Price: $3.50

TYMSHARE REFERENCE SERIES

EDITOR

REFERENCE MANUAL

TYMSHARE, INC.
CUPERTINO, CALIFORNIA

FEBRUARY 1978

TYMSHARE VERSION

©1969, TYMSHARE, INC.
All rights reserved. Litho in U.S.A.

Page

INTRODUCTION ... ittt ettt e 1
SECTION 1 - INTRODUCTION TO EDITOR: AN EXAMPLE........ 3
INPUT OF TEXT: THE APPENDCOMMANDt iernnn. 5
CONTROL CHARACTERSttt ittt ittt tiertennnnnns 5
Control A: Deleting the Preceding Character0ovuunn. 5
Control Q: Deleting the Preceding Linec.0vvrvunn.. 5
OUTPUT OF TEXT ittt ittt ettt tetan et eranennnnnnns 6
The / Command: Printing Text at the Terminalc0c0vu... 6
The WRITE Command: Saving Textona File.............0ouuvuu... 6
EDITING TEXT IN THE TEXT AREA it iititiinnennn 6
Line Addressingc.viiiiitiiit it ittt e 6
The EDIT Command iiiiiiinenenenenroneennnnnnnnns 7
The DELETE Commandc.i ittt ennennnnennnnnss 7
The SUBSTITUTE Command ittt ennnneennn. 7
QUIT AND CONTINUEttt ittt ittt eennenns 8
CONVENTIONS FOR TYPINGCOMMANDSiitverenennn. 8
SUMMARY OF SECTION 1ttt ii ittt tnennnnns 9
A . Command SUMMaArY. . ..ottt ittt ittt ittt e et ensennenennes 9

B. Summary of Control Characters.cvvi e e reneennnnnns 9
SECTION 2 - INPUT, OUTPUT, AND ADDRESSING OF TEXT...... 1"
INPUT OF TEXT TO TEXT AREA et e e 1
N o o = N 1
TAPE . i et e et ettt e et e, 1
READ and @a READ ittt ittt ittt it i ti s innnenns 12
ORGANIZATION OF TEXTINTEXT AREA.ttt i i ee e 13
Definition of @a Line. ittt ittt ittt titeinnnennsn 13
Line Continuation: The Line Feed 13
Line Length i i i it i ittt aennen 13
Size Of TeXt Area .. i ittt ittt iee ettt e oneneneennns 13
LINE ADDRESSING0iiiiiiiinrnneintnennnnnnnns 13
Basic Line Addressesiiiiretninntntrinrnrnnnnnenens 14
Combination Line Addresseso vttt e it ittt ee i seneenens 15
Address Arithmetic . .. v v v vttt et ettt ettt ettt aeenens 16
Addressinga Range of Linesttt innennnnn 16
OUTPUT OF TEXT FROM TEXT AREAttt tninnnnnn 17
Terminal OutPUL . .o ot ittt ittt it ittt et ettt et e et 18
Paper Tape Output: The PUNCHCommandcc0vu... 19
File Output: The WRITECommandc0iiiiiiiinnnnnn. 20
Rules for Naming Files. i ittt it ittt i i ittt ittt e e e ennn 21
SECTION 3 - EDITING TEXTIN TEXT AREA 23
TERMINAL INPUT EDITING ititti it itttenrnennennns 23

Page

Control Q: Deleting the Preceding Line, 24
Control W: Deleting the PrecedingWord ot 24
Control 1: Tabs & vt i i i ittt i et s eenenssnaseesoensasasnssnnns 24
EDITING TEXTWITHIN ALINEttt it ttntrtnannnnenns 25
The EDIT and MODIFY Commandsccottvveeennnnnannsns 25
Control Characters Used with EDIT and MODIFY 25
Use of Control Characters during APPEND, INSERT, and CHANGE 30
MANIPULATION OF WHOLE LINES AND GROUPS OF LINES 31
The DELETE Command oottt ineciennnesnnnnnsesennnnnn 31
The INSERT Command ittt ernnnennn 32
The CHANGE Commandttt ittt i et onnnntoneessnnsess 32
The COPY Commandttt it teererneennnoseensnnsssanses 32
The MOVE Command ittt ittt ittt eenannnnnnnnns 33
REPETITIVE EDITINGttt ittt et e iiennenanaanennnnnansn 33
The SUBSTITUTE Command i ittt ittt rternnnnsaeens 33
(0303 X1 ¢'o 1€ T 36
(070 152« 1Y /Z2 36
The FIND Command ... vt vt ittt tnnneetnnneersensnnesensnas 37
SECTION 4 - UTILITY COMMANDS it iii i 47
THE CLEAR COMMAND: CLEARING TEXTAREA 47
THE TABS COMMAND: SETTING TABSTOPSt 47
THE = COMMAND: DETERMINING A LINE NUMBER 48
THE <« COMMAND: DETERMINING ALINELABEL 48
SECTION 5 - ADVANCED EDITOR FEATURES.................. 49
GENERAL DESCRIPTIONOFBUFFERSttt innnnnnn 49
OUTPUT FROM ABUFFERTOTHETERMINAL 49
INPUT TOABUFFERttt ittt iiiaeennanansnnnnannnn 49
Input From The Terminalottt i i ettt ea e 49
Input From The TeXt Areaooiiintinnrnnennnneennnnnn 50
ERASING THE CONTENTSOF ABUFFER 50
USE OF BUFFERSt ittt ittt tiieeeteenaeeeennaannennnas 50
(076 Y12 |1 = 7 51
TextinaBufferottt i it ittt e e ertsannetsnnsesensas 51
CommandsinaBuffer........cuiiiiiiiiieiineeenansoannasanns 51
Control CharactersinaBuffercciiiiiiiinnennnnnnn 52
SECTION 6 - EDITING EXAMPLES it 55
CREATING APROGRAMINEDITORt ittt renneernnnnns 55
RETRIEVING RESUMES it ittt ittt ttnsantsarnnsnnanans b6
CREATING A DATA FILE WITH INPUT FROM PAPER TAPE 59
CREATING A DATA FILE FROM SUPER BASIC DATA STATEMENTS 60
CONVERTING FROM FORTRAN IV TO BATCH FORTRAN 62

APPENDIX A - ERROR MESSAGES.oout 64

APPENDIX B - DEFINITION OF THE CURRENT LINE............ 65
APPENDIX C-THE TERMINAL 66
APPENDIX D - EDITOR SUMMARY i, 69
Summary of EDITOR Line Addresses.0ictttrnnnnnnnn 69
Alphabetic Summary of EDITORCommands 70
Alphabetic Summary of Control Characters. 72
INDEX .. ittt i e et e e e e 75

TYMSHARE MANUALS
SYMBOL CONVENTIONS

The symbols used in this manual to indicate Carriage Return, Line Feed, and ALT
MODE/ESCAPE are as follows:

Carriage Return: o
Line Feed:
ALT MODE/ESCAPE: . o NOTE: This symbol will be printed as

many times as it is required to
hit this key.
Control Characters

Control characters, typed by pressing and holding the CTRL key in conjunction with
an alphabetic character, are denoted by a superscript c. For example, D¢ denotes
Control D.

Action At The Terminal

To indicate clearly what is typed by the computer and what is typed by the user, the
following color code convention is used:

Computer: Black User: Red

INTRODUCTION

EDITOR provides the user of the Tymshare system with an unusually flexible set of
editing commands. The EDITOR user may

Edit individual lines of text.

Edit commands as they are typed.

Insert a line or range of lines into the text.

Delete a line or range of lines from the text.

Move a line or range of lines to another position in the text.

Copy a line or range of lines in the text.

Make substitutions throughout the text.

Use most of the commands repetitively without being required to retype them.
Write small editing programs to do much of his editing work for him.

ABOUT THIS MANUAL

This manual is intended primarily for reference. However, it is also a readable and ef-
fective text for the potential EDITOR user.

For those who are beginners at computer aided text editing, we suggest studying
Tymshare’s EDITOR Manual, Instant Series, before this manual is attempted.

Section 1 of this manual is designed to familiarize the reader with the fundamentals of
EDITOR, or to serve as a review for those who have already been introduced to EDITOR.

Sections 2 through 5 constitute the principal reference part of the manual. All
EDITOR commands are discussed fully in these sections. However, the student of
EDITOR will find this part of the manual, especially the examples, easier to understand if
he reads Section 1 first.

Section 6 contains editing examples demonstrating various techniques.

The appendices provide a summary of EDITOR's error messages, a convenient table
showing the definition of the current line after each EDITOR command, some infor-

mation about the terminal, and a summary of EDITOR’s commands and control
characters.

SECTION 1
INTRODUCTION TO EDITOR: AN EXAMPLE

As an introduction to EDITOR we present a complete example of text editing with

EDITOR.

We begin with the first steps in using any Tymshare language, logging in and calling the
language:

After the connection with the computer has been properly made, the computer replies
with:

PLEASE LOG IN D i The user types a Carriage Return.

ACCOUNT: A3 D e He types his account number (A3 in this case) fol-
lowed by a Carriage Return.

PASSWORD: Do The user types his password followed by a Carriage
Return. The password does not print.

USER NAME: JONES 5 .- .vnvvvnnnnennnnn. He types his user name. '

PROJ CODE: K-123-K D e He types a project code (K-123-K in this case). A
project code is optional; if no project code is desired,
type a Carriage Return in response to the system'’s
request.

TYMSHARE 12/24 11:20¢cuvvuvn.. The user is properly connected to the system. The

— EDITOR > dash (—) on the left indicates that he is in the EXEC-
UTIVE. EDITOR may now be called by typing
EDITOR followed by a Carriage Return. EDITOR re-
plies with an asterisk (*) when it is ready to accept a
command.

*APPEND 5 ... The APPEND command allows the user to enter his

87100 ALBUQUERQUE, NEW MEX o, text. He uses the control characters A€ and Q€ to

98310 BREMERTON WASHINGTON , make corrections as he types.

90241 DOWNYAC+EY CALIF b

98345 KEYPORT WASHINGTON o

87544 LOS ALAMOS NEW MEX ,

94025 MENLO CALIF 5

00003 PEORIA ILL 5

95112 SAN JOSE CALIF

95112 SEATTLE WASHQC¢t

98124 SEATTLE WASHINGTON

Dl e e e e Control D terminates the APPEND command.

L A The / command prints his entire text on the terminal.

87100 ALBUQUERQUE, NEW MEX
98310 BREMERTON WASHINGTON
90241 DOWNEY CALIF

98345 KEYPORT WASHINGTON
87544 LOS ALAMOS NEW MEX
94025 MENLO CALIF

00003 PEORIA ILL

95112 SAN JOSE CALIF

98124 SEATTLE WASHINGTON

* WRITE 5

TO /zIP/ 5

N
69

*1

EW FILE o
WORDS.

EDITD

87100 ALBUQUERQUE, NEW MEX
Z°R87100 ALBUQUERQUES®%D® NEW MEX

*1

/

87100 ALBUQUERQUE NEW MEX

* 'MENLO’EDIT

94025 MENLO CALIF

Z€094025 MENLOES< PARKE®¢>DC¢ CALIF
* '94025°'/

94025 MENLO PARK CALIF

* ‘0000'DELETE
* SUBSTITUTE

..........................

“WASHD¢” FOR “WASHINGTOND®¢"
WAIT? N

3
*/

87100
98310
90241
98345
87544
94025
95112
98124

* WRITE 5

ALBUQUERQUE NEW MEX
BREMERTON WASH
DOWNEY CALIF
KEYPORT WASH

LOS ALAMOS NEW MEX
MENLO PARK CALIF

SAN JOSE CALIF
SEATTLE WASH

TO /zIP/
OLD FILE

58

* QUIT >
— LOGOUT >

WORDS.

TIME USED 0:8:03
PLEASE LOG IN:

Before proceeding with a step-by-step analysis of

our example, we note a few general characteristics of
EDITOR.

EDITOR is an editing language consisting of various

editing commands, such as APPEND and SUBSTI-
TUTE. The ““data” upon which the commands oper-
ate is simply text.

In our example, the text consists of alphabetic and

numeric data; namely, ZIP codes and their corre-

He saves his text on a disk file, called /ZIP/.

The user edits line 1. Using control characters, he de-
letes the comma.

He prints the new line 1.

He edits the line containing the text MENLO and
prints it.

He deletes the line containing the text 0000.

He abbreviates the word WASHINGTON throughout
the text.

He prints the entire edited text.

The user saves the edited text on the same file he cre-
ated earlier, /ZIP/.

The user leaves EDITOR.

To leave the system, he uses the EXECUTIVE com-
mand LOGOUT. After the system types the amount
of time he has used, he can hang up or let someone
else log in.

sponding cities and states, which the user might wish
to use as input to a program in one of Tymshare’s
programming languages. However, EDITOR itself is
not a programming language, but a general purpose
text editor. Any text that can be typed on the
Tymshare terminal can be accepted by EDITOR. For
example, this manual could be typed into EDITOR
and updated from time to time.

Once he has called EDITOR, the user has EDITOR's
large text area available to him. Text in the text area

may be edited quickly and easily using EDITOR's
commands; the edited text may be saved on a disk
file, printed at the terminal, or punched on paper
tape. In general, the use of EDITOR will usually
involve

® |nput of text to the text area.

® Editing of the text.
® Qutput of text from the text area.
Our example shows some ways of doing all of

these. We shall now discuss them in more detail, in the
order that they appear in the example.

INPUT OF TEXT: THE APPEND COMMAND

Text may be entered into EDITOR’s text area
from paper tape, from a disk file, or directly from the
terminal. In our example, the user wishes to enter his
text from the terminal, so he uses the APPEND com-
mand. This command has the following form:

* APPEND o
the text to be entered bs)
D¢

*

After typing APPEND followed by a Carriage Re-
turn, the user types his text. The command is termi-
nated by a Control D (D€), which must immediately
follow the last Carriage Return of the text. EDITOR
will then type the asterisk, indicating that it is ready
to accept another command.

CONTROL CHARACTERS

Control characters have many uses in EDITOR.
They are typed by depressing and holding the CTRL
key and then typing the desired letter, D in the above
case. They do not print on the terminal; however,
EDITOR will make some response when the user types
a control character. In the above case, it typed an as-
terisk to indicate that the D€ did in fact terminate the
APPEND.

NOTE: Throughout this manual, control charac-
ters will be indicated by the superscript c,; for exam-
ple, D€ denotes Control D.

Text entered during APPEND may be edited while
it is being typed by using control characters.

CONTROL A: DELETING
THE PRECEDING CHARACTER

In our example, the word DOWNEY was mis-
spelled as DOWNY in the third line of text. To cor-

rect this error, the user types a Control A to delete
the preceding character, Y. EDITOR types a back ar-
row (<) to indicate that Control A is used, thus:

90241 DOWNYAC<EY CALIF 5

CONTROL Q: DELETING
THE PRECEDING LINE

Similarly, in the last line of text entered during
APPEND, the user noticed that he had typed the
wrong ZIP code at the very beginning of the line. He
types a Control Q to delete the entire line. EDITOR
types an up arrow (1) and returns the carriage for the
user, who then types the correct line:

95112-SEATTLE WASHQ¢t
98124 SEATTLE WASHINGTON

OUTPUT OF TEXT

THE / COMMAND: PRINTING
TEXT AT THE TERMINAL

Very often it is useful to have the contents of the
text area printed at the terminal. The command to do
this is the /. Unlike other commands, the / acts im-
mediately after it is typed, so there is no need to fol-
low it with a Carriage Return. EDITOR returns the
carriage and prints the contents of the text area.

In the example, the user typed a / after he had
terminated the APPEND, thus:

*/

87100 ALBUQUERQUE, NEW MEX
98310 BREMERTON WASHINGTON
90241 DOWNEY CALIF

98345 KEYPORT WASHINGTON
87544 LOS ALAMOS NEW MEX
94025 MENLO CALIF

00003 PEORIA ILL

95112 SAN JOSE CALIF

98124 SEATTLE WASHINGTON

*

Note that there is no evidence of the control char-
acters used during APPEND. Printing the contents of
the text area after APPEND can be especially useful
when many control characters have been used.

THE WRITE COMMAND:
SAVING TEXT ON A FILE

After printing the contents of the text area, the
user decides to save his text on a file, even though he
has more editing to do. This practice assures him that
his text will always be safe. Even if he accidentally
destroys some of it, it can always be read back into
the text area from the disk file.

The command to write text on a file is
WRITE 5
After this is typed, EDITOR responds with
TO

The user then types the name of the file on which he
wishes to save the text, followed by a Carriage Re-
turn. The file name may consist of any characters be-
ginning and ending with slashes. NOTE: The name
may not contain a slash except as the first and last
character.! In our example we have the file name

/zip/

If the user does not already have a file with the
chosen file name in his directory, EDITOR responds
with

NEW FILE

The user may then type a Carriage Return, telling
EDITOR to save the text on the file, or he may press
the ALT MODE or ESCAPE key to abort the
command.

If the user does have a file with the chosen name,
EDITOR will respond with

OLD FILE

and again, the command can be confirmed with a
Carriage Return or aborted with an ALT MODE or
ESCAPE. If the command is confirmed, the text will
be written on the file and whatever was previously in
the file will be lost.

After a WRITE command has been confirmed,
EDITOR prints the number of words written on the
file (3 characters = 1 word) and returns control to the
user. Thus, in our example we have

* WRITE

TO /ZIP/D
NEW FILE o

69 WORDS.

*

EDITING TEXT IN THE TEXT AREA

The various editing commands available to the
EDITOR user enable him to manipulate text in many
ways. In our example the user edits individual lines of
text, deletes a whole line of text, and makes substitu-
tions throughout the text.

LINE ADDRESSING

To edit a line of text, or to manipulate whole lines
of text, a method of telling EDITOR which line or
lines are to be changed is needed. This is accomplished

1 - Other kinds of file names are also allowed. These are discussed under Rules For Naming Files, Page 21.

by various kinds of line addressing. In our example,
two methods of line addressing are used:

1. Addressing a line by its EDITOR line number.
2. Addressing a line by text within the line.

EDITOR assigns a line number to each line of text.
The line numbers are always consecutive integers be-
ginning with 1. Thus, to edit the first line of text, the
user types

1EDIT

When he wishes to edit the line containing the
word MENLO, the user finds it easier to address the
line by text within the line, so he types

‘MENLO’EDIT

THE EDIT COMMAND

This command is used to make changes within a
line of text. It has the form

aEDIT 5

where a is an address of the line to be edited. After
the Carriage Return following the command, EDITOR
prints the addressed line, called the old line, and re-
turns the carriage. To change the line, the user may
simply retype the new line below the old line and end
the edit with a Carriage Return. However, control
characters may be used to edit more efficiently. The
first such use of control characters in our example is
in the edit of line 1:

+ 1EDIT
87100 ALBUQUERQUE, NEW MEX
Z°R87100 ALBUQUERQUES®%D¢ NEW MEX

*

First, a Control Z is typed, followed by the char-
acter R, to copy the entire line up to and including
the R. EDITOR copies the specified characters. Then
the user types the remaining three characters pre-
ceding the comma (Q, U, and E). He types a Control
S to delete the corresponding character in the old line,
the comma. A Control D copies the rest of the old
line to the new line and ends the edit.

After editing the line, the user prints it to see what
it now looks like:
*1/
87100 ALBUQUERQUE NEW MEX

*

An example of inserting text with control charac-
ters is shown in the next use of the EDIT command:
* ‘MENLO’EDIT)

94025 MENLO CALIF

Z€094025 MENLOE®< PARKE®>DC® CALIF
» '94025°/
94025 MENLO PARK CALIF

*

Again, Control Z is used to copy up to and includ-
ing the character typed after it, an O in this case.
Then Control E is used to insert a space and the word
PARK, as follows: First, the user types a Control E;
EDITOR responds with a left angle bracket (<). Then
a space followed by the word PARK is typed. An-
other Control E terminates the insert; this time EDI-
TOR responds with a right angle bracket (>). Again,
Control D copies the rest of the old line and ends the
edit.

The command
‘94025'/

prints the entire edited line.

THE DELETE COMMAND

To delete a line of text, the command
aDELETE b

is used, where a is an address of the line to be deleted.
Thus, to delete the line

00003 PEORIA ILL
in the example, the user types
‘0000'DELETE

THE SUBSTITUTE COMMAND

The last editing done in the example is abbreviating
the word WASHINGTON everywhere it occurs in the
text. To do this, the SUBSTITUTE command is used:

* SUBSTITUTE

“WASHD®” FOR ““WASHINGTOND¢®"”
WAIT? N

3

*

First, the user types SUBSTITUTE followed by a
Carriage Return. EDITOR then prints a double quote.
The user types the characters to be inserted, WASH,
terminated by a Control D. EDITOR prints

“ FOR ”

to prompt the user. Now he types the characters to be
replaced, WASHINGTON, again terminated by a Con-
trol D. EDITOR prints another double quote, returns
the carriage, and asks the question

WAIT?

In our example, the user types an N (for No, do
not wait).! There is no need to type a Carriage Return
after the N; EDITOR returns the carriage, makes the
substitutions, and prints the number of substitutions
made, 3.

Having abbreviated the word WASHINGTON, the
user again prints his text:
* [
87100 ALBUQUERQUE NEW MEX
98310 BREMERTON WASH
90241 DOWNEY CALIF
98345 KEYPORT WASH
87544 LOS ALAMOS NEW MEX

94025 MENLO PARK CALIF
95112 SAN JOSE CALIF
98124 SEATTLE WASH

*

He decides he has no more editing to do, so he
saves his text on the file /ZIP/. Note that EDITOR
responds with OLD FILE this time:

* WRITE 5

TO /ZIP/a
OLD FILE 5

58 WORDS.

*

QUIT and CONTINUE

To leave EDITOR and return to the EXECUTIVE,
the user types

« QUIT p)

The EXECUTIVE dash indicates that he is no
longer in EDITOR. At this point, he may call another
language, do some work in the EXECUTIVE, or log

out. If he does not call another language or a library
program (or log out), he may return to EDITOR by
typing the EXECUTIVE command

— CONTINUE 5
and his text will still be in the text area. If EDITOR is

recalled by typing EDITOR again, the text will no
longer be there.

CONVENTIONS FOR TYPING COMMANDS

Any of the EDITOR commands may be shortened.
For example, the APPEND command can be typed in
any of the following ways:

APPEND
APPEN
APPE
APP

AP

A

NOTE: TAPE and PUNCH can be abbreviated to no
less than the first two letters. All other commands can

be abbreviated to one letter.

Spaces are not ignored when typing commands.
For example,

APP END)

and

A D

result in a question mark. Spaces between the parts
of a command form are allowed, however. Thus

3 EDIT

is legal.

1-1f WAIT? is answered with a Y, EDITOR allows the user to make selective substitutions. See Repetitive Editing, Page 33.

SUMMARY OF SECTION 1

COMMAND SUMMARY

The following EDITOR commands were introduced in this section:

Command Command
Type Name Command Function
Input APPEND Enters text into text
Commands area from terminal.
Editing DELETE Deletes entire lines of
Commands text.
EDIT Allows edit of lines.
SUBSTITUTE | Allows substitution of
characters throughout
text.
Output / Prints text at termi-
Commands nal.
al Prints the line ad-
dressed by a.
WRITE Writes text on a file.
Utility QuIT Returns to EXECU-
Commands TIVE.

SUMMARY OF CONTROL CHARACTERS

The following control characters were introduced in this section:

Control
Character Function

AC Deletes previous character in line
being typed.

Qc Deletes last line typed.

D¢ During EDIT, copies rest of old line
to new line and ends EDIT. Also
used to terminate APPEND.

EC Inserts text into old line.

S¢ Deletes next character in old line.
ZC and a | Copies old line to new line up to
character | and including character typed after

it.

1"

SECTION 2
INPUT, OUTPUT, AND ADDRESSING OF TEXT

INPUT OF TEXT TO TEXT AREA

Text may be entered into EDITOR's text area from the terminal, from paper tape, or
from a file. The following commands are used for these purposes:

Type Of Command
Input General Form Of Command Function
Terminal | APPEND) Text typed on the terminal is
Input text to be brought into the text area.
entered P
D¢

Paper TAPE o

Text on the tape is brought

File FROM: file name 5

Tape The user turns on the paper tape reader. | into the text area and also
Input When text is read, he turns the reader off | printed on the terminal.
and types
D¢
Long Form Short Form
Disk READ READ file name ps) Text in the file is brought into

the text area.

Input 1 ,READ 5!
FROM: file name)

aREAD file name p»)

Text in the file is inserted into
the text area before the line
addressed by a.

The text entered into the text area by using
APPEND, READ, or TAPE is always appended to any
existing text; if the text area is empty, the text is
simply brought into the text area.

Example
*/
THIS TEXT IS IN
THE TEXT AREA.
* APPEND
THIS TEXT IS
APPENDED.
Dc
./
THIS TEXT IS IN
THE TEXT AREA.
THIS TEXT IS
APPENDED.
*

APPEND

The command
APPEND

is used to enter text from the terminal. After typing

1 - a denotes the address of single line throughout this manual.

the Carriage Return, the user types as many lines of
text as desired. The command is terminated with a
Gontrol D, which must immediately follow a Carriage
Return. If D€ is used anywhere else it will perform its

editing function, instead of terminating the APPEND.
Example
* APPEND ?

THIS IS A LINE ,

THISDC IS A LINE This D€ copies the rest of

D¢ the previous line, while the
./ final D¢ terminates the
APPEND.

THIS IS A LINE
THIS IS A LINE

*

NOTE: Many control characters are available for
editing text during APPEND. See Use Of Control
Characters During APPEND, INSERT, And CHANGE,
Page 30.

TAPE

To enter text into EDITOR's text area from paper
tape, the command

12

TAPE >

is used. After typing the Carriage Return, the user
turns on the paper tape reader. As the text on the
tape is read, the text is printed on the terminal. When
the tape has been read, the user turns off the paper
tape reader and types a Control D unless there is a D€
prepunched on the tape.

Example

* TAPE ?
26,4.3
27,3.7
35,9.0
36,4.4
40,5.1
33,1.6
35,2.0
46,3.0
54,3.2
40,2.2
47,28

D¢ The user turns off the paper tape reader,
* then types DC.

After returning the carriage, the user turns
on the paper tape reader.

No editing of text is allowed while the tape is
being read. However, the control characters
Ac
Qc
we
Ic
will perform their usual editing functions if they are
prepunched on the tape being read.!

READ and aBREAD

Both commands for entering text from a disk file
have a long form and a short form. These forms are
interchangeable.

To enter text from a file, the user may type
READ ?

After the Carriage Return is typed, EDITOR re-
sponds with

FROM:

The user now types the name of the file and then
types a Carriage Return. EDITOR reads in the text
and prints the number of words in the file. (3 charac-
ters = 1 word).

Example

* READ 5
FROM: /DATA/
130 WORDS.

*

The short form of the READ command is
READ file name)

If this form were used, the previous example would
look like this:

+ READ /DATA/p
130 WORDS.

*

The above forms of READ simply append the text
in the file to any existing text. To read text from a
file and insert it before any line already in the text
area, precede the READ command by the address of
the line before which the text is to be inserted.

Example

*/

THIS TEXT IS IN

THE TEXT AREA.

+ ‘IN'READ o

FROM: /TEXT/p

11 WORDS.

* [

THIS TEXT IS READ These two lines were in the
AND INSERTED. file /TEXT/.
THIS TEXT IS IN

THE TEXT AREA.

*

NOTE: The maximum amount of text that may be
read with the form aREAD is 512 lines. If the user
attempts to read more than 512 lines, the error
message

TOO MANY LINES
will be printed,

With all forms of the READ command, EDITOR
will type a question mark if the file is not found in
the user’s directory.?

No editing can be done while the text is being read.
The user must wait for EDITOR to print the asterisk
before he begins editing.

Using any form of READ does not erase the file
being read.

1 - See Terminal Input Editing, Page 23, for the functions of these control characters.

2 - A file in another user’s directory may be read if it has an @ in its name. For example, the file /@P/, in the directory with user
name JONES and account number A4, may be read using the command READ (A4JONES)/@P/)

Also, a public library program may be read using the command READ *UNISTA)

13

ORGANIZATION OF TEXT IN TEXT AREA

Whether using APPEND, READ, or TAPE, any
characters that can be typed on the Tymshare termi-
nal will be accepted as text by EDITOR. However,
this text must be organized according to certain prin-
ciples which are discussed below.

DEFINITION OF A LINE

Text in the text area is divided into lines. EDITOR
defines a line of text as any string of characters termi-
nated by a Carriage Return. NOTE: A Carriage Return
alone is considered to be a line.

Example

* APPEND b)

THIS IS A LINED

SO IS THISD

P

D¢

+1/

THIS IS A LINE

*2/

SO IS THIS

* 3/ Line 3 consists of a Carriage Return
alone.

LINE CONTINUATION:
THE LINE FEED

A line of text may consist of more than one physi-
cal line as it appears on the terminal. (On most termi-
nals, the maximum physical line is 72 characters.) To
enter a line consisting of more than one physical line,
end each physical line with a Line Feed.!

Example
* APPEND
THIS IS

LINE ONE.
THIS 1S

LINE —
TWO. >

Dc

* 1/

THIS IS
LINE ONE.
* 2/

THIS IS
LINE

TWO.

*

LINE LENGTH

The maximum allowable line length is 256 charac-
ters, including blanks, Line Feeds, and the Carriage
Return. If the user attempts to enter a line containing
too many characters, the error message

LINE TOO LONG

will be printed. EDITOR will cut off the line by sup-
plying a Carriage Return.

SIZE OF TEXT AREA

EDITOR's large text area may contain up to
60,000 characters. If the user attempts to enter more
than this maximum number of characters, whether
with APPEND, TAPE, or READ, the error message

TOO MUCH TEXT

will be printed. The command used will be termi-
nated, and text entered up to that point will be re-
tained in the text area.

CAUTION: Since text read into EDITOR from
paper tape is also printed at the terminal, if too much
text is entered from paper tape the extra text will
still be typed on the terminal after termination of the
TAPE command. This means that EDITOR will try to
interpret the extra text as commands; the most likely
result is a series of question marks indicating that
EDITOR does not recognize the “‘commands”.

LINE ADDRESSING

Line addresses are used with many EDITOR com-
mands to specify the line or lines upon which the

command is to operate. There are four basic kinds of
line addresses; these may be used to build more com-

plex addresses as will be shown below.

To illustrate each type of line address, we assume
that the following text, a data file containing payroll
information, is in the text area:

1 - See Appendix C, The Terminal, Page 66, for special conventions concerning Line Feeds and Carriage Returns when punching

paper tape off line.

14

ADAMS, JOHN

1.50 35.50 53.25
BENTLEY, DICK

2.75 40.00 110.00
BROWN, JANE

3.00 40.00 120.00
BROWN, FRED

1.75 38.25 66.94
MEADOWS, BEY

3.50 40.00 140.00
SWAN, SIGMUND

2.00 35.25 70.50
UNDERWOOD, SAM

3.00 40.00 120.00
END

BASIC LINE ADDRESSES
1. The EDITOR Line Number

EDITOR assigns a line number to each line of text
in the text area; these are consecutive integers begin-
ning with 1.

Example

* 2/
1.50 35.50 53.25

2. Any Text Within A Line

Any line may be addressed by any text within the
line, which must be surrounded by double quotes,
single quotes, or square brackets,! at the user’s option.

Example 1
* ‘SIG’/
SWAN, SIGMUND

*

This line could also be addressed by any of the
following:
IISIGII
[SIG]
[AN, S]
Example 2

+ [1.50]/

1.50 35.50 53.25

If the text to be used as an address contains any of
the characters *, *’, [, or], the address may not be
surrounded with that character. For example, if the
line
“JOHNSON" 1.50

1 - On the terminal, [is a shift K, and] is a shift M.

were in EDITOR's text area, it could be addressed by
‘“JOHNSON"*
or by
[“JOHN]
but not by
*“JOHNSON"
It could, of course, be addressed by “JOHNSON"’.

3. Line Labels

A line label is defined as a string of characters be-
ginning with the first non-blank character in the line,
and ending with a non-blank character having a space
or Carriage Return immediately after it. A line label
may not contain more than one consecutive blank.

Any line may be addressed by a line label, sur-
rounded by colons or angle brackets according to the
following rules:

® If the first non-blank character in the line is in
print position 1, the line label may be sur-
rounded by colons.

Example

#» :BENTLEY,:/

BENTLEY, DICK

* :MEADOWS, BEY:/ Two consecutive
MEADOWS, BEY blanks in this label
*:END:/ would be illegal.

END

*

® |f the line label is preceded by blanks, it must
be surrounded by angle brackets (< and >).
These may also be used to surround labels not
preceded by blanks, in place of colons.

Example

* <1.75>/

1.75 38.25 66.94
* <3.50 40.00>/

3.50 40.00 140.00
* <END>/
END

*

The line label address is a faster means of address-
ing than text within the line since EDITOR is not re-
quired to search the entire line for the specified text.

NOTE: A colon-surrounded line label may not
contain a colon; an angle-bracketed line label may not
contain an angle bracket.

4. Special Line Addresses: . And $

The last line in the text area may be addressed by
a dollar sign.

*$/
END

*

The period (.) is used to address the current line,
the line which has been operated on most recently.
EDITOR keeps track of the current line and redefines
it with each use of a command. After the / command,
the current line is the last line printed. Thus, since we
just printed the last line in the text area, this line may
be addressed by . as follows:

* [
END
*
The position of the current line after each com-

mand introduced thus far in this manual is given in
the following table:!

The Current Line
Immediately After: (Addressed By .) Is:
APPEND The last line appended (=$).
DELETE Line preceding first line de-
leted.
EDIT The last line edited.
READ The last line read (=$).
aREAD The last line of text (=$).
SUBSTITUTE The last line in which substi-
tutions were made.
TAPE The last line read from the
tape (=$).
WRITE The last line written on the
file.
/ The last line printed.

The current line may be changed by typing a line
address followed by a Carriage Return when EDITOR
is awaiting a command.

Example

*3 ?
*./
BENTLEY, DICK

The location of the current line determines where
EDITOR begins searching for a text or line label ad-
dress; specifically, the search begins at the line follow-
ing the current line. For example, since there are two

This is line 3 in the text area.

15

lines with label BROWN, in our sample text, the fol-
lowing may occur:
*1/

ADAMS, JOHN
* :BROWN,:/
BROWN, JANE
* :BROWN,:/
BROWN, FRED

*

This is now the current line.

Since EDITOR begins searching for the line label
BROWN, at the line following the current line, it first
prints the line BROWN, JANE. At this point,
BROWN, JANE becomes the current line. Thus,
typing :BROWN,:/ again causes EDITOR to print the
line BROWN, FRED, since it starts searching for the
label at the line following BROWN, JANE. NOTE: If
EDITOR reaches the end of the text and still has not
found a text or line label address, it will go back to
the beginning of the text and continue its search until
it either finds the address or reaches the point where
it started searching. Thus,

*./

BROWN, FRED
* :BROWN,:/
BROWN, JANE

*

COMBINATION LINE ADDRESSES

Combination line addresses may be formed by con-
catenating basic addresses. They are useful when a
single basic address does not uniquely define a line.
For example, the line

BROWN, FRED

in the sample text may be addressed uniquely by »
“JA":BROWN,: as follows:

* “JA'":BROWN,:/
BROWN, FRED

*

When EDITOR encounters this combination ad-
dress, it first searches for a line containing JA. It be-
gins its search for this line at the line following the
current line. After a line containing JA is found,
EDITOR searches for the next line after it which con-
tains the line label BROWN,. A look at our sample
text shows that this must be the line BROWN, FRED
no matter where the search for JA begins, since only
one line contains JA:

1 - See Appendix B, Page 65, for a complete table of commands and their effects on the current line.

16

*/
ADAMS, JOHN
1.50 35.50 53.25
BENTLEY, DICK
2.75 40.00 110.00
BROWN, JANE
3.00 40.00 120.00 /ine, containing the textJA.
BROWN, FRED This is the next line after
1.75 38.25 66.94 the line containing JA
MEADOWS, BEY which contains the label
3.50 40.00 140.00 BROWN,.
SWAN, SIGMUND
2.00 35.25 70.50
UNDERWOOD, SAM
3.00 40.00 120.00
END

*

The general form of a combination address is
a183....4p

where each aj is a basic address. The address a; may
be any basic address (line number, text, label, $, or .).
However, a, through a, must be text addresses or
line labels. The only limit on the number of addresses
that may be concatenated is that the addresses plus
the command may not contain more than 256
characters.

When it encounters any combination address, EDI-
TOR first finds the line addressed by a;. It then
searches for the first line after line a; that is addressed
by a,. It continues searching thus until a line ad-
dressed by ap, is found.

As we have seen, if EDITOR reaches the end of
the text and still has not found a text or line label ad-
dress, it will go back to the beginning of the text and
continue its search. Thus, the line

BROWN, JANE
could be addressed by
<2.00>:BROWN,:

To cause EDITOR to begin searching for a text or
line label address at line 1, rather than at the line
following the current line, a combination address be-
ginning with $ may be used.

Example

* $°40.00°/ Here, the first line after $
2.75 40.00 1.10 containing the text 40.00

» is printed.

EDITOR first finds this

ADDRESS ARITHMETIC

Two arithmetic operators, + and -, may be used
with a single address and an integer to specify a new
address. The general form of such an address is

atnora-n

where a is any address except an EDITOR line num-
ber and n is an integer.

The meaning of such addresses is as follows:

a+n Refers to the nth line after the line addressed
by a.

a-n Refers to the nth line before the line ad-*
dressed by a.

Examples

» llslGll+2/
UNDERWOOD, SAM

* +1EDIT 5
3.00 40.00 120.00
4.00 40.00 160.00 -,

* $-1DELETE 2 This command deletes the sec-
* ond to the last line of text.

ADDRESSING A RANGE OF LINES

Most EDITOR commands may be used with the
address of a range of lines to specify that the com-
mand be executed for all lines in that range.

The address of a range of lines takes the form
aj,af

where aj is the address of the initial line in the range
and af is the address of the final line in the range.

Examples

3,[SWAN]/ Prints line 3 through the line con-
taining the text SWAN.

5,8DELETE o Deletes line 5 through the last line
of text.

The first address in the range must precede the sec-
ond address. Thus, for example, 4,1/ is illegal.

NOTE: If the first address in the range is a text or
line label address, the current line is reset internally to
the first line of the range when that address is found.
Thus, the range consisting of the two lines

BENTLEY, DICK
2.75 40.00 110.00

could be addressed by
‘DICK’,.+1

since the current line is reset to the line containing
DICK when the first address in the range is found.

This fact is handy, since it saves the user from
typing the text or line label address twice in specify-
ing such ranges. (It is much easier to type ‘DICK’,.+1
than ‘DICK’,'DICK’+1.) However, caution is neces-
sary. If the first address has the form

atn

where a is a text or line label address, and n is an in-

17

teger, the current line will be reset to the line ad-
dressed by a rather than the line addressed by a * n

Example

* ‘BEY'+2,.+5/
SWAN, SIGMUND
2.00 35.25 70.50
UNDERWOOD, SAM
3.00 40.00 120.00 The current line was re-
» set to the line containing
‘BEY’, thus, the last line
printed here is the line
5 lines after the line con-
taining BEY.

This is line ‘BEY+2

OUTPUT OF TEXT FROM TEXT AREA

Text in the text area may be printed at the termi-
nal, punched on paper tape, or written on a disk file.

The following output commands are available to the
EDITOR user:

Type Of Command
Output General Form Of Command Function
‘ r/? Prints the line or lines addressed by
r.
/ Prints the entire contents of the
text area.
Terminal rPRINT Prints the line or lines addressed by
Output r in a page format.
PRINT 5 Prints entire contents of text area in
a page format.
N’ Prints the line addressed by .+1.
t Prints the line addressed by .-1.
rPUNCH ,, or rPUNCH 3 Punches the Iine or lines addressed
Paper by r.
Tape PUNCH 5 or PUNCH Punches entire contents of text area.
Output 2) K
If the Carriage Return is used, EDITOR prints instructions and punches a D¢
at the end of the text If the Line Feed is used EDITOR does not do either of
these.
Long Form Short Form
rWRITE rWRITE file name) Writes the line or lines addressed by
TO file name 2 r to a file. Multiple blanks are com-
pressed.
Disk WRITE 5 WRITE file name -, Writes entire contents of text area
File TO file name -, to a file. Multiple blanks are com-
Output pressed.
rWRITE - Same as 'WRITE-, except multiple
TO file name blanks are not compressed.
WRITE Same as WRITE, except multiple
TO file name blanks are not compressed.

1 - r denotes the address of a single line or a range of lines throughout this manual, unless otherwise specified.

18

TERMINAL OUTPUT
The / Command

This command has two forms:

/ Prints the entire contents of the text area on the
terminal.

r/ Prints the line or lines addressed by r on the
terminal.

Neither form of this command requires a Carriage
Return after it. When the user types the /, EDITOR
returns the carriage and prints the specified text.

After the / command, the current line, addressed
by ., is defined as the last line printed. Note that if
ALT MODE or ESCAPE is used to interrupt the com-
mand, the current line is not changed.

Example

*/

THIS IS ALL
THE TEXT IN
THE TEXT AREA.
../

THE TEXT AREA.

The PRINT Command

This command also prints text at the terminal. The
difference between it and the / command is that the
text is printed in a page format.

Two forms are available:

PRINT 5 Prints the entire contents of the text
area.
rPRINT 5 Prints the line or lines addressed by r.

After the Carriage Return is typed, EDITOR re-
sponds with

DOUBLE SPACE?

This question may be answered with a Y (for Yes,
print the text with double spacing), or an N (for No,
print the text with single spacing).

After the user answers the question, EDITOR re-

turns the carriage and prints the text in the PRINT
format.

The PRINT Format

The format used by the PRINT command is de-
signed so that the printout may easily be cut, have
holes punched in it, and be placed in a notebook. As

described above, the user may specify single or double
spacing. He may also specify the number of lines per
page, using the LINES command described below.

If the LINES command has not been given, the
PRINT command prints 56 lines on an 11 inch page,
assuming single spacing. The following format is used:

® After the Y or N response to the question
DOUBLE SPACE?, EDITOR gives a series of
Line Feeds to separate the command from the
printed text.

® EDITOR then types a line with four dashes,

to serve as a guide for the paper cutter.

® More Line Feeds are given to serve as the upper
margin of the page.

® The lines of text are printed.

® More Line Feeds are given, to form the lower
margin of the page.

® Another line of four dashes is printed. If an-
other page is needed, it is printed in the same
format. Otherwise, EDITOR gives more Line
Feeds and then prints the asterisk.

After the PRINT command, the current line, ad-
dressed by ., is the last line printed.

The LINES Command

This command sets the number of lines per page
for the PRINT command. The general form of the
command is

LINES n 5
where n is the number of lines per page.

If the command is not given, EDITOR assumes 56
lines per page for PRINT.

Once the command LINES n has been given,
EDITOR assumes n lines per page every time PRINT
is used, until another LINES command is given. If the
user leaves EDITOR and returns by using CONTINUE,
the last LINES command is still in effect since all in-
formation is retained when CONTINUE is used. The
last LINES command given is also in effect after the
CLEAR command.!

The LINES command has no effect on the current
line.

1 -See Section 4, UTILITY COMMANDS, Page 47, for a complete description of CLEAR.

Example: LINES and PRINT

* LINES 35
* PRINT
DOUBLE SPACE? N

A QUICK BROWN
FOX JUMPS OVER
THE LAZY DOG.

PICKING JUST SIX QUINCES, NEW
FARMHAND PROVES STRONG BUT LAZY.

The Line Feed And 1 Commands
If a Line Feed is given when EDITOR is awaiting a
command, it prints the next line of text, that is, the
line addressed by .+1.

Example

./
THIS IS LINE 1
THIS IS LINE 2
THIS IS LINE 3
%1/

19

THIS IS LINE 1
* No Carriage Return is re-
THIS IS LINE 2 quired after the -
*

Note that if the current line is the last line of text,
the Line Feed command causes a ? to print. It will not
go back to the beginning of the text and print the first

line.
Similarly, the T command prints the previous line,

addressed by .-1.
Example

* ./

THIS IS LINE 2

* 1 No Carriage Return is re-
THIS IS LINE 1 quired after the 1, either.

*

If the current line is the first line of text, the 1
causes a ? to print. After execution of either com-
mand, the current line is the line printed.

PAPER TAPE OUTPUT:
THE PUNCH COMMAND

This command punches text in the text area on
paper tape.

PUNCH may be used with or without the address
of a line or a range of lines:

PUNCH Punches the entire contents of the text
area.
rPUNCH Punches the line or lines addressed by r.

In either case, the text is printed at the terminal as
well as punched on paper tape.

EDITOR punches header and trailer tape, 3 inches
of each, when this command is used.

Two options are available:

Option 1. PUNCH ,, or FPUNCH

If the command is followed by a Carriage Return,
EDITOR prints the instructions

TURN PUNCH ON, TYPE CONTROL D.
WHEN FINISHED, TURN PUNCH OFF, TYPE
CONTROL D.

After the user turns on the paper tape punch and
types a Control D, EDITOR punches the header fol-
lowed by the specified text. It then punches a Control
D, and following that, the trailer. After EDITOR
stops punching tape, the user must turn off the paper
tape punch and then type a Control D to terminate
the command.

If the tape is subsequently read into EDITOR with
the TAPE command, the Control D on the end of the
tape will terminate the TAPE command.

20

Example

* :THIS:,:ON:PUNCH ,,

TURN PUNCH ON, TYPE CONTROL D.

WHEN FINISHED, TURN PUNCH OFF, TYPE

CONTROL D.

D¢ After turning on the paper tape punch, the
user types a DF.

THIS TEXT IS

PUNCHED ON

PAPER TAPE

AND PRINTED

ON THE TERMINAL

D¢ The user turns off the punch, then types D€,

*

Option 2. PUNCH — or rPUNCH

If PUNCH is followed by a Line Feed, no instruc-
tions are given. EDITOR waits for the user to turn on
the paper tape punch and type a Control D. EDITOR
then punches the header, text, and trailer. It does not
punch a Control D at the end of the text. After the
trailer is punched, EDITOR waits for the user to turn
off the paper tape punch and then type a Control D.

After all variations of PUNCH, the current line, ad-
dressed by ., is the last line punched.

FILE OUTPUT:
THE WRITE COMMAND

The WRITE command is used to write text on a
disk file. It may be used with or without the address
of a line or range of lines:

WRITE Writes the entire contents of the text area
on a file.
FWRITE Writes the line or lines addressed by r on

a file.

There are two options:

Option 1. WRITE ,, or rWRITE :
Muitiple Blank Compression

When the WRITE command is followed by a Car-
riage Return, the text is written on a file with multi-
ple blanks compressed. This means that EDITOR ab-
breviates any string of multiple blanks, so that the file
will use less space on the disk. The Tymshare lan-
guages, CAL, SUPER BASIC, etc., will accept pro-
grams written on files with the WRITE command.

This command has a long form and a short form,
like the READ command. The long form works as
follows: ‘

After the Carriage Return is typed, EDITOR re-
sponds with

TO

The user then types the file name followed by a Car-
riage Return. (Rules for naming files are discussed
on Page 21.)

If the user has not previously created a file with
this name, EDITOR responds with
NEW FILE

If the user has a file with the chosen name in his
directory, EDITOR responds with

OLD FILE

In either case, the user may confirm the command
by typing a Carriage Return, or abort it by typing
ALT MODE or ESCAPE. If he confirms the com-
mand, EDITOR will print the number of words writ-
ten on the file.

Example
* WRITE
TO /PAY/ 5

OLD FILE ® The command is aborted. No
* WRITE o, new text is written on /PAY/.
TO /NPAY/ 2

NEW FILE 2 This command is confirmed.
252 WORDS. There are 252 words in the file
* /NPAY/.

NOTE: If a Carriage Return is typed after OLD
FILE, whatever was previously on the file will be re-
placed by the new text.

A short form of the WRITE; command is avail-
able. The user may just type

WRITE file name)
Example

*WRITE /Q/
NEW FILED
73 WORDS.

*

Option 2. WRITE - or rWRITE -
No Blank Compression

Although the Tymshare languages handle programs
written on files with multiple blanks compressed,
command files will not always work properly if they
are written with multiple blanks compressed. The
WRITE command should be followed by a Line Feed
when writing command files in EDITOR. This form
of WRITE writes files with blanks uncompressed.

Example

* APPEND -,

SBASIC 2 The user creates a command file in
EDITOR.

LOAD /PROG/ »

RUN 5

PRINT “ END OF JOB”

QuIT

Fl

Dc

* WRITE 3 When WRITE=, is used, EDITOR

TO /COMSB/—~ does not print the number of words

NEW FILE 5 in the file.

*

NOTE: The WRITE—, command does not have a
short form.

After all forms of the WRITE command, the cur-
rent line, addressed by ., is the last line written on the
file.

Using any form of WRITE does not erase the text
from the text area.

21

RULES FOR NAMING FILES

EDITOR will accept all the file names allowed by
the Tymshare EXECUTIVE.

1. A file name may begin and end with a slash. In-
side the slashes it may contain any characters
except a slash.

Examples

* READ /@zZ1/

* WRITE /Gc;/p
2. A file name may begin and end with single
quotes. Inside the quotes, it may contain any
characters except a single quote. For example,

* WRITE
TO ‘@ PROGRAM 4’

3. File names need not be protected by slashes or
quotes. Files which are not thus protected may
contain only the following characters:

A through Z
0 through 9
@

Example

* WRITE

TO @DATA2 2

23

SECTION 3
EDITING TEXT IN TEXT AREA

EDITOR has three kinds of commands available for editing text in the text area:

Manipulating
Editing Text Whole Lines Or Repetitive
Within A Line | Groups Of Lines Editing

EDIT COPY FIND
MODIFY CHANGE SUBSTITUTE

DELETE

INSERT

MOVE

In addition, there are 25 editing control characters A€ - K€ and MC - Z€ which may be
used for editing during many commands as well as for editing terminal input. These con-
trol characters perform such functions as copying from one line to another, deleting char-
acters in a line, and inserting characters into a line.

TERMINAL INPUT EDITING

Whenever characters are being typed into EDITOR
from the terminal, the control characters AC, QC, WC,
and I may be used. Thus, these control characters
may be used in any of the following situations:

1. When typing commands.
Example

* APPEMACND _, The A€ deletes the preceding

character, M.

NOTE: There is one exception to this rule; file
names may not be edited. Thus, if an error is made
while typing the file name during READ or WRITE,
press the ALT MODE or ESCAPE key and retype the
entire command.

2. When typing text during APPEND, INSERT, and
CHANGE.!

Example

* APPEND

FOURCORE AND SEVEN YEARS AGOQ¢t
The QF deletes the entire line being typed
and returns the carriage; the user then
types the correct line.

FOURSCORE AND SEVEN YEARS AGO

3. When typing the new line during EDIT and
MODIFY.

Example

=2 EDIT 2

OUR FATHERS FORTH

OUR FATHERS BOUGHTWCS\BROUGHT FORTH,,
The WE deletes the preceding word in the
line being typed.

* /

OUR FATHERS BROUGHT FORTH

*
4. When using the TAPE command.

Although no editing may be done while the tape is
being read, AC, QC, WC, and IC will be accepted by

EDITOR’s TAPE command if they have been pre-
punched on the tape being read.

CONTROL A: DELETING
THE PRECEDING CHARACTER

This control character deletes the immediately pre-
ceding character; EDITOR prints a back arrow (<) to
indicate its use. It may be used repeatedly to delete

1 - See Page 32 for a description of INSERT and CHANGE. The form of these commands is similar to that of APPEND; the con-
trol characters discussed here work the same way during INSERT and CHANGE as they do during APPEND.

24

more than one preceding character up to and including
the first character in the line being typed. It will not
delete characters in preceding lines.

Example

APPEND)

THIS IX TAC<~AC<AC+S TEXTD
The first A€ deletes the T; the second, the
space; the third, the X. The rest of the
line is retyped correctly.

D¢

*./

THIS IS TEXT

*

CONTROL Q: DELETING
THE PRECEDING LINE

Control Q deletes the entire line being typed.
EDITOR prints an up arrow (1) to indicate its use,
and returns the carriage for the user.

Example

*:12:EDIT)
12 24.36 89 32
13 24.19 32Q¢t
13 34.19 32;)
*./

13 34.19 32

*

When typing text during APPEND, INSERT, and
CHANGE, Control Q may be used to delete several
lines of text, up to and including the first line of text
typed during the command.

Example

* APPEND 5
CONTROL Q WILL 5
DELETE MORE THAN@
ONE LINE)

DURING APPEND 2
INSERT, AND b
CHANGEQ¢?

Qct

Qct

D¢

»/

CONTROL Q WILL
DELETE MORE THAN
ONE LINE

*

CONTROL W: DELETING
THE PRECEDING WORD

This control character deletes the preceding word
in the line being typed. The preceding word is defined
as including:

® The immediately preceding blanks, if any, plus

® The immediately preceding non-blank charac-

ters, up to but not including the first blank pre-
ceding them.

EDITOR prints a back slash (\) when a Control W
is used.

Example
APPEND o,
ONE TWOWATHREE
TWO GOUR WCE\FOUR , Note that the two

D¢ spaces following
*/ GOUR are deleted,
ONE THREE but the three spaces
TWO FOUR preceding the word

* are not.

Control W may be used repeatedly to delete more
than one word in the line, up to and including the
first word in the line. It may not be used to delete
words in preceding lines.

CONTROL I: TABS

Control | is used to space to the next tab stop.
EDITOR automatically initializes 10 tab stops, at
print positions 8, 16, 32, 40, 45, 50, 55, 60, 65, and
70. These may be changed with the TABS command
(see Section 4).

Example
* APPEND b
1234567890123456789012345678901234567890 2
I¢ tie tie t1c t)
Dc
*/
1234567890123456789012345678901234567890

i) t i) t

In this example, the user appended a line of forty
digits. In the next line, he typed I¢; EDITOR re-
sponded by spacing to the first tab stop at print posi-
tion 8. The user typed an up arrow to mark the spot,
and continued typing I¢ followed by 1 until he
reached the tab stop at print position 40.

1 - It is not usually a good idea to use AC during EDIT and MODIFY ; see Control N, Page 29.

25

EDITING TEXT WITHIN A LINE

THE EDIT AND
MODIFY COMMANDS

The EDIT and MODIFY commands are used to
make changes in individual lines of text that are in the
text area. The following forms of these commands are
available:

reDIT P Allow edit of the line or lines ad-
rMODIFY b dressed by r.

EDIT -, Allow edit of the next line, ad-
MODIFY — dressed by .+1.

EDIT? Allow edit of the previous line, ad-
MODIFY?t dressed by .-1.

Editing A Single Line

When an EDIT or MODIFY command is given with
the address of a single line, the line addressed is made
available for editing. This line is called the old line; it
is the line printed on the terminal when the EDIT
command is used. MODIFY is the same as EDIT ex-
cept that it does not print the old line.

After the EDIT or MODIFY command is given
(and the old line is typed, with EDIT), the user may
type the line which is to replace the old line, called
the new line, followed by a Carriage Return. The Car-
riage Return terminates the new line and the EDIT or
MODIFY command, and the new line replaces the old
line in the text area.

Example

* :SMITH,:EDIT ps)
SMITH, JOHN 1.50
SMITH, JOHN 2.00 P
% _/

SMITH, JOHN 2.00 The new line has replaced
* the old line in the text area.

EDITOR prints the old line.
The user types the new line.

The next example shows the same editing done
with MODIFY. The only difference is that the old
line is not printed.

* :SMITH,:MODIFY °

SMITH, JOHN 2.00 ps) This is the new line.
* [/

SMITH, JOHN 2.00

*

The forms EDIT—and MODIFY—jare equivalent to
+1 EDIT and .+1 MODIFY, respectively. Similarly,
EDIT 1 and MODIFY 1% are equivalent to .-1 EDIT

and .-1 MODIFY, respectively. It is unnecessary to
type a Carriage Return after the Line Feed or up
arrow.

Editing A Range Of Lines

If EDIT is used with the address of a range of lines,
EDITOR prints the specified lines one at a time. After
printingan old line, it waits for the user to edit it, and
then prints the next line in the range, continuing thus
until all lines in the range have been edited.

Example
»/

LINE 4
LINE 5
LINE 6
*1,3EDIT
LINE 4
LINE 1)
LINE 5
LINE 2
LINE 6
LINE 3,
* /

LINE 1
LINE 2
LINE 3

*

MODIFY used with the address of a range of lines
works the same way, except that the old lines are not
printed.

The current line, addressed by ., is defined as the
last line edited after all forms of EDIT and MODIFY.
NOTE: This implies that successive lines of text may
be edited by using EDIT— ,or MODIF Yj repeatedly.

CONTROL CHARACTERS USED
WITH EDIT AND MODIFY

In addition to the control characters AC, QC, WC,
and I€ discussed under Terminal Input Editing, there
are many more control characters which may be used
during EDIT and MODIFY.! These characters all per-
form some sort of editing operation on the old line to
form the new line. For example, some of them copy
characters from the old line to the new line.

In the following discussion of control characters
used with EDIT and MODIFY, the control characters

1 - These additional control characters may also be used during APPEND, INSERT, and CHANGE; see Use Of Control Characters

During APPEND, INSERT, And CHANGE, Page 30.

26

are classified according to the functions they perform.
Some of these control characters also terminate the
edit; this will be noted under the description of the
character.

Control Characters Used For Deleting

Control S

Control S deletes the next character in the old line.
EDITOR prints a percent sign (%) to indicate that a
Control S was used.

Example

* ‘AMER’EDIT
AMERICAN TEL & TEL 256,960 This is the

old line.

Z°6AMERICAN TEL & TEL 2565°%960

*./
AMERICAN TEL & TEL 256960 This is the

new line.

In this example, Control Z copies characters from
the old line to the new line up to and including the
character typed after it, 6. At this point, the next
character in the old line is a comma, which the user
wishes to delete. He types a Control S and EDITOR
prints a %. The comma is now deleted. The user then
types the rest of the new line and terminates the edit
with a Carriage Return.

Control K

This control character deletes the next character
in the old line and prints the character it deletes. Thus,
it performs exactly the same function as Control S;
the only difference between Control K and Control S
is that EDITOR prints the character deleted instead of
printing a %. Thus, Control K could have been used in
the above example to delete the comma, as follows:

* ‘AMER’EDIT

AMERICAN TEL & TEL 256,960
Z°6AMERICAN TEL & TEL 256K¢,960
../

AMERICAN TEL & TEL 256960

*

Control P

Control P deletes characters from the old line up
to but not including the character typed after it.
EDITOR prints a percent sign for each character it
deletes.

Example
* :STOCKS:EDIT
STOCKS ASTRODATA 1399

PCA%%%%%%%%%%DCASTRODATA 1399
../
ASTRODATA 1399

*

Here the user wishes to delete the word STOCKS
as well as the four blanks following it; in other words,
he wants the new line to begin with the word ASTRO-
DATA. He types Control P followed by the character
A, telling EDITOR to delete the characters up to but
not including the first A it encounters. EDITOR
prints a % for each character deleted. The user then
types a Control D to copy the rest of the old line to
the new line and end the edit.

Control X

Control X deletes characters from the old line up
to and including the character typed after it. Again a
% is printed for each character deleted.

Example

*EDIT

CANOGA ELECTRONICS SHARES OUT
STANDING=511

Z°SCANOGA ELECTRONICS XC=%%%%%%%

%%%%%%%%%%%%511 -
*./
CANOGA ELECTRONICS 511

*

In this example, the user types Z°S to copy char-
acters from the old line to the new line up to and in-
cluding the character S. He then types five blanks to
make sure that the new line contains appropriate
spacing, and types a Control X followed by an equal
sign to delete the characters up to and including the
equal sign. Then he types the rest of the line, termi-
nating the edit with a Carriage Return.

Control Characters Used For Copying

There are 10 control characters used for copying
from the old line to the new line. C¢, OC, Z€, and U¢
simply copy characters; D€ and FC copy the rest of
the old line and end the edit; and HC, RC, TC, and Y€
copy the rest of the old line and continue the edit,
either at the end of the old line (HC) or at some point
in the new line (RC, TC, and YC).

Control C

Control C copies the next character in the old line;
it may be used repeatedly to copy more than one
character.

Example

* 8EDIT

COLINS RADIO 2899
CCCCCOEC<LEC>DCLINS RADIO 2899
../

COLLINS RADIO 2899

*

In this example, the user wishes to correct a spell-
ing error, where an L was left out of COLLINS. He
copies the C and O using Control C twice and then
uses Control E to insert an L. A Control D copies the
rest of the old line and ends the edit.

Control O
Like Control X, P, and Z, Control O may be fol-

lowed by any character. It copies up to but not in-
cluding the character typed after it.

Example

* 'STOCK'EDIT 5

CONDUCTRON STOCKS 2536

0¢ CONDUCTRONXCK %%%%%%S¢%D®
../

CONDUCTRON 2536

*

. 2536

In the above edit, the user deletes the word
STOCKS (and the space preceding it) from the old
line. He first copies up to but not including the first
space in the line by typing Control O followed by a
space. He then deletes the characters up to and in-
cluding the K with X€K, and deletes the final S in

STOCKS with Control S. The edit is completed with

a Control D.

Control 2

Control Z copies up to and including the character
typed after it. The line edited in the previous example
could also be edited using Control Z as follows:

* ‘STOCK'EDIT
CONDUCTRON STOCKS 2536

Z° CONDUCTRON XC %%%%%%%DC 2536
*./

CONDUCTRON 2536

*

Since he types a Control Z followed by a space, the
user has copied the first word in the line plus the

27

space after it. Since he wishes to preserve five spaces
between the name of the company and the number
following it, he uses XC followed by a space to delete
the word STOCKS and the space immediately follow-
ing it. The D€ completes the edit.

Control U

This control character copies characters from the
old line to the new line up to but not including the
character at the next tab stop.!

Example

* EDIT 5
1234567890
UC1234567
*./

1234567

*

Since the first tab stop is at print position 8, the
Control U in this example copies the first 7 characters
in the line.

NOTE: If the next tab stop is at a print position
beyond the last character in the old line, Control U
effectively ends the edit since it copies the Carriage
Return. Thus, if another Control U were typed in the
above example, the following would occur:

*.EDIT 5
1234567890
UC 12345671890

*

Control D

Control D copies the rest of the old line to the new
line, printing it, and ends the edit.

Example

*:CORP.:EDIT

CORP. 4210

EC<DYNAMICS EC>DCCORP. 4210
*./

DYNAMICS CORP. 4210

*

Control F

Like Control D, Control F copies the rest of the
old line to the new line and ends the edit; however, it
does not print the characters copied. Thus, using Con-
trol F instead of Control D in the above example
would yield the following:

1 - Unless the TABS command (see Page 47) has been given, EDITOR assumes tab stops at print positions 8, 16, 32, 40, 45, 50,

55, 60, 65, and 70.

28

* :CORP.:EDlTD

CORP. 4210
EC<DYNAMICS EC>F¢C
*./

DYNAMICS CORP. 4210

*

Control H

Control H copies the rest of the old line to the new
line and prints it. It does not end the edit; thus, edit-
ing may continue at the end of the line.

Example

* [SPECIAL] MODIFY

HCELECTRONIC SPECIALTY 1648
* ./

ELECTRONIC SPECIALTY 1648

*

In this example, the MODIFY command is used in-
stead of the EDIT command, so that the old line is
not printed. The HC copies the rest of the old line,
which happens to be the entire old line in this case.
The edit continues at the end of the line, where the
user adds an 8 to the line and terminates the edit with
a Carriage Return.

Control R

Control R gives a Line Feed without returning the
carriage, copies the rest of the old line, and then re-
turns the carriage and copies the new line up to the
point where the Control R was typed. The edit con-
tinues at this point in the new line. Thus, Control R is
especially useful when a great deal of editing has been
done and the user wishes to see what the new line
looks like thus far.

Example

* <LINCH>EDIT p)
LINCH SYSTEMS 722
PCL %%%%LTNC<UNC<YNCHR®
SYSTEMS 722
LYNCH

The first editing the user wishes to do in the above
example is to delete the four spaces preceding the
word LINCH, and change the | in LINCH toa Y. The
PCL deletes the four spaces. The user then types an L,
but makes two typing errors when trying to typea Y.
He uses Control N to backspace over these errors (see
Control N below). After he finally types the YNCH,
he decides to use Control R to see exactly what he has
done to the new line. The RC gives a Line Feed, types

the rest of the old line, gives a Carriage Return, and
types the new line up to the point where the RC was
typed. The user is positioned at the end of the word
LYNCH and may continue the edit from this point.

Note that the Control R does not align the old and
new lines. The following control character, Control T,
will do this, although it is thus a little slower than
Control R.

Control T

Control T is identical to Control R, except that it
aligns the old and new lines, thus typing them in a
more readable format. Control T copies the rest of the
old line plus the new line up to the point where the
Control T was typed, aligning the old and new lines,
and continues the edit at this point. Thus, using Con-
trol T instead of Control R in the above would yield
the following:

* <LINCH>EDIT
LINCH SYSTEMS 722
PCL%%%%LTNC<UNC<YNCHTC
SYSTEMS 722
LYNCH

The user may now continue editing with the rest of
the old line printed directly above the point at which
he types the new line.

Control Y

Control Y copies but does not print the rest of the
old line, and continues the edit at the beginning of the
new line, with the new line used as the old line. It is
useful when the user has done some editing in the line,
and wishes to make a change earlier in the line with-
out losing the editing he has done already, as he
would if he used Control Q to restart the edit.

Example

* ‘WATKINS’EDIT

WATKINS JOHNSON 2731
ZC2WATKINS JOHNSON 2Y¢
ZCSWATKINS—F¢

*./

WATKINS—JOHNSON 2631

*

The user copies up to and including the 2 with
Z€2; then types a 6 to replace the 7 in the old line. At
this point, he realizes that he has forgotten to type a
dash between WATKINS and JOHNSON, so he uses
Control Y to copy the rest of the old line and contin-
ue the edit at the beginning of the new line. Note that
the rest of the old line does not print on the terminal.
The user now copies out to the S with Z€S, typesa —,

and copies the rest of the old line and ends the edit
with FC. Note that FC copies the edited line rather
than the original old line.

Inserting Characters Into A Line:
Control E

Control E inserts text into the old line. When text
is to be inserted, a Control E is typed first; EDITOR
prints a <. Then the text to be inserted is typed; this
is followed by a second EC. This time, EDITOR prints
a>.

Example

* ‘WESTERN'EDIT
WESTERNUNION 7527
Z°NWESTERNEC< E¢>FC
*./

WESTERN UNION 7527

*

In this example, Control E is used to insert a space
between the words WESTERN and UNION.

Other Control Characters

Control N: Backspacing

Control N backspaces one character in both the
old and the new lines. EDITOR prints a back arrow
(<) when Control N is used.

* EDIT
BBCDEF
NOPNC<NC«NC<+ADCBCDEF
../

ABCDEF

*

In this example, the user types the characters NOP
in the new line. He then uses Control N three times to
backspace over these characters. Since Control N
backspaces in the old line as well as the new line, he is
now positioned at the beginning of the old line. He
types an A, to replace the first B in the old line. Now
he is positioned at the second character in the old line.
Thus, the rest of the old line consists of the characters
BCDEF. Control D copies these characters from the
old line to the new line and ends the edit.

» NOTE: During EDIT and MODIFY, it is usually
better to delete characters in the new line by back-
spacing over them with Control N, rather than using
Control A. Since Control A does not backspace in the
old line, it is very easy to lose characters accidentally

29

from the old line when using Control A. The follow-
ing two examples clarify this difference between Con-
trol A and Control N:

*:DATA:EDIT 5

DATA TREMD 471
Z°EDATA TRE,N®«<NDCD 471
*./

DATA TREND 471

*

When attempting to change the M to an N, the user
mistakenly types a comma, which replaces the M in
the old line. The next character in the old line is now
the D. Since he wishes to replace the M rather than
the D, he must backspace in the old line and the new
line with Control N. If he uses Control A instead, he
will lose a character, as follows:

*:DATA:EDIT

DATA TREMD 471
ZCEDATA TRE,AS<NDC 471
*./

DATA TREN 471

*

Typing a Control A does not change the position in
the old line. Thus, when the N is typed, it replaces
the D in the old line. Then a Control D copies the rest
of the old line, which consists of the characters from
the blank following the D through the 1.

Control Q: Restarting The Edit

We have already discussed Control Q under Termi-
nal Input Editing; however, we should mention here
that when it is used during EDIT and MODIFY, it not
only deletes the new line but also restarts the edit at
the beginning of the old line. Thus, it is equivalent to
using Control N repeatedly to delete the entire new
line, rather than using Control A to do this.

NOTE: Control W works like Control A during

EDIT and MODIFY in that it does not back up in the
old line.

Control M and Control J

Control M and Control J are equivalent to the Car-
riage Return and Line Feed, respectively. They may
be used any time a Carriage Return or Line Feed is
desired during any EDITOR command.

The Carriage Return
During EDIT And MODIFY

During EDIT and MODIFY, the Carriage Return
terminates the new line and the edit.

30

Example

« 1EDIT bs)

LIST OF STOCKS
ZCTLIST b)

*./

LIST

*

USE OF CONTROL CHARACTERS
DURING APPEND,
INSERT, AND CHANGE

All the control characters which may be used
during EDIT and MODIFY may also be used during
APPEND, INSERT, and CHANGE.! In essence, most
of them work the same way they do during EDIT and
MODIFY. However, because of the way the old and
new lines are defined during APPEND, INSERT, and
CHANGE, the result of using control characters which
operate on the old line is somewhat different during
these commands.

During APPEND, INSERT, and CHANGE, the old
line is defined as the line immediately preceding the
line being typed, while the new line is defined as the
line being typed. This means that BOTH the new and
the old lines will be placed in the text area. The new
line does not replace the old line in the text area as it
does during EDIT and MODIFY.

Example

* APPEND 5
1,0,0,1,0,0 5
FC

FC

D¢

*/
1,0,0,1,0,0
1,0,0,1,0,0
1,0,0,1,0,0

*

Note that Control F copies the rest of the old line
without printing it and terminates the new line,
whereas Control D does not copy anything in the
above example; it merely terminates the command.

Control D During APPEND,
INSERT, And CHANGE

During APPEND, INSERT, and CHANGE, Control
D may either terminate the command, as in the above
example, or it may copy the rest of the old line to the

new line and terminate the new line. Which of these
actions it performs depends on where it is typed.
® |f it is typed immediately after a Carriage Re-
turn, it terminates the command.
@ Otherwise, it copies the rest of the old line to

the new line, prints it, and terminates the new
line with a Carriage Return.

Example

* APPEND 5

1,0,0,0,0 p)

0,1,D€0,0,0 The first two D€’s copy the rest of

0,0,1,D0¢0,0 the old line to the new line and
terminate the new line.

D¢ The final D¢ terminates the AP-

*/ PEND.

1,0,0,0,0

0,1,0,0,0

0,0,1,0,0

*

Control D is the only control character which has
a slightly different function during APPEND, IN-
SERT, and CHANGE; all other control characters per-
form the same functions as they do during EDIT and
MODIFY. As long as the difference in the definitions
of old line and new line is kept in mind, there should
be no trouble understanding most of the control char-
acters. There are a few; namely, YC¢, RC, and TC,
whose functions during APPEND, INSERT, and
CHANGE are not obvious. These are discussed below.

Control Y During APPEND,
INSERT, And CHANGE

During these commands, Control Y copies the rest
of the old line to the new line, returns the carriage,
and then allows an edit of the new line. Only one line
is added to the text being typed, no matter how many
times Control Y is used before terminating the new
line.

Example

= APPEND p)

1,0,0,20,0 5

3,1,2,Y¢ The Y€ copies the 2,0,0 and allows an
2D¢,1,2,2,0,0 edit of line 2.

Dc

*/
1,0,0,2,0,0
2,1,2,2,00

*

Note tl;at only two lines are appended.

To see the difference between Y€ and other con-
trol characters that copy the rest of the old line, con-

1- INSERT and CHANGE are discussed on Page 32. Syntactically, they are similar to APPEND. The control characters discussed
here work the same way during INSERT and CHANGE as they do during APPEND.

sider what happens if Control F is used instead of
Control Y in the above example:

* APPEND p)
1,0,0,2,0,0)
3,1,2,F¢
2D¢,1,2,2,0,0
D¢

*/
1,0,0,2,0,0
3,1,2,2,0,0
2,1,2,2,0,0

*

The F€ copies the 2,0,0 and ends
the new line.

Here, three lines are appended.

CAUTION: When using Control Y to allow editing
of the new line, it is very easy to forget that it also
copies the rest of the old line. If the old line is longer
than the new line, unwanted text may accidentally be
added to the text area, as in this example:

* APPEND p)
500 1.95 40 78.00 ,
FRAMER, FREDYC The user wanted to correct an

FARFC error at the beginning of the
D¢ new line. He forgot about the
./ old line!

500 195 40 78.00
FARMER, FRED.95 40 78.00

*

31

Control R And T During
APPEND, INSERT, And CHANGE

During these commands, Control R copies the rest
of the old line plus the new line up to the point where
the RC was typed, and allows the user to continue
typing the new line at this point, using control char-
acters if desired. Control T is the same as Control R
except that it aligns the old and new lines. Like Con-
trol Y, these characters may be used as many times as
desired before terminating the new line, and only one
new line will be added to the text being typed.

Example

* APPEND o,

HICKORY DICKORY DOCK

THE MOUSE TN®RAN UP THHN®-E CLT¢
OCK

THE MOUSE RAN UP THE CLF¢

D¢

*/

HICKORY DICKORY DOCK

THE MOUSE RAN UP THE CLOCK

*

MANIPULATION OF WHOLE LINES AND GROUPS OF LINES

In addition to editing text within a line, the
EDITOR user may delete whole lines of text, insert
lines of text, change lines, copy lines, and move lines
to a different position in the text. The commands to
manipulate whole lines and groups of lines are very
easy to remember since they are all descriptive of the
functions they perform. They are:)

DELETE
INSERT
CHANGE
CcorPYy
MOVE

THE DELETE COMMAND

This command has the general form

rDELETE

where r is the address of a single line or a range of
lines. The command deletes the line or lines addressed
by r.

Example

* /

THESE LINES WILL

BE DELETED.

THESE LINES WILL

REMAIN IN THE TEXT AREA.
* 1,2 DELETE)

* /

THESE LINES WILL

REMAIN IN THE TEXT AREA.

*

Note that each time the DELETE command is
used, EDITOR reassigns line numbers. EDITOR line
numbers are always consecutive integers beginning
with 1; thus, in the above example, lines 3 and 4 be-
come lines 1 and 2 after the original lines numbered 1
and 2 are deleted.

The DELETE command may also be used with a

Line Feed to delete the next line. Thus, DELETE-}is
equivalent to .+1DELETE.

32

After the DELETE command, the current line, ad-
dressed by ., is the line preceding the first line deleted.
If the first line of text is deleted, the current line is
simply the first line of text remaining in the text area.

The DELETE command may be used to delete all
lines of text in the text area by typing

1,$DELETE p)

However, this may also be accomplished with the.

CLEAR command, see Page 47.

THE INSERT COMMAND

The general form of this command is

alNSERT 2
text to be
inserted p»)
D¢

where a is the address of a single line. The text typed
during the command is inserted into the text area be-
fore the line addressed by a. The user may type as
many lines of text as desired before terminating the
command with a Control D. The terminating D€ must
follow a Carriage Return.

All of the editing control characters that may be
used with APPEND may be used with INSERT; they
work the same way during INSERT as they do during
APPEND.!

Example

*/

NOW IS THE TIME

OF THEIR PARTY.

* SINSERT p»)

FOR ALL GOOD MEN ,

TO CIAC<-OME TO THE AID 5

D¢

*/

NOW IS THE TIME Note that the text is in-
FOR ALL GOOD MEN serted before the line
TO COME TO THE AID addressed by $.

OF THEIR PARTY.

*

EDITOR reassigns line numbers after the INSERT
command. Thus, in the above example, the last line of
text has line number 2 before the INSERT command,
whereas afterwards it has line number 4.

After INSERT, the current line, addressed by ., is
the last line typed during the INSERT.

THE CHANGE COMMAND

This command has the general form

rCHANGE
lines of text
to replace the
lines addressed
by ro

Dc

It is used to replace a line or a range of lines al-
ready in the text area (addressed by r) with the line or
lines typed during the command.

The number of lines in the range r need not be the
same as the number of lines typed to replace them.
Thus, for example, the CHANGE command may be
used to replace 1 line with 3 lines, or to replace 11
lines with 4 lines. As many lines as desired may be
typed during the command to replace as many lines as
desired.

Just like APPEND and INSERT, the CHANGE
command is terminated with a Control D, which must
immediately follow a Carriage Return.

All of the editing control characters that may be
used with APPEND and INSERT may be used with
CHANGE; they work the same way during CHANGE
as they do during APPEND and INSERT.!

Example

*/

NOW IS THE TIME FOR
THE LAZY DOG.

* ‘TIME'CHANGE
THE QUICK BROWN o
FOX JUMPS OVER 2
Dc

*/

THE QUICK BROWN
FOX JUMPS OVER
THE LAZY DOG.

*

These two lines will re-
place line 1.

EDITOR reassigns line numbers after CHANGE
just as after DELETE and INSERT.

The current line after CHANGE is defined as the
last line typed during the command.

THE COPY COMMAND
This command has the general form
aCOPY r)

It copies the line or range of lines addressed by r
and inserts them before the line addressed by a. Up to

1 - See Use Of Control Characters During APPEND, INSERT, and CHANGE, Page 30.

and including 512 lines may be copied with a single
command.

Attempting to copy more than 512 lines results in
the error message:

TOO MANY LINES

Example

*/

THIS LINE WILL BE COPIED.
THEN THIS RANGE OF
LINES WILL BE COPIED.

* :THEN:COPY 1,

*/

THIS LINE WILL BE COPIED.
THIS LINE WILL BE COPIED.
THEN THIS RANGE OF
LINES WILL BE COPIED.

*1 COPY:THEN: :LINES: 5
*/

THEN THIS RANGE OF
LINES WILL BE COPIED.
THIS LINE WILL BE COPIED.
THIS LINE WILL BE COPIED.
THEN THIS RANGE OF
LINES WILL BE COPIED.

*

After the COPY command, the current line, ad-
dressed by ., is defined to be the first of the lines
which are copied and inserted. Thus, immediately
after the second COPY command given in the above
example, the current line is line 1,

THEN THIS RANGE OF

33

THE MOVE COMMAND

The general form of the MOVE command is
aMOVE r)

This command moves the line or range of lines ad-
dressed by r in front of the line addressed by a. Up to
and including 512 lines may be moved with a single
MOVE command.

Attempting to move more than 512 lines results in
the error message:

TOO MANY LINES

Example

*/

THIS IS LINE ONE
THIS IS LINE TWO
THIS IS LINE FOUR
THIS IS LINE FIVE
THIS IS LINE THREE
THIS IS LINE SIX

* [SIXIMOVE[FOUR],[FIVE] p»)
*/

THIS IS LINE ONE
THIS IS LINE TWO
THIS IS LINE THREE
THIS IS LINE FOUR
THIS IS LINE FIVE
THIS IS LINE SIX

*

REPETITIVE EDITING

Thus far, we have discussed commands which en-
able the EDITOR user to edit text within a line and to
manipulate whole lines of text. We come now to two
commands which may be used to edit repetitively,
SUBSTITUTE and FIND. The SUBSTITUTE com-
mand allows mass substitutions of characters through-
out any part of the text area. The FIND command is
even more powerful. It allows the user to execute
other commands repeatedly; for example, it might be
used to delete all lines containing the text ‘JOB’. It is
also useful for information retrieval; for example, it
can be used to find all lines containing any text and
print them.

In this section we also discuss two more control
characters, Control G and Control V, which are espe-
cially useful with SUBSTITUTE and FIND.

THE SUBSTITUTE COMMAND

This command may be used in either of the fol-
lowing forms:

SUBSTITUTE o Makes substitutions throughout

the text.

Makes substitutions only in the
line or lines addressed by r.

rSUBSTITUTE

34

Making Substitutions
Throughout The Text

To make substitutions throughout the text, the
SUBSTITUTE command is used without an address
as follows:

SUBSTITUTE ?
*““any charactersDC¢"’ FOR “‘characters in text areaD®"’
WAIT?

After the user types SUBSTITUTE,, EDITOR
prints a ‘. The user then types the characters to be
inserted, terminated by a Control D. EDITOR now
prompts the user by printing FOR . The user types
the characters to be replaced, again terminating them
with a Control D. EDITOR prints another ", returns
the carriage, and asks the question WAIT? The user
now has two options:

1. He may tell EDITOR to make all specified sub-
stitutions by answering WAIT? with an N (for
No). EDITOR will return the carriage, make all
substitutions in every line which contains the
characters to be replaced, and print the number
of substitutions made.

Example

*/

‘ADAMS $1.50/HOUR
BENTLEY $2.75/HOUR
BROWN $3.00/HOUR
DEARBORN $1.75/HOUR
FIELD $1.50/HOUR
GREER $4.75/HOUR
LAMONT $1.25/HOUR
MEADOWS $3.50/HOUR
MITTY $5.50/HOUR
RUFOLO $3.25/HOUR
SMITH $1.50/HOUR
SOUTHERN $2.50/HOUR

* SUBSTITUTE
“HRD®’ FOR “HOURD®’

WAIT? N The N causes EDITOR to make all

12 substitutions automatically. EDI-

*/ TOR returns the carriage and prints
the number of substitutions made,
12,

ADAMS $1.50/HR

BENTLEY $2.75/HR

BROWN $3.00/HR

DEARBORN $1.75/HR

FIELD $1.50/HR

GREER $4.75/HR

LAMONT $1.25/HR
MEADOWS $3.50/HR
MITTY $5.50/HR
RUFOLO $3.25/HR
SMITH $1.50/HR
SOUTHERN $2.50/HR

*

2. He may selectively substitute, telling EDITOR

when to make the specified substitution and
when not to make it. This is done by typinga Y
(for Yes) after the question WAIT?. EDITOR
will then print the first line of text that con-
tains the characters to be replaced, and ask the
question
OK?
A Y typed in answer to this question tells
EDITOR to make the substitution for the first
occurrence of the characters to be replaced in
that line. An N tells EDITOR not to make that
substitution.

If there is only one occurrence of the charac-
ters to be replaced in the line printed, EDITOR
prints the next line and asks OK? again.

Example

* APPEND ,,

5 CUPS FLOUR 5

3 CUPS SUGAR

1 STICK BUTTER

5 CUPS SALT

3 TABLESPOONS WATER ,
5 CUPS BAKING SODA ,
D¢

* SUBSTITUTE

“1 TEASPOOND®” FOR “5 CUPSD®¢”
WAIT? Y

5 CUPS FLOUR

OK?N

5 CUPS SALT

oK?Y

5 CUPS BAKING SODA

oK?Y

2 EDITOR has made 2 substitutions out of 3
*/ lines considered.

5 CUPS FLOUR

3 CUPS SUGAR

1 STICK BUTTER

1 TEASPOON SALT

3 TABLESPOONS WATER

1 TEASPOON BAKING SODA
*

If a line contains more than one occurrence of the
characters to be replaced, the question OK? is asked
for each occurrence of the characters in the line, as
follows: After the first OK?, EDITOR prints the same
line again, this time omitting the first part of the line,
up to and including the characters first considered.
This enables the user to see which characters EDITOR
is asking about. Now OK? is asked for the second oc-
currence of the characters to be replaced. EDITOR
continues in this manner until all occurrences of the
characters to be replaced have been considered, and
then goes to the next line.

Example

*/

10 DATA 1.0 5.1 3.2
20 DATA 4.1 6.2 8.9
* SUBSTITUTE)

” D% FOR “ D¢’

The user wishes to separate
his data values with com-

WAIT? Y mas instead of spaces.

10 DATA 1.0 5.1 3.2

OK?N This OK? refers to the first
DATA 1.0 5.1 3.2 space in the line...

OK?N This, to the second...

1.0 5.1 3.2

OK?Y This, to the third...

5.1 3.2

oK?Y And this, to the fourth.

20 DATA 4.1 6.2 89 Now, the second line is
OK?N examined.

DATA 4.1 6.2 8.9

OK?N

4.1 6.2 89

oK?Y

6.2 8.9

OK?Y

4 EDITOR has made 4 sub-
*/ stitutions in 2 lines.

10 DATA 1.0,5.1,3.2
20 DATA 4.1,6.28.9

*

After EDITOR has thus questioned and received
replies for each occurrence of the characters to be re-
placed in each line, it prints the number of substitu-
tions made.

Making Substitutions
In A Specified Range

To make substitutions in a line or lines of text, the
form

35

rSUBSTITUTE)
*“any charactersD®’ FOR “‘characters in text areaD®”’
WAIT?

is used, where r is the address of a line or a range of
lines. This form works exactly like SUBSTITUTE
without an address, except that substitutions are made
only in the line or lines addressed by r.

Some Useful Facts About SUBSTITUTE

It is possible to substitute nothing for any desired
characters, thus deleting the specified characters
throughout the text area. This is done by typing a
Control D immediately after EDITOR prints the first
double quote in the SUBSTITUTE command.

Example

* /

LINE ONE

LINE TWO

LINE THREE

* SUBSTITUTE ,,
“p¢" FOR “LINE D¢
WAIT? N

3

*/

ONE

TWO

THREE

*

The SUBSTITUTE command may also be used to
determine the number of occurrences of any charac-
ter or group of characters in the text, without chang-
ing the text. This is accomplished by simply substi-
tuting the character or group for itself.

Example

* SUBSTITUTE

“EDC’ FOR “ED®”

WAIT? N

27 There are 27 E’s in the text
* SUBSTITUTE

“A(D®" FOR “A(DC"

WAIT? N
14 There are 14 occurrences of
* Al

After both forms of the SUBSTITUTE command,
the current line, addressed by ., is defined as the last
line in which substitutions were made.

The control characters AC, Q¢, W€, and I€ may be
used during the SUBSTITUTE command before
WAIT? is asked. The other editing control characters

36

discussed under Editing Text Within A Line may not
be used during this command, however.

There are two control characters, Control G and
Control V, which are especially useful with SUBSTI-
TUTE and FIND. In particular, it is possible to sub-
stitute Line Feeds or Carriage Returns for other char-
acters, or vice versa, by preceding each Line Feed or
Carriage Return with a Control V. Control V and Con-
trol G may also be used in other situations, which are
discussed below.

CONTROL G

Control G is used to represent any arbitrary char-
acter. It is used during

® Line addressing, and
® The SUBSTITUTE command.

When Control G is typed, EDITOR prints an ex-
clamation point.

Example: Control G Used In Line Addressing
* [WRITEGC!GC!5] DELETE

deletes the line containing the word WRITE followed
by any two characters followed by a 5.

Control G is especially useful with the FIND com-
mand. For example, since the address
:LABELGE:

refers to any line having a label consisting of the word
LABEL followed by any character, the following
could occur:

* FIND :LABELGC®!:/ This command tells EDI-

LABEL1 A TOR to print all lines with
LABEL2 B address :L ABEL GC:!
LABELA 10

LABEL,

4

*
Example: Control G Used With SUBSTITUTE

*/

1: LINE ONE

2: LINE TWO

3: LINE THREE

4: LINE FOUR

* SUBSTITUTE

“THIS ISD¢” FOR “GC¢!:D¢”
THIS IS is substituted for
any character followed by

WAIT? N a colon.

4

*/

THIS IS LINE ONE
THIS IS LINE TWO
THIS IS LINE THREE
THIS IS LINE FOUR

*

CONTROL V

Control V may be used before a Carriage Return,
Line Feed, or control character to cause them to be
accepted as text; that is, to inhibit their usual func-
tions. V€ may be used at any time the user desires to
inhibit these functions.

Substituting Line Feeds
And Carriage Returns

The SUBSTITUTE command may be used to sub-
stitute Line Feeds and Carriage Returns for any char-
acters in the text area, and vice versa. Each Line Feed
or Carriage Return must be preceded by a Control V
to inhibit its usual function (line continuation for the
Line Feed, termination for the Carriage Return).

Example

*1/

FIRST:SECOND: THIRD
* SUBSTITUTE 5

llvc j

DS” FOR “:DC”
WAIT? N

2

*1/

FIRST Line Feeds have now been substituted for
SECOND the colons.

THIRD

*

If Carriage Returns are substituted for another
character, EDITOR will not immediately redefine the
lines of text accordingly. However, if the text is writ-
ten on a file, or punched on paper tape, and read back
into EDITOR, the lines will be defined as usual.

Example

*1/

FIRST The words FIRST and SECOND are fol-
SECOND /owed by Line Feeds.

THIRD

* SUBSTITUTE

llvc 2

D¢ FOR “V¢ 3

pe*

1 - FIND is discussed completely under The FIND Command, Page 37.

WAIT? N

2

*1/

FIRST This is still line 1, even though each phy-
SECOND sical line ends with a Carriage Return.
THIRD

* WRITE /LINES/
NEW FILE

7 WORDS.

* 1,$ DELETE p»)

* READ /LINES/Q
7 WORDS.
=1/
FIRST
*2/
SECOND

* 3/
THIRD

*

The text is written on a file.

Now all text is deleted and
the file is read in again.

The lines are now defined as usual.

THE FIND COMMAND

The FIND command allows the user to execute
other commands repeatedly for whatever lines in the
text area he chooses to specify. This section on the
FIND command explains all the variations of FIND
available to the EDITOR user, starting with the sim-
plest forms of the command and proceeding to the
most complex.

Basic Forms Of FIND
There are two basic forms of the FIND command:

Executes the specified com-
mand for all lines in the text
area with address a.

and a
FINDa command

Executes the specified com-
mand for all lines in the range
r with address a.

and a
rFIND a command

More complicated FIND commands may be formed
by using a secondary range and/or by using the condi-
tionals AND, OR, NOT, and ...».

Example

./

95008 CAMPBELL CALIF

00001 DES MOINES IOWA

30305 ATLANTA GEORGIA

60601 CHICAGO ILLINOIS

80907 COLORADO SPRINGS COLORADO
00002 GRAND RAPIDS MICH

37

00003 HOUSTON TEXAS

11563 LONG ISLAND NEW YORK

70118 NEW ORLEANS LOUISIANA

00005 PEORIA ILLINOIS

15230 PITTSBURGH PENN

95803 SACRAMENTO CALIF

00006 TORONTO CANADA

94025 MENLO PARK CALIF

* FIND ‘CALIF'/ This FIND tells EDITOR
to print all lines with ad-
dress ‘CALIF",

95008 CAMPBELL CALIF

95803 SACRAMENTO CALIF

94025 MENLO PARK CALIF

3 Three lines containing
CALIF were found.

*1,'SACR’ FIND ‘CALIF'DELETE
This FIND tells EDITOR
to delete all lines in the
range 1,°SACR’ with ad-
dress ‘CALIF’.?

PRINT?N

2

*/

00001 DES MOINES IOWA

30305 ATLANTA GEORGIA

60601 CHICAGO ILLINOIS

80907 COLORADO SPRINGS COLORADO

00002 GRAND RAPIDS MICH

00003 HOUSTON TEXAS

11563 LONG ISLAND NEW YORK

70118 NEW ORLEANS LOUISIANA

00005 PEORIA ILLINOIS

15230 PITTSBURGH PENN

00006 TORONTO CANADA

94025 MENLO PARK CALIF

*

The FIND command works as follows: EDITOR
starts searching for the specified address (‘CALIF’ in
the above example) at the beginning of the text area,
or at the beginning of the range if FIND has been used
with the address of a range. Whenever it finds a line
containing the specified address, it executes the com-
mand used with FIND, for that line. Then it contin-
ues searching through the text area until it finds an-
other line with the specified address and executes the
command for that line. EDITOR continues thus until
it reaches the end of the text area, or of the range if
FIND has been used with the address of a range. Thus,
after FIND, the current line, addressed by ., is the

1 - See FIND with Secondary Range: The TO Feature, Page 40, and Conditionals Used With FIND, Page 41.
2 - See Page 39 for a discussion of the PRINT option available with some of the commands used with FIND, including DELETE.

38

last line in the text area or the last line in the range,
depending on whether or not FIND has been used
with the address of a range of lines.

After the command used with FIND has been exe-
cuted for all lines with the specified address, EDITOR
prints the number of lines found with this address,
and terminates the FIND.

The following rules about FIND should be ob-
served:
® The address following FIND must be a line label
or a text address. Otherwise, EDITOR will re-
spond with a question mark.!

® Spaces between terms of the command are
ignored.

® Line Feeds may be used between terms of the
FIND command to continue the command pro-
vided they are preceded by a Control V.

Commands Used With FIND

FIND may be used with any of these commands:

EDIT
MODIFY
DELETE
INSERT
/

<«

FIND may also be followed by a Carriage Return
without a command, to obtain the number of lines
with the specified address.

Example

*/

LINE ONE

LINE TWO
LINE THREE

* FIND :LINE: ps)
3

*

NOTE: The = and < commands are discussed fully
in Section 4, Utility Commands. Both commands are
used with the address of a single line. Briefly, the =
command prints the EDITOR line number of the line
addressed. The < command prints a line label address
of the line addressed, if this line has a line label begin-
ning in print position 1. Thus, for example, if line 44
in the text area is

JONES 1843 S NORTH STREET

these commands could be used as follows:

* ‘NORTH'=
* 44«
JONES

*

When FIND is used with the EDIT command,
EDITOR prints the specified lines one at a time. After
printing a line, it waits for the user to edit it. At this
point, the user may proceed just as if he were using
the EDIT command; all control characters available
during EDIT may be used. After he terminates the
edit, EDITOR prints the next line to be edited.

Example

*/

THIS IS LINE TWO
THIS IS LINE TWO
THIS IS LINE THREE
THIS IS LINE TWO

* FIND ‘TWO’" EDIT
THIS IS LINE TWO
ZCETHIS IS LINE ONE
THIS IS LINE TWO

FC

THIS IS LINE TWO
ZCETHIS IS LINE FOURp
3

*/

THIS IS LINE ONE
THIS IS LINE TWO
THIS IS LINE THREE
THIS IS LINE FOUR

*

FIND used with MODIFY works just like FIND
with EDIT, except that the lines to be edited are not
printed.

When FIND is used with INSERT, EDITOR prints
the lines addressed one at a time and waits for the user
to type the text to be inserted. Two things should be
remembered:

® The text typed must be terminated with a Con-
trol D.

® The line printed is the line before which the
text will be inserted.
Example
*/
LINE TWO
LINE FIVE
* FIND :LINE:INSERT)

1 - This address may be modified using the conditionals discussed on Pages 41-45.

LINE
LINE
D¢

LINE
LINE
LINE
D¢

*/
LINE
LINE

39

TWO LINE THREE
ONE b LINE FOUR
LINE FIVE
FIVE *
THREE 5 When FIND is used with DELETE, =, and <,
FOUR 5 EDITOR asks the question PRINT? after the com-
mand is given. This question may be answered with
either a Y (for Yes) or an N (for No). No Carriage Re-
turn need be typed after Y or N since EDITOR re-
ONE turns the carriage. Here are the results of each re-
TWO sponse:
Command Used Result Of Response To PRINT?
With FIND Y N
DELETE The lines found are printed All lines found are deleted.
one at a time; EDITOR asks)
OK? after printing each line.
Now, a Y tells EDITOR to de-
lete the line just printed; an N,
not to delete it.
= EDITOR prints the line num- EDITOR prints the line num-
ber followed by the line it- bers of all lines found.
self, for each line found. NOTE: The last number in the
list is the number of lines
found, not an EDITOR line
number.
< EDITOR prints each line | EDITOR prints a line label ad-
found, thus making its line dress for each line found, if
labels plainly visible. the line has a line label begin-
ning in print position 1.!

Example: FIND With DELETE

*/

95008
00001
30305
60601
80907
00002
00003
11563
70118
00005
15230
95803
00006
94025

CAMPBELL CALIF

DES MOINES IOWA
ATLANTA GEORGIA
CHICAGO ILLINOIS

* FIND ‘0000'DELETE
PRINT?Y

00001
oK?Y
00002
oK?Y
00003
oK?Y

COLORADO SPRINGS COLORADO
GRAND RAPIDS MICH

HOUSTON TEXAS

LONG ISLAND NEW YORK

NEW ORLEANS LOUISIANA
PEORIA ILLINOIS

PITTSBURGH PENN
SACRAMENTO CALIF

TORONTO CANADA

MENLO PARK CALIF

00005
oK?Y
00006
OK?N
5

*/
95008
30305
60601
80907

DES MOINES IOWA

GRAND RAPIDS MICH

HOUSTON TEXAS

PEORIA ILLINOIS

TORONTO CANADA

Five lines with address ‘0000° were found;

only four lines were deleted.

CAMPBELL CALIF

ATLANTA GEORGIA

CHICAGO ILLINOIS

COLORADO SPRINGS COLORADO

1 - If any of the lines found do not have a line label beginning in print position 1, the <~ command works somewhat differently
than described here. See Section 4, Utility Commands.

40

11563 LONG ISLAND NEW YORK
70118 NEW ORLEANS LOUISIANA
15230 PITTSBURGH PENN

95803 SACRAMENTO CALIF
00006 TORONTO CANADA

94025 MENLO PARK CALIF

*

FIND With Secondary Range:
The TO Feature

A secondary range, of the form
a; TO a,

may be used with both forms of the FIND command.
Thus, both of the following are allowed:

and a
FIND a, TO a,, 3 command

Executes the specified com-
mand for all lines addressed
by a which are found in each
secondary range a, TO a, in
the text area.

rFIND a, TO a,, a co?r':gm:nd

Executes the specified com-
mand for all lines with ad-
dress a found in each secon-
dary range a, TO a, in the
range .

In the above, a;, a,, and a are all addresses of a
single line. Further, they must all be text addresses or
line labels. The secondary range must be separated
from the address a by a comma.

The secondary range a; TO a, includes all lines
from the line addressed by a, to the line addressed by
a,, inclusive.

Example

*/
PICKING JUST SIX QUINCES, NEW
FARMHAND PROVES STRONG BUT LAZY.

START OF SECONDARY RANGE 1
A QUICK BROWN
FOX JUMPS OVER
THE LAZY DOG.

END OF SECONDARY RANGE 1

PICKING JUST SIX QUINCES, NEW
FARMHAND PROVES STRONG BUT LAZY.

START OF SECONDARY RANGE 2
A QUICK BROWN
FOX JUMPS OVER
THE LAZY DOG.

END OF SECONDARY RANGE 2

FIND :START: TO :END:,'LAZY’/
THE LAZY DOG.
THE LAZY DOG.

Here all lines containing the text LAZY that are
also in one of the two occurrences of the secondary
range :START: TO :END: are printed. The two lines
outside the secondary ranges which contain LAZY are
not printed.

A secondary range is not at all the same as the ad-
dress of a range of lines which may precede the FIND
command. If a secondary range is used with FIND,
EDITOR searches all such ranges for the specified ad-
dress. If the address of a range of lines is used before
the FIND command, only one such range will be
searched for the specified address. Thus, in the above
example, using the address :START:,:END: before
the FIND yields the following:

*./
END OF SECONDARY RANGE 2
*:START:,:END: FIND'LAZY'=

PRINT?Y Which range is searched depends on the
current line at the time the command
isgiven. The search for the first address
in the range begins at the line addressed
by .+1.

7

THE LAZY DOG.

1

* [

END OF SECONDARY RANGE 1
*:START:,:END: FIND'LAZY’=
PRINT?Y
16

THE LAZY DOG.

As already indicated, FIND may be used with both
arange r and a secondary range a; TO a,.

Example
*1,<PICKING>FIND:START: TO :END:,'LAZY"=
PRINT?Y
7
THE LAZY DOG.

Conditionals Used With FIND

The following conditionals may be used with
FIND:

NOT
AND
OR

Before discussing the rules by which these condi-
tionals work, we give an example using two of them:
*/

BIG HOUSE

SMALL HOUSE

BIG CAT

BIG DOG

SMALL FISH

* FIND ‘BIG" AND NOT ‘HOUSE’ DELETE
PRINT?N

2

*/

BIG HOUSE The lines BIG CAT and BIG DOG
SMALL HOUSE contain the text BIG and not the
SMALL FISH text HOUSE, hence, they were
» deleted.

The command FIND ‘BIG’ AND NOT ‘HOUSE’
DELETE deletes all lines which contain the text BIG
and do not contain the text HOUSE.

‘BIG’ AND NOT ‘HOUSE’ is an example of a con-
ditional expression. It is legal to use a conditional ex-
pression in place of the final address a in both forms
of the FIND command. Thus,

e . and a
FIND conditional expression command

. . and a
rFIND conditional expression command

are both legal forms of FIND. Conditional expressions
may be used in conjunction with a secondary range,
so that

and a

FIND a; TO a,, conditional expression command

rFIND a; TO a,, conditional expression co?::rc:l:nd
are legal. In addition, the conditional NOT may be
used to modify either or both of the addresses a; and
a, in the secondary range.! Thus, the most general
form of the FIND command is as follows, where
everything in brackets is optional:

41

conditional
[1FIND ENOT]al TO [Noﬂaz]e""’gfsm" nda
address a

The addresses used in the conditional expression,
such as ‘BIG’ and ‘HOUSE' above, must be line labels
or text addresses just as the addresses a,, a,, and a
must be.

Rules For Using Conditionals With FIND
1. Using NOT In A Conditional Expression

The conditional NOT may be used with FIND be-
fore any line label or text address. For example,

FIND NOT ‘DATA’ EDIT 5

allows edit of all lines in the text area which do not
have the text DATA in them.

When EDITOR encounters a command of the form

and a
FIND NOT a command

it searches all lines in the text area for the label or
text comprising a. Each line of text is searched from
left to right. If the text or label is not found in the
line, the condition is satisfied; that is, EDITOR will
execute the specified command for that line.

One particularly useful feature of FIND involves
the conditional NOT and the control characters G¢
and VC. These may be used to remove blank lines from
the text area, as shown in the following example:

*/

LINE 1 There are four lines consisting of a Car-
riage Return alone in the text area.

LINE 2

LINE 3

This command deletes all
these blank lines.

* FIND NOT ‘Gc!V‘:p
‘DELETE

PRINT?N

4

*/

LINE 1

LINE 2

LINE 3

*

As already mentioned, NOT may be used to modi-
fy either address in a secondary range a; TO a,. If
NOT modifies a,, the first line of the range is the first
line EDITOR finds not containing the text or label
comprising a;. If NOT modifies a,, the last line of the
range is the first line following the first line in the

1 - See Rules For Using Conditionals With FIND, Rule 1, below, for the meaning of NOT in a secondary range.

42

range (addressed by either a, or NOT a,) which does
not contain the text or label comprising a,.

Example

*/

BIG RED HOUSE
SMALL HOUSE
RED CAT

BIG DOG
SMALL FISH

+ FIND NOT ‘BIG’ TO NOT ‘CAT’, ‘RED’/
RED CAT

1

*

This is the secondary range
searched.

Do not forget that EDITOR searches all occur-
rences of the secondary range for the specified text.

2. Using AND In A Conditional Expression

AND is allowed between any two line label or text
addresses. For example,

FIND ‘AXT" AND ‘TYPE’ INSERT

allows inserting text before all lines containing both
AXT and TYPE.

When EDITOR encounters a command of the form

FIND a, AND a, 21423 |

it first searches the lines of text from left to right for
the text or label comprising a;. If a line contains this
string, it is searched again, this time for the text or
label comprising a,. If this string is found, the AND
is satisfied; EDITOR will execute the specified com-
mand for that line.

The addresses on either side of the AND may be
modified by a NOT. Thus, the following conditional
expressions are permitted:

a; AND NOT a,
NOT a AND as
NOT a; AND NOT a,

When EDITOR encounters one of these expres-

sions in a FIND command, its search of the text is the

same as for a; AND a,, except that lines are checked
for the absence of the string modified by NOT.

Example
FIND NOT :DATA: AND ‘20.1'/
prints all lines which do not have the line label DATA,

but do contain the text 20.1. This example is equiva-
lent to

FIND ‘20.1° AND NOT :DATA:/

3. Using OR In A Conditional Expression

The conditional OR is an inclusive OR. It is al-
lowed between any two text or line label addresses.

Example
FIND ‘CALIF’ OR ‘COLORADOQ’/

prints all lines which contain either CALIF or
COLORADQO, or both.

When EDITOR encounters a command of the form

FIND a, OR a, co?,':%:nd

it first searches the lines of text, from left to right, for
the text or label comprising a,. If a line contains this
string, the OR is satisfied for that line, so no search
for the string comprising a, is necessary. EDITOR will
execute the specified command for that line. If a line
does not contain the string comprising a;, it is
searched again, this time for the string comprising a, .
The OR is also satisfied if this string is found;
EDITOR will execute the specified command for this
line.

As with AND, the addresses on either side of the
OR may be modified by NOT. If this is done, the
search is the same, except that lines are checked for
the absence of the string modified by NOT.

Example
FIND [12] OR NOT :EMP: EDIT

allows editing of all lines which contain the text 12,
or which do not have the line label EMP.

4. Using ... In A Conditional Expression

The conditional ... is used to indicate that one ad-
dress follows another address. It is permitted between
any two text addresses, or between a line label and a
text address.

Example

*/

BIG TREE

BIG HOUSE

HOUSE OF BIGG

SMALL HOUSE

BIG RED HOUSE

» FIND ‘BIG’ ... ‘'HOUSE'/
BIG HOUSE all lines which con-

BIG RED HOUSE tain the text BIG fol-
2 lowed by the text
» HOUSE.

This command prints

When EDITOR encounters a command of the form

FIND a, ... a, co%'%:nd

it scans the lines of text as follows: First, EDITOR
searches a line from left to right for the string com-
prising a,. If this string is found, the rest of the line is
searched for the string comprising a,. If this string is
found in the rest of the line, the ... is satisfied; the
specified command is executed for that line.

NOT may be used to modify the address on the
right of the ...; for example, consider the following:

*/

BIG TREE

BIG HOUSE

HOUSE OF BIGG

SMALL HOUSE

BIG RED HOUSE

» FIND ‘BIG’ ... NOT ‘HOUSE’/
This command prints all
lines which contain the text
BIG, but do not contain
the text HOUSE following
BIG.

BIG TREE

HOUSE OF BIGG

2

*

» CAUTION: The condition
NOT a; ... a;

can never be satisfied. To see why this is so, consider
this example

*/

A B

C B

B CD

XYz

*FIND NOT ‘A’ ... B/

0 Zero occurrences of NOT
» ‘A’ ... ‘B’ are found.

In this example, EDITOR first scans each line from
left to right for the string A. If A is found, the line is
rejected. Once EDITOR has determined that a line
does not contain the string A, it has scanned the en-
tire line and is positioned at the end of the line. Now
EDITOR considers the ... in the command, which tells
it to search the rest of the line for the text B. But
since EDITOR is now at the end of the line, none of
the line remains to be searched. Thus, B cannot be
found in the rest of the line; that is, NOT ‘A’ ... ‘B’
can never be satisfied.!

43

5. Combining The Conditionals

As many addresses as desired, separated by AND,
OR, or ..., may be used in a conditional expression, as
long as the total length of the FIND command does
not exceed 256 characters. Each address in such ex-
pressions may be modified by a NOT; the addresses
must all be text addresses or line labels, as usual. Thus,
the following are all legal:

and a

FIND a; AND a; OR a3 . iimand

FIND a; OR a, AND NOT a; co?rl:rcl"laand

FIND a, ... a, AND aj ...

and a
as OR as command
6. Evaluation Of Conditional Expressions

EDITOR evaluates conditional expressions from
left to right. This rule is important; it implies, for
example, that
‘A’ OR ‘B’ AND ‘C’
designates all lines containing either
Aand C

or
B and C

rather than lines containing

A
or
Band C

because the expression is evaluated in the following
order:
‘A’ OR ‘B’ AND ‘C’
S——
1

~ v
g

2

Addresses and conditionals may be grouped with
parentheses to change the usual order of operation.
Thus,

FIND ‘A’ OR (‘B° AND ‘C’)/
will print all lines containing either

A
or
Band C

» NOTE: The conditional ... always modifies only
the immediately preceding address. Thus

‘A” OR B’ ... C’

is equivalent to

‘A" OR (B’ ... T

and not to (‘A OR ‘B’) ... ‘C’. The latter expression is
both meaningless and illegal, (see the restrictions on

1 - To find all lines which do not contain A followed by B, the conditional expression ‘A’ ... NOT ‘B’ OR NOT ‘A’ may be

used. See rules 5 and 6.

44

the use of parentheses listed below.) To find all lines
containing either A followed by C or B followed by C
use
FIND (‘A" ... 'C°) OR (B’ ... C’)

Note also that NOT always modifies only the ad-
dress immediately following it.
Example

The conditionél expression
‘A" AND NOT ‘B’ OR ‘C’ ... 'D’
is equivalent to
‘A" AND (NOT ‘B’) OR (‘C' ... ‘'D')

It designates all lines containing either

A and not B

or
C followed by D

There are three restrictions on the use of paren-
theses:

® NOT may never modify a parenthetical group;
thus, FIND ‘A" AND NOT (‘B' OR ‘C’) is not
allowed. To find all lines containing A and
neither B nor C, use
FIND ‘A" AND NOT ‘B’ AND NOT ‘C’

® The conditional ... may never modify a paren-
thetical group; thus, FIND (‘A" OR ‘B’) ... ‘/C’
is not allowed.

® Only one level of parentheses is allowed; that is,
nested parentheses are illegal.

Examples

FIND ‘ABC’ OR (‘STE’ AND ‘Q’) OR ‘VO'/
prints lines containing ABC, or both STE and Q, or
VO.

FIND (‘DATA’ ... ‘2') AND (‘C’ OR ‘B’)/

prints lines containing both

DATA followed by 2

and
C
or
DATA followed by 2
and
B

7. Abbreviation Of Conditionals

The conditionals may be abbreviated as follows:

N for NOT
A for AND
O for OR
. for ...
AN for AND
ANN for AND NOT

We conclude this section with the examples beginning on the next page, which illustrate
the way EDITOR evaluates various conditional expressions.

Example 1: NOT and ...
*/

A

B

Cc

OWO>>»w>
WOP>POP®

OO mwW>» >
TP>POP>PO®
>PW®P>POO®O

« FIND ‘B’ ... NOT ‘A’/

B

AB

B C

CB

ABC

ACB

CAB

7

= FIND NOT ‘A’ ... ‘B'/
Recall that FIND com-
mands of this form always
find no lines.

FIND ‘A’ ... NOT ‘B’ OR NOT ‘A’/

This command finds all
lines which do not contain
A followed by B. Note
that the two blank lines
in the text are among the
13 lines found.

OwWOPw O wW>» * O
@O >OP

*anww
o)
>

Example 2: AND and OR
*/

A

B

Cc

B
A
Cc
A
Cc

B
FIND ‘A’ OR ‘B’ AND ‘C’/
‘A’ OR ‘B’ and “C’ is equiv-
alent to (‘A’ OR ‘B’) AND
.

*FOWO P> T

woOo>»O

FIND ‘A’ OR (‘B AND ‘C’)/

FNODODPIBD PAOEOD
WOPODPW

46

‘A’ OR ‘B’ ... 'C’ is equiva-
lent to ‘A’ OR (‘B’... 'C’).

O>»O0O>» 0O

Example 3: OR and ... Example 4: AND, OR, NOT, and ...
*/ »/
A A
B B
C C

D
A B
B A AB
AC B A
CA A C
B C C A
CB B C

CB
ABC A D
ACB DA
B AC B D
BCA DB
CAB cCD
CBA DC
*FIND ‘A’ OR ‘B’ ... 'C’/ + FIND ‘A’ AND NOT ‘B’ OR ‘C’ ... ‘D’/

A

A

C

A

D

C

6

»*

ROO0ODWPHPEOP PP
WPOP>POTO>POD>W®
>®P>O®WO

*FIND (‘A’ ... 'C") OR (‘B’ ... ‘C’)/

47

SECTION 4
UTILITY COMMANDS

In addition to commands for input, output, and editing of text, EDITOR has the fol-

lowing utility commands:

Command Function
CLEAR Erases contents of text area.
LINES n Sets n lines per page for the PRINT command.

TABS number list

Changes tabs from initial 8, 16, 32, 40, 45, 50, 55, 60, 65,
70, to positions specified in number list.

a= Types EDITOR line number of line addressed by a.
a< Types a line label address for line addressed by a.
QUIT Returns to the EXECUTIVE.

1 Prints the next line, addressed by .+1.

i) Prints the previous line, addressed by .+1.

The commands LINES, 71, and 1 were discussed
fully under Output Of Text From Text Area, Page 17.

The QUIT command simply returns the user to the
EXECUTIVE.

THE CLEAR COMMAND:
CLEARING TEXT AREA

This command erases the entire contents of the
text area. It is used as follows:
* CLEAR
ALL?

After the user types CLEAR followed by a Car-
riage Return, EDITOR responds with ALL?. At this
point, typing a Y (for Yes) confirms the command.
Typing an N (for No) aborts it. No Carriage Return
need be typed after the Y or N, since EDITOR returns
the carriage automatically.

THE TABS COMMAND:
SETTING TAB STOPS
Up to ten tab stops may be set with the TABS
command.

The general form of the command is
TABS number list)

where the number list consists of the print positions
at which tab stops are to be set, separated by commas.
Example

* TABS 5,10,15,20

* APPEND

12345678901234567890

1€ «1 <1 *I® « o Racall that IC spaces up

D¢ to the next tab stop.
* /
12345678901234567890

* * * *

In this example, tab stops were set at print posi-
tions 5, 10, 15, and 20.

Once the TABS command has been given, EDITOR
assumes tab stops at the specified print positions un-
til another TABS command has been given. Even if
CLEAR has been given, the last TABS command re-
mains in effect.

If no TABS command has been given, EDITOR
assumes tab stops at print positions 8, 16, 32, 40, 45,
50, 55, 60, 65, and 70. NOTE: Each tab stop specified
with the TABS command replaces one previously set
tab stop. This means that when fewer than 10 tab
stops are set with TABS, the remaining preset tabs
will still be set. For example,

*TABS 5,10,15,20

causes the preset tab stops at print positions 8, 16, 32,
and 40 to be replaced by new tab stops at print posi-
tions 5, 10, 15, and 20, respectively. Therefore, after
execution of this command there are tab stops set at
print positions 5, 10, 15, 20, 45, 50, 55, 60, 65, and
70.

This command has no effect on the current line.

THE = COMMAND:
DETERMINING A LINE NUMBER

The general form of this command is
a=
where a is the address of a single line. It prints the
EDITOR line number of the line addressed.

Example

* /

LINE ONE
LINE TWO
LINE THREE
LINE FOUR
* [TWO]=2

There is no need to type a Carriage Return after
this command. EDITOR prints the line number as
soon as the user types the =.

If the LINES command has been given previously,
the = command prints the page number, and the line
number on that page, of the line addressed, as well
as the EDITOR line number. Thus, if the command

LINES 10

has been given, and the third line on page two is
NOW IS THE TIME

the following may occur:

* :NOW:=PAGE 2 LINE 3 ;13

After execution of the = command, the current
line, addressed by ., is the line whose line number was
printed.

THE « COMMAND:
DETERMINING A LINE LABEL
The general form of this command is
as

where a is the address of a single line. If the line ad-
dressed has a line label beginning in print position 1,

this command prints its line label. If the line does not
have such a line label, it prints the line label of the
nearest preceding line having a line label beginning in
print position 1, plus a number indicating how far
away the line is.

Example
*/
ONE FIRST
TWO SECOND
THREE THIRD This line does not have a line
* “FIRST' '« label beginning in print posi-
ONE tion 1.
* “THIRD '«
TWO+1 The nearest line having a line

* label in print position 1 is the
line with label TWO; this line
is one line before the line ad-
dressed.

If no line preceding the line addressed has a label be-
ginning in print position 1, EDITOR simply returns
control to the user.

There is no need to type a Carriage Return after
the < command. EDITOR returns the carriage and
types the line label. After the < command, the cur-
rent line, addressed by ., is the line addressed by the
< command.

If the LINES command has been given previously,
the <~ command prints the page number and line num-
ber on that page of the line addressed, as well as the
line label. Thus, if the LINES command has been
given and the line

TOTAL SALES FOR JULY

is the second line on page two, the following may
occur:

* JULY'«

PAGE 2 LINE 2 ;TOTAL

SECTION 5
ADVANCED EDITOR FEATURES

In this section we discuss the ten buffers which are
available for storing text, commands, and control
characters. Using these buffers, editing ‘programs’’
may be created to simplify greatly the user’s editing
work.

In the subsection Use Of Buffers, we also discuss
some advanced editing techniques using buffers and
some of the commands discussed in Section 4.

GENERAL DESCRIPTION
OF BUFFERS

EDITOR has ten buffers numbered 0 through 9.
Information may be entered into these buffers from
either the terminal or the text area.

Buffers 1 through 9 hold up to and including 8
lines of information.

Buffer 0 holds up to 80 lines; however, only 8
lines may be entered from the terminal.

The contents of any buffer may be printed on the
terminal.

Buffers may be loaded with any characters that can
be typed from the terminal; the contents may then
serve as a source of commands, text and/or control
characters for use in editing the text in the text area.

OUTPUT FROM A BUFFER
TO THE TERMINAL

There is only one command for output from a buf-
fer, which prints the contents of the buffer at the

terminal. The general form of this command is
nBUFFER,

where n is the number of the buffer whose contents
are to be printed. When the command is given, EDI-
TOR prints the contents of the buffer surrounded by
quotes.

Example

If buffer 3 contains the text
THIS IS IN BUFFER 3
the following may occur:

* 3BUFFER P
“THIS IS IN BUFFER 3”

*

This command has no effect on the current line.

The contents of a buffer may be transferred to the
text area by using Control B at the appropriate time.
See Use Of Buffers, Page 50. Thus, other commands
for output from a buffer are unnecessary.

INPUT TO A BUFFER

Input From The Terminal

The command for input to a buffer from the termi-
nal has the form

nLOAD P}

Text, commands, and/or control characters to be
enteredD®

The command is terminated with a Control D,
which should immediately follow the information to
be stored. No Carriage Return need be typed pre-
ceding the terminating DC. In fact, if a Carriage Re-
turn is typed, it will be stored in the buffer along with
the rest of the information typed at the terminal.

Examples

*5 LOAD)

THIS TEXT IS STORED IN BUFFER 5D¢

»5 BUFFER p»)

“THIS TEXT IS STORED IN BUFFER 5"

*1 LOAD ,

‘READ’ EDIT) Here, a command is stored in
D¢ buffer 1.

* 1BUFFER)

‘““READ’ EDIT

“ The “ prints below the com-
* mand because the Carriage

Return following the com-
mand is stored in the buffer.

If there is anything already in a buffer when a
LOAD is given, the new LOAD erases this and inserts
whatever was specified in its place.

The control characters AC, Q¢, WC, and I€ are avail-
able for editing during LOAD.

This command has no effect on the current line.

NOTE: If too many lines are typed during LOAD,
the error message

MAXIMUM LOAD IS: 80 LINES IN 0 AND 8
LINES IN 1 THRU 9
?

will be printed. Nothing will be stored in the buffer.

50

Input From The Text Area

There are two commands for entering lines of text
in the text area into a buffer.

1. The command
r;nLOAD)

puts the line or lines addressed by r into buffer
n. The lines put into the buffer are not deleted
from the text area.

Example

O O NOO AL WN= *

-
o

* 1,9;0LOAD 2 Note that more than 8 lines

OBUFFER o may be put into buffer 0 if
" they are entered from the text
2 area.

3

4

5

6

7

8

9

.~
N

*

This form of LOAD is also destructive in that
anything in the buffer before the command is
given is erased when the LOAD is given.

This form of LOAD also has no effect on the
current line.

2. The command
r:nGET 5
puts the line or lines addressed by r into buffer
n and also deletes them from the text area.
Example
*/
1
2

3

4

5

6

7

8

9

10

* 5,10,9GET

* 9BUFFER

“5

6

7

8

9

10

*/

1 Note that lines 5 through 10 are no longer in

2 the text area.

3

4

*
After the GET command, the current line, ad-
dressed by ., is the line preceding the first line
put into the buffer. If the first line in the text
area is put into the buffer, the current line is
simply the first line of text remaining in the
text area. Not surprisingly, this is the same rule
by which the current line is defined after
DELETE.
Like LOAD, GET is destructive to anything
previously stored in the buffer.

ERASING THE CONTENTS
OF A BUFFER
The command
nKILL 5

erases the contents of buffer n. It is not used very
often, since LOAD is destructive. It has no effect on
the current line.

Note that the CLEAR command erases the con-
tents of the buffers as well as of the text area.

USE OF BUFFERS

Buffers are used as a source of text, commands,
and/or control characters. They are particularly useful
when a string of text is required in several places, or
when a given command or sequence of commands is

to be executed several times in succession. The infor-
mation needed repetitively is stored in buffers, and
when it is needed, the user may access them with
Control B.

Control B
The general form
BCn
is used to take commands, text, and/or control charac-

ters from buffer n. When Control B is typed, EDITOR
prints a cross hatch (#) to indicate its use.

Control B may be used to call a buffer at any time.
As soon as the buffer number n is typed, the contents
of the buffer are called; there is no need to type a
Carriage Return after the buffer number.

Often, text, commands, and control characters are
all stored in one buffer. The important rule to remem-
ber in understanding how buffers work is the follow-
ing:

» When the contents of a buffer are called with

Control B, EDITOR interprets them exactly as
if they were typed at the terminal.

Using Control B does not erase the contents of the
buffer called.

Text In A Buffer

If EDITOR happens to be expecting text when
Control B is used, as, for instance, during APPEND,
the contents of the buffer are interpreted as text.

Example

* 5LOAD

THIS IS LINE D¢
APPEND 5

BC#51 P

B°#52?

Bc#53p

Dc

*/

THIS IS LINE 1

THIS IS LINE 2

THIS IS LINE 3

*

Commands In A Buffer

On the other hand, if EDITOR is awaiting a com-

mand, as indicated by the asterisk, EDITOR takes a
command from buffer n when B®n is typed. NOTE:

SUBSTITUTE and FIND may not be stored in a
buffer.

51

Example

* /

33.4, 55.6
1, 0

0,1

446, 65.2
33.1, 89.5
1, 0

0,1

34.2, 33.6
+ 3LOAD ps)
:1,:,:0,:DELETE ?
BC¢&B3D¢
* BC#3

?

* /

33.4, 55.6
44.6, 65.2
33.1, 89.5
34.2, 33.6

*

In this example, the user wishes to delete the range
of lines

1,0
0,1

everywhere it occurs in the text area. To do this, he
loads buffer 3 with the command
:1,:,:0,:DELETE P

By itself, this command would delete only one
such range (which range would depend on the location
of the current line when the command was given). To
execute this command repetitively, the user stores a
BC3 in the buffer. EDITOR prints &B instead of #
when BE€ is typed during LOAD, to indicate that the
control character has been stored in the buffer instead
of performing its usual function.! The user terminates
the LOAD with a Control D. Now, when he calls the
buffer using B€3, EDITOR is awaiting a command, so
it takes the first command from the buffer and exe-
cutes it just as if it were typed at the terminal. One of
the specified ranges of lines is deleted. Then EDITOR
looks for the next thing in the buffer, which is a B€3.
This tells EDITOR to call the contents of buffer 3
again. Another specified range of lines is deleted and
buffer 3 is called. This time, there are no more ranges
addressed by

:1,:,:0,:

1 - See the following discussion on storing control characters in a buffer.

52

in the text area, so EDITOR prints a ? and returns
control to the user.

This example points out two useful features of
buffers:

® Control characters may be stored in a buffer.

® A buffer may call itself or another buffer, since
Control B may be stored in it.

Control Characters In A Buffer

Most control characters are automatically stored in
a buffer instead of performing their usual functions
when they are typed during the LOAD command.
When one of these control characters is typed, EDI-
TOR prints an ampersand followed by the character
typed. For example, FC prints as &F during LOAD.

The following control characters are not automati-
cally stored in a buffer when typed during LOAD.
These six control characters may be stored in a buffer
by preceding them with a Control V when they are
typed, to inhibit their usual functions:

1. The four control characters available for editing
purposes during LOAD (A€, Q€, WC and I€) are
not stored in a buffer when typed during
LOAD, but instead perform their editing func-
tions. For example, in the following,

* 1LOAD ,
+3NAS-MODIFY P

the Control A deletes the preceding character;
it is not stored in buffer 1.

2. Control D, since it terminates the command, is
not stored in the buffer when it is typed during
LOAD.

3. Control V must be preceded by Control V to
store it in a buffer.

Example

*/

BROWNE36

JONES75

SMITH15

THOMAS

*5LOAD
HC&HVCACRAVCACRA
BC&B5DC¢

*1,3MODIFY

BC#5x/

BROWNE

JONES

SMITH

THOMAS

*

In this example, the user wishes to delete the num-
bers from the end of lines 1 through 3 in the text area.
He may use the same sequence of control characters
in editing each line, so he puts these characters in a
buffer. Control H will copy the old line to the new
line, then the two Control A’s will delete the last two
characters in the new line. The Carriage Return will
terminate the edit, and then B¢5 will call buffer 5
again, making the control characters available for the
next edit. Note that each Control A is preceded by a
Control V to inhibit its usual function.

For the actual edit of lines 2 through 3, the user
types
1,3MODIFY)
BC#5
Control characters are now taken from buffer 5 until

all lines have been edited. At this point, EDITOR re-
turns control to the user with an asterisk.

We conclude this section with a complete editing
example, which demonstrates a technique for per-
forming the same editing on every other line of text
in the text area by storing the command

+2MODIFY

in a buffer. In general, this technique may be modified
to edit every n lines in the text area by using
.+nMODIFY. It may be used to edit every line of text
in the text area; however, this is more easily accom-
plished by using

1,$MODIFY p»)

and storing the control characters and/or text in a
buffer, as in the preceding example, or by storing

MODIFY —
in a buffer.

Other examples of editing techniques using buffers
are found in Section 6 of this manual.

Example

-EDITOR

* READ /PAY1/ ")

53 WORDS.

*/

ADAMS, JOHN,34821
1.50,35.50,563.25

BENTLEY, DICK,40012
2.75,40.00,110.00

BROWN, JANE,36115
3.00,40.00,120.00

UNDERWOOD, SAM,49230
3.00,40.00,120.00

* 1INSERT

Q

)

D¢

= 1LOAD)

+2MODIFY)

XC&X, X¢&X, FC&FBC&B1D®
* 1 2

* BC#1

?

*/

34821
1.50,35.50,53.25

40012
2.75,40.00,110.00

36115
3.00,40.00,120.00

49230
3.00,40.00,120.00

*1,2DELETE

= WRITE /PAY2/ b}

NEW FILE)

35 WORDS.

* QUIT P

In this example, the user wishes to delete the alpha-
betic strings from every other line of text in the text
area. Perhaps he wishes to use the data as input to a

53

program that will not read strings. He first inserts two
blank lines at the beginning of the text area. Then he
loads buffer 1 with the following:

+2MODIFY
X€,XC,FCBC1

He then sets the current line to the first line of text
by typing the line number 1 followed by a Carriage
Return. Now he calls buffer 1. EDITOR takes the
command .+2MODIFY from the buffer. Since the cur-
rent line is the first line of text and the first two lines
of text are the inserted Carriage Returns, the line
edited by this command is

ADAMS, JOHN,34821

The XC, deletes characters up to and including the
first comma; a second XC, deletes the rest of the
name. Then the FC copies the rest of the old line,
without printing it, and ends the edit. Now the stored
BC1 calls buffer 1 again. At this point, the current line
is defined as the line just edited since a MODIFY has
just been executed. Thus, when buffer 1 is called
again, .+2MODIFY allows edit of the line

BENTLEY, DICK,40012

EDITOR continues similarly, editing every other line
in the text area. When the end of the text area is
reached, .+2 is no longer defined, so EDITOR prints
a question mark and returns control to the user. The
user prints his text, deletes the two “‘dummy’’ lines
from the beginning, and writes the text on a file.

SECTION 6
EDITING EXAMPLES

In this section we present five editing examples in increasing order of complexity.

The examples in the previous sections of this manual were intended to demonstrate the
functions of EDITOR’s various commands and control characters. The examples in this
section, however, are intended to suggest possible applications of the EDITOR language,
as well as to demonstrate various editing techniques.

These examples are reproduced from actual terminal printout to help give the reader
the feel of on-line use of EDITOR. Remember, though, the best way to get the feel of
on-line text editing is to do it.

CREATING A PROGRAM IN EDITOR

EDITOR is frequently used to create a program in another language, such as Tymshare
BATCH FORTRAN. This example illustrates preparing a BATCH FORTRAN program. It
shows the user typing his program, deing some simple editing, and then writing the pro-
gram on a file which will later be used as input to the BATCH FORTRAN compiler.

Note the use of the TABS command to set a tab stop at print posjtion 7 and the use of
control characters during APPEND and INSERT as well as during EDIT.

-EDITOR
*TABS 7
*APPEND The user types his text. I€ is used to
OPEN (5,INPUT>/DATA/) space to the tab stop at print posi-
CALL EOF((L)
B=0
2 READ (553> A
B=V«B+A AC deletes the preceding character, V.
GO TO 2
55 WRITE (1,4) B
3 FORMAT(F9.0)
4 FORMAT($ THE SUM IS $,F10.3)
END
*] INSERT
C THIS PROGRAM ADDS ANY SEQUENCE OF NUMBERS.
C INPIT IS FROM A FILE. SUM IS PRINTED AT TERMINAL.
Cc INPU The user types Y to allow an edit of
*'EQOF*EDIT this line; then he types Z°PUFC,

CALL EOFCL)
CALL EOF(K The user types Z°(and then types

*e / KF¢.
CALL EOF(K)
e 4:EDIT
4 FORMAT($ THE SUM IS $,F10.3)
4 FORMAT($ THE SUM IS $,F10e3)«/) Hetypes H° N¢/) 5
*e/
4 FORMAT($ THE SUM IS $,F10.3/)
*/

C THIS PROGRAM ADDS ANY SEQUENCE OF NUMBERS.

56

c INPUT 1S FROM A FILE. SUM 1S PRINTED AT TERMINAL.
OPEN (5,INPUT»/DATA/)
ASSIGN 55 TO K
CALL EOF(K)

B=0
2 READ (5,3) A
B=B+A
GO TO 2
55 WRITE (1,4) B
3 FORMAT(F9.0)
4 FORMAT($ THE SUM IS $,F10.3/)
END
*WRITE /SUM/
NEW FILE
89 WORDS.
*QUIT

RETRIEVING RESUMES

This example illustrates the usefulness of the FIND command for information retrieval.
The user has a disk file containing brief resumés of company employees. Using EDITOR,
it is very easy to update the file as well as to find an employee with a particular kind of
experience.

In the first part of the example, the user appends a new employee’s resumé. Note that
each physical line is terminated with a Line Feed to insure that the entire resumé is
printed when accessed with FIND.

-EDITOR -

*READ /RESUMES/ A new employee’s resumé is ap-
292 WORDS. pended. The entire resumé con-
*APPEND sists of one line made up of six

HENRY C. SMITH DEPT. 32 |Physicallines.
B.A. UNIVERSITY OF TEXAS, MATHEMATICS
SCIENTIFIC PROGRAMMING

FORTRAN

*'YOUNG' EDIT Michael Young’s resumé is updated.
MICHAEL YOUNG DEPT. 622
Be.As. ENGLISH LITERATURE, I0OWA STATE
HARDWARE SALES
BUSINESS PROGRAMMING

COBOL
BASIC

MICHAEL YOUNG DEPT. 622 | The user types 26, twice, uses £ t
B.A. ENGLISH LITERATURE. 10WA STATE | /s®rt some text, then types FC.

< DIST. MANAGEMENT, MARKETING

>

*e/

57

MICHAEL YOUNG DEPT. 622
BeA. ENGLISH LITERATURE, IOWA STATE
DIST. MANAGEMENT, MARKETING
HARDWARE SALES
BUSINESS PROGRAMMING

COBOL
BASIC
*WRITE /RESUMES/ The updated resumés are written on
OLD FILE the file /JRESUMES/.
336 WORDS.
*FIND 'SCIENTIFIC®' AND 'ALGOL'/ The user wants an experienced sci-
JOHN B. CAREY DEPT. 3H entific programmer who knows

PH D MATHEMATICS YALE UNIVERSITY ALGOL.
PROJECT MANAGEMENT»> APPLICATIONS PROGRAMMING
OPERATIONS RESEARCH

SCIENTIFIC PROGRAMMING

FORTRAN
ALGOL

DONNA WILKES DEPT. A4
PH D PHYSICS, STANFORD UNIVERSITY
PROJECT MANAGEMENT», SYSTEMS PROGRAMMING
SCIENTIFIC PROGRAMMING
ON-LINE GRAPHICS
SOFTWARE DEVELOPMENT

FORTRAN
ALGOL
ASSEMBLY LANGUAGE

He wants someone with a back-
ground in operations who is not a
manager.

2 ——ij————
*FIND 'COMPUTER OPERATIONS' AND NOT °‘'MANAGE'/
DALE MOSS DEPT. 6
BeSe ELECTRICAL ENGINEERING, U.C. BERKELEY
SCIENTIFIC PROGRAMMING
CIRCUIT DESIGN
REAL TIME SYSTEMS
COMPUTER OPERATIONS

FORTRAN
BASIC
ASSEMBLY LANGUAGE

1
#*FIND *PL-1' AND 'BASIC'/ |There is no one who knows PL-1
0 and BASIC, but there are three peo-

#FIND 'PL-1' OR 'BASIC'/ ple who know one or the other.
CARL LARSON DEPT. 4B
GRADUATE WEST HIGH SCHOOL
DIVISION MANAGER» SOFTWARE DEVELOPMENT
COMPILER DESIGN

58

COMPUTER OPERATIONS

USED

CAR SALES

FORTRAN

PL-1

ASSEMBLY LANGUAGE

DALE MOS
BeSe

CIRCU
REAL
COMPU

S DEPT. 6

ELECTRICAL ENGINEERING» U.C. BERKELEY
SCIENTIFIC PROGRAMMING

IT DESIGN
TIME SYSTEMS
TER OPERATIONS

FORTRAN

BASIC

ASSEMBLY LANGUAGE

MICHAEL YOUNG DEPT. 622

B.A.

DIST.
HARDW
BUSIN

COBOL
BASIC

3
*QUIT

ENGLISH LITERATURE,

IOWA STATE

MANAGEMENT» MARKETING

ARE SALES
ESS PROGRAMMING

CREATING A DATA FILE WITH INPUT FROM PAPER TAPE

In this example, the user has a paper tape containing sample data which he wants to
use in a Tymshare statistical analysis library program. The tape contains the sample data
separated by their frequencies; however, the user wishes to have only the data on the file,
without the frequencies. He uses the SUBSTITUTE command to accomplish this. Note
how using Control V and Control G with SUBSTITUTE increases the power of this
command. -

-EDITOR

*TAPE

261 ¢453527068545265¢4525261e¢4575258¢153
252¢1555268¢357525003515272¢359-5262852,5255¢558
249¢65552800959527003535263258+,258¢3525256.353
259¢3555270¢1535259¢3525253¢2555266¢456

*SUBSTITUTE

", Here the user appends a comma to

" FOR " each line of text by substituting a

" comma followed by a Carriage Re-
turn for a Carriage Return. V€ pre-

ZAI T? N cedes each Carriage Return typed.

*/

261¢4535270e8545265e4525261e¢4572,2584153»
252¢1555268¢357525003515272¢3595262852,255+5,8»
249¢655528009595270e¢3535263¢2585258¢3525256¢353»
259¢355527001535259¢3525253¢25552664456,
*SUBSTITUTE

"1 FOR a1, The frequencies are now deleted by
> LRI

substituting a comma for a comma

ggl T? N followed by any character (G€) fol-
iy lowed by a comma.

261e452T70085265¢452616452584105
252415268¢35250435272¢35262¢8525545,
249¢6528009527035263¢25258¢3,25643»
259¢35270¢152594¢3,5,2532526644,
*SUBSTITUTE

”

" FOR "»
"

WAIT? N
4

*/
261e45270e85265¢45261452581
252¢15268¢3525003+s272¢35262¢8525545
249¢65280¢95270¢35263¢25258¢352563
259¢35270¢15259¢35253+:2,26644
*WRITE /DATA2/

NEW FILE

45 WORDS.

*Q

Now the commas are removed from
the end of each line.

59

60

CREATING A DATA FILE
FROM SUPER BASIC DATA STATEMENTS

In this example, the user has a SUPER BASIC program in which data is stored in DATA
statements within the program. He wishes to change the program to read the data from a
disk file. To do this, he first changes the DATA statements to a format acceptable for file
input, writes them on a new file, and deletes them from the program. He then adds an
OPEN statement to the program (necessary for file input/output) and changes the READ
statements (used for DATA statement input) to INPUT FROM statements (used for file
input). Last, he stores the edited program on a new file.

Note the abbreviation of the conditionals used with FIND, the use of a buffer with
MODIFY, and the selective use of the SUBSTITUTE command.

-EDITOR
*READ /PROG/
1468 WORDS.

*FIND °'DATA' ANN 'PRINT' ANN 'REM' ANN -
PRINT?Y statements or comments containing the

83 word DATA are found.

711 DATA 5000000,53982785,5792597,6179114,655421756914625, 7257469
84

712 DATA 7580363,7881446,8159399,8413447,8643339,8849303,9031995
87

713 DATA 9192433,9331928,945200759554345,9640697,9712834,9772499
86

714 DATA 9821356,98609665,9892759,99180255,9937903,9953388,9965330
817

715 DATA 9974449,99813425998650159990324599931295999516659996631
88

716 DATA 999767459998409,99989225,999927759999519,9999683,9999793
89

717 DATA 99998675s9999915,99999465,999996659999979,9999987,9999992
90

735 DATA ¢55¢755095¢955¢995 99959999, 699399, 4E44

8

*5L0OAD When buffer 5 is called during MODIFY, the control charac-

&X &X &F&BS ters in buffer 5 delete the SUPER BASIC line number and

*83,90MODIFY word DATA from the beginning of each DATA statement.

#5% 83,90/
5000000,5398278,5792597,6179114,6554217,6914625,7257469

7580363, 788144658159399,8413447,8643339,8849303,9031995
91924335,9331928594520075955434559640697-9712834,9772499
9821356,98609665,9892759,9918025,9937903,9953388,9965330
99744495,99813425,9986501599903245,9993129,999516659996631
999767459998409599989225,9999277,9999519,9999683,9999793
9999867+,9999915599999465999996659999979,99999875,9999992
5507550920955 ¢995¢9995 ¢9999, «99999, 4E44

*83,590WRITE /PROGDATA/

NEW FILE

145 WORDS.

*83,90DELETE

*FIND 'OPEN'/

The user wants to know where his DATA
statements are. The conditional expres-
- sion used assures him that no PRINT

61

954 OPEN T9s, INPUT»2 Thereisalready a file opened as file 2.

1

*]1e

i(l) é/g'esglg;SUPEﬁ BASIC line number 70'<.'.5‘t:'9tement 5. t0 open /PROGDATA/,
5 OPEN /PROGDATA/,INPUT,1 inserted
*SUBSTITUTE /NPUT FROM 1: is substituted for READ.

"INPUT FROM 1:* FOR "READ"

WAIT? Y

360 READ P(L9)

OK?Y

702 READ X(K)

OK?Y

910 PRINT “SAMPLE OBSERVATIONS MAY BE READ FROM ANY FILE OR TYPED"
OK?N

2

*23602/

360 INPUT FROM 1: P(C(L9)

*xs702s/ The new input statements look fine.,
702 INPUT FROM 1: X(K)

*WRITE /NPROG/

NEW FILE

1314 WORDS.

*QUIT

62

CONVERTING FROM FORTRAN IV TO BATCH FORTRAN

In this example, the user has a FORTRAN 1V program on a disk file /FOR4/. He reads
the program into EDITOR, changes it to a BATCH FORTRAN program, and writes the
edited program on the file /BFOR/. Three main steps are involved in the conversion:

1. Deleting FORTRAN IV line numbers.
2. Arranging the program in the fixed format of BATCH FORTRAN.

3. Substituting BATCH FORTRAN's symbol for exponentiation (*+) with FORTRAN
1V's symbol (1).

Buffers used with MODIFY and FIND, and the SUBSTITUTE command are used to
accomplish these steps. Note the use of Control G and the conditionals AND and NOT
with the FIND command.

-EDITOR

*R /FOR4/ Note abbreviation of the READ command.
91 WORDS.

*/

10 30 READ (0,40) X

15« IF(X-0)60,70560

20« 40 FORMAT(F10.0)

30. 60 G=1

40« 20 A=(2*%Gt3+X)/(3%G12)

S0 IF (ABS[A-G]-1E-7)10,80,80

60« 80 G=A

70 GO TO 20

80. 10 WRITE(1,50)XsA

90« 50 FORMAT(/,>$THE CUBE ROOT OF $,F10e¢5,% IS $,F10+75/)
100. GO TO 30

105« 70 STOP

110. END

*1LOAD The control characters loaded into buffer 1 will
&X &E &E&F&B1 delete line numbers and insert 6 spaces in front
*1,SMODIFY of each line when buffer 1 is called during the
#lk/ command 1,8MODIFY.

30 READ (0,40) X

IF(X-0)60,70560

40 FORMAT(F10.0)

60 G=1

20 A=(2*%Gt3+X)/(3*%G12)

IF (ABS[A-GJ]-1E-7)>10,80,80

80 G=A

GO TO 20

10 WRITE(1,50)X>,A

50 FORMAT(/,$THE CUBE ROOT OF $,F10¢55% IS $,F10.75/)

GO TO 30

70 STOP

END The control characters now loaded into buffer 1 will delete three
*1LOAD spaces from the lines accessed by FIND, that is, the lines with
&S&S5&S&F&B1 FORTRAN labels.

*FIND<!!>AND NQT<IF>AND NQT<GO>MQODIFY
#18 8 lines were found and modified after the user typed B€1.

*x/

30
40
60
20
80

10
50

70

READ (0,40) X
IF(X-0)>60,70,60
FORMAT(F10.0)

G=1

A=(2%G13+X)/(3%G12)

IF (ABSCA-G]1-1E-7>10,80,80
G=A

GO TO 20

WRITE(1,50)X,A
FORMAT(/,$THE CUBE ROOT OF $5F1055% IS $,F10.75/)
GO TO 30

STOP

END

*SUBSTITUTE

.'**..
WAIT?
2
*/

30

40
60
20
80

10
50

70

FOR " t "

N

READ (0,40) X

IF(X-0)60,705,60

FORMAT(F10.0)

G=1

A=(2%GC**3+X)/ (3%G*k*%2) The SUBSTITUTE command
IF (ABS[A-G]-1E~-7)10,80,80 above replaced each 1 that
G=A was in this line with **,

GO TO 20

WRITE(1,50)X»A

FORMAT(/,>3$THE CUBE ROOT OF $5F10e¢5,% IS $5F10.75/)
GO TO 30

STOP

END

*WRITE /BFQR/
NEW FILE
82 WORDS.

*Q

APPENDIX A
ERROR MESSAGES

Bell

EDITOR rings a bell when a control character is
typed which tells it to do something impossible. For
example, if the user types Control Z followed by a
character that does not appear in the rest of the old
line, EDITOR rings a bell.

EDITOR also rings a bell the first time the user
attempts to ALT MODE during APPEND, CHANGE,
EDIT, MODIFY, INSERT, and LOAD, as a warning
to the user. If ALT MODE is typed again, the com-
mand is aborted. All work done during the command
is lost.

EDITOR takes no further action when the bell
rings; the user may correct his error immediately and
continue whatever he was doing when the bell rang.
NOTE: When ZC, OF, XC€, or PC is followed by a
character not appearing in the rest of the line, the
control character, as well as the character, must be
retyped.

There are two cases when the ringing bell does not
indicate an error:

1. Whenever Control G is typed, the bell rings.

2. When EDITOR is called from the EXECUTIVE,
the bell rings.

LINE TOO LONG

When a line longer than 256 characters is entered
into the text area, this message is printed upon termi-
nation of the command used to enter the line. The
line entered is cut off so that only part of it is entered
into the text area.

MAXIMUM LOAD IS: 80 LINESIN 0
AND 8 LINES IN 1 THRU 9

This message is printed when more than eight lines
are entered into buffer n during nLOAD, upon termi-
nation of the LOAD. No information is retained in
the buffer.

During r;nLOAD and r;nGET, 80 lines may be
entered into buffer 0. Thus, during these commands

the message is printed if r consists of more than 80
lines and text is being entered into buffer O, or if r

consists of more than eight lines and text is being
entered into one of buffers 1 through 9. In all cases,
nothing is retained in the buffer.

Question Mark (?)

EDITOR responds with a question mark when the
user types a command it cannot understand, such as a
misspelled command, a command containing an incor-
rect line address, or a READ command containing an
incorrect file name.

EDITOR will also respond with a question mark if
it is commanded to do something impossible, such as
to delete the tenth line when there are only eight lines
of text, or print text which has been cleared.

After the question mark, EDITOR gives another
asterisk.

TOO MANY LINES

The commands MOVE, COPY, and aREAD oper-
ate on a maximum of 512 lines. If the user attempts
to apply one of these commands to more than 512
lines, this message is printed.

TOO MUCH TEXT

If more than 60,000 characters are entered into the
text area during any input command, EDITOR termi-
nates the command and prints this message. Text en-
tered up to the point where the command was termi-
nated is retained in the text area.

WHAT?

If anything other than a Y or an N is typed in
answer to a question asked by EDITOR, it responds
with WHAT?. Then the correct response may be
typed. EDITOR's questions include:

ALL? during CLEAR

DOUBLE SPACE? during PRINT

PRINT? during FIND used with = and «
PRINT? and OK? during FIND used with DELETE
WAIT? and OK? during SUBSTITUTE

APPENDIX B

DEFINITION OF THE CURRENT LINE

Immediately After

All Forms Of:

The Current Line
(Addressed By .) Is:

APPEND
BUFFER
CHANGE
CLEAR
COPY
DELETE
EDIT
FIND
rFIND
GET
INSERT
KILL
LINES
LOAD
MODIFY
MOVE
PRINT
PUNCH
QuUIT
READ
SUBSTITUTE
TABS
TAPE
WRITE
/

> d ot

Last line appended (=$).

No effect.

Last line typed during CHANGE.
Not applicable.

First line copied and inserted.
Line preceding first line deleted.
Last line edited.

Last line in text area.

Last line in range r.

Line preceding first line of text put into the buffer.

Last line typed during INSERT.

No effect.

No effect.

No effect.

Last line edited.

Depends on which way lines are moved.
Last line printed.

Last line punched.

Not applicable.

Last line in text area.

Last line in which substitutions were made.
No effect.

Last line read from tape (=$).

Last line written on the file.

Last line printed. If ALT MODE is typed during
command, . does not change.

Line addressed by the = command.
Line addressed by the < command.
Line printed by the = command.
Line printed by the T command.

65

66

APPENDIX C
THE TERMINAL

THE TERMINAL KEYBOARD!

ODOOOOOOLOLOLWOO®

FBOOAARLLOARRO®®
PO@A@OOCLOOROG®®®
clololololololelolelelT.

SHIFT

Only those keys which are underlined in the keyboard
diagram have a shift position. The SHIFT key oper-
ates in the manner of an ordinary typewriter. The
SHIFT characters are printed as they appear on the
upper half of these keys, with the following excep-
tions:

SHIFT K = [
SHIFT L =\
SHIFTM =]

CTRL (Control)
Any alphabetic key may be pressed in conjunction
with this key. The resulting character, called a con-
trol character, does not always print on the terminal.
Control characters serve a variety of purposes depend-
ing on when they are typed. Some languages, for ex-
ample, use control characters as editing instructions
to the computer. In the Tymshare manuals, a super-
script ¢ is used to designate control characters; for
example, Control D is shown as DC. Note the follow-
ing special control characters:

JC = Line Feed

MC = Carriage Return

ALT MODE or ESCAPE

This key is used to abort a command, interrupt the
execution of a program, and/or return to the EXECU-
TIVE. NOTE: On machines not having either the
ALT MODE or the ESCAPE key, use SHIFT KC.

HERE IS
Not used in the Tymshare system.

LINE FEED

Advances the paper one line each time it is pressed.
When the user is connected to the computer, the sys-
tem automatically supplies a Carriage Return after
every Line Feed.

RETURN (Carriage Return)

Returns the print head to the beginning of a line. The
print head goes to the beginning of the next line only
when the user is connected to the computer; that is,
the system automatically supplies a Line Feed after
every Carriage Return.

RUB OUT

Used in conjunction with the B.SP. button on the
paper tape punch to delete characters punched in
error.

REPT (Repeat)

Repeats any character on the keyboard (including a
space) when pressed in conjunction with the desired
character.

BREAK
DO NOT press this key; it causes a transmission inter-
rupt and possible loss of program and data.

NOTE: Maximum line width is 72 characters on most
terminals.

1 - This is the standard terminal keyboard. On individual machines, some keys may not exist or may be located differently than

shown in this diagram.

The ON/OFF Controls

The standard ON/OFF control is a three-position
dial located on the front of the terminal and to the
right of the keyboard.

Standard ON/OFF Control

OFF

LINE LOCAL

LINE

The terminal is ON and ready to be connected to the
computer via the phone line. When the connection is
made, the terminal is said to be “‘on line”.

OFF
The terminal is OFF.

LOCAL

The terminal is ready for local (“‘off line”’) opera-
tions; that is, operations to be performed when the
terminal is not connected to the computer. Paper tape
may be punched off line.

Dial Option
Instead of the ON/OFF controls just described, the

terminal may have a six button Dial Option ON/OFF
control located to the right of the keyboard:

BUZ-
ORIG CLR ANS TST LCL RLS

OOO0O0O0O

Dial Option ON/OFF Control

Four of these buttons are used in the Tymshare
system:
ORIG

The terminal is ON (Originated) and ready to be
connected to the computer.

CLR
The terminal is OFF (Cleared).

LCL

The terminal is ready for off-line (Local) opera-
tions.
BUZ-RLS (Buzzer Release)

Turns off the buzzer which sounds when the paper
supply is low.

67

The Paper Tape Controls

When the terminal is equipped with a paper tape
punch and reader, the controls are on the left side of
the terminal.

Punch Controls

REL. OFF

OO
OO

B.SP. ON

REL.
Releases the paper tape so that the user can pull it
through manually.

OFF
Turns the punch OFF.

ON
Turns the punch ON to punch the paper tape.

B.SP.

Back spaces the paper tape one frame each time the
button is depressed. Used in conjunction with the
RUB OUT key on the keyboard to delete erroneous
characters.

Standard Reader Controls

START

STOP

FREE

START
Starts and continues paper tape reading.

STOP
Stops paper tape reading.

FREE
Frees the tape reader mechanism so the user can pull
the tape through manually.

Optional Reader Control Arrangement

For terminals equipped with the Reader Control
Arrangement option, the following control characters
have special significance:

68

Qc

When typed on the keyboard or sent to the termi-
nal by the computer, Q€ will start the paper tape
reader.
s¢

When read from paper tape or sent to the terminal
by the computer, S¢ will stop the paper tape reader.

NOTE: Before either of these control characters
will function, the paper tape reader must be loaded
with paper tape and the reader controls must be set to
START.

How To Punch Paper Tape Off Line

The user can punch a paper tape while not con-
nected to the computer. Later the tape can be read
into the system by means of the READER command
of the EXECUTIVE or the TAPE command of
EDITOR.

To punch paper tape off line, turn the dial on the
front of the terminal to LOCAL and depress the ON

button on the paper tape punch controls. Then punch
the tape from the keyboard. Note the following spe-
cial rules:

® Always follow a Line Feed with a Carriage
Return.

® Always follow a Carriage Return with a Line
Feed.

Example

Off line, type:
THIS IS5
LINE ONE 53 equivalent to LINE ONE

On line, type:
equivalent to THIS ISj

If the user makes a typing error while punching
tape, delete the incorrect character immediately by
depressing the B.SP. button on the punch controls
and then the RUB OUT key on the keyboard. To de-
lete several incorrect characters press B.SP. as many
times as necessary and then RUB OUT the same num-
ber of times.

APPENDIX D
EDITOR SUMMARY

SUMMARY OF EDITOR LINE ADDRESSES

Kind Of Examples
Address Example Function
EDITOR 5 Addresses fifth line in text area.
Line Number
Text Within ‘AB, 425’ These three addresses address any line
a Line “AB, 425" containing the text AB, 425.
[AB, 425]
Line Label :123: Addresses line having label 123 which be-
gins in print position 1.
<END> Addresses line having label END. This
label may be preceded by any number of
blanks.
The Last Line $ Addresses the last line in the text area.
of Text
The Current Line Addresses the current line.
Address of a :34:,"BOB”’ Addresses all lines from the line with label

Range of Lines

34 (beginning in print position 1) to the
line containing BOB, inclusive.

Combination
Line Addresses

6:JONES:'SAN JOSE’

Addresses first line containing SAN JOSE
following the first line after line 6 that
has label JONES.

Address
Arithmetic

[DATA] +5

-4

Addresses fifth line after the line contain-
ing DATA.

Addresses fourth line before the current
line.

69

70

ALPHABETIC SUMMARY OF EDITOR COMMANDS

a = The address of a single line.

r = The address of a single line or a range of lines.

¢ = Aline label or text address, or a conditional expression.

n = A buffer number.

t = Indicates that the command form may be used without the preceding address r to

apply to all lines in the text area.
Command Forms Function

APPEND APPEND o, Enters text from terminal.

BUFFER nBUFFER Prints contents of buffer at the
terminal.

CHANGE rCHANGE 5 Changes line or lines addressed to
lines typed.

CLEAR CLEAR 5 Erases contents of text area and
buffers.

COPY aCOPY r b) Inserts a copy of the line or lines ad-
dressed by r before the line ad-
dressed by a.

DELETE rDELETE 2 Deletes line or lines addressed.

DELETE Deletes next line of text.

EDIT reDIT) Prints and allows edit of line or lines
addressed.

EDIT Prints and allows edit of next line.
EDIT t Prints and allows edit of previous
line.

FIND rtFIND ¢ coarlr?g\:nd Executes specified command for all
lines in specified range satisfying the
conditional expression or string ad-
dress c.

rtFIND a,, TO a,, ¢ co?r?r?l:nd !?xecutes specified command for all
lines satisfying ¢ which are also in
each secondary range a; TO a, in
the range r.

GET rinGET 5 Enters the line or lines addressed in-
to buffer n and deletes them from
the text area.

INSERT alNSERT 2 Inserts lines typed during the com-
mand before the line addressed.

KILL nKILL 2 Erases contents of buffer n.

LINES LINES m b) Sets m lines per page for PRINT.

LOAD nLOAD) Enters information into buffer n
from the terminal.

r;nLOAD 2 Enters line or lines addressed into
buffer n.

Command Forms Function

MODIFY rMODIFY 5 Allows edit of line or lines addressed
without printing them.

MODIFY =, Allows edit of next line without
printing it.

MODIFY 1 Allows edit of previous line without
printing it.

MOVE aMOVE r 2 Moves the line or lines addressed by
r before the line addressed by a.

PRINT rtPRINT 2 Prints on the terminal in a page for-
mat the line or lines specified.

PUNCH rtPUNCH o Punches line or lines specified on
paper tape. EDITOR prints instruc-
tions, punches D€ at end of text.

rtPUNCH -, Punches specified text on paper
tape. No instructions are given, no
D€ is punched.

QuiT QuIT Returns to the EXECUTIVE.

READ READ Enters contents of file specified in
command into text area.

aREAD Enters contents of specified file into
text area before the line addressed
by a.
SUBSTITUTE | rtSUBSTITUTE 5 Makes substitutions throughout the
“any charactersD¢’ FOR ” line or lines specified.
characters in text areaD®"’

TABS TABS number list Changes tabs from initial settings to
print positions specified in number
list.

TAPE TAPE 2 Enters text from paper tape into
text area.

WRITE rtWRITE Writes line or lines specified to a
file. Multiple blanks are compressed.

rtWRITE Writes line or lines specified to a
file. Multiple blanks are not com-
pressed.

/ rt/ Prints line or lines specified at the
terminal.

= a= Prints EDITOR line number of line
addressed.

« a< Prints a line label address for line ad-
dressed if the line has a label begin-
ning in print position 1.

Line Feed 3 Prints next line on the terminal.

0 t Prints previous line on the terminal.

A

72

ALPHABETIC SUMMARY OF CONTROL CHARACTERS

Control Symbol
Character | Printed Function

AC <« Deletes preceding character.

BCn #n Takes commands, text, and/or control characters from buffer n
just as if they were typed at the terminal.

c¢ Copies and prints next character in old line.

D¢ During EDIT and MODIFY, it copies and prints the rest of the old
line to the new line and ends the edit. During APPEND, INSERT,
and CHANGE, it terminates the command if used immediately
after a Carriage Return; otherwise it copies the rest of the old line
to the new line and ends the new line.

ECtextEC < Inserts text into old line to form new line; first EC prints <, sec-
> ond EC prints >.

F¢ Copies but does not print the rest of the old line; ends the edit
during EDIT and MODIFY; and ends the line during APPEND,
INSERT, and CHANGE.

G¢ ! Used in SUBSTITUTE and line addressing to match any character;
for example, XXGC means XX followed by any character.

HC Copies and prints rest of old line and continues the edit at the end
of the line.

I Spaces to next tab stop.

Line Feed Allows line continuation.
or JC

K¢ Deletes next character in old line and prints it.

Carriage During EDIT and MODIFY, ends the new line and the edit.
Return
or M¢

NC <« Backspaces in the old and new lines.

OC€and a Copies the old line up to but not including the character typed
character after it, printing the characters copied.

PCand a % Deletes characters from the old line up to but not including char-
character acter typed after it.

Qc t Deletes preceding line.

RC Copies and prints rest of old line plus the new line up to the point
where RC was typed; continues edit at this point.

s¢ % Deletes next character in old line.

TC Same as RC except that it aligns the rest of the old line with the
new line.

uc Copies and prints the old line up to next tab stop in new line.

Ve Used before Carriage Return, Line Feed, or a control character to
accept them as text (inhibit their usual functions).

we \ Deletes preceding word.

XC and a % Deletes characters from the old line up to and including the char-
character acter typed after it.

Y¢ Copies but does not print rest of old line and continues edit at the
beginning of the new line.
ZCand a Copies the old line up to and including the character typed after
character it, printing the characters copied.

73

75

INDEX

NOTE: Page numbers which appear in bold face type refer to those pages where the listed

item receives the most detailed discussion.

AC, 5, 23, 29, 35
Address arithmetic, 16

Addressing, see Line addressing

ALTMODE or ESCAPE, 6, 8, 20, 66

AND, 42, 45, 46
APPEND, 5, 11, 23, 30

BC, 51
Backspacing, see N¢

Buffers, 49
input to, 49
from terminal, 49
from text area, 50
output from, 49
storing commands in, 51
storing control characters in, 52
storing text in, 51
use of, 50
used recursively, 52

ce, 27
Calling EDITOR, 3

Carriage Return, 13, 66, 68
during EDIT and MODIFY, 29

CHANGE, 23, 30, 32
CLEAR, 47,50
Combination line addressing, 16

Commands
abbreviating, 8
conventions for typing, 8
editing, 23
summary of, 70

Conditional expressions, 41, see also FIND, NOT,
AND, OR, ...

evaluation of, 43

Conditionals, abbreviation of, 44

Conditionals, see Conditional expressions

CONTINUE, 8

Control characters, 5, 23, 66, see also individual
characters

summary of, 72
used at any time, 23

used during APPEND, INSERT,
and CHANGE, 23, 30
used during EDIT and MODIFY, 23, 25
used for copying, 26
used for deleting, 26, see also A¢, N¢, Q¢, W¢

COPY, 32

Copying characters, see CC, D¢, FC, H®, O¢, R¢, T¢,
Ue, e, z¢

Copying lines, 32

Current line, 15
definition of after each command, 65

D¢, 5,7,27,30
DELETE, 7, 31, 38

Deleting characters from a line, see A€, K¢, N€, PC,
SC, X¢
Deleting characters using SUBSTITUTE, 35

Deleting lines, 7, 31, see also Q¢

Deleting words, see W¢

EC, 7,29
EDIT, 7, 23, 25, 38
Editing commands, table of, 23

Error messages, 64

F¢, 27

File input, see /Input
File naming rules, 21
File output, see Output

FIND, 36, 37
basic forms, 37
commands used with, 38
conditionals used with, 41
secondary range used with, 40

G€, 36
GET, 50

HC, 28

1€, 24, 35

Input commands, table of, 11

76

Input of text, 5, 11 Output commands, table of, 17
from file, 12, see also READ Output from a buffer, 49
from paper tape, 11, see also TAPE

from terminal, 11, see also APPEND Output of text, 6, 17

to file, 6, 20, see also WRITE
Input to a buffer, 49 to paper tape, 19, see also PUNCH
INSERT, 23, 30, 32, 38 to terminal, 6, 18, see also /and PRINT

Inserting characters into a line, 29
PC, 26

Inserting lines, 32
Paper tape, see Input and Output

JC, 29, see also Line Feed Paper tape, puncing off line, 68
PRINT, 18
KC, 26
PUNCH, 19
KILL, 50
Q¢, 5, 24, 29, 35
Line addressing, 6, 13
address arithmetic, 16 QuIT, 8, 47
addressing a range of lines, 16 c
combination line addresses, 15 R®, 28, 31
control G used in, 36 READ, 12
current line (.), 15
last line of text($), 15 s¢, 7
line label, 14

Secondary range, 40, 41, see also FIND
line number, 7, 14

summary, 69
text within a line, 7, 14

SUBSTITUTE, 7, 33
substituting Line Feeds and Carriage Returns, 36

. . . . substituting selectively, 34
Line continuation, 13, see also Line Feed

Line, definition of, 13 TC, 28, 31
Line Feed, 13, 66, 68 Tab stops
Line Feed command, 19, 47 setting, 47
spacing to next, 24

Line label, 14, see also Line addressing

TABS, 47
Line length, 13

TAPE, 11, 23
Line number, 14, see also Line addressing .

Terminal, 66

LINES, 18, 47
Terminal input, see /Input

LOAD, 49, 50
Terminal output, see Output
Log in procedure, 3
Text area, 4
LoGouT, 4 size of, 13
MC, 29, see also Carriage Return uc 27
MODIFY, 23, 26, 38 Utility commands, table of, 47
MOVE, 33
Multiple blanks, 20 V¢, 36
NC, 29 W€, 24, 35
NOT, 41, 45, 46 WRITE, 6, 20
XC, 26

0¢, 27
OR, 42, 45, 46 Y€, 28, 30

Z¢, 7,27

$, see Line addressing

., see Current line, Line addressing
..., 42,43,45, 46

/ command, 6, 7, 18

= command, 38, 48

4 command, 19, 47

< command, 38, 48

77

