

REFERENCE MANUAL FOR THE
TIME-SHARING EXECUTIVE

By
Verne E. Van Vlear

April 12, 1967

1.0
2.0
3.0
4.0

5-0

TABLE OF CONTENTS

Introduction
Access to the Computing Facilities
Exec Command and Flle Name Recognition

Files

4.1 File Naming

4.2 Accessing Other User's Files
The Executive Command Language
5.1 Entering and Leaving TSS

5.2 Commands Relating to the Allocation
of Memory

5.3 Commands Relating to the Interaction
of Teletypes

5.4 Creating and Manipulating Files
5.5 USystem" and Tape Commands

5.6 Miscellaneous Commands

1.1

2.1
3.1
4.1
4.2
4.3
5.1
5.1

5.1

5.3
5.6
5.9
5.11

1.1

1.0 INTRODUCTION

The Time-sharing System, (TSS), is a system for making '
a single computer provide simultaneous, continuously
supervisable computing power to a number of authorized
users. By "simultaneous" we of course mean apparently
simultaneous; it is the computer's capdcity for perform-
ing tasks at tremendously high speed that gives the il-
lusion of simultaneity. TSS 1s furthermore designed
principally for those users who, in order to obtain
fruitful results, need to guide their programs more or
less continuously through the course of its execution.
One example of such application is in the checking-out
of a program -- wherein, at each successive catastrophe,
the user is called upon to make an amendment and try
again.

TSS provides the following facilities:
1. Mutual protection of the users against one another.

2. Optional partial removal of this protection so
that users can communicate with one another via
the computer.

3. A more-or-less equal division of computing time
between the current users.

4, Software packages necessary to permit one prog-
ram to control others -- with overall control
by the user via peripheral equipment.

5. Software packages which permit communilcations
between computer and peripherals without regard
to the latter's special physical peculiarities.

6. A filing system for preserving user's program
documentation.

7. Response to a number of requests that arise
naturally in the course of a user's connection
with the system. ‘

The preliminary medium by which computer and user communi-
cate is at present the teletype console, which allows

input, user to computer, from a keyboard and output, computer
to user, via a type-head. Paper tape, punched card and
magnetic tape are also available but are generally more

cumbersome and unsuitable for primary input. These same
devices, along with a high speed printer, are available . :
for output but .are not normally used during regular TSS .
service. Cathode ray displays. and other graphical dis-" -
play devices are also being-developed and . are likely to .
render manageable the input ‘and output of graphical data..

2.1

2.0 ACCESS TO THE COMPUTING FACILITIES

In order to establish a link between a teletype console
and the computer, follow one of the procedures described
in the "Tymshare Reference Manual" under "LOG IN", depend-
Ing upon the type of teletype terminal equipment. It
should be noted here that there is no direct 1link between
keyboard and typehead. Any such link which appears to
exist 1s established through intermediate software. The
TSS software, of course, arranges that the typehead re-
spond to keyboard input in a manner appropriate to the
occasion which usually involves echolng back to the type-
head, any characters input from the keyboard.

Following the “LOG IN?, a printed response "carriage re-
turn, line feed, -'" indicates that the user has been
connected to a bullt-in software package, called the
Executive Program, hereinafter referred to as "Exec"

which awaits further teletype input in the form of stylized
English language requests or commands. Via these commands
the Exec will provide sufficient services to get the

user into contact with all the other TSS facilitles.

It is, 1tself, primarily a medium for specifying memory
requirements handling user's program documentation and
establishing communications between different teletypes.

3.0 EXEC COMMAND AND FILE NAME RECOGNITION

It is appropriate here to describe the way . ln which Exec
Commands and Input File Names are recognized. After
sufficient characters have been typed in to distinguish
the intended command or name from all others, succeeding
characters that agree with the name string will continue
to be taken from the teletype. input buffer. If an alpha-
betic character is encountered that does not agree with
the string an error is assumed and an appropriate diag-
nostic is given. All characters in the input buffer wiill
be deleted. The first non-alphabetic character (carriage
return, space, comma, digit, etc.) that does not agree
with the selected string will act as a terminator and
will be left in the buffer. :

If the command "COPY" and the file names /INPUT/ and
/0UTPUT/ are unique, the following string:

COPY /INPUT/ TO /OUTPUT/

could be abbreviated to:
C/I T /OUTPUT/

or COPY /INPUT/ TO TELETYPE could be abbreviated to:
c/I,T

Note the optional use of the "," or the T to act as the
separator between flle names.

Note that most Exec commands await a terminating Cr which
is the user's confirmation that the command is to be exe-
cuted. The command is not implemented until this con-
firmation is received and until then may be aborted by
pressing usually any other character or, certainly, by
pressing the "escape" key.

Exee commands that must be followed by additional input
from the user (such as the COPY command that is immediately
followed by the input file name) will provide some help

to the user 1f he follows the command with a carriage
return. The Exec will respond with a message that indi-
cates the next input from the user. For example, 1if

the command COPY is followed by a carriage return, the

Exec will type:

FROM FILE:

If the user makes an error, the Exec will respond with

an appropriate error message indlcatlng where in the‘
sequence of 1nput ;the -user went. wrong, as follows

ERROR TYPE FROW FILE

It will be left to the user. to dlscover the various helpgga

and error: messages prov1ded by the Exec.

4.1

4.0 FILES

Before describing the Exec's command language it would
be appropriate to discuss the nature of filles and the
manner in- which they are referenced

Files are the prlmary,means by which the user establlshes
continuity between one computer run and the next (a

"run® being that'sequence .of activities, mutual to the
computer and a user, between "LOG IN' and the next EXIT
or LOGOUT command ~- see sec. 5.1). A file is any named
block of information which-the user finds is convenient
to regard as a. 31ngle entity, the commonest example of

a file is just a program. To provide a check against
_1nappropr1ate use, files created by the Exec and TSS sub-
systems are classxfied according to the nature of the
information in them, 1nto one of five types -- with each
of which is associated a type number. This type number
is carried along with the information content and is
checked whenever the file is referenced by an Exec com-
mand ~(or any other of the TSS fac1llties which reference
files). If the file is found to be of a type. inappropriate
to the context the ‘command is not executed and an’ error
is indicated

The fi;eytypes are:
The information in this originates

from specified segments of core
E’memory. o

1. Core Image

2. Binary -~ The information has the form of"
T ~ ‘ an assembled but unloaded program.

The information is of a form which
can be readily listed on some
‘prlntlng device.

3. Symbolic

4. Dump - ° -~ Comprises all the information in -~
o .. memory necessary to restart the
user from his current situation,
i.e., the situation at the time
"~ of creation of the dump file.

Comprises up to eight 2K blocks .
which can be read into shared memory.
The information originates from
© core memory and is normally execut-
‘able as an assembled and loaded
: program.

5. ‘'Subsystem

Files of types 1, 4 and 5 originate from information in
core. Before names have been explicitly assigned to them,
type 1, ."Core Image™ files are referred to by their boun-
ding core addresses; the whereabouts of ‘a type 4, "Dump"
file, is implicit in its nature, whilé type 5, 'Subsystem"
files are specified by delivering the pseudo- relabellng
of the pages containing the information to. the.command
which attaches a name to them. :

The informatlon in type 3 "Symbolic' files may come
dlrectly from paper tape, teletype or cards and in- such'’’

a case is referred to by using the name. of the correspon—~
ding phy51cal medium, viz. . : : o

. PAPER TAPE
" TELETYPE .
. PRINTER

" CARDS |

These names are bullt into. the system and are always ap— ;
proprlately recognlzed Another built- 1n ffile’ name .. .
Sds oo

' NOTHING

which always contains precisely nothing and whose func-
tion is to act as an infinite sink in which limitless
unwanted output can be. lost . .

A morevcommon source of symbollc flles is the output
from a subsystem, notably the text editor, QED.

Type 2 'Blnary" flles may orlginate from paper tape or
cards, but more commonly, arise as the output from the
machlne language assembly subsystem ARPAS, and as the
data output of a program. -y

Until the actual process of output from the subsystem
occurs, identification of the information is handled by
the said subsystem and is usually implicit since the sub-
systems can.usually handle only one file at a time. How-
ever, when the 1nformatlon is, eJected into a contest in-~
volving many other blocks of information of a similar
kind some explicit identification must be attached to

it. Cerle e c TR SRR EURTE S X

“U4.1 File Naming

' The names which the user is free to invent (although
with some restrlctions) and asslgn to files are of
three types:

4.3

1. Slashed names
2. Unslashed names
3. Quoted names

Slashed names are reserved for files that are on

the disc, quoted names are reserved for files that
are on magnetic tape, while unslashed names may be
of any type. Tape files may be created and used
only by the class of users that are assigned "peri-
pheral® status so that the general use of quoted
file names is also restricted to the peripheral
class of users. By the use of the command RENAME,
to be described later, slashed and quoted file names
may be renamed into unslashed names.

When reference is made to an unglashed file name,

the Exec will consider the name to be fully delivered
as soon as it has received sufficient characters

to distinguish the name from all others currently
defined by the user. This also applies to slashed
and quoted names when the file is used for input.
Note that a new name can never be introduced in its
unslashed form, and that slashed and quoted names
must be typed in their entirety when the name is

used for an output file. See Section 3.0.

4.2 Accessing Other User's Files

The naming system described is adequate to reference
all the files belonging to the current user, in whose
name the Exec was entered. However, to refer to
files belonging to another user, it is necessary

to augment the file name by that user's account
number and name. For example:

(B2 JONES) /@FILEl/

The access that any other user may have to each of
Jones'! files is in the hands of Jones, himself.
Jones may declare that a member of the public at
large has read-only access to the file by placing
a control character or the "@" character, as shown
above, in the file name. It is also possible to
refer to a file belonging to another user in the
same account without indicating the account number.
For example:

(JONES) /@FILEl/

5-1

5.0 THE EXECUTIVE COMMAND LANGUAGE

This

section will describe the functions availéble to

the user through the executive program. These functions
are initiated by special commands recognized by the
executive program. The commands are divided into the
following six logical areas for ease of reference.

- . 1. Entering and Leaving TSS

......

Allocation of Memory
Interaction of Teletypes

Creating and Manipulating Filles

A 52 R — N V)
. . .

“System" and Tape Functions
6. Miscellaneous Functions

5.1 Entering and Leaving TSS

' Before the Exec will execute any of the possible

" commands which may be given to it, the prospective

user must make himself known.by. executlng the "LOG
IN" .procedure. The procedure is explained in the
"Tymshare Reference Manual". .This brings into core
the user's complete file dlrectory See Section

~ 5.4 for commands to control the handling of files.

"'To leave the TSS system,. the user may give the

‘commands EXIT or LOGOUT or he.may simply hang up.
- For a descrlption of. LOGOUT ‘and what happens when

the user harigs up, .see the "Tymshare Reference Manual®
EXIT is similar to LOGOUT except :that the user's

file directory is NOT written back on the disc with
the EXIT command. This means that the user would

lose any new files created since logging in or since
the last file DELETE or since giv1ng the command
WRITE FD (see section 5.4).

5.2 Qommands Relatingﬁto the Allocation of Memdry

‘The commands described in this section are:

STATUS |
UNUSED MEMORY
"RELEASE o
'KILL PROGRAM
RESET ' *

PMT

#SMT
#RSMT

e'These commands‘requlre the user to have System Status.

o

STATUS

Types the status of user's memory The format is
as follows: ’ ‘

PROGRAM: nn nn - —/= = = =
s.s.n: nn - - -/- - Ss S§S
M.S. 30K, U.M. xxK-

where nn is the relabeling byte from the program
memory table,
ss is the relabeling byte from the shared memory
table,
s.s.n. is the sub-system name, :
xx 1s the number (in thousands of words) of
unused memory in the user's virtual memory.

The M:S. is the current Machine Size. (v1rtua1) for
‘the user. The dashes 1ndlcate pages in the relabeling

““words that are not currently being used. ~Note that

‘'the program line corresponds to the two words of
'?program relabellng kept in an exec table and the
s.s.n." line corresponds to the two words of sub-
“system relabellng kept in the exec table. The pages
1nd1cated by “nn' are .swapped. There may be other
pages currently a351gned to the user as listed" in
ﬁhls ‘BMT (sée PMT command) that are not shown by the
‘Status typeout: since his program is not currently
"relabeled over them

" UNUSED, MEMORY
nnKCr AR "’b, v PO

where nn is the number of K (1024) blocks of words
. of the user's total memory allocation remaining

"unaccessed. The user is assigned 32K upon logging

in. He has no control of the one.page (2K) immediately
assigned as his temporary storage (T.S.) block

The following three commands return. parts of the
memory currently assigned to the user to the pool

of unused memory retained by the Monitor. . Any in-
formation in the memory so released is irretreivable.

5.3

RELEASE

Releases the blocks (up-to-eight) of memory assigned
to the subsystem the user was last using.

KILL PROGRAM

Releases the blocks (up-to-eight) of memory listed
by the STATUS command under the heading PROGRAM.

RESET
Releases all the memory a551ghéd to the user except

the one block used by the Exec for temporary storage.
(The T.S. block) - :

'ﬂPMT~

Types the user's current Program Memory Table in
the following format

aa DRMPOS: bbb, cc (PAGE dd)
where aa 1s the pseudo relabeling byte number,-
bb is the drum address (shifted rlght three
places),
cc will type as RO for read only,
EX for exee-page,
Lo DR for drum.
coioodd (1f typed) will be the real page number
in memory. ;

SMT

U
Types the Shared Memory Table.. .The format is the

“.osame as that 1ndlcated under- the command PMT, above.

‘5 3 Commands Relatlng to the Interaction of Teletypes

The commands described in this section are:

USERS
WHERE IS
~ WHO IS ON
.. #%SHUT DOWN
HEUP .
#% ANSWER
#*HANG UP .
*LETTER

- XX

5.4

#These commands require Operator or System Status.

All of the above commands require at least Subsystem

.- Status.: In addition, the commands marked with #
require. console:switch one to be toggled. .- :

USERS
nn.

Typeslthe number of. users (nn).currently»logged on
the system. o

WHERE IS aa nnnnnnn

By typing the Account Number of "aa" and the user's
name for “nnnnnnn...”, this command will type the
teletype number 'xx" that the user is on currently.

WHO IS:ON'" v
XX aa nnnnnnn..
XX sss

This command causes a complete llst of the current
TSS users to be typed where o « SR -

.
.

XX teletype number PO

an - user's account number Lo

nnnn..: user's name -

ssss status oft lines if the line 1s NOT com-

o 0 . pletely idle (=1) and no one is logged
on the line.)

SHUT DOWN (toggle switch 1 required)

. After the operator toggles console switch: 1,. the

ocommand will set a flag that:initiates:system:shut-

down. Alllines that are not currently being used

‘747 will.be made unavailable.

UP (toggle switch 1 required) -

After the operator toggles console switch 1, the
automatic shut down flag described under SHUT DOWN
is reset so that teletype lines are no longer un-
available. The operator must re-answer (by using
the ANSWER command) all lines that have previously
been made unavailable.

5.5

;. ANSWER (toggle switch 1 required)
K,m-n,

This command enables selected teletype lines so that
the users may make use of these lines. The operator
may specify single numbers, indicated by "k", separated
by commas, or a range of numbers where the range

is separated by a dash,”or :any: combination as indi-
cated. -Spaces are 1pnored and the string.is termina-
ted by a carriage return. If the line has already
been enabled, the command will have no effect. Note
that after the SHUT DOWN command has been issued,

a line can be made available by this command but

it will become unavailable after the user logs out.

HANG UP (toggle sw1tch 1 requlred)
k,m-n,...

The command has two functions$ it may be used to

hang up a user while he is logged in (in this case
~the line will go ready again after the hang up opera-
tion has been completed unless the SHUT DOWN command
has been used), or it may be used to make a line

not available if no one is. currently using the line.
The format is exactly as described under ANSWER.

LETTER Cr
LETTER OFF/ON

LETTER n
This command has three functions and two formats.
The second format, where a number n is typed after

the command,:is used to type a broadcast letter,
where n is the.letterrnumber from one to six.

The first format is used to control the transmission.
.0f broadcast letter. It is used by typing a carriage
- return immediately after the command. If the response
- is*LETTER OFF, then no one will receive the broadcast
letters. The exec will not come back to the "-"
response until all users currently on the system

have finished receiving any letters addressed to
them. If the operator desires, he may "escape® from
this condition .by typing the escape key. No harm

is normally.done except: that .it is possible that

-a user- may réceive the.same letter twice. The opera-
tor must 'sét"the LETTER OFF condition before hejcan
use the "Operator Program” to create new letters

or cancel old ones. If the response is LETTER ON

5.6

then all users will, start receiving broadcast letters.
Any new letters created by the operator will not

start being received by all users currently on the
.system.. . .

‘;5 y Creatlng and Manlpulatlng Files

; The follow1ng Exec commands are avallable They
.-are descrlbed in the references. indicated. :

FILES ..
WRITE F¥D...
DF .

.FD FOR.

DELETE

RENAME

GO TO

PLACE

SAVE ..

DUMP . .
_RECOVER: ...
CONTINUE - -

- COPY -
#GFD; . . -
#REMOVE . FILE

CREATION
CD FOR

el i Sl S
- At3
n

w v . -

Below
Below
. Below

nunn
[N ORI
A O B I ¢

Below: .-

oo

HHEOOMDOMDN
oo

*These commands require Operator or System Status
in the user's control parameters. :

GO TO (1nput file name)
The actlon is. 1n1t1ally as- for the PLACE command

However, after transferring.the file to core, instead
of a return to the Exec, there is a branch of control

;.. into.the user's own environment at the starting ad-

dress :specified at the time of. the file's creation.
~1f a zero starting address: or none at. all was then
-given, the transfer is. back to the Exec as for the
PLACE. command . : . R

PLACE (1nput flle name)
The contents of the named anut flle is transferred

to the core addresses specifed at the time of its
.creation (by BRS 93 or the "SAVE" command. It is

- ~transferred into-the user's' current environment:

- which is.extended, as necessary to-accommodate it.

e e -
R .

5.7

" The file name must be in the user's file directory.
If it is not, a ? is printed, the name is forgotten
and must be delivered anew. The file name must be
terminated by a carriage return.. The file must be

a core-image (type 1) file (see sectlon 4y.,0). If
any of these conditions is not satisfied, the com-
mand'ls aborted -~ as it is also if .the attempted

. data transfer to core results in some transfer error
conditions arising.

.'._SAVE o
This command is typed 1n the following format:

SAVE bbb TO eee ON nnnnn Cr
OLD/NEW FILE Cr :

or (optlonallJ)

OLD/NEW FIIE- Lf ‘
STARTING. LOCATION SSS Cr

The contents of the spe01f1ed range of'core starting
with #bbb" and endlng with "eee"” together with the
starting location "sss" if provided, are preserved
on the named output flle “nnnnn”' '

The output file name nust be of a form accepted by
BRS 16. If it satisfies the conditions for a no-skip
return from BRS 16, the name is ignored and another
name must be provided. The name may be terminated
by a carriage return, thus:terminating the command
and causing.it. .to be executed, or a line feed, in
which case a "starting address™ (see also the "GO
TO" command) must be typed in. S '

Each of the addressesbbb,eee,sss, whether core range
limit or starting address, is interpreted as an

octal number. The starting address, sss, must be
terminated by a carriage return. Delivery of any
other non--octal digit character, except rubout, aborts
the address —-- which must be retyped. The octal
numbers, bbb and eee must all be terminated by a
space, a comma, or a carriage return. Any other
character aborts the command.

If a carriage return is typed immediately after the
command *"SAVE" the Exec willl respond with “FIRST
LOC". 1If a carriage return is typed immediately
after "bbb*, the Exec will respond with "LAST LOCW.

5.8

- If a carriage return is typed immediately after "eee
. the Exec will respond with "“TO FILE".

‘.GFD aa nnnnn Cr

Thebcommahd is'used by the operator'to get a file
directory belonging to another user for special

. background or non-timesharing processing. The oper-

ator's own file directory and user number is replaced
by that belonging to the account number "aa"' and

user name, '"nnnnn”: but. the operator's account number
and control parameters are retained. .

REMOVE FILE nn Cr

This command allows a user w1th System or Operator
Status to remove an entry from a file directory with-
out using the DELETE command. Since it may be pos-
sible to delete a file if the name contains leading
spaces or other spurious characters, it may be re-
quired to use this command as a last resort. The
command removes a file from the "in-core' directory
by referring to the file name's position *nn“ in

-~ the printed file directory. The command FILES must
. be used just before using this command in order to
find the current relative position of the name.

The file directory is NOT rewrltten on the disc by
- this command .

References:

:lh,,Referénce Manual for the Time-Sharing System,
Chapter-l33.‘Execut1ve Commands Related to Files™.

2. Tymshare Reference Manual ;.f

5.9

5.5 "System” and Tape Commands

The commands' described here are:

REWIND

RLT

STN

PTN i ‘
* POSITION TAPE -
' TAPE POSITION -
#ABT

#SYSDP

#SYSLD

*LOOK

tThese commands require operator user status.
#Require system status.

The commands controlling tape are system commands
and only one user, normally the operator, will be
mkaing use of the commands at a time.

HREWIND Cr f*’ o)
This command frees up the tape, regardless of 1ts
‘current status. and rewinds the tape.- _It_;s applied

“ to the current tape number (0 or l)

RLT Cr

This comimand releases the tape so that it is avall-
able for other- ‘Users. :

STN n Cr

Allows a user to set his own tape number, where “n"
is 0 or 1. - o ‘
P
PTN Cr

n Cr

- Types a user s current tape number where'"n“ is
'O or: l. :

fPéSITION TAPE Cr

”This command will cause a user's current tape to
positlon o the beglnnlng of the next file '

5.10

TAPE POSITION Cr

Types the current tape position as far as-it is
known by the Exec. This command does not check the
actual position by reading tape. ‘

ABT Cr

This command will abort any tape Operatlon currently
in progress. It may be used by the operator to
stop run-away tape. .

LOOK
This command 1s typed in the following format :

. LOOK a,n Cr
a bbbbbbbb
- -a+l bbbbbbbb-
L ete..

" This command allows an operator or system class user
to display real memory addresses where "a' 1s the
first location to be displayed (in octal) and "n"

is the number of locations in decimal to.be displayed.
The format of the type out is as indicated in the
example where a'. and “at+li are the octal addresses
and “b" represents the contents in octal.

The foliowing two commands require a special system
status by the. user since.they allow direct writing
and readlng at any location on the disc.

SYSLD

The command.is typed in the format:

SYSLD a Cr
TO b Cr
LOC ¢ Cr

This command allows a user to load his program memory
from any location on the disc into any of his eight
pages. "a' and "b" refer to his page numbers from

0 to 7 and “c¢* is either a real disc. address-or a
number from 0 to 7 referring to disc 0 to 7, with

the load (or dump, see below) startlng at arm.position
63 of"the.given disc. Also, %c¥ may be of the for-
mat "n.m" where “n" is the dlSC ‘number described

above and "m" is a number from 0 to 7 referring to

5.11

;é~relative paée number of arm position 63. Note
-that the dump and load location using the specified

+disc format corresponds to the area of the disc

addressed by the disc swap utility program u31ng
the console switch settings 0 to T.

SYSDP

The command is typed in the following. format:

SYSDP a Cr
TO b Cr
LOC c Crfs

VThls command allows ‘a user. to dump .his program memory
onto any location on the disc from any selected pages
- of 'his eight pages of program relabeling. The nomen-
‘clature is the same as that descrlbed under SYSLD
(see above). ,

5.6 Miscellaneous Commands

These fall into none of the preceding categories.

They are described in the references 1ndlcated
BRANCH " . See Below : ' o

DATE See Tlme sharlng System Ref Manual

TIME n 1"

N $i " 1t 1 i 111

ACCOUNTING . -See Below

PSP . _ n n

SETEXEC W H

ENABLE/DISABLE B "

BRANCH adr Cr

A transfer of .control .is made to the specifled address
“"adr" in the user's own.environmnet. The addréss

(an octal number) must be terminated by a carriage

return. Any .other .character aborts the command .

If the user does not have the. page containing the

‘address under his relabeling, he will receive a

memory trap. If he has a blank page (containing

the illegal 1nstruction HLT), he will recelve an

‘instruction trap "

SETEXEC nn Cr

- Thls command . is avallable only to. users w1th one
of the special status. These users may use the

5.12

command to, set one of the following classes of execu-

w; tivity if the user's status parameters agree that

the user is permitted to use this class. The class
set is then propogated to any fork started by the
system executive. under the 'GO TO" command..

"NN* DESCRIPTION

1 . . Subsystem

0 Cancel status

-1 Subsystem & system
-2 System only

The various classes allow the user's program to
issue. special BRS's that are needed for system soft-
ware but could cause great havoc to the TSS if used
‘improperly. Debugglng of programs which use these
BRS's must ‘-be restricted to certain time periods

so as not to disrupt T.S. operations.

PSP Cr

This command requires operator status or a higher
status. It will type out with.symbols the current
system error counters. For a key to the symbols
and their meaning, see the current Tymshare Monitor
Manual. : :

ACCOUNTING n Cr

This command requires operator status‘orva higher
status. After the Cr is typed the following mes-
sage will type: . ‘ s

TOGGLE SW. 1 Cr

..-The command will not execute until console switch

© 1.is toggled. It will then perform one of the fol-
. lowing functions depending on n.

" n = 0.Stops the aécddﬁtlng information from
being punched on paper tape when users log
~. out. .

n=-1 Starts the punching of the accounting in-
formation on paper tape when users log out.

A number of special purpose T3S software alds, called
‘"subsystems" can be requested simply by typing the
name of the subsystem. as a command. Two commands

5.13

allow the operator to ENABLE or DISABLE groups of
subsystems so that various classes of users may or
may not use the subsystem group. The commands are
typed as follows: '

ENABLE s or
DISABLE s

where s 1s the name of a subsystem in the group.
The subsystems currently available are grouped as
follows:

Group 1 - ARPAS, DDT
Group 2 -- LISP, SNOBOL

The following subsystems have no group restrictions
and are always available to all users:

BASIC
FTC

FOS

QED

CAL
FORTRAN

For details of any subsystem, the appropriate sub-
system manual should be consulted.

TYMSHARE, INC,.

OPERATIONS MANUAL

Prepared By:
Dave Brallier
Los Altos, California

Dean Marr
Lios Angeles, California

January 6, 1967

- SYSTEM LOAD FROM DISC

4-1-67

GENERAL: The timesharing system program is now stored on the disc as
- well as tape. There can be several versions (as well as several copies) on
the disc at the same time., It is the Operator's responsibility to see that the
correct version is loaded. '

The new load procedure will dump as well as load; i.e., if a crash occurs,
DSWAP3 will dump the crashed system on the disc and load the new system
into core. (The dump can be bypassed by placing BP Switch 1 down.) The
selection of the system to be loaded is controlled by break point switches 2,
3, and 4 on the console. The switches are tested octally per example 1:

EXAMPLE 1:
BP BP = BP BP
1 2 3 4

If the system to be loaded is on Disc 3, place BP #3 and BP 4 down. This is
‘interpreted as an octal 3 and will load the system from Disc 3.

- LOAD PROCEDURE:
1, Place DSWAP3 in the paper tape reader

2. Set BP switches to correspond to the system to be loaded. If a crashed
system is not to be saved, put BP switch 1 down also.

3, standard fill from paper tape. This consists of the following steps:

a) IDLE The Run-Idle-Step switch is put in IDLE

b) START Depress the Start button. This clears the P and C registers

c) RUN The Run-Idle-Step switch is put in RUN

d) FILL The paper tape switch is toggled. This reads in the paper
tape. The HALT light will come on when the paper tape is completely-
read in, but if the ERROR light comes on, the paper tape must be
reloaded. If the ERROR light comes on, let the loading go on to
completion, for if the Run-Idle-Step switch is taken out of RUN and
put into IDLE, the paper tape will run away. If this happens, press
START (this stops the paper tape) and re-position the paper tape and

' then go back to Step 3a.

This will execute the dump of the crashed system (if BP switch 1 is

up) and load the new system into core. As stated in the beginning of
the section, if the crashed system is not to be saved, BP switch 1
must be down. '

NOTE: - There are two phases to DSWAP3; the WRITE and READ phases.

6.

Which phase DSWAP3 is in is indicated by a 66 in the W buffer
for a WRITE and a 26 for a READ. If a crashed system is to be
saved, obviously the WRITE phase (writing the crashed system
onto the disc) would occur first (a 66 in the W buffer), for if the
new system was read into core first (a 26 in the W buffer), it
would read in over the crashed system and destroy it.

If, for any reason DSWAP3 is aborted while saving a crash before
it is fully executed, be careful to observe which phase, the WRITE
(66), or the READ (26) the DSWAP3 is in, If it is in the WRITE
phase at the time of the abortion, precede as before, but if DSWAP3
is in the READ phase, that means that the crashed system has been’
written on the disc and and the new system is partially read into
core and therefore, the crashed system that was in core is now
destroyed. In order not to write the new system that was partially
read into core onto the disc and wipe out the crashed system already
there, BP switch 1 must be put down when going through the
preceding steps.

Prog. will stop at P=25

IDLE The Run-Idle-Step switch is put in IDLE. The BP switches |
are reset. '

RUN The Run-Idle-Step switch is put in RUN

After the above 6 steps have been completed, the system will respond on
Teletype 1 with the following: :

1.

81-nE (mo-day-time):

This is a request to have the month, day, and time entered after the |
colon as per the example.that follows: 11-17-1530 CrL{

LAST START UP n/n n:nm CrLf

Nothing is required of the Operator at this point

NO. OF USER:

This is a request to have a number entered after the colon. The ‘
number should correspond with the number of channels to be answered,
as per the following example: 15 CrL{f :

PAGES:nn CrLf

'n=The number of pages available to the individual users (n varies

depending on the number of users). A page equals 2048 words. Nothing
is required of the operator at this point.

PLEASE LOG IN!

This response will occur after the system searches the disc and builds
a bit map. The time it takes to build a bit map is a function of the
size of the disc, the number of users, and the number of files.

The response of the Operator to the "PLEASE LOG IN!" command
depends upon one thing; is the crashed system that was dumped on the
disc to be saved or not?

a) @1;O0perator CrL{

The Opeérator logs in under this account number and user name
if the crashed system is not to be saved.

b) @1; CRASH CrLf

The Operator logs in under this account number and user name
if the crashed system is to be saved. The reason for this is to
save all crashes under an identifying user name.

All the procedures that are done under @1;OPERATOR can be
done under @1;CRASH.

NOTE: (a) and/or (b) mentioned above may be done between
Steps 4 and 5 to speed things up.

READY (date) (time) CrLf

This is a response giving the date and time that the Operator got on
the system. Nothing is required of the Operator at this point.

. The system will reply with an Executive Dash (-) indicating that the
computer is in the Executive mode and that it is ready to accept any

command from the Operator,

Answer the Channels (See '"Answer'' Section).

CRASH SAVE

This is a procedure used to save the crashed system on the disc. The
Operator is logged in under @1;CRASH.

1.

STCSSEXa-1 CrLf

~This command, known as Exec Status, is needed in order to do the"

following steps.
STCSLDAO CrLf
The computer responds with:

TO The Operator types: 7 CrLf
The computer responds with:
LOC The Operator types: 0 CrLf

The computer will effectively place the crashed system into core.
SAVEA0,37777.ONA /FILE NAME/ CrLf

The crashed system is put on a file. The file n‘a‘me should be in
the form of /day-time-P reg. /

LOG OUT CrLf or DELETE,/FILE NAME/ CrLf

The Operator types one of these two commands, in order to write the
file directory of the crashed file on the disc. The reason for this is that
if the system should crash again before the operator logs out or deletes
a file in the normal run of things, the saved crash file would be lost.

ST°SEXa-1 CrLf

This step has to be done if the Operator logged out in the previous step. |
The Exec Status is needed to do the remaining steps.

RESET CrL{
This command clears all pi‘ograms out of memory
RECOVERA/JST/ CrLf

The file JST,' system J symbol table, is recovered from the disc and
put into core. '

10.

11,

ST°S’LD.0 CrLf

The computer responds with:

TO The Operator types: 1 CrLf

The computer responds with:

LOC The Operator types: 0 CrL{

The crashed systerh is loaded into core

CONTINUE CrLf

This command will put the DDT Program into the operating system

WERISLC

This cormmand is followed by 18 linefeeds. It gives the location of
each user number in reference to each channel at the time of the crash.

The 1 in the WERIS + 1 is the channel number.

AUNNL

This command is given after the WERIS[L is finished and while still

in DDT. It may be given on the same line as the last WERISC. The
AUNNE gives the account number and user number in reference to the
job number. The 1 in the AUNN + 1 is the job number.

. There is no relationshi? between the 1 in the WERIS+1 and the 1 in

the AUNN+1 . :

If only a certain section is wanted, the command is typed with the first
channel number of that section; i.e, WERIS + 17

Two Altmodes will put you back in the Exec

Go to the ""SPS'" Section

10.

11,

DISC LOAD

Mount the disc dump/load program on Unit 0

Mount the tape to be dumped on the disc on Unit 3

‘Set BP Switch 1

Standard FILL

a) IDLE Put the Idle-Run-Step switch in IDLE

b) START Depress Start button to clear P and C registers

c) RUN Put the Idle-Run-Step switch in RUN _

d) TOGGLE MAG TAPE SWITCH This reads the disc/dump load
program into core. The HALT light will come on when it is
completely read into core. If the W buffer ERROR light comes
on while the program is being read in, rewind tape and START
over, ‘

IDLE

START

BRU 207 - Enter 100207 in C Register

Computer will halt with 2010101 in C. Register

IDLE

RUN
Toggle BP switches 3,4, 3

The BP switches are programmed to act as a combination lock, to

prevent the accidental loading of the disc. They must be used exactly
as described or a HALT will occur. To recover from the error HALT
t go'to Step 6.

~ See List of ERROR HALTS for
Disc Dump/Load

DISC DUMP

Mount the disc dump/load program on Unit 0

Mount scratch tape on Unit 3

Standard FILL

IDLE

START

RUN

TOGGLE MAG TAPE SWITCH. This reads in the disc dump/load
program into core. The HALT light will come on when program is
completely read into core. If the W buffer error light comes on,
rewind tape and start over.)

IDLE

START

BRU 207 - enter 100207 in the C register

Computer will halt with 2010101 in the C register

IDLE

RUN

Toggle BP switch 4, 3,2

The BP switches are programmed to act as a combinatién lock. 'They
must be used exactly as described or an error halt will occur. To

recover from the error, go to Step 5

See List of ERROR HALTS for
Disc Dump/Load

‘aaa

aOaaQ

T

512

= 515

il

1

531

2000001
2000002
2000003

2000005
2000006
2000007

DISC DUMP/LOAD
ERROR LIST

Tapebnot ready
W buffer not ready
W buffer staying busy

For any of the above errors, start load or
dump again.)

- Tape read errors

Tape read errors

" The 1,2, or 3 indicates the logical record within
- the physical record on which the error occurred.’

When any one of these errors occur, it indicates that

ten read errors have occurred on a logical record. The .

physical record on which the tenth error occured is
designated by 1, 2, 3, corresponding to the three physical
records on a logical record. If this happens, clean tape
head and start again., Should this fail, clean tape head
on other drive and try again on that drive. If still no
success, PUNT. '

Seek time or search time error on disc controller
Disc controller error '

W buffer error

For any of the above 3 errors, the following action is

' to be taken:

1. Go to IDLE
2. Press Controller Clear
3. Go to RUN .

If a read error occurs, indicate in Log Book on what disc, -

track, and sector it occurred. Contact Center Manager.

10.
11.
12.

13,

CARD TO TAPE

- Mount card to tape (CTT) program on Unit 0 and set density

- Ready punched cards in card reader

IDLE

. START

RUN

TOGGLE MAG TAPE SWITCH This loads the CTT program; The
HALT light will come on when the program is loaded successfully,
If an error occurs (W buffer error light) while loading the program,
rewind the tape and load again : '
Take tape drive out of AUTO

Mount scratch tape an Unit 0 and set density

IDLE

START

BRU 200 - enter 100200 in the C register

RUN

E.O.F. When last card has been read, depress E,O,F. When the

'E,O.F. is depressed, the number of words copied to the tape will

be typed out on the maintenance teletype

- NOTE 1: The system requires that a dummy deck be placed on the

tape as the last file. The dummy deck need consist of 1 card only.
It must be added or the system will crash when an attempt is made
to copy the tape to disc. '

NOTE 2: Decks may be stacked. The only limit on the number of decks

which can be stacked is the amount of tape.

NOTE 3: When any Reader error occurs, the READY light will go out.
Until further notice, take the following action on any error condition:

1. Reset (clear) error condition v .
2. Terminate processing of that deck, i.e., depress E, O, F.
3. Restart that deck :

10.

11,

12.

13,

TAPE TO CARD

Mount té.pe to éard (TTC) program on Unit 0 and set»dens‘ity

Plape‘ blénk cafds in card punch | |

IDLE - Idle—Rﬁn-Step switch is put in IDLE

START - Press START button to clear P and C registers

RﬁN - Idle-Run-Step switch is put in RUN

TOGGLE MAG TAPE SWITCH This loads the TTC program. The
HALT light will come on when the program is loaded successfully,
If an error occurs (W buffer error light) while loading the program,
rewind tape and load again

Take tape drive out of AUTO

Mount File Tape on Unit 0 and set density

IDLE ‘

START

BRU 200 - Enter 100200 in the C reglster. The card punch will
Cycle 1 card '

RUN

FILE NUMBER - When the TTC program is ready to accept input of

a file number from the maintenance teletype, the input light will
come on. The number must be inputted as a two-digit octal number,
i.e., 05 = 5th file on tape. The files must be 1nputted in ascending

'order, though they do not have to be in sequence.

10.

11.

12,

13,

14,

SYSTEM TAPE COPY

Place '"32k DUMP" paper ’Fape program in paper tape reader
Mount syétem tape (Disc bump) on Unit 0

IDLE | : |

START

RUN

TOGGLE MAG TAPE SWITCH

When computer halts, take“system tape out of AUTO
Mount sgratch tape on Unit 0, set density and put' in AUTO
IDLE

START

RUN

TOGGLE PAPER TAPE SWITCH

Watch W buffer for error

"When copy is finished, load disc with copy and bring system up.

If you can L.OG IN, tape copy is good.

SAM OUTLINE

I SAM SYMBOL CHANGE

A

Print CST Table

' -R_ECOVER»/NRECSAM/ CrLfL{

-CONTINUE CrLf

DDT Lf
CST" . LiCr
CST+1":LfCr
CST+2'"! LfCr

CST+11" 7 CrLf

C§T+12" CST+12'" 8 LfCr

CST+13" 9 LfCr '

CST+76" $ CrCrLf

Changing User Symbols (Still in DDT)

: CHANGE G LiCr

21 3:2-57, 360 12:100-111 LiCr

- 56:112-157, 33 160-177, 76:300- 700 CrLf

240;G LiCr (ThlS will run the program)

'1830..:$%$ 5 (2 Altmodes)
-DUMPA/NEWRECSAM/ CrLfLf

-SAVEA0ATOA3777,ONA/SAM/ CrLf

NEW FILE or OLD FILE LfLf

STARTING LOCATION 240 CrLfLf

‘-S'ICSCEX'A—I CrLfLf

-GO,/SAM/ CrLf
1840 ..::$$$! 8

CHANGE INCTIK
-RECOVERA/NRECSAM/ CrLfLf
-CONTINUE CrLf

DDT CrLf
INCTIK/ %3120 16040 CrLf

INCTIK/ 16040 CrL{
(2 Altmodes)

-DUMPA/NRECSAM/ CrLf{Lf

-SAVEA0ATOx3777AONA/SAM/ CrLf
OLD FILE or NEW FILE LfLf

" STARTING LOCATION 240 CrLf{

-STCSCEX -1 CrL{Lf

~GOA/SAM/ CrLf
1840 ABVA:... 8

SAM DESCRIPTION

SAM is a GO TO Program which periodically prints out the number of users
on the system. The users on the system are represented by symbols. These
symbols are the letters of the alphabet, numbers 1 through 9, and special .
characters suchas %, ., $, etc. The procedure to change the symbols that"
represent a user is discussed in Section I,

As stated above, SAM prints out periodically., The time increment can be
changed. "This is discussed in Section II.

I SAM SYMBOL CHANGE

As stated above, symbols such as A, 9, $, etc., represent a user on

the system. Each symbol in the SAM program is represented by an octal
number. For example, 1B (B indicates that the number is octal) is
equated to the character:, 44B is equated to the letter Y., etc. The octal
number and what it is equated it is found in the CST Table. These octal
numbers in the CST Table, along with the user numbers, are used by

the SAM Program to print out a symbol for a particular user.

A. - LISTING THE CST TABLE
-RECOVER /NRECSAM/ CrLi{Lf

This loads the recover file (24 type file) into core. In this -
case, the file name is NRECSAM, but this is not always so.
As long as the recover file is the version you want to use,
the name makes no difference.

-CONTINUE
- DDT

You are now in DDT. This is the only language that can be
used with a recover or 24 type file, :

CST: . Lf
CST+1': Lf
CST+2"! 1.f

°

CST+76"$

To list the CST Table the user types CST'" and the computer

will type a period (.) The octal number representinga period - .
is 0. A Lf after the period will cause CST+1': to be printed out
by the computer. 76 linefeeds will print out the complete CST
TABLE. :

One carriage return in place of a linefeed will put the user in

‘a position to enter another command. This one carriage return

will not give a linefeed, so the user is on the same line. But |
two carriage returns will give a linefeed and put the user on the.

-~ following line. At this point, the user might want to know what

CST+12:

symbol is equated to 12B, for example. He would do the following:
8 Lfor Cr

'8! is the symbol represented by 12B. After the '8', the user may
do one of two things: 1) he may type linefeeds which would
continue the print out of the table starting at CST+13, or 2) He -
may type a carriage return which would allow him to enter
another command.

CHANGING USER SYMBOLS

If a symbol for a user is to be changed, or a symbol assigned
to a new user, the following procedure is gone through:

-RECOVER,/NRECSAM/ CrL{Lf

-CONTINUE CrLf
DDT

Determine what symbol is to be used and find its octal number
equivalent in the CST Table. Also, determine the user number(s)
to be assigned to the symbol.

CHNGE G LiCr

Symbol

Number User Number, Cr or Lf

The user number need not be restricted to one, but a
contiguous block may be put in; i.e., 2: 1-57,. Any number

- of changes may be made on one line; i.e., 2:1-57,3:60,12:100- .

111,56:200-500,. The change is terminated by a carriage
return, or the changes are continued on to the next line by a
linefeed.

There can only be one symbol assigned to a user number at
one time. So the current change will replace the 0ld symbol
assignment for that user number.

If a user name is deleted and no user name. reassigned to the
user number, then that user number is assigned to the symbol
'quotes' ("), This is the symbol to which all unassigned user
numbers are assigned. ‘

NOTE: There must alwaysbe a comma (,) after the user
number. Except at end of a line where a line feed serves

the same purpose. Also, if a mistake is made, this is
remedied by typing a ? immediately after the mistake. ' This
would delete the entry with the mistake in it and give a
carriage return and linefeed and put DDT in the command mode
(again. To precede with the changes, type CHANGE;G.

After the changes and new additions have been made, one of two
things may be done after the carriage return: 1) The changes
may be checked against the users on the air at the time by typing
240;G. This will cause SAM to run with the new changes. To
get out of the running program, hit altmode once. This will

put you back into the command mode. Hitting altmode twice

will put in in the Exec. 2) Hit altmode twice and get back to

the Exec.

Once back in the Exec, you are ready to dump.the corrected
recover file onto a new recover file.

~-DUMP\/NEWRECSAM/ CrLfLf

This dﬁmps the recover file that you have made changes to
in core to a new file called NEWRECSAM.

~-SAVE,0TOA3777,0NA/SAM/ CrLf
NEW FILE LfLf '

STARTING LOCATION 240 CrL{fLf{

-STSSEX -1 CrLfLf
-GOA/SAM/ CrLf

The SAVE Command stores the core image of the recover

file on a file called SAM. Two linefeeds after the NEW FILE .
(or OLD FILE) print out will cause STARTING LOCATION to

be typed out. This is a command for the user to type in at _
what location he wants the GO TO program to begin. In this
particular case, and in most others, the starting location is 240,

To run SAM Exec Status (STSSEX 1)must be set.

SECTION

I

CHANGING, SAM INCTIK

.A.o

Description of SAM INCTIK

The SAM INCTIK is the time interval for the SAM type out.
The INCTIK can be set from one second on up. (The usual
time interval is 2 or 5 minutes). Since the fiming of SAM is
dependent on the real time clock, and the real time clock is
dependent on the AC current, 60 cycles would equal one
second. So 60 times the number of seconds and the result
converted to octal would be the value entered fo the INCTIK
To convert to octal, do the followmg

1§l

mn
B W =N O

5X 60 X 60 = 18, 000 8118000

= 43120B

4

The 4,3,1,2, and 0 are the remainders of the divisions. This
is the octal number entered for the INCTIK to cause SAM to '

. print out every five minutes.

To change the INCTIK the recover file or 24 type file that

is to be changed must be loaded into core and the change made
under DDT. This is done per the following example:
-RECOVERA/NRECSAM/ CrL{L{

-CONTINUE CrLf

DDT CrLf

INCTIK/ #3120 16040 CrLf
INCTIK/ 16040

Typing INCTIK/ will cause the computer to print out the
current value of the INCTIK, which in this case, is *3120.

(Due to the conflguratlon of the hardware, a 4 (four) will prlnt

out as an asterik (%)). The carriage will space over to the
next tab stop. If the INCTIK is to be changed, the new value
is entered here, which in this case, is 16040 on two minutes.

To see if the new value of the INCTIK has been accepted, again

type INCTIK/, ‘as per above example, and the new value will

-be typed out.

If, while typing in a new value of the INCTIK, a mistake is
made, type a question mark (?) and the computer will delete
the value entered with the mistake and space forward to the
next tab stop. You can now enter the new value. -

After changing the INCTIK, you can either make further changes or go back
to the Exec. To go back to the Exec, hit the altmode 2 or 3 times.

Once back in Exec, dump the file and create a GO TO f{ile per the following
example: : ‘ '

 -DUMP./NRECSAM/ CrLfLf

'~SAVEAOATOA377T ON./SAM/ CrLi
NEW FILE or OLD FILE LfLf

STARTING LOCATION 240 CrLfLf

OPER

DESCRIPTION

OPER is a utility program that contains 24 commands for the upkeep of "
the system. To use OPER, Exec Status must be set. OPER is a 21 type _
file or a GO TO program. To access the commands in OPER, the following
must be done: :

_STCSCEX -1 Cr
- «GOLAOPER Cr

S

The asterik indicates that OPER is ready to accept any of the 24 valid
commands. These commands, what they do, and how to use them, are
" described in the following sections. ' '

* HELP Cr

THE VALID COMMANDS ARE:

HELP
UAD

LENGTH

TIME

SET DAY
RESET TIME
SET HOUR
FILES

CLEAR FILE
SIZE ACCOUNT
ACCOUNT
NAME

" CANCEL ACCOU
CANCEL NAME
OVERFLOW
MAP

GARBAGE
POINTER
USERS

COUNT LETTER
REMOTE LETTE
LETTER

COPY RECORDS
CLEAR RECORD

As can be seen, the command HELP lists the valid commands that can be
- used under OPER. When it is finished the listing, the program comes back
with the asterik. OPER is now ready to accept another command. ’

*UAD Cr

OUTPUT TO: PR Cr

3/24 22:15

*1 AYaELT
UTILITIESsS
OPERATOR4P
SYS814T

*2 JToaALB
B.ILL
JACK
AAND
JILLAF

TOTAL: 0:00.00 0:00

0 77777777
77770001
77770025
77770037

0 77777777
77
156
20000036
200536

-.o.;ooo-ocoouoooo‘.o.END OF JOB-.oooouooo-.oooao-.o-o.

The command UAD Cr will print out all of the active accounts. In the above
example, the output was to the printer (PR) So all the information from '
"3/24 22:15" to "'...END OF JOB...'" will be printed out on the printer.

When it is through printing the computer will output to the teletype "END JOB"
and return an Executive Dash (-).

If one wishes to only print out one account, such as A5, then a linefeed after
*UAD instead of a carriage return will allow one to do this. Instead of out-
putting to the printer, output to the teletype.

Example:
*UAD Lf

OUTPUT TO: T Cr

A5 Cr
A5&NU &T

JAMES&W 201
BILL&R 202

0 77777777

TOTAL: 0:00,00 0:00

END JOB

After the carriage return (Cr) in the "OUTPUT TO:" request, the computer
waits for an input of an account number, such as the A5 in the preceding
example.

The printer designates a control letter with a delta before the letter, i.e,
aN. The teletype designates a control letter with an ampersand before the
letter, i.e., &N. For the atsign (@) accounts the printer will print out an
asterik for the @.

As can be seen from the above examples, the oi)erating system returns an
Exec Dash after printing the UAD. To give’ anymore OPER commands, one
must get back into OPER.

NOTE: - See Appendix A for description of the UAD output.

*FILES Cr -

OUTPUT TO: PR Cr

3/19 12:13

1 0:00,00 0:00 77777777 :
101122 22000000 31656 /$/
177012 21000000 10316 /[.GOP/

. 102110 22000000 14100 /8SSY/

OVERFLOW: 1350

2 0:00.00 0:00 77777777

1350 0:00.00 0:00 '
701105 22000000 32631 /aGT8/
. OVERFLOW: 1

TOTAL: 0:00.00

.................ENDOFJ‘OB...Q.O.."I

The Operation of the FILES command is the same as for UAD; that is, a
carriage return after FILES will print all of the files or a linefeed will only
print out the ones selected.

With a linefeed (Lf) after FILES, one may select more than one file to print.

E};ample: ‘
*FILES L{

OUTPUT TO: T Cr

3/19 12:30

77 |

77 0:00.00 0:00 77777777
631101 23000000 12343 /MUD/
612066 23000000 36477 /QUI/

102
102 0:00.00 0:00 77777777
605115 24000000 25776 /$/

To get out of the FILES command, hit almode a few times

*CLEAR FILE Lf

3/24 8:30

105
107
300

Altmode

The CLEAR FILE command deletes all files under a user number,.
After the date and time is printed out, the computer waits for the user
number or numbers whose files are to be deleted.

*ACCOUNT Cr

LNP, --- P,2Cr"
TTTTTTTTAAAAAAAAA Cr
“Alter Switch 1

NEW or OLD

The ACCOUNT command is used to enter new accounts, change account
time parameters, change account parameters, or change account pas swords.

The ACCOUNT command requires four arguments:

Where L

1]

Account Letter
Account Number
= Password

Time Parameter

H Y Z
T

There mustbe a space between the Time parameter and the Account parameter,

Altering switch 1 enters the account into the system. Up to this point, one .
may altmode out of the ACCOUNT command. This is the only way to correct
a mistake in input. '

Whenever an account is entered or changed, it must be checked to see if
entered correctly by doing a UAD for that account.

ol
b

The Account Letter, L, can be any letter from A through Z and the special
character @. The @ is restricted to internal Tymshare usage only.

The Account Number, N, can be any number from 1 through 8.

The Password, P, can consist of any combination of numbers, 1ettefs, and "~
control characters (up to 12 characters)

The Time Parameter, T, controls the access time of the user. It is'usually
24 hour access. Sometimes, parameters are as follows: '

77777777 or -1 = 24 hour access
137700 = 10AM to 6 PM
37774 : = 10 AM to 10 PM
1400 = 2 PM to 4 PM
- 77600377 S o= 4 PM to 8 AM
77600077 .= 6 PMto 8 AM

1477 ' o= 2 PMto 4 PM, 6 PM to 12 PM

6074 = 12 AM to 2 PM, 6 PM to 10 PM

300 = 4PMto 6 PM
11700 = 2PMto b6 PM
377 = 4PMto 12 PM

The time parameter is right justified

The Account parameter, A, is not used at the present time, but a
zero (0) must be entered in order for the Account command to be executed

*NAME Cr
LNU, --- U,,Cr
PPPPDDDD Cr
Alter Switch 1

NEW or OLD

f

" The NAME command is used to enter a new user name into an account or to
change the user parameter. The NAME command requires the following
arguments: ' ‘

L = Account Letter
N = Account Number
U = User Name

P = User Parameter
D = User Number

“Where

The user parameter must be typed only if it is other than zero (0). The
user parameter/user number is right justified.

NOTE:D(user number) should be unique for each user. If it is not, both
users will share the same file directory. '

Altering Switch 1 enteres the userhame, etc., into the system. To correct
~any mistakes an input, altmode out of the NAME command before altering
 Switch 1, .

Whenever a user name is entered or changed, it must Be_checked to see if
entered correctly by doing a UAD for that user name's account.

Al
b

The Account letter, L, and the Account Number, N, must have been entered
previously by the use of the ACCOUNT command. ' ‘

The User Name, U, can consist of any combination (up to 12 characters) of
numbers, letters, or control characters.

The User Parameter, P, will not be used in the majority of cases for outside

users. It is generally restricted to internal use. The user parameters allow.
a person to have Exec, Operator, Peripherial, System Exec, or ARPAS-DDT
status, all five, or any combination of the five. :

The User Number,-b D, is necessary for all users. At the present time, it is
an octal number from 1 to 777. Under this number is all the user's files. The
number is different for every user. ' '

USER NUMBER -

.
<

N
7

¢—USER NO. PARAMETERS

(Octal)

(Octal)

10{11{12{13|14(15{16}17/18 {1920 |21 22 23

ARPAS - DDT

) Il

o(1] 2| 3 4] 5| 6| 7| 8] 9

SYSTEM EXEC .
OPERATOR |
PERIPHERAL STATUS

EXEC

*® CANCEL ACCOU Cr
LN Cr
Alter Switch 1

OLD

Account Letter
Account Number

Where ~L
N

H

- Confusion may arise with this command, in that cancelling an account does
“not cancel the users in that account. If the account is to be cancelled -
completely, the user names should be cancelled first by using the CANCEL
NAME command (See following section).

As in the other commands, one may altmode out of the CANCEL ACCOU
command before altering Switch 1.

*CANCEL NAME Cr .
LNU, --- U,2Cr
Alter Switch 1

OLD

Account Letter
Account Number
User Name

azZr
i

This command cancels the user name. But cancelling a user name does not
eliminate the files that the user may have amassed. There are two ways to
eliminate these files:

1. By using the DELETE command in Exec before cancelling
the User Name.

2. By using the CLEAR FILE command in OPER, which is much
quicker and which does not require logging in under the user
nameand therefore, does not require that the user name still
be in existence. ‘ '

Whenever a cancellation is made, do a UAD for that part1cu1ar user account
to see if it is cancelled.

OVERFLOW

The OVERFLOW command is used to assign an overflow number to a user
- having used up all of his file space under his initial user number. The
initial user number is still the identifying number for a user. The block
of user numbers from 1237 to 1377 is to be used for overflows.

The system will not allow more than one overflow to be assigned to a user
number. An overflow can not be assigned while the user who has that
user number is logged in. Also, the system will not allow an overflow to
be cancelled if there are any files under that overflow number. "

The procedure for setting up an overflow is as follows:

* OVERFLOW Cr
'DDDD, FFFF Cr
Alter Switch 1

Al
ES3
—

Where = User Number

Overflow Number

D
F
The proce.dure for cancelling an overflow is as follows:

*OVERFLOW Cr
DDDD, Cr
Alter Switch 1

If the information is not entered in the correct format, or a user is logged
in to whom the overflow is to be assigned, or the files are not deleted from

the overflow before cancellation, the system will come back witha ?.

USERS

This command lists and sorts all of the users by either User Number,
A_ccount Number, or User Name, depending on which column; 1,2, or 3,
respectively, it is sorted in. :

* USERS Cr

OUTPUT TO: PR Cr

SORT ON COL., (1,2, or 3): 1 Cr
3/25 17:48
UTILITIES

1
1 CRASH
1

1 P
2 %
3 %] RAY ' ‘ — PRINTER

TOTAL: 0:00.00 0:00

-

....'.l....l.l.';'.ENDOFJOB...I......QI..

END JOB

POINTER

This command will indicate the last overflow number assigned, minus one.
At this time, the validity of the pointer over 1000 octal is doubtful So use
the results of this command with caution. .

| *POINTEzR Cr

OVERFLOW POINTER at 1355

END JOB

FILES FROM TAPE TO DISC

To copy files from Tape to Disc, or from Disc to Tape, is known as sys-defining,
To sys-define one must have peripheral and exec status; peripheral status in
order to use the Tape drive, and exec status in order to use the "SDF..."
command.

Files on a Tape have three (3) parameters:

1. File Number
2. File Type
3. File Liength

The File Numberis a number that designates the location of the file on the tape.
These numbers are octal numbers, i.e., 1, 2, ...7, 10, ... There is no zero (0)
File Number. The number of files on a Tape is only limited by the amount of
Tape. ' '

The File Type is a number that indicates what type of file:

1. 1l is a "'go to" file
2. 2 is a binary file

3. 3 is a symbolic file
4, 4 is a recover file

The File Length is a number that indicates the length of the file in words., i.e.,
44477, 25003, etc.

With every Tape that has files on it, there should be a file directory with it.
This file directory should list all of the files and their parameters., The file -
directory is vital to the sys-defining.

MOUNT FILE TAPE on Unit 0, set density and put in Auto.
-STs“EX,-1 Cr

- POSITION Cr
3

This command is used to position the Tape. It is always positioned at File 3.
Though the tape is usually at file 1 when it is at the load point, sometimes this

is not the case. This command is not used if there are only two files on the Tape.
As stated above, the POSITION command positions the Tape at file 3. If there

is no file 3, the Tape will run away and probably crash the system.

If while trying to position the tape, you get a tape wind error, TW[, it indicates
that the tape is not on unit zero. The tape units are now hung up. They can not
be used until the following steps are gone through:

Put Tape drive Unit 0.
and
-ST°S°REW Cr
This command will clear the system of the hang up, and position the
tape at file 2,

-STCSCDF, ' <Tape file-name> ' AS ,(File-number> , <File-Type>, <File-length” Cr

This command defines the tape file-name with the parameters after the AS.

The same < Tape file-name> may be used over and over again, if it is copied to

the disc before it is defined again with different parameters. If the <Tape file-

name> is defined again with different parameters, the computer will type back
"(ALREADY DEFINED)" after the Cr on the ST®S°DF command.

-COPY , '<Tape file-name”> ', TO A [KFile-name>/ Cr Lf
NEW FILE or OLD FILE Cr Lf

This command will copy the tape file, which has been defined with parameters
of a file on the the tape, to a disc file.

After the second Cr the system will search the tape for the file number stipulated
in the STS°DF command. When it has found the file, the system will give a
carriage return and start writing the tape file to the disc file. When it is
finished the system returnsan executive dash.

If the file cannot be found on the tape, this will be indicated by the tape unwinding
and rewinding. To stop this, altmode out of the COPY command.

If the file is found, but it can't be read, (PE), position error, will be typed
out on the TTY. (PE) will continue to be typed out until the file is read or
until the COPY command is altmoded out of. If more than 5 or 6 (PE) occur,
altmode out of the COPY command anyway. Try again. If (PE)'s still occur,
try another tape drive. If it still doesn't work, the tape is bad or the tape
units are in bad condition.

FILES FROM DISC TO TAPE

System - defining files from disc to tape is basically the same as from tape to disc,
except for the copy command;

-COPY, / <File-name? /nTo,' <Tape file-name? ' Cr

In the SDF command, the parameters of a file on the tape to which a disc file is
to be copied to is defined, and the copy command copies the disc file to that tape

file,

In copying files to tape, two of the three tape file parameters must always agree
with the file directory of the tape. These are the file number and the file length.
The file type may change depending on the type of file to be copied to the tape.

To copy files to tape, there must always be at least two files. To create more
files on a tape, do the following:

-COPY,,/ <file-namer/ , TO '« Tape file-name?' Cr
NEW FILE Cr

NOTE: The tape file-name has not been defined by a SDF command.
The disc file is copied to the tape and a new tape file is created.

-FD: '<Tape file-name> 'Cr
43,3,13171

This command will give the parameters of the new tape file. Enter this
onto the tape file directory.

NOTE: Never use the same '<{Tape file-name>' over again until the
parameters of a particular file copied to tape has been determined
by FD:.

SHUT

The shut command does the opposite of the answer command, though it does not
selectively shut channels, but instead shuts all unused channels. If a user logs
out after a shut command has been given, the channel he was using is shut.

-STCS°EX, -1 Cr

-SHUT Cr
alter B.P. switch 1

HANG

This command will cause the indicated channels to be disconnected from the
computer. It has the same affect as if the dataphone was hung up or a log out
occurred, except if a user has a $ file, his core at the time of the hang is dumped

on to the $ file.

-ST®S®EX -1 Cr

--HANG N (or) N, N (or) N-N Cr
alter B. P. Switch 1

NOTE: . This command only causes a Temporary Disconnect. It does not
prevent the effected line (s) from being re-activated immediately.

GARBAGE FILES

Garbage files are files in a user's file directory that have gotten clobbed, or
have been added to the user's file directory. A file with garbage files might
look like the following:

-FI Cr
/DATA/ 23,512
/AC/ 22,1047
/PRT/ 23,512

%@ 23, 23156
/S1/ 22,2456
/NUT/ 22,1056
<'A 330, 2, 703635
/QUS/ . 23,3675

The fourth and the seventh files are garbage files. To remove these files, determine
the location of the file, i.e,, the first garbage is the fourth file. Then do the
following: '

-STSSCCLA4 Cr

This command will remove the garbage file that is the fourth one in the file
directory. Take another files

-FI Cr

/DATA/ 23,512

/AC/ 22,1047
/PRT/ 23,512

/S1/ 22,2456
/NUT/ 22,1056

<1A 330, 2, 703635
/QUS/ 23,3675

The other garbage file is now sixth in the file directory. To remove it, do the
same as with the previous one.

Cias
~

S0
L

!l page of 1}

PROGRAM TITLE: NS

N

sy A
N]

ACC. /USER NAME:

V.

VLEAR

[Tt

RESPONSIBLE PROGRAMMER:

STATUS REQUIRED

EXECL EXEC2

ARPAS-

SUBSYS iy

PERH.

FURPOSE: To Lopp RS Dise PRoM A& PREVOuS

Dise opuMp

SET UP INSTRUCTIONS: MO DISe Lo/ DU SRUT R4 oN UNIT O, LLB2

2

1M

RELISYEYs AND go o QuN, Plhed QA Sw t dewy awd Moz Fri . ShORNE TWE
TWe TROES o LoADEN Pom ol YWE LMY =MAT 15 wRITTE N
K ay [P s acma

Lon ME FROE LAGBL. PlELE Govi TEPES N AuTd,

OPERATING INSTRUCTIONS:
oGy T toLg
. LLESR REZISTIRS
- - RN e N T
A TS S)’(9"./6)
:‘;7, ,)AD e JWUN (c.o-ﬁ«;ﬁh?{:f}w'.‘“ HALT A Foloio} i“ C‘>
.o lzan gaer {%oc 5-'-?..'1”‘-’*"’}
Ga‘_b‘.‘:&"‘f ﬁupq S‘i/ é’slgia‘:/

\ . ' —an Q= -
ERROR RESTART PROCEDURE: T SYZE¢é 1
REVISION DATE: REVISED BY: =
-~ . :

| page of 1

PROGRAM TITLE: NIse Quriv_ o &
. /USER NAME:
RESPONSIBLE PROGRAMMER:

V. Vo vL B0

STATUS REQUIRED
o . | ARPAS-
OPER. EXECI = EXEC2 PERH. SUBSYS So

To UwEges A LheRuf

PURPOSE: O THRE & .DiSc oumMp
| g DS,

6F TWE - RILES CuRRENTLY o N

rv{) unT szsc LOLD U\ZN}C} {’@6@.‘9.35*’3 ol\? UNFT @o CL;’;":(\)

S@’I‘ UP INSTRUCTION!

ABEITTORE AND g5 vo Getd, Placp B.0.8v71 wv, aNd MAS FlLi. 7

THE wwe TAEEs ro A5 fuMeGEh on UMY D AND UMIT Jand
elet @ NTT Zowwr 0P WHMEM IN AuTo. vHE = diT F Dises Wil
O OW waRZ, umT O, TWB SElomMs § DifesS sm ypes L uniT .

OPERATING INSTRUCTIONS:
& AN D QLESR RERErsTEL

o ,
ro 0L

A Coun SoyD "
] .) . ?‘ 05

v . A
T !)) ; -
g, (A,/ g QL,L Mo Lo /,pg.';-g,:ﬁ Wit w3 il “wioem

Licas 3‘r»r'.ax /TUC*KE)‘C. /‘UA/)

a
| y
- \
. ERROR RESTART PROCEDURE: ~ Yo sve? |
TE . REVISED BY: |

REVISION DATE:

~ERROR HALTS AWD

DISC DUMP/LOAD ﬂ9

C Reg.

2010101

2000001

2000003

2000004

2000005
2000006

20006007

207TTTT

WIM error

Description

" Dump or Load ready

to start

LOAD only: Tape

. Read Retried 10

times

LOAD only; Disc
Address read rfrom
tape is not wvalid :
for ftape number.

SKS 14000 error on
disc (W Buffer

‘not going ready)

SXS 10026 error
on Disc (Seek or
Search Time Error)

SKS 11026 error
on disc (Disc Con-

~troller Error)

SXS 11000 error

on disc (W Buffer ..
Error, ingludes
Disc Read Errors)

DUMP or LOAD com-

- plete on two tapes

if 16 disc dump,
on 1 tape if 8
disc dump. (Ready

to proceed with 2nd .-

two tapes if 32
disc dump)

‘(d) Set Console Sw. JH

CORRECTIVE ACTION

Corrective Action

&

(a) Togg
(b) Set Console Sw.#4, Toggle Run
Sw. Accepts tape record‘as read.

If first read on tape then tape
might be on wrong handler. number,
otherwise bad read.

(¢c) Toggle Run Sw., Rereads tape.
toggle
Run Sw. Record not written

n disc, next tape record read.

WOKHT Lub}&/(Loﬂo,i(@ UMIT SET7T

(e) Toggle Run Sw., Tries disc in-
structions again.
(f) Set Console Sw.#4, toggle run.
DUMP: Accepts disc record (1 page)
as read and writes on tape whatever
is currently in disc buffer.
(Probably lost 1 page of data)
LOAD: Record.is left on disc as

. written, probably with errors.

(Depending upon type of disc failure.

Take actions (e) or (f) above.

Take actions (e) or (f) above.

‘Take actions (e).or (f) above.

(P reg. at U454) (LOAD ONLY) can be bypassed by placing

rur switch in halt, pressing START and branchlnv to higz,

N

ECISTZR LOOPS

ON Ul I l\)

ON ONONO

6

Error in erasing tape.
Error in.backing up tape on a retry.

Tape not ready.

W Buffer not ready on ftape instruction.

le Run Sw., tries 10 more times.

e ‘;./‘
- 7

.} page o

- s 4

N e WA D BT o N
DS 20 T 52

!
VG oS it

bortpt

STATUS REQUIRED
EXEC2 PERH.

e

SUBSYS

ARPAS-
DDT

PURPOSE: TR PE

2

, o
s,

e T (ve]

SET UP INSTRUCTIONS:) 5540 0/

Y

b‘»,a/'-‘

L] 3 [? ¢ j (Y3 DA

<. I vUOAS R R pEaAL W

A4 . e . i - 50 ENARS

e ; / 7O % QN & O./f:?
& oR

DL Py E
Sl - s

VTS 1S 1E W0l ARE pISINE A TRPE.

ERROR RESTART PROCEDURE; AL

MORE

REVISED BY:

REVISION DATE:

P

-1 page of .4

PROCGRAM TITLE: FOELEAS S O ARPAS L RNTT
ACC, /USER NAME: (2L oprrprArolR Oor @3 755>

RESPONSIBLE PROGRAMMER:

s o STATUS REQUIRED : |
OPER) EXECI EXEC2 PERH. SUBSYS AR}%“?‘

PURPOSE: . Ry ASE ARPAS ¢ DRT FOR ALL WSEZRs
ON THE SPITEN.

——

SET UP INSTRUCTIONS: —

‘OPERATING INSTRUCTIONS:

LoOENABLE, ARPAS a.R,
SYSTEM REISPOND WITH ZEige NMOSE.
AFTER TPING: ARPAS BT

- ERROR RESTART PROCEDURE:

" REVISION DATE: REVISED BY:

>
~
A

[page of

ACC. |USER NAME:
VS s pL e

1
PROGRAM TITLE: A S7if &
vt ' e 31 ase o - - -:.\C. Sy
WL oprRAToR or @3 :7%s

RESPONSIBLE PROGRAMMER:

STATUS REQUIRED
ARPAS-

EXEC2 PERH. SUBSYS DDT

'/-—‘"I-\
CPER.,

FOR

el o]

TO POT A LETFER IWTO TRE SYSTEN

PZENIONS 7O THIE
)T RESPONISE W T

SET UP INSTRUCTIONS: G & /@ Pg o /
POMIBS OTH S LETTEI

v o * w2 e j poie s - .
VS L MOBE TYYRES LETIGR cr aF

$1EIT RES

i
LEYTER aFF, Qo opar,
DN e TR A RTTEST S R A GAIN AND Yo QETILETTEIR RS
'OPERATING INSTRUCTIONS: '
L O COUNT LETTER
b Nuwmzar
L NuR3ER
4,;’: O
7D
want
a0
&, O

o
DL ETTER CR
LETTER ARL=L N AR
¢ ERRCR RESTART PROCEDURE: A7 ModE& . Go op&R
REVISION DATE: REVISED BY:

EEETCNEY Je s i S Yo P T

= iy e e 3 T N vzt a A AN T EEN = 2o 2 vrpn
1 . /m ,.A

AT

R N)

Cond
&S
7

3

RROR <whHack)
|
|
H
74
2
NN r'.'""

N
o
R&E

!

{
R
!

[}

i

7

7

|
|
1}
|
|
i
i
|
!

ALS O

4
j“?i':EN:‘J &
®

.
Y

]
{
|
|
|
|
2
BEOING

M
-

)
7

i}
i
'
!
'
§
]
'
1
i
i
|

ORLE

)
LR AN

7T
™
23
e
Y

I

;
;

1

‘

l

-

-—a

| P

4

iy
'

és

1 OUST
7

7
&

)

A
)

o
R (=
A
Py

i
i
]
&
i
!
|
|
)
i
al
i
!
!
a
all?
Fal

o
Mt
;

N
PE
b
P
SPONDS LU
A
R
i

4 ~ . /\ .mw - e
1 L ~ ! & &5 2

7OMe D
)
S
7~

PRO

-
.
—
/
.
¥ v
e
&
(W
~Te
oy
A
Sy pn
el

‘
i
H

ﬁ“}
« ‘3-”—‘
2
o
7

M RE
]
-
2
o

s > ~ t,,w\
s ; il 1
SIS BUUIE.= ¢ R .snl _J T 2 2 S .Wu

|
F/

£

<.

~

J

e

L P A

A K&
v

l
il

|
m
D
A
s

|

|

|

:.’

-
e

-

7z
y:
A

Wi, 1 w7
9 ~ 3 - 3 NS
. k)) ..%N ~> i ™~ \u «
. A IV 2 > DR & = 7 Qo
o 1.3 = . " @ Ii.lv — M‘x V.. LA G N it o
3 . m.l ¥ —- H - ™ * *» n-h/ .w %
158 1]

T
|
{
]
i
l

.".\

D> A

]

H

>
)e@
ias

R’
1;9
L]

1

1l ‘/ﬁ»
snd
L allieshl

1
A
i

/
T
o
Ix
i
!
T
i
r’lx—‘
——
&
3,
I
i
+
{
|
o~
h

LN
A

|

1

!

T

|

el R [e R B e e

e e e e e i § e i . A .
o ~ ~ RS B K F - .
¥ 1 S g xh 3 o 2 i3 U)
|2 7 P S . S e
0 - s . UL g —ok AR =
S - AN 1 ~3 SR Q. . _ > -
o a . \ i)
m“vl Q m“.vm .

All Users

LOGOUT
WRITE FD
RENAME
DATE

KILL PROGRAN
RESET
coPY
FILES

FD FOR

GO TO .
PLACE
SAVE
BRANCH
DELETE
TIME

~ STATUS
MEMORY

"

DUMP
RECOVER
CONTINUE
RELEASE
PMT

EXIT
SIZE
MAIL
SEND TO

EXEC COMMANDS (System 1.86)

Allows user to logout

Writes Flle Dir, on disc
Reneames a file .

Types date and time

X1lls program relabelling -only
Returns all of user's memory
Coples file to file

.- Types file directory

Types selected file dir. entry

Goes to a "GO TO" (type 1) file

Places a "SAVE" type program (type 1) in core
Saves program, creates GO TO or type 1 file
Branches into a program

Deletes a file

Types real time used (and computer time#)

‘Types user's relabelling status

Types unused user's memory

Causes typing to be ignored by EXEC
Dumps all program, saves status
Recovers from a DUMP file ' (type &)
Continues running a Sub-system
Releases a subsystenm

- Prints a users Program Memory Table

Allows a user to LOGOUT without writing File Dir.
Sets Users Machine size

Types all Mall in user's maill box,

Allows user to put letter in Mall box

Users with Sub-.System Status and above.

USERS

WHERE IS

WHO IS ON
REWIND

RLT

- STN

PTN

SETEXEC
POSITION TAPE
TAPE POSITION
DF -

REMOVE FILE gjfi

PSP
CREATION
LFCRE
STORE
RETREIVE
DIRECTORY

Types number of users on system

Gives teletype number for a user

Types users on system by Account and name
Rewinds tape, resets tape loglc

Releases tape

Sets tape no,

Types tape no.

Sets user-+status

Positlons tape

Types current tape position

Allows a file directory entry to be set up.
Removes file from directory (without deleting)
Types error counters, etc,

Types file dlrectory with Creation Date & Access Count
Types Creation Date & access count of selected file

Stores a file b on Mag., Tape (in backup format)
Retrieves a file from mag. tape

- Types File Directory for files in Backup Format.

OPERATOR PROGRAM COMMANDS

HELP ' TDypes 1list of commands

. MAIL COUNT - Provides a list of Mall originators and total
+ . number of addressees,
COPY MAIL . Allows operator to ‘copy selected mall to a file.
CANCEL MAIL . "Allows operator to cancel maill by number
MAIL GARBAGE . = Removes holes and null entries from Mall List
UAD -~ Ouputs User/Account Directory
- LENGTH : Computes length of files by acoount
. PtIME - Provides time.. used by user number
SET DAY .. . Validates a user for a whole day
RESET TIME .. i Same ag TIME but also clears time,
SET HOUR - Vallidates a user for selected hours
FILES - ‘Outputs complete or selected Flle Directorles
CLEAR FILE - Clears a flle directory
SIZE ACCOUNT ' Computes and provides meximum size of files by ’
" o account,
ACCOUNT | . Sets up or changes Account parameters
NAME - Sets up or changes a user's parameters
CANCEL ACCOUNT Cancels an account directory
CANCEL NAME e Cancels a user entry in the A.U.D.
*QVERFLOW - Allows asgssignment of an overflow directory
#MAP , ‘Builds system bit-map
GARBAGE ' - Removes garbage from nverflow file directory
POINTER B Indicates current location for a new.
. o overflow file directory.
USERS ‘ ~ Provides a sorted list lbf users on the system
. COUNT LETTERS ..~ Counts the number of users YET to recelve I all
E S broadcast letters
. REMOVE LETTER : Removes a broadcast letter from the system
- LETTER . Allows a broadcast letter to be created.
* COPY RECORDS " Allows the accounting records to be copied to a file,

CLEAR RECORDS .~ Same as COPY RECORDS but also clears records,

Users with Operator

EXEC COMMANDS (cont,)

or System status

SHUT DOWN
UP

HANG UP
ANSWER
ACCOUNTING
LETTER
ABT

GFD
ENABLE
DISABLE
LOOK
SYSLD

System commands

"RSMT .
SYSDP

Starts system shut down

Cancels shut down

"Hangs up" selected teletype phone lines (DSS)
Ansers (or enables) Data subset '
Controls accounting to paper tape

Types broadcast letters

Aborts tape operation (halts runaway)

Gets another user's fille directory

Enables a subsystem group

Disables a subsystem group

Loocks at real core locations

Allows load from disc directly; into user's core

Reads in from RAD a SMT Page .
Allows core to be dumped directly on disc,

FILE DIRECTORY FORMAT ON' DISC
. 1 Entry’ (Disc File)

0:0 1 89 I - 1415 S 23 -
i. 0. Account No. : No. of Accesses Creation Date |
T B 11:12 ': :

-1 . Ci Change if File Size | 'File Length"(FL)"*”
. 2‘3 :6 - 711li12 ' -
2, ! " LTP ! Future Controls
! ' o
' 3:;* ‘ L Index Block Pointer ' ' c ‘
Seyes A1 7!8 9 B . : 1551'6'..:|17 =
‘4 ' D! Char. of o T IR S L
) .. Name ‘ ! _ ! ¢
é - ,7,_.8__..,_ " ‘v.' ...:'. "l-s.ilG . ,.,-:... .../ Y |
N | i Char. of ¢ Char. or 136 (fill) i Char. or 136
: Name : "~ fsu RS : (fill)
;FT*L='File Type. .- - : jA_“‘f"?' '
LTP = Low Order Tape position oo AT
HTP = High Order Tape position BRI :
FS = Tape File Size o .
- FL = File Length for disc ' Files - v the
- C = Change in file length (file length no’ longer
SRR Tt &lid)
" CB = File Control Bits, O=Tape flle &/« IG-MO ve
2=Disc file
F = End of Entry Flag (l)
i - If Tape File, word #3 =
370 5689 ‘ 23
R - | 0 . FS TR

Arm Pgsition;s o
. . ,\l

_—

_

LY
100,

S0 10
| G0RX ozxx ouxx

C1bol_.

0
]

Q . ' l i

31,032 .

asemnme

33 ' 3l

User Datei
4oo 'user],

FD | FD .;“;y’v'

user

User
100

Am |l

1
'

‘LOC 0 ‘Disc O

[(oxxxx)

!

lroc1

.

o |
10C1 ;Disc 1

- {(2XXXX)

N

R
- noc 2

's

LOC 2{Disc 2
T (HXXXX)

ey LQCA3

LOC 3'Disc 3
©H(6XXXX)

LOC 4

LOC U4|Disc 4
[(10xxxXX)

o
i

LOC 5

-]

LOC5{Dise 5
: (12XXXX)
1A . N

i -

B T FEES B o
i‘i' o - jLoc

LOC 6. Disc 6
(LLXXXX)

! ; /‘\/‘ T

A ‘ .'LOC'Z;
RN

i

LOC 7,Disc 7
'(160000-
ia77780)

!

/\/

76XX_1”0_0XXl1_02XX101iXX % 172XX1T74XX176XX

wpfj

L
P
e~ &

vk

SO

\
2t

|
i

1

g

i
)

<

¥

Spo 0L

i

Mmoo,/

’
,:

Jy s
\ |‘.') 5

¢
Noer von

Do

AR [.

)

”
[P,

’

.

Sl

)

(g

o 7

(G
/

D L. | /

!
'

CPACIY o

|
—

-

[

i
1
{
i

-

La

-
W

I
i

S 700
NS

= }
o SO - RNy .
(9% %3} /f
i w NS
~ 3
= AN
..... — U \H.m — - —— —_— _ — w.w 17.,- —
o % 3y
N 3.
, 0=y
> — -~ o
s e S e ————— ~ W
b Jg\ v 2 i JwIOI
vl & C
Q) >N
- —— o — —— 1"1Q llllll Wﬂ U\l m
3 3 >~
< 3 2
N =
s Gy I DY N
oM B U N . IS S SR
S yl\./n,).\x Mvu u r\k/.h.. .
SEN q -9
R [& . MIJ. T
- [7 "
EAY L . ~
A -r(N - a//«w o
w«\. » ..V PN A...
S U U SO - BT DN I >
== R >IN P
P s N =~
4o XN 5 3 SN
Ta 1 —%
N > > S 5 § 4 5N
-) L - TR
f . i " S
) i § .m ¥ < D &
N0 3 L | @ R~
S A A O N . B) B
9 I -~ . E 3 X >~ s S IR
e l\.\U le 0\;« ~ \/* I < -
o /.i \ 3 . /\/I #m -
e Y — oS e —_——
l\b\.\ w‘\\ 7 7 J T)
N + . 0
A . ~ O A AT > J o N /w w N
oo 4n N O N G o N -3
. : . - A/ —_—S

!

i !

i : .

. i ¢

' |
i :
; :
1 :
) I
|

i
- PSR IR S
\.(;)L.Lﬂ MO

| L

;, Qg

1’ I
> TR

e
4:] 63--41

»

Rl g

(l‘ Cho
.

WO I

CRral (e w

i
) £ f:j:"./\w"‘c—a’. D7 :'J‘

(o > Toa)

A.l

- APPENDIX A

' GENERAL DESCRIPTION OF THE COMBINED FILE DIRECTORY

1.

A user may have one or two file directory blocks
on the disc; the second vlock is an overflow block.

- Each block consists of ‘128 words .containing a vari-

able number of file directory entries. Each.entry
1s in the format pictured :in (d)

If the first word of the block is Zero, the block
considered to be empty. The last eritry is followed:

by a%=1 or -2 word where the -2 indicates that there

are additional entries 1in the ovefflow block

The last four words of the file directory block
contain the follow1ng informatlon

LasthOrd ‘Valid on—time for this user (1 S

" bit per hour of the day). ‘
Last Word -1 Accumulated computer time used.
Last Word -2 Accumulated real time used. '
Last word -3 Overflow block pointer.

In the case of an.ovefflow block,‘the last three

.words. are zero, and the overflow block pointer is

“a backward pointer to the first file directory block.

et

FILE DIRECTORY BLOCK-

4 Control Words

.-

Variable length name

s e et 0w o o e s e Yt W P S e A " e e s 1 P P G0t Sd S 2 S D oy

ot st oot s s Gt s . e W G e e 0t W G Y G S S S T T - - T GO S e D D S S S

End Dir. Flag -1 or -2

é L ’Garbage

1

Overflow block pointer

Accumulated Real Time

Accunulated Computer Time

Valid On Time

Ac3 .

K

“Up to 24
,gptries

e

Last -3
.Last -2
Last -1

Last Word.” -

LOCATT ON

(A1l numbers in Octal)
_ ﬁlFile Directory occuples
The Disc Location.or addré

part is made from the low

OF FILE DIRECTORIES
(on 16 DISC system)

two sectors or. 200g words on the disc,
ss8 is composed of two parts; the first

order two diglts of the User no.

DOUBLE THE TWO LEAST SIGNIFICANT DIGITS TO OBTAIN PART 1 of the address. -

- OBTAIN PART TWO OF THE ADDRESS FROM THE FOLLOWING TABLE, USING THE g

" Disec addresai+4[i,"'

REMAINING MOST SIGNIFICANT DIGITS:
0. égo P ~ (disc 0, arm position 1)
100 20200 Joo (disec 1, arm position 1)
200 © 40200 (disc 2, arm position 1)
300 60200 : ' (disc 3, arm position 1)
L00 0o ° . . (disc 0, arm position 0)
500 4 20000 .. . (disc 1, arm position 0)
800 40000 .. 2 S
700 - 60000 3
1000 .- 100000 L
1100 120000 - 5
1200 140000 . . &
1300 . 160000 o 7
1400 200000 10-
1500 . 220000 113
- 1600 240000 12

1700 260000 13
2000 300000 - 14
2100 " 320000 15
2200 340000 16 -\ gpverflow user numbers,
2300 360000w 17 : not to be assigned)
EXAMPLES: Cod

. User number: = 243

. Double .43 co 4= 106

. from table, 200 = 40200

. Disc address = ’ﬁ;rh0306> ﬁ

. . User number: 2367 ‘ |
© Double 67 Tk =186
~ from table, 2300 = 360000

360136

IMPORTANT DISC ADDRESSES
(16 Disc system)

Last user number: 2377 Disc adr.: 360176

-Overflow user numbers start at 2100
Lowest overflow pointer without garbage oolleotion: 2140

.~ Accounting records: 140200 - .

" Account/User directory: 100200 (Disc 4, arm pos 1)

. Broadcast Letter bit maps 160200 (allows 20484 users 1ast=377?)

Broadcast Letters:s #1 160210 . ‘
: E T #2 160212 '

#3 160214
#4 160216
#5 160220
#6 . 160222

(Maximum size of 1etter 383 characters) ; _
Note: current lettexr bit map programs setup for maxXimum number a
~of users of 1023,, which allows a LAST POSSIBLE USER NO. of 1777..)ﬂ

- . Mall Box List: 120200
" Mall Box mailz: 120240
. Maximum size of mall:s 240 chars
. (packed 3 chars. per word flts 1nto 6L words)

- Future Expansions _
Account/User Directory for Accounts from P through Z and

- overflow goes at location: 200200
Mail box List moves to 160240 and additional mail at 160300.

oot
TIME-SHARING DEBUGGING SYSTEM

'REFERENCE MANUAL

L, Peter Deutsch\

Butler W. Lampson

‘University of California, Berkeley

Document No. 30.4¢.10

. Issued March 25; 1965
Revised September 3, 1945

_ Contract SD-185
Office of Secretary of Defense

Advanced Research Projects Agency

Washington 25, D.C. - - .

1.1,
1.2.
1.3,
S l.b,
1.5.
1.6.
1.7.
1.8.
2.5.
2.1.
c.2.
2.3.
2.4,
2.5.
2.6.
2.7.
2.8.
z.9.
2.10.

2.11.

Appendix A .

General

Symbols . . .

TABLE OF

Block Structure .

Literals . .
Constants . .
Commands .

Expressions .

The Open Register .

Memory Allocation

opT Commands

.

Register Opening Commands .

Type Value Commands .

Symbol Definition Commands

Mode Changing Commands .

Breakpoint Commands .

Input Commands

Search Commands .

e o o o

The Patch Command

Miscellaneous Commands .

Special Symbols

Panics . . .

DDT Commands . . .

DDT Special Symbols

Appendix B .

Concise Guide to the DDT Manual

.

.CONTENTS

-

3C.40.10-1
May 17, 196%

. 30.40.10-1-1
. 3o;ho.1o-1—1
. 30.40.10-1-4
. 30.40.10-1-6
. 30.40.10-1-6
. 30.&0.1041—7
. 3C.ka10-1-7

. 30.40.10-1-8

30.40.10-1-0

. 30.h0.10-2-1
. 30.40,10-2-1
. 30.40.17-2-3
. 30 0, 10-2-k
. s0.b40.10-2-4
. 30.40.10-2-5

. 30.40.10-2-7

30.40.10-7=7

30.40.10-2-0

. 30.ke.10-2-10

. 30.k0.10-2-25

30.40.10-2-25%

.3@&0Jﬂﬁbl
. 30.40,10-4-1
. 30,40.10-4-2
. 30.40.10-8-.

. 30.,L0.10-F .

30.%0.10-1-1
March 25, 1965
1.0. General
DDT is the debugging system for the SDS 930 Time-Sharing Systerm.
- It has facilities for symbolic reference to and typeout of menmory

locations and central registers. Furthermore, it permits the vse
of literals in the same manner as in the assembler. It can alsc
insert breakpoints into programs, perform a trace, and search pro-
grams for specified words and specified effective addresses. There
is a command to facilitate program vatching. Finally, DDT can load
both é.bsolute and relocatable files in the format produced by the
assembler. '

The system has a language for communication between DDT and

its users. The basic components of this language are symbols, con-

stants, and commands.

1.1, Symbols
A symbol is any string of six or fewer letters and digits

containing at least one letter. All opcodes recognized by
the assembler'are built-in ﬁymbols. Other symbols are 31,
32, 3A, 3B, ;F, ;L, ;M, 3;Q, ;X, and dot. Their meanings are
explained below. Every symbol is given a'valug when it is
introduced into the system. This value is a 2L-bit integer:
For most éymbols it will be either an address‘in memory or the
octal encodihg of an operation code. Note that DDT makes no
distinction between opcodes and symbols. -

Examples:

| ABC

AB12L i
12XYZ :

30.40.10=1-2
September 3, 1965

The following are not symbols:

ABCDEFG
AB*CD

Symbols ﬁay be introduced to DDT in two basically different
ways: ' |

(A) They may be written out by the assembler and read in

from the binary program file by DD‘I'

(B) They may be typed in and assigned values during debugging

using the @, :, and < commands.

It is possible for the value of a symbol to be undefined. This
may occur if a program, is 1oadeci vhich references an external symbol
not defined in a previously loaded program, It may also occur if an
undefined symbol is typed in an expression. In general, undefined
symbols are legal input to DDT except when their values would be
required immediately for thé exeeution ofla.vconnna.nd. Thus, for
example, the ;G command could no’c have an undefined symbol as its
argument. .

Undefined symbols may become de;f’inéd in several ways. They
may be defined by EXT directives in the assem’bier and read into DDT
as part of a binary program. Alterna.tively, they may be defined by
one of the three symbol definition commands available.in DDT. When
" the definition occurs, the value of the symbol will be substituted
in all the expressions in which the symbol has appeared.

If DDT gives a carriage return without a line feed after typing
out the contents of a register, it means thgfg the register contains
an undefined symbol. The register is closed at once so tha;b its

contents cannot be erroneously changed.

30.40,10-1-3
September 3, 1965

The only restriction on this facility is that, as for the
assembler, the undefined symbol must be the only thing in the address
field of the word in which it appears.

Warning: If the program alters words containing undefined symbols,
unpredictable errors will resuit. This is the only way in which the
programmer cen get into serious trouble by using an undefined symbol.
Other incorrect uses of undefined symbols will be detected by DDT
and will result in an error comment.

DDT keeps track of an undefined symbol by building a pointer
chain through the address of the words containing the symbol.

Thus, suppose that the symbol A is undefined and appears as follows
Sl ‘IDA A

52 STA A

s3 MRG A

.and nowhere else in the program. After loading, the symbol table
entry for A will contain a flag indicating that it is undefined and
a pointgf to Sl. The above locations Wiil contain:.

Sl LDA sS2

s2 STA S3

83 MRG 0
When the symbol is defined, DDT goes through the pointer chain and
fills in the value. It recognizes the end of the pointer chain
by a O address.

From this description it should be obvious what will happen if

the pointer chain is destroyed. A probably consequence is

102.

30.40.10-1-4

May 17, 1965
that é search down the pointer chain will not terminate. DDT
does such searches whenever it prints an address, and also
during some effective address searches. If the chain it is
searching‘has more than‘20h8 links, it will print the symbol
at its head, followed by (U) and continue. Fixing up an un-

defined symbol pointer chain which has been clobbered is an

exercise which we leave to the reader.

Block Structure.

A limited féacility called the block structure facility
is provided to simplify the referencing of local symbols which
are defined in more than one program. Note that DDT's block
structure has only a tenuous connection with the block struc-
ture of ALGOL. The biock structure of a program is organized
in the following manner: Every binary program file loaded by
DDT constitutes a separate block. In addition, there is an
intrinsic block called block zero. Any symbél input to DbT‘
has a block number associated with it;\\It'also has a type;

it may be external or local. All operation codes and all

symbols defined by < are external block zero syﬁbols. When
a binary file written by the assembler is 1oaded by DDT, it
defines a new block, and all symbols definéd'dﬁfing the as-
sembly and written on the binary file are associated with that
block. Any symbols which were declaréd to the assembler to be

external are of external éype. All other symbols are of local

type.

1.3.

Lok,

30.40.10-1-6
May 17, 1965 |

Literals

A literal is a SPeéial kind of symbol recognized by DDT.
The two characters ' =' signal the beginning of a literal,
which 'is terminated by any of the characters which ordinarily
terminate an expression. The literal is looked up in the
literal table which is generated when the program blocks are
loéded. If it is found, the address which has been assigned
to it is the value of the symbdl. If it does not appear in
the literal table, a location is assigned to it at the current
value of ;F and the address of this location is returned as the
value. 3F is inéreased by 1. Exception: 1In patch mode, literals
are saved and defined when the patch is completed since, other-
wise, they would interfere with the patch. |

When DDT types out a symbol whose value is an address in
the literal table, it will type out in the same format in
which it would be input; that is, as = follo&ed by the vélue of
the literal.

Do not use O as a liter;l.
Constants

. A constant is any string of digits, possibly preceded by

a % sign. The number represented by the string‘is evaluated,
truncated to 2 bits and then used just like the value of a

symbol. The radix in which the evaluation is performed is

. controlled by the O-D mode. The ;0 command sets this radix to

octal, ;D sets it to decimal. The preceding % changes the
radix for the immediately following number.
The radix in which constants are typed out by DDT is also

determined by the setting of the O-D mode. Further flexibility

1.5.

1.6.

30.40.10-1-7 .

May 17, 1965
is provided by the ;R command, which sets the radix to any
specified value. If the radix is not octal, % causes the
following number to be taken as octal.

Commands

A command is an order Lyvped to DDT which instructs it to

do something. The commands are ..iibed and their functions ex-

;_w&_w f?-Q\l‘/()(A
plained m:ehec:bahle.iaelm
Expressions . . Iq,ﬁ“‘bf

An expression is a string of numbers/\\connected with blanks,
+ signs, and --'signs. The first symbol or number may be pre-
ceded by a minus sign. Blank acts like plus, except that the
following 6perand is truncated to.lh bits before being added
to the accumulated value of the expression. The value of an
expression is aéh—f::‘.’c integer. A single symbol or constant

may be an expression.

Exa.m;gles:
i;_DA has the value 7600000
LDA 10 has the va.lﬁe' 7600010 if the radix is
o octal -
LDA %10 has the value 7600012
If ©SYM is a symbol "wi'bh the value . *1212, then
SYM has the value 1212
SYM 10 has the value - - - 1222
LDA SYM has the value 07601212 .

If this last expression were put into a memory register and
later executed by the program the effect would be td load the
contents of SYM, register 1212, into the A register.

When DDT types out expressions, two mode switches control

the format of the output. The C-S mode determines whether the

xI.7.

 30.k0.10-1-8
March 25, 1965

value will be typed as a constant_(C), or as a symbolic
expression (S). In the latter case, the opéode (if any)
and the address will be put into symbolic form. If there
is no récoghizable opcode, the value will always be in con-
stant form regardless of the setting of the C-3 mode. A
zero opcode (HLT) is not printed. The setting of this- mode
is controlled by the ;S and ;C commands.- It is also con-
trolled 16cally by the [and] commands.

The R-V mode controls the format in which addresses
are typed. DDI' types addresses when asked to open the pre-
vious or the next register, when it reports the results of
word and address searches, and on breakpoints. In relative
(R) mode, addresses are typed in symbolic form, i.e., as the
largest defined symbol smaller than the address plus a con-
stant if necessary. If the constant is bigger than 200 octal
or, if the value of the symbol is less than the first location
of the progrém, the entire dddress is typed as a constant.
In absolute (V) mode, addresses are always typed as constants.
The setting'of“this mode is contfolléd by the ;R and ;V com-

mands.

The Open Register

. One other major ingredient of the DDT language is the

open register. Certain commands cause & register to be

"opened". This means that its contents are typed out (except
in enter mode, for which see the \ command), followed by a

tab. Any expression the user types will then be inserted into

30.40.10-1-9
May 17, 1965
the open register in place of its current contents. After
this insertion the register is closed at once. Note that
the string LDA ABC= is a command, and does not cause LDA ABC
to be entereq into the current open register. The current
location is given by the symbol "." (dot) which always has
as its value the address of the last register opened, whether
or not it is still open. |
Note:
(1) Comma and star (for indirect addressing) may be
used in expressions as they are used in the as-
sembler; e.g., LDA¥ 0,2 has the value 27640000.
(2)‘ DDT will respond to any illegal input with the
character ? followed by a carriage return, after
which it will behave as if nothing had been typed
gince the last tab or carriage return. The command
 ? also erases everything typed since the last tab
or carriage return.. |

1.8. Memory Allocation and DDT

DDT may cause the system to assign memory to the user
fo? use either by the system or by the user's program. System
memory is used-tb hold the symbol table, which starts in block T
and grows'down. The s&mbol table contracts at.the end of each
load of a binaryifile and when symbols are killed; this contrac-
tion may cause memory to be released. |

DDT grabs program memory only when it is required for

loading a binary file or when a ;U (execute) command is given,

30.40.10-1-10

May 17, 1965
and the valué of ;F is such that a.new block is needed to
hold the instruction to be executed. For executing an in-
struction, DDT requires location ;F, ;F+1 and ;F+2. Memory
is never grabbed for examination of a register., Attempts to
open locations not assigned will cause DDT to type ?. This
means that upon initial entry to DDT no registers are available
for examination. The easiest way to obtain memory for typing
in'a progrém is to execute a NOP, thus: NOP;U. This assigns
a block containing the initial wvalue of ;F, which is 20Qg

If an attemp% to grab memory leads to‘a trap, DDT types

(M) and abandons whatever it is doing. This can happen if the

machine size is exceeded (Cf. Section 1.3. of the Executive

Manual.).

30.40.10-2-1
March 25, 1965

2.0. DDT Commands

In the following descriptions of DDT commands, the string

< E > will be used to denote an arbitrary expression which may be

typed by the user. Unless otherwise indicated, the value of this

expression is truncated to 14 bits before it is used by DDT.

2.1.

carriage
return

Register Opening Commands

<E>/ opens the register addressed by the value of
the expreésion. DDT will give a tab, type an exoression
whose value is equal to the contents of the register, give
another tab and await further commands. The vprecise form of
the expression typed in this and most other commands is de-
pendent on the setting of the S5-C and R-V modes. If the user
types in an expreésion, DDT will insert its value into the
register. Typing another command closes the register, unless
it is a type value or symbol definition command. Note that
in a command that requires a preceding expreséion, the expres-
sion is regarded as part of the command ana would not, for
instance, be inserted into the open register. If another /
is given as the next command with no précedingAexpression the
contents of the register addreésed by the expréssion typed by
DDT are typed out. A further / repeats this érocess. Note,
howeyer, that the original register 6pénéd feﬁains the open

register; any changes made ﬁill go into that register.

This‘command does not necessarily have any effect. If
the specified conditions are preseht, however, any of the

following actions may occur:

R

1"

30.40,10-2-2
September 3, 1965

(l) If there is an open register, the register is closed.
(2) If DDT is in enter mode, it leaves it.

(3) If DDT is in patch mode, the vatch is terminated (for a
fuller description of this effect, see the patch command).

This command has the same effect as /, except that the contents
of the register opened are typed in symbolic form regardless of the
setting of the S-C mode.

This command has the same effect as /5 except that the contents
of the register opened are typed in constant form regardless of the
setting of the S5-C mode. |

This command ﬁas the same effect as /, except that the contents
of the register opened are typed as a signed integer regardless of the
setting of the S5-C modé.

This command acts like /, except tha£ the register constants are

typed in ASCII.

line feed This command opens the register whose address is the current

same as for line feed.

location plus one, i.e., the register after the one just opened. The
output of DDT on this command is carriage return, register address
(format controlled by the R-V mode), /, tab, value of contents, tab.

This command opens the register whose address is the current

location minus one, i.e., the previous register. The output is the

same as for thé_line feed command.

Example: .

Asc/ " LDA ATPHA . (1line feed)
ABC+1/ STA BETA STA GAMMA - (line feed)
ABC+2/ LDB DELTA T

ABC+1/ STA GAMMA

s
This command opens the register whose address I the last 1L

bits of the value of the last expression is typed. The output is the

i

@

30.40.10-2-3
September 3, 1965

This command is the same as /, except that the contents of the
register are not typed. DIT goes into enter mode, in which the contents
of registers opened by line feed, t, or k are not typed. Any othér
command causeé DDT to go out of enter mode. In particular, carriage
return has this effect. When a register has been opened with \, Do
thinks that it has typed out the contents. The type value commands
will, therefore, work on the contents of the register.

The type register in special mode characters [, 1, $ (type as a
negative integef), " (type in ASCII) are also preserved by line feed,
up arrow and (.

This command suppresses typeout of regiéter addresses during line
feed, up arrow and (chains.

Cancels the ;\ command.

Type Value Commands

This command types the value of the last expression typed in
constant form. It may appear in the form < E > =, in which case the
value of the expression is typed. Otherwise, the expression referred
to is the one most recentkf typed, either by DIT of by the user.

This command tyves the value of the last expression typed as a
signed integer. |

This command types the value of the last expfession typed in
symbolic form. ’ T |

This command types the value of the 1aét'expréséion typed as
three 8-bit.characters.

This command types the address part of the last expression typed

in symbolic form. If, for instance, the program has executed BRM X,

2.3

3

<>

n

3D

MABC=10221043.

30.40.10-2-k
September 3, 1965

then X\@ will cause IDT to print the address of the BRM.

Example:

LDA= 7600000
LDA 10= . T600010
ILDA <— IDA
7600000 ¢ LDA

-1= TrrrreTT
- 13t -1
777777 =1

10221043 ABC

Symbol Definition Commands

This command defines the value of the pregeding symbol to.be the
current location. The .symbol is local to the block which is primary
vhen the : command is given, |

This command defines the value of the preceding symbol to be the
address of the last expression typed by DDT or the user. The symbol is
local to the block which is primary when fhe command.is given.

< (symbol) > defines the symbol to have the value of the immediately
precediﬁg expression, which must be typed by the user. The symbol is
global and is associated with block-zero. =

Mode Changingz Commands

This command causes the inmediately following number to beé taken
in the radix opposite to the normsl one which is set by the O0-D mniode.

This'command.generates a constant whose value is:the octal encoding
of the next three characters typed in the standard internal code. These

characters will not be recognized as commands no metter what they are. Thus:

(DECIMAL) This command changes the O-D mode to decimal. This mode

determines the radix in which constants are typed out and read in.

" (OCTAL) This command changes the 0-D mode to octal.

< E > ;R (RADIX) sets the radix to the value of the expression.

sR

3P

2.5.

30.40.10-2-5
March 25, 1965
(CONSTANT) This command changes the S-C mode to con-
stant. This mode determines the format in which the wvalues

of expressions are typed out. .
(SYMBOLIC) This command changes the S-C mode to symbolic.

(HOLLERITH) This command causes expressions to be typed
out as deseribed under the ' command. It may be reversed by

;C or HE

/

(RELATIVE) ‘This command changes the R-V mode to relative.
This mode determines the format for the output of addresses,
both in symbolic expression and when generated by line feed
and /?._

(ABSOLUTE) This command changes the R-V mode to absolute.

Breakpoint Commands

(BREAKPOINT) < E > ! sets the breakpoint at the address
given by the value of the expression. The effect is that if

the program executes the instruction at this address control

- returns to DDT, which will print the address and the contents

of the A, B, and X registers and await further cormands
(see ;N, and ;P). The break occurs before execﬁtion of the
instruction in the breakpoint location. The breakpoint is

removed by a | with no preceding expression.

(PROCEED) This command restarts the program after a break.
The program executes the instruction at the breakpoint and goes

on from there. The breakpoint is not removed unless this is -

30.40.10-2-6

May 17, 1965
specifically done by ! so that, if the program arrives at
this location again, another break will occur. If ;P is
preceded by an expression, another break will not occur
until the instruction at the breakpoint has been executed
that many times.

(NEXT) This command executes the next instruction after
the breakpoint and breaks again. The bréakpoint is moved to
the location to which the program will go after the second
break. This program pfovides a trace facility in that're-
peated executioﬂs of ;N will pro&ide a running print out of
the contents of the significant internal registers, instruc-
tion by instruction. The function is essentially the same as
that of the step switch on the console. If ;N is preceded by
an expression, that many instructions will be executed before
the next break occurs.

A ;N command follows the flow of contro; in the user's
program. In particular, it Qill trace the execution of
users' POPs. The execution of SYSPOPs, however, is not traced.
In other words, a SYSPOP such as FAD (floating add) is regarded
as one instruction by ;N. .

When a proceed (;P or ;N) command is given, the following
sequence of events takes place: o

1) DDT'compufes the two locatiéns to which the instruc-

tion being proceeded from ﬁay go (depending on whether
or not it skips) and inserts BRS 10 instructions there,

preserving the old contents.

2.6.

30.40.10-2-7
May 17, 1965

2) Control is transferred to the location from which the
proceed occurs. The inétruction executes and the pro-
gram proceeds to the next instruction, which because
of step 1 will be a BRS 10 which returns contfol to
DDT.

3) The two locations altered in step 1 are restored, the
location at which the breakpoint (if any) was put is
-reflaced with»a BRS 10, and control is transferred to
the next location of the program, which will be the
one from which the BﬁS 10 of step 2 occurred. The
program then executes untii it arrives at the break-
point location, which contains the BRS 10 inserted
at the beginning of step 3.

From this description it should be clear that attempts to
proceed through certain instructions‘will léad to disaster, and
also thét breakpoints which are encountered when the program is
running in a fork will not do the right thing. In some: cases,
attempts to proceed through unreasonable instructions will cause
the error comment |

$>>
but this cannot be counted on.

Input Commands

< E > ;Y causes DDT to give a tab and await a file name.
On the specified file it expects to find a binary program.
If the program is absolute it is read in. If it is relocatable

it is read in and relocated at the location specified by the

30.40.10-2-8

May 17, 1965
expression preceding the ;Y command. If the expression is
omitted, relocatable loading commences at location EOO?a.nd
continues by beginning each program in the first available
location after the preceding one. After reading is complete,
the first location not used by the program is typed out. Any

local symbols on the binary file are ignored.

This command is identical to ;Y except that it also
reads symbols from the tape and adds them to DDT's symbol
table. Any sym’éols on the tape will be recognized by DDT
thereafter. Any literals used in the program will also be
recognizéd. Furthermore, all the literals on binary files
read in before the first ;E command is given will be consoli-
dated into a single table. Duplicatc—; space for identical
literals will not be assigned in memory. Identical literals
in different blocks will be assigned the seme memory location
when the ;E command is given.. |

The following two points should be noted ;n connection
with ;f and ;T commands. |

1) -The use of an expression before ;T orﬁ 3Y when the

file is absolute is in error.

- 2) The block read in becomes the primary block.

2.7.

2.8.

30.40.10-2-9
May 17, 1965

Search Commands

(WORD SEARCH) < E > ;W searches memory between the limits
;1 and ;2 for words which match the value of the preceding ex-
pression when both are masked by the value of ;M. The ad-

dresses and contents of all such words are typed out.

(EFFECTIVE AﬁDRESS SEARCH) < E > ;E searches memory between
the limits ;1 and ;2 for effective addresses equal to the value
of the expression truncated to 1h bits. Indexing, if specified,
is done with the valué of X saved by DDT. Indirect address
chains are follo%ed to a depth of 64. The addresses and con-

tents of all words found are typed out.

The Patch'Command

< E >) causes a patch to be inserted at the address speci-
fied by the value of the expression. DDT inserts in this loca-
tion a branch to the current value of 3;F. When the patch is
done, ;F is updated. It then gives a carriage return and a)
and waits for the user to type in the patch. Legal input con-
sists of a series of expressions whose values are inserted in
successive locations in memory. Each of these expressions should
be terminated by a line feed, after which DDT wili give a car-
riage return aﬁd) and await the next expression. The 4 command
may be given in place of the line feed and has its usual méaning,
except that the contents of the.previous location are not

typed. Two other commands are legal in patch mode. They are:
. \ e

53X

2.9

30.40.10-2-10
September 3, 1965

(1) Colon, which may be used to define a local symbol
with value edual to the current location.

(2) Carriage return, which terminates the patch. When the
patch is terminated, DDT inserts in the next
available location the original contents of the
location at which the patch was inserted. It then
inserts iﬁ the following two locations branch in-
structions to the first and second locations follow-

- ing the patch. This means that if the patch command
is a skip instruction, the program will continue to
operate correctly. Any other commands given in patch
mode may cause unpredictable errors.
Is identical to the) command except that it puts the instruction
being patched before the code inserted by the programmer instead of after.

Miscellaneous Commands

This command erases everything typed since the last tab or
carriage return. It is always legal.

(GO TO) < E > ;G restores the A, B, and X registers which were \

‘saved vhen DDT was entered (unless they have been modified) and transfers.

to the location specified by the value of the expression.
(KILL) Used alone, this command removes from DDT's symbol table
all symbols defined by the program. DDT will type back --OK and wait

for a confirming dot. All other characters will abort the command.

" Preceded by a symbol, it removes that symbol only from the table.

< E>, <E> ;L sets ;1 and ;2 (the lower and upper bounds for

searéhes) to the valﬁes,of the first and second expressions respectively.

2.10

30.40.10-2-11
September 3, 1965

(UNDEFmED) This command causes 2ll undefined symbols to
be listed..

< E > ;U causes the value of the expression to be executed as
an instruction. If it is a branch, control goes to the loca.tion
branched to. In all other cases control remains with DDT. A single
carriage return is typed before execution of the instruction. If the
instruction does not branch and does not skip, a $ and another, carriage
return are typed after its execution. If the instruction does skip,
two dollar signsb ($$) are typed followed by a carriage return.

(ZERO) < E >, < E > ;Z sets to zero all locé:tions between the
value of the first expression and that of the second. ;Z alone
releases all memory accessible to the user's program. DDT will type
back --OK and wait .for a confirming ,dot. Any other characters will
abort the command., If this memory is returned, due to later access

by DDT or a program, it will be cleared to zero.

Special Symbols

The value of "." is the current location, i.e., the address

of the last register opened.

The following symbols refer to various special.registers of‘
the machine. Their value is the contents [of these reg.isters as
saved by DDT. Tcg change the contents of a register, a command

of the form < E > ;A is used. This command sets the A register

to the value of the expression. Whenever DDT executes a

35U, 3G, ;P, or ;N command, it restores the values of all machine
registers. If any of these values have been changed by the user,

it is the cha.nged value which will be restored.

31

The valﬁe of this symbol is the contents
register.

The value of this symbol is the contents
register.

The value of this symbol is the contents
register.

The value of this symbol is the contents

30.40.10-2-12

March 25, 1965

of the A

of the B

of the X

of the program

counter. Note: There is never any reason for changing the

value of this symbol.

The values of the following special symbols are used by

DDT in certain commands or are available to the programmer

for his general enlightenment. These valués may be changed

in the same way that the values of the symbols for the central

registers of the machine may be changed.

The value of this symbol is the mask for word searches.

The value of this symbol is the lower bound for -word

and effeétive address searches. It may also be set by the

;L command.

;Q

2.]1‘

30.40,10-2-13
March 25, 1965
The value of this symbol is the upper oound for word
and effective address searches. I% may also be set by using
sL. |
This symbol has a value equal to the value of the last
expression typed by DDT or the user. It is useful, for in-
stance, if the programmervwishes to add one to the cohtents

of the open register; he need only type ;Q + 1.

The value of this symbol is the address of the lowest
location in core not used by the program. New literals and
patches are inserted starting at' this address. DNote: Like

all other special symbols, ;F may be changed by the command

< E > ;F. It is also updated as necessary by patches and literal

definitions.

Panics

DDT recognizes four kinds of pan;c conditions:

(1) Tllegal instruction panics from the user's program.

(2) Memory allocation exceeded panics .from the user's
program. .

(3) Panics generated by pushing the rubout button.

(&) Panics generated by the execution of BRS 10 in

the user's program.

For each of these conditions DDT prints cut a message,
the location of the instruction at which the panic occurred,
and the.contents of this location. The messages are as

follows:

30.40,10-2-14
March 25, 1965

(1) 1Illegal instruction vanie I>>
(2) Memory allocation exceeded M>>
(3) Rubout button panic PB > >
(&) BRS 10 panic P>>

If a memory allocation exceeded panic is caused by a
transfer to an illegal location, the éontents of the ioca-
tion causing the panic is not available aﬁd DDT, therefore,
‘types a ?,

Tvvo other panic conditions are possible in DDT.

(1) If the rubout button is pushed twice with no
intervening typing by the user, control returns
to the executivé.

(2) If the rubout button is pushed while DDT is
executing a command, execution and typeout are

terminated and DDT types carriage return and bell

and then awaits further conmands.

CR

Sk

[X)

&

30.40.10-A-1
September 3, 1965

APPENDIX A
DDT COMMANDS

open a register

close register

open symbolic

open as constant

open as signed integer

following address: Open register and type contents in ASCII

.open next register

open previous register

open register addressed by last expressioh typed

enter mode

type as constant

type as signed integer
type symbolic
type in ADCII .

- define symbol equal to current location

define symbol as address of last expre331on typed; type
address as symbolic

define symbol as expression

switch radix of follcwing nuniber

.take next three characters as ASCII text (not immediately

preceded by an address)

insert breakpoint

'patch

erase -

'set typeout mode to constant

30.40.10-A-2
September 3, 1965

change radix tc decimal

effective address search

go. to

set typeout mode to ASCII

insert patch following instruction

kill symbols

progran countér; set bounds for searches
next

change radix to octal

nroceed

set radix;.set address typeout to relative
set typeout mode to symbolic

read binary with symbols

type undefined symbols;‘execute preceding expression
set address typeout to absolute

word search

read binary without symbois

clear memory

DDT SPECIAL SYMBOLS

current location

lowef bound for search
upper bound for search
A register

B register

effective address search

last location of program

program counter

we \.C.:

K= <

N

30.40,10-A-2
May 17, 1965
go to
set typeout mode to ASCIT
kill symbols
program counter; set bounds for searches
next
change radix to §Cta1
proceed R
set radix; set address typeout to relative
set typeout mode to symbolic
read binary with symbols
tyve undefined symbols; execute preceding expression
set addfess typeout to absoiute
word search
read binary without symbols

clear memory

DDT SPECIAL SYMBOLS -

current location

lower bound for search
upper bound for search
A régister

B register

last location of program

-program counter

word search mask
last expression typed

X register

;M
5Q
;X
3/
?

C
Jd

o« 9

word search mask

last expression typed
X register

change to insert mode

change back to open register mode

seT o6~D mode o +7F¥ re3|sfews

K . w ' h h

30.40.10-4-3
September 3, 1965

t

n oek|

b Spmbali¢

30.40.10-B-1
May 17, 1965
APPENDIX B

. CONCISE GUIDE TO THE DDT MANUAL

Addresses: Pp; 1.1-1.6, 2.5 (commands ;R ;V)
absolute vs. relati&e: P, 2.5
and undefined symbols: Pp. 1.2-1.k
A register: P. 2.12
Block structure: Pp. 1.k-1.5
B register: P. 2.12
Breakpoints: Pp. 2.5-2.7 (commands ! ;P ;N)
Central registers: Pp. 2.11-2.12 (special symbols ;A ;B ;X ;L)
- Clear memory: P. 2.11 (command ;Z)
Constants: Pp. 1.6-1.7 ‘
and radix: Pp. 1.7, 2.&42.5' (commands % ;D ;0 ;R)
ASCII input: P, 2.4 (command ")
ASCIT output: P. 2.3 (command '), P. 2.5 (command ;H)
Effective address searches: see searches
Error comments: Pp. 1.9, i.lO, 2.13-2.14
Execute an instruction: P. 2.11 (command ;U)
Expressions: Pp. 1.7-1.8 |
typeout of: P. 2.3 (commands = # §k'), P. 2.5 (commands ;C ;S ;H ;R ;V)
Govto program: P. 2,10 (command ;G) ’
Tllegal instruction: Pp. 2.13-2.1h
Indexing: P. 1.9
Indirect addressingi P, 1.9

Kill symbols: P. 2.10 (command ;K)

30.40.10-B-2
May 17, 1965
Literals: P. 1.6
Loading binary: Pp. 2.7-2.8 (commands ;T ;Y
Memory allocation: Pp. 1.9-1.10
Memory allocation exceeded: Pp. 1.10, 2.13-2.14
Panic condition: Pp. 2.13-2.1k4
Patching a program: Pp. 2.9-2.10
Proceeds: Pp. 2.5-2.7
Radix: Pp. 1.6, 2.4-2.5 (commands % ;D ;0 ;R)
Registers:
typeout of: see expressions
examination and changing:. Pp. 2.1-2.3 (commands / er] [$1¢ 4 (\)
open: Pp. 1.8-1.9 | |
Rubout button: Pp. 2.13-2.14
Searches bounds: Pp. 2.9, 2.12 ‘
word: P. 2.9 (command ;w) P. 2.12 (special symbols ;L ;M ;1 ;2)
effective address: P. 2.9 (comand ;E) P. 2.12
Symbols: P. 1.1 v
undefined: Pp. 1.2-1.k, typeout of P. 2.11 (command ;U)
duplicate: Pp. 1l.4-1.5
definition of: Pp. 1.2, 2.4 (commands :&@ <)
Traces: P. 2.6 (conmand ;N)
Undefined symbols: see symbols
Word searches: seé searches
X register: P..2.12

Zero memory: P. 2.11 (command ;Z)

ARPAS

January, 1967

I

TARIE OF CCITENTS

Introductlon « v v« v v v v 4 0 4 . e

1.1.

Basic Description of the Asserbler
SITDOLS v v v vk e e e e e e e s
Instructionz and Directivds . . .
Svbprogra: Facility> « e e e e e
Titerals o v v v v v v 4 0 4 e e s
Relocatiorn o v v o v ¢ v v

Basic Asserbly Procedure . .

1.8, Motation & v v v v v . . .
The Assemblf Tanwraze o v v v v 0 e e
2.1. Character SEt v v v v 4 v 4 o 0 .
2.2, Input Records . .+ . v ¢« « « «
2.3. sseribler Sntax & . . . 0 . . .

Instruction Syntax « . o o . .

3.1.
3.2,

303.
3.k

JeTa

Classification of Instructions .

Label Ficld « « + . .

Cnérand Fleld . o o v o v o o o &

Corment Field « . .+ . . .

Syntax of Expressions

h.1.

k.2,

Operators™ « o o« o o o o o b . .
Constants .+ « + + ¢ « v o« ¢« o « &
Cléssification of Symbols. . . .
TEIMS 4« o o o » o o & o o o o o o
Expressions .+ « o ¢ ¢+ o o+ o o
Evalﬁation of Expressions v e

Reloeation Constraints . .‘. . e s

50.50.10-1-1
30.5C.10-1-1
30.50.10-1~1
30.50.10-1-2
3C.50.10-1-2
30.5C.,10-1-2
30.50,10-1-3
30.50.10-1-3
30.50.10—1-h

30.50.10-2-1

LR

30.50,10-2-1

30.50.10-2-1

30.50.10-2-2

30.50.10-3-1
30.50.10-3-1
30.50.10-3-2
30.50.10-3-2
30.50.10-3-2
30.56.‘10—&—1
20.50,10-4-1
30.50.10-4-2
30.50.10-4-2
30.50.10-4-2
30.50.10-4-3
30.50.10-4-3
30.50.10-k-4

5.0.

6.0.

Literals . v v ¢ v v ¢ 6 o 4 e 6 b e e v a e
DirectivesS « v v v v v v 4 v v e e e e e e e
6.1. DATA Generate Data « . . .
6.2. TEXT Generate Text . « « 4 o« « o o .+ .
6.3. ASC Generate Text With Three Characters
6.k. BES Block Ending Symbol
6.5. BSS Block Starting Symbol . . .

6.6. EQU EQUalsS . ¢« v ¢ v ¢ o o o 4 o 0 oo s
6.7. END End of Assembly

6.8. EXT Define External Symbol

~6.9. ORG Program Origin

6.10. OPD Operation Definition

6.11. POPD Programmed Operator Definition . .

~ 6.12, LIST List Program on Output Medium . .

6.13. NOLIST . Disgable Assembly Listing . . .

6.1k, PAGE Skip tc a New Page . . «o
6.15. SYTB List Symbol Table « + + .
6.16. BIN Output Binary Program
6.17; NOBIN Disable Binary Output

6.18. IDENT Subprogram Identification Marker

6:19. DELSYM Delete Punch-out of Symbcl Table and

Defined Operations . . « «
6.20. MACRC Define a Macro-cperation
.21. ENDM End a Macrc Definition

6.22. RPT Repeat the Next Block

_6.23. ENDR Erd RPT Blcck + « o &« 0 o « o &

.

30.50.10-5-1
30.50.10-6-1
30.50.10-6-1
30;50.1056-2
30.50.10-6-2

30.50;10-6—2

30.50.10-6-3

30.50.10-6-3

30.50.10-6-3

30.50.10-6-3 -
30.50.10-6-k
30.50.10-6-}4
30.50.10-6-5
30.50.10-6-5
30.50,10-6-6
30.50.10-6-6
30.50.10-6-6
30.50.10-6-6
30.50.10-6-6

30.50.,10-6-7

- 30.50.10-6-7

30,50,10-6-7
30.50.10-6-7
30.50,10-6-8

30.50.10-6-8

30.50.10-1iii
August 5, 1965

6.24h, CRPT Conditional Repeat . . « « + o v v o o & + & &
6.é5. IF Insert the Next Block if the Expression > 0 . .

6.26. ELSF Else Insert the Next Block If the Expression
S

6.27. ENDF End the If BloCK . « « v « o o o o ¢« o o o »
6.28. NARG Equals Number of Arguments . . ce e e e e
T.0. - Assembler Diagnostics « . . . l. e e e e .
8.0. Assembler Binary Output Formats « « + « . .
8.1.. Relocatable Output Format for Linking Loader . . .
8.2. ' Absolute Assembly Output Format
'9.0. Assembler Operating Instructions
' APfENDIX~A. Extended List of Instructions
APPENDIX B, Assembler Table Structure ¢ & ¢« o « « &
APPENDIX C. Assembler Internal Code o« « o o o o o o

APPENDIX D.' Table of Trimmed ASCII Code for the SDS 930 .

30.50.10-6-9

30.50.,10-6-9

30.50.10-6-9
30.50.10-6-9
30.50,10-6-10

30.50.10-T-1"

. 30.50.10-8-1

. 30.50.10-8-1

30.50.10-8-4
30.50.10-9-1
30.50.10-A-1

30.50.10-B-1

. 30.50.10-C-1

. 30.50.10-D-1

30.50.10-1-1
Aoril 10, 1965

1.0. Introducticn

An asserbly progran cr assembler is a translator whnse source

language is aésembly language and whose <bject program is in machine
languagé; AAs;embly language is virtually a cne-for-one representa-
tion of machine language written in a symbclic form. ITts value comes
from mheﬁonic representation of operaticns and from the ability of
the &assembler to nerform address éomputations and to do space alloca-

tion.

The introduction serves to define most of the terminology used. It

is assumed that the programmer is familiar with the basic cperation

of the SDS 940

1.1. Basic Description of the Asséﬁbler
The assembler‘isva two-pass assembler with subprogram, literal,
‘and ﬁacro facility. = TIts output is in two formats depending on
fhe nature of»the assembly.

1.2. Symbols
Numbers‘may be represented symbolically in assembly language
by symbols. Symbols are arbitrarily long strings‘of charac-
ters not forming a number. In the assembler only the first
six charactéfs of a symbol are significant. When a symbol is
used to‘repreSent fhé memory address of a machine command or

a datum, it is called a label.

* See the SDS 940 Computer Manual.

1.3.

1.k,

1.5.

© 30.50.10-1-2
April 10, 1965

Instructions and Directives
Input to the assembler takes the form of a string of instruc-
_gi;cir_x_s_ and directives. Instructions are gen;erative and are
mnemonic representations of machine commands. Directives
may or may not be generative and serve to facilitate' the
entry’of data or to control the assembler.
Subprogram Facility "
Often programs become quite large or fall info logical divi- -
sions which are fréquently almost independent. In either case
it is convenient to break the programs inté pleces and assemble
(and even debug) them separately. Separately assembled pieess

of a program are called subprograms.

Befqre a program assembled in subprograms can be run it is
necessary to link tdgether the subprograms while loading them.

The linking process is similar to the assembly process itself

 described in Section 1.7. The vehicle for linking is the

external symbol.

While local symbecls are used by the assembler to perform ad-
dress and space allocation calculations, global or external
symbols are pé.sSed on to the loader where they are similarly
used. o

Literals

. Many data are placed in programs at assembly time. It is

frequently convenient to refer to constants by value than by

label. A literal is a symbolic reference to a datum by value.

1.6.

1.7.

30.50.10-1-3

April 10, 1965
The assembler has complete literal facility, i.e., any type
of expression can be used in a literal.
Relocation
A relocatable program is one in which memory references have
been computed relative to the first word or origin of the
program. Thus, if a reference is to the nth word of a pro-
gram, and if the program is loaded beginning at k, the loader

must form the address n + k.

The operands of instructions are not always memory references.
It is necessary to instruct the loader for each word of the
program whether to relocate the operand. Relocation is deter-
mined automatically during assembly and transmitted to the

loader by the relocation value R. Thus, if

R.

LI}

1, the operand is to be relocated

0, the operand is absolute.
The only difference between relocating machine commands and
constants or data is that constants are allotted all 24 bits

of the 930 word. The assembler accounts for this difference

automatically.

It is possible to disable the relocation in the assembler and
to do an absolute assembly. The assembler produces in this
case a different output format which is self-loading.

Basic Assembly Procedure

In relocatable assembly during Pass I the operands are scanned

for the presence of single symbols. If a single symbol is

1.8.

30.50.10-1-4
April 10, 1965

present, a table of symbols is searched. If absent, the
symbol is added to the table but marked as having no value.
Labels are evaluated by assigning them the current value of

the Jlocation counter, a word which points tc the ultimate

relative destination of the instruction. In case of pre-
vious occurrence, labels are marked as duplicate symbols.

At the end of Pass I the symbol table is sorted. All symbols
present having no value are assumed to be external. At the
beginning of Pass IL, a 1list of all external symbols, the
external symbol usage table, is output on the binary output
medium for use by the loader. The program is then assembled

and output on the binary medium.

In absolute assembly the scan for single symbols is disabled.
This has the effect of doing away with external symbols.
Notation

In the following pages, square brackets [] are used to in-

dicate the presence of an optional term.

30.50.10-2-1
September 20, 1965

2.0 The Assembly Language
2.1 Character Set
The sets of characters recognized by the assembler are as follows:
(a) numeric
(1) octal 0-7
(2) decimal 0-9
(b) alphabetic A-Z
(¢) alphanumeric 0-9, A-Z
(d) delimiting characters + - %/ , ' () =.$%
(e) special characters : ; <>?2[] «"
2.2 Input Records
Input records consist of lines of information (i.e., all character strings
between carriage returns or on cards) or of parts of lines separated by
semi-colons.¥*
Each non-blank input record is either an instruction,. a directive, or a
coment. A comment record begins with an asterisk. Blank records are
ignored.
Directives and instructioné are divided into four fields. The fields are,
from left to right, the label field, operation field, operand field, and
comment field.
The label field begins with the first character in the record and ter-
minates -- as do all other fields -- on the first blank. All other fields
begin with the first non-blank character after the termination field. The
- operation field contains the mnemonic operation code. Only the first four

characters are recognized by the assembler. The operation codes are

classified as follows:

*Programmers must accordingly avoid the use of the semi-colon in comments.
Semi-colons enclosed in single quotes (h,e(c) or 6.2(a)) are taken literally

and do not cause a carriage return,

203.

30.50.10-2-2
April 10, 1965
(a2) machine insffuctions
(b) directives
(c) instructions and programmed operators defined by
the programmer for the particular program
Assembler Syntax
A program consists of a set of instructions and directives
terminated by an END,directive. Normally, programs are assembled
relocatable. A program is assembled absolute if it begins with

an ORG directive.

Instructions have a common syntax. ZEach directive, in general,
has its own syntax. The syntax for instructions and directives

will be considered in separate sections.

30.50.iO~3-l
April 10, 1965
3.0. Instruction Syntax
Instructions fall into two classes.
3.1. Classification of Instructions
(a) Class 1 - normal instructions
Class 1 instructions have an operand field. For
each instrﬁction it is possible to specify:
(1) address (operand field) required/not required
(2) sign bit set/cleared¥.
There are two subclasses of Class 1 instructions:
(1) subclass O
The operand is stored in the machine command
mod 2lu. This subclass contains orders having
memory réferences.
(2) subclass 1
The operand is stored in the machine command
mod 29. This 'subclass is used for shift
orders. If indirect addressing is called for,
any class 1 instruction is treated as a sub-
-class O ‘instruction.
Class 1 instructi‘ons have the following i‘ofm:
[[$]1abel] ABC[*] [expression 1l[, expression 2]] [comment]
For most class 1 instructions, expression 1 (opera.nd)
is required. Indirect addressing is signified by an

asterisk following the operation code.

¥ This feature is intended to be used with system progresmed operatars
(cf. Lichtenberger, W. W., Pirtle, M. W. & Sanders, W. J. Modifications
to the SDS 930 Camputer For the Implementation of Time-Sharing, Docu-
ment No. 20,10.10, January 22, 1965)

3.2.

3.3.

3.L.

30.50.10-3-2
April 10, 1965

(b) Class 2 - complete or full word instructions

Class 2 instruetions have no operand field. Indir-

ect addressivng is signified by an asterisk following

the operation code. Class 2 instructions have the

following form:

[($1[1abelt] ABC[*] {comwent)

Label Field
A label, if present, identifies the instruction. An instruc-
tion will have a label noﬁmally if it is referred to elsewhere
in the program, although it is not necessary that a symbol so
defined be used. Symbols defined but not used are called nulls

and are marked as such in the assembly listing.

If the same symbol appears in the label field of more than one
instruction, it is marked as a duplicate each time it is used,

and it is given the value at its most recent definition.

A $ preceding a label causes an identical external definition
(ef. 6.8 (a)).

Operand Field

The operand field contains at most two arithmetic 'expressions
(or a literal and one expression) used to evaluate the operand-
and tag of the machine cammand.l-The tag, if present, is alwgys
evaluated mod 23 and must be absolute.

Comment Field

The comment field is not processed by the assembler;_but is

listed as part of the assembler output.

30.50.10-4-1
April 10, 1965

4.,0. Syntex of Expressions
Expressions are used in the operand field of most instructions and
directives. In the following, V(x) will represent the numerical
value of the expression x, and R(x) will represent the relocation
value of x. U is used to mean unary operator, and B stands for
binary operator. A subscript refers to a term or expression of in-

dicated type, i.e., term, means a term of type 4.

d
The evaluation of all expressions is made using the full word length
of the machine (24 bits).
4.1, Operators

Expressions consist of terms connected by operators. The

operators permitted are:
Operator Hierarchy

(a) unary + ﬁ
| (wor))
(b) relational (ISS) < 3
(GRT) > 3

(EQU) = 3

(c) binary + 1
- 1

* 2

(AI{ID) ;

(OR) 1

- (EOR) 1

Parentheses are not allowed in expressions except to designate
mnemonic operators. Relational operators give rise to a value 1

if the relation is true and O if false.

30.50.10-4-2
April 10, 1965

4,2, Constants
Constants are of three types:
(a) decimal integers: one or more decimal characters.

(v) octal integers: one or more octal characters termi-
nated with the letter B.

(¢) string: '1-4 characters (except ')’.
For any constant, R(constant) = 0.
4.3, Classification of Symbols
Symbols are classified by the assembler in the following way:

(a) local: defined by their use in the label field of
instructions and in some directives.

V(location counter at definition)

V(symbola)

R(symbola) = 1 if relocatable assembly

1

0 if absolute assembly
(b) equated: defined by an EQU directive.
V(symbolb) = V(expression in operand field of EQU)
R(symbdlb) = R(expression in operand field of EQU)
(¢) *: current location counter symbol.

V(*¥) = current value of location counter

1]

R(*)

1 if relocatable assembly

0 if absolute assembly
(d) external: defined in another subprogram.
b, 4, Terms
There are two types of terms:
(a) [Ulconstant
V(terma) = [U]V(constant)

R(terma) =0

30.50.10-h-3
April 10, 1965

(v) [U]lsymbol

a,b,c
V(term) = [UIV(symbol, o)
R(témb) = [U]R(symbola’b,c)

" 4.,5. Expressions

There are three types of expressions:

(a) term
V(expressiona) = V(term)
R(expressiona) = R(term)

(b) expression la,b B expression ga,b

V(expressionb) V(expression la,b) B V(expression 2a,b)

R(expressionb) R(expression la,b) B R(expression 2a,b)

(c) symbol § (note: no unary operator permitted)
V(expressionc) = temporarily the location of the
symbol in an external symbol usage
table; ultimately the value of the
external symbol when known by the
loader.
R(expressionc) has no meaning
In an absolute assembly, expressions of type ¢ are
considered to be undefined symbols.
4.6. Evaluation of Expressions

Expressions are evaluated from left to right using operators of

decreasing hierarchy.

Example: If A = 100
B = 200
C=-1,

then A+B*C/A = 98.

30.50.10-k4-k
April 10, 1965

Example: If A = 5&3218
B hhhhh8
c 000778

b

]

then A(OR)B(AND)C = 5&3658.

4,7, Relocation Constraints
The following constraints apply to expression evaluation:

(a) No relocatable term (R = 1) may occur in conjunction
with * or /, i.e., no relocatable symbol may multiply,
be multiplied by, divide, or be divided by anything.

-~ (b) R(expressiona’b) = 0 or 1. R may attain other values

during evaluation.

5.0.

30.50.10-5-1

April 10, 1965
Literals
Literals are of the form:

= any expression of any type

When encountering a literal, the assembler replaces the value of
the expression by the location of that value in a table of literals
constructed for each program. The literal table is appended to the
program. Thus, it is dangerous to terminate a program with a record
which labels a block of storage unless the record is a BSS or a BES

directive.

30.50.10-6-1
September 20, 1965

6.0. Directives
The following directives are included in the assembly language:

Data Generation: DATA
TEXT
ASC

Value Declaration: EQU
EXT
OPD
POPD

Assembler Control: BES
BSS
ORG
END
LIST
NOLIST
PAGE
SYTB
BIN
NOBIN
IDENT
TELSYM

Macrc Generation: MACRO
ENDM
RPT
CRPT
ENDR
IF
ENDF
NARG
NCHR

Since directives, in general, possess unique syntaxes, we consider
each one in turmn.
6.1. DATA Generate Data
[1abel] DATA expression, , expression,,...
The label is given the current value of the location counter.
Each expression is then evaluated and the results assigned to
sequential locations. The effect of the directive is to create
a block of data, the first word of which may be labeled by a

symbol. Note that values are assigned mod 22h.

30.50.10-6-2
April 10, 1965
6.2. TEXT Generate Text
There are two forms for this directive.
(a) The first form creates text of unspecified length.
[label] TEXT 'THIS IS A SAMPIE,'
In this form all .characters between the apostrophes
are converted into 6-bit trimmed ASCII, packed four
to a word, and assigned to sequential locations.
The first word of the list may be identified 5y a
label. Characters in the last word are left—justified;
with remaining positions filled in by blanks (octal 00).
This form will allow any text to be generated conven-
iently except that containing apostrophes.
(b) The second form créates text of a specified length.
[label] TEXT 5,THIS IS A SAMPLE.
In this form, all characters following the comma are
packed and assigned as above. The operand field of
the directive terminates when the specified number
of words has been packed.
6.3. ASC Generate Text with Three Characters per Word,
This directive is identical to TEXf, except that 8 bits are
given to each character.
6.4. BES Block Ending Symbol

[label] BES expression
a,b

BES reserves a block of storage for which the following loca-
tion is labeled. The expression must be absolute, and it must
have a value when BES is first encountered, i.e., symbols

present must have been previously defined.

6.5.

6.6.

6.7.

6.8.

30.50.10-6-3
April 10, 1965
BSS Block Starting Symbol

[1abel] BSS expression
a,b

BSS reserves a block of storage for which the first word is

labeled. The expression must be absolute, and it must have

a value when BSS is first encountered, i.e., symbols present

must have been previously defined.
EQU Equals

symbol EQU expression
a,b

The EQU directive causes the symbol in its label field to be
given the value of the expression. The value is held in a full
machiné word (24 bits). The expression must have a value when
EQU is first encountered, i.e., symbols present must have been
previously defined. It is permissible to redefine by EQU any
symbol previously defined by EQU. This ability is particularly
useful in macros.
END End of Assembiy
END [Starting location] '
The END directive terminates the assembly. The optioﬁal expressior
is used in absolute assemblies (cf. 8.2.) |
EXT Define External Symbol
Symbols can be defined externally in three ways.
(a) $1abel opcode operaﬁd
The presence of the preceding $'causes the symbol
in the label field of any instruc}ion to be defined

both locally and externally.

30.50.10-6-14
September 20, 1965
(v) .lgbel EXT
The (local) symbol in the label field is defined as
an external symbol having the same value. The label
mist be defined locally somewhere in the program.

(¢) symbol EXT expression
'a’b

The symbol in the label field is defined as an ex-
teinal symbol whose value ié given by the expression.
This form is used for défining eabsolute external
symbols, Symbols which depend on combinations of
other symbols, and symbols which are syndnymoﬁs witd
local symbols; The EXT diréctivé may be used at any ‘-
position in the progfam.
6.9. ORG Progrem Origin

ORG expressiona,b

The use of ORG forces an absolute assembly. The location counter
iskinitialized to the value of the expression., The expreésion |
must be absolute, and it must have a value when ORG is first
encountered, i.e., symbols present must have been previously
defined. An ORG must precede the first instruction in en

. Aabsolute program;

6.10. OPD Operation Definition
Operation codes defined by the OPD directive take precedence
over other operation codes. The form of OPD is:

opcode OPD cd,cl[,ar[,se[,sbl]]
where: cd is the opcode as an arbitrary expressiona’/

b
~cl is the class number (1 or 2)

' 30.50.10-6-5
April 10, 1965

ar signifies address required (0 or 1),
~sc is thé subclass number of class 1 (O or l), and

sb signifies that the sign bit of the
. machine command should be set.

;The definition of a hypothetical system programmed operator
LLA might appear as follows:
LLA OPD 110000063,1,1,0,1
and that for the machine ccmmand CLA would be:
CLA OPD O4600001B,2
Missing expressions will be given the value zero and the asso-
, ciated conditions the consequent meaﬁings.
k é,li. POPD ‘Progfémmea Opérétor Definition
The POPD directive is identical in effect to the OPD directive
except for the following features:
(a) Bit 2 of the werd programmed~oﬁerator bit) must be
al.
(v) The loader will place a brénch instruction in the
~ transfer véctor for programmed operators (100-1778).
- The branch instruction will transfer to the value of
the location counter when the POPD is encountered.
Thus, the body of instructions constituting the pro-
grammed operator must.follow the POPD. If the inser- .
tion of the transfer instructions is not desired, OPD
‘ shouid be used.
€.12. LIST Lié% Pfogram 5n Output Medium

. LIST |
" The LiST'direétive enables the assembly listing in case it was

previously disabled by the NOLIST directive. The assembler is

initialized not to list.

~

e

.
(=]

A
.

6.l7ﬁ‘

2C.E0L10-6-6

\Nle

April 10, 1965

NOLIST Disable Agserkly Listing

NOLIST
The NOLIST directive disablcs the assembly ligting. All errors
encruintered during assenbly‘wiil be listed, however, regardless
of any mast use of NOLIST. NOLIST in cdnjunction witﬁ NOBIN

can v used ©o provide a ouick crwor scar f a w»rogramr.

PAGE causes the asserbler listing orogram to advance to a naw
page unless already there. The directive 1s used to improve
T

e eyt
CYILAT .

listing

SYTB List Sywbel Table

SYTR
SYTB causes the local symboi table to be listed. Symbols are
listed in'alphanmnericai crder aleng with their vaiues as ogﬁal
integérs with leading zero suppression. Relocatable symbols are
marked by a nlus to the right of the value. Iull and dupiiéate'
symbols are narked by K and.g, respectivély, Letween the symbol
and its velue.
BIN éutput'Binary Program

BIN
The BII directive enables the output of binary program (loader
input) in case it was previously disabled by the NOBIN directive.
The assembler is normally initialized to do such outnut.
NOBIN Disable Binary Output

NOBIN

30.50,10-6-T7
June 23, 1965

NOBIN disables binary output. The directive can be used in
conjunction with NOLIST to provide a quick error scan of a
program, or it may be used alone to provide a listing only.
It may also be used in conjunction with BIN to produce only
selected portions of binary output.

6.18. IDENT Subprogream Identification Marker
symbol IDENT

IDENT causes the symbol found in its label field to be output
on the binary output medium along with a unique control word.
IDENT may be used for editing purposes and for reference to a
block of program. The loader ignores all IDENT records.

6.19. DELSYM Delete Punch-out of Symbol Table and Defined Operations
DELSYM

DELSYM inhibits the local symbol table and all programmer-defined
operations from output on the binary medium for later debugging
purposes. The effect of the directive is to shorten the binary
output. ‘ | -

6.20. MACRO Define a Macro-operation

6.21, ENIM End a Macro Definition

name MACRO [dummy[,generated symbol,no. of generated symbols]]
(body of macro)
ENIM ’

The meero is a subprogram defined as shown above and referred

to by name. Dummy symbols are used in the body of the macro for
strings which are supplied as arguments in the operand field when
the macro is called. The strings may be expressions, symbols, or
parts of each. Strings may bé concatenated by writing dummies or

. substrings separated by periods. Dummies are written as a

subseripted symbol declared as dummy in the definition (e.g.,
DUM(2), DUM(XYZ), etc.). The subscripts may be expressions.

30.50.10-6-8

Sevtember 20, 1965
The special notation DUM() calls forth the entire argument string of
the macro call. In addition, the symbol

DUM(expressionl$expression2)

th th

is expanded as the k™ character of the n” argument, where:

n

1

n = expression

a,b
k

n

expcressiona’bQ
Finally, if j = expression_ .3, the j'" through k0 characters of the
nth dumy are called forth ‘:)y
DUM(expressionl$expression3,expression2)
Eb:aan?les: The macro:
EXMPLE MACRO D

1DpA Dél) '
ST.D(2) D(ABC) (ABC=k)
A NARG |
D(A) ERU CON.D(2)
DATA D()
TEXT 'THIS IS AN EXAMPL.D(3$A)'
DATA D(4$2,A-1)
ENDM

when called by:
EXMPLE XYZ,A,ABCDEF,ALOC,Z.
will expand to be:

LDA XYZ
SEA ATOC

z BRU CONA
DATA XYZ, A, ABCDEF , ALOC , Z
TEXT '"THIS IS AN EXAMPIE'
DATA 17

Symbols may be generated at each macro call. Such symbols are defined
as a subscripted symbol declared as a generated symbol at definition.
It is necessary to include the maximum number of such generated symbols
in the definition. Generated symbols are not punched or printed

(as in SYTB).

In calling a macro, argument strings are separated by cormas. If a
comma is desired to be in a string, the string may be parenthesized.
When the macro is expanded, the outer parentheses are discarded. It
should be noted that macro definitions may include calls to other
macros. Similarly, macros may be defined within other definitionms.

6.22.

6.23.

6.2k,

6.25.
6.26.
6.27.

30.50.10-6-9
June 23, 1965

In using macros it is sometimes necessary to have a call or
definition which exceeds the length of a line. Accordingly,

a + in column : is a continuation mark.
RPT Repeat the Next Block

ENDR End RPT Block

RPT expressiona’b

Although usually most useful in connection with macros, the
RPT directive may be used anywhere. The expression in the
operand field must have a value when the RPT is encountered,
and the value of this expression determines the number of times
the body of code is repeated. If the expression is-of value

< 0, the body is ignored.

CRPT Conditional Repeat

CRPT express:.ona',b

CRPT differs from RPT in that the expression is revaluated after
the ENDR is encountered. If the new value is > 0, the

body is inserted again. This process will be endless unless,
of course, the body contains some directive (like EQU) which
changes the value of the expression.

IF Insert the Next Block If the Expression > 0
Ei:SF Else Insert the Next Block If the Expression > 0O

ENDF End the If Block
Ir e:cpressj.ona’b

ELSF gxpressiona,b

IF permits the following block of instructions and/or directives
to be inserted only once or ignored, depending on the value of
the expression. In evaluating the expression, all undefined
symbols are given the value -1. This happens only in an IF

st atement.

6.28.

(@)Y
n
\O

6.30.

30.50.,10-6-10
Sentember 20, 1965

ELSF is an alternative IF statement. Every IF magy be followed
by one or more EKSFs, If the pr_eceding IF or any preceding
ELSFs are not obeyed, the expression in an ELSF statement is
evaluated and treated as a new IF. In case the expression is
true (value > 0), the following text is assembled, and any
subsequent ELSFs are ignored.

The ENDF terminates the IT block and permits new IFs and ELSFs.

NARG Equals Number of Arguments
symbol NARG

The NARG is permitted only within the body of a macro and
serves to equate the value of the symbol to the number of
arguments used in the macro call. Ivs function is entirely
similar to the EQU directive, and symbols defined by EQU may
be redefined by NARG and vice-versa. UNARG permits macros with

varying nurbers of argunents to be dealt with readily.

NCHR Equals Fumber of Characters

symbol NCHR cxpression
The NCHR is legal only within the body of a macro and serves to
equate the value of the symwbol to the number of characters in the
associated expressicn. Its functicn is entirely similar to EQU,
and symbols defined by EQU may be redefined by ICHR and vice-versa.
NCHR is useful mainly when the expression consists of or contains
cne or more dummies, since the character count of a fixed expression
can be determined before assembly and defined by an EQU.
Facility for Immediate Evaluation of an Expression and Cenversion
to a Digit String

($expressiona,b)

As an adjunct to the automatic symbol generation facility and for
any other purpcse for which it may be useful, the macro expander
will replace the string ($expressiona’b) by its value as a string

of decimal digits. The ecxpression must have a value when first

encountered.

30.50.10-6-11
September 20, 1965

Example: The macro

EXMPLE MACRO D,GZ,2

YA NCHR D(1)

Y NARG

X.($y+2) LDA D(1$3,2) -

G(1) STA w.($Y

Gg(2) STA V. ($Y+ABC) (ABC=100)
ENDM

when called the fifth time by:
EXMPLE ABCIEF
will expand to be:
LDA CDEF

X3
gg%f% ggﬁ %m

30.50.10-7-1
April 10, 1965
T.0. Assembler Diagnostics
Disgnostic information is placed under the input record in the
listing at the location of the offence. All erroneous records
are listed even if the NOLIST directive has previously been used.

Errors detected are:

Error Condition
D Duplicate symbol
L Illegal symbol in label field
M : Missing field in input record
0 I1llegal or undefined Opcode
R Relocation error in expression
S Expression or cther syntax error
U Undefined symbol

Other messages whiéh may be received are:
(a) SYMBOL TABIE FILLED. ERROR CHECK CONTINUES.
(b) LITERAL TABLE FILIED. ERROR CHECK CONTINUES.
(c) MUST ASSEMBLE ABSPGM ON PAPER TAFE.
(d) INPUT STACK OVERFLOW.
(e) INFUT STACK UNDERFLOW.
(f) INPUT BUFFER FULL.
(g) TOO MUCH MACRO RECURSION.
(h) TOO MUCH RPT RECURSION.
(i) TOO MANY ARGS IN MACRO.
(j) STRING STORE EXCEEDED.

(k) END OF FILE.

30.50.10-8-1
April 10, 1965
8.0. Assembler Binary Output Formats
8.1. Relocatable Output Format for Linking Loader
Binary output is divided into logical variable length records.
Each record begihs with a control word which defines its type.
Bits 0, 1, and 2 normally signify the type. The first word of
the binary output is a 3-bit register (cf. (a) below) whose

single entry is an octal 4.

Bits O, 1, and 2 (octal) Meaning
0 Binary program foliows
1 Programmed overator follows
200 End of program
Bits 0-8
201 are used. Origin of literal table is

in address field

OPD follows

)

L External symbol definition(s)
follows

5 Identification record follows

6 External symbol usage table
follows

T Symbol table follows

The remaining bits in the control word and the fofmat of the
record which follows are different for each type.
(a) © - Binary Program Follows
Bits 10-22 of the control word are added to the current
value of the location counter. Binary program consists
of groups ~f eight machine coarmands preceded by eight
groups of three bits packed into a single word (the

3-bit register). Each group of three bits is associated

30.50.10-8-2

September 20, 1965
with a following instruction or control word and '
serves as a loading indicator for that instruction.
The following indicators are used:

' 3-Bits (octal) Meaning
0 Absolute address

1 Evaluate address f_r'ﬁm externa.'l.
symbol table mod 2

2 , Relocate address mod 2]‘“

Ly Avandon binary program format --
next word is a control word.

5 Evaluate word from ﬁxterna.l
symbol table mod o2

6 Relocate word mod 22&'

(v) 1 - Programmed Operator Follows
Bits 2-8 of the control word determine the position
of a transfer command which is placed by the loader
in the programmed operator transfer vector (100—1778).
Bi’cs 10—23 determine the address of the transfer qém-
mand. Information following is binary program which
follows ’ché previous program, i.e., the location
counter is unaffected by POPD. |

(¢) 200 - End of.Program
No other bits in the control word are significant. The
200 record is a one-word record.

(d) 201 - Origin of Literal Table
The origin of the literal table is found in the

address field.

(£)

(g)

(h)

(1)

+ 30.50.10-8-3
April 10, 1965
3 - Defined.Opefation Follows
All OPDs are punchéd.in the form of a standard
symbol (cf. (f) below). |
I - External Symbol Definition(s) Follows

Each definition consists of a block of three words.

The first two words contain the six charactefs of

the symbol invASCII, lef%—jugtified with trailing
blanks. The third word contains the symboi value.
Bit 12 of the second word signifies relpcatioﬁ of
the external symbol value. Relocation of eﬁternal

symbols is performed mod 22h.

Each block of such
definitions is terminated by a single word of all
l;s.

5 - Identification Récord Fdllowé

The identification record consists of one block of
three wofds. . The formet of the block is identical
to thaf for each entry of (d), although only the six
characters ¢f the identification symbol are meaningful.
6 - External Symbol Usage Table Follows .

Each entry of the usage table is a three-word block
of the same format as in (e) above.

T -~ Symbol Table Follows

The format of the local symbol table is the same as

in (e) abeve. The zrder of records is as follows:

8.2.

30.50.10-8-4
April 10, 1965
[ident record]
[external symbol usage table] (if any)
[literal table origin]
binary program
programmed operators in any arrangement
external symbol definitions
end of program
Absolute Assembly Output Format
For absolute programs, the assembler first punches a bootstrap
loader and then program in blocks. Each block is begun when it

is necessary to reset the location for loading.

The use of a POPD will cause a transfer to be placed in the

POP transfer vector as in relocatable programs.

IDENT records will be punched as in relocatable programs but
with a preceding word which causes the bootstrap loader to

ignore the record.

Similarly, OPDs and the symbol table may be punched and ignored

by the loader.

END with a blank operand field causes the loader to halt. In
case the field is not blank, a transfer of control to the value

of the expression is placed in location 1 and executed.

9.0 ASSEMBLER OPERATING INSTRUCTIONS

To call the assembler from the executive, the user types the word

ARPAS.
Example:

The system types the word BINARY

BINARY: /AK2R/ ~CT The user types the name of

—_— the file on which the assemble
NEW FILE Cr binary is to be placed. The

INPUT: /AK/ CrCr name is followed by a carriag
— = return.

/ The user types a carriage return.
—=—=—"— The name of the file on which the

source symbolic is located is typed
by the user, The name is followed
by two carriage returns.

Errors and null locations will be typed out at this time.

30.50.10-A-1
April 10, 1965

APPENDIX A

EXTENDED LIST OF INSTRUCTIONS

Mnemonic Ineétruction Code Function
Load/Store |
LDA 76 LOAD A
STA 1 .35 STORE A
LDB | 75 " L0AD B
STB % ' STORE B
LDX o w7i © LoAD X
STX - 37 | STORE INDEX
Bx 7 ' COPY EFFECTIVE ADDRESS INTO INDEX
wa e EXCHANGE M AND A
Arithmetic
ADD .. ss . ADDMTOA
ADC 57 ~ ADD WITH CARRY
ADM - 763 .~ ADD A TO M
MIN o .61 MEMORY INCREMENT
SUB sk SUBTRACT M FROM A
suc - 56 SUBTRACT WITH CARRY
MUL 6l MULTIPLY
DIV o 65 - DIVIDE
Logical _ A
ETR | o ‘ ih; EXTRACT (AND)
we BT MERGE (OR)

EOR 17 EXCLUSIVE OR

S0.50,10-A-2
April 10, 1065

Mnemonic Instruction Code‘ Function

Register Change

CLA ' 0 L6 00001 CLEAR A

CLB 0 46 00002 cLEAR B

CLAB 0 46 00003 | CLEAR AB

CIX 2 L6 00000 CLEAR X

CLEAR 2 46 00003 CLEAR A, B, AND X

CAB 0 46 0000k | COPY A INTO B

CBA 0 46 00010 | | COFY B INTO A

XAB 0 46 0001k EXCHANGE A INTO B

BAC 0 46 00012 COPY B INTO A, CLEARING B

ABC 0 46 00005 COPY A INTO B, CLEARING A

CXA 0 46 00200 COPY X INTO A

CAX 0 46 00400 COPY A INTO X

XXA 0 46 00600 EXCHANGE X AND A

CBX 0 46 00020 COPY B INTO X

CXB 0 46 oooko COPY X INTO B

XXB 0 46 00060 EXCHANGE X AND B.

STE 0 46 00122 STORE EXPONENT

LDE 0 46 00140 - LOAD EXPONENT

XEE 0 46 00160 EXCHANGE EXPONENTS

CNA 0 46 01000 COPY NEGATIVE INTO A
Branch

BRU 01 ' BRANCH UNCONDITIONALLY

BRX 41 INCREMENT INDEX AND BRANCH

BRM 43 MARK PLACE AND BRANCH

BRR 51 RETURN BRANCH

Mnemonic

Test/Skip
SKS
SKE
SKG
SKR
SKM
SKN
SKA
SKB

SKD

Shift
RSH
RCY
IRSH
LSH
1CY

NOD

Control
HLT, ZRO
NOP

EXU
Overflow

ROV
REO

ovT

Instruction Code

Lo
50
73
60
70
53
T2
52
Th

0 66
0 67

20

a3

0 02 20001
0 02 20010

0 Lo 20001

O0xxx
20xxx
2lixxx
O0xxx
20xx

10xxx

20.50,10-A-3
April 1C, 1965

Function

SKIP IF SIGNAL NOT SET
SKIP IF A EQUALS M

SKIP IF A GREATER THAN M

REDUCE M, SKIP IF NEGATIVE

SKIP IF A = M ON B MASK

SKIP IF M NEGATIVE

SKIP IF M AND A DO NOT COMPARE ONES
SKIP IF M AND B DO NOT COMPARE ONES

DIFFERENCE EXPONENTS AND SKIP

RIGHT SHIFT AB.
RIGHT CYCLE AB
LOGICAL RIGHT SHIFT
LEFT SHIFT AB

LEFT CYCLE AB

NORMALIZE AND DECREMENT X

HALT
NC OPERATION

EXECUTE

RESET CVERFLOW
RECORD EXPONENT OVERFLOW

OVERFLOW TEST AND RESET

30.50.10-B-1
April 10, 1965

APPENDIX B
ASSEMBLER TABLE STRUCTURE

B.1l. Literal Table

Ascending
Memory Literals
‘ LTAB1
LTAB2
LTAB1
LTAB2
21-23
LTAB1: All zeros XXX
LTAB2: Literal Value

LTAB1 contains relocation information for the following value. Bits 21-2;

have the same meaning as defined in Section 1.6. on relocation.

B.2. Symbol and Opcode Tables

WDl
wD2
WD3

Ascending WD1
Memory WDz

WD3
Y :
Opcodes
Symbols
i

WD1
WDe
WD3

WD1
w2
WD3

30.50,10-B-2
April 10, 1965

(a) Symbols
0O 56 11 12 17 18 23
WDl: Ci. c2 C3 ch
WwD2: c5 cé polev e v zeros
WD3: ‘Symbol Value

C1-C6 are the six significant characters of the symbol

left-justified with trailing 778'5.

In WD2 bits 12-17 are flags which have the following

meanings (when set):

Bit Meaning
12 Relocatable Symbol (R = 1)
13 Duplicate Symbcl
14 External Symbol
i5 - Null Symbol
16 Generated Symbol
17 Equated Syﬁbol :
(b) Operation Codes
WD1: C1 cz2 - C3 ch
WD2: c5 cé zeros

WD3: ~ (See below.)

30.50.10-B-3
April 10, 1965

Cl-C6 are the six significant characters of the

opcode, left-justified with trailing 778'5.

WD3 contains the binery operation code and certain
other bits which serve to define the class and sub-

class of operation.

Bit Meaning
0 Set: Class 2; Reset: Class 1 or

Directive (see bit 1).
If bit O is set (class 2 instruction), all other bits
comprise the machine command. Otherwise, they have

the following meaning:

Bit Meaning
1 Set: Directive; Reset: Class 1

If bit 1 is set (directive), bits 10-23 contain the-

address of t,‘he entry point to the directive processor.

If bit 1 is reset (class 1 instruction), the following

bits are significant:

Bit Meaning
9 Sign bit to be set (system programmed
operator’)
19 Operand is required

23 Set: subclass 1l; Reset: subelass O

B.3. Macro and RPT Storage Area

(a)

Macro Data Stack

Ascending
Memory

l

(b) RPT Data Stack

Ascending
Memoxy

!

(c)

Ascending
Menory

L

llacre and RPT String Storage

Macros
(permanent)

!
1

RPIS
(temporary)

30.50.10-B-k
April 10, 1965

(Variable size blocks.)

(Fixed size blocks.)

(4 characters per word.)

(d) Macro Argsiment String Storage

Ascending
Memory

J

(temporary)

l

30.50.10-B-5
April 10, 1965

30.50.10-C-1
September 20, 1965

APPENDIX C

ASSEMBLER INTERNAL CODE
In order to facilitate symbol sorting and logical operations, a non-standard,
internal code is used throughout the assembler. This code is strictly inter-

nal, and is not transmitted outside. Binary output is in trimmed ASCII
(ef. Appendix D).

Within the assembler the following equivalences hold:

Character Code Character Code
0 00 0 36
1 01 P 37
2 02 Q Lo
3 03 R Iy
b o4 S Lo
5 05 T 43
6 06 U pin
7 o7 A L5
8 10 W L6
9 11 X L7
" 15 Y 50
: 16 Z 51
H 17 < 52
A 20 > 53
B 21 ? 54
c 22 [55
D 23] 56
E 2L -~ 57
F 25 + 60
G 26 - 61
H 27 * 62
I 30 / 63
J 31 x N
K 32 s 65
L 33 = 66
M 34 . 67
N 35 (70

) T1
1 72
$ 73

(all others) 7

30.50.10-D-1
September 20, 1965

APPENDIX D
TABIE OF TRIMMED ASCII COIE FOR THE SDS 930%

(NUMERIC ORIER)

0 SPACE 31 9 62 R
1 [:] 32 : 63 S

2 " 33 H 6L T

3 3L < 65 U
b $ 35 = 66 v
5 [4] 36 > 67 W

6 IEI 37 ? 70 X

7 ' %o @] - ¥
10 (bl A T2 Z
1) ke B 3 [
12 * 43 c Th \
13 + Ll D 75]
1k s L5 E 76 /'\
15 - k6 F 7 =
16 . b G 1l EOT
17 / 50 - H 145 WRU
20 0 51 I 146 RU
21 1 52 J 1l _ BELL
22 2 53 X 152 IF
23 3 50 L 155 CR
2L 4 55 M
25 5 56 N

26 6 57 0

27 T 60 P
30 8 61 Q

X

#The Teletype characters enclosed in boxes cannot be handled by
ARPAS and are converted to blanks when present.

TIME-SHARING SYSTEM
REFERENCE MANUAL

By

Ann Hardy
David Gardner
Verne Van Vlear

TABLE OF CONTENTS

1.0 Introductory 1.1
2.0 The Scheduler 2.1
PAC Table 2.6
Phantom User Queue Entry 2.7
3.0 Forks and Jobs 3.1
3.1 Creation of Forks 3.1
3.2 Memory Acquisition 3.4
3.3 Panic Conditions 3.4
3.4 Jobs 3.6
Fork Structure 3.8
Job Tables 3.9
4.0 Program Interrupts 4.1
5.0 The Swapper, Memory Allocation and
RAD Organization 5.1
PMT Entries 5.5
6.0 Miscellaneous Features 6.1
7.0 Teletype Input-Output . 7.1
Teletype Table 7.6
8.0 Disc and Buffer Organization; Devices 8.1
8.1 File Storage on the Disc 8.1
8.2 File Buffers 8.1
8.3 Devices ' 8.2
8.4 System Data on Disc 8.3

Buffers 8.5

8.0 (cont.)

Device Tables | 8.6
9.0 Sequential Files 9.1
9.1 Sequential Disc Files 9.1
9.2 Other Sequential Files 935
9.3 File Control Blacks 5.8
9.4 Permanently Open Files 9:9
9.5 Character Buffers 9.9
~3.0 Random Disc Files 10.1
11.9 Subroutine Files 11,1
12.0 Exec Treatment of Piles 312.1
File Birectory Arrangement 12.5
Hash Table Entry 12.6
13.0 Executive Commands Related to Files 13.1
11.0 Executive Commands 14.1
15.0 Subsystems . L 15.1
16.0 Miscellaneous E%?seﬁéxﬁ Featyres 16,1
T " Miscellaneous Monitar BRS's | 17.1
16.0 String Processing System 18.1
19.0 Floating Point | 19.1
20.0 TIndex of BRS's and System Operators 20.1
Appendix A | A
 General Description of Combined |
Flle Direc#ory A.l
File Directory Format on Disc A.2

<y
.

Appendix A (cont.)
File Directory Block
User Account Directory on Disc

Subsystem Table

A.3
A.Y

A.5

1.1

1.0 INTRODUCTORY

This manual describes the Berkeley Time-Sharing System
as it was modified by Tymshare, Inc. The Berkeley Time-
Sharing System is divided into three major parts: The
monitor, the system executive, and the subsystems. Only
the first two of these are discussed in detail in this
manual. The manual attempts to describe exhaustively
all the features of the monitor and the system executive,
and, in addition, to give a number of implementation
details.

We use the word monitor to refer to that portion of the
system which is concerned with scheduling, input-output,
interrupt processing, memory allocation and swapping,

and the control of active programs. The system exec,

on the other hand, is concerned with the command language
by which the user controls the system from his teletype,
the identification of users and specification of the
limits of their access to the system, the control of the
directory of symbolic file names and backup storage for
these files, and other miscellaneous matters.

The next ten sectilons of this manual discuss various
features of the monitor. The remaining sections deal
with the executive.

2.1

2.0 THE SCHEDULER

The primary entities with which the time-sharing system
is concerned are called forks. Each fork is an abstract
object capable of executing machine instructions. At
least one fork is associlated with each active user,; but
a user may have many forks, each computing independently
under his control. Also associated with each user is

a temporary storage area called the TS block.

A fork 1is defined by its entry in the program active
table (PAC table or PACT). This table contains all of
the information required to specify the instantaneous
state of the extended computer which the user is program-
ming, except for that contained in the user's memory

or in the system's permanent tables. The structure of

a PACT entry is displayed at the end of this section
together with brief notes about the significance of the
various items. These matters will be explained in more

detail in the following few sections. It will be observed,iw
that PACT contains locations for saving the program coun- .

ter and the contents of the active A register. The B
and X registers are saved in the TS block. It also con-
tains two pseudo-relabeling registers for the user.

A third one, which specifies the monitor map, is kept

in the job tables. The matter of pseudo-relabeling is
discussed in detail in section 5. There is a word called
PTEST which determines the conditions under which the
fork should be reactivated if it is not currently run-
ning. The panic table address in PTAB and the three
.polnters called PFORK, PDOWN and PPAR are discussed in
section 3 on forks.

The word called PTAB contains in bits 3 through 8, the
number of the job to which this fork belongs. The top

of PQU contains information about the amount of time

for which the fork 1s allowed to compute. before it is
dismissed. Six bits of QR count the number of clock
cycles remaining before the fork is dismissed, and three
bits of QUTAB point to a table which specifies the length '
of time which the fork should be allowed to run when

it is activated. All times in the discussion are measured
in periods of the 60-cycle computer clock. v

When a fork is activated the number in QR is put into
TTIME. This number is the amount of time left in the R
fork's long time quantum. The length of a long quantum
is tentatively going to be the same for all users. At
the same time, the value in QTAB which 1s pointed to

2.3

There are two ‘operations available to the user which
are connected with the quantum overflow machinery.

BRS 45 causes the user to’ be dismissed as though he

had overflowed his quantum.’ BRS 57 guarantees to the
user upori return at least 16 msec of uninterrupted
computation.: This'feature is implemented by dismissing
the user if less than 16 msec remain in his quantum.

Ordinarily, the code which is being executed at any
particular instant is that belonging to the fork which
is currently active. This situation may be disturbed,
however, by the occurrence of interrupts from I/O de-
vices. These interrupts cause the computer to enter
system mode and are processed entirely independently

of the currently running program. They never take dir-
ect action to disturb the running of this fork, although,
they may set up conditions in memory which will cause
some other fork to be activated when the presently run-
ning one is dismissed. Interrupt routines always run

in system mode. Other code which may be running which
may not: belong to the fork currently active is dhe code
of systém programmed operators or BRS routines. These
routines are not re-entrant and, therefore, should not
be dismissed by the clock. To ensure that they will

not be, thé 'convention is established that "the clock =
‘will not dismiss a program running in system mode. In
order to guarantee that a user will not monopollze the

- machine by executlng a large number. of SYSPOPS, ‘the. user
mode trap is turned’on when the clock 1ndicates that

.-a fork is to be dismissed. The trap will occur’ 'and
__cause dlsmlssal as soon as the fork ﬁeturns to user mode.”

The PACT word called PTEST contains’ the‘actlvation,con—
dition for a currently inactive fork. The condition
for activation is contained in the six opcode bits of
this word, while the address field normally contains
the absolute address of a word to be tested for the
specified condition. It is posdible, however, for the
address to hold a number 1ndicat1ng which program 1n-
terrupt has’ occurréd.

R B

2.4

The'fo}lowing activation conditiopeTgre possible:

" Word' greater ‘thah 0

" Word less than or equal to Qr”

“Word greater than equal to O

" 'Word léss than or. equal to teletype early
" warning’ ;'f o _ L
“Special test. 'The address points to a special
Vactlvatlon test routine.

Interrupt occurred. The address contalns the
. .number of the 1nterrupt which occurred
’""Do not activqte ‘
,Spe01al ‘address =
dead’.
runnlng
BRS: 31
' BRS, '106
’. Exequtive BRS
‘BRS" 109 .
. _ BRSVY' (User Program)

10 ' 'Do mot, activate .

11 Word 20000000 =0 (buffer ‘ready)
12. 3 WOrd 1ess than 0, e

RIS ¥

'cnkan:w‘ N b o

An executive program ‘can dismlss itself explicitly by
putting a queue pumber (0 to '3) in X and a dismissal .. .

condition: ;H7B;aﬁd—execut1ng BRS 72. The address, off"
a dlsmissal‘poﬁditloﬁ must be absolute. o

i

There is normally one running fork in’ the system, 1 e

a fork whlch is exechtlng 1nstructions, or will be execu—
"ting instructions after the' curréntly pending interrupts
have been processed. An active fork (i.e., a PACT . entry)
Wthh is not runnlng 1s said to be dismissed, ‘and is ;.
kept ' track of in one of two ways. - 1) If it is dlsmissed
with BRS 9, 31,/106 or 109 (see Section 3) it is said

to be’ 1n 11m 9 a _'1S pointed to only by the PFORK PDOWN
and, PPAR of. the neighboring forks in the fork structure
2) If t has been dismissed for any ‘other reason, it

is on ohe“of 'the 'schedule queues. There are four queues
of dismissed programs. In order, they are:

QTI Programs dismissed for teletype Input/Output

QIO Programs dismissed for other I/0

QSQ Programs dismissed for exceeding their short
quantum

QQE Programs dismissed for exceeding theilr long
quantum.

2.5

Programs within the queues are chained together in PNEXT,
and PNEXT for the last program in each queue points to
the beginning of the next queue. '

Whenever 1t is time to activate a new program, the old
program is put on the end of the appropriate queue. YRR
The schedule then begins at QTI and scans through the
queue structure looking for a program whose activation
condition is satisfied. When one is found, it 1is removed.
from the queue structure and turned over to the swapper

to be read-in and run. If there are no programs which

can be activated the scheduler simply continues scanning ...
the queue structure.

‘?rograms*reactlvated for various reasons haV1ng to do
with forks (1nterrupts, escapes, panics) are put onto

QIO with an immediate activation condition. Theyy, there-
fore, take priority over all programs dismissed for
quantum overflow.

There is a permanent entry on the teletype queue for

an entity called the phantom user. The activation con-
dition for this entry is a type 4 condition which tests
for two possibllities: . e

&) . 'Thé-cell PUCTR is non-zero,

b) ten seconds have elapsed since the last acti-
- ~-yation of the phantom user for this condition.
When the phantom user is activated by (b), it runs around ’
the system checking that everything is functioning properly.
In particular, it checks that the W-buffer has not been
walting for an interrupt for an unusual length of time,
and that all teletype output is proceeding normally.

If the phantom user is activated by (a), it runs down’

the phantom user queue looking for things to do. A
phantom user queue entry is displayed at the end of this .~
section. It is esseptially a very abbreviated PAC table
entry. Such an entry is made when the system has some _, .,
activity which it wants to carry out more or less inde- £?=
-pendently of any user PAC table entry, tests for tape

of escapes (an interrupt routine kind of activity, but

too time-consuming). The second word of the entry is »
the activation condition. PUCTR contalns the number {_

of entries on the phantom user queue '

2.6

PAC TABLE -~ ONE PER FORK

PNEXT ‘ Next queue or next program is queue - ‘7 '!
. <0=>next program >0=>next queue)
U3 8 110 e 23

PL 10 0. file # of |0; " "Saved (P)" L
' *V' subr.’ file ol o o '

! : : -

PA o = Seved (&) "

RL1- R First pseudo-relabeling register

RL2 b ' s .Second pseudo-relébeling register 1
AR TR S : LA T S

PPTR S IPDOWN : C " PFORK or chain B
f for free entries =
| 3 8 10 . - 23 1.

PTEST +{* 0"l activation'i0'test word addr., or int. - |

A condition Lo gl op status of dead fork’ |
FiET 3 89 1112 - — 23 |
PQU *E}X;O; QR I,QUTAB | - ' PPAR ' ’
X Bt j f 2

PTAB ,LiX'T: Job No. 0' Panic Table Address
misl SRS S S '

X 6 -9 - ti12 1415 18 - 23

PIM M N‘O! TEN "o xpBTO |

» %TvPsTﬂ.z 123457 6 78 9 10 11 0 - i ﬂﬂ*@

UM= ‘Usér Modé:" (l) 'j“ ' '“,fﬁ_ IEM(11)~ Interrupt on dlSC

OV= Overflow " ' oo ' errors

QUTAB= addr.’f6r short quantum “IEM(1-4)= System interrupts

EX= £PB= Index to PB in TS

QR= Amount of 1ong quantum left ~~° Block

IEM= Interrupt‘Enabled Wask U EX1= Subsystem status

LM= Local Memory B . TS= TS block assigned

MT= Add' no. memory

EXB= Exec BRS -

TP= Terminatlon Pending

NT= Non—Termlnabllity

TO= Time Out interrupt armed

2.7

PHANTOM USER QUEUE ENTRY - TYMSHARE

Pointer to next entry i

0 | Test number gRoutine address

Data for routine

Data for routine ! TTY No.

0 ‘ 53

PUCT - Phantom user queue.

FPULST - Pirst free entry in PU queue.

PUBPTR - Pointer to first active entry. Last entry
points to PUBPTR.

PUCTR - Number of PU entries.

PUEPTR -~ Last PU entry.

PUCTR1 - Entry counter uuring PU processing.
PUCPTR - Pointer to active entry during PU processing.
PUPAC - PACPTR of entry being processed by PU.

3.1

3.0 FORKS AND JOBS

3.1 Creation of Forks

A fork may create new, dependent, entries in the
PAC table by executing BRS 9. This BRS takes its
argument in. the A register, which contains the

address

of a panic table, a seven-word table with

the following format:

SO EWNRF O

Program counter
A reglster
B register
X register

- Birst relabeling register

Second relabellng register
Status

AThe status word may be:

-2
-1
-0
1
-2

Dlsmissed for Input/Output

Running

Dismissed on escape or BRS 10
Dismissed on illegal instructlon panic
Dismissed on memory panic

The panic table address must not be the same for
-two dependent forks of:the same fork, or overlap

a page boundary. If it is, BRS 9 i1s illegal. The

first six bits of the A register have the following

significance:

0
1

Make fork executive 1f current fork is
executive.

Set fork relabeling from panic table.
Otherwise, ‘use current relabeling.
Propogate: escape assignment to fork (see
BRS 90). al

Make fork fixed memory. It« is not allowed
to obtain any more memory than it is started
with.

Make fork local memory. New memory will
be assigned to it 1ndependently ‘of the
controlling fork.

Make fork exec type 1 1f current fork is
exec.

When BRS 9 is executed, a new entry in the PAC
table 1s creatéd. This new fork is said to be a
fork of the fork creating it, which is called the
controlling fork. The fork is said to be lower

in the hierarchy ofrforks than the controlling
fork. The latter may itself be a fork of some
still higher fork. A job may have, at most, eight
forks including the exec. The A,B and X registers
for the fork are set up from the current contents
of the panic table. The address at which execution
of the fork is to be started is also taken from
the panic table. The relabeling.registers are set
up either from the current contents of the panic
table or from the relabeling registers of the cur-
rently running program. An executive fork may
change the relabeling as it pleases. A user fork
is restricted to changing relabeling in the manner
permitted by BRS 44. The status word is set to

-1 by BRS 9. A fork number is assigned which is
kept in PIM. This number is an index to the fork
parameters kept in the TS block.

The fork structure is kept track of by pointers

in PACT. For each fork PFORK points to the con-
trolling fork, PDOWN to one of the subsidiary forks,
and PPAR to a fork on the same level. All the
;subsidiary forks of a single fork are chained in

a list. A complex situation is shown at the end

of this section entitled "Fork Structure". The
arrows indicate the various pointers.

If the fork executing a BRS 9 is a user fork, it

is dismissed until the lower fork terminates. If

it has exec status, it continues execution at the
instruction aftér the BRS 9. The fork established
by the BRS 9 begins execution at the location speci-
fied in the panic table and continues independently
until it is terminated by a panic as described below.
It is connected to 1ts controlllng fork in the fol-
lowing three ways:

1) The controlling fork may examine its state and
control its .operation w1th the following six
1nstruct10ns :

BRS 30 reads the current status of a lower
fork into the panic table. It does
not influence the operation of the fork
in any way.

- 2)

3.3

. BRS 31 causes the controlling fork to be dis-

missed until the lower fork causes a

~panic. When it does, the controlling
fork is reactivated at the instruction
following the BRS 31, and the panic
table contains the status of the fork
on its dismissal. The status is also
put in X.

BRS 32 ,cauéeSﬂa lower fork to be unconditionally
. terminated and its status to be read
into the panic table.

A1l of these instructions require the panic

. table address of the fork in A. They are

illegal .if this address is not that of .a panic

- table for some fork.

.BRS .31 and BRS 32 return the status word in

the X register, as well as leaving it in the

-panic table. Thls makes it convenient.to do

an indexed jump with the contents of the status

. word. ' BRS 31 returns the panlc table address
in A,

BRS 106 causes the controlllng fork to be

‘dismissed until any subsidiary fork
causes.a panic. . When it does, the con-
trolling fork is reactivated at the'-
following instruction with-the panic
table address in. A, and the panic table
contains the. status of the fork at its
dlsmlssal

"BRS 107 causes BRS 30 to be executed for all

subsidiary forks.

BRS 108 causes. BRS 32 to be executed for all
. subsidiary forks. .

If 1nterrupt 3 is armed in the controlling fork,
-.the. termination of any subsidiary fork will

cause that interrupt to occur. The interrupt
takes precedence. over a BRS 31. If the inter-

rupt occurs and control is returned to a BRS
.31 after processing the interrupt the fork

will be dismissed until the subsidiary fork
specified by the restored (A) terminates.

3.4

3) The forks can share memory. The creating fork
can, as already indicated,; set the memory of
the subsidiary fork when the latter 1s started.
In addition, there is some interaction when the
subsidiary fork attempts to acquire memory.

3.2 Memory Acquisition

If the fork addresses a block of memory which is
not assigned to it, the following action is taken:
A check 1s made to determine whether the machine
size specified by the user has been exceeded. If
so, a memory panic is generated. If the fork is
fixed memory, a memory panic is also generated.
Otherwise, a new block 1s assigned to the fork so
that the 1llegal address becomes legal. For a
local memory fork, a new block 1s always assigned.
Otherwise, the following algorithm is used.

The number, n, of the relabeling byte for the block
addressed by the instruction causing the memory
trap 1s determined. A scan is made upwards through
the fork structure to (and including) the first
local memory fork. If all the forks encountered
during this scan have Rn (the Nth relabeling byte)
equal to 0, a new entry is created in PMT for a

new block of user memory. The address of this en-
try is put into Rn for all the forks encountered
during the scan.

If a fork with non-zero Rn is encountered, its Rn
is propogated downward to all the forks between
i1t and the fork causing the trap. If any fixed
memory fork is encountered before a non-zero Rn
is found, a memory panic occurs.

This arrangement permits a fork to be started with
less memory than its controlling fork in order to
minimize the amount of swapping required during

its execution. If the fork later proves to require
more memory, 1t can be reassigned the memory of

the controlling fork in a natural way. It 1s, of
course, possible to use this machinery in other
ways, for instance to permit the user to acquire
more than 16K of memory and 'to run different forks
with non-overlapping or almost non-overlapping memory.

3.3 Panic Conditions

The three kinds of panic conditions which may cause

3.5

.a fork to be terminated are llsted in the descrip-
tlon of .thé status. word above. - When any of these
conditions occur, the PACT entry for the fork being
terminated is returned to the free program list.

The status of the fork is read into 1ts panic table
in the controlling fork. If the fork being ter-
minated has a subsidiary fork, it too 1s terminated.
This process will, of course, cause the termination
of 'all the lower forks in the hierarchy.

The panic which returns a status word of zero is
called a fork panic and may be caused by either
of two condltions _

"A) the escape button on the controlling teletype
is pushed or an off interrupt occurred. This
' terminates some fork with a fork panic. A 7 .
_fork may declare that it is the one to be ter-
‘minated” by executing BRS 90. -In the .absence

of such a declaration the highest user fork is
terminated When a fork is terminated in this
way its controlling fork becomes. the one to be
terminated. If a user fork is terminated by
escape, the teletype input buffer is cleared.
.If the controlling fork of the one terminated
‘is executlve, the output buffer is also cleared.

If the fork which should be terminated by escape
has armed interrupt 1, this interrupt will occur
instead of a termination. = The.teletype buffers
~will not 'be affected. If there is only one fork
active, control goes to the location EXECP in
the executive. This consideration is of no con-
cern to the user. Executive programs can turn
the escape button off with BRS 46 and turn it
back on with BRS 47. An escape occurring in the
meantime will be stacked. A second one will be
ignored. A program which is running with escape
‘turned off is said to be non-terminable and can-
‘not be terminated by a higher fork BRS 26 skips
if there is an escape pending.

If two escapes occur within about .12 seconds,
the entire fork structure will be cleared and
‘the job left executing the top level executive
fork. This device permits a user trapped in

a malfunctioning lower fork to escape. Closely
spaced escapes can be conveniently generated
with the repeat button on the teletype. This

3.6

type of escape will cause a user to lose memory,
and should be followed by a RESET. An off in-
“terrupt from the teletype is treated like a
high- Speed escape.

B) A BRS 10 may be executed in the lower fork.
This condition can be distinguished from a
panic caused by the escape button only by the
fact that in the former case, the program coun-
ter in the panic table points to a word con-
taining BRS 10.

As an extension of this machinery, there is
one way in which several forks may be- ter-
minated at once by a lower fork. This may be
done by BRS 73, which provides a count in the
A register. A scan is made upward through the
fork structure, decrementing this count by one
each time a fork is passed When the count
goes to 0, the scan is terminated .and all forks
passed by are terminated. If an executive
program is reached before the count is 0, then
all the user programs below it are terminated.

'The panic whigch returns a status wofd of 1 is-
caused by the executlion of. an_lllegal instruc-
tidon .in the fork. ‘Illegal instructions are

of two kinds:

1) Machine instructions which are privileged,

2) SYSPOPs which are forbidden to the user
or which have been provided. with unacceptable
arguments ,

A status word of 2 1s returned by a memory
panic., This may be caused by an attempt to ad-
- dress more memory than is permitted by the
- machine size which the user has set, or by an
. attempt to store into a read-only page. If
interrupt 2 is arred, it will occur instead
of the memory panic.

3.4 Jobs

Every complete fork structure is associated with

- a job, which is the fundamental entity thought of
as a user of the system, from the system's own
point of view. The job number appears in the PAC
table entry for every fork in the job's fork struc-

ture. In addition there are several tables indexed

3.7

by job number. These: are displayed at the end of
this section entitled "Job Tables®, and indicate
more or less what it is that is specifically as-

sociated with each: job.

3.8

FORK STRUCTURE

1)

ACROSS

;u ;1mo-x:g
oo W
o

i

Hierarchy of Processes

JOB TABLES
+ 0 9110 i
PMTP | 0 ; start of job's PMT ;
! j
1 3 B9 1112 17718 :
i i l
PMA + 0N 0} blocks | O { blocks | length |
| Pl | lert | used | of PMT 1
3 6 3 6 6
] ;0 11112 l7§18t§mp. !
RL] 0 : 0 ! orage i
| 2 Egiggglingi

3.9

TTNO Teletype associated with this job iO D, 0

0

0123
ETTB amount of CPU time used
NP = don't charge memory against machine size.

DB

disc busy bit Ffor BRS BE+1,2

4.0 PROGRAM INTERRUPTS

A facility is provided in the monitor to simulate the
existence of hardware interrupts. There are eleven
possible interrupts:; five are reserved for special pur-
poses and six are available to the programmer for general
use. A fork may arm the interrupts by executing BRS

78 with an 11-bit mask in the A reglster This causes
the appropriate bits in PIM to be set or cleared ac-
cording to whether the corresponding bit in the mask

is 1 or 0. Bit U4 of A corresponds to interrupt numberl,
etc. No other action is taken at this time. When an
interrupt occurs (in a manner to be described) the exe-
cutlon of an SBRM* to location 200 plus interrupt number
is simulated in the fork which armed the interrupt.

Note that the program counter which is stored in this
case is the location of the instruction being executed
by the fork which is interrupted, not the location in
the fork which causes the interrupt. The proper return
from an interrupt is a BRU to the location from which
the interrupt occurred. This will do the right thing
in all cases including interrupts out of input-output
instructions.

A fork may generate an interrupt by executing BRS 79
with the number of the desired interrupt in the A
register. This number may not be one, two, three, four,
or eleven. The effect is that the fork structure is
scanned, starting with the forks parallel to the one
causing the interrupt and proceeding to those above it
in the heirarchy (i.e., to its ancestors). The first
fork encountered during this scan with the appropriate
interrupt mask bit set is interrupted. Execution of
the program in the fork causing the interrupt continues
without disturbance. If no interruptable fork is found,
the interrupt instruction is treated as a NOP. Other-
wise, it skips on return.

Interrupts 1 and 2 are handled in a special way. If

a fork arms interrupt 1, a program panic (BRS 10 or
escape key) which would normally terminate the fork which
has armed interrupt 1, will instead cause interrupt 1

to occur, that is, will cause the execution of an SBRM¥
to location 201g. This permits the programmer to control
the action taken when the escape key is pushed without
establishing a fork specifically for this purpose. If
depressing the escape key causes an interrupt to occur
rather than terminating a fork, the input buffer will

not be cleared.

4.2

If a memory panic occurs in a fork which has armed
interrupt 2, it will cause interrupt 2 to occur rather
than termlnatina the fork. If an illegal instruction
panic occurs in an executive fork which has armed.
interrupt 2, it will cause interrupt 2 to occur rather
than terminatlng the fork.

Interrupt 3 is caused, if armed, when any lower fopk
terminates. Interrupt 4 is caused, if armed, when any
input-output condition occurs Wthh sets a flag bit (end
of record, end of file and error conditions can do this).

Interrupt 11 is caused if. armed, if a disc error is
encountered during a BRS BB+1 or. BRS BE+2. These BRS's
require system status. Consequently, 1nterrupt 11 has
no meaning for user or subsystem forks.

Whenever any 1nterrupt occursq the corresponding b1t

in the interrupt mask is cleared and must be reset
explicitly if it is desired to keep the interrupt on.
Note that there is no restriction on the number. of forks
which may. have an interrupt on. , . co

A fork may be interrupted after a specified period of
time by issuing BRS BE+12. It takes the interrupt
mask in A, the time in msec in B and the interrupt
number in X. If the specified interrupt is armed:when-
"the time 1s up, the fork will be interrupted.

To read the 1nterrupt mask into A, the program may |
execute BRS 49. . ;

5.1

5.0 THE SWAPPER, MEMORY ALLOCATION AND RAD ORGANIZATION

Because of the necessity in various parts of the system
for relabeling registers which do not change with time,
the user has been denied any access to ordinary relabel-
ing. In place, he is given access to so-called pseudo-
relabeling. His pseudo-relabeling registers consist,

as do the ordinary relabeling registers, of eight six—
"bit bytes. Each one of these bytes points, however,

not to a real page of memory, but to an entry in the
user's pseudo--memory table, PMT. This table may contain
‘up to 64 words, each one specifying a certain 2K block
of memory, herein referred to as a page. The first ver-
sion of the system, however, will allow access to only
14 words. The possible forms of an entry in the pseudo-
memory table are shown at the end of this section entitled
“"PMT Entries®. All of the entries are more or less
self-explanatory, except the second, which will be dis-
cussed in considerable detail later. '

When it is necessary to activate a user, his pseudo-
relabeling registers are used to read out the proper
bytes from PMT and construct a list of pages which need
to be read in from the RAD. When this list has been
constructed, the current state of core is examined to
determine whether any pages need to be written out to
make room for those which must be read in. If so, a

list of pages to be written out is constructed. The

RAD command list is then set. up with the appropriate
commands to write out and read in the necessary pages.

In the scan which sets up the RAD read commands, the
swapper collects from PMT or SMT the actual absolute
memory addresses of the page called for by the pseudo-
relabeling and constructs a set of real relabeling regis-
ters which it puts in two fixed locations in the monitor
(RRL1 and RRL2). It then outputs these relabeling regis-
ters to the hardware and activates the program.

Matters are slightly complicated by the existence of

a system parameter called NCMEM. Pseudo-relabeling bytes
with values from 1 to NCMEM-1 (0 means an unassigned
page) actually refer directly to the first NCMEM-~1l pages
of SMT, the shared memory table and the user's own PMT

ls addressed beginning at NCMEM. the "common' portlon
of SMT is used to hold the most common subsystems.

There are two BRS's which permit the user to read and
write his pseudo- relabellng. BRS 43 reads ‘the current
pseudo-relabeling registers into A and B., BRS U4 takes
the contents of A and B and puts them into the current

5.2

pseudo-relabeling registers. An executive program may
set the relabeling registers in arbitrary fashion by
using this instruction. A user program, however, may.
add. or delete only pages which do not have the executlve
bit set in PMT. This prevents the user from gaining
access to executive pages whose destruction may cause
damage to the system. Note that the user is doubly
restricted in his access to real memory, firstly because
he can only access real memory which is pointed to by
his pseudo-relabeling, and secondly because he is only-
‘allowed to adjust those portions of his pseudo~relabe1ing
which are not executive type. ,

The user can also set the relabeling of a fork when he
creates ‘it. See section 3. The same restrictions on:
.manipulatlon of executive pages of course apply.

The, system maintains a pair of relabellng registers -
which the executive and various subystems think of. as -
the user's program relabeling. For the convenience of
subsystems, an executive program can read these regis-
ters with BRS 116 and set them with BRS 117.

The memory allocatlon algorithm is described in sectlon
3. A user can release.a page which is in his current
relabeling by putting any address in that page into A
and executing BRS 4. The PMT entry for the page is
removed and in any other fork which has this PMT byte
in its relabellnp, the byte is cleared to 0.

Equivalent to. BRS 4 is BRS 121 which takes a pseudo-‘,
relabeling byte in A rather than an .address. An inverse
operation is BRS 120, which takes a pseudo-relabeling
byte in A, generates an illegal instruction trap if the
corresponding PMT entry is occupied, and otherwise ob-"
tains a new page and puts it in that entry. This is

an exec-only.operation, of course.

A word of PMT whose first three bits are 001 contains

a pointer to the .shared memory table, SMT. An entry

in SMT looks exactly like an unused or private entry

in PMT. It refers to a page of memory which has a fixed
location on the RAD and may be referred to by more than
one program.. ;

By putting an ‘index in SMT in A and executlng BRS 69,

a pointer to the specified location in SMT .is put into

the first free byte of a-user's PMT and the byte number
is returned 1n A. R : A

1

5.3

The user may declare a page read-only by executing BRS
80 with the..pseudo-relabeling byte number of the page
in A and with bit 0 of A set. To make a page read-
write, bit 0 of A should be clear. Bit 0 of A will

be reset if the page was formerly read-write or set if
it was formerly read-only. If the program doing this
is not an executive program, then the page must not be
an executive page. Only an executive program can make
a read-only PMT entry which points to SMT into a read-
write entry, for obvious reasons. The significance of
a read-only page to the swapper, of course, is that it
need not be rewritten on the RAD when it is removed
from memory.

A RAD is divided into blocks of 32K. Each user is
assigned a block depending on his job number. The

first page in each block is always the user's TS page.
Fach block of 32K consists of eight bands with two pages
per band. The list of swapping commands alternates pages
whenever possible to minimize swap time. A bit map is
~kept in the TS page which maps the user's 32K.” When

the user requires more memory the free page nearest the
beginning of his block is taken. The first several
blocks on the first RAD contain the subsystems, exec

and swapable: monitor pages.

It should be noted that whenever a user is reactivated,
all of the memory in his current relabeling registers

is brought in. The user does, however, have considerable
control over precisely what memory will be brought in,
because he can read and set his own.relabeling registers.
He may, therefore, establish a fork with a minimal amount
of memory in order to speed up the swapplng process if
this is convenient. . , :

To make a page executive, execute BRS 56 with the same
argument as for BRS 80, make page read-only. This in-
struction is legal only for executive type programs.

The system keeps track of the state of real core with
two tables called the real memory table (RMT) and the
real memory use count table (RMC). An RMC entry is -1
if a page is not in use: otherwise it is one less than
the number of reasons why it is in use. Every occurence
of this page in the relabeling of a process which is
running or about to be run counts as such a reason.

In addition, other parts of the system can increment

an RMC word to lock a page in core. No page with non-
negative BRM can be released by the swapper.

5.4

The format of an RMT entry (one per real page) is:

2 910 ' 23

o7

’Si R| 0 .0 | address of PMT or SMT entry

| EIO |) ! responsible ‘ C
USE = in use o RO = read only

There is one more table indexed by real memory, called
the real memory agmng table. Whenever the swapper is .
entered, every word in this table is shifted right one
bit. All pages which show up in the real relabeling
computed from the pseudo-relabeling with which the swap-
per was entered then have bit 1 turned on. The pages
with lowest RMA are selected for swapping out of course,
their RMC entrles must be negative ‘ '

- Tee swappergalso contains a device called the simulated
‘associative memory or SAM, which contains pseudo-relabel-
ing and real relabeling for the most recently used maps.
It serves to reduce the amount of time needed for map-
changing when 11ttle swapping is taking place. It is’
cleared whenever a’ RAD read takes place, since this
changes the contents of real memory and potentially in-
validates all real relabeling registers.

Two BRS's exist for: reading and writing pages at speci—
filed places on the RAD. They are of course restricted

to executive programs. To read a page, put the RAD ad-
dress into B and the core address in A and execute BRS
104. To write a page use BRS 105. RAD errors, cause |
these 1nstructions to generate 1llegal instructlon panics.

PMT ENTRIES

5.5

} 0
Unused
0 23
bt
Shared ‘O'OaS(SMT No.
Ent ' |
ntry i L ‘
3 9 12 23
NN ‘ !
Private iRiEl IRAD Addr. R| Page No.
Entry ‘DX 01
3 18 23
SMT ENTRY
i 1 ; | ;
'R|E| No. of| RAD Addr. !Rl Page No. |
?D,X Users | !O, '
' 18 23
RD = On RAD
EX = Exec
S = Shared
RO = Read Only

6.1

6.0 MISCELLANEOUS FEATURES

A user may dismiss his fork for a specified length of
real time by executing BRS 81 with the number of milli-
seconds for which he wishes to be idsmissed in A. At
the first available opportunity after this time has been
exhausted, his fork will be reactivated. " The contents
of A are. lost by this BRS. ' :

‘"He can read the real-time clock into A and the system
start-up date and time into B by executing BRS 42. The
number obtained increments by one every 1/60th of a
second. Its absolute magnitude is not significant.

An exec fork can read the elapsed time counter for the
user into A by executing BRS 88. This number is set |
to 0 when he enters the system and inerements by 1 at
every 1/60th second cleeck interrupt at which his fork
is running.

To obtain the date and time, he can execute BRS 91.

This puts string pointers into the A and B registers.

The string contains in order, the month/day, hour (0-23):
minute at which the instruction is executed.

A user may dismiss a fork until an interrupt occurs or
the fork in question is terminated by executing BRS 109.

A fork can test whether it is executive or not by execu-
ting BRS 71. The type of executivity is returned in B.
If B equals 1, the fork is subsystem. If B equals O,
the fork is user. If B equals -1, the fork is system
and subsystem. If B equals -2, the fork is system.

If B is negative, the BRS skips on return.

An executive fork can dismiss itself explicitly. See
section 2.

There are two operations designed for so-called executive
BRS's which operate in user mode with a map different
from the one they are called from. BRS 111 returns from
one of these BRS's, transmitting A, B and X to the cal-
ling fork as it finds them. BRS 122 simulates the ad-
dressing of memory at the location specified in A. If
new memory is assigned, it is put into the relabeling

fo the calling fork. A memory panic can occur, in which
case it appears to the calling fork that it comes from
the BRS instruction.

An executive fork can cause an instruction to het
executed in system mode by addressing it with EXS.

6.2

There are switches in the monitor which can be set by
an exec fork with a BRS BE+13. It takes the new switch
value in A and the switch number in X. It returns the
old switch value in A. :

An absolute. location in the monltor relabeling can be
read or changed by an exec fork with BRS BE+4. The ab-~
solute location is in X, the new value, if any, in A.
The BRS reads if B is pos1t1ve and changes the word if
B is negative. o

An exec fork canialéo férce a new page to be read from .
the RAD with BRS BE+15. It takes an SMT pointer in A.

An exec fork can test the“state of any brgakpoint,switch
with BRS BE+7. The switch number is in X. The BRS skips
if the switch is down. L

An exec fork can crash the system with BRS BE+8.

7.0 TELETYPE INPUT-OUTPUT

We begin with an outline of the implementation of the
teletype operations. This should serve to clarify the
exact disposal of the characters which are being read
and written. Every teletype has attached to it a table
which is shown at the end of this section entitled "Tele-
type Table". Also associated with the teletype is a
buffer which contains input and output characters in the
following format:

o . 78 15 1% | 23,
input character ‘output character ; character to |
o 5 i __echo (if any)

As characters are output by the program, they are added
to the output buffer, which may be regarded as logically
independent from the input buffer in spite of the fact
that it resides in the same words. The characters are
then output by the teletype interrupt routine as rapldly
as the teletype w1ll accept them

These buffers are called character rlng buffers (CRB's)
and they are not necessarily associated with teletypes.

When -a character is typed in on a teletype, it is con=
verted to internal form and added to the input buffer.
unless 1t is escape on a controlling teletype. . The
treatment of escapes .is discussed in section 3. The
echo table address is then obtained from TTYTBL. The
echo table determines what to echo and whether or not
the character 1s a break:.character. The availlable choices
of echos and break characters are discussed later in
this section. If the character is a break character,
and if a user's program.has been dismissed for teletype
input, it will be-reactivated regardless of the number
of words in the 1nput buffer. In the absence of a break
character, the user's program is reactivated only when
the input buffer is nearly full.

If the teletype is in the process of outputting (T0S2>-1)
then the character to be echoed is put into the last

byte of the buffer word which contains the input charac-
. ter. When the character is read from the .buffer by the
program, the echo, if any, will be generated. This
mechanism, called deferred echoing, permits the user

to type in while the teletype is outputting without
having his input mixed with the teletype output.

7.2

There are four standard echo tables in the system, re-
ferred to by the numbers 0, 1, ‘2 and 3. Zero is a table
in which the echo for each character is the character
itself, and all characters are break characters. -Table
1 has the same echos, but all characters except letters,
digits and space are break characters. Table 2 again
has the same echos, but the only break characters are
control characters;(including carriage return and line
feed) and exclamation mark. Table 3 specifies no echo
for any character, and all characters are break charac-
ters. This table is useful for a program which wishes
to compute the echo itself.

Normally a carriage return and line feed are both echoed
if either is recelved from a teletype. However, only
the first one received is sent to the program and if

the other one is also received it is ignored. A program
;may, however, receive both by issuing BRS BE+1l. If
‘A is negatlve both characters will beé“sent to the prog-
ram. If A is positive; only the flrst character will
“be sent to the program

If either line feed or carrlage return is output by a
program both are sent to the teletype unless the carriage
"is at the left margin. ~In this case, only a line feed
is ‘output for either a carriage return or a line feed.
If a program wishes to send only one character, it should
output 102B for line feed or 105B for carrlage return.

To set the ‘echo table, put the teletype number, or -1,
in X and .the echo table number in A and execute BRS 12.
Note that BRS 12 is also used to turn on 8-level mode -
(see beldow). To read the echo table number into A, -put
the teletype number, or -1, in X and execute BRS 40. -
This operatlon returns the echo table number in A. If
the teletype is in 8-level input mode, the sign bit of
A is set and the terminal character is in A.-

Torlnput a character from the controlllng teletype’(the
teletype on which the user of the program is entered)
into location M in memory the SYSPOP

"TCI - M (teletype character input)’

is 'used. This SYSPOP reads the character’ from the tele-
type input buffer and places it into the '8 rightmost -
bits of location M. The remainder of location M is ~
cleared. The character is also placed 1n the A register,
whose former contents are destroyed. '

7.3

The contents of the other internal régisters are preserved
by this and all the other teletype SYSPOPS and BRS's

To output a character from iocatlon M, the SYSPO?
TCC Mo (teletype character output)

is used. This instruction outputs a character from the
rightmost eight bits of location M. 1In addition to the
ordinary ASCII characters, all teletype output (other
than 8-level) operations will accept 135 (octal) as a
multiple blank character. The next character will be
taken as a blank count, and that many blanks will be
typed : ' g

The TTYTIM cell in the teletype table is set to the
current value of the clock whenever any teletype ac-
tivity (interrupt or output SYSPOP) occurs. The top
bit is left clear unless the activity is an escape in-
put. This cell is: checked by the escape processor to
determine whether the escape should reset the JOb to
the system exec. (See sectlon 3)

Every teletype in the system is at all times in one of
two states:

a)_ It may be the controlllng teletype of some user's
- . program. It gets into this state when a user
logs in on it. Controlling teletypes are also
known as attached teletypes.

b) It may be completely free.

The status of the teletype is reflected by the contents
of TTYASG. If the teletype is free, TTYASG contains,
3777B. If it is a controlling teletype, TTYASG contains
the PACPTR of the fork to terminate on escape. co

A teletype becomes a controlling teletype when an 'on'
interrupt (from that line) is received by the computer.
This indicates that someone has called that line. The
user then has one and a-half minutes to log in before
the system hangs up the line again. The system checks
for carrier presence on a line before sending out any
characters. To do this a system fork may issue BRS BE+3
with the line number to check in A.

The user may disconnect the line by hanging up the phone.
BRS 112 is executed when an "off" interrupt is received

7.4

_ by the system or when a user logs out. If an "off"

" interrupt has beer received, BRS 112 merely makes the -
line available again. Howeverj if a user has logged

out without hanging up the phone, BRS 112 makes the
teletype the controlling teletype for another job
immediately and the next user van log in w1thout_dialing
the system again. BRS 112 takes the job number associ-
ated with the teletype.in X. A job may terminate itself.
‘This operation also releases all teletypes attached to
the job. BRS 112 requires, system status.

An exec fork can turn a llne on or off by issuing BRS
BE+6. It takes the line number in A and turns it on
if B is negative or off if B is positive.

The user has considerable control over the state of the
teletype buffers for the controlling teletype In par-
ticular, he may execute the following BRS's. All these
take the teletype number in X. Recall that -1 may be
used for the controlling teletype.,’,v e R
BRS 11 clears the teletype 1nput buffer.
BRS 29 clears the teletype output buffer.
BRS 13 skips if the teletype input buffer is
 empty.
BRS "14 waits until the teletype output buffer
is empty, but not until the interrupt has
_d,'been received for the last character.
Special prOV151on is made for readlng '8-bit codes from
the teletype without sensing escape or soing the con-
version from ASCII to internal which is done:by TCI.
To switch a teletype into this mode, execute

LDX ;? teletype number ‘v
LDA =~ =, terminal character + BOOOOOOOB .
BRS 12

This will cause each 8-bit character read from-the
teletype to be transmitted unchanged to the user's
program., . The teletype can be returned to normal. opera-
tion by . : '

1):.reading thevﬁermina1 character specified in»A,
. or o

2) setting the echo table with BRS 12.

7.5

No echoes are generated while the”teletype is in 8-level
mode. Teletype output is not affected.

A parallel operation, BRS 85, is provided for 8-level
output. BRS 86 returns matters to the normal state,
as does any setting of the echo table.

To simulate teletype inptit, the opefatioh

© STI =teletype number or =-1
is available. STI puts the character in A into the in-
put buffer of the specified teletype. Either the tele-

type number must be the controlling teletype or the fork
issuing STI must be a system fork. A

TI$2
™S4
TIS5
TOS2

TOS3

TOSU
TOS5

TTYTBL

TTYFLG

TTYBRK

TTYASG

7.6

'TELETYPE TABLE

number of characters in input buffer. .

'neXt'aVailablé spacé in ihput bufféf (pointer)

next filled space in input buffer (pointer)
number of characters in output buffer; -1 = inactive

<0 = not in multiple blank mode; 400 = just saw
135 (multiple blank. character) “other s’ number

“of blanks

next filled space in output buffér (pointer)

next available space in output buffer

{10 23

v ; T

‘Nj o O‘S!S3OIO|O%O!1 address of echo table

l's: ;Iio‘ @ ‘ ’ j or terminal character
IR EEEER | for 8-level input
0123145

don't listen for input (excett escape) when 0.
Set when input buffer is full.

waiting for break character when -1
TTY Status

PACPTR of fork to terminate escape ; active
f 37777 ' inactive

B Value of clock when last action
'S occurrcd on this tty . ¢

NS=not 8-level

SI=8-level input

SO=8-level output

ES=last acfion was’input of escape

8.1

8.0 DISC AND BUFFER ORGANIZATION; DEVICES
8.1 File Storage on the Disc

The disc used by this system actually consists of
from eight to 32 physical discs each with a movable
.arm. The arms have 64 positions numbered 0 to 63.
Each arm position on each disc consists of 8192
-words each, however, the' files use the disc in
- groups of 256 words thus disc addresses for file
blocks are always MOD 4. '

. The disc is divided into two major sections, system

. «.date and file storage (see disc ‘map at end of this
section for disc layout). The organization of the
system data area is discussed later in this section.
The .file storage area is divided into 256 word
blocks which form the phy51ca1 records for storage
.of files.

Every file has one or more index blocks which
"contain pointers to the data blocks for the file.
An index block is a 256 word block, as are all
other physical blocks in the file storage area.
Only:the first 128 words of ‘the index block are
used. - A couple of additional words are used to
chain the index blocks for any particular file,
both forward and backward. The index blocks for
a file contain the addresses for all the physical
blocks used to hold information for the file.

Available storage inthe file area of the disc is

- kept track of with a bit table. If a bit in this
‘table 1s set, it indicates that the corresponding
block on the disc is free. The bit map is set
every time the system is brought up to agree with

~ the files in‘the file directories. To set the bit
map, BRS BE+4.is used. It requires an index block
pointer (MOD4) in A. When all files have been
checked, the BRS is called with a -1 in A, the new
overflow p01nter in B, and the accounting area ad-
dress in X.

8.2 Flle Buffers

Every open file in the system w1th the exception
of purely character-orignted files such as the tele-
type has a file buffer associated with it. The

. form of this buffer is shown at the end of this
section entitled "Buffers'".

Part (a) of this rigure shows the buffer' proper,

and part (b) shows the index block buffer and pointers
associated with it. ‘Part (b) is used only by disc
files, and is present in all cases.

The temporary storage page which is associated with
each job is always the first entry in the job's
PMT. This page is used to.hold information about
the user and for the systen's temporary storage

. for .that user. It also has room for three buffers.
The pseudo-relabeling for -the TS page is held in

a table called RL3 which is indexed by job number,
~and: is put. into the monitor map whenever any fork
belonging to that job is run. The TS page is al-
ways relabeled into page 7. At : :

Note that the amount of buffer space actually used
is:a function of the device ,attached to the file.

In all cases, the two p01nter words at the head

of the buffer indicate the location of the data.
The:first word points to the. beginning of the rele-
vant data and is incremented as data are read from
an, input buffer. The-second word points.to the

end of the data and is incremented as data are
written 1nto an output buffer. When the buffer

‘is in a dormant“state, both words point to’ the first
word of the buffer. Whenever any physical I/0 oper-
ation is completed, the flrst p01nter contalns the
haddress of this. word :

8. 3 Dev1ces

uEvery different klnd of 1nput~output device attached
to, the syttem has a device number. - The numbers
a531gned to 'specific devices are given in-section
9..,.The various tables indexed.by.device number

are described here. The entries in these tables
Haddressed by a 'specific device number together: with
the unit number (if any) and the buffer address,
completely define the file. 'All this information
is. kept in the file control block (see sectlon 9).
which is addressed by the file number.

The tables indexed by device number:are shown at
the end of this section entitled "Device Tables"
. Note .the multiplicity of bits whlch specify. the
‘character;stlcs of the device.. A device may be
common (shared by users, who must not access it
,51mu1taneously e.g., tape or.cards) or not common

8.3

(e.g. disc); this characteristic is defined by NC.
It may have units; e.g., there may be multiple

mag tapes. The U bit specifies this. The DIU word
indicates thich file is currently monopolizing the
device; in the case of a device with multiple units,
DIU points to a table called ADIU which contains

one word for each unit.

The major parameters of a device are:

the opening routine, which is responsible for
the operation necessary to attach it to a file,

the GPW routine, which performs character and
word 1/0,

the BIO routine, which performs block I/O.
The minor parameters are:
maximum legal unit number,

physical record size (determining the proper
setting of buffer pointers and interlace control
words for the channel),

the expected time for an operation; the swapper
uses this number to decide whether it is worth-
while to swap the user out while it is taking
place.

8.4 System Data is Kept on the Outer Arm Positions
of the Disc

Arm positions 62 and 63 contain systems which are
loaded by a special routine which is kept on paper
tape. This routine dumps the first 32K of core

on discs 0 and 1, then reads a new system into the
first 16K of core. The disc from which the new
system is read is determined by console switch set-
tings.

Arm positions 0 and 1 contain the file directories,
accounting information, and mailbox data. These
are explained in the TSS Executive Reference Manual.

There are four BRS's available to system level

forks to read and write the system data on the disc.
These are BRS BE+1, BRS BE+2, BRS BE+9 and BRS
BE+10. They require the core address in A and the

8.4

.disc address in:B.: . In addition BRS BE+l and:BRS
BE+2 take the word count in X. BRS BE+9 and BRS
BE+10 always read or write a page (2K) from or to
.the disc. :

(b)

BIN
BIC
BDN
BDC
BIP

BIA

BBP
BFP

#pandom files only

8.5

BUFFERS

(a) Layout of a File Buffer

;pbinter to first relevant data word of buffer
:p01nter to last relevant data word of buffer
first data word

i
1
i

i

255th data word ' i

Layout of Index Block Buffer and Associated Pointers

for a Disc File

‘number of the index block in buffer
rindex changed flag

number of the data block in buffer

data changed flag

pointer to index block entry for current
data block

i disc address of current index block
first index.block word

i3 | 23
l} ~disc address

121st index block word

i

pointer to previous index block (or 0)

pointer to next index block (or 0)

check word

¥#index block word format. EOR=end of record flag.
#¥¥glways 0 for sequential files

%%

R
#EE

8.6

DEV word or
character I/0
routine

BUFS
buffer size

BDEV
Block I/0
routine

DIU G
device in user

OPNDEV
opening routine

DEVICE TABLES

12 3 4 5 6 7 8

WB = W Buffer

g 9 10 - 23...
3|3 CH|DSC, RX ¢iBFiWB OUT} @ GPW routine -
~—CH — Char. oriented RX - random access

DSC - Disc - * BF - requires buffer OUT - output
g 12 3 8 910 23 -
g ﬂiN‘ max. unit } Ui physical record size
f 1 C number ‘ l

U - check unit number

NC - not common (i.e., don't: set DIU)

10 -

/] 9 23
i 9 g BIO routine !
! . c
| e 23
i file number using this device or -1 - U=g
; points to ADIU (has unit number added) L U=1
g 12 3 - 8 9 10 23
| 1@ E | expected wait Z2 | opening subroutine
! 10 . time in cycles o L

EQO - exec only allowed to open -

40:

8.7

DISC MAP

Arm P051t10ns

100:

140

4o;

100;
140!

MO
lOO

140

40
8K~

100

14o0;

Lo

100

ho
100

4o

100,

4o
100

; I - sv e e e s - /‘x_' .-
?‘"_,*"_lm"_man, N 3l.32..33 3 b ﬁl,,~62.” b3
1 page 0: User| Date x | : ; ; ; |
I 400 hserl j | ; ; 3 f !
FD | FD ! : ; ; | !LOC 0@00()?1sc o)
! - | : ' i ; = | (OXXXX
' , j ; . e | ;
; user! i . i i i ' ; :
| — ——-—7 7~-T--..-_l._ I\:\ /.....J _',._ ‘ i b= - l“;/ _z‘ J ' }
OUser;User; Lo ' ; ! | ; | ;
~ 500 | 100 . ; ' ! | % | ' ‘
| FD | FD | j ; g * | fLOClLOCl Disc 1
; i | i ’ i | | t «(2XXXX)
. ! | ! .
i i AN ; S S B M_WWQ,*~M‘
OUser Userf i v | : | f S g : E
600 200 ' i : i | ' ; 1
| FD { FD . | | 3 'Loc 2 LOC 2 Di.lsc 2
: . | : | i
i :)] : : ‘ : (4XXXX)
| : i { i ; : ' !
3 : ; l ! i | ;
| T S SRRSO N A N T | e oo R ! :
e Obser User N ! i * | K/ § % _
700 300 { ; g _ ; i
{ FD , : | i 5 , § {LOC 3]LOC 3'Disc 3
i : ; | é : i | | H(6XXXX)
'= ; : ! ‘ ; : ! !
. : et ? : Sy - : ,
OUser Acct L g § P g
1000 {1 ; j * | % !
| FD UAD ; i : i LOC 4|LoC UDisc &
oot ! o | o
140 . 127 | U B ‘ aod |
£ K - AT § : VA
OUSGI’ §\\ i o § : ’ | é
11005‘\//§ é o S | | | :
FD | /% i i g ; | ! LOC aLOCS‘Digc 5)
. ; : i
/ ; % } | | .(1 XXXXv
140 - .. L AN W A i ;
1 ¥ Y i ? i N ;
OUser | : |) b ;
1200 % : ‘ i : : , !
FD ’Acc"m % ; LOC 6,LOC 6!Disc 6
| : | § 4 ‘ | (1U4XXXX)
' ; : * 5
: i \ ' .{ i ‘ M\‘- j :
B e D 12 i e
1300 | i 3 | | f i
FD Letter ; |] | | : ;L00’7L00'7Disc 7
f § | : * ; ; : ‘ : (160000~
% z ! | | g : : é | 177740)
1 /\‘ -—‘—l i /‘.“ . 3 b ’

140

00XX

02XX 04XX

v 76XX100XX102XX104XX Y U1T2XX17UXX1T 6XX

9.1

9.0 SEQUENTIAL FILES
9.1 Sequential Disc Files

There are two basically different kinds of files
which the user may write on the disc, sequential
and random. A sequential file has a structure
very similar to that of an ordinary mag-tape file.
It consists of a sequence of logical records of
arbitrary length and number. Disc sequential
files are, however, considerably more flexible
than corresponding files on tape, because logical
~records may be inserted and deleted in arbitrary
positions and increased or decreased in length.
Furthermore, the file may be instantaneously pos-
itioned to any specified logical:record.

A sequential disc file may be opened by?the fol-
lowing sequence of instructions:

LDX =device number, 8 (input).or'9 (output)
LDA Address of first index block
BRS 1 S

If the file is opened successfully, the BRS skips;
otherwise it returns without skipping. Use of
this BRS is restricted to users with system status.
User programs may- access disc files only through
.the executive file handling machinery. BRS 1 can
~also be used to open other kinds of files (see
section 9.2).

If BRS 1 fails to skip, it returns in the A regis-
ter an indication of the reason:

-2 too many files open -~ no file control
blocks or no buffers available.

-1 device already in use. For the disc,
produced by an attempt . to open a:file for
output. twlce. I .

0 No dlSC space left, Tbis inhlblts opening
of output. files only

BRS. 1 returns in the A register a file number for
the file. This file number is the handle which
the user has on the file. He may use it to close
the file when he is done with it by putting it

in the A register and executing BRS 2. This re-
leases the file for other uses. BRS 2 is avail-
able to both user and executive programs.

9.2

To close all his open files the user may execute
BRS 8.

If the sign bit of A is set when the BRS 1 is

- . executed, the file is made read-only. This means

that: it canhot be switched from:input to output.
'If this bit is not set then the 1nstruct10ns

LDA —flle number
ILDB . =1 :
BRS - 82

".w1ll change the flle to an-output file regardless
‘of iuS 1nitial character ‘The instructions:

LDA b=f11e number
LDB =0
! BRS g2

are always legal and make the file an input file
regardless of itk initial character.

Three kinds of input-output may be done with sequen-
tial files. Each of these is specified by one

. SYSPOP. Each of these SYSPOP's handles input and
-output indifferently, since the file must be speci-
fied 'as an input or an output file when it is opened.
A" £file that is open for-output cannot be opened
again for either inputior output and a filé that
is open for: input cannot be opened for output.
However, a file may be opened for input any humber
of times.

To input a single character to the A register or
output it from the A register, the instruction:

CIO‘Q-=file number ur: :

is 'executed. On input an end of record or end

- of ifile.condition:will set bits 0 @and 8 or bits

0 and 7 in the file number (these are called flag
bits) and return a 134g.0or 1375 character, respec-
tively. In interrupt is arméd; it will occur.
The end of record‘:condition occurs on the next
input operation after the last character had been
. input. The end of file condition ‘oceurs -on’ the

- next dnput operation-after the end of record which
.signals the last record of the filew The user

may generate an end of record wh1le writlng a file
- by using the control operation to be descPibed.

‘An error condition sets bits 0 and 6 in the file
number. -

9.3

To input a word to the A register or output it
from the A register,

WIO =file number

is executed. An end of file condition returns
a word of three 1378 characters.

Mixing word and character operations will lead
to peculiarities and is not recommended.

To input a block of words to memory or output
them from memory, the instructions:

LDX =first word address
LDA =number of words :
BIO =file number

should be executed. The contents of A, B and X

will be destroyed. The A register at the end of
the operation contains the first memory location
not read into ‘or out of.

If the operation causes any of the flag bits to
be set, it 1s terminated at that point and the
. Instruction fails to skip. If the operation is
completed successfully, it does skip. Note that
a BIO cannot set both the EOR and the EOF bits.

_ BIO is implemented with considerable eff101ency

The flag bits of the file number are set by the
system whenever end-of-record (0 and 8) or end-
of-file (0 and 7) is encountered and cleared on

any input-output operation in which neither of
these conditions occurs. Bit 0 is set on any un-
“usual condition. 1In-the case of a BIO the A regis-
ter at the end of the operation indicates the first
"memory location not read into or out: of . For any
input operation, the end of record bit '(bit 8)

of the file number may be set. An output operation
never sets either one 'of these bits. Bits 0'and

6 of the file number may be set on an error con-
dition. Whenever any flag bit is set as a result
of an input-output operation in a fork, interrupt

b will‘occur in that fork if it is armed.

The ‘CTRL SYSPOP provides various control functions
for sequential disc files) To use this operation
execute the instructions:

9.4

LDA =control number
LDB =gount, (if required)
CTRL =file number

The available control numbers are:

1l write end of record on output or skip the
remaining part of the logical record on
input. This control does not take a record

- count. ‘, ’ R

. 2... backspace (B) phys1cal tape blocks.
3 forward space (B) phy31cal tape blocks

4 delete (B) tape blocks (legal on output
only).

5 space to end of file and backspace (B) physi-
cal tape blocks.

6 space to beginnlng of file and forward»space
(B) phy51cal tape blocks.

7 insert 1oglcal record (legal on output file
only). This control does not require record
count. : S S

8 'wrlte end of flle (output only)

A program may delete all the 1nformation 1n a disc
file by executing the instructions:;.

. .LDA: .=file number ..

.BRS 66 . .
The .index block for: a sequential disc file contains
one word for each physical record in the file.
.This word contains the address on the disc of the
physdcal; record in the bottom 21 bits. Bit 2 is
set.if the physical record-is .the last record of
a logical record. A sequential file may have only
one. index.block, or a maximum of 121 X 255 30855
words of data. Coy :

Puttlng the file number of a sequential flle in

A and executing BRS 113 will cause the file to

be scanned to find the total number of data .words.
, The. number of data words:- is added to X. This also

9.5

works for random files.

Three operations are availablé to executive programs
only. They are intended for -use by the system
in dealing with file names and executive commands.

A new disc file with a new index block can be ¢
created by BRS 1 with an.index block number of

0 in A. The file number is returned in A as usual
and the index block number in X. The read-only
bit may be set (bit 0 of A) as usual.

BRS 67
returns the index block with address in A to avall-
able storage. An exec fork may read an index block
into core with

BRS- 87.

It takes the address of the block in A and in X

. the first word in core into which the block .is

to be read.

A single word of a sequential file may be directly
addressed by specifying the logical record number
and word number within the logical record. All
the operations legal for random files (see section
10) can also be used for sequential files with
this convention. The format of the address is

102 7.0 : 23 |
i record number | word address ;
' l (- (6 bits) | (16 bits) ;

9.2 Other Sequential Files

In addition to disc sequential filés, the user
has some other kinds of sequential files available
to him. These are all opened with the same BRS 1:

LDX =device number
LDA =unit number
BRS 1

Available device numbers are:

9.6

paper tape input 1
paper tape output 2
- magtape input L
-magtape output -5
card punch Hollerith 6
card punch binary 7
line printer output 11
card input Hollerith 12
card input- binary 13 -

The dev1ce humber is put into X. ‘The unit nuamber,

if any, is put into A. The file number for the
resulting open file is returned in A, If BRS.1

fails it returns an error condition in A as described
. in section 9. Three error conditions apply to

- magtape only: Co . T

0 Tape not ready
1 Tape file protected (output only)
2 Tape reserved

BRS 1 is inverted by BRS 110, which takes a file
number in A and returns the corresponding device
number in X and unit number in A.

-:.These files may also be closed.and read or written
-in the same manner as sequential .disc files. The

- magtape is not available to the user as a physical
dev1ce.

CTRL =] (end of record)

Is available for physical sequentail files 3. and

5 (paper tape and magtape output). Several other
controls are also available for magtape files only.
These are:

backspace block:
forward space file
backspace file :
write three.inches blank tape
rewind -
" write end of flle
erase long gap.. . ..

O~ OWJI Wi

These controls may be executed only by executive
type programs. I/0 operations to the magtape may,

of course, be executed by user programs irf they
have the correct file number.

9.7

An executive program may allocate a tape unit to
itself by putting the unit number in A and executing
BRS 118, which skips if the tapeis not already
attached to some other job. BRS 119 releases a

tape so attached.

It is possible for magtape and card reader files
to set the error bit in the file number. The
first I/0 instruction after an error condition
will read the first word of the next record -~

the remainder of the record causing the error is

" ignored. The magtape routines take the usual cor-
rective procedures when they see hardware error
flags, and signal errors to the program only as

a last resort.

In order to make the card reader look more like
other files in the system, the following transfor-
mations are made by the system on card input:

L) All non-trailing strings of more than two
blanks are converted to a 135 character fol- -
lowed by a character giving the number of
blanks. The teletype output routines will
decode this sequence correctly.

2) Trailing blanks on the card are not transmitted
to the program.

3) The card is not regarded as a logical re&ord.
However, the system generates the character
155 (carriage return) at the end of each card.

The result of all this machinery'is :that the string
of characters obtainec by readingfiﬁvavcard deck
may be output wit..out change to & teletype and

will result in a correct listing of the deck.

Whenever a card reader error (feed check or validity
check) occurs, the program is dlsmlssed until the
reader becomes not ready. -

The EOF light is sensed as an end of file at all
times.

The phantom user's ten second routine checks to
see whether a W-buffer interrupt has been pending
for more than ten seconds. If so it takes dtastic
and ill-defined action to clear the W-buffer.

BRS 114 also takes this drastic action; it can be
used if a program is aware that the W-buffer is
malfunctioning.

FA

FD

F¢

Fw

| ¥RX

9.3 File Control Blocks

9.8

Every open file in the system has a35001ated with
-1t a file control block. This block consists of

four words in the following format:

FILE CONTROL BLOCK 1.85 - TYMSHARE

first index block address or 0O or

.7
| !O'
i i'?.subroutine address or unit number
0 23 =
:EiBz iDR.-R B. ‘0 .
|RIB0O'F[X:D Pi0OiU 0! device
GRG0 b 0 .
i char. . - drum buffer address
count Job no. 0. . or 0 :

= word being packed or unpacked
Cgar scount = -1 to 2 - :
. character orlented

OUT = dutput

Q.
’.Ii
i

BB = buffer busy
DF = disc file
= random access
¥RD = read only
BP.= pbuffer in use and protected

ERR = error

..U = unused

*Diéé‘fileé onlyh

9.9

9.4 Permanently Open Files

There are a few buillt-in sequential files with
fixed file numbers:

0 controlling teletype input

1 .controlling teletype output

2 nothing (discard all output)
1000+n input from teletype n
2000+n output to teletype n

These files need not be opened and cannot be closed.
9.5 Character Buffers

Section 7 describes the format of a teletype buf-
fer. These buffers are capable of dealing with
any character-oriented device, not merely with

a teletype. For this reason the character ring
buffers are not directly indexed by the physical
number of the teletypes to which they are associ-
ated. Instead, a table indexed by physical tele-
type number 1is used to obtain the buffer number.
It is possible for other devices to obtain buffers:
the mechanism for dolng this is not spelled out
in detail at the moment.

10.1

10.0 RANDOM DISC FILES

A random disc file is very similar in physical struc-
ture on the disc to a sequential disc file. The only
major difference is that there are no logical records
and that the bits in the index block which keep: track
of logical record structure are always 0. Furthermore,
the non-zero words of the index block are not neces-
sarily compact. The reason for this is that informa-
tion is extracted from or written into a random file

by addressing the specific word or block of words which
is desired. From the address which the user supplies,
the system extracts a physical block number by dividing
by 255 and a location of the word within the block which
is the remainder of this division. Further division-
by 121 yields the appropriate index block. A random
file may have any number of index blocks. '

A random file may be opened by using BRS 1 with a de-
vice number 10. No distinction is made between input
and output to a random drum file. A random file may
also be closed by BRS 2, like any sequential file.
However, CIO, WIO and BIO are not used for input-output
to random flles

Instead, the following operations are availabie:

" To read a word from a random file, execute the
1nstruct10ns '

LDB =address
DWI =file number

The word is returned in A.

To write a word on a random file, put the word in A
and execute the instructions:

LDB =address
DWO =file number

Block 1nput-output to random files is also p0531ble.
To input a block, execute the instructions:

LDX =first word address‘
LDA =number of words

LDB =first address in file
DBI:- =file number

10.2

To output a block of words to a random file, execute
the instruction:

DBO w=file number

with the same parameters in the central registers.
These block input- output operations are done directly
to and from the user's memory, as is BIO. Disc buffers
are not 1nvolved and the operatlon can go very qulckly

If the sign b1t of A was set when BRS 1l was executed

to open the file, then output to it is not allowed -
and the file is said to have. been made read-ohly. This
is a natural extension of the treatment of read—only
sequentlal files..

It is possible to define a random file which has been
previously opened as the secondary memory flle To
do this, execute the instructions: »

LDA '.=fileLnumber
BRS 58

The specified file remains the secondary file until. -
another secondary memory file is defined or until the
file is closed. To access information ‘in the secondary
memory, two SYSPOPS are provided. These POP's work
exactly like DWI and DWO except that they take the disc
address from memory instead of requiring_it to be.in B.
To read a word of secondary memory into the A reglster
the instruction: :

LAS address

should be executed. To store'a word from A into the
secondary memory, the instruction:

SAS address

should be executed. The word addressed by either one
of these.SYSPOP's should contain the disc address which
is to be referenced. : This word may also have the
index bit set in which case the contents of the index
register will be added to the contents of the word to
form the effective address which is actually used to
perform the input-output operation. :

The mechanism for acquiring and releasing: random disc
file space is very similar to the mechanism for alloca-
tion of core memory. Whenever the user addresses a

10.3

section of a random disc file which he has not previously
used, the necessary blocks are created and cleared to

0. Note that the user should avoid unnecessarily large
random drum addresses, since they may result in the
creation of an unnecessary number of index blocks.

To release random disc memory, execute the instructions:

LDA =number of words to be zeroed
L.DB =initial word to be zeroed
LDX ~file number

BRS 59

The specified section of the file is cleared to zero.
Physical blocks which are entirely zero will be released.
A more drastic clearing operation may be obtained with
BRS 66, which deletes the entire information content

of the file.

11.1

11.0. SUBROUTINE FILES

In addition to the above-mentioned machinery for per-
forming input-output through physical files, a facility
is provided in the system for making a subroutine call
appear to be an input-output request. This facility
makes it possible to write a program which does input-
output from a file and later to cause further proces-
sing to be performed before the actual input-output

is done, simply by changing the file from a physical

to a subroutine file. A subroutine file is opened by
executing the instructions:

LDX parameter word
BRS 1

This instruction never skips. The opcode field of the
parameter word indicates the characteristics of the
file. It may be one of the following combinations:

110 00000(octal) Character input subroutine
111 00000(octal) Character output subroutine
010 00000(ocatl) Word input subroutine
011 00000(octal) Word output subroutine

I/0 to the file may be done with CIO or WIO, regardless
of whether it is a word or a character oriented sub-
routine. The system will take care of the necessary
packing and unpacking of characters. BIO is also
acceptable.

The opkening of a subroutine file does nothing except

to create a file control block and return a file number .
in the A register. When an I/O operation on the file

is performed, the subroutine will be called. This is
done by simulating an SBRM to the location given in

the word following the BRS 1 which opened the file.

The contents of the B and X registers are transmitted
from the I/0 SYSPOP to the subroutine unchanged. The
contents of the A register may be changed by the packing
and unpacking operations necessary to convert from
character-oriented to word-oriented operations or vice
versa. The I/O subroutine may do an arbitrary amount

of computation and may call on any number of other I/O
devices or other I/O subroutines. A subroutine file
should not call itself recursively.

When the subroutine is ready to return, it should exe-
cute BRS U41. This operation replaces the SBRR which
would normally be used to return from a subroutine call.
The contents of B and X when the BRS 41 is executed

11.2

are transmitted unchanged back to the calling program.
The contents of A may be altered by packing and un-
packing operations. A subrOutlne flle 1s closed w1th
BRS 2 like any other file.

In order to implement BRS 41 ‘it 1is necessary to keep
track of which I/0 subroutine is open. This information
is kept in 6 bits of the PAC table. The contents of
these 6 bits is transferred into the opcode field of

the return address when an I/0 subroutine is called,

and is recovered from there when the BRS 41 is executed

12.1

12.0 EXEC TREATMENT OF FILES

The user®s only access to files 1s through the system
executive. The executive provides a connection between
a symbolic name for a file, which is created by the
user, and the file number which the user must have in
order to execute input-output operations. This con-
nection is established through the file directory.
Supplementary to this function is the need to prevent
the user from destroying other people's files.

We begin with a description of the file naming system

as it appears to the user, and continue with a descrip-
tion of the executive tables which implement the wvarious
features... - : -

A user may give his files arbitrary names containing
any characters other than ' or /. The nam&s;:of new.
disc files must be surrounded by /, and the names of
new tapes files must be surrounded by '. When a file
is created it's name must be enclosed within one or
the other of these characters.

When a user types a file name not enclosed within
slashes, or quotes he need only type enough characters
6f the name to determine it uniquely. If the user .
starte an output file name with a quote or slash, he
must type the entire name. If it is an output file .
name and not already in hils file directory, a new file
will be created. In any other context, a name not in
the file directory is in error.

When an output file name is being typed, the system,
after determining the name, will type out either OLD
FILE or NEW FILE and await a confirmation that the name
has been given correctly.. If the user types either -
of the characters, line feed or carriage return, the
name will be regarded as correct. Any other character
will be regarded as an indication that the name was
incorrect. This machinery is intended to make it more
difficult for the user to destroy old files. or create
new ones inadvertently.

When a new slashed output file name is given to the

system, a new entry in the file directory and a new

index block on the disc are created for it. If the

name is being given to an executive command, it will
be assumed that the file is a sequential one.

12.2

It is possible for the user to reference files belong-
ing to users other than himself if the file name con-
tains a control character or ‘an €. He does this by
preceding the file name with the account number and
user name enclosed in parentheses. Thus, to get at
file /@PROGRAM/ belonging to user JONES, he might type:

(A1;JONES) /@PROGRAM/

Jones may control the extent to which other users can
access his files. For another user to reference a file,
the name must contain at least one c¢ontrol character

or an- @ = :

Files in a Public File Directory may be accessed by
typin? the file name in quotes:

"PROGRAM“

The previous paragraphs have descrlbed the behavior

of the system's file naming logic when- it is recogniz-
ing names typed in on a teletype. The BRS's which
recognize file names are capable, however, of accepting
them in many other ways. Essentially, they accept a
string pointer to the portion of the name already known
(which may be null) and file numbers for the input: file
to be used in obtaining the rest of the name and the
output file on which the name -should be completed.

In most cases the first or the second of these items
will be irrelevant.

A program may open a disc file and obtain a file number
by executing BRS 15 and BRS 16 (input) or BRS 18 and

19 (output). BRS 15 and BRS 18 expect to get the file"
name from the teletppe. If the ndme is known to the -
rrogram, they may be replaced by BRS 48. These BRS's"
are used as follows - -

B LDA =file number
~ BRS* 15 (or BRS 18)
- EXCEPTION RETURN
NORMAL RETURN o

The normal return leaves a file directory pointer in

A, and BRS 18 leaves the character typed after OLD FILE/
NEWAFILE in B. If no character was read B contalns

a -1. 'The X reglster is modlfled

12.3

.LDA =file directory pointer
LDX =file type (BRS 19 only)
BRS 16 (or BRS 19) ‘
EXCEPTION RETURN

NORMAL RETURN

The normal re urn leaves a file number in A, and BRS
16 leaves the flle type in B. X 1is modifled

‘There are four standard‘flle»types'

1 File wrltten Dby executive save command (sequential)
2 General binary file (sequential)
3 Symbolic file (sequential)

Yy Dump file (sequentlal)

BRS 48 or 60 may be substituted for BRS 15 or 18. BRS
48 is used if the name is in the file directory and
BRS 60 will create a new name if: necessary
! f;;LDP =string p01nters(l)
- .~ BRS 48 or 60
EXCEPTION RETURN
NORMAL RFTURN
‘ : e ‘
The strlng p01nters point to the file ‘name to be looked
up in the file ‘directory. The normal: return leaves
a file directory pointer in A. All other registers
are modified. If the file name cannot be located in
the file directory, the BRS 48 takes the exception
return, while the BRS 60 will attempt to place the
new name in the file directory; if it is unable to
do so because the file directory is full, it will take
the exception return. o

(1) A string pointer is a character address found by
multiplying the word address by three and adding O,

1 or 2. The string pointer in A points to the charac-
ter before the beginning of the file name. The pointer
in B points to the last character of the name.

ARPAS assembles strlng pointers as follows for string
pointers Pl and P2:

Pl DATA (R) Z-1
P2 DATA (R) Z+2
Z ASC v/T/

12.4

It is possible for a.user to rename hlS files by typing:
RENAME /PROGRAM/ as ROUTINE

The rename logic protects the user against cfeating
file names that conflict with existing file names or
with the file type. SR

The file directory consists of an SPS hash table to-
gether with a table of equal length, called the descrip-
tion table (DBT), which has a three-word entry corres-
ponding to each three-word entry in the hash table.

In addition, there dis.a string storage area for storing
file names and a few words of miscellaneous information.
The parameters of a file directory are shown at the

end of this section entitled '"File Directory Arrangement"
and the format of .a; single hash table entry and matching
DBT entry is- also shown at the end of this section
entitled “Hash Table Entry". Executive..commands for
examining the file directory and setting various bits
are described in séction”13. In addition, a number

of BRS's are provided which permit the user's program

to affect the contents of the flle dlrectory

The creation date of file is set to the current date
each time it is opened as an output file.: The field :
"No. of Accesses” is incremented each-time-the file
is opened for input-or.output

There are flve flle names built into the system.. . They -
are: -

. PAPER TAPE
CARDS
PRINTER

. . TELETYPE
. NOTHING. -

These names may . be used at . any tlme and have the obV1ous
significance. If the device-referred to is not avail-
able because it is attached to some other user, a suit-
able error message will be generated. Paper tape or.
card output files opened by giving this name to the:
executive will have the type of the file punched as

the first word (or card). Similarly, paper tape or

card input files opened by giving:this name to the
executive will read the first word from :the paper tape
or the first card and deliver it as the type.

FILE"DIRECTORY ARRANGEMENT

SymbbluL f

FDCTL
FDCTL1
FDCTL2

FDCTLC .

FDCTLE

FDHT

EFDHT

DUMHT

FDSS

144
words

/.
148
words

120
words

1‘;Hésh'Table Control Words.

iLocafion of H.T.

Location of end of H.T.

working

Char. Addr. of string sto.

!

i End string storage

0

1

H.T. Entry
(see 123.6)
3 ‘words

. Reserved end

3 words

Dummy H.T Entry

Corresponding
table

string storage

12.5

48
entries

i
]
!
!
$

12.6

HASH TABLE ENTRY -

012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23
0O ¢« FT Pointer
LTP : To File Name

HTP ao,__' PS50 ’ z

4

Phy31cal Device

1 0 ; Pointer to

0 7 . File Name (In "PFDSS" table)

1 . 2 3 - § * -~ 0 - ' DN

Disc File:

2 | PFT | Pointer

0: ! To file Name 1 i

Index Block Pointer - i

Corresponding Table Entry

; C Change in file size © . ..FL o !
-0 Account No. ©No. of accesses Creation date é
: i ~Month f Day E

CB FT : LTP. _ ! Future controls ’
FT = File Type

LTB= Low Order Tape Pos1t10n

P= High Order Tape Position

Tape File Size

File Length for Disc Files

Change in File Length g

File Control Bits - 0=Tape File
2=Disc File

End of Entry Flag (1)

[B B

13.1

13.0 EXECUTIVE COMMANDS RELATED TO FILES

When a user "LOGSIN" to the system, his complete file
directory is read in from the disc and placed in the
file directory hash table along with the name of the
physical devices. The "LOGIN" procedure is described
in the "Tymshare Reference Manual'.

The following executive commands related to the users
file directory are available:

FILES

WRITE FD

DF

FD FOR
DELETE FILE
RENAME

SO RO T

Commands - (e)-:and (f) are completely described in the
"Tymshare Reference Manual", but simply, DELETE FILE

is 'used to delete a file from the directory, and RENAME
is used to change the name of a file in the-directory.

Commands (a) and (d) are also described in the "Tymshare
Reference Manual’ as used by the normal users; FILES
causes the complete directory to be typed while FD/FOR
types only a single entry. Byt executive class users
who are able to set system status (see the TSS Execu-
tive Reference Manual") will receive the following
special output:

P,DT,S name

KEY TAPE FILES DISC FILES

P = Tape position (octal) 0

D = Blank 2

T = File type (1 through File type (1 through
4y)y See Section 12

S = File size Index Block Pointer

A colon typed after either of the above commands, will
cause the length (in numbers of words) of a disc file
to be typed out; the format is then as follows where
L is the length:

P,DT,S,L Name

13.2

Another feature of the system status typeout 1s that
any control characters in the file name will be typed.
out in two characters with the first character, the
ampersand '&'. For example, if the name of the file -
was /(bell)PROGRAM/, it would type out as follows: .

; .03235126140 /&GPROGRAM/ L

The command “DF" ‘can only be used by users with a special
system status since it can create new file names while
bypassing all system protrection. The complete file
parameters must be typed as follows: '

DF file name AS P,DT,S

where the key to the parameters is the same. as described
above.

The command "WRITE FD" causes the current file directory-
(as it appears .in the file directory hash table) to

be written on the disc. See the-appendix for a descrip-
tion of the disc format.

4.1

14.0 EXECUTIVE COMMANDS

The commands which are accepted by the executive are
described in detail in the TSS Executive Reference

Manual.

1501

15.0 SUBSYSTEMS

The time-sharing system software is organized into a
monitor, a system executive, and a number of sub-systems
which perform specialized functions. Each of these sub-
systems is called by giving its name to the executive

as a command. The result of this operation is to bring
the subsystem off the RAD and to transfer to its starting
point. The system will thereafter remember the subsystem
which is in use and will accept the CONTINUE command

as an instruction to re-enter the subsystem without

any initialization. Thus, for example, the command:

~-DDT
would call the debugging subsystem. The line:

-CONTINUE
DDT

would re-enter DDT without initializing. Most of the
subsystems are permanently present in the shared memory
table, and may be called on by a user program.

Subsystems presently available in the time-sharing system
are:

ARPAS: A symbolic macro assembler

DDT: The debugging system

QED: The symbolic text dditor

FTC: FORTRAN II compiler

FOS: The FORTRAN II loader and operating system
FORTRAN: The CCS FORTRAN IV system

CAL: Conversational algebraic language

BASIC: Conversational algebraic language

16.1

16.0 MISCELLANEOUS EXECUTIVE FEATURES

The executive provides a number of BRS's which are
services for the user. The BRS's all declare a fork
to execute. This group of BRS's are run in user mode
and are called class 3 BRS's in the Monitor. ‘

To get the date and time into a string, the operations

LDP PTR
BRS 91

may be executed. The current date and time are appended
to the string provided in A and B and the resulting
string is returned. The characters appended have the
form:

mm/dd hh:mm
Hours are counted from 0 to 23.

All other system executive BRS's have been described
in previous sections.

17.1

17.0 MISCELLANEOUS MONITOR BRS'S

The monitor provides a number of BRS's which are services
for the user. Many of these are incorporated in the
string processing system or in the floating point package
and are described in the next two sections. These are
called class 2 BRS's in the Monitor.

To put an integer to any radix the instructions:

LDB =radix
LDX =file
BRS . 38

may be executed. The number, which may be preceded

by a plus or minus sign, is returned in the A register
and the non-numeric character which terminated the num-
ber in the B register. The number is computed by mul-
tiplying the number obtained at each stage by the radix
and adding the new digit. It 1is, therefore, unlikely
that the right thing will happen if the number of digits
is too large.

To output a number to arbitrary radix the instructions:

LDB =radix

LDX =file
LDA number
BRS 36

may be executed. The number will be output as an un-
signed 24 bit integer. If the radix is less than 2,
an error will be indicated.

18.1

18.0 STRING PROCESSING SYSTEM

A resident part of the system is a package of string
handling routines. These are discussed in detail in
their own manual, document 30.10.20 and will only be
listed here.

GCI Get character and increment
WCI Write character onto string
WCH Write character onto string storage

SKSE Skip on string equal

SKSG Skip on string greater

GCD Get character and decrement

WCD Write character and decrement

BRS 5 Look up string in hash table

BRS 6 Insert string in hash table (must be pre-
ceded by BRS 5)

BRS 33 1Input string

BRS 34 Output string given word address

BRS 35 Output string given string pointer

BRS 37 General command lookup

SPS includes symbol table lookup facilities, and a

string storage garbage collector is available as a lib-
rary subroutine. Strings are composed of 8 bit charac-
ters packed 3 per word and are addressed by 2 word string
pointers. Two SYSPOP's which are formally part of SPS
but which are useful in floating point operations and

in general programming are:

LDP Load pointer
STP Store pointer

These are double word operations which load A and B
from the effective address and the next location or
store A and B into the effective address and the next
location, respectively.

19.1

19.0 FLOATING POINT

Floating point arithmetic and input-output operations
have been incorporated into the 940 system through the
use of programmed operators. This allows the user to
perform useful arithmetic and I/0 operations in a single
instruction. A brief summary of the most commonly used
arithmetic and I/0 POPS is outlined herein.

The floating point numbers referenced in this section
are normalized double word values. The first word is
a sign bit followed by the high order 23 bits" of the
mantissa bits followed by a 9 bit exponent field which,
like the mantissa, is always represented in two's com-
pliment form. - o

Unless otherwise specified, the POP s do not make a
skip return. -

Floating Point Load/Store Instructions

NAME: .LDP A
FUNCTION: Load Pointer ‘
CALLING SEQUENCE: LDP MEMORY

DESCRIPTION: Loads A, B with MEMORY, MEMORY+l.: LDP"
is a single instruction that is equivalent to: "

v LDA MEMORY
- LDB MEMORY+1

NAME: STP :
FUNCTION: Store Pointer
CALLING SEQUENCE STP MEMORY
DESCRIPTION Replaces MEMORY, MEMORY+l with the con-
tents of A,B. STP MEMORY 1is a single 1nstruction that
is equlvalent to:

STA MEMORY STB ~ MEMORY+1

Double WOrd Floating Point Arithmetic

NAME: FAD
FUNCTION: - Floating Add
CALLING SEQUENCE: FAD MEMORY

DESCRIPTION: The floating point value at MEMORY, MEMORY+1
is added to the floating point value in A, B. The sum:
replaces the value in A, B. Memory is unaffected.

19.2

NAME: FSB
FUNCTION: Floating Subtract
CALLING SEQUENCE: PFSB. MEMORY

DESCRIPTION: The floating point value at MEMORY, MEMORY+1
is subtracted from the floating point wvalue in A,B.

The difference replaces the value in A,B. Memory is
unaffected. ‘

NAME: FNA .
FUNCTION: Floating Negate
CALLING -SEQUENCE: ~BRS 21

DESCRIPTION: The floatlnp p01nt value in A,B is. negated
The result is left in A,B.

NAME: FMP : ' A
FUNCTION: Floating Multiply
CALLING SEQUENCE FMP MEMORY

DESCRIPTION: The floatlng p01nt value at MEMORY MEMORY+1
is multiplied by the floating point value in A,B. The
product replaces the value in A,B. Memory is unaffected.

NAME: FDV
FUNCTION: ‘Floating Divide
CALLING SEQUENCE: FDV MEMORY

DESCRIPTION: The floating point value in A,B is divided
by the floating point value at MEMORY, MEMORY+l. The
gquotient replaces the dividend in A,B. Memory is un-
affected. Division by zero causes an overflow.

NAME: FIX . A -
FUNCTION: Conversion from Floating Point to Fixed Point
CALLING SEQUENCE BRS 50 . -

DESCRIPTION The floatlng p01nt value in A B is con-
verted to fixed point. A is replaced by the integer
part of the original value; the fractional part is left
adjusted in B. If the 1nteger 1s too large, the most
significant bits are lost. : -

NAME: FLOAT
FUNCTION: Conversion from Fixed Point to Floatlng Point
CALLING SEQUENCE: BRS 51

“DESCRIPTION: The integer in A is floated. The floating
point .result in left in A,B. . - .

19.3

The remaining floating point SYSPOP's and BRS's use
a format word in register X which contain the following
information. :

Format Word

- FIELD

BITS NAME - -SIGNIFICANCE
" 0-2 : T - Format types:
: ' 0 - Octal

1 - Integer:-

2 ~ E format with the number right
justified in the specified

- field on output.
3 - F format with the number right
' Justified in the specified
© field on output.

4 - J format with the number left
justified in the specified
field on output.

5 - F format with the number left

- Jjustified in the specified
field on output.

6 - Double precision format. Same
as 2 on input. On output same
as 2 except a D will be output
for the exponent if bit 16 is 1.

7 -~ Free form (output left justified).

3-8 ‘ D Number of digits following the
P decimal point.
914 = W Total field width. In J format

thig is the number of digits before
. the decimal point.

15 0 Overflow action. If the field
width is too small on outpat and
this bit is 1, the first character
of the output 'field will be a star
and characters to the right will be
lost. If this bit is zero and
.overflow occurs, characters on the
right will be lost. ,

16 E If this bit is 1 E format of output

. will be used to represent the ex-
ponent. If this bit is O the @
symbol will be output. Either
the E or & is always acceptable
on 1nput

19.4

18 ‘If this bit is O on input the symbol
@ will be treated as a legal ex-
ponent identifier; i.e.,; 1.08+2"
will be legal input. If this bit
is 1 the symbol € will be treated -
as an illegal character. This
bit has no effect on output.

19 If this bit is 0, illegal charac-
ters in the 1nput string will be
ignored. The:error flag will be
set when.‘'one is read. If this
bit-ds 1 and an illegal character is
readthe scan will be ‘términated,
the error flag will be set and
the string pointer will be set
to the character read. The con-
version will take place on the
characters read to that point.

= This bit has no effect on output.

20 If this bit is zero, the input
string +N+M is legal N is treated
as‘the mantissa and M is the ex-
ponent. of a floating, real number.
If this bit is 1, the second occur-
rance of a sign will be treated
as an illegal character. This

o bit has no effect on output.

21 . Must be zero.

22" Must be .zero.
23 If 'a 1y, the double precision ac-

cumulator will be used for numeric
input-output. Significance is
extended to 18+ digits. Applies

. to all format types.

Operatlnr Gharacterlstlcs

On input the D field is overrldden by the presence cof
a decimal point. If a decimal point and/or E are present,
any form of the number is acceptable to any input format.
It is only in the absence . of these characters that the
format specifications determine the interpretation of
the field. Illegal characters appearing anywhere in

the field may be ignored depending on bit 19 of the
format word Blanks will be converted to zero.

The max1mum allowable number of input digits is twelve.
If more than twelve digits are input the most signifi-
cant twelve will be used. If twelve digits are used

19.5

care must be taken as overflow can occur during the
conversion process. In51gn1f1cant leading or trailing
zeroes will be ignored.

The maximum allowable integer on input 1is i238—l or
+274,877,506,93. Floating point numbers must like
in the range: ' ‘

9.9999999999E~78< | number| <5.7896044625E+76

Free form output will be output using an F17 if the.
exponent lies in the range -1< exponent <10(X-10-numbBer of
digits to left of decimal point). If the number is
outside this range an E17.11 will be used. Free form
output always assumes a floatlng point number. If an
integer is input it will be normalized prior to conver-
sion.

For the E format on output the E (@ if bit 16 of the
format word is 0) is always followed by a '+ or - sign.
On all output the sign of the number is printed only

if it is negative. ‘

Error Conditions:

If an error is detected during the conversion process
a positive integer indicating the error type will be
returned in the index reglster

Errors detected are as follows:
X=0 No error was detected.

X=1 '~ Number of decimal digits after the decimal
' point exceeds 12 for single precision and
18 for extended precision on formatted input.
Twelve and 18 used respectively.

X=2 Field too short for E format on output.
Overflow action will be taken depending on
the value of bit °" of the format word.

X=3 Input number exceeds the max1mum allowable
bounds.

Ly Field too short for F or I format on output.
Overflow action will be token depending on
the value of bit 15 of the format word. .

X

19.6

X=5 An E format was, specified for input but the:
1nput string does not contain an "E" or ".,",
The number will be converted using an equiva-
lent F format.

X=6. An illegél'characterfwasfencountered in the
- input scan. Character is ignored.
~-String Conversion..: -
NAME: SIC

FUNCTION: String to Internal Conversion
CALLING SEQUENCEv LDX FORMAT ..

SIC POINTER

BRU INTEGER

BRU FLOATING

DESCRIPTION: FORMAT describes the type of conversion

to be done (see the CCS .Implementation Manual for the
FORMAT word spec1flcat10ns) The string of input charac-
ters starts at the character .following the character
pointed to by the character address in POINTER. The
character address in POINTER+1 points to the last charac-
ter of the input string.

NAME: ISC
FUNCTION: Internal to Strlng Conversion
CALLING SEQUENCE LDP VALUE

LDX FORMAT

ISC POINTER .

DESCRIPTION: FORMAT describes the type of conversion

to be done. (See the CCS Implementation Manual for

the FORMAT word .specifications.). POINTER+1 contains

the character address of the character immediately pre-

ceding the position where the first character ofi output’

is to go. POINTER+1l is incremented by one for each

character of output added to the character string.

VALUE is the double word floating point value to be

converted.

NAME: FFI '

FUNCTION: Formatted Input

CALLING SEQUENCE: LDX FORMAT
BRS 52

DESCRIPTION Characters are read from a file and con-
verted to 1nternal form.. Elther a;. floatlng .point value
is left in A, ,B or an 1nteger is left in A. A skip return
is generated 1f a floating point value is read and- the
input mode is free format.

19.7

NAME: FFO

FUNCTION: . Formatted Output

CALLING SEQUENCE: LDP VALUE
LDX FORMAT
BRS 53

DESCRIPTION: The floating point value in A,B or the
integer in A is output to the file specified in FORMAT.

20.1

20.0 INDEX OF BRS'S AND SYSTEM OPERATORS
20.1 BRS's

1 Open a File of a Specific Device
Pgs. 9.1, 9.5, 9.6, 10.1, 10.2, 11.1.

2 Close a File
Pgs. 9.1, 10.1, 11.2

4 Release a Page of Memory
Pg. 5 2

5 HLook up String in Hash Table
Pg. 18.1 ' g :

6 Insert String 1n Hash Table
. " Pg. 1841 . .

8 Close All Files:
Pg. 9.2

9 Open Fork
Pg. 2.4, 3.1, 3 2

10 Terminates the Calling Fork
Pgs. 3.6, 4. l

11 Clear the Teletype Input Buffer
Pg. 7.4

12 Declare Echo Téble
Pg. 7.2, T.4

13 Test Input Buffer for Empty
Pg. 7.4

14 Delay Hntil the TTY Output,Buffer is Empty
Pg. T.

¥15 " Read Input File Name
Pgs. 12.2, 12 3

#16 Open Input Flle in File Directory
Pgs. 12.2, 12.3

#17 Close All Files ~ (Not included)
¥18 Read a File:Name and Look It Up in the File

Directory
Pgs. 12.2, 12.3

%19

#20

21

23
24
25
26

27
28
29

30

31

32

33

34

35

36

37

38

Pg 18.1

20.2

Open Output File Located in File Dlrectory
Pg. 12.3

Close a Tape File - (Not included)‘

Floating Point Negate
Pg. 19.2

Link/Unlink Specified TTY. - (not included)
Unlink All TTY's - (not included)
Set Teletype fto Accept/Refuse Links - (not included)

Skip if Escape Waiting -
Pg. 2.5

Attach TTY to Calling Program - (not included)
Release Attached TTY - (not included)

Clear the Output Buffer
Pg. 7.4

Read Status of a Lower Pork
Pg. 3.2 : :

Wait for- Spe01f10 Fork to Cause a Panlc
Pgs. 2.4, 3.3

Terminates a Specified Lower Fork

Pg. 3.3
Read String
Pg. 18.1

Output Message

ot .

Outpk+ String
Pg. 18.1

Output Number to Specified Radix
Pg. 17.1

General Strlng Look Up
Pg. 18.1

Input Number to Specified Radix
Pg. 17.1

20.3

40 Read Echo Table
Pg. 7.2

41 Return’ from I/0 Subroutine
Pgs. 11.1, 11.2

42 Read Real~T4me Clock
Pg. 6.1 :

43 Read Pseudo—Relabeling
Pg. 5 1 :

k4 Set Pseudo-Relabellng
i P 30249501

45 Dismiss on Quantum Overflow -
Pg. 2.3

46 Turn Escape Off
Pg. 3.5

47 Turn Escape On
Pg. 3.5

¥48 Look Up Input/Output File Name
Pgs. 12.2, 12.3

49 Read Interrupts: Armed
Pg. 4.2

50 Conversion from Floating Point to- Fixed Point
Pg. 19.2 -

51 Conversion from Fixed. Point to Floating Point
Pg. 19.2

52 Formatted Floating Point-Input
Pg. 19.6

53 Formatted Floating Point Output
Pg. 19.7

56 Make Page System
Pg. 5.3

57 Guarantee 1l6ms Comﬁuting
Pg. 2.3

58 Define File as Random
Pg. 10.2

20.4

590 Release Words from Random File
Pg. 10.3

#60 Look Up I/O File Name and Insert in File Dlrec-
tory if not Found
Pg. 12.3

66 Delete DSU File Data
Pgs. 9.4, 10.3

67 Delete DSU File Index Block
Pg. 9.5

68 Make Pseudo-Page Shareable - (not included)

69 Get SMT Block to PMT

Pg. 5.2
71 Read Executivity
Pg. 6.1
72 System Dismissal
Pg. 2.4
73 Terminates a Spe01f1ed Number of Lower Forks
Pg. 3.6 -
78 Arm/Disarm Software Interrupts
Pg. 4.1
79 Cause Spe01f1ed Software Interrupts
- Pg. 4.1 : \
80 Make Page Read Only
: Pg. 5.3 -
81 Dismiss for Specifled Amount of Tlme
Pg. 6.1 : : .
82 Switch Sequentlal File Type
Pg. 9.2 o
85 Set Special TTY Output
Pg. 7.5
86 Clear Special TTY Output
Pg. 7.5

87 Read DSU File Index Block
Pg. 9.5

88

90

91

%95
¥96
104

105

106

107

108

109

110

111

112

113

114
v Pge 9.7

116

117

20.5

Read Execution Time
Pg. 6.1

Declare a Fork for Escape
Pgs, 3.1, 3.5

Read Date and Time into a String
Pgs. 6.1, 16 l :

Dump Program and Status on File - (not included
Recover Program and Status from File -~ (not ingluded)

Read a Page (2048 words) from RAD
Pg. 5.4 .

Write a Page (2048 words) to RAD
Pg. 5.4

Wait for any Fork to Terminate
Pgs. 2.4, 3.3

Read Status of all Lower Forks
Pg. 3.3

Terminate All Lower Forks
Pg. 3.3 '

Dismiss Calling Fork
Pgs. 2.4, 6.1

Read Device and Unit
Pg. 9.6

Return from Exec BRS (ExeéOnly)
Pg. 6.1

Turn Off Teletype Station (Exec Only)
Pgs. 7.3, 7.4 e

Compute File Size of a Disc Flle
Pg. 9.4 .

Turn Off- Run—Away Magnetic Tape
Read User Relabeling
Pg. 5.2

Set User Relabeling
Pg. 5.2

20.6

118 Allocate Magnetic Tape Unit

Pg. 9.7
119 De-Allocate Magnetlc Tape Unit
Pg. 9.7

120 Acquire a New Page
Pg. 5.2

121 Release Specified Page from PMT
~ Pg. 5.2

122 Simulate Memory Panic
Pg. 6.1

BE+1 Read DSU
Pgs. 4.2, 8.3, 8.4

BE+2 Write DSU
Pgs. 4.2, 8.3, 8.4

BE+3 Test for Carrier Present
Pg. 7.3

BE+4 Read/Write One Word in the Monltor
Pgs. 6.2, 8.1

BE+5 Set Disc Bit Map - (not included)

BE+6 Turn a Teletype Line On or Off

Pg. 7.4
BE+7. Test a Breakpoint Switch
Pg. 6.2

BE+8 To Crash the System for Error Diagnostic
Pg. 6.2

BE+9 Read DSU Page
Pg. 8.3, 8.4

BE+10 Write DSU Page
Pgs. 8.3, 8.4

BE+11 Ignore Line Feed or Carriage Return When Followed
by Carriage Return or Line Feed Respectively
Pg. 7.2

BE+12 Arm Timing Interrupt ‘
Pg. 4.2

20.7

BE+13 Sets6System Exec.Switches in SYMS
Pg. 0.2

BE+14 Input String with Edit - (not included)

BE+15 'Read Page from RAD
Pg. 6.2

20.2 System Operators

BIO Block Input/Output o
Pgs. 9.3, 10.1, 11l.1

CI0 GCharacter Input/Output
Pgs. 9.2, 10.1, 11.1

CIT Character Input and Test - (not included)

CTRL Input/Output Control -

9.3, 9.4, 9.6

DWI Read a Word from a Random File
Peg. 10.1

DWO Write a Word from a Random File
Pg. 10.1

DBI Read ‘a Block from a Random File
10.1)

DBO Write a Block from a Random :File
Pg 10 2

EXS Execute Instructlon in System Mode
Pg. 6.2 .

FAD Floating Point Addition

et Pgn 19010 :

FDV Floatlng Point Division
Pg. 19

FMP Floatlng P01nt Multlplication
Pg 19.2

FSB Ploatlng Point Subtract
Pg. 19.2

GCD Get Character from End of Strlng and Decrement
End Pointer VG S
Pg. 18.1

20.8

GCI Get Character from Beginning of String and
Increment Beginning P01nter
Pg. 18.1

ISC Internal to String Conversion
Pg. 19.6

IST 1Input from Specific TTY - (not included)

LAS Read a Word from Secondary Memory
Pg. 10.2

LDP Load String Pointer .-
Pgs. 18.1, 19.1

O0ST Output to Specific'TTY - {not included)

SAS Store a Word into-Secondary Memory i
Pg. 10.2 .

SKSE Skip if String Equal
Pg. 18.1

SKSG Skip if String Greater
Pg. 18.1

SIC String to Internai-éonversiOn
19.6

STI Simulate TTY Input - (not included)

STP Store String Pointer
Pg. 18.1, 19.1

TCI Teletype Character Input - (not included)

TCO Teletype Character Output
Pg. 7.3

WCD Put Character on Beginning of String and Decrement
Beginning Pointer
Pg. 18.1

WCH Write Character to Memory by Table
Pg. 18.1

WCI Put Character on End of Strlng and Increment
End Pointer
Pg. 18.1

WIO Word Input/Output
Pgs. 9.3, 10.1, 11.1

Those BRS's marked with an asterisk are executive BRS's
and all others are monitor BRS's

APPENDIX A

GENERAL DESCRIPTION OF THE COMBINED FILE DIRECTORY

1.

A user may have one or two file directory blocks

on the disc; the second block is an overflow block.
Each block consists of 128 words containing a vari-
able number of file directory entries. Each entry
is in the format pictured in (d).

If the first word of the block is zero, the block
considered to be empty. The last entry is followed
by a -1 or -2 word where the -2 indicates that there
are additional entries in the overflow block.

The last four words of the file directory block
contain the following information:

Last Word Valid on-time for this user (1
bit per hour of the day).

Last Word -1 Accumulated computer time used.

Last Word -2 Accumulated real time used. '

Last word -3 Overflow block pointer.

In the case of an overflow Sibck, the last three
words are zero, and the overflow block pointer is
a backward pointer to the first file directory block.

FILE DIRECTORY FORMAT :ON DISC
1 Entry (Disc File)

0 1 T 8 9 14115 23
P O Account No i No. of Accesses ~ _Creation Date i
Ci Chanpe if F11e Size ‘| File Length (FL) i
: 2.3 6 S 1112
; | LTP § Future Controls i
= . R s.
R Index Block Pointer
CL MEES ‘ 15,16 F?
“ D Char. of 0> .. . o T, 0t -
Name ! : i

3 {1 : 787 : '7» 15 16 o
| Fi Char. of ! Char. or 136 (£111) , Char. or 136
: ! Name: . ' b (£111)

FT ='F11e Type : ‘

LTP = Low Order Tape p031t10n

HTP = High Order Tape position

FS = Tape File Size

‘FL, - = File Length for disc Files

C. = Change in. flle length (flle length no 1onger

) valid) - §
CB = File Control Bits, 0O=Tape file
2=Disc file
F = End of Entry Flag (1)
If Tape File, word #3 =

"0 SF 48,9 23;
| HTP 0 ! FS :

SRS

128
words

FILE DIRECTORY BLOCK

4 Control Words

o o it e e i e s o " e e . ——— — it T 50— T~ —— ot

e s ot s o sy e ot S e A o 4% St it S Bt v A o St e St A A e ot o fome]

End Dir. Flag -1 or -2

A
1.

Garbage : ?

Overflow block pointer

Accumulated Real Time

Accumulated Computer Time

Valid On Time

A.3

B
Up to 24
Entries
\y
Last -3
Last -2
Last -1
Last Word.”

USER ACCOUNT DIRECTORY ON DISC

Words .0 1 2 3 y 5 6 7
Acct. Password ‘na na , na: .na

8 User Name #1 .ON
13 3 (3] B CN
18 ' 11 i1

w
w
O N[OA—=I| O\ = o

Ul
W
[

-

P ' -

Gonte Park . User Wo.
C N
Bits 0 11 12 23

NOTES: "P" is reserved for an overflow pointer and
not presently used. "na®, not assigned. -

The control parameter bits are assigned as follows:

BIT USE
0 System Status
1 Control of physical devices
2 Operator Status
3 Subsystem Status

4,5 Not assigned
1 Subsystem classes

A.5

SUBSYSTEM TABLE

Hash Table Entry

0 1 516
0 \'A
LS &
P 1|2 i3 9 1516
t B30 C CL | FN HS

Corresponding Table (Not Common Subsystem)

5‘6 9i10_
0 NP |

0
RSW

Corresponding Table (Common Subsystem)

;_3
21

R2
RSW
V = Subsystem Verify Number
LS = Low-order Starting Address
E = Propogate Exec Status
U = Co-exist with Users Memory (cannot if on)
C = Common Subsystem
CL = Class (must agree with user's control parameters)
FN = File Number (location on RAD for non-common Subsystem)
HS = High-order Starting Address
NP = Number of pages for non-common subsystem
Rl = First-half SMT relabeling (4 bytes)
R2 = Second-half SMT relabeling (4 bytes)

RSW= Relabeling Status Word (8 bytes)

	000
	1_001_Exec
	1_002
	1_1-01
	1_1-02
	1_2-01
	1_3-01
	1_3-02
	1_4-01
	1_4-02
	1_4-03
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_5-08
	1_5-09
	1_5-10
	1_5-11
	1_5-12
	1_5-13
	2_01_Oper
	2_02
	2_03
	2_04
	2_05
	2_06
	2_07
	2_08
	2_09
	2_10
	2_11
	2_12
	2_13
	2_14
	2_15
	2_16
	2_17
	2_18
	2_19
	2_20
	2_21
	2_22
	2_23
	2_24
	2_25
	2_26
	2_27
	2_28
	2_29
	2_30
	2_31
	2_32
	2_33
	2_34
	2_35
	2_36
	2_37
	2_38
	2_39
	2_40
	2_41
	2_42
	2_43
	2_44
	2_45
	2_46
	2_47
	2_48
	2_49
	2_50
	2_51
	2_52
	2_53
	2_54
	2_55
	2_56
	2_57
	2_58
	3_01_DDT
	3_02
	3_03
	3_04
	3_05
	3_06
	3_07
	3_08
	3_09
	3_10
	3_11
	3_12
	3_13
	3_14
	3_15
	3_16
	3_17
	3_18
	3_19
	3_20
	3_21
	3_22
	3_23
	3_24
	3_25
	3_26
	3_27
	3_28
	3_29
	3_30
	3_31
	4_01_ARPAS
	4_02
	4_03
	4_04
	4_05
	4_06
	4_07
	4_08
	4_09
	4_10
	4_11
	4_12
	4_13
	4_14
	4_15
	4_16
	4_17
	4_18
	4_19
	4_20
	4_21
	4_22
	4_23
	4_24
	4_25
	4_26
	4_27
	4_28
	4_29
	4_30
	4_31
	4_32
	4_33
	4_34
	4_35
	4_36
	4_37
	4_38
	4_39
	4_40
	4_41
	4_42
	4_43
	4_44
	5_01_TSS_Ref
	5_02
	5_03
	5_04
	5_05
	5_06
	5_07
	5_08
	5_09
	5_10
	5_11
	5_12
	5_13
	5_14
	5_15
	5_16
	5_17
	5_18
	5_19
	5_20
	5_21
	5_22
	5_23
	5_24
	5_25
	5_26
	5_27
	5_28
	5_29
	5_30
	5_31
	5_32
	5_33
	5_34
	5_35
	5_36
	5_37
	5_38
	5_39
	5_40
	5_41
	5_42
	5_43
	5_44
	5_45
	5_46
	5_47
	5_48
	5_49
	5_50
	5_51
	5_52
	5_53
	5_54
	5_55
	5_56
	5_57
	5_58
	5_59
	5_60
	5_61
	5_62
	5_63
	5_64
	5_65
	5_66
	5_67
	5_68
	5_69
	5_70
	5_71
	5_72
	5_73
	5_74
	5_75
	5_76
	5_77
	5_78
	5_79
	5_80
	5_81
	5_82
	5_83
	5_84
	5_85
	5_86
	5_87
	5_88
	5_89

