ARPAS
REFERENCE MANUAL

(for the Tymshare assembler)

This manual is a reprint of
Document No. R-26 produced
under ARPA Contract SD-185
by the University of California
at Bzrkeley,

Please address any
comments to:

DIRECTOR OF TRAINING
Tymshare, Inc.

745 Distel Drive

Los Altos, Calif. 94022

1.0

2‘0

3.0

k.o

TABLE OF CONTENTS

Introduction « « & ¢ v ¢ ¢ v 4 6 ¢ e v e e e e e e s

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
The
2.1
2.2
2.3
The
3.1
3.2
3.3
3.4

3.5

Basic Description of the Assembler
Symbols « ¢ . b s e e e e e b e e e e e e e e
Instructions, Directives, and Comments
SUDPYOgrams . .« o ¢« o o o + o ¢ 4 4 e e 0 4 e o .
Literals . ¢ ¢« v v v v 6 s b e e e e e e e e e .
Relocation ¢ ¢« v v v v v v 6 4 4 v e e
Basic Assembly Procedure . . . ¢ v ¢ « o ¢ « o &

Notation . & ¢ « o o v 6 6 o o o « « o o o a o

Assembly Langvage « « v v s 4 e 4 4 s e e 6 e s

Character Set . ¢« ¢« & ¢ ¢ ¢ ¢ ¢ 4 4 o o o o o o o
Statement 5 *» . * » . * L] * .] - . e L . . . *]

Programs . . ¢ ¢ ¢« ¢ 4 4 6 6 ¢ 4 o e s o 8 o o a

Syntax of Instructions & ¢ . . .

Their Classification .« « « o o v o v o v v o v .
Use of the Label Field . . + « « o v o o v v o .
Operand Field « « « « v ¢ v o o ¢« o v v 0 o o o .

Alternate Conventions for Expressing
Indexed and Indirect Addresses

Comment Field . ¢ ¢ ¢ 4 & ¢ 4 ¢ 4 o ¢ o o « o o

Expression Syntax . ¢ ¢ 4 4 v i 6 e v e 6 e e e e s e

b1
4h.2
4.3
4.4
4.5
4.6
L.7

Operators © e e e e 4 e s e e e e e e e e e
Constants s s 4 e s 4 e s e o s e e n e e s

Classification of Symbols« . . + + « o «
Terms s e s e e s e s e s e e s e s e e s e
Expressions . ¢« o ¢ v ¢ ¢ v 6 v 4 e e 6 v s e e
Constraints of Relocatability of Expressions . .

Special Relocation o 0 . . 0.

Literals & i i e e e e e e e e e e e e e e e e

Directives . . . « v o ¢« v ¢ o v o h e e e e e e

6.1
6.2
6.3
6.4
6.5

COPY Generalized Register Change Command
DATA Generate Data « +« - « « « « ¢« . .
TEXT Generate Text . . « . « « ¢ ¢ ¢ « v « o o
ASC Generate Text with Three Characters per Word
EQU BQUELS . + « « + « ¢ o o o & s e o s 6 s o

1-1
1-1
1-1
1-2
1-2
1l-2
1.2
1-3
1-k
2=1
2-1
2-1
2-3
3-1
3~1
3-2
3-2

3-2
3-3
Lo1
h-1
Yoo
Lo

. b3

-
Lol

. ks

. 6-1
. 6-2

6-3
6-3
6-U4
6-k4

.5

6.7 NARG Equate Symbol to Number of Arguments

in Macro Call ¢ v v 4 v v e e e e e
6.8 NCHR Equate Symbol to the Number of

Characters in Operand « . . ¢ « o« ¢ .
6.9 OPD Operation Code Definition
6.10 POPD FProgrammed Operator Definition
6.11 BES Block Ending Symbol . . . « « v o o . .
6.12 BSS Block Starting Symbol . . . « « « + o . .
6.13 ORG Program OTigifl « « + & v o v v o o v w o
6.14 END End of ASSembly + « + « + 4 0 4 0 e 4 . s
6.15 DEC TInterpret Integers 2s Decimal
6.16 OCT Interpret Integers as Octal
6.17 RAD Set Special Relocation Radix
6.18 FRGT Forget Name of Symbol . . « « + « . . .
6.19 IDENT Program Identification
6.20 DELSYM Delete Output of Syﬂbol Table and

Defired Op-codes . . . e e e e e e e
.21 RELORG Assemble Relative with Absolute Origin
6.22 RETREL Return to Relocatable Assembly .
€.23 ¥REEZE Preserve Symbols, Op-codes, and Macros .
6.24 NOEXT Do Not Create External Symbols
6.25 LIST Turn Specified Listing Controls On . . .
6.26 NOLIST Turn Specified Listing Controls Off .
6.27 PAGE Begin New Page on Assembly Listing . .
6.28 REM Type Out Remarks in Pass 2
Macros ana Conditional Assembly« . « . « . .
7.1 Intrcduction to Macros e e e e e e e e e
7.2 Macro Definition . . . ¢ o v ¢ e e i e e 4 e

EXT Define External Symbol

FIGURE l: Information Flow During Macro Processing .

7.3
7.4
7.5
7.6
7.7
7.8
7.9

Macro Expansion +« v ¢ v+ ¢ 4 4 o . .
Macre Arguments . . . ¢ .« . . . 0 0 0 0 e .
The Use of Dummy Arguments in Macro Definitions
Concatenation . . « . « « v « ¢ ¢ . o . 0 ..
Generated Symbols . .+ ¢ « ¢« . 4 v 4 4 e 0 s e
Conversion of a Value to a Digit String . .

The NARG and NCHR Directives

6-5
6-6

6-6
6-7
6-7
6-8

. 6-9

6-9

6-9

6-10
6-10
6-10
6-11
6-11

6-12

. =12
.. 6-13
. 6-1L4

6-15
6-15
6-15
6-16
6-17
7-1
7-1
7-2
7-4
7-5
7-6
7-8
7-11
7-12
7-13
7-14

7.1C Conditional Assembly +« . + + ¢ v 4 o« o« . . 7-15
7.11 The RPT Directive 7-16
EXAMPIE 7-6 . .« © v v v v v v e e e e e e e e e e . TR1T
EXAMPLE 7=7 ¢ ¢ © ¢ @ s o v v o o o o v v 0 o v o « « . 7-18
EXAMPLE 7-8o oo 71
EXAMPIE 79 v v v v v e e v e e e e e e e e e e e e . T=20
7.12 CRPT, Conditional Repeat « « « . . . 7T=21
7.13 TP Capsbility . . & ¢« ¢ & v ¢ v v o v v v v v « . T7=21
7.1% IF, Assemble if Expression True (i.e., > 0) . . . 7-22
EXAMPLE 7-10 « & v v ¢ v 4 v v 4 o ¢ « o v v e v o v o . 724
EXAMPIE 7-11 . v v v v v 4 v v a e e w t v e e e e e .. 726
7.15 Special Symbols in Conditional Assembly 7-34
8.0 Assembler Error MeSS&88ES . . « « « « « « « « o« « o « . . 821
8.1 Error MESSBEES . + « &+ « + 4 4 ¢ 4 o 4 e o 0 . . . 8-1
8.2 Interpretation of the Error Listing 8-3
9.0 Assembler Operating Instructions 9=1

9.1 Assembler Parameters . . . ¢« . +« « « v 4 4 4 o« o . 91

APPENDIX A: Extended List of Imstructions. A-l
APPENDIX B: Table of Trimmed ASCII Code for the SDS 930. B-1l

R-26
1-1

1.0 Introduction v

An aséé&gler igs a translator whose source language is a;semb;x language
and whose object code is‘actual machine laﬁguage‘ Assembly l;ﬁguage is ﬁostly
a one-for-on: representation of mechine language'written in a,symbolic form.
Its value comes from being easier té read and from the facilities provided by

the assembler for doihg calculations at assembly time. These range from simple

address caleculstions to complex conditional assemblies in which totally
different object programs may be generated, with the choice among them
depending on the values of a few parameters. |

This section serves to define the terminélogy used. It is assumed that

i W
the programmer is familiar with the basic characteristics of the SDS 940 .

1.1 Basic Description of the Assembler

The assembler is a two-pass assembler with subprogrgm,_literal,

macro, and conditional sssembly capasbilities.

1.2 Symbols
Numbers m;y be represented symbolically in assembly langﬁage by

symbo;s. A symbql_is any string of letters and digits not fbrming a
constant. (Constants are defined in Section M.Q)f‘ In pafticglar, it

is not necessary that 2 symbol begin with a letter. Althoﬁéﬁusymbols

as written may be arbiprarilyvlogg, only the first six charactefs‘of a
symbol are used to distinguish it from others. When a symbol is uged to
represent a memory address, it is cailed a label. Examples of symbols
are:

START Z1C Al2 CALCULATE

* Ref. to SDS 940 Compufer Reflerence Mznual, No. 90 06 LOA, August, 1966.

R-26
1-2

1.3 Instructions, Directives, and Comments

Input to the assembler takes the form of a sequence of statements

called instructions, directives, or comments. Instructions are symbolie

representations of machine commands and are translated by the assembler
into machine language. Directives, by contrast, are messages which serve
to control the assembly process or create data. They may or may not
generate:output. Comments are ignored by the assembler, and serve only
to clarify the meaning of a program.

1.4 Subprograms

Programs often become quite large or fall into logical divisions
which are almost independent. 1In either case it is convenient to break
them into pieces and assemble (and even debug) them separately. Separately
assembled parts of the same program are called subprograms.

Before a program assembled in pieces as sﬁbprograms can be run it is
necessary to load the pieces into memory and link them. The symbols used
in a given subprogram are generally local to that subprogram. Subprograms
do, however, need to refer to symbols defined in other subprograms. The
linking process takes care of such cross references. Symbols used for it

are called external symbols.

1.5 Literals)

Often data is placed in programs at assembly time. Tt is frequently
convéniént to refer to constants by value than by label. A literal is a
symbolic reference to a datum by value. The assembler allows any type of
expression to be used as a literal. Some examples of literals are:

=5 =3¥XY2-2 ='END' =EXTERN
1.6 Relocation |
A relocatable progrem is one in which memofy locations have been

computed relative to the first word or origin of the program. A loader

(for this assembler, DDT) can then place the assembled program into

c§re beginning at whatever location may be specified at load time.
Placement of the program involves a small calculation. For example,

if a2 memory reference is to the nth word éf a program, and if the program
is loaded beginning at location k, the loader must transform the reference
into absolute location n+k.

This calculation should not be done to each word of a program since
some machine instructiocns (shifts, for example) do not refer to memory
locations. It is therefore necessary to inform the loader whether or not
to relocate the address for esch word of the program. Relocation infor-
mation is determined sutomatically by the assembler and transmitted to

the loader as a binary quantity celled the relocation value. If R = 1

the operand is to be relocated; if R = O the operand is absolute.

Constants or data may similarly require relocation, the difference
here being that the relocation calculation should apply to all 24 bits of the
9lko word, not just to the address field. The =assembler accounts for this
difference automatically.

It is possitle to disable relocation in the assembler and to do

absolute assembly. In this event there is an option which produces a

paper tape which can be loaded using the 94O fill switch.

1.7 Basic Assembly Procedure

During pass 1 of the two-pass process the operands of instructions and
some directives are scanned for the presence of single symbols. If a single
symbol is present, a tablerof symhols is searched. If absent, the symbol is
added to the table but marked as not yet defined, i.e., having no value.
Labels are placed into the symbol table in similar fashion, except that

they are assigned the current value of the location counter, a word within

the assembler which contains the relative address of the instruction. If

a label has been previously defined, it is marked as a duplicate symbol

(this is taken to be an error).

At the end 6f pass 1 the symbol table is sorted. All symbols present
having no value are assumed to be external. These symbols are then output
by the assembler for later use by the loader. During pass 2 the labels
are not computed; rather, the operand fields of instructions and directives
are evaluated using the now known symbol values.

In absolute assemblies the scan for single symbols in pass 1 is
disabled. This has the effect of doing away with external symbols.

1,8 Notation
In the following pages, square brackets [] are used to indicate the

presence of optional quantities.

Reeo

2-1

2.0 The Assembly Language

2.1 CfCharacter Set

The classes of characters recognized by the assembler are as follows:
a) digits
(1) octal 0-7
(2) decimal 0-9
(b)) letters A-7
(¢) alphanumerics 0-9 and A-Z
(@Y delimiters + - ¥ / , ' () = . § blank «
(e) special characters : ;<> 2 [] "
Note that the characters ! # % & @ \ t* which are normally found on standard
Teletypgs are Eggjrecognized by the assembler. Use of them in a program
will result in their being replaced by blanks.
2.2 Statements
Statements are logical units of input. They may be delimited either
by being placed on separate lines or by being separatéd wiﬁh semi-colons.
Seﬁi—coions do rot serve as statement délimiters Qhénvused betweéh siqglé
quotésv(as in the TEXTJdirec%ivé) or inside of matchéd paféntheses (ﬁs in

arguments of macro cailé). Examples of statements are

START LDA DAT21
MUL 218
ST4 ANSWER

or
START IDA DAT21l; MUL 21B; STA ANSWER
If a statement reduifés more than one line f¢r4éﬁy fééson;‘itncah be
cohtinued oﬁ the next lihe by typing a + in the first colhmn‘of the £ext line.
ihué§ | 4~ |

START TDA DAT2l; MUL 21B; STA ANSWER THE QOM
+MENT ON THIS LINE REQUIRES A CONTINUARION

This kind of continuation may be done for about five lines (320 characters).

R-26
2-2

Each non-blank statement is an instruction, a2 directive, or a

comment. Blank statements are ignored. Comments begin with an asterisk;
they have absolutely no effect on the program being assembled and serve
only as annotations to clarify the memning of the assembly language.

Directives and instructions are divided into four fields. The
fields are, from left to right, the label field, the operation field, the
operand field, and the comment field. The assembler is a free-form
1ssembler; its various fields are delimited by blanks rather than
restricting them to fixed places in a line. This is explained in more
detail below.

The label field is used mostly for symbol definitions. It begins
with the first character in the statement and ends on the first non-
alphanumeric character. (The blank is usually the only legal terminator.)
Thus, in the following statements the symbol XYZ appears in label fields.

XY7, LDA =10
STA DEF;XYZ LDA =10; LDB* ILMN

The operation field contains (usually) a symbolic operation code or
directive name. It begins with the first non-blank character after the
termination of tle label‘fieldf In Fhe statements above, each operation
field begins in a différent position. Like the label field, the operation
field terminates on the first non-alphanumeric character. Legal
terminators are the blank, asterisk, semi-colon, and carriage return.

The operand and comment fields each begiq with the first non-blank
charapterwafter the termination erthe preceding field. The operand
field tefmin;tes on the first.blank or semi-colon»not between matched
gingle quofes or parenfhe#es. The carriage return always terminates the

field (and the statement). The comment field terminates on a semi-colon

or carrizge return. This field, like the comment statement, is not used

by the assembler; it may contain anything.
2.3 Programs

A program consists of a sequence of statements terminated by an END
directive. Normally programs are assembled in relocatable form. A
program is assembled in absolute self-loading form if it begins with an
ORG directive. It is possible (by using RELORG) to make an absolute

assembly to be 1oadéd by DDT.

R-26

3.0 The Syntax of Instructions

3.1 Their Classification

(a) Class 1 (normal instructions).

Class 1 instructions in general use the operand field. Its

absence implies the value zero. It is possible to specify for each

Class 1 instruction whether or not the operand field must be present.

It is also possible to specify that bit O of the instruction word is

to be set to one (as in SYSPOPs). There are two types of Class 1

instructions:

®)

(1)

(2)

type C
| 1

The address is formed mod 2~ . All instructions

meking memory references are of this type.

type 1 |
The operand is formed mod 2. This type is used for

shift instructions. If indirect addressing is used with

this type, the address is formed mod 21hﬂ

Class 1 instructions have the following form:

([$]1abel] opcode(*] [operand[,tag]] [comment]

Indirect addressing is sigﬁified by an asterisk immediately

following the operation code or by preceding the operand.with — .

The use of the dollar sign is explained in 3.2 The tag is used

to specify bits 0, 1 and 2 of the 940 instruction word.

Class 2 (complete or full word inst:uctions).

Class 2 instructions have no operand field. Indirect addressing

is signified by an asterisk immediately following the operation

code. Class 2 instrucﬁionskhgve‘thé following form:

A([$]label] o?code[*] [cqmment}

(¢) Numeric op codes.
Operation codes may be specified as decimal or octal numbers,
as for example:
[[($]1abel] 76B[*] [operand(,tag]] [commen£]
The assembler shifts the numeric op code (modulo 1778) left to
~ the correct position in the instruction word. In such cases, the

op code is assumed to be Class 1, type 0O, no operand required,

and with bit O not set.

3.2 Use of the Label Field

A label identifies the instruction or data word being generated. The
symbol used in the label field is given the current value of the location
counter. Instructions will have labels normally‘if they are referred to
elsevherz in the program, although it is not necessary that symbols defined
in this way be used in‘references. Symbols defined but not used are called
EBEEE; they are marked as such in the assembly listing and explicitly
#yped out at the end of an assembly.

' If the same symbol appears in the label field of more than one
instruction, it is marked as a duglicateAand given the newer value.

A & preceding a label causes an external symbol definition (éf. 6.6).

3.3 Operand Field

The operand field contains at most two arithmetic expressions (or a

literal and one expression) used to determine the operand and tag of the

3

machine command. The tag, if present, is evaluated mod 2° and must be

absolute (i.e. non-relocatabie).

3.4 Alternate Conventions for Expressing Indexed & Indirect Addresses

Tt is possible to express both the use of indexing and indirect

sddressing in an alternative manner. In each case a special character

is placed at the beginning of the operand field. These characters are /

for indexing and « for indirect addressing. Thus, for example,

LDA VECTOR, 2 is the seme as LDA /VECTOR

and
STA* POINTR is the same as STA «POQINTR
Similarly,
LDA* COMPLX, 2 may be written either as
LDA /COMPLX
or LDA ~/COMPIX

Anything normally useful may follow the initial < or /J for example

LDA « =CHAIN (LDA* =CHAIN)

This alternate way of expressing indexing and indirect addressing

may be used by programmers as they choose. It was devised to &implify

the indication of these operations in the use of macros (see chapter 7).

3.5 Comment Field

The comment field is not processed by the assembler, but it cupied

to the assembly listing.

R-26
3-3

4.0 Expression Syntax

The §g§é$glef’évaluates expréssions as 2b-bit, signed integers. Expressions
consist Qf:cénéééhgs éﬁd symbols connectedrby operators. 'Exampleé of expressions
are: .

100-2%ABC (OR) DEF/27B

22

012>D}9
Expressions are evaluated from left tc right, some operators taking precedence
over others. As an expression is evaluated, a parallel calculation of its
relocation value R is made. Only absolute expressions (R = 0) and relocatable
expressions (R = 1) are legal (cf. 4.7). |

L.1 Operators

The operators recognized by the assembler and their precedence are
given below. Operators of highest precedence are applied first in

evaluation of expressions.

Operator Precedence

(2) unary

. \
: 3
(vot) N
, (R) b (cf. 4.7)
A .(b) relational

: . (LSS) or < 3
(GRT) or > 3
(EQU) or = 3

(¢) ®inary
* 2‘
/ 2
(AND) 2
+ 1
- 1
(or) 1
(EOR) 1

Note that some operators are more than one character lohg. These
are enclosed in paientheses to avoid confusion with symbols which would
otherwise look the same. Parentheses are therefore not allowed in
expressions to delineate terms and modify the order of evaluation.

The relational operators give rise to a value 1 if the relation is

true and O if false. There may be only one relational operator in an

expression.
4.2 Constants

Constants are of three types:
(a) decimal integers: one or more decimal characters possibly
terminated with the letter D.
2129, 600D, =-217
(b) octal integers: one or more octal characters possibly terminated
with the letter B and optionally a single-digit octal scaling
factor.
217, 32B, UuB3 (which is the same as uooos)

(¢) string: 'l-b characters (except ')’

All constants are absolute, i.e., their relocation value is O.

The assembler normally expects integers to be decimal. This can
be changed, however, by using a directive (OCT or DEC). In any case,
integers may be terminated with B or D, overriding the normal inter-
pretation of integers. String constants are not normally useful in the
direct computation of memory addresses, but exist basically to be used

in literals (cf. 5.0).

4.3 Classification of Symbols
The assembler recognizes the following types of symbols:
(2) 1local symbols: These symbols are defined by their use in the

label field of instructions and in some directives. Their

R-26
4-3

‘yalue is that of the location counter at their definition. They
are thus symbolic addresses of memory cells. These symbols are
relocatable (R = 1) if the assembly is relocatable; if the
assembly is obsolute, they are absolute. Once having been
defined, a local symbol may not be redefined. Attempts to do so
are considered errors, and diagnostics result.

(v) equated symbols: Equated symbols may be defined by equating
them to an expression (using directives EQU, NARG, or NCHR).
Their relocation value will be that of the expression. Unlike
local symbols, equated symbols may be given new values at any
point in the program.

(c) courrent location counter symbol (*): The character *, if used

- in the proper context, is understood to mean the curfent value
of the location counter. It is relocatable or absclute
depending on the nature of the assembly.

(d) external symbols: External symbols are those which are used
but not defined in 2 given subprogram. They can be assigned
no value, and it is not reasonable to regard them either as
ahsolute or relocatable. External symbols may be used only as
the sole object in an expression; other than its appearance as
a sole object, the external symbol may not be used in an
_expression.

L4 Teyrms
Terms are either constants or symbols, optionally preceded by a unary

operator. The unary operator serves to modify both the value of the term

“a0 its relocation volue. One unary operator -- special relocation, (R) --
swy set the relocntion value of a term to any value. This feature is
expl:ined in much more detail in 4.7.

4.5 Expressions

Expressions may consist of one or more terms connected by binary operators,
or they may be just a single externzl symbol. Their evaluation proceeds
from left to right using operators of decreasing precedence. For example,
let A = 100, B = 200, and C = -1. Then
A+B*C/A = 98
Again, letting A = 5&3218, B = hhhhh8, and C = 000778, then
A(OR)B(AND)C = 543654

“.6 Constraints of Relocatability of Expressions

The implementation of the assembler forces the following constraints

on the use of expressions:

(#) No relocatable term (R = 1) may occur in conjunction with the
operators ¥ or /. In other words, no relocatable symbol may
multiply, be multiplied by, divide, or be divided by anything.

{b) 1In the zbsence of the special relocation operator (R) the
final relocation value of an expression may be only O or 1.

Tt is possible that the relocation value may attain other
values in the course of evaluation.

(c) TIf the special relocation operator (R) appears in an expression,
then the relocation value of the expression may be either O or
some other value K, where K is the special relocation radix. DDT
is informed by the asseﬁbler that specialhrelocation is being used
in this case. DDT will then multiply the base address by K

before adding it to the value of the expression (see next section).

R-26
b5

h.7 Special Relocation

The special relocation feature has been prov1ded to permlt the
programmer ’1m1ted use of eypresolons whlch are not absolute or 51nglyv
reloc ‘table. To see why thlS is de51reble, and how it works, consider
the’process of assembllng and loadlng a relocatable program. Let‘the
symbol A ha&é valuera. If one intes ' } |

IDA A
the assemblervproduces

076 a
and marks *he 1nstruct10n'f address as be;ng re1001£able Later when
“told to load the program beglnnlng at base address b, DDT w1ll form

o076 e

Thus no metter where the program is loaded, the‘mehory referenCeuwill be to
the ath word from the base address.l) | | |

Now suppose one writes

o
The assembler, of course, can form

076 o%a
and presumably what DDT should form is‘

| o76 ’?*a+?*b 76 2% (a+b) ‘ -

vTo do tnls, 1* must be told that b is to be multlplled spec1f1cally by 2
Only one b1t is *eserved however, for such 1nformat10n in the assembler s
binary output, 1t is thls fact whlch causes the restrﬂct1oﬁ that |
expresseons may have only the relocatlon values O and l | And th1s
~restriction can be gotten around (1nelegantly) by the use of (R)
The follow1ng example glves one of the maln reasons for which (R) wa<

put 1nto the assembler

R-26
46

Programs may make use of the string-handling SYSPOPs of the 940.

These instructions use string pointezrs, two-word objects containing

starting and ending character addresses. Now characters are packed

three ﬁer word. A charaéter address therefore consists of the memory
address containing the character multiplied by 3 plus O, 1, or 2
depending on the position of the character in the word. If a characfer
address is divided by 3, the quotient givés the word address and the
remainder the character position in the word.
To form a character address at assembly time, one must be able to
multiply a word address (a relocatable item) by a constant (1n this
case, 3). This is the reason for special relocation. The statement
DATA (R)A+1
will produce the value
3*a+l
together with a notation to DDT that special relocation appiies to that
value.
DDT will then form the value
(3*a+1)+3%b = 3%(a+b)+l
symbol, representing a relocatable word address, may thus be used to form
character addresses in string pointers. There are other examples for the
need for special relocation, but they will not be mentioned here. ILet it
suffice to say that Special relocation is mefely a.device to make up
partially for the rather severe relocation constraints the assembler
imposes ﬁpon programmers.
It should be pointed out that the multiplicative constant associated
with (R) in the example above was 3 because of the nature of string

pointers. This constant is called the special relocation radix. It need

not be 3 always. In fact, it may be changed to any value by the directive

R-26
4-7
RAD. Because of the relative importance of string pointers, however,
the assembler is initialized with this value set to 3; it is hence

unnecessary to use RAD to set it to 3 unless it has been changed for

some reason.

R-26

5.0 Literal;
Progrﬁmmerglfrequently write such things as
LDA FIVE |
where FIVE is the name of : cell containing the constant 5. The programmer
must remember to include the datum FIVE in his program somewhere. This can
be 2voided by the use of a literal.
LDA =
will produce automatically s locntion containing the correct constant in the
program. Such a2 construct is culled a literal.
Literals are of the form
=expression
When encountering = literal, the assembler first evaluates the expression znd
looks up its value in 2 table of literals constructed for each subprogram.
If it is not found in the table, the value is placed there. In any case the
literal itself if repliced by the location of its value in the literal table.
At the end of =ssembly the literal table is placed after the sub-program.
The following nre examples of literals:
=10 =lB6 =ABC*20-DEF/12 ='HELP'

=2=AB (This is a conditional literal. Its value will be 1 or O
depending on whether 2=AB =t assembly time.)

Some programmers tend to forget that the literal table follows the
subprogram. This could be harmful if the program ended with the declaration
of a large array using the statemenﬁ
ARRAY BSS 1
It is not strictly correct to do this, but some programmers attempt it cnyway
on the theory that 211 they want to do is to neme the first cell of the array.
The above stztement will do that, of course, but only one cell will be reserved

for the array. If sny literals were used in the subprogram, they would be

R-26
5-2
placed in the following cells which now fall into the array. This is, of
course, an error. Other than the above exception, the programmer need not

concern himself with the locations of the literal values.

6.0 Directives

R=-20
6-1

There is a large number of directives associated with this assembler.

Although many of the directives are similar, each in general has its own

syntax. A concise summary is given below:

Class

Data Generation:

Value Declaration:

Assembler Control:

Output & Listing

Control:

Macro Generétion
& Conditional
Assembly:

Directive

COPY
DATA
TEXT
ASC

EQU
EXT
NARG
NCHR
OFD
POPD
BES
BSS
ORG
END
DEC
OCT
RAD
FRGT
IDENT
DELSYM
RELORG
RETREL
FREEZE
NOEXT

LIST
NOLIST
PAGE
REM

MACRO
ENDM
RPT
CRPT
ENDR
IF
ELSF
ELSE
ENDF

Use/Function

Facilitates use of RCH command
Generation of data
Generation of text
Generation of text

Setting or changing symbol values
Defining external symbols

See

See

Defining new op codes

Defining pov codes

Block ending symbol

Block starting symbol

Origin: absolute assembly

End of program
Interpret integers as decimal
Interpret integers as octal
Set special relocetion radix
Forget name of symbol
Identify name of program

Do not transmit symbols to loader
See 6.21

See 6.22 L
Preserve symbols and macros
Do not create external symbols

Set listing flags

Reset listing flags

Skip to new page on listing
Type out remarks in pass 2

Head of macro body

End of macro body

Begin repeat body

Begin conditional repeat body
End repeat bvody

Begin if body N
Alternative if body
Alternative if body

End of if body

R-26
6-2

6.1 COPY Generalized Register Change Command

[[$]11abel] coPY 31’52’83"" [comment]

where s, are symbols from a special
set assdciated with the COPY directive

The COPY directive produces an RCH instruction. It takes in its operand
field a series of special symbols, each standing.for a bit in the address
field of the instruction. The bits selected by a given choice of symbols
are merged together to form the address. For example, instead of using
the instruction CAB (0O4600004), one could write COPY AB. The special
symbol AB has the value 0000000k, N

The advantage of the directive is that unusual combinations of bits
in the address field -- those for which there exist normally no operation
codes -- may»be created quite naturally. The special symbols are mnemonics
for the functions of the various bits. Moreover, these symbols have this
special meaning only when used with this directive; there is no restriction
on their use either as symbols or op codes elsewhere in a program. The

symbols are:

Symbol Bit Function
A 23 Clear A
B 22 Clear B
AB 21 Copy éA; -B
BA 20 Copy (B) - A
BX 19 Copy (B) »X
XB 18 Copy (X) - B
E 17 Bits 15-23 (exponent part) only
XA 16 Copy (x; - A
AX 15 Copy (A) =X
N 14 Copy -(A) - A (negate A)
X 2 Clear X

To exchange the contents of the B and X registers, negate A, and only
for bits 15-23 of all registers, one would write

COPY BX,XB,N,E

Of course, the symbols may be written in any order.
Clever programmers please note: This directive facilitates nicely
some special RCH functions which might not otherwise be attempted (it
is usually too much trouble). For example,
COPY AX,BX
has the effect of loading into X the logical OR (merging) of the A and B
registers. Interested readers are referred to the SDS 940 manual for more

details of the RCH instruction.

6.2 DATA Generate Data

{[$]1abel] DATA el,ee,e3,... [comment)

The DATA directive is used to produce data in programs. Each expression
in the operend field is evaluated and the 24-bit values assigned to
increasing memory locations. One or more expressions may be present.
The label is assigned to the location of the first expression. The effect
of this directive is to create a2 list of data, the first word of which may
be labeled.

Since the expressions are noit restricted in any way, any type of
data can be created with this directive. For example:

DATA 100, -217B, START, AB*2/DEF, 'NUTS',5

6.3 TEXT Generate Text

({$)1label] TEXT 'text' [comment]
or,

[[$]1abel] TEXT expression,text [commenﬁ]
The TEXT directive is used to create a string of 6-bit trimmed ASCII
characters, packed four to 2 word and assigned to increasing memory
locations. The first wofd of the string may be labeled. The string to be

packed may be delineated either by enclosing it in quotes (as in the first

R-26
6-4

cnse above) or by preceding it with a word count (as in the second case).
The second form of the directive must be used, of course, if the string
rxentoins one or more quotes. A potential hazard arising here should be
pointed out. If - statement contains a single quote (or any odd number
of them), it will not terminate with a scmi-colonj a carriage return must
be used.

TEXT L4,THIS WON'T WORK; TEXT 4,DISASTER AHEAD
In the line above the semi-colon will be part of the text, and the second
statement will be interpreted as being in the comment field,

TEXT U4,THIS WILL '
TEXT 1,A-0K

In the first form of the directive, characters in the last word are
.fb-justified and remaining positions filled in by blanks (octal 00).
_+ the second form, sufficient characters are packed to satisfy the word

count.

S ASC Grnerate Text with Three Characters per Word

This directive is identical in form nnd use to TEXT, except that

3-%it characters are packed three vper word. The 940 string processing

yStem normally deals with such teit.

6.5 EQU Equuls

($1symbol EQU expression {comment]
The EQU directive causes the symbol in iﬁs label field to be defined
and/or given the vzlue of the expression. The expression must have a
walue when EQU is first eﬁccuntered; i.e., symbols present in it must have
weoen previously ¢eofined. It is permiscible o redefine by EQU any symbol

sreviously defined by EQU (or NARG or NCHR, cf. below). This ability is

‘urticularly useful in macros and conditional assembly.

R-26
6-5

6.6 EXT Define External Symbol

There are four ways which may be used to define external symbols.

(a) $label opcode or directive operand, etc.

The $ preceding the label causesbthe symbol in the label field
to be defined externally at the same time it is defined locally.

(b) symbol EXT (comment not permitted)

The symbol given in the label field is defined externally.

This symbol must have been defined previously in the program.

The operand snd comment fields must be absent.
Both of the above forms have the same effect; the name and value of a local
symbol is given to the loader for external purposes

Occasionally it is de31rable to deflne an external symﬁol whose name
is dlfferent from that of a loc1¢ symbol or an external symbcl may be
deflned in terms of an expresswon 1nvolv1ng local symbols ?he;e’are
two ways of d01ng this. o

(éj $symbol EQU expression [comment]

| (a) ‘symbol EXT expression {comﬁent]
In (c) above the symbol is defined both locally and‘externally at the same
time. (d) differs subtly in that the symboliin the label field‘is defined
only externally; its name and value are completély uﬁknown to the local
program.

The feature (d) above is particulariy useful in éﬁtuatiohé where two or
more subprograms loaded together have name conflicts. For ekémple,lsuppose
programs A and B both make use of the symbol START, and A not only refers
to its own START but B's as well.» The latter references can be chénged to
BEGIN. Then into progrem B can be inserted the line

BEGIN EXT START

No other changes need be made either to A or B.

R=-26
6-6
Occasionally, after having written a program, one would like to make
2 list of local symbols to be externully defined. A built-in macro ENTRY
serves this function. That it is a built-in macro is irrelevant; the
programmer may think of it as a related directive. Thus
ENTRY A,B,C,D,...

is precisely equivalent to

A EXT
B EXT
C EXT
D EXT

.

6.7 NARG Equate Symbol to Number of Arguments in Macro Call

[$)symbol NARG [comment]
This directiﬁe may be used only in macro definitions. It is mentioned
here only for completehess. It operates exactly as FQU except that in
place of an expression in the operand field, the value of the symbol is
set to the number of arguments used in calling the macro currently being

expanded. Cf. 7.9 below.

€.8 NCHR Equate Symbol to the Number of Characters in Operand

[$]symbol NCHR operand [comment]
This directive is intended for use mostly in macro definitions, but it
may be used elsewhere. It operates exactly as EQU except that in place
of an exnression in the operand field, the value of the symbol is set to
the number of characters included in the operand field. A further

explanation of the utility of this directive is deferred to section 7.

6.9 OPD Operation Code Definition

The OPD directive gives the programmer the facility to add to the
existing table of operation codes kept in the assembler new codes or to
change the equivalences of current ones. The form of OPD is:

opcode OPD expression,class{,ar(,typel,sbl]] [comment]

where: 1) class must be 1 or 2 (cf. Section 3.1).
2) ar (address required) may be O or 1
3) type may be O or 1 (cf. Section 3.1).
L) sb (sign bit) may be O or 1
Quantities governed by the optional terms above (2,3 and 4) are set to
zero if the terms are missing. As examples of how the directive is used,
some standard machine instructions are defined as follows:

CLA OPD 046000018, 2

LDA OPD 76B5,1,1

RCY OFD 662B4,1,1,1 (TYPE 1 = SHIFT) B
A hypothetical SYSPOP LLA might be defined by

LLA OFD 11085,1,1,0,1
(class 1, address required, type O, sign bit set).

In operation, the assembler simply adds new op codes defined by OPD
to its opcode table. This table is always searched backward, so the new
codes are seen first. At the beginning of the second pass the original
table boundary is reset; thus if an opcode is redefined somewhere during

assembly, it is treated identically in both passes.

6.10 POPD Programmed Operator Definition

In programs containing POPs it is desirable to provide the POPD
directive. This directive works exactly like OPD and is used in the same

way. Its essential difference from OPD is that it plécéé éutomatically

R-26

in the POP transfer vector (1008 - 1778) a branch instruction to the body
of the POP routine.

In order to do this the assembler must know two things:

(1) the location for the branch instruction in the transfer vector and

(2) the location of the POP routine (i.e. the address of the branch

instruction).
Ttem (1) is given by the POP code itself. Ttem (2) is provided by the
convention that the POPD must immediately precede the body of the POP
routine. The address of the branch instruction placed in the transfer
vector is the current value of the location counter.

If the automatic insertion of a word in the POP transfer vector is
not desired, then OPD should be used instead. An example of this case
would occur in a subprogram containing a POP whose routine is found in
another subprogram.

6.11 BES Block Ending Symbol

[[$]1label] BES ‘expression [comment]
The use of BES reserves a block of storage for which the first location
after the block may be labeled (i.e. if the label is given). The block
size is determined by the value of the expression; it must therefore be
absolute, and it must have a value when BES is first encountered, (symbols
present must have been previously defined). BES is most useful for
labeling a block which is to be referred to by indexing using the BRS
instruction (where the contents of X are usually negative). For example,
to add together the contents of an array one might write:

LDX =-100 ARRAY HAS 100 ENTRIES

LOOP ggg ARRAY,2 NEGATIVE INDEXING HERE
BRX #*-1
STA RESULT

HLT
ARRAY BES 100

R-26

6.12 BSS Block Starting Symbol

"[[$]1abel] BSS expression [comment]

The use of BSS reserves a block of storage for which the flrst word may

be labeled (if the label is given). The b10ﬂk size is determlned by the
value of the exprgssion; it must therefore be absolute, and it must have
a value when BSS is‘first encountered. The difference between BSS and BES
is that in the éase of BSS the first word of the block is labeled, whereas
for_BES the first word after the block is labeled by the a§§oéia§ed symbol.
BSS is méstvuseful for iabeling a block which is referred to by positive

indexipg‘(cf. 6.11 above).

6.13 ORG Program Origin

ORG expression [comments]

The use of ORG forces an absolute assembly The locatlon counter is
initialized to the value of the express1on}: The express1on must theréfore
be absolute, and 1t must have a value when ORG is first gncountered.

PR i I
An ORG mbst precede the first instruction or data item in an absclute
program, although 1t does not necessarily have to be the flrst statement.
The output of the assembler will have a bootstrgp loader at the front
which is capable of loading the program after initiation by the 940

FILL switch.

6.14 END End of Assembly ‘

END [expre531on]
The END d1re¢t1ve tgrmmnates the asse@bly.k‘For ;glocatabl§‘éssemblies,
no expfeésioﬁ is»ﬁséd.‘ Fér absolute assemblies the expression gives the
startihg locétign fof the prégram. When sssembling in absqlupe‘mode,
the assembler pfoduces a paéer tape which can be read into the machine
with the FILL switch, i. e., out of the time-sharing mode. If the

expression is not included with the END directive, the bootstrap loader

R-26
_6-10

on this paper tape willlhalt after the tape has read in. Otherwise, control

will automatically transfer to the location designated in the expression.

6.15 DEC Interpret Integers as Decimal

DEC [commeats]

Integers terminated with B or D are always interpreted respectively as
being octal or decimal. On the other hand, integers not terminated with
these letters may be interpreted either as decimal or octal depending or
the setting of a switch inside thé assembler. The mode coﬁtrolled by this
switch is set to decimal by the above directive. ’

When the assembler is started this mode is initialized to decimal.
Thus, the DEC directive is not really necessary unless the mode has been

cbanged to octal and it is desired to return it to decimal.

6.16 OCT Interpret Integers as Octal

OCT [comments] A
As noted in 6.15 above, this directive sets a mode within the assembler
t§ interpret unterminated integers as octal. When the assembler is :
started this mode is initialized to decimal. Thus, the OCT directive

must be used before unterminated octal integers can be written.

6.17 RAD Set §peéiél Relocation Radix

RAD expression [comment]
As explained in 4.7 it is possible in a limited way to have multiple-
relocated symhols. This action is performed when the special relocation
operator'(R)'is used. Thenéalue of a symbol preceded by (R) is multiplied.
by a constant called the radix of the special relocation. The loadef}is
1nformﬂd of this situation so that it can multiply the base address by thls

same constant before performing the relocation. Because the special .

R-ct
6-11
relocation was developed specifically to facilitate the assembly of string
pointers (cf. 4.7), this constant is initialized to 3. If it is desired
to change its value, however, the RAD directive must be used. The value
of the expression in the operand field sets the new value of the radix.
It must be absolute, and the expression must have a value when it is

first encountered.

6.18 FRGT Forget Name of Symbol

FRGT { comment]

31,39,53,...
where s, are previously defined symbols

The use of FRGT prevents the symbol(s) named in its operand field from

being listed or delivered to DDT. FRGT is especially useful in situations,

for example, where symbols have been used in macro expansions or conditional

assemblies. Frequently such symbols have meaning only at assembly time;

they have no connection whatever with the program being assembled. :When

DDT is later used, however, memory locations sometimés are printed out

in terms of these meaningless symbols. It is desirable to be able to

keep these symbols from being delivered to DDT.

6.19 IDENT Program Identification

symbol IDENT [comment]

IDENT causes the symbol found in its label field to be delivered to DDT
as a special identification record. DDT uses the IDENT name in conjunction
with its treatment of local symbols: in the event of a name conflict
betwegn local symbols in two different subprograms, DDT resolves the
ambiguity by allowing the user to concatenate the preceding IDENT name
to the symbol in question.

IDENT statements are otherwise useful for editing purposes. They

are always listed on pass 2, usually on the teletype.

R-76
6-12

6.70 DELSYM Delete Output of Symbol Table and Defined Op-codes

| DELSYM [commen£]
DELSYM inhibits fhe symbol tible and opcodes defined in the course of
assembly from being output for later use by DDT. Its main purpose is to
shorten the object code output from the assembler. This might be
especially desirable for 2n absolute assembly which produces i paper tape

which is to be filled into the machine.

6.71 RELORG Assemble Relative with Absolute Origin

RELORG expression [comment]
On occasion it is desirable to a2ssemble in the midst of ctherwise normal
program a batch of code which, although loaded into core in some position,

is destined to run from nnother position in memory. (Tt will first

have to be moved there in a block.) This is particularly useful when

preparing program overlays.

RELORG, like ORG, takes an absolute expression denoting some origin

in memory. It has the following effects:

(:) The current value of the location counter is saved, i.e. the
value of the expression and in its plzce is put the absolute
origin. This fact is not revealed to DDT, however; during
loading the next instruction ussembled will be placed in the
next memory cell availsble as if nothing had happened.

(b) The mode of sssembly is switched to absolute without changing
the object code format; it still looks like relocatable binary
program to DDT. All symbols defined in terms of the location
counter will be absolute. Rules for compﬁting the relocation
value of expressions are those for absolute assemblies.

It is possible to restore normnl relocatable assembly (cf. 6.22, RETREL).

R-26
6-13
Some examples of the use of RELQRG follow:
(l)_ A program begins with RELORG 300B and ends with END. The
assembler's éutput représents an absolute program whose origin is 003008
but which can be loaded anywhere using DDT in the ususl fashion. (It
is, of course, necessary to move the program to location 003008 before
executing it.) | |
(2) A program starts and continues ngrmaiiy'ss a2 relocztable program.
Then there is a series of RELORGs and some RETRELS;J‘Tbé effecélié aé

shown below:

—_— }' Normal relocatable program.
RELORG 100
RS —— ;} - Absolute progrim origined to 100
RELORG 200

;}. Absolute program origined to 200
RETREL
e j; Normal relocatable program
RELORG 300

N; Absolute program origined to 300
END

6.22 RETREL Return to Relocatable Assembly

RETREL [comment]
This directive is used when it is»desiped to return to relocatable a§§embly
after having done a RELORG. It is not necessary to use RETREL unless one

desires more relocstable program. The use of RETREL is shown in 6.21.

R-26
6-1h
The effects of RETREL are
(a) to restore the location counter to what it would have been
had the RELORG(s) never been used, and

(b) to return the assembly to relocatable mode.

6.23 FREEZE Preserve Symbols, Op-codes, and Macros

FREE7E [comment]
It is sometimes true when assembling various sub-programs tha£ they share
definitions of symbbls, op-codes, and macros; It is possible to cause the
agssembler to take note of the current contents of its symbol and opcode
tables and the currently defined macros and include them in future
aésemblies, eliminating the need for including copies of this information
iﬁ every subprogram's source language. This greatly facilitates the
editing of this information.

When the FREEZE directive is used, the current table boundaries for
symbols ahd opcodes and the storage area for macros is noted and saved away
for later use. These tables may then continue to expand during the current
assembly. (A separate sub-program may be used to Make these definitions.
It will then end with FREEZE; END.) The next assembly may then be started
with the table boundaries returned to what they were when FREEZE was last
executed. This is done by entering the assembler at its continue entry
point, i.e. one types

@ CONTINUE ARPAS.
Note that when the assembler has been pre-loaded with symbols, dpcodes
and macros, it cannot be released (i.e. one cannot use another sub-system

like DDT, QED, etc.) without the loss of this information.

R-26
6-15

6.24 NOEXT Do Not Create External Symbols

‘Becauée of its subprogram capability, the éséembler assumes auto-
matically that symbols which are not defined in a givenrprogram are external
and will be defined in another subprogram. It does not théréfbre list out
the use of such symbols as errors.

If a program is in fact a free-standing program, i.e. if it is
supposed to be complete, then clearly symbols which are not defined are
errors and should be so noted in assembly. The NOEXT directive simply
prevents external symbols from being established; thus undefined symbols
are noted as errors. The directive must be used at the beginning of a
program before instructions or data have been assembled. Its use affects
the entire program. Its form is

NOEXT [comment]

6.5 LIST Turn Specified Listing Controls Om

6.26 NOLIST Turn Specified Listing Controls Off

Mos£ assemblers provide‘a means of listing arprogram dufing assembly,
i.e. printing out such items as the.location counter, binary code being
assembled, source program statement, etc. The association of these items
on one page is frequently of great help to programmers. Two directives,
LIST and NOLIST, control this process. Their form is as follows:

LIST
NOLIST [S17522837°--

{ comment]
where the s, are from a set of speciél symbols ha#ing
meaning only when used with these directives.

There are many listing options for this assembler. A list of special

mnemonic symbols used in conjunction with these two directives is given

below. The symbols have special meaning only when used with LIST and

NOLIST. They may be used at any other time for ény particﬁlar purpose.

The special symbols are:

Symbol Meaning
1 Listing during pass 1. Llstlng format will be

controlled by other parameters.

2 Listing during pass 2. Listing format will be
controlled by other parameters.

1CT Listing of location counter value (see below)

BIN Listing of binary object code or values (see below)
SRC Listing of source language (see below) ‘
CcoM Listing of comments (see below)

MC Listing of macro calls (see below)

ME Listing of certain directives during macro

expansions (EQU, NCHR, NARG, RPT, CRPT, ENDR, IF,
ELSF, ELSE, ENDF, ENDM).

EXT Listing of external symbols at end of assembly
NUL Listing of null & duplicate symbols at end of
assembly.' ' :

+As an exemple of the meanings of virious symbols above, consider the line
of code A?l STB OUTCHR SAVE POINTER.

It might list as

il p {’\
QB'D 0 3600 17 /\\LEE(OUTCHR @MTER

LCT BIN SRC coM

~
v

It is not necessary to include each symbol possible, but rather only those
parrmeters for which changes are desired. It is, in fact, not necessary
to give any symbols.

LIST is equivalent to LIST 2

R-26
6-17
When the assembler is started, it initializes itself in the following
way: |
LIST LCT, BIN, SRC, COM, MC, EXT, NUL
NOLIST 1,Z,ME,SYT

The actual format of the assembly listing is controlled by the current

combination of parsmeter values. The parameters are independent items

except for the parsmeters MC and ME. In this case it is more reasonable

to think of their combination. Thus:

MC ME Effect

——_ e

0 C List outer level macro calls only

1 o) List 211 macro calls and code generated, but
suppress listing of certain directives (see ME

in toble above).

0 1 List no macro calls, but rather all code generated

except for certein directives.

1 1 List everything involved in macro expansions.

Regardless of the list control parameters which have been given to
the assembler, it zan be mnde to begin listing at 2ny time in either pass
simply sy typing 2 single rubout (typing a second rubout in succession will
abort the assembly). Listing having been started in this manner can be
-

stopped by typing the letter S.

6.77 PAGE Begin New Page on Assembly Listing

PAGE [comment]
This directive causes a page eject on the assembly listing medium
unless a page eject has just been given. It is used to improve the
appearance of the assembly listing.

6.28 REM Type Out Remarks in Pass 2

REM remark to be typed

This directive, when encountered in pass 2, causes the contents of

R-26
6-18
its operand and comments fields to be typéd out either on the Teletypé
or whatever file has been designzted as the output message device. This
typeout occurs regardless of what listing modes are set. Thekdirective
may be used for a variety of purposes. It may inform the user of the
progress of assembly. It may give him instructions on what to do next
(this might be especially nice for complicated assemblies). Tt might
announce the last date the source language was updated. Or, it might bé
used within complex macros to show which argument substrings have been

created during expansion of a highly nested macro (this for debugging

purposes).

R-26

7.0 Macros and Conditional Assembly

Assemblers with good macro and conditional assembly capability can have
surprising power. This assembler features such capagbility. 1In this section
the facilities for dealing with macros and conditional assembly will be
discussed. Many examples will be given.

7.1 Introduction to Macros

On the simplest level a macro name mgyiﬁe thought of as an sbbreviation
or shorthand notation for»one or more assembly language statements. 1In
this respect‘it is like an opcode. The opcode is the name of a binary
machine command, and the macro neme is the name of ; sequence of assembly
language statements.
EXAMPLE 7»1.

. The 9h0 has‘an 1nstructlon for sklpplng 1f the conténts of ;‘SPGCIfled
locatlon are negatlve, but none for testlng the accumulator) SKA (sklp
if memory and accumulator do not compare ones) w1ll sefve ;hen used w1th
a cell whose contents mask all but the 31gn blt The meanlng of SKA used p

in this way is "sklp if A positive." Thus a programmer w1ll write

SKA =4B7
BRU NEGCAS NEGATIVE CASE

.
.
.

Programs, however, are more than likely to have a logical need for

skipping if the accumulator is negative. In these situations the programmer

must write
SKA =hB7
BRU %2 '
BRU POSCAS POSITIVE CASE

-
.

Both of these situations are awkward in terms of assemb}y-language

programming.

R-26
7-2

But we have, in effect, just developed simple conventions for doing
the operations SKAP and SKAN (Skip if accumulator positive or negative).
Let the&e operations be defined as macros.

SKAP MACRO
SKA =hB7
ENDM
SKAN MACRO
SKA =l4B7
BRU %42
ENDM
Now -- more in keeping with the operations the programmer has in mind --
he mey write
A22 SKAN A
' BRU POSCAS

.
.

The advantages of being able to use SKAP ortSKAN should be apparent.
The amount of code written in the course of a program 1s reduced. This
in itself tends to reduce errors. A greater advantage 1s that SKAP and
SKAN are more 1nd10at1ve of the actlon that the programmer has in mind.
Programs wrltten in thls way tend to be easier to read Note, 1n01dentally,'
as shown ghove that a 1abel may be used in congunctlon W1th a macro. Legbels
used in this way are usually treated like labels on instructions; they are

assigned the current value of the location counter. This will be discussed

in more detail later.

7.2 Macro Definition

Belore discassing more complicated use of macros, some additional
vocabulary should be establlshed. A macro is an arbitrary sequence of
assembly-language statements together W1th a symbollc name. During

assembly it is held in an area of memory called text storage. Macros

may be created or defined. To do this one must glve (l) a name and

(2) the sequence of statements comprising the macro. The name and the

7-3

beginning of the sequence of statements in a macro are designated by
the use of the MACRO directive (see ex. 7-1 ebove).
name MACRé-
ENDM

The end of the sequence of statements in a'mécfo is signalled by the
ENDM directive.

The'reader should now refer to»Figure 1. When the assembler en-
counters a macro definition (i.;;; when it s;es a MACRO directive), switch
B is thrown to position 1. The programmer's sgurce language is merely

copied into text storage; note in particulaé_that the assembler does not
LS

do any processigg,during the definition:of a ﬁ;cro. Switch B is put back
to positionlo when ENDM.is encountered. o
It is poésibiekthat within a macro definition other definitiong,maj‘
be imbedded. The macro defining machinery counts the occurrences of the
MACRO directive and matches them against the occurrences of ENDM. Switch
B is placed back in position O actually only when the ENDM matching the
last MACRO is seen. Thus MACRO and EﬂDﬁ constitute opening and closing
brackets around a segment of source ;gnguage. Structures like the

following are possible:

SOURCE
LANGUAGE

R-26
74

Binary Machine
Language >

ASSEMBLER

SYMBOLIC
0 ASSEMBLY
LANGUAGE

H = O o |»

H O K O |w

Y
A

STORAGE

norméi ﬁésembiy
macro definition
macro expansion

macro definition during macro expansion

(to be explained in more detail later).

Figure 1: Informestion Flow During Macro Processing

R-26
7-5

namel MACRO -

name?2 MACRO =
name3 MACRO —

mou
namek MACRO 7

.

ENDM .

ENDM -

name5 MACRO "

ENDM

ENDM .
The utility of this structure will not be discussed here. Use of this
feature of imbedded definitions should in fact be kept to a minimum since
the implementation of this assembler is such that it uses large amounts
of text storage in this case. What is important, however, is an under-
standing of when the various macros are defined. In particular, when
namel is being defined, name2,3, etc. will not be defined; they are
merely copied unchanged into text storage. Name2 will not be defined
until namel is used*.

7.3 Macro Expansion

The use of a macro name in the opcode field of a statement is referred
to as a call. The assembler, upon recognizing a macro call, moves switch A
to position 1 (again see Figure 1). Input to the assembler from the
original source language ceases temporarily and comes instead from text

storage. During this period the macro is said to be undergoing expansion.

* It should be noted that macros -~ like opcodes -- may be redefined.

R-26
7-6

It is clear that a macro must first be defined before it is called.

An expanding macro may include other macro calls; and these, in
turn, may call still others. In féct, macros may even call themselves
(when this makes sense). This is called recursion. Examples of the
recursive use of macros are given later. Wheﬁ‘within a macro expansion
a new macro expansion begins, informatién about the progress of the current
expansion is put away. Successive macro calls cause Similar information
to be saved. At the end of each expansion the information about each
previous expansion is restored in inverse fashion. When the final
éxpansion terminates, switch A is placed back in position 0. 1Input then
resumes from the source language program.

7.4 Macro Arguments

Now let us carry example 7-1 one step further. One might argue tﬂat
fhe action of skipping is itself awkward. It might be preferable to Qrite
macros BRAP and BRAN (branch to specified location if contents of accumulator
are positive or negative). How is one to do this? The location to wﬁigh
ihe branch should go is not known when the macro is defined; in faét,
different locations will be used from call to call. The macro processor,
éherefore, must enable the programmer to provide some of the informat;on
for the macro expension at call time. This is done by peimitting QEEEE
arguments in macro definitions to be replaced by arguments (i.e., arbitrary
;ubstrings) supplied at call time. Each dummy argument is referred td in
%he macro definition by a subscripted symbol. This symbol or dumy name

is given in the operand field of the MACRO directive.

EXAMPLE 7-2

Let us define the macro BRAP.
BRAP MACRO DUM
SKAN
BRU DUM(1)
ENDM
When called by the statement BRAP POSCAS
the macro will expand to give the statements
SKA =LB7
BRU *+2
BRU POSCAS
Note that BRAP was defined in terms of another macro SKAN (a matter

of choice in this example). Also note that as defined, BRAP was intended

to take only one argument. Other macros may use more than one argument.

EXAMPLE 7-3
The macro CBE (compare and branch if equal) takes two arguments.

The first argument is the location of a cell to be compared for equality

with the accumulator; the second is a branch location in case of equality.

The definition is

CBE MACRO D

SKE D(1)
BRU ~ *+2
BRU D(2)
ENDM

When called by the statement

CBE =21B,EQLOC
the statements generated will be

SKE =21B

BRU ~ *+2
BRU EQLOC

.

R-26

Note that arguments furnished at call time are separated by commas.

t is possible to include both commas and'spaéésgin arguments by enclosing
the arguments in parentheses; the macro processor strips off the outermost
parentheses of any substring used in a call. For example in the call of
the macro MUMBLE

MMBIE A, (B,C),(D E)

we have
D1g= A
D2=B,C
p(3) = D E

?.5 The Use of Dummy Arguments in Macro Definitions

Before giving further examples of the use of macros, the various
way3 that dummy arguments may be used in macro definitions will be
diccussed. In general a dummy may be referred to by the symbolism

dummy (expression)
Thaz only restriction on the expression above is that it must not contain
other dummies or generated symbols (see 7.7). Furthermore, for obvious
reasons it must have a known value when the macro is called*‘

More than one cummy may be referred to by the notation

dummy (expression,expression)
In the case of the call
MUMBLE A,B,C,D,E
then
D(3,5)= C,D,E
s 3t is possible to have confusion in this situation. If we have the call

MUMBLE A,B,C,(D,E),F

e e

*Ib'should be noted that a macro call may deliver more arguments than are referred
to in its definition, but the converse is not true. A dummy argument not supplied
with an argument at call time is considered an error.

R-26
7-9

then
DWM(3,5)= C,D,E,F
But which are DUM(3),: pum(h), and DUM(5)? To resolve this ambiguity, the
assembler produées in piace of DUM(3,5)‘the string
(¢}, (D,E), (F)
The notation ‘
| ummy ()
produces all of the arguments supplied in a macro call. Each is surrounded
by parentheses as in the example above.
The symbolism
dummy (0)
is legal and meaningful. It refers to the label field of the macro call.
Normally a label used with a hacro call is aésigned the current value of
the location counter (as with any instruction). Explicit use of dummy(O),
i.e., literal zero in‘parentheées, causés fhe label field not to be
handiéd iﬁ‘ﬁhé normal way. ‘It serves'mereiy to fransmit:anothef argument.
There are three possible caéeé. - | |
(1) Macro contains no refefences to dumﬁy(O). Label field is
‘ tfeated normall&. o | | R
(2) Macro contains at leaét one reference té‘dummy(o). Lebel field
merely transmits an argument which replaces du@my(o) ih-thé
expansion. - | a | |
(3) Macro contalnsbno references to dummy(O) exp11c1tly but does
contain dummy(expreSS1on) where, at call tlme, the value of the
expression is zero. In this case the label fleld is handled as
in case (1) and also used to transmit the argument referred to by

dummy (expression) as in case (2).

The symbolism
dummy (-1)
i+ used to represent the terminal character of the opcode field, i. e., to
dztermine whether the macro neme terminated with a blank or a * (in case
of indirect address). It allows macros to be called with or without

"indirect addressing' specified. Thus in a typical call we have the

following relationships:

-

! |

wmmy (0) dummy (1) dummygzy\ durmy (3, 4)
dummy ()

M17, CALL* ABC,DEF, 'GHI',JKL
A \-\w‘—\——/

Foie that dummy(-1) is elways one character long.

Sometimes in a macro definition it is desirable to refer only to a
porticn of an argnmént, perhaps to a character or a few characters. In the
case of a single character this may be done by writing

dummy(exﬁression$expression)
e first expression iesignaﬁes which argument; the second determines
vhich character of that argument. If a substring éf an argument is‘
desired, one writes |

dummy(expression$expression,expression)'
The c2coud wud third expressions determine the first and iast characters
cf the sﬁbstring. For exsmple, if we have the call

| | MUMBLE A,BCDE, ' FGHLJ'

than

puM(2 $3) = D

DUM(3 $’"‘:7) = HIJ'

Beginning with the ith character the latter part of an argument can be
obtained by specifying aﬁ overlarge terminal bound. Thus
DUM(2$k4,1000) = HIJ'
7.6 Concatenation
It is frequently useful to compose statements out of macro arguments
(or parts of them) and other information given in the macro definition.

This is done by concatenating the various objects together, i.e. simply

writing them next to each other. It is possible to confuse the assembler
when doing this, however. For example, let the dummy neme in a definition
be C, and suppose we wish to concatenate the strings AB and C(3). If we
write ABC(3), then do we mean AB concatenated with C(3), A concatenated
with BC(3) (whatever that is), ABC(3), or what?

To avoid ambiguity we use the character "." (dot or periéd)‘éé a
concatenation delimiter. For the example just above we would write
AB.C(3), and no ambiguity then exists. The assembler uses the dot to
delineate objects it must deal with;‘in producing output the macro expansion
machinery after having recognized the various objects simply skips over

the dots. The dot character cannot therefore be used literally in a macro

definition.
7 EXAMFLE 7-U
Let:us‘dgfine a macro STORE. vSuppose we have estabiished the
conve##?on éhat certain temporary storage gells begin with the letters
A,B, or X, depen&ing on from what‘9h0 regisper information:is to be stored
there. Theidéfinition is
STORE MACRO D
ST.D(1$1).p(-1) Dp(1)
ENDM

If called by the statements

STORE B17
STORE* Xuh

R-26
7-12

cenoecro will expend as

STB B1l7 or STX* Xxk4
T 2wy 18 not actually needed in every incidence of concatenation.
CLooopvograrners may readily determine for themselves when it is actuslly

rezdsd. As a matter of good practice, however, when in doubt, use it!

7.7 Ggggrated Symbols

A macro should not, of course, have in its definition an instruction
having a label. Successive calls of the macro would produce a multiply
Celir2i symbol. Sometimes, however, it is convenient to put a label on
i “ooiruction within a macro. There are at least two ways of doing this.

i ~s

o2 TivzSoinvolves transmitting the label as a macro argument when it is
ST, This is most reasonable in many cases; it is in fact often
Sovdve. b2 so that the programmer can control the lébelvbeing defined
AL v refer to it elsewhere in the program.
~rap, situations do arise in which the label is used purely for
«.2zcw local to the macro and will not be referred to elsewhere. In
‘r: like this it is desirable to allow for the automatic creation of
RPFER S that the programmer is freed from worrying about this task.)

. s 7 b2 done hy means of the generated symbol.

hogenerubed svmbol name may be declared when a macro is defined. To

-+

Lo *lig reguires two things: (1) the neme and (2) the maximum number of

-~ i,xmetad gy3501s which will be encountered during an eipansibn. Theser

o itzms may follow the dummy symbol name given in the MACRO directive.
“-~1 format used is

name MACRO dummyname, generatedname,expression

~ple, w2 might heve

ITABLE MACRO D,G,k

In the definition of this macro there might be references to
a(1), 6(2), 6(3), and G(L4), these being individual generated symbols.

With regard to generated symbols the macro expansion machinery
operates in the following fashion. A generated symbol base value for each
macro is initialized to zero at the beginning of assembly. As each
generated symbol is encountered, the expression constituting its subscript
is evaluated. This value is added to the base value, and the sum is pro-
duced as a string of digits concatenated to the generated symbol name.
Enough digits are produced to make the resultant symbol six characters
long. Thus, the first time MUMBLE is called, for example, G(2) will be
transformed into GO0002, G(4) into GOOOOL, etec.

At the end of a macro expansion, the generated symbol base value is
incremented by the amount designated by the expression following the
generated symbol neme in the MACRO directive. (This was 4 in the
definition of MUMBLE above.) Thus the second call of MUMBLE will produce
in place of G(2), GO0006, the third call will produce GOOOl0, etc. Tt
should be clear that a generated symbol name should be kept as short as
possible, It cannot be longer than 5 characters.

7.8 Conversion of a Value to a Digit String

As an adjunct to the automatic generation of symbols or for any other
purposes for which it may be suitable s capability is provided in the
assembler's macro expansion machinery for conversion of the value of an
expression at call time to a string of decimal digits. The construct

($expression)

will be replaced by a string of digits equal in value to the expression.

R-26
7-1k

For example, let X = 5. Then
AB. ($2%x-1)
will be trensformed into
AB9
Further examples of the use of this facility appear below.

7.9 The NARG and NCHR Directives

Macros can be more useful if the number of arguments supplied at
call time is not fixed. The precise meaning of a macro (and indeed, the
fesults of its expansion) may depend on the number or the arrangement of
its arguments. In order to permit this the macro undergoing expansion must
be able to determine at call time the number of arguments supplied. The
NARG directive makes this possible.

NARG functions basically like EQU, except that no expression is used

yith it. Its basic form is
| symbol NARG [comment]
The function of the directive is to equate the value of the symbol to ﬁhe
Qumber of arguments supplied to the mecro currently undergoing expansion;
The symbol can then »e used by itself or in expressions for any required
ﬁurpose. Examples of the use of NARG appear later.

It is also useful to be able to determine at call time the number of
qharacters in an argument. NCHR functions by equating the symbol in its
ldbel field to the number of characters in its operand field. Its form ié

symbol NCHR characterstring [comment]
The notion of "operand field" must be elaborated on here. The operand field
normally terminates on the first blank after the beginning of the field.

This rule is rescinded if a macro argument containing blanks sppears in

the operand field. For example, in the statement

XYZ IDA VECTOR,?2 THIS IS A COMMENT
* *

R-26
7-15

the arrows delineate the operand field. Alternatively, if a statement like
TEXT X,D(1).ERROR

is placed in a macro definition and the macro is called by
MUMBLE (NON-FATAL)

then the above statement will turn out to be

TEXT X,NON-FATAL ERROR
1 t

Notice how the operand field terminates in this case.

In the same example notice that the message produced by the text
directive is of unspecified léngth at definition time.v Clegrly, X must
depend on the number of characters in D(1). Accordingly, MUMBLE}might be

defined as

EXAMPLE 7-5
MUMBLE MACRO D
X NCHR D(1)
X EQU X4S 5 FOR 'ERROR',4 TO ROUND UP
TEXT X/4,D(1).ERROR
ENDM

7.10 Conditional Assembly

Tue reader should see by now that the macro is a powerful{tool.
Its power, however, is considerably’multiplied when combihed with the
features explained in this and the following.sections.“‘Thgse'features --
basically the if and repeat capabilities -- are cailed conditional
assembly capaﬁilities because they prermit sssembly-time ca}gulations
to determine the source language actua;ly assembled. They aré, however,
not strictly a part of tﬁe ﬁacro facilities and may be used quite apart

from macros.

R-26
7-16

7.11 The RPT Directive

The RPT (repeat) directive is, like the MACRO directive, an opening
bracket for a segment of program. Its form is

(1) [label] RPT expression [comment]
or, using s for symbol, e for expression, and ¢ for comment

(2) {1abel] RPT (s=el,[e2,]e3) (e]

(3) {1abel] RPT (s=el,[e2,]e3)(s=el[,e2])(s=el[,e2])... [e]
Form (1) says to repeat the féllowing sequence of statements down to the
matching‘ENDR (end repeat) asvmany times as given by the value of the
expressién. Forms (2) and (3) are really the éame form; they are shown
separateiy'to‘eﬁphasize that only the first parenthesized group in tﬁe
operand field must be present. Their meaning is as follows: |

(1) Set the symbol s to the value of e
(2) 1Issue the sequence of statements down to the matching ENDR.
(3) Increment s by the value of e, or by one (if e, is not present).

If the new value of s h#s not passed thé limit, go back |

to (2). When the limit is passed, quit.

In other words, for symbol=él step e, wntil e; do ...
or for symboizel until e3 do ..

$he first parenthesized group (l) determines the number‘of times the

fepeat is execﬁtéd and (2) controls the‘initial value and increment of a
symbol. ‘Subseqhent groups (there may be up to ten of them) merely cohtrol |
the inigiél value and incremenﬁs of other symbolsbcsrriéd along in the

recent operation.

R-26
7-17

EXAMPLE 7-6

It is desired to create an area of storage which is cleared to zero.
The BSS directive cannot be used for this purpose since its function (that
of reserving storage) is basically to advance the assembler's location
counter. The problem is resdily solved by
ABC RPT 100
DATA 0]
ENDR
which is equivalent to
ABC DATA
DATA

DATA
DATA

T

100 statements
DATA 0 l

Note that the label is applied effectively only to the first statement.

[oNeNoNeo!

EXAMPLE 7-7

It is desired %o fill an area of storage with data starting with O

and increasing by 5 for each cell. We may write

X EQU 0
RPT 20
DATA X

X EQU X+
ENDR

Alternatively (and more simply) one can write

RPT (x=0,5,100)

DATA X

ENDR |
Note that in the latter form the terminal value (i.e., e3) does not have
to be positive or &réater than the initial value of the symbol being

incremented.

RPT (x=100, -5, 20)

and RPT (X=1INTT, -5,-30)

are both permissible.
Also note that a repeat directive followed by other statements and

an associated ENDR (referred to as a repeat block) may be imbedded in other

repeat blocks. This is similar to the imbedding of macro definitions in
6ther macro definitions, and repeat structures similar to thet shown in

section 7.2 may be used.

R-26
7-19

EXAMPLE 7-8

It is desired to have a pair of macros SAVE and RESTOR for purposes
of saving and restoring active régisters at the beginning and end of
subroutines. These macros should take a variable number of arguments
so that one can write, for examplé,

SAVE A, SUBRS
or perhaps
RESTOR A,B,X,SUBRS
These calls are intended to generate the code
STA SUBRSA
and
LDA SUBRSA
LDB SUBRSB
LDX SUBRSX

We first define a generalized macro MOVE which is called by the same

arguments delivered to SAVE and RESTOR pluéiphe strings 'ST' and 'LD'

which determine whether cne wishes to store or load.

MOVE MACRO D

X NARG
RPT (Y=2,%x-1)
p(1).p(Y) p(x).p(Y)
ENDR
ENDM

Then, in terms of MOVE, SAVE and RESTOR are readily defined as

SAVE MACRO D
MOVE ST,Dp()
ENDM

RESTOR MACRO D
MOVE LD,D()
ENDM

K-20
7-20

EXAMPLE 7-9

Many programs make use of flags, memory cells which are used és
binary indicators. The SKN (skip if memory negative) makes it easy to
test these flags. ILet us adopt the convention that a flag is set if it
contains the value -1 and reset if' it contains zero. We want to develop
the macros SET and RESET to menipulate flags. It is further desirable
to deliver at call time the nsme of an active register which will be used
for the action, together with a variable-length list of flag locations.
Calls of these macros will look like

SET A,FLG1,FLG2,FLG3
or
RESET X, FLG37,FLG12

As in example 7-8 we make use of an intermediate macro STORE which

takes the same arguments. |

STORE MACRO D

X NARG .
RPT (Y=2,X%)
ST.D(1) D(Y)
ENDR
ENDM

Thus SET and RESET are defined as

SET MACRO D

LD.p(1) =-1
STORE ()
ENDM

RESET MACRO D
CL.D(1)
STORE ()

ENDM

R-26
7-21

7.12 CRPT,‘Qpnditional Repeat

Occasionally one wishes to perform an indefinite number of repeats,
termination coming on an obscure condition determined in the course of the
repeat operation. The conditional repeat directive, CRPT, serves this
function. Its effect is like that of RPT (and its repeat block -- like
RPT -- is closed off by & maitching ENDR) except that instead of giving
a number of repeats its associated expression is evaluated each time in
a Boolean sense to determine whether the repeat should occur again. TIts
form is

[l1abel] CRPT expression[,(s=el[,e2]),(s=e1[,e2])...]
[comment]
One may write, for example,
CRPT x>y
or CRPT STOP, (X=1,2)(Y=-3)
Note that the statement
CRPT 10
will cause an infinite number of repeats.

The termination of a CRPT operation is governed by whether the value
of the expression is one or greater. Zero or negative quantities are
taken to mean don't repeat (Boolean O or fg}gg). Values of one or greater
mean dc repeat (Boolean 1 or true).

An example of the use of CRPT is shown in example 7-11.

7.13 IF Capability

It is frequently desirable to permit the assembler either to assemble
or merely ski? blocks of statements depending on the value of an expression
ét asséﬁbly time. This is @rimarily what is meant by the term conditional

assembly. Conditional assembly can be done (inelegantly) with CRPT.

ilet the condition be given by an expression. (Oncé again akBoélean
value is ascribed to_an'eipfeSsion in the manner

0 if e<0

1 if e0.)

Then one may write

EXAMPLE 7-10

c EQU 'condition
CRPT c

X arbitrary block of statements
c EQU 0
ENDR
Note that the line before ENDR is required to prevent the CRPT from going
forever. By using the structure above, however, conditional sssembly may
be done; the arbitrary block of statements enclosed in the repeat body

may be assembled on condition.

7.14 IF, Assemble if Expression True(i.e., > 0)

The same function shown in example 7-lo‘is performed much more

conveniently'by thé IF directive. Its form is
| | [label] TIF expression [comment]
ENDF

As with RPT and CRPT, the IF directive definés the beginning of a block
of s4o*iments {called the if bod) teirminated by a matching ENDF. The
if body may contain other if bodies

Nhen d01ng condltlonal assembly there are often alterﬁative if bodies
té.ﬂa assembled in case a certain 1f body does not assemble. Thls 31tuat10n

is most eaS1Ly dealt thh by the use of the ELSF and ELSE directlves

These provide an end to the if body and also begin another body whlch is

£0 be assembled (again possibly on condition) in case the first body did

R-20
7-23

not. For example, consider the following structure:

IF el

} bodyl

ELSF e o

} bod,y2

ELSF e 3

} body3

ELSE

Ir el>O, body:L is assembled and bodies L are skipped (regardless of

253,

e, and e

2 3

If e <0 and e?>0, body2 is assembled and bodles) are skipped.

1,3,
If ey and e <O and e3>0, body3 is assembled and bodiesl 2, h are sklpped.

Fmally if el, ess and e_<O, bodyu is assembled.

3= }
An example of the use of IF (and other features) follows

EXAMPLE 7-10

R-26
7-24

This example serves tc illustrate several of the preceding features

and also the power ¢® macros used recursively.

to take any number of pairs of arguments.

The macro MOVE is intended

The first argument of each pair

is to be moved to the second. Each argument, howéver, may itself be a

pair of arguments, which may themselves be pairs, etec.

We first define MOVE.

Basically it extracts pairs of argument

structures and transmits such a pair to another macro MOVEL.

MOVE MACRO

X NARG
RPT
MOVEL
ENDR
ENDM

D

(!el,z,x;(z=2,2)

p(Y),D(2

¥We now define MOVEl. It calls itself recursively until it comes up

with & single pair of arguments. Then it generates‘code.

MOVEL

MACRO
G¢(1) NARG
¢(2) EQU
r
LDA
STA
ELSE
RPT
a(2) EQU
U EQU
\') EQU
MOVEL
ENDR
ENDF
ENDM
Thus when called by the line
MOVE
the code generated will be
LDA

STA

D,G,?2

p
¢(1)=2
nglk
p(2)

G(1)/2

Gg(2)+1

G(1

a(2
p(v),D(v+u/2)

A,B

Kk-26
7-26

EXAMPIE 7-11

Toe following exemple makes use of virtnall& every feature in the macro
el wenditional assembly machinery. It is presented as a demonstration of
th2 power inherent in the use of macros but not as a practical tool (critics
have jugtly termed it the worid's slowost compiier). The macro COMPILE when
callzd with an arithmetic expression for its argument produces assembl& ‘
lengusge which computes the value of the expression in a minimum number of
steps (subject to the left-to-right scen technique used). COMPILE in turn
cal}s £ large number of other macros. Their functions are explained by comments
in ﬁhc text below:

Thz COMPILE mecro itself merely initializes some variables and calls
At wihrere the more difficult work is done. J is the total number of
ahaf:atc;g in the erxpression. K is used to keep track of the recursion level

1 waich the work is being done (EXPAND calls itself recursively when it sees
@y rpening bracket [). AVAIL is the counter for available temporary storage.

HFOY end FPPIR are stack pointers for the operand and operator stacks respectively.

“YPILT MACRO D3J NCHE DCI)gK ZGU O3AVAIL EQGU 3NPTR EQU -13PPTR EQU -1
EXPAND D(1); ENDM :

FXF/WD initielizes T, the current characterxpn1nter. It places
the vaiue werc un She opzrator Suack \marking 1ts beginnlng on the cufrent‘
level) znd fetches the first operand. It thpn sets a switch (G(l)) and goes B
into » cyele of fetching operators (GF”P) and operands (GETN) If the
el lencs of new operators is less than or equal to that of the previous_
~ouevttoss, code is generated. Otherwise the information iz stacked and the

scan continued.

R-20
T-27

EYPAND MACRC D,G,131 EGU 13K EQU K+13 STACK 0,P; GETN DC1); SET G(1)
CRPT G(1)
IF I<J; GETP DCISD)
ELSE:; OPTOR EOU 113 RFSET GC1)
ENDF |
sPSTAK E0U PST.(SPPTR) 4
CRPT OPTOR/10<PSTAK/10+13 GER DC1) | |
ENDR)
IF OPTOR=113PPTR FQU PPTP-13 RESET G(1)3K EOU K=131 EQU I.(3K)+I-]
ELSF; STACK CPTOR,P
1F APTR>0
IF NST.($NPTR=1) <0
IF NST.(LNPTR-1)z-13 STA TEMP.C($AVAIL)
FLSTs RSH 13 STE TEMP.(SAVAIL)

NDF
?éST,($MPTR-1) EGU AVAIL;AVAIL EGU AVAIL+]
ENDF
ENDF
GETM DCISI,
ENDF
ENDR
ENDIM

SET and RESET change the setting of flags. STACK is used to put values
and pointers on "stacks." (These are not, of course, physical stacks in
memory but rather conceptual ones existing in the assembler's symbol table.)
STACK functions by creating an ordered progression of names and assigning

values to the names by means of the EQU directive.

SET MACRO D3y D(1) EOU 1 ENDM

RESET MACRO D3 D(1) EOU 05 ENDM

STACK MACRO D3 TS EQU D(2).PTR+13D(2).,PTR EQU TS3D(2).ST,($TS) EQU D(I)
ENDM

R-26
7-28

GETN fetches the next operand.w Itskcémplexity is due to the fact that
it must recognize symbols (in this example using the assembler's symbol'rﬁles)
and numbers. When this recognition is complete it puts in the operand stack
a'pair of Bointe;s to the head and tail of the operand (i.e., character numbers
ih the string and a flag bit which denotes whether the object is a symboi or

a number. Note that if an opening bracket is seen, GETN calls EXPAND recursively.

GETN MACRGC D3 TC EQU I3 RFSET ERROR; GETC DCISI-TO+1)
IF CHAR="[";1.(5K) FOU I; FXPAND D(152,0)
ELSE

IF LETTER; RESET WNUMBER
ELEE; SET NUMPFEP
ENDF
IF DIGIT; SET SWITCH
CRPT SWITCH; GETC DC1$I-TO+1)
IF DIGIT
ELSF LETTER; RESET SwITCH
IF CHAR="E"; GETC DCI1SI-TO+1)
IF LETTER; RESET ANUMBER
ELSF DIGIT; RESET MUMRER
LMDF
ELSF; RESET NUMRER
ENDF
ELSE; RFESET SWITCH
ENDF
ENDR
ELSF LETTER
ELSE; SET ERROP
ENDF
IF NUMRER
FLSF; SET SWITCH
CRPT SWITCH; GETC D(1%I-TC+1)
IF LETTER
FLSF DIGIT
ELSF; RESET SWITCH
ENDF
ENDR
ENDF
IF ERRCR; ERROR; STACK O,N
ELSF; STACK TO*1D4+I-2+4F 3%xNUMEER, N
ENDF
s1 EGU I-1
ENDF
ENDM

GETC's main function is to determine whether a given character is a

letter, digit, or other type of character. GETP fetches the next operator.
It does some checking of the results and if valid sets OPTOR to a value

carrying both operator and precedence informetion.

GETC MACRG D3CHAR ECU 'DC1)°'sI EOU I+!13A EQU CHAR>'Z'3;E EQU CHAR<'A"
IF ACOR)IT;A EGU CHAR>'S "sP FQU CHAR<'C'
IF £(CRYEFy; RESET LETTER: RESET DIGIT
FLSE; SET DIGIT; RFSET LETTER
CNDF
ELSF; SET LETTERs PESET DIGIT
ENDF
ENDM

GETP MACRG D3 GETC DC1)
IF LETTERCOR)DIGIT; FPROR
ELSF3A ECU CHAR>11E63F EQU CHAR<20LC6
IF ACANDIR; OPTOR EQU OPS.($CHAR/IEG)
ELSF CHAR='1';OPTCR FCU 11
ELSE; OPTOR ECU -1

ENDF
IF OPTOR==-13 ERROR:OPTOR EG!I 40
ENDF
ENDF
ENDM

GEN and GENA serve to reconstruct the operands from the string pointers

and call generators which actually produce code.

GEN MACRC D3R EQU -13PP2 EQU PST.(SPPTR);PP3 EQU NST.(S$NPTR-1)
;FP4 EOU PP3/I1F43PP5 EQU PP3-PP4x]E4
IF PP5>4P33PP5 EQU PP5-4E33 SET LITls RESET LITe
ELSE; RESET LITI; RESET LIT2
ENDF
IF PP3>1P4; GEMA DC1),D(1%PP4,PP3)
ELSF PP3>0; GENA DC(1),TENMP,(3PP3)3AVAIL ECU PP3
ELSF PP3=-13 GENF DC(1),AREG
ELSF PP2=-23 GENA D(1),TREG
ENDF
s NPTR EQU NPTR-23 STACK R,MN3PPTR EQU PPTR-13;PSTAK ECU PST.($PPTR)
ENDM

R-26
7-30

GENA MACRO D;PP5 EQU NST.($NPTR)3PP6 EQU PPS5/1P4
1PP7 EQU PP5-PP6x|E4
IF PPT7>4E33PP7 ECU) PP7~4R3; SET LITZ
ENDF : B '
IF PP5>1R4; GEN,(CPPZ) D(2),D(1%PP6&,PPT)
ELSF PP5>03 GEN.(IPP2) D(2),TEMP.($PP5)sAVAIL FCU PP5
ELSF PP5z=-1; GEN,($PPZ) D(2),ARFG
FLSF PP5:z-2; GEN.($PP2) D(2),RREG
ENDF
ENDM

GEN20, 21, 30, 31 and 4O are the code producing macfos.; They make
reference to LITL end LIT2 (flags set by GEN and GENA) and call macrbs
TEST, LA, LB, and ST. The purpose of the latter macros is to Worry aboﬁt
the meaning of the contents of the A and B registers so as not to injecfw,

gqmrfhxms«xﬁe.

GEN20 MACRO D3 TEST D(1),D(2),Xs LA D(X),LIT.($XD
IF x=1
IF LITZy ADD =.D(2>
ELSF; ADD D(2)

ENDF .
ELSE
IF LITly ADD =.DCI)
ELSE; ADD D(1)
ENDF
ENDF

ENDM

GFEN21 MECRO D3 TEST D(2),X
IF vy Lr Dl2),LIT2
IF LITly CNey ADD =,DCI)
ELSE; CNA3; ADD DCI)
~ ENDF
ELSE; LA D(1),LITI
~ IF LIT23 SUR =.D(2)
ELSE; SUR D(2) ,
ENDF o
ENDF
ENDM

GEN3O MACRC D3 TEST D(1),D(2),Xs LA D(X),LIT.(3X)

IF ¥zl
I1F LIT2; MUL =,0(2)
ELSE; MUL D(2)
ENDF

ELSE
IF LITly MUL =.DCL)
ELSE; MUL DCL)
ENDF

ENDF

iR EQU -2

ENDM

GEN31 MACRO D3 TEST D(2),X

IF X3 ST D(2%1)3 LP DC1),LITI;

ELSE; LB D(1),LITI
IF LIT2; DIV =.D(2)
ELSE; DIV D(2)
ENDF
ENDF
ENDM

GENAC MACRO D; NOP D(1)3 NCP D(2)

ENDM

LA MACRG D
IF 'D(1)"="AREG’

ELSF 'D(1)"="BREG'; LSH 23

ELSE
IF D(2); LDA =.DCI)
ELSE; LDA DCI)

ENDF
SNDF
ENDM
LE MACRO D
IF 'DC1)"="BREG"
ELSE
IF "DC1) "="AREG'
ELSE
IF D(2); LDA =,
ELSE; LDA D(ID
CNDF
ENDF
RSH 23
ENDF
ENDM
ST MACRC D

IF 'DC1)"='BREG'; RSH 1
ENDF
ST.D(1$1)> TEMP,($SAVAIL)
ENDM

DIV TEMP,.(S$SAVAIL)

KO

7-31

TEST MACRC DsY NARG; DC(Y) ECU O

RPT (Z=1,Y-1)

IF "D(Z$1,4)"="AREG"; D{Y) EQU 2
ELSF 'D(Z%1,4) "="EREG'3D(Y> EQU

ENDF
ENDR
IF Y>2

IF DCY)=C3DCY) EQU |

ENDF
ENDF
ENDM

The following lines establish precedence information for_the,ariﬁhmetic

operators.

OPS1C EQU 3030PS11 EQU 203CPS12 EQU -I;CPSls EQU 213CP514 EQU -1

OPS15 EQU 31

When called by the following lines, the macro generates co§éid§_éhdﬂn:

Call:

Result:

Call:

Result:

X+200*Y

AB-[C+D]/[E+F]

COMPILE

LDA =200

MUL Y

ADD X
COMPILE

LDA c
ADD D
STA TEMP1
LDA E
ADD F
STA TEMP2
LDA TEMP1
RSH 23
DIV TEMP2
CNA

ADD

AB

]

“

R-26
7-32

Reol
7-33

Call: COMPIIE A+200+34C21- [DEF/ 34B-HI*[J+20%K] /IM33B - N]/0PQ-22

Result: TIDA =200
MUL 3hc21
LSH 23
ADD A
STA TEMP1
LDA DEF
RSH 23
DIV =34B
STA TEMP?
1DA =20
"MUL K
ILSH 23
ADD J
MUL HI
DIV IM33B
CNA
ADD TEMP2
SUB N
RSH 23
DIV = oM
CNA
“ADD TEMP1

~ SUB =22

R-20

8-3
Error Message Meaning
TOO MUCH MACRO RECURSION. Too many nested macro calls have occurred,

resulting in filling available pushdown
storage. Reorganize program.

TOO MUCH RPT RECURSION. Similar to above.

TOO MANY ARGS IN MACRO. The macro is being called with more
arguments than there is space for.
Reduce the number of arguments in the call.

TOO MANY REPEAT ARGS. In beginning a repeat block, too many
requests for automatic incrementing of
symbols have been made. Reorganize the
block. ' .

STRING STORE EXCEEDED. No space remains to store new macro -
‘ definitions or to do repeats. Caution:
old macro definitions are not thrown away.
Do not redefine macros indiscriminately.
Reorganize program.

EOF IN TEXT. The end of the input file has occurred
in the middle of a statement.

8.2 1Interpretation of the Error Listing

When an error is listed on any file other than TELETYPE, the single-
letter error message (first group above) is listed in the line below at
the point where the error was detected. Other information is given.

This is all depicted in the examples below.

In the following line there are errors in the label and operand fields.

00172 O 76 00000 UG A [o%z B
R
EEK+7
Current value of Label cannot Relocation Expression
location counter is terminate with error. cannot terminate
7 cells past the /- with - .

symbol EEK.

R-26
8-4

20117 0 H 10761 STA zo'r,[‘:
M

> Missing tag

[Ymes+1| |[MUMBLE| {DO

Location Name of Name of outermost

counter innermost macro macro in which

value. in which offense offense occurred.
occurred.

Thus aloné with‘gach erfbf thevlocation counter is printed out relative

tc the symbol most recently defined. In addition, if the error occurs

during ma¢;oqexpansion‘thé names of the innermost and outermost macros

are printed to give a clue on where to iook for the error. If only

one levéi‘df‘ﬁacro ekpanSioh i;“invo;ved, then only that name is‘liétea:‘
Iﬁlafdér>t§ SQQé ﬁimé when erfor listings are made on the teletype,

the single-letter error messagés are‘typed out at the left margin.

9-1

9.9 ASSEMBLER CPERATING INSTRUCTICNS

ARPAS is called in the EXEC by typing
- ARPAS

followed by depressing the return key on the teleprinter. The system
responds w1th

INPUT

requesting the user to type the file name of the symbolic file to be
assembled.

INPUT: /SYM:/

After typing his file name /SYM/ followed by a line feed the system
. responds with BINARY:

BINARY: /BIN/

. The user types his selected file name, /BIN/ for storing the bmary

' 'output of his assembly and again depresses the line feed kgy on his
teleprinter. The system will respond with OLD FILE if the file name
already exists in his file directory. Deprcssmr the line feed key at
this point will cause all existing information in this file to be replaced
with the binary output from this assembly. Depressing Alt Mode or
Escape will permit the selection of a new file name. When the system
types NEW FILE, typing a line feed will confirm the file name or typing
an Alt Mode will permit the selection of a cuffercvlt file name: The
teleprinter page appears as: - '

BINARY: /BIN/
OLD FILE

or
RINARY: /BIN/
NEW FILE

If a carriage return is "epressed after elthcr OLD FILE or NEW FILE,
the system responos with v

OK
and pass one of the assembly begins.

If a line feed is depressed after either OLD FILE or NEW FILE, an
option is available tc the user,

oXT OUTPUT: TEL

9-2

If the option, TEXT CUTPUT, is selected, the user types TEL followed
by a Carriage Return. The system responds with

CK

and pass cne cf the assembly begins. A program liSting of the assembly
will appear on the user's teletype.

Typing a carriage return rather than TEL aborts the text output option
and begins the assembly by typing

OK
ASSEMBLY EXECUTION

If the text output option was not selected by the uscr, the system contmually
transmits non-printing characters to the user's telcprlnter, giving him an
audible indication the assembly is in process. At any time during the
asscmbly, the user may type a single Alt Mode or Escape to activate listing.
The listing will begm at the point in the program that is currently being
assembled It will continue to list on the teleprinter untll the assembly is

| f‘omplete or the user tym_s

S

toc stop thcblisti"lg This process may be rcpeated throughout'the assembly
prccess to determine how far the assembly has progressed.

‘Then the assembly is co“_plbtc the number of cells used by the program
is typed out as well as a table of symbols by the program. For example:

3453 CELLS USED BY PROGREAM

BS N 45+ EBSM3 N 1486+
ENDBRS N 3335+ SMB N O+
SRB N 13+ XSP N 21+

EXTERNAL SYMBOLS USED: .
ACTR ADMSX ARD AWD BPTEST BRRLS3
BRSTV CARRY CBRF CET CHRL CIB

CKBUF <CLR8P COB CPARW CPUPC CQGO
CRASH CRSW

Mnemonic
Ioad/Store

LDA
STA
1LDB
STB
IDX
STX
EAX
XMA

Arithmetic
ADD
ADC
ADM
MIN
SUB
sSuUcC
MUL
DIV

Logical
ETR
MRG
EOR

Register Change
RCd
CLA
CLB
CLAB
C1X
CLEAR
CAB

APPENDIX A

EXTENDED LIST OF INSTRUCTIONS

Operation Code

76
»
™
36
71
37
77
62

55
57
63

61
54

R

14
16

L6
0 46 00001
0 46 00002
0 46 00003
2 46 00000
2 46 00003
0 46 o000k

Function

Load A

Store A

Iload B

Store B

Ioad X

Store iIndex

Copy effective address into index
Exchange M and A

Add M to A
Add with carry
Add A to M

‘Memory increment

Subtract M from A
Subtract with carry
Multiply

Divide

Extract (AND)
Merge (OR)

Exclusive or

Register change
Clear A

Clear B

Clear AB

Clear X

Clear A, B and X
Copy A into B

>

ARG AN

nemonic

CBA
TA3
DAC
ABC

CBX

CNA
AXC

Brench
RRU
BRX
BRM
BRR
BRI

Pest/Skip
5KS

YA
TaB

Operation Code

0 46 00010
0 46 0001k
0 46 00012
0 46 00005
0 46 00200
0 46 00400
0 k6 00600
0 46 00020
0 46 00040
0 46 00060
0 46 00122
0 46 00140
0 46 00160
0 46 01000
0 46 ooko1

Lo
50
73
60
70
53
72
52
7h

R-26
A-2

Function

Copy B into A

Exchange A into B _
Copy B into A, Clearing B
Copy A into B, Clearing A
Copy X into A

Copy A into X

Exchange X and A

Copy B into X

Copy X into B

Exchange X and B

Store Exponent

Load Exponent

Exchange Exponents

Copy negative into A

Copy A to X, clear A

Branch uncénditionally
Increment index and branch
Mark place and branch
Return branch

Branch and return from interrupt

Skip if signal not set

Skip.if A equals M

Skip if A greater than M

Reduce M, skip if negative

Skip if A = M on B mask

Skip if M negative .

Skip if M and A do not compare ones
Skip if M and B do not compare ones
Difference exponents and skip

Mnemonic

Shift
RSH
RCY
LRSH
LSH
ICY
NOD

Control
HLT, ZRO
NOP
EXU

Breakpoint Tests
BPTx

Overflow
ROV
REQ
ovr
OoTO

Interrupt
EIR
DIR
ATR
IET
DT

Channel Tests
CATW
CETW
CZT™W
CITW

Input/Output
ECD

Operation Code

n.2F

A-3

Function

0 66 00xxx
0 66 20xxx
0 66 2hxxx

0

67

0 67

0

O O O O
N
%]

o O O O O

[o e B o N

06

I
67

00
20

Lo

n
V]

Y
[\S]

02
02
Lo
Lo

O0xxx
20xxx
10xex

20xx0

> 00001

00010
00101
00100

> 20002

2000k
20020
20002
20004

14000

11000

12000
10000

Right shift AB
Right cycle AB
Logical right shift
Left shift AB

Ieft cycle AB

Normalize and decrement X

Halt
No operation
Execute

Breakpoint test

Reset overflow
Record exponent overflow
Overflow test and reset

Overflow test only

Enable interrupts
Disable interrupts
Arm/disarm interrupts
Interrupt enabled test
Interrupt disabled test

Channel W active test
Channel W error test
Channel W zero count test

Channel W inter-record test

Energize output D

Mnemonic

Operation Code

Input/Output (920 Compatible)

MIW
WIM
PIN
POT
EOM
BETW
BRTW

Syspops
BIO
ERS
cI0
CTRL
DBI
DBO
DWI
DWO
FXS
FAD
FDV
FMP
FSB
GCD
GCI
ISC
ST
LAS
LDP
LIO
OST
SAS
SBRM
SBRR
sIC
SKSE

SKSG

12
32

0 40 20010
0 k0 21000

576
573
561
572
542
543
skl
545
552
556
553
554
555
537
565
541
550
546
566
552
551
547
570
51%
540
563
562

Function

M into W buffer when empty
W buffer into M when full
Parallel input

Parallel output

Energize output M

W buffer error test

W buffer ready test

Block I/0

Branch to system

Character I/0

Control

Drum block input

Drum block output

Drum word input

Drum word output

Execute instruction in system mode
Floating add

Floating divide

Floating multiply

Floating subtract

Get character and decrement

Get character and increment

Internal to string conversion (flgg%%g%)
Input from specified teletype

Load from secondary memory

Load pointer (AB)

Link I/0

Output to specified teletype

Store in secondary memory

Syétem BRM

System BRR (prestored macro)

String to internal conversion (floatin
Skip on string equal input

Skip on string greater

Mnemonic

STI
STP
TCI
TCO
WwCD
WCH
wCI
WIO

Operation Code

536
567
574
575
535
564
557
560

Function

Simulate teletype input

Store pointer

Teletype character input
Teletype character output
Write character and decrement
Write character

Write character and increment
Word I/0

APFENDIX B
TABLE OF TRIMMED ASCII CODE FOR THE SDS 930%
(NUMERIC ORDER)

0 SPACE 31
1 [32
2 " 33
3 # 34
L $ 35
5 [%] 36
6 [&] 37
7 ' 4o
10 (41
11) 42
12 * 43
13 + Ly
1k s L5
15 - L6
16 . W7
17 / 50
20 0 51
21 1 52
22 2 53
23 3 5k
2k N 55
25 5 56
26 6 57
o7 7 60
30 8 61

&)‘dozgﬁ?ﬁhHmﬁ‘dtﬁUOw>’§[ooVII/\w

62
63
6l
65
€6
67
70
71
72
3
Th
75
76
7
1hh
145
146
147
152
155

R-26
B-1

5 -)iui/iﬂwxxz<:c:emw
& S ‘

BELL

CR

#The Teletype characters enclosed in boxes cannot be handled by
ARPAS and are converted to blanks when present.

	00
	01
	02
	03
	04
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	8-03
	8-04
	9-01
	9-02
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01

