ignored by the assembler, and serve only 

to clarify the meaninr- of a program. 

1. 4 SUbprograms 

Programs often become quite large or fall into logical divisions 

which are almost independent. In either case it is convenient to break 

them into pieces and assemble (and even debug) them separately. Separately 

assembled parts of the same program are called subprograms. 

Be~ore a program assembled in pieces as subprograms can be run it is 

necessary to load the pieces into memory and ~ them. The symbols used 

in a given subprogram are generally local to that subprogram. Subprograms 

do, however, need to refer to s,vmbo1s defined in other subprograms. The 

linking process takes care of such cross references. Symbols used for it 

are called external symbols. 

1. 5 Li terals 

Often data is placed in programs at assembly t'ime. It is frequently 
...... 

convenient to refer to constants ~ value than by label. A literal is a 

symbolic reference to a datum by value. The assembler allows any type of 

expression to be used as a literal. Some examples of literals are: 

=5 =3*X'YZ-2 ='END' =EXTERN 

1.6 Relocation 

A relocatable program is one in which memory locations have been 

computed relative to the first word or origin of the program. A loader 



(for this assembler, DDT) can then place the assembled program into 

core peg,inning at whatever lacntion may be specified at load time. 

Placement of the program involves a small calculation. Far example, 

if a memory reference is to the nth ward of a program, and if the program 

is loaded beginning at lacRtion k, the loader must transform the reference 

into absalute location n+k. 

This calculatian shauld not be done to each word of a program since 

some machine instructions (shifts, for example) do not refer to memory 

locations. It is therefore necessary to inform the laader whether or not 

to relocate the address for each word of the program. Reloca~tion lnfor-

mation is determined flutomatically by the assembler and transmitted to 

the loader as a binary quantity cnlleq the relocation value. If R = 1 

the operand is to be relocated; if R = 0 the operand is I'lbsolute. 

Constants or data may similarly require relocation, the difference 

R-26 
1-3 

here being that the relocatian calculation shauld apply to all 24 bits of the 

940 word, not just to the address field. The assembler accounts for this 

difference automatically. 

It is possible to disable relocation in the assembler and to do 

absolute assembly. In this event there is an option which produces a 

paper tape which can be laaded using the 940 fill switch. 

1.7 Basic Assembly Procedu~ 

During pass 1 of the two-pass process the operands of instructions and 

some directives are scanned far the presence of single symbols. If a single 

symbol is present, a table of symbols is searched. If absent, the symbol is 

added to the tnble but marked as nat yet defined, i.e., havinv, no value. 

Labels are placed into the symbol table in similar fashion, except that 

they are aSSigned the current value of the location counter, a word within 

the assembler which contains the relative Address of the instruction. If 

a label has been previously defined, it is marked 8S a duplicate symbol 



(this is taken to be an error). 

At the end of pass 1 the symbol table is sorted. All symbols present 

h~ving no value are assumed to be external. These symbols are then output 

by the assembler for later use by the loader. During pass 2 the labels 

R-26 
1-4 

are not computed; rather, the operand fields of instructions and directives 

are evaluated using the now known symbol values. 

In absolute assemblies the scan for single symbols in pass 1 is 

disabled. This has the effect of doing away with external symbols. 

1.8 Notation 

In the following pages, square brackets [ ) are used to indicate the 

presence of optional quantities. 



2.0 The Assemblx Language 

2.1 r.haracter Set 

The classes of characters recognized by the assembler ~re as follows: 

~a) digits 

(b) 

(c) 

(d' 

(e) 

(1). octal 0-7 

(2) decimal 0-9 

letters A-Z 

alphanumerics 0-9 and A-Z 

delimiters + - * I , ( ) , , 

special characters <> 

= $ blank +-

? [ ] " 
Note that the characters ! # % & @ \ t which are normally found on standard 

Teletypes are not recognized by the assembler. Use of them in ~.~rQ~am 
~ .. , ' 

will result in their being replaced by blanks. , . 

2.2 Statements 

Statements are logical units of input. They may be delimited either 

by being placed on separate lines or by being separated with semi-colons. 

Semi-colons do ~ot serve as statement delimiters when used between single 
, . 

quotes (as in the TEXT directive) or inside of matched parentheses (as in 

arguments of macro callS). Examples of statements are 

or 

START LDA 
MUL 
STA 

DAT2l 
2lB, 
ANSWER 

START LDA DAT2l; MUL 21B; STA ANSWER 
,-I - ~;. , 

If a statement requires more than one line for any reason, it can be 
. ;",:, 

continued on the next line by typing a + in the first column of the next line. 

Thus: 

START LDA DAT2l; MUL 2lB; STA ANSWER 'l'H!J Qa.1 
+MENT ON THIS LINE REQUmES A CONTINUAI'ION 

This kind of continuation may be done for about five lines (320 Characters). 



R-26 
2-2 

Each non-blank statement is an instruction, a directive, or a 

comment. Blank statements are ignored. Comments begin with an asterisk; 

they have absolutely no effect on the program being assembled and serve 

only as annotations to clarify the mea.ning of the assembly language. 

Directives and instructions are divided into four fields. The 

fields are, from left to right, the label field, the operation field, the 

operand field, and the comment field. The assembler is a free-form 

assembler; its various fields are delimited by blllnks rather than 

restricting them to fixed places in a line. This is explained in more 

deta n 'be low. 

The label field is used mostly for symbol definitions. It begins 

with the'first character in the statement and ends on the first non-

alphanumeric character. (The blank is usually the only legal terminator.) 

Thus, in the following statements the symbol XIZ appears in label fields. 

X1Z LDA =10 
STA DEF;XlZ LDA =10; LDB* LMN 

The operation field contains (usually) a symbolic operation code or 

directive name. It begins with the first non-blank character after the 

termination of the label field. In the statements above, each operation 

field begins in a different pOSition. Like the label field, the operation 

field terminates on the first non-alphanumeric character. Legal 

terminators are the blank, asterisk, semi-colon, and carriage return. 

The operand and comment fields each begi~ with the first non-blank 

character after the termination of the preceding field. The oper~nd 

field terminates on the first blank or semi-colon not between matched 

single quotes or parentheses. The carriage return always terminates~he 

field (and the statement). The comment field terminates on a semi-colon 
~k ", ..~ 



or carri'.l.ge return. This field, like the comment statement, is not used 

by the assembler; it may contain anything. 

~ . 3 Programs 

A ~rogram consists of a sequence of statements terminated by an END 

directive. Normally programs are assembled in relocatable form. A 

program is assembled in absolute self-loading form if it begins with an 

ORG directive. It is possible (by using RELORG) to make an absolute 

assembly to be loaded by DDT. 

R-26 
2-3 



3.0 The SlDtax of Instructions 

3.1 Their Classification 

(a) Class 1 (normal instructions). 

Class 1 instructions in general use the operand field. Its 

absence implies the value zero. It is possible to ,specify fpr each 

Class 1 instruction whether or not the operand field must be present • 
. . , .......,.... !, 

It is also possible to specify that bit ° of the instruction word is 
, " -~, , "t 

to be set to one (as in SYSPOPs). There are two types,of s~ass 1 

instructions: 

(1) type 0 

The address is formed mod 214. All ins;tructions, 

making memory references are of this type. 
-. ' . ' :' - " 

(2) type 1 

The operand is formed mod 29. This type is used for 
" 

shift instructions. If indirect addressing is used with 

. this type, the address is forme~ 'mOd 2i4.' 

Class 1 instructions have the following form: 
~. ~ .. 

[[$)label] opcode[*] [operand[,tag]], [comment] 

Indirect addressing is signified by an asterisk Umnediately 

R-26 
3-1 

following the operation code or by preceding the operand,wit~ ~. 

The uS,e of the dollar sign is explained in 3.2 The ta~.is used 

to specify bits 0, 1 and 2 of the 940 instruction word • 
• " - I' • .,,' 

(b) Class 2 (complete or full word instructions). 

Class 2 instructions have no operand field. Indirect addressing 

is signified by an asterisk immediately following the operation 

code. Class 2 instructions have the following form: 

[[$]l.abel] opcode[*] [comment] 
" 



(c) Numeric op codes. 

Operation codes may be specified as decimal or octal numbers, 

as for example: 

[[$]label) 76B[*] [operand[,tag]] [comment] 

R-26 
3-2 

The assembler shifts the numeric op code (modulo 1778) left to 

the correct position in the instruction word. In such cases, the 

op code is assumed to be Class 1, type 0, no operand required, 

and with bit 0 not set. 

3.2 Use of the Label Field 

A label identifies the instruction or data word being generated. The 

~;:i1:lbol used in the label field is given the current value of the location 

co~mter. Instructions will have labels normally if they are referred to 

elSC1.-hcre in the program, although it is not necessary that symbols defined 

in this way be used in references. Symbols defined but not used are called 

nulls; they are marked as such in the assembly listing and explicitly 

typed out at the end of an assembly. 

If the same symbol appears in the label field of more than one 

ir.struction, it is marked as a duplicate and given the newer value. 

A $ preceding a label causes an external symbol definition (Cf. 6.6). 

3.3 Operand Fiel~ 

The operand field contains at most two arithmetic expressions (or a 

literal and one expression) used to determine the operand and tag of the 

machine command. The tag, if present, is evaluated mod 23 and m~st be 

absolute (i.e. non-relocatable). 

3.4 ,Uternate Conventions for Expressing Indexed & Indirect Addresses 

It is possible to express both the use of indexing and indirect 

';cluressing in an alternative manner. In each case a special character 



is placed nt the beginning of the operand field. These characters are / 

for indexing and f- for indirect addressing. Thus, for example, 

LDA VECTOR,2 is the same as LDA /VECTOR 

and 

STA* POINTR is the same as STA HJOlliTR 

Similarly, 

LDA* COMPLX, 2 may be written either as 

LDA / f-COMPLX 

or LDA ~COMPLX 

Anything normally useful may follow the initial f- or /, for example 

LDA-=CHAIN (LDA* =CHAIN) 

This alternate way of expressing indexing and indirect addressing 

may be used by programmers as they choose. It was devised to iimplify 

the indication of these operations in the use of macros (see chapter 7). 

3.5 Comment Field 

The comment field is not processed by the assembler, but i£ ~v~ied 

to the assembly listing. 

R-26 
3-3 



4.0 Expression Syntax 

R-26 
4-1 

The assembler evaluates expressions as 24-bit, signed integers. Expressions 

consist of constants and symbols connected by operators. Examples of expressions 

are: 

lOO-2*ABC(OR)DEF/27B 

22 

Cl2>D19 

Expressions are evaluated from left to right, some operators taking precedence 

over others. As an expression is evaluated, a parallel calC1Jlation of. its 

relocation value R is made. Only absolute expressions (R = 0) F.md relocatable 

expressions (R = 1) are legal (cf. 4.7). 

4.1 Operators 

The operators recognized by the assembler and their precedence are 

given below. Operators of highest precedence are applied first in 

evaluation of expressions. 

Operator Precedence 

(a) unary 

+ 4 
4 

.. 

(NOT) 4 

(R) 4. (cf. 4.7) 

(b) relational 
(18S) or < 3 
(GRT) or> 3 

(EQU) or = 3 
(c) binary 

* 2 

/ 2 

(P.ND) 2 

+ 1 

1 

(OR) 1 

(EOR) 1 



Note that some operators are more than one character long. These 

are enclosed in parentheses to avoid confusion with symbols which would 

~therwise look the same. Parentheses are therefore not allowed in 

expressions to delineate terms and modify the order of evaluation. 

The relational operators give rise to a value 1 if the relation is 

true and 0 if false. There may be only one relntional operator in an 

expresaion. 

4.2 Constants 

Constants are of three types: 

(a) decimal integers: one or more decimal ch~racters possibly 

terminated with the letter D. 

2129, 6ooD, -217 

R-26 
4-2 

(b) octal integers: one or more octal characters possibly terminated 

with the letter B and optionally a single-digit octal scaling 

factor. 

217, 32B, 4B3 (which is the same as 40008) 

(c) string: '1-4 characters (except ,), 

All constants ~re absolute, i.e., their relocation value is O. 

The assembler normally expects integers to be decimal. This can 

be changed, however, by using a directive (OCT or DEC). In any case, 

integers may be terminated with B or D, overriding the normal inter-

pretation of integers. String constants are not normally useful in the 

direct computation of memory addresses, but exist basically to be used 

in literals (cf. 5.0). 

l~. 3 Classification of Symbols 

The assembler recognizes the following types of symbols: 

(a) local symbols: These symbols are defined by their use in the 

label field of instructions and in some directives. Their 



R-26 
4-3 

value is that of the location counter at their definition. They 

are thus symbolic addresses of memory cells. These symbols are 

relocatable (R = I) if the assembly is relocatable; if the 

assembly is absolute, they are absolute. Once having b.een 

defined, a local symbol may not be redefined. Attempts to do so 

are considered errors, and diagnostiCs result. 

(b) equated symbols: Equated symbols may be defined by equating 

them to an expression (using directives EQU, NARG, or NCHR). 

Their relocation value will be that of the expression. Unlike 

local symbols, equated symbols maybe given new values at any 

point in the program. 

(c) current location counter symbol ,(~): The character *, if used 

. in the :proper context, is understood to mem the current value 

of the location counter. It is relocatable or absolute 

depending on the nature of the assembly. 

(d) .ex,tern.al symbols: External symbols are those whicb are used 

but not defined in a given subprogram. They can bea'ssigned 

no value, and it is not reasonable to regard them either as 

absolute or relocatable. External symbols may be used only as 

the sole object in an expreSSion; other than its appearance as 

a sale object, the external symbol may not be used in an 

,expression. 

4.4 Terms 
. ". 

Terms are either constants or symbols, optionally preceded by a unary 

op~rator. The unary operator serves to modify both the value of the term 



C;(l its relocation value. One unary operator -- special relocation, (R) 

:-';'Y set the reloc:,tion value of a term to any vR.lue. This feature is 

expJ: ined in much more deta il in 4.7. 

4.5 Expressions 

R-26 
4-4 

Expressions mny consist of one or more terms connected by bin:lry operators, 

or they mny be just rl single external symbol. Their evaluation proceeds 

from left to right us ing oper~ttors of decrens ing precedence. For example, 

let A = 100, B ~ 200, and C = -1. Then 

A+B*C/A = 98 

Again, letting A = 543218, B = 444448, and C = 000778, then 

A(OR)B(AND)C = 543658 

;~.6 Con~traints of Relocatability of Expressions 

';:'he implementation of the assembler forces the following constraints 

on the use of expressions: 

Co:) No relocatable term (R = 1) may occur in conjunction with the 

operators * or I. In other words, no relocatable symbol may 

multiply, be multiplied by, divide, or be divided by anything. 

(1) In the abrence of the special relocation operator (R) the 

final relocation value of an expreSSion may be only 0 or 1. 

It is possible that the relocntion value may attain other 

values in the course of evaluation. 

(c) If' the special relocation operator (R) appears in an expreSSion, 

then the reloc'ltion value of the expression may be either 0 or 

some other value K, where K is the special relocation radix. DDT 

is informed by the assembler that special relocation is being used 

in this case. DDT will then multiply the base address by K 

before adding it to the value of the expreSSion (see next section). 



4.7 Special Relocation 
.~ ~ . 

The special relocation feature has been provided to permit the 
." '!'!'" 

programmer limited use of expressions which are not absolute or singly 

reloc<table. To see why this is desirable, and how it works, consider 

the process of assembling and loading a relocatable progr~. Let the 
.... ~. 

symbol A have value a. If one writes 

LDA A 

the assembler produces 

076 a 
t ;; 

and marks the instruction I s address as being relocatable. Later when 

told to load the program beginning at base address b, DDT will form 
""1 

076 a+b 

R-26 
4-5 

Thus no m!?tter where the program is loaded, the memory reference will be to 

the ath word from the base address. 

Now suppose one writes 
. , 

LDt, 2*A 

The assembler, of course, can form 

076 2*0. 

and presumably what DDT should form is 

076 2*a+2*b = 076 2*(a+b) 

To do this, it must be told that b is to be multiplied ~pecifically by 2. 
~ . ~, " ::-,:. 

Only one bit is :!:"eserved, however, for such information in the assembler's 
"'~ .:<;. 

binary output; it is this fact which causes the restriction that 

expressions may have only the relocation values 0 and 1. And this 

restriction can be gotten .around (inelegantly) by the use of (R). 

The following example gives one of the main reasons for which (R) was. 
"-,, , , 

put into the assembler. 



Programs may make use of the string-handling SYSFOPs of the 940. 

These instructions use string P2L~ters, two-word objects containing 

starting and ending character addresses. Now characters are packed 

three per word. A character address therefore consists of the memory 

address containing the character multiplied by 3 plus 0, 1, or 2 

depending on the position of the character in the word. If a character 

address is divided by 3, the quotient gives the word address and the 

remainder the character position in the word. 

To form a character address at assembly time, one must be able to 

multiply a word address (a relocatable item) by a constant (in this 

case, 3). This is the reason for special relocation. The statement 

DATA (R)A+l 

will produce the value 

3*a+l 

together with a notation to DDT that special relocation applies to that 

value. 

DDT will then form the value 

(3*a+l)+3*b = 3*(a+b)+1 

s~bol, representing a relocatable word address, may thus be used to form 

character addresses in string pointers. There are other examples for the 

need for special relocntion, but they will not be mentioned here. Let it 

suffice to say that special relocation is merely a device to make up 

partially for the rather severe relocation constrnints the assembler 

~Bes upon programmers. 

It should be pointed out that the multiplicative constant associated 

with tR) in the example above was 3 because of the nature of string 

pointers. This constant is called the special relocation radix.· It need 

not be 3 always. In fact, it may be changed to any value by the directive 



RAD. Because of the relative importance of string pointers, however, 

the assembler is initialized with this value set to 3; it is hence 

unnecessary to use RAD to set it to 3 unless it hus been changed for 

some reason. 

n-26 
4-7 



5.0 Literclls 

Progrmnmers frequently v11'ite such things as 
.f _: 

WI", FIVE 

where FIVE is the name of 'i cell containing the const:mt 5. The programmer 

must remember to include the datum FIVE in his program somewhere. This can 

be 2voided by the use of a literal. 

LDA =5 

will produce automatically a locntion containing the correct constant in the 

progrnm. Such a construct is c:llled '1 literal. 

LiterRls are of the form 

=expression 

When encountering a liter'll, the Assembler first evaluates the expression and 

looks up its vnlue in a t~jble of literals constructed for each subprogram. 

If it is not found in the table, the value is placed there. In any case the 

literal itself if repl'lced by the location of its vctlue in the literal table. 

At the end of 2.ssembly the literal t~lble is plnced after the sub-program. 

The following nre examples of literals: 

=10 ::::ABC*20-DEF/12 ='HELP' 

(This is a conditional literal. Its value will be I or 0 
depending on whether 2=AB at assembly time.) 

Some programmers tend to forget that the literal table follows the 

subprogram. This could be harmful if the program ended with the declaration 

of a large Clrray using the statement 

ARRAY BSS I 

It is not strictly correct to do thiS, but some programmers attempt it anyway 

R-26 
5-1 

on the theory th;1t all they want to do is to n,'ime the first cell of the array. 

The above statement will do that, of course, but only one cell will be reserved 

for the array. If any literals were used in the subprogram, they would be 



plnced in the following cells which now fall into the nrray. This is, of 

caurse, an error. Other thqn the above exception, the programmer need not 

concern himself with the locations of the literal values. 

R-26 
5-2 



6.0 Directives 

There is a large number of directives associated with this assembler. 
; J' 

Although many of the directives are similar, each in general has its own 
. ~'. 

syntax. A concise summary is given below: 

Class 

Data Generation: 

Value Declaration: 

issembler Control~ 

Output & Listing 
Control: 

Macro Generation 
& Conditional 

Assembly: 

Directive 

COpy 
DATA 
TEXT 
ASC 

EQ,U 
EXT 
NARG 
NCHR 
OPD 
pOP]) 

BES 
BSS 
ORG 
Er\il) 

DEC 
OCT 
RAD 
FRGT 
IDENT 
DELSYM 
RELORG 
RETREL 
FREEZE 
NOEXT 

LIST 
NOLIST 
PAGE 
REM 

MACRO 
ENDM 
RPT 
CRPr 
ENDR 
IF 
ELSF 
ELSE 
ENDF 

Use/Function 

Facilitates use of RCH command 
Generation of data 
Generation of text 
Generation of t~xt 

.' . 

Setting or. changing symbol v3.lues 
Defining external symbols 
See 
See 
Defining new op codes 
Defining pon codes 

Block ending symbol 
Block starting symbol 
Origin: absolute assembly 
End of progr8!'1 .. 
Interpret integers as dec~al 
Interpret integers as octal 
Set special relocation radix 
Forget .nfiJrle of symbol 
Identify name of program 
Do not transmit symbols to loader 
See 6.21 
See 6.22 

, ~ t 

Preserve symbols and macros 
Do not create external symbols 

Set listing flags 
Reset listing flags 
Skip to new page on listing 
Type out remarks in pass 2 

Head of macro body 
End of macro body 
Begin repeat body 
Begin conditional repeat body 
End repeat body 
Begin if body 
Alternative if body 
Alterna~ive if body 
End of if body 

R .. 26 
6-1 



6.1 COPY Generalized Register Change Command 

[($]label] COPY sl,s2,s3"" (comment] 

R-26 
6-2 

where s. are symbols from a special 
set assOciated with the COpy directive 

The COPY directive produces an RCH instruction. It takes in its operand 

field a series of special symbols, each standing for a bit in the address 

field of the instruction. The bits selected by a given choice of symbols 

are merged together to form the address. For example, instead of using 

the instruction CAB (04600004), one could write COPY AB. The special 

symbol AB has the value 00000004. 

The advantage of the directive is that unusual combinations of bits 

in the address field -- those for which there exist no~ally no operation 

codes -- may be created quite naturally. The special symbols are mnemonics 

for the functions of the various bits. Moreover~ these symbols have this 

special meaning only when used with this directive; there is no restriction 

on their use either as symbols or op codes elsewhere in a program. The 

symbols are: 

SY!'!bol 

A 
B 
AB 
BA 
BX 
XB 
E 
XA 
AX 
N 
X 

Bit -
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
2 

Function 

Clear A 
Clear B 

g~; l~~ :! 
Copy B) -+ X 
Copy X) -+ B 
Bits 15-23 (exponent part) only 
Copy (X) -+ A 
Copy (A) -+ X 
Copy -(A) -+ A (negate A) 
Clear X " . 

To exchange the contents of the B and X registers, negate A, and only 

for bits 15-23 of all registers, one would write 

COpy BX,XB,N,E 



Of course, the symbols may be written in any order. 

Clever programmers please note: This directive facilitates nicely 

some special RCH functions which might not otherwise be _attempted (it 

is usually too much trouble). For example, 

COpy AX,BX 

has the effect of loading into X the logical OR (merging) of the A and B 

registers. Interested readers are referred to the SDS 940 manual for more 

details of the RCH instruction. 

6.2 DATA Generate Data 

[[$]label] [comment] 

The DATA directive is used to produce data in programs. Each expression 

in the operand field is evaluated and the 24-bit values aSSigned to 

increasing memory locations. One or more expressions may be present. 

The label is assigned to the location of the first expression. The effect 

of this directive is to create a list of data, the first word of which may 

be labeled. 

Since the expressions are not restricted in any way, any type of 

data can be created with this directive. For example: 

DATA lOO,-217B,START,AB*2/DEF,'NUTS',5 

6.3 TEXT Generate Text 

[($]label] TEXT 'text' [comment] 

or, 

[[$]label] TEXT expression,text {comment} 

The TEXT directive is used to create a string of 6-bit trimmed ASCII 

cnaracters, packed four to a word and aSSigned to increasing memory 

locations. The first word of the string may be labeled. The string to be 

packed may be delineated either by enclosing it in quotes (as in the first 

R-26 
6-3 



crJse above) or by preceding it with a word count (as in the second case). 

The second form of the directive must be used, of course, if the string 

';ont3 ins one or more quotes. A potential hazard arising here should be 

pointed out. If;' statement contnins n single quote (or any odd number 

of them), it will not terminate with a semi-colon; a carriage return must 

be used. 

TEXT 4,THIS WON'T WORK; TEXT 4,DISASTER AHEAD 

In the line above the semi-colon will be part of the text, and the second 

statement will be interpreted as being in the comment field, 

TEXT 

TEXT 

4, THIS WILL ' 

1,A-OK 

In the first form of the directive, characters in the last word are 

.. : ft-justified nnd. rem.:tining p03itions filled in by blanks (octal 00) . 

. :. the seccmd form, sufficient chllrncters are packed to sntisfy the word 

count. 

~ , 
,,4 ~ Qc·nerate Text with Three Characters per Word 

This directive is identical tn form nnd use to TEXT, except that 

.3-~it charncters nre p:}cked three ~~. l rne 940 string processing 

fS teUl normally c.e ,lls with such te:~t. 

6.5 EQU Equuls 

($]symbol EQU expression [comment] 

The EQU directive causes the symbol in its label field to be defined 

and/or given the v3lue of the expression. The expression must have a 

R-26 
6-4 

'"Glue when EQU is first encountered; i.e., symbols present in it must have 

i.Jecn previously d<::fined. It is permis!:':iblp to redefine by EQU Imy sYl!!:bol 

'oreviously defined by EQU (or NARG or NCHR, cf. below). This ability is 

.'[Jrticularly useful in macros and conditional assembly. 



6.6 EXT Define External SYffibol 

There are four ways Which may be used to define external symbols. 

(a) $label opcode or directive operand, etc. 

The $ preceding the label causes the symbol in the label field 

to be defined externally at the same time it is defined locally. 

(b) symbol EXT (comment not permitted) 

The symbol given in the label field is defined externally. 

This symbol must have been defined previously in the program. 

The operand and comment fields must be absent. 

Both of the above forms have the same effect; the name and value of a local 

symbol is given to the loader for external purposes. 
" ". .' 

Occasionally it is desirable to define an external symbol whose name 

is different from that of a local symbol; or an external symbol may be 

defined in terms of an expression involving local symbols. There are 

two ways of doing this. 

(c) $symbol EQU expression 

(d) symbol EXT expression 

[comment] 

[comment] 

In (c) above the symbol is defined both locally and externally at the same 

time. (d) differs subtly in that the symbo~"in the label field is defined 

only externally; its name and value are completely unknown to the local 

program. 
." 

R-26 
6-5 

The feature (d) above is particularly useful in situations where two or 

mnre subprograms loaded together have name conflicts. For example, suppose 

programs A and B both make use of the symbol START, and A not only refers 

to its own START but B t S as well-The latter references can be changed to 

BEGIN. Then into program B can be inserted the line 

BEGm EXT START 

No other changes need be made either to A or B. 



Occasionally, after having written n pro,gram, one would like to make 

a list of loc~l symbols to be externully defined. A built-in macro ENTRY 

serves this function. That it is a built-in macro is irrelevant; the 

progrwmmer may think of it as a related directive. Thus 

ENTRY A,B,C,D, ... 

is precisely equivalent to 

A EXT 
B EXT 
C EXT 
D EXT 

6.7 NARG Equate Symbol to Number of Arguments in Macro Cnll 

[ $ J syrobol NARG [comment] 

This directive may be used only in macro definitions. It is mentioned 

here only for completeness. It operates exactly as EQU except that in 

pl&ce of an expression in the operand field, the value of the symbol is 

set to the number of arguments used in calling the macro currently being 

expanded. Cf. 7.9 below. 

6.8 HCRR Equate Symbol to the Number of Characters in Qperand 

[$]symbol NCRR operand [comment] 

This directive is intended for use mostly in macro definitions, but it 

may be used elsewhere. It operates exactly as EQU except that in place 

of an expression in the operand field, the value of the symbol is set to 

the number of characters included in the operand field. A further 

explanation of the utility of this directive is deferred to section 7. 

R-26 
6-6 



6.90PD Operation Code Definition 

The OPD directive gives the programmer the facility to add to the 

existing table of operation codes kept in the assembler new codes or to 

change the equivalences of current ones. The form of OPO is: 

opcode OPD expression,elass[,ar(,type[,sb]]] [comment] 

where: 1) class must be 1 or 2 (cf. Section 3.1). 

2) ar (address required) may be 0 or 1 

3) type may be 0 or 1 (cf. Section 3.1). 

4) sb (sign bit) may be 0 or 1 

Quantities governed by the optional terms above (2,3 and 4) are set to 

zero if the terms are missing. As examples of how the directive is used, 

some standard machine instructions are defined t,1S, follows: 

CLA 

LDA 

RCY 

OPD 

OPD 

OPD 

0460000113, 2 

7611),1,1 

662B4,1,1,1 (TYPE 1 = SHIFT) 

A hypothetical SYSPOP LLA might be defined by 

LLA OPD 110:85,1,1,0,1 

(class 1, address required, type 0, sign bit set). 

In operation, the assembler simply adds new op codes defined by Opo 

to its ope ode table. This table is always searched backward, so the new 

codes are seen first. At the beginning of the second pass the orig1~al 

table boundary is reset; thus if an opcode is redefined somewhere duri~g 

assembly;, it is treated identically in both passes. 

6.10 POPD Programmed Operator Definition 

In programs containing POPs it is desirable to provide the POPD 

directive. This directive works exactly like OPO and is used in the'same 
.. ~ 

way. Its essential difference from OPD is that it places automatically 

R-26 
6-7 



in the pop transfer vector (lOOe - l77e ) a branch instruction to the body 

of the pop routine. 

In order to do this the assembler must know two things: 

R-26 
6-e 

(1) the location for the branch instruction in the transfer vector and 

(2) the location of the pop routine (i.e. the address of the branch 

instruct ion) . 

Item (1) is given by the pop code itself. Item (2) is provided by the 

convention that the POPD must ~ediately precede the body of the pop 

routine. The address of the branch instruction placed in the transfer 

vector is the current value of the location counter. 

If the automatic insertion of a word in the pop transfer vector is 

not desired, then OPD should be used instead.. An example of this case 

would. occur in a subprogram containing a pop whose routine is found in 

another subprogram. 

6.11 BES Block Endins Symbol 

[[$]label] BES expression [comment] 

The use of BES reserves a block of storage for which the first location 

after the block may be labeled (i.e. if the label is given). The block 

size is determined by the value of the expression; it must therefore be 

absolute, and it must have a value when BES is first encountered, (symbols 

present must have been previously defined). BES is most useful for 

labeling a block which is to be referred to by indexing using the BRS 

instruction (where the contents of X are usually negative). For example, 

to add together the contents of an array one might write: 

LDX =-100 ARRAY HAS 100 ENTRIES 
CLA 

LOOP ADD ARRAY, 2 NEGATIVE INDEXING HERE 
BRX *-1· 
STA RESULT 
HLT 

ARRAY BES 100 



6.12 BSS Block Starting SYffibol 

[[$]label] BSS expression [comment] 

The use of BSS reserves a block of storage for which the f~rst wQrd m,ay 
,~. -,' ,! ' 

be labeled (if the label is given). The block size is d~~er~ined by the 
'-;'".-' '. 

value of the expression; it must therefore be absolute, and it must have 
• • 0; • .:' .~ 

R-26 
6-9 

a value when BSS is first encountered. The, d ifference be.twee,~ B~S and ~S 

is that in the case of BSS the first word of the block is. lal;>eled, .whereas .'. 

for BES the first word after the block is labeled by the associated symbol. 
; , !', ,.~ ~ . .' " 

BSS is most useful for labeling a block which is referred to by positive 

indexi~g (cf. 6.11 above). 

6.13 ORG Program Origin 

ORG expression [comments] 

The use of ORG forces an absolute assembly., The location cpUl'.lter is 
, ," 

initiali7.ed to the value of the expression. The express~p!l must therefore 

be absolu~e, and it must have a value when ORG is fi,rst encounter,ed. 
~ .•. :.~.:. (~~.:r,:·<,l ~: 

1m ORG must precede the first instruction or data itemi!) an absolute 
:~:. ~ .:.... ' 

program, alt?,<?ugh it does not necessarily have to be the, first statement. 

The output of the assembler will have a bootstrap loader at,th~front 
;1":' "" 

which is capable of loading the program after initiation by. the 940 

FILL switch. 

6.14 END End of Assembly .. 

END [expre~sion] 

The END directive tenninates the assel!':bly. Forl"elocatable assemblies, 
• r, ~ '.; 

no expression is used. For absolute assemblies the expression gives the 
• i ~ ; . . . 

starting location for the program. When assembling in absolute. mode, 

the assembler produces a paper tape whic~ can be, rE!ad into the machine 

with the FILL switch, i. e., out of the time-sharing mode. If the 

expression is not included with the END directive, the bootstrap loader 



R-26 
6-10 

on this paper tape will halt after the tape has read in. Otherwise, control 

will automatically transfer to the location designated in the expression. 

6.15 DEC Interpret Integers as Decjma1 

DEC [ commt.nts ] 

Integers terminated with B or D are always interpreted respectively as 

being octal or decimR1. On the other hand, integers not terminated with 

these letters may be interpreted either as decimal or octal depending or 

the setting of a switch inside the assembler. The mode controlled by this 

switch is- set to decimal by the above directive. 

When the assembler is started this mode is initialized to decimal. 

Thus, the DEC directive is not really necessary unless the mode has Qeen 

changed to octal and it is desired to return it to decimal. 

6.16 OCT Interpret Integers as octal 

OCT [comments] 

As noted in' 6.15 above, this directive sets a mode within the assembler 

to interpret unterminated integers as octal. When the assembler is 

started this mode is initialized to decimal. Thus, the OCT directive 

must be used before unterminated octal integers can be written . 

.. ~ .. 

6.17 RAD Set ~ecia1 Relocation Radix 

RAD expression (comment] 

As explained in 4.7 it is possible in a limited way to have mu1tiple-

re'ocated symho1s. This action is performed when the special relocation 

operator(R) is used, The value of a sYmbol preceded by (R) is multiplied 

by a constant called the radix of the special relocation. The loader is 

informed of this situation so that it can multiply the base address by this 

same constant before performing the relocation. Because the special 



R-c:v 
6-11 

relocation was developed specifically to facilitate the assembly of string 

pointers (cf. 4.7), this constant is initialized to 3. If it is desired 

to change its value, however, the RAD directive must be used, The value 

of thE expression in the operand field sets the new value of the radix. 

It must be absolute, qnd the expression must have a value when it is 

first encountered. 

6.18 FRGT Forget Name of Symbol 

F'RGT . (comment] 

where s. are prevjously defined symbols 
]. 

The use of FRGT prevents the symbol(s) named in its operand field from 

being listed or delivered to DDT. FRGT is especially useful in Situations, 

for example, ",here symbols have been l,lsed in macro expansions or conditional 

assemblies. Frequently such symbols have meaning only at assembly time; 

they have no connection whatever with the program being assembled. When 

DDT is later llsed, however, memory locations sometimes are printed out 

in terms of these meaningless symbols. It is desirable to be able to 

keep these symbols from being delivered to DDT. 

6.19 IDENT Program Identification . 
symbol !DENT (comment] 

IDENT causes the symbol found in its label field to be delivered to DDT 

as a special identificAtion record. DDT uses the IDENT name in conjunction 

with its treatment of local symbols: in the event of a name conflict 

between local symbols in two different subprograms, DDT resolves the 

ambiguity by allowing the user to concatenate the preceding IDENT name 

to the symbol in question. 

IDENT statements n.ye otherwise useful for editing purposes. They 

are always listed on pass 2, usually on the teletype. 



6.~o DELSYM Delete Output of Symbol Table and Defined Op-codes 

DELSYM [comment] 

DELSYM inhibits the symbol bble ,'md opcodes defined in the course of 

Assembly from being output for 15ter use by DDT. Its mrrin purpose is to 

shorten the object code output from the nssembler. This might be 

especially desir')ble for nn absolute ilssembly which produces :) paper tape 

which is to be filled into the m~1chine. 

6. ':'1 RELORG Assemble Relnti ve with Absolute Origin 

RELORG expression [comment] 

On occasion it is desir8ble to 3ssemble in the midst of otherwise normal 

R-:;>6 
6-12 

program a b;ltch of code which, nlthough loaded into core in some position, 

is dest ined to run from ;mother pos i tion in memory. (It will first 

have to be moved there in a block.) This is pa.rticularly useful when 

preparing program overlays. 

HELORG, like ORG, takes r-lD nbsolute expression den0ting some origin 

in memory. It has the following effects: 

( ,) The current value of the location counter is snved, i. e. the 

vnlu€ of the express ion nnc in its pl';ce is put the :1bsolute 

origin. This flcct js not revNlled to DDT, however; during 

load jng the next instruction assembled will be pl"lced in the 

next memory cell D,v,dl:ible AS if nothing hnd hnppened. 

(b) The mode of ~jssembly is switched to absolute without changing 

the object code formnt; it still looks like relocatable binary 

program to DDT. lUI symbols defined in terms of the locp;tion 

counter will be absolute. Rules for computing the relocation 

vnlue of expressions are those for'ibsolute Hssemblies. 

It is possible to restore normnl relocatable assembly (cf. 6.22, RETREL). 



Some examples of the use of RELORG folIo,":: 

(1) A progr£1m begins \·rith RELORG 300B and ends '<lith END. The 

assembler's output represents an absolute program ',.,hose origin is 003008 

but wlich can be loaded'myr..mere using DDT in the uswtl fashion. (It 

is, of course, necessary to move the program to location 003008 before 

t · .~) execu lng 1 \J. 

R-26 
6-13 

(:-» A progr.'illl starts :md continues normally os :.\ relocatable progT8m. 
". -

Then there is .'l. series of RELORGs ~md some RETRELs. The effect is as 

shown below: 
'- ". : 

} Normal relocatable program. 

RELORG 100 

] A.bsolute program origined to 100 

RELORG 200 

} Absolute program origined to 200 

RETREL 

J Normal relocatable program 

RELORG 300 

J Absolute program origined to 300 

END 

6.22 RETREL Return to Reloc8t8ble Assembly 
( 

RETREL [comment] 

This directive is used when it is desired to return to relocatable E\ss.embly 
'! '-'. 

after having done a RELORG. It is not necessary to use RETREL unless one 

desires more re10catable program. The use of RETREL is shown in 6.21. 



The effects of RETREL are 

(a) to restore the location counter to what it would have been 

had the RELORG(s) never been used, and 

(b) to return the assembly to relocatable mode. 

6.23 FREE7~ Preserve Symbols) Op-eodes, and Macros 

FREE~E [comment] 

It is sometimes true when assembling various sub-programs that they share 

R-26 
6-14 

definitions of symbols, op-codes, and macros. It is possible to cause the 

assembler to take note of the current contents of its symbol and opcode 

t"ables and the currently defined macros and include them in future 

assemblies, eliminating the need for including copies of this information 

in every subprogram's source language. This greatly facilitates the 

editing of this information. 

When the FREEZE directive is used, the current table boundaries for 

symbols and ope odes and the storage area for macros is noted and saved away 

for later use. These tables may then continue to expand during the current 

assembly. (A separate sub-program may be used to make these definitions. 

It will then end with FREEZE; END.) The next assembly may then be started 

with the table boundaries returned to what they were when FREEZE was last 

executed. This is done by entering the assembler at its continue entry 

point, i.e. one types 

@ CONTnruE ARPAS. 

Note that when the assembler has been pre-loaded with symbols, opeodes 

and macros, it cannot be released (i.e. one cannot use ~nother sub-system 

like DDT, QED, etc.) without the loss of this information. 



6.24 NOEXT Do Not Create External Symbols 

Because of its subprogram capability, the assembler assumes auto-

R-26 
6-1' 

matically that symbols which are not defined in a given program are external 
~' ,>. 

and will be defined in another subprogram. It does not therefore list out 

the use of such symbols as errors. 

If a program is in fact a free-standing program, i.e. if it is 

supposed to be complete, then clearly symbols which are not defined are 

errors and should be so noted in assembly. The BOEXT directive simply 

prevents external symbols from being established; thus undefined symbols 

are noted as errors. The directive must be used at the beginning of a 

program before instructions or data have been assembled. Its use affects 

the entire program. Its form is 

NOEXT [comment] 

6.2)' LIST Turn Specified Listing Controls on 

6.26 NOLIST Turn §pecified Listing Controls Off 

Most assemblers provide a means of listing a program during assembly, 

i.e. printing out such items as the location counter, binary code being 

assembled, source program statement, etc. The association of these items 

on one page is frequently of great help to programmers. Two directives, 

LIST and NOLIST, control this process. Their form is as follows: 

LIST} 
NOLIST [comment] 

where the s. are from a set of special symbols having 
l. 

meaning only when used with these directives. 

There are many listing options for this assembler. A list of special 

mnemonic symbols used in conjunction with these two directives is given 

below. The symbols have special meaning only when used with LIST and 



NOLIST. They may be used at any other ttme for any particular purpose. 

The special symbols are: 

Symbol 

1 

2 

LeT 

Bm 

SRC 

COM 

MC 

ME 

EXT 

NUL 

Meaning 

Listing during pass 1. Listing format will be 

controlled by other parameters. 

Listing during pass 2. Listing format will be 

controlled by other parameters. 

Listing of location counter value (see below) 

Listing of binary object code or values (see below) 

Listing of source language (see below) 

Listing of comments (see below) 

Listing of macro calls (see below) 

Listing of certain directives during macro 

expansions (~U, NCHR, NARG, RPl', CRPl', ENDR, D', 

ELSF, ELSE, ENDF, ENDM). 

Listing of external symbols at end of assembly 

Listing of null & duplicate symbols at end of 

assembly. 

,As nn example of the meanings of vDrious symbols Rbove, consider the line 

of code A21 STB OUTCHR SAVE PO:rnTER. 

It might list as 

,,02157, ,0 36 00217 ~l_ S~ OUTCHR 
'.~. _J - '-(--.../ ./ ~~ 

LeT BIN SRC COM 

R-26 
6-16 

It is not necessary to include each symbol poSSible, but rather only those 
". 

par~tllleters for which changes are desired. It is, in fact, not necessary 

to give any symbols. 

LIST is equivalent to LIST 2 



R-26 
6-17 

When the assembler is started, it tnitializcs itself in the following 

way: 

LIST LCT,BIN,SRC,COM,MC,EXT,NUL 

NOLIST l,2,ME,SYT 

The actual format of the assembly listing is controlled by the current 

combination of pnr~,meter vT;lues. The parmneters are independent items 

except for the par~lmeters MC and ME. In thh; case :it is more reasonable 

to think of their combination. Thus: 

Me ME 

o o 

1 o 

o 1 

1 1 

Effect 

List outer level macro calls only 

List all macro cnlls and code generated, but 

suppress listing of certain djrectives (see ME 

in table above). 

List no macro calls, but r8ther all code generated 

except for certain direetives. 

List everything involved in macro expansions. 

Regardless of the list control parameters which he.ve been given to 

the assembler) it can be mc:de to begin listing at any t:Lme in either pass 

simplyly typing:} sinGle Y'llbout (t.yping a second rubout in succession will 

abort. the assembly). List inA; having been started in this manner can be 

stopped by typing the letter S. 

6.27 PAGE Begin New Page on Assembly Listint.:i 

PAGE [comment] 

This directive causes a page eject on the assembly listing medium 

unless a page e~ie,::t has just been given. It is used to improve the 

appearance of the ussembly listing. 

6.;~8 REM Type Out Remarks in Pass? 

REM remark to be typed 

This directiYe, when encountered in pass 2, causes the contents of 



its operand and comments fields to be typed out either on the Teletype 

or whatever file has been designated as the output message device. This 

typeout occurs regardless of wh~t listing modes are set. The directive 

~ay be used for a variety of purposes. It may inform the user of the 

progress of assembly. It may give him instructions on what to do next 

(this might be especially nice for complicated assemblies). It might 

announce the last date the source language was updated. Or, it might be 

used within complex macros to show which argument substrings have been 

created during expansion of a highly nested macro (this for debugging 

purposes). 

R-26 
6-18 



7.0 Macros and Conditional Assembtl 
~~.~ 'll!~h' ~ =, . " 

Assembler~ with good macro and conditional assem~ly capability. can have 

surprising power. This assembler features such ca~ability. In this section 

the facilities for dealing with macros and co~dit~onal assembly will be 

discussed. Many examples will be given. 

7.1 Introduction to Macros 
:', 

R-26 
7-1 

On the simplest level a macro name may be thought of as an abbreviation 
'." . ' .. ~ -. 

or shorthand notation for one or more assembly langua~ statements. In 
.. ,.... ". ..' ,1: .. ' • 

this respect it is like an opcode. The opcode is the name of a binary 

machine coonnand, and the macro name is the '~ame of'~ sequence of assembly 

language statements. 

EXAMPLE 7-1. 
. . ~ ""-.: . .;.! ~'; ... : . 

... : The 940 has an instruction for skipping if the contents of a specified 
- ~. ·'~··I .. -: '~i.':; ;'J'~"<~I":;' ", . 

location are negative, but none for testing the accumulator. SKA (skip 
. ":' : .. "i' L. ~ .. ~~';"<., l' "" ~:~ .. :! .. 

if me~~ry ~d accumulat~~ do not compare ones) will serve when used with 
, . .' . • '. . :.1 . , t.·; ~ .. > 

a cell whose contents mask all but the sign bit. The meaning of SKA used 
, .. '''j . , " ~. ~~,,"" 

in this way is "skip if A positive." Thus a programmer will write 

SICA =4B7 
BRU NEGCAS NEGATIVE CASE 

;r' 

Programs, however, are more than likely to have a logical need for 

skipping if the accumulator is negative. In these situations the programmer 

must write 
SICA =4B7 
BRU *+2 
BRU POSCAS POSITIVE CASE 

Both of these situations are awkward in terms of assembly-language 
i' 

~ .. - . 

programming. 



But we have, in effect, just developed stmple conventions for doing 

the operations SKAP' and sicAN (skip if accumulator positive or negative). 

Let the~'e operations be defined as macros. 

SKAP MACRO 
SKA =4B7 
ENDM 

SKAN MACRO 
SKA =4B7 
BRU 
ENDM 

*:'"? 

Now -- more'in keeping with the operations the programmer has in mind --

he may write . 
A22 SKAN 

BRU POSCAS 

R-26 
7-2 

The advantages of being able to use SKAP or SKAN should be appar~nt • 
..... -. 

'!'he amount of code written in the course of a program is reduced. This 

in itself tends to reduce errors. A greater advantage is that SKAP and 
•. ., _(. ""r,''',', ~"',:;':. -. ;.~...' \':" 

~ are more indicative of the action that the programmer has in mind. 

Programs written in this way tend to be easier to read. Note, incidentally, 

as shown above that a label may be used in conjunction with a macro. Labels 

used in this way are usually treated like labels on instructions; they are 

aSSigned the current value of the location counter. This will be discussed 

in more detail later. 

7~ 2 Macro Defini.t.ion 

n.::;ure disc".lssing more complicated use of macros, some additional 

vocabulary should be established. A macro is an arbitrary sequence of 

a.sembly-language statements together with a symbolic name. During -
assembly it is held in an area of memory called ~ storage. Macros 

'-.',". 

may be crea't'~d or defined. To do this one must give (1) a name and 

(2) the sequence of statements comprising the macro. The name and the 



beginning of the sequence of statements in a macro are designated by 

the use of the MACRO directive (se~ ex. '7-1 above). 

name MACRO 

ENDM 

The end of the sequence of statements in a macro is signalled by the 

ENDM directive. 

The reader should now refer to Figure 1. When the assembler en-
(. 

R-26 
1-3 

counters a macro definition (i.e., when it sees a MACRO directive), switch 
.i' 

B is thrown to position 1. The programmer's source language is merely 

copied into text storage; note in particular that the assembler does not 
".- - -­. ~ . 

'j.o 

~ any processin& during the definition of a macro. Switch B is put back 
'". .'~.~ , .... ; . 

to position 0 when ENDM is encountered. 
, . 

r • -. ~ , 

It is possible that within a macro definition other definitions.II1~Y 

be imbedded. The macro defining machinery counts the occurrences of the 

MACRO directive and matches them against the occurrences of ENDM. SWitch 

B is placed back in position 0 actua~ o~ when the ENDM ~atc~ing the 

last MACRO is seen. Thus MACRO and ENDM constitute opening and closing 
,.':_'" _ U 

brackets around a segment of source lans;uage. 

following are possible: 

Structures like the --, 



Binary Machine 
Lan a 

r-'-';;;;;;;;;~;,;;,jjjI';;;""-;::' 

ASSEMBLER 

I~I----~------~ 

A B 

0 Oc>, 

0 1 

1 0 

1 1 

51MBOLIC 
ASSEMBLY 

LANGUAGE 

1 

1 

Effect 
, 

normal assembly 

macro definition 

macro expansion 

TEXT 
STORAGE 

".' ~ ! 

macro definition during macro expansion 

(to be explained in more detail later). 

Figure 1: Information Flow During Macro Processing 

R-26 
7-4 



namel MACRO 

name 2 MACRO 

name 3 MACRO 

J ENDM 

name4 MACRO ] . 
ENDM 

ENDM 

name5 MACRO ] 
ENDM 

ENDM 
- " ~. 6 

The utility of this structure will not be discussed here. Use of this 

feature of imbedded definitions should in fact be kept to a minimum since 

the implementation of this assembler is such that it uses large amounts 

of text storage in this case. What is important, however, is an under-

standing of ~ the various macros are defined. In particular, when 

namel is being defined, name2,3, etc. will ~ be defined; they are 

merely copied unchanged into text storage. Name2 will not be defined 

* until namel is used • 

7.3 Macro Expansion 

R-26 
7-5 

The use of a macro name in the opcode field of a statement is ret~rred 

to as a call. The assembler, upon recognizing a macro call, moves switch A 

to position 1 (again see Figure 1). Input to the assembler from the 

original source language ceases temporarily and comes instead from text 

storage. During this period the macro is said to be undergoing expansion. 

* It should be noted that macros -- like opcodes -- may be redefined. 



It is clear that a macro must first be defined before it is called. 

An expanding macro may include other macro calls; and these, in 

turn, may call still others. In fact, macros may even call themselves 

(when this makes sense). This is called recursion. Examples of the 

recursive use of macros are given later. When within a macro expansion 

R-26 
7-6 

a new macro expansion begins, information about the progress of the current 

expansion is put away. Successive macro calls cause similar information 

to be saved. At the end of each expansion the information about each 

previous expansion is restored in inverse fashion. When the final 

expansion terminates, switch A is placed back in position O. Input then 

:resumes from. the source language program. 

7.4 Macro Arapments 

Now let us carry example 7-1 one step further. One might argue that 

the action of skipping is itself awkward. It might be preferable to write 

macros BRAP and BRAN (branch to specified location if contents of accumulator 

are positive or negative). How is one to do this? The location to which 

the branch should go is not known when the macro is defined; in fact, 

different locations will be used from. call to call. The macro processor, 

therefore, must enable the programmer to provide some of the information 
.i 

for the macro expansion at ~~. This is done by permitting d~ 

arguments in macro definitions to be replaced by arguments (i.e., arbitrary 
o . 

substrings) supplied at call time. Each dummy argument is referred to in 

the macro definition by a subscripted symbol. This symbol or dummy ~ 

is given in the operand field of the MACRO directive. 



EXAMPLE 7-2 

Let us define the macro BRAP. 

EMP MACRO DUM 
SKAN 
BRU DUM(l) 
ENDM 

When called by the statement BRAP POSCAS 

the macro will expand to give the statements 

SKA =4B7 
BRU *+2 
BRU POSCAS 

Note that BRAP was defined in terms of another macro SKAN (a matter 

of choice in this example). Also note that as defined, BRAP was intended 

to take only one argument. other macros may use more than one argument. 

EXAMPLE 7-3 

The macro CBE (compare and branch if equal) takes two arguments. 

The first argument is the location of a cell to be compared for equality 

R-26 
7-7 

with the accumulator; the second is a branch location in case of equality. 

The definition is 

CBE MACRO 
SKE 
BRU 
BRU 
ENDM 

~1hen called by the statement 

D 
D(l) 
*+2 
D(2) 

CBE =2lB J EQLOC 

the statements generated will be 

SKE :::21B 
BRU *+2 
BRU EQI,OC 



Note that arguments furnished at call time are separated by commas. 

R-26 
7-8 

tt i: possible to include both commas and spaces in arguments by enclosing 

the arguments in parentheses; the macro processor strips off the outermost 

parentheses of any substring used in a call. For example in the call of 

the macro MUMBLE 

MUMBLE A,(B,C),(D E) 

we have 

~g~: ~,c 
Db) = D E 

7.5 The Use of Dummy Ar~ents in Macro Definitions 

Before giving further examples of the use of macros, the various 

wayJ that dummy arguments may be used in macro definitions will be 

di~cussed. In general a dummy may be referred to by the symbolism 

dummy(expression) 

T:1e only restriction on the expression above is that it must not contain 

oth~r d.uremies or generated symbols (see 7.7). Furthermore, for obvious 

* reasons it must have a known value when the macro is called . 

H.ore than one c..JIIUD.Y may be referred to by the notation 

dummy(expression, expression) 

Iu the case of the call 

MUMBLE A,B,C,D,E 

then 

D(3,5)= C,D,E 

:;.'./:, jt is possible to have confusion in this situation. If we have the .. call 

MUMBLE A,B,C,(n,E),F 

-,,~.~.-.---.-. --..-----------.------~--.---------------
~'IG should be noted that a macro call may deliver more arguments than are referred 
to in its d.efinit ion , but the converse is not true. A dummy argument not supplied 
"Jrith an arl.,..ument at call time is considered an error. 



then 

DUM(3,5)= C,D,E,F 

But which are DUM(3), DUM(4), and DUM(5)? To resolve th~s am'biguity" the 
- '''' ','r- -

assembler produces in place of DUM(3,5). the string 

(C), (D,E), (F) 

The notation 

dummy() 

R-26 
7-9 

produces all of the arguments supplied in a macro call. Each is surrounded 

by parentheses as in the example above. 

The symbolism 

dummy (0) 

is legal and meaningful. It refers to the label field of the macro call. 

Normally a label used with a macro call is assigned the current value of 

the location counter (as with any instruction). Explicit use of dummy(O), 

i.e., literal zero in parentheses, causes the label field not to be 

handled in the normal way. It serves merely to transmit another argument •. 

There are three possible cases. 

(1) Macro contains no references to dummy(O). Label field is 

treated norma~ly. 

(2) Macro contains at least one reference to dummy(O). Label field 

merely transmits an argument which replaces dummy(O) in the 

expansion. 
".'-

(3) Macro contains no references to dummy(O) explicitly but does 
.~ ~ 

contain dummy(expression) where, at call time, the value of the 

expression is zero. In this case the label field is handled as 

in case (1) and also used to transmit the argument referred to by 

dummy(expression) as in case (2). 



::he symbolism 

dummy(-l) 

" [;"led. to represent the terminal character of the opcode field, i. e., to 

c.,:;te::'Illine whether the macro name terminated with a blank or a * (in case 

of indirect address). It allows macros to be called with or without 

"indirect addressing" specified. Thus in a typical call we have the 

foUo"Wing relationships: 

ABC,DEF,'GHI',JKL 
'-v-J ~ 

'-t.. _ r J 
dummy~ dummy(3,4) 

dummy() 

i"\. e that dummy ( -1) is always one character long. 

f~metimes in a macro definition it is desirable to refer only to a 

R-26 
7-10 

portieD of an argument, perhaps to a character or a few characters. In the 

case of a single character this may be done by writing 

dummy(expression$expression) 

~'J;:' f::i~';;t expression iesignates which argument; the second determines 

i':hich cbaracter of that argunent. If a substring of an argument is 

desired, one writes 

dummy(expression$expression, expression) 

TJ:-lO;; ~~_:;:;~:d -.1...1 tbird expressions determine the first and last characters 

of the substring. For example, if we have the call 

MUMBLE A, BCDE J 'FGHIJ' 

DUM(2 $3) = D 

DUM(3 $4,7) = HIJ' 



7-11 

Beginning with the i th character the latter part of :m argument can be 

obtained by specifying an overlarge terminal bound. Thus 

Dt~(2$4,lOOO) = HIJ' 

7.6 Concatenation 

It is frequently useful to compose statements out of macro arguments 

(or parts of them) and other information given in the macro definition. 

This is done b y concatenating the various objects together, i.e. simply 

writing thern next to each other. It is possible to confuse the assembler 

when doing this, however. For example, let the dummy name in a definition 

be C, and suppose we wish to concatenate the strings AB and C(3). If we 

write ABC(3), then do we mean AB concatenated with C(3), A concatenated 

with BC(3) (Whatever that is), ABC(3), or what? 

To avoid ambiguity we use the character "." (dot or period) as a 

concatenation delimiter. For the example jllst above we would write 

AB.C(3), and no ambiguity then exists. The assembler uses the dot to 

delineate objects it must deal with; in producing output the macro expansion 

machinery after having recognized the various objects simply skips over 

the dots. ~ dot character cannot therefore be used literally ~ ~ macro 

definiti.on. 

EXAMPLE 7-4 

Let us define a macro STORE. Suppose we have established the 

convention that certain temporary storage cells begin with the letters 

A,B, or X, depending on from what 940 register information is to be stored 

there. The definition is 

STORE MACRO D 
ST.D(l$l).D(-l) D(l) 
ENDM 

If called by the statements 

STORE B17 

STORE* x44 



"...c Cl'O will expand as 

STB B17 01' STX* X44 

':;,,; " .j:; is not actually needed in every incidence of concatenation. 

R-26 
7-12 

:.::"0 :: :",\'ci..?"CJtrners maj;- readily detennine for themselves when it is actually 

r:ccd.:d. As a m&tter of good practice, however, when in doubt, use it! 

7.7 G~n:ratcd S~bols 

A macro should not, of course, have in its definition an instruction 

having a label. Successive calls of the macro would produce a multiply 

G.",nrci .:;ymbol. Sometimes, however, it is convenient to put a label on 

:'n ~i.;l~ruction within a macro. There are at least two ways of doing this. 

'i""'l,~";: C involve~ transmitting the label as a macro argume~t when it is 

., ;~ .. J'# '!b.is ls most rensonable in many cases; it is in fact oft~n 

C·,.;;, :;i:r, L~ so th~t the programmer can control the label being defined 

"c',,- ',."l. ref~r to it elsewhere in the program. 

""'e:c, situs'cions do arise in which the label is used purely for 

.... ,. ~(":,l~' local to the macro and will not be referred to elsewhere. In 

> ~ '" :- .:' 1. jJce this it is desi:~cable to allow for the a~tomatic creation of 

',",::,1, :::) that the p:~ogrammer is freed from worrying about this task. 

; 'j 1;;; done hy means of the generated SymbOl. 

f. g~!lt.l~~e(l symbol ~ nlay he declared ~1hen a macro is defined. To 

',.l :;5s ri..:4,utres t~o things; (1) the name and (2) the maximum number of 

~ ;.,,:!,,,,"-:-c. s:-iJ:'bols which will be encountered during an expansion. These 

hs: i t~.ns may follow the du.mmy symbol name given in the MACRO directive. 

name M\CRO d~lame,generatedname,expression 

, ,.,J;1.e, 'i,~ might have 

I-.1l'Y·ffiLE MACRO D,G,4 



In the definition of this macro there might be references to 

G(l), G(2), G(3), and G(4), these being individual generated symbols. 

With regard to generated symbols the macro expansion machinery 

operates in the following fashion. A generated symbol base value for each -
macro is initialized to zero at the beginning of assembly. As each 

generated symbol is encountered, the expression constituting its subscript 
,c .'. ,.. ~.' "," • - ~. • - '. 

is evaluated. This value is added to the base value, .and the sum is pro-

duced as a string of digits concatenated to the generated symbol name. 

Enough digits are produced to make the resultant symbol s~x characters 

long. Thus, the first time MUMBLE is called,for example, G(2) will be 

transformed into G00002, G(4) into 000004, etc. 

At the end of a macro expansion, the generated symbol base value is 

incremented by the amount designated by the expression following the' 

generated symbol name in the MACRO directive. (This was 4 in the 

definition of MUMBLE above.) Thus the ~econd.cal~of MUMB~ will produce 

in place of G(2), GOOOO6, the third call will produce GOOD10, etc. It 

should be clear that a generated symbol name should be kept as short as 

possible. It cannot be longer than 5 characte,rs. 

7.8 Conversion of a VRlue to a Digit Stripg 

As an adjunct to the automatic generation of symbols or for any other 

purposes for which it may be suitable a capability is provided in the 

assembler's macro expansion machinery for conver.sionoi' the value of an 

expreSSion at call time to a s.tring of decimal digits. The construct 

($expression) 

will be replaced by a ,string of digits ~qual in value to .the expression. 

R-26 
7-13 



For example, let X = 5. Then 

AB. ($2*X-l) 
'. 

will be transformed into 

AB9 

Further examples of the use of this facility appear below. 

1.9 The NANG and NCHR Directives 

Macros can be more useful if the number of arguments supplied at 

call time is not fixed. The precise meaning of a macro (and indeed, the 

results of its expansion) may depend on the number or the arrangement of 

R-26 
7-14 

its arguments. In order to permit this the macro undergoing expansion must 

be able to determine at call time the number of arguments supplied. The 

HAHG directive makes this possible. 

NARG functions baSically like EQU, except that no expression is used 

with it. Its basic form is 

symbol NARG [connnent] 

The function of the directive is to equate the value of the symbol to the 

number of arguments supplied to the macro currently undergoing expansion. 

~e symbol can then ~e used by itself or in expressions for any required 

purpose. Examples of the use of NARG appear later. 

It is also useful to be able to determine at call time the number of 

characters in an argument. NCHR functions by equating the symbol in its 

label field to the number of characters in its operand field. Its form is 

symbol NCHR characterstring [comment) 

The notion of "operand field" must be elaborated on here. The operand field 

~ormally terminates on the first bla.nk after the beginning of the field. 

l.!!!! ~ II rescinded !! ~ macro argument containing blanks appears .!!! 

~ op:rand fie~. For example, in the statement 

XYZ LDA VECTOR,2 THIS IS A COt+rENT 
t t 



R-26 
7-15 

the arrows delineate the operand field. Alternatively, if a statement like 

TEXT X,D(l).ERROR 

is placed in a macro definition and the macro is called by 

MUMBLE (NON-FATAL) 

then the above statement will tlITn out to be 

TEXT X,NON-FATAL ERROR 
t t 

Notice how the operand field terminates in this case. 

In the same example notice that the message produced by the text 

directive is of unspecified length at definition time. Clearly, X must 

depend on the number of characters in D(l). Accordingly, MUMBLE might be 

defined as 

EXAMPLE 7-5 

MUMBLE MACRO 
X NCHR 
X EQU 

TEXT 
ENDM 

7.10 Conditional Assembbl 

D 
D(l) 
X +9 5 FOR f ERROR' ,4 TO ROUND UP 
X/4,D(1) . ERROR 

THe reader should see by now that the macro is a powerful tool. 

Its power, however, is considerably multiplied when combined with the 

features explained in -Chis and the following sections. These features 

basically the lr and repeat capabilities -- are called conditional 

as~embly capabilities because they permit assembly-time calculations 

to determine the source language Actually assembled. They are, however, 

not strictly a part of the macro facilities and may be used quite apart 

from macros. 



R-26 
7-16 

7.11 The BP± Di~~ctive 

The RPT (repeAt) directive is, like the MACRO directive, an opening 

bracket for a segment of program. Its form is 

(1) [label] RPT expression [comment] 

or, using s for symbol, e for expression, and c for comment 

[label] RPT 

[label] RPT 

(s=el ,[e2,]e3) (cl 

(s=el,(e2,le3)(s=el(,e2])(scel[,e2])'" [cl 

Form (1) says to repeat the following sequence of statements down to the 

matching ENDR (end repeat) as many times as given by the value of the 

expression. Forms (2) and (3) are really the same form; they are shown 
.. 

separately to emphasize that only the first parenthesized group in the 

operand field must be present. Their meaning is as follows: 

(1) Set the symbol s to the value of el . 

(2) Issue the sequence of statements down to the matching ERDR. 

(3) Increment s by the value of e2 or by one (if e2 is not present). 

If the new value of s has not passed the limit, go back 

to (2). When the limit is passed, quit. 

In other wordS, !2!:. symbol=el step' e? until e 3 ~ 

or .!2!. symbol=el until e3 ~ ... 

The first parenthesized group (1) determines the number of times the 

repeat is executed and (2) controls the initial value and increment of a 

symbol. Subsequent groups (there may be up to ten of them) merely control 

the initial value and increments of other symbols carried along in the 

recent operation. 



EXAMPLE 7-6 

It is desired to create an area of storage which is cleared to zero. 

R-26 
7-17 

The BSS directive cannot be used for this purpose since its function (that 

of reserving storage) is basically to advance the assembler's location 

counter. The problem is readily solved by 

ABC 

which is equivalent to 

ABC 

RPl' 
DATA 
ENDR 

DATA 
DATA 
DATA 
DATA 

DATA 

100 
o 

0 
0 
0 
0 

0 

1 
100 statements 

! 
Note that the label is applied effectively only to the first statement. 



EXAMPLE 7-7 

It is desired to fill an area of storage with data starting with 0 

and increasing by 5 for each cell. We may write 

x EQu 0 
RPr 20 
DATA X 

X EQU Xi? 
ENDR 

,<." 

Alternatively (and more simply) one can write 

RPr (X=O,5, 100) 
DATA X 
ENDR 

Note that in the latter form the terminal value (i.e., e3) does not heve 

to be positive or ~eater than the initial value of the symbol being 

incremented. 

RPr (X=lOO,-5,20) 

and RPT (x-mIT, -5, -30) . 

are both permissible. 

Also note that a repeat directive followed by other statements and 

R-26 
7-18 

an associated ENDR (referred to as a repeat block) may be imbedded in other 

repeat blocks. This is similar to the imbedding of macro definitions in 

other macro definitions, and repeat structures similar to that shown in 

~ection 7.2 may be used. 



EXAMPLE 7-8 

It is desired to have a pair of macros SAVE and RESTOR for purposes 

of saving and restoring active registers at the beginning and end of 

subroutines. These macros should take a variable number of arguments 

so that one can write, for eXAmple, 

SAVE A}SUBRS 

or perhaps 

RESTOR A,B,X,SUBRS 

These calls are intended to generate the code 

STA SUBRSA 

and 

LDA SUBRSA 
LDB SUBRSB 
LDX SUBRSX 

We first define a generalized macro MOVE which is called by the same 

arguments delivered to SAVE and RESTOR plus the strings 1ST' and 'LD' 

which determine whether one wishes to store or 1ged. 

MOVE MACRO D 
X NARG 

RPr (Y=2,X-I) 
D(I).D(Y) D(X).D(Y) 
ENDR 
ENDM 

Then, in terms of MOVE, SAVE and RESTOR are readily defined as 

SAVE MACRO D 
MOVE ST,DO 
ENDM 

RESTOR MACRO D 
MOVE LD,DO 
ENDM 

R-26 
7-19 



EXAMPLE 7-9 

Many programs make use of flags, memory cells which are used as 

binary indicators. The SKN (skip if memory negative) makes it easy to 

test these flags. Let us adopt the convention that a flag is set if it 

contains the value -1 and reset if it contains zero. We want to develop 

the macros SET and RESET to manipulate flags. It is further desirable 

to deliver at call time the name of an active register which will be used 

for the action, together with a variable-length list of flag locations. 

Calls of these macros will look like 

SET A,FLG1,FLG2,FLG3 

or 

RESET X,FLG37,FLG12 

As in example 7-8 we make use of an intermediate macro STORE which 

takes the same arguments. 

STORE MACRO D 
X NARC;;. 

RPr (Y=2,X) 
ST.D{l) D(Y) 
ENDR 
ENDM 

Thus SET and RESET are defined as 

SET MACRO D 
LD.D(l) =-1 
STORE DO 
ENDM 

.. " 

RESET MACRO D 
CL.D(l) 

DO STORE 
ENDM 

R-26 
7-20 



7.12 CRPT, Conditional Re:geat 

Occasionally one wishes to perform an indefinite number of repeats, 

termination coming on an obscure condition determined in the course of the 

repeat operation. The conditional repeat directive, CRPT, serves this 

function. Its effect is like that of RPT (and its repeat block -- like 

RPT -- is closed off by a matching ENDR) except that instead of giving 

a number of repeAts its associated expression is evaluated each time in 

a Boolean sense to determine whether the repeat should occur again. Its 

form is 

or 

[label] CRPT expression[,(s:el [,e2]),(s=el [,e2]) ... ] 

[comment] 

One may write, for example, 

CRPT x>y 

CRPr STOP, (X=1,2)(Y=-3) 

Note that the statement 

CRPT 10 

will cause an infinite number of repeats. 

Tne termination of a CRPT operation is governed by whether the value 

of the expression is one or greater. Zero or negative quantities are 

R-26 
7-21 

taken to mean don't repeat (Boolean 0 or false). Values of one or greater 

mean do repeat (Boolean 1 or ~). 

An example of the use of CRPl' is shown in example 7-11. 

7.13 IF Capability 

It is frequently desirable to permit the assembler either to assemble 

or merely skip blocks of statements depending on the value of an expression 

at assembly time. This is primarily what is meant by the term conditional 

assembly. Conditional assembly can be done (inelegantly) with CRPT. 



Let the condition be given by an expression. (Once again a Boolean 

value is ascribed to an eXpression in the manner 

Then one may write 

\. 

o if e<O 
1 if e>0.) 

EXAMPLE 7-10 

c EQU 
CRPl' 

condition 
C 

arbitrary block of statements 
c EQU 

ENDR 
o 

Note that the line before ENDR is required to prevent the CRPl' from going 

forever. By using the structure above, however, conditional assembly may 

be done; the arbitrary block of statements enclosed in the repeat body 

may be assembled on condition. 

7.14 iF, Assemble if Expression True (i.e., > 0) 

The same function shown in example 7-10 is performed much more 

conveniently by the IF directive. Its form is 

[label] IF expression [comment) 

ENDF 

As with RPT and CRPl', the IF directive defines the beginning of a block 

of b-t2.j.,:r:.~nt::; ~caUed the .?!. body) terminated by a matching ENDF. The 

if body may contain other if bodies. 

E-26 
7-22 

When doing conditional assembly there are often alternative if bodies 

to be assembled in case a certain if body does not assemble. This situation 

is most easily dealt with by the use of the ELSF and ELSE directives. 

1heJe provide an end to the if body and also begin another body which is 

to be assembled (again possibly on condition) in case the first body did 



not. For example, consider the following structure: 

If et>O, bodYl is assembled and bodies2 3 4 are skipped (regardless ot 
" ,,, ' ,', 

e2 and e3. 

It el$.O and e.j>O, bodY2 is assembled and bodiesl ,3,4 are skipped. 

If el and e2$.O and e?O, bodY3 is assembled and bodiesl 2 4 are skipped. 
1 ", 

Finally it ~{, e2, and e3S:.0, body4 is assembled. ' . 
" . ~. ; , .l 

An example ot the use of IF (and other teatures) follows. 

R-26 
7-23 



EXAMPLE 7-10 

This example serves to illustrate several of the preceding features 

R-26 
7-24 

and Rlso the power 0" macros used recursively. The macro MOVE is intended 

to take any number of pairs of arguments. The first argument of each pair 

is to be moved to the second. Each argument, however, may itself be a 

pair of arguments, which may themselves be pairs, etc. 

We first define MOVE. Basically it extracts pairs of argument 

structures and transmits such a pair to another macro MOVE1. 

MOVE 
X 

MACRO 
NARG 
RPr 
MOVE 1 
ENDR 
ENDM 

D 

(Y=1,2,X)(Z=2,2) 
D(Y) ,D(Z) 

w~ now define MOVE1. It calls itself recursively until it comes up, 

with a single pair of arguments. Then it generates code. 

MOVEl 
G(l) 
G(2) 

G(2) 
U 
V 

MACRO 
NARG 
EQU 
IF 
LDA 
STA 
ELSE 
RPT 
EQ,U 
EQU 
EQU 
MOVE 1 
ENDR 
ENDF 
ENDM 

D,G,2 

¢ 

~li~=2 
D 2) 

G(1)/2 
G(2)+1 
G(l) 
G(2) 
D(V),D(V+U/2) 

Thus when called by 'Ghe line 

MOVE A,B 

the code generated will be 
LDA A 
STA B 





EXAMPIE 7··11 

TL:! fol1m.,ing eXl;xnple makes use of virtually every feature in the macro 

C;,L;~ <~cn1itional assembly machinery. It is presented as a demonstration of 

thO' 1)0''''21' inherent in the use of macros but not as a practical tool (critics 

have jt'stly termed it the world's slowest compiler). The macro COMPILE when 

caD.ed 1;;ith an arithmetic expreSSion for its argument produces assembly 

lenf:,"U[Ge which computes the value of thE'; expreSSion in a min~um number of 

~te;Js (subject to the left-to-right scan technique used). COMPILE in turn 

R-26 
7-26 

c'.:cl1s 2. large number of ot.her macros. Their functions are explained by comments 

in t!',:,; text below: 

COHPILE tlacro itself merely initializes some variables and calls 

::'.XF-,.l .. J ({-::r';; the more difficult work is done. J is the total number of 

Ch3:::,~ C.H c,,, in the expression. K is used to keep track of the recursion level 

,j w:1ichdlC Hork is being done (EXPAND calls itself recursively when it sees 

a.:'l f"~~('ni;i:~ bra,ckct [ ).. AVATI. is the counter for available temporary storage. 

lrFi':: c.ltd FP'l'R are stack pointers for the operand and operator stacks respectively. 

, 
'::;~:l: l"1:',CPO D;J NOm 1){l);K ::QU O;t.VAIL E0U 1;t\!PTR E0U -l;PPTR EOU-1 

E'i. P t\ ~m D ( 1 ); Erl D l"l 

EXFt.rro ini tie.lizes I, the current character pointer. It places 

tha Ve.J.L.,-. :.;ero I.m ·;h6 operator stack (marking its beginning on the current 

level) c.nd fetches the first operand. It then sets a switch (G(l») and goes 
< .', 

L~to' cycle of fetching operators (GETP) and operands (GETN). If the 

.. ,'C ~enc:: of new ope~:'ators is less than or equal to that of the previous 

-;.," .' U >. code if: generated. Otherwise the information is stacked and the 

scan continued. 



EYPA~J1) (Vlt,CRC D,G,I;1 EGU I;K rou 1<+1; ~T~CK O,P; GETN D(l); SET G(l) 
CRPT GO) 

I F' I <J; GET? D( 1 $1) 
EL~E; or TOR HHf 11; RFSET G( 1) 
ENDF' 
;PST~.K EOU ?~T.($rpTR) 
eRrT OPTOR/I0<PST~K/IO+1; GE~ 0(1) 

R-26 
7-27 

E~DR $ I 1 IF orTOR=ll;PPTR FGU PPTP-l; RESET G(l);K E(:IU K-l;1 EGU 1.( K)+ ~ 
ELSE; ST~CK CPTOR,P 

IF ~PTR>O 

ENDr 

E~'nF 

I F NS T • ( ~ ~IP Tn - 1 ) <0 
IF' NST.(l~~PTR-1)=-l; t:;T~ TH1P.($AVAIL> 
ELS~; RSH I; STE TEMP.($AV~lL) 
ENDr 
; ~ST.($\JrTR-) ECU ~VAIL;t\VAIL EGU A.VAIL+l 

. "; 

E~l~F 

GETN O()$I,J) 

ENOR 
ENDM 

SET and RESET change the setting of flags. STACK is used to put values 

and pointers on "stacks." (These are not, of course, physical stacks in 

memory but rather conceptual ones existing in the assembler's symbol table~ 

STACK functions by creating an ordered progression of names and aSSigning 

values to the names by means of the EQU directive. 

SET MACRO 0; D( 1) E(.IU 1; E~lDM 

R ES E T Mfi C ROD; D( I) E0 U 0; PW r1 

STACK ~iACRO D; TS EQU D(2) .PTR+l; D(2) .PTR EGU TS; D(2) .ST.($TS) EQU D( 1) 
END~1 



GETN fetches the next operand. Its complexity is due to the fact that 

it must recognize symbols (in this example using the assembler's symbol rules) 

and numbers. When this recognition is complete it puts in the operand stack 

R-26 
7-28 

a pair of pointe~s to the head and tail of the operand (i.e., character numbers 

in the string and a flag bit which denotes whether the object is a symbol or 

a number. Note that if an opening bracket is seen, GETN calls EXPAND recursively • 

. , 

GETN ~lACRO D;TO fOU 1; RFS[T :':PROR; GETC D(1$I-TO+l) 
IF CHAR::'[';I.($IO F:QU I; EXPArm D(lS2,J) 
ELSE 

I F LETTER; RF.SET ~W~BEP 
ELSE; SET ~Jur"PFP 
Er.!DF 
IF DIGIT; SET S',vITCH 

CRPT SWITC}!; GETC o(l$I-TO+l) 
I F DI GI T 

ENDR 

ELSF LETTER; RESET SWITCH 
IF CH~P'='b'; GETC D(1$1-TO+1) 

IF LETTER; RESET NUMBER 
ELSF DIGIT; RE~ET nUMBER 
['WF 

ELS F.; RES ET NUf.1BER 
CNDF ' 

ELS E; RES ET S \'11 TCI{ 
t~mF 

ELSF LETTER 
ELSE; SET ERROP 
ENOF 
I F NUMBER 
ELS E; SET SWI TCH 

CRPT S\.oJITC.~; GETC D(l~)I-TO+I) 
I F LET TEP 

[NDR 
ENOl=' 

F.LSF Dl GI T 
ELSf; RESET SWI TCH 
E~lDF 

I F ERR OR; ERR OR; S TA CK 0, M 
ELS E; S TA CK TO* 184+ 1 -2+4E 3* NUMPER, N 
ENDF 

;1 EGU I-I 
ENDr 

ENDM 



GETC's main function is to determine whether a given character is a 

letter, digit, or other type of character. GETP fetches the next operator. 

It does some checking of the results and if valid sets OPTOR to a value 

carrying both operator and precedence information. 

GETCY\ACRO D;Cl-lPR EQU '1)(1)';1 EClU I+I;A EQU CHAR>'Z';F EQU Cl-lAR<'A' 
IF (l(OP)FjA EGU C}-J{lP>'9';P rr.u CtiflR<'O' 

I r f-( eRH; RESET LETTER; RESF.T D1 GI T 
ELSE; SET DIGIT; ;\~SET LETTER 
~~J1")F 

ELS r:; SET LFTTER; PES ET DI G1 T 
ENOF 

ENDM 

GETP p~CRO D; GETC D( 1) 
IF LETTER( OP)IH GI T; rPROP 
ELSE;A EGll CHAR>11F6;F EQU CHAR<20[,6 

I F {l ( AND) D j or T ()R EO U . OF'S. ( $C H (l R / 1 E 6) 
ELSF CHAR=')';OPTCR reu II 
ELS E; OP TOR E(' U - 1 . 
E~'DF 
I F OP Tor = -1; ERR OR; OP TOR EO I.l 40 
ENDF 

ENDF 
E~'n~l 

GEN and GENA serve to reconstruct the operands from the string pointers 

and call generators which actually produce code. 

GEt-! MACRO D;R HIU -1;PP2 E()U PST.($PPTR);PP3 EQU NST.($NPTR-l) 
;PP4 [OU PP3Ilr-4;PP5 EQU PP3-oP4*184 

IF PP5>4P3;PP5 EOU PP5-4F3; SET LITl; RESET LIT2 
ELSE; RESET LITI; RES!!:T UT2 
D1DF 
IF PP3>IP4; GENA D(I),D(I$PP4,PP5) 

ELSF PP3>O; GENA D<l),TE['t:P.(~PP3);AW>IL EQU PP3 
ELSF PP3=-1; GENt n( I) ,AREG 
ELSF PP3=-2; Gnlt'! D(l),rRF.G 
ENDF 

; rJPTR EQU NPTR-2; STACK R,N;PPTR EQU PPTR-I;PSTAK EOU PST.($PPTR) 
ENDM 



GENA MtlCRO D;PP; EGU ~JST.($NPTR);PP6 EGU PPS/JP4 
;PP7 EQU PP5-PP1S*lE4 
IF PP7>4B3;PP7 Eeu PP7-4P3; SET LlT2 
ENDF" 
IF' PP5>lB4; GEN.<::PP2) D(2),D<l$PP6,PP7) 
ELSF pp;>(); G::~~.($PP2) !)(2),TEMP.('1PPS);flV~lL [C'tf PPS 
ELSF PP5::-1; GH).(~PP2) D(2),ARFG 
F.L S F P P 5:: - 2 ; G EN. ( $ P P 2 ) D ( 2) ,B REG 
ENDF 

~~D~l 

GEN20, 21, 30, 31 and 40 are the code producing macros. They mak~ 

reference to LITl and LIT2 (flags set by GEN and GENA) and ,call macros, 

TEST, fA, LB, and ST. The purpose of the latter macros is to worry about 

the meaning of the contents of the A and B registers so as not to inject 

superfluous code. 

GE~,)20 ~1t-CRO D; TEST D(1),D(2),X; LA D(X),LIT.(SX) 
IF X:: 1 

F:LSE 

ENDF 
EN))M 

I F U T2; ADD =. D ( 2 ) 
ELSFj ADO D(2) 
,~NDF '. 

IF UTi; ADi) =.0(1) 
ELS E; f~ DOD ( 1 ) 
ENDF 

Ci F N2 1 Mt C ROD; T t.S T D ( 2) ,X 
I F i; ~;~ C ( 2) ~ LI T2 

IF UTI; CNP; POD =.D(I) 
ELSE; CNfl; ADD D( 1) 
ENDr 

ELS E; LA D ( 1 ) • Ll T 1 
, I F LI T2; S UP ::. D ( 2 ) 

ELSE; SUB D(2) 
ENDr 

ENDr 
ENDM 

R-26 
7-30 



GEN30 rvlACRO D; TEST D(l),D(2),X; LA O(X),LIT.($X) 
IFY:1 

IF LlT2;V:UL =.[;(2) 
ELSE; MUL D(2) 
Er',; ~ F 

ELSE 
IF LITI; MUL =.D(I) 
ELS E; MUL D ( 1 ) 
ENOF' 

Et,:DF 
; R EQ U -2 

ENOM 

G E N3 1 :rJt. C ROD; T ES T D ( 2) ,X 
IF X; 5T 0(2$1); LP D(l),LITl; OIV TEMP.($AVAIU 
ELS E; LB D <l ) , LIT 1 

I F' LI T2; D I V :. D ( 2 ) 
ELSE; 01 V 0(2) 

ENDF' 
ENm1 

ENDF' 

GEN40 MACRO D; NOP D( 1); NOP 0(2) 
ENOM 

LA MACRO 0 
IF'D(l)':'AREG' 
ELSF 'D(l)'='BREG'; LSH 23 
ELSE 

1 F 0 (2); . LDA :. D ( 1 ) 
ELSE;' LDA D( 1 ) 

SNDF' 
ENDM 

ENDF 

LP rr'lACRO D 
IF 'DC})':'BREG' 
ELSE 

IF' 'D(l)':'AHEG' 
ELSE 

ENOF 
RSH 23 
ENOF 

ENDM 

5T MACRO 0 

IF D(2); LDA :.D(1) 
E L S E; L DA D ( 1 ) 
ENDF 

IF 'D(l)':'BREG'; RSP 
ENOr 

ST.O ( 1 $1) TEMP. ( $A VA I U 
ENOM 

7-31 



TES T ~ CR 0 D; Y NA R G; DC Y ~ EQ U 0 
RP T (Z = 1 ,Y -1 ) 

IF 'DCZ$l ,4) ': 'AREG'; D(Y) EQU Z 
ELSF' 'DCZtl ,4) ': 'BREG'; DCY) EGU Z 
ENDF 

ENDR 
IF Y>2 

ENDF 
ENDM 

I F' D (Y) = 0; DC Y) EP U 1 
E"mF' 

The following lines establish precedence information for the,arithmetic 

operator •. 

OPSIO EQU 30;OPSll EQU 20;OPS12 EQU -1;OPSI3 EQU 21;CPS14 EGU"I, 
OPS 15 EQ U 31 

When called by the following lines, the macro generates code . as . shOwn: 
'i: ' . .\ . 

Call: COMPILE X+2OO*Y 

Result: LDA -200 
MULY 
ADD X 

Call: COMPILE AB-[C+DJ/[E+F] 

Result: LDA C 
ADD D 
STA TEMPl 
LDA E 
ADD F 
8TA TEMP2 
LDA TEMPl 
RSH 23 
DIV TEMP2 
CNA 
ADD AB 

R-26-
7 .. 32 



Call: COMPILE 

Result: LDA 
MUL 
LsH 
ADD 
STA 
LDA 
RSH 
DIV 
STA 
LDA 
MUL 
LSH 
ADD 
MUL 
DIV 
CNA 
ADD 
SUB 
RSH 
DIV 
'dNA' 

. ADD 
SuB 

A+200+34C2l-[DEF!34B-HI*[J+2O*K]!LM33B - N]!OPQ-22 

=200 
34c2l 
23 
A 
TEMPl 
DEF 
23 
=34B 
TEMP.:.? 
=20 
K 
23 
J 
HI 
IM33B 

TEMP2 
N 
23 

.. , 

OPQ, 
t"' • "'" 

TEMPl 
-22 

:. "," 

R-· 
7-33 





Error Message 

TOO MUCH MACRO RECURSION. 

TOO MUCH RPl' RECURSION. 

1'00 MANY ARGS m MACRO. 

TOO MANY REPEAT ARGS. 

STRmG STORE EXCEEDED. 

EOF IN TEXT. 

Meanin~ 

R-2G 
8-3 

Too many nested macro calls have occurred, 
resulting in filling available pushdown 
storage. Reorganize program. 

Similar to above. 

The macro is being called with more 
arguments than there is space for. 
Reduce the mnnber of arguments in the call. 

In beginning a repeat block, too many 
requests for automatic incrementin,g of 
symbols have been made. Reorganize the 
block. 

No space remains to stor.e new macro 
definitions or to do repeats. Caution: 
old macro definitions are not thrown away. 
ne not redefine macros indiscrimdnatelY. 
Reorganize program. 

The end of the input file has occurred 
in the middle of a statement. 

8.2 Interpretation of the Error Listing 

When an error is listed on any file other than TELETYPE, the single­

letter error message (first group above) is listed in the line below at 

the point where the error was detected. other information is given. 

This is all depicted in the examples below. 

In the following line there are errors in 

00172 0 76 

~EEK+71 
Current value of 
location counter is 
7 cells past the 
symbol EEK. 

00000 m~ 
Label cannot 
terminate with 
/. 

the label and operand fields. 

!.iDA nfsl 
i'~ 

Relocation Expression 
error. cannot terminate 

with - . 



20117 0 35 10761 STA 

17 S+l l I~IEI 
Location 
counter 
value. 

Name of 
innermost macro 
in which offense 

occurred. 

ZOTn 
~MiSSing tag 

Name of outermost 
macro in which 
offense occurred. 

Thus along with each error the location counter is printed out relative 

to the symbol most recently defined. In addition, if the error occurs 

during macro expansion the names of the innermost and outermost macros 

are printed to give a clue on where to look for the error. If only 

one level of macro expansion is invo.lved, then only that name is listed. 

In ordertos~ve time when error listings are made on the teletype, 

the single-letter error messages are typed out at the left margin. 

R-26 
8-4 



9-1 

9.0 .ASSEMBLER OPERATING INSTRUCTIONS 

PUPAS is called in the EXEC by typing 

;::.. ARPA,S 

followed by depressing the return key on th2 teleprinter. The syste:-£l 
responds with 

INPUT: 

requesting the user to type the file name of the symbolic file to be 
assembled. 

INPUT: / SYl'IJ. / 

After typing his file name /SYM/ followed by a line feed. the system 
respoqds with BINARY: .. ;' . 

. BINARY: /BIN / 

The user types his selected file name, /BIN/, for s'toring fuebi~ary 
output of his assembly and again depresses the line feed key on his 
teleprinter .. The system will respond with OLD FILE if the file name 
already exists in his file directory. Depressing the line feed key at 
this point will cause all existing information in this file to be replaced 
with the binary output from this assembly. DepreSSing Alt Mode or 
Escape will pe~mit the selection of ? new file name. When the system 

t .' . . , '. . .. - . 

types NEW FILE, typing a line feed will confirm the file name or typing 
art A It Mode will permit the selection of a different file name ~ The 
teleprinter page appears as: 

or 

BINARY: /BIN I 
OLD FILE 

BINARY: IJ;3IN I 
NEW FILE 

:; J '. ' 

If a carriage return is depressed after either OLD FILE or NEVi! FILE. 
the system responds vvith . 

" . 

OK 

and pass one of the assembly begins. 

If a line feed is depressed after either OLD FILE or NEW FILE. an 
option is available to the user. 

TEXT OUTPUT: TEL 



9-2 

If the option, TEXT CUTPUT, is selected, the user types TEL followed 
by a Carriage Return. The system responds -with 

OK 

and pass one of the assembly begins. A program listing of the assembly 
will appe3r on the user's teletype. 

Typing a carriage rE"turn rather than TEL aborts the text output option 
and begins the assembly by t"<Jping 

OK 

f>SSEMBLY EXECUTION 

If the text output option was not selected by the user, the system continually 
transmits non-printing characters to the user's teleprinter, giving him an 
audible indication the assembly is in process. At any time during the 
assembly, the u.s~r may type a single j',lt r"Code a!' Escape to activate listing. 
The listing will begin at the point in the program that is currently being 
assembled. It will continue to list on the teleprinter until the assembly is 
complete or the user types 

S 

to stop the listing. This process may be repeated throughout the assembly 
proces,s to determine how far the assembly has progressed. 

17hen the assembly is complete, the number of cells used by the program 
is typed out as well as a table of symbols by the program. For example: 

3453 CELLS USED BY PROGRAM 

BS N 45+ 
ENDBRS N 3335+ 
3RB N 13-:-

EBSM3 
5MB 
XSP 

EXTERNAL SYTliBOLS USED: 

ACTR AD1\jIS~( ARD 
BRSTV CARRY CBRF 
CKBUF CLR8P COB 
CRASH CHS;N 

N 1466+ 
N 0+ 
N 21+ 

AWD 
CET 
CPARv-;! 

BPTEST 
CHRL 
CPUPC 

BRRI,.-3 
CIB 
CQ.O 



Mnemonic 

Ii::>&l/ Store 

LDA 
STA 

LDB 

STB 

LDX 

STX 

EAX 

XMA 

Arithmetic 

ADD 

ADC 

ADM 
MIN 

SUB 

SUC 

MUL 

DIV 

Logical 

ETR 

MRG 

EOR 

Register Change 

ReH 
CIA 
CLB 

CIAB 

CLX 

CLEAR 

CAB 

APPENDIX: A 

EXTENDED LIST OF INSTRUCTIONS 

Operation Code 

76 

35 
75 
36 
71 

37 
77 
62 

55 

57 
63 
61 

54 

56 
64 

?5 

14 
16 

17 

46 
o 46 00001 
o 46 00002 

o 46 00003 
2 46 00000 
2 46 00003 
o 46 00004 

Function 

Load A 

Store A 

Load B 

store B 

lJ:>ad X 

Store index 

Copy effective address 

Exchange M and A 

Add M to A 

Add with carry 

Add A to M 

Memory increment 

Subtract M from A 

Subtract with carry 

Multiply 

Divide 

Extract (AND) 

Merge (OR) 

Exclusive or 

Register change 

Clear A 

Clear B 

Clear AB 

Clear X 

Clear A, B and X 

Copy A into B 

A-l 

into index 



!..f..YJemonic 

CBA 

BAC 

CXA. 

CAX 

XXA 

CBX 

CXB 

XXB 

STE 

.'~E 

CNA 

AXC 

Branch 

nRU 

BRX 

BRM 

13RR 

BrtI 

Test/Skip 

SKS 

SKE 

SKG 

SKR 

SKM 

SKN 

2KA 

9R!ration Code 

o 46 00010 

o 46 00014 

o 46 00012 

o 46 ()()()Q5 

o 46 00200 

o 46 00400 

o 46 00600 

o 46 00020 

o 46 00040 

o 46 00060 

o 46 00122 

o 46 00140 

o 46 00160 

o 46 01000 

o 46 00401 

01 

41 

43 

51 
11 

40 

50 

73 
60 

70 

53 

72 

52 
74 

Function 

Copy B into A 

Exchange A into B 

Copy B into A, Clearing B 

Copy A into B, Clearing A 

Copy X into A 

Copy A into X 

Exchange X and A 

Copy B into X 

Copy X into B 

Exc hange X and B 

store Exponent 

Load Exponent 

Exchange Exponents 

Copy negative into A 
Copy A to X, clear A 

Branch unconditionally 

Increment index and branch 

Mark place and branch 

Return branch 
." 

Branch and return from interrupt 

Skip if signal not set 

Skip if A equals M 

Skip if A greater than M 

Reduce M, skip if negative 

Skip if A = M on B mask 

Skip if M negative 

Skip if M and A do not compare ones 

Skip if M and B do not compare ones 

Difference exponents and skip 

R-26 
A-2 



Mnemonic 

Shift 

RSH 

RCY 

LRSH 

LSH 

LeY 

NOD 

Control 

HLT, ZRO 

NOP 
EXU 

Breakpoint Tests 

BPl'x 

Overflow 

ROV 

REO 

OVT 

OTO 

Interrupt 

EIR 

DIR 

AIR 
IET 

IDT 

Channel Tests 

CATW 

CETW' 

CZTW 

CITW 

Input/Output 

EOD 

O,Eeration , Code 

o 66 OOxxx 

o 66 20xxx 

o 66 24y.xx 

o 67 OOxxx 

o 67 20xxx 

o 67 lOxxx 

00 

20 

23 

o 40 2OxxO 

o 22 00001 

o 22 00010 

o 22 00101 

o 22 00100 

o 02 20002 

o 02 20004 

o 02 20020 

o 40 20002 

o 40 20004 

o 40 14000 

o 40 11000 

o 40 12000 

o 40 10000 

06 

F'I.mction 

Right shift AB 

Right cycle AB 

Logical rig,ht shift 

IJ=ft shift AB 

Left cycle AB 

Normali ze and decrement X 

Halt 

No operation 

Execute 

Breakpoint test 

Reset overflow 

Record exponent overflow 

Overflow test and repet 

Overflow test only 

Enable interrupts 

Disable interrupts 

Arm/disarm interrupts 

Interrupt enabled test 

Interrupt disabled test 

Channel W active test 

Channel W error test 

Channe 1 W zero count test 

Channel W inter-record test 

Energize output D 



~!nemonic 

Input/Output 

MlW 
WIM 

PIN 

POT 

EOM 
BETW 

BRTW 

Syspops 

BIO 

BRS 

CIO 

CTRL 

DBI 

DBO 

DWl 

mw 
EXS 

FAD 

FDV 

FMP 

FSB 

GCD 

GCl 

ISC 

IST 

LAS 

LDP 

LIO 

OST 

SAS 

SERM 

SBRR 

SIC 

SKSE 

SKSG 

QJ2eratlon Code 

(920 Compatible) 

12 

32 

33 

13 

02 

o 40 

o 40 

576 
573 
561 
572 
542 

543 
544 

545 
552 

556 

553 
554 

555 

r;,37 

565 
541 

550 
546 

566 
552 

551 

547 

570 

51* 

540 
563 

562 

20010 

21000 

Function 

Minto W buffer when empty 

W buffer into M when 

Parallel input 

Paralle 1 output 

Energize output M 

W buffer error test 

W buffer ready test 

Block I/O 

Branch to system 

Character I/O 

Control 

Drum block inp~t 

Drum block output 

Drum 'word input 

Drum word output 

full 

Execute instruction in system mode 

Floating add 

Floating divide 

Floating multiply 

Float ing subtract 

Get character and decrement 

Get character and lncrement 

R-26 
A-4 

Internal to string conversion (floatin~) 
output 

Input from specified teletype 

Load from secondary memory 

Load pointer (AB) 

Link I/O 

Output to specified teletype 

Store in secondary memory 

System BRM 

System BRR (prestored macro) 

String to internal conversion (flQatin£ 
Input) 

Skip on string equal 

Skip on string greater 



Mnemonic Operation Code 

STI 536 

STP 567 

TCI 574 

Teo 575 

WCD 535 

WCH 564 

WCI 557 

WIO 560 

Function 

Simulate teletype input 

Store pointer 

Teletype character input 

Teletype character output 

Write character and decrement 

Write character 

Write character and increment 

Word I/O 

R_0t:, 

A-5 



0 
1 
2 
3 
4 

5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 

APPENDIX B 

TABLE OF TRIMMED ASCII CODE FOR THE SDS 930* 

(NUMERIC ORDER) 

SPACE 31 9 62 
Q] 32 63 
" 33 64 , 

[!J 34 < 65 
$ 35 = 66 

m 36 > 67 

0 37 ? 70 
40 WI 71 

( 41 A 72 
) 42 B 73 
* 43 C 74 
+ 44 D 75 
, 45 E 76 

46 F 77 
47 G 144 

/ 50 H 145 
0 51 I 146 
1 52 J 147 
2 53 K 152 
3 54 L 155 
4 55 M 

5 56 N 

6 57 0 

7 60 P 

8 61 Q 

R 

S 

T 

U 

V 

w 
X 

y 

Z 

[ 

fSJ 
] 

~ 
EOT 

WRU 

RU 

BELL 

LF 

CR 

*The Teletype characters enclosed in boxes cannot be handled by 
ARPAS and are converted to blanks when present. 


	00
	01
	02
	03
	04
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	8-03
	8-04
	9-01
	9-02
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01

