Price: $5.00

TYMSHARE MANUALS
TYMCOM-IX

Information
Management
Library

NOVEMBER 1975

TYMSHARE, INC.
CUPERTINO, CALIFORNIA 95014

1975, TYMSHARE, INC,, Litho in U.S.A. RH3

CONTENTS

Section 1 — INTRODUCTION
ABOUT THIS MANUAL .
SYMBOL CONVENTIONS
USER INTERACTION

Section 2 — BASIC CONCEPTS OF IML .
SAMPLE APPLICATION
IML COMMANDS .

DATA FILES.
Entering the Data
Describing a Data File .

ACTIVITY FILES . .o
Creating the File and Its Descnptlon
Key Fields .

Matching Data and Act1v1ty Records in REPLACE SELECT and PURGE .

Matching Data and Activity Records in UPDATE .
THE OUTPUT FILE

IML CONDITIONAL EXPRESSIONS
Arithmetic Operators
Relational Operators
Logical Operators ..
Abbreviating Conditional Expresswns .

UTILITY FIELDS .

Section 3 — BASIC CONCEPTS OF RULES FILES
CREATING A RULES FILE
COMMAND-LEVEL INSTRUCTIONS

RULES FILE ORGANIZATION
The VERIFY Rules File
The UPDATE Rules File
The REPORT Rules File

Page

W NN =

~

14

14
15
15

16
16
16
16
17

19

20
21
22
23
24

24

27
27
29

30
31
31
32

iv

STATEMENTS
Instruction Statements .
Control Statements .
Nesting Statements .

Section 4 — FILE CREATION

DEFINE
Sample Problem .
Calling DEFINE . .
Describing a Symbolic File
Describing a Binary File
Editing a Description File .
CREATE
Data Entry .
Optional Components .

VERIFY .
Sample Problem .
Optional Components .
Structure of a VERIFY Rules F 1le .

Section 5 — FILE MANAGEMENT

EXAMPLE DATA FILE AND DESCRIPTION

SORT
MERGE .

SELECT AND PURGE
Using a Single Data File
Using a Data and Activity File

REPLACE . .
Substituting Entire Records
Substituting Specific Fields
Optional Components .

UPDATE
Sample Problem .
Using a Data and Activity F 1le
Using a Single Data File
Structure of an UPDATE Rules Flle

CONVERT.

Conversion of Binary and Symbollc FllCS .

Sample Problems .
Command Components
Rules File .

Section 6 — REPORT GENERATION
SAMPLE PROBLEM
GENERAL INFORMATION

Page

32
33
36
40

43
43

45
46
51
55

60
63

73
73
76
77

81

I 882

89
92

97
97
97
99

100
100
104
105
106

112
113
113
116
118

123
123
129

Page

THE REPORT RULES FILE« « « « « .« . 129
Overview . . e e e e e e e e e e e e e e e e e e 130
Built-in Utility Functlons e e e e e e e e e e e e e e e e e e 131
Picture Formats . . . e e e e e e e e e e e e e e e 133
Additional Rules File Statcments e e e e e e e e e e e e e e e 138
Structure of a REPORT RulesFile 139

Section 7 — ADVANCED APPLICATIONS 151

REFORMATTING A RETRIEVE DATABASE 151

SAVING A COMPILED RULES FILE PROCEDURE 156
Executing a Compiled Rules File Procedure 157

CHANGING FILE NAMES e e e e e e e e e e e e 158

APPENDING A FILE TO ANOTHER FILE 159

USING MULTIPLE DESCRIPTION FILES 161
Creating a Multiple Description File. 161

Altering a Multiple Description File. 164
USING COMMAND FILES « « « « « « « . . . N

Simple Command Files: Creation and Execution 171
Rules Statements for Command File Control 172
Documentation of Command File Execution 173
CREATE and Command Files . . . e e e e e e e e 174
Creation of an IML Command File in a Language Subsystem e e e e e 176
Appendix A — COMMAND AND RULES FILE SUMMARIES 181

Appendix B— ERROR MESSAGES 19

Index« v e e e e e e e e e e e e e e e e e e e . 203

SECTION 1
INTRODUCTION

The accumulation of information at a geometric rate is a fact of contemporary organizations.
Perhaps even more significant is the inevitable task of organizing and utilizing the information.
With this objective foremost in mind, Tymshare has developed an interrelated group of packages
which organize, access, update, and quantify in a multitude of ways any information stored on
computer-associated devices.

The Information Management Library, IML, provides an extensive set of data handling capa-
bilities tailored to the TYMCOM-IX, resulting in unsurpassed performance and economy. At the
same time, the Information Management Library maintains the traditionally simple syntax of
Tymshare’s software, offering the ease of use, straightforward interaction, and flexibility our users
have come to appreciate.

The library consists of 11 procedures, which encompass and organize the functional require-
ments of a data base management system. Using a modest vocabulary of English words and phrases
common to all Information Management Library activities, each package accomplishes a separate
task.

® DEFINE handles the design and description of a data base, permitting optimum storage and
access.

® CREATE facilitates data entry with an assortment of convenient features, allowing free
format, optional prompts, empty fields, and the ability to append information to an existing
data base. In addition, it incorporates an extensive editor similar to Tymshare’s EDITOR.

® VERIFY permits the user to check the accuracy and completeness of a data base, optionally

allowing the user to enter corrected information directly at the terminal when an error is
located.

® SORT reorders the information in a data base according to the user’s specifications, permit-
ting mixed ascending or descending sorts on as many as 20 items.

® MERGE combines two sorted data bases into a single sorted data base.
® PURGE deletes information according to conditions specified by the user.

® REPLACE provides for the substitution of records within a data base, permitting complete
or partial replacement of records.

® UPDATE assists in modifying a data base, allowing elaborate mathematical and conditional
instructions.

® CONVERT allows for conversion of binary and symbolic files. The user may change the data
type of the file, rearrange fields, and change fixed length records to variable length records
(or the reverse).

® SELECT is a mini-information retrieval package enabling the user to extract records or fields
based on user-specified conditions. It also offers a unique capability for reformatting an
entire data base.

® REPORT provides a comprehensive reporting facility suitable for organizing and generating
reports of any description, including those on preprinted forms. It incorporates a host of
optional features, such as picture formats, running totals, and built-in functions.

Each IML procedure is called directly from the EXECUTIVE by typing its name after the
EXECUTIVE dash (—).

The Information Management Library joins RETRIEVE, Tymshare’s general-purpose retrieval
system; STATPAK, the comprehensive statistics package; and TYMTAB, Tymshare’s dynamic
modeling tool, to form an integrated data management capability. Maintaining complete compati-
bility and transference, RETRIEVE, STATPAK, TYMTAB, and the Information Management
Library offer an unmatched combination to meet virtually all information processing needs.

ABOUT THIS MANUAL

Section 2 introduces the basic concepts and design of the Information Management Library.
The section begins with a sample application using several different commands to demonstrate the
capabilities of IML, then discusses the components of the commands, which are the framework
for understanding and utilizing the Information Management Library. By first studying this section,
the user can learn the basic information necessary to use IML.

Section 3 presents the basic concepts of rules files. It discusses the simple command-level
instructions for rules file creation, alteration, and execution. The section also details the state-
ments common to all IML rules files, and outlines the structure of the VERIFY, UPDATE,
and REPORT rules files.

Section 4 details the IML commands for designing, creating, and checking data files. Section 5
presents the commands for file maintenance; these include commands for sorting, merging,
selecting, deleting, replacing, and updating records in IML or RETRIEVE data files.! Section 6
describes the IML reporting facility.

Various advanced features of IML are presented in Section 7. Topics include the use of com-
mand files, SUPER BASIC and IML, reformatting a data base, and numerous optional features of
the DEFINE program.

Appendix A is an IML command summary. Appendix B contains a list of IML error messages.

SYMBOL CONVENTIONS

To indicate clearly the interaction at the terminal, everything typed by the user is underlined.
The symbols for user-typed characters are:

Carriage Return: 2
Line Feed: K
Alt Mode/Escape: e
Control characters are denoted by a superscript c. For example, Y€ denotes Control Y. The

method for typing a control character depends on the type of terminal being used. Consult the
literature for your particular terminal or see your Tymshare representative.

1 — See the Tymshare TYMCOM-IX RETRIEVE Reference Manual for complete documentation of RETRIEVE.

When a general form of an IML command is presented, lowercase letters represent the actual
information to be typed. For example, description file name in the command

description
—DEFINE file 2
name

specifies that the user types the name of the description file at that point.

Braces in a command form indicate a choice of one of the items enclosed in the braces. The
braces are not part of the command. For example,

data description
—CREATE file : file FROM
name name

T
input file name|?

indicates that the user may specify T or an input file name as part of the command.

NOTE: When square brackets appear in a command form, the brackets are actually typed by
the user. For example, in the command

—SORT [VERSION] -

the user must type the brackets that enclose the word VERSION. On some terminals, the user
types a Shift K and a Shift M for left and right square brackets, respectively. On some terminals,
the bracket characters are shown on the terminal keyboard.

USER INTERACTION

Whenever IML requests the name of a file on which to write the results of a command, the
system prints a NEW FILE or OLD FILE message in the form

file name .. message

where the file name is the name of the file to be written; the message tells the user whether a file
with the same name currently exists in his directory. For example, if the name of a file to be
created is specified as PERSONNELSORTED in an IML command and a file with that name exists
in the user’s directory, the system prints

PERSONNELSORTED .. OLD FILE

and waits for the user to confirm or cancel the file name. The user confirms the file name by
typing a carriage return. If the user confirms an OLD FILE message, the previous contents of the
named file are destroyed. If the user wishes to change the name of a file to be created, he types

an alt mode/escape; the system then prompts for another file name. In the example below, the
user cancels the original file name with an alt mode/escape, enters another file name; and confirms
the name with a carriage return after the NEW FILE message.

PERSONNELSORTED .. OLD FILE®e
SORTED DATA TO: STDPERSONNEL -
STDPERSONNEL .. NEW FILE

The user may call any IML program and specify the appropriate components in a single com-
mand. For example:

—SORT PERSONNELDATA:PDESC TO PERSONNELSORTED BY EMP.NO -

A line feed may be used at any time to continue a command onto the next line. For example,
the command

—SORT PERSONNELDATA:PDESC TO PERSONNELSORTED ~
BY EMP.NO

is identical to the previous command. Note that the line feed serves only to continue the com-
mand and does not function as a space. For this reason, the user must include a space before or
after the line feed if a space is normally required.

The user may, however, type an incomplete command and let the system prompt for the
missing components. For example:

-SORT,

UNSORTED DATA FROM: PERSONNELDATA
DESCRIPTION FROM: PDESC o

SORTED DATA TO: PERSONNELSORTEDS
PERSONNELSORTED.. NEW FILE,

NAMES OF KEY FIELDS: EMP,.NO>

Similarly, the user may type part of the command, provided the components appear in the
proper order. For example:

-SORT PERSONNELDATA:PDESC TO PERSONNELSORTED,
PERSONNELSORTED.. OLD FILE) The user destroys the previous contents of the named file.
NAMES OF KEY FIELDS: EMP.NO,

When the system prompts for the first missing component, the user may enter the remainder of
the command. For example:

-SORT PERSONNELDATA :PDESC
SORTED DATA TO: PERSONNELSORTED BY EMP,NO,

PERSONNELSORTED.. OLD FILE,

When the system prompts for the output file, the user enters the file name and also the key field
name on the same line.

The Information Management Library contains a built-in editing capability similar to EDITOR.
Using standard line-editing characters, such as Control A, Control W, and Control Q, the user
may edit 2 command as it is typed.! For example, the command

—SELECT FFAC<ROM PERSONNELDATA:PDESC IF DPETWC\DEPT=5,,

is accepted as:
SELECT FROM PERSONNELDATA:PDESC IF DEPT=5

In addition, when the user enters a command and receives an error message, he may type a
Control Y to use the incorrect command as an image for reentering the corrected command. In
the following example, the user types a complete command, not realizing that he omitted the

1 - See the Tymshare EDITOR Reference Manual for documentation of control characters and their functions.

H from the word WITH at the start of the command. When he receives the error message and
prompt, he types Control Y, then Control Z followed by a T which copies up to and including
the T, Control E to insert the missing H, and finally, Control D to copy the rest of the command.

—MERGE NEWPERSONNEL:PDESC WIT PERSONNELSORTED TO TOTAL BY EMP.NO 5
COMMAND STARTING WITH ‘WIT’ IS BAD.

FILE DESCRIPTION FROM: Y€

ZCTPDESC WITES<HDS> PERSONNELSORTED TO TOTAL BY EMP.NO

TOTAL .. NEW FILE 5 ‘

OK.

Note that part of the command is accepted. The user may first type Control H to print the
portion of the command available for editing. Then he types Control Y. The previous example is
repeated using Control H first, then Control Y to edit the incorrect command.

—MERGE NEWPERSONNEL:PDESC WIT PERSONNELSORTED TO TOTAL BY EMP.NO >
COMMAND STARTING WITH ‘WIT’ IS BAD.

FILE DESCRIPTION FROM: HCPDESC WIT PERSONNELSORTED TO TOTAL BY EMP.NOYS
ZCTPDESC WITEC<HD¢> PERSONNELSORTED TO TOTAL BY EMP.NO

TOTAL .. OLD FILE>

OK.

The user may interrupt command operation at any time by typing two consecutive alt mode/
escapes.! The system asks

*++*CONTINUE?

and the user must answer YES or NO, followed by a carriage return. If the answer is NO, the
command is aborted, and control is returned to the EXECUTIVE.

The [VERSION] option is available to determine the version number of any IML program. The
command form is simply: ‘

—program name [VERSION]-

For example, to determine the version number of the current REPORT program, the user types:

—REPORT [VERSION]

The HUSH option, which may be used with many IML commands, allows the user to suppress
IML return messages. This feature is intended to be used primarily with command files. It is
available for use with all commands except DEFINE, NOTE, and PERFORM.

The HUSH option must appear immediately after the command name. The user must also type
the word HUSH enclosed in square brackets as illustrated in the example below.

—REPORT [HUSH] SPERSONNEL:PDESC TO T AS PER PRUL 5

If the user includes another option, as is possible for many commands, the HUSH option
should appear first in the command statement. For example:

—SELECT [HUSH] [SINGLE] A:AD FROM D:DD TO C BY KEY 5

1 - The IML programs are designed to prevent interruption from spurious line noise. The present interrupt routine stops with the
first alt mode/escape; then, if a second alt mode/escape is not received within four seconds, the program continues at the
point of interruption.

The following are examples of IML messages which are suppressed when the HUSH option is
used:

OK.
REPORT FINISHED
4 RECORDS SELECTED FROM 4000

SECTION 2
BASIC CONCEPTS OF IML

This section explains the design of the Information Management Library: the information files
with which it works, the various components of its commands, and the vast capabilities available
in IML to handle information processing and retrieving requirements. New IML users should read
this section carefully and in sequential order to achieve a basic understanding of the capabilities,
terms, and construction of all IML commands and components. Users who are familiar with the
Information Management Library may wish to refer directly to subsequent sections.

Many of the sample commands discussed in this section first appear in the sample application
which follows.

SAMPLE APPLICATION

As an introduction to the basic concepts of IML, an example is shown below. The user need
not concern himself at this point with complete comprehension of all the commands used; after
reading the entire section, the meaning of the commands should be apparent.

The introductory problem concerns an accounts receivable application, which highlights the
extraordinary speed, flexibility, and design of IML to maintain, access, and handle information
stored on files on the TYMCOM-IX. This example shows the use of some fundamental IML

commands to manage the raw data in a RETRIEVE data base named MASTER.!

-TYPE MASTER.,

ABC SUPPLIES 4031 250.92 720215 720210 150.66
ABC SUPPLIES 4170 375.92 720401 0 375.92
CARTER PRINTING 4018 899.55 720115 711208 678.45
DAILY DESIGN 3921 298.50 711230 0 298.50
FORREST PRINTING 4207 77.77 720415 0 77.77
KAY DEALERS 4251 1150.27 720430 0 1150.27
KUBLA PRINTS 3999 567.67 720101 720115 311.51
LETTEREX 4119 153.61 720401 0 153.61
ODIN WINERY 4075 565.00 720301 0 565.00
TTG&G 3877 2008.23 711115 711209 271.30
Account Invoice Invoice amount Due date Last payment date Balance

1 - IML can use RETRIEVE binary and symbolic data bases; in fact, IML automatically finds the corresponding RETRIEVE
structure file when the user specifies a RETRIEVE data base in an IML command.

MASTER contains the information for all outstanding accounts in alphabetical order by account
name. Dates are written in the form

YYMMDD

where the year, month, and day are represented by two-digit integers. For example, 720210
represents February 10, 1972.

The file MASTER‘STR.E’, created by RETRIEVE and read by IML commands, describes the
information contained in each record.

-TYPE MASTER'STR.E',

C 16 ACCOUNT

I 5 INVOICE

N 10.2 INVAMT

I 8 DUEDATE

I 12 LASTPAYMENT
N 10.2 BALANCE

Once a week, the accounts receivable clerk adds the new invoice information to the data base,
using the CREATE command.

-CREATE APPENDING TO MASTER FROM T,
MASTER.. OLD FILE,

OK.

DATA MUST BE ENTERED IN THE FOLLOWING ORDER:

ACCOUNT C 16

INVOICE N 5

INVAMT N 10 2

DUEDATE N 8

LASTPAYMENT N 12

BALANCE N 10 2
CREATE accepts the data with no format requirements and adds
the new records to MASTER in the proper RETRIEVE format.

1: MOORE ASSOC,4300,68.10,720501,0,68.105

2: FRANK SHIPPING,4290,97.50,720501,0,97.50>

3: MARSHALL CO,4297,412.12,720501,0,1600,9«++«+<+<«412,12 CREATE has a

4: AARON PRODS,4304,1600.93,720501,0,1600.935 built-in editing
5: O A Carriage Return typed immediately after the prompt terminates the data entry. facility Simil‘f’
4 RECORDS CREATED. to EDITOR.

1 — See the Tymshare EDITOR Reference Manual.

Now the user wishes to re-sort the appended file to alphabetical order by account name.!

=SORT MASTER BY ACCOUNT >

OK.

SORT FINISHED.

The file named MASTER is displayed below. A star () indicates the new records added with
CREATE.

~TYPE MASTER

*AARON PRODS 4304 1600.93 720501 0 1600.93
ABC SUPPLIES 4031 250.92 720215 720210 150.66
ABC SUPPLIES 4170 375.92 720401 0 375.92
CARTER PRINTING 4018 899.55 720115 711208 678.45
DAILY DESIGN 3921 298.50 711230 : 0 298,50
FORREST PRINTING 4207 77.77 720415 0 77.77

*FRANK SHIPPING 4290 97.50 720501 0 97.50
KAY DEALERS 4251 1150.27 720430 0 1150.27
KUBLA PRINTS 3999 567.67 720101 720115 311.51
LETTEREX 4119 153.61 720401 0 153.61

*MARSHALL CO 4297 412.12 720501 0 412,12

*MOORE ASSOC 4300 68.10 720501 0 68.10
ODIN WINERY 4075 565.00 720301 0 565.00
TTE&G 3877 2008.23 711115 711209 271.30

1 - The usual and suggested form of SORT creates a new output file, preserving the original data file. The example form maintains
the correspondence of a RETRIEVE file name with the name of the structure file containing the data description.

10

Now the user wishes to examine the accounts in the data file which have due dates before
February 1, 1972. The SELECT command handles this task:

-SELECT FROM MASTER IF DUEDATE<720201 TO T:ACCOUNT,DUEDATE,-
BALANCE

OK.

CARTER PRINTING 720115 678.45 IML prints the requested fields
DAILY DESIGN 711230 298.50 from each selected record.
KUBLA PRINTS 720101 311.51

TT &G 711115 271.30

4 RECORDS SELECTED FROM 14

Once each month, IML is used to update the master data file. The accounts receivable clerk
creates a RETRIEVE file, TRANSACTIONS, containing information necessary to locate and
update certain records in the master data file.

-TYPE TRANSACTIONS 5

ABC SUPPLIES 4031 720215 150,66 This file contains information
CARTER PRINTING 4018 720220 500.00 on full and partial payments
DAILY DESIGN 3921 720225 150,00 made during the month for
KAY DEALERS 4251 720217 550,00 any outstanding account.
KUBLA PRINTS 3999 720213 200.00

TTE¢EG 3877 720228 271.30

Account name Invoice Payment date =~ Amount paid

The structure file, TRANSACTIONS‘STR.E’, describes the information in TRANSACTIONS.

-TYPE TRANSACTIONS'STR.E'S

C 16 ACCOUNT

I 5 INVOICE

I 12 PAYTDATE
N 10.2 AMTPAID

Using the information in TRANSACTIONS, the user performs two updating tasks on the data file
MASTER: replacing the most recent date of payment and updating the outstanding balance.!

1 — Both tasks can be performed easily with a simple UPDATE procedure. For purposes of the example, however, REPLACE
performs the first task, and UPDATE performs the second task.

1

The user types the REPLACE command to replace the date of last payment. For each record
in the TRANSACTIONS file, REPLACE locates MASTER records with the same account name.
The IF clause then checks for identical invoice numbers for the given account. Note that : A follow-
ing a field name indicates an activity record field, and :D following a field name indicates a data
record field. MASTER contains the data records, and TRANSACTIONS contains the activity
records.

~REPLACE MASTER WITH TRANSACTIONS TO CURRENT:LASTPAYMENT WITH -
PAYTDATE IF INVOICE:A=INVOICE:D BY ACCOUNT ,
CURRENT.. NEW FILE,

IML writes a new file, CURRENT, which contains the revised
OK. MASTER file records. The original file is unchanged.

6 RECORDS REPLACED OF 14

-TYPE CURRENT , This file has the same format as the MASTER file. Note that
the last payment date is replaced in the relevant.records.

AARON PRODS 4304 1600.93 720501 0 1600.93
ABC SUPPLIES 4031 250,92 720215 720215% 150.66
ABC SUPPLIES 4170 375.92 720401 0 375.92
CARTER PRINTING 4018 899.55 720115 720220% 678.45
DAILY DESIGN 3921 298,50 711230 720225% 298,50
FORREST PRINTING 4207 77.77 720415 0 77.77
FRANK SHIPPING 4290 97.50 720501 0 97.50
KAY DEALERS 4251 1150.27 720430 720217* 1150.27
KUBLA PRINTS 3999 567.67 720101 720213 % 311.51
LETTEREX 4119 153.61 720401 0 153.61
MARSHALL CO 4297 412,12 720501 0 412,12
MOORE ASSOC 4300 68.10 720501 0 68.10
ODIN WINERY 4075 565.00 720301 0 565.00
TTEé&G 3877 2008.23 711115 720228% 271.30

Next, the user employs the UPDATE command to revise the outstanding balance information
in certain records of the CURRENT data file, using the records in the TRANSACTIONS activity
file. Note that the data file CURRENT consists of records written in the same RETRIEVE format
as MASTER.

-UPDATE CURRENT:MASTER'STR.E' WITH TRANSACTIONS TO REVISED -
IF INVOICE:A=INVOICE:D BY ACCOUNT AS PER RULESI

: LIST, The rules file is listed for purposes of the example.
10 BALANCE-AMTPAID:A TO BALANCE
¢ RUN> The user executes the command.

REVISED.. NEW FILES

OK.

6 RECORDS UPDATED OF 14

12

UPDATE substitutes the new BALANCE information in the appropriate data file records as per
the RULESI instructions shown on the preceding page.

REVISED contains all the information from the file CURRENT with the outstanding balance
revisions.

-TYPE REVISED,

AARON PRODS 4304 1600.93 720501 0 1600.93
ABC SUPPLIES 4031 250,92 720215 720215 «00%
ABC SUPPLIES 4170 375.92 720401 0 375.92
CARTER PRINTING 4018 899,55 720115 720220 178.U45%
DAILY DESIGN 3921 298.50 711230 720225 148.50%
FORREST PRINTING 4207 77.77 720415 0 77.77
FRANK SHIPPING 4290 97.50 720501 0 97.50
KAY DEALERS 4251 1150.27 720430 720217 600.27%
KUBLA PRINTS 3999 567.67 720101 720213 111.51%
LETTEREX 4119 153.61 720401 0 153.61
MARSHALL CO 4297 412,12 720501 0 412.12
MOORE ASSOC 4300 68.10 720501 0 68.10
ODIN WINERY 4075 565.00 720301 0 565.00
TT &G 3877 2008.23 711115 720228 .00%

Now the user deletes the accounts which are paid in full, that is, records whose BALANCE is
zero.

-PURGE FROM REVISED:MASTER'STR.E' IF BALANCE=0 TO MASTER>

MASTER.. OLD FILE) The user writes the updated information over
the previous contents of the file MASTER.

OK.

2 RECORDS PURGED FROM 14

MASTER contains the up-to-date accounts receivable data. To continue his weekly and monthly
information management and retrieval, the user repeats the same IML procedures, using the new
MASTER file.

Finally, the user generates a report from the MASTER file, using the REPORT command.

-REPORT MASTER TO MREPORT AS PER RPTRULES)

: LIST, The report rules are listed for purposes of the example.
10 INITIAL

20 SKIP 6

30 PRINT 23B, "ACCOUNTS RECEIVABLE SUMMARY",CR,29B,

"AS OF ", aDATE, CR
35 SKIP 3

13

40 PRINT 22B, "ACCOUNT",11B, "BALANCE DUE",CR,22B,"=======",
11B,"========e=-=" CR,CR

50 DETAILS

60 PRINT 22B, ACCOUNT The user wants to print the account name

70 TAB 42 and balance for each record in the data file.

80 PRINT BALANCE,CR

90 FINAL

100 TAB 41

110 PRINT "-==========",CR

115 PRINT 22B,"TOTAL"

120 TAB 42

130 PRINT SUM BALANCE($$$$$$$.DD) ,CR

¢ RUNS The user executes the command.

‘MREPORT.. NEW FILE,

OK.

REPORT FINISHED.

The report produced is shown below.

~TYPE MREPORT

ACCOUNTS RECEIVABLE SUMMARY
AS OF 03/01/72

ACCOUNT BALANCE DUE
AARON PRODS 1600.93
ABC SUPPLIES 375.92
CARTER PRINTING 178.45
DAILY DESIGN 148,50
FORREST PRINTING 77.77
FRANK SHIPPING 97.50
KAY DEALERS 600,27
KUBLA PRINTS 111.51
LETTEREX ‘ 153.61
MARSHALL CO 412.12
MOORE ASSOC 68.10
ODIN WINERY 565.00

TOTAL $4389.68

14

IML COMMANDS

In addition to CREATE, DEFINE, and VERIFY for data creation procedures, the Information
Management Library contains commands which encompass all aspects of information manage-
ment to satisfy the rigorous and growing demands of data processing.

IML includes two fast sorting programs: SORT and MERGE. SORT sorts the contents of a file
on one or more key fields. It is used in the introductory example on page 9 to arrange the records
in a file in alphabetical order by account name. MERGE merges two sorted files into a single file
in sorted order.

SELECT is a fast, versatile information retrieval program for both elaborate conditional
information retrieval and simple, straightforward applications. In the sample problem, the
SELECT command prints the requested information about overdue accounts with one IML
command:

—SELECT FROM MASTER IF DUEDATE<720201 TO T:ACCOUNT,DUEDATE,BALANCE

IML offers three commands to handle the updating needs of an information management
system: REPLACE, UPDATE, and PURGE. The REPLACE command allows replacement of
records or specific fields in a record. On page 11, the user types a REPLACE command to
change the payment date information in the records. The UPDATE command permits arithmetic
operations in changing the data within a record. For example, UPDATE is used on page 11 to
determine the new balance and replace the old balance with it. The PURGE command deletes
entire records from a file. It is used on page 12 to delete accounts paid in full.

Finally, IML offers a comprehensive reporting facility to prepare reports of any description,
including those on preprinted forms, based on the information in a data file. REPORT provides
the ability to control paging and spacing, print titles and page headings, perform calculations,
and accumulate totals, subtotals, and averages.

DATA FILES

The Information Management Library allows the user to store a large volume of related data,
then access and update this information as required. The information accessed and stored by IML
is written on a file.

All data files consist of records. A record contains one or more related pieces of information
forming a unit. Each piece of information in a record is called a field. In the preceding example,
each record in the file consists of six fields specifying the account name, invoice number, total
bill, due date, date of most recent payment, and current balance due for a given invoice. Initially,
the user names each field and specifies its location within the record, its length, and the type of
data it contains: numeric or character.

IML is designed to handle information stored in specific locations in each record. For example,
in MASTER, each record contains the invoice number in a specified location. IML requires,
however, that only those fields which are used in the command operation appear in the same
location in each record.

When all records in a file contain the same number of characters and have a constant length for
the life of the file, they are called fixed length records. When the length of all records changes
during the life of the file or when the records in the file are of different length, they are called
variable length records.

15

The term data file refers to the information file containing the records. It may be a master
data file, an activity data file, or a data file maintained alone. A description file contains no data
but specifies the parameters of a data file, providing the following information: type of file,
binary or symbolic; type of records, fixed or variable length; and record description.

Entering the Data

The user may create or append to RETRIEVE files as well as IML data files by entering the
records at the terminal or from a file. The CREATE command offers convenient options,
including prompts, error diagnostics, and complete editing facilities for data entry. The user may
enter the data without regard to format or position in the record. This free-format capability
permits the user to separate the data with commas or leave certain fields blank. CREATE then
produces an IML or RETRIEVE file in the appropriate format.

The description of the data file is crucial for maximizing IML’s extraordinary speed and
economy. CREATE takes its instructions for storing the information from the description file
whose name appears in the command.! For example,

—CREATE INVOICES:INVDES FROMT 5,

creates a file named INVOICES, storing in fixed format the data entered in free format at the
terminal. The file INVDES contains the description which CREATE uses to write INVOICES.

Describing a Data File

Before executing commands, IML requires certain descriptive information about a data file and
its records. The user may describe his data file with a description file created previously by a
DEFINE command, use a RETRIEVE structure file, or specify T as the description file and enter
the description at the terminal immediately before command execution.

The DEFINE command assists the user in designing the initial description, and stores the
format on an IML description file. To take greatest advantage of IML’s economical information
storage and handling, the user may design his own data file, then enter the data easily with
CREATE. To access and update the data file with any subsequent IML command, the user specifies
its description simply by entering the data file name followed by a colon (:) and the description
file name. For example,

—SELECT FROM INVOICES:INVDES IF QUANTITY>100 TO T

instructs IML to read the information on INVOICES according to the description on INVDES.

When working with a RETRIEVE data base, the user may omit the description file name if an
associated RETRIEVE structure file exists in the user’s directory. For example, in the intro-
ductory example on page 10,

—SELECT FROM MASTER

instructs IML to seek the associated RETRIEVE structure file, MASTER‘STR.E’, to describe the
information stored in MASTER.

The user may specify a RETRIEVE structure file name to describe a data file that is in
RETRIEVE format but does not have a corresponding structure file. For example,

1 - As shown on page 8, CREATE can also work with RETRIEVE structure files.

16

—UPDATE CURRENT:MASTER‘STR.E’ 5

specifies that the file named CURRENT contains information in the format stated on the
RETRIEVE structure file MASTER‘STR.E’.

ACTIVITY FILES

. Many IML commands allow the user to work with two data files. The primary data file always
contains the information to be managed; the secondary data file may contain records to locate,
update, replace, or, in general, facilitate the handling of the information in the master data file.
The secondary data file is called an activity file. The introductory example shows the use of an
activity file, TRANSACTIONS, to specify changes to certain records in the main data file.

Creating the File and Its Description

The user creates and describes an activity file as he would any data file in IML, using CREATE
and DEFINE. The description file name is required in an IML command unless the activity file
is a RETRIEVE data base described by a corresponding structure file.

Key Fields

An activity file instructs IML to perform commands only on the records in the master data file
which match one or more records in the activity file.! The match is determined by key fields
which the user specifies in the BY clause. For example, assume the files MASTER and TRANS-
ACTIONS are used in an IML command. The BY ACCOUNT clause in the command instructs
IML to read the ACCOUNT field in a record of TRANSACTIONS and locate the first record in
MASTER which matches exactly in the ACCOUNT field. Then and only then does IML perform
the command on the MASTER file record. In this way, IML is able to perform a massive amount
of updating or retrieving with one IML command. The use of an activity file enhances the
efficiency and power of the Information Management Library.

NOTE: The records in botb files (a data file and a specified activity file) may be of differing
types; that is, one may be binary while the other is symbolic. The records must be sorted on the
key field or fields used to determine a match between an activity record and a data record.?

The key fields must bave the same data type and length in the data and activity description files.

Matching Data and Activity Records
In REPLACE, SELECT, and PURGE

In REPLACE, SELECT, and PURGE, IML matches an activity record with all data records
which specify the same key field data. The following diagram illustrates the normal matching pro-
cedure in REPLACE, SELECT, and PURGE.

1 — In UPDATE, the user may specify some instructions for all data records, and other instructions for only the records which
are located by an activity record matching on the key fields.
2 ~ The SORT command may be used to order records based on a key field list. The SORT command is presented on page 83.

17

Activity File Data File

key field data matches key field data
1 - 1
no match 1 1
no match 1 1
3 1
no match 3 2
4 2
5 2
no match 5 3
no match 6 ‘ 3
4
5
5

The SINGLE option in REPLACE, SELECT, and PURGE instructs IML to match an activity
record with only the first unused data record which specifies the same key field data. The diagram
below illustrates the matching procedure in REPLACE, SELECT, or PURGE when the SINGLE
option is requested.!

Activity File [SINGLE] Data File
key field data matches key field data

1
1
1
3
3
4
5
5
6

no match

////
VLB W W N NN e

Matching Data and Activity Records in UPDATE

With the UPDATE command, the normal procedure for matching data and activity records on
key fields is different from other IML commands. In UPDATE, all activity records which specify
the same key field data are used to update the first matching data record. The diagram following
illustrates the matching procedure in UPDATE.

1 - The REPLACE command form is presented on page 97; the SELECT and PURGE command forms are presented on page 90.

18

Activity File Data File
key field data matches key field data
1 1
" / "
1 1
3 1
3 2
4 2
5 2
5 3
no match 6 3
4
5
5

The SINGLE option instructs UPDATE to use only the first of several matching activity
records to update a data record. If other data and activity records contain the same key field
data, the process is repeated. The diagram below illustrates the matching procedure in
UPDATE when the SINGLE option is requested.’

Activity File [SINGLE] Data File
key field data matches key field data
1 » 1
1 » 1
1 » 1
3 1
3 2
4 2
5 2
5 3
no match 6 3
4
5
5

The MULTIPLE option provides an alternative method for matching data and activity records
in the UPDATE procedure. Normally all activity records which specify the same key field data
are used to update the first matching data record. When the MULTIPLE option is specified, a
single activity record is used to update all data records that specify the same key field data. The
following diagram illustrates the matching procedure in UPDATE when the MULTIPLE option
is specified.

1 — The UPDATE command form is presented on page 104.

19

Activity File [MULTIPLE] Data File

key field data matches key field data
1 > 1
no match 1 1
no match 1 1
3 1
no match 3 2
4 2
5 2
no match 5 3
no match 6 3
4
5
5

The UPDATE [MULTIPLE] matching procedure is the same as the normal matching procedure
for SELECT, PURGE, and REPLACE.

THE OUTPUT FILE

The user need not concern himself with the possibility of inadvertently destroying his data files
with any IML command. All commands request the user to specify the name of a file on which
to write the results of the information management procedure. The original files remain unchanged,
allowing the user to perform more than a single IML command with the original files and pro-
tecting the user from an erroneous command.

The user specifies a name for the output file in the IML command. After typing the specifica-
tions of the original files, the user types TO followed by an output file name. For example:

—REPLACE MASTER WITH TRANSACTIONS TO CURRENT -

After performing the REPLACE command, IML writes all the data records on a file named
CURRENT. The user may specify T as the output file to print all records directly at the terminal
without creating a permanent file. The format of the output file is automatically the same as

the master data file. In the previous command, the records in CURRENT contain the same fields
as the records in MASTER; therefore, the user may type

—UPDATE CURRENT:MASTER‘STR.E’ S

to specify CURRENT and its description in a subsequent IML command.

The user may reformat the output records with any SELECT or PURGE command by speci-
fying, after the output file name, a list of desired fields from the master data file. For example,

—SELECT FROM MASTER TO T:ACCOUNT,DUEDATE,BALANCE -

prints at the terminal only the specified fields from selected records. See page 10 of the intro-
ductory example for an illustration of this feature. The reformat capabilities are available to
perform extensive restructuring of any information file. For complete instructions, see the dis-
cussion on page 87.

20

IML also makes it possible to create an output file containing records which are a combination
of matched data and activity records. For example:

—REPLACE MASTER WITH TRANSACTIONS TO CURRENT:LASTPAYMENT =
WITH PAYTDATE >

The output file, CURRENT, contains records consisting of all fields from the data record except
LASTPAYMENT, which IML replaces with PAYTDATE from the matching activity record. See
page 11 of the introductory example for an illustration of this feature; complete instructions are
presented with the REPLACE command on page 97.

The IML reformatting features are an important facility for handling information files of dif-
ferent descriptions. This capability is particularly useful in RETRIEVE management procedures,
as illustrated on page 151.

IML CONDITIONAL EXPRESSIONS

IML incorporates a total capability for qualifying data file records for command procedures.
Similarly, the user may qualify activity records for the command procedure or qualify output
records based on a conditional expression involving fields in the data and activity records. For
example, the user wants to execute a SELECT command only for certain data records with
BALANCE greater than 500:

—SELECT FROM MASTER IF BALANCE>500 TO T 5

The following command uses three different conditional expressions (IF or FOR clauses) to
qualify data, activity, and output records, respectively, for the UPDATE procedure:

—UPDATE MASTER FOR DUEDATE>720301 WITH TRANSACTIONS 7
IF PAYTDATE>720301 TO CURRENT IF INVOICE:A=INVOICE:D BY ACCOUNT -+
AS PER UPDRULES -

Only MASTER data records containing due dates after March 1, 1972, and TRANSACTIONS
activity records with payment dates after March 1, 1972, are to be matched to produce
CURRENT, the output file. Finally, IML writes an output record for the current data record and
matching activity record only if the invoice number in the activity record is the same as the
invoice number in the data record.

The third IF clause, that INVOICE:A equals INVOICE:D, is an interfile conditional expression.
The interfile IF or FOR clause follows the output file specification. A data record field is indi-
cated by :D following the field name; an activity record field is indicated by :A following the
field name.

In most IML commands, the user may specify as many as three IF or FOR clauses containing
conditional expressions with arithmetic, relational, and logical operators, if desired. The words
IF and FOR may be used interchangeably to begin a conditional expression. NOTE: In all cases in
this manual, the pbrase IF clause means an IF clause or a FOR clause. Similar conditional and
arithmetic expressions may appear in an UPDATE, VERIFY, or REPORT rules file.!

Command forms are presented with the relevant IML commands and rules statements through-
out the manual. See Appendix A for a summary of forms showing the location and number of
IF clauses in each IML command.

1 — See page 27 for the complete discussion of rules files. Identical conditional expressions may appear in IF, ORIF, and FOR
rules; identical arithmetic expressions may be used with replacement, TYPE, ELSE, and DO rules.

21

The following hierarchy of operations is used in evaluating a conditional expression:

1. Arithmetic operators
2. Relational operators

3. Logical operators

Arithmetic Operators

Arithmetic expressions may appear in any conditional expression. An arithmetic expression
consists of field names and/or numbers separated by arithmetic operators. The four arithmetic
operators available in IML are shown below.

Arithmetic Operator Function

+ Addition

- Subtraction or unary minus

* Multiplication

/ Division

The following rules apply to the construction and evaluation of arithmetic expressions.
When parentheses are not used, an arithmetic expression is evaluated as follows:

Hierarchy of Operations
Hierarchy Level Operation
1 Unary minus
2 Multiplication and division
3 Addition and subtraction

Parentheses may be used for readability or to override the hierarchy of evaluation stated above.
Expressions within parentheses are evaluated first; within a nest of parentheses, the evaluation
begins at the innermost set of parentheses and proceeds to the outermost set of parentheses. For
example, the expression

(A+1)/((D+1)*100)

is evaluated as follows: First, D is added to 1; then the result is multiplied by 100 to determine
the denominator; then A is added to 1 to determine the numerator; and finally, the numerator is
divided by the denominator. Without parentheses, the expression

A+1/D+1*100

is evaluated using the implied hierarchy shown above: First, 1 is divided by D; then 1 is multiplied

22

by 100; then A is added to the first expression; and finally, the last expression is added.

When the order of operations on the same hierarchal level is not completely specified, such as
addition and subtraction, the order of operations is from left to right.

Relational Operators

A relational operator specifies a comparison between the values on either side of the relational
operator. For example, the relational operator > in the conditional expression

IFA+B>C

specifies that A + B must be greater than C.

The table below presents the available relational operators for constructing IML conditional
expressions. Note that the relational operators in the second part of the table are designed
specifically for character data.

Relational Operator Meaning Example
For Numeric or Character Fields
Less then IF ONHAND<50
Greater than FOR HR.RATE>0
= Equal to IF CODE:A=1
Not equal to FOR DIV # 0
<= Less than or equal to IF DUEDATE<=720525
>= Greater than or equal to FOR RECNO:A>=100
NUMERIC Is a legal number' IF NBALANCE NUMERIC
For Character Fields Only
HAS Contains IF DESC HAS ‘1X1/4 INCH’
IN Contained in FOR ‘1X1/4 INCH’ IN DESC
STARTS WITH Begins with IF NAME STARTS WITH ‘ROC’
STARTS Begins IF ‘ROC’ STARTS NAME
ENDS WITH Ends with IF S.S.NO ENDS WITH ‘—4065’
ENDS Ends IF ‘—4065’ ENDS S.S.NO
NUMERIC Contains only digits or blanks’ FOR PARTNO NUMERIC

NOTE: Character data within an expression must be enclosed in single or double quote marks.

1 — The NUMERIC operator for a numeric field allows integer, fixed point, and floating point scientific notation. For example, 12,
—43.85, 1.7E+2, and 6.3D~2 are all legal numbers. The NUMERIC operator for a character field allows the digits O through 9
and blanks. For example, character data such as 123, 4 5,179 123, and 42 are considered numeric.

23

Logical Operators

The logical operators NOT, AND, and OR may be used to reverse or combine simple conditional
expressions. The user may precede any of the relational operators mentioned above with the
word NOT to reverse the interpretation of the relational operator. For example,

IF ONHAND NOT <50
is the reverse of:
IF ONHAND <50

Simple conditional expressions may be separated by AND or OR to construct a complex con-
ditional expression. For example:

IF ONHAND<50 AND “DISCONTINUED” NOT IN REMARKS OR ONORDER=0

The AND operator specifies that the simple expressions combined by AND must all be true for
the combined AND expression to be true, whereas the OR operator specifies that any one or all
of the expressions separated by OR must be true for the combined OR expression to be true. For
example, the conditional expression

IF QUANTITY<70 AND CODE=4
specifies two conditions which must be true, whereas
IF QUANTITY<70 OR CODE=4

specifies that at least one of the two conditions must be true.

The user may construct conditional expressions using NOT, AND, and OR as often as required.
The following hierarchy applies in evaluating conditional expressions with arithmetic, relational,
and logical operators:

All arithmetic and relational operators
NOT

AND

4. OR

WO =

Note the effect of the AND operator taking precedence over the OR operator. The conditional
expression

IF A=0 AND B=3 OR C=7

is evaluated as:

IF (A=0 AND B=3) OR (C=7)

Similarly, the expression

IF S=1 OR T>5 AND E=0 OR V=1 AND E<50
is evaluated as:

IF (S=1) OR (T>5 AND E=0) OR (V=1 AND E<50)

24

Parentheses may be used either to improve readability or to override the normal order of
evaluation stated above. For example, the user includes parentheses to specify the condition:

IF (CODE=1 OR CODE=4) AND QUANTITY<70
Without parentheses, the normal evaluation is:

IF CODE=1 OR (CODE=4 AND QUANTITY<70)

Abbreviating Conditional Expressions

When the subjects are identical in a series of relational expressions, it is permissible to omit the
subject from all but the first relational expression. For example, the IF clause

IF A=B OR A=C OR A>S OR A>T
may be shortened to:
IF A=B OR =C OR >S OR >T

When subjects and relational operators are identical in a series of relational expressions, both
the subject and the relational operator may be omitted from all but the first relational expression.
The preceding example may be shortened further to:

IF A=B OR COR >S OR T

When NOT precedes a relational operator, both are assumed if a relational operator is not
specified in subsequent expressions. For example,

IF CODE NOT=1 AND 2 AND 3
is equivalent to:
IF CODE NOT=1 AND CODE NOT=2 AND CODE NOT=3

The relational operators for character fields are paired so that the user can always state the
condition desired without repeating the subject and the relational operator. For example,

IF “T” STARTS FIRSTNAME OR LASTNAME

could not be written using STARTS WITH without repeating the subject and the operator (IF
FIRSTNAME STARTS WITH “T” OR LASTNAME STARTS WITH “T”). On the other hand,

IF NAME STARTS WITH ‘R’ OR ‘T’ OR ‘P’

could not be written using STARTS without repeating NAME and the operator for each condition.

UTILITY FIELDS

IML provides several built-in utility fields which the user may specify in IML commands and
rules files, as appropriate. The table following summarizes the available utility fields, specifying the
data stored in each field and which IML programs provide that utility field.

25

Utility Type and Available
Field Name Contains Length of Data in IML
RECNO Sequence number of record being Numeric, 5 VERIFY
processed SORT
MERGE
PURGE
REPLACE
UPDATE
SELECT
REPORT
CR Carriage Return Character, 1 VERIFY
PURGE
UPDATE
SELECT
REPORT
LF Line Feed Character, 1 Same as above
LENGTH Number of characters in record Numeric, 5 VERIFY
being processed MERGE
PURGE
REPLACE
UPDATE
SELECT
REPORT
@CALMONTH Name of current month as MMM Character, 3 Same as above
@CDATE Current date as MMM.DD,YYYY Character, 11 Same as above
@CTIME Current time as HH:MM AM or PM Character, 8 Same as above
@DATE Current date as MM/DD/YY Character, 8 Same as above
@DAY Current day as DD Numeric, 2 Same as above
@MONTH Current month as MM Numeric, 2 Same as above
@NDATE Current date as YYMMDD Numeric, 6 Same as above
@TIME Current time as HH:MM Character, 5 Same as above
@WEEKDAY Name of current day of week Character, 9 Same as above
@YEAR Current year as YYYY Numeric, 4 Same as above

27

SECTION 3
BASIC CONCEPTS OF RULES FILES

Three IML commands, VERIFY, UPDATE, and REPORT, perform their functions based on a
user-created rules file. When entering one of these commands, the user includes an AS PER
clause, which specifies the appropriate set of rules to be used in the command operation. For
example, the command

—VERIFY ORDERS:ODESC AS PER ORDRULES 5

specifies a rules file named ORDRULES to be used in the VERIFY procedure. ORDRULES con-
tains statements which determine whether a given field contains incorrect information, print
error messages at the terminal, and accept new values for incorrect field information.

Although VERIFY, UPDATE, and REPORT have different functions, the creation and execu-
tion of their rules files are identical. The basic concepts of rules files are discussed within this
section in several parts. First, rules file creation is presented, together with an explanation of the
procedures and guidelines. The next discussion presents the simple command-level instructions
for creating, listing, changing, deleting, and executing rules file statements. Next, the division of a
rules file into several sections is described. Finally, the statements which constitute a rules file
are detailed. The discussion presents instruction statements and control statements separately,
outlining the various types of statements within each group and their functions.! The method of
nesting statements is introduced at the end of the discussion of statements.

CREATING A RULES FILE

The user creates a rules file most easily by specifying the rules file name as T (for terminal) in a
VERIFY, UPDATE, or REPORT command, allowing the system to prompt for and check each
line of the rules file as it is entered. In this situation, the system requests the name of a file on
which to save the rules. For example:

—REPORT ORDERS:ODESC TO ORDREPORT AS PER T>
SAVE REPORT RULES ON: RPTORD ,

When the user finishes entering the rules, the system automatically writes the entered rules on the
specified file.
NOTE: If the user does not want to save the rules but merely wishes to use them for the

current command, be may type the word NOTHING, or any left subset of NOTHING, when the
system prompts for the name of a file on which to save the rules.

1 - The ON and PRINT statements, which apply only to a REPORT rules file, are discussed on pages 138 and 147. Additional
statements for use with command files are presented on page 172.

28

After the user enters a complete command, including the name of a file on which to save the
rules, the system prints a colon (:), prompting the user to enter his rules. For example:

—VERIFY ORDERS:ODESC AS PER T>
SAVE VERIFY RULES ON: ORDRULES 5
: VERIFY indicates its readiness to accept a line of rules.

Each line of rules must begin with an integer from 1 to 10000, followed by at least one blank.
For example:

10 TYPE “PLEASE REENTER HOURLY RATE FOR ” ,EMP.NO
20 INPUT RATE

Aside from requiring at least one blank after a line number, there are no formatting requirements
beyond the specified statement forms. The user may type one or several blanks between words,
as desired. Many examples in this manual include additional blanks to improve readability.

The system executes the rules in sequence according to the line numbers. The user need not,
however, enter the lines in sequence; the lines are ordered automatically as they are entered.
For example:

20 INPUT RATE;

10 TYPE "PLEASE REENTER HOURLY RATE FOR ",EMP.NO-
LIST,

10 TYPE "PLEASE REENTER HOURLY RATE FOR ",EMP.NO

20 INPUT RATE

It is suggested that the user assign line numbers which permit the insertion of additional lines at a
later time, for example, 10, 20, 30, and so on.

The user may create a rules file with as many as 100 lines. A line may contain one or more
statements.! A carriage return terminates a single statement on a line, whereas a semicolon (;)
terminates a statement which is followed by another statement on the same logical line. For
example,

10 IF RECNO=100
11 TYPE “AT RECORD 100”

is equivalent to:
10 IF RECNO=100; TYPE “AT RECORD 100

A logical line may contain as many as 256 characters; the user continues a logical line onto
another physical line with a line feed. For example:

: 10 IF ONHAND—-QTY:A<50; TYPE “PART ",PARTNO,2B,DESCRIP—
TION, “AT REORDER POINT” o

NOTE: A line feed does not function as a blank. The user, therefore, must include a blank
before or after a line feed when a blank is required.

All the line editing capabilities of Tymshare’s EDITOR, such as Control A, Control Q, and
Control W, are available to the user as he enters each line of rules.? For example, the line

1 — Statements are discussed on page 32. A rules line may contain as many as 256 characters.
2 — See the Tymshare EDITOR Reference Manual for an explanation of the numerous control characters and their functions.

: 10 IRFAC<AS<F RECNO=100; TIPEWS\TYPE ‘“AT RECORRACS<D 100”5

is accepted as:
10 IF RECNO=100; TYPE “AT RECORD 100

In addition, the previous line, whether correct or in error, may be used as an image for the line
being typed. Any of the EDITOR control characters, such as Control D, Control E, Control O,
and Control Z, may be typed to copy and edit characters from the previous line to the line being
typed. For example, the user enters line 10 and then enters line 15 using the image of line 10:

: 10 IF RECNO=100; TYPE “AT RECORD 100" -
: 15 ES<OROC€1>IF RECNO=2Z¢D00; TYPE “AT RECORD 2D€00”

Line 15 is accepted as:

15 ORIF RECNO=200; TYPE “AT RECORD 200”

COMMAND-LEVEL INSTRUCTIONS

When the colon prompt (:) appears, the user may add, delete, or change rules or enter a command
to edit, modify, list, write, or execute the current rules. The following table summarizes the
commands which the user may enter after the colon prompt.

Command Meaning
: LIST l 1? 2| LIST alone prints all the current rules. LIST n, where n
nz:in is a line number, prints the specified line. LIST n1:n2
or prints a range of lines beginning with n1, and ending
with n2.
: LIST 5
EDIT n I Prints the first line to be edited (n or n1), returns the
: n1:n2)< carriage, and waits for the user to reenter the line. This
process is repeated until all lines specified, n1 through
n2, are edited.
. MODIFYl n I Operates similarly to the EDIT command except that
) n1:n2|* EDIT prints the line which is to be edited, whereas the
MODIFY command does not.
or
n
* MOD n1:n2/®
: n statement(s)) Adds statement(s) as line n in the current rules.
3\ B Deletes line n from the current rules.
: QUIT Writes the current rules on the specified file and
returns control to the EXECUTIVE.
or
: g 2

(Table Continues)

Command Meaning

: RUND Writes the current rules on the specified file and executes
the IML command using the current rules.

production Compiles and saves a copy of the entire command pro-
: SAVE \::%gDUCTIONI ON file 2| cedure. This command writes a copy of the procedure
name but does not execute it; control is returned to the

EXECUTIVE where the PERFORM command is given
to initiate execution of the procedure.

When new lines are added to an existing rules file, that is, when the user specifies an actual
rules file name rather than T in the IML command, the RUN or QUIT command causes the system
to prompt for another rules file name. This allows the user to preserve his original rules file, if
desired. For example:

—VERIFY PAYROLL:DESC AS PER VRULES3 >
: 610 IF_CODE="T”; DONE -

: RUN

SAVE VERIFY RULES ON:

The user may type a different file name, preserving the original rules file; he may type the same
file name as specified at the start of the command, saving only the current rules; or he may type
the word NOTHING if he does not want to save the current rules on a file.

RULES FILE ORGANIZATION

A rules file may be separated into several sections of rules, providing the user with an efficient
organization in which to detail his particular tasks. Although some rules sections are different in
VERIFY, UPDATE, or REPORT rules file, the concept and procedure are the same.

Each section of rules has a special function and is executed when appropriate. For example,
the HEADINGS section of a REPORT rules file specifies page headings and is executed every
time the report skips to a new page. The FINAL section of all rules files, on the other hand,
specifies final calculations and comments, and is executed only once after all records in the data
file are processed.

The subsections which follow introduce the VERIFY, UPDATE, and REPORT rules files, pre-
senting their general purpose and outlining their rules sections and corresponding functions. A
rules file may contain all or some of the sections; however, they must appear in the order shown.
When the user wants to create a particular rules file, he should refer to the appropriate IML
command discussion of rules files where all sections are detailed.

NOTE: When no section name appears at the start of a rules file, IML assumes DETAILS or
MATCHED, as appropriate.

31

The VERIFY Rules File

The VERIFY rules file directs the verification process. It specifies conditions to check in the
records of the data file and allows the user to print error messages, correct field information
directly, perform calculations, and accumulate counts. The table below presents the sections of a
VERIFY rules file and summarizes their functions.

Section Function

DECLARE Creates working storage. Specifies new fields to save data or calculations during the
verification.

INITIAL Assigns or accepts starting values for declared fields and prints comments before any
records are verified.

DETAILS Processes each record, checking field information according to user-specified conditions.
Prints or corrects errors as directed.

FINAL Prints data or calculations from declared fields and comments after all records are
processed.

The UPDATE Rules File

The UPDATE rules file specifies the calculations and replacements to be performed on the
records in a data file, controls when an operation is to be executed, accepts data from the terminal,
prints comments, and performs intermediate calculations.

The table below outlines the sections of an UPDATE rules file. The first part of the table applies
when an optional activity file is not used. The second part pertains to updating procedures which
use both a data and activity file.

Section Function
Rules Sections Without an Activity File

DECLARE Creates working storage. Specifies new fields to save data or calculations during the
updating.

INITIAL Assigns or accepts starting values for declared fields, and prints comments before any
records are updated.

DETAILS Processes each record, updating fields according to user-specified conditions and
calculations.

FINAL Prints data or calculations from declared fields and comments after all records are
processed.

Rules Sections With an Activity File
DECLARE Same as DECLARE above.
INITIAL Same as INITIAL above.

(Table Continues)

Section Function
BEFORE Performs specified operations on a data record before seeking a matching activity record.
MATCHED Performs specified operations if a matching activity record is found, using information
or from the activity and data records.
DETAILS
AFTER Performs specified operations on a data record after the activity file procedure, whether or

not a matching activity record was found.

UNAPPLIED Provides access to unmatched activity records found during the UPDATE procedure.

FINAL Same as FINAL above.

The REPORT Rules File

The REPORT rules file contains the user’s report specifications, which define the layout, such
as title, page headings, and margin; specify optional picture formats for printing individual fields;
and request calculations, subtotals, and final totals. The table below outlines the sections of a
REPORT rules file and summarizes their functions.

Section Function

DECLARE Creates working storage. Specifies new fields to save data or calculations during the
report procedure, and may specify general picture formats.

INITIAL Assigns or accepts starting values for declared fields, sets the margin and the number of
lines per page, and specifies the title for the entire report.

HEADINGS Specifies information to be printed at the top of each report page.

DETAILS Processes each record; calculates and/or prints the desired field information according
to user-specified conditions and instructions.

OTHERS The OTHERS section processes each record that is excluded by conditional
expressions in the REPORT command.
TOTALS TOTALS specifies operations to be performed, such as subtotals or a new page, based on
a change in the value of one or more fields.!
FINAL FINAL specifies final calculations and comments to be printed after all records are
processed.
STATEMENTS

The basic unit of a rules file is a statement. Each section of a rules file contains one or more
statements. The user may write statements to change field information, print comments or data,
accept data for a field from the terminal, and control the execution of one or more statements
in the rules file.

1 — The TOTALS section is accessed for each record, but is executed only when a specified field(s) of the current record has a
value different from that of the previous record. For example, if a field, DEPT, is specified in the TOTALS section, the
TOTALS section is executed when DEPT changes from 1 to 2, 2 to 3, and so on.

33

The discussion of statements is organized in several parts. The first discussion presents all the
instruction statements which may be used in VERIFY, UPDATE, and REPORT rules files:
INPUT, TYPE, DONE, and replacement statements.! Next, the available control statements—IF,
ORIF, ELSE, and DO statements—are outlined. The last discussion details the method of
nesting statements in a rules file.

Instruction Statements

The instruction statements direct IML to perform calculations, replace field information, print
comments or data at the terminal, accept data directly from the terminal, and terminate the
execution of a rules section. The following are legal instruction statements illustrating the various
capabilities mentioned above:

PRICE*QUANTITY TO AMT

TYPE “RECORD”, RECNO, “CONTAINS PRICE AS ”, PRICE
INPUT CODE

DONE

In addition, comments may be included in a rules file by preceding the comment with an
exclamation point (!). Comments may appear alone on a line or may follow one or more state-
ments on a line. For example, the following statements show valid comments:

10 ! NOW THE DATA FIELDS ARE UPDATED

10 DECLARE ! THESE FIELDS ARE COUNTERS

10 IF CODE=0; 0 TO HR.RATE ! FOR TERMINATED EMPLOYEES

Comments may not appear between statements on a line, nor may comments be followed by
statements on the same line.

The user may write any instruction statement with a built-in limitation, using an IF or FOR
modifier at the end of the statement. NOTE: The words IF and FOR may be used interchangeably.
Throughout this manual, the pbrase FOR modifier means a FOR modifier or an IF modifier. For
example, the instruction

TYPE PARTNO,3B, “ONHAND LOW” FOR:ONHAND<50

is executed only when the current value of ONHAND is less than 50. The user may type a FOR
modifier to specify any relational expression.? For example,

0 TO HR.RATE FOR CODE=0 OR 99

PRINT “120 DAYS OVERDUE”,3B,BALANCE IF LASTPAYT=0
DONE FOR HR.RATE=0 OR CODE #1 AND 2 AND 3 AND 4

are legal instruction statements with FOR modifiers.

The four basic instruction statements—replacement, INPUT, TYPE, and DONE statements—
are detailed below. These statements may be used in all sections of any rules file except the
DECLARE section.3

1 — The ON and PRINT statements for use in a REPORT rules file only are discussed on pages 138 and 147, respectively. Two
additional statements for command file control are presented on page 172.

2 — The construction of relational expressions is detailed on page 22.

3 — The DECLARE rules section may contain only field definitions and general picture formats; it does not contain instruction or
control statements.

34

Changing Field Information

The user enters a replacement statement to change the data in one or more fields. The form
used is:

expression TO field list
The expression may be simply a number, or text in single or double quote marks, such as

35 TO LINES
“JONES” TO NAME

or the expression may be one or more field names in an arithmetic expression.! For example,
GROSS*.052 TO FICA
B*C+(D—E)/10.5 TO A,GH

are legal replacement statements. The field list following the word TO specifies the field(s) to
contain the expression value.

NOTE: When using an activity file, the user includes activity fields followed by :A in the
replacement expression. The field list may not specify activity fields. For example,
ONHAND + SHPMT:A TO ONHAND

specifies an activity field named SHPMT in the replacement expression. Data fields may be
followed by :D; it is not required, however, since fields are assumed to be data fields unless
followed by :A.

Entering Data for a Field from the Terminal

The INPUT statement allows the user to enter data for a single field directly at the terminal.
The form of the statement is

INPUT field name

where the named field may be a field in the data records or a declared field; it may not be an
activity field. For example, the INITIAL section of a REPORT rules file might contain:

20 INITIAL
30 TYPE “HOW MANY LINES FOR BOTTOM MARGIN?”,NCR

40 INPUT MARGIN

Line 30 prints the text in quote marks at the terminal, and line 40 accepts the value entered from
the terminal for MARGIN.?

When IML reads an INPUT statement, the system pauses until a value is entered from the
terminal. The user may, however, type only a carriage return to retain the current value of the field.

Printing Data and Comments at the Terminal

A TYPE statement directs IML to print information at the terminal. After a TYPE statement is
executed, IML automatically returns the carriage. The form of the TYPE statement is

1 — The construction and evaluation of arithmetic expressions are discussed on page 21.
2 — MARGIN, an IML-declared field for REPORT, is presented on page 132.

TYPE item list

where a comma (,) is used between items.

35

The table below presents the items which may appear in a TYPE statement.

TYPE statement.

Item Prints Example

“any comments” Text enclosed in single or double TYPE “ERROR LOCATED”
quote marks. As many as 80
characters may appear within
quote marks.

field name Value of specified field. TYPE NAME

field name: A Value of specified field in activity TYPE SHPMT:A
record.

utility field name’ Value of specified utility field. TYPE @DATE,RECNO

nB n blanks on line. The maximum TYPE ACCOUNT,2B,BALANCE
is 80B.

n‘text’ Text enclosed in single or double TYPE 65‘—’
quote marks n times. n times
the number of characters in quote
marks must be 80 or less.

CR New line at this point, terminating TYPE PARTNO,CR,DESC
logical line.

LF New line at this point, continuing TYPE GROWTH,LF,SALES,UNITS
logical line onto next physical line.

nothing Blank line. TYPE

NCR as last item Suppresses carriage return at end of TYPE NAME,5B,NCR

Terminating a Rules Section

For some conditions, the user may want to ignore the remaining statements in a given rules
section. The DONE statement provides a method for terminating a section of rules without
executing any subsequent statements in that section.

The form of the DONE statement is simply:

DONE

Usually, the word DONE is followed b
suppose the user does not want to

y 2 FOR modifier, but it is not required. For example,
print page headings on the first page of his report; he might

specify a DONE statement at the beginning of the HEADINGS section, such as:

DONE FOR PAGE=1

1 - Utility fields are presented on page 24.

36

When PAGE equals 1, the remaining statements in the HEADINGS section are ignored; on the
other hand, after the first page of the report, the DONE statement is ignored and the HEADINGS
statements are executed.

Control Statements

The user may control the execution of one or several instruction statements by preceding them
with a control statement. IF, ORIF, ELSE, and DO are the control statements of the rules
language. The overview which follows presents the function of each type of control statement and
their interrelationship. The acceptable forms of each control statement are shown after the
overview.

Overview

An IF statement is the first control statement used; for example,
10 IF MONTH=1 OR 2 OR 3
begins a set of conditional instructions.! The next statement might be an instruction such as
20 QTR1 + 1 TO QTR1

which is a replacement statement the user wants to execute only when the condition in the
preceding control statement (that the current value of MONTH equals 1 or 2 or 3) is true.

ORIF statements are never required, but may follow to continue conditional instructions in an
efficient manner. For example,

30 ORIF MONTH=4 OR 5 OR 6

continues the procedure when the preceding control statement specifies a false condition. The
user may continue with as many ORIF statements and corresponding instructions as required; for
example, the complete set of control statements and instructions to create counts for each
quarter, based on the value of MONTH in each record, might be:

10 IF MONTH=1 OR 2 OR 3

20 QTR1 +1 TO QTRI1

30 ORIF MONTH=4 OR 5 OR 6

40 QTR2 +1 TO QTR2

50 ORIF MONTH=7 OR 8 OR 9

60 QTR3 +1 TO QTR3

70 ORIF MONTH=10 OR 11 OR 12
80 QTR4 +1 TO QTRU

Note that an ORIF statement is evaluated only when the preceding IF or ORIF statement is false.
Hence, for this task, the set of rules above is more efficient than a series of four independent IF
statements, since IF statements are always evaluated.

1 — The statement is an abbreviation for IF MONTH=1 OR MONTH=2 OR MONTH=3. See page 24 for an explanation of
abbreviating conditional expressions.

37

An ELSE statement is not required, but may follow an IF or ORIF statement and instructions
to ensure that an instruction(s) is executed when all previous conditions (through the preceding
IF statement) are false. For example, the user might include an ELSE statement, such as

90 ELSE TYPE “ERROR IN MONTH FIELD OF RECORD”,RECNO

to print a message at the terminal when all conditions are false, locating an error in the data in
this case.

A DO statement is needed when the user wants to terminate the effect of control statements
and execute one or more instruction statements for all records being processed. Without a DO
statement, an instruction statement is controlled by the preceding IF, ORIF, or ELSE statement.
For example:

10 IF MONTH=1 OR 2 OR 3

20 QTR1 +1 TO QTR1

30 ORIF MONTH=4 OR 5 OR 6

40 QTR2 +1 TO QTR2

50 ORIF MONTH=7 OR 8 OR 9

60 QTR3 +1 TO QTR3

70 ORIF MONTH=10 OR 11 OR 12
80 QTR4 +1 TO QTRHY

85 ELSE TYPE "ERROR IN MONTH FIELD OF RECORD" , RECNO
90 DO

100 SALES + INVAMT:A TO SALES
110 UNITS + UNITS:A TO UNITS
120 COMM + INVAMT:A/6 TO COMM

L]
°

L]

The instructions on lines 100 through 120 are executed for each record processed. If the DO
statement on line 90 were omitted, lines 100 through 120 would be associated with the ELSE
statement on line 85.

The diagram on page 39 illustrates the conditions required to execute a set of instructions cor-
responding to an IF, ORIF, or ELSE statement, and the flow of control among IF, ORIF, ELSE,
and DO statements. Note that a true condition causes the execution of all instructions which
immediately follow; then IML proceeds to the next IF or DO statement, bypassing any intervening
ORIF or ELSE statements. On the other hand, when a condition is false, IML ignores the
immediately following instructions and proceeds to the next control statement: IF, ORIF, ELSE,
or DO.

Forms

All control statements must appear at the beginning of a line; that is, a control statement may
not follow a semicolon (;).

An IF or ORIF statement is specified in the form

IF

ORIF condition

38

where the condition is stated as a relational expression which may include field names and
arithmetic and logical operators, if desired.! For example, the following are legal IF and ORIF
statements:

IF “CHEM” IN AREA OR AREA2

IF ONHAND—QTY:A<50

ORIF SALARY>300 AND <500

ORIF YTD.FICA>468.00

Note that an IF or ORIF statement is a complete statement. The instruction statements to be

executed when the condition is true may appear in statements on the same line, separated by
semicolons, or may appear on subsequent lines, or both. For example:

10 IF TCODE:A=1; ONHAND + QTY:A TO ONHAND

20 ORIF TCODE:A=2

30 ONHAND - QTY:A TO ONHAND

40 ORIF TCODE:A=3; 0 TO ONHAND

50 "DISCONTINUED" TO REMARKS; 0 TO STDORDER

60 TYPE "ITEM NUMBER", ITEMNO, " IS DISCONTINUED"

1 — Relational expressions are detailed on page 20.

Only Instructions
Following IF
Performed

Statement
Evaluated

NOTE:

IF

ORIF
Statement
Evaluated

ORIF
Statement

Only Instructions
Following ORIF
Performed

Evaluated

Only Instructions
Following ORIF
Performed

No Instructions Performed

No Instructions Performed

39

The first ORIF illustrates the general case;
the second ORIF shows the procedure
when no ORIF or ELSE statements
follow.

Only ELSE
Instructions
Performed

No Instructions Performed

Next IF or DO Statement in Sequence

40

An ELSE statement consists of the word ELSE. For example:
70 ELSE
The word ELSE may be followed by an instruction statement. For example,
70 ELSE TYPE “BAD TCODE IN ACTIVITY RECORD”,RECNO:A
is equivalent to:

70 ELSE
80 TYPE “BAD TCODE IN ACTIVITY RECORD”,RECNO:A

Additional instruction statements may appear on the same line, separated by semicolons, or may
appear on subsequent lines, or both. For example:

100 ELSE TYPE “CODE ERROR”; ERRORCOUNT +1 TO ERRORCOUNT
110 TYPE “REENTER RATE CODE FOR”, EMP.NO
120 INPUT RATE; TYPE “THANK YOU” FOR RATE=‘H’ OR ‘A’

The DO statement consists of the word DO. For example:
90 DO

Like the form of the ELSE statement, the word DO may be followed by one or more instruction
statements, using semicolons between instruction statements on the same line. For example, the
statements

90 DO

100 SALES + INVAMT:A TO SALES
110 UNITS + UNITS:A TO UNITS
120 COMM + INVAMT:A/6 TO COMM

are equivalent to:

90 DO SALES + INVAMT:A TO SALES; UNITS + UNITS:A TO UNITS
100 COMM + INVAMT:A/6 TO COMM

Nesting Statements

To test further conditions, when an IF, ORIF, or ELSE statement is true, the user may intro-
duce lower level conditions. IML executes a lower level statement only if the preceding higher
level IF statements specify a true condition for the current data. IF.1 is a first-level IF statement,
as are ORIF.1, ELSE.1, and DO.1; IF.2 is a second-level IF statement; and so forth. For IML to
execute a second-level statement, for example, a preceding first- and zero-level control statement
must have true conditions. IML continues to execute successively lower levels of instructions
until it encounters a condition that is false for the current data.

For example, assume M contains the month number, D contains the day number, and YR con-
tains the last two digits of the year in the records being processed. The following statements, which
check the accuracy of the D and YR fields when the month is February, illustrate the use of
nested statements.

260
270
280

285
286
290
300
310

315
316

11

IF M=2
IF.1 D>29
TYPE "PLEASE REENTER DATE OF LAST REVIEW FOR " ,NAME," EMP#",
EMP.NO,CR,"DATE OF **" ,LAST.REV, " IS NOT POSSIBLE"

INPUT LAST.REV
TYPE
ORIF.1 D=29

IF.2 YR NOT = 72 AND 76
TYPE "PLEASE REENTER DATE OF LAST REVIEW FOR ",NAME,
" EMP#",EMP.NO,CR,"FEBRUARY HAS ONLY 28 DAYS IN 19",
YR,CR,"DATE OF **",LAST.REV," IS NOT POSSIBLE"
INPUT LAST.REV
TYPE

IML executes the first-level IF statement on line 270 only when the higher level IF statement
condition on line 260 is true. When the level zero IF condition is false, IML skips lines 270
through 316, and so on until the next level zero IF, ORIF, ELSE, DO, or new section is
encountered.! When the IF.1 statement on line 270 is true, lines 280 through 286 are executed,
and the remaining statements associated with the ORIF.1 are ignored. When the IF.1 statement
is false, IML proceeds to the ORIF.1 on line 290. When that is true, IML continues to the IF.2;
otherwise, the remaining statements are ignored. When the IF.2 is true, the remaining statements
are executed. Note that when the IF.2 statement is true, the ORIF.1 on line 290 and the IF on
line 260 must also be true.

The first lower level instruction is an IF followed by a period (.) and an integer indicating the
level. ORIF and ELSE statements followed by the same level number may be used to expand
a lower level IF statement. The user may also include a DO statement with the lower level instruc-
tions in the same manner.

NOTE: When an IF statement is true, the next lower level DO statements are always executed.

The user must remember the way a set of IF statements is handled and apply this pattern in
each level of instructions.? For example, when a third-level ORIF statement is false, IML skips the
intervening statements and proceeds to the next ORIF.3, ELSE.3, or DO.3 statement. Any
nesting in the preceding IF.3 and ORIF.3 statements is bypassed. Similarly, when a level zero IF
statement is false, all following lower level instructions are ignored.

1 - Rules file sections are discussed on page 30.
2 — The diagram on page 39 applies within each level of control statements.

SECTION 4
FILE CREATION

The Information Management Library makes the initial data entry procedure simple, yet
allows the user to describe the most economical way to store and access large quantities of infor-
mation on the TYMCOM-IX system. First, the user specifies his format requirements; then he
enters the data in free format with all editing and prompting facilities. Finally, the user may
employ IML’s verification capability to check the accuracy of the entered data.

This section presents IML’s DEFINE, CREATE, and VERIFY programs, which handle file
description, creation, and verification.

DEFINE

DEFINE allows the user to describe an efficient set of formatting specifications for informa-
tion storage and retrieval. The user need not enter the data in fixed format; in writing the data
file, CREATE, another IML program, obeys the description file created by DEFINE.

The discussion of DEFINE treats separately symbolic data files and binary data files, then
describes editing a description file.

A symbolic file stores all information in the actual character representation. This allows the
user to print the file directly with the EXECUTIVE TYPE command or read the file into
EDITOR. Binary files store the information in a compact internal format, adding greater economy
to file storage; however, a binary file cannot be printed directly. In IML operations, both sym-
bolic and binary files offer the same convenient, direct accessibility.

All data files consist of records. A record contains one or more related pieces of information
forming a unit. Each piece of information in a record is called a field. The user names each field
and specifies its location within the record, its length, and the type of data it contains: numeric
or character.

When all records in a file contain the same number of characters and have a constant length for
the life of the file, they are called fixed length records. When the length of all records changes
during the life of the file or the records in the file are of different length, they are called variable
length records.

Fixed length records offer the most straightforward description and economy; every field is in
a fixed location with no unnecessary storage between fields. Variable length records offer extra
economy when the last fields are to be blank for part of the file’s life, but require more detail in
structuring.

44

The term data file refers to the information file containing the records; it may be a master
data file, an activity data file, or a data file maintained alone. A description file contains no data,
but specifies the parameters of a data file, providing the following information:

Type of file — BINARY or SYMBOLIC
Type of records — FIXED or VARIABLE
Record definition

S W N =

Field descriptions
a. Name
b. Data type — CHARACTER, NUMERIC, and binary INTEGER, REAL, or DOUBLE
c. Location
d. Length
e. Decimal places in numeric field

The DEFINE program incorporates an additional capability, allowing the user to store more
than one data file description and set of rules on a single file.! Multiple description files signifi-

cantly reduce the storage required for description files and rules files. After mastering this section
see page 161 for documentation of multiple description files.

)

Sample Problem

The example below is an introduction to the use of the DEFINE program. A user writes a
description specifying a symbolic file containing fixed length records.

-DEFINE INVDES>

INVDES.. NEW FILE

SHORT PROMPTS? (Y OR N): N, Other examples in this section show the short prompts.
FILE TYPE? (BINARY OR SYMBOLIC) : SYMBOLIC 5

FIXED OR VARIABLE LENGTH RECORDS: F IXED,

LENGTH OF RECORD IN CHARACTERS IS: 40,

FIELD INFORMATION REQUIRED IS:
(1) FIELD NAME.
(2) TYPE OF DATA IN THE FIELD
TYPES ARE:
C=CHARACTER (ALPHA OR ALPHANUMERIC)
N=NUMERIC
(3) STARTING CHARACTER POSITION OF THE FIELD.
(4) LENGTH OF FIELD IN NUMBER OF CHARACTERS.
(5) DECIMAL PLACES IN NUMERIC FIELD.

1 — The complete discussion of rules files begins on page 27.

NAME, TYPE, START, LENGTH, DECIMAL PLACES

¢ PARTNO,N,1,7 2 The first field, PARTNO, contains numeric information. The field
¢ DESCRIPTION,C,.,15 > starts in position 1 and contains a maximum of seven characters.

H COST'N,.'G'ZD

¢ INVOICENO,N,., 63 The period indicates that the field begins in the next position after
¢ QUANTITY,N,.,6 > the previous field.

L)

DESCRIPTION FILE WRITTEN.

The description file, INVDES, specifies a file which contains data stored in this way:

o
A\ N
0 NS Fes e
AN ot § ova® (e
2P Nt (O™ e ol
1 \ 6 b
| | | | I
| 11 R B A 1
l1120580VERNIER 1.67399975 81112 1203INSULATOR.. 'I
[[
Record 1 Record 2. ..
40 characters

Calling DEFINE

The user calls the DEFINE program by typing

description
—DEFINE file 2
name

in the EXECUTIVE. The user may also type
—DEFINE >

and the system prompts for the name of a file on which to store the description.

After the user specifies the description file name, the system prints the file name plus the
appropriate NEW FILE or OLD FILE message, which the user confirms by typing a carriage return
or aborts by typing an alt mode/escape.

Next, the system prints
SHORT PROMPTS?

which the user answers with YES or NO, followed by a carriage return. If the response is YES,
DEFINE uses an abbreviated form to request the description;! if the response is NO, the prompts
appear as shown in the first example.

The system prints

FILE TYPE: BINARY OR SYMBOLIC:

1 — The YES response to SHORT PROMPTS is illustrated in subsequent examples.

46

to determine the type of data file. The user answers with BINARY or SYMBOLIC; these
responses may be abbreviated to one or more letters, followed by a carriage return.

Describing a Symbolic File

A symbolic file consists of fixed length records or variable length records. Either type of record
may contain as many as 1024 characters. To determine the type of records in the file, the system
prints:

FIXED OR VARIABLE LENGTH RECORDS:

The user responds with FIXED or VARIABLE, abbreviated if desired, followed by a carriage
return.

Describing Fixed Length Records

For fixed length records, the user must first specify the length of each record. The system
prompts:

LENGTH OF RECORDS IN CHARACTERS IS:

The user enters a number to specify the record length. If the last character in the record is a
carriage return, the carriage return must be included in the character count.!

Next, the user must define the fields within a record by entering the name of the field, the data
type (C or N), its starting position in the record, and the length of the field in characters. The
user must also enter a number of decimal places if he wants to reserve space for digits to the right
of the decimal point. The system prompts for the field descriptions as follows:

FIELD INFORMATION REQUIRED IS:
(1) FIELD NAME.
(2) TYPE OF DATA IN THE FIELD
TYPES ARE:
C=CHARACTER (ALPHA OR ALPHANUMERIC)
N=NUMERIC
(3) STARTING CHARACTER POSITION OF THE FIELD.
(4) LENGTH OF FIELD IN NUMBER OF CHARACTERS.
(5) DECIMAL PLACES IN NUMERIC FIELD.

NAME, TYPE, START, LENGTH, DECIMAL PLACES

NOTE: The user need not describe all fields in the records. He must, however, describe each
field be wants to use in subsequent IML procedures.

The field name may contain as many as 31 characters, must begin with a letter, and must not
contain spaces. The field name may be any combination of letters, the digits O through 9, the
period (.), and the character @, except the following words which are reserved for the IML
vocabulary:

1 — To enter the carriage return character as data, the user must precede the carriage return with a Control V when entering the
data at the terminal or on a file. The Control V does not, however, belong in the character count. This procedure is explained
with the discussion of CREATE, page 61.

47

ABORT DOES HEADINGS MIN SKIP
ABORTING DONE HPOS NCR SPACE
AFTER END IF NOT START
AND ENDING IN NUMERIC STARTING
AS ENDS INITIAL OFFHEADINGS STARTS
AVG ELSE INPUT ON SUM
BASED FINAL IS ONHEADINGS TAB
BEFORE FINISH LENGTH OR TO

BY FINISHING LF ORIF TOF

CR FOR LINE OTHERS TOP
DECLARE FROM LINES PAGE TYPE
DELETE HAS MARGIN PER USING
DETAILS HAVE MATCHED PRINT VERIFY
DO HAVING MAX RECNO WITH

The data type may be either C (character field) or N (numeric field). A numeric field must
contain a legal number. Legal numbers are expressed as integers, such as 268; fixed point, such as
2. or —268.173; or in real or double precision scientific notation, such as 5.7E+03,1.5D-12.! If
a field contains any character other than those allowed in a legal number, it is a character field.
For example, the DESCRIPTION field specified in the INVDES description file has C type data
because it contains nonnumeric information. The user specifies the PARTNO field as N type
data because it contains only numeric information.

NOTE: The user may specify any field as C type data; bowever, aritbmetic operations are

permitted only on numeric fields.
The starting position of the field is 1 plus the number of characters, including spaces, from the
beginning of the record. For example:

: PARTNO,N,1,7
: DESCRIPTION,C,8,15 o

The DESCRIPTION field begins in position 8 because seven characters precede it.

A period (.) may be used as a starting position to indicate that a field immediately follows the
last field described. For example,

: INVOICENON,.,6

specifies that the INVOICENO field begins in the next position after the previous field.

NOTE: The user need not describe the fields in the order they appear in the records, provided
that be specifies the starting position of each field with a number. When using a period for
starting position, bowever, the user must describe the fields in record order.

The length of the field is the maximum number of characters allowed in the field. The field
length must include space for minus signs, decimal points, and E or D scientific notation. In the
example above, the user specifies the length of INVOICE as 6.

The specified number of decimal places indicates the number of digits allowed to the right of
the decimal point. This number must be specified when the user wishes to enter data with
decimal points in the field; otherwise, IML assumes that the number of decimal places is zero.
For example,

: COST\N,.,6,2 o

1 — A quantity is written in scientific notation as a number times a power of 10. For example, 5004=.5004X10% may be expressed
as .5004E+04 or 5.004E+03 in E notation. D used instead of E indicates a double precision number in scientific notation.

48

specifies COST as a numeric field with a maximum length of 6, including a decimal point and
two digits to the right of the decimal point. Therefore, the largest number allowed in the COST
field is 999.99.

After the user enters the field descriptions, he types a carriage return in response to the colon
prompt. The system responds

DESCRIPTION FILE WRITTEN.

and returns control to the EXECUTIVE. The user may wish to refer to page 44 for an example of
this procedure.

Describing Variable Length Records

When the user specifies variable length records, the system prompts for the type of variable
length record with the message:

LENGTH OF RECORD IS DETERMINED BY:
C=COUNT OF CHARACTERS AS FIRST FIELD.
L=NUMBER OF LINES PER RECORD.
S=SPECIAL TERMINATOR CHARACTER.,

WHICH TYPE:

The user enters C, L, or S, as appropriate, followed by a carriage return.

If the user enters C, each record contains a field at the beginning of the record, which contains
the count of the characters in the record. For example:

Record 1 Record 2 Record 3

|] |
I I I I
032THIS RECORD HAS 32 CHARACTERS007ABCDO15XXXYYYZZZZZZ ...

NOTE: The characters in the count field are part of the record and are included in the count.
The system prompts:

NUMBER OF DIGITS IN THE COUNT IS:

The user enters an integer, specifying the length of the count field. The count field length must
accommodate the character count for the longest record in the file. For example, if the longest
record contains 620 characters, the user should enter 3 as the number of digits in the count. In
this case, if the count of another record is 49, it is written as 049. The count includes any carriage
returns in the record, as well as the count characters.}

If the user types L, each record consists of a fixed number of lines. A line is defined as a series
of characters terminated by a carriage return. For example, a file containing records as follows
may be defined as a variable length record file with records consisting of three lines.

1 — The user who intends to use CREATE to write the data file need only be concerned with an estimated length of the longest
record so he can determine the maximum number of digits for the count field. CREATE writes the actual character count for
each record when the data is entered. .

117644 705.95,
JAN 95.00,, — Record 1
EGYPT PUBLISHING, |
115673 159.73,
JAN 65.00, — Record 2
KAY LITHOGRAPHERS, —
115091 254.95,

JAN 21.00, — Record 3
NORTHERN PULP-, _

The system prompts:
NUMBER OF LINES PER RECORD IS:

The user enters an integer specifying the number of lines in each record. Each record must con-
tain the same number of lines.

NOTE: The L option with the number of lines greater than 1 should be avoided if the user
wants to use the description file in a CREATE command. The L option is suggested only for
describing an existing data file. :

If the user types S, each record is terminated by a special character or the first carriage return
after a special character. For example, a file containing records

Record 1 Record 2 Record 3
1

1 I
[1T L 1

95014CUPERTINO,CA/10021NEW YORK,NY/55414 MINNEAPOLIS,MN/...

may be described as a variable length record file with records terminated by a slash (/).

The system prompts:
TERMINATOR CHARACTER IS:

The user enters the record terminator character. The system reads all characters up to and
including the terminator character as the current record; the next record begins with the character
immediately following the terminator character. If the user wishes to include all characters

after the terminator character up to and including the next carriage return as part of the current
record, he responds to the DEFINE request for the terminator character with the terminator
character followed by a dollar sign ($). For example:

50

Sample Records in a File Terminator Character
Record 1 Record 2
| |
T 1T 1
95014CUPERTINO,CA/10021INEW YORK,NY/... /
JANE DRUSS T $

3614 14 AVE SE, L Record 1

MINNEAPOLIS, MN 5 54143 J The system reads past the comma
FRANK RICHARDS 7 to the next carriage return.

555 MADISON AVE, — Record 2

NEW YORK, NY 10017,

Note that a carriage return should not be entered as the terminator character, since this would
indicate that each record contains only one line. In that case, the user should describe the records
with the L option and specify the number of lines as 1.

Next, the user defines the fields within a record, as described on page 46. The discussion which
follows includes additional instructions for describing fields in variable length records.

The starting position specification for a field on the second or subsequent line in a record
includes preceding carriage returns and blanks. For example, if a file contains records of three
lines, a field position on the third line includes the two preceding carriage returns. To describe
records such as

JONES ALEXA e The first line contains the name and three trailing blanks to fill the field.
175 CRESCENT DR
FOREST HILLS, NY 11375

The address is on the second and third lines

the user may specify two fields as follows:

: CLIENT,C,1,14 The CLIENT field contains 14 characters.

: ADDRESS,C,16,40 The ADDRESS field begins in position 16 because the carriage return following the
CLIENT field appears in position 15.

Note that the ADDRESS field length of 40 includes space for two carriage returns as well as the
characters in the address.

If the user describes variable length records in terms of a character count at the beginning of
the record, he must remember the count field when determining the starting position of all other
fields. For example, if the number of digits in the count is 3, the starting position of the first
data field would be 4.

The following example illustrates the use of DEFINE to describe a symbolic file containing
variable length records with a character count field at the beginning of each record.

-DEFINE DESC

DESC.. NEW FILEo

SHORT PROMPTS? (Y OR N): Y>

BIN OR SYM: SYM,

FIX OR VAR: VAR S

VAR TYPE(C,L,S) : WHICH TYPE: C ,

51

NUMBER OF DIGITS IN THE COUNT IS:2 b The maximum record length
NAME, TYPE, START, LENGTH, DECIMAL PLACES is 99 characters including the

: ITEM.NO,N,3,4, The first data field begins in count field.

¢ DESCRIPTION,C,.,20 > position 3, since the charactgr

: IN.STOCK,N,.,5 > count field requires two digits.

H YTD.SOLD'NIQ'SD
H JAN,N,.,“D

: FEB,N,.,ED

H MAR,N,.,ED

: APR,N,.,“D

H MAY,N,.,ED

H JUN,N'Q,ED

¢ JUL,N,.,U4 >

¢ AUG,N,.,U4,
D

SEP,N,.,b o

OCT,N,.,8 5
NOV,N,.,4 5

DEC,N,.,4 5
po)
ESCRIPTION FILE WRITTEN.

Describing a Binary File
A binary file may consist of fixed length records or variable length records. When the system
prompts
FIXED OR VARIABLE LENGTH RECORDS:

the user responds appropriately with FIXED or VARIABLE, abbreviated if desired, followed by
a carriage return.

Record Length
The record length depends on the types of data stored in the fields of the record. A binary

record may contain as many as 1023 characters. Binary records consist of the data types in the
table below; the required storage for each type is specified in number of characters.

Type of Data in Field Number of Characters in Storage
I — Binary integer 3
R — Binary real 6
D — Binary double precision 9
C — Character Equal to character count for symbolic
representation of data, rounded up to
a multiple of 3.!

1 — When a record contains several contiguous character fields, the individual field lengths need not be a multiple of 3; that
character portion of the record, however, must be a multiple of 3.

52

If a user specifies fixed length records, he must specify the length of the records. The system
prints:

LENGTH OF RECORDS IN CHARACTERS IS:

The user enters a number to specify the length of records. The record length must be a multiple
of 3. The user computes the record length in accordance with the storage required for the various
types of binary data. Note that the number of storage characters required for numeric data does
not correspond to the number of symbolic characters.

~ For example, if records contain four contiguous fields—two integer (I) fields, one real (R)
field, and one character (C) field which is 24 characters long—the user specifies the record length
as 36. This is computed as follows:

Field Type of Data Storage Required Example of Field Contents
1 I 3 14560
2 I 3 1000
3 R 6 1907.45
4 C 24 HORIZON DEVELOPERS INC.
3

6
\Actual length of record written in binary form

If the user specifies variable length records, he does not specify a record length in the descrip-
tion file. Instead, the system reserves the first three characters of each record for a binary integer
which is a count of the number of characters in the record. When CREATE writes variable length
records for a binary file, it automatically places the actual character count at the beginning of
the record.! The record length includes the three characters needed for the character count.

Field Information

After the user specifies the type of record, fixed or variable length, he must define the fields
within a record. He specifies the field information for binary files of fixed or variable length
records as follows. The system prompts:

FIELD INFORMATION REQUIRED IS:

(1) FIELD NAME.
(2) TYPE OF DATA IN THE FIELD

1 — The use of CREATE is detailed on page 58.

53

TYPES ARE:

C=CHARACTER (ALPHA OR ALPHANUMERIC)
I=BINARY INTEGER

R=BINARY REAL

D=BINARY DOUBLE

(3) STARTING CHARACTER POSITION OF THE FIELD.
(4) LENGTH OF FIELD IN NUMBER OF CHARACTERS.
(5) DECIMAL PLACES IN NUMERIC FIELD.

NAME, TYPE, START, LENGTH, DECIMAL PLACES

The rules for naming fields are detailed on page 46. The legal data types for binary fields are
G, L, R, and D. The user specifies the starting position of a field in accordance with the type
of data and the storage required, as detailed on page 52. Thus, if an integer (I) field begins in
position 4, the next field starts in position 7. If a real (R) field begins in position 4, however, the
next field starts in position 10.

The starting position of each field must be position 1 or must be one greater than a multiple of
3; for example, 4, 7, 10, 13, and 16 are valid starting positions.! The user may indicate easily
the starting position of a contiguous field using the period (.). Typically, the user specifies all but
the first starting position using the period. If, however, the user does not want the fields to
follow each other immediately, he must specify the starting positions with numbers. The user
need not describe the fields in the order they appear in the records, provided that he specifies the
starting position of each field with a number. When using a period for starting position, however,
the user must describe the fields in record order.

When describing variable length records, the starting position of the first field must be 4, since
the first three characters in each record are reserved for the record length.

The field length, on the other hand, specifies the maximum number of characters needed to
print the data in the field in symbolic form. The field length must allow for minus signs, decimal
points, and E or D scientific notation.? The field length, therefore, is determined by the longest
datum in the field. For example, if the longest datum in an R field is 143 67.941, the user
specifies the field length as 10.

The decimal places specification states the number of decimals to be printed. IML rounds to
the appropriate number of decimal digits. For example, if the COST field is defined as
: COST,R,.,7,2
and the value of COST is 15.3864, the system prints the value of COST as 15.39. If COST is
defined with three decimal places, the value of COST is printed as 15.386.

The examples following illustrate the creation of description files for binary fixed length and
variable length records.

1 — Contiguous character fields are the exception to this rule.
2 — Scientific notation is described on page 47.

54

Example 1

The user wishes to describe a binary file consisting of fixed length records. Each record contains
four contiguous fields. The table below shows the information used to enter the description in
DEFINE.

Maximum Length

Field Name Type (in symbolic form) Binary Storage
PART I 6 3
DESCRIPTION C 24 24
VALUE R 8 (including decimal 6

» point)
ONHAND I 5 3

36 Record Length

.

-DEFINE INVENTORYDES , The system saves the description on a file
INVENTORYDES.. NEW FILE, named INVENTORYDES.
SHORT PROMPTS? (Y OR N): ¥,
BIN OR SYM: BIN,
FIX OR VAR: FIXo
LENGTH: 365 The record length is always a multiple of 3.
NAME, TYPE, START, LENGTH, DECIMAL PLACES
PART,I,1,6 DESCRIPTION begins in the next position after the PART

DESCRIPTIOI‘?, C,e,24 o field (indicated by the period and equivalent to typing 4)
VALUE,R,.,8,2 > and reserves space for 24 characters.

; ONHAND,I,.,5 > ONHAND is the fourth contiguous field.
D

Q
ESCRIPTION FILE WRITTEN.

55

Example 2

The user wishes to describe a binary file consisting of variable length records. Each record con-
tains three contiguous fields: ACCOUNT, BALANCE, and ADDRESS. The ADDRESS field is
of variable length and may contain a maximum of 36 characters.

-DEFINE ACCOUNTDES o
ACCOUNTDES.., NEW FILE,
SHORT PROMPTS? (Y OR N): YES,
BIN OR SYM: BINo
FIX OR VAR: VARD
NAME, TYPE, START, LENGTH, DECIMAL PLACES

¢ ACCOUNT,I,4,7 > Nore that the ACCOUNT field begins in position 4 because
: BALANCE,R,.,8,2 > the first three positions contain the character count field.

¢+ ADDRESS,C,.,36;

HPY)

DESCRIPTION FILE WRITTEN.

Note that the number of characters in the ADDRESS field determines the length of a record. For
example, when ADDRESS has 21 characters, the record length is 33. This is computed as follows:

Storage
Field (in characters)
Character count as integer 3
ACCOUNT as integer 3
BALANCE as real 6
ADDRESS as character 21
33 Record length

When the ADDRESS field has the maximum number of characters, that is, 36, the record length
is 48.

Editing a Description File

The user may alter an existing description file by entering a DEFINE command of the form:

description
—DEFINE [EDIT] file 2
name

56

First, the general file characteristics are printed, and then the system prompts for new informa-
tion on general file characteristics. Next, the field descriptions are printed individually, and
after each field description is printed, the user may enter a new field description to replace it,
leave the field description unchanged, delete the field description, or insert a new field descrip-
tion. Finally, the user may append new field descriptions when the colon prompt appears.
After the following example, each possibility is explained in detail, including additional forms
for performing a given procedure on several field descriptions at once.

The example below shows the user altering the INVENTORYDES description file created on
page 54. The user wants to insert a new I field named TCODE before the VALUE field, change
the VALUE field description, and append an R field named PRICE.

-DEFINE [EDIT] INVENTORYDES

OK.

$$%

***BIN OR SYM:

BIN The system prints the general file characteristics.
***¥FIX OR VAR:

FIX

***,ENGTH :

36

SHORT PROMPTS? Y 5
BIN OR SYM: BIN

FIX OR VAR: FIX) The user increases the record length by nine characters, since he wants to add
LENGTH: 45 an I field and an R field.
NAME, TYPE, START, LENGTH, DECIMAL PLACES

PART,I,1,6 The system prints the first field description.

o) The user does not want to change the field description.
DESCRIPTION,C,.,24

)
VALUE,R,.,8,2

I The user wants to insert a new field description before the VALUE field.
: TCODE,I,.,1> The system prompts with a colon.

VALUE,R,.,8,2 The next field description is printed.

VALUE,R,.,6,25 The user changes the field length.

ONHAND,I,.,5

> The system prompts after the last field description, and the user enters an
¢ PRICE,R,.,8,2 5 additional field description.

-] A carriage return terminates entry of field descriptions.

FINISHED.

57

The revised INVENTORYDES description file is shown below.

-TYPE INVENTORYDES

$$%

***BIN OR SYM:

BIN

***FIX OR VAR:

FIX

**¥*ENGTH :

45 Changed record length
*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
PART,I,1,6

DESCRIPTION,C,.,24

TCODE,I,.,1 Inserted field description
VALUE,R,.,6,2 Changed field description
ONHAND,I,.,5

PRICE,R,.,8,2 Appended field description

The user changes an existing field description by reentering the description after the line is
typed. The old line serves as an image for the new line, allowing the use of control characters to
enter the changed field description. For example, the system prints a field description:

VALUE,.,8,2

O€8VALUE,R,.,6,2 o The user types Control O followed by 8, copying the old line up to but
— not including the 8. He then types the rest of the new field description.

The user leaves an existing field description unchanged by typing only a carriage return after
the line is typed. For example

PART,I,1,6 The system prints a field description.
2 The user wants to leave it as is.

The user may precede the carriage return with an integer specifying the number of consecutive
field descriptions he wants to remain the same. For example:

FLD2,C,.,7 The system prints a field description.
35 The user wants to preserve this field description as well as the next two field descriptions.

DEFINE then prompts with the next field description the user may want to change. Note that
if the user specifies an integer greater than the number of field descriptions left, DEFINE assumes
an end to editing and copies the remaining field descriptions. If the integer equals the remaining
number of field descriptions, however, the remaining lines are copied, and DEFINE then prompts
with a colon, allowing the user to append new field descriptions. The procedure terminates when
the user types a carriage return after the colon prompt.

To delete a field description, the user types a D, followed by a carriage return, after DEFINE
prints the line. For example:

FLD9,N,.,8,2
D5

58

The user may precede the D with an integer specifying the number of consecutive field descrip-
tions he wants to delete. If the integer exceeds the number of field descriptions remaining, the
remaining lines are deleted and the editing procedure terminates. If the integer equals the number
of remaining field descriptions, however, the remaining lines are deleted, and DEFINE prompts
with a colon, allowing new field descriptions to be appended. The QUIT command may be used
to delete all remaining field descriptions starting with the current position. Once the user types
QUIT followed by a carriage return, DEFINE writes the new description file as entered to that
point and returns control to the EXECUTIVE.

The user may insert a new field description before the one just typed by the system by typing
an I followed by a carriage return. The user may precede the I with an integer specifying the
number of field descriptions to be inserted. For example:

FLD12,C,.,21 The system prints a field description.
31> The user wants to insert three new field descriptions.
: DEFINE prompts with a colon.

The user may type a carriage return after the colon prompt to terminate the insert mode before
the specified number of field descriptions is entered. After the insertion is complete, DEFINE
returns to the editing procedure by reprinting the field description typed before the insertion(s).
For example:

RATE,C,6,1

3I o) The user wants to insert three field descriptions before the RATE field.
: FLDX,C,. '2D
H FLDY’C' . '2 po)
¢ FLDZ,C,.,2>
RATE,C,6,1

CREATE

CREATE writes IML or RETRIEVE data files while allowing the user to enter the information
in free format. In addition, CREATE makes it possible to add new records to an existing data
file. Before CREATE can write or append to a data file, the user must describe the characteristics
of the data file with a description file, created by the DEFINE program, or a RETRIEVE
structure file.

The CREATE command instructs the system to write the entered data on a file according to
the specified description. The user calls CREATE from the EXECUTIVE. The general form of the
CREATE command without options or additional clauses is

data description T

—CREATE file : file FROM {. . l;)
input file name
name _ name

to create a new file, or

data description
—CREATE APPENDING TO file : file FROM l
name __name

T
input file name|®

to add records to an existing file.

59

When the user omits a description file name from the command or types a carriage return after
the prompt for a description file name, IML searches for the proper RETRIEVE structure file
in the user’s directory. For example, in the command

—CREATE APPENDING TO ORDERS FROM T ,

the system searches the user’s directory for a RETRIEVE structure file corresponding to
ORDERS. The CREATE program writes the new records in the same format as the existing
RETRIEVE data base, in binary code if the existing file is binary and with a carriage return

at the end of each record if the file is symbolic. RETRIEVE scrambled files are not compatible
with IML.

The data entry procedure using CREATE with RETRIEVE data bases is identical to the pro-
cedure followed to prepare IML data files. The user may enter his data from the terminal, or
he may specify the name of a file which contains the data. Both types of data entry are discussed
below. Finally, the various options and clauses available for both data entry methods are pre-
sented on page 63.

The general form of the CREATE command is:
data description

| APPENDING TO file : file FROM
name name

[PROMPT]
[character]

T

—CREATE I . .
input file name

BY LIST
WITH field list

[PROMPT] and [character] are the CREATE options; APPENDING TO, BY NAME, BY LIST,
and WITH field list are the optional clauses.

The examples in this section show the use of a description file, INVDES, and the CREATE
program to generate various information files. INVDES describes a symbolic file consisting
of fixed length records of 40 characters. Each record contains five fields: PARTNO,
DESCRIPTION, COST, INVOICENO, and QUANTITY. All the fields contain numeric informa-
tion except DESCRIPTION which contains alphanumeric information.

BY NAME ‘

-TYPE INVDES, This file was created without short prompts on page 44.
$$3

***FILE TYPE? (BINARY OR SYMBOLIC) :

SYMBOLIC

***FIXED OR VARIABLE LENGTH RECORDS:

FIXED

***LENGTH OF RECORD IN CHARACTERS 1IS:

40

**%* NAME, TYPE, START, LENGTH, DECIMAL PLACES
PARTNO,N, 1,7

DESCRIPTION,C,.,15

COST,N,.,6,2

INVOICENO,N,.,6

QUANTITY,N,.,6

Data Entry

CREATE allows the user to enter data from the terminal or from an input file. Each data
entry method is discussed separately below.

Entering the Data at the Terminal

CREATE assists the user entering data at the terminal by providing automatic prompts, immedi-
ate error diagnostics, and a complete editing facility.

In the example below, the user creates an invoice information file, entering the data at the
terminal; he names the file INV1. The file named INVDES describes to CREATE the specifica-
tions for the new file.

~CREATE INV1:INVDES FROM T)
INV1.. NEW FILE,

OK.

DATA MUST BE ENTERED IN THE FOLLOWING ORDER: The INVDES description file
PARTNO N 7 specifies this field information.
DESCRIPTION C 15

COST N 6 2

INVOICENO N 6

QUANTITY N 6

1: 1120557,FOCUS TUBE,9.60,407712,32, The user enters the data, terminating
2: 1120572 ,GASKET, .39,406678,50 each field with a comma and each
3: 1120545,AIR VALVE NUT,.45,8404331,12 5 record with a carriage return.

4: 1120576 ,YOKE,30,.55,3999U15 When the user omits a field in the

QUANTITY: 8) record, the system prompts him.

5: A carriage return after the

p)
4 RECORDS CREATED. colon terminates data entry.

The listing below shows the records that were written from the CREATE data using the
INVDES description.! Each line represents one record.

PARTNO DESCRIPTION COST INVOICENO QUANTITY
T I T L 1T l 11 . 1T l 1
1120557F0OCUS TUBE 9.60407712 32
1120572GASKET 39406678 50
1120545AIR VALVE NUT L45404331 12
1120576YOKE 30.55399941 8

1 - This file cannot be printed directly with the TYPE command, since it does not contain the carriage return character between
records. The SELECT command is used to produce the listings in this section.

61

When the system prompts the user for missing field information in the middle of the record,
the user may enter all the remaining information after the prompt. For example:

1: 1120576, YOKE ,
COST: 30.55,399941,5,
2:

Alternatively, the user may enter only the requested field information, followed by a carriage
return, and let the system prompt for the next field. For example:

1: 1120576,YOKE,30.553
INVOICENO: 3999415
QUANTITY: 5

2:

The user may indicate empty fields by typing a comma or a slash (/). If the rest of a record is
to be blank, the slash terminates data entry without entering the remaining fields in the record.!
The comma is used to selectively indicate empty fields within a record and is used whenever
at least one field is to be given a value. The user may indicate empty fields by typing two commas
to indicate one empty field, three commas to indicate two consecutive empty fields, and so on.

A comma at the end of the record indicates that the last field is empty. When the user wishes to
create records with numerous empty fields, the BY NAME clause is most helpful. See the
explanation on page 65.

During data entry at the terminal, all the EDITOR line editing characters are available in
CREATE.? These include the control characters to correct the current line being typed, as well
as the control characters available to use the last line typed as an image for the current line.
Control V is available to enter any instruction character literally. For example, to enter a comma
or a carriage return in the data, the user must precede the character with a Control V; otherwise,
such a character signals the end of a field or record.

The input process follows the same conventions as in the EDITOR APPEND mode, except
that Control Q can delete only to the last carriage return. The up arrow (1), Shift N on many
terminals, is available to restart input for the current record if the user wishes to delete beyond
the previous carriage return. The user may type an up arrow, followed by a carriage return,
repeatedly to delete several preceding records. To use this capability, the user must type an up
arrow as the first and only character of a line.

In addition, the user may type a back slash (\), Shift L on many terminals, to reenter the last
field entered. To use this capability, the user must type a back slash, followed by a carriage
return, at the beginning of the next field. For example:

1: 1120576,Y0KE,55.30,\ o) The user wants to reenter the last field entered.
CosT: 30.55,399941,5 S
2:

1 — Null values are placed in fixed length records; empty fields are not written in variable length records.
2 — See the Tymshare EDITOR Reference Manual for complete documentation of control characters.

62

A back slash, followed by a carriage return, may be used repeatedly to reenter several preceding
fields.

In the example below, the user types various editing characters. First, the user types Control A
to delete an R. In the next record, he inadvertently types a period instead of a comma after
the second field. He types a carriage return, not realizing the data is entered incorrectly. When the
system prints an error message, the user wishes to delete the entire record. He must use an up
arrow in this situation to delete beyond the carriage return. In record 3, the user types a back
slash to reenter the data for the DESCRIPTION field.

~CREATE INV2:INVDES FROM T 5
INV2,. NEW FILE,

OK.

DATA MUST BE ENTERED IN THE FOLLOWING ORDER:
PARTNO N 7 '

DESCRIPTION C 15

COST N 6 2

INVOICENO N 6

QUANTITY N 6

1120557 ,FOR+CUS TUBE,9.60,414344,32
1120579,DIAL ELEV.3.29,411022,155
MANY CHARS. FOR ... COST

T: 4>

1120579,DIAL ELEV,3.29,411022,15,

1

C

0 o

120545 ,AIR VALVE,\ >
SCRIPTION: AIR VALVE NUT,.45,408999,105 The user reenters the data for
DESCRIPTION and continues
data entry in the usual way.

EgwhdhOE D
oo [T oo o6 O O o0 o0

Entering the Data from a File

The user may enter the data for CREATE from a file. The input file must contain on one
logical line the same number of fields for each record in the order specified in the description
file.! The user must terminate each field with a comma.? He may type two consecutive
commas (field terminators) in the middle of a record to indicate an empty field, three commas
to indicate two consecutive empty fields, and so on. A comma at the end of a record indicates
that the last field is empty. The user may continue a record with a line feed and must terminate
arecord with a carriage return.

NOTE: The input file must be symbolic.

If a record contains an error, such as alphabetic characters in a numeric field, CREATE prints
the number of the record in error, ignores that record, and proceeds to the next record.

The example following illustrates entering the data from a file named INV3DATA to create a
file named INV 3, according to the description on file INVDES.

1 - A logical line is a series of characters terminated by a carriage return. A logical line may contain line feeds; thus, it may occupy
more than one physical line.
2 — See the discussion on page 64 of the field terminator option to change the comma as field terminator.

=EDITOR 5 The user creates the input file in EDITOR.
*APPEND ,

1121202,CASTING,3.60,393912,24 ,
1120556 ,SCREW, .01,400003,1500 >
1120574 ,FOCUS RING,2.74,396666,12 5
1120579,DIAL ELEV,3.29,410111,15>

*WRITE The user should write all IML input files with
TO: INV3DATA o) a line feed to preserve multiple blanks.
NEW FILE
128 CHARACTERS
*QUIT,

The user types the CREATE command to create the data file.

~CREATE INV3:INVDES FROM INV3DATA 5
INV3.. NEW FILE,

OK.

4 RECORDS CREATED.

This listing shows the records written by CREATE. Each line represents one record.

PARTNO DESCRIPTION COST INVOICENO QUANTITY
— i : —
1121202CASTING 3.60393912 24
1120556 SCREW .01400003 1500
1120574FOCUS RING 2.74396666 12
1120579DIAL ELEV 3.29410111 15

Optional Components

CREATE provides several optional components which allow the user to request prompts,
change the field terminator character, enter only specific fields for each record, and append
records to an existing data file. These features are described on the following pages.

64

Requesting Prompts

When entering data at the terminal, the user may instruct the system to prompt him for each
field in the record. He requests this option by typing [PROMPT] after CREATE, as shown below.

The general form of the command using this option is:
data description

—CREATE [PROMPT] file : file FROM T
name _ name

For example:

-CREATE (PROMPT] INV4:INVDES FROM T,

OK.

1:

PARTNO: 1120577
DESCRIPTION: TRUNNION 5
COST: 3.125

INVOICENO: 4053215
QUANTITY: 12>

2:

PARTNO: 1120578 5 The user types Control A to delete the U.
DESCRIPTION: STUD LU<«CK_ He forgetstoaddan O in its place.
COST: \ Realizing the error at this point, the user

DESCRIPTION: STUD LOCK o types a \ (Shift L) to reenter the last field.
COST: 1.74 o)

INVOICENO: 400396 o)

QUANTITY: 100 o)

3:
PARTNO: , A carriage return after the first prompt
2 RECORDS CREATED. in the record terminates data entry.

NOTE: The PROMPT option does not allow the user to specify more than one field per line.

Changing the Field Terminator

The field terminator option allows the user to change the field terminator character from a
comma to a user-specified character. This option is most helpful when the data contains commas
in the fields. To avoid typing a Control V before each comma in the data, the user may merely
change the field terminator character from a comma to another character. The general form of
the command is:

data description T

—CREATE [character] file : file FROM . ID
input file name
name _name

The example below illustrates the use of this option to define an ampersand (&) as the field
terminator.

-CREATE [6] INV5:INVDES FROM T
INV5.. NEW FILE -

OK.

DATA MUST BE ENTERED IN THE FOLLOWING ORDER:
PARTNO N 7

DESCRIPTION C 15

COST N 6 2

INVOICENO N 6
QUANTITY N 6

11205806VERN, IERE1.67639997568
T120586¢6AZI ,MUTH > -

ST: 10.99&8403902¢832>
11212036INS,ULATOREEL00007628
1 1212028CAS,TING83.608“023368123

e o0 o0 O o0 o0

EUVNETWOQ N

)
RECORDS CREATED.

Entering Specific Fields

CREATE provides three optional clauses to enter only specific fields for each record; the system
fills the missing fields with blanks or zeros. The BY NAME clause permits the user to enter dif-
ferent fields for each record. The BY LIST clause performs the same function as the BY NAME
clause: It lets the user enter data for different fields in each record, preceding the data for each
field by the field name and a colon (:). The only difference between BY LIST and BY NAME is
that BY LIST does not ignore an entire record when an invalid field name or illegal data are
specified; instead, the invalid fields are ignored, and the data for the other fields are written in the
record. The WITH clause allows the user to enter the same specific fields for each record. Each
optional clause is discussed below.

NOTE: When entering only specific fields for variable length records, the record created is
shorter than the full record length if data for the last field is not entered. This must be avoided
when the data file is to be used with fixed format programs such as TYMTAB and RETRIEVE.!

The general form of the command using the BY NAME, BY LIST, or WITH clause is:

data description T BY NAME
—CREATE [option] file : file FROM | o] BY LIST S
name name 'nput e namel {wiTH field list

1 - Refer to the Tymshare TYMCOM-IX TYMTAB and RETRIEVE Reference Manuals for complete documentation of TYMTAB
and RETRIEVE, respectively.

66

The WITH clause allows the user to enter only the specified fields for each record. The order
of the fields in the field list need not correspond to the order in the description file, but must
correspond to the order of entry. The records written by CREATE contain the fields in the order
specified by the description file. In the following example, the user wants to enter data for the
PARTNO, INVOICENO, and QUANTITY fields and have the system fill the DESCRIPTION and
COST fields with spaces or zeros.

=CREATE INV6:INVDES FROM T WITH QUANTITY,PARTNO,INVOICENO
INV6.. NEW FILE)

OK.

DATA MUST BE ENTERED IN THE FOLLOWING ORDER:
QUANTITY N 6 The user must enter the data in the
PARTNO N 7 order specified in the field list.
INVOICENO N 6

12,1120575,410033 5
32,1121202,397422
°

RECORDS CREATED.

e o0 oo

1
2
3
2

The listing below shows the records written by CREATE. Each line represents one record. Note
that unspecified fields are empty.

PARTNO DESCRIPTION COST INVOICENO QUANTITY
| | | I |

[1 1T 1T 1T 1

1120575 410033 12
1121202 397422 32

The user may include the PROMPT option in the command only when entering data at the
terminal. The system prompts him for each field in the WITH clause. The field terminator option
may be included in the command regardless of the data entry method.

The example below shows the use of the field terminator option and the WITH clause with data
entry from an input file named INV7DATA.

-TYPE INV7DATA ,

1120552404141 Each line contains PARTNO and
11212038391232 INVOICENO data, separated by
1120888¢&8410096 an ampersand (&).
1120557&410455

11205786410025

67

The user calls CREATE, specifying the field terminator character, the file to be created and its
description file, the input file, and the name of the fields to contain data.

=CREATE [&] INV7:INVDES FROM INV7DATA WITH PARTNO, INVOICENO)

OK.

5 RECORDS CREATED.

NOTE: For each record to be created, the input file must contain on one logical line the data
for all fields in the order specified in the field list. This order need not correspond to the order of
the fields as specified in the description file.

The BY NAME clause permits the user to enter data for different fields in each record. Regard-
less of the data entry method, the data for each field is preceded by the field name and a colon.
The fields for each record need not be arranged in the same order as specified in the description
file.

NOTE: The PROMPT option may not be used with the BY NAME clause.

When entering the data from the terminal or input file, each field may be terminated with a
carriage return or a comma; two consecutive carriage returns terminate the record; three con-
secutive carriage returns terminate the data entry procedure. For example:

=CREATE INV8:INVDES FROM T BY NAME 5

OK.

1:

PARTNO: 1120552 The user separates each field with a carriage return.

COST :1 . 5 3 o

INVOICENO:4040446

o) Two consecutive carriage returns terminate a record.

2:

INVOICENO: 4077135

po]

3:

DESCRIPTION:YOKE, INVOICENO:410000,QUANTITY:1000) The user separates

o) A second carriage return terminates the record. each field with a
4. comma.
po)
3

A carriage return at the beginning of a record terminates data ent :
RECORDS CREATED. 4 i

68

The listing below shows the records written by CREATE. Note that each field appears in the
proper position in the record.

PARTNO DESCRIPTION COST INVOICENO QUANTITY

1 | | | |

I i I I I l
1120552 1.53404446
407713

YOKE 410000 1000

The following example shows the use of the BY NAME clause when entering the data from an
input file.

-EDITOR 5 The user creates the input file in EDITOR.
*APPEND D

DESCRIPTION:GASKET 5 T
COST:,.39> — Record 1
INVOICENO:411321,

The second consecutive carriage return indicates the end of a record.

o]
PARTNO:11205575
DESCRIPTION:FOCUS TUBE,

INVOICENO:391177 5 ~ Record2
QUANTITY: 12 o) i
)
INVOICENO:4109905 + Record 3
)
INVOICENO:410991;
QUANTITY: 100 } Record 4
Py
DESCRIPTION:CASTING]_
INVOICENO:3978915 Record 5
) End-of-record carriage return.
o The third consecutive carriage return indicates the end of the input file.
*WRITE The user writes the IML file with a line feed.
TO: INVIDATA >
NEW FILED
204 CHARACTERS
*QUIT ,

~CREATE INV9:INVDES FROM INVODATA BY NAME
INV9.. NEW FILE,

OK.

5 RECORDS CREATED.

NOTE: The user should remember the record terminator, that is, two carriage returns. If be
fails to indicate the end of a record, the data is entered incorrectly.

Duplicating Fields

A capability in the CREATE data entry procedure permits the user to copy the contents of a
field from the previous record to the same field in the current record. This feature is available with
data entry from the terminal or an input file. The double quotation marks (”’) is the duplication
character and must be the only character specified for a given field when the feature is used.

The following example illustrates the field duplication character used with the CREATE
command.

-CREATE INVS:INVDES FROM T>
INVS.. NEW FILEo

OK.

DATA MUST BE ENTERED IN THE FOLLOWING ORDER:
PARTNO N 7

DESCRIPTION C 15

COST N 6 2

INVOICENO N 6

QUANTITY N 6

1: 1120557,FOCUS TUBE,9.60,407712,325

2: *,",",406678,50 The user duplicates the first three fields used in the previous record.
3: 1120545,AIR VALVE NUT,.45,404331,"~ By using the duplication character, he
4: 1120550,DIAL ELEV,3.42,405531," 5 copies the last field from the previous
5: D record to two consecutive records.

4 RECORDS CREATED

The records created are listed below using the SELECT command.

-SELECT FROM INV5:INVDES TO T o

OK.

1120557FOCUS TUBE 9.60407712 32
1120557FOCUS TUBE 9.60406678 50
1120545AIR VALVE NUT .45404331 50
1120550DIAL ELEV 3.42405531 50

4 RECORDS SELECTED FROM 4

70

Appending Records to an Existing Data File

When the user wants to add records to an existing IML or RETRIEVE data file, he includes an
APPENDING clause in the command. The general form of the command is:

data description
—CREATE [option] APPENDING TO file : file
name ___name

T BY NAME
rrom | 1 l BY LIST
input file name |WITH field list

Note that the first file name specifies the existing data file to which the user wants to append
records from the terminal or input file. The input file contains the records in free format, as
illustrated in all the examples for entering data from a file.

The APPENDING clause may appear in a CREATE command with one option and one
optional clause. For example, the user wants to append the records from INV9DATA, shown
on page 68, to the file INV1, created on page 60. The resulting INV1 file after this command
contains the records from the original INV1 and the new records appended from INV9DATA.

-CREATE APPENDING TO INV1:INVDES FROM INV9DATA BY NAME ,

OK.

5 RECORDS CREATED.

Note that the user includes the BY NAME clause because the INVIDATA input file contains data

for only specific fields in each record and specifies the field name before each data item. The
listing below shows the records in INV1 after the appending procedure.

PARTNO DESCRIPTION COST INVOICENO QUANTITY

| 1 | 1 !

| — L] LI L LA 1
1120557FOCUS TUBE 9.60407712 32 T
1120572GASKET 39406678 50 i NV record,
1120545AIR VALVE NUT 45404331 12 Original INV1 records
112057 6 YOKE 30.55399941 8 i
GASKET ©39411321 :
1120557FOCUS TUBE 323333 12 | Records appended
410991 100 from INV9DATA
CASTING 397891 i

Al

The following example illustrates the APPENDING clause with data entry at the terminal,
using the PROMPT option and a WITH clause.

-CREATE [PROMPT] APPENDING TO INV5:INVDES FROM T WITH DESCRIPTION,COST
INV5.. OLD FILE.

OK.

1:

DESCRIPTION: CASTING,

COST: 3.60)

2

DESCRIPTION: GASKET)

COoST: .39)

3 e

DESCRIPTION: ,

2 RECORDS CREATED. INV5 now contains the original INVS records
plus the two records created at the terminal.

Creating an ERRORS File

The CREATE command provides an additional clause, the ERRORS clause, which causes
incorrect records to be written on a separate file. The ERRORS clause is permitted only when
data entry is from an input file. The ERRORS clause always creates an error file when it is
used with CREATE. If there are no errors, CREATE deletes the errors file at the end of the com-
mand procedure.

The complete form of the CREATE command for using the ERRORS clause is:

data description input (BY NAME errors
—CREATE ([character] file : file FROM file BY LIST ERRORS TO file 2
name name name |WITH field list name

Example

The user wants to create an IML data file with data entry from an input file. The data file is to
be written according to the SDESC description file shown below.

-TYPE SDESC>

$$$
***BIN OR SYM:
BIN

72

***FIX OR VAR:
VAR

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
ITEM.NO,I1,4,4
DESCRIPTION,C,.,21

IN.STOCK,I,.,5 Note that IN.STOCK is a numeric field.
YTD.SOLD’ 1'016 :

The input file, STOCKINPUT, contains two errors.

-TYPE STOCKINPUT

42,DISTRIBUTOR CAP,47Y,28

In these records, the data for the third field is
28, SOLENOID SWITCH,500,209 incorrect because IN.STOCK is a numeric field.
19,SPARK PLUG,192W,276

11,RADIATOR, 28,4
77 ,UNIVERSAL JOINT,212,44

The user enters the CREATE command and requests that an errors file be created.

-CREATE STOCKFILE:SDESC FROM STOCKINPUT ERRORS TO ERRSTK-o
STOCKFILE.. NEW FILED

ERRORS TO ERRSTK.. NEW FILED

OK.

VALUE NOT NUMERIC IN.. IN.STOCK OF RECORD 1
VALUE NOT NUMERIC IN.. IN.STOCK OF RECORD 3
3 RECORDS CREATED

2 "ERRORS"" RECORDS WRITTEN

73

The errors file, ERRSTK, is shown below.

-IYPE ERRSTK>

42,DISTRIBUTOR CAP,47Y,28
19,SPARK PLUG,192W,276

VERIFY

VERIFY offers the user a convenient tool for checking the accuracy and completeness of a
data file. Using basic IML rules statements and commands, the user may request data verification
procedures as simple or as complex as needed.

The complete general form is:

data description IF diti output key rules
—VERIFY file : file conciien® | To file BY field AS PER file
FOR conditions .
name _ name name list name

Any information file, including a RETRIEVE file, may be specified as the data file in the
command. The description file may be a file created with DEFINE, or it may be a RETRIEVE
structure file. Only the data file, description file, and rules file names are required. The user
may, however, omit the description file name if the data file is a RETRIEVE file and if a cor-
responding structure file exists in the user’s directory. The user specifies the rules file name as
T (for terminal) to enter the rules file statements initially.

It is suggested that users unfamiliar with IML rules files read pages 27 through 41 before pro-
ceeding with the discussion of VERIFY.

The functions of the optional IF clause, output file name, and BY clause are presented on
page 76, following the sample problem. The structure of a VERIFY rules file is discussed on
page 77.

Sample Problem

The sample problem checks the data in a file named PERSONNELDATA which contains
records for all employees in a small company. After entering all the data, the user calls VERIFY
to check the accuracy of his data.

The key to the verification procedure is the rules file PERSONNELVERULES which details
all conditions to be checked and, optionally, corrected at the terminal.

The user begins the verification process with a single command specifying the file to be verified
and its description file, an optional output file for the corrected data file, and the name of the
VERIFY rules file.

74

~VERIFY PERSONNELDATA:P TO VPERSONNEL AS PER PERSONNELVERULESD
¢ LIST D The actual rules file is shown first and then executed with the RUN command.
10 DECLARE

20 MALES,I,3

30 FEMALES ,I,3 The user defines three temporary fields for the duration of the verification procedure.
35 TOTAL,I,3
40 INITIAL This message is printed before any records are verified.

45 TYPE "BE PREPARED TO REENTER DATA AT THE TERMINAL",CR,
"DURING THE VERIFICATION PROCEDURE.",CR,CR

50 DETAILS Each record is processed by the DETAILS section of the rules file and corrected if in error.

60 IF AGE<16 OR >70

65 TYPE "ENTER CORRECT AGE FOR ",NAME, " EMP#",EMP.NO

70 INPUT AGE

72 TYPE

75 IF SEX NOT HAS "F" AND "M"

80 TYPE "ENTER M OR F FOR SEX OF ",NAME," EMP#",EMP.NO

84 INPUT SEX

85 TYPE

86 IF SEX='F'

87 FEMALES +1 TO FEMALES

88 ELSE MALES +1 TO MALES

90 IF MAR.STAT NOT HAS "S" AND "M" AND "D" AND "W"

95 TYPE "ENTER CORRECT MARITAL STATUS FOR ",NAME," EMP#",EMP.NO

100 INPUT MAR.STAT

105 TYPE

110 IF SALARY »>25,

120 IF.1 SALARY <4000 OR >50000

130 TYPE "PLEASE REENTER THE ANNUAL SALARY FOR ",NAME," EMP#",

EMP .NO

135 INPUT SALARY

136 TYPE

140 ORIF SALARY <1.75

145 TYPE "REENTER HOURLY RATE FOR ",NAME," EMP#",EMP.NO

150 INPUT SALARY

151 TYPE

155 IF (RATING<1 OR >5) AND LAST.REV>0

160 TYPE "PLEASE REENTER THE RATING FOR ",NAME," EMP#",EMP.NO,
CR," FOR REVIEW AS OF " ,LAST.REV

163 INPUT RATING

164 TYPE

165 IF PROMOTABILITY # O AND 1

170 TYPE "REENTER PROMOTABILITY CODE FOR " ,NAME," EMP#" ,EMP.NO,CR,
" FOR REVIEW AS OF ",LAST.REV

175 INPUT PROMOTABILITY

176 TYPE

200 IF (YR<70 OR >72 OR M<1 OR>12 OR D<1 OR >31) AND LAST.REV >0

210 TYPE "PLEASE REENTER DATE OF LAST REVIEW FOR ",NAME," EMP#",
EMP .NO

220 INPUT LAST.REV

221 TYPE

230 IF (M=4 OR 6 OR 9 OR 11) AND D>30

240 TYPE "PLEASE REENTER DATE OF LAST REVIEW FOR " ,NAME," EMP#",

EMP.NO,CR," DATE OF **" LAST.REV," IS NOT POSSIBLE"
250 INPUT LAST.REV

75

251 TYPE

260 IF M=2

270 IF.1 D>29

280 TYPE "PLEASE REENTER DATE OF LAST REVIEW FOR " ,NAME," EMP#",

EMP.NO,CR,"DATE OF **" ,LAST.REV, " IS NOT POSSIBLE"

285 INPUT LAST.REV

286 TYPE

290 ORIF.1 D=29

300 IF.2 YR NOT = 72 AND 76

310 TYPE "PLEASE REENTER DATE OF LAST REVIEW FOR " ,NAME,
" EMP#" ,EMP.NO,CR,"FEBRUARY HAS ONLY 28 DAYS IN 19",
YR,CR,"DATE OF **" LAST.REV," IS NOT POSSIBLE"

315 INPUT LAST.REV

316 TYPE

400 FINAL

410 TYPE CR,MALES," MALES EMPLOYED",2B,FEMALES," FEMALES EMPLOYED"

415 FEMALES + MALES TO TOTAL

420 TYPE TOTAL, " TOTAL EMPLOYEES”

¢ RUN, The RUN command begins execution of the verification process.

VPERSONNEL.. NEW FILE,

OK.

BE PREPARED TO REENTER DATA AT THE TERMINAL
DURING THE VERIFICATION PROCEDURE.

ENTER M OR F FOR SEX OF CLOUTIER EMP# 9 The questions and answers show the

Fo location and correction of the data

in PERSONNELDATA according to
ENTER CORRECT AGE FOR FLINKER EMP# 58 the PERSONNEL VERULES file.
285

ENTER CORRECT MARITAL STATUS FOR KINNEY EMP# 62

M>

PLEASE REENTER THE ANNUAL SALARY FOR VOGELSANG EMP# 65
12000.005

PLEASE REENTER DATE OF LAST REVIEW FOR PENTEL EMP# 68
DATE OF ** 710931 IS NOT POSSIBLE
7109055

PLEASE REENTER THE RATING FOR LEMBERG EMP# 71
FOR REVIEW AS OF 710215

3>

PLEASE REENTER THE RATING FOR BORNEMAN EMP# 72
FOR REVIEW AS OF 710515

3>

REENTER PROMOTABILITY CODE FOR BORNEMAN EMP# 72
FOR REVIEW AS OF 710515

0>

76

PLEASE REENTER DATE OF LAST REVIEW FOR CLIFF EMP# 83
FEBRUARY HAS ONLY 28 DAYS IN 1971

DATE OF *#* 710229 IS NOT POSSIBLE

7102125

REENTER HOURLY RATE FOR YORK EMP$ 85
5.00,

ENTER CORRECT MARITAL STATUS FOR HANSON EMP# 87
M>

39 MALES EMPLOYED 16 FEMALES EMPLOYED The FINAL section of the VERIFY

55 TOTAL EMPLOYEES rules file requests that this informa-
tion be printed after verifying all
records.

55 RECORDS VERIFIED OF 55

Optional Components

VERIFY contains several optional features which allow the user to qualify records for the
verification procedure, generate an output file, and perform a sequence check on the records.
Each component is discussed separately below.

The user should request an output file for the corrected data file when he intends to reenter
field information at the time an error is discovered.! For example,

—VERIFY PERSONNELDATA:P TO VPERSONNEL AS PER VRULES

specifies an output file named VPERSONNEL on which VERIFY writes the verified and cor-
rected data.

An IF clause is available to qualify each record before perforrfling the verification procedure.
The clause immediately follows the data file specification in the command. For example,

—VERIFY PERSONNELDATA:P IF REV.DATE>720531 AS PER VRULES)

causes only records which specify a review date after May 31, 1972, to be verified. The user may
specify numerous conditions in one IF clause.?

The user may request a sequence check on the arrangement of the records at the same time he
executes the verification procedure. The BY clause specifies a key field or fields in the records
to be verified; these key fields must contain data in numerical or alphabetical order. For example,

—VERIFY PERSONNELDATA:P BY EMP.NO AS PER VRULES 5

specifies that records in PERSONNELDATA must be arranged in numerical order by employee
number. The BY clause follows the output file specification, if any, and may contain as many as
20 key fields.

The following command illustrates all the optional features of the VERIFY command and
shows the position of the optional components in the command.

1 — The INPUT statement, discussed on page 34, allows the user to enter new data for a field directly at the terminal.
2 — See page 20 for details on conditional expressions.

77

—VERIFY PERSONNELDATA:P FOR REV.DATE>720531 AND DEPT NOT=5 !
TO VPERSONNEL BY DEPT,NAME AS PER VRULES-

The command instructs VERIFY to check all records in the PERSONNELDATA file described
by P which contains a review date after May 31, 1972, and which also do not specify the depart-
ment as 5. The VRULES file contains the statements which direct the verification procedure
and allow the user to correct any errors discovered. At the same time, a sequence check is per-
formed on the records being verified; they must be in numerical order by department and
within the same department in alphabetical order by name. Finally, the user includes the name
of an output file, VPERSONNEL, on which VERIFY writes all verified records, including any
changes made by the user during the verification process.

Structure of a VERIFY Rules File

The statements in a VERIFY rules file are divided into four separate sections.! The rules file
may contain all or some of the sections; however, the sections must appear in the file in the
following order:

DECLARE
INITIAL
DETAILS
FINAL

The DECLARE section makes it possible to specify new fields to save data from records or
intermediate calculations for the duration of the verification process. The INITIAL section assigns
starting values to declared fields, if necessary, and may also be used to print introductory
messages. The DETAILS section specifies the actual verification procedure to be performed for
each record. The FINAL section allows the user to print any accumulated data or messages
after all records are processed.

NOTE: When no section name appears at the start of the rules file, VERIFY assumes it is the
DETAILS section.

The discussion which follows treats each rules section separately, specifying available capabil-
ities, legal statements, and examples.

The DECLARE Section

The DECLARE section allows creation of working storage. It specifies new fields which do not
exist in the input records, but which can be used to save data from records or calculations. For
example,

10 DECLARE

20 MALES,I,3
30 FEMALES,I,3
35 TOTAL,I,3

creates temporary storage for three fields which do not appear in the input records. The user may
declare as many fields as desired, the only limitation being that a maximum of 100 lines is per-
mitted in a rules file.

1 - Rules file statements are presented on page 32.

78

The form used to specify new fields is:
field name,data type,field length,decimal places.

Note that only one field declaration may appear on a line.

The field name may contain as many as 31 characters; must begin with a letter; and may be
any combination of letters, the digits O through 9, the period (.), and the character @. See page 47
for a list of reserved field names.

The data type may be C, N, I, R, or D. The data type indicates the contents of the field, as
follows:

Data Type Meaning
C Character data
N Numeric data
1 Integer number
R Real number
D Double precision number

NOTE: With declared fields, the data types I, R, and D do not indicate binary data, but rather
specify the most efficient storage for an integer, real, or double precision number, respectively.

The field length specifies the maximum number of characters needed to write the data in
symbolic form.

The decimal places specification is necessary only for those fields that are to contain numbers
with decimal points; it specifies the maximum number of digits to the right of the decimal point.

NOTE: Declared numeric fields are automatically initialized to zero; declared character fields
are initialized to blanks.

Refer to page 141 for a description of the ROUNDIN and ROUNDOUT statements which may
be used to round numeric data and/or arithmetic results to conform to the field descriptions.

The INITIAL Section

The INITIAL section is executed at the beginning of the verification procedure, before any
records are processed. Data fields, therefore, may not appear in this section. The user may assign
starting values for declared fields in this section. For example,

40 INITIAL
50 100 TO BASE

assigns an initial value of 100 to a declared field named BASE. It is also possible to assign initial
values to declared fields directly at the terminal, using an INPUT statement.! For example,

50 INITIAL
60 TYPE “PLEASE ENTER THE VERIFY CODE”
70 INPUT VCODE

1 — The INPUT statement is detailed on page 34.

79

assigns the value entered at the terminal to VCODE. Note that VCODE must be defined in the
DECLARE section.

The DETAILS Section

The DETAILS section is executed for each record in the file except for those which are ignored
because of an IF clause in the original VERIFY command.! In this section, the user specifies
the details of the verification procedure. With control statements and instructions, the user states
the fields to be verified, messages to be printed at the terminal, and corrections to be made, if
desired. For example:

50 DETAILS

60 IF AGE<16 OR >70

65 TYPE "ENTER CORRECT AGE FOR " ,NAME, " EMP#",EMP.NO
70 INPUT AGE

72 TYPE

75 IF SEX NOT HAS "F" AND "M"

80 TYPE "ENTER M OR F FOR SEX OF " ,NAME," EMP#",EMP,.NO
84 INPUT SEX

85 TYPE

Lines 60 through 72 handle the verification and correction, as needed, of the AGE field. The
user specifies that if AGE is less than 16 or greater than 70, he wishes to correct the data in AGE.
If, for example, a record contains 12 in the AGE field, lines 65 through 72 are executed. The
system prints the information specified in the TYPE statement, accepts a value for AGE from
the terminal, prints a blank line, and proceeds to evaluate the next IF statement, which handles
the verification of the SEX field in the same manner.

In addition, the user may access information from a record to be used in a later calculation by
saving it in a temporary storage field created in the DECLARE section. For example:

86 IF SEX='F!'
87 FEMALES +1 TO FEMALES
88 ELSE MALES +1 TO MALES

Lines 86 through 88 cause a continuous calculation of the number of male and female employees.
The counts are stored in temporary fields, MALES and FEMALES, created in the DECLARE
section.

The FINAL Section
After all records are processed, the FINAL section is executed. It is here that the user specifies

any final calculations to be performed, as well as any accumulated calculations and comments
to be printed. For example:

1 — The optional IF clause is described on page 76.

80

400 FINAL

410 TYPE CR,MALES," MALES EMPLOYED",2B,FEMALES," FEMALES EMPLOYED"
415 FEMALES + MALES TO TOTAL

420 TYPE TOTAL, " TOTAL EMPLOYEES"

Line 410 prints the number of males and females employed; line 415 calculates a final total of
employees; and line 420 prints the final total.

81

SECTION 5
FILE MANAGEMENT

The Information Management Library offers a wide range of programs to handle all aspects of
file manipulation. SORT performs a sort on the contents of a file. MERGE combines two sorted
files to create a single sorted file. The user may update the information in a file using SELECT,
PURGE, REPLACE, or UPDATE. SELECT retrieves specified field information or entire records;
its complementary command, PURGE, deletes specified records in a file. REPLACE allows the
user to substitute field information or entire records in a file. Finally, UPDATE provides a thorough
procedure to test for specified conditions, perform arithmetic operations, print remarks or infor-
mation at the terminal during the process, and replace information in a data file.

This section discusses each program separately. The sorting commands, SORT and MERGE,
are presented first, since they are basic to all data management procedures. When using two data
files, the user must order the records in both files before entering any IML command. The up-
dating commands, SELECT, PURGE, REPLACE, and UPDATE, are presented last. It is suggested
that the user refer to REPLACE for simple changes to a data file, and to UPDATE for changes
requiring arithmetic operations or multilevel conditional testing.

EXAMPLE DATA FILE AND DESCRIPTION

Because this section uses the same personnel application for most examples, the description
file, PDESC, and the PERSONNEL data file are printed below to inform the reader of the names,
locations, and contents of the records on which the sample commands operate.

-TYPE PDESC,

$$%

***BIN OR SYM:

f**FIX OR VAR:

z**WHICH TYPE:

?**NUMBER OF LINES PER RECORD IS:

82

%k ok
NAME,C,1,9
EMP.NO,N,.,U4
AGE,N,.,3

SEX,C,.,2
MAR.STAT,C,.,1
CHILDREN,N,.,2
LAST.DEG,N,.,2
AREA,C,.,5
AREA2,C,., 4
DEPT,N,.,3
JOB,N,.,3
SALARY,N,.,10,2
LAST.REV,N,.,7
RATING,N,.,2
PROMOTABILITY,N,.,2
PCT.RAISE,N,.,5,1
DATE.HIRE,N,.,7

The PERSONNEL file contains these records:

-TYPE PERSONNEL >

Qp
O
$o- . 0'\'%\ & &oé
(]

ABNER 92 38M M 0 4ELEC
AVERY 36 37M M 0 4MBA
BORNEMAN 72 29M S 0 5PHYS
BOSUNG 73 39M D 3 UPHYS
CHEVES 49 39M D 3 UENGR
CLIFF 83 31IM M 4 U4LAW
CLOUTIER 9 60F D 2 1ACAD
CUMMINGS 80 29M M 2 5PHYS
DUNCAN 64 29M S 0 3MATH
DURBAN 52 27M S 0 4CHEM
ELBERT 63 51M D 3 4MBA
FLINKER 58 28F M 0 4LEDUC
FLOYD 77 27F S 0 4MBA
FULMER 46 29F S 0 S5MATH
GOLDEN 70 29M D 2 5PHYS
GOOD 88 26F S 0 UCHEM
HANSON 87 35F M 0 3EDUC
HARTMAN 2 43F D 1 3ENGL
HUGHES 42 29M D 2 2ELEC
JOHNSON 4 62M M U4 UENGR
KINNEY 62 28F M 1 3ENGL
KNIGHT 44 4O0F D 3 U4PHYS

MATH
ACCT
ECON
ACCT
MBA

MATH
ACCT
ACAD
STEN
ACAD
MATH
EDUC
MATH

W=a=UlwatibUuENDNNWEUDWW-2TWDWL

NEUWEEANSSNENOAO2ONNINNNDW

NAME, TYPE, START, LENGTH, DECIMAL PLACES

&
12000. 00
16800. 00
12800. 00
13000. 00
1700000
14000. 00

5.25
20000.00
13500. 00
16500.00
13000.00
11000.00
15000, 00
22000, 00
18000.00
14675. 00
10000. 00
15000.00

6.95
16800. 00
10500. 00
35000.00

0
720217
710515
720101
720306
710212
720415
711115
711215
720312
710303
711215
711018
720118
720301
711202
720415
711012
720517
720115
710415
711213

NN eded 3 d ed d B NN =22 ENWWNO R

- D OO0 P OO0 =200000-=20

-

-—

P QT G
WOOWOONNMULEONNDUIO &FOWMUI

- b

(] . . . L] L] * .] L] . [] L] . L[] L] L] L] o L] L]

uoououUuIoNv O OO UIOOWOOULULILUIO

720415
640212
700515
700615
650306
701217
600823
701112
690630
660310
690429
680715
701112
650122
700301
711119
710415
600525
640523
600525
690415
641210

LARSON
LASKER
LEE
LEMBERG
LEWIS
LIGHT
LINDEN
MANDEL
MARIN
MARTIN
MONROE
MOREHEAD
O'CONNORS
OAKDALE
PARKER
PENTEL
QUINLAN
RILEY
RINSLER
ROTH
RUDMAN
SANDERS
SHAMES
SIMON
STARK
SUMNER
VOGELSANG
WAGNER
WARNER
WEISS
WEST
YORK
ZIMMERMAN

38F
4eM
37M
32M
32M
31M
28F
u2M
21M
39M
31F
39M
52M
41M
48Mm
24M
29F
52M
48M
55M
20F
45M
49M
25M
30F
48M
28M
22F
42M
30M
4eM
34M
39M

RRRRUURRRURRURRINVURIRNZZNRNRRNE 2R

WOWN_LOONMN-SONWO=LFTUIOCOENNOOWONOWNOOGO NN

1ACAD
3s0C

4MBA

4MATH
2ELEC
3HIST
3ENGL
2STEN
4MBA

LENGR
3MATH
LENGR
4ENGR
3GEOL
LENGR
5PHYS
4LENGR
LENGR
UMATH
2PLMB
3MATH
2ELEC
3EDUC
S5CHEM
3PHYS
2ELEC
LENGL
2ACAD
3ENGL
4LAW

3MATH
4ARCH
5CHEM

TYP
PHYS

COMM
POLI
EDUC
MATH
POLI
MATH
ENGL
PHYS
BIOL
MATH
PHYS
MATH
MATH
PHYS
PHIL
ACAD
PHYS
COMM

BIOL

COMM

GOVT

ART
MATH

Note that the dates are written in the form

YYMMDD

where the year, month, and day are represented by two-digit integers. For example, 610115

ww--awpwwwmwwwmw-amw—-wmmc—a::-awwwuuw—r

COAANFOEFEFWNAOAFWAWAVIVIa a =wUIO =S NOERAWON &

3.75
9700.00
19500.00
11000,00
6.75
10400.00
7500.00
5.00
9600.00
25400.00
15000.00
13000.00
24000.00
10000.00
38000,00
29000.00
14500.00
22000.00
16800.00
4.50
8500.00
5.50
16000.00
21000.00
13000.00
8.50
12000.00
3.00
14000.00
18500.00
23600,00
5.00
19500.00

710930

0
710514
711015
711107
710209

0

0

0
711213
720412
720315
710615
710609
720101
710915
711215
720412
710315
720430

0
720215
720201
710715
710502
710615
711108

0
720209
711215
720316
711101
720315

specifies January 15, 1961, 690301 specifies March 1, 1969, and so on.

SORT orders the records in a file by ascending numerical or alphabetical order according to

SORT

NNdNNO—DNwNNwONN—iN—i-'w—lN—'-ﬂOOOOONwNON

oo-a—-oooo---oooc--—-—n-t—s—l-n-—-ooo-ao-t-so-l

- -— aud -— b b b

-
OO N0 oounNnvoo;m COWOWOOWMOOOO

-
L] L[] L] L] L] L[]] L] [] L]] L] L] L) L] . * . [] L . L] L . L[] L] L]

-d

- b b

(S, I e Y [+

couuUuUIcCoVNUIOUIOOOUIOUINOUIOOOO OO OoOUVLTWOO W

83

701230
720625
641218
700506
701105
650727
720315
720315
720612
600601
620627
710315
630515
701203
600525
700101
680515
640408
700915
680430
720506
690215
610901
700715
671113
601001
691110
720315
630210
680524
610115
710301
690301

the information in the key fields. To order the records in descending numerical order or reverse
alphabetical order, the user precedes the key field name with a minus sign (—).

The user calls SORT by typing the SORT command directly in the EXECUTIVE. SORT
prompts the user for any missing information; after accepting the complete command, SORT

prints

84

OK.
performs the requested rearrangement of all records, prints
SORT FINISHED.

and returns control to the EXECUTIVE.
The complete form of the SORT command is:

unsorted description output key
—SORT file : file TO file BY field
name name name list

For example:

~SORT PERSONNEL:PDESC TO STDPERSONNEL BY EMP,.NO 5
STDPERSONNEL.. NEW FILE,

OK.

SORT FINISHED.

SORT prompts for missing components when it reads an incomplete command. For example, a
user wants to maintain his master personnel file in numerical order by employee number; the
field in each record which contains employee number information is a key field. Thus, if a user
wishes to sort the records in PERSONNEL by EMP.NO, he may type any of the following
commands
—SORT 5
—SORT PERSONNEL 5
—SORT PERSONNEL:PDESC TO STDPERSONNEL 5,

—SORT PERSONNEL TO _STDPERSONNEL BY EMP.NO >

and SORT prompts for missing information.

SORT permits the user to specify as many as 20 key fields for a single sorting procedure. SORT
performs the sorting according to the order in which the field names appear in the key field list.
The field mentioned first determines the overall arrangement of records. When several records
contain identical data in the first key field, SORT arranges these records by data in the second
key field; when more than one record contains identical information in the first two key fields,
SORT arranges these records by data in the third key field; and so on. For example,

—SORT PERSONNEL:PDESC TO EXAMPLE BY DATE.HIRE,—PROMOTABILITY 5

instructs SORT to sort by DATE.HIRE primarily. Records in EXAMPLE are, therefore, arranged
in DATE. HIRE order; when records have the same DATE.HIRE, they are arranged in descending
numerical order by PROMOTABILITY for that group of equal DATE.HIRE records.

NOTE: Because of the sorting technique used, items which are identical in all key fields may
not appear in the same order as they occurred in the unsorted file. If the original order is
essential, RECNO should be used as the final item in the key field list.

85

Normally, the user specifies an output file on which to write the sorted data. For example, the
previous SORT command instructs SORT to write the sorted records on the file EXAMPLE and
not to change the information saved on PERSONNEL. This procedure is suggested for the initial
sorting of a data file to ensure a backup file. An error in defining fields in the description file,
or writing a data file in EDITOR with multiple blank compression, would instruct SORT to per-
form a meaningless rearrangement of the information in the file.

SORT allows the user to omit an output file, thereby instructing the system to write the results
of the command on the original file. For example,

—SORT PERSONNEL:PDESC BY EMP.NO >

instructs SORT to write the sorted PERSONNEL file on the original PERSONNEL file, thereby
destroying the unsorted data file.

If the user enters an incomplete SORT command, SORT prompts for an output file name to
encourage the user to preserve the original data file. A carriage return in response to the output
file request, however, instructs SORT to write the sorted file on the data file named, destroying
its original contents.

In the example below, the system prompts for each component in the SORT command.

=SORT 5

UNSORTED DATA FROM: PERSONNEL be)

DESCRIPTION FROM: PDESC) The user may type only a carriage return here
SORTED DATA TO: SORTEDPERSONNEL o) if a RETRIEVE structure file corresponding to
SORTEDPERSONNEL.. NEW FILE o PERSONNEL exists in the user’s directory.

NAMES OF KEY FIELDS: EMP.NO-,

OK.

SORT FINISHED.

Note that the system prints the output file name specified, followed by two periods and a NEW
FILE or OLD FILE message. The user confirms the specified file name with a carriage return

or enters a different output file name after typing an alt mode/escape. For example, the user
specifies a different key field, DATE.HIRE, for the sort. The output file, PERSONNELSENIORITY,
contains all the records from PERSONNEL, arranged in chronological order by date of hire. The

file SORTEDPERSONNEL contains the same records, arranged in numerical order by employee
number.

-SORT PERSONNEL:PDESC TO SORTEDPERSONNEL The user mistakenly enters

SORTEDPERSONNEL.. OLD FILEe SORTEDPERSONNEL for

SORTED DATA TO: PERSONNELSENIORITY the output file name and

PERSONNELSENIORITY.. NEW FILE types an alt mode/escape

NAMES OF KEY FIELDS: DATE.HIRE, fo enter a different output
- file name.

OK.

SORT FINISHED.

86

The following examples summarize the various forms and capabilities of the SORT program.

—SORT ABC TO DEF BY FLD9

ABC is a RETRIEVE data base; SORT automatically looks for a corresponding RETRIEVE
structure file to describe the data in ABC. The result of the sort is written on DEF; ABC remains
unchanged. The sorted file must be specified as DEF:ABC'STR.E’ in subsequent commands.

—SORT ABC BY FLD15

The sorted data is written on the file named ABC and can be described automatically in sub-
sequent commands by the corresponding RETRIEVE structure file.

—SORT X:DESCX TO Y BY ABo

More than one key field is used in the sorting task. The file is sorted by A; when A is the same
for several records, these records are ordered by the data in B.

—SORT ACCOUNTS TO OVERDUE BY —BALANCE

The file OVERDUE contains the records arranged in descending order by BALANCE; the
record with the largest balance appears first.

MERGE

The MERGE program combines two sorted files to a single file sorted in the same order. The
form of the MERGE command is:

sorted description IF conditions sorted IF conditions
~MERGE file : file FOR conditions WITH file FOR conditions
name; name name; .
merged key
TO file BY field 5
name list

Note that the two sorted input files must be described by the same description file whose name
follows the first sorted file name, and both sorted input files must contain records sorted on the
key fields specified in the command. With one exception, the items in the key field list are
treated identically in MERGE and SORT: If all items in the key field list are identical for two
records, one in each file, the record in sorted file; is written first on the merged file.

The following example illustrates the use of the MERGE command.

MERGE >
MERGE FILE 1: INDEX]D
FILE DESCRIPTION FROM: DX

CRITERIA FOR FILE 1: SUBJECT STARTS WITH "T"5 If the user does not want
MERGE FILE 2: INDEX25 to enter a conditional
CRITERIA FOR FILE 2: SUBJECT STARTS WITH "T"5 clause, he may respond

with a carriage return.

87

OUTPUT TO: INDEXTD
INDEXT.. NEW FILED
NAMES OF KEY FIELDS: SUBJECT

OK.

64 RECORDS MERGED OF 1810

As with all other IML commands, MERGE does zot prompt for the optional conditional clauses
when another command component appears after the file name. For example:

-MERGE INDEX1 WITH INDEX2 TO NEWINDEXo
NEWINDEX.. NEW FILEo

NAMES OF KEY FIELDS: SUBJECT MERGE prompts only for the required components
DATA DESCRIPTION FILE: DX5 that are missing from the command,
OK .

1810 RECORDS MERGED OF 1810

SELECT AND PURGE

The SELECT command offers an easy-to-use procedure for retrieving information in a data
file. The complementary PURGE command permits deletion of specific records from a data file.
Both SELECT and PURGE have identical command forms and capabilities, the only difference
being that SELECT retrieves specified records, whereas PURGE deletes specified records in a
data file.

This discussion details the SELECT and PURGE commands in two ways: using only a data
file and using both a data and activity file. The following pages provide complete documentation
of the commands, including options and examples.

Both SELECT and PURGE include an important optional feature for reformatting the records
in the output file. The user may request that output records contain only specific fields by
following the output file name with a colon (:) and a list of field names separated by commas.
For example, the user specifies three fields of interest in the selected records:

88

-SELECT FROM PERSONNEL:PDESC IF AREA HAS "CHEM" TO T:NAME,2B,DEPT,
2B,RATING

OK.

NAME DEPT RATING
DURBAN 4 2
GOOD 2 1
SIMON 5 2
ZIMMERMAN 2 2

4 RECORDS SELECTED FROM 55

Similarly, a PURGE command, for example,

—PURGE FROM PERSONNEL:PDESC IF DEPT NOT=1 TO DEPTI1PERSONNEL:~
NAME,2B,EMP.NO,2B,AREA,2B,AREA2,2B,SALARY,CR

produces an output file named DEPT1PERSONNEL, which contains records consisting of NAME,
EMP.NO, AREA, AREA2, and SALARY.

For reformatting output records, any of the items listed below may appear in the field list
which follows the output file name.

Item Meaning
field name Prints specified field information.
“text” Prints text enclosed in single or double quote marks.
nB Prints n blanks.
n“text” Prints text enclosed in single or double quote marks n times.
RECNO Prints original sequence number of data record.
LENGTH Prints original length of data record.
CR Terminates logical line.
LF Continues logical line onto next physical line.
utility date field Prints requested date or time information.

89

NOTE: An automatic carriage return is printed at the end of each output record when the
output file is the terminal and reformatting is specified. When reformatting and writing the out-
put on a file, bowever, the user must specify CR in all cases to include a carriage return at the
end of a record. See page 151 for further discussion of the reformatting capability in IML.

Using a Single Data File

When the user wants to select or purge records from a file according to field information in the
record itself, he may type a command of the form:

_ISELECTI FROM ‘fii*l‘za . ?i‘l’:“‘f’""“ IF conditions | o e P
PURGE ’ FOR conditions
name name name

Required Components

Only data file, description file, and output file names are required. An IF clause is needed,
however, to qualify which records in the data file are to be selected or deleted. For example, in
our personnel application, the user enters an IF clause which specifies the employee numbers
of the persons who no longer work for the company; to delete all such records in PERSONNEL,
the user types

—PURGE FROM PERSONNEL:PDESC IF EMP.NO=27 OR 99 OR 117 3
TO UPDPERSONNEL

in the EXECUTIVE. The output file, UPDPERSONNEL, contains all the records of the original
PERSONNEL file except those which have 27, 99, or 117 for EMP.NO.

When the user omits an IF clause, all records qualify for the operation. For example:

-SELECT FROM PERSONNEL:PDESC TO DUPPERSONNEL 5
DUPPERSONNEL.. NEW FILE,

OK.

55 RECORDS SELECTED FROM 55

When an IF clause appears in the SELECT command, however, only the records which qualify
are selected. The example below shows the same command as above executed with an IF clause
specifying several conditions for selection.!

1 — The capabilities and construction of IF clauses are explained in detail on page 20.

90

-SELECT FROM PERSONNEL:PDESC IF AREA HAS "PHYS" AND (RATING=1 OR 2) 5

AND PROMOTABILITY=1,

OUTPUT TO: T The system prompts for the required output file name.

OK.
AREA

CUMMINGS 80 29M M 2 5PHYS

GOLDEN 70 29M D 2 5PHYS
KNIGHT L4 4OF D 3 U4PHYS
PENTEL 68 24M S 0 5PHYS

4 RECORDS SELECTED FROM 55

Optional Components

MATH
MATH
MATH
MATH

wwun

RATING PROMOTABILITY

20000.00 711115 1 1 15,0 701112
18000.00 720301 1 1 12.2 700301
35000.00 711213 2 1 9.5 641210
29000.00 710915 1 1 10.2 700101

The complete form of the SELECT or PURGE command for a single file, including optional

components, is:

data description . output
_ SELECTI . e IF conditions . g .
|PUR "] [PRIME] FROM file : file pogondiions | 1O file . field list
name name name
key complementary
BY field OTHERS TO °“tPU >

file
name

list

The user may enter a BY clause after the output file name to request a simultaneous sequence

check of the records in the data file. For example,

—SELECT FROM PERSONNEL:PDESC TO T BY EMP.NO,

checks that each successive record is in numerical order by EMP.NO. The command aborts when
a record is out of sequence and the output file, in this example, the terminal, would show the
results of SELECT to that point. Similarly, the user may include a BY clause with a PURGE com-

mand. For example,

—PURGE FROM PERSONNEL:PDESC IF EMP.NO=27 OR 99 OR 117 3
TO UPDPERSONNEL BY EMP.NO 5

instructs PURGE to check that records are in EMP.NO order in the PERSONNEL file while it

performs the specified deletions.

An OTHERS clause may appear at the end of the SELECT command to write the records
which are not selected on a second output file. For example,

—SELECT FROM PERSONNEL:PDESC IF DATE.HIRE<700101

TO SENIORPERSONNEL OTHERS TO JUNIORPERSONNEL

91

simultaneously creates two output files: SENIORPERSONNEL contains the selected records
which indicate a date of hire prior to January 1, 1970, and JUNIORPERSONNEL contains all
other records from PERSONNEL. Similarly, an OTHERS clause may appear at the end of the
PURGE command to write the deleted records on a separate file. For example,

—PURGE FROM PERSONNEL:PDESC IF EMP.NO=27 OR 99 OR 117 !

TO UPDPERSONNEL OTHERS TO TERMINATEDPERSONNEL >

creates two output files: UPDPERSONNEL is the updated personnel file, and
TERMINATEDPERSONNEL contains the records of employees just removed from the data file.

NOTE: If the user reformats the output records, the complementary output file is also refor-
matted. For example:

—SELECT FROM PERSONNEL:PDESC IF DATE.HIRE<700101
TO SENIORPERSONNEL:EMP.NO,NAME,DEPT,CR OTHERS TO JUNIORPERSONNEL -

Both output files, SENIORPERSONNEL and JUNIORPERSONNEL, are reformatted to contain
only three fields and a carriage return per record.

The PRIME option is available to select or purge only the first of several qualifying records
which contain identical key field data. The BY clause must also appear in the command to
specify the fields to check for duplicate information. For example, the command below uses
the PRIME option to select one qualifying record for each area of specialization. The qualifying
condition is that RATING must equal 1.

=SELECT [PRIME] FROM PERSONNELSTD:PDESC IF RATING=1 TO T BY AREA)

OK.
ARFEA RATING
'

CLOUTIER 9 60F D 2 1ACAD ART 3 8 5.25 720415 1 0 8.3 600823
GOOD 88 26F S 0 UCHEM ACCT 2 6 14675.00 711202 1 1 7.0 711119
HANSON 87 35F M 0 3EDUC ACAD 5 4 10000.00 720415 1 1 8.5 710415
HUGHES 42 29M D 2 2ELEC ACAD 3 3 6.95 720517 1 0 8.5 640523
VOGELSANG 65 28M M 0 U4ENGL 2 4 12000.00 711108 1 0 10.0 691110
RILEY 39 52M M 5 4ENGR PHYS 1 5 22000.00 720412 1 1 10.0 640408
WEST 26 46M M 3 3MATH 1 6 23600,00 720316 1 1 12.5 610115
FLOYD 77 27F S 0 4MBA ACCT 2 2 15000.00 711018 1 1 14.0 701112
PENTEL 68 24M S 0 5PHYS MATH 3 1 29000.00 710915 1 1 10.2 700101

9 RECORDS SELECTED FROM 55

The PRIME option with the PURGE command is very useful for locating records with
duplicate information in a specific field or fields. For example,

—PURGE [PRIME] FROM PERSONNEL:PDESC TO DUPLICATES BY EMP.NO -

creates a file, DUPLICATES, which contains any records with employee numbers that appear
more than once in a data file. If PERSONNEL does not contain duplicate EMP.NO information

in the records, the output file, DUPLICATES is blank; that is, all records were deleted.

92

NOTE: When using the PRIME option, the user first must sort the data file on the fields to be

specified in the BY clause of the SELECT or PURGE command. If the original record arrange-

ment in the data file is relevant, the user should include RECNO as the last field for the sort.

SELECT and PURGE allow the user to work with an activity file in the selecting or purging

Using a Data and Activity File

procedure. The activity file contains records which specify the data file records to be selected or
purged. For example, a file named LIST contains employee numbers of specific employees
whose records the user wishes to examine.

~TYPE LIST,

13 Note that this employee number does not exist in the PERSONNEL file.

35
46

The LIST file is sorted by EMP.NO. Since the records of the data and activity files must be
arranged in the same order, the user first sorts the PERSONNEL file in EMP.NO order. Then,
the user types a SELECT command which uses LIST as an activity file to locate the desired
records in the data file.

-SORT PERSONNEL:PDESC BY EMP.NOD

OK.

SORT FINISHED.

-SELECT LIST:LDESC FROM PERSONNEL:PDESC TO T BY EMP.NO 5

OK.

O'CONNORS 35
FULMER ue
QUINLAN 55
BOSUNG 73
FLOYD 77
YORK 85
MOREHEAD 86
MARIN 94

52M
29F
29F
39M
27F
34M
39M
21M

nnZnonn
ooooOowWoonwNn

LENGR
SMATH
4ENGR
4PHYS
4MBA

4ARCH
4ENGR
4MBA

BIOL
MBA

MATH
MATH
ACCT
ART

PHYS
POLI

FUOwWNMDUTULIEWL

NUTONNUI

24000.00
22000.00
14500.00
13000.00
15000.00
5.00
13000.00
9600.00

710615
720118
711215
720101
711018
711101
720315

0

ONNDWN=

O OO =bd

- b b
oo+l O
e o o o o o o o

oocoouUVMULo O

630515
650122
680515
700615
701112
710301
710315
720612

93

8 RECORDS SELECTED FROM 55
1 RECORDS OF LIST FILE NOT FOUND IN PERSONNEL This message refers to
employee number 13.

The SELECT and PURGE commands may operate on binary and symbolic files at the same
time. Numeric-type key fields need not have identical data types in the description files. The user
may specify a binary data file and a symbolic activity file, a symbolic data file and a binary
activity file, a symbolic data file and a symbolic activity file, or a binary data file and a binary
activity file in a SELECT or PURGE command. The resulting output file is always the same file
type as the data file.

Specifying an identical data type in the data and activity description files is not needed when
working with a numeric-type key field in a BY clause. An I-, R-, D-, or N-type field in one file
can be matched to an I-, R-, D-, or N-type field in the other file. A C-type field in one file, however,
must be matched to a C-type field in the other file. In all cases, a key field must have the identical
name in both description files.

Required Components

When working with an activity file, the BY clause is an essential component. In addition to
specifying the record sequence for both files, the BY clause states the key field or fields that
appear in both the data and activity records to determine a match for selecting or deleting records.

The general form of the SELECT or PURGE command is:

SELECT activity description data description output key
- file : file FROM file : file TO file BY field
PURGE .
name name name name name list

For example, the user has an activity file named TERMINATION S, which contains a record
for each terminated employee, specifying the name and employee number.

=TYPE TERMINATIONS 5

LIGHT 50
OAKDALE 81
CLIFF 83

The user wants to update the PERSONNEL data file by deleting the records of terminated
employees. He uses TERMINATIONS as an activity file in the PURGE command, specifying
that a data and activity record must match on EMP.NO for the data record to be deleted.

94

~PURGE TERMINATIONS:TDESC FROM PERSONNEL:PDESC TO REVPERSONNEL -

BY EMP.NO,
REVPERSONNEL.. NEW FILEs

OK.

3 RECORDS PURGED FROM 55

The output file, REVPERSONNEL, contains all the records in PERSONNEL minus the deleted
records specified in TERMINATIONS.

Optional Components

The complete form of the SELECT or PURGE command is:

activity description

SELECT g IF conditions I
‘PURGEI [SINGLE] f:';fne : f:;;e FOR conditions
data description .. output . .o
. IF conditions 8 . IF interfile conditions
FROM f:;;e i f::ne FOR conditions TO fll:ine : field list FOR interfile conditions
ke complementary
BY field OTHERS TO ‘f’.‘l’tp“t >
list re
name

The user may include IF clauses at three places in the command.! Records in either file can be
screened by placing an IF clause after the file specification. Also, the output records may be
qualified by comparing fields from the data and activity records in an interfile IF clause. Then
the output file contains only records which meet all criteria.

For example, assume an activity file named REVIEWS contains, in each record, EMP.NO,
REV.DATE, and NEWRATING. Assume RDESC is the name of its description file. The user
wants to select records from PERSONNEL for those employees who had recent reviews, later
than May 15, 1972 (720515), and whose new rating differs from the current rating in the
data file by two or more points. He makes the desired selection by specifying two 1F clauses, as
follows:

—SELECT REVIEWS:RDESC IF REV.DATE>720515 FROM PERSONNEL:PDESC —
TO T IF NEWRATING:A—RATING:D>1 OR RATING:D—NEWRATING:A>1
BY EMP.NO 5

The first IF clause instructs SELECT to use only the activity records whose REV.DATE indicates
a date after May 15, 1972. The last IF clause illustrates interfile conditions. The user wants to
select the employee’s record when there is a discrepancy of more than one point between the new
and old ratings. Therefore, SELECT prints on the terminal (T is the output file specified)

1 — IF clauses are explained and illustrated in complete detail on page 20.

95

PERSONNEL records for employees who had recent reviews and receiving ratings of two or more
points higher or lower than their last rating.

An OTHERS clause may appear at the end of the command to write the records from the data
file which do not appear in the output file. The user requests the complementary output file
in the same manner as described on page 90 for SELECT and PURGE with a single data file.

The SINGLE option in a SELECT or PURGE command matches an activity record with a
single data record; normally, an activity record can match several data records.! For example, an
activity file, SKILLS, contains records specifying areas of specialization and maximum acceptable
ratings (1 is the highest).

=TYPE SKILLS >

CHEM 3
MATH 1
MBA 3
PHYS 2

The user wants to select one record from the PERSONNEL data file for each activity record.
First, he sorts the PERSONNEL file by AREA and within AREA by RATING.

-SORT PERSONNEL:PDESC TO SKPERSONNEL BY AREA,RATING 5
SKPERSONNEL.. NEW FILE)

OK.

SORT FINISHED.

Now the user enters his SELECT command, specifying two IF clauses to qualify operations:
First, data records with ratings of 0 are excluded from the command procedure, second, the
rating in a selected data record must be equal to or less than the maximum rating in the matching
activity record.

-SELECT [SINGLE] SKILLS:SDESC FROM SKPERSONNEL:PDESC IF RATING#0 !
TO T:NAME,3B,AREA,2B,RATING IF RATING:D <= RATING:A BY AREA ,

OK.

GOOD CHEM 1
FULMER MATH 1
FLOYD MBA 1
CUMMINGS PHYS 1

4 RECORDS SELECTED FROM 55

1 — See page 17 for an explanation of the data and activity record matching procedure.

96

Note the different output when the SINGLE option is omitted.

-SELECT SKILLS:SDESC FROM SKPERSONNEL:PDESC IF RATING#0

TO T:NAME,3B,AREA,2B,RATING IF RATING:D <= RATING:A BY AREA ,

OK.

GOOD CHEM
SIMON CHEM
ZIMMERMAN CHEM
DURBAN CHEM
FULMER MATH
MONROE MATH
WEST MATH
FLOYD MBA

ELBERT MBA

LEE MBA

AVERY MBA

CUMMINGS PHYS
GOLDEN PHYS
PENTEL PHYS
KNIGHT PHYS

N2 a@a@a DN adaa DN

15 RECORDS SELECTED FROM 55

The data file, SKPERSONNEL, is sorted primarily by AREA, because the data and activity files
must be arranged by the key field; it is sorted by RATING within AREA so that the matching
data record with the best rating appears first. Therefore, when the SINGLE option is used, the
data record with the best rating is selected.

Two conditional clauses which are available for use with the SELECT and PURGE commands,
and any other IML commands, are the FINISHING and the ABORTING clauses. The following
table summarizes the effect of each of these conditional clauses when the given clause is true.

Conditional Clause

When Condition(s) True for Current Record

IF ..
FINISHING IFOR conditions

IF

FOR‘ conditions

ABORTING |

Command procedure terminates. The output file contains the results
to this point.

Command procedure halts immediately.

It is suggested that the user specify an IF or FOR clause last when more than one conditional
clause is desired; otherwise, an ABORTING or FINISHING clause may be ignored when true.

NOTE: When the first conditional clause is true, any other conditional clauses for the same file

are ignored.

97

REPLACE
The REPLACE command offers a simple procedure for replacing one or more fields in a record
and for replacing entire records in a data file. The REPLACE command always uses an activity
file; it contains the information to substitute as well as the key field information to locate the
relevant records in the data file.

Substituting Entire Records

The general form of the REPLACE command used for substituting entire records is:

data description activity description output key
—REPLACE file : file WITH file : file TO file BY field 2
name _ name name name name list

Both the data and activity files should be described by the same description file.

In the example below, a file named CORRECTIONS is used as an activity file; it contains new
records for certain employees in the PERSONNEL data file.

-TYPE CORRECTIONS,

GOLDEN 70 29M D 2 S5ENGR PHYS 10 3 18000.00 720301 1 1 12.2 700301
MOREHEAD 86 39M M 1 4ENGR PHYS 12 8 13000.00 720315 2 1 10.0 710315

~REPLACE PERSONNEL:PDESC WITH CORRECTIONS:PDESC TO CORRPERSONNEL -
BY EMP.NO,
CORRPERSONNEL.. NEW FILE,

OK.

2 RECORDS REPLACED OF 55

The output file, CORRPERSONNEL, contains all the records from PERSONNEL and reflects the
substitutions.

Substituting Specific Fields

The user may type a different form of the REPLACE command to replace specific fields
within a record, rather than replace the entire record.

The general form of the REPLACE command used for substituting specific fields in the data
file records is:

98

data description activity description
—REPLACE file : file WITH file : file
name _ name name name
output data data key
TO file . field WITH description , field WITH description ,... BY field
name name name list

The word description appearing after WITH may be any of the following:

® One or more characters
® A number

® A utility field name

® An activity field name

The output file name is followed by a colon, and the data record fields to be replaced by
“description” fields are specified. This information appears only when substituting fields within
the records.

NOTE: The data and activity fields need not contain the same type of data; that is, the fields
may be of different data types (binary or symbolic). Output files created with the REPLACE
command are always the same file type as the data file. Similarly, specifying identical data types
in the data and activity description files is not necessary when working with a numeric-type key
field in a BY clause. A C-type field in one file, bowever, must be matched to a C-type field in the
other file. In all cases, a key field must have the identical name in both description files.

For example, a file named REVIEWS contains records for particular employees, which specify
current information on salary reviews.

-TYPE REVIEWS ,

35 720515 27000.00
45 720515 23500.00
53 720515 15000.00
62 720515 12000.00
63 720525 16500.00
72 720515 16500.00
75 720515 20000.00

-d wd N ad D) =B -
- oD O b b =D

The file RDESC contains the description of the data stored on REVIEWS.
-TYPE RDESC 5

$$$
***BIN OR SYM:

S

***FIX OR VAR:

v

***WHICH TYPE:

L

***NUMBER OF LINES PER RECORD IS:
1

99

NAME, TYPE, START, LENGTH, DECIMAL PLACES
EMP.NO,N,1,4

REV.DATE,N,6,6

NEWSALARY,N,.,10,2

RATING,N, .,2

PROMOTABILITY,N,.,2

Each record contains an employee number and four fields related to an employee’s review. To
update the PERSONNEL file with the data in REVIEWS, the user types:

=REPLACE PERSONNEL:PDESC WITH REVIEWS:RDESC TO CURRENT:LAST.REV WITH 3
REV,DATE, SALARY WITH NEWSALARY, RATING WITH RATING ¢ PROMOTABILITY -
WITH PROMOTABILITY BY EMP.NO

CURRENT.. NEW FILE,

OK.

7 RECORDS REPLACED OF 55

Optional Components

The complete general form of the REPLACE command is:

data description

—REPLACE [SINGLE] file : file
name _ name

IF conditions
FOR conditions

activi description output data
p p

WITH file : file IF conditions | 1 g™ | g
FOR conditions
name name name name
data
WITH description , field WITH description ,...
‘ name
key

IF interfile conditions .
FOR interfile conditions BY fil:tldp

The user may type an IF clause at three places in the command.! An IF clause can qualify the
data records to be replaced, the activity records to be substituted, or it can qualify the execution
of the REPLACE command by comparing a field in the data record with a field in the matching

activity record.

1 — Refer to page 20 for a discussion of IF clauses.

100

The following examples illustrate the use of IF clauses for these three purposes. The command

_REPLACE PERSONNEL:PDESC IF JOB>10 WITH NEWJOBCODES:NDESC -
TO NEWPERSONNEL:JOB WITH NEWCODE BY EMP.NO -

concerns only data records for which JOB>10 is true. Other data records are not altered by the
command and appear unchanged in the output file. Similarly, the command

—REPLACE PERSONNEL:PDESC WITH REV:RDESC IF REV.DATE<730101 7
TO REVPERSONNEL BY EMP.NO,

uses only the activity records which specify a review date before January 1, 1973.
The interfile IF clause appears after the output file specification. For example,

—REPLACE PERSONNEL:PDESC WITH NEWJOBCODES:NDESC
TO NEWPERSONNEL:JOB WITH NEWCODE IF JOB:D>NEWCODE:A BY EMP.NO,

compares JOB in the data record with NEWCODE in the matching activity record. When JOB is
not greater than NEWCODE, the replacement is not performed and the output record is the
unchanged data record. When the condition is true, the replacement takes place in the data record.

The SINGLE option allows the user to update several data records containing identical key
fields, each with a single matching activity record. Normally, all such data records are updated
with only the first matching activity record. See page 17 for further explanation of the SINGLE
option.

UPDATE

The UPDATE command offers an important capability in the Information Management
Library. It allows the user to manipulate information by specifying arithmetic and replacement
operations, as desired. The user accesses UPDATE directly from the EXECUTIVE by typing
the UPDATE command followed by a carriage return.

The discussion below explains the use of UPDATE in several parts. First, a sample problem
illustrates the use of UPDATE to handle the various calculations required in computing the
weekly wages for hourly and salaried employees. The built-in flexibility and power of UPDATE
is demonstrated with this simplified example. Next, an explanation of UPDATE with an activity
file is presented, detailing the required and optional command components. Using UPDATE
with only a data file is discussed next. Finally, the structure of an UPDATE rules file is presented.

It is suggested that users who are unfamiliar with IML rules files refer to pages 27 through 41
before proceeding with the UPDATE discussion.

Sample Problem

The sample problem uses UPDATE to perform a simple computation of weekly wages for the
employees in a small company. "

The data file, WEEKLYHOURS, contains the following information for each employee:

101

Field Name Field Contents
EMP.NO Employee number.
RATE H indicates hourly; A indicates annual.
HOURS Hours worked during previous week.
WAGES Weekly wages. This field is blank

before the UPDATE command is given.

In our example, the data file contains records for 15 employees. Each record contains four
fields related to the given employee.

=TYPE WEEKLYHOURS >

1A 40
2 A 40
9 H 40
39 A 40
42 H 45
49 A 40
53 A 40
54 H 35
56 A 40
63 A 40
65 R 40
68 A 40
76 H 40
80 A 40
84 H 40

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

Note the invalid rate code of R in this record.

A description file, WDESC, describes the characteristics of the data file.

~-TYPE WDESC -

$$$

***BIN OR SYM:

S

***FIX OR VAR:

A

***WHICH TYPE:

L

***NUMBER OF LINES PER RECORD IS:

1

¥ NAME,
EMP.NO,N, 1,4
RATE,C,6, 1
HOURS, N, 8,2

TYPE,

WAGES,N,11,6,2

START, LENGTH, DECIMAL PLACES

102

PERSONNELT1 is the company’s personnel data file; it contains all employee data, including

salary.! The description file named PDESC describes the data stored in PERSONNELT1. It is

listed on page 81.

-TYPE PERSONNEL1 5

PARKER
HARTMAN
CLOUTIER
RILEY
HUGHES
CHEVES
STARK
ROTH
WEISS
ELBERT

VOGELSANG

PENTEL
LEWIS
CUMMINGS
LARSON

EMP.NO

1
1

2

9
39
u2
49
53
54
56
63
65
68
76
80
84

4sM
43F
60F
52M
29M
39M
30F
55M
30M
51M
28M
24M
32M
29M
38F

RN URRIUORUUOR

NN OOWN=SaWNDUIND 2 F

LENGR
3ENGL
1ACAD
LENGR
2ELEC
4LENGR
3PHYS
2PLMB
ULAW

4LMBA

4ENGL
SPHYS

2ELEC

5PHYS
1ACAD

PHYS
STEN
ART

PHYS
ACAD
MATH

ACAD
GOVT
ACCT

MATH
COMM
MATH
TYP

SN WWNWUIN =2 W=W=a

O =W=2FEMNMNNNWIUNWLIO & =

SALARY

'
38000.00
15000.00

5.25
22000,00
6.95
17000.00
13000.00
4.50
18500.00
13000.00
12000.00
29000.00
6.75
20000.00
3.75

720101
711012
720415
720412
720517
720306
710502
720430
711215
710303
711108
710915
711107
711115
710930

N2 N a3 a2 DN NNDWN D wd

- DB O O O =200 =200=

-— D =D

P

- b

-
ANMTUOONIODOUIOWMO WO O

In our example, PERSONNELL is used as an activity file, because the specific data from its
SALARY field is needed to compute the wages for the WEEKLYHOURS data file.

The actual UPDATE command is typed directly in the EXECUTIVE. It specifies the com-
ponents required for the updating procedure: the data file, WEEKLYHOURS; its description file,

WDESC; the activity file, PERSONNEL1; its description file, PDESC; an output file,

WEEKLYWAGES, to contain the updated version of the data file; a key field, EMP.NO, to
match an activity record with the relevant data record; and the name of the rules file,
WAGERULES. The user may specify the required information with a single command; other-

wise, UPDATE prompts for the needed information. The output on the following pages shows

the execution and results of a single UPDATE command.

nuounmoOoanUIoUoUNMOoO WO O

600525
600525
600823
640408
640523
650306
671113
680430
680524
690429
691110
700101
701105
701112
701230

~UPDATE WEEKLYHOURS:WDESC WITH PERSONNEL1:PDESC TO WEEKLYWAGES 7

BY EMP.NO AS PER WAGERULES ,

This section is executed before any records are processed.

TYPE "BE PREPARED TO REENTER RATE CODE INFORMATION"
TYPE “IF AN ERROR IS ENCOUNTERED IN THE UPDATING PROCEDURE.",CR

Before seeking a matching activity record, the user wants to check the rate code in the data record.

|Hl

OR

lAl"

TYPE "PLEASE REENTER RATE CODE FOR EMPLOYEE #",EMP.NO,"

¢ LISTH The rules are listed for the purpose of the example.
10 DECLARE

20 TOTAL.WAGES,R,9,2

30 INITIAL

40

50

60 BEFORE

70 IF RATE NOT = "H" AND "A"
75 TYPE "RATE CODE MUST BE
80

85 INPUT RATE

1 — For this example, the PERSONNEL data file is shortened from 55 records and named PERSONNEL1.

¢ ",NCR

103

88 TYPE CR,CR,CR

90 MATCHED

100 IF RATE="H"

110 IF.1 HOURS>40; 4O*SALARY:A + (HOURS=-U40)*SALARY:A*1.5
TO WAGES The wage is computed for those who worked overtime.

120 ELSE.1 SALARY:A*HOURS TO WAGES The wage is computed for the

130 ORIF RATE="A" rest of the hourly employees.

140 SALARY:A/52 TO WAGES The wage is computed for salaried employees.

150 ELSE The following rules are executed if the rate code is not H or A.

160 TYPE "RATE CODE STILL INCORRECT"

170 TYPE "WAGES NOT COMPUTED FOR EMPLOYEE#" ,EMP.NO,CR,CR

180 AFTER After the matching procedure, the cumulative wage total is updated.

190 WAGES + TOTAL.WAGES TO TOTAL.WAGES

200 FINAL This section is executed after all records are processed.

210 TYPE "TOTAL WAGES COMPUTED ON ", aDATE, ":", TOTAL.WAGES

: RUN, The user executes the updating procedure.

WEEKLYWAGES.. NEW FILE)

OK.

BE PREPARED TO REENTER RATE CODE INFORMATION
IF AN ERROR IS ENCOUNTERED IN THE UPDATING PROCEDURE.

RATE CODE MUST BE 'H' OR 'A!
PLEASE REENTER RATE CODE FOR EMPLOYEE # 65: A,

TOTAL WAGES COMPUTED ON 10/29/72: 4915.71

15 RECORDS UPDATED OF 15

The output file, WEEKLYWAGES, has the identical format of the data file, WEEKLYHOURS.
It contains all the records in the data file and reflects the updating performed to compute weekly
wages.

-TYPE WEEKLYWAGES ,

1 A 40 730.77
2 A 40 288,46
9 H 40 210.00
39 A 40 423,08
42 H 45 330.13
49 A 40 326.92
53 A 40 250,00
54 H 35 157.50

104

56 A 40 355.77
63 A 40 250.00
65 A 40 230.77
68 A U0 557.69
76 H 40 270,00
80 A 40 384.62
84 H 40 150.00

Note that WEEKLYHOURS and PERSONNELT1 are not deleted and still contain the original
information.

Using a Data and Activity File

The following discussion concerns UPDATE using an optional activity file in the updating
process. The shortened command form for updating with a single file is presented on page 105.

The complete general form of the UPDATE command is:

[SINGLE] l g;l‘;a .;iifescnptlon IF conditions

- TE
UPDA ‘[MULTIPLE] FOR conditions

name name

activity description

. IF conditions }
WITH file : file FOR conditions
name name
output key rules

. IF interfile conditions l . .
TO file FOR interfile conditions BY field AS PER file 2

name list name

The command instructs UPDATE to update a data file, using information in an activity file.
UPDATE creates a new data file which contains an updated record for each record in the original
data file. Many of the command components specify information required for any updating;
other components are optional. The required and optional components are discussed below.

NOTE: The data and activity files need not contain the same type of data; that is, the files
may be of different data types (binary or symbolic). Output files created with the UPDATE
command are always the same file type as the data file. Similarly, specifying identical data types
in the data and activity description files is not necessary when working with a numeric-type
key field in a BY clause. A C-type field in one file, bowever, must be matched to a C-type field
in the otber file. In all cases, a key field must bave the identical name in both description files.

Required Components

The general form of the UPDATE command, including all required components, is:

data description activity description output key rules
—UPDATE file : file WITH file : file TO file BY field AS PER file 2
name _ name name name name list name

105

The user specifies the rules file name as T (for terminal) to enter the rules file statements
initially.! The user may omit a description file name if a RETRIEVE structure file corresponding
to the specified data or activity file exists in the user’s directory.

Optional Components

The SINGLE and MULTIPLE options and the IF clauses are the optional components in the
UPDATE command. See page 104 for the complete general command form which shows the
location of all optional components. The purpose of each optional component is explained below.

Using IF clauses, the user may specify conditions to screen the records in a file. Records that
do not meet the conditions are excluded from command operation. For example,

—UPDATE WEEKLYHOURS:WDESC IF RATE=“H” OR “A” WITH PERSONNEL1:PDESC

TO WAGES BY EMP.NO AS PER WAGERULES 5

updates only those records which contain an A or H in the RATE field; records without an A or
H for RATE appear unchanged in the output file.

Three IF clauses may appear in the UPDATE command, enabling the user to screen data,
activity, and output records from the command procedure. For complete instructions and capa-
bilities of the IF clauses, refer to page 20.

The SINGLE option makes it possible to update several data records containing identical key
field information, each with a matching activity record. Only one matching activity record
updates a data record; then the next matching activity record updates the next data record.
Normally, all matching activity records update the first matching data record, and any subsequent
data records with the same key field data are not updated with an activity record. See page 18
for an illustration of the matching procedure with the SINGLE option.

The MULTIPLE option provides an alternative method (to the SINGLE option) for matching
data and activity records in the UPDATE procedure. Normally all activity records which specify
the same key field data are used to update the first matching data record. When the MULTIPLE
option is specified, a single activity record is used to update all data records that specify the same
key field data. Refer to page 19 for an illustration of the matching procedure with the MULTIPLE
option.

Using a Single Data File

UPDATE allows the user to update information in a file without using an activity file. In this
situation, the form of the command is:

data description IF diti output rules
—UPDATE file : file conaitions 1 1o file AS PER file 2
FOR conditions
name name name name

For example, to update all the records in a file named INVENTORY according to the rules on
SUBRULES, the command is:

—UPDATE INVENTORY:DESC TO UPDATED AS PER SUBRULES

The IF clause is optional. When used, it qualifies the records for the command procedure. For
example, to perform the same task as above, but only for records which have a code of 1, the
user types:

1 — Complete documentation of rules files begins on page 27.

106

—UPDATE INVENTORY:DESC IF CODE=1 TO UPDATED AS PER SUBRULES>

A BY clause may be included in the command after the output file name to request that
UPDATE check the sequence of the records on a key field or fields. For example, to perform the
same updating task as above, but also to check that the records are in PARTNO order, the
user types:

—UPDATE INVENTORY:DESC IF CODE=1 TO SEQUPD BY PARTNO AS PER SUBRULES

Note that if the qualified records are not in PARTNO order, UPDATE so informs the user and
aborts the command.

Structure of an UPDATE Rules File

The statements in an UPDATE rules file may be divided into as many as six sections, depending
on the user’s requirements and whether an activity file is used.! The table below presents the six
sections available; each section is discussed following the table.

Section Purpose
DECLARE Creates working storage.
INITIAL Assigns starting values to declared fields. If necessary, prints introductory messages.
BEFORE Used with an activity file. Performs specified rules on data record before secking a

matching activity record.

MATCHED Performs specified rules on data record, using matching activity record when activity file
or in use, or performs specified rules on data record when no activity file in use.

DETAILS

AFTER Used with an activity file. Performs specified rules on data record after activity file pro-

cedure whether or not a matching activity record was found.

FINAL After all records are processed, performs and prints final calculations of declared fields
and prints final messages.

NOTE: The rules file may contain all or some of the sections; bowever, the sections must
appear in the file in the order shown above. The BEFORE and AFTER sections are used only
with an activity file. When no section name appears at the start of the rules file, UPDATE
assumes it is the MATCHED or DETAILS section. The words MATCHED and DETAILS may be
used interchangeably.

The DECLARE Section

The DECLARE section allows creation of working storage. It specifies new fields which do not
exist in the input records, but which can be used to save data from records or calculations. For
example,

1 - Rules file statements are presented on page 32.

107

10 DECLARE

20 TOTAL.WAGES,R,9,2

30 BASE,LS

creates two new fields for use during the updating procedure.

The user may declare as many fields as desired, the only limitation being that a maximum of
100 lines is permitted in a rules file.

The form used to specify new fields is:
field name,data type,field length,decimal places

Note that only one field declaration may appear on a line.

The field name may contain as many as 31 characters; must begin with a letter; and may be
any combination of letters, the digits O through 9, the period (.), and the character @. See
page 47 for a list of reserved field names.

The data type may be C, N, I, R, or D. The data type includes the contents of the field, as
follows:

Data Type Meaning
C Character data
N Numeric data
I Integer number
R Real number
D Double precision number

NOTE: With declared fields, the data types I, R, and D do not indicate binary data, but rather
specify the most efficient storage for an integer, real, or double precision number, respectively.

The field length specifies the maximum number of characters needed to write the data in
symbolic form.

The decimal places specification is necessary only for those fields that are to contain numbers
with decimal points; it specifies the maximum number of digits to the right of the decimal point.

NOTE: Declared numeric fields are automatically initialized to zero; declared character fields
are initialized to blanks.

Refer to page 141 for a description of the ROUNDIN and ROUNDOUT statements which may
be used to round numeric and/or arithmetic data to conform to the field descriptions.

The INITIAL Section

The INITIAL section is executed at the beginning of the updating procedure, before any

records are processed. Data and activity fields, therefore, may not be specified in this section. The
user may assign starting values for declared fields in this section. For example,

108

40 INITIAL
50 100 TO BASE

assigns an initial value of 100 to a declared field named BASE. It is also possible to assign initial
values to declared fields directly at the terminal, using an INPUT statement.! For example,

50 INITIAL
60 TYPE “PLEASE ENTER THE BASE VALUE”
70 INPUT BASE

assigns the value entered at the terminal to BASE.
The INITIAL section may also be used for printing introductory remarks. For example:

30 INITIAL
40 TYPE “BE PREPARED TO REENTER RATE CODE INFORMATION”

The BEFORE Section

The user may include the BEFORE section only when an activity file is used. The section
contains rules to be executed for the data record being processed before a matching activity
record is sought. Activity fields, therefore, may not appear in the BEFORE section.

The BEFORE section may specify any valid control and instruction statements to check and/or
perform calculations on the data record fields. For example, the user wants to check the contents
of the RATE field before using an activity record (in the MATCHED or DETAILS section, dis-
cussed below) to perform calculations based on the RATE data.

60 BEFORE

70 IF RATE NOT = "H" AND "A"

75 TYPE "RATE CODE MUST BE 'H' OR 'A'"

80 TYPE "PLEASE REENTER RATE CODE FOR EMPLOYEE #",EMP.NO,": ",NCR
85 INPUT RATE

88 TYPE CR,CR,CR

The MATCHED or DETAILS Section

The MATCHED or DETAILS section usually appears in all UPDATE rules files. If no activity
file is used, the MATCHED or DETAILS section specifies rules to be performed on all records
being processed; if an activity file is used, the section specifies rules to be performed only when a
matching activity record is located.

The DETAILS or MATCHED section may contain any valid control and instruction statements
to update the data records, specifying activity record fields followed by :A if an activity file is
used. For example, the user wants to compute gross wages based on the hours and rate code in
the data record and the salary in the matching activity record.

90 MATCHED The user may type DETAILS or MATCHED.

100 IF RATE="H" ~

110 IF.1 HOURS>40; 40*SALARY:A + (HOURS-40)*SALARY:A*1.5
TO WAGES

1 — The INPUT statement is detailed on page 34.

109

120 ELSE.1 SALARY:A*HOURS TO WAGES

130 ORIF RATE="A"

140 SALARY:A/52 TO WAGES

150 ELSE

160 TYPE "RATE CODE STILL INCORRECT"

170 TYPE "WAGES NOT COMPUTED FOR EMPLOYEE#" ,EMP .NO,CR,CR

The AFTER Section

The user may include the AFTER section only when an activity file is used. The section con-
tains rules to be executed for a data record after processing its matching activity records.
Activity fields, therefore, may not appear in the AFTER section. The AFTER section is executed
for each data record being processed whether or not a matching activity record was found.

The AFTER section may contain any valid control and instruction statements to specify the
final updating of the data records, perform calculations with declared fields, and print information
at the terminal. For example, the user wants to determine the total wages computed for all
records processed.

180 AFTER
190 WAGES + TOTAL.WAGES TO TOTAL.WAGES

After the wage is computed for a given data record (in the MATCHED section), the wage is added
to the current wage total. When all records are processed, TOTAL.WAGES contains the sum of
the wages computed for all records.

Another example AFTER section is shown below. Assume the user wants to calculate gross
wages, deductions, and net wages, and the MATCHED section uses the activity file to correct the
hourly rate and number of dependents specified in certain data file records. After the activity
file corrects the relevant data file records, the user wants to compute gross wage, deductions, and
net wage for all records.

65 AFTER

70 80*HR.RATE TO GROSS

75 IF YTD.FICA < 468,00; GROSS*.052 TO FICA

80 IF.1 FICA + YTD.FICA > 468.00; 468.00 - YTD.FICA TO FICA
85 DO

90 GROSS*.15 - (DEPENDENTS*5.00) TO FIT

95 GROSS = FIT - FICA TO NETPAY

98 YTD.FICA + FICA TO YTD.FICA

99 YTD.FIT + FIT TO YTD.FIT

The UNAPPLIED Section

The UNAPPLIED rules section provides the user access to the activity records that are not
matched with any data record during the UPDATE procedure. The UNAPPLIED section is similar
to the BEFORE or AFTER section for data records. It may contain any of the IML instruction
and control statements; the statements in the UNAPPLIED section may specify activity fields and
declared fields but not data fields.

NOTE: Although it is permitted, the user is not required to type :A after activity field names
i the UNAPPLIED section.

110

The following example uses the UNAPPLIED rules section.

The sample problem shows the use of the activity file PERSONNEL1, which contains pay
information, to update the data file TIMECRD, which contains time card information. The out-
put file produced specifies each employee’s weekly pay information. The rules file computes
the pay based on (1) the rate code (A or H) and the hours specified in the data file and (2) the
pay rate specified in the activity file. When an employee name appears in PERSONNEL1 but
not in TIMECRD, the UNAPPLIED rules section produces a message that alerts the user and pro-

vides him with the employee name and number.

The TIMECRD data file contains four fields in each record: EMP.NO, RATE, HOURS, and

WAGES.

-TYPE TIMECRDA

1

2

9
39
42
49
53
54
56
63
65
68
76
80
84

The PERSONNELL1 activity file contains 17 fields that specify all employee data. The fields in
each record that are relevant to this application—EMP.NO, SALARY, and NAME—are shown
below using the SELECT command.

-SELECT FROM PERSONNEL1:PDESC TO T:EMP.NO'SB'SALARY,SB,NAMEQ

S pP@mYPPYPIP DI IY Y

40
40
40
40
45
40
40
35
40
40
40
40
40
40
40

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

OK.

20
39
42
49
53
54
56

38000.00
15000.00
5.25
8.50
22000.00
6.95
17000.00
13000.00
4.50
18500.00

PARKER
HARTMAN
CLOUTIER
S UMNER
RILEY
HUGHES
CHEVES
STARK
ROTH
WEISS

111

63 13000.00 ELBERT

65 12000.00 VOGELSANG
68 29000.00 PENTEL

76 6.75 LEWIS

80 20000.00 CUMMINGS
84 3.75 LARSON

16 RECORDS SELECTED FROM 16

Note that the data file TIMECRD contains only 15 records, whereas the activity file
PERSONNEL]1 contains 16 records.

The actual UPDATE procedure is presented below.

-UPDATE TIMECRD:TDESC WITH PERSONNEL]:PDESC TOQO PAY 3

BY EMP.NO AS PER WAGERULES>
: LISTDH
10 DECLARE

20 TOTAL.WAGES,R,9,2

30 MATCHED

40 IF RATE="H"

50 IF.1 HOURS>40:40*SALARY:A+ (HOURS-40) *SALARY:A*1.5 TO WAGES
60 ELSE.l1 SALARY:A*HOURS TO WAGES

70 ORIF RATE="A";SALARY:A/52 TO WAGES

80 ELSE TYPE "RATE CODE ERROR IN REC ",RECNO,"EMP ",EMP.NO,CR
90 AFTER

100 WAGES+TOTAL.WAGES TO TOTAL.WAGES

110 UNAPPLIED

120 TYPE NAME:A," (EMPLOYEE $ ",EMP.NO:A,") - NO TIME CARD.",CR,CR
180 FINAL

190 TYPE "TOTAL WAGES COMPUTED ON ",@DATE,":",TOTAL.WAGES

: RUND

PAY.. NEW FILED

OK.

SUMNER (EMPLOYEE # 20) = NO TIME CARD. The unapplied acﬁvity record
informs the user that this
employee is not included in

TOTAL WAGES COMPUTED ON 04/27/74: 4915.71 the TIMECRD data file.

15 RECORDS UPDATED OF 15

1 RECORDS OF PERSONNELl FILE NOT FOUND IN TIMECRD This message always
appears when an
activity record does

- not match any data
record.

112

To complete the example, the resulting output file, PAY, is shown below.

-TYPE PAY D

39
42
49
53
54
56
63
65
68
76
80
84

o T T T YR VI S I R T T R I - T

40
40
40
40
45
40
40
35
40
40
40
40
40
40
40

730.77
288.46
210.00
423.08
330.13
326.92
250.00
157.50
355.77
250.00
230.77
557.69
270.00
384.62
150.00

The FINAL Section

The WAGES field now contains the appropriate weekly
pay for each employee in the original TIMECRD data file.

In the FINAL section, the user may specify final calculations on declared fields and print
information at the terminal. The FINAL section is executed after all records are processed. Data
file fields, therefore, may not appear in this section.

Any valid control and instruction statements may appear in the FINAL section. For example,
at the end of the updating procedure, the user wants to print the total wages computed and the
current date.!

200 FINAL
210 TYPE “TOTAL WAGES COMPUTED ON ”, @DATE, TOTAL.WAGES

CONVERT

The CONVERT command copies an existing data file to another form specified by the user.
The command can, for example, convert a symbolic file to a binary form, a binary file to a
symbolic form, a fixed length record file to a variable length record file, or a variable length

record file to a fixed length record file with any number of fields rearranged, eliminated, or
modified.

The user enters the CONVERT command directly in the EXECUTIVE. For example, the

command

—CONVERT FILEX:XDESC TO FILEY:YDESC AS PER CONVRULES>

1 — The current date is stored in an IML-declared field. See page 24 for details on utility fields.

113

instructs CONVERT to change the form of the file FILEX, which is described by XDESC, in
writing the data on FILEY. The description file YDESC specifies the desired form for FILEY,
and the CONVRULES file details how the fields as defined in XDESC are to be converted to
the YDESC form.

Conversion of Binary and Symbolic Files

The discussion of CONVERT is organized in several parts. First, sample problems are presented,
which illustrate the two possible methods of using CONVERT: with and without a rules file.
The CONVERT command form and its components are discussed next. Finally, the use of a
CONVERT rules file is detailed.

Refer to page 141 for a description of the ROUNDIN and ROUNDOUT statements which
may be used with the CONVERT command to round numeric and/or arithmetic results to con-
form to field descriptions.

Sample Problems

The first example shows the use of CONVERT without a rules file. The user simply wants to
convert a symbolic file to a binary file of fixed length records.

First, he creates a description file, specifying the desired form of the output data file. He uses
the same field names in this description file as in the original description file. The original descrip-
tion file, PSDESC, and the new description file, PDESC, are shown below.

-TYPE PSDESCo

$SS Original form of data file.
***BIN OR SYM:

S

***FIX OR VAR:

v

***WHICH TYPE:

L

***NUMBER OF LINES PER RECORD IS:
1

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
NAME,C,1,9

EMP.NO,N, .,4

AGE,N,.,3

SEX,C,.,2

MAR.STAT,C, .,1

CHILDREN,N,.,2

LAST.DEG,N,.,2

AREA,C,.,5

AREA2,C,.,4

DEPTIN‘ o '3

JOB,N,.,3

SALARY,N,.,10,2

LAST.REV,N, .,7

114

RATING,N, ., 2
PROMOTABILITY,N,.,2
PCT.RAISE,N,.,5,1
DATE.HIRE,N,.,7

-TYPE PDESC>O

$$$ Form of output data file.
***BTN OR SYM:

BIN

***FIX OR VAR:
FIX

*** LENGTH:

63

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
NAME,C,1,9
EMP.NO,I,.,4
AGE,I,.,3
SEX,C,.,2
MAR.STAT,C,.,1
CHILDREN,I,.,2
LAST.DEG,I,.,2
AREA,C,.,5
AREA2,C,.,4
DEPT,I,.,3
JOB,I,.,3
SALARY,R,.,10,2
LAST.REV,I,.,7
RATING,I,.,2
PROMOTABILITY,I,.,2
PCT.RAISE,R,.,5,1
DATE.HIRE,I,.,7

Now the user enters the CONVERT command.

—~CONVERT PERSONNEL:PSDESC TO BINPERSONNEL:PDESC BY NAMESS
BINPERSONNEL.. NEW FILE

OK.

55 RECORDS CONVERTED OF 55

The BY NAMES clause directs CONVERT to perform the conversion automatically; all fields in
PSDESC whose names also appear in PDESC are written on BINPERSONNEL in the specified
form.

115

The second example shows the use of the CONVERT rules file. The user wants to convert the
PERSONNEL data file to a fixed length record file. At the same time, he changes certain field
names, eliminates several fields, and modifies the data in the DEPT field. The new description file,
PFDESC, is shown below. The original description file, PSDESC, appears on page 113.

-TYPE PFDESCD

$$8

***BIN OR SYM:
SYM

***FIX OR VAR:
FIX

***LENGTH :

25

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
EMPLOYEE,C,1,9
NUMBER,N, ., 3
AGE,N,.,2
SEX,N,.,1
STATUS,C,.,1
DEGREE,N, .,1
DEPT,N, .,1
JOB,N,.,1
HIRED,N,.,6

The user enters the CONVERT command to perform the operation and includes the name of a
rules file which specifies the method of copying and modifying the fields.

~CONVERT PERSONNEL:PSDESC _TO PERSFILE:PFDESC AS PER RULES25
: LIST> The rules file is listed for the purpose of this example.
10 NAME TO EMPLOYEE

20 EMP.NO TO NUMBER

30 AGE TO AGE

40 SEX TO SEX

50 MAR.STAT TO STATUS

60 LAST.DEG TO DEGREE

65 DEPT TO DEPT

70 4 TO DEPT IF DEPT=5

80 JOB TO JOB

90 DATE.HIRE TO HIRED

: RUND

PERSFILE.. NEW FILE,

OK.

55 RECORDS CONVERTED OF 55

116

Command Components

The complete general form of the CONVERT command is:

griginal origi n.al. IF conditions '
—CONVERT ﬂ‘l‘za . ?.TSC“P“” FINISHING IF conditionsl
re ABORTING IF conditions
name name

output output

TO data _ description [BY NAMES I
file " file AS PER rules file name|<
name name

The command directs CONVERT to copy the information in the original data file to the output
data file from the form specified on the original description file to the form specified on the
output description file.

The BY NAMES clause is included when the user wants automatic copying of the fields whose
names appear in both description files. The AS PER clause is included when one or more fields
to be copied do not have the identical name in both description files, or when the user wants to
modify any field information before writing it on the output data file. One of the two clauses
is required in a CONVERT command. See page 118 for a complete discussion of the CONVERT
rules file. The BY NAMES clause is discussed further on page 117.

The conditional clauses are optional. The user may include as many as three conditional clauses
in the CONVERT command. When included, the specified condition(s) is tested in the current
record of the original data file.

Specifying the Output Form

The output description file details the form of the output data file to be written by CONVERT.
The output description file specifies whether the file is to be symbolic or binary with fixed
length or variable length records and the name, location, length, and data type of all output fields.

The following paragraphs discuss various points to consider in creating the output description
file.

If the user does not want to use a rules file, the fields to be converted must have the same
field names in both description files. This situation is detailed on the following page.

When converting a symbolic file to binary form, the output description file must specify all
numeric fields with the I, R, and D data types, as appropriate. For example, if a field is defined
in the original description file as

KEYN,,,3

it could be defined in the output description file as:
KEY,L,.,3

Similarly, a field defined in the original description file as

COST\N,.,10,2

1 - Note that for this component, braces do not indicate a choice of only one item.

117

could be defined in the output description file as:
COST\R,.,10,2

When converting a binary file to symbolic form, the output description file must specify
numeric fields with the N data type. For example, if three fields are defined in the original
description file as

KEY,I,.,3
COST,R,.,10,2
RATIO,D,.,16,7

they could be defined in the output description file as:

KEY\N,.,3
COST\N,.,10,2
RATIO\N,.,16,7

If the user wants the output data file to contain fixed length records, he must specify the
record length in the output description file. If the file is to be symbolic, the record length is simply
the sum of the individual field lengths plus any blanks. If the file is to be binary, the record length
is determined by the type of data stored in the fields.

Performing Automatic Conversion

The BY NAMES clause performs an automatic conversion without using a rules file. It requires
that all fields to be converted have the same field names in the output description file as in the
original description file. The BY NAMES clause instructs CONVERT to write on the output data
file, in the specified form, all fields in the original records whose names also appear in the output
description file.

For example, assume that the original data and description files are PERSONNEL and PSDESC,
respectively. PSDESC is shown on page 113. If the user wants to convert PERSONNEL to a
binary file of variable length records containing the first five fields of PERSONNEL, he uses the
output description file shown below.

-TYPE PBVDESCoH

$$$

***BIN OR SYM:

BIN

***FIX OR VAR:

VAR

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
NAME,C,1,9

EMP.NO,1,.,4 The user specifies the same field names
AGE,I,.,3 as used in the original description file.
SEX,C,.,2

MAR.STAT,C,.,1

118

To perform the automatic conversion, the user enters the CONVERT command with the BY
NAMES clause, specifying the original data file PERSONNEL, its description file PSDESC,
a name for the output data file, and the output description file PBVDESC.

~CONVERT PERSONNEL:PSDESC TO BVPERSONNEL:PBVDESC BY NAMESS
BVPERSONNEL.. NEW FILE)

OK.

55 RECORDS CONVERTED OF 55

NOTE: When a field name in the output description file does not appear in the original
description file, that field is blank in all output records.

Rules File

The CONVERT rules file is used to specify which fields of the original data file are to be written
in which fields of the output data file, and how, if at all, the data is to be modified in the
process. The CONVERT rules file is similar to other IML rules files, except there are no control
statements (IF, ORIF, ELSE, and DO), and there are no sections.

Available Rules File Statements
The table below summarizes the rules file statements which may appear in a CONVERT rules

file. Further discussion of the TYPE, @ TYPE, INPUT, @INPUT, and DONE statements is
presented below; the DELETE, FINISH, and ABORT statements are detailed on pp. 188-89.

Statement Function

replacement Specifies a field in the original data file or an expression to be written in a field in the
output data file.

TYPE Prints comments and/or data from the original file at the terminal or to a TOUT file.!
@TYPE Prints comments and/or data from the original file at the terminal.
INPUT Accepts data for a field in the output file from the terminal or from a command file.
@INPUT Accepts data for a field in the output file from the terminal.
DONE Instructs CONVERT to ignore the remaining statements in processing the current record.
DELETE Erases the current record from the output file and begins processing the next record.

1 - TOUT files are explained in the Tymshare TYMCOM-1X EXECUTIVE Reference Manual.

119

Statement Function
FINISH Terminates record processing and ends the CONVERT procedure.
ABORT Halts the CONVERT procedure and immediately returns control to the EXECUTIVE.

An IF or FOR modifier may appear at the end of any statement. Unless the user wants a
statement performed for each record processed, he includes an IF or FOR modifier. For example,
assume that a CONVERT rules file contains the statements:

10 NAME TO NAME

20 CODE TO KEY

30 TYPE “REENTER CODE FOR ”,NAME IF CODE=0
40 INPUT KEY IF CODE=0

Lines 10 and 20 are executed for each record processed. Lines 30 and 40 are executed only when
CODE equals zero.
NOTE: The IF or FOR modifier always specifies conditions to be tested in the original record.

Clarifications of Statement Functions

This discussion clarifies the use of replacement, TYPE, @TYPE, INPUT, and @INPUT state-
ments in a CONVERT rules file. In particular, it specifies when a statement refers to a field in the
original data file and when a statement refers to a field in the output data file.

A replacement statement specifies the information to be written in a particular field of the
output records. Ordinarily, the form used is

field name; TO field name,

where field name; is a field in the original file, and field name, is a field in the output file. For
example, in the replacement statements

MAR.STAT TO STATUS
DATE.HIRE TO HIRED

MAR.STAT and DATE.HIRE are fields in the original file; STATUS and HIRED are fields in the
output file.

If the user wants to modify the data, the left side of the replacement statement contains an
arithmetic expression using fields from the original file or simply a number. For example, the
following are valid replacement statements:

EMP.NO*10 TO EMP.NO
10 TO STATUS

NOTE: When the user wants to modify field information for certain conditions only, the
replacement statement is followed by an IF or FOR modifier. For example:

10 TO STATUS IF MAR.STAT=0

The modified replacement statement should be preceded by the general replacement statement,
such as:

120

MAR.STAT TO STATUS
10 TO STATUS IF MAR.STAT=0

If these statements were reversed, the conditional modification would be destroyed by the
general replacement statement.

Field names in the TYPE and @TYPE statements always refer to the original data file. For
example, when the TYPE statement

TYPE “REENTER CODE. CURRENT VALUE IS ”,CODE FOR CODE>4

is executed and CODE is greater than 4, the system prints the comments in quote marks followed
by the value of CODE in the current record of the original file.

The first field name in INPUT and @INPUT statements refers to the output data file. For
example, when the INPUT statement

INPUT CODE FOR CODE>4

is executed and CODE is greater than 4 in the original record, a value is accepted for the CODE
field of the output record. In this example, CODE is a field name in the original and output
records. The first CODE field refers to the output record; the second CODE field refers to the
original record, since an IF or FOR modifier always refers to the original record.

Sample Problem

The user wants to convert a symbolic file named INV to a binary file of variable length records,
and in the process he wants to add an additional field and make several modifications.

The original file contains five fields per record: CODE, COST, QUANTITY, PART.NO, and
DESC. In this application, the only meaningful CODE values are 1 and 2. The output file is
to contain six fields per record: CODE, COST, QUANTITY, TOT.DOLLARS, PART.NO, and
DESC.

The additional field TOT.DOLLARS is to contain the product of COST and QUANTITY. The
modifications apply to several fields. First, the user wants to enter a new CODE value at the
terminal if the original CODE value is not equal to 1 or 2. Next, because of an inventory change,
part number 9 is now the same as part number 7. The user, therefore, wants to change part
number 9 to part number 7 and change the descriptions of part numbers 7 and 9 to the same
general description, WIDGET.

The original description file, DESC1, and the output description file, DESC2, are shown below.

-TYPE DESC

$$$

***BIN OR SYM:

SYM

***FIX OR VAR:

VAR

***WHICH TYPE:

L

***NUMBER OF LINES PER RECORD IS:
1

121

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
CODE/,N,1,1

COST,N,.,6,2

QUANTITY,N,.,4

PART.NO,N,.,2

DESC,C,.,15

-TYPE DESC2H

$$$

***BIN OR SYM:

BIN

***FIX OR VAR:

VAR

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
CODE,I,4,1
COSTIRIOIGIZ
QUANTITY,I,..,4
TOT.DOLLARS,R,.,9,2
PART.NO,I,.,2
DESC,C,.,15

The user enters the CONVERT command to perform the operation.

=CONVERT INV:DESCl TO NEWINV:DESC2 AS PER RULES7>

: LIST> The rules are listed for the purpose of this example.
10 CODE TO CODE

20 COST TO COST

30 QUANTITY TO QUANTITY

40 PART.NO TO PART.NO

50 DESC TO DESC

60 COST*QUANTITY TO TOT.DOLLARS

70 TYPE “REENTER CODE FOR PART.NO #",PART.NO 1IF CODE NOT=1 AND 2
80 INPUT CODE IF CODE NOT=1 AND 2

90 7 TO PART.NO FOR PART.NO=9

99 "WIDGET" TO DESC FOR PART.NO=7 OR 9

: RUNS The user executes the CONVERT command.
NEWINV.. NEW FILE)

OK.

REENTER CODE FOR PART.NO # 4
1o

641 RECORDS CONVERTED OF 641

123

SECTION 6
REPORT GENERATION

The REPORT command offers a comprehensive reporting facility suitable for generating
reports of any description, including those on preprinted forms. Constructed in the same form as
all other IML commands, REPORT permits the user to enter one simple command in the
EXECUTIVE to initiate the report procedure.

Discussion of the REPORT command is organized in several parts. The first discussion presents
a sample problem introducing the user to REPORT’s convenient features and ease of use. The
next discussion presents the general information about REPORT: the required and optional com-
ponents of the command. Last, the actual REPORT rules file is detailed. The REPORT rules
file contains six sections which allow the user to organize his report easily and handle all aspects
of report generation. The additional rules statements and built-in functions, unique to REPORT,
are presented in this discussion.

It is suggested that users who are unfamiliar with IML rules files read pages 27 through 41
before proceeding with the discussion of REPORT.

SAMPLE PROBLEM

The sample problem produces a report on the personnel data file. Because the user requests
subtotals for each department, he first sorts the file by department. The data file SPERSONNEL
is shown below. Its description file PDESC appears on page 81.

-TYPE SPERSONNEL > IMTT

CHEVES 49 39M D 3 4ENGR MATH 1 5 17000.,00 720306 2 0 10,0 650306
HARTMAN 2 43F D 1 3ENGL STEN 1 4 15000,00 711012 1 0 10.0 600525
KINNEY 62 28F M 1 3ENGL EDUC 1 4 10500.00 710415 1 1 8.0 690415
LARSON 84 38F M 2 1ACAD TYP 1 8 3.75 710930 2 1 6.5 701230
MANDEL 91 42M M 2 2STEN MATH 1 8 5.00 000 .0 720315
MARTIN 7 39M M 3 4ENGR MATH 1 1 25400.00 711213 1 1 10.0 600601
PARKER 1 48M M 4 UENGR PHYS 1 1 38000.00 720101 1 1 10.0 600525
RILEY 39 52M M 5 4ENGR PHYS 1 5 22000.00 720412 1 1 10.0 640408
WEISS 56 30M M 2 4LAW GOVT 1 2 18500.00 711215 2 1 8.5 680524
WEST 26 46M M 3 3MATH 1 6 23600.00 720316 1 1 12.5 610115
AVERY 36 37M M 0 4MBA HIST 2 2 16800.00 720217 2 1 8.5 640212
CUMMINGS 80 29M M 2 SPHYS MATH 2 1 20000.00 711115 1 1 15,0 701112

124

FLINKER
FLOYD
GOOD
LIGHT
SHAMES
STARK
VOGELSANG
ZIMMERMAN
BORNEMAN
CLIFF
CLOUTIER
ELBERT
HUGHES
KNIGHT
LASKER
LEE
LEMBERG
LEWIS
LINDEN
OAKDALE
PENTEL
RUDMAN
SANDERS
SUMNER
WARNER
YORK
DURBAN
FULMER
MARIN
MONROE
WAGNER
ABNER
BOSUNG
DUNCAN
GOLDEN
HANSON
JOHNSON
MOREHEAD
O'CONNORS
QUINLAN
RINSLER
ROTH
SIMON

28F
27F
26F
31M
49M
30F
28M
39M
29M
31M
60F
51M
29M
4oF
beM
37M
32M
32M
28F
41M
24M
20F
4s5M
48M
42M
34M
27M
29F
21M
31F
22F
38M
39M
29M
29M
35F
62M
39M
52M
29F
48M
55M
25M

NEZERZTNZNZZUNOZINRNNMNMEURIRNVONEIVNINUIROUUUORNEIIRIRR0u
O=FEONOEONOWOOOOOOO=2NWOONONOANWNWNEFOWO-=2NMNWOOO

LEDUC
4MBA

4CHEM
3HIST
3EDUC
3PHYS
LENGL
S5CHEM
S5PHYS
4LAW

1ACAD
4MBA

2ELEC
4PHYS
3s0C

4UMBA

4MATH
2ELEC
3ENGL
3GEOL
5PHYS
3MATH
2ELEC
2ELEC
3ENGL
4ARCH
4LCHEM
S5MATH
4MBA

3MATH
2ACAD
LELEC
4PHYS
3MATH
S5PHYS
3EDUC
LENGR
LENGR
LENGR
LENGR
UMATH
2PLMB
5CHEM

ECON
ACCT
ACCT
POLI

MATH
MATH
ENGR
ART

ACCT
ACAD
MATH

PHYS

COMM
EDUC
MATH
MATH
PHYS
COMM
COMM

ART
MATH
MBA
POLI
ENGL

PHYS
MATH

MATH
ACAD
MATH
PHYS
BIOL
MATH
PHIL
ACAD
BIOL

UUTUTLTUVUIUTNUTVEE EEFFWWWWWWWWWWLWWWLWWWWWWNDNDNDNDNDNDODD

OWOUI == UINIENANWOAN 200 FWWAAFTWANENWNONNAEIFEFOAAANFE

11000.00
15000.00
14675.00
10400.00
16000.00
13000.00
12000.00
19500.00
12800,00
14000.00
5.25
13000.00
6.95
35000.00
9700.00
19500,00
11000.00
6.75
7500.00
10000.00
29000.00
8500.00
5.50
8.50
14000.00
5.00
16500.00
22000.00
9600.00
15000.00
3.00
12000.00
13000.00
13500.00
18000.00
10000.00
16800.00
13000.00
24000.00
14500.00
16800.00
4,50
21000,00

711215
711018
711202
710209
720201
710502
711108
720315
710515
710212
720415
710303
720517
711213

0
710514
711015
711107

0
710609
710915

0
720215
710615
720209
711101
720312
720118

0
720412

0

0
720101
711215
720301
720415
720115
720315
710615
711215
710315
720430
710715

NNOVNN=NNaaNDNWOO=20=aNDNNNNWOLWONWNON=SNaaFTWN=2WNW=2

DO P e O OO0 2O 2000000==3002a02 0020200000202

-— b

- b

-
o ooooWn o uToN OV VWoOoONoOoOEFEFUOOUVIOWNIY FO

® e o & o o ¢ © o ¢ o o o o o o © ©& o o o o ©° o o © o © ¢ o O ¢ O o 0o o o o 0o o o o o

- e

-
o

- b b -

- e

NOOWOMOOoOOoOOWNMOOWN

cocouvVuooOooULMIvNOUIOOOOOUIOVIULIOONMNUVITOUTWODOULTUIOCWWO ULLODOLIMO OOO

680715
701112
711119
650727
610901
671113
691110
690301
700515
701217
600823
690429
640523
641210
720625
641218
700506
701105
720315
701203
700101
720506
690215
601001
630210
710301
660310
650122
720612
620627
720315
720415
700615
690630
700301
710415
600525
710315
630515
680515
700915
680430
700715

The user requests his report by typing a REPORT command directly in the EXECUTIVE. He
specifies the data file name and its description file, an output file name for the actual report, and

the name of the file which contains the report rules.

125

=REPORT SPERSONNEL:PDESC TO PERSONNELREPORT AS PER PERSONNELRPTDESC

$ LIST, The user requests a listing of the REPORT rules.
10 DECLARE

20 CHEM,.COUNT,I,3
30 ENGR.COUNT,I,3
40 SR.EMP,I,3 Five temporary fields are created within the report procedure.
50 JR.EMP,I,3
60 YR.WAGE,R,9,2
70 FORMAT 1: $%$,$$$,$$$.DD The user declares a picture format to
80 INITIAL be used in printing certain fields below.
86 5 TO MARGIN
90 SKIP TO 3
100 PRINT 15B,"PERSONNEL SUMMARY REPORT" +CR, 15B, aWEEKDAY, 4B,
. aCDATE,CR_ ,
130 HEADINGS A This section specifies the headings for each page of the report.
131 IF PAGE NOT=1
135 PRINT PAGE,CR,"PERSONNEL SUMMARY", CR,aDATE,CR
140 SKIP 6
145 ELSE SKIP 3
148 DO ,
150 PRINT " NAME NUMBER DEPT JOB SALARY RATING",
* PROMOTABILITY" +CR,CR
160 DETAILS This section specifies instructions to be executed for each record in the file.
170 IF "CHEM" IN AREA OR AREA2
175 CHEM.COUNT +1 TO CHEM,COUNT
180 IF "ENGR" IN AREA OR AREA2 The IF statements check for certain conditions
185 ENGR.COUNT +1 TO ENGR.COUNT and increment the counter when appropriate.
190 IF DATE.HIRE<700101
195 SR.EMP +1 TO SR.EMP
200 ELSE JR.EMP +1 TO JR.EMP
210 IF SALARY<25. Hourly wages are converted to an annual figure.
215 SALARY*2080 TO YR.WAGE
220 ELSE SALARY TO YR.WAGE
230 DO
240 PRINT NAME,EMP.NO,3B,DEPT,3B,JOB,4B,YR.WAGE,5B, RATING,
6B ,PROMOTABILITY,CR
250 TOTALS In this section, the user requests subtotals desired.
260 ON DEPT
265 SKIP 1
268 PRINT "eccccccccwna- - - - e 2 e e e e e o
———eeeee=" CR
270 PRINT 8B,"*TOTAL SALARY*",5B,SUM YR.WAGE (1) SUM and AVG are
280 PRINT 3B,"AVERAGE ",2B,AVG YR.WAGE (1) +CR,CR,CR built-in functions
285 IF LINE>55 in REPORT.
287 SKIP TO TOP
290 FINAL This section specifies desired information after all records are processed.
300 PRINT CR,CR
301 PRINT "FINAL TOTALS",CR,"=——=ceccccccccccccacaa - - -
~===m=eeeee-" CR,CR
310 PRINT 8B,"*TOTAL PAYROLL*", 4B +SUM YR.WAGE(1) ,CR Picture format 1
312 PRINT CR,"EMPLOYEE CHARACTERISTICS:" ,CR,CR is used to print
320 PRINT "SENIOR EMPLOYEES " +SR.EMP,CR the sum of
330 PRINT "JUNIOR EMPLOYEES ",JR.EMP,CR YR.WAGE.

126

340 PRINT "EMPLOYEES WITH CHEMISTRY BACKGROUND " ,2B,CHEM.COUNT,CR
350 PRINT "EMPLOYEES WITH ENGINEERING BACKGROUND ",ENGR.COUNT,CR
355 SKIP TO 61

¢ RUND The user executes the report procedure. He may make changes
PERSONNELREPORT.. NEW FILE) to the REPORT rules before executing the command.

OK.

REPORT FINISHED. REPORT writes the requested report on the output
file and returns control to the EXECUTIVE.

PERSONNELREPORT is now in the user’s directory. The file is listed on the following pages.

PERSONNEL SUMMARY REPORT
OCT.30,1972

MONDAY

NAME NUMBER DEPT JOB SALARY
CHEVES 49 1 5 17000.00
HARTMAN 2 1 4 15000.00
KINNEY 62 1 4 10500.00
LARSON 84 1 8 7800.00
MANDEL 91 1 8 10400.00
MARTIN 7 1 1 25400.00
PARKER 1 1 1 38000.00
RILEY 39 1 5 22000.00
WEISS 56 1 2 18500.00
WEST 26 1 6 23600.00

TOTAL SALARY $188,200,00
AVERY 36 2 2 16800,00
CUMMINGS 80 2 1 20000.00
FLINKER 58 2 4 11000.00
FLOYD 77 2 2 15000.00
GOoD 88 2 6 14675.00
LIGHT 50 2 6 10400.00
SHAMES 29 2 4 16000.00
STARK 53 2 7 13000.00
VOGELSANG 65 2 4 12000,00
ZIMMERMAN 61 2 6 19500.00

l"'J.‘OTAL SALARY* $148,375.00
BORNEMAN 72 3 7 12800.00
CLIFF 83 3 2 14000.00
CLOUTIER 9 3 8 10920.00
ELBERT 63 3 2 13000.00
HUGHES 42 3 3 14456.00
KNIGHT 4y 3 7 35000.00
LASKER 95 3 4 9700.00
LEE 45 3 2 19500.00
LEMBERG 71 3 6 11000.00
LEWIS 76 3 3 14040.00
LINDEN 90 3 4 7500.00
OAKDALE 81 3 6 10000.00
PENTEL 68 3 1 29000,00
RUDMAN 93 3 6 8500.00
SANDERS 60 3 3 11440.00
SUMNER 20 3 3 17680.00
WARNER 34 3 4 14000.00
YORK 85 3 8 10400.00

TOTAL SALARY $262, 936 00

127

RATING PROMOTABILITY

2 0
1 0
1 1
2 1
0 0
1 1
1 1
1 1
2 1
1 1
AVERAGE $18 820,00
2 1
1 1
1 1
1 1
1 1
3 1
2 0
3 1
1 0
2 0
AVERAGE $14,837.50
3 0
4 0
1 0
2 1
1 0
2 1
0 0
2 1
3 1
2 0
0 0
3 1
1 1
0 0
3 0
2 0
2 0
2 0
AVERAGE $14,607.56

128

2
PERSONNEL SUMMARY
10/30/72

NAME NUMBER DEPT JOB SALARY ' RATING PROMOTABILITY

DURBAN 52 4 6 16500.00 2 0
FULMER ue 4 1 22000,00 1 1
MARIN 94 4 2 9600.00 0 0
MONROE 32 4 6 15000.00 1 1
WAGNER 89 4 8 6240.00 0 0

TOTAL SALARY $69,340.00 AVERAGE $13,868.00
ABNER 92 5 3 12000.00 0 0
BOSUNG 73 5 7 13000.00 3 0
DUNCAN 6u 5 6 13500.00 2 0
GOLDEN 70 5 7 18000.00 1 1
HANSON 87 5 4 10000.00 1 1
JOHNSON 4 5 5 16800.00 2 0
MOREHEAD 86 5 5 13000.00 2 1
O'CONNORS 35 5 1 24000,.00 1 1
QUINLAN 55 5 5 14500.00 2 1
RINSLER 75 5 6 16800.00 2 1
ROTH 54 5 3 9360.00 2 0
SIMON 74 5 6 21000.00 2 1

TOTAL SALARY $181,960.00 AVERAGE $15,163.33
FINAL TOTALS

TOTAL PAYROLL $850,811.00

EMPLOYEE CHARACTERISTICS:

SENIOR EMPLOYEES 31
JUNIOR EMPLOYEES 24
EMPLOYEES WITH CHEMISTRY BACKGROUND 4
EMPLOYEES WITH ENGINEERING BACKGROUND 9

129

GENERAL INFORMATION

The REPORT command assists the user in preparing a report based on the information in a
data file.

The user calls REPORT directly in the EXECUTIVE by typing all or part of a REPORT com-
mand. The form of the command showing only required information is:

data description output rules
—REPORT file : file TO file AS PER file 2
name name name name

The report is prepared from the data file as it is defined by the description file, and written on
the output file according to the layout and calculations in the REPORT rules file. For example,

—REPORT INVENTORY:INVDES TO INVFINAL AS PER INVSPEC 5

creates a report based on the data in INVENTORY which is described by INVDES, and writes
the report on INVFINAL in accordance with the instructions on INVSPEC.

The user may specify any data file, including a RETRIEVE file, for the report. The description
file is the same as used with all IML commands; it describes the type of data file and the location
of the fields within a record. The user may create a description file with the DEFINE command,
use an existing description file, or enter T as the description file name. When the user enters T as
the description file name, REPORT prompts for the needed data file description.! When working
with RETRIEVE files, the user may omit the data description file name. REPORT automatically
seeks a corresponding RETRIEVE structure file in the user’s directory. The output file name
specifies the file on which the finished report is written; the output file may be T to print the
report directly at the terminal. The REPORT rules file specifies the desired layout of the report,
the calculations, and the information to be printed.

The user creates a REPORT rules file most easily by specifying the REPORT rules file name as
T, allowing the system to prompt for and check each line as it is entered. In this situation, REPORT
requests a file name on which to save the REPORT rules. For example,

—REPORT INVENTORY:INVDES TO INVFINAL AS PER T 5
SAVE REPORT RULES ON: INVRPT 5

allows the user to enter a new REPORT rules file and instructs the system to write the rules in
INVRPT. See page 27 for an explanation of creating a rules file.

An optional IF clause may appear in the REPORT command to qualify which records from
the data file may be used in producing the report. For example, the command

—REPORT PERSONNEL:PDESC IF DEPT=5 TO DEPT5RPT AS PER RPTDESC 5

requests a report based on all records in PERSONNEL for which the DEPT is 5. The system
writes the report on DEPT5RPT, using the RPTDESC REPORT rules file.

THE REPORT RULES FILE

The REPORT rules file contains the user’s report specifications, which define the report lay-
out, such as the title and page headings; specify optional picture formats for printing individual
fields, such as with dollar signs and commas; and request calculations, subtotals, and final totals.
The REPORT rules file is structured to handle simple reports with a minimum of instructions,
yet offers extensive capabilities to make any report easy to design and produce.

1 - See page 43 for a description of DEFINE and entering the file description.

130

Discussion of the rules file is organized in several parts. An overview is presented first, intro-
ducing the design and various features of the REPORT rules file. Next, the numerous built-in
functions are described. Picture formatting, including an explanation of all available format char-
acters and examples of their use, is presented in the following discussion. The additional state-
ments that may appear in a REPORT rules file are detailed next.! Finally, the sections in which
REPORT rules statements are organized are described, presenting the purpose, special features,
and examples.

Overview

The REPORT rules file is organized conveniently in six sections: DECLARE, INITIAL,
HEADINGS, DETAILS, OTHERS, TOTAL, and FINAL. Each section has a special function and
is executed when appropriate. For example, the HEADINGS section specifies page headings for
each page of the report, and is executed every time the report continues or skips to a new page.
The FINAL section, on the other hand, specifies final totals and calculations to be printed, and is
executed only once after all records in the file are processed. Each REPORT section is explained
in detail below; the purpose and special features are outlined for each section. Some of the
examples given also appear in the sample problem on page 123.

REPORT contains numerous built-in functions which make it convenient for the user to
describe his specific and general report requirements. REPORT offers several descriptive informa-
tion functions, such as @DATE, which contains the current date, or LINE, which contains the
current line number of the report page being printed. These functions are available without
requiring initial data from the user. In addition, several functions are available to control the lay-
out of the report; for example, LINES or MARGIN controls the number of lines per page or
the number of blank lines at the bottom of each page, respectively. REPORT presets some of
these functions, for example, LINES as 66 per page and MARGIN as 0; the user may change the
values easily. For example,

5 TO MARGIN

specifies that five blank lines are to be printed at the bottom of each report page.

REPORT permits the user to specify a format to print field information if he wants to alter
the format as defined in the data description file. Various picture format characters are available
for this purpose; they appear on page 133. For example, suppose a field named SALARY is
defined in the data description file as:

SALARYN,.,8,2

If the user wants to print the value of SALARY preceded by a dollar sign ($) and with commas
in the number, he may enter a PRINT instruction, such as:

PRINT SALARY($$$,$$$.DD)
Also, suppose he wishes to print the sum of SALARY in all records.? The statement

PRINT SUM SALARY

may cause an error, since the sum may require more than the eight-character field length used in
the field description for SALARY. However, using a picture format, such as

PRINT SUM SALARY(DDDDDDD.DD)
he avoids the problem.

1 — The rules file statements corhmon to all rules file are presented on page 32.
2 — The SUM function is discussed on page 147.

131

Finally, REPORT includes four basic arithmetic functions to make it easy for the user to
determine the maximum, minimum, average, or sum of the values in a specified field. These
arithmetic functions are valid only in the TOTALS and FINAL sections, and are described on
page 147.

It is suggested that the user read this section in its entirety before he designs a REPORT rules
file. In this way, he may note the numerous conveniences built into the IML reporting capability,
as well as the organization of the REPORT sections and their separate functions.

Built-in Utility Functions

Several field names and clauses are automatically defined by REPORT to help the user describe
his report and to control paging and line spacing. These functions may appear in any section of
the REPORT rules file. The tables below list all the available utility functions with their meanings.
In addition, the tables specify the type of data (character or numeric) and length, as appropriate.

Utility Fields for Descriptive Information
Utility Data Type
Field Name Prints and Length Example

@DATE Current date as MM/DD/YY. Character, 8 11/02/73
@CDATE Current date as MMM.DD,YYYY. Character, 11 MAR.15,1975
@TIME Current time as HH: MM. Character, 5 14:30
@CTIME Current time as HH:MM AM or PM. Character, 8 2:30 PM
@WEEKDAY Name of current day of week. Character, 9 TUESDAY
@CALMONTH Name of current month as MMM. Character, 3 APR
@DAY Current day as DD. Numeric, 2 15
@MONTH Current month as MM. Numeric, 2 10
@YEAR Current year as YYYY. Numeric, 4 1974
@NDATE Current date as YYMMDD. Numeric, 6 731231
RECNO Number of record being processed. Numeric, 5 78
LENGTH Length of record being processed. Numeric, 5 120
PAGE Current page number of report. Numeric, 3 6
LINE Current line number of report page. Numeric, 2 52
HPOS Current print position on line being written. Numeric, 3 42

The first print position on a line is 1. When-

ever a carriage return, line feed, or new page

occurs, HPOS is reset to 1.

(Table continues)

132

Utdlity Data Type
Field Name Prints and Length Example
nB Specified number of blanks, where n may Character, n 16B

range from 1 to 80.

“text”’ Text enclosed in single or double quote Character, number of | “MESSAGE”
marks. characters in quote
marks
n“text” Text enclosed in single or double quote Character, number of | 70“—"
marks n times. The number of characters characters in quote
in quote marks times n may not exceed 80. marks times n
CR Carriage return, that is, spaces up one line Character, 1

and returns to left margin. CR terminates a
logical line.!

LF Line feed, as above, but continues a logical Character, 1
line.!

Utility Statements for Paging and Line Spacing

Utility Statement and Meaning Example

n TO MARGIN 7 TO MARGIN

Specifies the number of blank lines at the bottom of a
page. MARGIN is preset to 0 but may be set to n, where
n is a positive number or expression, if an automatic
bottom margin is desired on each page. The statement
may be followed by a FOR modifier.

n TO LINES 55 TO LINES FOR RECNO>100

Specifies the number of lines, including MARGIN,
printed per page, where n is a number or an expression.
It is preset to 66 but may be changed at any time. The
statement may be followed by a FOR modifier.

n PAGE DIVIDER IS item list 20 PAGE DIVIDER IS “-”,CR,CR,CR,CR
20 PAGE DIVIDER IS CR,“.”,LF,CR

Instructs REPORT to print a page divider at the top of
20 PAGE DIVIDER IS ‘-’ ,LF,'~",CR

every report page. This feature must be specified in the
DECLARE section. The item list may be:

CR carriage return

LF line feed

“characters” Any characters to be used as a page
or divider.

‘characters’

When a page divider is declared, REPORT prints the
specified page divider at the top of every report page,
whether or not an OFFHEADINGS statement is in
effect or a HEADINGS section appears in the rules file.

1 — A logical line consists of a series of characters terminated by a carriage return. A line feed continues a logical line, permitting a
logical line to occupy more than one physical line.

133

Utility Statement and Meaning

Example

NOTE: At least one CR or LF should be specified at the
end of the item list unless the next line of the report is to
be printed on the same line as the page divider. The page
divider lines are counted in the number of lines per page.

‘¢ TO TOF
or
n TO TOF

Top of Form character or number. When TOF appears
in a PRINT statement, it executes the TOF as well as
printing the specified page headings. The character or
number specified is represented by c or n respectively.
The n character instructs REPORT to use the ASCII
character equivalent to the internal decimal code which
n represents.

NOTE: Control L is TOF unless reset with this utility.

200 92 TO TOF
210 PRINT TOF

200 ‘¢ TO TOF
210 PRINT TOF

SKIP TO TOP

Skips to the top of the next page and automatically
prints specified page headings. The statement may be
followed by a FOR modifier.

SKIP TO TOP FOR LINE>52

Skips n lines, where n may be a number or an expression.
The statement may be followed by a FOR modifier.

SKIP TO n SKIP TO 20
Skips to the nth line on the report page, where n may be

a number or an expression. The statement may be

followed by a FOR modifier.

SKIP n SKIP 4

SPACE n

Prints n blanks, where n may be a number or an
expression. The statement may be followed by a FOR
modifier.

SPACE 10 FOR CODE=‘Z’

TAB n

Moves the print head backward or forward to position n
on the line, where n may be a number or an expression.
The statement may be followed by a FOR modifier.

TAB 3

Picture Formats

When describing a line to be printed, it is possible to instruct REPORT to print the datain a
form different from that specified in the data description file. To do so, the user simply follows

the field name with a picture enclosed in parentheses. For example, assume a field named

SALES is defined in the data description file as:
SALES)N,.,7,2

If the value of SALES in the current record is 8732.79, the statement

134

PRINT SALES

prints the data as

8732.79

whereas the statement

PRINT SALES($$,$$$.DD)

or

PRINT SALES(2$,3$.2D)

instructs REPORT to print the data in SALES as:
$8,732.79

When the data exists in the correct and desired format to be printed, it is not necessary to specify
a picture format.

The table below lists each picture character and a summary of its function. The discussions
which follow detail each of the picture format characters with examples.

Picture
Character Prints

X Single character, used with all character data.

D One digit.
Decimal point.

\' No character is printed. V indicates the
location of the decimal point.

z A blank for a leading zero.

* Asterisk for a leading zero.

+ Plus sign or minus sign, as appropriate.

- Blank or minus sign, as appropriate.

N Blanks surrounding a positive number.
Parentheses surrounding a negative number.

$ Dollar sign.

, Commas. Blank when preceded by a leading
zero or nondigit.

NOTE: Only the X format may be used for character data. The format for numeric data may be
specified using the remaining picture characters.

135

The user may instruct the system to choose an appropriate format by following a field name
with an empty picture format. For example, in conjunction with the SUM function in REPORT,!
the user prints the sum of all values in the ACRES field with an empty picture format:

PRINT SUM ACRES()

Regardless of the declared field length for ACRES, the system prints the data in free format, and
the user avoids a possible error, such as asterisks printed instead of the number. The empty
picture format is a convenient feature when data no longer fits in a field as it is declared in the
data description. When used, the system chooses a legal format which prints numeric fields in
free format; that is, it uses only as many characters as needed. Similarly, trailing blanks are trun-
cated for character fields.

REPORT contains an impressive assortment of picture format characters to format and use
symbols with the data to be printed. These features are discussed below.

The X Format

The X format is used for all character fields. Beginning with the left-most character in the
field, one character is printed for each X in the picture format. For example, suppose the data in
NAME contains HARTMAN. The statement

PRINT NAME(XXXXX)

prints the data as HARTM. Similarly,

PRINT NAME(XXXXXXXXX)

prints the data as HARTMAN and two trailing blanks.

The D Format

The D format must be used for all digits to the right of the decimal point; it may also be used
to indicate any digit in the number. The D format prints one digit for each D in the format.
For example,

PRINT 1.23(D.DDD)

or

PRINT 1.23(1D.3D)

prints the data as 1.230, whereas
PRINT 1.23(DDD.D)

or

PRINT 1.23(3D.1D)

prints the data as 001.2.

NOTE: When using a picture format to print a numeric field, digits to the right of the decimal
point must always be indicated with the D format. The D format prints a negative number only if
a sign is included in the picture format.

1 — The SUM function is discussed on page 147.

136

The . and V Formats

A single . or V indicates the location of the decimal point. The . prints the decimal point;
the V indicates the location but suppresses the printing of the decimal point. For example,

PRINT 1.23(2D.3D)
prints the data as 01.230. On the other hand, the statement
PRINT 1.23(DDVDDD)

prints the data as 01230. Note that the decimal point functions but is not printed.

Assume a field, PAY, is to be written on a preprinted form containing a box for PAY with a
line separating dollars and cents. In this situation, the user, not wanting the decimal point to be
printed, types:

PRINT PAY(DDDVDD)
If, for example, PAY equals 179.50, REPORT prints the data as:

The Z and * Formats

The Z or * character, used repetitively in a format, indicates that blanks or asterisks, respectively,
are to be printed instead of leading zeros. The Z format does not require the user to specify a sign
as part of the format. The * format prints a negative number only if the sign is included in the
picture format. For example, to print the value ~11.66 with the * format, any of the following
formats is valid:

—*%* DD
++x% DD
The following examples further clarify the Z and * formats:
PRINT 1.23(***.DD)
or

PRINT 1.23(3*.2D) (The 3*.2D specification is used to indicate three asterisks and two decimal
places.)

prints the data as **1.23, and
PRINT 1.23(ZZZ.DD)
or

PRINT 1.23(3Z.2D)

prints the data as 1.23 with two leading blanks.

A Z format for a negative number must be large enough to accommodate the sign of the
number. For example, the value —123.66 cannot be printed with the format 3Z.2D, because the
field width of three characters to the left of the decimal point is insufficient for printing three
digits and a leading minus sign. The correct format for this example is 4Z.2D.

137

The +, —, and N Formats

The +, —, and N characters instruct REPORT to indicate a negative or positive value of the
field being printed. The + format causes a plus sign or a minus sign to be printed; the — format
prints a blank or a minus sign; and the N format prints a positive number with one blank on
either side and a negative number enclosed in parentheses. These characters are never used in
combination with one another. For example, the following table shows legal formats; blanks
are indicated with the letter b.

Format Prints +1.23 As Prints —1.23 As Comments

A single + or — may be the first or last character
ZZ1.DD+ bb1.23+ bb1.23- of a format which also uses other characters to
the left of the decimal point. When a + or — is
the first character of a format, the format which
-ZZZ.DD bbb1.23 bb-1.23 follows must include a position for the sign to
the left of the decimal point.

++++.DD bb+1.23 bb-1.23 The + or — may be used repetitively to print
the sign just to the left of the first nonzero
-—---.DD bbb1.23 bb-1.23 character.

A single N must be used as the last character of

ZZZ.DDN bbb1.23b (bb1.23)
the format.

NOTE: When the plus sign or the minus sign is used repetitively, it must appear in all positions
to the left of the decimal point, except for dollar signs and commas in the format. See the $ and
, formats below.

The $ Format

One or more dollar signs in a format print a single dollar sign with the value. The $ character
may be used repetitively to place the dollar sign to the left of the first nonzero digit. For example,

PRINT 12.34($$$$.DD)
or
PRINT 12.34(4$.2D)

prints the value as $12.34. If not used repetitively, only one dollar sign may appear in the format;
the dollar sign must be the first character of the format unless a sign is included. For example,

PRINT 12.34($ZZZ.DD)
or
PRINT 12.34($3Z.2D)

prints the data as $ 12.34.

A plus sign may be included with the dollar sign. The $ format character prints a negative
number only if a sign is included in the picture format. For example, to print the value —11.66,

138

any of the following formats is valid:

+$$$.DD
-$$$.DD

The , Format

The user may indicate commas to be printed with the data by including appropriately placed
commas in the picture format. For example,

$77,7277.DDN
-$$,$$$,$$$.DD

+++,+++.DD

are all legal formats. When a comma would be preceded by a leading zero or nondigit, the comma
is suppressed. For example,

PRINT 123.45($$,$$$.DD)
prints the data as $123.45, whereas
PRINT 1234.56($$,$$$.DD)
prints the data as $1,234.56.

Additional Rules File Statements

In addition to the rules file statements presented on pages 32 through 41, REPORT provides
three more statements: PRINT, ON, and general picture format declarations.

The PRINT Statement

The PRINT statement writes information on the REPORT output file. The user should enter
PRINT statements for a/l information he wants to appear in the report produced.

The form of the PRINT statement is
PRINT item list
where any of the items on page 35 (except NCR) may appear in the item list, separated by
commas. The item list may not be blank.

The PRINT statement does not include an automatic carriage return at the end of the item
list. The user must, therefore, specify CR as the last item if a carriage return is desired. For
example, the statements

10 PRINT “REPORT TITLE”,3B
20 PRINT @DATE,CR

write on the REPORT output file the text REPORT TITLE, three blanks, and the current date
on one line, and then return the carriage.

139

There are three basic differences between PRINT and TYPE statements.! The PRINT statement
writes information on the REPORT output file; the TYPE statement prints information directly
at the terminal. Lines that are written by a PRINT statement are included in the number of lines
per report page; lines printed by a TYPE statement are not included in the number of lines per
page. The PRINT statement does not generate an automatic carriage return; the TYPE statement
generates an automatic carriage return at the end of the information printed.

The ON Statement

One or more ON statements control breaks in printing details from individual records. The ON
statement may appear only in the TOTALS section of the rules file. ON statements are useful
for specifying when subtotal information is to be printed.

The ON statement is described in detail with the TOTALS section on page 147.

The OFFHEADINGS and ONHEADINGS Statements

The OFFHEADINGS statement suppresses normal execution of the HEADINGS section at the
top of the report page. The ONHEADINGS statement resumes normal execution of the HEADINGS
section when the OFFHEADINGS statement was previously used.

Picture Format Declarations

An important feature of the DECLARE section allows the user to specify general picture
formats for use throughout the rules file. Since many fields may require the same special format,
the user can specify the format once in the DECLARE section and later refer to it by number.

This feature is detailed with the DECLARE section on page 140.

Structure of a REPORT Rules File

The REPORT rules file consists of six sections, providing the user with an efficient organiza-
tion in which to detail his particular report requirements. A REPORT rules file may contain
all or some of the sections, but the sections must appear in the following order:

DECLARE
INITIAL
HEADINGS
DETAILS
OTHERS
TOTALS
FINAL

The DECLARE section makes it possible to specify new fields to save data from records or
intermediate calculations, and to specify general formats. The INITIAL section contains the
report title, which is printed once at the beginning of the report. The INITIAL section may also
assign initial values to declared fields or accept values from the terminal for specific fields.

1 — The, TYPE statement is presented on page 34.

140

The HEADINGS section describes the page headings to be printed at the top of every page in
the report. The DETAILS section specifies calculations to be performed on each record and the
information to be printed from each record in the data file. In the TOTALS section, the user
requests the various totals and subtotals desired. The FINAL section allows the user to print
totals or other accumulated data after all records are processed.

The discussion which follows treats each REPORT section separately, specifying available
capabilities, legal statements, and examples.

The DECLARE Section

The DECLARE section allows creation of working storage. It specifies new fields which do
not exist in the data file but which can be used to save data from a record or calculation. For
example,

10 DECLARE Section name must appear alone on a line.
20 CHEM.COUNT,I,3

30 ENGR.COUNT,I,3

40 SR.EMP,I,3

50 JR.EMP,I,3

60 YR.WAGE,R,9,2

creates temporary storage for five fields which do not appear in the input records. The user may
declare as many fields as desired, the only limitation being that a maximum of 100 lines is
permitted in a rules file.

The form used to specify a new field is:
field name, data type, field length, decimal places

The user may specify several field declarations on a single line by separating the field declarations
with a semicolon (;). The following example illustrates declaring five working storage fields
while entering only two lines in the DECLARE section.

10 DECLARE
20 TEMP1,N,5,2;TEMP2)N,5,2
30 MCOUNT,1,4;FCOUNT,I,4;,TCOUNT,I,5

The field name may contain as many as 31 characters; must begin with a letter; and may be
any combination of letters, the digits O through 9, the period (.), and the character @. See page 47
for a list of reserved field names.

The data type may be C, N, I, R, or D, indicating the contents of the field, as follows:

141

Data Type Meaning
C Character data
N Numeric data
1 Integer number
R Real number
D Double precision number

NOTE: With declared fields, the data types I, R, and D do not indicate binary data, but rather
specify the most efficient storage for an integer, real, and double precision number, respectively.

The field length specifies the maximum number of characters needed to write the data in
symbolic form. The specification of the number of decimal places is necessary only for those
fields that are to contain numbers with decimal points; it specifies the maximum number of
digits to the right of the decimal point.

NOTE: Declared numeric fields are automatically initialized to zero; declared character fields
are automatically initialized to blanks. Once a declared field is assigned a value, bowever, that
value is used with subsequent records unless the value is specifically changed; if so, the new value
is used with subsequent records, and so on.

The user may also declare as many as 20 general picture formats. With this feature, the user can
specify the format once in the DECLARE section and later refer to it by number. For example,
the user specifies three general formats:

10 DECLARE
20 FORMAT 1: $$$,$$$.DD
30 FORMAT 2: ——---DD

40 FORMAT 3: ZZZ7Z7Z

At a later point in the report description, he requests a special format by number:
170 PRINT NAME,S.S.NO,GROSS(1),DEDUCT(2),DOLLAR(3),NET(1)

The form for specifying general picture formats is

FORMAT n:picture format

where n may range from 1 to 20, inclusive.

See page 125 for an example of a DECLARE section specifying temporary storage fields and
general formats in a complete rules file.

The ROUNDIN and ROUNDOUT statements may be used in the DECLARE section of the
UPDATE, VERIFY, or REPORT rules files to round numeric data and/or arithmetic results to
conform to the field descriptions.

The ROUNDIN statement rounds the values in all numeric fields to their specific field descrip-
tions before the values are used in an arithmetic calculation.

The ROUNDOUT statement rounds numeric values and arithmetic results to conform to the
receiving field descriptions. To preserve accuracy in calculations, intermediate results of an
expression are not rounded. The initial values are rounded when the ROUNDIN statement appears;
the final values are rounded when the ROUNDOUT statement appears.

142

For example, assume the following field descriptions for a binary file:

FLD1,R,6,2
FLD2,R,6,2
FLD3,R,6,2

Suppose the statement
FLD1 + FLD2 TO FLD3

appears in the rules file, and the stored values for FLD1 and FLD2 are 212.35499999 and
201.35499999. If only a ROUNDIN statement appears in the rules file, FLD1 and FLD2 are
rounded, and the value of FLD3 is 413.70. If only a ROUNDOUT statement appears in the
rules file, FLD1 and FLD2 are added, and the value of FLD3 is rounded to 413.71. If both
ROUNDIN and ROUNDOUT statements appear in the rules file, FLD1 and FLD2 are rounded
and summed, and the value of FLD3 is rounded to 413.70.

IML provides rounding to as many as five decimal places. Values from or to fields specifying
more than five decimal places are not rounded. Users who want more accuracy can obtain it,
despite any rounding statements, by specifying more than five decimal places in the appropriate
field descriptions. The function used by IML to perform the rounding can be described by the
equation

IP(value*10N+.5)/10N

where IP means integer part, and N is the number of decimal places specified.

The INITIAL Section

The INITIAL section is executed once at the beginning of the report procedure before any
records are processed. Here, the user specifies the title for the entire report, as well as the initial
values for declared fields and built-in functions. For example:

80 INITIAL

86 5 TO MARGIN

90 SKIP TO 3

100 PRINT 15B,"PERSONNEL SUMMARY REPORT",CR,15B,aWEEKDAY,U4B,
aCDATE,CR

Line 86 sets the bottom margin to five blank lines; line 90 skips to the third line of the report
page; and line 100 specifies the report title.

The INPUT statement is very useful in the INITIAL section for entering a control value for a
single field directly at the terminal. For example:

50 INITIAL
60 TYPE “PLEASE ENTER A REPORT CODE OF 1,2, OR 3”
70 INPUT RPT.CODE

Line 60 prints the comments in quote marks directly at the terminal, and line 70 accepts the
entered value for RPT.CODE. RPT.CODE must be a new field specified in the DECLARE
section.

143

All the valid control and instruction statements may appear in this section. Data field names,
however, may not be specified, since the INITIAL section is executed before any data records are
processed.

See page 125 for an example of an INITIAL section in a complete rules file.

The HEADINGS Section

The HEADINGS section is executed whenever REPORT begins a page of the report. A SKIP
TO TOP statement, PRINT TOF statement, or page completion, therefore, causes the execution
of the entire HEADINGS section. The HEADINGS section specifies the information to be
printed at the top of every page in the report. For example:

130 HEADINGS

135 PRINT PAGE,CR,"PERSONNEL SUMMARY",CR,3DATE,CR

140 SKIP 6

150 PRINT " NAME NUMBER DEPT JOB SALARY RATING",
" PROMOTABILITY",CR,CR

Line 135 specifies a page title, including the data and page number; line 150 specifies the column
headings for the details which follow.

In addition, the user may specify control statements and assign values to declared fields in the
HEADINGS section. Data record fields, however, may not appear in the HEADINGS section.

See page 125 for an example of a HEADINGS section used in a complete rules file.

The DETAILS Section

The DETAILS section is executed for each record in the file. The user describes any calcula-
tions required and the information to be printed for each record. Information from a record to be
used for a later calculation may be saved in a temporary storage field created in the DECLARE
section. For example:

160 DETAILS
170 IF "CHEM" IN AREA OR AREA2

175 CHEM,COUNT +1 TO CHEM.COUNT
180 IF "ENGR" IN AREA OR AREA2

185 ENGR.COUNT +1 TO ENGR.COUNT
190 IF DATE.HIRE<700101

195 SR.EMP +1 TO SR.EMP

200 ELSE JR.EMP +1 TO JR.EMP

210 IF SALARY<25,

215 SALARY*2080 TO YR.WAGE

220 ELSE SALARY TO YR.WAGE

230 DO

240 PRINT NAME,EMP.NO,3B,DEPT,3B,JOB,4B,YR.WAGE,5B,RATING,

6B, PROMOTABILITY,CR

144

Lines 170 through 200 cause a continuous calculation of the number of employees with a back-
ground in chemistry, the number of employees with a background in engineering, those employed
before January 1, 1970, and those employed since January 1, 1970, respectively. The counts

are stored in four temporary fields created in the DECLARE section. Lines 210 through 220 com-
pute the yearly salary. If the salary in the current record is less than 25, it is at an hourly rate

(no one earns more than $25 per hour) and is converted to an annual rate; otherwise, the given
salary is already an annual one. Line 240 specifies the details to be printed from each record.

When a function (SUM, AVG, MIN, and MAX), described below, applies to a data field, the
field values in the record are always used in the evaluation; that is, any calculations specified in the
DETAILS section do not affect the function result. If the function evaluation is to be affected
by the rules in the DETAILS section, declared fields must be used.

If the user wants a declared field to assume an initial value in each record processed by the
DETAILS section, he must specifically assign it a value at the beginning of the DETAILS section.

See page 125 for an example of a DETAILS section used in a complete rules file.

The OTHERS Section

The OTHERS rules section permits the user to perform operations with records which were
excluded from the report by an IF or FOR clause in the REPORT command.

The OTHERS section is similar to the DETAILS section; however, the OTHERS section
processes each record that is excluded by the IF or FOR clause specified in the REPORT com-
mand, whereas the DETAILS section processes each record that is qualified by the IF or FOR
clause. For example, assume that the user enters the REPORT command shown below:

—REPORT PROD:PRDESC IF DAY NOT = 0 TO T AS PER PRULES 5

Each record of PROD which does not specify DAY as zero is processed by the DETAILS section;
each record of PROD which does specify DAY as zero is processed by the OTHERS section.

NOTE: Records which are processed by the OTHERS section do not affect the cumulative
functions SUM, MIN, MAX, and AVG.

The example below illustrates the use of the OTHERS section in generating a report on the
production of parts. The user wants the report to show, for each part, the quantity made per day
and the percentage that quantity is of the week’s production of that part.

The data file PROD contains records with four fields: PARTNO, WEEK, DAY, and QTY. The
records specifying DAY as zero contain the total quantity of that part produced for the given
week, whereas records specifying DAY as 1, 2, 3, 4, or 5 contain the quantity of that part pro-
duced for the day. Before entering the REPORT command, the user sorts the data file by
PARTNO, WEEK, and DAY.

The sorted data file PROD and its description file, PRDESC, are shown below.

-TYPE PRODo

10 3 0 100
10 3 1 10
10 3 2 15

145

10 3 3 25
10 3 4 40
10 3 5 10
20 3 0 150
20 3 1 20
20 3 2 25
20 3 3 30
20 3 4 35
20 3 5 40

-TYPE PRDESCH

$$S

***BIN OR SYM:

S

***FIX OR VAR:

v

***WHICH TYPE:

L

***NUMBER OF LINES PER RECORD IS:
1

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
PARTHO, N, 1,3

WEEK, N, .,3

DAY,N,.,3

QTY,N,.,5

The REPORT command procedure is shown below.

-~REPORT PROD:PRDESC IF DAY NOT = 0 TO PRODRPT AS PER PRULESH

: LIST> The rules are listed for the purpose of this example.

100 DECLARE

120 TTL.QTY,N,5 This temporary field is to contain the value of QTY when DAY is zero.
130 PERCENT,N,5,2

170 INITIAL

193 SKIP 5

195 PRINT "SUMMARY REPORT, ",@WEEKDAY(),", ",@CDATE,2B,@CTIME
200 PRINT CR,CR,CR

210 DETAILS When the value of DAY is not zero, the record is processed in this section.
230 IF DAY =1

240 PRINT "PRODUCTION OF PART ",PARTNO()," FOR WEEK ",WEEK()
245 PRINT CR,CR

250 PRINT 4B,"DAY",3B,"UNITS",3B,"PERCENT"Y,CR

270 DO 100*QTY/TTL.QTY TO PERCENT

280 PRINT 4B,DAY,3B,QTY,4B,PERCENT,"%",CR

330 OTHERS When the value of DAY is zero, the record is processed in this section.

146

350 QTY TO TTL.QTY
370 TOTALS
390 ON PARTNO
395 PRINT 12B,13"-",CR
400 PRINT 4B,"TOTAL:"“,SUM QTY,3B,SUM PERCENT (Z2ZZ.DD),"8"
410 PRINT CR,CR,CR
RUNS

PRODRPT.. NEW FILE)

OK.

REPORT FINISHED.

The report produced is shown below.

-TYPE PRODRPT>

SUMMARY REPORT, TUESDAY, FEB. 6,1974 4:55 PM

PRODUCTION OF PART 10 FOR WEEK 3

DAY UNITS PERCENT

1 10 10.00%
2 15 15.00%
3 25 25.00%
4 40 40.00%
5 10 10.00%

TOTAL: 100 100.00¢

PRODUCTION OF PART 20 FOR WEEK 3

DAY UNITS PERCENT

1 20 13.33%
2 25 16.67%
3 30 20.00%
4 35 23.33%
5 40 26.67%

TOTAL 150 100.00¢

- 147

The TOTALS Section

In the TOTALS section, the user requests the various subtotals desired. The user indicates
when the subtotal information is to be printed by including one or more ON statements of the
form

ON field list

in the TOTALS section. NOTE: At least one ON statement must be used if the TOTALS section
appears in a rules file. Only the data record fields may appear in an ON statement. REPORT
prints the subtotal information based on a change in the value of a specified field. For example,
the statement

ON STORE,SALESMAN
indicates that subtotals are to be printed whenever STORE or SALESMAN changes in the next

record.

A PRINT statement may appear on a subsequent line specifying the information to be printed.
Four functions are available in the TOTALS section to assist the user in describing the subtotal
information desired:

Subtotal
Function Computes
SUM Sum of all values in a given field.
AVG Average value of a given field; average value is computed by counting the number of records,
adding the values, and dividing the sum by the count.
MIN Minimum value in a given field.
MAX Maximum value in a given field.

For example, the user wishes to print subtotal information whenever the value in DEPT changes.
For each department, he wishes to print the sum of the salaries and the average salary. He accom-
plishes this as follows:

250 TOTALS

260 ON DEPT

265 SKIP 1

270 PRINT 8B,"*TOTAL SALARY*",5B,SUM YR.WAGE (1)
280 PRINT 3B,"AVERAGE ",2B,AVG YR.WAGE(1l),CR,CR,CR
285 IF LINE>5S5

287 SKIP TO TOP

Line 260 specifies when to print the information, that is, when the value of DEPT changes. Lines
265 through 280 specify what to print; that is, REPORT prints a blank line, then prints the sum
and average salary on the same line. Lines 285 and 287 control the paging after a subtotal is
printed.

148

The user may include several ON statements, each with a corresponding PRINT statement. The
maximum number of fields allowed in a/l ON statements, however, is 20 fields. Whenever a field
specified in an ON statement changes value, all preceding ON statements and corresponding
instructions are executed in numerical order. For example:

500 TOTALS

510 ON STORE,SALESMAN

520 SKIP 1

530 PRINT '***!' _14B,SUM AMT,SUM UNITS,CR
540 ON DIST

550 PRINT '**!' 15B,SUM AMT,SUM UNITS,CR
560 ON DIV

570 PRINT '*',16B,SUM AMT,SUM UNITS,CR
580 SKIP TO TOP

When STORE or SALESMAN changes, lines 510 through 530 are executed; when DIST changes,
lines 510 through 550 are executed; and when DIV changes, lines 510 through 580 are executed.
Note that when DIV changes, all subtotals are printed and the next DIV begins on a new page, as
per line 580.

ON statements may control breaks in printing individual records for executing any instruction
statements. That is, it is not necessary to specify a PRINT statement after an ON statement. For
example:

100 TOTALS
110 ON CLASS
120 SKIP TO TOP

The TOTALS section above instructs REPORT to skip to a new page for each class.

In addition, the user may specify control statements, arithmetic operations, and/or declared
fields following an ON statement. For example:

100 TOTALS

110 ON CLASS

120 SUM QTY*.175 TO BASE

130 PRINT “QUANTITY”,QTY,“BASE”,BASE
140 SKIP TO TOP FOR LINE>55

A few rules are appropriate at this point to conclude the discussion of ON statements.

The user may specify only fields in the data records; he may not specify a temporary storage
field name in an ON statement.

The user may precede a field name in an ON statement with a minus sign (-) to indicate reverse
order. For example,

ON -DIV

indicates that the divisions appear in the data base in reverse order, such as 3 first, then 2, then 1.
With character fields, the minus sign indicates reverse alphabetical order.

REPORT performs a sequence check to determine that the records in the data file are sorted
on the fields named in the ON statements of the TOTALS section. The user must, therefore, sort
his data file before entering the REPORT command.

149

The last field list specified in all ON statements must appear first in the SORT command, the

next to last field list must appear next in the SORT command, and so on.! Note that in a single
ON statement field list, those field names must appear in the same order within the SORT
command. For example, to sort a file in preparation for the TOTALS section (lines 500 through
580) on page 148, the appropriate SORT command is:

—SORT SALESDATA:SDESC TO RPTSALES BY DIV ,DIST,STORE,SALESMAN)

NOTE: If a minus sign precedes a field name in an ON statement, it must also precede that

field name in the SORT command.

The following statements are used to illustrate another SORT command in preparation for the

TOTALS section.

500 TOTALS
510 ON A,B,C

550 ON D

590 ON E-F,G

The appropriate SORT command is:

—SORT FILEX:DESC TO FILEY BY E,-F,G,D,A,B,C~

See page 125 for an example of a TOTALS section used in a complete rules file.

The FINAL Section

After all records are processed, REPORT executes the FINAL section. It is here that the user

specifies totals or other accumulated calculations to be printed. All the functions available in the
TOTALS section are also valid in the FINAL section. These functions, SUM, AVG, MIN, and
MAX, may be used with data fields or temporary fields created in the DECLARE section. For

example:
290 FINAL
300 PRINT CR,CR
301 PRINT "FINAL TOTALS",CR,"======-- e me————————— -
e eeeseeeesee—eeeameeen===" ,CR,CR
310 PRINT 8B,"*TOTAL PAYROLL*",4B,SUM YR.WAGE(1) ,CR
312 PRINT CR,"EMPLOYEE CHARACTERISTICS:",CR,CR
320 PRINT "SENIOR EMPLOYEES ",SR.EMP,CR
330 PRINT "JUNIOR EMPLOYEES ",JR.EMP,CR
340 PRINT "EMPLOYEES WITH CHEMISTRY BACKGROUND ",2B,CHEM.COUNT,CR
350 PRINT "EMPLOYEES WITH ENGINEERING BACKGROUND ",ENGR.COUNT,CR
355 SKIP TO 61

Line 310 prints the sum of all values in YR.WAGE; lines 320 through 350 print the accumulated
data for the counts on senior employees, junior employees, employees with chemistry backgrounds,
and those with engineering backgrounds, respectively.

See page 125 for an example of a FINAL section used in a complete rules file.

1 — See page 83 for documentation of sorting procedures.

151

SECTION 7
ADVANCED APPLICATIONS

This section presents a variety of advanced capabilities in the Information Management Library.
Some of the discussions introduce additional options and commands in IML; others detail the
use of the EXECUTIVE or language subsystems in combination with IML.

This section by no means exhausts the advanced or indirect capabilities present in the Informa-
tion Management Library. The section discusses the more popular applications and features not
documented elsewhere in the manual. It is hoped that the information in this section serves not as
an encyclopedia but rather as an indication of the potential applications handled with IML.

The first discussion details the important reformatting facility of the SELECT command,
allowing the user to change the structure of a data file, that is, to rearrange or eliminate fields in
the records of a data file. Special attention is given to reformatting RETRIEVE files, although
this capability is equally applicable to IML data files.

Next, a new command, APPEND, for appending a file or data entered at the terminal to
another file, is introduced. Regardless of the structure of the files, APPEND allows the user to
append a description file, data file, or any other file to an existing or new file.

The next discussion presents an important concept for conserving storage of description files
and rules files: the multiple description file. The purpose, creation, and use of multiple descrip-
tion files are detailed, and a host of additional options in DEFINE are presented, allowing the user
to list, rename, delete and edit the individual data file descriptions and rules sets on a single
multiple description file.

The last discussion explores the use of command files with IML. It includes the creation of
simple command files as well as complicated command files which originate from a language sub-
system. Also presented are additional rules statements for command file control and the use of
CREATE in a command file with data entry from the terminal.

REFORMATTING A RETRIEVE DATA BASE

The SELECT command provides RETRIEVE users with an important capability to reformat
the information in symbolic or binary data bases.! Using SELECT’s optional output file specifica-
tion, the user may change the structure of records in a RETRIEVE file to allow additional fields,
to eliminate fields, and to rearrange the order of fields. Furthermore, the user may include an
optional IF clause in the same command to delete entire records from the data base being
reformatted.

1 — See pages 87 through 96 for complete documentation of SELECT.

1562

The basic form of the SELECT command used to reformat records in a RETRIEVE data base is

output
—SELECT FROM data base TO file : field listo
name

where the field list specifies the desired fields and their arrangement in the records to be written.
The user may include blanks, carriage returns, line feeds, and literals in specifying the output
file format.

NOTE: When reformatting a RETRIEVE binary file, the user should remember that character
fields must be a multiple of 3. When adding literals and blanks, therefore, the text in quote marks
and/or blanks must be a multiple of 3.

To specify blanks, the user simply types the number of blanks desired, followed by B, at the
appropriate position in the field list. For example, the field list
FLD1,9B,FLD2

specifies that nine blanks are to be written after the field FLD1.

To specify a carriage return or a line feed, the user types CR or LF, respectively, at the appro-
priate position in the field list. For example, the field list
FLD1,9B,FLD2,LF,FLD3,FLD4,CR
specifies that a line feed is to be written after FLD2, and a carriage return is to appear at the end
of each record.

NOTE: SELECT does not include an automatic carriage return at the end of each record when
writing the output on a file. The user must, therefore, specify CR at the end of the field list
when be wants a carriage return to be written.

To specify literals, that is, text to appear in each record, the user enters the text enclosed in
single or double quote marks at the appropriate position in the field list. For example, the format
FLD1,“TEXT”,FLD2

specifies that the characters TEXT are to immediately follow FLD1 in each record.

NOTE: The user may specify as many as 80 characters of text enclosed in quote marks and
as many as 80 blanks for any position in the field list.

To select as well as reformat records, the user includes an IF clause in the SELECT command.!
The form used is:

IF conditions output
— fil : field Li
SELECT FROM data base FOR conditions TO nlatI:n . ield listo

NOTE: The user must create a new description or struciure file by calling DEFINE or
RETRIEVE when he wants to use the reformatted data base in a subsequent command.

The sample applications reformat a RETRIEVE data base named INVEN. The data base and
its structure file are shown on the following page.?

1 — See page 20 for a discussion of IF clauses and page 89 for the use of IF clauses with the SELECT command.
2 — Note that RECNO is not a field in the records, but is printed automatically with listings in RETRIEVE.

-RETRIEVE

+BASE INVEN

24 RECORDS(3

+LIST

RECNO
NUMBER

WONOOTUVTEWN=
-
o
o

12 40
13 "
14 106
15 25
16 12
17 48
18 108
19 8
20 6
21 1N
22 13
23 49
24 50
24 RECORDS
.STRUCTURE ,

FIELD TYPE

VEWN -
OHHOH

8)

NAME

CAL MANUAL

COGO MANUAL

CSMP MANUAL

CUC MANUAL

DEBUG MANUAL
EASYPLOT MANUAL
EDITOR MANUAL
EXECUTIVE MANUAL
FORTUNE 500 MANUAL
IML MANUAL

LAPLACE MANUAL
LNED MANUAL
LOGSIM MANUAL
MINMAX MANUAL
NASAP MANUAL
RETRIEVE MANUAL
STATPAK MANUAL
STATPAK MANUAL
SUPER BASIC MANUAL

SUPER FORTRAN MANUAL

TYMEX MANUAL

TYMTAB MANUAL
TYMTRAC MANUAL
TYMUSE MANUAL

WIDTH NAME

4 NUMBER
21 NAME

6 QTY

4 DAT

2 CLASS

QTY

5400
675
12420
2295
4500
5292
2610
5850
10800
6993
4212
2097
18387
9639
3402
23859
5400
5904
21600
12798
15147
45000

270

DAT

6906
6901
7205
7108
7201
7007
6907
7101
7005
7109
7002
7202
7002
7111
7006
7108
7103
7202
7105
7004
7203
7206

7110

7003

CLASS

IX
IX
IX
IX

IX
IX
IX
IX
IX
IX
IX
IX

IX
IX
IX

IX
IX

IX
IX
IX

153

154

The examples below illustrate the use of SELECT to reformat the INVEN data base in three
different ways. The first example shows the elimination and rearrangement of fields in each
record of INVEN. Example 2 reformats INVEN by adding one field and leaving space for another
field. The final example illustrates the selection and simultaneous reformat of records in INVEN.

Example 1

The user wants to omit the QTY and DAT fields, and also wants the records to contain CLASS
first, then NAME, and last, NUMBER.

-SELECT FROM INVEN TO IDMANUALS:CLASS,NAME,NUMBER,CR
IDMANUALS.. NEW FILE, The user specifies a carriage return

(CR) at the end of each record.
OK.

24 RECORDS SELECTED FROM 24

-TYPE IDMANUALS o

IXCAL MANUAL 28
IXCOGO MANUAL 31
IXCSMP MANUAL 32
IXCUC MANUAL 34
X DEBUG MANUAL 100
IXEASYPLOT MANUAL 35
IXEDITOR MANUAL 3
IXEXECUTIVE MANUAL 1
IXFORTUNE 500 MANUAL 38
IXIML MANUAL 7
IXLAPLACE MANUAL 24
IXLNED MANUAL 40
IXLOGSIM MANUAL u1
X MINMAX MANUAL 106
IXNASAP MANUAL 25
IXRETRIEVE MANUAL 12
IXSTATPAK MANUAL 48
X STATPAK MANUAL 108
IXSUPER BASIC MANUAL 8
IXSUPER FORTRAN MANUAL 6
X TYMEX MANUAL 111
IXTYMTAB MANUAL 13
IXTYMTRAC MANUAL 49

IXTYMUSE MANUAL 50

155

Note that the user may easily insert spaces between the fields when he does not want the
fields to be contiguous. For example,

—SELECT FROM INVEN TO IDMANUALS:CLASS,2B,NAME,2B,NUMBER,CR -

specifies that two blanks are written after CLASS and NAME. This capability is also illustrated in
the next example.

Example 2

The user wants to add the characters TYMCOM- before the CLASS field, and also wants to
leave space for a five-character field, which is to contain data from a later operation, between the
QTY and DAT fields.

-SELECT FROM INVEN TO NEWINV:NUMBER,NAME,QTY,5B,DAT,"TYMCOM-",CLASS,CR o
NEWINV.. NEW FILE,

OK.

24 RECORDS SELECTED FROM 24

~TYPE NEWINV

28CAL MANUAL 5400 6906 TYMCOM=~IX
31COGO MANUAL 675 690 1TYMCOM~IX
32CSMP MANUAL 12420 7205TYMCOM=-IX
34CUC MANUAL 2295 7108TYMCOM=-IX
100DEBUG MANUAL 4500 720 1TYMCOM=-X
35EASYPLOT MANUAL 5292 7007TYMCOM=-IX
3EDITOR MANUAL 2610 6907TYMCOM-IX
1EXECUTIVE MANUAL 5850 7101TYMCOM~IX
38FORTUNE 500 MANUAL 10800 7005TYMCOM=~IX
7IML MANUAL 6993 7109TYMCOM=~IX
24LAPLACE MANUAL 4212 7002TYMCOM=~-IX
4LOLNED MANUAL 2097 7202TYMCOM=-IX
41LOGSIM MANUAL 18387 7002TYMCOM~IX
106MINMAX MANUAL 9639 7111TYMCOM=X
25NASAP MANUAL 3402 7006 TYMCOM=-IX
12RETRIEVE MANUAL 23859 7108TYMCOM=-IX
48STATPAK MANUAL 5400 7103TYMCOM~-IX
108STATPAK MANUAL 5904 7202TYMCOM=-X
8SUPER BASIC MANUAL 21600 7105TYMCOM=-IX
6SUPER FORTRAN MANUAL 12798 7004TYMCOM=-IX
111TYMEX MANUAL 15147 7203TYMCOM=X
13TYMTAB MANUAL 45000 7206TYMCOM~-IX
49TYMTRAC MANUAL 0 7110TYMCOM=-IX

50TYMUSE MANUAL 270 7003TYMCOM=-IX

156

Example 3

The user wants to select records for which CLASS equals X, and also wants to reformat the
records to contain the NAME field first, then the NUMBER field preceded by the character #,
then the QTY field, three blanks, and the DAT field.

~SELECT FROM INVEN IF CLASS="X" TO INVTYMCOMX:NAME,"#",NUMBER,-
QTY,3B,DAT,CR
INVTYMCOMX.. NEW FILE,

OK.

4 RECORDS SELECTED FROM 24

-TYPE INVTYMCOMX 5

DEBUG MANUAL # 100 4500 7201
MINMAX MANUAL # 106 9639 7111
STATPAK MANUAL # 108 5904 7202
TYMEX MANUAL # 111 15147 7203

SAVING A COMPILED RULES FILE PROCEDURE

Once the user is satisfied that no further changes are to be made to a rules file procedure, he
may use the SAVE PRODUCTION command to direct IML to compile the rules file, the descrip-
tion file(s), the IF or FOR clause(s), the key field list, and the file names used with the IML
command. SAVE PRODUCTION compiles and saves a more efficient form of the entire procedure
on a user-specified file for future execution with the PERFORM command.

The user enters the SAVE PRODUCTION command at rules file command level instead of
entering the RUN command. The form of the SAVE PRODUCTION command is:

duction
PRODUCTION pro
: SAVE PRO ON file 2
name

It is suggested that the user save a copy of the current rules file before using the SAVE
PRODUCTION command. A listing of the rules cannot be reconstructed from the production
file. The user is asked for the name of the rules file to ensure that any changes are incorporated
in the file before the production file is created. The following example illustrates the creation
of a production file with the SAVE PRODUCTION command.

-REPORT SPERSONNEL:PDESC IF @NDATE-LAST.REV>=9900 TO REVDUE—*

AS PER DPTRPTDO The user enters the IML command procedure to be saved.

: SAVE PRODUCTION ON PRDFILo Instead of entering the RUN command, he uses the
REVDUE.. NEW FILE) SAVE PRODUCTION command.

PRDFIL.. NEW FILE) He confirms the report output file name and the production file name.

PRODUCTION SAVED.
Control returns to the EXECUTIVE after the production file is written.

157

Executing a Compiled Rules File Procedure

The PERFORM command executes a compiled, saved production rules file procedure directly
in the EXECUTIVE. In addition to two options which print the file names and the version of
the IML command associated with the production file, several alternative forms of the PERFORM
command allow the user to respecify one or more file names of the production file.

The basic form of the PERFORM command is:

[FILES]

production
[VERSION]}

file 5

—PERFORM {
name

This form of the PERFORM command allows the user to display the command name and the file
name(s) established in the production file or the name and version number associated with the
production file. The user must specify the production file name used with the SAVE PRODUC-
TION command when using the PERFORM command.

For example, suppose the user wants to execute the REPORT command procedure shown on
page 156. The compiled form of this procedure is saved on the file PRDFIL. The user simply types

—PERFORM PRDFIL 5
REVDUE.. OLD FILE) PERFORM lets the user confirm or change the established output file name.

which is considerably more efficient than the équivalent, longer procedure shown below:

-REPORT SPERSONNEL:PDESC IF @NDATE-LAST.REV>=9900 TO REVDUE-;
AS PER DPTRPTH

RUNS
REVDUE.. OLD FILE,

OK.

The FILES option prints the command name and the file name(s) established in a production
file.

-PERFORM [FILES] PRDFILo

REPORT SPERSONNEL TO REVDUE The words TO and WITH are
included in the response to
identify the data, activity,

-PERFORM [FILES] PRDUPD- and output files.

UPDATE MASTER WITH JULACT TO CURRENT

To print the name and version number of the IML command associated with a production file,
the user types:

158

-PERFORM [VERSION] PRDFILS
REPORT E06.00

-PERFORM [VERSION] PRDUPD
UPDATE E06.00

CHANGING FILE NAMES

Several alternative forms of the PERFORM command allow the user to change the data,
activity, and output file names that were previously established in the production file.! Most of
the forms documented below require that the user respecify the same number and type (binary
or symbolic) of files as were used when the production file was created.? The particular form
chosen by the user depends on the IML command (REPORT, CONVERT, VERIFY, or UPDATE)
and the number of files established in the production file.

If the production file uses the REPORT command, the CONVERT command, the VERIFY
command with an output file, or the UPDATE command without an activity file, the user
respecifies file names and executes the compiled procedure with the command:

production data output
—PERFORM file file TO file >
name name name

For example, if the user wishes to execute the production file PRDFIL and respecify the file
names used in this procedure, he types:

—PERFORM PRDFIL NEWDATA TO NEWRPT
NEWRPT.. NEW FILE,

The established description file, IF clause, and rules file are always used in the production execu-
tion. The above PERFORM command is equivalent to and more efficient than the following
procedure:

~-REPORT NEWDATA:PDESC IF @NDATE-LAST.REV>=9900 TO NEWRPT =
AS PER DPTRPTO

RUND
NEWPRT.. NEW FILE)

OK.

If the production file uses the VERIFY command without an output file, the user may
respecify the data file name and execute the compiled procedure with the command:

production data
—PERFORM file file
name name

1 — If the user wants to change only the output file name, a special form of the PERFORM command is not necessary; he may
simply type an alt mode/escape in response to the NEW/OLD FILE message and respecify the output file name at that point.

2 — The exception to respecifying the same number of files is noted on page 159.

159

If the production file uses the UPDATE command with an activity file, the user respecifies
file names and executes the compiled procedure with the command:

production data activity output
—PERFORM file file WITH file TO file
name name name name

For example, if the production file PRDUPD was created after the user entered the command

—UPDATE MASTER:MDESC WITH JULACT:ADESC TO CURRENT 3
IF _INVOICE:A=INVOICE:D BY ACCOUNT AS PER UPDRUL 5

then the command

—PERFORM PRDUPD CURRENT WITH AUGACT TO NEWMASTER)
NEW MASTER.. NEW FILE

is equivalent to

-UPDATE CURRENT:MDESC WITH AUGACT:ADESC TO NEWMASTER
IF INVOICE:A=INVOICE:D BY ACCOUNT AS PER UPDRUL>S

RUNS
NEWMASTER.. NEW FILED

OK.

If the user simply types
—PERFORM 5

PERFORM only prompts for the production file name. The user may, however, also respecify
file names on the same line with the requested production file name. For example:

—~PERFORM >
PRODUCTION NAME: PRDUPD CURRENT WITH AUGACT TO NEWMASTER 5

NOTE: If the user respecifies file names but does not enter a name for every file, the file
name(s) established in the production file is used for the unspecified file name(s).

APPENDING A FILE TO ANOTHER FILE

The APPEND command permits the user to append one file to another file in an efficient
manner, requiring only that both files be the same type, either binary or symbolic. The form of
the APPEND command is

—APPEND file name; TO file name, -

where only file name; may be T (for terminal); file name, may be a new file or an existing file;
and neither file name may be NOTHING.

NOTE: Neither file need be an IML file.

160

The user may type simply
—APPEND >
and the system prompts:

FILE TO BE APPENDED:
APPEND TO FILE:

For example, the command

—APPEND FILE1 TO FILE2),

adds the contents of FILE1 to the end of FILE2. After the command is executed, FILE2 contains
the original contents of FILE2 plus the contents of FILE1.

The user may append data from the terminal to a specified file by entering an APPEND com-
mand of the form

—APPEND T TO file name 5

where the file named may be a new file or an existing file. For example:

—APPEND T TO SDATA>

When appending data from the terminal, the full set of editing control characters may be used,
as in the APPEND mode of EDITOR.! The user terminates the APPEND command with a
Control D as the first character of a line when entering data from the terminal.

When Control Q deletes the line being typed, it echoes as an up arrow (1). When Control Q
deletes the preceding complete line, it echoes as an up arrow and a crosshatch (14). Control Q
may be used repeatedly to delete several lines. Alternatively, the user may actually type an up
arrow (Shift N), followed by a carriage return at the beginning of a line, to delete the preceding
line. The system prompts with the number of the line to be entered next and returns the
carriage. An up arrow followed by a carriage return may be used repeatedly to delete several
preceding lines. For example:

-APPEND T TO CREDITS ,

CREDITS.. NEW FILE,

OK.

A-S=48 5

R=-C-62 >

D-0-76 >

E-T“1 2 o)

N-T=74 >

e} The user deletes the preceding line.

5: The system prompts for the next line, namely, the fifth line.
1o The user deletes another line.

4: The system prompts for the next line, which is now the fourth line.
T-F-875

H-L-—Z 2]

A-0-18,

D-R"8 3)

D-Y-56 5

E-A-09

1 — See the Tymshare EDITOR Reference Manual for complete documentation of control characters and their functions.

161

U=N=41 >
S= =22,

e
11

FINISHED. The user types Control D at the beginning of the line, terminating the APPEND procedure.

USING MULTIPLE DESCRIPTION FILES

The DEFINE program incorporates several additional capabilities which allow the user to
reduce significantly the storage required for description files and rules files. The user may store
more than one data file description and set of rules on a single file, calling DEFINE to list, edit,
rename, or delete specific information on a multiple description file.

The discussion of multiple description files is organized in several parts. First, the technique
for creating a multiple description file is discussed, including data file descriptions and rules sets.
Next, the numerous DEFINE options for facilitating the use of multiple description files are
presented. The discussion includes the [DIR], [LIST], [DELETE], [RENAME], and [EDIT]
options, together with their various forms and purposes.

Creating a Multiple Description File

This discussion presents the method of creating a data file description as part of a multiple

description file and the method of creating a rules file to be included in a multiple description
file.

Data File Descriptions

The user creates a data file description as part of a multiple description file, using a special
form of the DEFINE command. The form used is

multiple

—DEFINE deseription 0y
file

name

where the specified title must conform to the rules for naming files.! For example, the command

—DEFINE MULT(INVDES) -

creates a data file description titled INVDES on a file named MULT. After the user enters the
appropriate information, the system writes the data file description on MULT with the heading:

$$$FIL(INVDES)

The following example illustrates the creation of two data file descriptions to appear in the
same multiple description file.

1 — See the Tymshare TYMCOM-IX EXECUTIVE Reference Manual for details on file naming conventions.

162

-DEFINE MULT (WAGE) 5

MULT.. NEW FILE, The user creates a new multiple description file.
SHORT PROMPTS? YES

BIN OR SYM: SYM,

FIX OR VAR: VAR,

VAR TYPE(C,L, ,S) : WHICH TYPE:)

NUMBER OF LINES PER RECORD IS: 1

NAME, TYPE, START, LENGTH, DECIMAL PLACES
EMP.NO,N, 1 QD

RATE,C,6,1
HOURS, N, 8,
WAGES,N,11,6,2 5

D

ESCRIPTION FILE WRITTEN.

-DEFINE MULT (TERMIN) 5
MULT.. OLD FILE) The description is to be appended to MULT.
SHORT PROMPTS? YES ,
BIN OR SYM: SYM,
FIX OR VAR: FIX 5
LENGTH: 13 5
NAME, TYPE, START, LENGTH, DECIMAL PLACES
: NAME,C,1,9,
: EMP, NO N, or b5
$ 90
DESCRIPTION FILE WRITTEN.

The multiple description file named MULT is shown below.

-TYPE MULT 5

$$$FIL (WAGE)

*%*BIN OR SYM:

SYM

***FIX OR VAR:

VAR

***WHICH TYPE:

L

***NUMBER OF LINES PER RECORD IS:
1

%% NAME, TYPE, START, LENGTH, DECIMAL PLACES
EMP.NO,N, 1,4

RATE,C,6,1

HOURS,N, 8,2

WAGES,N,11,6,2

$$$FIL (TERMIN)
***BTN OR SYM:
SYM

163

***FIX OR VAR:

FIX

*** LENGTH:

13

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
NAME,C,1,9

EMP.NO,N,.,4

Note that each data file description is preceded by an appropriate heading of the form:
$$SFIL(title)

When the user wants to specify the data file description in an IML command, he types the
multiple description file name, followed by the title in parentheses, at the normal position for
the description file name. For example:

—SELECT FROM WDATA:MULT(WAGE) IF RATE=‘H’ TO T 2
The command specifies a data file named WDATA defined by a data file description, WAGE, on
a multiple description file named MULT.

NOTE: When more than one data file description bas the same title in a multiple description
file, IML always uses the first data file description in the file. It is suggested, therefore, that
the user specify different titles for each data file description in a given multiple description file.

Rules Files

The user creates a set of rules as part of a multiple description file by entering T (for terminal)
for the rules file name in an UPDATE, VERIFY, or REPORT command. When the system
prompts, for example, in UPDATE,

SAVE UPDATE RULES ON:

the user enters the name of the multiple description file, followed by a title enclosed in paren-
theses, for the set of rules. The specified title must conform to the rules for naming files.! For
example:

=UPDATE WEEKLYHOURS :MULT (WAGE) TO HOURSUPD AS PER T o Theuser

SAVE UPDATE RULES ON: MULT (WAGE) D The rules are titled WAGE specifies a
MULT.. OLD FILE) and written on a multiple data file
H UPDATE prompts for the rules statements. description file named MULT. description
on a multiple
description file.

The entered rules are appended to MULT with the heading:
$$$SUPD(WAGE)

1 - See the Tymshare TYMCOM-1X EXECUTIVE Reference Manual for details on file naming conventions.

164

NOTE: The data file description and rules set need not be on the same multiple description
file. For example, the command

~VERIFY WEEKLYHOURS:MULT(WAGE) AS PER PAYROLL(TIMECARD)

specifies a data file description on the MULT multiple description file and a set of verification
rules on the PAYROLL multiple description file.

The table below specifies the various headings used for UPDATE, VERIFY, and REPORT
rules in a multiple description file.

Heading Specifies

$$$UPD(title) UPDATE rules
$$$VER((title) VERIFY rules

$$$REP(title) REPORT rules

The user may specify the same title for UPDATE, VERIFY, and REPORT rules; the appropriate
set of rules is located according to the IML command used. For example,

—VERIFY WEEKLYHOURS:WDESC AS PER MULT(WAGE)

instructs VERIFY to read the rules following the heading
$$$VER(WAGE)

in the file MULT. Similarly,

—REPORT HOURSUPD:WDESC TO RPT AS PER MULT(WAGE)-

instructs REPORT to read the rules following the heading
$$$SREP(WAGE)

in the MULT multiple description file.

NOTE: If the same title is assigned to several sets of rules for a given IML procedure (UPDATE,
VERIFY, or REPORT), the specified set which appears first in the multiple description file is
used. It is suggested, therefore, that the user specify a different title for each set of UPDATE rules,
a different title for each set of VERIFY rules, and a different title for each set of REPORT rules.

Altering a Multiple Description File

The DEFINE command provides five options for examining and editing data file descriptions
or rules sets on a multiple description file. The form of the command, including an optional data
file description title or rules set title, is

multiple
description
file

name

—DEFINE [option] (title) 5

165

where a title may be included to specify a particular data file description or rules set on the
multiple description file named.! The general purpose of each option is presented in the table
below. The discussion following the table details all options, explaining the various forms of
each option with examples.?

Option Purpose

[DIR] Prints titles of data file descriptions and/or rules sets on specified multiple description
file.

[LIST] Prints data file descriptions and/or rules sets on specified multiple description file.

[DELETE] Deletes data file description or rules set on specified multiple description file.

[RENAME] Renames data file description or rules set on specified multiple description file.

[EDIT] Permits user to edit a data file description on a multiple description file or on a simple
description file.

Determining Titles
The [DIR] option prints a directory listing of the contents of a multiple description file; that

is, it prints the titles of the data file descriptions and rules sets on the file. For example, if the
user wants a directory listing for a multiple description file named PAYROLL, he types:

=DEFINE [DIR] PAYROLL -

OK.

$$$FIL (TERMIN)
$$$FIL (REVIEW) The file contains three data file descriptions, one set of UPDATE
$$$FIL(WAGE) rules, two sets of VERIFY rules, and one set of REPORT rules.

$$$UPD (WAGE)
$$$VER (WAGE)
$$$REP (PRINTCHECK)
$$$VER (TIMECARD)

FINISHED.

The user may request only data file descriptions by typing a DEFINE command of the form:

multiple
—DEFINE [DIR-F] ?;;:crnptmnD

name

1 — When more than one data file description or an UPDATE, VERIFY, or REPORT rules set has the same title, the first so-titled
one is referred to.
2 - Each option has a form to specify only data file descriptions, UPDATE rules, VERIFY rules, or REPORT rules.

166

For example:

-DEFINE [DIR-F] PAYROLL

OK.

$$$FIL (TERMIN)
$$$FIL (REVIEW)
$$$FIL (WAGE)

FINISHED.

Similarly, the user may request only VERIFY, UPDATE, or REPORT rules sets by using the
option [DIV-V], [DIR-U], or [DIR-R], respectively, in the DEFINE command. For example:

-DEFINE [DIR-U] PAYROLL .

OK.

$$3UPD (WAGE)

FINISHED.

-DEFINE [DIR-V] PAYROLLD

OK.
$$$VER (WAGE)
$$$VER (TIMECARD)

FINISHED.

Listing Data File Descriptions and Rules Sets

The [LIST] option lists either a particular data file description or rules set on a specified
multiple description file or the entire multiple description file. To list the entire multiple descrip-
tion file, the user types:

167

multiple

—DEFINE [LIST] g’f:“‘f’tw“p

name

For example, to list the entire contents of the PAYROLL multiple description file, the user types:

—DEFINE [LIST] PAYROLL -

The user may list a single data file description or rules set by typing a DEFINE command of the
form

multiple

—DEFINE [LIST-x] 2‘1’:“‘1’“0"«&1@3

name

where x may be F, V, U, or R to specify a data file description or a VERIFY, UPDATE, or
REPORT rules set, respectively. A title is required and specifies the desired data file description
or rules set. For example, if the user wants a listing of the data file description titled WAGE on
the PAYROLL multiple description file, he types:

=DEFINE [LIST=-F] PAYROLL (WAGE)D

OK.
$$$FIL (WAGE)

***BIN OR SYM:

SYM

***FTIX OR VAR:

VAR

***WHICH TYPE:

L

***NUMBER OF LINES PER RECORD IS:
1

*** NAME, TYPE, START, LENGTH, DECIMAL PLACES
EMP.NO,N,1,4

XCODE,C,5,1

RATE,C,6,1

HOURS,N,8,4,1

WAGES,N,.,6,2

DATE,N,.,6

FINISHED.

168

Deleting a Data File Description or Rules Set

The [DELETE] option permits the user to delete a single data file description or rules set on
a specified multiple description file.

To delete the first data file description or rules set with a given title, the user types a DEFINE
command of the form

multiple
description
file

name

—DEFINE [DELETE] (title) 5

DEFINE then prints the title of the data file description or rules set to be deleted, since more
than one may have the specified title, and waits for the user to respond with YES or NO, followed
by a carriage return. For example, the following commands illustrate the [DELETE] option for
the PAYROLL multiple description file. See the PAYROLL directory listing on page 165.

-DEFINE [DELETE] PAYROLL(REVIEW) o

OK.

OKAY TO DELETE $$$FIL(REVIEW)? YES,

FINISHED.

~DEFINE [DELETE] PAYROLL(WAGE) 5

OK.

OKAY TO DELETE $$$FIL(WAGE)? NO- Note that the first of three data file descriptions
and rules sets with the WAGE title is used.

COMMAND ABORTED.

The user may specify that the deletion applies to a data file description or a VERIFY, UPDATE,
or REPORT rules set for the title given by using the [DELETE-F], [DELETE-V], [DELETE-U],
or [DELETE-R] option, respectively, in the DEFINE command. In this situation, DEFINE does
not request that the user confirm the deletion. For example, the user wants to delete the UPDATE
rules set titled WAGE on the PAYROLL multiple description file:

169

-DEFINE [DELETE-U] PAYROLL(WAGE)D

OK.

FINISHED.

Renaming a Data File Description or Rules Set

The [RENAME] option changes the title of a data file description or rules set on a specified
multiple description file. A DEFINE command of the form

multiple
—DEFINE [RENAME] ff’i‘;sc“l’m“(title) AS new title-,

name

requests the renaming of the first data file description or rules set with the specified title to the
specified new title.

The current directory listing of the PAYROLL multiple description file is shown first to clarify
the examples which follow.

-DEFINE [DIR] PAYROLL

OK.

$$$FIL (TERMIN)

:;2%; ggﬁgg; Note that the WAGE title appears twice.

$$$REP (PRINTCHECK)
$$$VER (TIMECARD)

FINISHED.

The user wants to change the title of the first data file description or rules set having WAGE for a
title. He types:

-DEFINE [RENAME] PAYROLL(WAGE) AS WKWAGE

OK.

FINISHED.

170

-DEFINE [DIR] PAYROLL,

OK.

$$$FIL (TERMIN)

$$$VER (WAGE)

$$$REP (PRINTCHECK)

$$$VER (TIMECARD)

$$$FIL (WKWAGE) Note that the data file description or rules set renamed
appears at the end of the multiple description file.

FINISHED.

The user may specify that the renaming applies to a data file description or a VERIFY, UPDATE,
or REPORT rules set for the title given by using the [RENAME-F], [RENAME-V],
[RENAME-U], or [RENAME-R] option, respectively, in the DEFINE command. For example,

—DEFINE [RENAME-V] PAYROLL(WAGE) AS CKWAGE -

specifies that the user wants to rename the VERIFY rules set with the WAGE title on the
PAYROLL multiple description file; he wants the new title to be CKWAGE.

Editing a Data File Description

The [EDIT] option allows the user to alter a data file description on a multiple description file
or to alter a simple description file.

To edit a data file description on a multiple description file, the form used is
multiple
description
file

name

—DEFINE [EDIT] (title) 5

where a title is required; it specifies the title of the data file description to be edited. To edit a
simple description file, the form used is:

description
—DEFINE [EDIT] file 2
name

Either form of the DEFINE [EDIT] command produces the same results. See page 55 for
complete documentation on editing a description file.

171

USING COMMAND FILES

IML is designed for efficient and flexible command file operation.! The user may write a set
of IML commands on a file and initiate the execution of these commands with as little or as much
terminal interaction as desired.

IML contains all the capabilities for simple command file operation and offers extended
features to permit input from the terminal, as well as terminal output, during command file opera-
tion and to specify terminal output when a TOUT file is in use.? Furthermore, IML reads the
information to be written and automatically sends IML diagnostics and informative messages,
such as

55 RECORDS SELECTED FROM 55

to the terminal, ensuring that only the actual data and user-specified comments are written on the
TOUT file.

This discussion begins with an explanation of simple command file operation. Next, several
additional rules file statements specifically for command file control are introduced. These rules
may appear in UPDATE, VERIFY, and REPORT rules files. The CREATE program and its
command file operation with input from the terminal are discussed next. Finally, the combina-
tion of IML and a language subsystem is explored. This discussion includes the creation of IML
command files by a SUPER BASIC program, and the use of the EXECUTIVE DUMP command
to leave and reenter the subsystem during command file execution.

Simple Command Files: Creation and Execution

The user may create a command file in EDITOR.3 He enters each command as if he were
entering it directly in the EXECUTIVE. Note that all responses normally entered at the terminal,
such as a carriage return for a NEW FILE or OLD FILE message, must appear at the correct
position in the command file. The last command in the command file should be

COMMAND T

which returns control to the terminal for command entry and execution.

When the user writes the commands on a file, he must use a line feed after the WRITE com-
mand. For example:

=-EDITOR 5
*APPEND
SELECT FROM INV:IDESC IF QTY<3 TO SMALL OTHERS TO LARGE
g The user includes two carriage returns to confirm the names of the two output files .)yele ed.
TYPE SMALL o) The user may include any EXECUTIVE commands.
COMMAND T, After the command file operation, the user wanis 1o return control to the terminal,
*WRITE—J The WRITE command must be followed by a line feed.
TO: COMSELECT,
NEW FILE,
79 CHARACTERS
*QUIT

1 — Command files are detailed in the Tymsbhare TYMCOM-IX EXECUTIVE Reference Manual.
2 - See the Tymshare TYMCOM-1X EXECUTIVE Reference Manual for an explanation of TOUT files.
3 — Sec the Tymshare EDITOR Reference Manual for an explanation of creating files in EDITOR.

172

The user begins execution of a command file by entering at the terminal a command of the
form:

—COMMAND command file name 5

For example, the user executes the command file created above.

-COMMAND COMSELECT > The user initiates execution of the command file.
8 RECORDS SELECTED FROM 12 The SELECT command is executed.
1120544 AIR VALVE 1

1120550 NEDL VALVE 2

1120552 SHADE STOP 2

1120555 I T HSG 1 The TYPE command is executed.

1120574 FOCUS RING 2

1120576 YOKE 1

1120577 TRUNNION 1

1120579 DIAL ELV 2

- Control is returned to the terminal as per the COMMAND T command.

Rules Statements for Command File Control

When VERIFY, UPDATE, or REPORT is executed from a command file, the last rules file
statement may be RUN; otherwise, RUN must appear at the appropriate position in the command
file. For example, the last lines in a rules file might be:

200 FINAL
210 TYPE “END OF UPDATING PROCEDURE”
RUN Note that RUN is not preceded by a line number.

Otherwise, RUN must appear in the command file immediately after the UPDATE command.

Two additional rules file statements, @INPUT and @TYPE, are available for use in UPDATE,
VERIFY, and REPORT rules files. The @INPUT and @TYPE statements are similar to the
INPUT and TYPE statements, except they direct control to the terminal for that statement even
though a command file or TOUT file is in use.!

The @INPUT statement is used with command files and permits input of one field from the
terminal, rather than input from the command file as with INPUT. The form used is

. IF conditions
@INPUT field name FOR conditions
or simply:

@INPUT field name

For example, when the statements below are executed in a command file, line 60 accepts a value
for CODE from the terminal; line 70, on the other hand, takes the value for XCOUNT from the
command file.

1 — The INPUT and TYPE statements are discussed on page 34.

173

10 DECLARE

20 CODE,C,1

30 XCOUNT,I,3

40 INITIAL

50 TYPE "ENTER A CODE FOR UPDATE PROCEDURE"
60 AINPUT CODE

70 INPUT XCOUNT

The @TYPE statement is used with TOUT files and permits the user to print information on
the terminal rather than writing on the TOUT file as with TYPE. The form used is

IF conditions
FOR conditions

@TYPE item list
or simply:

@TYPE item list
The item list may contain any item valid in a TYPE statement.! For example:

@TYPE “COMMENT”,CR,FLD1,4B,FLD2

When the statements below are executed with a TOUT file in use, line 40 writes the specified
information on the TOUT file, whereas line 50 prints the specified information at the terminal.

40 TYPE "RESULT IS ",FLD1,4B,"RECORD NUMBER" , RECNO
50 aTYPE "PLEASE ENTER THE CODE FOR ",NAME

Documentation of Command File Execution

The NOTE command is incorporated in IML as an aid in documenting command file execution.
NOTE provides all the calendar utility fields and permits the user to specify one or several lines
of text. The information may be printed at the terminal or written on a TOUT file.?

The complete form of the NOTE command is:

—NOTE [TERMINAL] item listp

where the items in the list are separated by commas. The TERMINAL option instructs NOTE to
print the information at the terminal whether or not a TOUT file is in use. The user may
abbreviate the option word to any subset of the word TERMINAL.

The following table summarizes the items that may appear in the item list.

Item ~ Prints Length
@CALMONTH Name of current month as MMM 3
@CDATE Current date as MMM.DD,YYYY 11

" @CTIME Current time as HH:MM AM or PM 8

(Table continues)

1 — See page 35 for a complete list of valid items in an @ TYPE or TYPE statement.
2 — Refer to the Tymshare TYMCOM-IX EXECUTIVE Reference Manual for an explanation of TOUT files.

174

Item Prints Length
@DATE Current date as MM/DD/YY 8
@DAY Current day as DD 2
@MONTH Current month as MM 2
@NDATE Current date as YYMMDD 6
@TIME Current time as HH:MM 5
@WEEKDAY Name of current day of week 9
@YEAR Current year as YYYY 4
CR Carriage return 1
LF Line feed 1
nB Specified number of blanks, where n may range from 1 to 80 n
“text” Text enclosed in single or double quote marks, where text may Number of

contain as many as 80 characters characters in
quote marks
n“text” Text enclosed in single or double quote marks n times, where the Number of
number of characters in quote marks times n may not exceed 80 characters in
quote marks
times n

For example, the following are valid NOTE commands:

—NOTE “UPDATING PHASE COMPLETED AT ”,@CTIME,5B,@CDATE
—NOTE 10“*” @WEEKDAY,2B,“REPORT IS FINISHED”,10“*”,CR,CR
—NOTE “INVENTORY AS OF ",@DATE,2B,@TIME, IS WRITTEN ON NEWINV” 5

NOTE: The NOTE command includes an automatic carriage return at the end of the item list.

When the TERMINAL option is not used, the information is printed at the terminal only ifa
TOUT file is not being used.

The user may type
—NOTE [VERSION]-

to determine the version number of the current NOTE program.

CREATE and Command Files

The CREATE command may appear in command files for entering data from a file, from the
terminal, or from the command file.

When the user wishes to enter data from the terminal while the command file is in use, the
form used is:

175

data description BY NAME
—CREATE i[Pl‘fOMPTlll APPENDING TO file : file FROM @T {BY LIST]p
[character name name WITH field list

This is the same as the general command form for CREATE, except that the user specifies
FROM @T

to request data entry from the terminal during command file execution.

For example, the user wants to use a command file to create a data file with data entry from
the terminal, sort the created data file, and then print the sorted file at the terminal. The command
file shown below performs the desired tasks.

-TYPE COMCREATE -

CREATE TDATA:TDES FROM aT

. " Carriage returns appear on these lines to
SORT TDATA:TDES TO ?DATASTD BY FLD1 confirm the specified output file name.

TYPE TDATASTD
COMMAND T

The interaction below shows the user entering data for CREATE from the terminal while the
command file is in use.

-COMMAND COMCREATE

OK. The CREATE command is executed.

DATA MUST BE ENTERED IN THE FOLLOWING ORDER:
FLD1 C 20

FLD2 N 8 2

FLD3 N 8 2

FLD4 N 4

1: SANDERSON,145.45,3200.00,529
2: MILLER,45.90,500.35,338

3: MASON,250.00,1295.45,279-

4: AMES,300.65,2579.66,1435

5: o) The user terminates data entry with a carriage return.
4 RECORDS CREATED.

SORT FINISHED. Control returns to the command file.
AMES 300.65 2579.66 143 The TYPE command is executed.
MASON 250.00 1295.45 277
MILLER 45,90 500.35 334

SANDERSON 145.45 3200.00 529

176

If the user wants to enter the data for CREATE in the command file, he uses the normal
form for CREATE with terminal data entry. For example:

CREATE ABC:DESC FROM T

The CREATE command is then followed by a carriage return (for the NEW FILE or OLD FILE
message), the data for each record, and a final carriage return to terminate data entry.

To enter the data for CREATE from a file, the user types a CREATE command specifying the
input file name. For example, to create a file named RATES according to the RDESC descrip-
tion file from data on a file named RDATA, the user types in the command file:

CREATE RATES:RDESC FROM RDATA

The next line contains a carriage return confirming the NEW FILE or OLD FILE message.

Creation of an IML Command File in a Language Subsystem

The user may write a program in SUPER BASIC, SUPER FORTRAN, or BATCH FORTRAN
which causes the creation and execution of an IML command file, allowing another user to call
the appropriate subsystem, load the program, and answer a few simple questions to accomplish
the task. The user may write a program as simple or as complex as needed to accomplish his tasks.

The user may write instructions which specify the form and content of the command file,
utilizing all the language capabilities to provide the desired degree of flexibility. Depending on
the user’s requirements, the program may create a command file containing a series of IML
and EXECUTIVE commands, use variable file names for the data and command files, and specify
loops with a user-entered index.

The following examples present very simple SUPER BASIC programs illustrating the technique
for creating command files without attempting to present any of the more complex capabilities
available in the language.

The SUPER BASIC program below creates a command file named COMFILE to select from
the INV data file the record(s) containing a particular part number.

-TYPE _PROG1,

10 VAR=ZERO

15 STRING P

20 PRINT "WHICH PART NUMBER DO YOU WANT TO SEE":

30 INPUT P

40 OPEN "COMFILE",OUTPUT,1

45 PRINT ON 1:"QUIT"

50 PRINT ON 1:"SELECT FROM INV:IDESC IF PARTNO HAS '"+P+"' TO ol
60 PRINT ON 1:"COMMAND T"

70 CLOSE 1

80 OPEN "COMFILE",INPUT,*

177

When the user wants to perform this task, he simply calls SUPER BASIC, loads and runs PROG1,
and answers the request for the desired part number. The program, in turn, writes the necessary
SUPER BASIC, IML, and EXECUTIVE commands on a command file and executes it.

-SBASIC 5

>LOAD PROG1 5
>RUN 5
WHICH PART NUMBER DO YOU WANT TO SEE? 1120579,

1120579 DIAL ELV 2

1 RECORDS SELECTED FROM 12

Statement 50, in PROG1, writes the appropriate SELECT command by inserting the entered
part number between the phrase

SELECT FROM INV:IDESC IF PARTNO HAS °
and the phrase
"TO T

Because PARTNO is defined in IDESC as a character field, the program must contain the entered
part number surrounded with single quote marks.

Statement 80, in PROG1, opens COMFILE as a command file, indicated by an asterisk ()
instead of a file identification number.

NOTE: It is necessary to include a PAUSE or STOP statement after opening a file as a com-
mand file when additional statements appear after the OPEN statement. See the example on the
following page for an illustration.

In addition to creating and initiating a command file from a language subsystem, the user may
reenter the subsystem after IML or EXECUTIVE commands, and continue the program without
losing the previous program status and variable values. This is accomplished by including a DUMP
command,' specifying a file on which to save a core image of the current subsystem work,
immediately after leaving the subsystem. When the user wants to reenter the subsystem as it pre-
viously existed, he enters a RUN command followed by the name of the DUMP file.

The SUPER BASIC program on the next page includes the DUMP and RUN commands in the
command file to perform a task similar to the one in the previous example, but also to reenter the
subsystem and continue the program.

1 - See the Tymshare TYMCOM-IX EXECUTIVE Reference Manual for an explanation of the DUMP command.

178

-TYPE PROG2 5

10 VAR=ZERO

15 STRING P,K

20 PRINT "WHICH PART NUMBER DO YOU WANT TO SEE":

30 INPUT P

40 OPEN "COMFILE",OUTPUT,1

41 PRINT ON 1:"QUIT"

42 PRINT ON 1:"DUMP TEMP"

43 PRINT ON 1 A carriage return only is written, confirming the file named in the DUMP command.
50 PRINT ON 1:"SELECT FROM INV:IDESC IF PARTNO HAS '"+P+"' TO T:
CR,CR,10B,DESC,QTY"

54 PRINT ON 1:"RUN TEMP"

56 PRINT ON 1:"GO TO 100"

60 PRINT ON 1:"COMMAND T"

70 CLOSE 1

80 OPEN "COMFILE",INPUT,*

90 STOP

100 CLOSE "TEMP"

102 CLOSE *

104 CLOSE "COMFILE"

106 PRINT "ANOTHER PART":

110 INPUT K

120 IF K="YES" THEN GO TO 20 ELSE PRINT "END OF RUN"

When a user wants to perform the task, he calls SUPER BASIC, loads and runs PROG2, and
answers the simple questions. The program handles the creation and execution of the necessary
command file, as well as reentering the subsystem to perform another similar task.

-SBASIC 5

> LOAD PROG2,
> RUN>
WHICH PART NUMBER DO YOU WANT TO SEE? 1120537,

NEW FILE This is printed for the DUMP file created; the
response is contained in the command file.
PRM MIRROR U4 The SELECT command requests
the description and quantity
for the specified part number.
1 RECORDS SELECTED FROM 12
SBASIC The user automatically reenters the subsystem as per the RUN command.
ANOTHER PART? YES,
WHICH PART NUMBER DO YOU WANT TO SEE? 11205445

NEW FILE The program deletes the DUMP file after each SELE: CT procedure.

AIR VALVE 1

179

1 RECORDS SELECTED FROM 12

SBASIC
ANOTHER PART? NO o
END OF RUN

>

The STOP statement on line 90 in the SUPER BASIC program is necessary, since several state-
ments follow after the program opens a command file. Statements 100 and 104 delete the
indicated files by specifying the actual file name in double quote marks (instead of the file num-
ber) with the CLOSE command.

181

APPENDIX A

COMMAND AND RULES FILE SUMMARIES

The following tables summarize the EXECUTIVE IML commands and the rules file commands
and statements. The first table contains each IML command in two general forms: The first
form specifies the required information only; the second specifies all possible command com-
ponents. The second and third tables present the rules file commands and statements.

EXECUTIVE IML COMMANDS

Command Description and General Form
APPEND Adds data in one file to the end of another file, regardless of the structure of the
files but requiring that both files be either binary or symbolic.
—APPEND , e :amell TO file name,
CREATE Creates records of a data file from free format data entered at the terminal or from

a file, according to the specified description file.

data description T
—CREATE file : file FROM {input file name}
name name @T

data description
—CREATE I[P ROMPTI| 4 ppENDING TO file : file

[character]
name name
T BY NAME
FROM {input file namef {BY LIST
eT with field list

data description
—CREATE [character] file : file FROM
name _name

input |BY NAME errors
file BY LIST ERRORS TO file)
name (WITH field list name

(Table continues)

182

Command Description and General Form
DEFINE Creates the description of a data file and writes it on the file named.
description
—DEFINE file 2
name
—DEFINE [ED!T] . desct:xptlon fih'z name]
[option] © multiple description file name(title)| <
MERGE Merges two sorted files to a single sorted file.
sorted description sorted merged key
—MERGE file : file WITH file TO file BY field D
name; name name, name list
sorted description ..
—MERGE file : file IF conditions
FOR conditions
name,; name
sorted . merged key
N IF conditions
WITH file FOR conditions TO file BY f.ield)
name, name list
PURGE, Deletes from a data file the records for which the specified conditions are true.
using a single data description output
data file —PURGE FROM file : file TO file o
name name name

data description

—PURGE [PRIME] FROM file : file IF conditions
FOR conditions
name name

output key complementary
TO file : field list® BY field OTHERS TO g P >
name list re
name

1 — DEFINE options appear on page 165.
2 — A table of valid items that may be specified in the field list appears on page 88.

183

Command Description and General Forms
PURGE, Deletes from a data file the records which match activity records on the key fields
using a data named.
flle, apd an activity description data description output key
activity file —PURGE file : file FROM file : file TO file BY field D
name name name name name list

IF conditions

—PURGE [SINGLE] file : file FOR conditions

activity description I
name name

- data description
FROM file : file

IF conditions l
name name

FOR conditions

output . ..
. IF interfile conditions
TO f:;fne field list IFOR interfile conditions
key complementary
BY field OTHERS TO 2VPUt >
list file
name
REPLACE Replaces records in the data file with activity records which match on the key fields
P ty y
named.
data description activity description output key
—REPLACE file : file WITH file : file TO file BY field)
name name name name name list
data description IF conditions
—REPLACE [SINGLE] file : file I FOR conditions
name name
activity description .. output data
WITH file : file IF conditions | 16 gle” | field WITH description'
FOR conditions
name name name name
data . - key
field WITH descriptionl ye o 'IF mt'e rfile condltu.)r}s BY field 2
FOR interfile conditions .
name list
REPORT Generates a report of the data file according to the statements in the rules file
P g

named.

data description output rules
—REPORT file : file TO file AS PER file D
name name name name
data description IF diti output rules
—REPORT file : file conciions 1 g file AS PER file o
FOR conditions
name name name name

(Table continues)

1 - A list of valid items that may be specified in the description appears on page 98.

184

Command Description and General Form
SELECT, Selects from a data file the records for which the specified conditions are true.
usmgf'fl single data description output
data file —SELECT FROM file : file TO file O
name _ name name
data description ..
—SELECT [PRIME] FROM file : file IF conditions ‘
name name FOR conditions
output key z?lml:l :mentary
TO file : field list' BY ficld OTHERS TO g7 5
name list :
name
SELECT, Selects from a data file the records which match activity records on the key fields
using a data named.
flle'a.nd ?n activity description data description output key
activity file —SELECT file : file FROM file : file TO file BY field -
name name name name name list
activity description ..
IF conditions
—SELECT [SINGLE] file : file FOR conditions
name name

data description
FROM file : file
name name

IF conditions
FOR conditions

output . ‘s
. IF interfile conditions
TO gl:'ne field list lFOR interfile conditionsl
key complementary
BY field OTHERS TO OuPUt >
ist file
name

SORT

Sorts a data file according to its data in the key fields named.

unsorted description key
—SORT file : file BY field 5
name name list
unsorted description output key
—SORT file : file TO file BY field)
name name name list

1 — A table of valid items that may be specified in the field list appears on page 88.

185

Command Description and General Form
UPDATE, . Modifies the records of a data file according to the statements in the rules file
using a single named.
data file data description output rules
—UPDATE file : file TO file AS PER file
name _ name name name
data description IF diti output
—UPDATE file : file l conaitions 1 1o file
FOR conditions
name name name
key rules
BY field AS PER file D
list name
UPDATE, Modifies records in a data file, using activity records which match on the key fields
using a data named, according to the statements in the specified rules file.
flle, apd an data description activity description output
activity file —UPDATE file : file WITH file : file TO file
name name name name name
key rules
BY field AS PER file D
list name

IF conditions

FOR conditions

description
—UPDATE I

data
[SINGLE] , file : file

[MULTIPLE] name name

activity description '

WITH file - file IF conditions I
FOR conditions
name name
OUPU 1E interfile conditions key rules
TO file ,FOR interfile conditions BY f'ield AS PER file 5
name list name
VERIFY Checks the contents of a data file according to the statements in the rules file
named.
data description rules
—VERIFY file : file AS PER file D
name name name
data description .. output
~VERIFY file : file ;%;""d“(‘i‘."fs TO file
name name conditions name

key rules
BY field AS PER file o
list name

186

RULES FILE COMMANDS

Command Description and General Form
LIST Lists all, or specified, lines of current rules file statements.
: LISTD or . st | " l3’
n,:n,
where n, :n, specifies a range of lines from line n; through line n,.
n, Deletes line n from the current rules file.
followed by a

carriage return

)

n’
followed by rules
file statement(s)

Adds or replaces statement(s) at line n in the current rules file.

: n statement(s) 2

QUIT Writes the current rules file statements on a user-specified file and returns control
to the EXECUTIVE.
: QUl'i‘) or : Q 2

RUN Writes the current rules file statements on a user-specified file and begins

execution of the IML command.
: RUN 2

187

RULES FILE STATEMENTS
Statement Description and General Form
field declaration Defines a temporary field for the duration of the command procedure.
C
N
: n field name, | I {,maximum field length,decimal places)
R
D
where n is a line number, and the specification of the number of decimal places
is optional.
picture format Specifies a general picture format for use throughout the rules file.!
declaration : n FORMAT x:picture format
where n is a line number, and x is a picture format reference number.
IF Evaluates a relational expression, and for a true value executes the statement(s)
which immediately follow.
: n_IF condition 5
where n is a line number.
ORIF Evaluates a relational expression when the preceding IF or ORIF statements are
false, and for a true value executes the statement(s) which immediately follow.
: n_ORIF condition ~
where n is a line number.
ELSE Executes the statement(s) which immediately follow when the preceding IF and
ORIF statements are false.
: n_ ELSE or : n_ELSE statement(s) >
where n is a line number.
DO Executes unconditionally the statements which follow, terminating the control of
the preceding IF, ORIF, or ELSE statements.
: n DO or : n_DO statement(s) -
where n is a line number.
replacement Replaces specified field(s) with the expression value.
: n_expression TO field list -
where n is a line number, and the expression may be a number, one or more field
names in an arithmetic expression, or text enclosed in quote marks.
INPUT Accepts a value from the terminal or from a command file if in use; replaces the
entered value in the specified field; and continues command operation.
: n_INPUT field name O
where n is a line number.

(Table continues)

1 — This statement applies only to a REPORT rules file. Picture format construction is detailed on page 133.

188

Statement Description and General Form

@INPUT Accepts a value from the terminal when a command file is in use; replaces the
entered value in the specified field; and returns control to the command file.
: n_@INPUT field name
where n is a line number.

TYPE Writes the specified information at the terminal or on a TOUT file if in use.’
: n_TYPE item list*>
where n is a line number.

@TYPE Types the specified information at the terminal regardless of a TOUT file in use.
: n @TYPE item list>
where n is a line number.

DONE Terminates execution of the current rules file section and begins execution of the
next section.?
: n_DONE
where n is a line number.

PRINT* Writes the specified information on the REPORT output file.
: n_PRINT item list’
where n is a line number.

ON* Performs indicated operations whenever a specified field changes value.
: n_ON field list 5
where n is a line number.

RETURN TO The RETURN TO statement allows the user to transfer control to a preceding line
of rules in the same rules section.

IF conditions

* RETURN TO 1 {poR conditions|
where n is a line number, and the IF or FOR modifier is optional.

ROUNDIN The ROUNDIN statement rounds the values in all numeric fields to their specific
field descriptions before the values are used in an arithmetic calculation.
: ROUNDIN >

ROUNDOUT The ROUNDOUT statement rounds numeric values and arithmetic results to
conform to the receiving field descriptions.
: ROUNDOUT 5,

FINISH The FINISH statement terminates record processing and transfers control to the
FINAL section, if any, or simply ends the command procedure.

IF conditions

* FINISH Jpor conditions |~

1 — See the Tymsbare TYMCOM-IX EXECUTIVE Reference Manual for an explanation of the TOUT command.
2 — A table of valid items appears on page 35.

3 — Rules file sections are discussed on page 30.

4 — This statement applies only to a REPORT rules file.

5 — Any of the items which appear on page 35 may be specified except NCR.

189

Statement Description and General Form
ABORT ABORT halts the procedure immediately and returns control to the EXECUTIVE.
IF conditions
: ABORT IFOR conditions]D

DELETE DELETE omits the current record from the output file and performs an automatic
DONE statement; that is, the remaining rules are ignored for the current record.
DELETE may not appear in a REPORT rules file.

IF conditions
FOR conditions|+

: DELETE {

191

APPENDIX B
ERROR MESSAGES

Appendix B contains a list of the most common IML error messages. The messages at the
beginning of the list print a particular file name, field name, group of characters, or number in
front of the message. These messages are arranged in alphabetical order according to the con-
stant part of the message. The remaining error messages are arranged in alphabetical order.

Each message is followed by a possible explanation of what may cause the error condition.
When the explanation is system error, the user did not cause the error and should reenter his IML
command. If the user encounters a system error again, he should contact his Tymshare
representative.

file name CANNOT BE RENAMED SO file name‘SORTING’ CONTAINS THE SORTED
DATA.

File directory overflow prevents writing the sorted data on the specified file. The results
are stored on file name‘SORTING’ in the user’s directory.

character CANNOT BE USED IN A FIELD NAME, TRY AGAIN.

An illegal character was used in the field name.

number CHRS. MAX.

The user has entered more characters for an INPUT or @INPUT statement than allowed
in the field length.

field name HAS 2 DIFFERENT DESCRIPTIONS, TRY AGAIN.
The user has specified this field name twice with different descriptions.

file name ILLEGAL AS FILE NAME.

TERMINAL, TELETYPE, NOTHING, or any left subset of these names may not be used
as the data or activity file name.

file name ILLEGAL AS THE OUTPUT FILE.
The output file must be a file name; TERMINAL, TELETYPE, NOTHING, or any left

subset of these names is not permitted.

192

file name IS DELETED, CANNOT FINISH THE RENAMING SO file name‘SORTING’
CONTAINS THE SORTED DATA.

A copy of the specified file is in the user’s directory with the file name plus ‘SORTING’.
The user should log out, then log in and rename file name‘SORTING’ as desired.

file name IS NOT LEGAL AS ‘APPEND FROM’ FILE.

The file name following the word APPEND may not be any left subset of the word
NOTHING.

file name IS NOT LEGAL AS ‘APPEND TO’ FILE.

The file name following TO may not be T (TERMINAL) or N (NOTHING); a new file
name or an old file that is not protected may be specified.

field name NOT DEFINED.
The user has specified a field name that does not appear in the description file.

number RECORD OUT OF SEQUENCE ON file name.

The file(s) in the command are not sorted in the same sequence as the key field list
following the word BY.

1ST CHARACTER OF NAME CANNOT BE A PERIOD (.), TRY AGAIN.
A field name must begin with a letter.

1ST CHARACTER OF NAME CANNOT BE NUMERIC, TRY AGAIN.
A field name must begin with a letter.

‘APPEND TO’ FILE BAD.
The file specified as the APPEND TO file is protected.

BAD COMMAND FILE INPUT.

A command in the active command file has an error; or a response, such as to the NEW
FILE or OLD FILE message, is entered incorrectly.

BAD DATA.

A field contains illegal data, such as nonnumeric characters in a numeric field.

BAD DESCRIPTION FILE, TRY AGAIN.

The user specified a nonexistent file or a file that is not a legal description file, such as
without $$$ at the beginning or without a blank line at the end.

BAD INFO. IN DESCRIPTION FILE.

The description file contains illegal specifications or is not in the proper form. See BAD
DESCRIPTION FILE, above.

BAD INPUT.

System error. Try again.

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

CAN

193

INPUT FROM COMMAND FILE.

A command in the active command file has an error; or a response such as to the NEW
FILE or OLD FILE message, is entered incorrectly.

INPUT ON END OF FILE AT RECORD number.

In the variable length file, the last record is not terminated properly, or extra characters
are at the end.

NUMBER.

The user has entered for an INPUT or @INPUT statement something other than a legal
number, such as letters or nonnumeric symbols.

NUMERIC LITERAL.

The user has specified something other than a legal number, or a number which exceeds
the maximum size allowed.

RULES.
No rules file exists, or the rules file was not properly written.

STATEMENT.
The user has entered something which is not a legal command and is not a line number.

TYPE FOR BINARY FILE.
The field data type must be C, I, R, or D.

TYPE FOR SYMBOLIC FILE.
The field data type must be C or N.

NOT PROCESS SCRAMBLED FILE.
IML handles only normal symbolic or binary files.

CANNOT COMPLETE THE APPEND.

The APPEND TO file is bad because of a system error. Contact your Tymshare representa-
tive to restore your file.

CANNOT CREATE ON AN APPEND ONLY FILE.

The file name specified is an append-only file.

CANNOT OPEN file name.

The specified file is protected, or an illegal file name was specified.

CANNOT OPEN file name FOR OUTPUT WITHOUT NAME LIST.

T (TERMINAL) was specified as the output file, but it was not followed by a colon (:)
and a list of fields desired. This is required for terminal output with binary files.

194

CANNOT OPEN THE DESCRIPTION FILE.
The description file specified is protected.

CANNOT SET ‘APPEND TO’ FILE TO WRITE MODE.
The file following APPEND TO is a read-only file. The user should redeclare the file.

CAN'T EXCEED 1024.
Maximum record length is 1024 characters.

COMMAND ABORTED.

The command has come to an abnormal halt.

COMMAND STARTING WITH ‘characters’ IS BAD.

A component is missing from the command, is in the wrong position, or is misspelled.

CONFLICTING DATA TYPES IN LIST.

The key fields do not have the same field description in the data and activity description
files.

COUNT FIELD HAS ALPHA CHARS.

IML has discovered a C type variable length record containing nonnumeric characters in
the count field at the beginning of the record.

COUNT MUST BE GREATER THAN ZERO.

The number of digits in the count field must be an integer number.

DATA WON'T FIT FIELD.

The value to be stored in a field requires more characters than specified in the field
description.

DATA:FORMAT MISMATCH.

The user has entered the wrong type of format character for the field being printed.

DECIMAL PLACES MUST BE <= FIELD LENGTH.

The user has specified more decimal places than the maximum size of the field.

DECIMAL PLACES MUST BE NUMERIC.

The decimal places specification must be an integer number.

DISCOVERED NON-NUMERIC IN NUMERIC FIELD.

A numeric field contains something other than a legal number.

DOESN’'T FIT FORMAT.

The number entered for an INPUT or @INPUT statement contains more characters than
specified in the field description.

195

ENDING ‘IF’ NOT ALLOWED.
An IF clause cannot follow the output file when only one file is used in the command.

ERASE ERROR ON OUTPUT FILE.
System error. Try again.

FIELD ENDS BEYOND END OF RECORD.

The field length or field storage (for a binary file) requires more characters than remain
in the record, according to the length specified in the description file.

FIELD NAMED ... field name OF FILE file name NOT SAME LENGTH AS OTHER
FILE.

The key fields in the data and activity files must have the same field length in their
respective description files.

FILE OVERFLOW.
The output file has exceeded the maximum file size permitted.

FILE SIZE AND RECORD LENGTH CONFLICT ON FILE file name.
The number of characters in the file divided by the record length indicates a partial record.

FILE TYPE NOT SAME AS IN DESCRIPTION INFO. FOR FILE file name.

The file being used is not the same type, symbolic or binary, as specified in the descrip-
tion file.

FOUND RECORD OF LENGTH ZERO.
The count field of a variable length record contains zero.

FOUND RECORD WHOSE LENGTH IS NOT MOD 3.

The count field at the beginning of a binary variable length record contains an integer
that is not a multiple of 3.

HEADING OVERFLOW.

The current execution of the HEADINGS section requires more lines than the number of
lines per page.

ILLEGAL DATA OPERATION.
The user has combined character and numeric fields in an expression or replacement.

ILLEGAL FORMAT.

The user has specified a nonexistent format number or has specified an illegal picture
format.

ILLEGAL INPUT SOURCE.
T (TERMINAL) or N (NOTHING) was used illegally as a data or activity file name.

196

ILLEGAL NESTING.

Lower level IF statements are not in numerical order; or an ORIF, ELSE, or DO statement
does not have a corresponding IF statement above.

ILLEGAL OPTION.

The option specified does not exist or is not valid for this command.

ILLEGAL STATEMENT AT ‘characters’.

The specified characters are not part of a valid statement form or do not specify a valid
field name.

INADEQUATE STORAGE FOR OUTPUT.
No available file storage. Try later.

INCOMPLETE STATEMENT.

Something is missing in the specified line.

INPUT FILE MUST BE TYPE SYMBOLIC.
When using the CREATE command, the input file must be symbolic; it cannot be binary.

INSUFFICIENT INFORMATION IN THE DESCRIPTION FILE.

IML found a terminating carriage return before reaching any field descriptions, or a
carriage return is missing at the end of the description file.

INSUFFICIENT STORAGE AVAILABLE TO COMPLETE THE APPEND.

The file resulting from the APPEND command requires more storage than the maximum
file size permitted.

INSUFFICIENT STORAGE FOR OUTPUT FILE.

The output file requires more storage than the maximum file size permitted.

INVALID FILE SPECIFIED.

A field name followed by :A or :D is not legal at that point, or a character other than A
or D was specified.

JUNK IN INPUT.
IML is reading an input file which has data missing at the end of the file.

LAST RECORD BAD ON file name.

Using a variable length file, the last record is not terminated properly, or extra characters
are at the end of the file.

LAST RECORD NOT TERMINATED PROPERLY.

The last record is too short, does not end with a carriage return, or contains extra
characters.

197

LENGTH CANNOT EXCEED 512.
The field length must be less than or equal to 512 characters.

LENGTH MUST BE > ZERO.
The record length must be an integer from 1 to 1024.

LENGTH MUST BE NUMERIC.
The record length must be an integer from 1 to 1024.

LEVELS MUST BE CONSECUTIVE.

Nested IF statements must be in numerical order; for example, an IF.3 statement must be
preceded by an IF, IF.1, and IF.2 statement.

MAX OF 200 FIELD NAMES ALLOWED.

The maximum number of unique data, activity, and temporary field names for a given
IML command is 200.

MAX OF 24 CHARACTERS IN NUMERIC FIELDS.

The field length of numeric fields may contain no more than 24 characters including the
sign and the decimal point.

MISSING DESCRIPTION.
A field description is incomplete.

MISSING RULES.
Additional rules are required before the line number specified.

MISSING ‘TO’.
A field name or expression was specified, but was not followed by the word TO.

MISSING ‘WITH’ OR FIELD NAME.

The field list following the output file is incorrectly specified; for example, the word
WITH is missing between a field name and its replacement.

MUST BE A MULTIPLE OF 3. LENGTH:
The record length must be an integer multiple of 3.

NAME TOO LONG, 31 MAX.

A field name may contain no more than 31 characters.

NEGATIVE NUMBER DOESN'T FIT PICTURE FORMAT.

A D, $, or * format does not specify a sign format character for the minus sign required.

NO FIELD NAMES GIVEN IN FILE DESCRIPTION.

At least one field description must appear in the description file.

198

NO SUCH FIELD NAME AS field name.

The specified field name does not appear in the description file.

NO TITLE GIVEN.
The command requires the title of the data description or rules file desired.

NOT A LEGAL TYPE.

Data types for symbolic fields must be C or N; data types for binary fields must be C, I,
R, or D.

NUMBER OF DECIMAL PLACES MUST BE NUMERIC.
The decimal places specification must be an integer number.

NUMBER TOO LARGE FOR: field name.
The number entered requires more characters than allowed in the field description.

OUTPUT RECORD NOT LEGAL.

Using a variable length data file, the specified output record does not conform to the
description file.

OVERFLOW.

A value generated exceeds the largest number allowed. IML continues the operation,
using the largest legal number for that data type.

OVERLAPPING FIELD DEFINITIONS, CANNOT PROCEED.

More than one field in the description file could occupy the same location in the record.
The user should specify the names of the fields he wants to enter in a WITH clause.

PARENTHESIS MISMATCH.

A right or left parenthesis is missing.

PARTIAL RECORD IN FIXED LENGTH RECORD FILE.

There is a record containing fewer characters than the specified record length. All fixed
length records must contain the specified number of characters.

POSITION ERROR ON file name.
System error. Try again.

PROGRAM TOO BIG AT LINE number.

The maximum size of a rules file has been exceeded.

PROMPT OPTION NOT LEGAL WITH ‘BY’ CLAUSE.
The PROMPT option cannot be specified with the BY NAME clause.

READ ERROR ON file name.

The specified file is bad. The user should request from Tymshare an older version of the
same file.

199

RECORD >1024 CHARS.
A record contains more than the maximum 1024 characters allowed.

RECORD LENGTH FIELD CONTAINS ALPHA CHARACTERS.

The character count field must contain an integer number.

RECORD LENGTH WON'T FIT IN COUNT FIELD.

The character count for the record being written requires more space than specified for
the character count field.

RECORD OF LENGTH ZERO.

The count field of a variable length record contains zero.

RECORD TOO LONG.
A record contains more than 1024 characters.

RECORD WHOSE LENGTH IS NOT MOD 3.

The count field at the beginning of a binary variable length record contains an integer that
is not a multiple of 3.

RESERVED WORD USED AS FIELD NAME, TRY AGAIN.

See page 47 for a list of reserved field names that cannot appear in the description file or
the DECLARE section.

SAME FIELD NAME GIVEN TWICE.

More than one field description specifies the same field name for different positions in
the record.

SCRAMBLED FILES ILLEGAL.
IML handles only normal binary and symbolic files.

SEMANTIC ERROR IN RULES.

The syntax is correct, but there is an error in logic. The preceding error message clarifies
the error.

SORT ABORTED.
The SORT command has come to an abnormal halt.

START MUST BE NUMERIC OR . .
A field starting position must be a number or a period (.).

STARTING POSITION MUST BE 1 OR GREATER.
A field starting position must be greater than or equal to 1, or specified with a period (.).

STARTING POSITION MUST BE MOD 3+1.

A field starting position must be 1, a multiple of 3 plus 1, or a period (.) for binary 1, R,
and D fields.

200

SYSTEM ERROR.

System error. Try again. Contact your Tymshare representative if the message occurs
again.

TITLE GIVEN NOT FOUND.

TOO

TOO

TOO

TOO

TOO

TOO

TOO

TOO

TOO

TOO

TOO

The user specified a title that does not appear in the multiple description file.

FEW FIELDS IN RECORD.

The description file does not contain any field descriptions.

FEW LINES IN INPUT.

Creating L type variable length records, there are not enough Control V—carriage return
combinations in the record just entered.

MANY ‘BY’ FIELDS.

The BY clause in the command specifies more than 20 field names.

MANY CHRS. FOR ... field name.

The field contains more characters than the field length specified in the description file.

MANY DECIMAL PLACES.

The user is attempting to enter a number with more decimal digits than stated in the field
description.

MANY DIGITS TO RIGHT OF DECIMAL FOR ... field name.

The user is attempting to enter a number with more decimal digits than stated in the field
description.

MANY END OF RECORD CHARACTERS.

Creating S type variable length records, there is more than one terminator character in the
record just entered.

MANY FIELDS.

The maximum of 200 unique field names has been exceeded.

MANY FIELDS IN RECORD.

The user has entered more fields than described in the description file.

MANY KEY FIELDS, MAXIMUM IS 20.

No more than 20 field names may appear in the BY clause.

MANY LINES IN INPUT.

Creating L type variable length records, there are too many Control V—carriage return
combinations in the record just entered.

201

TOO MANY LITERALS.
The operation specifies more than 2440 characters of literals.

TRYING TO EXCEED MAXIMUM FILE SIZE.

The user is attempting to produce an output file that is larger than the maximum file
size permitted.

UNSORTED DATA FILE HAS DISAPPEARED.
While SORT was executing, the unsorted data file was deleted by someone else.

VALUE NOT NUMERIC IN ... field name.

The specified field is defined as numeric, and the user is attempting to enter something
other than a legal number.

WHAT?

The information entered for the previous command or prompt is not understood. Reenter
the response or command again.

WRITE ERROR ON file name.

System error. Try again.

WRONG FILE TYPE FOR FILE file name.

The description file specifies binary, and the file is symbolic; or the description file
specifies symbolic, and the file is binary.

ZERO DIVIDE.

An operation results in an attempt to divide by zero. IML continues the operation, using
zero as the result of that division.

INDEX

NOTE: Page numbers that appear in boldface type refer to those
pages where the listed item receives the most detailed discussion.

:A, 20, 34, 108
:D, 20, 34

@CALMONTH function, 25
@CDATE function, 25
@CTIME function, 25
@DATE function, 25
@DAY function, 25
@INPUT statement, 172
@MONTH function, 25
@NDATE function, 25
@TIME function, 25
@TYPE statement, 173
@WEEKDAY function, 25
@YEAR function, 25

Abbreviating conditional expressions, 24

Activity file, 16
:A, 20, 34, 108
PURGE, 92
REPLACE, 97
SELECT, 87
UPDATE, 31, 100

Adding files, 159

Adding rules file lines, 30
Addition, 21

Advanced features, 151
AFTER section, 32, 109
Alt mode/escape, 2, 3, 5, 45
AND operator, 23
APPEND, 159

Appending records, 58, 70

Arithmetic expressions, 21, 34
Arithmetic functions, REPORT, 147
Arithmetic operators, 20, 21, 38

Arithmetic updating, 100
Arranging records, 83

AS PER clause, 27

AVG function, 147, 149

Back slash editing, 61

BEFORE section, 32, 106, 108

Binary files, 43

converted to symbolic form, 117

description file, 51
storage, 51

Blanks, printing, 35

BY clause, 16

BY LIST clause, 65

BY NAME clause, 61, 65, 67

C type data, binary, 51
symbolic, 47

C type records, 48

Carriage return, 2, 25
suppression, 35

Changing data, 34
Changing description file, 55

Changing field descriptions, 57

Changing field terminator, 64
Changing file names, 158

Character count field, 48, 50, 53

Checking data, 43, 73

203

204

Clause, ABORTING, 96
APPENDING, 70
BY, 16
BY NAME, 61, 65, 67
ERRORS, 71
FINISHING, 96
OTHERS, 90, 95
WITH, 65

Combining conditional expressions, 23

Combining data and activity files, 16, 98

Combining files, 86
Command interruption, 5
Command summary, 181

Command, DUMP, 177
EDIT, 29
EXECUTIVE RUN, 177
LIST, 29
MODIFY, 29
QUIT, 29
RUN, 30
SAVE PRODUCTION, 30
Command files, 171
CREATE with, 174
IML with subsystem, 176
NOTE with, 173
rules statements for, 172

Commands, editing, 4
rules file, 28, 186

Comments, rules file, 33
Comparisons, 22

Complementary output file, 91, 95
Complex conditional expressions, 23

Components, PURGE optional, 90, 94
REPLACE optional, 99
SELECT optional, 90, 94
UPDATE optional, 105
VERIFY optional, 76

Conditional expressions, 20-24

Construction of arithmetic expressions, 21

Continuation, command line, 4
output line, 24-25

Control statements, 36
diagram, 39

Conventions, symbol, 2
CONVERT, 112

Conversion, symbolic to binary, 113, 116, 120

Count field, 48, 50, 53
CR, 25

CREATE, 15, 43,58
input file, 60
options, 63
with command files, 174
with RETRIEVE files, 59

Creating a rules file, 27

Creating files, 43

D format, 135

D type data, 51

Data checking, 73

Data entry, 15, 43, 60
Data entry prompts, 64

Data file, 14
:D, 20, 34
description file, 15, 44

Data parameters, 43

Data types, 44
binary, 51
symbolic, 46

Data verification, 73
Date fields, utility, 24-25

Decimal places specification, binary, 53
symbolic, 47

Decimal point suppression, 136

DECLARE section, REPORT, 32, 140
UPDATE, 31, 106
VERIFY, 31,77

Declaring picture formats, 141

DEFINE, 15, 43, 161
EDIT option, 55
options, 164

Deleting field descriptions, 57
Deleting multiple description files, 168
Deleting records, 87

Deleting rules file lines, 29

Descending sort, 83

Describing a data file, 15

Description, binary file, 51
symbolic file, 46
Description file, editing, 55
multiple, 161
DETAILS section, REPORT, 32, 143
UPDATE, 31, 106, 108
VERIFY, 31, 74, 79

Diagnostic messages, 191

DIR option, 165

Division, 21

DO statement, 37, 40

Dollar sign format, 137

DONE statement, 35

Double precision data type, 51
DUMP command, 177
Duplicates, locating, 91

Editing commands, 4

Editing description file, 55
Editing during data entry, 61
Editing multiple description files, 170
ELSE statement, 37, 40
Empty fields, 61

Empty picture format, 135
Entering data, 15, 60
Entering specific fields, 65
Error messages, 191

Errors file, 71

Escape/alt mode, 2, 3, 5, 45
Evaluation of expressions, 21

Expression, replacement, 34

Expressions, abbreviating conditional, 24

arithmetic, 21, 34
conditional, 20-24
relational, 22, 24, 33, 38

Field, 43
character count, 48, 50, 53

Field declaration, 77

Field descriptions, 44
binary, 52
changing, 57
symbolic, 46

Field entry, restarting, 61

Field length, binary, 53
symbolic, 46

Field names, 46

Field starting position, binary, 53
symbolic, 47, 50

Field terminator, 61
changing, 64

Fields, 14
duplicating, 69
empty, 61
entering specific, 65
utility, 24
utility date, 25

File, output, 19
File creation, 43
File type, 44

Files, appending to, 58, 70
binary, 56
command, 171
creating, 58
data, 14
description, 15, 43
description binary, 51
description symbolic, 46
multiple description, 161
restructuring, 19
symbolic, 43

FINAL section, REPORT, 32, 149
UPDATE, 31, 112
VERIFY, 31, 79

Fixed length records, 14, 43
binary, 51
symbolic, 46

FOR clause, 20
FOR modifier, 33, 35

Format, $, 137
. ,136
*,136
+,137
, »,138
-,137
D, 135
empty picture, 135
N, 137
output file, 19
picture, 133
V, 136
X, 135
Z,136

Formats, declaring picture, 141
sign, 137
Free format file creation, 58

Functions, REPORT arithmetic, 147
REPORT utility, 131
utility date, 25

205

206

Generating reports, 123 MATCHED section, 30, 32, 106, 108
Matching data and activity records, 16-19
MAX function, 147, 149
MERGE, 86

HEADINGS section, 30, 32, 35, 143
Hierarchy of logical operators, 23

Hierarchy of operations, 21
Messages, error, 191

I type data, 51 MIN function, 147, 149

IF clause, 20 Minus sign format, 137

IF modifier, 33 Minus, unary, 21

IF statement, 36, 37, 41 MODIFY, 29

Information files, 15 Month, current, 25

INITIAL section, REPORT, 32, 142 Multiple description files, 161
UPDATE, 31, 107 deleting, 168
VERIFY, 31, 78 directory, 165

editing, 170
listing, 166
renaming, 169

Input file data entry, 61
INPUT statement, 34, 78
Inserting field descriptions, 57 Multiplication, 21
Instruction statements, 33, 37, 40

N format, 137

N type data, 47
Names, field, 46

NCR, 35

Nesting statements, 40
NOT operator, 23, 24

Notation, scientific, 47

Interfile conditional expressions, 20
Interrupting commands, 5

Item list, 35

Key fields, 16, 84

L type records, 48

Layout, report, 32 .

Number of decimal places, 47, 53
Legal numbers, 22, 47

Number, record sequence, 25

Length, 25
binary field, 53 Numbers, legal, 22, 47
binary record, 51 NUMERIC operator, 22
symbolic field, 47
symbolic record, 46 ON statement, 139, 147
LF, 25 ON statement sorting, 149
Line continuation, command, 4 Operation hierarchy, 21
output, 25 Operators, arithmetic, 21
Line numbers, rules, 28 logical, 23
LINES. 132 relational, 20, 22, 24
LIST, 29 Option, DELETE, 168
' S DIR, 165
Listing multiple description files, 166 EDIT, 170
Listing rules file lines, 29 HUSH, 5
Logical operators, 23 LIST, 166
PROMPT, 64
Lower level statements, 40 PURGE PRIME, 91
o PURGE SINGLE, 95
Manual, organization of, 2 RENAME, 169

MARGIN, 32, 34,132 REPLACE SINGLE, 100

SELECT PRIME, 91
SELECT SINGLE, 95
UPDATE MULTIPLE, 105
UPDATE SINGLE, 105
VERSION, 5

Optional components, PURGE, 90, 94
REPLACE, 99
SELECT, 90, 94
UPDATE, 105
VERIFY, 76

Options, CREATE, 63
DEFINE, 164

OR operator, 23, 24
Ordering records, 83
Organization of manual, 2
ORIF statement, 36, 37
OTHERS clause, 90, 95

Output file, 19
VERIFY, 76

Page headings, 32, 140

Paging control, 132
Parameters, data, 44
Parentheses, 21, 24
PERFORM, 157

Period starting position, 47,53

Picture formats, 133
declaration, 141
empty, 135

Plus sign format, 137

PRIME option, PURGE, 91
SELECT, 91

PRINT statement, 138
Printing data, 34
Program version, 5
PROMPT option, 64, 66
Prompts, system, 4
PURGE, 19, 87

activity file, 92

matching, 16

optional components, 90, 94

PRIME option, 91

SINGLE matching, 17

SINGLE option, 95
with one file, 90

207

Qualifying records, 20
QUIT, 29

R type data, 51
RECNO, 25
Record entry, restarting, 61

Record length, 25

binary, 51

symbolic, 46
Record sequence number, 25
Record terminator character, 49
Record type, 43

Records, 14, 43
binary fixed length, 52
binary variable length, 53
fixed length, 14, 43
qualifying, 20
symbolic fixed length, 46, 48
symbolic variable length, 46, 48
variable length, 14, 43

Reentering a subsystem, 177
Reformatting records, 19, 88, 151
Relational expressions, 22, 24, 33, 37
Renaming multiple description files, 169

REPLACE, 97
matching, 16
optional components, 99
SINGLE matching, 17
SINGLE option, 100

Replacement statement, 34
REPORT, 123
Report layout, 32

REPORT rules file, 27, 32, 129, 139
arithmetic functions, 147
statements, 138
utility functions, 131

Reserved words, 46

Restarting field entry, 61
Restarting record entry, 61
Restructuring files, 19, 87, 151

RETRIEVE data base, reformatting, 151
structure file, 16
with CREATE, 59

Retrieving records, 87

Reversing conditional expressions, 23

208

Rules file, adding lines, 29
command summary, 186
commands, 29
comments, 33
creation, 27
deleting lines, 29
line numbers, 28
listing lines, 29
multiple description, 163
REPORT, 27, 32,129, 139
sections, 30
statements, 32, 138
statements summary, 187
UPDATE, 27, 30,106
VERIFY, 27, 30, 77

Rules sections, REPORT, 32, 129
UPDATE, 31, 106
VERIFY, 31, 77

Rules statements, command file, 172
RUN, 30
RUN command, EXECUTIVE, 177

SAVE PRODUCTION, 30, 156
S type records, 49

Scientific notation, 47
Scrambled files, 59

Section, AFTER, 32, 109
BEFORE, 32, 108
HEADINGS, 30, 32, 35,143
MATCHED, 30, 32,108
OTHERS, 32, 144
TOTALS, 32, 147
UNAPPLIED, 32, 109

Sections, UPDATE rules, 31, 106
VERIFY rules, 31,77
REPORT rules, 32, 129
rules file, 30

SELECT, 14, 19, 87, 151
activity file, 92
matching, 17
optional components, 90, 94
PRIME option, 91
SINGLE matching, 17
SINGLE option, 95
with one file, 89
Sequence number of record, 25
Sign formats, 137
SINGLE matching, 17

SINGLE option, PURGE, 95
REPLACE, 100

SELECT, 95
UPDATE, 105

SKIP TO TOP, 133

SORT, 16, 83

Sorting, ON statement, 149
Spacing control, 132

Special terminator character, 49
Specific fields, entering, 65

Starting position, binary, 53
symbolic, 47, 50

Statement summary, 187
@INPUT, 172
@TYPE, 173
DO, 36,40
DONE, 35
ELSE, 37,40
IF, 36, 37, 41
INPUT, 34, 79
OFFHEADINGS, 139
ON, 139, 147
ONHEADINGS, 139
ORIF, 36, 37
PRINT, 138
replacement, 34
ROUNDIN, 141
ROUNDOUT, 141
TYPE, 34, 139

Statements, 32
command file rules, 172
control, 36
instruction, 33, 37, 40
nesting, 40

Storage, binary, 51

working, see DECLARE section
Structure file, RETRIEVE, 15
Structure, REPORT rules file, 32, 129

UPDATE rules file, 31, 106
VERIFY rules file, 31, 77

Substituting records, 97

Subsystem command files with IML, 176

Subtotals, 147
Subtraction, 21

SUM function, 147, 149
Summary, command, 181

rules file command, 186
rules file statement, 187

SUPER BASIC, 176

Suppression, carriage return, 35
decimal point, 136
leading zeros, 136

Symbol conventions, 2

Symbolic files, 43
description, 46
fixed length records, 45, 46
variable length records, 46, 48

System prompts, 4

TAB function, 133
Terminal data entry, 60
Terminating a rules section, 35

Terminator, changing field, 64
field, 61

Terminator character, 49

Time, current, 25

Titles, multiple description, 161, 163, 165, 169
Top of form, 133

TOTALS section, 32, 147

TOUT file, 171, 173

Transaction file, see Activity file

TYPE item list, 34

TYPE statement, 20, 34, 139

Type, file, 43
record, 43
Types, data, 44
binary, 51

symbolic, 47

209

Unary minus, 21
Up arrow editing, 61, 159

UPDATE, 100
activity file, 31, 104
matching, 17
MULTIPLE matching, 18
optional components, 105
rules file, 27, 31, 106
SINGLE matching, 18
with one file, 105

Utility fields, 24
Utility functions, REPORT, 131

V format, 136

Variable length records, 14, 43
binary, 51
symbolic, 46, 48

VERIFY, 73
optional components, 76
rules file, 27, 31, 77

Version, program, 5

WITH clause, 65
Working storage, see DECLARE section
Writing data files, 58

X format, 135
Year, current, 25

Zeros, suppressing leading, 136

