TYMSHARE

2, TYMSHARE, INC., Litho in U.S.A.

TYMSHARE MANUALS

REFERENCE SERIES

ADDENDUM TO EDITOR

JANUARY 1972

TYMSHARE, INC.
10340 BUBB ROAD
CUPERTINO, CALIFORNIA 95014

ADDENDUM TO EDITOR

A new version of EDITOR has been released on all
Tymshare 940 systems which extends the capabilities
of this already versatile and powerful editing language.
The new, expanded EDITOR provides the user with
more power than ever before to modify programs,
data, and text efficiently and easily.

In the new EDITOR, all characters are stored in
8-bit ASCII code, allowing the storage of both upper-
and lower-case characters. The expanded text area
can accommodate approximately 132,000 characters,
or a maximum of 7,166 lines of text.

This addendum documents all of the new features
added to the EDITOR language since the publication
of the Tymshare EDITOR Reference Manual, dated
July 1969, and supersedes all EDITOR addenda and
bulletins published since that manual.

The new input and output commands include the
capability to read and write ciphered files, to handle
very large files, and to obtain paginated listings. Ex-
tended search features greatly facilitate beginning- and
end-of-line searches and provide more power with the
FIND command. The MARK command allows the
user to mark certain lines for processing by subsequent
commands. A new control character has been added
to the editing repertoire. In addition, new features
allow the joining and separating of individual lines.

Additional new EDITOR features allow the use of
command files within the language itself, conditional
execution of buffers, and direct entry into the BATCH

FORTRAN compiler, FTC, with current EDITOR text.

In all examples in this document, everything typed
by the user is underlined. Lower-case letters used in
an example of a command form represent a group of
letters that are typed. For example, the characters
file name in a sample command form indicate that a
legal file name should be typed at that point.

The symbols for user-typed Carriage Returns and
Line Feeds are:

Carriage Return: 2
Line Feed: 2

Control characters are denoted by a superscript c.
For example, A€ denotes Control A. The method of
typing a control character depends upon the type of
terminal being used. Consult the literature for the
particular terminal being used.

INPUT AND OUTPUT
FEATURES

Many new features have been added to the EDITOR
language to facilitate input and output of text. The
commands and features which concern specifically
input or output are discussed later in this section.

The CIPHER command is used in both input and
output. It allows the EDITOR user to read and write
ciphered files. Such files are stored in a special code
which cannot be deciphered without a special key, or
password. This encoding provides an additional level
of information security.

A file ciphered with the EXECUTIVE CIPHER
program may be read in EDITOR by using the same
key; similarly, a file ciphered in EDITOR may be un-
ciphered with the CIPHER program.'

When the CIPHER command is given, EDITOR
responds with the message:

KEY:

The user enters the key with which all subsequent file
input and output operations with the READ, LOAD,
WRITE, and SAVE commands are to be performed.
This key is valid until the next CIPHER command is
given. For additional security, the key is not printed
on the terminal. Note that the CIPHER command can-
not be used with the APPEND file name command or
with append-only files.!

To stop ciphered input and output and to return to
normal unciphered reading and writing, the CIPHER
command is given, and the KEY: message is answered
with a Carriage Return.

Example

*READ F1 The file F1 is read normally.
1918 CHARACTERS

*CIPHER -,
KEY: ABC, The key does not actually print on
the terminal.

*WRITE F1, File F1 is written as a ciphered file
OLD FILE with key ABC.

1848 CHARACTERS

*CLEAR 5

ALL? Y

1 - See the Tymshare EXECUTIVE Reference Manual for details on the CIPHER program and append-only files.

*READ F2 o File F2 is read with key ABC.

3487 CHARACTERS

*CIPHER -,

KEY: Ciphering ceases.

*WRITE F2UN) The contents of F2 are written
NEW FILE o, onto the unciphered file F2UN.

3370 CHARACTERS

*

Input Commands:
LOAD and Range READ

Two input commands have been added to EDITOR:
LOAD and range READ. The LOAD command is
identical to the READ command. For example, the
following are equivalent:

*LOAD INT 2 *READ lNT;)
442 CHARACTERS 442 CHARACTERS

FROM: INTDATA ,, FROM: INTDATA
721 CHARACTERS 721 CHARACTERS
* *

The LOAD command has been added to make
EDITOR compatible with other Tymshare languages
in the manner of bringing files into the language. It
does not replace the EDITOR buffer LOAD com-
mand, which requires a buffer number immediately
preceding the command itself.

The user may manipulate very large files by reading
and writing them one section at a time. A section of
any file may be read into EDITOR, edited, and then
written on a file. The text may be added at the end
of the file or may be inserted at any point in the file.

The range READ command enters a section of a
file into EDITOR. The forms of the command are:

*aREAD 1;,1, file name

and

#*aREAD 11,1 5
FROM: file name 2

where]; and 1, are line numbers in the file, and a is
an optional line address in the EDITOR text area.
‘This command reads lines 1; through 1, and inserts
them before the line addressed by a in the text area.
No character count is printed. If a is omitted, lines
1; through 1, are appended to the existing text. Note
that 1) and 1, are line numbers, not line labels. If 1, is
greater than the number of lines in the file, all lines
from 1; to the end of the file are read.

For example, the command

*SREAD 75981 AUDATA ,

reads lines 75 through 981 from the file AUDATA
and inserts them before line 5 in the text area.

The second line in the line range may be a dollar
sign ($) to indicate that the file is to be read from line
1; to the end of the file.

The range READ command may be used to read as
many as 7,166 lines or 132,000 characters.

The user may write a long file, one section at a time,
by using the APPEND file name command.

Output Commands

Three new commands have been added to the ED-
ITOR file output capability. These commands are
APPEND file name, REPLACE, and SAVE. Terminal
output has also been enhanced by three new com-
mands: LIST, PAGE, and LINES.

A new message has been added in the QUIT com-
mand. If the user has changed his text but has not
written it on a file before he gives the QUIT com-
mand, EDITOR prints:

FILE NOT WRITTEN, OK?

Answering Y returns the user to the EXECUTIVE.
An N response returns the user to EDITOR command
level, identified by the asterisk. He can then give any
EDITOR command. No Carriage Return is necessary
after the Y or N response.

The APPEND file name Command

The APPEND file name command can be used to
append text in EDITOR to a specified file without
destroying any of the existing text in the file. The
form of the command is:

#*rAPPEND file name 2

If the range r is omitted, the entire contents of the
EDITOR text area are appended to the specified file.

When characters are appended to a file by the
APPEND file name command, the new total charac-
ter count of the file is printed. For example, BIG is
a file containing 10,000 characters. The user appends
17,390 characters.

* APPEND BIG ?

* OLD FILE b
27390 CHARACTERS BIG now contains
% 27,390 characters.

If there are no characters in EDITOR and the
APPEND file name command is given, no character
total is printed. Thus, the user is aware that he is
appending no characters.

The Line Feed option may be used with the
APPEND file name command to indicate that blanks
are not to be compressed in the text appended to the
file. For example,

* APPEND

TO: CUMFILE |
OLD FILE

922 CHARACTERS

*

Note that if the Line Feed option is used, the long
form of the APPEND command must be given.

The following example demonstrates the use of the
range READ and APPEND file name commands in
manipulating a large file.

*READ 1,500 BIG

The first 500 lines of the file BIG are read
into EDITOR, and the desired substitutions

are made.
+*SUBSTITUTE 2
“COUNTDC” FOR “NUMBERD¢”
WAIT? N
498
*WRITE BIGC) The revised text is written on a
NEW FILE 2 new file, BIGC.

12396 CHARACTERS
#*CLEAR o The EDITOR text area is cleared.
ALL? Y
*READ 501,1000 BIG
The next 500 lines of the file BIG are read
into EDITOR, and the desired substitutions

are made.
*SUBSTITUTE
“COUNTDS” FOR ‘“NUMBERD¢”
WAIT? N
500
*APPEND BIGC 5 The revised text is appended
OLD FILE > to the file BIGC.
23002 CHARACTERS The file now contains
* 23,002 characters.

The REPLACE Command

The REPLACE command allows the user to replace
a section in a file with all or part of the text in EDI-
TOR. The form of the command is:

*rREPLACE 14,1, file name)

Lines 1; through 1, in the named file are replaced by
the EDITOR text specified in the line range r. Note
that r may not be a single line number; however, if r
is omitted, all of the text in EDITOR replaces lines 1;
through 1, in the file. REPLACE must be used with
ten lines or more; thus, 1, minus I; must be greater
than 9. For example,

*READ 200,300 BIGC 2
Lines 200 through 300 of file BIGC are
read into EDITOR.

*8=101 EDITOR contains 101 lines.

*SUBSTITUTE

“20D¢” FOR “70D®”

WAIT? N

11

*FIND “67DATA” DELETE 2

WAIT? N

24 A total of 24 lines are deleted.

*$=77 EDITOR contains 77 lines.

#* REPLACE 200,300 BIGC 2
The contents of EDITOR replace lines
200 through 300 of file BIGC. Note that
the number of lines replaced need not
equal the number of lines in EDITOR.

OLD FILE o,

*

If the file named is a new file, the lines specified in
the range r are written on the file, beginning at line 1
of the file. The parameters 1; and 1, are ignored in this
case.

The SAVE Command

The SAVE command is equivalent to the WRITE
command. It may be used with or without the address
of a line or range of lines. For example, SAVE writes
the entire contents of the text area onto a file. The
rSAVE command writes the line or lines addressed by
r on a file.

Like the WRITE command, SAVE has two options.
When the SAVE command is followed by a Carriage
Return, the text is written with multiple blanks com-
pressed. SAVE followed by a Line Feed writes files
with blanks uncompressed.

The following commands are identical:

*SAVE ACCT
OLD FILE 5, OLD FILE

723 CHARACTERS 723 CHARACTERS
® *

*WRITE ACCT

The SAVE command has been added to EDITOR
to provide compatibility with other Tymshare lan-
guages in the manner of writing files.

The LIST Command

In terms of action initiated, the LIST command is
identical to the / command. The LIST command
does, however, require a Carriage Return to execute
the command. The LIST command thus permits the
user to advance the terminal paper before typing a
Carriage Return, thus providing a clean printout.

Like /, LIST has two forms. LIST prints the
entire contents of the text area on the terminal. The
rLIST command prints on the terminal the lines ad-
dressed by r.

If the LIST command is used without a line range,
the current line is unchanged. If a range is used, the
current line is set to the last line in the range.

Example

*LIST LIST displays the entire text area.
THIS IS AN EXAMPLE

OF THE LIST COMMAND

WHICH IS IDENTICAL TO /

*2LIST o Line 2 is printed.

OF THE LIST COMMAND

*

The PAGE Command

The PAGE command is identical to the PRINT
command except that the first page contains a heading
at the top right-hand corner with the time and date. In
addition, subsequent pages are numbered consecutively,
in the upper right-hand corner, beginning with page 2.

The PAGE command may be followed by an integer
number to indicate that the heading is to be omitted
and that page numbering should begin on the first
page with the specified page number. For example,

indicates that the first page contains no heading and is
numbered as page 5. Subsequent pages are numbered
consecutively, beginning with 6.

New Options With the LINES Command

The LINES command is normally followed by an
integer to set the number of lines per page (excluding
the top and bottom margins) for the PAGE and
PRINT commands.

The LINES command may be used without a num-
ber to reset to 54 the number of lines per page. This
command resets the number of lines per page to that
produced if no LINES command had been given.

The LINES command may be followed by an equals
sign (=) to determine the number of lines per page cur-
rently in use. For example,

~EDITOR 5

. *LINES=54 The number of lines per page is 54
*LINES 25 - when EDITOR is called.
* LINES =25 The new number of lines is 25.
* LINES)
*LINES=54 The LINES command used alone sets
* the number of lines per page to 54.

No form of the LINES command has any effect on
the current line.

EDITING FEATURES

EDITOR’s complete text editing capability has been
enhanced with several new editing features. A new
character, Control L, has been added to EDITOR’s
already extensive repertoire of editing characters. The
JOIN command allows lines to be joined. In addition,
EDITOR now contains easy methods for substituting
Line Feeds and Carriage Returns for other characters
and vice versa.

Control L

Control L is identical to Control H except that it
does not print the old line. It copies the rest of the
old line to the new line, printing only a plus sign (+)
to indicate that editing may continue at the end of
the line. The + does not become part of the new
line. For example,

*SEDIT 5,

SPECIAL ORDER 154
LS+8 5

*SLIST

SPECIAL ORDER 1548

*

In the above example, Control L copies the rest of the
old line to the new line, but not to the terminal, and
prints the +. In this case, the entire line is copied.
The edit continues at the end of the line where the
user adds an 8 and terminates the edit with a Carriage
Return.

The JOIN Command
The general form of the JOIN command is
*nJOIN by}

where n is a line number. This command joins lines
n and n+1, replacing the Carriage Return at the end
of line n with a Line Feed. Thus,

*17JOIN

joins lines 17 and 18 to form one EDITOR line, com-
posed of two physical lines.

Each time a JOIN command is given, the number
of lines in EDITOR is reduced by one. After the
JOIN command is given, the current line is the line
joined. For example, 15JOIN sets the current line
to 15.

Example

*READ TEST-,
56 CHARACTERS

*LIST

THIS WAS LINE ONE
THIS WAS LINE TWO
THEY WILL BE JOINED

%$=3 There are three lines in the text area.
*1 JOIN 5
%1 LIST b») After the JOIN command,

THIS WAS LINE ONE line 1 consists of two
THIS WAS LINE TWO physical lines.
*$=2
*LIST 5,
THIS WAS LINE ONE
THIS WAS LINE TWO
THEY WILL BE JOINED
*WRITE TEST

OLD FILE
56 CHARACTERS

*

Several lines may be joined with the JOIN com-
mand, but the total number of characters, including

There are now two lines in the text area.

Line Feeds and Carriage Returns, in the resultant line
must not exceed 256. If this limit is exceeded, the
error message

LINE TOO LONG

is printed, and the user is returned to EDITOR com-
mand level, indicated by the asterisk. No joining takes
place in this case.

The SUBSTITUTE command, described below, can
be used to replace any character except the Carriage
Return. With the JOIN command, these Carriage Re-
turns may be replaced with Line Feeds. The user may
then make substitutions for the Line Feeds. Note that
the total number of characters per line may not exceed
256.

Example

The user wishes to put the word STOP after each
of the words ONE, TWO, and THREE on a single line
with the word END. He uses the JOIN command
three times, then the SUBSTITUTE command to
substitute the word STOP for each Line Feed.

/

ONE
TWO
THREE
FOUR
END
*1JOIN 5
*1JOIN -
*1JOIN 5
#$=2
s1/

ONE
TWO
THREE
FOUR
*SUBSTITUTE

“_STOP D FOR “— The word STOP is substi-
D¢ tuted for each Line Feed.
WAIT? N

3

*/

ONE STOP TWO STOP THREE STOP FOUR
END

*$=2

*

There are now two lines in the text area.

"Line 1 consists of four physical lines.

NOTE: $JOIN has no meaning. One line cannot
be joined to a line which does not exist.

Substituting Line Feeds
and Carriage Returns

With one exception the SUBSTITUTE command
may be used to substitute Line Feeds and Carriage
Returns for any characters in the text area and vice
versa. The SUBSTITUTE command cannot be used
to eliminate a Carriage Return. For example,

*/

FIRST:SECOND:THIRD
*SUBSTITUTE ,,

“3

DS FOR “:D¢”

WAIT? N

2

s1/

FIRST Line Feeds have now been substituted
SECOND for the colons in line 1.
THIRD

*

To substitute a Carriage Return for a character,

the Carriage Return must be preceded by a Control V.

The substituted Carriage Return is included as text
and does not erase any characters. It does, however,
create new lines. For example,

*/

FIRST:SECOND:THIRD

*$=1

*SUBSTITUTE ;, A Carriage Return is substituted
“_/_C_;) for each colon in the text.
2(-:” FOR * 25”

WAIT? N

2

*/

FIRST

SECOND

THIRD

%$=3 There are three lines in the text area.
*

The Carriage Return may also be included in the

string to be replaced by preceding it with a Control V.

This permits end-of-line substitutions. For example,

*/

THIS IS THE FIRST LINE
LINE 2

THIRD LINE

A LINE OF TEXT

*SUBSTITUTE The user wishes to substitute
“TEXTVC® TEXT for LINE only if LINE
DS’ FOR “LINEVC o oceurs at the end of the line.
an

WAIT? N

2

*/

THIS IS THE FIRST TEXT

LINE 2

THIRD TEXT

A LINE OF TEXT

®

If a Control V followed by a Carriage Return is
included in the text to be substituted at a location
other than the final character, the text following the
Carriage Return becomes a new line. For example,

*/

THIS IS LINE

2ND LINE

LINE 3

LAST

*$=4

*SUBSTITUTE o,
The text END NEW LINE is substituted for
LINE only if LINE occurs at the end of the line.

“ENDV¢ 5,

NEW _LINED®” FOR “LINEV® 2

DS’

WAIT? N

2

*$=6 Two new lines are created by the

*/ text NEW LINE substituted twice.

THIS IS END

NEW LINE

2ND END

NEW LINE

LINE 3

LAST

%

NOTE: Carriage Returns may be inserted in text
using buffers. In this case, however, the Carriage Re-
turn must be preceded by two Control V’s. For ex-
ample, line 1 consists of the text THIS IS ONE LINE.
The user wishes to create two lines by inserting NOT
JUST between IS and ONE. For purposes of illustra-
tion, this is accomplished with a buffer, as follows.

*SLOAD o,

UCS&UEC&E_NOTVCVe&V
JUSTEC& EFC& FDC

*SBUFFER -,
“&U&E NOT&V
“JUST&E&F”
*1EDIT 5

THIS IS ONE LINE
BC#5

*1/

THIS IS NOT
*2/

JUST ONE LINE
*

SEARCHING FEATURES

The EDITOR language can be used to search the
text area for the occurrence of particular sequences
of characters. The lines found in such a search may
be edited repetitively or marked for further EDITOR
commands. This section describes a new text address
capability, extended use of the FIND command, and
two commands, MARK and UNMARK, which are
used in marking specific EDITOR lines for future
operations.

New Line Addressing

The EDITOR user may now address lines by using

text at the beginning or end of the line. Such address-

ing is in addition to the other forms of searching, de-
noted by the colon, angle brackets, and quote marks.

A line may be addressed by text at the beginning
of the line by surrounding the text by exclamation

points. Such text must begin in position 1 of the line.

For example,

*/

JOHNSON, E.A.
MASON, PAM
ROSS, JOHN
*IMA!/
MASON, PAM
*

Any of the following exclamation point addresses
could also be used with the line addressed above:

M!

'MASON!
IMASON,!
'MASON, PA!

The text used within the exclamation points must
not contain an exclamation point.

Text at the end of a line may be used to address
the line by surrounding such text with single or double
quote marks and preceding the Carriage Return by a
Control V. The Control V inhibits the normal func-
tion of the Carriage Return. For example,

*/

JOHNSON, E.A.

MASON, PAM

ROSS, JOHN

*“HNVC) The user wishes to address a line
”/ ending with the characters HN.
ROSS, JOHN

*

Extended Use of the
FIND Command

To allow the combination of search and edit capa-
bilities, the FIND command may be used with any
of the following EDITOR commands: APPEND file
name, DELETE, EDIT, MODIFY, INSERT, MARK,
UNMARK, PAGE, PRINT, REPLACE, SAVE, WRITE,
SUBSTITUTE, GET, LOAD, LIST, /, =, and <.
For example,

*FIND “SFO” SUBSTITUTE
“#Dc” FOR “%Dc”

WAIT? N

8 FEight substitutions were made.

4 Four lines containing SFO were found.
*

The MARK and UNMARK
Commands

The MARK command has the form
*rMARK n)

where 1 is the address of a single line or range of lines,
and n is the number 1 or 2. The range r must be
included.

The MARK command marks all lines in the range
and adds them to the MARK 1 or MARK 2 list. The
lines marked may then be referred to by the address
@1 or @2. For example, to print the lines in the
MARK 2 list, the command

+@2

is given.

Example

*/

THIS IS 1
LINE 2
LINE 3
FOUR
LINE FIVE
*24 MARK 1,
+@1/
LINE 2
LINE 3
FOUR

*

Lines 2 through 4 are put
into the MARK 1 list.

The line lists associated with MARK are cumulative.

When a line is marked, it remains in the appropriate
MARK list until deleted from the EDITOR text area,
removed from the MARK list with the UNMARK
command, or until the MARK list is cleared with the
@1 CLEAR or @2 CLEAR command.

The UNMARK command removes lines from the
specified MARK list. No lines are removed from the
text area with this command. The form of this com-
mand is

*rtUNMARK 1,

where r and n are as used in the MARK command.
The range r may not be omitted. Only the lines ad-
dressed by r are removed from the specified list. For
example,

*/

SAMPLE

THIS

IS

RIGHT

LEFT

2,5 MARK 2,
*@2/

THIS

IS

RIGHT

LEFT

x4 UNMARK 2,
*@2/

THIS

IS

LEFT

*

Lines 2 through 5 are placed
in the MARK 2 list.

Line 4 is removed from the
MARK 2 list.

The EDITOR line number of a line may change
after the line has been marked, for example, by dele-
tion of a line above it. In this case, the line remains

in its MARK list until removed by using the UNMARK
command with its new line number. For example,

*L

ONE

TWO

THREE
FOUR

FIVE

SIX

*4,6 MARK 15
*@l/

FOUR

FIVE

SIX

*2 DELETE
*/

ONE

THREE
FOUR

FIVE

SIX

*3 UNMARK 1
*@1/

FIVE

SIX

®

Lines 4 through 6 are put into
the MARK 1 list.

Line 2 is deleted from the text
area, changing the numbers
of lines 4 through 6 to 3
through 5.

Line 3, previously line 4, is
removed from the MARK 1
list but not from the text area.

The FIND command may also be used to insert and
remove lines from the MARK lists. For example,

*/

EACH LINE CONTAINING AN M
WILL BE PUT INTO THE MARK
LIST. THOSE CONTAINING A K
WILL BE REMOVED WITH UNMARK

*FIND “M” MARK 2

Three lines containing

3
+@2/

the letter M are put into
the MARK 2 list.

EACH LINE CONTAINING AN M
WILL BE PUT INTO THE MARK
WILL BE REMOVED WITH UNMARK
*FIND “K” UNMARK 2

All lines containing the letter K are removed
from the MARK 2 list. Three lines contain
the letter K, but only two are in the

MARK 2 list.

3
@2/

EACH LINE CONTAINING AN M

*

The CLEAR command may be used to clear an
entire MARK list. For example,

%/
40 DATA 2.5,7.11
160 READ S1

170 DATA 457,899,0
180 DATA 468,999

*2 MARK 1

*@1/ The MARK 1 list is printed.
160 READ S1 Note that the lines printed
*:40: MARK 1) appear in EDITOR order,
*@1/ not in order of entry into
160 READ S1

#*@] CLEAR 5 The MARK 1 list is cleared.
*@1/

P

The lines marked by MARK remain in the same
order as they appeared in the EDITOR text area. If
line 1 had been marked before line 2 in the example
above, the MARK list would still be in the order
shown.

The addresses @1 and @2 may be used instead of
the range r in the following commands:

rAPPEND file name rPAGE
rDELETE rPRINT
rEDIT rREPLACE 1,1, file name
rFIND 1ISAVE
r;nGET SUBSTITUTE
r;nLOAD rUNMARK
rMARK rWRITE
rMODIFY r/
In addition, a MARK address may be used with the
commands INSERT, =, and «. For example,

*@2 INSERT

*@] =

and

*@2 «

are all valid commands.

In all cases, the commands above work identically
with @1 and @2 addresses as with the FIND
command.

UTILITY COMMANDS

Four new utility commands have been added to the
EDITOR language: COMMAND, FTC, ONRING, and
VERSION. These commands are described below.

Command Files

Command files can now be executed within EDI-
TOR by typing

*COMMAND file name 2

where file name is the name of the file on which the
commands are stored.

Any command can be included in the command
file; however, terminal output is suppressed in EDI-
TOR, except in those cases when it is specifically
requested, for example, with the /, PRINT, PAGE,
and LIST commands.

Consider the following command file:

READ F1 Files F1, F2, and F3 are to be read
READ F2 into EDITOR
READ F3 nto :

1,$-1 FIND ‘END’ DELETE
All lines containing END are to be
deleted except the last line.

N N is the response to WAIT?.

/ The revised text is to be printed.

WRITE F123 The revised text is to be written on
the file F123.

< The Carriage Return is the response
to the OLD FILE/NEW FILE
message.

COMMAND T Subsequent commands are to be

taken from the terminal.

These commands are written on the file CFIL, and
the EDITOR text area is cleared. The CLEAR com-
mand must be used before the command file is exe-
cuted if the command file was just entered into ED-
ITOR; otherwise, the command file commands are
interpreted as text. The procedure is illustrated
below.

~EDITOR 5

* APPEND -, The command file is created in ED-

READ Fl1 ITOR with the APPEND command.

READ F2

READ F3 5

1,$-1 FIND ‘END’ DELETE ,,

N

)

WRITE F123,

<2

COMMAND T 5 COMMAND T is the last line in

D¢ the command file. The APPEND
command is terminated with a
Control D.

10

*WRITE -,
TO: CFIL
NEW FILE -
74 CHARACTERS
*CLEAR -
ALL? Y
*

The EDITOR text area is cleared.

The response to the / command is printed, but
the responses to the READ, WRITE, and FIND com-
mands are not printed, unless a command used with
FIND requests terminal output. Responses are not
printed for the LOAD, SAVE, and APPEND file name
commands.

The commands that may be included in the com-
mand file are not limited to EDITOR commands. In
the following example, EDITOR is exited and the
command file CFL, called into EDITOR, executes
commands until control is returned to the terminal
with a COMMAND T command. CFL contains the
following commands:

READ Al Files Al and A2 are to be read into
READ A2 EDITOR.

1,$-1 FIND ‘END’ DELETE
All lines containing END are to be
deleted except for the last line.

N N is the response to WAIT?.

WRITE APROG The revised text is to be written on

the file APROG.

<o The Carriage Return response to
the OLD FILE/NEW FILE message
must be included.

QUIT EDITOR is to be exited and SUPER
FORTRAN called.

SFORTRAN

LOAD APROG APROG is to be loaded and listed.

FAST

QUIT The QUIT command returns to the
EXECUTIVE.

COMMAND T Control is returned to the terminal.

Creation and execution of the command file occurs
as follows:

+*APPEND o,
READ FI 1

READ F2.,

1,5-1 FIND ‘END’ DELETE
NS

WRITE APROG -,

2

QUIT 5,
SFORTRAN
LOAD APROG
FAST 5
QUIT 5,
COMMAND T
D¢
*WRITE -,
TO: CFL
NEW FILE
100 CHARACTERS
*CLEAR, The CLEAR command deletes the text
ALL? Y of CFL from EDITOR.
*COMMAND CFL 5, The command file is executed.

10 A=23

20 A=A13

30 DISPLAY A
100 B=A12/3.

200 DISPLAY A+B
300 END

COMMAND has a long form also. The user may
type

*COMMAND -,

after which EDITOR responds with:
FROM:

The user enters the name of the command file fol-
lowed by a Carriage Return.

The long and short forms of COMMAND are
equivalent.

The FTC Command

The FTC command provides more convenient
BATCH FORTRAN compilations by allowing the
user to enter the BATCH FORTRAN compiler with
all the current EDITOR text without first writing the
text on a file. The FTC command dismisses EDITOR
and calls FTC, the BATCH FORTRAN compiler. The
compiler accepts as input the text from the EDITOR
text area. The user simply defines his output file and
other options before compilation.

When FTC has been called from EDITOR, the user
always returns to EDITOR if the exit is made by giv-
ing the BATCH FORTRAN QUIT command. An
Alt Mode/Escape in FTC returns the user to FTC
command level.

The EDITOR FTC command is demonstrated
below.

* APPEND

XI¢ THIS IS A COMMENT 2
The program entered in EDITOR has
an error, there should be a C and not
an X in column 1 of the first line.

© OPEN (5,INPUT,DATA) 5,
I© ASSIGN 55 TO K-
Ic CALL EOF(K)-

© B=0-,

2° READ(,3) Ao

I_c_ B=B+AD

I GO TO 2

SSI° WRITE(1,4) B~
31° FORMAT(F9.0)

41¢ FORMAT($ THE SUM IS $,F10.3/);)
I© END)

D¢

*FTC) The FTC command enters the BATCH

FORTRAN compiler immediately.

+OUTPUT TO PRGC
NEW FILE

+COMPILE o,

X THIS IS A COMMENT
The program error is identified by the
4 compiler.
SYNTAX
END

+QUIT 5 The user types QUIT to return to

EDITOR. He may type EDITOR
to return also.

*1MODIFY o, The program is still in EDITOR and
can be modified directly. Control D
copies the remainder of the line after
the initial character is corrected.

CD¢ THIS IS A COMMENT

*FTC The user calls FTC again to recompile
the program.

+OUTPUT TO PRGC
OLD FILE 5

+COMPILE o No compilation errors are found.

END

~

11

+QUIT 5,

*QUIT
FILE NOT WRITTEN,OK? N
EDITOR warns the user that he has
not saved the text on a file.
*WRITE PRG 5
NEW FILE 2
185 CHARACTERS

*QUIT -,

QUIT returns the user to EDITOR.

Conditional Execution
of a Buffer

The ONRING command allows conditional execu-
tion of a buffer. The command is of the form

*ONRING n-,

where n is the number of a buffer. The ONRING
command determines that in succeeding buffer oper-
ations, a-bell condition caused by any buffer com-
mand automatically transfers control to the buffer
specified in the ONRING command.

A bell condition is said to occur when EDITOR is
instructed to perform an impossible operation. The
bell on the terminal does not necessarily ring when
this occurs. For example,

*SEDIT -,
THIS LINE CAUSES A BELL CONDITION.
Z°F

The letter F does not appear in the line. Thus, the
request to copy up to and including the F causes a
bell condition.

If the following commands are given, buffer num-
ber 1 will be executed if and when some operation in
buffer 3 causes a bell condition.

*ONRING 1 -,
*BC#3

The ONRING command should be the last com-
mand executed before calling the buffer.

Assume that the following text is in EDITOR,

NOV 27.30 INT 55
JAN 76.32 INT 1.53
MAR 101.50 INT 2.03
JUN 50.36 INT 1.06
AUG 33.50 INT 67

12

and the user wishes to eliminate the decimal points in
the numbers following INT in each line. He creates a
buffer to copy each line up to the letter I, then to
copy up to and delete the next decimal point in the
line. The process is to be repeated for each line. The
buffer to perform this task is created as follows:

*4LOAD -,
ZC&Z10°& 0.SC& SFC& FBC& B4DC

*

A decimal point will not be found after the letter [
in lines 1 and 5 of the text, and executing buffer 4 with
with these lines causes a bell condition. The user cre-
ates a second buffer to be executed whenever a bell
condition occurs, as follows:

*2LOAD -,
FC&FBC&B4DC
*

Buffer 2 simply copies the rest of the current line
and returns control to buffer 4.

The operation can now be accomplished:

*ONRING 2,

*1,$ MODIFY
BC#4

*/

NOV 27.30 INT 55
JAN 7632 INT 153
MAR 101.50 INT 203
JUN 5036 INT 106
AUG 33.50 INT 67

*

The VERSION Command

The VERSION command prints the number of the
current version of EDITOR. It may be given at any
time at EDITOR command level, denoted by the
asterisk.

