

TYMSHARE MANUALS

INSTANT SERIES

SUPER BASIC

October 1968

TYMSHARE, INC.
525 UNIVERSITY AVENUE, SUITE 220

PALO ALTO, CALIFORNIA 94301

DIVISION OFFICES

Los Altos, California - Inglewood, California - Arl ington, Virginia

DISTRICT OFFICES

Newport Beach, California - Englewood Cliffs, New Jersey

San Francisco, California - Dallas, Texas - Seattle, Washington

© 1968, TYMSHARE, I NC., Litho in U.S.A.

Price $1.50

CM4

CONTENTS

Page

PREFACE. 1

SECTION 1 - INTRODUCTION TO SUPER BASIC. 3
Defining The Problem 3
Flowcharting The Problem. .. 3
Entering The Computer And Calling SUPER BASIC 3
Computer Programming 5
Writing The Program In SUPER BASIC. .. 6

Direct And Indirect Statements .. 6
INPUT Statement 6
Variables 6
Typing Numeric Data Into Variables. .. 6

Numbers. .. 7
Strings. .. 7

Typing Strings Into Variables. .. 7
Replacement Statements. .. 8
Arithmetic Operators And Their Priority Of Execution. 8

Priority Of Execution. .. 8
Parentheses. .. 8

PRINT Statement .. 9
RUN And QUIT Commands 9
Sample Program - Cost Of Printing .. 9

SECTION 2 - ADDITIONAL SUPER BASIC FACILITIES , 11
GO TO Command . 11
IFModifier , 11
The Logical Operators 11
FOR/NEXT Commands 12

Nesting Loops 12
Arrays 13

Dimensioning Arrays 13

! (Comments) 14
PRINT IN IMAGE - Picture Formatting 14

Field Format Specifications 15
Integer Fields . 15
Decimal Fields 15
Exponential Fields (Scientific Notation) 15
String Fields 16

Standard Functions 16
DATA Statement, READ And RESTORE Commands 17

DATA Statement. 17
READ Command 17
RESTORE Command 17

Sample SUPER BASIC Programs 18
Double Declining Balance Depreciation 18
Mean And Standard Deviation 21
Stock Program. 23

SECTION 3 - PROGRAM FILES 25
Saving And Reusing A Program 25
Using A Tymshare Library Program 25
Removing A File . 25

iii

iv

CONTENTS (Continued)

Page

SECTION 4 - SUPER BASIC EDITING FEATURES 26
Adding A Statement 26
Deleting A Statement 26
Changing A Statement 27
Editing With Control Characters 27

Deleting A Character (Control A) 27

Deleting A Line (Control Q) 27
Copying To A Character (Control Z) 27
Copying The Rest Of A Line (Control D) 27

Listing A Statement 27

SECTION 5 - PAPER TAPE 28
Punching A Paper Tape Off Line 28
Reading The Program Into SUPER BASIC 28

SECTION 6 - THE EXECUTIVE 29
Entering The System 29
Calling SUPER BASIC 29
Continuing After Interruption 29

Listing Files 29
Deleting Files 30

Leaving The System 30

GLOSSARY 31

APPENDIX - THE TERMINAL. 32

The Keyboard 32
The ON/OF F Controls 33

The Paper Tape Controls 33

SUPER BASIC SUMMARY 35

TYMSHARE MANUALS
SYMBOL CONVENTIONS

The symbols used in this manual to indicate Carriage Return, Line Feed, and ALT

MODE/ESCAPE are as follows:

Carriage Return:

Line Feed:

ALT MODE/ESCAPE: NOTE: This symbol will be printed as
many times as it is required to
hit this key.

Action At The Terminal

To indicate clearly what is typed by the computer and what is typed by the user, the

following color code convention is used:

Computer: Black User: Red

PREFACE

This manual introduces both programmers and non-programmers to Tymshare SUPE R

BASIC and to the Tymshare time sharing system. The manual is designed as an introduc­

tion to programming in SUPER BASIC and includes the fundamental SUPER BASIC com­

mands necessary for effective programming. Careful study of the manual will enable the

non-programmer to solve a variety of problems using the computer.

SUPER BASIC is presented as an introductory programming language because, in addi­

tion to being easy to learn and use, it is also a very powerful language. SUPER BASIC is a

conversational language; that is, it prompts you and tells you what is wrong if you make

an error. Each program statement is checked immediately and an error diagnostic is re­

turned if the statement is incorrect. The SUPER BASIC editing facilities then allow you

to correct the statement immediately. When all of the program statements have been

checked the program may be saved and then reused at any time.

SUPER BASIC may be used to perform any numeric computations and contains a full

complement of mathematical and trigonometric functions to make programming easier.

SUPER BASIC also may be used to manipulate alphanumeric strings. The information

computed then may be output using the standard formats or using a special programmer

defined "image" picture format.

1

3

SECTION 1

INTRODUCTION TO SUPER BASIC

As an introduction to programming in SUPE R
BASIC we have written a simple program which com­
putes gas mileage when the initial and final odometer
readings for any given amount of gasoline are known.

10 INPUT I,F,G

20 T = F-I

30M=T/G

40 PRINT T;"MILES",M;"MILES/GAL"

We will now go through a step-by-step analysis of
how this program was written. If you can understand
the techniques used in writing this program, you
should have no trouble writing many other programs
which use these same basic techniques.

Defining The Problem

The first and probably most important step in pro­
grammingis writing a clear, concise definition of the
problem. A computer is designed to follow sets of
simple commands which appear in logical sequence. It
is during this first step that you should organize your
problem into small sections that can be written in
SUPER BASIC.

The easiest way to define a problem for program­
ming is to separate the problem into the following

three sections.

1. OUTPUT - What information is desired? This
section includes the answer to our problem and
anything that we wish to have printed, in this
case, the gas mileage.

2. COMPUTE - What computations must be made
to find the above information?

Gas Mileage = Total miles travelled divided by
the amount of gas used.

Total Miles = Final odometer reading minus
initial odometer reading.

3. INPUT - What information must be supplied to
solve the problem?

Initial odometer reading (in miles).

Final odometer reading (in miles).

Amount of gas used (in gallons).

Flowcharting The Problem

START

INPUT
I,F,G

COMPUTE
T= F-I

M = T/G

OUTPUT
T,M

Entering The Computer And Calling SUPER BASIC

The process of calling the computer and telling it who you are is called logging in. After
the connection has been properly made, the computer replies with:

PLEASE LOG IN: () Type a Carriage Return.

ACCOUNT: A3;> Type your account number (A3 in this case) followed
by a Carriage Return.

PASSWORD: () Type your password followed by a Carriage Return.
The letters in the password will not be printed on the

page.

> 10 INPUT I,F,G ~

4

USER NAME: JONES ~ Type your user name followed by a Carriage Return.

PROJ CODE: K-123-X () Type your project code if desired. NOTE: A project
code is optional. If no project code is wanted, simply
type a Carriage Return in response to the system's
request.

READY 12/8 11:20 ' You are now properly connected with the computer
and may proceed by calling the subsystem desired,
which in this case is SUPER BASIC.

- SBASIC ~ When the EXECUTIVE dash (-) appears, call SUPER
BASIC by typing SBASIC and a Carriage Return.
SUPER BASIC will respond with a >. You then may
type any of the SUPER BASIC commands and start
writing your program.

. Now the steps of the program are typed. Each step is
preceded by a line number. The program will be exe­
cuted in the order specified by the numbers. Typing a
statement w.i1tLll1a-..s...am~numberas a precedingstate­

=-rDin~ will __~.~~.se the preceding statement to be re­
placed. The first step contains the command INPUT

-;hlch, during execution, will request that the values
of I, F, and G be entered from the terminal.

>20 T = F-I ~

>30M=T/G~

........ , The arithmetic computations shown here are called
replacement statements. The first replacement com­
putes the total mileage and the second computes the
gas mileage.

> 40 PRINT T;"MI LES",M;"MI LES/GAL" ~ The PRINT command will print on the terminal the
values of the variables specified as well as any literal
text that is enclosed in the double quote marks. (The
difference between the comma and the semicolon will
be explained later in this section.)

> RUN :() This command, which must be used without a line
number, starts execution of the program at the lowest
numbered line in the program.

?1125.7.(;)

1764.1.f2

40.9~

638.4 MILES

.. The first statement of the program INPUT I,F,G is
now executed. SUPER BASIC types a ? to indicate
that it is waiting for terminal input. The first value,
1125.7, is typed and then terminated with a Carriage
Return. The next two values are entered in the same
manner.

15.608802 MILES/GAL The values of T and M are computed. The PRINT
statement causes the values of the variables and the
literal text which was enclosed in the quote marks to
be printed.

> QUIT ~ Control will be returned to you with a > after all of

the commands in the program have been executed.
QUIT causes an exit from SUPER BASIC back to the
EXECUTIVE.

5

- LOGOUT ~ The EXECUTI VE command LOGOUT disconnects
TIME USED 0:5: 17 you from the computer and types the amount of time
PLEASE LOG IN: you have used, 5 minutes and 17 seconds in this case.

PLEASE LOG IN: is repeated. Another person may
then enter the system on that terminal, or you may
hang up the phone.

Computer Programming

What is a computer program?

A computer program is a set of simple instructions
written in a language the computer can understand

which tells the computer how to solve a problem.

What type of language must be used?

The language used to write a program depends
upon the problem to be solved and the computer
being used. Before it can be executed, a program
must be presented in a language understood by the
computer. The actual machine language of a com­
puter is generally very difficult to learn and use.
Therefore; a group of higher level computer lan­
guages has been developed. SUPER BASIC is one
of these languages, and is essentially a combination
of simple English and elementary algebra.

How is a program written?

A program normally is written in two basic steps.
The first step includes all of the preliminary de­
fining of the problem, step by step analysis, flow­
charting, and thinking that must be done before
you can attempt the second step - the actual cod­
ing of the problem.

Defining the problem.

Before you can write a program to solve a problem,
you must know exactly what the problem is and
how to solve it. A computer can only follow your
instructions - it has no intuitive knowledge. Your
first task is to determine what output you need
(what answers you wish to compute using the data
available), what computations must be made, what
alternatives exist in certain cases, and what original
data you need and have to work with.

After you have decided what information is needed
from your data and how to go about computing it,

the next step is to try to place your information in
a logical sequence so the computer can do the com­
putations. Wi th simple problems such as those first
encountered in this text, this is easy. With compli­
cated problems, the best approach probably is to
break the problem into sections and work on it a
section at a time.

Very often the clearest method of representing the
logical sequence (flow) of a program is to picture it
with a flowchart. Flowcharts consist of a number
of boxes connected by lines. Within each box is a
brief statement of an operation to be performed.
The interconnecting lines, with arrows attached,
show the various paths the solution may take. A
flowchart shows clearly the logical flow of steps
necessary to solve the problem. If many decisions
are to be made or many alternatives exist, a graph­

ical flowchart makes these alternatives easier to
follow. Flowcharts may be simple, showing only
the vaguest outline of the various alternatives, or
very detailed. The greater the detail in the flow­
chart, the easier the actual programming will be.

Writing in SUPER BASIC

As yet you probably have not been introduced to
SUPER BASIC. This manual is designed to teach it
to you. SUPER BASIC is as much a language as any
other that you have used. To achieve successful
communication, the proper syntax and grammar
must be used. If you do not "speak" SUPE R
BASIC correctly, the 'computer will not under­
stand what you are saying and .will tell you that
you have made an error.

Checking your program (Debugging).

After the program has been written and put into
the computer, your next task is to try to run the
program. If the program runs, only one step re­
mains and that is to make sure that the answers
given are correct.

10 INPUT I,F,G

An INPUT statement may be used either directly
(without a line number) or indirectly (with a line
number).

INPUT Statement

To input information (data) from the terminal,
SUPER BASIC uses the command INPUT with a list
of the variables to be given values. In our sample pro­
gram the variables used were I, F, G.

6

If the program will not run, SUPER BASIC will
generally give you an error diagnostic telling you
what is wrong. If your program runs but the an­
swers are incorrect, there are two things that you
may do. The first is to run the program part by
part in sequential order. In this way you can iso­
late your problem. An alternate method is to try
stepping through the program as the computer
would using the simplest cases you can think of.
Read each step in the program and execute it. Do
only exactly what you have told the computer to
do, not what you know should be done. As you
step through the program you will probably find
the errors.

Writing The Program In SUPER BASIC

A SUPER BASIC program is written in simple logi­

cal steps which are called statements. A statement
may be up to 256 characters long and always must be
terminated by a Carriage Return. Statements normally
appear on a single physical line; however, they may be
continued on the next line by pressing a line Feed in­
stead of a Carriage Return.

> 30 PRINT X:i)

> RUN~

? 34;>

1156

>RUN~

? 122:i>

14884

>

Stored
RUN starts execution of
the program atline 10.
INPUT statement exe­
cuted.
PRINT statement exe­
cuted.
Program executed again.
INPUTstatement executed
again.
PRINTstatement executed
again.

Direct And Indirect Statements

A statement may be either direct or indirect.

A direct statement does not have a line number. It
is executed as soon as the Carriage Return is pressed,

and is not saved after execution.

Example Using Direct Statements

Indirect statements have line numbers. Any integer
within the range 0 to 999999 may be used as a line
number. Indirect statements are always used when
writing a program; they are stored in the program in
line number sequence and are referred to by their
line numbers. When the program is executed the com­
puter will step through the entire set of indirect state­
ments in the specified sequence. The entire program
(all of the indirect statements) will be saved after exe­
cution so that the program may be executed again or
modified.

Example Using Indirect Statements
(Storing The Statements In A Program)

> INPUT A ~

? 34 ()

>X=At2~

> PRINT X ()

1156

>

> 10 INPUT A~

>20 X= At2~

INPUTstatementexecuted
immediately.

X computed immediately.
PRINTstatement executed
immediately.

Stored
Stored

Variables

A variable is defined as a symbol (I,F,G), which is
used to represent a numeric or string value which may
be changed during execution of the program. Legal
variables in SUPER BASIC include any single letter
(A-Z), any single letter/single number combination
(AO-Z9), and any single letter/dollar sign combination
(A$-Z$).

Typing Numeric Data Into Variables

When an INPUT statement is executed, the system
will respond with a ? to indicate that it is waiting for
you to input a value. NOTE: Do not confuse the? in
response to an INPUT statement with the ? error
diagnostic. You should then type the number you
wish to store in the variable followed by a Carriage
Return. If more than one variable is to be given a
value in response to a single INPUT command, the
value should be terminated by a Carriage Return if
you wish the following value printed on the next line.
If you wish the following value to be printed on the
same line, type a space or a comma after the value.
The system will wait until a value has been input for
each variable specified in the INPUT statement and
then proceed through the program.

Example

> INPUT A,B,C

? 123 ~

700,12.4 ~

7

If you make a mistake while typing the value, you
may delete the preceding character by typing a Con­
trol A (AC) 1 as long as you have not yet terminated
the value with a Carriage Return, a comma, or a
space. You may then type in the correct character. In
like manner, you may delete the ~ntire value by
typing a Control W (WC). You may then retype'the
entire number. NOTE: After the terminating Carriage
Return, comma, or space has been input, the value
may not be changed by using the control.characters
AandW.

You may restart input for the entire variable list in
the INPUT statement by typing a Control Q (QC). A
QC may not be used after the value of the last variable

in the list has been terminated.

NOTE: AC prints a ~, V1P a \, and ac an t.

Numbers

Numbers in SUPER BASIC may be represented in
three ways. Numbers may be expressed as integers
(whole numbers without a decimal point), as decimals
(numbers with a decimal point), or in scientific nota­
tion. Scientific notation is used with very Iarge or very
small numbers. For example, if we wish to input the
number of miles travelled by a beam of light in a year

we could use 6E12 instead of 6,000,000,000,000. The
E in this notation tells us that the number to the left
of the E (which may be in integer or decimal form) is
multiplied by 10 raised to the power of the number
appearing to the right of the E (which may be a posi­
tive or negative integer).

SUPER BASIC will accept both positive and nega­

tive numbers as large as 576 and as small as 5-76.

InternallY, SUPER BASIC will retain 11 places of sig­
nificance (all numbers are rounded to 11 significant
digits). SUPER BASIC will output up to 8 significant

digits if a PRINT statement is used, and up to 11 sig­
nificant digits if a PRINT IN IMAGE statement is
used. With a PRINT statement, SUPER BASIC will
output the number as an integer if it is an integer value
within the range ±1 through ±99999999, and as a dec­
imal if it is a decimal value within the range ±0.1
through ±9999999.9. If the number does not fall
within either of the ranges specified above, it will be
output in scientific notation. Output using PR INT IN
IMAGE will be explained later in the manual.

Examples

"G.J.JONES, 9350 ALPHA DR."

"123, RTS, 79549"

"PRINCIPAL $25000.00"

A string is indicated by enclosing the characters in
double quote marks. A string may be of any length
and may contain any group of characters. NOTE:
Blanks (space bar) are considered to be characters. If
the string is longer than 72 characters, a Line Feed
may be used to continue the string on the next line.
The Line Feed will not be accepted as part of the
string. The following expressions are strings.

.12345679E-02

.12345679E+35

-.59E+24

1234

.1234

In the above example, the string J.J.JON ES will be
stored in the variable A, the numeric value 2500 will
be stored in the variable B, and the string DOWN
PAYMENT $500 PAID 1/7/67 BALANCE DUE
1/7/69 will be stored in the variable C.

If you make a mistake while typing a string into
the variable you may use a Control A (AC) to delete
the preceding character, as long as you have not typed
the end quote marks. The Control A may be used re­
peatedly to delete any number of characters back to

Strings

In SUPER BASIC a string of alphabetic and/or
numeric characters also may be assigned to (stored in)
a variable. This makes it possible to store names, ad­
dresses, mixed alphabetic and numeric text, and simi­
lar information in a single variable. Any legal variable
may be used as a string variable. NOTE: A variable
may not be used to store both a numeric value and a
string simultaneously.

.00123456789

1234567890.E25

-5.9E+23

.1234E04

1234E-04

Typing Strings Into Variables

Strings are input in response to the INPUT com­

mand in almost the same manner as numeric values,
except of course, that the string must be enclosed in
double quote marks. When the INPUT statement is
executed and the question mark appears, type the
string enclosed in double quote marks followed by a
Carriage Return, comma, or space.

Example

> INPUT A,B,C ~

? "J.J.JONES", 2500~

"DOWN PAYMENT $500 PAID 1/7/67 W
BALANCE DUE 1/7/69";f!

>

Number Output

1123.4568

.1234

33333333

.66666667 E+16

Number Input

1123.45678

+.1234

33333333.33

6666666666666666

1 - To type a control character depress and hold the CTRL key and then type the desired character.

8

but not including the quote marks. If you wish to de­

lete the quote marks you must use a Control Q (QC)

which will restart the INPUT command. You must

then input all of your data again.

Replacement Statements

Replacement statements are used to assign values

to variables. The value assigned may be a numeric

value, an arithmetic expression which will be evalu­

ated to a single numeric value, or a string (enclosed in

quotes). Replacement statements appear in the fol­

lowing form:

single variable = arithmetic or string expression

In our example there are two replacement statements.

The first one computes the total mileage:

20 T = F-I

The second replacement statement computes the gas

mileage:

30 M = T/G

A string replacement would appear as follows:

R = "G.R.BROWN"

The term replacement statement is used because
the computer actually replaces the value stored in the

variable on the left (T) with the computed value of
the arithmetic expression (F-I). The equal sign (=)

should not be read as "T is equal to" but as "The

value stored in T is replaced by". In later examples we

shall run into replacement commands that are mathe­

matically invalid if the equal sign is interpreted to

mean equality; that is, (T = T + 1) but which make

sense if the statement is read T "is replaced by" T + 1.

A replacement statement may be used both direct­

ly (without a line number) and indirectly (with a line

number).

Arithmetic Operators And Their
Priority Of Execution

Six different arithmetic operations may be per­

formed in SUPER BASIC.

Operation Symbol Precedence

Exponentiation t com pu ted fi rst

(raising a number

to a power)

Unary minus - computed secone

(negative sign)

Division I

Multipl ication *
compu ted th i rd

Su btracti on -

Addition
compu ted last

+

In general, SUPER BASIC follows the established

arithmetic rules. SUPER BASIC does require, how­

ever, that an operator always be specified; that is, 4X

is not a legal expression. In SUPER BASIC it must be

written 4*X.

Priority Of Execution

In normal algebraic expressions only one operatio')

can be performed at a time. The computer also can

perform only one operation at a time, and therefore

since most expressions contain more than one arith­

metic operator, some order or priority of computa­

tion (execution) must be established. The order of

computation used in SUPER BASIC is the same one

found in simple algebra.

All arithmetic expressions in SUPE R BASIC are

scanned from left to right. If any exponentiation is

encountered, it is computed first. Next, all negative

numbers are assigned a negative value (unary minus is

computed).

The system then checks for any * or / wh ich is exe­
cuted from left to right. Finally the system will com­

pute all + or -, again working from left to right.

Example

The operators in the expression

A = 4*-Xt2-1/Y+5
would be executed in the following order.

6

5

3

I
2

~4
lin

A=4*···xt2-1/Y+5

1 - Exponentiation
2 - Unary minus

3- MUltiplicatio~
4 - Division .--J left-to-right

5 - S.Ubtraction ----,
6 _Addition ~ left-to-right

We have A = 4(-(X 2
))-++5

Parentheses

The normal order of execution may be altered by

using parentheses in an expression. Anything that ap­

pears in parentheses must be evaluated first. The inner

set of parentheses is always evaluated first.

40.9

Notice how parentheses in an equation alter the
normal order of execution.

Example

A = (4*(-X))t2-1/(Y+5) isexecutedstartingwith
the inner set of parentheses.

6

4 5

2 I I

1
I

3

n n
A = (4*(-X))t2-1/(Y+5)

1 - First set of parentheses, Inner pair (Unary minus)
2 - First set of parentheses, Outer pair (Multiplication)
3 - Second set of parentheses (Addition)
4 - Exponentiation
5 - Division

6 - Subtraction

in this case A = (4(-X))2_J-s

PRINT Statement

To output information (print it on the terminal)

SUPER BASIC uses the PRINT statement. The PRINT

statement maybe used with a list of variables, arith­

metic expressions, and/or string expressions. When

the PRINT statement is used with a variable list, the

numeric or string value stored in each variable will be

printed when the statement is executed. If the PR INT

statement is used with an arithmetic expression, the

expression will be evaluated and its value printed.
When the PRI NT statement is used with a string

(which must be enclosed in quotes) the string will be

printed when the statement is executed. PRINT state­

ments may be used both directly and indirectly.

Examples

>A = 12.57 ~

>B = "GAL" ~

>PRiNT "THE ANSWER is'';A;B ~

THE ANSWER IS 12.57 GAL

>PR~NT 5*3t2,(9+8)/7t2 ~

45 .34693878

>

The variables, arithmetic expressions, and/or string

9

expressions may be separated in a PRINT statement

by either a comma (,), a semicolon (;), or a colon (:).

The symbol used to separate the variables and ex­
pressions specifies the field format in which the values

and/or strings are to be printed. The comma is used to

specify a zoned field format which will output the

data using five fifteen-space fields per line if possible.
If the number or string is larger than 15 spaces, the
data or string will be continued in the next field. A

semicolon is used to specify a packed field format

which will output the numbers or strings closer to­

gether than the zoned format. The exact format used

depends upon the number of characters in the previ­

ous number or string. A colon (:) is used to specify a

compressed field format wh ich will print one value im­

mediately after another leaving no space between the

values. If the second value prin ted is a positive number
a space will be printed, because although the positive
sign is not printed, a single space is left for it.

Example

>A = 1.5 ()

>B = 7965 ~

>C = "STRING";>

>G = 40.9 ~

>PRINT A,B,G ()

1.5 7965

>PRINT A;B;C ~

1.5 7965 STRING

>PRiNT A:B:C ~

1.5 7965STRING

>
RUN And QUIT Commands

The RUN and QU IT commands are control com­

mands. RUN is always used directly (without a line

number). RUN is used to start execution of a pro­

gram. When used, RUN erases all variable values

stored in the computer memory and then transfers

control to the lowest numbered line in the program.

QUIT is used to return to the EXECUTIVE, and can

be used either directly or indirectly.

SAMPLE PROGRAM - COST OF PRINTING

Define The Problem

The problem is to compute the total cost of print­
ing a definite number of booklets and the cost per

booklet, given the number of copies needed, the num­

ber of sheets printed on both sides, and the number

of sheets printed on one side.

10

Input

1. Number of copies to be printed (N)
2. Number of pages printed on both sides (B)
3. Number of pages printed on one side (S)

Compute

1. Total number of pages printed per booklet
X = 2B+S

2. Total amount of paper needed
Y = N(B+S)

3. Total number of pages printed
Z= X'N

4. Total cost of printing
C = 1.59X+.01765Y+.002883Z

5. Cost per booklet
C/N Computed during the PRINT command.

Output

1. Total cost of printing (C)
2. Cost per booklet (C/N)

SUPER BASIC Program And Sample Execution

-SBASIC ~

> 10 INPUT B,S,N ~

>20 X = 2*8+S ~

> 21 Y = N*(B+S) ~

>22 Z = X*N ~

> 30 C = 1.59*X+1.765E-02*Y+2.883E-03*Z ~

> 40 PRINT "TOTAL COST = ";"$":C ()

> 50 PRINT "COST PER BOOKLET =";"$":C/N ~

>RUN~

? 20,4,40~
TOTAL COST = $ 91.97808

COST PER BOOKLET = $ 2.299452

>QUIT~

START

INPUT
N,B,S

COMPUTE
X = 2*B+S

Y = N*(B+S)
Z = X*N

COMPUTE
C

OUTPUT
C,C/N

STOP

11

SECTION 2

ADDITIONAL SUPER BASIC FACILITIES

In this section we will introduce:

• The control command GO TO;

• A method of modifying commands using the IF
modifier;

• Looping using the FOR and NEXT statements;

• The concept, use, and dimensioning of arrays;

• Picture formatting using the PRINT IN IMAGE
statement;

• A method of storing data in your program in
the form of a "data block", and then accessing
the "data block";

• A method of putting comments in your program;

• A partial list of the standard mathematical func­
tions available in SUPER BASIC.

GO TO Command

GO TO is a control command. When a GO TO
statement is executed, control will be transferred to
the line number specified in the statement. The gen­
eral form of the statement is:

GO TO line number

GO TO may be used indirectly in a program (in which

case it is preceded by a line number) or directly (no
line number).

When an indirect GO TO command is executed in
the program, control is transferred immediately to the
line number specified, thus interrupting the normal

sequential order of execution. GO TO may be used to
"loop" back to a line which has been previously exe­
cuted, or to skip a group of statements in the pro­

gram. An indirect GO TO may be used with an IF
modifier to transfer control only under certain
conditions.

Used directly, GO TO starts execution of the pro­
gram at the line number specified. A direct GO TO
statement may be used in place of RUN to start exe­
cution. NOTE: A direct GO TO will not erase the vari­
able values stored in memory as does RUN.

IF Modifier

The I F modifier defines the conditions under
which the command it modifies will be executed. Any
SUPER BASIC command modified by an IF modifier
will be executed if and only if the conditions specified
by the modifier are met.

10 GO TO 50 IF R = 20

The IF modifier used in this command will transfer
control to line number 50 only if R = 20; otherwise

the GO TO command will be ignored and the next
statement in sequence will be executed.

IF is commonly used with GO TO to transfer con­
trol to another part of the program only under cer­
tain conditions. By using this type of conditional
transfer, you can make decisions in your program
based on previous numeric calculations. For example,
you might check to see that a number is not negative
before you try to compute its square root.

> 10 INPUT A,B,C

> 20 GO TO 50 IF B-C#O

>30 PRINT "DENOMINATOR IS ZERO,.

INPUT NEW DATA"
>40 GO TO 10

> 50 PRINT At2/(B-C)

The Logical Operators

In addition to the equal relationship, five other re­
lational operations may be specified in SUPE R

BASIC.

equal
not equal
> greater th an
>= greater than or equal to

< less than
<= less than or equal to

Relational expressions may be combined using
AND or OR. If an AND is used to connect two rela­
tional expressions, both of the specified relationships
must be true before the command can be executed.
If the OR is used as a connector, only one of the re­

lationships must be true.

> PRINT H IF H>=50 AND H<=75

The I F modifier in this command will limit the
range of numbers printed from 50 through 75
inclusive.

Example

> 10 INPUT H ~

> 20 PRINT Ht2 IF H>=50 AND H<=75 ~

>RUN~

? 45 ~ H is not within the specified range so Ht2
is not typed.

12

Example

Often you may wish to execute the same series of
statements for a specific list of values. This type of
repetition is common in programming and is referred

to as a loop.

The FOR and NEXT commands create loops in
SUPER BASIC. The general form of these commands
is:

4

16
36
64
100

It2 =

It2=

It2 =

It2=

It2 =

The second alternate form lists the actual values to
be assigned to the variables.

Example

>10 FOR X = 1,7,11,99~

>20 PRINT X-3; i>
>30 NEXT X;>

>RUN~

-2 4 8 96

>

Any terminating condition may be set up. An AND
or OR may be used to create a complex terminating
condition. For example,

FOR I = X UNTIL ABS(Zt2.....3»25 OR R = 0

NOTE: If the initial value exceeds the final value,
the statements in the loop will be ignored and control
transferred to the statement following the NEXT.

Two alternate forms of the FOR command also
may be used. The first uses the same basic form but
sets up a terminating condition using UNTI L and a
conditional expression instead of TO with a definite
final limit.

FOR X$ = A-12 BY -.50 TO Rt3-5

Note that a negative interval was specified in the
FOR statement above.

If the desired interval is 1, it need not be specified.
The following statements are equivalent:

10 FOR R=l BY 1 TO 10

10 FOR R = 1 TO 10

>

Example

>10 FOR 1=2 BY 2 UNTIL It2>100~

>20 PRINT "1 = ";I,"lt2 = ";lt2 ~

>30 NEXT I;>

>RUN ;>
1= 2
1= 4
1= 6

1= 8
1= 10

For example, the following is a valid FOR
statement

1
.25

o
.25

1

It2 =

It2 =

It2 =

It2 =

It2 =

FOR/NEXT Commands

H is within the specified range so Ht2 is
typed.

FOR variable = limit BY interval TO limit
statements to be repeated
NEXT variable

The FOR and NEXT commands are always used
indirectly (with a line number), and always must be
used together. FOR specifies the initial value to be
used, the interval by which it is to be incremented,
and the final or terminating value. NEXT ends the
loop and transfers control back to the FOR statement
which then increments the value of the variable and
repeats the "Ioop" using this new value. The loop will
be repeated using the new incremented value until the
limit specified is reached, at which time control will
be transferred to the statement following NEXT.
NOTE: If a NEXT statement is not used, the state­
ments in the "Ioop" will be executed only for the ini­
tial value assigned to the variable.

>10 FOR 1=-1 BY .50 TO 1:?)

>20 PRINT "I = ";I,"lt2 = ";lt2 ~

>30 NEXT I;>

>40 PRINT "END"
~

>RUN~

1= -1

1= -.5

1= 0
1= .5
1= 1

END

> RUN:()

? 55 ~

3025

>

>
The variable used in the FOR and NEXT com­

mands must be a non-subscripted variable. The limits
and the interval may be specified using a numeric ex­
pression or predefined variable as well as a specific
numeric value.

NOTE: The above forms of the FOR statement
may be combined. For example, FOR X = 1,3,5 TO
10,17,20 BY 5 UNTIL X=50.

Nesting Loops

It is often advantageous to nest loops; that is, to
place one loop within another. If loops are nested,

13

If two nested loops are closed at the same time,

you may use a single NEXT statement. The loop that

is closed first must be listed first. The following state­

ments are equivalent.

the inside loop always must be closed before the out­

side loop is closed. Also, if more than one loop is

open at one time, the loops must never have the same

variable name. The following examples illustrate cor­

rect and incorrect nesting of loops.

Allowed Allowed

~FORX
FOR X

FOR Y UFORY[NEXT Y FOR Z

NEXT X [NEXT Z

Not Allowed
[FORW

NEXTW

~FORX
NEXTY

FOR Y [FOR Z

NEXTX NEXT Z

NEXTY NEXT X

Using arrays inside of loops enables you to save all

of the computed values because, by changing the sub­

scripts, you can change the variable each time the loop

is executed.

Example

10 FOR I = 1 TO 3

20 A(J) = It2

30 NEXT I

(I) 1

2

If more than one subscript is used, the subscripts

must be separated by commas; for example, A(I,J).

The number of subscripts indicates the dimension of

the array. One subscript such as A(I) would indicate a

one dimensional array which may be thought of as a
list of items. An array with two subscripts such as

A(I,J) may be thought of as a table or chart having

both rows and columns where I specifies the row and

J the column. To find a particular value in a table,
both the row and column must be specified. For
example, if the table appeared as follows:

(J)

1 2 3
1.1 1.5 1.3

1.7 1.9 1.4

When these statements are executed, A(l) will be

given a value of 1, A(2) a value of 4 and A(3) a value

of 9.

would reserve 50 places in memory for the array ele­

ments A(50) through A(100).

In SUPER BASIC, the subscript boundaries also

may be specified by using an arithmetic expression or
a predefined variable such as DIM I(J). If the first

subscript is one, only the last subscript need be speci­
fied since SUPE R BASIC assumes the first subscript to
be one unless it is given a specific value. For example,
the following two statements are equivalent:

DIM A(1:25)

DIM A(25)

the value 1.7 would be stored in the array element
A(2,l) and the value 1.3 would be stored in the ele­

ment A(1,3).

A number of arrays may be dimensioned in a single
DIM statement. The arrays must be separated by com­

mas as follows:

Dimensioning Arrays

All arrays, except those with subscripts with the

range (1) through (10) or (1,1) through (10,10) must

be dimensioned to reserve sufficient space in memory

for all of the elements of the array. SUPER BASIC

automatically reserves space for a one dimensional

array with 10 elements; namely, A(l) through A(10),

or a two dimensional array with 100 elements;

namely, A(l,l) through A(10,10). The dimension

statement 01 M specifies the array name, indicates the

number of memory locations needed, and specifies

the first and last subscripts to be used as follows:

DIM array name (first subscript: last subscript)

For example, the statement

DIM A(50: 100)

FOR X = 1 TO 10

FOR V = 5 TO 10

NEXT V,X

Arrays

Essential to an effective use of loops is an under­

standing of the concept and use of arrays. An array is

simply a set or list of subscripted variables such as AI,
A 2 , .. A n, which are known as array elements. Each

subscripted variable (array element) is considered to

be a unique variable, and thus each may be used to

store a single value. An array element is identified by

an array name and, in parentheses, a subscript which

indicates the position of the element in the array. For

example, the subscripted variables A(7) and R(4,3)
both could represent array elements. Legal array

names include any single letter A through Z, and any

single letter/dollar sign combination, A$ through Z$.
The subscripts generally are integers, although a non­
integer value, a numeric expression, or a variable that

has previously been given a value may be used, such
as, A(11) ,B(l),R$(3-4*T).

FOR X = 1 TO 10

FOR Y = 5 TO 10

NEXT V

NEXT X

14

DIM A$(12),B(-5:25),R(I)

would set up a three dimensional array with the first
element R(0,-4, 1) and the last element R(6,4,10).

For example, the DIM statement

DIM R(0:6,-4:4,10)

Multidimensional arrays are dimensioned using an
extended version of the DIM statement as follows:

DIM array name(first sub l : last sub l ,first sub2 : last
sub2 , ...)

AREA

78.539816

314.15927

706.85835

RADIUS

5
10

15

>

may occupy a separate line. Remember, however, that
only comments in indirect statements will be saved on
a file.

Example
> 10 PRINT "THIS PROGRAM COMPUTES THE ~

AREA OF 3 CI RCLES ~

> 20 !THE STANDARD FORMULA FOR AREA "­

IS USED~

> 40 PRINT" RADIUS AREA" 1,

!THIS IS A HEADING ~

> 50 FOR R = 5 BY 5 TO 15:(?

> 60 A = 3.1416*Rt2~

> 70 PRINT R,A;>

>80 NEXT R <?
>RUN ~

THIS PROGRAM COMPUTES THE AREA OF 3
CIRCLES

PRINT IN IMAGE - Picture Formatting

In addition to the three conventional output for­
mats, zoned (,), packed (;), and compressed (:),
SUPER BASIC also contains picture formatting facili­
ties with the PRINT IN IMAGE command. Using pic­
ture formatting you may output your data in any de­
sired format with any descriptive text desired. You
specify a "picture" of exactly how the output will
look and the output is printed in that "image".

The general form of the statement is as follows:

PRINT IN IMAGE string:list of variables or
expressions

The format in which the data is to be printed is
stored in a string. The string may be included in the
PRINT IN IMAGE statement or stored in a variable,
and that variable referred to in the PRINT IN IMAGE
statement.

977.6

160

120

200

288

140

?

Example Using Arrays And Loops

A company has 50 employees, numbered 1-50 (I).

Each employee's gross pay is stored in the array ele­
ment G(I). His net pay (20% tax deducted) is stored
in the array element N(I).

> 10 DIM G(50),N(50) ~

> 20 FOR I = 1 TO 50 ~

> 30 INPUT GO) ~

>40 N(I) =G(I)-.20*G(I) ~

> 50 PRINT I;G(I);N(I) ~

>60 NEXT I ~

>RUN~

? 250.00 ~

1 250

? 200~

2 200

? 360~

3 360

? 150~

4 150
? 175()

5 175
? 1222 (?

6 1222

? 790~
7 790 632

Terminated with A L T MODE/
ESCAPE key.

INTERRUPTED IN STEP 30

>

! (Comments) For example, the statement

To add a comment to your program, type a !, then
your comment and a Carriage Return. Any combina­
tion of characters may be used in a comment. Com­
ments are used primarily for program explanation and
documentation and may be inserted at any point in
the program. Comments are not printed during execu­
tion. Comments may follow any statement or they

10 PRINT IN IMAGE "THE ANSWER IS v
%%%%%%.% %%%%": A,B

is equivalent to the statements

10 C = "THE ANSWER IS %%%%%%.% +
%%%%"

20 PRINT IN IMAGE C:A,B

NOTE: A Line Feed was used to continue the
statement on the next line. The Line Feed will, how­
ever, be ignored when the statement is executed, and
the specified image will be printed on a single line;
therefore, the string used to specify the image should
never be longer than 72 characters.

When the PRINT IN IMAGE statement is executed,
all characters (except % and # and ") will be printed
exactly as they appear in the image string with the
first character in the string (following the quote
marks) appearing as the first character on the output
line. The symbols % and # are used to specify the field
formats and can never be printed. The double quote
marks are used to delimit the string and, therefore,
may never appear within the string.

> 10 INPUT At:>

>20 S = "%%%%% %%%%.%% ########~

##.######" ~

> 30 PRINT IN IMAGE S:A,A,A,A:iJ

>RUN~

? 6666.666 ~

6667 6666.67 .67E+04 66.7E+02

>
If fewer fields are specified than there are variables,

the "image" will be repeated until all of the variable
values have been output. Each time the "image" is re­
peated, a new line will be used.

Example

> PRINT IN IMAGE "%%%%%": 123,456,789 ~

123

456

789

Field Format Specifications

The field formats specify how the values stored in
the variables are to be printed. Using the symbols % or
you must specify the number of characters that you
wish printed; and, in the case of numeric values, the
form in which the number is to be printed; namely,
integer, decimal, or exponential.

Integer Fields

To specify integer fields, a % must be typed for
each digit of the variable that you wish to print. If
there is any chance that the variable will be negative,
an extra % must be specified for the minus sign. If
the variable is not an integer, it will be rou nded to an
integer, dropping any decimal places when it is
printed. A maximum of 11 significant integer digits
will be printed. If the number contains more than 11
significant integer digits, 11 significant integer digits
will be printed and the rest of the number filled with

15

zeros. For example, the number 123456789123456
would be printed as 123456789120000. If the field
specification is too large; that is, more %'s are speci­
fied than needed, the number will be right justified. If
the field specification is too small, an error diagnostic
will be given.

Decimal Fields

Decimal fields also use a % sign to specify the
number of digits needed. With decimal output, how­
ever, a decimal point must be specified. For example,
the numeric field specified by %%%%.%% will print
up to four integer digits and two decimal digits. As
with integer fields, if there is any chance that the
number will be negative, an extra % sign must be spec­
ified for the minus sign. If the decimal begins with a
decimal point such as .66, one extra % must be speci­
ified for the minus sign. If the number begins with a
decimal point such as .66, one extra % must be speci­
fied (%.%%) since a leading zero (0.66) is always
printed. If more %'s than necessary are specified in
the integer part of the field specification, the number
will be right justified (leading blanks will be printed).
If the decimal part of the field specification is too
small, the number will be rounded. If the integer part
of the field specification is too small, an error diag­
nostic will be given.

Up to 11 significant digits will be printed. If more
than 11 significant digits are specified, the output will
be rounded to 11 significant digits and zeroes used to
fill the field.
Exponential Fields (Scientific Notation)

An exponential field may be specified either with
or without a decimal point. With scientific notation a
sign is used to specify each place needed. When a
decimal point is not included in the field specification,
a minimum of seven # signs must be specified. The
minimum specification includes a place for:

1. The sign of the number.

2. The decimal point.

3. A minimum of one decimal digit.

4. The E.

5. A plus or negative sign to indicate the sign of
the exponent.

6. and 7. Two places for the exponent.

If the exponential field is specified without a deci­
mal point, the number printed always will begin with
a decimal point; for example, .5E+06.

If the specification contains a decimal point, the
number will be printed with the number of integers
specified. In this case, a minimum of five # signs are re-

16

quired after the decimal point. Four of these are used
for the exponential part (4,5,6, and 7 above), and one
for the sign of the number, which in this form is in­
cluded as the last # sign specified even though the
sign of the number is printed at the beginning of the
number.

In both forms up to 11 significant digits may be
specified. If the specification indicates more than 11
significant digits, blanks will be supplied to fill these
places. The number will be rounded to 11 significant
digits and be right justified. If the field specification
is too small, the decimal part of the number will be
rounded if possible or an error message will be
printed.

> 1OOR = 1.23497E-09 ;>
> 200 PRINT IN IMAGE "############":R~

> 300 PRINT IN IMAGE "###~########":R;:>

> RUN;>
.123497E~08

123.497E-11

>

String Fields

Either a % or a # may be used tospedfy a string
field. One character will be printed for each % or #
sign specified. The entire string need not be specified;
only the first part ofthe string can be printed.

> 10 T = "BROWN W.W., 945 HUSTON" ~

> 20 PRINT IN IMAGE "%%%%%%%%%%":T ~

> RUN;>
BROWN W.W.

A string field is left justified; that is, if more % or
signs are specified than there are characters in the
string, the blanks will be supplied at the end.

Standard Functions

The standard functions are commonly used rela­
tionships which are included in SUPER BASIC as a
convenience for you. The standard functions are used
by specifying the function name followed by the de­
sired argument in parentheses.

Standard Arithmetic SUPER BASIC Special
Function Expression Expression Information

Mathematical
Constant pi
(7T) pi-7T PI

Sine sin(a) SIN(A) Argument must be
in radians.

Cosine cos(a) COS(A) Argument must be
in radians.

Tangent tan(a) TAN(A) Argument must be
in radians.

Arctangent arctan(a) ATAN(A)
Angle whose tan-
gent is A. The an-
sweris in radians.

Natural
Logarithm In(a) LOG(A) Argument must be

positive.

Common
Logarithm IOg10 (a) LOG10(A) Argument must be

positive.

Exponential ea EXP(A)

Absolute
Value lal ABS(A)

Square Root va SQRT(A) Argument must be
positive.

Example

SQRT(25)

The argument of any standard function may be a
numeric value, a predefined variable, or any numeric
expression. The standard functions are treated as nu­
meric expressions and may be used in replacement
statements, PRINTstatements, etc.

Example

10 INPUT A

20 R = SIN (A-PI)+5*COS(A)

30 PRINT R;TAN(R)

The table on the previous page includes the most
commonly used SUPER BASIC functions. NOTE: Not
all of the functions built into SUPER BASIC are in­
cluded here. For a complete list see the Tymshare
SUPER BASIC Manual, Reference Series.

DATA Statement, READ,
And RESTORE Commands

Occasionally you may wish to store certain of your
data values within the program. Data may be stored
in the program in a "data block" which is created by
using the indirect statement DATA. The data values
stored in the "data block" may be accessed with the
command READ together with the Iist of variables
into which the values are to be read.

DATA Statement

A "data block" is created with indirect DATA
statements (DATA statements must have a line num­
ber) which have the following general form:

line number DATA value,value,"string",value

Example

110 DATA 18.3,1E6,"EXP","STG",3

The data is stored in a "data block" in the order in
which it appears in the DATA statement. If more than
one DATA statement is used in a program, the state­
ment with the lowest line number will be stored in the
"data block" first. It does not matter where the
DATA statements appear in your program; they may

appear together at the beginning or end of the pro­
gram, or they may be scattered throughout the pro­
gram. Only numeric values and strings enclosed in
quotes may appear in DATA statements. An expres­
sion or variable may not be used. A DATA statement
may contain any number of values, separated by com-

17

mas, as long as the entire statement is not longer than
256 characters. Any number of DATA statements
may be included in the program.

READ Command

A "data block" is read with the command READ
which may be used either directly or indirectly, and
takes the following form:

READ variable list

Each time a READ command is executed, one
value from the "data block" will be assigned to each
variable in the variable list. If a second READ com­
mand is executed, the next previously unassigned val­
ue in the data block will be stored in the variable
specified.

Example

10 READ A,B,C
20 DATA 1.59, "GAL"

30 READ D

40 DATA 2.57, -3E09

When executed A = 1.59, B = "GAL", C = 2.57,
and D = -3E+09.

RESTORE Command

Normally, each value in the "data'block" will be
read only once. If you wish to reread the "data block"
you must use the command RESTORE. RESTORE
may be used both directly and indirectly. RESTORE
tells SUPER BASIC to return to the beginning of the
"data block" and start rereading it. RESTORE may
be used at any time during program execution; the
entire block need not have been read; however, there
is no way to start rereading the "data block" at any
place other than at the beginning of the block.

Example

10 READ A,B,C
20 DATA 1,2,3,4,5
30 RESTORE
40 READ D,E,F,G

When executed, A=1, B=2, C=3, D=1, E=2, F=3, G=4.

NOTE: When the program is executed with the
RUN command or a direct GO TO, the data always
will be read starting with the first value of the data
block. However, an indirect GO TO statement within
a program will read data starting with the first previ­
ously unassigned data value in the block.

18

Example

10 PRINT "NAME BALANCE DUE"

20 FOR I = 1 TO 5

30 READ N,P,M,N$

40 B =P-M*N$

50 PRINT N; "$ ":B

60 NEXT I

70 DATA "JON ES",21956,172.59,12

80 DATA "SMITH",350,21.95,16

90 DATA "MARCH",7650,99.78,5

100 DATA "ROBERTS",1800,50.51.9

110 DATA "EDWARDS",2100,171.00,2

Programming Hint: If you wish to reuse a program
using varying sets of data, you might reserve one spec­
ified range of line numbers such as 100-299 for the
program, and one for DATA statements such as 0-99.
Your program could be saved on the disk and reused
(see Section 3), and your data could be stored in
DATA statements and read into SUPE R BASIC from
paper tape (see Section 5).

SAMPLE SUPER BASIC PROBLEMS

The following sample problems show problem def­
inition, flowcharting, coding, and program execution.

DOUBLE DECLINING
BALANCE DEPRECIATION

Define The Problem

The problem is to compute the double declining
balance depreciation on any given asset over any spec­
ified number of years.

Input

1. Cost of the asset (C).
2. Estimated useful lifetime (L).

Compute

1. Depreciation 0 = 2Q.
l

2. Book value C == C-D

Output

For the enti re range of years.
1. Year (X)
2. Amount of depreciation (D)
3. Book value (C)

Flowchart

START

OUTPUT
INSTR UCTI ONS
FOR PROGRAM

INPUT
C,l

OUTPUT
HEADING

FOR CHART

FOR X ==
1 TO l

COMPUTE
D==2*C/L
C==C-D

OUTPUT
X,D,C

NEXT
X

SUPER BASIC Program And Sample Execution

- SBASIC;>
> 10 PRINT "PROGRAM TO CALCULATE DOUBLE DECLINING BALANCE DEPRECIATION" ~

> 20 PRINT ! SKIPS ONE LINE ~

> 30 PRINT "WHEN THE QUESTION MARK IS TYPED, INPUT THE COST OF THE" ~

>40 PRINT "ASSET IN DOLLARS AND ITS ESTIMATED USEFUL LIFETIME IN YEARS." ~

> 45 INPUT C,L :E?

>46 PRINT ~

> 50 PRINT" ~
YEAR DEPRECIATION BOOK VALUE" ! HEADING FOR CHART;>

> 60 FOR X = 1 TO L ~

> 80 0 = 2*C/L ~

>90 C= C-D ~

> 100 PRINT IN IMAGE" ~

%%% $ %%%%%%%.%% $ %%%%%%.%%": X,D,C ~

> 110 NEXT X ~

>RUN~

PROGRAM TO CALCULATE DOUBLE DECLINING BALANCE DEPRECIATION

WHEN THE QUESTION MARK IS TYPED, INPUT THE COST OF THE

ASSET IN DOLLARS AND ITS ESTIMATED USEFUL LIFETIME IN YEARS.

? 100000,20 ~

19

YEAR

1

2

3
4

5

6
7
8

DEPRECIATION

$ 10000.00

$ 9000.00

$ 8100.00

$ 7290.00

$ 6561.00

$ 5904.90

$ 5314.41

$ 4782.97

BOOK VALUE

$ 90000.00

$ 81000.00

$ 72900.00

$ 65610.00

$ 59049.00

$ 53144.10

$ 47829.69

$ 43046.72

20

9 $ 4304.67 $ 38742.05
10 $ 3874.20 $ 34867.84
11 $ 3486.78 $ 31381.06
12 $ 3138.11 $ 28242.95
13 $ 2824.30 $ 25418.66
14 $ 2541.87 $ 22876.79
15 $ 2287.68 $ 20589.11
16 $ 2058.91 $ 18530.20
17 $ 1853.02 $ 16677.18
18 $ 1667.72 $ 15009.46
19 $ 1500.95 $ 13508.52
20 $ 1350.85 $ 12157.67

>

MEAN AND STANDARD DEVIATION

Define The Problem

The problem here is to compute the mean and
standard deviation of a group of data. The mean is
computed using the following formula:

N
L X·. 1 I

M=~
N

The standard deviation is computed using the follow­
ing formula.

u=j ~ (X.-M)2
i=1 I

N-1

Input

1. The total number of data items (N).
2. The data (placed in the array A(I)).

Compute

1. Mean
2. Standard Deviation

Output

1. Mean (M)
2. Standard Deviation (S 1)

Flowchart: See next page.

21

SUPER BASIC Program and Sample Execution

-8SASIC ~

>10 T=O~

>20 R=O:;>
>25 PRiNT" TOTAL PIECES Of DATA18

; ~

>30 INPUT N ~

>32 DIM A(N) ~

>35 PR~NT "TYPE IN THE DATA SEPARATED BY COMMAS" iJ
>37 !VALUES SUPPLIED AND MEAN COMPUTED ~

>40 fOR 1=1 TO N iJ
>50 ~NPUT AU) ~

>60 T=T+A(I) iJ
>70 NEXT i :f)

>80 M=T/N ~

>85 ! STANDARD DEVIATION COMPUTED;>

>90 FOR 1=1 TO N ~

>100 R = R+(A(i)-M)f2

>120 NEXT I;>
> 130 Sl=SQRT(R/(N-l)) 4)

>140 PRINT "MEAN =";M,"STANDARD DEVIAT~ON =";S1~

>150 GO TO 10~

>RUN ;()
TOTAL PIECES OF DATA? 5;c:J

TYPE IN THE DATA SEPARATED BY COMMAS

? 1,6,4,5,7;j)
MEAN = 4.6 STANDARD DEVIATION 2.3021729

TOTAL PIECES OF DATA? EBEB

INTERRUPTED IN STEP 30

>

22

Flowchart

START

I .1

1

INITIALIZE
T=O
R=O

~

INPUT
N

A(I) FOR
1=1 TO N

I

~ I

COMPUTE
FOR 1= 1TO N T = T+A(I)

(NEXT I)

~

COMPUTE
MEAN

M

L

~ I
COMPUTE

R = R+(A(J)-M)t2
FOR 1=1 TO N (NEXT I)

•
COMPUTE

STANDARD
DEVIATION

S1

~

OUTPUT
M,S1

6

23

STOCK PROGRAM

Define The Problem

Given the sales, cost of sales, number of shares, and
price-to-earnings ratio, determine the gross income,
the net income, earnings per share, and what the stock
price shou Id be.

Input: The sales, cost of sales, number of shares,
and price earnings ratio: S,C,H,R.

Compute: The gross income, the net income (at
50% income tax), the earnings per share, and what the
stock price should be: G,N,E,P.

Output: The results.

Flowchart: See next page.

SUPER BASIC Program And Sample Execution

R= %%%%" :i)

P= $%%%.%%" ~

R= 15

P= $ 30.00

H= %%%%%%

E= $%%.%%

H= 500000

E= $ 2.00

8000000

1000000

C= $
N= $

-SBASIC c;:>

> 100 READ S,C,H,R;:>

> 110 GO TO 200 IF H=O~

> 120 G=S-C c>
> 130 N=.5*G ~

> 140 E=N/H ~

> 150P=R*E~

> 155 O="S= $ %%%%%%%% C= $ %%%%%%%%

> 156 W="G= $ %%%%%%%% N= $ %%%%%%%%

> 160 PRINT IN IMAGE 0: S,C,H,R ~

> 170 PRINT IN IMAGE W: G,N,E,P ~

> 180 PRINT ~

> 190 GO TO 100 ~

>200 PRINT ~

> 210 DATA 10000000,8000000,500000,15 ~

> 220 DATA 117110,93690,7730,72;>

>230 DATA 2189300,1641980,91220,20 ~

> 240 DATA 2448700,1910000,112230,43 ~

> 250 DATA 0,0,0,0 ~

>RUN~

S= $ 10000000

G= $ 2000000

S= $ 117110 C= $ 93690 H= 7730 R= 72

G= $ 23420 N= $ 11710 E= $ 1.51 P= $109.07

S= $ 2189300 C= $ 1641980 H= 91220 R= 20

G= $ 547320 N= $ 273660 E= $ 3.00 P= $ 60.00

S= $ 2448700 C= $ 1910000 H= 112230 R= 43

G== $ 538700 N== $ 269350 E== $ 2.40 P= $103.20

>

24

Flowchart

START

INPUT
READ S,C,H,R

FROM DATA BLOCK

COMPUTE
G,N
E,P

OUTPUT IN IMAGE
S,C,H,R
G,N,E,P

PRINT

PRINT

STOP

25

SECTION 3

PROGRAM FILES

Saving And Reusing A Program

A program written on the terminal in SUPE R
BASIC may be saved and reused at any time by stor­
ing it on a disk file.

To Save A Program

To save a program which has just been written, re­
written, or read in from paper tape, use the SAVE
command as follows:

> SAVE !File Name! ~

NOTE: With SA VE, any single character or group
of characters except commas may be used in a file
name. It is suggested however that file names be short
(1 - 4 characters).

SUPER BASIC will respond with either NEW FILE
or OLD FILE as follows:

NEW FILE;>

This message indicates that the file is a new one;
that is, you do not already have a file by that name.
Press the Carriage Return.

OLD FILE ~ or N .t>
This message indicates that you are trying to write

over (change) an old file. If you wish to change the
old file, hit the Carriage Return to indicate that you
realize the file is an old one. If you happened to pick
a file name that is already in use, and you would like

to save that file, type N ~ and repeat the above proce­
dure using a new file name.

NOTE: Direct commands and values stored in vari­
ables will not be saved on disk files created with the
SUPER BASIC SA VE command.

To Reuse A Program

To reuse a program which has been saved on the
disk, use the LOAD command. This command copies
the file from the disk; the file is not erased.

To use the LOAD command with a saved program,
type LOAD and the file name enclosed in slashes as
follows:

> lOAD /fiie Name/ ~

When the computer returns the >, the program is
ready for use. Only statements with errors in them
will be printed. If you would like a complete listing of
the program use the command LIST when the> is re­
turned. If you wish to start execution of the program,
use the RUN command. If you wish to edit the pro­
gram in any way, make the changes and then use the
SAVE command to write the edited program back on
the file. Remember that nothing done on the terminal
will be saved unless it is saved on the file.

Using A Tymshare Library Program

> LOAD "LObwany File Name" ~

Any library program which is written in SUPER
BASIC may be called by using the LOAD command
and enclosing the file name in double quote marks as
shown above. NOTE: Most SUPER BASIC library
programs are self-starting.

Removing A File

To remove a previously saved file from the disk,
use the EXECUTIVE command DELETE (see Page
30).

26

SECTION 4

SUPER BASIC EDITING FEATURES

If you have made an error in your program, there
are three courses of action open to you. You may:

1. Add a statement.
2. Delete a statement.
3. Change a statement.

Statements may be added at any time. Statements
may be changed or deleted while they are being typed
using a Control A (AC) and/or a Control Q (QC); or
immediately following the incorrect line by using the
Control Z (ZC) and/or the Control D (DC).

The system is always in the edit mode both when a
statement is being typed, and also immediately follow­
ing the Carriage Return after an indirect statement has
been typed. Statements also may be edited immedi­
ately after an error message or the error diagnostic?
is returned.

Example

> 50 PRINT A;B;C ~

> ZCA50 PRINT A,DcB;C ~
> 60 PRING R,S ~

?

> ZCN60 PRINT DCR,S ~

>
If you wish to delete or change a line other than

the cu rrent or last line typed, you must use either the
DE LETE or EDIT command. NOTE: Control charac­
ters are explained below.

Adding A Statement

To add a statement to a SUPE R BASI C program,
merely type the statement with a line number that
will position it at the appropriate place in the pro­
gram. SUPE R BASIC orders the program according to
the statement line numbers ignoring entirely the order
in which the statements are typed. If you cannot add
a statement where you need one; for instance, if you
need to add a statement between line number 10 and
11, you must renumber your program before you add
the statement.

A program may be renumbered very easily with the
command RENUMBER (abbreviated REN). You must
specify the first new line number of the program, the

first line to be renumbered, and the increment desired
between the lines as follows:

RENUMBER AS new line # FROM old line # BY
increment

The RENUMBER command always must be used
directly (without a line number). When RENUMBER

is used, the specified statements in the program will
be renumbered. The program itself will. not be
changed, only the line numbers and references to line

numbers will be changed.

If, for example, we wish to add a statement be­
tween 0 and 1 to print RADI US =, the program first
must be renumbered; then the statement may be
added.

> 0 PRINT "AREA OF A CIRCLE" ~

> 1 INPUT R ~

> 10 A = PI *Rt2 ~

> 11 PRINT "AREA =";A ~

> 12 GO TO 1 ~

> RENUMBER AS 20 FROM 0 BY 10:f)

> LIST ~

20 PRINT "AREA OF A CIRCLE"

30 INPUT R

40 A = PI*Rt2

50 PRINT "AREA =";A

60 GO TO 30

> 25 PRINT "RADIUS =": ~

Deleting A Statement

The easiest way to delete a statement is to type the
statement line number followed immediately by a
Carriage Return. The statement and the line number
will be removed from the program.

Statements also may be deleted with the direct
command DELETE (which may be abbreviated DEL)
followed by the line numbers of the statements to be
deleted separated by commas. For example, the state­
ment

> DELETE 10,20,11,9,5

will delete statements 5, 9, 10, 11, and 20.

A range of statements may be deleted by placing a
dash (-) between the line numbers. When a dash is
used, all statements with line numbers within the
range specified will be deleted from the program.

For example, the statement

> DELETE 0,20-40,99

will delete statement 0, statements 20 through 40 in­
clusive, and statement 99.

To delete everything that you have done (the pro­
gram, the values stored in variables, etc.), use the com­
mand DE LETE ALL. Whenever you start a new pro­
gram it is a good idea to use DELETE ALL after

Sta·tement typed.
Statement edited.

saving your program, otherwise you may pick up
statements or variable values from the old program.

Changing A Statement

The simplest way to change a statement is to re­
type it correctly using the same line number. How­
ever, a program may be changed more qu ickly using
the EDIT command in conjunction with the editing
control characters. The EDIT command always must
be used directly with a single line number. When the
command is executed, the system types the statement
specified and then waits for you to edit it. For ex­
ample, if statement 10 were PRINT A;B the editing
might proceed as follows:

> EDIT 10~

10 PRINT A;B

ZCA10 PRINT A ~

Statement 10 is now PRI NT A. Notice how the
control characters make editing easier.

Editing With Control Characters

The SUPER BASIC editing control characters pro­
vide the most flexible means of editing available. To
generate a control character you hold the CTR L key
down and press the character you desire. Fourof the
control characters used in editing will be introduced
in this manual. The control characters may be used
when a statement is first typed as well as when the
EDIT command is used. NOTE: Control characters
are indicated as follows: AC, DC, etc. Some control
characters print a symbol, others print nothing.

Deleting A Character (Control A)

This control character deletes the preceding char­
acter. AC can be used repeatedly to delete several pre­
ceding characters. Whenever an AC is used, a +- is
printed.

Deleting A Line (Control Q)

A Control Q deletes the entire statement currently
being typed and allows you to retype the entire state­
ment from the beginning. When a QC is used, an t .is
printed.

Copying To A Character (Control Z)

A Control Z searches either the preceding line or
the statement specified by an EDITcommand for the
character specified after the ZC. If ZC cannot find the
character, ZC does nothing to the line, rings the bell,
and waits. If the character is found, ZC copies all of
the characters up to and including the character speci­
fied and prints the characters on the terminal. Now
make your corrections and continue typing the line.

27

When you want to end the statement, hit the Carriage
Return.

Copying The Rest Of A Line (Control D)

The Control D copies the rest of the old Iine to the
new line (including the Carriage Return). The new
line is checked for errors and control is returned to
you with a>.

Listing A Statement

To list a statement (have it typed out), use the
command LIST with the line number of the state­
ment. If you wish to list a group of statements, simply
separate the line numbers with commas; for example,
LIST 1,3,7. If you wish to list a range of statements,
use a dash between the limits of the range such as
LIST 10-20. If you wish to list the entire program,
use the command LIST followed by a Carriage Re­
turn. For example, the statement

> LIST 0,10-40,97

will type the statements with line numbers 0,10
through 40 inclusive, and 97.

Example Using EDIT, DELETE, LIST
And The Control Characters

> 10 INPUT A,B ~

> 20 T = Bt2-SAc+-A ~

> LIST 20~

20 T =Bt2-A

> 20 S = T+AQCt

25 S= T+At2~

> 30 I = "ANSWRAc+-ER = " ;f)

> 40 PRINTS ()

> 50 PRINT A,B ~

> LIST ~
10 INPUT A,B

20 T = Bt2-A

25 S = T+At2

30 I = "ANSWER ="
40 PRINT S

50 PRINT A,B

> EDIT 50 ()
50 PRINT A,B

ZCA50 PRINT A;B,I:S ~

> DELETE 40.;>

> LIST ~

10 INPUT A,B

20 T = Bt2-A

25 S = T+At2

30 I = "ANSWE R = "

50 PRINT A;B,I:S

>

28

SECTION 5

PAPER TAPE

On line time may be minimized by punching your
program on paper tape off line. You may then log in,
call SUPER BASIC, and, using the SUPER BASIC
command TAPE, read the entire tape directly into
SUPER BASIC.

Punching A Paper Tape Off Line

To punch a paper tape off line, turn the knob on
the front of the terminal to LOCAL and push the ON

button on the paper tape punch. All characters typed
on the keyboard will be punched on the paper tape as
well as printed on the terminal. The program state­
ments are punched on paper tape in the same manner
as they are typed on line except that you must termi­
nate each statement with a Carriage Return and then
a Line Feed. If a statement is longer than one physical
line, reverse this process; end the line to be continued
with a Line Feed and then type a Carriage Return.

Errors on the paper tape may be corrected immedi­
ately after they are made in one of two ways.

1. You may correct an error off line by first
punching the Back Space key on the paper tape
punch controls and then hitting the RUB OUT
key on the terminal; or,

2. You may use the two editing characters avail­
able. The back arrow (+-) may be used to delete
the previous character, and the up arrow (t) im­
mediately followed by a Carriage Return may
be used to delete the entire line being typed.

CAUTION: When punching paper tape off line, al­
ways type both a Carriage Return and a Line Feed in
the order indicated in the examples below.

Example

Turn the paper tape punch on.

10 INPUT A <:' ~
20X=At2-8~~

30 PRINT IN IMAGE".~

At2-8 = ###########,':X ~ ~

Turn the paper tape punch off.

Reading The Program
Into SUPER BASIC

The program may be loaded directly into SUPER
BASIC using the direct command TAPE as follows:

- SBASIC ~

> TAPE ~

Place the paper tape on the tape reader and turn the

reader to START.

10 INPUT A

20 X = At2-8
30 PRINT IN IMAGE"

At2-8 = ###########,': X
DC The DC may be punched at the end of the paper

tape or may be typed from the terminal after

the entire tape has been read.

The Control 0 terminates the TAPE command and
control is returned to you. All statements with errors
will be printed with the appropriate diagnostics after
the Control D has been typed. You should now retype
any incorrect statements as incorrect statements are
not retained in the program. After the program has
been read into SUPER BASIC and the errors cor­
rected, you should continue as though you had just
written the program on the terminal.

29

SECTION 6

THE EXECUTIVE

Entering The System

The process of calling the system and telling the
computer who you are is called logging in.

After you make the connection properly, the sys­
tem replies with:

PLEASE LOG IN: ~

Now type a Carriage Return and the system replies
with:

ACCOUNT: A3 ~

Type your account number followed by a Carriage
Return. The system then types:

PASSWORD:~

Type your password followed by a Carriage Re­

turn. NOTE: The password does not print. The sys­
tem next types:

USE R NAME: JON ES i)

Type your user name followed by a Carriage Re­
turn. The system next asks for a project code.

PROJ CODE: K-123-X <
Type your project code followed by a Carriage Re­

turn. NOTE: Project codes are optional. If no project
code is wanted, simply type a Carriage Return in re­
sponse to the system's request.

After you have entered the requested information
correctly, the system will type:

READY 12/8 11:20

Now call any of the subsystems such as SUPER

BASIC, or give commands in the EXECUTIVE.

Calling SUPER BASIC

SUPER BASIC may be called at any time from the
EXECUTIVE (whenever the EXECUTIVE dash ap­

pears). To call SUPER BASIC, type SBASIC and a

Carriage Return. The system will respond with a> to

indicate that it is waiting for a SUPER BASIC state­

ment. You may then give any of the SUPER BASIC

commands.

-SBASIC iJ
> Any SUPER BASIC command may now be typed.

Continuing After Interruption

-CONTiNUE ~

If for some reason you return to the EXECUTIVE

and then wish to return to your SUPER BASIC pro­

gram, you can continue your program where you left

off by typing CONTINUE or CON. The system will

recall SUPE R BASIC and give you a > to let you

know that you are back in SUPER BASIC and have

control.

All of the work that you had done before you re­

turned to the EXECUTIVE will be saved as long as

you have not called another language (CAL, EDITOR,

etc.). CONTINUE applies to the last language called.

- SBASIC:i)

> INPUT A:j)

? 19:;J

> au IT ~

-CONTiNUE ~

SBASIC

>PRiNT A ~

79

>
The value stored in the variable A was saved by

using CONTINUE. If you had reentered SUPER

BASIC by typing -SBASIC, you would have lost
everything that had been done up to that point that

had not been stored on a disk file.

Listing Files

- FILES

When this command is typed in the EXECUTIVE a

complete listing of all your current files will be

printed, and the type of file will be indicated (SYM

for symbolic, BIN for binary, or DUM for dump). Al­

most all SUPER BASIC files will be symbolic.

- FILES ~

SYM /MORTGAGE/
SYM /MATR IX/
SYM /MILE/
SYM /GAS/
SYM /TRO/
SYM /SIM/
SYM /ST/
SYM /DEPR/

30

Deleting Files

- DELETE /File Name/

This command is used to delete (erase) files from
the disk. More than one file may be deleted at a time
by placing a comma between the file names as follows:

- DELETE /MORTGAGE/,/TRI/,/JR/ ~

Leaving The System

When you are ready to leave the system, you must

first be in the EXECUTIVE, characterized by the
dash in the left hand margin. NOTE: To return to the
EXECUTIVE, type QUIT~. Then type:

- LOGOUT (or -LOG) ~

followed by a Carriage Return. The computer then
will type:

TIME USED 0:37: 12
PLEASE LOG IN:

Now disconnect the line, or let another user log in.

31

GLOSSARY

ARGUMENT
A variable upon whose value the value of a function
depends. The arguments of a function are listed in

parentheses after the function name whenever a func­
tion is used; for example, SIN(A).

CODE
A system of symbols for representing data or instruc­

tions (commands) in a computer. The act of trans­

lating or writing information in the form of abbrevia­

tions and specific notation which can be understood

by the computer is usually called coding.

COMMAND
The part of a statement which specifies the type of

operation to be performed by the computer. For in­

stance, PR INT indicates an output operation.

COMPILE
To convert the program from a non-machine language
such asSUPER BASIC to a machine language. SUPER

BASIC checks each statement for errors before com­
piling and will return the appropriate diagnostic if the

syntax is incorrect.

COMPUTE
Perform the operation (s) indicated.

DISK
A magnetic storage device on which data, programs,

and text may be stored.

EXECUTE
To carry out an instruction or command, or set of

commands (program).

FILE
A program or data which has been stored on the disk.
Files are referred to by file names. Each file name

must be unique.

Binary File

A file in which the machine instructions or data are

stored in numbers to the base two. Binary files can be

read only by a computer program and cannot be dis­

played in readable form on the terminal.

Dump File
A special binary file that contains a program to re­

store the operating system under which the program

was run.

Symbolic File

A file which is stored using the image of the charac­

ters as they appear on the terminal. Most files used in

SUPER BASIC are symbolic files.

FORMAT
A defined arrangement of characters, fields, lines,

punctuation, headings for a desired clear presentation
of data or printout.

HARDWARE
The mechanical, magnetic, and electrical components

of a computer.

INPUT
Information or data supplied to the computer by the

user. Input ordinarily is supplied from the terminal

keyboard or from paper tape when using the Tym­
share system.

LOOP
The repeated execution of an instruction or a series of

instructions.

OFF LINE
Operations performed while not connected with the
computer (such as punching paper tape).

ON LINE
Operations performed while connected directly with
the computer.

OPERATOR
The what-to-do part of an arithmetic expression (for

example, add, subtract). A symbol denoting the math­

ematical or logical operation to be performed.

OUTPUT
Information or data printed by the computer. Com­

puter results such as answers to mathematical prob­

lems, statistical or accounting figures. Information or

data written on tape also is considered output.

PUBLIC LIBRARY
A library of programs stored on disk files which may

be used by any Tymshare user.

SOFTWARE
The features in a computer which are not hardware
(the programs, compilers, languages, etc.).

STATEMENT
A single program step which consists of a command

and any modifiers.

STORAGE
A general term for any device able to retain infor­

mation.

32

APPENDIX

THE TERMINAL

The Keyboard 1

CD·. r::\ (#\ CD$ (Do CD 0 ((\ fl\ (\ 0 (:\ ~
1 \2)"-2.) 4 5 6 7 \.V\..V\!...) : ~~-- -- -- -- -- -- -- -- -- -- --

~~(\(\~~Q(\(\~(:\(;\~~
\Jor~ '0V \V ~ \.V \.V \V \V \...y "-V_0 _ "'-V_P_ ~ ~

SHIFT
Only those keys which are underlined in the keyboard
diagram have a shift position. The SH I FT key oper­

ates in the manner of an ordinary typewriter. The
SH IFT characters are printed as they appear on the
upper half of these keys, with the following excep­
tions:

SHIFT K = [
SHIFTL=\
SHIFT M =]

CTR L (Control)

Any alphabetic key may be pressed in conjunction
with this key. The resulting character, called a con­
trol character, does not always print on the terminal.
Control characters serve a variety of purposes depend­
ing on when they are typed. Some languages, for ex­
ample, use control characters as editing instructions
to the computer. In the Tymshare manuals, a super­
script c is used to designate control characters; for
example, Control 0 is shown as DC. Note the follow­
ing special control characters:

JC = Line Feed
MC = Carriage Return

ALT MODE or ESCAPE

This key is used to abort a command, interrupt the
execution of a program, and/or return to the EXECU­
TIVE. NOTE: On machines not having either the
AL T MODE or the ESCAPE key, use SHIFT KC.

HERE IS
Not used in the Tymshare system.

LINE FEED
Advances the paper one line each time it is pressed.
When the user is connected to the computer, the sys­
tem automatically supplies a Carriage Return after
every Line Feed.

RETURN (Carriage Return)
Returns the print head to the beginning of a line. The
print head goes to the beginning of the next line only
when the user is connected to the computer; that is,
the system automatically supplies a Line Feed after
every Carriage Return.

RUB OUT
Used in conjunction with the B.SP. button on the
paper tape punch to delete characters punched in
error.

REPT (Repeat)

Repeats any character on the keyboard (including a
space) when pressed in conjunction with the desired
character.

BREAK
DO NOT press this key; it causes a transmission inter­
rupt and possible loss of program and data.

NOTE: Maximum line width is 72 characters.

1 - This is the standard terminal keyboard. On individual machines, some keys may not exist or may be located differently than
shown in this diagram.

33

The ON/O FF Controls

The standard ON/OF F control is a three-position
dial located on the front of the terminal and to the
right of the keyboard.

B.SP.
Back spaces the paper tape one frame each time the
button is depressed. Used in conjunction with the
RUB OUT key on the keyboard to delete erroneous
characters.

Reader Controls

START

Punch Controls

STOP

ONB.SP.

00
00

REL. OFF

LINE
The terminal is ON and ready to be connected to the
computer via the phone line. When the connection is
made, the terminal is said to be "on line".

OFF

LINE0 LOCAL

Standard ON/OFF Control

OFF
The terminal is OFF.

LOCAL
The terminal is ready for local ("off line") opera­
tions; that is, operations to be performed when the
terminal is not connected to the computer. Paper tape
may be punched offline.

The Paper Tape Controls

When the terminal is equipped with a paper tape
punch and reader, the controls are on the left side of
the terminal.

FREE

REL.
Releases the paper tape so that the user can pull it
through manually.

OFF
Turns the punch OFF.

ON
Turns the punch ON to punch the paper tape.

START
Starts and continues paper tape reading.

STOP
Stops paper tape reading.

FREE
Frees the tape reader mechanism so the user can pull
the tape through manually.

35

SUPER BASIC SUMMARY

ARITHMETIC OPERATORS

MATHEMATICAL FUNCTIONS

Legal Variables
Subscripted Variables

NUMBERS

Integer (without decimal point) e.g., 357940
Decimal (with decimal point) e.g., 35.7940
Scientific Notation 3.57 E23 (where E23 means x 1cf3)

PRINT IN IMAGE "image string":variable,
expression, "string"

Replacement Statement

Single variable = arithmetic or string expression
A= PI*Rt2 S= "STRING1"

Control Statements

GO TO line number
RUN (direct only)
QUIT

RESTORE (used with DATA statements)
FOR Loop Statements (Indirect Only)

FOR variable = value list
FOR variable = limit BY interval TO limit
FOR variable = limit BY interval UNTI L

terminating condition
NEXT variable

Miscellaneous

DI M array name (first sub l : last sub J ,first sub2 :

last sub2)

DATA value list (indirect only)
! Comments
LIST (direct only)
TAPE (direct only)

Modifiers

I F expression
FI LES (Direct Only)

SAVE /file name/

LOAD /file name/
LOAD "library program"

EDITING COMMANDS (Direct Only)

DELETE line number
DEL line number
DELETE ALL
EDIT line number
RENUMBER AS new line number FROM old line

number BY increment
Control Characters

VARIABLES

A-Z,A$-Z$,AO-Z9
A(1),A(2),Z(L,M,N),

A$(I)-Z$(I)

Absolute value of A
Sine of A
Cosine of A
Tangent of A
Angle whose tangent is A
e to the power A
Natural logarithm of A
Base 10 logarithm of A
Positive square root of A
Mathematical constant 1T

RELATIONAL AND LOGICAL OPERATORS

Equal
Not equal
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
AND
OR

ABS(A)
SIN(A)
COS(A)
TAN(A)
ATAN(A)
EXP(A)

LOG(A)
LOG10(A)
SQRT(A)
PI

In order of precedence

t Exponentiation
Unary minus

*,/ Multiplication, Division
+,- Addition, Subtraction

STATEMENT FORMS

Unless indicated, the following statements may be
used both directly (without a line number), and in­
directly (with a line number).

Input/Output Statements

INPUT variable list
READ variable list (reads data from DATA

statements)

PR INT variable, expression, "string"

QC

ZC Character

Wc

Prints a ~ and deletes preceding
character.

Prints an t and deletes the state­
men t being typed.

Copies up to and including the
character typed after it.

Copies and prints out the rest of
the line. Ends the edit.

Prints a \ and deletes preceding
word.

	Contents
	Preface
	Section 1 - Introduction to SUPER BASIC
	Section 2 - Additional SUPER BASIC Facilities
	Section 3 - Program Files
	Section 4 - SUPER BASIC Editing Features
	Section 5 - Paper Tape
	Section 6 - The Executive
	Glossary
	Appendix - The Terminal
	SUPER BASIC Summary

