DDT
REFERENCE MANUAL

(for the Tymshare debugging system)

This manual is a reprint
of Document No. 30, 40, 10
produced under ARPA
Contract SD-185 by the
University of California
at Berkeley.

Please address all
comments to:

DIRECTOR OF TRAINING
Tymshare, Inc.

745 Distel Drive

Los Altos, California 94022

30.40.10
TABLE OF CONTENTS
1.0 General

1.1 Symbols
1.2 Block Structure . . .
1.3 Literals . . « v © v v v ¢« ¢ v e e e e e e e e e e . 1ab
1.4 Constants
1.5 Commands e e e e e
1.6 Expressions
1.7 The Open Register ¢« ¢ v v v v+« 17
1.8 Memory Allocation and DDT
2.0 DDT CommandsS . « « « v « 4 4 o s « o o o s o o 4 4 0 0 . 2-1
2.1 Register Opening Commands 2-1
2.2 Type Value Command8 . . . +« « & &« o 4 o o o o & o o » 2-3
2.3 Symbol Definition Commands . . .
2.4 Mode Changing Commands « « « o o . . . 2=h
2.5 Breakpoint Commands e e e e e e e e e e e e e e e 2-5
2.6 Input-Output Commands ¢ « « & « « « o « » 2=7
2.7 Search Commends
2.8 The Patch Command
2.9 Miscellaneous Commands
2.10 Special Symbols . . <« ¢ + -« 4 e e e v 4 s e .. 2=10

2.1 Panics ¢ o .

2.12 Multiple Program Debugging . . . « 2-12

30.40.10
1-1
December 2, 1966

1.0 General

DDT is the debugging system for the SDS 930 Time-Sharing System. It has
facilities for symbolic reference to and typeout of memory locations and central
registers. Furthermore, it permité the use of literals in the same manner as in
the assembler. It can also insért'breakpoints into programs, perform a truace,
and search progrems for specified words and specified effective addresses. There
is a command to facilitate program patching. Finally, DDT can load Bgth absolute
and relocatable files in the format produced by the assembler.

The system has a language for communication between DDT and its users. The

basic compbnents of this language are symbols, constants, and commands.
1.1 Symvols |

A symbol is any string of letters, digits, and dots (.) containing at
least one letter. (However, a digit string followed by B or D is interpreted
as an octal or decimal number respectively). In symbols of more than six
characters, only the first six are significent: thus, ALPHABET is equivalent
to ALPHAB. All opcodes recognized by the assembler are built-in symbols,
except for some I/O instructions. Other symbols are 31, ;2, ;A, ;B, ;F,
3L, 3M, 3Q, 3;X, and dot. Their meanings are explained below.

Every symbol may have a value. This value is a 2h-bit integer; for
most symbols it will be either»an address in memory or the octal encoding of
an operation code. Examples:

ABC

AB12k4

12XYZ

The following are not syﬁbols:

1358
AB*CD

Svmbols may be introduced to DDT in two basically different ways:
(A) They may be written out by the assembler and read in from

the binary program file by DDT.

30.40.10
1-2
December 2, 1966

(B) They may be typed in and assigned values during debugging.

It is possible for a symbol to be undefined Th1s may occur if 4 program
is loaded which references an external symbol not deflned in a previously

‘Yoaded program Tt may also oceur 1f an undeflned symbol is typed in an
C ot o

expression. ‘I general, undeflned symbols are leg&l 1nput to DDT except

when their values would be reqnired 1mmediately for the executlon of a

command.” Thus, for example, the ,G (GO TO) command could not have an un-

defined aymbol as ita arpument

Undefined symbols may become defined in several ways They may be

sy

@éfined 25 external in the assembler (1 e. with EXT, ENTRY, or $) and read

1".‘ o 'A‘r:

by DDT as part of a blnary program Alternatively, they may be defined by

one nf the symbol definition commands ava1lable 1n DDT When the definztion

-

occurs, 'the value of the symbol w1ll be substltuted in all the expregsions

in which the symbol has appedred

If DDT type {U] after typlng ont the contents of a register, it means

‘that the reglster contalns an undeflned symbol The register is closed at,

3
“ccl-.‘-r

once so that its contents cannot be erroneously changed

' Thé only restrlction on thls f;c1iity 1s that .as“for ARPAS, the
undefined symbol must be the only thing in the address field of the word
in which it appears. Incorrect uses of undefined symbols will be detected
by DDT and will result in the error comment (u). o

DDT keeps track of references to undefined symbols by building a

pointer chain through the address fields of the words referring to the symbol.

Thus, suppose that the symbol A is undefineq and appeaysias‘follows

G D
MRS

S1 LDA A
s2 STA A

S3 MRG A o

and nowhere else in the program. After loading, the entry for A in DDT's

30.40.10
1-3
December 2, 1966

symbol table will contain a flag indicating that it is undefined and a pointer
to 3. The above locations will contain:

S1 LDA 0

.
»

se STA 81

«
.
.

S3 MRG 32
When the symbol is defined, DDT goes through the pointer chain and fille in
the value. It recognizes the end of the pointer chain by a O address.

From this description it should be obvious what will happen if the
pointer chain is destroyed. A probable consequence is that a search down the
pointer chain will not terminate. DDT does suci. searches whenever it prints
an address. If the chain it is searching has more than 26 links, it will
print the symbol followed by (U) and continue. Fixing up an undefined symbol

pointer chain which has been clobbered is an exercise which we leave to

the reader.

1.2 Block Structure

A limited facility called the block structure facility is provided to

simplify the referencing of local symbols which are defined in more than one
program. Note that DDT's block structure has only a tenuous connection
with the block structure of ALGOL. The block structure of a program is
organized in the following manner: every IDENT read by DDT as part of a
binary.program file begins a new block. Any locai symbol known to DDT hasg a
block number associated with it; global symbols do not have a block number.
Undefined symbols are always treated as global. |

The name of a block is the symbol in the label field of the IDENT. If
two IDENTs with the same symbol are read, the message (ALREADY DEFINED) is

printed, and the local symbol tables from the two blocks will be merged.

30.40.10
1-b
December 2, 1966

Global symbols must be unique within an entire program and are recopn1zed

“at 21l times. If a multlple def1n1tzon is é;gountered the 1atest one takc°
precedence. Local symbols are recog;lzéd acéégdmﬁ; to the following rules:
(1) At any given time one block is called thé primar& block. All local
symbols associated with the primary block will be recognized.
(?) If a symbol is used which is neither .global nor in the primary
block, the entire symbol table is scanned for it. If it occurs
in only one block, the symbol is recognized properly. If it occurs
in more than one block, the error message (A) is printed.
(3) A symbol may be explicitly qualified by writing:
| SYMASSTMB
SYMA must be the name of a block. SYMB is then referenced as though
the block whqse name is SYMA were primary.
(4) When a register is opened (see section 2.1), the block to which
the symbolic part of {ts locution belongs becomes primary. Thus,
NN&XYZ/ causes block NN to become primary; if ABC is a unique local
symbol in block P@, then ABC/ causes block PQ to become primary.
1.3 Literals |
Literals have the séme‘férmét and meaning in DDT as in the assembler,
i.e. the two‘characters ="' signae the beginning of a literal, which is
term1nated b& any of the ﬂhardcters which ordinarily terminate an expression.
In contrast to the assembler, the expression 1n a DDT literal must be defined.
| The llteral is 1ooked up in the llteral table. If it is found, the
address whlch has been a881gned to 1* is the value of the symbol. If it
does not anpear in the 1i feral table, it is stored at the address which is
the current value of 3F, and thls address is taken as the value of the
literal. ;F is 1ncreased by l For example, if the literal -1 does not
already eX1st in the llteral table and ;F is 1000B, then LDA =-1 causes -1

to be stored at 1000B, and is equivalent to LDA 1000B; the new value of ;F

30.40.10
1-5
December 2, 1966

is 1001B. Exception: In patch mode, literals are saved and not stored
until the patch is completed since otherwise they would interfere with
the patch.

When DDT types out a symbol whose value is an address in the literal
table, it will type out in the same format in which it would be input; that

is, as = followed by the numeric value of the literal.

1.4 Constants

A constant is any string of digits, possibly followed by a B or D. The
number represented by the string is evaluated, truncated to 24 bits and th;n
used just iike the value of a symbol. The radix for numbers is normally 8
(octal), but may be changed arbitrarily by the commands described in section
2.4 velow. If a number is terminated by B or D, it is interpreted as octal
or decimal respectively regardless of the current radix. Constants are
always printed by DDT in the current radix.

It is possible to enter numeric op codes by typing the number followed
by an @& sign.E Thus 100& =14400000B if the current radix is decimal\(lOOD:lth).
1.5 Commands

A command is an order typed to DDT which instructs it to do something.

The commands ére listed and their functions explained in the table below.
1.6 Expressions | |

An expression is & string of numbers or symbols connegted‘with blanks,

+, -, 3%, 3/, &, 3<, 3=, 3, and ;%. These operators have the following

significance: + addition
~ subtraction
;* (integer) multiplication
;/ (integer) division

;& (AND)
;< (18S)
;= (EQL) as in ARPAS
> (GTR)
3% (OR)

Expressions are evaluated strictly left to right: all operators have the

same precedence. Parentheses are not allowed. The first symbol or number

30.40.10
1-6
December 2, 1965
may be preceded by a minus sign. Blank acts like plus, except that the
following operand is truncated to 14 bits before being added to the

accumulated value of the expression. The value of an expression is a “h-bit

integer. An expression may be a single symbol or constant.

Examples: 1LDA has the value 7600000
LDA 10 has the value 7600010 if the
radix is octal
LDA 10D has the value 7600017
If 3YM is a symbol with the value 1212, then
SM has the value 121>
SYM 10 has the wvalue 1222
IDA SYM has the value 07601217

If this last expréssion were put into a memory register and later
executed by the program the effect would be tc load the contents of SfM,
register 1212, into the A register.

When DDT types out expfessions, twb mode switches control the format of
the output. Commands for setting these modes are described in sectionf?,h
below. The C-S mode determines whether quantities_will be printed as constants
or as symbolic expressioﬁs. Ih the latter case, the opcode (if any) and the
address will be put into symbolic form.‘ If the first nine bits of the value
are O or 1, no opcode will be printed; in the latter case a negative integer
will be printed. If the opcode is not recognizable as & symbol, it will be
typed as a number followed by an (& sign.

The R-V mode controls the format in which addresses are typed.‘ DDT
types addresses when askéd to open the previoug or the next register, when
it reports the results of Qord and address searches,'and on breakpoints.

In relative mode, addresses are typed in symbolic form, i.e., as the largest
defined symbol smaller than ﬁhe address plus & constant if necessary. If
the constant is bigger than 200 octal, or if the value of the symbol is

less than the first location of the program, the entire address is typed &s

a constant. In absolute mode, addresses are always typed as constant.

30.40.10
1-7
December 2, 1966

1.7 The Open Register

One other major ingredient of the DDT language is the open register.

Certain commands cause a register to be "opened". ‘This means that its
contents are typed out (except in eﬁter mode, for which see the \ command),
followed by a tab. Any expression the user types will then be inserted into
the open register in place of its curreht contents. After this insertion the
register is closed at once; Note’that the string LDA ABC= is a command, and

does not cause LDA ABC to be entered into the current open register. The

current location is given by the symbol "." (dot) which always has as its
value the address of the last register opened, whether or not it is still open.

Note:

(1) Comma and star (for indirect addressing) may be used in expressions
as they are used in the assembler; e.g. LDA* 0,2 has the value
27640000.

(2) DDT will respond to any illegal input with the character ? followed
by a tab (if a register is open) or carriage return (otherwise),
after which it will behave as if nothing had been typed since the
last tab or carriage return. The commend ? also erases everything
typed since the last tab or cerriage return.

1.8 Memory Allocation and DDT

DDT may cause the time-sharing system to assign memory for use either
by DDT itself or by the user's program. DDT's memory is used to hold the
symbol table, which starts in block O and grows upward in memory. The
symbol table contracts at the end of each load of a binary file and when
symbols are killed; this contraction may cause memory to be released.

DDT grabs program memory when it is required for loading a binary file,

or when a ;U (execute) command is given and the value of ;F is such that

30.40.10
1-8
December 2, 1966
a‘newAblock is needed to hold the instruction to be executed. For executing
an instruction, DDT requires location ;F, ;F+1 and ;r+?. Memory is never
grabbed for examination of a regiétef; however, entering information with \
can cause memory to be assigned; Aétempts to open locations not assigned
will cause DDT to type ?. This meéns that upon initial entry to DDT no
registers are available for‘examihatién. The eésiest way to obtain memory
18 to simply start typing in a“progfam using the \ command .
If an attempt to acquire or reference memory leads to a trap, DDT types
(M) and abandons whatever it is doing. This caﬁ happen if the machine size

is exceeded, or if an attempt is made to change read-only memory.

30.40.10
2-1
December 2, 1966
2.0 DDT Commands
In the following descriptions of DDT commands, <3 will be used to denote
an arbltrary syvmbol. <E> or <W> will be used to denote an arbitrary expression
which may be typed b& thé user: <E> will be used when the value.éf this expression
is truncated to 14 bits beforé it is used by DDT, while <W> will denote a fuli
24-bit expréssion. <f> will be used to denote an optional lh—bit’expression.
If none is typed, the last expreééion printed out will usually be used; deviations
from this rule will be described uvnder the indi?idual commands. <F> will denote ‘
a2 file name followed by a dot: DDT will type a tab whenever it expects a file
name. |
2.1 Register Opening Commands
<A/ This opens the register addressed by the value of <A>. DDT will give
a tab, type an expression whose value is equal to the contents of the
register, give another téb and await further commands. The precise‘form of
the expression typed is dependent on the setting of the S-C and ﬁ-V modes.
If the user types in an expression, DDT will insert its value into the
register. Typing another cémﬁand closes the register, unless it is a typé
value or aymbol definitién command . N&te that in a éommand>that requires
a preceding expression, the expression is regarded as part of the command
and would not, for instance, be inserted into the open register. If enother
/ is given as the next command with no preceding expression the contents
of the register addressed by the expreséion typed by DDT are typed out. A
further / repéaté this process. Note, however, that the éiiginéi register

openéd remains the'open register; any changes made will go into that register.

carriage This command does not necessarily have any effect. If the specified
return
conditions are present, however, any of the following actions may occur:

30.40.10
22
December 2, 1966
(1) 1If there is an open register, the register is closed.
(#) If DDT is in enter mode, it leaves it.

(3) If DDT is in patch mode, the patch is terminated (for a
fuller description of this effect, see the patch command).

<>] This command has the same effect as /, except that the contents of
the register cpened are always typed in symbolic form.
<> { This command has the same effect as /, except that the contents of
the register opened are typed in constant form.
<a> $ This command has the same effect as /, except that the contents of
the register opened are typed as a signed integer.
<g " This command acts like /, except that the register constants are typed
in ASCII. Unprintable characters, ss in QED, are preceded by &, e.g. 14l

(control-£) prints out as &A.

line This command opens the register whoée address is the current location

reed plus oﬁe, iJe. ﬁhe register after the one just»opened. The output of DDT on
this command is carriage return, régister address (format controlled by
the R-V mode), /, tab, value of contents, tab.

su(w=space) This is equivalent to line feed except that nothing is printed.
Its main use ié in entering programs or data, e.g.

1000 1302343 (carriage return)

is equivalent to

1000\ 1 carriage return)
1001\ 2 carriage return)
1002\ 3 (carriage return)
* This command opens the register whose address is the current location

Aminus ohe, i.e. the previous register. The output is the same as for the

line feed command.

Example:

ABC/ LDA ALPHA (line feed)
ABC+1/ STA BETA STA GAMMA (line feed)
ABC+2/ IDB DELTA ¢

ABC+1/ STA GAMMA

3\

30.40.10

9.3
December 2, 1966

This command opens the register whose address is the last 1k bits
of the value of the last expression typed. The output is the same as for
line feed.

This command is the same as /, except that the contents of the register
are not typed. DDT goes into enter mode, in which the contents of registers
opened by line feed, t, or (are not typed. Any nther command caused DDT
to go out of enter mode. In particular, carriage return has this eflfect.
When a register has been opened with \, DDT thinks that it has typed out
the contents. The type value commands will, therefore, work on the aontents
of the register.

The type register in special mode characters [, }, $ (type as a negative

integer), " (type in ASCII) are also preserved by line feed, up arrow and (.

This command suppresses typeout of register addresses during line feed,

np arrow and (chains. Carriage return cancels the command.

2.7 Type Value Commands

This command types the value of the last expression typed (;Q) in
consbtant form. Tt may appear in the form <W> =, in which case the value
of the <W> is typed. Otherwise, the expression referred to is the one most
recently typed, either by DDT or by the user.

This command types the value of ;Q as a signed integer.

This command types the value of ;Q in symbolic form.

This command types the valuve of ;Q typed as a word of text (see " command
on previous page).

This command types the address part of ;Q in symbolic form. If, for
instance, the program has executed BRM X, then X\@ will cause DDT to print

the address of the BRM.

30.40.10
o
December 2, 1966

Example:

LDA= 7600000
LDA 10= 7600010
DA « LDA
7600000~ LDA

-1= T
-1 -1
A77777777# -1

10221043' ABC

2.3 Symbol Definition Commands

This command defines the value of the symbol €3> to be the

current location. If <3 has been used but is undefined, it becomes global;

otherwise it becomes local and associated with the block which is primary
when the : command is given.

<3 & This command defines the value of <8 to be the address of the last

expression typed by DDT or the user. The symbol is local and associsted with
the block which is primary when the (§ command is given.

<<S>> This defines <3 %o have the valve of <E>, and to be global.

2.4 Mode Changing Commands

" This command is followed by & string of arbitrary characters terminated

by p° (control D). 1If a register is open, the string will be inserted into

successive locations packed 3 characters per word; otherwise characters
berond the third will be thrown away. For example, if no register is open,

"ABCDED®= yields 10221043,

3D (DECIMAL) This command changes the current radix (sec section 1.h).

;0 {OCTAL) This changes the current radix to octal.

“ 3R (RADIX) =ets the current radix to the value of the expression, which must
be >2.

we
——

CONSTANT) This command changes the 3-C mode to constant, i.e. makes /

equivalent to [.

30.40.10
P=5

December 2, 1966

3] (SYMBOLIC) This command changes the S-C mode to symbolic, i.e.
makes / equivalent to].

; (ASCII) This makes / equivalent to ".

;% (SIGNED INTEGER) This makes / equivalent to $.

3R (RELATIVE) This command changes the R-V mnde to relutive. This

mode determines the format for the output of addresses, both in symbolic

expression and when generated by line feed and *.

3V (ABSOIUTE) This command changes the R-V mode to shanlute.

2.5 Breakﬁoint Commands
<A>,<BE>! (BREAKPOINT) <E>'! sets breakpoint O at the address given hy the value
of the expression; <?>, <E>' sets breakpoint N (N must be between O mnd 3
inclusive). The effect is that if the program executes the instruction at
this address control returns to DDT, which will print the address and the
contents of the A, B and X registérs and await further commands (see below).

The break occurs before execution of the instruction in the breakpoint

location. ;L is set to the location at which the break occurred.

: (CLEAK ALL BREAKPOINTS). ! alone causes all breakpoints to be cleared.
<>yt (LIST OR CLEAR BREAKPOINTS)
<N>;! causes breakpoint N to be removed, where N lies between O and 3

inclusive. ;! alone causaé all breakpoints to be listed: if breakpoint 1
iz set at ABC+3, and no other breakpoints are set, then ;! produces the
prinﬁout * ABC+3 * * |

<A>;P (PROCEED) This command restarts the program after a break. The
program executes the instruction at the break and goes on from there. No
breakpoint is removed unless this is specifically done by ! or ;! so that,
if the program arrives at this location again; another break will occur.

If <BE>;P is given, another break will not occur until some breakpoint has

been reached that many times.

30.40.10
2-6
December 2, 1966
<p>3N (NEXT) This command executes the instruction at ;L and breaks.
This program provides a trace facility in that repeated executions of ;N
will provide a running print out of the contents of the significant internal
registers, instruction by instruction. The function is essentially the same
as that of the step switch on the consoie. <E>;N will cause <E> inatructions
to be executed before the next break occurs.

The ;N command follows the flow of control in the user's program. In
particular, it will normally trace the execution of users' POPs (see ;0
below). The execution of SYSPOPs, howevef, is not traced. In other words,
a SYSPOP such as FAD (floating add) is regarded as one instruction by ;N.
Cells ;F, ;F+1l, and ;F+2 are used by ;N and>;P.

<E>;8 (STEP). This is equivalent to <E> repetitions of ;N. Note that this
is not the same as <E>;N. | | |

<EBE;V (ADVANCE). This is equivalent to <E> repetitions of <P, and is not
the same as <E>;P. :

<N>;0 (POPVTRACE MODE). If <N>>0, programmed operators (POPs) together
with their associated subr§utines will be treated like machine instructions
for the ;N‘and 35S commands, i.e. the break willtnot occﬁr until control
returns to the location following the POP. Since DDT determines when it
should break by counting POPs, BRMz, SBRMs, BRRs and 35BRRs, it can be
fooled by POPs which do sufficiently peculiar things. If <N><O, POP
subroutines will be traced, i.e. the first break after the POP will bg at
the first instruction of the subroutine. ‘ |

<> ;U (SUBROUTINE TRACE MODE).F If <N>=1, BRMs or SBRMs together with the
subroutine called will be treated as sjnglé instructions by ;N. The_same
algorithm is used as in ;0 to determine when to break. If <N>?O) subroutines

will be traced explicitly.

<Y<

30.40.10
=7
December 2, 1966
Attempte to proceed through certain instructions having to deo with
forks will produce erroneous results, and breakpoints encountered when

the program is running in a fork will not do the right thing. Attempts

tn proceed through unreasonable instructions will cause the error comment

$>> .

2.6 Input/Output Commands

DDT expects to find a2 binary progrem on the file <F>. If the
program 1s absclute it is read in. If it i3 relocatable it is read in and

relocated at the location specified by <A>. TIf the expression is omitted,

relocatable loading commences at location 2LOB and continues by beginning
each program in the first aviailable location after the preceding one.
After reading is complete, the first location not used by the program is

typed out. Any local symbols on the binary file are ignored.

<> JT<E> This command is identical to ;Y except that is also reads local

s W<F>

1C<F>

<W> ;W

symbols from the file znd adds them to DDT's symbol table. Any symbols on

the file will be recognized by DDT thereafter.

The following two points should be noted in connection with ;Y and ;T

commands .

1) The use of an expression before ;T or ;Y when the file is

absolute (i.e. SAVE file or self-loading paper tape) is in error.

2) The block read in becomes the primary bleck.

Causes all global symbnls to be written on the specified file, in a

format which can be read back in with ;T.

Causes all symbols to be written on the specified file.

2.7 Search Commands

{WORD SEARCH) <W>;W searches memory between the limits ;1 and ;7 for

cells whose contents match <W> when both are masked by the value of

30.40.10
28
December 2, 1966
The locations and contents of zll such cells are typed ont.

W (NOT-WORD SEARCH). This is the same as ;W, except that all registers
which do not match <W> will be printed. This is useful, for example, in
finding and printing 211 non-zero registers in a glven part of memory.

<F-3F (EFFECTIVE ADDRESS SEARCH). <E>:;E searches memory between the limits
;1 and ;7 for effective addresses equal to <E>. Indexing, if specified, i
done with the value of ;X. TIndirect sddress chains are followed to n depth
of 64. The addresses and contents of all wordé found are typed oub. When
W or ;E is complete, . is left pointing to the last repister where ;he

expression was found.

2.8 The Patch Command

<) <A>) causes & patch to be inserted. If a register is open and an
expression is given, the expression 1s entered into the register. It a
register is open, or if no expression is typed, the patch is made =t
Otherwise, the patch is made at <A>. DDT inserts in this location =
branch to the current value of ;F. When the patch is done, ;F iz updated.
Tt then gives = carriage return and a)} and waits for the user to type
in the patch. Legal input consists of a series of expressions whose
values are inserted in successive locations in memory. Each of these
expressions should be terminated by line feed or ; ¢, exactly as though the
Trgram were being typed in with the \ command instead of as a patch. The ?t
command may be given in place of the line feed and has 1ts usual meaning,
except that the contents of the previous location are not typed. Two
other commands are legal in patch mode. They are:

(1) Colnon, which may be used to define a lorcal symbol with value

equal to the current location.

30.40.30

2-9
December 2, 1966

(2) cCarriage return, which terminates the patch. When the

patch is terminated, DDT inserts in the ne%t availeble
location the original contents of the location at which the
patch was inserted. It then inserts in the following two
locations branch instructions to the first and second locations
following the patch. This means that if the patch command is a
skip instruction, the program will continue to operaté correctly.
Any other command given in patch mode may cauge unpredictable
errors.

<51 Is identical to the) command except that it puts the instruction

being patched before the new code inserted by the programmer instead of after.

2.9 Miscellaneous Commands

;2 and ? This commands erase everything typed since the last tab or caerriage
return. It is always legal.

<BE>3;G (GO TO) <E>;G restores the A, B and X registers which were saved when
DDT was entered (unless they have been modified) and transfers to the
location specified by the value of the expression.

3K (KILL) This command resets DDT's symbol table to its initial state.
DDT will type back --OK and wait for a confirming dot. Any other character
will abort the command.

<8 :K (KILL). Removes only the symbol <S> from the table.

<E>,;L Sets ;1 and ;2 (the lower and upper brounds for searches) to the
values of the first and second expressions respectively.

;U (UNDEFINED). This command causes all undefined symbols to be listed.

<E>;U (EXECUTE). This causes the value of the expression to be executed as
an instruection. If it is a branch, control goes to the location branched to.

In all other cases control remains with DDT. A single carriage return is

typed before execution of the instruction. If the instruction does not

30.40.10
2=10
December 2, 1946
branch and does not skip, or returns to the following location, a $ and
another carriage return are typed after its execution. If the instruction
does skip, two dollar signs {$$) are typed followed by a carriage return.
(7ERO) <E>,<E>;7 sets to zero 8ll locations between the value of the
first expression and that of the second. ;7 alone releases all memory
accessible to the user's program. DDT will type back --0K and wait for a
confirming dot. Any other characters will abort the command. If this
memory is returned, due to later access by DDT or a program, it will he

cleared to zero.

(LIST BLOCKS). The names of all blocks are printed.

.10 Special Symbols

The valuve of "." is the current location, i.e. the address of the
last register opened.

The following symbols refer to various special registers of the machine.
Their value is the contents of these registers as saved by DDT: ;X= will
print the saved contents of the X register. To change the contents of a
register, 2 command of the form <E>;A is used. This command sets the A
register to the value of the expression. Whenever DDT executes any command
involving execution of instructions in the user's program, it restcores the
values of all machine registers. If any of these values have been changed
b the user, it is the changed value which will be restored.

The value of this symbol is the contents of the A register.

The value of this symbol is the contents of the B register.

The value of this symbol igs the contents of the X reglster.

The value of this symbol is the contents of the program counter.

The only reason for changing ;L is to set the location from which ;N will

begin execution.

30.40.10
2-11
December 2, 1966

The values of the following special symbols are used by DDT in certain
commands or are available to the programmer for his general enlightenment.
These values may be changed in the same way that the values of the symbols
for the central registers of the machine may be changed.

The value of this symhbol is the mask for word searches.

The value of this symbol is the lower bound for word and effective
address searches. It may also be set by the ;L command.

The value of this symbol is the upper bound for word and effective
address searches. It may also be set by using ;L.

This symbol has a value equal to the value of the last expressinn
tyvped by DDT or the usger. It is useful, for instance, if the programmer
wishes to add one to the contents of the open register; he need only type
3@ + 1.

The value of this symbol is the address of the lowest location in core
not used by the program. WNew iiterals and patches are inserted starting
at this address. Note: like all other special symbols, ;F may be changed

by the command <E>;F. It is also updated as necessary by patches and

literal definitions.

2.11 Panics

DDT recognizes four kinds of panic conditione:

(1) TIllegal instruction panics from the user's program.

(2) Memory allocation exceeded panics from the nser's program.

(3) Panics generated by pushing the rubout button.

(h) Panics generated by the execution of BRS 10 in the user's program.

For the first two of these conditions DDT prints out a message, the
location of the instruction at which the panic occurred, and the contents of

this location. The messgages are as follows:

30.L40.10
°-12
December 2, 1966

(1) TIllegal instruction panic I>>

(2) Memory allocation exceeded M>>

(3) The other two types of panics cause DDT to type bell and

carriage return. ;L and . will both be equal to the location
at which the panic occurred.

If a memory allocation exceeded panic is caused by a transfer to an
illegal location, the contents of the location causing the panic 1s not
available and DDT, therefore, types a ?.

Two other panic conditions are possible in DDT.

(1) If the rubout button is pushed twice with no intervening typing

by the user, control returns to the executive.

(?) If the rubout button is pushed while DDT is executing a command,

execution and typeout are terminated and DDT types carriage return

and bell and then awaits further commands.

2.12 Multiple Program Debugging

It is occasionélly desirable to hold several programs with differenﬁ
maps and symbol tables in DDT simult&neously. This situstion could be |
approximated using the DUMP and RECOVER commands in the time-sharing
executive, but several commands are provided in DDT itself to facilitate
the process. |

<Wi>,<Wé>;R (SET MAP). The pseudo-relabeling for the program is set according

to the value of <W.> and <Wé>. This command is essentially equivalent to

1

executing BRS 44 with <W.> in A and <W> in B.

1
9E (ERASE). DDT types --OK and waits for a confirming dot. Any other
character will abort the command. DDT then resets itself to its initial
state, i.e. the symbol table, program map, breakpoints and modes are all

reset. The progrem memory, however, is not released.

A

30.40.10
»-13
December 2, 1966

‘D (DUMP). This command also requires a confirming dot. The

entire state of DDT is saved away and a number typed out which will allow
thic state to be retrieved by the 4R command (see below). DDT then

resets itself as described under 9E above.

“sEdp

7R (RECOVER). This command requires a confirming dot. T7Tf the present
state of DDT has ever been dumped (i.e. was produced by 9R), it is dumped
agiin. Then the state is restored exactly as it was when the 4D wus pgiven,

whose number was the value of <E>. Using an illegal number for %R can

lead to chaons.

	00
	01
	02
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13

