TYMSHARE, INC., Litho in U.S.A.

TYMSHARE MANUALS
TYMCOM-IX

EXECUTIVE

REFERENCE MANUAL

MAY 1976

TYMSHARE, INC.
CUPERTINO, CALIFORNIA 95014

Price: $5.00

ML3

CONTENTS

Section 1 — INTRODUCTION
SYMBOL CONVENTIONS
ABOUT THIS MANUAL.

Section 2 — USING THE TYMSHARE SYSTEM.
ENTERING AND LEAVING THE SYSTEM.

Calling the Tymshare Network
Acoustic Coupler .
Dataphone .

Identifying the Terminal

Logging In .

Logging Out

Changing the Project Code.

Entering EXECUTIVE Commands .
EDITING WITH CONTROL CHARACTERS .

Control A .

Control W .

Control Q .
USING HALF DUPLEX TERMINALS .
USING THE FAILSAFE FEATURE. ...
USING UPPERCASE AND MIXED-CASE TERMINALS .
CONTROLLING SYSTEM INTERRUPTIONS
CHANGING THE PASSWORD.

Section 3 — TRANSFERRING INTO AND OUT OF
THE EXECUTIVE .

CALLING LANGUAGES AND LIBRARY PROGRAMS .
The Tymshare Languages .

Page

© © 0 0 N O P PPW W W N

S N S N S S |
W N N = O O O

15
15
15

Page

The Tymshare Library + « .+ . . 16
The User Program Library « . « . . 17
RETURNING TO A LANGUAGE « . . 17
EMERGENCY TERMINATION AND RECOVERY. 18
The DUMPCommand « . « « « « « « « « . 18
The VRUN Command.« v v v 4 19
The RECOVER, REENTER, and CONTINUECommands 20
RUNNING PROGRAMS FROM THE EXECUTIVE 20

Section 4 — CREATING AND DELETING FILES 23

NAMING FILES. « « o o v v v v v o v o . 23
Appending Comments to FileNames 24
Using Reserved FileNames 24

CREATING AND LISTING FILES « 25
The COPYCommand+ + « v v v o « o 25
Creating a New File with the COPY Command 26
ListingaFile o 00 . 27
Accessing Files 28

LIMITING NEW FILES « « « v v o o . 28

DELETING FILES « « « v v v v o v v v . 29
The DELETECommand « « « & « . 29
The REMOVECommand « « « « « .« . 30

RENAMING FILES« « « « v v & v v v v 30

Section 5 — FILES AND THE FILE DIRECTORY. 33

SETTING FILE SECURITY CONTROLS 33
THE CIPHER PROGRAM + « « « « o . 35
MAKING A FILEPUBLIC. « « « « o « « . 36
SETTING FILE DIRECTORY SECURITY CONTROLS 36
The File Directory Controls (FDC) Command 37
The Print File Directory Controls (PFDC) Command 38

The Get File Directory (GFD)Command 38
LISTING FILE INFORMATION « « « « « . 39

The LISTCommand.« « v + v & v « . 39
The DIRECTORYCommand. « . . « . . 39
The FILESCommand« + « « « « « « « . 42
The LASTCommand « & « & & o & & o« & a4

The SUMMARY Command « « + & « « o « o« . 44

Section 6 — AUTOMATIC FILE FEATURES
COMMAND FILES .
DIRECTING TERMINAL OUTPUT TO A FILE
THE “ (COMMENTS) COMMAND
INITIALIZED FILES .

Section 7 — UTILITY COMMANDS .
THE DATE COMMAND .
THE TIME COMMAND .
THE SYSNO COMMAND
THE DSC COMMAND

Section 8 —- FEATURES FOR NARP AND XDDT USERS
RUNNING A DEBUGGED PROGRAM.
COMMANDS TO DETERMINE MEMORY ALLOCATION .
COMMANDS TO RELEASE MEMORY

Section 9 — PROGRAMS FOR FILE MANIPULATION .
THE FILE DIRECTORY MANAGEMENT (FDM) PROGRAM

The Basic Commands .
The CRUNCH and MASTER Commands .
The READ and UNCRUNCH Commands .

Creating Master Files
CRUNCH with MASTER or APPEND
Crunching All Files or a Range of Files
Crunching Multiple Files
Crunching Files by Type .
Appending to Existing Master Files .

Uncrunching Files
The FILES Command .
The DIRECTORY Command .
The LIST Command.
Using EXECUTIVE Commands from FDM Command Level
Finding Files within the FDM Master File.
The RESTORE Command . .
The UNCRUNCH ALL Command .

FDM Command Files
Controlling Terminal Output .
The HELP Command

Multiple Blanks in Files.
The PRINT Command .
The RENAME Command .

Page

45
45
47
48
48

vi

The RESET Command .

The STATISTICS Command .

The TERMINATE Command .

The VERSION Command .
THE CHECKSUM AND VERIF PROGRAMS
COMPARING TWO FILES .

The SCOMPARE Program .

The COMPARE Program

Section 10 — THE DIRIT PROGRAM
LISTING FILES AND RELATED INFORMATION
Sorting Files

Selecting Files .
By Creation (or Change) Date
By Directory Position (File Number)
By File Type .
By Name .
By Partial File Name
Combining File Identifiers .
Negating File Identifiers

Selecting Information about Files
DELETING FILES .
COPYING FILES TO ANOTHER DIRECTORY

Section 11 — DEFERRED AND PERIODIC PROCESSING.

DEFERRED PROCESSING .
The Processing Sequence
Searching for Phrases and Altering the Sequence of Commands
The DEFINE Command
The FIND Command
The Assignment Command
Labels
The GO Command
The IF and UNLESS Commands.
Setting Time Limits .
Termination Commands

Program Pauses
The ESCAPE Command
The PAUSE Command . .
The CONTINUE and WAIT Commands
The LOOK Command .

Page

77
78
78
79
79
81
81
86

87
88
88

90
90
91
93
93

95
96

97
99
102

105
105
108
110
110
111
1
112
112
112
113
114

114
115
115
115
115

vii

Page

Restarting DeferredJobs 116
Multiple DeferredJobs . 116
Debugging DeferredJobs 116
Sample DeferredJobs o . . L. 118
Summary of Deferred ProcessingCommands. 122
PERIODIC PROCESSING « + « v v « o « 123
The DATESCommand « « « v « « « & « & 124
The INSERTCommand « .« « . . . 124
The DELETECommand « ¢« « +« « « . 126
The EXPRESSCommand« .« .« .+ . 126
The DISPLAYCommand « « « « « « « . 127

The TESTCommand+ « « &« « « & & « . 127
The STATUSCommand« . « « & « . 128
The GETCommand « « « &« « « « . 128
The LISTCommand. « « « .« « « & .« . 129

UtilityCommands & « v v v & « v o« o « « +« 129

Date Specifications .. 129
Basic Expressions. ¢ . . . 4 e e e w e e 130
Groups of Basic Expressions 135
Expression Series. 0 . 4 4 4 e e e e e 137
Modifiers for Date Specifications 139

Summary of PERPCommands 144

Section 12 — THE TELECOPY PROGRAM 145
TELECOPY COMMANDS« « &« « v v v o . 145
TELECOPY COMMAND FILES « « v v « « v . . 149
BLANKS, SPACES, AND LINE NUMBERS 150
METHOD OF FILE OVERWRITING 151

Section 13 — USING PAPER AND CASSETTE TAPES 153
Appendix A — CONTROL CHARACTERS 155
Appendix B— COMMAND SUMMARY. 157

Index

Section 1
INTRODUCTION

The EXECUTIVE is the key to the Tymshare TYMCOM-IX computer system. All the system’s
languages and applications programs are called from the EXECUTIVE. In addition, certain
functions which do not require a subsystem can be performed directly by EXECUTIVE com-
mands. These functions include:

® Entering and leaving the Tymshare system

® Creating, deleting, and renaming files

® Setting access controls for files and file directories

® Determining terminal connect time, machine number, and other utility information.
The main purpose of the EXECUTIVE is to make it easy to use the Tymshare system. The

commands are simple, straightforward, and easy to learn, and they have many optional features
that can be learned in a few minutes.

Files are an important part of the Tymshare system. Simply, a file is a program, text, or data
stored on a disk or other storage device. Files are permanent storage; that is, they stay on
the system until they are explicitly deleted. Files are identified by the name the user gives them
when he creates them.

SYMBOL CONVENTIONS

The symbols used in this manual to indicate carriage return, line feed, alt mode/escape, and the
emergency exit key are as follows:

carriage return: 2
line feed: 3
alt mode/escape: ®

emergency exit key: %

The keyboard position for the emergency exit key varies among terminals. It is usually a
control back arrow («<=<) or a control underscore (_¢). The character has ASCII code 159 (237
octal) and the internal code 127 (177 octal). The use of the emergency exit key is discussed
on page 18.

To indicate clearly what is printed by the computer and what is typed by the user, all user-
typed information is underlined. For example, in the lines

-COPY >
FROM FILE: T
TO DATAFI 5

the computer prints the prompt character (—) and the user types COPY followed by a carriage
return. The computer prints FROM FILE: and the user responds with T and a carriage return.
Then the computer prints TO and the user types DATAFI and a carriage return.

Lowercase letters in a command form identify the type of information to be entered. For
example, the characters file name in the command form

—RUN file name 5

indicate that the user types the name of a file at that point.

Control characters are denoted in this manual by a superscript c. For example, D¢ denotes
control D. Control characters do not print on the terminal but are shown in examples for clarity.

ABOUT THIS MANUAL

Section 2 of this manual discusses the basic elements of using the Tymshare TYMCOM-IX
system. It explains how to connect to the Tymshare network, pass through the security precau-
tions, and begin using EXECUTIVE commands. This section also describes some mechanical
procedures for easing system interaction.

Sections 3 through 8 document all major EXECUTIVE commands: for transferring to and from
subsystems, creating and deleting files, controlling file security, obtaining file information, and
manipulating files.

Sections 9 through 13 document more advanced features, in particular, several programs that
have been designed to supplement and enhance the EXECUTIVE capabilities.

Finally, the two appendixes provide summaries of control characters and commands for easy
reference by the experienced EXECUTIVE user.

Section 2
USING THE TYMSHARE SYSTEM

The TYMNET access telephone numbers provide local access to the TYMNET Supervisor,
which verifies the user’s name and password and directs him to the computer assigned to his user
name. Tymshare’s communications network is compatible with many various terminals. It can
transmit at any one of several transmission speeds, accommodate both uppercase and mixed-case
terminals, and adjust for half duplex or full duplex operation. Tymshare makes available
the FAILSAFE option, which protects the user from losing data upon an accidental disconnect,
and the ONESC/OFFESC option, which can be used to assure uninterrupted operation during
the running of programs from a command file or from tapes.

Security is provided by a password, one associated with each user name, which the user must
know to get access to a computer. To maintain maximum security, the password for a given
user name should be known only by those who need access to that particular user name, and it
should be changed frequently. It will not be echoed on the system on full duplex terminals.

The user can abort any command by typing an alt mode/escape at any time before the carriage
return or line feed is typed.

The WHY command can help.if the EXECUTIVE has printed an error message. The user simply
types WHY and the EXECUTIVE describes the error.

ENTERING AND LEAVING THE SYSTEM

Three steps are required to enter the Tymshare system: calling the Tymshare network
(TYMNET), identifying the type of terminal, and identifying the user. The process is commonly
called logging in. To leave the Tymshare system the user logs out.

Calling the Tymshare Network

The specific procedure for contacting the computer depends on the terminal arrangement. Two
typical communication devices (data modems) are the acoustic coupler and the Bell System
Dataphone. The procedures for using these two devices are described below. The Tymshare net-
work normally operates terminals in the full duplex mode. The user should check his terminal
for a full duplex/half duplex mode switch. Any questions about calling the Tymshare network can
be answered by the local Tymshare representative.

Acoustic Coupler

The terminal is put in the on line mode, and the power cords from both the terminal and the
acoustic coupler are plugged into standard three-prong wall outlets (or the terminal can be
plugged into the coupler). The 25-pin EIA interface connector is plugged into the coupler.

A regular telephone handset is used to dial the local TYMNET access number. Lines that go
through switchboards or multiphone lines should be avoided, as any second entry onto the
line when the user is logged in will create line noise, even occasional disconnects.

A high-pitched tone signifies that the connection is made to TYMNET. The telephone handset
is then placed in the coupler with the telephone cord facing as indicated on the coupler.
The POWER or ORIGINATE button on the acoustic coupler is depressed.

Dataphone

The terminal is put in the on line mode and the TALK button is depressed. The local TYMNET
access number is dialed. When a high-pitched tone sounds, the DATA button is depressed and
the handset is replaced.

Identifying the Terminal

As soon as the connection to the Tymshare computer is made, the system activates the
terminal and sends the message

please type your terminal identifier

This is sent at 30 characters per second (CPS) and is readable only on a 30 CPS terminal. On
other terminals, a sequence of unintelligible characters is printed, and then the terminal pauses.

The user must at this point type the identification character for his terminal. The table
below lists the terminal identification characters.! If the user has a question about which one
applies to the particular terminal, he should contact his Tymshare representative.

1 — The terminal identification character and other terminal input/output characteristics can be changed by using the self-
documenting TIO program. To access it, the user types TIO at EXECUTIVE command level. When the TIO prompt character
(:) appears, the user can type INSTRUCTIONS to obtain a printout of the program’s capabilities.

Terminal Identification Characters
Comments
(Unless noted,
CPS Identification Tymshare ASCII and no
(In/Out) Character Model Number Other Terminals parity assumed)-
10 D 200 Teletype Model 33
15 B Teletype Model 37
(without parity)
15 Carriage return IBM 2741, Datel, Correspondence or EBCD
A], or any code depending on the
SelectricTM telephone number called
terminal
15 J Teletype Model 37 ASCII (even parity)
(with even parity)

15/30 F Syner-Data Beta Terminal must be
equipped with dual
speed input/output

30 A 125,225, CRT Terminal No carriage return or
315,325 line feed delay
30 C 310,311 Syner-Data Beta,
UNIVAC DCT 500
30 G TermiNet 300, Delay after line feed
Memorex 1240
and 1280
30 E 100,110, Execuport, Texas Short carriage return
212,213, Instruments Silent delay
1030 700 Series,
NCR 260 Series

Logging In

The log in procedure requires typing a user name and password, both of which are registered
with Tymshare. The system checks both the user name and the password before admitting
the user to the system. An optional project code can be typed during the log in. The project code
is included in the billing information sent to the customer and can be used to assign costs.!

After the system prints

PLEASE LOG IN:

the user types a carriage return. The system replies with a request for the user name. The user
types his user name, a colon, and the number of the system that he wishes to log in to, followed
by a carriage return. If the user does not specify the system number, he is automatically logged
in to a system that has been designated as his ‘““home’” system. The system next requests the pass-
word. The user types the password and a carriage return.

1 - For more information about project codes, the user should refer to the Tymsbare TYMCOM-IX Account Supervisor Manual.

A user’s password must contain at least seven characters. A password may contain any charac-
ters except semicolon (;), control M (carriage return), control J (line feed), control shift K,
control shift L, control shift M, control shift N, control shift O, and alt mode/escape. In addition,
on lowercase terminals, the characters }, {, and ~ are not permitted. For security, the com-
puter does not print the password on the terminal. After checking the password, the system
requests the final information, the optional project code. For example,

please log in: D
user name: DELEON:2 D

password: D The password is entered by the user but does not print at the terminal.
PROJ CODE: J=-17>

The user types a project code and a carriage return. If no project code is wanted, he types a
carriage return only.

Any character typed in error in a project code may be deleted with control A (A€).! However,
control characters cannot be used to correct a user name or password. If a mistake is made
in typing the user name or password, the escape key should be pressed once. The system will
again request the user name or password.

After the user has entered the requested information, the system types the system number,
date, and time. For example:

TYMSHARE C2 3/12/76 10:27

The dash (=), which is called the EXECUTIVE prompt, indicates that the user is in the
EXECUTIVE and can enter any valid EXECUTIVE command. If another terminal is already
logged in under the same user name, the message

ALREADY ENTERED

is printed, followed by

PROJ CODE:

If there are typing errors while logging in, the system replies with
ERROR, TYPE

followed by the name of the item in error. In the following example, the user types an
unacceptable user name, corrects his error, and continues to log in.

1 - Line editing with control characters is discussed on page 9.

please log in: DELEIN:2D
error, type user name: DELEON:2 D

password: D
PROJ CODE: K-123-D 2

TYMSHARE C2 3/12/76 10:30

Once the user is thoroughly familiar with this log in procedure, an alternate and faster method
can be used as follows:

‘ Nonprinting password is entered bere.

please log in: DELEON:2;;K-123-D2

TYMSHARE C2 3/12/76 10:32

A semicolon (;) must be typed between the user name and the password, and between the
password and the project code. If no project code is needed, the user types a carriage return
after the second semicolon.

The error diagnostics are the same regardless of which log in procedure is used. When the
system indicates an error, the user can correct the error and type the rest of the log in informa-
tion in the normal way.

The user is allowed two minutes to log in. If the log in is not completed within the time limit,
the system prints a disconnect message and disconnects the terminal.

Logging Out
To leave the system or to log out, the user types
—LOGOUT >
or

—EXIT 2

or simply
or
If the user types LOG or LOGOUT, the system replies with

CPU TIME: n SECS. Number of computing seconds used.
TERMINAL TIME: hours:minutes:seconds Connect time.

PLEASE LOG IN:

If the user types EXIT or EXI, the system prints
PLEASE LOG IN:

The user may either disconnect the terminal or log in again. It is unnecessary to retype the
terminal identifying character to log in again. If the terminal remains connected to the computer
and another log in is not made within two minutes, the system prints the disconnect message
and disconnects the terminal.

Changing the Project Code

The user can change project codes without logging in again by using the PROJECT command
as follows:

-PROJECT O

ENTER NEW PROJ CODE: T-62

CPU TIME: O SECS. The system prints the time charged to the previous project code.
TERMINAL TIME: 0:0:57 : Terminal time is in bours: minutes:seconds.

Typing errors in the new project code can be edited with control A (see the discussion about
control characters, below).

A shorter method is to provide the new project code without being prompted, as follows:
—PROJECT T-32

The system responds with computing time and connect time as above.

Entering EXECUTIVE Commands

When the EXECUTIVE prints a prompt (—), it is ready to begin accepting commands. When
the user has typed a line of input, that is, a command, including the carriage return, the
system checks the first word against its list of internal EXECUTIVE commands, subsystem names,
and list of library programs until a match is found. If a match is not found, EXECUTIVE
prints a question mark (?) and another prompt. The user can then retype the command.

If the user detects an error while typing a command, he can abort the command by pressing
the alt mode/escape key or can correct the error using one of the editing characters
discussed below.

If part of the command is in error, the EXECUTIVE will print an error message explaining the
error. Whenever the EXECUTIVE responds to a command with an error message, the user
can type alt mode/escape, then WHY. The EXECUTIVE further explains the error and gives a
new prompt. For example, the user tries to copy a binary file to the terminal:

-COPY SHRINK TO T O

ERROR, TYPE: TO o
-WHYD The user aborts the command with an alt mode/escape, then types WHY.,

FILE TYPE WRONG.

The user can obtain the same answer and still stay in the command by typing a line feed instead
of alt mode/escape:

-COPY SHRINK TO T O
ERROR, TYPE: TO 7

FILE TYPE WRONG.
ERROR, TYPE: TO SHRINK12
NEW FILE O

Many of the EXECUTIVE commands documented in this manual can be shortened to their
first three characters.

EDITING WITH CONTROL CHARACTERS

Three control characters can be used for line editing. On most terminals, they are typed by
depressing and holding the CTRL key and then typing the desired letter. They do not print
on the terminal, but they are shown in the examples in this manual so that their use will be clear.
They are represented by a superscript ¢ following the letter.

Control A

Control A (A°) is used for deleting a single character or several characters one at a time. When
it is typed, a back arrow (<) or underscore (_) prints on the terminal and the preceding
character is deleted. For example, if the user is typing the TIME command but strikes the N key
instead of the M key, he can delete the N by immediately typing A€, then typing the correct
character M:

—TINA¢<ME O
The entry is accepted by the computer as TIME.

The user can use control A several times to delete several characters in a row. For example,
—TUPEAC«AC<AC<YPE D

is accepted as TYPE. Characters can be deleted only in the current line; that is, once the carriage
return or line feed has been typed, the material in that line is no longer available for editing.

10

Control W

If the user wants to delete a whole word, he can do it most conveniently with control W. This
control character deletes back to but not including the first preceding space. A backslash (\)
prints on the terminal when W¢ is entered. For example,

—~TYPE FINEWC\FILE O

is accepted as TYPE FILE.

The user can delete several words in a row by typing several control W’s in succession.
For example,

—DELETE FIOE1, FIOE2,W\WC\FILE1, FILE2 O

is accepted as DELETE FILE1, FILE2. Words can only be deleted in the current line, not in
preceding lines.

Control Q
Control Q is used to delete the entire line. It prints an up arrow (1) and returns the carriage.
For example,

—DELETE FIOE1, FIOE2,Q¢?t
DELETE FILE1l, FILE2 D

is accepted as DELETE FILE1, FILE2.

The user cannot delete more than the current line with control Q.

USING HALF DUPLEX TERMINALS

Two programs, HDX and FDX, facilitate use of half duplex terminals. If half duplex terminals
are used with a full duplex system, each character typed by the user appears twice on the
terminal: once when the key is struck, and again when the computer echoes the character. The
HDX program, called by typing

—HDX 2

in the EXECUTIVE, solves this problem and allows the user to employ his half duplex terminal
with Tymshare’s full duplex communications network (TYMNET). Once HDX is called, each
character of user input appears only once as the key is struck. For example,

~HHDDXX 2

-COPY O
FROM FILE: T2
TO ANY2 D

NEW FILE

THIS IS A TEST OF HDX D
D¢

1

To return to full duplex operation, the user types
—FDX O

in the EXECUTIVE, resetting the terminal to full duplex operation.

USING THE FAILSAFE FEATURE

SETFAILSAFE and FAILSAFE are Tymshare programs which protect the user from losing
time and effort due to line disconnect or terminal failure. If the line is disconnected before
the LOGOUT or EXIT command is given, the system saves the program, variable values, and sub-
system references on a file. When the user logs in later, his work can be resumed at the exact
point of interruption. This means that if the line should be prematurely disconnected, he can be
confident that his work has been saved. The work is saved on a special file called the fail-safe file.

The user creates a fail-safe file by typing SETFAILSAFE in the EXECUTIVE. The system
responds by printing the OLD FILE/NEW FILE message (see page 25). For example:

~-SETFAILSAFE 2
NEW FILED

It is necessary to execute this program only once under each user name. The FAILSAFE feature
is then set until it is removed.

NOTE: FAILSAFE will not protect new material being appended to a file in EDITOR," nor
will it always protect work in progress in the event of a system crash. Because of the proprietary
nature of the Tymshare Library programs, they cannot be saved on the fail-safe file.

The SETFAILSAFE command creates an empty file named /$/ in the user’s directory.? If a
premature disconnect occurs, the user’s work in process is dumped on the /$/ file. This file
can be used for storage like any other file. Of course, the previous contents of /$/ are erased if a
premature disconnect occurs.

The contents of the /$/ file are recovered by the FAILSAFE program. For example:

-FAILSAFE O
OLD FILE
HAS BEEN CLEARED. YOU MAY PROCEED

The computer loads all the data stored on the /$/ file into the user’s working area and erases the
contents of the /$/ file. The FAILSAFE command returns the user to the subsystem he was

in at the time of the disconnect. The name of the subsystem is printed as a reminder. For example
the user was working in SUPER BASIC when he was disconnected:

H

-FAILSAFE O
OLD FILE
HAS BEEN CLEARED. YOU MAY PROCEED

SBASIC

1 — See the Tymshare EDITOR Reference Manual.
2 — The /$/ file can be created directly by the user with the COPY or RENAME command. It is then unnecessary to use the
SETFAILSAFE command. The COPY and RENAME commands are discussed on pages 25 and 30, respectively.

12

The FAILSAFE command is equivalent to RECOVER and CONTINUE.! It resumes execution
at the program location where disconnect occurred. However, all files are closed by the disconnect.

To remove the failsafe feature, the user types
—DELETE /$/2

The fail-safe feature does not work after the DELETE /$/ command is used until the
SETFAILSAFE command is entered again or the /$/ file is created directly.

As another fail-safe feature, every night Tymshare stores on magnetic tape the contents of all
files that have been created or altered that day. Furthermore, at least every other week
the entire contents of all files are written on magnetic tape. Therefore, if a file is accidentally
erased or destroyed, the user should call his Tymshare representative to have it restored to
his file directory as it existed at the end of the previous day.

USING UPPERCASE AND MIXED-CASE TERMINALS

The Tymshare system accepts input from terminals with only uppercase and with both
uppercase and lowercase characters. A user with a mixed-case terminal has a choice
between either using the full 126-character set or restricting the system to recognize only 64
different characters, with no lowercase.? The command ONLC activates the lowercase (full
character set), and OFFLC deactivates the lowercase. For example:

-ONLC 2

-"I can use Lower Case."D The system accepts the comment in both upper- and lowercase.

or

-OFFLC 2 The user can type in both upper- and lowercase, but the
system accepts the comment in uppercase only; that is, it

-"T CANNOT USE LOWER CASE." D converts any lowercase letters to uppercase.

The normal mode of operation on the TYMCOM-IX, that is, the mode when the user first logs
in, is uppercase only. In this mode, lowercase letters entered at the terminal are converted
to uppercase. To use lowercase, the user gives the ONLC command.

All EXECUTIVE commands are in uppercase characters. When the command OFFLC is in
effect, commands can be entered at the terminal in either uppercase or lowercase, since all
characters entered are accepted by the system as uppercase; when the ONLC command is in
effect, commands must be entered in uppercase only.

CONTROLLING SYSTEM INTERRUPTIONS

Two commands, ONESC and OFFESC, enable and disable system interruptions. These
commands are especially valuable when paper tape is being used or if voice-grade communications
lines must be used.

1 — RECOVER and CONTINUE are discussed on page 20.
2 — With the full character set, two characters have been reserved for system use. These characters have internal codes 91 (133
octal) and 93 (135 octal) and correspond to the left and right braces.

13

The OFFESC command inhibits all interruptions, including the alt mode/escape and
emergency exit. If such an escape character is typed at any time—in the EXECUTIVE, in a
language, or in a program—while OFFESC is in effect, it is ignored by the computer.

When OFFESC is in effect, the only way to interrupt the action of the computer is to disconnect
the telephone communication line by removing the receiver from the modem. The OFFESC
command is given by typing

—OFFESC 2

in the EXECUTIVE.

The ONESC command deactivates the OFFESC command. Subsequent alt mode/escapes and
emergency exits are treated normally. The ONESC command is given by typing
—ONESC 2

in the EXECUTIVE. If the OFFESC or ONESC command is not specified, the system may be
interrupted by any of the usual methods; for example, by typing an alt mode/escape.

CHANGING THE PASSWORD

If authorized, a user may change his password as often as he wishes, to ensure the security of
his files, with the PASSWORD program.*

The PASSWORD program is called by typing
—PASSWORD 2
The computer responds with

ENTER PASSWORD:
ENTER IT AGAIN:

After each colon (:), the user enters his new password followed by a carriage return, but the
password is not printed on the terminal. It is entered twice to ensure accuracy. The new password
must be identical in two successive entries before it is accepted by the program.

For security, the password is not stored directly, but is ciphered before being stored in the
computer. Thus, the password is known only to the user and those persons he chooses to notify.
After the password has been successfully entered, the program prints the message

END OF JOB

and returns control to the EXECUTIVE. When the user changes his password on any system, it is
automatically updated on all systems to which the user has access. Although the updating is
not always instantaneous, it is seldom delayed more than 15 minutes.

1 — The Account Supervisor must specify that a user may change his password. The method of authorization is described in the
Tymshare Account Supervisor Reference Manual.

15

Section 3
TRANSFERRING INTO AND OUT OF THE EXECUTIVE

A user is automatically in the EXECUTIVE when he logs in; he can then call any language or
subsystem from the EXECUTIVE. He cannot go from one subsystem to another without
first returning to the EXECUTIVE.

CALLING LANGUAGES AND LIBRARY PROGRAMS

All Tymshare languages and Tymshare applications programs are called from the EXECUTIVE.
In addition, some User Program Library (UPL) programs (discussed on page 17) are called
directly from the EXECUTIVE.

The Tymshare Languages

Tymshare offers a variety of languages. For example, SUPER BASIC and SUPER FORTRAN
are powerful, user-oriented computation languages with complex numbers, matrix commands,
and string functions; BATCH FORTRAN 1V is a fast, efficient batch type language; EDITOR is a
text editing language.

All languages are called from the EXECUTIVE by typing the name and a carriage return.

For example:

—BFORTRAN4 0

Many of the Tymshare languages display a special character, called a prompt, to indicate that the
user may enter a command. The table below lists some of the more popular Tymshare
languages and their prompts. Most of the applications programs display a colon prompt.

16

Language Abbreviation Prompt
SUPER BASIC SBA >
SUPER FORTRAN SFO >
BATCH FORTRAN IV BFO +
XFORTRAN XFO +
EDITOR EDI *
CAL CAL >
XCAL XCAL >
DCAL DCAL >

To exit from any language, the user types QUIT or Q.

The Tymshare Library

The Tymshare Library includes many large applications programs, each documented in its own
manual. Among the most widely used applications programs are those listed below.

Program Function

Information Management Data management package, including capabilities for
Library (IML) sorting, merging, selecting, purging, and replacing data

RETRIEVE Information retrieval

STATPAK Statistical analysis

SURVEY Population survey analysis

TYMTAB Financial modeling package

Several library programs are documented in this manual. They are:

CIPHER
COMPARE
DIRIT

FDM
PASSWORD
PERP
SCOMPARE
TAPE
TELECOPY
VERIF

17

The User Program Library

The User Program Library (UPL) contains programs that have been donated by Tymshare users
and accepted by Tymshare. Tymshare examines the programs for general usefulness and
adequacy of documentation before accepting them for the library.

The UPL programs are called by typing a crosshatch in front of the name. For example:
—#MULREG >

The user may refer to the Tymshare TYMCOM-IX User Program Index for a complete listing of
the UPL and Tymshare Library Programs.

RETURNING TO A LANGUAGE

Occasionally a user is working in a language and needs to use an EXECUTIVE command. For
example, he finds that he needs to rename a file or to remove a prohibition against writing
on a file. He can return to the EXECUTIVE with QUIT, use the appropriate EXECUTIVE com-
mands, and then return to the language with the REENTER command. REENTER restores
the work in process. For example:

-SBA D The user calls SUPER BASIC.

>LOAD BUDGETA D
>RON

He loads and runs a program.

ERROR IN STEP 250:

FILE NAME NOT IN FILE DIRECTORY The program tries to open a file which does not exist.

>QUIT D : The user transfers to the EXECUTIVE.

-RENAME DEC AS BUDG O He renames bis data file to correspond to the name used in
the program, and reenters SUPER BASIC.

-REENTER O

SBASIC All of bis variable values bave been restored.

>GO TO 25020

In the example above, if the user calls SUPER BASIC by typing
—SBA D

instead of REENTER, he has to reload his program and restart execution.

When the user leaves a language, any open files are automatically closed. After REENTER, the
files are still closed. Therefore, occasionally, it is necessary to reopen the data files before
continuing at the point of interruption. Also, it is not possible to reenter in the middle of a
SUPER BASIC FOR loop.

Calling another language or library program or giving certain commands makes it impossible to
use REENTER. The following commands do not interfere with use of REENTER:

18

COMMAND FILES REENTER
CONTINUE INIT REMOVE
COPY GFD RENAME
DATE LAST STATUS
DECLARE LIMIT SYSNO
DEINIT LIST TIME
DELETE MEMORY TOUT
DIRECTORY PFDC TYPE
DSC PMT WHO
DUMP PROJECT WHY
FDC

No other commands permit using REENTER.
It is impossible to use REENTER for an applications program.

EMERGENCY TERMINATION AND RECOVERY

If the user is working in a language, he can abort any command with the alt mode/escape, and
he is returned to the language command level. If he uses the emergency exit key, however, he
is returned immediately to EXECUTIVE command level. It is impossible to use REENTER after
an emergency exit, but the DUMP command can be used.

If it is necessary to interrupt a job before completion, the DUMP and RUN commands can be
used to save all the data and the work done so that the user may continue at a later time. The
DUMP command saves the necessary information on a file and the RUN command recovers it.

The DUMP Command

To save work done in a language, the user uses QUIT to return to the EXECUTIVE and then
uses the DUMP command. With this command, the user stores on a file the language he was
working in, his program and data, and whatever work he had done thus far.

The DUMP command has the form
—DUMP file name 2

Any of the commands that do not erase user memory can be used between the exit from the
language and the DUMP command. These commands are listed above.

The DUMP command cannot be used to save work in Tymshare Library programs or proprietary
GO files since the user’s work done by these programs is no longer accessible when the user
returns to the EXECUTIVE.

CAUTION: Tymshare languages are under continual development and improved versions are
frequently released. Since DUMP files may not be compatible from one version of a language
to another, they should not be used for long term storage.

19

The RUN Command

When the user next logs in, he gives the command

—RUN file name 2

to load the contents of the DUMP file into the system.! He is returned automatically to the
language he was in before he gave the DUMP command and may continue from where he left off,
as shown in the following example.

-SBA 2 .
I The user calls SUPER BASIC and initiates a program

to calculate new savings account balances.

>LOAD SBASAVINTRST >
>RUN

ORIGINAL BALANCE IS $? 0D
INTEREST RATE IS ? ,072
MONTHLY DEPOSIT IS $? 352
NUMBER OF MONTHS IS ? 602

MONTH BALANCE
35.00
70.20

105.61

141.23

177.05

213.09

249.33

285.78

While program is in process, be enters an alt mode/escape.

O OO0 N EWN -
&

INTERRUPTED BEFORE 150
>Q2

-DUMP HOPEFUL 2 He saves the work in process on the file HOPEFUL.
NEW FILE O

~EXID

please log in: DELEON; ;D When be logs in again, be calls the DUMP file and picks up
- execution where be left off.

TYMSHARE C2 3/10/76 15:55 ’
-RUN HOPEFUL O

SBASIC

>GO TO 1402
11 396.43 Program continues. All work in the program is intact, but output
12 433.74 that was in TYMNET at the time of disconnect is lost.
13 471.27

NOTE: The RUN command does not reopen files. If a SUPER BASIC program is interrupted
while in a FOR loop, the RUN command will not work.

1 - The RUN command, when used with a dumop file, is equivalent to a RECOVER command followed by CONTINUE (see next
page). When used with a symbolic file, the RUN command is equivalent to the COMMAND command (see page 45).

20

The RECOVER, REENTER, and CONTINUE Commands

The RECOVER command also restores a DUMP file. A RECOVER command followed by a
REENTER command returns the user to command level.! For example:

please log in: DELEON;; >

TYMSHARE C2 3/10/76 15:57
-RECOVER O
FROM FILE: HOPEFUL 9

~REENTER 9

SBASIC

>GO TO 1402
18 662.23
19 701.09
20 T40.18
21 779.50

A RECOVER command followed by a CONTINUE command will return to execution of the
program if DUMP was used after using the emergency exit key to leave the program.

22 819.05
23 858.83 % Running the same program, the user strikes the emergency
exit key and saves bis work on HOPEFUL.

-DUMP HOPEFUL 2
OLD FILED

-EXID
please log in: DELEON;; D He logs in and recovers HOPEFUL.
TYMSHARE C2 3/10/76 16:03

-RECOVER D
FROM FILE: HOPEFUL2?

«~CONTINUE 2 The CONTINUE command begins execution immediately
SBASICO061.22 at the point of interruption without a GO TO.

29 1102. 41

30 1143.84

31 1185.52

32 1227.43

RUNNING PROGRAMS FROM THE EXECUTIVE

A GO file is a compiled program executable from the EXECUTIVE. Programs on GO files can
be run directly from the EXECUTIVE by giving the GO command and the file name in the form

—GO file name 9

1 — See page 17 for another use of the REENTER command.

21

For example:

—GO _ANALYSIS O ANALYSIS is a GO file.

GO files can be created in several Tymshare languages, as shown in the table below.

Language Procedure
SUPER BASIC The user creates both binary and GO files from completed symbolic files

by the single command

>SAVE BINARY file name D

BATCH FORTRAN IV The command

+WRITE file name 2

saves a single program or overlay as a GO file, whereas the command

+DUMP file name 9

saves the entire overlay structure and shared memory.

SUPER FORTRAN The user must save both binary and symbolic files in SFO, then return to
EXECUTIVE to create the GO file, as follows:

-SF0>

>LOAD SFOPROG
oK. —
>SAVE SFPRGD
TEXT ONLY?ND
NEW FILED

oK.

>Q2

-MAKEGO 2

LINK FILE: SFPRGD
GO FILE: FRISC0D
NEW FILED

-GO _FRISCOD

GO files can be identified with the DIRECTORY command, which is described on page 39.
The file type of GO appears in the TYP column of the directory listing.

23

Section 4
CREATING AND DELETING FILES

A file is information stored on a disk.! Each Tymshare language has commands to create files.
The additional wide range of commands for naming, printing, limiting, comparing, and manipu-
lating files provides maximum flexibility for the user.

NAMING FILES

A file is identified by the name the user assigns when he creates it. A series of characters which
satisfies the following restrictions is an acceptable file name.

Rule 1 A file name may contain any combination of the characters 0 through 9, A
through Z, and @.
Rule 2 A file name may contain protected strings, that is, a series of characters

enclosed in slashes or single quotation marks. Protected strings can contain
any characters except line feed (J€), carriage return (M€), and the
delimiting character itself (/ or ’). NOTE: To include a control A, control D,
control Q, control V, or control W in a file name in the EXECUTIVE,

the A°, D¢, Q°, V¢, or W€ must be preceded by control V (V¢) to specify
that the particular character is to be accepted literally as input.

Rule 3 Certain reserved file names cannot be used.
TERMINAL TELETYPE NOTHING
TERMINA TELETYP NOTHIN
TERMIN TELETY NOTHI
TERMI TELET NOTH
TERM TELE NOT
TER TEL NO
- TE TE N
T T L 1
L I These names designate a
These names always designate the terminal. null file (see page 25).

1 — Maximum file size is about 6 million characters.

24

Examples of acceptable file names are:

TEST Unprotected string.

/DO NOCT¢KENOW FcCIL¢D/ Protected string.

THIS/IS A/WILD® FILE!# ?’ Combination of protected and unprotected strings.
N@IL

Examples of unacceptable file names are:

TEST#1 # must be protected.
STUDENT SURVEY Space must be protected.

N Reserved file name.
/1JJeLP/ J€ and second slash are illegal.

Appending Comments to File Names

Comments can be appended to file names. The comments feature is especially useful because it
allows the user to have brief, easy-to-use file names and still have the contents of the file
documented. The file name and the comment are separated by a hyphen. The rules for comments
are the same as the rules for naming files. For example, the file names above might appear
like this when comments are appended to the names:

TEST-TUBE
/DO NOCTCKCNOCW FCILCE/-CONTAINS SPECIAL INFO’

* The comment does not change the name of the file and is not needed to call the file, but will
appear in the directory listings. A comment can be appended when a file is first created, when
a file is duplicated under a new name by the COPY command, or when a file name is changed by
the RENAME corimand.! To append the comment TUBE to the existing name TEST, the user
enters:

—RENAME TEST AS 120 Changes the name of the file.
—RENAME 1 AS TEST-TUBE2 Changes the new name back to the old

name with the comment appended.

The command

—RENAME TEST AS TEST-TUBE 2

is invalid since it tries to rename a file as itself.

Using Reserved File Names

Any of the reserved file names which are a subset of TELETYPE or TERMINAL can be used
with the EXECUTIVE commands to indicate the terminal. For example, to enter text from
the terminal to be stored on the file RHDA, the user types

—COPY T TO RHDA-/HIGGIN’S DATA/2

and then enters information. When finished, he types a control D. Discussion of the COPY
command with a full description of this procedure is presented on page 25.

1 — The COPY and RENAME commands are discussed on pages 25 and 30, respectively.

25

Any of the reserved file names which are a left subset of NOTHING can be used with the
EXECUTIVE commands to indicate a null file. To create a completely empty file, the user types:

—COPY NOTHING TO file name >

The command

—COPY file name TO NOTHING 2

causes no action.

When a command is given in a language to write on NOTHING (or its subset), the WRITE
command is executed but there is no file output. For example, if 2 SUPER BASIC program allows
the user to specify an output file, the user can specify NOTHING to suppress file output.

Likewise, he can specify TERMINAL or TELETYPE (or a subset) to print the output on the
terminal instead of a file if the output device is specified for sequential rather than random output.!

CREATING AND LISTING FILES
The user may create, copy, or print out files while in EXECUTIVE with the COPY and TYPE
commands.
The COPY Command
The COPY command is one of the most frequently used EXECUTIVE commands. It can be

used to create files, to list the contents of files, and to copy the contents of one file to another.?
The general form of the command is

—COPY source TO destination 2

The source and destination may be file names or the reserved names T, TE, etc., and N, NO,
etc. The COPY command causes the contents of the source to be duplicated on the destination but
does not affect the contents of the source.

If the destination is a file, a check is made to see if a file by that name already exists. The
system prints either

OLD FILE
if the file name already exists, or
NEW FILE

if a new file name is being created. In either case, the system waits for the user either to confirm
or to abort the command. The command is confirmed simply by typing a carriage return

or a line feed. If the command is confirmed, the contents of an old file are completely erased and
replaced by the contents of the source. To save the contents of the old file, the command can

be aborted by typing an alt mode/escape.

In the following example, the user wants a copy of a file stored in the directory of user name
ASHBY.? The EXECUTIVE warns that this command erases the present contents of ACCT,
so the user types an alt mode/escape to abort the command and copies ACCT3 to a different
file, ACC.

1 — Refer to the Tymshare SUPER BASIC Reference Manual for a discussion of sequential and random files.
2 - To copy files to another user’s directory, refer to the discussion of the DIRIT program on page 87.
3 - Copying files from another directory is discussed on page 28.

26

-COPY (ASHBY)ACCT3 TO ACCT?
OLD FILE®
-COPY (ASHBY)ACCT3 TO ACC2?
NEW FILE®

If the user types an N and a carriage return after OLD FILE/NEW FILE, the system asks for
another file. For example:

-COPY DEMO TO MOD2D
OLD FILEND

ERROR, TYPE: TO MOD22
NEW FILED

If the user types a line feed after ERROR, TYPE: TO, the system prints an error message
followed by another ERROR, TYPE:TO.

COPY can Be shortened to the first three letters, and the TO can be replaced by a comma (,).
For example, all the following forms of the COPY command perform the same function.

—COPY JEAN TO JND

—COP JEAN TO JN2

—COPY JEAN,JND

—COP JEAN,JND

Creating a New File with the COPY Command

To create a new file by entering information from the terminal, the form of the command is

—COPY T TO file name 2

The EXECUTIVE prints OLD FILE or NEW FILE. The user gives the appropriate response. If
the file name is acceptable, the user then enters the text or data. After the entire text is entered,
the user types a control D. For example,

-COPY TERMINAL TO MOONO
NEW FILED

234562
3456780
1234520
D¢

27

-COP T,SUND
NEW FILED

987652
D¢

As discussed under ““Setting File Security Controls” on page 33, it is possible to protect a file
from being erased. If a protected file is given as a destination in a COPY command, the error
message

ERROR, TYPE: TO

is printed. The user simply enters a new destination.

A user can also create a file in a programming language or in Tymshare’s EDITOR. In EDITOR,
more than 20 different control characters are available to make creating files easier. Any
Tymshare representative has copies of the Tymshare EDITOR Reference Manual.

Listing a File

The command forms used to print the contents of a file at the terminal are

—COPY file name TO T2

or

—TYPE file name 2

Examples

—COPY (RUBIN)RP TO T2

—COP MTEST, TD

—~TYPE ALPH2 D

NOTE: The printing of a file can be interrupted at any time by typing an alt mode/escape.

The TYPE command displays the contents of symbolic files at the terminal. The form of the
command is

—TYPE file nameD

The TYPE command is equivalent to the COPY command with T as the destination file. For
example, if ABC is a symbolic file, the following are equivalent:

—TYPE ABCO

—COPY ABC TO T2

28

Accessing Files

The user has complete control over the files in his directory. In addition, he can access another
user’s files if the other user permits. Therefore, files can be called from the user’s own directory,
from another directory in the same account, or from a directory in another account on the same
system.

A file in the user’s own directory can be used in a command by typing just the name of the
file with or without any comment. For example, if the file is MTDB-AUGUST, it can be
designated in an EXECUTIVE command as either MTDB or MTDB-AUGUST. In fact, any
comment can be given after the file name. The comments are ignored. For example,
MTDB-‘RANDOM COMMENT’ also designates the file MTDB. In other words, a file is designated
by its file name. Therefore, in any directory there cannot be two files with the same name.

For example, MTDB-AUGUST and MTDB-JULY cannot exist in the same directory.

The contents of a file in another user name in the same account can be accessed if it has been
declared public.! The contents of a file in another account but on the same system can be
accessed if the file name contains the character @, any legal control character (protected), or any
lowercase character (unprotected). The file name is designated by showing in parentheses
the user name of the directory in which the file exists, followed by the file name. For example:

(MILLER)@NEWS
(MILLER)SH@RING

(MILLER)/SHO€R/

If the user named SMITH has a public file named NORTH, the other users in his account can
obtain the contents of the file by typing

—COPY (SMITH)NORTH TO NORTHD The contents of the file named NORTH in user name
SMITH are copied to a file named NORTH in this
user name.

NOTE: A user can change the contents of anotber user’s file only if it bas been declared
PUBLIC and WRITE ACCESS. Therefore, a file can be shared, but its integrity is maintained.

LIMITING NEW FILES

There is no limit to the number of files in a user’s directory. However, for the user’s protection,
there is a limit to the number of new files that may be created after each log in. This limit
has been imposed because, in most Tymshare languages, it is possible to write programs which
create files. Through a programming error, a user could create many, many files without
being aware of it. If a file directory becomes full, the user can obtain the maximum room for
new files by logging out and logging in again. The user can also create more room by deleting files.

When the directory is full, the system continues to print the error message
ERROR, TYPE: TO

in response to any new file name entered. The file the user is attempting to write must therefore
be saved by overwriting an old file. It is advantageous to have a scratch file that can be used
as temporary storage. If this scratch file is given the name /$/, it can double as the fail-safe file in

1 — Refer to the discussion of the DECLARE command on page 33.

29

case of premature disconnect.! Likewise, if the fail-safe controls have been set, the file /$/ is
available as a scratch file.

The number of new files that can be created after each log in depends on the length of the file
name, not the size of the files. If the file names are short (three characters or less), the
maximum number of new files is more than 200.

DELETING FILES
The user has two EXECUTIVE commands for deleting files: DELETE, for removing files by
name, and REMOVE, for deleting files by number.? It is economical to delete files when they are
no longer needed.
The DELETE Command

The simplest and most direct way to delete files is with the DELETE command. The form of
the command is

—DELETE file name 2

There must be a space after the word DELETE. To delete several files with one command, the
file names must be separated by commas or spaces. For example:

—DELETE TEXT,NEWS O

—DELETE TEXT NEWS2

The list of files to be deleted can be extended to the next line by typing only a line feed or
both a space and a carriage return.

The files are not deleted until a carriage return or line feed is typed. Therefore, the command
can be aborted with an alt mode/escape any time before the carriage return or line feed.
However, if the command uses several lines, the files on each line are deleted when the line feed or
carriage return ending that line is typed.

If several names are listed and there is one which cannot be deleted, all the files up to that one
will be deleted, but none of the files after it. For example:

—DELETE A,B,1,C,22

ERROR ON NAME:1?

Files A and B are deleted but 1, C, and 2 are not.

1 - Refer to page 11 for a discussion of a fail-safe file.
2 — The DIRIT program, described in Section 10, provides many ways of deleting files singly or by groups.

30

The REMOVE Command

The REMOVE command is most frequently used to delete files whose names contain forgotten
nonprinting control characters. The REMOVE command deletes files by number rather than
by name. The number is the file’s position in the file directory. The numbers are obtained with
the DIRECTORY command, described on page 39. For example:

-DIRECTORY, 260

PVT PUB TYP DATE USE SIZE NAME
26 R/W NO BIN 3-10 2 1536 SFPRG
27 R/WNO SYM 3-10 1 1536 MOON
28 R/ZW NO SYM 3-10 1 1536 SUN

-REMOVE 272

-DIRECTORY,26 0

PVT PUB TYP DATE USE SIZE NAME
26 R/W NO BIN 3-10 2 1536 SFPRG
27 R/ZWNO SYM 3-10 1 1536 SUN

NOTE: When file 27 is removed, file 28 becomes file 27.

The REMOVE command is more restricted than the DELETE command. Only one file can be
removed at a time. If a user has used the GFD command to access another file directory, he
cannot use REMOVE in that directory.!

RENAMING FILES

The RENAME command is used to change the name of a file in the form

—RENAME old file name AS new file name2

A common use of this command is to rename files so they may be shared with other users.
For example:

—RENAME FOR2 AS @FOR2D0

The command is also useful to create file names with comments attached. For example, to attach
a comment to a file named XB, the user types

—RENAME XB AS 120

—RENAME 1 AS XB-UPDATE PROGRAM’D

RENAME cannot change a file name to a name that is already in use. For example, a file named
JUNEDATA exists in the file directory.

1 — GFD is described on page 38.

—RENAME JDATA AS JUNEDATAD
ERROR, TYPE: NEW NAME: JULYDATAD The name JUNEDATA is already in use.

The RENAME command has a shortened form: The AS can be replaced by a comma, and
RENAME can be shortened to REN.

31

33

Section 5
FILES AND THE FILE DIRECTORY

The EXECUTIVE has commands to set the security controls on individual files and on the
entire file directory. They determine who can access the files and the directory, who can read files,
and who can write on them. In combination with the CIPHER command, which is used to
encode files, these controls provide a maximum level of security. The EXECUTIVE also provides
a variety of commands by which the user can print out file names and information about files
in his own directory, as well as in other accessible directories.

SETTING FILE SECURITY CONTROLS

The DECLARE command is used to set the security controls on specific files.! DECLARE asks
two sets of questions: PRIVATE and PUBLIC. The private controls limit what the user can
or cannot do to his own files. The public access controls restrict use of the files by other users in
the same account.? The form of the DECLARE command is

—DECLARE 2

FILE(S): file names 2
or

—DECLARE file names >

The user specifies the file or group of files which he wishes to declare. After the last file name, he
types a line feed or carriage return. EXECUTIVE then asks questions which can be answered

yes or no, Y or N, followed by a line feed. One question, WRITE ACCESS?, can also be answered
with an A. These questions and the effect of the user’s responses are listed in the following table.

1 - See page 36 for the procedure for setting controls on the whole directory.
2 — See page 36 for the procedure for sharing files with users in other accounts.

34

DECLARING FILE SECURITY STATUS

Question Response Effect
PRIVATE:
WRITE ACCESS? *Y The user can write on the file, rename, or delete it.
N The file can only be opened for input; the user can neither write

on it, rename it, nor delete it. The next question is bypassed.

A The user can add to the file, but cannot write over existing
information. Append-only files cannot be deleted or renamed.

READ ACCESS? *Y The user can read the file.
N The user cannot read the file. The file cannot be opened for input
or loaded into a language.
PUBLIC:
READ ACCESS? Y Other users in the same account can access the file.
*N Other users cannot copy or use the file unless the file name contains
a control character or @. All subsequent questions are bypassed.
WRITE ACCESS? Y Other users in the same account can write on the file. If the file
is private append only, other users can append to the end
of the file.
*N Other users in the account cannot write on it or delete it.
PROPRIETARY? Y If accessible, the file can be executed by other users but cannot be

listed or copied. It can be accessed only by the GO command if
it is a GO file, or the RUN command if it is a DUMP file. Memory
is cleared whenever control is returned to the EXECUTIVE.

*N No further limitation is placed on copying or using.

*A newly created file has the security status marked by asterisks.

In the following example, SORT and CATALOG are GO files belonging to user Jones (user
name JONES). He declares these files to be proprietary as follows:

-DECLARE D

FILE(S): SORT,CATALOG2

PRIVATE:
WRITE ACCESS? Y7 The user follows each response with a line feed to continue with the
READ ACCESS? Y7} next question.

PUBLIC:

READ ACCESS? Y7}
WRITE ACCESS? N7}
PROPRIETARY? YO

The files SORT and CATALOG can be read, written on, or deleted by Jones. In addition, all
other users in the same account can use either file by typing

—GO (JONES)file name D

No user can write on or delete either file.

35

If the Y or N is followed by a carriage return rather than a line feed, DECLARE skips the
remaining questions and makes no further changes in the condition of the file or files. For
example, Jones can control his file SEEB so that even he cannot erase it; he can append data to
the end of the file only.

—DECLARE SEEBO
PRIVATE:
WRITE ACCESS?A D

Append-only data files simplify programming when information is repeatedly added to a file.

The inclusive ALL may be used to refer to every file in the user’s directory. This allows a
company to set aside one user name as an ‘‘account library” by declaring all files under
that name to be public to the account. For example:

-DECLARE ALL?

PRIVATE:
WRITE ACCESS? N7 The N reply causes EXECUTIVE to bypass the READ ACCESS question. The
PUBLIC: private READ ACCESS status remains unchanged.
R ACCESS? oo o
WR?;E AC(CJEgg? :_%- ; The user types a carriage return after bis last reply to indicate that the remaining

question need not be asked; that is, be does not wish to change the proprietary
status of bis files.

The user can determine the security controls on a file by using the

—DIRECTORY file name 2

command, which is discussed on page 39.

THE CIPHER PROGRAM

With the CIPHER program, a user can encode a file into a form which cannot be decoded
without the key word. An encoded file can be stored on magnetic tape, paper tape,! or in
a public file with complete security. When the user wishes to use the file again, he simply calls
CIPHER and gives the key word that was used to encode the file. For example:

-CIPHER D The user calls CIPHER.

ENTER KEY:D The user types a nonprinting key word. The key does not print so there is no written record.
AGAIN: D He types the key again.

TYPE C TO CIPHER, U TO UNCIPHER, C.R.: C2 The user wants to encode.
INPUT FILE: CBIND The file CBIN is to be encoded.

OUTPUT FILE: ABINO
NEW FILED

1 - The library program BINTAPE can be used to punch a binary tape. For more information on BINTAPE, refer to the
Tymshare TYMCOM-1X Paper Tape Package Reference Manual.

36

END JOB

-DELETE CBIND The user deletes the original version of the file.

To decode the file, the procedure is as follows:

-CIPHER D
ENTER KEY:D The user enters the same key word.
AGAIN:D He enters it again.

TYPE C TO CIPHER, U TO UNCIPHER, C.R.: UD
INPUT FILE: ABIN2

OUTPUT FILE: CBIND
NEW FILE2

END JOB

MAKING A FILE PUBLIC

A file with an @, any control character, or any lowercase character in its name is always
public. It can be accessed by any user on the system, if he knows the full name of the file, by

typing

—COPY (user name)file name TO file name D

Therefore, the user can provide an extra measure of security for a file that must be shared by
including nonprinting control characters in the file name and informing only those users who are
allowed to access the file. Since the control characters do not print, there is never any written
record of the complete file name to jeopardize its security.

SETTING FILE DIRECTORY SECURITY CONTROLS

In addition to the file sharing option, the Tymshare system has powerful file directory sharing
options for users in the same account.! These options are exercised with the three commands
FDC (File Directory Controls), PFDC (Print File Directory Controls), and GFD (Get File Direc-
tory). The FDC and PFDC commands set the directory security status and print the present
status. The GFD command accesses another user’s file directory.

The file directory controls allow several user names to share the same directory. These controls
also allow several user names to add files to a directory such as the account library without
having access to the directory.

1 — The Account Supervisor automatically has access to all directories in his account. See the Tymsbare Account Supervisor
Manual for a discussion of the Supervisor’s options.

37

The File Directory Controls (FDC) Command

Directory access by users in the same account is controlled with the File Directory Controls

command, FDC.

The following options are available with the FDC command:

® SHARABLE? Other users within the same account can access the directory and files within

the directory,

® LISTABLE? Other users can list the file directory.

with the GFD command.

® CONTROLS? Other users can use the DECLARE command to change the security status

of files.

® NEW FILES? Other users can create files in the directory.

The FDC command asks for each of the above options, and they must be answered with Y or
N followed by a line feed or carriage return. A line feed asks for the next question; a carriage
return bypasses the remaining questions and makes no further changes in the file directory con-
trols. These questions and the effect of the responses are listed in the table below.

EFFECT OF RESPONSES TO FDC COMMAND OPTIONS

Question

SHARABLE?

LISTABLE?

CONTROLS?

NEW FILES?

Example

-FDCD

SHARABLE? Y7}
LISTABLE? Y7
CONTROLS? N7}

NEW FILES? N

Y (for YES)

All users in the account may access the
files in this directory (run programs, list
files, etc.). Access is subject to the
private controls on the files set by the
owner using the DECLARE command.

All users who can access this file direc-
tory can use the FILES and DIREC-
tory commands.

All users who can access this file direc-
tory can reset file controls on files

in this directory with the DECLARE
command.

Files can be put into this directory by
any user in the account.

N (for NO)

Only the owner and the Account
Supervisor have access to the files in this
directory. NOTE: If the answer is N,

the LISTABLE and CONTROLS
options are bypassed.

Other users cannot use the FILE or
DIRECTORY command to list the
directory contents.

Other users cannot use the DECLARE
command on any of the files in this
directory.

Files can be put into the directory only
by the owner of this directory.

Otbher users can run the programs and list the files and file directory, but they
cannot change the public and private controls or create new files.

38

-FDC 2D
SHARABLE? N7} Other users can add new files but cannot use the directory. This is a convenient
NEW FILES? YO status for an account library.

When a user name is first created, its directory is declared LISTABLE only; no other user except
the Account Supervisor can access it.

The Print File Directory Controls (PFDC) Command

If 2 user wishes to know what controls are in effect for his directory, he types PFDC for Print
File Directory Controls. All options that were answered with a Y in the FDC command are
listed. If the option is not listed, it has been answered with N and is not in effect. For example:

-FDCD

SHARABLE? Y7}
LISTABLE? Y7}
CONTROLS? N7

NEW FILES? Y2

-PFDCo
SHARABLE LISTABLE
NEW FILES

Since CONTROLS? was answered with N, it is not shown in the PFDC command.

The Get File Directory (GFD) Command

The GFD command can be used to access other user directories in the same account if the
SHARABLE option in FDC has been answered with Y by the user whose directory is to be
accessed. The form of the command is

—GFD user name 2

The user now has access to all files in the directory of that user name. To re-access his own files,
he must issue a GFD command specifying his own user name.

If the user specifies a directory in a GFD command that is sharable but not listable, issuing the
FILES or DIRECTORY command results in an error message and a question mark being
printed. If the directory has protected control, issuing the DECLARE command will result in
the printing of a question mark. For example:

39

-GFD DOCO

~PFDCO
SHARABLE

-FILESD

NOT LISTABLE
?

-DIRECTORY D

PVT PUB TYP DATE USE SIZE NAME
NOT LISTABLE

?

-DECLARE D
O)

The GFD command allows more than one user to access the same file directory simultaneously,
thus avoiding the excess storage that would result from maintaining duplicate file directories.

LISTING FILE INFORMATION

The EXECUTIVE has several commands to list file information. The LIST command lists the
names of the files, DIRECTORY prints several items of information about the files, and the
FILES command lists selected information about the files. In addition, the LAST command gives
the number of files in the directory. The DIRIT program, described on page 87, also includes
file listing capabilities.

The LIST Command

The user types
—LIST >

to list all the file names in the file directory beginning with the file most recently created.

The DIRECTORY Command

All the characteristics of the user’s files may be listed with the DIRECTORY command. Most
recently created files are listed last. The listing can be stopped at any time by typing an alt
mode/escape. The DIRECTORY command lists the following information for each file:

® File number

® Private controls

® Public controls

40

File type
Date of last write
Number of times accessed since created

File size in characters

File name

For example:

-DIRECTORY D

PVT PUB TYP DATE USE SIZE NAME

1 R NO SYM 2-12 53 1536 ADDITIONS

2 W NO SYM 2-12 37 1536 UPDATE

3 R NO SYM 3-9 43 1536 LOOP

4 R/W YES ,WT SYM 1-12 21 1536 SBASAVINTRST
5 R NO SYM 2-10 6 3072 BUDGET

6 R/W YES ,WT BIN 3-9 6 1536 SFOPROG

7 R/W YES ,WT GO 2-12 3 1536 ACCTS

8 R/W PRP ,WT GO 2-12 1 1536 SORT
9 R/W YES ,WT GO 2-12 1 768 REPT1
10 R/W YES ,WT GO 2-12 1 768 REPT2

The file number is simply the position of the file in the directory. As files are deleted from the
directory, the numbers of files farther down the list are adjusted. The file number is used with
the REMOVE command, described on page 30.

The private controls and public controls are set by DECLARE. In the PVT column:

R = Read access only.
W = Write access only.
R/W = Read and write access.
AP = Appendable only.
R/A = Appendable with read access.
In the PUB column:
NO = Not public.
YES = Public.
YES,WT = Public with public write access.
PRP = Proprietary.
PRP,WT = Proprietary with public write access.
INT = Initialized.!

1 - Initialized files are discussed starting on page 48.

41

The file type is one of the following:

SYM Symbolic files contain information in the standard alphanumeric character
representation. They may be used as program files or data files.

BIN Binary files are written in machine code. Compiled programs and data may
be stored on binary files for security and economy, since they usually
take less storage space than symbolic files and are faster to load.

GO A GO file is a program file which may be executed directly from the
: EXECUTIVE by typing GO and the file name. See page 20 for an explana-
tion of GO files.

DUM : A DUMP file is a machine code file created by the DUMP command as
discussed on page 18. A DUMP file can be executed with the RUN
command.

BAD If a file is ever listed as a bad file, some unusual error has rendered the file

unusable. The user should call the Tymshare representative to have a
good version of the file restored from the backup tapes.

The date (month-day) is the last time the file was written on. If the data is more than a year
old, the year appears in the parentheses after the day.

The use is the number of times since it was last created that the file has been accessed for either
reading or writing.

The size is the file size given in characters.

The full name of the file is listed with any appended comments.

By typing a line feed instead of a carriage return after the DIRECTORY command, the user
can specify one file or a group of files for which he wants all the characteristics to be listed.
For example:

-DIRECTORY ™}

FILE(S): UPDATE, LOOP,BUDGET D

PVT PUB TYP DATE USE SIZE NAME
W NO SYM 2-12 37 1536 UPDATE
R NO SYM 3-9 43 1536 LOOP
R NO SYM 2-10 6 3072 BUDGET

File numbers are not printed if the user specifies the file names.

Alternatively, the DIRECTORY command and the file list can be given on one line:

—DIRECTORY PGM,BL O

or
—DIR PGM BL2

Another form of DIRECTORY allows the user to list part of the directory. Its form
—DIR,file number >

lists the files beginning with the number specified. For example,

42

—DIR,24 20

lists all the files from number 24 to the end of the directory. If the DIRECTORY command and
the file list or file number are given on one line and followed by a line feed, instead of a carriage
return, the column headings are not printed. For example:

-DIR UPDATE, LOOP, BUDGET 2 The user types the DIRECTORY command
PVT PUB TYP DATE USE SIZE NAME followed by a carriage return.

W NO SYM 2-12 37 1536 UPDATE

R NO SYM 3-9 43 1536 LOOP

R NO SYM 2-10 6 3072 BUDGET

-DIR UPDATE,LOOP,BUDGET 7} The user types the DIRECTORY command
followed by a line feed.

W NO SYM 2-12 37 1536 UPDATE
R NO SYM 3-9 43 1536 LOOP
R NO SYM 2-10 6 3072 BUDGET

The FILES Command

The FILES command can be used to list particular directory information.! For a quick listing
composed only of file names and file types, the FILES command is given as shown below.

-FILES O

SYM ADDITIONS
SYM UPDATE
SYM LOOP

SYM SBASAVINTRST
SYM BUDGET
BIN SFOPROG
GO ACCTS

GO SORT

GO REPT1

GO REPT2

GO REP

BIN NAUT o

By typing a line feed after the FILES command, the user can specify the quick listing of one file
or a group of files.

-FILEST}
FILE(S): CON2,BITTY,COM1D

SYM CON2
BIN BITTY
SYM COM1

1 - Particular file information can also be listed with the DIRIT program described in Section 10, page 87.

43

Alternatively, the file names can be typed on the same line as the FILES command.

-FILES CON2,BITTY,COM1o

SYM CON2
BIN BITTY
SYM COM1

In addition, by typing a line feed after the specified file names, the user may select which other
characteristics besides the name and type he wants to see. For example:

-FILEST}
FILE(S): ACCTS,SUN7

NUMBER? N7

SIZE? Y73

DATE? Y75

CONTROLS? Y73

PVT PUB TYP DATE USE SIZE NAME

R/W YES ,WT GO 2-12 3 1536 ACCTS
R/W YES ,WT SYM 3-10 1 1536 SUN

As is shown in the preceding example, the user types Y for YES if he wants to list the informa-
tion in question; otherwise, he replies with N for NO. Either a line feed or a carriage return

may be typed after a Y or N reply. A line feed causes FILES to ask the next question;a carriage
return causes it to skip the remaining questions. For example:

-FILES LOOP, SORT 73

NUMBER? N7}

SIZE? N7

DATE? YO The Y reply causes both DATE and USE to be listed. The carriage return
TYP DATE USE NAME causes the next question to be skipped.

SYM 3-9 43 LOOP
GO 2-12 1 SORT

The name ALL lists all the files in the user’s directory. Therefore, the user can select informa-
tion to be given about all of the files by answering

FILE(S): ALL>

If the FILES command is followed by a comma and a file number, information is listed for that
file and all subsequent files. For example:

44

-FIL,257%

NUMBER? Y3

SIZE? Y9

TYP SIZE NAME
25 SYM 1536 @CATLG
26 SYM 1536 E@SANDEN
27 SYM 1536 6LATER
28 SYM 1536 @DUMMY

This feature is especially useful with large file directories.

The LAST Command
For a large file directory, the user can easily find the number of the last file in the directory

with the LAST command, then request a file listing or complete directory information about only
the most recent files. For example:

-LAST 9
28
-FIL,252

or

-DIR,2529

The SUMMARY Command

The SUMMARY command prints the user’s total current file storage in number of characters
and total number of files in the user’s directory. For example:

-SUMMARY D
3/10/76 17:31
TOTAL STORAGE: 89856

NO. OF FILES: 28

45

Section 6
AUTOMATIC FILE FEATURES

The TYMCOM-IX system has several automatic file features to facilitate data processing: use of
command files, terminal output files, and file initialization.

COMMAND FILES

Under normal operation, commands are entered into the system from the terminal. Occasion-
ally, however, it may be advantageous to store a particular sequence of commands on a file
using the command file feature.

The command

—COMMAND file name >

causes the system to accept commands from the specified file as if they had been entered from
the terminal.! The command file feature is convenient whenever:

® An elaborate system of programs needs to be linked into one easy to use package.

® Clerical functions are performed on the system by employees with no need or desire to learn
the Tymshare commands.

® A sequence of commands must be performed repeatedly, such as each time a program is run.

For example, a company keeps a catalog of its publications on a file. The SUPER BASIC program
UPDATE adds new entries to the file, but for safety, a copy is made of the data file each time
before the program is run. Therefore, the command sequence entered from the terminal is the
following:

-COPY CATLG TO CATDUPD
NEW FILED

-SBAD

>LOAD UPDATE D
>RUND

1 — The DO command is equivalent to the COMMAND command.

46

To perform the same operations, a command file named ADDITIONS contains the following
commands as text:

COPY CATLG TO CATDUP

The space represents a carriage return entered to confirm NEW FILE.

SBA
LOAD UPDATE
RUN

COMMAND T After the program UPDATE is completed, control is returned to the terminal by the
command COMMAND T.

Then the program can be run by typing
—COMMAND ADDITIONS ©

The commands in the file are not printed on the terminal but any messages from the system are
printed, such as OLD FILE. The command file may be created either in the EXECUTIVE,
with the COPY command, or in EDITOR.!

The commands in a command file may be from any Tymshare language and many library
programs. Users can also write programs which can be run from command files. Note, however,
that input files for SBA programs cannot be specified in command files.

The system accepts its commands from the file specified in the COMMAND command until
one of the following items is reached:
e A COMMAND T command, which causes the system to return to accepting commands
from the terminal.

® The end of the command file, which has the same effect as the item above except that a
question mark is printed.

® Another COMMAND command, which enables the user to link as many command files as he
wishes. Command files can also link to themselves; that is, the last command in the file
can be a command to take commands from itself. See the example below.

® An error.

Example

A user wants to delete all but his first 29 files. He creates a command file which removes file
number 30 and calls itself to remove file number 30 again. All the files are deleted until only
the first 29 remain. Control returns to the terminal when the REMOVE 30 command can no
longer be executed.

1 — Refer to the Tymshare EDITOR Reference Manual.

47

-COPY T,FILDELD The user uses the COPY command to create the file.

NEW FILE2®
REMOVE 302 There are only two statements in the command file.
COMMAND FILDEL <
D¢ D¢ terminates the COPY command.
-COMMAND FILDELD Control is transferred to FILDEL.

O)

The question mark prints when there is no longer a 30tb file to be deleted.

~LAST2
29 Only 29 files remain.

DIRECTING TERMINAL OUTPUT TO A FILE

It is frequently useful to direct terminal output to a file instead of to the terminal. The TOUT
command provides this capability. For example, a user may wish to store on a file the output
of a program as it is running, or it might be convenient to document terminal sessions by directing
output from EXECUTIVE commands to a file. The form of the command is

—TOUT file name 2

The TOUT file is a sequential output file. As long as the TOUT file is open, new information is
added to the end of the file. If a TOUT file is closed, then opened again, the first contents of
the file are erased, and the new information replaces the former contents of the file. The user can
avoid erasing a TOUT file by specifying a different file name in the subsequent TOUT command.

To return to the normal mode in which EXECUTIVE output is written on the terminal, the
TOUT command is reexecuted with T as the file name. For example:

—TOUT T2

Terminal output from programs or languages is directed to the terminal unless the user specifies a
TOUT file. Calling a program or a language does not deactivate the TOUT file. The TOUT

file remains open until the user redirects terminal output to the terminal. The TOUT file cannot
be copied to the terminal, read into EDITOR, or opened as a data file in a language program
until it is closed by a TOUT T command or a program.

-TOUT D
TO FILE: TRIAL2
NEW FILED

The user calls TOUT and specifies the file name TRIAL.

-DATED The user requests the date. The system writes the date on the TOUT file TRIAL
- and gives the prompt.

-TOUT T

-TYPE TRIALD The user leaves the TOUT mode and prints the contents of the file TRIAL.

3/10/76 17:55

THE “ (COMMENTS) COMMAND

The double quotation mark (*) lets the user type comments on the work he is doing. The user
enters a double quotation mark followed by the desired comments, and terminates the entry
with a control D or another double quotation mark and a carriage return. The form of the com-

mand is
—‘‘commentsD¢
or
—“comments’’ 2
For example:

-"WE WILL NOW CALL SBA AND LOAD A PROGRAM THAT CALCULATESY
THE AREA OF A TRIANGLE.DC¢

or

_"WE WILL NOW CALL SBA AND LOAD A PROGRAM THAT CALCULATESY
THE AREA OF A TRIANGLE."

The EXECUTIVE ignores all text that is contained in comment form, but the text will be printed
on the terminal if the comment is contained in a COMMAND file. For this reason, comments
are particularly useful in command files to notify the user of progress when the file is running.

INITIALIZED FILES

When a command file is initialized, control is transferred to the file immediately after the user
logs in. The command to initialize a command file is

—INIT file name D

For example, 2 company has a user name containing its inventory and inventory control programs.
This user name is designed so that the control programs are loaded automatically by a command
file called CONTROL shown below:

-COPY T TO CONTROL 2 The user uses the COPY command to create the file.
NEW FILED

.SLAD The file calls SUPER BASIC and runs a program that

5 PRINTD asks what the user wants to do, and then writes a

10 PRINT "UPDATE OR RETRIEVE":D second command file which loads the appropriate

20 INPUT AD program.

30 IF LEFT(A,1)="U"THEN A="UPDT"7}
ELSE A="RETR" O

49

40 OPEN "CON2",OUTPUT, 12

50 PRINT ON 1:"GO "+AD

55 PRINT ON 1:"COM T"D The file runs the short program and transfers control to
60 CLOSE 1o a second command file.

ROND

QUITS

COMMAND CON22D

D¢

-INIT CONTROLD The user initializes the file.

Then, when a user logs in, the following occurs:

please log in: DELEON; ;2
TYMSHARE C2 3/10/76 18:10
UPDATE OR RETRIEVE? RO

INVENTORY INFORMATION RETRIEVAL PROGRAM

An initialized file continues to execute automatically each time the user logs in or until the file is
deinitialized by giving the DEINIT command described below. If an initialized file is deleted
without deinitializing it, and another file is not initialized, a question mark occurs every time the
user logs in. The user may avoid this question mark by giving the DEINIT command. Initialized
command files are listed as INT under the PUB heading in the file directory listing.

The user can also initialize a Tymshare Library program or a file in another user name. The
correct form is

—INIT (user name)file name 2

or
—INIT #p2?

where Ip stands for any Tymshare Library program.

When a Tymshare Library command file or a file from another user name is initialized, an
empty dummy file is set up in the user’s directory with the same name as the file. These dummy
files cannot be removed from the directory except by use of another INIT or the DEINIT
command.

GO and DUMRP files, as well as command files, can be initialized. If a GO file is initialized, the
program starts running immediately after logging in. If a DUMP file is initialized, the file
is automatically recovered and transfer is made to the language, but the program does not execute
automatically.

Normally it is possible to stop initialized files by typing an alt mode/escape. However, the alt
mode/escape can be disabled so that it will not interrupt a program. To disable alt mode/escape,
the file is initialized by giving the INIT command followed by a line feed and then the file
name. For example:

50

—INITS

FILE CONTROL?

Files may be deinitialized by issuing the DEINIT command or by initializing another file in the
directory. Dummy file names will be removed from the directory by the DEINIT command
or a subsequent INIT command, but ordinary initialized files will remain. The DEINIT command
does not take a file name. Its form is simply

—DEINIT 2

NOTE: Files that bave been initialized by an Account Supervisor can be deinitialized only by
the Account Supervisor.

51

Section 7
UTILITY COMMANDS

There are several utility commands available on the TYMCOM-IX system that provide system
information to document a session at the terminal: DATE, TIME, SYSNO, and DSC.

THE DATE COMMAND

The DATE command prints the current date and the time of day. For example:

-DATED
3/10/76 18:13

THE TIME COMMAND

The TIME command prints the computer time used and the terminal connect time since the
user logged in. For example:

-TIMED

CPU TIME: U4 SECS.
TERMINAL TIME: 0:2:49

THE SYSNO COMMAND

The SYSNO command prints the computer location and number, the disk number, the system
monitor number, and the EXECUTIVE version. For example:

52

-SYSNO2

c2 , DISC 2, S¥S. S37.10 -1 I66,-96!?.10
1

disk equipment
number parameter
code
system
location]
and monitor EXECUTIVE
number number version
Location Code Location
C Cupertino, California
H Houston, Texas
P " Paris, France
\% Valley Forge, Pennsylvania

The Tymshare analyst may use this information to help users with problems.

THE DSC COMMAND

The DSC command prints the storage currently being used and the maximum storage used
(in blocks of 768 characters) since the last storage measurement. For example:

-DSC2
DISC STORAGE (BLOCKS):
BASE = 2, MAX = 16

53

Section 8
FEATURES FOR NARP AND XDDT USERS

RUNNING A DEBUGGED PROGRAM

The SAVE command creates a GO file. The form of the command is
—SAVE first loc TO last loc ON file name 2

SAVE responds with the OLD FILE or NEW FILE message.

If either the command or the OLD FILE/NEW FILE is terminated by a line feed rather than a
carriage return, SAVE asks

STARTING LOCATION

The user enters the starting location of the program when it is again placed in core. The starting
location must be followed by a carriage return.

GO files can be saved so that they remain open when they are loaded. This allows the user to
append data to the end of the program file.

To save a GO file so that it remains open, the user sets the sign bit when he enters the starting
address. This is done by preceding the starting address with 4 and enough zeros to fill the number
out to eight digits.

-SAVE 240 TO 307 ON PRESNID
NEW FILET
STARTING LOCATION 400002402

To restore a program that has been saved on a file without calling XDDT, the user types

—PLACE file name2

If a starting location was specified when the program was saved, the program can be run with-
out calling XDDT by using the BRANCH command.

—BRANCH starting location D

COMMANDS TO DETERMINE MEMORY ALLOCATION

Command Information
MEMORY Number of words of unused memory.
STATUS Status of used bytes.

PMT Status of all bytes allocated to user.

COMMANDS TO RELEASE MEMORY

Command Action
RELEASE Releases the subsystem.
KILL Kills program relabeling.

RESET Returns all of user’s memory.

55

Section 9
PROGRAMS FOR FILE MANIPULATION

This section describes several Tymshare Library programs. The File Directory Management
(FDM) program reduces the size of files to save storage charges and puts any number of
them on one master file. CHECKSUM, VERIF, COMPARE, and SCOMPARE can be used to
determine if a file has been changed.

THE FILE DIRECTORY MANAGEMENT (FDM) PROGRAM

The FDM program crunches symbolic files into smaller binary files and places them on one
master file which can later be uncrunched back into individual files.! FDM is useful for grouping
files with similar functions, or files of one program, for convenient storage. It is also handy
for reducing storage charges for symbolic files that are not used often. The binary files created by
FDM cannot be understood by the system; they must be uncrunched before they can be used.
The program is called by typing

—FDM 2

The Basic Commands

The basic operation of FDM is as follows: Symbolic files are crunched into binary files and
placed in a buffer. They are then written onto a master FDM file, any number of files to one
master file. Files are restored to symbolic type in two steps also. First the master file is opened
for reading, and one file at a time is read into the buffer. Each file is then uncrunched and
written to the user’s directory as a symbolic file with its old name, or with a new name, at the
user’s discretion.

In this section, the basic operation is discussed first, then the advanced features are discussed
in detail.

The CRUNCH and MASTER Commands
The CRUNCH command crunches the specified file and places it in the FDM file buffer. The
MASTER command takes the file from the FDM buffer and writes it on an FDM master file.

For example, to crunch a file named TEXT and create the binary file SMALTEXT, the user pro-
ceeds as follows:

1 - Binary or GO files can also be placed on a master file but their size remains unchanged; see page 63.

56
-FDMD

:CRUNCH2
FROM:TEXT 2
COMPRESSED TO 75%

:MASTER2
TO:SMALTEXT 2

NEW FILED
28 WORDS

The short forms of the commands are as follows:

-FDMDO

:CRUNCH TEXTO
COMPRESSED TO 75%

:MASTER SMALTEXT®
NEW FILED
28 WORDS

NOTE: After a file bas been crunched and stored, the symbolic version of the file can be
deleted with the EXECUTIVE DELETE command.

Several symbolic files may be crunched and written into the same binary file by repeating the
MASTER command without a file name. The commands below crunch files ALPH2, ALPH3, and
ALPH4, and sequentially write the crunched files on the master file SHRINK.

-FDM2

:CRUNCH ALPH22
COMPRESSED TO 76%

:MASTER SHRINKO
OLD FILE?
24 WORDS

:CRUNCH ALPH3D
COMPRESSED TO 77%

:MASTERD
27 WORDS

57

:CRUNCH ALPH4D
COMPRESSED TO 76%

:MASTERD
31 WORDS

.
.

NOTE: If the user wishes to save a crunched file on paper tape, be should crunch the symbolic
file onto a master FDM file and then use the EXECUTIVE Tape Package (see page 153) to save
the master file on tape.

The READ and UNCRUNCH Commands

To uncrunch a crunched file, the master file is accessed with the READ command, then the
individual file is restored with the UNCRUNCH command. For example:

~FDMD

:READ SMALTRIALD The user reads the file SMALTRIAL.

FILE: TRIAL)
(LAST FILE) TRIAL is the last file on SMALTRIAL.

3/10/76 17:55 FDM prints the first line of TRIAL, which contains a date and time.
:UNCRUNCH TRIAL D This command uncrunches the binary file and writes it on the symbolic file TRIAL.
OLD FILED

14 CHARACTERS

Q2 Q returns control to the EXECUTIVE,

Each time the READ command is given without a file name, it reads the next file from the current
open master file. For example:

-FDMO

:READ SHRINK D
FILE: ANAL2
THIS 1S A TEST

:READD
FILE: SUN
98765

:READD
FILE: CON2
(LAST FILE)
COM T

58

The UNCRUNCH command uncrunches the last file read in from the master file and writes
the symbolic text on the specified file. If no write file is specified, the system asks TO:, and the
user responds with the desired file name. The user may terminate the UNCRUNCH command
or respond to the request TO: with a line feed which writes the uncrunched text to the file name
originally associated with it. For example:

-FDM O

+READ SHRINK O
FILE: ANALZ2 The user reads but does not uncrunch the first file on master file SHRINK.
THIS IS A TEST

:READD
FILE: SUN
98765

The user reads the second file on master file SHRINK, uncrunches it, and

- UNCRUNCH BIGGERD writes the uncrunched file on BIGGER.

NEW FILE®
6 CHARACTERS

:READD The user reads the third file.
FILE: CON2
COM T

" :UNCRUNCH?
TO:BIGGEST 9 The system prompts for the name of the write file.
NEW FILED
6 CHARACTERS

:READD
FILE: ADDITIONS
COPY CATALOG TO EXTRA

:UNCRUNCH™} The user terminates the UNCRUNCH command with a line feed, and so
FILE: ADDITIONS the file ADDITIONS is uncrunched and written with its original file name.
OLD FILED

55 CHARACTERS

:READD
FILE: UPDATE
100 S=0

:UNCRUNCHD
TO: T The user responds to TO: with a line feed, and so UPDATE is written
FILE: UPDATE?® with its old file name.
OLD FILE2
294 CHARACTERS

Q2

59

NOTE: When files are uncrunched and restored to the directory as symbolic files, they are
accepted as new files. That is, their creation date becomes the date they are uncrunched, and the
usage record starts over at 1.

It is also possible to uncrunch a file and write it to its old file name, from any position in the
open read file, simply by typing

:UNCRUNCH file name 2

For example, the master file SHRINK contains the following files:

:FILESD
1 SYM ANAL2
2 SYM SUN
3 SYM CON2
4 SYM ADDITIONS
5 SYM UPDATE
6 SYM LOOP

Suppose that the user has uncrunched the first file, and is now at the second file in the directory.
However, he wishes to skip files 2, 3, and 4, then uncrunch the fifth file.

:UNCRUNCH UPDATED
OLD FILED
15 CHARACTERS

Q2

NOTE: To read and uncrunch a crunched file that bas been stored on paper tape, the user
should use the EXECUTIVE Tape Package (see page 153). The user can then restore the file to its
original form using the FDM UNCRUNCH command.

Creating Master Files
The advanced features of FDM allow the user much greater flexibility in crunching and storing
files. Files can be crunched and written to the master file one at a time, the whole directory
or any range of files can be crunched and written at one time, selected files can be conveniently
written with one simple command, or files can be crunched by type.

CRUNCH with MASTER or APPEND

After calling FDM, the user crunches a file with the CRUNCH command, then writes it to a
file with the MASTER command.

60

~FDMO

:CRUNCH TRIALD
COMPRESSED TO 76%

The user writes a crunched file onto a new master file, which remains open for
:MASTER LITTLED subsequent output.
NEW FILED
31 WORDS

The first use of the MASTER command opens the new master file and leaves it open for sub-
sequent MASTER commands. More files can be added to the master by crunching and

writing without specifying the file name. At this stage, the MASTER and APPEND commands
are equivalent. Leaving FDM and returning to EXECUTIVE by using the QUIT command
closes the master FDM file.

: CRUNCH CATLG D
COMPRESSED TO 76%

: APPEND © The user appends a second crunched file to the already open master file LITTLE.
65 WORDS

.
.

CAUTION: After the initial use of the MASTER command with the master file name, sub-
sequent MASTER commands should be given without the file name. Use of the file name then
causes the master file to be overwritten instead of appended.

Crunching All Files or a Range of Files

A new master FDM file can also be created by using the CRUNCH ALL command. This
command crunches all symbolic files in a directory or part of a directory. FDM prompts for the
starting position and the name of the master file.

-FDM2
The user indicates that be wants all files

:CRUNCH ALL2 L . .

el e b .
START POS. 12 crunched, beginning with the first.
TO:TINYD The user writes the crunched master file

NEW FILE2 onto TINY.
FILE: TEXL The CRUNCH ALL d gi b
COMPRESSED TO 79% ¢ ; commana gives the
547 WORDS name and size of each file that can be

- - crunched. It rejects binary, DUMP, and
FILE: SHRINK WRONG FILE TYPE GO files.

FILE: HALP2
COMPRESSED TO 75%

61

434 WORDS
FILE: HALP1
COMPRESSED TO 77%

213 WORDS

FILE: HALPY
COMPRESSED TO 78%

73 WORDS

FILE: SMALTEXT ®*#WRONG FILE TYPE##
FILE: LESSER
COMPRESSED TO 81%
1111 WORDS

FILE: ALPHY4
COMPRESSED TO 81%

2219 WORDS

FILE BUSY | . .
FDM b the fil bich

FILE: TINY **CANNOT OPEN FILE®*® isworivimg. | TeP the file on which it

FILES CRUNCHED: 6
FILES REJECTED: 3

To crunch only the last files in the user’s directory, the user types the position of the first file
to be crunched in response to the prompt. For example,

:CRUNCH ALL 2
START POS. 352

crunches files 35 through the end of the directory.

The user can also crunch a range of files not at the end of the directory by following the
starting file number with a line feed The system then prompts for the number of the last file to
be crunched.

¢CRUNCH ALLD

START POS. 227 A line feed bere gets the system to prompt for an ending file number.
FINISH POS. 232

FILE: @€BUDGET

COMPRESSED TO 79%

541 WORDS

FILE: @BAL

COMPRESSED TO T74%

80 WORDS

FILES CRUNCHED: 2
FILES REJECTED: 0

62

If a master file is not open, the system will prompt for the name of a master file.

Crunching Multiple Files

If the user wishes to crunch several files which are not in sequence in his directory, he can do
this easily by writing the names on a file and crunching them all by the command

:CRUNCH f*file name?

-COPY T TO DATASD
OLD FILE?

DATA12 In the EXECUTIVE, the user creates a file DATAS that contains the names of
DATA2D the files be wishes to crunch.

DATA3D

DATA4D

D¢

-FDM2O He calls FDM.

:CRUNCH "DATAS D

TO:CDATAS? He crunches and writes the files listed in DATAS. The system prompts for the
NEW FILE2 name of a master crunched file.

FILE: DATA1
COMPRESSED TO 85%
7 WORDS

FILE: DATA2
COMPRESSED TO 85%

7 WORDS The system lists each of the files as they are crunched and written to the
FILE: DATA3 master file.

COMPRESSED TO 77%

64 WORDS

FILE: DATAL
COMPRESSED TO Tu%
80 WORDS

If a master file is already open for writing, the

:CRUNCH 1file name 2

command will automatically crunch and append the files to the open master file without the
prompt TO:.

63

Crunching Files by Type

The user can have all related files written on one master file, even if some of them are binary or
GO files, by using the ACCEPT command. The correct form is

:ACCEPT file type list2

where file type list may contain any or all of the following, separated by commas:

B binary files
S symbolic files
G GOfiles

The two following CRUNCH procedures are identical except that the second is done with the
ACCEPT command.

-FDM2

:CRUNCH ALL2
START POS. 7573 The user enters a line feed so that be will be able to specify an ending file number.
FINISH POS. 782
TO:LEAST D
NEW FILED
FILE: MFIL
COMPRESSED TO 61%
118 WORDS
FILE: LITTLE *¥WRONG FILE TYPE*# Two files are rejected because they are
FILE: SMALTEXT **WRONG FILE TYPE*#¥ already binary files.
FILE: LYNFILE
COMPRESSED TO 72%
79 WORDS

FILES CRUNCHED: 2
FILES REJECTED: 2

Q9

-FDM2

: The user instructs the program to include binary,

(.)QCCEPT B,5,6 symbolic, and GO files on the master crunched file,
and the system acknowledges the message with OK.

¢:CRUNCH ALL2

START POS. 757}
FINISH POS. 782
TO:LEAST D

OLD FILED

FILE: MFIL
COMPRESSED TO 61%
118 WORDS

FILE: LITTLE

64

36 WORDS READ

37 WORDS

FILE: SMALTEXT
33 WORDS READ

34 WORDS

FILE: LYNFILE
COMPRESSED TO 72%

79 WORDS

FILES CRUNCHED: 4
FILES REJECTED: 0O

This time all files are accepted for inclusion on the master file. Note,
bowever, that the binary files are not further compressed.

It is also possible to select file types by refusing certain types. In the following example, the
user wants to group some GO and binary files on one master, but to exclude symbolic files:

-DIR, 752
PVT PUB TYP DATE USE SIZE NAME
75 R/W NO SYM 3-16 4 1536 MFIL
76 R/W NO BIN 3-16 3 1536 LITTLE
77 R/W NO BIN 3-16 3 1536 SMALTEXT
78 R/W NO SYM 3-16 3 1536 LIYNFILE.
79 R/W NO GO 3-16 1 1536 RISKS
-FDM2O
¢ACCEPT 2
FILE TYPES: B,Go
OK
The user instructs the system to accept binary and GO files, but to
:REFUSE2 reject symbolic files—the reverse of the normal procedure.
FILE TYPES: S2
OK
:CRUNCH2
FROM:ALL 2

START POS. 757%
FINISH POS. 792
TO:BINGOD
NEW FILED
FILE: MFIL **WRONG FILE TYPE**
FILE: LITTLE
36 WORDS READ
37 WORDS
FILE: SMALTEXT
33 WORDS READ
34 WORDS
FILE: LYNFILE **WRONG FILE TYPE**
FILE: RISKS
23 WORDS READ
24 WORDS

FILES CRUNCHED: 3
FILES REJECTED: 2

Appending to Existing Master Files

At subsequent FDM sessions, the user can add more files to an existing FDM master file by
using the APPEND command.

-FDMD

:CRUNCH @SANDEND
COMPRESSED TO 73%

:APPEND BITTYD An existing FDM master file. In this case, a carriage return in response to
OLD FILED OLD FILE does not delete the old file, but appends to it.

82 WORDS

:TERMINATE OUTPUTD The master file is closed, then opened for reading.

0K

:READ BITTYD
FILE: CATLG
ACME LABS, 100, AMERICAL INSTRUMENT, 100

:FILES D The FILES command (see below) is used to verify that the file @ ANDEN
bas been added to the end of BITTY.
1 SYM CATLG
2 SYM @LATER
3 SYM @SANDEN

Uncrunching Files

The FILES Command

The FILES command lists all the files on the master crunched file currently open for reading.
For example:

66

:READ SHRINKO
FILE: ANAL2
THIS IS A TEST

:FILESD

SYM ANALZ2
SYM SUN

SYM CON2

SYM ADDITIONS
SYM UPDATE
SYM LOOP

SYM LOOP

SYM @BUDGET
SYM @BAL

O O=_O0WN EWN =

The user may specify that the list start with the #th file on the master file by entering the
command:

:FILES n2
For example:
:FILES 72

7 SYM LOOP

8 SYM @BUDGET
9 SYM @BAL

The DIRECTORY Command

The DIRECTORY command lists all the files on the master file currently open for reading, as
well as their size and first line of text. For example:

:READ SHRINKO
FILE: ANALZ2
THIS IS A TEST

:DIRECTORY »
TYP SIZE NAME IDENT
1 SYM 4 ANAL2 THIS IS A TEST
2 SYM 3 SUN 9876$ST
3 SYM 2 CON2 COM T76$ST
4 SYM 13 ADDITIONS COPY CATALOG TO EXTRA
5 SM 75 UPDATE 100 S=0
6 SYM 50 LOOP +ESC

7 SYM 50 LOOP :ESC
8 SYM 540 @BUDGET 100 STRING Y(2U4),S4
9 SYM 79 €BAL

If the user specifies that the directory listing begin with the nth file, the same information is
listed but without column headings:

:DIRECTORY 72
T SIM 50 LOOP ¢ESC

8 SYM 540 @BUDGET 100 STRING Y(24),S4
9 SYM 79 @BAL

The LIST Command

The LIST command is a useful way to check the whole directory without leaving FDM
command level. It has the same function in FDM that it has in the EXECUTIVE. For example:

-FDM
:READ SHRINKD The user opens the master file SHRINK and prints a list of its contents
FILE: ANALZ2 with the FILES command.

THIS IS A TEST
:FILESD

SYM ANAL2

SYM SUN

SYM CON2

SYM ADDITIONS
SYM UPDATE
SYM LOOP

SYM LOOP

SYM @BUDGET
SYM @BAL

O OO U W N —

<LISTD He then gives the LIST command, which prints bis whole directory, beginning with the most
—_— recent files created.

BITTY END BDATAS DATAS DATA4 DATA3 DATA2 DATA1 LITTLE BIGGEST BIGGER
SHRINK SMALTRIAL 17 CON2 TRIAL CATLG @DUMMY @LATER @SANDEN @CATLG 6EOM

He is returned to FDM command level.

67

68

If the LIST command is given at FDM command level while an FDM file is open for reading, the
open file is not affected. It remains open and the pointer remains at the same place.

Using EXECUTIVE Commands from FDM Command Level

Any EXECUTIVE command that does not run another program or change memory (see list
on page 18) can be executed from FDM command level, provided that the command does
not require arguments. The first three letters of the command are used, followed by an exclama-
tion point. In the following example, the user opens a master file that contains three crunched
files. The first use of the DIRECTORY command lists the directory of the currently open master
FDM file. The user then wishes to check his overall directory and does so by typing the command

:DIR! D

He then aborts the EXECUTIVE DIRECTORY command and returns to his still open master
file. Use of an EXECUTIVE command by this procedure does not affect any file open in FDM.

¢READ BITTYD
FILE: CATLG
ACME LABS, 100, AMERICAL INSTRUMENT, 100

:DIRD
TYP SIZE NAME IDENT
1 SYM 64 CATLG ACME LABS, 100, AMERICAL INSTRUMENT, 100
2 SYM 13 6LATER :PERPOUT
3 SYM 81 @SANDEN JAVAVANVA RS
:DIR!D

PVT PUB TYP DATE USE SIZE NAME

1 R NO SYM 3-1155 1536 ADDITIONS

2 R NO SYM 3-11 42 1536 UPDATE

3 R NO SYM 3-9 45 1536 LOOP

4 R/W YES ,WT SYM 1-12 21 1536 SBASAVINTRST
5 R NO SYM 2-10e

¢tGET 229
FILE: @LATER
: PERPOUT

Finding Files within the FDM Master File

The user has three convenient commands to help him find files within a large FDM master file:
FIND, SEARCH, and GET. The SEARCH command finds the file sought, then prints its
position number, type, and name. The FIND command finds the file, then prints the file name
and first line. For example:

69

:READ SHRINKD
FILE: ANAL2
THIS IS A TEST

:SEARCH UPDATED

5 SYM UPDATE
:FIND SUND

FILE: SUN
98765

If the user knows the position number, he can use the GET command to locate the file:

:GET 22
FILE: SUN
98765

The RESTORE Command

With the RESTORE command, the user can select a file for uncrunching by using its position
number in the master file.

The master file must be opened for reading first. For example:

~FDM O

:READ SHRINKD The user opens the master file SHRINK.
FILE: ANAL2
THIS IS A TEST

+SEARCH UPDATE O He finds the file number of bis file UPDATE.

5 SYM UPDATE

+RESTORE 52 He uncrunches UPDATE and writes it as a symbolic file under its old name.
FILE: UPDATE

100 S=0

294 CHARACTERS

:Q9 He quits FDM, then uses the DIRECTORY command to look at the end of bis directory, verifying that
UPDATE bhas been restored.

70

-DIR, U420

—_—t

PVT PUB TYP DATE USE SIZE NAME
44 R/W NO BIN 3-11 6 1536 BITTY
45 R/WNO SYM 3-11 1 1536 UPDATE

The UNCRUNCH ALL Command

An entire master file can be uncrunched using the UNCRUNCH ALL command. This command
supplies the name, first line (for symbolic files), and size of each file on the master file. The
master file BITTY is uncrunched below:

~-FDMO

:READ BITTYD
FILE: CATLG
ACME LABS, 100, AMERICAL INSTRUMENT, 100

:UNCRUNCH ALL 2
0K? YO

FILE: CATLG
249 CHARACTERS
FILE: @LATER

: PERPOUT

50 CHARACTERS
FILE: @SANDEN
(LAST FILE)
/N/\N/\\/11I
330 CHARACTERS

FILES UNCRUNCHED: 3
NO. UNCRUNCHABLE: 0

The user can uncrunch only the last part of a master file by using the GET command. The GET
command locates the first file desired, then that file and the remaining files are uncrunched.
For example:

¢:READ SHRINK D
FILE: ANAL2
THIS IS A TEST

:GET 82

FILE: @BUDGET The eighth file on SHRINK is located.
100 STRING Y(24),S4

7

¢UNCRUNCH ALLD
0K? YO
FILE: @BUDGET
0 ARACTERS
glig . C;l B At The eighth and nintb files are uncrunched.

(LAST FILE)

316 CHARACTERS

FILES UNCRUNCHED: 2
NO. UNCRUNCHABLE: 0

.
.

The user can also uncrunch a range of files ending at any position in the master file. The procedure
is the same as the above, except that a line feed is used after the UNCRUNCH ALL command.
The system then asks for the number of the last file the user wants uncrunched.

¢:READ SHRINK D
FILE: ANALZ2
THIS IS A TEST

:GET 32

FILE: CON2
CoM T

:UNCRUNCH ALL7 The user types a line feed, then supplies the number of the last file to be uncrunched.
FINISH POS. 42

0K? Yo

FILE: CON2

6 CHARACTERS The third and fourtb files are uncrunched.

FILE: ADDITIONS

COPY CATALOG TO EXTRA

55 CHARACTERS

FILES UNCRUNCHED: 2
NO. UNCRUNCHABLE: 0O

FDM Command Files

FDM commands can be included in ordinary command files, which are run from the
EXECUTIVE (see page 45), or in FDM command files, which are run from FDM command level.
For example, the EXECUTIVE command file SHRUNK is as follows:

72

FDM
READ SHRINK
UNCRUNCH ANAL2

The space reflects a carriage return, which must be entered in the command file
QUIT to respond to the NEW FILE/OLD FILE message.

COMMAND T

A comparable FDM command file is identical except that FDM is not called. To execute an FDM
command file, the DO command is given at FDM command level. For example, the FDM
command file SHRUNK has the commands

READ SHRINK
UNCRUNCH ANAL2

QUIT
COMMAND T

and is executed as follows:

-FIMD
+DO SHRUNK®

:READ SHRINK The commands are printed on the terminal as they are executed.
FILE: ANALZ2
THIS IS A TEST

:UNCRUNCH ANAL2
OLD FILE15 CHARACTERS

:QUIT
The user can suppress terminal output by having all conversation written on a terminal output

(TOUT) file.! For example, the above command file has been altered to include an output
file as follows:

TOUT NOISE Terminal output will now go to the file NOISE.

READ SHRINK
UNCRUNCH ANAL2

QUIT
TOUT T The EXECUTIVE command TOUT T closes the TOUT file and directs output
COMMAND T back to the terminal.

1 — See page 47 for a discussion of EXECUTIVE TOUT files.

73

When this command file is run, all terminal output is suppressed except for the TOUT command
and the confirming message NEW FILE which applies to the TOUT file itself.

:DO_SHRUNK 2

:TOUT NOISE
NEW FILE

The TOUT file NOISE now contains the following output:

-TYPE NOISE2

FILE: ANAL2
THIS IS A TEST

OLD FILE15 CHARACTERS

If the user chooses to record terminal output on a TOUT file but would still like information
on the progress of the command file execution, he can include in the command file text which
will override the TOUT command and print on the terminal. To do this, he uses the OUTPUT
command. All terminal output will still go to the TOUT file except that specified in the OUTPUT
command. For example, the user modifies his command file by adding two lines that he wishes
printed out at the terminal:

TOUT NOISE

READ SHRINK
UNCRUNCH ANAL2

OUTPUTTHE FILE IS NOW UNCRUNCHED.

OUTPUT YOU ARE BEING RETURNED TO EXEC COMMAND LEVEL.....
QUIT

TOUT T

COMMAND T

74

The file is now executed as follows:

:DO_SHRUNK 2

: TOUT NOISE
OLD FILE......cuus .+++.THE FILE IS NOW UNCRUNCHED.
YOU ARE BEING RETURNED TO EXEC COMMAND LEVEL....

Controlling Terminal Output

The EXPERT command reduces FDM conversation to a minimum for experienced users. To
return to the conversation mode, the NOVICE command is used. For example:

+<EXPERT 2 The EXPERT mode
0K

:CRUNCH UPDATE®
OK

:MASTER BUPDATE &
NEW FILES
76 WORDS

:TERMINATE OUTPUT D
OK

+NOVICE® The NOVICE mode
0K

:CRUNCH UPDATED
COMPRESSED TO 76%

:MASTER BUPDATED
OLD FILE?
76 WORDS

:TERMINATE OUTPUTO
OK

.
.

The TOUT command can be used to suppress all terminal output when entering commands from
the terminal; however, the user must remember to answer all unprinted NEW FILE/OLD F ILE
messages with carriage returns. If NOTHING is specified as the TOUT file, the conversation is not
saved. Note that even FDM prompts are printed on the TOUT file instead of at the terminal.

~FDM D

:READ SHRINKD The user reads and uncrunches a crunched file in the normal manner.
FILE: ANAL2
THIS IS A TEST

:UNCRUNCH ANAL2D
OLD FILED
15 CHARACTERS

;QQ

-FDM O

:TOUTS

TO:SAVED The user reads and uncrunches a crunched file, writing all conversation on the file SAVE.
NEW FILED

READ SHRINKD

UNCRUNCH ANAL2D

QD > The user types a carriage return to answer the unprinted question NEW FILE.
-TOUT TO The user closes the TOUT file by returning output to the terminal.

The HELP Command

The HELP command lists all FDM commands in alphabetical order. For example:

+HELP D
COMMANDS :

APPEND
ACCEPT
CRUNCH
COMMENT
CLEAR
CONVERSATION
CREDITS
CHARGES
DIRECTORY
DO

Ee

75

76

Multiple Blanks in Files

In the normal mode of operation, when files with multiple blanks are uncrunched, all the
blanks are written. If the user wishes to write his uncrunched symbolic file with multiple blanks
compressed, he can activate the MB ON option before uncrunching his file. For example, in
the normal mode of operation a structured file is uncrunched as follows:

:READ SMALTEXT2
FILE: CATLG
ACME LABS, 100, AMERICAL INSTRUMENT, 100

:GET 52

FILE: COLOR COLOR is a RETRIEVE file with multiple blanks.
(LAST FILE)

XEXEC DATA SHEET LOGRAY

:UNCRUNCH SCOLORD
NEW FILED
5000 CHARACTERS With all blanks written out, it is 5000 characters.

With the MB ON option in use, the same file is uncrunched as follows:

:READ SMALTEXT2®
FILE: CATLG
ACME LABS, 100, AMERICAL INSTRUMENT, 100

:GET 52

FILE: COLOR
(LAST FILE)

XEXEC DATA SHEET 4OGRAY
:MB ONO The user activates the multiblank compression option.
0K
:UNCRUNCH BCOLOR2
NEW FILED
3066 CHARACTERS With blanks compressed, the file is 3066 characters long.

.
.

NOTE: Command files will not work properly if they are written with multiple blanks com-
pressed, and RETRIEVE files cannot be used in RETRIEVE with multiple blanks compressed.

The user can return to normal mode (multiple blanks written out) by typing

:MB OFF2o

before uncrunching a file.

The PRINT Command

The PRINT command prints the first line of the current crunched file in symbolic form.
For example:

:CRUNCH ¢EOMD
COMPRESSED TO 75%

:PRINTD
:BAL

The RENAME Command

The RENAME command is used to rename files as they are being crunched and stored on a
master file. For example:

:CRUNCH COLORD
COMPRESSED TO 43%

:RENAME DULL2 COLOR is renamed as DULL.
0K

:APPEND SMALTEXT D It is appended to master file SMALTEXT.
OLD FILED
732 WORDS

:TERMINATE OUTPUTD
OK

¢READ SMALTEXTD SMALTEXT is opened for reading,

FILE: CATLG
ACME LABS, 100, AMERICAL INSTRUMENT, 100

:FILES 62 The last file on the master file SMALTEXT is DULL.

6 SYM DULL

The RESET Command

The RESET command is used to clear all text from the FDM buffer, close all files, and reset
all options (for example, ACCEPT file type, MB ON, etc.) to normal status. To illustrate:

77

78

:UNCRUNCH BITTY®
OLD FILE2
249 CHARACTERS

+PRINTD The user prints the first line of the first file in BITTY.
ACME LABS, 100, AMERICAL INSTRUMENT, 100

¢RESET2 He clears the buffer, resets all options, and closes all files.
OK
:PRINTO This time be gets an error message in response to the PRINT command.

BUFFER EMPTY?

.
.

The STATISTICS Command

The STATISTICS command prints the following data for a specified file: name, position on the
master file, file size, and the remaining core buffer space. For example:

:READ SHRINK D
FILE: ANALZ2
THIS IS A TEST

:STATISTICS®

SYM ANAL2 #1-MASTER
SIZE: 4/49152 WORDS
49148 (46K) WORDS FREE

:GET 22
FILE: SUN
98765

:STATISTICS?

SYM SUN #2-MASTER
SIZE: 3/49152 WORDS
49149 (46K) WORDS FREE

The TERMINATE Command

To close the input and/or output file, the TERMINATE command is used. The command

:TERMINATE INPUT?

closes the input (or read) file. The command

:TERMINATE OUTPUT 2

closes the output file opened by the MASTER or APPEND command. The command

79

:TERMINATE ALL2?

closes all input/output files.
NOTE: The QUIT command closes all files before returning to the EXECUTIVE.

The VERSION Command

The VERSION command types the current FDM version number. For example:

:VERSION S
B03.00

THE CHECKSUM AND VERIF PROGRAMS

A checksum is a unique number associated with a particular file content. The checksum is
calculated by adding the binary equivalent of all the words on the file. If a file is copied, renamed,
or transferred from one user to another, the checksum should remain the same. If the contents
of a file are changed in any way, the checksum changes. Therefore, checksums are useful for
keeping track of various versions of files and for ensuring that a file has not been altered in any
way.

NOTE: The checksum is not related to the size of the file.

File checksums can be obtained with the CHECKSUM or VERIF command.! With the
CHECKSUM command, the checksum for an individual file can be listed. The VERIF command
gives the checksums for a range of files.

The CHECKSUM command has the following form:

-CHECKSUM 2 The user calls CHECKS UM.

INPUT: SHRINKD He specifies a file name.

4062341 CHECKSUM prints the checksum.

INPUT: .2 A period returns the user to the EXECUTIVE.

The VERIF command is used to obtain checksums for a range of files. The user calls VERIF,
then specifies the number of the first file in the range followed by a line feed, then enters
the number of the last file in the range. If the beginning number is followed by a carriage return,
the ending number is assumed to be the last file number. VERIF prints the date and time,
then the number, type, name, and checksum for each file.

1 - The DIRIT program, described on page 87, can also be used to obtain checksums of selected files.

80
-VERIFD

BEG.NO.: 2373
END.NO, : 252

03/11/76 17:36

23 SYM @EOM-50162247
24 SYM @CATLG-77307717
25 SYM @SANDEN-27455511

The user may create a command file to perform the functions of the CHECKSUM and VERIF
programs.! When creating a CHECKSUM command file the user specifies the files he wishes

to check by placing a period (.) before the first file name and after the last file name. For example,
the following files are in a user’s directory:

-FILO

SM ADDITIONS
SYM LOOP

SM BUDGET
BIN SFOPROG
GO ACCTS

GO SORT @

The user wishes to perform a CHECKSUM on files ADDITIONS, BUDGET, and LOOP. He
creates a command file in EDITOR.?

-EDID
#APPENDD
CHECKSUM O
+ADDITIONS 2
BUDGET 2 The user places a period before the first file be wants to check and
LOOP2D after the last.
)
COMMAND T2
D¢
#*WRITE CKFILD
NEW FILED
44 CHARS
Q_Q-;)

1 — Refer to the discussion of command files on page 45 for information on creating command files.
2 — See the Tymshare EDITOR Reference Manual.

81

-COMMAND CKFIL 2 He executes the command file CKFIL.
ADDITIONS-33504
fggg?ggzgfg g; 66 The program responds with the checksums of the requested files.

When creating a VERIF command file the period is unnecessary. The user creates the file as
follows:

-EDITOR2
* APPENDD
VERIFD
207 The user specifies the beginning number of the range of files followed by a line feed and the
249 ending number followed by a carriage return.
COMMAND T2
D¢
*WRITE CFIL2
OLD FILE2
22 CHARS
*QUITS

-COMMAND CFIL2

03/16/76 15:22

20 SYM @BAL-15327604

21 SYM @CATLG-77307717
22 SYM @SANDEN-27455511
23 SYM @LATER-47726701
24 SYM €@DUMMY-53121027

COMPARING TWO FILES

Tymshare provides two different programs for comparing the contents of files. SCOMPARE,
which compares two files line by line, is an efficient method of comparing symbolic files,
either programs or data files. COMPARE, which compares two files word by word, is especially
useful, for example, in finding changes made in a GO file or a NARP object file.

The SCOMPARE Program

The SCOMPARE program is called by typing SCOMPARE and a carriage return in the
EXECUTIVE. The program requests the names of the two files to be compared, then the name of
the output file. The user may enter the letter T and a carriage return to have the results printed

82

on the terminal. If he enters a file name, the OLD FILE/NEW FILE message is printed and must
be confirmed with a carriage return or aborted with an alt mode/escape. The following example
illustrates the SCOMPARE program.

-TYPE DATA1D

ABC
DEF
GHI
JKL
MNO

-TYPE DATA2 D

ABC
GHI
MNO
STU
VWY

-SCOMPARE O

INPUT FILE 1: DATA12

INPUT FILE 2: DATA2O

OUTPUT TO: DATACOMP The output is written on a new file DATACOMP.
NEW FILE?

The contents of DATA1 are compared with the contents of DATA2.

SCOMPARE next requests the number of lines to match in the files. This number specifies how
many lines apart two unmatched lines can be and still be considered a single discrepancy.

The number may range from one to the total number of lines in the file; if a carriage return is
entered in response to the prompt, the number used is three.

NUMBER OF LINES TO MATCH = 19

The contents of DATACOMP are shown below.

-TYPE DATACOMPD

03/11/76 17:50
1)=DATA1
2)=DATA2

1) DEF
1) GHI
1) JKL
1) MNO
L& 21)
2) GHI
2) MNO

83

2) STU

2) VWY
ERERRERED

For each file, the lines in which differences occur are printed, followed by a row of asterisks
and the line number of the first line in each group. The following examples demonstrate the
SCOMPARE program. The four sample files are displayed:

-TYPE ALPH1D

AAA
BBB
ccc
DDD
EEE
FFF
GGG
HHH

-TYPE ALPH2D

AAA
BBB
ccc
EEE
FFF
GGG
HHH

-TYPE ALPH32

AAA
BBB
ccc
DDD
EEE
FFFF
GGG
HHH

-TYPE ALPH4D

AAA
BBB
ccc
EEE
FFF
HHH

84

SCOMPARE works as follows:

-SCOMPARE 2
: ALPH12
]I::i:gg l;%tg ;: AtP.H—ZD ALPH]1 and ALPH2 are the files being compared.
OUTPUT TO: T2
NUMBER OF LINES TO MATCH = _1_3

1 03/11/76 17:56
1)=ALPH1
2)=ALPH2

1) DDD 1) indicates that these are lines from file 1 (ALPH1).
1) EEE
Bune)

2) EEE
MTIITIIT

Line number of first discrepant line in file 1.

Line number of first discrepant line in file 2.

The difference between the two files is that DDD is omitted in file ALPH2. Therefore, line 4 in
file ALPH2 is EEE. The short row of asterisks signifies the first discrepant line, 4, in file 1,
ALPH1. The longer row of asterisks signifies the first discrepant line in file 2, ALPH2.

Note that the program also prints the first matching pair of lines that occur after a discrepancy.

-SCOMPARED

INPUT FILE 1: ALPH19 .)
INPUT FILE 2: ALPH3D ALPH1 and ALPH3 are files being compared.

OUTPUT TO: T2
NUMBER OF LINES TO MATCH = 12

03/11/76 17:58
1)=ALPH1
2)=ALPH3

1) FFF Line 6 in ALPH1 is FFF; line 6 in file ALPH3 is FFFF. Lines 7 in the two files,
1) GGG GGG, match.

#RRRQ

2) FFFF

2) GGG
ERERRRERG

85

-SCOMPARE D

INPUT FILE 1: ALPH22
INPUT FILE 2: ALPH4D ALPH2 and ALPH 4 are the files being compared. The output is

OUTPUT TO: COMPo written on a new file named COMP.,

NEW FILED
NUMBER OF LINES TO MATCH = 12

-TYPE COMPDO The file is displayed.

03/11/76 17:58
1)=ALPH2
2)=ALPH4

1) GGG
1) HHH
ERRG

2) HHH
HRRRBREEG

The significance of the number of lines matched is illustrated below. The files ALPH1 and
ALPH4 are compared twice. The first comparison uses 1 as the number of lines to match
and discovers two discrepancies. The second method uses 4 as the number of lines to match and
treats the mismatches as a single discrepancy. In this case the four lines containing the mis-
matches are considered as one unit.

~-SCOMPARE D
INPUT FILE 1: ALPH1D
INPUT FILE 2: ALPH4DO

OUTPUT TO: TO
NUMBER OF LINES TO MATCH = 1D The number of lines to match is 1; therefore the

discrepancies are treated separately.

03/11/76 18:00
1)=ALPH1
2)=ALPHY

1) DDD
1) EEE
R

2) EEE
HERREEERY
1) GGG
1) HHH
EEuET

2) HHH
EERBEEERQ

-SCOMPARE O
INPUT FILE 1: ALPH1D
INPUT FILE 2: ALPH4D

86

OUTPUT TO: T2

NUMBER OF LINES TO MATCH = 429 The number of lines to match is 4. The differences in the
- files are less than four lines apart and are therefore treated as

03/11/76 18:00 a single discrepancy.
1)=ALPH1
2)=ALPHY

1) DDD
1) EEE
1) FFF
1) GGG

1) HHH
BRERY

2) EEE
2) FFF

2) HHH
BRERRBRE)

If the question “number of lines to match” is answered with a number followed by a line feed
instead of a carriage return, SCOMPARE will ask

SUPPRESS BLANKS?

If this question is answered with Y, blank differences will be ignored when the lines are compared.
Any other single-character answer will force the default mode of comparing blanks.

The COMPARE Program

The COMPARE program compares two files word for word and lists the content and location
of any words which are not exactly the same. For each discrepancy encountered, COMPARE
prints the letter D, the number of the discrepant word, and the contents of the word in each file.
When COMPARE encounters the ends of the two files, it prints E and the number of words
compared. If it encounters the end of one file before the other, it prints the file identifier (A or
B) of the shorter file and the number of words in that file. For example,

~COMPARE

AALPH1D The user gives the first file name, ALPH1, and starting location O; then
+02 the second file name, ALPH4, and starting location 0.

BALPHY4 D

+02

4 11022044 11222445 D 4 means there is a discrepancy in the fourth word processed.
5 33222445 33223046

6 11266446 11466450

7 11423155 12024155

10 11623447 27657537

10 B 10 means that the end of the second file was encountered after
10 lines.

| mooOooOoOO

87

Section 10
THE DIRIT PROGRAM

DIRIT is a utility program for file management that can list files, delete files, or copy files to
another user’s directory. The program is particularly valuable to users with large directories
because it provides a wide range of options for sorting and selecting files and for selecting informa-
tion about files.

The examples on the following pages show several ways to combine the sort, select, and
information options. These examples only suggest the wide variety of possible combinations. By
examining the lists of options in this section, the user will find the combinations of forms
most suited to his own unique needs.

The DIRIT program can operate in one of two modes: the once-only mode or the command
dispatcher mode. In the once-only mode, DIRIT executes any valid command and returns to the
EXECUTIVE upon completion of the task. In the command dispatcher mode, DIRIT prompts
with a colon, accepts a command, executes it, and prompts again for another command. The
command dispatcher mode is terminated by typing a carriage return immediately after the colon
prompt.

To initialize DIRIT in the once-only mode, the user types DIRIT followed by the DIRIT
command form on the same line. The form is

file identifier(s)!command list
—DIRIT ({file identifier(s) 2
!lcommand list

where the file identifier(s) are file names or any of the forms listed on pages 91-97 and the
command list consists of any of the commands discussed in this section. The file identifiers can
be separated by spaces, commas, or semicolons. Each command is preceded by an exclamation
point but no spaces. A space is optional to separate file identifiers from command forms. For
example, at the EXECUTIVE command level,

—DIRIT DA###!CHECKSUMS >

obtains the checksums of all files whose names contain five characters, the first two of which
are DA.

88

CHECKSUM FILE NAME
22513123 DATA1
61032665 DATA2
25145004 DATA3
15327604 DATAY
52204373 DATAS

Control is returned to the EXECUTIVE after the command is executed.

To obtain the same information and stay at DIRIT command level, the following form is used:

<-DIRIT2 The carriage return causes the DIRIT prompt.
+DA### ! CHECKSUMS 2 The user asks for checksums on the same files.

CHECKSUM FILE NAME
22513123 DATA1
61032665 DATA2
25145004 DATA3
15327604 DATAY
52204373 DATAS

This time control is returned to DIRIT command level and the user can now
enter another DIRIT command.

Controls A, W, and Q can be used when entering DIRIT commands.
Each DIRIT command can be shortened to the least number of characters that make it unique.

LISTING FILES AND RELATED INFORMATION

When listing information about files, the user can sort the list alphabetically, chronologically,
numerically, by type, or by number. All these sorts can also be done in reverse order.

The user can select files about which he wants information by date, by directory number or
range of numbers, by name, or by any characters within the name.

He can list any or all of the information about files that is provided by the DIRECTORY
command (see page 39), plus checksum (see page 79) and status information (see page 98).

Sorting Files

When listing file information, any of the following commands can be used to sort the files:

Command Sort

!ALPHABETICAL Alphabetical.

!ICHRONOLOGICAL By date of creation or last change.

IACS By the number of times the file has been accessed.

PSS By file number, that is, position in the directory.

89

Command Sort

IRCHRONOLOGICAL Reverse chronological order, that is, the order used when the
DIRECTORY command is given.

'REVERSE When combined with another sort command, reverses that

order. If no other sort command is given, the order is
reverse file number.

ITPS By file type: SYM, BIN, GO, DUM, BAD.

Any of the sort commands can be given without a file identifier. In that case, the program
prints all file names in the order specified by the command. For example:

-DIRITO The user calls the command dispatcher mode of DIRIT.
:'ALPHABETICAL D He asks for an alphabetical printout of file names in bis directory.

FILE NAME
/$/

// TEMP

17

6BAL

ABIN
ACCTS
ADDITIONS
ALPH1

ALPH2
AL® When be strikes the alt/mode escape, DIRIT replies with (ESC) and the
(ESC) DIRIT prompt.

To reverse any order, the user gives the REVERSE command in combination with the desired
sort command. For example:

:VREVERSE! ALPHABETICAL 2 Each command is preceded by an exclamation point, but commands
are not separated by spaces.

FILE NAME
UPDATE
TRIAL
TINY

TEXT

SUN

SORT
SMALTRIAL
SMALTEXT
SKUNK e
(ESC)

90

The sort commands can be combined with any of the file identifiers discussed on pages 91-97.
For example, the file identifier :BEAR will find all file names that end in BEAR. If the user
combines this identifier with the command !ALPHABETICAL, all such files will be listed in alpha-

betical order.

: :BEAR! ALPHAD
BABYBEAR

MAMABEAR
PAPABEAR

Selecting Files
The user has available three simple command forms for selecting files by date. The other forms

for selecting files—by file number, by file type, by name, or by partial name—are all specified
as file identifiers.

By Creation (or Change) Date

The user may select files created or changed either before or after a certain date. He may also
select files created during the current day. The command forms are:

IBEFORE date 2
IAFTER date 2

ITODAY O

These commands can be combined with any of the sort commands or with the commands that
select information about files. For example, the user can look at creation dates and file names of
all files created before February 12, 1976, by using the following:

:!DATE!BEFORE 12-FEB-76<

CREATION FILE NAME
10-FEB-76 BUDGET
10-FEB-76 BUDG
30-DEC-75 @CATLG
12-JAN-T6 SBASAVINTRST

91

The form for selecting files after a certain date is similar:

:!DATE! AFTER 12-FEB-762

CREATION FILE NAME
12-MAR-76 ADDITIONS

9-MAR-76

9-MAR-76
12-MAR-76
10-MAR-76
12-MAR-T76
10-MAR-76
10-MAR-76
10-MAR-76
10-MAR-76
10-MAR-76
11-MAR-76
11-MAR-76
11-MAR-T76

LOOP
SFOPROG
NAUT
CATALOG
/%/
HOPEFUL
SFPRG
SUN
ABIN
CBIN
@BUDGET
@BAL
€SANDEN ®

(ESC)

If the year is not specified in the !BEFORE or !AFTER command, the current year is assumed. If
the month is not specified, the current month is assumed.

The user can list the files created today and check their size by using the following form:
:1SIZE!TODAY D

CHARS FILE NAME
116 TRIAL
378 SHRINK
24 DATAS

By Directory Position (File Number)

The user can specify any file number, numbers, or range of numbers by including them in
parentheses. These numbers are file identifiers, not commands, and so do not take an exclamation
point. They precede any commands in the command form. The forms are:

(n) Specifies a file number.
(nqy,ny,n3,...) Specifies several file numbers.
(ny-n,) Specifies any range of positions.

If the file identifiers are typed alone, the program lists only the file names for the files specified.

92

:(?,__i)D

FILE NAME
BDATAS

The file identifiers can also be used in combination with DIRIT commands. For example, to list
the creation or change date of the thirty-eighth file in the directory, the user types

:(38)!DATED

CREATION FILE NAME
11-MAR-76 BDATAS

To examine the creation dates and verify position numbers of several files, the user types

:(13,15,38) !DATE! POSITION D

POS CREATION FILE NAME
13 10-FEB-76 BUDG

15 10-MAR-76 SFPRG

38 11-MAR-76 BDATAS

The user can list the number of times accessed for a range of files by using the form

:(37-40)!POSITION!ACCESSD

POS USE FILE NAME
37 T DATAS

38 1 BDATAS

39 17 BITTY

40 8 UPDATE

By File Type

To select files by type, the user enters the form

.t

or

N T % IR)

where ¢ can be SYM, BIN, GO, DUM, or BAD.

93

Again, the user can enter the file type alone to obtain a listing of only the file names for that
file type:

The file type can be combined with any DIRIT commands:

:+DUM, BIN! TYPE O

TYP
BIN
BIN
DUM
DUM
BIN
BIN

FILE NAME
SFOPROG
NAUT

/$/
HOPEFUL
SFPRG
ABIN

By Name

The user can simply list the file names, separated by spaces, commas, or semicolons. If a file
name has a comment (see page 48), that comment must be included. For example, to obtain

the file numbers of several files, the user types

:CBIN,UPDATE,CFIL,ADDITIONS-BASE,ANAL2!POSITIONS

POS
17
39
48
80
85

FILE NAME
CBIN
UPDATE
CFIL
ANAL2
ADDITIONS-BASE

If the comment is not included in
the file name for ADDITIONS, the
program will not recognize the
name.

94

By Partial File Name

Files can be selected by specifying any number of characters in the file name with the following
identifier forms:

aa## where a can be any unprotected character that can be included in a
TYMCOM:-IX file name. This file identifier finds all file names having the
specified characters in the specified position and having the same total
number of characters as specified.

:aaa File name must end with the specified characters.
a: File name must begin with the specified characters.
:aa: File name must contain the specified characters, but they can be located

anywhere in the name.

If the character string to be sought contains any characters that need to be protected in file
names (see page 23 for rules for naming files), that string should be enclosed in angle brackets
(<>). The brackets are not considered part of the string.

The following examples demonstrate several ways in which partial file names can be used to
specify files.

tAL### D This form finds all 5-letter file names that begin with AL.

FILE NAME
ALPH1
ALPH2
ALPH3
ALPHY

:AL:2 This form finds all file names that begin with AL regardless of length.

FILE NAME
ALPH1
ALPH2
ALPH3
ALPHY
ALPHABET
ALP

::AL:D This form finds all file names that contain AL at any position and are
of any length.

FILE NAME

CATALOG

@BAL

TRIAL

SMALTRIAL

ALPH1

ALPH?2

ALPH3

ALPHY4

SMALTEXT

ANAL2

ALPHABET
ALP
HALP

::PH2 O

FILE NAME
ALPH2
COPH2

:23

FILE NAME
REPT2
CON2
DATA2
ALPH2
ANY2
ANAL2
COPH2

::<R L>:!CHECKSUMD?

CHECKSUM
13724560
45745376
05573230

Combining File Identifiers

FILE NAME
lR LI
‘AR L1°

"STAR LITE”

95

This form finds all files that end with PH2, regardless of length.

This form finds all files that end with 2, regardless of length.

This form finds all file names that contain R L. The character string must
be enclosed in angle brackets because a space must be protected when
it occurs in a file name.

File identifiers can be combined by using any of the following file identifier switches:

!AND
!ANN
!IOR

(means And Not)

The !OR switch will list files satisfying either file identifier criterion:

:(U47-50)!OR ALPH# 2

FILE NAME

CKFIL
CFIL
DATACOMP
ALPH1
ALPH2
ALPH3
ALPHY4

96

The !AND switch will list only those files that satisfy both file identifier criteria simultaneously.

:(47-50) L AND ALPH#2D

FILE NAME
ALPH1

The !ANN switch picks those files that meet the first criterion but not the second:

:(47-50) ! ANN ALPH#2

FILE NAME
CKFIL
CFIL
DATACOMP

Negating File Identifiers

The user can pick all files that do not meet the specified criterion by preceding it with the
INOT switch and a space. For example:

:INOT :A:9

FILE NAME
LooP
BUDGET
SFOPROG
SORT
REPT1
REPT2
REP

/%/
BUDG
HOPEFUL
SFPRG
SUN
CBIN
@BUDGET
@D UMMY
CON2

17
SHRINK
BIGGER
BIGGEST
®

(ESC)

97

In the following example, the user wants an alphabetical list, with file type, of all files in his
directory that are not symbolic.

¢INOT .SYM!TYPE!ALPHA 2

TYP FILE NAME

BIN @PRINT
GO ACCTS
GO CATALOG
DUM HOPEFUL
GO REP

GO REPT1
GO REPT2
BIN SFOPROG
BIN SFPRG

BIN SHRINK1
BIN SMALTEXT
BIN SMALTRIAL
GO SORT

Selecting Information about Files

The user can specify any or all of 10 specific kinds of information to be listed about the files
in his directory by using the information selection commands.

For example, if he wants to know the checksum, file number, and usage of all his files con-
taining the beginning characters CO, he combines the CO: file identifier with the appropriate
commands:

:CO: ! CHECKSUM!POSITION!ACCESS 2

POS CHECKSUM USE FILE NAME
22 45745376 18 CON2

36 70421725 1 COLOR’STR.E”
45 42457136 2 COMP

54 45270553 2 COMMI

57 05573230 2 COM1

The following items of information can be obtained:

Command Information

'ACCESS The number of times the file has been used and the file name.
!ICHECKSUM The checksum and file name.

!ICREATION The date of creation or last update and file name.

(Continues)

98

Command
IDIRECTORY

'EVERYTHING

'FAST

ILIST
!POSITION
!PROTECTION
ISHORT

ISIZE
ISTATUS
ISUMMARY
'TYPE

Information

- The position number, file type, size in characters, creation date,

protection, and file name.

All data available about the files. Concludes listing with total
storage in words, characters, and files, for files listed.

File type, creation date, and file name.

File name only, several names per line; see !SHORT below.

File number and name.

File protection and name.

File names, one per line; see !LIST above.

File size, in characters, and file name.

Status and file name.

All file names followed by total characters, total words, total files.
File type and file name.

The format of the information printed in response to the above commands is illustrated below

by showing the output format of the lEVERYTHING command.

-DIRITD
: 1EVERYTHING®
POS TYP CHARS CHECKSUM STATUS CREATION USE PROTECTION FILE NAME
1 SYM 200 23401637 USR OK# 9-MAR-T6 52 R NO LOOP~COMMENT
2 SYM 2049 33236166 USR OK 10-FEB-76 11 R NO BUDGET
GO 32441704 USR OK, 12-FEB-76, 10, R-W, R-W . MACCTS
T4 T . |
File type: Checksum. Date of Number of File name
SYMbolic creation or times file bas and comment.
BINary last update. been accessed.
GO
DUMp
BAD

Initialized file flag
= normal initialized file.
& = escape-locked initialized file.
blank = not initialized.

File position File size in
on disk. characters.

Status

First 3 characters:

USR = user-created.

SUB = created by subsystem

from symbolic file.

SYS = system.

EXE = EXECUTIVE.
Last 2 characters:

OK = File is acceptable.

ID = Initialized dummyy.

ER = File bad.

Private Public
controls controls
R-W = read/write
R-A =read/append
R = read only
W = write only
APP = append only
NO = protected
REM = remote
PRP = proprietary

The 'IEVERYTHING Printout

99

DELETING FILES

Much of the flexibility available for listing files and related information is also available for
deleting files. The basic command form is

:[file identifier] !DELETE![command list] ![DECIDE]<

where the file identifier can be any of those listed on pages 91-97, the commands can be any
of the sorting commands listed on pages 88—90 or the date commands described on
pages 90-91.

The user can wipe out his whole directory with the simple DIRIT command

:!DELETE 2

As a safety measure, DIRIT prints
ARE YOU SURE?

The user can respond with any of the following options:

S
L
D

Deletes all files, printing nothing at the terminal until the job is completed.
Lists at the terminal all file names as the files are being deleted.

Prints the name of each file and waits for confirmation before deleting (same as the
'DECIDE switch described below).

In response to ARE YOU SURE?, begins deleting all specified files. In response to
individual file names presented by the D option, deletes the file in question.

In response to ARE YOU SURE?, aborts the command and returns to DIRIT control
level. In response to individual file names, retains the file in question and goes on to
the next file name.

In response to ARE YOU SURE?, aborts the command and returns to DIRIT
control level. In response to an individual file name, retains the file in question and
aborts the command.

CAUTION: Do not follow these responses with carriage returns. Also, a carriage return in
response to ARE YOU SURE? begins deleting all files.

The following examples show the effect of the optional responses to the DELETE command.

S

:JDELETE2

ARE YOU SURE? S All files are deleted with no terminal output.

100

L

:IDELETED
ARE YOU SURE? L All files are deleted, and their names are listed as they are deleted.

FILES DELETED:
LASTHC
GENEX3
GENEX2

D,Y,N,and Q

:1DELETE2
ARE YOU SURE? D

FILES DELETED:
LYNNFILE ? N ¥##NOT DELETED#¥# Note that the user does not type a carriage return after any
DATA2 ? Y— of bis responses.

DATA3 ? Q **NOT DELETED**

The user can limit the !DELETE command by including the switch !DECIDE. This is equivalent
to answering D to the ARE YOU SURE? question. The program then responds by presenting
each file name and waiting for a response before proceeding. The valid responses are N, Y, or Q,
all explained in the list above. For example:

¢ I\DELETE!DEC2

FILES DELETED:
LYNFILE ? Y
SMALTEXT ? Y
MFIL
@PRINT

? N ##NOT DELETED**®
? Y

The DIRIT !DELETE command will not delete files that have been write protected.

During the execution of the IDELETE command, the file count is updated to provide the cor-
rect count for the 'SUMMARY command (see page 98).

The user can select the files to be deleted by using any of the following file identifiers with the
IDELETE command: file number, file type, file name, or partial file name. The correct forms
of these identifiers are shown on pages 91-95. Files can also be selected by using the date com-
mands presented on pages 90-91.

If the user wishes to delete files by file number, the files are presented in reverse order so that
the numbers will not change as files are deleted. For example, the user has as the last three files
in his directory:

101

-DIR,572

PVT PUB TYP DATE USE SIZE NAME

57 R/W NO SYM 3-16 6 1536 MFIL

58 R/W YES ,WT BIN 3-9 9 1536 SFOPROG-ACCTG
59 R/W NO SYM 3-16 5 1536 FAKE

He wants to delete these files, and so the program presents them in reverse order:

:(57-59) !DELETE!DECIDE D

FILES DELETED:

FAKE 7Y
SFOPROG-ACCTG 2 Y
MFIL ? N ##NOT DELETED*#

If the user wants to look at the names of all files created today and decide about their deletion,
he types

:!DELETE! TODAYD
ARE YOU SURE? D

FILES DELETED:
coM1 2 Y
TEXT ? Y
MFIL ? N *#NOT DELETED**

<

In the following example, the user wants to delete the seventh through the ninth files, but as the
names are presented he decides to delete none of them.

:(7=9) !DELETE D
ARE YOU SURE? D

FILES DELETED:

SFPRG ? N ¥*NOT DELETED¥*#*
CATALOG ? N ¥*#*NOT DELETED*#
REP ? N ¥¥NOT DELETED*#*

In the following example, the user knows he has only one dump file in his directory, and he
chooses to delete it without having the name presented for decision.

102

: .DUM! DELETED
ARE YOU SURE? Y

FILES DELETED:
/$/

The user can also sort the files to be deleted by any of the sort commands listed on pages 88
and 89. For example, the user wants to decide about deleting all the files in his directory
that begin with AL, and he wants the files presented in alphabetical order. He uses the following
command:

:AL:!DELETE! ALPHA!DECIDE &

FILES DELETED:

ALPH1 2 Y

ALPH2 ? Y

ALPH3 2 ¥

ALPHABET ? N **NOT DELETED**

The user can also have the list of deleted files presented in any chosen order even though he does
not want to decide about deleting individual files.

+AL:!DELETE! ALPHAD

ARE YOU SURE? L The user specifies L so that the deleted files will be listed at the terminal.
FILES DELETED:

ALP Because the command ALPHA bad been included in the command form, the
ALPHABET list is alphabetzcal

ALTER

COPYING FILES TO ANOTHER DIRECTORY

The user can copy files from his directory to another directory in the same account provided
that the receiving directory has public write access (see page 37). Once this condition is met,
the user can move any or all of the files from his directory to the receiving directory. The basic
form is

_,{TO

. . o e 1
“1REN AME}(USCT name) [file identifier(s)]![DECIDE] >

where the user name must meet the requirements presented above and the file identifier(s) can be
either file name(s) or file number(s). If no file identifiers are specified, the whole directory can
be copied.

103

The TO command copies the specified files to the new directory, but does not remove them
from the originating directory. The 'RENAME command copies the specified files to the
new directory and deletes them from the originating directory.

As a precaution, if the !DECIDE switch is not used, DIRIT responds to a !TO or |RENAME
command with

ARE YOU SURE?

Valid responses are the same as those for the !DELETE command described on page 99, with one
exception. To prevent the loss of a file of the same name in the receiving directory, DIRIT
responds with the EXECUTIVE OLD FILE/NEW FILE message when the !DECIDE option is in
effect with the TO command. If the user wants the file copied, he responds with a carriage
return. If he does not want the file copied, he responds with N. The following examples demon-
strate the !TO and |RENAME commands:

:1TO (DELEON) NEWFILED
ARE YOU SURE? Y

:1TO (DELEON) (7:9)2
ARE YOU SURE? Y

$1TO (MJL)(1-3)2
ARE YOU SURE? D

FILES COPIED:

UPDATE NEW FILED

ADDITIONS NEW FILE N ¥*#*NQOT COPIED¥#*
CON2 OLD FILED

:1TO (MJL) BAL,EOM,ANYD
ARE YOU SURE? D

FILES COPIED:

BAL NEW FILED

EOM NEW FILED

ANY NEW FILE N *¥*NOT COPIED*#

The !RENAME command does not overwrite an old file in the receiving directory. It responds
with the message

CANNOT RENAME

104

:1 RENAME (DELEON) HASH, ALPH1,CMDS, COM 19
ARE YOU SURE? L

FILES RENAMED:

CM1

CMDS

ALPH1 *#CANNOT RENAME*#*
HASH

:1 RENAME (DELEON)(1-3)!D2

FILES RENAMED:
GENEX2 ? Y

GENEX3 ?
LASTHC ?

N *%NOT RENAMED*#¥
Y

:1 RENAME (DOMINSKI) LASTHC,GENEX22D
ARE YOU SURE? D

FILES RENAMED:
LASTHC ? ¥
GENEX2 ? ¥

105

Section 11
DEFERRED AND PERIODIC PROCESSING

Tymshare’s TYMCOM-IX system offers both deferred and periodic processing (PERP)
capabilities.! Less urgent jobs can be processed most economically by entering them as deferred
jobs and letting the system schedule their execution during minimum load periods. In
deferred processing, the job is placed in a special queue to be executed, only once, on a deferred
basis. In periodic processing, a deferred job is executed at user-specified intervals so that the
user need not resubmit the job each time he wishes to execute the program.

The deferred and periodic processing commands allow the user to control the execution of his
job as completely as if he were running it directly from the terminal. He may instruct the
system to search for specific phrases in the output and to perform specified operations, including
alteration of command sequence, based on that output. He may also control program pauses and
interruptions.

DEFERRED PROCESSING

Deferred jobs are run during the night of the day they are entered, provided that they are
entered before 10 p.m. local time. Any job entered after 10 p.m. will be run the following night.

Deferred processing requires the creation of a deferred processing file containing the commands
to be executed. The commands in this file can be any combination of EXECUTIVE commands,
language commands, and special deferred processing commands.

Deferred processing commands are identified by a preceding colon in the deferred processing
file. Such commands may be abbreviated to the colon and three letters. For example, the
:ESCAPE command can be given as :ESC.

The first line of the deferred processing file must contain a colon followed by the name of a
terminal output file. During execution of the deferred processing command file, all output which
would normally be printed at the terminal is written on this terminal output file. It will contain
all error messages, normal output generated by the program or commands, and log out information.

It is not necessary to include the LOGOUT command in the deferred processing file, since the
deferred processor automatically performs a log out after executing the last command on the file.

To insert the job into the deferred processing queue, the user types
—DEFER 2

at the EXECUTIVE command level. The system prints the current version number of the deferred
processing program and then requests the name of the command file.

1 — The same deferred and periodic processing capabilities are available on the TYMCOM-X.

106

—DEFER?
VERS 1.0

COMMAND FILE:

The user enters the name of the deferred processing file and a carriage return. The program then
builds the circuit to DEFER’s home system and enters the job in the DEFER queue. For example:

-DEFER 2D
VERS 1.0
COMMAND FILE: NITED

BUILDING CIRCUIT TO MASTER DEFER SYSTEM It takes several seconds for the circuit to be
built and the job to be entered.

DEFER JOB ENTERED

After the job has been processed by the system, a message is sent to the user’s directory
informing him of this fact. The next time he logs in, he is notified that a message is waiting. He
can then display the terminal output file by using the TYPE or COPY command to obtain the
program results, error messages, and processing time.

If an error causes the deferred job to be aborted, the user receives a message indicating the
number of the line in which the error occurred. This line number corresponds to the EDITOR
line number of the command file.! The user may read the command file into EDITOR and
examine the improper line. The procedure for creating, running, and retrieving deferred jobs is
illustrated in the example below.

-EDID The user creates the deferred file in EDITOR with the APPEND command.
*APPENDO
:PERPOUT The output from the deferred job is written on the file PERPOUT.
DATE
COMMAND ADDITIONSO The program ADDITIONS updates and reports a small data base of
TIME2 stock boldings.
DELETE EXTRAD The user terminates the APPEND mode with a control D and writes the
D¢ contents on the file LATER.
*WRITE LATER2

NEW FILED
50 CHARS
*QUITS

-DEFER2 The user submits the job to the deferred processing queue.

VERS 1.0

COMMAND FILE: LATERD

1 - See the Tymshare EDITOR Reference Manual.

107

BUILDING CIRCUIT TO MASTER DEFER SYSTEM

DEFER JOB ENTERED

The user continues his other terminal duties and logs off. When he logs in the next day, he
receives mail indicating that his job is complete. For example:

MAIL WAITING.
-MAIL 2

FROM DELEON +
3/18/76 8:27

FROM OPERATOR

The message is sent from the user’s own directory when the deferred job bas been
completed.

YOUR JOB "LATER" SUBMITTED TO "DEFER"

HAS BEEN COMPLETED
-TYPE PERPOUT®

DATE

3/18/76 8:25

~-COMMAND ADDITIONS
NEW FILE

ACME LABS

AMERICAL INSTRUMENT
CONTINENTAL BAKING
DIVERSIFIED CONTROL
EASTERN METALS
GOODSON & CO
HOWARD, J.H.

INT 'L INDUSTRIES
LINCOLN PUBLISHING

The user types the output file to see the results
of bis job.

Note that the TYMCOM-IX commands and
responses are printed on the terminal output file.

100
100
100
100
125
140
100

12

50

NATIONAL PHARMACEUTICALS 64

ROYAL CHEMICAL
UNITED FURNITURE

66
135

TOTAL NUMBER OF SHARES IS 1092

-TIME

CPU TIME: 6 SECS.

TERMINAL TIME: 0:0:51

~-DELETE EXTRA

108

The dashes assure the deferred processor that the job is in the

EXECUTIVE mode.

LOG The deferred processor automatically executes a LOG command at the
end of each deferred job.

CPU TIME: 7 SECS.

TERMINAL TIME: 0:1:06

- Control is returned to the EXECUTIVE command level after the terminal

output file is completely printed.

The Processing Sequence

The deferred processing file contains two types of commands, TYMCOM-1X commands and
deferred processing commands. TYMCOM-IX commands include EXECUTIVE commands,
EDITOR commands, and all language commands. Any command which the user may execute from
his terminal is a valid TYMCOM-IX command. TYMCOM-IX commands are sent directly to
the program processor just as if the user had typed them. Program output which normally would
appear at the terminal is written on the terminal output file.

Deferred processing commands, on the other hand, are not sent to the program processor.
Their major functions are to analyze the characters being sent to the terminal output file and to
create and process pauses in transmission of TYMCOM-IX commands.

The diagram below illustrates the relationship among the various elements in deferred processing.

Deferred TYMCOM-I X Commands > Program
Processor Processor
1/\\
/ \\ Deferred
) / \ Processor
Terminal // \ Commands
Output / \
File / \ P
/ \ -< rogram Output

Before progressing to a discussion of the individual commands, the user should study the
description of command processing below. He may find it convenient to refer to the diagrams as
each pertinent command is discussed.

The normal sequence of operation for the deferred processor is to process a command, either a
TYMCOM-IX command or a deferred processing command, if one is present, and then to check
the stream of characters being transmitted to the terminal output file. Pauses occur when no com-
mand can be processed and all characters have been sent to the output file. The deferred
processor determines when all characters have been sent to the terminal output file by sending a
semicolon enclosed in quotation marks (*‘;”’) through the program processor to the terminal
output file and analyzing the stream of characters until the semicolon string has been transmitted.

109

For example, the deferred processing command FIND causes a pause before it takes effect.
Assume that the following commands are on the deferred processing file:

COMMAND ADDI
DIRECTORY
DATE

:FIND A
COMMAND ADDS2

The diagrams below illustrate the sequence of operations. The program processor executes the
file ADDI while the TYMCOM-1X DIRECTORY and DATE commands are waiting to be

processed.
Deferred
Processor
Terminal
Output
File
-

:FIND A

COMMAND ADDS?2

DATE DIRECTORY Program

COMMAND ADDI
Processor

P

Output From ADDI

The :FIND A command is encountered by the deferred processor, which begins sending the
semicolon string through the system and checking for its transmission to the terminal output file.
Neither the FIND command nor any other commands which follow it in the deferred processing

file are processed.

Deferred
Processor
Terminal Output
Output From
File ADDI
—

:FIND A “ DATE Program

COMMAND ADDS2 — DIRECTORY Processor
/\
/N The processor
/ searches for
/ semicolon
/ \ string. V
/ \
, N DIRECTORY Output

The deferred processor sends no additional commands until it discovers the semicolon string.

110

Deferred :FIND A Program
Processor {COMMAND ADDS2 > Processor
[A)
7\
4 \
// \
Terminal ADDI Output / N
Output DIRECTORY // \
File DATE / \
\
/ g \
H N -

The system writes on the terminal output file all the output resulting from commands which
precede FIND. The semicolon string is detected only after all this output is processed. As
soon as it detects the semicolon string, the deferred processor processes the :FIND A command,
which instructs it to begin searching for the string associated with A in the character output
stream. The search applies only to output caused by commands following FIND. The deferred
processor then sends the TYMCOM-IX COMMAND ADDS2 command to the program
processor.

Searching for Phrases and Altering the Sequence of Commands

The user may instruct the system to search for specific phrases in the terminal output and to
alter the normal sequence of commands within the command file based on the appearance of
such phrases. There are three commands which initiate or control searches. These commands are
DEFINE, FIND, and the assignment command. Labels and the commands GO, IF, and UNLESS
control the continuity of execution.

The DEFINE Command

The DEFINE command identifies the characters for which the processor should search by
associating the characters with a variable, named with a single letter from A to Z. As many as 26
such strings may be defined in a single command file. The variables may be considered as
having an initial logical value of 0; the value is set to 1 by the processor when the string is found.
Note that the variable names defined in this command and used in other deferred processor
commands do not in any way correspond to variable names within a program which the user may
be executing from the command file.

The general form of the DEFINE command is
:DEFINE string list
where the items in the string list are separated by commas, and each item is of the form
x="‘string’

where x is any letter of the alphabet and the string is a sequence of characters. The string may
contain a maximum of 45 printing characters and may contain no line feeds or carriage returns.
The user defines the beginning and end of the string with a character different from any
character in the string. The string should be unique and as short as possible, because the fewer
characters the processor must test the less computer time the search consumes.

111

" For example, the following DEFINE command specifies strings for which the user wishes to
search in an inventory program. In this case, the single quote mark (‘) defines the beginning and
end of each string. '

:DEFINE S=‘OUT OF STOCK’,T=‘BACKORDERED’

Additional DEFINE commands may be used as long as the limit of 26 variables is not exceeded.
A variable cannot be redefined.

NOTE: The DEFINE command simply identifies the characters for which the processor should
search. It does not activate the search. The search itself is activated by the FIND or LOOK
command. The DEFINE command must be used to identify strings for the FIND and LOOK
commands.

The FIND Command

The FIND command activates a search for specific strings as output is written on the terminal
output file. The form of the FIND command is

:FIND variable list

where the variables in the list must have been defined in a previous DEFINE command. For
example:

:DEFINE K=‘COMPLETE’,X=PROBLEM’
:FIND K,X

The string may appear as output from a program, an error message, or as the echo of a com-
mand contained in the user’s command file. The search may be terminated in four ways—if the
string is found, if the variable associated with the string is tested in an IF or UNLESS com-
mand, if the value of the associated variable is assigned with a direct assignment command, or if
no string is found and the semicolon string is detected by the deferred processor.

The user will find it convenient to place the FIND command in the file just before he expects
to encounter the string. The deferred processor pauses when the FIND command is encountered.
The search activated by the FIND command applies only to output written on the terminal
output file after the FIND command is processed.

The Assignment Command

The assignment command permits the user to set or reset the value of a variable. The form of
the command is
v=n
where v is a variable, with name from A to Z, and 7 is either 0 or 1. For example,

:J=1
: X=0
If the variable in the assignment command was being used for a search in a FIND command, the

assignment command terminates the search for that variable. The variable need not be defined
with a DEFINE statement.

112

NOTE: The variables in the assignment command do not in any way correspond to variable
names in any program which the user may be executing from the command file.

Labels

Labels may be used within a deferred processing file to divide the file into segments. Labels
consist of a series of characters preceded by two colons. Labels may contain any printing
characters, but may not contain spaces or control characters. For example, the following are labels:

::REPORT
::ENDJOB
::ERROR1

The GO Command

The GO command changes the normal order of command execution within the deferred
processing file, allowing the next command to be taken from the file immediately after a specified
label.

The form of the GO command is
:GO m

where m is a label which is defined within the deferred processing file. The GO command may
appear before or after the label to which it refers. For example:

:GO ERRORI1

The IF and UNLESS Commands

The IF and UNLESS commands perform tests on a variable or group of variables and allow the
user to execute a command conditionally, based on the value of the variables. The forms of
these commands are

:IF e THEN c

and

:UNLESS e THEN c

where e is a variable expression, as defined below, and ¢ is any deferred processing command

except DEFINE. Note that the initial colon should not be included as part of the command c.

The IF command executes the command c if the variable expression e has the value 1. The
UNLESS command executes the command c if the variable expression e equals 0. In each case,
the command is ignored if the variable expression does not meet the test in the IF or
UNLESS command; the next command in the file is processed instead.

Unless the command c¢ transfers control to another part of the file or terminates execution, the
next command executed is the succeeding line of the deferred processing command file.

113

Upon encountering the IF or UNLESS command, the processor tests to see whether the
expression is already equal to the respective value. If such a value is present, no pause occurs. If
the value is not yet present, the processor pauses to allow all previous output to be searched
for the string. For example, if the processor encounters the command

:IF M THEN GO FINAL

it first tests to see whether the string associated with M has been located in the output. If so, the
processor prepares to process the GO FINAL command. If the string associated with M has

not yet appeared in the output, the processor causes a pause to search all output not yet written
on the terminal output file. After all output has been searched, the test for M is made again;

if it has not yet appeared, the GO FINAL command is not executed.

The variable expression e may be a single variable or a combination of variables using the
symbols + and & to represent logical OR and AND, respectively.! The letters OR can be used
instead of the plus sign; the letters AND can be used instead of the ampersand. If the word
OR or AND is used, it must be preceded and followed by a space.

For example, the command
:IF Q+R THEN GO BEGIN
executes the GO command if either Q or R (or both) is equal to 1, indicating the associated string
had been located in the terminal output or the user had assigned the value 1 to the variable.

The variable expression is evaluated from left to right; no parentheses are allowed. For example,
:IF X OR Y AND Z THEN QUIT

tests for the occurrence of Z and either X or Y or both.

Setting Time Limits

The timing commands are used to set limits on the amount of elapsed time the deferred
processing job is allowed to run or on the amount of time a specific segment runs before control
transfers to another part of the file.

If no timing command is set, the deferred processor allows each job a maximum of one hour
in which to run. The user may set a lower maximum with the TIME command. In addition,
he may use the TIME command to set a higher maximum to any length of time he desires. The
form of the command is

:TIME n

where 7 is the number of minutes of elapsed time the job is allowed to run. If the time specified
in the TIME command is less than the time already used by the job, the STOP command is
executed immediately, and so no log out information is printed on the output file.

The form of the AFTER command is
:AFTER n THEN c¢

where 7 is an integer representing time in minutes, and ¢ is any command except DEFINE. Note
that the initial colon is not included in the command c. After the specified time has elapsed,

the next command executed is that specified by c. Unless the command ¢ is a GO command or a
termination command, the command following the AFTER command is executed next.

1 — The logical OR is an inclusive OR; the expression X OR Y is true if X is true, Y is true, or both X and Y are true.

114

For example,
:AFTER 2 THEN GO REPORT

transfers control to the label ::REPORT after two minutes have elapsed.

The command ¢ may be omitted in the AFTER command. In this case, the form is
:AFTER n
and the commands following the AFTER command are executed only after the specified time

has elapsed.

The TIME and AFTER commands operate dependently. When one of these commands is in
effect, the other is postponed temporarily. For example, the following commands appear
in the deferred file:

:TIME 5

:AFTER 20 THEN GO TEST

The TIME command sets the time limit to five minutes for the job. When the AFTER
command is encountered, the 20-minute limit specified in the AFTER command supersedes the
time specified in the TIME command limit. After the 20-minute limit expires, the 5-minute
limit becomes effective again; because the job has exceeded five minutes (in fact it has exceeded
20 minutes), it is terminated with a STOP command.

Termination Commands

The QUIT and STOP commands terminate execution of the command file. These commandé
may be used individually or as part of an IF, UNLESS, or AFTER command. The individual
forms are

:QUIT
and
:STOP

The QUIT command causes a pause to process all previous program output; QUIT then
terminates the execution of the deferred processing job and writes the log out information on the
terminal output file.

The STOP command immediately terminates the execution of the deferred processing job. No
pause occurs and no further output is placed in the terminal output file. No log out informa-
tion is written on the terminal output file if the STOP command is used.

Program Pauses

Four deferred processing commands discussed elsewhere in this section cause a program pause
condition: FIND, QUIT, IF, and UNLESS. Note that IF and UNLESS do not cause pauses
if the variable expression is equal to 1 or 0, respectively.

115

The user may create artificial pauses by having the program print a comment string and
writing an IF command to test for the appearance of the string.

There are five additional deferred processing commands which affect program pauses; these
commands are ESCAPE, PAUSE, CONTINUE, WAIT, and LOOK.

The ESCAPE Command

The ESCAPE command transfers control to the EXECUTIVE. If the processor is executing a
program within a subsystem such as SUPER FORTRAN or EDITOR, the ESCAPE command
terminates the execution of that program and executes the next command from the command
file after a 10-second pause.

The PAUSE Command

The PAUSE command forces a pause, sending the semicolon string to test for the transmission
of all output. PAUSE thus allows all output to be written on the terminal output file before
processing the next command on the deferred processing file.

The CONTINUE and WAIT Commands

The semicolon string sent by the deferred processor during a pause may confuse a user’s
program if it is running within a subsystem such as SUPER FORTRAN or EDITOR. The
CONTINUE command deactivates the automatic pauses associated with the commands FIND,
IF, UNLESS, and QUIT. The CONTINUE command may appear at any point in the deferred
processing file and applies to all FIND, IF, UNLESS, and QUIT commands which occur after the
CONTINUE command is processed. If CONTINUE is in effect, these commands are processed
immediately; no semicolons are sent. CONTINUE remains in effect until nullified by the WAIT
command.

The WAIT command restores the normal mode of pausing before processing the commands
FIND, IF, UNLESS, and QUIT.

The forms of these commands are:
:CONTINUE
and

:WAIT

The LOOK Command

When it is inconvenient to use the automatic pause or the PAUSE command, the user may
give the LOOK command to force a pause in the program based on text generated by the
user’s program. The LOOK command combines the functions of the FIND and IF commands
without the IF command arguments.

The form of the command is

:LOOK e

116

where e is a variable expression identical to that defined in the IF and UNLESS commands.

The LOOK command searches for the specified string in the output being written on the
terminal output file. Since processing does not continue until the string is found, it is important
to exercise care in choosing the string to be sought. If the string has been found previously
by the FIND command, the condition is satisfied and the program continues.

Note that the LOOK command waits for output of the specified characters. The LOOK com-
mand never sends the special semicolon string to test for a pause.

Restarting Deferred Jobs

The user may issue the RESTART command to cause the processor to restart the job after a
specified time. The form of the command is

:RESTART n

where 7 is the number of minutes of elapsed time before the job is started again.

The RESTART command is particularly useful when a file to be processed in the deferred job
has not yet been created, or is not ready for processing. This gives the user an opportunity to
delay job execution until the file is ready to be processed, whereupon the deferred job may begin
again.

Multiple Deferred Jobs

The deferred processor can process several deferred jobs simultaneously. When a user submits
several individual deferred jobs, they may be executed in an order different from that in
which they were submitted. If order is important or if one deferred job must run to completion
before another is begun, the user should include the jobs on the same deferred file.

Debugging Deferred Jobs

The program DDF is available to assist the user in debugging deferred jobs. DDF executes the
deferred job immediately instead of submitting it as a deferred job. Thus, without waiting
overnight, the user may determine if his deferred commands are accurately specified and arranged.

To access DDF, the user logs in and types DDF and a carriage return in the EXECUTIVE. The
program requests the number of the computer on which the user is working and the name of
the file containing the commands to be executed.

During the use of DDF, the user is using files on two systems simultaneously: the files needed
for his deferred job, which are all in his directory on his system, and the DDF programs,
which are all on the DDF home system. Thus the user is actually logged in to two computers
simultaneously, and the computer charges are based on two machines being in use. When deferred
jobs are run as scheduled by the deferred processor, however, this is not true; the user is
charged only for the use of his home system.

DDF creates a second compacted copy of the deferred processing command file in the user’s
directory. The copied file, named //TEMP, is not deleted by DDF; the user must delete it.

117

After the temporary file is created, the deferred processing begins and DDF prints the

message
STARTING JOB
on the user’s terminal. DDF prints the message

END OF JOB

when the deferred processing is completed. The user can then examine the file /TOUT, which
contains the terminal output generated by the command file and is a duplicate of the terminal out-
put file named by the user if the job runs to completion without error.

During processing by DDF, the user may terminate the processing by typing an alt mode/escape.
Processing ceases immediately and the user is returned to the EXECUTIVE. The //TOUT file
and the //TEMP file remain in the user’s directory for analysis.

The example below illustrates a sample DDF session.

-TYPE DAILYD

:DAYLST

DATE

COMMAND DAY

TIME

DELETE BB

~DDF 2

ENTER YOUR COMPUTER NO.: ED
TYPE YOUR COMMAND FILE NAME: DAILYD

STARTING JOB

+
COPYING TERMINAL OUTPUT
+

END OF JOB

MAIL WAITING

~MAILD

FROM DELEON +
5/17/76 17:21

FROM OPERATOR
YOUR JOB "DAILY" SUBMITTED TO "DEFER"

HAS BEEN COMPLETED
-TYPE //1T0UT D

DATE
5/17/76 17:20
-COMMAND DAY

NEW FILE

The command file DAILY is in the user’s directory
on system 2.

The output file is DAYLST.

The user calls DDF and enters bis job.

The job bas been started.

The job bas run to completion and the //TO UT file
is being written.

The user is notified that be has a message from the
DDF operator. The user requests that the message be
printed at the terminal.

The message comes from the user’s own directory,
but is put there by the DDF operator.

The user prints out the //TOUT file, which in this
case is identical to the output file DAYLST.

118

DAILY LIST OF PURCHASES MAY 3, 1976
PPO ITEM COST
1162 BUS CARDS FOR F. IADIANO 8.22
1163 LABELS FOR ER SHIPPING 11.40
1164 STATIONERY FOR DOWNTOWN OFFICE 49.61
1165 BUS CARDS FOR C. MELLOR 8.22
1166 STATIONERY FOR PRES. OFFICE 16.64
1167 BUS CARDS FOR D. FARRER 16. 44
1168 LABELS FOR PRES. OFFICE 32.86
1169 BUS CARDS FOR R. LUPINO 8.22
1170 BUS CARDS FOR M. DELEON 8.22
1171 BUS CARDS FOR M. DAY 8.22
TOTAL 168.05
-TIME This is the TIME command that is part of the user’s
command file.

CPU TIME: 6 SECS.
TERMINAL TIME: 0:0:19

-DELETE BB

LOG The user is logged out of the DDF home system.

This time message is the one normally printed by the
system on log out.

CPU TIME: 7 SECS.
TERMINAL TIME: 0:0:2%
Control is returned to EXECUTIVE command level.

Sample Deferred Jobs

This section illustrates two deferred jobs containing many of the commands described on the
preceding pages.

Example 1

The following example illustrates labels and the commands DEFINE, TIME, AFTER, LOOK,
ESCAPE, and GO. The user sets an overall time limit of 10 minutes on the whole job. He
wishes to execute a SUPER BASIC program for only one minute. He uses the AFTER command
to set the time and the GO command to transfer control to the label ::ENDJOB. The ESCAPE
command interrupts the SUPER BASIC subsystem and returns control to the EXECUTIVE
after a 10-second pause.

119

The first occurrence of the command LOOK A forces the processor to pause and not accept
any further deferred processing commands, since it searches for a string which does not
appear. The SUPER BASIC program continues to run, as the processor pauses do not affect
execution of TYMCOM-IX commands or programs.

The second occurrence of LOOK A causes a pause until the string END OF JOB has been
encountered before processing the final EXECUTIVE TIME command.

MAIL WAITING When be logs in, the user is notified that be bas a message waiting.
=MAIL2D He requests that the message be printed on the terminal.

FROM DELEON +
4/29/76 T7:44

FROM OPERATOR
YOUR JOB "LOOP" SUBMITTED TO "PERP"

HAS BEEN COMPLETED

-TYPE LOOPD The user displays the contents of the deferred processing file.

tESC

:DEFINE A="END OF JOB®

:TIME 10 The user sets a maximum of 10 minutes for the command file.
¢+AFTER 1 THEN GO ENDJOB After one minute, the processor takes commands from the
SBA ENDJOB section.

10 FOR K=1 TO 100

20 FOR L=1 TO 1000

30 NEXT L

40 PRINT K

50 NEXT K

60 END

RUN

:LOOK A The LOOK command balts the acceptance of deferred processing commands.
: :ENDJOB '

:ESCAPE

TIME

"END OF JOB" The quotation marks indicate that the comment END OF JOB is to be written
+LOOK A on the terminal output file.

TIME

-TYPE ESC2 The user displays the contents of the terminal output file. Note that the EXECUTIVE and
SUPER BASIC commands are printed on the file, but that deferred processing commands
are not printed.

SBA

>10 FOR K=1 TO 100
>20 FOR L=1 TO 1000
>30 NEXT L

>40 PRINT K

>50 NEXT K

>60 END

>RUN

120

@ ¢ a2 O OONOANNTEWN =
- O

26
27 The program executed the outer loop 27 times before the time limit expired.

-TIME

CPU TIME: 11 SECS.
TERMINAL TIME: 0:1:25

-"END OF JOB" The END OF JOB comment is written on the file.
-TIME

CPU TIME: 11 SECS.
TERMINAL TIME: 0:1:47

The dashes assure the processor that the user is in EXECUTIVE before
giving the LOG command.

LOG

CPU TIME: 12 SECS. The log out information is written on the output file unless termination

TERMINAL TIME: 0:1:59 occurs because of a STOP command or the exceeding of the time specified in
a TIME command.

Example 2

This example illustrates the DEFINE, FIND, TIME, IF, GO, UNLESS, QUIT, and PAUSE
commands. The user wishes to run his end-of-month accounting with the ACCTS program. If the
ACCTS program runs properly and contains sorted data, he wishes to execute the REP program
to generate a report. If the data is not sorted, he wants to run a special SORT program before run-
ning the REP program. The deferred processing commands allow him to run only the required
programs based on output from the program ACCTS.

121

The deferred file EOM contains commands to print the report files produced and to delete
certain scratch files from the user’s directory.

MAIL WAITING
=MAILO

FROM DELEON +
4/30/76 22:18

FROM OPERATOR
YOUR JOB "EOM" SUBMITTED TO "PERP"

HAS BEEN COMPLETED

-TYPE EOM2

:BAL . .

:DEFINE A="COMPLETED",B="ABORTED",C="REPORT ABORTED’,D="SORTED

:FIND A,B,D The user does not need to begin the search for C until the ACCTS

:TIME 8 program is complete. He sets a limit of eight minutes on bis job.

GO ACCTS

:IF A&D THEN GO REPORT Control transfers to the label :: REPORT only if both strings A and D
TIME are found. .

+UNLESS D THEN GO SORT Control transfers to the label ::SORT unless the string D is found.

: :REPORT

¢tFIND C The search for string C begins just before the program REP is executed.
GO REP

TIME

:PAUSE

FILES REPT1,REPT2

:UNLESS C THEN GO DELETE If the report aborts, no working files are deleted.
:QUIT

¢ :SORT

GO SORT

:GO REPORT

::DELETE

DELETE SCR1,SCR2 The system deletes all the working files.

TIME

-TYPE BAL2

-GO ACCTS

SORTED PROPERLY Strings A and D are found.
ACCTS PROCESSED AND COMPLETED

122

The EXECUTIVE dashes are generated by the pause in the IF command.

-GO REP
REPORT COMPLETED String C was not produced by the REP program.
-TIME

CPU TIME: 4 SECS.
TERMINAL TIME: 0:4:05

-FILES REPT1,REPT2

GO REPT 1
GO REPT2

-DELETE SCR1,SCR2

~-TIME

CPU TIME: 5 SECS.
TERMINAL TIME: 0:4:18

The dashes assure the processor that the user is in EXECUTIVE before giving the
LOG command.

LOG

CPU TIME: 5 SECS.
TERMINAL TIME: 0:5:26

Summary of Deferred Processing Commands

The deferred processing commands are listed alphabetically in the table below. The parts of the
commands in brackets are optional. Braces indicate that the user must include one of the options
within the braces.

Command
:file name

::label

. _ 1
:variable = { 0}

:AFTER n [THEN c]
:CONTINUE

:DEFINE string list
:ESCAPE

:FIND variable list
:GO label

:IF ¢ THEN c

:LOOK e

:PAUSE
:QUIT

:STOP

:TIME n
:UNLESS e THEN c

‘WAIT

:RESTART n

123

Function
Specifies the name of the terminal output file.

Begins a new segment of the deferred processing file.

Sets value of variable. Stops FIND search if one was in progress.

Executes command ¢ after » minutes elapse. If ¢ is not specified, executes
command following AFTER after » minutes elapse.

Deactivates the automatic pauses associated with the commands FIND, IF,
UNLESS, and QUIT.

Identifies tl;e characters for which the processor is asked to search.

Transfers control to EXECUTIVE.

Initiates search for specified strings.

Transfers control to the command immediately following the specified label.

Executes command c if variable expression e has the value 1.

Searches for the string corresponding to the variable expression and does not
process the next command until it locates the string.

Creates a pause in the processing of the user’s job.
Causes a pause, then terminates the execution of the deferred processing job.

Terminates the execution of the deferred processing job without causing a
pause.

Sets limit of #» minutes on elapsed time deferred job may run.
Executes command c¢ if variable expression e has the value 0.

Restores the normal mode of pausing before processing the commands
FIND, IF, UNLESS, and QUIT.

Restarts the deferred job after » minutes.

PERIODIC PROCESSING

Periodic processing provides the capability to execute deferred jobs at specified intervals. The

user may write his own expressions to indicate when a particular deferred job is to be executed;
for example, he may specify that the job be executed every day, the fifteenth of every month, or
every other Monday. He then gives simple commands to enter the deferred job into the periodic
queue.

Periodic processing is especially useful for running repetitive jobs. Some examples of periodic
processing applications are payrolls, quarterly reports, weekly forecasts, and daily analyses.

This section contains a description of the periodic processing commands, followed by a dis-
cussion of the specification of date expressions.

124

The user calls the periodic processing program from any TYMCOM-IX system by typing, in the
EXECUTIVE, PERP and a carriage return. The program responds with a colon (:), indicating its
readiness to accept commands. For example:

—PERPY

The user may enter a PERP command after the colon prompt. He should wait until the colon
appears and should not type ahead.

Control A, control W, and control Q can all be used for editing during command entry.!

There are 12 periodic processing commands, which perform the following functions:

® Enter date and job information into the processing queue
® Delete jobs from the periodic processing queue

® Print out date and job information at the user’s terminal
® Aid the PERP user

The DATES Command

The DATES command allows the user to enter the date specification for a job. This specifica-
tion may be as simple or as complex as the user needs to define the scheduling of the deferred
job. See page 129 for a complete explanation of the possible date specification forms.

The date expression must be terminated with a period (.). Thus, no periods may appear in the
date expression except at the end. The expression may be continued on additional lines, if
necessary, by typing a carriage return at the end of the line. Only the final line may contain a
period at the end of the line.

The example below illustrates the use of the DATES command to specify that the job be
executed on the second day of every month.

+DATES®

ENTER YOUR DATE PERIOD
THE 2ND DAY OF EVERY MONTH.®

The INSERT Command

The INSERT command enters a job into the periodic processing queue. The job is executed
according to the date specification in the most recent DATES command.

The INSERT command requests the hour that the job should run, the number of the computer
on which the job should run, and the name of the file containing the commands to be executed.

The user enters the INSERT command followed by a carriage return. The system prints:

WHAT HOUR (0 TO 23)?

1 — Editing with control characters is discussed on page 9.

125

The user may enter an integer from O to 23 specifying the time the job should run. The number 0
represents midnight; the number 23 represents 11 p.m. These times correspond to the user’s
local time, that is, the time displayed when the user logs in.

The user may enter the word ANY to specify that the job may be run at any hour during the
day, or the word DEFER to indicate that the job should be run as a deferred job.

NOTE: The user should specify an execution time within the scheduled machine availability
for the system on which the job is to be run. If the machine is not available at the requested
time, the job is executed at the machine’s next availability.

The system then requests the computer number, project code, and name of the command file
by printing:

COMPUTER?
PROJECT CODE?

COMMAND FILE NAME?

The user’s command file must be located in his file directory on the computer specified in the
INSERT command. Note that the user name under which the user logged in to call the PERP
program must be identical to the user name in the directory in which the file is located.

The example below illustrates the description and entry of a deferred periodic job LOOP to be
executed every Monday on computer 2 at 5 a.m.

-PERP2D
:DATED

ENTER YOUR DATE PERIOD
EVERY MONDAY.o

: INSERTD
WHAT HOUR (0 TO 23)? 52
COMPUTER? 22

PROJECT CODE? ZIPD
COMMAND FILE NAME? LOOP

BUILDING CIRCUIT TO MASTER PERP SYSTEM

The command file requested must be a deferred processing command file; see page 105.

Just as in deferred processing, PERP sends mail to the user after each execution of the deferred
job.

126

The DELETE Command

The DELETE command removes a specified job from the periodic processing queue; the job is
no longer executed at the previously specified intervals. The user may enter it into the queue
again with the DATES and INSERT commands.

The DELETE command requests the computer number, project code, and the name of the
command file. It then removes that file from the periodic processing queue; it does not, however,
delete the file from the user’s directory on that computer.

NOTE: The user name from which the DELETE command is given must be the same from
which the corresponding INSERT command was given, and the project code must also be the same.

Example

The user removes job EOW from the periodic processing queue on computer 2.

:DELETE®
COMPUTER? 22
PROJECT CODE? ZX2

COMMAND FILE NAME? EOWD

The EXPRESS Command

The EXPRESS command prints the date specification entered in the last DATES command.
An expression printed by the EXPRESS command contains only the key words PERP used
to form the actual dates for job execution. For example:

:DATES®

ENTER YOUR DATE PERIOD
THE FIFTH DAY OF THE MONTH.®

:EXPRESSD
THE STH DAY OF EVERY MONTH
:DATES?

ENTER YOUR DATE PERIOD
EVERY OTHER MONTH. ¥

:EXPRESS®
EVERY 2 MONTHS

:DATES2O

127

ENTER YOUR DATE PERIOD
THE FIFTH DAY OF THE MONTH AND EVERY OTHER FRIDAY.O

:EXPRESS®
THE 5TH DAY OF EVERY MONTH

OR EVERY 2ND FRIDAY

The DISPLAY Command

The DISPLAY command prints a list of all dates on which the last requested job is scheduled to
run. The user may use this list to verify that the job runs on the dates he wishes.

The dates are printed chronologically, showing the month, date, year, and day of the week.

The date list includes all dates for the next few months or until a user-specified termination
date. To terminate the printing of the date list, the user types an alt mode/escape.

The example below illustrates the DISPLAY command with simple date expressions.! For
examples of more complex expressions, see pages 135, 137, and 139.

:DATES?

ENTER YOUR DATE PERIOD
THE 20TH DAY OF EVERY MONTH.9

:DISPLAYD

MAR 20, 1976 SATURDAY

APR 20, 1976 TUESDAY

MAY 20, 1976 THURSDAY

JUN 20, 1976 SUNDAY

JUL 20, 1976 TUESDAY

AUG 20, 1976 FRIDAYe The user interrupts the printing of the date list by typing an alt mode/escape.

.
.

The TEST Command

The TEST command is equivalent to the EXPRESS command followed by the DISPLAY com-
mand. TEST prints the date specification, then a list of the dates corresponding to the specifica-
tion. For example:

:DATESD

ENTER YOUR DATE PERIOD
THE 1ST DAY OF THE MONTH.?

:TESTD
THE FIRST DAY OF EVERY MONTH

1 — All examples in this section were run on March 12, 1976.

128

APR 1, 1976 THURSDAY

MAY 1, 1976 SATURDAY

JUN 1, 1976 TUESDAY

JUL 1, 1976 THURSDAY e The user interrupts the date list.

The STATUS Command

The STATUS command prints the next date on which a specified job is scheduled to run. The
STATUS command requests the number of the computer and the name of the corresponding
command file. For example:

:STATUS D
COMPUTER? 22
PROJECT CODE? ZX2

COMMAND FILE NAME? LATERD The user finds that the file LATER

ter 2 is scheduled to b
JOB TO BE DONE ON: MAR 15, 1976 MONDAY 4:59 Ottt Soam om

March 15.

The GET Command

The GET command finds a job previously entered in the PERP queue so that the user can get
information about its schedule. The GET command requests the number of the computer, the
project code, and the name of the command file. When it locates the job, PERP prints a prompt,
and the user can then enter the DISPLAY, EXPRESS, or TEST command. The GET command
does not delete the information from the job queue. If the user wishes to change any information
for the job, he must delete it, then insert it in the queue as a new entry. An example of the GET
command follows.

:GETD
COMPUTER? 22
PROJECT CODE? ZX2

COMMAND FILE NAME? LATER®

+TEST®
EVERY MONDAY

MAR 15, 1976 MONDAY
MAR 22, 1976 MONDAY
MAR 29, 1976 MONDAY
APR 5, 1976 MONDAY

129

APR 12, 1976 MONDAY
APR 19, 1976 MONDAY
APR 26, 1976 MONDAY
MAY 3, e

The LIST Command

The LIST command lists all jobs in the periodic processing queue entered under a particular
user name, along with pertinent scheduling information. For example,

-PERP D

¢LIST2

BUILDING CIRCUIT TO MASTER PERP SYSTEM If the user bas been working in PERP, this message
MAR 15, 1976 MONDAY 4:59, CPN: 2, FIADIANO;ZX:LATER will not appear.
MAR 15, 1976 MONDAY 16:00, CPN: 2, FIADIANO;ZX:STATS

MAR 15, 1976 MONDAY 21:00,, CPN: 2, FIADIANO;ZX:BYMO
END OF JOB

Computer number; Name of PERP
this job is on system 2 command file
Date and time the User Project
job is to be run name code

Utility Commands

PERP contains three utility commands: QUIT, HELP, and VERSION. QUIT returns control to
the EXECUTIVE after a PERP session. The HELP command prints a list of PERP commands
and their descriptions. The VERSION command prints the number of the current version of PERP.

Date Specifications

The periodic processing user may select the exact execution dates for his job by using date
specifications in the DATES command; these specifications may be as simple or as complex as
required. Each time a periodic job is run, PERP computes the next date on which the job is
scheduled to run. If the current date meets the criterion, the job is run on that date also.

The date specification must be terminated by a period. Thus, no periods may appear in the
date specification except at the end. For completeness, the user may include the words OF and
THE in the date specifications; PERP, however, does not require these words.

NOTE: The user should use the DISPLAY command to assure that bis date specification
produces the exact execution dates be requires.

Date specifications may consist of basic expressions alone or combined in groups and series.
These units are discussed in detail after the definitions below.

130

The simplest part of a date specification is an expression. Examples of expressions are:

EVERY WEDNESDAY.

THIRD FRIDAY OF EVERY THIRD MONTH.

Expressions may be linked together with the words AFTER, BEFORE, AND, and OR to form a
group. An example of a group with two expressions is:

10 DAYS AFTER THE FIRST MONDAY OF EVERY MONTH.

Several groups connected together comprise a series. A series begins with the word EARLIEST
or LATEST or the phrase DO IN ORDER. For example:

DO IN ORDER MONDAY AND FEB 6, 1976 AND MAR 6, 1976 AND WED.

Basic Expressions

An expression may be one of six types. These types are listed in the table below. If an
expression specifies a number of months, with no modifiers, the job runs on the first day of
that month.

Months and days of the week may be shortened to the first three characters. No period may be
used with such an abbreviation, because a period specifies the end of a date expression.

Type of
Expression Examples
Day of week EVERY OTHER MONDAY.
EVERY WEDNESDAY.
Number of days EVERY 5 DAYS.

EVERY 10 DAYS.

Number of months EVERY MONTH.
EVERY 4 MONTHS.

Day of month THE 5TH DAY OF EVERY MONTH.

THE LAST MONDAY OF EVERY MONTH.
Specific dates JULY 4, 1973.

APR 28, 1973.

The form is month day, year
with no space before the comma.

Special words TODAY. WEEKDAYS.
TOMORROW. DAILY.
MONTHLY.

These basic expressions are illustrated in the examples below:

:DATES®

ENTER YOUR DATE PERIOD
EVERY MONDAY.®

:DISPLAYD

MAR 15, 1976 MONDAY
MAR 22, 1976 MONDAY
MAR 29, 1976 MONDAY
APR 5, 1976 MONDAY
APR 12, 1976 MONDAY
APR 19, 1976 MONDAY
APR 26, 1976 MONDAY
MAY 3,e

:DATES D

ENTER YOUR DATE PERIOD
EVERY OTHER TUESDAY.?

:DISPLAY®

MAR 16, 1976 TUESDAY
MAR 30, 1976 TUESDAY
APR 13, 1976 TUESDAY
APR 27, 1976 TUESDAY
MAY 11, 1976 TUESDAY
MAY 25, 1976 TUESDAY
JUN e

:DATES D

ENTER YOUR DATE PERIOD
EVERY 5 DAYSO
)

:DISPLAYD

MAR 16, 1976 TUESDAY
MAR 21, 1976 SUNDAY
MAR 26, 1976 FRIDAY
MAR 31, 1976 WEDNESDAY
APR 5, 1976 MONDAY
APR 10, 1976 SATURDAY
APR 15,

:DATES 9

ENTER YOUR DATE PERIOD
EVERY MONTH.?

The date specification must end with a period.

An alt mode/escape terminates the date listing.

131

The user forgets to terminate the entry with a period, and so adds it on

the next line.

In an expression such as EVERY 5 DAYS, the current date is not

considered as meeting the criterion.

EVERY MONTH refers to the first day of every month.

132

:DISPLAYD

APR 1, 1976 THURSDAY
MAY 1, 1976 SATURDAY
JUN 1, 1976 TUESDAY
JUL 1, 1976 THURSDAY
AUG 1, 1976 SUNDAY
Se

:DATES®

ENTER YOUR DATE PERIOD
THE 5TH DAY OF EVERY OTHER MONTH.2?

:DISPLAYD

MAY 5, 1976 WEDNESDAY

JUL 5, 1976 MONDAY

SEP 5, 1976 SUNDAY

NO FURTHER DATES Dates are printed out only for the next few montbhs.
:DATES D

ENTER YOUR DATE PERIOD
EVERY 3RD MONDAY OF THE MONTH.?

:DISPLAYD

MAR 15, 1976 MONDAY
APR 19, 1976 MONDAY
MAY 17, 1976 MONDAY
JUN 21, 1976 MONDAY
JUL 19, 1976 MONDAY
AUe®

:DATES?

ENTER YOUR DATE PERIOD
THE LAST FRIDAY OF EVERY 3RD MONTH.?

:DISPLAY D

MAR 26, 1976 FRIDAY
JUN 25, 1976 FRIDAY
SEP 24, 1976 FRIDAY
NO FURTHER DATES
:DATES D

ENTER YOUR DATE PERIOD
THE LAST DAY OF THE MONTH.?

:DISPLAYD

MAR 31, 1976 WEDNESDAY
APR 30, 1976 FRIDAY
MAY 31, 1976 MONDAY
JUN 30, 1976 WEDNESDAY
JUL 31, 1976 SATURDAY

:DATES?

ENTER YOUR DATE PERIOD
APRIL 17, 1976.2

:DISPLAYD

APR 17, 1976 SATURDAY
NO FURTHER DATES
:DATESD

ENTER YOUR DATE PERIOD
APRIL 23, 1976.9

:DISPLAYD

APR 23, 1976 FRIDAY
NO FURTHER DATES
:DATESD

ENTER YOUR DATE PERIOD
TODAY.D

:DISPLAY D

MAR 12, 1976 FRIDAY
NO FURTHER DATES
:DATES D

ENTER YOUR DATE PERIOD
TOMORROW.2

:DISPLAYD
MAR 13, 1976 SATURDAY

NO FURTHER DATES

133

Date specifications are not cumulative. Only the expression in the most
recent DATES command is used to form the date list.

134

When a month expression appears, PERP calculates dates from the first day of the month. For
example, the expresssion

THE 50TH DAY OF EVERY MONTH.

causes PERP to calculate from the beginning of each month. The fiftieth day of September, for
example, occurs on October 20.

:DATES?

ENTER YOUR DATE PERIOD
THE 45TH DAY OF EVERY MONTH.?

:DISPLAYD

MAR 16, 1976 TUESDAY The forty-fifth day of February is March 16.
APR 14, 1976 WEDNESDAY

MAY 15, 1976 SATURDAY

JUN 14, 1976 MONDAY

JUL 15, 1976 THURSDAY

AUG 14, 1976 SATURDAY

SEP 14, 1976 TUESDAY

NO FURTHER DATES

.
.

Similarly, in an expression such as
EVERY 5TH WEDNESDAY OF THE MONTH.
each month’s calculation includes a fifth Wednesday; for some months, however, it is the first

Wednesday of the following month. The examples below illustrate this type of expression.

:DATES?

ENTER YOUR DATE PERIOD
EVERY 5TH WEDNESDAY OF THE MONTH.®

:DISPLAYD

MAR 31, 1976 WEDNESDAY
MAY 5, 1976 WEDNESDAY
JUN 2, 1976 WEDNESDAY
JUN 30, 1976 WEDNESDAY
AUG 4, 1976 WEDNESDAY
SEP 1, 1976 WEDNESDAY
SEP 29, 1976 WEDNESDAY

NO FURTHER DATES

135

:DATESD

ENTER YOUR DATE PERIOD
EVERY 5TH WEDNESDAY OF THE MONTH2 This expression eliminates any Wednesdays which
EXCEPT THE 1ST WEDNESDAY OF THE MONTH.? are not the fifth calendar Wednesday.

:DISPLAY D

MAR 31, 1976 WEDNESDAY
JUN 30, 1976 WEDNESDAY
SEP 29, 1976 WEDNESDAY

NO FURTHER DATES

Groups of Basic Expressions

Simple or basic expressions may be combined with the words AFTER, BEFORE, AND, or OR
to form expression groups. The connectors AND and OR are equivalent and cause the job to
run on all dates which meet the conditions on either side of the connecting word.

When the date specification includes the word AND or OR, PERP computes the next execution
date according to the earliest subsequent date in the group.

The examples below illustrate various expression groups:

¢DATESD

ENTER YOUR DATE PERIOD
THE FIRST WEDNESDAY AFTER THE 5TH DAY OF EVERY MONTH.?

:DISPLAY D

APR 7, 1976 WEDNESDAY
MAY 12, 1976 WEDNESDAY
JUN 9, 1976 WEDNESDAY
JUL 7, 1976 WEDNESDAY
AUG 11, 1976 WEDNESDAY
SEP 8, 1976 WEDNESDAY

NO FURTHER DATES
:DATES D

ENTER YOUR DATE PERIOD
FRIDAY AFTER THE FIRST WEDNESDAY OF EVERY MONTH.2

:DISPLAYD

APR 9, 1976 FRIDAY
MAY 7, 1976 FRIDAY
JUN 4, 1976 FRIDAY

136

JUL 9, 1976 FRIDAY
AUG 6, 1976 FRIDAY
SEP 3, 1976 FRIDAY
NO FURTHER DATES
:DATES D

ENTER YOUR DATE PERIOD
5 DAYS BEFORE THE END OF THE MONTH.?

:DISPLAYD

MAR 27, 1976 SATURDAY
APR 26, 1976 MONDAY

MAY 27, 1976 THURSDAY
JUN 26, 1976 SATURDAY
JUL 27, 1976 TUESDAY
AUG 27, 1976 FRIDAYe

:DATES 2

ENTER YOUR DATE PERIOD
EVERY FRIDAY BEFORE THE END OF THE MONTH.?

+DISPLAYD

MAR 26, 1976 FRIDAY
APR 30, 1976 FRIDAY
MAY 28, 1976 FRIDAY
JUN 25, 1976 FRIDAY
JUL 30, 1976

:DATES D

ENTER YOUR DATE PERIOD
EVERY MONDAY AND EVERY FRIDAY.O

:DISPLAYD

MAR 12, 1976 FRIDAY
MAR 15, 1976 MONDAY
MAR 19, 1976 FRIDAY
MAR 22, 1976 MONDAY
MAR 26, 1976 FRIDAY
MAR 29, 1976 MONDAY
APR 2, 1976 FRIDAY®

:DATES &

ENTER YOUR DATE PERIOD
1ST DAY OF MONTH AND 20TH DAY OF MONTH.2

137

:DISPLAY D

MAR 20, 1976 SATURDAY
APR 1, 1976 THURSDAY
APR 20, 1976 TUESDAY
MAY 1, 1976 SATURDAY
MAY 20, 1976 THURSDAY
JUN 1, 1976 TUESDAY
JUN 20, 1976 @

+DATESD
ENTER YOUR DATE PERIOD

1ST DAY OF MONTH AND 10TH DAY OF MONTHD
AND EVERY FRIDAY BEFORE THE END OF THE MONTH.2

:DISPLAYD

MAR 26, 1976 FRIDAY
APR 1, 1976 THURSDAY
APR 10, 1976 SATURDAY
APR 30, 1976 FRIDAY
MAY 1, 1976 SATURDAY
MAY 10, 1976 MONDAY
MAY 28, 1976 FRIDAY
JUN 1, 1976 TUESDAY

JUN 10, 1976 THURSDAY
®

:DATES D

ENTER YOUR DATE PERIOD
APRIL 15, 1976 AND JUNE 1, 1976.2

:DISPLAYD

APR 15, 1976 THURSDAY
JUN 1, 1976 TUESDAY

NO FURTHER DATES

Expression Series

The PERP user may form series of expressions with the words DO IN ORDER, EARLIEST,
and LATEST. DO IN ORDER causes the list of expressions to be processed once each in
succession. The EARLIEST specification causes the expressions following it to be examined for
the earliest of the remaining execution dates. This examination occurs repeatedly until the job
is removed from the periodic processing queue. LATEST is similar to EARLIEST, except that
LATEST determines the latest of the remaining dates.

138

NOTE: The EARLIEST, LATEST, and DO IN ORDER phrases begin a series. Thus, each
phrase cancels the effect of any other such phrases in an expression.

The examples below illustrate expression series.

:DATES?

ENTER YOUR DATE PERIOD
DO IN ORDER MARCH 25, 1976 AND MAY 17, 1976 AND MONDAY.D

+DISPLAYD

MAR 25, 1976 THURSDAY

MAY 17, 1976 MONDAY The system includes the Monday that falls in order after May 17.
MAY 24, 1976 MONDAY

NO FURTHER DATES

‘DATES?

ENTER YOUR DATE PERIOD
MARCH 25, 1976 AND MAY 17, 1976 AND MONDAY.2

:DISPLAYS
MAR 15, 1976 MONDAY Without DO IN ORDER, the system includes the first Monday after
MAR 25 , 1976 THURSDAY today s date, Mar 15.

MAY 17, 1976 MONDAY
NO FURTHER DATES
:DATES?

ENTER YOUR DATE PERIOD
MARCH 25, 1976 AND APRIL 17, 1976 AND EVERY MONDAY.o

:DISPLAYD

MAR 15, 1976 MONDAY Here the user bas specified EVERY MONDAY.
MAR 22, 1976 MONDAY

MAR 25, 1976 THURSDAY

MAR 29, 1976 MONDAY

APR 5, 1976 MONDAY

APR 12, 1976 MONDAY

APR 17, 1976 SATURDAY

APR 19, 1976 MONDAY

APR 26, 1976 MONDAY

MAY 3, 1976 @

:DATESD

ENTER YOUR DATE PERIOD
DO IN ORDER MARCH 25, 1976 AND MONDAY AND APRIL 20, 1976.2

139

:DISPLAYD

MAR 25, 1976 THURSDAY
MAR 29, 1976 MONDAY
APR 20, 1976 TUESDAY

NO FURTHER DATES

:DATES S

ENTER YOUR DATE PERIOD
THE LATEST OF THE FIRST THURSDAY OF THE MONTH AND THE FIRST WEDNESDAYY

OF THE MONTH.2

:DISPLAYD

APR 7, 1976 WEDNESDAY
MAY 6, 1976 THURSDAY
JUN 3, 1976 THURSDAY
JUL 7, 1976 WEDNESDAY
AUG 5, 1976 THURSDAYe

Modifiers for Date Specifications

There are five modifiers which PERP accepts with date specifications. These modifiers are
REFERENCE, STARTING, UNTIL, THROUGH, and EXCEPT. With such modifiers, the user has
complete flexibility to request exact dates on which he wants the job to run.

The REFERENCE modifier specifies the reference dates from which all other dates are to be
calculated. For example, if the job is entered on May 15 to run on the first day of every other
month, the current date is used as the reference date, and the job runs on July 1, September 1,
November 1, etc. Thus, the first month is skipped. If the reference date was April 7, the job
would run on June 1, August 1, October 1, etc.

NOTE: The reference date may occur before, after, or on the date of job entry.

The examples below illustrate jobs entered on March 12, 1976, with and without reference
dates:

¢:DATESD

ENTER YOUR DATE PERIOD
EVERY 5 DAYS.D

:DISPLAYD

MAR 16, 1976 TUESDAY
MAR 21, 1976 SUNDAY
MAR 26, 1976 FRIDAY
MAR 31, 1976 WEDNESDAY
APR 5, 1976 MONDAY
APR 10, 1976 SATURDAY

140

APR 15, 1976 THURSDAY
APe

:DATES D

ENTER YOUR DATE PERIOD
REFERENCE MARCH 15, 1976 EVERY 5 DAYS.2

:DISPLAY D

MAR 15, 1976 MONDAY

MAR 20, 1976 SATURDAY
MAR 25, 1976 THURSDAY
MAR 30, 1976 TUESDAY

APR 4, 1976 SUNDAY
®

The REFERENCE modifier is extremely powerful. PERP normally calculates each succeeding
date based on the date on which the job runs. Some dates may never be reached unless a
REFERENCE modifier is used. For example, if the user gives the date expression

MONDAY AND EVERY OTHER FRIDAY.

the job runs first on Monday. PERP then calculates the date of the following Monday and the
second Friday from the current date. The date for Monday occurs first. This process is repeated
each time the job is run; the job never runs on Friday. However, if the date expression includes

a REFERENCE modifier, PERP calculates each date on the basis of the reference date, and so all
specified dates are included.

In the following example, by including the REFERENCE modifier JANUARY 1, 1976, the
user gets his job to run as requested on Monday and every other Friday.

:DATES D

ENTER YOUR DATE PERIOD
REFERENCE JANUARY 1, 1976 EVERY MONDAY AND EVERY OTHER FRIDAY..

+DISPLAYD

MAR 12, 1976 FRIDAY
MAR 15, 1976 MONDAY
MAR 22, 1976 MONDAY
MAR 26, 1976 FRIDAY
MAR 29, 1976 MONDAY
APR 5, 1976 MONDAY
APR 9, 1976 FRIDAY
APR 12, 1976 MONDAY
Ao

141

The STARTING modifier specifies the first date on which the job should run. If STARTING
is used with the REFERENCE modifier, the REFERENCE date is used for calculation, but
the STARTING date determines the first date used.

The examples below illustrate the effect of the STARTING date with and without the
REFERENCE modifier.

:DATES 9

ENTER YOUR DATE PERIOD
STARTING MARCH 20, 1976 EVERY 30 DAYS.2

*DISPLAYO
APR 19, 1976 MONDAY PERP calculates every 30 days from March 20, 1976. Note that
MAY 19, 1976 WEDNESDAY March 20 is not included.

JUN 18, 1976 FRIDAY
JUL 18, 1976 SUNDAY
AUG 17, 1976 TUESDAY
SEP 16, 1976 THURSDAY

NO FURTHER DATES

:DATES 2

ENTER YOUR DATE PERIOD The starting and reference dates are different.

REFERENCE JANUARY 17, 1976 STARTING MAY 18, 1976 EVERY 30 DAYS.D

:DISPLAYD
JUN 15, 1976 TUESDAY PERP uses January 17 to calculate every thirtieth day, but ignores the
JUL 15, 1976 THURSDAY dates preceding May 18.

AUG 14, 1976 SATURDAY
SEP 13, 1976 MONDAY

NO FURTHER DATES

The UNTIL and THROUGH modifiers specify the final date to which the expression applies.
The UNTIL modifier refers to all dates up to but not including the date in the UNTIL phrase.
The THROUGH modifier performs the same function as UNTIL except that THROUGH includes
the specified date.

The UNTIL and THROUGH modifiers may appear several times in a single expression, modify-
ing the expression immediately following the UNTIL or THROUGH date. Each modifier
remains in effect until another is encountered.

142

:DATES?

ENTER YOUR DATE PERIOD
THROUGH JULY 20, 1976 EVERY 6TH TUESDAY.D

:DISPLAYD

MAR 16, 1976 TUESDAY
APR 27, 1976 TUESDAY
JUN 8, 1976 TUESDAY
JUL 20, 1976 TUESDAY
NO FURTHER DATES
:DATESD

ENTER YOUR DATE PERIOD
UNTIL JULY 20, 1976 EVERY 6TH TUESDAY.?

:DISPLAYD

MAR 16, 1976 TUESDAY
APR 27, 1976 TUESDAY
JUN 8, 1976 TUESDAY

NO FURTHER DATES

If two or more UNTIL modifiers are combined, a REFERENCE date should be included.
:DATES?

ENTER YOUR DATE PERIOD

REFERENCE MARCH 1, 19769

UNTIL APRIL 15, 1976 EVERY WEDNESDAYJ
UNTIL MAY 30, 1976 EVERY OTHER FRIDAY.?

:DISPLAYD

MAR 17, 1976 WEDNESDAY
MAR 19, 1976 FRIDAY
MAR 24, 1976 WEDNESDAY
MAR 31, 1976 WEDNESDAY
APR 2, 1976 FRIDAY
APR 7, 1976 WEDNESDAY
APR 14, 1976 WEDNESDAY
APR 16, 1976 FRIDAY
APR 30, 1976 FRIDAY
MAY 14, 1976 FRIDAY
MAY 28, 1976 FRIDAY

NO FURTHER DATES

143

The user may exclude dates by using the EXCEPT modifier with a simple or complex
expression. Note that EXCEPT divides the expression into two parts: The first portion selects

dates; that portion after EXCEPT rejects dates.

:DATES?

ENTER YOUR DATE PERIOD
EVERY TUESDAY EXCEPT MARCH 23, 1976.2

:DISPLAYD

MAR 16,
MAR 30,
APR 6,
APR 13,
APR 20,
APR 27,
MAY &,
MAY 11,
MAY 18,

:DATES

ENTER YOUR DATE PERIOD

1976
1976
1976
1976
1976
1976
1976
1976

TUESDAY
TUESDAY
TUESDAY
TUESDAY
TUESDAY
TUESDAY
TUESDAY
TUESDAY

EVERY MONDAY AND THURSDAY EXCEPT THE 3RD MONDAY OF THE MONTH.2

:DISPLAYD

MAR 18,
MAR 22,
MAR 25,
MAR 29,
APR 1,
APR 5,
APR 8,
APR 12,
APR 15,
APR 22,
APR 26,
APR 29,
MAY 3,
MAY 6,
MAY 10,
MAY 13,
MAY 20,
MAY 24,
MAY 27,

:DATESD

ENTER YOUR DATE PERIOD
EVERY WEDNESDAY EXCEPT THE 1ST WED OF THE MONTH AND2

1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
197e

THURSDAY
MONDAY
THURSDAY
MONDAY
THURSDAY
MONDAY
THURSDAY
MONDAY
THURSDAY
THURSDAY
MONDAY
THURSDAY
MONDAY
THURSDAY
MONDAY
THURSDAY
THURSDAY
MONDAY

THE 2ND WED OF THE MONTH AND THE 3RD WED OF THE MONTH ANDD

THE 4TH WED OF THE MONTH.D

Note that this specifica-
tion defines the fifth
calendar Wednesdays.
See page 135 for
another method of
specifying the same
dates.

144

:DISPLAYD

MAR 31, 1976 WEDNESDAY
JUN 30, 1976 WEDNESDAY
SEP 29, 1976 WEDNESDAY

NO FURTHER DATES

Command
DATES

INSERT

DISPLAY
EXPRESS
TEST
STATUS
DELETE
QUIT
HELP
VERSION

GET

LIST

Summary of PERP Commands

Function
Accepts the date expression.

Accepts job information and enters the job into the queue. The job will be executed accord-
ing to the expression in the last DATES command.

Displays all dates associated with the last DATES command expression.
Prints in PERP language the date specification entered by the user.
Performs the actions of both EXPRESS and DISPLAY.

Prints the next scheduled execution date for a specified job.

Deletes a specified job from the job queue.

Returns the user to the EXECUTIVE.

Lists all PERP commands and a description of each.

Prints the version number of the current version of PERP.

Retrieves information from the job queue. This information is used in DISPLAY, EXPRESS,
and TEST commands to state the date period used.

Lists all jobs in the periodic processing queue entered under the current user name.

145

Section 12
THE TELECOPY PROGRAM

TELECOPY is a file transfer program used to transfer files between two TYMSHARE computer
systems. It can copy any type of file from one TYMCOM-IX computer to another TYMCOM-IX
computer, or it can transfer any symbolic file between a TYMCOM-IX and either a TYMCOM-X or
a TYMCOM-370 computer. In all cases file size restrictions are the same as for the EXECUTIVE
COPY command. File names must meet the syntax requirements of the receiving system.’

To copy files between two systems, the same user name must be valid on the originating
system and the destination system. That is, files cannot be telecopied from one user name on one
system to a different user name on another system. Files can be copied either from or to the
system the user is currently on, but he must be logged in to one of the two systems involved. For
example, if the user is logged into system 2, he cannot telecopy from system 24 to 33.

TELECOPY COMMANDS

The TELECOPY program is called by typing
—TELECOPY®

in the EXECUTIVE. The program responds with a colon (:) prompt. At this point, the user may
enter any valid TELECOPY command. The commands are listed below.

Command Function
HELP or ? Lists all TELECOPY commands with a brief description of each command.
CAPABILITIES Describes program capabilities.
INSTRUCTIONS Explains how to execute the TELECOPY program.
PDP10 Prints additional instructions relative to file transfers between a TYMCOM-IX
and a TYMCOM-X system.
SYS370 Prints additional instructions relative to file transfers between a TYMCOM-IX

and a TYMCOM-370 system.

(Table continues)

1 - See page 23 for a discussion of valid file names on the TYMCOM-IX. Refer to the Tymshare TYMCOM-X XEXEC Reference
Manual and the Tymshare TYMCOM-370 CMS Reference Manual for discussions of valid file names on the respective systems.

146

Command
ONLC

OFFLC

TRUNCATE

NO TRUNCATE

SUPPRESS TRAILING
BLANKS

NO SUPPRESSION
TRAILING BLANKS

VERSION

PROJECT

RUN

QUIT or Q

Function
Enables the program to copy files in both uppercase and lowercase letters.

Enables the program to copy files in uppercase only; resets the ONLC switch.
This is the default mode.

Sets switch to truncate records beginning with specified column numbers when
transferring files from the TYMCOM-370.

Nullifies the TRUNCATE switch setting. This is the default mode.

Sets switch to suppress trailing blanks when transferring a file from the
TYMCOM-370.

Nullifies SUPPRESS TRAILING BLANKS switch. This is the default mode.
Lists number and creation date of the current version of the TELECOPY
program.

Enters project code. The system asks the user to ENTER PROJECT CODE: and
the user responds by entering the appropriate code.

Begins execution of TELECOPY.

Terminates TELECOPY program and returns control to the EXECUTIVE.

Any of the above commands may be abbreviated to their first three letters, except NO
TRUNCATE and NO SUPPRESSION TRAILING BLANKS, which may be shortened to the first

six letters.

In the following example, the user is logged in to system 2, a TYMCOM-IX system, under the
user name DELEON; he telecopies a data file to his own directory on system 40, which is a
TYMCOM-370 system. He has to use a different file name on the destination system, as the name
the file has on the TYMCOM-IX is not an acceptable name on the TYMCOM-370.

-TELECOPY?

:RUND

COPY FROM FILE: (DELEON:2)DATA4D

He copies a file from bis directory on system 2 to
bis directory on system 40, changing the file name so

COPY TO FILE: (DELEON:40)DATA TEXTo that it is acceptable on the TYMCOM-370.

COPY STARTING

DATA4 SYSTEM 2
COPIED TO
DATA TEXT SYSTEM 40

The program notifies bim that the copy is starting.

The program tells bim that the copy is complete, tells
bim how many characters in the file, and returns
control to TELECOPY command level.

107 CHARS. TRANSMITTED

147

It is possible to omit prompting if the user chooses. For example, the telecopy run shown above
could.have been entered this way:

-TELECOPY?

:(DELEON:2)DATAM, (DELEON: 40)MODEL TEXT

COPY STARTING

DATA4 SYSTEM 2
COPIED TO

MODEL TEXT SYSTEM 40

107 CHARS. TRANSMITTED

If the user is telecopying to a TYMCOM-X or to another TYMCOM-IX and wishes to use the
same file name in the destination system, he need only give the number of the second system. For
example:

:(DOMINSKI:2)DATAN, :322D

COPY STARTING
DATAY4 SYSTEM 2
COPIED TO
SYSTEM 32

20 CHARS. TRANSMITTED

If a file is being telecopied from the current system, the system number can be omitted.

:(DOMINSKI)COMP, : 38D

COPY STARTING
COMP SYSTEM 2
COPIED TO
SYSTEM 38

6 CHARS. TRANSMITTED

.
.

148

Several files can be copied at the same time by the following procedure.

: (DOMINSKI)ALPHY, ALPH3, ALPH2, :38, BET4, BET3, BET22

COPY STARTING

ALPHY4 SYSTEM 2
COPIED TO

BET4 SYSTEM 38

6 CHARS. TRANSMITTED
COPY STARTING

ALPH3 SYSTEM 2
COPIED TO

BET3 SYSTEM 38

32 CHARS. TRANSMITTED
COPY STARTING

ALPH2 SYSTEM 2
COPIED TO

BET2 SYSTEM 38

111 CHARS. TRANSMITTED

The command string can be continued onto additional lines with a line feed and can be up to 300
characters long. The entry is always terminated with a carriage return.

If the TELECOPY is between two TYMCOM-IX’s and the file name will be the same on the
destination system, the following procedure can be used:

:(DOMINSKI:2)RANDOM, HHH 1, (DOMINSKI: 1)2

COPY STARTING
RANDOM SYSTEM 2
COPIED TO
SYSTEM 1
33 CHARS. TRANSMITTED
COPY STARTING
HHH1 SYSTEM 2
COPIED TO
SYSTEM 1

15 CHARS. TRANSMITTED

.
.

149

If an attempt is made to copy to an existing file, the TELECOPY program asks for confirma-
tion. For example, the file CONTROL is being copied to system 1 under the file name RANDOM.
The system requests confirmation that it should write over an old file. If the user typesaY
or YES, the program continues.

:(DOMINSKI:2)CONTROL, : 1, RANDOM D

OKAY TO WRITE ON OLD FILE? YO
UPDATING STARTED

CONTROL SYSTEM 2

UPDATED TO

RANDOM SYSTEM 1

213 CHARS. TRANSMITTED

If the user responds with N or NO, the run is aborted.

:(DOMINSKI:2)CONTROL, : 1, RANDOM D

OKAY TO WRITE ON OLD FILE? N2

The project code that was used to log in to the system will be used by TELECOPY when
logging in to the second system unless the user executes the PROJECT option to enter a new proj-
ect code. This can be done as follows:

:PROJECTD

ENTER PROJECT CODE: 993029

TELECOPY COMMAND FILES

The user can create a command file to execute the TELECOPY program.! For example, the
user has the following command file called TRANSFER in his directory:

TELECOPY

(DOMINSKI:2)TAB1, TAB2,(DOMINSKI: 38)TABLE1, TABLE2
QUIT

COMMAND T

1 — See page 45 for a discussion of how to create command files.

150

The command file runs as follows:

-COMMAND TRANSFERY

COPY STARTING

TAB1 SYSTEM 2

COPIED TO

TABLE1 SYSTEM 38

213 CHARS. TRANSMITTED
COPY STARTING

TAB2 SYSTEM 2

COPIED TO

TABLE2 SYSTEM 38

32 CHARS. TRANSMITTED

If an attempt is made to copy to an existing file on the receiving system during command file
execution, the system prints an error message and aborts the command:

-COMMAND TRANSFERD

OKAY TO WRITE ON OLD FILE?
DATA ERROR IN COMMANDS FILE- TRANSFER ABORTED

BLANKS, SPACES, AND LINE NUMBERS

Compressed blanks on TYMCOM:-IX files are expanded when transferred to a TYMCOM-X or
TYMCOM-370. TAB settings, indicating spaces, in TYMCOM-X files are converted to spaces
when transferred to the TYMCOM-IX.

TYMCOM-X line-numbered files have the line numbers stripped when transferred to the
TYMCOM-IX system.

Blank lines in the TYMCOM-IX file will cause a record of one blank on the TYMCOM-370 file.
If the file is returned to the TYMCOM-IX by a subsequent TELECOPY, the SUPPRESS TRAILING
BLANKS switch should be set. For example:

-TELECOPY 2

:SUPPRESS TRAILING BLANKSO

:(MJL:42)LATER, :2,LATER9Y

151

METHOD OF FILE OVERWRITING

When the program is copying to an existing file, during a transfer between a TYMCOM-IX and
either 2 TYMCOM-X or a TYMCOM-370 system, the recipient file is opened in a sequential
mode. Therefore, the old contents of the existing file are totally replaced by the data in the dis-
patching file.

When copying to an existing file during transfers between two TYMCOM-IX systems, the old
file is opened in an update mode and its contents are merely updated.

153

Section 13
USING PAPER AND CASSETTE TAPES

The Tymshare system has outstanding features for handling paper tape and cassette tapes. The
system has programs to read and record both binary and symbolic tapes and to convert
character codes for either input or output.

Symbolic tape is read and recorded with the TAPE program. TAPE has the recording option of

including both a title and a terminating control character at the end of the tape. TAPE has
the reading option of treating control characters as literals or accepting their editing function.

To store data on either cassette or paper tape, the user can call and execute the TAPE program.
Then he gives the file name as the input and T (for terminal) as the output. For example:

-TAPED The user calls the tape program by typing TAPE in the EXECUTIVE.
He executes the program.

¢RUND

INPUT FROM: XXX He specifies the data file to be recorded.

OUTPUT TO: T2 T indicates the tape record mechanism.

TITLE: JM2D The title shows at the beginning of the tape as identification. If a

control shift N (control D on some terminals) concludes the data,
CONTROL-SHIFT-N AT END? Y2 subsequent reads will terminate at the end of the tape and return
= control to command level.

TYPE A CARRIAGE RETURN.
THEN TURN ON PUNCH.

2

Recording begins as soon as the recording machine is turned on.

The procedure for reading a tape is very similar except that the input is from T and the output
is to a file. In the following example, a tape is read and its contents stored in a file named
YYY. Before beginning the program to read a tape, the user should position the tape in the reader.
For example:

154

-TAPED The user calls the tape program by typing TAPE in the EXECUTIVE.
:RUND He executes the program.
INPUT FROM: T2 T indicates the tape reader.
OUTPUT TO: YYY2 The data read from the tape is stored in the file named YYY.
NEW FILED
EDITING? N2 Control characters on the tape are treated as literals; the contents of the
tape are not edited as the tape is read. The tape is read. Reading
TURN ON READER terminates when the control shift N at the end of the tape is encountered.

READ COMPLETE
66 CHARACTERS WRITTEN

Other useful tape programs are BINTAPE, CONFILE, and CONTAPE. BINTAPE punches and
reads binary tapes; CONFILE reads a file, converts it to another code, and punches the new
code; and CONTAPE reads a tape, converts the code, and writes it on a file. Both CONFILE and
CONTAPE require a code conversion table which can be created by the TABLEMAKER
program.

All of the tape programs are documented in the Tymshare TYMCOM-I1X Paper Tape Package
Reference Manual.

155

Appendix A

CONTROL CHARACTERS

The following control characters may be used at the EXECUTIVE level when entering text at

the terminal.

Control Character

Symbol Printed

AC
Wwe¢
QC
D¢
V¢

<or _
\
t
None

None

Function
Deletes preceding character.
Deletes preceding word.
Deletes entire line.
Terminates operation (end of line or file).

Protects a following carriage return, line feed,
or control character;i.e., the function of the
following character is inhibited, and the
character is treated as text.

Multiple controls A, W, or Q can be used to delete any material in the current line, but not in
preceding lines. See page 9 for a more complete discussion of editing with control characters.

157

Appendix B
COMMAND SUMMARY

The following alphabetical list summarizes the TYMCOM-IX EXECUTIVE commands and
programs documented in this manual. Page number refers to the page on which complete discus-
sion begins.

Command Description Page

CHECKSUM Calculates and prints checksums for 79
user-specified files.

CIPHER Encodes and decodes files. 35

COMMAND file name Executes commands contained in the 45
command file.

“comments SD c% Allows user to include comments in a 48
command file.

COMPARE Compares two files word for word and 86
lists the discrepant lines and their
location.

CONTINUE Resumes execution of the program the 20

user was running before transferring
directly to the EXECUTIVE.

COPY gglFfRII::II;;Ls ;’TOg 3’;1‘112 Rﬁ:i??]"s Copies source to destination. 25
DATE Gives data and time of day. 51
DECLARE file name(s) Sets access controls on specified files. 33
DEFER Places job in deferred processing queue. 105
DEINIT Deactivates the current initialized file. 49
DELETE file name(s) Deletes specified files. 29
DIRECTORY ([file name(s)] Lists all characteristics of all or specified 39
files.
DIRIT Lists file names, deletes files, or copies 87

files to another directory.

DSC - Prints current storage used and the maxi- 52
mum storage used since the last storage
measurement.

158

Command
DUMP file name

EXIT

FAILSAFE

FDC
FDM
FDX
FILES [file name(s)]

GFD

GO file name
HDX
INIT file name

LAST
LIST

LOGOUT
OFFESC

OFFLC

ONESC

ONLC

PASSWORD

PERP

PFDC

PROJECT new project code
QUIT

RECOVER file name
REENTER

Description

Stores machine contents in a file. Con-
tents are recovered with the RUN
command.

Terminates session at the terminal.
Inhibits system response of CPU and
terminal time.

If SETFAILSAFE was given, restores
memory to state at time of accidental
disconnect.

Sets file directory controls.
Crunches and uncrunches symbolic files.
Sets terminal to full duplex mode.

Lists files and selected information for
all files or for specified files.

Gets another user’s file directory if it has
been declared sharable and if it is in the
same account.

Executes program in GO file.
Sets terminal to half duplex mode.

Initializes a GO or a command file to
execute automatically after the user
logs in.

Prints number of files in directory.

Lists all file names beginning with the
one most recently created.

Terminates session at the terminal.

Inhibits all interrupts, including alt
mode/escape and emergency exit key.

Deactivates lowercase.

Deactivates OFFESC.

Activates lowercase.

Changes the user’s password.

Places job in periodic processing queue.
Prints file directory controls in effect.
Changes project code.

Returns to EXECUTIVE from a lan-
guage. Commonly used with REENTER
command.

Restores a DUMP file.

Returns to the language and work the
user was doing before transferring to the
EXECUTIVE.

Page
18

11

37

10
42

20
10
48

44
39

7
12

12
12
12
13
123
38
8
16

20
17

159

Command Description Page

REMOVE file number Deletes file by number. 30

RENAME old file name ; AS: new file name Renames a file. 24

RUN file name Executes DUMP file; same as RECOVER 19
and then REENTER.

SCOMPARE Compares two symbolic files. 81

SETFAILSAFE Creates fail-safe file. 11

SUMMARY Lists total user storage in characters and 44
number of files.

SYSNO Prints system information. 51

TAPE Calls the paper tape program to read or 153
punch binary and symbolic tapes.

TELECOPY Copies files from one system to another. 145

TIME Prints time elapsed since log in. 51

TOUT file name Directs terminal output to a file. 47

TYPE file name Prints on the terminal the contents of 27
the specified file.

VERIF Calculates and prints checksums for a 79
range of files.

WHY Prints explanation of the preceding 8

€rror message.

INDEX

NOTE: Page numbers that appear in boldface type refer to those
pages where the listed items receive the most detailed discussion.

/$/ file, 11, 28
//ITEMP file, 116
//ITOUT file, 117

A<, 9,155

Aborting commands, 8
ACCEPT command, FDM, 63
ACCESS command, DIRIT, 97
Access controls on files, 33

Accessing
applications programs, 15
files, 28
files in other directories, 28, 38
languages, 15
library programs, 15
other directories, 28, 38
subsystems, 15

Acoustic coupler, 4

AFTER command
DEFER, 113,114,118, 123
DIRIT, 90

ALL, 43

Alt mode/escape, 1, 8
disabling, 49

Altered files, identifying, 79

Altering sequence of commands in DEFER files, 110
AND switch, DIRIT, 95

ANN switch, DIRIT, 95

ANY response, PERP, 125

APPEND command, FDM, 59, 65

Append-only files, 34

Appending to FDM master files, 65
Applications programs, accessing, 15

Assignment command, DEFER, 111, 123

Back-up tapes, 12

BAD file type, 41, 93

BATCH FORTRAN1V, 15
BEFORE command, DIRIT, 90
BIN, 41, 93

Binary files, 55
crunching, 63

BINTAPE program, 154

Blanks
compressed in command files, 76
compressed in RETRIEVE files, 76
in telecopied files, 150

BRANCH command, 53
Buffer, FDM, 55

CAL, 16

Calling system, 3

CAPABILITIES command, TELECOPY, 145
Carriage return, 1

Cassette tape, 153

Changing project code, 8

Checksum, 79, 88, 97

CHECKSUM command, 79
DIRIT, 97

CHECKSUM command file, 80
CIPHER program, 35
Closing FDM files, 60, 78

161

162

Coding files, 35

Combining DIRIT file identifiers, 95
COMMAND command, 45

Command dispatcher mode, DIRIT, 87

Command files, 45
blanks compressed in, 76
CHECKSUM, 80
DEFER, 125
FDM, 71
initialized, 48
PERP, 125
VERIF, 80
TELECOPY, 149

Command list, DIRIT, 87

Commands. See DEFER, DIRIT, EXECUTIVE, FDM,
PERP, or TELECOPY

Commands, aborting, 8

Commands that do not erase memory, 18
Comment on file name, 24, 28
Comments command, 48

COMPARE program, 81, 86

Comparing files
binary, 86
symbolic, 81

Computer, location, 51

Computer time, 51

CONFILE program, 154
Connect time, 51
CONTAPE program, 154

CONTINUE command, 12, 20
DEFER, 115,123

Control A, 9, 155
Control D, 26, 155
Control Q, 10, 155
Control V, 155
Control W, 10, 155

Control characters
editing with, 9
in file names, 23
summary of, 155

Controlling system interruptions, 12
COPY command, 24, 25, 36, 106

Copying files
between systems, 145
to another directory, 102

with DIRIT, 87
Coupler, acoustic, 4

Creating
FDM master files, 59
files, 25
master crunched files, 59

CREATION command, DIRIT, 97
CRUNCH f*file name command, FDM, 62
CRUNCH ALL command, FDM, 60
CRUNCH command, FDM, 55

Crunched files, multiple blanks in, 76

Crunching
binary files, 63
files, 55
files by type, 63
GO files, 63
multiple files, 62
range of files, 60

D¢, 26, 155
Dataphone, 4
Date, PERP

printing, 126, 127, 128
specifying, 129

DATE command, 51
Date commands, DIRIT, 90
Date expressions, PERP
basic, 130
groups of, 135
modifiers for, 139
series of, 137
DATES command, PERP, 126, 129, 144
DCAL, 16
DDF program, 116
Debugging DEFER jobs, 116
DECIDE switch, DIRIT

with DELETE command, 100
with RENAME command, 102

DECLARE command, 33
Decoding files, 35

DEFER, 105
AFTER command, 113, 114, 118, 123
assignment (variable) command, 111, 123
command file, 125
command processing sequence, 108
commands, 105, 108
CONTINUE command, 115, 123

DEFINE command, 110, 118, 120, 123
error message, 106
ESCAPE command, 115,118, 123
execution, delaying, 116
file, 105

labels in, 112
FIND command, 109, 111, 114, 120, 123
GO command, 112, 118, 120, 123
IF command, 112, 114, 120, 123
jobs

debugging, 116

multiple, 116

restarting, 116

timing of, 105
label command, 123
LOOK command, 115, 118, 123
output file name, 123
PAUSE command, 115, 120, 123
pauses, 108, 114
processing sequence, 108
QUIT command, 114, 120, 123
RESTART command, 116, 123
STOP command, 113, 114, 123
terminal output file, 105, 108
termination commands, 114
THEN command, 123
TIME command, 113, 118, 120, 123
timing commands, 113
UNLESS command, 112, 114, 120, 123
variable (assignment) command, 111, 123
WAIT command, 115, 123

Deferred processing. See DEFER

DEFINE command, DEFER, 110, 118, 120, 123
DEINIT command, 49
Delaying DEFER job execution, 116

DELETE command, 29
DIRIT, 99
limiting, 100
PERP, 126, 144

Deleting
a line of input, 10, 155
characters during input, 9, 155
files, 29
by name, 29, 100
by number, 30, 100
by subset of name, 100
by type, 100
with DIRIT, 99
words during input, 10, 155
Directory, 28

accessing others, 38
security controls on, 36

DIRECTORY command, 21, 30, 39, 88

DIRIT, 98
FDM, 66

Directory information

listing, 39
listing with DIRIT, 88
selecting, 97

Directory position, selecting files by, 91
DIRIT, 87

ACCESS command, 97
ACS command, 88
AFTER command, 90
ALPHABETICAL command, 88
AND switch, 95
ANN switch, 95
BEFORE command, 90
CHECKSUM command, 97
CHRONOLOGICAL command, 88
command dispatcher mode, 87
command list, 87
commands, short form, 88
CREATION command, 97
date commands, 90, 100
DECIDE switch

with DELETE command, 100

with RENAME command, 102
DELETE command, 99

limiting, 100

options with, 100
DIRECTORY command, 98
EVERYTHING command, 98
FAST command, 98
file identifier switches, 95
file identifiers, 87

combining, 95

negating, 96
information selection commands, 97
LIST command, 98
once-only mode, 87
OR switch, 95
POSITION command, 98
prompt, 87
PROTECTION command, 98
PSS command, 88
RCHRONOLOGICAL command, 89
RENAME command, 102
REVERSE command, 89
SHORT command, 98
SIZE command, 98
sort commands, 88
STATUS command, 98
SUMMARY command, 98
TO command, 102

163

164

TODAY command, 90
TPS command, 89
TYPE command, 98

Disabling alt mode/escape, 49

Disconnect, premature, 11

DISPLAY command, PERP, 127, 129, 144

DO command, FDM, 72
Documenting terminal session, 51
DSC command, 52

DUM file type, 41, 93

Dummy file, 49

DUMP command, 18

DUMP file, 19, 20
initialized, 49

Editing with control characters, 9
EDITOR, 15, 27, 106
Emergency exit key, 1
Emergency termination, 18
Encoding files, 35

Entering data from terminal, 26

Error message, 8
DEFER, 106

ESCAPE command, DEFER, 115, 118, 123

EVERYTHING command, DIRIT, 98

EXCEPT modifier, PERP, 143

EXECUTIVE commands
BRANCH, 53
CHECKSUM, 79
CIPHER, 35
COMMAND, 45
comments, 48
COMPARE, 81, 86
CONTINUE, 12, 20
COPY, 24, 25, 36, 106
DATE, 51
DECLARE, 33
DEFER, 105
DEINIT, 49
DELETE, 29
DIRECTORY, 21, 30, 39, 88
DIRIT, 87
DSC, 52
DUMP, 18
EXIT, 7
FAILSAFE, 11
FDC, 37

FDM, 55

FDX, 10

FILES, 42

GFD, 30, 38

GO, 20, 49
HDX, 10

INIT, 48

KILL, 54

LAST, 44

LIST, 39, 67
LOGOUT, 7
MEMORY, 54
OFFESC, 12
OFFLC, 12
ONESC, 12
ONLC, 12
PASSWORD, 5, 6, 13
PERP, 105, 123
PFDC, 38
PLACE, 53
PMT, 54
PROJECT, 8
RECOVER, 12, 20
REENTER, 17, 20
RELEASE, 54
REMOVE, 30
RENAME, 24
RESET, 54
RUN, 19

SAVE, 53
SCOMPARE, 81
SETFAILSAFE, 11
STATUS, 54
SUMMARY, 44
SYSNO, 51
TAPE, 153
TELECOPY, 145
TIME, 51

TOUT, 47
TYPE, 27
VERIF, 79
WHY, 8

EXECUTIVE commands, use at FDM command

level, 65
EXIT, 7
EXPERT command, FDM, 74
EXPRESS command, PERP, 126, 144

Fail-safe file, 11, 28
FAILSAFE program, 11
FAST command, DIRIT, 98
FDC command, 37

165

FDM (File Directory Management), 55 coding, 35
CRUNCH f*file name command, 62 command, 45
CRUNCH ALL command, 60 blanks compressed in, 76
CRUNCH command, 55 CHECKSUM, 80
DO command, 72 DEFER, 125
MB OFF option, 76 FDM, 71
MB ON option, 76 initialized, 48
TOUT command, overriding, 73 PERP, 125
ACCEPT command, 63 VERIF, 80
APPEND command, 59, 65 TELECOPY, 149
buffer, 55 copying
command file, 71 to another directory, 87, 102
DIRECTORY command, 66 to another system, 145
EXECUTIVE commands in, 68 with COPY command, 24, 25, 36, 106
EXPERT command, 74 creating, 25
file crunching, 55. See also FDM
closing, 60, 78 decoding, 35
multiple blanks in, 76 deleting, 29, 100
TOUT, 72 by name, 29, 100
FILES command, 65 by number, 30, 100
FIND command, 68 by subset of name, 100
GET command, 68 by type, 100
HELP command, 75 sorts during, 102
master file, 55, 59 with DIRIT, 87, 99
appending, 65 dummy, 49
finding files in, 68 DUMP, 49
listing contents, 65 encoding, 35
MASTER command, 55,59 fail-safe, 11, 28
NOVICE command, 74 FDM master, 55, 59
OUTPUT command, 73 appending, 65
PRINT command, 77 closing, 60, 78
QUIT command, 60, 79 finding files in, 68
READ command, 57 listing contents, 65

RENAME command, 77

RESET command, 77
RESTORE command, 69
SEARCH command, 68
STATISTICS command, 78
TERMINATE command, 78
TOUT command, 72, 74

TOUT file, 72

UNCRUNCH ALL command, 70
UNCRUNCH command, 57

GO, 18, 20, 49,53
in another directory, accessing, 28
initialized, 48
limit on number created, 28
listing, 25, 27

interrupting, 27
loss, protection from, 12
management, DIRIT, 87
master crunched. See FDM master file
overwriting, 25, 28

VERSION command, 79 during TELECOPY, 149, 150, 151
FDX program, 10 printing out, 25
File, 1, 23 proprietary, 34

/$/, 11, 28 protected, 27

//TEMP, 116 public, 28, 36

//ITOUT, 117 renaming, 30

access control, 33 RETRIEVE, blanks compressed in, 76

altered, identifying, 79 sequential, 47

append-only, 34 sharing, 30

BAD, 41, 93 stored on tape, 153

binary, 55 symbolic, 55

166

telecopied
blanks in, 150
line numbers in, 150
spaces in, 150
TOUT, 47
uncrunching, 55
usage, 97
writing over, 25, 28
during TELECOPY, 149, 150, 151
File directory, 28, 39
accessing others, 28, 38
listing, 39
with DIRIT, 88
security controls, 36

File Directory Management program. See FDM
File identifier switches, DIRIT, 95

File identifiers, DIRIT, 87
combining, 95
negating, 96

File information, listing with DIRIT, 88

File list
alphabetical, 88
by number, 88
by type, 88
chronological, 88
numeric, 88
reverse alphabetical, 88
reverse chronological, 88
reverse numeric, 88

File name, 23
comment on, 24, 28, 93
DEFER output, 123
protected characters in, 94
reserved, 24
selecting files by, 93

File number, 40, 97
selecting files by, 91

File position, 40, 97
File security controls, 33
determining, 35
File type, 41
selecting files by, 93
Files, comparing, 81, 86
FILES command, 42
FDM, 65

FIND command
FDM, 68
DEFER, 109, 111, 114, 120, 123

Finding
files in FDM master file, 68
PERP job, 128

Full duplex, 10

GET command
FDM, 68
PERP, 128, 144

GFD command, 30, 38

GO command, 20
DEFER, 112, 118, 120, 123

GO file, 18, 20,49, 53
crunching, 63
initialized, 49

GO file type, 41, 93

Half duplex terminals, 10
HDX program, 10

HELP command
FDM, 75
PERP, 129, 144
TELECOPY, 145

Identifying
altered files, 79
the terminal, 4

IF command, DEFER, 112, 114, 120, 123
IML, 16

Information about files, selecting, 97
Information selection commands, DIRIT, 97
Inhibiting interruptions, 13

INIT command, 48

Initialized command file, 48

Initialized files, 48

INSERT command, PERP, 125, 144
INSTRUCTIONS command, TELECOPY, 145
Interrupting file listing, 27

Interruptions, controlling, 12
Job execution, system-scheduled, 105

KILL command, 54

Labels in DEFER file, 112
Languages, 15

LAST command, 44

Library programs, 11
accessing, 15

Limit on number of new files, 28
Limiting DIRIT DELETE command, 100
Line feed, 1

Line numbers in TELECOPY files, 150

LIST command, 39, 67
DIRIT, 98
PERP, 129, 144
Listing
a file, 27
directory information, 39
with DIRIT, 88
file information, 39
alphabetically, 88
by number, 88
by type, 88
chronologically, 88
numerically, 88
on FDM master file, 65
reverse alphabetically, 88
reverse chronologically, 88
reverse numerically, 88
with DIRIT, 87
files, 25

Locating files on FDM master file, 68
Location, computer, 51

Logging in, 5

Logging out, 7

LOGOUT command, 7

LOOK command, DEFER, 115, 118, 123

MASTER command, FDM, 55, 59
Master file, FDM crunched, 55, 59
appending, 65
finding files in, 68
listing contents, 65
MB OFF option, FDM, 76
MB ON option, FDM, 76
MEMORY command, 54

Message to user
from DEFER, 106
from PERP, 125

Mixed-case terminals, 12

Multiple blanks
in FDM files, 76
in crunched files, 76

Multiple DEFER jobs, 116
Multiple files, crunching, 62

Naming files, 23

NARP features, 53
BRANCH command, 53
GO file, 53
KILL command, 54
MEMORY command, 54
PLACE command, 53
PMT command, 54
RELEASE command, 54
RESET command, 54
SAVE command, 53
STATUS command, 54

Negating DIRIT file identifiers, 96

Network calling, 3

NEW FILE message, 25

New files, limit on number, 28

NO SUPPRESS TRAILING BLANKS command,
TELECOPY, 146

NO TRUNCATE command, TELECOPY, 146

NOT switch, DIRIT, 96

NOVICE command, FDM, 74

Number, file, 40, 97

Number of files, 28

OFFESC command, 12

OFFLC command, 12
TELECOPY, 146

OLD FILE message, 25

Once-only mode, DIRIT, 87
ONESC command, 12

ONLC command, 12
TELECOPY, 146

OR switch, DIRIT, 95

Output file, 47
DEFER, 123

OUTPUT command, FDM, 73
Overriding FDM TOUT command, 73

Overwriting a file, 25, 28
during TELECOPY, 149, 150, 151

Paper tape, 153
Partial file name, selecting files by, 94
Password, 5, 6, 13

167

168

PASSWORD program, 13 Printing out
PAUSE command, DEFER, 115, 120, 123 directory information, 39
' file information, 39

Pauses in DEFER, 108 files, 25
PDP10 command, TELECOPY, 149 PERP date, 126
Periodic processing. See PERP PERP schedule, 127
PERP, 105, 123 Private read access, 34

ANY response, 125 Private write access, 34

basic date expressions, 130 Processing sequence, DEFER commands, 108

command file, 125 Program pauses in DEFER, 114

date
printing, 126, 127, 128 Project code, 5, 6
specifying, 129 changing, 8

date expressions PROJECT command, 8
basic, 130 TELECOPY, 146, 149
o 5 S—_——
series, 13:7 DIRIT, 87

DATES command, 126, 129, 144 PERP, 124

DELETE command, 126, 144 Proprietary files, 34

DISPLAY command, 127, 129, 144 Protected characters in file names, 94

EXCEPT modifier, 143 in DIRIT, 155

EXPRESS command, 126, 144

GET command, 128, 144 Protected file, 27

groups of date expressions, 135 PROTECTION command, DIRIT, 98

HELP command, 129, 144 Public file, 28, 36

;(Ijbs ERT command, 125, 144 Public read access, 34
finding, 128 Public write access, 34, 102
specifying time of, 125

LIST command, 129, 144 Q¢ 10, 155

modifiers of date specifications, 139 QUIT command, 16,17, 18

prompt, 124 DEFER, 114, 120, 123

QUIT command, 129, 144 FDM, 60, 79

REFERENCE modifier, 139 PERP, 129, 144

schedule, printing, 127 TELECOPY, 146

series of date expressions, 137 Quitting DIRIT, 87

STARTING modifier, 141
STATUS command, 128, 144 Read access

TEST command,'1‘27, 144 public, 34
THROUGH modifier, 141

ip private, 34

UNTIL modifier, 141

utility commands, 129 READ command, FDM, 57

VERSION command, 129, 144 RECOVER command, 12, 20
PFDC command, 38 Recovering after termination, 18
PLACE command, 53 REENTER command, 17, 20
PMT command, 54 REFERENCE modifier, PERP, 139
POSITION command, DIRIT, 98 REFUSE command, FDM, 64
Position of file, 40 RELEASE command, 54
Premature disconnect, 11 REMOVE command, 30

PRINT command, FDM, 77 RENAME command, 24

DIRIT, 102
FDM, 77

Renaming files, 30
Reserved file names, 24

RESET command, 54
FDM, 77

RESTART command, DEFER, 116, 123
Restarting DEFER jobs, 116

RESTORE command, FDM, 69
RETRIEVE, 16

RETRIEVE files, blanks compressed in, 76
Returning to a language, 17

Reversing file list order, 88

Rules for naming files, 23

RUN command, 19
TELECOPY, 146

SAVE command, 53

SCOMPARE program, 81

Scratch file, 28

SEARCH command, FDM, 68

Searching for phrases in DEFER files, 110

Security controls
determining, 35
directory, 36
on files, 33
Selecting directory information, 97

Selecting files, 90

by date, 90

by directory position, 91

by file number, 91

by file type, 93

by name, 93

by subset of name, 94
Selecting information about files, 97
Semicolon string, 108, 115
Sequence of commands in DEFER file, 110
Sequential file, 47
SETFAILSAFE command, 11
Setting time limits in DEFER, 113
Sharing files, 30
SHORT command, DIRIT, 98
Short form

of DIRIT commands, 88
of EXECUTIVE commands, 9

169

of log in, 7
of TELECOPY commands, 146

SIZE command, DIRIT, 98
Size limit, TELECOPY command string, 148
Sort command, DIRIT, 88

Sorting files, 88
during deletion, 102

Spaces in TELECOPY files, 150
Specifying PERP dates, 129
STARTING modifier, PERP, 141
STATISTICS command, FDM, 78
STATPAK, 16

STATUS command, 54
DIRIT, 98
PERP, 128, 144

STOP command, DEFER, 113,114,123
Storage used, 52

Subset of file name, selecting files by, 94
Subsystems, accessing, 15

SUMMARY command, 44
DIRIT, 98

SUPER BASIC, 15
SUPER FORTRAN, 15

SUPPRESS TRAILING BLANKS command,
TELECOPY, 146

Suppressing terminal output in FDM, 72
SURVEY, 16

Switch, DIRIT, file identifier, 95
ANN, 95
AND, 95
NOT, 96
OR, 95

SYM file type, 41, 93

Symbol conventions, 1

Symbolic files, 55

SYS370 command, TELECOPY, 145
SYSNO command, 51

System, calling, 3

System interruptions, controlling, 12
System number, 6

System-scheduled job execution, 105

TABLEMAKER program, 154
TAPE program, 57,59, 153

170

Tapes, back-up’ 12 TO command, DIRIT, 102
TELECOPY, 145 TODAY command, DIRIT, 90
CAPABILITIES command, 145 TOUT command, 47
command, short form, 146 FDM, 72, 74
command files, 149 overriding, 73
g;:nmand string, size limit, 148 TOUT file, 47
S
FDM, 72
blanks in, 150
line numbers in, 150 Transferring files between systems, 145
spaces in, 150 TRUNCATE command, TELECOPY, 146
HELP command, 145 TYMNET, 3
INSTRUCTIONS command, 145 .
NO SUPPRESSION TRAILING BLANKS Tymshare Library program, 11
command, 146 Tymshare network, calling, 3
NO TRUNCATE command, 146 TYMTAB, 16
OFFLC command, 146
ONLC command, 146 TYP column, 21, 41
overwriting files, 149, 150, 151 TYPE command, 27, 106
PDP10 command, 145 DIRIT, 98
PROJECT command, 146, 149 Type of file, 41

QUIT command, 146

RUN command, 146

SUPPRESS TRAILING BLANKS command, 146
SYS370 command, 145 UNCRUNCH Command, FDM, 57
TRUNCATE command, 146 Uncrunching files, 55, 65
VERSION command, 146
writing over files, 149, 150, 151

UNCRUNCH ALL command, FDM, 70

UNLESS command, DEFER, 112, 114, 120, 123
UNTIL modifier, PERP, 141
UPL, 17

Uppercase terminals, 12

Terminal connect time, 51
Terminal identifying character, 4

Terminal output

directing to file, 47 User, message to

in DEFER, 105, 108 from DEFER, 106

in FDM, suppressing, 72 from PERP, 125
Terminal session, documenting, 51 User name, 5, 6
TERMINATE command, FDM, 78 User Program Library, 17
Terminating entry operation, 155 Utility commands, 51

PERP, 129
Termination commands, DEFER, 114
TEST command, PERP, 127, 144
V¢, 155

THEN command, DEFER, 123

VERIF command, 79
THROUGH modifier, PERP, 141

) VERIF command file, 80
Time, computer, 51

. . VERSION command
Time, terminal connect, 51 FDM, 79
TIME command, 51 PERP, 129, 144
DEFER, 113, 118, 120, 123 TELECOPY, 146
Time limits, DEFER, 113
Time of PERP jobs, specifying, 125 we, 10, 155
Timing commands, DEFER, 113 WAIT command, DEFER, 115, 123

Timing of DEFER jobs, 105 WHY command, 8

17

Write access XCAL, 16
private, 34 XDDT features, 53

public, 34, 102
)] XFORTRAN, 16
Write protected files, 34, 100

Writing over a file, 25, 28
during TELECOPY, 149, 150, 151

