
TYMSHARE REFERENCE MANUAL

NARP

AN ASSEMBLER FOR THE XDS 940

JULY 1971

TYMSHARE, INC.
525 UNIVERSITY AVENUE, SUITE 220

PALO ALTO, CALIFORNIA 94301

0.0

1.0

2.0

3.0

4.0

TABLE OF CONTENTS

Preface - Difference Between NARP and ARPAS .

Introduciion.

1.1 Pseudo-history of assembly languages ..

" 1.2 Assembly languages: some basic constituents
and concepts

Basic constituents of NARP . .

2.1

2.2

2.3

2.4

2.5

2.6

Character set

Statements and format.

Symbols, numbers, and string constants

Symbol definitions

Expressions and literals .

Opcode classification

Instructions.

Directives ..

4.1 ASC Generate text (3 characters per word)

4. 2 BES Block ending symbol .

4.3 BSS Block starting symbol

4. 4 COpy Mnemonic for RCH.

4.5 DATA Generate data

4. 6 DEC Interpret integers as decimal ..

4.7 DELSYM Do not output any symbols

4.8 END End of assembly

4.9 EQU Equate a symbol to a value ..

4. 10 EXT Define a symbol as external. .

4.105 FIILIB FORTRAN II Library Routines.

0-1

1-1

1-1

1-4

2-1

2-1

2-1

2-3

2-4

2-7

2-11'

3-1

4-1

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-12a

4.11 FREEZE Preserve symbols, opcodes, and macros.. 4-13

4.12 FRGT Do not output a specific symbol. 4-15

4.125 FRGTOP Forget selected opcodes . . . 4-15a

4.128 GLOBAL Reverse external specification. 4-16

5.0

TABLE OF CONTENTS (Continued)

4.13 IDE NT Identification of a package ..

4. 14 LIST Set listing controls.

4.143 LOCAL ~estore normal external meaning ..

4. 15 NOLIST Reset listing controls .

4. 16 OCT Interpret integers as octal.

4.17 OPD Define an opcode

4. 18 PAGE Begin a new page on the listing.

4.19 POPD Define a' programmed operator.

4.20 RELORG Assemble relative with absolute origin

4.21 REM Type out remark

4.22 RETREL Return to relocatable assembly

4.23 TEXT Generate text (4 characters per word) .

Conditional assemblies and macros

5.1

5.2

5.3

IF, ELSF .. ELSE, and ENDF If statements

RPT, CRPT, and ENDR Repeat statements

Introdu.ction to macros .

Figure 1 Information Flow During Macro Processing

5.4 MACRO, LMACRO, and ENDM Macro definition

5.4.1 Dummy arguments ...

5. 4. 2 Generated symbols

5.4.3 Concat enation

4-17

4-18

4-18

4-19

4-21

4-22

4-23

4-24

4-25

4-27

4-28

4-29

5-1

5-1

5-4

5-9

5-11

5-15

5-17

5-20

5-22

5. 4. 4 Conversion of a value to a digit string. 5 - 23

5.4.5 A note on subscripts 5-24

5.5 NARG and NCHR Number of arguments and number

5.6

5.7

of characters.

Macro calls ...

Examples of conditional assembly and macros.

5-25

5-26

5-28

TABLE OF CONTENTS (Continued)

6.0 Operating NARP

6.1

6.2

6.3

Appendix A:

Starting an assembly., 7 •

Multiple program assembly ..

Assembly of multiple f~l~s ...

List of all pre-defined opcodes and pre-defined
symbols ~ ~-. . . ~--.- . -'~'-..

Page

6-1

6-1

6-2

6-3

. . Al-l
'.

Note

Certain sections of the following reference manual are written

in a primer-like style, especially parts of the introduction and the dis

cuss-ion of macros. However, it is assumed that the reader is familiar

with the logical operation of general-purpose digital computers, and, in

particular, is acquainted with the SDS 940 instruction set (see the SDS

publication, SDS 940 Computer Reference Manual, No. 90 06 40A,

August, 1966.

The preface contains a discussion of the differences between

NARP and ARPAS.

Acknowledgment

Much of this manual is similar to the ARPAS manual (ARPAS,

Reference Manual for Time-Sharing Assembler for the SDS 930, Document

R-26, February 24, 1967), written by Wayne Lichtenberger, and some

paragraphs are taken verbatim- from the ARPAS manual.

This manual was developed by the University of California at

Berkeley under contract to Advanced Research Projects Agency and

modified by Tymshare to reflect certain additions to the assembler.

0.0 Differences Between N.ARP and ARPAS

NARP (new ARPAS) has supplemented ARPAS as the assembler for
- --r--

assembly langu~ge programs written for Tymshare's X~S 940. The

execution speed of NARP is considerably greater than that of ARPAS, and

that is the main reason for the changeover. All users are encouraged to .,
change their programs over to the NARP language as soon as practicable

\

and new program~ should surely be written in NARP. DDT and FOS will

load programs assembled in either language or both.

NARP is by and large a superset of ARPAS, but there are some

notable exceptions, the majority of which are described below.

0-1

The following list of differences between NARP and ARPAS is
ordered after the ARPAS manual, with a few exceptions. To avoid am
biguities, a blank character fs often denoted by a .'.J..' •

•
1) NARP is a one-pass assembler, not a two-pass assembler

like ARPAS. Thus any sections of programs which depend
on the fact that ARPAS is two passes will in all proba
bility have to be carefully rewritten before NARP can
handle it.

2) In addition to the opcodes listed in the ARPAS manual,
Appendix A, NARP handles many additional opcodes. See
NARP manual, Appendix A.

3) A symbol in NARP is a string of letters and digits that
is not a number. A number is anyone of the following:

a) a string of digits.
b) a string of digits followed by the letter 'D'
c) a string of digits followed by the letter I B'

d) a string of digits followed by the letter 'B'

followed by a single digit. Thus, 14D2 and 14BlO
are symbols, whereas 777B9 is a number.

4)

0-2

The seven characters ! II 1 & 8 \ t are recognized by NARP.
,~~ '~:

Thus they may be used freely" usually -in strings J but not
always, since some of them have meaning in NARP. Except
for 135B (multiple blank) and l55B (carriage return), all

characters with a value greater than 77B are ignored by

NARP.

5) The classification of opcodes has been completely revised

in NARP:

class 0: the opcode may or may not have .an operand

(e .g.~ NOP)
I

class 1: the ope ode has no operand (e.g. , CLA)

class 2: the ope ode has an operand (e.~.,. ADD)

In addition to its class, a given operand is either a
shift 1nstruction ora non-shift instruction (note: this
has nothing to do with whether the action of the instruc
tion involves shifting, but is simply a way of distinguish
ing between two types of instructions). For a non-shift
instruction, the operand is computed mod 214 an~merged
into the instruction. For a shift instruction the follow
ing happens:

a) if the indirect bit is set by '*' or ,~, then the

value of the opcode is trimmed so that blO-b23 are
zero and the instruction is treated as if it were
a non-shift instruction.

b) if the indirect bit is not set as above then the oper
and is computed mod 29 and merged into the instruction;
in this case, the operand must be defined and absolute.
(note: With reference to NARP, the statement that a
symbol is defined means it is defined at that instant
and not at some later point in the program.)

See the description of OPD (22 below) for more comments on
opcodes.

0-3

6) A numbe~ may appear in the opcod~ field. In such a case,
the vaiue of this number is placed in bO-b8 of the in
atruction. The opcode has class .0 (i.e •• operand optional).

7) NARP does not keep track of null symbols_.

8) The tag field of an instruction must be defined (in the
NARP sense, see 5b above) and absolute.

9) In ARPAS an expression may have a relocation factor of
either 0 (absolute) or 1 (relocatable). In NARP, however,
an expression may have any relocation factor, including a
negative one.

10) The ARPAS notation «letter string» for operators does
not exist in NARP:

ARPAS NARP
(NOT) •

(R) does not exist, see 16 be~ow
(LSS) <
(GRT) >
(EQU) =
(AND) &
'(OR) , .
(EOR) %

'II) The precedence of operators is different in NARP than it
is in ARPAS (see 17 below). In most cases this makes little
difference and need only be worried about for things like
(AND) (maybe not even in this case, since the description
in the ARPAS manual may not correspond with reality).

12) A NARP expression may contain an expression enclosed in
square brackets as a primary. For example, A EQU [N-3]*8
is legal.

13) A NARP expression may contain any number of relational
operators.

0-4

14) String constants are right-justified. Thus 'A' - '~At _

• A' - 'A' 'A' -' A' = • A' Also, a string con-..a...a.; .L:':.J.. .&..1.: :.J.. .a.::.J.. •

stant may be at most four characters long; if it is longer,
then an error message is typed and the first four charac-
ters of the string are taken as the v~lll:~ .•

~ : • ,.... ~ .> . ., ~"":~' ."

15) A NARP expression has the following BNF description:

<primary>'.d:: ~ <symbol> I<constan~> I [<expre_~sion>]
<basic expression> :: = <primarY>I<primary> <binary operator>
<basic expr~ssion>
<expression> :: - <basic expression>l<unary operator>
<bas ic' expres s ion>. .

:3 '1. 'lco

The main point in the above syntax is that two operators
may never be adjacent, so A & 8B is . illegal (write it as
OB & A).

. c

16) NARP is less finicky than ARPAS about relocation fC!.~.tors.

Thus a relocatable quantity can be mUltiplied by an absolute
quantity, yielding a relocation factor other than 0 or 1,
e.g., (R)ALPHA when used to produce a string pointer becomes
simply 3*ALPHA. The unary operator (R) does not exist in
NARP (likewise, the directive RAD does not exis"t in ~ARP) •
The following table shows the permissible relocation factors
for the operands of the various operators, as well as the
relocation factor of the result (see 17 below for descrip
tions of all the operators).

NOTE: In the following table, Rl is a symbol with relocation factor
of 1 and R2 is a symbol with relocation factor of 2. Relocation
factor is shortened to "rfactor".

0-5

relocation factor(s) relocation factor
operator of operand(s) of result example

tI

t all operands absolute absolute 2t4=16,
• Rltl(error)

at least one rfactor found by multi- 3*R2 has

* must be absolute, the plying the value rfactor of 6
other is arbitrary of the absolute Rl*Rl(error)

operand t~es the
rfactor of the
otner operand

/ all operands absolute absolute 4/2-2,
RIll (error)

..

+ - Rl+R2 has found by applying
(unary and arbitrary rfactors operator to the relocation
binary) relocation factors factor of 3

of the operands

< <_ a arbitrary relocation Rl-Rl is
11 >- > factors, but must be absolute .' true

equal R2>Rl(error)

& ~ absolute all operands absolute 7&3=3,
ex. ORl(error)

17) The table below lists all the operators that may be used in
NARP expressions, along with their precedence (the higher
the precedence, the tighter the operator binds its operands)
and some comments.

0-8

°eerator Precedence CODIDent

t 6 exronentiation; exponent must be > 0

* 5 mu tiplication
I 5 integer division
+ ~u) 4 unary plus (effectively a nop)

u) 4 negation
+ 4 addition

4 subtraction
< 3 less than
<- 3 less than or equal to - 3 equal to
3 not equal to
>- J greater than or equal to
> 3 greater than

" 2 logical not
& 1 logical and
• 0 logical or •
'1 0 logical exclusive or

1S) At th~ moment, the following ARPAS opcodes are undefined
in NARP (there is more on these opcodes in subsequent
pages): ORG, RAD, EN~Y

19) tEXT, ASC: The ARPAS option of specifying the length of
the string instead of enclosing it in quotes is not allowed.
However, the string delimiting character!~s not restricted
to a quote, but may be any printing character except blank
or semicolon. Thus TEXT %QUOTE MARK: 'Yo is legal. Of
course, the first character encountered is taken as the
delimiting character. Within a string, blanks, commas, and
semicolons have no special meaning; they are treated just
like the other characters in the string.

20) EQU: The express~on mus~ be d~~ined (the ARPASmanual also
says this is necessary, _but in many cases it isn't because
ARPAS has two passes). The relocation factor of the expres
sion must be in the range [-15,15J.

0-7

21) EXT: In the option <symbol> EXT, the symbol must be defined

(again this is what the ARPAS manual says, but the two-pass
nature of ARPAS makes it possible to ignore this). In the
option <symbol> EXT <expression>, it is not necessary that
the symbol be defined, but the expression must be defined
(its relocation factor is arbitrary). At present ENTRY is
not implemented. See 40 below for a detailed discussion of
symbol, definitions, both external and otherwise.

22) OPD, POPD: Because of the different opcode classification
scheme in NARP, the format of an OPD is rather different
than in ARP AS :

syntax: <symbol> OPD <value>[,<op sit>[,<shiftk>]]
semantics:
<symbf>l> - becomes defined as an opcode; if .the symbol is

already an opcode than 'WI is typed as a warning
and the previous definition is overwritten.

Note: All of the following may be arbitrary expressions, but they
must be defined and absolute. If an optional expression does not
appear then the value 0 is assumed.

<value> - computed mod 224 and used as the value for the
opcode (see important note below).

<op sit> - operand situation: must have a value of 0,1, or
2, with the following meanings:

o - operand optional
1 - no operand
2 - operand r~quired

<shiftk> - shift kludge; must have a value of 0 or 1
with the following meanings:

o - non-shift instruction
I - shift instruction

0-8

Note: Although an opcode that takes operands can be defined with
bits blO-b23 set, the user must be careful of what he is doing.
In particular, if such an opcode appears in an instruction which

contains a literal or an undefined value then bits blO-b23 of the
opcode will be set to zero.

Warning: The usual ARPAS opcode definition of <value>,l,l will
result in a NARP opcode which takes no operands. Thus such an
ARPAS program will cause no error messages when assembled by NARP,
but it will surely not run when loaded.

23) ORG: This does not exist in NARP. There is no reasonable
way in which a one-pass assembler (that doesn't assemble
directly into core) can handle ORG.

24) RAn: this does not exist in NARP because of the freer
i':~;

relocation rules that do away with (R).

25) IDENT: Only the first six characters of the preceding
symbol and the word 'IDENT' are printed.

26) The concatenation symbol '.' used in ARPAS is replaced by
r .&' in NARP. This makes it po'ssible to use the character
'.' in macro definitions, in particular within strings
(of course '.&' within a string will get removed). The
ordinary use of '.&' is to separate a reference to a pre
ceding alphanumeric character. In all other cases '.&'
is superfluous, although legal. During a macro definition,
'.&' is detected at all levels ("level" here refers to the
nesting of MACRO: ENDM pairs), but is only removed at the
top level. Thus the following will work fine, even if D(I)
is the null string:

A MACRO
B MACRO

TEXT

ENDM

ENDM

D

E

IABC.&D(I)E(J),

0-9

27) Whole-line comments (i.e., lines ~f text ,beginning with an
'asterisk) are not sav~d' as part:' of a macro definition, but

- .'
comments'following instructions 'are. Thus it behooves the
programmer to use these comments ,sparingly as they only

- -
gobbl~ up core space.

28) A d~y subscript may not have value -1. Instead of follow
in~ amacroc~llwith an asterisk to set the, indirect bit
on some argument, the ,~, convention should be used. An

asterisk following a macro call or a directive is an error.

29) The conventions concerning a dummy subscript ~_~ value zero
are somewhat different. First of all, D(O) and D(l-l) are
completely equivalent as far as NARP is ~oncerned (only the
subscript value, not its syntax, is considered), and the
appear&nce of either of them has no effect whatever on wheth
er a symbol in the label field of the macro call gets defined.

, ' .
An occurrence of D(O) is replac~d by, ~h~ .. label field of the
macro call during expansion; if this field is empty, D(O)

expands ~s th~ null string. In any event, D(O) will be at
most seven characters long, namely the first six characters
of the symbol in the label field preceded by '$' if the label
field begins with a '$'.

30) Dummy subscripts (including all the subscripts appearing
between '(I and I)', e.g., e2 and e3 as well as el in
D(el$e2,e3», generated symbol subscripts, and expressions
between '($' and I)' may be arbitrary NARP expressions. Fur
thermore, these expressions may contain references to dummy
variables, generated symbols, and value-to-digit-string ex
pressions. Thus ($4+D(I*D(3») is legal.

Any undefined symbols occurring in these expressions are
treated as defined symbols with the value -1.

0-10

31) The construct D:{) no longer expands to all the arguments
'0£ a macro call, but instead e~pands to the first argument
only (without enclosing parentheses). To achieve the effect
that D~() has in ~PAS, use D(,) i~ ~ARP.

32) NARP allows more syntactical forms of ref~rencFs to. dummy.
variables than ARPAS does. Before describinB all the pos
sible combinations, a few conventions are convenient:

a) In the following, "argument" will refer to the
character string, as given in the macro call,
after po'ssiblE! enclosing .parentheses have been

(

removed.

b) The number of arguments supplied at the call is
n (n > 0) • ..

c) The number of characters in an argument i is n(ei).

d) The structure ei for i an integer stands for an
expression (its value stands for some argument
usually, so ei will be used somewhat ambiguously
to stand for an expres~ion or the value of an
expression).

With the above in mind, we consider the three kinds of
references to dummy variables:

1.) D(el)

This expands to argument el (which may be the null string),
where 0 ~ el ~ n •

. '"

Special notation: D() = D(l)

ii.) D(el,e2)
If el > e2 then this expands to the null string (the range
of values of el and e2 is arbitrary), otherwise this expands
to argument el through e2, where 0 ~ el ~ e2 ~ n, with each

0-11

argument enclosed in parentheses and a comma inserted be
tween each argument. For example, 0(3,3) - (0(3».

Special notation: D(,) a D(l,n)
D(,el) - D(l,el)
D(e1,) .. D(el,n)

iii.) D(el$e2,e3)

In all cases, 0 ~ el S n must be true. If e2 > e3 then
this expands to the null string (range of values of e2 and
e3 is arbitrary), otherwise it expands to characters e2
through e3 of argument e1.

Special ~otations: D(el$,) = D(e~$l,n(el»
D(el$,e2) ~ D(e1$1,e2)
D(el$e2,) = "D(e1$e2,n(el»
D(el$e2) = D(e1$e2,e2)

-, , ~

D(e1$) = D(e1$1) = D(e1$1,1)
In any of the above six forms,
el may be missing; if so 1 is
assUmed.

Note on special notations: A general rule which will help
in remembering what the special notations mean is the fol
lowing: "Whenever an expression is missing from a form,
the value 1 is assumed, unless the expression is missing
from a place where an upper bound is expected (as in 0(3,)
or D(3$2,», in which case the largest "reasonable" value
is assumed."

The observant reader will have noted that in the above
description of the form D(el$e2,e3), no mention was made of
the bounds of an e2 and e3 in case e2 < e3. This was in-=
tentiona1, since by choosing e2 and e3 appropriately, sneaky

0-12

things can be done, although they should not be played with
lightly since they depend on the implementation of macro
calls in NARP. When a macro call is made, the arguments
are laid out in core in one contiguous string, with each
argument surrounded by parentheses and followed by a comma.
For example'$BETA AMAC (GAMMA),(~DELTA~EPSLON~), ZETA causes
the following argument string to be laid out in core:
($BETA),(G~lliA),(~DELT~EPSLON~),(ZETA), Each argument has
a pointer associated with it which points to the left pa
renthesis preceding the argument, and when a form like
D(el$e2,e3) is expanded, the values of e2 and e3 are simply
added to el's pointer, delimiting the string which is to
replace the dummy reference. By picking e2 and e3 appro
priately, this string may include parts of argument el-l and

• el+l (as well as argument el) or even the entire argument
string. The only restr?iction on e2 and e3 is that when
added to the pointer for el, the resulting pointer must not
be outside the entire argument string for the macro call.

Examples: (Assuming the call shown above is being processed)

D(I$-1,7) = , (GAMMA),

D(2$-4,4) = MA)J(~DEL
D(2$18,2!) = ZETA
D(1$-9,-1) is an error because the -9 points one charac

ter to the left of the entire argument string
D(2$-l6,23) = ($BETA)J(GAMMA),(~DELTA~EPSLON~),(ZETA),

Altho~gh this feature m~y have limited uses, it is there for
the programmer to utilize if he finds a use for it.

33) The format of an argume~t given to a macro when it is called
may be slightly different in NARP than in ARPAS ("may belt

. ~s intentiona~, since we have not been able to discover the

0-13

precise ARPAS format). The essential thing is this: any
biaoks, commas, semicolons,or parentheses occurring between
lingle quotes ("between" here means between an "odd-quote"
and an "even-quote", where the first quote encountered is
odd, the next is even, etc., thus Band D are between single

~

quotes in the following, but A, C, and E aren't: A'B'C'D'E)
are' treated exactly like other characters between single
quotes, i.e., they do not serve as terminators, separators,
or the like. In effect, when the argument collector in NARP
is collecting arguments for a macro call, the occurrence of
a single quote causes it to stop looking for special charac
ters except for quotes (and, of course, carriage re~urn,
which is an absolute terminator). Thus, in the following,
when a blank, comma, semicolon, or parenthesis is referred
to, i~ is understood that the character is E£! between single
quotes.

The argument string for a macro call has the following format:

<arg>,<arg>, ••. ,<arg> <terminator> where <terminator> is a
blank, semicolon, or carriage return. There are essentially
three forms of <arg>:

i.) <arg> may be the null string.
ii.) If the first char~cter of <arg> is not a left paren

thesis then <arg> is a string of characters not con
taining blank, connna, semicolon, or carriage return
(remember: blanks, commas, and semicolons may appear
in <ar~ if they are between single quotes).

iii.) If the first character of <arg> 1! a left parenthesis,
then <arg> does not terminate until a blank, comma,
or semicolon is encountered after the right paren
thesis which matches the initial left parenthesis
("matches" means that all left and right parentheses
in the argument are noted and paired off with each
other so that a nested parenthesis structure is pos
sible). Of course, a carriage return at any point

0-14

innnediately terminates <arg>." Again, remember that

bl~~ks, commas, sem~colons, ~n~ parenthesis between
single quotes are ignored when <arg> is being de

limited. The initial left parenthesis and its match

ing right parenthesis (note that this right paren
thesis need not be the last character of <arg» are

removed from <arg> before it is transmitted to the
macro.

Examples: AMAC (,~;~,),,'HOUSE,~ROGER'

D(l) = '.J..;..1..'
D(2) is the null string

D(3) = 'HOUSE'.J..ROGER'
AMAC ,(PAR(STRING'),'PAR»MORE,AB'~'C

D(l) is the null string
D(2) = PAR(STRING'),'PAR)MORE
D(3) = ABr~'c

34) There is no limit on the number of arguments that can be

given to a macro (except the size of the core, of course).

35) When constructing a 'generated symbol, the digit string
formed is preceded by one zero. Thus the first time

A MACRO
G(2) NOP

ENDM

D,G,3

is expanded, G(2) become~ G02. The second time it will
become G05. Sinc~ only the f~rst six characte~~ of a
symbol are meaningful, the user should keep the generated
symbol very short to avoid nasty problems. A generated
symbol subscript must be within the range [I,m], where
m is the upper limit specified in the macro head (note:

1 ~ m ~l023 must be true).

36) In the value-to-digit-string conversion, if the value is
negative then the digi t s tring~' i's preceded by a minus sign.

0-15

37) NARG may only appear within a macro body, but it is legal
within ~ny macro body (i.e., even if no dummy variable was
specified by a given macro, NARG is still legal within that
macro and yields the value zero) •

.,
38) NCHR has been changed so that its operand has precisely the

8am~ format as an argument to a macro. Thus, the operand
ends when a carriage return is encountered, or on the first
b1arik, comma, or semicolon not within single quotes unless
the first character of the operand is a left parenthesis.
In the latter case, blanks, commas, and semicolons are
shielded as described above in the discussion of macro argu
ments (see 33). By scanning for NCHR and enclosing its
operands in parentheses, most AR~AS programs can be easily
conver~ed to NARP programs as far as NCHR is concerned.
The only case for which this will not work is when the,op
erand contains unmatched parentheses that are not within
single quotes.

39) The RPT option RPT <expression> has been extended to
RPT <expression>[,<increment list>], where <increment list>
is of the form «symbol>=<el>[,<e2>]) (.'~.) ••• (•••)
Note, however, that the expression is evaluated before
the increment list is processed, so its value should not
depend on symbols initialized in the increment list.

Example: RPT 4,(J=2,3)
DATA Jt3
ENDR

When expanded results in the following values:
~ . ~

8
125
512

1331
The increment list of any RPT or CRPT option may be of any
length; no ltmit is set as in ARPAS.

0-16

40) Symbol definitions and external symbols:

Symbols are defined in three ways: By being assigned
values with EQU directives (or equivalently, by appearing
in an RPT or CRPT increment list), by appearing as labels,
and by being used with the EXT directive in a certain way.
Symbols ~ay also be declared as external in two ways, by
preceding' them with $ when they are defi~ed, or by giving
them as parameters to the directive EXT ,after they are'
defined. These cases are discussed in greater detail
below:

a) Symbol defined as a label: If the symbol is already
defined, either as a label or by EQU, the error mes-
sage 'D' is typed; the old definition is completely

• replaced by the new one.

b) Symbol defined by EQU: If the symbol is already
defined as a label than the error message 'D' is
typed and the old definition is completely replaced
by the new one; if the symbol is already defined by
EQU then its value is changed,- and if a$ is prese~t
the symbol is marked as external; the operand of EQU
must. be defined and must have an rfactor in the range

[-15,15].

c) Symbol defined by EXT: See e.) below.

d) Declared external by $: For a label this is obvious;
for an EQU'ed symbol, a $ need appear only once, suc
cessive EQU's of the symbol will preserve the external
mark.

e) Declared external by EXT: Two cases:
i.) EXT has no operand: The symbol in the label

field is simply marked as external; it must
be a defined symbol, but it. may have already

been marked as external or may even have

a $ preceding it.

0-17

ii.) EXT has an operand: The operand must be a
defined expression; the symbol is immediately
output as an external symbol with value the
same as the operand value; no local definition
of the symbol is made, in fact no table look-up
or addition to the table occurs.

Note: ARPAS and NARP output external symbol definitions
at different times; it is possible that this can have an
effect on a program if the user has done something kludgy.
Except for case ii.) under e.) above, NARP outputs no ex
ternal definitions until the END directive is encountered. ,
ARPAS, however, outputs external definitions as soon as it

can. Thus,

$A EQU 3
~

A EQU 4

E~D
will cause ARPAS to output an external definition of A
with value 3, while NARP will output an external definition
of A with value 4.

41) It is conceivable that the manner in which undefined ex
pressions are handled by NARP could lead to difficulties
in very obscure cases which are at best vaguely defined
anyway. -WhenNARP encounters an undefined expression
which involves more than a single undefined symbol, the
expression is saved until every undefined symbol in it

becomes defined. At the moment when this happens, the
expression is evaluated.

Thus

A

A

B

DfA
~
E1U

E~U
END

A+B

o
1

2

0-18

will cause a data,word of value 3 (not 2) to be output.

42) Operating NARP: When started, NARP asks for,the specifi
cation of a source file, an object file, and an optional
text file. Only one confirmation character is needed,
namely, a carriage return at the end of the object file
specif~cation. Then NARP immediately begins processing,
typing only IDENT's and error messages until the END
directive is encountered (don't be surprised when NARP
types an IDENT immediately after it starts processing;
remember that it is one-pass).

At the end of the assembly, a line of the following fo~
is typed:

2 SEC
2 SEC:

3 ERRORS 101 (65)WORDS (S:413,O:10,L:87,M:2033,U:73)
This is the time required for assembly as measured
by BRS 88. Timing begins after all files are opened
and ends before any file is closed.

'3 ERRORS: The number of error messages typed during the
assembly.

lOl(65)WORDS: The value of the location counter when the
END directive is encountered (first in octal, then
in decimal).

0-19

8:413
0:10

413 symbols in the symbol table.
10 programmer-defined opcodes (excluding macros)

in the opcode table
L:87 87 literals in the literal table
M:2033 2033 machine words of defined macros
U:73 73 words of undefined expressions in expression

table (currently this is the maximum size
attained by the undefined expression table
during the assembly; there is as yet no garbage
collection for this table).

43) The three most important tables in NARP are the main table
(which contains all symbols, opcodes, and literals, each
occupying 4 words per entry), the string storage (which
contains all macro definitions and is used for storing
repea~ blocks and argument strings to macros; characters
are packed 3 to a word), and the undefined expression
table. Currently these tables have the following sizes:

main table
as

5000
2250

expr table 900

(1250 entries)

Using these figures and the information printed out at the
end of an assembly, the user can see how close he is to
overflowing the tables (remember that there are 191 pre
defined opcodes in the main table, so the user. can only
create 1059 new entries). Currently there is no garbage
collection in the string storage.

44) At the end of an assembly, after typing the line of infor
mation mentioned above, all undefined symbols are listed.

1-1

1.0 Introduction

. HARP (~ew ARPAS) is a one-pass assembler for the SDS 940
with literal, subprogram, conditio~al assembly, and macro

facilities. The source language for NARP,primarily a one-for

one rep~esentation of machine language written in symbolic form, ,
is very similar to that for ARPAS (another assembler for the 940),

but there are notable exceptions making it necessary to do a

certain amount of transliteration to convert an ARPAS program to

a ~RP program. No further ment ion will be made of ARPAS

in this manual; for more details see ARPAS, Reference Manual for

Time-Sharing Assembler for the SDS 930, Doc. No. R~26,

February 24, 1967.
To motivate the various facilities of the assembler, the

following pseudo-historical development of assembly languages

is presented.

1.1 Pseudo-history of assembly languages

A program stored in the main memory of a modern computer

con~ists of an array of tiny circular magnetic fields, some

oriented clockwise, others oriented counterclockwise. Obviously,
• _. - y

if a progrruamer had to think in these terms when he sat down

to write a progr~~, -few problems of any complexity would be

~olved by computers, and the cost of keeping programmers sane would

be prohibitive. To remedy this situation, utility programs

called assemblers have been developed to translate programs

from a symbolic form convenient for human use to the rather

tedious bit patterns that the computer handles. At first these

assemblers were quite prtmitive, little more than number converters,

in fact. Thus, for example:

Tag Opcode Address

76
55
35

1-2

would be converted irito three computer instructioIls which.would
~ .. ~~

ad~ together the contents of cells 4~ and 4~1 and' place the

result in cell 4~. An assembler for doing this type of conver

sion is trivial to construct.

After a time, some irritated programmer who could never

remember the numerical value of the operation "load the A register

witli'the contents of a cell of memory" decided that it would not

be~too 'difficult to write a more sophisticated assemb,~er wJ:1ich

would allow him~o write a short mnemonic word in place of the

number' representing the hardware operation. Thus, the seque~ce

of instructions ~hown above became:

'~ LDA ~¢4¢.~
~ ADD ¢¢4¢1
'/> STA ¢¢4¢2

This innovation cost something, however, namely the assembler

bad to be more clever. But not much more clever. The programmer

in charge of the assembler simply added a table to the assembler

which consisted of all the mnemonic operation names (op~odes)

and an associated number, namely the numerical value of the

opcode. When a mnemonic name, say tADD t , was encountered by the

assembler during the conversion of a program, the opcode table

was scanned until the mnemonic name was found; then the associated

numerical value (in this case, 55) was used to form the instruc

tion. Within a month, no programmer could tell you the numerical

value of XMA.

In a more established field, the innovation of these mnemonic

names would have been quite enough for many years and many

theoretical papers. However, programmers are an irritable lot,

and furthermore, are noted for their ability to get rid of sources

of irritation, either by writing more clever programs or by

asking "the 'engineers to refrain from making such awkward machines.

And the use of numbers to represent addresses in memory was a

large source of irritation. To see this we need another example:

PCLA
fJ LDX ¢¢4¢¢
2 STA '/YIJ5 ¢7
tfJ BRX ¢¢3¢¢

1-3

Assuming cell 4¢¢ contains -7, this sequence stores zeroes in

cells 5~ through 5¢6 provided tha.t' the sequence is loaded in

memory so that the STA instruction is in cell 3fJfJ (otherwise,

the BRX instruction would have to be modified). This was the

crux of the problem: Once a program was written, it could only

run from a fixed place in memory and could only operate on fixed

cells in memory. This was especially aW~Nard when a program was

changed, since inserting an instruction anywhere in a program would

generally require changes in many, many addresses. One day a

clever programmer saw that this problem could be handled by a

generalization of the scheme used to handle opcodes, namely,

let the programmer use symbolic names (symbols) for addresses

and have the assembler build a table of these symbo~s as they

are defined Bnd then later distribute the ntunerical values

associated with the symbols as they are used. Thus the example

becomes:

LOOP

CLA
LDX
STA
BRX

TABLEN
TABEND,2
LOOP

(Note that at the same time the programmer decided to move

the tag field to after the address field (simply for the sake

of ~eadability) and to even dispense with it entirely in case

it was 'zero.) The assembler now has two tables, the fixed opcode

table with predefined names in it, and a symbol table which is .
initially empty. There is also a special cell in the assembler

called the location counter (LC) which keeps track of how many

cells of program have been assembled; LC is initially zero.

There is another complication: In the above example, when the

symbol TABLEN is encountered, it may not be defined yet, so the

assembler doesn't know what numerical value to replace it with.

There are several clever ways to get around this problem, but

the most obvious is to have the a.ssembler process the program

to be assembled twice. Thus, the first time the assembler scans

the program it is mainly interested in the symbol definitions

in the left margin (a symbol used to represent a memory address

is called a label). In our example, when LOOP is encountered,

it is stored in the symbol table and given the value 2 (because

1-4

it is preceded by two cells; remember that LC keeps t!8ck of

this). At the end of pass 1, all symbols defined in the program

are in the symbol table with numerical values corresponding to

their addresses in the memory. So when pass 2 begins, the symbol

table is used exactly as the opcode table is used, namely, when,

for example, LOOP is encountered in the BRX instruction above,

it is looked up in the symbol table and replaced by the value 2.

If the program should later be changed, for example to

LOOP \

CLA
LDB
LDX
STP
EAX
BRX

EIGHT
TABLEN
TABEND,2
1,2
LOOP

then the assembler will automatically fix up LOOP to have the

value 3 (because of the inserted LDB instruction) and will

convert BRx LOOP to BRX 3 instead of to BRX 2 as before. Thus,

the programmer can forget about adjusting a lot of numerical

addresses and let the assembler do the work of assigning new

values to the symbols and distributing them to the points where

the symbols are used. In addition to the greater flexibility

achieved, symbols with mnemonic value can be used to make the

program more readable.

The use of symbols to stand for numerical values which

are computed by the assembler and not the programmer is the basic

characteristic of all assembly languages. Its inception was
'". -

a fundamental breakthrough in machine lan~a.ge ~rogrammin~,dispensing

with much dullness and tedium. And a new ~reed of proP7ammer

was born: the assembler-writer. To justify. his existence, the

assembler--writer began to add all sorts of bells and whistles

to his products; the primary ones are discussed in the next

secti~n (with reference to NARP).

1.2 Assembly languages: some basic constituents and concepts

" Times: assembly time: when a program in symbolic form is

converted by an assembler to bina.ry

(relocatable) program form.

1-5

load. time: when a binary program is converted by a loader to

actual machine language in the main memory of

the computer.

rum time: when the loaded program is executed.

source program assembler loader
-------4) binary program -----~) object program

,

Expres.ions: The idea of using a symbol to stand for an address

1s generalized to allow an arithmetic expression (possibly

containing symbols) to stand for an address. Thus, some calcu

lations can be performed at assembly time rather than at run

time, making programs more efficient.

Literals: Rather than writing LDA 141 and somewhere else defining

Ml to be a cell containing -1, the literal capability allows the

programmer to write the contents of a cell in the address field

instead of the address of a cell. To indicate this, the expression

is preceded by ,=t. The assembler automatically assigns a cell

for the value of the expression (at the end' of the program):

WOP

CIA
LDB
LDX
STP
EAX
BRX

=8
=-16*2
TABBEG+l6*2,2
1,2
LOOP

Relocation: A relocatable program is one in which memory locations

have been computed relative to the first wo~d or origin of the

program. A loader (for this assembler, DDT) can then place the

assembled program into core beginning at whatever location may be

specified at load time. Placement of the program involves a

small calculation. For example, if a memory reference is to the

nth word of a program, and ir the program is loaded beginning

at location k, the loader must transform the reference into

absolute location n+k. This calculation should not be, done to

each word of a program since some machine instructions (shifts,

for example) do not refer to memory locations. It is therefore

necessary to inform the loader whether or not to relocate the

address for each word or the program. Relocation info~ation is

determined automatically by the assembler and transmitted as a

relocation factor (rfactor). Constants or data may similarly

1-6

require relocation, the difference here being that the relocation

calculation should apply to all 24 bits of the 940' word, not just

to the address field. The assembler accounts for this difference

automatically.

Subprograms and external symbols: Programs often become quite

large or fall into logical divisions which are almost independent.

In either case it is convenient to break them into pieces and

assemble (and even debug) them separately. Separately assembled
, .

parts of the t rune program are called subprograms (or pack~ges).

Before a program assembled in pieces as subprograms can be run it
. -

is necessary to load the pieces into memory and link them'. The

symbols used in a given subprogram are generally local to that

subprogram. Subprograms do, hovTever, need to refer to symbols

,defined in other subprograms. The linking process takes care of

such cross references. I Symbo~s used for it are called external

symbols.

Directives: A directive (pseudo-opcode is a message to the

assembler serving to change the assembly process in some way.

Directives are also used to create data:

MESSAGE
START

LIST
TEXT
LDA

'THIS IS A PIECE OF TEXT'
ALPHA

The LIST directive will cause the program to be listed during

assembly, while the TEXT directive will cause the following text

to be stored in memory, four characters to a word.

Conditional assembly: It is frequently desirable to permit the

assembler to either assemble or skip a block of statements

depending on the value of an expression at assembly time; this

is called conditional a.ssembly. vlith this facilitJj totally

different object programs can be generated, depending on the values

of a few parameters.

Macros: A macro is a block of text defined somewhere in the

program and given a name. Later references to this name cause

the reference to be replaced by the block of text. Thus, the

macro facility can be thought of as an abbreviation or shorthand

notation for one or more assembly language statements. The macro

1-7

facility is more powerful than this, however, si. e a ~acro mi.}

have formal arguments which are replaced by actu,- ar c . .ll~.ents v:'nc:~

the macro is called.

One~pass assembly: Instead of processiDg a sour .. >~ pr(~ram twice

as was described above (section 1.1), NARP accom~,~_ish('} the same

task in one scan over the source program. The m.:::_-;hod ,sed is

rather complex and is not described in this docu.l.,.:nt.

2-1

2.0 Basic constituents of NARP

2.1 Character set

All the characters listed in Appendix B have meaning in

NARP except for '?t and "'. The following classification of
~

the character set is useful:

" letter:

octal digit:

digit:

alpha.numeric cha.rncter:

terminator:

operator:

delimiter:

A-Z

0-7

0-9
letter or diBit or·colon

, , blank eR (denotes carriage return)

#%&*+-/<=>@ t

"$'()[].+-

The multiple-blank character (1358) may appear an.)t~vhere that a

blank ls allowed. All chara.cters vTith wIues gre~ter than 778 are

ignored except for multiple-blank character (1358' and carriage

return (1558).

2.2 Sta.tements and forma,t

The logica.l unit of input to NARP is the" statement, a sequence

of characters terminated by a semi-colon or a carriage return.

There a.re five kinds of statements:

empty: A statement ma.y consist of no characters at all, or only

of' blank characters.

comment: If the very first charfl.cter of a statement is an

asterisk) then the entire statement is treated as a

comment containing information for a huma,n reader.

Such statements generate no output.

The format for the next three kinds of statements is split into

four fie Ids:

la.bel field: This field is used primarily for symlJol definition;

it begins with the first cha.racter of the statement anq

ends on the first non-alphanumeric character (usua.lly a

blank) .

2-2

opcode field: This field contains a directive name, a macro

name, or an instruction (i.e.~ any 0vcode ot~er than a

directive or macro). The field begins with the first

non-blank character after the label field and terminates

on the first non-alphanumeric character; legal terminators

for this field are blank, asterisk, semi-colon, and

carriage return.

ooerand field: The operand for an instruction, macro, or

directive appears in this field, it begins with the first

non-blalK character followipg the opcode field and terminates

on the first blank, semi-colon, or carriage return. Note

that a. statement may terminate before the operand fiel:!.

conunent field: This field contains no informa.tion for f'.IA...RP but

may be used to help clarify a program for a human reader.

The field starts with the first non-blank: character after

the operand field (or after the opcode field if the opcode

takes no ope'rand) and ends on a semi-colon or carriage return.

Now we continue describing the kinds of statements:

instruction: If the opcode field of a statement does not contain

a directive name or a macro n~~e, then the statement is

an instruction. An instruction usually has fin expression

as an opera.nd. and generates a single m8chine word of

program. See section 3 for a detailed description of

instructions.

directive: If a directive na.me appears in the opcode field, then

it is a directive statement. The action of each directive

is unique and thus each one is described separately (in

section 4).

macro: A macro name in the opcode field of a statement indica.tes

that the body of text associnted with the macro na.me should

be processed (sec section 5).
Example of various kinds of state:nents:

. * FOLLOvTING ARE THO DIRECTIVES (r.1ACRO J El'IDtt1) WHICH DEFINF.
'* THE MACRO SKAP
SKAP MACRO; SKA =4B7; ENDM

2-3

* NOW SKAP IS CJ\LLED:
LDA ALPHA
SKAP; BRU BAD IF NEGATIVE THEN ERROR

OKA Y ADD BETA NOW A=ALPHA. +BETA ; BRU GOOD

In subsequent sections the details of instructions, directives,

and macros will be explained, but first some basic constituents

and concepts common to all of these statements will be discussed.

2.3 S~nbols, numbers, and string constants

Any string of alphanumeric characters not forming a number

is a. symbol, but only the first six characters distinguish the

symbol (thus Q,l23}~5 is the same symbol as Q,123456). Note that

a symbol may begin with a dieit, and that a colon is treated as

a letter (as a. matter of good programming practice, colons should

be rarely used in symbols, although they 'are often useful in

macros and other obscure places to avoid conflicts with other

names). In the next section the definition and the rfa.ctors

of symbols nre discussed.

A nuniber is anyone of the follovTing:

a) A string of digits

b) A string of digits follol'Ted by the letter 'D'

c) A string of digits follo\ofed by the letter 'B t

d) A string of digits fo llowed by the letter 'B'
follo\,led by a single digit.

A D-suffix indicates the number is decimal, whereas a B-suffix

indicates an octal number. If there is no suffix, then the

current radix is used to interpret the ntmlber (the current

ra.dix is initially 10 but it may be changed by the OCT and DEC

directives). If the digit 8 or 9 is encountered in an octal

number, then an error message is typed. 'If the value of a
number exceeds 223_1 overflo"T results; NARP does not check for

this condition, and in general it should be avoided. A B-suffix

followed by a digit indicates an octal scaling; thus, 71lB3=74¢¢¢B.

Examples:

symbols:

numbers:

START IN CALCULATE l4D2 l4BlO

14 IBn 773B 777EB I3B9

A string constant is one of the follo'\oring:

a) A string of 1 to 3 characters enclosed in double
quotes (rt).

b) A string of 1 to 4 characters enclosed 1n single
quotes (,).

2-4

In the first case the characters are considered to be 8 bits

each (thus only 3 can be stored in one machine word), while in

the second case they are considered to be 6 bits each. In both

cases, strings of less than the max~um length (3 or 4, as the

case may be) are right-justified. Thus

'A' _. A' - ~Art -" A" - 3.J..1 - -.J.)'

where ~ denotes a blank. If a string constant is too long, then

an error message is typed and only the first 3 (or 4) characters

are taken. Normally string consta.nts are not very useful in

address computation, but are most often used as literals:

LDA WORD
SKE ='GO t

BRU STOP

Both numbers and string constants are absolute, i.e., their

rfactor is zero.

2.4 Symbol definitions

Since NARP is a one-pess assembler, the statement that a

symbol or expression is "defined" usually means that it is defined

at that instant nndnot so~ewhere later in the program. Thus,

assuming ALPHA is defined nowhere else, the follo'\odng

BETA
ALmA.

EQU
BSS

ALPHA
3

is an error because the EQU directive demands a defined operand

and ALPHA is not defined until the next statement. This convention

is not strictly adhered to, however, since sometimes the state

ment ''XYZ is not defined n will mean that XyZ is defined nowhere

in the program.

A symbol is defined in one of two ways: by appearing as a.

label or by being assigned a value with an EQU directive (or

equivalently, by being assigned a value by NARG, NCHR, EXT

(see belo,",) J or by be_ing used in the increment list of a RPl'

or CRPT statement). The latter type of symbols are called

equated sYmbols.

Labels:. If a symbol t;tppears in the label field of an

2-5

instruction (or in the label field of some directives)

then it is defined with the current value of the iocation

counter (rfactor=l). If the symbol is already defined,

either as a label or as an equated symbol, the error

message' (Symbol) REDEFINED' is typed and the old

definition is completely replaced by the new one.

Equated symbols: These symbols are usually defined by EQU,

getting the value of the eXpression in the operand field

of the EQU directive. This expression must be defined

8lld have an rfactor in the range [-15,15]. If the symbol

ha.s been previously defined as a label, then the error

message '(Symbol) REDEFINED' is typed and the old definition

is completely replaced by the new one; if the symbol has already been

defined as an equated symbol, then no error message is

given, but the old value and rractor are replaced by the

new ones. Thus, an equated symbol ~an be defined over

and over again, getting a new value each time.

A defined symbol is always local, a.nd may also be external.

If a symbol in package A is referred to from package B, it must

be declared external in package A. This is done in one of the

following ways:

Decle.red external by $: If a label or equated symbol is

preceded by a $ when

$LABELI
IAB'EL2
$GAf.11M

it is defined, then it is declared external.

LDA ALmA
STA BETA IABEL2 IS LCX:!AJJ ONLY
EQU DELTA

2-6

Declared external by the EXT direct! ve : There are two cases:

. i) EXT has no operand: The symbol in. the label field is declared

external; it must be a de~ined symbol, but it may have_already

been declared external.or may even have a $ preceding it.

ii) EXT bas an operand: This case is treated exactly like the

case: $label EQU 0I>€rand.

Certain symbols are pre-defined in NARP, i.e., they already
/

have va+ues when an assembly .begins and need not be defined by

t.he :prog~arnme:~: .

:ZERO:

:IC :

This is 8. relocatable zero (~.e., valu~; = 0, rractor = 1).
This' symbol. is initia.lly zero (rfactor=l) and remains

..
so until the END directive is encountered and all literals

are output, at which time it gets the value of the location

counter. See the description of FREEZE for a discussion

of the use of this sym~ol.

Syntactically this is not 8. symbol, but semantically

it acts like one. At any given moment, * has the value

of the location counter (rfa.ctor=l), and can thus be used

to avoid c:reating a lot of local la.bels.

Thus CIA; LDX LENGTH
LOOP STA TABLE, 2; BRX LOOP

can be written as
CIA; IJ)X LENGTH; STA TABLE,2; BRX *-1

If a given symbol is r~ferred to in a program, but is not

defined when the END directive is encountered then it is assumed

that this symbol is defined as external in some other package.

Whether this is the case cannot be determined until the various

packages have been loaded by DDT. Such symbols are called

"undefined symbols" or "external symbol references." It is

possible to perform arithmetic upon them (e. g., LDA UNDEF+l);

an expression in post-fix Polish form will be transmitted' to DDT.

2-7

2.5 Expressions and lit:rals

Loosely speaking, an expression is a sequence of constsnts

and symbols connected by opera.tors. Examples:

lOO-2-xABC I [AIJPHA +BETA]

GAMMA

F>=Q.

Following is the formal description (in Backus normal form)
I

of a NARP e:x-pression:

<primary.>: : =<number>t <string constant> I <symboJ>1 * I [<expr2>)

<exprl>: :::.<primary>j<primary> <binary opere,tor> <exprl>

"<expr2>: ::::.<exprJ>1 <unary operator> <exprl>

<expression>::=<expr2>\<literal operator> <expr2>

<binary operator>:: =t 1*\ / 1+1-1< 1<= 1=1#1>=1 >1 &/ ! 1'$
<unary operator>::=+\-Ie

<literal operator>::= =

The main point of the above syntax is that two operators

may never be adjHcent (except for a unary operator follovring a

literal operato!'), s~ A &@B is illegal (write it as@B & A).

The literal operator is rather special, only being allowed to

a.ppear once in a given expression, and only- as the first character

. of the expression. Literals are discussed in greater detail

below.

The va.lue of an expression is obtained by applying the

operators to the values of the constants and symbols, evaluating

from left to right except when this order is interrupted by the

precedence of the oper.ators or by square brackets ,:,{ []); the

result is interpreted as a 24-bit signed integer. The following

table describes the various. ?perators and lists their precedences

(the higher the precedence, the tighter the operator binds its

operands):

':'not parentheses!

Operator Precedence

t 6
* 5
/ 5
+ (u) 4
- (u) 4
+ 4

4
< 3
<= 3
= 3
II 3
>= 3
> 3
@ (u) 2
& 1

0
'f, 0

2-8

Comment

exponentiation; exponent must be ~ 0
multiplication
integer division
wlary plus
negation
a.ddition
subtraction
less than
less than or equal to
equal to

otherwise 1 not equal to
greater than or
greater than
logical not

J
result of operation is
o if relation is ~alse,

equal to

logical and
logical or
logical exclusive or }

logical operation
applied to all
24 bits

The rfactor of an expression is computed at the srune time

the value is computed. 'l'here are constraints, however, on the

rfactors of the operands of certain operators, as shown in the

table belo1-T: (Note: Rl is a symbol "lith an rfactor of 1, R2

is a symbol with ~~ rfactor of 2).

relocation factor(s) relocation factor
operator of operand (s) of result eXEijIlples

t 2t4=16,
Rltl(error)

&
, all operands absolute absolute 7&3=3, .

6&Rl(error}

/ 4/2=2,
Rl/ 1 (error)

* at least one rfactor found by multi- 3*R2 has
must be absolute, the plying the value rfactor of 6,
other is arbitrary of the absolute Rl*Rl{error)

operand time s the
rractor of the
other operand

< <= = arbitrary relocation Rl==Rl is true
11= >= > factors, but must be absolute R2>Rl(error)

equal
+ - ~ound by applying Rl+R2 has

(unary a.nd arbitrary rfactors operator to the relocation
binary) relocation factors factor of 3

of the operands

The final rfactor of an expression must be in the range

[-8191, 81911.

2-9

If an expression contains an undefined symbol or if' it is a

literal, then the entire expression is undefined.

Although a literal is a~special kind of expression, it is
,

often convenient to think of it as a quite separate entity. The

use or· literals is discussed belo",.

2-10

. Programmers f'requently write such things as

",here FIVE is ~~e n8fI1e o~ a~ .~e~. con~aip:~ng t~e constant 5. The

programmer must remember to include the datum FIVE in his program
•• ', ~... < - ~ • ~ , , • •

somewhere. This can be avo~ded~1 th~ use of a literal.

LOA =5

will automatically produce a location containing the correct

constant i~ ti~e program. Such a construct is called a literal.

When a literal is encountered, the assembler first evaluates the

expression and looks up its value in a table of literals constructed

for each subprogram. If it is not found in the table, the value

is placed there. In any case the literal itself is replaced by

the location of its value in the literal table. At the end of

assembly the literal table is placed after the sub-program.

The following are examples of literals:

=10 =4B6 =ABC*20-DEF/l2 = 'HELP'

=2>AB (This is a conditional literal. Its value will
be 1 or 0 depending on ~mether 2>AB at assembly
time.)

Some progr.ammers tend to forget that the literal table

follows the subprogram. This could be harmful if the program

ended with the declaration of a large array using the statement

ARRAY BSS 1

It is not strictly correct to do this, but some progr~ers

attempt it anyway on the theory that all they want to do is to

name the first cell of the array. The above statement will do

that, of course, but only one cell will be reserved for the

array .. If any literals were used in the subprogram, they would

,be placed in the following cells which now fall into the array.

This is, of course, an error. Other than this exception, the

.programmers need not concern himself with the locations of the

literals.

2-11

2.6 Opcode classification

As mentioned above, there are three types of opcodes!

directives, macros, and instructions (those opcodes which are

neither directives nor macros). A~ide from its type, each opcode

has a class which indicates whether it takes an operand.

class ~: operand optional (e.g., NOP, EXT)

class 1: no operand (e.g., CIA, DEC)

class 2: operand required (e .g., ADD, DATA)

Note that for class ¢ opcodes, if the operand is missing, then

the comment field must be empty because otherwise the first item

in the comment field will be taken as an operand:

NOP THIS IS A Crn~NT

is the Bame as

NOP THIS

causing THIS to be treated as a symbol. To get around the

problem, write

NOP THIS IS A CQ,\1MENT

On the other hand, class 2 opcodes have no operand field at all:

CIA THIS IS A COMMENT

Although there are instructions and directives of all three

classes, there are no class 2 macros.

3-1

3.0 Instructions

There are three different syntactical forms of instruction

statements, depending on the class of the in~truction in the

opcode field: (In the follo"fTing, synta.ctical elements enclosed

in square bre.ckets ar~ optional; they mayor may not be present.)

class ¢: [[$]label] opcode(-Y--] [opcrand(,tag] [comment]]

class 1: [[$] label] opcode(-*] [comment)
< 1

class 2: [[$]label] opcode [-le.] operand[,te.g) [comment]

Each of the synte.ctical elem~nts is discusse~ be.+ow;
$ A label preceded by a dollar sign is declared externa.l

(see section 2.4).
label The label is de~L~ed with the current value of the

location counter (rfactor=l).

ope ode The opcode must be either an instruction which is

already defined or a number. If it is a number, the~

the value (mod 29) of the number is pIeced in b¢-b8

(bit ~ through bit 8) of the instruction, and it is

trea.ted as a cla.ss ¢ opcode (i. e., operand optional).

* If an asterisk follo·N"s immedie"tely after the opcode

then b9 (the indirect bit) of the. instruction is set.

operand: The operand is an expression which mayor may not be

defined and which has any rfactor. The expression ma.y

be preceded by 'I' or t~t (or both in any order);

these characters cause the follo,\"ing bits to be set:

/ bl (index bit)

b9 (indirect bit)

Thus:

LDA /VECTOR is the same as LDA YECTOR, 2
STA +-PO TIfrRR is the same as STA* POThTTfER
IJDA +fCCl1P""LX is the sa.'lle as LDA * CQ\1PLX, 2

tag • . The tag is an expression which must be def~d and

absolute. Its value (mod 23) is placed in ~b2 ot
the instruction.

, ,

camne'nt: The conment does not affect the instruction generated;

it may be listed.

In addition to its class, a given opcode is designated as

being ei~her a shirt instruction or a non-shift instruction.

This has nothi'1g to 'do with whether the action of the kstructiOD

involves shifting, but is simply a way of distinguishing between

two kinds of instructions. For non-shift instructions, operan4a
14 '

are computed mod 2 1 while for shirt instructions there are two

possibilities:

a) If the indirect bit is set by '*' or '+-t, then the value

of the opcode is trimmed so that blO-b23 are zero, and

then the instruction is treated as if it were a nOD

shift instruction.

b) If the indirect bit is not set as above, then the

operand is computed mod 29; it must be defined and

absolute.

4-1

4.0 Dj.rectives

There are many directives in NARP; although some of them are

similar, each in general has its own sl~tax. Following is a

concise summary:

Class Directive Use or Function Section

Mnemonic for instructions: COpy Mnemonic ror ReH 4.4

Data generation DATA Generate data

Value declaration

Assembler control

ASC Generate text

(3 charactersper word) 4.1
TEXT Generate text (4

EQU

EXT

NARG

NCHR

OPD

FOPD

BES

BSS

END

DEC

OCT

characters per word) 4.23

Equate a symbol to

a value

Define a symbol as

external

Number of arguments

Number of charact.ers

Define an opcode

Define a programmed

opera.tor

4.10
5-5

5·5
4.17

4.19

Block ending symbol 4.2
Block starting symbol 4.3
End of assembly 4.8
Interpret integers

as decimal

Interpret integers

as octal

4.6

4.16
FRGT Do not output a

n>ENT

specific symbol

Identification of

e. package

4.12

4.13

Class

Output and listing
control

Conditional assembly

Directive

DELSYM

RELORG

RETREL

FREEZE

FIlLIB

GLOBAL

LOCAL

LIST
NOLlST
REM

and macros IF
ELSF
ELSE
ENDF
RPT

CRPT

ENDR

MACRO
LMACRO
ENDM

Use or Function

Do not output nny

symbols
Assemble relative

with absolute origin

Return to relocat~blc

assembly
Preserve symbols)
opcodes) and macros
Assemble FORTRP~ II
library routines
Reverse meaning of $
and EXT

Reset meaning of $
and EXT

Set listing controls
Reset listing controls
Type out remark

Begin if body

Alternative if body

Alternative if body

End if body
Begin repeat body

Begin conditional

repeat body
End repeat body

Begin macro body

Alternative to MACRO
End ~acro body

4.1

I 'i r.
4 U

L~ • 2.2. .

4.11

4.105

4.128

4.143

4.1L:-

4.15
4.21

5.1
5.1
5.1
5.1
5 ? .-
5.2

5.2
5 /,
.~

5.4
5.4

In the remainder of this section, all directives listed above
I

excep.t for those associa'ted with :conditional assembly and macros
are described. =-=...::;.....=:.-=-=...----

4.1 ASC Generate text (3 characters per word) .

[($] label J ASC string [cooment]

This directive creates a string of 8-bit characters stored

3 to a word. The string starts in the leftmost character ot a

word and takes up as many words as needed; if the last word is

not fiP.ed up completely with characters from the string, then

the right end of the word is filled out with blanks. If a label

appears, its value is the address of the first word of the

string. The syntactical element "string" is usually any

sequence of characters (not containing a single quote) surrounded

by single quotes._ However, the first character encountered

after 'ASC' is used as the string. delimiter (of course, blanks

and semi-colons cannot be used as st~ing delimit~rs).

Examples:

ASC
$ALPHA ASC

'NO SrnGLE QUOTES, HERE IS A SEMI-COLON:;'
$I-JERE IS A SINGLE QUOTE: '$

4-4

4.2 BES Block endins.s.l!'!~ol

[[$]label] BES expression [comment]

The location counter is incremented by the value of the

expression in the operand field and then the label (if present)

1s given the new value of the location counter. Thus, in

effect, a block of words is reserved and the label addresses

the first word ~ the block. The expression must be defined

and absolute. ~rhis directive is most often used in conjunction

with the BRX instruction, as in the tollo~nng loop tor adding
!

together the elements ot an, array:

LDX
BRX

ARRAY BES

=-LElIGTH;
*-1; 8TA
LENGTH

CLA; ADD ARRAY,2
RESULT; HLT

4-5
4.3 nss Block starting symbol

[[$]label] BSS expression [comment)

This directive does exactly the same thing as BES except that

the label (if present) is defined before the location counter

is changed. Thus, the label addresses the first word of the

reserved block. It should be noted that the expression for both

BES and BSS m~ have a negative value, in which case the location

counter is decremented.

4.4 COpy Mnemonic for RCH

[($]label] COpy s1,s2,8
3
, ... [comment]

(where 8 1 are symbols from a special set associated with the

CO~Y directive)

4-6

The COpy directive produces an RCH instruction. It takes

in its operand field a series of special symbols, each standing

for a bit in the address field of the instruction. The bits

. selected by a given choice of symbols are merged together to

form the address. For example, instead of using the instruction

CAB (04600004), one could ,\>lI'ite COpy AB. The special symbol

AB has the value 00000004.

The advantage of the directive is that unusual combinations

of bits in the address field--those for which there exist

normally no opera.tion codes--may be created quite naturally.

The special symbols a.re rnnemonicG for the functions of the

various bits. Moreover, these sJmbols have this special meaning

only when used with this directive; there is no restriction on

their use either as symbols or opcodes elsewhere in a program.

The symbols are:

Symbol

A
B
AB
BA
BX
XB
E
XA
AX
N
X

Bit

23
22
21
20
19
18
17
16
15
14
1

Function

Clea.r A
Clear B
Copy (A) ~B
Copy (B) -+A
Copy (B) -+X
Copy (X) -+ B
Bits 15-23 (exponent part) only
Copy (X) -+ A
Copy (A) -) X
Copy - (A) -+ A (negate A)
Clear X

To exchange the contents of the B and X registers, negate A,

and only for bits 15-23 of all registers, one would write

COPY BX,XB,N,E

4-7

4.5 ~A Generate data

([$]label] DATA el,e2,e3,... [conment)

. The DATA directive is used to produce data in programs.

Each expression in the operand fi~ld is evaluated and the 24-bit

values assigned to increasing memory locations. One or more

expressions m~ be present. The label is assigned to the

location of the first expression. The effect of this directive

is to create a list of data, the first word of which m~ be

labeled.

Since the expressions are not restricted in any W~V, any

type of data can be created with this directive. For example:

DATA lOO,-217B,START ,AB*2/DEF, 'NUTS' ,5
creates six words.

4-8
4.6 DEC Interpret int'egers as decimal

DEC [comment]

The radix for integers is set to ten so that all following

integers (exce~t those with a H-suffix) are intp.rpreted as
decimal. Tdhen an assp.mbly begins the radix is initialized to

ten, so DEC need never be used unless the OCT directive is used.

4.7 DELSYM Do not output any symbols

DELSYJM [comment]

If DELSYM appears anywhere in a program being assembled,

the symbol table and opcode definitions will not be output

4-9

by NARP when the END directive is encountered. The main purpose

of this directive is to shorten the object code generated by

the assembler, especially when the symbols are not going to

be needed later by DDT.

4. 8 END End of assembly

END [comment]

When this directive is encountered the assembly of the current

program terminates. If the LIST directive has been used then various

information may be listed, for example undefined symbols.

4-10

4-11

4.9 EQU Equate a symbol to a value

[$]symbol EQU expression [comment]

The symbol is defined with the value of the expression; if

the symbol is already defined, its value and rractor are changed.

The expression must be defined and must have an rfactor in the

range.[-15,15]. If the symbol has been declared external before

or if it has been forgotten (using FRGT) then EQU preserves thi8

information. Thus

$ALPHA
ALH~

EQU 4
EQU 3

will cause ALPlffi to be declared external but with a value of

three at the end of the assembly (provided ALPHA is not changed

again before the Erm directive). See section 2.4 for more

discussion of EQU.

4-12
4.10 EXT Define a symbol as external

[$] symbol EXT [expression (comment]]

This directive is used to declare symbols as external. See
section 2.4 for a discussion of the various cases.

4-l2a

4.105 FIILIB FORTRAN II Library Routines

FIILIB [comment]

Causes an end-of-program word (3l062l44B) to be outputted between
each program in a mUltiple program assemble. This allows the resul

tant object file to be loaded by the FORTRAN II load. The directive

need only appear in the first program of the mUltiple program assembly.

4-13

4.11 FREEZE Preserve symbols, opcodes, and macros

FREEZE [comment]

Sometimes subprograms share definitions of s~~bols, opcodes,

and macros. It i~ possible to cause the assembler to take note

of the current contents of its symbol and opcode tables and the

currently defined macros and include them in future assemblies,

elfminating the need for including copies of this information

in every subprogrHIIl' f3 source language.

When the FREEZE directive is used, the current table

bounda.ries for symbols and opcodes and the stora.ge area for macros

is noted and saved 8.way for later use. These tables may then

continue to expand during the current assembly. (A separate

. subprogra~ may be used to make these definitions; it will then

end with FREEZE; END.) The next as~embly may then be started

with the table boundaries returned to what they vrere when FREEZE

was last executed. This is done by entering the a.ssembler

at its "continue" entry point, i. e., by typing in the EXECUTIVE

CONTINUE

Note that the assembler cannot be released (i.e" another

subsystem like QED or DDT cannot be used) without losing the

frozen information.

In conjunction with the FREEZE directive} the predefined

symbol :LC : is useful, esp€cially when writing large

re-entrant programs. Follovdng is a three-pa.ckagc program

using FREEZE end :LC:.

PI IDErrr

P2

<definitions of macros, op~odes, and global equated
symbolS>

<definition of working storage (i.e., read-write
memory}>

FREEZE
END

mE NT
BSS :LC:- :ZERO:
<read-only code>
END

Pl IDEN'cr
BSS :LC:-:ZERO:
<rea.d-only code>
END

4-14

The FREEZE directive at the end of Pl preserves all the

definitions in this package so they can be referenced in packages

P2 amd P3. By including the definitions of all the working storage

cells in the preserved definitions, these symbols need not be

declared as external. Also, it makes "external" arithmetic on these

symbols -possible in 1'2 and P3, and it reduces the number of

undefined symbols printed at the end of an assembly. Packao.:es

P2 and P3 start with the rather peculiar looking BfiS in order

to set the locatiJon counter so that references between the

packages will be correct. This is the main pRl"Pose of :LC:,

it saves the final value of the location counter from the

~revious package for usc by the current ~ackage. In order for

this scheme to work, all three packages must be loaded at the

same location, usually 0 for large re-entrant programs.

Assume ALPHA is a symbol defined in Pl. Unless some

speci~ action is taken, ALPHA l'.?ill be output to n:r:1r three ti.TI!es,

once at the end of Pl, ,once at the end of P2, and once at the end

of P3. To avoid this, all syrnbol and opcode definitions are

marked after they have peen output once so that they won't be

output again.

4.12 FRGT Do not output a sRecific s~bol

. FRGT S1,S2, ••• [comment]

4-15

The symbols si (which must have been ~evious~ de~ined)

are not output to n:rtr. FRGT is especiaJ.Js' useful in situations

where symbols have been used im macro expansions or conditional

assemblies, and have meaning only at assembly time. When DDT

is later used, memOr,y locations are sometimes printed out in

terms of these meaningless symbols. It is desirable to be able

to keep these s.y.mbols from being delivered to DDT, hence the

FRGT directive.

4.125 FRGTOP Forget selected opcodes

FRGTOP s1,s2' ... [comment]

4-15a

The s. must be opcodes. The specified opcodes are marked
~

as forgotten and will not be output to DDT. Since DDT knows

in advance about the standard instruction set (e.g., LilA, BRS,

CIO), FRGTOP or such opcodes has no effect. It follows that

the chief use of FRGTOP will be to suppress output of opcodes

generated by OPD and POPD.

FRGTOP does not take a label.

4.128 GLOBAL Reverse external specification

GLOBAL [cominent]

4-16

Causes all symbols which would normally not be external to be ex
ternal and all symbols which would be external not to be external.

This directive remain$ in effect until an END or LOCAL directive is

encountered at which time the normal external determination method

is used. For example,

GLOBAL
START LDA =1

A EXT B
$C STB X

would cause START to be external and A and C not to be external.

4 .13 .;;:I;;;.D;:::[E.m~_~I:..::d::;.::e;.:.:n;..;:.t.::.i=-f=-ic.:;.;a:;;..;t;..;;i:.;:o;.:.;n::...-.;;.o=-f_a~p::.:a:;.::c;.:;k;.::ag~e

symbol !DENT [comment]

The sy.mbo1 in the label field is delivered to D.IJ.r as a

special identification record. DDr- uses the IDENT name in con

junction with its treatment of local s~nbols: in the event of

a name conflict between local symbols in two different subprograms,

nI:1r resolves the ambiguity by a1l()\oTing the user to concatenate

the preceding IDENT name with the symbol in question. Also,

during an assembly the first six characters of the symbol followed

by the word t IDENT t are typed on the teletype to show the user

what pack~e is being assembled. The progress of an assembly

can be followed by placing lDENTt s at various points in the

package.

4-17

4.14 _L_I_S_T ____ S_e_t __ l_l_·s_t __ in~g __ c~o~n~t~r~o~l~s

4.143 LOCAL Restore normal external meaning

LOCAL [comment]

4-18

Restores normal external determination method. (See GLOBAL directive.)

4.15 NOLIST Reset listing controls

.[LIST}

LNOLIST

(comment]]

,

There are various booleans which control the format in

which statements are listed (certain fields and/or certain

kinds of statements may be suppressed, or listed selectively).

The user is allowed to set (or reset) these booleans via the

LIST (or NOLIST) command.

following special symbols:

s. Set (or reset)
~

LeT

Sli:T

VAL

SRC

COM

CALL

. DEF

EXP

SKIF

EXT

Each of the s. may be one of the
~

What is (or is not) listed

the current value of the location
counter, in octal

the symbolic address of the current
value of the location counter

the value of the statement, if it is
one of the directives: EQU, NCHR,
NARG, IF, ELSF. (in octal)

the symbolic source code

the comment field of a statement, a
comment statement

macro and RPT calls

MACRO and RPl' definitions

macro and RPl' expansions

the skipped parts of an IF statement

external symbol references (~t the
end of the assembly

4-19

In addition, s. may be "ALL", which will cause all of the
~

booleans in the table to be set (or reset).

If a LIST (or NOLIST) directive is eDcounte~ed fo:.."" which

no arguments (5.) have been specified, NARP will begin (or
J.

cease) listing statements on the LISTING FILE (the telet~e,

in ca.se no other listing file is specified when the ansembly

is begun) according to the current settings 'of the listing

booleans. Including "GO" among the arguments for a LIST

(or NOLIST) will have the same effect.

When NARP is called, the listing booleans are initialized

as follows:

Set: LCT, VAL, SRC, cbM, CA~, DEF, EXP, EXT,

RESET: SLCT, SKIF

and NARP is in its "no list" state, i.e., listing will not

be started'unless (and until) the program initiates it with a

LIST directive.

Examples of the LIST directive:

NOtIST ALL Resets all format booleans
LIST SRC, GO Sets SRC boolean and starts listing.

(only the source code will be listed)

Examples of listir~g format:

I£T
r ~

00117
00117
00120

SLCT VAL
~~
(A) 3
(HERE)
(HERE+1)

SRC COM

r-----------~--------------+~--- ~~
A EQU 6/2 (SET A)
HERE LDA A*B, 2

CLB

4-20

4.16 OCT Interpret integers as octal

OCT (comment]

The radix for integers is set to eight so that all following

integers (except those with a D-suffix) are interpreted as octal.

4-21

4.17 OPD Define an opcode

symbol OPD value[,class[,shift kludge]]

ihe symbol in the label field is defined as an opcode with

a value equal to the first expression in tl1e operand field. All

expressions in the operand field must be defined and absolute; if

an optional expression does not appear then the value ° is assumed.
2h () value computed mod 2 see important note below

class

shift kludge:

must have a value of 0,1, or 2:

o - the opcodc mayor may not have
an operand

1 - the opcode does not take an
operand

2 the opcode requires an operand

must have a value of 0 or 1:

o - non-shift instruction
(see section 3)

1 - shift instruction (see section 3)

Note: Although an opcode that takes operands can be defined with

bits blo-b23 set} the u~er must be careful of 1tlhat he is doing.

In pa.rticular~ if such an opcode anppars in an instruction which

contains a literal or an undefined value then bits blO-b23 of th~

opcode are set to 7.ero.

If the symbol in the label field is already defined as an

oncode then the old definition is lost.

Examples:

ADD OPD 055B5,2

CLA OPD 0460000lB,l

RGY OPD o662B4,2,1
NOP OPD 020B5

4-22

4.18 PAGE Begin a new page on the listins

PAGE lexpressio~ [comment]]

Thi~ directive causes page ejects on the assembly listing

medium. The number of ejp.cts is 4etermtned by the expression in

the operand field (which must be defined and absolute). If

there is no operand then one eject is assumed. If a page eject ,
h~s just occurred then one less than the specified nUmber of

ejects is made.

4-23

4.19 POPD Derin~ a programmed operator

symbol POPD value(,class{,shift kludge)]

This directive does exactly what OPD does with one addition:

The instruction BRU* is placed in the. memory location whose

address is in b2-b8 of the value given to the symbol (this

address must be in the range [10~, l77B). Thus

MIN
!.MIN

POPD
SKG*
BRR
LDA*
BRR

lOOB'j ,2
o
o
o
o

THE CALL 1 MIN ALmA' WILL
CAUSE THE MINTI.ruM OF
A-REG AND ALPHA TO BE
LEFT IN A-REG.

will cause BRU IMIN to be loaded in word lOOB.

4-24

4.20 REJ~RG Assemble relative with absolute ?rie~n

RELORG expression [canunent]

On occasion it is desirable to assemble in the midst of

otherwise normal program a batch of code which, although loaded

in cure in one position, is destined to run from another position

1m memory. (It will first be moved there in a block.) This is

particularly useful when preparing program overlaYF:. The

expreSSion in the ouerand field (which must be absolute and

defined) denotes an origin in memory. The follovring occurs vlhen

the directive is encolL~tered:

a.) The current value of the location counter is saved, and

im its place is put the absolute origin (i.e., the

va]ue of the expression). This fact is not revealed

to DIJr, however, so during loa.ding the next instruction

assembled "Till be placed in the next memory cell available

as if nothing had happened.

b.) The mode of assembly is switched to absolute, i. e., all

symbols defined in terms of the location counter will

be absolute.

It is possible to restore normal relocatable assembly (see section

4.22) •

As an example of the use of RELORG, consider a program

beginning with REWRG 30013. The assembler's.output represents

an absolute urogram whose origin is 003008' but which can be

loaded an.VVlhere using nJJr in the usual fashion _ Of course,

before executing the program it will be necessary to move it to

location 003.008-
As another example, consider the foll~j'ring use of RELORG and

RETREL:

<normal relocatable program>

RELORG lOOB

<absolute ~rogram with origin at lOaR>

RELORG 200B

<absolute progrrun with origin at 200B>

4-25

RETREL

<normal relocatable program>

RELORG 300i3

<absolute program with origin at 300B>

END

4-26

4.21 REM bRe out remark

REM text

This directiTe causes the text in its operand and comment

fields to be typed out either on the teletype or whatever file

has beeR designated as the text file (see section 6.2). This
.. . - .

tyPeout occurs regardless of what listing controls are set. The
.<

directive ~ be used for a variety of purposes: It ~ inform

the user of the progress of assembly; it m~ give htm instructions

on what to do next (this might be especially nice for complicated

assemblies); it might announce the last date the source language

was updated; or it might be used ",i thin complex macros to

shO\'I which argument substrings have been created during

expansion of a high~ nested macro (for debugging purposes).

4-27

4.22 BETHEL Return'to relocatable assemblY

RETREL [comment]

~is directive is used when it is desired to return to

relocatable assembly after having done a RELORG. It is not
- -

-necessary to use RETRE~ unless one desires more relocatable

program. An example of the use of RETREL is shown in section

4.20. The effects of RETREL are

a.) to restore the location counter to the value it would

have had if the RELORG (s) had never appeared, and

b.) to retuxn the assembly to relocatable mode so that

labels are no longer ab solute.

4-28

4.23 TEXT Generate text (4 character per word)

[[$]label] TEXT string [comment]

This directive is exactly the same as ASC (see section 4.1)
except that characters are taken as six bits each and are stored

four to a word.

4-29

5-1

2.0 Conditional assemblies and macros

5 .1 IF, ELSF, ELSE, and ENDF If statements

It is frequently desirable to permit the assembler either to

assemble or to skip blocks of statements, depending on the value of

an expression at assembly time. This is primarily what is meant

by conditional assembly. In NARP, conditional assembly is done

by using either an if'statement or a repeat statement.

The format of an if statement is

IF expr~ssion (comment)

< if body>

ENDF (commen't)

The if body is any block or HARP statements, in particular, it may

contain directives of the form

ELSF expreSSion {comment]

and

ELSE (comment]

If the operand of IF is true, then the block of code up to the

matching ENDF (or ELSF or ELSE) is processed; otherwise, it is

skipped. The value s for ~rue and false are:

true . value of expression > ¢ .
false value of expression < ¢

Examples:

IF l>¢
LDA ALPHA -t

STA BETA } processed
'ENDF

IF ~
LDA ~ J skipped STA DELTA
ENDF

5-2

Often there are more than, two alternatives, so the ELSF

d"irect i ve is used i.n the if body. When ELSF is encountered while

skipping a block of statements, its operand is evaluated (just

as for IF) to decide whether to process the block following the

ELSF.

Examples:

IF ~ > 1
LDA ALPHA skipped
ELSF 1> ¢
LDA BETA processed
ENDF

IF (J > I'
LDA ALFHA skipped
ELSF '/J > 1
LIlA BETA skipped
ENDF

IT 1 > '/J
LDA ALPHA processed
ELSF 1> ¢
LDA BErM skipped
E~1)F

IF fJ > 1
LDA ALPHA skipped
ELSF 1> ¢
LDA BETA processed
ELSF 1> ¢
LDA GAMlfA skipped
ENDF

From the last two examples above it should be clear that either

no blocks a.re processed or precisely one is; thus, as soon as one

block is processed, all following blocks are skipped regardless

of whether the ELSF expressions are true.

5-3

An ELSE directive is equivalent to an ELSF directive with a

true expression.

Example:

IF
LDA
ELSE
LDA
ENDF

¢ > 1
ALPHA

BETA

skipped

processed

As a more general example, consider the following:

IF el

<bodyl>

ELSF e2

<body 2>

ELSF e3

<body 3>
ELSE

<body4>

ENDF

There are four possibilities:

a) el > ~
b) el ~ ¢, e2 > ~
c) el ~ ¢, e2 ~ ¢,

e3 > ¢
d) el :s:~, e2 ~ ¢,

e3 ~ ¢

process body 1, skip the other three

process body 2, skip the other three

process body 3, skip the other three

process body 4, skip. the other three

The bodies betw'een the IF, ELSF, ELSE, and ENDF directives

may contain arbitrary HARP statements, in particular they may

contain other if statements. This nesting of if statements may

go to any level.

wnen evaluating the expression in the operand field of IF or

ELSF, all undefined symbols are treated as if they were defined with

value -1. These expressions must be absolute.

'5-4

5·2 RPr, CRPrz a.nd ENDR Repeat statemen~s

A repeat statement is a means of processing the same text many
times. The format is

{{$]la.bel] RPr expression[,increment list] (comment]

< r~peat body >
ENDR [comment)

The value of the RPI' operand (which mus~ be defined and absolute)

determines how many times the repeat body will be processed, while

the increment list (described below) is a mechanism to allow the

values of various symbols to be changed each time the repeat body

is processed.

Exa.mple:

ABC RPr
DATA
ENDR

This is equivalent to

ABC DATA
DATA
DATA
DATA

4
o

o
o
o
o

An increment list ha.s the form (s:=el(,e2]~ .•. (s::e1.[,e2])

where s stands for a symbol and el and e2 denote expressions

(which must be absolute; undefined symbols are treated as if they

were defined with the value -1). Before the repeat body is processed

for ,the first time, each symbol in the list is given the value of

its associated el. Thereafter, each symbol is incremented by the

value of its associated e2 just before the repeat body is processed.

If e2 is missing, the value 1 is assumed. Th~re is no limit on

the number of elements tha.t may appear in an increment list.

5-5

, Example:·

RPT 3,(I=4)(J~,-1)
DATA I
DATA J*I+l
ENDR

This resu1ts in code equivalent to the following:

DATA 4
DATA 0*4+1 =1
DATA 5

'DATA -1*5+1 =-4
DATA 6
DATA -2*6+1 =-11

There is another format for RPT:

[{$]label] RPr (s=el[, e2], e3) [increment list] [comment]
In this case, the number of times the repeat body is processed is

determined by the construct (s=el[,e2],e3). This is the same as

an increment list except that it includes a third expression

(which must be absolute; all undefined symbols are treated as if

they were defined with the value -1), namely a bound on the value

of the symbol. As soon as the bound is passed, processing of the

repeat body stops. In the example above, the same effect could

have been achieved by writing the head of the repeat statement as

RPr (J=O,-1,-2XI=4)
or a.s

RPT (I=4,6)(J=O,-l)

Note that the bound does not have to be positive or greater than

th~ initial value of the symbol being incremente'd; the algoritlun

for determining when the bound has been passed is given below.

Occasionally one wi~hes to perform an indefinite number of

repeats, terminating on an obscure condition determined in the

course of the repeat operation. The conditional repeat d~rective,

CRPT, serves this function. Its effect is like tbat of RPT (and

5-6

its repeat body is also closed off with an ENDR) except that instead

of giving a number of repeats, its associated expression is evaluated

just prior to each processing of the re~eat bo~ to determine

whether to process the block. As for IF, > 0 means true, ~ 0 means

false; the expression must be defined and absolute each time it is

evaluated. The form is

[[$]label] CRPr expression[,increment list] (comment]

For example, one may write

CRPI' X > Y

or
\

CRPT STOP, (X=1,2) (Y=-3)

Note that the statement

CRPl' 10

will cause an infinite number of repeats.

The following flowcharts describe precisely the actions of

the various repeat options:

RPT expression[,increment list]

count:::-: value of expression

skip the whol
repeat block

yes no initialize symbols in increment
list;evaluate all e2 expression

process the repeat body

increment the symbols in
the increment list

count:~ count-l

yes no

, ,
-'

The el and e2 expressions
are evaluated just once.

yes

5-7

RPT (S=el[,e2],e3)[increment list)

evaluate e2 and e3;
initialize symbols in ~--
increment list; evaluate
all e2 expressions.

process the repeat block

increment the symbols in
the increment list

All expressions are
evaluated just once.

no

5-8

CRPl' expression[,increment list]

initialize symbols in increment
list; evaluate all e2 expressions;

expression

expression> 0

yes

the repeat block

increment the symbols in the increment
list

All el and e2 express-ions
are evaluated just once

This expression is eval
uated over and over again
and, of course, the values
of the symbols in this
expression may change from
one evaluation t.o the next.

The contents of a repeat body may contain any ~mRP code, in

particular it may contain other repeat statements; the nesting of

repeat statements may go to any level.

5-9

5.3 Introduction to macros

" On the simplest level a macro name may be th<ru«ht of as an

abbr~viation or shorthand notation for one or more aaae.bly

language statements. In this respect it is like an opcode in that

an opcode is the name of a machine command and a macro name is

the name of a sequence of assembly language statements.

The 940 has an instruction for skipping if the contents of

a specified location are negative, but there is no instruction

for skipping if the accumulator is negative. The instruction

SKA (skip if memory and the accumulator do not compare ones) will

serve when useq. witp. a cell whose contents ma.sk off all but the sign

bit. The meaning of ~KA when used with such an operand is "skip

if A is positive". Thus a programmer writes

SKA
BRU

=4B7
NEGCAS NEGATIVE CASE

However, it is more than likely the case that the programmer

wants to skip if the accumulator is negative. Then he must write

SKA =4B7
BRU *+2
BRU PbSCAS POSITIVE CASE

Both of these situations are alo,k"ard in terms of assembly language

programming.

But we have in effect just developed simple conventions for

doing the operations SKAP and SKAN (skip if accwrrJlator positive

or negative). Define these operations as macros:

SKAP MACRO
SKA =4B7

SKAN

ENrn

MACRO
SKA
BRU
ENIM

::4B7
*+2

Now, more in keeping" with the operations he had in mind, the

Programmer Dlay write'

A22 SKAN
BRU roseAs

5-10

The advantages of being able to use SKAP and SKAN should be

apparent. The amount of code written in the course of a program

is reduced; this in itself tends to reduce errors. A greater

advantage is that SKAP and SKAN are more indicative of the action

that the programmer had in mind, so that programs writt~n in this

way tend to be easier to read. Note, incidentally, that a label
I

may be used in conjunction with a macro. Labels used in this way

are usually treated lik~ labels on instructions; they axe assigned

the current value of the location counter. This will be di8cussed

in more detail later.

Before discussing more complicated uses of macros, some

additional vocabulB.ry should be established. A macro is an

arbitrary sequence of assembly language statements together

with a symbolic~. During assembly, the macro is stored in an

area of memory called the string storage. Macros are created

(or, as is more frequently said, defined) by giving a name and the

associated sequence of statements. 1be name and the beginning

of the sequence of statements are designated by the MACRO directive:

name MACRO

ENDM

The end of the sequence of statements is indicated by the ENDM

directive.

Refer to figure 1. When the assembler encounters B MACRO

directive, switch B is thrown to position 1 so that the macro

is simply copied into the string storage; note that the assembler

does !!.£ normal processing but simply copies the source language.

When the E~f terminating the macro definition is encountered,

switch B is put back to position ~ and the assembler goes on

processing 8S usual.

It is possible that within a, macro definition other definitions

5-11

Figure 1: Information Flow During Macro Processing

, • SOURCE I
L-~~~~~~------~>------_J

A B

0 0

0 1

1 0

1 1

. '

BINARY
MACHINE

LANGUAGE

ASSEMBLER

o

1.
.-----~.)"--

t ~ i I STRUm
----~<----1 STORAGE ,

Effect

normal assembly

macro definition

macro expansion

macro definition during

macro expansion

5-12

may be embedded. The macro defining machinery counts the

occurrences of the MACRO directive and matches them against the

occurrences of ENDM. Thus switch B is actually placed back in

position 0 only when the ENDM matching the first ~\CRO is

encountered. Therefore, MACRO and ENDM are opening and closing

brackets around a segment o~ source language. Structures like

the following are possible:

name 1 MACRO----.

name 2

name 3

name 4

name 5

MACRO

MACR~
ENDM

MACRo-,
ENDM~
ENDl-i

MACRO -1
ENDMJ
EN1l1~1 ~---

The utility. of this structure will not be discussed here. Use

of this feature of imbedded definitions should in fact be kept

to a minimum since the implementation of this assembler is such

that it uses large amounts of string storage in this case. What

is important, hoy-rever, is an understanding of ,.,hen the various

macros are defined. In particular, when name 1 is being defined,

name 2, 3, etc., are not defined; they are merely copied into

str ing storage. Name2) for example, will not be defined unt il

namel is expanded. (It should be noted that macros, like

opcodes, m~ be rederined.)

The use of a macro name in the opcode field of a statement

is referred to as a call. The assembler, upon encountering a macro

call, moves switch A to position I (see figure 1). Input to the

assembler from the original source file temporarily stops and comes

Instead from string storage. During this period the macro is said

to be undergoing expan~ion. It is clear that a macro must be

derined before it is called.

An expanding macro may include other macro calls, and these,

in turn, may call still others. In fact, macros may even call

themselves; this is called recursion. Examples of the recursive

use of macros are given later. When a new macro expansion begins

5-13

within a macro expansion, information about the progress of

the current expa.nsion is saved.

similar information to be saved.

Successive macro calls cause

At the end of each eXpansion

the information about each previous expansion is restored. When

the final expansion terminates, switch A is placed be.ck in

position 0, and input is again taken from the source file. ,
Now let us carry our example one step further. One'might

argue tha.t the action of skipping is itself awkward. . It might
.. .

be prefera.ble to write macros BRAP and BRAN (branch to specified

loca.tion if contents of accuinulator are positive or negative).

How is one to do this? The 19ca1;ion to which the branch should

go is not known when the macro is defined, in fact, different

locations will be used from ca.ll to call. The macro processor,

therefore, must ena.bIe the programmer to provide some of the

information for the macro expansion at call time. This is done

by permitting dummy arguments in macro definitions to be replaced

by arguments (i. e., arbi tra.ry substri..l1gs) supplied B.t call time.

Each dummy arBument is' referred to in the macro definition by a

subscripted symbol. This symbol or dummy ~ is given in the

operand field of the MACRO directive.

Let us define the macro BRAP:

BRAP MACRO LABEL
SKAN
BRU LABEL(l)
ENIX.f

When called by the statement 'BRAP
expand to

SKA
BRU
BRU

=4B7
*+2
POSCAS

• POSCAS, the macro will

Note that BRAP was defined in terms of another macro, SKAN. Also

note tha.t as defined BRAP was intended to ta.ke only one argument;

other macros may use more than one argument.

5-11J

The macro CBE (~ompare and branch if equal) takes two
. .

arguments. The first argument is the location of'8 cell to be

- canpsred for equality with the accumulator; the second is a

branch location in case of equality. The definition 18

CBE MACRO D
. SKE D(l)

BRU *+2
BRU D(2)
ENIM

When CBE is called by the sta.tement

CBE -2lB,EQLOC

the statements generated will be

8m =21B
BRU *+2
BRU EQLOC

Note that in the macro call, the arguments are separated by

commas.

The following sections describe macro definitions and

cails in more detail.

5-15

5.4 MACRO, LMACRO, and ENDM Macro definition"

The form of a macro definition is:

name [dummy[,generated,expression] [comment]

where ~, generated, and dummy are all symbols, and expression

is an expression.

LMACRO is completely equivalent to MACRO except that if

~ is defined as a macro with MACRO the construct

label name arguments

will automatically cause "label" to be defined as the current

value of the location counter, whereas if name were defined

with LMACRO this automatic definition of "label" would not

occur.

Some details of the definition

If generated a.ppears, it should not be the same symbol

as dummy, and neither of them should be tfMACRO" , "LMACRO", or

"ENDM. "

If name is already defined as an opcode, the old definition

is completely replaced by the new.

If the MACRO (or LMACRO) directive has no operand, then

name is defined as an opcode that takes no operands. Otherwise,

~ becomes an opcode that mayor may not take e.n operand.

Whole-line comments (lines beginning with *) in the macro

body are not saved in string storaee as part of the macro

definition, but comments following instructions are. Thus, it

behooves the programmer to avoid the latter, as they eat up

string storage.

5-16

When a macro body 1s placed in string storage, superf1uous

blanks are remoVed. Thus 1 any contiguous string of' blanks is

compr'essed to one blank with the following exceptions:

a) Blanks enclosed in single .quotes (') are not compressed.

b) Blanks enclosed in double quotes (n) are not compressed.

c) Blanks enclosed in parentheses are not compressed. In
this use, the nesting of parentheses 1s taken into

account, but a parenthesis between Single or double

quotes is not considered as part of the nesting

structure.

In most cases the programmer need not worry about these

conventions, although there are t~es when he may get pinched.

For example, if

a~ars in a macro definition, it will be expanded as

Ase 1A~BoJ,

To avoid such problems use

Ase 'A.tJ LB'

5-17

5.4.1 Dummy arguments

The d\.11mIJy argument specified as an operand of the MACRO

directive may'appear anywhere in the macro body, followed by a

8ubscr,.ipt. At call time the subscript is evaluated and its value

is used to select the appropriate argument supplied in the call. ,1
- Before describing the various kinds of dummy arguments a few

conventions are needed:

a) In the following, "argument" will refer to the character

string as given in the macro call after possible enclosing

p!xentheses have been removed (see section 5.6 for the

format of argument strings).

b) The number of arguments supplied by the call is n (n;O).

c) The number of characters in argument ei is n(ei).

d) The structure ei for i an integer stands for an expression.

(However, its value stands for some argument usually, so

ei will be used somewhat ambiguously to stand for an

expression or the value of an expression.) The first

argument in a call is numbered 1.

e) The dununy argwnent is assumed to be "D".

With the above in mind, we consider the three forms of dummy

arguments:

1) n(el)

This expands to argument el (which may be the null string), where

o ~ el ~ n. (Ir el = 0 then D(el) expands to the label field of

the macro call; see section 5.6.)
Special notation: n() ::: D(l)

2) D(el,e2)

If el > e2 then this expands to the null string (range of values

of el and e2 is arbitrary), otherwise, this expands to argument

el through e2, where 0 ~ el ~ e2 ~ n, with each argument enclosed

in parentheses and a comma inserted between each argument. For

example, n(3,3) = (n(3).
Special notation: D(,) = D(l,n)

D(,el) = D(l,el)

D(el,) ::: D(el,n)

3) D(el$e2,e3)'

In all- cases, 0 S el ~ nmust be true. If e2> e3 then this

expands to the null string (range of values of e2 and e3 is

arbitrary), otherwise, ~t expands ~o characters e2 through e3

'-II

of argument el, counting the first character of an argument as

character 1. If either e2 or e3 lies outside the argument, then

the nearest boundary is chosen. To be more precise, before using

e2 and e3 to select the piece of argument el that is desired, the

following tra&sformation is made:

..
e2::: max (1"e2); e3:c; max (1" e3);

e2:= min (n(el), e2); e3:= min (n(el),e3);

If argument el is the null string, then the dummy argument expand~

to the null string regardless of the values of e2 and e3.

Special notations:

D(el$,) = n(el$l, n(el») = D(el)

D{el$,e2) = n(el$.1,e2)

D(el$e2,) = D(el$e2,n(el»)

D(el$e2) = n(el$e2,e2)

D(el$) = n(el$l) = n(el$l,l)

In any of the six forms mentioned above, el may be missing;

if so, 1 is assumed. E.g., D($) = D(l$l,l).

A general rule which will help in remembering what the special

notations mean is the following: ''Whenever an expressfon is

missing from a form, the value 1 is assumed unless the expression

is missing from a place where an upper bound is expected (as in

D{3,) or D(3$2,), in which case the largest 'reasonable' value is

assumed."

In any of the above three cases, if an expression which

designates an argument is out of range, then an error message is

typed and argument 0 is taken.

Following is an example of the various forms of dummy

arguments:

Na.cr·odefinition:

D
D() nCo)
'D(2,4) t

5-19

MACRO
D(2)
ASC
TEXT
Ase
ASC
ENrn

'D(41)' n(-3,-4) NULL STRING

Macro call:

BETA XAMPLE

Macro expansion: .

BETA ADD
ASC
TEXT
ASC
ASC

'D(1~3,4)' .
'D(2$-3,18)'

ALPHA,ADD,~,DELTA

ALPHA BETA
'(GAMMA), (DELTA)'
• (DELTA)' NULL STRmG
'PH'
'ADD'

5-20

5.4.2 Generated symbols

A macro should not, of course, have in its d~finition an

instruction having a label. Successive calls of the macro would

produce a multiply-defined symboi. Sometimes, however, it is

convenient to put a label on an instruction within a macro.
," ,~

There are at least two ways of doing this. The first involves

transmitting the label as a macro argument when it is called.

This is most reasonable in many cases; it is in fact often

desirable so that the programmer can control the label being

defined and c~nrefe~. to it elsewhere in the pro~am.

However, sii'uations do arise in which the label is used

purely for reasons local to the macro and will not be referred

to elsewhe're. In eases li:ke this it is desirab~e to allow for

the automatic creation ~f iabels so that the pr~grammer is freed

from worryine about this task. This may be done by means of the

generated s~nbol.

A generated symbol ~ may be declared when a macro is
~(i

defined, specifying the name and the maximum number of generated

symbols \-Thieh will be encountered during an expansion. These

two items follow the dummy symbol nane given in the ~~CRO directive

(as shown in section 5.4 above) if the programmer wishes to use

generated symbols in a macro. For example,

MUMBLE MACRO D,GJ 4
< macro body >
ENIlvl

might contain references to G(l), G(2), G(3), and G(4), these

being individual generated symbols.

With regard to generated symbols the macro expansion machinery

operates in the following fashion: A generated symbol ~ value

for each macro is initialized to zero at the beginning of assembly.

As each generated symbol is encountered, the expression constituting

its subscript is evaluated. This value is added to the base

value, and the sum is produced as a string of digits concatenated

to the generated symbol name; the first digit is always 0 to

reduce the like~ihood of the generated symbol being identical to

'-21
a normal. symbol defined elsewhere by the programmer. Thus, the

first time MUMBLE is 'c~lled, G(2) will be ~xpanded as G¢2, G(4)

as G¢4, etc.

At fhe end o~ a macro expan~ion, the generated symbol base

value is incremented by the amount designated by the expression

following the generated symbol name in the MACRO directive. This

is 4 in the case of MUMBLE. Thus 1 the second call of MUMBLE will

produce in place of G(2), G¢6, the third call will produce ~l~J

etc. It should be clear that the generated symbol name should

be kept as short as possible.

The expression in the macro head (call it m) must have a

valu~' in the range [1,1023]. A generated symbol subscript must

have a value in the range [l,m].

5-22

5.4.3 Concatenation

Occasionally, it is desirable to have a dummy argument follow

immediately after an alphanumeric character, for example, to

have D(l) follow just arter ALPHA. But then the assembler

would not recognize the dummy because it would see ALPHAD(I)
instead of D(l). To get around this problem the concatenation

symbol '.&' is introduced. Its sole purpose is to separate a

dummy argument (or conceivably a generated symbol) from" a preceding

alphanumeric character during macro definition. Thus, the example

becomes ALPHA.&D(l). The concatenation symbol is not stored in

string storage so it does not appear during expansion.

As an example, say that we wish to define a macro STORE,

"and suppose we have established the convention that certain

temporary storage cells begin with the letters A, B, or X

depending on what register is saved there. The definition is:

MACRO D
ST.&D($) D(l)
ENDM

Ir called by the statements

STORE B17
STORE x44

the macro will expand as

STB Bl7
STX x44

The concatenation symbol may appear anywhere in a macro

definition, but it is only necessary in the case described above.

If one macro is defined within another, any concatenation symbols

within the inner macro lvill not be removed during the definition

of the enclosing macro.

5-23

5.4.4 Conversion of a value to a digit string

As an adjunct to the automatic generation of s~~bols (or

for any other purposes for which it m~ be suited) a capability

is provided in the assembler's macro expansion machine~r for

conversion of the value of an expression at call time to a

string of decimal digits. The construct

($expression)

will be replaced by a string of digits equal to the vrulue of

the expression. For example, if X=5 then

AB($2*X+l)

will be transformed into

ABll

If the value of the expression is zero then the digit string is

'0'; if it is negative then the digit string is preceded by a

minus sign.

This convprsion scheme can also be used inside repeat blocks;

for example

RPr
TEMP($I) BSS

ENDR

(I=l, 10)
1

creates 10 cells labelled TEMPI through TEMPIO.

5-24

5.4.5 A note on subscripts

The expressions used as subscripts for ~ arguments

and generated symbols, as well as the expressions used in the

conversion to a digit string must be absolute. Any undefined

symbols appearing in these expressions are treated as if they

were defined with the value -1. These expressions m~ themselves

contain dummy arguments, generated symbols, and ($.•.), so

constructs like <$4+D(I*D(3))) are possible.

t

5-25

5.5 NARG and NCHR Number of arguments and number of characters

Macros are more usefUl if the number of arguments supplied

at call time is not fixed. The precise m~aning of a macro (and

indeed, the result of its expansion) may depend on the number or

arrangement of its argument s • In" order to permit th is, the ,
macro undergoing expansion must be able to determine at call time

the nU1Tl~r of argumel:1ts supplied. The NARG directive makes t1J,is

possible.

NARG functions like EQU except,that no expression. is used

with it. Its forro Is '"

($] symbol NARG [comment]

The function of the directive is to equate the value of the symbol

to the number of arguments supplied to the macro currently

undergoing expansion. The symbol can then be used by itself or

in expressions for any purpose. NARG may appear in any macro,

even o~e which has no dummy argum,ent (and thus never has any

arguments at call time); it is an error for NARG to appear outside

a macro.

It is also useful to be able to determine at call time the

number of characters in a.n argument. NCHR functions by equating

the symbol in its label field to the n~ber of characters in its

operand field. Its form is

[$] symbol NCHR [character string [cQ~~ent]]
,-

where t1 character str ing fI has exactly the srune form as an argument

supplied for a macro call, i.e., if it involves blanks, commas,

or semi-colons it should be enclosed in parentheses (see section

5.6). N~H.R can appear ~vhere, both in~ide and outside macros,

but it is most usefUl in macros for deteTIflining the length of

ar~ents.

F.xamples:

A
B
C

NCIm
NCHR
NCHR

ABCWF
(,' XYZ")
DCI)

A:=6
B:=7
c:=?

. 5-26

5 · 6 Macro calls .

The format of a macro call is:

([$]label] macroname [argstring.1 (comment)

Such a call causes the macro whose name appears in the

opcode field to 'be expanded, with the dummy arguments in the

macro body replaced by the actua.l arguments of the argstring.

The label f.ield ,is always transmitted as argument 0, so

that D(el),where el has value 0, is always legal inside a macro.

An occurrence of D(el)~ where el=O, will be replaced by the
i

label field. If the label field is empty, then D(el) expands

. to the null string. At most seven characters will be transmitted

this way: the first six chara.cters of' the symbol in the label

field, preceded by '$' if the label field begins with '$' ...
If the user wishes to transmit an argument to a macro in

the label field of the macro call, but does not wish to have

the symbol in this field defined, he should define the macro

with LMACRO rather than MACRO. (See section 5.4) An example:

NT

D(O)

when called by:

DTE

expands as.:

DTE

!.MACRO'
RPI'
DATA
ENDR
DATA
ENDM

NT

DATA
DATA
DATA
DATA
DATA

D
D(l)
D(2)

-D(l)

4,4B7

4B7
4B7
4B7
4B7
-4

Notice that this would hav~ caused a doubly-defined symbol

error had MACRO been used rather than LMACRO.

5-27

A macro call mayor may not have an arg string (see section

5.4). If an arg string is present, it may contain any number

of arguments, in fact, more than are referred to by the macro.

Before describing an arg string, the follovling should be

noted: blanks, commas, semi-.colons, and parentheses that are

enclosed in single or double quotes are treated exactly like

ordinary characters enclosed in quotes; they do not serve as

terminators, separators, delimiters, or the like. In effect,

when the argument collector in NARP is collecting arguments

for a macro call, the occurrence of a quote causes it to stop

looking for special characters except for a matching quote (and,

of course, carriage return, which is an absolute terminator).

A single quote enclosed in double quotes is not a special

character and vice versa. Thus, "'hen a blank, comma, semi-colon,

or parenthesis"'is referred to in the following, it is under-

'stoon that it is not enclosed in quotes.

An arg string for a macro call has the following format:

<arg>,<arg>, ••. ,<arg> <terminator>

where a terminator is a blank, semi-colon, or carr,iage return.

There are three forms of <arg>:

1. <arg> may be the null string.

2. If the first character of <ar&> is not a left paren

thesis then <arg> is a string of charact~rs not con

taining blank, comma, semi-colon, or carriage return

(remember that blanks, corruna.s, and semi-colons may

appear in <arg> if they are enclosed in quotes).

3. If the first character of <arg> is a left parenthesis

the <arg> does not terminate until a blalli(, co~na,

or semi-colon is encountered after the right pa.renthesis

which matches the initial left parenthesis C'matches tt

means that all left and right parentheses in the

argument are noted and paired off with each other so

that a nested parenthese3 structure is I)?;ssible).

Of course, a carriage return at any point immediately

5-28

terminates <arg>. Again, remember that blanks, commas,

semi-colons, and parentheses enclosed in quotes are

ignored when <arg> is being delimited. The initial

left parenthesis and its matching right parenthesis

(which need not be the la~t character in <arg» are

removed before <arg> is transmitted to the macro.

Examples:

AMAC

D(l) =
D(2) =
D(3) =

n(4) =

(',Z).l...'),' 'HOUSE,.z..ROGER', (ABtt)")

null string

'HOUSE'.LROGER '
ABU) "

5.7 Examples of conditional assembly and macros

1. It is desired to have a pair of macros SAVE and RESTOR

for saving s.nd restoring active registers at the beginning and

end of subroutines. These macros should take a variable number

of arguments so that, for example, one can write

SAVE A,SUBRS
RESTOR A,B,X,SUBRS

to generate the code

STA SUBRSA
LDA SUBRSA
LDB SUBRSB
LDX SUBRSX

To this end 'toTe first define a macro MOVE which is called

by the same arguments delivered to SAVE a.nd RESTOR, but with

the string 'ST' or 'LD' appended.

MOVE
X

MACRO
NARG
RPr
D(l)n(y)
ENDR
ENDM

D

(Y=2,X-l)
D(X)D(Y)

Now SAVE and RESTOR can be defined as

SAVE MACRO
MOVE
ENm

D
ST,n(,)

RESTOR MACRO
MOVE
ENI14

D
LD,D(,)

2. Many programmers use fla.gs, memory cells that are

5-29

used as binary indicators. The instruction SKN (skip if memory

negati~e) makes it easy to test these flags if the convention is

used ~hat' a flag is set (tru~) if it contains -1 and reset (false)

if it contains~. We want to define two macros, SET and RESET

to manipulate these flags; furthermore, it is desirable to

deliver at call 'time the name of an active register which will

be used for the action. Calls of the macros will look like

SET
RESET

A,FLG1,FLG2,FLG3
X,FLG37,FLG12

As in the previous example we make use of an intermediate

macro, STORE, which takes the same arguments as SET B.nd RESET.

STORE MACRO D
X NARG

RPl' (Y=2,X)
ST.&D(l) D(Y)
ENDR
ENmt

Now SET and RESET are defined as

SET MACRO D
LD.&D(l} =-1
STORE D(,)
ENDM

RESET MACRO D
CL.&D(I)
STORE D(,)
ENIJ.i

3. The following macro, MOVE, takes any number of pairs

of arguments; the first argument of each pair is moved to the

8econd, but an argument may itself be a pair of arguments, which

may themselves be pairs of arguments, etc. MOVE extracts pairs of

argument structures and transmits them to a second macro MOVEl.

MOVE MACRO D
X NARG

RPr (Y=1,2,X)
MOVEl D(Y),D(Y+l)
ENDR
ENDM

5-30

The main work is done in II>VEl which calls itself recursively

until it comes up with a single pair of arguments.

M:>VEI
G(l}
G(2)

MACRO
NARG
EQU·
IF
LM
STA
ELSE
RPr
MOVEl
ENDR
ENDF·
ENDM

D,G,2

fJ .
G(l)=2
D(l)
n(2)

G(1)/2,(G(2)=G(2)+1)
D(G(2»,D(G(2)-tG(1)/2)

When MOVE is called bY'

l«)VE A,B

the code generated is

LDA A
STA B

When called by

MOVE A,B,C,D

the ,code generated is

LDA A
STA B
LDA C
STA D

When called by

MOVE (A,B),(C,n)

the code generated is

LDA A
STA C
LDA B
SrA D

5-31

And when called by

MOVE «A,B),(C,D»,«E,F),(G,H»

the code generated is

LDA A
STA E
LDA B
BTA F
LDA C
STA G
LDA D
STA H

It is instructive to trace the last example by hand to see how

the recursive calls of MOVEl work. This is an exercise left

to the reader.

6-1

6.0 Operating NARP

6.1 Starting an assembly

Assuming that the' user has entered the time-sharing system,

NARP is calle~'by hitting the ESCAPE button until the EX~C answers
(by typing r - ',) and then typing 'NARP' followed by a carriage re
turn. Control is then turned over' to NARP and a source file must

be specified; other information may also be supplied, if desired.

The general format is:

default convention

-NARP.
SOURCE FILE: file name

file name
file name

none
none
TELETYPE

OBJECT FILE:
TEXT FILE:

All three files do not have to be specified.

The various options are discussed in more detail belo~v:

SOURCE. FILE: As soon as NARP is started this line is typed and
the user must specify a file containing' the programs
to be assembled. When he terminates the name with a
carriage return, NARP responds with 'OBJECT ,FILE:'
on the next line.

When the name is terminated with a line feed, np, fur
ther requests are made. The assembly begins innnediately
and produces no object file or Teletype listing except
for error messages. This feature is primarily used to
FREEZE symbols and macros into the symbol table.

OBJECT FILE: The file name given specifies where the binary output
from the program should go. If the file name is termi

TEXT FILE:

,nated by a line feed, then NARP waits for a text file
to be specified.

The file name given s~ecifies where the listing of the
source program and of the error messages should go.

6-2

6.2 Multiple program assembly

The source file may contain more than o~e program, each termi
nated by an END directive. Each program is assembled separately
with each binary being appended to the object files •. Multiple pro
gram object files· can be loaded _.in D~ with .no add~.~i.()nand in FOS
~:fth the a·ddt.tion of a FIILIB direc~ive.

6-3

6.3 Assembly of multiple files

After completing a NARP assembly of one file it is possible to
run a second NARP assembly which uses definitions made in the first.
All those definitions preceding the"FREEZE directive will be retained.
This process may be repeated. Using this feature, it is possible to
break up symbolic programs which are too large for QED to handle into
manageable segments. To assemble a second or subsequent file, use
the CONTINUE command of the EXECutive in place of the NARP command.

Al-l

Appendix A: List of all pre-defined opcodes and pre-defined symbols

NARP in its original form contained n~ symbol definitions except
that for "OPD". An initialization run was performed using the defini
tions given below. The NARP subsystem as available to the DIAL-DATA
user is- aninitia1:l.zed-version. -That is, the opcodes and symbols

shown below, are already defined, _and the user does !!.2!. make an ini-,
tialization run.

The following table is a listirig of an initialization program
used to initialize the opcode table and symbol table of NARP. It
will be noted that in some cases the OPD directive has four operands
i.nstead of the usual- three; the fourth operand specifies the type
(directive, macro, or instruction) of the opcode being defined. It
is only possible to use four operands forOPDwhen NARP- is being
initialized, and once the initialization program has been assembled~
OPD will only accept three operands~

(;/\ I.
i-:i':f\
C;-:;){

ex:-]
Xi<d
;-)T/~

Lj)i~

Xi-:r:
CNA
A><C

i3:~U
i3i~X

H:':i·1
b~\I~

i3r~ I

SKS
SKE
SKG
St(~

SKM
SKi\!
SKA
SK3
SKD

J,SH
j~CY

L}\SH
LSH
LCY
NOD

HLT
Zi~O
NOi.)
EXLJ

UP"! 1
r3PT2
}-3i:JT3

aPT4

KUV
i~r:O

OVT
aT\)

F. I:~
D I:~
f-\ I ;\
rr-:T
IDT

OPD
Oljl)

0:.) f)
OJ.) j)
OJ.)))
0~1)

.)PJ)

Q~D

OPD
OPD

OPD
OJ.JD
QPD
OPD
OPD

Gi:lf)
OPD
UPO
GPD
GPD
OPO
OPD
OPD
OPO

OPO
OPO
O?O
OPO
01,10
OPD

O/.lD
OPf)

OPD
OPIJ

OPD
QPO
OPO
OPD

O/JD
OPD
Ot.)/)

OPO

oPt)
Dj;' D

OPD
GPO
GPD

o I~ 6 (:) I'J Lj v) () B" 1
(;; II 6 (1 (I) 611 (i) B.. 1
t1 /16';lU020Ii .. l
(I) /1 6 H 0 (/) '~d d.. 1
'1 Lj 6 kl (1 (-, 6 (I) B .. 1
(1 '16 (1 vJ 1 22 d.. 1
(,) 1,600 14v)B .. 1
H 'I h~H/) 1 6") B .. 1
(iJ 46(1 1 (I) "HJ B" 1
o LI 6(.) 0 4(/) 1 8 .. 1

(10 1 C/J EH1 (10 B .. 2
(1 Lj 1 f)(10C1VJ B" 2
v) 4 3 0 0 (lJ t-l r-1 13 , 2
o 5 1 (1 vJ v) ~j (:1 B .. 2
()) 1 1 fH'} (lJ (1 (1 B .. 2

04000(1)008 .. 2
VJ 5~) (1 0 0 Q) vJ B .. 2
(-) 7300{()vJ(18, 2
f) 6eJ vJ(/j f~ r1 v) B, 2
(1 7vJi/)(10 00B, 2
(iJ 5 3(IJ0

'
ij(1v)B, 2

(172~HJ v)vJ0 t3 .. 2
(1 52 vJ 0 (3 0 vJ B, 2
(i) 7'~0(10008 .. 2

Vl66vJ0C1(1(18 .. 2" 1
(1662(/HHH1B, 2 .. 1
o (, 62 Lj{;j0 {1 B, 2, 1
("67(~vJ(~(tJ0H,2 .. 1
(1 6 72 0,(iJ (I) (1 8 , 2" 1
(/) 6 7 1(1 (!HI) vJ a" 2, 1

(-) ") (1 (,1 (;J (I) (/) (iJ 8 .. (1
(;) (I) (I) (~ (/) (;) (:) (/l r] .. (,1

(I) 2 (11 ('Jet) r,) "H:J i3 .. 0
('J 2 3('JV'(-H1 v.) 8 .. 2

(iJ 4(" 20 4r-Hh3 .. 1
VJ 4 (/) :2!~ 2 () V) i:3, 1
(I) 40 2{-} }(~(1 B .. 1
04[/)200408 .. 1

(;12 2 (~ ('H" ('.l 1 8, 1
022000 H1i:3, 1
vJ 2 2 (;J f1 1 fJ 1 B, 1
022(1)1/) 10'18, 1

(1!122v}f1~iJ2a .. 1
~H'J 22 (i) i1 (I) Lj ~3.. 1
11 fJ 2 2 (1 ~J 2 (1 13.. 1
v) 4ft) 2(~H1(12B, 1
0402(1(/)048 .. 1

GI)''>Y A INTO X
EXCHANGE X ANU A
COpy t> INTO X
COf)Y X INTO B
EXCHANGE X AND B
ST·)i\E EXtJONENT
LOA!] EXPONENT
EXCHANGE EXPONENTS
COpy NEGATIVE Or A INTO A
COpy A TO X, CLEAR A

B~ANCH UNCONDITIONALLY
INCREMENT INDEX AND 8RANCH
MARK PLACE AND BRANCH
RETUI\N ,i::H,ANCH

Al-2

BRANCH AND HETUHN ri~OM INTEI<HUPT

SKIP IF SIGNAL ~QT SET
SKIP IF A EQUALS M
SKIP IF A G~EATER THAN M
REDUCE M, SKIP I~ NEGATIVE
~KIP IF A EQUALS M ON B MASK
SKIP I~ M NEGATIVE
SKIP I~ M AND A DO NOT COMPARE ONES
SKIP If M AND 8 DO NOT COMPARE ONES
DIFfERENCE EXPONENTS AND SKIP

RIGHT SHlFT AB
RIGHT CYCL..E A8
LOGICAL HIGHT SHIfT AS
LEFT SHIfT AS
L~::rT CYC~E Ati
NORMALIZE AND DECREMENT X

)

HALT
ZEr{O

{

NO OP[i~ATION

EXECUTE

gr-.:EAKPO INT TEST
i:3i-<EAKPO INT TEST .2
dHEAKPOINT TEST 3
B)(EAKPOINT TEST 4

RESET OVEKFL.O~J.

t~ECOKD EXPONENT 0 VEHFLO~oJ
OVE~F'LOW TEST AND RESET
o VI~:~FLO hi TEST ONLY

ENABLE INTEHRUPT~
D I SABLE I N'(Et~i,LJI:>TS
AHM/DISAi~M INTERHUPTS
INTERRUPT ENABLED TEST
INTERRUPT DISABLED TEST

I-\LC ::J ' OJ..)!)
DIsr .. ; Ofoll)
/-\ ~~ C ~',I O)ol I)
TOil I .. ; Vi) 0

Ct~T!,'; OPD
C ;~'i' ;:! OJ) D
Cll':"! Or.J!)
C I '(':j OPD

f~OI.)

i'J II:}
1:) I i·1
PI,\J
PC)'C
20,1
i3 E 'f ~'J
i:3KTt·J

i)i..ll)

OPI)
Oi)D
OiJI)

UPi)

OilD
Or)!)

OP/,)

TSN Oi)1)
CK,\) GPD
CKF' OtJO
L/~:,n OilD
Lt{:,<2 OPD
L;~r~3 OPO

d 10 O,.)D
BI{S OPD
CIl) 01..)0
CIT Ot.:!i)
Cl~I~L OPD
Dd I OPD
Dl:30 i)PO
DI,·,i I OPD
o t'!l) O;J 0
EXS OPD
EXSYM OPO
FA!) GPO
FDV OPI)
FF'AD .)PD
FF'AI)D uPD
FF!) I 01::10
FFD 10 i)i:Jt)

Flo D iJ Ot) 0
F'FJ)\/D OPD
F'Fi"ji-J O?D
F,.,·'iP i) O? 0
fF'Sd (')l.l D
F'FSBD GPD
FrSI OPD
rrSIO OPO
foi':P GPD
F'SB OPO

~) (.) 2 5~J(tHH1 t3" 1
(1 (12(~ il vHi) (I) t3, 1

C10212tH10H" 1
(1 (/) 2 1 LII~ (10 B, 1

0LIO 1 '10008, 1
(i1 4 (,11 1 (;") (1 (,) H, 1
o 4 (/J 1 2 (.10 (18, 1
(-) 4 (,) 1 (1 ~J ", 0 13, 1

(;, IJ (, (I' II) (1 (I) 0 B , 2
(Ill :~"I(/H1(1t1 H, 2
(132(',) (-) v) ~J(I) l:3, 2
(i) 33 1;)(.) (i)(1) (1 B, 2
tiJ 1 3l i j (,I) 'I) '1"J d, 2
"J(I) 2l~j!~H1(i)!-H3, 2
(Ij 4 d 2 (/) (1 1 0 H, 1
f) 4 ~ J 2 1 ")(108, 1

0(1222000B" 1
lIJi12201 r~v)d, 1
(1)(122(120(1 B" 1
(i) ~) 22(1) 4~) I~ B, 1
(iH122 1 0 (I) I:) B, 1
(1 (122 1 4 (1 ~)i:3, 1

5 7 6(i)(J~)0(1 a" 2
5 7 3\;')(/H1(/)ti.) 8" 2
5 6 1 iJ (1 (Ij (~ Ii) t3" 2
53,~(,)t/l;;J(1(t)H" 2
5 72(1lj0(J8 d, 2
5'12~)vJOl~(iH:;" 2
5 'I 3 l'J0 v} 0 0 8" 2
5 4 II(JJ\'H10 (I) a, 2
545(,-)(10(108'" 2
5 S 2 t/) 0 (.) v1 f/) d " 2
5 1 5 (~)(10 (1 0 B" 2
5Sh"0(~000i:3" 2
5 ?~3(1 (1 0 (10 i3, 2
52'6!'i)'!J00H18" 2
52UO~/J0;,JO r3" 2
5 3 1 ('J n Ii) f1 ~j t3" 2
5 1 LH~1 (1 (I) "HH3, 2
5 3!/) (lJ (j (1 (1(113, 2
522(ijV}v){i)vJ B, 2
527000(i)(1B,2
521 (1(10(1J0B" 2
5 3 2 (-) (~ (I) 0 (1 B" 2
5230(iJ(jl~(1i:3, 2
533f1(/}0\.1)tt) B, 2
51 3(,jFH~008" 2
5 540(100(~B, 2
55 5(/J00008, 2

, .
\.. f

Al-3

ALEt\T CHANNEL W
I) I ~.)GONNECT CHANNEL W
ALE,~T TO STOHE ADDHESS IN CHANNEL ~J

TE~MINATE OUTPUT ON CHANNEL W

CHANN~L ACTIVE TEST
CHANN~L W ERROR TEST
CHANNEL W COUNT TEST
CHANNEL W INTEH-RECORD TEST

ENEHGIZE OUTPUT /J
MINTO W UUFFEJ{ WHEN EMPTY
W HUFFE~ INTO M WHEN FULL
PAkALLEL INPUT
PAHALLEL OUTPUT
ENERGliE 00TPUT M
W UUVFER ER~OR TEST
W BUFFE~ HEADY TEST

NORMAL TO ~ONITOR MODE
CLOCK ON
CLOCK OFF
LQllD i~ELABE:LLING HEGISTEt~ 1
LOAD RELABELLING REGISTER 2
LOAD kELAl:lELL r'NG REG IS TEH 3

BLOCK 1/0
8t~ANCH TO SYSTEM
CHAi<ACTEH I/O
CHARACTER INPUT AND TEST
CONTROL
Di\UM 8LOCK INPUT
DRUM BLOCK OUTPUT
DkUM t'jORO INPUT
DI~UM ~JOHD OUTPUT
EXECUTE INSTRUCTION IN SYSTEM MODE
EXS HELOCATED FROM SYMS IN MONITOH
FLOATING ADD
FLOATING DIVIDE
FLOATING ADD WITH FA
FLOATING ADD,X DOUBLED
FLOATING DIVIDE INVERTED WITH FA
FLOATING DIVIDE INVERTEDIX DOUBLED
FLOATING DIVIDE WITH FA
FLOATING OIVIDE,X DOUBLED
FLOATING MULTIPLY WITH FA
FLOAT ING MUL T IPL Y" X DOUI3LED
FLOATING SUBTRACT WITH FA
FLOATING SU8TRACT,X DOU8~[D
FLOATING SU3TriACT INVERTED WITH FA
FLOATING SU8TRACT INVE~TED,X DOUBLED
FLOATING MULTIPLY
FLOATING SUBT~ACT"

GCl) 01->0 5 3 7 f;) r', !I) Dr;) 13 , 2

GCI OPD 5 6 5 (1 l'J 0 0 (~ B , 2
ISC ·OPD 5LJOVlVJ00vH3,2
1ST OPD 5 S (I) (-) (~ (() v) ~ B, 2
LAS OPO 5460(10~10B, 2
LD;J OPD 56600000/3,2
LDFf.'1 OrO 524(,}(i)OfH~B, 2
UJPI'-lD oeD " 5 1 6 0 rj(;J n (') i3 , 2
OST D).) I) 5 5 1 (t) 11 (I) 0 19 1-3 , 2
SAS OPD . 5 /1 !~1 (1 (i) C:i 0 B , 2
Sdla-1 OPt) 5 7(1Jl1f.,000 i:3, 2
S8r~R OPD (151 LJ{i)000B, 2
SIC OPD 5 /~ 1 (i) (i) (1 0 (1 B , 2
SKS?': GPD 5630(1(/)0(il8,2
Sf{SG OPD 562(iJ(tJl~0(18, 2
STFivj Ot'D 52 5 (1 (i) (I} 0 (1 B , 2
STFf.'lD GPD 5 1 7 (lHJ (1)(10 B , 2
STI OPO 5 3 60 (:) (1) 011 B , 2
STP OPD 5 6 7 (1 (t) v) ~) '1 8 , 2
Tel Oi.JD 57400(1v)08,2
TCO OPD 5 7 50 (1 (i) (I) [-j B .. 2
! • .JCD OJ) 0 53 5(i)00 (i)(i) 8,2
ltlCH OPO 5640000{1}B,2
t'JC I GPD 55700v)0C'JB,2
1,JlO OFf) 56000v)008" 2

* DIRECTIVE DEPINITIONS:

ASC OPO
i3ES OIJ D
BSS· GPD
COpy GPD
CRi:lT OI.)D
DATA GPD
FIILIS OPD
DEC OPD
DELSYM OPO
ELSF: O?D
ELSF OF> I)

~:NIJ 01> D
[NUr OJ·) j)

I~ N ! H"j 0 P D
r-:Nl)j~ Or>,)
[(.) LJ OJ:> \)

EXT OPO
Fi-\EEZE 01)1)
Fi~G'f O~D

IDSNT OPD
IF GPO
LIST OJ.JD
p.iACi~O O~D

NAi-\G OPD

(t), 2, (1 .. 1
1,2 .. 0 .. 1
2,2,(~, 1
3,2 .. 0,1
4,2,,(1,1
5,2,0,1
6,1,,0,,1
7,1,(~J,1

8,,1,'1,1
9, 1 , ~j , 1

1 (1 , 2, (1, 1
1 1 , 1 , v)" 1
12,1,(i},1
1 3, 1 , rl), 1
1 'I, 1 , (iJ, 1
1 5,2, (;), 1
1 h'~)' 0, 1
17,1,0,1
18,2,(,),1
19,1,tJ,1
20,2, v), 1
21 .. 0,(i),1
22,H,0,1
23, 1 .. vJ, 1

Al-4

GET CHAf(ACTEt-(AND DECI~EM~:NT

GET CHAHACTEH AND INCREMENT
INTERNAL TO STKING CONV<FLOATING OUTPUT)
INPUT F"HOM SPECIF'IF:D TELETYPE
LOAD FROM SECONDAj~Y MEMOKY
LOAD POINTF.H (AI:3)

LOAD FLOATING ACCUMULATO}<
LOAD FLOATING ACCUMULATOK,X DOU8LED
OUTPUT TO SPECIfIED TELETYPE
STOHE IN SECONDAi~Y MEMOHY
SYSTEM 8HM
SYSTEM Bf\R
STt~ING TO INTERNAL CONV<FLOATING I Nj~ UT)
SKIP IF" STRINGS It(~UAL
SKIP IF' STRING GREATER
STOf~E fLOATING ACCUMULATOK
STORE FLOATING ACCUMULATOK"X
SIMULATE TELETYPE INPUT
STOHE POINTEH (AB)
TELETYPE CHARACTER
TELf.TYPE CHARACTER
Wi~ I IE CHARACTER AND
~"'R I TE CHARACTER
WHITE CHARACTER AND
WORD I/O

ASCII STHING
BLOCK END SYf.'lBOL
BLOCK START SYMBOL
~EGISTER CHANGE
CONDITIONAL }~EPEAT

DATA t~10 t~D

FORT~AN II LIBRARY

INPUT
OUTPUT

OECKEME'NT

INCREMENT

SET NUMBER RADIX TO 10
DELETE SYMBOL
ELSE
EL.SE If
END OF' P HOGt~AM
ENI) I It'
END MACl~O

END HEPEAT
EOUATE
EXTEkNAL
FREEZE "fABLES
FOt~GET SYi-1S0L
IDENTIfICATION SYMBOL
IF'
TURN ON LISTING
MACRO DErINITION
NUM8ER OF' ARGUMENTS

DOUBLED

NCHr< OPD
LOCCNT OPO
NOLlST OPD
OCT OPD
PO?D OPD
RELOi·;G oeD
HETREL QPD
RPT OPD
TEXT OPO
LMt~Ci~O QPD
GLOBAL OPO
HEM OPO
LOCAL OPD
F"ixGTOP OPO
CSECT OPD
NdSS OPO

:zE;~6: EQU
:LC: EG)U

F"RGT

F"t~EEZE

END

24,0,0 .. 1
25,2 .. 0,1
26,,~J .. 0 .. 1
21 .. 1 .. 0 .. 1
25,2,0,1
29,2,0,1
3'1,1,0,1
31,2;'0 .. 1
32 .. 2 .. 0 .. 1
33 .. 0,,0,,1 : _
34,,1,,9.),,1
35 .. 2,,0,1
36 .. 1,,0,1
37 .. 2",0,1
38 .. 2,,0 .. 1
39 .. 2,,0,,1

* :ZERO:
:ZERO: .. :l.C:

NUMBER OF CHAR~CTE~S
LOCATION COUNTER
TURN OFF LISTING
SET NUMBER RADIX TO 6
POP DEFINITION
HELATIVE OHIGIN
RETRIEVE ORIGIN
REPEAT

Al-S

STRING (FOUR CHARACTERS PER WORD)
-ALTERNATIVE MACRO·DE~·N
SET GLOI:3AL MODE
PRINT REMARK ON TEXT FILE
SET LOCAL MODE
rORGET SELECTED OPCODES
CONTROL SECTION
NONCOMMUNICATIVE BSS

" "LAST LINE Or NAHP INITIALIZATION PROGR

	+01
	+02
	+03
	+04
	+05
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	00-12
	00-13
	00-14
	00-15
	00-16
	00-17
	00-18
	00-19
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12a
	04-12b
	04-13
	04-14
	04-15a
	04-15b
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	06-01
	06-02
	06-03
	a1-1
	a1-2
	a1-3
	a1-4
	a1-5

