Price: $2.00

TYMSHARE TYMCOM-IX

INSTANT SERIES

EDITOR

TYMSHARE, INC.
CUPERTINO, CALIFORNIA 95014

w ® FEBRUARY 1978
I TYMSHARE VERSON 1

©1976, TYMSHARE, INC,, Litho in U.S.A.

BSS

CONTENTS

Section 1 — INTRODUCTION
ABOUT THIS MANUAL .
SYMBOL CONVENTIONS

Section 2 — ENTERING AND LEAVING EDITOR

Section 3 — ENTERING TEXT INTO EDITOR

Section 4 — EDITING TEXT .
EDITING WHILE ENTERING TEXT
Deleting a Character with Control A
Deleting a Line with Control Q .
Setting Tabs with Control |
EDITING TEXT ALREADY ENTERED
Listing Text Lines

Editing with Control Characters .
Copying a Line with Control D .
Restarting an Edit with Control Q .
Copying Characters from the Old Line
Deleting Characters from the Old Line
Inserting Characters into the New Line

]

Addressing a Line .
Line Addressing Using Text
Line Addressing Using Line Labels . .
Line Addressing Using a Line Number and Text

ERROR MESSAGES

Page

© © 00 00 0 N N N

Section 5 — ADDITIONAL EDITING COMMANDS
THE DELETE COMMAND .
THE INSERT COMMAND .
THE SUBSTITUTE COMMAND .
THE CLEAR COMMAND

Appendix A — CONTROL CHARACTER AND
COMMAND SUMMARY

Page

13
13
14
15
16

17

Section 1
INTRODUCTION

EDITOR allows the Tymshare user to edit text quickly and easily. The text may be the
Gettysburg Address, a computer program written in any language, or data to be read by the com-
puter. The text to be edited may be entered from an existing file on a storage device or typed
directly into EDITOR at the terminal.

ABOUT THIS MANUAL

This manual is designed to acquaint the beginning user with the principal features of the
EDITOR. Sections describe how to enter text for editing and how to:

® Edit a line of text

® Print a line or range of lines of text

® Delete a line or range of lines from the text

® Insert a line or lines into the text

® Make substitutions throughout the text

® Write the text on a disk storage file

This manual is for the beginning user of EDITOR. Thus, while the entire range of editing possi-

bilities is covered, not all of the more complex features are described. Tymshare’s other
EDITOR reference manuals describe finer details that allow more intricate text manipulation.

EDITOR is an editing language. A BASIC or FORTRAN program cannot be executed in
EDITOR on the TYMCOM-IX. To run a program prepared using EDITOR, the user must write
the edited program on a disk file, exit from EDITOR, and then execute the program.

The TYMCOM-IX EDITOR described here is nearly identical to the EDITOR available on Tym-
share’s TYMCOM-X system, but some procedures, particularly commands used to call or exit
from EDITOR, differ. TYMCOM-X users should consult Tymshare’s TYMCOM-X EDITOR Instant

Manual for information on these features.
SYMBOL CONVENTIONS

To indicate what is printed by the computer and what is typed by the user, all user-typed com-
mands in this manual are underlined.

When a carriage return is used to terminate a command or text line, it is shown by the
symbol .

When a control character is used, it is shown on the line on which it would be typed. Control
characters are shown by a superscript ¢ to the right of an alphabetic character. Control characters

are not actually typed by the system, however; they appear in examples in this manual for
demonstration only.

Section 2
ENTERING AND LEAVING EDITOR

To gain access to EDITOR, the user must first log in to the system. As soon as the connection
to the Tymshare system is made, the system prints:

please log in:

The user should enter his user name followed by a colon (:) and the system number. A carriage
return terminates the line. The system then prompts for the user’s password:

password:

The user should enter his password and a carriage return. The system then prompts the user for an
optional project code. The user may enter a carriage return in lieu of a project code, as shown
below.

PROJ CODE:

Once the log in procedure is finished, the system prints the Tymshare system number, time,
and date; returns the carriage; and prints a dash at the left margin. For example:

TYMSHARE C2 9/15/76 10:27

The dash prompt (—) indicates that the user is now in the EXECUTIVE and can issue any valid
EXECUTIVE command. EDITOR can be called by typing EDITOR followed by a carriage return,
as shown below.

—EDITOR 5

*

An asterisk printed at the left margin indicates EDITOR command level. EDITOR is now ready
to accept a command.

To exit from the Tymshare system, the user must first return to the EXECUTIVE. The QUIT
command, typed at EDITOR command level, allows the user to exit from EDITOR and return to
the EXECUTIVE.

*QUIT -,

The system prints a dash at the left margin, indicating that the user has reentered the EXECUTIVE.
The LOG command logs the user off the system.

Following LOG, the system prints one line of user information and exits. The user can then dis-
connect the line.

Section 3
ENTERING TEXT INTO EDITOR

The APPEND command adds text to the EDITOR text area. With APPEND, the user can enter
an entire program into EDITOR, editing as it is being typed. Text entered into EDITOR is not
permanently saved on a disk storage device until the user issues the WRITE command.

The WRITE command copies the user’s text on a disk file but does not erase any lines from
the user’s on line text area. This means that text can exist in two places: in the user’s on line text
area and on a disk file specified by the user. The CLEAR command erases the user’s on line
text area but not the disk file.

The user should periodically use the WRITE command to save text being entered. This ensures
that, in case of system difficulty, the user will not lose all his text. To terminate text entry in
EDITOR, the user types a carriage return followed by a control D (D€). This returns the user to
EDITOR command level. To resume text entry, the user types APPEND. The following example
demonstrates how to use the APPEND and WRITE commands.

—EDITOR 5
*APPEND 5

THIS IS LINE ONE OF THE TEXT o

ENTRY OF TEXT INTO EDITOR IS5
TERMINATED WITH A CONTROL D.-

THE WRITE_COMMAND ENSURES THAT -

THE TEXT IS SAVED. THE USER

MUST SUPPLY A NAME FOR THE DISK FILE
THAT IS TO CONTAIN THE -

EDITOR TEXT LINES.

D¢
*WRITE
TO:MYFILE o EDITOR prompts the user for the name of the file on which the text is to be saved.
NEW FILE 5 The file named MYFILE is a new file. The user confirms the WRITE command by
225 CHARS entering a carriage return, The system then prints the number of characters in the file.
*APPEND
END OF TEXT , The user adds a line of text with APPEND.
D¢
*WRITE The user saves the updated file MYFILE.
TO:MYFILE .
OLD FILE 5 MYFILE already exists. The user types a carriage return to replace the old contents of
237 CHARS MYFILE with the updated copy.

. MYFILE now contains 237 characters.

Each time the user issues the WRITE command, the message NEW FILE or OLD FILE is
printed. OLD FILE indicates that the file already exists and that the current contents of the on
line area would replace the text now in the disk storage area. A carriage return confirms that
the old file should be written over. If the user does not wish to have the old copy destroyed, he
can cancel the WRITE command by typing NO in response to the prompt. He can then enter
the WRITE command again, this time specifying a different file name.

The user can also copy text from a file into the on line text area with the READ command.
The READ command does not erase the file contents. Also, reading more text into EDITOR does
not erase the text already there. The following example demonstrates the use of the READ
command.

*READ 5
FROM:MYFILE - EDITOR prompts for the name of the file.
237 CHARS EDITOR places a copy of MYFILE in the text area. MYFILE contains 237 characters.

*

The user may edit the file read as if the text had been entered at the terminal. All EDITOR
commands and control characters can be used after the READ command.

Section 4
EDITING TEXT

This section describes how to use control characters to correct errors, how to use terminal tab
stops, how to use the EDIT command, and how to print text lines while in EDITOR.

EDITING WHILE ENTERING TEXT

Errors made while typing text can be corrected using control characters. A control character is
an alphabetic character typed while the “CONTROL” key is depressed. Two of the most
often used control characters are control A (A€) and control Q (Q€). The user can also use control
I (I€) to space text at defined tab stops.

Deleting a Character with Control A

Control A, typed after a character entered in error, deletes the character. When the user types a
control A, the system prints an underscore (_) or backarrow («). The user can then enter a
replacement character.

The user can delete more than one character by entering multiple control A’s. A control A
typed when there are no more characters left on the line is ignored. The following example illus-
trates the use of control A.

*APPEND -

THIS IS LNAC_INE ONE, The control A is not actually printed at the terminal. It
A CNFTAC_Ac_A¢_ONTROL A 2 is shown bere only to indicate where it was entered
CAN DELETE CHARACTERS o on the line.

D¢

*

The EDITOR text area now contains the following text lines.

THIS IS LINE ONE
A CONTROL A
CAN DELETE CHARACTERS

Deleting a Line with Control Q

Control Q deletes the contents of the current line. If the current line has no contents, control
Q deletes the previous line. When a control Q is entered, the system prints a caret (A). EDITOR
then returns the carriage and waits for entry of the text that is to take the place of the deleted line.
The following example demonstrates the use of control Q.

*APPEND

THIS IS LINE ONE ,

CONTRFL Q DOETYQ¢A The user entered a control Q to delete the line.
CONTROL Q DELETES A LINE 5 The user types the new line.

D¢

Setting Tabs with Control |

The user can space text on a line with the control I (I¢) tab key. EDITOR sets tab stops at print
positions 8, 16, 32, 40, and at every fifth position from print position 40. Each time control I
is entered, EDITOR spaces to the next tab stop. The following example demonstrates how to use
control L.

*APPEND 5

110I° GO TO 1, Control I does not actually print on the terminal. It is
Ic PRINT AVR(A) shown bere only to indicate where it was entered on
Tc 2 the line.

I° END,

D¢

*

EDITING TEXT ALREADY ENTERED

To change a line of text after it has been entered into EDITOR, the user must first address the
line. The simplest way to address a line is by its line number. For example, to edit the second
line of text in EDITOR, the user types: :

*2 EDIT o

EDITOR then prints the second line and returns the carriage. The user can now type a new line or
use control characters to edit the line. The user terminates corrections with a carriage return.

The new line takes the place of the old line. The user can edit a number of lines by addressing the
range of lines to be edited and then entering the EDIT command. EDITOR prints the first

line and then returns the carriage. After the user makes changes to the first line, the next line is
printed. This continues until all the specified lines have been edited. The following example
demonstrates line address editing with the EDIT command.

*1,2 EDIT , A comma separates the line numbers.
THIS IS LINE ONE

THIS IS LINE ONE OF THE TEXT o The user enters the replacement line.
THIS IS LINE TWO EDITOR prints the next line.

THIS IS THE END , The new line is entered.

* Lines 1 and 2 bave now been edited.

Listing Text Lines

To list a text line, the user addresses the line to be printed and types a slash (/) character. Typing
just a slash without specifying a line instructs EDITOR to type the entire contents of the text
area, beginning with the first line. A group of lines can be printed by addressing the range and then
typing the slash character. Once the line or lines have been printed, EDITOR returns the carriage
and prints an asterisk. The following example demonstrates the above concepts.

*1,2/ Commas separate the line numbers.
THIS IS LINE ONE Lines 1 and 2 are printed,

THIS IS LINE TWO

*2/

THIS IS LINE TWO Line 2 is printed.

*

Editing with Control Characters

After the EDIT command prints the old line and returns the carriage, the user is ready to edit.
The control characters described below allow quick and easy changes to a text line. As used
below, the old line is the line that is to be edited, and the new line is the new line of text that is to
replace the old line.

Copying a Line with Control D

Control D is used to copy characters in the old line to the new line. Once the user has edited
part of a line, he can use a control D to copy the remainder of the line. For example,

*1EDIT The user wishes to edit the first line of text.

THIS BEU LINE ONE

THIS WASD¢ LINE ONE The user retypes the line until no more corrections are needed. He then
*1/ enters a control D. The remaining part of the old line is copied into the

new line.
The user displays the corrected line.

THIS WAS LINE ONE

*

Characters entered under EDIT replace the corresponding characters in the old line. In the above
example, THIS WAS replaces THIS BEU. Control D copies the rest of the old line to the new line.

Typing a carriage return during EDIT terminates the command and deletes the remainder of the
old line. For example, if the user had typed a carriage return instead of a control D in the above
example, the following would have occurred:

*1EDIT

THIS BEU LINE ONE

THIS WAS 5 The user enters a carriage return instead of a control D.
+1/

THIS WAS The remaining part of the old line is lost.

*

10

Restarting an Edit with Control Q

Control Q is used to restart an edit begun with the EDIT command. The user can erase the entire
contents of the new line, retaining the contents of the old line. The effect is as if the user had not
started a new line. The following example demonstrates the use of control Q.

*1EDIT -,

THIS WAS LINE ONE

THIS IS LINE DDHQ¢» The user enters a control Q to restart the edit.
THIS IS LINE ONE

*

Copying Characters from the Old Line

The user can copy characters from the ol/d line into the new line with control Z. To avoid the
need to retype correct characters from the old line, the user types control Z followed by the last
correct character in the old line. All characters in the old line up to and including the character
entered are placed into the new line. The following examples demonstrate how to use control Z.

+15EDIT -

100 PRINT “GWSOLINE MILEAGE”

Z°G 100 PRINT “GADCSOLINE MILEAGE” The user copies up to and including the G in
%15/) GWSOLINE with control Z. He then enters an A

to take the place of the W. A control D copies
the rest of the old line into the new line.

100 PRINT “GASOLINE MILEAGE”

*

*1EDIT

C THIS PRGEMRA COMPUTES HE

Z°RC THIS PROGRAMZ<S COMPUTES _THE o, Tbhe user copies up to the R in PRGEMRA with
*1/ control Z. He then types OGRAM. Anotber control

s Z copies all characters up to and including the S
S THIS PROGRAM COMPUTES THE in COMPUTES. The user then enters the correct

characters for the end of the line.

Deleting Characters from the Old Line

The user can delete characters from the o/d line with control S. This control character can be
used with any of the other control characters. When control S is entered, a percent sign (%) is
printed and the next character in the old line is bypassed. The new line remains unchanged. The
following example demonstrates the use of control S.

*4EDIT
320 PRINT “TTYPE 2.” Control S deletes the first T of TTYPE.
Z¢“320 PRINT “S¢%DCTYPE 2.”

*

1

Inserting Characters into the New Line

Control E inserts characters into the new line. To use control E, the user must first locate the
place in the new line for the new characters. He may use any of the control characters discussed to
edit or copy characters from the old line to the new line before using control E. When the user
enters a control E, the system prints a left angle bracket (<) to indicate the beginning of the insert.
The user may enter the new characters at this time. To terminate the insert, the user types con-
trol E. The system prints a right angle bracket (>) to indicate the end of the insert. The following
example shows how to use control E.

*45EDIT -
888 TYPE “END OF ARG ONE”

2°G888 TYPE “END OF ARGEC<UMENTEC>DCONE” The user copies up to and including the G in

* ARG. He then types a control E, inserts
UMENT, and types control D to copy the
remainder of the line.

Addressing a Line

In EDITOR, a text line may be addressed in any of four ways. One method, addressing a line
by its line number, has been used in all the preceding examples. Three other methods are
described below.

Line Addressing Using Text

The user can address any line in the EDITOR text area by specifying a portion of the text on
that line. The user first decides what part of the line is to be used as a search string. It should
be unique to the one particular line which is to be edited. He then types the character string en-
closed within single quotes, double quotes, or square brackets. EDITOR searches the contents
of the text area for the first instance of the character string enclosed within the delimiters. EDITOR
types the line in which the text occurs and prints an asterisk. The user can now find out the line
number by typing a period followed by an equals sign. For example,

*‘the entire’/ The user locates the line in which the character string enclosed by

the entire line contents of quotes occurs.

*.=52 The user wants to know the line number. He types a period and an equal
* sign (.=) without entering a carriage return. EDITOR prints the line

number to the right of the equal sign.

Line Addressing Using Line Labels

Line labels are characters that begin in print position 1 and end at the first blank space to the
right. A line label cannot begin with a space; only a line with a nonblank character in print
position 1 can be addressed. To address a line containing a line label, the user enters a colon (:),
the line label, and another colon. A slash character or other command terminates the line. The
following example demonstrates this method of line addressing.

*:11:/ The user enters a line label enclosed by colons. EDITOR searches for
11 FORMAT(2F11.5) the line label and prints it on the terminal.

*

12

Line Addressing Using a Line Number and Text

Line numbers can be used to begin a search for a text string if the user types the line number,
single quote, a unique string, and then a final single quote. The search begins at the line
number specified by the user. The following examples demonstrate this method of line addressing.
The contents of the EDITOR text area are displayed below.

C THIS SUBROUTINE COMPUTES THE SQUARE
C ROOT OF THE SUM OF SQUARES
10 ACCEPT 11,X,Y
11 FORMAT(2F11.5)
Z=SQRT(X**2+Y*%2)
TYPE 12,X,Y,Z

12 FORMAT(2X$X=$F11.5,2X$Y=$F11.5,2X$Z=$F11.5,/)
END
*2‘ACC’/ The user begins the search at line 2, knowing that the
10 ACCEPT 11,X,Y ACCEPT statement is located soon after line 2.
24 X4/

Z=SQRT(X**2+Y**2)

ERROR MESSAGES

There are several ways in which EDITOR responds to errors due to misspellings or incorrect
responses to prompts. EDITOR prints a question mark (?) when a text line is not found. The ques-
tion mark is also printed when the user misspells a command name, addresses a nonexistent
line, or attempts to do something that is impossible, such as to delete the tenth line when there are
only eight lines of text.

If the user is typing a command name and makes an error, he can correct the error with control
characters. The command can be edited using control characters until the user enters a carriage
return and terminates the line. Control Q is frequently used for this purpose. Using a control Q to
edit a command line is identical to using it during APPEND. Control Q echoes as a caret (A) on
the terminal. EDITOR deletes the line, returns the carriage, and permits another line to be typed.

EDITOR notes errors in typing control characters by ringing the terminal bell. Whenever an
inappropriate control character has been entered, EDITOR rings the bell and disregards the control
character. The terminal bell rings, for example, if the user enters a control Z followed by a
character which does not appear in the rest of the line.

If the user types something other than N or Y in response to an EDITOR prompt, EDITOR
prompts WHAT? at the terminal. The user must then respond by typing either N or Y.

13

Section 5
ADDITIONAL EDITING COMMANDS

The EDIT command and control characters are only a few of the features available in EDITOR.
Additional editing commands are described in this section.

In this section, all examples refer to the following sample program located in the user’s on line
text area.

C THIS PROGRAM CALCULATES
C THE FLOW OF WATER THROUGH A PIPE
WRITE 1,4
READ 0,6,D12,DI1,HT
AREA1=DI1*#2+Pl/4
AREA2=DI2*#*2+PI/4
QUANTITY=0.98*AREA1*AREA2+SQRT
1(2#32.2*HT*13.47/(AREA*#%2—
2AREA2*#2))
WRITE 1,5,QUANTITY
5 FORMAT(//$ FLOW IN CFS=$,1X,
1F17.4/)
4 FORMAT($DIAM OF VENTURLPIPESS/$
1AND MANOMETER READING IN FEET
28/)
6 FORMAT(3F17.0)
END

THE DELETE COMMAND

The DELETE command removes a line or a range of lines in the EDITOR text area. Any line
addressing method can be used to specify line(s) that are to be deleted from the text area.
The following example demonstrates one method.

+'1.5’DELETE , The user deletes the line(s) containing the number 1.5. This number appeared in the
% - tenth line of the text.

14

In this example, the user deletes a range of lines.

*1,2DELETE The first two lines are deleted.
*/ The remaining text area contents are displayed with the / command.
WRITE 1,4
READ 0,6,D12,DI1,HT
AREA1=DI1#*#*2*PI/4
AREA2=DI2##2*PI/4
QUANTITY=0.98*AREA1*AREA2*SQRT
1(2#32.2#*HT*13.47/(AREA1 **2—
2AREA*%2))
WRITE 1,5,QUANTITY
5 FORMAT(//$ FLOW IN CFS=$,1X,
1F17.4/)
4 FORMAT($DIAM OF VENTURLPIPES$/$
1AND MANOMETER READING IN FEET
2%/)
6 FORMAT(3F17.0)
END

Each time the DELETE command is issued, EDITOR reassigns text line numbers. EDITOR
maintains line numbers as an unbroken series of integer numbers (i.e., 1,2,3,4. .).

Thus, in the first example, the line containing the ‘1.5’, line 10, was deleted. Once line 10 was
deleted, the following line became line 10, line 12 became line 11, and so on. In the second
example, the first two lines were deleted. Line number 3 became line number 1, etc.

THE INSERT COMMAND

The INSERT command places new text lines in the text area. Unlike APPEND, which only
enters lines at the end of the text area, INSERT places text lines anywhere in the text area. Any of
the line address methods except line range addressing can be used to specify where the lines are
to be placed. Additional lines are entered in the same manner as with the APPEND command. The
user terminates text entry with a control D (D€).

In addressing lines, the user specifies the line before which the new text is to be inserted. For
example, to insert text between the first and second line of text, the user specifies line 2.

The following examples demonstrate how to use the INSERT command.
*1INSERT The user inserts two lines before line 1.

C__THIS PROGRAM CALCULATES THE,
C _FLOW OF OIL THROUGH A PIPE

D¢

+‘1=D’INSERT The line “PI=3.14159" is inserted before the line
PI=3.14159 5 containing “1=D"’.

De

*/

C THIS PROGRAM CALCULATES THE
C FLOW OF OIL THROUGH A PIPE
WRITE 1,4

The user displays the text area with inserted lines.

15

READ 0.6,DI2,DI1,HT
PI=3.14159

AREA1=DI1#*2+PI/4
AREA2=DI2#**2+P1/4
QUANTITY=0.98*AREA1*AREA2*SQRT
1(2#32.2*HT*13.47/(AREA1**2—
2AREA2#%2))

WRITE 1,5,QUANTITY

5 FORMAT(//$ FLOW IN CFS=$,1X,
1F17.4/)

4 FORMAT($DIAM OF VENTURILPIPES$/$
1AND MANOMETER READING IN FEET
2$/)

6 FORMAT(3F17.0)

END

THE SUBSTITUTE COMMAND

The SUBSTITUTE command is useful when a user wishes to replace characters or words that
occur frequently in the text area. The user first types the command SUBSTITUTE followed
by a carriage return. EDITOR then prints a double quote (*“) on the next line. The user enters the
new character or string of characters followed by a control D. EDITOR encloses the new text
in double quotes and prints the word FOR followed by another double quote. The user enters the
character or string of characters to be replaced, then types control D. EDITOR next prints
WAIT? and does not return the carriage. If the user wishes to examine individual cases before
making the substitution, he should type Y. After a user-typed Y, EDITOR prints the first instance,
and each succeeding instance, prompting OK? after each. Only after the user approves a change
by typing Y is the change made. If the user types N in response to the WAIT? prompt, all changes
are made without further prompting.

After all SUBSTITUTE changes have been made, EDITOR prints the total number of replace-

ments and returns the carriage. The following example demonstrates the use of the SUBSTITUTE
command.

*SUBSTITUTE 2

“HEIGHTD¢” FOR “HTD¢” The user substitutes the word “HEIGHT” for the abbreviation “HT”.
WAIT? N Each string is terminated with a control D.

2 EDITOR made two substitutions.

*

In the following example, the user confirms each substitution.

*SUBSTITUTE
“DIAD¢” FOR “DID¢”
WAIT? Y
READ 0,6,D12,DI1,HEIGHT This line contains two instances where substitutions can

OK? Y be made. Each one must be verified separately.

T The user approves the first substitution.
2,D11,HEIGHT The remainder of the line is printed and EDITOR asks if
OK? Y it is to be changed.

AREA1=DI1##2*P1/4

16

OK? Y
AREA2=DI2*#2*PI/4

OK? Y
4 FORMAT($DIAM OF VENTURIPIPES$/$ The user does not wish this line changed
0OK? N and replies N.

1AND MANOMETER READING IN FEET This line is not changed either. The char-
OK? N acters DI appeared in both lines that were
4 - not changed.

The EDITOR made four changes in 3 lines.

THE CLEAR COMMAND

If the user desires to make changes to a number of programs or data sets during one terminal
session, he must clear the EDITOR text area before entering the next program or data set.
This ensures that new text is not added to the old text with the next APPEND or READ com-
mand. The user issues the WRITE command when all work is finished, updating the file on
disk. Once this is done, he can enter the CLEAR command. EDITOR then prints ALL? and waits
for the user to confirm the command. The user should type Y (for yes). Typing N aborts the
command. The next example illustrates the use of the CLEAR command.

*WRITE

TO:MYFILE The user issues the WRITE command to save the contents of the updated text area.
OLD FILE 5

485 CHARS

*CLEAR 5 The user issues the CLEAR command to erase the lines from the on line text area.

ALL? Y

* The user is now ready to read or enter more text.

Control
Character

D¢

A€

QC

I€

Z¢ n

S¢

E€ text E€

17

Appendix A
CONTROL CHARACTER AND COMMAND SUMMARY

Symbol Printed
On Terminal

__ (underscore)
or < (backarrow)

A (caret)

% (percent sign)

<> (left and right brackets)

1
2)

3)

4)

Function

Terminates APPEND.

Copies remainder of old line to the new
line; terminates EDIT.

Concludes entry of characters using
SUBSTITUTE.

Terminates INSERT.

Deletes the preceding character.

Deletes the current line. The line can be a
command or a line of text entered using

APPEND, INSERT, or EDIT.

Spaces the terminal print head to the next
tab stop.

Copies up to and including the character n
from the old line to the new line.

Skips the next character in the old line.

Inserts text into the new line. The first E€
prints <; the second E€ prints >.

18

Command Function
APPEND Enters text into the user’s on line text area.
CLEAR Erases all text from the text area.
DELETE Deletes a line or range of lines from the text.
EDIT Prints line(s) and allows line-by-line editing.
INSERT Inserts additional text immediately before the line addressed in the command.
QUIT Returns the user to EXECUTIVE command level.
READ Copies text from a file into the text area. READ does not erase the file.
SUBSTITUTE Substitutes a character or string of characters typed at the terminal in one or

several lines in the text area.

WRITE Copies the contents of the text area on a file. WRITE does not erase any
lines from the text area.

