
XII

VI

CAL
REFERENCE SERIES

®

TYMSHARE MANUALS

REFERENCE SERIES

CAL

June 1969

TYMSHARE, INC.
CORPORATE OFFICES

525 UNIVERSITY AVENUE, SUITE 220
PALO ALTO, CALIFORNIA 94301

DIVISION OFFICES

Los Altos, California - I nglewood, California - Englewood Cliffs, New Jersey

DISTRICT OFFICES

Seattle, Washington - Dallas, Texas - Newport Beach, California - Arlington, Virginia

©1969, TYMSHARE, INC., Litho in U.S.A.

Price $3.50

CM1

TYMSHARE MANUALS
SYMBOL CONVENTIONS

The symbols used in this manual to indicate Carriage Return, Line Feed, and AL T

MODE/ESCAPE are as follows:

Carriage Return: ;>

line Feed: ~

ALT MODE/ESCAPE: NOTE: This symbol will be printed as
many times as it is required to
hit this key.

Action At The Terminal

To indicate clearly what is typed by the computer and what is typed by the user, the
following color code convention is used.

Computer: Black User: Red

CONTENTS

Page

PREFACE .. 1

SECTION 1 - INTRODUCTION TO CAL 3

Defining The Problem .. 3
Flowcharting The Problem 3
Entering The Computer And Calling CAL 3
CAL Statements. .. 5
Statement Elements. .. 5
Direct And I ndirect Statements. .. 7

SECTION 2 - INPUT AND OUTPUT. .. 9

Simple Input/Output .. 9
Programmer Formatted I/O 9
Literal Text .. 11
Display Commands ... 11

SECTION 3 - REPLACEMENT COMMAND 12

SECTION 4 - MODIFIERS AND CONDITIONS 12

I F and UNLESS .. 12
UNTI Land WHI LE .. 12
FOR .. 13
WHERE .. 13
IF ... THEN ... ELSE .. 14

SECTION 5 - CONTROL COMMANDS 15

TO PART .. 15
TO STEP .. 15
DO PART .. 15
DONE .. 16
DO STEP .. 16
STEP .. 16
PAUSE .. 16
GO .. 16
RUN .. 16
QUIT .. 17
AL T MODE/ESC .. 17

SECTION 6 - FUNCTIONS 18

Standard Functions .. 18
Iterative Functions .. 19
Programmer Defined Functions 20
Recursive Functions .. 21

SECTION 7 - LINES AND PAGES 22

iii

iv

Page

SECTION 8 - PROGRAM FI LES 23

Using A Tymshare Library Program 23
Removing A File .. 23
Data Files .. 23

SECTION 9 - CAL EDITING FEATURES 26

Adding A Statement .. 26
Deleting A Statement .. 26
Changing A Statement .. 26
Control Characters .. 27

SECTION 10 - LOGICAL OPERATIONS 29

Logical Variables And Expressions 29
Logical Comparisons .. 29
Logical Operators .. 29

SECTION 11 - OVERLAY 31

SECTION 12 - COMMAND FI LES 34

SECTION 13 - SAMPLE PROGRAMS 35

Monthly Payment Program 35
Arithmetic Mean Of A Series Of Numbers 38
Automobile Gas Mileage 40
Double Declining Balance Depreciation 44
Mean And Standard Deviatioll 47
Histogram .. 51
Standard Mortgage .. 54

APPENDIX 1 - PRECEDENCE LIST 64

APPENDIX 2 - CAL SUMMARY 65

INDEX .. 69

PREFACE

The CAL Reference Manual is designed both as a tutorial and a reference text. The

manual covers all of the CAL language facilities, both basic and advanced.

CAL (Conversational Algebraic Language) is a unique language that was designed espe

cially for a time sharing environment. Unlike most of the older sequentially oriented lan

guages such as FORTRAN, CAL is designed to operate procedurally as does the human

mind. This feature makes CAL easy to use and work with. Each procedure or part may be

debugged individually and then combined easily into a complete program. The unique

characteristic of being able to execute parts of the program in non-sequential order makes

CAL particularly good for solving problems which are interactive; problems in which the

results of one series of calculations may be evaluated to determine the next series of cal

culations needed.

CAL has many features which are particularly designed for on-line, conversation use

which many computer languages do not have. I ncluded are

• Direct and indirect modes of execution.

• Means of editing a single statement or variable without recompiling in the ordinary

sense.

• Being in the EDIT mode whenever commands are being written.

• Compiling each statement immediately after it is typed in and returning an error

diagnostic if the statement is incorrect.

1

SECTION 1

INTRODUCTION TO CAL

Total Miles = Final odometer reading minus

initial odometer reading.

3

As an introduction to CAL programming we have

written a simple program which computes gas mileage
when the initial and final odometer readings for any
given amount of gasoline are known.

3. INPUT - What information must be supplied to
solve the problem?

1.0 DEMAND I, F, G

2.0 T = F-I

2.1 M = T/G

3.0 TYPE T, M

Let's go back and see how this program was writ

ten. If you can understand the techniques used in

writing this program you should have no trouble writ

ing many other programs which use the same

commands.

Defining The Problem

The first and probably most important step in pro

gramming is writing a clear, concise definition of the

problem. A computer is designed to follow sets of

simple commands which appear in logical sequence. It

is during this first step that you should organize your

problem into small sections that can be written in
CAL.

The easiest way to define a problem for program

ming is to separate the problem into the following

three sections.

1. OUTPUT - What information is desired? This
section includes the answer to our problem and

anything that we wish to have printed, in this

case, the gas mileage.

2. COMPUTE - What computations must be made

to find the above information?

Gas Mileage = Total miles travelled divided by

the amount of gas used.

I nitial odometer reading.

Final odometer reading.

Amount of gas used (in gallons).

Flowcharting The Problem

START

INPUT

I,F,G

COMPUTE
T = F-I

M = T/G

OUTPUT
T,M

STOP

Entering The Computer And Calling CAL

The process of calling the computer and identifying yourself is called logging in.

After the connection has been properly made, the computer replies with:

PLEASE LOG IN: ~ Type a Carriage Return.

ACCOUNT: A3 fJ Now the user types in his account number A3 fol
lowed by a Carriage Return.

PASSWORD: ~ The user types his password followed by a Carriage
Return. The letters in the password do not print on

the page.

4

USER NAME: JONES ~ The user types his user name JONES followed by a
Carriage Return.

PROJ CODE: K-123-X ~ The user has typed K-123-X as a project code. NOTE:
A project code is optional with the user. If no project
code is wanted, simply type a Carriage Return in re
sponse to the system's request.

READY 12/8 11:20 The user may now call CAL.

-CAL~ When the EXECUTIVE dash (-) appears, the user
calls CAL by typing CAL and a Carriage Return. The

STATEMENTS = ~ system will reply with the question STATEMENTS =.
The user must then type an estimate of the maximtJm
number of statements that he will need for the pro
gram followed by a Carriage Return. If fewer than 50
statements are needed and no heading is desired, the
user may press a Carriage Return at this point .

> 1.0 DEMAND I,F,G iJ . Now the steps of the program are typed. Each step is
preceded by a step number. The program will be exe
cuted in the order specified by the numbers. Typing a
statement with the same number as a preceding state
ment will cause the preceding statement to be re
placed. The first step contains the command DE
MAND which, during execution, will request the val
ues of I ,F, and G from the user.

>2.0 T = F-I~

> 2.1 M = T /G ;>
........................ The arithmetic computations shown here are called

replacement statements. The first replacement state
ment computes the total mileage and the second com
putes the gas mileage.

> 3.0 TYPE T,M ~ This command will type the values of the variables T
and M.

> RUN ~ .. We now begin execution of the program by using the

command RUN.

I = 1125.7 ~

F = 1764.1~
G = 40.9 ~

T = 638.40000000

M = 15.60880200

The first statement of the program DEMAND is now
executed. The value of variable I is requested and the
user types 1125.7 and terminates the value with a
Carriage Return. In the same manner the values of F
and G are supplied to the program.

After computing the values of T and M the TYPE
statement causes these values to be typed.

>QUIT ~ Control is then returned to the user. Wishing to leave
CAL, he types the command QUIT and returns to the
EXECUTIVE.

- LOGOUT ~

TIME USED 0:05: 17

PLEASE LOG IN:

CAL Statements

A CAL program is written in simple logical steps
called statements. Approximately 200 statements are
allowed per program, depending upon the length of
each statement and the number of variables used. A
CAL statement may be either a command statement,
a FORM statement, or a DEFINE statement. A state
ment may be up to 256 characters long and is always
terminated by a Carriage Return. If a statement is
longer than one terminal line (72 characters), it may
be continued by typing a Line Feed instead of a
Carriage Return.

Statement Elements

CAL statements are composed primarily of combi
nations of CAL commands (such as TYPE) and con
stants (numeric values), and variables which are con
nected by arithmetic, logical, or relational operators.
The following section defines the statement elements
used in CAL.

Constants

Constants (numeric values) may be represented in
three ways. They may be expressed as integers (whole
numbers without a decimal point), as decimals (num
bers used with a decimal point), or in scientific nota
tion. Scientific notation is used with very large or very
small numbers. For example, if we wish to input 'the
number of miles travelled by a beam of light in a year
we could use 6E 12 instead of 6,000,000,000,000
(6x1012

). The E in this notation indicates that the
number to the left of "the E (which may be in integer
or decimal form) is multiplied by 10 raised to the
power of the number appearing to the right of the E
(the exponent may be a positive or negative integer).

Certain size limitations on the numbers should be
noted. CAL will accept numbers as large as 1077 and
as small as 10-77 . However, internally CAL will retain
only 11 places of significance (the numbers are
rounded to 11 significant digits) and will output only

5

The EXECUTIVE command LOGOUT tells the com
puter that the user is finished. Then, the computer
types the amount of time used, 5 minutes and 17 sec
onds in this case. The PLEASE LOG IN: command is
repeated to allow another person to enter the system
on that terminal. If there is no one waiting, hang up
the phone.

up to 8 significant digits. CAL will output a number
as an integer if it contains less than 9 integer digits,
and as a decimal if it contains less than 8 integer digits
and/or less than 9 decimal digits. If the number has
more than 8 integer or 8 decimal digits, it will be out
put in scientific notation.

NOTE: FORM statements alter these rules, and will
be explained on Page 10.

CAL Command

> TYPE 1123.456789

> TYPE -1123.4567

> TYPE +.1234

> TYPE 30000000

> TYPE 30000000.00000

> TYPE 6666666666666666

> TYPE .00123456789

> TYPE 1234567890E25

> TYPE .1234E-23

> TYPE -5.9t23

> TYPE .1234E04

> TYPE 1234E-04

CAL Output

1123.45680000

-1123.45670000

0.12340000

30000000

30000000

6.66666670E 15

1.23456790E-03

1.23456790E 33

1.23400000E-24

-5.36532790E 17

1234

0.12340000

Variables

A variable is defined as any symbol (I, F, G) which
represents a numeric or logical value which may
change during execution of a program. Legal variables
in CAL include any single letter (A-Z) and any single
letter/single number combination within the range
AO-Z9. In addition any legal CAL variable may be
used with subscripts.

Subscripted variables appear in the following form:
A(1), A(I,J), R2(3,N,X,B-3). Any legal CAL variable
may be used with subscripts. CAL subscripts consist
of any number of positive integers and/or single vari
ables and/or expressions, l separated by commas, and
enclosed in parentheses. A variable may have any
number of subscripts. Each subscripted variable is

treated as a unique variable.

1 - If an expression is used, it will be truncated to the nearest smaller integer and this integer taken modulo 223 (MOD).

6

Expressions

I n its simplest form an expression may consist of a

single constant, a variable, or a function. An expres

sion also may denote a computation between two or

more constants and/or variables or functions.

There are two kinds of expressions in CAL: arith

metic and logical. The value of an arithmetic expres

sion is always numeric. The value of a logical expres

sion is either 1 (true) or 0 (false).

Arithmetic Expression

An arithmetic expression may consist of a single

cOllStant, variable, or function. More complicated

arithmetic expressions may be formed by combining

variables, constants, or functions using the arithmetic

operators.

Arithmetic Operators And Precedence

Five different arithmetic operations may be per

formed in CA L.

Operation

Exponentiation

Division

Mu Itipl ication

Modulo
The MOD operator
computes the re

mainder which re

sults from dividing

the value or expres

sion to the left of

MOD by the value or

expression to the

right of MOD. For

example, A MOD B

is equivalent to the

expression FP (A/B)

*B.

Subtraction

Addition

Replacement

The replacement ar

row assigns the value

of the expression on
the right to all of the

variables listed. For
example, A~B~C~O

would assign a value
of zero to the varia
bles A, B, and C.

Symbol Precedence

t Computed first

Computed second

MOD

Computed third
+

Com pu ted last

In general CAL follows the established arithmetic
rules. CAL does require, however, that an operator al

ways be specified. Thus, 4X is not a legal expression.

In CAL it must be written 4*X.

NOTE: The negative sign (or unary minus) is evalu
ated before any arithmetic operations are performed.

Thus -3t 2 is equal to +9 in CAL.

Precedence

In normal algebraic expressions, only one opera

tion can be performed at a time. The computer also

can perform only one operation at a time, and there

fore since most expressions contain more than one

arithmetic operator, some order or priority of compu

tation (execution) must be established. The order of

computation used in CAL is the same one found in

simple algebra.

All arithmetic expressions in CAL are scanned
from left to right. If any exponentiation is encoun

tered, it is computed first. The system next checks

for any * or / or MOD operations which are then exe
cuted from left to right. The system then will com

pute all + and -, again working from left to right, and

last the replacement (~) operation is performed.

Example

The operators in the expression A = 4*X-1/Yt2
would be executed in the following order:

4

3

2 1

r---T r---l
A=4*X-1/Vt2

1
we have A = 4X - -y2

Parentheses

The normal order of execution may be altered by

using parentheses in a CAL expression. Anything that

appears in () must be evaluated before the expression

can be solved. The inner set of parentheses is always
evaluated first.

Notice how parentheses in an equation alter the

normal order of execution.

Example

A = 4 * ((X - 1) / Y)t2 is executed starting with
the inner set of ().

4

3

2

,.....----,
A = 4* ((X - 1) / Y) t 2

(X-l,2
in this case A = 4 \ Y)

Logical Expressions

A logical expression may consist of a single logical

constant or a logical variable. The value of a logical

expression is always a truth value; that is, 1 if the

expression is true, 0 if it is false.

More complicated logical expressions may be

formed by using logical and relational operators.
These expressions may be one of the following forms:

1. Relational operators combined with arithmetic
expressions.

2. Logical operators combined with logical con
stants or logical variables.

3. Logical operators combined with either or both

forms of the logical expressions described in 1.

and 2. above.

Relational Operators

A relational operator makes a comparison between

expressions. For example, the expression

X>Y

means X is greater than Y. This expression has a value

which at any time is either true or false. Comparisons

may be made using any of the following relational

operators.

equal

not equal

> greater than

>= greater than or equal to

< less than
<= less than or equal to

All of the relational operators have the same prece

dence and hence will be cleared starting with the left

most operator.

For example, the expression R = 3 would have a

value of 1 (true) if R is equal to 3, and a value of 0
(false) if R is equal to any other value.

7

The six relational operators may be combined by
using a logical AND or OR. If an AND is used to con

nect two relational operators, both of the specified

relationships must be true before the command can be

executed. If the OR is used as a connector, only one
of the relationships must be true.

For example, if R = 3 and S = 4 the entire expres

sion R = 3 AND S = 5 would have a value of 0 (false);

R = 3 is true but S = 5 is false, and hence the entire

expression is false. On the other hand, the expression

R = 3 OR S = 5 would have a value of 1 (true).

DIRECT And INDIRECT Statements

Most CAL statements may be used either indirect

ly (with a step number) or directly (without a step

number). A direct (no step number) statement is exe

cuted as soon as the Carriage Return is pressed. Di

rect statements are not saved after execution and thus

may not be reused. The following example uses direct
statements:

> DEMAND A f) DEMANDcommandexecuted
A = 34 ~ immediately.

> X = At 2 ;> Replacemen t command exe
cuted immediately.

> TYPE X ~ TYPE command executed im-
X = 1156 mediately.

>
I ndirect statements (with a step number) are not

executed immediately. They are stored in a program

in step number sequence. All indirect statements are

referred to by their step number. When program exe

cution is started (using a direct TO control command

or the direct RUN command), the computer will step

through the entire set of indirect statements in the

specified sequence. The entire program (all of the in

direct statements) will be saved after execution. Thus

by using another direct RUN command you can exe

cute the program again.

I n the following example the indirect statements

are stored in a program which is then executed twice

using two direct RUN commands.

> 1.0 DEMAND A ~

>1.lX=At2~

> 2.0 TYPE X ;J

> RUN f)

A= 34~

Stored
Stored
Stored

DEMAND command exe
cuted.

X = 1156 TYPE command executed.

> RUN i)

8

A = 122 ~ DEMAND command exe-
cuted again.

X = 14884 TYPE command executed
again.

>
NOTE: Every indirect statement must have a

unique step number. If two statements are typed with
the same step number, the second statement will re
p/ace the first

Step And Part Numbers

Step numbers are used to number indirect state
ments. Step numbers may be either integer or decimal
numbers, and may range from 0 to 999.999. Part
numbers are the integer part of step numbers. Part
numbers may range from 0 to 999. All steps (state
ments) with the same part number are said to belong
to the same part and may be referred to as a group.

9

SECTION 2

INPUT AND OUTPUT

The input and output commands are presented

here in four sections. The first section includes the

simple DEMAN D and TYPE commands used in the

sample program. The second section introduces the

FORM statement which allows programmer formatted

input and output. The third section introduces input

and output of I iteral text. The last section presents a

list of output commands used primarily to display the
program. CAL also allows data file input and output.

Data file input/output is covered in the special section
on data files, Page 23.

Simple Input/Output

DEMAN D Command

To input a number from the terminal, CAL uses

the command DEMAND with a list of variables sepa
rated by commas. When the DEMAND command is

executed, the computer will type the variable name

and then wait until a value is supplied by the user.

Example

> DEMAND A

A=

DIRECT command

Typing Numeric Data Into Variables

When CAL demands a numeric value to fill a vari

able, simply type the number. If you wish the vari

ables specified in the DEMAN D statement to be typed

on separate lines, press the Carriage Return after you

type in each numeric value. If you wish the next vari

able to be typed on the same line, press the space bar,

or type a comma or a semicolon after each variable.

If you make a mistake, type a Control W (WC), and

then retype the entire number correctly. If you type

in any non-numeric characters the computer will nor

mally return a ?, and you then must retype the entire
number. Non-numeric characters typed before nu

meric values are ignored.

TYPE Command

The CAL TYPE command, when executed, will

output the value of the variable and/or expression (A,

B+4, A/B) used with it. If more than one variable or

expression is used, they must be separated by

commas.

> DEMAND A,B

A = 5.302 B = 7.963

> TYPE A,A+A.*B, (3+4-7*A)/8

A = 5.30200000

A+A*B =
(3+4-7*A)/8 =

47.52182600

-3.76425000

>

Programmer Formatted I/O

CAL allows the individual programmer to input
and output his data in any format and with any text

he desires. The format for the input or output is spe

cified in a FORM statement. A FORM statement is

not an actual command; it merely specifies the format
to be used and will be ignored entirely du ring execu

tion of the program unless called by (used with) a spe
cial input (DEMAND) or output (TYPE or WRITE)

command.

If, for example, we are listing the amount and cost

of gasoline per tankful, it might be nice to have it

printed in the following form:

8.5 GAL.

10.6 GAL.

etc.

$3.21

$4.01

etc.

rather than in the normal CAL format.

G = 8.5

G = 10.6

C = 3.21

C = 4.01

To input information in his own form, the user

must use two separate CAL statements as follows:

(1) 1.0 DEMAND IN FORM l:G,C:;;

(2) FORM 1: "1
GAL. $ #

The first statement in the example is an input com
mand. It specifies the form (calling it by its form

number) and lists the variables to be used in the form

in the order in which they occur.

CAL will recognize only positive integer form

numbers. If a non-integer or an expression is used

as the form number, CAL automatically will take
the integer part (see Standard Functions) of the
expression or non-integer, thus converting it to an

integer. If the form number is negative, CAL will not
accept it and will give an error message.

The general form for the input or output command

used with a FORM statement is

DEMAND IN FORM (form number): The

variables listed in the order of occurrence

The output commands TYPE and WR ITE (data files)

may be used in place of the DEMAND.

10

Form Statements

The second and third lines of the example are
the FORM STATEMENT

FORM 1: ~

#GAL $#;J

A Fa RM statement must appear on at least two
lines. The first line specifies the form number fol
lowed by a colon, terminated with a Line Feed. A

form is referred to by its form number. CAUTION:
Never use a step number with a FORM statement.

All subsequent lines in a FORM statement con
tain the form specification which lays out the format
in which the input or output is to appear. Input and
output form specifications are very different and may
not be interchanged.

Form Specifications (I nput)

I nput form specifications use a single # to indi
cate a variable in the layout. Any type of text may
be put in a form specification.

Form Specifications (Output)

The output form specification is more compli
cated since the user must specify the maximum
number of digits that will be printed and the type

of number to be printed (integer, decimal, or
scientific notation). As with the input form speci
fication, any text may be used in the output form
specification.

Integer Output

To specify integer output, a % sign must be
typed for each digit in the variable. If there is any
chance that the variable will be negative, an extra

Example

> 1.0 DEMAND IN FORM 1: A ~

> FORM 1: 1,

% sign must be specified. If the variable is not an

integer, it will be rounded to an integer, dropping
any decimal places when it is printed. NOTE:
Only eight integer places are allowed in CAL. The
maximum size of an integer numeric field speci
fication is 9 places (9 % signs).

Decimal Output

Decimal output also uses a % sign to specify

the number of digits to be printed. With decimal

output however, a decimal point must be specified.
For example, the numeric field specified by

%%%%.%% will print up to four integer places
and two decimal places. As with integer output,
if there is any chance that the number will be
negative, an extra % sign must be specified. Up
to 16 places (16 % signs) may be specified with
decimal output; however, the output will be

rounded to 8 significant digits.

Exponential Output (Scientific Notation)

If the variable is longer than 8 integer places or
8 decimal places, the output must be specified in
exponential form. With scientific notation a # is
used to specify each place needed. A minimum of
6 #,s and a maximum of 15 #'s may be specified.

The minimum form includes a place for:

1. A positive sign (or blank), or a negative sign

to indicate the sign of the number.

2. One integer digit.
3. The E.
4. A blank or negative sign to indicate the sign

of the exponent.
5 and 6. Two places for the exponent.

A IS THE ORIGINAL NUMBER. IT IS SUPPLIED AT THIS POINT ~

A=#i2
> 2.0 TYPE IN FORM 12: A,A,A, i)

> FORM 12: ~

FOR INTEGER OUTPUT

FOR DECIMAL OUTPUT

FOR EXPONENTIAL OUTPUT

> TO PART 1 ~

%%%%%%"1-

%%%%%%_%%%% ~

############ ~

A IS THE ORIGINAL NUMBER. IT IS SUPPLIED AT THIS POINT

A = 1234.5878 ~

FOR INTEGER OUTPUT

FOR DECIMAL OUTPUT

FOR EXPONENTIAL OUTPUT

1235

1234.5878

1.23459E 03

NO TE: If fewer numeric fields are specified than
variables, the FORM statement will be repeated until
all of the variables have been output. For example,

> 1.0 A = 1234 ~

> 1.1 TYPE IN FORM 1:A,A,A;:>

> FORM 1: ~
%%%%

> RUN ()
1234

1234

%%%%~

1234

Literal Text

Literal text may be inserted into a program in two
different ways. It is used for comments, headings,
descriptions, reminders, in short, anything the user
wishes to remember.

TYPE "text"

This command may be used either directly or in
directly. Any combination of characters may be
placed between the quote marks. When the program
is executed everything within the quote marks will
be printed. If the text is longer than 256 characters,
it may be continued by using another TYPE II II

statement. The TYPE II "also may be used to type
headings on lists of data. See sample problems.

Example: Literal Text I n A Program

11

Comments

To add a comment to your program, type a !, then
your comment, and a Carriage Return. Comments are
used primarily for program explanation and docu
mentation and may be inserted at any point in the
program. Comments are not printed during execution.

Comments may follow any indirect statement or they
may occu py a separate line.

Display Commands

Output commands used to display the program
are:

TYPE STEP step number TYPE ALL STEPS

TYPE PART part number TYPE ALL FORMS

TYPE FORM form number TYPE ALL FUNCTIONS

TYPE function name TYPE ALL VALUES

TYPE ALL

The above commands are used to display an entire
program or a specified portion of a program. These
TYPE commands will type on the terminal the step,
part, form, function (DEFINE statement), or values
specified. These commands may be used both directly
and indirectly.

> 1.0 TYPE "THIS PROGRAM COMPUTES THE AREA OF 3 CIRCLES" ~

> 1.1 A(R) = PI*Rt2 FOR R=5 BY 5 TO 15 ! R=5, 10, 15 ~
> 1.2! A FOR MODIFIER IS USED TO SET THE VALUES OF R ~

> 1.3! THE STANDARD FORMULA FOR AREA IS USED ~

> 1.4 TYPE" RADIUS AREA" ITHIS IS A HEADING ~
> 1.5 TYPE A <?
> RUN~
THIS PROGRAM COMPUTES THE AREA OF 3 CIRCLES

RADIUS
A(5)=

A(10)=

A(15)=

AREA

78.53981600
314.15927000

706.85835000

12

SECTION 3

REPLACEMENT COMMAND

Replacement commands are merely arithmetic
computations. Replacement commands appear in the
following form:

a simple variable = any arithmetic expression

In the example in Section 1 (the gas mileage prob
lem) there are two replacement commands. The first

one computes the total mileage.

2.0 T = F -I

The second replacement command computes the
gas mileage:

2.1 M = T/G

The term replacement command is used because the
computer actually replaces the value stored in the
variable on the left (T) with the computed value of
the arithmetic expression (F - I). The equal sign (=)
shou Id not be read as liT is equal to", but as "the
value stored in T is replaced by". In later examples
we shall run into replacement commands that seem
logically incorrect if the equal sign is interpreted to
mean equality, such as T = T +1, but which make
sense if the statement is read T "is replaced by" T +1.

SECTION 4

MODIFIERS AND CONDITIONS

This section includes the complete set of CAL
modifiers and conditions. They may be used to
modify all of the CAL commands unless otherwise
specified. The CAL modifiers and conditions are used
in the following ways:

• Cause commands to execute or not to execute
depending upon the conditions specified by the
modifiers; IF, UN LESS.

• Specify under which conditions execution of
the command is to be terminated; WH I LE,
UNTI L.

• Cause the command to execute repeatedly
(loop) over a specified range of values; FOR.

• Initialize or reinitialize variables; WHERE.

IF And UNLESS

The I F and UN LESS modifiers define the con
ditions under which 'the command modified will be
executed. Any CAL command modified by an I F or
an UN LESS will be executed if and only if the con
ditions specified by the modifier are met.

> 1.5 TO PART 5 IF R=20

The I F modifier used in this command will cause
control to be transferred to PART 5 only if R=20;
otherwise the command will not be executed.

I n the statement

> 1.5 TO PART 5 UNLESS R=20

control will be transferred to Part 5 unless R=20.
The command will not be executed if R=20.

> TYPE H IF H>=50 AND H<=75

The I F modifier in this command will limit the range
of numbers typed from 50 through 75 inclusive.

>1.0 DEMAND H
>1.1 TYPE Ht2 IF H>=50 AND H<=75
>RUN

H = 45

>RUN
H = 55

H is not within the speci
fied range so Ht 2 is not
typed.

Ht2 = 3025
H is within the specified
range so Ht 2 is typed.

UNTIL And WHILE

The UNTI Land WHI LE modifiers specify the con
ditions under which execution of the command mod
ified is to be terminated. Any command modified by
an UNTIL or a WHILE modifier will repeat (loop)
until or while the conditions specified are met.

Example

DO PART 90 UNTI L T>=86

An UNTI L modifier used with a DO PART will cause
repeated execution of the part until the condition
specified; that is, T>=86, is met.

Example

>A=O
>TYPE (A~A+1)t2 WHILE A<=5
(A~A+1)t2 =
(A~A+1)t2 = 4
(A~A+1)t2 = 9
(A~A+1)t2 = 16
(A~A+1)t2 = 25

FOR

The FOR modifier causes the command it modi
fies to be executed repeatedly over a range of values.
A statement which repeats it~elf in this manner is said
to loop, and thus the FOR ~odifier causes a com
mand to loop. Four forms of the FOR modifier will
be discussed.

The first form of the FOR modifier assigns specific
values to the variables used. I n the following example
the FOR modifier assigns the values 2, 3, and 5 to
the variable A and the command TYPE A t2 is exe
cuted.

>TYPE At2 FOR A=2,3,5

At2 4
At2 9
At2 25

>
The second form of the FOR modifier causes the

command to loop for a specified range of values using
a specified interval. The form used is as follows:

FOR variable = limit BY interval TO limit

>TYPE A FOR A = 0 BY 25 TO 100

If the desired interval is 1, specifying the interval is
optional. The following two statements would pro
duce the same results.

TYPE X FOR X = 1 TO 4
TYPE X FOR X = 1 BY 1 TO 4

The third and fourth forms of the Fa R modifier
are similar to the second except that execution of the
command is terminated by a WH I LE or an UNTI L.
As soan as the conditions specified in the WH I LE or
UNTI L modifiers are met, the loop is considered
completed. The general format is:

.. Y' IWHILE d" FOR variable = limit B mterva UNTI L con Itlon

Examples

>TYPE At2 FOR A = 1 BY 1 WHILE At2 <=50

>TYPE At2 FOR A=1 UNTIL At2>50

13

General: The limits and interval may be an expres
sion; for example, FOR X=X+1 BY R/X TO Xt2. It
is possible also to use a negative interval such as Fa R

X=10 BY -2 TO O. However, if the terminating con
dition is reached the first time through the loop (if
the lower limit is already greater than or equal to the
upper limit when the statement is executed), the
statement will not execute.

NOTE: A FOR modifier may never be used with the
control commands TO and DONE.

NOTE: If a FOR loop is used in a replacement state
ment, the results of the calculations usually are stored
in subscripted variables. If a single variable is used,
only the last computed value will be saved and
printed because each time the command loops the
old value stored in the variable is replaced by the
new value.

In the following example two forms of the FOR
modifier have been used.

>1.0 Z(A,B) = A*B FOR A = 1,2 FOR B = 10 BY

10 TO 50
>1.1 TYPE Z

>ro PART 1

Z(1,10) 10 A = 1 8 = 10
Z (2,10) 20 A=2 8= 10

Z (1,20) 20 A=1 8=20

Z (2,20) 40 A =2 8=20

Z (1,30) 30 A = 1 8=30

Z (2,30) 60

Z (1,40) = 40

Z (2,40) 80

Z (1,50) = 50

Z (2,50) = 100

NOTE: The command TYPE Z will print the variable
Z and all subscripted variables Z(O) through Z
(X, Y,N . ..).

WHERE

The WHERE modifier is used to initialize vari
ables that would normally have been set by replace-

14

ment commands. The general form of the WH ERE
modifier is:

WH ERE variable = expression & variable = expression

The WHERE modifier may be used to modify a
statement or an expression. If it is used to modify an
expression, it should be used immediately following
that expression. If it is used to modify the entire
statement, it shou Id appear at the end of the state
ment and must be separated from the statement by a
comma. A WHERE statement modifier is read only
once; a WHERE expression modifier is read each
time the expression is evaluated. It is important that
this difference be understood. The following example
approximates the cube root of the number N. Note
that the first WH ERE mod ifier in the program is an
expression modifier; it reinitializes the approximation
until the difference between the old and new approxi
mation is less than 1 DE-B. The second WH ERE modi
fier is a statement modifier. It contains the first
approximation of the cube root and will be read
only once.

>1.0 DEMAND N

>1.2 B= (2*At3+N) / (3*At2) WHERE A=B UNTIL

ABS (A-B)<10E-8, WHERE A=N/3 & B=N

>1.3 TYPE B

>RUN

N= 81

B= 4.32674870

If we were to try to run this program leaving out
the comma, thus making the statement modifier an
expression modifier, the program will go into an
infinite loop in step 1.2 because the terminating con
dition ABS(A-B) is never satisfied since A is reini
tialized to the first approximation each time the
statement is repeated.

IF ... THEN ... ELSE

The I F-THEN-E LSE modifier actually replaces
a single expression in a command. The general form
of the modifier is as follows:

IF con~ition THEN expression ELSE IF con~ition
list list

THEN expression ELSE expression

Any number of I F-THEN-E LSE's may be strung
together to produce a resultant expression. An I F
THEN-ELSE modifier may replace any CAL expres
sion. The modifier may end without an ELSE if
desired; in which case the expression will result in a
value of zero if none of the conditions are met.

Examples

1.0 A= IF X>O THEN +1 ELSE IF X<O THEN -1

ELSE 0

4.5 TYPE IN FORM IF A<72 THEN 1 ELSE

2:A,B,C,D,(I)

3.7 DO PART I F X = 0 THEN 20 ELSE 30 FOR

R = 1 TO 10

1.5 R = IF X>O THEN Rt2 ELSE IF X<O THEN

ABS(R/2) ELSE R+1

>1.0 N = IF X MOD 2= 0 THEN +1 ELSE IF X>10

THEN 0 ELSE -1

>1.1 TYPE N

>DO PART 1 FOR X= 4,12,13,5

N = 1

N=

N= 0

N= -1

15

SECTION 5

CONTROL COMMANDS

The control commands control execution of the
program. They are used to start and stop execution,
and interrupt the normal order of execution. Pro
grams are normally executed in step number sequence.

TO PART

The TO PART command is used directly to start
execution of a program and indirectly to interrupt
the normal order of execution. The TO PART com
mand may be used with a part number, a step num
ber, a predefined variable, or an expression. When
used with a part number, the TO PART command
transfers control to the lowest numbered step in the
specified part. When used with a step number, the
TO PART command transfers control to that step if
it exists or to the next higher step. An expression
used with a TO PART will be evaluated to eight
places and considered as a step number. NOTE: Step
numbers may not be negative. TO PART may be
used with any of the CAL modifiers except FOR.

TO STEP

The TO STEP command may be used directly to
start execution of a program or indirectly to inter
rupt the normal order of execution. A TO STEP
command must be used with a specific step number
and that step number must exist in the program.

Example

>1.0 A=13

>1.1 A=A+1

>1.2 TYPE A

>1.3 TO STEP 1.1 IF A#16

>TO PART 1

A= 13

A= 14

A= 15

DO PART

If the DO PART command is used directly, it
executes only the part specified and then returns con
trol to the user with a >. If DO PART is used indi
rectly, it interrupts the normal order of execution,
executes the part specified, and then returns control
to the step following the DO PART. DO PART is
normally used with a part number; however, it may
be used with a variable or an expression. DO PART is
commonly used with a FOR modifier to cause an
entire part to loop.

Example

>1.0 DO PART 2 FOR 1=1 TO 4

>1.1 TO PART 3

>2.0 A(I) = I

>2.1 TYPE A(I)

>3.0 TYPE "TH E END"

>TO PART 1
A(1) 1
A(2) 2
A(3) 3
A(4) 4

THE END

>

DO PART may be used with any of the CAL
modifiers. The only restriction placed on the com
mand is that control may not be transferred directly
to a TO PART with a DO PART. Note that the DO
PART is completed when the last step of any part is
executed. Thus, if a part being called by a DO PART
contains a TO control command, the part being done
will be considered complete when the last step of any
part is completed.

Example: Using a TO PART in the part called by a
DO PART

>1.0 DO PART 2

>1.1 TYPE X

>1.2 PAUSE

>2.0 X=1

>2.1 TO PART 3

>2.2 X=X+1

>3.0 X=X+1

>3.1 TYPE "ALL"

>4.00 X=X+1

>4.1 TO STEP 2.0

>RUN

ALL

x =
PAUSE IN STEP 1.2:

>

2

CAUTION: An indirect DO PART transfers control
back to the step fol/owing the DO PAR T and then
proceeds through the program. What would have hap
pened if the PAUSE had not been specified after the
DO PART?

16

DONE

Sometimes it is desirable to terminate the execu
tion of a part called by a DO PART before the end
of that part is reached. The DONE command termi
nates one loop of a DO PART command and returns
control to the user if a direct DO PART was used,
or to the DO PART to test for a terminating condi
tion if an indirect DO PART was used. DONE is
always used indirectly. It is generally used with a
modifier to terminate execution of the part under
specified conditions. DON E may be used with any
modifier except FOR, UNTI L, and WH I LE.

Example

>1.0 DEMAND A

>1.1 DO PART 3

>1.2 TO PART 4

>3.0 X=At2+4*A

>3.1 DONE IF X>100

>3.2 TYPE A,X

>3.3 A=A+1

>3.4 TO PART 3

>4.0 TYPE "THE END"

>RUN

A 6

A

X
A =

X

A

X

THE END

>

6
60

7

77

8

96

DO STEP

The DO STEP control command is used directly
to execute a single step. DO STEP is used indirectly
to interrupt the normal order of execution, execute
the step specified, and then resume normal execution
at the step following the DO STEP. DO STEP always
must be used with a specific step number which must
exist in the program. Remember, the step specified
may not be a TO control command. DO STEP may
be modified by any of the CAL modifiers.

STEP

The STEP command always is used directly. It
executes the next statement in the program and then
returns control to the user. The STEP command is
similar to the direct DO STEP except that the step
number is implied.

PAUSE

The PAUSE control command stops execution of
the program, gives a message indicating at what step
the pause occurred and then returns control to the
user. A PAUSE always must be used indirectly (with
a step number). The program may be restarted at the
step immediately following the PAUSE using a GO
or TO PART control command. PAUSE can be modi
fied by all modifiers except FOR, UNTI L, and
WHILE.

Example

> 1.0 TYPE "COMPUTE THE SO.RT. OF A"

> 1.1 DEMAND A

> 1.2 TO PART 2 IF A>O
> 1.3 TYPE "A MUST BE A POSITIVE NUMBER

NOT EOUAL TO ZERO"

> 1.4 PAUSE

> 2.00 TYPE At(1/2)

> 2.1 TO STEP 1.1

>RUN

COMPUTE THE SO.RT. OF A

A = 33

At(1/2) = 5.74456260

A = -88

A MUST BE A POSITIVE NUMBER NOT EaUAL

TO ZERO

PAUSE IN STEP 1.4:

>

GO

The direct command GO is used to restart pro
grams which have been interrupted at the point at
which they were interrupted. A program may be
interrupted during execution either by pressing an
AL T MODE/ESCAPE or by inserting a PAUSE com
mand in the program. In either case CAL remembers
where the interruption occurred and the program may
be restarted at this point by typing GO. If at any
time CAL responds with NO GO it indicates that CAL
does not know where to restart. In this case the user
must use a TO or DO command to restart the pro
gram.

RUN

The direct command R UN starts execution of the
program at the lowest numbered step in the program.
RUN may be used interchangeably with the TO con
trol commands to start execution of the program.

QUIT

The direct command QUIT transfers the user out
of CAL to the EXECUTIVE. The user then may use
the EXECUTIVE command CONTINUE to continue

17

in CAL as long as he has not called any other lan
guage from the EXECUTIVE.

AL T MODE/ESC

Pressing this key interrupts whatever is going on at
the moment. If the key is depressed during execution
of a program, the program is interrupted and a mes
sage is typed specifying the step interrupted. If the
key is pressed while the user has control, control

will be returned to the EXECUTIVE. To return to
the EXECUTIVE, it is better to use the QUIT com
mand. If too many AL T MODE's are used and un
wanted return to the EXECUTIVE occurs, type
CONTINUE i) to return to CAL.

18

SECTION 6

FUNCTIONS

Functions are used to store sets of common com
putations so that they may be reused easily merely
by specifying a function name. CAL has three types
of functions: standard functions, iterative functions,
and programmer defined functions.

Standard Functions

The standard functions are commonly used rela
tionships which have been implemented in CAL as a
convenience to the user.

PI

This constant contains the mathematical value of
pi to eight significant digits.

>TYPE PI ~
PI = 3.14159270

> 1.0 DEMAND R ;>
> 1.1 TYPE PI*Rt24>

> TO PART 1 ~

R = 22.5 ~
PhRt2 = 1590.43130000

SIN

This function computes the standard trigonometric
function. The argument is the variable, number or ex

pression contained within the parentheses in the fol

lowing example. The argument must be in radians.

> TYPE SIN(90) ()
SIN(90) =

> TYPE SIN(PI-2.156) 4>

0.89388666

SIN(PI-2.156) = 0.83359960

COS

This function computes the standard trigonometric
cosine. The argument must be in radians.

> TYPE COS(90) ~
COS(90) = -0.44807362

> X=COS(90) + SIN(90) ;>
> TYPE X~

X = 0.44592305

TAN

This function computes the standard trigonometric
tangent. The argument must be in radians.

> TYPE TAN(60) ~
TAN(60) = 0.32004039

> TYPE TAN (87-45+32/9)*2 ~

TAN(87-45+32/9)*2 = -812.32034000

ATAN

This function computes the standard trigonometric
arctangent. The answer will be in radians. The argu
ment may be given in one of the three forms: ATAN
(Y/X). ATAN(Z) where Z = Y/X, or ATAN(X,Y).

> TYPE ATAN(30/20) ~

ATAN(30/20) = 0.98279372

> TYPE ATAN(1.5) (2
A T AN (1.5) = 0.98279372

> TYPE ATAN(20,30) ~

ATAN(20,30) = 0.98279372

LOG

This function computes the natural logarithm (log
e) of an expression.

> TYPE LOG(2.17):(;)
LOG(2.17) = 0.7747217

> TYPE LOG(1+4/5*SIN(PI):;>

LOG(1+4/5*SIN(PI) = 1.36424210E-12

LOG10

This function computes the decimal logarithm of
an expression.

> TYPE LOG10(111) ~

LOG10(111) = 2.04532300

> TYPE LOG 1 0(34*6789/89) ~
LOG 1 0(34*6789/89) =

EXP

3.41389470

This function computes e (the base of the natural
logarithm) raised to a power (any expression).

> TYPE EXP(3t3) ~
EXP(3t3) = 5.32048240E 11

> TYPE EXP(0.77472717) ;>
EXP(0.77472717) = 2.17000000

ABS

This function computes the absolute value of an
expression.

> TYPE ABS{-22.9) ~

ABS{-22.9) = 22.90000000

SORT

This function computes the square root of an
expression.

> TYPE SORT{ABS(-25)) ~
SORT{ABS{-25)) = 5

IP

This function computes the integer part of the
argument using the equation IP(X)=Y where Y is an
integer and Y~X. Note the treatment of negative
arguments.

> TYPE IP(7.98765)

IP (7.98765) =

> TYPE IP(-2.579)

IP(-2.579)

FP

7

-3

This function computes the fractional part of the
argument using the equation FP(X)=X-IP(X). Again
note the treatment of negative arguments.

> TYPE FP(7.98765)

FP(7.98765) =

> TYPE FP{-2.579)

FP{-2.579) =

0.98765000

0.42100000

Iterative Functions

The iterative functions (SUM, PROD, MAX, MIN)
compute a predefined set of computations. Iterative
functions may be used by specifying the function
name, the expression on which the function is to be
computed, and the values to be used in the expres
sion. The general form of the iterative functions is
as follows:

Function name (implicit FOR clause: arithmetic

expression)

The value of the expression is computed for each
value given in the implicit FOR clause (a FOR clause
without the Fa R). The function is then computed

using these expression values.

19

SUM

The SUM iterative function computes the value of
the expression for each value specified in the implicit
FOR clause and then adds all of these values. The
SUM function is useful in integrating equations. The
following example adds all of the even numbers from
12 to 24.

> TYPE SUM (C=12 BY 2 TO 24:C)

SUM (C=12 BY 2 TO 24:C) = 126

PROD

PROD computes the value of the expression for
each step in the implicit FOR clause and then multi
plies all of the computed values. I n the following
example the product function is used to compute
the factorial of six.

> TYPE PROD(F=1 TO 6: F)
PROD(F=1 TO 6: F) = 720

MAX

MAX returns the largest value of the expression
over the range of values given in the implicit FO R
clause. In the following example the MAX function
is used to determine the largest value of Y along a
segment of a curve represented by the equation
Y=X2-4X where X has values ranging from -1 to 6.

> TYPE MAX(X=-1 TO 6:Xt2-4*X)

MAX(X=-1 TO 6:Xt2-4*X) = 12

MIN

MIN returns the smallest value of the expression
over the range of values given in the implicit FO R
clause. The following example uses the MIN function
to select the smallest value stored in T(J).

> T(J)=Jt2-12*J FOR J=1 TO 6

> TYPE MIN(J=1 TO 6:T(J))
MIN(J=1 TO 6:T(J)) = -36

NOTE: The implicit FOR clause may take any of the
fol/owing forms:

(FOR) 1=1,2,3

(FOR) 1=1 TO 10

(FOR) 1=0 BY 2 TO 50

(FOR) 1=3 BY 7 UNTIL (/-4)t2>50

(FOR) 1=11 BY 4 WHILE It2-5<=50

20

AND and OR may not be used. If more than one
variable is desired, the functions must be nested,
such as:

A = SUM(X=1,2:SUM(Y=1 TO 6:Xt2+Yt2))

This example would compute the SUM of the expres
sion (Xt2+Yt2) for X=1,2 and Y=1 to 6.

Programmer Defined Fu nctions

The CAL programmer also is given the option of
defining his own functions. Any computation or set
of computations may be placed in a function. A
function gives a computation a name and establishes
its input and output parameters. After the function
has been defined the programmer may use the com
putations simply by referring to the function name
and listing the input and output parameters.

DEFINE

A function is defined with a DEFINE statement.
A DEFINE statement is similar to a FORM statement
in that it is not a command but simply a reference
statement. Like a FORM statement, a DEFINE state
ment is never used with a step number. A DEFINE
statement is referred to by the fu nction name (in the
following example as F). Two forms of the DEFINE
statement exist: a short form used with a single cal
culation, and a longer form used with sets of calcu
lations.

The short form appears as follows:

DEFINE function [parC!meter] = computation
name list

In the following example the function F is used with
the parameters A and B:

DEFINE F [A,B] = SQRT (At2+8t2)

Any non-subscripted variable that is legal in CAL
may be used as a function name; however, a variable
used as a function name may not be used at any other
point in the program.

If more than one computation is desired in the
function, the computations should be placed in step
number sequence and a TO control command used in

Example

the DE FIN E statement to transfer control to the
step number of the first computation. The general
form is as follows:

DEFINE function [para.meter] 'TO STEP step or part
name list· number

When th is form of the DE FIN E statement is used an
indirect RETURN command must be used to termi
nate the function and return the computed value of
the function to the point at which it was called. The
general form of the RETURN command is as follows:

n~~Cer RETURN variable

A RETURN command may be used with a single
expression; however, normally the computed value of
the function will be stored in a single variable and that
variable returned; that is, used with the RETURN
command. NOTE: A variable used as a parameter in
the DEFINE statement may never be used with a
RETURN command.

Function Parameters

The function parameters may be specified by any
non-subscripted variable. The variables used as func
tion parameters are local variables; that is, they apply
only to the function and do not exist outside of the
function. Any variables used in the function which
are not function parameters; that is, do not appear
in the parameter list following the DEFINE state
ment, are taken to be global variables. Global vari
ables apply to the entire program and contain the
same value both when used in the function and when
used outside of the function.

Using -a Programmer Defined Function

A programmer defined function may be called
simply by specifying the function name and then in
brackets the values of the parameters. The parameter
values may be specified using either actual numeric
values or variables that have been defined previously
in the program.

> DEFINE F[A,8,X,Y]: TO PART 4 Function Defined

> 1.0 DEMAND A,8,C,D

> 1.2 TYPE ALL VALUES

> 1.3 S = F [5,5,5,5] +5 Function Called

> 1.4 TYPE ALL VALUES

> 1.5 TO PART 5

> 4.0 TYPE ALL VALUES

>4.05 R = At2

>4.1 C=C+1

>4.15 X = X/2

>4.2 A = A+1

> 4.25 TYPE ALL VALUES

>4.4 Z = A+B+C+X

>4.5'RETURN R

> 5.0 TYPE "END"

>TO PART 1

A=2 B=2 C=2

A= 2

B= 2

C= 2

D= 2

A= 5

B= 5

C= 2

D= 2

X= 5
Y= 5

A= 6

B= 5

C= 3

D= 2

R= 25

X= 2.50000000

Y= 5

D = 2 Step 1.0

Step 1.2

All global
variables

Step 4.0

In function

A,8,X, y-

Local variables

C,O-

Global variables

Step 4.25

In function

A,8,X, y-

Local variables

C,O,R-

Global variables

21

A= 2 Step 1.4

B= 2 Outside function

C= 3 All global variables

D= 2

R= 25

S= 30

Z= 16.50000000

END

>OUIT

NOTE: In the above example A and 8 are used as
global variables outside the function but as local vari
ables inside the function. X and Y exist only inside
the function.

Recursive Functions

A recursive function is a programmer defined func

tion that calls itself while evaluating an argument.

Recursive functions are allowed in CAL and are dem

onstrated by the following example. This example

uses a single statement, recursive programmer defined

function to compute the factorial of a number.

> 1 DEMAND X~

> 1.1 Y=F[X] ~

> 1.2 TYPE Y ~

>DEFINE F[X]=IF X>O~

>THEN F[X-1]*X ELSE 1~

>RUN~

X=9:;>

Y = 362880

>

22

SECTION 7

LINES AND PAGES

The LINE, LINES, and PAGE commands put the

user in control of the paging and spacing of the out
put.

LINE

The command LI NE spaces the terminal paper up
one line. It may be used both directly and indirectly
with any of the CA L modifiers.

LINES

LI N ES is used with a positive integer to specify
the number of lines that are to appear 'on a page. A

maximum of 99 lines may be specified. CAL normally
specifies 55 lines per page. This command may be

used directly only and only when paging is specified.
The paging may be automatic (automatic paging
occurs in CAL when a heading is used) or may be
defined in the program.

PAGE

The PAGE command spaces the terminal paper up
one page. Unless otherwise specified, a page is as-

sumed to be 55 lines. This command may be used

both directly and indirectly with any of the CAL
modifiers.

$
The $ stores the number of the current line. To

determine the current line of the program, use the
direct command TYPE $ and the current I ine number
will be returned. The $ commonly is used with the
I F modifier to space or page only under specified
conditions.

Examples

> LINE IF ($MOD 5) = 0

The above statement will double space every five
lines.

>PAGE IF $ = 40

> LINES 40

Both of these statements will set the number of lines
per page at 40.

23

SECTION 8

PROGRAM FILES

A program written on the terminal in CAL may
be saved and reused at any time by storing the pro
gram on a disk file.

To save a program, use the CAL DUMP command
as follows:

>DUMP

TO /File Name/f)

NOTE: Any single character or group of characters
may be used as a file name. It is suggested, however,
that file names be short (1 - 4 characters).

Now CA L will respond with either NEW FILE or
OLD FILE as follows:

NEW FILE

This message indicates that the file is a new one;
that is, there is no file by that name. Press the Car
riage Return if you want to create a new file.

OLD FILE ~ or EEl

This message indicates an attempt to write over
(change) an old file. To change the old file, hit the
Carriage Return to acknowledge that the file is an
old one. If the file name is already in use, and should
be saved, hit the AL T MODE/ESC and repeat the
DUMP procedure using a new file name.

NO TE: Direct commands and values stored in vari
ables will not be saved on disk files created with the
CA L DUMP command.

To reuse a program which has been saved on the
disk, use the LOAD command as follows: NOTE:
This command copies the file from the disk; the file
is not erased.

> LOAD ~

FROM /File Name/ ;>
>

When the computer returns the >, the program is
ready for use. Only statements with errors will be
printed. To obtain a complete listing of the program
use the command TYPE ALL when the> is returned.
To start execution of the program, use the R UN com
mand. To edit the program in any way, make the
changes, and then use the DUMP command to write
the edited program back on the file. Remember that
nothing done on the terminal will be saved unless it
is dumped back on the file.

Using A Tymshare Library Program

> LOAD ~

FROM "Library File Name" ()

Any library program which is written in CAL may
be called by using the LOAD command and enclosing
the file name in double quote marks as shown above.
Most CAL library programs are self-starting because
a direct TO PART or R UN is stored in the file.

Removing A File

To remove a previously saved file from the disk,
use the EXECUTIVE command DELETE followed
by the file name in slashes.

Data Files

A data file is exactly what the name implies;
namely, a file on which numeric data is stored. Alpha
betic data may be stored on a CAL data file but it
will be ignored completely when the file is read since
CAL reads only numeric data from data files. CAU
TION: CAL recognizes all periods (.) as decimal
points. If a period is used in the alphabetic text, CAL
automatically will assign a numeric value of 0.0 to
the period.

A data file used in CAL may have been created in
CAL, EXECUTIVE, or EDITOR. Two types of data
files may be created in CAL, Symbolic Files and
Binary Files. Binary files generally require less storage
space but have the disadvantage that the fi Ie may be
read only by a CA L program. Symbolic files also may
be created in EXECUTIVE or EDITOR. When using
EXECUTIVE or EDITOR, a Carriage Return, a space,
or a comma may be used to terminate the numbers.

Opening And Closing A Data File

All CAL data files, whether used for input or out
put, must be opened and closed. Data files are opened
in the following manner:

/ . / INPUT LE file OPEN file name FOR OUTPUT AS FI number

The file number is normally an integer, although a
variable or an expression may be used.

24

To close a CAL data file, the CLOSE command is
used with the number of the file as follows:

CLOSE file number ~

CAL data files are closed automatically whenever the

user returns to the EXECUTIVE. CONTINUE does

not reopen data files.

After a file has been closed it may not be used
again until it is reopened. The OPEN command

always positions a file at the beginning of the data in
that file. Once a file has been closed there is no way

to continue reading or writing a file; it must be reread
or rewritten from the beginning.

The OPEN and CLOSE commands may be used
both directly and indirectly with any of the CAL
modifiers except FOR, UNTI L, and WHI LE.

NO TE: Only three files may be open at one time.

Data File Input

The READ and I NPUT commands read numeric

data from a disk file and store the data in the vari
ables listed.

The READ command is used when the data to be
read is stored in a symbolic data file. The INPUT
command is used when a binary data file is read.
(Binary data files are created with the CAL OUTPUT

command.) The general format of the commands is
as follows:

READ F ROM file . variable
INPUT number' list

Both of these commands may be used both directly
and indirectly with any of the CAL modifiers.

The READ and I NPUT commands recognize an
end-of-file condition. If an attempt is made to read

more data than exists on a file, CAL will issue an
end-of-file error diagnostic and return control to the

user. The programmer should know how many num
bers will be on an input file at the time he writes the
program 0 R he shou Id establ ish some convention
within the data on the file to tell the program when
the end-of-data has been reached.

Two methods of indicating an end-of-file are:

1. The first number on a file could specify the
number of numbers which are stored on the file.

2. The last number on the file could be some
otherwise unused number. The last number
would not be data for program computation,
but rather a programmer defined end-of-data
signal. A number such as 999.999 or 9.9999999
E-70 could be established as the special end
of-data signal.

Data File Output

To create a symbolic data file, CAL uses the com
mand WR ITE. The general format of the WR ITE

command is as follows:

N file . variables to be
WRITE 0 number' stored on the file

With a symbolic file, both the variables and their
values are stored on the file. When the file is read
back into CAL only the values are read (remember,

CAL ignores non-numeric text). A problem arises if
subscripted variables appear on a file. When the file

is read, CAL will treat the subscripts as data. This
problem is easily avoided by using a FORM statement
with the WR ITE command whenever subscripted var
iables are used. The general format is as follows:

WRITE ON file IN FORM form : va~iable
number number list

FORM statements are discussed on Page 10. The out
put form specification is used. When a FORM state
ment is used, the programmer controls which in
formation will be stored on the data file and the
subscripted variables may easily be eliminated.

To create a binary file, CAL uses the command
OUTPUT as follows:

OUTPUT ON nuf~1er: variable list

All of the variables specified in the variable list must
be non-subscripted variables. In this way the problem

encountered above with subscripted variables is avoid
ed.

The above command may be used either directly
or indirectly and may be used with any of the CAL
modifiers.

Example

> 1.0 OPEN /R/ FOR OUTPUT AS FI LE 1
> 1.1 A=1

> 1.2 B=2

> 1.3 C=A+B

> 1.4 D*-E*-7

> 1.5 WRITE ON 1: A,B,C,D,E

> 1.6 CLOSE 1

> RUN

>OUIT

- COpy /R/ TO TELETYPE

A
B 2

C =

D =

E =

- CONTINUE

CAL

3

7

7

> 2.0 OPEN IRI FOR INPUT AS FILE 2

> 2.2 READ FROM 2: R(I) FOR 1=1 TO 5

> 2.3 TYPE R

> 2.4 CLOSE 2

>TO PART 2

R(1) =

R(2) = 2

R(3) = 3

R(4) = 7

R(5) = 7

>OUIT

Example

> 1.0 OPEN IT11 FOR OUTPUT AS FI LE X

> 1.1 OPEN IT21 FOR OUTPUT AS FI LE X+1

> 1.2 AU)=I FOR 1=1 TO 10

> 1.3 WRITE ON X: AU) FOR 1=1 TO 10

> 1.4 WRITE ON X+1 IN FORM 1: AU) FOR 1=1

TO 10

> FORM 1:

%%%%%%%%

> 1.5 CLOSE X

> 1.6 CLOSE X+1

>X=1

>RUN

>OUIT

- COpy IT11 TO TELETYPE

A(1) =
A(2) = 2

A(3) = 3

A(4) = 4
A(5) = 5
A(6) = 6
A(7) = 7
A(8) = 8
A(9) = 9
A(10)= 10

- COpy IT21 TO TE LETYPE

2

3
4

5
6

7

8

9

10

25

26

SECTION 9

CAL EDITING FEATURES

If you have made an error in your program, there

are three courses of action open to you:

1. Add a statement.
2.
3.

Delete a statement.
Change a statement.

Adding A Statement

Adding a statement is easy in CAL. Just type the

statement and CAL automatically inserts it into the

program according to step number. For example, to
add a statement between steps 1.0 and 1.1, simply

type the statement using step number 1.05. Step
numbers may range from 0.0 to 999.999.

Deleting A Statement

To delete a statement, several different commands
may be used depending upon the type of statement

to be deleted. All of the following commands must
be executed directly (without step numbers).

DELETE STEP 1.0, 2.1, 3.5

DELETE 1.1

When used with a step number or a list of step
numbers, the DE LETE command deletes the steps
specified (removes them from the program).

DELETE PART 1, N-l

DELETE PART, when used with a step or part

number or an expression, deletes all of the statements
in the specified part.

DELETE FORM 1

DELETE FORM, when used with a form number

or an expression, deletes the form statement specified.

DELETE A

When used with a variable or a list of variables,
the DE LETE command deletes the values stored in
the variables. When used with a function name, this
command deletes the DEFINE statement in which
the function was defined.

The DELETE commands may be used in plural
form using the following commands:

DELETE ALL STEPS

DELETE ALL FORMS

DELETE ALL VALUES

DELETE ALL FUNCTIONS

DELETE ALL

This command deletes the entire program and asks

for the number of statements again.

CLEAR

CLEAR works in the same manner as DELETE
ALL. These two commands may be used inter

changeably.

Changing A Statement

The easiest way to change a statement is to retype

it using the same step number, form number, or, with

a 0 E FIN E statement, the same fu nction name.

EDIT And MODI FY

A program also may be changed by using the
appropriate EDIT or MODI FY (MOD) command pre

sented below. These commands are used directly
only (without a step number).

EDIT STEP 1.0

EDIT 1.0

These commands search the program for the state
ment whose step number has been specified, type out
the entire statement, return control to the user with

a >, and then wait for the user to change the state
ment. Use the control characters described below to
change the statement.

EDIT FORM 1

This form of the EDIT command works in the
same manner as the other EDIT commands to change
form statements. The form number may be an integer

or an expression.

EDIT A

The EDIT command is used with a function name

to edit the DEFINE statement in which the function

was defined.

MODIFY STEP 1.0

MODIFY 1.0

MODI FY FORM 1

MODIFY A

The MOD I FY commands (which may be shortened

to MOD) are used in the same manner as the EDIT

commands. The only difference between EDIT and

MOD is that the MOD commands do not type out

the statement to be changed, but simply return con

trol to the user with a > and wait for the user to

change the statement.

NOTE: The EDIT and MODIFY (MOD) commands
do not affect the statement being edited unless the
same step number, form number, or programmer de
fined function name is used in the new line. For
example, to change Step 1.5 to Step 2.0, not only
the step number must be changed but also the origi
nal step (1.5) must be deleted.

Control Characters

The control characters explained below are used
with the EDIT and MODI FY commands. They also

may be used any time that a statement is being typed,

and are thus useful in correcting errors at the time

they occur. A control character is generated by pres

sing and holding the control key on the keyboard

and then hitting the appropriate character. Control

characters do not normally print, but if they do, a

symbol and not the character pressed will be typed.

Control characters are indicated by a superscript c;

for example, AC represents a Control A. A list of the

control characters, the symbol printed, and the action

generated is given below.

EDITING CONTROL CHARACTERS

Control Symbol Action
Character Printed

For Deleting

AC t Deletes the previous charac-

ter. Repeated use deletes sev-

eral characters.

QC ~ Deletes the entire line.

WC \ Deletes the preceding word

in the line.

27

EDITING CONTROL CHARACTERS (Cont.)

Control Symbol Action
Character Printed

WC \ Deletes the data value being
(Data) typed in response to a DE-

MAND command.

XC and a % Deletes up to and including

character the character typed after it.

SC % Deletes the next character in

the old line.

Carriage Deletes the rest of the old

Return lines and ends the edit.

For Inserting

EC < l(lserts text into the old line;

> first EC prints <, second EC

prints >.

For Copying

CC Copies the next character in

the old line.

DC Copies and prints the rest of

the old line and ends the edit.

FC Copies but does not print the
rest of the old line and ends

the edit.

RC Prints the rest of the old line

plus the new line; edit con-

tinues.

TC Same as RC except that it

aligns old and new lines.

yc Copies but does not print the

rest of the old line; edit con-

tinues with the new line act-

ing as old line.

zc and a Copies up to and including

character the character typed after it.

EDIT and MODIFY are quite useful and should

be learned, as they will reduce considerably the time

needed to type a program.

Example Using EDIT Command, DELETE Command,

And Control Characters

> 1.0 DEMAND A,B~

> 2.0 T=Bt2-SAC,tA~

28

> 2.0 S=RACtT+At2Qc~ ~

> 2.1 S=T+At2 ~

> 3.0 TYPE T,S 4=>

> 3.1 TYPE A,B ~

> TYPE ALL ~

1.0 DEMAND A,B

2.0 T=Bt2-A

2.1 S=T+At2

3.0 TYPE T,S

3.1 TYPE A,B

> EDIT 3.0 ~

3.0 TYPE T,S 4>
> ZCE3.0 TYPE A,B,T,S ~

> DELETE STEP 3.1 ~

> TYPE ALL J2

1.0 DEMAND A,B

2.0 T=Bt2-A

2.1 S=T+At2

3.0 TYPE A,B,T,S

>

29

SECTION 10

LOGICAL OPERATIONS

In addition to the arithmetic operations already
covered, CAL also is equipped to handle logical
operations. Although logical operations appear to be
similar to arithmetic operations, logical operations
differ in that they recognize only two conditions;
namely, true (not zero) and false (zero).

Logical Variables And Expressions

All arithmetic variables and expressions have a
logical as well as an arithmetic value. Any arithmetic
variable or expression whose numeric value is not
zero is said to have a logical value of 1 (True). Any
arithmetic variable or expression with a zero value is
said to have a logical value of 0 (False).

Logical Comparisons

Logical comparisons are made using logical expres
sions or variables together with relational operators.
Whenever two defined values are compared by means
of relational operators, a logical operation is per
formed. A logical value of 1 is assigned if the relation
ship specified is true, and a logical value of 0 is
assigned if the relationship is not true.

>TYPE 3=3 ()
3=3 = 1

>A = 3~

> TYPE A>3+1 ~

A>3+1 = 0

Logical Operators

CAL has three logical operators (AND, OR, NOT)
which work exclusively with logical values. CAL's

logical operators may be used alone; for example,
TYPE A AND 8, or, as introduced earlier in this
manual, in conjunction with the arithmetic and rela

tional operators; for example,

TYPE A, At2 IF At2<33 AND B>A-5

AND

The logical operator AND evaluates the expres
sions immediately preceding and following it. If both
of these expressions are true, a logical value of 1 (not
zero) will be returned. If either one or both of the
expressions is false, a logical value of false (0) is re
turned. AND works as a multiplication operator on
the logical values, hence only the condition TRUE*
TRUE (for example, 1*1) will produce a TRUE
(not zero) value.

OR

The logical operator OR also evaluates the expres
sions immediately preceding and following it. OR,
however, requires that only one of the logical expres
sions be true to return a true value. 0 R works as an
addition operator on the logical value; thus a false
value (0) will be returned only when both of the
expressions are false (0). If either of the expressions
connected by an OR is true, the result of the logical
addition can never be 0 and hence will be TRUE
(not zero).

NOT

The logical operator NOT changes the logical
value of the expression immediately following it.
Thus, if A is equal to 1 (TRUE), then NOT A is equal
to 0 (FALSE). If 8=0 (FALSE), then NOT 8=1

(TRUE).

Example: Logical Operators

> LOAD ~

FROM /LOGIC/ ;>

>TYPE ALL ~

1.00 AO=NOT A

1.10 BO=NOT B

1.20 A 1=A AND B

1.21 A2=A AND NOT B

30

1.22 A3=NOT A AND B

1.23 A4=NOT A AND NOT B

1.30 01=A OR B

1.31 02=A OR NOT B

1.32 03=NOT A OR B

1.33 04=NOT A 0 R NOT B

1.40 TYPE IN FORM 1: A,A 1,01,B,A2,02,AO,A3,03,BO,A4,04

1.50 LINE

FORM 1:

A = %

B = %
NOT A = %

NOT B = %

A AND B = %

A AND NOT B = %

NOT A AND B = %

NOT A AND NOT B = %

> DO PART 1 FOR A=0,1 FOR B=0,1 ()

A = 0 A AND B = 0

B = 0 A AND NOT B = 0

NOTA NOT A AND B = 0

NOT B NOT A AN D NOT B = 1

A = 1 A AND B = 0

B = 0 A AND NOT B = 1

NOTA =0 NOT A AND B = 0

NOT B = 1 NOT A AND NOT B = 0

A = 0 A AND B = 0

B = 1 A AND NOT B = 0

NOTA = 1 NOT A AND B = 1

NOTB = 0 NOT A AND NOT B = 0

A = 1 A AND B = 1

B = 1 A AND NOT B = 0

NOTA = 0 NOT A AND B = 0

NOT B = 0 NOT A AND NOT B = 0

>

A OR B = %

A OR NOT B = %

NOT A OR B = %

NOT A OR NOT B = %

A OR B = 0

A OR NOT B = 1

NOT A OR B = 1

NOT A 0 R NOT B = 2

A OR B = 1

A OR NOT B = 2

NOT A OR B = 0

NOT A 0 R NOT B = 1

A OR B = 1

A OR NOT B = 0

NOT A OR B = 2

NOT A OR NOT B = 1

A OR B = 2

A OR NOT B = 1

NOT A OR B = 1

NOT A OR NOT B = 0

SECTION 11

OVERLAY

Any CAL program which can be divided into se

quentially executed parts or segments can be over

layed. The overlay feature of CAL is the ability to

write a program larger than the computer memory

available to the user by bringing parts of the program

into memory from the disk at different times. Al

though the user can do this manually at his terminal,

the overlay technique described here causes the com

puter to load and execute a number of separate files

automatically until the entire program is run. Thus

the user has at his disposal a computer whose memory

capacity is infinite (at least theoretically), since the

only limit to the number of files a user may create is

the size and number of files in his file directory.

To use the overlay feature of CAL, first write the

program in CAL and then use the EDITOR commands

READ, WR ITE, and APPEND. Proceed as follows:

>
>

CAL ;J

> DUMP .f)

TO/FI RST/ f)

NEW FILE ~

> QUIT ~

Call CA L and write the

first segment or overlay of

the program.

Write this section on a file
with the CAL command

DUMP.

Use any file name which

has not been used before.

RUN ~

DELETE ALL STEPS f)

DELETE FORM 1 ~

LOAD ~

/SECOND/ ~

DC

*WRITE/FIRST/ ~

OLD FILE ~

*QUIT ()

31

The RUN command will

start execution of the pro

gram automatically.

DELETE any steps, forms,

functions, and values that

will not be needed in later

segments of the program.

NO TE: Be sure to delete

each part separately. DO

NO Tuse the DELETE ALL

or CLEA R commands be

cause these commands will

interrupt the overlay pro

cedure by returning con

trol to the user.

Load the next file in the

program.

Type a Control D to ter

minate the APPEND com

mand.

Use the WRITE command

to place the edited version

of the original file back on

the disk.

- EDITOR ~

Remember that directcom

mands will not be saved.

Call EDITOR and read the

file with the READ com

mand.

Repeat the above procedure for each overlayed

program segment required.

* READ/FIRST/ ()

* APPEND ~ Use the APPEND com

mand to add the direct

commands needed.

- CAL f)

LOAD~

FROM/FIRST/ ~

Overlay Example

Now call CAL and begin

the entire program by cal

ling the first section of the

overlay.

Shown below is an example of an overlayed program. Note that the second file calls

the first file which puts the program into a loop. Get out of the loop in the usual manner

by hitting the AL T MODE/ESC key.

- CAL~

STATEMENTS = ~

> 1.0 TYPE "THIS IS THE FIRST FILE OF THE PROGRAM." ~

> 2.0 DEMAND A ;>
> 3.0 X=At2 ~

> 4.0 TYPE IN FORM 1: A,X ~

32

> FORM 1: ~

> DUMP ~
TO /FIRST/ .;>

NEW FILE;>

> QUIT .;>

- EDITOR ~

THE SQUARE OF %%%%%%.%%% IS ############### ~

* READ /FIRST/ i>

* APPEND ~

RUN~

DELETE STEP 2.0 ~

DELETE FORM 1 t=>

LOAD i>
/SECOND/ ~

* WRITE /FIRST/ ~

OLD FILE iJ
76 WORDS.

* QUIT ~

- CAL~

STATEMENTS = ~

> 1.0 TYPE "THIS IS THE SECOND FILE OF THE PROGRAM." ~

> 3.0 X=At3.;>

> FORM 1: +

> DUMP.;>

TO /SECOND/ ~

NEW FILE ~

> QUIT ~
- EDITOR iJ

THE CUBE OF %%%%%%.%%% IS ############### ~

* READ /SECOND/ ~

* APPEND ~

RUN~

DELETE STEP 1.0 ~

DELETE FORM 1 ~

DELETE A.;>

LOAD iJ
/FIRST/;>

* WRITE /SECOND/ i>
OLD FILE 4)

65 WORDS.

* QUIT ~
- CAL iJ
STATEMENTS = ~

33

> LOAD ~
FROM /FIRST/ ~

THIS IS THE FIRST FILE OF THE PROGRAM.

A = 5.0 ~
THE SQUARE OF 5.000 IS 2.5000000E 01

FROM

THIS IS THE SECOND FILE OF THE PROGRAM.

A = 5 i>
THE CUBE OF 5.000 IS 1.2500000E 02

FROM

THIS IS THE FIRST FILE OF THE PROGRAM.

A = 32.5 f:>
THE SQUARE OF 32.500 is 1.0562500E 03

FROM $

34

SECTION 12
COMMAND FILES

Issuing Commands From A File

The EXEC command

- COMM /file name/:;>

instructs the system to take its commands from a file

instead of from the terminal. The user simply creates

a file containing all the commands which he wants ex

ecuted. The commands may be from any language, in

cluding EXEC, and are typed into the file exactly as

they would normally be given from the terminal.

Creating A Command File

A command file may be created in the EXEC (with

the COpy TEL TO /file name/~ command) as follows.

This command file is created to call CAL, indicate 97
statements, no heading, and then load and run a CAL

program.

- COpy TEL TO

NEW FI LE;?

CAL ~

97 ~

E!
LOAD ~

/FACTORI ;>
RUN ~

QUIT ~

COMM TEL;>
DC

IC41 ~
Equivalent Terminal Commands:

- CAL :i!
STA TEMENTS=97 ~

HEADING= .(!

> LOAD ~

FROM /FACTOR/;)

>RUN~

> QUIT ~

- COMM TEL ~

Leaving A Command File

The system will take its commands from the file

specified in the COMM command until one of the

following is reached:

1) The end of the command file, which causes the

system to return to taking commands from the

terminal.

2) A COMM TEL~ command, which has the same
effect as 1.

3) Another COMM command that enables the user

to nest command files as deeply as he wishes.

NOTE: Command files can be recursive; that is,
the last command in the file can be a command
to take commands from itself.

The CAL program loaded in the preceding exam
ple is on a file called /FACTOR/ which was created
as follows:

-CAL~

STATEMENTS = ~

> 1 F=1 ~

> 1.1 DEMAND A;)

> 2 F=F*N FOR N=1 TO A;>

>3 TYPE F;>

>DUMP ~

TO /FACTOR/.;>

NEW FILE~

>
To tell EXEC to start taking commands from /C4/,

type the EXEC command:

- COMM /C4/;>

The output on the terminal which results from an

actual run of this example is:

-COMM /C4/ ~

STATEMENTS

HEADING

> FROM

> A = 11~

F = 39916800

I nstead of having two files as shown above to exe

cute the program, a single file can be used both as a

source of commands and for the program itself as
shown below.

- COpy TE L TO ICC I ~ The command file CC is

NEW FILE:;> created.

CAL~

97 ~

~
1 F=1:;>

1.1 DEMAND A ~

2 F=F*N FOR N=1 TO A ~

3 TYPE F ~

RUN ~

QUIT~

COMM TEL ~
DC

- COMM ICC/ ~ Now, /CC/ is executed.

STATEMENTS =

HEADING =

> A=9~

F = 362880

SECTION 13

SAMPLE PROGRAMS

This section contains sample programs and executions designed to demonstrate the

features of CAL. Each program is in the following format:

1. Define The Problem

The problem is explained and written in simple steps which are set in the
following form:

A. Input. All data which must be supplied by the user.

B. Compute. All computations done by the computer.

C. Output. All data which will be returned to the user.

2. Flowchart

3. CAL Code and Sample Execution

The problem is coded in CAL and then run on the computer. Many of the

examples in this section were reproduced from terminal hard copy.

The sample programs are given in order of difficulty. The first programs are simple,

using only the basic CAL commands. The programs become progressively longer and

more complex. Each program demonstrates a different set of CA L commands.

MONTHLY PAYMENT PROGRAM

1. Define The Problem

The problem is to compute the monthly payment on a debt.

A. Input:

1. Description - YES or NO.

2. Original debt (P)

3. Annual interest (I)

4. Number of monthly payments to be made (N)

B. Compute:

Monthly payment (M)

M=

C. Output:

p o l(I+1)N

(1+1)N_ 1

Month Iy payment, M.

35

36

2. Flowchart

START

OUTPUT:
DO YOU
NEED A

DESCRIPTION
OF THE PROGRAM?

INPUT:
1 (YES)
o (NO)

OUTPUT:
DESCRIPTION

INPUT: ORIG.
DEBT (P)

ANNUAL INTEREST (I)
NO. OF MONTHS (N)

COMPUTE:
MONTHLY
INTEREST

I = 1/12

COMPUTE:
0=1 + 1

= P*I*((OtN)/((OtN)-1)

OUTPUT:
MONTHLY

PAYMENT M

37

3. CAL Code And Sample Execution

>LOAD
FROM IMOPAYI This program was loaded from the file /MOPA Y /

which had been created earlier.

> TYPE ALL

0.0 TYPE "TYPE '1' TO GET DESCRI PTION."
o. 1 TYPE "TYPE '0' TO SKI P DESCRI PTION. "
0.2 DEMAND IN FORM 1: D
0.3 10 PART 1 IF D#l
0.4 TYPE "TH! S PROGRAM REQUESTS THE USEk TO SUPPLY THE FaLLO Y.:ING"
0.5 TYPE "INFORMATION ON A LOAN - ORI GINAL DEBT(P), ANNUAL INTE.RE.STC 1)"
0.6 TYPE "AND NUMBER OF MONTHSCt'J). IT COMPUTES THE MJ~THLY PAYME."'JTCM)"
o. 7 TYPE "TYPES OUT THE MONTHLY PAYMEi.-JT A.1\JD ASKS FUR NEw LOAN DATA."

1.0 DEMAND IN FORM 2. P,I,N
1.1 1=1/12
1.3 M=P*I*(I+l)tN/(CI+l)tN-l)
1 .4 TYPE I N FORM 3: M
1 .5 TO PART 1

FORM 1:

FORM 2:
PRINCIPAL = I INTEREST =, NO. OF MONTHS = #
FORM 3:
MONTHLY PAYMENT = $%%%%%%.%%

>RlN
TYPE '1' TO GET DESCRIPTION.
TYPE '0' TO SKIP DESCRIPTION.
o

PRINCIPAL = 1000
INTEREST = .06
NO. OF MONTHS = 24

MONTHLY PAYMENT = $

PRINCIPAL = 21100

MONTHLY PAYMENT = $

PRINCIPAL =
>

44.32

IN T ER E S l' = • 0 55

519.97

NO. OF MONTHS = 45

38

> 1 .0
> 1 • 1
> 1 .2
> 1 .4
> 1 .5
> 1 • 6
>
> 3.0
> 3. 1
> 3.2
>
> 4.0

> RUN

PAUSE
>

ARITHMETIC MEAN OF A SERIES OF NUMBERS

1. Define The Problem

The problem here is to determine the mean of any series of numbers.

A. Input:

A series of numbers terminated by 1 x 1070

B. Compute:

The mean (average) of the numbers

MEAN =

C. Output:

The Mean, M.

sum of the numbers
number of numbers

3. CAL Code And Sample Execution

S-N-O
DEMAND Y
TO PART 3 IF Y=lE70
S=S+Y
N=N+l
TO STEP 1. 1

M=S/N
TYPE M
PAUSE

TO PART 1

Y = 24.3 y = 66.7
y = 33.8 y = 55
y = 65.4 y = 1 E70
M = 83.01111100

IN STEP 3.2:

Y = 109.6
Y = 44.3

Y = 3.0
Y = 345

2. Flowchart

START

INITIALIZE:
S=O
N=O

INPUT:
ANUMBER

Y

COMPUTE:
S=S+Y
N=N+1

COMPUTE:
M=S/N

OUTPUT:
MEAN,

M

39

40

AUTOMOBILE GAS MILEAGE

1. Define The Problem

The problem below computes the total mileage, the gas mileage, and the
cost per mile for any given number of miles, given the initial odometer reading,
the number of gallons used and the cost for each tankful, and the final
odometer reading.

A. Input:

1. Initial odometer reading (I).

2. Number of gallons of gas per tankful (G) terminated by O.

3. Cost per tankful (C) terminated by O.
4. Final odometer reading (F).

B. Compute:

1. Total miles travelled.

2. The number of miles/gallon for the trip.

3. The cost/mile for the trip.

C. Output:

1.
2.
3.

Total miles travelled.

Miles/gallon.
Cost/mile.

(M)

(M2)

(C2)

2. Flowchart

PART 1

PART 2

INITIALIZE
Gl=O
Cl=O

INPUT
I

INPUT
G,C

COMPUTE
Gl=Gl+G
Cl=Cl+C

INPUT
F

COMPUTE
M=F-I

M2=M/Gl
C2=Cl/M

OUTPUT
M,M2,C2

41

PART 3

42

3. CAL Code And Sample Execution

-CAL
STATEMENTS =

>LOAD
FROM /MILE/

This program was loaded from
the file /MILE/ which had been
crea ted earlier.

>TYPE ALL

1 .0 TYPE "THIS PROGRAM. COMPUTES THE GAS MILEAGE" THE COST/GAL,,"
1 • 1 TYPE "AND THE TOTAL NUMBER OF MILES TRAVELED FOR ANY GIVEN"
1 .2 TYPE "NUMBER OF MILES AND NUMBER OF FILLUPS ."
1.5 Gl=O
1.6 Cl=O
1.8 DEMAND IN FORM 1: I
1.9 TYPE" NUMBER OF GAL. PER FILLUP COST PER FILLUP

GAL = COST = ..
2.0 DEMAND IN FORM 2: G,C
2.1 TO PART 3 IF G=O AND C=O
2.2 G1=Gl+G
2.3 Cl=Cl+C
2.4 TO PART 2

3.0 DEMAND IN FORM 3: F
3.1 M=F-I
3.2 M2=M/Gl
3.3 C2=Cl/M
3.4 TYPE IN FORM 4: M,M2,C2
3.5 PAUSE
3.6 TO PART 1.5

FORM 1 :
INITIAL ODOMETER RE.4DING = I

FORM 2:
I GAL $ I

FORM 3:
FINAL ODOMETER READING = fi

FORM 4:
%%%%%%%%%%.% MILES TOTAL

%%%.%% MILES/GAL $ %%%.%% COST/MILE

>TO PART 1
THIS PROGRAM COMPUTES THE GAS MILEAGE~ THE COST/GAL~
AND THE TOTAL NUMBER OF MILES TRAVELED FOR ANY GIVEN
NUMBER OF MILES AND NUMBER OF FILLUPS.

INITIAL ODOMETER READING = 539

NUMBER OF GAL. PER FILLUP COST PER FILLUP
GAL = COST =
8.5 GAL $ 3.21

24.0 GAL $ 8.60

10.6 GAL $ 4.01

18.0 GAL $ 6.10

22.4 GAL $ 8.50

0 GAL $ 0

FINAL ODOMETER READING = 1494

955.0 MILES TOTAL
11.44 MILES/GAL $ 0.03 COST/MILE

PAUSE IN STEP 3.5:
>

43

44

DOUBLE DECLINING BALANCE DEPRECIATION

1. Define The Problem

The problem is to compute the double declining balance depreciation on
any given asset over any specified number of years.

A. Input:

1. Cost of the asset (C).
2. Estimated useful lifetime (L).

B. Compute:

1.

2.

Depreciation

Book values

C. Output:

For the entire range of years.

1. Year (X)
2. Amount of depreciation (D)
3. Book value (C)

2. Flowchart

PART 2

PART 3

INPUT
C,l

TYPE THE
HEADING

DO PART 4
FORX= 1 TO l

0=2 ~
l

C = C-D

COMPUTE
0= 2*C/l
c= CoD

OUTPUT
X,D,C

PART4

3. CAL Code And Sample Execution

> LOAD
FROM IDEPR/

NOTE: Direct RUN stored on
program using EDITOR.

PROGRAM TO CALCULATE DOUBLE DECLINING BALANCE DEPRECIATION

COST 0 F ASSET IS $100000
ESTIMATED USEFUL LIFECIN YEARS) IS 20

YEAR DEPRECIATION

1 $ 10000.00
2 $ 9000.00
3 $ 8100.00
4 $ 7290.00
5 $ 6561.00
6 $ 5904.90
7 $ 5314.41
8 $ 4782.97
9 $ 4304.67

10 $ 3874.20
1 1 $ 3486.78
12 $ 3138.11
13 $ 2824.30
14 $ 2541.87
15 $ 2287. 68
1 6 $ 2058.91
1 7 $ 1853.02
18 $ 1667. 72
19 $ 1500.95
20 $ 1350.85

COST OF ASSET IS $
> TYPE ALL

BOOK VALUE

$ 90000.00
$ 81000.00
$ 72900.00
$ 65610.00
$ 59049.00
$ 53144. 10
$ 47829. 69
$ 43046. 72
$ 38742.05
$ 34867.84
$ 31381.06
$ 28242.95
$ 25418.66
$ 22876. 79
$ 20589. 11
$ 18530.20
$ 16677.18
$ 15009.46
$ 13508.52
$ 12157.67

45

46

o • 0 LI N E Fa R I = 1 TO 5
0.1 TYPE "PROGRAM TO CALCULATE DOUBLE DECLINING BALANCE DEPRECIATION"
0.2 LINE FOR I = 1 TO 3
0.3 DEMAND IN FORM 1: C#L
0.4 LINE
0.5 TYPE"
YEAR DEPRECIATION BOOK VALUE"
0.6 LINE
o • 7 00 PART 1 Fa R X = 1 TO L
0.8 LINE FOR I = 1 TO 10
o • 9 TO STEP o. 3

1.0 D = 2*C/L
1 .1 C = C- D
1 • 3 TYP E INFO RM 2: X # D # C

FORM I:
COST OF ASSET IS $IESTIMATED USEFUL LIFE(IN YEARS) IS #
FORM 2:

lSI $1%%1%%%.%1 5%%%%%%S.%%

C = 12157. 66500000
D :: 1350.85170000
I = 1 1
L = 20
X :: 21

>

MEAN AND STANDARD DEVIATION

1. Define The Problem

The problem here is to compute the mean and standard deviation of a group

of data. The mean is computed using the following formula:

M

N
L
i=l

x· I

N

The standard deviation is computed using the following formula:

a=

A. Input:

N
L
i=l

N-1

1. The total number of data items (N).

2. The data (placed in the array A(I)).

B. Compute:

1. Mean

2. Standard deviation

c. Output:

1. Mean (M)

2. Standard deviation (Sl)

47

48

METHOD 1

2. Flowchart

START

~

INITIALIZE
PARTO T=Q

R=Q

~
INPUT

PART 1
N

A(I) FOR
1=1 TO N

l
~ 1

PART 2
DO PART 3 COMPUTE

FOR 1= 1 TO N T = T+A(I) PART 3

~

COMPUTE
PART4 MEAN

M

L
~ 1

PART 5
DO PART 6 COMPUTE

FOR 1=1 TO N X(I) = (A(I)·M)t2
R = R+X(I)

PART6

J
COMPUTE

PART 7
STANDARD
DEVIATION

S1

•
PART8 OUTPUT

M,S1

!
STOP

3. CAL Code And Sample Execution

> 0.1 R"T"O
> 1 • 0 DEMAND N
>1.1 DEMAND ACI) FOR 1=1 TO N
> 2. 0 00 PART 3 FOR I = 1 TO N
> 2. 1 TO PART 4
> 3. 0 T= T +A (I)
> 4.0 M=T/N
> 5.0 00 PART 6 FOR 1 = 1 TO N
> 5. 1 TO STEP 7. 0
>6.0 XCI)=CACI)-M)t2
>6.1 R=R+XCI)
>7.0 Sl=SQRTCR/CN-l»

> 8. 0 TYP EM" S 1
> RUN

N = 5
AC 1) = 2 A(2) = 3

M = 2.40000000
51 = 1.14017540

>

49

A(3) = 1 A(4) = 4 A(5) = 2

50

METHOD 2

2. Flowchart

START

DEMAND
N

A(I) FOR
1= 1 TO N

M = (I = 1 TO N:A(I))/N
COMPUTE
MEAN (M)

STD. DEV. (S) S = SQRT (SUM(I = 1 TO N:(A(I) - M)t2)/(N - 1))

OUTPUT
M, S

STOP

3. CAL Code And Sample Execution

> 1 • 0 DEMAND N
>1.1 DEMAND ACI) FOR 1=1 TO N
>2.0 M=SUM(I=1 TO NsA(I»/N
>3.0 S=SQRT(SUMCI=1 TO N:(ACI)-M)t2)/(N-l»
> 4. 0 TYPE M, S
> RUN

N = 5
A(1) = 2 A(2) = 3 A(3) = 1

M = 2.40000000
5 = 1. 1401 7540

>

A(4) = 4 A(5) = 2

HISTOGRAM

A histogram or bar chart is a pictorial graph. The following example demonstrates
how a histogram may be generated in CAL. The data is supplied from a data file.

DATA FILE FORMAT

The data ranges in value from 1 to 9. A programmer defined end-of-data signal
(1 E40) is used. The data file was created in the EXEC with the command COpy TE L
TO /file name/.

1. Define The Problem

A. Input:

1. The scaling factor (S)

2. READ the data from the fi Ie one piece at a ti me and store
it in the array (N).

B. Compute:

1. Increment the data counter (M)
2. Check to see if all of the data has been input (compare N

with end-of-data signal 1 E40)
3. Scale the data N=N/S
4. Increment the proper value of K(N)

5. The maximum value of N for which K(N) #0

C. Output:

2. Flowchart

The histogram of the data. The histogram is output using

nested DO PART's. Study the example.

This problem can be coded directly without using a flowchart.

51

52

3. CAL Code And Sample Execution

-COpy TEL TO IDATAI
NEW FILE

1,2, 3,4,3,2, 1,3, 3,4,4,5" 6, 7,6" 5" 4" 3,4" 5" 6, 7~ 8,9,9,8,7" 6,5" 5. 4. 3,2
1 ,2. 3,2, , 1. 2, 3,4. 5, (,. 7. 8,9. 8, 7. 6, 5. 4. 3 .. 4. 5, 6. 7.8, , 1, 2,2. 1,2, 2, 1
1 , P" 3, 3, 2, 3,3,4,5,4, 3,4" 5, 5, 6, 7,6,5,4,3,2,3,4,5,6,7,8,9,8,9,8,7,6
IE60

-CAL

STATEMENTS = 20
HEADING = HISTOGRAM

PAGE 1

HISTOGRAM

>1.5 DEMAND IN FORM 1:5
>1.7 OPEN IDATAI FOR INPUT AS FILE 1
>1.8 K(N)aO FOR N=O TO 500
>1.9 M=O
>2.5 READ FROM tIN
> 2.53 M=M+l
>2.54 TO PART 10 IF N>=lE40
>2.55 N=N/S
>2.6 KCN)=KCN)+t
>2.7 TO STEP 2.5
>10.4 N=500
>10.5 N=N-l UNTIL KCN)IO
>10.6 DO PART 50 FOR R=1 TO N
>10.8 LINE
>10.81 LINE
>10.9 TO PART 999999
>50.5 TYPE IN FORM saRIS
>50.6 DO PART 60 FOR A=l TO KCR)
>50.7 LINE
>60.5 TYPE IN FORM 7:
>999999 LINE
>
>FORM 1 I
SCALE FACTOR =#
>FORM 51
%%%%.~~~ II
>FORM 71
XI

>TO PART 1
SCALE FACTOR -I

NOTE: The extra field specified in
the form statements (#) is used to
suppress the Carriage Return. Thus
an X is typed on the same line each
time the loop is repeated. FOR A =

1 TO K(R).

1.000 tXXXXXXXX
2. 000 t XXXXXXXXXXXXX
3.000 :XXXXXXXXXXXXXXXX
4.000 :XXXXXXXXXXXXXX
5.000 :XXXXXXXXXXXXX
6.000 :XXXXXXXXXXX
7. 000 : XXXXXXXXX
S.OOO :XXXXXXXX
9.000 :XXXXX

>TYPE M
M = 98

>QUIT

53

54

STANDARD MORTGAGE

1. Define The Problem

The problem is to compute the down payment, monthly payment, interest

paid, equity accumulated, and the new balance for a standard mortgage. Three
different types of mortgages may be requested; namely, F.H.A., commercial,
and conventional.

A. Input:

1. Answers to Program Requests:

a. Do you need instructions? YES or NO.
b. Number of months remaining in first year =
c. Original debt =
d. Interest rate
e. Type of mortgage: 1 = FHA; 2 = Conventional S & L;

3 = Commercial.
f. The year in which mortgage payments begin
g. "00 you want to run another set of data?"

B. Compute:

1. Minimum down payment
2. Monthly interest rate
3. New principal
4. Initial equity
5. Monthly payment
6. Number of months (based on mortgage type)

7. Initialize counters
8. Interest, equity, title interest, title equity, and principal

for each month.

9. Interest, equity, title interest, title equity, and principal
for each year.

C. Output:

1. Requests for data.
a. Instructions
b. Number of months remaining in year
c. Original debt
d. Interest rate
e. Mortgage type
f. Year mortgage payments begin

2. Minimum down payment
3. Monthly payment
4. Interest, equity, title interest, title equity, principal,

for each month

5. Interest, equity, title interest, title equity, principal,
for each year

6. The month final payment is made

7. Request to compute more data sets

2. Flowchart
START

OUTPUT:
"DO YOU

NEED
INSTRUCTIONS"?

INPUT:
"YES"

OR
"NO"

OUTPUT:
I NSTRUCTI ONS

OUTPUT:
DATA

REQUESTS

INPUT: NO. MOS.
1ST YR. DEBT

INT. RATE
MORT. TYPE

1ST YR.

OUTPUT:
REQUEST

FOR NO. OF
MOS. 1ST YR.

INPUT:
NO. MOS.
1ST YR.

55

56

COMPUTE:
DOWN PAYT.
(.20*PRIN.)

,r
COMPUTE:
MONTHLY

PAYMENT 2

Savings &
Loan

S

"
COMPUTE:
MONTHLY
INTEREST

RATE I = 1/12

LOAN
TYPE?

Commercial ,.
COMPUTE:

DOWN PAYT.
(.25*PRIN.)

"
COMPUTE:
MONTHLY

PAYMENT 3

" - --
OUTPUT:

NEW
PRINCIPAL

&
MON. PAYT.

COMPUTE:
NEW PRIN.

= PRIN-DN. PAYT.

COMPUTE:
EQUITY

F.H.A.

COMPUTE: DN.PAY~=
(.I 3* 15K)+(.10*5K)+(.20 S,p. L)

"
COMPUTE:
MONTHLY

PAYMENT 1

OUTPUT:
HEADINGS

FOR MONTHLY
COLUMNS

COMPUTE:
MONTH'S INTEREST
MONTH'S EQUITY

COMPUTE:
TOTAL INTEREST

TOTAL EQUITY

COMPUTE:
CURRENT
BALANCE

OUTPUT:
DATA

COMPUTED
ABOVE

OUTPUT:
HOGS.

FOR YEARLY
COLUMNS

COMPUTE:
YEARS INTEREST

YEARS EQUITY

COMPUTE:
TOTAL INTEREST

TOTAL EQUITY

COMPUTE:
CURRENT
BALANCE

OUTPUT:
DATA

COMPUTED
ABOVE

57

58

OUTPUT:
FINAL

MONTHLY
PAYMENT

OUTPUT:
"REQUEST

FOR
ANOTHER"

INPUT:
ANSWER

YES
OR
NO

PAUSE

59

3. CAL Code And Sample Execution

-CAL
STATEMENTS = 300

HEADING ::

>LOAD
FROM IMORTGAGEI

>T¥PE ALL

1.0 TYPE" THIS IS A PROGRAM TO COMPUTE STANDARD MORTGAGE DATA."
1.1 DEMAND IN FORM 1: A
1.2 TO PART 2 IF All
1.3 TYPE "THIS PROGRAM COMPUTES THE DOWN PAYMENT, MONTHLY PAYMENT,"
1.4 TYPE "INTEREST PAID, EQUITY ACCUMULATED, AND THE NEW BALANCE FOR"
1.5 TYPE "A STANDARD MORTGAGE. COMPUTATION WILL FIRST BE PRINTED"
1.6 TYPE "FOR THE MONTHS REMAINING IN THE FIRST YEAR, THEN FOR EACHn

1 .62 TYPE "YEAR, AND FINALLY THE PROGRAM WILL PRINT THE MONTH IN WHIC~'
1 .64 TYPE '9THE FINAL MONTHLY PAYMENT WAS MADE."
1.66 LINE
1.68 TYPE "THE USER MUST INPUT CERTAIN PERTINENT DATA WHEN REQUESTED"
1 .70 TYPE "BY THE PROGRAM. WHEN THE MORTGAGE TYPE IS REQUESTED"
1 .72 TYPE "IT IS ASSUMED BY THE PROGRAM THAT AN F.H.A. MORTGAGE"
1.74 TYPE "IS AMORTIZED OVER A 30 YEAR PERIOD, A CONVENTIONAL MORTGAGE"
1.76 TYPE "IS AMORTIZED OVER A 25 YEAR PERIOD WITH A MINIMUM DOWN PAYMET
1.78 TYPE "OF 20%, AND THAT A COMMERCIAL MORTGAGE IS AMORTIZED OVER"
1.80 TYPE itA 20 YEAR PERIOD WITH A MINIMUM DOWN PAYMENT OF 25%."
1.82 LINE

2.0 DE~4ND IN FORM 2: R,P,I
2.1 DEMAND IN FORM 3: L,Y
2.2 TO PART 10 IF R>12
2.3 Rl=12-R
2.4 1=1/1200
2.5 N=IF L=1 THEN 360 ELSE IF L=2 THEN 300 ELSE IF L=3 THEN 240
2.6 DO PART CL*20)
2.7 P=P-D
2.8 El=D
2.9 M=CP*I*CI+l)fN)/(CI+l)fN-l)

3.0 N=N-13
3.1 TYPE IN FORM 4: D,M
3.2 TYPE"

TOTAL TOTAL
MONTH INTEREST EQUITY
IF RIO
3.3 Il~I2-I3-E2-E3-0
3.4 DO PART 4 FOR K=R BY -1 TO 1
3.5 TYPE"

MONTH'S
INTEREST

MONTH'S
EQUITY

CURRENT
DEBT II

60

TOTAL TOTAL
YEAR INTEREST EQUITY
3.6 DO PART 5 FOR K=N BY -1 TO 0
3.7 DO PART 6 FOR K=Rl BY -1 TO 1
3.8 TO PART 7

4.0 I2=P*1
4.1 E2=M-I2
4.2 11=11+12
4.3 E1=El+E2
4.4 P=P-E2

YEAR'S
INTEREST

4.5 TYPE IN FORM C200+K): Il,El,I2,E2,P

5.0 I2=P*I
5.1 E2=M-I2
5.2 11=11+12
5.3 El=El+E2
5.4 P=P-E2
5.5 13=13+12
5.6 E3=E3+E2
5.7 DO PART 9 IF K MOD 12 = 0

6.0 I2=P*I
6.1 E2=M-I2
6.2 11=11+12
6.3 El=El+E2
6.4 P=P-E2
6.5 13=13+12
6.6 E3=E3+E2

7.0 Y=Y+l
7.1 TYPE IN FORM 5: Y,Il,El,I3,E3,P
7.2 TYPE IN FORM 9:
7.3 TYPE IN FORM 100+Rl:
7.4 LINE FOR K= 1 TO 6
7.5 DEMAND IN FORM 6: A
7.6 TO PART 2 IF AID
7.7 LINE FOR K= 1 TO 6
7.8 PAUSE
7.9 TO PART 1

9.0 Y=Y+l
9.1 TYPE IN FORM 5: Y,Il,El,I3,E3,P
9.2 13"E3"0

10.0 TYPE"

YEAR'S
EQUITY

THE NUMBER OF MONTHS REMAINING IN ONE YEAR CANNOT
EXCEED TWELVE."

10.1 DEMAND IN FORM 7: A
10.2 TO STEP 2.2

20.0 D=IF P>2E4 THEN CCP-2E4>*.20+950) ELSE IF P>15E3 THEN
«P-15E3>*.10+450) ELSE C.03*P)

CURRENT
DEBT "

61

FORM 1:
DO YOU NEED INSTRUCTIONS ? (TYPE 1 FOR YES, OR 0 FOR NO) ,

FORM 2:

FORM 3:

FORM 4:

FORM 5:
19%%
FORM 6:

FORM 7:

FORM 9:

FORM 101:
JANUARY
FORM 102:
FEBRUARY
FORM 103:
MARCH
FORM 104:
APRIL
FORM 105:
MAY
FORM 106:
JUNE
FORM 101:
JULY
FORM 108:
AUGUST
FORM 109:
SEPTEMBER
FORM 110:
OCTOBER
FORM 111:
NOVEMBER
FORM 112:
DECEMBER

THE NUMBER OF MONTHS IN THE FIRST YEAR = #
THE ORIGINAL DEBT = $#
INTEREST RATE = I
TYPE OF MORTGAGE (l=FHA, 2=CONVENTIONAL, 3=COMMERCIAL) I
MORTGAGE PAYMENTS BEGIN IN 19#

MINIMUM DOWN PAYMENT = $%%%%%.%%
MONTHLY PAYMENT = $%%%%.%%

$%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

DO YOU WISH TO COMPUTE DATA FOR ANOTHER MORTGAGE ?
(TYPE 1 FOR YES, OR 0 FOR NO) #

THE NUMBER OF MONTHS IN THE FIRST YEAR = #

THE FINAL MONTHLY PAYMENT IS IN %

$%%%%%.%%

62

FORM 201:
DEC. $%%%%%.%% $%%%%%.%%

FORM 202:
NOV. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 203:
OCT. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 204:
SEP. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 205:
AUG. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 206:
JUL. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 207:
JUN. $%%%%%.%% $%%%%%.%%

FORM 208:
MAY $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 209:
APR. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 210:
MAR. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 211:
FEB. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

FORM 212:
JAN. $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%% $%%%%%.%%

>TO PART 1
THIS IS A PROGRAM TO COMPUTE STANDARD MORTGAGE DATA.
DO YOU NEED INSTRUCTIONS ? (TYPE 1 FOR YES, OR 0 FOR NO) 1

THIS PROGRAM COMPUTES THE DOWN PAYMENT, MONTHLY PAYMENT,
INTEREST PAID, EQUITY ACCUMULATED, AND THE NEW BALANCE FOR
A STANDARD MORTGAGE. COMPUTATION WILL FIRST BE PRINTED
FOR THE MONTHS REMAINING IN THE FIRST YEAR, THEN FOR EACH
YEAR, AND FINALLY THE PROGRAM WILL PRINT THE MONTH IN WHICH
THE FINAL MONTHLY PAYMENT WAS MADE.

THE USER MUST INPUT CERTAIN PERTINENT DATA WHEN REQUESTED
BY THE PROGRAM. WHEN THE MORTGAGE TYPE IS REQUESTED
IT IS ASSUMED BY THE PROGRAM THAT AN F.H.A. MORTGAGE
IS AMORTIZED OVER A 30 YEAR PERIOD, A CONVENTIONAL MORTGAGE
IS AMORTIZED OVER A 25 YEAR PERIOD WITH A MINIMUM DOWN PAYMENT
OF 20%, AND THAT A COMMERCIAL MORTGAGE IS AMORTIZED OVER
A 20 YEAR PERIOD WITH A MINIMUM DOWN PAYMENT OF 25%.

THE NUMBER OF MONTHS IN THE FIRST YEAR = 10

THE ORIGINAL DEBT = $32500.00

INTEREST RATE = 6.5

TYPE OF MORTGAGE Cl=FHA, 2=CONVENTIONAL, 3=COMMERCIAL) 2

63

MORTGAGE PAYMENTS BEGIN IN 1968

MINIMUM DOWN PAYMENT = $ 6500.00
MONTHLY PAYMENT = $ 175.55

TOTAL TOTAL MONTH'S MONTH'S CURRENT
MONTH INTEREST EQUITY INTEREST EQUITY DEBT

MAR. $ 140.83 $ 6534.72 $ 140.83 $ 34.72 $25965.28
APR. $ 281.48 $ 6569.63 $ 140.65 $ 34.91 $25930.37
MAY $ 421 .93 $ 6604.73 $ 140.46 $ 35.10 $25895.27
JUN. $ 562.20 $ 6640.01 $ 140.27 $ 35.29 $25859.99
JUL. $ 702.28 $ 6675.49 $ 140.07 $ 35.48 $25824.51
AUG. $ 842.16 $ 6711.16 $ 139.88 $ 35.67 $25788.84
SEP. $ 981.85 $ 6747.03 $ 139.69 $ 35.86 $25752.97
OCT. $ 1121.34 $ 6783.09 $ 139.50 $ 36.06 $25716.91
NOV. $ 1260.64 $ 6819.34 $ 139.30 $ 36.25 $25680.66
DEC. $ 1399.75 $ 6855.79 $ 139.10 $ 36.45 $25644.21

TOTAL TOTAL YEAR'S YEAR 'S CURRENT
YEAR INTEREST EQUITY INTEREST EQUITY DEBT
1969 $ 3053.28 $ 7308.91 $ 1653.53 $ 453.11 $25191 .09
1970 $ 4676.47 $ 7792.37 $ 1623.19 $ 483.46 $24707.63
1971 $ 6267.27 $ 8308.20 $ 1590.81 $ 515.84 $24191 .80
1972 $ 7823.54 $ 8858.59 $ 1556.26 $ 550.38 $23641 .41
1973 $ 9342.94 $ 9445.83 $ 1519.40 $ 587.24 $23054.1 7
1974 $10823.01 $10072.41 $ 1480.07 $ 626.57 $22427.59
1975 $12261.12 $10740.94 $ 1438.11 $ 668.54 $21759.06
1976 $13654.46 $11454.25 $ 1393.34 $ 713.31 $21045.75
1977 $15000.02 $12215.33 $ 1345.57 $ 761.08 $20284.67
1978 $16294.62 $13027.39 $ 1294.59 $ 812.05 $19472.61
1979 $17534.83 $13693.82 $ 1240.21 $ 866.44 $18606.18
1980 $18717.01 $14818.29 $ 1182 .18 $ 924.46 $17681.71
1981 $19837.28 $15804.66 $ 1120.27 $ 986.38 $16695.34
1982 $20891.49 $16857.10 $ 1054.21 $ 1052.44 $15642.90
1983 $21875.21 $17980.02 $ 983.73 $ 1122.92 $14519.98
1984 $22783.74 $19178.14 $ 908.52 $ 1198.12 $13321.86
1985 $23612.02 $20456.51 $ 828.28 $ 1278.36 $12043.49
1986 $24354.69 $21820.49 $ 742.67 $ 1363.98 $10679.51
1987 $25006.00 $23275.81 $ 651.32 $ 1455.33 $ 9224.19
1988" $25559.86 $24828.61 $ 553.85 $ 1552.79 $ 7671.39
1989 $26009.72 $26485.39 $ 449.86 $ 1656.79 $ 6014.61
1990 $26348.62 $28253.14 $ 338.90 $ 1767.74 $ 4246.86
1991 $26569.13 $30139.27 $ 220.51 $ 1886.13 $ 2360.73
1992 $26663.33 $32151.72 $ 94.19 $ 2012.45 $ 348.28
1993 $26666.16 $32500.00 $ 2.83 $ 348.28 $ 0.00

THE FINAL MONTHLY PAYMENT IS IN FEBRUARY

DO YOU WISH TO COMPUTE DATA FOR ANOTHER MORTGAGE ?
(TYPE 1 FOR YES# OR 0 FOR NO) 0

PAUSE IN STEP 7.8:
>

64

APPENDIX 1

PRECEDENCE LIST

This appendix gives the complete precedence list for the CAL operators and functions.
Operators with the same precedence are performed from left to right. Parentheses may
be used to alter precedence.

Precedence

1
2

3
4

5

Operator

(unary minus, the negative sign)

t
/ * MOD

The CAL functions

+ -
6 = # < <= > >= relational operators

7 NOT

8 AND OR

9 +- (replacement)

10 = replacement operation

APPENDIX 2

CAL SUMMARY

NUMBERS

I nteger (without decimal point)

Decimal (with decimal point)

Scientific Notation

For example; 357940

For example; 35.7940

For example; 3.57E23 (where E23 means 1023
)

VARIABLES

Legal Variables A - Z and AO - Z9

Subscripted Variables A(l), B(I-3*S), A6(N, M, ... R)

ARITHMETIC OPERATORS

I n order of priority

t
*, /, MOD
+,
+-

Equal

Not equal

Unary Minus (Negation)

Exponentiation
Multipl ication, Division, Modulo

Addition, Subtraction
Replacement

RELATIONAL OPERATORS

> Greater than

>= Greater than or equal to

< Less than

< = Less th an or equ al to

LOGICAL OPERATORS

AND Logical Multiplication

OR Logical Addition

NOT Reverses Logical Value

ABS (A)

SIN (A)

COS (A)

TAN (A)

ATAN (X,Y)
EXP (A)

LOG (A)

LOG10 (A)
SQRT (A)

IP (A)

FP (A)

MATHEMATICAL FUNCTIONS
(STANDARD)

Absolute value of A

Sine of A

Cosine of A

Tangent of A
Arctangent in radians, over the range -1T to +1T of X/Yo
e to the power A

Natural logarithm of A
Base 10 I ogarith m of A

Positive square root of A
I nteger part of A

Fractional part of A

65

66

ITERATIVE FUNCTIONS

~:~ol (Any form of FOR clause without the word FOR:expression)

MIN J
Example

U
TO limit:

SUM (variable = limit BY interval UNTI L condition:expression)
WH I LE condition:

PROGRAMMER DEFINED FUNCTIONS

DEFINE fU~a~i~n [parameter list] = expression

f .
DEFINE unction [parameter list] 'TO STEP step name . number

n~~ber RETURN expression

FORM STATEMENTS

FORM form number: ~

INPUT SPECIFICATION
For any number type #

OUTPUT SPECIFICATION
Integer
Decimal

%%%%%%
%%%%%%.%%

Exponential ###### (Minimum 6)

Any other characters (blanks included) printed as shown.

COMMANDS

INPUT/OUTPUT COMMANDS (DIRECT OR INDIRECT)

DEMAND variable list
DEMAND IN FORM form number:variable list

TYPE variable list
TYPE IN FORM form number:variable list
TYPE "text"

TYPE STEP step number
TYPE PART part number

TYPE FORM form number

TYPE function name
TYPE ALL STEPS
TYPE ALL FORMS
TYPE ALL FUNCTIONS
TYPE ALL VALUES
TYPE ALL

DATA FILES (DIRECT OR INDIRECT)
INPUT

OPEN /file name/ FOR or AS FI LE file
b OUTPUT num er

READ FROM file . .
INPUT number:vanable list

WR ITE ON nu~lber :variable list

WRITE ON file IN FORM form .variable
number number· list

OUTPUT ON file : non-s.ubscripted
number vanable list

CLOSE file number

REPLACEMENT COMMAND (DIRECT OR INDIRECT)

single variable = expression For example, A 1 = PI * R t2

CONTROL COMMANDS

Direct Or Indirect
TO PART step or part number
TO STEP step number
DO PART step or part number
DO STEP step number

Indirect Only
PAUSE
DONE

Direct Only
RUN
GO
QUIT
STEP

Miscellaneous

Direct Or Indirect
LINE
PAGE
$
! Comments

Direct Only
LINES

Program Files (Direct Only)

DUMP~
TO /file name/

LOAD ~
F ROM !file name/

DELETE COMMANDS (DIRECT ONLY)

DELETE STEP step number
DE LETE step number
DELETE PART step or part number
DELETE FORM form number
DELETE variable
DELETE function name
DE LETE ALL STEPS
DELETE ALL FORMS
DELETE ALL VALUES
DE LETE ALL FUNCTIONS
DELETE ALL or CLEAR

67

68

EDIT COMMANDS (DIRECT ONLY)

EDIT STEP step number
EDIT step number
EDIT FORM form number
EDIT function name
MOD STEP step number
MOD step number
MOD FORM form number
MOD function name

MODIFIERS

I F expression
UN LESS expression
UNTI L terminating condition
WH I LE terminating condition
FOR variable = list of values

FOR variable = limit BY interval UNTI L condition
[

TO limit

WH I LE condition
WH ERE expression & expression
I F condition TH EN expression ELSE expression

INDEX

NOTE: Page numbers which appear in bold face type refer to those pages where the listed
item receives the most detailed discussion.

ABS, 19

Adding,a statement, 26

AL T MODE/ESC, 17

AND, 29

Append,31

Arithmetic expressions, 6

Arithmetic operators, 6

Arithmetic replacement, see Replacement

ATAN, 18

CLEAR,26

CLOSE,24

Command, see Statement

display, 11

files, 34

Comments, 11

Conditional modifiers, see Modifiers

Constants, 5

Control characters, 27

COS, 18

DEFINE,20

DELETE ALL STEPS, 26, 31

DELETE FORM, 26

DELETE PART, 26

DELETE STEP, 26

Deleting a file, see Removing a file

Deleting a statement, 26

DEMAND,9

DEMAND IN FORM, 10

DO PART, 12, 15

DO STEP, 16

Dollar sign, 22

DONE, 16

DUMP, 23, 31

EDIT, 26

EDIT FORM, 26

EDIT STEP, 26

Editor, 31

EXP, 18

Expressions, arithmetic, 6

logical,7

File number, 23, 24

Files, 23

command, 34

data, 23
dollar sign, 22

FOR, 19,23

FOR loop, 13

FORM, 9,10,26

FP,19

Function parameters, 20

Functions, 18, see also individual
function names

iterative, 19

programmer defined, 20

recursive, 21

GO,16

IF,12,22

I F THEN ELSE, 14

Input, 9, 24, Section 2

command,24

data files, 23

IP, 19

LINE, 22

LINES, 22

Literal text, 11

LOAD, 23

LOG,18

69

70

Log in procedure,' 3

LOG10,18

Logical expressions, 7, 29

operators, 7, 29

variables, 29

LOGOUT, 5

Loop, see FOR loop

MAX, 19

MIN,19

MOD,6

Modifiers, 12

MODIFY, 26

NOT, 29

Numbers, numeric, see Constants
PART, 8

STEP, 8

OPEN, 23

Operations, logical, 29

order of, 6

Operators, 6

logical, 7

relational, 7

OR,29

Output, decimal, 10

exponential, 10

integer, 10

OUTPUT ON, 24

Overlay, 31

PAGE, 22

Parentheses, see Operations, order of

PART Number, 8

PAUSE, 16

PI,18

Precedence, 6

PROD, 19

QUIT, 4,17

READ, 24

READ/file name/, 31

Relational operators, 7

Removing a file, 23

Replacement, 12

RETURN, 20

RUN,16

Scientific notation, see Output, exponential

SIN,18

Statement, command, 5

define, 5

direct, 7

FORM, 5, 9,10

indirect, 7

STEP, 16

STEP Number, 8

Subscripted variables, see Variables

SUM, 19

TAN, 18

Text, see Literal text

TO PART, 12, 17,21

TO STEP, 15

TYPE, 9,11,13

UNLESS, 12

UNTIL, 12

Variables, 5

local and global, see Function
parameters

WHERE, 13, 14

WHILE, 12

WRITE ON, 24

WRITE/file name/, 31

TYMSHARE MANUALS

Instant Series
CAL

SUPER BASIC
EDITOR

Reference Manuals
EXECUTIVE

CAL
SUPER BASIC

EASYPLOT
EDITOR

FORTRAN IV
FORTRAN II

LIBRARY
COGO
ECAP

ARPAS/DDT
BRS

8 TYMSHARE TYMSHARE, INC., 525 University Avenue, Suite 220, Palo Alto, California 94301

	000
	001
	002
	003
	004
	01
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	back

