
TIME-SHARING SY~TEM.

·REFE~NCEMANUAL

By:

Ann Hardy
David Gardner

Verne VanVlear

. TYMSHARE, INC.

Revised 7/21/67

TABLE OF CONTENTS '

,1;0 Introductory

2.0 The Scheduler

PAC Table'

Phantom User Queue Entry

3.0 Forks and Jobs

3.1 Creation of Forks

3.2 Memory Acquisition

3.3 Panic Conditions

3.4 Jobs

Fork Structure

Job Tables

4.0 Program Interrupts

5.0 The Swapper, Memory Allocation and
RAD Organization

PMT Entries

6.0 Miscellaneous Features

7 . 0 Teletype Input··Output

Teletype Table

1.1

2.1

2.6

2.1

3.1

3.1

3.3

3.4

3.6 '

3.7

3.8

4.1

5.1

5.5

6.1 '

7.1

1.6

8.0 Disc and Buffer Organization; Devices 8.1

8.1 File Storage

8.2 File Buffers

8.3 Devicl")s

8.4 Sy:.;tem Data

Buffers

on the

on Disc

Di::-.c 8.1

8.1

8.2

8.3

8.5

8.0 (cont.)

Device Tables

Disc Map

9.0 Sequential Files

9.1 Sequential Disc Files

9.2 . Other Sequential Files

9.3 File Control Blocks

9.4 Permanently Open Files

10.0 Random Disc Files

11.0 Subroutine Files

12.0 Exec Treatment of Files

File Directory Arrangement

Hash Table Entry

13.0 Executive Commands Related to Files

14.0 Executive Commands

15.0 Subsystems

16.0 Miscellaneous Executive Features

17.0 Miscellaneous Monitor

18.0 Stri~g Processing System

19.0 Floating Point

20.0 Index of BRS's and System Operators

Appendix A

General Description of Combined
File Directory

File Directory Format on Disc

File 0irectory Block

User Account Directory on Disc

Subsystem Table

8.6

8.7

9.1

9.1

9.4

9.7

9.8

10.1

11.1

12.1

12.5

12.6

13.1

14.1·

15.1

16.1

17.1

18.1

19.1

20.1

A.l

A.1

A.2

A.3

A.4

A.5

1.1

1.0 INTRODUCTORY

This manual describes the Berkeley Time-Sharing System as
it was modified by Tymshare, Inc. The original Berkeley
manual was written by Butler Lampson and this manual is a.
modification of that manual. The Berkeley Time-Sharing
System is divided into three major parts: The monitor, the
system executive and the subsystems. Only the first two of
these are discussed in detail in this manual. The manual
attempts to describe exhaustively all the features of the
monitor and the system executive, and, in addition, to give
a number of implementation details.

We use the word monitor to refer to that portion of the system
which is concerned with scheduling, input-output, interrupt
processing, memory allocation and swapping, and the control
of active programs. The system exec, on the other hand, is
concerned with the command language by which the user control~
the system from his teletype, the identification of users
and specification of the limits of their access to the system,
the control of the directory of symbolic file names and back
up storage for these files, and other miscellaneous matters.

The next ten sections of this manual discuss various features
of the monitor. The·remaining sections deal with the execu
tive.

2.1

2.0 THE SCHEDULER

The primary entities with which the time-sharing syst'em is
concerned are called forks. Each fork is an abstract object
capable of executing machine instructions. At least one 'fork
is associated with each active user, but a user may have many
forks, each computing independently under his control. Also,
associated with each user is a temporary storage area called
theTS block.

A fork is defined by its entry in the program active table
(PAC table or PACT). This table contains all of the infor
mation required to specify the instantaneous state of the
extended computer which the user is programming, except for
that contained in the user's memory, the TS block, or in the
system's permanent tables. The structure of a PACT entry
is displayed at the end of this section together with brief
notes about the significance of the various items. These
matters will be explained in more detail in the following
few sections. It will be observed that PACT contains loca
tions for saving the program counter and the contents of the
active A register. The B and X registers are saved in the
TS block. It also contains two pseudo-relabeling registers
for the user. A third one, which specifies the monitor map,
is kept in the job tables. The matter of pseudo-relabeling
is discussed in detail in section 5. There isa word called
PTEST which determines the conditions under which the fork
should be reactivated if it is not currently running. The
panic table address in PTAB and the three pointers called
PFORK, PDOWN and PPAR are discussed in section 3 on forks.

The word called PTAB contains in bits 3 through 8, the number
of the job to which this fork belongs. The top of PQU
contains information about the amount of time for which the
fork is allowed to compute before it is dismissed. All forks
have a long-time quantum and a short-time quantum. When a
fork is created it is given a long-time quantum. This is
a six bit number which is kept in QR. It is the number of
clock cycles remaining before the fork will be dismissed on
long quantum overflow. The three bit number in QUTAB points
to a table of various long quantum lengths. This allows ,the
system to vary the length of the long quantum for different
forks. The length of the short time quantum is tentatively
going to be the same for all forks. All times in the discus
sion are measured in periods of the 60-cycle computer clock.

When a fork is activated the number in QR is put into TTIME.
This number is the amount of time left in the fork's long
time quantum. At the same time, the fork's short-time

2.2

quantum is put into TIME. Both TIME (short quantum) and
TTIME (long quantum) are decremented at every clock cycle.

When a fork is activated, it is first allowed to run for a
short quantum. During this time is cannot be dismissed ex
cept by its own request.

When TIME goes negative, a word called ACTR is checked to
determine whether any fork which is dismissed for I/O can
be run. If not, the fork is allowed to continue. At each
subsequent clock cycle the fork may be dismissed if any fork
dismissed for I/O is ready to run. It may also be dismissed
when the long quantum is exhausted if any other forks are
waiting to run. In either case it is said to be dismissed
for ~uantum overflow. If ACTR indicates that another fork
dism1ssed for I/O is ready to run at the end of the short
quantum, the fork is also dismissed for quantum overflow.

In order to allow an efficient implementation of this scheme
ACTR is incremented by every interrupt routine which takes
action allowing a fork which is waiting for I/O to run.

Since ACTR is set to -1 when the first fork from QSQ is ac
tivated, this means that the clock interrupt needs only t6
do:

SKR
BRU
SKN
BRU
SKR·
BRI

TIME
*+3
ACTR
*+3
TTIME

Ready to dismiss

Return to program

in order to check both the conditions which may require
further action. If ACTR is positive or the short quantum
has not run out, it is of course ignored, in accordance wit~'
the above discussion.

When a fork is dismissed for I/O, TTIME is put intoQR·. . When
the fork is reactivated, TTIME is s~t from QR. TIME is re
set to the full short quantum. That is, the long quantum
is allowed to run down while a program computes, regardless
of whether it has to wait for I/O between computations. On
the other hand, a f~rk is always given a full short quantum.'

There are two operations available to the user which are
connected with the ~uantum overflow machinery. BRS 45 causes
the user to be dism~ssed as though he had overflowed his
quantum. BRS 57 gu~rantees to the user upon return at least
16 msec of uninterr.lpted computation. This feature is im
plemented by dismis;ing the user if less than 16 msec remain.
in his quantum.

2.3

Ordinarily, the code which is being executed at any particular
instant is that belonging to the ~6rk which is currently active.
This situation may be disturbed, however, by the occurrence
of interrupts from I/O devices. These interrupts cause the
computer to enter system mode and are processed entirely in
dependently of the currently running program. They never
take direct action to disturb the running of this fork, al
though, they may set up conditions in memory which will cause
some other fork to be activated when the presently running ,
one is dismissed. Interrupt routines always run in system
mode. Other code which may be running which may not belong
to the fork currently active is the code of system programmed

'operators or BRS routines. These routines are not re-entrant
and, therefore, should not be dismissed by the clock. To'
ensure that they will not be, the convention is established
that the clock will not dismiss a program running in system
mode. In order to guarantee that a user will not monopolize
~machine by executing a large number of SYSPOPS, the user
mode trap is turned on when the clock indicates that a fork
is to be dismissed. The trap will occur and cause dismissal
as soon as the fork returns to user mode.

The PACT word called PTEST contains the activation condition
for a currently inactive fork. The condition for activation
is contained in the six opcode bits of this word, while the
address field normally contains the absolute address of a
word to be tested for the specified condition. It is possible.
however, for the address to hold a number indicating which
program interrupt has occurred. '

The followi~g activation conditions are possible:

o Word greater than 0
1 Word less than or equal to 0
2 Word greater than or equal to 0
3 Word less than or equal to teletype early warning.
4 Special test. The address points to a special '

activation test routine.
S Interrupt occurred. The address contains the number

of the interrupt which occurred.
6 Activate if TTYBRK is less than REAL.
7 Special address =

o dead
1 running
2 BRS 31
3 BRS 106
4 Executive BRS
S BRS 109
6 BRS 9 (User Program)

10 Do not activate
11 Word 200000000 = 0 (buffer ready)
12 Word less than 0

~.4

An executive program can dismiss itself explicitly by putting
a queue number (0 to 3),in X and a dismissal condition in '
B and executing BRS 72. The address of a dismissa1 condition
must be absolute.

There is normally one running fork in the system, i.e., a fork
which is executing instructions, or will be executing instruc
tions after the currently pending interrupts have been pro
cessed. An active fork (i.e., a PACT entry) which is not
running is said to be dismissed, and is kept track of in one
of two ways. 1.) If it is dismissed with BRS 9, 31, 106
or 109 (see Section 3) it is said to be in limbo and is pointed
to only by the PFORK,PDOWN and PPAR of the neighboring forks
in the fork structure. 2.) If it has been dismissed for
any other reason, it is on one of the schedule queues. There
are four queues of dismissed programs. In order, they are:

QTI Programs dismissed for teletype input or disc VO
QIO Programs dismissed for teletype output
QSQ Programs dismissed for exceeding their short

quantum
QQE Programs dismissed for exceeding their long quantum.

Programs within the queues are chained together in PNEXT and
PNEXT for the last program in each queue' points to the begin
ning of the next queue.

Whenever it is time to activate a new program, the old program
is put on the end of the appropriate queue. The scheduler
then begins at QTI and scans through the queue structure look
ing for a program whose activation condition is satisfied.
When one if found, it is removed from the queue structure
and turned over to the swapper to be read in and run. If
there are no programs which can be activated the scheduler
simply continues scanning the queue structure.

Programs reactivated for various reasons having to do with
forks (interrupts, escapes, panics) are put onto QIO or QTI
with an immediate activation condition. They, therefore,
take priority over all programs dismissed for quantum overflow.

There is a permanent entry on the queues for an entity called
the phantom user. The activation condition for this entry
is a type 4 condition which tests for two possibilities:

a) The cell PUCTR is non-zero,

b) Three seconds have elapsed since the last activation
of the phantom user for this condition.'

2.5

When the phantom user is activated by (b), it runs around
the system checking that everything is functioning properly.
In particular, it checks that the W-buffer has not been wait
ing for an interrupt for an unusual length of time, and that
all teletype output is proceeding normally.

If the phantom user is activated by (a), it runs down the
phantom user queue looking ·for things to do. A pharitom·user
queue entry is displayed at the end of this section. Itis
essentially a very abbreviated PAC table entry. Such an
entry is made when the system has some activity which it wants
to carry out more or less independently of any user PAC table
entry, tests for tape ready (rewind) and card-reader ready,
and processing of escapes (an interrupt routine kind of ac
tivity, but too time-consuming). The second word of the en
try is the activation condition. PUCTR contains the number
of entries on the phantom user queue.

2.6

PAC TABLE - ONE PER FORK

PNEXT Next queue or next program is queue
<O~>next program >O=7:-:>next _queue
U 3 tl ' 10 23'

PL 0 0 file # of O. . Saved (P)
M V subr .. file

PA Saved (A)

RLI First pseudo-relabeling register

RL2 Second pseudo-relabeling register

0 11 12 23
PPTR PDO\l.lN PFORK or chain

for free entries
3 8 10 23

PTEST 0 activation 0 test word addr., or ~nt.
condition #, or status of dead fork

E 3 H 9 11 12 23
PQU E X 0 QR . QUTAB PPAR.

X, B
E 10 23

PTAB L x· T Job No. 0 Panic Table Address

PIM

r4 1 S
\

! 4 6 9 12 lLl 15 18 23
fJI : T N 0 IEr1 0 XPB TO I T: p. T 1 2 3 _4 5 6_1 8 9 10 11

UM= User Mode (1)
ov= Overflow

IEM(ll)= Interrupt on disc
errors

.QUTAB- addr. for short quantum
EX=System status
QR= Amount of lone quantum left
IEM= Interrupt Enabled Mask
LM= Local Memory
MT= Add no memory
EXB= Exec BRS fork
TP= Termination Pendine
NT= Non-Terminability
TO= Time Out interrupt armed

IEM(1-4)= System interrupts
XPB= Index to PB in TS

Block
EXl= Subsystem status
TS= TS block ass1gned

PUCT
FPULST
PUBPTR

PUCTR
PUEPTR

2.7

PHANTOM USER QUEUE ENTRY - TYMSHARE

Pointer to next entry

0 Test number Routine address

Data for routine

Data for routine TTY No.

0 2 3

- Phantom user queue.
- First free entry in PU queue.
- Po~nter to first active entry. Last entry

points to PUBPTR.
- Number of PU entries.
- Last PU entry.

PUCTRl - Entry counter ·during PU processing.
PUCPTR - Pointer to active entry during PU processing.
PUPAe - PACPTR of entry being processed by PU.

3.1

3.0 FORKS AND JOBS

3.1 Creation of Forks

A fork may create new, dependent, entries in the PAC
table by executing BRS 9. This BRS takes its argument
in the A register, which contains the address of a panic
table, a seven-'word table with the following format:

o Program counter
1 A register
2 B register
3 X register
4 First relabeling register
5 Second relabeling register
6 Status '

The status word may be:

-2 Dismissed for Input/Output
-1 Running

0 Dismissed on escape or BRS 10
1 Dismissed on illegal instruction
2 Dismissed on memory panic

panic

The panic table address must not be the same for two
dependent forks of the same fork, or overlap a page
boundary. If it is, BRS 9 is illegal. The first six
bits of the A register have the following significance~

o Give fork system status if current fork has
system status.

1 Set fork relabeling from panic table. Otherwise
use current relabeling.

2 Propogate escape assignment to fork (see BRS 90).
3 Make fork fixed memory. It is not allowed to

obtain any more memory than it is started with.
4 Make fork local memory. New memory will be

assigned to it independently of the controlling
fork.

S Give fork subsystem status if current fork has~
subsystem status.

When BRS 9 is executed, a new entry in the PAC table
is created. This new fork is said to be a fork of the
fork creating it, which is called the controlling fork.
The fork is said to be lower in the hierarchy of forks
than the controlling fork. The latter may inself be

3.2

a fork of some still higher fork. A job may have, at
most, eight forks including the exec. The, A, B and X
registers for the fork are set up from the current con
tents of the panic table. The address at which execution
of the fork is to be started is also taken from the
panic table. The relabeling registers are set up either
from the current contents of the panic table or'from
the relabeling registers of the currently running fork.
An executive fork may change the relabeling as it pleases.:
A user fork is restricted to changing relabeling in the
manner permitted by BRS 44. The status word is set to
-1 by BRS 9.A fork number is assigned which is kept
in PIM. This number is an index to the fork parameters
kept in the TS block.

The fork structure is kept track of by pointers in PACT.
For each fork PFORK points to the controlling fork,'
PDOWN to one of the subsidiary forks, and PPAR to a forlt
on the ~ame level. All the subsidiary forks of a single
fork are chained in a list. A complex situation is shown
at the end of this section'entitled "Fork Structure".
The arrows indicate the various pointers.

If the fork executing a BRS 9 is a user fork, it is dis
missed until the lower fork terminates. If it has sys
tem or subsystem status, it continues execution at the
instruction after the BRS 9. The fork established by ,
the BRS 9 begins execution at the location specified
in the panic table and continues independently until
it is terminated by a panic as described below. It is
connected to its controlling fork in the followi~g three
ways:

1) The 'controlling fork may examine its state and con
trol its operation with the following six instruc
tions:

BRS 30

BRS 31

reads the current status of a lower fork
into the panic table. It does not influ
ence the operation of the fork in any'way.

causes the controiling fork to be dismissed
until the lower fork causes a panic. When:
it does, the controlling fork is reactivated
at the instruction following the BRS3l,.,
and the panic table contains the status
of the fork on its dismissal. The status '
is also put in X.

BRS, 32

3.3

causes a lower fork to be unconditionally
terminated and its. status to be read 'into
the panic table.

All of these instructions require the lanic table
address of the fork in A'~ They are i1 egal if this
address is not that of a panic table for some fork.

BRS 31 and BRS 32 return the status word in the
X register, as well as leaving it in the panic
table. This makes it convenient to do an indexed
jump with the contents of the status word. BRS
31 'Treturns the panic tabl,e address in A.

BRS 106 causes the controlling fork to be dismissed
until any subsidiary fork causes a panic.
When it does, the controlling fork is re
activated at the'following instruction
wit~ the panic table address inA, and
the panic table contains the status of
the fork at its dismissal.

BRS 107 causes BRS 30 to be executed for all sub
sidia~y forks.

BRS 108 causes BRS 32 to be executed for all sub
sidiary forks.

2) If interrupt 3 is armed in the controlling fork,
the termination of any subsidiary fork will cause
that interrupt to occur. The interrupt takes prece
dence over a BRS 31. If the interrupt oc'curs and
control is returned to a BRS 31 after processing
the interrupt, the fork will be dismissed until
the subsidiary fork specified by the restored (A)
terminates.

3) The forks can share memory. The creating fork
can, as already indicated, set the memory of the
subsidiary fork when the latter is started. In
addition, there is some interaction when the sub
sidiary fork attempts to acquire memory.

3.2 Memory Acquisition

If the fork addresses a block of memory which is not
assigned to it, the following action is taken: A check
is made to determine whether the machine size specified
by the user has been exceeded. If so, a memory panic'

3.4

is generated. If the fork is fixed memory, a memory
panic is also generated. Otherwise, a new block is
assigned to the fork so that the illegal address becomes
legal. For a local memory fork, a new block is always.
assigned. Otherwise, the follewi!lga~gorithm is used.

The number,' n, of the relabeling byte for the· block
addressed by the instruction causing the memory trap
is determined. A scan'is made upwards through the fork
structure to (and including) the first local memory
fork. If all the forks encountered during this scan.
have Rn (the Nth relabeling byte) equal to 0, a new
entry is created in PMT for a new block of user memory.
The address of this entrY.iS put into Rn for all the
forks encountered during the scan.

If a.fork with non-zero Rn is encountered, its Rn is'
propogated downward to all the forks between it and the
fork' causing the trap. If any fixed memory fork is
encountered before a non-zero Rn is found, a memory
panic occurs. .

This arrangement permits a fork to be started with less
memory than its controlling fork in order to minimize
the amount of swapping required during its execution.
If the fork later proves to require more memory, .it .
can be reassigned the memory of the controlling fork
in a natural way. It is, of course, possible' to use
this machinery in other ways, for instance to permit
the user to acquire more than 16K of memory and to run
different forks 'with non-overlapping or almost non-
overlapping memory. .

3.3 Panic Conditions

The three kinds of panic conditions which may cause
a fork to be terminated are listed in the description I

of the statu~ word above. When any of these conditions
occur, the PACT entry for the fork being terminated is
returned to the free program list. The status of the
fork is read into its panic table in the controlling
fork. If the fork being terminated has a subsidiary .
fork, it too is terminated. This process will, ofcQurse,
cause the termination of all the lower forks in the
hierarchy.

The panic which returns a status word of zero is called
a fork panic and may be caused by either of two conditions:

A) The escape button on the controlling teletype is

3.5

pushed or an off interrupt occurred. This termin
ates some fork with a fork panic. A fork may
declare that it is the one to be terminated by
excuting BRS 90. In the absence of such a declara
tion, the highest user fork is terminated. When
a fork is terminated in this way its controlling
fork becomes the one to be terminated. If a user
fork is terminated by escape, the teletype input
buffer is cleared. If the controlling fork of the
one terminated is executive, the output buffer is
also clear.ed.

If the fork which should be terminated by escape
has armed interrupt 1, this interrupt will occur
instead of termination. The teletype buffers will
not be affected. If there is only one fork active,
control goes to the location EXECP. in the executive.
This consideration is of no concern to the user.
System status programs can turn the escape button
off with BRS 46 and turn it back on with BRS 47.
An escape occurring in the meantime will be stacked.
A second one will be ignored. A program which is
running with escape turned off is said to be non
terminable and cannot be terminated by a higher
fork. BRS 26 skips if there is an escape pending.

If two escapes occur within about .12 seconds, the
entire fork structure will be cleared and the job
left executing the top level. executive fork. This
device permits a user trapped in a malfunctioning
lower fork to escape. Closely spaced escapes can
be conveniently generated with the repeat button
on the teletype. This type of escape will cause
a user to lose memory, and should be followed by
a RESET. An off interrupt from the teletype is
treated like a high-speed escape.

B) A BRS 10 may be executed in the lower fork. This
condition can be distinguished from a panic caused
by the escape button only by the fact that in the
former case, the program counter in the panic table
points to a word containing BRS 10.

As an extension of this machinery, there is one
way in which several forks may be terminated at
once by a lower fork. This may be done by BRS
73, which provides a count in the A register.
A scan is made upward through the fork structure,
decrementing this count by one each time a fork

3.6

is passed. When the count,' goes' to 0, the scan is
terminated and all forks passed by are terminated.
If an executive program is reached before the count
is 0, then all the' user programs below it are ter
minated.

The panic which returns a status word of 1 is caused
by the execution of an illegal instruction' in the
fork. Ill~gal instructions are of two kinds:

1) Machine instructions which are privileged.
2) SYSPOPs which are forbidden to the user or which

have been provided with unacceptable a~guments.

A status word of 2 is returned by a memory panic.
This may be caused by an attempt to address more
memory than iS'permitted by the machine size which
the user has set, or by an attempt to store into
a read-only page. If interrupt 2 is armed, it will,
occur instead of the memory panic.

3.4 Jobs

. Every complete fork structure is associated with a job,
which is the fundamental entity thought of as a user
of the system, from the system's own point of view.
The job number appears in the PAC table entry for every
fork in the job's fork structure. In addition there
are several tables indexed by job number. These are
displayed at the end of this section entitled "JOB
TABLES" and indicate more or less what it is that is
specifically aS$ociatedwith each job.

FORK STRUCTURE

1

1) 0 ~UP
.f-o--

.. DOWN 2

a ACROSS

J~

,~ l' 1'\ l' ---
4) 5)

,

1 1 1 2)

!
3 0 6 --

I
.... -

4 ~ 5 0 ", .-7
..

I~ I~

~

~ ." ~ , I
2 7) 2 6) 5 1

i
~--.~

3)

0 8 , ~.
7 '- 0

I iI' I 0 ,

I~

8) 7
.~.--.-

0

0

Hierarchy of Processes

3. 8

JOB TABLES

PMTP' 0 start of'job's PMT
23 I 0 91 10

-----------------~-----------------------------------~

3 8 9 11 12 17 fa-
PHA 0 1'1 0 blocks 0 blocks length

P left used of PMT

3 6 3 6 6

RL3 [. ___ 0 _____

1

._

1

_1&.-1_2_0_

TTNO Teletype associated with this
job I °1~IOI

012 3

ETTB amount of CPU time used

NP = don't charge memory against machine size.

DB = d~sc busy bit lor BRS BE+1,2

23

o I TTY NO.1
17 1823

4.1

4.0 PROGRAM INTERRUPTS

A facility is provided in the monitor to simulate the
existence of hardware interrupts. There are eleven
possible interrupts;. five are reserved for special pur- '
poses and six are available to the programmer for general
use. A fork may arm the interrupts by executing BRS
18 with an II-bit mask in the A register. This causes
the appropriate bits in PIM to be set or cleared ac
cording to whether the corresponding bit in the mask
is 1 or O. Bit 4 of A corresponds to interrupt numberl,
etc. No other action is taken at this time. When an
interrupt occurs (in a manner to be described) the exe
cution of an SBRM* to location 200 plus interrupt number
is simulated in the fork which armed the interrupt.
Note that the program, counter which is stored in this
case is the location of the instruction being executed
by the fork which is interrupted, not the location in
the fork which causes the interrupt. The proper return
from an interrupt is a BRU to the location from which
the interrupt occurred. This will do the right thing
in all cases including interrupts out of input-output
instructions.

A fork may generate an interrupt by executing BRS 19
with the number of the desired interrupt in the A
register. This number may not be one, two, three, four,
or eleven. The effect is that the fork structure is
scanned, starting with the forks parallel to the one
causing the interrupt and proceeding to those above it
in the heirarc!lY (i.e., to its ancestors). The first
fork encountered during this scan with the appropriate
interrupt ma~k bit set ~s interrupted. Execution of
the program in the fork causing the interrupt continues
without disturbance. If no interruptable fork is found,
the interrupt instruction is treated as a NOP. Other
wise, it skips on return.

Interrupts 1 and 2 are handled in a special way. If
a fork arms interrupt 1, a program panic (BRS 10 or
escape key) which would normally terminate the fork which
has armed interrupt 1, will instead cause interrupt 1
to occur, that is; will cause the execution of an SBRM*
to location 2018. This permits the programmer to control
the action taken when the escape key is pushed without
establj ~:1n~ a fork specifically for this purpose. If'
depressln~ tt~~ escape key causes an interrupt to occur
rather than terminatin~ a fork, the'input buffer will
not be cleared.

4.2

If a memory panic occurs in a fork which has armed interrupt
2, it will cause interrupt 2 to occur rather than terminating
the fork. If an illegal instruction panic occurs in a system
status fork which has armed interrupt 2, it will cause inter
rupt 2 to occur rather than terminating the fork.

Interrupt 3 is caused, if armed, when any lower fork terminates.
Interrupt 4 is caused, if armed, when any input-output con
dition occurs which sets a flag bit (end of record, end of
file and error conditions can do this).

Interrupt 11 is caused, if armed, if a disc error is encoun
tered during a BRS BE+l or BRS BE+2. These BRS's require
system status. Consequently, interrupt 11 has no meani~g
for user of subsystem forks.

Whenever any interrupt occurs, the corresponding bit in the
interrupt mask is cleared and must be reset explicitly if
it is desired to keep the interrupt on. Note that there is
no restriction on the number of forks which may have an in.;..
terrupt on.

A fork may be interrupted after a specified period of time
by using BRS BE+12. It takes the interrupt mask in A, the
time in msec in B and the interrupt number in X. If the
specified interrupt is armed when the time is up, the fork
will be interrupted. .

To read the interrupt mask into A, the pr~gram may execute
BRS 49.

5.1

5.0 THE SWAPPER, MEMORY ALLOCATION AND RAD ORGANIZATION

Because of the necessity in various parts of the system for
relabeling registers which do not change with time, the user
has been'denied any access to ordinary relabeling. In place,
he is given access to so-called pseudo-relabeling. His pseudo- '
relabeling registers consist, as do the ordinary relabeling
registers of eight six-bit bytes. Each one of these bytes
points, however, not to a real page of memory, but to an entry
in the user's pseudo-memory table, PMT. This table may con
tain up to 64 words, each one specifying a certain 2K block
of memory, herein referred to as a page. The first version
of the system, however, will allow access to only 15 words.
These words are numbered from 61 to 77 octal. The TS block
is also in the PMT and is numbered 60. However, it is not
accessible to the user. The possible forms of an entry in
the pseudo-memory table are shown at the end of this section
entitled "PMT Entries". All of the entries are more or less
self-explanatory, except the second, which will be discussed
in considerable detail later.

Since relabeling consists of eight six-bit bytes it is kept
in two words or in the A and B'registers. The relabeling may
be thought of in the following way ----/----. Each dash repre
sents one -of the user's pages beginning with page O. There
fore, addresses in the page represented by the first dash are
from 0 to 3777. When a fork has memory, then the dash is re
placed by the appropriate pseudo-relabeling byte as follows:
61---/----. In this case the fork has one page (page 0) in
its memory. The PMT entry is number 61. If the user wants
to see PMT entry 61 as page 6 instead of page 0, he can set
his relabeling to ----/--61-. Relabeling can be changed with
a BRS 44 or in DDT by typing the correct relabeling as follows:
0,6l00;R for putting PMT entry 61 into page 6. To see program '
relabeling while in the exec, the STATUS command is available.

When it is necessary to activate a user, his pseudo-relabeling
registers are used to read out the proper bytes from PMT and
construct a list of pages which need to be read in from the
RAD. When this list has been constructed, the current state
of core is examined to determine whether any pages need to
be written out to make room for those which must be read in.
If so, a list of pages to be written out is constructed. The
RAD command list is then set up with the appropriate commands
to write out and read in the necessary pages. In the scan
which sets up the RAD read commands, the swapper collects from
PMT or SMT, the actual absolute memory addresses of the page

5.2

called for by the pseudo-relabeling and constructs a set of
real relabeling registers which it puts in two fixed locations
in the monitor (RRLI and RRL2). It then outputs these relabel
ing registers to the hardware and activates the program.

Matters are slightly complicated by the existence of a system
parameter called NCMEM. In this system NCME'M is equal to 60.
Pseudo-relabeling bytes with values from 1 to NCMEM-l (0 means
an unassigned page) actually refer directly to the first NCMEM-l
pages of'SMT, the shared memory table and the user's own PMT
is addressed beginning at NCMEM. The "common" portion,of'SMT
is used to hold the most common subsystems.

There are two BRS's which permit the user to read and write
his pseudo-relabeling. BRS 43 reads the current pseudo-relab
eling registers into A and B. BRS 44 takes the contents of
A and B and puts them into the current pseudo-relabeling regis
terse An executive program may set the relabeling registers
in arbitrary fashion by using this instruction. A user prog
ram, however, may add or delete only pages which do not have
the executive bit set in PMT. This prevents the user from
gaining access to executive pages whose destruction may cause
damage to the system. Note that the user is doubly restricted
in his access to real memory, firstly because he can only ac
cess real memory which is pointed to by his pseudo-relabeling
and secondly, because he is only allowed to adjust those por
tions of his pseudo-relabeling which are not executive type.

The user can also set the relabeling of a fork when he creates
it. See section 3. The same restrictions on manipulation
of executive pages of course apply.

The system maintains a pair of relabeling registers which the
executive and various subsystems think of as the user's prog
ram relabeling. For the convenience of subsystems, an execu
tive program can read these registers with BRS 116 and set
them with BRS 117.

The memory allocati()n algorithm is described in section 3. 'A
user can release a page which is in his current relabeling by
putting any address in that page into A and executing BRS 4. I

The PMT entry for tte page is removed and in any other fork
which has the PMT byte in its relabeling,the byte is cleared to O.

Equivalent to BRS 4 is BRS 121, which takes a pseudo-relabeling
byte in A rather thc.n an address. An inverse operation is
BRS 120, which take~ a pseudo-relabeling byte in A, generates
an illegal instruct jon trap if the corresponding PMT entry
is occupied, and ott.erwise obtains a new page and puts it in
that entry. This i~ an exec-only operation, of course.

5.3

A word of PMT whose first three bits are 001 conta1ns a pointer
to the shared memory table, SMT. An entry in SMT looks exactly
like an unused or private entry in PMT. It refers to a page
of memory which has a fixed location on the RAD and may be
referred to by more than one program.

By putting an index in SMT in A and executing BRS 69, a pointer
to the specified location in SMT is put into the first free
byte of a user's PMT and the byte number is returned in A.

The user may declare a page read-only by executing BRS 80 with
the pseudo-relabeling byte number of the page in A and with
bit 0 of A set. To make a page read-write, bit a of A should,
be clear. Bit a of A will be reset if the page was formerly,
read-write or set if it was formerly read-only. If the program
doing this is not an executive program, then the page must
not be an executive page. Only an executive program can make
a read-only PMT entry which points to SMT into a read-write
entry, for obvious reasons. The significance of a read-only
page to the' swapper, of course, is'that it need not be rewritten
on the RAD when it is removed from memory.

A RAD is divided into blocks of 32K. Each user is assigned a
block depending on his job number. The first page in each
block is always the user's TS page. Each block' of 32K consists
of eight bands with two pages per band. The list of swapping
commands alternates pages'whenever possible to minimize swap
time. A bit map is kept in the TS page which maps the user's
32K. When the user requires more memory the free page nearest
the beginning of his block is taken. The first several blocks
on the first RAD contain the subsystems, exec and swapable
monitor pages.

It should be noted that whenever a user is reactivated, all
of the memory in his current relabeling registers is brought
in. The user does, however, have considerable control' over
precisely what memory will be brought in, because he can read
and set his own relabeling registers. He may, therefore, es~
tablish a fork with a minimal amount of memory in order to
speed up the swapping process if this is convenient.

To make a page executive, execute BRS 56 with the same argu~
ment as for BRS 80, make page read-only. This instr~ction
is legal only for executive type pr~grams.

The system keeps track of the state of real core with two tables
called the real memory table (RMT) and the real memory use
count table (RMC). An RMC entry is -1 if a page is not in use;
otherwise it is one less than the number of reasons why it is
in use. Every occurence of this page in the relabeling of
a process which is running or about to be run counts as such
a reason. In addition, other parts of the system can increment
an RMC word to lock a page in core. No page with non-negative
RMC can be released by the swapper.

5.4,

The format of an RMT entry (one per real page) is:

U 2 9 10 23
s R 0 0 address of PMT or SMT entry
E 0 resQonsible

USE = in use RO = read only

There is one more table indexed by real memory, called
the real memory ag~ng table. Whenever the swapper is
entered) every word in this table is shifted right one
bit. All pages which show up in the real relabeling
computed from the pseudo-relabeling with which the swap
per was entered then have bit 1 turned on. The pages
with lowest RMA are selected for swapping out; of course,
their RMC entries must be negative.

The swapper also contains a device called the simulated
associative memory or SAM, which contains pseudo-relabel
ing and real relabeling for the most recently used maps.
It serves to reduc e the amount of time needed for map···
changing when little swapping is taking place. It is
cleared whenever a RAD read takes place, since this
changes the contents of real memory and potentially in
validates all real relabeling registers.

Two BRS's exist for reading and writing pages at specl~
fied places on the RAD. They are of course restricted
to executive programs. To read a page, put the RAD ad-,
dress into B and the core address in A and execute BRS
104. To write a page use DRS 105. RAD errors cause
these instructions to generate illegal instruction panics.

PMT ENTRIES

Unused I
0

lolo\sl Shared
Entry

0 1 3 9 10 12

L IRAD Private Addr.
Entry

0 1 23 8

SMT ENTRY

R E No. of RAD Addr.
D X Users

0 1 2

RD = On RAD
EX = Exec
S = Shared
RO = Read Only

7 8

5.5

0

23

SMT No.

23

181
Page No.

17 "18 23

R Page No.
0

17 18 23

6.l

6.0 MISCELLANEOUS FEATURES

A user may dismiss his fork for a specified length of real
time by executing BRS 81 with the number of milliseconds for
which he wishes to be dismissed in A. At the first available
opportunity after this time has been exhausted, his fork will'
be reactivated. The contents of A are lost by this BRS.

He can read the real-time clock into A and the system start
up date and time into'B by executing BRS 42. The number ob
tained increments by one every 1/60th 6f a second. Its abso
lute magnitude is not significant. An exec fork can read the"
elapsed time counter for the user into A by executing BRS 88.
This number is set to 0 when he enters the system and incre
ments by 1 at every 1/60th second clock.interrupt at wbich
his fork is running.

To obtain the date and time, he can execute BRS 91. This puts
string pointers into the A and B registers. The string con
tains in order, the month/day, hour (0-23) :minute at which
the instruction is executed.

A user may dismiss a fork until an interrupt occurs or the
fork in question is terminated by executing BRS 109.

A fork can test whether it is executive or not by execriting
BRS 71. The type of executivity is returned in B. If B equals
1, the fork is subsystem. If B equals 0, the fork is user.
If B equals -1, the fork is system and subsystem. If B equals
-2, the fork is system. If B is negative, the BRS skips on
return. '

An executive fork can dismiss itself explicitly. See section
2.

There are two operations designed for so-called executive BRS's
which operate in user mode with a map different from the one
they are called from. BRS 111 returns from one of these BRS's
transmitting A, B and X to the calling fork as it finds them.
BRS 122 simulates the addressing of memory at the location
specified in A. If new memory is assigned, it is put into
the relabeling of the calling fork. A memory panic can occur,
in which case, it appears to the calling fork that it comes
from the BRS instruction.

An executive fork can cause an instruction to be executed in
system mode by addressing it with EXS.

6.2

There are switches in the monitor which can be set by
an exec fork with a BRS BE+13. It takes the new switch
value in A and the switch number in X. It returns the·
old switch value in A.

An absolute location in the monitor relabeling can be
read or changed by an exec fork with BRS BE+4. The ab
solute location is in X, the new value, if any, inA.
The BRS reads if B is positive and changes the word if
B is negative.

An exec fork can also force a new page to be read from
the RAD w~th BRS BE+15. It takes an SMT pointer in A.

An exec fork can test the state of any breakpoint switch
with BRS BE+7. The switch number is in X. The BRS skips
if the switch is set down.

An exec fork can crash the system with BRS BE+8.

7.1

7.0 TELETYPE INPUT-OUTPUT

We begin with an outline of the implementation of the teletype
operations. This should serve to clarify the exact disposal
of the characters which are being read' and written. Every
teletype has attached to it a table which is shown at the end
of this section entitled "Teletype Table ll

• Also associated
with the teletype is a buffer which contains input and output
characters in the following format: '

0 7 8 15 16 23
input character output character character to echo

(if any)

As characters are output by the program, they are added to
the output buffer, which may be regarded as logically indepen
dent from the input buffer in spite of the fact that it resides
in the same words. The characters are then output by the
teletype interrupt routine as rapidly as the teletype will
accept them. The characters in the output and echo buffers
are in true ASCII instead of trimmed ASCII.

These buffers are called character ring buffers (CRB's) and
they are not necessarily associated with teletypes.

When a character is typed in on a teletype, it is convert~d
to internal form and added to the input buffer unless it is
escape on a controlling teletype. The treatment of escapes
is discussed in section 3. The echo table address is then
obtained from TTYTBL. The echo table determines what to echo
and whether or not the character is a break character. The
available choices of echoes and break characters are discussed
later in this section. If the character is a break character,
and if a user's program has been dismissed for teletype input"
it will be reactivated regardless of the number of words in
the input buffer. In the absence of a break character, the'
user's program is reactivated only when the input buffer is
nearly full.

If the teletype is in the process of outputting (TOS2>-l)then
the character to be echoed is put into the last byte of the
buffer word which contains the input character. When the char
acter is read from the buffer by the program, the echo, if
any, will be generated. This mechanism, called deferred echo
ing, permits the user to type in while the teletype is out
putting without having his input mixed with the teletype out
put.

7 .. 2

There are four standard echo tables in the system, re
ferred to by the .numbers 0, 1, 2 and 3. Zero is a table
in which the echo for each character is the character
itself, and all characters are break characters. Table
I has the same echos~ but all characters except letters,
digits and space are break characters. Table 2 again
has the same echos, but the only break characters are
control characters (including carria~e return and line
feed) and exclamation mark. Table 3 specifies no echo
for any character, and all characters are break charac
ters. This table is useful for a program which wishes·
to compute the echo itself.

Normally a carriage return and line feed are both echoed
if either is received from a teletype. However, only
the first one received is sent to the program and if
the other one 1s also received it is ignored. A program
may~ however, receive both by issuing BRS BE+ll. If
A is negative, both characters .will be ~ent to the prog
ram. If A is positive, only the first character will
be sent to the program.

If either line feed or carriage return 1s output by a
program both are sent to the teletype unless the carriage
is at the left margin. In this case, only a line feed
is output for either a carriage return or a line feed.
If a program wishes to send only one character, it should
output 102B for line feed or 105B for carriage return.

To set the echo table, put the teletype number) or -1,
in X and the echo table number in A and execute BRS 12.
Note that BRS 12 is also used to turn on 8-level mode
(see below). To read the echo table number into A,' put
the teletype number, or -1, in X and execute BRS 40.
This op~ration returns the echo table number in A. If.
the teletype is in 8-level input mode, the sign bit of
A is set and the terminal character is in A.

To input a character from the controlling teletype (the
teletype on which the user of the pro~ram is entered)
into location M in memory the SYSPOP

'reI (teletype character input)

is ut;ed. rrhis SYSPOP [-eads the char::1 c t:''\y' from the tele
type input buffer and places it into t !lC 8 rightmost
bi ts of locntion M. rrhe remaind(~T' of location 1\1 is
cleared. The character is also placed in the A register,
whose former contents are destr(1:/1.<1.

1.3

The contents of the other internal registers are preserved
by this and all the other teletype SYSPOPS and BRS's.

To output a character from location M, the SYSPOP

Teo M (teletype character output)

is used. This instruction outputs a character from the
rightmost eight bits of location M. In addition to the
ordinary ASCII characters, all teletype output (other
than a-level) operations will accept 135 (octal) asa
multiple blank character. The next character will be
taken as a blank count, and that many blanks will be
typed ..

The TTYTIM cell in the teletype table is set to the
current value of the clock whenever any teletype ac
tivity (interrupt or output SYSPOP) occurs. The top
bit is left clear unless the activity is an escape in
put. This cell is checked by the escape processor to
determine whether the escape should reset the job to
the system exec. (See section 3J

Every teletype in the system is at all times in one of
tNO states:

a) It may be the controllihg teletype of some user's
program. It gets into this state when a user
logs in on it. Controlling teletypes are also
known as attached teletypes.

b) It may be completely free.

The status of the teletype is reflected by the contents
of TTYASG. If the teletype is free, TTYASG contains
3777B. If it is a controlling teletype, TTYASG contains
the PACPTR of the fork to terminate on escape.

A teletype becomes a controlling teletype when an lion" .
interrupt (from that line) is received by the computer.
This indicates that someone has called that line. The
user then has one and a-half minutes to lo~ in before
the system hangs up the line again.. The system checks
for carrier preRence on a line before sendin~ out any
characters. To do this a system fork may issue BRS BE+3
with the line number to check in A.

The user may disconnect the line by hanging up the phone.
BRS 112 is executed when an "off'; interrupt is received

7.4

by the system or when a user logs out. If an "off" interrupt
has been received, BRS 112 merely makes the line available
again. However, if a user has logged out without hanging up
the phone, BRS 112 makes the teletype the controlling teletype
for another job immediately and the next user may log in with
out dialing the system again. BRS 112 takes the job number
associated with the teletype in X. A job may terminate itself.
This operation also requires all teletypes attached to the
job. BRS 112 requires system status.

An exec fork can turn a line on or off by issuing BRS BE+6.
It takes the line number in A and turns it on if B is negative
and off if B is positive.

The user has considerable control over the state of the tele
type buffers for the controlling teletype. In particular,
he may execute the following BRS's. All these take the tele
type number in X. Recall that -1 may be used for the control
ling teletype.

BRS 11 clears the teletype input buffer.
BRS 29 clears the teletype output buffer.
BRS 13 skips if the teletype input buffer is empty.
BRS 14 waits until the teletype output buffer is empty,

and the interrupt has been received for the
last character.

Special provision is made for reading 8-bit codes from the
teletype without sensing escape or doing the conversion from
ASCII to internal (trimmed ASCII) which is done by TCI. To
switch a teletype into this mode, execute

LDX = teletype number
LDA = terminal character + 40000000B
BRS 12

This will cause each 8-bit character read from the teletype
to be transmitted unchanged to the user's program. The tele~
type can be returned to normal operation by

1) reading tt.e terminal character specif ied in A,

or

2) setting tt,e echo table with BRS 12.

No echoes are generated while the teletype is in 8-level mode.
Teletype output is r..ot affected.

A parallel operatior.., BRS 85, is provided for 8-level output.
BRS 86 returns matters to the normal state, as does any setting
of the echo table. If a fork is using 8-level output, it should
be sure all characters have been sent out (BRS 14) before

7.5

releasing control to a higher level fork which can reset the
'echo table.

To simulate teletype input, the operation

STI =teletype number or =-1

is available. STI puts the character in A into the input
buffer of the specified teletype. Either the teletype number
must be the controlling teletype or the fork issuing STI must
be a system fork.'

TIS2

TIS4

TIS5

TOS2

TOS3

TOS4

TOSS

TTYTBL

TTYFLG

TTYBRK

TTYASG

TTYTIM

7.6

TELETYPE TABLE

number of characters in input buffer

next available space in input buffer (pointer) used
by interrupt routine.

next filled space in input buffer (pointer)

number of characters in output buffer; -1 = inactive

<0 = not in mUltiple blank mode; 400 = just saw
135 (multiple blank character); other = number of
blanks

next filled space in output buffer (pointer) ,used
by interrupt routine

next available space in output buffer

6 7 10 23
N 0 0 S S 0 0 0 0 1 address of echo table
S I 0 or terminal character

for 8-1eve1 input
0 1 2 3 4 5

don't listen for input (except escape) when O.
Set when input buffer is full.

waiting for break character when 37777777B. Fork
is activated when TTYBRK '<real

TTY Status
'--:::::P'"="A-=C=-=P~T=-=R:---o--:f=--f=-o-r--:k:--t":""'"o--=-t-e-rm--:"i-n-a-:"t-e-e-s-c-a-p-e-tl ,:,-cti v~

3 7 7 7 7 _ ~nact~ve

E Value of clock when ast act~on
S occurred on this TTY

NS=not a-level
SI=8-1evel input
SO=8-1evel output
ES=last action was input of escape

8.0 DISC AND BUFFER ORGANIZATION; DEVICES

8.1 File Storage on the Disc \

8.1

The disc used by this system actually consists of from
eight to 82 physical discs each with a moveable arm.
The arms have 64 positions numbered 0 to 63. Each arm
position on each disc consists of 8192 words. However,
the files use the disc in groups of 256 words. Thus,
disc addresses for file blocks are always M9D 4.

The disc is divided into two major sections, system data
and file storage (see disc map at end of this section
for disc layout). The organization of the system data
area is discussed later in this section. The file stor
age area is divided into 256 word blocks which form the
physical records for stor~ge of files.

Every file has one or more index blocks which contain
pointers to the data blocks for the file. An index
block is a 256 word block, as are all other physical
blocks in the file storage area. Only the first 128
words of the index block are used. Two of the words
are used to chain the index blocks for any particular
file, both forward and backward. The index blocks for
a file contain the addresses (MOD 4) for all the physical
blocks used to hold information for the file. In addi
tion, one word contains a checksum for the index block'
and one word contains the user number.

There are two parts to the disc area reserved for files.
The area at the outer edges of the discs is kept for
less frequently changed files. Files are moved to this
area by a special non-timesharing routine. The center
area is for active files and is controlled by a bit table.
If a bit in this table is set, it indicates that the
corresponding block on the disc is free. The bit map
is set every time the system is brought up to agree with
the files in the file directories. To set the bit map,
BRS BE+4 is used. It requires an index block pointer
(MOD 4) in A. When all files have been checked the BRS
is called with a -1 in A, the new overflow pointer in
B, and the accounting area address in X. At this time
the BRS BE+4 turns on the accounting.

8.2 File Buffers

Every open file in the system with the exception of purely
character-oriented files such as the teletype has a file
buffer associated with it. The form of this buffer is
shown at the end of this section entitled "Buffers".

8.2

Part (a) of this figure shows the buffer proper,
and part (b) shows the index block buffer and pointers
associated with it. Part (b) is used only by disc
files, and is present in all cases.

The temporary storage page' which is associated with
each job is always the first entry in the job's
PMT. This page is used to hold information about
the user and for the system's temporary storage
for that user. It also has room for three buffers.
The pseudo-relabeling for the TS page is held in
a table called RL3 which is indexed by job number,
and is p~t into the monitor map whenever any fork
belonging to that job is run. The TS page is al
ways relabeled into the monitor's page 7.

Note that the amount of buffer space actually used
is a function of the device attached to the file.
In all cases, the two pointer words at the head
of the buffer indicate the location of the data.
The first word points to the beginning of the rele
vant data and is incremented as data are read from
an input buffer. The second word points to the
end of the data and is incremented as data are
written into an output buffer. When the buffer
is in a dormant state, both words point to' the first
word of the buffer. Whenever any physical I/O oper
ation is completed, the first pointer contains the
address of this word.

8.3 Devices

Every different kind of input-output device attached
to the syttem has a device number. The numbers
assigned to specific devices are v,iven in section
9. The various tables indexed by device number
are described here. The entries in these tables
addressed by a specific device number together with
the unit number (If any) and the huffer address)
completel.y deftne the file. All thts information
is kept in the file control block (see sectIon 9).
which is addressed by the file number.

The tables indexed by device number are shown at
the end of this section entitled I:Device Tables".
Note the multiplicity of bits which specify the
characteristics of the device. A device may be
common (shared by users, who must not access it
simultaneously· e.g., tape or cards) or not common

8.3

(e.g. disc); this characteristic is defined by NC.
It may have·units; e.g.) there may be multiple
mag tapes. The U bit specifies this. The DIU word
indicates which file is currently monopolizing the
device; in the case of a device with multiple units,
DIU points to a table called ADIU which contains
one word for each unit.

The major parameters of a device are:

the opening routine, which is responsible for
the operation necessary to attach it to a file,

the GPW routine, which performs character and
word I/O,

the BIO routine, which performs block I/O.

The minor parameters are:

maximum legal unit number,

physical record size (determining the proper
setting of buffer pointers and interlace control
words for the channel),

the expected time for an operation~ the swapper
uses this number to decide whether it is worth
while to swap the user out while it is taking
place.

8.4 System Data Kept on the Outer Arm Positions of
the Disc

Arm positions 62 and 63 contain systems which are
loaded by a special routine which is kept on paper
tape. This routine dumps the first, 32K of core
on discs a and 1, then reads a new system into the
first 16K of core. The disc from which the new
system is read is determined by console switch set··
tings.

Arm positions a and 1 contain the file.directories,
accounting informatIon, and mailbox data. These
are explained in the TSS Executive Reference Manual.

'rhere ar'c four BRS' s available to system level
forks to read and write the system data on the disc.
These are BRS BE+l) DRS DE+2, BRS BE+9 and BRS
BE+10. They require the core address in A and the

8.4

disc address in B. In addition BRS BE+l and BRS
BE+2 take the word count in X. BRS BE+9 and BRS
BE+IO always read or write a page (2K) from or to
the disc'.

8.5

BUFFERS

(a) Layout of a File Buffer

pointer to first relevant data word of·buffer
pointer to last relevant data word of buffer

first data word

·
·
·
·
· ·

~
·
·
· 255th data word

(b) Layout of Index Block Buffer and Associated Pointers
for a Disc File

number of the index block in buffer BIN *
BIC index chal!ged flag

number of the data block in buffer BDN *
BDC
BIP

BlA

BBP
BFP

data changed flag
painter to index block entry for current
data block
disc address of current index block

first index. block worn
·
·
·

! - E i3 23
; I •

Oi 0' O! d:lsc address ; I R
1--. -

_____ .. ______ 6_

·
~--------. ----- .. _-=-------------_._----------
121st ind. 'x block Nord
pointer t(I previous ~nd-ex bIock"(orO)

:t?0inter t(1 next index blocl{ (or 0)

L _____ - check word --_. __ .--
User number ._.---_ - - ~-_ """"'- __ 4 __ - , •••• - ~ ~ ... ~~ .. _._

* random files (~ly
**index block word format. EOR=end of record fl~g.

***always 0 for ~,equential files

**

\0

co DEV word or
character I/O
routine

j3UFS
buffer size

BDEV
Blocl{ I/O
routine

DIU
device in user

OPNDEV
opening routine

DEVICE TABLES ...

o 1 2 3 4 5 6 7 8 9 10 23
10 P31 eH I DSC I RXi!iJ IBF I ~!BI OUTI0! GPH routine i

eH _. Char. oriented RX·~ random access ','IB .. - -W-..JBuffer
DSC .~. Disc BF - req.uires buffer CUT·· output

2 3
max. unit
number

- c_eck unit number

8 10 23
physical reccrd Size]

not common (i.e. donlt set DIU)

F0i ________________________ 9 __ 10 ____________ . ______ 2_3-J L ~ BIO -routine

23
~_---f_i~1-e~n-u~m-b_e~r~u~s~i~n~g~t~~h~1~s~d~e~v~i~c~e~o~r~-~l~~---------· tU=~

oints to ADIU (has unit number added) _. ___ ~ U=l

1 page a

40
100

ser
FD

pser
14 ot.. __ ... - ,J-77-

a ser ser
,,500 100

40 FD FD

100

DISC MAP

Arm Positions . ,

.. _~ 1 ~;> ~~

._ .. _--

8.1

A,-----,.--.-,~---, .-,--.

\v-'- ._ ~_1-+_~_ .. ··-u'·-i ~LJ - -""'J'

I

! :
: t

LOC O'ILOC ODisc a
1 (OXXXX)

I ! ~ 1\1----' . I ··t
I :

LOC 1~OC 1 IDiSC 1
i (2XXXX)

..

140 -_._- ~e~-t--:fiv. -- Py .
200' ~ I

. _------,

FD : LaC 2 LOC 2;Dise 2
100 ~ ;(4XXXX)

14.0 _. _. - .. ---VY-- "\;- .--~- _., ... j
i;" Opser ser ! I I
i. 100 00 ' i
\ 4 O~ FD FD I LOC 3 LaC 3:Dise 3

8K~!)1001J' I! '" i (6xxxx)

1
j ; , !

;)~~h~~ ~~ct 1 ; \;- - ~ ,(---; III -'-1'

r FD AD ~ , I LOC 4 LOC 4 Disc 4
: 1" ill ,'. (1 OXXXX)

100f feet 1 i , I I 1
4 f 27:: ! I ~ I

1 gt~-e; \ . Ir. --r'\~ I r---' ~-.. -! '1
401100 './' l f' i' .

,. FD ! I ,I ~ I . '\. I.LOC 5/LOC5j!Dise 5
100!i,' 1./ ;.1 Ii I -1- j fi . ; i(12XXXX)

r
i I! 1 I ,

14g~~~L' -·--.... l:-··t I\rt- -: - -"Vi!-· I ,i---'l
,a200 II"" :. 'I. I

40: 1"D ~cc' tj : ! I I:' ILOC 6i LOC 61Disc 6
100'- . ~ lj I.., I I !.(14XXXX)

4 : i j ! . i : ! j ! I I i

14~~FtD~~ ~·-1-·t :r1 1 ~-·r-·-r-i- ~l:-tl' ·'yr- .; _.r--.. :
ioor re

; e\ J' ; ii' \ i ! 'LOG 1;LOG 7.n6gobo_
! ! : !! ~ ! 177740)'

14 O~OXX 02XX ~4XX\/'~ Y6XX
t
100XX

I

102XXlOllxt-·
I
\;.- '17 2XXl7 4XXl7 6xx

--.. -- -------
I

I
I j ! !

i I

-,._._+. --
I
I

!

9.1

9.0 SEQUENTIAL FILES

9.1 Sequential Disc Files

There are two basically different kinds of files which
the user may write on the disc, sequential and random.
A sequential file has a structure very similar to that
of an ordinary mag-tape file. It consists of a sequence
of logical records of arbitrary length and number.
Disc sequential files are, however, considerably more
flexible than corresponding files on tape, because logi
cal records may be inserted and deleted in arbitrary
positions and increased or decreased in length. Further
more, the file may be instantaneously positioned to any
specified logical record.

A sequential disc file may be opened by the following
sequence of instructions:

LDX = device number, 8 (input) or 9 (output)
LDA Address of first index block
BRS 1

If the file is opened successfully, the BRS skips; other
wise it returns without skipping. Use of this BRSis
restricted to users with system status. User programs
may access disc files only through the executive file
handling machinery, (BRS's 15, 16, 18 and 19). BRS 1
can also be used to open other kinds of files (see
section 9.2).

If BRS 1 fails to skip, it returns in the A register
an indication of the reason:

-3 Bit map not set.

-2 Too ma~y. files open -- no file control blocks
or no buffers available.

-1 device already in use. For the disc, produced
by an attempt to open a file for output twice.

-4 No disc space left. This inhibits opening of
output files only.

BRS 1 returns in the A register a file number for the
file. This file number is the handle which the user
has on the file. He may use it to close the file when
he is done with it by putting it in the A register and
executing BRS 2. This releases the file for other uses.
BRS 2 is available to both user and executive programs.

9.2

To close all his open files the user may execute
BRS 8.

If the sign bit of A is set when the BRS 1 is
executed, the file·is made read-only. This means
that it cannot be switched from input to output.
If this bi t is not set, then: .the instructions:

LDA =file number
LDB =1
BRS 82

will change the file to an output file regardless
of its initial character. The instructions:

LDA =file number
LDB =0
BRS 82

are always le~al and make the file an input file
regardless of its initial character.

Three kinds of input·-output may be done with sequen
tial files. Each of these is specified by one
SYSPOP. Each of these SYSPOP's handles input and
output indifferently, since the file must be speci
fied as an input or an output file when it is opened.
A file that is open for output cannot be opened
again for either input or output and a file that
is open for i~put cannot be opened for output.
However, a file may be opened for input any number
of times.

To input a single character to the A register or
output it from the A register, the instruction:

CIa =file number

is executed. On input an end of record or end
of file condition will set bits 0 and n or bits
o and 7 in the file number (these are called flag
bIts) an~return a l348\Or~1378 character l respec
tively. In interrupt ~ is armed, it will occur.
The end df record condition occurs on the next
input operation after the last character had been
input. The end of file condition occurs on the
next input operation after the end of record, which
signals the last record of the file. The user
may generate an end of record while writing a file
by using the control operation to be described.
An error condition sets bits 0 and 6 in the file
number.

9.3

To input a word to the A register or output it from the
A register,

WIO =file number

is executed. An end of file condition returns a word
of three 1378 characters.

Mixin word and character 0 erations will lead to eculi
ar~t~es and is not recommen ed.

To input a block of words to memory or output them from
memory, the instructions:

LDX =first word address
LDA =number of words
BIO =file number

should be executed. The contents of A, B and X will
be destroyed. The A register "at the end of the operation
contains the first memory location not read into or out
of.

If the operation causes any of the flag bits to be set,
it is terminated at that point and the instruction fails
to skip. If the operation is completed successfully,
it does skip. Note that a BIO cannot set both the EOR
and the EOF bits. BIO's and WIO's can be mixed.

BIO is implemented with considerable efficiency.

The flag bits of the file number are set by the system
whenever end-of-record (0 and 8) or end-of-file (0 and
7) is encountered and cleared on any input-output opera
tion in which neither of these conditions occurs. Bit
o is set on any unusual condition. In the case of a
BIO the A register at the end of the operation indicates
the first memory location not read into or out of. For
any input operation, the end of record bit (bit 8) of
the file number may ~e set. An output operation never~
sets either one of these bits. Bits 0 and 6 of the file
nnmber may be set on" an error condition. "Whenever any
flag bit is set as a result of an input-output operation
in a fork, ini:errupt 4 will occur in that fork if it is
armed. ;

A program may delete all the information in a disc file
that is open c.s an output file by executing the instruc
tions:

LDA =f i~_e number
BRS 66

9.4

The index block for a sequential disc file contains one
word for each physical record in the file. This word
contains the address on the disc of the physical record
in the bottom 21 bits. Bit 2 is set if the physical
record is the last record of a logical record. A sequen
tial file may have only one index block, or a maximum
of 124 X 255 = 31620 words of data.

Putting the file number of a sequential file in A and
executing BRS 113 will cause the file to be scanned to
find the total number of data words. The number of data
words is added to X. This also works for random ·files.

Three operations are available to executive programs
only. They are intended for use by the system' in deali~g
with file names and executive commands.

A new disc file with a new index block can be ,created
by BRS 1 with an index block number of 0 in A. The file
number is returned in A as usual and the index block
number in X. The read-only bit may be set (bit 0 of A)
as usual.

A single word of a sequential file may be directly ad
dressed by specifying the logical record number and
word number within the logical record. All the opera
tions legal for random files (see section 10) can also
be used for sequential files with this convention. The
format of the address is

0 1 2 7 8 23
record number word address

(6 bits) (16 bits)

9.2 Other Sequential Files

In addition to disc sequential files, the user has some
other kinds of sequential files available to him. These
are all opened with the same BRS 1:

LDX =device number
LDA =unit number
BRS 1

Available device numbers are:

paper tape input 1
paper tape output 2
magtape input 4
magtape output 5
card punch Hollerith 6
card punch binary 7
line printer output 11
card input Pollerith 12
card input binary 13

9.5

The device number is put into X. The unit n~mber,
If any, 1s put into A. The file number for the
resulting open file is returned in A. If BRS .1
fails it returns an error condition in A as described
in section g.l.Three error conditions apply to
map.;tape only:

o Tape not ready
1 Tape file protected (output .only)
2 Tape reserved

BRS I is inverted by BRS 110) which takes a file
number in A and returns the corresponding device
number in X and unit number in A'.

These files may also be closed and read or written
in the same manner as sequential disc files. The.
magtape is not available to the user as a physical
device.

CTRL =1 (end of record)

Is available for physical sequential files 2 and
5 (paper tape and magtape output). Several other
controls are also available for magtape files only.
rrhese are:

2 backspace block
3 forward space file
~ backspace file
5 writ~ three inches blank tape
6 r'ewind
7 write end of file
8 erase lon~ gap

These contr~ls may be executed only by executive
type prograns. I/O operations to the magtape may,
of C01 ... p:~e, :)8 executed by user programs if they
have tltt=.:: co :'J"ect f.ile number, and if the user has
peripheral ;tatus.

9.6

An executive program may allocate a tape unit to
itself by putting the unit number 1n A and executing
BRS 118, which skips if the ta~is not already .
attached to some other job. BRS 119 releases a
tape so attached.

It is possible for magtape and card reader files
to set the error bit 1n the file number. The
first I/O instruction after an error condition
~ill read the first word of the next record ~-
the remainder of the record causing the error is
ignored. The magtape routines take the· usual cor
rectiveprocedures when they see hardware error
flags;; and signal errors to the program only as
a last resort.

In order to make the card reader look more like
other files in the system, the following transfor
mations are made by the system on card in~ut:

L) All non-trailing strin~s of more than two
blanks are converted to a 135 character fol
lowed by a character giving the number of
blanks. The teletype output routines will
decode this sequence correctly.

2) Trailing blanks on the card are not transmitted
to the program.

3) The card is not regarded as a logical record.
However, the system generates the character
155a(carriage return) at the end of each card.

The result of all this machinery is that the string
of characters obtained by reading in a card deck
may be output without change to'a teletype and
will result in a correct listing of the deck.

Whenever a card reader error (feed check or validity
check) occurs, the 'program is dismissed until the
reader bcct)rnes not ready.

The EOF light is sensed as an end of fJ.le at all
times.

The phanton user's three second routine checks to
see whet he:.'" a t·.r-buffer interrupt has been pending
for more than ten seconds. If so it takes drastic
and ill-de:,~ined action to clear the W-buffer.
BRS ll~ al:;o takes this drastic action; it can be
used if a program is aware that the W-buffer is
malfunctio) ling.

9.7

9.3 File Control Blocks

Every open file in the system has associated with
it a file control block. This block consists of
four words in the following format:

FILE CONTROL BLOCK 1.85 - TYMSHARE

FA l~~lrst index ~lOCk address or 0 or
JIVI ~ubroutine address or unit number

023

FD
--~ C D H R

RBo °H Jf X D
RIo

Fe

B 1° ! p o.ulo
iT

8 10

device
0

drum buffer address
or 0

J
23

l ____ C_l _____________ C_2 ____ ~~ __ C_3 ________ __J

Cn = word being packed or unpacked
Cnar. :count = -1 tb 2
CH = character oriented
OUT = output
89 = buffer b~sy
DF = disc file

*HX = randof.'l access
~; RD = read only

BP = buffer in use and protected
ERR = error
U = unused

*Disc files only

9.8

9.4 Permanently Open Files

There are a few built-in sequential files with fixed
file numbers:

o
1
2

1000+n
2000+n

controlling teletype input
controlling teletype output
nothing (discard all output)
input from teletype n
output to teletype n

These files need not be opened and cannot be closed.

10.1

10.0 RANDOM DISC FILES

A random disc file is very similar in physical struc
ture on the disc to a sequential disc file. The only
major difference is that there are no logical records
and that the bits in the index block which keepttrack
of logical record structure are always O. Furthermore,
the non-zero words of the index block are not neces
sarily compabt. The reason for this is that informa
tion is extracted from or written into a random file
by addressing the specific word or block of words which
is desired. From the address which the user supplies,
the system extracts a physical block number by dividing
by 255 'and a location of the word within the block which
is the remainder of this division. Further division
by 124 yields the appropriate index block. A random
file may have any number of index blocks.

A random file may be opened by using ERS 1 with a de
vice number 10. No distinction is made between input
and output to a random drum file. A random file may
also be closed by BRS 2, like any sequential file.
However~ CIO, WIO and BID are not used for input-output
to random files.

Instead, the following operations are available:

To read a word from a random file, execute the
instructions:

LDB =address
DWI =file number

The word is returned in A.

To write a word on a random file, put the word in A
and execute the instructions:

LDB =addY'css
DWO =file number

Dlock input-outrut to random files is also possible.
'ro input a "t)loc~, execute the instructions:

LDX =flrst word address
LDA =number of words
LDB =flrst address in,file
DEI =file number

10.2

To output a block of words to a random file, execute
the instruction:

DBO =file number

with the same parameters in the central registers.
These block input-output operations are done directly
to and from the user's memory, as is BID. Disc buffers
are not involved and the operation can rr.o very quickly.

If the sign bit of A was set when BRS 1 was executed
to open the file, then output to it is not allowed
and the file is said to have been made read-ohly. This
is a natural extension of the treatment of read-only
sequential files.

It is possible to define a random file which has been
previously opened as the secondary memory file. To
do this, execute the instructions::

LDA =file number
BRS 58

The specified file remains the secondary file until
another secondary memory file is defined or until the
file is closed. To access information in the secondary
memory, two SYSPOPS are provided. These POP's work
exactly like DWI an4' DWO except that they t~k~ the disc
address from memory instead of requiring .. it to be in B.
To read a word of secondary memory into the A register,
the instruction:

LAS address

should be executed. To store a word from A into the
secondary memorYJ the instruction:

SAS address

should be executed. The word addressed by either one
of these~SYSPOP's should contain the disc address which
is to be referenced~ This word may also have the
index bit set, .Ln which case the contents of the index
register will b~ added to the contents of the word to
form the effect:_ve address which is actually used to
perform the inp'lt-output operation.

The mechanism fur acquirint!, and releasing random disc
file space is vnry similar to the mechanism for alloca~·
tion of core mel lory . Whenever "the user addresses a

10.3

section of a random disc file which he has not previously
used~ the necessary blocks are created and cleared to
O. Note that the user should avoid unnecessarily large
random drum addresses} since they may result in the
creation of an unnecessary number of index blocks.
To release random disc memory, execute the instructions:

LDA =number of words to be zeroed
LDB =initial word to be zeroed
LDX =file number
BRS 59

The specified section of the file is cleared to zero.
Physical blocks which are entirely zero will be released.
A more drastic clearing operation may be obtained with
BRS 66) which deletes the entire information content
of the file.

11.1

11.0 SUBROUTINE FILES

In addition to the above-mentioned machinery for performing
input-output through physical files, a facility is provid~d
in the system for making a subroutine call appear to be an
input-output request. This facility makes it possible to
write a program which does input-output from a file and later
to cause further processing to be performed before the actua.l
input-output is done, simply by changing the file from a
physical to a subroutine file. A subroutine file is opened
by executing the instructions:

LOX parameter word
BRS 1

This instruction always skips. The opcode field of the para
meter word indicates the characteristics of the file. It
may be one of the following combinations:

110 OOOOO(octal)
III OOOOO(octal)
010 00000 (octal)
011 OOOOO(octal)

Character input subroutine
Character output subroutine
Word input subroutine
Word output subroutine

The address field of the parameter word contains the sub
routine address. I/O to the file may be done with CIa or
WIO, regardless of whether it is a word or a character oriented
subroutine. The system will take care of the necessary pack
ing and unpacking of characters. BIO is also acceptable.

The opening of a subroutine file does nothing except to create
a file control block and return a file number in the A regis
ter. When an I/O operation on the file is performed, the
subroutine will be called. This is done by simulating an
SBRM to the location given in the parameter word. The con
tents of the B and X registers are transmitted from the I/O
SYSPOP to the subroutine unchanged. The contents of the A
register may be changed by the packing and unpacking operations
necessary to convert from character-oriented to word-oriented
operations or vice versa. The I/O subroutine may do an ar
bitrary amount of computation and may calIon any number of
other I/O devices or other I/O subroutines. A subroutine
file should not call itself recursively.

When the subroutine is ready to return, it should execute
BRS 41. This operation replaces the SBRR which would nor
mally be used to return from a subroutine call. The con
tents of B and X when the BRS 41 is executed are transmitted

11.2

unchanged back to the calling program. The contents of A
may be altered by packing and unpacking operations. A sub
routine file is closed with BRS 2 like any other file.

In order to implement BRS 41, it is necessary to keep track
of which I/O subroutine is open. This information is kept
in six bits of the PAC table. The contents of these six
bits is transferred into the opcode field of the return ad
dress when an I/O subroutine is called and is recovered from
there when the BRS 41 is executed.

12.1

12.0 EXEC TREATMENT OF FILES

The user's only access to files is through the system
executive. The executive provides a connection between
a symbolic name for a file, ",jhich is created by the
user~ and the file number which the user must have in
order to execute input-output operations~ This con
nection is established through the file directory.
Supplementary to this function is the need to prevent
the user from destroying other people's files.

We be~inwith a description of the file naming system
as it appears to'the user, and continue with a descrip
tion of the executive tables which implement the various
features.

A user may give his files arbitrary names containing
any characters other than ' or I. The nrunes of new·
disc files must be surrounded by I, and the names of
new tapes files must be surrounded by' When a file
1s created it's name must be enclosed within one or
the other of these characters.

When a user types a file name not enclosed within
slashes, or quotes he need only type enough characters
of the name to determine it uniquely. If the user.
starts an output file name with a quote or slash,he
must type the entire name. If it is an output file
name and not already in his file directory, a new file
will be created. In any other context, a name not in
the file directory is in error.

When an output file name is being typed, the system,
after determining the name, will type out either OLD
FILE or NEW FILE and await a confirmation that the name
has been given correctly. If the user types either
of the characters, line feed or carriage return, the
name will be re~arded as correct. Any other character
will be regarded as an indication that the name was
incorrect. This machinery is intended to make it more
difficult for the user to destroy old files or create
new ones inadvertently.

When a new slashed output file name is given to the
system1 a new entry 1n the file directory and a new
index block on the disc are created for it. If the
name is being ~iven to an executive command, it will
be assumed that the file is a sequential one.

12.2

It is possible for the user to reference files belong
ing to users other than himself if the file name con
tains a control character or an @. He does this by
preceding the file name with the account number and
user name enclosed in parentheses. Thus, to get at
file /GPROGRAM/ belonging to user JONES, he might type:

(AI JONES) /@PROGRAM/

Jones may control the extent to which other users can
access his files. For another user to reference a file,
the name must contain at least one control character
or an @.

Files in a Public File Directory may be accessed by
typin~ the file name in quotes:

The previous paragraphs have described the behavior
of the system's file naming logic when it is recogniz
ing names typed in on a teletype. The BRS's which
recognize file names are capable) however, of accepting
them in many other ways. Essentially, they accept a
string pointer to the portion of the name already known
(which may be null) and file numbers for the input file
to be used in obtaining the rest of the name and the
output file on which the name should be completed.
In most cases the first or the ·second of these items
will be irrelevant.

A program may open a disc file and obtain a file number
by executing BRS 15 and BRS 16 (input) or BRS 18 and
19 (output). BRS 15 and BRS 18 expect to get the file
name from the teletype. If the name is known to the
program, they may be replaced by BRS 48. These BRS's
are used as follows:

LDA =file number
BRS 15 (or BRS 18)
EXCEPTION RETURN
NORMAL RETURN

The normal return leaves a file directory pointer in
As and BRS 18 leaves the character typed after OLD FILE/
NEW FILE in B. If no character was read) B contains
a -1. The. X register is modified.

LDA =file directory pointer
LDX =file type (BRS 19 only)
BRS 16 (or DRS 19)
EXCEPTION RETURN
NORr·1AL RETURN

12.3

The normal re .urn leaves a file number in A, and BRS
16 leaves the file type in B. X is modified.

There are four standard file types:

1 File written by executive save command (sequential)
2 General binary file (sequential)
3 Symbolic f1le (sequential)
4 Dump file (sequential)

BRS 48 or 60 ,may be substituted for BRS 15 or 18. BRS
48 is used if the name is in the file directory and
BRS 60 will create ~ new name if necessary.

LDP =string pointers(l)
BRS 48 or 60
EXCEPTION RETURN
NORrllAL RETUnN

The string pOinters point to the file name to be looked
up in the file directory. The normal return leaves
a file directory pointer in A. All other re~lsters
are modified. If the file name cannot be located in
the file directory, the BRS 48 takes the exception'
return, while the BRS 60 will attempt to place the
new name in the file directory; if it .is unable to
do so because the file directory is full, it will take
the exception return.

(1) A string painter is a character address found by
multiplying the word address by three and adding 0,
1 or 2. The string painter in A pOints to the chara6-
ter before the beginning of the file name. The pointer
in B pOints to the last character of the name ..

ARPAS assembles string pointers as follows for string
pointers PI and P2:

PI
P2
Z

DJ.TA
Dr'rA
A~C

(R) Z --I
(R) .Z+2
'/T/'

12.4·

It is possible for a user to rename his files by typing:

RENAr.1E /PROGRAM/ as ROUTINE

The rename logic protects the user against creating
file names that conflict with existing file names ·or
with the file type~

The file directory consists of an SPS hash table to
gether with a table of equal length, called the descrip~
tion table (DBT), which has a three-word entry corres
ponding to each three-~ord entry in the hash table.
In addition) there is a string storage area for storing
file names and a few words of miscellaneous information.
The parameters of a file directory are shown at the
end of thJ.s section entitled "File Directory Arrangement!!
and the format of a single hash table entry and matching
DBT entry is also shown at the end of this section
entitled ., Hash Table Entry'·!. Executive commands for
examining the file directory and setting various bits
are described ~n· s~dtfon' 13~ In addition, a number
of BRS's are provided which permit the user's program
to affect the contents of the file directory.

The creation date of file is set to the current date
each time it is opened as an output file. The field
;iNo. of Accesses;: is incremented each time the file
is opened for input or output.

There are five file names built into the system. They
are:

PAPER TAPE
CARDS
PRINTER
'rELETYPE
NO'rHING

These names may be used at any time and have the obvious
significance. If the device referred to is not avail
able because it is attached to some other user, a suit
able error message will be generated. Paper tape or
card output files opened by giving this name to the
executive will have the type of the file punched as
the first word (or card). Similarly, paper tape or
card input files opened by giving this name to the
executive will read the first word from the paper tape
or the first card and deliver it as the type.

~ymbol

FDC'I'L
FDCTLI
FDCTL2
FDCTLC
FDCTLE

FDHT

EFDHT

DUMHT

FDSS

t
144

words

1
l1a

words

1
l'

120 wars

FILE DIRECTORY ARRANGEr1ENT

Hash Table Control Words

; Location of H.T.
-: ; Location of end of H.T. r working
! Char. Addr. of string sto.
i End string storaPie

0

1-1. T. Entry
(see 12·.6)
3 words

,

12.5

.~ ,
f48

entries

f.::::~~~~~ 1
Dummy H.'l.l Entry

3 words

Corresponding
table

/'---.. -
",or -

str1nf"~ storap:e

HASH TABLE ENTRY
Tape File

12.6

o 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23
0 FT Pointer I L'rp To File Name I HTP 0

..J-
FS ta}2e file

Physical Device - never on disc

Pointer to

I ON

Disc File

1

_ 2 I FT Pointer I
1-0-__ ...;..O __ ~_~--=-___ T~o..:;.....;;;f;...:;i~l~e~N..;...;;a~m-.:e ____________ '_---I -.•

Index B1ooK-fQ}nter _

Corresponding Table Entry

C Change in fil~e~s~l~·z~e~~I~ _____ r __ ~F~L~ _________________ ~
o Account No. IN, o. of accegses t" Creation date

Month 1 Day
CB FT I LTP 1 Future controls-~~----";'--i

FT = File Type
L'l'P= Low Order Tape Position
HTP= High Order Tape Position
FS = Tape File Size - True Tape size - 32K
FL = File Length for Disc Files
C = Change in File Length
CB = File Control Bits - O='rape F'ile

2=Disc File
F = End of Entry Flag (1)

13.1

13.0 EXECUTIVE COMMANDS RELATED TO FILES

When a user "LOGSIN" to. the system, his complete file
directory is read in from the disc and placed in the
file directory hash table alang with the name of the
physical devices. The "LOGIN" procedure is described
in the "Tymshare Reference Manual".

The fallowing executive cammands related to. the users
file directary are available:

a. FILES
b. WRITE FD
c . DF
d. FD FOR
e. DELETE FILE
f. RENArllE

Commands (e) and (f) are completely described in the
,ITymshare Reference ~I}anualli) but simply, DELETE FILE
is used to delete a file from the directary, and RENAME
is used to. change the name of a file in the directory.

Commands (a) and (d) are also described in the f'Tymshare
Reference Manualn as used by the normal users; FILES
causes the camplete directary to be typed while FD FOR.
types only a single entry. But executive class users
who. are able to set system status (see the TSS Execu
tive Reference Manual!') will receive the follawing
special output:

P ,Drr, S name

KEY TAPE FILES

p = Tape position (actal)
D = Blank
T = File type (1 through

4)
S = File size

o
2

DISC FII,ES

File type (1 through
4) See Section 12
Index Block Painter

A colan typed after either of the above commands, will
cause the length (in numbers af words) of a disc file
to be typed out; the format is then as follows where
L is the lenr-:th:

P ,DT ,3 ;,L Name

13.2

Another feature of the system status typeout is that
any control characters in the file name will be typed
out in two characters with the first character, the
ampersand "& 11 • For' example, If the name of the file
was /(bell)PROGRAM/, it would type out as follows:

0;23)12640 /&GPROGRAM/

The command "DF" can only be used by us.ers with a special
system status since it can create ne1t1 file names \'Thile
bypassing all system protection. The complete. file
parameters must be typed as follows:

DF file name AS P,DT:;S

where the key to the parameters is the same as described
above.

'fhe command "~~RI'l'E FD" causes the current file directory
(as it appears in the file directory hash table) to
be written on the disc. See the appendix for a descrip
tion of the disc format.

14.1

14.0 EXECUTIVE CO~~ANDS

The commands which are accepted by the executive are
described 1n detail in the TSS Executive ReferenOe
Manual.

15.1

15.0 SUBSYSTE.f{IS

The time-sharing system software is organized into a
monitor, a system executive, and a number of sUb-systems
which perform speci~lized functio~. Each of these sub
syst0ms is called by giving its name to the executive
as a command. The result of this operation is to bring
the subsystem off the RAD and to transfer to its starting
point. The system will thereafter remember the subsystem
which is In use and will accept the CONTINUE conunand
as an instruction to re···enter the subsystem without
any initialization. Thus;) for example~ the command:

-DDT
would call the debuggin~ subsystem. The line:

-CON'J1INUE
DD'r

would re-enter DDT without initializing. Most of the
subsystems are permanently present in the shared memory
table, and may be called on by a user program.

Subsystems presently available in the time-sharing system
are:

ARPAS:
DDT:
QED:
F'rc:
FOS:
FORTRAN:
CAL~
BASIC:

A symbolic macro assembler
The debugging system
The symbolic text editor
FORTRAN II compiler
The FORTRAN II loader and operating system
The ecs FORTRAN IV system
Conversational algebraic language
Conversational algebraic language

16.1

16.0 MISCELLANEOUS EXECUTIVE FEATURES

The executive provides a number of BRS's which are
services for the user. The BRS's all declare a fork
to execute. This group of BRS's are run in user mode
and are called class 3 BRS's in the Monitor.

To get the date and time into a string, the operations

LDP PTR
BRS 91

may be executed. The current date and time are appended
to the strin~ provided in A and B and the resulting
strin~ is returned. The characters appended have the
form:

mm/dd hh:mm

Hours are counted from a to 23.

All other system executive BRS's have been described
in previous sections.

17.1

17.0 MISCELLANEOUS MONITOR BRS'S

:rhe monitor provides a number of BRS's which are services
for the user. Many of these are incorporated in the
string processing system or in the floating point package
and are described in the next two sections. These are
called class 2 BRS's in the Monitor.

To put an integer to any radix the instructions:

LDB =radix
LDX =file
BRS 38

may be executed. The number; which may be preceded
by a plus or minus sign, is returned in the A register
and the non-numeric character \\Thich terminated the num
ber in the B register. The number is computed by mul
tiplyin~ the number obtained at each stage by the radix
and adding the new digit. It is, therefore, unlikely
that the right thing will happen if the number of digits
is too large.

To output a number to arbitrary radix the instructions:

LDB =radix
LDX =file
LDA number
BRS 36

may be executed. The number will be output as an un
signed 24 bit integer. If the radix is less than 2,
an error will be indicated.

18.1

18.0 STRING PROCESSING SYSTEM

A resident part of the system is a package of string
handling routines. These are discussed in detail in
their own manual, document 30.10.20 and will only be
listed here.

GCI
WCI
\'lCH
SKSE
SKSG
GCD
vlCD
BRS 5
BRS 6

BRS 33
BRS 34
BRS 35
BRS 37

Get character and increment
Write character onto string
Write character onto string storage
Skip on strin~ equal
Skip on string greater
Get charact~r and decrement
Write character and decrement
Look up string in hash table
Insert string in hash table (must be pre
ceded by BRS 5)
Input string
Output string given word address
Output string given string pointer
General command lookup

SPS includes symbol table lookup facilities, and a
string storage garbage collector is available as a lib
rary subroutine. Strings are composed of 8 bit charac
ters packed 3 per word and are addressed by 2 word string
pOinters. Two SYSPOP's which are formally part of SPS
but which aro ur3e.ful ln I"loatl.ng pulnt, opoX'::lt.ions and
in general programming are:

LDP Load pOinter
STP Store pointer

These are dOUble word operations which load A and B
from the effective address and the next location or
store A and B into the effective address and the next
location, respectively.

19.1.

19.0 FLOATING POINT

Floating point arithmetic and input-output operations
have been incorporated into the 940 system through the
use of programmed operators. This allows the user to
perform useful arithmetic and I/O operations in a single
instruction. A brief summary of the most commonly used
arithmetic and I/O POPS is outlined herein.

The floating point numbers referenced in this' section
are normalized double word values. The first word is
a sign bit followed by the high order 23 bits of the
mantissa bits followed by a 9 bit exponent field which,
like the mantissa, is always represented in two's com
pliment form.

Unless otherwise specified, the POP's do not make a
skip return.

Floating Point Load/Store Instructions

NAME: LOP
FUNCTION': Load Pointer
CALLING SEQUENCE: LOP MEMORY

DESCRIPTION: Loads A, B with MEMORY, MEMORY+l. LDP
is a single instruction that is equivalent to:

LOA MEMORY
LDB MEr/lORY + 1

NAr~E: STP
FUNCTION: Store Pointer
CALLING SEQUENCE: STP MEMORY

DESCRIPTION: Replaces MEMORY. MEMORY+l with the con
tents of A,B. STP MEMORY is a Single instruction that
is equivalent to:

STA r'1E~10RY ~ srER

D6uble Word Floating Point Arithmetic

NA.I\~E : P~D

FUNCTION: Floating Add
CALLING SEQUENCl:: Ff\.D i'1EMORY

DESCRIPTION: TIle fl.oating point va~ue at r~E~10RY} MEMORY+l
1s added to the floatin~ point value in A, B. The sum
replaces the va:'.ue in A, B. fVIemory 18 unaffected.

NAME: FSB
FUNCTION: Floating Subtract
CALLING SEQUENCE: FSB MEMORY

19.2

DESCRIPTION: The floating point value at MEMORY! MEMORY+1
is subtracted from the floating point value in A,B.
The difference replaces the value in A,B. Memory is
unaffected.

NAME: FNA
FUNCTION: Floating Negate
CALLING SEQUENCE: BRS 21

DESCRIPTION: The floating point value in A,B is negated.
The result is left in A,B.

NAME: FMP
FUNCTION: Floating Multiply
CALLING SEQUENCE: PMP MEMORY

DESCRIPTION: The floating point value at MEMORY, MEMORY+l
is multiplied by the floating point value in A)B. The
product replaces the value in A,B. Memory is unaffected.

NAME: FDV
FUNCTION: Floating Divide
CALLING SEQUENCE: FDV MEMORY

DESCRIPTION: The floating point value in A,B is divided
by the floating point value at MEMORY, MEMORY+l. The
quotient replaces the dividend in A,B. Memory is un··
affected. Division by zero causes an overflow.

NAME: FIX
FUNCTION: Conversion from Floating Point to Fixed Point
CALLING SEQUENCE: DRS 50

DESCRIPTION: The floating point value in A,B is con
verted to fixed pOint. A is replaced by the integer
part of the original value; the fractional part 1s left
adjusted in B. If the integer is too large, the most
significant bits are lost.

NAME: FLOAT
FUNCTION: Conversion from Fixed Point to Floating Point
CALLING SEQUENCE: BRS 51

DESCRIPTION; The integer 1n A is floated. The floating
point result in left in A~B.

19-3

The remaining floating point SYSPOP's and BRS's use
a format word in register X which contain the following
information.

Format Word

BITS

0--2

3-8

9-14

15

16

PIELD
NAME

T

D

o

E

SIGNIFICANCE

Format types:
o _. Octal
1 - Integer
2 - E format with the number right

justified in the specified
field on output.

3 .- F format wi t h the number right
justified in the specified
field on output.

4 - J format with the number left
justified in the specified
field on output.

5 - F format with the number left
justified in the specified
field on output.

6 - Double precision format. Same
as 2 on input. On output same
as 2 except a D will be output
for the exponent if bit 16 is 1. .

7 ... Free form (output left justified).
Number of digits following the
decimal point.
Total field width. In J format
this is the number of digits before
the decimal point.
Overflow actiori. If the field
width is too small on o~tput and
this bit is 1, the first character
of the output field will be a star
and characters to the right will be
lost. If this bit is zero and
overflow occurs, characters on the
right will be lost.
If this bit is 1 E format of output
will be used to represent the ex
ponent. If this bit is 0 the @
symbol will be output. Either
the E or @ is always acceptable
on input.

18

19

20

21
22
23

19.4

If this bit is 0 on input the symbol
@ will be treated as a legal ex
ponent identifier; i.e. ~ l.0@+2
will be legal input. If this bit
is 1 the symbol @ will be treated
as an illegal character. This
bit has no effect on output.
If t~is bit is 0, illegal charac
ters in the input string will be
ignored. The error flag will be
set when one is read. If this
bit is 1 and an illegal character is
read ,the scan ~ill be ·t~rmin~ted,
the error flag will be set and
the string pOinter will be set
to the character read. The con
vers~on will take place on the
characters read to that point.
This bit has no effect on output.
If this bit is zer0 3 the input
string +N+M is legal. N is treated
as the mantissa and M is the ex
ponent of a floating~ real number.
If this bit is 1, the second occur
rance of a sign will be treated
as an illegal character. This
bit has no effect on output.
r~1us t be zero.
f1us t be zero.
If a 1) the double precision ac
cumulator will be used for numeric
input-output. Significance is
extended to 18+ digits. Applies
to all format types.

Operatin~ Characteristics:

On input the D field is overridden by the presence of
a decimal point. If a decimal point and/or E are present,
any form of the number is acceptable to any input format~
It is only in the absence of these characters that the
format spec1..ficatlons determine the lnterpretation of
the field, Illegal characters appearing anywhere in
the field may be ignored depending on hit 19 of the
format word. Blanks will be converted to zero.

The maximum allowable number of input digits is twelve.
If more than twelve digits are input the most signifi
cant twelve will be used. If twelve digits are used

19.5

care must be taken as overflow can occur during the
conversion process. Insignificant leading or trailing
zeroes will be ignored.

lJ.'he maximum allowable integer on input is ±238 _l or
±274,877~906)943. Floating point numbers must like
in the range:

9.9999999999E-78~lnumberl~5.7896044625E+16

Free form output will be output using an F17 if the
exponent lies in the range -1< exponent <lO(X=iO-numBer of
digits to left of decimal point). If the number is
outside this range an E17.ll will be used. Free form
output always assumes a floating point number. If an
integer is input it will be normalized prior to conver
sion.

For the E format on output, the E (@ if bit 16 of the
format word is 0) is always followed by a + or - sign.
On all output the sign of the number Is printed only
if it is negative.

Error Conditions:

If an error is detected during the conversion process
a positive integer indicating the error type will be
returned in the index register.

Errors detected are as follows:

x=o No error was detected.

X=l Number of decimal digits after the decimal
point exceeds 12 for single precision and
18 for extended precision on formatted input.
Twelve and 18 used respectively. .

X~2 Field ~oo short for E format on output.
Overflow action will be taken depending on
the value of bit 15 of the format word.

X=3 Input number exceeds the maximum allowable
boune',s.

X=4 Fielc. too short for F or I format on output.
Overflow action will be taken depending on
the value of bit 15 of the format word.

19.6

X=5 An E format was specified for input but the
input string does not contain an '~'E:i or If. I, •
The number will be' converted using an equiva
lent F format.

X=6 An illegal character was encountered in the
input scan. Character is ignored.

NAr~E: SIC
FUNCTION: String
CALLING SEQUENCE:

~tring Conversio~

to Internal Conversion
LDX FORMAT
SIC POINTER
BRU INTEGER
BRU FLOATING

DESCRIPTION: FORMAT describes the type of conversion
to be done (see the CCS Implementation Manual for the
FORMAT word specifications). The string of input cbarac
ters starts at the character following"the character
pointed to by the character address in POINTER. The
character address in POINTER+l points to the last charac
ter of the input string.

NAME: ISC
FUNCTION: Internal to String Conversion
CALLING SEQUENCE: LDP VALUE

LDX FORMAT
ISC POINTER

DESCRIPTION: FORMAT describes the type of conversion
to be done. (See the CCS Implementation Manual for
the FORMAT word specifications). POINTER+1 contains
the character address of the character immediately pre
ceding the position where the first character o~ output·
is to go. POINTER+l is incremented by one for each .
character of output added to the character string.
VALUE is the double word floating point value to be
converted. .

NA:vIE: FFI
FUNCTION: Formatted Input
CALLING SEQUENCE: LDX . FORMAT

BRS 52

DESCRIPTION: Characters are read from a file and con
verted to internal form. Either a floating point value
is left in A~B or an integer is left in A. A skip return
is generated if a floating point value is read and the
input mode is free format.

NAME: FFO
FUNCTION: Formatted Output
CALLING SEQUENCE: LDP VALUE

LDX FORMAT
BRS 53

19.7

DESCRIPTION: The floating point value in A,B or the
integer in A is output to the file specified in FORMAT.

20.0 INDEX OF BRS'S AND SYSTEM OPERATORS

20.1 BRS's

1 Open a File of a Specific Device
Pgs. 9.1, 9.5, 9.6, 10.1, 10.2~ 11.1

2 Close a File
Pgs. 9.1, 10.1, 11.2

4 Release a Page of Memory
Pr-;. 5.2

5 Look up String in Hash Table
Pg. 18.1

6 Insert String in Hash Table
Pg. 18.1

8 Close All Files
Pp.: • 9. 2

9 Qpen Fork
Pg. 2. 4:> 3. 1, 3. 2

10 Terminates the Calling Fork
Pgs. 3.6,4.1

11 Clear the Teletype Input Buffer
Pg. 7.4

12 Declare Echo Table
Pg. 7.2.1 7.4

13 Test Input Buffer for Empty
Pg.. 7.4

20.1

14 Delay Until the TTY Output Burfer is Empty
Pg. 7.4

*15 Read Input File Name
Pgs. 12.2, 12.3

*16 Open Inrut File in File Directory
Pgs .. 12.2, 12.3

Close AJ1 Files - (Not included)

*18 Read a File Name and Look It Up in the File
Directory
Pgs. 12.2, 12.3

20.2

*19 Open Output File Located in File Directory
Pg. 12.3

*20 Close a Tape File - (Not included)

21 Floating Point Negate
Pg. 19.2

23 Link/Unlink Specified TTY - (not included)

24 Unlink All TTY's - (not included)

25 Set Teletype to Accept/Refuse Links - (not included)

26 Skip if Escape Waiting
Pg. 2.5 .

27 Aitach TTY to Calling P~ogram - (not included)

28 Release Attached TTY - (not included)

29 Clear the Output Buffer
Pg. 7. q

30 Read Status of a Lower Fork
Pg. 3.2

31 Wait for Specific Fork to Cause a Panic
Pgs. 2.4, 3.3

32 Terminates a Specified Lower Fork
Pg. 3.3

33 Read String
Pg. 18.1

34 Output Message
Pg. 18.1

35 Outp~t String
Pg. 18.1

36 Output Number to Specified Radix
Pe;. 17.1

37 General String Look Up
P~. 18.1

38 Input Number to Specified Radix
Pg. 17.1

40

41

J~ 2

44

45

46

47

*48

49

50

51

52

53

56

57

58

, ,

Read Echo Table
Pg. 7.2

Return from I/O SubroutIne
Pgs. 11.1, 11.2

Read Rea1-T~me Clock
Pg. 6.1

Read Pseudo-Relabeling
Pg. 5.1

Set Pseudo-Relabeling
Pg. 3.2, 5.1

Dismiss on Quantum Overflow
P~~ • 2. 3

Turn Escape orr
Pg. 3.5

Turn Escape On
Pg. 3. 5

Look Up Input/Output File Name
Pr:;s. 12.2, 12.3

Read Interrupts Armed
Pg. 4.2

20.3 '

Conversion from Floating Point to Fixed Point
Pg. 19.2

Conversion from Fixed Point to Floating Point
Pg. 19.2

Formatted Floating Point Input
Pg. 19.6

Formatted Floating Point Output
Pg. 19.'/

r~ake Pal:e System
Pp:. 5.3

Guarantee 16ms Computing
Pg. 2.3

Define Pile as Random
Pg. 10.;'\'

59 Release Words from Random File
Pg. 10.3

20.4

*60 Look Up I/O File Name and Insert i'n File Direc..;.
tory if not Found·
Pg. 12.3 .

66 Delete DSU File Data
Pgs. 9.4, 10.3

67 Delete DSU File Index Block
Pg. 9.5

68 Make Pseudo-PageSha~eable - (not included)

69 Get SMT Block to PMT
Pg. 5.2

71 Read Executivity
Pr-;. 6.1

72 System Dismissal
Pg. 2.4

73 Terminates a Speciried Number of Lower Forks
Pg. 3.6

78 Ar-m/nisarm SoftwarOe InterruJ')t.s.
Pg. 4.1

79 Cause Specified Software Interrupts
Pg.4.1

80 Make Page Read Only
Pg. 5.3

81 Dismiss for Specified Amount of Time
Pg. 6.1

82 Switch Sequential File Type
Pg. 9.2

85 Set Special TTY Output
Pg. 7.5

86 Clear Special TTY Output
Pg. 7.5

87 Read DSU File Index Block
Pg. 9.5

88 Read Execution Time
Pg. 6.1

90 Declare a Fork for Escape
J?gs, 3. 1, 3. 5

91 Read Date and Time into a String
Pgs. 6.1, 16.1

20.5

*95 Dump Program and Status 'on File ~ (not included

*96 'Recover Program and Status from File .. (not:inbluded)

104 Read a Page (2048 words) from RAD
Pg. 5.4

105 Write a Page (2048 words) to RAD
Pg. 5.4

106 Wait for any Fork to Terminate
Pgs. 2.4, 3. 3

101 Read status of all Lower Forks
Pg. 3.3

108 Terminate All Lower Forks
Pg. 3.3 .

109 Dismiss Calling Fork
Pgs. 2.4, 6.1

110 Read Device and Unit
Pg. 9.6

III Return from Exec BRS (Exec Only)
Pg. 6.1

112 Turn orr Teletype Station (Exec Only)
P g s. ". 3 ~ 7. 4

113 Compute File Size of a Disc File
Pg. 9.4

114 Turn orr Run-Away Magnet~c Tape
Pg. 9. 7

116 Read User Relabeling
Pg. 5. 2

117 Set User Relabeling
Pg. 5.2

'118 'Allocate Magnetic Tape Unit
Pg. 9.7

119 De~A11ocate Magnetic Tape Unit
Pg. 9.7

120 Acquire a New Page
Pg. 5.2

121 Release Specified Page from PMT
Pg. 5.2

122 Simulate Memory P~nic
Pg. 6.1

BE+l Read DSU
Pgs. 4~2, 8.3, 8~4

BE+2 Write DSU
Pgs. 4.2) 8.3',8.4

BE+3 Test for Carrier Present
Pg. 7. 3

BE+4 Read/Write One Word in the Monitor
Pgs. 6.2, 8.1

BE+5 Set Disc ait Map ~ (not in~luded)

BE+6 Turn a Teletype Line On or orr
Pg. 7.4 '

B~+7i Test a Breakpoint Switch
Pg. 6.2

BE+8 To Crash the System for Error Diagnostic
Pg. 6.2

BE+9 Read DSU Page
Pg. 8.3, 8.4

BE+IO Write DSU Page
Pp.;s. ,. 8 . 3, 8.4

20.6

BE+ll Ignore Line Feed or ~arr1age Return When Followed '
by Carriage Return or Line Feed Respectiveli
Pg. 7.2

BE+12 Arm Timing Interrupt
P~. 4.2

BE+13 Sets System Exec Switches in SYMS
~g. 6.2

BE+14 Input String with Edit - ,(not included)

BE+15 Read Page from RAD
~g. 6.2

BE+16 MFSYS - Make Fork System

BE+17CKBUF - Check for Free Buffer

BE+18 EXBRS - Get Exec Subroutines

20.7

BE+19 NOP'10 - Creation Date and Access Count

. 20~2 Sy~tem Operators

BIO Block Input/Output
Pgs. 9.3, 10.1~ 11.1

CIO Character Input/Output
Pg&. 9.2, 10.1, 11.1

CIT Character Input and Test ~ (not included)

CTRL Input/Output Control
9.3, 9.4, 9.6

DWI Read a Word rrom a Random File
Pg. 10.1

DWO Write a Word from a Random File
Pg. 10.1

DBI Read a Block from a 'Random File
10.1

DBO vlrite a Block from a Random File
Pg. 10.2

EXS Execute Instruction in'System Mode
Pg. 6.2

FAD Floating Point Addition
Pg. 19.1

FDV Floating Point Division
Pg. 19.1

FMP Floating Point ~1ul tip1icat ion
Pg. 19.2

FSB Floating Point Subtract
Pg. 19.2

OCD Get Character from End of String and
End Pointer
Pg. 18.1

Decrement

OCI· Get Character from Beginning of String '·and·
Increment Beginning Pointer
Pg .18.1 .

rsc Internal to String Conversiori
Pg. 19.6

1ST Input from Specific TTY - (not included)
,

, ~AS Read a Word f~om Secondary Memory
Pg. 10.2

LDP Load String Pointer
Pgs .. 18 .1, 19.1

OST Output to Specific TTY - (not included)

SAS Store a Word into Secondary. Memory
Pg. 10.2 .

SKSE Skip if String Equal
Pg. 18.1

SKSG Skip if String Greater
Pg. 18.1

SIC String to Internal Conversion
19.6

STl Simulate TTY Input - (not included)

STP Store String Pointer
Pg. 18.1~ 19.1

Tel Teletype Character Input - (not included)

TCO Teletype Character Output
Pp;. 7. 3

weD Put Character on Beginning of String and Decrement.
Beginning 'Pointer
Pg. 18.1

weH Write' Character to Memory by Table
Pg. 18.1

WCI Put Character on End of String and Increment
End Pointer
Pg. 18.1

WIO Word Input/Output
Pgs.:9.3, 10.1~ 11.1

Those BRS's marked with an asterisk are executive BRS's
and all others are monitor BRS's.

A.l

APPENDIX A

GENERAL DESCRIPTION OF THE COMBINEb FILE DIRECTORY

1. A user may have one or two file directory blocks
on the disc: the second block is an overflow block.
Each block consists of 128 words containing avari
able number of file directory antries. Each entry
is in the format pictured in Cd). .

2. If the first ~ord of the block 1s zero) the block
considered to be empty. The last entry is. followed
by a -lor -2 word where the -2 ind1cat~s that there
are additional entries in the ·overflow block .•

3. The last four words of the file directory block
. contain the following inf6rmation:

Last \'lord

Last Word -1
Last \vord -2
Last word -3

Valid on~time for this user (1
bit per hour of the day).·
Accumulated computer time used.
Accumulated real time used.
Overflow block pointer.

4. In the case of an overflow block, the last three
words are zero, and the overflow block pointer is
a backward pOinter to.the first file directory block.

o

1

2

3

4

N

3

0 '1
0

C

CB

1
D

.A.Z

FILE DIRECTORY' FORMAT ON DISC

1 Entry (Disc File)

Account 8\9
No. No.

. 14 115 '. •. .
of Accesses Creation

11 12
Chan~e if File Size File Length (FL)

21 3
FT "16

11 12
LTP Future Controls

Index Block Pointer

11~ 9
15 16 [1.7

Char. of 0
~·:ame

. 231
Date

~. . .-.. .-.-- ~.- - ~~""~-'(""~:l-~:.r<""'-"" ..• !Sn'"
1 ~~ ~-"""'! '!"!r°1 '8 ." , -""' W' -15 16" ~ ". .~~

Char. of Char. ~r 136 {fill) Char. or l3~ F

o

Name (fill)

FT = File Type
LTP = Low Order Tape position
H'llp = High Order Tjape posit ion
FS = Tape File Siz~
FL = File Length for disc Files
C - Change in file length (file length no longer

valid)
CB = File Control Bits, O=Tape file

2=Disc file
F = End of Entry Flag (1)

If Tape File~ word #3 =

8i9
I
I HTP FS

23'

FILE DIRECTORY BLOCK

,4 Control Words
~~-------...;------------...;.--- .. ,---------...;,

Variable len~th name
--------- ---_ ---- ~ _. --_ ... ----,;.. -~---~-

128
words 1

End Dir. Flag -1 or -2

Garbage

Overflow block pointer
Accumulated Real Time

'Accumulated Computer Time
Valid On Time

~. 4.

, A.3

Last -3
Last -2
Last ... 1
Last Word,'

Words

8
13
18
23
28
33
38
43
48
53
58
63

Bits

A.4

USER ACCOUNT DIRECTORY ON DISC

o 1 2 3 5 6 7
Acct. Password na na t na,

User Name III CN
I: I! 2 CN
II If 3'
IJ :. 14
\: II· 5
:1 " 6
" If 1 t

I
II II 8 . ,

!
'I I: 9 i
!; " 10 :

,f II 11
'W i"'.- ,

~ " .
User No ."t

C N
o 11 12 23

NOTES: liP" is reserved for an overflow pointer and
not presently u.sed. ~Jna:l, not assigned.

The control parameter bits are assign~d as follows:

BIT. USE

o System Status
1 Control of physical devices
2 Operator Status
3 Subsystem Status

4,5 Not assigned
6-11 Subsystem classes

A.5

SUBSYSTEM TABLE

Hash Table Entry

5

9
~ __ ~~~ __ ~C_L __ ~~ __ FN ______ ~~ ______ ~H_S ________ ~

Corresponding Table (Not Common Subsystem)

_C~o;;;..;r;;;;..· e~A_d~d..;;.;.;r;;;;..e;;;;"S";"'S~ _______ -f1

I
o

o
RSW

Corresponding Table (Co~on Subsystem)

h=------~;~u~----------
v = Subsystem Verify Number
LS = Low-order Starting Address

°E = Propogate Exec Status
U = Co-exist with Us.cra M,cmory ~ocannot if on) °

C- Common Subsystem
CL = Class (must·agree with user's control parameters)
FN = File Number (location on HAD f'or non-common Su:bsystem)
HS = High-order Starting Address
NP ~ Number of pages for non-common subsystem
Rl = First-half SMT relabeling (4 bytes)
R2 = Second-half SMT relabeling (4 bytes)
HSW= Relabeling Status Word (8 bytes)

