
, .. ,

VI

REFERENCE MANUAL FOR THE

TIME-SHARING EXECUTIVE

By

Verne E. Van Vlear

April 12, 1967

TABLE OF CONTENTS

1.0 Introduction 1.1

2.0 Access to the Computing Facilities 2.1

3.0 Exec Command and File Name Recognition 3.1

4 .0 Files 4 .1

4.1 File Naming

4.2 Accessing Other User's Files

5.0 The Executive Command Language

4.2

4.3

5.1

5.1 Entering and Leaving TSS 5.1

5.2 Commands Relating to the Allocation
of Memory 5.1

5.3 Commands Relating to the Interaction
of Teletypes 5.3

5.4 Creating and Manipulating Files 5.6

5.5 "System" and Tape Commands 5.9

5.6 Miscellaneous Commands 5.11

1.1

1.0 INTRODUCTION

The Time-sharing System, (TSS), is a system for making ,',.
a single 66ili~uter p~bvid~ simultarieous> continuously
supervisable computing power to a number of authorized
users. By "simultaneous" we of course mean ,app~rently
simultaneous; it is the computer's capacity for perform­
ing tasks at tremendously high speed that gives the il­
lusion of simultaneity. TSS is furthermore designed
principally for those users who> in order to obtain
fruitful results, need to guide their programs more or
less continuously through the course of its execution.
One example of such application is in the checking-out
of a program -- wherein> at each successive catastrophe,
the user is called upon to make an amendment and try
again.

TSS provides the following facilities:

1. Mutual protection of the users against one another.

2. Optional partial removal of this protection so
that users can communicate with one another'via
the computer.

3. A more-or-less equal division of computing time
between the current users.

4. Software packages necessary to permit one prog­
ram to control others -- with overall control
by the user via peripheral equipment.

5. Software packages which permit communications
between computer and peripherals without regard
to the latter's special physical peculiarities.

6. A filing system for preserving user's program
documentation.

7. Response to a number of requests that arise
naturally in the course of a user's connection
with the system.

The preliminary medium by which computer and user communi­
cate is at present the teletype console, which allows
input, user to computer, from a keyboard and output, computer
to user, via a type-head. Paper tape> punched card and
magnetic tape are also available but are generally more

1.2

cumbersome and unsuitable for primary input. These same
devices, alo~g with a high speed printer" are available
for o l.t't'put, but "are,' not normally used during regular TSS "
service. ',C~thode'ray displays,and other gr~phical dis-', '
play de.vic'es are' ,also' being ',deve'loped ,and ,are likely to "
rende~.mcinag~able the ihput ~nd'output of graphical da~~.,

• • /. • I. •

2.1

'.

2.0 ACCESS TO THE COMPUTING FACILITIES

In order to establish a link between a teletype console
and the computer, follow one of the procedures described
in the IITymshare Reference Manual it under IILOG INi', depend­
ing .. upon the type of teletype terminal equipment. It
should be noted here that there is no direct link between
keyboard and typehead. Any such link which appears to
exist is established through intermediate software. The
TSS software, of course, arranges that the typehead"re­
spond to keyboard input in a manner appropriate to the
occasion which usually involves echoing back to the type­
head, any characters input from the keyboard.

Following the liLOG IN:l, a printed response II carriage re­
turn, line feed, _Ii indicates that the user has been
connected to a built-in software package, called the
Executive Program, hereinafter referred to as "Exec"
which awaits further teletype input in the form of stylized
English language requests or commands. Via these commands
the Exec will provide sufficient services to get the
user into contact with all the other TSS facilities.
It is, itself, primarily a medium for specifying memory
requirements handling user's program documentation and
establishing communications between different teletypes.

3.1

3.0 EXEC COMMAND AND FILE NAME RECOGNITION

It is appropriate here to describe the way.in which Exec
Commands and Input File Names are recognized. After
sufficient characters have been typed in to distinguish
the intended command or name from all others, succeeding
characters that agree with the name string will continue
to be taken from the teletype input buffer. If an alpha­
betic character is encountered that does not agree with
the string an error is assumed and an appropriate diag­
nostic is given. All characters in the input buffer will
be deleted. The first non-alphabetic character (carriage
return, space, comma, digit, etc.) that does not agree
with the selected string will act as a terminator and
will be left in the buffer.

If the command lICOpyll and the file names /INPUT/ and
/OUTPUT/ are unique, the following string:

COpy /INPUT/ TO /OUTPUT/

could be abbreviated to:

C/I T /OUTPUT/

or COpy /INPUT/ TO TELETYPE could be abbreviated to:

C/I,T

Note the optional use of the it," or the T to act as the
separator between file names.

Note that most Exec commands await a terminating Cr which
is the user's confirmation that the command is to be exe­
cuted. The command is not implemented until this con­
firmation is received and until then may be aborted by
pressing usually any other character or, certainly, by
pressing the ;tescape': key.

Exec commands that must be followed by additional input
from the user (such as the COpy command that is immediately
followed by the input file name) will provide some help
to the user if he follows the command with a carriage
return. The Exec will respond with a message that indi­
cates the next input from the user. For example, if
the command COpy is followed by a carriage return, the
Exec will type:

FROM FILE:

If the user makes an error, the Exec will respond with

3.2

an appropriate error message indicating where in the
sequence of 'input,.;the ·user \<lent wrong, :as follows::·

": ERROR, ',TYPE", FROM FILE ::, . ~:- .
, "

It will be left ·to ,the' user, ·to ,discover the various, h~lp.:;·,>:.
and .e~ror. ,message-s pro.vided .. by the. ·Exec-. ;

.. :,
. ~: .

4.1

4.0, FILES

Before describing the Exec's command language it would
be appropriate to discuss the nature of files and the
manner ,~n'which they'are referenced.

Files are the prima~~,means by:~hich the user establishes
continuity between .on:e cOt;nputer run and the next (a
If run ll being that': s~'q:uence,:o'f activities, mutual to the
computer arid a user j betweenltLOG INti and the next EXIT
or LOGOUT command ._- see sec. 5. I) . A file 1s any named
block of information' which·,:,the user finds is convenient
to ~~gard as '?-,s';i.ngle:' e~~,~ty; the commonest example of
~ file is just a 'pro~~a~~ To provide a check against'
inap~~opriate use, files created by the Exec and TSS' sub~
systems are classified, according to the nature of the
information in them, into one of five types -- with each
of which is associated a type number. This type number
is carried along with the information content and is
checked whenever the fil~ is referenced by an Exec com­
mand' (or any other of the TSS facilities, w,hich reference
files). If the fil~,is .found to be of ~ty~~ ~n~pprqpriate
to the, Gontext the:: 'comni'and is not executed' and ah" errbr
is ind,lcated.

The fiie~types are:

1. Core Image - The information in this originates
,from specified segments of core
memory.

2. Binary

3. Symbolic
..

~ .. " ",

Dump
, .

" (,'

5" •. SUbsystem

- The information has the form of l
'::,:,

an a~sembled but· uhloaded program~

- The information is of'a form which
c~n b~:readily listed"ci~ som~, '
printing device.'

Comprises all the information in
memory nece~sary to restart the
user from his current situation,
i.e., the situation at the time
of creation of the dump file.

- Cokprises up to eight 2K blocks
whirih can be read into shared memory.
The information originates from
core memory and is normally execut­
able as an assembl~d and loaded
program.

4.2

Files of types 1, 4 and 5 originate from information, in
core. Before names have been explicitly assigned to them,
type I, "ltCore Image:T files, are referred to by their boun­
ding core addresses'; the ~'lhe~eabouts Ofa type 4 , ItDumpB
file, is implicit in its' nature, while'type 5" ,;rSubsystel1llt
files are specified by delivering the pseudo-'re'labeli'ng "
of th.e pages containing ~he information to, the,command
which attaches a name to' them. '

The, information in. type 3" ~r Symbolic Ii' files may.c'ome '"
directly from, pape;ro tap'e" tele~ype or car,ds, and, in s'uch",' ,
a case is referred to by' usipg the name, of th€(correspbn~ ,
ding physical medium, viz., ' " ,

." . . -. .~: " :.

"PAPER TAPE":"
'TELETYPE

, ,PRINTER
'CARDS

.-: '..
, , ' .. ' .. " l ~' , ,": ' , , ,

These ,names' are ,built, into, the system and ,are always 8:P'~,
prop:riately re'Cognized. Another built-in~!:file~: name "

,is ,,: ," , ,": ",' i" ,

NOTHING

which always contains precisely nothing and whosefunc­
tion is to act as an infinite sink in which lim'itless'
urp~allted o~tp~~,' can be los~ ",: "

A mor~" 'common source of symbolic, r:Lles is the output
from a subsystem, notably the te'xt editor, QED.

Type 2':~ l'Bin.a;ry" fil~s may' origin~~:e from paper tape or
cards !I 'but, ni'ore commonly:> arise as' the output from the
machine langqag~ assembly subsyst~m, ARPAS, and ,as the
data' o~t;put .of ,a program. , " :'; '~,;

Until the actual process of output from the subsystem
occurs, identification of the information is handled by
the said subsystem 'and is usual~Y .. implicit since the sub­
systems, can, usually, hari\ile only one, file at a time. How­
ever, when the inforI!lation is, ejected into a contest in­
volving many other b16cks of infbrmation of a similar
kind some explicit identification must be attached to
it .

• p,' \ .

The names which t'h~,. ttser is free to invent (although
'with: some r'estric'tions) 'an~, as'9ign to files are of
three types: '

4.3

1. Slashed names
2. Unslashed names
3. Quoted names

Slashed names are reserved for files that are on
the disc, quoted names are reserved for files that
are on magnetic tape, while unslashed names may be
of any type. Tape files may be created and used
only by the class of users that are assigned "peri­
pheral tl status so that the general use of quoted
file names is also restrfcted to the peripheral
class of users. By the use of the cbmmand RENAME~
to be described later~ slashed and quoted file names
may be renamed into unslashed names.

When reference is made to an unslashed file name~
the Exec will consider the name to be fully delivered
as soon as it has received sufficient characters
to distinguish the name from all others currently
defined by the user. This also applies to slashed
and quoted names when the file is used for input.
Note that a new name can never be introduced in its
unslashed form, and that slashed and quoted names
must be typed in their entirety when the name is
used for an output file. See Section 3.0.

4.2 Accessing Other User's Files

The naming system described is adequate to reference
all the files belonging to the current user, in whose
name the Exec was entered. However, to refer to
files belonging to another user, it is necessary
to augment the file name by that user's account
number and name. For example:

(B2 JONES) /@FILEI/

The access that any other user may have to each of
Jones' files is in the hands of Jones, himself.
Jones may declare that a member of the public at
large has read-only access to the file by placing
a control character or the lI@lt character~ as shown
above, in the file name. It is also possible to
refer to a file belonging to another user in the
same account without indicating the account· number.
For example:

(JONES) /@FILEI/

5.1

5.0 THE EXECUTIVE COMMAND LANGUAGE

This section will describe the functions available to
the user through the executive program. These functions
are initiated by special,commands recognized by the
executive program. The commands are divided into the
following six logical areas for ease of reference.

.. 1. El!-.~eri;~g and Leaving TSS

2. Allocation of Memory

3. Interaction of Teletypes

4. Creating and Manipulating Files

5. "System 1i and Tape Functiops
•• 1 ~ ..

6. Miscellaneous Functions

5.1 Entering and ,Leaving TSS

, Betorethe Exec:~ill'execute' ~ny of th~ possible
" commands which may be given to it, the prospective

user must make himself known,:,py, ~xecuting the, tlLOG
IN'~ ,procedure. The proqedur~' ~s explained in the
IITymsha,:re Reference Ma~tialll .;~his ,brings into core
the user's complete file directory. See Section
5. 4 for commands to con~:r,ql the' handling of files.

,To leave the TSS syste;m " .. ,the ,-:!ser may give the
commands EXIT ~,or LOGOUT or he ,.,mGlY simply hang uP.
For a description of"LOGO'(]T;"and Vfhat 'happens wh.en
the user hangs up ,:see the IITymshare Reference ,Manual t: •

EXIT is sim'ilar to L'OGOUT except: :that the user's
file directory is NOT written back on the disc with
the EXIT command. This means that the user would
lose any new files created since logging in or since
the last file DELETE or since giving the command
WRITE FD (see section 5.4).

5.2 ' 'Commands Relating to the Allocation of Memory

'The,commands described in this section are:

STATUS
UNUSED MEMORY

'RELEA'SE
. KILL PROGRAr'l
. RESET ;~;

.' ,,!: PMT

*Sr.1T
* RSrlIT

5.2

*These comman~~ require the user to have System Status.

STATUS

Types the status of user's me~ory. The format is
as follows:

PROGRAM: nn nn - -/- -
s.s.n: nn - - -/- - ss ss
M.S. 30K, U.M. xxK

where nn is the relabeling byte from
memory tabl?)

ss is the relabeling byte from
table!)

s.s.n. is the sUb-system name,
xx is the number (in thousands

unused memory in the user's

the program

the shared memory

of words) of
virtual memory.

The·~~S. is the curre~t'Machin~ Size. (yirtua~) for
·the user. The dashes ~ndicate pages in.the relabeling

:':words that are rt9t' ctif~~n~l~'being ri~e~. 'Note that
~,'the program line' corresponds to the two wOI','ds of

·':·'program relabe~i!lg ke;pt in "an exec t~ble and'the
::t:s •. S.'r;l.1i line corresponds to the'two words of sub­
;'s~ste~r~lab~Iing" kept in the exec table. Thepages
in<;1i~at~d by ~;nn i. are: s\'lapped. There may be other
2~~~~ ,d~rrently a~~i~ried to th~ user as li~ted'in

"l1];s 'Pr.1T (see PMT command) that"are not shown by"the
"'Status ,typeout, since his program' is not 'currently
relaBe1edover them. ,-

UNUSEp, MEMO~Y

nnKCr -.

where nn is the number of K (1024) blocks' of words
of the use~'s total memory allocation remaining

',' ,unaccesse'd.' 'The user is assigned' 32K up'on .'logging
in. He ,ha~,nQ control of the one,page, (2K) immediately
assigned as his temporary stora~e (T.S.) block .

. '. ,,: ~ .
The following three commands return parts of the
memory currently assigned to the ~s~r to 'the pool
of unused memory retained by the Monitor. ,Any in­
formation in the memory so released is irretreivable.

5.3

RELEASE

Releases the blocks (up-to-eight) of memory assigned
to the subsystem the'user was last using.

KILL PROGRAM

Releases the blocks (up-to-eight) of memory listed
by the- STATUS command under the heading PROGRAM.

RESET

Releases all the memory assigned to the user except
the one block used by the Exec for temporary storage.
(The ·T.S .. block) , .

;! .

. ' :. PMT·,

Types the user's current program Memory Table ~n
the following format:

aa DRMPOS: bbb, cc (PAGE dd)

where aa is the pseudo relabeling byte number~"
bb is the drum address (shifted right three

places),
cc will type as RO for read only,

EX for exec'page,
DR for drum, .

• 1 dd (if typed) will be the real page number
in memory.

SMT

" Types'the Shared Memory Table., "The format is the
",: same as that indicat ed under' the command PMT ~ above.

5.3 Commands Relating to ,the Interaction of Teletypes

The commands described in, this section are:

USERS
WHERE·;,IS
WHO'.lS·"ON

. #*SHU';r ·PQWN·
#*UP '; :<,~
#*ANSWER
#*HANG UP

*LETTER

5.4

*These commands require Operator or System st~t~s.
All of the above commands require at least Subsystem

.... ~ Status'.' In addition, the commands marked t'lith #
require. corisole:switch one·'to be toggled ...

USERS
nn

: ..

Types the number of. users (nn). currentl'y .. logged on
the system.

WHERE IS aa nnnnnnn
. xx .. ~'. .

" ,

By typing the Account Number of lIaal! and the' user's
name for I'nnnnnnn ... l;, this command will type the
teletype number li XX II that the user is on currently.

\~HO IS'· ON' '.' ':'
xx aa nnnnnnn ..
xx sss

. ; .i.·

This command causes a complete list of the current
TSS' users to .. be typed. where':Lr

....

,J", : .,,!

xx teletype number
ar"" user's account number' l'
nnnn ',. user r 5 . name
ssss status aD lines if the line is NOT com­

" pletely idle C-l) and''.' no" one: is logged
on the line.

SHUT DOWN (toggle switch 1 required)

,After the operator toggle's' conso'le switch 1,. the
r;::command will set· a flag that initiates . system: shut­

down. Alllines that are not currently being used
'(, ·~< .. W:(ll:~,be made uqavailable ~ ." . " ... ,.. ,.' .

UP (toggle swit'ch 1, r'equired) .. : ..

After the operator toggles console switch 1, the
automatic shut down flag described under SHUT DOWN
is reset so that teletype lines are no longer un­
available. The operator must re-answer (by· u'sing
the ANSWER command) all lines that have previously
been made unavailable. " .

. . 1. : ,~

,ANSWER (toggle switch 1 required)
K~m-n:J ...

5.5

This command enables selected teletype lines so that
the users may make use of these lines. The operator
may specify single numhers, ~ndicated by "kIT,' separated
by commas, or a range of numbers where the range
is separated by a dash;·~;'Or :·any: combination· as indi­
cated. ·.Spaces ar~'ignb~ed and the string. is termina­
ted by a carriage return. If the line has already
been enabled, the command will have no ~ffect. Note
that after the SHUT DOWN command has been issued,
a line can be made available by this command but
it will become unavailable after the u~er logs out.

HANG UP (toggle switch 1 ~equired)
k,m-n, ...

The command has two functions; it may be used to
hang up a user while he is logged in (in this case

. the line will go ready agaih after the hang up opera­
tion has been completed unless the SHUT DO\1N command
has been used), or it may.be used to make a line
not available if no one is. currently using the line.
The format is exactly as de'scribed under ANSWER.

LETTER Cr
LETTER OFF/ON

LETTER n

:.'. '.

This command has three functions and two formats.
The second format~ where a number n is typed after
the command,;is used to type a broadcast letter,
where n is the. letter'number from one to six~ ','

mhe first format is used to contr6l the transmission,
~f broadcast letter. It is used by typing a carriage
!feturn immediately after the command. If the response
is;:~'LETTER OFF, then no one will receive the broadcast
letters. The exec will not come back to the il_"

response until all users currently on the system
have finished receiving any letters addressed to
them. If the operator desires, he may lIescape:; from
this condition.by typing the escape key. No harm
is normal'ly.,done except·, that, it is possible that
a user· ma:y:re'ceive the .. :same lett'er twice. The 'opera­
tor must "se'{j"i"the LETTER OFF condition before he Tcan
use' the' ilOperator" Program ll to. cre,ate new letters
or cancel old ones. If the response is LETTER ON

5.6

then all users vli-ll; start· r.ece::Lv-ing broadcast ·letters.
Any new letters created by the operator will not
start being received by all users currently on the
sy·stem .. , ..

:5.4 Creat~ni and Manipulating.Files
.' ,

I Th~follpwing Exec co~mands.are· available. They
.·are descri~ed in the references·~ndicated .

.... ,.:- ... ,

FILES ",
.WRITEFDi: .
DF

. FP J[OR .. ';
DELETE
RENAME
GO TO
PLACE
SAVE,..:

. DU~1P .
RECOVER:
CONTINUE-

. COpy
*GFD:
.~.REMOVE": FILE

CREATION
CD FOR

1 2 , . ,.,

J '.'
1 .,.,
1
1,2
1,2
See Below
See Belovl
See. Be 10vl
2 ' .. . ,
2 '.

2 .. ' ,

2 ,
See: Be·low.-, ;

" See Below: , .
1
1

~:These commands require Operator or System Status
in the user's control parameters.

Gp, TO. (input file name)
···1:····. : .' ., ,.::

T,he action i·s· i·nitially. as· for the: PLAC.:r::.command.
Howe.v~r, after transferri.ng·: ~the file.. to' core·" .. instead
of a return to the Exec, there is a branch of control

,into.th~ user's,pwn enVironment at the starting ad­
dress ,.sp~cified at. the· time of .. the file t s creation.

';i: If a· zer9 st.arting address: or none at. all was then
.. given ,:' the. transfer i·s. back. to the Exec,' as' for. the

PLACE, command .' '." ..

. .
. f,'he contents of the named.·, input file: is t·ransferred
.to the-core. addresses s~ecifed at the time of its

.; :-creation. (by BRS 93 or the U SAVE!! command. Ijt is
'. transferred into· the user t s: curren.t environment.·
which' is·:.;ext~nded, as. necessary' to· accommodate· it .

. ,I I .; ..,'.~. ~

5.7

The file name must be in the user's ·file directory.
If it is not', a ? is printed, the name is: forgotten
and must be delivered anew. The file name must be
terminated by a carriage return.· The file must be
a core-image (type 1) file (see section 4.0). If
any of these conditions is not satisfied, the com­
mand:.is aborted -- as it is also if .the attempted
dat~·transfer to core results in some transfer-error
conaitions .. ·~rising ... <: .

. f?AVE., ... ·.

This command is typed in the following format:

:",,0"

SAVE bbb TO eee ON nnnnn Cr
9LD/NEvJ. FILE :Cr

'or (opti;n~lly:)

,OLD/NEW FIlE·· Lf', ..
S~ARTI~G,LOC1Tid~ sss Cr

The cpnten~~ of ,the specified range of!~orestarting
.ltlith Hbbb il and ending wtth !leeei' together with the
start~ng i6cation if sss ". :if provided, are preserved
on th.e named o.utPllt· file tinnnnnli .

. . The output file name must be of a form· accepted by
BRS 16. If it satisfies the conditmns for a no-skip
return from BRS 16, the name is ignored and another
name must be provided. The name may be terminated
·by a carriag~ return, thus': term:inating the command
and caus~p.g;:it.~o be .executed, or a line feed, in
\Afhich case a tlstarting address il (see also the tlGO
TO'I command) must bei:;yped in.

Each of the addresses bbb ,eee, sss, ""hether core range
limit or starting address, is interpreted as an
octal number. The starting address, sss, must be
terminated by a carriage return. Delivery of any
other non-octal digit character, 'except rubout, aborts
the address -- which must be retyped. The octal
numbers, bbb and eee must all be terminated by a
space, a comma, or a carriage return. Any other
character aborts the command.

If a carriage return is typed immediately after the
command !I SAVEll the Exec I-'lill respond with :JFIRST
LOC". If a carriage return is typed immediately
after "bbb::, the Exec will respond with "LAST LOCH.

5.8

If a carriage'return is typed'immediately after "eee"
the Exec will respond with lITO FILEii.'

,GFD aa nnnnn Cr

The command is'used by the operator to get a file
directory belonging to another ~s~r for special

,background or non-timesharing processing. The oper­
ator's ow~ file directory and user number is replaced
by that ~be,longing :to the a.c,<;!ou,n.t; number:, Baa'; and
user na~e,· Ynnnnn:l: but. tl.1e operator's account, number
and control parameters' ·are retained.' .

REMOVE FILE nn, Cr

This, command allo,\,ls a user with System or Operator
StatMs to remove an entry. from a file directory with­
out using the DELETE command. Since it may be pos­
sible to delete a file ~f the name contains leading
spaces or other spurious characters, it may be re­
quired to use this command as a last resort. The
command removes a file from the 1,lin-core" directory
by referring to the: file name's position ::nn ll in
the printed file directory. Th~ command FILES must
be used just before using this command in order to
find the current relative position of the name.
The file directory is: NOT rewritten on the disc by
this command. .

References:

:1:" Reference Manual ~or the ,Time-Sharing System,
Chapter 13, .1IExecutive: Commands Related to Files".

5.5 il System;: and Tape Commands

The commands' desc'ribed here are:

RE\AIIND
RLT
STN
PTN

" POSITIOI'l", TAPE'
TAPE POSITION

*ABT
#SYSDP
#SYSLD
*LOOK

*These commands require operator user status.
URequire system status.

5.9

The commands controlling tape are system 60mmands
and only one user, normally the operator, will be
mkai:ng use of the.eomm~l!ds at a time.

REWIND Cr
" : 7.'

irhis command····free·s up t"he tape, regardle.ss·· of its
cu~~~~i'~t~tu~,ati~ rewi~ds the tape~' It· is applied
to the current tape numher (0 or 1) .' .. ~ -.' .'

RLT Cr
,i',,-: . ~"."'.

This cortlInandrel~:as:e's': ·the···'tape so" ~,nat" i"t is avail-
able for other "\isers . .'i (.. ~ _:~ ': ;'." . r I" ~ •

STN n Cr

Allows a user to'set his own'ta.'pe humber, where lin!!
is 0 or 1.

PTN Cr
n Cr

i'; t .. , \ ','

• r';

, Types a 'user 's' "durrent::t'ape' ntimb~r'~ where'tlnfl is
, O. or '1."(, , ; ;,:~, . '.' ~
.,' :, . . '. ~ .., : ~ , .

: l?QSITION;'TAPE ", Cr ' '
.J " " ,

::Thid"'commandwill cause a user's current!: tape to
poslt~~!ij to;' tbe beginning of th~ next fi'le,. t',

. • . • . '. ,. •• '. ,~ j' . • j •

5.10

TAPE POSITION Cr

Types the current tape position a~ far as·it is
known by the Exec. This command does not check the
actual position by reading tape.

ABT Cr

This command will abort any tape operation currently
in progress. It may be used by the oper.ator to
stop run-away tape.

LOOK .: .

This command is typed in the following format:

LOOK a;)n Cr
a bbbbbbbb
a+l bbbbbbbb
etc .: .. ,. ; .

'~: : . : f •••••

This command allows an operator oi· 'system class user
to display real memory addresses where Hall is the
first location to be displayed (in octal) and fln:1
is the ·number of locations in decimal ,to, be displayed.
,The, forina~ o,f the'type,. ,ou~t is as indi,c,~ted i~. the
example where ;;ra~l" and lia+l if are the ,octal Glddresses
and .ib ll repres"ents t'he contents In octal. '

The following two commands require a special system
stat~~ by ~he.user since, they allow direct writing
and reading at any location, ,on the disc.

SYSLD

T~~ commanq", is typed j.,~ the format:

SYSLD a Cr
TO b Cr
LOC c Cr

This command allows a user to load his program memory
from any location on the disc into any of his eight
pages. II a 11 and lib it refer to his page numbers from
o to 7 and lIc;r is either a real disc, address .. or a
number from 0 to 7 referring to disc'O to 7, ~ith
the load (or dump, see below) starting at arm.position
63 o:{' the, given disc. Also,'!1 c:: may "be' 'of tl:le' for­
mat lin .mn where lin;! is the disc number described
above and 11m" is a number from 0 to 7 referring to

5.11

·a·relative page number of arm position 63. Note
: that the dump and load location using the specified
:disc format corresponds to the area of the disc
addressed by the disc swap utility program using
the console switch settings 0 to 7.

SYSDP

The command is typed in the following. format:

SYSDP a Cr
TO b Cr
.LOO c Cr

: This command allows 'a user: to dump his program memory
onto any location on the disc from any selected pages
of 'his eight pages of program rel~beling. The nomen­
'clature is the same as that described Under SYSLD
(see above).

5.6 Miscellaneous Commands

~h~se fall ;into none or.the.pre~~di~~·categories.
They.are described in the referenbes·indicated.

, 'j ,.

,'':,

BRANCH See Below
. I r·

DATE See .Time-sharing System Ref. rtTanual
TIME IT r: tI If Ii 11

"
~. i H tt II ,. IT

ACCOUNTING ·See B,elow
PSP n, If

SETEXEC II n

ENABLE/DISABLE :1 II

BRANCH adr Cr
! ~

A, transfer of ' centro I_is made to th~' specified address
::adrll in the user 1 sown; environmnet. The adaress
(an octal number) must be terminated by a carriage
return.' Any .o~hercharacter ,aborts the co~mand.
If the user does not have the"page containing the

'address under his relabeling, 'he will receive a
memory trap. If he has a blank page (containing
the' illegal instruction HLT) , he will receive an
instruction trap. . .

S~TEXEC nn Cr .", '.-
::,J' .

:" . . ,

This command, is available only to users v1it11 qpe
6f the.s~ecial st~tus. These users may use the

5.12

command tO I set one of the following classes of execu-
.; tivity if the user's status parameters agree that

the user is permitted to ~~e t~is class. The class
set is then propogated to any fork started by the
system executive under. th~ ·:'GO TOn comma.nd. .

liNN'!! DESCRIPTION

1 . Subs.ystem
o Cancel status

-1 Subsystem & system
-2 System only

The various classes allow the user1s program to
issue. special BRS's that are needed for system soft­
ware but could caus~ great hiVoc to the TSS if used
improperly. Debugg~~g of programs which use these
BRS's' must ·be restricted to certain time periods
so as not to disrupt T.S. operations ..

PSP Cr

This command requires operator status or a higher
status.' . It will type out. with .. symbols the current
system error counters. Fora key to the symbols
and their meaning, see the current Tymshare Monitor
Manual.

ACCOUNTING n, Cr

This command requires operator statu~ or a higher
status. After the Cr is typed, the following mes-
sage will type: :.

TOGGLE SH. 1 Cr

The command vlill not execute until console,. switch
. l·is toggied. It ~ill then perform orie rif 'i~e fol­
lowing func~ionsdepending on n.

n = 0 :Stops the accounting information from
being punchedori paper tape when users log
out.

n=-l Starts the punching of the accoun~irig in­
formation on paper tape when users log out.

A number of special purpose TSS software aids, called
d'subsystems lT

' can be req~ested simply by typing the
name of the subsystem· ,as' a command. Two cOInmal1ds

5.13

allow the operator to ENABLE or DISABLE groups of
subsystems so that various classes of users mayor
may not use the subsystem group. The commands are
typed as follows:

ENABLE s or
DISABLE s

where s is the name of a subsystem in the group.
The subsystems currently available are grouped as
follows:

Group I - ARPAS, DDT
Group 2 ~. LISP, SNOBOL

The following subsystems have no group restrictions
and are always available to all users:

BASIC
FTC
FOS
QED
CAL
FORTRAN

For details of any subsystem, the appropriate sub­
system manual should be consulted.

TYMSHARE, INC.

OPERATIONS MANUAL

Prepared By:

Dave Brallier
Los Altos, California

Dean Marr
Dos Angeles, California

January 6, 1967

SYSTEM LOAD FROM DISC

4-1-67

GENERAL: 'The timesharing system program is now stored on the disc as
well as tape. There can be several versions (as well as several copies) on
the disc at the same time. It is the Operator's responsibility to see that the
correct version is loaded.

The new load procedure will dump as well as load; i. e., if a crash' occurs,
DSWAP3 will dump the crashed system on the disc and load the new system
into core. (The dump can be bypassed by placing BP Switch 1 down.) The
selection of the system to be loaded is controlled by break point switches 2,
3, and 4 on the console. The switches are testedoctally per exa~ple 1:

EXAMPLE 1:

BP
1

BP
2

BP
3

BP
4

If the system to be loaded is on Disc 3, place BP #3 and BP 4 down. This is
'interpreted as an octal 3 arid will load the system from Disc 3.

LOAD PROCEDURE:

1. Place DSWAP3 in the paper tape reader

I

2. Set BP switches to correspond to the system to be loaded. If a crashed
system is not to be saved, put BP switch 1 down also.

3. Standard fill from paper tape. This consists of the followit:lg steps:

a) IDLE The Run-Idle-Step switch is put in IDLE,
b) 'START Depress the Start button. This clears the P and C registers
c) RUN 'The Run-Idle-Step switch is put in RUN
d) FILL The paper tape switch is toggled. This reads in the paper

tape. The HALT light will corne on when the paper tape is completely~
read in, but if the ERROR light comes on, the paper tape must be
reloaded. If the ERROR light comes on, let the loading go on to
completion, for if the Run-Idle - Step switch is taken out of RUN and
put into IDLE, th'e paper tape will run away. If this happens, press
STA,RT (this stops the paper tape) and re-position the paper tape and
then go back to Step 3a.

This will 'execute the dump of the crashed system (if BP switch 1 is

up) and load the new system into core. A,s stated in the beginning of
the section, if the crashed system is not to be saved, BP switch 1
must be down.

NOTE: There are two phases to DSWAP3; the WRITE and READ phases.
Which phase DSWAP3 is in is indicated by a 66 in the W buffer
for a WRITE and a 26 for a READ. If a crashed system is to be
saved, obviously the WRITE phase (writing the crashed system
onto the disc) would occur first (a 66 in the W buffer), for if the
new system was read into core first (a 26 in the W buffer), it
would read in over the crashed system and destroy it.

If, for any reason DSWAP3 is aborted while saving a crash before
it is fully executed, be careful to observe which phase, the WRITE
(66), or the READ (26) the DSWAP3 is in. If it is "in the WRITE
phase at the time of the abortion, precede as before, but if DSWAP3
is in the READ phase, that means that the crashed, system has been'
written on the disc and and the new system is partially read into
core and therefore, the crashed system that was in core is now
de stroyed. In order not to write' the new system that was partially
read into core onto the disc and wipe out the crashed system already
there, BP switch 1 must be put down when going through the
preceding steps.

4. Prog. will stop at P=25

5. IDLE The Run-Idle-Step switch is put, in IDLE. The BP switches
are re set. '

6. RUN The,Run-Idle-Step switch, is put in RUN

After the above 6 steps have been completed, the system will respond on
Teletype 1 with the following:

1. 81-nE (rna -da y-time):

This is a request to have the month, day, and time entered after the
colon as per the example. that follows: 11-17 -1530 CrLf

2. LAST START UP n/n n:nm CrLf

Nothing is required of the Operator at this point

3. NO. OF USER:

This is a request to have a number entered after the colon. The
number should correspond with the number of channels to be a~swered,
as per the following example: 15 CrLf

4. PAGES:nn CrLf

n=The number of pages available to the individual users (n varies
depending on the number of users). A page equals 2048 words. Nothing
is required of the operator at this point.

5. PLEASE LOG IN!

This response will occur after the systeITI searches the disc and builds
a bit ITIap. The tiITIe it take s to build a bit m.ap is a function of the
size of the disc, the num.ber of users, and the number of files.

The response of the Operator to the "PLEAsE LOG IN!" cOITIITIand
depends upon one thing; is the crashed system that was dumped on the
disc to be saved or not?

a) @l ;Operator CrLf

The Operator logs in under this account number and user name
if the crashed system is not to be saved.

b) @ 1 ; CRASH CrLf

The Operator logs in under this account number and user naITIe
if the crashed system is to be saved. The reason for this is to
save all crashes under an identifying user name.

All the procedures that are done under @l;OPERATOR can be
done under @l;CRASH.

NOTE: (a) and/ or (b) mentioned above m.ay be done between
Steps 4 and 5 to speed things up.

6. READY (date) (time) CrLf

.This is a response giving the date and tiITIe that the Operator got on
the syste:mo Nothing is required of the Operator at this point.

7. The syste:m will reply with an Executive Dash (-) indicating that the
cOITlputer is in the Executive mode and that it is ready to accept any
cOITlmand froITl the Operator.

8. A.nswer the Channels (See "Answer" Section).

CRASH SAVE

This is a procedure used to save the crashed system on the disc. The
Operator is logged in under @l;CRASH.

1. Srrcg:EX,,-l CrLf

This command, known as Exec Status, is needed in order to do the
following steps.

The c,omputer responds with:

TO The Operator types: 7 CrLf
The computer responds with:
LOC The Operator types: 0 CrLf ---- --
The computer will effectively place the crashed system into core.

The crashed system is put on a file. The file name should be in
the form of /day-time-P reg.l

4. LOG OUT,CrLf or DELETE,,/FILE NAME/ CrLf

The Operator types one of these two commands, in order to write the
file directory, of the crashed file on the disc. The reason for this is that
if the system should crash again before the operator logs out or deletes
a file in the normal run of things, the saved crash file would be lost.

5. S~~EXh-l CrLf

This step has to be do~e if'the Operator logged out in the previous step.'
The Exec Status is needed to do the remaining steps.

6. RESET CrLf

This command clears all programs out of memory

7. RECOVER,,/ JST / CrLf

The file JST, system J symbol table, is recovered from the disc and
put into core.

8. S~S=LD,.O CrLf

The computer responds with:
TO The Operator types: 1 CrLf
The computer responds with:
LOC The Operator types: 0 CrLf

The crashed system is loaded into core

9. CONTINUE CrLf

This comma~d will put the DDT Program into the operating system

10. WERISC

This conunand is followed by 18 linefeeds. It gives the location of
each user number in reference to each channel at the time of the crash.
The I in the WERIS + I is the channel number.

AUNNC.

This command is given after the WERIS[is finished and while still
in DDT. It may be given on the same line as the last WERISC. The
AUNNL gives the account number and user number in reference to the
job number. The 1 in the A.UNN + .1 is the job number.

There is no relationship between the 1 in the WERIS+ 1 and the 1 in
the A.UNN+1

If only a certain section is wanted, the command is typed with the first
channel number of that section; i. e, WERIS + 17

Two Altmodes will put you back in the Exec

11. Go to the lISPS"~ Section

DISC LOAD

1 ~ Mount the dis c dUIllp/1oad prograIll on Unit 0

2. Mount the ,tape to be dUIllped on the disc on Unit 3

3. 'Set BP Switch 1

4. Standard FILL

a) IDLE Put the Id1e-Run-Step switch in IDLE
b) START Depress Start button to clear P and C r~gis"ters
c) RUN P,ut the Idle-Run,:",Step switch in RUN
d) TOGGLE MAG TAPE SWITCH This reads the disc/duIllp load

prograIll into co;re. The HALT light will COIlle on when it is
cOIllplete1y read into core. If the W buffer ERROR light COIlles
on while the prograIll is being read in, rewind tape and START
over.

5. IDLE

6. START

7. BRU 207 - Enter 100207 in C Register

8. COIllputer will halt with 2010101 in C. Register

9. IDLE

10. RUN

11. Toggle BP switches 3,4, 3

The BP switche s are prograIllIlled to act as a cOIllbination lock, to
prevent the accidental loading of the disc. They Illust be used exactly
as described or a HALT will occur. To recover frOIll the error :HALT
go to ,Step 6.

See List of ERROR HALTS for
Disc DUIllp/Load

DISC DU MP

1. Mount the disc dump/load program on Unit 0

2. Mount scratch tape on Unit 3

3. Standard FILL

. a) IDLE
b) START
c) RUN
d) TOGGLE MAG TAPE SWITCH. This reads in the disc dump/load

program into core. The HA.LT light will come on when program is
completely read.into core. If the W buffer error light comes on,
rewind tape and start over. .

4. IDLE

5. START

6. BRU 207 - enter 100207 in the C register

7. Computer will halt with 2010101 in the C register

8. IDLE

9. RUN

10. Toggle BP switch 4, 3,2

The BP switches are programmed to act as a comb.ination lock. They
must be used exactly as described or an error halt will occur. 'To
recov~r from the error, go to Step 5

See List of ERROR HALTS for
Disc Dump/Load

P = 512
P = 515
P= 531

C =2000001
C = 2000002
C = 2000003

C = 2000005
C = 2000006
C = 2000007

DISC DUMP/LOAD

ERROR LIST

Tape not ready
W buffer not ready
W buffer staying busy

For any of the above errors, start load or
dum.p again.

Tape read errors
Tape read error s
The 1,2', or 3 indicates the logical record within'
the physical record on which the error occurred. '

When anyone of these errors occur, it indicates that
ten read e'rrors have occurred on a logical record. The
physical record on which the tenth error occured is
designated by 1, 2, 3, ,corresponding to the three physical
records on a logical record. If this happens, clean tape
head and start again. Should this fail, clean tape head
on other drive and try again on that drive. If still no
success, PUNT.

Seek tim.e or search tim.e e'rror on disc controller
Disc controller error
W buffer error

For any of the above 3 error s, the following action is
to be taken:

1. ,Go to IDLE
2. Press Controller Clear
3. Go to RUN,

If a read error occur s, indicate in Log Book on what disc,
tr~ck, and sector it occurred. Contact Center Manager.

CARD TO TAPE

1. Mount card to tape. (CTT) progratn on Unit 0 and set density

2; Ready punched cards in card reader

3. IDLE

4. START

5. RUN

6. ~OGGLE MAG TAPE SWITCH This loads the CTT progratn. The
HALT light will cotne on when the progratn is loaded successfully.
If an error occurs (W buffer error light) while loading the program,
rewind the tape and load again

7. Take tape drive out of AUTO

8. Mount scratch tape an Unit 0 and set density

9. IDLE

10. START

11. BRU 200 - enter 100200 in the C register

12. RUN

13. E. O. F. When last card has been read, depress E. O. F. When the
. E. O. F. is depres sed, the nutnber of words copied to the tape will
be typed out olf the tnaintenance teletype

NOTE 1: The systetn requires that a dUInIny deck be placed on the
tape as the last file. The dununy deck need consist of 1 card only.
It tnusf be added or the systetn will crash when an attetnpt is tnade
to copy the tape to disc.

NOTE 2: Decks tnay be stacked. The only liInit on the nutnber of decks
which can be stacked is the atnount of tape.

NOTE 3: When any Reader error occur s, the READY light will go oute
Until further notice, take the following action on any error condition:

1. Reset (clear) error condition
2. TerIninate processing of that deck, i. e., depress E. O. F.
3. Restart that deck

TAPE TO CARD

1. Mount tape to card (TTC) program on Unit 0 and set density

2. Place blank cards in card punch

3. IDLE - Idle-Run-Step switch is put in IDLE

4. START - Press START button to clear P and C registers

5. RUN - Idle-Run-Step switch is put in RUN

6. TOGGLE MAG TAPE SWITCH This loads the TTC program. The
HALT light will come on when the program is loaded suc.cessfully.
If an error occurs (W buffer error light) while loading the program,
rewind tape and load again

7. Take. tape drive out of AUTO

8.. Mount File Tape on Unit a and set density

9. IDLE

10. START

11. BRU 200 - Enter 100200 in the C register. The card punch will
Cycle 1 card

12. RUN

·13. FILE NUMBER - When the TTC program is ready to accept input of
a" file number from the maintenance teletype, the input light will
corne on. The number must be inputted as a two-digit octal number,
i. e., 05 = 5th file on tape. The files must be inputted in ascending

" order, though they do not have to be in sequence.

Sy S T E M TAPE COP Y

.1. Place "32k DUMP" paper tape program in paper tape reader

2. Mount system tape (Disc Dump) on Unit 0

3. IDLE

4. START

5. RUN

6. TOGGLE MAG TAPE SWITCH

7. When computer halts, take system tape out of AUTO

8. Mount scratch tape on Unit 0, set density and put in AUTO

9. IDLE

10.. START

11. RUN

12. TOGGLE PAPER TAPE SWITCH

13. Watch W buffer for error

14. . When copy is finished, load disc with copy and bring system. up.
If you can LOG IN, tape copy is good.

SAM OUT LINE

I SAM SYMBOL CHANGE

A. Print CST Table

. -RECOVER,./NRECSAM/ CrLfLf

-CONTI NUE CrLf

DDT Lf
CST" • LfCr
CS1'+ 1": LfCr
CST+2"! LfCr

CST+11" 7 CrLf

'v~~JQt,L~.'.': 8 LfCr
.CST+13" 9 LfCr .

CST+76" '$ CrCrLf

B ~ Changing User· Symbols (Still in DDT)

GHANGE;G LfCr
2:1,3:2-57,3:60,12:'100-111 LfCr
56:112~157, 33:160-177,76:300-700 CrLf

240;G LfCr (This will run the program)
·1830. 0 ~ 5 (2 Altmodes) .

-DUMPA /-NEWRECSA.M/ CrLfLf

. -SAVE"-0"TO,,3777,, ON,,/SAM/ CrLf
NEW FILE or OLD FILE LfLf

STARTING LOCATION 240 CrLfLf

'-SrrcSCEXA-l CrLfLf

-GO,,/SAM/ CrLf
1840 0 • : : $$$! 8

'II CHANGE INCTIK

-RECOVER,,/NRECSAM/ CrLfLf

-CONTINUE CrLf
DDT CrLf ----
INCTIK/ ~:~3120 16040 CrLf

INCTIK/ 16040 CrLf
(2 Altrnode s).

-DUMP,,/NRECSAM/ CrLfLf

-SAVE ,,0 "TO"3777,,ON,J SAM/ CrLf
OLD FILE or NEW FILE LfLf

, STARTING LOCATION 240 CrL£

- SrrcSCE X - 1 C r LfLf

-GOA/SAM/ CrLf
1840 ABVf;. • • 8

SAM DESCRIPTION

SAM is a GO TO Program which periodically prints out the number of users
on the system. The users on the system are represented by symbols. These
symbols are the letters of the alphabet, numbers 1 through 9, and special
characters such as ~:!, ., $, etc. The procedure to change the symbols that'
represent a user is discussed in Section 1.

As stated above, SAM prints out periodically. The time increment can be
changed .. This is discussed in Section II.

I SAM SYMBOL CHANGE

A s stated above, symbols such as A, 9, $, etc., repre sent a user on
the system. Each symbol in the SAM program is represented by.an octal
number. For example, 1 B (B indicate s that the number is octal), is
equated to the character:, 44B is equated to the letter Y. ,etc. The octal
number ~nd what it is equated it is found in the CST Table. The se octal
numbers in the CST Table, along with the user numbers, are used by
the SAM Program to print out a symbol for a particular user.

A. LISTING THE CST TA,BLE

-RECOVER /NRECSAM/ CrLfLf

This loads the recover file (24 type file) into core. In this
case, the file name is NRECSAM, but this is not always so.
A.s long as the recover file is the version you want to us'e,
the name makes no difference.

-CONTINUE
DDT

You are now in DDT. This is the only language that can be
used with a recover or 24 type file.

CST: . Lf
CST+l": Lf
CST+2"! Lf

CST+76"$

To list the CST Table the user types CST" and the computer
will type a period (.) The octal number representinga period,
is O. A, Lf after the period will cause CST+I": to be printed out
by the computer. 76 linefeeds will print out the complete CST
TABLE.

One carriage return in place of a linefeed will put the user in
'a position to enter another com.m.and. This one carriage return
will not give a linefeed, so the user is on the sam.e line. But
two carriage returns will give a linefeed and put the user on the

, following line. At this point, the user m.ight want to know what
sym.bol is equat~d to l2B, for exam.ple. He would do the following:

CST+12: 8 Lf or Cr'

'8' is the sym.bol represented by 12B. After the '8', the user .m.ay
do one of two things: 1) he m.ay type linefeeds which would
cont~nue the print out of the table starting at CST+ 13, or 2) He
m.ay type a carriage return which would allow him. to enter
anothe r com.m.and.

B. CHANGING USER SYMBOLS

If a sym.bol for a user is to be changed, or a sym.bol as signed
to a new user, the following procedure is gone through:

-RECOVER,,/NRECSAM/ CrLfLf

-CONTINUE CrLf
DDT

Determ.ine what sym.bol is to be used and find its octal num.ber
equivalent in the CST Table. Also, determ.ine the user num.ber(s)
to be a s signed to the sym.bol.

CHNGE:G LfCr
Sym.bol Num.ber:U ser Num.ber, Cr or Lf

The user num.ber need not be re stricted to one, but a
contiguous block m.ay be put in; i. e., 2: 1-57,0 Any num.ber
of changes m.ay be m.ade on one line; i. e., 2: 1-57,3:60,12: 100-
111, 56:200-500,. The change is term.inated by a carriage
return, or the change s are continued on to the next line by a
linefeed.

There can only be ~ sym.bol assigned to a user num.ber at
one tim.e. So the current change will replace the old sym.bol
assignm.ent for that user num.ber.

Iia user nam.e is deleted and no user nam.e, reassigned to the
user num.ber, then that user num.ber is assigned to the sym.bol
'quotes' ("). This is the sym.bol to which all unassigned user
num.bers are assigned.

NOTE: There must always be a comma (,) after the user
number. Except at end of a line where a line feed ser'ves
the same purpose. Also, if a mistake is made, this is
remedied by typing a ? immediately after the mistake. ' This
would delete the entry 'with the mistake in it and give a
carriage return and linefeed and put DDT in the command mode

(again. To precede with the change s, type CHANGE; G.

After the changes and new additions have been made, one of two
things may b~ done after the carriage return: 1) The changes
may be checked against the users on the air at the time by typing
240;G. This will cause SAM to run with the new changes. To
get out of the running program, hit altmode once. This will
put you back into the comITland mode. Hitting altmode twice
will put in in the Exec. 2) Hit altITlode twice and get back to
the Exe,c.

Once back in the Exec, you are ready to dump the corrected,
recover file onto a new recover file.

-DUMP,.jNEWRECSAM/ CrLfLf

This dUITlps the recover file that you have ITlade changes to
in core'to a new file called NEWRECSAM.

-SAVE"0,,T0,.3777I\ON,,/SAM/ CrLf
NEW FILE LfLf

STARTING LOCATION 240 CrLfLf

-sTcsCEx -1 CrLfLf

-GO,,/SAM/ CrLf

The SAVE COITlITland stores the core iITlage of the recover
file on a file called SAM. Two linefeeds after the NEW FILE
(qr OLD FILE) print out will cause STAR TING LOCATION to
be typed out. This is a command for the user to type in at
what location he wants the GO TO prograITl to begin. In'this
particular case, and in most others, the starting location is 240. '

To run SAM Exec Status (S~SCEX 1)must be set~

SE'CTION
II CHANGING, SAM INCTIK

A. Description of SAM INCTIK

The SAM INCTIK is the tim.e interval for the SAM type out.
TheINCTIK can be set from. one second on up. (The usual
tim.e interval is 2 or 5 m.inutes). Since the tim.ing of SAM is
dependent on the real tim.e clock, and the real tim.e clock is
dependent on the AC current, 60 cycles would equal one
second'. So 60 tim.es the num.ber of seconds and the result
converted to octal would be the value entered fo the INCTIK.
To convert to octal, do the following:

5 X 60 X 60 = 18,000

4

= 0
= 2
= 1

= 3
= 4

= 43120B

The 4,3,1,2, and 0 are the remainders of the divisions. This
is the octal number entered for the INCTIK to cause SAM to
print out every five minutes.

To change the INCTIK the recover file or 24 type file'that
is to be changed m.ust be loaded into core and the change made
under DDT. This is done per the following exam.ple:

-RECOVER,,/NRECSAM/ CrLfLf

-CONTINUE CrLf
DDT CrLf ----
INCTIK/
INCTIK/

~:~3120

16040
16040 CrLf

TypIng INCTIK/ wi 11 cause the com.puter to print out the
current value ~f the INCTIK, which in this case, is ~:~3120~

, (Due to the configuration of the hardware, a 4 (f.our) will, print
out as an asterik (*». The carriage will space over to, the
next tab stop. If the I:-..JCTIK is to be changed, the new value
is entered here, ,which in this case, is 16040 on two D;linutes.
To see' if the new value of the INCTIK has been accepted, again
type INCTIK/, ,as per above example, and the new value will
be typed out •.

If, while typing in a new value of the INCTIK, a m.istake is
m.ade, type a question m.ark (?) and the com.puter will delete
the value entered with the m.istake and space forward to the
next tab stop. You can now enter the new value.

After changing the INCTIK, you can either make further changes or go back
to the Exec. To go back to the Exec, hit the altmode 2 or 3 times.

Once back in Exec, dUITIp the file and c'reate a GO TO file per the following
example:

-DUMP" /NRE CSAM/ CrLfLf

·-SAVE ... 0I\TO/\377~ O~/SA.M/ CrLf
NEW FILE or OLD FILE LfLf

STARTING LOCATION 240 CrLfLf

OPER

DESCRIPTION

OPER is a utility program that contains 24 commands for the upkeep of
the system. To use OPER,Exec Status must be set. OPER is a 21 type
file or a GO TO program. To access the commands in OPER, , the following
must be done:

-S~~EX -1 Cr

-GO"OPER Cr

The asterik indicates that OPER is ready to accept any of the 24 valid
commands. These c'ommands, what they do, and how to use them, are
described in the following sections.

>:~ HELP Cr

THE VALID COMMANDS ARE:

HELP
UA.D
LENGTH
TIME
SET DAY
RESET TIME
SET HOUR
FILES
CLEAR FILE
SIZE ACCOUNT
ACCOUNT
NAME
CANCEL ACCOU
CANCEL NAME
OVERFLOW
MAP
GA.RBAGE
POINTER
USERS
COUNT ·LETTER
REMOTE LETTE
LETTER
COpy RECORDS
CLEA.R RECORD

A.s can be seen, the commarid HELP lists the valid commands that can be
used under OPERe When it is finished the listing, the program comes back
with the asterik. OPER is now ready to accept another command.

~~UAD Cr

OUTPUT TO: PR Cr

3/24 22: 15

~:~ 1 AY.d.E.oT 0 77777777
UTILITIES4 S 77770001
OPERATOR.AP 77770025
SYS81~T 77770037

~:~2 AT4A~ 0 77777777
B, .. ILL 77
JACK 156
.A,.ND 20000036
JILL4F 200536

~;:3

TOTAL: 0:00.00 0:00

••••••••••••••••••••• END OF JOB .••••••••••••••••••••••

The corrunand UAD Cr will print out all of the active accounts. In ,the above
example, the output was to the printer (PR) So all the information from
"3/24 22: 15" to " ••• END OF JOB~ .0" will be printed out on the printer.
When it is through printing the computer will output to the teletype "END JOB"
an~ return an Executive Dash (-).

If one wishes to only print out one account, such as AS, then a linefeed after
~:~UAD instead of a carriage returnwil1 allow one to do this. Instead of out­
putting to the printer, output to the teletype.

Example:
*UAD Lf

OUTPUT TO: T Cr

AS Cr
A5&NU &T

JAMES&W
BILL&R

201
202

o 77777777

TOTAL: 0:00.00 0:00

END JOB

After the carriage return (Cr) in the "OUTPUT TO:" request, the computer
waits for ,an input of an account number, such as the AS in the preceding
example.

The printer designates a control letter with a delta before the letter, i. e,
AN. The teletype designates a control letter with an ampersand before the
letter, i. e., & N. For the atsign (@) accounts the printer will print out an
asterik for the @.

As can be seen from the above examples, the operating system returns an
Exec Dash after printing the UAD. To give' anymore OPER commands, one
must get back into OPERe

NOTE: See Appendix A for description of the UAD output.

~~FILES Cr'

OUTPUT'TO: PR Cr

3/19 12:13

1 0:00.00 0:00 77777777
101122 22000000 31656 /$/
1 770 12 21000000 10316 /.1- GOP /
102110 22000000 14100 /8SSY /

OVERFLOW: 1350
2 0:00.00 0:00 77777777

1350 0:00.00 0:00
701105 22000000 32631 /I:!;GT8/

, OVERFLOW: 1

TOTAL: 0:00.00

••••••.•••.••••.. END OF JOB

The Operation of the FILES cornrnand is the sam.e as for UAD; that is, a
carriage return after FILES will print all of the files or a linefeed will only
print out the ones selected.

With a linefeed (Lf) after FILES, one m.ay select more than one file to 'print.

Example: .
~:~FILES Lf

OUTPUT TO: T Cr

3/19 12:30

77
77 0: 00. 00 0: 00 77777777

102

63 1 1 0 1 2 3000000 12343 / MU D /
612066 23000000 36477 /QUI/

102 0:00.00 0:00 77777777'
605115 24000000 25776 /$/

To get out of the FILES conunand, hit almoc.e a few time s

>:~CLEAR FILE Lf

3/24 8:30

105
107
300

AltInbde

The CLEA.R FILE cOlTIlTIand deletes all files under a user nUITlber.
After the date and titne is printed out, the cotnputer waits for the user
nutnber or nutnbers who'se files are to be deleted.

>:~ACCOUNT Cr
LNP, --- P.2..Cr'
TTTTTTTT"AAAAAAAA, Cr
Alter Switch 1

NEW or OLD

The ACCOUNT command is used to enter new accounts, change account
time parameters, change account parameters, or change account passwords.
The ACCOUNT command requires four arguments: ' ,

Where L = A,ccount Letter
N = A,ccount Number
P :: Password
T = Time Parameter

There mustbe a space between the Time parameter and the A.ccount parameter.

Altering switch 1 enters the account into the system. Up to this point, one.
may a1tmode out of the ACCOUNT command. This is the only way to correct
a mistake in input.

Whenever an account is entered or changed, it must be checked to see if
entered correctly by doing a UAD for that account.

The Account Letter, L, can be any letter from A through Z and the special
character @. The.@ is 'restricted to internal Tymshare usage only.

The Account Number, N, can be any number from.1 through 8.

The Password; P, can consist of any combination of numbers, letters, and'
control characters (up to 12· chara cter s)

The Ti me Parameter, T, controls the access time of the user. It is usually
24 hour access. Sometirnes, parameters are as follows:

77777777 or -1 - 24 hour acce s s
37700 = 10A.M to 6 PM
37774 = 10 AM to 10 PM
1400 = 2 PM to 4 PM
77600377 = 4 PM to 8 AM
77600077 = 6 PM to 8 AM

1477 = 2 PM to 4 PM, 6 PM to 12 PM

6074
300
1700

'377

=
=
=
=

12 AM to 2 PM, 6 PM to 10 PM
4PM to 6 PM
2 PM to 6 PM
4 PM to 12 PM

The tim.e param.eter is right justified

The Account param.eter, A, is not ,used at the present tim.e, but a
zero (0) m.ust be entered in ~rder for the A,ccount com.m.and to be executed

~~NAME Cr

LNU. --- U,.z.;Cr
PPPPDDDD Cr
Alter Switch 1

NEW or OLD

The 'NAME cOm.IYland is 'used to enter a new user naIne into an account or to
change the user paraIneter. The NAME command requires the following
arguInents:

'Where L = Account Letter
N = Account NUInber
U = User NaIne
P = User ParaIneter
D = U serNuInber

The user paraIneter Inust be typed only if it is other than zero (O). The
user paraIneter luser nUInber is right justified.

NOTE:D(user nUInber) should be unique for each user. If it is not, both
u'ser s will share the saIne file directory ..

Altering Switch 1 enteres the usernaIne, etc., into the systeIn. To correct
" any Inistake s an input, altInode out of the NAME cOInInand befo'realtering

Switch 1.

Whenever a user naIne is entered or changed, it must be checked to see if
entered correctly by doing a UAD for that user naIners account.

The Account letter, L, and the Account NUInber, N, Inust have been entered
previously by the use of the A,CCOUNT cOInInand.

The User NaIne,' U, can consist of any combination (up to 12 characters) of
nUInbers, letters, or control characters.

The User ParaIneter, P, will not be used in the majority of cases for outside
users. It is generally restricted to internal use. The user paraIneters, allow,
,a person to have Exec, Ope~ator, Peripherial, SysteIn Exec, or ARPAS-DDT
status, all five, or any cOInbination of the five.

The User NUInber" D, is necessary for all users. At the present tiIne, it is
an octal nUInber froIn 1 to 777. Under this number is all the us er r S files. The
nu'm.ber is different for every user.

f--USER NO. PARAMETERS~ ~(--- USER NUMBER ------~).
(Octal) (Octal)

0 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

) I i ~

I I
I I I I

~~CANCEL ACCOU Cr
LN Cr
Alter Switch 1

OLD

Where : L = A.ccount Letter
N = Account Number

Confus;i.on may arise with this command, in that cancelling an account does
not cancel the users in that account. If the account is to be cancelled·
completely, the user names should· be cancelled first by using the CANCEL
NAME command (See following section).

As in' the other commands, one may altmode out of the CANCEL ACCOU
cqmmand before altering Switch 1.

~:~CANCEL NAME Cr

LNU, --- U'2Cr
Alte r Switch 1

OLD

Where . L = Account Letter
N ;; A.ccount Number
U = User Name

This command cancels the user name. But cancelling a user name does not
eliminate the files that the user ITlay have amassed. There are two ways to
e limina te the s e iiI e s :

1. By using the DELETE command in Exec before cancelling
the User Name.

2. By using the CLEAR FILE command in OPER, which is much
quicker and which does not require logging in under the user
name and therefore, does not require that the user naITle still
be in existence.

Whenever a cancellation is ITlade, do a UA.D for that particular user account
to see if it is cancelled.

OVERFLOW

The OVER:FLOW command is used to assign an overflow number ,to a user
having used up all of his file space under his initial user number. The
initial user number is still the identifying number for a user. The block
of user numbers from 1237 to 1377 is to be used for overflows.

The system will not allow more than one overflow to be as signed to a user
number. An overflow can not be assigned while the user who has that
~ser number is logged in. Also, the system will not allow an overflow to
be cancelled if there are any files under that overflow number.

The procedure for setting up an overflow is as follows:

~:~OVERFLOW Cr
'DDDD, FFFF Cr
Alte r Switch 1

Where D= User Number
F = Overflow NUnlber

The procedure for cancelling an overflow is as follows:

~:~OVERFLOW Cr
DDDD, Cr
Alter Switch 1

If the infornlation is not entered in the correct format, or a user is logged
in to whom the overflow is to be as signed, or the file s are not deleted from
the overflow before cancellation, the system will COnle back with a ?

USERS

This command lists and sorts all of the users by either User Number,
Account Number, or User Name, depending on which column; 1, 2, or 3,
respectively, it is sorted in.

~, USERS Cr

OUTPUT TO: PR Cr

SORT ON COL. (1,2, or 3): 1 Cr

3/25 17:48

1 ~:q UTILITIES
2 ~:'1 CRASH
3 ~'1 RAY

TOTAL: 0:00.00 0:00

- PRINTER

.••••.•••••••••••• END OF JOB .•••••••••••••

END JOB

POINTER

This command will indicate the ·la st overflow number as signed, minus one.
At this time, the validity of the pointer over 1000 octal is doubtful. So use
the re suIts of this command with caution.

~:~POINTER Cr
"

OVERFLOW POINTER at 1355

END JOB

FILES FROM TAPE TO DISC

To copy files from Tape to Disc, or from Disc to Tape, is known as sys-defining.
To sys-define one must have peripheral and exec status; peripheral status in
order to use the Tape drive, and exec status in order to use the "SDF ••• ",
command.

File's on a Tape have three (3) parameters:

1. File Number
2. File Type
3. File Length

The File Number is a number that des~gnates the location of the file on the tape.
These numbers are octal numbers, i. e., 1, 2, ••• 7, 10, ••• There is no zero (0)
File Number. The number of files on a Tape is only limited by the amount of
Tape.

The File Type is a number that, indicates what type of file:

1. 1 is a "go to" file
2. 2 is a binary file
3. 3 is a symbolic file
4. 4 is a recover file

The File Length is a number that indicates the length of the file in words., i. e. ,
44477,25003, etc.

With every Tape that has files on it, there should be a file directory with it.
This file directory should list all of the files and their parameter s. The file
directory is vital to the sys-defining.

MOUNT FILE TAPE on Unit 0, set density and put in Auto.

c c -ST S EXI\-l Cr

- POSITION Cr
3

This command is used to position the Tape. It is always positioned at File 3.
Though thE~ tape is usually ,at file 1 when it is at the load point, s'')Inetimes this
is not the case. This command is not used if there are only two files on the Tape.
As stated above, the POSITION command positions the Tape at file 3. If there
is no file 3, the Tape will run away and probably crash the system.

If while trying to position the tape, you get a tape wind error, TWC, it indicates
that the tape is not on unit zero. The tape units are now hung up. They c'an not
be us ed until the following steps are gone through:

Put Tape drive Unit O.
and

_STcScREW Cr
This command will clear the system of the hang up, and position the
tape at file 2.

-STcScDF" I <Tape file-name> ~,AS t;'File-number> ,<File - Type) , <File-length? Cr

This command defines the tape' file-name with the parameters after the AS.
The same < Tape file-name> may be us ed over and over again, if it is copied to
t he disc before it is defined again with different parameters. If the <Tape file­
name:> is defined again with different parameter s, the computer will type back

rr(ALREADY DEFINED)" after the Cr on the STcScDF command.

-COpy 1\ I <Tape file-name7 1/\ TO (\ /<File-name.> / Cr Lf
NEW FILE or OLD FILE Cr Lf

This command will copy the tape file, which has been defined with parameters
of a file on the the tape, to a disc file.

After the second Cr the system will search the tape for the file number stipulated
in the STcScDF command. When it has found the file, the system will give a
carriage return and start writing the tape file to the disc file. When it is
finished the system r eturn~an executive dash.

If the file cannot be found on the tape, this will be indicated by the tape unwinding
and rewinding. To stop this, altmode out of the COpy command.

If the file is found, but it can1t be read, (PE), position error, will be typed
out on the TTY. (PE) will continue to be typed out until the file is read or
until the COpy command is altmoded out of. If more than 5 or 6 (PE) occur,
altmode out of the COpy command anyway. Try again. If (PE)ls still occur,
try another tape drive. If it still doesn1t work, the tape is bad or the tape
units are in bad condition.

FILES FROM DISC TO TAPE

System - defining files from disc to tape is basically the same as from tape to disc,
except for the copy command;

-COPYA / -(File-name') /1\ To,\' ~ Tape file-name) , Cr

In the SDF command, the parameter s of a file on the tape to which a disc file is
to be copied to is defined, and the copy command copies the disc file to that tape

file.

In copying files to tape, two of the three tape file parameters must always agree
with the file directory of the tape. These are the file number and the file length.
The file type may change depending on the type of file to be copied to the tape.

To copy files to tape, there must always be at least two files. To create more
files on a tap~, do the following:

-COPY;\ / '.file-name?/ l\TO .. , t ~,Tape file-name;' Cr
NEW FILE Cr

NOTE: The tape file-name has not been defined by a SDF command.
The disc file is copied to the tape and a new tape file is created.

-FD: I <..Tape file-name;> 'Cr
43,3,13171

This command will give the parameters of the new tape file. Enter this
onto the tape file directory.

NOTE: N ever us e the same I .!... Tape file-name> 'over again until the
parameter s of a particular file copied to tape has been determined
by FD:.

SHUT

The shut command does the opposite of the answer command, though it does not
selectively shut channels, but instead shuts all unused channels. If a user logs
out after a shut command has been given, the channel he was using is shut.

-SHUT Cr
alter B. P. switch 1

HANG

This command will cause the indicated channels to be disconnected from the
computer. It has the same affect as if the dataphone was hung up or a log out
occurred, except if a' user has a $ file, his core at the time of the hang is dumped
on to the $ file .

. -HANG N (or) N, N (or) N-N Cr
alter B. P. Switch 1

NOTE: This command only causes a Temporary Disconnect. It does not
prevent the effected line (s) from being re-activated immediately.

GARBAGE FILES

Garbage files are files in a user's file directory that have gotten clobbed, or
have been added to the user's fil·e directory. A file with garbage files might
look like the following:

-FI Cr

/DATA/
/AC/
/PRT/

/SI/
/NUT/
<'A
/QUS/

23,512
22,1047
23,512

%@ 23,23156
22,2456
22, 1056
330,2,703635
23,3675

The fourth and the seventh files are garbage files. To remove these files, determine
the location of the file, i. e~, the first garbage is the fourth file. Then do the
following:

This c~mmand will rem.ove the garbage file that is the fourth one in the file
directory. Take another files

':'FI Cr

/DATA/
/AC/
/PRT/
/SI/
/NUT/
<'A
/QUS/

23,512
22,1047
23,512
22,2456
22,1056
330,2,703635
23,3675

The other garbage file is now sixth in the file directory. To remove it, do the
same as with the previous one.

J .) f II ---.!.Jage 0 _~

. t

I
I---...... -~-.t-~~------------------------~' I

PROGRAIVI TITLE: ______ 0.:.-ll.-.s_~ .;:.:.:c>:.-~!;.;;.. ·-=b~f....:...!;·~J{>.:.:._~; _---...:~~;,:--. ___________ _

!
1 ACC. /USER NAlVIE: ---

RESPONSIBLE PROGRAMIV[ER: V. \I :;.~~:\~ \) L 6;.). \~
--~~~~~--~~~~---------------

OPERe

:9URPOSE:

ST A TUS REQUIRED

~EXECI EXEC2' PERH. SUBSYS
ARPAS­

DDT·

"r (;> t,.. ~ f;. '0 "'7 t·} 9 D : $ e. ? ~" r-'\ A" .p R C: V i j t.: S

D ~ ~ ~. 0 tA. "'Jl.~

. S~T Ur: INSTRUCTIONS: l.j\Dt-~N'I- O:C~ !,.o;'~PJ Dv:.'"'-\~· () t~!J1~~fYf~ oN tlH~l\- O •. c..£'a.ot:~
t~G0-!SYG~'::$ r~:"·;O 6-'0 ,-c t<~N. ~!~$r: e.r. Sid ! do\.:J~'l c." .. \~ ~1~"}t- .rr'i.~~ · ~ I\CJt~i\l;; ~;'\+r:"'"
... ,,~V ~ "" ~ ~:.:; $ -',t:J t-o t) :0 a.l~ ~~·~c ;'t<J\ 0 tv "'r~":G t~ N !~... -;-t~; .. .¢, .. , ! S· tv ~~ l "\)- S iY

=-1 0 N ': t·;' 2 '1-'1"-" e I.- /). (J &!-.. PI M .. £: G ()~ .. I"; "r::. ~ ;; ~ I IV I'll.:. TO • '. i
I OPER.f\ TING. INSTRUCTIONS:

• >.,;.... ~ ~J\ t;A ,\J I i' C ,t.",~I' '.I";~ I.) L I ,~ 11 ~J.~ L- -:- f>--l Jr 1) 1 0 i'O! \V\ c.)
"'~"." .:..,~~v ~ ... 'W tI \. -"- • • ,,,~~~ ~. "

L~. <: .. L 5/;'~'~ ~.}J:)/..": L ~:-b'j,& /e-' 'rU~"I)
6, .. ~-:> (.-G!. .E 'IS, P • 5 r.v fj. J S I ~i

\
ERROR RESTART 'PROCEDURE;

I . · ~. ~ ___________ ~ _________________________________ ~----______ ~ ____ ------_______ ~i

REVISION DATE:
-----~-------------

,
o,! REVISED BY: ------------------------

j

1 -LPage of_~

PR OGRA1VI .TITLE: () ! b CoO (J t1 t:~~~ .~-~~!)..
----~~~~~~~~~--~-----------------------

P~CC. /USER NAME: --
RESPONSIBLEPROGRAMMER: ____ ~'~J.~~1~J~0~~~!~~V~&~.~C~~~~~p~~ ________ I ______ _

STATUS REQUIRED

OPER. EXECl EXEC2 PERH. SUBSYS
ARPAS­

DDT

,PURPOSE:

o{!.} ;: .. " G
t..,5 br':.j

YD
O~

.T~;"~6

vt~E

~"'.
~T .. .• piS,"

P~i 5.$

OPERATING INSTRUCTIONS:

0 (A r;v .. "v~~ TO
c ~~\~ 5Mit; Y

at ?~ ~CJ Vu t. ~ ~~l D eo ~s.y l~ . ~ E!.<r: s , .. 8, ~5

ER?OR RESTART PROCEDUHE:.

REVISION DA TE: REVISED BY: ------------------

vtG.Gr? pr

0 N 1"' 1,.1, It

e;;':;.J.(!lJr
(:)JSc..

\

\ ,

!

\'
I

I
I
\
j

I
: I

I
t ~
I
I

!

ERROR HALTS AND CORRECTIVE 'ACTION

DISC DUMP/LOAD #2

C Re~. Fla~
"'2010101

2000001

2000003

2000004

2000005

2000006

2000007

Description
Dump or Load ready
to start

LOAD only: Tape
Read Retried 10
times

LOAD only; Disc
Address read from
tape is not valid
for tape number.

SKS 14000 error on
disc (vi Buffer
not. gOi~g ready)

SKS·I0026 error
on Disc (Seek or
Search Time Error)

SKS 11026 error
on disc (Disc Con­
troller Error)

SKS 11000 error
on disc (W Buffer
Error, ind.ludes
Disc Read Errors)

Corrective Action

(a) Toggle Run Sw., tries 10 more times.
(b) Set Console Sw.#4, Toggle Run

Sw. Accepts tape record. a~ read.

If first read on tape then tape
might be on wrong handler. number,
otherwise bad read.
(c) Toggle Run Sw., Rereads tape.
(d) Set Console Sw~#4) toggle

Run Sw. Record not written
Wv/-l- on disc) nex't tape record read.

I l-Ul)/2./< wt<.cl-{G UN/I..s€; .
(e) Toggle Run Sw.) Tries disc in-

structions again.
(f) Set Console Sw.#4) toggle run.
DUMP: Accepts disc record (1 page)
as read and writes on tape whatever
is currently in disc buffer ...
(Probably lost 1 page of data)
LOAD: Recordois left on disc as

. written, probably with errors.
(Depending upon type of d~sc failure.

Take actions (e) or (f) above.

Take actions (e) or (f) above ..

Take actions (e) .or (f) above.

2077777 DUMP or LOAD com­
plete on two tapes
if 16 disc dump,
on 1 tape if '"8
disc qump. (Ready
to proceed with 2nd.:
two tapes.if 32
disc dump)

: '5
WIX error (P reg. at 45~) (LOAD ONLY) can be bypassed by' placing
ru~ 3witch in halt, presslng START and branching to 44i.

? ~EGISTER
c:2C/627
c).;~/646
656/66f; tt

661/66,? .'.' . ,," :::

LOOPS
Error in erasing tape.
Error in. backing up tape on a retry.
~ape not ready ..
W Buffer not ready on tape instruction .

b

ST P). TUS REQUIRED

EXECl EXEC2 PERR. SUBSYS

PURPOSE:

SET UP INSTRUCrrIONS: ·/Vj tJ &J tv J= C"l A P~e

--r' OPERATING INSTRUCTIONS:

)~()"6.
;:J>~}

":?~' ~ 1 ~? t." !:, ;~.~
J-~ ~ J v'< g ~ ~ v .. "\0

~ J •. ~
. j~ O.?~

to ~.i~
"'n~ ,

ERROR RESTART PROCEDUR.E~

.. ,t.. page of .J.,.

ARPP .. S­
DDT

'~"I: I' J~ / .

J,.....;...._R_E_V_IS_I_O_N_D_A_T_E_. :~~~:~ __ ~ __;......;......;.;.....;... _________ ~ ____ .;..;.R..;.;..E;....V..;.;..I_S_E....;..D~B_Y_:===:====~=::=~~~~~~~~~ ___:

oo(

I

--(:

I 0-/
o _ 0 ~

RESPONSIBLE PROGR.AMMER: ------------------------------------

ST P .. TUS REQUIRED

EXECI EXEC2 PERH. SUBSYS
ARPAS­

DDT

PURPOSE: . R r~'!, ... fr.. AS e
.Sll~/~Nl.

SET UP INSTHUCTIONS: -

·OPEr:cJ-'..TING INSTRUCTIONS:

I.

'S (./'5 7 Ie)V'\

A F r J::' r~~

':.1<.
.~ e"~ PO ,'\1 J-:J tv I 7 H

"':r1.1 P I N~ ~ !~:~ PA~

C;)J Gt!.MCJDIZ ..
D /) r --

I. ERROR RESTART PROCEDURE;.

of.

J . I . REVISION DATE, ________ _ REVISED BY: _________ _

o 'I i-

t
I

; I
o !

r.'

..
• !

.... ~.------------------------:-----------------.:

STATUS REQUIRED

EXEC2 PERH. SUBSYS

SET UP INSTRUCTIONS: . ~ 0 . /OJ::JG.I\.) /

~age of

ARPP~S­

DDT

INS A S (Ii! tj /:) 0 r "r I~ G: L E "r'l-:; l~ C";:' I ;::- ; T F-? tZ'.s ? 0 IV /":j S W I or /-J

l~ i~ 'r!."" .(; R _0 i~t.- , CS (:) O/;;"J ::: /0 l' J t·.:: Ii R G ~ Po 1'/1:" ~ lo!,.)! ,;../.. t.. Err r IZ I"~ •

\ I

. I
I
I

-~\) .. :.-::~,:~j •. ; .. jl"<?/Ci;";: t .. /~r:r!..~/\.;J· C,I\?, A t;/1.JI-J A-iVJ) '1Du ~l:.·r~·l;.t?r:r:(?:~\~_ ~P";:-
~~~~~~LL~~~~~~~~~~~~~~~~~~~~~~~~--~------i 

. OPERP .. TING INSTRUCTIONS: 

I . 

:.. err 12:' ~'? Nr~·i .-b 
......... -

(. ERROR RESTART PROCEDUR.E:. A L..1- lv~ol~ f2 . ~·o or~t:-J~~ 

REVISION DATE: ________ _ REVISED BY: 
---------------~---

. ! , , 

...-!.-~----------------------.----------------



. I 
! 
i 
i 

)-?'5 
__ ......;;;;2-_'_.:PA~G. of 2-

I 

c,.: 
D; 



All Users 

LOGOUT 
WRITE FD 
RENAI1E 
DATE 
KILL PROGRAM 
RESET 
C'OEY 
FILES 
FD FOR 
G'O TO 
PLACE 
SAVE 
BRANCH 
DELETE 
TII1E 
STATUS 
MEMORY 
" DUMP 
RECOVER 
CONTINUE 
RELEASE 
PMT 
EXIT 
SIZE 
MAIL 
SEND TO 

EXEC COMHANDS (System 1.86) 

Allows user to logout 
Writes File Dir. on disc 
Rene.m.es a. file 
Types date and time 
Kills program relabelling ::'. only 
Returns all of user's memory 
Copies file to file 
Types file directory 
Types selected file dire entry 
Goes to a "GO TO" (type 1) file 
Places a "SAVE" type program (type 1) 1n core 
Saves program, creates GO TO or type 1 file 
Branches into a program 

· Deletes a file . 
Types real time used (and computer time*) 
Types user's relabelling status 
Types unused user's memory 
Causes typing to be ignored by EXEC 
Dumps all program, saves status 
Recovers from a DUNP file' (type 4) 
Continues running a Sub-system 
Releases a subsystem 
Prints a users Program Memory Table 
Allows a user to LOGOUT without writ1ng F1le D1r. 
Sets Users Machine size 
Types all Mail in user's mail box. 
Allows user to put letter in Mail box 

Users with Sub-System Status and above. 

USERS 
'wHERE IS 
WHO IS ON 
REWIND 
RLT 
STN 
PTN 
SET EXEC 
POSITION TAPE 
TAPE POSITION 
DF ' 
REMOVE FILE 
PSP 
CREATION 
LFCRE 
STORE 
RETREIVE 
DIRECTORY 

Types number of'users on system 
Gives teletype number for a user 
Types users on system by Account and name 
Rewinds tape, resets tape loglc 
Releases tape 
Sets tape no. 
Types tape no. 
Sets user·status 
Positions tape 
Types current tape position 
Allows a file directory entry to be set up. 
Removes file from directory (without deleting) 
Types. error counters, etc. 
Types file directory with Creation Date & Access Count 
T~es Creation Date & access count of selected file 
Stores a file c on Mag. Tape (in backup format) 
'Retrieves a flle from mag. tape 
',Type~ File Directory for flIes in Backup Format, 



HELP 
MAIL COUNT 

COpy MAIL 
CANCEL MAIL 
MAIL GARBAGE . 
UAD 
LENGTH 
TIME 
SET DAY 
RESET . TIME 
SET HOUR 
FILES 
CLEAR FILE 
SIZE ACCOUNT 

ACCOUNT. 
NAME 
CANCEL ACCOUNT 
CANCEL NAME 

* OVERFLOW 
*MAP . 

GARBAGE 
POINTER 

USERS 
COUNT LETTERS 

REMOVE LETTER 
LETTER . 

. :. COpy RECORDS 
CLEAR RECORDS 

OPERATOR PROGRAM COM!1ANDS 

Types list of commands 
Provides a list of 11ail originators and total 

. number of addressees. 
Allows operator to 'copy selected mail to a file. 

'Allows operator to cancel mail by number 
Removes holes and null entries from Mail List 
ouputs User/Account Directory 
Computes length of files by aco9unt 
Provides time .. :_ used .by user number 
Validates a user for a whole day . 
Same as TIME but also clears time • 
. Validates a user for selected hours 
'outputs complete or selected File Directories 
Clears a file directory . 
Computes and provides maximum size of files. by . 

account. 
Sets up or. changes Account parameters 
Sets up or changes a user's parameters 
Cancels an account directory . 
Cancels a user entry in the A.U.D. 
Allol'TS assignment of an overflow d1rectory 
BUilds system bit-map 
Removes garbage fro::~;'lerflow file directory 
Indicates current location for a new. 

overflow file directory. 
Provides a' sorted list mf users on the system 
Counts·the number of users YET to receive u all 

broadcast letters 
Removes a broadcast letter from the system 
Allows a broadcast letter to be created • 
Allows the accounting records to be copied to a f11e. 
Same as CO~Y RECORDS but also clears records. 



EXEC COMI1ANDS (cont. ) 

Users with Operator or System status 

SHUT DOWN 
UP 
HANG UP 
ANSWER 
ACCOUNTING 
LETTER 
ABT 
GFD 
ENABLE 
DISABLE 
LOOK 
SYSLD 

System commands 

HSMT 
SYSDP 

Starts system shut down 
Canc el s shu t dO\,ln 
"Hangs up" selected teletype phone lines (DSS) 
Ansers (or enables) Data subset 
Controls accounting to paper tape 
Types broadcast letters 
Aborts tape operat1on (halts runaway) 
Gets another user's file directory 
Enables a subsystem group 
Disables. a sUbsystem group 
Looks at real core locations 
Allows loa.d from disc d1rectlY'~.;·1nto user's core 

Reads in from HAD a SMT Page 
Allows core to be dumped direotly on disc. 



FILE DIRECTORY FORMAT ON'DISC 

, 1 Entry" (Disc' File) 

o : 0 ,I 8 9' '" 14115 ' 23i' 
l: 0, Account No. j No. of Accesses Creation Date I, 
- ',* 11; 12 i 

ci Chan'ge if' File Size I : File Length':(FL) , ! 1 

2 
21 3 ,6', "IIi, 12 ' .,' I 

CB . FT ', 'LTP Future Controls 

3 :' ,'. :" ',.", "Index Block Poi'nter 
, .. I~. ,j 1 "·~,,·.rf.i 8 9 

' .... 

'4! D : Char. 0 r; '! 0:-" ,,', 

I 

! 
N l 

! 

. " 

3 . 0 
I 
r--

:FT " .. = File Type.', ,". . " i .' ~ . ~.,'. ~ 

LTP = Low Orde~'Tape ~o~i~ion: 
HTP = High Order Tape position 
FS = Tape File Size 
FL : = File Length for disc' 'Files' '" '> ,'~: " l~ 
C "~'~hange~n ,file, length (fil~ ~~rigth n6;lo~~er 

, :; '. , .' :V cfl!i d) . I : ' '" " , ,', , ' .:,." ' " >:: z .. ' ' 

CB = File Control Bits, O=Tape file 4f e Ie-NO V-~ 
2=Disc file 

F = End of Entry Flag (1) 

If Tape File) word #3 = 

HTP FS 



8.7 

. :<:' ::j':' DISC MAP ".' '. 
~ t I ; I :" 

;' .. : ::: ' 

, . ,i : Ar:m Po'sitions ,. . . 
_____ ---:--___ ~ '. _'~ ____ .'_'~':""-'. __ ''\ I '.'. 

J ' I ".' j:>31': 2 -:. 33 "'.', "3 4 '." ; t!:., ., t!:2 "t!:-:l . 
. ' I_,~~_L, 2 !\-""7'";-+:~>.3 . ~ ',;,- :~"r--~--u _l~ i 

1 pae:;e OJ Userj Date! ( .:;- ' ... °J:>":::::l V: :!, "')i; :.:,' I - ! , i 
, -" I 400 user~ , ...; .... :.: ',I • : •• ,:';,:." i , I :' : 

, 40' FD I- FD i ~.'~ " '" 'I',· ... , .. ' .... :. .:.::;1 ' .. ': ...... :' .1' .' I,LOC O·I~LOC.O~DiSC 0 

" " ,,' lOa,! :hser i
l

:' I \. I,·: :1, ... ,i .•.. :.,):'. 'i. ! ':'. i I I (OXxxx) 

140'----'-'-1:-11.~-1'\/-J----r ...... ,:1[: .. :_ ........ ,-'-. '\,-4-.~ i i 
OlrT U 'I" 'j',!' I I I . ,user 1 ser . ., .' l. ":.," r . I~"" ". I' . .. i 
'\1 500 1100 I" . I' .' '. ':-'.\.: :;':.': I' " . I . ~ 

401! FD I FD I· "' .. 1":; .. ' .... . ' .. ':, •.. : ..... 'I' :.~.:~ ......•. : .. ,~ .. ::. :: ... ,' •. ' . ::. '" ,LOC 1rOC 1 :Dise 1 
. - . O· , . :'1' .' I .. ". :,: .~:' ';" ':.;,:. !.: .. :::1

1 

,~.: •• ' '. i i ! (2XXXX) 
. 10i···' I' }··~I·:·':,<I··:;I,II, '; I I 

140;. ___ ~ I '~-:"r'- , .. , ',··I:·,:.·.··,.·.; ... ;.'.:.;.<j·· ' "j" ' •. - .. A
I 

j ...... - .. i.-~_': 
au " '. \/ . . I .: " '. I· , . '\ I' 

,ser ser" I ,'I '.,":"'::': .. ' I' .,' - I I I . .600 ,200. I . . .... I: :::".' .; I I '.... I - I 
40j FD I FD 'r' .', i. .'. ,.,1 'j<.;; .;-:< I .! ILOC 21LOC 2:Disc 2 

lOa' "1 .; .' .. ;" '. :-:: . j I '+: I, ,'(4XXXX) 
! !! '.' !.':': I· I' I ' . . 

.. . /4gk;~;-~er~~·.·: /\1'1-· ·1· ~·--T-.·' ':"l- --: .1 I 

.\·40r~g?~g I' ,: .· .. ,1. i I I ····I'LOC3LOC3!Dise 3 
8K -- . : ' I . j j ,...! . ! . :. .' 1 (6XXXX) 
. ;' lOOi I: 1 .1· i i·. '!'. . I 

,'- . I I '1" I ,'! •. '.; 

1}4g~ser ~cct ! I\;_~ l J ,j'vl-~ill 
40r~go 6!D !: .: .•.. I ! ··1··· LOC 4110C 41DiSC 4 

", 100i ~ee~ 1 I·;···· :.1 '1" I 1'.1· j(10XXXX) 
: i . '127 I I I· ".1 (I I I ..... ' ...•• 1:~~f~~1/\/~~/I:JI- .>\ .. , {! I .1 \/. ;- II

Loc 
JLOC5 :1'DiSC·5 . 

', 1001 !." ; j ,.' ::~i II': I 1 I . (12XXXX) 
. .... I I . il,', ! . i J t Ii" . - ." 
.','-. 1401 ---' -'1- ! -I\r+-~~! I + 1\ r' . , I .• 1 1 ~. 
.. Dp se t'i I' '.1 . I -j ! ,/ i ~ ;! ~ 

'!l200 ! I i': I '; I I 1 I . I 

40! 'FD. jAce' t! I.... ill'.·.j I; LOC 61 LOC 6 :D( i
4
se 6

X
} 

. . ... 100; i ! ! !. ' I I ! i . 1 XXX ; 

.14gp~~r I' i i -\r+-I I II I\ri--+-t-; ~ 
\1300 i . i I I .. '1,' . I;' I ! .. 

40; FD iLetter I' 1 iLOC =1I LOC 7;Dise 7 
1001 I. I ,!. · I . (160000':' 

, ··140!._-.-·· ,II }\.1 .! I}.'v . l ~ 1777'40.) 

.~~~ OOXX 02XX 04xx. {76XXIOOXXI02XX104Xx 172XX174XX176xx 



... .1 

'. ~ , ::' . .",', i . 

. . , . 

(i .~ ,~ .\ (i ' .... ,.l. <. ......... ~ '-" ~"~ .... " . ..,I 

I 

I 
I 

I 
I 
I 

I 

I 
I 
I 
I 
I 
i 
I 
I 

I 

I 

I 

I 
IX 
I ' 
! >/ .. 

c. 

.'\ 

)0 /,,(:~{ 

= 
= 

-I 

I 
I 

I 
I 

! 

I 
I 

I 
I 
i 

• I 

'32~P 

::: 

I 
I 
I 

i 
I 

I 
I 
! 

I 

I 

I 
I 
I 

, i 
i I 

-4- '-ltlJL. 
! 

10' i I.. ,.,' ~/_,t \_f.r,!) 

i 

i 
i 
i 
I 
1 

I 

, I 
. -r I (),; 

/VO I 

o 

, 
( 1,1-:'" \I r:' 

11-.. •· It . 

o 

I 

I 
I 
I 
I 

I 
I 

I 
I 

i , . 

j. 

i 
I ; 
I 
l 

C l?,~~ :.~ // ) 

\ 

P " r, I\/7'() 1/ 
i 
I 

! 

I 
I 
t 

i 

I 
i , 
I 
i 
I 

1 

.:~ /.:'.'~ 

! 
; 
I 

I 

I 

I 
I 

10 
! 
i-I 
)-} 

I 
10 
i 



,---

J"': 

\ 
.• J 

I:' 

I 

\
' ,I JI

J 
C) 0 ~c 0,:). .~ ',\J].~ , ' I 
j J' II -~ I • '\' , . ' .. ~ I. ,~'\ l ' -.... ,.~I 

i tY r~ "~ i '. 

! I I 
! I : 
! /.'\" .jr, .v.~ ... : . .J/ 
~! ~ \ \, ',J , . ..,.1 ._.,1 • ! 

i 
C:.::' t,.) i

l ." ", .~. -:-I 
;.J I.) \ i ,.'''-\ 

i 
"-; ,,··> .... b /) ') 

- .,,' ;..,.J i ' .. I.:", ... -

I 

(2...D :t 
I 

, .--) 1'.~ ~r: ... .2. L_ . 

Fj=~(J, 
l"') () ;l.. ~ 

LC ":J'L X 

L;-:) O)!... y 

-.- kJ 

::: >( 
- '''1''' 

I 

.... ,' . .-.- "\' 

\0 

I () 

" 

b 
I' 

J' 
; 

j 

, I 
I I 

• I c. ".~ I" C) \.-r.,-', J'\..(J ) / ...... "~ .~~( \ .. , ' .. _"f .••• ", .~ -I~:....J 

(.' r (~) c..Ql..(Stv~ 
\ ; I 

" 

I 
I 

... -t,,,;k'~ 

· i 
I 

! 
I 
; 
I 
I 

I , , 

i .. \\). 1,. -<'. ~'·j'"\...v-r'l 

I 

I 

I 
! 
I 

I 





A.l 

. APPENDIX A 

GENERAL DESCRIPTION OF THE COMBINED FILE DIRECTORY 

1.- A user may have one or two file directory blocks 
;, on the disc; the second "clock .1s an overflow b+o·ck. 

Each block consists of ·128· word·s .containing a vari­
able numbe~ of file directory entries.· Each.entry , 
is in the format pictured ;'in (d).' .. 

2.· If the first word of··the·block is·zero, the block 
considered to be empty. The ·last· erttry is followed~ 

. by a··::·~l o_t -2 word where the -2 ind~1cates that there 
are additional .entries in the ove~flow block. . 

·3; The last four ~o~ds of the file dir~ctory block 
contain the following information: 

Last tvord 

Last Word -1 
Last Word -2 
Last word -3 

Valid on-time for this user (1 
. bit·per hour of the day). 

Accumulated computer time used. 
Accumulated:real time used. 
Overflow block painter. 

.4. In the case of an .overflow block, the last three 
..... wor:9-s·.are zero ,. and' the overf:low block pOinter is 
. a backward· pointer to the first filed~rectory block • 

. '. ; ... ;:. t·. 



128 
w9rds 

I 
I 

I 
I 
~ 

A.3 

FILE DIRECTORY BLOQK' 

~-----~ -~ ~~::~:,.~~:~~-"CJ.~~J.':"" ".,----- .... , .. t 
Variable length name Up to 24 

~----------------------~-~-----~---- . ,Entries , ., '1;;:'J 
I. End Dir. Flag-lor -2 t·v 

~. Garbage.~.· . 
.' 

I 

Overflow block pOinter 
Accumulated Real Time 
Accumulated Computer Time 

Valid On Time 

, ' 

Last -3 
.. Last -2 
Last -1 
La~t Word: 



LOCATION OF FILE DIRECTORIES 
(on 16 DISC system) 

(All numbers in Octal) 

~~File Directory occupies two sectors or.200a words on the disc. 

The Disc Locat1on or address is composed of two parts; the first' 

part is made from the low order two digits of the User no. 

DOUBLE THE TWO LEAST SIGNIFICANT DIGITS TO OBTAIN PART 1 of the address. 

OBTAIN 'PART TWO OF THE ADDRESS FROM THE FOLLOWING TABLE, USING THE 
REMAINING MOST SIGNIFICANT DIGITS: ' 

0, 
100 
200 
300 
400 
500 
600 
700 
1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
2000 
2100 
2200 
2300 ' 

'(lo~\ i ' 

--20200 
40200 
60200 o .. 
20000 
40000 
60000 

100000 
120000 

'140000 
160000 
200000 
220000 
240000 
260000' 
300000 
320000 
340000 
3600000 

(disc 
(disc 
(disc 
,(disc 

, (disc 
,,' (disc 

0, 
1, 
2, 
), 
0, 
1, 
2 
3 
4 

~. 
7 

10' 
11:!.' 
12 

, 
arm position 1) 
arm position 1), 
arm position 1) 
arm position 1) 
arm position' 0) 
ami position 0) 

13 
lK 
15 " ' 
16,' ~,' 
17 ,.,-5 , 

, I, ' 
~erflow user numbers, 

, , not to be assigned) 

EXAMPLES: ( 

User number: 243 
Double·;43 += 106 
from table, 200 : '\ = 40200 
D1sc 'address =, .' , ',40306) 

'User numbers 
= 156 -
- 360000' ' 

,Double 67' , 
from table, 2300:; , 

, ~' D1sc address+', , 360156 , 



IMPORTANT DISC ADDRESSES 
(16 D1sc system) 

- Last user number: 2377 Disc adr.: - 360176 

'OVerflow user numbers start at 2100 
Lowest overflow pOinter without garbage oolleotionl 2140 

Accounting records: 140200 
Aocount/User directory: 100200 (Disc 4, arm pos 1) . 
Broadcast Letter bit map: 160200 (allows 204810 users,last=3777) 
Broadcast Letters: #1 -160210 

#2 160212 
#3 160214 
#4 160216 
#5 160220 
#6 160222 

(Maximum size of letter,383 characters) . 
Note: current letter bit map programs setup for maximum number 
of users qf,.102J10 which allows a LAST POSSIBLE USER NO. of 1777.:) , 

_ Mail Box Li st: 120200 
- Mail Box mail:e: 120240 

Maximum size of ma1l: 240 chars 
(packed, J chars. per word, f,lts lnto 64 words) . 

Future Expansion:-

Account/User. Dlrectory for Accounts from P through Z and 
overflow goes at location: 200200 
Mail box List move~ to 160240 and addltional mall at 160300. 



Dill' 

TD1E- SHARING DEBUGGJNG SYSTEM 

REFERENCE MANUAL 

L. Peter Deutsch 

~t1er·H. Lampson 

,University of California, Berkeley 

Document No. 3Q.40.1~ 

, . Issued March 25; 1965 
Revised September 3, 1965 

Contract SD-185 

Office ofSecret~ of Defense 

Advanced Research Projects Agency 

Washington' 25, D.C. 



1. :). 

TABLE OF ,CONTENT::> 

General 

1.1. Symbols. 

1.2. B10ck Struct.ure . . 

1.3. 

1.4. 

1.5. 

1.6. 

Literals 

Constants 

Commands 

Expressions • 

1.7. The Open Register .. 

1.8. Memory Allocation and DDT . 

DDT Commands . 

2.1. Register Opening Commands 

2 .2 • Type Value Commands . • . 

2.3. Symbol Definition Cormnands 

2.4. Mode Changing Commands 

2.5. Breakpoint COmITlands . 

2.6. Input Commands 0 •• 

2.7. 

2.8. 

Search Corrunands • 

The Patch Command • 

Miscellaneous Commands 

2.10. Special Symbols ••• 

2.11. Panics • 

Appendix A . . . • • 

DDT Commands • 

DDT Special Symbols 

Appendix B . • • • • • • • 

30.40.10- 1. 
May 17, 19G:~ 

· 30.40.1C-1-1 

3 o. 40.10-1-1 

· 30.40. ~ ('-J- 4 

· 30. J.0.10-1-0 

. . 30.40.10- J. - 6 

· 30.1~O.lO-1-7 

· 30.40.10-1- 0 

· 3C .40.1f':'-?-1 

· 30. 40 .~:~-2- 3 

. '. 
'~ (j • 40. 10- 2 - J~ 

· 30.40.1CJ-2-5 

· 30. ~O.1 0- 2-7 

30.40.10-":-:: 

• 30.40.10-2-<} 

.' . • 30.40.l0-2-10 

... . • 30.40.10-2-:':'.1 

• 30.J~.().lO-2-13 

· 30.40.10-A-l 

· 30.1 ... 0.10- A.-I 

3().40.10-;~-2 

'30 • 40.10- B- .; 

Concise Guide to the DDT r·1a:cmal • • • • • • • • • • '. • • 30.L.O.1o-r . 



I 

I 

1. O. .General 

30.1+ 0 .10-1-1 
March ?5, 1965 

DDT is the debugging system for the SDS 930 Time- Sharing S:rsten:. 

It has facilities for symbolic reference to and typeQut of mer.1')ry 

locations and central registers. Furthermore, it permits the use 

of literals in the same manner as in the assembler. It can also 

insert breakpoints into programs, -perform a trace, and search pro-

grams for s:pecified ,·rords and specified effective addresses. There 

is a cormnand to facilitate program :patching. Finally, DDT can load 

both absolute and relocatable files in the format produced by the 

assembler. 

The system has a language for communication between DDT and 

its users. The basic components of this language are symbolS, .££!:l-

stants, and commands. 

1.1. Symbols 

A symbol is any string of six or fewer letters and digits 

containing at least one letter. All opcode$ recosnized by 

the assembler are built-in symbols. other symbols are .;1, 

; 2, ;A, ;B, ;F, ; L, ;M, ;Q,;X, and dot. Their meanings are 

explained belovr. Every symbol is given a value when it is 

introduced into the system. This value is a 2~.-bit integer ~ 

For most symbols it will be either ~ address.in memory or the 

octal encoding of an operation code. Note that DDT makes no 

distinction between opcodes and symbols. 

Examples: 

ABC 
AB124 
12XYZ 



1vays: 

The fo1lm'ring are not symbols: 

AECDEFG 
A:B*CD 

30.40.10-1-2 
September 3, 1965 

Symbols may be introduced to DDT in two basically different 

(A) They may be vrritten out by the assembler and read in 

f'rom the binary program file by DDI'. 

eB) They m8\V be typed in and assigned va1~es during debugging 

using the @, :, and < connnands. 

It is possible for the value of a symbol to be undefined. This 

may occur if a program, is loaded vThich references an external symbol 

not defined in a previously loaded program. It may also occur if an 

undefined symbol is typed in an expression. In general, undefined 

symbols are legal input to DDT except when their values would be 

required immediately for the execution of a connnand. Thus, for 

example, the ; G connnand could not have an undefined symbol as it s 

argument. 

Undefined symbols may become defined in several 1vays. They 

m8\V be defined by EXT directives in the assembler and read into DDT 

as part of a binary program. Alternatively, they may be defined by 

one of the three symbol definition commands available-in DDT. lVhen 

, the definition occurs, the value of the symbol 1-Till be substituted 

in all the expressions in vrhich the symbol has appeared. 

If DDT gives' a carriage return' 't,.,ithout a line feed after typing 

out the contents of a register, it means th~~the register contains 

an undefined symbol. The register is closed at 'once so that its 

contents cannot·.be erroneously changed. 



30.40.10-1-3 

September 3, 1965 

The only restriction on this facil~ty is that, as for the 

assembler, th~ undefined symbol must be the only thing in the address 

field of' the "tyord in which it appears. 

Warning: If the program alters iyords containing undefined symbols, 

unpredictable errors will result. This is the only way in which the 

programmer can get into serious trouble by using an undefined symbol. 

other incorrect uses of undefined symbols will be detected by DDT 

and will result in an error comment. 

Dill keeps track of an undefined symbol by building a pointer 

chain through the add.i-ess of the words containing the symbol. 

Thus, suppose that the symbol A is undefined and appears as follows 

31 

82 

33 

LDA 

8TA 

MRG 

A 

A 

A 

and nowhere else in the program. After loading, the symbol table 

entry for A will contain a flag in~icating that it is undefined and 

a pointer to 31. The above locations "t'rill contain: 

31 LDA 32 

32 3TA 33 

33 ~mG o 

vfuen the symbol is defined, DDT goes through 'the pointer chain and 

fills iD the va!ue. It recognizes the end of the pointer chain 

by a 0 address. 

From this description it should be obvious what will happen if' 

the pointer chain is destroyed. A probably consequence is 



30.40.10-1-4 
May 17, 1965 

that a search down the pointer chain will not terminate. DDT 

does such searches whenever it prints an address, and also 

during' same effective address searches. If the chain it is 

searching has more than 2048 links, it will print the symbol 

at its head, followed by (U) and continue. Fixing up an un-

def~ned symbol pointer chain which has been clobbered is an 

exercise which we leave to the reader. 

1.2. Block Structure 

A limited facility called the block structure facility 

is provided to simplifY the referencing of local symbols which 

are defined in more than one program. Note that DDT' s block 

structure has only a tenuous connection with the block struc-

ture of AlGOL. The block structure of a program is organized 

in the following manner: Every binary program file loaded by 

DDT constitutes a separate block. In addition, there is an 

intrinsic block called block zero. Any symbol input to DDT 

has a block number associated with it. It also has a type; 

it may be external or local. All operation codes and all 

symbols defined by < are external block zero symbols. When 

a binary file written by the assembler is loaded by DDT, it 

defines a new block, and all symbols defined during the as­

sembly and written on the binary file" are associated with that 

block. Any symbols which were declared to the assembler to be 

external are of external type. All other symbols are of local 

type. 



1.3. Literals 

30.40.10-1-6 
May 17, 1965 

A literal is a special kind of symbol recognized by DDT. 

The two characters ' =' signal the beginning of a literal, 

which "is terminated by any of the characters which ordinarily 

terminate an expression. The literal is looked up in the 

literal table which is generated when the program blocks are 

loaded. If it is found, the address which has been assigned 

to it is the value of the symbol. If it does not appear in 

the literal table, n location is assigned to it 'at the current 

value of ;F and the address of this location is returned as the 

value. ;F is increased by 1. Exception: In patch mode, literals 

are saved and defined when the patch is completed since, other-

wise, they would interfere with the patch. 

When DDT types out a symbol whose value is an address in 

the literal table, it will type out in the same format in 

which it would be input; that is, as = followed by the value of 

the literal. 

Do not use 0 as a literal. 

1~4. Constants 

. A constant is any string of digits, possibly preceded by 

a % sign~ The number represented by the string is evaluated, 

truncated 'to 24 bits and then used just like, the value of a 

symbol. The radix in which the evaluation is performed is 

controlled by the O-D mode. The ;0' command sets this'radix to 

octal, ;D sets it to decimal. The preceding % changes the 

radix for the immediately following number. 

The radiX in which constants are typed out by DDT is also 
, . 

determined by the setting of the 0- D mode. Further flexibility 



30.40.10-1-7 ' 
MCl¥ 17, 1965 

is provided by the ;R command, which sets the radix to any 

specified value. If the radix is not octal, % causes the 

following number to be taken as octal. 

1.5. Commands 

1.6. 

A connnand is a.J.i orc1 r r typed to DDT vTtlj ell i.nstructs it to 

do something. The commands are ..L..J.. ... i Led and their functions ~ 
1- I V -e.. ~ V\.... P 1:1-"< \. rJ ( .. ~ A 

-pJ:ai-Re4 in -theo;;;:b-ab 1 e b eJ ow,.& ' 

Expressions 0'\ I ~ -rrQ...Y' 

An expression is a string of numbers~fonnected with blanks, 

+ signs, and -·signs. The first symbol or number may be pre-

ceded by a minus sign. Blank acts like plus, except that the 

following operand is trunc1ated to 14 bits before being added 

to the accumulated value of the expression. The value of an 

expression is a 24-bit integer. A single symbol or constant 

mCl¥ be 'an expression. 

Exam121es: 

LDA has the value '7600000 

LDA 10 has the value 7600010 if the radix 
octal ' 

LDA %10 has the value 7600012 

If SYM is a symbol with the value '1212, then 

SYM has the value 1212 

SYM 10 has the value ' 1222 

LDA SYM has the value 07601212 

If this last expression '\-rere put into a memory register and 

later executed by the program the effect would be to load the 

contents of SYM, register 1212, into the A register. 

When DDT types out expressions, two mode switches control 

the format of the output. The C-S mode determines whether the 

is 



30.40.10-,1-8 
March 25, 1965 

value will be typed as a constant (C), or as a symbolic 

expression (S). In the latter case, the opcode (if any) 

and the addres s will be put into symbolic form. If the,re 

is no recognizable opcode, the,value will always be in con-

stant form regardless of the setting of the C-;~ mode. A 

zero opcode (HLT) is not printed. The setting of this"mode 

is controlled by the ;S and ;C commands., It is also con-

trolled locaJJ.y by the [ and ] conunands. 

The R-V mode controls the format in which addresses 

are typed. DDT'types addresses when asked to open the pre-

vious or the next register, when it reports the results of 

word and' address searches, and on breakpoints. In relative 

(R) mode, addresses are typed in symbolic form, i.e., as the 

largest defined symbol smaller than the address plus a con-, 

stant if necessary. If the constant is bigger than 200 octal 

or, if the value of the symbol is less than the first location 

of the program, the entire address is typed as a constant. 

In absolute (V) mode, addresses are always typed as constants. 

The setting of "this mode is controlle'd by the ;R and ;V com-

mands. 

1.7. The ~ Register 

, One other inaj or ingredient of the DDT language is the 

open register. Certain commands cause a register' to be 

"opened". This means that its contents are typed out (except 

in enter mode, for which see the '\ command), followed by a 

tab. Any expression the user types will then be inserted into 



30.40.10-1-9 
May 17, 1965 

the open register in place of its current contents. After 

this insertion the register is closed at once. Note that 

the strJ.ng LDA ABC= is a command, and does not cause LDA ABC 

to be en~ered into the current open register. The current 

location is given by the symbol II " . ( dot) which a):wB¥s has 

as its value the address of the last register opened, whether 

or not it is still open. 

~: 

(1) Comma and star (for ipdirect addressing) may be 

used in expressions as they are used in the as-

sembler; e.g., LDA* 0,2 has the value 27640000. 

(2) DDT will respond to any illegal input with the 

character ? followed by a carriage return, after 

which it will behave as if nothing had been typed 

since the last tab or carriage return. The command 

? also erases everything 'typed since the last tab 

or carriage return. 

1.8. Memory Allocation and DDT 

DDT mB¥ cause the system to assign memory to the user 

for use either by the system or by theuser',s program. System 

memory is used to hold the symbol table, which starts in block 7 

and graws down. The symbol table coni;;racts at ',the end of each 

load'of a binary file and when symbols are killed; this contrac-

tion mB¥ cause memory to be released. 

DDT grabs program memory only when it is required for 

loading ~ binary file or when a ;U (execute) command is given, 



30.40.10-1-10 
M3¥ 17, 1965 

and the value of ;F is such that a -new 'block is needed to 

hold th~ instruction to be executed. For executing an in-

struction, DDT r~quires location ;F, ;F+l and ;F+2. Memory 

is never grabbed for examination of a register. Attempts to 

open locations not assigned will cause DlJ.r to type ? This 

means that upon initial entry to DDT no registers are available 

for examination. The easiest w3¥ to obtain memory for typing 

in a program is to execute a NOP, thus: NOP;U. This assigns 

a block containing the initial value of' ;F, which is 2009 
. 

If an attempt to grab memorY leads to a trap, nlJ.r types 

(M) and abandons whatever it is doing. . This can happen if' the 

machine size is exceeded (cr. Section 1.3. of the Executive 

Manual. ). 



30 .1.~O.lO-2-l 
~~arch 25, 1965 

2.0. DDT Commands 

In the follovTing descriptions of DDT commands, the string 

< E > will be used to denote an arbitrary expression which may be 

typed by the user. Unless otherwise indicated, the value of this 

expression is truncated to 14 bits before it is used by DDT. 

2.1. Register Opening Commands 

/ < E'> / opens the register addressed by the value of 

carriage 
return 

the expression. DDT will give a tab, type an exuression 

whose value is equal to the contents of the register, give 

another tab and a\'lai t fUrther commands. The precise form of 

the expression typed in this and most other commands is de-

pendent on the setting of the S-C and R-V modes. If the user 

types in an expression, DDT lvi11 insert its value into the 

register. Typing another corr@and closes the register"unless 

it is a type value ;)r symbol definition command. Note that 

in a command that requires a ~receding expression, the expres­

sion is regarded as part of 'the command and w~ .. :uld not, for 

instance, be inserted into the open register. If another / 

is given as the next cormnand vlith no preceding expression the 

contents of the register addressed by the expression t~ed by 

DDT are ty:ped~ut. A further / repeats this process. Note, 

however, that the oriGinal register o~ened remains the o:pen 

register; any changes made vrill go into that register ~ 

This command does not necessarily have any effect. If 

the specified conditions are present, hOvlever, any (If the 

following actions may L)ccur: 



] 

[ 

" 

30.40.10-2-2 
September 3, 1965 

(1) If there is an open register, the register is closed. 

(2) If DDT is in enter mode, it leaves it. 

(3) If DDr is in patch mode, the !>atch is terminated (for a 
fuller description of this effect, see the patch command). 

This command has the same effect as /, except that the contents 

of the register opened are typed in s.y.mbolic form regardless of the 

setting of the S-C mode. 

This command has the same effect as /, except that the contents 

of the register opened are typed in constant form regardless of the 

setting of the S-C mode. 

This command has the same effect as /, except that the contents 

of the register opened are typed as a signed integer regardless of the 

setting of the S-C mode. 

This command acts like /, except that the register constants are 

typed in ASCII. 

line feed This comman~ opens the register whose address is the current 

location plus one, i.e., the register after the one just opened. The 

output of DDr on this command is carriage return, register address 

(format controlled by the R-V mode), /, tab, value ,of contents, tab. 

This command opens the register whose address is the current 

location minus one, i.e., the previous register. The output is the 

same as for the line feed command. 

Example: 

PJ3C/ LDA ALPHA (line feed) 
-- li·'-

PJ3C+l/ STA BETA STA GAivt-1A (line feed) 

KBC+2/ LDB DELTA t 
.P:BC+l/ STA GAMMA .. 

. IS 

.< This cormnand opens the register whose address ~the last 14 

bits of the value of the last expression is typed. The output is the 

same as for line feed. 



\ 

30.40.10-2-3 
September 3, 1965 

This command is the same as /, except that the contents of the 

register are not typed. DDT goes into enter mode, in which the contents 

of registers opened by line feed, t , or ( are not typed. Any other 

command causes DIY.r to GO out of' enter mode. In particular, carriage 

return has this effect. vfl1en a register has been opened with \, DDT 

thinks that it has typed out the contents. The type vaJ..ue commands 

will, therefore, -vTork on the contents of the register. 

The type register in special mode characters (, ], $ (type as a 

negative integer), " (type in ASCII) are also preserved by line feed, 

up arrow and (. 

;\ This cormnand suppresses typeout of register addresses during line 

feed, up arrOVT and ( chains. 

;/ Cancels the ; \ command. 

2.2 ~ Value Commands 

= This command types the value of the last expression typed in 

constant form. It may appear in the form < E > =, in which case the 

value of the 'expression is typed. Othe~'lise, the expression referred 

to is the. one most recently typed, either by DDT or by the user. 

# This command types the value of the last expression typed as a 

signed integer. 

~ This command types the value of the last expression typed in 

symbolic fOrnl. 

This command types the value of the last expression typed as 

three 8-bit characters. 

~ This command types the address part of the last expression typed 

in symbolic form. If, for instance, the program has executed BRM X, 



I,' 

30.40.10-2-4 
September 3, 1965 

then X \ @) 'vill cause DDT to print the address of the BRM. 

Example: 

LDA= 7600000 
LDA 10= 7600010 
LDA ~ LDA 

760000~ 4(- LDA 

-1= 77777777 
-l=lf -1 

77777777 -1 

10221043' .ABC 

2.3 Symbol Definition Commands 

This command defines the value of the preceding symbol to be the 

current location. The .symbol is local to the block which is primary 

~Then the : command is given. 

(fD This command defines the value of the preceding symbol to be the 

address of the last expression typed by DDT or the user. The symbol is 

local to the block vThich is primary vThen the command is given. 

< > < (symbol) > defines the symbol to have the value of the :immediately 

precedirig expression, vThich must be typed by the user. The symbol is 

global and is associated 'vith block ,zero. 

2.4 Mode Changing Commands 

n 

This command causes the immediately following number to be taken 

in the radix opposite to the normaJ... one which is set by the O-D mode. 

This connnand generates a constant l·rhose value is the octaJ. encoding 

of the next three characters typed in the st'a.ndard internal code.' These 

characters vTill not be recognized as connnands no matter what, they are. Thus: 

,"ABC=1022l043. 

;D (mCDiAL) This command changes the O-D mode to decimal. This mode 

determines the radix in \'Thich constants are typed out and read in. 

'; 0 ( OCTAL) This command changes the 0- D mode to octal. 

< E >;R (RADJX) sets the radix to the value of the ex:Pression. 



;C 

;S 

;H 

;R 

;V 

I .. 

;P 

30.40.10-2-5 
March 25, 1965 

(CONSTANT) This connnand changes the S-C mode to con-

stant. This mode determines the format in which the values 

of expressions are typed out. 

(SYMBOLIC) This connnand changes the S-C mode to symbolic. 

(HOLLERITH) This conrrnand causes expressions to be tYJ.)ed 

out as described under the r connnand. It, may be reversed by 

;C or ; S. 

(RELATIVE) 'This command changes the R-V mode to relative. 

This mode determines the format for the outnut of addresses, 
.' --

both in symbolic expression and ",hen generated by line feed 

and t .. 
(ABSOLUTE) This command changes the R-V mode to absolute. 

2.5. Breakpoint COImnands 

(BREAKPOINT) < E > ! sets the breakpoint at the address 

g,iven by the vaJ.ue of the e:x-:pression. The effect is that if 

the program executes the instruction at this address control 

. returns to DDT, l'Thich 1-Till print the address and the contents 

of the A, B, and X registers an,d aw'ait further commands 

(see ;N, and ;p). The break occurs before execution of the 

instruction in the brealcpoint location. The breakpoint is 

removed by a ! with no preceding expression. 

(PRoq~ED) This command restarts the program after a break. 

The program executes the instruction at the breakpoint and goes 

on from there. The breakpoint is not removed unless this is 



;N 

30.40.10-2-6 
May 17, 1965 

specifically done by ! so that, if the program arrives at 

this location again, another break will occur. If; P is 

preceded by an expression, another break will not occur· 

until the instruction at the breakpoint has been executed 

that many times. 

(NEXT) This command executes the next instruction after 

the breakpoint and breaks again. The breakpoint is moved to 

the location to which the program will go after the second 

break. This program provides a trace facility in that re-

peated executions of ;N will provide a running print out of 

the contents of the significant internal registers, instruc-

tion by instruction. The function is essentially the same as 

that of the step switch on the console. If;N is preceded by 

an expression, that many instructions will be executed before 

the next break occurs. 

A ;N. command follows the flow of control in the user' s 

program. In particular, it will trace the execution of 

users' POPs. The execution of SYSPOPs, however, is not traced. 

In other words, a SYSPOP such as FAD (floating add) is regarded 

as one instruction by ;N. 

vllien a proceed (;p or ;N) command is giye~, the following 

sequence of events takes place: 

1) DDT. computes the two locations to which the instruc­

tion being proceeded from may go (depending on whether 

or not it skips) and inserts BRS 10 instructions there, 

preserving the old contents. 



I' • 

30.40.10-2-7 
May 17, 1965 

2) Control is transferred to the location from which the 

proceed occurs. The instruction executes and the pro-

gram proceeds to the next instruction, which because 

o~ step 1 will be a BRS 10 which returns control to 

DDT. 

3) The two locations altered in step 1 are restored, the 

location at which the breakpoi~t (if any) was put is 

replaced with a BRS 10, and control is transferred to 

the next location of the program, which will be the 

one from which the BRS 10 of step 2 occurred. The , -

program then executes until it arrives at the break-

point location, which contains the BRS 10 inserted 

at the beginning of step 3. 

From this description it should be clear that attempts to 

proceed through certain instructions will lead to disaster, and 

also that breakpoints which are encountered when the program is 

running in a fork will not ~o the right thing. In same- cases, 

attempts to proceed through unreasonable instructions will cause' 

the error comment 

$» 

but this cannot be counted on. 

2.6 • Input Connnands 

< E > ;Y causes DDT to give a tab and await a file name. 

On the specified file it expects to find a binary program. 

If the program is absolute it is read in. I~ it is relocatable 

it is read in and relocated at the location specified by the 



;T 

30.40.10-2-8 
May 17, 1965 

expression preceding the ;Y command. If the expression is 

omitted, relocatable loading conunences at location 200f",and 
4 

continues by beginning each program in the first available 

location after the preceding one. A:rter reading is complete, 

the first location not used by the program is typed out. Any 

local symbols on the binary file are ignored. 

This command is identical to ;Y except that it also 

reads symbols from the tape and adds them to DDT t s symbol 

table. Any symbols on the tape will be recognized by DlJl' 

thereafter. Any literals used in the program will also be 

recognized. Furthermore, all the literals on binary files 

read in before the first ;E command is given will be consoli-

dated into a single table. Duplicate space for identical 

literals will not be assigned in memory. Identical literals 

in different blocks will be assigned the same memory location 

when the ;E command is given. 

The following two points should be noted in connection 

with ;Y and ;T commands. 

1) The use of an expression before ;T or ;Y when the 

file is absolute is in error. 

2) The block read in becomes the primary block. 



;W 

;E 

2.7. Search Commands 

30.40.10-2-9 
May 17, 1965 

(~ORD SEARCH) < E > ;W searches memory between the limits 

;1 and ;2 for words which match the value of the preceding ex-

pression when both are masked by the value of ;M. The ad-

dresses and contents of all such words are typed out. 

(EFFECTIVE ADDRESS SEARCH) < E > ;E searches memory between 

the limits ;1 and ;2 for effective addresses equal 'to the value 

of the expression truncated to 14 bits. Indexing, if specified, 

is done with the value of X saved by DDT. Indirect address 

chains are followed to a depth of 64. The addresses and con-

tents of all words found are typed out. 

2.8. The Patch Cormnand 

) < E > ) causes a patch to be inserted at the address speci-

fied by the value of the expression. DDT inserts in this loca-

tion a branch to the current value of ;F. When the patch is 

done, ;F is updated. It the~ gives a carriage return and a ) 

and waits for the user to type'in the patch~ Legal input con-

sists of a series of expressions whose values are inserted in 

successive locations in memory. Each of these ~xpressions should 

be terminated by a line feed, after which DDT will give a car­

riage return and ) and await the next e?Cpressi9n. The ~ command 

may be given in place of the line feed and has its usual meaning, 

except that the contents of the previous location are not 

typed. Two other cormnands are legal in patch mode. They are: 



30.40.10-2-10 
September 3, 1965 

(1) Colon, which may be used to define a locaJ. symbol 

v1i th value equal to the cU!rent location. 

(2) Carriage return, which terminates the patch. vlhen the 

patch is terminated, DDT inserts in the next 

available location the originaJ. contents of the 

location at which the patch was inserted. It then 

inserts in the follovTing two ·locations branch in-

structions to the first and second locations follmr-

ing the patch. This means that if the patch command 

is a skip instruction, the program will continue to 

operate correct~. .Any other corrnnands given in patct 

mode may cause unpredictable errors. 

; I Is identicaJ. to the ) cormnand except that it puts the instruction 

being patched bef'ore the code inserted by the programmer instead of' af'ter. 

2.9 Miscellaneous Connnands 

? This command erases everything typed since the last tab or 

carriage return. It is al1vays legaJ.. 

;G (GO TO) < E > ;G restores the 'A, B, and X registers which were 

saved 1'Then DDr ,vas entered (unless they have been modified) and transfers· 

to the location specified by the vaJ.ue of the eX(>ression. 

;K (K~L) - Used alone, this com"nand renoves from DI1I'r s sYlilbol table 

all symbols defined by the prograr.t. DDT v1il1 type back --OK and v1ait 

for a confirming dot. All other characters 'Vrl.ll abort the command. 

Preceded by a. symb91 , it removes that symbol only from the table ~ 

;L < E >, < E > ;L sets ;1 and ;2 (the 1mver and upperbo1lIlds for 

searches) to the values. of the first and second expressions respectively. 

. \ 



;U 

;Z 

30.40.lo-2-ll 
September 3, 1965 

(UNDEFlllED) This conmand causes all undefined symbols to 

be listed. 

< E > ;~ causes the value of the eJ::pression to be executed as I 

an instruction. I~ it is a branch, control Goes to the location 

branched to. In all other cases control remains w'ith DIJI'. A single 

carriage return is typed before execution of the instruction. If the 

instruction does not branch and does not skip, a $ and anothe~ carriage 

return are typed after its execution. If the instruction does skip, 

tvTo dollar signs ($$) are typed follow'ed by a carriage return. 

(ZERO) < E >, < E > ;Z sets to zero all locations between the 

vaJ..ue of the first expression and that of the second. ;Z alone 

releases all memory accessible to the user's program. DDT vrill type 

back --OK and vTait for a confirming Jdot. Any other characters ,.,ill 

abort the command. If this memory is returned, due to later access 

by DDT or a program, it will be cleared to zero. 

2.10 Special Symbols 

The value of ". II is the current location, i.e •. , the address 

of the last register opened. 

The fol101.,ing symbols refer to various special. registers of 

the machine. Their value is the contents of these registers as 

saved by DDT. To change the contents of a register, a command 

of, the form < E > ;A is used. This command sets the A register 

to the value o~ the expression. lfJhenever DDT executes a 

;U, ;G, ;P, or ;N command, it restores the values of all machine 

registers. If any of these values have been changed by the' user, 

it iG the changed value which will be restored. 



;A The value 

register. 

;B The value 

register. 

;X The value 

register. 

of this symbol is 

of this symbol is 

of this symbol is 

the contents of the A 

the contents of the B 

the contents of the X 

30.40.10-2-12 

March 25, 1965 

; L The value of this symbol is t1}.e contents of the program 

counter. Note: There is never any reason for changing the 

value of this symbol. 

The values of the following special symbols are used by 

DDI' in certain commands or are available to the programmer 

for his general enlightenment. These values mB¥ be changed 

in t.he same ''lay that the values of the symbols for the central. 

registers of the machine may be chang~d. 

;M The value of this symbol is the mask for word sear~hes. 

;1 The,value of this symbol 'is the lm~er bound for-word 

and effective address searches. It may also be set by the 

;L command. 



;2 

;Q 

;F 

30.40.10-2-13 
March 25, 1965 

The'value of this symbol is tne upper bound for vTc)rd 

and effective address searches. It may also be set by using 

;L. 

This symbol has a value equal to the value of the last 

e~pression typed by DDT or the user. It is useful, for in-

stance, if the programmer wishes to add one to the contents 

of the open register; he need only type ;Q + 1. 

The value of this symbol is the address of the lowest 

location in cor'e not used by the program. New literals and 

patches are inse'rted starting atJ this address. Note: Like 

all other special symbols, ;F may be changed by the command 

< E > ;F. It is also updated as necessar,y by patches and literal 
definitions. 

2.11. Panics 

DDT recognizes four kinds of panic conditions: 
i 

(1) Illegal instruction panics'from the user's program. 

(2) Memory allocation exceeded pantcs : from the user' s 

program. 

(3 ) Panics generated by pushing the rubout button •. 

(4) Panics generated by the execution of BRS 10 in 

the user's program. 

For each of these conditions DDT prints out a message, 

the location of the instruction at "Thich the panic o~curred, 

and the contents of this location. The messages are as 

follows: 



(1) 

(2 ) 

(3 ) 

(4) 

Illegal instruction ~anie 

30.40.10-2-14 
March 25, 1965 

I» 

Nemory allocation exceeded 1·1 > > 

Rubout button panic PB > > 

BRS 10 panic p» 

If a memory allocation exceeded panic is caused by a 

transfer to an illegal location, the contents of the loca-

tion causing the panic is not available and DDT, therefore, 

types a ? 

TvTO other panic conditions are :possible in DDT • . 
(1) If the rubout button is pushed twice vTi th no 

intervening typing by the user, control returns 

to the executive. 

(2) If the rubout button is pushed while DDT is 

executing a command, execution and typeout are 

terminated and DDT types carriage return and bell 

and then avTaits further conunands. 



APPENDIX A 

DDT COMt·WIDS 

30.40.l0-A-l 

September 3, 1965 

/ open a register 

CR close reeister 

[ 

$ 

It 

If 

1 

( 

\ 
= 
JL 
'1r 

< 

" 

open symbolic 

open as constant 

open as signed integer 

follovrine; address: Open register and type contenf:;s in ASCII 

open next register 

open previoup register 

open register addressed by last eJ~ression typed 

enter mode 

·type as constant 

type as signed integer 

type symbolic 

type in AOCII' 

define symbol equal to current location . 

define symbol as address of last expression typed; type 
address ass~nbolic 

define symbol as ex:pression 

svri tch radix of follm"ing number 

. take next three characters as ASCII text (~ot inunediately 
preceded by an address) 

insert breaJepoint 

) patch 

? erase 

;C 'set typeout mode to constant 

'-......_--



;:p chanGe radix to decilnal 

;E effective address search 

;G ~o, to 

;H set ty-peout mode to ASCII 

; I insert patch :follo1'ring instrt'lction 

;K kill symbols 

;L program counter; set bOUl1ds for searches 

;N neA~ 

; 0 change radix to octal 

;P nroceed 
. 

;R set radix; set address typeou.t to relative 

; S set typeout mO,de to symbolic 

;T rea~ binm"y i'Tith syr:lbols 

30.40.l0-A-2 
September 3, 1965 

;U type undefined symbols; execute preceding expression 

;V set adfu"ess typeout to absolute 

;W' \'TPrd search 

;Y re{td binary ,'rithout symbols 

;Z clem" memory 

DDr SPECIAL SYMBOLS 

~urrent location 

;1 lOtver bound for search 

;2 upper bOtUld for search 

;A A_ register' 

;B ~ register 

;E effective address search 

;F last location of program 

;L program counter 



;G 

;H 

;K 

;L 

;N 

;0 

;P 

;R 

;S 

;T 

;U 

;V 

';W 

;Y 

;Z 

;1 

;2 

;A 

;B 
I!', 

;F 

;L 

;M 

;Q 

;X 

go to 

set typeout mode to ASCII 

kill symbols 

30.40.1Q-A-2 
lilay 17, 1965 

progrrun counter; set bounds for searches 

next 

change,radix to octal 

proceed 

set radix; set addr'ess typeout to relative 

set typeout mode to symbolic 

read binary with symbols 

type undefined symbols; execute preceding ~xpression 

s,e:t address typeout, to absolute 

word search 

read binary vii thout symbols 

clear memory 

DDT SPECIAL SYMBOLS 

current location 

lower bound for search 

upper bound for search 

A register 

B register 

last location of program 

'program counter 

word search mask 

last expressio~ typed 

X register 



;N vTord search r.1ask 

;Q last expression typed 

;X X regi~ter 

;\ change to insert mode 

change bac}: to· open reeister mode 

, , \\ II I) I, 

30.40.l0-A-3 
September 3, 1965 

l t 



APPENDIX B 

30.40.1o-B-l 
May 17, 1965 

CONCISE GUIDE TO THE DDT MANUAL 

Addresses: pp. 1.1-1.6,,2.5 (commands ;R ;V) 

absolute vs. re1at ive : P. 2.5 

and undefined symbols: pp. 1.2-1.4 

A register: P. 2.12 

Block structure: pp. 1.4~1.5 

B register: P. 2.12 

Breakpoints: pp. 2.5-2.7 (~ommands ! ;P ;N) 

Central registers: pp. 2.11-2.12 (special symbols ;A ;B ;X ;L) 

Clear memory: P. 2.11 (command ;Z) 

Constants: pp. 1.6-1.7 

and radix: pp. 1.7, 2.4-2.5' (commands % ;D ;0 ;R) 

ASCII input: P.· 2.4 (command ") 

ASCII output: P. 2.3 (command t), P. 2.5 (command ;H) 

Effective address searches: see searches 

Error comments: pp. 1.9, 1.10, 2.13-2.14 

Execute an instruction: P. 2.11 (command ;U) 

Expressions: pp. 1.7-1.8 

typeout of: P. 2.3 (commands = # <rat), P. 2.5 (commands ;C ;S ;H ;R ;V) 

Go to program: P. 2.10 (command ; G ) 

Illegal ins'truction: . pp. 2.13-2.14 

Indexing: P. 1.9 

Indirect addressing: P. 1.9 

Kili symbols: P. 2.10 (command ;K) 



Literals:P. 1.6 

Loading binary: pp. 2.7-2.8 (commands ;T ;y'\ 

Memory allocation: pp. 1.9-1.10 

Memory allocation exceeded:· pp. 1.10, 2.13-2.14 

Panic condition: pp. 2.13-2.14 

Patching a program: pp. 2.9-2.10 

Proceeds: pp. 2.5-2.7 

Radix: pp. 1.6, 2.4-2.5 (commands ~ ;D ;0 ;R) 

Registers: 

typeout of: see expressions 

30.40.1o-B-2 
May 17, 1965 

examination and changing:. pp. 2.1-2.3 (commands / cr] [ $ If ~ ( \) 

open: pp. 1.8-1.9 

Rubout button: pp. 2.13-2.14 

Searches bounds: pp. 2.9, 2.12 

word: P. 2.9 (command ;W) P. ~.12 (special symbols ;L ;M ;1 ;2) 

effective address: P. 2.9 (command ;E) P •. ,2.12 

S:YJIlbols: Po 1,,1 

undefined: pp. 1.2-1.4, typeout of P. 2.11 (c~and ;u) 

duplicate: pp. 1.4-1.5 

definition of: pp. 1.2, 2.4 (commands :~.<) 

Traces: P. 2.6 (command ;N) 

Undefined s:YJIlbo1s: see s:YJIlbo1s 

Hord searches: see searches 

X register: P. 2.12 

Zero memory: P. 2.11 (command ;Z) 



ARPAS 

January, 1967 



1.0. Introduct ion • • . . . . . . 

3 o. 50.1('.;- i 
April 1':), J.9C5 

• • 
1.1. Basic Descripti0l~ 'J1 the .!\.sscr.:b1e!' •. 

1.2. SJ1:lbols 

1.3. Instruction: and Directivds . . . 
1.4. Subpr ocr C'1:: Facilit~r 

1.:;. LiJccral.~. . . . . . . . . . 
l.t. Re1oca~:',')!' . . . . . . 
1.7. Basic Asse~~:b1y Pr-::lCCCtl1"C • 

1 08. Hot at ior! . • . . . . . . . . . 

2.1. Character Sct . . 
2.2. Inpl:t Recorc1!3 

2.3. 

3. o. Instruction Syntaz. 

3.1. Classification of Instrr'.ctiors " . . . . . . . 
3.2. Label Field 

3.3. ~erand Field .••.....•. 

3.4. C.:)mment Field 

4.0. Syntax. of Expressions 

4.1. Operators' . . • • • • • • • '. e 

4.2. Constants . . . . . . . . 
it ~ 

I • -' • 
C 1 as s i fi cat i on of Synbols. . . . 

4.4. Terms . . . . . . . . . . 
4.5. EA-pre s s ions . . . . . . . . 
4.6. Evaluation of Expressions • • 

4e7. Relocation Constraints . . 

30.50.1~1-1 

30.50.10-1-1 

30.50.10-1"1 

30.50.10-1-2 

3C.50.10-1-2 

30.50.10-1"-2 

30.50.10-1-3 

30.50.10-1-4 

30.50.10-2-1 
, \. 

30.50.10-2-1 

30.50.10-2-1 

30.50.10-2-2 

30.50.10-3-1 

30.50.10-3-1 

30.50.10-3-2 

30.BO.1.0-3-2 

30.50.1(}.3-2 

30.50~1o-4-1 

30.50.10-4-1 

30.50.10-4"'2 

30.50Ili6-4-2 

30.50.10-4-2 

30~50.1o-4-3 

30.50.10-4 .. 3 

30.50.10-4-4 



30.50.10-ii 
April 10, 1965 

5.0. Literals. . . ., . . . . . 
6.0. Directives. . . . . 

6.1. DATA Generate Data 

6.2. TEXT Generate Text · . . 
6 ~3. ABC Generate Text Hith Three Characters Per Hard 

6.4. BES Block Ending Symbol · · ••• eo 

6.5. BSS Block Startine; Symbol · 
6.6. ' EQU Equals . . . . 
6.7. END End of Assembl'jT 

6~e. EXT Define External Symbol 

6.9. ORG Prograrn Origin . . · · . 
6.10. OPD Operation Definition 

6.11. POPD Programmed Operator Definition. • • • It 

6.12. LIST List Program on Output i-1editun 

6.13. NOLISTDisable Assembly Listing. 

6.14. PAGE Skip to a Nevt Page 

6.15. SYTB List Symbol Table · . . . . . . . . 
6.16. BIN Output Binary Program . 

6 .17 ~ NOBillI Disable Binary Output 

6'.18. IDENT Subprogram Identification Marker 

6 J19. DELSYN Delete Punch-out of Symbcl Table and 
Defined Operat ions •.•.•...•••••. 

6.20. MACRO Define a }1acro-oI>fration 

6.21. ENDH End a l·:acro Definition 

6.22. RPr Repeat the Next Block .• ~ •. 

6.23. El;-DR End RPl' Bleck • • • • 

• It 

30.50.10-5-1 

30.50.10-6-1 

30.50.10-6-1 

30.50.10-6-2 

30.50.10-6-2 

30.50.10-6-2 

30.50.10-6-3 

30.50.10-6-3 

30.50.10-6-3 

30.50.10-6-3 . 

30.50.10-6·,-\ , 

30.50.10-6-4 

30.50.10-6-5 

30.50.10-6-5 

30.50.10-6-6 

30.50.10-6-6 

30.50.10-6-6 

30~50.1o-6-6 

30.50.10-6-6 

30.50.10-6-7 

30.50.10-6-7 

30.50.10-6-7 

30.50.10-6-7 

30.50.1C-6-8 

3 (). 50 .10-6-8 



6.24. CRPT Conditional Repeat . . . • . • 

30.50.10-iii 
August 5, 1965 

• • 30.50.10-6-9 

6.25. IF Insert the Next Block if the Expression> 0 • . 30.50.10-6-9 

6.26. ELSF Else Insert the Next Block If the Expression 
> 0 . . . . . . . . . . . • . . . . . . • 30.50.10-6-9 

6.21'. ENDF ,End the If Block 

6.28.' NARG Equals' Number of Argument s 

7.0. ' Assembler Diagnostics 

8.0. Assemb,ler Binary Output Formats 

8.1. ' Re10catable Output Format for Linking Loader . 

8.2. ,'Absolute Assembly Output Format 

9.0. Assembler Operating Instructions .. 

APPENDIX A. Extended List of Instructions • . 

APPENDIX' B.' Assembler Table Structure . .' . . . 
APPENDIX C. As'semblerInternaJ.. Code . .' . 

• • 30.50.10-6-9 

• 30.'50.10-6-10 

• 30.50.10-7-1' 

• • 30.50.10-8-1 

· 30.50.10-8-1 

30.50.10-8-4 

· 30.50.10-9-1 

· 30.50.10-A-1 

· 30.50.10-B-1 

30.50.10-C-1 

APPENDIX D.' Table of Trinuned ASCII Code for the SDS 930 . . . . 30.50.lo-D-1 



30.50.10-1-1 
A:l]ril 10, 1965 

1.0. Introducticn 

An asseri o'b1y pr''Jgr8Iil cr aSS€T1'lbler is a translator Hh~se source 

language is assembly language and ,.,hose (.:bject program is in machine 

language. Assembly 1ancuage is virtually a one-for-one representa-

tian cf machine language ;'rritten in a symbolic form. Its value comes 

from Qnemonic representation of operaticns and from the ability of 

th'? [l.ssembler to ;;Jerform address computations and to do s-pace alloca-

tion. 

The introduction serves to define most :)f the terminology used. It 

is assumed that the -programmer is familiar with the basic operation 

of the SDS 940 

1.1. Basic Description of the Assembler 

The assembler is a tw'o-pass assembler with subprogram, literal, 

and macro facility. Its output is in two formats depending on 

the nature of the assembly. 

1.2. Symbols 

Nurrillers may be represented s~~bolically in assembly language 

by symbols. Symbols are arbitrarily long strings of charac-

ters not forming a nmnber. In the assembler only the first 

six characters of a symbol are significant. When a symbol is 

used to represent the memory address of a machine command 01' 

a d~tum, it is called a label. 

* See the SDS940 Computer Manual. 



1.3. Instructions and Directives 

30.50.10-1-2 
April 10, 1965 

Input to the assembler takes the form of a string of instruc-

tions and directives. Instructions are generative and are 

~~emonic representations of machine commands. Directives 

may or may not be generative and serve to facilitate the 

entry of data or to control the assembler. 

1.4. Subprogram Facility 

Often programs become quite large .or fall into logical divi.;. 

sions which are frequently almost independent .. In either case 

it is convenient to break the programs into pieces and assemble 

(and even debug) them separately. Separately assembled piecres 

of a program are called sUbprograms. 

Before a program assembled in subprograms can be run it is 

necessar,y to link together the subprograms while loading them. 

The linking process is similar to the assembly process itself 

described in Section 1.7 .. The vehicle for linking is the 

external symbol. 

While local symbols are used by the assembler to ~erfar.m ad­

dress ani space allocation caJ.culations, global or external. 

symbols are passed on to the loader :where they are similarly 

used. 

1.5. Literals 

Many data are placed in programs at assembly ·time. It is 

frequently convenient to ~eter to constants !?z vaJ.ue· than by 

label. A literal. is asymbol1c reference to a datum by value. 



30.50.10-1-3 
April 10, 1965 

The assembler has complete literal facility, i.e., any type 

of expression can be used in a literal. 

1.6. Relocation 

A relocatable program is one in which memory references have 

been computed relative to the first word or origin of the 

program. Thus, if a reference is to the nth word of a pro-

gram, and if the program is loaded beginning at k, the loader 

must form the address n + k. 

The operands of instructions are not always memory references. 

It is necessary to instruct the loader for each word of the 

program whether to relocate the operand. Relocation is deter-

mined automatically during assembly and transmitted to the 

loader by the relocat ion value R. Thus, if 

R = 1, the operand is to be relocated 

= 0, the operand is absolute. 

The only difference between relocating machine commands and 

constants or data is that constants are allotted aJ.l 24 bits 

of tije 930 word. The assembler accounts for this difference 

automatically • 

It is possible to disable the relocation in the assembler and 

to do an absolute assembly. The assembler produces in this 

case a different output format which is self-loading. 

1.7. Basic Assembly Procedure 

In relocatable assembly during Pass I the operands are scanned 

for the presence of single symbols. If a single symbol is 



30.50.10-1-4 
April 10, 1965 

present, a table of symbols is searched. If absent, the 

symbol is added to the table but marked as having no val.ue. 

Labels are evaluated by assigning them the current value of 

the location counter, a word which points to the ultimate 

relative destination of the instruction. In case of pre-

vious occurrence, labels are marked as duplicate symbols. 

At the end of Pass I the symbol table is sorted. All symbols 

present having no value are assumed to be external. At the 

beginning of Pass II, a list of aJ.l external symbols, the 

external symbol usage table, is output on the binary output 

medium for use by the loader. The program is then assembled 

and output on the binary medium. 

In absolute assembly the scan for single symbols is disabled. 

This has the effect of doing away with external symbols. 

1.8. Notation 

In the following pages, square brackets [ ) are used to in-

dicate the presence of an optional term. 



2.0 The Assembly Language 

2.1 Character Set 

30.50.10-2-1 
September 20, 1965 

The sets of characters recognized by the assembler are as follows: 

(a) numeric 

(1) octal 0-7 

(2) decimaJ.. 0-9 

(b) alphabetic A-Z 

(c) alphanumeric 0-9, A-Z 

(d) delimiting characters + - * / , , ( ) = . $ 

(e) special characters : ; < > ? [ ] ~" 

2.2 Input Records 

Input records consist of lines of information (i.~., all character strings 

between carriage returns or on cards) or of parts of lines separated by 

semi-co1ons.* 

Each non-blank input record is either an instruction,. a directive, or a 

cormnent. A conunent record begins 1-1ith an asterisk. Blank records are 

ignored. 

Directives and instructions are divided into four fields. The fields are, 

from left to right, the label field, operation field, operand field, and 

cormnent field. 

The label field begins with the first character in the record and ter-

minates -- as do all other £ie1ds -- on the first blank. All other fields 

begin with the first non-blank character after the termination field. The 

operation field contains the mnemonic operation code. Only the first four 

characters are recognized by the assembler. The operation codes are 

classified as follows: 

*Programmers must. ac~ordingly avoid the use of the semi-colon in comments. 
Semi-colons enclosed in single quotes (4.2(c) or 6.2(a» are taken literally 
and do not cause a carriage return. . 



(a) machine instructions 

(b) directives 

30.50.10-2-2 
April 10, 1965 

(c) instructions and programmed operators defined by 

the programmer for the particular program 

2.3. Assembler Syntax 

A program consists of a set of instructions and directives 

terminated by an END directive. Normally, programs are assembled 

relocatable. A program is assembled absolute if it begins with 

an ORG directive. 

Instructions have a common syntax. Each directive, in general, 

has its own syntax. The syntax for instructions and directives 

will be considered in separate sections. 



3.0. Instruction Syntax 

30.50.10-3-1 
April 10, 1965 

Instructions fall into two classes. 

3.1. Classification of Instructions 

(a) Class 1 - normaJ. instT1.lctio!lr; 

Class 1 instructions have an operand field. For 

each instruction it is possible to specifY: 

(1) address (operand field) required/not required 

(2) sign bit set/cleareci*. 

There are two subclasses of Class 1 instructions: 

(1) subclass 0 

The operand is stored in the machine command 

mod 214. This subclass contains orders having 

memory references. 

(2) subclass 1 

The operand is stored in the machine command 

mod '29• This 'subclass is used for shift 

orders. If indirect addressing is called for, 

any class 1 instruction is treated as a. sub-

. class 0 instruction. 

Class 1 instructions have the following for.m: 

[[$]label] ABc[*l [eXpression 1[, expression 2]] [canment] 

For most class 1 instructions, expression 1 (operand) 

is required. Indirect addressing is signified by an 

asterisk following the operation code. 

* This feature is intended to be used with system programmed 2"Q!rators 
(cf. Lichtenberger, W. W., Pirtle, M. W. & Sanders, W. J. Modifications 
to the SDS 930 Canputer For the Implementation of Time-Sharing, Docu-
ment No. 20.10.10, January 22, 1965.) . 



30.50.10-3-2 
April 10, 1965 

(b) Class 2 - complete or :f'ull word instructions 

Class 2 instructions have no operand field. Indir-

ect addressing is signified by an asterisk following 

the operation code. Class 2 instructions have the 

following for.T"', ~ 

[$] [label] 

3.2. Label Field 

A label, if present, identifies the instruction. An instruc-

t ion will have a label normaJ.ly if it is referred to elsewhere 

in the program, although it is not necessary that a symbol so. 

defined be used. S,ymbols defined but not used are called ~lls 

and are marked as such in the assembly listing. 

If the same symbol appears in the label field of more than one 

instruction, it is marked as a duplicate each time it is used, 

and it is given the value at its most recent definition. 

A $ preceding a label causes an identical external definition 

(cf. 6.8 (a.». 

303. Operand Field 

The operand field contains at most two arithmetic'expressions 

(or a literal. and one expression) used to eValuate the operand' 

and tag of the machine command. The tag, if present, is aJ..ways 

evaluated mod 23 and must be absolute. 

3 .4. Connnent Field 

The cOT!lI!\ent field is not propessed by the assembler, but is 

listed as :part of the assembler output. 



4.0. Syntax of Expressions 

30.50.10-4-1 
April 10,. 1965 

Expressions are used in the operand field of most instructions and 

directives. In the following, V(x) will represent the numerical 

value of the expression x, and R(x) will represent the relocation 

vaJ..ue of x. U is used to mean unary operator, and B stands for 

binary operator. A subscript refers to a term or expression of in-

dicated ty:pe, i. e., termd means a term of type d. 

The evaluation of all expressions is made using the fUll word length 

at the machine (24 bits). 

4.1. Operators 

Expressions consist of terms connected by operators. The 

operators permitted are: 

Operator Hierarc!1.y 

(a) unary + 4 
4 

. (NOT) 4 

(b) relational (LSS) < 3 
(GRT) > 3 
(EQU) = 3 

(c) binary + 1 
1 

* 2 
/ 2 

(AND) 2 
(OR) 1 
(EOR) 1 

Parentheses are not allowed in expressions except to designate 

mnemonic operators. Relational operators give rise to a value 1 

if the relation is true and 0 if false. 



30.50.10-4-2 
April 10, 1965 

4.2. Constants 

Constants are o~ three types: 

(a) decimal integers: one or more decimal characters. 

(b) octal integers: one or more octal characters termi­
nated with the letter B. 

(c) string: '1-4 characters (except ')'. 

For any constant, R{constant) = o. 

4.3. Classification of Symbols 

Symbols are classi~ied by the assembler in the following w~: 

4.4. Terms 

(a) local: defined by their use in the label field of 
instructions and in some directives. 

V(symbola ) = V(location counter at definition) 

R(symbol ) = 1 if' relocatable assembly a 

= 0 if absolute assembly 

(b) equated: defined by an EQU directive. 

V(S~~bo~) = V(expression in operand field of EQU) 

R(symbo~) = R(expression in operand field of EQU) 

(c) *: current location counter symbol. 

V(*) = current value of location counter 

R(*) = 1 if relocatable assembly 

= 0 if absolute assembly 

(d) external: defined in another subprogram. 

There are two types of terns: 

(a) [U] constant 

V(terma ) = [U]V(constant) 

R(terma ) = 0 



(b) [u] symbol b a, ,c 

V(te~) = 

R(te~) = 

30.50.10-4-3 
April 10, 1965 

[U]V( symbol b ) a, ,c 

[U]R(symbol b ) a, ,c 

4.5. Expressions 

There are three types of expressions: 

(a) term 

(b) 

V(expressiona ) = V(term) 

R(expressiona ) = R(term) 

expression 1 b B expression 2 b a, a, 

V(expressio~ ) = V(expression 1 b) B V(expression 2 b) o a, a, 

R(expressio~) = R(expression la,b) B R(expression 2a ,b) 

(c) symbold (note: no unary operator permitted) 

V(expression ) = temporarily the location of the 
c symbol in an external symbol usage 

table; ultimately the value of the 
external. symbol when known by the 
loader. 

R( expression) has no meaning 
c 

In an absolute assembly, expressions of type c are 

considered to be undefined symbols. 

4.6. Evaluation of Expressions 

Expressions are evaluated from left to right using operators of 

decreasing hierarchy. 

Example: If A = 100 
B = 200 
C = -1 , 

then A+B*C/A = 98. 



Example: If A = 543218 

B = 444448 

C = 000778 

4.7. Relocation Constraints 

, 

30.50.10-4-4 
April 10, 1965 

then A(OR)B(AND)C = 543658. 

The foliovTing constraints apply to expression evaluation: 

( a) No re1ocatab1e term (R = 1) may occur in conjunct ion 

with * or /, i. e., no re1ocatab1e symbol mS\V multiply, 

be multiplied by, divide, or be divided by anything. 

(b) R( expression b) = 0 or 1. R may attain other values a, 

during evaluation. 



5.0. Literals 

Literals are of the form: 

= any expression of any type 

30.50.10-5-1 
April 10, 1965 

When encountering a literal, the assembler replaces the value of 

the expression by the location of that value in a table of literals 

constructed for each program. The literal table is appended to the 

program. Thus, it is dangerous to terminate a program with a record 

which labels a block of storage unless the record is a ESS or a BES 

directive. 



6.0. Directives 

30.50.10-6-1 
September 20, 1965 

The following directives are included in the assembly language: 

Data Generation: 

Value Declaration: 

Assembler Control: 

Macro Generation: 

DATA 
TEXT 
ASC 

EQU 
EXT 
OPD 
POPD 

BES 
BSS 
ORG 
END 
LIST 
NOLIST 
PAGE 
SYTB 
BIN 
NOBIN 
I DENT 
DELSYM 

MACRO 
ENDM 
RPI' 
CRPr 
ENDR 
IF 
ENDF 
NARG 
NCHR 

Since directives, in general, possess unique syntaxes, we consider 

each one in turn. 

6 .1. DATA Generate Dat a 

[label] DATA expressionl , expression2 , •.. 

The label is given the current value of the location counter. 

Each expression is then evaluated and the results assigned to 

sequential locations. The effect of the directive is to create 

a block of data, the first word of 1vhich may be labeled by a 

symbol." Note that values are assigned mod 224. 



6.2. TEXT Generate Text 

30.50.10-6-2 
April 10, 1965 

There are two forms for this directive. 

(a) The first form creates text of unspecified length. 

[label] TEXT 'THIS IS A SAMPLE.' 

In this form all .characters between the apostrophes 

are converted into 6-bit trimmed ASCII, packed four 

to a 't-Tord, and assigned to sequential locations. 

The first word of the list m~ be identified by a 

label. Characters in the last word are left-justified, 

with remaining positions filled in by blanks (octal 00). 

This form will allow any text to be generated conven-

iently except that containing apostrophes. 

(b) The second form creates text of a specified length. 

[ label] TEXT 5, THIS IS A SAMPLE. 

In this fo~, all characters following the comma are 

packed and assigned as above. The operand field of 

the directive terminates 't-rhen the specified number 

of words has been packed. 

6.3. ASC Generate Text with Three Characters per Word, 

This directive is identical to TEXT, except that 8 bits are 

given to each character. 

6.4. BES Block Ending Symbol 

[label] BES expression b a, 

BES reserves a block of storage for which the following loca-

tion is labeled. The expression must be absolute, and it must 

have a value when BES is first encountered, i.e., symbols 

present must have been previously defined. 



6.5. BSS Block Starting Symbol 

[label] BSS expression b a, 

30.50.10-6-3 
April 10, 1965 

BSS reserves a block of storage for vrhich the first word is 

labe;Led. The expression must be absolute, and it must have 

a value when BSS is first encountered, i.e., symbols present 

must have been previously defined. 

6 .6 . EQU Equals 

symbol EQU expressiona b , 
The EQU directive causes the symbol in its label field to be 

given the value of the expression. The value is held in a full 

machine word (24 bits). The expression must have a value when 

EQU is first encountered, i.e., symbols present must have been 

previously defined. It is permissible to redefine by EQU any 

symbol previously defined by EQU. This ability is particularly 

useful in macros. 

6.7. END End of Assembly 

END [Starting location] 

The END directive terminates the assembly. The optional expressioI 

is used in absolute assemblies (cf. 8.2.) 

6 .8 . EXT Define Ext ernal Symbol 

Symbols can be defined externally in three ways .. 

(a) $label opcode operand 

The presence of the preceding $ causes the symbol 

in the label field of any instruction to be defined • 
both locally and externally. 



30.50.10-6-4 
September 20, 1965 

(b ) label EXT 

(c) 

The (local) symbol in the label field is defined as 

an external symbol having the same value. The label 

mUst be defined locally somewhere in the program. 

symbol EXT expression b 
.a, 

The sYmbol in the label field is defined as an ex-

ternal symbol whose value is given by the expression. 

This form is used for defining absolute eXternal 

symbols, symbols which depend on combinations of 

other symbols, and symbols which are synonymous witli 

local symbols. The EXT directive inay be used at any 

position in the program. 

6.9. ORG Program Origin 

ORG expression b a, 

The use of ORG forces an absolute assembly. The location count~r 

is initialized to the ~alue of the expressiori. The expression 

must be absolute, and it must have a value when ORG is first 

encountered, i. e., symbols presertt must have been previously 

defined. .An ORG must precede the first instruction in an 

absolute program. 

9 .10. OPD Operat ion Definition 

Operatiort codes defined. by the OPD directive take precedence 

over other operation codes. The form of OPD is: 

opcode OPD cd,cl[,ar[,sc[,sb]]] 

where: cd is the opcode as an arbitrary expreSSion b 
a, 

cl is the class number (lor 2) 



, 30.50.10-6-5 
April 10, 1965 

ar signifies address required (d or 1), 

sc is the subclass number of class 1 (0 or 1), and 

6.11. 

sb signifies that the sign bit of the 
machine command should be set. 

,The definition of a hypothetical system programmed operator 

LLA might appear as follows: 

LLA OPD 11000000B,1,1,O,1 

and that for the machine connnand CLA V:Tould be: 

CLA OPD o460000lB,2 

Missing expressions will be given the value zero and the asso-

ciated co~ditions the consequent meanings. 

\ 

POPD ,Programmed Operator Definition 

The POPD directive is identical in effect to the opb directive 

except for the following features: 

(a) Bit 2 of the "Tord progra.i'nmed-operator bit ) mu.st be 

a 1. 

(b) The loader will place a branch instruction in the 

transfer vector for programned operators (100-1778). 

The,branch instruction will transfer to the value of 

the location counter \'Then the POPD is encountered. 

Thus, the boqy of instructions constituting the pro-

granuned operator must foll,ow the POPD. If the inser-

tion of the transfer instructions is not desired, OPD 

shoulc:. be used. 

6.12. LIST Lj.st Program on Output Medium 

LIST 
The LIST' directive enables the assembly listing irt case it was 

previously di'sabled by the NOLIST directive. The assembler is 

initialized not to list. 

\ , 



NOLIST 

~~G.5(l.].r'-6-G 
t\;ril 1.'\ 1965 

('If an~r l)ast use ·)f lIOLIST. l'~OLIST in ctjnjunction 1'rith nOB I!': 

: .11~. PAGE Sl~ip tc a fTsl'l Pase 

PAGE 

PAGE causes the assel".bler li8tinc~ "?r0GJ."ar:-: tc' advance to a nc'H 

paGe un::tess a2.l"cad:y the}'e. The directive Is used to j_m.prove 

" .15. SYTB L:Lst Sj0'i:b~~l Table 

SITB 

SYTB causes t>e local Gyt.lbol tablctc be listed. S:ymbols are 

listed in alphan'LDnerical order alene \'rith th-:::ir values as octal 

inteGers v;ith leading zero SUPYl"~ssion. Relocatable symbols are 

r.:arl:co. by a l)ll;.S to tbe riGht c: tj:l8 value. I;ull and duplicate 

and its v2~ue. 

(~ .16 . BIN Output Binary Program 

Bn~ 

,The Bnl directive "enables the output of binary progran (loader 

input) in case it "las previously disabled by the HOBIN directive. 

The asser:bler is normally initialized to do such outuut. 

(; .17 . NOBDI Disable Binary Output 

!JOBIN 



30.50.10-6-7 
June 23, 1965 

NOBIN disables binary output. The directive can be used in 

conjunction with NOLIST to provide a quick error scan of a 

program, or it m8\Y be used alone to provide a listing only. 

It ms\y also be used in conjunction with BIN to produce only 

selected portions of binary output. 

6.18. IDENT Subprogram Identification Marker 

symbol mENT 

InENT causes the symbol found in its label field to be output 

on the binary output medium along with a unique control word. 

IDENT m~ be used for editing purposes and for reference to a 

block of program. The loader ignores all IDENT records. 

6.19. DELSYM Delete Punch-out of Symbol Table and Defined Operations 

DELSlM 

DELSYM inhibits the local symbol table and all programmer-defined 

operations f'rom output on the binary medium for later debugging 

purposes. The' effect of the directive is to shorten the binary 

output. 

6.20. MACRO Define a Macro-operation 

6.21. EN1lv1 End a Macro Definition 

name MACRO [d.uInmy[ ,generated symbol,no. of generated symbols]] 

(body of macro) 

:ENI:M 

The macro is a subprogram defined as shoWn above and referred 

to by name. D.mnny symbols 'are used in the body of the macro for 

strings which are supplied as arguments in the operand field when 

the macro. is caJJ.ed. The strings m8\V be expressions, symbols, or 

parts of' each. Strings mB¥ be concatenated by writing duImnies or 

substrings separated by periods. ~ies are written as a 

subscripted sYmbol declared asd.uInmy in the definition (~., 

OOM(2), .IlJM(XYZ), etc.). The subscripts m8\V be expressions. 



30.50.10-6-8 
S'e'!>tember 20, 1965 

The speciaJ. notation llJM() ca.lls forth the entire argument string of 

the macro ca..Ll. In addition, the symbol 

DUM(expressionl$expression2) 
th' th 

is expanded as the k character of the n argument, where: 

n = expression bl a, 

k = expression b2 &, 

FinaJJ.y, if j = expression b3 , the jth through kth characters of the 
th &, 

n d.u:mmy are ca.lled forth by 

DUM(expressionl$expression3,e~ession2) 

Examples: 

EXMPLE 

A 
D(A) 

The macro: 

MACRO 
LDA 
ST.D(2) 
NARG 
BRU 
DATA 
TEXT 
DA!l'A 
ENI!4 

when caJ.1ed by: 

D 
D(l) 
D(ABC) 

CON.D(2) 
D( ) 

(ABC=4) 

'THIS IS AN EXAMPL.D(3$A)' 
D(4$2,A-l) 

EXMPLE XYZ,A,ABCDEF ,AJJJC,Z. 
will expand to be: 

Z 

LDA 
9ft 
BRU 
DATA 
TEXT 
DATA 

XYZ 
ALOe 
CONA 
XYZ ,A, ABCDEF,ALOC,Z 
'THIS IS AN EXAMPLE' 
LOC 

Symbols may be generated at each macro call. Such symbols are defined 

as a subscripted symbol declared as a generated symbol at definition. 

It is necessary to include the maximum number of such generated s.y.mbols 

in the definition. Generated symbols are not punched or printed 

(as in SYTB). 

In ca.1l.ing a macro, argument strings are separated by commas. If a 

comma is desired to be in a string, the string may be parenthesized. 

When the macro is expanded, the outer parentheses are discarded. It 

should be noted that macro definitions m8\Y include ca.lls to other 

macros. Similarly, macros mB\Y be defined within other definitions. 



30.50.10-6-9 
June 23, 1965 

In using macros it is sometimes necessary to have a call or 

def'inition which exceeds the length of' a line. Accordingly, 

a + in column ~ is a continuation mark. 

6.22. RPl' Repeat the Next Block 

6.23. ENDR End RPr Block 

RPT expression b a, 

Although usually 'most useful in connection with macros, the 

RPr directive m8¥ be used anywhere. The expression in the 

operand f'ield must have a value when the RPl' is encountered, 

and the value of' this expression determines the number of' times 

the bo~ of' code is repeated. If'the expression is'of' value 

~ 0, the bo~ is ignored. 

6 .24. CRPr Condit ional Repeat 

CRPT expression b a, 

CRPl' dif'f'ers from RPl' in that the expression is revaluated after 

the ENDR is encountered. If' the new vaJ.ue is > 0, the 

body is inserted again. This process will be endless unless, 

of' course, the body contains some directive (like EQU) which 

changes the value of' the ex~ession. 

6.25. IF Insert the Next Block If' the Expression> 0 

6.26. ELSF Else Insert the Next Block If'the Expression> 0 

6.27. ENDF End the If Block 

IF 

ELSF 

expression b 
, a, 

expression b " a, 

IF permits the following block of' instructions and/or directives 

to be inserted only once or ignored, depending on the value of 

the expression. In evaluating the expression, a.ll undef'ined 

symbols are given the value -1. This happens ~ in an IF 

statement. 



30.50.10-6-10 
Se~tember 20, 1965 

ELSF is an alternative IF sta.tement. Every IF mS¥ be followed 

by one or more EKSFs. If the preceding IF or any preceding 

ELSFs are not obeyed, the expression in an ELSF statement is 

evaluated and treated as a ne1'1 ]Ji'. In case the ex":pression is 

true (value> 0), the followi.ng text is assembled, and any 

subsequent ELSFs are ignored. 

The ENDF terminates the :IT block and permits nm>T IFs and ELSFs. 

6.28. NARG Equals Number of Arguments 

symbol NARG 

The NARG is permitted only within the body of a macro and 

serves to equate the value of the symbol to the number of 

a:rguments used in the macro caJJ... Its fUnction is entirely 

similar to the EQU directive, a.."1.d symbols defined by EQU mSlf 

be redefined by NARG and vice-"ersa. HAAG nermits macros vlith 

varying n1.ll,.bers of argur.lents to be dealt \'lith readily. 

6.29. NClffi Equals Ewnber 8f Characters 

synbol NCHR cxpressiC)n 

The NClffi is legal only i·rithin the body of a macro and serves to 

equate the value of the sJ~bol to the number ~f characters in the 

as~ociated expression. Its functicn is entirely similar to EQU, 

end symbols defined by EQU r.!ay be redefined by NCI-ffi and vice-versa. 

:r-~CHR is useful Mainly i'Then the expression consists of or contains 

one or more dummies, since the character count ~f a fixed expression 

can be determined before assembly and defined by an EQU. 

6.30. Facility for Irmnediate Evaluation of an Expression and Conversion 
to a Digit String 

($expressiona b) , 
As an adjunct to the auto:r:J.atic symbol generation facility and for 

any other purpose for 'uhich it may be useful, the nacr~ expander 

"Till replace the string ($expressiona b) by its value as a string , 
of decimal digits. Trw ex-pression must have a value Hhen first 

encountered. 



Example: The macro 

EXMPLE MACRO D,GZ,2 
Z NCHR D(l) 
Y NARG 
X. ($Y+2) LDA D(1$3)Z) 
G(l) STA W.($Y 
G(2) STA V. ($Y+ABC) 

ENDM 

when called the fifth time by: 

EDlPLE ABCDEF 

will expand to be: 

X3 LDA CDEF 
GZ¢¢¢9 STA WI 
GZ¢¢I¢ STA Vl¢1 

(ABC=100) 

30.50.10-6-11 
September 20, 1965 



30.50.10-7-1 
April 10, 1965 

7.0. Assembler Diagnostics 

Diagnostic information is placed under the input record in the 

listing at the location of the offence. All erroneous records 

are listed even if the NOLIST directive has previously been used. 

Errors detected are: 

Error Condition 

D Duplicate symbol 

L Illegal symbol in label field 

M Missing field in input record 

o Illegal or undefined Opcode 

R Relocation error in expression 

S Expression or other syntax error 

U Undefined symbol 

other messages which may be received are: 

( a) SYMBOL TABLE FILLED. ERROR CHECK CONTINUES. 

(b) LITERAL TABLE FILLED. ERROR CHECK CONTINUES. 

(c) MUST ASSEMBLE ABSFGM ON PAPER TAPE. 

(d) INPUT STACK OVERFLOW. 

(e) INPUT STACK UNDERFLOW. 

(r) INPUT BUFFER FULL. 

(g) TOO MUCH MACRO RECURSION. 

(h) TOO MUCH RPI' RECURSION. 

(i) TOO MANY ARGS IN IYlACRO. 

(j ) STRDTG STORE EXCEEDED. 

(k) END OF FILE. 



8. o. Assembler Binary Output Formats 

30.50.10-8-1 
April 10, 1965 

8.1. Relocatable Output Format for IJin.l{ing Loader 

BinarJT output is divided into logical variable length records. 

Each record begins vTith a control \ford vThich defines its type. 

Bits 0, 1, and 2 normally signify the type. The first word of 

the binary output is a 3-bit register (cf. (a) belmv) whose 

single entry is an octal 4. 

o 

1 

200 
Bits 0-8 } 201 are used. 

3 

5 

G 

7 

Neaning 

Binary program follows 

Programmed operator follows 

End of program 

Origin of literal table is 
in address field 

OPD follovTS 

EA~ernal symbol definition(s) 
folloT,·rs 

Identification record follows 

External symbol usage table 
folIous 

Symbol table follows 

The rer.:aining bit s in the control I'Tord a.nd the format of the 

record \·rhich f81loHs are different for each type. 

(a) 0 -- Binary Prograr£1 Foll:.)1·!S 

Bits 10-23 of the control ward are added to the current 

value of the location counter. Binary progran consists 

(}f Groups ''".If eiGht machine cor:Ir,'lands preceded by eight 

groups of three bits packed into a single word (the 

3-bit register). Each group of three bits is associated 



30.50.10-8-2 
September 20, 1965 

with a foll?Wing instruction or control word and 

serves as a loading indicator for that instruction. 

The following indicators are used: 

3-Bits (octal) 

o 

1 

2 

4 

5 

6 

Meaning' 

Absolute address 

Evaluate address ~~m external 
symbol table mod 2 

14 Relocate address mod 2 

Abandon binary program format 
next word is a control word. 

Evaluate word from ~xternaJ. 
symbol table mod 22~ 

Relocate word mod 22~ 

(b) 1 - Programmed Operator Follol'lS 

Bits 2-8 of the control word determine the position 

of a transfer command which is placed by the loader 

in the programmed operator transfer vector (100-1778). 

Bits 10-23 determine the address of the transfer cam-

mand. Information follov;ing is 'binary program which 

follo1'TS the previous program, i. e., the location 

counter is unaffected by POPD. 

(c) 200 - End of Program 

No other bits in the coritral word are significant. The 

200 record is a one-word record. 

(d) 201 - Origin of Literal Tabl( 

The origin of the Ii tel"al table is found in the 

address field. 



. 30.50.10-8-3 
April 10, 1965 

(e) 3 - Defined .Operation FollovTs 

All OPDs are punched in the form of a standard 

symbol (cf. (f) below). 

(r) 4 - Externa1 Symbol Definition(s) Follows 

Each definition consists of a block of three words. 

The first two 't'l'ords contain the six characters of 

the sJ~bol in ASCII, left-justified with trailing 

blanks. The third 't'l'ord contains the symbol value. 

Bit 12 of the second vTord signifies relocation of 

the external symbol value. Relocation of external 

. 24 
symbols lS performed mod 2 . Each block of such 

definitions is terminated by a single word of all 

l' s. 

(g) 5 - Identification Record Follm'l's 

The identification record consists of one block of 

three \·T'Jrds. The formet of the block is identical 

to that for each er.try of (d), although only the six 

characters of the identification symbol are meaningful. 

(h) 6 - External SJrmbol Usage Table FollovTs . 

Eacb e:nt.r~r ·')f the usage tal)le is a three-word bl()ck 

of the same format as in (e) above. 

(i) 7 - S;ymbol Table FollovTs 

The format of the local symbol table is the same as 

in (e) above. The ::::ro.er of records is as f()llovrs: 



[ident record] 

30.50.10-8-4 
April 10, 1965 

[external symbol usage table] (if any) 

[literal table origin] 

binary program 

programmed operators in any arrangement 

. external symbol 

end of program 

8.2. Absolute Assembly Output Format 

For absolute programs, the assembler first punches a bootstrap 

loader and then program in blocks. Each block is begun when it 

is necessary to reset the location ~or loading. 

The use of a POPD 1vill cause a transfer to be placed in the 

pop transfer vector as in relocatable programs. 

IDENT records will be punched as in relocatable programs but· 

vTi th a preceding word which causes the bootstrap loader to 

ignore the record. 

Similarly, OPDs and the symbol table may be punched and ignored 

by the loader. 

END with a blank operand field causes the loader to halt. In 

case the field is not blank, a transfer of control to the value 

of the expression is placed in location 1 and executed. 



9.0 ASSEMBLER OPERATING INSTRUCTIONS 

To call the assembler from the executive, the user types the word 
ARPAS. 
Example: 

-

-ARPAS The system types the word BINARY 

BINARY: ~ • Cr The ~ser type.s the name of 
NEW FILE Cr the fIle on WhICh the assemblE 

binary is to be placed. The 
name is followed by a carriag l 

return. 
INPUT: /AK/ CrCr 

~ the file on which the 
source symbolic is located is typed 
by the user. The name is followed 
by two carriage returns. 

The user types a carriage return. 

Errors and null locations will be typed out at this time. 



30.50.10-A-l 
April 10, 1965 

APPENDIX A 
,. 

EXTENDED LIST OF INSTRUCTIONS 

Mnemonic Instruction Code Functior. 

Load/Store 

LDA 76 LOAD A 

STA 35 STORE A 

LDB 75 LOAD B 
I 

STB 36 STORE B 

LDX 71 LOAD X 

STX 37 STORE INDEX 

EAX 77 COPY EFFECTIVE ADDRESS INTO INDEX 

XMA 62 EXCHANGE M AND A 

Arithmetic 

ADD 55, ADD M TO A 

ADC 
p 57 ADD WITH CARRY 

ADM '63 ADD A TO M 

MIN 61 MEMORY INCREMENT 

SUB ,54 SUBTRACT M FROM A 

SUC :'56 SUBTRACT WITH CARRY 

MUL 64 MUlTIPLY 

DIV 65 DIVIDE 

Logical 

ETR 14 EXTRACT (AND) 
" 

", f. 

MRG 16 MERGE (OR) 
. . ~ . 

EOR 17 EXCLUSIVE OR 
'. ' .. ' . " t':.. 



Mnemonic 

Register Change 

CLA 

CLB 

CLAB 

CLX 

CLEAR 

CAB 

CBA 

XAB 

BAC 

ABC 

CXA 

CAX 

XXA 

CBX 

CXB 

XXB 

STE 

LDE 

XEE 

CNA 

Branch 

BRU 

BRX 

BRM 

BRR 

Instruction Code 

o 46 00001 

o 46 00002 

o 46 00003 

2 46 00000 

2 46 00003 

o 46 00004 

o 46 00010 

o 46 00014 

o 46 00012 

o 46 00005 

o 46 00200 

o 46 00400 

o 46 00600 

o 46 00020 

o 46 00040 

o 46 00060 

o 46 00122 

o 46 00140 

o 46 00160 

o 46 01000 

01 

41 

51 

:: n. ~,() .10-1\-2 
Ar-:r."il 10, 1905 

Function 

CLEAR A 

CLEAR B 

CLEAR AB 

CLEAR X 

CLEAR A, B, AND X 

COPY A INTO B 

copy B INTO A 

EXCHANGE A INTO B 

coPY B INTO A, CLEARING B 

COPY A INTO B, CLEARING A 

copy X INTO A 

coPY A INTO X 

EXCHANGE X AND A 

coPY B INTO X 

COPY X INTO B 

EXCHANGE X AND B 

STORE EXPONENT 

LOAD EXPONENT 

EXCHANGE EXPONENTS 

coPY NEGATIVE INTO A 

BRANCH UNCONDITIONALLY 

INCREMENT INDEX AND BRANCH 

MARK PLACE AND BRANCH 

RETURN BRANCH 



Mnemonic Instruction Code 

Test/Skip 

SKS 40 

SKE 50 

SKG 73 

SKR 60 

SKM 70 

SKN 53 

SKA 72 

SKB 52 

SKD 74 

Shift 

RSH o 66 OOxxx 

RCY o 66 20xxx 

LRSH o 66 24xxx 

LSH o 67 OOxxx 

LCY o 67 20xxx 

NOD o 67 lOxxx 

Control 

HLT, ZRO 00 

NOP 20 

EXU 23 

Overflow 

ROV o 02 20001 

REO o 02 20010 

OVT o 40 20001 

30.Sn .10-A-3 
A"9T'il Ie, 1965 

Function 

SKIP IF SIGNAL NOT SET 

SKIP IF A EQUALS M 

SKIP IF A GREATER THAN M 

REDUCE M, SKIP IF NEGATIVE 

SKIP IF A = M ON B MASK 

SKIP IF M NEGATIVE 

SKIP IF M AND A DO NOT COMPARE ONES 

SKIP IF M AND B DO NOT COMPARE ONES 

DIFFERENCE EXPONENTS AND SKIP 

RIGHT SHIFT AB. 

RIGHT CYCLE AB 

LOOICAL RIGHT SHIFT 

LEFT SHIFT AB 

LEFT CYCLE AB 

NORMALIZE AND DECREMENT X 

HALT 

NO OPERATIO!·! 

EXECUTE 

RESET OVERFLOW 

RECORD EXPONENT OVERFLOW 

OVERFLOW TEST AND RESET 



B.l. Literal Table 

Ascending 
Memory 

1 

LTABl: 

LTAB2: 

APPENDIX B 

ASSEMBLER TABLE STRUC'rURE 

Literals 

r 
LTABl 
LTAB2 

LTABl 
LTAB2 

21-23 

All zeros \= 
Literal Value 

30.50.l0-B-l 
April 10, 1965 

LTABl contains relocation information for the follOl'ring value. Bits 21-2: 

have the same neaning as defined in Section 1.6. on relocation. 

B.2. Symbol and Opcode Tables 

Ascending 
Memory 

t 

VIDl ,.,D2 
HD3 

WDl 
HD2 
i,AJD3 

+-
Opcodes 

Symbols 
l' 

'{Dl 
i,{D2 

VlD3 

HDI 
VlD2 
HD3 



(a) 

(b) 

30.50.10-B-2 
April 10, 1965 

Symbols 

0 :2 6 11 12 11 18 23 

WDl: I Cl I C2 I C3 I c4 I 
WD2: C5 c6 xxxxxx zeros 

WD3: Symbol Value 

cl-c6 are the six significant characters of the symbol 

left-justified with trailing 778'so 

In WD2 bits 12-17 are flags which have the following 

meanings (t-rhen set): 

Bitj Meaning 

12 Relocatable Symbol (R = 1) 

13 Duplicate Symbol 

14 External Symbol 

15 Null Symbol 

16 Generated Syrabol 

17 Equated Symbol 

Operation Codes 

WD1: Cl C2 C3 c4 

WD2: C5 c6 zeros 

WD3: (See belovT.) 



30.50.lo-B-3 
April 10, 1965 

cl-c6 are the six significant characters o~ the 

opcode, left-justified with trailing 778 's. 

WD3 contains the binary operation code and certain 

other bits which serve to define the class and sub-

class of operation. 

o 

Meaning 

Set: Class 2; Reset: Class 1 or 
Directive (see bit 1). 

If bit 0 is set (class 2 instruction), all other bits 

comprise the machine command. otherwise, they have 

the following meaning: 

Meaning 

1 Set: Directive; Reset: Class 1 

If bit 1 is set (directive), bits 10-23 contain the 

address of ~he entry point to the directive processor. 

If bit 1 is reset (class 1 instruction), the following 

bits are significant: 

9 

19 

23 

Meaning 

Sign bit to be set (system programmed 
operator") 

Operand is required 

Set: subclass 1; Reset: subclass 0 



B.3. Nacro and RPr Storage kea 

(a) Macro Data Stack 

Ascending 
Nemory 

1, 

(b) RPr Data Stacl';. 

Ascending 
I'1erI1or~l 

1 

J, 

(c) nacro and RPr String Storage 

Ascending 
iJ1er:lOry 

1 
Nacros 

( "T;lerrr.anent ) 

1 
~t 

RPI'S 
( temporary) 

30.50.l0-B-4 
April 10, 1965 

(Variable size blocks.) 

(Fixed size blocks.) 

(4 characters per word.) 



(d)· Macro ArGl1J:1ent String Storage 

Ascending 
Memory ( temporary) 

30.50.10-B-5 
April 10, 1965 



APPENDIX C 

ASSEMBLER mrERNAL CODE 

30.50.10-C-l 
September 20, 1965 

In order to facilitate symbol sorting and logical operations, a non-standard, 
internal code is used throughout the assembler. This code is strictly inter­
nal, and is not transmitted outside. Binary output is in trinnned ASCII 
(cf. Appendix D). 

Within the assembler the following equivalences hold: 

Character Code Character Code 

0 00 0 36 
1 01 P 37 
2 02 Q 40 
3 03 R 41 
4 04 S 42 
5 05 T 43 
6 06 u 44 
7 07 V 45 
8 10 Vl 46 
9 11 X 47 
" 15 Y 50 

16 Z 51 
; 17 < 52 
A 20 > 53 
B 21 ? 54 
C 22 [ 55 
D 23 ] 56 
E 24 ..... 57 
F 25 + 60 
G 26 61 
H 27 * 62 
I 30 / 63 
J 31 i5' 64 
K 32 , 65 
L 33 = 66 
M 34 . 67 
N 35 (- 70 

) 71 , 72 
$ 73 

(all others) 77 



30.50.l0-D-l 
September 20, 1965 

APPENDIX D 

TABLE OF TRIMMED ASCII CODE FOR THE SDS 930* 

(NUMERIC ORDER) 

0 SPACE 31 9 62 R 
1 [IJ 32 63 S 
2 " 33 64 T 

3 [IJ 34 < 65 U 
4 $ 35 = 66 V 
5 rn 36 > 67 w 
6 [EJ 37 ? 70 X 

7 40 ~ 71 y 

10 ( 41 A 72 Z 
11 ) 42 B 73 [ 
12 * 43 C 74 [SJ 
13 + 44 D 75 ] 
14 45 E 76 

~ 15 46 F 77 
16 47 G 144 EOT 
17 / 50 H 145 WRU 
20 0 51 I 146 RU 
21 1 52 J 147 BELL 
22· 2 53 K 152 LF 
23 3 54 L 155 CR 
24 4 55 M 

25 5 56 N 

26 6 57 0 
27 7 60 p 

30 8 61 Q 

X 

*The Teletype characters enclosed in boxes cannot be handled by 
ARPAS and are converted to blanks when present. 



TIME-SHARING SYSTEM 

REFERENCE MANUAL 

By 

Ann Hardy 
David Gardner 

Verne Van Vlear 



TABLE OF CONTENTS 

1.0 Introductory 1.1 

2.0 The Scheduler 2.1 

PAC Table 2.6 

Phantom User Queue Entry 2.7 

3.0 Forks and Jobs 3.1 

3.1 Creation of Forks 3.1 

3.2 Memory Acquisition 3.4 

3.3 Panic Conditions ' 3.4 

3.4 Jobs 3.6 

Fork Structure 3.8 

Job Tables 3.9 

4.0 Program Interrupts 4.1 

5.0 The Swapper) rJIemory Allocation and 
RAD Organization 5.1 

PMT Entries 5.5 

6.0 Miscellaneous Features 6.1 

7.0 Teletype Input-Output 7.1 

Teletype Table 7.6 

8.0 Disc and Buffer Organization; Devices 8.1 

8.1 File Storage on the Disc 8.1 

8.2 File Buffers 8.1 

8.3 Devices 8.2 

8.4 System Data on Disc 8.3 

Buffers 8.5 



8.0 (cont.) 

Dev~ce Tables 

9.0 S~~uent~a+ Ft~es 

9.1 ~~q~e~tial Disc '~le. 
" 

9.2 

9~3 

,.4 

qther ~equen~1al F~l~~ 

File Control B1Qcks 
'. . .. ... : .".', ~ . '. 

9.5 Cha~acter BQEtera 
" .' .. ,'... ': .' .. ;.' 

~J.Q Random Dls~ ~i~~, 

11.Q Sq~rout1ne '11_~ 
• • ,,' "I, .1 

l~ ~ 61 Ex« T+~~t~~~ ef ~.11.~' 

File Dlrect~rY ~~~n~~~en~ 

Hash Table Ent~ 
,', ..... , .' ..... , 

13.0 

1·~~ • 0 

15 .. 0 

If1.q 

.... ' " 

Exe·c\?-t ~ ve CQ~~"q.~ ;tt~~~~~4 ~o. P-~l'~ 

Exe~utlve Com~~~~ 

:3uQ~~~tem~ 

Miscellaneous EXGcut1v, F~atu~es . ._ , ""~ > '.... "',;''': ;;~ .. ',~,', ':: i ". :~, ,'~ .1 -,' ~'.i' .;~~ ;r~ .. ~.r:,.~ ........ l.~~ •• 

Misc~1.1Cl.neous Mon1tQ~ .as~, 
•. .' v.' " '", ••.•. ; ... 

19.0 F1Q~t;1ng Point 

A~~~n4ix A 

General D~~prlptlon of Combln~4 
File Di~~ct:~')r'Y' '..' ..' . '" . ':' 

File Directory Fprmat on pl~~ 
, ',". '" .. . , " " ~ .. ... ;.. " 

'- ~ .. 

8.' 
~~~ 
,.i
"9~5

~;;~

9.9

_.?
;Q~~

11,1
.4 ' ••

~~~~ 

12.5 
',. ,",-

12.~ 

~~~+ 

~#.~

15 •. 1
:' .• : ~ 'i •

17.1 , " ,

18.'1

19~1 . "

A.l .' ~ . , ..

A.:J.
,.'; ; ,i'

Appendix A (cont.)

File Directory Block

User Account Directory on Disc

Subsystem Table

A.3

A.4'

A.5

1.1

1.0 INTRODUCTORY

This manual describes the Berkeley Time-Sharing System
as it was modified by Tymshare, Inc. The Berkeley Time­
Sharing System is divided into three major parts: The
monitor, the system executive, and the sUbsystems. Only
the first two of these are discussed in detail in this
manu~l. The manual attempts to describe exhaustively
all the features of the monitor and the system executive,
and,in addition, to give a number of implementation
details.

We use the word monitor to refer to that portion of the
system which is concerned with scheduling, input-output,
interrupt proceSSing, memory allocation and swapping,
and the control of active programs. The system exec,
on the other hand, is concerned with the command language
by which the user controls the system from his teletype,
the identification of users and specification of the
limits of their access to the system, the control of the
directory of symbolic file names and backup storage for
these files, and other miscellaneous matters.

The next ten sections of this manual discuss various
features of the monitor. The remaining sections deal
with the executive.

2.1

2.0 THE SCHEDULER

The primary entities with which the time-sharing system
is concerned are called forks. Each fork is an abstract
object capable of executing machine instructions. At
least one fork is associated with each active user, but
a user may have many forks, each computing independently
under his control. Also associated with each user is
a temporary storage area called the TS block.

A fork is defined by its entry in the program active
table (PAC table or PACT). This table contains all of
the information required to specify the instantaneous
state of the extended computer which the user is program­
ming, except for that contained in the user's memory
or in the system's permanent tables. The sbructure of
a PACT entry is displayed at the end of this section
together with brief notes about the significance of the
various items. These matters will be explained in more
detail in the following few sections. It will be observed.:. ,;'
that PACT contains locations for saving the program coun-
ter and the contents of the active A register. The B
and X registers are saved in the TS block. It also con­
tains two pseudo-relabeling registers for the user.
A third one, which specifies the monitor map, is kept
in the job tables. The matter of pseudo-relabeling is
discussed in detail in section 5. There is a word called
PTEST which determines the conditions under which the
fork should be reactivated if it is not currently run­
ning. The panic table address in PTAB and the three
pointers called PFORK, PDOWN and PPAR are discussed in
section 3 on forks.

The word called PTAB contains in bits 3 through 8, the
number of the job to which this fork belongs. The top
of PQU contains information about the amount of time
for which the fork is allowed to compute. before it is
dismissed. Six bits of QR count the number of clock
cycles remaining before the fork is dismissed, and three
bits of QUTAB point to a table which specifies the length
of time which the fork should be allowed to run when

'.J

it is activated. All times in the discussion are measured
in periods of the 60-cycle computer clock.

When a fork is activated the number in QR is put into
TTIME. This number is the amount of time left in the
fork's long time quantum. The length of a long quantum
is tentatively going to be the same for all users. At
the same time, the value in QTAB which is pointed to

2.3

There: are two~o~eration~ available to tbe user which
are .connec~ed w~th the quantum overflow machinery~
BRS":45 causes 'the 'user "to' be dismissed' as though he
had overflowed his quantum'.I. BRS 57 guarantees to the
user upori':(return' ,at least 16 msec of uninterrupted
computatfon';' !This.! feature is implemented by dismissing
the user if less than 16 msec remain i~ his quantum.

Ordinarily, the code which is being executed at any
particular instant is that belonging to the fork which
is currently active. This situation may be disturbed,
however, by the occurrence of interrupts from I/O de­
vices. These interrupts cause the computer to enter
system mode and are processed entirely independently
of the currently running program. They never take,dir­
ect action to disturb the runniri~ of this fork, atthough,
they may set up conditions in memory which will ca~se
some other fork to be activated when the presently run­
ning one is dismissed. Interrupt routines always run,
in system mode. Other code which may be running',whI"q,h. ~
maynot~:":-belqng to' the fork currently' active' is dh:e' c'9d:e

'. • .~) ,':', , • t·· , . . t) .. \ • " '. ! ~ .

of ayste~ p~ogrammed operator~ or BRS routines. "The~~
routines are not re-entrant and, therefore, shoQld not
be dismissed .by the clock. To ensure that ,they w.ill ,
not be, the' ','convention is established that "the clock :
'wi]:'! notdlsmiss a program running in system mode. In
order to guarantee th~t a' user will not monopoliz~ t~~
machine by executin~r a large numb~r. o.~., ;:>YSp(jp~, ·~the, '~I~~r
mode trap is turned ~'on when the clock' 'indicates 't'hat .. : .

:' a' fork is to be dismissed.' The trap"'~w,ill occur': land '
cause dismiss~l as soon as the for~'~~b~rri~ t& u~er m6de.-

~.<"~:' 1- :.~ : .:'~:.':!, '.'

The PACT word called PTEST cont'ains' "the" aCti va tion, con­
dit~on for a currently inactive fo~k~ The condition
for activation is~ontained in th~ six opcode bits of
this word, while the address field normally contains
the absolute address of a word to be tested for the
specified condition. It is pos~ib~e, however, for the
address to hold a number indicatlrtg which progra~ in­
terrupt has;occurr~d.

!. ;;1 .

2.11

The following activation cOl')ditiqns.,a~e possibl.~.:
, .: • ; .'. " • • '. I. ! . • ", ' '. ~ • t .~. ;. ' .. :. : ,

0'· '. "'\Vord':gr'e~'ter" than 0 .
".1 " :.'. \lIard les,s than or equal to " .. . '~f'll .

. , 2 .: 'wprd'greater than bi~" equal to 0
3" 'Word 'les~. th~n . or, equal to teletype e~riy"

warning"',':" . .' .
. :4"'!" . !Speclal' test:~ 'The address points to a special
. a~t~:'8: ~~on t~~t rout ine. . .. :.

';l'~" :,.:;Int~~rup,t o~c.~::~e9:. , The a~dress ~onF~~n? .i~he
'~6·.(!'i ;number of tl;1~~ ~~terrupt WhlCh occu~~~~L'l":; : ..
, .;' "j'.' 99 not acJ;i.v:~te··

7 · Spedi~l I~ddr~~s =
'0 'deacf.··
l' "r'unnirig
2' 'BRS ."31 '"
j . ; ,BRS ~l a 6 .. ;!.. '4 ., . "',

~~. .:'~ . ~ ,E*:~~u ti~"~~f' J?R,~
). 5" . ·BRS~.109'·'~ "."
';,6' . BRS ,j9"(Us;e~ri 'Program) .. '

"10 :0'6 '-n<?t~ ~~,~.c't::t ~at $,:; ":" ',J': . . ,,', . .
'11': ''''orid'' 20'00.0000 == 0' (buffer'. ready) f2 ""'o'rcI",Ji'e;ss: tha'n 0 .i ~ ... : ! :",',,' . ,

*. ' •. J . :t ',. ' ; ! ~ ,i' ~

An ~x,'~'qut+ve p'~.6~r~m· can d·i.smiss itself expli.c,itly, ,by, .
p~t,t-thg·.~. q~~~e:" riurilber (0 to,' 3), in X and a di~.{Tli-ss'a·1; ~ ; '.
co~dii ~~·qn::,:~·if::,:)?~·:~ir\9.~:~e.~~cutl.l).g;:-}3RS· 72. The aqRr;'~9P; o;f~"t..·~:-:.'·
;a,,~"i~~;i;S~-~)~!\.~9'o.~~1t;i·or\ .!Wf.·~t" 'be .. ,absolute · .: ,{,:,: .; r. '. ": " .'

• " ., ': f \ .: .. 1'''1 ;~ r, .. ; '" .',' . ~ j , r •• I: . • " {. . f '"

Ther€(~·.s : . .hC?'t~·a~~~Y>.~r},e runIJ~'ng"Torkin ,the sys1tem, d. .• ~.".
a fork' ~'Wh':H::h" is'executing' 'i'nst;r.tictions, or will ,be execu-

:' , s. I' ~ , .• ~ ~ ,I • ., :,- .: • i :.' 1 j',:' . . " J... ~'I ". .~. • ',' I •. ' • • .' . ' •

. tihg 'i'ri's·tructions a:ft'er the cur'reritlypending interrupts
have been: processed .. , .A.n. active .fork (i. e. -' a PA.CT.' en:t;.l?lY)
whiqh. 'is ;~o,'t running, '·.~;s:, :sai.t{ to ':be' ,dismissed ,. ... p.pd ~s· :'i' .',
kep,t'lt:rack" attn one' -Of: two' ways ... '1) . ·If it.' 15 !dism1's':sed
wi th··a~s'.:'9 ".,! 31;;r-~:p.P:.,:or:·~'109 '(see sect+~n 3)It' ~1s sa~~.; l

to be"~!l' .firnq(\}p1~.t is ppi'n~ed to o~l~ by the RrORK,)" PDOWN,
anq, ?~.A~i of;- t\~~;.r(·~lrighboring fo:rks: in .. ~he fork str.up:~~~e.:.
2) .. f,-f· "·,~Fl·.n~:~! q~'f=jrt: dismiss~p: .f.or. ap)1:.I.ot.her reason" ip.~:;.
is on o'fle 'of the' '~chedule queues. ~h~r~. are (o~~. q\l~lles
of dismissed programs. In order, they are: . .

QTI Programs dismissed for teletype Input/Output
QIO Programs dismissed for other I/O
QSQ Programs dismissed for exceeding their short

quantum
QQE Programs dismissed for exceeding their long

quantum.

2.5

Programs within the queues are chained together in PNEXT,
and PNEXT for the last program in each queue points to
the beginning of the next qlleue. '

Whenever it is time to activate a new program, the old
program is put on the end of the appropriate queue. ,';.
The schedule then begins at QTI and s9ans through the 'fI,

queue structure looking for a program whose activation
condition is ~atisfied. When orie is found, it is removed,
from the queue structure and turned ovei,~o the swapper
to be read", in and run. If there are no p'r'ograms which
can be activated the scheduler simply continues scanning,:-;
the queue structure.

~-Pr'ograms-reactiv:at,~,d ,for various reasons having to do
wi th forks (int'err'u'pt's', escap'es, panics) are put onto
QIO with an immediate activation condition. They';' there­
fore, take priority over all programs dismissed for
quantum overflow.

There is a permanent; ,Ientry on the teletype queue' for
an entity called th~ phantom user. The activation con­
dition for this entry is a type 4 condition which tests
for two possibl~~ ties: :' ,,~,:':I',"

~" . .a:y .. 'The -cell PUCrrR is non-zero,
,', :)

b) ten seconds have elapsed since the last acti­
"~'~';', "vat ion of the phantom user for this condi,tion.

," • .\.i\")'

When the;'phantom user' 'is activated by (b), it runs around
the system checking that everything is' functioning properly.
In particular, it checks that the W-buffer has not been
waiting for an interrupt for an unusual length of time,
and that all teletype output is proceeding normally.

'Ii:the phantom user is activated by (a), it run~)do~h'
the .phantom user queue looking for things to do. A '
pharitom user queue en~rY is displayed at the end of this
section. It is css,e;:ptially a very abbreviated PAC table" ~
entry. S~ch an ent,r..y is made when the system has some '" l',:';,;

activi~y ~hich' it, w~~ts to carry out more or less inde- ',~,
··-,~ .. pendentlyi 'of any user~ PAC table entry, tests for tape ,':;-:,,'

ready (on rewind) and card reader ready, and processing:,;'i\, '
of escapes (an interrupt routine kind of activity, ~llt ,c'

too time-consuming). The second word of the ent'ry 1.5,', ",
the act~vation condition. PUCTR,:cont?-~:p~, th~;:'nu.,¥b'e.'~\,\ " !.::-,.,
of entrles on the phantom user qu~ue.'! '

PNEXT

PL

PA

RLl··

RL2

PPTR

PTEST

PQU

PTAB

PIM

2.6

PAC TABLE - ONE PER FORK

.) .• ~ : I .•..

~Next queue or next program 'isqueue i·t ", l

23 .f.
I <·O-:;'next program > O=;>next queue
"U'i ! .• 3 ,. 8: : 10
:i . j '0 : 0: ti Ie II 0 f i 0: . . 0.u' ! V: subr .':. 'file :~ !.

." .'1

I

.: Saved (A) ;
: ':" ~', I

., .
i'.'

I :.~f';
.i ,j;.; .

;. ;).r;.\
',i:::", :

; ~-----"";---";-~'l ·'~--:-----------------:-----"-·l

'l First pselido-r'elabeling regis~er ,,;".1 •

1·.0 . . :..: :
:',': . ··~'·:'!PDnVJN·

. : ! •... . -1-: .
I· . ,'1,

",
.i 11 12 '.: .' '. . 23 I

.... PFORK dr' chain' .' ,',
. for 'fr~e en~ries·i

3 8! 10 23.
o '} r: activation'1 '0 i test word' addr .. ', or' int .. ·· ',' .
: : ·:··bonqitlon ;.,: Ill,' or . 'status bf 'dead fork: .

E·' ; 3"" 8; 9 '. 1111223 .
1 EX: O! QR ,I. QUTAB ,'. . PPAR ' .
I j!
~ X B ~,~i _____ --:---__ , _=-=-_____ ~_~ ___ ---=-==--

~Li~IT: Job No.o
ilO

Panic Table~~ress ~23 I

I r.1'., 1:;. S! ; :!.::. I
-'''''--'I~.....,~---::;;>-~---:-~---~''--~--=:-r.:---=....:--=""?'~---=-==--I

: .. !. : .. ', 4 6' ".<' 9' . :': 12 14,15 i18 i • 23 .
i rIJ: T' N~ 01, I Ef·q . 0 XPB'I; TO : ,·.
!:T··:;··P·,.· T,!:'!.· :,. 1 2 '.·3: 4 ".:5', :., "61' 7 8 9:· 10 1'1 ,f.'

'
1' ... , .. " '".'J .. I,'.' .:

... ~ ',. i L." '_: '. : ", ; ~) ~ I . • .t • ,: 1" ~, ..._

UM='Use,r Mod~'':''~l)' .. !. I " .'. IEM:(ll}=,'I;nterrupt 'bh:'die'c
OV= 'Overflow (1·,',·,. ,. .:.' " j'errors . .", .' .
QUTAB= addr :<"rbr short' quantum . ::·IEr~(1:...4')=' Syste·m lnter~upts
EX=, XPB= Index to PB in TS
QR= Amount ci":r: ;l.ong ·quantum left'.' ;". Block " "
IEM= Int~r~upt IEnabled Mask .,.~ , .. " 'EXl=SUbsystem' s'tat'us
LM=Lb6al Me~bry': . TS= TS'btock assign~d.·
MT= Add', nd, memory' .
EXB= Exec 'BRS ':'."
TP= Terful~atiotr·Pendlrig
NT= Non~Terminability
TO= T~me·Ocit: ih~~rrtip~ armed:

PHANTOM USER QUEUE ENTRY - TYMSHARE

a

Pointer to next entry

I

a ! Test number : Routine address
f

Data for routine

Data for routine TTY No.

- Phantom user queue.
- First free entry in PU queue.

23

2.7

PUCT
FPULST
PUBPTR - Po~nter to first active entry. Last entry

PUCTR
PUEPTR

paints to PUBPTR.
- Number of PU entries.
- Last PU entry.

PUCTRI - Entry counter uuring PU processing.
PUCPTR - Pointer to active entry during PU processing.
PUPAC - PACPTR of entry being processed by PU.

3.1

3.0 FORKS AND JOBS

.: .

3.1 Creation of Forks

A ~ork may create new, dependent, entries in the
PAC table by executing BRS 9. This BRS takes its
argument in, the A register, which contains the
address of a panic table, a seven-word table with
the following format:

o Program counter
1 A register
2 B register
3 X register
4'· First relabeling register
5 Second relabeling register
6 Status

The':status:word may be:

-2 Dismissed 'for Input/Output
-1 Running
o Dismissed on escape or BRS 10
1 Dismissed on illegal instruction panic
2 Dismissed on memory panic

The panic table address must not be the same for
two dependent forks of;the same fork, or overlap
a page boundary. If it is, BRS 9 is illegal. The
first six bits of the A register have the fo1lowing
significance:

0

'1

·,2

3

4

5

Make fork executive if·current fork is
executive.
Set fo~k relabeling from panic table.
Otherw:ise, 'use current relabeling.
Propagate· escape assignment to fork'·(see
BRS 90). . "
Make fork fixed ·memory. It':is::not allowed
to obtain any more memory than' it is started
ttli th .
Make fork local'memory. New me~6ry will
be assigned to it independentl:y\:df the
controlling fork.
Make fork exec type 1 if current fork is
exec.

3.2

When BRS 9 is executed, a new entry in th~ PAC
table is created: This new fork is said to Qe a
fork of the fork creating it, which is' called the
controlling fork. The fork is said to be lower
in the hierarchy of:'forks than the controlli~g
fork. The latter may itself be a fork of some
still higher fork. A job may have, at most, eight
forks including the exec. The A,B and X registers
for the fork are set up from the current contents
of the panic table. The address at which execution
of the fork is to be started is also taken from
the panic table. The relabeling. registers are set
up either from the current contents of the panic
table or from the relabeling registers of the cur­
rently running program. An, executive fork may
change the relabeling as it pleases. A user fork
is restricted to changing relabeling in the manner
permitted by BRS 44. The status word i~,set to
-1 by BRS 9. A fork number is assigned ~hich is
kept in PIM. This number is an index to the fork
parameters kept in the TS block.

The fork structure is kept track of by pointers
in PACT. For each fork PFORK points to the con­
trolling fork" PDOWN to one of the sub~idiary forks,
and PPAR to a fork on the same level. All the
,subsidiary ,forks of a single fork are chained. in
a list. A complex situation is shown at the end
of this section entitled flForkStructure". The
arrows indicate the various pointers.

If the fork executing a BRS 9 is a user fork, it
is dismissed until the lower fork terminateso If
it has exec status, it continues execution at the
instruction aft~~ the BRS 9. The fork established
by the BRS 9 begins'execution at the location speci­
fied 'in the panic table and continues independently
until it is terminated by a panic as described below.
It is connected to its eO'htrolling fork in the fol­
lowing three ways:, .

1) The controlling fork may examine its state and
control its "operation with the following six
instructions:

BRS 30 reads the current status of a lower
fork into the panic table. It does
not influence the operation of the fork
in any wayo

3.3

'BRS 31 causes the contr'olling fork to 'be dis­
missed until ,the lower fork ~auses a
panic. When it does, the controlling
f~rk is reactivated at the instruction
following the BRS 31, and the panic
table contains the status of the fork
on its dismissal. The status is also
put in X.

BRS 32 I caus'es ',a lower fork t,o be unconditionally
terminated and its status to be read
into the pa~ic table.

All of these instructions require the panic
table addressor the fork in.A. They are
illegal. if, this address 1.s not that' :of.a panic
,table for some for~ ... :

.BRSc31, and BRS 32. return the status ,word in
the X 'register, as well as leaving it in the

,panic table. This makes it ,convenient. to do
an indexed jump with the contents of the status
word.' BRS 31 ~eturns the panic ,.table address
,in A.

B~S.106 causes the controlling fork to be
'd'is'missed until any s'ubsidiary f.ork
causes~a panlc. Whenii d6es, t~e con­
trolling fork is reactivated ~t th~"
fol~owing instruct ion, .wi tho the panic
table address itl. fA:) and the p'anic table
contains the.staiusofth~ f6rk ~t its
dismissal. .
caus~s BRS 30 to be executed fo~ all
subsidiary fork~.

BRS 108 causes. BRS 32 to be.executed for all
subsidiary for·ks,. .-

2) If, interrupt 3 is armed in.the c~ntrolling fork,
.. :the,termin~t~on of any sub~idiari fork will

cause that interrupt to occur. ,~he interrupt
takes precedence .. over a BRS '31. . If tq..~" inter­
rupt occurs anp.. contr,o.1 is r.eturn,$d to. a BRS

.31 after proce.s·sing i'he interrupt; the' fork
.. ~i1l be dismii~~d ~ntit th~ su~sidiary fork

specified by the restore~ .(A). terminates.

3.4

3) The forks can share memory_ The creating fork
can, as 'already indicated, set the memory of
the subsidiari fork when the latter is started.
In addition, there is some interaction when the
subsidiary fork attempts to acquire memory.

3.2 Memory Acquisition

If the fork addresses a block of memory which is
not assigned to it, the following action is taken:
A check is made to deter~ine whether the machine
size specified by the user has been exceeded. If
so, a memory panic is generated. If the fork is
fixed memory, a memory panic is also g~nerated.
Otherwise'" a new block is assigned to the fork so
that the illegal address becomes legal. For a
local memory fork, a new block is always assigned.
Otherwise, the following algorithm is used.

The number, n, of the relabeling byte for the block
addressed by the instruction causing the memory
trap is determined. A scan is made upwards through
the fork structu~e to (and including) the first
local memory fork. If all the forks encountered
during this scan have Rn (the Nth relabeling byte)
equal to 0, a new entry is created in PMT for a
new block of user memory. The address 6f this en­
try is put into Rn for all t'he forks encountered
during the scan.

If a fork with no~-zero Rri is encountered, its Rn
is propogat'ed downward to all the forks between
it and the fork ca'using the trap. If any fixed
memory fork is encountered before a non-zero Rn
1s found, a memory p~nic occurs.

This arrangement permits a fork to be started with
less memory than its controlling fork in order to
minimize the amount of swapping required during
its execution. If the fork later proves to require
more memory,it can be reassigned the ~~mory of
the controlling fork in a natural: way. It is, of
course, possible to use this machinery 'in other
ways, for instance to ~ermit the user to acquire
more thari 16K of mem'ory~ :and' 'to run different forks
wi th non'-overlapping or atmost non-ove~1.apping memory.

3~3' "Panic Conditions

The three kinds of panic conditions which may cause

3·5

.~ fork to b~ termiriated are listed in the descrip­
,tion "of,. the, ,status, vrord above;' ':. When any of these
conditions occur, the PACT entry for the fork being
terminated is returned to the free program list.
The status of the fork is read into its paniC table
in the controlling fork. If the fork being ter­
~inatedhas a sub~idiary fork, it too is terminated.
This process will, of course, cause the termination
of ail the'lower forks in the hierarchy.

The panic which returns a status word of zero is
called a fork panic and may be caused by,. either
of two conditions:

'A) the escape button on the 'controlling teletype
is pushed or an off interrupt occur~ed. This
terminates some fork with a fork pan~c. A ~
f6~k may de6lar~ that it is the oneio be ter­
minated. 'by, executing" BRS gO. ,In the ,absence
or such',~ declar~tion the bighest us~r fork is
terminated. When a fork is terminated in this
way' its coritrol~ing fork becomes, the one to be

'terminated. If a user fork is terminated by
escape, the teletype input buffer is,cleared.
"I~ t~e controlling fork of theone, ~e~minated
'is executive, the output buffer is a~so cleared.

• t.. •

If the fork which should be terminated by escape
has armed ,interrupt 1, this interrupt will occur
instead .,of, a termination .. , .The" teletype buffers

, ~ill not ,,;be affecteq. If there is only one fork
active, control goes to the location EXECP in
the executive. This consideration is of no con­
cern tq the user. Executive, programs can turn

'the ,escape button 'off with BRS 46 and'turn it
back on with BRS47. An ~scape occ~r~ing in the
meantime will, be stacked~" A sec'orid' one will be
igno~ed. A program which"isrunning ~ith escape

'turned off is said to be non-terminable and can­
riot ~e termiriated by a higher fork. B~S 26 skips
if the~e is an escape pending.

If two escapes occur within about .12 seconds,
~heentire fork structure will be clea~ed and
the job left executing the top level ex¢ciutive
fork~ , This device permits a user,trapp~din
a malfun.'ctioning lowe'r fork to escape.: Closely
spaced escapes can be conveniently generated
with the repeat button .ontheteletype. This

3.6

type of escape will cause a user to lose memory,
and should be followed by a RESET. An off in­
terrupt from the teletype is treated like a
high-speed escape.

B) A BRS 10 may be executed in the lower fork.
This condition can be distinguished from a
panic caused by the escape button only'by the
fact that in the former case, the program coun­
ter in the panic table points to a word con­
taining ERS 10~

As an extension of this machinery, ~here is
one way in which several 'forks may be,ter­
minated at once by a lower fork. This may be
done by BRS 73, which provides a count in the
A register. A scan is made upward through the
fork structure" decrementing this count by one
each tdffie a fork is passed., When the count
goe~ to 0, the scan is te~minated,and all forks
passed by are terminated. If an executive
program is reached before the count is 0, then
all the user programs below it are terminated.

The paniC whiph returns a status wofd of 1 is­
caused by the exeputlon of.an~illegal·instruc­
h&on .1n the fork. :'Illegal instructions are
of two kinds:

1) Machine instructions which are privileged,
2) SYSPOPs which are forbidden to the user

or which have been provided: with unacceptable
arguments. 'r

A status word of 2 is returned by a memory
panic!,; This may be caus~d by an attempt to ad­
dre~s more memory than is permitted by the
machine ~ize which the user has set, or by an
attempt to 'st6re into a read-only page. If
int~rtupt 2 is arc~d, it will occur instead
of the memory panic.

3.4 Jobs

Every complete fork structure is associated with
a job, which is the fundament~l entity thought of
as-a-user of the system, from the system's own
point of view. The job number appears in the PAC
table entry for every fork in the job's fork struc-

_ ture. In addition there are several tabl~s indexed

3·7

by job number. Th~se~are displayed at the end of
this section entitled "Job Tables n , and indicate
more or less what it is that is specifically as­
sociated with each~.j ob.

FORK STRU.CTURE

1)

t------,
I t

L~J ~UP

2 DO\vN

a I ACROSS
, .. I

/i·

f I
: ,_ _ .. _ .--.-------i----... -.------ .. --

\1/ !j\' !~. If\
:_ •• ____ ~_I __ • ," ____ , .. J..... _.'

. !

2) ; .. 1 ..1 4) I 1 ___ .1 5) 1
.. _ ... _--.- .. 1

! 6
, i
L_ _ .. j
i ! j ·-1·--;--l _______ ._~I·~-·-I

I : .. __ ._;;-._; ./~-.-- i

i II"

i
---------> t_ Or . _ ! I

.. -_._.. IE.,.---
! I -- j-.~.-.

3)

jL_
i

__ 2 ___ \ 7) I---! --.-l
1 I ~

: 0 I 8 t-i l' .. ~., .. ~,,-. --, : i' .- ._ ... ; I
; 7 L ____ -,·,·! 0 i ,. I, '/j i
______ .,',;;_ ••••.• 1 .

8)

/ !'\

'k-'
~--+--

i 7
\
j'"

o ~
.j

:1
-~.-.... '''--'j'

o r l_ .. __ ._.:
Hierarchy of Processes

i I
1\1--'

-_.,;....y ..
I :

6) 5

; 0 I
1_

r" a !
! I
I __ . ____ ._-i

3.8

o
PMTP

PMA

o
RL3

JOB TABLES

o
9 !10

!
I

3 8\9
o N 0 blocks I 0

P left

6 3

o

23
start of job's PMT

11112 17j18 23
blocks I length
used ! of PMT

6

11 ~12
o

6

17 i 18temo. 23
I ~tori}g~
I ~e~~Seling I
I _ 't = = .~ _

3·9

TTNO Teletype associated \'lith this job I 0\ D 10! i
. I B I: 0 TTY NO.'
'-O~i-::l"""':'-::2~' -=3---1=-=7~1=-r8"-----=2~3

ETTB amount of CPU time used

NP = don't charge memory against machine size.

DB = disc busy bit ~or BRS BE+l,2

4.1

4.0 PROGRAM INTERRUPTS

A facility is provided in the monitor to simulate the
existence of hardware interrupts. There are eleven
pdssible'interrupts: five are reserved for special pur­
poses and six are available to the programmer for general
use. A fork may arm the interrupts by exequting BRS,
78 with an II-bit mask in the A register.' ' This causeS
the appropriate: bits in PIM to be set 'or: cleared ac­
cording to whether'the correspondingibit in the mask
is 1 or O. Bit 4 6~ A corresponds t6 interrupt numberl,
etc. No other action is taken at this time. When an
interrupt occur~ (in a manner to b~ described) the exe­
cut'ion of an SBRM* to location 20b plus interrupt number
is: simulated in; the fork which armed'~ ;the interrupt. '
Note that the program counter which is stored'in this
case is the location of the instruction being executed
by the fork which is interrupted, n:ot tHe location in
the fork which c:auses the interrupt. Th'e proper return
from an interrupt is a BRU to the location from which
the interrupt oc6urred. This will 'do the right thing
in all cases including interrupts out 'of input-output
instructions.

A fork may g~rie~ate an interrupt'by executing BR~ 79
with the number of the desired interrupt in the A
register. This num~er may not be one, two, thre~, four,
or eleven. The effect is that the fork structure is
scanned, starting with the forks parallel to the one
causing the interrupt and proceeding to those above 'it
in the heirarchy (i.e., to its ancestors). The fi~~t'
fork encountered during this scan with the appropriate
interrupt mask bit set is interrupted. Execution of
the program in the fork causing the interrupt continues
without disturbance. If no interruptable fork is found,
the interrupt instruction is treated as a NOP. Other­
wise, it skips on return.

Interrupts 1 and 2 are handled in a special way. If
a fork arms interrupt 1, a program panic (BRS 10 or
escape key) which would normally terminate the fork which
has armed interrupt lj will instead cause interrupt 1
to occur, that is) will cause the execution of an SBRM*
to location 2018. This permits the programmer to control
the action taken when the escape key is pushed without
establishing a fork specifically for this purpose. If
depressing the escape key causes an interrupt to occur
rather than terminating a fork, the input buffer will
not be cleared.

4.2

If a memory panic occurs in a fork which .has armed
interrupt 2, it will cause interrupt 2 to occur rather
th~n terminating the fork. If an illegal instruction
panic occurs in-an executive fork ~hich. has arm~~
interrupt 2, it will cause interrupt 2.to occur rather
than terminating the fork.

Interrupt 3 is caus~d, if armed, when any lower fo~~
terminates. Interrupt 4 is caused,i! armed, when any
input-o~tput condit.~on occurs which sets a flag bit (end
of record, end of f~le and' error conditions can do this).

Interrupt 11 is caus~~, if;ar~ed, if a disc error is
encountered during aBRS BE+l or. BRS BE+2. These BRS's
require system' status,. Consequently, interrupt 11 has
no meaning for tis~r ~r sub~iste~ forks. ,.,' ~: .

vihenever any" interrupt oQcur,s~. the corresponding 'bit
in the inter~u~t m~sk is ~leared and must be reset
explicitly if it is desired to keep the interrupt on.
Note that ther~ is no re~triction on the number.of·forks
which may:have an interrupt on. .,

A fork may be interrupted after a specified period of
time by issuing BRS BE+12. It takes the interrupt
mask in A, the time in msec in B and the interrupt
number in X. If the specified interrupt ,is armed 'when·

'the time is up, the fork will be interrupted.
, "

To read the interrupt m~sk into A, the, I program may
execute BRS 49~ .

5.1

5.0 THE SWAPPER~, MEMORY ALLOCATION ANQ HAD ORGANIZATION

Because of the necessity in various parts of the system
for relabeling registers which do not change with time,
the user has been denied any access t6 ordinary relabel­
ing. In place, h~ is given access to so-called pseudo­
relabeling. His ,pseudo-relabeling regi~ters consist,
as clothe ordinary relabeling register~, of eight six-

'bit bytes. Each one of these bytes points, however;
not to a real page of memory~ but to an entry in the
user's pseudo-memory table, PMT. This table may con~ain
up to 64 words, each one specifying a certain 2K blo~k,
of memory, herein referred to as a page. The first';~er­
sion'of the system, however, will allow access to only
14 words. The possible forms of an entry in the pseudo­
memory table are shown at the end of this section entitled
!IPOOT Entries". All of the entries are more or less
self-explanatory, except the second, which will be dis­
cussed in considerable. detail :J.ater.

When it is necessary to activate a user, his pseudo­
relabeling registers are used to read out the proper
bytes from PMT and construct a list of pages which need
to be read in from the RAD. When this list has been
constructed, the current state of core is examined to
determine whether'any pages need to be written out to
make room for those which must be read in. If so, a
list of pages to be written out is constructed. The
RAD command list is then set, ~p with the appropriate
commands to write out and read in the necessary pages.
In the scan which sets up the RAD read commands, the
swapper collects from PMT or SMT the actual absolute
memory addresses of the page ,called for by the pseudo­
relabeling and constructs a s~t of real relabeling regis­
ters which it puts in two fix~d locations in the monitor
(RRLI and RRL2). It then outputs these relabeling regis­
ters to the hardware and activates the program.

Matters are slightly complicated by the existence of
a system parameter called NCMEM. Pseudo-relabelingbytes
with values from 1 to NdMEM-l (0 means an unassigned
page) actually refer directly to the first NCMEM-l pages
of SOOT, the shared memory table and the user's own PM±
is addressed beginning at NCMEr~. the "common!.' por,tioJf
of SOOT is used to hold the most common subsystems,. '

There are two BRS's which permit the user to read and
writ~ his pseudo-rela'be11ng. BRS 43 reads.othecu,rrent,
pseudo-relabeling registers into A and B.; B~S 4~t~~e~
the contents of A and B and puts them into the curr'en-t

5.2

pseudo-~elabeling registers. Anexecu~ive program may
set the relabeling registe~s in arbitrary fashion by
using this instruction., A user program, however, may ..
~dd, o~,delete only pages which do not have the executive
bit set in PMT. This prevents the user from gaining
access to executive pages whose destrurition may cause
damage to the system. Note that the user is doubly
restricted in his access to real memory, firstly because
he can only access real memory which is pointed to by
his pseudo-r~labeling, and secondly because he is only·
~llowed to adjust those portions of his pseudo-relabeling
whign are not, executive type. ',;:

The u~~~ ca~' also set the relabeling of a fork when he
creates it. See section 3. The same restrictions on: .
manipul'ation of executive pages of course apply. ',',

:-, .
The, system'maintains a pair of relabeling register.s ,~
which the executive and various subystems.thin~ o~,as
the user's program relabeling. For the convenience of
subsystems, an executive program can read these ~egis­
ter~ with BRS 116 and set them with BRS 117~

The memory allocation'~lgorithm is described in. section
3 .. A user can release,a page which is in his current
relabeling by putting any address in that page into A
and executing BRS 4. The PMT entry for the page is
removed and, in any other forkw~ich has this PMT.byte·
in its relabeling, the byte is c~eared to O.

Equivalent to "BRS 4 is ~RS 121 ::'Which ~akes a pseudo·-,
relabeling byte'in A rather than an ,address. An inverse
operation is'arts 120, which takes a pseudo-relabeling
byte in A, generates an illegal instruction trap if the
coprespondi~g PMT entry is occupied, and .otherwise ob­
tains a new page and puts it in that entry. This is
an exec-only .. : operation, of course.

A word of PMT whose first three bits are 001 contains
a pointer to t.he ;'shgred memory tqble, SMT,. An entry
in Sr~T. looks exactly like anur;lp.sed or private entry
in PMT. It r~fers to a page of memory which has a fixed
location on th.e RAD and may b,e ,referred to by more than
one prog;ram<~,::,.:"

. ,,' ..
By putting ~~'index in SMT in'A ~nd executing BRS 69,
a pointer, tc? the specified loca:t.io!l: in sr~T, is put int,o
the fit.st~fr.ee byte of a·· user r S PMT .and the byte number
is retl.i~ned 'in A. .-., ;,:.;

5.3

The user may declare a page read-only by executing BRS
80 with the: :pseudo~relabeling byte number of the page
in A and with bit 0 of A set. To make a page read­
writ~, bit 0 of A should be clear. Bit 0 of A will
be reset if the page was formerly read-write or set if
it was formerly read-only. If the program doing this
is not an executive. prog~am, then the page must not be
an executive page. Only an executive program can make
a read-only PMT entry· which points to SMT into a read­
write entry~ for obvious reasons. The significance of
a read-only page to the swapper, of course, is that it
need not be rewritten· on the RAD when it is removed
from memory.

A RAD is divided into blocks of 32K. Each user is
assigned a 'block depending on his job number. The
first page in each· block is always the user's TS page.
Each block of 321\ consists of eight bands with two pages
per band.. The list of swapping commands alternates pages
whenever possible to minimize swap time. A bit map is

. 'keptin .the TS page which maps the user's 32K.· \~hen
the user requires more memory the free page nearest the
beginning of his block is taken. The first several
blocks on the first RAD contain the subsystems, exec
and swapable: ,monit or· page s .

It should be noted that whenever a user is reactivated,
all of the memory in his current relabeling registers
is brought in. The user does, however, have considerable
con~rol over precisely what memory will be brought in,
b~,cause he can read and set his own, relabeli-ngregisters.
He:may, therefore, establish a fork .with a minimal amount
of ~~mory in order to sp~ed up the swapping: process i~
this is convenient. , ;

To make a page executive~ execute BRS 56 with the same
argument as for BRS 80, make page read·-only. This in­
struction is legal only for executive type programs.

The system keeps track of the state of real core with
two tables called the real memory table (RMT) and the
real memory use count table (RMC). An RMC entry is -1
if a page is not in use; otherwise it is one less than
the number of reasons why it is in use. Every occurence
of this page in the relabeling of a process which is
running or about to be run counts as such a reason.
In addition~ other parts of the system can increment
an RMC word to lock a page in core. No page with non­
negative BRM can be released by the swapper.

5.4

The format of an: RMT entry (one per real page) is:

lUi !2
1.8 ,t'R I 0
I E,O I

9 110 23 I o I address of PMT or SMT entry' .
t responsible . !

USE = in' use RO = read only

There is one more table indexed 'by real memory, called
the real memory ag~ng table. Whenever th~ sw~pper is ,
entered, every ~ordin this tabl~ is shifted ~ight pne
bit; All paies which'show up in'the real rela~elin~' .
computed from the pseudo-relabeling with which the swap­
per was entered then Qave bit I turned on. The pages
with lowest RMA are selected for swapping'out; of~ourse,
their RMC e,ntr'ies must ,be negative.' .

'Tee swapper·.··also contains 'a device called the 'simulated
associative memory. or SAM~ which contains pseudo-rela~el­
ing and real relabeling for the most recently used map~.
It serves to reduce the amount of time needed for map·· ...
dhangirig when little: swapping is taking place. It is"
clea~~d whenever a"RAD re~d takes pl~ce" since this
chang'es the' contents of re'al memory and pote'ntially in-
validates all real relabeling registers. .

Two 'BRS"s exist, for' reading', and writing pages at speci~
fied places on' the RAD. They are. of course restr~ete.d
to executive programs. ~o re'ad a page '. put th~ R,AD, ad­
dress into'B and the core addres~ in A and exetu~e BRS,
104. To write a page'use'BRS I05~' RAD'errors', cause ','
these instructi.on~ to generate i'llegal :t.:nstruc't~oh panics.

5.5

PMT ENTRIES

0
Unused

0 23

I I!
Shared ! OJ 0 181 SMT No.
Entry I : I

1 ,I
0 3 9 12 23

i I ! I I

Private RIEl IRAD Addr.
181

Page No.
Entry Dlx.

3 18 23

SMT ENTRY

I I ; I

~ Ii I No. ori RAD Addr. IR I Page No.
Users I 10 1

18 23

RD = On RAD
EX = Exec
S = Shared
RO = Read Only

6.1

6.0 MISCELLANEOUS FEATURES

A user'may dismiss his fork for a specified length of
real time by executing BRS 81 with the number of;milli­
seconds for which he wishes to be idsmissed in A. At
the first available opportunity after this time has been
exhausted, his fork will be reactivated. 'The contents
of A are. lost by this BRS.

'He can read the real-time clock into A and the system
start-up date and time into B by executing BRS 42. The
number obtained increments by one every 1/60th of a
second. Its absolute magnitude is'not significant.
An exec fork can read the elapsed time counter for the
user into A by executing BRS 88.,: This numbe~ is set
to 0 when he enters the ~ystem and increments by 1 at
every 1/60th second clOCk! interrupt at which 'his fork
is funning.

To obtain the date and time, he can execute BRS 91.
This puts string pOinters into the A and B registers.
The string contains in order, the month/day, hour (0-23):
minute at which the instruction is executed.

A user may dismiss a fork until an interrupt occurs or
the fork in question is terminated by executing BRS 109.

A fork can test whether it is executive or not by execu­
ting BRS 71. The type of executivity is returned in B.
If B equals I, the fork is subsystem. If B equals 0,
the fork is user. If B equals -1, the fork is system
and subsystem. If B equals -2, the fork is system.
If B is negative) the BRS skips on return.

An executive fork can dismiss itself explicitly. See
section 2.

There are two operations designed for so-called executive
BRS's which operate in user mode with a map different
from the one they are called from. BRS III returns from
one of these BRS's, transmitting A, B and X to the cal­
ling fork as it finds them. BRS 122 simulates the ad­
dressing of memory at the location specified in A. If
new memory is assigned, it is put into the relabeling
to the calling fork. A memory panic can occur, in which
case it appears to the calling fork that it comes from
the BRS instruction.

An executive fork cancaus.e an instruction to be~'
executed in system mode by addressing it with EXS.

6.2

There are switches in the monitor which c~n beset by
an exec fork with a BRS BE+13. It takes the riew switch
value in A and the switcb number in X~ It returns t~e
old switch value i~ A.

An absolute .. location in tbe monitor relabeling can be
read or chariged by anex~c fork w~th BRS BE+4. The ab­
solute location"is in X, the new ~~lue, if any, in ~.
The BRS reads if B is positive and changes the word if
B is negat~ve~

An'exec fork can also fbrce a new page to be read from.
the RAD wi~h BRSBE+15. It takes anSMT pOinter in A.

An exec fork can test the",state of any br~ak~oint.swi~Ch
with BRS·:BE+7. The switch number is in X. Th~ BRS skips
if the switch is down.

An exec fork can crash the system with BRS BE+8.

7.1

7.0' TELETYPE INPUT-OUTPUT

We begin with an outline of the implementation of the
teletype operations. This should serve to clarify the
exact disposal of the characters which are being read
and written. Every teletype has attached to it a table
which is shown at the end of this section entitled "Tele­
type Table ll

• Also associated with the teletype is a
buffer which contains input and output characters in the
following format:

o ,7 :8 15 :16 '23i
input character' ,':output character character to I

! echo ,(if anyLi

As characters are output by the program, they are added
.to the output buffer, which may be regarded as logically
independent from the input buffer in spite of the fact
that it resides in the same words. The characters are
then output by' ,the teletype interrupt routine as rapidly
as the 'teletype will accept them.

These buffers are called character ring buffers (GRE's)
and they are not necessarily associated with teletypes.

When-a character is typed in on a teletype, it is con~
verted to internal form and added to the input buffer
unless it is escape on a controlling teletype; -The
treatment of escapes ,is discussed in section 3~ The
echo table address is then obtained from TTYTBL. The
echo table determines what to echo and whether or not
the character is a br,eak:;character. The available choices
of echos and break characters are discussed later in
this section. If the character is a break character,
and if a user's program;has been dismissed fo~ teletype
input,'it will be reactivated regardless of the number
of words in the input buffer. In the absence of a break
character, the user's program is reactivated only when
the input buffer is nearly full. .

If the teletype is in the process of outputting (TOS2>-1)
then the character'to be echoed is put into the last
byte of the ·buffer word which contains the input charac­
ter. When 'the character is read from the)buffer by the
program, the echo, if any, will be generated. This
mechanism, called. deferred echoing, permits the user
to type in while the teletype is outputting without
having his input mixed with the teletype output.

7.2

There are four standard echo tables in the system, re­
ferred to by the numbers 0, 1,.' 2 and' j . Zero' is 'a table
in which the echo for each character is the character
itself, and all characters are break characters. "Table
1 has the same echos, but all characters except letters,
digits and space"are break characters. Table, 2 again
has the same echos, but the only break characters are
control characters '(including carriage return and line
feed) and exclamation mark. Table 3 specifies no echo
for any character, and all characters are break charac­
ters. This table is useful for a progra~ which wishes
to compute the echo itself.

Normally a carriage return and line feed are both echoed
if either is received from a teletype. However, only
ttie first orie received is sent to the program and, if
the other one is also received it is ignored. A program

'may, however, receive',both by issuing "BRS BE+ll. If
: A is negative., both characters will 'be"sent to the pr<;>g­
ram. If A is positive~ only 'the first character will
,~~ sent to the p~ogram. '

,.': • .1.. ;'.

If either line feed or 'carriage return is output by a
program both are sent to the teletype unless the carriage

; is at the left margin. :: In tf:lis case, only a line feed
i~'output for either a carria~e return or a line"feed.
If a program wishes to send only one character, it should
output .102B for line feed or 105B for carri~ge return.

. ; :.~~.; ,} " ~'. : ('. . .. :' .

To set the ~6h6 tablej put the teletype number, or -1,
in X and·the echo table number in A and execute BRS12.
Note th~i'BRS 12 is also used to turn on 8-level mode~
(see belb~)~ To read the echo table number into A, 'put
th~ t~letype number, o~ -1, in X and ex~cute BRS' 4o~ ,
ThIs operation returns the echo table number in A. If
the teletype is in 8-level input mode, the sign bit of
A is set'and the terminal character is in A~'

To input a, character from the controlling teletype (the
teletype on which the user of the program, is entered)
into location M in memory the SYSPOP

. Tel M '(teletype character input)'

is 'used. This SYSPOP'reads the character' from the tele­
type input buffer and places it into t~e !8 rightmost:
bits of location M. The remainder of Iodation M is .,
cleared~' The character is also placed "lri the A register,
whose' f6~~er cont~nts are destroyed. .' ,

7.3

The content~ of the other internal registers are preserved
by this and all the other teletype SYSPOPS and BRS's.

To ,.output a character from location til, the SYSPOP

TCO (teletype character output)

is used. This instruction o~tputs a character from the
rightmost eight bits of location M. In addition to the
ordinary ASCII chara,cters, all teletype, output (other
than 8-level) operations will accept 135 (octal) as a
~ultiple blank character. The next ~haracter will be
~aken as a blank count, and that many blanks will be
typed'

i
. ' • .

The TTYTIM cell in the teletype table is set to the
current value of the clock whenever any teletype ac­
tivity (interrupt or output SYSPOP) occurs. The top
bit is ~eft clear unless the act~vity is an esd~pe in­
put. This cell is: checked by the escape processor to
determine whether the escape should reset the job to
the sy~tem exec. (See section 3J'

Every'leletype in the system iB at all times in one of
tNO states:

a) It may be th~ controlling teletype of so~e user's
program.' It gets into this state when a User
logs in on it. Controlling teletypes ar~ also
known as attached teletypes.

b) It may be completely free.

The status of the teletype is reflected by the contents
of TTYASG. If the teletype is free, TTYASG contains:
3777B. If it is a controlling teletype, TTYASG contains
the fACPTR of the fork to terminate on escape.

A teletype becomes a controlling teletype when an "on ;/
interrupt (from that line) is received by the computer.
This indicates that someone has called that line. The
user then has one and a-half minutes to log in before
the system hangs up the line again. The. system checks
for carrier presence on a line before sending out any
characters. To do this a system fork may issue BRS BE+3
with the line number to check in A.

The user may disconnect the line by hanging up the phone.
BRS 112 is executed when an Hoffo interrupt is received

7.4

, by the system or when a user logs out. If an "o,ff u

'" interrupt has 'beeri received s BRS 112'merely makes·the,
line available ~gain. However, if a'user has logged'
out without hanging up the phone, BRS 112 makes the
teletype the controlling teletype for anotherj'ob
immediately and the next user van log in without ,dialing
the oystem again. BRS 112 takes the job number ~ssoci­
a~ed with the teletype. in X. A job may terminate itself.
Tbis operation also releas~s all telietypes :a,ttached : to
thej6b. BRS 112 require~0~ystem status~ , ','

An exec fork can turn a line on or off by issuing BR~,
BE+6. It takes the line number in A and turns it on
if B is negative or off if B is positive.

The user has considerable control ove~ the state of the
teletype buffers for the controlling teletype. In par­
tic~lar, he ~ay ~xecute the following BRS'i. ,All th~se
take the teletype"number in X.:Rec9.1l ,that' '-1, may be:,
used for the controlling teletype,.: ,',;, ;:" " .

BRS 11
BRS 29
BRS 13

BRS . 14

clears the teletype input buffer.
clears the tel~type but put buffer.
s){ips if the t~letype input buffer is, ,
empty. " ' , ,
,,,,aits until the teletype output buffer' '
is empty, but not until the interr,upt 'has
'~een received for the last character.

Special provlsion'is made for rea~~n~'8~bit codes from
the teletype without sensing escape or soing the con­
version from ASCII to internal ~hich is done'by TCI.
To switch a teletype into this mode, execute

LDX ~ t,e:letype number
LDA.' ~;i~rminal character,+ 40000000B
BRS ',: 12

This will cause each 8-bit character read f~om:the
teletyp~ to be transmitt~d unchanged to the user's
program ... ,The teletype, can be returned to normal:, opera-
tion 9Y ':,.. . '

1) .. reading the termin~l character ,specified in, A,
, or

2) setting the echo table with BRS 12.

7.5

No echoes are generated while the teletype is in 8-level
mode. Teletype output is not affected.

A parallel operation, BRS 85, is provided for 8-level
output. BRS 86 returns matters to the normal state,
as does any setting 'of the echo table.

To simulate teletype inpbt, the operation

~I =teletype number or =-1
",

is available. STI puts the character in'A into the in~
put buffer 'of the specified teletype. Either the tele­
type number must be the controlling teletype or the fork
issuing STI must be a system fork.

. , ~

:'C""'

TIS2

TMS4

TIS5

TOS2

TOS3

Tos4

TOS5

TTYTBL

TTYFLG

TTYBRK

TTYASG

7.6

.TELETYPE TABLE

number of characters in input b~ffer,

next available space in input buffer (pointer)

next filled space in input buffer (pointer)

number of characters ,in ,output buffer; -1 = inactive

~p = not i~ multipl~ blank mode; 400 ~.just saw
135 (mtiltipleblank.,character); other ~ nu~b~r

"of blanks : ' "
. .

next filled space in output buffer (pointer')

next available space in output buffer

; N\.olols!sll'oi~II~lliOI!l ilOaddress of echo tabi~
! SI 1110 1 or terminal character
! ; ; l ! I It! I for 8-level input
a 1 2 3 4 5

don't listen for input (excett'escape) when O.
Set when input buffer is full.

waiting for break character when -1

PACPTR of fork to terminate escape
37777

I E Value of clock when last action
I S occurred on this tty . ~

TTY Status

active
inactive

NS=not 8-level
SI=8-level input
SO=8-level output
ES=last action was~in~ut of escape

8.1

8.0 DISC AND BUFFER ORGANIZATION; DEVICES

8.1 File Storage on the Disc

The disc used by this system actually consists of
from eight to ~2 physical discs each with a movable
arm~ The arms have 64 positions numbered 0 to 63.
Each.arm·position on each disc consists of 8192
~words each, however, the~ files use the disc in
groups of 256 words, thus disc addresses for file
blocks are always MOD 4.

The ·disc is divided into two major sections, system
I . date and file storage (see disc 'map at end 6f this

section for disc layout). The organization of the
system data area is discussed later in this section .
. The.file storage 'area is divided into 256 word
blocks which form the physical records for storage

·of files.

Every file has one or more index blocks which
. contain pointers to the data blocks for the file.

An index block is a 256 word block, as are all
other physical blocks in the file storage area.
Only,~he·first 128 words of·:the index block are
used. A couple of additional words are used £0
chain the'index blocks for any particular file,
both forward and backward. The index blocks f~r
a file contain the addresses' for all the physical
blocks used to hold information for the file.

Available' storage inthe file area of the disc is
. kept track or·with a bit table. If a bit in this
table is set, i~indic~tes that the corresponding
block on the disc is free. The bit map is set
ev~ry time the ,system is brought up to agree with
the files in~ ,the file directories. To set the bit
m.ap·~ BRS BE+4·:: .. is used. It requires an index 'block
painter (MOD40~in A. When all files have been
checked', the BRS is called with a -1 in A,' the new
overflow painter in B, and the acco~ntin~ area ad-
dress in X." ';

8~2 ·File Buffers'

Every open file in the syst~~ wit~ the exception
of purely character-oriented files such as the tele­
type has a fil~·buffer associated with it. The
form of this buffer is~hown at the end of this
section entitled flBuffers ll

•

8.2

Part (a) of this figure shows the buffer." prop.er,
and part (b) shows the index block b~ffer and pointers
associated with i~ .. :Part (b) is used only by disc
files, and is present in all cases.

The temporary st.orage page which is associated with
each job is always the first entry in the job's
PMT. This page is used to·hold information about
the' user and for the systen's temporary storage

.for.that user·~ It also has room for three buffers.
The pseudo-relabeling for·the TS page is held in
a table called RL3 which is indexed by job number,

··and: ~s p~t; into the monitor map wh~never any fork
belonging to that job is run. The~TS page is al-
ways.rel9.-beled into page 7 . ..:~;

Note that. the amount of buffe~ ~pace actually used
,i~~a:f~nct~onof the device!attached to the file.
In all cases, the two point~r words at the.head
of the buffer indicate the location of the data.
The:first.word paints· to the. beginning of the rele­
v~nt·data:and is incremented as data are'read from
ani,inputbuffer. The', second ward points . to the
endaf ~he.data and is incre~entedas dat~are
,written i~to,.an autput b~ffe~. When·the buffer
is in a dormant .. state~ both words point to'tbe first
word qf the puffer. \IJhenever any physical I/O oper­
ationis completed, the first pointer contains the

.. addr~ss Of this. word ..

8.3 Devices

.EvE;?ry different .kind of input.-autput dev.1ce· ,attached
't.o.. the ., syttern has a device number. . The ·numb.e:r.s
9,.s,sigried. to. 'specific devices are gi.ven in ··s.ection

.9, .. :, .. \T,he vari.Qus .. tables indexed .. by:!device namber
are described here.: The entries :in these: ,tahles

,'addressed by a'specific device nUmber to~ethe~: with
. t:he, :urlit .' number (:Lf· any) and the buffer a.ddr'es~s,
c9ropletely define the file. All this information
i;s,· kept i.n the file· control blo·ck: (see section 9).
which lS addressed by the file number.

The tables indexed by device number are shawn at
the end of this section entitled HDevice Tables".

, No,te .. t,h~ multiplicity of bits .which specify, the
., c.bp.r~.~ter;i,stics of the device .': "A).device may '"be

co.mmon.: :.(shared by users, who must i.not access it
, s'i~ultaI1eouslY":i e.g., tape or: carSls)or not common

8.3

(e.g. disc); this characteristic is defined by NC.
It may have units; e.g.~ there may be multiple
mag tapes. The U bit specifies this. The DIU word
indicates thich file is currently monopolizing the
device; in the case of a device with multiple units,
DIU points to a table called ADIU which contains
one word for each unit.

The major parameters of a device are:

the opening routine, which is responsible for
the operation necessary to attach it to a file,

the GPW routine, which performs character and
word I/O,

the BIO routine, which performs block I/O.

The minor parameters are:

maximum legal unit number,

physical record size (determining the proper
setting of buffer pointers and interlace control
words for the channel),

the expected time for an operation; the swapper
uses this number to decide whether it is worth­
while to swap the user out while it is taking
place.

8.4 System Data is Kept on the Outer Arm Positions
of the Disc

Arm positions 62 and 63 contain systems which are
loaded by a special routine which is kept on paper
tape. This routine dumps the first 32K of core
on discs a and 1, then reads a new system into the
first 16K of core. The disc from which the new
system is read is determined by console switch set­
tings.

Arm positions a and 1 contain the file directories,
accounting information, and mailbox data. These
are explained in the TSS Executive Reference Manual.

There are four BRS's available to system level
forks to read and write the system data on the disc.
These are BRS BE+l~ BRS BE+2, BRS BE+9 and BRS
BE+IO. They require the core address in A and the

8.4

·disc address iniB.· In addition BRS BE+l and,BRS
BE+2·take·the word count in X.' BRS BE+9 and BRS
BE+lO always read'or write a page (2K) from or to
the disc.

8.5

BUFFERS

(a) Layout of a File Buffer

i pointer to first relevant data word of buffer\
I pointer to last relevant data word of buffer,

first data word

255th data word

(b) Layout of Index Block Buffer and Associated Pointers
for a Disc File

BIN
BIC
BDN
BDC
BIP

I ~ ~~_u~m~b_e_r~o_f __ t_h_e~~in~d_e_x __ b_l_o_c_k~'_i_n __ b_u_f_f_e_r ____________ ll *
, lndex changed flag
i number of the data block in buffer I data Ghanged flag "
pointer to index block entry for current

I data block "
BIA i disc address of currerit index block

! first index,block worn
I '

iii E i3
! 0\ 0

1

0 I
I j I R,
t I

di,sc address

: l2lst index block word
BBP ! pointer to revious index block
BFP ! pointer to next index block

, check word
*random files only

0)

23

**index block word format. EOR=end of record flag.
***always 0 for sequential files

*

*
.,
r.

~;

\.0 .
co DEV word or

character I/O
routine

}3UFS
buffer size

BDEV
Block I/O
routine

DIU . ,"
device in' user

OPNDEV
opening routine

DEVICE TABLES

GPvlroutine
23· . 0

, oj , t,
I

vlB -; W Buffer
OUT - output

8 9 10 2~
I U I physical record size

U - check unit number Ne -not common (i.eo: don't: s~t DIU)

o 9 10 0 23
: 0 0BIO routine

23' 0,

_f~i~l;-e:-:L:""":n~u...:...;m:....b:-e-;r~u~s~i~n~gL..-.t:..:h=i:.:s=-.-;d::..:e:..:v:...:i=-=c:...:e:....-=o:.:r=---~l:z-~ ____ ----:.·",.u~ ~
'--_G-.p_o_i_n_t_s_t_o_AD~I~U~(=h=a.:;;..s-.:..;;,u::;.:,n.:::.i~t~n.:.:.um::.:...:...b..::.,e=..r......:::,a.=d..::.d..::.,e.=d.!...) ______ ' ttl=:l

o 1 2 3 8 ,9 23
01~!E' I. expected wait 10 opening eubroutine

~ ! !O, I time in cycles
EO - exec only allowed to open:

8.7

DISC MAP

'. Arm Positions ,
--_. ·\V~~ ~···~ _ - -:---...... ~ # ... -- ".- .--.. ~ /'-., --.-"'~~'-"""-"'"

1 .. ll. ____ ~ __ j. _.2 __ .;.-_. ",.. 3l-,,~ __ · .33-.-31L-;- - - . L_.6.1_l __ 6 2 .. _ ~- . ..6.3-- ;
1 page O! User; Datei ' , ~

! 400 ~ser~ 1 :

40; FD \ FD !LOC OjLOC O;Disc 0
1001 !: I ! 1 ; (OXXXX)

I user I I r 1 . ',' ;

4 I!" i'!; 1 0 1
... ___ • ___ - L7 7--+---... -····1- 1\ ;-.. -1._ _--_. -'i'--'---~ --- i-------·-I.' \ / --~----·"...l.---...;.----i

OUser User I I I i \.' I I .
·,i 500 i 100 I I I

_ ~?j FD . FD !LOC l~OC 1 ,Disc 1
looi I Iii ; (2XXXX)

4
: ' , , 1

1 ~~~e;-h~;~-+ .. --.r 1\ i·_--!-·---f---·;-·_+·_/\j \- -----;--_ .. -
;600 !2 0 0 ! 1 ! ! . 1 I

4 . ! i ! !
01 FD I FD : I. ~LOC 2lLOC 2;Disc 2

~~~:._ ..... ! _ _;._._-'-/\, 1-. -.-+----~·,--i-.-I '\rl--.. -~--J _ ... (4XXXX) 
,/ ODser !User . ; J I" 
l . 4 '7 00 ;3 00 i ' !; I 
.. 01 FD FD i LOC 3jLOC 3~Disc 3 

8K- 1ooil i . I i 1(6XXXX) 

, 140; ~ ~ __ I __ I' ,--.:~--~----J---r L. /'" . .-I-------L--l.--.- ' . o~~g~ r1ct -; Ii' i 'I I II: i
l
: i 

40, FD UAD I I I ','LOC 4 LOC 4lDisc 4 
~ . I !; i ! ( 1 OXXXX ) 

10 Of f:\ c c t ' : I I l' . l I i 

1401 .. _~n_L ___ .J-h"l~---'- --~--- I /.\/. ~--- .. ---tl I .... \ 

OUser i'\ /~., l I' I 
4 0 111 00 ! '.'\ / ! ,1 i 1 

I FD i /' , LaC 5!LOC5 ,Disc 5 
1001 :... i I : ! I Iii (12XXXX) 

I I .I ! I ~ ! . ; i ! . 

14 O! -.l-----.~-.+--.. --.t_. /\ ---i--- 1··- 1\ -,.~ ._,._, !,' .~---•. ---. 

. . "/ i \/. 
a;Use.c I I ! 
"'\1200 I I i -

40
1 FD \Acc' t! ILOC 6:LOC 6lDisc 6 

100; ; ! ; I I ~ 1'( 14 XXXX ) 

14g6s~r+- i .,\;-+----+- ~1·--/\\I··'ll--·+-·--+--! 
~300 !; I! : I 

40, FD \Letter l' I I; \LOC !J.1LOC 7'Disc 7 . 
1001 !! Ii! :, (160000.;. 

\ I I ! 177740) 
14 0; ,__ 1\ _ .. 1_ .. _.-:....__ ;\ 

ooxx 02XX 04xx V 76xXI00XXI02XX104xx \'/-172XX174XX176xx 



9.1 

9.0 SEQUENTIAL FILES 

9.1 Sequential Disc Files 

There are two basically different kinds of files 
which the user may write on the disc~ sequential 
and random. A sequential file has a structure 
very similar to that of an ordinary mag-tape file. 
It consists of a sequence of·logical records of 
arbitrary length and number. Disc sequential 
files are, however, considerably more flexible 
than corresponding files on tape, because logical 

. records may be inserted and deleted in arbitrary 
positions and increased or decreased in length. 
Furthermore, the file may be instantaneously pos­
itioned to any specified logical. record .. 

A sequential disc file may be operted by~the fol­
lowing sequence of instructions: 

LDX =device number j ·8(input). or 9 (output) 
LDA Address of first index block 
BRS I 

If the file is opened successfully, the BRS skips; 
otherwise it returns without skipping. Use of 
this BRS is restricted to users 'with system status. 
User programs may' access disc ·files only through 
,the executive file handling machinery. BRS 1 can 
also be used to open other· kinds of files (see 
section 9. 2) .. 

If BRS 1 fails to skip, it returns in the A regis­
~er an indication of the reason: 

-2 too many files open -- no file control 
blocks or no buffers available. 

-1 device already in use. For the disc; 
produced;by an attempt to open a,file for 
outpil,t:: ;t:Wice. ", 

"l '. : .:" • 

O· No dis.c· .s·pace left.,. TlJis inhibits opening 
of output. files Ol11..y .. · 

I' ".,' '. 

BR$.l returns in the A r~gister ~ file number for 
the file. This file number is .the handle which 
the user has on the file. He may use it to close 
the file when he is done with it by putting it 
in the A register and executing BRS 2. This re­
leases the file for other uses. BRS 2 is avail­
able to both user and executive programs. 



9.2 

To close all his open files the user may execute, , 
BRS 8. 

If the sign bit of A is set when the BRS I is 
, exe'cuted, . the fi'le' is made, read-only. This means 
that: it cannot be switched from:input to output. 

·-If this bit is not ~ se.t.~. then: .the instructions: 

LDA =file n'umber:' 
LDB =1 
BRS 82' 

,'·will·change the file t6 an"output file regardless 
~f.its. initial character. 'The instructions: 

LDA 
LDB 

,;{::BRS 

=file number 
=0 
82- , 

are always legal and make the file an input file 
regardless of' ,its initial character. . 

Three kinds of input··-output may be, done with sequen­
tial files. Each of these is specified by one 
SYSPOP. Eachof·these:SYSPOP·'s handles inpUt and 

·output indifferently; since the file must be speci­
fiedcas an 'input 'or an output file when it:is 'opened . 

. ;A' file that is open for"output cannot be opened 
again for either inputior out~ut and· a file :that 
is opeti for'ipput cannot be opened for output. 
However, a file may be opened for input anY"humber 
of times. 

To input a single charadter to the A register or 
output it from the A register, the instruct~on: 

'~ . 

CIO .,' =file numbet;;j,; . 

is .. executed. On input an end of re'c~ord or end 
of r.file. 'c'ondition: will' set bits·· .. O ·and 8 or bits 
o and 7 in the file number (these a~e called flag 
hits) and ~eturn a 1348\Or~1378 character, respec­
tively. In interrupt Ii is' armed; it will occur. 
The end of record ····cori'dftion occur's on the next 
input operation after the last character had been 
input ~ The end offiTe condition :'pcc"urs:: on 'the 
riext :input operation ~after the end o.f'rec'ord:;: which 

., .. signals the last record 'of the filEr~ 'The u'ser 
may 'generate' ari end of. record ~Thfle'-wr'it:i~g'a: file 

. by using the control' operation fa' be desc1r(ibed. 
'An error condition sets bits O~nd 6 iri the file 
number.:' 



To input a word tq the A register or o~tput it 
from the A register, ' 

WID =file number 

is executed. An end of file condition returns 
~ word of three 1378 characters. 

Mixing word and character o~erations will lead 
to peculiarities and is not recommended. 

To input a block of words to memory Or output 
them from memory, the instructions: 

LDX =first word address 
LDA, =number of words 
BID =file number 

should beexe~uted. The contents of A, B and X 
will be destroyed. The A register at the end of 
the operation contains the first memory location 
not read into :or out of. 

If the operation causes any of the flag bits to 
be set, it is terminated at that point and the 

, instruction fails to skip. If the operation is 
completed successfully, it does skip. Note that 
a BID cannot set: both the EOR and the EOF bits. 

BID is implemented with considerable efficiiency. 

The flag bits of the file number are set' by the 
system whenever end-of-record (0 and 8) or end­
of-file (0 and 7) is encountered and cle'a'red on 
any input-output operation in which neither of 
these conditions occurs. Bit 0 is set on any un­
usual condition. In ,the case of a BID t~e A regis­
ter at the 'end of the operation indicates the first 

, memory location not read into or out :of~' For any 
input oper~tion, the end of record bii:(bit 8) 
of the file number may be' set. ' An out'pu:t operation 
never sets either on~c'of these bit~. Bits o 'and 
6 of the file number may be set on'an error con­
dition. Whenever any flag bit is set as a result 
of an input-output operation in a fork, interrupt 
4 wil'l ,occur in that fork if' it is armed. 

Th~~TRL SYSPOP provides various control functions 
fot~~equential disc files';' To use this operation 
execute the instructions: 



LDA 
LDB 
CTRL 

=control number 
=count, (if required) 
=file number 

The available control numbers are: 

9.4 

1 write end of record on output or skip the 
remaining part of the logical record on 
input~ This control does not take a record 
count . 

. ~2:.backspace (B) physical tape blocks~ 

3 forward space (B) physical tape blocks. 

4 delete (B) tape blocks (legal on output 
only) . 

5 space to end of file and backspace (B), physi-
cal, tape blocl{s. ' _ 

6 space to beginni~g of file and forward space 
(B) physical tape blocks. 

7 insert logic'~l' re'cord" (leg~:lon .output file 
only) .. This control does not. require~ecord 
count. 

8 write end of file '(output only). 

A program may delete all the information in a disc 
file by. executing .. the instructions .:.; 

. ;·r.,OA ·=file· number· .-
.. BRS· 66 

'f, ':, I 

The .index· block fo~:a sequential disc file contains 
one word fO,r each physical' .record in the file .. 

. This word contains the· address on the disc' of the 
,phys~c~l,;~ecord in thebott.om 21 bi:ts.· Bit 2 is 
set .. if. t.ne physical record· is·!the last record of 
alogicai !~cord. A s~quential file may have only 
one· index"block, or a maximum of 121 X 255 = 30855 
words of ¢lata. "j 

:.,\ 
Putting the file number of asequenti~l file in 
A and executing BRS 113 will cause the file to 
be scanned. to find the total· number of data ,words . 

. The .. nurn.b,er of data words- is added to X. This also 



9.5 

works for random files. 

Three operations are available to executive programs 
only. They are intended for' use by the system 
in dealing with file names and executive commands. 

A new disc file with a new' index.block can be c 
created by BRS 1 with ani index block number of 
o in A. The file number is returned in'A as usual 
and the index block number in X. The read-only 
bit may be set (bit 0 of A) as usual. 

BRS 67 

returns the index block with address in A to avail­
able storage. An exec fork may read an index block 
into core with 

BRS·87. 

It takes the address of the block in A and in X 
the first word in core into which the block is 
to be read. 

A single word of a sequential file may be directly 
addressed· by specifying the logical record number 
and word number within the logical record. All 
the operations legal for random files (see section 
10) can also be used for sequential files with 
this convention. The format of the address is 

.[ 0 11 12: ' 7 : 8 
i I lrecord number i word address 
: j" (6 bits) I (16 bits) 

23 

9.2 Other Sequential Files 

In addition to disc sequential files, the user 
has some other kinds' of sequ~htial files available 
to him. These are all opeped with·the same BRS 1: 

LDX =device number 
LDA =unit number 
BRS 1 

Available device numbers'are: 
• - I' ~ . . 



paper tape input 1 
paper tape output 2 

. magtape input" 4 
magtape output· 5 
card punch Hollerith 6 
card punch binary 7 
line printer output 11 
card input Hollerith 12 
card input· binar~ 13 

9.6 

The device number is put into X. The unit n~mber, 
if any, is put into A. The file number for the 
resulting open file is returned in A. If BRS.l 
fails it returns an error condition in A as described 
in section 9. Three. error conditions apply to 

.magtape only: 

a Tape not ready 
1 Tape file protected (output only) 
2 Tape reserved 

BRS 1 is inverted by BRS 110, 'which takes a file 
number in A and returns the corresponding device 
number in X and unit number in A. 

'.'::' ,.These files may also be closed "and read or written 
,in the same manner as sequential.,disc files. The 
'magtape is not available to the user as a physical 
device. 

'i '. ~ 

CTRL =1 (end of record) 

Is available for physical sequentail files 3.and 
5 (paper tape and magtape output). Several other 
controls are also available for magt~p~ files only. 
These are: 

\' I • 

2 
3 
4 

, , 5 
6 
7 
8 

backspace block· 
forward space file 
backspace ,fi~~ , 
write three,inches 
rewind, 
write end of file 
erase long gap", ",. 

blank tape 

These controls may be exeriuted only by eiecutive 
type programs. I/O operations to the magtape may, 
of course, be executed by user programs ,if they 
have the correct file' numbe'r. 0.' ... \ 



9.7 

An executive program may allocate a tape unif to 
itself by putting the unit number in A and executing 
BRS 118, which-skips if the ta~is not already 
attached to some other job. BRS 119 releases a 
tape so attached. 

It is possible for magtape and card reader files 
to set the error bit in the file number. The 
first I/O instruction after an error condition 
will read the first word of the next record --
the remainder of the record causing the error is 
ignored~ The magtape routines take the usual cor­
rective procedures when they see hardware error 
flags~ and signal errors to the program only as 
a last resort. 

In order to make the card reader look more like :1.: 
other files in the system, the following transfor­
mations are made by the system on card input: 

L) All·non-trailing strings of more than two 
blanks are converted to a 135 character fol­
lowed by a character giving the number of 
blanks. The teletype output routines will 
decode this sequence correctly. 

2) Trailing blanks on the card are not transmitted 
to the program. 

3) The card is not regarded as a logical record. 
However, the system generates the 'character 
155 (carriage return) at the end of each card. 

The result of all this machinery ;'is ~that the string 
of characters obtaine(~ by reading ::irt'··a' card deck 
may be output wi t ~ .. .Jut change to a; teletype and 
will result in a correct listing of'·the deck. 

Whenever a card reader error (feed ch~ck or validity 
check) occurs, the program is dismissed until the 
reader becomes not ready. . 

The EOF light is sensed as an end of file at all 
times. 

The phantom user's ten second routine checks to 
see whether a W-buffer interrupt has been pending 
for more than ten seconds. If so it takes dtastic 
and ill-defined action to clear the W-buffer. 
BRS 114 also takes this drastic action; it can be 
used if a program is aware that the W-buffer is 
malfunctioning. 



9.8 

9.3 File Control.Blocks 

Every open file in the system has associated with 
it a file control block. This block consists of 
four words in the following format: 

FILE CONTROL BLOCK 1.85 - TYMSHARE 

"OC 

j. i' 

FA ; O\UIO: first index block address or 0 or 
I 1 I ! .subroutine address or unit number 

FD 

Fe 

FW 

o 2 3.· 

; E IB: i D; R R B: : a 
IR~B·,·O:F.!X.D.iP 0 U 01 

.; RiO; ! j : T 
device 

o 

drum buffer address ; char .. 
cOllntiJob no. '0. or 0 

Cn = word being packed or unpacked 
Qhar. :count = -1 tb 2 
CH .~character oriented 
OUT = output 
BB = buffer b~sy 
DF = disc file 

.*RX = random access 
*RD = reaq only 

.: '.; 

BP·= buffer in use and protected 
ERR = error 
U = unused 

*Disc files only 

." ~ 



9.9 

9.4 Permanently Open Files 

There are a few built-in sequential files with 
fixed file numbers: 

o 
I 
2 

IOOO+n 
2000+n 

controlling teletype input 
.controlling teletype output 
nothing (discard all output) 
input from teletype n 
output to teletype n 

These files need not be opened and cannot be closed. 

9.5 Character Buffers 

Section 7 describes the format of a teletype buf­
fer. These buffers are capable of dealing with 
any character-oriented device, not merely with 
a teletype. For this reason the character ring 
buffers are not directly indexed by the physical 
number of the teletypes to which they are associ­
ated. Instead, a table indexed by physical tele­
type number is used to obtain the buffer number. 
It is possible for other devices to obtain buffers; 
the mechanism for doing this is not spelled out 
in detail at the moment. 



10.1 

10.0 RANDOM DISC FILES 

A random disc file is very similar in physical struc­
ture on the disc to a sequential disc file. The only 
major difference is that there are no logical records 
and that the bits in the index block ~hich ~~epltrack 
of logical record structure are always O~ Furthermore, 
the· non-zero words of the index block are not neces-' 
sarily compact. The reason for this is that 'informa­
tion is extracted from or written into a random file 
by addressing the specific word or· block of words which 
is desired. From the address which the user supplies, 
the system extracts a physical block number by dividing 
by 255 and a location of the word within the block which 
is the remainder of this division. Further division' 
by 121 yields the appropriate index block. A random 
file may have any number of index blocks. . 

A random file may be opened by using BRS 1 ~ith a de­
vice number 10. No distinction is made between input 
and output to a random drum file. A random file may 
also be closed by BRS 2, like any sequential file. 
However, CIO, WIO and BIO are not used for input-output 
to random files. 

Instead, the following operations are available: 

To read a word from a random file, execute the 
instructions: :. 

LDB =address 
DWI =file number 

The word is returned in A. 

To write a word on a random file, put the word in A 
and execute the instructions: 

LDB =address 
DWO =file number 

! 1'\' : 

Block input-output to random files is also possible. 
To input a block, execute the instructions: 

LDX =first word address 
LDA =number of words 
LDB =first address in file 
DBI· =file number 



10.2 

To output a block of words to a random file, execut~ 
the instruction: 

DBO =file number 
" . 

with the same parameters in the central registers~ 
These block input-output operations are done directly 
to and from.the·user~s ~e~ory, as is BIO. Disc buffers 
are not ~nvolved and the operation can go very quickly. 

If the sign bit of A was set .when BRS 1· was executed 
to o~en,the file, then output to it.is not allowed 
and the file is said to have been made read-ohly.· This 
is a natural extension of the treatment of read-only 
seque:ntial files.:-

It is possible to define· a random file which has been 
previously opened as the secondary memory file. To 
do this, execute the in~tructions:: 

LDA '=;file' ;'.nu·mber 
BRS 58 

... 
The specified file remains the secondary file until-. 
another secondary memory file is defined or until the 
file is closed~ To access information in the secondary 
memory~ two SYSPOPS are provided. These POP's work 
exactly like DWI an~DWO except that they t~k~ the·4isc 
address from me~or~ instead of requiring~it to,bei~n B. 
To read a word of secondary memory into the A register, 
the instruction: 

LAS address 

should be executed. To store a word from A into the 
secondary. memory, the. instr,uction: 

.:'. '. 

SAS address 

should be executed. The word address~d by either one 
of these_SYSPOP's should contain the disc address which 
is to be referenced: : This wo~dmay also have the 
index bit set ~ ',,;in whfch'case the contents' of' the .index 
register will tie a~ded t6 the contents of the word to 
form the effective address which is actually used to 
perform the input-output operation. 

The mechanism for acquiring and releasing·; random disc 
file space is very similar to the mechanism for alloca­
tion of core memory_ Whenever the user addresses a 



10.3 

section of a random disc file which he has not previously 
used, the necessary blocks are created and cleared to 
O. Note that the user should avoid unnecessarily large 
random drum addresses) since they may result in the 
creation of an unnecessary number of index blocks. 
To release random disc memory, execute the instructions: 

LDA =number of words to be zeroed 
LDB =initial word to be zeroed 
LDX -file number 
BRS 59 

The specified section of the file is cleared to zero. 
Physical blocks which are entirely zero will be released. 
A more drastic clearing operation may be obtained with 
BRS 66, which deletes the entire information content 
of the file. 



11.1 

11.0, SUBROUTINE FILES 

In addition to'the above-mentioned machinery for per­
forming input-o~tput through physical files, a facility 
is provided in the system for making a subroutine call 
appear to be an input-output request. This facility 
makes it possible to write a program which does input­
output from a file and later to cause further proces­
sing to be performed before the actual input-output 
is done, simply by changing ,the file from a physical 
to a subroutine file. A subroutine file is opened by 
executing the instructions: 

LDX parameter word 
BRS 1 

This instruction never skips. The opcode fi~ld of the 
parameter word indicates the characteristics of the 
file. It may be one of the following combinations: 

110 OOOOO(octal) 
III OOOOO(octal) 
010 OOOOO(ocatl) 
011 OOOOO(octal) 

Character input subroutine 
Character output subroutine 
Word input subroutine 
Word output subroutine 

I/O to the file may be done with CIO or WIO, regardless 
of whether it is a word or a character oriented sub­
routine. The system will take care of the necessary 
packing and unpacking of characters. BIO is also 
acceptable. 

The oP~ning of a subroutine file does nothing except 
to create a file control block and return a file number 
in the A register. When an I/O operation on the file 
is performed, the subroutine will be called. This is 
done by simulating an SBRM to the location given in 
the word following the BRS 1 which opened the file. 
The contents of the B and X registers are transmitted 
from the I/O SYSPOP to the subroutine unchanged. The 
contents of the A register may be changed by the packing 
and unpacking operations necessary to convert from 
character-oriented to word-oriented operations or vice 
versa. The I/O subroutine may do an arbitrary amount 
of computation and may calIon any number of other I/O 
devices or other I/O subroutines. A subroutine file 
should not call itself recursively. 

When the subroutine is ready to return, it should exe­
cute BRS 41. This operation replaces the 8BRR which 
would normally be used to return from a subroutine call. 
The contents of B and X when the BRS 41 is executed 



11.2 

. : ~ ~ 

are transmitted uncnanged back to the calling program. 
The contents of A may be altered by packing and un­
packing operations. A subroutine file i's closed' with 
BRS ~2 like any other 'file. ' 

f .. 

In 6rd~r td implement BRS 41, 'it is necessary to keep 
tra'ck of which' I/O subroutine i's open. This information 
is kept in 6 blts of the PAC table.: The contents of 
these 6 bits i~ transferred into the opcod~ field of 
the 'return addres~ ~hen an I/O subroutine' is called, 
and is recovered f~om there when the BRS 41 is exec~ted. 



12.1 

12.0 EXEC TREATMENT OF FILES 

The user~s only access t6 files is through the system 
executive. The executive provides a connection between 
a symbolic name for a fil,8, which is created by the 
user, and the file number which the user must have in 
order to execute input-output operations. This con­
nection is established through the file directory. 
Supplementary to this function is the need to prevent 
the user from destroying other people's files .. 

He be~ir! with ;a description of the file naming system 
as it appears to the user, and continue with a descrip­
tion of the executive tables which implement the various 
features.", :. 

A user may give his files arbitrary names containing 
any characters other than' or I. The nam~s~of~new. 
disc files must be surrounded by I, and the names of 
new tapes files must be surrounded by' Hhen a file 
is created it's. name must be enclosed within one or 
the other of these characters. 

When a user types a file name not enclosed within 
slashes, or quotes he need only type enough characters 
6f the name to determine it uniquely. If the user. 
starts an output file name with a quote or slash, he 
must type the entire name. If it is an,outpu~. file 
name and not already in his file directorY3 a. new file 
will be created. In any other context3 a name not in 
the file directory is in error. 

When an output file, name is being typed, the system, 
after determining the n~me, will type out either OLD 
FILE or NEH FILE and await a confirmation that the, name 
has ~een given correctly.: If .the user types either, 
of the characters, line feed or carriage return, the 
name will be regarded as correct. Any other character 
will be regarded as an indication that the name was 
incorrect. This machinery is intended to make it more 
difficult for the user to destroy old files, or create 
new ones inadvertently. 

When a new slashed output file name is given to the 
system, a new entry in the file directory and a new 
index block on the disc arie created tor it. If the 
name is being given to an executive command', it will 
be assumed that the file is a sequential one. 



12.2 

It is possible for the user'tci reference files belong­
ing to users other than himself if the file name con­
tain~ a control cha~acter or :an@. He does this by 
preceding the file name with the account number and 
user name enclosed iri parentheses. Thus"to get at 
file /@PROGRAM/ belonging to use~ JONES, he might type: 

(Al;JONES) I@PROGRAM/ 

Jones may control the extent to which 'other users can 
access his files. For another user to reference a file, 
the name must contain at l~ast one COntrol character 
or an, @. '.' ' , , 

Files in a Public File Directory may be accessed by 
typing the file name in quotes: 

The previous paragraphs h~ve described the behavior 
of the system's file naming logic when· it is recogniz­
ing names typed in on a teletype. The BRS's which 
recognize file names are capable) however, of accepting 
them in many' other 'ways.' Essentially, they accept ~- I 

string pointer to the. 'p'ortion 'of :the n'ame already' 'knd~n 
(which may be null) ~nd tile nU~bers 'for the inputril~ 
to be used in obtaining the' re'st of the name and the' , 
output'fil~ on which the ri~me -shoUld tie completed. 
In most cases the first or :the' 'second 'of these items" 
will be' irrelevant. 

A program may open a disc file and obtain a file number 
by executing BRS 15 and BRS: 16 (input) or BRS 18 and' ; 
19 (output). BRS IS and BRS 18 expect to get the fil~: 
name' from the teletppe. If the name is known to 'the' 
rrogram,they may 'be replaced ~y BRS'~8~ These BRS"~ 
are used as·follows: 

-", LDA =file number 
" BRS' IS (or BRS 18) 

, EXCEPTION RETURN' 
NORfJIAL RETURN 

The riormal return leaves a 'file di~ectorj ~ointer iri 
A, andBRS 18 le'av~s the character' ,typ:ed' after OLD FILEI 
NEW FILE ~n B.' Ir no charact~r; waS read, B contains 
a -:('.' .. The X register is modified.' 



,LDA =file directory"pointer 
LDX =file type (BRS 19 only) 
BRS 16 (6r B~S 19) 
EXCEPTION RETURN 
NORMAL RETURN 

12.3 

The normal re .urn leaves a file number in A, and BRS 
16 leaves the file type in B. X is modified. 

,There are four standard file, types: 

I' File written 'byexectiti ve save command (sequential) 
2 General btnary file (sequential)' 
3 Symbolic file '(sequential) 
4 Dump file (sequential) 

BRS 48 or 6o ,may be substituted for ~RS 15 or 18. BRS 
48 is used if the name is in the fil~ directory and 
BRS 60 will create a new name ifne.ce1ssary . 

.. : :LDP =string pointers( l) 
,', BRS 48 or 60 

EXCEPTION RETURN 
NORMAL RETURN 

, ,!, ~ • r ' : i 

The string pbinte.trs point to the file"'name to be looked 
up in the fi·le .... d.irectory. The no:dnal~ return leaves 
a file directory pointer in'A. All other registers 
are modified. If the file name cannot be located in 
the file directory, the BRS 48 takes the exc~ptibn 
return, while the BRS 60 will attempt to place the 
new name in the file directory; if it is unable to 
do so because the file directory is full, it'~ill take 
the exception return. 

(I) A string pointer is a character address found by 
multiplying the word address by three and adding 0, 
1 or 2. The string pointer in A points to the charac­
ter before the beginning of the file name. The pOinter 
in B pOints to the last character: of the name. 

ARPAS assembles string pointers as follows for string 
pointers PI and P2: 

PI 
P2 
Z 

DATA 
DATA 
ASC 

(R) Z-l 
(R) Z+2 
'ITI' 



12.4 

It is possible for ,a,-.us.er to rename his files, by typing: 
'. ". 

RENAME /PROGRAM/ as ROUTINE 

The rename logic protects the user against creating 
file names that conflict with existing file names or 
with the file type. , 

The file directory consists of an SPS hash table to­
gether with a table of equal ~ength, 'called the descrip­
tion table (DBT)j which has a three-word entry corres­
ponding to each three-word entry in the·hash 'table. 
In addition, there ,is ,9. string stG·r.age area for storing 
file names and a few words of miscellaneous information. 
The parameters of a file directory are shown at the 
end of this section entitled "File Directory Arrangement" 
and ,the format of ·a; single hash table entry and matching 
DBT eniry is· also'shown'at the ,end of this section . 
entitled ilHash Table Entry!!. Executive::cornmands fo'r 'i',' 

examining the file directory and setting various bits 
are described ~n' s~dtion· l3~ In addition, a number 
of BRS's are provided which permit the user's 'program 
to affect the contents of the file~irectory.· ' 

The creation date of file is set to the current date 
each time it is opened as an output file~i~~he field: 
'/No. of Accesses H i;s, incremented each··t,lme:-.the file':' 
is opened for inpu:t<:: or output. 

i' : .. "'., 

There ar~ five file names built into the"syst~m .. They': 
are: 

, PAPER Tt\J'E 
CARDS 
PRINTER 
TELET¥'P"~i, 
NOTHINGr: ' 

These names may;b~ used'at,any: time and have the obvi6us 
significance. If the device" referred to is not avail­
able because it is attached to some other user, a suit­
able e~ror message_will, be generated. Paper tape or· 
card output files opened by giving this name to the -; , 
executive will have the type of the file punched as 
the first word (or card). Similarly, paper'tape or 
card input files opened by giving~:thisname to the 
executive will read the first word from ,the paper tape 
or the first card and deliver it as the type. 



Symbol. 

FDCTL 
FDCTLI 
FDCTL2 
FDCTLC 
FDCTLE 

FDHT 

144 
words 

. j . 

! . 

FILE-DIRECTORY ARRANGEMENT 

.. Hash Table Control Words. 

; Location of H.T. 
,Location o~ end of H.T. 
.. worklng 
!Char. Addr. of string sto. 
lEnd string storage 
. 0 

H.T. Entry 
(see 12·.6) 
3 ·'words 

.. -........ 

. ......... . .... '-.... 

t,' .; .. 

EFDHT 

DUMHT 

FDSS 

/~ . 
148 

words 

I 
\V 

/1\ 
I' 
I 

120 
words 

Reserved end 

Dummy H.T Entry 
3 words 

Corresponding 
table 

. --..---

string storage 

-' 

I 

12.5 

48 
entries 



12.6 

HASH TABLE ENTRY 

012 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20"21 22 23 
o FT Pointer 

LTP To File Name 
HTP 0 :.: ... :. :. F8..: .. 

. . . ~ 

Physical· Device 

1 a Pointer to 
a File. Name (In ti PFDSS il table) 

1 2 3 4 - 0 -

Disc File· 

2 i FT Pointer 
0' To file .Name 

Index Block PoInter 

Corresponding Table Entry 

j C Change in file size :. ··FL 
Creation date a Account No. ~o. of acc~sses 

i . Month Day 
CB FT LTE. 

FT = File Type 
LTB= Low Order Tape Position 
HTP= High Order Tape Position 
FS = Tape File Size 
FL = File Length for Disc Files 
C = Change in File .Length 
CB = File Control Bits - O=Tape 

2=Disc 
F = End of Entry Flag (1) 

Future controls 

Pile 
File 

DN 



13.1 

13.0 EXECUTIVE COMMANDS RELATED TO FILES 

When a user "LOGSIN iI to the system, his ·domplete'file 
directory is read in· from the disc and placed in the 
file directory hash 'table along with the name of the 
physical devices. The tlLOGIi'P' procedure is described 
in th~ ilTymshare Reference Manual". 

The following executive.commands related to the users 
file·directoryare·available: 

a. FILES 
b. WRITE FD 
c. DF 
d. FD FOR 
e. DELETE FILE 
f. RENAME 

CommandS· (e)-and ·(f) are completely described in the 
itTymshare'Reference Manual", but simply, DELETE FILE· 
is 'used'to'delete a file from the directory~'and RE~AME 
is used to change the name of a file in the "directory. 

Commands (a) and (d) are also described in the t:Tymshare 
Reference Manual;i as used by the normal users; FILES 
causes the complete directory to be typed while FD/FOR 
types only a single entry. Byt executive class users 
who are able to set system status (see the TSS Execu­
tive Reference Manual") will receive the following 
special output: 

P,DT,S name 

KEY TAPE FILES 

p = Tape position (octal) 
D = Blank 
T = File type (1 through 

4) 
S = File size 

a 
2 

DISC FILES 

File type (1 through 
4) See Section 12 
Index Block Pointer 

A colon typed after either of the above commands, will 
cause the length (in numbers of words) of a disc file 
to be typed out; the format is then as follows where 
L is the length: 

P,DT,S,L Name 



13.2 

Another feature of the system status typeout is that 
any control characters in the fIle name ,will be typed" 
out in two charicters with the" first character, the 
ampersand ~&\:. For example, if the name of the file 
was /(bell)PR90RAM/, it would type out as follows:" 

I' 

"O,~3~12640 /&GPROGRAM/ 

The comman<;l ;7DF" 'can only "b"e used by users with a special 
system status since it can create new file names while 
bypassing all "system protrection. The complete" Tile 
parameters must be typed as follows: 

DF file name AS 

where the key to the parameters is the same: as described 
above. 

The command lIWRITE FD;! causes the current file directory" 
(as it ~ppears "in the ft~e di~~ct9ry hash table) to 
be Mri tt en "on" the disc. See the" ,appendix for a descr~J?-
tion of the disc format~" " 



14.1 

14.0 EXECUTIVE CO~1ANDS 

The commands which are accepted by the executive are 
described in detail in the TSS Executive Reference 
Manual. 



15.1 

15.0 SUBSYSTEMS 

The time-sharing system software is organized into a 
monitor, a system executive, and a number of sUb-systems 
which perform specialized functions. Each of these sub­
systems is called by giving its name to the executive 
as a command. The result of this operation is to bring 
the subsystem off the RAD and to transfer to its starting 
point. The system will thereafter remember the subsystem 
which is in use and will accept the CONTINUE command 
as an instruction to re-enter the subsystem without 
any initialization. Thus, for examples the command: 

-DDT 
would call the debugging subsystem. The line: 

-CONTINUE 
DDT 

would re-enter DDT without initializing. Most of the 
subsystems are permanently present in the shared memory 
table, and may be called on by a user program. 

Subsystems presently available in the time-sharing system 
are: 

ARPAS: 
DDT: 
QED: 
FTC: 
FOS: 
FORTRAN: 
CAL: 
BASIC: 

A symbolic macro assembler 
The debugging system 
The symbolic text dditor 
FORTRAN II compiler 
The FORTRAN II loader and operating system 
The CCS FORTRAN IV system 
Conversational- algebraic language 
Conversational algebraic language 



16.1 

16.0 MISCELLANEOUS EXECUTIVE FEATURES 

The executive provides a number of BRS's which are 
services for the user. The BRS's all declare a fork 
to execute. This group of BRS's are run in user mode 
and are called class 3 BRS's in the Monitor. 

To get the date and time into a string, the operations 

LDP PTR 
BRS 91 

may be executed. The current date and time are appended 
to the string provided in A and B and the resulting 
string is returned. The characters appended have the 
form: 

mm/dd hh:mm 

Hours are counted from 0 to 23. 

All other system executive BRS's have been described 
in previous sections. 



17.1 

17.0 MISCELLANEOUS MONITOR BRS'S 

The monitor provides a number of BRS's which are services 
for the user. Many of these are incorporated in the 
string processing system or in the floating point package 
and are described in the next two sections. These are 
called class 2 BRS's in the Monitor. 

To put an integer to any radix the instructions: 

LDB =radix 
LDX =file 
BRS 38 

may be executed. The number, which may be preceded 
by a plus or minus sign, is returned in the A register 
and the non-numeric character which terminated the num­
ber in the B register. The number is computed by mul­
tiplying the number obtained at each stage by the radix 
and adding the new digit. It is, therefore, unlikely 
that the right thing will happen if the number of digits 
is too large. 

To output a number to arbitrary radix the instructions: 

LDB =radix 
LDX =file 
LDA number 
BRS 36 

may be executed. The number will be output as an un­
signed 24 bit integer. If the radix is less than 2, 
an error will be indicated. 



18.1 

18.0 STRING PROCESSING SYSTEM 

A resident part of the system is a package of string 
handling routines. These are discussed in detail in 
their own manual, document 30.10.20 and will only be 
listed here. 

GCI 
WCI 
WCH 
SKSE 
SKSG 
GCD 
WeD 
BRS 5 
BRS 6 

BRS 33 
BRS 34 
BRS 35 
BRS 37 

Get character and increment 
Write character onto string 
Write character onto string storage 
Skip on string equal 
Skip on string gr~ater 
Get character and decrement 
Write character and decrement 
Look up string in hash table 
Insert string in hash table (must be pre­
ceded by BRS 5) 
Input string 
Output string given word address 
Output string given string pointer 
General command lookup 

SPS includes symbol table lookup facilities, and a 
string storage garbage collector is available as a lib­
rary subroutine. Strings are composed of 8 bit charac­
ters packed 3 per word and are addressed by 2 word string 
pOinters. Two SYSpopt s which are formally part of SPS 
but which are useful in floating point operations and 
in general programming are: 

LDP Load pointer 
STP Store pointer 

These are double word operations which load A and B 
from the effective address and the next location or 
store A and B into the effective address and the next 
location, respectively_ 



19.1 

19.0 FLOATING POINT 

Floating point arithmetic ~nd input~output operations 
have been incorporated into the 940 system through the 
use of programmed operators. This allows the user to 
perform useful arithmetic and I/O operations" in a single 
instruct'ion. A brief summary' of the most commonly used 
arithmetic and I/O POPS is outlined herein. 

The floating point numbers referenced in this section 
are normalized double word valties. The first ~6rdis 
a sign bit followed by the high order 23 bits' ~f t~e 
mantissa bits followed by a 9 bit exponent field which, 
like themantls.sa, is always represented in two "s com­
pliment form. 

Unless otherwise specified, the POP's do not make a 
skip return. 

Floating Point Load/Store Instructions 

NAME: ,LDP., 
FUNCTION:! Load Pointer 
CALLING SEQUENCE: LDP MEMORY 

DESCRIPTION: Loads A, B with MEMORY, MEr~ORY+ 1 .. • . LIfp:" , 
is a single instruction that is equf~alent to': 

'/ LDA 
LDB 

NAME: STP 

MErJIORY , , , ' 
MEr~10RY+l 

FUNCTION: Store Pointer 
CALLING SEQUENCE: STP MEMORY 

DESCRIPTION: Replaces MEMORY~ MEMORY+l with the con­
tents of A,B. STP MEMORY is a single instruction that 
is 'equivalerit, to: 

STA MEMORY i STH' t:lEr·10RY + 1 , 

Double Word Floating Point Arithmetic 

NA~1E: FAD 
FUNCTION: ' Float~ng 'Add 
CALLING SEQUENCE: FAD MEMORY '". , 

DESCRIPTION: -The float'ing point value at MEMORY, MEMORY+l 
is added to the float:ing point value in A, B.' The sum' 
replaces the value in A, B. Memory is unaffected. 



NAI'JIE: FSB 
FUNCTION: Floating Subtract 
CALLING SEQUENCE: FSB MEMORY 

19.2 

DESCRIPTION: The floating point value at MEMORY, MEMORY+l 
is subtracted f~om the floating poi~t value in A,B. 
The difference replaces the. value in A,B. Memory is 
unaffected. 

NAME: FNA ,. 
FUNCTION:. Floating Negate 
CALLING "'SEQUENC~: "BRS 21 

. . ~ 

DESCRIPTION: The floating point value in A,B is· negated. 
The result is left in A,B. 

NAME: FMP 
FUNCTION: Floating Multiply 
CALLING SEQUENCE: FMP MEMORY 

DESCRIPTION: The floating point value at MEMORY~ MEMORY+l 
is multiplied by the floating paint value in A,B. The 
product replaces the value in A,B. Memory is unaffected. 

NAME: FDV 
FUNOTION: 'Floating Divide 
CALLING SEQUENCE: FDV MEMORY 

DESCRIPTION: The floating point value in A,B is.~ivided 
by the floating point value at MEMORY, MEMORY+l~ ~he 
quotient replaces the dividend in A,B. Memory is un­
affected. Division by zero causes an overflow. 

NAME: FIX 
FUNCTION: Conversion from Floating Point to Fixed Point 
CALLING SEQUENCE: BRS 50 

DESCRIPTION: The floating point value in A,B.iscon­
verted to fixed point. A is replaced by the integer 
part of the original value; the fractional part is left 
adjusted in B. If the integer is too large, the most 
significant bits are lost. 

NAME: FLOAT 
FUNCTION: Conversion from Fixed Point to Floating Point 
CALLING SEQUENCE: BRS 51 

DESCRIPTION: The· integer in A is ·floated. The floating 
pOint.result in left in A,B~ 



19.3 

The rema'ining floating point SYSPOP' sand BRS r s use 
a format word in register X which contain the following 
information. 

Format Word 

BITS 
FIELD 
NAME 

, 0 .... 2 T 

3-8 D 

9-14." !':' 1 W 

15 0 

16 E 

.. ,SIGNIFICANCE 

Format types: 
o - Octal 
1 - Integer;-
2' ~ E for~at with the number right 

justified in the specified 
field on output. 

3 - F format with the number right 
justified in the specified 
field on output. 

4 - J format with the number left 
justified in the specified 
field on output. 

5 - F format with the number left 
justified in the specified 
field on output. 

6 - Double precision format. Same 
as 2 on input. On output same 
as 2 except a D will be output 
for the exponent if bit 16 is 1. 

7 - Free form (output left justified). 
Number of digits following the 
decimal point. 
Total field width. In J format 
this is the number of digits before 
the decimal point. 
Overflow action. If the field 
width is too small on output and 
this bit is 1, the.first character 
of the output:field will be ~ star 
and characters to the right will be 
lost. If tSis bit is zero and 

,overflow occurs, characters on the 
right will be lost. , 
If this bit is 1 E format of output 
will be used to repres~nt the ex­
ponent. If this bit is 0 the @ 
symbol will be outpu~. Either 
the E ~r @ is always 'acceptable 
on inyut. :. 



18 

19 

20 

21 
22~ 
23 

: .... ':' 

19.4 

'If this bit is 0' on inptit the symbol 
@ will be tr.ea'ted as a legal ex­
ponent identifier; i.e.; 1.0@+2" 
will be legal input. If this bit 
is 1 the symbol @ will be treated "'. 
as an illegal character. This 
bit has no effect on output. 
If this bit is 0, i~legal charac­
ter~ in the input string will be 
ignored. The' error flag will' be 
set when·:one is read. If this 
bit,~s land an illegal character is 
·read,·'the scan will be -terminated, 
the error flag will be set and 
the string pointer will be set 
to the character read. The con­
vers~on ·will take place on the 
characters read to that pOint. 
This bit has no effect on output. 
If this bit is zero 3 the input 
string +N+M is legal. N is treated 
as'the ~a~tissa and M is the ex­
ponent." of a floating:> real number. 
If th~S bit is 1, the second occur­
rance of a sign will be treated 
as an illegal character. This 
bit has no effect on output. 
Must be zero. 
f1ust be. zero. 
If:a l~ the double preclslon ac­
cumulator will be used for numeric 
input-output. Significance is 
extended to 18+ digits. Applies 
to all format types. 

Operating. :Gharacteristics: 

On input the D field is overridden by the presence of 
a decimal point; If a ,decimal' point and/or E are present, 
any form of the number is acceptable to any input format. 
It is only in the absence"of these characters that the 
format specifications determine the interpretation of 
the field~ Illegal characters appearing"anywhere:in 
the field maybe ignored depending on bit 19 of the 
format .word .. ~Blanks will be converted to zero. 

The maximum· allowable number of input digits is twelve. 
If more than twelve digits are input the most signifi­
cant twelve will be used. If twelve digits are used 



19.5 

care must be 'taken as overflow'c~n occur during the 
conversion process. Insignificant leading or trailing 
zeroes w,ill be ignored. 

The maximum allowable integer on input is ±238_l or 
±274, 877 ,) S06, 9.'13.' , Floci'ting' point numbers must like 
in t be range: . 

9. 9999999999E-78~1 numberi l.::.5. 7896044625E+76 

Free form output will be output using an F17, if th~, ' 
exponent lies in the range ':"'1~' exponent' < 10 CX:--=lO-riurnBer of 
digits to left of decimal poi~t)o If the number is ' 
outside this range an EI7.1l,.Will be used. Free form 
output always assumes a,f+9ating point number. If an 
integer is input it will be 'normalized prior to conver­
sion. 

For the E format' on output, the E (@ if bit'16 of the 
format word is O)'is ~lways followed by ~,1~ or - ~ign. 
On all output the ~ign of the number is print~d ,only, 
if it is negative. 

Error Conditions: 

If an error is detected during the conversion process 
a positive integer ,indicating 'the error 'type will be 
returned in the index register. 

Errors detected are as follows: 

X=Q No error was detected. 

X=l Number of decimal digits after the d~cimal 
point exceeds 12 for singlep~ecision and 
18 for extended. pre'cision o'n formatted input. 
~welve and 18 used ~espect1v~ly. 

X=2 Field too short fo~"E format on output. 
Overflow action will be taken depending on 
the value of bi t ~ ", of the format word. 

X=3 Input number exceeds the maximum ,'8.+ldWable. ,I' 
bounds. 

x=4 Field too short for F or I format on output. 
Ov~rflow action will be t~ken depending on . 
the value of bit 15 of the format word., 

" , 



19.6 

X=5 An.)~ format was .. ,specifieq for input but. the::: 
i:t:lpu:t . ~tring does. not; contain an ~!EII qr if.". 
The number will be converted using ap.equiva­
lent F format. 

x=6. An illegal character was. encountered in the 
input scan. Character is ignored . 

. String Conversion:-;·· 

NAME: SIC 
FUNCTION~ String 
CALLING SEQUENCE: 

to Internal Conversion 
LDX FORMAT .. : 
SIC PQINTER 
BRU IN'l;EGER 
BRU FLQATING 

DESCRIPTION: FORMAT describes the type of conversion 
to pe.done(seetne CCS .Implementation Manual for the 
FORMAT word .specifications),. ..The string of input ch9;rac­
ters starts at the character .f611owing the character 
pointed to by the character address in POINTER. The 
character address in POINTER+l points to the last charac­
ter of the input string. 

NAME: ISC " ., . 
FUNCTION:' "Internal to String Conversion 
CALL:t'NG:SEQUENCE: LDP' VALUE 

LDX FORMAT 
ISC POINTER, 

DESCRIPTION: FORMAT describ~s the type .of conversion 
to be done. (See the CCS Implementation Manual for 
the FORMAT word .specifications,). POINTER+l contains 
the chara.oter .. address or' the character immediately pre­
ce<I.i,ng the, p·os.ition where the fir',st charac,ter of' .. output' 
is to go.' POINTE,R'+l is incremented by one for each 
character of output added to the character string. 
VALUE is, the double w,or;d floating point val;ue to be 
converted." . . . 

NAME: FFt 
FUNC~ION.: ·Formatted Input 
CALLING SEQUENCE: LDX" FORMAT 

BRS 52 

DESCRIPTION: Characters' ar,e, read fp9m;.a ·tfi.1e, and con­
vert~d ~6.~nternal ~orm~, ~~t~~r ~~~~oatin~,point value 
is left' 'inA!jB or an integer is left. in A. A skip return 
is generated if a floating point value is read and· the 
input mode is free format. 



NAME: FFO 
FUNCTION: . Formatted Output 
CALLING SEQUENCE: LDP VALUE 

LDX FORMAT 
BRS 53 

19.7 

DESCRIPTION: The floating point value in A,B or the 
integer in A is output to the file specified in FORMAT. 



20.1 

20.0 INDEX OF BRS'S AND SYSTEM OPERATORS 

20.1 BRS's 

1 Open a File of a Specific Device 
Pgs. 9.1, 9.5, 9.6, 10.1, 10.2~ 11.1 ' 

2 Close a File 
Pgs .. ,9.1, 10.1, 11.2 

4 Release a Page of Memory 
Pg. 5.2 

",j 

5 Look up String in Hash Table 
Pg.18.1 :" "'" 

6 Insert String in Hash Table 
;:"', :' Pg. 18.1 . 

8 Close, A.ll Files::. 
Pg. 9.2 

9 Open Fork 
Pg. 2.4, 3.1, 3.2 

I,. ~ ", ~ i • 

10 Terminates the Calling Fork 
Pgs. 3.6, 4.1 

11 Clear the Teletype Input Buffer \ 
Pg. 1.4 

12 Declare Echo Table 
Pg. 7.2, 7.4 

13 Test Input Buffer for Empty 
Pg .• 7.4 

14 Delay Until the TTY Output.Buffer is Empty 
Pg. 1.4 

*15 ' Read Input File Name 
Pgs. 12.2, 12.3 

*16 Open Input File in File Directory 
Pgs. 12.2, 12.3 

*17 Close, All Files - (Not included) 

*18 Read a File ~;N.ame and Look It Up in the File 
Directory 
Pgs. 12.2, 12.3 



20.2 

*19 Open Output File Located in File Directory 
Pg. 12.3 

*20 Close a Tape File - (Not included) 

21 Floating Point Negate 
Pg. 19.2 

23 Link/Unlink Specified TTY. - (~ot included) 

24 Unlink All TTY's - (not included) 

25 Set Teletype to Accept/Refuse Links - (not included) 

26 Skip if Escape Waiting"" 
Pg. 2.5 

27 Attach TTY to Calling Program" - (not ~ncluded) 

28 Release Attached TTY - (not included) 

29 Clear the Output Buffer 
Pg. 7.4 

30 Read Status of a Lower Fork 
Pg. 3.2 

31 Wait for Specific Fork to Cause a Panid" 
Pgs. 2.4, 3. 3 

: .. ' .. 

32 Terminates a Specified Lower Fork 
Pg. 3.3 

33 Read String 
Pg. 18.1 

34 Output Message 
Pg. 18.1 

:"r 

35 Outpli.t String 
Pg. 18.1 

36 Output Number 
Pg. 17.1 

, ; 

to Specified 

37 General String Look Up 
Pg. 18.1 

38 Input Number to Specified 
Pg. 17.1 

Radix 

Radix 



40 Read Echo Table 
Pg. 7.2 

. '. 41· Return: from 1/0 Subroutine 
Pgs. 11.1, 11.2 

:~2 Read Real-T~me Clock 
Pg. 6.1 

43 Read Pseudo-Relabeling 
Pg. 5.1 

44 Set Pseudo-Relabeling 
':.;,,:Pg'.'! 3.2-;,<5.1· 

45 Dismiss on Quantum Overflow" 
Pg. 2.3 

46 Turn Escape Ofr 
Pg. 3. 5 

41 Turn Escape On 
Pg. 3. 5 

*48 Look: Up Input/Output File Name 
Pgs. 12.2, 12.3 

49 Read Interrupts: Armed 
Pg. 4.2 

20.3 

50 Conversion from Floating Point to'Fixed Point 
Pg. 19.2 

51 Conversion from Fixed Point to Floating Point 
Pg. 19.2 

52 Formatted Floating Point·.Input 
Pg. 19.6 

53 Formatted Floating Point Output 
Pg. 19.1 

56 Make Page System 
Pg. 5.3 

51 Guarantee 16ms Computing 
Pg. 2.3 

58 Define File as Random 
Pg. 10.2 



59 Release Words from Random File 
Pg. 10.3 

20.4 

*60 Look Up I/O File Name and Insert in File Direc­
tory if not Found 
Pg. 12.3 

66 Delete DSU File Data 
Pgs. 9.4, 10.3 

67 Delete DSU File Index Block 
Pg. 9.5 

68 Make Pseudo-Page Shareable - (not included): 

69 Get SMT Block to PMT 
Pg. 5.2 

71 Read Executivity 
Pg. 6.1 

72 System Dismissal 
Pg. 2.4 

73 Terminates a Spe~ified Number of Lower Forks 
Pg. 3.6 

78 Arm/Disarm Software Interrupts 
Pg. 4.1 

'79 Cause Specified Software Interrupts 
Pg. 4.1 ; .. 

80 Make Page Read Only 
Pg. 5.3 

81 Dismiss for Specified Amount of Time 
Pg. 6.1 

82 Switch Sequential File Type 
Pg. 9.2 

85 Set Special TTY Output 
Pg. 7.5 

86 Clear Special TTY Output 
Pg. 7.5 

87 Read DSU File Index Block 
Pg. 9.5 



88 Read Execution Time 
Pg. 6.1 

90 Declare a Fork for Escape 
l?gs, 3. 1, 3. 5 

91 Read Date and Time into a String 
Pgs. 6.1, 16.1 , , 

20.5 

~~95 Dump Program and Status on File - (not included 

*96 Recover Program and' Statu's' 'from File - (not included) 

104 Read a Page (2048 words) from RAD 
Pg. 5.4 

105 Write a Page (2048 words) to RAD 
Pg. 5.4 

106 Wait for any Fork to Terminate 
Pgs. 2.4, 3. 3 ,,-. ( 

101 Read Status of all Lower Forks 
Pg. 3. 3 

108 Terminate All Lower Forks 
Pg. 3.3, 

109 Dismiss Calling Fork 
Pgs. 2.4, 6.1 

110 Read Device and Unit 
Pg. 9.6 

III R~turn ,from Exec BRS (Exe6·~oriiy) 
Pg.' 6.1 

112 Turn Ofr Teletype Station (Exec Only) 
Pgs. 1.3, 1.4 

113 Compute File Size of a Dis:C:: -File 
Pg. 9.4 ,\ 

114 Turn Off' Run-Away Magnet'fer'Tape 
" " Pg. Q.1 

116 Read User Relabeling 
Pg. 5.2 

111 Set User Relabeling 
Pg. 5.2 



118 Allocate Magnetic Tape Unit 
Pg. 9.7 

119 De-Allocate Magnetic Tape Unit 
Pg. 9.7 

120 Acquire a New Page 
,Pg. 5.2 

121 Release Specified ;Page 
'Pg. 5.2 

122 Simulate Memory Panic 
Pg. 6.1 

BE+l Read DSU 
Pgs. 4.2, 8.3, 8.4 

BE+2 Write DSU 
Pgs. 4.2,; 8.3, 8.4 

from PMT 

BE+3 Test for Carrier Present 
Pg. 7.3 

BE+4 Read/Write One Word in the Monitor 
Pgs. 6.2, 8.1 

BE+5 Set Disc Bit Map - (not iriciu'ded) 

BE+6 Turn a Teletype Line On or Of~ 
Pg. 7.4 

B~+7; Test a Breakpoint Switch 
Pg. 6.2 ',r , " , 

~ ~ 

BE+8 To Crash ~he System for Error Diagnostic 
Pg. 6.2 .' I ';',:" 

BE+9 Read DSU Page 
Pg ~ 8.3, 8.4 

BE+lO Write DSU Page 
Pgs. 8. 3, 8'.4 

20.6 

BE+ll Ignore Line Feed or Carriage Return When Followed 
by Carriage Return or Line Feed Respectively 
Pg. 7.2 

BE+12 Arm Timing Interrupt 
Pg. 4.2 



. '.'. 

BE+13 Sets System Exec Switches in SYMS 
Pg. 6.2 

BE+14 Input String with Edit - (not included) 

BE+15 'Read Page from RAD 
Pg. 6.2 

20.2 System Operators 

BIO Block Input/Output 
Pgs. 9.3, 10.1, 11.1 

CIO Charaoter Input/Output 
Pg~. 9.2, 10.1, 11.1 

20.7 

CIT Character Input and Test - (notindlud~tl) 

CTRL Input/Output Control" 
9.3, 9.4, 9.6 

DWI Read a Word from a Random File"" ;:, ," ,::. 
Pg. 10.1 

DWO Write a \~ord from a Random File 
Pg. 10.1 

DBI Read ~ B16ck from a Random File 
10.1 

DBO Write a Block from a Random~File 
Pg. 10.2 

EXS Execute Instruction in System Mode 
Pg. 6.2 

FAD Floating Point Addition 
·Pg:. '19.1 

FDV Floating Point Division 
Pg. 19.1 

FMP Floating Point Multiplication 
Pg. 19.2 

, 

FSB Floating Point Subtract 
Pg. 19.2 

GCD Get Character from End·of: String' and Decrement 
End Pointer 
Pg. 18.1 



20.8 

GCI Get Character from Beginning of String and 
Increment Beginning Pointer' 
Pg. 18.1 

ISC Internal to String Conversion 
Pg. 19.6 

1ST Input from Specific TTY - (not included) 

LAS Read a Word from Secondary ,Memory 
Pg. 10.2 

LDP Load String Pointer' , ' 
Pgs. 18.1, 19.1 

·r.i.:, :' 

OST Output to Specific TTY - (not inc1ud.ed) 

SAS Store a Word' into'S'eeondary Memory . ';, 
Pg. 10.2 

SKSE Skip if String Equal 
Pg. 18.1 

SKSG Skip if String Greater 
Pg. 18.1 

........ , 
SIC String to Internal Conversion 

19.6 

STI Simulate TTY Input - (not included) 

STP Store String Pointer 
Pg. 18.1, 19.1 

TCI Teletype Character Input - (not included) 

TCO Teletype Character Output 
Pg. 7.3 

WCD Put Character on Beginning of String and Decrement 
Beginning Pointer 
Pg. 18.1 

WCH Write Character to Memory by Table 
Pg. 18.1 

WCI Put Character on End of String and Increment 
End Pointer 
Pg. 18.1 

WIO Word Input/Output 
Pgs.:9.3, 10.1,11.1 

Those BRS's marked with an asterisk are executive BRS's 
and all others are monitor BRS's. 



A.l 

APPENDIX A 

GENERAL DESCRIPTION OF THE COMBINED FILE DIRECTORY 

1. A user may have one or two file directory blocks 
on the disc; the second block is an overflow block. 
Each block consists of 128 words containing a vari­
able number of file directory entries. Each entry 
is in the format pictured in (d). 

2. If the first word of the block is zero, the block 
considered to be empty. The, last entry is followed 
by a -lor -2 word where the-2 indicates that there 
are additional entries in the overflow block. 

3. The last four words of the file directory b16ck 
contain the following information: 

Last \\]ord 

Last 'lvord -1 
Last \\]ord -2 
Last word -3 

Valid on-time for this user (1 
bit per hour of the day). 
Accumulated computer time used. 
Accumulated real time used. 
Overflow block pointer. ',. 

t'" 

4. In the case of an overflow block, the last three 
words',are zero, and the overflow block pointer is 
a backward pointer to the first file dir~ctory block. 



A.2 

FILE DIRECTORY FORMATON DISC 

1 Entry (Disc File) 

o : 0·1 . " 8 9' 14 , 15 .. 23 
;' 0 Account. No. ! No. of Accesses . Creation Date 

. IIi 12 
1 C, Change if File Size" File Length (FL) 

21' 3 :6 IIi 12 
2 CB, FT: LTP ! Future Controls 

Index Block Pointer 
.. ; 1 '.71' 8 ?' 15

1
1 6 0-7 I 

j 

3 

4 D Char. a flO _' I 0.1· 
Name I 

------~--------;--,--------------------------~-----~·'-·-.. -,·-·-.:--;·-·:-:,.,:l 

N 

3 0 

F 11~~!~; of 7:8'dhar. or 136 (fi1'~')" i-
5ci 16 ~~~,i~ lor 136 1 

FT = File .Type. 
LTP = LowOrde~ Tape position 
HTP = High Order Tape position 
FS = Tape File Size 

·FL = File Length for disc Files 
C = ;Change· in.file length (file length no longer 

valid) 
CB = File Control Bits, O=Tape file 

2=Disc file 
F = End of Entry Flag (1) 

If Tape File, word #3 = 

HTP FS 
23; 

i 



I~ 
I 
I 

I 
I 
! 

128 

FILE DIRECTORY 'BLOCK 

4 Control Words 
, " 

~-----------------------------------
Variable length name 

1-------------------------------------

End Dir. Flag -lor -2 

words 1~;' 

i 
i 
I 
I 
I 
~ 

~ 
l 

Garbage 

, , 

Overflow block pOinter 
Accumulated Real Time 
Accumulated ComQuter Time 

Valid On Time 
, " 

A.3 

l .. 
Up to 24 
Entries 

J 
'J 

.' 

Last -3 
Last -2 
Last -1 
Last Word.' 



- A.4 

USER ACCOUNT DIRECTORY ON DISC 

Words ,0 1 2 3 4 5 6 7 
Acct. .Password ·na . na ! na ! na; 

8 : User Name III .CN 
13 II it 2 ,CN 
18 H If 3 I 

I. 

23 11 ;1 Ii ! . 

28 \! II 5 
33 >. 11 b 
38 " Ii 7 
43 II II 8 
48 !1 Il 9 
53 t. II 10 
58 II Il 11 
63 :.p 

. ---. _._. 
I: ! .- ., 

l~ont\. E?ara User No. 
C N 

Bits 0 11 12 23 

NOTES: Opf! is reserved for an overflow pointer and 
not presently used. Hna!!, not assigned. 

The control parameter bits are assigned as follows: 

BIT USE 

0 System Status 
1 Control of physical devices 
2 Operator Status 
3 Subsystem Status 

4,5 Not assigned 
6-11 Subsystem classes 



A.5 

SUBSYSTEM TABLE 

Hash Table Entry 

:0 ~l 51
6 

o I V 
I LS l 

b ,1 1213 t9 15
1

16 
1 CL FN HS ! \ 'I 

E I:U IC 

Corresponding Table (Not Common Subsystem) 

o 51 6 91 10 
_ NP. o 

o 
RSV.J 

Corresponding Table (Common Subsystem) 

r--------------~~~--------------------------------~ ! RSW 

V = 
LS = 
E = 
U = 
C = 
CL = 
FN -
HS = 
NP = 
RI = 
R2 = 
RS\~= 

Subsystem Verify Number 
Low-order Starting Address 
Propagate Exec Status 
Co-exist with Users Memory (cannot if on) 
Common Subsystem 
Class (must agree with user's control parameters) 
File Number (location on RAD for non-common Subsystem) 
High-order Starting Address 
Number of pages for non-common subsystem 
First-half SMT relabeling (4 bites) 
Second-half SMT relabeling (4 bytes) 
Relabeling Status Word (8 bytes) 


	000
	1_001_Exec
	1_002
	1_1-01
	1_1-02
	1_2-01
	1_3-01
	1_3-02
	1_4-01
	1_4-02
	1_4-03
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_5-08
	1_5-09
	1_5-10
	1_5-11
	1_5-12
	1_5-13
	2_01_Oper
	2_02
	2_03
	2_04
	2_05
	2_06
	2_07
	2_08
	2_09
	2_10
	2_11
	2_12
	2_13
	2_14
	2_15
	2_16
	2_17
	2_18
	2_19
	2_20
	2_21
	2_22
	2_23
	2_24
	2_25
	2_26
	2_27
	2_28
	2_29
	2_30
	2_31
	2_32
	2_33
	2_34
	2_35
	2_36
	2_37
	2_38
	2_39
	2_40
	2_41
	2_42
	2_43
	2_44
	2_45
	2_46
	2_47
	2_48
	2_49
	2_50
	2_51
	2_52
	2_53
	2_54
	2_55
	2_56
	2_57
	2_58
	3_01_DDT
	3_02
	3_03
	3_04
	3_05
	3_06
	3_07
	3_08
	3_09
	3_10
	3_11
	3_12
	3_13
	3_14
	3_15
	3_16
	3_17
	3_18
	3_19
	3_20
	3_21
	3_22
	3_23
	3_24
	3_25
	3_26
	3_27
	3_28
	3_29
	3_30
	3_31
	4_01_ARPAS
	4_02
	4_03
	4_04
	4_05
	4_06
	4_07
	4_08
	4_09
	4_10
	4_11
	4_12
	4_13
	4_14
	4_15
	4_16
	4_17
	4_18
	4_19
	4_20
	4_21
	4_22
	4_23
	4_24
	4_25
	4_26
	4_27
	4_28
	4_29
	4_30
	4_31
	4_32
	4_33
	4_34
	4_35
	4_36
	4_37
	4_38
	4_39
	4_40
	4_41
	4_42
	4_43
	4_44
	5_01_TSS_Ref
	5_02
	5_03
	5_04
	5_05
	5_06
	5_07
	5_08
	5_09
	5_10
	5_11
	5_12
	5_13
	5_14
	5_15
	5_16
	5_17
	5_18
	5_19
	5_20
	5_21
	5_22
	5_23
	5_24
	5_25
	5_26
	5_27
	5_28
	5_29
	5_30
	5_31
	5_32
	5_33
	5_34
	5_35
	5_36
	5_37
	5_38
	5_39
	5_40
	5_41
	5_42
	5_43
	5_44
	5_45
	5_46
	5_47
	5_48
	5_49
	5_50
	5_51
	5_52
	5_53
	5_54
	5_55
	5_56
	5_57
	5_58
	5_59
	5_60
	5_61
	5_62
	5_63
	5_64
	5_65
	5_66
	5_67
	5_68
	5_69
	5_70
	5_71
	5_72
	5_73
	5_74
	5_75
	5_76
	5_77
	5_78
	5_79
	5_80
	5_81
	5_82
	5_83
	5_84
	5_85
	5_86
	5_87
	5_88
	5_89

