TYMSHARE MANUALS

REFERENCE SERIES

ADDENDUM TO SUPER FORTRAN

Va
JANUARY 1972
TYMSHARE, INC.
10340 BUBB ROAD
CUPERTINO, CALIFORNIA 95014
ra

©1972, TYMSHARE, INC., Litho in U.S.A.

CONTENTS
Page
INTRODUCTION e e e e e e e s s e e e e e e 1
NEW SUPER FORTRAN ADDITIONS 3
FUNCTIONS i e et et e e e e e e e e e e e e e e w 3
The TEL Function « « v ¢ v v v v v v v e e v v e e u 3
The WAIT Function. ¢« « « ¢ v v v v v v v v v e e e e 4
The ONLC Function « « &« & v v v v v v e v e e e e e 5
The YEAR Function &« & & v v v v v e v v v e v e e e 5
The EXEC Function. . . . v v v & v v v v v v e v e v v e e e w 6
The TCP FUNCION + v « + & v o 4 o & v e e e e e e e e e e e e 7
The ESC Function . . . +v «v v ¢« v v v o v o o o o o o o o o o o & 7
The SETSIZE Function & ¢ v v ¢« ¢ ¢ v v v v v v o o« o o & 8
The GOFILE Function. . . . « « « + & ¢ 4 ¢ v v v o & o o« + o o 9
FEATURES ¢ ¢ ¢ v v e v i e e e e e e e e e e 10
The CLOSE Statement: Deleting Files 10
String Functions and the Null String 10
Line Feeds. . . . v v v v v v i e e e e e e e e e e e e e e e e 10
Error Control. & v v ¢ e e e e e e e e e e e e e e e e 11
The MAKEGO Program & + & v v v v 4 v v v o v 0 0 o o s 11
The RENUMBER Command « v ¢ v v ¢ v v o v v v o o 12
HINTS FOR DEBUGGING LINKS. oo« oo .. 13
BATCH FORTRAN IV FOR THE SUPER FORTRAN

PROGRAMMER o i e e e e e e e e e e e e e e e 19
EQUIVALENT NEW FUNCTIONS AND FEATURES 19

THE BATCH FORTRAN 1V SUPER FORTRAN COMPATIBILITY
MODEt i ot e 19

INTRODUCTION

The Tymshare SUPER FORTRAN language is constantly being enhanced and improved to
bring to the time-sharing FORTRAN user the best conversational FORTRAN language avail-
able. This addendum documents all new features added to the SUPER FORTRAN language
since the publication of the Tymshare SUPER FORTRAN Reference Manual (April 1970) and
supersedes all SUPER FORTRAN language bulletins published since that manual.

In addition, the SUPER FORTRAN compatibility mode of the new BATCH FORTRAN IV
language is described. This feature permits programs written and debugged in SUPER FOR-
TRAN to be executed in the faster BATCH FORTRAN 1V operating system.

Often the SUPER FORTRAN programmer needs to debug a link in his program. A pro-
gramming hint to facilitate such debugging is illustrated in this addendum.

In all examples in this document, everything typed by the user is underlined. Lower case
letters used in an example of a command form represent the letters that are typed. For ex-
ample, the characters file name in a sample command form indicate that a file name should
be typed at that point.

The symbols for user-typed Carriage Returns, Line Feeds, Alt Mode/Escapes, and Emergency
Exit Keys are:

Carriage Return:)
Line Feed: 3
Alt Mode/Escape: ®
Emergency Exit Key:' =

Control characters are denoted in this document by a superscript c. For example, D€
denotes Control D.

1 - The keyboard position for the Emergency Exit Key varies among terminals. It is usually a Control Back Arrow or a Control Under-
score. The character has ASCII code 159 (237 octal) and the internal code 127 (177 octal).

NEW SUPER FORTRAN ADDITIONS

FUNCTIONS

SUPER FORTRAN includes nine new functions: TEL, WAIT, ONLC, YEAR, EXEC, TCP,
ESC, SETSIZE, and GOFILE; each is described below.

The TEL Function

TEL is a logical function with one argument. The argument is a dummy argument and may
be of any type; it has no relation to the function value returned. TEL returns the value 1
(true) if there is terminal input waiting to be processed; otherwise, it returns the value 0
(false). .

For example, suppose a program contains a DO loop that the user knows may take a long
time to terminate. If this should happen, he wants to be able to print the value of the index-
ing variable at any time during the execution of the loop to check its progress. The following
partial program demonstrates this.

10 STRING A(3)
40 DI SPLAY "NOW WE CALCULATE X"
50 DO 100 I=1,K
130 IF ((Y-X) .LT. 1E=-8) GO TO 200
140 IF (TELCO)) READ (0,3000) A .ELSEe. GO TO 100
150 WRITE (1,1000) I
160 100 CONTINUE
170 200 WRITE (1,2000) X
180 1000 FORMAT (' I=",14)
190 2000 FORMAT ("X IS "»Fl2.5)
200 3000 FORMAT (&,S1)
210 END

Any valid character typed by the user during the execution of the loop causes the current
value of I to be printed.! The character typed is stored in A, not because it is going to be
used, but to clear the input buffer and to prevent its being confused with later input. Then,
since no further input is waiting, TEL is again false until another character is typed.

1 - The following characters are not acceptable with the & FORMAT: Control A, Control Q, Control W, Control D, Control Vv,
Control J (Line Feed), and Control M (Carriage Return).

The use of this program and the resulting printout are shown below. -

N
>RUNS
NOW WE CALCULATE X
BI=2425 The user checked the value of I twice.
? I=4662 The first time he typed a Control B; the
X 1S 46339056 second time he typed a question mark.
ce210 >>
Adding the statement
151 PAUSE
would enable the user to continue in the loop by typing CONTINUE after the value of I is
printed, or to change or print the values of some variables and then type CONTINUE.
The WAIT Function
The WAIT function causes SUPER FORTRAN to wait a specified number of seconds before
proceeding with the program. The WAIT function must appear in an assignment statement. Its
form is
variable = WAIT (n)
where the number of seconds, n, may be any numeric variable or expression. -
If n is non-negative when the WAIT function is executed, SUPER FORTRAN pauses until
the output buffer is cleared before waiting n seconds. Thus, if the user wishes to print an
explanatory message or question before pausing n seconds, the message is completely printed
before the wait begins. If n is negative, the wait of length equal to the absolute value of n
begins as soon as the WAIT function is executed, whether or not the output buffer is empty.
Example
>LIST)
1 STRING A(3)
2 WRITE (1,500)
3 100 X=WAIT(10)
4 IF (TELCO)) GO TO 200 .ELSE. WRITE (1,600)
5 ACCEPT A
6 IF (A +EQe "YES") WRITE (1,700) .ELSE. GO TO 300
7 STOP
8 200 ACCEPT B
9 IF (B «EQ. 1513) GO TO 400
10 300 DISPLAY °TRY AGAINe..*
11 GO TO 100
12 400 DI SPLAY °**VERY GOOD!!!*
13 500 FORMAT ("IN WHAT YEAR DID BALBOA DISCOVER THE PACIFIC?'", &)
14 600 FORMAT (//*"DO YOU GIVE UP? ", &)
15 700 FORMAT ("THE YEAR WAS 1513.") -

16 END

>RUND

IN WHAT YEAR DID BALBOA DISCOVER THE PACIFIC?
Ten seconds pass.

DO YOU GIVE UP? NOD

TRY AGAINeeo

1541,

TRY AGAINeeo

1513,

VERY GOOD!!!

(e16 J)>

The ONLC Function

ONLC is a utility function which enables and disables lower case mode. ONLC must appear
in an assignment statement; its form is

variable = ONLC(n)

where the variable may be of any type. If the argument n is non-zero, lower case characters
are accepted and printed by the program. If the argument is zero, lower case is disabled, and
SUPER FORTRAN interprets all lower case alphabetic characters as upper case. For example,

Z = ONLC(1) Lower case is activated.

Z = ONLC(0) Lower case is disabled.

ONLC causes lower case characters to print as the corresponding upper case characters on a
terminal without lower case. For example, the character 102 octal (lower case b) prints as a
Line Feed without a Carriage Return on a Model 33 Teletype when ONLC is false. However,
when ONLC is true, 102 octal prints as an upper case B on a Model 33 Teletype.

The YEAR Function

The YEAR function returns as its value the integer representation of the current year. The
argument may be any numerical expression. Thus, Y=YEAR(O) returns in Y the value 1972.
For example,

>10 Y=YEARC0)D
>20 DISPLAY Y
>30 END
>RUND

1972

The EXEC Function

The EXEC function allows the user to execute any EXECUTIVE command from his SUPER

FORTRAN program.! EXEC must appear in an assignment statement; its form is
variable = EXEC(‘command’,r)

where command is any EXECUTIVE command enclosed in single quote marks, for example,
‘WHY’, ‘DIR’, and ‘COPY’; a minimum of three characters must be specified. The second
argument, r, can be any numeric expression; the variable on the left-hand side of the assign-
ment may be of any type.

If r is non-zero, control returns to the next statement in the SUPER FORTRAN program
after the EXECUTIVE command has been executed. If r is zero, control remains in the
EXECUTIVE. In other words, SUPER FORTRAN considers a zero r to be equivalent to the
QUIT command.

If the EXECUTIVE command. specified requires further input (as in the COPY comrﬁand),
that input is accepted from the command file or with prompting from the terminal.

NOTE: The EXEC function cannot be used within a proprietary or remote file.

In the following example, the user gives the EXECUTIVE commands FILES, LIST, and
MAIL. In each case, control returns to SUPER FORTRAN. Note that the MAIL command
is abbreviated to the first three letters. :

>LIST,
10 A=EXEC('FILES',2)
15 WRITE (1,100)
20 B=EXECC'LIST'»2)
25 WRITE (1,100)
30 C=EXEC('MAI ', -8)
40 100 FORMAT(/)
50 END
>RUN
SYM ACCTS The FILES command is executed.
SYM ABC
SYMm DATA
SYM INV

SYM INV'STR.E"
SYM PROG1

PROG1 INV'STR.E' INV DATA ABC ACCTS The LIST command is executed,

NO MAIL. The MAIL command is executed.

(e50 >»>QUIT,

1- See the Tymshare EXECUTIVE Reference Manual for a description of the EXECUTIVE commands.

~

The TCP Function

TCP is a logical function which tests whether a command file is open. The form of the
function is:

TCP (argument)

The argument may be any numerical expression; it is a dummy argument. TCP returns the
value zero (false) if no command file is open and non-zero (true) otherwise.

The TCP function is useful in an IF statement to test whether a command file is open. For
example,

IF (TCP(4).EQ.0) ACCEPT A .ELSE. GO TO 815
transfers control to statement 815 if a command file is open.

The ESC Function

The ESC function is used to disable and enable interrupts. ESC must appear in an assign-
ment statement; its form is

variable = ESC(n)
where the variable may be of any type, and n is any numeric expression.

When ESC is executed with n equal to zero, interrupts are disabled. Thus, if the user types
an Alt Mode/Escape or the Emergency Exit Key,' no action is taken. The system, however,
records the fact that an interrupt was attempted and which kind it was. Multiple interrupts of
either kind are recorded as only one interrupt; thus, if the user types two Alt Mode/Escapes
and three Emergency Exit Keys after interrupts are disabled, only one of each is recorded.

If the program later executes an ESC function with non-zero n, interrupts are enabled and
the following occurs:

1. If an Emergency Exit Key interrupt was recorded, control returns to the EXECUTIVE
immediately.

2. If an Alt Mode/Escape was recorded and no Emergency Exit Key was recorded, the
system checks to see if an ON INTERRUPT statement has been executed. If so, control
transfers to the statement specified in the ON INTERRUPT statement. If no ON
INTERRUPT statements have been executed, the recorded Alt Mode/Escape now inter-
rupts execution in the normal manner.

3. If no interrupts were recorded, execution proceeds in the normal manner.

Whenever an ESC function is executed, the variable on the left-hand side of the assignment
is set to zero (false) if no interrupt is waiting and to a non-zero value (true) if an interrupt is
waiting. However, if there is an interrupt waiting when the interrupts are enabled with ESC
and a non-zero argument, that interrupt is executed before ESC can return a value. Thus, in
this one instance, the variable value remains unchanged from any previous assignment.

1 - The Emergency Exit Key is described on page 1.

Example —-

The following SUPER FORTRAN program is run three times. The first time’no interrupts -~
were typed. The second time the user typed an Alt Mode/Escape during the five-second wait
in line 30, and the third time he typed the Emergency Exit Key during the five-second wait.

>LIST,

10 w=15

15 ON INTERRUPT GO TO 100
20 W=ESC (0)

es DISPLAY W

30 D=WAIT(S)

35 W=ESC (1)

40 DISPLAY W

4s GO TO 150

50 100 DISPLAY "USER INTERRUPT RECEIVED"
55 GO TO 200

60 150 DISPLAY "NO INTERRUPT"
65 200 CONTINUE

70 END
>RUND

0

0

NO INTERRUPT

(@70 >>RUN>

0
e e

USER INTERRUPT RECEIVED

(e70)>>RUN>
0
w

NOTE: The ESC function should be used with caution. If the program should erroneously
fall into an infinite loop when ESC(0) is in effect, the only way to terminate execution is to
bang up the phone.

The SETSIZE Function

The Tymshare system normally allows a file size no greater than 390,000 characters. This
protects the user from accidentally creating an extremely large file. The SETSIZE function
allows the SUPER FORTRAN user to set a higher or lower maximum file size if he wishes.

SETSIZE must appear in an assignment statement; its form is
m = SETSIZE(n,u) -/

where m is a variable of any type, and u is the file unit number. The argument n is the
maximum number of elements that the user desires the file to contain, where an element is
a character, word, or record, depending on how the file was opened. The value of n may be
any numeric expression with a value between 3,840 and 3,248,640, inclusive.

If the system cannot satisfy the request for n elements, the actual number of elements
assigned as the file size is returned in the variable m. Normally, m is set to the value n.

For example, to assign a limit of 100,000 characters to the symbolic sequential file on
unit 3, the statement is:

m = SETSIZE (100000, 3)

The SETSIZE function may be used as often as desired within a single program to change
the maximum size of the same file or many different files.

The GOFILE Function

The GOFILE function allows the user to execute any self-standing, user-created GO file!
from his SUPER FORTRAN program. This function must appear in an assignment statement;
its form is

u = GOFILE (v, ‘file name’)

where file name is the name of the self-standing GO file enclosed in single quote marks, and u
and v are real variables.

Note that the GOFILE function is designed for use with GO files created from NARP or
ARPAS and not subsystem-created GO files.

The running SUPER FORTRAN program is relabeled out, and the self-standing GO file is
executed as a fork without subsystem status. The value of the real variable v is passed as a
parameter to the GO file, and the real value u is returned. The following conventions must
be followed in writing such a self-standing GO file.

The starting location and first-saved address of the GO file must both be greater than 10
decimal. Otherwise, the GO file can use any portion of core it needs. Cells 1, 2, and 3 are
used as follows by SUPER FORTRAN to transmit values to the GO file: Cell 1 has the first
word of v, cell 2 has the second word of v, and cell 3 has the command file number.

When the GO file is finished, it returns to the SUPER FORTRAN program by executing a
BRS 10. The A register should contain the first word of u, the B register should contain the
second word of u, and the X register should contain the command file number. Even if no
numeric result is appropriate and the A and B registers are thus left undefined, it is very im-
portant that the X register be set to the current command file number. SUPER FORTRAN
releases all core pages used by the GO file.

1 - Self-standing GO files may be executed with the GO command, in the EXECUTIVE.

10
FEATURES

The CLOSE Statement: Deleting Files

Files may be deleted within a SUPER FORTRAN program by using a form of the CLOSE
statement. The form is

CLOSE(““file name”)
where file name is the name of the file to be deleted.
If a file is open, it must be closed before it can be deleted. This is done with the statement
CLOSE (number)
where number is the number given to the file when it was opened. For example,

OPEN(3,"QUAD"»RANDIN,SYMBOLIC)

L
L d

CLOSE(3)
CLOSE("QUAD'")

opens the file QUAD for symbolic input as a random file. After it has been used, the file is
closed and then deleted.

Files need not have been opened before they are deleted with the CLOSE(*file name”’)
statement.

If the CLOSE statement cannot be executed, it is ignored, and no error message is printed.
This modification applies to both forms of the CLOSE statement. For example,

CLOSE(3) Closes file 3. If file 3 is not open, the statement is ignored.

CLOSE (“DATA"”) Deletes the file named DATA. If there is no file DATA in the user’s
directory, the statement is ignored. However, if DATA is present in the
directory, but not deletable, for example, READ ONLY, then a diagnos-
tic is printed.

String Functions and the Null String
If the null string is used as the argument for the VAL and ASC functions, the values 0 and
-1 are respectively returned. In other words, VAL(*) =0 and ASC(‘’)=-1. If the argument
of the CHAR function is a negative number, the function returns the null string as its value.
Thus, the value of CHAR(-2) is the null string.

Line Feeds

The Line Feed is no longer considered to be a delimiter; thus, it is ignored during data input
from the terminal or a file. Therefore, a string variable may not contain a Line Feed.

11

Error Control

The ERR = function, which may appear in both the free format and formatted forms of the
READ and WRITE statements, now permits -the user to control additional error conditions.
ERR= causes control to transfer to the statement specified if a data transmission error occurs.
Additional errors which cause transfer to the specified statement are: VALC(s), where s is a
non-numeric string; - division by zero; and arithmetic overflow.

When a READ or WRITE statement containing the ERR= function is executed, the system
is armed to transfer program control to the statement specified after the equals sign if one of
the above errors occurs or if an error occurs during the READ or WRITE process. The system
remains armed and transfers control to that statement until:

1. An error occurs which causes control to be transferred to the specified statement.
2. A READ or WRITE statement without an ERR = function is executed.

3. A READ or WRITE statement containing an ERR= function which specifies a different
statement is executed. In this case, the system is still armed, but control transfers to
the new statement if one of the above errors occurs.

If 1 or 2 above occurs, the system is no longer armed, and all errors are treated in the nor-
mal manner. The system remains unarmed until another READ or WRITE statement contain-
ing an ERR = function is executed.

For example, when the statement
WRITE(1,1,ERR =100)A,B

is executed, the system is armed. Then, if any of the above errors occur, control is transferred
to statement 100.

This capability can be used without actually performing any file processing by using a dummy
WRITE statement. For example,

10 WRITE (1,15, ERR=60)
20 15 FORMAT (&)

transfers control to statement 60 if one of the above errors occurs.

The MAKEGO Program

The EXECUTIVE MAKEGO program produces a GO file! from a SUPER FORTRAN link
or binary file. This GO file, together with its associated link files, if any, forms a version-
independent system which will continue to run regardless of releases of new versions of
SUPER FORTRAN.

1 - GO files may be executed directly from the EXECUTIVE with the command:

—GO_file name 5
See the Tymshare EXECUTIVE Reference Manual for further details.

12

The MAKEGO program is called from the EXECUTIVE. The form of this command is:

—MAKEGO 5,
LINK FILE: binary file name -,
GO FILE: name of GO file to be created

MAKEGO then prints the OLD FILE/NEW FILE message and waits for user confirmation.

If the SUPER FORTRAN program consists of only one link, the main program itself, the
GO file produced by the MAKEGO program will always run, regardless of the current version
of SUPER FORTRAN. If the program consists of more than one link, the GO file and all
links must be created in the same version of SUPER FORTRAN. Thus, if the GO file or any
of the links is resaved in a new SUPER FORTRAN version, all of the other programs in the
set must be resaved as well. Similarly, the link files, though they will function when called
from the GO file, will not execute from a later version of SUPER FORTRAN without reload-
ing and resaving.

Example

>SAVE TESTD The user saved his SUPER FORTRAN program on the file TEST. The
TEXT ONLY ?ND N(NO) response to the question was necessary to create a binary file.

LD FILED
OK e

>QUITH

-MAKEG Q) The MAKEGO program takes the binary file TEST and produces the
LINK FILEs TEST) SUPER FORTRAN GO file GTEST.

GO FILE: GTEST,
NEW FILES

The RENUMBER Command

The SUPER FORTRAN RENUMBER command has been improved. Formerly, with the
command

>RENUMBER 14,1, AS I3(increment) o

if any renumbered lines would cause original lines to be deleted due to duplicate line numbers,
the renumbering was not performed. The new RENUMBER command can renumber all lines
without deleting in the case of duplication. This is illustrated below.

The user wishes to renumber the following program with the line numbers 1, 2, 3, and 4.

1 DIMENSION ACS)
1.5 ACCEPT A

2 DISPLAY A

25 END

13

The previous RENUMBER command would renumber the first line as line 1, but when it
tried to renumber line 1.5 as line 2, it recognized that it would have two lines with the line
number 2. Thus, to protect the user, it would not perform the renumbering as shown below.

>RENUMBER 1:2.5 AS 1(1))
NOT ENOUGH ROOM FOR ALL LINES», SOME LEFT ALONE

>LISTo
1 DIMENSION ACS)
1.5 ACCEPT A
2 DISPLAY A
2.5 END

This same command now performs the renumbering.

>RENUMEBER 1225 AS 1(1)

>LIST
1 ° DIMENSION A(S)
2 ACCEPT A
3 DISPLAY A
4 END

With all forms of the RENUMBER command, no change is made to the program if a
RENUMBER command is given which cannot be completed successfully.

HINTS FOR DEBUGGING LINKS

This section illustrates an easy method for debugging a SUPER FORTRAN program con-
taining links. The user must provide two subroutines which read and write COMMON. They
are:

SUBROUTINE WCOMMON

COMMON I(COMMON size)

OPEN (3, ‘scratch file’,OUTPUT,BINARY)
WRITE(3)1

CLOSE(3)

END

and

SUBROUTINE RCOMMON

COMMON I(COMMON size)

OPEN (3, ‘scratch file’,INPUT,BINARY)

READ(3)I :

CLOSE(3)

(open any files that remained open in previous program)
END

14

The procedure is described below. First, the user loads his main program into SUPER FOR-
TRAN with the LOAD command. He then gives the MAP command which provides him with
the size of COMMON. This is the size used as the dimension of I in the RCOMMON and
WCOMMON subroutines. These two subroutines should now be added to the main program
and all links.

Next, the user loads his main program, which now contains the two subroutines. He begins
execution with the RUN TO command, specifying as breakpoints all of the link statements:
>LOAD main program
>RUN TO L, 1,13,...5 The I; are the link statement references.

When the program breaks at the first link statement, the user calls WCOMMON to write the
current contents of COMMON on a scratch file:

I; >@CALL WCOMMON .,

Then he loads the symbolics of his first-link, which contain both subroutines, ahd gives the
INITIALIZE command:
1; >LOAD first link
>INITIALIZE
The INITIALIZE command checks the program structure; if no structural errors are found, it
allocates data storage and begins execution of the program, breaking before the first executable
statement.

At this point, the user calls RCOMMON to read the current COMMON values into the first

link. Then he continues execution, again listing as breakpoints all of the link statements in
this link:

2 >@CALL RCOMMON , In this case, the first executable statement is line 2.
2 >CONTINUE TO ly,13,... 2

This same procedure is continued with each link. Since the LOAD command brings the
symbolics of each link program into SUPER FORTRAN (unlike the LINK statement which
brings the binary representation into SUPER FORTRAN), the user has complete freedom to
debug his program. Note that the RCOMMON subroutine in each link must open any files
from the previous link which the user needs open.

Example
The following six-line program is the user’s main program.

COMMON AREA

ACCEPT "ENTER BASE AND HEIGHT:"'»BASE,HEIGHT
AREA=BASE*HEIGHT/2

DISPLAY "AREA OF TRIANGLE 1S:", AREA

LINK *"VOLUME"

END

UL WN -

15

The user loads his program into SUPER FORTRAN and gives the MAP command to deter-
mind COMMON size.

>LOAD AREAS
OK.

>MAPS

6 LINES

TEXT = 147 CHARS (OF 24000)
COMPILATION = 83 BYTES (OF 18000)
NAMES = 5

OBJECT PROGRAM:

SIZE = 45 WORDS

COMMON = 2 WORDS COMMON size is two words.
DATA STORAGE = 4 WORDS

8117 WORDS UNUSED

Now the user can add the two subroutines to his main program and the link. The main
program with subroutines is resaved on the file AREA, and the link with subroutines is saved
on the file ARBASE. These two files are displayed below.

1 COMMON AREA
2 ACCEPT "ENTFR BASE AND HFIGHT :",BASE,»HEIGHT
3 ARFA=BASE*HEIGHT/2

4 DISPLAY "AKEA OF TRIANGLE IS:", AREA

5 LINK "“UVOLUME"

€ END

10 SURROUT INE WCOMMON

11 COMMON I(2)

12 OPEN(3,'"SCOMMON" » OUTPUT s BINARY)

13 WRITE(3)1

14 CLOSE (3)

15 END
20 SUBROUT INE RCOMMON
21 COMMON 1(2)
22 OPEN(3,'"SCOMMON' s INPUT » BINARY)
23 READ(3)1
24 CLOSE (3)

25 END

16

1 COMMON ARBASE
2 ACCEPT "ENTER HEIGHT: '",HEIGHT
3 VOLUME=ARBASE*HEIGHT
4 DISPLAY ''VOLUME OF REGULAR PRISM IS: ",VOLUME
5 END
10 SUBROUTINE WCOMMON
11 COMMON I(2)
12 OPEN(3,'"SCOMMON'">0UTPUT»BINARY)
13 WRITE(3)1I
14 CLOSE (3
15 END
20 SUBROUTINE RCOMMON
21 COMMON I(2)
22 OPEN(3,'"SCOMMON'' s INPUT» BINARY)
23 READ(3)1
24 CLOSE (3
25 END

At this point, the user is ready to run his program and perform any debugging necessary.

>LOAD AREAS The user loads his main program.

OK e

>RUN TO 5 Line 5 is the only LINK statement.

ENTER BASE AND HEIGHT$:3e¢155¢2)

AREA OF TRIANGLE 1St 8«06

BREAK The program breaks at line 5, and the user loads his first link after calling
5 >eCALL WCOMMON, WCOMMON to write the current contents of COMMON on a file.
5 >LOAD ARBASED

OKe.

>INITIALIZE 2 The INITIALIZE command begins execution, breaking at line 2.

2 >@CALL RCOMMON-5H The user calls RCOMMON to read the values of

COMMON from the file and continues execution.
2 >CONTINUED
ENTER HEIGHT: 9.
VOLUME OF REGULAR PRISM 1IS: 7254

o

(es)>LISTD
1
2
3
4
5

10
11
12
13
14
15
20
21
22

-3

24
25
es5 >

Since the symbolics of the link are in SUPER
FORTRAN, the user could now debug the link.

COMMON ARBASE

ACCEPT '"ENTER HEIGHT: ''>HEIGHT
VOLUME=ARBASE*HEIGHT

DISPLAY “VOLUME OF REGULAR PRISM IS3
END

SUBROUTINE WCOMMON

COMMON I(2) ‘
OPEN(3,*"SCOMMON"»OUTPUT» BINARY)
WRITE(3)1I

CLOSE (3D

END

SUBROUTINE RCOMMON

COMMON I(2)

OPEN(3,'"'SCOMMON''» INPUT » BINARY)
READ(3)1

CLOSE (3

END

", VOLUME

17

19

BATCH FORTRAN IV FOR THE SUPER FORTRAN PROGRAMMER

EQUIVALENT NEW FUNCTIONS AND FEATURES

The functions and features described in this section have been added to SUPER FORTRAN
to increase its compatibility with BATCH FORTRAN IV. They are, however, available for any
SUPER FORTRAN program.

The functions VAL, IVAL, DVAL, and CVAL are all equivalent to the SUPER FORTRAN
VAL function. Likewise, the function SFTIME is the same as TIME, and SUBST3 is equivalent
to SUBSTR3.

Instead of dimensioning arrays with an asterisk, as in REAL A(*,*), the user may dimension
with variables; REAL A(L,J) is thus equivalent to' REAL A(*,*). The actual values of I and J
are ignored. The method for doing this is described fully on page 22.

If the first non-blank character in a line is a colon (:), that line is considered by SUPER
FORTRAN to be a comment. On the other hand, lines beginning with a percent sign (%) as
the first non-blank character are compiled; the percent sign is ignored.

THE SUPER FORTRAN COMPATIBILITY MODE
OF BATCH FORTRAN IV

The Tymshare BATCH FORTRAN IV and SUPER FORTRAN languages are quite similar
syntactically, and programs written in the two languages are generally compatible. The SUPER
FORTRAN user who runs one program many times, for instance, a production program, may
find it economical and efficient to run his SUPER FORTRAN program in BATCH FOR-
TRAN 1V. A special compilation mode, the SUPER FORTRAN compatibility mode, has been
added to BATCH FORTRAN 1V to minimize the language differences.

This section explains how to run a SUPER FORTRAN program in the SUPER FORTRAN
compatibility mode. All existing differences between the languages which would affect the
SUPER FORTRAN program are described.

The SUPER FORTRAN compatibility mode is called by giving the SFORTRAN command
at BATCH FORTRAN IV command level prior to compilation.

The SUPER FORTRAN compatibility mode can compile SUPER FORTRAN programs with
line numbers. If the SUPER FORTRAN program does not include line numbers, the user
should give the OFF LINE NUMBERS command after he has given the SFORTRAN command
in BATCH FORTRAN 1V. This compatibility mode accepts files created with the SUPER
FORTRAN SAVE command whether the TEXT ONLY? question is answered with 2 Y or N.

20

Example

The following example illustrates the ease with which SUPER FORTRAN

run in BATCH FORTRAN 1V.
The user lists and runs his SUPER FORTRAN program in SUPER FORTRAN.

=SFO>

>LOAD BAL>
OK
>LISTH

10

20

30 2
40

50 3
60

70 4
80

90

100 5
110

120

130

140

150 7
160 100
170
>RUND

C: DOUBLE DECLINING PALANCE DEPRECIATION PROGRAM
WRITEC152) "COST OF ASSET= $*

FORMAT(//S,&)

READ(0,»3)C

FORMAT(F12.2)

WRITE(1,4) °'ESTIMATED USEFUL LIFETIME= ¢
FORMAT(S»&)

READC0,3)U

WRITE(1,5) 'YEAR', 'DEPRECIATION', 'BOOK VALUE"®
FORMAT(/S»8XsSs8XsS)

DO 100 I=1,U

D=2%C/U

C=C-D

WRITEC157)15DsC
FORMAT(I458X5 "5 5F10e2s8Xs"*S'sF8e2)

CONTINUE

END

COST OF ASSET= $3500.00,
ESTIMATED USEFUL LIFETIME= (K3

YEAR DEPRECIATION BOOK VALUE
1 $ 1000.00 $ 2500.00
2 % 71429 $ 1785.71
3 $ 510.20 $ 1275.51
4 $ 364443 $ 911.08
5 $ 260.31 $ 65077
6 % 18593 $ 464.84
7 $ 132.81 $ 332.03

(8170)>QUITH

programs can be

-/

21

=-BFO0O The user calls BATCH FORTRAN 1V and gives the SFORTRAN
command to compile in the compatibility mode.
+ SFORTRAND
+COMPILE BAL,BF4BAL, His program was saved on the file BAL;
NEW FILE) the compiled version is saved on BF4BAL.
170 END
+LOAD BF4BAL He loads his object program.
+WRITE BAL4, The user creates a GO file with the WRITE command.
LOADING LIBRARY
NEW FILE
+RUND The user begins execution with RUN.

COST OF ASSET= $3500.00p
ESTIMATED USEFUL LIFETIME= 7

YEAR DEPRECIATION BOOK VALUE

1 $ 100000 $ 2500.00

2 $ 71429 $ 178571

3 $ 51020 $ 127551

4 $ 36443 $ 911.08

5 $ 260+ 31 $ 65077

6 $ 18593 $ 464.84

7 $ 132.81 $ 332.03
+QUITH

For future runs, the user only needs to execute the GO file BAL4 directly from the EXECU-
TIVE; he does not need to recompile the program.

Described below are the remaining characteristics of BATCH FORTRAN IV in the SUPER
FORTRAN compatibility mode which differ from SUPER FORTRAN.

1. Only the first six rather than the first 31 characters of an identifier name are used to dis-
tinguish between identifiers in the SUPER FORTRAN compatibility mode. In addition,
only upper case letters may be used in identifiers.

2. Brackets cannot be used in place of parentheses. A SUPER FORTRAN program using
brackets will not compile in the compatibility mode.

3. The operators .EQU. and .IMP. are not recognized in the compatibility mode, and pro-
grams using them will not compile.

4. The SUPER FORTRAN functions SIGNUM, ENTIER, ROUND, POLAR, FACT, TIME,
TEL, WAIT, TCP, ESC, SETSIZE, GOFILE, ONLC, YEAR, and EXEC are not included
in the libraries. These functions will be listed as missing when a program calling them is
loaded. The TIME function is included in the compatibility mode with the name
SFTIME.

22

12.

10.
11.

13.

14.
15.

Programs with logicals equivalenced to non-logicals in an EQUIVALENCE statement do
not work in the compatibility mode as they do in SUPER FORTRAN since the conversion
from TRUE. to 1 and .FALSE. to 0 does not occur. BATCH FORTRAN IV converts
TRUE. to -1 and .FALSE. to 0. Assignments between logical and numeric variables are
compatible, however.

Logical constants in 2 DATA statement must be either TRUE. or .FALSE.. String con-
stants in DATA statements must be enclosed in quote marks.

Logical arrays are stored one element per word rather than 24 elements per word. Thus,
care should be taken if logical arrays are being equivalenced to non-logical variables.

Complex input/output using the A conversion requires two specifications rather than one
per variable or expression.

Labels range from 1 to 99999 rather than 0 to 99999.
Type and dimension declarations must appear before the first use of the identifier.

A program containing the largest of a specific COMMON block must be loaded before all
other programs containing that COMMON block. Otherwise, when the program is loaded,
SUPER FORTRAN prints the name of the COMMON block which is larger than a pre-
viously loaded copy, followed by an error message.

BATCH FORTRAN 1V subroutines and machine language subroutines can be used with a
SUPER FORTRAN program executed in the SUPER FORTRAN compatibility mode.

The EXTERNAL statement is required to recognize subroutine names as subroutine
arguments.

Statement functions must appear before any executable or FORMAT statement.

Calling sequence arguments must agree in type with the dummy arguments of the subrou-

tine called. Using an asterisk array to pass array dimensions is not recognized or diagnosed.

If the SUPER FORTRAN user wishes to pass array bounds, the following changes can be
made to his program; it will then be acceptable in both SUPER FORTRAN and the
SUPER FORTRAN compatibility mode.

a. In the call, for each subscript that is to be passed, one integer variable is added to the
end of the calling sequence. Before the call, each of these variables is set to the cor-
responding dimension.

b. In the receiving sequence, integer variables are added correspondingly to the ones in
the call. The asterisk in the dimension of the dummy arrays is replaced with the
appropriate integer variable.

For example,

Old Program

DIMENSION AC1054),E(6)

CALL SUB(X»A»Y,B)

SUBROUTINE SUB(T»D,V,E)
DIMENSION D(*s%),E(*)

-

16.

23
New Program

DIMEI}ISI ON AC10,4),BC(6)

IA1=1051A2=4
CALL SUB(X,A»Y»B»IAl,1A2,6)

SUBROUTINE SUBC(TsDsV>E»ID1,1D2,IE1)
DIMENSION D(ID1,ID2),ECIEL)

In SUPER FORTRAN, string, logical, double precision, and complex functions need not
and can not be declared in other subroutines or in the main program in which they are
used. BATCH FORTRAN 1V requires the string functions to be declared. To handle
this situation, the following conventions have been added to SUPER FORTRAN and to
the SUPER FORTRAN compatibility mode.

SUPER FORTRAN If the first non-blank character in a line is a percent sign (%), it
is ignored, and the rest of the line is compiled. If the first non-
blank character in a line is a colon (:), the entire line is ignored.

SUPER FORTRAN If the first non-blank character in a line is a percent sign (%), the
Compatibility Mode entire line is ignored. If the first non-blank character in a line is
a colon (:), it is ignored, and the rest of the line is compiled.

The string, logical, double precision, or complex declarations can then be included in the
SUPER FORTRAN program by preceding the statement with a colon. The declarations
will be ignored in SUPER FORTRAN but compiled in the SUPER FORTRAN compati-

bility mode.

Example

10 ¢STRING REV(3)

11 EXTERNAL REV

20 STRING S(3J)

30 S=REV('"ABC*)

40 END

50 STRING FUNCTION REV(T)(3)

60 STRING T(3)

70 REV=RIGHTCT» 1)+SUBSTR3(T»2,1)+LEFT(T»1)
80 RETURN

90 END

In addition, the percent sign feature allows the inclusion of debugging statements in the
program while running in SUPER FORTRAN which are ignored when the program is
executed in BATCH FORTRAN IV.

24

Execution of SUPER FORTRAN programs and their links in the SUPER FORTRAN com-
patibility mode is identical to their execution in SUPER FORTRAN. However, the preparation
of link files and the debugging of link programs is quite different from SUPER FORTRAN.
Note that this difference does not concern the user who debugs his links in SUPER FORTRAN
before moving them to BATCH FORTRAN 1V.

BATCH FORTRAN 1V only runs one SUPER FORTRAN program at a time. If a program
executes a LINK statement, the program is destroyed. COMMON is preserved, and the new
link is run. Any files open in the calling program remain open when the new link is run.
However, a maximum of three files may be open when a LINK statement is executed.

Link files are produced by use of the WRITE command; GO files are produced by the
DUMP command. The user may not link to files created with the DUMP command. There
is no LINK command in BATCH FORTRAN IV. The LINK command is accepted, however,
in the SUPER FORTRAN compatibility mode.

For example, consider the following SUPER FORTRAN program with line numbers removed
for BATCH FORTRAN 1V. In BATCH FORTRAN IV, this is run as follows. Assume the
symbolic files are called SYMAREA and SYMVOLUME.

Example
Suppose the file SYMAREA contains the program

COMMON AREA

ACCEPT "ENTER BASE AND HEIGHT :",BASE,HEIGHT
AREA=BASE*HEIGHT/2

DISPLAY "AKEA OF TRIANGLE IS:", AREA

LINK "VOLUME®"

END

AN D WY -

and the file SYMVOLUME contains the program whose symbolics are:

COMMON ARBASE

ACCEPT "ENTER HEIGHT: “,HEIGHT

VOLUME=ARBASE *HEI GHT

DISPLAY "VOLUME OF REGULAR PRISM IS: “,VOLUME
END

AL WN =

The binary file for VOLUME is compiled, loaded, and prepared:

-BFORTRAN4>
+SFORTRANS

+COMPILE SYMVOLUME,BINVOLUME
NEW FILE

5 END

J

25

+LOAD BINVOLUME,

+WRITE VOLUME,
LOADING LIBRARY
NEW FILE)

SYMAREA is compiled and loaded:

+COMPILE SYMAREA, BINAREAD
CLEAR ALL OVERLAYS? YES,
NEW FILES

6 END

+LOAD BINAREA

+RUNo
LOADING LIBRARY
ENTER BASE AND HEIGHT:3¢1,5.25

AREA OF TRIANGLE ISt 8.06
ENTER HEIGHT: 9
VOLUME OF REGULAR PRISM ISt 72454

+

At this point, unlike SUPER FORTRAN, the program AREA, which was initially run, is
completely forgotten, and the new link VOLUME is in core with complete BATCH FOR-
TRAN IV debugging capabilities available. A second RUN command reruns the VOLUME
program, not the AREA program.

If the user wishes to create a GO file of the AREA program to be run in the EXECUTIVE,
he gives the DUMP command after the file BINAREA is loaded. For example,

+LOAD BINAREA,

+DUMP TEST>
LOADING LIBRARY

NEW FILED

+QUIT,

=GO TEST,

ENTER BASE AND HEIGHT:3¢2s5.2)
AREA OF TRIANGLE IS: 8632

ENTER HEIGHT: 95
VOLUME OF REGULAR PRISM ISt 74.88

