[YMSHARE

12, TYMSHARE, INC,, Litho in US.A.

L _ SRS e IR T

rice: $3.50

CONTENTS

Page
SECTION 1 — INTRODUCTION oo .. 1
MANUAL ORGANIZATION v v v v v e e e v e e s 1
SYMBOL CONVENTIONS « v v o v v o v v o v o 2
SECTION 2 — SAMPLE CSMP PROBLEM 3
SECTION 3 — TYMSHARE CSMP ELEMENTS 7
FUNCTION GENERATOR BLOCKS« « « « « « .. 19
THE WYE AND VACUOUSBLOCKS « . . .« .. 19
UNIT DELAY BLOCKS o . v o v v v e e e e e e e e 21
USER-DEFINED BLOCKS o « v o« v v v o o ot 21
Debugging User-Defined Blocks« o o o . 25
Accessing Program Variables00 000 26
Restrictions on User-Defined Blocks « « .. 28
Special Format Functions and Subroutines 29

SECTION 4 — THE CSMP PROBLEM:
DESCRIPTION AND SOLUTION 33
PROBLEM DEFINITION o v v o v v v o v v v 33
CSMP SOLUTION METHODS « « « & v« o o o . 34
SECTION 5 — PROBLEM ENTRY 39
ENTERING THE CSMP DESCRIPTION 39
LANGUAGE STATEMENT COMMANDS - 40
The BLOCKS Command & « « & ¢ v v o v v o o v o o o & 40
The INITIAL Command « « « « « v v v o v o 0 o v v s 41
The FUNCTION Command « « « & o « o o« o o o o o v s 42
TIMING COMMANDS « & & v 4 e v v e e e e e e e e e e s 42
SECTION 6 — OUTPUT COMMANDS 45
THE PRINT COMMAND« &+« & v v e e e e e e e e e s 45
THE PLOT COMMAND & ¢ v v o v o e e e e e e e e e 45
THE IPLOTCOMMAND &« & & v v v e e e e e e e e e s 46
THE DOUBLE AND SINGLE COMMANDS 46
THE NO HEADING COMMAND « . « ¢ « o o« o o« 47
THE OUTPUT COMMAND « v v v v o o o v v o o - 47
INTERRUPTS o v o v e v e e e e e e e e e e e e e 47

TMB2

iv

Page
SECTION 7 — EXECUTION COMMANDS 49
THE GO COMMAND« . o e i v e i e e e d e e e 49
THE CONTINUE COMMAND« o o v v v v v . 49
THE RUN COMMAND « . o v v v v v v v v v v 49
SECTION 8 — FILE COMMANDS e 51
THE READ COMMAND« o« v v v v v v v v e e 51
THE WRITE COMMAND v v e v e e e e e e 51
THE DUMP AND RECOVER COMMANDS « . . « .. 51
DUMP SUBROUTINES and RECOVER SUBROUTINES 52
DUMP ALL and RECOVER ALL 52
THE COPY COMMAND « . . o v o v v v e e e e o 53
THE CLOSE COMMAND« . o o v v e e i e e e e e e 54
SECTION 9 — THE SCRATCH FILE 55
SECTION 10 - DEBUGGING AND UTILITY COMMANDS 59
DEBUGGING COMMANDS v v v v v v v v e e e 59
The FIND Command v v v v v v v oo 59
The DISPLAY Command v v v v v v v v v . 59
The DELETE Command v v v v v v v« .. 60
The PROBE Command. v . v v v v v v v v . 61
The SAVE Command v v v v v e v v v v 61
The CPUCommand « o v v v v v v i v e e e 62
UTILITY COMMANDS o v e e e e e e e e e e e e 62
SECTION 11 — SAMPLE PROBLEMS. 65
Example 1 — SPRING, MASS, DAMPER SYSTEM 65
Example 2 — NONLINEAR SPRING, MASS, DAMPER SYSTEM 69
Example 3 — POSITION CONTROLLING SERVO SYSTEM 78
Example 4 — FALLING BALL PROBLEM 83
APPENDIX A — CSMP COMMAND SUMMARY 91
APPENDIX B — LAPLACE TRANSFORM MODELING

TECHNIQUE 95

APPENDIX C — DECIMAL REPRESENTATIONS OF ASCII
CHARACTERS 97

SECTION 1
INTRODUCTION

The Tymshare Continuous System Modeling Program, CSMP, simulates continuous processes
on a digital computer. Such processes are encountered daily by engineers, scientists, and
economists. ' '

Continuous systems are usually described mathematically by a set of nonlinear differential
equations which may be represented by a block diagram. CSMP includes a complete set of
39 functional elements and language statements with which the user may describe his system
directly from the block diagram or the equations. CSMP handles problems with as many as
300 blocks, including 150 integrators and 10 function generators. :

In addition, the CSMP user may easily define as many as 20 blocks to aid in the solution of
his particular problem. The user creates these blocks with BATCH FORTRAN 1V function
subroutines. Such subroutines may access CSMP program variables through the use of global
declarations, allowing the user to change parameters, integration algorithms, the integration
interval, block specifications, and other values during program execution. The user may debug
these subroutines in the BATCH FORTRAN mode of CSMP which permits him access to
BATCH FORTRAN IV debugging features.

Tymshare CSMP offers the user numerous options and many outstanding new features. Six
integration algorithms are available: an efficient variable step integration routine that automat-
ically controls the solution accuracy, and five fixed step integration routines. Integration rou-
tines and intervals may be varied during program execution. Timing specifications may be
selected and varied. At the end of a run, the outputs of any block in the configuration may
be printed or plotted for any interval without recomputing the solution. In fact, the solution
itself may be continued without recomputation. As many as ten block outputs may be plotted
simultaneously on the same set of axes; plots may be scaled automatically or by the user. At
any point, the user may store all program specifications and output data on a file and continue
the analysis later.

CSMP contains convenient debugging commands, including the FIND command to locate all
occurrences of specified block numbers or types. The use of command files within CSMP
permits repeated execution with iteration through a range of parameter values.

CSMP and Tymshare are a powerful combination. The versatility of CSMP and the conver-
sational nature of the Tymshare system provide an easy, fast, and accurate method of develop-
ing and testing continuous system models.

MANUAL ORGANIZATION

Section 2 of this manual illustrates the basic features of CSMP with a sample problem to
solve a nonlinear differential equation. Section 3 describes the Tymshare CSMP elements,
including user-defined blocks. Section 4 is a summary of the CSMP solution method and
includes information about the various integration methods.

Sections 5, 6, and 7 describe the fundamental steps in solving a CSMP problem: entering
the problem description, specifying the output data, and executing the problem. Section 8
details the CSMP file commands; Section 9 describes the CSMP scratch file. Section 10
contains a description of the debugging and utility commands.

Section 11 contains four sample problems, demonstrating many features of CSMP. The
CSMP commands are summarized in Appendix A. Appendix B contains information about
Laplace transform modeling in CSMP. Appendix C lists the decimal representations of ASCII
characters.

SYMBOL CONVENTIONS

The symbols used in this manual for user-typed Carriage Returns, Alt Mode/Escapes, and
control characters are:

Carriage Return: by
Alt Mode/Escape: 3
Control character: Superscript c. Thus, D¢ denotes Control D.

In the examples in this manual, everything typed by the user is underlined. Lower-case
letters used in an example of a command form represent the input which the user types. For
example, the characters file name in a sample command form indicate that a legal file name
should be typed at that point.

SECTION 2
SAMPLE CSMP PROBLEM

This section illustrates the ease with which CSMP problems may be written and solved by
solving Van der Pol’s nonlinear differential equation,

X"+ A(x*—1x + Bx = 0

for A=.25, B=1.0, x,=1, and x6=0. Calculations are made from time t=0 to 20 in incre-
ments of .5.
The block diagram is displayed below.

-1
N TS
-.25 ;

N iEadaad

x'(x2 -1

The problem entry and execution using CSMP are illustrated below.

“CSMP)
$ BLOCKS

BLOCK TYPE El E2 E3

2 A Carriage Return terminates block inp-ut.
B EG]_Z N SORT

$ INITIAL 5
BLOCK P1 P2 P3

11.05
4 - f)

6 - 1 = 25 A Carriage Return terminates the entry of initial conditions and parameter values.
S

$BY . S TO 20 The timing specifications are entered.

$PLOT 1,

AUTOMATIC SCALING? NOo

YMAX = 2.5,

YMIN = =25

PLOT BLOCK: 25 .

AUTOMATIC SCALING? YES o

PLOT BLOCK: , A Carriage Return terminates plot specifications.

s VAR! ABLE The user chooses variable step integration.

3303

-—_

BLOCK SYMBOL

1
2

TIME
«000E

+
*

00

5000E-01

1.000E
1.500E
2<.000E
2.500E
3+.000E
3+500E
4.000E
4.500E
5.000E
5.500E
6+.000E
6+ 500E
7.000E
7.500E
8.000E
8.+5S00E
9.000E
9+500E
1.000E
1.050E
{.100E
1<150E
{.200E
1.250E
1.300E
1<350E
1.400E
1<450E
1.500E
1.550E
1.600E
1<650E
1<700E
1.750E
1.800E
1.850E
{1.900E
1.950E
2.000E

00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
o1
ol
o1l
ol
ol
ol
ol
ol
ol
ol
ol
ol
ol
ol
ol
ol
oi
ol
ol
ol
o1

MIN MAX INCREMENT
-2.500E 00 2.500E 00 1.000E-01
=1.924E 00 2+024E 00 7.895E-02

Yoocotocootoecscotoecsctoccoteoceetoceeceteccetecoetoccet

KO R
* +
* +
* +
% +
+X%
+ *
+ *
+ E]
+ *
+ *
+ %
* +
% +
* +
* +
%k +
% +
+ *
+ *
+ *
+ %*
+ %
+ %
* +
% +
* +
* +
* +
* +
+
+ %k
+ *
+ %
+ *
+ *
+ *
* +
* +
%* +
E 3 +

+tooootecocsoeteccsetoceotecectococetocoetoecocotocscotocoet

: DISPLAY ALL

BLOCK TYPE El E2 E3
1 1 2 -0 0
3 X 1 1 0
4 (o) 3 0 -0
5 X 2 4 0
6 v 1 S 0
2 I 6 0 o

DT: 5.000E-02
OUTPUT

FROM: .000E 00
BY: 5.000E-01

TO:{ 2.000E 0]
RELERR: 1.000E-03
DTMIN: 5.000E-08
ALGORITHM: VARIABLE
DATA FILE

FROM: .000E 00
BY: 5.000E-01

TO: 23000E 01
$QUIT,

P1
1.000E 00

-1.000E 00

-=1.000E 00

p2

-2.500E-01

P3

SECTION 3
TYMSHARE CSMP ELEMENTS

Tymshare CSMP provides a complement of 39 standard functional elements. In addition to
the common simulation elements such as integrators, multipliers, and summers, a number of
more specialized functional elements such as dead space, clipper, limiter, and zero-order hold
devices are available to the user. Each of the CSMP element types specifies a functional rela-

tionship involving as many as three input variables and three parameters. (See the illustration
below.)

E2 — f n EO
E3 —

E0 = f(E1,E2,E3,P1,P2,P3)

where E1, E2, and E3 are input variables.
P1, P2, and P3 are associated parameters.
n is the block number.
f indicates the functional relationship.

EO is the output variable.

The output of each element type is a single-valued quantity defined by the particular rela-
tionship. For example, consider the divider block below.

El ——

E2 —

This block requires two input variables, E1 and E2. The functional relationship is EO=E1/E2.
The input variable E3 and the parameters P1, P2, and P3 are not required for the divider block
and should not be specified. In this example, the CSMP symbol is a slash, /, and the block
number is arbitrarily assigned as 35.

The table on the following pages is arranged in alphabetical order by function name. The
table contains the CSMP elements, their CSMP and diagrammatic symbols, and the definitions
of their functional operations. Notice that for those blocks that require only one input, for
example, the cosine block, the input must be E1. Similarly, for those blocks requiring only
two inputs, for example, the divider block, the inputs must be E1 and E2.

The variables and parameters used in the table are:

E1

E2 = input from second input block

input from first input block

E3 = input from third input block
EO = output
P1 = initial condition or parameter 1
P2 = parameter 2
P3 = parameter 3

t = time

n = block number

1d = 04
.HI
0> 14 ; I- = 0d
14 o=1a S 0 =04
o< 13 S 1+ = 0d
I+
0d
L's 03> u-
(suerpex uf OF) (za/1a)uepe = od
(suerpex ur 0g) (13)uerore = 04
ydeio uondiiosaqg

(15}

0od

A
u 4 pb— 13 : |
—
u dLV dLv
— 14
u \4 — 14 \4
loquiAg

loqwAg asnewwelbeiq dWSD

juEISUC)

Sueq Sueg

Quasdue)ory

juaBuejory

awepN

10

ydein

0+) a/13 = 0d

0+ 1) [;1mo1o01l01 = 03

(@d-T3'ONIN = 01

0>14 /1
o< St (d-T4°0XVIW = 0d
0=14 S 0=103
(suerper ut 13) (1a)s00 = 04
uonduosaq

0d

0d

0d

0d

— 4

u /
— 14
u ia — 13
u a (—14
@ @
u 0 —mu

loquiAg annewweabeiq

aa

joquAg
dINSD

RPN

1PQIdA

aoeds peaq

auiso)

awep

11

d.-1d=03

1 'Id Pup Zd 230124 pasods A]uaid
spuiod Indino || uaomi1aq uonvjodiaul oury (133 = o0
aDdxe = 0d

asimaayio 00 = 0d
(O 19 pur 0T 40

073 pur 019 01 = 0d

Il

uonduosaq

u
0d 19
oa u 4 ™1
2 @
od u 4 ~—u
—
1c u dod
—— 14

joquAg sniewwedsbelq

dod

joquiAg
dINSD

*61 98ed uo payrelap st y00[q 103eI13Ud8 uoNOUNY YL - |

uen

10)eI0UaS
uonoung

renuduodxgy

AQ 2AISnXy

awepn

12

W (€4-€4+7d-2d+13) [+ 1d = 08

asimay1o 00 = 0d
O<zd 0 0<1d) 01 =04
0 <13 13/ = 0d

“Aejop oum e st g4
*UOIJBIASD PIBPUE)S Y] SI 7d
‘UBSWI QYD ST [odoym

€d<1 4{0f UONNQL)SIP [BULIOU € WIOI} S[qBLIBA WOPURI B ST (OF
€d>1 40f 00 = 04

uonduoasaq

0d

0d

0q

ic

— 4
u p: (0}

—— 14
u H 1
u | $SnvO

D00

joquAg anewwesbeiq

. (V)

SSNVO

loquiAg
dINSD

10yeI80)U]

MO 2AISnjdu]

mod jieHy

10je10Ua8
asiou ueissnen)

awep

13

14 Nm_\l
T

04

ydean

(1asgav = o4

ISINAOIIO (0
o<wa pur 018 01

0q

Il

[
2

W>1 S Wd=o04
<13 /I 1d=03
dsiasud /1 1id=o0d

IF U23M}3q 10JeI3US IqUINU WOpUEY

uonduasaqg

0d

16

0d

u N — 13
——
ul dnNv
—— 14
u T 13

@ ©

loquiAg annewweabeiq

aNVv

loquiAg
dINSD

apmyusep

ANy [easo]

oI

nng

awep

14

14

Id + 19 = 04

0<1a /i 1d=o0d

_ os1d /i o0=o04d

o<1 (ID0TV = 04

a-1d = 0d

ydeso uondusag

od

0d

1c

0d
|
u N — 13
ur DoT1T — 134
—
u
X —— 14

loquiAg anewweasbeiq

2071

loquAg
dNSDO

185130

1addyyo saneSoN

unyyrredo] [eanjeN

nydninpw

awep

15

14

03

ydean

0= 13)

o>11 1 €d=
o<1d /1w

I
28

74 < 13 JI UnisojRuIuId]

g1 = 08

0>14 /1 1@=04d
o=z 1a S 0= 04

uondisaQq

0d u
1 u
1c} u

— ¢4
—— 4
— 14

—

—— 143

%k

—

—— 14

— 14

joquiAg anewweibeiq

*%

loquiAg
dWSO

Aeoy

nmo

PMog

1addip aanisog

awepn

16

€d ¥ FId 1c}

+
I

Aepp swiny, = €4
(s22182p) 11ys aseyq = zd
(z319Y) Kousnbarg = [249ym

gd <1 40f [zd+(€d—) - 1duglus = od
€d > 1 0f 00 = 04
(sueiper ut 1) (Durs = oA
a— = 0d

uonduosag

0od

03

‘sanjea Indur }00[q 2A13e30uU Aj10ads ABuI YoTYyMm }O0[q AJUO 3y} SI YO0[q Iawwng ay [- [

€4
0d (4
14

D@

1c} |

joquAg anewwesbeiq

oS

loquiAg
dINSD

Jewwing

10)eI9Ud8
aARM JUIS

aurg

19)19AUT UBIS

awep

17

61 93ed UO PassnOSIp a1k $YO0[q SNONIBA PUB dAM YL -7
*g¢ o3ed uo paqrIosap sI ‘[eaIajul uoneIidaul oyl ‘1A - 1

JUOWID[E 3AM YM pasn) od u A A snonoep

[¢a
}o01q paulyap-13s() 0d u j0tS—IS— 0TS—1S paulyap 1350}
— 14
D@
10< Y wym 1d—31 2 14 = 0d od u a 13 n Aepop 3un
=1 uym Id = 04 .
*0 uey) 1938313 10 0) [enba apew
aq jsnur g ‘Q uey) SS9 udaq sey [193)e urer) asind Jre)sAI O,
0> 1d Hoytt 0= 0d \ 03 u 1l 1 L uo“”_um..__wu.:.h
*1 03 [enba si asind jo apmyuBep .

.cN_mco_—BwioooS_:nﬁu_n_
*1d 01 renba powrad yyum urerny asind sajeIousn ‘

loquiAg

uonduosag joquAg snewweibeiq dINSD

awen

18

0=1 i d = 0d
0 7d +of pdBueyoun (g

o< 4of 14 = 04

y'suonerado yorjdwi 10§ pasn ‘Juswaje Youelq [es1So|

€d-¢d + TH-ld + Td-1d = 04

uonduasag

0d

—— 4

— 14

——
04 —

. (ca)- ¢a
oa . (ta)
(1a)- 13

loquAg snewweabeiqg

"6 1 93ed UO PasSNOSIP 1B $YO0[q SNONJEA PUB 3AM Y] - |

z

M

|oquAg
dINSD

PIOY 13pI0 017

9AM

rowwns pajydiopm

awep

19

FUNCTION GENERATOR BLOCKS

The function generator is used to simulate parts of the model where some relationship,
Y =£(X), is available in tabular or graphic form. The relationship to be simulated must be one
that can be approximated adequately by ten straight-line segments evenly spaced between the
minimum and maximum values of X, specified by P2 and P1, respectively. Y can be a function
of time; that is, block 301 can be the input to the function generator block.

The diagram below illustrates a functional relationship which a CSMP user might wish to
express by means of a function generator block.

y=F(x)

1 ! y=F(P1)
: | |
P2 P P :

T T ; X
| 1

V/

y=F(®2) -

The CSMP user may include as many as ten different function generator blocks in the same
problem. If the user does not enter the intercept values at the time he specifies the block, he
may enter them with the FUNCTION command. For example, if the block data is on a file,
the intercept values may not have been included. The FUNCTION command may also be used
to modify one or more intercept values. To modify any one of the intercept values, the user
must reenter all the intercept values for that function generator.

The user may display the current intercept values for a function generator block by giving
the DISPLAY command. DISPLAY n, where n is the number of a function generator block,
prints the basic block information, including parameters, in addition to the intercept values.

:DISPLAY FUNCTION

prints the number and intercept values for all function generators in the current problem.

Example 3, page 78, demonstrates the use of a function generator block.

THE WYE AND VACUOUS BLOCKS

The wye and vacuous blocks are used to solve implicit equations of the form Y=£(X,Y).
The wye block has two parameters: P1 is the permissible relative error; P2 is the convergence
factor. The vacuous block has one parameter, the initial estimate of the output.

20

The wye and vacuous blocks are used as follows:

() ()

fXY,)
X __J_’
B BLOCKS NEEDED
@ TO COMPUTE f(X,Y)
Yn
v

The initial value, Y,, is supplied by the parameter of the vacuous block. The wye and
vacuous blocks then cause Y to be iterated until

fX,Y,)
—_—— 1] < €
Xy,

where e equals P1, the first parameter of the wye block. When this criterion is met,
Y=Y, = f(X,Y,)

If the error criterion is not met, a new Y value is calculated as follows:
Y, = (10-P2) f(X.Y,) + P2-Y,

where 0 < P2 <1 and is the second parameter associated with the wye block.

It is necessary to experiment with various values of the parameters of both the wye and
vacuous blocks in order to achieve convergence. There is no limit set for the number of iter-
ations allowed to achieve convergence. Therefore, these blocks should be used with caution.

Consider the following configuration:

BLOCKS NEEDED > Y={XY)
TO COMPUTE £(X,Y)

21

This configuration contains an algebraic loop and will give a sort failure error message. How-
ever, the wye and vacuous blocks may be used to accommodate this algebraic loop as discussed
above.

UNIT DELAY BLOCKS

The unit delay block is used to delay the input to the block by DT, the integration interval.'
However, since the amount of delay is a function of the integration interval, the delay block
may not be used with the variable step integration routine.

USER-DEFINED BLOCKS

The most powerful block in CSMP is the user-defined block. This block makes it possible to
combine BATCH FORTRAN 1V function subroutines with user-defined subroutines and the
CSMP language statements. User-defined blocks should be used whenever possible; they often
reduce drastically the number of blocks in a configuration. Since execution speed is propor-
tional to the number of blocks used, a reduction in the number of blocks is reflected in the
amount of computer resources used. Tymshare CSMP allows as many as 20 different user-
defined blocks in a single configuration.

User-defined blocks are extremely convenient. With approximately 2100 words of storage
available for user-defined subroutines, the user may create programs far larger than would be
possible with individual blocks alone.

For example, assume the following relationship is to be modeled in CSMP:

E1-P1
[(E1-P1)? + (E2-P2)% + (E3-P3)2]"

EO = tan~!

Where E1, E2, and E3 are outputs of blocks 1, 2, and 3, respectively. The CSMP configuration
might be written as follows:

4 G 1

5 G 2

6 G 3

7 X 4 4
8 X 5 5
9 X 6 6
10 + 7 8 9
11 H 10

12 /7 4 11

13 A 12

1 - The integration interval, DT, is described on page 35.

22

Ten blocks were used to derive the desired result, block 13. However, one user-supplied block
achieves the same result. For example, the following function subroutine generates the same
result as the previous configuration.

FUNCTION S1(E1,E2,E3,P1,P2,P3)

A =E1 = P1
B = E2 = P2
C =E3 = P3

D = A/SQRT(A * A + B *+ B + C * C)
S1 = ATAN(D)

RETURN

END

The SUBROUTINES command loads into CSMP the function subroutines which are to be
used as user-defined blocks. This command may be given at any time.

Before he calls CSMP, the user must compile all the function subroutines in BATCH FOR-
TRAN 1V onto a file named CSMPSUBS. The function subroutine names must be

FUNCTION S1(E1,E2,E3,P1,P2,P3)
FUNCTION S2(E1,E2,E3,P1,P2,P3)

FUNCTION S20(E1,E2,E3,P1,P2,P3)

where E1, E2, and E3 are input variables.
P1, P2, and P3 are parameters.

Note that the argument list for user-defined function subroutines is block oriented, containing
three inputs and three parameters. This does not limit the ability to incorporate other user-
defined routines into CSMP. A user may call any number of subroutines within the user-defined
function subroutine as long as he compiles them on the file CSMPSUBS.

For example, if a user has written a function subroutine which generates Bessel functions
and wishes to use it in CSMP, he might do it as follows:

FUNCTION S2(E1,E2,E3,P1,P2,P3)
S2 = BESSEL(E1,P1)

RETURN

END

FUNCTION BESSEL(X,A)

END

23

An example illustrates the ease with which special blocks or subroutines may be incorporated
into CSMP.

The user wishes to define two new blocks, S1 and S20:

El —
2 2 2 _ .
E2 —{ S1 EO E0 = (E1) +.(E2) + (E3) cos(2E1 - E2)
E3 sin[P1 - E2 — atan(E1/E3)]
El ‘
E2 $20 EO E0 = [sin(E1-E2) - Pl F!]

The user creates his own BATCH FORTRAN 1V subroutine in Tymshare’s EDITOR."

-EDITOR >

*APPENDD

FUNCTION S1(E1,E2,E3,P1,P2,P3) 5

A=SQRTC(E1*El+E2*xE2+E3*E3=-COS(2.*E1*E2)) 5

B=SINC(E2*P1-ATANCE1,E3))

S1=A/B , ' ’

RETURN

END

FUNCTION S20CE1,E2,E35P1,P2,P3) 5

S20=SINCE1*E2)*EXP(P1*El1) 5

RETURN 5 ' ' ’

END ,

*WRITE SUBS , The user terminates the APPEND command with a Control D.
NEW FILE

183 CHARACTERS

*QUIT o

-BFORTRAN

+COMPILE SUBS»CSMPSUBSo The file SUBS is compiled to the file CSMPSUBS.?
OLD FILE 5 The previous contents of file CSMPSUBS are replaced.

FUNCTION S1(E1,E2,E3,P1,P2,P3)
END i ' A

FUNCTION S20(El,E2,E3,P1,P2,P3)
END ')

+QUIT

1- For further details about EDITOR, consult the Tymshare EDITOR Reference Manual.

2 - When using user-defined blocks, the user may obtain additional space if he gives the OFF DEBUG and OFF ARG commands in
BATCH FORTRAN 1V before compiling the subroutines. In this case, he cannot use the CSMP DEBUG command, described on
page 25.

24

-CSMP , The user calls CSMP and indicates by the command SUBROUTINES that
he wishes to use his previously compiled subroutines in this problem.

: SUBROUTINES |

LOADING LIBRARY

WORDS USED
PROGRAM: 5774
STORAGE: 2193
SHARED: 5550
DEBUG: 179
WORDS UNUSED The unused words are available for user-defined blocks.
PROGRAM: 2113
SHARED: 594

If the file CSMPSUBS does not contain all the required subroutines, the names of the missing
subroutines are listed after the message LOADING LIBRARY. The file CSMPSUBS must be
recompiled with the missing subroutines.

The SUBROUTINES command creates in the user’s directory the binary file CSMP‘SCR3’.
CSMP automatically deletes the file CSMP‘SCR3’ when the user types QUIT. Because it is
convenient and efficient to load the same subroutines later without reusing the SUBROUTINES
command, the user may write the contents of the file CSMP‘SCR3’ onto another file with the
DUMP SUBROUTINES command. The form of this command is

:DUMP SUBROUTINES file name
which duplicates the contents of the file CSMP‘SCR3’ on the specified file.

The complementary command
:RECOVER SUBROUTINES file name 5

loads the specified subroutine file previously created with the DUMP SUBROUTINES command,
allowing the user to keep conveniently any number of subroutine files in his directory.

Note that it is many times more efficient to use the DUMP and RECOVER commands to
load subroutines than to reuse the SUBROUTINES command. The SUBROUTINES command
must be used the first time the subroutines are used.

25

Debugging User-Defined Blocks

The user may debug his special function subroutines within CSMP using the powerful
debugging capability of BATCH FORTRAN IV. For example, if any error is detected in a
user block, the computer prints an error message, the statement in which the error occurred,
and a plus sign, +, indicating that the user is in the BATCH FORTRAN 1V mode of CSMP.
When the plus sign appears, the user may use any of the debugging commands available in
BATCH FORTRAN IV. For example, the follewing might occur in the user block S1, defined
on page 23.

ERROR-->NEGATIVE ARGUMENT TO SQUARE ROOT. ABSOLUTE VALUE USED.
STATEMENT S1,0+1

+DISPLAY E1,E2,E3,

0

0

0

+

To return to the CSMP mode, denoted by the colon, the user must give the SWAP CSMP
and GO commands. For example,

+SWAP CSMPD
+GO

o
*

The user may transfer to BATCH FORTRAN IV mode from CSMP by giving the DEBUG

command. He returns to CSMP mode by giving the SWAP CSMP and GO commands described
above.

In the BATCH FORTRAN mode, he can set breakpoints, change variable values, and display
variable values. For example,

:DEBUG o

+DEBUG_S1 5
+LET A=0.05
+BREAK 40+3 5
+DEBUG_S11
+BREAK 10 5,
+SWAP CSMP

+GO o

26

Accessing Program Variables

User-defined function subroutines permit the CSMP user to change parameters, integration
routines, the integration interval, and the block specifications during program execution.

All of the major variables in CSMP are global. This feature allows the user to access or
modify program specifications during execution via a user-defined subroutine.

Below is a partial list of variables which are accessible through a GLOBAL declaration
statement in the user’s subroutine.

Variable Name Description
T Time;
equal to the output of block 301.

DT Same as in program.’
DTMIN Same as in program.'
RELERR Same as in program.’
FROM Same as in program.’
BY Same as in program.'
TO Same as in program.'

EO(1) to EO0(300) Block output;
EO(N) is the output of block N.?

PAR1(1) to PAR1(300) | Parameter 1;
PARI(N) is the first parameter for block N.

PAR2(1) to PAR2(300) | Parameter 2.
PAR3(1) to PAR3(300) | Parameter 3.

NOTE: In the GLOBAL declaration statement, the arrays EO, PARI, PAR2, and PAR3
must be dimensioned to contain 300 elements if the user wishes to access an element of that
array in bis function subroutine.

If the user chooses to modify the BY variable during program execution, he should not
attempt to read intervals contained on the scratch file.> Data on the scratch file is located by
multiplying the number of points contained in the interval by the BY value. The user should
erase the data from the scratch file with the ERASE command at the end of any run in which
he has changed the BY value during execution.

1 - The quantities DT, DTMIN, RELERR, FROM, BY, and TO are described on page 42.
2- EOQ is the letter E followed by the digit 0.
3 - The CSMP scratch file is described in Section 9.

27

If DT is changed by a subroutine during execution, the following GLOBAL variables must
also be changed:

DTS2 = DT/2

DTS3 = DT/3
DTS23 = DT * 2/3
DTS6 = DT/6

DTMIN should be set to a value less than DT.

If RELERR is changed within a subroutine, the GLOBAL variable RELERS8 should be set to
RELERR/8.

The CSMP user may change the integration algorithm during execution by changing the value
of the GLOBAL array element NTEST(9).! The table below lists the algorithms denoted by
the values of NTEST(9).

NTEST(9) | Integration
Value Algorithm

1 RK2
2 Trapezoidal
3 Euler
4 Simpson’s
5 RK4
6 Variable

Note that DT, its associated parameters, and the integration algorithm may be changed only
if NTEST(5) = 3. The values of the variables RELERR and RELER8 may be changed at any
time.

Example 1

The following function S12 calls the subroutine DTCHANGE to change the value of DT if
the output of block 24 is greater than the output of block 146.

FUNCTION S12(E1,E2,E35P1,P25P3)
GLOBAL NTEST(9),E0(300)
*CHECK TO SEE THAT DT CAN BE CHANGED
IF(NTEST(S)«NE«3) RETURN
*IF NTEST(5) = 3 CHECK TO SEE THAT DT SHOULD BE CHANGED
IFCEO(24) «GT«E0C146)) CALL DTCHANGE
RETURN
END

1 - The integration algorithms available in CSMP are described on page 34.

28

SUBROUTINE DTCHANGE

GLOBAL DT»DTS2,DTS3,DTS23,DTS6
DT=DT*e5

DTS2=DT/s2

DTS3=DT/3

DTS23=DT*2/3

DTS6=DT/6

RETURN

END

Example 2

The following subroutine changes the integration algorithm during program execution.

FUNCTION S1(E1,E2,E3,P1,P2,P3)
GLOBAL T,NTEST(9),PAR1(300)

IF(NTEST(5)«NEe3) RETURN
IFC(T«LT<P1)RETURN ‘
PAR1(10)=PAR1(10)+.25
IF(NTEST(9)«EQ«2) NTEST(9)=43 GO TO 10
NTEST(9)=2

10 RETURN
END ’

Restrictions on User-Defined Blocks

There are three important restrictions the CSMP user must remember when defining his own
blocks with BATCH FORTRAN IV function subroutines. These restrictions concern unit num-
bers for files, transferring between CSMP and the BATCH FORTRAN mode, and the BATCH
FORTRAN syntax allowed in CSMP function subroutines.

Units 3, 10, 11, 12, and 14 may not be used to open files within a CSMP user-written sub-
routine. These unit numbers are reserved for use within CSMP.

If the CSMP user transfers control from the debug mode to CSMP with the SWAP CSMP
and GO commands, he must remember that all data has been erased from the scratch file.
Thus, to begin execution, the CSMP GO command must be given; the CSMP CONTINUE
command cannot be used.’

- User-written subroutines for CSMP may employ all features of BATCH FORTRAN IV except
ACCEPT, DISPLAY, and statements involving a FORMAT. CSMP contains special routines to
perform the same functions without loading the BATCH FORTRAN 1V format processor. This

makes possible the increased space for CSMP programs.

1 - The GO and CONTINUE commands are described in Section 7.

29

Because FORMAT statements are not allowed, the following are illegal statements in CSMP
subroutines:
TYPE f,1
ACCEPT f,1
WRITE (u,f)1
READ (u,f)1

where f is a format reference.
1 is a variable list.
u is a unit number.
Note that binary READ and WRITE statements are legal. For example, if unit number u has
been opened as a sequential or random binary file, the following are legal statements:
READ (u)l
WRITE (u)1

Special Format Functions and Subroutines

CSMP contains special subroutines and functions to perform formatted output. The
OUTRFMT function provides formatted output for real or floating point numbers; the com-
plementary OUTIFMT function operates on integers. The DISPLAY and OUTPUT subroutines
print strings on the terminal and the designated file, respectively. The DISCHR and OUTCHR
subroutines print single characters on the terminal and the designated file, respectively.

To print a real number, the CSMP user includes in his subroutine the statement
NUMBER = OUTRFMT (u,v,t,w,d)
where u is the unit number.
v is the name of the variable to be printed.

t is an integer representing the type of format.
t=1 denotes I format.
t=2 denotes F format.
t=3 denotes E format.
t=4 denotes G format.

w is an integer from 1 to 14 denoting the width of the output field. This corresponds
precisely to the field width in FORTRAN FORMAT statements.

d is an integer representing the number of decimal places to be printed. Note that d
should be 0 if t = 1.

The OUTIFMT function prints integers. The function must be placed in the program as
NUMBER = OUTIFMT (u,v,t,w,d)

where u, v, t, w, and d are described as above.

30

To perform string output, the CSMP user should call the DISPLAY or OUTPUT subroutine.
The DISPLAY subroutine prints the specified string on the terminal; OUTPUT writes the
string on a file. The forms of the calls to this subroutine are

CALL DISPLAY (‘s/’)
CALL OUTPUT (u,‘s/’)
where s is the string.

A string may consist of an ASCII character sequence of any length provided it does not
contain the character ’ or ”; however, if one of the characters &, $, or / is in the string,
it must be preceded by an ampersand, &. For example,

CALL DISPLAY (‘AB&$CD&&EG&/F/’)
prints

ABS$CD&EG/F

on the terminal.

A dollar sign, $, not preceded by an ampersand, &, in a string is interpreted as a Carriage
Return. For example,

CALL DISPLAY (‘ABC$DEF/’)
prints ABC on the first line and DEF on the next line.
The CSMP user may print single characters with the DISCHR and OUTCHR subroutines.
The calling sequences for these subroutines are
CALL DISCHR(n)
CALL OUTCHR (u,n)
where u is a unit number.

n is an integer between 0 and 127, inclusive, equal to the decimal representation of the
ASCII character.'

The DISCHR subroutine writes a single character on the terminal; OUTCHR writes the speci-
fied character on the file opened as unit n.

1 - A table of ASCII characters and their decimal representations is included in Appendix C.

31

Example

The following user-defined subroutine produces the output listed below it.

==534

CALL DISPLAY('S$I =/")
NUMBER=0UTIFNMT(151515551)
CALL DISPLAY('$/')

A=345334945E2
CALL DISPLAY('$OUTPUT A TO THE TERMINALS/')
DO 10 ITYPE=1,4
NUMBER=0UTRFMT(15sA»ITYPE»14,5)
CALL OUTPUT(1,'$/")

10 CONTINUE

CALL DISPLAY('$HERE ARE ASCII CHARACTERS FROM 1 TO 63%/°*)
DO 20 N=1,63
CALL OUTCHR(C1,N)
20 CONTINUE
CALL DISPLAY('S$/°%)
END

The above subroutine produces this output:

I = =534

OUTPUT A TO THE TERMINAL
345334
34533494500
*«34533E 06
345334.94500

HERE ARE ASCII1 CHARACTERS FROM 1 TO 63
1"#52&° (I k+5-4/012345678923 <=>?2@ ABCDEFGHIJKLMNOPQRSTUVWXYZ{\]1 1t~

73

¢ DO DAMPING o CSMP now takes commands from the file DAMPING.

BLOCK P11 P2 P3 PI of block 5 is changed to 1.

BLOCK SYMBOL

1
2

TIME
«000E

+
*

00

2.500E-01
5.000E-01
7.500E-01

1.000E
1.250E
1.500E
1.750E
2.000E
2.250E
2+.500E
2.75S0E
3.000E
3.250E
3.500E
3.750E
4.000E
4.250E
4.500E
4.750E
5.000E
S«250E
S« 500E
5¢750E
6.000E
6.250E
6+500E
6+750E
7.000E
7.250E
7+500E
7.750E
8 .000E
8.250E
8 +500E
8.+750E
9.000E
9.250E
9.500E
9.750E
1.000E

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01

MIN MAX INCREMENT
-1.000E 00 1.000E 00 4.000E-02
-3.322E-01 6+.698E-01 2.004E-02

tocoetoccotrocscseteccetsccseteccsotocsocctocosoctococtoccot

+ *

+ *
+ *
+ *
+ *
+ *
+ %*
+ *
+ *
+ *
+ %
* +
* +
* +
* +
%k +
%* +
* +
%* +
* +
* +
* +
* +
%* +
* +
* +
* +
+
+ X
+ *
+ *
+ %k
+ *
+ Xk
+%
* +
* +
* +
* +
*® +
* +*

*oooo*oooo*ooco+oooo+oooo+oooo+oooo*oooo+ooo.+oooo+

74

BLOCK P! P2 P3 Pl is set to 2.

BLOCK SYMBOL

1
2

TIME
«000E

+
*

00

2+.500E-01
5.000E-01
7.500E=-01

1.000E
1.250E
1.500E
1.750E
2.000E
2.250E
2.500E
2.7S0E
3.000E
3.250E
3¢500E
3.750E
4.000E
4.250E
4.500E
4.750E
5.000E
S<250E
5+.500E
S.750E
6.000E
6.250E
6.500E
6.750E
7.000E
7.250E
7.500E
T750E
8.000E
8.250E
8.+.500E
8.750E
9.000E
9.250E
9.500E
9.750E
1.000E

00
00
00

MIN MAX INCREMENT
-1.000E 00 1.000E 0O 4.000E-02
-1.886E-01 5¢449E-01 1.467E-02
+oosotoccoetoceoctoscetececsteccecstocsceteccotocccteceet
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ %k
L 3 +
* +
* +
* +
* +
* +
* +
* +
* +
] +
* +
* +
* +
* +
* +
%k +
* +
* +
* +
*x 4+
* +
* +
* +
* +
* +
%k +
* +
* +
* +

+oeoesotoeccotoccetocseotoscostoccetocscetoccctecoctocoot

SECTION 4
THE CSMP PROBLEM: DESCRIPTION AND SOLUTION

This section describes the procedure for solving a CSMP problem. The user must first define
the problem with CSMP elements and statements. He then chooses one of the six integration
algorithms available in CSMP and detailed in this section.

PROBLEM DEFINITION

Tymshare CSMP is commonly used as a general differential equation solver in which the set
of linear or nonlinear differential equations is specified by connecting the blocks in the proper
fashion. The CSMP user begins by analyzing the problem to be solved and developing a block
diagram showing the interconnections of the elements. Each block on the simulation diagram
is identified by a block number, arbitrarily assigned within the range 1 to 300. This number
is usually written adjacent to or within the diagrammatic symbol. In the table of CSMP ele-
ments, the block number for each statement is represented by the letter n.

By definition, the independent variable, time, is contained in block 301 and may be used as
an input to any other block.

After the user has generated a block diagram, he translates it into a program by using CSMP
language statements. The two types of language statements are as follows:

1. Configuration statements define interconnections of the blocks and specify the desired
functional operation. For example,

1 G 301

specifies a gain block. Its block number is 1, and its input is the time block, 301.

2. Parameter statements assign numerical constants to the block elements to particularize
their functional operation. At most, three initial conditions or parameters may be asso-
ciated with each block. In block types that have memory, such as the integrator, unit
delay, and vacuous blocks, the first parameter, P1, is used to specify the initial condition,
the value of the output at time t=0. All initial conditions or parameters which are not
specified by the user are automatically set to 0. For example,

1-.5
specifies ‘that the first parameter, P1, is —.5 for block 1. P2 and P3 are set to 0.

Each block in the model requires a configuration statement. Blocks which have associated
parameters in their definition may also require a parameter statement. For example, the gain
element must have a parameter statement in order to set P1 equal to a non-zero value. Other-
wise, the output of the gain block would always be 0.

The function generator element requires information in addition to the statements described
above. The configuration statement specifies the interconnections; the parameter statement
specifies the maximum and minimum values of the input variable. The user must then specify
the value of the output variable at each of the 11 intercept points.

The CSMP problem size limits are:

300 blocks
150 integrators
10 function generators
50 unit delays
50 zero order hold blocks
50 time pulse generators
20 user-defined subroutines
1500 output time intervals

Unlike some digital programs in which the order of coding is important, the order in which
the configuration statements are entered into Tymshare CSMP does not affect the solution.
After each change in the simulation configuration, a sorting algorithm determines the proper
order in which to evaluate the new set of functional elements. No block can be processed
until updated values of its input variables are available. At each time interval, the output of
all the memory elements and certain constants are assumed to be available. By using these
outputs and constants, one or more additional blocks can be processed by the sorting algo-
rithm. Sorting is performed automatically and requires just a few seconds. A diagnostic mes-
sage is printed if the sorting algorithm indicates an inconsistent configuration. The most com-
mon cause of such an error is an algebraic loop which is a closed pathway in the configuration
and does not include one of the two memory elements: integrator and unit delay. If a simula-
tion requires an implicit operation, the wye and vacuous elements should be used to break the
resulting algebraic loop.'

CSMP SOLUTION METHODS

CSMP uses six different centralized integration routines which are listed below in increasing
order of sophistication. They are specified at CSMP command level by the commands given in
parentheses.

Euler (EULER)

Trapezoidal (TRAPEZOIDAL)
Runge-Kutta second order (RK2)
Simpson’s Rule (SIMPSONS)
Runge-Kutta fourth order (RK4)
6. Variable step size (VARIABLE)

N B W N

If the user does not specify a routine, RK2 is used. The user may change the integration rou-
tine or the integration interval during the solution of a problem and continue the computation
with the CONTINUE command.

The first five routines have a fixed step size; the user supplies the step size, or integration
interval requested by CSMP, as the parameter DT. The sixth routine is a variable step size
Runge-Kutta third order routine. The integration interval, DT, is automatically adjusted to
meet a user-supplied relative error bound, RELERR, on the solution accuracy.

1 - The wye and vacuous elements are described on page 19.

35

The goal in choosing an integration algorithm is to find one which offers the necessary accu-
racy, numerical stability, and the shortest execution time. The selection of the best routine
for a particular problem is arrived at by experimentation with the algorithm parameters DT
and RELERR. RELERR affects the solution accuracy only with the VARIABLE integration
routine.

The user may request that different integration algorithms be used in different stages of
a solution. See page 28 for an example of accomplishing this by means of user-defined
subroutines.

The third order Runge-Kutta algorithm was selected for the variable step algorithm because
its stability is nearly that of the higher order routines. Furthermore, the test to determine if
DT should be increased or decreased is much more efficient than with higher order routines.

The variable step routine has the advantage of providing a stable solution for a specified
numerical accuracy. However, if the accuracy criterion RELERR is set too stringently, exe-
cution time will be excessive. Execution time will likewise be excessive for fixed step routines
if the step size DT chosen is too small.

The mathematics of the routines is as follows. Assume a set of differential equations
expressed in the ‘‘state variable” form, '

where y, y’, and f are vectors representing a set of k first order differential equations,

Yy = 1001 Y55 Ypot)

y,2 = fz(YI’ y29' .- 7Yk1t)

Yk T fk(yl, Ys--- ,yk,t)

The quantity y, represents the output of the kth integrator, and t represents time. In the
following formulas, n refers to the nth integration step; DT is the step size.

Euler

Yn+1 = Yn + DT - Yn

Trapezoidal

36

Runge-Kutta second order

k, = DT - y_ (t,,y,)

k
’ DT l
kz_DT.yn z(tn+_’y +_)

(k, +k,)
Yot SVt T3

Runge-Kutta third order (variable)

kl DT ° Y;l(tna yn)

k
, DT 1
k2 = DT - yn+,/2(tn + B Yn +—2)
k, = DT - y;l+l(tn+DT, Yo+ 2k, —k))

(k, + 4k, +kj3)
Ya+1 T Yn + 6

Runge-Kutta fourth order

k; = DT - y,(t,,,)

-
Il

k
' DT 1
2 DT - Yo+ (tn + 2 Yn +T)

-
I

k
' DT 22
3 DT-yn+1/2<tn+—2-,yn+ 2)

4 = DT -y (t, +DT, y_+kj;)

-
il

(k, + 2k, + 2k, +k,)
Yat1 = Yn T
n+l n 6

Simpson’s Rule

Op + Woiy + Ynir)
Yner = Ya 6

37

The variable step error criterion is calculated as follows. ERR_ is the maximum of the
relative errors of all the integrators which occur during the integration step n. In other words,

(RK3) _ _(RK2)

ERR = yn+l yl'l'i-l
" (RK3)
Yn+1
where yRK3) is the output of the kth integrator at step n+1 as computed by the RK3 routine,

yRK2) is the output of the kth integrator at step n+1 computed by the RK2 routine, and so

on.

The following rules are used to calculate the step size in the variable step size routine.

If ERR, > RELERR, DT = BT
If RELgERR < ERR; < RELERR, DT = DT (unchanged)
If ERR, < RELERR = pp— 5. pr

The user must supply an initial value for DT, the integration step size. It is better to choose
a small DT than one too large because the program will have to perform unnecessary computa-
tions in order to reduce the step size so that computation of the solution may begin. The
accuracy of the solution is governed by RELERR; the maximum integration interval is set by
the output interval BY .

1 - The output interval BY is discussed on page 42.

39

SECTION 5
PROBLEM ENTRY

CSMP is called by typing CSMP and a Carriage Return in the EXECUTIVE. The program
responds with a colon, indicating its readiness to accept commands.

Any CSMP command may be given when a colon appears and must be terminated by a Car-
riage Return. Each command may be abbreviated to the least number of characters needed to
uniquely identify it. Appendix A contains a table of minimum abbreviations.

This section explains the various methods available for describing the block configuration,
initial conditions, and parameters to CSMP. In addition, the commands used to specify timing
information are discussed. Commands for output, execution, and other CSMP features are
discussed in succeeding sections.

ENTERING THE CSMP DESCRIPTION

There are two ways to enter specifications into Tymshare CSMP: from the terminal or from
a file. Data files used in CSMP are usually created in a previous CSMP session, as with the
DUMP command, or in Tymshare’s EDITOR.! The data in each file must be written in the
same form as it would be entered at the terminal. This form is discussed for each individual
command. Files created in CSMP are automatically written in this form. The commands used
to create and load files are discussed in Section 8.

If the user makes an error while entering data, he may use a Control A, Control Q, or Con-
trol W to correct it. These control characters may be used in both CSMP and EDITOR.

Control A deletes the preceding character. On some terminals, Control A is acknowledged
by a back arrow («). For example,

5 2.51AC< 7
The user meant to type 2.57 as the value of the first parameter. Instead, he typed 2.51. He
then typed Control A to erase the 1. The Control A was acknowledged with a back arrow.

The user then typed the digit 7 and a Carriage Return. Several Control A’s may be typed
consecutively to delete successive preceding characters.

Control Q erases all characters, including data values, from the statement in which it appears.
The entire line of data must be reentered. On some terminals, Control Q prints an up arrow (1)
to indicate its use. For example,

INT (0) = 2.19E-2
INT (1) = 2.19E-2QC 1t
3.24E-1,

The user retyped the value for INT (0) instead of the desired value for INT (1). Since he had
not typed a Carriage Return, he typed Control Q. When Control Q acknowledged with the up
arrow and returned the carriage, the user typed the desired value for INT (1).

1 - See the Tymshare EDITOR Reference Manual for further details.

40

Control W deletes the preceding word in the line being typed. The preceding word is defined
as including the immediately preceding blanks, if any, plus the immediately preceding non-blank
characters, up to but not including the first blank preceding them. On some terminals, a back
slash (\) is printed when Control W is used. For example,

19 W 400W€\300 115

The user meant to type 300 as the first input value. He used a Control W to delete the 400
and correctly completed the line.

NOTE: Control characters are valid methods to edit data only if the Carriage Return bas
not yet been typed. If the data bas already been entered in CSMP and the Carriage Return
typed, the only way to correct the data value is to reexecute the command or line in which
the data was entered.

Numbers in CSMP may be expressed in integer form, decimal notation, or E format. Note
that the E format cannot stand alone; thus, 1000 may be written as 1E3, 1.E3, or 10.0E2,
but not as E3. "

For a particular numerical entry, the user may type as many digits as he wishes. However,
any number containing more than 11 significant digits will be rounded to 11 digits. CSMP
carries all calculations to 11-digit accuracy, but the final results are printed in E format to
four-digit accuracy.

NOTE: All block specifications, initial conditions, and parameters are set to O if not specified
otherwise.

Comments may be included by preceding them with a semicolon. For example,

19 W 52 11 ; WEIGHTED SUMMER
11) ; RANDOM NUMBER GENERATOR

LANGUAGE STATEMENT COMMANDS

The three language statement commands, BLOCKS, INITIAL, and FUNCTION, specify the
block configuration and all initial conditions.

The BLOCKS Command

The BLOCKS command is used to enter, alter, or add block configuration specifications from
the terminal. A block statement consists of the block number, block type, and block inputs
(E1, E2, and E3). All data for a single block must be entered on one line and terminated by
a Carriage Return. The data items may be separated by spaces or commas. Line Feeds are
ignored. :

The form of the command is:
: BLOCKS |
The command then prints the heading
BLOCK TYPE E1 E2 E3

41

after which the user enters his block statements. The command is terminated by an additional
Carriage Return or the word END followed by a Carriage Return. For example,
¢ BLOCKS

BLOCK TYPE El E2 E3

- |\O
o]

[

m'&
U

oo jn
AN
[, 3[8:R1\V)

U\OO—'U
Oy
LY/

) An extra Carriage Return indicates the completion of block specifications.
BEGIN SORT

NOTE: The block numbers specified for the inputs may range from 1 through 301. If the
user specifies a 0 for an input, the value 0 is used.

The INITIAL Command

The INITIAL command is used to alter or enter from the terminal the initial conditions
and/or parameters associated with the blocks specified with the BLOCKS command. The
INITIAL command cannot be given until the block configuration has been specified.

The INITIAL statement consists of the block number, initial condition P1; and associated
parameters P1 and P2. The data items may be separated by spaces or commas.

The form of the command is:
:INITIAL 5
The command then prints the heading
BLOCK P1 P2 P3

after which the user enters his statements. The command is terminated with an additional
Carriage Return or the word END followed by a Carriage Return. For example,

$INITIAL 5
BLOCKX Pl P2 P3
99 =140 5

1 =-1.0)

S 2.0 105
2 The Carriage Return ends the INITIAL command.

42

The FUNCTION Command

The FUNCTION command allows the user to enter function generator specifications from
the terminal or to modify a previously entered function generator. The block number is
requested, and then the 11 function values are requested individually. Finally, the user must
specify the maximum and minimum input values for the function generator block input, unless
he has specified them with the INITIAL command.

TIMING COMMANDS

The following seven timing commands may be used to assign or alter timing specifications.

Command Description

DT Specifies the integration interval or step size.
FROM Specifies output stdrt time.

BY Specifies the output interval.

TO Specifies the end time.

TIMING | Prompts the user for DT, FROM, BY, and TO.

DTMIN Specifies the minimum integration interval used by
the VARIABLE integration routine. If the user
does not specify this value, DTMIN is assigned the
value DT - 10-6.

RELERR | Specifies the relative error bound on the solution
when the VARIABLE integration routine is used.'
If RELERR is not specified, .001 is used.

The timing specifications may be entered on one line in any order, separated by spaces or
commas. For example,

:DT .1 FROM 10 TO 100,BY .15

If any one of the variables DT, FROM, BY, or TO is specified, CSMP automatically assigns
values to the remaining variables according to the following conventions:

1. DT is specified:
If BY is not specified, BY = 10 - DT
If TO is not specified, TO = 200 - DT

I

2. BY is specified:
If DT is not specified, DT = BY/10
If TO is not specified, TO = 20 - BY
3. TO is specified:
If DT is not specified, DT = TO/200
If BY is not specified, BY = TO/20

1- The VARIABLE routine is described on page 34.

For all cases, if FROM is not specified, it is assigned the value 0, or if the SAVE command’
has been given, FROM is assigned the value T,pq.2

Values for RELERR and DTMIN affect the solution only when the variable step size inte-
gration routine is used. CSMP sets these values automatically; the user may reset them as
illustrated below. There are two forms for each command.

$sRELERR po) The user specifies the relative error in two ways.
RELATIVE ERROR = .02

¢:RELERR .02 b

¢ DTMI N 5 The variable DTMIN is set to .0000008.
MINIMUM INTEGRATION INTERVAL = 0000008 ,

:DTMIN +0000008 5

The TIMING command prompts the user for the following timing specifications: DT, the
integration interval or step size; FROM, the output start time; BY, the output interval; and
TO, the end time. For example,

: TIMING o
DT: O_ID
OUTPUT

BY: «5,
TO: 6

1- The SAVE command is described on page 61.
2-TzgR(is defined on page 55.

43

For computational purposes, the program requires that the output interval BY be an even
multiple of the integration interval DT. However, it is not necessary for the user to choose
BY to be an even multiple of the integration interval DT. DT is automatically adjusted by
the program so that BY/DT is an integer. For example, in

$TIMING o
DT: <3O
OUTPUT
FROM: O
BY:s 15
TO: 105

¢:DISPLAY DT,
3.333E-01

the ratio BY/DT is 1/.3, which is not an integer. Thus, the program adjusts DT to .3333.
BY 1s never adjusted. This fact should be remembered when modeling with unit delay blocks.'

1 - Unit delay blocks are discussed on page 21.

45

SECTION 6
OUTPUT COMMANDS

The results of a CSMP computation may be displayed in a numerical table, plot, or both.
Numerical output may be printed in either four- or eight-digit accuracy. The time span over
which the data is displayed can be varied, and headings may optionally be suppressed. Both
the tables and plots may be printed on the terminal or written on a file for future reference.
This section discusses these output commands and also explains how interrupts are handled.

THE PRINT COMMAND

The PRINT command is used to print the outputs of as many as ten blocks at a time.
There are two forms of the command:

:PRINT block numbers 5
and

:PRINT
OUTPUT BLOCKS: block numbersD

The block numbers may be separated by spaces or commas.

NOTE: The PRINT command is not actually executed until a GO or CONTINUE command
is given.'

THE PLOT COMMAND

The PLOT command is used to plot the outputs for one to ten blocks on a single set of axes.
These plots may either be scaled by the user or automatically scaled by the program. Automatic
scaling requires more time because all the points to be plotted must be computed to determine
the largest and smallest values. If the automatic scaling option is not chosen, the user must
supply the maximum and minimum y-axis values. The form of the command is:

:PLOT block number 5
The program responds with:
AUTOMATIC SCALING?

If the user answers YES, the PLOT command requests the next block number. If the user
answers NO, the PLOT command requests the values for YMAX and YMIN, the maximum and
minimum values to be plotted. The command is completed by typing a Carriage Return after
PLOT BLOCK. For example,

¢ePLOT 4 2

AUTOMATIC SCALING? YES 5

PLOT BLOCK: 95

AUTOMATIC SCALING? NOo

YMAX = &_0_ o

YMIN = 58 5

PLOT BLOCK , The Carriage Return terminates the command.

1 - The GO and CONTINUE commands are described in Section 7.

46

plots values for the blocks 4 and 9. Block 4 is automatically scaled; block 9 is plotted between
the values 58 and 100.

The symbols used for the plots, beginning with the first plot, are:
+ * . , 0 @ # : - 71
If two or more points are to be plotted at the same location, the symbol associated with the

block requested first is used.

The user may specify a series of block numbers after the PLOT command. In this case,
CSMP automatically scales all the plots. For example,

:PLOT 1,3,5 7 17
automatically scales each of the plots.

NOTE: The PLOT command is not actually executed until a GO or CONTINUE command
is given.'

THE IPLOT COMMAND

The IPLOT command is similar to the PLOT command. IPLOT is used for multiple plotting
when the user wishes to specify the minimum and maximum y-axis values for each block to be
plotted. As many as ten blocks may be plotted on a single set of axes. For example,

: IPLOTD

PLOT BLOCK: 15

YMAX = 5.0

YMIN = =155

PLOT BLOCK The Carriage Return terminates the command,

plots the values for block 1.

NOTE: The IPLOT command is not actually executed until a GO or CONTINUE command
is given.'

THE DOUBLE AND SINGLE COMMANDS

CSMP performs all arithmetic operations in 11-digit accuracy at all times. Normally, results
are printed in four-digit accuracy. The DOUBLE command specifies that all numerical output
be printed in eight-digit accuracy. DOUBLE does not affect timing or solution accuracy; it is
merely a format command. ’

The SINGLE command returns to the standard method of displaying output in four-digit
accuracy.

1 - The GO and CONTINUE commands are described in Section 7.

47

THE NO HEADING COMMAND

The NO HEADING command suppresses the headings normally printed with the PRINT,
PLOT, and IPLOT commands. This command is given with the execution commands. For
example,

:GO_NO HEADING ,

THE OUTPUT COMMAND

The OUTPUT command writes on a file the solution just as it would appear on the terminal.
It is useful when the user wishes to list the solution at a later time. The command forms are

:OUTPUT _file name
and

:OUTPUT
TO: file name

where file name is the output file. The OLD FILE/NEW FILE message is printed and requires
a Carriage Return to confirm or an Alt Mode/Escape to abort the command.

The OUTPUT command can be used when the user wishes to store the solution data on a
file to be examined at a future time.

This command opens the file for symbolic output; it remains open until the OUTPUT com-
mand is given with TERMINAL (or T) specified as the output file. If NOTHING is specified
as the file name, the output is suppressed. :

INTERRUPTS

If the user types one Alt Mode/Escape, he is returned to CSMP command level after the
output buffer has been emptied. For example, \

3605
TIME 1

«Q00E 00 4.000E O1
1.000E 00 4e441E Oloe The user typed an Alt Mode/Escape here. The next three
2«000E 0O Le477E O1 lines were in the output buffer. After they were printed,
3«000E 00 4e501E 01 the user was returned to CSMP command level.

4.000E 00 4.527E 01

48

$CONTINUE o
TIME 1

5+<000E 00 4.535E 01
6.000E 00 4eS46E 01
7.000E 00 4+548E 01
8.000E 00 4¢554E 01
9.000E 00 4.561E 01
1.000E 01 4562E 01

Typing an Alt Mode/Escape two or more times returns the user to CSMP command level
immediately. Any data in the output buffer is not displayed on the terminal. For example,

$GO >
TIME _ 1

«000E 00 4.000E 01
1.000E 00 4e441FE oo The user typed two Alt Mode/Escapes here. He was
) returned immediately to CSMP command level.

$ CONTINUE o
TIME 1

7.000E 00 4548E 01
8.000E 00 4¢554E 01
9.000E 00 4.561E 01
1.000E 01 4562E 01

The data for block 1 from time 2 through time 6 was in the output buffer and was not
displayed on the terminal. This data was written on the scratch file.!

If the user types the Alt Mode/Escape two or more times and the message
ESCAPE HIT WHILE IN BLOCK: block number

is printed, continuation is not possible. This message indicates that the program is locked in a
block; for example, an infinite loop in a user-defined subroutine would cause this condition.

Any time the user types the Emergency Exit Key, the system returns immediately to the
EXECUTIVE.? The user should be aware that some scratch files used by CSMP will remain
in his directory in this case. ‘

1 - The scratch file is discussed in Section 9.
2 - The Emergency Exit Key is described in the Tymshare EXECUTIVE Reference Manual.

49

SECTION 7
EXECUTION COMMANDS

THE GO COMMAND

The CSMP user may give a GO command to begin program execution or to read data from
the scratch file.! An alternate form of the GO command is EXECUTE. The two forms are
equivalent.

THE CONTINUE COMMAND

The CONTINUE command is used to continue solution computation. Computation may
not be continued if the block configuration has been changed or if the output interval has
been changed.

THE RUN COMMAND

The RUN command requests block configurations, initial conditions and parameters, function
generator specifications (if a function generator block has been named in the configurations),
timing data, and output information. RUN then begins computation. If a numerical table has
been specified, it is printed. CSMP then asks the user if he wishes the output of any blocks
plotted.

The responses requested by the RUN command may be entered from the terminal or from
a file. If the user types an Alt Mode/Escape during the RUN command, specifications entered
before the interruption are retained.

1 - The scratch file is described in Section 9.

51

SECTION 8
FILE COMMANDS

CSMP contains several commands which allow the user to save on a file program information
for use at another time. Additional commands load these and other previously created files
into CSMP and allow the user to copy files. This section documents these commands; several
of them are demonstrated in the examples in Section 11.

THE READ COMMAND

The READ command requests the name of a previously created symbolic file and reads
from that file the block configuration specifications, the initial conditions and parameters, and
the function generator specifications, if any. This data must be in the same format used to
enter data from the terminal.

THE WRITE COMMAND

The WRITE command saves the current block configuration specifications, initial conditions
and parameters, and function generator specifications on the symbolic file named by the user.
The forms of the command are:

:WRITE file name ,
and

: WRITE 5
ON FILE: file name

The system prints the OLD FILE/NEW FILE message which requires a Carriage Return to
confirm or an Alt Mode/Escape to abort the command.

THE DUMP AND RECOVER COMMANDS

The DUMP command creates a small binary file in the user’s directory. This file contains
all of the block specifications, initial conditions and parameters, function generator specifica-
tions, timing specifications, integration algorithm, etc. The DUMP command may be given at
any time. Its form is

:DUMP file name ,
where file name is the name of the binary file to be created.

The RECOVER command is the complement of the DUMP command; it restores the con-
ditions that existed at the time the DUMP command was given. Its form is:

:RECOVER file name 5

With these two commands, the user may save all of his program specifications on a file to be
loaded into CSMP at another time. After the file is loaded, the user may begin computation
with the GO command, or he may first alter various specifications and then begin execution
with GO.

52

The DUMP and RECOVER commands are similar to the WRITE and READ commands.
However, even though they save more information than the WRITE and READ commands,
the DUMP and RECOVER commands are much faster to use.

DUMP SUBROUTINES and RECOVER SUBROUTINES

The DUMP SUBROUTINES command allows the user to create a binary file which contains
his subroutines and which is compatible with CSMP. After the user gives the SUBROUTINES
command, he will usually want to save the special file which links the subroutines to CSMP
by using the DUMP SUBROUTINES command.'

The RECOVER SUBROUTINES command loads the subroutine files previously created with
DUMP SUBROUTINES. Files created with the DUMP SUBROUTINES command may be
recovered much faster with the RECOVER SUBROUTINES command than with the reuse of
the SUBROUTINES command.

The forms of these commands are
:DUMP_SUBROUTINES file name
and
:RECOVER SUBROUTINES file name
where the subroutines are written on or recovered from the specified file.

The DUMP SUBROUTINES and RECOVER SUBROUTINES commands are illustrated in
Example 4, page 83.

DUMP ALL and RECOVER ALL

The DUMP ALL command saves on a file all the current conditions and specifications existing
in a CSMP program and all the data recorded on the scratch file.?

This command creates a binary file in the same manner as the DUMP command described
above, but the DUMP ALL command appends to the file the data recorded on the scratch file.
Thus, the size of the file depends on the amount of data that has been written on the scratch
file at the time the DUMP ALL command was given.

The DUMP ALL command may be given at any time. Its form is:
:DUMP ALL file name

The form of the RECOVER ALL command is:
:RECOVER ALL file name

The RECOVER ALL command restores all the initial conditions, specifications, and data which
existed at the time the DUMP ALL command was given.

For example, the user may interrupt the program during execution with an Alt Mode/Escape,
give the DUMP ALL command, give the QUIT command, and log out. If the program contains
user-defined blocks, he must also give the DUMP SUBROUTINES command. At any later time,
he may return to CSMP, give the RECOVER ALL command for that file, and type CONTINUE.
Execution proceeds as if no interruption has occurred.

Instead of continuing execution from the point of interruption, the user may give the GO
command in conjunction with a command such as PLOT to examine the data already created.

1 - The SUBROUTINES command is described on page 22.
2 - The scratch file is discussed in Section 9.

53

THE COPY COMMAND

The COPY command is used to create files, to list the contents of files, and to copy the
contents of one file to another. The general form of the command is

:COPY source TO destination o

where the source and destination may be file names or the terminal. A space or comma may
be used instead of TO. The COPY command causes the contents of the source to be dupli-
cated in the destination but does not affect the contents of the source.

If the destination is a file, a check is made to see if a file by that name already exists. The
system types either
OLD FILE
if the file name already exists, or
NEW FILE

if 2 new file name is being created, and waits for the user either to confirm or to abort the
command. The command is confirmed simply by typing a Carriage Return. If the command
is confirmed, the contents of an old file are completely erased and replaced by the contents of
the source. To save the contents of the old file, the command can be aborted by typing the
Alt Mode/Escape.

If the source is a file, the file must be a symbolic or binary file in the user’s directory. For
example,

:COPY DATA TO DATAIL,
copies the contents of the file DATA to the file DATAL
The command
:COPY T TO CONTROL ,
allows the user to enter the contents of the file CONTROL from the terminal.

When the source is the terminal, the user may edit the line he is typing with Control A,
Control Q, and Control W.! Terminal input is terminated with a Control D.

Note that the user cannot copy files to or from a directory other than his own.

The COPY command is especially useful for creating a command file in CSMP.? For example,
the following is a command file created by the COPY command.

:COPY T TO A,
NEW FILE

INITIAL 5
44 3eE4H4 = 6E3 »)
27 1 05
2 The single Carriage Return terminates the INITIAL command.
DT «05) '
GO >
D€ The COPY command is terminated with Control D.

1 - These control characters are described on page 39.

2 - Command files are executed with the DO command, discussed in Section 10. The COPY and DO commands are illustrated in
Examples 2 and 4, pages 69 and 83.

54

If a file has been opened with the OUTPUT command, it may be copied to the terminal; its
contents are not affected. A file opened with the OUTPUT command remains open for solution
output until the user gives the command:

:OUTPUT TERMINAL 5
If the user copies a file opened with the OUTPUT command while it is still open, the message
FILE BUSY

is printed. However, the copy operation will be completed correctly, and the user should ignore
this message. It is merely a reminder that the file is open.

THE CLOSE COMMAND

The CLOSE command enables the CSMP user to close specified files. If a file number is
included after the command, CSMP closes the file with that unit number. For example,

:CLOSE 6 o,
closes file number 6, previously opened by the user. If the file is not open when the CLOSE
command is given, CSMP takes no action.

If the CSMP user specifies no file number after the CLOSE command, CSMP closes the
units 2, 4, 5, 6, 7, 8, 9, 13, and 15. Note that these are the only file numbers the user may
assign within a user-defined subroutine. Thus,

:CLOSE
closes all files which the user has opened.

b5

SECTION 9
THE SCRATCH FILE

At each output interval, specified with the BY command, CSMP writes the output of each
of the blocks in the configuration on a binary scratch file, CSMP‘SCR1’, in the user’s directory.
CSMP automatically deletes this file when the user gives the QUIT command. If the user leaves
in a manner other than by typing QUIT, he should delete the scratch file. The easiest way is
to call CSMP and give the QUIT command.

The advantage of the scratch file is that without recomputing the solution, the outputs of
any block in the configuration may be printed or plotted for any time interval contained within
the scratch file. An understanding of the scratch file allows the user to make the most efficient
use of the GO, CONTINUE, and SAVE commands.'

Within the scratch file, time is referenced to the variable Tzppo. Initially, Typro = 0. If
the SAVE command is given, Tzpro = Tsavi, Where Tguyy is the time at which the SAVE
command is executed. The time at the end of a run is Tyyp.

A run may be terminated by: (1) TO, which is specified by the user, (2) the user’s typing an
Alt Mode/Escape, (3) a quit block in the configuration, and (4) an error in the user’s program
(overflow, division by 0, etc.). Thus, the scratch file contains the outputs of all of the blocks
in the program from Typg to Tyyp in intervals specified by BY.

The GO command is used to read data from the scratch file for any time interval contained
in the file. For instance, if the GO command has been given to execute the problem and com-
putation is complete, any of the following commands may be given, followed by another GO,
without destroying the data contained in the scratch file.

PROBE OUTPUT

DUMP PLOT

DUMP ALL IPLOT

WRITE DISPLAY
SINGLE GO,EXECUTE
DOUBLE EXPERT

FROM NONEXPERT
TO NO HEADINGS

In addition to the above commands, the user may change

TO RELERR
DT DTMIN

and use the CONTINUE command without erasing data from the scratch file.

Notice, however, that changing the output interval BY always erases the scratch file data.

1 - The GO and CONTINUE commands are described in Scction 7. The SAVE command is discussed in Section 10.

The SCRATCH command prints the status of the scratch file, indicating the period of data
contained on the file which can be listed on the terminal or written on a file without recalcu-
lation. If the scratch file is empty, CSMP prints the message

DATA FILE EMPTY
after the command.

The ERASE command erases all the data in the scratch file.

Example

t SCRATCH
DATA FILE

FROM: «00OE 00
BY: 2.500E-01
TO: 1.000E Ol

t ERASE

$SCRATCH >
DATA FILE EMPTY The scratch file is empty after the ERASE command.

H

Assume the user has already entered a problem, giving the block configuration and initial
conditions. He then specifies the timing parameters and executes the program with the following
sequence of commands:

$TIMING >
DT: +01,

OUTPUT
FROM: 0
BY: 15
TO: 10003

$PRINT
PRINT BLOCKS: 1 2 3 6 7 8,

2GO 5

At this point, CSMP has calculated the output values for all blocks from time 0 to 10 in intervals
of .1 and has printed these values for blocks 1, 2, 3, 6, 7, and 8. Tzggo = 0, Tgnp = 10.0,
and any of the commands listed under the GO command may now be given without destroying
the data on the scratch file.

57

For instance, the user continues the above program by plotting blocks 4 and 9 from 2 to 8
¢the interval .1 must remain the same). To do this, he gives the commands:

sFROM 2)
¢ TO 83

sPLOT 4 D

AUTOMATIC SCALING? YES 5
PLOT BLOCK: 9 o
AUTOMATIC SCALING? NO 5
YMIN = 58

PLOT BLOCK: ;

26O 5

CSMP plots, in intervals of .1, the values for blocks 4 and 9 on the same axes for the time
period 2 through 8. The values are read from the scratch file and are not recomputed.

The contents of the scratch file are erased completely if the output interval BY is changed
or if 2 FROM value is specified which is less than Tyggo. The SAVE command erases the
contents of the scratch file up to but not including the values at time Tgayg.

As another example, assume that all program specifications except the timing specifications
have been entered. The commands

:TO .01 FROM 005 BY .0004

sPLOT 7o
AUTOMATIC SCALING? YES ;
PLOT BLOCK: 5

3G0 5

plot block 7 from time .005 through .01 in intervals of .004. At this point, Tzgpo = 0,
Tegnp = -01, and the outputs of all blocks in the program, including block 7, are recorded on
the scratch file from Tygpo through Tgyp. Now the user wishes to continue computation and

extend the time interval to .015.

¢ TO 00153

: CONTINUE 5

58

These commands instruct CSMP to scale and plot block 7 from time .005 to .015. Typro = 0.0,
and Tgyp = .015. The scratch file contains values for all blocks from time 0 to .015.

$SAVE 5 This command sets Typpo = Ty = .015.
SRK4 b The user now changes the integration algorithm.
:TO 0%) This command changes the output end value TO to .02.

36O

CSMP scales and plots block 7 from time .015 to .02 in intervals of .0004. The values were

calculated using the RK4 algorithm. Tzppo was equal to .015 since the SAVE command was

given. The scratch file contains output for all the blocks from Tzpro=.015 to Tpyp=.02.
The user now wishes to plot block 8 from .0001 to .02:

:TO .02 FROM +0001 5

tPLOT 85
AUTOMATIC SCALING? YES
PLOT BLOCK 2

160 ,

Because the user has requested an output start time (.0001) which is not in the interval T;ppo
to Tgyp (.015 to .02), a new solution must be computed from T,ppo=0. Even though the
scratch file contains useful data from .015 to .02, a new solution is calculated from time O

to .02.

SECTION 10
DEBUGGING AND UTILITY COMMANDS

DEBUGGING COMMANDS

CSMP contains six debugging commands to give the user additional information about the

problem configuration. These commands are FIND, DISPLAY, DELETE, PROBE, SAVE,
and CPU.

The FIND Command

The FIND command lists all references to either a block type or a block number or both.
For example,

:FIND I,F 35

1 I 0 31 0
2 1 0 32 0]
3 I 0 33 0
13 F 3 0 0
3 I 0 33 0
13 F 3 0 0
41 G 3 0 0
43 G 3 0 0
53 + -1 3 0

The user may separate the quantities after the FIND command with commas or spaces.

The DISPLAY Command

The DISPLAY command prints specified quantities on the terminal. The quantities which
may be specified are:

Quantity Description
BLOCKS Lists block configuration specifications, initial conditions,
and parameters.
INITIAL Lists initial conditions and parameters.
FUNCTION Lists function generator specifications.
TIMING Lists timing specifications.

RELERR Prints the current RELERR value.

59

60

Quantity Description
DT Prints the current DT value.
DTMIN Prints the current DTMIN value.
FROM Prints the current FROM value.
BY Prints the current BY value.
TO Prints the current TO value.
ALGORITHM Prints the name of the current integration algorithm.

any valid block number Displays the specified block.
ALL Displays all of the above.

The quantities to be displayed may be entered on one line separated by commas or spaces.
For example,

:DISPLAY DT ALGORITHM RELERR 14 20,

The command prompts the user for the quantities if he types a Carriage Return after DISPLAY.
The program responds with DISPLAY:, after which the user enters the quantities on one line as
described above. For example,

:DISPLAY
DISPLAY: DT ALGORITHM RELERR 14 20

The quantities to be displayed may be entered on more than one line if all lines except the
last are terminated with a Line Feed. The command including quantities may contain as many
as 256 characters excluding Line Feeds.

NOTE: The command
DISPLAY FUNCTION
displays all function generators. To display only one function generator, the user types
DISPLAY block number
where block number is the number of the function generator.

The LIST command is identical to the DISPLAY command.

The DELETE Command

The DELETE command is used to delete specifications from the CSMP program. The
following quantities may be deleted:

ALL Completely clears CSMP so that another problem may be entered.
BLOCKS Same as ALL.

FUNCTION Erases the function generator specifications.

INITIAL Erases the initial conditions and parameters.

TIMING Erases previous timing specifications.

61

There are two forms of the command:
:DELETE quantity
and

:DELETE 5
DELETE: quantity

The PROBE Command

The PROBE command prints the last value computed for specified blocks in the configuration.
Time, block 301, may be specified. The blocks to be probed are entered on one line separated
by spaces or commas. They may follow the command or the user may be prompted for the
block numbers. For example,

:PROBE 1 4 10 13 200 30]2
and

:PROBE 5,
BLOCK: 1 4 10 13 200 301,

both print the last computed values for blocks 1, 4, 10, 13, 200, and 301.

Example

S$PROBE 82 5 84 86 782 The user requests the current values of blocks 82, 5, 84, 86, and 78.
822 5+896E 01
St «000E 00
842 S5.896E 01
862 5¢896E 01
782 3474E-03

L]

The SAVE Command

The SAVE command is useful for studying a system’s response after a given time T. A
system may be quite stable until a certain time. At this time, the SAVE command could be
given and the system analyzed using various integration intervals, integration algorithms, output
intervals, etc. Execution time would be reduced since all computations begin at Tg,yg instead
of 0.

The SAVE command performs the following functions:

1. The time at which the command is given, Tg,yy;, becomes the reference time. In other
words, Tzpro = Tsave:-

2. It saves the output values and parameters of all blocks in the configuration at time Tgay-
3. The output start time is set equal to Tguyp; in other words, FROM = Tg,yp:-
4. It erases all of the data on the scratch file' up to but not including the data computed at

TSAVli .

1 - The scratch file is discussed in Section 9.

62

After the SAVE command has been given, the GO command begins computations at the
time and conditions at Tg,yy instead of O.

The form of the command is simply:
:SAVE 5
In previous versions of Tymshare CSMP it was necessary to use 2a RESTORE command in

conjunction with the SAVE command. There is no longer a RESTORE command, since GO
performs this function automatically.

The SAVE command is illustrated in Example 4 on page 83.

The CPU Command

The CPU command prints the total CPU time used since log in and DELTA CPU. DELTA
CPU is initialized to O upon entering CSMP and each time the command is given. For example,

$CPU>
TOTAL CPU:s 304 SEC
DELTA CPU: 24 SEC

This command is helpful for choosing the most economical integration algorithm and integra-
tion interval for a particular problem.

UTILITY COMMANDS

CSMP contains several utility commands to facilitate use. The most useful of these commands
is the DO command which executes a command file in CSMP. It has the form

:DO file name 5

where the file name is the name of the command file. The DO command is illustrated in
Examples 2 and 4, pages 69 and 83.

The table on the following page lists the other CSMP utility commands.

63

Command Description

CAPABILITIES Describes program capabilities.

CHARGES Lists additional cost, if any.

CREDITS Prints credit for implementation of CSMP.

EXPERT Used by those familiar with CSMP. Prints minimum information when
requesting data.

HELP or ? Prints a list of CSMP commands with descriptions.

INSTRUCTIONS | Prints a list of instructions used to execute the program.

NONEXPERT Returns the user from the EXPERT mode to the standard NON-
EXPERT mode.

QUIT Returns the user to the EXECUTIVE and deletes all scratch files.

VERSION Lists the number and date of the last update of CSMP.

65

SECTION 11
SAMPLE PROBLEMS

This section contains four sample problems illustrating the major CSMP commands. Example 1
illustrates the basic CSMP problem entry and execution. Example 2 illustrates the recovery and
modification of a previous problem; Example 2 also utilizes a command file to produce four
successive plots with a minor modification in each plot. Example 3 contains a function gen-
erator block. Example 4 illustrates the use of a user-defined block and a command file.

Example 1 — SPRING, MASS, DAMPER SYSTEM

The diagram below shows a simple mechanical system consisting of a spring, a mass, and a
damper suspended from a fixed reference position. If the mass is displaced from its rest posi-
tion and then released, it oscillates until the energy is dissipated by the damper. The purpose
of a simulation might be to analyze the effect of different spring constants on the motion of
the mass. One possible simulation diagram for representing the system is shown below the
system illustration.

3
@D, S
Spring - L_ —I

k = Spring constant ¢ = Damper constant

Damper

t

v Displacement x

Rest position

Model Equation: mx"' + cx' + kx = 0

66

w
k

300 —m

-CSMP o)
¢BLOCKS o

BLOCK TYPE El1 E2 E3

4

BEGIN SORT
$INITIAL o
BLOCK P1 P2 P3
300 -1,

1 "lD
5 «5 1,

e

67

STIMING 5

DT: 025

ouTPUT

FROMS 105 The output specifications suppress terminal output until time=10. Data
BYS: 255 iswrittenon the scratch file at intervals of .25 from time=0 to time=10.

T0: 10,

tPRINT 1 2 6,

:DUMP SPRING The user creates a binary file containing all program parameters.
OLD FILE,
$6G05
TIME 1 2 6

1.000E O1 Be4T2E=02 =2¢165E-02 =7¢389E-02
t VARIABLE 5 The user checks the accuracy of the solution with a second integration algorithm.

GO NO HEADING ,

1.000E O1 Be439E-02 =2.182E-02 =7348E-02
The accuracy is sufficient for plotting.

$FROM Qo The user changes the start time to 0.

sPLOT 1

AUTOMATIC SCALING? NOo
YMAX = 13

YMIN = =10

PLOT BLOCK: 2

AUTOMATIC SCALING? YESo
PLOT BLOCK:

68

8GO0 5 The program does not recalculate solutions; it reads the scratch file data to produce the plot.

BLOCK SYMBOL

1
2

TIME
«000E

+
b 3

00

2500E-01
5.000E-01
7+500E-01

1.000E
1.250E
1500E
1«750E
2.000E
2250E
2¢500E
2¢750E
3.000E
3.250E
3¢500E
3750E
4.000E
4.250E
4.500E
4+750E
5«000E
5250E
5.500E
5¢7S0E
6.000E
6250E
6+500E
6750E
7+.000E
7250E
7+500E
7+750E
8.000E
B8+250E
8+500E
B84750E
9.000E
9250E
9+500E
9.750E
1+.000E

$QUIT

00
00
00
00
00
0o
00
00
00
00
00
0o
00
00
00
00
0o
00
00
00
010)
00
00
00
00
00
00
00
00
00
0o
00
00
00
00
00
0}

MIN MAX INCREMENT
-1.000E 00 1.000E 00O 4.000E-02
-3.139E-01 7.067E-01 2¢041E-02

toooetoeccotoccoteccoteoceoteceoctecscotosocscoteccetoceet

+ *

+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+
* +
* +
* +
* +
* +
* +
* +
* +
* +
* +
*x +
* +
* +
* +
* +
* +
* +
*+
+
+
*+
* +
* o+
* +
* +
* +
* +
* +
* +
* +

Ftoeoooeteceotecscotocoscotoecocteccotecosetoeccetocscectoceet

69

Example 2 — NONLINEAR SPRING, MASS, DAMPER SYSTEM

This example demonstrates the ease with which CSMP solves nonlinear problems. The user
wishes to investigate the response of the spring, mass, and damper system in Example 1 when
the damping is proportional to the square of the velocity. To make the damping force c(x')?
act in the direction opposite to travel, the equation for the system is

mx” + c(x')? + kx

0 for x>0

Il

mx" —c(x)? +kx =0 for x'<0

A possible block diagram of the system is shown below.

41 B
4 X 0] X
n2
x)
c(p1 5 2
w / 6 " I
k(P2 X
300
—m
-CSMP

$ RECOVER SPRING The user recovers and displays the configuration
of Example 1, saved on file SPRING.

s DISPLAY ALL 5

BLOCK TYPE El E2 E3 P1 P2 P3
300 K 0 0 0 -1.000E 00

1 ¢ 2 o 0 ~-1.000E 00

5 W 2 1 0 5.000E-01 1.000E 00

6 / 5 300 0

2 I 6 o 0

70

DT: 2.500E-02

OUTPUT

FROM: 1.000E O1
BY: 2.500E-01
TO: 1.000E Ol

RELERRt 1.000E-03

DTMINS 2.500E-08

ALGORI THM: RK2

DATA FILE EMPTY

$ BLOCKS ;, The user adds blocks and modifies the previous configuration.
BLOCK TYPE El1 E2 E3

40 X 2 2,

41 B 2,

4 X 41 405

S W41,

PREVIOUS SPECIFICATION DELETED FOR BLOCK: S

?
BEGIN SORT

t INITIAL
BLOCK P1 P2 P3

»
$GO

TIME 1 2 6
1.000E 01 2.983E-01 ~-1.401E-01 -2.885E-01
8 VARIABLE The user checks the solution accuracy with a different integration algorithm.
$G0 5
TIME 1 2 6
1.000E 01 2.968E=-01 -!.4171'2-01‘ -2.868E-01

t FROM O o CSMP does not recompute thésolution, but rather takes values fromk the scratch file.

t PLOT 1

AUTOMATIC SCALING? NO 5
YMAX = |

YMIN = :fp

PLOT BLOCKs 2,
AUTOMATIC SCALING? YES O

PLOT BLOCK: >

SGOD

BLOCK SYMBOL

1
2

TIME
«000E

+
*

00

QOSOOE‘OI
5.000E-01
7+500E-01

1.000E
1.250E
1.500E
1.750E
2.000E
2.250E
2.500E
2.750E
3.000E
3+250E
3.500E
3.750E
4.000E
4.250E
4.500E
4.750E
5.000E
5.250E
S« SO00E
5¢750E
6.000E
6.250E
6.S00E
6+ 750E
7.000E
7.250E
7.500E
7.750E
8.000E
8 .250E
8 .+.500E
8.750E
9.000E
9.250E
9.500E
9.750E
1.000E

00
00
00
00
00
00
00
(¢]0)
00
00
00
00
00
00
(o]0)
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
o1

71

MIN MAX INCREMENT
-1.000E 00 1.000E 00 4.000E-02
-5.013E-01 7.793E-01 2.561E-02
+ecocotoscstsceceotooscsetoccotocceteccetoccsotoccetoccet
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+
* +
* +
* +
* +
* +
* +
* +
* +
* +
* +
* +
* +
* +
* +
+ %
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ X
*x +
* +
* +
* +
* +
* +

+oeooetoccetoccoetecectococtecoeteccotoccctoccotoceet

72

$ DUMP NONL INEARSPRING 5 The user creates a binary file containing all program parameters.
NEV FILE,

s COPY TERMINAL TO DAMPING o The user creates a file, DAMPING, from which CSMP will take

NEVW FILE commands. The user investigates the effect of overshoot by
varying P1 of block 5, the damping coefficient. The problem

INITIAL runs four times, with Pl equal to 1, 2, 4, and 8.

$11

GDO The user must include the Carriage Return to terminate the INITIAL command.

INTTIAL >

s21,

)

GO

INITI AL

S 41 l

po)

GO

INITIALS

58 1,

]

GO 5

D¢ Control D terminates file creation.

$ COPY DAMPING, TERMINAL o The user checks the file to see that it is correct.
INITIAL
511

60
INITIAL
521

Go
INITIAL
S 41

G0
INITIAL
58 1

GO

75

BLOCK P1 P2 P3 Pl is set to 4.

BLOCK SYMBOL

1
2

TIME
«000E

+
*

00

2.500E-01
5.000E=-01
7.500E-01

1.000E
1.250E
1.500E
1.750E
2.000E
2.250E
2+500E
2¢750E
3.000E
3.250E
3¢500E
3+7S0E
4.000E
4.250E
40.500E
4.750E
5.000E
5.250E
5500E
S5¢750E
6.000E
6.250E
6+.500E
6¢750E
7.000E
7.250E
7.500E
7+75S0E
8.000E
8.250E
8 « S00E
8+.750E
9.000E
9.250E
9.500E
9.75S0E
1.000E

00
00
00
00
00
00
00
00
00
00
00
0]0)
00
00
00
00
00
00
00
00
oo
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
o1

MIN MAX INCREMENT
-1.000E 00 1.000E 00 4.000E=-02
-9.772E=-02 4¢244E-01 1.044E-02

toeooeotecscsotoecscsetecssotecsotessotecsccstocssotoccctoceet

+ *

+ * ,
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+%
* o+
* +
%* +
* +
* +
* +
* +
* +
* +
* +
* +
* +
* +
* +
*® +
* +
* +
* +
* +
* +
% +
* +
* +
* +
* +
* +
* » +

+eosotocscetoecoetoecectecscetecocetoccotocsctocscctecncet

76

BLOCK P; P2 P3 P1 is set to 8.

BLOCK SYMBOL

1
2

TIME
«000E

+
%x*

00

2.500E-01
5.000E-01
7.500E-01

1.000E
1.250E
1.500E
1.750E
2.000E
2.250E
2.500E
2.7S0E
3.000E
3.250E
3+500E
3.750E
4.000E
4.250E
4.500E
4.750E
5.000E
5.250E
5¢500E
S«750E
6.000E
6.250E
6+500E
6+ 750E
7.000E
7.250E
7.500E
7.750E
8.000E
8.250E
8+500E
8.7S0E
9.000E
9.250E
9+500E
9.750E
1.000E

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01

MIN MAX INCREMENT
-1.000E 00 1.000E 00 4.000E-02
~4.882E-02 3.208E-01 7393E-03
toeooetesceteccotoccetecsetecsosetoccetocsetocsotoccet
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+%
x +
* +
%k +
%k +
* +
* +
* +
* +
%* +
3 +
* +
* +
* +
* +
* +
* +
* +
* +
% +
* +
* +
* +
* +
%* +

teocetocsetoccotecccstecoetocootoccoeteccsoteccoteccet

77

The system appears to be well damped for c=8. The user notes that the maximum overshoot

occurs between time=5 and time=7. The user calculates the maximum value by using the auto-
matic scaling feature of the PLOT command.

sPLOT 1 o
AUTOMATIC SCALING? YES
PLOT BLOCK: »

¢FROM 5 TO 7, Notethat CSMP allows the output of any block in any interval from 0 to 10.

$GO 5

BLOCK SYMBOL MIN MAX INCREMENT
1 + 2.548E-02 6.223E-02 7.350E-04

TIME *oooo+oooo+oooo+oooo+oooo*.ooo+oooc+oooo+oooo+oooo+
5«000E 00 +
5.250E 00 " +
5¢500E 00 +
S«7SOE 00 +
6.000E 00 +
6.250E 00 +
6+500E 00 +
6.750E 00 | +
7.000E 00 +

+oooo*oooo*oooo*oooo*ooo'+oooo+oooo+oooo+0oo.*oooo*

sQUIT o

The maximum overshoot occurred at time=6 and equaled .06223.

78

Example 3 — POSITION CONTROLLING SERVO SYSTEM

This example analyzes a simple position controlling servomechanism with rate feedback from
a tachometer. The illustration below shows a model of the system and a list of equations which
describe the model.

Kk o;
l/m 253— 2 o o 00.

/! + s+ T
- E2
Amplifier Motor Integrator
k3
——
Tachometer

where

6; = Commanded position

6y, = Motor position

€ = Gi - 60 = Position error

El = k,e = Amplifier voltage
E2 = k30, = Tachometer voltage
E3 = E1 — E2 = Error voltage

k2
by = —-—-—-E3) = Motor velocity

s + 1 /Tm
and
k; = Amplifier gain (volts/radian)
k, = Motor velocity constant (radians/volt-second) = 1
ky = Tachometer voltage constant (volt-seconds/radian)
T, = Motor electrical time constant = 0.1

s =ij

The CSMP block diagram below corresponds to this example.

79

Of special importance in this example is the use of the function generator to describe the
output of the amplifier. The gain of the amplifier is proportional to the position error (e)
such that:

U SO U

0.6 ——~-—-=-~—

=)

€ (radians)

0.6 1.0

N

|

|

|

i

i

|

|

1

!

|
o
2

E1 (volts)

80

All function generator blocks require three statements to describe the function. For this

example, the statements and the values are:

1. Configuration statement, specifying the block interconnections:

4, F, 5.

2. Parameter statement, specifying the maximum and minimum x-axis values:

3, 1.0, —-1.0.

3. Function generator statement, requesting the values of the function at 11 points along

the x-axis, evenly spaced between the minimum value

, —1.0, and the maximum value, 1.0.

Thus, values must be supplied for f(e)=E1 as e ranges from —-1.0 to 1.0 in increments

of 0.2.

The table on the right is constructed from the equations below, which describe the function.

f(e) = 2.25¢ + .75
= €

= 225¢ — .75

=CSMP 5
¢ BLOCKS 5
BLOCK TYPE El E2 E3

1125

0
2
4 F 5
-1 63
)

BEGIN SORT

UlO\U‘leN
LIRS IE e

—1.0 <

€

< —0.6

—06 <e <06

06 < ¢

<10

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
04
0.6
0.8
1.0

El

-1.5
~1.05
~0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
1.05
1.5

$ INITIAL 5
BLOCK Pl P2 P3
2 0 -10 15

3 -1 1>
6 1
]

FUNCTION GENERATOR SPECIFICATIONS

BLOCK: 4

INTC 0) = =1.5>
INTC 1) = =1.05>
INTC 2) = =6
INTC 3) = =4
INTC 4) = =23
INTC 5) = 0>
INTC 6) = 23
INTC 7) = 4>
INTC 8) = +65
INTC 9) = 1.05>
INTC10) = 150
P1 MUST BE > P2 FOR BLOCK:
P1 = 15

P2 = =15

BLOCK: 2 A Carriage Return ends specifications.

: DUMP_SERVO >
NEW FILED

: VARIABLE O

$PRINT 1 >

:FROM 10 BY .5 TO 10 5

: DISPLAY DT >
5.000E-02

81

CSMP requests function generator y values.

4 PI and P2 were not specified above as
parameters; CSMP requests them here.

82

$GO >
TIME

1.000E 01

$PLOT 15

1

6+380E-01

AUTOMATIC SCALING? NO
YMAX = 1 >

YMIN = 0 O
PLOT BLOCK: 2 >
AUTOMATIC SCALING? YES >

PLOT BLOCK: o
$ FROM 0 »

160D

BLOCK SYMBOL

1
2

TIME
+«000E

+
%*

00

5.000E-01

1.000E
1.500E
2.000E
2.500E
3.000E
3¢500E
4.000E
4.500E
5«000E
5¢500E
6.000E
6.500E
7.000E
7+S00E
8.000E
8+500E
9.000E
9.500E
1.000E

tQUIT »

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
o1

The CSMP scratch file contains values from 0 to 10 in intervals of .5.
The user may display the contents of any interval on the scratch file
without recomputing the solution.

MIN MAX INCREMENT
«000E 00 1.000E 0O 2.000E-02
«000E 00 1.270E-01 2¢541E-03

+oeooeteccotocsootoscoetocscetecocctocscetsccstoscetococt

+

+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+ *
+
* o+
* +
* +
* +
* +
E +
* +
* +
* +
%k +

+oeooeotoosetocootocosotoccoteccotecoctoccetocectoceet

83

Example 4 — FALLING BALL PROBLEM

This example demonstrates the use of a user-defined block in a CSMP problem. The equa-
tion below can be solved in CSMP without the aid of a user-defined block. The block is used
for the purpose of demonstration. ,

The user wishes to determine the time required for a ball dropped from height y, above
the earth to hit the ground. He wishes to plot its position, velocity, and acceleration for
Yo=15,000 feet.

The equation representing the motion of a falling body is

dy _ _ dy)?
w E + A®Y) (dt)

where the term A (y)=.001e—00004328y is proportional to the standard atmospheric weight
density of air, and g=32.17, the acceleration due to gravity, assumed constant. All units are
in feet, seconds, feet/second, and feet/second?.

The block diagram is illustrated below. The quit block, Q, terminates the execution when
the height y = 0.

2 1
S ’_ﬂ> e |4
y y

The CSMP user writes a subroutine to calculate the right side of the equation.

-EDITOR o
*APPEND »
FUNCTION Si1<¢Y>»YDOT»E3,P1,P2,P3)D
S1=-P1+P2%EXP(P3*Y)*YDOT*YDCT O
RETURN
END 5>
*WRITE SUBS!1 »
NEW FILE o>
73 CHARACTERS
*QUIT D

84

-BFORTRAN o

+COMPILE SUBS1,CSMPSUBS > The subroutines must be on the file CSMPSUBS.
NEVW FILE O

FUNCTION S1(Y,YDOT»E3,>P1,P2,P3)
END ‘ '

+QUIT ,

=GSMP 5

¢ BLOCKS

BLOCK TYPE El E2 E3

3 Yo Comments follow the semicolon.

1
2
3
4
2
BEGIN SORT

$ INITIAL ,
BLOCK P1 P2 P3
1 15000 5

3 32.17 .001 -+.00004328
> — —

$ SUBROUTINES The user loads his compiled subroutines.
LOADING LIBRARY

WORDS USED
PROGRAM: 5740
STORAGE: 2181
SHARED: 5550
DEBUG? 138
WORDS UNUSED
PROGRAM: 2159 CSMP indicates the number of words of
SHARED: 594 core available for the user’s subroutines.

¢ DISPLAY BLOCKS >

BLOCK TYPE El
1 I 2
3 S1 1
2 1 3
4 Q 0

P1 P2
1.500E 04
3.217E 01 1.000E-03

—-ONOR;
]
OO0OQOoOW

P3

=4.328E-05

85

:TO 100 BY 1 FROM 100

$ PRINT 15
$ GO NO HEADING >
RUN TERMINATED IN BLOCK: 4

¢PROBE 301 § 2 3O Block 301 is time.

301t 7.600E 01 The ball hits the earth before time=76 seconds.
1t -5.346E 01
2: -1.812E 02
38 T7.267E-01

$FROM 75 TO 750

$PRINT 1 2 3>

¢ VARIABLE The user chooses a different algorithm.
$G0 o
TIME 1 e 3
7.S500E 01 1.285E 02 =1.819E 02 7.327E-01 The ball is 128.5 feet above

the ground after 75 seconds.

: DISPLAY RELERR 5
1.000E-03

¢t RELERR 0001, The user makes RELERR smaller for better solution accuracy.

$ GO NO HEADING,

7.500E 01 1.285E 02 =1.819E 02 7¢327E=01 He gets the same answers,
') o T " indicating a good solution.
$ SAVE S This command saves all data necessary to continue the computation from time=75.

t DUMP BREAK The user is called away. He saves the program status on the
NEW FILEQ file BREAK and the subroutine on the file BALLSUB.

¢ DUMP_SUBROUTINES BALLSUB 5
NEV FILE 9

SQUITO

-CSMP o}

¢ RECOVER SUBROUTINES BALLSUBD The user returns and resumes his previous
status with two RECOVER commands.

t RECOVER BREAK |

$FROM 76 BY <01 TO 76 5 The output interval is smaller, .01.

$GO N, N indicates no heading.

RUN TERMINATED IN BLOCK: 4

$ PROBE 301 1,
3018 7.571E 01
! : - 4. l 40E-0 1 The ball hits the ground between time=75.70 and 75.71 seconds.

t FROM 75.75
$ GO
TIME 1 2 3

T7.570E 01 1400E 00 =~1.814E 02 7285E-01 The velocity just before
. ' impact is approximately

¢FROM O BY 2 TO 74 Theuserplots the ball’s position, velocity, 181.4 feet per second.

and acceleration from time=0 to 74 seconds.

$PLOT 15
AUTOMATIC SCALING? YESo
PLOT BLOCK: 2 >
AUTOMATIC SCALING? YES»>
PLOT BLOCK: 3 >
AUTOMATIC SCALING? YES,
PLOT BLOCK3$D

87

$1GOO

BLOCK SYMBOL MIN MAX INCREMENT
1 + 3.108E 02 1.500E 04 2.938E 02
2 * -2.323E 02 ~«000E 00 4.645E 00
3 . -3.217E 01 1.067E 00 6+647E-01

TIME +eocooetoecoeteccsetocscsetesccsatocosotoscoteccsetoccotocneet

«000E 00 .) ‘ ' +
2.000E 00 o * +
4.000E 00 . * +
6.000E 00 * o +
8.000E 00 * . +
1.000E O1 * . +
1.200E 01 * o +
1+400E Ol * +
1.600E 01
1.800E 01
2.000E Of
2.200E 01 o
2.400E 01 * + o
2.600E 01 * : + o
2.800E 01 * + .
3.000E 01 * + .
3.200E 01 * + o
3+400E 01 * + .
3.600E 01 * o
3.800E Ol * + .
4.000E O1 * .
4.200E 01 * + .
4.400E 01 * + .
4.600E O1 * + .
4.800E 01 * + .
5.000E 01 * + o
S<200E Ol * + o
S¢400E 01 * + o
5«600E Ol * + .
S+«800E Ol * + o
6.000E Ol *+ .
6.200E 01 + % .
6+ 400E O1 + % .
6+.600E O1 + * .
6.800E 01 + * .
7.000E 01 + * °
7.200E 01 + * .
7+400E 01 + * o

+

+ecoetoecootecscsoteccsoteccetoccetecosostoccoteccetecee

88

Note that the velocity is negative, as it should be. The acceleration is in the negative direction
for approximately 20 seconds, then becomes slightly positive as the air molecules are providing
a greater force than that due to gravity. The ball hits the ground at 181.4 feet per second, or
124 miles per hour, as determined on page 86. In the thinner atmosphere, the ball reaches a
maximum velocity of 232.2 feet per second, or 158 miles per hour.

The user wishes to determine the time required to fall from 100 feet, 500 feet, 1000 feet,
10,000 feet, and 100,000 feet. Instead of giving each command individually, he creates and
executes the command file HEIGHT. '

$ COPY TERMINALLHEIGHT >
'NEW FILED

INITIAL 5
1 100
ST

GO N5

PROBE 301 1 2 3,
INIS o

1 500,

)

GO N>

PROBE 301,1,2,3>
INI T

1 10005

5

GO No

PRO 301 1 2 3>
INIS
1 _1Ea,
=

GO N>
PRO 301 1 2 3>
INIS;

1 1ES;

)

GO N

PRO 301 1 2 3,

DC

¢eBY 1 TO 1000 FROM 10005

¢ PRINT 1 P>

$ DO HEIGHT o CSMP takes commands from the file HEIGHT.
BLOCK Pl P2 P3 Theinitial value for block 1 is changed.
RUN TERMINATED IN BLOCK: 4

301t 2.550E 00
1: -1.146E 00

23 =7.676E O1 ¥, = 100 feet
3: =2.628E 01 time = 2.55 seconds
BLOCK P! P2 P3
RUN TERMINATED IN BLOCK: 4
301t 6.050E 00
1: -9.360E-01 Yy = 500 feet
23 =1.429E 02 time = 6.05 seconds
3t -1.176E 01
BLOCK P1 P2 P3
RUN TERMINATED IN BLOCK: 4
301: 9.250E 00
1t =7.1S7E 00 y, = 1000 fect
2¢ =1.676E 02 time = 9.25 seconds
3t -4.061E 00
BLOCK Pl P2 P3
RUN TERMINATED IN BLOCK: 4
301: S.S500E 01
i: -1.309E 02 ¥, = 10,000 feet
2: -1.809E 02 time = 55 seconds
3t 7.241E-01
BLOCK P1 P2 P3
RUN TERMINATED IN BLOCK: 4

301t 2.390E 02 ¥, = 100,000 feet
12 =-1.984E 0Ol time = 239 seconds

2 =1<813E 02 After y,=1000 feet, the terminal velocity is almost constant.
3: 7.278E-01

920
$PLOT 25 The scratch file contains the data from the previous run.
AUTOMATIC SCALING? YES o With recomputation, the user wishes to find the maximum
PLOT BLOCK: 3 by and minimum values of velocity and acceleration.

AUTOMATIC SCALING? Y3
PLOT BLOCKS o

$ FROM O
$6G05
BLOCK SYMBOL MIN MAX INCREMENT
2 + -9.210E 02 «000E 00 1.842E 01
3 % =3.217E 01 1.247E 01 8.927E-0I
TIME tooeoetoosetocosetecsosotecsetocsecetoccctocscetoccctocect
«000E 00 * ‘ ' T ’ ’ +

15000E 00 *

tQUIT

The user wanted only the maximum and minimum values, not the plot. He hits the Alt
Mode/Escape. From 100,000 feet, the maximum velocity is 921 feet per second, or 628 miles
per hour.

APPENDIX A

CSMP COMMAND SUMMARY

The table below presents a concise list of CSMP commands and their descriptions. Most

CSMP commands can be abbreviated to a left subset of the complete command. The minimum
abbreviations are listed in the table. For example, the CLOSE command may be given as CLO,

CLOS, or CLOSE.

Minimum ..
Command Abbreviation Description

ALGORITHM ALG DISPLAY ALGORITHM prints the current
integration routine.

BLOCKS BLO Specifies, alters, or adds block configuration
specifications from the terminal.

BY BY Specifies output time interval.

CAPABILITIES CA Describes program capabilities.

CHARGES CH Lists additional cost, if any.

CLOSE CLO Closes specified input or output files.

CONTINUE CON Continues execution of the solution.

COPY Ccop Performs same function as the EXECUTIVE
COPY command.

CREDITS CR Prints credits for implementation of the
program.

DEBUG DEB Transfers control to BATCH FORTRAN IV
for debugging subroutines.

DELETE DEL Deletes specified program quantities.

DISPLAY DI Prints specified program quantities.

DO DO Takes CSMP commands from a file.

DOUBLE DOU Prints numeric output with eight-digit
accuracy.

DT DT Specifies integration interval or step size.

DTMIN DTM Specifies minimum integration interval for the

‘ VARIABLE integration routine.

DUMP DU Creates a binary file containing all program

specifications and user-defined blocks, if any.

92

Minimum ..
Command Abbreviation Description
DUMP ALL DU ALL Creates a binary file containing all program
specifications and all solution data currently
in the scratch file.
DUMP SUBROUTINES DU SUB Creates a binary file containing the user’s
subroutines to be linked with CSMP.
ERASE ER Erases all current data from the scratch file.
EULER EU Specifies the EULER integration routine.
EXPERT EXP Prints minimum information when requesting
data.
FROM FR Specifies output start time.
FUNCTION FU Specifies or alters function generator specifica-
tions from the terminal.
GO GO Begins program computation or reads data
from the scratch file.
GO NO HEADING GO N Same as GO, except headings are not printed.
HELP or ? H Prints a list of CSMP commands with
descriptions.
INITIAL INI Specifies, alters, or adds initial conditions
and/or parameters from the terminal.
INSTRUCTIONS INS Prints a list of instructions to execute the
program.
IPLOT IP Specifies blocks to be plotted without auto-
matic scaling.
NONEXPERT N Reverses condition set by the EXPERT
command. 7
OUTPUT (O3S Writes the output from the last PRINT or
PLOT command on the specified file.
PLOT PL Specifies the blocks to be plotted, with or
' without automatic scaling.
PRINT PRI Specifies blocks to be printed in tabular form.
PROBE PRO Prints the last computed value for the
specified blocks.
QUIT Q Returns the user to the EXECUTIVE and

deletes all scratch files.

93

Minimum

Command Abbreviation Description

READ REA Reads the block configuration specifications,
initial conditions and parameters, and function
generator specifications from the specified
symbolic file.

RECOVER REC Loads the specified binary file created by the
DUMP command.

RECOVER ALL REC ALL | Loads the specified binary file created by the
DUMP ALL command.

RECOVER SUBROUTINES | REC SU Loads the specified file created by the DUMP
SUBROUTINES command.

RELERR REL Specifies the relative error used by the
VARIABLE integration routine.

RK2 RK2 Specifies the Runge-Kutta second order
integration routine.

RK4 RK4 Specifies the Runge-Kutta fourth order
integration routine.

RUN RU Requests program information and initial
conditions and begins computation.

SAVE SA Saves all parameters at the time the command
is given that are necessary to begin computa-
tion. Erases all data on the scratch file up to
the time the command was given.

SCRATCH SC Displays scratch file information.

SIMPSONS SIM Specifies the Simpson’s Rule integration
routine.

SINGLE SIN Prints numerical output in four-digit accuracy.

SUBROUTINES SU Loads the user’s subroutines into CSMP.

TIMING TI Prompts the user for the timing specifications.

TO TO Specifies the output end time.

TRAPEZOIDAL TR Specifies the trapezoidal integration routine.

VARIABLE VA Specifies the variable step size integration
routine.

VERSION VE Prints present version number of CSMP.

WRITE w Saves the current block configuration specifi-

cations, initial conditions and parameters, and
function generator specifications on the sym-
bolic file named by the user.

'1

95

APPENDIX B
LAPLACE TRANSFORM MODELING TECHNIQUES

This appendix demonstrates an efficient method for modeling a Laplace transform expressed
as the ratio of two polynomials in s, where s=jw. For example, the general Laplace transform
may be expressed as:

n-1 n-2
N;s + N,s + + N, s+ N,

G(s) - n n—1 n—2
s + D]s + Dzs + -+ Dn—ls + Dn

Note that the order of the numerator must be less than that of the denominator.

A block diagram suitable for the CSMP solution of the equation above is shown below. The
inverse of G(s), L-1[G(s)], is C(t)/R(t), where t represents time.

R(t)

9
fiig

g
fiig

The CSMP statements to achieve this solution are listed below. Assume that K, is the block
number for the output, C(t), and K, is the block number of the input, R(t), and K, K,, ...,
K are block numbers such that

K, = Ky + 1
K, = K, + 1
K, = K, +1

C()

96

The configuration for the equation of G(s) becomes:

Block

Type
I
I

I

P1

APPENDIX C

DECIMAL REPRESENTATIONS OF ASCIl CHARACTERS

Decimal ASCII
Representation Character
0 blank
1 !
2 »
3 #
4 $
5 %
6 &
7)
8 (
9)
10 *
11 +
12 ,
13 -
14 .
15 /
16 0
17 1
18 2
19 3
20 4
21 5
22 6
23 7
24 8
25 9
26
27 ;
28 <
29 =
30 >
31 ?

Decimal
Representation

ASCII
Character

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

F} > — - —mNRKNXST<cCH®OWILOLWOZICAR—-—IOMEHIOF PO

97

98

Decimal ASCII
Representation Character

64 N
65 a
66 b
67 c
68 d
69 e
70 f
71 g
72 h
73 i
74 j
75 k
76 1
77 m
78 n
79 o
80 P
81 q
82 r
83 s
84 t
85 u
86 v
87 w
88 X
89 y
90 A
91 {
92 l
93 }
94 ~
95 RUBOUT

Decimal ASCII
Representation Character’
96 |
97 A°
98 B¢
99 (o
100 D¢
101 E°
102 F°¢
103 G°
104 H¢
105 I€
106 je
107 K¢
108 LS
109 M€
110 N¢
111 o°
112 |
113 Q°
114 R€
115 S¢
116 T
117 U
118 \'%A
119 W¢
120 X¢
121 Y®
122 Z°
123 K
124 L®
125 MS
126 N
127 o

1 - Superscript c stands for a control character; superscript cs stands for a control shift character.

INDEX

NOTE: Page numbers which appear in bold face type refer to those pages where the listed

item receives the most detailed discussion.

Abbreviations, minimum command, 91
Absolute value block, 13

Algebraic loop, 34

ALGORITHM, 60

Algorithms, integration, 34

Arctangent block, 9

Arctangent?2 block, 9

ASCII characters, decimal representation of, 97

Bang bang block, 9
Block numbers, 7
BLOCKS, 40
Blocks, CSMP, 7
BY, 26,42

CAPABILITIES, 63
CHARGES, 63

CLOSE, 54

Command abbreviations, 91

Command file, 62
examples, 69, 83

Command summary, 91

Commands, debugging, 59
execution, 49
file, 51
language statement, 40
output, 45
timing, 42
utility, 62

Conditions, initial, 33
Configuration statements, 33
Constant block, 9
CONTINUE, 49

Control A, 39

Control Q, 39

Control W, 40
Conventions, symbol, 2
COPY, 53

Cosine block, 10

CPU, 62

CREDITS, 63

CSMP
blocks, 7
elements, 7
problem size, 34
solution method, 33

Dead space block, 10

DEBUG, 25

Debugging commands, 59
Debugging user-defined blocks, 25
Decibel block, 10

Decimal representation of ASCII characters, 97
DELETE, 60

DISCHR subroutine, 30
DISPLAY, 59

DISPLAY subroutine, 30

Divider block, 10

DO, 62

DOUBLE, 46

DT, 26,42

DTMIN, 26, 42

DUMP, 51

DUMP ALL, 52

DUMP SUBROUTINES, 24, 52

EO, 26
Elements, CSMP, 7
ERASE, 56

Error criterion, 37

99

100

EULER, 34

Euler integration routine, 34, 35
Exclusive OR block, 11
Execution commands, 49
EXPERT, 63

Exponential block, 11

Falling ball example, 83

File, command, 62
examples, 69, 83

File commands, 51

File, scratch, 55

FIND, 59

Formatted output functions, 29
Formatted output subroutines, 29
FROM, 26, 42

FUNCTION, 42

Function generator block, 11, 19

Function generator example, 78

Gain block, 11
Gaussian noise generator block, 12
GO, 49

Half power block, 12
HELP, 63

Inclusive OR block, 12
INITIAL, 41

Initial conditions, 33
Input, program, 39, 40
INSTRUCTIONS, 63
Integration algorithms, 34

Integration routine, Euler, 34, 35
Runge-Kutta fourth order, 34, 36
Runge-Kutta second order, 34, 36
Runge-Kutta third order, 35, 36
Simpson’s Rule, 34, 36
trapezoidal, 34, 35
variable step size, 34, 36

Integrator block, 12
Interrupts, 47
IPLOT, 46

Jitter block, 13

Language statement commands, 40
Laplace transform modeling, 95
Limiter block, 13

Linear spring mass damper system, 65
Logical AND block, 13

Magnitude block, 13
Manual, organization of, 1
Multiplier block, 14

Natural logarithm block, 14
Negative clipper block, 14
NO HEADING, 47
NONEXPERT, 63

Nonlinear spring mass damper system, 69

NTEST, 27
Numbers, block, 7

Offset block, 14
Organization, manual, 1
OUTCHR subroutine, 30
OUTIFMT subroutine, 29
OUTPUT, 47

Output commands, 45
OUTPUT subroutine, 30
OUTRFMT subroutine, 29

PARI, 26

PAR?2, 26

PAR3, 26

Parameter statements, 33
Parameters, 33

PLOT, 45

Positive clipper block, 15
Power block, 15

PRINT, 45

PROBE, 61

101

Problems, sample, 3, 65 Statements, configuration, 33

Product block, 14 parameter, 33

Program input, 39, 40 Subroutine, DISCHR, 30
DISPLAY, 30

Program output, 45 OUTCHR, 30

Program variables, 26 OUTIFMT, 29
OUTPUT, 30
OUTRFMT, 29

QUIT, 63 user-defined, 21

Quit block, 15 SUBROUTINES, 24

Summary, command, 91

READ. 51 Summer block, 16

RECOVER. 51 SWAP CSMP, 25

RECOVER ALL, 52 Symbol conventions, 2

RECOVER SUBROUTINES, 24, 52

Relay block, 15 T,26

RELERR. 26. 42 Time pulse generator block, 17

RK2, 34 TIMING, 42

RK4, 34 Timing commands, 42

RUN, 49 TO, 26, 42

Runge-Kutta fourth order integration routine, 34, 36 Transform, Laplace, 95

TRAPEZOIDAL, 34

Trapezoidal integration routine, 34, 35

Runge-Kutta second order integration routine, 34, 36

Runge-Kutta third order integration routine, 35, 36

Unit delay block, 17, 21

User-defined block, 17, 21
example, 83
restrictions, 28

Sample problems, command file, 69, 83
falling ball, 83
linear spring mass damper system, 65
nonlinear spring mass damper system, 69
servo system, 78 Utility commands, 62
Van der Pol’s equation, 3

SAVE, 61
Scratch file, 55

Servo system example, 78

Vacuous block, 17, 19
Van der Pol’s equation, 3
VARIABLE, 34

Variable step size integration routine, 34, 36
error criterion, 37

Sign inverter block, 16

Simpson’s Rule integration routine, 34, 36

SIMPSONS, 34 Variables, program, 26
Sine block, 16 VERSION, 63

Sine wave generator block, 16

SINGLE, 46

Weighted summer block, 18
WRITE, 51
Wye block, 18, 19

Size, CSMP problem, 34
Solution method, CSMP, 33

Spring mass damper system, linear, 65
nonlinear, 69

Square root block, 12 Zero order hold block, 18

S U R e e e d

USER EVALUATION

Tymshare would like to improve the quality and usefulness of its publications. However, to
achieve this goal, we need your help and critical evaluations. Will you please provide us with
such constructive information by filling out this questionnaire and mailing it back to us?

1. (a)
()

(©)

(b)

3. (a)
(b)
©

(b)
()

(b)

Is this manual a useful document? O Yes O No

If your answer is Yes, what features make it useful.

If your answer is No, what features prevent it from being a useful document.

Is the text clear and readily understandable? O Yes O No

If your answer is No, please cite the sections, subsections, or paragraphs that are unclear or difficult to
understand.

Are you pleased with the organization of this manual? O Yes 0O No
Should the organization be changed? O Yes O No
What changes do you suggest?

Are the example problems helpful and easy to understand? O Yes O No
Should more examples be added when this manual is revised? O Yes O No
What kind of programs would you like to see added?

Should anything be deleted from this manual when it is revised? 0 Yes O No

If your answer is Yes, give us your suggestions.

CSmP

6. List any further suggestions you have for the improvement of this manual.

OPTIONAL INFORMATION:

Name Company
Street Address

City State Zip
Occupation
THANK YOU FOR YOUR ASSISTANCE.

To mail this questionnaire, simply cut from manual, fold Part A back, fold Part B back, and staple where indicated. Part A
First Class
Permit No.
BUSINESS REPLY MAIL 300
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. Los Altos,
California
POSTAGE WILL BE PAID BY _
.
TYMSHARE, INC. L I
20705 Valley Green Drive o _
Cupertino, California 95014 I
ATTN: Documentation Group [
.
Part B

STAPLE HERE

