

TYMSHARE MANUALS

REFERENCE SERIES

SUPER BASIC

April 1969

TYMSHARE, INC.
CORPORATE OFFICES

525 UNIVERSITY AVENUE, SUITE 220
PALO ALTO, CALIFORNIA 94301

DIVISION OFFICES

Los Altos, California - Inglewood, California - Englewood Cliffs, New Jersey

DISTRICT OFFICES

Seattle, Washington - Dallas, Texas - Newport Beach, California - Arlington, Virginia

VMSHARE, INC., Litho in U.S.A.

Price $3.50

CD 2

TYMSHARE MANUALS
SYMBOL CONVENTIONS

The symbols used in this manual to indicate Carriage Return, Line Feed, and ALT

MODE/ESCAPE are as follows:

Carriage Return:

Line Feed:

ALT MODE/ESCAPE: NOTE: This symbol will be printed as
many times as it is required to
hit this key.

Action At The Terminal

To indicate clearly what is typed by the computer and what is typed by the user, the

following color code convention is used.

Computer: Black User: Red

NOTE ON SPACING IN EXAMPLES

Because this manual is set in type with characters of varying width, the spacing in some

of the examples may not appear exactly as on the terminal, where all characters are the

same width. If the spacing in an example appears misleading, this general rule will be

helpful:

The number of blanks or spaces printed can usually be determined by
counting the print positions (characters) in the line or lines above.

CONTENTS

Page

iii

INTRODUCTION 1

AN EXAMPLE

SECTION 1 - A SUPER BASIC PRIMER 3

3

Line Numbers. .. 3

Line Length 3

Statements .. 3

PR INT "text" .. 3

INPUT variable list 4

Assignment Statement .. 4

IF condition THEN line number. .. 4

PR INT variable list 4

GO TO line number. .. 4

Running The Example Program 5

FUNDAMENTAL CONCEPTS OF SUPER BASIC. .. 6

Numbers 6

Variables 6

Arithmetic Expressions. .. 7

Mathematical Functions 8

Relational Expressions .. 8

USING LOOPS IN A PROGRAM: THE FOR AND NEXT STATEMENTS 9

Single Loops 9

Nested Loops .. 10

SUPPLYING DATA WITHIN THE PROGRAM: THE READ AND DATA

STATEMENTS 11

READ 11

DATA 11

RESTORE 11

ENTERING AND USING A SUPER BASIC PROGRAM 12

Typing A Program Into SUPER BASIC 12

Reading A Program From Paper Tape 12

Running A Program 13

Saving A Program 13

Reusing A Saved Program 13

Looking At A Program 14

Comments In A Program 14

Self-Starting Programs 14

SIMPLE EDITING IN SUPER BASIC .. 14

Inserting Statements. .. 14

Deleting Statements 14

Changing Statements 15

REVIEW OF COMMANDS IN SECTION 1 15

SAMPLE PROGRAMS .. 16

iv

Page

SECTION 2 - SUPER BASIC ADVANCED FEATURES 19

THE MULTIPLE ASSIGNMENT STATEMENT 19

ADDITIONAL PRINTING FEATURES 19

Printing Blank Lines 19

The PR INT Zones 19

Concatenation Of PRINT And INPUT 20

ADDITIONAL IF"STATEMENT FEATURES 21

I F condition THEN statement 21

The IF-THEN-ELSE Sequence 21

Combining IF Statements 21

DATA FILE INPUT AND OUTPUT 22

Opening A File 22

Input From A File 22

Output To A File 22

Closing A File 23

ADDITIONAL FUNCTIONS 23

Additional SUPER BASIC Functions 23

Programmer Defined Functions 25

SUBSCRIPTING AND ARRAY MANIPULATION 26

Subscripted Variable Names 26

Subscripts 27

Size Of Arrays. 27

The DIM Command 27

The BASE Command 27

Matrix Operations 28

SUBROUTINES 31

GOSUB And RETURN 31

Isolating Subroutines 32

Computed GO TO And GOSUB Statements 32

LOGICAL VARIABLES, EXPRESSIONS, AND OPERATORS 33

Logical Variables And Expressions 33

Declaring Logical Variables 33

Logical Operators 34

STATEMENT MODIFIERS 35

IF And UNLESS 35

FOR 35

WHILE And UNTI L 35

STRINGS 37

String Variables 37

The Null String 38

String Concatenation 38

A String Expression In The OPEN Statement 39

String Functions 39

Comparing Strings 40

Page

COMPLEX ARITHMETIC 41

Complex Variables 41

Complex Functions 41

PICTURE FORMATTING 42

PRINT IN IMAGE Statements 42

PRI NT IN FORM Statements 44

ADVANCED EDITING FEATURES 46

Editing The Line Being Typed 46

Editing A Line Already Typed 48

The RENUMBER Command 49

PROGRAM CONTROL 51

Control Of Running Programs 51

SECTION 3 - SUMMARY OF SUPER BASIC 53

VARIABLES AND ARRAYS 53

OPERATORS 54

FUNCTIONS 55

INPUT/OUTPUT STATEMENTS 56

MAT STATEMENTS 59

CONTROL STATEMENTS 60

STATEMENT MODIFIERS 62

LOADING AND SAVING THE PROGRAM 62

EDITING AND UTILITY COMMANDS 63

SECTION 4 - SAMPLE SUPER BASIC PROGRAMS 65

LISTING STOCKS 65

PERCENTAGE BAR CHART 66

DIRECTORY OF ADDRESSES 67

CUBE ROOT 69

FUNDAMENTAL FREQUENCY 70

GROSS PAY 71

APPENDIX A - ALPHABETIC LIST OF ALL SUPER BASIC
STATEMENTS AND CHARACTERISTICS 75

APPENDIX B - DECLARATION STATEMENT STORAGE
ALLOCATION 76

APPENDIX C - THE EXECUTIVE 77

APPENDIX D - THE TERMINAL 79

INDEX 83

v

INTRODUCTION

Tymshare SUPER BASIC represents for the first time a truly conversational language

incorporating features for both business and scientific applications.

It provides a powerful, yet simple set of commands and diagnostics that allow the new

user to learn the language in a few hours and yet gives the experienced programmer the

most extensive list of features ever included in a single language.

A few of the outstanding features of SUPER BASIC are:

• String manipulation

• Complex and logical variables

• Picture formats

• Conditional modifiers

• Direct commands

• Complete built-in editing

This manual contains a complete description of all the features of SUPER BASIC.

Section 1 describes a subset of commands which, once learned by the beginning user, will

enable him to write complete SUPER BASIC programs and run them on the Tymshare

system.

Though written in a tutorial manner, Section 1 is well suited for reference. The rest of

the commands are included in Section 2, which, while written more as reference material

than as a tutorial guide, explains each feature in such a way that the user will be able to

learn easily any new and unfamiliar material.

Section 3 contains a summary of the entire SUPER BASIC language.

Section 4 gives some sample programs written in SUPER BASIC and executed on the

Tymshare system.

The appendices provide an alphabetic list of all SUPER BASIC statements and charac

teristics, and some information about storage allocation, the EX ECUTI V E, and the

terminal.

We recommend that the new user of SUPER BASIC should complete the Tymshare

SUPER BASIC Instant Series Manual and appropriate workbook in full before proceeding

with this manual.
'.

1

3

SECTION 1
A SUPER BASIC PR"IMER

AN EXAMPLE

Suppose you want to write a SUPER BASIC pro

gram that will:

1. Request that you type in five numbers,

2. Add the numbers (if the result is zero, print the

message SUM IS ZERO and stop),

3. Find the average (or mean) of the numbers,

4. Print out the sum and the mean,

5. Ask for five new numbers and repeat the cycle.

The simple program that solves this problem illus-
trates several elementary features and commands of

SUPER BASIC which will be explained below. This is
the program:

10 PRINT "TYPE FIVE NUMBERS"

20 INPUT A,B,C,D,E

27 S = A+B+C+D+E

32 IF S=O THEN 70

45 M=S/5

50 PRINT 8,M

60 GO TO 10

70 PRINT "SUM IS ZERO"

Before explaining this program step by step, we

should first note some general SUPER BASIC

conventions:

LINE NUMBERS

All lines in the program begin with a number.
These numbers identify the lines in the program,

which are called statements, and specify the order in

which the statements are to be executed. You can

therefore type the program in any order provided that

the statements are numbered in the order in which

they are to be executed. Before the program is run
SUPER BASIC sorts the statements into the order
specified by their line numbers. NOTE: Line numbers
must be integers from 0 to 999999.

LINE LENGTH

All statements in the sample program contain
fewer than 72 characters (the maximum number of

characters that may be typed across the page). Press

ing the Line Feed key while a statement is being
typed will continue the statement on the next line. A
statement may be continued for several lines provided
that the maximum limit of 256 characters is not ex-

ceeded. At the end of each entire statement, a Car
riage Return must be typed. For example, the last
statement in the program could have been typed as:

70 PRINT "SUM IS ~

ZERO" ()

NOTE: Spaces have no significance in SUPER
BASIC except when they are included in messages to
be printed (as in the above statement). Thus, spaces
may be eliminated from all but these messages if you
are not concerned with the readability of the printed
copy_

STATEMENTS

Indirect Statements

All the statements in the program above are called

indirect statements. Any statement that begins with a

line number is indirect; that is, the instruction or com

mand in such a statement is not executed when it is
typed, but is executed when the running program
reaches the statement in normal sequence.

Direct Statements

Direct statements do not begin with line numbers
and are executed as soon as they are typed in. Direct
statements cannot be saved as part of a program as in

direct statements can.

Some commands can be executed indirectly only,
some directly only, and others may be used either

way. For example, if GO TO 10 had been typed in

our sample program without the line number 60,

SUPER BASIC would have executed the command

immediately by transferring to statement 10 and con

tinuing execution from there. All this would have

happened before you could have typed in any more

statements. To find out if a command can be exe

cuted indirectly, directly, or both, see Appendix A.

We are now ready to explain this program step-by

step.

PRINT "text"

When SUPE R BASIC encounters the first state

ment,

10 PRINT "TYPE FIVE NUMBERS"

the text included within the double quote marks is
printed on the terminal. In this case the text is an in-

4

struction to the person who is running the program:
he is instructed to type five numbers. The text also
could have been enclosed in single quote marks.

INPUT variable list

The INPUT command in the second statement,

20 INPUT A,B,C,D,E

will, when executed, cause SUPER BASIC to print a
question mark followed by a space and wait for five
numbers to be typed in.! The letters A through E in

this statement are called variables. Their purpose is to

store values that will be used later in a computation.
The first number typed will be stored in A, the second

in B, and so on. Just as the comma is used to separate
variables in the INPUT statement, it is also used to
separate the values when they are typed in.2 This will

be shown later in an illustration of the actual run of

the sample program.

ASSIGNMENT STATEMENT

Statement 27,

27 S =A+B+C+D+E

is called an assign ment statement. Th is statement is
similar to the others in the program which begin with

a command word, except that in this case the word

need not be typed. The optional word wh ich may be

included in an assignment statement is LET. For ex

ample, statement 27 cou Id have been typed as

27 LET S = A+B+C+D+E

The function of the assignment statement is to

compute the value of the expression on the right of

the = and assign that value to the variable on the left.

NOTE: An expression may not be typed to the left of
the ==; for example, A+B == C is not a valid statement.

Since the = means "is assigned the value of" rather
than His equivalent to", the following is a valid assign

ment statement:

15 X =X+1

If the value of X were 5 before this statement was ex
ecuted, the statement would set X to 6.

The rules which govern naming variables and typ
ing expressions correctly are included under FUNDA
MENTAL CONCEPTS OF SUPER BASIC, Page 6.

IF condition THEN line number

In statement 32,

32 I F S =0 TH EN 70

we test to see if the value of S is zero. I f it is, then
this statement will cause SUPER BASIC to go to line

70 where it prints the message SUM IS ZERO and

stops since there are no more statements to execute.

If S is not zero, SUPER BASIC will continue to the

next statement in sequence.

45 M =S/5

This assignment statement calculates the mean and

assigns the result to M. Note that since the sum of the

five numbers has been calculated previously and as

signed to the variable S, we do not need to repeat the

computation of S in this statement.

PRINT variable list

When SUPER BASIC encounters the next state
ment,

50 PRINT S,M

the values wh ich were computed and assigned to S
and M are printed. A comma is used to separate the
variable names.

Since any number or expression also may follow
the PR INT command, we could have omitted assign
ment statement 45 and typed the PR INT statement

50 as:

50 PRINT S, S/5

If SUPER BASI C were to encounter this statement,

it would print S, compute S/5 and then print that
result.

GO TO line number

The IF statement in th is program causes a condi

tional transfer; that is, SUPER BASIC will transfer to

another part of the program provided that a certain

condition is true. The GO TO command however,

transfers to another statement unconditionally. Thus,

when

60 GO TO 10

is executed, SUPER BASIC goes to line 10 and re

quests new values for A,B,C,D, and E.

Note the importance of certain statements in the

program.

• What would happen if we were to omit state
ment 50? SUPE R BASI C would solve for Sand
M but would never print the results; the solu
tion would remain the secret of the computer.

• Suppose we omitted statement 32. Then, if S
were zero, SUPER BASIC would not print SUM
IS ZERO and stop as we had specified. Instead,

the mean would be calculated (also as zero), the
sum and mean would be printed, and five more

numbers would be requested.

• If we were to omit statement 60 (the uncondi
tional transfer), SUPER BASIC would, after

printing the values of Sand M, print the mes

sage SUM IS ZERO and stop.

1 - If you type fewer numbers than required, SUPER BASIC will wait for the rest of the input.

2 - Spaces also may be used to separate the values when typed.

5

RUNNING THE EXAMPLE PROGRAM

The entire procedure for entering the Tymshare system, running the example program,

and leaving the system is illustrated and explained below:

PLEASE LOG IN: () The system types this request as soon as the connec

tion to the Tymshare computer is made. Type a Car

riage Return.

ACCOUNT: 05 () Type your account number followed by a Carriage

Return.

PASSWORD: ;:> Type your password followed by a Carriage Return.

The password does not print.

USER NAME: JONES;:> The system next asks for the user name, wh ich is

typed and followed by a Carriage Return.

PROJ CODE: K123;:> A response to this last request is optional. If desired,

type a project code followed by a Carriage Return;

otherwise type only a Carriage Return .

.. The sum is 150, the mean is 30.

.. , The direct command RUN ()causesSUPER BASIC to
execute the program .

. . . . Five numbers are typed in, separated by commas. A

Carriage Return is typed after the last number.

. The system is ready. The dash indicates that you are

in the EXECUTIVE and can call SUPER BASIC by
typing SBASIC(). The> indicates that SUPER BASIC

is ready and you may begin to type in the program

statements.

TYPE FIVE NUMBERS

? 10,20,30,40,50;J

150 30.

TYMSHARE 4/27 11:17

- SBASIC ()

> 10 PRINT "TYPE FIVE NUMBERS" ()

> 20 INPUT A,B,C,D,E ;J

> 27 S = A+B+C+D+E ;J

> 32 IF S = 0 TH EN 70 ;:>

> 45 M = S/5 ~

> 50 PRINT S,M ~

> 60 GO TO 10 ~

> 70 PRINT "SUM IS ZERO" ()

> RUN () .

TYPE FIVE NUMBERS SUPER BASIC again requests five numbers.
? 13,-7,-23,19,8;:>

10 2 This time the results are 10 and 2.

TYPE FIVE NUMBERS The sum of the next five numbers is zero. SUPER

? 40,25,-50,15,-30 ;J BASI C prints the specified message and stops.

SUM IS ZERO

>OUIT() .

- LOGOUT ()

TIME USED 0:3:16

.................. The OU IT command (which may be abbreviated as OJ

returns you to the EXECUTIVE where you can leave

the system by typing LOGOUT ().

. After this message prints, hang up.

PLEASE LOG IN: . . . The PLEASE LOG IN: request prints in case another

user is waiting to use the system.

NOTE: We could have interrupted the execution of the program at any time by

pressing the AL T MODE or ESC key twice in reply to the INPUT question mark.

6

FUNDAMENTAL CONCEPTS OF SUPER BASIC

VARIABLES

and some unacceptable names are:

>

>

1$M4BO

A variable can be named in one of three ways: 3

• Any letter from A to Z.

• Any letter followed by any digit from 0 to 9.

• Any letter followed by the dollar sign, $.

Some acceptable variable names are:

Z

The purpose of a variable is to be assigned or to

store a single value that will be used in some computa

tion or will be printed as a solution. A variable is so

called because its value may be changed.

Variable Names

1C PC A27 INT

The VAR = ZERO Command

A variable ordinarily must be defined (assigned a
value either by appearin'g on the left side of an assign

ment statement or in an INPUT4 statement) before it
can be referred to in a SUPER BASIC statement. Re

ferring to an undefined variable will cause an error

message to be printed unless the VAR = ZERO com

mand has been executed previously. This command

automatically assigns the initial value of zero to all

variables which would otherwise be considered as un

defined. For example:

> 10 VAR = ZERO

> 20 PRINT "TYPE A"

>30 INPUT A

>40 PRINT A,B

>RUN

TYPE A

? 6
6 0

> PRINT -.600174172, 63.810

-.60017417 63.81

> PRINT 6E7, 6E8

60000000 .6E+09

> PRINT .076, -568905117

.76E-01 -.56890512E+09

• Trailing zeroes after a decimal point are not
printed.

To illustrate these rules, we will use the PRINT

command directly; that is, without a line number

so that SUPER BASIC will execute the command

immed iately.

NUMBERS

How To Type Numbers
Into SUPER BASIC

SUPER BASIC ordinarily will print numbers as
follows: J

• Numbers are stored internally in SUPER BASIC
with eleven significant digits but are rounded to

eight digits when printed.

• If the absolute value of the number2 is less than

.1 or greater than or equal to 100,000,000, the
number will be printed in E format. Otherwise,

it will be printed as an integer or decimal

number.

Numbers may be typed into SUPER BASIC in

three ways:

• Integer format (whole numbers without a deci

mal point).

• Decimal format (numbers containing a decimal
point).

• E format. The letter E means "times ten to the

power of". For example, -53X 109 can be typed

as -53E9, and the number .00000000000063

(in which twelve zeroes follow the decimal

point) can be typed as .63E-12. The E notation

cannot stand alone; thus, 1000 may be typed as

1OE2 or 1E3 but not as E3.

SUPER BASIC will accept up to eleven significant

digits; any number containing more significant digits

will be rounded to eleven.

The largest number that SUPER BASIC will accept

is .57896044618E77. NOTE: This number will result
if the user divides any number by zero_

Note that the following are not numbers in SUPER

BASIC: 1/2,v'4: (5/6)17 They are expressions which

SUPER BASIC must compute into a number of ac

ceptable form. Such expressions may not be used as

data input to a program.

How SUPER BASIC Prints Numbers

1 - You can control the format in which SUPER BASIC will print numbers. See PICTURE FORMATTING, Page 42.
2 - Absolute value simply means: For positive numbers, the number itself: for negative numbers, the number without its minus sign.

3 - Subscripted variables are discussed under SUBSCRIPTING AN DAR RAY MAN IPU LATION, ,Page 26.

4 - Or REA D statement, Page 11.

The user typed in the value of 6 for the variable A.
B was never defined, but because of the VAR = ZERO

command in line 10, B's initial value was set to zero.

If line 10 had been omitted, the PRINT A,B state

ment would have caused SUPER BASIC to print A

and then an error message indicating that B was never

defined.

The VAR = ZE RO command also can be executed

directly. Note that the RUN command ordinarily ig
nores any direct commands that might have been

given previously and executes only those statements

preceded by line numbers. The direct VAR = ZERO

command is an exception; it will not be ignored when

the RUN command is given. For example:

> 10 X = 15
> 20 PRINT X,V

> RUN

15

ERROR IN STEP 20:

VARIABLE HAS NO VALUE
> VAR = ZERO

> RUN

15 0

Only the value of X was assigned in line 10. The

direct VAR = ZERO command, since it was given be

fore the RUN, caused the val ue of V to be set to O.

The VAR = UNDEF Command

This command nullifies the VAR = ZERO com

mand. It affects only those variables which would be

undefined if the VAR = ZERO command had never
been given by once again declaring those variables to

be undefined. For example:

> 10 VAR = ZERO

> 20 C = 12

> 30 PRINT C,D

> 40 PRINT "NOW, 'VAR = UNDEF'"

> 50 VAR = UNDEF

> 60 PRINT C,D

> RUN

12 0

NOW, 'VAR = UNDEF'

12

ERROR IN STEP 60:

VARIABLE HAS NO VALUE

After the VAR = UNDEF command, C is still 12

but D is undefined, as though the VAR = ZERO com

mand had never been given.

If we had assigned any value to 0 before giving the

VAR = UNOEF command, 0 would not have been

undefined by this command. Thus, if we were to in

sert 350 = 5 into the above program, VAR = UNOEF

7

would have no effect and 5 would print as the value

of O. Similarly, 35 0 = 0 would cause 0 to print as the
value of 0 (since VAR = UNOEF undefines only

those variables that are zero because of the V AR =

ZERO command).

ARITHMETIC EXPRESSIONS

Arithmetic expressions are formed by combining

numbers and/or variables with arithmetic operators as

in ordinary mathematical formulas.

There are seven arithmetic operators in SUPE R

BASIC:

Symbol Meaning Example

t Exponentiation Xt3 (=X 3
)

- Unary minus -2t2 (=_(22)=-4)

MOD Modulo! 9 MOD 7 (=2)

* Multipl ication 3*B (=3XB)

/ Division 1/4 (=174)

+ Addition 8+Fl

- Subtraction C$-5

Parentheses often are required in SUPER BASIC

arithmetic expressions where they might not be
needed in ordinary mathematical notation. For ex

ample, if you type~ as A+B/C in SUPER BASIC,

the expression will be interpreted as A+~. This is be
cause SUPER BASIC performs division before addi

tion, unless parentheses are used to denote otherwise.
A+BThus, -c- must be typed as (A+B)/C.

The order in which SUPER BASIC will perform
arithmetic operations is as follows:

1. Whatever is enclosed in parentheses will be

computed first according to rules 2 through 6

below. When sets of parentheses appear within

other sets of parentheses, the innermost set is

evaluated first, then the next set, and so on.

2. Exponentiation.

3. Unary minus. Thus, if the expression is -2t2,

2t2 is computed first, and the value of the ex

pression is -4.

4. Modulo operator. Thus, 15 MOD -6/2 is inter

preted as (15 MOD -6)/2 and not 15 MOO-3.

5. Multiplication and division. If * and / appear in

the same expression, SUPER BASIC calculates
from left to right; that is, 3/Bt2*C is equiva

lent to (~2)XC,

6. Addition and subtraction. If + and - appear in
the same expression, SUPER BASIC calculates
from left to right (Same as * and / above).

1 - Th;; standard mathematical operator is defined as follows: Y MOD Z = Y-Z*FIX(Y!Z). FIX is explained on Page 24.

8

MATHEMATICAL FUNCTIONS

A number of standard mathematical functions are
available in SUPER BASIC. Each one has the same
form: The name of the function followed by the argu
ment (a number or an arithmetic expression) enclosed

in parentheses. Some of these functions are listed in

the chart below. I

Function Meaning

SIN(X) Sine of X(X in radians)

COS(X) Cosine of X(X in radians)

TAN(X) Tangent of X(X in radians)

ATN(X) or Arctangent (in radians, over the
ATAN(X) range -rr12 to +rr12) of X

ATN(Y,X) or Arctangent (in radians, over the

ATAN(Y,X) range -rr to +rr) of Y IX.

EXP(X) Natural exponential of X, eX.

ABS(X) Absolute value of X

LGT(X) or Logarithm of X (base 10)

LOG 10(X)

LOG(X) Natural logarithm of X

SOR(X) or Square root of X
SORT(X)

PI is a function with no argument. It is equal to the
mathematical constant rr, 3.1415926535.

These functions may be included in any expression;
for example, all of the following are acceptable in
SUPER BASIC:

Z$-EXP (X1+LOG(S/X1))
SOR (SIN(R)t2+COS(O)t2)

LOG(N*X-SIN(PI/N))

RELATIONAL EXPRESSIONS

A relational expression is one wh ich compares one
val ue to another (where the val ues may be represented
by variables or expressions) using the following rela

tional operators:

Symbol Meaning

< Less than

<= Less than or equal to

= Equal to

>= Greater than or equal to

> Greater than

<>or# Not equal to

A relational expression commonly occurs in an IF
statement (where the TH EN part of the statement
will be executed only if the specified relation is true).

For example,

32 IF S =0 THEN 70

causes a transfer to statement 70 only if the value of
S is zero; that is, if the expression S = 0 is true. If
S = 0 is false, SUPER BASIC will continue to the next
statement.

The following are acceptable relational expressions:

X>S

A<>B
Z$<=vtK+EXP(Z)

ABS(C3)=1

1- Additional mathematical functions of SUPER BASIC are described under ADDITIONAL FUNCTIONS, Page 23.

9

USING lOOPS IN A PROGRAM:

THE FOR AND NEXT STATEMENTS

SINGLE LOOPS

Perhaps the single most important programming

idea is the loop. While we can write useful programs

in which each statement is performed only once, such
programs do not make use of the full power of the

computer. Therefore, we prepare programs having

parts wh ich are performed not once but many times,
perhaps with slight changes each time.

For example, suppose we want to write a program

which will print out a table of the first 100 positive

integers and their square roots. Without a loop, our

program would be 100 lines long and would read as

follows:

10 PRINT 1,SOR(1)

20 PRINT 2,SOR(2)

30 PRINT 3,SOR(3)

990 PRINT 99,SOR(99)

1000 PRINT 100,SOR(100)

Notice that the instruction is the same in every

statement; only the number to which the instruction

refers has changed from one line to the next.

Here is the same program written with a loop
wh ich uses the I F statement:

10 N = 0

20 N = N+1

30 PRINT N, SOR(N)

40 IF N<100 THEN 20

Each statement in th is program represents one of
the four characteristics of every loop:

• Initial ization (Statement 10 above). The vari
able N is assigned the initial value of zero. If

this step were omitted, SUPER BASIC would

not be able to compute the N+l in the next

statement, since N would be undefined.

• Modification each time through the loop (State
ment 20). The value of N is increased by 1.
Without this statement, SUPER BASIC would

execute the following instruction continually

for zero and no other value.

• Body of the loop (Statement 30). Th is is the ac
tual instruction which we want to be executed
repeatedly. The body of the loop may consist of

any number of statements.

• Exit from the loop (Statement 40). As long as

N is less than 100, SUPER BASIC will go to

statement 20 and once again pass through the

modification and body of the loop. The last

pass will be made when N is equal to 99; state

ment 20 will then set the value of N to 100, and

statement 30 will print 100 followed by 10 (the

square root of 100). Then the exit is made. N is

not less than 100, so SUPER BASIC stops. If

there were more statements in th is program, the

next statement in sequence then would be

executed.

FOR and NEXT

Since loops are so important and are used so often

in programming, SUPER BASIC provides the two in

direct commands FOR and NEXT to simplify loop

specification. The program above can be written as

follows with these two commands:

10 FOR N = 1 TO 100

20 PRINT N,SOR(N)

30 NEXT N

Statement 10 specifies that N is initialized to the

value 1 and that N should not be set to a value greater
than 100. 1 The modification, an increase of 1 each
time through the loop, is implied in this statement.
The body of the loop is statement 20. The NEXT

command in statement 30 instructs SUPER BASIC to

return to the FOR statement for the next value of N.

When the body of the loop has been executed for
every specified value of N, SUPER BASIC will go to

the statement following the NEXT. NOTE: The value

of N after exit from the loop is the final value as

signed to N, 100.

In the following example, statement 10 specifies

that K should not be set to a value greater than 7.5.

The final value assigned to K is 7.

> 10 FOR K=5 TO 7.5

> 20 PRINT K

> 30 NEXT K

> RUN

5

6

7

>

1 - N could have been replaced by any other·acceptable variable name, but could not have been subscripted. Subscripted variables

are discussed under SUBSCRIPTING AND ARRAY MANIPULATION, Page 26.

10

The STEP Or BY Clause

N could have been increased to 100 in steps of any
size other than the implied 1. To do this, we must
specify the step size in a STEP or BY clause. For
example, suppose we want to print the square roots
of the first 50 even integers. The program would be
written as the one above with statement 10 replaced

by:

10 FOR N =2 TO 100 STEP 2

There are th ree equ ivalent forms of th is statement:

10 FOR N = 2 TO 100 BY 2
10 FOR N = 2 STEP 2 TO 100

10 FOR N = 2 BY 2 TO 100

The specified step size may be negative. For ex

ample, if we want to print the square roots of the first
100 integers in descending order, statement 10 would
be:

10 FOR N =100 TO 1 STEP -1

FOR value list

The FOR command can also be followed by a list
of values for wh ich the body of the loop is to be exe
cuted. For example, the following program prints the
square roots of 2, 3, 8, 10, 12, 14, and 50:

10 FOR N = 2, 3, 8 TO 14 STEP 2, 50

20 PRINT N,SQR(N)

30 NEXT N

Errors In FOR Loops

If the FOR statement specifies an impossible
range; that is, if the initial value is greater than the
final value (less than the final value, for negative
steps), the body of the loop will not be executed.
SUPE R BASI C will go to the statement following the
corresponding NEXT.

Once a loop is entered, if the NEXT statement has
been omitted, SUPER BASIC will execute the body
of the loop once (for the initial value) and then exe
cute the rest of the program wh ich follows the loop.

More complicated FOR statements are allowed.
The initial value, the final value, and the step size may
be expressions of any complexity. For example, if N
and Z have been assigned values earlier in the program,
we could write:

55 FOR X =N+7*Z TO (Z-N)/3 STEP N

Note however, that a change in the values of Nand
Z within the loop will change neither the final value
of X nor the step size. Variables and expressions in a
FOR statement are evaluated only once; namely, the
first time the statement is encountered. The final

value and step size will not change once the loop has
been entered. 1

If the value of X in line 55 above were changed
within the loop, this change would be accepted. For
example, the following statements could be typed
after line 55 to change the value of X to the value of
N if X equals zero.

60 IF X =a THEN 70

65 GO TO 75

70 X =N

75 Body of loop

NESTED LOOPS

It is often useful to have loops within loops. The

order in which SUPER BASIC must execute these
nested loops is illustrated in the following skeleton
examples:

Allowed Allowed

~FOR X
FOR X

FOR Y FOR Y
[NEXT Y [FOR Z

NEXT X NEXTZ

Not Allowed [FORW
NEXTW

~FOR X NEXTY
FOR Y

[FOR Z
NEXT X

NEXTZ
NEXTY

NEXT X

Nested FOR loops of any complexity are allowed,
but crossed FOR loops are not allowed.

Note that the following construction is permitted:

110 FOR K ...

140 ...

170 NEXT K

200 FOR K ...

220 GO TO 140

SUPER BASIC will execute the loop statements in
the order

[
FOR K

NEXT K

[
FOR K
NEXT K

Thus, the way the statements appear in the program
does not matter; only the order in which they are exe
cuted is important.

1 - Except when the WH I LE or UNTI L modifier is used in the FO R statement, see Page 36.

The Multiple NEXT Statement

If the inclusion of nested FOR loops in a program
results in two or more sequential N EXT statements,

11

the NEXT statements may be combined and typed on

one line as follows:

NEXT X} NEXT X Y
NEXT Y ,

SUPPLYING (DATA WITHIN THE PROGRAM:

THE READ AND DATA STATEMENTS

We have already seen that assignment statements
or INPUT statements may be used to assign values to
variables. A second method, the combined use of the
READ and DATA statements, will be shown here. A
third method, input of variable values from a file, will
be shown on Page 22.

Consider the following program:

10 READ N

20 S =0

30 FOR I = 1 TO N

40 READ X
50 S = S+X

60 NEXT I

70 M = SIN

80 PRINT M

90 DATA 5,60,-10

100 DATA 40,-2,11

READ

The READ command is always followed by a vari
able name or a Iist of variable names separated by
commas. When SUPER BASIC executes a READ
statement, the first variable listed in the statement is
assigned the first value in the collection of DATA
statements (the " data block"), the next variable is as
signed the next value, and so on.

Thus, when SUPER BASIC executes statement 10
of our sample program, N is assigned the value of 5.
The next READ statement in the program is inside a
FOR loop and is executed N (that is, 5) times. This
statement causes X to be assigned the next available
value in the data block at each pass through the loop.
Therefore, when I = 1 (the first pass through the
loop), X is set to 60 and, in statement 50, added to S
(which is initially zero). During each of the five times
through the loop, a new value is assigned to X and
added to S. The result is that when the exit from the
FOR loop is made, S will be equal to the sum of the
X's.

The program finally calculates M, the mean of the
numbers, in statement 70.

DATA

The numeric values which are listed in OATA
statements must be numbers, not expressions, and
must be separated by commas.

The location of DATA statements in a program is
arbitrary, although the usual procedure is to place
them in a group at the end of the program. The only
requirement is that the statements be numbered in
the order in which the data is to be read.

The distribution of the elements of data among
DATA statements also is arbitrary. For exampte, we
could have typed, in place of statements 90 and 100
in our sample program, either

90 DATA 5,60,-10,40,-2,11

or

90 DATA 5

100 DATA 60,-10

110 DATA 40,-2,11

RESTORE

Once all the data has been read from a data block,
another READ request will cause an error message

telling you that you are out of data. However, if you
wish at any time during the program to reread all or
part of the data block, you can do this with a RE
STORE command. When this command is executed,
the next READ command will start reading data from
the beginning of the data block; that is, from the first
value in the first DATA statement. RESTORE can be
executed either directly or indirectly.

For example, if now we wanted to use the formula

D=

to calculate the standard deviation of the X's, we
could add the following statements to our sample
program:

1 - The numerator of this fraction uses the mathematical symbol L meaning "the sum of". We want to find (X_M)2 for every X

and sum the results.

12

110 RESTORE

120 READ N

130 A = 0

140 FOR I = 1 TO N

150 READ X

160 A = A+(X-M)t2

170 NEXT I

180 D =SQR(A!N)

190 PRINT D

Statement 120 is necessary even though N already

has the value of 5 at this point in the program. If this

statement were omitted, the first X read by statement

150 would be 5, which is incorrect.

NOTE: If a program containing DA TA statements

is run more than once, the data block will be restored

automatically.

ENTERI NG AN D USI NG A SU PER BASIC PROGRAM

Before you can call SUPER BASIC and run any of

the sample programs or your own programs, you

must enter the Tymshare system. The proper proce
dure is illustrated on Page 5 and in Appendix C.

To call SUPER BASIC, type SBASIC followed by

a Carriage Return. SUPER BASIC will reply with a>

when ready to receive a command.

TYPING A PROGRAM
INTO SUPER BASIC

We will once again review the procedure shown on

Page 5. Once SUPER BASIC is ready, start typing

your program. Each statement must be terminated by

a Carriage Return. Only after the Carriage Return is

typed does SUPER BASIC analyze the statement and

print an error message if the syntax is incorrect; that

is, if the statement does not conform to the rules of
SUPER BASIC's grammar. After an error message

prints, retype the line correctly. 1

Remember that an indirect statement (one with a
line number) is executed only when the running pro
gram reaches the statement in normal sequence; while

a direct statement (without a line number) is executed
immediately after you type the terminating Carriage

Return.

READING A PROGRAM
FROM PAPER TAPE

Another way to enter a program into SUPER
BASI C is by reading the statements from paper tape
previously punched "off line"; that is, when the term

inal is not connected to the computer.

How To Punch Paper Tape Off Line

To punch paper tape off line, turn the dial on the
front of the terminal to LOCAL and depress the ON

button on the paper tape punch controls. Then type

the program exactly as you would if you were typing

directly into SUPER BASIC, with the following

exceptions:

• Always follow a Carriage Return with a Line

Feed.

• Always follow a Line Feed with a Carriage

Return.

If you make an error while punching a SUPER

BASIC program onto paper tape, delete the incorrect

character by typing a back arrow (+--). Use the +-- re
peatedly to delete as many characters as necessary. In
addition, an upward arrow (t) immediately followed

by a Carriage Return will delete an entire line.

After you have finished typing the program, punch

a Control D and press the 0 F F button on the punch

controls.

The TAPE Command

To read a program from paper tape into SUPER

BASIC, type:

>TAPE ~

and turn the paper tape reader control to START.

NOTE: If you did not punch a Control D at the end

of the tape, type the Control D from the keyboard

after the tape is read.

Whatever you punched on the tape will print on

the terminal when the tape is read. Any statements
with syntax errors will be reprinted at the end of the
entire program along with the appropriate error mes

sages. Then the incorrect statements must be retyped.

Any part of a program may be punched on paper

tape and entered with the TAPE command. For ex-

1 - SUPER BASIC's extensive editing features, which allow you to correct errors either before or after you type the Carriage Re

turn at the end of an incorrect statement, will be described later in this'manual.

13

error.

The error is corrected.

REUSING A SAVED PROGRAM

The program is saved on a

new file named /AREA/

DC ends the TAPE command.

This line contains a syntax20 IMPUT B,H

SYNTAX ERROR

> 20 INPUT B,H <:J

> RUN ;>

TYPE THE BASE AND THE HEIGHT

? 10,6 ;>

THIS IS THE AREA:

30

> SAVE IAREAI ~

NEW FILE ;:>
> QUIT ;>

- LOGOUT;>

TIME USED 0: 2: 58

PLEASE LOG IN:

PLEASE LOG IN: ~

ACCOUNT: A3 ~

PASSWORD: ;>

USER NAME: SMITH ~

PROJ CODE: ~

TYMSHARE 7/1 16: 17

- SBASIC ;>

> TAPE;>

10 PRINT "TYPE THE BASE AND THE

HEIGHT"

20 IMPUT B,H

30 A = 1/2*B*H

40 PRINT "THIS IS THE AREA:"

50 PRINT A
DC

An Example Of TAPE, RUN And SAVE

In the following example, a short program is read

from paper tape, corrected, executed, and saved on a
file. The example also illustrates logging in and logging

out.

> SAVE IINT/, 1-15,30,70-100 i:J
OLD FILE ~

replaces the former contents of the fi Ie II NT I with

statements 1 through 15, 30, and 70 through 100.

NOTE: A maximum of four line numbers and/or line

ranges may be used in a single SA VE command.

To save part of your program, type SAVE followed

by the file name and a comma. Then type the line

numbers of the statements you wish to save. Separate
the numbers with commas and use the dash (-) to

indicate a range. Thus,

Example

> SAVE IKL221 ()

NEW FILE ~

>

SUPER BASIC replies with NEW FILE if you do

not already have a file with that name, and OLD FI LE

if you do have a file with that name.

In reply to NEW FILE or OLD FILE, you either:

• Confirm the command by typing a Carriage Re

turn. NOTE: A Carriage Return after OLD FILE

causes the contents of the old file to be re

placed. Or,

• Abort the command by pressing the ALT

MODE/ESC key.

SAVING A PROGRAM

Once you have a program that is running correctly,

you may want to save it on a file (a storage area set

aside for you in the Tymshare computer). To do this,

type the direct command SAVE followed by the

name of the file. and a Carriage Return. NOTE: The

file name typed after SA VE must be surrounded by

slashes and may contain any characters except slashes

and commas.

• RUN begins execution at the lowest numbered
statement of the program. Any direct or in

direct statements previously executed are
ignored.!

• GO TO followed by a line number begins execu

tion at the statement specified. Any direct or in
direct statements previously executed are not

ignored; all information is retained?

If the program can be executed, the results will be

given quickly. This does not necessarily mean that the

program is free from error and the answers are cor

rect. There might be a logical error that SUPE R

BASICcannot find. Or, there might be an error (other

than a syntax error) which prevents execution. If this

is so, SUPE R BASIC will print a message indicating

why it cannot execute the program. Correct your

error and try again.

A SUPER BASIC program is executed with either

of the direct commands RUN or GO TO.

ample, OATA statements alone can be saved on paper

tape. If the rest of the program were saved on a file,

you could enter the program first (with LOAD), and

then append the DATA statements (with TAPE).

RUNNING A PROGRAM

NOTE: Only indirect statements (those with line

numbers) will be saved on the file.

To reenter a program saved on a file, type LOAD

followed by the file name and a Carriage Return.

1 - With the exception of VAR = ZERO, VAR = UNDEF, and the BASE command, which is explained under SUBSCRIPTING
AND ARRAY MANIPULATION, Page 26.

2 - When a program containing the READ command is executed more than once, the data is reread from the beginning of the data
block even if a direct GO TO was given to execute the program.

14

Example

> LOAD /AREA/ ~

>

> 10 ! THIS PROGRAM CALCULATES THE ~

> 20 ! AREA OF A TRIANGLE ~

>

SELF-STARTING PROGRAMS

will be saved because they are indirect statements.
They will be listed along with the rest of the program,

but will not be printed out when the program is run.
Any characters can be typed after! or REM.

In addition, ! can be used to insert comments at
the end of direct or indirect statements. For example,

A program which has been saved on a file may be

gin to execute automatically as soon as it is loaded.

To accomplish this, you must store a RUN or direct

GO TO command on the file immediately following

the program. You cannot do this in SUPER BASIC

because direct commands execute as soon as they are

typed and cannot be saved with the program when

the SAVE command is given. However, the Tymshare

editing language, EDITOR, allows you to read in the
SUPER BASIC program from a file, append a RUN or

direct GO TO command and then write the program

back on the file.! When the program is loaded into

SUPER BASIC, it will begin to execute immediately.

LOOKING AT A PROGRAM

At any time you may have part or all of your pro

gram printed by typing the direct command LIST.

Typed alone, LIST causes the entire program to be
listed. When LIST is followed by a line number or

numbers, only the statements specified are listed. For

example,

> LIST 4,10,20-30,65 ~

will print lines 4, 10, 20 through 30, and 65.

You can stop the printing at any time by pressing

the ALT MODE/ESC key. NOTE: A maximum of four

line numbers and/or line ranges may be used in a single

LIST command.

COMMENTS IN A PROGRAM

Either an exclamation point (!) or the word REM

is used to insert remarks or comments as direct or in

direct statements. For example;

> REM NOW WE WI LL TYPE "RUN" ~

>! FOLLOWED BY "LIST" ~

>
Since these remarks are direct statements, they will

not be saved with the program. The following remarks

> 45 M = S/5

> GO TO 20

!CALCULATES THE MEAN ~

!OBSERVE THE RESULTS ~

SIMPLE EDITING IN SUPER BASIC

This section describes only the simplest editing
features of SUPER BASIC. The advanced editing fea

tures - those which SUPER BASIC shares with

EDITOR - are explained under ADVANCED EDIT

ING FEATURES, Page 46.

INSERTING STATEMENTS

To insert one or more lines between two existing
statements in your program, simply type the new

statements with line numbers that lie between the
numbers of the existing statements. For example, if
you have left out a statement between statements 40
and 50, type the additional statement with any num

ber from 41 to 49. SUPER BASIC will list and exe
cute your program in numerical sequence.

DELETING STATEMENTS

The DELETE Command

To delete a statement from your program, either
type the Iine number of the statement followed by a

Carriage Return or use the direct command DELETE

(may be shortened to DEL). DELETE followed by a

line number or numbers will delete the specified state

ments. For example, either DE LETE 10 ~ or 10 ~

will delete statement 10. The command

> DEL 5,10-35,70 ~

will delete lines 5, 10 through 35, and 70. NOTE: A

maximum of four line numbers and/or line ranges

may be used in a single DELETE command.

To delete the entire program, type DELETE

ALL ~. This command also deletes the values of all

variables. Remember to give this command whenever
you are finished with one program and wish to load

another; SAVE will not remove a program from
SUPER BASIC.

Control Q

In addition to deleting existing lines in your pro
gram, you may delete an incorrect statement (direct

1· For more information, see the Tymshare EDITOR Manual, Instant Series.

or indirect) at any time before typing the terminating
Carriage Return. To do this, type a Control Q (QC).
An t will print on the terminal and the line will be de

leted. Then retype the entire statement.

In the example below, the user deletes 40 FOR 1=1
TO with a QC and retypes the statement correctly:

>40 FOR I = 1 TO QC t
40 FOR J = 1 TO 3 ~

>

CHANGING STATEMENTS

To change any statement in your program, simply
retype it with the same line number. Whenever you

enter a new statement with the same number as a line

already in the program, the old statement is replaced

by the new one.

15

Control A

If you make an error while typing a statement, you

may delete the incorrect character immediately. To
do this, type a AC after the incorrect character (a <

will print on the terminal). Use AC repeatedly to de

lete as many characters as necessary.

Example
> 10 PRIMAc<--NT "TYPE X" ~

> 20 X = AC<---Ac<---INPUT X ~

> LIST ~

10 PRINT "TYPE X"

20 INPUT X

>
NOTE: The back arrow (shift 0) has the same effect
as AC.

REVIEW OF COMMANDS IN SECTION 1

The following commands have been discussed thus far in this manual:

Command Example Purpose

Assignment 45 M = S/5 Assigns values to variables
Statement

DATA 90 DATA 5,60,-10 Stores data in a program

DELETE or DEL 5,10-35,70 Deletes all or part of a program

DEL

FOR and NEXT 10 FOR N=l TO 100 Repeats execution of a line or

20 PRINT N, SQR(N) lines for specified values

30 NEXT N

GO TO ... 60 GO TO 10 Unconditional transfer

GO TO 10

IF... THEN ... 32 IF S=O THEN 70 Conditional transfer

INPUT 20 INPUT A,B,C,D,E Accepts data input from the

keyboard

LIST LIST 4,10,20-30 Lists all or part of a program

LOAD LOAD /KL22/ Enters program statements

from a file

PRINT 70 PRINT "SUM IS Prints text and values of
ZERO" variables

PRINT X,Y

QUIT or Q QUIT Returns to the EXECUTIVE

READ 10READN Accepts input from DATA

statements

16

Commands Review (Continued)

Command Example Purpose
REM and I REM PRINT A For comments or remarks

55 A=A+1 IADD 1

RESTORE 110 RESTORE Allows rereading of DATA
statements from the begi nn ing

RUN RUN Starts execution at the lowest
num bered statement

SAVE SAVE /KL22/ Saves all or part of a program

TAPE TAPE Enters program statements
from paper tape

VAR=UNDEF 70 VAR=UNDEF Nullifies the effect of VAR =
ZERO

VAR=ZERO 10 VAR=ZERO Initial izes variabl es to zero

Many useful SUPE R BASIC programs can be writ
ten and used with these few commands. We conclude
Section 1 with two more examples. Try these on the

terminal, together with some programs of your own.
The fastest and easiest way to learn the Tymshare sys
tem is to use it I

SAMPLE PROGRAMS

PRODUCT OF A SET OF NUMBERS

This program will read up to 1000 numbers from
DATA statements and print the product of the num

bers. The last number typed in the data block is to be

5E55. This makes it unnecessary for the user to count
how many data items he types, as will be explained
below.

10 P =1

20 FOR I =1 TO 1000

30 READ X

40 IF X =5E55 THEN 80

50 P =P*X
60 IF P =0 TH EN 80

70 NEXT I
80 PRINT P
90 DATA 15,-9,1.5,33,6,-4,22,9,5E55

Each number that is read is compared to what we
know is the last data item, 5E55. If the number read

is not equal to 5E55 (that is, we have not yet reached
the end of the data block), the number will be ac
cepted as one which should be multiplied. The prod
uct is stored in the variable P. P is initialized to 1 in
line 10 so that the first time through the FOR loop,

the first data item (1 * X) will be stored in P. Each sub
sequent time through the loop, the product calculated
thus far will be multiplied by the number just read.
When 5E55 is read, SUPER BASIC will go immediate

ly to line 80 and print the product, P.

Line 60 states another condition under which
SUPER BASIC should print the product calculated
thus far; that is, if this product is O. In this case there
is no reason to continue multiplying, since the result
will be 0 regardless of what numbers follow. NOTE:
This statement is optional; it merely saves calculation
time if one of the data items is O.

Try this sample program with any set of numbers.
If you use the data provided in the above example,
the answer should be 31755240. You can substitute
any number in place of 5E55 in this program, as long
as the number you choose appears only at the end of

the data block.

DOUBLE DECLINING
BALANCE DEPRECIATION

Th is program calculates and Iists the depreciation
and book value of an asset at the end of every year of
its useful life.

The commas in statement 40 caused spaces to be
printed between the column headings. All of the
PR INT statement forms and rules are discussed in de
tail under ADDITIONAL PRINTING FEATURES,

Page 19.

DEP.

933.33333

808.88889

701.03704

607.56543

526.55671

456.34915

395.50259

342.76891

297.06639

257.45754

223.12987

193.37922

167.59532

145.24928

125.88271

The original cost (C) and the estimated useful life
(L) of the asset are used to calcu late the depreciation
(D). At the end of the first year,

D = 2XC
L

The book value at the end of the first year is C-D
(original cost less depreciation). For each subsequent
year, the depreciation and book value are calculated
by the same formulas as above, substitutin g for C the
book value at the end of the previous year.

The user is asked to type in the original cost and
the estimated useful life. Following the listing of the
program is a sample run for an asset which costs
$7,000 and is depreciated over 15 years.

> LIST

O! DOUBLE DECLINING BALANCE DEP.

10 PRINT "TYPE COST OF ASSET AND"

20 PRINT "ESTIMATED USEFUL LIFE"

30 INPUT C,L

40 PRINT "YEAR","DEP.","BOOK VALUE"

50 FOR X = 1 TO L

60 D = 2*C/L

70 C = C-D

80 PRINT X,D,C

90 NEXT X

> RUN

TYPE COST OF ASSET AND

ESTIMATED USEFUL LIFE

? 7000,15

YEAR

1
2

3

4

5

6

7

8

9

10

11
12

13

14

15

>

17

BOOK VALUE

6066.6667

5257.7778

4556.7407

3949.1753

3422.6186

2966.2695

2570.7669

2227.9979

1930.9316

1673.474

1450.3441

1256.9649

1089.3696

944.12032

818.23761

19

SECTION 2
SUPER BASIC ADVANCED FEATURES

THE MULTIPLE ASSIGNMENT STATEMENT

More than one variable can be assigned the same
value in one statement. The variables to be assigned
must be separated by commas. For example,

10 X,V = 5

70 LET A,B,C(2),D(1,1) = 0

X(1),Y,Z = 15*S/R

More than one assignment can be made in a single
statement, as follows:

15 LET Q = 4, S = 16
30 A = 3,M,N = 5,W = COS(15)

100 J = SQR(X), K = J+3,H,G(1) = 0

The assignments are made from left to right; thus,
in statement 100 above, the value of K is set to
SQR(X)+3.

As shown above, use of the word LET is optional.

Be careful to note that each of the examples above
is a single statement. Two separate statements cannot

be typed on one line and separated by commas. For

example, PRINT A, PRINT B is not acceptable, nor is
B = C*EXP(C), PRINT A+B.

ADDITIONAL PRINTING FEATURES

PRINTING BLANK LINES

The PR INT command typed alone causes a Car
riage Return to be printed. This form of the command
is useful in making terminal output more readable by
inserting blank lines. For example,

30 PRINT "LINE 1"

40 FOR 1=1 TO 4

50 PRINT

60 NEXT I

70 PRINT "LINE 2"

will cause four blank lines to be printed between
LINE 1 and LINE 2.

THE PRINT ZONES

Separate PR INT commands cause the specified
printout to be on separate lines. Thus,

100 PRINT "BOOK VAL"

110 PRINT X

prints BOOK VAL at the beginning of one line and
the value of X at the beginning of the next line. The
following program:

15 FOR I = 1 TO 12

20 PRINT I

25 NEXT I

will print the first twelve integers, each at the begin
ning of a line.

SUPER BASIC does, however, provide ways to
print more than one number and/or string of text on
one line. The characters to be printed fall into
"zones", the length of which depends on whether the
comma, semicolon, or colon is used in the PR INT
statement.

Normal PRINT Zones

The width of the terminal paper is normally di
vided into five zones of fifteen spaces each. A comma
is used in the PR INT statement to instruct SUPE R
BASIC to go to the beginning of the next zone. Thus,
PRINT A,B,C,D,E will print the values of those five

variables across the page. Each number will be left
justified in a field of fifteen spaces. Any positive num
ber will be preceded by a space due to the omission of
the plus sign.

If there are more commas in a PR INT statement
after the fifth zone is printed, printing will continue
from the first zone on the next line. Thus,

10 FOR 1= 1 TO 12

20 PRINT I,

30 NEXT I

will print the first five integers on one line, the second
five on the next line, and 11 and 12 on a third line.

20

If another PR INT statement were added to this ex
ample, the first value or text listed in the additional
statement would be printed in the zone immediately

following the 12 (the third zone on the line). Thus,

> 10 FOR 1= 1 TO 12

> 20 PRINT I,

>30 NEXT I

> 40 PRINT "XXX"

>RUN

1 2

6 7
11 12

>

3

8

XXX

4

9

5

10

> PRINT "CURB WEIGHT (LBS) =":A

CURB WEIGHT (LBS) = 111

> PRINT "B IS NEGATIVE":B:A

B IS NEGATIVE-76.3 111

> PRINT "CONCAT":"ENAT":"ED"

CONCATENATED

>
The following is not permitted in SUPER BASIC:

> PRINT "CURB WEIGHT (LBS) ="A

A comma, semicolon or colon must be typed after the

text.

t
Zone 3

Inserting the statement 35 PRINT in the above ex

ample would have caused the XXX to print at the be

ginning of the next (fourth) line.

If text to be printed contains more than fifteen

characters, it will extend into the next zone, and the

next value or text to be printed will occupy the fol

lowing zone. For example,

> PRINT "CURB WEIGHT (LBS) = ",A

CURB WEIGHT (LB,S) = , 111
\, "'J ' _

l'"""" 1'""""
Zone 1 Zone 2

The first string of text contains 18 characters. The

value of A is printed in the th ird zone.

Packed PRINT Zones

A packed form of terminal output is available by

using the semicolon in the PR INT statement. The

semicolon instructs SUPER BASIC to skip from two
to five spaces before printing the next number or text.

The exact number of spaces depends on the last posi

tion in which SUPER BASIC printed before it en

countered the semicolon.! For example,

> PRINT "CURB WEIGHT (LBS) = ";A

CURB WEIGHT (LBS) = 111
> PRINT "THIS IS";1;"EXAMPLE"

THIS IS 1 EXAMPLE

>

Concatenated PRINT Zones

To print numbers and/or text with no separating

spaces, use the colon in the PR INT statement. Re

member that positive numbers will be preceded by

one space because of the missing plus sign. Thus,

CONCATENATION OF
PRINT AND INPUT

When text is printed immediately before an INPUT

command, the INPUT question mark need not appear
on a separate line. A comma, semicolon, or colon at
the end of the preceding PR INT statement will move

the question mark to the end of that line. SUPE R

BASIC will wait there for the input. For example,

.> 10 PRINT "WHAT IS X":

>20 INPUT X

> 30 PRINT "X SQUARED = ":Xt2

>RUN

WHAT IS X? 15 E:J
X SQUARED = 225

>

SUPER BASIC provides another control to concat

enate input with printed text. Instead of a Carriage

Return, a DC may be typed after the last item of data

typed in reply to an INPUT command. The input will

be accepted as usual, but the carriage will not be re

turned. Thus, any more text to be printed will appear

on that same Iine rather than on the next line.

Example 1

> 10 PRINT "B = ":

>20 INPUT B

> 30 PRINT" (THIS IS THE BASE)"

>RUN

B =? 13DC (THIS IS THE BASE)

>

In this example, the user typed a DC instead of a

Carriage Return after the requested input. SUPER
BASIC then printed the text (THIS IS THE BASE) on

the same line.

1 - The paper is divided into zones of three spaces each. SUPER BASIC first skips two spaces and then, if not positioned at the be
ginning of a zone, will move to the beginning of the next zone.

Example 2

> 10 PRINT "WHAT IS R":

> 20 INPUT R

> 30 PRINT" S":

>40 INPUT S

> 50 PRINT" T":

>60 INPUT T

>RUN

WHAT IS R? -6Dc S? 4Dc T? 3 f)

>

21

ADDITIONAL IF STATEMENT FEATURES

I F condition THEN statement

In addition to line numbers, SUPER BASIC state
ments may be typed after the word THEN in an I F

THEN statement. If the I F condition is false, the
THEN statement will not be executed, and the pro

gram will go to the next statement in sequence.

Examples

>70 IF X>4 THEN A = B
If X is greater than 4, A

will be set to the value of B.

> 70 I F A = B THEN PRINT "A EQUALS B"
The message A EQUALS B

will be printed onlv if A
and B are equal.

THE IF-THEN-ELSE SEQUENCE

The word ELSE followed by a statement can be

added to the IF-TH EN sequence. This form allows the

THEN statement to be executed if the condition is

true, but executes the ELSE statement if the condi

tion is false. The program continues to the next state

ment in order unless the THEN or ELSE clause it

executes is one which transfers to another line.

Examples

>70 IF X =.5 THEN 200 ELSE 300
If X is .5, the program will go to line 200;

otherwise, it will go to line 300.

>70 IF N = 0 THEN 50 ELSE C = T, D = T/N

If N is 0, the program will go to line 50;

otherwise, the assignment statement in

the ELSE clause will be executed, setting

C to T and D to TIN.

> 70 I F A = B THEN PRINT "A EQUALS B"

ELSE PRINT "A AND B NOT EQUAL"
If A and B are equal A EQUALS B will

print; if not, A AND B NOT EQUAL will

print.

Any indirect statement (except DATA, REM, or !)

can be included in a THEN or an ELSE clause.

COMBINING IF STATEMENTS

Any number of IF-THEN and/or IF-THEN-ELSE

sequences may be used together, such as:

IF X = 4 THEN IF P = L THEN R = 80 ELSE 300

ELSE X = X*Y

In this example, if X is not 4 (a false condition),

the ELSE clause will set X to X*Y and the program

will continue with the next statement in order. If X is

4 (a true condition), the THEN clause will be exe
cuted to check to see if P is equal to L. If so, the val
ue of R will be set to 80 and the program will contin

ue; otherwise, the program will transfer to line 300.

The rule for matching THEN and ELSE clauses is

similar to the rule for evaluating expressions with

more than one set of parentheses. For example, the

THEN and ELSE clauses in the previous example were

matched from the inside out. Since a THEN clause

does not require a rriatching ELSE, constructions such

as the following are possible:

IF ... THEN IF ... THEN ... ELSE.

Here the ELSE and the second THEN are matched

with the inner IF. The outer IF has no ELSE clause.

IF THEN IF THEN IF THEN ELSE ELSE .

IF THEN IF THEN ELSE !..E. THEN ELSE .

In each of these examples the first I F in the statement has no ELSE clause, but if the
ELSE were to be included, it would be added at the end of the statement.

22

DATA FILE INPUT AND OUTPUT

Files are a convenient method of supplying a program with large amounts of data or

saving the results of the execution of a program. Up to three 90,000 character files can be

used concurrently for input to or output from a program. The commands which will ac

complish this are explained below.

OPENING A FILE

Before a data file can be read or written, it must be opened (and at the same time

given a number) with the command:

(

SYMBOLIC) (INPUT)
OPEN /file name/ FOR or or AS FILE n

BINARY OUTPUT

or the short form:

OPEN Ifile name/,rSYM:~L1Cl (IN~~T), nl BINARY J OUTPUT

The file number n, which can be zero or any posi
tive numeric expression, is necessary in every OPEN
statement to specify which file the user is working
with, since he may have up to three files open at one
time. A file number that is not an integer will be
truncated.

Input or output files may be symbolic or binary.
Since data written on a binary file is not in the usual
character representation, but in internal machine code,
the file cannot be printed on the terminal (and be
meaningful). Binary form, however, requires less stor
age space and is especially useful if a program creates
a large number of results that are to be used as input
to another program.

When a file is opened for input, it need not be

specified in the OPEN statement as symbolic or
binary. If the word SYMBOLIC or BINARY is omit
ted, SUPER BASIC will check to see what type of file
it is and will read it as such. If the file type is specified
but does not match the file, an error message will be
printed.

When a file is opened for output, the user must
specify if the file is to be binary; otherwise, a sym
bolic output file will be written. Thus,.

OPEN /BDATA/, BINARY OUTPUT, M*N

will open for binary output the file IBDATA/, the file
number of which equals the value of M*N. The fol
lowing

OPEN ISDATA/, OUTPUT, 4

will open for symbolic output the file ISDATA/.

A file need not exist in the user's directory to be
opened for output; the OPEN command will create a
file of the specified name and type automatically.

NOTE: Opening a file initializes input or output at
the beginning of the file.

INPUT FROM A FI LE

The command used to read data from a file takes
the form:

INPUT FROM n:variable list

where n is the input file number. For example,

10 OPEN IAFI LEI, INPUT, 2
20 INPUT FROM 2:X,Y,Z

reads three values from /AFI LEI and assigns them to
the variables X, Y, and Z respectively.

The entries in a data file may be separated by com
mas or spaces, with a Carriage Return at the end of
each line of data. The entries can be numbers but not
expressions.

OUTPUT TO A FILE

To write on a file, use either of the equivalent
forms:

WRITE ON n: or PRINT ON n:

followed by a list of numbers, variables, or expres
sions whose values are to be written on the file, where
n is the output file number. For example,

80 OPEN !DATA1!,OUTPUT,3

85 OPEN !DATA2!, BINARY OUTPUT, N

90 WRITE ON 3:P,O,R,W

95 WRITE ON N:P-O,NtW,A

Line 90 writes the values of the variables P, 0, R,
and W on the symbolic file !DATA1! (file 3). Line 95
writes the values of the expressions P-Q and NtW and
the variable A on the binary file !DATA2! (file num
ber equal to the value of N).

23

NOTE: Files created during execution of a pro
gram remain after the program has terminated.

Example

Twelve numbers are read from a file named
!XDATA!. The positive numbers are written on
!POSX!, the negative are written on !NEGX!.

- COpy !XDATA! TO TEL

1,16,-4,6,-11,-2,30,-4,6,8,13,-7

-SBASIC

CLOSING A FILE

After the last input or output operation is per
formed on a data file, the CLOSE command should
be used to close the file. NOTE: An input or output

file is closed automatically after a RUN, a DELETE
ALL, or a return to the EXECUTI VE.

Files to be closed are specified by their file num
bers in the CLOSE command. For example,

120 CLOSE 1,B-2

200 CLOSE 3

closes files 1 and B-2

closes file 3.

> 10 OPEN !XDATA!, INPUT, 1

>20 OPEN !POSX!, OUTPUT, 2

> 30 OPEN !NEGX!, OUTPUT, 3

> 40 FOR I = 1 TO 12

> 50 INPUT FROM 1: X

>60 IF X>O THEN WRITE ON 2: X;

ELSE WRITE ON 3: X;

>70 NEXT I

>80 CLOSE 1,2,3

>RUN

Once a file has been read or written, it can be re
read or rewritten only by closing the file and opening
it again.

>OUIT

- COpy !POSX! TO TE L

1 16 6 30

- COpy !NEGX! TO TEL

If three files are open concurrently, any of them
may be closed with a CLOSE command so that other
files can be opened.! Once a file has been closed the
number of that file may be used later to designate an
other file.

-4 -11 -2 -4

6

-7

8 13

ADDITIONAL FU NCTIONS

ADDITIONAL
SUPER BASIC FUNCTIONS

INT(X) or IP(X)

INT (X+.5) may be used for rounding any expres
sion X to the nearest integer, such as

INT(7.8+.5) = 8

INT(-2.4+.5) =-2

The following use of the INT function will round
an expression X to N decimal places:The integer function is INT(X) or IP(X) where, as

with other functions, X can be any expression. This
function yields the greatest integer less than or equal
to X. Thus,

INT(7.8) = 7

INT(-2.4) = -3

INT(10tN*X+.51!10tN

For example,

INT(10*X+.5)!10

INT(100*X+.5)!100

will round to 1 decimal place

will round to 2 decimal places

1 - UTE LETYPE u (or UTE LU) may be used in the OPEN statement to refer to the terminal and will be considered an open file.

24

FP(X)

The fractional part of X is defined as follows:

FP(X) = X-INT(X)

Thus,

FP(8) = 0

FP(123.456) = .456

FP(-1.8) =.2 [-1.8-(-2)]

FIX(X)

This function is defined as SGN(X)*INT(ABS(X)).

It truncates the value of the expression X as follows:

FIX(7.8) = 7

FIX(-2.4) = -2

Whatever follows the decimal point is dropped.
Note that FIX(X) is equivalent to INT(X) for positive
numbers, but not for negative numbers; for example,
FIX(-2.4) = -2, but INT(-2.4) = -3.

RND(X)

The RND function is a pseudo random number
generator and requires a single argument that may be
zero, positive, or negative. The random number will

be between 0 and 1 exclusive.

If the argument is zero, the first use of the function
in a program will always produce the same number.
When RND(O) is used again in the same program, the

next random number in sequence is given. NOTE: An
other form of RND(Oj is simply RND.

If the argument is positive, a random number is,
generated from this number. Thus, RND(16) always

will produce the same number, which will be different
from the number RND(30). A sequence of random
numbers can be initiated by RND with a positive argu
ment and then RND(O)(or RND) can be used repeat

edly to generate the next random numbers in the
sequence.

If the argument is negative, a random number is
generated from a random number (set by reading the
internal clock of the computer in milliseconds). The
value of the negative argument has no bearing on the
random number it generates; for example, RND(-1)
used twice in a program will yield different random
numbers which depend only on the reading of the in
ternal clock. Thus, using RND with a negative argu
ment to initiate a sequence of random numbers will
produce a different sequence of numbers each time
the program is run.

Example

10 PRINT RND(-1);

20 FOR I = 1 TO 9

30 PRINT RND;

40 NEXT I

If this program is run twice, two different sequen
ces of random numbers will be printed. However, if
the argument of the RND function in line 10 were
changed to 0 (or no argument) or to a positive num

ber, running the program twice would yield the s~me

sequence of random numbers.

SGN(X)

The sign function SGN(X) yields 1 if the value of
the argument X is positive, 0 if X is equal to 0, and -1
if X is negative. Thus,

SGN(31) = 1

SGN(O) = 0

SGN(-.2387) =-1

POS and POS(N)

The function POS can have either no argument or
one argument. When no .argument is given, the func
tion specifies the position on the terminal at which
the print head is located.

Example

> 10 FOR I = 1 TO 10

>20 READ X

> 30 PRINT X: !CONCATENATED ZONES

> 40 IF POS>15 THEN PRINT

> 50 NEXT I

> 60 DATA 10,20,30,40,50,60,70,80,90,100

>RUN

10 20 30 40 50

60 70 80 90 100

>
As specified in line 40, a Carriage Return is printed

after the print head passes position 15.

The POS function is used with an argument only
when writing on files. l The argument is the file num
ber of the output file.

Example

> 10 OPEN lXXI, OUTPUT, 2

> 20 FOR I = 1 TO 10

>30 READ X

> 40 PRINT ON 2: X:

> 50 IF POS(2»15 THEN PRINT ON 2:

>60 NEXT I

> 70 DATA 10,20,30,40,50,60,70,80,90,100

>RUN

> QUIT

1 - When POS(N) is used in writing on binary files, it specifies the word position (where a word is considered to be three characters).

- COpy /XX/ TO TE L

10 20 30 40 50

60 70 80 90 100

TAB(X) and TAB(X,N)

The TAB function can have either one or two argu
ments. TAB(X) is used in the PRINT statement to
move the print head to the Xth print position on the
terminal. The function is used with a colon if the
number or text wh ich follows it is to be printed at the
specified position. For example,

>PRINT TAB(20):B

-456

t
20th position

>PRINT A:TAB(12):B

18 -456

t
12th position

>
If a semicolon is used after the TAB function, the

print head will move beyond the specified print posi
tion; a comma causes it to move to the next PRINT
zone of 15 spaces.

If the semicolon or comma which precedes the
TAB function causes the print head to move beyond
the position specified by the TAB, the TAB will be
ignored. For example,

> PRINT A,TAB(12):B

18 -456

t
16th position

>
The comma caused the print head to move past the
first field of 15, so TAB(12) was ignored.

TAB with two arguments is used when writing on
files. The form is

TAB(X,N)

where X specifies the print position to which SUPER
BASIC should tab, and N specifies the file number.
For example, the statement

> PRINT ON 2: A: TAB(12,2):B

prints the value of A, tabs to position 12 and prints
the value of B on the file that has been opened for
output as file 2.

25

PROGRAMMER DEFINED FUNCTIONS

In addition to the standard SUPER BASIC func
tions, the user may define any other function which
he expects to use a number of times in a program.
The indirect command DEF is used for this purpose.
The names of programmer defined functions must
contain three letters, the first two of which must be
FN. The form of the DE F statement is shown below;
the programmer defines a function which will calcu
late the sine of an angle in degrees.

10 DEF FNS(X) = SIN(X*PI/180)

NOTE: If two DEF statements are used with the
same function name, the second statement, when exe
cuted, will redefine the function.

An argument used in defining a function (X in the
above example) is called a parameter. A programmer
defined function can have either no parameters or any
number of parameters (separated by commas and en
closed in parentheses). Parameters are "dummy" argu
ments; that is, when a defined function is used, cer
tain specified values will temporarily replace the
parameters where they appear in the function defini
tion. For example,

> 10 DEF FND(A,B) = 4*A*B+At2

> 20 Y = FND(2,1)

>30 PRINT Y

>RUN

12

>

When the defined function was used in line 20, 2
and 1 replaced A and B respectively in the function
definition in line 10. Thus, Y was set to (4X 2X 1)+2 2

,

or 12.

Parameters can have any variable name, including
the names of variables used in the same program; in
other words, the parameters are local to the function
definition. Continuing from the above example, if the
lines

>5 A = 6, B =4

> 35 PRINT A,B

are written into the program, the A and B parameters
will still be replaced by 2 and 1 (as specified in line
20). Once the function has been evaluated however, A
and B are restored to their former values as assigned
in line 5. Therefore, line 35 will print 6 and 4 as the
values of A and B.

Any variables in a function definition which are
not parameters of that function simply take the val-

26

ues assigned to them in some previous part of the pro
gram; that is, these variables are global. For example,
consider the following defined function:

35 DEF FNK = 6.21083*Rt2+W

When the function FNK is used, the variables Rand W
must have been assigned values previously; these val
ues will be used in evaluating FNK.

When a defined function with parameters is used in
a program, any argument (number, variable, or expres
sion) can replace the parameters in the definition. For
example, the following is permitted:

60 DEF FNP (X,Y,Z) = X/2-4*Y*Z+Zt2
65 B =FNP(3,Q,Rt3)

When line 65 is executed, the parameters X, Y, and Z
are set temporarily to the values of 3,0, and R3

.

The defining expression in a DEF statement may
include other programmer defined functions as well as
parameters, program variables, and standard functions.
For example,

40 DEF FNR(A) ::; TAN(B)+At2/W

50 DEF FNF(X,Y,Z,K) =2*Y*Z+LOG(X)-FNR(K)

60 G = FNF(M,N,P,Q)

In this example, the DEF statement on line 50 calls
for another function previously defined by the pro
grammer; namely, FNR on line 40. When line 60 is

executed, the current values of M,N,P, and 0 will be
transferred directly to the defining expression of line
50. The value of G will be set to

2*N*P+LOG(M)-TAN(B)-Qt2/W

Note that when a DEF statement uses one or more
previously defined functions, it is possible that param
eters will be listed which do not appear directly in the
defining expression. For example,

100 DEF FNY(Q) = A+6*EXP(Q)
105 DEF FNZ(A) = FNY(2)tB
110 M = FNZ(5)

The parameter A of the function FNZ does not ap
pear in the defining expression, but it specifies that
when FNY(2) is evaluated as a part of that function,
A will be replaced temporarily by the argument of
FNZ (5 in line 110). Thus A is local to FNZ even
though it is global (assigned the val ue of the program
variable A) in the function FNY.

Using DEF is limited to those cases in which the
value of the function can be computed within a single
statement. Often more complicated functions, or even
pieces of a program, must be calculated at several
points with in the program. In th is case, the user
would more likely use a subroutine (see SUBROU

TINES, Page 31).

SUBSCRIPTING AND ARRAY MANIPULATION

So far, variables have been described as being able
to store one value. There are times however, when the
user will want to store a set of values in a list or table
which he can refer to by a single name. This is done
by using subscripted variables to designate elements
of such Iists or tables, which are called arrays. A vari
able may have any number of subscripts; in other
words, SUPER BASIC allows arrays of any dimension
(each subscript representing a dimension).

Subscripts are typed in parentheses after the vari
able name. For example, A(7) refers to the seventh
item in a list (a one-dimensional array, or vector)
named A, and B(3,7) denotes the element in the third
row and seventh column of a table (a two-dimensional
array, or matrix) named B.

SUBSCRIPTED VARIABLE NAMES

The name of a subscripted variable must be a single
letter or a single letter followed by a $ (dollar sign).
The variable name used for a subscripted variable also
may be used to denote a simple variable in the same
program. For example, A and A(1) are considered to
be separate variables. However, the same name cannot
be given to arrays of different dimensions in the same
program; for example, A(1) and A(3,7) may not be
used simultaneously in a program.

Example

A(6,3)

~
/ L- Second Subscript

First Subscript
Variable named A

27

>

DIM B(-6: 10,-2:4) Starts subscripts at negative val

ues,' the Oth elemen ts are in

cluded.

> PRINT X(1I,X(2)

SUBSCRIPTED VARIABLE HAS NO VALUE

X(1) and X(2) have been
undefined.

The user may redimension an array at any time by

using another DIM statement. Note however, that re

dimensioning (or executing the same DIM statement a

second time) causes any existing elements in an array
to be cleared (that is, be undefined). For example,

The array X is dimen

sioned.

Two elements are defined.

X is redimensioned to in

clude the Oth element.

The above statements are

executed.
> RUN

> 10 DIM X(20)

> 20 X(1) = 3,X(2) = 7

> 30 DIM X(0:20)

10 FOR 1=1 TO 10

20 READ A(I)

30 NEXT I

40 DATA 2,3,-5,7,2.2,4,-9,123,4,-4

THE DIM COMMAND

SUBSCRIPTS

A(5) C(HK) F(5,30) R(B(3,J),C-D) X(A*B,20)

Subscripts may have any value, including negative

and non-integer. If the value of a subscript is non

integer, SUPER BASIC will truncate the value.

SIZE OF ARRAYS

SUPER BASIC automatically supplies space for

subscripts 1 to 10 for arrays of one or two dimen

sions. Therefore, a vector named A contai ning 10 ele

ments cou Id be entered simply with the statements

Subscripts may be variables (including other sub

scripted variables) or expressions of any complexity.

The following subscripts are acceptable:

If an array is to have a subscript greater than 10 or
have more than two dimensions, the size of the array

must be specified by the DIM command which can be
executed directly or indirectly. This command in

structs SUPER BASIC to reserve a specified amount

of space for array elements. For example,

10 DIM A(15)

THE BASE COMMAND

Another method of specifying that subscripts start

with some number other than 1 is by using the BASE
command which can be executed directly or indirect

ly. The form of this command is

BASE n

will reserve 15 locations for elements A(l) to A(15).

The DIM statement does not define any array ele

ments; it simply allows a certain number of values to

be accepted as input to the array.

Any number of arrays can be dimensioned in a

single DIM statement as follows:

60 DIM K(20),L(3,3,1I,M(A*B),N(X,3,3,2)

The user may save storage space by dimensioning

arrays with subscripts less than 10, even though such
dimensioning is not required. Thus, DIM E (3,5) will

reserve space for exactly 15 elements, whereas with

out the DIM statement, 100 (lOX 10) spaces wou Id be

reserved for the array E. NOTE: Whatever the maxi
mum subscript value, arrays of three or more dimen

sions require a DIM statement.

where n can be any numeric expression. BASE applies

only to arrays which have not yet been dimensioned,

and will cause the subscripts of those arrays to begin

from n unless:

• The lower limit of a subscript is specified in a

DIM statement, such as DIM A(-2:5), or

• Another BASE command is given wh ich speci
fies a different base.

Example 1

5 BASE 0

10 DIM A(15I,B(-2:2,10)

will cause the A subscript and the second B subscript
to start at O. Suppose that the following statements

were added to the above:

This statement will reserve space for elements A(O) to
A(15). The user may specify that a subscript start

from any number. For example,

Subscripts start from 1 unless otherwise specified.
One way to specify a different subscript base is with
the following form of the DIM command: 1

10 DIM A(O: 15)

DIM B(5:10) Reserves space for 8(5) to 8(10).

15 BASE 1

20 DIM C(3)

The dimensions of arrays A and B would not be af

fected; the subscript of array C would begin at 1 and

not O.

Example 2

10 BASE -10

20 FOR 1= -10 TO 10

1 - A second method of specifying a base other than 1 uses the BASE command.

28

30 PU) = It3

40 NEXT I

The array P was never dimensioned, so space was
automatically supplied for the array up to a subscript
value of 10. If the subscript value were to exceed 10,
P would need to be dimensioned explicitly in a DIM
statement.

NOTE: A BASE command executed before a RUN
will not be ignored when the RUN command is given.

MATRIX OPERATIONS

Although the user may write h is own routines for
matrix operations, SUPER BASIC contains a set of
commands which make calculations involving matrices
or vectors considerably easier. All of these commands
begin with the word MAT, and many of them are sim
ilar in form to the ordinary SUPER BASIC instruc
tions. NOTE: The MAT commands apply only to ar
rays of one or two dimensions. Any attempt to use
them with multi-dimensional arrays will cause an
error message to be printed.

Input Of Matrix Data

The following input commands do not require that
the specified matrices or vectors be dimensioned be
fore the commands are given. A matrix or vector that
has not been dimensioned previously however, must
be dimensioned in the MAT command itself (see de
tails below). NOTE: This rule applies in all cases, even
if the subscript value will not exceed 10. SUPER
BASIC must know when to stop accepting data for
input.

MAT READ

MATREAD A,B,C

will read values into the previously dimensioned ma
trices (or vectors) A, B, and C from the data block de
fined in the DATA statements of a program. Any
number of matrices can be read with a single MAT
READ instruction.

It is possible to use the MAT READ statement it
self to dimension a matrix or vector which has not
been dimensioned previously (or to redimension one
which already has). In this case, simply type the di
mensions of the arrays just as they would be typed in
a DIM statement. For example,

65 MAT READ K(15),L(-1:1,3),M

will read values into a 15 element vector K, a 3 by 3
matrix L (with the first subscript ranging from -1 to
1), and a previously dimensioned matrix M. I This
statement is exactly equ ivalent to

65 DIM K(15),L(-1:1,3)

70 MAT READ K,L,M

Matrices are read in row order; that is, the second
subscript varies more rapidly. For example,

10 MAT READ A(4,3)

is equivalent to

10 FOR I =1 TO 4

20 FOR J =1 TO 3

30 READ AU,J)

40 NEXT J,I

In both cases, values will be read from the DATA
statements in the following order: A(1,1),A(1,2),
A(1,3),A(2,1),... ,A(4,2),A(4,3).

MAT INPUT

The MAT INPUT command performs the same
function for matrices and vectors as the INPUT com
mand does for variables; SUPER BASIC prints a ques
tion mark and waits for the data to be typed from the
keyboard. Matrix values should be typed in the same
order that they would be read by a MAT READ state
ment; that is, in row order (with the secon d subscript
varying more rapidly).

The form of the MAT INPUT command is similar
to MAT READ in that the matrices or vectors may be
dimensioned either previously or in the MAT state
ment itself.

Also included in SUPER BASIC is a MAT INPUT
FROM command corresponding to the INPUT FROM
command for reading data from a file.

Example 1

MAT INPUT A(2,3)

will cause SUPER BASIC to wait for six values to be
typed, in the order: A(1,1),A(1,2),A(1,3),A(2,1),
A(2,2),A(2,3).

Example 2

10 OPEN /MATDATA/,INPUT,1
20 MAT INPUT FROM 1: A(2,3)

accepts six values from /MATDATA/ as input to the
matrix A.

Example 3

10 DIM F(5),G(4,4)

95 MAT INPUT F,G(4,X),H(7,7)

Vector F and matrix G are dimensioned in line 10.
Statement 95 redimensions matrix G, dimensions a
new matrix H, and requests data for F, G, and H.

1 - It is assumed here, and in the remaining examples in this section, that no BASE command has been given previously, so that
subscripts start from 1 unless otherwise specified.

29

A command of the form

MAT PRINT A,B,C

Output Of Matrix Data

MAT PRINT

MAT C = (n)*A

Scalar Multiplication

In order for this statement to be executable, A and
B must be "conformable"; that is, they must be of
such dimensions that their product is defined. In addi
tion, C must be dimensioned properly to contain the
result. This instruction applies to matrices only. Mul
tiplying vectors is not permitted in SUPER BASIC at
this time. However, vectors effectively can be multi
plied if they are dimensioned as matrices. For ex
ample, the vector A(N) could be dimensioned as
A(N,n.

This statement subtracts the matrix (or vector) B
from the matrix (or vector) A and stores the result in
C. A, B, and C must have the same dimensions.

Matrix Multiplication

MAT C = A-B

A statement of this form adds the matrices (or
vectors) A and B and stores the result in C. A, B, and
C all must be of the same dimensions for th is state
ment to be executed.

Matrix Subtraction

MAT C = A+B

Matrix Addition

This statement performs scalar multiplication; that
is, each element of the matrix (or vector) A is multi
plied by the number (or numeric expression) n (which
must be enclosed in parentheses) and stores the result
in C. C must be the same dimension as A. NOTE: The
instruction MA T C = (1) *A may be typed simply as
MATC= A.

Only one mathematical operation with matrices
may be performed per statement. Thus, MAT X =

R+S+T is not allowed, but can be ach ieved by two

MAT instructions.

Each of the following statements can be executed
directly or indirectly.

6

32

54

1

can be executed directly or indirectly to print the ma
trices (or vectors) A, B, and C. Every element of A, B,
and C must have a value.

Matrices are printed row by row. The elements of
each row are printed in normal (15 space) print zones

unless the matrix name is followed by a semicolon or
a colon in the PRINT statement. A semicolon after a
matrix name will cause the elements of each row to be
printed in packed zones; a colon will cause concate
nated print zones. Each row is separated from the
next by a blank line.

Example 1

> 10 MAT INPUT F(2,3)

> 20 PRINT

> 30 MAT PRINT F;

>RUN

? 1,2,3,4,5,6

Example 2

MAT PRINT R;S,T;

will print Rand T in packed zones and S in normal
zones. NOTE: If the semicolon after T were omitted,
a comma would be understood and T would be
printed in normal zones also.

SUPER BASIC one-dimensional arrays are column
vectors and therefore will be printed vertically. A row
vector (consisting of one row instead of one column)
can be dimensioned as, for example, V(1,Nl, which
would set up a 1 row, N column array and therefore
print the N elements of the array horizontally.

The MAT PRINT ON (or MAT WRITE ON) com
mand corresponds to the PR INT ON (or WR ITE ON)
command for writing data on a file.

Matrix Transposition

Mathematical Operations With Matrices MAT C = TRN(A)

All of the following operations require that the so
lution matrix or vector be dimensioned properly be
fore the operation is performed. For example, the
statement MAT C = A+B will add the matrices A and
B and store the result in matrix C; C must be dimen
sioned properly before th is statement is executed
(even if neither subscript exceeds 10).

This statement transposes the rows and columns of
A and places the result in C; it is equivalent to letting
C(I)) = A(J,I) for all values of I and J. C and A need
not be square; an M by N matrix will be transposed
into an N by M matrix. NOTE: This instruction ap
plies to matrices only. Vector transposition is not
presently permitted in SUPER BASIC. However, vec-

30

tors effectively can be transposed if they are dimen

sioned as matrices. For example, the column vector

A(N,1) will be transposed into the row vector C(1,N).

Matrix Inversion

MAT C = INV(A)

This statement inverts the square matrix A (using

the Gauss-Jordan method with complete matrix pivot

ing) and stores the result in C. SUPER BASIC will
print an error message if the matrix to be inverted is
singular or nearly so (that is, "ill-conditioned", so that

it is difficult to invert accurately). The determinant of

the matrix is inspected internally; an inverse will be

given only if the value of the determinant is large

enough to produce a meaningful inverse.

NOTE: The same matrix may appear on both sides

of a MA T statement for addition, subtraction, scalar
multiplication, or inversion, but not in any of the

other instructions. Thus,

MAT A =A+B

MATA=(2.5)*A

MAT A =A-B

MAT A = INV(A)

are all legal, while use of

MAT A =B*A

MA T A = TRN(A)

will result in nonsense.

Matrix Initialization

Setting All Elements To Zero

MATC=ZER

to dimension (or redimension) a matrix or vector, in

the form

MAT C = CON(M,N) or

MAT C = CON(M)

Setting An Identity Matrix

MATC=IDN

This statement sets the previously dimensioned

square matrix C equal to an identity matrix; that is, a

matrix with ones on the main diagonal and all other

elements equal to zero. I t can be used also to dimen

sion (or redimension) a matrix, in the form

MAT C = IDN(M,M)

Example Of Matrix Operations

This program reads the dimensions and values of

matrices A and B from DATA statements. A, B, and

A*B are printed, then A*B with one element changed.

> LIST
10 READ M,N

20 MAT READ A(M,N),B(N,N)

30 MAT PRINT A:B; !NOTE THE FORMATS

40 DIM C(M,N)

50MATC=A*B

60 MAT PRINT C;

70 C(1,3) = 99 !ONE ELEMENT CHANGED

80 MAT PRINT C

90 DATA 2,3

100 DATA 1,2,3,4,5,6

110 DATA 1,0,1,-2,1,-1,0,2,3

> RUN

123

This instruction sets all elements of the previously
dimensioned matrix (or vector) C to zero. It can be

used also to dimension (or redimension) a matrix or

vector and initialize all elements to zero. Thus, the

statement

456

° 1

MAT C = ZER(M,N)

sets up an M by N matrix C, where C need not be di

mensioned previously, and fills the matrix with· zeroes.

An instruction of the form

MAT C = ZER(M)

-2

°

-3

1 -1

2 3

8 8
performs a similar function for an M element vector.

Setting All Elements To One

MAT C = CON

This instruction is similar in form and function to
MAT C = ZER, except that the matrix (or vector) is

filled with ones instead of zeroes. It can be used also

-6 17 17

-3

-6

8

17

99

17

31

SUBROUTINES

When a part of a program is repeated several times

in different places, it can be programmed more effi

ciently as a subroutine. Subroutine statements are

written only once but can be used many times from

any place in the main program.

GOSUB AND RETURN

The command used to transfer to a subroutine may

be executed directly or indirectly. Its form is GOSUB

followed by the Iine number of the first statement of

the subroutine. The GOSUB command is similar to

GO TO followed by a line number in that it transfers
unconditionally to another part of the program. GO

SUB differs in that it will not go beyond the end of

the subroutine, which must be indicated by a RE
TURN command. If the GOSUB command was exe
cuted indirectly, the return will be to the statement

following the one in which the GOSUB command was
given. If GOSUB was executed directly, SUPER

BASIC will simply stop when it reaches the end of

the subroutine.

The following exampleof a small subroutine shows

two sections of the main program in which the GO

SUB command is used.

10 S = 3

20 GOSUB 400

30 PRINT H,P,X

100 S = 7

110 GOSUB 400

120 Z = 3*H+P/X

400 H = S*SQR (21,P = 2*S+H

410 IF P< = 10 THEN X = 1 ELSE X = 2

420 RETURN

When this program is run, line 20 instructs SUPER
BASIC to transfer to the subroutine beginning at line

400. When the RETU RN command at the end of the

subroutine is reached, a return is made to line 30 (the

line following the GOSUB command). Similarly, when

the subroutine is called later from line 110, the return

will be to line 120.

As an example of the GOSUB command used di

rectly, suppose that the above program has been

loaded into SUPER BASIC. A direct GOSUB can be

used to execute only the subroutine for a particular

value of S as shown below.

>S=4

> GOSUB 400

>
A GO TO or an I F statement within a subroutine

can cause tl ansfer out of the subroutine before the

RETURN command is reached. In addition, a subrou
tine can contain a GOSUB statement which calls
either another subroutine or itself.

Example 1

40 X = SIN(Y+Z)

50 GOSUB 200

60 PRINT X

200 Q = X+R/S

210 IF Q<.5 THEN RETURN

220 PRINT "Q =";Q

230 GOSUB 500

240 RETURN

500 V = Q+R/S

510 PRINT "V =";V

520 RETURN

The subroutine beginning at line 200 contains both
an IF... THEN ... statement and a GOSUB command
which calls another subroutine. As specified in line

210, if Q<.5, a return will be made (to line 60). If
0>=.5, the program will continue with the next state-

32

ments in order until it reaches the GOSUB 500 com
mand. A transfer is then made to the subroutine be
ginning at line 500. Note the effect of the RETURN
commands in this program: Line 520 causes a return
to line 240, which in turn causes a return to line 60
(the statement following the GOSUB 200 command).

Example 2

10 INPUT A

20 IF A<>O THEN GOSUB 1000

30 B = 1/COS(A)

1000 A = 1/SIN(A/3)

1010 IF A>O THEN RETURN

1020 GOSUB 1000

1030 RETURN

Line 20 instructs SUPER BASIC to execute the
subroutine beginning at line 1000 if A is not zero. The
specified subroutine assigns a new value to A (on line
1000), and a return is made to line 30 if A is positive.
If A is not positive, the GOSUB 1000 command in
line 1020 is executed. The subroutine will continue to
call itself in this way until A is positive. Then a return
will be made to line 1030, which in turn causes a re
turn to line 30.

Note that a subroutine which calls itself must con
tain at least one condition on wh ich a transfer out of
the subroutine can be made (such as line 1010 above);
otherwise, an infinite loop will result.

ISOLATING SUBROUTINES

Subroutines must be isolated from the main pro
gram; this is not done automatically by SUPER
BASIC. The sequence of steps in the program should
be designed so that the statements of the subroutine
are executed only after a GOSUB command.

STOP or END

Either of the indirect commands STOP or END
may be used to isolate subroutines. These commands
cause execution of the program to terminate. All sub
routines can be placed at the end of the main program
and separated from the main program by a STOP or
END statement as illustrated below:

10! MAIN PROGRAM BEGINS

100 GOSUB 700

690 STOP! MAIN PROGRAM ENDS

700 ! SUBROUTINE BEGINS

790 RETURN! SUBROUTINE ENDS

NOTE: A STOP or END statement may be used
anywhere in a program to terminate execution. Re
member that no such command is required at the end
of an entire program, since SUPER BASIC stops auto
matically as soon as there are no more statements to
be executed.

COMPUTED GO TO
AND GOSUB STATEMENTS

The computed GO TO and computed GOSUB
statements, wh ich may be executed directly or indi

rectly, cause transfer to one of several different parts
of a program depending on the value of a specified
expression.

ON... GO TO...

The form of the computed GO TO statement is

ON expression GO TO line},line2' ...

where line}, line2,... is a sequence of line numbers to
which the program will transfer depending on the val

ue of the expression. If the value of the expression is
1, the program will transfer to line} ; if the value of
the expression is 2, the program will transfer to line2,
and so on. For example,

ON I*J GO TO 60,70,85

will transfer to lines 60, 70 or 85 depending on
whether the value of the expression 1*J is 1, 2, or 3
respect iveIy .

If the value of the expression is less than one or
greater than the number of line numbers, an error
message will be printed. If the value of the expression
is not an integer, the value will be truncated.

ON... GOSUB...

The form of the computed GOSUB statement is

ON expression GOSUB line},line2,...

If the value of the expression is 1, the program will
transfer to the subroutine starting on line}; if the
value is 2, the transfer will be to the subroutine start
ing on line2, and so on. After the subroutine is exe
cuted, the program returns to the next statement in
order after the computed GOSUB statement.

Example

> 10 FOR A = 1,2,3

> 20 ON A GOSUB 100,200,300

> 30 PRINT "NEXT"

>40NEXTA

> 50 STOP

> 100 PRINT "SUBROUTINE AT 100, A =":A

> 110 RETURN

> 200 PRINT "SUBROUTINE AT 200, A =":A

> 210 RETURN

> 300 PRINT "SUBROUTINE AT 300, A =":A

> 310 RETURN

> RUN
SUBROUTINE AT 100, A = 1

NEXT

SUBROUTINE AT 200, A = 2

NEXT

SUBROUTINE AT 300, A = 3

NEXT

>

33

LOGICAL VARIABLES, EXPRESSIONS, AND OPERATORS

LOGICAL VARIABLES
AND EXPRESSIONS

SUPER BASIC stores the logical value of an ex
pression as either 1 or O. A TRUE expression is set to
1 and a FALSE expression is set to O. For example,

Every variable in SUPER BASIC is considered to
have, in addition to a numeric value, a logical value
which is either TRUE or FALSE. l The logical value
of a variable is defined as TR UE if the numeric value
is not zero, and FALSE if the numeric value is zero. 2

For example,

Numeric Value

A=O
B = 18
C =-7

Logical Value

A is FALSE
B is TRUE
C is TRUE

Expression

A=B

C<Ot2

Thus

PRINT A = B

z = C<Ot2

X=Y=5

Logical Value

1 (for TRUE) if A = B,

o (for FALSE) if A<>B

1 if C<Ot2,
o if C>=Ot2

Prints 1 if A = B,
prints 0 if A<>B.

Sets Z = 1 if C<Dt2,
sets Z = 0 if C> = Dt2.

Sets X = 1 if Y = 5,
sets X = 0 if Y<>5.

Thus, a single variable can be used as the condition
in an IF statement as follows:

10 IF X THEN 200

This statement specifies that if X is TR UE (not zero)
the program will transfer to line 200. If X is FALSE
(zero), the program will continue with the next state
ment in order.

More commonly used in the IF ... THEN... state
ment to specify a condition, is an expression contain
ing one of the relational operators (<, <=, =, >=, >,
<> or #). Note that a relational expression must have
one of the logical values TRUE or FALSE and can,
therefore, be considered as a logical expression. For
example,

30 IF S=OTHEN 70

causes a transfer to line 70 if the expression S = 0 is
TRUE, and no transfer if S = 0 is FALSE.

DECLARING LOGICAL VARIABLES

If a variable is declared to be a logical variable, it
will be set to its logical value (1 for TRU E or 0 for
FALSE) when a numeric value is assigned to it. To
perform such a declaration, type the variable name (or
names, separated by commas) in a LOGICAL state
ment, wh ich can be executed either directly or indi
rectly. For example,

> 10 LOGICAL A,B

> 20 A = 18,B,C = 6

> 30 PRINT "A =":A:" ANO B =":B

> PRINT "BUT C =":C

.\ ,)B=1

BLJT C =0

>

1 - Since they do not have numeric values, string variables (which are discussed under STRINGS, Page 37) do not have logical values.
2 - I f the variable is complex, its logical value is set to the logical value of its real part.

10 LOGICAL X(10),Y(4,N)

LOGICAL OPERATORS

A AND NOT B

X =3 OR X =5

E*5>A-B OR E< =100

A< >2*EXP(5) AND I = J

34

Since A and B were declared logical, their logical
values were printed. Because 18 and 6 are non-zero

(that is, TRUE), the logical value of both A and B was
printed as 1.

The LOG ICA L statement also can be used to de
clare that an array wi II store logical values. As it is de
clared, the array is dimensioned exactly as it would be
in a DIM statement. No previous dimensioning is
necessary. For example,

reserves space for a 10 element logical array X, and a
4 by N logical array Y.

The LOGICAL statement differs from DIM and
other declaration statements in that the elements of

an array declared LOGICAL are initialized to zero. l

Thus, when statement 10 (the previous example) is

executed, the elements of arrays X and Yare set to
zero. This is true even if X and Y already have some

elements defined when the LOGICAL statement is

executed.

In SUPER BASIC there are five logical operators

wh ich operate on logical variables and expressions.

The result of a logical operation is a logical expression

which is either TRUE (1) or FALSE (0).

The results of using logical operators where A and

B are logical variables or expressions are shown in the

following table:

T = True F = False

A T T F F
Operator B T F T F

AND AAND B T F F F

OR AOR B T T T F

EQUIVALENCE A EQV B T F F T

IMPLICA TION AIMPB T F T T

NOT NOTA: If A is True, then

NOT A is False.

If A is False, then

NOT A is True.

Some examples of logical expressions co~~a~n~

logical operators are: l';~' .~

(i
!v

Note that a logical operator works only with the

logical value of what is on either side of it. Thus, X = 3

OR X = 5 may not be typed as X = 3 OR 5. The 5 will
be considered to be true, since it is a non-zero value.
Therefore, whatever the value of X, the expression
X = 3 OR 5 always will be true. The correct form of
the expression wi II operate as follows:

75 IF X = 3 OR X = 5 THEN NEXT X

If the value of X is 3 or 5, the expression is true
and the THEN statement will be executed. If the val

ue of X is neither 3 nor 5, the expression is false and
the program will go on to the next line.

The order of priority among the different types of
operators in SUPER BASIC is as follows, in descend
ing order:

Expressions in parentheses

Evaluation of functions

Exponentiation (t)

Unary minus (-)

MOD

Multiplication and division (* and /)

Addition and subtraction (+ and -)

Relational operators «, <=, =, >,>=, <> or #)

NOT

AND

OR

IMP

EQV

For example, the following logical expressions are
evaluated in the indicated order.

Example 1

A>B AND NOT R OR S
~ ~

1 2

~
3

"------..~------'/

4

1. Relational operator>
2. Logical operator NOT
3. Logical operator AND
4. Logical operator OR

Example 2

A AND C<Dt3 = B
~

1
"'--y--'

~
3

'-/'"
4

1. Exponentiation t
2. First relational operator <
3: Second relational operator =
4. Logical operator AN 0

1 - The INTEGE R declaration statement also initializes array elements to zero.

35

STATEMENT MODIFIERS

IF AND UNLESS

Other examples using the I F modifier are:

The IF modifier followed by a logical expression

causes the command to which the I F clause is ap
pended to be executed if the logical expression is true.

The command is not executed if the logical expression

sion is false. For example,

The number of statements in a program can be re

duced greatly by using statement modifiers. One or

more modifiers may be appended to most direct state

ments and to all indirect statements except DATA.

The statement modifiers are IF, UNLESS, FOR,

WHILE, and UNTIL. For a complete list of those

statements which can be modified, see Appendix A.

The command IN

PUT A (I) is exe

cuted repeatedly

from the initial

value of I to the

final value of I (in

steps of 1, since

there is no STEP

or BY clause).

The command

PRINT X-2isexe

cuted for each val·

ue of X listed.

> INPUT A(I) FOR 1=1 TO 4

? 6,-4,3,2

> PRINT X-2 FOR X = 5,15,-9

3

13

-11

> PRINT X FOR X = 1 TO 6 STEP 2

1 The command

3 PRINT X is exe-

5 cuted repea tedly

> from the initial

value of X to the

final value of X, in

steps of 2.

WHILE AND UNTIL

The value of X will be printed
only if X is positive.

If B is not equal to zero (that

is, true) the program will trans

fer to line 100. If B is zero

(that is, false) no transfer will

be made.

GO TO 100 IF B

PRINT X IF X>O

30 INPUT N IF M<=SOR(7)

55 BASE I IF 1<>1

100 NEXT X IF G2 = 0

R = S IF 0>100

WH I LE followed by a logical expression causes the

command to wh ich the WH ILE clause is appended to

be executed repeatedly as long as the logical expres
sion is true. For example,

PRINT X UNLESS X>O

> X = 2*X WHILE X<YThe UNLESS modifier followed by a logical ex

pression causes the command to which the UNLESS

clause is appended to be executed if the logical ex

pression is false. The command is not executed if the

logical expression is true. For example,

The value of X will be

printed only if X is not

positive.

Other examples using the UNLESS modifier are:

15 GOSUB 100 UNLESS X = 0

130 A = Bt2 UNLESS A = C

200 PR INT ON 2: Z UN LESS I<J

GO TO 55 UNLESS V*W = 1

FOR

FOR causes the command to wh ich it is appended
to execute repeatedly over a range of values. The

FOR clause takes the same form as the FOR state

ment used in defining loops. For example,

X is reset to the value of

2*X repeatedly as long

as X is less than Y. For

example, if X were 1

initially and Y were 17,

X would be reset to 32,
since the last value of X

to be multiplied by 2

would be 16.

WHILE is often used with the FOR modifier (or

the FOR statement) in place of the TO clause as a

means of specifying the final value. For example,

> PRINT At2 FOR A = 1 WHILE A<4

1 The command PRINT

4 At2 is executed repeat-

9 edly from the initial val

ue of A (in steps of 1)

as long as the WHILE

condition (A <4) is true.

36

UNTI L followed by a logical expression causes the

command to which the UNTI L clause is appended to

be executed repeatedly as long as the logical expres

sion is false. For example,

> X = 2*X UNTI L X> = V X is reset to the value of

2 *X repeatedly un til X

is greater than or equal

to Y. This statement is

equivalent to the first

example of WHILE

above.

UNTI L may be used with FOR in a similar manner
as WH I LE. For example,

> PRINT At2 FOR A ~ 1 STEP 2 UNTI L A>5

1 The command PRINT

9 At2 is execu ted repea t-

25 edly from the initial val
ue of A (in steps of 2)
as long as the UNTIL

condition (A >5) is false.

NOTE: The STEP clause

could not have been

typed at the end of this

statement.

An example of using WHI LE or UNTI L in a FOR

statement is

50 FOR X= 1 WHILE X<=V

wh ich is equ iva lent to

50 FOR X = 1 UNTIL X>V

The subsequent FOR loop will be executed from

the initial value of X in steps of 1 as long as X is less

than or equal to V. Note that X always will be com

pared to the current value of V, even if the value of V

should change within the loop; this is not true when

the morecommon form of the FOR statement is used.
For example, when

50 FOR X = 1 TO V

is encountered for the first time, the final value of X
is set permanently to the value of V at that time. Any

changes of V within the loop will not change this final

value.

A modified indirect statement can be included in a
THEN or an ELSE clause as any other indirect state-

ment. For example,

IF Z THEN A(I) = B(I) FOR 1=1 TO 10 ELSE

J = Jt3 WHILE J<N

FOR modifies only the statement A(I) = B(I) in

the TH EN clause; WH ILE modifies only the statement

J = Jt3 in the ELSE clause.

More than one modifier can be used to modify a

single statement. The last mod ifier will be considered

first, the next to the last modifier will be considered

next, and so on.

Example 1

85 GO TO 105 IF A = B UNLESS N = 0

When this statement is executed, the condition

N = 0 is checked first. If N is zero, the command GO

TO 105 will not be executed. If N is not zero, the
condition A = B is considered. If A and B are equal,

the program will transfer to line 105.

Example 2

PRINT V(I) FOR 1=1 TO 10 IF C(I) = P

PRINT V(I) IF C(I) = P FOR 1=1 TO 10

These two statements are not equivalent. The first
statement first checks to see if C(I) = P with I previ

ously defined. I f this is true, the values of V (1) to
V(lO) will be printed. The second statement checks

for each value of I whether C(I) is equal to P. Those

values of V(I) for which C(I) = P will be printed.

Example 3

50 READ A(I,J) FOR 1=1 TO 3 FOR J = 1 TO 5

This statement is equivalent to

50 FOR J = 1 TO 5

60 FOR I = 1 TO 3

70 READ A(I,J)

80 NEXT I,J

First, J is set to 1 and values are read for A(l,l),

A(2,1), and A(3, 1); that is, for the first column of the

array. Then J is set to 2 and so on, until finally, the

last column is read in when J = 5. If the values were
to be read in row order instead of column order, the
statement would be typed as

>50 READ A(I,J) FOR J = 1 TO 5 FOR 1= 1 T03

37

STRINGS

STRING VARIABLES

Instead of assigning a numeric value to a variable,

the SUPER BASIC user may set a variable equal to a

string of characters. String variables make it possible

to accept names, addresses, mixed alphabetic and nu

meric identification, and similar data as input from

files or from the terminal. SUPER BASIC accepts

strings of any length.

A variable that is to be assigned a string value can

be named in the same three ways as numeric vari

ables: a single letter, a letter followed by a single

digit, or a letter followed by $. Variable names for

string arrays and arrays storing both strings and num

bers can be, as for numeric arrays, a single letter or a

letter followed by a $.

Assigning And Printing String Values

A string value, I ike a numeric value, can be assigned

to a variable with either an assignment statement, an

INPUT statement or a READ statement (including

INPUT FROM a file, and matrix input instructions).

Each string is enclosed in single or double quote

marks.! Everything inside the quote marks is accepted

except a Line Feed. A Line Feed indicates that the

data is continued on the next line.

All forms of the PRINT command can be used to

print strings. The effect of the comma, semicolon, and

colon are the same for printing string variables as for

printing any text enclosed in quote marks (explained

under ADDITIONAL PRINTING FEATURES, Page
19)

Example 1: Assignment, INPUT, And PRINT

> 10 A = "STRING"

> 20 INPUT B,C

> RUN

? "1234567", "LA,999"

> PRINT A;B;C

STRING 1234567 LA,999

>
Although the string value of the variable B looks

like a number, SUPER BASIC will not consider it as

such. B will be treated as a group of characters having

no numeric value.

Example 2: READ,PRINT

> 10 READ X,Y,l

> 20 PRINT X

> 30 PRINT Y:l

> 40 DATA "FIRST STRING", "SECOND",

"THIRD"

> RUN

FIRST STRING

SECONDTHIRD

>
Note that the colon in the second PR INT state

ment caused the values of Y and Z to be printed with

no spaces between them.

Declaring String Variables

The user may declare that variables or arrays will

be assigned string values. This declaration is accom

plished by means of a STR ING or TEXT statement,

which may be executed either directly or indirectly.

Although declaring string variables and arrays is not

necessary, doing so will provide more efficient mem

ory utilization and facilitate input of string values (as
will be shown below).

Both arrays and non-subscripted variables can be

declared in a ST RING statement. As th ey are de

clared, the arrays are dimensioned exactly as they

would be in a DIM statement. No previous dimension

ing is necessary. For example,

10 STRING X,Y,A(5)

reserves space for array elements A(1) to A(5) and de

clares that the values assigned to X, Y and the array A

will be strings.

A TEXT statement is used to declare arrays only.

For each array declared in a TEXT statement, the

maximum number of characters of an element is spec

ified for all elements. This maximum number may be

a variable or an expression. For example,

20 TEXT A(12): 10,B(3,5):M*N

reserves space for a 12 element string array A, each

element of which can contain up to 10 characters, and

a 15 element array B with max imum string length

equal to the val ue of M * N.

Since dimensioning arrays declared in the STR IN G

or TEXT statement is the same as dimensioning in a

DIM statement, the following is perm itted:

• Dimensions may be variables or expressions

50 TEXT J(l):15,K(N+1,M+1):10

1 - With exceptions when the variable is declared to be a string variable (explained below).

38

• The su bscript base may be specified

70 STRING C(-1:1),D(0:5,20)

An array can contain both numbers and strings. In

this case the array would be dimensioned in a DIM

and not in a STRING or a TEXT statement since the

latter declare that all data will be string values.

Assigning Declared String Variables

INPUT And READ Statements

When string variables or arrays are declared, data

assigned to them by means of an INPUT or READ

statement need not be surrounded by quote marks.

There are two exceptions; the following strings

always must be surrounded by quote marks, even if

the variable has been declared:

• A string containing a comma, such as "HART,S."

• A string containing leading spaces, such as
" YES".

Example 1

> 10 STRING Q,R,S,T

> 20 READ Q,R,S,T

> 30 PRINT Q: R:S:T

>40 DATA STRING,A23," SPACES ", "MAY

3,1966"

> RUN

STRINGA23 SPACES MAY 3,1966

>

Quotes were typed around the string" SPACES"

so that its leading space would be accepted. Without

the quote marks, the space would have been ignored.

"MA Y 3,1966" was enclosed in quotes so that the

embedded comma wou Id be accepted as part of the

string. Without the quote marks, SUPER BASIC

would have stopped reading the value of T when it

reached the comma; T wou Id thus have been assigned

the value MA Y 3.

NOTE: Only commas and Carriage Returns (and
not spaces) may be used to separate string values that
are not surrounded by quote marks.

Example 2

> 10 TEXT A(3): 15

> 20 INPUT A(I) FOR 1= 1 TO 3

> 30 PRINT

> 40 PRINT A(I) FOR 1=1 TO 3

>RUN

? SMYTHE,ACCT. NO. 63794,"$1,630.75"

SMYTHE

ACCT. NO. 63794

$1,630.75

>
In the above example, array A is declared in a

TE XT statement. The data need not be enc losed in

quote marks. Quote marks were typed around the

string "$1,630.75" to accept the embedded comma.

Since an array used to store both numeric and

string data cannot be declared in a STRING or TEXT

statement, input for string elements in such an array

must be enclosed in quote marks. In the following:

> INPUT S(ll FOR 1=1 TO 5

? 250,"A STRING",3.75:'XXX","13.69"

>
S(1} and S(3) are numeric variables; S(2), S(4), and
S(5) are string variables.

Assignment Statement

Strings in an assignment statement must be sur

rounded by quote marks whether or not the string

variables have been declared. For example,

> 10 STRING A,B

> 20 A = "ONE"

> 30 B = "TWO"

> 40 C = "THREE"

> 50 D = A

> 60 PRINT A;B;C;D

> RUN

ONE TWO THREE ONE

>

THE NULL STRING

While manipulating strings, a null string can be

formed. This is the string "", which contains no

characters.

The VAR = ZERO command, which causes nu

meric variables to be initialized to zero, initializes

string variables to the null string.

STRING CONCATENATION

Strings can be concatenated (joined together to

form a new string) with a + sign, as illustrated below.

> 10 X = "XXX"

> 20 Y = "YYYY"

>30A=X+Y

> 40 B = X+"DEF"+Y

> 50 PRINT A;B

> RUN
XXXYYYY XXXDEFYYYY

>
Strings cannot be concatenated with numeric ex

pressions; an error message will result.

A STRING EXPRESSION
IN THE OPEN STATEMENT

One particularly useful feature of the OPEN state

ment involves string variables or expressions. The

name of the data fi Ie to be opened for input or output

may be typed as a string variable or expression in the

OPEN statement. In this way the file name can be as

signed at the time the program is executed. For ex

ample, if the beginning statements of a program are

10 STRING A

20 PRINT "TYPE THE INPUT FILE NAME"

30 INPUT A

40 OPEN A,INPUT,1

the following will occur:

TYPE THE INPUT FILE NAME

? /XDATA/

and the file /XDATA/ will be opened for input as file

1 according to line 40.

String concatenation could be used to eliminate

the need to type slashes around the file name; that is,

line 40 could be changed to

40 OPEN "/"+A+"/",INPUT,1

Then the file name could be typed simply as XDATA,

and the slashes would be concatenated to this name in

the OPEN statement itself.

STRING FUNCTIONS

To aid the user in manipulating strings, SUPER

BASIC has included a number of standard functions

that operate on strings. These functions are explained

below.

LENGTH(string)

This function returns a number equal to the num

ber of characters in the specified string. For example,

> A = "JONES"

> PRINT LENGTH(A)

5

>

39

VAL(string)

This function takes a string of numeric informa

tion and returns a numeric value. For example,

> J = "1234"

> K =VAL(J)

would set K to the numeric value 1234. The string

used as an argument of this function can contain nu

meric information only. X = VAL ("6E2") sets X to

the valueof 600, but X = VAL ("A123") would cause

an error message to be printed. In addition, spaces

within the argument string are ignored; thus, Y = VA L

("1.0 4") would set Y to the value of 1.04.

STR (numeric expression)

This function takes a numeric value and returns a

string of numeric characters. For example, T = STR

(99.6) sets T equal to a string variable with a string

value of " 99.6". This string contains a leading space

because of the omission of the + sign.

LEFT(string, numeric expression)

This function takes the number of characters spec

ified by the second argument starting from the left

side of the given string to form another string. For

example,

> T = "ABCDE"

> N = LEFT(T,2)

would give N the value of AB.

RIG HT (string, numeric expression)

This function takes the number of characters spec

ified by the second argument starting from the right

side of the given string to form another string. For

example,

> PRINT RIGHT ("ABCDE",3)
CDE

>

SUBSTR(string, numeric expression, numeric

expression) Or SU BSTR (string,

numeric expression)

This function extracts a substring from the string

given as the first argument. The function can have

either two or three arguments. The number given as

the second argument specifies which character of the

string is the first character to be extracted. The num

ber given as the th ird argument specifies how many

characters of the string are to be extracted. If the

third argument is omitted, the substring starts with

the character specified by the second argument and

continues to the end of the string. For example,

30 8 54 L
31 9 55 M

32 56 N

33 57 a
34 < 60 P

35 61 Q

36 > 62 R
37 ? 63 S

40 @ 64 T

41 A 65 U

42 B 66 V

43 C 67 W

44 D 70 X

45 E 71 Y

46 F 72 Z

47 G 73 [

50 H 74 \
51 I 75]

52 J 76 t·

53 K 77 +-

> IF A>B THEN PRINT A:" > ":B

JUNE> JULY

40

10 X = "ABCDE"

20 Y = SUBSTR (X,2,3)

30 Z = SUBSTR (X,3)

will assign BCD to Y and CDE to Z.

IN DEX(string,string)

If the second argument is a substring of the first

argument, th is function returns the character position

of the second argument within the first; otherwise, it

returns O. For example,

10 X = "ABCDE"

20 Y = INDEX(X,"BCD")

30 Z = INDEX(X,"E")

40 W = INDEX(X,"F")

will set Y to 2, Z to 5 and W to O.

SPACE(numeric expression)

This function returns a string consisting of as many

spaces as specified by the argument. For example,

> 10 X = "XX",Y = "YYY"

> 20 A = X+SPACE(3)+Y

>30 PRINT A

>40 M = 2,N = 4

> 50 B = SPACE(M*N)+X

> 60 PRINT B

>RUN

XX YYY

XX

Code Character

Example

> A = "JUNE",B = "JULY"

>

Code Character

>

COMPARING STRINGS

Any of the relational operators (<. <=, =, >=, >,

< >, #) can be used to compare strings. String char

acters are compared according to the following collat

ing sequence wh ich represents each character by a nu

meric code.

Code Character Code Character

0 SPACE 14

1 15

2 16

3 # 17 /
4 $ 20 0

5 % 21 1

6 & 22 2

7 23 3

10 24 4

11 25 5

12 * 26 6

13 + 27 7

The first two characters of the string values of A

and B match, but since the letter N has a greater nu

meric code than the letter L, the string "JUNE" is

greater than "JU Ly".

If the strings are of different lengths, the shorter

string and the same number of characters from the

longer string will be compared. If they match, the

shorter string is taken to be the lesser of the two.

Example

> 10 A = "SUN"

>20 PRINT "VERIFIED" IF A<"SUNDAY"

>RUN

VERIFIED

>

Some other examples of statements using string com

parison are:

15 IF A<>"PAID" THEN NEXT I

70 IF Z> = "SMITH" THEN PRINT TAB(15):Z

130 PRINT "XXX" IF A+B<"MR. JONES"

GO TO 95 UNLESS RIGHT(X,2) = "NG"

NOTE: Strings cannot be compared to numbers.

41

COMPLEX ARITHMETIC

COMPLEX VARIABLES

Complex arithmetic can be performed easily in

SUPE R BAS IC by using complex variables. A variable

that is to be assigned a complex value must first be

declared complex. To do this, type the variable name

(or names, separated by commas) in a COMPLEX

statement which can beexecuted directly or indirectly.

In the following example A and B are declared

complex, assigned values by means of the INPUT com

mand, and printed on the terminal.

> 10 COMPLEX A,B

> 20 'INPUT A,B

> 30 PRINT "A =":A,"B =":B

>RUN

? 5.6,-1.78,-300,15

A = 5.6,-1.78 B = -300,15

>
Two numbers are required as input for each com

plex variable; namely, the real part and the imaginary

part of the variable. When the value of a complex var

iable is printed, the real and imaginary parts are sepa

rated by a comma. The above example set A to 5.6

1.78i and B to --300+15i.

The COMPLEX statement can also be used to de

clare that an array will store complex values. For ex

ample,

10 COMPLEX R(0:20),S(M,N)

reserves space for a 21 element complex array Rand
an M by N complex array S. Each element of a com

plex array consists of two numbers, the real and the

imaginary parts of the complex number.

The form of a complex number in a DATA state

ment is A,B where A and B are the real and imaginary

parts of the complex number respectively. Both parts

of the number must be typed; zero values may not be

omitted from the DATA statement. For example,

> 10 COMPLEX X(3)

>20 READ X(I) FOR 1=1 TO 3

>30 PRINT "X(1) = ":X(1);"X(2) =":X(2);

"X(3) =":X(3)

>40 DATA 5,4,5,0,-4,1.7

> RUN

X(1) = 5,4 X(2) = 5,0 X(3) = -4,1.7

>
When relational operators are used with complex

values, only the reClI parts of the values are compared.

Thus, if X(l) to X(3) have the values that were as

signed in the above example, the following expres

sions are true:

X(1»X(3)} Since 5>-4.
X(2»X(3)

X(1) = X(2) Since 5 = 5.

COMPLEX FUNCTIONS

CMPLX(A,B)

CMPLX(A,B) creates a complex value whose real

part is equal to A and whose imaginary part is equal

to B, where A and B can be any numeric expression.

This function must be used to include a complex num

ber in an assignment statement. For example,

> 10 COMPLEX R,S

> 20 R = CMPLX(1,5)

> 30 N = 4

> 40 S = R+CMPLX(N+1,2)

> 50 PRINT "R =":R,"S =":S

> RUN

R= 1,5 S=6,7

>
If Rand S had not been declared in the above ex

ample, only the real parts of their values would have

been stored; the result would have been R = 1 and

S = 6.

REAL(X)

This function returns the real part of a complex

variable or expression.

> 10 COMPLEX X,V

> 20 X = CMPLX(6,-1.1)

> 30 Y = CMPLX(2.3,5)

> 40 PRINT REAL(X),REAL(X+Y)

>RUN

6 8.3

>

42

IMAG(X)

This function returns the imaginary part of a com

plex variable or expression.

> 10 COMPLEX X,Y

> 20 X = CMPLX(6,-1.1)

> 30 M = IMAG(X)

> 40 PRINT "M=":M

> RUN
M=-1.1

>
In addition to the above functions, the mathemati

cal function ABS(X) can be used with a complex argu

ment to return its magnitude, la + bil = R+b2.

PICTURE FORMATTI NG

The user can specify his own format for output in

addition to using the conventional SUPER BASIC

forms of output. This feature, known as picture for

matting, is useful in presenting calculated results in

the form of tables and reports.

PRINT IN IMAGE STATEMENTS

The user may specify the exact format of his out

put by typing special characters in a string and using a

PRINT IN IMAGE statement, as illustrated in the fol

lowing example.

> 10 INPUT A,B

> 20 S ="E FORMAT =====;:=, INTEGER %"

> 30 PRINT IN IMAGE S:A,B

> RUN

? 200,5.67

E FORMAT .2E+03, INTEGER 6

>
In this example, S is a string variable which speci

fies the picture format to be used. The #signs in the

string caused A to be printed in E format; the % signs

caused the value of B to be rounded and printed as an

integer. All other characters in the string (including

spaces) were printed as specified. The format symbols

iF and %, which are explained below, cannot be

printed as part of the picture format because of their

special significance.

A picture format also may be used to write on a
data file. For example,

PRINT ON 3 IN IMAGE S:X*Y,Z,W or
WRITE ON 3 IN IMAGE S:X*Y,Z,W

will print the values of X*Y,Z and W on file 3 in the

format specified by the string variable S.

The picture format string can include any of the

specifications listed below. The numeric fields will

allow up to eleven significant digits of a number to be

printed, depending on the number of symbols used in

the format string. If the specified format cannot be

used for the number to be printed (for example, if an

insufficient number of places is specified), the mes

sage CANNOT FIT THIS FORM will be printed.

Integer Field

One or more % signs denote an integer field. One %

sign must be typed for each digit of the number to be

printed. Negative numbers require an additional %

sign because of the preceding minus sign. A non

integer value will be rounded if an integer field is

specified for it. For example,

> A = 24, B = 174.78

> PRINT IN IMAGE "%% %%% %%%":A,-A,B
24 -24 175

>
Note the alternate form of the PRINT IN IMAGE

statement illustrated above. Instead of a string variable

whose value specifies the format, the picture format

string itself is typed after IN IMAGE.

Integer fields are right justified; that is, if more %

signs are specified than are necessary, leading spaces

will be printed before the number. For example, the

format "%%%" would cause 24 to be printed with one

space before it, and 4 to be printed with two spaces
before it.

Decimal Field

One or more % signs with an embedded decimal

point denote a decimal field. The number to be

printed will be rounded to the specified number of

decimal places. If the number is an integer or has

fewer decimal places than the format specifies, trailing

zeroes will be printed. Negative numbers require an

additional % sign because of the preceding minus sign.

Example 1

>10 X= 175.65,V= 11

> 20 D = "%%%.%% %%%%.%% %%.%"

>30 PRINT IN IMAGE D:X,-X,V

>RUN

175.65 -175.65 11.0

Example 2

> 10 COMPLEX B

> 20 B = CMPLX (.216,-.43)

> 30 PRINT IN IMAGE ".%%% %.%%":B

>RUN

.216 -.43

Since B is a complex number, two fields are reo

quired for output.

Decimal fields are right justified; that is, if more %

signs before the decimal point are specified than are

necessary, leading spaces will be printed before the

number.

NOTE: Whatever type of numeric field is specified

in SUPER BASIC picture formatting, no more than

eleven significant digits of a number can be printed.

If a number containing more than eleven significant

digits is printed with a field of more than eleven sym

bols, the following will occur:

• Integer places past the eleventh significant digit

will be filled with zeroes. For example, fourteen

%'s will print the number 12345678901234 as

12345678901000.

• Decimal places pas t the eleventh significan t digit
will be replaced by blanks; for example, the

field "%%%%%%%%. %%%%%" lin which eight
%'s precede the decimal point and five follow

it) will print the number 12345678.90123 as

12345678.901 followed by two blanks.

E Format Field

There are two forms for a field of E format:

1. A series of seven or more # signs.

2. One or more # signs, followed by a decimal

point and a series of five or more :# signs.

If the first form is used, the number printed begins

with a decimal point. The second form allows the user

to specify the number of digits before the decimal

point. This is shown as follows:

> 10 C = 500

> 20 PRINT IN IMAGE "=======":C

> 30 PRINT IN IMAGE "==.====;:=":C

> 40 PRINT IN IMAGE H#:i:r.#:f:F:fi:::Fr#":~

43

>RUN

.5E+03

50.E+01

-50.E+01

>
In the first form of the E format field, a minimum

of seven # si gns is needed.

a) The first # is for the leading space or minus sign of

the mantissa (the number to the left of E).

b) The second # is for the decimal point of the

mantissa.

c) The third # is for the minimum of one digit for

the mantissa.

d) The fourth # is for the character E.

e) The fifth # is for the plus or minus sign of the

exponent.

f) The sixth and seventh #'s are for the two digit in

teger exponent.

In the second form of the E format field, the #

signs are used as follows:

a) A minimum of one # before the decimal point is

for the mantissa.

b) Four #'s after the decimal point are for the expo

nential part .

e) The last # is for the leading space or minus sign of

the mantissa.

Notice that in the case of a positive number in E

format, the leading space must be accounted for and

always will be printed, while the integer and decimal

fields allow this space to be suppressed.

Field Of Strings

One or more % signs or :# signs may be used to de

note a string field. The number of symbols specified

in the format determ ines how many characters of the

string will be printed. For example, if A = "STRI NG
H

,

the format H%%%%%%" or H¢i:#:if#:¢i:#" may be used

to print A. In the following example

> 10 T = HCODE XV"

> 20 PRINT IN IMAGE H%%%%%%%":T

> 30 PRINT IN IMAGE H%%%%H:T

>RUN

CODE XV

CODE

the entire string is printed first; then only four char

acters of the string are printed.

A string field is left justified; that is, if more % or

#: signs are specified than the number of characters in

the string, trailing spaces will be printed.

44

> R = "$$$.$$ $$$.$$ $$$$"

> PRINT IN IMAGE R:2.045,.7,300

$2.05 $.70 $300

>

The $ field must consist of four or more $ signs.
For example, "$$$" is not a legal field, nor is "$$.$",
since each of these contains only three $ signs. If

these illegal fields were included in a format string,

the characters would be taken as literal text and not

as field designators. For example,

These formats printed the specified values as the %

formats would have, except that the last of the pre

ceding spaces is replaced by a $. The $ always floats

to the position before the first digit. I f the $ field is

specified so that there are no preceding spaces (that

is, no room for the $), SUPER BASIC prints an error

message. For example, 23.06 cannot be printed with

the format "$$.$$".

Descriptive Text In A Format

Any literal text may be included in the picture for

mat string. Every character is pri nted exactly as it ap
pears in the format, except for %, #, more than three
$ or * symbols,l and decimal points. For example,
the results of a program calculating the perimeter P

and the area A of a triangle may be printed as follows:

110 S = "PERIMETER IS %%.%, AREA IS %%%.%"

120 PRINT IN IMAGE S:P,A

Floating $ Field

This field is used to specify that a $ is to be printed

immediately preceding an integer or decimal value (or
a string). For example,

The * field is useful for check protection; that is,
preceding *'s instead of spaces will prevent anyone

from adding to the beginning of the dollar amount on

a check.

Example 2

Image Repetition

Since the "picture" specified in an IMAGE format

is the image of a line, a Carriage Return is supplied

when the format is exhausted. Thus, if more values
are to be printed than the number of fields specified,

more than one line of the same image will result.

Example 1

> PRINT IN IMAGE "%%": 16.3,19

16

19

>

>

The * field has the same restriction as the $ field.

A minimum of four symbols is necessary. In the fol

lowing example, "u*" is interpreted as literal text

rather than a field specification and is printed as
specified:

> PRINT IN IMAGE "u*##":"NOTE"

***NO

>10W="% % %.%%"

> 20 PRINT IN IMAGE W: I FOR I = 1 TO 8

> RUN

1 2 3.00

4 5 6.00

7 8

>
NO TE: A picture format can also be specified by a

string formed by concatenation, that is,

IMAGE "$%.%%":2.334

i~Fielddesignators

Text to be printed

> PRINT IN

$2.33

>

The * Field
>G ="%%%"

> F ="%%.%"

The * field is used to specify that * symbols are to
appear before the number (or string) in place of the
usual preceding spaces. For example,

> PRINT IN IMAGE F+G: 16.3295

16.3295

>
> s = "**** **.** ***.**"
> PRINT IN IMAGE S:23,8.625,3.2

**23 *8.63 **3.20

>
These formats printed the specified values as the %

formats would have, except that each preceding space

is replaced by a *. If the * field is speci fied so that
there are no preceding spaces (no room for a *)'

SUPER BASIC prints an error message. For example,
19.72 cannot be pri nted with the format"u.u".

PRINT IN FORM STATEMENTS

In addition to the line image type of picture for

mat described above, SUPER BASIC provides a sec
ond type of format that uses IN FORM instead of IN

IMAGE. The form of the output statements is similar,
that is,

PRINT IN FORM S:A,B

PRINT ON 3 IN FORM S:X*Y,Z,W or

WRITE ON 3 IN FORM S:X*Y,Z,W

1 - The meaning of these symbols is explained below.

However, the format is field-oriented rather than line

oriented. The picture format string will not be an

image of the printed line, but will specify fields for

whatever will be printed, whether numbers, strings,

descriptive text, or blanks.

Numeric, String, And Blank Fields

The symbols used to specify numeric and string

fields are identical for IN FORM and IN IMAGE state

ments. One of the major differences between the two

types of fonmat statements is that when IN FORM is

used, blanks typed between fields in the format string

serve to separate the fields but will not be printed.

For example, if M = 12 and N = 56.88, the statement

PRINT IN FORM "%% %%.%%":M,N

will print the values of M and N with no spaces be

tween them. The blank in the above format serves

only to separate the field for M from the field for N.

To print blanks between numbers, use one or more

B's to denote a field of blanks. Thus,

PRINT IN FORM "%% BBB %%.%%":M,N

will print the values of M and N with at least three

spaces between them.

$ And * Fields

These fields used with PRINT IN FORM yield the

same results as when used with PR INT IN IMAGE ex

cept that the sign of negative numbers is not printed.

For example,

Field Prints IN IMAGE IN FORM

$$$$ -16 $-16 $16

***** ** -4.029 ***-4.03 ****4.03

Character And Field Replication

When IN FORM isused,thepictureformatcanbe
written in a "shorthand" notation; that is, replication

of characters and fields is permitted by using a multi
plier. The following chart gives several examples of IN

FORM character replication:

The Format May Be Typed As

"%%%" "3%"

"%%%%.%%%" "4%.3%"

" #######" "7#"

"##.#####" "2#.5#"

"%% BBBB %%.%" "2% 4B 2%.%"

"********** **" "10* .2*"

The user also may specify the number of times a
format field is to be used. The form of this field rep

Iication is

45

N(format field}

where N is the number of times the format field is to
be used.

Example 1

The format

"2(3%.2% B)"

is equivalent to

"%%%.%% B %%%.%% B"

Example 2

> 10 A = 543.66,B = 78.743,C = 345.788

> 20 G = "2(3%.3% 4B) %%%"

>30 PRINT IN FORM G:A,B,C

>RUN

543.660 78.743 346

>
In this example, the field 3%.3% 4B is used twice

(to print A and B); then the field %%% is used to

print C.

Example 3

> PR INT IN FORM "3(3%)": 16,5,-1

16 5 -1

>

This statement specifies three integer fields of

three symbols each, with no blanks between the fields,

and therefore is equivalent to

> PRI NT IN FORM "3% 3% 3%": 16,5,-1

Example 4

The format

"20(4%.2% B 4(3% B)/)"

illustrating two levels of field replication, may be used

to print twenty lines, each with a decimal number and

four integer numbers. A / generates a Carriage Return

(see below). NO TE: Up to four levels of field replica

tion are allowed in a format.

Field For Descriptive Text

When IN FORM is used, any literal text that is to

be printed must be enclosed in single quote marks to
denote a text field.! For example,

>10 D="'X EQUALS' B .6%"

> 20 X = PI/180

>30 PRINT IN FORM D:X

>RUN

X EQUALS .017453

>

1 - I f the format string is enclosed in single rather than double quote marks. the literal text to be printed is enclosed in double
quotes.

46

Carriage Return In A Format

Unlike a format used in an IN IMAGE statement,
no Carriage Return is given when the IN FORM for

mat is exhausted. Thus if fewer fields are specified

than the number of values to be printed, the format
will be repeated on the same line as shown below.

> 10 T ="% 28 %.% 28"

> 20 PRINT IN FORM T:I FOR 1=1 TO 5

> RUN

1 2.0 3 4.0 5

>
A slash (/) can be used in a format to generate a

Carriage Return. Consecutive slashes may be used to

generate blank lines. Note the results when the for

mat above is modified to end with a / instead of 2B:

> 10 T = "% 28 %.%/"

> 20 PRINT IN FORM T:I FOR 1=1 TO 5

> RUN

1 2.0

3 4.0

5

>
When printing a matrix IN FORM, use the / to gen

erate a Carriage Return at the end of each row. For

example,

> MAT INPUT A(3,3)

? 1,3,-6,8,11,9,4,2,1

> MAT PRINT IN FORM "3(%% 28)/":A

1 3-6

8 11 9

421

>
Remember, since an IMAGE format is the image of

a line, a Carriage Return is always generated automat

ically when the format is exhausted.

The Single #

A single # may be used with PRINT IN FORM to

specify what is known as "free field" format. Any

number or string may be printed with this field. Up to

eleven significant digits of a number will be printed.

If the free field format is used to print a string, the

entire string will be printed. For example,

> 10 A = "STRING"

> 20 8 = 68.9

> 30 C = 666

>40 PRINT IN FORM "#":A,8,C,PI

> RUN

STRING 68.9 666. 3.1415926535

> PRINT IN FORM "#": 123456789012345

.12345678901 E+15

>

ADVANCED EDITI NG FEATU RES

The editing commands and characters described be
ginning on Page 14 are only a small part of the exten
sive editing features available in SUPER BASIC. In

stead of retyping an entire line that needs changing,
the user may let certain control characters do the

editing for him. These control characters, which are

the same as those available in the Tymshare EDITOR

language, are summarized in the table on the adjacent

page.

The first set of characters Iisted can be used at any
time - while typing direct and indirect statements,

file names, and even data input from the keyboard.
The second set of characters is used to edit lines al
ready typed, even if a syntax error was made in the

line. The EDIT and MODI FY commands allow editing

of any existing line in a program. Further explanation

and examples of these editing features are given

below.

EDITING THE LINE BEING TYPED

In the following example, Control Q (QC) is used

to delete the line being typed. While retyping the line,

two incorrect characters are deleted with AC's.

> 40 FOR I = 1 TO QCt

40 PRINT It3 FOR 1=1 TO 25Ac<-Ac<-50;;

> LIST 40;J

40 PRINT It3 FOR 1=1 TO 50

>

EDITING CONTROL CHARACTERS

Control Symbol

Character Printed Function

Used at any time

For Deleting

AC or <--- <--- Deletes the preceding charac-

ter typed.

WC \ Deletes the precedi ng word

typed.

QC t Deletes the entire line being

typed.

Other

IC Types spaces up to the next

tab stop.

VC and a Indicates that the control

character character that follows is to be

accepted as any other charac·

ter (it will not perform its

editing function).

Used only during EDIT, MODIFY and edit of pre-
vious line

For Deleting

SC % Deletes the next character in

the line being edited (the "old

line").

KC Deletes the next character in

the old line; prints the charac-

ter it deletes.

pc and a % Deletes up to but not includ-

character ing the character typed after

it.

XC and a % Deletes up to and including

character the character typed after it.

Carriage Deletes the rest of the old line

Return and ends the ed it.

For Copying

CC Copies the next character in

the old line.

Oc and a Copies up to but not includ·

character ing the character typed after

it.

zC and a Copies up to and including the

character character typed after it.

DC Copies and prints the rest of

the old line and ends the edit.

47

EDITING CONTROL CHARACTERS (Continued)

Control Symbol

Character Printed Function

FC Copies but does not print the

rest of the old line and ends

the edit.

HC Copies and prints the rest of

the old line and continues the

edit at the end of the line.

Yc Copies but does not print the

rest of the old line and can·

tinues the edit at the begin-

ning of the new line (same as

FC followed by MODI FY of

the line as edited).

RC Copies and prints the rest of

the old line plus the new line;

continues the edit from where

RC was typed.

TC Same as RC except that it a-

ligns the rest of the old line

and the new line.

UC Copies from the old line up to

the next tab stop in the new

line.

For Inserting

EC text EC < Inserts text into the old line;

> fi rst EC pri nts <. second EC

pri nts >.

Other

NC Backspaces in the old and in

the new line.

The TASS Command

The tab stops which determine how many spaces

IC will type are initialized at 7,15, and at every fifth

position from 15 on. The direct command TABS

allows the user to set any other tabs that he wishes.

For example,

> TABS 10,20,30 ~

sets the tab stops at the specified positions. A Control

I subsequently typed at the beginning of a line will

space to position 10. NO TE: A maximum of ten tabs
may be set with the TABS command.

File Name Editing

File names typed during the LOAD or SAVE com

mand can be edited also. For example,

> SAVE /XYAc<---Z/ ~

will save the program on a file named /XZ/.

48

To include a control character in a file name, pre

cede the character by VC so that no editing will occur.

For example,

> LOAD /PVcWcR/ ~

r.:L;~t be typed to load from a file named /PWcR/.

Data Input Editing

The control characters AC, WC, and QC have special

properties when used to edit data typed in response to

the INPUT command.

Control A will delete the preceding character un-

less that character is:

1) A comma (or space) used to separate data items.

Once such a character is typed, the preceding value

is stored in a variable and is not available for edit.

2) Either of the quote marks used to enclose a

string data item. Once the first quote mark is

typed, the user cannot delete it and type in a num

ber.instead of a string. As soon as the second quote

mark is typed, the string is stored in a variable and

is not available for edit.

For example,

> 10 INPUT A,B,C ~

> 20 PRINT A;B;C ~

>RUN ~

? 123,56Ac<---5, "ERAc<---Ac<---STRING" ;J

123 55 STRING

>
Once the comma was typed after 123, no editing

could be done to that value. The first AC deleted 6.

The second and third AC's deleted ER; any more AC's

typed there would not have been able to delete the

leading quote mark.

Control W, which deletes the preceding data item,

also has no effect on the characters which AC cannot

delete. For example,

> INPUT X,Y,Z ~

? "SMYTWC\SMITH",64,92WC\93.8 ~

> PRINT X:Y:Z ~

SMITH 64 93.8

>

therefore cannot be restarted, QC applies only when

the INPUT command was executed indirectly. For

example,

> 10 INPUT A(I) FOR 1=1 TO 8 ~

>RUN;:J

? 11.17,33.9,46.1,39,21.8,5.62 ~

13.7Qct

? 11.7,85,33.9,46.1,39,21.86;J

13.7,10.8 ~

>
Note that the values for A(1) to A(6) were actual

Iy stored before the QC was typed, then the user typed

in new input values. Thus, if the INPUT command

were in a statement such as

> 55 I F A = 0 THEN INPUT A,B ELSE PRINT

"NO"

the following might occur:

? 5,7.5QCt
NO

(execution continues from the statement after 55)

Statement 55 was restarted, but since A was actu

ally assigned the value of 5 before QC was typed, A

was no longer equal to zero and INPUT A,B was not

executed.

EDITING A LINE ALREADY TYPED

EDIT And MODI FY

The direct commands EDIT and MODI FY allow

the user to edit any statement in h is program by usi ng

an extensive set of control characters. EDIT followed

by a line number causes SUPER BASIC to print the

specified line and wait for the user to edit. MODI FY

(or MOD) is the same as EDIT except that the speci

fied line is not printed.

Example 1

> EDIT 20~

20 A = SQR (PI *Mt2) This is line 20.

ZC*20 A = SQR (PI *N Dct2)

Zc * copies up to and in
cluding the *. The user
typed N to replace the in
correct M, and DC to copy
the rest of the line.

Example 2

> 10 INPUT A(I) FOR 1=1 TO 10 ;J

> 20 GOSUB 100 ;:J

>MODIFY 10 {) Line 10 does no t print.

The first WC deleted SMYT but not the leading

quote mark. The second WC deleted 92; another con

trol WC typed there would have done nothing, since

64 was already stored in the variable Y.

Control Q restarts the entire statement containing
the INPUT command, causing SUPER BASIC to print

another? Since direct statements are not saved and

> LIST 20 ~

20 A = SQR(PI*Nt2) This is the new line 20.

Control characters will

have no effect here.

3 replaces 1 so that the
edited line will be line 30.
OCA copies up to but not
including A. The user types
B to replace the A, and FC
which copies but does not
print the rest of the line.

VOLUME IS

VARIABLE HAS NO VALUE

>

49

The variable X was
not defined (a pro
gram error).

> LIST ~
10 INPUT A(I) FOR 1=1 TO 10

20 GOSUB 100

30 INPUT B(I) FOR I = 1 TO 10

>

Editing The Previous Line

After the user types any indirect statement, that

statement is immediately available for edit as though

the EDIT or MODIFY command had been given. For

example,

>451F Y=20 THEN NEXT I ~

> ZC245 IF Y = 25Dc THEN NEXT I

ZC and DC are used to edit
the line just typed. The 20
is changed to 25.

> LIST 45 ~

451F Y=25 THEN NEXT I

>
This can be done even if a syntax error is made in

the statement just typed.

Direct statements can be edited after they are

typed only if a syntax error is made. Once the state

ment begins to execute, it is no longer available for

edit. For example,

> PRINT "AREA IS:A <:l
MISSING" This is a syntax error.
> ZCSPRINT "AREA ISEc<"Ec>Dc:A

The statement is edited.
DC copies the rest of the
line and causes the state
men t to be executed.

AREA IS 35

> PRINT "VOLUME IS":X ~

This statement contained
no syn tax errors, so su
PER BASIC began to exe
cute it.

THE RENUMBER COMMAND

Renumbering To The End
Of The Program

All or some of the statements in a program may be

renumbered with a direct command which takes the

form:

RENUMBER Nl,N2,N3 or

REN N 1,N2,N3

where N1 will be the first new line number, N2 is the

number of the line in the program where renumbering

will begin, and N3 is the increment to be used in as

signing the new line numbers.

Example

> 1 !THIS IS A TEST PROGRAM

> 10 INPUT P,I,N

> 11 M = P*(I+1)tN

> 15 PRINT M

> 20 GO TO 10

> RENUMBER 20,10,2

> LIST

1 !THIS IS A TEST PROGRAM

20 INPUT P,I,N

22 M = P*(I+l)tN

24 PRINT M

26 GO TO 20

>
In this example, the program is renumbered from

line 10 to the end of the program, in steps of 2, with

20 as the first new line number. Line 1 remains un

changed. Notice that the line number referred to in

the GO TO statement also has been changed correctly.

NOTE: If this program had been run before the
renumbering, the variable values would have been lost
as a result of the RENUMBER command.

Certain words may be included in the RENUMBER
command to help the user remember the order and
meaning of the three arguments. For example,

RENUMBER 20,10,2

can be typed as

RENUMBER AS 20 FROM 10 BY 2 or

RENUMBER AS 20 FROM 10 INC 2

50

Any of these prompting words may be used or not
as desired. AS is optional, and either FROM, BY, or
INC may be replaced by a comma.

Renumbering A Range Of Lines

A range of lines may be specified for renumbering.
For example,

RENUMBER 200,90-205,10

will renumber lines 90 to 205 as 200, 210, 220 and so
on.

An additional prompting word may be included in
this form of the RENUMBER command; namely, the
dash used in indicating the line range may be replaced
by the word TO.

When the RENUMBER command is given, SUPER
BASIC first checks to see that after the requested re
numbering is done, the renumbered line range will still
have line numbers that are different from the rest of
the program. If this is not the case, an error message
will be printed, since it is impossible for two program
lines to begin with the same number.

Omitting Parts Of
The RENUMBER Command

One or more parts of the RENUMBER command
may be omitted, with the following results:

.Omitted Result

Nl First new line number
is assu med to be 100.

N2 Program is renumbered
from the beginning (the
lowest numbered state-
ment).

N3 Increment is assumed to
be 10.

Examples

EXAMPLES (Continued)

RENUMBER,,5 First two parts are omit-
or RENUMBER BY 5 ted. RENUMBER 100,

0, 5 is assumed.

RENUMBER 10 Last two parts are omit-
or RENUMBER AS 10 ted. RENUMBER 10,0,

10 is assumed.

RENUMBER 10,,5 Second part is om itted.
or RENUMBER AS 10 RENUMBER 10,0,5 is

BY 5 assumed.

RENUMBER 150, Third part is omitted.
115-210 RENUMBER 105,115-

or RENUMBER AS 150 210, 10 is assumed.
FROM 115T0210

RENUMBER With ADD

There is another form of the REN UM BE R com
mand in which the numbers of the specified lines are
increased by a certain amount. For example,

RENUMBER 150 ADD 10 or

RENUMBER FROM 150 ADD 10

will renumber from line 150 to the end of the pro
gram by adding 10 to every line number.

A range of lines may be specified, such as

RENUMBER 210-340 ADD 20 or

RENUMBER FROM 210 TO 340 ADD 20

which will add 20 to the line numbers 210-340
inclusive.

RENUMBER All three parts are omit
ted. RENUMBER 100,
0, lOis assumed. (The 0
will cause renumbering
to begin from the low
est numbered state
ment.)

A negative number may be typed after ADD to de
crease the specified lines by a certain amount. For ex
ample,

RENUMBER 500-545 ADD -100

will subtract 100 from the line numbers 500-545
inclusive.

51

PROGRAM CONTROL

CONTROL OF RUNNING PROGRAMS

SUPER BASIC gives the user complete control of
his running program. An indirect PAUSE or STOP
statement causes program execution to be interrupted,

as does pressing the ALT MODE/ESC key. The user
then can enter direct statements which will, for ex
ample, assign or change variable val ues, print out val
ues, or Iist parts of the program. He then may resume
execution at the point of interruption or anywhere

else in his program.

Command

PROGRAM CONTROLS

Effect To Continue

100 PAUSE

ALT MODE/ESC

ALT MODE/ESC
(Twice)

1 - Except the command file.

Interru pts the program at

statemen t 100. The message
PAUSE IN STEP 100 is
printed. Direct statements can
be entered.

Finishes execution of the
statement that was being exe
cuted when ALT MODE was
pressed and prints the mes
sage INTERRUPTED BE
FORE STEP ,the step being
the next statement. (Note ex
ception below.)

To interrupt execution of an
INPUT statement or a state
ment with an infinite loop
(such as PRINT A WHI LE
A>l), press ALT MODE
twice. The message INTE R
RUPTED IN STEP is printed.

a) Type GO to continue exe

cution at the point of inter
ruption. All information in
the program before interrup
tion is retained.

NOTE: After interruption, if
the user types an indirect
statement or deletes a state
ment, GO will not continue
execution. Any information
about FOR loops or GOSUB
commands is lost.

b) Type GO TO line number
to continue execution from
anywhere in the program. All
information in the program is
retained.

c) Type RUN to reinitialize
execution from the beginning
of the program. No informa
tion is retained; that is, all val
ues are reinitialized and all
files are closed. l

Same as PAUSE.

Same as PAUSE except that
GO will not resume execution
reliably.

52

PROGRAM CONTROLS (Continued)

Command

Normal end of
program

35 STOP or
35 END

Program execu
tion error

>OUIT or>O
or 100 OUIT

Effect

Terminates program execu·
tion.

Terminates program execu
tion at statement 35.

Terminates program execu
tion and prints the message
ERROR IN STEP : followed

by an error diagnostic.

Returns to the EXECUTIVE.
Closes all fil es. 1

To Continue

a) Type GO TO line number
to continue execution any
where in the program except
inside a FOR loop or a sub
routine. All information in the
program is retained.

b) Type RUN to reinitialize
execution from the beginning
of the program. No informa
tion is retained; that is, all val
ues are reinitialized and all
files are closed.

a) Type -CONTINUE (or
-CON) to return to SUPER
BASIC and continue.

b) Type -SBASIC to reinitial
ize SUPER BASIC.

NOTE: Although RUN normally retains no information, a VAR==ZERO, VAR=UNDEF,
or BASE command will be retained when the RUN command is given.

1 - Except the command fi Ie.

53

SECTION 3

SUMMARY OF SUPER BASIC

All commands can be executed both directly and indirectly unless otherwise specified.

VARIABLES AN D ARRAYS

VARIABLE NAMES

single letter
single letter followed by single digit
single letter followed by $

SUBSCRIPTED VARIABLE (ARRAY)
NAMES

DIM AND DECLARATION STATEMENTS

01 M reserves space for array elements wh ich may be
integer, real, or string. Defines no elements. Arrays
with a subscript greater than 10 or with more than
two dimensions (subscripts) require DIM.

single letter
single letter followed by $

VARIABLE INITIALIZATION

Variables ordinarily are not initialized.
VAR = ZE RO initial izes variables to O.
VAR = UNDEF nullifies VAR = ZERO.

VALUE TYPES

Type

Real Number
Integer; e.g., 15,7
Decimal; e.g., 13.6,-.03
E Notation; e.g.,6E2
(E2 means times 102

)

Logical Value
All variables with a nu
meric val ue have a logi
cal val ue as well.
TR UE if the numeric
value =1= O.
FALSE if the numeric
value = O.

May Be Declared As

REAL
INTEGER

LOGICAL
If declared, value
retu rned is:

1 for TRUE
o for FALSE

DIM A(20),B(6) Subscript base 1 is implied.

DIM A(O:20),B(-6:6) Base other than 1 is specified.

BASE n specifies subscript base n; for example,

BASE 0

DIM C(2,4)

reserves space for a 3x5 matrix C.

Declaration statements declare simple variables and
arrays. Arrays may be dimensioned in the declara
tion statement using the same form as DIM; for

example,

INTEGER A(20),B(-6:6)

ASSIGNMENT STATEMENT

assigns values to variables. LET is optional.

Complex Number
Declaration is required.
NOTE: The logical value
of a complex variable is
se t to the logical value
of its real part.

String Value
Any combination of
characters.

COMPLEX

STRING
TEXT (arrays only)

Examples

Real: LET A = 6

X,Y,Z =0

B(1,5) =3,K =C*Nt2

Complex: A =CMPLX(6,X)

String: X = "DOUBLE"

Y = 'SINGLE'

A must be declared.

54

OPERATORS

Type Operators Operate On

Arithmetic t exponentiation Numeric variables
- unary minus and expressions.
MOD modulo

*,/ multiplication, division
+,- addition, subtraction

Relational < less than String or numeric
<= less than or equal to variables and expres-
= equal to sions.
>= greater than or equal to

> greater than

<>or# not equal to

Logical NOT Relational expres-
AND sions and logical val-
OR ues of numeric vari-
IMP implication abies and expres-
EQV equ ivalence sions.

String + concatenation String variables and
expressions.

55

FUNCTIONS

STANDARD FUNCTIONS

Function Brief Description

Mathematical Functions

ABS(X) Absolute value of X.

ATN(X) or ATAN(X) Arctangent (in radians,

over the range -n/2 to

+n/2) of X.

ATN(Y,X) or Arctangent (in radians,
ATAN(Y,X) over the range -n to +n)

of Y/X.

COS(X) Cosine of X (X in radi-
ans).

EXP(X) Natural exponential of
X, eX.

INT(X) or IP(X) Greatest integer less

than or equal to X.

FIX(X) X truncated: equal to
SGN (X)* INT(ABS(X)).

FP(X) Fractional part of X:
equal to X-IP(X).

LOG(X) Natural logarithm of X.

LGT(X) or LOG10(X) Logarithm of X (base
10).

PI Mathematical constant
n.

RND(X) Random number gener-

ator. NOTE: RND(O)

may be typed as RND.

SGN(X) Sign function (1 for
positive X, 0 for X = 0

and -1 for negative X).

SIN(X) Sine of X (X in radians).

SQR(X) or SQRT(X) Squ are root of X.

TAN(X) Tangent of X (X in
radians).

Print Functions

POS Position of print head
(terminal output).

POS(N) Position of print head
(output on file N).

NOTE: For binary files,
POS(N) is word posi-
tion.

TAB(X) Tab to print position X
on terminal (used with
PRINT).

STANDARD FUNCTIONS

Function I Brief Description
Print Functions (Continued)

TAB(X,N) I Tab to position X on
file N.

String Functions

S denotes string argument; N denotes numeric
argument.

INDEX(SI,S2) Position of S2 with in SI;
e.g., INDEX (/lABC",

"B") = 2.

LEFT(S,N) Substring of S; N char-

acters, starting from left.

LENGTH(S) Length of string S.

RIGHT(S,N) Substring of S; N char-

acters, starti ng from the

right.

SPACE(N) String of N spaces.

STR(N)· String of the characters

comprising N; e.g.,
STR(3) =

II 3".

SU BSTR (S,N d Substring of S, from

N 1th character to end of

S.

SUBSTR(S,N 1,N 2) Substring of S; N2 char-

acters, starting from

N Ith character.

VAL(S) Numeric value of S,
where S must be a nu-
meric string; e.g.,

VA L("-6") = -6.

Complex Functions

CMPLX(X,Y) Complex number with

real part X and imagi-

nary part Y.

IMAG(C) Imaginary part of the

complex argument C.

REAL(C) Real part of the com-

plex argument C.

PROGRAMMER DEFINED FUNCTIONS

DE F (indirect only) defines a function with name FN
followed by a single letter; for example,

80 DEF FNS(X,Y) = 2*SIN(X)-FNA(2)

100 DEF FNK = 2.165*Rt2

56

INPUT/OUTPUT STATEMENTS

FUNDAMENTAL INPUT/OUTPUT STATEMENTS

Example

Method Of Input
Or Output

INPUT prints? , ac
cepts input typed in
reply.

Real

INPUT A,B
? 4.5,6

Complex

Must be declared

INPUT A
? 11,-4.1

Undeclared

INPUT A
? "STR ING"

or
'STRING'

Strings

Declared

INPUT A
? STRING
(but quotes must en
close strings with
commas or leading
spaces).

READ reads data
from DATA state
ments. (DATA is in
direct only.)

RESTORE allows re
reading from begin
ning of DATA state
ments.

10 READ A,B 10 READ A
50DATA4.5,6 50 DATA 11,-4.1

10 READ A 10 READ A
50 DATA "STRING" 50 DATA STRING

or (but quotes must en-
50 DATA 'STRING' close strings with

commas or leading
spaces) .

PRINT prints num
bers, text, values of
variables and expres
sions.
PRINT zones:
, normal (15 spaces)
; packed
: concatenated

A=6
PRINT A;A/2

6 3

A =CMPLX(2,3)
PRINT "A=":A
A = 2, 3

x = " XX",Y = 'yy'

PRINT X,Y
XX YY

DATA FILE INPUT/OUTPUT STATEMENTS

Statement Model Remarks

57

[
SYMBOLIC] [INPUT]

OPEN/file name/FOR or or AS FILE n
BINARY OUTPUT

Short form:

OPEN /file name/, [SYM:~L1C] [IN~~T] , n
BINARY OUTPUT

INPUT FROM n: variable list

[
PRolrNT]

ON n: list of variables or expressions
WRITE

CLOSE n

1 - Including liTE LETYPE" (or liTE Lit) to denote the terminal.

Examples

30 OPEN /DATA/,INPUT, 1

65 INPUT FROM 1:X,Y,Z

85 WRITE ON M*N: R,S,Tt2

210 CLOSE 3,8-2

Three files may be open
concurrently.l File

number n may be any
positive numeric expres
sion. File name may be
a string variable. Output
data fi Ie need not exist
previously.

n is file number of data
input file.

n is file num ber of data
output file; usual
PRINT functions and
zones apply.

Closes data file n (auto
matic after RUN, DEL
ALL and return to
EXEC) Also: CLOSE

58

PICTURE FORMATTED OUTPUT

PRINT IN IMAGE string: fist of values,
PRINT IN FORM string: variables or expressions

Format string contains field specification symbols:

Field Specification Effect

Type Of Field IN IMAGE or IN FORM IN FORM Prints As!

INTEGER "%%%" "3%" 432 432

DECIMAL "%%%.%" "3%.%" -16.39 -16.4

E NOTATION "#######" "7#"
400 .4E+03

"#.#:####" "#.5#" 4.E+02

STRING "%%%%%%" "6%"
STRING STRING

"###" "3#" STR

FLOATING $ "$$$.$$" "3$.2$"
9.4

$9.40
and "*** **" "3*.2*" **9.40

* FIELDS

DESCRIPTIVE IN IMAGE: Characters other than
TEXT and above symbols will be printed as spec-
SPACES ified (including spaces); e.g., "x IS

%%"

IN FORM: Spaces are used to sepa- 12 X IS 12
rate field specifications. Text to be
printed is enclosed in single quotes.
Spaces are denoted by B's; e.g., " 'X
IS' B %%"

CARRIAGE IN IMAGE: Supplied at end of image; 1
RETURN e.g., "%" 1,2,3 2

IN FORM: Denoted by I; e.g., "%1" ~

Remarks

For positive numbers,
leading space can be
suppressed.

For positive numbers,
leading space cannot be
suppressed.

Strings are left justified.

IN IMAGE: less than 4
$'s or *'s will not be in
terpreted as a field spec
ification.

Note IMAGE exception
above. (Less than 4 $'s
or *'s will be printed as
specified.)

IN FORM descriptive
text will be enclosed in
double quotes if format
string is in single quotes.

1 - Consider the left edge of th is column as print position 1.

IN FORM:

Field replication (FORM "3(2% B)" is equivalent to "%% B %% B %% B")

Free field format (a single #, prints any string or number, up to 11 significant digits).

Example of picture formatted output to a data file

PRINT ON 3 IN IMAGE S:A,B,C

MAT STATEMENTS

Name Example Remarks

Input

MAT READ MAT READ A,B,C, Matrices are read in row
MAT READ K(15),L(-1:1,3) order (i .e., second subscript

varies more rapidly).
MAT INPUT MAT INPUT A,B,C

MAT INPUT R(2,3),S(O:M)
MAT INPUT FROM 1:A(N+1)

Output

MAT PRINT MAT PRINT A,B;C May be pictu re formatted.
MAT PRINT ON 2: R;S; Matrices are printed in row
MAT WRITE ON 2:R;S; order.

Mathematical Operations

Addition MAT C=A+B

Subtraction MAT C=A-B

Multiplication MATC=A*B Matrices only. MAT A =

A*B is illegal.

Scalar MAT C = (X-5)*A
Multiplication MATC=A

Transpose MATC=TRN(A) Matrices only. MAT A =
TRN(A) is illegal.

Inverse MAT C = INV(A) Square matrices on Iy. Uses
Gauss-Jordan method.

Matrix Initialization

ZER MATC=ZER Sets all elements to zero.
MAT C=ZER(M)
MAT C = ZER(15,N)

CON MATC=CON Sets all elements to one.
MATC=CON(M)
MAT C =CON(15,N)

IDN MAT C=IDN Square matrices only. Sets
MAT C = IDN(M,M) identity matrix.

59

60

CONTROL STATEMENTS

FOR and NEXT described in separate table.

Statement Model Remarks

END Not needed at end of program.

GO Direct only.

GO TO line number When used directly, retains all
previous information. 1

GOSUB line number Be sure to isolate subroutine
from main program.

IF logical expression THEN statement The statement after the TH EN
or ELSE clause can be any in-

I F logical expression THEN statement direct statement except
ELSE statement DATA, REM, or L

ON numeric expression GO TO line}, Value of numeric expression

line2,' .. will be truncated if not an
integer.

ON numeric expression GOSUB linet,
line2,...

PAUSE Indirect only.

QUIT (or Q;> when used directly) Also can be used indirectly.

RETURN

RUN Direct only.

STOP Equivalent to END.

1 - Except that it would reinitialize the reading of any DATA statements.

FOR and NEXT

These commands are indirect only.

Example of FOR Remarks

30FORX=lT010 Implied step of 1.

30 FOR X = 1 TO 10 STEP 2 Step specified as 2.

30 FOR X = 10 TO 1 STEP -2 Negative step specified.

30 FOR X= 10TO 1 BY-2 Alternate forms of above ex-
30 FOR X = 10 STEP -2 TO 1 ample.
30 FOR X = 10 BY -2 TO 1

30 FOR X =1,2,7,8 Values listed.

30 FOR X =1,2,6 TO 18 STEP 3,50 Values and range listed.

30 FOR X = N*O TO 0/3 STEP N Variables used in defining
range.

30 FOR X= 1 WHILE X<=Y WHI LE and UNTI L used to
30 FOR X = 1 UNTI L X>Y specify final value. Change in
30 FOR A = 10 STEP 2 WHI LE A<Y Y within loop will alter final

value.

30 FOR X = 1 TO Y Change in Y within loop will
not alter final value.

FOR statement is accompanied by NEXT.

80 NEXT X (
. 80 NEXT I

80 NEXT I,J EquIvalent to
81NEXTJ

61

62

STATEMENT MODIFIERS

Most direct statements and all indirect statements except DATA can be modified.

Modifier Example Effect Of Modifier

IF INPUT N IF M =SOR(7) INPUT N executed only if M

equals SOR(7).

UNLESS INPUT N UNLESS M =SQR(7) INPUT N executed only if M

does not equal SOR(7).

FOR PRINT Xt2 FOR X = 1 TO 10 Equ iva lent to:
10 FOR X=1 TO 10
20 PRINT Xt2

30 NEXT X
FOR modifier takes the same
forms as the FOR statement.

WHILE X=2*X WHILE X<Y X = 2* X executed repeatedly

as long as X is less than Y.

UNTIL X =2*X UNTI L X<Y X = 2* X executed repeatedly

as long as X is greater than or

equal to Y.

WH I LE and UNTI L also may be used with FOR to specify the final value.

LOADING AND SAVING THE PROGRAM

These commands are direct only.

Command Example Purpose

LOAD >LOAD /A/ To load program statements
>LOAD (A3JIM)/@PAUL/ saved on a file.
>LOAD "SIMEON"

SAVE >SAVE /FILE/ To save all or part of a
>SAVE /XY/,1-15,30,70-100 program.

TAPE >TAPE To load program statements
If DC was not punched at end from paper tape.
of tape, type DC after tape is
read.

EDITING AND UTILITY COMMANDS

All of these commands are direct only except REM and!.

63

Command

DELETE or

DEL

EDIT

LIST

MODI FY or

MOD

REM and!

RENUMBER
or REN

TABS

Example

>DELETE 10
>DEL 8-10,70
>DELETE ALL

>EDIT 25

>LIST 25
>LIST 10,65-90
>LIST

>MOD10

>10 REM PRINT A
>! SUBROUTINE
>55 A = A+l !ADD 1

>RENUMBER 20,10,5
>REN AS 20 FROM 10 BY 5
>R EN 20,10-95,5
>REN AS 20 FROM 10

TO 95 INC 5
>RENUMBER BY 5
>REN

>REN 30 ADD 10
>REN FROM 30 TO 65 ADD 10
>RENUMBER 200-310 ADD -100

>TABS 5,10,15,20

Remarks

DELETE ALL has the
same effect as returning
to EXEC and recalling
SBASIC.

The line to be edited
will be printed out.

LI ST alone Iists the en
ti re program.

The Iine to be edited
will not be printed out.

Only! can append com
men ts to statemen ts (see
the last example).

When om itted, first new
line number is assumed
to be 100, first old to
be a (program is renum
bered from the begin
ning), and increment to
be 10.

Tabs are initialized at 7,
15, and in steps of 5
from 15 on. Ic spaces to

next tab stop.

65

SECTION 4

SAMPLE SUPER BASIC PROGRAMS

LISTING STOCKS

This program reads up to 100 items of string and numeric data from a file in which the

last item is known to be the string "END". The data is printed on the terminal with a pic

ture format, followed by the sum of the numeric information. Note that the left justifica

tion of strings and the right justification of numbel-s is an extremely useful feature of

picture formatting.

-COpy /BSTOCKS/ TO TEL

ABBOT LABS.,100,AMPEX,100,BECKMAN INSTRUMENT,100,BRISTOL MYERS,20
COLGATE PALMOLIVE,100,CONTINENTAL BAKING,100,FOnEMOST MCKESSON,200
"r,::tANT, l,!.T.",100,HALLIBURTON,100,HOWMET,200,INT. TELo & TEL.,12
LITTON IND.,11,MC CALL,100,NATIONAL CAN,100,NORWICH PHARMACAL,64
OLIN M4THIESON CHEM.,lOO,SQUIBB BEECH NUT,66,UNITED FRUIT,lOO
END

-SBASIC

>LOAD /STOCKS/
>LIST
10 S=O
20 STRING CClOO)
30 DIM N(100)
40 OPEN /BSTOCKS/,I~UT,l

50 FOR 1=1 TO 100
60 INPUT FROM 1: CC I)
10 IF CCI)<>"END" THEN INPUT FROM 1: NCI) ELSE 100
80 S=S+NCI)
90 NEXT I
100 PRINT
110 PRINT IN FORM "21% 3%/": CCJ),NCJ) FOR J=l TO I-I
120 PRINT
130 PRINT "TOTAL NO. OF SHARES IS":S
140 CLOSE 1
>RUN

ABBOT LABS.
AMPEX
BECKMAN INSTRUMENT
BRISTOL MYERS
COLGATE PALMOLIVE
CONTINENTAL BAKING
FOREMOST MCKESSON

100
100
100

20
100
100
200

66

GRANT, H.T.
HALLIBURTON
HOll/MET
INT. TEL. & TEL.
LITTON IND.
MC CALL
NATIONAL CAN
NORWICH PHARMACAL
OLIN MATHIESON CHEM.
SQUIBB BEECH NUT
UNITED FRUIT

100
100
200

12
1 7

100
100

64
100

66
100

TOTAL NO. OF SHARES IS 1679

>

PERCENTAGE BAR CHART

The DATA statement in the following program lists the frequency counts for ten class

intervals denoted by the numbers 1-10. The program calculates the percentage frequency

of each class interval (expressed as a percent of total). Each percentage frequency is

rounded to the nearest integer and plotted on a bar chart.

Th is program demonstrates the useful ness of the statement modifiers (FO R and IF),

print functions (TAB), and logical operators (OR).

-SBAS 1C

>LOAD /CHA~T /
>LIST
10 READ Y(1) FOR 1=1 TO 10
20 N=O
30 N=N+YCI) FOR 1=1 TO 10
40 PCI)=100*YCI)/N,SCI)=INICP(I)+.S) FOR 1=1 TO 10
SO PRINT
60 PRINT TABCS) :"PERCENTAGE BAR CHART"
70 FOR Y=2S TO 1 STEP -1
80 PRINT Y: IF Y=5 OR Y=10 OR Y=lS OR Y=20
90 PRINT TAB(3*D:"XX":IF S(!»=Y FOH 1=1 TO 10
100 PRINT
110NEXTY
120 PRINT
130 PRINT IN FORM "9C3%) 4%":1 FOH 1=1 TO 10
140 DATA 1,5,17,19,30,40,25,21,7,2
>RUN

67

PERCENTAGE BAtt CHART

XX
XX
xx
XX

20 XX
XX

xx xx
xx xx
xx XX

15 XX XX xx
xx xx XX
XX XX XX XX
xx xx XX xx

xx xx XX xx XX
10 XX XX XX XX xx XX

XX XX XX XX XX XX
XX XX XX XX XX XX
XX XX XX XX XX XX
XX XX XX XX XX XX

5 XX XX XX XX XX XX
XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX
xx XX XX XX XX XX XX XX

XX XX XX XX XX XX XX xx XX XX

1 2 3 4 5 6 7 8 9 10
>

DIRECTORY OF ADDRESSES

The file /DI R/ contains the names and addresses of a number of California residents.

This program asks the user whose address he wants. The user may type in any part of the

person's name (for example, DALE, DALE MOSS, or MOSS) and that person's full name

and address will be printed. If the name typed is not found, the program will print the

last string in the data file, which tells the user that the address is not I isted there.

Note the value of using the unique string function INDEX in this example (line 110).

Since INDEX searches each name in the directory for whatever is typed by the user, any

part of a name is acceptable for input. INDEX conveniently returns 0 if it does not find

the string for which it has searched.

-COpy /DIR/ TO TEL

MR. JOHN B. CAREY,285 COTTLE AVENUE,CAMPBELL
MRS. LESLIE FISHER,1964 HAMPTON DRIVE,DANVILLE
MR. CA~L LARSON,985 SOUTH 9 STREET~SAN JOSE
MR. DALE MOSS,1650 SARATOGA AVENUE, SARATOGA
MR. JOHN REY,106 FORMAN STREET,CAMPBELL
MR. DANIEL TORRES,24 SCHARF AVENUE,LOS GATOS

68

MISS DONNA (.iILKES.,315 SOUTH 3 STREET,SAN JOSE
MR. MICHAEL YOUNG,60 i.JILSON ROAD,CHESTER
MR.. HENRY C. ZIMMEH,15 JAC!(SON STREET,PALO ALTO
THE ADDRESS IS NOT LISTED HERE.

-SR~SIC

>LOAD IADDEI
>LIST
10 STRING N1,N,A,C
20 OPEN IDIRI,INPUT,2
30 PRINT
40 PRPH "ADD?ESS OF":
50 INPUT N1
60 PRINT
70 INPUT FROM 2:N
80 IF LEFT(N,3)="THE" THEN PRINT N ELSE 100
90 GO TO 140
100 INPUT FROM 2:A,C
110 IF INDEX(N,Nl)=O THEN 70 ELSE PRINT N
120 PRINT A
130 PRINT C:", CALIFORNIA"
140 CLOSE 2
1 50 GO TO 20
>RUN

ADDRESS OF? JOHN REY

l\1R. ..JOHN REY
106 FORMAN STREET
CAMPBELL, CALIFORNIA

ADDRESS OF? ZIMMER

MR. HENRY C. ZIMMER
15 JACKSON STREET
PALO ALTO, CALIFORNIA

ADDRESS OF? PEARSON

THE ADDRESS IS NOT LISTED HERE.

ADDRESS OF? DONNA

MISS DONNA WILKES
315 SOUTH 3 STREET
SAN JOSE, CALIFORNIA

ADDRESS OF?
INTERRUPTED IN STEP 50
>

CUBE ROOT

This program uses the approximation method to compute the cube root of any number

typed by the user. The first approximation is A = N/3, which is compared to the next

(closer) approximation A 1 = (2A3 +N)/3A2
. Each time through the loop (line 40), A

stores the last value of Aland a new approximation is calculated, with the last value of

A 1 replacing A in the formula. As soon as A 1 is equal to A when rounded to eight decimal

places (i.e., ABS(A 1-A)<1 E-8), the program prints the cube root (A 1) and the number of

passes through the approximating loop (1-1).

Two important characteristics of FOR when used with UNTI L (or WHI LE) are illus

trated here:

1. A and A 1 must be initialized (line 30) because the terminating condition is checked

before the loop is entered. Thus, if A had not been initialized, SUPER BASIC would

not have been able to define ABS(A 1-A) upon first encountering the loop.

2. The value of I upon exit from the loop is that value which caused the exit to occur

(that is, 1 more than the value of I the last time through the loop). For this reason,

the number of iterations is 1-1, not I.

-SBASIC

>LOAD IROOT I
>LIST
10 PRINT "TYPE THE NUMBER"
20 INPUT N
30 A=O,A1=N/3
40 A=Al,Al=(2*At3+N)/(3*At2) FOR 1=1 UNTIL ABSCA1-A)<lE-8
50 PRINT "CUBE ROOT:" :41
60 PRINT "NUMBER OF ITERATIONS:": 1-1
70 PRINT
80 GO TO 10
>RUN
TYPE THE NUMBER
? 7777
CUBE ROOT: 19.812413
NUMBER OF I TERAT IONS: 17

TYPE THE NUMBER
? 0
CUSE ROOT: 0
NUMBER OF ITERATIONS: 0

TYPE THE NUtvffiER
? -45.9
CUBE ROOT:-3.5804496
NUMBER OF ITERATIONS: 9

TYPE THE NUMBER
?
INTERRUPTED IN STFY 20
>

69

70

FUNDAMENTAL FREQUENCY

Th is program uses the formu la

to find F, the fundamental frequency of a circular clamped plate. D, Y, and P (the density,

Young's modulus, and Poisson's ratio) are read from a DATA statement, and the value of

T (the thickness) is requested. Using this data, the program calculates F for a range of

radii (R) from .1 to 1 in steps of .1, from 1 to 10 in steps of 1, and from 10to 100 in

steps of 10. Picture formatting is used to print the results on a file.

Line 90 in this example illustrates the use of many instructions in one statement. A
number and the value of a programmer defined function are printed with picture format
ting on a file for three distinct ranges of values.

-SBASIC

%%%%%%%%.%%%"
1 IN IMAGE A: R,FNFCR)
TO .9 BY .1,1 TO 9 BY 1,10 TO 100 BY 10

>LOAD IFREQI
>LIST
10 READ D,P,Y
20 PRINT "WHAT IS THE THICKNESS OF THE DRUM MATERIAL":
30 INPUT T
40 DEF FNFCX)=C.467*T/Xf2)*SQRCY/CD*C1-Pf2»)
SO OPEN IXI,OUTPUT,l
60 PR I NT ON 1: "RADI US"," FUND. FREQ. II

70 PRINT ON 1
80 A="%%%.%
90 PRINT ON

FOR R=.l
95 CLOSE 1
100 DATA 7.8,.3,20E11
>RUN
WHAT IS THE THICKNESS OF THE DRUM MATERIAL? .672

>Q

-COpy IXI TO TEL

RADIUS FUND. FREQ.

.1

.2

.3

.4

.5

.6

.7

.8

.9
1 .0
2.0

16658394.930
4164598.733
1850932.770
1041149.683

666335.797
462733.193
339967.243
260287.421
205659.197
166583.949
41645.987

3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

18509.328
10411.497

6663.358
4627.332
3399.672
2602.874
2056.592
1665.839

416.460
185.093
104.115
66.634
46.273
33.997
26.029
20.566
16.658

GROSS PAY

This program reads from a file up to 100 items of string data, each string consisting of

an employee's name and hourly rate. The user is asked to type after each employee's

name the number of hours worked by that employee. After extracting numeric informa

tion (the hourly rate) from the strings in the data file, the program calculates each em

ployee's gross pay and charts the results.

Note the varied purposes served by the strings read from the file. They are used to re

quest for input (line 901. to compute the gross pay (line 110) and to print the output (line

180). Using the string functions LEFT, VAL, and SUBSTR makes this possible.

71

-COpy lRATESI TO TEL

ADAMS
BENTLEY
BROWN
DEARBORN
FIELD
GREER
LAMONT
MEADOWS
MITTY
RUFOLO
SMITH
SOUTHERN
SWAN
UNDERW-oOD
END

$1.S0/HR
$2.7S/HR
$3.00/HR
$1.7S/HR
$1.S0/HR
S4.7S/HR
Sl.2S/HR
$3.S0/HR
$S.SO/HR
S3.2S/HR
Sl.S0/HR
$2.S0/HR
$2.00/HR
$3.00/HR

72

- SBAS IC

>LOAD IGROSPAYI
>LIST
10 TEXT A(100):25
20 DIM H(100),G<100)
30 OPEN IRATESI,INPUT,l
40 FOR 1=1 TO 100
50 INPUT FROM l:A(I)
60 IF A(I)="END" THEN PRINT "TYPE NUMBER OF HOURS \tlORKED BY:"

ELSE NEXT I
10 CLOSE 1
80 FOR J=l TO 1-1
90 PRINT LEFT(A(J),15):
100 INPUT H(J)
110 G(J)=H(J)*VAL(SVBSTR(A<J),11,4»
120 NEXT J
130 PRINT
140 PRINT "EMPLOYEE:","HOURLY RATE:","HOURS \o,iORKED:","GROSS PAY:"
1 50 PRINT
160 F="2%.2% • HRS' 6B 4$.2$1"
110 FOR J=1 TO I-I
180 PRINT A(J):TAB(31):
190 PRINT IN FORM F:H(J),G(J)
200 NEXT J
>RUN

TYPE NUMBER OF HOURS WORKED BY:
ADAMS ? 35.5
BENTLEY ? 40
BROhlN ? 40
DEARBORN ? 38.25
FIELD ? 40
GREER ? 35
LAMONT ? 31.5
MEADOvlS ? 40
MITTY ? 40
RUFOLO ? 40
SMITH ? 31
SOUTHERN ? 32
SWAN ? 35.25
UNDERWOOD ? 40

EMPLOYEE: HOURLY RATE: HOUHS ttlOHKED: GROSS PAY:

ADAMS $1.50/HR 35.50 HHS $53.25
BENTLEY $2.15/HR LIO .00 HRS Sl10.00
BROIIIN $3.00/HR 40.00 HRS $120.00
DEARBORN $1.15/HR 38.25 HRS $66.94
FIELD $1.50/HR 40.00 HRS $60.00
GREER $4.15/HR 35.00 HRS $166.25
LAMONT $1.25/HR 31.50 fiRS $46.88
MEADOWS $3.50/HR 40.00 HRS $140.00

MITTY
RUFOLO
SMITH
SOUTHERN
S\·JAN
UNDER~]OOD

>

$5.50/HR
$3.25/ffn
$1.50/HR
$2.50/HR
$2.00/HR
$3.00/HR

40.00 HRS
40.00 HRS
37.00 HRS
32,,00 HRS
35C125 HRS
40ClOO HRS

$220.00
$130.00

$55.50
$80.00
$70.50

$120.00

73

75

APPENDIX A

ALPHABETIC LIST OF ALL

SUPER BASIC STATEMENTS

AND CHARACTERISTICS

The following is an alphabetic list of all SUPER BASIC statements.

0- A direct statement

I- An indirect statement

B- Either a direct or an indirect statement

y- Statement may be modified by statement modifiers

N- Statement may not be modified by statement modifiers

Statement Modification Statement Modification

Statement Type Possible Statement Type Possible

BASE B Y MODIFY D N

CLOSE B Y NEXT I Y

COMPLEX B y ON B Y

DATA I N OPEN B Y

DEF I Y PAUSE I Y

DELETE D N PRINT B Y

DIM 8 Y QUIT B Y

EDIT D N READ B Y

END or STOP B Y REAL B Y

FOR I Y* REM or ! B N

GO D N RENUMBER D N

GOSUB B Y RESTORE B Y

GOTO B Y RETURN B Y

IF B N** RUN D N

INPUT B Y SAVE D N

INTEGER B Y STRING B Y

LET (Assignment) 8 Y TABS D N

LIST D N TAPE D N

LOAD D N TEXT B Y

LOGICAL B Y VAR=UNDEF B Y

MAT B Y VAR=ZERO B Y

WRITE B Y

* But not by FOR.

* *1 F statement cannot be modified, but THE N or ELSE clause can be modified if the statement comprising the clause is
modifiable.

76

APPENDIX B

DECLARATION STATEMENT
STORAGE ALLOCATION

Declaration Words Of Storage Per Variable
Statement Declares Or Per Element Of An Array

INTEGER A,B(O: 100) Integer variables or arrays 1*

REAL X,Y(10),Z(N) Real variables or arrays 2

DIM Z(5),A(2,3) Integer, real, and string var- 2**
iables or arrays

COMPLEX A,B,C(12) Complex variables or arrays 4

LOGICAL D,G,F(50) Logical variables or arrays 1/24

STRING M,N,A(2,3) String variables or arrays 1/3 word per character with a
minimum of 2 words.***

TEXT A(20):15,B(3,2):12 String arrays; specifies 1/3 per ch aracter. * * *
maximum element length

*The maximum number of words (elements) for an integer array is about 8000 in a program.

**Example of variable declaration with DIM: Suppose A, which has been declared complex, is to be undeclared later in the
program so that it can be assigned an integer, real, or string value. 01 M A would undeclare A.

***If the number of characters of a STR ING or TEXT element is not evenly divisible by 3, the remaining characters of
the string occupy one full word.

77

APPENDIX C

THE EXECUTIVE

ENTER ING THE SYSTEM

To gain access to the Tymshare time sharing sys

tem, you must first log in. As soon as the connection

to the Tymshare computer is made, the system will

type:

PLEASE LOG IN:

Type a Carriage Return. The system replies with:

ACCOUNT: A3 ~

Type your account number (A3 in this case) fol

lowed by a Carriage Return. The system then types:

PASSWORD: ()

Type your password followed by a Carriage Re

turn. NOTE: The password does not print. The sys

tem next types:

USER NAME: JONES ~

Type your user name followed by a Carriage Re

turn. The system next asks for a project code.

PROJ CODE: K-123-X ~

Type your project code followed by a Carriage Re

turn. NOTE: Project codes are optional. If no project

code is wanted, simply type a Carriage Return in re

sponse to the system's request.

After you have entered the requested information

correctly, the system will type:

TYMSHARE 12/8 11:20

The dash in the left hand margin indicates that you

are now in the EXECUTIVE. You can call SUPER
BASIC or give any EXECUTIVE command.

CALLING SUPER BASIC

To call SUPER BASIC, type the EXECUTIVE

command

- SBASIC ~

SUPER BASIC will reply with a> when it is ready to

accept a command.

RETURNING TO SUPER BASIC

If for some reason you return to and work in the

EXECUTIVE and then wish to continue from where

you left off in SUPER BASIC, you can use the CON-

TINUE command. The program and data that you

worked with in SUPER BASIC were not destroyed by

the return to the EXECUTIVE.

Example

- SBASIC ()

>
The user types part of a SUPER

BASIC program.

> QUIT ~

He does some work in the EXECU·

TlVE.

- CONTINUE ~

SBASIC

> He continues to type the program.

If the user had typed SBASIC ~ or called any

other language instead of giving the CONTINUE com

mand, all of his previous work would have been

destroyed.

LISTING FILES

When the EXECUTIVE command

- FILES ~

is given, a complete listing of all your files will be

printed, and the type of file will be indicated (SYM

for symbolic, BIN for binary).

Example

- FILES ~

SYM /MORTGAGE/

SYM /JUNK/

SYM /DATA/

BIN /BDATA/

SYM !VEN/

SYM /ABC/

DELETING FILES

If there is no further USf: for a particular file, delete

it by typing:

- DELETE /file name/ ~

78

Example

_ DELETE lABel ~

A single DE LETE command may be used to delete

more than one file. The file names must be separated

by commas as follows:

_ DELETE IPGM/JJUNK/,IVEN/;J

LEAVING THE SYSTEM

To exit from the Tymshare system, you first must

be in the EXECUTIVE. To return to the EXECUTIVE

from SUPER BASIC, type:

>QUIT;Jor>Q;J

The EXECUTIVE dash will appear. Now type

_ LOGOUT ~

followed by a Carriage Return. The system then will

type

TIME USED 0:37:12

PLEASE LOG IN:

You now may disconnect the line or let another

user log in.

79

APPENDIX D

THE TERMINAL

THE KEYBOARD}

CDOCDCDCDCDOCDCDQOO®-- -- -- -- -- -- -- -- -- --- --

~(RS\
'e9J ~

SHIFT
Only those keys which are underlined in the keyboard

diagram have a shift position. The SH I FT key oper

ates in the manner of an ordinary typewriter. The

SH I FT characters are printed as they appear on the
upper half of these keys, with the following excep

tions:

SHI FT K = [

SHI FT L = \
SHIFT M =]

CTRL (Control)

Any alphabetic key may be pressed in conjunction

with th is key. The resu Iting character, called a con
trol character, does not always print on the terminal.

Control characters serve a variety of pu rposes depend

ing on when they are typed. Some languages, for ex

ample, use control characters as editing instructions
to the computer. In the Tymshare manuals, a super
script c is used to designate control characters; for
example, Control D is shown as DC. Note the follow

ing special control characters:

JC = Line Feed
MC = Carriage Return

ALT MODE or ESCAPE.
This key is used to abort a command, interrupt the
execution of a program, and/or return to the EXECU
TIVE. NOTE: On machines not having either the
AL T MODE or the ESCAPE key, use SHIFT KC.

HERE IS
Not used in the Tymshare system.

LINE FEED
Advances the paper one line each time it is pressed.

When the user is connected to the computer, the sys

tem automatically supplies a Carriage Return after

every Line Feed.

RETURN (Carriage Return)

Returns the print head to the beginning of a line. The
print head gl)eS to the beginning of the next line only

when the user is connected to the computer; that is,

the system automatically supplies a Line Feed after
every Carriage Return.

RUB OUT
Used in conjunction with the B.SP. button on the

paper tape punch to delete characters punched in

error.

1 - This is the standard terminal keyboard. On individual machines, some keys may not exist or may be located differently than
shown in this diagram.

80

REPT (Repeat)

Repeats any character on the keyboard (including a
space) when pressed in conjunction with the desired
character.

BREAK
DO NOT press this key; it causes a transmission inter
rupt and possible loss of program and data.

NOTE: Maximum line width is 72 characters.

Punch Controls

REL. OFF

00
00

THE ON/OFF CONTROLS

The standard ON/OF F control is a three-position
dial located on the front of the terminal and to the
right of the keyboard.

B.SP. ON

OFF

L1NEOLOCAL

Standard ON/OFF Control

LINE
The terminal is ON and ready to be connected to the
computer via the phone line. When the connection is
made, the terminal is said to be lion line".

OFF
The terminal is OFF.

LOCAL
The terminal is ready for local ("off line") opera

tions; that is, operations to be performed when the
terminal is not connected to the computer. Paper tape
may be punched off line.

THE PAPER TAPE CONTROLS

When the terminal is equipped with a paper tape
punch and reader, the controls are on the left side of
the terminal.

REL.
Releases the paper tape so that the user can pull it
through manually.

OFF
Turns the punch OFF.

ON
Turns the punch ON to punch the paper tape.

B.SP.
Back spaces the paper tape one frame each time the
button is depressed. Used in conjunction with the
RUB OUT key on the keyboard to delete erroneous
characters.

Reader Controls

START

STOP

FREE

START
Starts and continues paper tape reading.

STOP
Stops paper tape reading.

FREE
Frees the tape reader mechanism so the user can pull
the tape through manually.

HOW TO PUNCH
PAPER TAPE OFF LINE

The user can punch a paper tape whi Ie not con
nected to the computer. Later the program can be
read into SUPER BASIC by means of the TAPE com
mand. The contents of a data file can be punched on
tape and read into EDITOR or the EXECUTIVE.

To punch paper tape off line, turn the dial on the
front of the terminal to LOCAL and depress the ON
button on the paper tape punch controls. Then punch
the tape from the keyboard. Note the following spe
cial rules:

• Always follow a Line Feed with a Carriage Re
turn.

• Always follow a Carriage Return with a Line
Feed.

In case of a typing error in a SUPER BASIC state
ment, delete the incorrect character by typing a ~ im
mediately. Repeat the +- to delete as many characters

Example

On line, type:

20 IF A THEN 100"""1

ELSE 200 ~

Off line, type:

20 IF A THEN 100~~

ELSE 200 ~ J,

81

as requ ired. In addition, an t followed by a Carriage
Return deletes an entire line typed in error.

The above editing characters are accepted only in
SUPE R BASI C. If the tape contains data to be read in
EDITOR or the EXECUTIVE, delete an incorrect
character by depressing the B.SP. button on the
punch controls and then the RUB OUT key on the
keyboard. To delete several incorrect characters, press
B.SP. as many times as necessary and then RUB OUT
the same number of times.

83

INDEX

NOTE: Page numbers which appear in bold face type refer to those pages where the listed
item receives the most detailed discussion.

ALT MODE/ESC, 5, 14,51

Array
definition, 26
dimensioning, 27 See also Declaration

statement.

matrix operations, 28
naming, 26
subscripts, 26

Assignment statement, 4
multiple assignment, 19
with complex, 41
with strings, 37, 38

BASE, 27

Binary file, 22

BY,10

CLOSE, 23

Command, see Statement

Comments, 14

Complex
declaration, 41
functions, 41
variables, 41

comparing, 41
logical value of, 33 (footnote 2)

Computed GOSUB, 32

Computed GO TO, 32

Control characters, see Editing

Data file, 22

DATA statement, 11, 13 (footnote 2)
with complex, 41
with strings, 37, 38

Declaration statement
complex, 41
logical, 33
string, 37
summary, 76

Decimal field, 42

DEF,25

Deleting files, 77

Deleting statements, 14

DIM,27

EDIT, 48

Editing
control characters, summary, 47
data input, 48
file name, 47
paper tape, 12, 81
program, 14, 46

E format, 6
field, 43

END, 32,52

EXECUTIVE, 5, 77

Expressions
arithmetic, 7
logical, 33
relational, 8, 33

File
binary, 22
data, 22
definition, 13, 22
deleting, 77
names, listing, 77
program, 13

FOR (modifier), 35

FOR (statement), 9,35
loops, errors in, 10
loops, nested, 10

with multiple NEXT, 11

Formatted output, 42
PRINT IN FORM, 44
PRINT IN IMAGE, 42

Functions
complex, 41
mathematical, 8, 23
POS,24
programmer defined, 25
string, 39
TAB, 25

GO, 51

GOSUB,31
computed GOSUB, 32

GO TO, 4,13,51
computed GO TO, 32

IF modifier, 35

IF statement, 4, 21

INPUT, 4,20

Input, data
complex, 41
from DATA statements, 11
from file, 22
from terminal, 4, 20
matrix, 28
string, 37, 38

Input, program
from file, 13
from paper tape, 12
from terminal, 12

Integer field, 42

LET, see Assignment statement

Line
continuation, 3
feed, 3
length, 3
numbers, 3

LIST, 14

LOAD, 13

Log In Procedure, 5,13,77

Logical
declaration, 33
expressions, 8, 33
operators, 34
value, 33
variables, 33

LOGOUT, 5,13,78

Loop, see FOR (statement)

Matrix operations, 28
initialization, 30
input, 28
mathematical, 29
output, 29

Modifiers, 35
multiple, 36

84

MODIFY, 48

MOD operator, 7

NEXT, see FOR (statement)

Null string, 38

Numbers
complex, 41
formatted output, 42
typing in, 6
unformatted output, 6

ON GOSUB ,32

ON GO TO , 32

OPEN, 22,39

Operators
arithmetic, 7
logical, 34
priority of,

all, 34
arithmetic, 7

relational, 8

Output, data
formatted, FORM, 44
formatted, IMAGE, 42
matrix, 29
numbers, unformatted, 6
PRINT, 3,4,19
string, 3, 19, 37
to file, 22

Output, program
to file, 13
to terminal, 14

Paper tape
controls, 80
input, 12
punch ing, 12, 80

INDEX (Continued)

PAUSE, 51

Picture formatting, 42

POS,24

PRINT, 3,4,19 See also Output, data.
IN FORM, 44
IN IMAGE, 42
matrix, 29
zQnes, 19

Programmer defined functions, 25

QUIT, 5, 52,77

Random number generator, 24

READ, 11, 13 (footnote 2)

REM,14

RENUMBER,49

Replacement statement, see Assignment
statement

RESTORE, 11

RETURN, 31

RUN, 5, 13, 51

SAVE, 13

Statement
alphabetic list of, 75
continuation, 3
direct, 3
indirect, 3
length, 3
modifiers, 35
numbers, 3
summary, 53ff

STEP, 10

STOP, 32, 52

String
assignment, 37, 38
comparison, 40
concatenation, 38
declaration, 37
functions, 39
input, 37, 38
null, 38
output, 3, 19, 37
variables, 37

Subroutines, 31

Subscripted variables, see Array

TAB function, 25

TABS command, 47

TAPE, 12, 13

Tape, paper, see Paper tape

Terminal, 79

TEXT declaration, 37

Type declaration, see Declaration
statement

UNLESS, 35

UNTIL,35

VAR = UNDEF, 7

VAR = ZERO, 6

Variables, 6

complex, 41

declaring, 53, 76

logical, 33

naming, 6, 26, 37

string, 37

subscripted, see Array

WHILE,35

.TYMSHARE, INC., 525 University Avenue, Suite 220, Palo Alto, California 94301

SEATTLE
2200 6th Avenue, Suite 810
Seattle, Washington 98121
Telephone: 206/MA 3-8321

LOS ANGELES
336 East Kelso Street
Inglewood, California 90301
Telephone: 213/677-9142

WASHINGTON, D.C.
1911 N. Fort Myer Drive, Suite 907
Arlington, Virginia 22209
Telephone: 703/524-5930

DALLAS
2355 Stemmons Bldg., Suite 1010
Dallas, Texas 75207
Telephone: 214/638-5680

NEW YORK
464 Hudson Terrace
Englewood Cliffs, New Jersey 07632
Telephone: 201/567-9110

SAN DI EGO/ORANGE COUNTY
4630 Campus Drive, Suite 209
Newport Beach, California 92660
Telephone: 714/540-5940

SAN FRANCISCO
745 Distel Drive
Los Altos, California 94022
Telephone: 415/961·0545

~ IYMSHARE®

	Contents
	Introduction
	Section 1 - A SUPER BASIC Primer
	Section 2 - SUPER BASIC Advanced Features
	Section 3 - Summary of SUPER BASIC
	Section 4 - Sample SUPER BASIC Programs
	Appendix A - Alphabetic List of All SUPER BASIC Statements and Characteristics
	Appendix B - Declaration Statement Storage Allocation
	Appendix C - The Executive
	Appendix D - The Terminal
	Index

