TYMSHARE REFERENCE MANUAL

NARP

AN ASSEMBLER FOR THE XDS 940

JULY 1971

TYMSHARE, INC.
525 UNIVERSITY AVENUE, SUITE 220
PALO ALTO, CALIFORNIA 94301

2.

0

TABLE OF CONTENTS

~

Preface - Difference Between NARP and ARPAS
Introduction. e e e e e e
1.1 Pseudo-history of assembly languages.
1.2 ‘Assembly languages: some basic constituents

and con(_:epts
Basic constituents of NARP
2.1 Character set,
2.2 Statements and format. P
2.3 Symbols, numbers, and string constants
2.4 Symbol definitions Ce e e e e s
2.5 Expressions and literals
2.6 Opcode classification
Instructions. e e
Directives. L e e e e e e e e
4.1 ASC Generate text (3 characters per word)
4.2 BES Block ending symbol
4.3 BSS Block starting symbol P
4.4 COPY Mnemonic for RCH.
4.5 DATA Generatedata
4.6 DEC Interpret integers as decimal.
4.7 DELSYM Do not output any symbols
4.8 END Endofassembly.
4.9 EQU Equate a symboltoavalue.
4.10 EXT Define a symbol as external
4.105 FIILIB FORTRAN II Library Routines.
4.11 FREEZE Preserve symbols, opcodes, and macros.
4.12 FRGT Do not output ahspecifi'c syrﬁbol.
4.125 FRGTOP Forget selectedopcodes
4.128 GLOBAL Reverse external specification

5.

TABLE OF CONTENTS (Continued)

Page
4.13 IDENT Identification of a package. 4-17
4.14 LIST Set listing controls. oo, 4-18
4.143 LOCAL ‘R,es_to:re’ normal external meaning 4-18
4.15 NOLIST Reset listing controls 4-19
4.16 OCT Intefprét integers asoctal. 4-21
4.17 OPD Defineanopcode 4-22
4.18 PAGE Begin a new page on the listing. 4-23
4.19 POPD Define a programmed operator. 4-24
4.20 RELORG Assemble relative with absolute origin ., .. 4-25
4.21 REM Typeoutremark. 4-27
4.22 RETREL Return to relocatable assembly 4-28
4.23 TEXT Generate text (4 characters per word) 4-29
Conditional assemblies and macros. 5-1
5.1 IF, ELSF, ELSE, and ENDF If statements L. 5-1
5.2 RPT, CRPT, and ENDR Repeat statements 5-4
5.3 Introductionto macros 5-9
Figure 1 Information Flow During Macro Processing o-11
5.4 ~ MACRO, LMACRO, and ENDM Macro definition ... 5-15
5.4.1 Dummyarguments. o-17
5.4.2 Generated symbols 5-20
5.4.3 Concatenation 5-22
5.4.4 Conversion of a value to a digit string. 5-23
5.4.5 A note on subscripts 5-24
5.5 NARG and NCHR Number of arguments and number
of characters. e 59-25
5.6 Macrocalls e e 5-26
2.7 Examples of conditional assembly and macros. 5-28

TABLE OF CONTENTS (Continued)

Page
6.0 Operating NARP. i it it it et ittt e et eean 6-1
6.1 Starting an assembly. R LI 6-1
6.2 Multiple program assembly 6-2
6.3 Assembly of mu1t1p1e files. 6-3
Appen?iii A:‘ List of all pre- deflned Opcodes and pre-defined
o symbols L L. e e e Al-1

Note

Certain sections of the follow'i'ng reference rﬁanual are writfen
in a primer-like style, especially part‘s of the introduction and fhe dis-‘
cussion of macros. However, it is assumed ;chat the reader is familiar
with the logical operation of general-purpose digital computers, and, in
particular, is acquainted with the SDS 940 instruction set (see the SDS
publication, SDS 940 Computer Reference Manual, No. 90 06 40A,
August, 1966.

The preface contains a discussion of the differences between

NARP and ARPAS.

Acknowledgment

Much of this manual is similar to the ARPAS manual (ARPAS,

Reference Manual for Time-Sharing Assembler for the SDS 930, Document

R-26, February 24, 1967), written by Wayne Lichtenberger, and some

paragraphs are taken verbatim from the ARPAS manual.

This manual was developed by the University of California at
Berkeley under contract to Advanced Research Projects Agency and

modified by Tymshare to reflect certain additions to the assembler.

-~

0-1

0.0 Differences Between NARP and ARPAS

NARP (new ARPAS) has supplemented ARPAS as the assembler for
assembly languege programs written for Tymshare s XDS 940. The
execution speed of NARP is considerably greater than that of ARPAS, and

that is the main reason for the changeover. All users are encouraged to
”

change their programs over to the NARP language as soon as practicable
and new programé should surely be written in NARP. DDT and FOS will

load programs assembled in either language or both.

NARP is by and large a superset of ARPAS, but there are some
notable exceptions, the majority of which are described below.

Yed

The fbllbwing list of differences between NARP and ARPAS is
ordered after the ARPAS manual, with a few exceptions. To avoid am-
biguities, a blank character is often denoted by a ','.

. ,

1) NARP is a one-pass assembler, not a two-pass assembler
like ARPAS, Thus any sections of programs which depend
on the fact that ARPAS is two passes will in all proba-
bility have to be carefully rewritten before NARP can
handle it.

2) 1In addition to the opcodes listed in the ARPAS manual ,
Appendix A, NARP handles many additional opcodes. See
NARP manual, Appendix A.

' 3)' A symbol in NARP is a string of letters and digits that
is not a number. A number is any one of the following:

a) a string of digits ‘

b) a string of digits followed by the letter 'D’
c) a'string of digits followed by the letter 'B'
d) a string of digits followed by the letter 'B'

followed by a single digit. Thus, 14D2 and 14B10
are symbols, whereas 777B9 is a number.

4)

5)

The seven characters ! # % & 8 \ t are recognized by NARP,
Thus they may be used freely; usually in strings, but not
always, since some of them have meaning in NARP, Except
for 135B (multiple blank) and 155B (carriage return), all
characters with a value greater than 77B are ignored by
NARP,

‘The classification of opcodes has been completely revised
in NARP:

class 0: thé'opcode'may or may not have an operand
(e.g., NOP) |

class 1: the opcode has no operand (e.g.; CLA)

class 2: the opcode has an operand (e.g., ADD)

In addition to its class, a given operand is either a

shift instruction or a non-shift instruction (note: this
has nothing to do with whether the action of the instruc-
tion involves shifting, but is simply a way of distinguish-
ing between two types of instructions). For a non-shift
instruction, the operand is computed mod 214 andtmerged
into the instruction. For a shift instruction the follow-
ing happens: J

a) if the indirect bit is set by '*' or '«' then the
value of the opcode is trimmed so that bl0-b23 are
zero and the instruction is treated as if it were
a non-shift instruction.

b) if the indirect bit is not set as above then the oper-
and is computed mod 29 and merged into the instruction;
in this case, the operahd must be defined and absolute.
(note: With reference to-NARP, the statement that a
symbol is defined means it is defined at that instant
and not at some later point in the program.)

See the description of OPD (22 below) for more comments on
opcodes.

0-3

6)

7

)

9)

10)

‘1)

12)

A number may appear in the opcode field, In such a case,
the value of this number is placed in bO-bB of the in-
struction. The opcode has class 0 (i.e., operand optional),

NARP does not keep track of nu11 symbols

The tag field of an instruction must be defined (in the
NARP sense, see 5b above) and absolute.

In ARPAS an exptession may have a relocation factor of
either 0 (absolute) or 1 (relocatable), In NARP, however,
an expression may have ~any relocation factor, including a
negative one.'

The ARPAS notation (<letter string>) for operators does
not exist in NARP:

[}

ARPAS NARP
(NOT))
(R) does not exist, see 16 below

(LSS) <

(GRT)

(EQU) -

(AND) &

'(OR) !

(EOR) “ %

The precedence of operators is different in NARP than it

is in ARPAS (see 17 below). In most cases this makes little
difference and need only be worried about for things like
(AND) (maybe not even in this case, since the description

in the ARPAS manual may not correspond with reality).

A NARP expression may contain an expression enclosed in
square brackets as a primary. For example, A EQU [N-3]*8
is legal. ‘

0-4

13) A NARP expression may contain any number of relational
) operators.

14) String constants are right-justified. Thus 'A' = ' A' =

’) FRE L
aA' = "LAY TA = A = "LA". Also, a string con-

stant may be at most four characters long;mif it is longer,
then an error message is typed and the first four charac-
ters of the string are taken as the value.rw

ulé) A NARP expression has the following BNF descriptlon

| <primary> ‘e <symb01>[<constant>[[<expression>]
<basic expression> :: = <primary>|<primary> <binary operator>
<basic expression>
<expression> :: = <basic expression>|<unary operator>
<basic*expression>.

The main point in the above syntax is that two operators

may never be adjacent, so A & 8B is .illegal (write it as
®B & A),

16) NARP is less finicky than ARPASlabout relocation factors,
Thus a relocatable quantity can be multinlied by an absolute
quantity, yielding a relocation factor other than 0 or 1,
e.g., (R)ALPHA when used to produce a string pointer becomes
simply 3*ALPHA, The unary operator (R) does not exist in
NARP (likewise, the directive RAD does not exist in NARP),
The following table shows the permissible relocation factors
for the operands of the various operators, as well as the
relocation factor of the result (see 17 below for descrip-
tions of all the operators).

NOTE: In the following table, Rl is a symbol with relocation factor
of 1 and R2 is a symbol with relocation factor of 2, Relocation
factor is shortened to 'rfactor",

0-5

relocation factor(s)

relocation factor

operator of operand(s) of result example
t all operands absolute absolute 2¢4=16,
. Rltl(error)
at least one rfactor | found by multi- 3*R2 has
* must be absolute, the] plying the value rfactor of 6
other is arbitrary of the absolute R1*R1 (error)
operand times the
rfactor of the
other operand
/ all operands absolute absolute 4/2=2,
R1/1(error)
+ - found by applying | R1+R2 has
(unary and | arbitrary rfactors operator to the relocation
binary) relocation factors| factor of 3
of the operands
< <= = arbitrary relocation R1l=R1 is
>= > factors, but must be absolute . true
equal R2>R1 (error)
& ! all operands absolute absolute 7&3=3,
% o o8R1 (error)
The table below lists all the operators that may be used in

17)

NARP expressions, along with their precedence (the higher

the precedence, the tighter the operator binds its operands)
and some comments.

0-6

Operator Precedence ' Comment

lio-QMD\l¥=%m QI\I + 1 %

18)

19)

20)

ex onentiation exponent mnst be >0
ftiplication

1nteger division
unary plus (effectively a nop)
negation
addition
subtraction
less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than

. logical not

v logical and

logical or
logical exclusive or

COMHMNWIWLWWLWWWLWH-ASPESUMULIO

At the.mcment, the fcllcﬁing ARPAS opcodes are undefined
in NARP (there is more on these opcodes in subsequent
pages) ORG, RAD ENTRY

TEXT, ASC: The ARPAS option of specifying the 1ength of
the string instead of enclosing it in quotes is not allowed,
However, the string dellmiting character is not restricted
to a quote, but may be any printing character except blank
or semicolon. Thus TEXT 7ZQUOTE MARK: '% is legal, Of
course, the first character encountered is taken as the
delimiting character. Within a string, blanks, commas, and
semicolons have no special meaning; they are treated just

like the other characters in the string.

EQU: The expression must be defined (the ARPAS manual also
says this is necessary, but in many cases it isn't because
ARPAS has two passes) The relocation factor of the expres-
sion must be in the range [-15,15].

0-7

21) EXT: In the option <symbol> EXT, the symbol must be defined
(again this is what the ARPAS manual says, but the two-pass
nature of ARPAS makes it possible to ignore this). In the
option <symbol> EXT <expression>, it is not necessary that
the symbol be defined, but the expression must be defined
(its relocation factor is arbitrary). At present ENTRY is
not implemented. See 40 below for a detailed discussion of
symbol‘definitions, both external and otherwise,

22) OPD, POPD: Because of the different opcode classification
scheme in NARP, the format of an OFD is rather different
than in ARPAS:

syntax: <«<symbol> OPD <value>[,<op sit>[,<shiftk>]]

semantics:

<symbel> - becomes defined as an opco&e;vif the symbol is
already an opcode than 'W' is tYped as a warning
and the previous definition is overwritten.

Note: All of the following may be arbitrary expressions, but they
must be defined and absolute. If an optional expression does not
appear then the value 0 is assumed.

24 and used as the value for the

opcode (see important note below).

<value> - computed mod 2

<op sit> - operand situation: must have a value of 0,1, or
2, with the following meanings:

0 - operand optional
1 - no 0pefand -
2 - opérénd rgqﬁired
<shiftk> - shift kludge; must;héye}a,yalqe of 0 or 1
with the following meaﬁingéf 7

0 - non-shift instruction
1 - shift instruction

0-8

Note: Although an opcode that takes operands can be defined with
bits bl0-b23 set, the user must be careful of what he is doing.
In particular, if such an opcode appears in an instruction which
contains a literal or an undefined value then bits bl0-b23 of the
opcode will be set to zero.

Warning: The usual ARPAS opcode definition of <value>,1,1 ﬁill
result in a NARP opcode which takes no operands. Thus such an
ARPAS program will cause no error messages when assembled by NARP,
but it will surely not run when loaded.

23) ORG: This does not exist in-NARP. There is no reasonable
way in which a one-pass assembler (that doesn't assemble
directly into core) can handle ORG.

24) RAD: This does not exist in NARP because of the freer
- relocation rules that do away with (R).

25) IDENT: Only the first six characters of the preceding
symbol and the word 'IDENT' are printed.

26) The concatenation symbol '.' used in ARPAS is replaced by
".&' in NARP. This makes it possible to use the character
'.' in macro definitions, in particular within strings
(of course '.&' within a string will get removed). The
ordinary use of '.&' is to separate a reference to a pre-
ceding alphanumeric character. In all other cases '.&'
is superfluous, although legal. During a macro definition,
1.&' is detected at all levels ("level" here refers to the
nesting of MACRO - ENDM palrs) but is only removed at the
top level. Thus the following will work fine, even if D(I)
is the null string: “

A MACRO D

B MACRO E
TEXT "ABC,&D(I)E(J)!
ENDM '
ENDM

0-9

27)

- 28)

29)

30)

Whole-line comments (i e., lines of text beginning with an

V'asterisk) are not saved as part of a macro definition, but
x comments follow1ng instructions are. Thus it behooves the

programmer to use these comments Sparingly as they only
gobble up core space.

A dummy subscript may ﬁot have value -1. Instead of follow-
ing a macro ca11 with an asterisk to set the indirect bit

on some argument, the ' +' convention should be used. An

asterisk following a macro call or a directive is an error.

The coﬁventions'ccncerning a dummy subscript of value zero
are somewhat different, First of all, D(0) and D(1-1) are
completely equivalent as far as NARP is concerned (only the
subscript value, not its syntax, is considered), and the
appearance of either of them has no effect whatever on wheth-
er a symbol in the label field of the macro call gets, defined.
An occurrence of D(0) is replaced by the label field of the
macro call during expansion; if this field is empty, D(0)
expands as the null string. In any event, D(0) will be at
most seven characters long, namely the first six characters
of the symbol in the label field preceded by '$' if the label
field begins with a '$'.

Dummy subscripts (including all the subscripts appearing
between '(' and ')', e.g., e2 and e3 as well as el in
D(el$e2,e3)), generated symbol subscripts, and expressions
between '($' and ')' may be arbitrary NARP expressions. Fur-
thermore, these expressions may contain references to dummy
variables, generated symbols, and value-to-digit-string ex-
pressions. Thus ($4+D(I*D(3))) is legal.

Any undefined symbols occurring in these expressions are
treated as defined symbols with the value -1.

0-10

31)

32)

The construct D() no longer expands to all the arguments

‘of a macro call, but instead expands to the first argument
only (without enclosing parentheses). To achieve the effect
that D() has in ARPAS, use D(,):in NARP.

NARP allows more syntactical forms of references to dummy
variables than ARPAS does. Before describing all the pos-
sible combinations a few conventions are convenient.

ia) In the following, "argument" will refer to the

character string, as given in the macro call,
after possible enclosing parentheses have been
removed,

b) The number of arguments supplied at the call is
~n (a3 0).

c) The number of characters in an argument i is n(ei).

d) The structure ei for i an integer stands for an
expression (its value stands for some argument
usually, so ei will be used somewhat ambiguously
to stand for an expression or the valﬁe of an
expression). H |

With the above in mind, we consider the three kinds of
references to dummy variables:

i.) D(el)

This expands to argument el (which may be the null string),
where 0 < el < n.

Special notation: D() = D(1)
11.) D(el,e2) | o
If el > e2 then this expands to the null string (the range

of values of el and e2 is arbitrary), otherwise this expands
to argument el through e2, where o < el < e2 < n, with each

0-11

argument enclosed in parentheses and a comma inserted be-
tween each argument. For example, D(3,3) = (D(3)).

Special ndtatioﬁ; :D(,) ='D(i,h)
' | D(,el) = D(l,el)’
D(el,) = D(el,n)

iii.) D(e1$¢2,e3)

In all cases, 0 < el < n must be true. If e2 > e3 then

this expands to the null string (range of values of e2 and

e3 is arbitrary), otherwise it expands to characters e2
through e3 of argument el.

‘Special notations: D(el$,) = D(e1$i,n(e1))
| | D(el$,e2) = D(el$l,e2)

'D(e1$e2,) =AD(el$e2,n(e1))
vD(e1$e2) = D(el$e2,e2) |
D(el$) = D(el$l) = D(el$l,1)
In any of the above six forms,
el may be missing; if so 1 is
assumed, -

Note on special notations: A general rule which will help
in remembering what the special notations mean is the fol-
lowing: ''Whenever an expression is missing from a form,
the value 1 is assumed, unless the expression is missing
from a place where an upper bound is expected (as in D(3,)
or D(3$2,)), in which case the largest '"reasonable" value
' is assumed." o

The observant reader will have noted that in the above
description of the form D(el$e2,e3), no mention was made of
‘the bounds of an e2 and e3 in case e2 < e3. This was in-
tentional, since by choosing e2 and e3 appropriately, sneaky

0-12

33)

things can be done, although they should not be played with
lightly since they depend on the implementation of macro
calls in NARP. When a macro call is made, the arguments
are laid out in core in one contiguous string, with each
argument surrounded by parentheses and followed by a comma.
For example $BETA AMAC (GAMMA) (,DELTA,EPSLON,), ZETA causes
the following argument string to be laid out in core:
($BETA),(GAMMA),(&DELTALEPSLO N,), (ZETA), Each argument has
a pointer associated with it which points to the left pa-
renthesis preceding the argument, and when a form like
D(el$e2,e3) is expanded, the values of e2 and e3 are simply
added to el's pointer, delimiting the string which is to
replace the dummy reference. By pieking e2 and e3 appro-
priately, this string may include parts of argument el-1 and
el+l (as well as argument el) or even the entire argument
string The only restriction on e2 and e3 is that when
added to the p01nter for el, the resulting pointer must not
be outside the entire argument string for the macro call.

Examples: (Assuming the call shown above is being processed)
D(1$-1,7) (GAMMA)
D(2$18,21) = ZETA
D(1$-9,-1) is an error because the -9 points one charac-

~ter to the left of the entire argument string
D(2$-16,23) = (SBETA), (GAMMA), (DELTALEPSLONL),(ZETA),

Although th1s feature may have 11m1ted uses, it is there for
the programmer to utilize if he finds a use for it,

The format of an argument given to a macro when it is called

may be sllghtly different in NARP than in ARPAS (''may be"
is 1ntent10nalﬁ 81ncexwahave not been able to discover the

0-13

precise ARPAS format). The essential thing is this: any
blanks, commas, semicolons, or parentheses occurring between
single quotes (''between" here means between an "odd-quote"
and an "even-quote", where the first quote encountered is
odd, the next is even, etc., thus B and D are between single
quot;s in the following, but A, C, and E aren't: A'B'C'D'E)
are'treated exactly like other characters between single
quotes, i.e., they do not serve as terminators, separators,
or the like. In effect, when the argument collector in NARP
is collecting arguments for a macro call, the occurrence of
a single quote causes it to stop looking for special charac-
ters except for quotes (and, of course, carriage return,
which is an absolute terminator). Thus, in the following,
when a blahk, comma, semicolon, or parenthesis is referred
to, it is understood'that the character is not between single
quotes.

The argument string for a macro call has the following format:

<afg>,<arg>,...,<arg> <terminator> where <terminator> is a
blank, semicolon, or carriage return. There are essentially
three forms of <arg>:

i.) <arg> may be the null stfing.

ii.) 1If the first character of <arg> is not a left paren-
thesis then <arg>'is a string of characters not con-
taining blank, comma, semicolon, or carriage return
(remember: blanks, commas, and semicolons may appear
in <arg> if they are between single quotes).

1ii.) 1If the first character of <arg> is a left parenthesis,

‘then <arg> does not terminate until a blank, comma,

or semicolon is encountered after the right paren-
thesis which matches the initial left parenthesis
("matches" means that all left and right parentheses
in the argument are noted and paired off with each
other so that a nested parenthesis structure is pos-
sible). Of course, a carriage return at any point

0-14

34)

35)

36)

,immediatelﬁ terminates <arg>. Agein, remember that
blanks, commas, semicolons, and parenthesis between
single quotes are ignored when <arg> is being de-
limited. The initial left parenthesis and its match-
ing right parenthesis (note that this right paren-
thesis need not be the ias; character of <arg>) are
removed from <arg> before it is transmitted to the
macro, -

Examples: AMAC (,,;,,),, HOUSE, ,ROGER'

. | by 2l £2 i
D(2) is the null string
D(3) = 'HOUSE,,ROGER'

AMAC ,(PAR(STRING'),'PAR))MORE, AB',,'C

D(1) is the null string
D(2) = PAR(STRING'),'PAR)MORE
D(3) = AB','C

There is no limit on the number of arguments that can be
given to a macro (except the size of the core, of course).

When constructing a generated symbol, the digit string
formed is preceded by one zero. Thus the first time

A MACRO D,G,3
G(2) NOP
ENDM

is exPanded G(2) becomes Gh2. The second time it will
become G@#5. Since only the first six characters of a
symbol are meanlngful the user should keep the generated
symbol very short to avold nasty problems. A generated
symbol subscript must be within the range [1,m], where

m is the upper limit spec1f1ed in the macro head (note:

1 < m < 1023 must be true)

In the value-to-digit-string conver51on if the value is
negative then the digit string is preceded by a minus sign.

0-15

37)

38)

39)

NARG may only appear within a macro body, but it is legal
within any macro body (i.e., even if no dummy variable was
specifiéd by a given macro, NARG is still legal within that
macro and yields the value zero),

NCHR'has been changed so that its operand has precisely the
samé format as an argument to a macro. Thus, the operand
ends when a carriage return is encountered, or on the first
blank, comma, or semicolon not within single quotes unless
the first character of the operand is a left parenthesis.
In the latter case, blanks, commas, and semicolons are
shielded as described above in the discussion of macro argu-
ments (see 33). By scanning for NCHR and enclosing its
operands in parentheses, most ARPAS programs can be easily
converted to NARP programs as far as NCHR is concerned.

The only case for which this will not work is when the op-
erand contains unmatched parentheses that are not within
single quotes,

The RPT option RPT <expression> has been extended to
RPT <expression>[,<increment list>], where <increment list>
is of the form (<symbol>=<el>[,<e2>]) God) e (L)
Note, however, that the expression is evaluated before
the increment 1list is processed, so its value should not
depend on symbols initialized in the increment list.
Example: RPT 4,(3=2,3)
DATA Jt3 .
ENDR
When expanded results in the)fdllowing values:
8 R
125
512
T & o
The increment list of any RPT or CRPT option may be of any
length; no limit is set as in ARPAS.

0-16

40) Symbol definitions and external symbols:
Symbols are defined in three ways: By being assigned
values with EQU directives (or equivalently, by appearing
in an RPT or CRPT increment 1ist),'by appearing as labels,
and by being used with the EXT directive in a certain way.
Symbols may also be declared as external in two ways, by
preceding them with $ when they are defined, or by glving
them as parameters to the directive EXT after they are
defined. These cases are discussed in greater detail
below:

a) Symbol defined as a label: If the symbol is already
defined, either as a label or by EQU, the error mes-
sage 'D' is typed; the old definition is completely
reblaced by the new one.

b) Symbol defined by EQU: If the symbol is already
defined as a label than the error message 'D' is
typed and the old definition is completely replaced
by the new one; if the symbol is already defined by
EQU then its value is changed, and if a $ is present
the symbol is marked as external; the operand of EQU
must be deflned and must have an rfactor in the range

- [-15,15].

c¢) Symbol defined by EXT: See e.) below.

d) Declared external by $: For a label this is obvious;
for an EQU'ed symbol, a $ need appear only once, suc-
cessive EQU's of the symbol will preserve the external
mark.,

e) Declared external by EXT: Two cases:
1.) EXT has no operand: The symbol in the label
field is simply marked as external; it must
be a defined symbol, but it may have already

0-17

been marked as external or may even have
a § preceding it.

11.) EXT has an operand: The operand must be a
defined expression; the symbol is immediately
output as an external symbol with value the
same as the operand value; no local definition
of the symbol is made, in fact no table look-up
or addition to the table occurs,

Note: ARPAS and NARP output external symbol definitions
at different times; it is possible that this can have an
effect on a program if the user has done something kludgy.
Except for case ii.) under e.,) above, NARP outputs no ex-
ternal definitions until the END directive is encountered.
ARPAS, ‘however, outputs external definitions as soon as it
can, Thus, |

$A E?U 3
A EQU 4

&t

will cause ARPAS to output an external definition of A
with value 3, while NARP will output an external definition
gf A with value 4,

41) It is conceivable that the manner in which undefined ex-
ﬁressions are handled by NARP could lead to difficulties
in very obscure cases which are at best vaguely defined

anyway. When NARP encounters an undefined expression
which involves more than a single}undefined symbol, the
expression is saved until every undefined symbol in it
becomes defined. At the moment when this happens, the
expression is evaluated.

0-18

42)

Thus\

D?TA A+ B
'E(%U 0

A EQU 1

B EQU 2
END

will cause a data word of value 3 (not 2) to be output,

Operating NARP: When started, NARP asks for the specifi-
cation of a source file, an object file, and an optional
text file. Only one confirmation character is needed,
namely, a carriage return at the end of the object file
specifjcation. Then NARP immediately begins processing,
typing only IDENT's and error messages until the END
directive is encountered (don't be surprised when NARP
types an IDENT immediately after it starts processing;
remember that it is one-pass).

At the end of the assembly, a line of the following form

is typed:

2 SEC 3 ERRORS 101(65)WORDS (S:413,0:10,L:87,M:2033,U:73)
2 SEC: This is the time required for assembly as measured
by BRS 88. Timing begins after all files are opened
and ends before any file is closed.

'3 ERRORS: The number of error messages typed during the

assembly.

101 (65)WORDS: The value of the location counter when the
END directive is encountered (first in octal, then
in decimal).

0-19

43)

44)

S:413 413 symbols in the symbol table.

0:10 10 programmer-defined opcodes (excluding macros)
in the opcode table

L:87 87 literals in the literal table

M:2033 2033 machine words of defined macros

U:73 73 words of undefined expressions in expression

table (currently this is the maximum size
attained by the undefined expression table
during the assembly; there is as yet no garbage
collection for this table).

The three most important tables in NARP are the main table
(which contains all symbols, opcodes, and literals, each
occupying 4 words per entry), the string storage (which
contains all macro definitions and is used for storing
repeat' blocks and argument strings to macros; characters
are packed 3 to a word), and the undefined expression
table. Currently these tables have the following sizes:

main table 5000 (1250 entries)
as 2250
expr table 900

Using these figures and the information printed out at the
end of an assembly, the user can see how close he is to
overflowing the tables (remember that there are 191 pre-
defined opcodes in the main table, so the user can only
create 1059 new entries). Currently there is no garbage
collection in the string storage.

At the end of an assembly, after typing the line of infor-
mation mentioned above, all undefined symbols are listed.

1.0 Introductiqn

RARP (ng éggAS) is a one-pass assembler for the SDS 9&0
with literal, subprogram, conditional assembly; and macro
facilities. The source language for NARP,primarily a one-for-
one representation of machine language written in symbolic form,
is very similar to that for ARPAS (another assembler for the 940),
but'there:are notable eiéeptions making it necessary to do a
‘certain amount of transliteration to convert an ARPAS program to
a RAR?‘program. No further mention will be made bf.ARPAS
in this manual; for more details see ARPAS, Reference,Manual for
Time-Sharing Assembler for the SDS 930, Doc. No. R-26,

February 24, 1967.

To motivate the various facilities of the assembler, the

following pseudo-historical development of assembly languages

is presented.

1.1 Pseudo-history of assembly languages

A program stored in the main memory of a modern computer
congists of an array of tiny circular magnetic fields, some
oriented clbckwise, others oriented counterclockwise. Obviously,
if a programmer had to think in these terms when he sat down
to write a program, few problems of any complexity would be
solved by computers, and the cost of keeping programmers sane would
be prohibitive; To remedy this situation, utility programs
called assemblers have been developed to translate programs
from a symbolic form convenient for human use to the rather
tedious bit patterns that the computer handles. At first these
assemblers were quite primitive, little more than number converters,

in fact. Thus, for example:

Tag Opcode Address

6
A
g 3 oo

1-2

would be converted into three computer instructions which would
add together the contents of cells Lpp and h¢l and place the
‘result in cell k2. An assembler for doing this type of conver-
sion is trivial to construct.

After a time, some irrltated programmer who could never
remember the numerical value of the operatlon "load the A register
with’ the contents of a cell of memory" decided that it would not
be too dlfflcult to write a more sophistlcated assembler which
would allow him to wrlte a short mnemonic word in place of the
number representlng the hardware operation. Thus, the sequence
of 1nstruct10ns shown above became: '

. ¢ LDA ¢¢h%

ADD pglpl
¢ STA pgug2

This innovation cost something, however, namely the assembler
hed to be more clever. But not much more clever. The programmer
in charge of the assembler simply added a table to the assembler
which consisted of all the mnemonic operation names (oncodes) l
and an associated number, namely the numerical value of the
opcode. When a mnemonic name, say 'ADD', was encountered by the
assembler during the conversion of & program, the epcode table
was.scanned until the mnemonic name was found; then the associated
numerical value (in this case, 55) was used to form the instruc-
tion. Within a month, no programmer could tell you the numerical
value of XMA. - A

In a more established field, the innovation of these mnemonic
names would have been quite enough fer‘many years ahd many
thebfeficel‘papers However, programmers. are an irritable lot
and furthermore, are noted for their ablllty to get rid of sources
of irritation, elther by writing more clever programs or by
asklng ‘the englneers to refrain from maklng such awkward machines.
And the use of numbers to represent addresses in memory wes a

large source of irritation. To see this we need another example:

£y
6 BRX #9306

1-3

Assuming cell 4fp contains -7, this sequence stores zeroes in
cells 50f through 506 provided that the sequence is loaded in
memory so that the STA instruction is in cell 3P (otherwise,
the BRX instruction would have to be modified). This was the
cruk of the problem: Once a program was written, it could only
run from a fixed place in memory and could only operate on fixed
cells iﬁ nemory. This was especially awkward when & program was
changed, since inserting an instruction anywhere in a program would
generally require changes in many, many addresses. One day e
clever'programmer saw that this problem could be handled by a
generalization of the scheme used to handle opcodes, namely,

let the programmer use symbolic names (symbols) for addresses
and have the assembler build a table of these symbols as they
are defined and then later distribute the numerical values

associated with the symbols as they are used. Thus the example

becomes:
CIA
DX TABLEN
LOOP STA TABEND, 2
BRX LOOP

(Note that at the same time the programmer decided to move

the tag field to after the address field (simply for the sake
of readability) and to even dispense with it‘éntireiy in éase

it was‘zerb.) The assembler now has two tables,‘tﬁe fixed opcode
table with predefined names in it, and a symbol table which is
initially empty. There is also a special cell in thé assemﬂier
called the location counter (IC) which keeps track of how many
cells of program have been assembled; IC is inifially zero.'
There is ahother complication: In the above example, when the
symbol TABLEN is encountered, it may not be defined yet, so the
assembler doesn't know what numerical value to replace it with.
There are several clever ways to get around this problem, bﬁt
the most obvious is to have the assembler process the program
to be assembled twice. Thus, the first time the assembler scans
the program it is mainly interested in the symbol definitions
in the left margin (a symbol used to represent a memory address
is called s }gggl). In our example, when LOCP is encountered,

it is stored in the symbol table and given the value 2 (because

1-4

it is preceded by two cells; remember that LC keeps track of
this). At the end of pass 1, all symbols defined in the program
are in the symbol teble with numerical values corresponding to
their addresses in the memory. So when pass 2 begins, the symbol
table is used exactly as the opcode table is used, namely, when,
for example, LOOP is encountered in the BRX instruction above,

it is looked up in the symbol table and replaced by the value 2.
If the program should later be changed, for example to

CLA
LDB EIGHT
R 7)), TABLEN
LOOP * STP TABEND, 2
EAX 1,2
BRX LOOP

then the assembler will automatically fix up LOOP to have the
value 3 (because of the inserted LDB instruction) and will
convert BRX LOOP to BRX 3 instead of to BRX 2 as before. Thus,
the programmer can forget about adjusting a lot of numerical
addresses and let the assembler do the work of assigning new
values to the symbols and distributing them to the points where
the symbols are used. In addition to the greater flexibility
achieved, symbols with mnemonic value can be used to make the
program more readable.

The use of symbols to stand for numer1cal values wh1ch
are computed by the assembler and not the programmer is the basic
characteristic of all assembly languages. Its inception was
a fundemental Breakthrough in machine 1anguage ﬁrbgramming,diSpensing
with much dullness and tedlum And & new breed of programmer
was born' the assembler writer. To Justlfy his existence, the
assembler-writer began to add all sorts of bells and whistles
to his productS' the primary ones are discussed in the next

section (with reference to NARP).

1.2 Assembly lanpuages: some basic constituents and concepts

Times: assembly time: when a program in symbolic form is
converted by an assembler to binary

(relocatable) program form.

1-5

load time: when a binary program is converted by a loader to
actual machine language in the main memory of
the computer. ‘

rum time: when the loaded program is executed.

assenb
source program ‘m ler, > binary program-——éegégz—~9 object program

14

gggrescibns’ The idea of using a symbol to stand for an‘address
is general1zed to allow en arithmetic expression (pOSS1bly
containing symbols) to stand for an address. Thus, some calcu-~
lations can be performed at assembly time rather than at run
time, making programs more efficient.

Literals: Rather than writing LDA M end somewhere else defining
ML to be a cell containing -1, the literal capability allows the
programmer to write the contents of & cell in the address field
instead of the addresé of a cell. To indicate this,‘the expression
is preceded by '='. The assembler automatically assigns & cell
for the value of the expression (at the end of the program):

CIA
LDB =8
LDX =-16%2

IOOP . STP - TABBEG+16%2,2
FAX 1,2
BRX LOOP

Relocation: A relocatable program is one in which memory locations
have been computed relative to the first word or origin of the
program. A loader (for this assembler, DDT) can then place the
aséembled program into core beginning at whatever location may be
specified at load time. Placement of the program involves a
small calculation. For example, if a memory feferénce is to the
nth word of a program, and if the program is loaded beginning

at location k, the loader must transform the reference into
absolute location n+k. This calculation should not be done to
each word of a program since some machine instructions (shifts,
for example) do not refer to memory lbcations. It is therefore
necesSary to inform the loader whether or not to relocate the
address for each word of the program. Relocation information is
determined automatically by the assembler énd transmitted as a

relocation factor (rfactor). Constants or data may similarly

1-6

require‘relocation, the difference here being that the relocation
calculation should apply to 2all 24 bits of-the 9hO.word, not just
to the address field. The assembler accounts for this difference
automatically.

Subprograms and exfernal symbols : -Programs ofben become quite

large or fall into logical divisions which are almost independent.
In either case it is convenient to break them into pieces and
assemble (and even debug) them separately Separately assembled
parts of the :ame program are called subprograms (or packages)

Before a program assembled 1n pleces as subprograms can be run it
is necessary to load the pleces into memory and link them. The
symbols used in a given subprogram are generally 1oca1 to that
subprogram. Subprograms do, however, need to refer to ‘symbols
defined in other subprograms The llnklng process takes care of
such cross references i Symbols used for it are called external
symbols.) ’
Directives: A direetive‘(pseudo—epcode is a message to the
assembler serving to change the assembl& process in some way.

Directives are also used to create data:

LIST
MESSAGE TEXT 'THIS IS A PIECE OF TEXT'
 START LA ALPHA

The LIST directive will cause the program to be listed during
assembly, while the TEXT directive will cause the following text
to be stored in memory, four characters to a word.

Conditional assembly: It is frequently desirable to permit the

assembler to either assemble or skip a block of statements
depending on the value of an expression at assembly time; this
is called conditional assembly. With this facility, totally

different object programs can be generated, depending on the values

of a few parameters.

Macros: A macro is a block of text defined somewhere in the
program and given a name. Later references to this name cause
the reference to be replaced by the block of text. Thus, the
macro facility can be thought of as an abbreviation or shorthand

notation for one or more assembly language statements. The macro

1-7

facility is more powerful than this, however, si. e a macro moy
have formal arguments which are replaced by actu. . ar. zuents when
the macro is called. -

" One-pass assembly: Instead of processing a sourc: pre ;ram twice
as was described above (section 1.1), NARP accom iishe . the same
task in one scan over the source program. The m¢-hod .sed is

rather complex and is not described in this docu..nt.

2.0 Basic constituents of NARP'

2.1 Character set

All the characters listed in Appendix B have meaning in
NARP except for '?' and ' \'. The following classification of

the character set is useful:
R

letter: A-Z_

octal digit: 0-7

digit: 0-9

alphanumeric character: letter or digit or colon

terminator: s blank CR (denotes carriage return)
operator: h ' # % & * + - l<=>@ 1

delimiter: | "$r ().«

The multiple-blank character (1358) may appear anywhere that a
blank is allowed. All characters with values greater than 778 are
ignored except for multiple-blank character (1358) and carriage
return (1558).

2.2 Statements and format

The logical unit of input to NARP is the statement,a sequence
of characters terminated by a semi-colon or a carriage return.
There are five kinds of statements:
empty: A statement may consist of no characters at all, or only

' of blank characters.

comment: If the very first character of a statement is an
asterisk, then the entire statement is treated as a
comment containing information for a human reader.
Such statements generate no output.

The format for the next three kinds of statements is split into

four fields: '

label field: This field is used primarily for symbol definition;
it begins with the first cheracter of the statement and
ends on the first non-alphanumeric character (usually a
blank).

opcode field: This field contains a directive name, a macro
name, or an instruction (i.e.; any opcode‘other than a
directive or macro). The field begins with the first
non-blank character after the label field and terminates
on the first non-alphanumeric character; legal terminatorsg
for this field are blank, asterisk, semi-colon, and
carriage return.

goerand field: The operand for an instruction, macro, or

directive appears in this field, it begins with the first
non-blar k character following the opcode field and terminates
on the first blank, semi-colon, or carriage return. Note
that a statement may terminate before the operand fieli.A

comment field: This field contains no information for NARP but

may be used to help clarify a program for a human reader.
The field starts with the first non-blank character after
the operand field (or after the opcode field if the opcode

takes no operand) and ends on a semi-colon or carriage return.

Now we continue describing the kinds of statements: ,

instruction: If the opcode field of a statement does not contain
a directive name or a macro name, then the‘statement is
an instruction. An instruction usually has an expression
as an operand and generates a single machine word of
program. See section 3 for a detailed description of
instructions.

directive: If a directive name appeesrs in the opcode field, then
it is a directive statement. The action of each directive
is unique and thus each one is described separately (in
section U4). ' »

macro: A macro name in the opcode field of a statement indicates
that the body of text associated with the macro name should
be processed (see section 5).

Example of various kinds of statements:

% FOLLOWING ARE TWO DIRECTIVES (MACRo,mmM) WHICH DEFINE
* THE MACRO SKAP
SKAP MACRO; SKA =4B7; ENDM

* NOW SKAP IS CALLED:
LDA ALPHA |
SKAP; BRU BAD IF NEGATIVE THEN ERROR
OKAY ADD BETA NOW A=ALPHA+BETA; BRU GOOD

In subsequent sections the details of instructions, directives,
and macros will be explained, but first some basic constituents

and concepts common to all of these statements will be discussed.

2.3 Symbols, numbers, and string constants

Any string of alphanumeric characters not formihg a number
is a symbol, but only the first six chafacters distinguish the
symbol (thus Q12345 is the same symbol as Q123456). Note that
a symbol may begin with a digit, and that a colon is treated as
a letter (as a matter of good programming praétice, colons should
be rarely used in symbols, although they are often useful in
macros and other obscure places to avoid conflicts with other
names). In thc next section the definition and the rfactors
of symbols are discussed.

A number is any one of the following:

a) A string of digits

b) A string of digits followed by the letter 'D'

c) A string of digits followed by the letter 'B'

d) A string of digits followed by the letter 'B'

followed by a single digit.

A D-suffix indicates the number is decimal, whereas a B-suffix
indicates an octal number. If there is no suffix, then the
current radix is used to interpret the number (the current
radix is initially 10 but it may be changed by the OCT and DEC
directives). If the digit 8 or 9 is encountered in an octal
number, then an error message is typed. If the value of a
number exceeds 223-1 overflow results; NARP does not ¢heck for
this condition, and in general it should be avoided. A B-suffix
followed by a digit indicates an octal scaling; thus, TWB3=Thp@@B.

Examples:

symbols: START 1M CALCULATE 1kD2 14B10
numbers: 14 18D 773B 7778 13B9

A string constant is one of the following:
a) A string of 1 to 3 characters enclosed in double
quotes ".

b) A string of 1 to 4 characters enclosed in single

» quotes (').
In the first case the characters are considered to be 8 bits
each (thus only 3 can be stored in one machine word), while in
the second case they are considered to be 6 bits each. ih both
cases, strings of less than the maximum length (3 or 4, as the
case may be) are right-justified. Thus

A = T, AT = VAT = T LAY
where , denotes a blank. If a string constant is too long, then
an error message is typed and only the first 3 (or h) characters
are taken. Normally string constants are not very useful in

address computation, but are most often used as literals:

LDA WORD
SKE =GO’
BRU STOP

Both numbers and string constants are absolute, i.e., their

rfactor is zero.

2.4 Symbol definitions

Since NARP is a one-pess assembler, the statement that a
symbol or expression is "defined" usually means that it is defined
at that instant and not somewhere later in the program. Thus,
assuming ALFHA is defined nowhere else, the following

BETA EQU ALPHA
ALPHA BSS 3

is an error because the EQU directive demands a defined operand
and ALPHA is not defined until the next statement. This convention
is not strictly adhered to, however, since sometimes the state-
ment "XYZ is not defined" will mean that XYZ is defined nowhere
in the program.

A symbol is defined in one of two ways: by appearing as &
label or by being assigned a value with an EQU directive (or

25

equivalently, by being assigned a value by NARG, NCHR, EXT
(see below) , or by being usecl in the increment list of a RPT
or CRPT statement) The Latter type of symbols are ca.lled

equated syn’bols .

-

Labels:, If a symbol qppeafs in the label field of anv
instruction (or in the label field of some directives)
then it is defined with the current value of the location
counter (rfactor=l). If the symbol is already defined,
either as a label or as an equated symbol, the error

| message '(Symbol) REDEFINED' is typed and the old

definition is completely replaced by the new one.

Equated symbols: These symbols are usuaily defined by EQU,
getting the value of the expression in the operand field
of the EQU directive. This expression must be defined
and have an rfactor in the range [-15,15]. " If the symbol
has been previously defined as a label, then the error
message '(Symbol) REDEFINED' is typed and the old definition
is completely r?veplaced by the new one; if the symbol has already been
defined as an equated symbol, then no error message is
given, but the old value and rfactor are replaced by the
new ones. Thus, an equated symbol can be defined over

and over again, getting a new value each time.

A defined symbol is always local, and may also be eXﬁerhal.
If a symbol in package A is referred to from package B, it must
be déclared external in package A. This is done in one of the
following ways:

Declered external by $: If a label or equated symbol is
preceded by a $ when it is defined, then it is declared external.

$IABELl IDA ALPHA
LABEL2 STA BETA TLABEL2 IS LOCAL ONLY
$cAMA EQU DELTA

2-6

Declared external by the EXT directive: There are two cases:
'1) EXT has no operand: The symbol in the label field is declared
external it must be a def1ned symbol but it may have already
been declared external or may even have a $ preced1ng it.
ii) EXT has an operand: This case is treated exactly like the
case: $label EQU operand.
‘éertain'eymbois-are pre-defined in NARP, i:e., they already
have value; when an assembly beglns and need not be deflned by
the programme HE .
-ZERo- | This is relocatable zero (i e., value = 0, rfactor = 1).
:1C: / ThlS symbol is 1n1tlally zero (rfactor l) and remains
so unt11 the END d1rect1ve is encountered and all literals
are output, at whlch time it gets the value of the location
counter. See the description of FREEZE for a discussion
of the use of this symbol.
‘Syntectieally this is not a symbol, but semantically
it acts like ooe; .Af any giren'homent, * has the value
of the location counter (rfactor=l),,and can thus be'used
to avoid creating a lot of local labels.

Thus ClA; IDX IENGTH
LOOP STA TABIE,2; BRX LOOP

" can be written as

CLA; IDX LENGTH; STA TABIE,2; BRX *-1

)

If a glven symbol is referred to in a program, but is not
defined when the END directive is encountered then it is assumed
that this symbol is defined as external in some other package
Whether thls is the case cannot be determined until the various
packages have been loaded by DDT. Such symbols are called
"undefined symbols' or "external symbol references.' It is
possible to perform arithmetic upon them (e. g., LDA UNDEF+1);

an expression in post-fix Polish form will be transmitted to DDT.

2. 5 Expressmns and llteral's

Loosely speaklng, an expression is a sequence of constants
and symbols connected by op@rators Examples:
100-2%ABC/ [ALPHA+BETA] |
P>=Q _
Following is ’theb férmslil descripfion (in Backus normal form)

of' a NARP expression:

<primary>::=<number>‘<string constant>|<symbo]>,*’[<expr2>]
<exprI>: :7=<prmary>i<primary‘$ <binary operetor> <exprl>
-<ekpf2>::=<expr]>[<unary operator> <exprl>
<expression>::=<expr2>|<literal operator> <expr>

<binary operatoﬁ>::=1|*!/l+|—'<I<=I=l#|>={>|&I!{%
<unary operator>::=+l;|@

<literal operator>::= =

Thé main point of the above syntax is that two 6perators
may never be adgacent (except for a unary operator follow1ng a
literal operator), so A &€@B is jllegal (wrlte it as@B & A).
The literal operator is rather spec1al only belng allowed to
appear once in a given expreSS1on, and only as the flrst character
:of the expression. Literals are discussed in greater detail
below

The value of an e7pression is obtained by app1y1ng the
operators to the values of the constants and symbols, evaluating
from‘lefﬁ to right except when this order is interrupted 5y the
precedence of the operators or by square brackets*({]); the
result is interpreted as a 24-bit signed 1nteger The foilowing
table describes the varlous operators and lists thelr precedences
(the h1gher the precedence, the tighter the operator binds its

operands):

*not parentheses!

2-8

Operator Precedence Comment
t 6 exponentiation; exponent must be > 0
* 5 multiplication -
/ 5 integer division
+ (u) L unary plus
- (u) L negation
+ L addition
- h subtraction
< 3 less than :
<= 3 less than or equal to result of operation is
= 3 equal to 0 if relation is false,
3 not equal to otherwise 1
>= 3 greater than or equal to
> 3 greater than
@ (u) 2 logical not
& 1 logical and logical operation
! o logical or applied to all
% 0 logical exclusive or 2L vits

The rfactor of an expression is computéd at the same time
the value is computed. There are constraints, however, on the
rfectors of the operands of certain operators, as shown in ﬁhe
table below: (Note: R1 is a symbol with an rfactor of 1, R2
is a symboi with an rfactor of 2).

relocation factor(s) relocation factor
operator of operand(s) of result examples
' =16,
Rltl(error)
& ! all operands absolute absolute 7&3=3,
} 6&R1{error)
/ : 4/2=2,
R1/1(error)
* at least one rfactor found by multi- 3*R2 has
must be absolute, the | plying the value rfactor of 6,
other is arbitrary of the absolute R1¥R1{error)
operand times the
rfactor of the
other operand
< L= = arbitrary relocation R1=R1 is true
#>=> factors, but must be absolute ' R2>R1{error)
equal
+ - found by applying R1+R2 has
(unary snd|arbitrary rfactors | operator to the ' relocation
binary) relocation factors factor of 3
of the operands

2-9

The finel rfactor of an expression must be in the range
(-8191, 8191]. | ' ‘

If an expression contains an undefined symbol or if it is a
literal, then the entire expression is undefined.
" Although a literal is a special kind of expression, it is
often cénvenient to think of it as a quite separate entity. The

use of?literalé is discussed below.

2-10

- Programmers frequently write such things as
“LDA“ X'FIVE

Awhere FIVE is the name of a cell containlng the constant 5 The
programmer must remember to 1nc1ude the datum FIVE 1n hls program
somewhere._ ThlS can be av01ded by the use of a llteral

IDA =5

will automatically produce a location containing the correct
constant in ti:e program. Such a construct is called a literal.
When a literal is encountered, the assembler first evaluates the
expression and lboks up its value in a table of literals constructed
for each subprogram. If it is not found in the table, the value
is placed there. In any case the literal itself is replaced by
the location of its wvalue in the literal table. At the end of
assembly the literal table is placed after the sub-program.

The following are examples of literals:

=10 =4B6 =ABC*20-DEF/12 ='HELP'

=2>AB (This is a conditional literal. Its value will
be 1 or O depending on vhether 2>AB at assembly
time.)

Some programmers tend to forget that the literal table
follows the subprogram. This could be harmful if the program
ended with the declaration of a large array'using the statement

CARRAY BSS 1

It is not strictlx correct to do this, but some programmefs
attempt it anyway on the theory that all they want to do is to
name the first cell of the array. The above statement will do
that, of course, but only one cell will be reserved for the
array.. If any literals were used in the subprogram, they would
“be placed in the following cells which now fall into the array.
This is, of course, an error. Other than this exception, the

_programmers need not concern himself with the locations of the
literals.

2-11

2.6 Opcode classification

As mentioned above, there are three types of opcodes:
directives, macros, and instructions (those opcodes which are
neither directives nor macros). Aside from its type, each opcode
has a class which indicates whether it takes an operand.

class @#: operand optional (e.g., NOP, EXT)
class 1: no operand (e.g., CIA, DEC)
~ class 2: operand required (e.g., ADD, DATA)
Note that for class ¢ opcodes, if the operand is missing, then
the comment field must be empty because otherwise the first item

in the comment field will be taken as an operand:

NOP THIS IS A COMMENT
is the same as
NOP THIS

causing THIS to be treated as & symbol. To get around the

problem, write

NOP ¢ THIS IS A COMMENT
On the other hand, class 2 opcodes have no operand field at all:
Ccia THIS IS A COMMENT

Although there are instructions and directives of all three

classes, there are no class 2 macros.

3.0 Instructigﬁs

‘ There are three dlflerent syntactlcal forms of 1nstruction
statements, dependlng on the class of the 1nstrucu10n in the
opcode field: (In the following, syntactical elements enclosed

in square brackets are optional; they may or may not be present.)

qiéssk¢:vh[[$]igﬁei] épéode(;j [operand[tag] [éomméntjj
élass 1: [[$]1gbel] opcode[*] [comnent] _
class 2: [[$]label] opcode[*‘ operand[tan} [comment]-

Each of the syntectical élements is discussed below:
$: A label preceded by a dollar sign is declared external
(see section 2. L). ‘
The labzl is deLlnod with the current value of the

s

label
‘location counter (rfactor=l).
opcode : The opcode nust be either an ins+ructioh which is
| elready defined or a nurber. If it is a number, then
the value (mod 29) of the number is placed in bf-b8
(bit @ through bit 8) of the instruction, and it is
treated as a class ¢ opcode (i.e., operand optional).
* ¢ If an asterisk follows immedietely after the opcode
then b9 (the indirect bit) of the instruction is set.
operand: The operand is an expression which may or wmay not be
defined and which has any rfactof. The expression may
be preceded by '/' or '«' (or both in any order);
these characters canse the following bits to be set:
/ bl (index bit)
« b9 (indirect bit)
Thus:

ILDA /VECTOR is the same as LDA VECTOR,?2
STA «POINTER is the same as STA* POINTER
IDA «/COMPLX is the same as LDA¥* COMPIX,2

tag : The tag is an expression which must be defined and
absolute. Its value (mod 23) is placed fn b@-b2 of
the instruetion.

cormment : kThé comment does not affect ‘the instructlon generated;
1t ma.y be listed.

In addition to its class, a given opcode is designated as
being either a shift instruction or & non-shift 1nstruction.
'This has nothiwg to do with whether the action of the 1nstruction
involves shiftmng, but is Slmply a way of distlnguishing between
“two kinds of instructlons. For non-shift ipstructions, operands
are computed mod 21h, while for shift instructions there are two
‘possibilities: -

e) If the indirect bit is set by '*' or '«', then the value
of the opcode is trimmed'sd that blO—b23 are zero, and
then the instruction is treated as if it were & non-
shift instruction.

b) If the indirect bit is not set as above, then the
operand is computed mod 29 1t must be defined and

absolute.

4.0 Directives

There are many directives in NARP; although some of them are

similar, each in general has its own syntax. Following is a

concise summary:

Class

Mnemonic for instructions:

Date generation

Value declaration

Assembler control H

Directive Use or Function

COoPY Mnemonic for RCH

DATA Generate data

ASC Generate text
(3 charactersper word)

TEXT Generate text (L
characters per word)

EQU Equate a symbol to
& value

EXT Define a symbol as
external

NARG Number of arguments

NCHR Number of characters

OFD Define an opcode

POFD Define a programmed
operator

BES Block ending symbol

BSS Block starting symbol

END End of assembly

DEC Interpret integers

: ‘as decimal

OCT Inﬁerpret integers
as octal

FRGT Do not output a
specific symbol

IDENT Identification of

& package

4,23

k.9
4.10
5.5
5.5
4.17
4.19
.2
k.3
4.8
4.6
4.16

4.12

4.13

Class Directive Use or Function Scericn

DELSYM Do not output any
. symbols 4.7
RELORG Assemble relative
with absolute origin 4.25
RETREL Return to relocatable
assembly L2z
- FREEZE Preserve symbols,
, « opcodes, and macros 4.11
FIILIB Assemble FORTRAN II
7“ library routines 4,105
GLOBAL Reverse meaning of $ |
| and EXT | 4,128
LOCAL Reset meaning of $
o | and EXT 4,143
Output and listing ,
control ¢+ LIST Set listing controls .14
© NOLIST | Reset listing controls 4.15
REM ' Type out remark 4,21
Conditional assembly
and macros , . IF Begin if body 5.1
' | ELSF - Alternative if body 5.1
ELSE . Alternative if body 5.1
ENDF ~ End if body 5.1
RPT Begin repeat body 5.2
CRPT Begin conditional
repeat body 5.2
ENDR . End repeat body 5.2
MACRO ’ E Begin macro body 5.4
LMACRO . Alternative to MACRO 5.4
ENDM . End macro body 5.4

_In the remainder of this section, all directives listed above
except for those associated with conditional assembly and macros
are described. ' o ‘ '

k.1 ASC Generate text (3 characters per word) .

[[$]1§be1] ASC string [comment]

This directive creates a string of 8-bit characters stored
3 to a word. The string starts in the leftmost character of a
word and takes up as many words as needed; if the last word is
not filled up completely with characters from the string, then
the right end of the word is filled out with blanks. If a label
appears, its value is the address of the first word of the
string. The syntactical element "string" is usually any
sequence of characters (not containing a single quote) surrounded
- by single quotes. However, the first character encountered
after 'ASC' is used as the string delimiter (of course, blanks

and semi-colons cannot be used as string delimiters).

Examples:

ASC 'NO SINGLE QUOTES, HERE IS A SEMI-COLON:;'
$ALPHA ASC $HERE IS A SINGLE QUOTE: '$

4.2 BES Block ending symbol

[($)1abel] BES expression [comment]

The location counter is increménted by the value of the
expression in the operand field and then the label (if present)
is given the new value of the loéation counter. Thus, in
effect, a block of words is reserved and the label addresses
the first word after the block. The expression must be defined
and absolute. This directive is most often used in conjunction
with the BRX instruction, as in the following loop for adding
together the elements ofian‘array:

LDX =-LENGTH; CLA; ADD ARRAY,2

BRX *-1; STA RESULT; HLT
ARRAY BES LENGTH

4.3 BSS Block starting symbol

[[$]1abel] BSS expression [comment]

This directive does exactly the same thing as BES except that
the label (if present) is defined before the location counter
is changed. Thus, the label addresses the first word of the
reserved block. It should be noted that the expression fér both
BES and BSS may have a négative value, in which case the location
counter is decremented. I -

k-6

4.4 COPY Mnemonic for RCH

[($)12be1] coPY 81’32’83"" [comment]

(where s, ere symbols from a special set associated with the
COPY directive)

The COPY directive produces an RCH instruction. It takes
in its operand field a series of special symbols, each standing
for a bit in the address field of the instruction. The bits
- selected by a given choice of symbols are merged together to
form the address. For example, instead of using the instruction
CAB (O4600004), one could write COPY AB. The special symbol
AB has the value 0000000,

‘ The advantage of the directive is that unusual combinations
of bits in the address field--those for which there exist
normally no operation codes--may be created quite naturally.

The special symbols are mnemonics for the functions of the
various bits. Moreover, these symbols have this special meaning
only when used with this dircctive; there is no restriction on
their use either as symbols or opcodes elsevwhere in a program.

The symbols are:

Symbol Bit Function

A 23 Clesr A

B 22 Clear B

AB 21 Copy (A) -» B

BA 20 Copy (B) »A

BX 19 Copy (B) »X

XB 18 Copy (X) -» B

E 17 Bits 15-23 (exponent part) only
XA 16 Copy (X) »A

AX 15 Copy (A) »X

N 14 Copy -(A) - A (negate A)
X 1 Clear X

To exchange the contents of the B and X registers, negate A,
and only for bits 15-23 of all registers, one would write
COPY BX,XB,N,E

b7
4.5 DATA Generate data

[[$]1abel] DATA €11625€35 4[commen£]

- The DATA diréctive is used to produce data in pfograms.
Each expression in the operand field is evaluated and the 2h-bit
values assigned to increasing memdfyvlocations. One or more
expressions may be present. The label is assigned to the
location of the first expression. The effect of this directive
is to create a list of data, the first word of which may be
labeled. |

Since the expressions are not restricted in any way, any
type of data can be created with this directive. For example:
DATA 100,-217B,START,AB*2/IEF, "NUTS',5

creates six words.

.6 IEC Interpret intecers as decimal

DEC [comment]

The radix for integers is set to ten so that all following
integers (excevnt those with a B-suffix) are interpreted as
decimal. When an assembly begins the radix is initialized. to
ten, so DEC need never be used unless the OCT directive is used.

;-

4.7 DELSYM Do not output any symbols

DELSYM [comment]

If DELSYM appears anywhere in a program being assembled,
the symbol table and opcode definitions will not be output
by NARP when the END directive is encountered. The main purpose
of this directive is to shorten the object code generated by
the assembler, especially when the symbols are not going to
be needed later by DDT.

4-10

4.8 END End of assembly

END [comment]

When this directive is encountered the assembly of the current
program terminates. If the LIST directive has been used then various

information may be listed, for example undefined symbols.

4.9 EQU Equate a symbol to a value
[$)symbol EQU expression [comment]

The s&mbdi iéydéfined ﬁith thé value of tﬁe ékpressibn; if
the symbol is already defined, its value and rfactor are changed.
The expression must be defined and must have en rfactor in the
range‘[-15,15]. If the symbol has been declared external before
or if it has been forgotten (using FRGT) then EQU preserves this

information. Thus

$ALPHA EQU 4
, ALPHA EQU 3

will cause ALPHA to be declared external but with a value of
three at the end of the assembly (provided ALPHA is not changed
again before the END directive). See section 2.4 for more

discussion of EQU.

412

4,10 EXT _Define a symbol as external
[$)symbol EXT [expression [comrment]]

This directive is used to declare symbols as external. See

section 2.4 for a discussion of the various cases.

4-12a

4.105 FIILIB FORTRAN II Library Routines

FIILIB [comment]

Causes an end-of-program word (31062144B) to be outputted between
each program in a multiple program assemble, This allows the resul-
tant object file to be loaded by the FORTRAN II load. The directive
need only appear in the first program of the multiple program assembly.

k-13

4.11 FREEZE Preserve symbols, opcodes, and macros

FREEZE [comment]

’

Sometimes subprograms share definitions of symbols, opcodes,
and macros. It is possible to cause the assembler to take note
of the current contents of its symbol and opcode tables and the
currently defined macros and include them in future assemblies,
eliminating the need for including copies of this information
in every subprogram's source language.

When the FREEZE directive is used, the current table
boundaries for symbols and opcodes and the storage area for macros
is noted and saved sway for later use. These tables may then
continue to expand during the current assembly. (A separate
- subprogram may be used to make these definitions; it will then
end with FREEZE; END.) The next assembly may then be started
with the table boundaries returned to what they were when FREEZE
was last executed. This is done by entering the assembler
at its "continue' entry point, i.e., by typing in the EXECUTIVE

CONTINUE
Note that the assembler cannot be released (i.e., another
subsystem like QED or DDT cannot be used) without losing the
frozen information. o

In conjunction with the FREEZE directive, the predefined
symbol :IC: is useful, especially when writing large
re-entrant programs. Following is a three-package program
using FREEZE and :IC:.

Pl IDENT
<definitions of macros, opcodes, and global equated
symbols>
<definition of working storege (i.e., read-write
memory >
FREEZE
END

P2 IDENT
BSS :I1C:-:ZFRO:
<read-only code>
END

-1k

Pl IDENT

BSS :ICs~:ZERO:

<read-only code>

END o

The FREEZE directive at the end of Fl preservesrail the
definitions in this package so they can be referenced in packages
P2 amd P3. By including the definitions of all the working storage
cells in the preserved definitions, these symbols need not be
declared as external. Also, it makes "external" arithmetic on these
syMbéls possible in P2 and P3, and it reduces the number of
undefined symbols printed at the end of an ésseMbly. Packages
P2 and P3 start with the rather peculiar looking BSS in order
to set the location counter so that references between the
packages will be correct. This is the main purvose of :IC:,
it saves the final value of the location counter from the
previous package for use by the current package. In order for
this scheme to work, all three packages must be loaded at the
same location, usually O for large re-entrant programs.
Assume ALPHA is a symbol defined in Pl. Unless some

special action is taken, ALFHA will be ocutput to DOT three times,
once at the end of Pl, once at the end of P2, and once at the end
of P3. To avoid this, all symbol and opcode definitions are

marked after they have been output once so that they won't be
output again.

k-15

4,12 FRGT Do not output a specific symbol
FRGT s1,S0,... [comment]

The symbols s; (which must have been previously defined)
are not output to DDT. FRGT is especially useful in situations
where symbols have been used im macro expansions or conditional
assemblies, and have meaning only at assembly time. When DDT
is later used, memory locations are sometimes printed out in
terma of these meaningless symbols. It is desirable to be able
to keep these symbols from being delivered to DDT, hence the
FRGT directive.

4-15a

L.125 FRGTOP Forget selected opcodes

FRGIOP 8,5, { comment]

The Si must be opcodes. The specified opcodes are marked
as forgotten and will not be output to DDT. Since DDT knows
in advence about the standard instruction set (e.g., LDA, BRS,
CIO), FRGTOP or such opcodes has no effect. It follows that
the chief use of FRGTIOP will be to suppress output of opcodes
generated by OPD and POFD.

FRGTOP does not take a label.

4-16

4,128 GLOBAL Reverse external specification

GLOBAL [comment]

Causes all symbols which would normally not be external to be ex-
ternal and all symbols which would be external not to be external,
This directive remains in effect until an END or LOCAL directive is
encountered at which time the normal external determination method
is used. For example,

GLOBAL

START LDA =1
A EXT B
SC STB X

would cause START to be ekternal and A and C not to be external.

4-17

4,13 IDENT IJdentification of a package

symbol IDENT [comment]

" The symbol in the label field is delivered to DDT as a
special ijidentificaticn record. DDT uses the IDENT name in con-
Junction with its treatment of local symbols: in the event of
& name conflict between local symbols in two different subprograms,
DIT resolves the ambiguity by allowing the user to concatenate
the preceding IDENT name with the symbol in question. Also,
during an assembly the first six characters of the symbol followed
by the word 'IDENT' are typed on the teletype to show the user
vhat package is being assembled. The progress of an assembly
can be followed by placing IDENT's at various points in the
package.

4-18

4,14 LIST Set listing controls

4.143 LOCAL Restore normal external meaning

LOCAL [comment]

Restores‘nbrﬁal‘externai determination method. (See GLOBAL directive.)

4,15 NOLIST Reset listing controls

LIST (s
NOLIST

NI (comment]]

There are various booleans which control the format in
which statements are listed (certain fields and/or certain
kinds of statements may be suppressed, or listed selectively).
The user is allowed to set (orrreset) these booleans via the
LIST (or NOLIST)'éommand. Each of the s, may be one of the
following special symbols:

s, Set (or reset) What is (or is not) listed

ICT the current value of the location
counter, in octal

SICT . the symbolic address of the current
value of the location counter

the value of the statement, if it is

VAL one of the directives: EQU, NCHR,
NARG, IF, ELSF. (in octal)

SRC the symbolic source code

coM the comment field of a statement, a
comment statement

CALL macro and RPT calls

. DEF MACRO and RPT definitions

EXP macro and RPT expansions

SKIF the skipped parts of an IF statement

EXT external symbol references (at the

end of the assembly

4-19

4-20

In addition, s; may ve "ALL", which will cause all of the
booleans in the table to be set (or reset).

If a LIST (or VOLIST) directive is encountered for which
no erguments (si) have been specified, NARP will begin (or
cease) listing statements on the LISTING FILE (the teletype,
in case no other listing file is specified when the assembly
is begun) accordmng to the current settlngs of the llstlng
booleans. Including "Go" among the arguments for a LIST
(or NOLIST) will have the same effect.

When NARP is called the listing booleans are initialized

as follows-

Set: LCT, VAL, SRC, COM, CALL, DEF, EXP, EXT
RESET: SICT, SKIF

and NARP is in its "no list" state, i.e., listing will not
be started unless (and until) the program initiates it with a
LIST directive.
Examples of the LIST directive:

NOLIST ALL Resets all format booleans
LIST SRC, GO Sets SRC boolean and starts listing.

(only the source code will be listed)
Examples of listing format:

ICT SICT VAL SRC , CoM -
00117 (A) 3 A EQU 6/2 (SET A)
00117 (HERE) HERE LDA A*B,2

00120 (HERE+l) ' CLB

4-21

4,16 OCT 1Interpret integers as octal

OCT [comment]

The radix for integers is set to eight so that all following
integers (except those with a D-suffix) are interpreted as octal.

4.17 OPD Define an opcode

symbol OPD value[,class[,shift kludge])

The symbol in the label field is defined as an opcode with
a valuc equal to the first expression in the operand field. All
expressions in the operand field must be defined and absolute; if
an optional expressicn does not appear then the value O is assumed.
value : computed mod o2l (see important note below)
class : must have a value of 0,1, or 2:

O - the opcode may or may not have
an operand
1l - the opcode does not take an

operand
2 - the opcode requires an operand
shift kludge: must have a value of O or 1:

0 - non-shift instruction
(see section 3)
1 - shift instruction (see section 3)

Note: Although an opcode that takes operands can be defined with
bits b10-b23 set, the user must be careful of what he is doing.
In particular, if such an opcode avopears in an instruction which
contains a literal or an undefined value then bits bl10-b23 of the
opcode are set to zero.

If the symbol in the lubel field is already defined as an
oncode then the old definition is lost. |
Examples:

ADD OPD 05585,2

CLA OPD 046000018, 1

RCY OPD 0662pk4,2,1

NOP OFPD 02085

4-23

418 PAGE Begin a nev page on the listing
PAGE [expression [comment])

Thi= directive causes pagéréjeéts 0;1 the assemblj listing
“medium, The nu.;nber of ejects is determined by the expression in
the ope:parid field (which mst be defined and absolute). If
there is no operand then one eject is assumed. TIf a page eject
has :iust occurred then one less than the specified ,niJ.m'ber of

ejects is mde.

4-24

4.19 POPD Define a programmed operator

symbol POPD valué[,class[,shif‘t kludge]]

This directive does exactly what OPD does with one addition:
The instruction BRU¥ is placed in the memory location whosé
address is in b2-b8 of the value given to the symbol (this
address must be in the range [100%, 177B]). Thus

MIN POPD 10085, 2

IMIN SKG* 0 THE CALL 'MIN ALPHA' WILL
BRR 0 CAUSE THE MINIMUM OF
LDA* 0 A-REG AND ALPHA TO BE
BRR 0 LEFT IN A-REG.

will cause BRU IMIN to be loaded in word 100B.

4,20 RELORG Assemble relative with absclute origin

RELORG expression [comment]

On occasion it is desirable to assemble in the midst of
otherwise normal program a batch of code which, although loaded
in cpre in one position, is destined tc run from éhother position
im memory. (It will first be moved there in a block.) This is
particularly useful when preparing program overlays. The
expression in the overand field (which must be absolute and
defined) denotes an origin in memory. The following occurs when
the directive is encountered:

a.) The current vélue of the location counhter is saved, and
in its place is put the absolute origin (i.e., the
value of the expression). This fact is not revealed
to DDT, however, so during loading the next instruction
assembled will be placed in the next memory cell available
as if nothing had happened. .

b.) The mode of assembly is switched to absolute, i.e., all
symbols defined in terms of the location counter will
be absclute.

It is possible to restore normal relocatable assenbly (see section
h.22),

As an example of the use of RELORG, consider a program
beginning with RELORG 300B. The assembler's output represents
an absolute program whose origin is 003008; but which can be
loaded anywhere using DDT in the usual fashion., Of course,
before executing the program it will be necessary to move it to
location 003008.

As another example, consider the following use of RELORG and
RETREL:

<normal relocatable program>

RELORG 100B

<agbsolute program with origin at 100B>
RELORG 200B

<absolute program with origin at 200B>

RETREL

<normal relocatable program>.

RELORG 3008 ;

<absolute program with origin at 300B>
END

.21 REM Type out remark
REM text

- This ‘directive causes the text in its operand and comment
fields to e typed out either on the teletype or whatever file
has been designated as the text file (see section 6.2). This
typeout oceurs regardless of what 1listing controls are set. The
dlrectlve may be used for a variety of purposes: It may inform
the user of the progress of assembly; it may give him instructions
on what to do next (this might be especially nice for complicated
assemblies); it might announce the last date the source language
ﬁas updated; or it might be used within complex macros to
show which argument substrings have been created during
expansion of a highly nested macro (for debugging purposes).

4-27

4-28

4,22 RETREL Return to relocatable assembly
RETREL [comment)

This directive is used when it is desired to return to
relocatable assemlily after having done a RELORG. It 1s n6£
‘necessary to use RETREL unless oneb desires more relocatable
program. An example of the use of RE'I'REL is shown in section ’
4.20. The effects of RETREL are
a.) to restore the location counter to the value it would
have had if the RELORG (s) had never appeared, and
b.) to return the assembly to relocatable mode so that
la‘nels are no longer absolute

4-29

4,23 TEXT Generate text (4 character per word)

[[$]1abe1] TEXT string [comment]

This directive is exactly the same as ASC (see section 4.1)
except that characters are taken as six bits each and are stored

four to a word.

5.0 Conditional assemblies and macros

5.1 IF, ELSF, ELSE, and ENDF If statements

It is frequentiy desirable to pernit the assembler éither.to
assemble or to skip blocks of statements, depending on the value of
an expression at assembly time. This is primarily what is meant
by conditional assembly. In NARP, conditional éssembly is done
by using either an if:sﬁétement or é repeat statement.

The format of an if statement is

IF expression { comment)
< if body >
ENDF {comment)

The if body is any block of NARP statements, in particular, it may

contain directives of the form

ELSF expression { comment]

and }
ELSE {corment)

If the operand of IF is true, then the block of code up to the
matching ENDF (or ELSF or ELSE) is processed; otherwise, 1t is
skipped. The values for true and false are:

true : value of expression > §

false : value of expression < @

Examples:
IF g
IDA ALPHA
STA BETA J} processed
"ENDF
IF g
LDA GAMMA

STA DELTA :} skipped
ENDF

5-2

Often there are more than two alternatives, so the ELSF
directive is used in the if body. When ELSF is encountered while
skipping a block of statements, its operand is evaluated (just
as for IF) to decide whether to process the block following the
ELSF.

Examples:
IF g>1
LDA ALPHA skipped
ELSF 1> @ - '
LDA BETA processed
ENDF
roog>1 |
LDA ALPHA skipped
ELSF §>1
LDA BETA . skipped
ENDF
IF 1> 9
LDA ALPHA - processed
ELSF 1> 9
LDA BETA skipped
ENDF
IF $>1
LDA ALPHA skipped
‘ELSF 1> ¢
LDA BETA processed
ELSF 1> 9
LDA GAMMA skipped

CEWF

From the last two examples above it should be clear that either
no blocks are processed or precisely one is; thus, as soon as one
block is processed, all following blocks are skipped regardless

of whether the ELSF expressions are true.

2-3

An ELSE directive is equivalent to an ELSF directive with a

true expression.

i

Example:
IF $>1 :
IDA ALPHA skipped
ELSE
LDA BETA processed
ENDF :

As & more general example, consider the following:

IF el
< body 1 >
ELSF e2
< body 2 >
ELSF e3
< body 3 >
ELSE

< body 4 >
ENDF

There are four possibilities:

e) el> ¢ : process body 1, skip the other three
b) el<f, e2> ¢ : process body 2, skip the other three
c) el <P, e2< 9,

e3> ¢ ¢ process body 3, skip the other three
d) el< g, e2< 4, |
e3< P : process body U4, skip the other three

‘ The bodies between the IF, ELSF, ELSE, and ENDF directives
may contain arbitrary NARP statements, in particular they may
contain other if statements. This nesting of if statements may
go to any level.

When evaluating the expression in the operand field of IF or
ELSF, all undefined symbols are treated as if they were defired with

value -1. These expressions must be absolute.

()
1
=

5.2 RPT, CRPT, and ENDR Repeat statements

A repeat statement is a means of processing the same text many
times. The format is |

[($)1abel] RPT expression[,increment list] { comment]
< repeat body >
ENDR [comment)

The value of the RPT operand (which mus: be defined and absolute)
determines how many times the repeat body will be processed,vwhile
the increment list (described below) is a mechanism to allow the

values of various symbols to be changed each time the repeat body

is processed.

Example:
ABC RPT L
DATA 0
ENDR

{

This is equivalent to

ABC DATA
DATA
DATA
DATA

[eNeoNoNe]

An increment 1list has the form (s=ell,e2])...(s=ell,e2])
where s stands for a symbol and el and e2 denote expressions
(which must be sbsolute; undefined symbols are treated as if they
were defined with the value -1). Before the repeat body is processed
for the first time, each symbolbin the list is given the value of
its associated el. Thereafter, each symbol is incremented by the
value of its associated e2 just before the repeat body is processed.
If e2 is missing, the value 1 is assumed. There is no limit on

the number of elements that may appear in an increment list.

V Ek#mpié:

RPT 3, (1=l)(J=0, -1)
DATA I

DATA J*T+1

ENDR

This results in code equivalent to the following:

DATA L
DATA O¥441 =1
DATA 5

" DATA -1%5+1 =-L4
DATA 6

DATA -2%6+1 =~11

There is another format for RPT:

{{$)12abel] RPT (s=ell,e2],e3)[increment list] : [comment]
In this case, the number of times the repeat body is processed is
determined by the construct (s=ell,e2},e3). This is the same as
an increment list except that it includes a third expression
(which must be absolute;‘all undefined symbols are treated as if
tﬁey were defined with the value 31), namely & bound on the value
of the symbol. As soon es the bound is passed, processing of the
repeat body stops. In the example above,_the sane effect could

have been achieved by writing the head of the repeat statement as

RPT (3=0,-1,-2X I4)
or as . '
RPT (1=b,6)J=0,-1)

Note that the bound does not have to be positive or greater than
the initial value of the symbol‘being incremented; the algorithm
for determining when the bound has been passed is given below.
Occasionally one wishes to perform an indefinite number of
repeats, terminating on an obscure condition determined in the
course of the repeat 6peration. The conditional repeat directive,
CRPT, serves this function. Its effect is like that of RPT (and

5-6

its repeat body is also closed off with an ENDR) except that instead
of giving a number of repeats, its associated expression is evaluated

Just prior to each processing of the repeat body to determine

whether to process the block.

As for 1F, > O means true, < O means

false; the expression must be defined and absolute each time it is

evaluated. The form is
[{$]11avel] CRPT expression[,increment list] [comment)
For example, one may write
CRPT X>Y
or '
CRPT STOP, (X=1,2)(Y=-3)

Note that the statement

CRPT

10

will cause an infinite number of repeats.

The following flowcharts describe precisely the actions of

the various repeat options:

skip the whole
repeat block

o

RPT expression[,increment list])
count: = value of expression
yes B no initialize symbols in increment
& \:5fffififlfj »] list;evaluate all e2 expressions
7 T
process the repeat body“nk____‘ H
The el and e2 expressions
l, are evaluated just once.
increment the symbols in
the increment list
count:= count -1
es T——_A no
y count = 0

stop

5-7

RPT (s=el[,e2],e3)[increment 1ist]

evaluate e2 and e3;

initialize symbols in €~'-—T
increment list; eveluate

All expressions are
evaluated Jjust once.

all e2 expressions.

_\~£§:e3)*sign(e2)>0
1 N

e

process the repeat block

increment the symbols in

the increment list

CRPT expression(,increment list]
initialize symbols in increment PR All el and e2 expressions
list; evaluate all e2 expressions; | are evaluated just once

evaluate expression E T~ T 77" This expression is eval-

uated over and over again

b | and, of course, the values
no /,/”'— *i:::::) of the symbols in this
value expression > O expression may change from
TN Xp ¥ g

one evaluation to the next.

yes

N

process the repeat block

increment the symbols in the increment
list

The contents of & repeat body may contain any NARP code, in
particular it may contain other repeat statements; the nesting of

repeat statements may go to any level.

5-9

5.3 Introduction to macros _
" On the simplest level a macro name may be thought of as an

abbreviation or shorthand notation for one or more assembly
language statements. In this respecf it is like an opcode in that
an opcode is the name of a machine command and a macro name is
the name of a sequence of assembly language statements.

The 940 has an instruction for skipping if the contents of
a specified location are negative, but there is no instruction
for skipping if the accumulator is negative. The instruction
SKA (skip if memory and the accumulator do not compare ones) will
serve when used with a cell whose contents mask off all but the sign

bit. The meaning of SKA when used with such an operand is "skip

if A is positive". Thus a programmer writes
SKA =4B7
BRU NEGCAS NEGATIVE CASE

However, it is more than likely the case that the programmer

wants to skip if the accumulator is negative. Then he must write

SKA =L4B7
BRU *42

BRU POSCAS FOSITIVE CASE

Both of these situations are awkward in terms of assembly language
programming.

But we have in effect just developed simple conventions for
doing the operations SKAP and SKAN (skip if accumulator positive
or negative). Define these operations as macros:

SKAP ~ MACRO
SKA =4B7
© ENDM

SKAN MACRO
SKA =4B7
BRU *42
ENDM

Now, more in keeping with the operations he had in mind, the

5-10

Programmer may write

A22 SKAN
BRU POSCAS

The advantages of being able to use SKAP and SKAN should be
apparent. The amount of code written in the course of a program
is reduced; this in itself tends to reduce errors. A greater
advantage is that SKAP and SKAN are more indicative of the action
that the programmer had in mind, so that programs written in this
way tend to be easier to read. Note, incidentally, that a label
may be used in conjunction with a macro. Labels used in this vay
are usually treated likg labels on instructions; they are assigned
the current value of the location counter. This will be discussed
in more detail later. _ '

Before discussing more complicated uses of macros, some
sdditional vocabuléry'should be established. A EEEIS is an
arbitrary sequence of assembly languagé statements together
with a symbolic name. During assembly, the macro is stored in an

area of memory called the string storage. Macros are created

(or, as is more frequently said, defined)'by giving 2 name and the

associated sequence of statements. The name and the beginning

of the sequence of statements sre designated by the MACRO directive:
name MACRO |

.

ENDM

The end of the sequence of statements is indicated by the ENDM
directive. - |

Refer to figure 1. When the assembler encounters s MACRO
directive, switch B is thrown to position 1 so that the macro

is simply copied into the string storage; note that the assembler

. does no normal processing but simply copies the sburce language.
When the ENDM terminating the macro definition is encountered,
switch B is put back to position @ and the assembler goes on
processing as usual.

It is possible that within a2 macro definition other definitions

Figure 1:

SOURCE

5-11

Information Flow During Macro Proéessing

BINARY
MACHINE
LANGUAGE

A

ASSEMBLER

LANGUAGE

S

1>

H = O O

N 4
e

= O = O

\V/J

° l STRING

N

STORAGE

Effect

normal assembly

macro definition

macro expansion

macro definition during

macro expansion

5-12

may be embedded. The macro defining machinery counts the
occurrences of the MACRO directive and matches them against the
occurrences of ENDM. Thus switch B is actually placed back in
position O only when the ENDM matching the first MACRO is
encountered. Thereforg, MACRO and ENDM are opening and closing
brackets around a segment of source language. Structures like
the following are possible:
name 1 MACRO————
name 2 MACRO—
name 3 MACRO
ENImk;]
name U MACR
-
ENDM —=m]
name 5 MACRO
ENDM
ENDMY ———

The utility.of this structure will not be discussed here. Use

of this feature of imbedded definitions should in fact be kept
to a ninimum since the implementation of this assembler is such
fhaﬁ it uses large amounts of string storage in this cése. What
is important, however, is an understanding of when the various
macros are defined., In particular, when name 1 is being defined,
name 2, 3, etc., are not defined; they are merely copied into
string storage. Name2;>for example, will not be defined until
namel is expanded. (It should be noted that macros, like
opcodes, may be redefined.)

The use of a macro name in the opcode field of a statement
is referred to as a call. The assembler, upon encountering a macro
call, moves switch A to position 1 (see figure 1). Input to the
assembler from the original source file tempcrarily stops and comes
fnstead from string storage. During this period the macro is said
to be undergoing egﬁansion. It is clear that a macro must be '
defined before it is called. |

An expanding macro may include other macro calls, and these,
in turn, may call still others. In fact, macros may even call
themselves; this is called recursion. Examples of the recursive
use of macros are given later. When & new macro expansion begins

5-13

w1th1n a macro expan51on, informatlon about the progress of
_the current expan81on 1s saved. Success1ve macro calls cause
similar informatlon to be saved. At the end of each expansion
the information about each prev1ous expan51on is restored. When
the final expansion terminates, SW1tch A is placed back in
position O, and input is again taken from the source file.

ﬁow let us carry our example'one step further. One might
argue that the action of sk1pp1ng is 1tself awkward. It might
be preferable to write macros BRAP and BRAN (branch to spec1f1ed
location if contents of accumulator are positive or negative).
How is one to do this? The lgcaﬁion to which the branch should
go is not known when the macro is defined, in fact, different
locations will be used from ééli to call! The macro processor,
therefore, must enable the prbgrammer'to provide some of the
information for the macro expansion at call time. This is done

by permitting dummy arguments in macro definitions to be replaced

by arguments (i.e., arbitrery substrings) supplied at call time.
Each dummy argument is referred to in the macro definition by a
subscripted symbol. This symbol or dummy name is given in the
operand field of the MACRO directive.

" Let us define the macro BRAP:

BRAP MACRO LABEL
SKAN
BRU LABEL(1)
ENDM

When called by the statement 'BRAP POSCAS!, the macro will
expand to

SKA =hB7
BRU *42
BRU POSCAS

Note that BRAP was defined in terms of another macro, SKAN. Also
note that as defined BRAP was intended to take only one argument;

other macros may use more than one argument.

5-14

The macro CBE (gompa:e end branch if equal) takes two
arguments. rhe first argument is tﬁe location of -a cell to be
.éompared4for eqnélity with the accumulator; the second is a
branch location in case of equality. The definition is

CBE = MACRO D
SKE p(1)
BRU *42
BRU p(2)
ENDM

When CBE is called by the statement
CBE =218, EQLOC
the statements generated will be

SKE =21B

BRU *+2
BRU EQLOC

Note that in the macro call, the arguments are separated by
‘commas . _ '

The following sections describe macro definitions and
calls in more detail.

5-1

5.4 MACRO, IMACRO, end ENDM _Macro definition

The fprm Qf g,mgéro definition is:
MACRO |
neme or {dummy(, generated,expression] [comment]

\. IMACRO

where name, generated, and dummy are all symbols, and expression

is an expression.

IMACRO is completely equivalent to MACRO except that if

name is defined as a macro with MACRO the construct

label name arguments

will automatically cause '"label" to be defined as the current
value of the location counter, whereas if name were defined
with IMACRO this automatic definition of "label” would not

occur.

Some details of the definition

- If generated appears, it should not be the same symbol
as dumny, and neither of them should be "MACRO", "LMACRO", or
"ENDM. "
If name is already defined as an opcode, the old definition
is completely replaced by the new.
If the MACRO (or IMACRO) directive has no operand, then

name is defined as an opcode that takes no operands. Otherwise,

name becomes an opcode that may or may not take an operand.
Whole-line comments (lines beginning with *) in the macro
body are not saved in string storage as part of the macro
definition, but comments following instructions are. Thus, it
behooves the programmer to avoid the latter, as they eat up

string storage.

5-16

When a macro body is placed in string storage, superfluous
blanks are removed. Thus, any contiéuous string of blanks is
compressed to one blank with theAfollowing exceptions:

a) Blanks enclosed in single quotes (') are not compressed.

b) Blanks enclosed in double quotes (") are not compressed.

c) Blanks enclosed in parentheses are not compressed. In

this use, the nesting of parentheses is taken into
account, but a parenthesis between single or double
quotes is not considered as part of the nesting
structure.
In most cases the programmer need not worry about these
conventions, although there are times when he may get pinched.

For example, if
ASC %hs21B%

appeérs.in a macro definition, it willlbe expanded as
Aéc A, B%

To avoid such problems use

ASC 'A,,,B’

5-17

5.4,1 Dummy arguments

The éummy argument specified as an operand of the MACRO
directive may appear anywhere in the macro body, followed by a
subscript. At call time the subscript is evaluated and its value
is used to select the appropriate argument supplied in the call.

_ Befogé describing the various kinds of dummy arguments a few
conventions are needed:)
&) In the following, "argument" will refer to the character
string as given in the macro call after possible enclosing

parentheses have been removed (see section 5.6 for the

format of argument strings).
b) The number of arguments supplied by the call is n (n>0).
¢) The number of characters in argument ei is n(ei).
d) The structure ei for i an integer stands for an expression.
’ (However, its value stands for some argument usually, so
el will be used scmewhat ambiguously to stand for an
‘ expression or the value of an expression.) The first
argument in a call is numbered 1.
e) The dummy argument is assumed to be "D".
With the above in mind, we consider the three forms of dummy
arguments:
1) D(el) _
This expands to argument el (which may be the null string), where
0<el<n. (If el =0 then D(el) expands to the label field of
the macro call; see section 5.6.)
Special notation: () = D(1)
2) D(el,e2)
If el > e2 then this expands to the null string (range of values
of el and e2 is arbitrary), otherwise, this expands to argument
el through e2, where 0 < el < e2 < n, with each argument enclosed
in parentheses and a comma inserted between each argument. For
example, D(3,3) = (D(3)).
Special notation: D(,) = D(1,n)
D(,el) = D(1,el)
D(el,) = D(el,n)

n

3) D(elfe2,e3) |
In all cases, O _<_ el < n must be true. If e2> e3' then this
expands to the null string (range of values of €2 and e3 is
arbitrary), otherwise, it expands to characters e2 through e3
of argument el, counting the first character of an argument as
character 1. If either e2 or e3 lies outside the argument, then
the nearest boundary is chosen. To be more precisé, before using
e2 and e3 to select the piece of argument el that is desired, the

following transformation is made:

e2:= max (1,e2); e3:= max (1,e3);
e2:= min (n(el), e2); e3:= min (n(el),e3);

If argument el is the null string, then the dummy argument expands
to the null string regardless of the values of e2 and e3.
Special notations:

D(el$,) = D(el$l, n(el)) = D(el)

D(el$,e2) = D(eldl,e2)

D(el$e2,) = D(el$e2,n(el))

D(el$e2) = D(elde2,e2)

D(el$) = D(el$l) = D(eld1,1)

In any of the six forms mentioned above, el may be missing;

if so, 1 is assumed. E.g., D($) = p(1$1,1).
A general rule which will help in remembering what the specisal
notations mean is the following: '"Whenever an expression is
missihg from a form, the value 1 is assumed unless the expression
is missing from a place where an upper bound is expected (as in
" D(3,) or D(3%2,), in which case the largest 'reasonable' value is
assumed." A

In any of the above three cases; if an expression which
designates an argument is out of range, then an error message is

typed and argument 0 is taken.

5-19

Following is an example of the fgrioﬁs forms of dummy

"arguments: ' |

‘ " Macro def initi_pn :': 7

© XAMPLE = MACRO
D(2)
ASC
TEXT

AsC
ASC

ENDM

Macro call:
"~ BETA

Macro expansion:

~ BETA ADD
ASC
TEXT
ASC
AsC

ALPHA

D o
() p(0)
'D(2,h)'

'D(4,)" D(-3,-4)
'D(1$3,4)" |
'D(2$"3;18)'

ALPHA, ADD, GAMMA, DELTA

BETA
*(caMMA), (DELTA)"
*(DELTA)' NULL STRING
'PH'

*ADD'

NULL STRING

5-20

5.4.2 Generated symbols

A macro should not, of course, have in its definltlon an
instruction having a label. Success1ve calls of the macro would
produce & multiply-defined symbol. Sometimes, however, it is
convenient to put a label on an instruction within a macro.
There are at least two ways of d01ng this. The first involves
transmitting the label as a macro argument when it is called.
This is most reasonable in many casés; it is in fact often
desirable so that the programmer can control the label being
defined and can refer to it elsewhere in the program

However, situations do arise in which the label is used
purely for reasons local to the ma.cro and will not be referred
to elsewhere. 1In cases like this it is desirable to allow for
the automatic creation of labels so that the programmer ic freed
from worrying about this task. This may be done by means of the
ggnerated symbol. f

A generated symbol name may be declared when a macro is

defined, specifying the name ‘and the meximum number of generated
symbols which will be encountered during an expansion. These

two items follow the dummy symbol name given in the MACRO directive
(as shown in section 5.4 above) if the programmer wishes to use

generated symbols in a macro. For example,

MUMBLE MACRO D,G,k
< macro body >
ENDM

might contain references to G(1), G(2), G(3), and G(4), these
being individual generated symbols.

With regard to generated symbols the macro expansion machinery
operates in the following fashion: A generated symbol base value
for each macro is initialized to zero at the beginning of assembly.

' As each generated syﬁbol is encountered, the expression constituting
its subscript is evaluated. This value is added to the base

value, and the sum is produced as a string of digits concatenated
to the generated symbol name; the first digit is always O to

reduce the likelihood of the generated symbol being identical to

521

a normal ‘symbol defined elsewhere by the programmer. Thus, the
first time MUMBLE is called, G(2) will be expanded as of2, 6(k)
as G¢h, etc.

At the end of a macro expansion, the generated symbol base
value is 1ncremented by the amount designated by the expression
feilowing the generated symbol name in the MACROkdirective. This
is 4 in the case of MUMBLE. Thus, the second call of MUMBLE will
produce in place of G(2), GP6, the third call will produce Gfl@,
etc. It should be clear that the generated symbol. neme should
be kept as short as p0881ble.

The expression in the macro head (call it m) must have a
valuesin the range [1,1023]. A generated symbol subseript must

have a value in the range [1,m].

5.22

5.4.3 Concatenation

Occasionally, it is désirable to have a dummy argument follow
immediately after an alphanumeric character, for example, to
have D(1) follow just after ALPHA. But then the assembler
would not recognize the dummy because it would see ALPHAD(1)
instead of D(1). To get around this problem the concatenation
symbol '.&' is introduced. Its sole purpose is to separate a
dummy argument (or conceivably a generated symbol) from a preceding
alphanumeric character during macro definition. Thus, the example
becomes ALPHA.&D(1). The concatenation symbol is not stored in
string storage so it does not appeaf during expansion.

As an example, say ﬁhat we wish to define a macro STORE,
‘and suppose we have established the convention that certain
temporary storage cells begin with the letters A, B, or X

depending on what register is saved there. The definition is:

STORE MACRO D
ST.&D($) (1)
ENDM

If called by the statements
STORE B17
STORE p L

the macro will expand as

STB Bl7
STX Xhh

The concatenation symbol may appear enywhere in a macro
definition, but it is ohly necessary in the case described above.
If one macro is defined within another, any concatenation symbols
~within the inner macro will not be removed during the definition

of’the enclosing macro.

5-23

5.4.4 Conversion of a value to a digit string

- As an adjunct to the automatic génerétion of symbols (or
for any other purposes for which it may be suited) awcapability
is provided in the assembler's macro expansion machinery for
conversion of the value of an expression at call time to a
string of decimal digits. The construct ' |

($expression)
will be replaced by a string of digits equal to the value of
the expression. For example, if X=5 then
AB($2¥X+1)
will be transformed into
AB11
If the value of the expression is zero then the digit string is
'0'; if it is negative then the digit string is preceded by a
. minus sign.
This conversion scheme can also be used inside repeat blocks;
for example

RPT (1=1,10)
TEMP($I) BSS 1
ENDR

creates 10 cells labelled TEMPl through TEMP1O.

5«24

5.4.5 A note on subscripts -

The expressions used as subscripts for dummy arguments
and generated symbols, as well as the expressions \J:sed in the
conversion to a digit string must be absolute. Any undefined
syhbols appearing in these expressions are treated as if they
were defined with the value -1. These expressions may themselves
contain dummy arguments, generated symbols, and ($...), so
constructs like ($4+D(I*D(3))) are possible.

5-25

5.5 NARG and NCHR _ Number of arguments and number of characters

. Macros are more useful if the number of arguments supplied
at call time is not fixed. The precise meaning of a macro (and
indeed, the result of its expansion) may depend on the number or
arrangement of its arguments. In order to permit this, the
macro undergoipg‘exPapsiop‘must be able to determine at call time
the numBEr of arguments supplied. The NARG directive makes this
possible.

NARG functlons llke EQU except that no expre531on is used
with it. Its form 1s L

[$]symbol | NARG [comment]

The functlon of the directive is to equate the value of the symbol
to the number of arguments supplied to the macro currently
ﬁndergoing expansion. The symbol can then be used by itself or

' in expressions for any purpose. NARG may appear in any macro,
even one which has no dummy argument (and thus never has any
argﬁments at call time); it is an error for NARG to appear cutside
a macro. _

It is also useful to be able to determlne at call time the
number of characters in an argument. NCHR functions by equating
the symbol in its label field to the nurber of characters in its
operand field. Its form is ' '

[$lsymbol NCHR [character string [comment]]
where "character string” has exactly the same form as an argument
supplied for a macro call, i.e., if it involves blanks, commas,
or semi-colons it should be enclosed in'parentheses (see section
5. 6) NCHR can appear anywhere, both inside and out31de macros,

but 1t is most useful in macros for determining the length of

arguments.

Fxamples:
A NCHR ABCIDFF A;=6
B NCHR (,,X¥Z,,) B:=7

¢ NeHR D(I) Ci=?

5.6 Macro calls

The format of a macro call is:
{[$)1abel) macroname [argstring] [comment]

Such a call causes the macro whose name appears in the
opcode field to be expanded, with the dummy arguments in the
macro body replaced by the actual arguments of the argspring.

The label field is always transmitted as argument O, so
that D(el),where el has value 0, is always legal inside a macro.
An occurrence of D(el);\where el=0, will be replaced by the
lgbel field. If fhe label field is empty, then D(el) expands
" to the null string. At most seven characters will be transmitted
this way: the first six characters of the symbol in the label
field, preceded by '$' if the label field begins with '$'. |

If the ﬁsef wishes to transmit an argument to a macro in
the label field of the macro call, but does not wish to have
the symbol in this field defined, he should define the macro
with IMACRO rather than MACRO. (See section 5.4) An example:

NT IMACRO D
RPT p(1)
DATA p(2)
ENDR
D(0) . DATA -D(1)
_ ENDM
when called by:
DTE NT h,L4B7
éxpands as:
DATA 4B7
DATA 4B7
DATA 4B7
DATA 4B7
DTE DATA b

Notice that this woﬁ]d have caused a doubly-defined symboi
error had MACRO besen used rather than IMACRO.

5-27

A macro call may or may not have an arg string (see section
5.4). If an arg string is present, it may contain any number
of argumenﬁs, in fact, more than are referred to by the macro.
~ Before describing an arg string, the following should be
'noted" blanks, commas, semi‘colons, and parentheses that are
enclosed in single or double quotes are treated exactly like
ordinary characters enclosed in quotes; they do not serve as
terminators, separators, delimiters, or the like. In effect,
wﬁen tﬁe argument collector in NARP is collecting arguments
for a macro call, the occurrence of a quote causes it to stop
looking for special charaeters except for a matching quote (and,
of course, carriage return, which is an absolute terminator).
A single quote enclosed in double quotes is not a special
character and vice versa. Thus, vwhen a blank, comma, semi-colon,
or parenthes1s is referred to in the follow1ng, 1t is under-
‘stood that it is not enclosed in quotes

An arg strlng for & macro call has the fOllOWlng format-
<arg>,<arg>,...,<arg, <term1natoﬁ> o

where a terminator is a blank, sem1—colon, or carriage return.
There are three forms of <arg>:

1. <arg> may be the null string.

2. If the first character of <arg> is not a left paren-
thesis then <arg> is a string of characters not con-
taining blank, comma, semi—colon, or carriage return
(remember that blanks, commas, and semi- -colons may
appear in <arg> if they are enclosed in auotes)

3. If the first character of <arg> is 8 left parenthe31s
the <arg> does not terminate until a blank, comma,
or semi-colon is encountered after the rlght parenthesis
which matches the initial 1eft‘parenthesis ("matches"
means that all left and right parentheses in the
argument are noted and paired off with each other so
that a nested parentheseu structure is p0351ble)

Of course, a carrlage return at anj point 1mmed1ate1y

5-28

terminates <arg>. Again, remember that blanks, commas,
semi-colons, and parentheses enclosed in quotes are
ignored when <arg> is being delimited. The initial
left parenthesis and its matching right parenthesis
(which need not be the last character in <arg>) are

removed before <arg> is transmitted to the macro.

Examples:
AMAC (,252,)», "HOUSE, ,ROGER' , (AB")")
D(1) = L5,
D(2) = null string
D(3) = 'HOUSE, ,ROGER'
D(k) =

AB") 1"

5.7 Examples of conditional assembly and macros

1. Tt is desired to have a pair of macros SAVE and RESTOR
for saving and restoring active registers at the beginning and
end of subroutines. These macros should take a variable number
of arguments so that, for example, one can write

SAVE A, SUBRS ,
RESTOR A,B,X, SUBRS

to generate the code

STA ' SUBRSA

LDA SUBRSA
LDB SUBRSB

LDX SUBRSX
To this end we first define a macro MOVE which is called

by the same arguments delivered to SAVE and RESTOR, but with
the string 'ST' or 'LD' appended.

MOVE MACRO D

X NARG
RPT (Y=2,X-1)
p(1)p(Y) D(X)D(Y)
ENDR
ENDM

Now SAVE and RESTOR can be aefined as

SAVE MACRO D
MOVE st,n(,)
ENDM

RESTOR MACRO - D
MOVE - Lp,D(,)

2. Many prograhmers use flags, memory celis that are
used as binary indicators. The instruétion SKN (skip if memory
hegati%e) makes 1t easy to test these flags if the convention is
used that a flag is set (true) if it contains -1 and reset (false)
if it contains @. We want to define two macros, SET and RESET
to manipulate these flags; furthermore, it is desirable to
deliver at call time the name of an active register which will

be used for the action. Calls of the macros will look like

SET A,FLG1,F1G2,FLG3
RESET X, FIG37,F1G12

As in the previous example we make use of an intermediate
macro, STORE, which takes the same arguments as SET and RESET.

STORE MACRO D
X NARG
RPT (Y=2,X)
ST.&D(1) D(Y)
ENDR
ENDM

Now SET and RESET are defined as

SET MACRO D
1D.&D(1) =-1
STORE D(,)
ENDM

RESET MACRO D

- CL.&D(1)
STORE D(,)
ENDM

3. The following macro, MOVE, takes any number of pairs
of arguments; the first argument of each‘pair is moved to the
second, but an argument may itself be a pair of arguments, which
may themselves be pairs of arguments, etc. MOVE extracts pairs of
argument structures and transmits them to a second macro MOVEl.

MOVE MACRO D

X NARG '
RPT (Y=1,2,X)
MOVE1 D(Y),D(Y+1)
ENDR

ENDM

5-30

The main work is done in MOVEL which calls itself recursively
until it comes up with a sihgle pair of arguments. -

MOVE1

c(1) NARG

c(2) EQU
IF
IDA
STA
ELSE
RPT

MOVE1l

ENDR
ENDF
'ENDM
When MOVE is called by
MOVE

the code generated is

LDA

STA

When called by

MOVE

the code generated is

STA
- STA

When called by

MOVE

the code generated is

STA

STA

MACRO

1

D,G,2

g(1j=2
p(1)
D(2)

c(1)/2,(G(2)=6(2)+1)
D(G(2)),p(c(2)+c(1)/2)

AA;B .

A,B,C,D

gaQw>»

(8,3, (c,D)

Owa >

5-31

And when called by

MOVE ((4,8), (¢,0)), ((E,F), (G,H))
the code generated is ’

IDA
STA
LDA
STA
LDA
STA
LDA
STA

ToQQEwE>

It is instructive to trace the last exemple by hand to see how
the recursive calls of MOVEL work. This is an exercise left

to the reader.

6-1

6.0 Qperating NARP

6.1 Stafting,an assembly

Assuming that the user has entered the tlme sharlng system,
NARP is called by hitting the ESCAPE button until the EXEC answvers
(by typing '—,) and then typlng 'NARP' followed by a carrlage re-
turn. Control is then turned over to NARP and a source file must
be specified; other information may also be supplied, if desired.
The general format is:

default convention

~NARP,

SOURCE FILE: file name none
OBJECT FILE: file name none
TEXT FILE: file name TELETYPE

All three files do not have to be specified.
" The various options are discussed in more detail below:

SOURCEeFILE: As soon as NARP is started this line is typed and
the user must specify a file containing the programs
to be assembled. When he terminates the name with a
carriage return, NARP responds with 'OBJECT FILE:'

on the next line,

When the name is terminated with a line feed, no fur-
ther requests are made. The assembly begins immediately
and produces no object file or Teletype listing except
for error messages. This feature is primarily used to
FREEZE symbols and macros into the symbol table.

OBJECT FILE: The file name given specifies where the binary output
from the program should go. If the file name is termi-
nated by a line feed, then NARP waits for a text file
to be specified.

TEXT FILE: The file name given snecifies where the listing of the
source program and of the error messages should go.

6-2

6.2 Multiple program assembly

The source file may contain more than one program each termi-
nated by an END directive. Each program is assembled separately
with each binary being appended to the object files, Multiple pro-
gram object files. can be loaded in DDT with no addition and in FOS
with the addition of a FIILIB directive,

6-3

6.3 Assembly of multiple files

After completing a NARP assembly of one file it is possible to
run a second NARP assembly which uses definitions made in the first.
All those definitions preceding the FREEZE directive will be retained.
This process may be repeated., Using this feature, it is possible to
break up symbolic programs which are too large for QED to handle into
manageable segments. To assemble a second or subsequent file, use
the CONTINUE command of the EXECutive in place of the NARP command,

Al-1

Appendix A: List of all pre-defined opcodes and pre-defined symbols

NARP in its origlnal form contained no symbol definitions except
that for "OPD". An initialization run was performed using the defini-
tions given below. The NARP subsystem as available to the DIAL-DATA
user is an initialized version. That is, the opcodes and symbols
shown below are already defined and the user does not make an ini-
tialization run.

RN

The following table is a listing of an initialization program
used to initialize the opcode table and symbol table of NARP, It
will be noted that in some cases the OPD directive has four operands
instead of the usual three; the fourth operand specifies the type
(directive, macro, or instruction) of the épcode being defined., It
is only possible to use four operands for OPD when NARP is belng
initialized, and once the initialization program has been assembled,
OPD will only accept three operands.

CAZ
CFAA
Cin X
CX3
KA:3
ST
Lidi
Kkl
CNA
AXC

Bk
BRA
B
BRR
BRI

SKS
SKE
SKG
SKR
SK
SKNN
SKA
SKB
SKD

RSH
RCY
LRSH
LSH
LCY
- NOD

HLT
ZRO
NO?
EAU

BPTI
BPT2
BPT3
BPT4

ROV
REO
ovT
0T

I
DIx
AIR
IET
DT

oPD
S1R4D)
00D
OrPD
0D
oru
DPD
arD
orp
orbD

0PD

orb
oPD
orD
oPD

orD
orD
arPbD
oPD
OPD
OoPD

OPD

orD
OoPD

arD
oPD
orbD
OPD
orD

oPD

0D
0D
orDd
OPD

0oPrD
OrD
0PD

OPD

0rD
orbD
0rD
orbD

OrD
O1° D
orD
orD
orp

(146974008, 1

GA6HNI6HOEB, 1
VHADEH2(08, 1

N6 4)8 s]

D460 6685 1
B46A011228, 1
NA600)1401851
46031160851
N460 1003081

" PA6OPAD1B, L

GB10BOANE 2

B41006GAE,2
B430000AB,2
DS10BOVBAB,2
?11900008,2

G4D0BBAGB,2

ASABABNGB, 2
A73600688,2
D60000AAB, 2
070000908, 2
0530643018, 2
BT2000008,2
7952000008, 2
O 74000098, 2

A66AB0ANB2, 1
06620000Bs2,1

06624000Bs>2,51
A6TANAAGB2, 1
D67200008525 1
D6T10VANEB,2, 1

BOANDINABL0

HHAABAOBE 0
W2NUIRANOL 0

B23000V0B,2

B4D26 4708 1
B402020685 1
N4B20 1048, 1
043200 458> 1

(220000185 1

D2200010851

N220n1818, 1
N220p16aB, 1

D220 48,1
AB22000208, 1
D4B2ONN2B, 1
B4N2OBA 4B, 1

-

Bu2200328,1

SKIP

SKIP

CorY A INT
EXCHANGE
CorPY B INT
COrY X INT
EAXCHANGE X
STIRE EXFO
LOAL EXPON
EXCHANGE E
COPY NEGAT
COPY A TO

BRANCH UNC
INCREMENT
MARK

PLACE

Al-2

0 X

A AND A

0 X

0 B

AND B

NENT |

ENT

KPONENTS

IVE OF A INTO A
X, CLEAR A
ONDITIONALLY
INODEX AND BRANCH
AND BRANCH

RETURN BRANCH

BRANCH AND

SKIP IF SI
IF A
SKIP IF A
REDUCE M,
SKIP IF A
IF M
SKIP IF M
SKIP IF ™
DIFFERENCE

RIGHT SHIF

. RIGHT CYCL

LOGICAL RI

LEFT SHIFT

LEFT CYCLE

NORMALIZE
)

HALT

ZERO

NO OPERATI

EXECUTE

BREAKPOINT
BREAKPOINT
BREAKPOINT
BREAKPOINT

" RESET OVER

RECORD EXP
OVERFLOW T
OVERFLOW T

ENABLE INT
DISABLE IN

T ARM/DISARM

INTERRUPT
INTERRUPT

RETURN FROM INTERRUPT

GNAL MOT SET

EQUALS ™ .

GREATER THAN M

SKIP IF NEGATIVE

EQUALS M ON B MASK

NEGATIVE , ,

AND A DO NOT COMPARE ONES

AND B DO NOT COMPARE ONES
EXPONENTS AND SKIP

T AB
E AB
GHT SHIFT AB
AB .
AB
AND

DECREMENT X

ON

TEST
TEST
TEST
TEST

MW —

FLOW. :

ONENT OVERFLOW
EST AND RESET
EST ONLY

ERRUPTS

TERRUPTS
INTERRUPTS
ENABLED TEST
DISABLED TEST

ALCY
DISh
AsCH
TOoPw

CATw
CiaTi
CZTY
CIvtl

EXDIR]
I
I
PIN
POT
Qi
B E T l«'l’
BRTHW

TSN
CKN
CKF
Lkl
Lrr2
LRR3

310
BRS
CIO
Cit
CTRL
D3I
DB
DWI
DO
EXS
EXSYM
FAD
TDV
FRAD
FFADD
FrD1
FIFDID
FEDy
FFDVD

Firse |

FirMPD
FESS
FFSBD
FFSI
FESID
e
F5B8

- 0PD

OrD
QP
arb

arD
oPrD
oPD
OPD

D IEd)D)
0rD
Qi’i)
orb
S1ad))
0i’b
1))
orb

0’D
orDb
orpb

orp -

oPD
oPrD

OrD
orD
OrD
orb

PD
0iPD
OPD
DPRD
OrD
orbD
OrD
aPD
OrPD
JPD
OPRD
OrD
DPD
orp
orb
0rD
QPD
orD
OPRPD
OrPD
0PD
OFPD
OPD

BO2503038 > 1
N020400A3, 1
BN21200018, 1
732140008, 1

0400140008, 1
A4001100013, 1
B4012007%85 1

0401080008, 1

NB6NNHNBAIER, 2
11200008, 2
32010008, 2
N3390NANB, 2
13000 BB,2
WH20130918, 2
40200108, 1
40210068, 1

00222000Bs1

NN2201800Y8, 1
052202008, 1
2204008, 1
032219008, 1

PN22140085 1

576000008, 2
57360ABMIB,2
561360008, 2
534063668, 2

5724303003, 2

5423309013, 2
543060068, 2
544050008, 2
5450000608, 2
5520500913, 2
51530000B,2
5560300018, 2
5530010333, 2
5260900UB, 2
52(00909013, 2
531000008, 2

S1400000B,2

5300830913, 2
522000018, 2
527090038, 2
521010008, 2
532000838, 2
52300903618, 2
53303003, 2
513003008, 2
554000008, 2

555000008,2

Al-3

ALERT CHANNEL W
DISCONNECT CHANNEL W

ALERT TO

STORE ADDRESS IN CHANNEL W

TERMINATE OUTPUT ON CHANNEL W

CHANNFL ACTIVE TEST
CHANNEL W ERROR TEST
CHANNEL W COUNT TEST

ENERGIZE

M OINTO W
Y BUFFER
PARALLEL
PARALLEL
ENERGIZE
W BUFFER
W BUFFER

NORMAL 1O
CLOCK ON

CLOCK OFF
LOAD RELA
LOAD RELA

LOAD RELA

BLOCK 1I/0

- BRANCH TO

CHARACTER
CHARACTER
CONTROL

- DRUM BLOC

DRUM BLOC
DRUM WORD

DRUM WORD

EXECUTE I
EXS RELOC
FLOATING
FLOATING
FLOATING

FLOATING

FLOATING
FLOATING
FLOATING
FLOATING

- FLOATING

FLOATING
FLOATING
FLOATING
FLOATING
FLOATING
FLOATING
FLOATING

4~CHANNEL W INTER=-RECORD TEST

OUTPUT D

BUFFER WHEN EMPTY
INTO M WHEN FULL
INPUT

OUTPUT

OUTPUT ™

ERROR TEST

READY TEST

MONITOR MODE

BELLING REGISTER 1
BELLING REGISTER 2
BELLING REGISTER 3

SYSTEM
170
INPUT AND TEST

K INPUT
K OUTPUT

INPUT

ouUTPUT
NSTRUCTION IN SYSTEM MODE
ATED FROM SYMS IN MONITOR
ADD
DIVIDE
ADD WITH FA
ADD» X DOUBLED
DIVIDE INVERTED WITH FA
DIVIDE INVERTED,X DOUBLED
DIVIDE WITH FA
DIVIDE, X DOUBLED
MULTIPLY WITH FA
MULTIPLYs X DOUBLED
SUBTRACT WITH FA
SUBTRACT, X DOUBLED
SUSTRACT INVERTED WITH FA -
SUBTRACT INVERTED,X DOUBLED
MULTIPLY

SUBTRACT -

Al-4

GCD orD 537991008, 2 GET CHARACTER AND DECREMENT

GCI oPD 56503078, 2 GET CHARACTER AND INCREMENT

ISC OPD 540000098, 2 INTERMNAL TO STRING CONV(FLOATING OUTPUT)
IST OPD 55030008, 2 INPUT FROM SPECIFIED TELETYPE

LAS oPD 54600030B,2 LOAD FROM SECONDARY MEMORY

LD? oPD 566000008, 2 'LOAD POINTER (AB)

LDFM OPD 52480000852 LOAD FLOATING ACCUMULATOR

LOFMD 0PD "516A00093,2 LOAD FLOATING ACCUMULATOR, X DOUBLED

0ST oD 551000008, 2 OUTPUT TO SPECIFIED TELETYPE

SAS OPD * 547990608B,2 STORE IN SECONDARY MEMORY

SBrM OPD 570090008,2 SYSTEM BiM

SBRR OPD ¥51409008,2 SYSTEM BRR ' .
SIC 0PD 54100080B,2 STRING TO INTERNAL CONV(FLOATING INPUT)
SKSE 0PD S630GADNB,2 SKIP IF STRINGS EQUAL

SKSG OPD 5620030082 - SKIP IF STRING GREATER

STF¥ 0PD 525000008, 2 STORE FLOATING ACCUMULATOR

STFMD OPD 5S1700AWEB,2 STORE FLOATING ACCUMULATOR»,X DOUBLED
STI OPD 5360000082 SIMULATE TELETYPE INPUT

STP OPD S6T00000B8,2 STORE POINTER (AB)

TCI 0D 574000008, 2 TELETYPE CHARACTER INPUT

TCO oPD 575000068, 2 TELETYPE CHARACTER OUTPUT

WCD 0D 53520000852 WRITE CHARACTER AND DECREMENT

bICH OPD 564000008, 2 WRITE CHARACTER

NCI 0PD 557000308, 2 WRITE CHARACTER AND INCREMENT

WIO OFD 560000008, 2 WORD 1/0

* DIRECTIVE DEFINITIONS:

ASC OPD Ds2s051 ASCII STRING
BRES oPD 1,250, 1 BLOCK END SYMBOL
BSS PD 2525051 BLOCK START SYMBOL
coryY orD 3525051 REGISTER CHANGE
CRPT 0rPD 4525051 CONDITIONAL REPEAT
DATA OPD 5525051 DATA WORD o
FIILIB OPD 6515051 FORTRAN I1 LIBRARY
DEC orD Ts15051 SET NUMBER RADIX TO 10
DELSYM OPD Bs1s051 DELETE SYMBOL
FLSE oPD 951511 ELSE
ELSF orD 19,250, 1 ELSE IF
END orD 11515951 END OF PROGRAM
FENDF 0D 12515051 END IF
ENDM 0rD 13515951 END MACRO
ENDR 0P 14515051 END REPEAT
KOU aln 15525051 EQUATE
EXT 0PD 16505051 EXTERNAL ,

FREEZE 0D 17,15051 FREEZE TABLES.

FRGT orbD 18525051 FORGET SYMBOL
INDENT 0OPD 19515051 IDENTIFICATION SYMBOL
IF orRD 20525051 - IF ‘
LIST 0rPD 21s050,1 TURN ON LISTING
MACRO OrD 22505951 MACRO DEFINITION

NARG oPD 235150051 ‘ NUMBER OF ARGUMENTS

Al-5

NCHR orPD 24,0201 - NUMBER OF CHARACTERS
LOCCNT 0PD 2552,0,1 LOCATION COUNTER
NOLIST OPD = 26,0,3,1 TURN OFF LISTING
ocT OPD 27,1,0,1 } SET NUMBER RADIX TO 8
POPD 0rPD 28,2205 1 ' POP DEFINITION
RELORG 0PD 29,250, 1 RELATIVE ORIGIN
RETREL OPD 30,515,051 RETRIEVE ORIGIN
RPT oPD 31s25051 REPEAT
TEAT OPD 32,2,0,1 ' STRING (FOUR CHARACTERS PER WORD)
LMACRRO OPD 33,090,051 2 == -ALTERNATIVE MACRO.DEF°'N
GLOBAL 0OPD 34515951 SET GLOBAL MODE
REM OPD 35,22051 ~ PRINT REMARK ON TEXT FILE
LOCAL OPD 36515851 - SET LOCAL MODE
FRGTOP OPD 37,2051 . FORGET SELECTED OPCODES
CSECT | OPD 38,250,1 ' CONTROL SECTION
NBSS oPD 39,2,0,1 NONCOMMUNICATIVE BSS
:ZERO: EQU *
:LC: EQU :ZERO:

FRGT s ZERO:»:LC:s

FREEZE

END ‘ "LAST LINE OF NARP INITIALIZATION PROGR

	+01
	+02
	+03
	+04
	+05
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	00-12
	00-13
	00-14
	00-15
	00-16
	00-17
	00-18
	00-19
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12a
	04-12b
	04-13
	04-14
	04-15a
	04-15b
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	06-01
	06-02
	06-03
	a1-1
	a1-2
	a1-3
	a1-4
	a1-5

