370, TYMSHARE, INC,, Litho in U.S.A.

TYMSHARE MANUALS
TYMCOM-IX

SUPER FORTRAN

A SUPERSET OF H LEVEL FORTRAN IV

April 1970

TYMSHARE, INC.
10340 BUBB ROAD
CUPERTINO, CALIFORNIA 95014

Price: $5.50

02

CONTENTS

SECTION 1-INTRODUCTION

ARRANGEMENT O
PROCEDURES FOR

FTHEMANUAL
ENTERING AND LEAVING THE SYSTEM

A SAMPLE SUPER FORTRANPROGRAM

SECTION 2 - INTRODUCTION TO SUPER FORTRAN

PROGRAMMING. .

KEY STEPS IN PROGRAMMING

DefiningTheProblem. i
Selecting A Method For Solution.
Analyzing The Problem.
Writing The Instructions i

Debugging
Documenting The

Program

INTRODUCTION TO SUPER FORTRAN LANGUAGE ELEMENTS

Input/Output Statements.ottt
Replacement Statementst
Control Statements ittt e
Program AnalysiSottt e

MORE SUPER FORTRAN FEATURES

Variables . . . e e e e e e e e e e e e e e
Declaration Statements. o v v it i i it e e e e
Control Statements v vt vttt e e e e

Library Functions

Formatted QUTPUL v ittt et et et et e
USING SUPER FORTRAN i i L.

Problem . . . e e e e e e e e e e e e
FIOWCRArt . . o o e e e et e e e e e e e e e e e e
Program Coding. . . . o« ot ittt e

Entering The Prog

= 12/

Executing The Program. i

SECTION 3 - SUPER FORTRAN STATEMENT ELEMENTS

CONSTANTS

Integer Constants

Real CoNStaNTS . v« v v v oot e ittt e et e e e e e e
Double Precision Constants o v vt i ittt et e
Complex CONStantsot i ittt et e

Logical Constants
String Constants

W N = -

oSNy N oo o1 O

—-—
-

- el -
NNNN=

-
w

- e md =
(S - VR

19
19

19
19
19
19
20
20

VARIABLES

Variable Names
Variable Types
Scalar Variables

Arrays And Subscripted Variables

Variable Initialization

EXPRESSIONS

Arithmetic Expressions
Logical Expressions

FUNCTIONS

SECTION 4 - REPLACEMENT AND CONTROL STATEMENTS. . ..
ARITHMETIC AND LOGICAL REPLACEMENT STATEMENTS.

Arithmetic Replacement Statements.
Logical Replacement Statements

CONTROL STATEMENTS . ..

User Controlled Interrupts. .
The PAUSE Statement

The STOP Statement
The QUIT Statement
The END Statement

21

21
23

25

25
28
28
28

30

30
30

31

31
31
32
33
36
36
37
38
38
39
39
39

40
40
40
40
40
41
42

SECTION 6 - INPUT AND OUTPUT STATEMENTS
FREE FORMAT TERMINAL INPUTANDOUTPUT

The ACCEPT Statement . . .
The DISPLAY Statement. . .
Literal Text In The I/O List.

FORMATTED INPUTANDOUTPUT e
The Formatted READ And WRITE Statements

The FORMAT Statement . .

FIELD SPECIFICATION SUMMARY i

NUMERIC FIELD SPECIFICATIONS

| Field Specification.
F Field Specification
E Field Specification
D Field Specification

The G Or Generalized Field Specification.
Input To Numeric Field Specifications

SCALING: THEPSPECIFICATION
NON NUMERIC FIELD SPECIFICATIONS

L Field Specification
A Field Specification
S Field Specification

LITERAL TEXT IN A FORMAT: THE H SPECIFICATION

DATA RECORDS
End Of Record Action

Early Encounter OFEnd Of Record,
End of Record Specification: /
Suppressing Normal End Of Record Action: &
Tab Position Within A Record: The T Specification

REPEATING A FIELD SPECIFICATION

FORMAT RESCAN
DYNAMIC FORMATS

DISK FILEINPUT ANDOUTPUT i
Free Format READ And WRITE i

SEQUENTIAL FILES

Opening A Sequential File .
ClosingA File
Example: Sequential File |/O

45
45

45
46
47

47

47
48

49

51

51
52
53
53
54
54

56
58

58
58
59

61

61
61

62
62

62
63
64
64
64

66
66
67
68
68

68

68
69
69

vi

BINARY FILES

RANDOMFILES

Blements
Record Length
Position

Special Rules For Fixed Record Length

SECTION 8 - SUBPROGRAMS: PROGRAMMER DEFINED

FUNCTIONS AND SUBROUTINES
STATEMENT FUNCTIONS. i,

Filel/O
FileSize

70

70
70
70
71
71
71
72
72
73
74
74

76

76
76

79

79
79
82
82
83
84

85
86
87
88

89
89
90
91
91
92
92

vii

Page

SUBROUTINE SUBPROGRAMS ittt e 93
CALLING A SUBROUTINE SUBPROGRAM: THE CALL STATEMENT. . .. 94
ARGUMENTS. . . . ottt e et e e e e e e i e e as 95
THE RETURN STATEMENT it 96
BLOCK DATA SUBPROGRAMS it 97
SECTION 9 - EXECUTION STATEMENTS 98
PROGRAMVLINKING. i et e e aae s 98
COMMAND FILES ittt e e e e s 929
SECTION 10 - CCS SUPER FORTRAN COMMANDS 101
LINESAND LINENUMBERSt 101
LISTING APROGRAM. ittt it it e ee e 101
The LIST Command: Formatted Listings 101
The FAST Command: Quick Listings. 102
LINE ADDRESSINGttt ettt e e e 103
Addressing A Line By Its LineNumber 103
Asterisk AdAresses oo ittt ittt e e e 103
Addressing The Current Line 103
Addressing The Last LineIn AProgram 103
Relative Addressing v vt ittt it ittt 103
ENTERING, STORING, AND RETRIEVING APROGRAM 104
Entering Statements From The Terminal 104
Entering Statements By LineNumber. 104
Enter With A Line Number Range. 104
Enter With Prompted LineNumbers 105
Syntax Errors During ENTER. it 106
Entering A Program From Paper Tape 106
Storing A Program On Paper Tape.o viii i o aiee e e e 106
Storing A Program On A Disk File: SAVE. 107
Retrieving AStored Program i 108
The LINK Command. v ittt ittt et ettt e eenn 109
The COPY Commandttt ittt et ieee e e e 111
The MOVE Command.ttt ittt et iane e e 113
EXECUTING APROGRAM. ittt it i iie e 113
Summary Of Command Models For Program File Storage And Retrieval . . 114
RETURNING TO THE EXECUTIVE: QUIT. 116
PROGRAM CONTROL AND DEBUGGINGAIDS. 116
Program Interruptionttt e 116

Breakpoints . . v v v vt ittt e e e e e s 117

viii

Page

Continuing Program Execution: CONTINUE. 118
Immediate Execution Of Statements: Direct Statements 118
Referring To Different Parts Of A Program: AT 119
Partial Program Execution. 120
Locating Label And Variable References And Definitions 121
Verifying Program Executability. 123
EXECUTING COMMAND FILESINCCS 123
PROGRAMEDITING. A 124
Inserting Program Lines. 124
DeletingProgram Linesiiiuinnnnnn. .. 125
Changing Program Lines 125
Renumbering AProgram, 129
SECTION 11-SAMPLEPROGRAMS 132
MONTHLY PAYMENT PROGRAM. 132
DOUBLE DECLINING BALANCE DEPRECIATION 135
LEAST SQUARELINE. 137
COSTOF PAINTING ABOX e, 139
PAYROLL CHECKS (FILE 1/O). s i, 140
CHECKING ACCOUNT SERVICECHARGES 143
UPDATING FILES. e, 145
DISPLAYING EMPLOYEE INFORMATION 152
APPENDIX A - STORAGE ALLOCATION 158
APPENDIX B - INTERNAL REPRESENTATION OF ASCII CODE .. 159
APPENDIX C - EXECUTIVESUMMARY 160
ENTERING THESYSTEM 160
METHODS OF CREATING SYMBOLICDATAFILES 160
APPENDIX D - SUPER FORTRAN LANGUAGE SUMMARY 161
CONSTANTS e 161
VARIABLES 161
ARITHMETICOPERATORS e, 161
RELATIONALOPERATORS 161
LOGICALOPERATORS 161
EXPRESSIONS, 162
REPLACEMENT STATEMENTSui. ... 162
CONTROL STATEMENTS i, 162
INPUT/OUTPUT STATEMENTS 163
DECLARATION STATEMENTS, 165

LINKING ... e e e e
COMMAND FILE IN A FORTRAN PROGRAM

APPENDIX E - CCS SUPER FORTRAN COMMANDS SUMMARY . ..
ENTERING APROGRAM. e
SAVING APROGRAM e
COPYING e e
LISTING . . .ttt e e e e e e e e e
RENUMBERING. e
DELETING A PROGRAMOR STATEMENTS
EXECUTING APROGRAM e
DEBUGGING e e e e
EDITING . ..ottt e e e e e et e et e e
OTHER COMMANDS e e

APPENDIX F-USERAIDS i
ABBREVIATED COMMANDS. i
ELIMINATING AS AND TO FROMCOMMANDS.
SPACESINCCSCOMMANDS it ia e
COMMAND MODELS it e i

A Review OF CCS Prompts oo ittt e e e e e e e e e e e e e e e e e

ix

TYMSHARE MANUALS
SYMBOL CONVENTIONS

The symbols used in this manual to indicate Carriage Return, Line Feed, and ALT
MODE/ESCAPE are as follows:

Carriage Return: o
Line Feed:
ALT MODE/ESCAPE: ® NOTE: This symbol will be printed as

many times as it is required to
hit this key.

Action At The Terminal

To indicate clearly what is typed by the computer and what is typed by the user, the
following color code convention is used.

Computer: Black User: Red

NOTE ON SPACING IN EXAMPLES

Because this manual is set in type with characters of varying width, the spacingin some
of the examples may not appear exactly as on the terminal, where all characters are the
same width. If the spacing in an example appears misleading, this general rule will be
helpful:

The number of blanks or spaces printed can usually be determined by
counting the print positions (characters) in the line or lines above.

Also, in some sections where the spacing is critical, blank spaces are indicated by a .

SECTION 1
INTRODUCTION

Tymshare SUPER FORTRAN is a comprehensive
algebraic compiler which permits the programmer to
concentrate on the problem to be solved rather than
on formal syntax requirements.

SUPER FORTRAN is composed of 1) SUPER
FORTRAN source language statements with which
the actual programs are written, and which are com-
patible with IBM 360 H Level FORTRAN IV com-
pilers; and 2) the Conversational Compiler System
(CCS) commands which control the operating system
under which SUPER FORTRAN language statements
are used on the Tymshare system.

The Tymshare SUPER FORTRAN language is IBM
360 H Level compatible; in fact, it is a superset of
standard FORTRAN 1V. In addition, the Conversa-
tional Commands provide an easy, efficient tool for
program development, testing, and debugging.

Each SUPER FORTRAN language statement is
compiled and analyzed for errors as it is entered. If it
is syntactically incorrect, a diagnostic is given imme-
diately. The statement may then be corrected. After
modification, the program can be listed on the termi-
nal, saved on a disk file, and/or executed. The user can
specify a single statement or a range of statements to
be executed as well as execute the entire program.
Program execution can be interrupted at any time,
and direct statements can be entered for immediate
execution. Program execution may be resumed at the
point of interruption.

Source programs in SUPER FORTRAN can be
entered directly from the terminal, from a paper tape,
or from a file. The user with a source program
punched on cards can request that the contents of
the cards be put on a disk file at the computer cen-
ter. He may then load the program from the file.

Data may be read from the terminal or from a file.
Data on paper tape, magnetic tape, or cards may be
written on a disk file and then used. Similarly, results
can be printed on the terminal or saved on a file.
At the user’s request, large amounts of output can
be printed on the high speed printer at the Tymshare
computer center.

In addition to being conversational and H level
compatible, Tymshare SUPER FORTRAN also in-
cludes the following features:

® Labelled COMMON, EQUIVALENCE, program-
mable error and end-of-file conditions, the
EXTERNAL statement, BLOCK DATA sub-
programs, and dynamic formatting.

Random access files.

Fast loading binary program files.
Program linking, preserving COMMON.
Extensive string processing features.

Programmable interrupts.

CCS on-line editing and debugging capabilities.

SUPER FORTRAN can be used when any of the
following characteristics are desired:

® When the user wishes to do complex arithmetic.
® When the user wishes to have double precision.

® When the user wants to use an existing FOR-
TRAN |V program from other computers; or
to debug a FORTRAN 1V program to be run
on other computers by taking advantage of the
fact that FORTRAN 1V is widely used.

® \When the user wishes to use local names in sub-
routines.

® When the user wishes to use long names for
greater readability.

ARRANGEMENT OF THE MANUAL

This manual can be used both as a tutorial guide
and as a reference manual for Tymshare SUPER
FORTRAN. Section 2—An Introduction to SUPER
FORTRAN Language Programming—provides suffi-
cient instruction for a beginning programmer to write
complete programs in SUPER FORTRAN and to run
them successfully on the Tymshare system.

The manual is organized so that an experienced
programmer can skip Section 2 and proceed directly

to the other sections in which SUPER FORTRAN is
described in detail. Sections 3 through 9 describe
SUPER FORTRAN language syntax and statement
elements. Section 3 contains a discussion of the fun-
damental SUPER FORTRAN statement elements:
Section 4, replacement and control statements.

The ability to manipulate text with string variables
and functions is an outstanding attribute of this lan-
guage. Section 5 describes these string manipulation
features.

Input and output statements are described in Sec-
tion 6; declaration statements in Section 7. Subrou-
tines and programmer defined functions are treated
in Section 8. SUPER FORTRAN execution state-
ments are discussed in Section 9.

Section 10 describes the CCS commands; that is,
how programs are entered, stored, and executed on
the Tymshare system. The section also includes the
CCS commands that control running programs and
that are used for debugging. Section 11 lists some
sample programs written in SUPER FORTRAN and
executed on the Tymshare system.

Appendix A contains instructions for planning ef-
ficient use of computer storage using memory alloca-
tion estimation. Appendix B is a table of the internal
representation of ASCII codes. Appendices C, D, and
E contain, respectively, summaries of EXECUTIVE
commands, SUPER FORTRAN commands, and CCS
commands. Appendix F describes some user aids such
as abbreviations.

PROCEDURES FOR ENTERING
AND LEAVING THE SYSTEM

The following is a summary of the log in and log
out procedures for the Tymshare system. A complete
description of the EXECUTIVE commands is found
in the Tymshare EXECUTIVE Manual, Reference
Series.

To gain access to the Tymshare time sharing sys-
tem, you must first log in. As soon as the connection
to the Tymshare computer is made, and the terminal
identifying character is typed (see Appendix C), the
system will type:

PLEASE LOG IN: 5 '

Type a Carriage Return. The system replies with:
ACCOUNT: A3 b

Type your account number (A3 in this case) fol-
lowed by a Carriage Return. The system then types:
PASSWORD: -

Type your password followed by a Carriage Return.

The letters in the password do not print. The system
next types:

USER NAME: JONES

The user name JONES is followed by a Carriage
Return. The system next asks for a project code.
PROJ CODE: K-123-K 5

K-123-K is a project code. NOTE: A project code

is optional. If no project code is wanted, simply type
a Carriage Return in response to the system’s request.

After you have entered the requested information
correctly, the system will type the date and time.
For example,

TYMSHARE 4/8 11:20

You are now in the EXECUTIVE and can call
SUPER FORTRAN by typing SFORTRAN followed
by a Carriage Return. SUPER FORTRAN will reply
with a > when it is ready to accept a command.

To exit from the Tymshare system, you first must
be in the EXECUTIVE, characterized by a dash in the
left margin. To return to the EXECUTIVE from
SUPER FORTRAN, type:

>QUITD

The EXECUTIVE dash will appear in the left
margin. Now type:

-LOGOUT b)
followed by a Carriage Return. The system then will
type:
CPU TIME: n SECS.

Number of computing seconds used.
TERMINAL TIME: 0:00:00

Number of minutes connected.

When the computer types

PLEASE LOG IN:

you may disconnect the line or let another user log in.

A SAMPLE SUPER FORTRAN PROGRAM

The following is a sample SUPER FORTRAN program entered and executed at the
terminal.

PLEASE LOG IN: 5
ACCOUNT: A5,
PASSWORD:

USER NAME: FM
PROJ CODE: KL-3-456

TYMSHARE 10/14 11:36
—-SFORTRAN

> 10 xTHIS PROGRAM COMPUTES GAS MILEAGES.
> 20 100 ACCEPT “INITIAL ODOMETER READING= ",0DOM1
> 30 ACCEPT “FINAL ODOMETER READING= ",0DOM2
> 40 ACCEPT “TOTAL GAS USED= ",GAS ,
> 50 TOTAL=0DOM2-ODOM1)
> 60 GASMILEAGE=TOTAL/GAS b5
> 70 DISPLAY TOTAL,” MILES”,GASMILEAGE,” MILES/GAL"D
>80 GO TO 100
> 90 END ,
> RUN 5

INITIAL ODOMETER READING= 10147.6

FINAL ODOMETER READING= 10519.3 5
TOTAL GAS USED= 174

371.7 MILES 21.362069 MILES/GAL

INITIAL ODOMETER READING= ¢

The user typed an ALT MODE (or ESCAPE) to stop the program.

INTERRUPT
20 >QuUIT,

~LOGOUT 5

CPU TIME: 1SECS.
TERMINAL TIME: 0:5:16

PLEASE LOG IN:

SECTION 2
INTRODUCTION TO SUPER FORTRAN PROGRAMMING

KEY STEPS IN PROGRAMMING

A computer program is a set of simple instructions
written in a language the computer can understand
which tells the computer how to solve a problem—
how to accept data, how to process it, and how to
return the results to the user.

The language used to write a program depends
upon the problem to be solved and the computer to
be used. The actual machine language of a computer
is very tedious to learn and use. Therefore, a group
of higher level computer languages has been devel-
oped. SUPER FORTRAN is one of these languages,
and is essentially a combination of simple English
and elementary algebra.

There are six key steps in writing any computer
program:

1. Defining the problem.

. Selecting a method for solution.

. Analyzing the problem.

. Writing the instructions.

. Debugging and checking the program.

o oA WN

Documenting the program.
A

o

rief discussion of each step follows.

DEFINING THE PROBLEM

Before you can write a program to solve a prob-
lem, you must know exactly what the problem is.
A computer can only follow your instructions—it has
no intuitive knowledge. You must first determine
what answers are required, how these answers are to
be given, and what accuracy is required in the an-
swers. The results computed and reported by the
computer are collectively referred to as output.

Next you must determine what information is
given and in what form this original data is supplied.
The original information supplied to the computer is
called input.

Finally, study the problem to determine whether

there are any special cases and define the alternatives
in these cases.

SELECTING A METHOD FOR SOLUTION

There are usually several ways to solve a problem,
and it will be necessary to select one which is best
for your particular situation. You should first analyze
the given data and the desired results to determine
what computations must be made. You may prepare
a brief step-by-step numerical solution to your prob-
lem using as many methods as you can. After some
experience, it will be easier to see which method is
best suited to computer solution.

ANALYZING THE PROBLEM

After the method of solution is selected, you
should determine the steps required to solve the prob-
lem. A problem may be solved primarily by evaluating
a series of formulas, or it may require more involved
steps. Try to organize these steps into a logical se-
quence so the computer can perform the computa-
tions.

Often the clearest method of representing the log-
ical sequence of a program is to picture it with a
flowchart. A flowchart consists of a number of
boxes connected by lines. Within each box is a
brief statement of an operation to be performed.
The interconnecting lines, with arrows attached,
show the various paths the solution may take. |f
many decisions are to be made or many alternatives
exist, a flowchart makes these alternate paths easier
to follow.

A flowchart may be simple, showing only the
vaguest outline of the various alternatives, or very
detailed. The greater the detail in the flowchart, the
easier the actual programming will be.

Typically:

Rectangular boxes are used for input, output, and
computations.

Diamond shaped boxes are used for decisions.

Circles are used as connectors when flowcharts be-
come more complicated.

Figure 1 is an example of a simple flowchart for
a program to find the sum of the reciprocals of N

numbers.

INITIALIZE:
COUNTER =0
SUM =0

]

INPUT: N
(HOW MANY NUMBERS)

|72

i

INPUT:
NEXT NUMBER

!

CALCULATE:
RECIPROCAL
OF NUMBER

)

ADD:
RECIPROCAL TO SUM,
INCREASE COUNTER

BY 1

NO

YES

PRINT:
sSuUM

Figure 1 - Flowchart Example

It is usually worthwhile to prepare test cases which
exercise all options; that is, follow all paths of the
flowchart. A test case should contain input data for
which correct answers are known.

WRITING THE INSTRUCTIONS

Writing the program instructions in a computer
language is called coding. Since SUPER FORTRAN
consists of a small number of statement types, each
step in the problem solution usually corresponds to
a single SUPER FORTRAN statement. In writing
these statements, the correct order and proper syntax
of the language must be used. You may write down
all statements before beginning to type them into the
computer from the terminal.

DEBUGGING

Debugging is testing and checking a program. As
you enter the statements from the terminal, the inter-
active features of the Tymshare system can be a great
help to you in finding and correcting errors in your
program. Any syntax error will be detected and a
message will be printed to indicate the nature of the
error.

After SUPER FORTRAN syntax errors are cor-
rected, you should try to run the program. If it
runs, test it using data for which correct answers are
known. The final checkout is, of course, continued
satisfactory use of the program.

If the program does not run, SUPER FORTRAN
will usually give you an error diagnostic telling you
what is wrong. |f your program runs, but the answers
are incorrect, there are two options. One is to run the
program part by part in sequential order. This will
isolate the problem. The second is to work through
the program as the computer would, using the sim-
plest cases you can think of. Read each step in the
program and execute it. Do only what you have told
the computer to do, not what you know should be
done. As you step through the program in this man-
ner, you will probably find the errors.

DOCUMENTING THE PROGRAM

It is a good idea to include comments in the pro-
gram to remind yourself of what the program does.
After the program is debugged, document the pro-
gram if you want to use it again.

INTRODUCTION TO SUPER FORTRAN LANGUAGE ELEMENTS

Now that we have introduced you to program-
ming, we will proceed to a simple course in SUPER
FORTRAN which will enable you to write and exe-
cute programs of your own on the Tymshare system.
We suggest that you try to run some simple pro-
grams on the terminal to see how it works. The
Tymshare conversational system is easy to use, and
you will find that actual use of the computer is your
most valuable learning experience and the fastest way
to get acquainted with the system.

You recall that a computer program is a set of
statements which tells the computer how to solve a
problem. There are three basic types of SUPER
FORTRAN statements: Input/Output (or 1/0) state-
ments; Replacement (or Assignment) statements; and
Control statements.

Statements of each of these three types may con-
tain the names of variables used in solving the prob-
lem. A SUPER FORTRAN variable name can be one
or more alphabetic characters or numeric digits, but
the first character must be alphabetic. It is a good
programming practice to choose a variable name
which has some meaningful relationship to the prob-
lem. This will make the program easier to read.

Some examples of legal SUPER FORTRAN var-
iable names are:

A BALANCE CHARGE1 NUMBER X2zY

INPUT/OUTPUT STATEMENTS

Input/output statements tell the computer how to
get the data necessary to solve the problem and how
to return the computed results to the user. Two fun-
damental input/output statements are ACCEPT and
DISPLAY. The ACCEPT statement is an input state-
ment to read data into the program from the termi-
nal. The DISPLAY statement is an output statement
which directs the computer to write on the terminal
the current values of the variables listed in the state-
ment.

ACCEPT A,B instructs the computer to read two
numbers trom the terminal. The first number is as-
signed to the variable A, the second to the variable B.

DISPLAY MONTH, CHARGE causes the com-
puter to print on the terminal the current values of
the variables MONTH and CHARGE.

REPLACEMENT STATEMENTS

A replacement statement is one which directs the
computer to perform certain arithmetic operations
on the variables in the program and to assign a new
value to one of the variables.

Let us consider a simple example.

10 X=5.0
20 Y=X+2.0
30 X=Xx3.0

Statement 10 assigns the value 5.0 to the variable
X. Statement 20 adds 2.0 to the current value in X,
5.0, and assigns the value of the sum, 7.0, to Y.
The value of X remains 5.0. Statement 30 multi-
plies the current value of X, 5.0, by 3.0. The prod-
uct is then assigned to the variable X. The new value
of X'is 15.0.

The correct form of a replacement statement is
one in which the left side is the name of a single var-
iable. The equal sign means ‘‘is to be replaced by"
rather than ‘‘is equal to’’. This is an important dis-
tinction. For example, X=X+1 is not a legitimate
algebraic equation, but is a perfectly valid assignment
statement. It directs the computer to add 1 to the
current value of the variable X and to assign the value
of the sum to X.

Replacement statements frequently involve arith-
metic operations on the right side of the equal sign.
For this reason they are sometimes referred to as
arithmetic statements. The symbols for the arithmetic
operations are + for addition, — for subtraction,
* for multiplication, / for division, and ** or 1 for
exponentiation (raising a number to a power).

The computer can perform only one operation at a
time. Therefore, since most expressions involve more
than one arithmetic operation, some priority of com-
putation must be established. All arithmetic expres-
sions are scanned from left to right. If any exponen-
tiation is encountered, it is executed first. Again the
expression is scanned; multiplication and division are
executed from left to right. The expression is scanned
a third time, this time addition and subtraction being
computed from left to right.

Parentheses may be used to alter the usual priority
of computation. Any quantity within parentheses is
evaluated before the scan for arithmetic operators
begins. Evaluation of parentheses begins at the inner
set of parentheses and proceeds to the outer set.

Within a given set of parentheses, arithmetic opera-
tions are performed according to the usual hierarchy.

Note the distinctions among the following expres-
sions.

FORTRAN Algebra
A-B/Ct2 a- 2
C
(A-B)/Ct2 a-b
C

((A-B)/C)t2

Example

Let us now write a simple program using only
these two classes of statements:

Problem

Write a program to determine the monthly pay-
ment on a loan. The monthly payment, P, is given
by the formula

p= D-1(1+1)N
- N
(1+1)" -1

where D is the original debt,
| is the monthly interest rate,
N is the number of months to pay off the loan.

The program should request values for the original
debt, D, the annual interest rate, R, and the number
of years to pay off the loan, Y, as input.

Flowchart

Here is a flowchart of the problem.

START

INPUT D, R, Y

!

CALCULATE I, N
1=R/12
N=Yx*12

!

CALCULATE
P

1

DISPLAY P

Program Coding

Here is the coding of the program.

REAL |

ACCEPT D,RY

1=R/12

N=Y#*12
P=(D#1%(1+1)tN)/((1+1) #*N-1)
DISPLAY P

END

Note that 1 and ** are equivalent representations
of the exponential operator.

The last statement in every SUPER FORTRAN
program must be END.

CONTROL STATEMENTS

The third major class of SUPER FORTRAN state-
ments is the control statement. During the normal
running of a program, statements are executed se-
quentially. That is, after one statement has been exe-
cuted, the one immediately following it is executed.
Control statements allow us to alter this normal se-
quence of execution. When such alteration becomes
necessary, certain statements must be given labels by
which they may be referred to in a control statement.
A statement label (or statement number as it is some-
times called) can be any integer from one to five
digits long.

Two basic control statements are GO TO and IF.
When the GO TO statement is encountered, the pro-
gram immediately executes the statement referred to
in the GO TO command. For example, GO TO 100
directs the computer to execute next the statement
labelled 100. After statement 100 is executed, sequen-
tial execution continues, beginning with the next
statement after 100.

One form of the IF statement consists of a log-
ical expression and an executable statement; for
example,

IF (X.EQ.7) GO TO 200

This IF statement will transfer program execution to
the statement labelled 200 if and only if the value of
X is equal to 7. If X is not equal to 7, the statement
immediately following the |F statement is executed.

There are six relational operators which may be
used in a logical IF statement. They are: .EQ. (equal
to); .NE. (not equal to); .LT. (less than); .LE. (less
than or equal to); .GT. (greater than); .GE. (greater
than or equal to). Note that the periods are an essen-
tial part of these operators.

PROGRAM ANALYSIS

Let us now analyze the program listed below,
which contains examples of each of these statements.
Every statement in this program has a line number
(10, 20, 30, etc.). Each line number identifies a line,
and line numbers keep the program statements in
order. The statements are executed in the order in
which they are numbered unless a transfer occurs as
a result of a control statement. As we shall see later,
line numbers are used to refer to the program state-
ments when modifying and inserting statements. The
choice of the line numbers is arbitrary; they may
range from .001 to 999.999, assigned either explicitly
by the programmer or implicitly by the system.

Within the program, there are two statements with
statement labels in addition to line numbers. Lines 40
and 100 also have statement labels 1000 and 2000.
Statement labels are part of the language and are used
as reference points in the program. Statement labels
can be any integer number between 1 and 99999, and
need not be in numeric order.

This program is designed to compute monthly bal-
ances on a loan.

10 ACCEPT LOANNUMBER, 7,
PRINCIPAL, RATE, PAYMENT

20 DISPLAY “MONTH BALANCE”

30 MONTH=1

40 1000 XINTEREST=PRINCIPAL —
*RATE/12!

50 PRINCIPAL=PRINCIPAL
+XINTEREST-PAYMENT

60 IF (PRINCIPAL .LE. 0.
GO TO 2000

70 DISPLAY MONTH, PRINCIPAL

80 MONTH=MONTH+1

90 GO TO 1000

100 2000 STOP

110 END

Let us now analyze each statement.

10 ACCEPT LOANNUMBER, 7
PRINCIPAL, RATE, PAYMENT

Line 10 is an ACCEPT statement which makes it
possible to enter all the input data at one time. The
ACCEPT statement is unique to Tymshare SUPER
FORTRAN and allows data to be read in free form
from the terminal. By free form we mean that the
user simply types the data values separated by a
comma or a Carriage Return. The data is not entered
according to a specific format.

When the program is executed, the system will
ring a bell and wait for the user to type the data
values specified in the ACCEPT statement. In this
case, the first value typed will be assigned to the
variable LOANNUMBER, the second to the variable
PRINCIPAL, etc. When all the values requested by a
single ACCEPT statement have been typed, the user
may type a final comma or press the Carriage Return.

20 DISPLAY “MONTH BALANCE”

Line 20 allows us to put a heading over the col-
umns of output data. Any message text inside a pair
of double quote marks can be printed with a DIS-
PLAY statement. When such a DISPLAY statement
is encountered during program execution, the quote
marks are not printed.

30 MONTH=1

Line 30 is a replacement statement which initial-
izes the variable MONTH to the value 1.

40 1000 XINTEREST=PRINCIPAL*RATE/12

This statement is a replacement statement which
computes the monthly interest. RATE is assumed to
be the annual interest rate. Notice that this state-
ment has a statement label (1000) in addition to a
line number (40).

50 PRINCIPAL=PRINCIPAL
+XINTEREST-PAYMENT

Line 50 is also a replacement statement. This state-
ment is the heart of the program, for it is here that
the new principal is computed by adding the monthly
interest computed in line 40 to the current value of
PRINCIPAL and subtracting the value of the monthly
PAYMENT.

60 IF (PRINCIPAL .LE. 0.)1
GO TO 2000

The IF statement in line 60 tests the current value
of the variable PRINCIPAL. If PRINCIPAL is less
than or equal to zero, the loan has been repaid, and
the problem solution is completed. If ‘PRINCIPAL
.LE. 0." is true, program execution is transferred to
the statement labelled 2000 and the program termi-
nates. If ‘PRINCIPAL .LE. 0." is false, execution will
not transfer to statement 2000, but rather will con-
tinue in normal sequence. A transfer using a control
statement can be made only to a statement having a
statement label.

70 DISPLAY MONTH, PRINCIPAL

Line 70, a DISPLAY statement, is used to print
the answers. When this statement is encountered, the
values of the variables MONTH and PRINCIPAL are

1 - The variable name XINTEREST is chosen instead of INTEREST because decimal accuracy is
desired in calculations involving XINTEREST. For a complete discussion of this point, see

Variables, Page 20.

10

printed on the terminal. The DISPLAY statement is
used for free form output just as the ACCEPT state-
ment is used for free form input. This means that the
system supplies the format that is used for output.
Free form input and output statements simplify the
input and output procedures for the user.

Note carefully the difference between the DIS-
PLAY statements in line 20 and line 70. In line 20
the names MONTH and BALANCE are printed. In
line 70 the values of the variables MONTH and
PRINCIPAL are printed.

80 MONTH=MONTH+1

This statement is a replacement statement which
increments the value of the variable MONTH by 1.

920 GO TO 1000

Line 90 is another control statement. It is an un-
conditional GO TO statement which transfers pro-
gram execution to statement 1000. We put in this
transfer because, after displaying the current values
of MONTH and PRINCIPAL, we wish to compute the
balance after another interest charge and payment.

100 2000 STOP

The STOP statement stops execution of the pro-
gram. Notice that it also has a statement number.
Earlier in the program we asked for a transfer to this
statement if the principal was less than or equal to
zero.

110 END

The last statement is the END statement. Every
Tymshare SUPER FORTRAN program must end with
an END statement. The END statement may not be
given a number; that is, we cannot transfer to this
statement from any other part of the program.

To execute this program on the computer, log in
and call SFORTRAN. When SUPER FORTRAN is
ready to receive instructions, it prints the > symbol.
Then you may begin typing the statements of your
program with line numbers, ending each line with a
Carriage Return. If you type a statement with a syn-
tax error, the computer will print a message indicating
the nature of the error. Retype the statement cor-
rectly. When you have finished typing all the state-
ment, the computer will type a > and the program is
ready to be executed.

To execute the program just written, type RUN
or EXECUTE, followed by a Carriage Return.

Shown below is the sample program typed on line
and executed.

(Terminal identification character may be requested
here.)

PLEASE LOG IN:

ACCOUNT: A3,

PASSWORD:

USER NAME: MM

PROJ CODE: KL-3-456

TYMSHARE 10/14 11:49
—SFORTRAN 5,

>10 ACCEPT LOANNUMBER, -
PRINCIPAL RATE PAYMENT o

>20 DISPLAY “MONTH BALANCE" ,
>30 MONTH=1

>40 1000 XINTEREST=PRINCIPAL —
*RATE/12)

>50 PRINCIPAL=PRINCIPAL
+XINTEREST-PAYMENT

>60 IF (PRINCIPAL .LE. 0.)

GO TO 2000

>70 DISPLAY MONTH,PRINCIPAL o,
>80 MONTH=MONTH+1
>90 GO TO 1000 5
>100 2000 STOP
>110 END o
>RUN
1336,1500.00,0.08,125.00 ,
MONTH BALANCE

1 1385
1269.2333
1152.6949
1035.3795
917.28205
798.39727
678.71991
558.24471
436.96634
314.87945
191.97865
68.258508

© O NGO WN

- -
-0

-
N

(@100) >

When execution of the program is completed, the
computer prints

(@100)>

indicating that the STOP statement at line 100 was
the last statement executed.

To save a debugged program for future use, type
SAVE file name

The file name can be almost any name you want to
give your program.! After you have executed the
above program, you could do the following:

> SAVE LOANBALANCE
TEXT ONLY?YD
NEW FILE ,

Typing Y, in response to the question TEXT
ONLY? creates a symbolic file, containing only the
text of the program. Typing ND here creates a binary
file containing both the text and the compiled ver-
sion of the program. These options are treated in
detail in Section 10 of this manual.

The computer then tells you whether the file is a
NEW FILE or an OLD FILE. Saving the program on
an old file will erase the contents of that file and re-
place them with the current program.

Type a Carriage Return after NEW FILE or OLD
FILE if you want to save the program on that file.
If you do not want to save the program on that file,
press the ALT MODE/ESCAPE key and choose an-
other file name.

The entire program, including line numbers, is now
stored on the file named LOANBALANCE, and a> is
printed.

To use the program in the future, type
> LOAD LOANBALANCE)
The computer will reply OK. and begin loading.

When it has finished, it will type a >. Now the pro-
gram can be executed again.

1

Suppose you want a listing of the program. After
you have loaded the program, type LIST followed by
a Carriage Return. The program, including line num-
bers, is printed neatly on the terminal; the statement
labels are aligned and the statements indented.

Note the use of the LOAD and LIST commands
in the following example.

> LOAD LOANBALANCE P

OK.
>LIST 5
10 ACCEPT LOANNUMBER, -,
PRINCIPAL,RATE PAYMENT
20 DISPLAY “MONTH BALANCE”
30 MONTH=1
40 1000 XINTEREST=PRINCIPAL -
*RATE/12
50 PRINCIPAL=PRINCIPAL -,
+XINTEREST-PAYMENT
60 IF (PRINCIPAL .LE. 0.~
GO TO 2000
70 DISPLAY MONTH PRINCIPAL
80 MONTH=MONTH+1
90 GO TO 1000
100 2000 STOP
110 END
>

The commands RUN, EXECUTE, SAVE, LOAD,
and LIST are Tymshare CCS SUPER FORTRAN
commands. They are not part of the SUPER FOR-
TRAN language but are operating features of the
Tymshare Conversational Compiler System (CCS).
You will learn about the other CCS commands in
Section 10 of this manual.

MORE SUPER FORTRAN FEATURES

In this section, we shall introduce some additional
SUPER FORTRAN language elements.

VARIABLES

There are several different types or modes of var-
jables available in SUPER FORTRAN. The two most
often used variable types are Integer and Real. An
Integer variable represents an integer number without
a decimal point. A Real variable represents a real
number, including the decimal and any digits to the
right of the decimal. SUPER FORTRAN arithmetic

1 - See Rules For Naming Files, APPENDIX C, Page 160.

distinguishes between computations involving integers
and those with real numbers. For example, 3/2=1,
but 3./2.=1.5.

Unless explicitly specified otherwise, any variable
name beginning with one of the letters | through N
inclusive is treated as an integer variable. All other
variable names are treated as real variables.

A scalar variable represents a single quantity, and
may be of either Real or Integer type. All the varia-
bles under the heading “Introduction To SUPER
FORTRAN Language Elements” are scalar variables.

12

A group of variables may be closely related, and it
is frequently desirable to use subscript notation to
identify them. Such a group is called an array and
the variables belonging to the array are called array
elements. For example A(1), A(2), A(3), and A(4)
may refer to four observational values of a single
phenomenon. They are elements of the array A.

DECLARATION STATEMENTS

If we wish a variable to be of a type other than
that indicated by the spelling of its name, we must
declare this explicitly in the program. To do this,
we use a type declaration statement, REAL or IN-
TEGER. For example, if we want the variable K1LOS
to represent a real decimal number, we write:

REAL KILOS,NAME(27)

Similarly, to use the variables A and C as integers,
we write:

INTEGER A,C(5,70)

In order to use array variables, we must reserve
space in the computer for them. The DIMENSION
declaration does this. For example, if we wish to use
a 15-element array N and a 31-element array TEMP,
we write:

DIMENSION N(15), TEMP(31)

CONTROL STATEMENTS

One of the most valuable features of a computer is
its ability to perform a given procedure repeatedly,
making minor changes each time. The DO statement
provides this ability.

Consider the following sequence of statements.

DO 30 1=0,100, 2
J=l%22
DISPLAY 1,J

30 CONTINUE

DO 30 1=0,100, 2 controls the repetition of all
succeeding statements up to and including the state-
ment labelled 30. Repetition is controlled by varying
the index variable | from an initial value of 0 to a ter-
minal value of 100 in increments of 2. The statements
to be repeated comprise a DO loop. The DO loop
above creates a listing of the numbers and their
square for even integers from O to 100 inclusive.

The CONTINUE statement causes no action; it
merely serves as a dummy statement to refer to the
end of the loop.

LIBRARY FUNCTIONS

There are many built-in functions provided by the
SUPER FORTRAN library. These are functions which
are used frequently in computational work and in-
clude trigonometric functions, logarithmic functions,
the square root function, and the absolute value
function.

The library functions may be used simply by nam-
ing the function and placing the argument (or argu-
ments) in parentheses.

For example:

SIN(X)
SQRT(A+3)
LOG(C/(D-1.))

FORMATTED OUTPUT

It is frequently desirable to have the computed
results displayed on the terminal in a neater form
than that generated by the free format DISPLAY
statement. Therefore, a formatted output statement
can be used to print the answers in columns with
the decimal points aligned.

As an example, assume we wish to print computed
values of A and B to four decimal places of accuracy.
The values of A should be in one column and the
values of B in a second column, the two columns
separated by six spaces. The following statements ac-
complish this:

WRITE (1,100) A, B
100 FORMAT (F12.4,6X,F12.4)

The 1 in the WRITE statement signifies that the
values of the variables are to be written on the termi-
nal. 100 is an arbitrary number, identifying the state-
ment label of the FORMAT statement used. F12.4
specifies the format in which A is to be printed. The
F format prints a real number, including the decimal.
F12.4 causes a maximum of twelve characters (in-
cluding the decimal point) to be printed, with a max-
imum of four digits after the decimal. 6X specifies
six spaces between the two numbers.

Formatted input is also permitted. Formatted in-
put and output are discussed in detail in Section 6 of
this manual.

USING SUPER FORTRAN

We are going to take a sample problem and go
through the programming steps to arrive at a solu-
tion. We will then show how to enter, debug, and
execute the program on the terminal.

PROBLEM

Write a program to calculate the mean and stan-
dard deviation of sets of N numbers, where N is
greater than 1, and to print the normalized data.

Input

Required are:

N - the number of observations in the set being
considered. (If a number less than or equal
to 1 is entered for N, it should cause the pro-
gram to stop.)

A; - the values of the observations, where i=1,2,

N

Compute Mean And Standard Deviation

N
z A

Mean ==
N

Standard Deviation =

A;j-Mean
Normalized Data = i=1,2,....,N
Standard Deviation

Output

Original data, normalized data, mean, and standard
deviation.

FLOWCHART

Here is a flowchart of the problem:

(START)

INPUT N

YES

NO

INPUT A,
i=1 TON

I

CALCULATE
SUM OF N NUMBERS
SUM OF SQUARES
OF N NUMBERS

|

CALCULATE:
MEAN,
STANDARD DEVIATION

CALCULATE:
NORMALIZED DATA

|

OUTPUT:
ORIGINAL DATA
NORMALIZED DATA
MEAN
STANDARD DEVIATION

14

PROGRAM CODING

Here is the coding of the program:

10 DIMENSION A(15)

20 REAL N, MEAN, NA(15)

30 40 ACCEPT “NUMBER OF
OBSERVATIONS: "N

40 IF (N .LE. 1) GO TO 10

50 ACCEPT (A(l),1=1,N)

60 SUM=0.

70 SUMSQ=0.

80 DO 20 I=1,N

90 SUM=SUM+A(l)

100 SUMSQ=SUMSQ+A(l) %2

110 20 CONTINUE

120 MEAN=SUM/N

130 STD=SQRT({SUMSQ-SUM=SUM/N) 3
/(N-1))

140 DO 50 I=1,N

150 NA(1)=(A(1)-MEAN)/STD

160 50 CONTINUE

170 DISPLAY “INPUT DATA",(A(l),1=1,N)

180 DISPLAY “NORMALIZED DATA",—
(NA(I),1=1,N)

190 DISPLAY “MEAN=",MEAN, -,
"STAND.DEV.=",STD

200 GO TO 40

210 10 STOP

220 END

This program reads the N data values into the
array A. Thus, A(1) is the first data observation and
A(N) the last data observation.

Line 10 reserves fifteen storage locations for array
elements A(1) to A(15). If more than fifteen obser-
vations are anticipated in any set of data, the number
of storage locations reserved must be large enough to
accommodate them.

Line 20 is a type declaration statement. Without
this statement, the variables N and MEAN and the
array NA would be treated as integer variables. The
array NA is implicitly dimensioned within this type
declaration statement.

Line 30 is an ACCEPT statement with descriptive
text within quote marks. The text will be printed on
the terminal when the program is executed. The bell
on the terminal will ring to signal that a value for N
should be entered.

Line 50 reads the N values and stores them in array
A. This is accomplished by means of an implied DO
loop. This statement is equivalent to:

DO 100 1=1,N
ACCEPT A(l)
100 CONTINUE

Lines 60 to 110 correspond to box 4 of the flow-
chart. Lines 60 and 70 initialize the variables SUM
and SUMSQ to zero. Lines 80 to 110 create a DO
loop which sums the N numbers and the squares of
the N numbers, each time adding the present value
or square to the variables SUM and SUMSQ respec-
tively.

After calculating the sum and the sum of the
squares, we proceed to calculate the mean and stan-
dard deviation. Line 120 calculates the mean. In cal-
culating the standard deviation in line 130, we use
the library function SQRT to find the square root.
Note that the argument, or expression, used with a
library function is enclosed in parentheses.

Lines 140 through 160 correspond to box 6 in the
flowchart. Another DO loop is used to normalize each
of the N data values.

The next three lines are output statements. Text
within quote marks is displayed describing the output
in each case. Lines 170 and 180 contain implied DO
loops. When line 190 is executed, the text MEAN=
will appear on the terminal, followed by the value of
the variable MEAN; then the text STAND.DEV.=
and the value of the variable STD.

ENTERING THE PROGRAM

Tymshare SUPER FORTRAN provides commands
which make it easy to create programs on the termi-
nal. These commands include line prompting, debug-
ging, and editing features.

If you do not want to type the line numbers when
you are first entering a program, ask the computer to
prompt you with line numbers. To do this, type a
line number followed by an increment in parentheses.
The computer will prompt you with line numbers
starting with the number you specify and increasing
each time by the increment specified. A Carriage Re-
turn is required at the end of each statement. After
the last statement of the program has been entered,
type a Control D (DC€) to terminate the entering
phase.

NOTE: Throughout this manual, control charac-
ters are indicated by the superscript c,; for example,
DC denotes Control D.

15

Many editing features are available when entering a
statement. For example, Control A deletes the last
character typed. If you attempt to enter a statement
containing a syntax error, the computer prints a mes-

sage indicating the nature of the error. This statement
becomes the old line for editing purposes, and any of
the control characters described in this manual may
be used.

In creating the following program, some of these features will be demonstrated.

> 10(5) b

10 DIMENSION A(5)@

15 40 ACCEPT “NUMBER OFj
OBSERVATIONS: "N 5

20 IF (N .LE. 1) GO TO 10,

25 ACCEPT (A(1),I=1,N) by}

30 SUM=0. 5

35 SUMMAS-SQ=0. b

40 DO 20 1=1,N 5

45 SUM=SUM+A(l) 5

50 SUMSQ=SUMSQ+A(l)*%2)

55 20 CONTlNUED

60 MEAN=SUM/N b}

65 STD=SQRT({SUMSQ-SUM=*SUM/N) !
/(N-'I)D

MISSING OPERATOR

65 HCSTD=SQRT((SUMSQ-SUM*SUM/N) —,
/(N-1)) by

70 DO 50 I=1,N b

75 NA(I)=(A(l1)-MEAN)/STD p)

The command 10(5) causes the
computer to prompt with line num-
bers beginning with line 10 in incre-
ments of 5.

In line 35, the user typed a second
M instead of S. He typed a Control
A to delete the M. AC is acknowl-
edged with a <. The user then typed
the rest of the line.

Line 65 contains an error. When the
Carriage Return was typed to enter
this statement, the computer re-
sponded with an error message and
the old line number, 65. The text
of the line is now available for edit-
ing. The user typed Control H to

copy the line. The user then typed
the missing final parenthesis.

80 50 CONTINUE b

85 DISPLAY “INPUT DATA ",(A(I),I=1,N)3
90 DISPLAY “NORMALIZED DATA",j
(NAQ)I=TN) 5

95 DISPLAY “MEAN= " ,MEAN, -
“STAND.DEV.= ",STD by

100 GO TO 40 5

105 10 STOPQ

110 ENDD

115 D¢

> 12 REAL N,MEAN,NA(5))

When the computer prompted line
115, the user typed a Control D
(D€) to end the line prompt. The
user had forgotten to declare N and
MEAN as real variables, so he sim-
ply typed the statement as line 12,
This statement will be inserted be-
tween lines 10 and 15.

EXECUTING THE PROGRAM

To execute the program, type RUN or EXECUTE. When an error is detected during execution, an error
message is printed together with the statement which caused the error, and execution is terminated. At this point,
you may enter direct statements for immediate execution to find out what caused the error. A direct statement
may be any legal nondeclarative statement preceded by an @ sign.’ A direct statement, once executed, is discarded
and is not part of the program. Once the error is detected and corrected, the program may be executed again.

1 - See Declaration Statements, Page 79.

16

In the following examples, the program just entered is executed.

>RUN b The user tried to execute the pro-
NUMBER OF OBSERVATIONS: 102 gram.

1,2,3,4,5,

SUBSCRIPT OUT OF RANGE After five data values were entered,
25 ACCEPT (A(l),1=1,N) the computer typed an error mes-

25 >@DISPLAY 'D sage, the statement in error, and
6 25 >, The user typed an @ for im-

mediate execution of the statement
typed after it, DISPLAY |.

25 >DEFINITIONS A o He then typed the CCS command
10 DIMENSION A(5) DEFINITIONS A which listed the
75 NA(I)=(A(1)-MEAN)/STD statement in which A is dimen-

sioned. He found that he had not
reserved enough space for the array
A. The computer also printed state-
ment 75, which reminded him to
check the dimension of the array

NA.
25 > 10 DIMENSION A(15)) The computer prompted 25 >. The
> DEFINITIONS NA 5 user typed line 10 again to redi-
12 REAL N,MEAN,NA(5) mension A. The old line 10 is re-
75 NA(1)=(A(1)-MEAN)/STD placed by this line. He then typed

DEFINITIONS NA which listed the
statement in which NA is dimen-
sioned. He found that he had not
reserved enough space for NA. He

retyped line 12 to redimension NA.
> 12 REAL N,MEAN,NA(15))

> RUN P He ran the program again, this time
successfully.

NUMBER OF OBSERVATIONS: 10,

1,2,3,45,6,7,89,10 ps)

INPUT DATA 1 2 3 4 5 6 7 8 9 10
NORMALIZED DATA -1.4863011 -1.156012 -.82572282
-.49543369 -.16514456 .16514456 49543369

.82572282 1.156012 1.4863011

MEAN= 5.5 STAND.DEV .= 3.0276504

NUMBER OF OBSERVATIONS: 0

(@105)>

After obtaining the answers, the user decides to have the output in a neater form. He decides to use formatted
output. One format for writing the data and the normalized data is:
WRITE (1,200)(A(1),NA(1),1=1,N)
200 FORMAT (F10.3,5X,F10.3)

Each element of the arrays A and NA is to be printed as a rea! number with three places after the decimal point.
5X specifies five spaces between the two numbers.

17

A formatted output for mean and standard deviation may be:

WRITE (1,300) MEAN,STD
300 FORMAT (“MEAN=",F10.3,2X,”STAND.DEV.=",F6.3)

The program may be changed to use formatted output. The user types 85:95 which allows him to enter
statements in that line range. The computer prompts with an @ sign at the beginning of each line. The state-
ments entered will replace any old lines in the range and will be numbered beginning with 85 in increments of
the first of 1, .1, .01, and .001 that allows the lines typed to fit in the range 85:95.

>85:952

@DISPLAY " INPUT DATA NORMALIZED DATA”(—_)
@WRITE (1,200) (A(I),NA(I),|=1,N):_)

@200 FORMAT (F10.3,5X,F10.3)

@WRITE (1,300) MEAN,STD

@300 FORMAT (“MEAN=",F10.3,2X,”"STAND.DEV.=",F6.3) 5

@p°
>LIST 85:95 5
85 DISPLAY “ INPUT DATA NORMALIZED DATA"”
86 WRITE (1,200) (A(I),NA(1),I=1,N)
87 200 FORMAT (F10.3,5X,F10.3)
88 WRITE (1,300) MEAN,STD
89 300 FORMAT (“MEAN=",F10.3,2X,”"STAND.DEV.=",F6.3)
>

The user typed a Control D to indicate that he had finished entering statements. The computer prompted >.
The user typed
LIST 85:95)
and the computer then printed all the statements within this range. Notice that the statements just entered

were numbered from 85 to 89 inclusive, in increments of 1.

Now, when the program is run, the output is aligned.

> RUN 5
NUMBER OF OBSERVATIONS: 10 5
1,2,3,45,6,7,8,9,10 p)

INPUT DATA NORMALIZED DATA

1.000 -1.486
2.000 -1.156
3.000 -.826
4.000 -.495
5.000 -.165
6.000 .165
7.000 .495
8.000 .826
9.000 1.156
10.000 1.486

MEAN= 5.500 STAND.DEV.= 3.028
NUMBER OF OBSERVATIONS: 0,

(@105) >

18

Here is the listing of the entire program:

> LIST 5
10
12
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
86
87
88
89

100
105
110

40

20

50

200

300

10

DIMENSION A(15)

REAL N,MEAN,NA(15)

ACCEPT “NUMBER OF OBSERVATIONS: “,N
IF (N .LE. 1) GO TO 10

ACCEPT (A(1),1=1,N)

SUM=0.

SUMSQ=0.

DO 20 I=1,N

SUM=SUM+A(1)

SUMSQ=SUMSQ+A (1) **2

CONTINUE

MEAN=SUM/N
STD=SQRT((SUMSQ-SUM=*SUM/N)/(N-1))

DO 50 I1=1,N

NA(1)=(A(I)-MEAN)/STD

CONTINUE

DISPLAY ” INPUT DATA NORMALIZED DATA"
WRITE (1,200) (A(1),NA(1),1=1,N)

FORMAT (F10.3,5X,F10.3)

WRITE (1,300) MEAN,STD

FORMAT (“MEAN=",F10.3,2X,“STAND.DEV.=",F6.3)
GO TO 40

STOP

END

19

SECTION 3
SUPER FORTRAN STATEMENT ELEMENTS

SUPER FORTRAN statements may contain con-
stants, variables, and functions which may be com-
bined with arithmetic, logical, and relational operators

to form expressions in much the same way as in
ordinary mathematics. In this section we present the
rules for forming these basic statement elements.

CONSTANTS

A constant is a quantity in a statement which can-
not change during program execution. For example,
the number 11 is a constant. There are six different
types of constants in SUPER FORTRAN.

INTEGER CONSTANTS

An integer constant is a positive or negative whole
number, or zero, such as:

0
-1245

3859437 or +3859437

A number written without a sign is always considered
positive. No integer may have a value larger than
223 _1 or smaller than -223. NOTE: An integer con-
stant does not contain a decimal point.

REAL CONSTANTS

Real constants have two forms: decimal and expo-
nential. In both cases, the magnitude (absolute value)
of the constant can range from 10775 to 107°, or be
zero. The computed accuracy of a real constant is
eleven significant digits.

In decimal form, a real constant contains the sign
of the number (optional for positive numbers and
zero), one or more digits, and a decimal point. The
decimal point must be included; it may appear any-
where in the number.

Examples

0.
3.1415926536
-0.07
.0000567

In exponential form, a real constant contains one
or more digits with or without a decimal point, fol-
lowed by the letter E and the exponent. The part of
the number before the E is the mantissa; that part
after the E is the exponent. The exponent is an
integer and represents the power of ten by which
the mantissa is to be multiplied.

Examples
Exponential Form Value
5E-2 .05 (5 X10°2)
1E7 10’
-1.973E03 -1973.
.0271828E+2 2.71828
+25E3 25000

When a real constant is represented in exponential
form, the exponent can range from -75 to +75; the
mantissa may have up to 11 significant digits.

DOUBLE PRECISION CONSTANTS

A constant may have up to 17 significant digits if
it is expressed in D exponential form. This form is
just like the exponential form for real constants given
above, except that a D is used in placed of an E
between the mantissa and the exponent.

Examples

Double Precision Constant| Value

5D-2 .05
.12345678901234567D5 | 12345.678901234567
-1.973D+3 -1973.

3.14159265359D0 3.14159265359
COMPLEX CONSTANTS

A complex constant is expressed as two real con-
stants (each with eleven digits of accuracy) separated
by a comma and enclosed in parentheses. The first
number represents the real part of the complex
number; the second represents the imaginary part of
the complex number.

Examples
Complex Constant Value
(3.,5.2) 3+5.2i
(-1.8,.16E2) -1.8+16i
(2.4,0.) 2.4+0i
(0.,-6E-1) -.6i

20

LOGICAL CONSTANTS

There are two logical constants, .TRUE. and
.FALSE. .

STRING CONSTANTS

A string constant is a sequence of characters
enclosed in double or single quote marks.

Examples

IIXYZII
‘CODE 387’

“ISN'T THIS FUN?" This string must be enclosed
in double quotes since it con-
tains a single quote.

The value of a string constant is the string of char-
acters inside the delimiting quote marks; thus, the
value of “XYZ" is XYZ.

Unlike standard FORTRAN 1V, Tymshare SUPER
FORTRAN includes string variables and extensive fea-
tures for string processing, as well as string constants.
These features are discussed in Strings, Section 5.

VARIABLES

A variable is a quantity whose value can be changed
throughout the program. For example, variables may
be assigned new values in input statements and in
replacement statements.

VARIABLE NAMES

In a SUPER FORTRAN program, a variable can be
named with as many as 31 alphanumeric characters.
The first character of the name must be alphabetic (A
through Z). For example, the following are all valid
variable names:

N
INDEX
ALPHA
X12

but
4z1

is not, since it begins with a numeric character.

VARIABLE TYPES

There are six types of variables: integer, real,
double precision, complex, logical, and string. The
variable type corresponds to the type of data the
variable represents. Thus, an integer variable repre-
sents integer data, a real variable represents real data,
and so on.

Integer and real data types may be declared im-
plicitly. If the first letter of a variable name is |, J,
K, L, M, or N, the variable is integer. Any other
variable name not appearing in any type declaration
statement is real. However, explicit type declaration
in a type declaration statement overrides implicit
type declaration determined by spelling. Data types
other than integer and real must be declared explicitly
with a type declaration statement. (See Declaration
Statements, Page 79.)

Example
In the statements

REAL MEAN
MEAN=SUM/N

SUM is a real variable and N is an integer variable
(implicit type declaration) but MEAN is a real variable
even though its name begins with an M, since its
type is declared explicitly with the type declaration
statement

REAL MEAN

NOTE: Certain valid variable names are given spe-
cial meanings, for example, SIN is reserved for naming
the mathematical function sine (see Functions, Page
25). Such reserved words may not be used as variable
names unless they are declared explicitly in a type
declaration statement. Once a reserved word is so
declared, it may not be used in its usual sense. For
example, if SIN is declared to be a real variable with
the declaration statement REAL SIN, the statement
Y=SIN(X) could not be used to set Y equal to the
sine of X in the same program.

SCALAR VARIABLES

A scalar variable represents a single quantity, such
as MEAN, N, and SUM in the above example.

ARRAYS AND SUBSCRIPTED
VARIABLES

A group of variables which form or belong to a
single class or collection may be related to one an-
other by subscript notation. Such a collection is called
an array, and the variables belonging to the array are
called array elements.

A string of numbers in a single row or column is
thought of as a one-dimensional array. In the follow-
ing example, the entire array has the variable name A,

and each element of A is represented by a subscripted
variable consisting of the variable name A followed by
a subscript in parentheses:)

Usual Notation | SUPER FORTRAN Notation
a A(1)
dy A(2)
aj A(l)
an A(N)

If two subscripts are used to identify the elements
of an array, the array is a two-dimensional array. For
example, if there are three rows and four columns in
a table, A(2,3) could refer to the element in the
second row and third column.

In SUPER FORTRAN there is no limit to the
number of dimensions of an array. Whatever the
number of dimensions, the entire array is represented
by a single variable name, such as A above, and each
element of the array is represented by a subscripted
variable. A subscripted variable is denoted by the
array name followed by a list of subscripts (one for
each dimension) separated by commas and enclosed
in parentheses. Each subscript can be any arithmetic
expression (see Expressions, below).

Examples

A(3)
B(5,-5)
c(o)

21

Y(M,1,1,N+3)
VOLTAGE(2xN+1,L,L+1)

The array type may be integer, real, double preci-
sion, complex, logical, or string. As usual, the type
must be declared in a type declaration statement
unless it is integer or real; integer or real arrays may
be declared implicitly.

Since an array is an entire collection of variables,
the programmer must specify the maximum number
of elements in all the arrays in his program to reserve
storage for all the array elements. This can be done
either in a DIMENSION statement or a type decla-
ration statement (see Section 7, Declaration State-
ments).

VARIABLE INITIALIZATION

When a SUPER FORTRAN program is executed
using the CCS command RUN,! all variables in the
program are initialized to zero. Thus,

>1 ACCEPT A 5
>2 DISPLAY “A =",A,“BUT B ="B 5

>3 END 5

> RUN)

135)

A= 135 BUT B= 0
B has the value 0 since it
was not assigned a value
anywhere in the program.

(@3) >

Variables are also initialized to zero when a binary
program is executed with the CCS LINK command,?
but are not so initialized when a binary program is
executed with the SUPER FORTRAN statement
LINK,® since this statement preserves COMMON.

EXPRESSIONS

There are three kinds of expressions in SUPER
FORTRAN: arithmetic, logical, and string. Arithmetic
and logical expressions are discussed in this section;
the rules for forming string expressions are found in
Strings, Page 40.

An expression always has a value. The value of an
“arithmetic expression is always an integer, real, double
precision, or complex number; the value of a logical
expression is either .TRUE. or .FALSE. .

ARITHMETIC EXPRESSIONS

A simple arithmetic expression may consist of a
single basic element whose value is numeric; that is, a
numeric constant, variable, or function.*

1 - See Executing A Program, Page 113.
2 -See The LINK Command, Page 109.
3 - See Program Linking, Page 98.

4 - See Functions, Page 25.

Examples

3.14

X

A(5)
SQRT(ALPHA)

More complicated arithmetic expressions may be
formed from simple arithmetic expressions by using
arithmetic operators which determine the computa-
tions to be performed.

Examples
A+5
3x%(P1-2+B)
SQRT(X)-Y

22

Arithmetic Operators

The following binary operators (operators used
with two operands) are available:

*x or 1 Exponentiation
/ Division

* Multiplication
- Subtraction

+ Addition

Unary arithmetic operations; that is, operations
involving only one operand, also are available. There
are two unary operators, + and —. For example,

-B means negative of B

+A means A

Order Of Operation

1. Parentheses may be used to specify the order of
operation in an expression. When sets of parentheses
appear within other sets of parentheses, the expres-
sion in the innermost set is evaluated first, then the
expression in the next set, and so on.

2. Expressions not containing parentheses (in-
cluding expressions within parentheses) are evaluated
in the following order:

Exponentiation (** or 1)

Unary minus (-)

Multiplication and Division (* and /)
Addition and Subtraction (+ and -)

3. Arithmetic expressions containing operators of
equal priority (such as * and /) are evaluated from
left to right. Thus, when two operators of the same
precedence appear, the leftmost operation is per-
formed first.

Examples
A+B+C means A+(BxC)
A/B/C means BL
A.c
A/BxC/D means BT
A+B/Cx%2 means A+§—
C2
2
((A+B)/C)**2 means CAﬂ)
\cC
-C*%2 means -C?

NOTE: Square brackets may be used in place of
parentheses in arithmetic expressions. Complicated

expressions can be made more readable by using both
parentheses and brackets. Contrast

[(A-B)/(X+Y)] »[N14]
and the equivalent expression
((A-B)/(X+Y)) % (N*+4)

Modes Of Expressions: Mixed Expressions

The kind of arithmetic performed when an arith-
metic expression is evaluated depends on the type, or
mode, of the operands. For example, if both operands
are integers, integer arithmetic is performed. Thus,
3/4 causes an integer division and has the value zero.
But 3./4. gives a result of .75. Since both operands
are real, real division is performed.

Arithmetic expressions containing constants or
variables of more than one type are called mixed
expressions. In a mixed expression, as each operation
is performed, the types of the two operands are
compared; the lower type is converted to the higher
type and the result is of the higher type. The hier-
archy of types is as follows:

Type Of

Operand:

Complex Highest

Double Precision

Real

Integer Lowest

Examples’

A/l The integer | is converted to real and real
division is performed.

N/(1+2.) The expression (I+2.) is first considered.
Since 2. is real, the integer | is converted
to real and the result of the addition is
real. The integer N is then converted to
real since it is to be divided by a real
number. The result of the whole expres-
sion is real. If N=3 and |=4, the result is
0.5.

Ax(N/2) The result of the expression (N/2) is an
integer since both operands are integers.
(N/2) is then converted to a real number
since it is to be multiplied by A which is
real. If A=6. and N=3, the result is 6. .

A=(N/2.) N is first converted to real since it is to be

divided by a real number 2. . Real division
is performed. Two real numbers are then
multiplied together. If A=6. and N=3 the
result is 9. . Remember, 3./2.=1.6 but
3/2=1.

1 - In these examples, implicit type declaration is assumed unless otherwise specified.

B+l If B is a complex variable with a value
of (2.7,8.1) and I=1, | is converted to
the complex number (1.,0). The result is
(3.7,8.1).

D+B If D is a double precision variable and
B a complex variable, the value of D is
truncated to single precision, then treated
as a complex number with zero as the
imaginary part.

D*R If D is a double precision variable and
R is a real variable, the value of R is
converted to double precision and double
precision multiplication is performed.

LOGICAL EXPRESSIONS

A logical expression may consist of a single logical
constant or a logical variable. The value of a logical ex-
pression is always a truth value, . TRUE. or .FALSE. .

More complicated logical expressions may be
formed by using logical and relational operators.
These expressions may be one of the following:

1. Relational operators combined with arithmetic
expressions.

2. Logical operators combined with logical con-
stants or logical variables.

3. Logical operators combined with either or both
forms of the logical expressions described in 1
and 2 above.

Relational Operators

A relational operator makes a comparison between
arithmetic expressions. For example, the relational
operator .GT. (greater than) may be used to compare
the real variables X and Y in the logical expression

X.GT.Y

This expression has the value .TRUE. if X is greater
than Y, and the value .FALSE. if X is not greater
than Y (that is, if X is less than or equal to Y).

Comparisons may be made by means of any of the
following relational operators:

Mathematical
Symbol Notation Meaning
.EQ. = Equal to
.NE. * Not equal to
LT. < Less than
.LE. < Less than or equal to
.GT. > Greater than
.GE. = Greater than or equal to

23

Examples
A .EQ. B
X-5 .LT. Y+4
SQRT(BETA) .GE. ALPHA?T2

Unlike most FORTRAN 1V compilers, SUPER
FORTRAN can make comparisons between arithmetic
expressions of different types. For example,
A LE. J
is valid. J will be converted to a real number before
the comparison is made. The hierarchy of types is the
same as that used in mixed arithmetic expressions:
Type Of Expression
Being Compared:

Complex Highest
Double

Real

Integer Lowest

When two arithmetic expressions of different types
are being compared, the lower type is first converted
to the higher type and then the comparison is made.
For example, in the logical expression

D. EQ. R

if D is a double precision variable and R is a real
variable, the value of R is first converted to double
precision and then compared to the value of D. If
R=1E0 and D=1DO0 the value of this expression is
.TRUE. . If R=1E0 and D=1.0000000000034D0 the
value of this expression is .FALSE. .

When complex values are compared using .EQ.
and .NE., both the real and the imaginary parts are
compared.

EXAMPLES

(3..4.) .EQ. (3.4.) is .TRUE. since the real and
imaginary parts of both oper-
ands are equal.

is .FALSE. . Here, the integer
1 is first converted to the
complex number (1.,0.). Since
the imaginary part of this
number is not equal to 2.1
the expression is .FALSE.

(1.,2.1) .EQ. 1

However, when complex values are compared using
.LT., .GT., .LE., and .GE., only the real parts of the
numbers are compared. Thus,

(1.,9.) .LT. (2.,.8) is .TRUE. since the real part
of the first operand (1.) is
less than the real part of the

second (2.).

(2.,-3.) .GT. (3.,-3.1) is .FALSE. since 2. is not
greater than 3. .

24

Logical Operators

A logical operator operates on logical expressions.
The result of a logical operation is always either
.TRUE. or .FALSE. . For example, the logical oper-
ator .AND. may be used in the logical expression

X .AND. Y

where X and Y are logical variables. The value of this
expression is .TRUE. only if both X and Y are
.TRUE..

There are six logical operators: .AND., .OR.
(inclusive or), .EOR. (exclusive or), .NOT., .EQV.
(equivalence), and .IMP. (implication). The following
table shows the results of the logical operations on
the logical expressions X and Y:

.TRUE. | .TRUE. | .FALSE. | .FALSE.
OPERATOR | | ‘true. | [FALSE. | TRUE. | FALSE
AND X .AND. Y | .TRUE. | .FALSE. | .FALSE. | .FALSE.
Inclusive OR | X .OR. Y TRUE. | .TRUE. | .TRUE. | .FALSE.
Exclusive OR | X .EOR. Y | .FALSE.| .TRUE. | .TRUE. | .FALSE.
NOT NOT. X | .FALSE.| .FALSE. | .TRUE. | TRUE.
EQV X .EQV. Y | .TRUE. | .FALSE. | .FALSE. | TRUE.
IMP X .IMP. Y TRUE. | .FALSE. | .TRUE. | .TRUE.

Some examples of logical expressions containing
logical operators are:

X .EQ. 3 .OR. Y .LE. 4

.NOT. W .AND. .NOT. L

.NOT. (W .AND. .NOT. L)

(A .GT. 100 .EOR. B .GT. 200) .EQV. C
E+«5 .GT. A-B .IMP. E .LE. 100

Order Of Operation In
Logical Expressions

1. Just as in arithmetic expressions, parentheses
may be used to specify the order of operation in
logical expressions. When sets of parentheses appear
within other sets of parentheses, the expression in the
innermost set is evaluated first, then the expression
in the next set, and so on.

2. Expressions not containing parentheses (includ-
ing expressions within parentheses) are evaluated in
the following order:

Evaluation of functions (for example, SQRT)
Exponentiation (** or 1)

Unary minus (-)

Multiplication and Division (* and /)
Addition and Subtraction (+ and -)

The relational operators:
.EQ., .NE., .LT,, .LE. .GT., .GE.

.NOT.

.AND.

.EQV. or .IMP.
.OR.

.EOR.

3. Expressions containing operators of equal pri-
ority are evaluated from left to right.

The following logical expressions are evaluated in
the order indicated:

Example 1
.NOT. W .AND. .NOT. L
| I |

I
1 2
I |
T
3

1. Leftmost logical operator .NOT.
2. Next logical operator .NOT.
3. Logical operator .AND.

Example 2
.NOT. (W .AND. .NOT. L)

T
3

1. .NOT. in innermost parentheses
2. .AND. in innermost parentheses
3. Outermost .NOT.

25

Example 3

SORT(A) .GT. C#+3 .AND. .NOT. R .OR. S

L J | | |
T T T

1 2 4
L |

6

Functional evaluation

E xponentiation
Relational operator .GT.
Logical operator .NOT.
Logical operator .AND.
Logical operator .OR.

o0swN =

FUNCTIONS

In addition to constants and variables, there is
another basic element which may be used in forming
expressions, namely, the function reference. Func-
tions are used in expressions in the form

function name (a,,a,, - a,)

where a; through a, are the function arguments.
These arguments can be constants, variables, or more
complicated expressions. The number of arguments
depends on the particular function. The arguments
may be enclosed in square brackets as well as paren-
theses. For example,

SQRT(3.14)

may be used in an expression to return a value equal
to the square root of 3.14. It may also be written as
SQRT [3.14].

SUPER FORTRAN contains an extensive library
of functions, such as the SQRT function above. In
addition, the programmer may define his own func-
tions; see Subprograms: Programmer Defined Func-
tions And Subroutines, Page 89.

MATHEMATICAL FUNCTIONS

The SUPER FORTRAN function library contains
a variety of functions, including mathematical func-

tions, functions for converting variable types, string
functions, and utility functions. The mathematical,
conversion, and utility functions are discussed here;
string functions are presented in Section 5 of this
manual. A complete list of all the library functions
may be found in the SUPER FORTRAN Language
Summary, Page 161.

The mathematical functions described below all
return a value of the same type as the argument
used. For example, if R is a real variable and C is a
complex variable,

SQRT(R)
SQRT(C)

This improvement over other versions of FOR-
TRAN 1V makes it unnecessary for the programmer
to remember long lists of similar function names.
For compatibility, the usual alternate names (such
as DSQRT and CSQRT) are recognized by SUPER
FORTRAN, but no distinction is made between them.
Thus, if D is a double precision variable, SQRT(D),
CSQRT(D), and DSQRT(D) all return the same dou-
ble precision value. Unless otherwise specified in the
following table, any type of argument may be used
with any of the standard mathematical functions
(integer arguments are converted to real).

returns a real value, but

returns a complex value.

26

STANDARD MATHEMATICAL FUNCTIONS

-1ifa<0

Mathematical Alternate
Function Form Equivalent Remarks Names
Exponential EXP(a) e? DEXP, CEXP
| Natural LOG(a) In(a) ALOG, DLOG,
Logarithm CLOG
Common LOG10(a) logio (a) ALOG10,
Logarithm DLOG10, CLOG10
Sine SIN(a) sin(a) ain radians DSIN, CSIN
Cosine COS(a) cos(a) a in radians DCOS, CCOS
Tangent TAN(a) tan(a) ain radians DTAN, CTAN
Arcsine ASIN(a) arcsin(a) or All inverse trig- ARSIN,
sin'! (a) onometric func- DARSIN
Arccosine ACOS(a) arccos(a) or tions (ASIN, ARCOS,
cos™ (a) ACOS, ATAN, DARCOS
ATANZ2) return
Arctangent ATAN(a) arctan_(la) angle in radians DATAN,
or tan " (a) CATAN
1)
ATAN2(a,,a,) arctan(%) Comp.|ex argu DATAN2
a ments illegal
Hyperbolic SINH(a) sinh(a) Double precision CSINH
Sine argument illegal
Hyperbolic COSH(a) cosh(a) Double precision CCOSH
Cosine argument illegal
Hyperbolic TANH(a) tanh(a) Real argument
Tangent only
Square Root SORT(a) Va Argument may CSQRT, DSQRT
not be negative
unless it is also
complex
Remaindering MOD(a; ,a;) a; (mod a,) Example: AMOD, DMOD
{(Modular MOD(9,2)=1
Arithmetic)
Absolute ABS(a) lal Example: IABS, DABS,
Value if a=b+ci, ABS(2) =2 CABS
ABS(-7.1)=7.1
= 2 102
lal=vb*+c* | M Bs((3.4.)-5
Maximum MAX(a, ,a;...) max(a; ,a;...) May have two or AMAXO0, AMAX1,
Value more arguments MAXO0, MAX1,
DMAX1
Minimum MIN(a, ,a,...) min(a; ,a;...) May have two or AMINO, AMIN1,
Value more arguments MINO, MIN1,
DMIN1
Sign SIGNUM(a) sign of a Value is:
Function 1ifa>0
0if a=0

STANDARD MATHEMATICAL FUNCTIONS (Continued)

Mathematical Alternate
Function Form Equivalent Remarks Names
Transfer SIGN(a; ,a,) sign of a, Examples: ISIGN, DSIGN
of Sign x |ag | SIGN(3,2)=3
SIGN(-3,-2)=-3
SIGN(3,-2)=-3
SIGN(6.1,0)=0
Greatest ENTIER(a) [a] Example:
Integer Not (=greatest ENTIER(1.3)=1.
Exceeding integer < a) ENTIER(-1.8)=-2.
Value
Truncation TRUNC(a) a truncated Examples: AINT
TRUNC(1.3)=1.
TRUNC(-1.8)=-1.
Rounding ROUND(a) a rounded to Examples:
nearest ROUND(3.56)=4.
integer ROUND(-2.8)=-3.
Fractional FRACT(a) fractional Examples:
Part part of a FRACT(1.63)=.63
(=a-ENTIER | ppACT(-1.8)=2
(a))
Positive DIM(a, ,a,) a;-min(a; ,a,) | Examples: IDIM
Difference DIM(4,3)=1
DIM(3,4)=0

The following mathematical functions are used in complex arithmetic. These functions
expect arguments of a particular type and return results of a particular type (not neces-

sarily the same as that of the arguments).

COMPLEX FUNCTIONS
Allowable Acceptable

General Form Argument Result Alternate
Of Function Meaning Types Type Names
CMPLX(a;,a;) | Creates acomplex | Real Complex

number equal to

a,ta, i
CONJG(a) If a=b+ci then Complex Complex

CONJG(a)=b-ci
POLAR(a;,a;) | Creates acomplex | Real Complex

number with mag-

nitude a; and

phase angle a,.

(If Pl=m, then

POLAR (1,P1/2),

is (0,1) ori).
IMAG(a) Imaginary part of [Complex Real AIMAG

a (=c if a=b+ci)

27

28

NOTE: The conversion function REAL discussed below may be used to obtain the real part of a complex number.

CONVERSION FUNCTIONS

The following functions are used for converting variable values from one type to ancther:

CONVERSION FUNCTIONS
Allowable Acceptable
General Form Argument Result Alternate
Of Function Meaning Types Type Names
REAL(a) Conversion of ar- | Any arith- | Real FLOAT
gument to real | metic type SINGL
INT(a) Conversion of ar- | Any arith- | Integer IFIX
gument to integer | metic type FIX
(truncates) IDINT
DBLE(a) Conversion of ar- | Any arith- | Double DFLOAT
gument to double | metic type | Precision
precision
NOTE: The DBLE function should not be used to TO=TIME(X)
create double precision constants, since it is not as
accurate as using D notation. Thus, body of program
D=DBLE(1.63) .
T1=TIME(X)

produces a double precision quantity with eleven
accurate digits, whereas

D=1.63D0

is accurate to 17 digits.

UTILITY FUNCTIONS:
DATE AND TIME

Two utility functions, DATE and TIME, are avail-
able in the SUPER FORTRAN function library. These
functions both require a dummy argument, which
may be of any type and which has no relation to the
value returned.

The function
DATE(a)
where a is an argument of any type, returns a string

value 12 characters long giving the date and time of
day, such as

11/16 20:31
The function
TIME(a)

where a is an argument of any type, returns an integer
value equal to the computer clock time in 60ths of a
second. It can be used to determine the time required
for a program to run, as in the following:

DISPLAY “TIME USED:”,(T1-T0)/60, 'SECONDS”

THE RANDOM
NUMBER GENERATOR

SUPER FORTRAN contains a pseudo-random
number generator which involves the use of both a
function, RAND, and a statement, SETRAND.

The function
RAND(a)

where a is a dummy argument of any type, returns
a real random number between 0 and 1, exclusive.
If used alone, it will generate the same sequence of
random numbers each time the program is run, no
matter what argument is used. However, the statement

SETRAND (arithmetic expression)

may be used to control sequences of random numbers
generated with RAND. The SETRAND statement
initializes the random number generator according to
the following rules:

1. If the arithmetic expression is zero, the same
sequence of random numbers is initialized each time
the program is run. However, SETRAND(0Q) used
twice in a program initializes two different sequences
of random numbers.

2. If the arithmetic expression is positive, the same
sequence of random numbers is also initialized each
time the program is run. If the same positive number
is used twice in a program, the same sequence is
initialized twice. However, different positive numbers
yield different sequences. Thus,

SETRAND (16)
(DISPLAY RAND(X)), 1=1,10
SETRAND (16)
(DISPLAY RAND(X)), 1=1,10

print two identical sequences of random numbers, but

SETRAND (16)
(DISPLAY RAND(X)), 1=1,10

29

SETRAND (103)
(DISPLAY RAND(X)), 1=1,10

print two different sequences of random numbers.

3. If the arithmetic expression is negative, a se-
quence of random numbers subsequently generated
with RAND will begin with a number set by reading
the internal clock of the computer in milliseconds.
The value of the negative argument has no relationship
to the random numbers generated. For example,
SETRAND(-1) used twice in a program initializes
two different random number sequences. | f a program
using SETRAND with a negative expression is run
twice, different sequences will be generated.

30

SECTION 4
REPLACEMENT AND CONTROL STATEMENTS

ARITHMETIC AND LOGICAL REPLACEMENT STATEMENTS

A replacement statement uses the replacement op-
erator = to assign a value to a variable. All replacement
statements have the form

variable=expression

indicating that the current value of the variable is to
be replaced by the current value of the expression.
The = means “‘is replaced by'’ rather than “is equiv-
alent to”.

There are three kinds of replacement statements
in SUPER FORTRAN: arithmetic, logical, and string.
Arithmetic and logical replacement statements are
discussed here; string replacement is discussed in
Strings, Page 40.

ARITHMETIC
REPLACEMENT STATEMENTS

The general form of an arithmetic replacement
statement is

variable=expression

where the variable is a scalar or subscripted variable
and the expression is arithmetic. Execution of the
statement causes the value of the variable to be re-
placed by the value of the expression. If the mode of
the expression differs from the mode of the variable,
the mode of the expression is converted to the mode
of the variable before replacement occurs.

Examples

In the following, VAR, A, and B are real variables;
I and J are integer variables; C is a complex variable;
and D is a double precision variable.

VAR=Ax*B/5 The current value of VAR is re-
placed by the value of A*B/5.
If Ais 10. and B is 2., the value
of VAR after execution of this

statement is 4. .

1=5.66 The real constant 5.66 is con-
verted to integer and then re-
places the current value of I.

Thus, | is set to 5.

A=I| The value of | is converted to a
real value and then replaces the
current value of A.

I=1+1 The value of | is replaced by the
value of 1+1.
A= The real part of the complex var-

iable C replaces the value of A.

C= The value of A replaces the value
of the real part of the complex
variable C; the imaginary part of
C is set to zero.

C=l=*%J | is raised to the power J and the
result is converted to a real value
which replaces the real part of
the complex variable C. The im-

aginary part of C is set to zero.

D=J The value of J is converted to
double precision and stored in D.

D=3.65D-4 The double precision constant

3.65D-4 replaces the value of D.

C=(3.4,2.0) The value of C is replaced by the
complex constant (3.4,2.0). Note
that C=(A,B) where A and B are
real variables is not allowed.
However, the same results may
be achieved by using the CMPLX

function, as in the next example.

C=CMPLX(A,B) The value of the function
CMPLX(A,B) is computed; this
value (A+Bi) then replaces the

value of C.

LOGICAL
REPLACEMENT STATEMENTS

The general form of a logical replacement state-
ment is

variable=expression

where the variable is a logical variable (scalar or sub-
scripted) and the expression is a logical expression.
Execution of the statement causes the variable to be
replaced by a value of .TRUE. or .FALSE. depending
on whether the expression is true or false.

Examples

In the following, H, K, and M are logical variables
and | is an integer variable.

H=.TRUE. The value of H is replaced by the

logical value .TRUE. .

If M is .TRUE., the value of K is re-
placed by the logical value .FALSE. .
If M is .FALSE., the value of K
is replaced by the logical value
.TRUE. .

The value of | is converted to a
real value. If the real constant 3. is
equal to this result, the logical value

K=.NOT. M

H=3. .EQ. |

31

.TRUE. replaces the value of H. If
3. is not equal to this result, the
logical value .FALSE. replaces the
value of H.

NOTE: Replacement statements of the form

arithmetic variable=logical expression

. are allowed. Such expressions cause the value of the

variable to be replaced by 1 if the value of the logical
expression s .TRUE., and by O if the value of the
logical expression is .FALSE. .

Examples

I=H If H is a logical variable whose value
is .TRUE., the value of the integer
variable | is replaced by 1.

R=A .OR. B If A .OR. B is .TRUE. and R is

a real variable, the value of R is
replaced by 1.

CONTROL STATEMENTS

SUPER FORTRAN statements are executed se-
quentially; that is, according to the order of their
CCS line numbers.! Control statements allow the
programmer to alter and control this sequence of
execution.

STATEMENT LABELS

When control statements are used, certain state-
ments may be labelled so that they may be referred
to by the control statements. A statement label is
always an integer; it may be from one to five digits
long. Any executable statement can be labelled. The
only nonexecutable statement that can be labelled is
the FORMAT statement; however, control statements
may not refer to this label.

Do not confuse SUPER FORTRAN statement
labels with CCS line numbers.! Control statements
can never refer to line numbers.

GO TO STATEMENTS

GO TO statements permit the user to alter the se-
guence in which statements are executed. A GO TO
statement transfers execution to the statement whose

1 - See Section 10, Lines And Line Numbers, Page 101.

2 - See Logical IF Statements, Page 33.

label is specified in the GO TO statement. There are
three types of GO TO statements:

1. Unconditional GO TO statements.
2. Computed GO TO statements.
3. Assigned GO TO statements.

Unconditional GO TO Statements

The unconditional GO TO statement causes an
unconditional transfer. The form of the statement is

GO TO statement label

Example

GO TO 20

transfers to the statement labelled 20.

The GO TO statement transfers control uncon-
ditionally. However, a GO TO statement may be
executed conditionally by using it in a logical |F
statement.? For example, the statement
IF (X .EQ. Y) GO TO 30

causes transfer of control to the statement labelled 30
if the values of X and Y are equal. If X is not equal

32

to Y, the GO TO statement is not executed; instead,
execution continues with the next statement in the
program.

The following statements illustrate using GO TO
statements unconditionally and conditionally. These
statements assume a one-dimensional integer array K
containing at least N elements. The statements count
the number of positive and negative elements among
K(1), K(2), ..., K(N).

1=1
NPOS=0
NNEG=0
10 IF (I .GT. N) GO TO 40
IF (K(I) .GE. 0) GO TO 20
NNEG=NNEG+1
GO TO 30
20 NPOS=NPOS+1
30 I=1+1
GO TO 10
40 DISPLAY “NO. OF POS. INTEGERS:”, NPOS
DISPLAY ‘““NO. OF NEG. INTEGERS:”, NNEG

Computed GO TO Statements

The computed GO TO allows transfer to one of
several places in the program, depending on an in-
teger value. The form of the statement is

GO T0O (/71,/72,/73, ...),V

where v is an integer expression and n,,n,, ... are
statement labels. This statement transfers to the state-
ment labelled n, if the value of v is 1; to n, if the
value of v is 2, etc. For example,

GO TO (60,70,85),K

transfers to the statement labelled 60 if the value of K
is 1, to the statement labelled 70 if the value of K is
2, and to the statement labelled 85 if the value of K
is 3.

If the value of v is zero, negative, or greater than
the number of statement labels in the computed GO
TO, an error will be indicated.

ASSIGN And Assigned GO TO Statements

The ASSIGN statement allows the user to assign
a statement label to a variable to be referred to in an
assigned GO TO statement. It has the general form

ASSIGN n TO v

where n is the statement label of an executable state-
ment and v is an integer variable name.

The assigned GO TO statement has the following
form:

GO TO v, (nl,ng,...,/'Ik)

where v is an integer variable which has had a state-
ment label assigned to it by an ASSIGN statement,
and the integers n,, n,, ..., Nk are a list of all possible
statement labels which may be assigned to v.

Example
Consider the following partial program:

INTEGER R
ASSIGN 10 TO R

IF (A .LT. 100) ASSIGN 20 TO R

GO TO R, (10,20)

10 X=A/2
GO TO 50

20 X=Ax*2+A/2
GO TO 50

50

In this example, statement label 10 is assigned initially
to R. Later, statement label 20 will be assigned to R
if the value of A is less than 100. Thus, when the
statement GO TO R is executed, control will be trans-
ferred to either the statement labelled 10 or the state-
ment labelled 20, depending on the value of R.

IF STATEMENTS

Two kinds of IF statements are provided to make
decisions, the arithmetic IF and the logical IF. With
an arithmetic IF, decisions are based on an arithmetic
quantity being less than zero, zero, or greater than

zero. With a logical IF, decisions are based on a logi-
cal quantity being true or false. In SUPER FORTRAN
an .ELSE. clause may be appended to a logical IF
statement so that the program will make one decision
if a logical quantity is true and another if it is false.

Arithmetic IF Statements
The arithmetic IF statement has the general form

IF (expression) n,,n,,n;

where the expression is any arithmetic expression and
ny, n,,and n3 are statement labels. This statement
causes control to be transferred to the statement la-
belled n, if the value of the expression is negative,
to n, if it is zero, and to nj if it is positive.
Examples
IF (K-N) 10, 10, 20
If the expression K-N has a value which
is less than or equal to zero, the next
statement executed is the statement la-

belled 10; if K is greater than N, the next
executed is the statement labelled 20.

IF (Y-A(l)) 10, 15, 15
If the value of Y-A(l) is less than zero,
the statement executed next is the state-
ment labelled 10. If the value of Y-A(l)
is zero or positive, the statement executed
next is the statement labelled 15.

IF (X(1,J)**N) 12, 5, 30

If the value of the expression X(I,J)**N
/s negative, the statement labelled 12 is
executed next. If the value of the ex-
pression is zero, the statement labelled 5
is executed next. If the value of the ex-
pression is positive, the statement labelled
30 is executed next.

Logical IF Statements

In SUPER FORTRAN, the logical IF statement
may be used either with or without an .ELSE. clause.

Without an .ELSE. clause, the logical |F statement
has the general form

IF (expression) statement

where the expression is any logical expression and the
statement is any executable statement except a DO
statement. When a logical IF statement is executed,
FORTRAN first evaluates the logical expression. If
the expression is true, the statement specified is exe-
cuted; execution then continues with the next state-

33

ment in the program (unless the statement in the IF
caused a transfer of control). If the expression is false,
the statement specified in the IF is not executed;
execution continues with the next statement in the
program.

Example
Execution of the statements

IF (X .GT. Y) A=B
C=Axb

causes the value of A to be replaced by B if X is
greater than Y. If X is not greater than Y, the value
of A will not be replaced by the value of B. In either
case, C will be set to A*5. If the values of A, B, X,
and Y before execution of these statements are

A=1.

B=2.

X=36.8

Y=1.

C will be set to 10. But if X were 0. instead of 36.8,
C would be set to 5 since the value of A would not
be changed by the |IF statement.

The .ELSE. Clause

The logical |IF statement may have an .ELSE.
clause appended to it, taking the form

IF (expression) statement .ELSE. statement

This form causes the first statement to be executed if
the logical expression is true; otherwise, the statement
following the .ELSE. is executed. Unless control is
transferred by one of these statements, execution
continues with the next statement in the program.
Like the statement preceding the .ELSE., the state-
ment following the .ELSE. can be any executable
statement except DO.

Examples

IF (X .EQ. 5) GO TO 10 .ELSE. GO TO 20
If X is equal to 5, control is transferred
to statement label 10, otherwise, it is
transferred to statement label 20.

IF (A .AND. B) X=Y .ELSE. X=SIN(Y)

If the logical expression A .AND. B is
.TRUE., Xissetequal to Y;ifA.AND. B
is .FALSE., X is set equal to SIN(Y).

DO STATEMENTS

The DO statement allows a sequence of statements
to be executed repeatedly. For example, the statement

DO 30 J=1,5,1

34

causes all subsequent statements through the state-
ment labelled 30 to be executed exactly five times.
Repetition of these statements is controlled by vary-
ing the index variable J from an initial value of 1 to
a final value of 5 in increments of 1, as follows:
When the DO statement is executed, J is first set
equal to 1. The statements following the DO through
the statement labelled 30 are then executed. The value
of J is then incremented by 1 and the statements are
executed again. This process continues until incre-
menting J by 1 causes its value to be greater than 5;
at this point, execution transfers to the statement
following the statement labelled 30; the statements
being repeated are not executed for J>5. Thus,

>1 DO 30 J=15,1
>2 30 DISPLAY J5
>3 END,
>RUN 5

1

2

3

4

5
(@3)>

The general form of a DO statement is

DO n v=my,m;,m3

where

n is the statement label of the last step in the repe-
tition.

v is the index variable whose value changes dur-
ing the repetition. The variable must be nonsub-
scripted.

my is the initial value for the index variable.

m-, is the final value for the index variable; the index
variable must exceed this value to terminate the
repetition.

myj is the increment to the index variable for succes-
sive repetitions (m3; may be omitted, in which
case the increment is assumed to be 1).

Each of the indexing parameters m,, m,, and m;
may be any arithmetic expression. Notice that the
increment m3 can be negative, as in Example 1 below.
In such cases, the repetition terminates whenthe value
of the index variable is less than m, .

The group of statements from the DO statement
through the statement labelled n is called a DO loop.

In SUPER FORTRAN, the index variable v can be
of any arithmetic type (integer, real, double precision,
or complex). Integer DO loops are the most efficient,
however. In the case of a complex DO loop, the var-
iable is incremented using complex mode arithmetic,
but termination of the loop is determined by examin-
ing only the real parts of the indexing variable and
final value.

Some examples of DO loops follow.

Example 1

In this example, the increment is negative. The
value of | is printed beginning with 3, in steps of -1.
The loop terminates when the value of | is less than 0.

>10 DO 30 1=3,0,-1 0
> 20 30 DISPLAY 1|5
>30 END 5

>RUN 5
3

2

1

0
(@30)>

Example 2

In this example, a real index variable X is used.
The value of X is printed beginning with 1 in steps
of .2. The loop terminates when the value of X ex-
ceeds 1.5.
>10 DO 100 X=1,1.5,.22
>20 100 DISPLAY X 5
>30 END b
>RUN 5

1.
1.2
14
(@30) >

Throughout a DO loop, the index variable may be
used both as a subscript and as an ordinary integer
variable. For example, the statements

DO 100 1=3,20
100 A(1)=l

set A(3) to 3, A(4) to 4, and so on up to A(20)=20.

When a DO statement is executed, the values of
m;, m,, and m3 are permanently established as the
initial value, final value, and increment for the loop.
If the values of these parameters are changed inside
the DO loop, the original values will be maintained.
For example, the statements

M=8

DO 10 1=1,M

M=3

DISPLAY 1|
10 CONTINUE

will cause the numbers 1 through 8 to be printed on
separate lines, rather than only the numbers 1, 2, and
3. Notice that the value of the variable M is actually
changed by the statement M=3 even though the final
value of the loop is not changed. Thus, adding the
statement DISPLAY M to the above statements
would cause a 3 to be printed after execution of the
loop.

If the value of the index variable of a DO statement
is changed inside the DO loop, the change will affect
the number of times the loop is executed. For exam-
ple, the loop

DO 20 J=3,9

J=J-1

DISPLAY J
20 CONTINUE

will continue executing indefinitely since the value of
J alternates between 3 and 2.

The CONTINUE statement used in the two preced-
ing examples is a dummy statement used to mark the
end of the loop. See The CONTINUE Statement,
Page 36.

A DO loop must not end with a GO TO, PAUSE,
STOP, RETURN, arithmetic IF, or another DO state-
ment. The CONTINUE statement is a convenient way
to terminate any DO loop.

Nested DO Loops

A DO loop may include other DO loops provided
that the range of each inner loop is contained com-
pletely within the range of each outer loop. Such
loops are called nested DO loops; the following skele-
ton examples illustrate their use:

Allowed Not Allowed
— DO 10 I=1,N DO 10 I=1,N

DO 20 J=1,M DO 20 J=1,M

10 CONTINUE
20 CONTINUE

20 CONTINUE
10 CONTINUE

35

Allowed

DO 15 K=1,N

DO 5 A=1,75,5

——5 X=7+Y

DO 7 BAJ=23
DO 100 B=A«+C,2

100 CONTINUE

—7 X=22

15 CONTINUE

Nested DO loops may end with the same terminat-
ing statement. The following statements, which sum
an array of two rows and three columns, illustrate
this.

TOTAL=0

DO 15 I=1,2

DO 15 J=1,3

TOTAL=TOTAL+A(l,J)
15 CONTINUE

The elements of A are added row by row, thus:
A(1,1)+A(1,2)+A(1,3)+A(2,1)+A(2,2)+A(2,3).

Reversing the two DO statements above would cause
the elements to be added column by column.

Transfer To And From A DO Loop

While transfer of control out of a DO loop is per-
mitted, transfer of control into a loop is not. The
following examples illustrate this:

36

Allowed Not Allowed
DO 200 K=5,M,2 DO 10 I=1,N
C=K«P-Q

IF(C .GT. 1) GO TO 50 5 -
200 CONTINUE 10 CONTINUE
GO TO 5

50

There is one exception to this rule: Transfer of con-
trol into a DO loop from an extended range of the
DO loop is permitted. An extended range of a DO
loop is a range of statements outside the DO loop to
which a statement within the DO loop transfers.
These statements could be included in the DO loop
but are written outside, perhaps because they are to
be executed again in the program. For example, con-
sider the following statements:

DO 100 K=1,10 |
X=Ax*K
Y=BxK12
GO TO 50
60 C=X-Y
100 CONTINUE

— A DO loop

50 X=SQRT(2+X)
Y=SQRT(3#Y)
GO TO 60

| An extended range of
the above loop.

Since the DO loop in the above example transfers to
the statement labelled 50, we have an extended range
of the DO loop. Thus, GO TO 60 is permitted since
it returns control to the DO loop from an extended
range. NOTE: An extended range may include an-
other DO loop.

THE CONTINUE STATEMENT
The statement
CONTINUE

is used as a dummy statement which may be placed
anywhere in the program. The statement causes no
action. It is used primarily as a reference point for
control statements, especially as the last statement of
a DO loop.

A CONTINUE statement may be used to avoid
ending a DO loop with a GO TO, PAUSE, STOP, RE-
TURN, arithmetic IF, or another DO statement.

Example 1
The DO loop
DO 25 I=1,N

25 SUM=SUM+X(I)
may also be written as
DO 25 I=1,N
SUM=SUM+X(I)

25 CONTINUE

Example 2

In the following statements, which count the num-
ber-of non-zero elements of the array A, the CON-
TINUE statement is used to skip the count if an ele-
ment is zero.

NCOUNT=0

DO 15 I=1,N

IF (A(1))10,15,10
10 NCOUNT=NCOUNT+1
15 CONTINUE

Example 3

In this example, the CONTINUE statement is used
as the last statement of the DO loop to avoid ending
the loop with the statement GO TO 8.

DO 40 1=1,20

8 IF (X(1) .GE. Y(1)) GO TO 40
X(N=X(1)+1
Y()=Y(1)-2

GO TO 8
40 CONTINUE

IMPLIED DO LOOPS

SUPER FORTRAN allows two kinds of implied
DO loops, the statement implied DO and the input/
output list implied DO.

Statement Implied DO

A statement implied DO is a single statement of
the form

(statement), v=m;,m,,m3

It causes the repeated execution of the statement in
parentheses, which must be an executable statement.

The parameters v, m,, m,, and mj are the index var-

iable and its initial value, final value, and increment.
These quantities follow the same rules as the analo-
gous quantities in an explicit DO loop. In fact, the
above form is equivalent to

DO n v=m;,m,;,m;
n statement
where n is any statement label. Implied DO loops

often enable the user to eliminate bothersome state-
ment labels.

Example 1

(DISPLAY X), X=3.5,1,-.5

This implied DO loop is equivalent to
DO 35 X=3.5,1,-5

35 DISPLAY X

It causes the statement DISPLAY X to be executed
repeatedly from the initial value of X to the final
value, in increments of -.5.

Example 2
(SUM=SUM+X(J)), J=K=L, N
This statement sums the elements of the array X from
X(K*L) to X(N), in increments of 1.

Implied DO loops may be nested. For example,
((TOTAL=TOTAL+A(1,J)),J=14),1=1,3
is equivalent to

DO 100 1=1,3
DO 100 J=14

100 TOTAL=TOTAL+A(l,J)
Notice that this example takes the usual form
(statement), 1=1,3
where the statement is itself an implied DO.

The position of parentheses in a statement implied
DO is important. For example,
(IF(A(1) .EQ. 0) A(1)=B(1)), I=1,3
causes the entire statement
IF(A(l) .EQ. 0) A(1)=BI(l)
to be executed three times, varying the value of | from
1 to 3. But
IF(A(l) .EQ. 0) (A(1)=B(1)), 1=1,3
first tests to see if A(l) is equal to zero, for some pre-
defined value of | and then, if it is, executes the state-
ment A(l)=B(l) three times, varying the value of |
from 1 to 3. This statement is an |IF statement con-
taining a statement implied DO; the preceding state-

ment is a statement implied DO containing an IF
statement.

37

Input/Output List Implied Do

An implied DO may be included in the input/
output list of the statements ACCEPT, DISPLAY,
READ, WRITE, and DATA,! to assign values to all
or part of an array.

Examples
ACCEPT A,B,(C(1),1=2,6,2)

This statement contains the implied DO (C(1),1=2,6,2).
The statement accepts values for A, B, C(2), C(4),
and C(6) from the terminal.

The statements

ACCEPT (A(l), 1=1,10)
READ (0,200) (A(1), 1=1,10)

read data values for A(1) through A(10).
The statements

DISPLAY (B(J), J=1,10,2)

WRITE (1,200) (B(J), J=1,10,2)

print the values of B(1), B(3), B(5), B(7), and B(9).
The statement

DATA (A(D),1=1,3)/4,5,6/

initializes A(1) to 4, A(2) to 5, and A(3) to 6.

MULTIPLE FORTRAN STATEMENTS

Tymshare’s multiple FORTRAN statements greatly
expand the power and brevity of the FORTRAN lan-
guage by allowing the use of several statements any-
where a single statement is permitted.

Any number of executable statements may be
joined to form a multiple statement by separating the
statements with semicolons.

Example
A=B;C=D
Only the first statement in a multiple statement can

be labelled. The partial statements in a multiple state-
ment are executed from left to right.

A multiple statement may be given a CCS line num-
ber just like a simple statement, as in the following
program:

LIST 5

1 ACCEPT X,Y

2 Z=X#x2+Y**2;W=SQRT(Z)
3 DISPLAY Z,W

4 END

Multiple statements may be used in any statement
where a single statement may be used, provided they
are enclosed in parentheses.

1 - See /nput/Output Statements, Page 45, and DATA Statements, Page 79, for complete descriptions

of these statements.

38

Examples
IF (X .LE.6) (ACCEPT Y; X=X+Y; DISPLAY X,Y)

If X is less than or equal to 6, the statements
ACCEPT Y, X=X+Y, and DISPLAY X.,Y are
executed.
IF (X .LT.O0) (DISPLAY ‘SINGULARITY"; G0—¢
TO 20) .ELSE. (Y=SQRT(X); DISPLAY—¢
‘ANSWER =Y
If X is less than zero, the statements DIS-
PLAY ‘SINGULARITY’ and GO TO 20 will
be executed. Otherwise, Y=SQRT(X) and
DISPLAY ‘ANSWER =',Y will be executed.

((Z(N=X(1)+Y(1);ZSQ(1)=Z(1) *%2)) ,1=1,N

This statement implied DO executes the mul-
tiple statement in parentheses for =1 to N.

USER CONTROLLED INTERRUPTS

SUPER FORTRAN provides two statements for
controlling program execution when an ALT MODE/
ESCAPE is typed: the ON INTERRUPT and OFF
INTERRUPT statement.

The ON INTERRUPT statement has the general
form

ON INTERRUPT GO TO statement label

It causes the next ALT MODE/ESCAPE typed to
abort whatever statement is being executed and trans-
fer execution to the statement specified. For example,

ON INTERRUPT GO TO 100

causes a transfer to the statement labelled 100 when
the next ALT MODE/ESCAPE is typed.

Only the first ALT MODE typed after execution
of the ON INTERRUPT statement will cause a trans-
fer. Any additional ALT MODE will simply interrupt
the program in the usual manner, unless another ON
INTERRUPT statement is executed.

The effect of the ON INTERRUPT statement may,
be nullified with the statement

OFF INTERRUPT

Example
> LIST 2
1 ON INTERRUPT GO TO 5
2 DISPLAY “HIT ALT MODE
TO TERMINATE PRINTOUT"”
3 DO 4 X=1,1000
5 4 DISPLAY X#x#2

7 5 OFF INTERRUPT
8 DISPLAY ““LOOP
TERMINATED”
9 END
> RUN b)
HIT ALT MODE TO TERMINATE PRINTOUT
1
4
9
16 © The user types an ALT MODE.

LOOP TERMINATED Control is transferred to

the statement labelled 5.
(@9)>

THE PAUSE STATEMENT

This statement may take any of the following
forms:

PAUSE

PAUSE “‘text”
PAUSE ‘text’
PAUSE number

A PAUSE statement may be placed anywhere in a
program. When this statement is executed, program
execution is interrupted. The specified text or num-
ber, if any, is printed, and the user is returned to the
CCS command mode. Direct statements and CCS
commands may then be executed; program execution
may be resumed at the point of interruption by
typing the CCS command CONTINUE.!

Example

> FAST 5

1 DISPLAY “BEGIN EXECUTION”
2 PAUSE “NOW, CONTINUE”

3 DISPLAY “EXECUTION CONTINUES”
4 END

>RUN

BEGIN EXECUTION

NOW, CONTINUE

2 >CONTINUE

EXECUTION CONTINUES

(@4)>

NOTE: If a command file has been opened when a
PAUSE is executed, the PAUSE causes commands to
be taken from that file. See Command Files, Page 99,
for details.

1 - Do not confuse the SUPER FORTRAN CONTINUE statement with the CCS CONTINUE command. See Continuing Program
Execution: CONTINUE, Page 118, for a description of CCS CONTINUE.

THE STOP STATEMENT

This statement may take any of the following
forms:

STOP

STOP ““text”
STOP ‘text’
STOP number

When a STOP statement is encountered, program exe-
cution is terminated. The specified text or number, if
any, is printed, and the user is returned to the CCS
command mode. The user may then enter direct
statements, but execution may not be resumed with
the CCS CONTINUE command.

Example
Execution of the line
10 STOP “END OF JOB”
causes the following to be printed at the terminal:

END OF JOB
(@10)>

THE QUIT STATEMENT

A QUIT statement may beincluded in a program to
return to the EXECUTIVE directly from a program,
without first returning to the CCS command mode.
This statement has the forms

QuIT

QUIT “text”
QUIT ‘“text’
QUIT number

Execution of the statement causes the specified text
or number, if any, to be printed at the terminal.
Immediately after this, the user is returned to the
EXECUTIVE.

39

Example
Consider the following partial program:

X=-3.5
20 Y=Y-X#%2/2,

X=X+1

IF(X.GT.0) QUIT “DONE"”

GO TO 20

END
Execution of these statements would yield the
following:

>RUN2

DONE

When X is greater than zero, DONE is printed and the
user is returned to the EXECUTIVE.

The QUIT statement can be especially useful when
executing command files that run programs in several
Tymshare languages.

THE END STATEMENT
The statement
END

is required at the end of every SUPER FORTRAN
program and subprogram. This statement is nonexe-
cutable; it may never be given a statement label. Thus,
a labelled STOP or CONTINUE statement should be
used when transfer of control to the end of a program
is desired as in the following:

IF (EPS .LE. 1E-7) GO TO 40

40 STOP “ITERATION COMPLETE”
END

40

SECTION 5
STRINGS

SUPER FORTRAN includes extensive string pro-
cessing capabilities, including string constants, varia-
bles, and functions. String constants, such as ‘P4-A95’,
were discussed in Constants, Page 19. In this section
we discuss string variables and string manipulation in
general.

STRING VARIABLES: THE STRING
DECLARATION STATEMENT

Instead of assigning a numeric or logical value to a
variable, the user may set a variable equal to a string
of characters. String values may be assigned to varia-
bles in replacement statements, DATA statements, or
input statements.!

Any valid variable name may be used as a string
variable name. Both scalar string variables and string
arrays are allowed.

String variables must be declared explicitly using
the STRING declaration statement. This statement
must specify not only the names of the string varia-
bles being declared, but also the maximum allowable
number of characters in the string. It takes the form

STRING variable name(number of characters)

The variable name is followed by the maximum num-
ber of characters in parentheses. For example,

STRING S(72)

creates a simple string variable S which may contain
up to 72 characters. Twenty-four words of storage will
be permanently allocated to S with this declaration.

String arrays must be dimensioned in STRING dec-
laration statements, and may not be dimensioned in
DIMENSION or COMMON statements.” The form of
the STRING array declaration is:

STRING array name (dimension; ,dimension,,...)
(number of characters)

For example, the statement
STRING AB(20,10)(50)

declares AB to be a 200 element (20 by 10) string
array, each element of which can accommodate 50
characters.

The STRING declaration statement may have a

list of variables and arrays to be declared, separated
by commas. For example,

STRING WORD(3),A1(30)(17),DIM(10,10)(8)

creates a simple string variable, WORD; a 30 element
array, A1; and a 100 element array, DIM.

The STRING declaration statement, like all type
declaration statements, is nonexecutable.’

STRING REPLACEMENT STATEMENTS

String variables and constants may be used in re-
placement statements in the usual way. For example,

STRING S(10)
S=""CORNCOB"

sets the value of the string variable S to CORNCOB.

STRING COMPARISON

String values may be compared using any of the
relational operators .EQ., .NE., .LT., .LE., .GT., and
.GE. . Logical expressions formed using string values
may be used in control statements in the usual man-
ner. For example, the statements

STRING DECIDE(3)

IF (DECIDE .EQ. ‘YES’) GO TO 100

cause control to be transferred to the statement la-
belled 100 only if DECIDE has the string value YES.

Strings are compared internally using the ASCII
character codes.® For example, the expression

“JUNE” .GT. “JULY"”

is true. The first two characters of the strings match,
but since N has a greater internal code than L, JUNE
is greater than JULY.

If two strings being compared are of different
lengths, the shorter string and the same number of
characters from the longer string will be compared.
If they match, the shorter string is taken to be the
lesser of the two. Thus,

“SUN” .LT. “SUNDAY"

is true.
STRING CONCATENATION

The binary string operator + is used for string con-
catenation (joining strings together).
Example

The statements
STRING S1(3),52(6)
S1="SUN’
S2=S1+'DAY’

set S2 equal to SUNDAY (S1+'DAY’='SUN'+'DAY’).

1 -See DATA Statements, Page 79, and /nput/Output Of Strings, Page 42.

2 - String variables may be placed in COMMON, however. See Page 84.

3 - Declaration statements are discussed in general in Declaration Statements, Page 79.
4 - See Appendix B, Internal Representation of ASCII Codes, Page 159.

STRING FUNCTIONS

The SUPER FORTRAN function library contains Sand T are string arguments

many functions for string manipulation. These are I and N are integer arguments
given in the table below. In the table, X is an argument of any numeric type
SUMMARY OF STRING FUNCTIONS
Examples
Function Value Returned Call Value
Call (With Type)

LENGTH(S) Number of char- LENGTH(CAT") 3
acters in S.

(integer)

LEFT(S,N) First N characters LEFT('ABCD’,2) AB
of S. (string)

RIGHT(S,N) Last N characters RIGHT('ABCD’,3) BCD
of S. (string)

SUBSTR(S,I) All of S from Ith SUBSTR(’ABCD’,2) BCD
character on.

(string)

SUBSTR3(S,I,N) N characters of S SUBSTR3(’'ABCD’,2,2) BC
starting from the
Ith character.

(string)

INDEX(S,T) Character position INDEX(‘ABCD’,'BC’) 2
of first occurrence INDEX('ABAC’,’A") 1
of T withinS, if T INDEX(’ABCD’,’F’) 0
is a substring of S;
otherwise, 0.

(integer)

INDEX3(S,T.,I) Character position INDEX3('ABAC','A’,1) 1
of first occurrence INDEX3('ABAC’,'A",2) 3
of T within S be- INDEX3(’ABAC’,'A",3) 3
yond or including INDEX3(‘ABAC',’A’,4) 0
the Ith character;
returns value of O
if T does not oc-
cur in S between
the Ith character
and end of S.

(integer)

STR(X) Arithmetic value STR(123.1) 123.1
of X is converted (123.1
to a string value preceded
under free form by a
output conven- space; a
tions. (string) 6 charac-

ter string)

42

SUMMARY OF STRING FUNCTIONS (continued)

three charactersin
S. If S has fewer
than 3 characters,
the internal repre-
sentation is right
justified. Thus,
when S consists
of a single charac-
ter, ASC returns
the internal code
of that character.
(integer)

Examples
Function Value Returned
Call (With Type) Call Value

VALI(S) The string S (con- VAL(133.1") 133.1
sisting of numeric VAL("133") 133
characters) is con- VAL("1E4") 10000.
verted to a num-
ber. (numeric; de-
pends on S)

CHAR(N) N must be an in- CHAR(5) %
teger between 0 CHAR(33) A
and 255 inclusive. CHAR(35) C
CHAR returns
a one-character
string whose inter-
nal code in dec-
imal is N. (string)

ASC(S) Returns the inte- ASC("“C") 35
ger value of the ASC(""CA") 8993
internal represen- ASC("“CAT") 2302260
tation of the first ASC("'CATSUP") 2302260

Note also that the mathematical functions MIN and
MAX may be used with string arguments as well as
with numeric arguments. For example,

MAX (llAl',llBl',llc12ll)
returns the value C12, and
MIN (‘CAT’,'CATSUP’)

returns the value CAT.

INPUT/OUTPUT OF STRINGS

String input and output can be either formatted or
unformatted. In fact, all the 1/O statements discussed
in Input/Output Statements, Page 45, may be used
for string 1/0. Refer to this section for detailed in-
formation on these statements. Here, we discuss some
special features of string input and output.

The usual forms of ACCEPT and DISPLAY may
be used for free form terminal input/output of strings.

When typing strings in response to ACCEPT, the
strings need not be surrounded with quotes unless

they contain commas, Carriage Returns, control
characters, or leading blanks.

Example

> LIST b)
1 STRING $(5),T(5),U(5)
2 ACCEPT S,T,U
3 DISPLAY S
4 DISPLAY T,U
5 END

> RUN D

ABCDE,” ABC",’AB,CD’ b

ABCDE
ABC AB,CD

(@5)>

43

The value for T must be enclosed in quotes since it
contains two leading blanks; the value for U, since it
contains a comma.

If a string typed in response to ACCEPT contains
more characters than the declared length of the string,
the right-hand characters are lost.

In addition, the free format READ and WRITE
statements may be used for string 1/0. These state-
ments, discussed in Free Format READ And WRITE,
Page 68, may be used for free format input from or
output to a file. However, caution is advised when
using unformatted output of strings to files. If the
files are to be read later using unformatted input, the
strings are most safely surrounded by quotes and/or
separated by commas.

A special format specification, S, is available for
string 1/0. In addition, the A and G format specifi-
cations allow reading and writing of strings. All these
features are discussed in Formatted Input and Out-
put, Page 47.

45

SECTION 6

INPUT AND OUTPUT STATEMENTS

NOTE: To clarify the format of input and output values in this section, all tables demon-
strating sample values are aligned so that the value f(including blanks) begins at the
appropriate border of the table and all significant blanks are indicated by the symbol ® ,

Input and output statements are, as their name
implies, the statements used to transfer data to and
from the computer. Input statements are used to
supply a program with the data needed to perform
its computations, and output statements are used to
return the results of these computations to the user.

Input to a program can be either from the termi-
nal or from a disk file; output can be either printed
on the terminal or stored on a disk file.

Terminal input and output is always symbolic; that
is, the data is read or written in its usual character
representation. Data may be read or written at the
terminal in either a formatted or unformatted form.

Data stored on a disk file may be either symbolic
or binary. (Binary form is the form in which infor-
mation is stored internally, as opposed to the usual

character representation on a symbolic file or the
terminal.) Symbolic file input and output may be
either formatted or unformatted. However, binary
files must always be read or written in unformatted
form.

Both random and sequential files are available.
Either may be of symbolic or binary type.

In addition, special input statements are avail-
able which allow programmable error and end-of-file
conditions.

In this section we first discuss unformatted ter-
minal input and output. Formatted input and output
is then discussed, followed by the rules for symbolic
and binary disk file /O with sequential and random
files. Last, we discuss programmable error and end-of-
file conditions.

FREE FORMAT TERMINAL INPUT AND OUTPUT

The simplest way to enter and print data on the
terminal is to use the free format input/output state-
ments ACCEPT and DISPLAY which are unique to
the Tymshare system. These statements may be used
for input and output of any type of data values,
whether numeric, logical, or string.

THE ACCEPT STATEMENT

This statement is used for free format terminal
input. It takes the general form

ACCEPT input list
Example
ACCEPT A,B,(C(]),1=1,9)

This statement causes values for the variables A, B,
and C(1) through C(9) to be requested from the
terminal. Notice that all entries in the input list must
be separated by commas.

Input List

The input list in the ACCEPT statement may
include any legal variable or array name. It may also
include an implied DO loop, used to enter all or part
of an array. In the above example, the implied DO
loop (C(1),1=1,9) will cause values for C(1) through
C(9) to be requested.

An entire array may be requested by its name
alone in the input list. In this case, the exact number
of elements specified when the array was dimen-
sioned! will be requested. For example, if the array B
has been dimensioned with ’

DIMENSION B(15)
then the statement
ACCEPT B

will request values for 15 elements of B, B(1) through
B(15).

Literal text may be included in the input list; see
Literal Text In The 1/0 List, Page 47.

1 - See The Dimension Declaration, Page 82, for details on array dimensioning.

46

Input In Response To ACCEPT

When the ACCEPT statement is executed, the
system rings a bell and waits for the user to type
values for the variables and/or arrays specified. The
user must then type one value for each variable and/or
array element specified in the input list. A Carriage
Return, a comma, a Control D, or a space must
terminate each value typed. The value supplied will
assume the type of the variable or array in which
it is stored. A bell will ring at the beginning of each
line of values typed in response to a single ACCEPT
statement.

Example

>1 DIMENSION A(5) 5
>2 ACCEPT Al 5

>3 END 5

>RUN

12.5,13.4,16.35 5
19.21,11.1116,3 5

(@3)>

In this example, the user types RUN followed by a
Carriage Return and waits for the bell to ring. Then
he types his data values. Since the array A was dimen-
sioned as A(5), exactly 5 values must be entered for
A. The user types these values, terminating the first
two values typed with a comma, the value for A(3)
with a Carriage Return, and the values for A(4) and
A(5) with a comma. He then must enter the value for
I, which he follows with a Carriage Return. Notice
that any of the valid terminators (Carriage Return,
space, comma, DC¢) could be used after any of the
values typed.

The ACCEPT statement ignores leading blanks,
commas, Carriage Returns, and control characters
(except for VC).! In the example above the user
could have entered the value for | by typing

am3 b

instead of

30

since leading blanks are ignored. NOTE: During free
form input of strings, terminating characters and lead-
ing characters normally ignored will be accepted as
part of the string value if the string is delimited by
single or double quotes. This was discussed in Input/
Output Of Strings, Page 42.

When logical values are entered in response to
ACCEPT, any string of characters may be entered.
The characters entered are scanned from left to right.

If a T is found, the value assigned is true; if an F is
found or if neither a T nor an F is found, the value
assigned is false. See the example under The DISPLAY
Statement, on the next page.

THE DISPLAY STATEMENT

The DISPLAY statement is used to print data at
the terminal. It has the general form

DISPLAY output list

Example

DISPLAY A,B,(C(l),1=1,9),56%6+5,SQRT(Y)+Z

This statement causes the values of the variables A,
B, and C(1) through C(9), and the values of the

expressions 5+6+5 and SQRT(Y)+Z to be printed on
the terminal.

Output List

All entries in the output list must be separated by
commas. Constants, variables, arrays, expressions, and
implied DO loops may be included. Execution of the
DISPLAY statement causes the values stored in the
variables and/or arrays specified to be printed on the
terminal. Any expressions included in the list will be
evaluated and their values returned. Real numbers are
rounded to 10 significant digits; double precision
numbers to 16 significant digits. An array can be
referred to by only its name if the entire array is
being written. For example, if the array ALPHA has
been dimensioned using

DIMENSION ALPHA(10)
the statement
DISPLAY ALPHA

will cause the values of ALPHA(1) through ALPHA
(10) to be printed on the terminal.

Values printed by separate DISPLAY statements
are printed on separate lines. Thus,
>1 X=3 p)
>2 Y=4 b
>3 DISPLAY X,Y 5
>4 DISPLAY SQRT(X#%2+Yx*%2) b
>5 END B>
>RUN 5
n3nunnng
u5

(@5) >

1 - See Editing Control Characters, Page 126, for an explanation of Control V.

When more than one value is specified in a single DIS-
PLAY statement (as in line 3 in the above example),
the values are printed separated by spaces according
to the following rule:

The printing area is divided into zones of three
spaces each. After printing a value, SUPER FOR-
TRAN skips two spaces and then, if not positioned at
the beginning of a zone, moves to the beginning of
the next zone. A leading space is always printed
before a positive number.

Logical values are printed by DISPLAY as either T
or F.

Example

> FAST 5

1 LOGICAL A(5)

2 ACCEPT A

3 DISPLAY A

4 END

>RUN 5
TURNIP,OFF,123,FAST, TURF
T F F F T

(@4)>

47

LITERAL TEXT IN THE 1/O LIST

The ACCEPT and DISPLAY statements may con-
tain literal text in the input/output list, either alone
or in conjunction with other values. The desired text
must be enclosed in either single or double quotes.
When an ACCEPT or DISPLAY statement containing
literal text is executed, the text is printed on the
terminal.

Examples

DISPLAY ‘THIS PROGRAM COMPUTES
INTEREST ON A LOAN’
Prints on the terminal the text enclosed in
quotes.

ACCEPT “THE ORIGINAL VALUE IS”, C
Prints THE ORIGINAL VALUE IS and
then waits for the user to enter the value
of C.

DISPLAY ‘MAXIMUM CAPACITY =',T, “TONS"”
If T is 5026.3, this statement prints

MAXIMUM CAPACITY = 5026.3 TONS

FORMATTED INPUT AND OUTPUT

Data also may be read and printed in formatted
form using the ASA Standard FORTRAN 1V state-
ments READ, WRITE, and FORMAT. The READ
and WRITE statements are executable input/output
statements. The FORMAT statement is a nonexe-
cutable reference statement which supplies certain
information about the size and mode of the data
values being read or written. The READ, WRITE, and
FORMAT statements are used both for terminal input
and output and for symbolic disk file input and
output, both sequential and random. The formatting
rules presented here apply equally well to terminal
input/output and symbolic disk file input/output,
except for fixed record length random files. In this
case, the same field specifications are used, but certain
special formatting rules must be followed.! Aside
from these exceptions, the only difference between
formatted terminal input/output and formatted sym-
bolic disk file input/output is that symbolic disk files
must be opened before use with an OPEN statement
and closed after use with a CLOSE statement.?

1 - See Special Rules For Fixed Record Length File 1/0, Page 72.

2 - See Disk File Input And Output, Page 68.
3 - See Dynamic Formats, Page 67.

In addition to the ASA standard FORMAT state-
ment, dynamic formatting is allowed.® Both real
arrays and string variables may be used to store
formats to be used in reading or writing data.

THE FORMATTED READ AND
WRITE STATEMENTS

The following forms of the READ and WRITE
statements are used for formatted input and output:

READ (file number, format number) input list
WRITE (file number, format number) output list

The file number indicates the file from which the
data is to be read or on which it is to be written. If
a disk file is being used, the file number specified is
the one used in the OPEN statement. The file number
in this case may be any integer greater than 1. If the
terminal is being used, the file number will be O if
input is being performed and 1 if output is being
performed.

The format number is the statement label of the
FORMAT statement used to read or write the values
of the variables and/or arrays in the list.

The input list may contain variable and array
names and implied DO loops. In addition to these,
the output list may contain expressions, which will be
evaluated and their results printed upon execution of
the WRITE. In either list, an array can be referred to
by its name alone if the entire array is being read or
written.

Examples

READ (0,7)A,1,(c(1),1=1,10)
Reads values for A, |, and C(1) through
C(10) from the terminal according to the
format specified in the FORMAT state-
ment labelled 7.

WRITE (1,90)A,(B(J),4=200,300,5),"5TG",
SQRT(79)
Prints on the terminal the values of A,
B(200), B(205), ..., B(300), the string
constant “5TG”, and the square root of
79. These values are printed in the format
specified in FORMAT statement 90.

READ and WRITE may be used for input and
output of any type variable (numeric, logical, or
string). Information about the type of the data being
read is contained in the FORMAT statement, where
different specifications indicate different data types.

THE FORMAT STATEMENT

The FORMAT statement is a nonexecutable state-
ment which supplies certain information about the
size and type of the data values to be read or written
and the form in which they are to be read or written.
It takes the form

statement FORMAT field field
label spec.;, spec.;, ...
Example

100 FORMAT (15,2X,F7.2,3(14,2F9.3),A3)

The field specifications supply the information
about how data values are to be read or written. As
an example, consider the specification

15

which specifies that an integer value 5 characters long,
such as 12345, be read or written.

The information supplied by a field specification
is used somewhat differently during input than during
output.

During input, the size specified is crucial since it
indicates the exact number of characters read. For
example, the statements

READ (0,100) INT
100 FORMAT (I5)

read exactly 5 characters from the terminal. If the
user enters

12345

the value assigned to the variable INT is 12345. But if
he enters

+12345 by}

the value assigned to INT is 1234 since the + is
counted as one of the characters read.

If the variable type specified in a field specification
is different from the type of the variable into which
the value is being read, the type of the variable over-
rides the type specified in the format. For example, if
the statements

READ (5,200) X
200 FORMAT (15)
are used to read the 5 digits
16934

from a file, the value assigned to X is the real value
16934.0, and not the value 16934, an integer.

During output, the type of the field specified
always determines the type of the value printed. For
example, the field specification I5 prints

11213.4 as 11213

The size specified indicates the number of character
positions used to print the value. For example, the
field 15 prints 111 as

111 preceded by two spaces,
since five character positions are specified.

More detailed information on the differences
between input and output is given in the descriptions
of each field specification in the rest of this section.

SUPER FORTRAN includes numeric, nonnumeric,
and utility field specifications. Numeric field specifica-
tions are used for reading and writing numeric values.
Nonnumeric specifications are used for reading and
writing alphanumeric, string, and logical values. The
utility specifications are used for certain special pur-
poses such as printing blanks and Carriage Returns,
including literal text in a format, and scaling numeric
1/0. All these field specifications are summarized
below. Following the summary, detailed descriptions
of each field specification are given.

FIELD SPECIFICATION SUMMARY

the following symbols are used:

w

d

The tables below summarize all the Tymshare i
SUPER FORTRAN field specifications. In the tables,

field width (the total number of characters read n

or written)

number of decimal digits

The following specifications are used to read and

number of integer digits

a string of characters

a signed integer indicating a power of 10

a positive integer

write numeric values only.

NUMERIC SPECIFICATIONS
Type Of Examples (Output)
General Value Read
Specification Form Or Written Field |Prints As
| Iw Integer 14 123 =123
14 -123 -123
F Fw.d Real (Decimal F5.1 123.4 123.4
form) F6.1 123.4 u123.4
F6.1 -123.4 -123.4
E Ew.d Real (E- E7.1 123.4 m 1E+03
exponential E7.1 -123.4 -.1E+03
form) E8.2 123.4 u 12E+03
D Dw.d Double Precision D7.1 123.4 =, 1D+03
(D-exponential D7.1 -123.4 -.1D+03
form)

NOTE: The fields F, E, and D will accept input data in any form: integer, decimal,
E-exponential or D-exponential. The | format field, however, will read only integer values.
See Input To Numeric Field Specifications, Page 54.

The G, or generalized, field specification may be used for input or output of any
variable type. This specification has the two forms summarized in the table below:

THE G (GENERALIZED) SPECIFICATION
Example (Output)

General

Form Field Prints As Remarks

Gw G4 123 n123 Gw is equivalent to Iw

123.4 u123 for numeric values.
G4 “ABC” ABCs Equivalent to Sw for
string values.
G3 .FALSE. asF Equivalent to Lw for
logical values.

Gw.d G10.4 .01 =, 1000E-01 Equivalent to Ew.d
when absolute value
printed is < .1 or=>10d.

G104 10. 210.00mnnn When value printed lies
100. 2100.0umun between .1 and 109,
exactly d digits are

printed.

NOTE: Gw and Gw.d are exactly equivalent for string and logical values; the d specified is ignored.

50

The following specifications are used to read and write nonnumeric values only.

NONNUMERIC SPECIFICATIONS

Examples (Output)

General
Specification | Form Function Field Prints As

L Lw Reads or prints |L4 .TRUE. nmmT

. logical variables

A Aw Reads or prints |A6 FLS674 FLS674
w characters. Al- |A3 FLS674 FLS
lowable values for |AQ FLS674 mmnF| S674
w depend on type
of variable being
read or written.

(Integer, real, dou-
ble, complex or
string)

S Sw Reads or prints |S6 “FLS674" FLS674
declared string |S3 "“FLS674" FLS
variables S9 “FLS674" FLS674umum

S Reads or prints |S “ABC12" ABC12 5
(without| declared string of |S “$100.05" [$100.05 -,
field any length as one (if file is not
width) |record on speci- a fixed record
fied file length random
file)
UTILITY SPECIFICATIONS
Examples (Output)
General
Specification Forms Function Field Action
H wHs Allows inclu- |3HEND These four fields
alternate sion of literal |‘END’ all print the text
forms: textinaformat |“END"” END on the out-
‘s’ END put medium.
llsll
s
P P Sets scaling to |3P Sets scaling to 10°
th power of 10
(affects only [-1P Sets scaling to
I/0 with G,E, 107!
D, & F fields)

UTILITY SPECIFICATIONS (Continued)

Examples (Output)
General
Specification Forms Function Field Action
T Tw Tabs T20 Tabs to print po-
sition 20 (if out-
put file is not
random).

X wX Spacing 5X Prints 5 spaces

/ / Generates end |/ Prints a Carriage
of record action Return (if out-

put medium is
not a fixed record
length random
file).

& & Suppressesnor- (& Suppresses Car-
mal end of re- riage Return gen-
cord action erated at end of
caused by end format (if output
of format medium is not

a fixed record
length random
file).

() n(field) Allows field |2(15,F6.2) [Is equivalent to

specs replication (15,F6.2,15,F6.2).

NUMERIC FIELD SPECIFICATIONS

| FIELD SPECIFICATION

The | (integer) field specification has the general
form

Iw

where the field width w specifies the number of
characters to be read or written, including the minus
sign if a negative number is to be read or written.

Input

During input, the field specification Iw causes w
characters to be read. Only integers may be entered
with the | field; attempting to read numbers in deci-
mal or exponential form will cause an error message.

Examples

Using the field 13,

The Data Is Read As
123 123
1234 123
-12 -12
-123 -12
[T) 2
n)m 20

51

Attempting to read the number 7.5 with an |3 field
would result in an error message, even if it were being
read into a real variable.

Since 13 reads exactly three characters, numbers
longer than three characters cannot be read with this

52

specification. Thus, in the above examples, the num-
bers 1234 and -123 are read as 123 and -12. Notice
that the fourth character is simply not read, and is
thus available to be entered with another specifica-
tion. For example, the statements

READ (0,100) J,K
100 FORMAT (i3,11)

read 1234 as two values: First, 123 is read and
assigned to J using the field 13; then the 4 is read and
assigned to K using the field 11.

Notice that blanks are converted to zeroes on
input. Thus, 2 preceded by two blanks is read as 2
(002) using 13, but 2 preceded by a blank and fol-
lowed by a blank is read as 20 (020).

Output

Any number printed with the | specification is
printed as an integer; any decimal digits will be
rounded. If the field width w is larger than the
width of the number to be printed, leading blanks
are supplied. If it is smaller, an error message is
given.

Examples
Using the field 14,

The Number Is Printed As
5678 5678
-567 -567
567 u567
-56 =-56
2584.6 2585
1.7 nam?

However, attempting to use 14 to write 56789, or
-5678, results in an error message since these numbers
have a width of 5 characters.

F FIELD SPECIFICATION

The F (external fixed point, or decimal) field
specification has the general form

Fw.d

where w specifies the field width and d indicates the
number of digits to the right of the decimal point.
The field width must include positions for the sign
of the number, if negative, and for the decimal point.

Input

The field specification Fw.d reads w characters
from the input medium.

If the input data does not include a decimal point,
d digits to the right of the decimal point are assumed.
For example, using F5.2,

The Data Is Read As
12345 123.45
-1234 -12.34

On the other hand, if a decimal point is present,
the d part of the specification is ignored. The total
number of characters read is still determined by w,
however. For example, F5.2 specifies that

123.4 be read as 123.4

Like the 1 field specification, Fw.d never reads
more than w characters. For example, the input data
156.4 requires a total field width of 5. If the speci-
fication F4.1 is used to read this data, only the
characters 156. would be entered.

Blank are converted to zeroes on input; thus, using
F5.2

The Data Is Read As
mmm25 .25 (000.25)
um25m 2.5 (002.50)

The F field specification also reads input data in
E or D exponential form. In this case, it works just
like the E and D specifications. For example, F10.4
reads -23345E+06 as -2.3345E+06.

Output

During output, the specification Fw.d causes the
number to be printed in a field of width w with d
digits to the right of the decimal point. The field
width w must include one position for the decimal
point and one position for the sign of the number if
it is negative, as well as one position for each digit to
be printed. If the field width w is larger than required
to print the number, leading blanks will be supplied.
If the number of decimal places specified by d is
larger than required, trailing zeroes are printed. For
example, using the specification F6.2,

The Number Is Printed As
346.78 346.78
46.78 m46.78
25. u25.00
25.725 u25.73
-12.346 -12.35

If insufficient total field width is specified, an error
message will be given. For example, the field specifi-
cation F6.2 cannot be used to print either

-346.78
or
1346.78

since each of these numbers requires a total field
width of at least seven. Attempting to use F6.2
to print these numbers causes an error message.
Notice, however, that if insufficient decimal places
are specified by d, the decimal part of the number is
rounded to the number of places specified. Thus,
F6.1 could be used to print either of the above
numbers; it prints '

-346.78 as -346.8
1346.78 as 1346.8

E FIELD SPECIFICATION

The E (exponential) field specification has the
form

Ew.d

where w is the entire width of the field and d is the
number of digits to the right of the decimal point.

Input

During input, the specification Ew.d reads w char-
acters from the input medium. If the input data has
no decimal point, d decimal digits are assigned to the
mantissa. If the input data does have a decimal point,
the d specified is ignored.

Examples
Using E10.2,

The Data Is Read As
123456E+Q7 1234.56E+07
1.2345E+07 1.2345E+07
u1.234E+07 1.234E+07
-12345E+07 -123.45E+07
1234567E07 12345.67E+07

Notice that in the last example above, the sign of the
exponent is not specified. This is unnecessary for
positive exponents. A leading zero in the exponent
may also be eliminated; for example, E10.2 reads
1234567E-7 as 12345.67E-07

12345678E7 as 123456.78E+07

53

Ew.d may be used to read input data in non-
exponential form. In this case, it works just like Fw.d.
Note also that it accepts input data in either E or D
exponential form.

Output

A number printed using the Ew.d specification
always has the form

m.xEtee if the number is positive (note the leading
space!)
or
-.xEtee if the number is negative

where x consists of d decimal digits, and ee is a two
digit exponent. A minimum of one decimal place is
required; thus, a minimum total field width of 7 must
be specified (E7.1). One print position is needed for
the sign of the mantissa (or the leading space printed
if the number is positive), one for the decimal point
of the mantissa, one for the minimum one place after
the decimal point, and four for the exponent (E, sign,
and two digits).

In general, the total field width w must be greater
than or equal to d+6. For example, E10.4 is a valid
specification, but E10.5 is not. If w is insufficient to
print the number (that is, if w is less than d+6) an
error message will be given.

If the specified width is larger than needed to print
the number, leading blanks are supplied. If the d
specified is larger than necessary, trailing zeroes are
printed. If too few decimal places are specified by d,
output is rounded to the number of decimal places
specified.

Examples
Specification Prints As
E9.3 479. ®.479E+03
-479. -.479E+03
.005 = 500E-02
E10.3 479. um 479E+03
-479. m-479E+03
E104 2145.65 |m.2146E+04
-6.5 -.6500E+01

D FIELD SPECIFICATION

The D (double precision) specification works ex-
actly like the E specification except that, during
output, a D is printed between the mantissa and the
exponent instead of an E. Numbers read with this
specification are not necessarily read as double pre-

54

cision values; they will be read as double precision
values only if they are being read into a double
precision variable.

THE G OR GENERALIZED
FIELD SPECIFICATION

The G field specification can be used for input or
output of any type of variable. It has two forms:

Gw and
Gw.d

In both forms, w is the field width; the d in the
second form specifies information about the number
of decimal places in arithmetic output or input.

Gw

During either input or output, the form Gw is
equivalent to

Iw if arithmetic values are being read or written;
Lw if logical values are being read ‘or written;
Sw if string values are being read or written.

Refer to the sections on the I, L, and S specifica-
tions for details.

Examples (Output)

Using G3,
The Value | Of Type |Is Printed As
12 integer u12
-12.4 real -12
AB6 string AB6
AB string ABm
FALSE logical mmfF
TRUE logical umT
Gw.d

The form Gw.d functions exactly like Gw for input
or output of string and logical values. The d specified
is ignored. For example, the fields G3, G3.1, and G3.2
all print the string AB as AB followed by a space.

During arithmetic input, Gw.d is equivalent to
Ew.d.

During output of arithmetic values, the form Gw.d
prints the number n in decimal or exponential form
depending on its size, as follows:

Let n be the number being printed. If .1 <ABS(n)
<10d, the number n will be printed in decimal form
in a field of width w. Exactly d digits will be printed,
preceded by a space or minus sign (depending on the
sign of the number) and followed by four spaces. The

decimal point is printed in the appropriate position in
relation to the d digits printed.

If the number being printed does not fall in the
above range, it is printed just as if the specification
Ew.d were being used.

Example

> LIST o
1 WRITE (1,100) (10.0%%J,J=-2,5)
2 100 FORMAT (G10.4)
3 END
> RUN 5
.1000E-01
.1000E+00 |
1.000
10.00
100.0
1000. _
.1000E+05
.1000E+06_|

- 10/<.1

1< 10/<10*

—170° <10/

(@3)>

If the field width is wider than needed to print the
number, leading blanks are printed. If the specified
d is too small, output is rounded. If d is too large,
trailing zeroes are supplied.

The Gw.d specification is especially useful for
printing values which are expected to lie within a
certain range. Since it aligns the mantissas of the
numbers printed, numbers outside the desired range
can be detected easily.

INPUT TO NUMERIC FIELD
SPECIFICATIONS

We shall now summarize some general rules for
formatted input of numeric data.

As the reader may have noticed, the field specifica-
tions Fw.d, Ew.d, Dw.d, and Gw.d are all equivalent
during numeric input. They all accept data in integer,
decimal, E exponential, or D exponential form in
exactly the same way. The rules in this section apply
to numeric input using any of these specifications
as well as to numeric input using the | and Gw
specifications.

Input Data Fields

The term input data field refers to input char-
acters. It is determined by the characters on the input
file (or terminal) and the field specification used to
read them. In general, the input data field consists of

the characters on the input medium that will be read
with a given field specification. The number of char-
acters in an input data field is usually determined by
the field specification used to read them; for example,
F6.2 reads an input data field of 6 characters. How-
ever, if the input data field is terminated early by a
comma or Carriage Return, fewer than the specified
number of characters are read, and the value read is
assigned according to rules discussed below.

From the above, we see that an input data field
may fill the field specification or not. For numeric
input data fields, there are four cases:

1. Field filled: No decimal point

2. Field filled: With decimal point

3. Field not filled: Terminated with a comma
4

. Field not filled: Terminated with a Carriage
Return.

The following rules summarize the way values are
assigned with these different input data fields.

1. Field Filled: No Decimal Point

In this case the data consists of a solid string of
numeric characters not including a decimal point.
(Blanks may be included, since they are converted to
zeroes during numeric input.) The number of char-
acters read is the same as the field width specified
in the field specification. The value assigned to
the variable being read is determined by the field
specification.

Examples
Field Value

Data Field Specification Assigned
12345 F5.2 123.45
-1234 F5.2 -12.34
123456E+04 E104 12.3456E+04
®12345E+04 E10.4 1.2345E+04
123 13 123

2. Field Filled: With Decimal Point

In this case the data consists of a solid string
of numeric characters which does include a decimal
point. The decimal point in the input data field
overrides any decimal position specified in the field
specification. The number of characters read is the
number specified as field width in the specification;
the decimal point is counted as a character.

55

Field Value
Data Field Specification | Assigned
1.2345 F6.2 1.2345
123.E04 E7.1 123.E04
-1.234D-05 D10.4 -1.234D-05
u1.234D+06 G10.4 1.234D06

3. Field Not Filled: Terminated With A Comma

A comma may be used to terminate numeric input
before the entire field specified has been filled. A field
terminated by a comma will be read in free format;
that is, the number will be stored exactly as it appears
and the field specification will be ignored entirely.
Whenever a comma is encountered in a data field,
reading is discontinued. If a blank field is terminated
by a comma, a value of 0.0 is assigned. Using the free
format comma field terminator relieves the user of
the time-consuming task of filling all the fields, thus
minimizing the time required to create the file and
also the space required to store the file.

This feature also allows the user to suppress inser-
tion of a decimal point when none occurs in the data
field; for example, F10.2 reads 11,as 11.and not.11.

Examples
Field Value
Data Field | Specification | Assigned
33.1, F5.3 33.1
442, 15 44.2 (if read
into a
real
variable)
44, F7.2 44,
F5.3 0.0

NOTE: Comma termination also applies to input to
the L (logical) field specification. However, input to
the A (alphanumeric) and S (string) specifications
is never terminated by a comma since a comma is
considered a valid input character to such fields.
Commas also have no effect on input data to the H
and X field specifications. They do terminate data
read with any form of the G specification, other than
string values.

4. Field Not Filled: Terminated By A Carriage Return

In this case, trailing zeroes will be supplied to fill
the field, and the value is assigned according to rules
1 and 2 above, depending on whether or not there is
adecimal point in the input data field.

56

Examples
Field Value
Data Field | Specification | Assigned
35 0 16 350000
1Mo F5.2 110.00
356 5 F7.1 356000.0
35.6 5 E7.1 35.6 (=35.6000)

An exception to this rule occurs when the input
data field is in E or D exponential form. (Recall that
the F, E, D, and Gw.d specifications all read input
data fields in the same way.) In this case, trailing
zeroes are not added to the exponent field. For
example,

E10.4 (or F10.4 or D10.4) reads 1234E3;)
for 1234D3 o/ as 1234.E+03
D11.3 reads 1.23E-6;_) as 1.23E-06

The following example illustrates the different
input data fields.

Example
Suppose file number 3 contains the data

1,234567
1.23456

SCALING: THE

A scaling factor may be set in a FORMAT state-
ment using the P specification. This specification has
the form

fP

where the scaling factor f may be any integer:
positive, negative, or zero.

The scaling factor affects numbers read and written
by the F, E, D, and G field specifications only. Fur-
ther, only the Gw.d form of the generalized field
specification is affected by scaling; the form Gw is
not.

The scaling factor indicates the power of 10 by
which the values read or written are to be multiplied;
that is,

External value = internal value X 10scaling factor

In some cases, the scaling factor changes the actual
value read or written; in others, only the represen-
tation of the value is affected. Details are given under
Input and Output below.

Then the statements

READ (3,7) AB,CD
7 FORMAT (4F5.2)
or 7 FORMAT (F5.2,F5.2,F5.2,F5.2)

assign the following values:

A=1. Data field terminated by comma
B=234.56 Field filled, no decimal point

C=700.00 Data field terminated by Carriage Return

D=0.0 Field filled with zeroes by previous Car-

riage Return

Input Of Complex Numbers

Complex numbers may be read or written by any
numeric field specifications. A separate field specifi-
cation is required for the real and imaginary parts of
the number. For example,

FORMAT(F4.1,E8.2)

Read Into A Complex Variable As
123412345E-7 123.4 + (123.45E-7)i
123,-123.456 123 - 123.456i

P SPECIFICATION

The scaling factor may be set and reset anywhere
in a FORMAT statement.

Example

100 FORMAT(F6.2,1P,F5.2,F8.6,0P,F8.2,
-2PE12.1,F4.1)

When values are read or written with this FORMAT
statement, the first value read or written (with F6.2)
will not be scaled. Scaling by 10! will occur when the
next two specifications (F5.2 and F8.6) are used. The
specification OP, indicating multiplication by 10° or
1, causes the specification F8.2 to be normal; in the
last two specifications (E12.1 and F4.1), scaling by
1072 will occur.

Note that the scaling specification need not be
separated from the following specification with a
comma. Thus,

500 FORMAT (3PD11.4)
and
500 FORMAT (3P,D11.4)

are equivalent.

Whenever a FORMAT statement is called, the
scaling factor is automatically initialized to zero.
Once scaling has been set in a FORMAT statement,
it is used throughout that FORMAT unless reset. In
the example below, the FORMAT statement is called
once and the scaling factor is set to two after the first
variable is read.

> LIST b}
1 READ(0,100) A,B,C,D
2 100 FORMAT(F6.2,2PF6.2)
3 DISPLAY A,B,C.D
4 END
> RUN 2
111111222222 5
333333444444
1111.11 22.2222 33.3333 44.4444
(@)>

When the FORMAT statement is called more than
once, as in the next example, the scaling factor is

reinitialized to zero each time a READ statement
calls the FORMAT.

> LIST b
1 READ(0,100) A,B
2 READ(0,100) C,D
3 100 FORMAT(F6.2,2PF6.2)
4 DISPLAY AB,C.D
5 END
> RUN)
111111222222
333333444444 5
1111.11 22.2222 3333.33 44.4444
(@) >
Input

During input the effects of scaling on the F, E, D,
and Gw.d specifications are all the same. The value
read is affected only if the input data is not in E
exponential or D exponential form. If the input data
is in exponential form, scaling does not apply.

If the input data is not in exponential form, the
effect of the scaling specification fP is given by

value stored = value entered X 10-f

57

Examples
Value Scaling
Entered Factor Value Stored
109.3 1P 10.93
123.4 2P 1.234
1.2E05 1P 1.2E05
113.1 -2P 11310.

Note that when the input data does not contain a
decimal point the same relationship applies as when
it does. Thus, FORMAT (F4.1) reads 1093 as 109.3,
but FORMAT (1PF4.1) reads 1093 as 10.93.

NOTE: Input data that is terminated early by a
comma is never scaled.

Output

During output, the effect of the scaling factor
depends on the field specification used.

If the E or D field specification is used, the value
of the number being printed is not altered; only the
representation is affected, as follows: The mantissa is
multiplied by 10f and the value of f is subtracted from
the exponent.

If the F field specification is used, the value printed
is actually changed from the value stored, according
to the relationship

value printed = value stored X 10f

If the Gw.d field specification is used, the value
printed is never changed. If the G specification prints
the value in E format, the scaling factor has the same
effect as it would if an E specification were used. If
the G specification prints the value in decimal form,
scaling does not apply.

Examples

Scaled Output
Normal Scaling Number

Specification Output Factor Printed

E11.5 = 15000E+02 1 =1.5000E+01

D11.5 =.15000D+02| -1 =, 01500D+03

F4.0 ml5, 1 150.

G10.4 =15.00unnn 2 =15.00unnn

G10.4 ».2641E+05 2 u26.41E+03

58

NON NUMERIC FIELD SPECIFICATIONS

L FIELD SPECIFICATION

The L field specification is used to read or write
logical values only. It has the form

Lw

where w represents the total field width.

Input

The field specification Lw causes w characters to
be read from the input medium and a truth value
assigned to the variable being read according to the
following rule: The w characters are scanned for the
first occurrence of a T or an F. If a T is found, the
value is true. If an F is found or if neither a T nor an
F is found, the value is false.

Example
> LIST 5
1 LOGICAL LOG1,LOG2,LOG3
Line 1 is a LOGICAL
declaration statement.
2 READ (0,100) LOG1,—¢‘“
LOG2,LOG3
3 100 FORMAT (L1,L3,L5)
4 DISPLAY LOG1,LOG2,LOG3
5 END
> RUN 5
TORFALSE?Q
T F F
(@5) >

In this example, the logical variables LOG1, LOG2,
and LOG3 are read using the field specifications L1,
L3, and L5, respectively. First, LOG1 is read using
L1; one character is read from the terminal. Since
this character is a T, LOG1 is true. Then LOG2 is
read using L3. The three characters ORF are read
from the terminal; since the first logical character
encountered is an F, the value assigned to LOG2 is
false. Now, LOG3 is read using L5. The 5 characters
read from the terminal are ALSE?; since these contain
neither a T nor an F, LOG3 is false.

Notice that if LOG1 were read using L4, it would
still be true. Even though the four characters read
(TORF) contain an F, it is only the first occurrence
of a T or F that determines the truth value assigned.
If the characters FORT were read using L4, the value
read would be false.

NOTE: Input to an L field specification may be
terminated early with a comma just as may input to a
numeric field specification. Thus, L3 reads T, as true.

Output

When a logical value is written using Lw, aT or F
is always printed. If the field width is greater than
one, leading blanks will be supplied.

Example
> LIST b
1 LOGICAL AB,C
2 A=.TRUE.
3 B=.FALSE.
4 C= A .AND. B
5 WRITE (1,10) A,B,C
6 10 FORMAT (L1,L2,L3)
7 END
> RUN b
TF F
(@7) >

A FIELD SPECIFICATION

The A (alphanumeric) field specification allows the
user to store any characters in a variable and to write
the values of such variables. It has the general form

Aw
where w is the total field width.

The A specification may be used to read or write
characters stored in integer, real, double precision,
complex, or string variables. The maximum number
of characters that may be stored in each type of
variable is as follows:

Maximum Number

Variable Type Of Characters

Integer 3

Real 6

Double Precision 9

Complex 12

String The length of the

string.

Input

During input, the specification Aw causes w char-
acters to be read into the specified variable. If w is
greater than the character capacity of the variable,
the right-hand characters are read and the left-hand
characters are ignored. |f w is less than the character
capacity of the variable, the characters will be stored
in the left-hand part of the variable and the rest of the
variable will be filled with blanks.

Example

Suppose the specification
A6
is used to read the characters
P-1362
and to store them in a variable.

The characters that will be stored in different variable
types are as follows:

Characters
Variable Type . Stored
Integer 362
Real P-1362
Double Precision P-1362muamn

String, declared length=5 -1362
String, declared length=6 P-1362
String, declared length=8 P-1362u=

59

Note that only one A field specification is used to
store characters in a complex variable, even though
two numeric specifications are needed to read com-
plex numbers. For example, the statements

COMPLEX C

READ (0,100)C
100 FORMAT (A12)
will read all the characters
TESTING 12345

and store them in C, but FORMAT (A6,A6) will read
only the first six characters of the input value.

NOTE: If input to an A field is terminated early by a
Carriage Return, the rest of the field is filled with
blanks.

Output
The specification Aw always prints w characters.
If w is greater than the number of characters stored
in the variable being printed, leading blanks are sup-
plied. If w is less than the number of characters stored
in the variable, the left-hand w characters will be
printed.

Example

Using A6,:|

Variable Type Characters Stored Characters Printed
Integer A12 ummA12
Real P-1362 P-1362
Double Precision CO,MM,AS, CO,MM,
String (Current Length=4) TEST smTEST
String (Current Length=6) STRING STRING
String (Current Length=10) 1234566890 123456

Just as with input, only one A field specification
may be used to write characters stored in a complex
variable. For example, if the characters

SILLYTEST!!!
are stored in the complex variable COMPLEX, the
statements
WRITE (1,200) COMPLEX
200 FORMAT (A12)

will print all 12 characters stored in COMPLEX.
FORMAT (A6,A6) would print only the first 6 char-
acters stored in COMPLEX.

S FIELD SPECIFICATION

The S, or string, field specification can be used to
read or write string constants or declared string data
only. It may be used either with or without a field
width w, in either of the following forms:

Sw
S

The Sw specification causes a string of length w to
be read or written. To read or write a string of vari-
able length, the S specification is used without a field
width.

60

Sw Input And Output

Input

During input, the specification Sw causes exactly
w characters to be read. If w is greater than the
declared length of the string being read, the right-hand
characters will be lost. (This is exactly opposite to the
A specification.) If w is less than the declared length
of the string, the characters will be stored in the left-
hand part of the string and the rest of the string will
be filled with blanks.

If input to an Sw specification is terminated early
with a Carriage Return, the rest of the field will be
filled with blanks.

Examples

Using S5,

If The Declared

String Length Is (The Data |Is Read As

5 AB123 AB123
3 AB123 AB1
10 AB123 AB123umunm

Notice that when the declared string length is less
than the full width, the entire number of characters
specified is still read from the input medium; however,
only the left-hand characters are actually assigned to
the variable. The right-hand characters are lost; they
are not available for input to another variable. Thus,
the statements

STRING STR1(3), STR2(3)

READ (0,100) STR1, STR2
100 FORMAT (S5,85)

read the 10 characters
ONE;1TWO;2

from the terminal and assign ONE to STR1 and TWO
to STR2. If the format (S3,S3) were used instead,
only the first six characters would be read; ONE
would be assigned to STR1 and ;1T to STR2.

Output

During output, the specification Sw causes the
first w characters of the string to be written. If w is
greater than the length of the string, the string will be
printed left justified in a field of width w. The rest of
the field will be filled with blanks.

1 - See Data Records, Page 62,

Examples
Using S5,
The String Value Is Printed As
o pxx exAwr
SP ACE SPmAC
12345678 12345
ABC ABCum

S Input And Output

When the S specification is used without a field
width, strings of any length may be read or written.

Input

During input, this form of the S specification reads
a single record.! If the input medium is not a fixed
record length random file; S reads all characters pre-
ceding the next Carriage Return and assigns them to
the string variable being read. If the declared length
of the variable is exceeded, the right-hand characters
are dropped.

Example

> LIST 5
1 STRING X(5),Y(10),2(5)
2 READ (0,100) X,Y,Z
3 100 FORMAT(S)
35 DISPLAY X,Y,Z2
4 END

> RUN be)

ABC o)

1234567890

STRING)

ABCumm1234567890maSTRIN

(@)>

If the input medium is a fixed record length ran-
dom file, S reads all characters up to the end of the
current record. (See Random Files, Page 70, for the
definition of records on a fixed record length random
file.)

Output

During output, the S specification simply writes
the specified string, whatever its length.

Example
> LIST >
1 STRING X(7),Y(27),z(3)
2 X="TESTING"”
3 Y="THIS IS THE S
SPECIFICATION”
4 Z="END"
5 WRITE (1,200) X,Y,Z
6 200 FORMAT(S)
7 END
>RUN 5
TESTING
THIS IS THE S SPECIFICATION
END
(@7)>

61

In this example, each string is printed followed by a
Carriage Return, due to the end of record action
generated by the end of FORMAT 200.! If the FOR-
MAT were changed to

200 FORMAT (S,S,S)

the strings printed would all be concatenated, as
follows:

>RUN 5
TESTINGTHIS IS THE S SPECIFICATIONEND

(@7)>

NOTE: Do not expect a FORMAT like (S,S,S) above
to read three string fields on input since the entire
string input would be read with the first S.

LITERAL TEXT IN A FORMAT: THE H SPECIFICATION

The H, or Hollerith, specification is used to
include literal text in a format. It may take any of
the following equivalent forms, where s is a string of
characters and w is the number of characters in s:

Form Example
wHs 3HEND
‘s’ ‘END’
gt “END"
s END
OUTPUT

During output, a Hollerith specification in a format
causes the specified text to be printed at the terminal.

Example
>LIST 5
1 WRITE (1,100)
2 100 FORMAT (14HTHIS IS A+
TEST)
3 WRITE(1,200) 25,SQRT(25)
4 200 FORMAT($THE SQUARE —
ROOT OF$,13,' 18°,12)
5 END
>RUN 5

THIS IS A TEST
THE SQUARE ROOT OF 25 IS 5

(@5) >

Notice that Hollerith field specifications may be in-
cluded in a FORMAT statement either alone or in
conjunction with other specifications. When no other
specifications are included, the text is printed using
a WRITE statement with no output list, as in the first
statement in the above example.

iNPUT

During input, w characters from the input medium
actually replace the characters of the string in the
format. (w is the number of characters in the string
in the Hollerith specification, no matter which form
is used.) Consequently, if the same format is used
subsequently for output, the characters read will be
written on the output medium.

Example

Consider the program set up in part as

WRITE (1,100)
100 FORMAT (7HTABLE 1)

statements to print first table

READ (2,100)
WRITE (1,100)

statements to print second table

1 -See End Of Record Action, Page 62, and FORMAT Rescan, Page 66.

62

If the next seven characters in file number 2 are
TABLE 2

when the statement READ (2,100) is encountered,
execution of the above statements results in the fol-
lowing output:

TABLE 1

first table is printed

TABLE 2

second table printed

After the first WRITE statement prints the heading
TABLE 1, the statement READ (2,100) causes the
characters TABLE 2 to replace the characters TABLE
1 in FORMAT 100. Thus, the second WRITE state-
ment prints the heading TABLE 2 when executed.

SPACING: THE X SPECIFICATION

The X specification, which has the form
wX

causes w blanks to be printed during output and w
characters to be skipped during input. For example,
if the statements

READ(0,5) A
5 FORMAT (3X,12)

are used to read 15469, A will be assigned the value
69 since the 3X causes the first three characters to be
skipped.

During output, the X field may be used to put
blanks between the values printed. For example, if
X=346.85 and Y=87.341, the statements

WRITE(1,15)X,Y
15 FORMAT(F6.2,4X,F6.3)

will print the two values with 4 blanks between them,
thus:

346.85ammmg87.341

Before discussing the /, &, and T specifications, we
introduce the concept of data records, to which these
specifications apply.

DATA RECORDS

A data file (including the terminal) is composed of
data records, which, in general, are groups of related
data items. For example, a record on a payroll data
file might consist of an employee number, hourly pay
rate, and so on. In SUPER FORTRAN, the exact
definition of a data record depends on the configu-
ration of the data file. For symbolic sequential files,
the terminal, and symbolic variable record length
random files, a data record consists of any number of
characters terminated by a Carriage Return, such as

1234,69 ABC 5

For fixed record length random files, a record con-
sists of the number of elements specified as record
length in the OPEN statement.!

The concept of a data record for a random file is
further clarified later in this section. Here, we are

1 - See Random Files, Page 70.

concerned only with rules governing the relationship
between FORMAT statements and sequential /0.
These rules also apply to symbolic variable record
length random files. However, formatted 1/0 with
fixed record length random files uses different rules
due to the different definition of a record in this case.
These rules are discussed in Special Rules For Fixed
Record Length File 1/0, Page 72.

In the rest of this section on formatting, the term
data record refers to data records consisting of a string
of characters terminated by a Carriage Return unless
specified otherwise.

END OF RECORD ACTION

FORMAT statements are record-oriented; that is,
they are designed to read data that is organized into
records. A single FORMAT statement is designed to
read or write one record, in the following sense:

® During input, the end of a FORMAT statement
causes SUPER FORTRAN to seek a Carriage
Return before input is continued.’

® During output, the end of a FORMAT state-
ment causes a Carriage Return to be printed.’

Example 1: Input
If the statement

READ (3,100) A,B
READ (3,100) C,D
100 FORMAT (14,14)

are used(to read the data

1490006172
2223964819

A is read as 1490 and B is read as 61 (0061). Then the
end of the FORMAT statement is reached, so SUPER
FORTRAN seeks a Carriage Return, thus skipping
the last two characters in the first record (72).
The second record is then read; C is assigned
the value 2223 and D, the value 9648. The end
of the FORMAT again causes a record terminator
to be sought, so the characters 19 at the end of the
second record are skipped also.

for FORMAT(214)

Example 2: Output
The statements

X=2.345

Y=6.937

ALPHA=16.491

BETA=10.393

WRITE (5,20) X,Y

WRITE (5,20) ALPHA, BETA
20 FORMAT (F7.3,F7.3)

cause the two records
um2 345um6.937 bs)
=16.491810.393

to be written on file 5. The FORMAT statement
labelled 20 is used twice, and, each time the end of
the FORMAT is reached, a Carriage Return is printed.

Example 3
The data on file 3

1234.56789AAC 5
7965.3477,8RTF 5
9773.996RMT

63

is read by
LOGICAL L
READ (3,9)N1,A1,B1,R1
9 FORMAT (12,F5.2,F3.1,A3)
READ (3,9)N2,A2,B2,R2
READ (3,100X,Y,Z,L
10 FORMAT (13,4X,11,A2,L1)
as:
N1=12 A1=34.56 B1=78.9 R1=AAC
N2=79 A2=65.34 B2=77.0 R2=8RT
X=977 Y=6 Z=RM L=T (true)

EARLY ENCOUNTER OF END
OF RECORD

During input, if a record terminator (Carriage
Return) is encountered before the entire variable
list in the READ statement has been read, the
remaining variables will be set to zero, until the
FORMAT indicates that a new record should be
processed.

Example 1

The data on file 2
3.6,2.1,2.5 5
6.7,3.32

is read by
READ (2,10) AB,C,D,E
10 FORMAT (5F10.5)
as
A=3.6 B=2.1 C=2.5 D=0. E=0.

The Carriage Return in the first line is encountered
after reading the variable C, so the rest of the variable
list (D and E) is set to zero.

Example 2
The data
564326.981
16,,69138
is read by
READ (3,60) A,B,C,D,E,F
60 FORMAT (3F5.2) or FORMAT (F5.2,F5.2,F5.2)
as

A=564.32 B=6.981 C=0.
D=16. E=0. F=691.38

After reading values for A and B, a Carriage Return in
the data file is encountered; hence, C is set to zero.

1 - This rule does not apply to fixed record length random files. See Special Rules For Fixed Record

Length File 1/0, Page 72.

64

However, since the end of the FORMAT is now
encountered, D, E, and F are read from the next
record. See Format Rescan, Page 66.

END OF RECORD
SPECIFICATION: /

It is possible to read or write a number of data
records using a single FORMAT statement by speci-
fying aslash (/) in the FORMAT statement at the end
of the field specifications for each record. Multiple
slashes may be used in the FORMAT statement to
skip records on input or generate blank records on
output. The action of the / in a FORMAT statement
is the same as the action of the end of the FORMAT;
that is,

® During input, a / in a FORMAT statement
causes SUPER FORTRAN to seek a record
terminator (Carriage Return), thus skipping to
the next record.!

® During output, the / causes a Carriage Return
to be printed.!

Example 1
During input, for the following data
6677
15432)
243
893 5
the statements
READ(0,50)K,M,N
50 FORMAT(14/15//13)
read the first record and assign the value 6677 to K,
then read the next data record and assign 15432 to M,

then skip the next record, and assign the value 893 to
N.

Example 2
The following data on file 2

12345,6789
12345678

is read by

READ (2,7) AB,I,D,E
7 FORMAT (F4.2,F5.2,12/F5.2,13)

as
A=12.34 B=5. 1=67 D=123.45 E=678.

Example 3
The statements

A=111.

B=2.135E06

C=5.794

WRITE (1,100) A,B,C,”ABCF”
100 FORMAT (I3,3X,E10.3/F5.3,5X,54)

print the following

1M1 214E+07 5
5.794 ABCF

NOTE: When a slash is used between two field spec-
ifications, a comma need not be used to separate
the specifications; for example, FORMAT (15,F6.3/
G12.6) is allowed.

record 1
record 2

SUPPRESSING NORMAL END OF
RECORD ACTION: &

An & may be used at the end of a FORMAT
statement to suppress the Carriage Return that is
normally generated by the end of the FORMAT. This
allows writing on or reading from a single record using
more than one FORMAT statement. This feature also
is very useful in documenting formatted terminal
input as shown in the example below.

Example
The statements
WRITE (1,100)
100 FORMAT (‘VELOCITY ="&)
READ (0,200)V
200 FORMAT (F6.2)
will print
VELOCITY =
and then wait on the same line for the user to enter
the value of V. The Carriage Return that would

normally be generated at the end of FORMAT 100
is suppressed by the &.

TAB POSITION WITHIN A
RECORD: THE T SPECIFICATION

The T (tabs) specification has the form
Tw

It specifies that the next read or write operation
start at the wtP position in the current record. For
example, the statements

1 - This rule does not apply to fixed record length random files; see Special Rules For Fixed Record

Length File 1/0, Page 72.

WRITE (1,100) “DEMONSTRATING T”
100 FORMAT (T10,515)

print the following on the terminal:

aennnenusDEMONSTRATING T
t

character position 10

Input

During input, if the value of w is greater than the
present character position, intervening characters are
skipped. For example, the statements

READ (3,15) M,N
15 FORMAT (13,T10,13)

read the data

111222ABC333
1

character position 10
as
M=111 N=333

After the value of M is read, the specification T10
causes all characters between positions 4 and 9
_inclusive, to be skipped. The value of N is read
beginning at position 10.

For sequential files, including the terminal, the
value of w may not be less than the current position.
However, in reading from a random file, w may be
less than the current position, thus allowing the user
to back up in the current record to read characters
that have been read or skipped previously.

Output

If w is greater than the current character position,
intervening positions will be skipped as follows:

® |f the output medium is a sequential file (not
including the terminal), blanks will be printed
in the intervening positions. For example, if
file 3 is not random, the statements

WRITE (3,100) M,N
100 FORMAT (13,T20,13)

print the value of M followed by 16 blanks
followed by the value of N.

® |f the output medium is the terminal or a
random file, intervening character positions will

65

be unaffected. For example, if file 3 were a
random file and the current record were

111ABCDEF

then the statements

M=222

N=333

WRITE (3,50) M,N
50 FORMAT (13,T7,13)
would change the above record to
222ABC333

If w is less than the current character position,

output to a sequential file is illegal. Output to a
random file and to the terminal is as follows:

® |f the output medium is a random file, output
will resume at the indicated position and any
data previously written there will be replaced.
For example, if file 4 is random, the statements

X=34.19

Y=69.5

WRITE (4,200) X,Y
200 FORMAT (F5.2,T2,F4.1)

print
369.5

After the value of X is printed, the T2 specifica-
tion causes backspacing to the second character
position in the current record; thus, the last 4
characters of X are replaced by the 4 characters
of Y.

® |f the output medium is the terminal, a Carriage
Return without a Line Feed is printed and the
specified position will then be assumed. Thus,
overprinting may result. For example,

> LIST 5
1 STRING G(10),L(10)
2 G=D2>>>>>>5>5>>1
3 L=< <L <L L L L Ll
4 WRITE (1,100) G,L
5 100 FORMAT (T6,510,T1,S10)
6 END
>RUN 5
<L B REREROOO>>
(@6) >

66

REPEATING A FIELD SPECIFICATION

If the same field specification is to be used a
number of times, a repeat count may be used. The
repeat count appears immediately preceding the field
specification and specifies the number of times the
field specification is to be read or written. For
example, if the format statement

FORMAT (314,7F9.6)

is used to read or write data, the format 14 is used for
each of the first three values, and F9.6 for the next
seven values.

For the following data record
134895765897
the statements

READ(0,15)(A(1),1=1,5)
15 FORMAT(312,2F3.1)

will assign the following values:

A(1) = 13.
A(2) = 48.
A(3) = 95.
A(4) = 76.5
A(5) = 89.7

Parentheses may be used to indicate the repetition
of a series of field specifications. For example,
FORMAT (2(313,F12.4),E8.2)
is equivalent to
FORMAT (313,F12.4,313,F12.4,E8.2)

or
FORMAT (13,13,13,F12.4,13,13,13,F12.4,E8.2)

FORMAT RESCAN

A FORMAT statement will be rescanned automat-
ically whenever the number of items specified in the
input or output list exceeds the number of fields
specified in the FORMAT statement. Each time the
FORMAT statement is scanned, the usual end of
FORMAT action occurs; that is, a Carriage Return
is sought during input, and a Carriage Return is
printed during output.! For example, if the
FORMAT statement

100 FORMAT (F10.4)
is used with the statement
READ (2,100)(A(1),1=1,3)

the value for each of the elements is expected to be
on a different line. (If all three data values are on the
same line, use 3F10.4.)

Similarly, if the same FORMAT statement is used
for
WRITE(1,100)(A(1),1=1,2)

the value of A(1) will be printed on one line, then a
Carriage Return is printed and the same format will
be used to print A(2) on the next line.

Rescan of a FORMAT statement always takes
place starting with the last first level left parenthesis,

if any. (If there is none, rescan takes place from the
beginning of the FORMAT statement as above.)

Example 1
If the statement
100 FORMAT (14/2(F6.8,12))

is used to read or write more than five variables,
rescan would begin with the F6.8 field with the
repeat count of 2 in effect. If being used with a
WRITE statement specifying 13 values in the output
list, the FORMAT would print values in the following
form:

I4D

F6.8 12 F6.8 12

F6.8 12 F6.8 12 5

F6.8 12 F6.8 125

Example 2

The statement

100 FORMAT (3(F6.4,12),2(12,3(E10.4,E11.5)))
T

if used to print more than 20 values, would be re-
scanned from the parenthesis marked with the arrow;
that is, the last first level left parenthesis.

1 - Unless 1/0 is taking place in a fixed record length random file. See Special Rules For Fixed Record

Length File 1/0, Page 72.

67

DYNAMIC FORMATS

In SUPER FORTRAN, a format description may
be entered into an array or a string variable and the
array or string name may be used in subsequent input
and output statements to specify the format of the

data being transmitted. A DATA statement or a
standard input statement may be used to enter a
format description into an array or string variable.
For example:

> LIST 5
5 INTEGER V(7)
10 REAL A(4)
20 READ(0,100)A
30 100 FORMAT(4A6)
40 K=10;L=11;M=12
50 (ViD=1),1=1,7
60 WRITE(1,A)K,LM,(V(1),1=1,7)
70 END
> RUN 5

(15,1X,12,13,7(1X,F6.2))
10 11 12 1.00 2.00

(@70) >

The format description is entered from the terminal
in the READ statement at line 20. The name of
the array containing this data is used as the format
specification for the WRITE statement at line 60.
Note that except for the word FORMAT, the entire
format specification is read, including the parentheses.

STRING variables extend the scope of dynamic
formatting considerably. Not only may a format de-
scription be read into a string variable, the format
description may also be computed or altered during
program execution. These features are demonstrated
in the following example:

> FAST b)
10 STRING S(10)
20 DISPLAY ‘ENTER FORMAT’

30 ACCEPT S The format is entered
from the terminal.

40 DISPLAY ‘ENTER NUMBER’
50 ACCEPT A

300 400 500 6.00 7.00

60 DISPLAY ‘NUMBER APPEARS
AS FOLLOWS:’

70 WRITE(1,8) A

80 DO 20 M=3,5

90 S=(E11."+STR(M)+')" A different format is
specified on each pass
through the loop.

100 20 WRITE(1,S) A

110 END

> RUN 5

ENTER FORMAT

(F14.2) 5

ENTER NUMBER

666666

NUMBER APPEARS AS FOLLOWS:
mannN666666.00

mun 667E+06

um.6667E+06

m.66667E+06

(@110) >

DISK FILE INPUT AND OUTPUT

In SUPER FORTRAN, both sequential and ran-
dom access.disk files are available. In both cases, file
input and output may be either symbolic or binary.
Symbolic disk file I/O may be read and written either
in the formatted form discussed previously, or using
the free format READ and WRITE statements dis-
cussed below. Binary disk file 1/0 must always be
read and written with free format READ and WRITE
statements. No matter what kind of disk file is being
used', it must be opened before use with an OPEN
statement and closed after use with a CLOSE state-
ment. Up to four files may be open simultaneously.

FREE FORMAT READ AND WRITE

File input and output may be unformatted as well
as formatted. Unformatted input and output uses the
free format READ and WRITE statements

READ (file number) input list
WRITE (file number) output list

These statements may be used for either terminal or
file 1/0. However,

READ(0) input list
is equivalent to
ACCEPT input list

and

WRITE(1) output list
is equivalent to
DISPLAY output list

Examples

READ (3)X,Y,2 Reads values for X, Y,

and Z from file 3.

Writes values for A(1)
through A(N) on file 4.

The free format READ and WRITE statements
follow the same conventions as ACCEPT and DIS-
PLAY. When an unformatted READ statement is
used for terminal input, a bell will ring to request data
just as it does with ACCEPT.

Except for strings, data items on a file being read
with free form input may be separated with blanks,
commas, or Carriage Returns. String data items may
be separated with commas, Carriage Returns, or Line
Feeds, but not with blanks.

WRITE (4)(A(1),1=1,N)

NOTE: Free format READ and WRITE may not
be used for fixed record length random file 1/0.

SEQUENTIAL FILES

A sequential file is a file in which reading and
writing must take place in the sequence in which data
is stored on the file. In other words, once the file is
opened, the first data item in the file must be read or
written, then the second, and so on. Sequential file
1/0 will thus prove much slower than random file
1/0 in many cases. However, sequential files have the
advantage of requiring less program overhead than
random files.

OPENING A SEQUENTIAL FILE

Al disk files must be opened before input or
output can take place. They are opened using the
OPEN statement, which also assigns a file number
to the file and specifies the file type (symbolic or
binary). In addition, the mode specified in the OPEN
statement specifies whether the file is to be sequential
or random.

A sequential file may be opened in one of the
following modes:

INPUT Sequential input only.
OUTPUT Sequential output only.
The following form of OPEN is used:

file “file INPUT SYMBOLIC
OPEN| number, name”,{ or) or ec!
OUTPUT| [BINARY

For example,
OPEN (3,“PROG1”,INPUT,BINARY)

opens the binary file named PROG1 for sequential
input and assigns it the file number 3.

File numbers 0 and 1 are reserved for terminal
input and output and are not used in the OPEN
statement.

1-ec: The user may include an error condition of the form ERR=statement label. Control will be
transferred to the statement labelled if there is an error in opening the file. Possible errors are:

nonexistent file, incorrect file type, busy file, or inaccessible file.

A literal file name specified in an OPEN statement
must be surrounded by single or double quotes. Any
valid file name may be used.!

If INPUT or OUTPUT is not specified in the
OPEN statement, INPUT is assumed. If SYMBOLIC
or BINARY is not specified, SYMBOLIC is assumed.

NOTE: Opening a previously created file for OUT-
PUT causes whatever was already in the file to be
erased.

Opening a sequential file in either the INPUT or
OUTPUT mode initializes reading or writing at the
beginning of the file. The only way to read or write a
data item in the middle of a sequential file is to read
or write all preceding data items first. This difficulty
does not occur with random files. Thus, if the user
wishes to read or write only a small part of the total
data file, random files should be used.

The file name specified in the OPEN statement
need not be specified using a string constant; a string
variable or expression may also be used.

Examples
OPEN (5,A,OUTPUT,BINARY,ERR=10)
If A is a string variable whose value is DATAS3, this
statement opens DATAS3 for binary sequential out-
put as file 5 and goes to statement 10 if there is an
error in opening the file.
OPEN (4,”/"+STR(1)+"/”,0UTPUT)
If 1=2, this statement opens a file named /m2/ for
symbolic sequential output.
Another user’s file may be opened if it has been
properly declared or if it has an @ in its name.? For
example,

OPEN (3,”(A3R)@DATA",INPUT,SYMBOLIC)

opens the file named @DATA in account A3, user
name R for INPUT.

CLOSING A FILE

A disk file should always be closed after use, using
the CLOSE statement. This statement has the form

CLOSE (file number)

If four files are open simultaneously, any of them
may be closed with a CLOSE statement so that other
files can be opened. Once a file has been closed, the
file number may be used later to designate another
file.

1 - See Rules For Naming Files in Appendix C, Page 160.

69

Once a file has been closed, it must be reopened
before it can be reused. With sequential files, this
implies that reading or writing must begin anew at
the beginning of the file when a file has been closed
and reopened.

EXAMPLE: SEQUENTIAL FILE 1/0

The program in the following example reads the
data in the file ALPHA, squares every number read,
and writes the original values and their squares on the
file BETA. The values are read using a free format
READ, but are printed using a formatted WRITE. The
CCS command COPY is used to print the contents of
the files on the terminal. Notice that the file BETA
contains six records, since the FORMAT statement
100 specifies that each record printed contain two
data values, and therefore twelve values are printed
with the FORMAT statement.

> COPY ALPHA TO TEL ,

20, 3.44, 654
8.275, -15.7,1.28
> LIST 5
1 OPEN (2,“ALPHA",INPUT)
2 DIMENSION A(6),B(6)
3 READ (2) A
4 CLOSE (2)
5 OPEN(3,“BETA"”,0UTPUT)
6 DO 25 I=1,6
7 B(l)=A(1)*#2
8 WRITE (3,100) All), B(1)
9 25 CONTINUE
10 100 FORMAT(2F11.2)
11 CLOSE (3)
12 END
> RUN b)
(@12) >COoPY BETA TO TEL ,
20.00 400.00
3.44 11.83
654.00 427716.00
8.28 68.48
-15.70 246.49
1.28 1.64
@2)>

2 - Other user’s files may be both read from and written on if the user who owns the directory so
desires. See the Tymshare EXECUTIVE Manual, Reference Series, for details.

70

BINARY FILES

Binary files may be read and written in either
sequential or random mode. These files cannot be
listed in the EXECUTIVE nor read into EDITOR
since they are written in binary code, but they do
have the advantage of requiring less storage space than
a symbolic file, greater accuracy for numeric values,
and in many cases are faster to use.

Binary sequential files are opened and closed using
the OPEN and CLOSE statements discussed above.
Binary files must be read and written using free

format READ and WRITE statements; formatted 1/0
with binary files is never allowed.

Example

OPEN (3, “BIN”,INPUT,BINARY)
READ (3)A,B,C,(R(l), 1=1,9)
CLOSE (3)

Further details on binary random files are found in
the following section.

RANDOM FILES

SUPER FORTRAN allows random access disk files
of either symbolic or binary type in addition to
sequential files. With random files, the user may read
information beginning at any location in a file, write
information on any part of a file without destroying
the rest of the file, and erase selected parts of a file.
These direct access features allow implementation of
many applications that are impossible with sequential
files, and provide dramatic increases in the perfor-
mance speed of certain applications involving the use
of data files.

For example: If a file contains descriptions of
thousands of parts in an inventory and only one item
needs to be updated, the record for that item could
be read, changed, and rewritten without any other
part of the file being affected.

ELEMENTS

The elements of a random file are simply the
“units’’ stored in the file:

® |f a file is symbolic, an element is a character
in the file.

® |f a file is binary, an element is a word (24
bits).

RECORD LENGTH

The record length of a random file is the number
of elements (characters or words) in a record. Any
record length may be specified by the user when he

opens a random file. If he does not specify a record
length in the OPEN statement, his file is a variable
record length file; that is, it may contain records of
different lengths. If a record length is specified in the
OPEN statement, the file is a fixed record length file
and may contain only records of the specified length.
NOTE: In a symbolic fixed record length file, records
need not be terminated with a Carriage Return.
Records are defined solely by the number of char-
acters specified as the record length in the OPEN
statement discussed below. For example, a fixed
record length symbolic file with a record length
of 10 could contain 3 records not separated by Car-
riage Returns, as follows:

P1-2600610P2-4501003P3-7810062

Record 1 Record 2 Record 3

POSITION

Each element in a variable record length file, and
each record in a fixed record length file, is assigned a
positive integer called the position of the element or
record. If a random file has a fixed record length, the
first record is at position 1, the second at position 2,
and so on. In other words, a position is simply a
record number. If a random file has variable record
length, a position is an element number (character
number if the file is symbolic, word number if it is
binary).

Example

Suppose the following records are stored on a
symbolic variable record length random file. Then

This Record Begins At Position

THIS IS A STRING 5 1

456789 5 18
15 25
END 5 27

Note that Carriage Returns are counted as elements.

NOTE: If a symbolic random file is created in
EDITOR, it should be written with the WRITE 1
command. The WRITE D command compresses mul-
tiple blanks which will cause the position count to be
inaccurate.

CURRENT POSITION

The current position of a random file is defined as
the next position to be affected by an inputor output
operation. This is always the position following the
position most recently read or written, unless

® It is otherwise specified with an indexed READ
or WRITE or POSITION statement (discussed
below).

® The file has been opened but nothing has been
read or written. In this case, the current position
is position 1.

OPENING A RANDOM FILE

In addition to opening a file in the sequential
INPUT and OUTPUT modes, the OPEN statement
discussed under Sequential Files can open a file in
the following random access modes:

Mode Description

RANDIN Random, read only

RANDOUT Random, write only

RANDIO Random, read/write access (essentially

an update mode).

Opening a previously created random file in the
RANDOUT mode does not erase the contents of the
file as does opening a file in the sequential OUTPUT
mode; neither does opening a file in the RANDIO
mode.

To open a variable record length random file, use
the following form of the OPEN statement.

RANDIN SYM-
or BOLIC
file “file JRANDOUT or
OPEN\ number, name”, or , |BI- Lec!
RANDIO NARY

71

For example, the statement
OPEN (5, “D49",RANDIN, SYMBOLIC)

opens the symbolic file named D49 for random input
as file number 5.

To specify a fixed record length, the number of
elements desired as record length is enclosed in paren-
theses and appended to the mode. For example,

OPEN (3, “DATA12"”,RANDIO (80), BINARY)

opens a fixed record length binary file for both input
and output. Each record contains 80 binary words
(80 integer values, 40 real values, etc). On the other
hand, the statement

OPEN (4, “FILE1”,RANDIO (80), SYMBOLIC)

specifies a fixed record length of 80 characters for the
symbolic file FILE1.

THE POSITION FUNCTION
AND STATEMENT

At any time, the current position within an opened
random file can be found using the library function

POSITION(f)

where f is the file number specified in the OPEN
statement. This function returns the current position
on file number f as an integer value. For example, the
statements

OPEN (4, “P68”,RANDIO)

I=POSITION(4)

set | equal to the current position on the file P68. The
next input or output operation performed on this file
will take place at position |, unless otherwise specified
in a POSITION statement or an indexed READ or
WRITE, discussed below.

The POSITION statement should not be confused
with the POSITION function. While the POSITION
function is used to determine the current position,
whatever it may be, the POSITION statement is used
to change the current position. This statement takes
the form

POSITION(f,p)

It sets the current position on file number f to
position p. For example,

POSITION(3,N)

sets the current position on file number 3 to N.

1 -ec: The user may include an error condition of the form ERR=statement label. Control will be
transferred to the statement labelled if there is an error in opening the file.

72

Example
> LIST 5
1 OPEN (5,”VRL"”,RANDIO)
15 DISPLAY “CURRENT POSITION
1S”, POSITION(5)
2 POSITION (5,7)
3 DISPLAY “CURRENT POSITION
I1S”, POSITION(5)
4 CLOSE(5)
5 END
> RUN 5

CURRENT POSITION IS 1
CURRENT POSITION IS 7

(@5) >

In this example, the function POSITION(5) used in
line 1.5 returns a value of 1 since the file VRL has
just been opened. Then the POSITION statement in
line 2 sets the current position to 7, so the POSITION
function in line 3 returns the value 7.

Do not forget that position numbers are record
numbers for fixed record length files, but are element
numbers for variable record length files.

RANDOM FILE READ AND
WRITE STATEMENTS

The usual forms of the formatted READ and
WRITE statements may be used for random file |/O.
In this case, reading or writing begins at the current
position. For example, the statements

POSITION(3,N)
WRITE(3,100)X,Y,Z2

write the values of X, Y, and Z on file 3 beginning at
position number N.

The free format READ and WRITE statements
may be used for symbolic variable record length
random file 1/0, but not for symbolic fixed record
length random file 1/0. (Of course, the free format
READ and WRITE must always be used for binary
file 1/0.)

In addition, an indexed READ/WRITE statement
is available to specify the position to be affected. It
has the formatted form

READ ,
or file format
WRITE| number, number |(position) 1/0 list

and the unformatted form

READ
or (file number)(position) 1/0 list
WRITE

Example

The statement
WRITE(3,100)(N)X,Y,Z
is equivalent to

POSITION(3,N)
WRITE(3,100)X,Y,Z

Both write the values of X, Y, and Z on file number 3
beginning at position N.
When data is written on a random file, the new

data replaces whatever was previously at the elements
written, element for element.

For example, if the following data is on file num-
ber 3 (a variable record length symbolic file)

12345 o
678 5
901726

the statements

WRITE(3,200)(8)99
200 FORMAT(12)

produce the file

12345
699 b}
901726

This fact should be kept in mind especially when
writing on variable record length files, since writing
a record longer than an existing record will replace
elements in the following record.

When reading from or writing on a variable record
length file, the user has full responsibility for not
violating his own structure for his file. However, he
also is given an almost unlimited flexibility with
which to solve his data retrieval problems.

When reading from or writing on fixed record
length files, however, certain rules protect him from
accidentally crossing record boundaries and destroying
his record structure. These are discussed below.

SPECIAL RULES FOR FIXED
RECORD LENGTH FILE 1/0

Binary Fixed Record Length Files

If the file is binary, the size of the variables in the
1/0 list must exactly match the size of one record.

Thus, if A is a real array, and if file 4 is a binary, fixed
record length file,

READ(4)(10)(A(l), 1=1,20)

is illegal unless file 4 has a record length of 40 words.

Symbolic Fixed Record Length Files

Symbolic fixed record length file 1/0 must always
be formatted. The free format READ and WRITE
statements may not be used with such files, in either
the indexed or non-indexed form.

Since records in a fixed record length file are
defined solely by their record length, and not by any
special record terminators, the normal end-of-record
action caused by the end of a FORMAT or by a/ in
the FORMAT declaration simply positions the user at
the beginning of the next record. It does not generate
nor seek a Carriage Return. If the FORMAT used
does not read or write an entire record, remaining
character positions are skipped during input and
filled with blanks during output.

Example

> COPY FRT TO TEL 5
P72-459861P73-901652P74-002391

> LIST p)
1 OPEN (2,”FRT”,RANDIO(10))
2 STRING S(4)
3 S=""P65-"
4 WRITE (2,100)(2) S
5 100 FORMAT(S4)
6 CLOSE (2)
7 END
> RUN)

(@7) >COPY FRT TO TEL
P72-459861P65-nmuunnpP74-002391

In this example, FORMAT(S4) is used to write four
characters at position (record number) 2. The end of
the FORMAT causes six blanks to be written as the
rest of the record.

Suppressing the end of record action with an &
allows the user to write part of a record without
destroying the rest of the record. Thus, if line 5 in the

L4
above example were
5 100 FORMAT(S4,&)
the file written by the program would be

P72-459861P65-901652P74-002391

73

Another READ or WRITE statement subsequently
executed in the same program would cause reading or
writing to resume in mid-record; specifically, at the
fifth element in record 2.

Formatted items must fit within one record on
fixed record length symbolic files, unless a / is used
to indicate that succeeding data items refer to the
following record. Like the end of a FORMAT, the /
positions reading or writing at the beginning of the
next record and does not generate nor seek a Carriage
Return. The / must be used when reading or writing
more than one record. Thus,

OPEN(3, “FRLDATA"”,RANDIO(10))
WRITE(3,200)(A(1), 1=1,10)

200 FORMAT(F10.2/F10.3)

is legal, but using

200 FORMAT(F10.2,F10.3)

instead causes an error message since the statements
then attempt to write more than one record without
specifying the end of the record. Note, however, that

200 FORMAT(F5.2,F5.3)

would be legal in the above (assuming it fit the data
values) since this format fits within one record of
length 10.

FILE SIZE

The size of a random file is defined as

® The position of the last element in the file for a
variable record length file.

® The position of the last record in the file for a
fixed record length file.

The size of an opened random file may be obtained
using the library function

SIZE(f)

where fis the file number assigned in the OPEN state-
ment. This function returns an integer value equal to
the size of file f.

Example
Suppose the file SIZETEST contains the data

012479 5
653721
598743

then. . .

74

> LIST 5
1 OPEN (5,“SIZETEST",RANDIN(7))
2 1=SIZE(5)
3 DISPLAY “FIXED RECORD LENGTH: SIZE ="
4 CLOSE (5)
5 OPEN (5,“SIZETEST”,RANDIN)
6 I=SIZE(5)
7 DISPLAY “VARIABLE RECORD LENGTH: SIZE =",
8 CLOSE(5)
9 END
> RUN 5
FIXED RECORD LENGTH: SIZE = 3
VARIABLE RECORD LENGTH: SIZE = 21

(@9) >

ERASING DATA FROM A FILE

Disk storage costs may be reduced by erasing
unneeded records within a random file. This is done
with the statement

ERASE(f)(i,j)
where f is the file number assigned in the OPEN
statement. The ERASE statement erases data from

the ith position to the jth position, inclusive. For
example,

ERASE(3)(1000,1560)
erases the contents of file 3 from position 1000 to
position 1560, inclusive.

The ERASE statement reduces the storage used
but does not change the file size unless the last
position in the file is erased. If it is, the new file size

is set to the last position not erased. For example, if
SIZE(2) is 3469 and the statement

ERASE(2)(3000,3469)
is executed, SIZE(2) will become 2999.

An asterisk or a minus 1 may be used to specify
the end of a file. Hence either

ERASE(3)(N+1, =)
or
ERASE(3)(N+1, -1)
will reduce the size of file 3 to N.

ERASE never changes the position of any elements
or records that have not been erased.

If data is read from erased positions on a file, the
values read will be set to zero.

Data may not be erased from a file opened in the
RANDIN mode.

EXAMPLE: RANDOM FILE 1/0

The program in this example accepts a name from the terminal and assigns it to the
string variable NAME1. It then determines which record in the fixed record length file
ADDR contains the full name and address of this person, reads this record, and prints
the name and address at the terminal. If the name entered is not in the file, a message is
printed. Whether or not the name is found in the file, the program continues to request
additional names until the user types an ALT MODE/ESCAPE, which transfers control to
the statement 50 CLOSE(2) using the ON INTERRUPT statement. .

The data in the file ADDR is organized in the following form:

NAME STREET

Positions 1-20 Positions 21-45

CITY 2

Positions 46-55 1 Position 56

>COPY ADDR TO TEL 5

MR. JOHN B. CAREY
MRS. LESLIE FISHER
MR. CARL LARSON
MR. DALE MOSS

MR. JOHN REY

MR. DANIEL TORRES
MISS DONNA WILKES
MR. MICHAEL YOUNG
MR. HENRY C. ZIMMER

285 COTTLE AVENUE
1964 HAMPTON DRIVE
985 SOUTH 9 STREET
1650 SARATOGA AVENUE
106 FORMAN STREET

24 SCHARF AVENUE

315 SOUTH 3 STREET

60 WILSON ROAD

15 JACKSON STREET

CAMPBELLmum -
DANVILLEn= o
SAN JOSEmm
SARATOGASs= -,
CAMPBEL Lum
LOS GATOS= o
SAN JOSE=nm
CHESTERm=nm -,
PALO ALTO=

> LIST
1 ° STRING NAME1(10),NAME2(9)(10),NAME(20),STREET(25),CITY(10)
2 OPEN (2,”ADDR",RANDIN(56))
3 ON INTERRUPT GO TO 50
4 5 ACCEPT “ADDRESS OF? ",NAME1
5 DO 10 1=1,9
6 IF (NAME1 .NE. NAME2(l)) GO TO 10
7 READ (2,100) (1) NAME,STREET,CITY
8 GO TO 30
9 10 CONTINUE
10 WRITE (1,200) “THE ADDRESS IS NOT LISTED HERE”
1 GO TO 5
12 30 WRITE (1,300) NAME,STREET,CITY
13 GO TO 5
14 50 CLOSE (2)
15 DATA NAME2/CAREY,FISHER,LARSON,MOSS,REY,TORRES, -
WILKES,YOUNG,ZIMMER/
16 100 FORMAT (S20,525,510)
17 200 FORMAT (/S/)
18 300 FORMAT (/S/S/S/*“CALIFORNIA"/)
19 END
>RUN

ADDRESS OF? YOUNG ,

MR. MICHAEL YOUNG
60 WILSON ROAD
CHESTER
CALIFORNIA

ADDRESS OF? CAREY

MR. JOHN B. CAREY
285 COTTLE AVENUE
CAMPBELL
CALIFORNIA

75

76

ADDRESS OF? MORRIS
THE ADDRESS IS NOT LISTED HERE
ADDRESS OF? WILKES

MISS DONNA WILKES
315 SOUTH 3 STREET
SAN JOSE
CALIFORNIA

ADDRESS OF? @
(@19)>

Note the following points about this program:

1. The symbolic data file ADDR contains nine records
of length 56. This file is opened for random input
as a fixed record length file in line 2 of the pro-
gram. We chose to terminate each record in this
file with a Carriage Return to facilitate listing the
file on the terminal. However, as we discussed in
Record Length, Page 70, it is unnecessary to ter-
minate records with Carriage Returns when using
fixed record length files. If the Carriage Returns
were removed from the file ADDR and line 2

were changed to
2 OPEN(2, “ADDR’,RANDIN(55))

the program would perform exactly as above.
However, the COPY command would not produce
a readable listing of ADDR since characters would
overprint due to the absence of Carriage Returns.

2. The DO loop in lines 5 through 9 determines the
record number for the requested address. This is
accomplished by comparing NAME1 (the name
entered from the terminal) to each element of the
nine-element string array NAME2.

3. Values are assigned to NAME2 using the DATA
statement in line 15.! Data statements are used to
initialize variable values before execution of the
first executable statement in a program. Thus, the
DATA statement in line 15 assigns NAME2(1) the
value CAREY, NAME2(2) the value FISHER, and
so on up to NAME2(9) the value ZIMMER before
execution of the DO loop in lines 5 through 9.

4. The indexed READ statement in line 7 reads re-
cord number | from the file ADDR. When NAME1
is equal to NAME2(I), | has a value equal to the
record number of the desired record since the
names in the DATA statement and the names in
the file are in the same order.

PROGRAMMABLE ERROR AND END OF FILE CONDITIONS

END OF FILE PROCESSING

The READ statement incorporates a test on the
end of file condition so that termination of input files
can be detected and processed by the program. For
example,

READ(3,100,END=50)X,Y,Z

If, during the execution of this statement, the end of
file 3 is reached before the values of X, Y, and Z have
been read, program control is immediately transferred
to the statement labelled 50. The program may then
process the end of file condition.

>LIST 5
10
20
30 100
40 10
50

1 - See DATA Statements, Page 79, for further information.

INPUT/OUTPUT ERROR PROCESSING

The READ and WRITE statements allow the user
to specify a statement label to which control is passed
if an error occurs during data transmission. The error
condition appears in a READ or WRITE statement as
follows:

READ
or (3,100,ERR=10)(A(l), 1=1,6)
WRITE

The READ statement can employ the error con-
dition and end of file condition at the same time.
The following example illustrates this:—‘

'

OPEN(3,”DATA",INPUT,SYMBOLIC)
READ(3,100,END=10,ERR=50)(A(l),1=1,100)
FORMAT(100(12/))

DISPLAY (A(N),N=1,1-1)

CLOSE(3); STOP

77

60 50 DISPLAY “CORRECT ERROR IN DATA FILE AT LOCATION",I
70 INTEGER A(100)

75 CLOSE(3)

80 END

Initially, the file DATA has an error. This will exercise the error condition and print the
error message at statement 50:

>COPY DATA TO TEL 5
10
12
1%
20

>RUN 5
CORRECT ERROR IN DATA FILE AT LOCATION 3

The file DATA is corrected so that all of the numbers will be read to the end of the file
and control is transferred to statement 10 which displays the values read.

(@80) >COPY TEL TO DATA 5
OLD FILE 5

BEGIN INPUT.

10,

125

15 5

20 5

(@80) >RUN

10 122 15 20

(@50) >

79

SECTION 7
DECLARATION STATEMENTS

It is essential in Tymshare SUPER FORTRAN, as
in other versions of FORTRAN 1V, that specific areas
internal to the computer be reserved to store certain
information relevant to program operation. This infor-
mation is furnished to the compiler in nonexecutable
statements called declaration statements, which are
processed before the executable statements in the
program are executed. At the time the user types
RUN, all declarations in the program are processed. In
particular, storage areas are set aside for each variable
and array in the program. After the declarations are
processed, program execution begins.

Three of the declaration statements, END, FOR-
MAT, and the type declaration STRING, have been
discussed. The FORMAT statement is the only
declaration statement that can have a label. Eleven
declaration statements will be discussed in this sec-
tion: Comments, DATA statements, DIMENSION,
COMMON, the type declarations INTEGER, REAL,
COMPLEX, LOGICAL, and DOUBLE PRECISION,
and the EQUIVALENCE and EXTERNAL state-
ments. Three other declaration statements will be
introduced in Section 8: FUNCTION, SUBROUTINE,
and BLOCK DATA.

COMMENTS

Comments may be inserted into a program to doc-
ument the program. They may contain any characters;
however, they must begin with either a C: or an *.

Examples

C:THIS IS A COMMENT

*COMMENTS ARE USED FOR PROGRAM -
DOCUMENTATION

C:LINES 30-60 COMPUTE STANDARD —,
DEVIATION

Comments are listed along with other program state-
ments, but are ignored entirely when the program is
executed. They are not listed when the program is
executed. A comment may appear anywhere in a
program except as the last statement, which must
always be END.

DATA STATEMENTS

Data statements are used to initialize variable
values before program execution. The general form
of the DATA statement is

DATA Vi,VN2, e Vm/CI,C2, Cj/,Vm+1, .o
vn/Cys1, - C/

where v; through vy, are scalar or subscripted variables
or array names, and C; through Cy are values repre-
senting numeric, logical, string, or literal constants.

Examples

DATA A/1.1/,B/2E07/,C/T/,1/110/,S/STRING/
DATA AB,C,1,5/1.1,2E07,T,110,STRING/
DATA A,B/1.1,2E07/,C,1/T,110/,S/STRING/

These three DATA statements are all equivalent. They
initialize A to 1.1, B to 2E07, the logical variable C to
.TRUE., the integer variable | to 110, and the string
variable S to STRING, assuming S has a declared
length of six or more.

80

In general, the variable list and constant list of a
DATA statement are scanned from left to right. For
each variable, a corresponding constant is selected in
sequence until the variable list is exhausted. If the
number of constants (including * replication dis-
cussed below) is exhausted and variables remain to be
assigned values, the constant list is rescanned from
left to right. For example,

DATA AB,C /5/

initializes A, B, and C to 5, while
DATA A,B,C /5,10/

initializes A to 5, B to 10, and C to 5.

An implied DO loop may be included in a DATA
statement. For example,

DATA (z(1),1=1,5)/1,2,3,4,5/
sets Z(1)-to 1, Z(2) to 2, and so on, up to Z(5) to 5.

An array may be referred to by its name alone in a
DATA statement. Thus, if Z has been dimensioned as
a one-dimensional 5 element array, the statement

DATA 2Z/1,2,34,5/

is equivalent to the preceding example.

Replication of a constant in a DATA statement
may be expressed by preceding the constant with an
integer indicating the desired number of repetitions
and an *.

Example 1

DATA A,B,C/5,2x7/
is equivalent to
DATA A,B,C/5,7,7/

Example 2

If A has been dimensioned by
DIMENSION A(10)
the statement
DATA A/2x4,3+1/
assigns values to A in the order
4411144111

The constant list is rescanned after values for A(1)
through A(5) are assigned.

The = representation is the best method to assign
values to arrays in DATA statements. It should prove
considerably more efficient than other methods, par-
ticularly in the initialization of large arrays.

No matter what the line number of a DATA state-
ment, it will assign values before execution of the
first executable statement in the program, and will
be executed only once. Thus, after execution of the
statements

A=1.0

B=72.5

DATA A,B,C/55.6,100,99/

A has the value 1.0; B, the value 72.5; and C, the
value 99. . Even though the DATA statement appears
after the replacement statements, it assigns values
before the replacement statements are executed.

The above rule applies even if the DATA statement
occurs in a subprogram!. The DATA statement as-
signs values before the first executable statement in
the entire program, not before the first executable
statement in the subprogram. Consequently, dummy
variables (such as the parameters in a FUNCTION dec-
laration) may not be referred to in DATA statements.

Variables declared in COMMON? may be initialized
with DATA statements, unlike many implementations
of FORTRAN which require COMMON blocks to be
initialized in speciai BLOCK DATA subprograms.
SUPER FORTRAN however, not only allows initial-
ization of COMMON variables in DATA statements,
but also provides BLOCK DATA subprograms for
compatibility with other versions.?

The following rules govern the way different types
of constants are assigned to different variable types
in DATA statements. Note that in all cases, leading
blanks preceding a constant are ignored and constants
are terminated with a comma or a /. Embedded blanks
are not significant in numeric and logical constants,
but are treated as characters in string and literal
constants.

1. Numeric Constants

Numeric constants may be in either integer or real
form, signed or unsigned. The type of the variable
in the list determines the type of the value assigned.
Thus, if the type of the variable in the list is real and a
corresponding integer constant occurs in the constant
list, a real internal value is assigned. |f the type of the

1 - See Subprograms: Programmer Defined Functions And Subroutines, Page 89.

2 -See The COMMON Declaration, Page 84.
3 -See BLOCK DATA Subprograms, Page 97.

variable is integer and the corresponding constant
contains a fractional part, only the integer part of the
value will be assigned.

Example
DATA X,1/100,3.75/

assigns the real variable X the value 100., and the
integer variable | the value 3.

Complex variables automatically use two numeric
constants from the constant list. Double precision
values are also generated automatically. For example,
if DBL is a double precision variable and CPX is a
complex variable,

DATA DBL/1.06D-13/,CPX/18,9.2/

assigns DBL the value 1.06D-13 (which has 17 digits
of accuracy), and CPX the value 18.+9.2i.

2. Logical Constants

Logical constants in DATA statements may be
represented by T, F, . TRUE., or .FALSE. However,
very nearly any construction will be accepted, since
the same scanning rule used with the L format field
is used here: The constant will be scanned for the
first occurrence of a T or an F. If a T is found, the
value .TRUE. is assigned. If an F is found, or if
neither a T nor an F is found, the value .FALSE. is
assigned.

3. Literal Constants

Literal constants in DATA statements can be in
any of the following equivalent forms:

Form Example

'string”’ “ABC"’

‘string’ ‘ABC’

nHstring 3HABC n is the exact number of

characters in the string.

NOTE: Two characters may not appear in a literal
constant: The Carriage Return and the /.

Notice that the DATA statement is the only state-
ment in which Hollerith constants (literal constants
of the form nHstring) may be assigned to variables.
Hollerith constants are not allowed in replacement
statements in SUPER FORTRAN; only quoted string
constants may be assigned to variables in any execut-
able statements.

When a literal constant is included in a DATA
statement, the specified characters are stored in the
corresponding list variable according to the following
character capacities:

81

Maximum Character
Variable Type Capacity
Integer 3
Real 6
Double Precision 9
Complex 12
String The declared length
of the string.

If the number of characters in the constant exceeds
the capacity of the variable, the righthand characters
are omitted. If the number of characters is less than
the capacity of the variable, the characters will be
left-justified; the remaining character positions on the
right will be filled with blanks.

Example

If 1 is an integer variable, R a real variable, C a
complex variable, and S a string variable of declared
length 10,

DATA |,R,C,S/3+'AB-123",7HTESTING/

assigns | the value AB-, R the value AB-123, C the
value AB-123 followed by six blanks, and S the value
TESTING followed by three blanks.

Note that only one constant is used to assign
literals to complex variables, but two constants are
needed to assign numeric values to complex variables.

4. String Constants

String constants in DATA statements are defined
simply as a string of characters beginning with the
first non-blank character in the current position in
the constant list, and terminating with a comma or
closing /. They are used to assign values to string
variables. For example,

DATA STR1,STR2/DOG,CAT/

assigns the value DOG to STR1 and the value CAT to
STR2 (assuming the string variables STR1 and STR2
each have a declared length of at least three).

Because of the * replication convention and the
comma termination convention, cases may arise when
literal constants must be used in place of string con-
stants. For example, the string 4*ABC would be
interpreted as ABC, ABC, ABC, ABC. If the user
desires a single constant equal to 4xABC, he should
use ‘4*ABC’, “4+ABC”’, or 56H4+ABC. Similarly,

DATA S$1,82/“AB,19"/

assigns AB,19 to both S1 and S2, but
DATA S$1,S2/AB,19/

assigns AB to S1 and 19 to S2.

82

THE DIMENSION DECLARATION

For the computer to reserve sufficient space for an
array, information about the dimensions of the array
and the maximum number of elements in the array
must be specified in a DIMENSION statement, a type
declaration statement, or a COMMON statement. The
DIMENSION statement is discussed here; dimension-
ing with type declaration statements and COMMON
statements is discussed in Type Declaration State-
ments, Page 83, and The COMMON Declaration, Page
84.

The general form of the DIMENSION declaration
statement is

DIMENSION array list

where the array list specifies the array name and the
maximum and minimum allowable subscriptvalues for
each dimension of the array. Any number of arrays
may be dimensioned in a DIMENSION statement.

NOTE: String arrays cannot be dimensioned in a
DIMENSION statement. They must be dimensioned
in @ STRING declaration statement, as was discussed
under Strings, Page 40.

If the minimum subscript value desired is 1, only
the maximum subscript value need be specified.

Example 1
DIMENSION A(60), TABLE(20,100)

This statement declares A to be a one-dimensional
array with a maximum subscript value of 60. It re-
serves space for 60 elements of A, A(1) through
A(60). It declares TABLE to be a two-dimensional
array, or matrix, with a maximum size of 20 by 100,
reserving space for the 200 elements, TABLE (1,1)
through TABLE (20,100).

Note that more space can be reserved for an array
than is actually needed. For example, values could
actually be assigned only to elements A(1) through
A(30) in a program that dimensioned A as in the
above example. However, when an array is called by
its name alone in an input or DATA statement, values

for every element specified when the array was dimen-
sioned must be assigned. When an array is called by
its name alone in an output statement, values for
every dimensioned element will be printed. Elements
not assigned values or not sharing values in COMMON
storage will be set to zero.!

If it is desired that the lower subscript of the array
be other than 1 (as is automatically assumed in Ex-
ample 1 above), both the lower and upper limits can
be specified by separating them with a colon in the
DIMENSION statement.

Example 2
DIMENSION B(6:10)

reserves space for five elements of the array B;
namely, B(6) through B(10).

Either or both subscript limits may be negative or
zero.

Example 3

DIMENSION MAT1(-3:2),MAT2(-10:-5), 3
ALPHA(0:4,15)

reserves space for the six elements of MAT1, that
is, MAT1(-3), MAT1(-2), MAT1(-1), MAT1(0),
MAT1(1), and MAT1(2). Space is also reserved for six
elements of MAT2, MAT2(-10) through MAT2(-5),
and for the 75 elements of ALPHA, a two-dimen-
sioned array with the first subscript ranging from 0 to
4 and the second from 1 to 15.

When the user types RUN, all declarations in the
program are processed before the first executable
statement is executed. This means that arrays must be
dimensioned with integer constants. Arrays may never

be dimensioned with variables in a main program or a
subprogram. For example

DIMENSION A(10,20)
is allowed, but
DIMENSION A(N,M)

is not.

ARRANGEMENT OF ARRAYS IN STORAGE

The elements of an array of more than one dimen-
sion are stored so that the first subscript varies more
rapidly than the second, the second more rapidly than
the third, and so on. For example,

DIMENSION A(5,3)

1 - See Variable Initialization, Page 21.

reserves storage space for the elements of A in the
following order:

A(1,1), A(2,1), A(3,1), Al4,1), A(5,1),

A(1,2), A(2,2), A(3,2), A(4,2), A(5,2),

A(1,3), A(2,3), A(3,3), A(4,3), A(5,3)

83

The statement B(-1,2,1), B(0,2,1),
DIMENSION B(-1:0,3,0:2) B(-1,3,1), B(03,1),
reserves space for the elements of B in the following B(-1,1,2), B(0,1,2),
order: B(-1,2,2), B(0,2,2),
B(-1,3,2), B(0,3,2)
B(-1,1,0), B(0,1,0), It is especially important to keep this order of
B(-1,2,0), B(0,2,0), arrangement in mind when referring to an array by its
B(-1,3,0), B(0,3,0), name alone in an input, output, or DATA statement,
B(-1,1,1), B(0,1,1), and when declaring arrays in COMMON.!
> LIST)
1 DIMENSION A(3,3)
2 DATA A/1,2345,6,789/
25 DISPLAY ‘A PRINTED AS ARRANGED IN STORAGE:’
3 DISPLAY A
35 DISPLAY ‘A PRINTED ROW BY ROW:’
3.7 DO 10 I=1,3
b 10 DISPLAY ‘ROW’,1,1S:",(A(1,J),9=1,3)
7 END
> RUN)
A PRINTED AS ARRANGED IN STORAGE:
1 2 3 4 5 6 7 8 9
A PRINTED ROW BY ROW:
ROW 1 IS: 1 4 7
ROW 2 IS: 2 5 8
ROW 3 IS: 3 6 9
(@7) >

In this example, the two dimensional array A is stored column by column, as usual. To
print the values of A in a row by row arrangement, it is necessary to specify a different
subscript order (line 5) than is used to determine the arrangement in storage.

TYPE DECLARATION STATEMENTS

Type declaration statements are used to declare
the types of variables, arrays, and programmer de-
fined functions. Any of the following types may be
specified in a type declaration statement.

INTEGER

REAL

DOUBLE PRECISION (or LONG)
COMPLEX

LOGICAL

STRING

1 - See The COMMON Declaration, Page 84.

The general form of a type declaration statement is

Type List of variables, arrays, or functions

Examples

INTEGER A,POUND(10)

REAL MN,MX(15,20)

DOUBLE PRECISION MEAN (or LONG MEAN)
COMPLEX B,J,T,COM

LOGICAL FIR, SEC, TR, N(10,100)

84

The elements in the list following the type are all
declared to be of the type specified; thus, in the
above examples, A and POUND store integer values,
FIR, SEC, TR, and N store logical values, etc.

A STRING type declaration statement must spec-
ify not only the variable name, but also the maximum
allowable number of characters in each stringdeclared,
as was discussed in Strings, Page 40. For example,

STRING NAME(20),ADDR(50)

declares NAME to be a single string of maximum
length 20, and ADDR to be a single string of maxi-
mum length 50.

When arrays are being declared STRING, they
must be dimensioned in the STRING declaration
statement. Thus, to declare a 10 by 10 string array,
each element of which has maximum length 30, the
declaration

STRING A(10,10)(30)
must be used. The statement
STRING A(30)

is not acceptable; it always declares A to be a scalar
string variable.

All variables, arrays, and functions in a program
must be declared. If they are not declared explicitly
with a type declaration statement, they are automat-
ically declared implicitly according to the following
rule:

If the variable, array, or function name begins
with 1, J, K, L, M, or N, it is assumed to be
integer. Otherwise, it is assumed to be real.

Type declarations, like other declarations, are
processed before execution of the first executable
statement in the program. Absolute storage locations
are assigned to each variable, array element, or func-
tion value in the following amounts:

Type Words Of Storage Assigned
Integer 1

Real 2

Double Precision 3

Complex 4

Logical 1/24

String 1/3 X declared length

Since storage is allocated before program execution
begins, a type declaration may not be used to change
a value type during program execution.

DIMENSIONING WITH TYPE
DECLARATION STATEMENTS

A type declaration statement may be used to
dimension an array, thus eliminating the need for a
DIMENSION statement. For example, the statements

REAL MN,MX
DIMENSION MN(16,16),MX(0:20,0:20)

are equivalent to the single statement
REAL MN(16,16),MX(0:20,0:20)

String arrays must always be dimensioned in type
declaration statements; no other statement may be
used to dimension a string array. When dimensioning
a string array with a type declaration statement, the
subscript limits are specified first, followed by the
maximum allowable number of characters per array
element. For example,

STRING A12(20,10)(50)

declares A12 to be a 200 element (20 by 10) string
array, each element of which can accommodate 50
characters.

Dimensioned arrays and other quantities can be
included in the same type declaration statement.
Thus,

COMPLEX B,J,COM(-1:3)

declares B and J to be complex, and declares COM to
be a complex array, containing the elements C(-1)
through C(3).

THE COMMON DECLARATION

A COMMON declaration is used to define an area
of common storage which may be used by
® the main, or calling, program, and

® one or more subprograms (functions or sub-
routines), and

® one or more programs linked with the SUPER
FORTRAN LINK statement.!

Each COMMON declaration in a main program, sub-

program, or linked program specifies the names of

variables and/or arrays which are to be placed in

COMMON storage. COMMON declarations thus make

1 - See Subprograms: Programmer Defined Functions And Subroutines, Page 89, and Program Linking,

Page 98.

it possible for variables and arrays in the main pro-
gram to share storage locations with variables and
arrays on subprograms or linked programs. Unless a
variable or array is specifically declared to be in
COMMON, it will be defined only in the main pro-
gram, subprogram, or linked program in which it
appears.!

Variables and arrays may be declared to be in

BLANK

To declare variables or arrays to be in blank
(unnamed) COMMON, use the following form of the
COMMON declaration statement:

COMMON variable list

Example
COMMON A.B,I

The variable list in the above form contains the
names of scalar variables or arrays which are assigned
to a common storage area in the order in which they
are listed. The storage area to which the variables are
assigned with this form of COMMON is called a blank
COMMON area; that is, no name is given to this area
of COMMON storage.

The COMMON declaration is position oriented;
that is, the variable name itself is not important
(except that it can specify the type of the data). It
is the variable position in the list that must be con-
sidered. For this reason, a common value need not
have the same variable name in the subprogram that
it does in the main program; the variables need not
even be of the same type.

Example

COMMON A,B,C,
COMMON X,Y,Z,

Main Program
Subprogram

In this example A has the same value or values as X,
B the same as Y, and C the same as Z.

It is important to keep in mind the arrangement of
arrays discussed on Page 82, when declaring arrays in
COMMON. For example, assuming spelling indicates
type, the statements

DIMENSION TABLE(2,3)
COMMON TABLE
DIMENSION X(6)
COMMON X

Main Program

Subprogram

85

blank (unnamed) COMMON storage, or to be in spe-
cial labelled (named) COMMON blocks. Using labelled
COMMON permits a main program to share one area
of COMMON storage with one subprogram, and
another area with another subprogram. Thus, each
subprogram need only declare those common blocks
which it uses; and common blocks that have the same
name occupy the same storage space in memory.

COMMON

cause the following variables to have the same values:

TABLE (1,1) and X(1)
TABLE (2,1) and X(2)
TABLE (1,2) and X(3)
TABLE (2,2) and X(4)
TABLE (1,3) and X(5)
TABLE (2,3) and X(6)

If more than one COMMON declaration appears in
the same program part (main program, subprogram,
or LINK program) the effects of the declarations are
cumulative. Thus, the statements

COMMON A,B
COMMON 1,J,K
in the same program part are equivalent to
COMMON A,B,1,J,K

Since variables declared in blank COMMON in both
the main program and a subprogram share the same
storage locations, COMMON statements may be used
implicitly to transmit data to and from the main pro-

gram and the subprogram. For example, consider the
following program:

Main Program Subprogram

COMMON X,Y SUBROUTINE BRANDX(N)
REAL X COMMON A,B

INTEGER Y(10) REAL A

INTEGER B(10)

CALL BRANDX(M)

Here, the COMMON statements cause X to have the
same value as A, and Y(1) through Y(10) to have the
same values as B(1) through B(10), since they have
the same storage locations. Thus, values can be trans-
mitted from the main program to the subroutine and

1 - Unless it is passed as a subprogram parameter. See Subprograms: Programmer Defined Functions

And Subroutines, Page 89.

86

vice versa without the need to include the variables in
the argument list of a CALL statement.

If an array is placed in COMMON using just the
array name, it must be dimensioned elsewhere in the
same program part.

Example
DIMENSION A(10,10)
COMMON A

COMMON C Subprogram
DIMENSION C(10,10) prog

Main Program

LABELLED COMMON

The form of the labelled COMMON declaration
statement is:

COMMON /name/variable list/name/variable list...

Each block name is enclosed in slashes and the vari-
ables to be included in the block follow, separated
by slashes. An example of a labelled COMMON
declaration is:

COMMON /FORM/L,W/COLORS/RED ,WHITE

This statement assigns L and W to the common
area named FORM, and RED and WHITE to the
COMMON area named COLORS.

The same COMMON statement may be used to
assign values to both blank and labelled COMMON.
For example,

COMMON A,B/C1/1,X,Y/C2/THETA
assigns A and B to the blank COMMON area; I, X,

and Y to the COMMON area named C1, and THETA
to the COMMON area named C2.

Two consecutive slashes in a COMMON statement
indicate that the following variables are to be assigned
to blank COMMON. For example,

COMMON A,B/C1/ALPHA,BETA//X,Y

assigns A, B, X, and Y to blank COMMON (in that
order), and ALPHA and BETA to the COMMON
block labelled C1.

Labelled and blank COMMON entries are cumula-
tive throughout a program. The following statements
are equivalent to the COMMON statement above:

COMMON A,B
COMMON /C1/ALPHA
COMMON X.,Y
COMMON /C1/BETA

A program whose COMMON is defined as:
COMMON ALPH,BET/S1/A,B/PROD/X,Y//GAM

might selectively declare COMMON blocks in its sub-
programs as follows:

1 - See The EQUIVALENCE Statement, Page 87.

SUBROUTINE SYS1
COMMON /S1/RES,FREQ

END

SUBROUTINE MAT
COMMON /PROD/P1,P2

END

This would cause A and B to occupy the same storage
as RES and FREQ, and X and Y to occupy the same
storage as P1 and P2.

To allow optimized LINK files, COMMON block
names are not communicated between programs
through linking. Hence, each LINK program must
declare the entire COMMON area.

NOTE: A COMMON block may be lengthened
either by a subprogram or by EQUIVALENCE.!

Dimensioning With COMMON Statements

An array may be dimensioned in a COMMON state-
ment instead of in a DIMENSION or type declaration
statement. For example, the statements

DIMENSION R(250)
COMMON R

are equivalent to
COMMON R(250)
Also, the statements

DIMENSION B(10,20),C(0:50)
COMMON /S1/A,B/HOLD/C

are equivalent to
COMMON /S1/A,B(10,20)/HOLD/C(0:50)

Note, however, that an array can be dimensioned
only once in a program part (main program, sub-
program, or LINK program). Thus,

Correct
DIMENSION R(250) |
COMMON R]

COMMON X
DIMENSION X(250) |

Main Program

— Subprogram

Incorrect
DIMENSION R(250)—_ Within the same program
COMMON R(250) _ | part

A type declaration statement may be used instead
of a DIMENSION statement to dimension an array
used in a COMMON statement. For example, either

87

REAL 1(5,5,3)
COMMON |

or

COMMON 1(5,5,3)
REAL |

declares | as a real array of three dimensions assigned
to blank common storage.

String arrays cannot be dimensioned with COM-
MON statements; they can be dimensioned only with
STRING declaration statements. Thus

STRING S(20)(40)
COMMON S

are allowed, but

STRING S(40)
COMMON S(20)

are not.

THE EQUIVALENCE STATEMENT

The EQUIVALENCE statement allows the user to
allocate the same storage to different variables (that
may be subscripted) within a single program unit.
The form of the EQUIVALENCE statement is:

The variables separated by commas within a set of
parentheses share the same storage locations.

To use EQUIVALENCE effectively, the user
should be aware of the following internal storage

EQUIVALENCE (a,b,c,...),(d,ef,...),... conventions:

Data Type Storage Used Remarks

INTEGER 1 Word

REAL 2 Words

DOUBLE PRECISION 3 Words

COMPLEX 4 Words Real Part/Imaginary Part

STRING 3 Characters/Word Begins on a Word Boundary

STRING ARRAY 3 Characters/Word Each Element Begins on a
Word Boundary

LOGICAL 1 Word

LOGICAL ARRAY 24 Elements/Word Array Originates on a Word
Boundary

The EQUIVALENCE statement lets the user con-
trol the assignment of storage so that he may reduce
the number of storage locations used in his program
or arrange data in a convenient way. For example:

INTEGER X(10),Z2(200)
EQUIVALENCE (A,B,C),(X(1),Z(99))

Variables A, B, and C share the same storage. Array
elements X(1) and Z(99) share the same storage loca-
tion. Furthermore, this EQUIVALENCE statement
implies X(2) and Z(100) share the same location.

As a further example, the following statements
reduce the number of storage locations and store
both real and integer variables in the same array area.

88

DIMENSION ARRAY1(100,100)

INTEGER ARRAY2(200)

REAL ARRAY3(99,100)

EQUIVALENCE(ARRAY2(1),ARRAY1(1,1)),
(ARRAY1(1,2),ARRAY3(1,1))

The first 100 elements of ARRAY1 occupy the
same storage as ARRAY2 (200 integer variables take
the same number of words as 100 real variables).
ARRAYS3 shares storage with elements (1,2) through
(100,100) of ARRAY1.

An EQUIVALENCE statement must not con-
tradict any previously established EQUIVALENCE
conditions. In the example above, for instance, equiva-
lencing ARRAY3(2,1) with any element of ARRAY1
other than ARRAY 1(2,2) would be invalid.

A variable in a program or subprogram can be
made equivalent to a variable in a COMMON block.
However, two variables in COMMON cannot be made
equivalent to each other. For example:

COMMON A,B,C
DIMENSION R(3)
EQUIVALENCE (B,R(1))

This EQUIVALENCE statement causes R(1) to
share storage with B and R(2) to share storage with
C. R(3) is stored sequentially after R(2) and this
causes the size of blank COMMON to be extended.
However, it is not permitted to extend the size of
COMMON in the reverse direction. To equivalence
R(3) with B would be invalid because it would place
R(1) before the first location of COMMON storage.

String quantities may be made to share storage
with numeric variables. The user should keep in mind
that a word of storage can contain three string char-
acters, and that each string variable or element of a
string array begins at a word boundary. As an
example:

STRING S81(8),82(11)
DIMENSION X(100)
EQUIVALENCE (X(1),81),(X(3),52)

The EQUIVALENCE statement causes the first six
characters of S1 to occupy the same storage locations
as X(1), and the last two characters to share storage
with X(2). Likewise, the first six characters of S2
occupy the same locations as X(3) and the last five
characters occupy the same locations as X(4). If S1
contains ‘DELIVER’ and S2 contains ‘"MERCHAN-
DISE’, the EQUIVALENCE statement above would
cause the following shared storage:

WORD 1 | WORD 2
X(1) |DIEIL | I:VIE

T - S1 *These
X(2) Rixlx ;

- positions are
X(3) |MIEIR | Ci{HIA }82 undefined

x@) |[NiDl1 | siEix

The program below prints the equivalenced elements
of array X in A format. Note that A1 is used to print
X(2). Since only one character has been defined for
this element, A2 or A3 would print R followed by
undefined characters.

> LIST 5
1 STRING S1(8),52(11)
2 DIMENSION X(100)
3 EQUIVALENCE (X(1),81),(X(3),52)
4 S1="DELIVER’;S2="MERCHANDISE’
5 WRITE(1,30)(X(1),1=1,4)
6 30 FORMAT(A6/A1/A6/A5)
7 END
>RUN 5
DELIVE
R
MERCHA
NDISE

(@7)>

THE EXTERNAL STATEMENT

In batch implementations of FORTRAN, a sub-
routine used i a subprogram requires an EXTERNAL
statement to allow the compiler to recognize that a
particular subroutine is used in the calling sequence.
SUPER FORTRAN does not require the EXTERNAL
statement, but will accept it for reasons of compati-

bility. The form of the EXTERNAL statement is:
EXTERNAL a,b.c,...

where a, b, c,... are names of subprograms that are
used as arguments in other subprograms. This state-
ment will have no effect on the program in which it
appears.

89

SECTION 8

SUBPROGRAMS:
PROGRAMMER DEFINED FUNCTIONS AND SUBROUTINES

A computational procedure that is to be used more
than once in a program usually may be written most
efficiently as a subprogram. The subprogram may
then be called in the main program whenever the
computation is wanted.

A subprogram consists of one or more statements
which are stored together outside the main program
and which may be called by a name assigned to the
group. There are two general categories of subpro-
grams, the function and the subroutine.

A function is designed to return a specific value;
it is used in an expression as if it were a variable.
There are three kinds of functions in SUPER FOR-
TRAN: the statement function, the FUNCTION sub-
program, and library functions. Statement functions
and FUNCTION subprograms are defined by the pro-

grammer by the methods described in this section.
Library functions are functions which are stored per-
manently on the system by Tymshare, and may be
called simply by naming the function with an actual
argument list as was described in Functions, Page 25.

A subroutine is not designed to return a specific
value and cannot be used in an expression. A subrou-
tine must be called explicitly by a CALL statement,
and may or may not return values.

Two separate steps are necessary if a subprogram
is to be used:

1. The function or subroutine must be defined
(unless it is a library function which is defined
internally).

2. The function or subroutine must be called.

STATEMENT FUNCTIONS

Statement functions are useful when a single ex-
pression is to be evaluated repeatedly.

Statement functions are defined with a single non-
executable statement of the following general form:

function name (dummy argument list) = expression

Any valid name may be used as a function name. Like
a variable, a function has a type, which may be inte-
ger, real, double precision, complex, or logical. Func-
tion type is determined in the same way as variable
type; that is, by the first letter of the function name
unless a specific type declaration is used. For exam-
ple, in the function definition

SUM(X,Y,Z)=X+Y+Z

SUM is a real function since it begins with the letter S.
SUM could be defined as an integer function using
the two statements
INTEGER SUM
SUM(X,Y,2)=X+Y+2

The dummy arguments, or formal parameters, in
the function definition must be nonsubscripted vari-

able names. Their type is determined by the same
rules that determine any variable type; that is, they

assume the type indicated by spelling unless explicitly
declared in the surrounding program. The dummy
arguments are local to the statement function; that is,
their variable names may be the same as the names of
variables used in the surrounding program without
assuming the values of these surrounding variables.
When the function is called, the dummy arguments
in the definition are replaced by the actual arguments,
or actual parameters, used in the call (see Calling A
Statement Function below). The type of the actual
arguments must agree with the type of the dummy
arguments. The types of the dummy arguments are
determined by the type of the variable of the same
name in the surrounding program.

The expression in the function definition expresses
a computation using the dummy arguments. It may
also contain variables from the program or subpro-
gram in which the function is defined and called, and
may refer to other previously defined statement func-
tions or library functions.

Examples
CENT(A)=SIN(A*3.14)
EXTRAP(X,Y,2)=2+SQRT(B)+X-Y/CENT(Z)

920

A variable used in a function definition which is
not a formal parameter, such as B in the definition
of EXTRAP above, is global; that is, it assumes the
value it has in the surrounding program when the

function is called.

Statement functions cannot be recursive; that is,
the function name cannot appear in the defining ex-
pression.

CALLING A STATEMENT FUNCTION

Statement functions may be called only in the
program or subprogram in which they are defined.
The function is called by the appearance of the func-
tion name and the actual argument list in an expres-
sion. For example, if FUNT is defined as

FUNT(A,B)=A+B*2.-X/Y
it could be called in the statement
P=FUNT(D,3.).
which would be equivalent to
P=D+3.#2.-X/Y

The actual arguments used in calling a function
may be constants, subscripted variables, or more com-
plicated expressions. However, the actual arguments
in the function call must agree in type with the

dummy arguments used in the function definition.!
Thus, assuming spelling indicates type,

P=FUNT(1,3.) and
P=FUNT(X,4)

are illegal calls to the function FUNT.

When a statement function is called, the actual
arguments replace the dummy arguments in the func-
tion definition, and the defining expression is then
evaluated. This value is returned to the place where
the function was called. Thus, when FUNT is called
in the statement P=FUNT(D,3.), the current value of
D replaces the argument A in the function definition,
and 3. replaces B. The value returned and stored in P
is thus the value of the expression D+3.#2.-X/Y. The
global variables X and Y assume the values assigned
in the surrounding program. Note, however, that A
and B may be used in the surrounding program with-
out being changed by the function call, since they are
local to the function definition. Thus,

> LIST b)
1 FUNT(A,B)=A+B*2.-X/Y
X=4.
Y=2.
A=3123
B=400.08
DISPLAY ‘FUNT(7.8.) 4
IS',FUNT(7.,8.)

N hWN

1 - See Arguments, Page 95, for some exceptions to this rule.

7 DISPLAY ‘BUT A AND
B ARE'AB
8 END
>RUN 5
FUNT(7.,8.) IS 21
BUT A AND B ARE 3123 400.08
(@8)>

A function may be called anywhere that an expres-
sion may be used, such as on the right side of a re-
placement statement, or in a DISPLAY statement.

The value returned by a function call always as-
sumes the type of the function. For example, con-
sider the two function definitions

SR(A,B)=A/B
IR(A,B)=A/B
The function calls in the following statements return
the values indicated:
DISPLAY SR(3.,2))
DISPLAY IR(3.,2))

a real function
an integer function

Returns the value 1.5(3./2.)

Returns the value 1. Although
real division (3./2.) is per-
formed, an integer is returned
since IR is an integer function.

The following example illustrates the use of a state-
ment function.

>LIST
1 C: THIS PROGRAM ILLUS—,
TRATES STATEMENT -
FUNCTIONS
2 HYP(A B)=SQRT(Ax*2+Bx+2)
3 10 ACCEPT ‘ENTER A: "A
4 ANS=HYP(A 4.)
5 DISPLAY ‘HYPOTENUSE -
=",ANS
6 GO TO 10
7 END
>RUN 5
ENTER A: 3.
HYPOTENUSE = 5
ENTER A: 35
HYPOTENUSE = 5.3150729063

ENTER A: 4.

HYPOTENUSE =
ENTER A: @

INTERRUPT
3>

5.6568542495

91

The function HYP is defined in line 2 and called in
line 4. Since its type is not explicitly declared, it is
assumed to be real since the function name begins
with H.

FUNCTION SUBPROGRAMS

If the result of a computational procedure is to be
used in an expression, but the procedure cannot be
written as a single statement function, a FUNCTION
subprogram may be used. A FUNCTION subprogram
may contain any number of statements, and is an in-
dependent subprogram. Variables and statement labels

in a subprogram are local to the subprogram; that is,
they do not refer to any other variables or statement
labels in the main program or other subprograms.

A FUNCTION subprogram may call other FUNC-
TION subprograms or SUBROUTINE subprograms,
but it may not call itself.

DEFINING A FUNCTION SUBPROGRAM

A FUNCTION subprogram definition has the gen-
eral form

FUNCTION function name (dummy argument list)

END

The nonexecutable FUNCTION statement must be
the first statement of a function subprogram, and the
END statement the last. There may be one or more
RETURN statements,! but it is unnecessary to in-
clude one. The function name may be any valid var-
iable name.

Any nonsubscripted variable or array name may
be used as a dummy argument. These arguments are
merely place holders and will be replaced by the ac-
tual arguments specified when the function is called.
At least one dummy argument must be specified.

The dummy arguments assume the type indicated
by their spelling unless specifically declared in a type
declaration statement within the FUNCTION sub-
program. When the FUNCTION subprogram is called,
the types of the actual arguments must agree with the
types of the dummy arguments.?

Example: A FUNCTION Subprogram

FUNCTION HYP(A,B)

IF ((A .EQ. 0) .OR. (B .EQ. 0))
GO TO 100

HYP = SQRT(A*%2+Bx+2)

1-See The RETURN Statement, Page 96.

2 - See Arguments, Page 95, for some exceptions to this rule.

RETURN
100 DISPLAY ‘ERROR: ONE OF THE —
SIDES IS ZERO’
HYP = 0
END

When a FUNCTION subprogram is called, the com-
putations indicated in the definition are performed.
The value to be returned should be assigned to the
function name somewhere in the function definition.
When a RETURN or END statement is encountered,
the value assigned to the function name is returned to
the calling point. In the above example, HYP is set
equal to SQRT(A**2+B**2) if neither A nor B is
zero, and is set equal to zero otherwise. When the
RETURN or END is encountered, the value stored
in HYP will be returned to the point at which the
function is called.

The dummy arguments in a FUNCTION subpro-
gram are local to the subprogram, just like thedummy
arguments of a statement function. However, any
other variable names used in the FUNCTION subpro-
gram are also local to the subprogram. Such variables
do not assume their values from the main program.

Statement labels are also local to the subprogram
in which they are used. Thus, in the above example,
there could also be a statement labelled 100 in the
main program; transfer of control in the second line
of the subprogram would still transfer to the subpro-
gram statement

100 DISPLAY ‘ERROR: ONE OF THE SIDES -,
IS ZERO’

92

TYPE SPECIFICATION OF
A FUNCTION SUBPROGRAM

Like variables and statement functions, all FUNC-
TION subprograms have a type. The type of the
function determines the type of the value returned.
The function type is determined by the spelling of
the function name, as usual, unless specified in a type
declaration statement in the calling program, or in the
FUNCTION statement.

If the type of the function subprogram is to be
specified in the FUNCTION declaration, the follow-
ing form is used:

type FUNCTION function name (dummy argument
list)

The type specified using this form may be INTEGER,
REAL, DOUBLE PRECISION (or LONG), COM-
PLEX, or LOGICAL. For example, the FUNCTION
definition

REAL FUNCTION INT(A,B,I,R)
INT=A+B=I/R
END

declares INT to be real; that is, INT will return a real
value when called. |f a type had not been specified,
INT would have been assumed to be integer.

The function type can also be specified in a type
declaration statement in the calling program. Thus,
the following statements are equivalent to the above

example:

REAL INT

Calling Program

END

FUNCTION INT(A,B,,R)
INT=A+B+l/R

END

Function Subprogram

To define a string function (a function that will
return a string value) the function and type must be
declared in a FUNCTION statement of the following
form:

STRING FUNCTION function name (dummy
argument list) (length)

The type may not be declared in a separate type dec-
laration statement.

Example
STRING FUNCTION F(X,Y)(100)

END

define a string function named F with two dummy
arguments X and Y. This function will return a string
value of maximum length 100.

CALLING A FUNCTION SUBPROGRAM

A FUNCTION subprogram is called automatically
whenever its name appears followed by the actual ar-
guments required. When the function is called, the
actual arguments replace the dummy arguments in
the function definition. Then, control is transferred
to the statement following the FUNCTION declara-
tion. The function subprogram will be executed step
by step until a RETURN or END statement is en-
countered. Then the value of the function will be
returned to the calling program and execution of the
calling program will continue.

A function call is treated as an arithmetic expres-
sion and may appear anywhere that an arithmetic
expression is legal. The actual arguments may be spec-
ified as constants, predefined subscripted or nonsub-

scripted variables, array names, or arithmetic expres-
sions. The type of the actual arguments must agree
with the type of the dummy arguments in most cases.
(Exceptions are discussed under Arguments, Page 95.)

Example

The function HYP defined earlier in this section
might be called in a replacement statement, as in
line 1.5 of the following:

> LIST 5
1 ACCEPT ‘ENTER SIDES: ' XY
1.5 ANS=HYP(X,Y)
2 DISPLAY ‘HYPOTENUSE IS’ ,ANS
3 END

4 FUNCTION HYP(A,B)

5 IF ((A .EQ. 0) .OR. (B .EQ. 0))
GO TO 100

6 HYP=SQRT(A*+2+B#*%2)

7 RETURN

8 100 DISPLAY ‘ERROR: ONE OF —
THE SIDES IS ZERO’

9 HYP = 0
10 END
>RUN 5

ENTER SIDES: 3,0,
ERROR: ONE OF THE SIDES IS ZERO

HYPOTENUSE IS O

(@3)>RUN P,
ENTER SIDES: 345
HYPOTENUSE IS 5

(@3)>

NOTE: All variables are local to the main program
or subprogram in which they are defined. However,
variable values may be shared both by a main pro-
gram and a subprogram in one of two ways: Variable
values may be passed as parameters in the argument
list of the subprogram call (as is done with X and Y
in the above example), or they may be declared in
COMMON using a COMMON declaration in both the
main program and the subprogram, as was discussed
in The COMMON Declaration, Page 84.

Example

The function MEAN in the following example
computes the mean of a series of numbers. The num-
ber of values in the series is passed as an actual param-
eter to the subprogram when MEAN is called, as are
the values in the series.

> LIST b)
1 C: MAIN PROGRAM
2 DIMENSION R(200)

93

3 ACCEPT ‘TYPE NUMBER OF -,
VALUES: ’NVAL

3.1 DISPLAY ‘ENTER VALUES:’

3.2 ACCEPT (R(1),I=1,NVAL)

4 RM=MEAN(R,NVAL)

5 DISPLAY ‘MEAN ='RM

6 END

7 C: FUNCTION DEFINITION

8 REAL FUNCTION MEAN(S,N)

9 DIMENSION S()

10 z=0

11 (2=Z+S(1)),1=1,N

12 MEAN=Z/N

13 RETURN

14 END

> RUN

TYPE NUMBER OF VALUES: 10,

ENTER VALUES:
2.334,4.55,2.368,3.972,4.33,5.11,2.88,3.55,4.01 b)
4.778 5
MEAN =

(@6)>

Formal array parameters, like all arrays, must be
dimensioned. They are dimensioned in the subpro-
gram definition using either constants or asterisks.
These two methods are discussed in detail under
Arguments, Page 95. The example above uses an
asterisk array in the line

9 DIMENSION S(x)
This kind of dimensioning allows the formal array
dynamically to assume the bounds of the actual ar-

ray passed as a parameter. Thus, when the array R
is passed in the call

RM=MEAN(R,NVAL)

S assumes the bounds of R; that is, it becomes a 200
element array with the same values as R.

3.7882

SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram, or subroutine, dif-
fers from a FUNCTION subprogram in that a SUB-
ROUTINE subprogram is not designed to return one
specific value to the calling program. For this reason,
a subroutine cannot be called in an expression. It
must be called using a CALL statement, described
below. A SUBROUTINE subprogram may or may
not return values. It returns values, if any, through

its arguments or through COMMON variables.
The general form of a SUBROUTINE.definition is

SUBROUTINE subroutine name (argument list)

END

94

A subroutine need not have any arguments. To de-
fine a subroutine without arguments, the form

SUBROUTINE subroutine name

END

is used.

The first statement of a subroutine must be a
SUBROUTINE statement and the last an END state-
ment. Like function subprograms, subroutines may
contain one or more RETURN statements, but a
RETURN statement is not required.

The subroutine name may be any convenient
name; it is not considered to be of any type. If
dummy arguments are used in the SUBROUTINE
statement, they must be nonsubscripted variables or
array names. The dummy arguments assume the type
indicated by their spelling unless specifically declared
in a type declaration statement within the subpro-
gram. When the subprogram is called, the types of
the actual arguments must agree with the types of
the dummy arguments.!

As in FUNCTION subprograms, all variables (in-
cluding dummy arguments) and statement labels used
in a subroutine are local to the subroutine.

Example: A Subroutine With Dummy Arguments

SUBROUTINE TOTAL(A,N,SUM)
DIMENSION A(«)

SUM=0.

DO 10 I=1,N

SUM=SUM+A(l)

10 CONTINUE

END

This subroutine sums N numbers. A, N, and SUM are
dummy arguments which will be replaced by actual
arguments in a CALL statement. A is an array name,
and must be dimensioned in the subroutine. Using
DIMENSION A(*) to do this allows A to assume the
bounds of the actual argument.?

Example: A Subroutine With No Dummy Arguments

SUBROUTINE HZD

DISPLAY “PROGRAM NEEDS TEST DATA”
COMMON X.,Y,Z

Z=X+Y

END

CALLING A SUBROUTINE SUBPROGRAM: THE CALL STATEMENT

A SUBROUTINE subprogram must be called ex-
plicitly with a CALL statement. Unlike a FUNCTION
subprogram, it may not be called merely by the ap-
pearance of its name. The general form of the CALL
statement is

CALL subroutine name (actual argument list)

When the CALL statement is executed, the dummy
arguments are associated with values of the actual ar-
guments and control is transferred to the statement
following the SUBROUTINE declaration. The subrou-
tine statements will then be executed in the order
indicated until a RETURN or END statement is en-
countered which will transfer control out of the sub-
routine to the statement following the CALL state-
ment. The actual arguments used must agree in order
and number, as well as in type, with the dummy argu-
ments in the SUBROUTINE statement.

Example

The subroutine TOTAL defined above could be
called with the statement

1 - See Arguments, Page 95, for some exceptions to this rule.

CALL TOTAL (B,5ANSWER)

as is done in the following program:

C: MAIN PROGRAM
DIMENSION B(10)
ACCEPT B
CALL TOTAL(B,10,ANSWER)
DISPLAY ‘THE SUM IS, ANSWER
END
C: SUBROUTINE
SUBROUTINE TOTAL(A,N,SUM)
DIMENSION A(«)
SUM = 0.
DO 10 I=1,N
SUM = SUM + A(l)

10 CONTINUE
END

When this program is executed, the CALL state-
ment causes the actual arguments B, 10, and AN-
SWER to replace the dummy arguments A, N, and

2 - See Arguments, Page 95, for detailed rules regarding dimensioning of formal array parameters.

SUM in the subroutine. Thus, the ten elements of the
array B are summed and the result is stored in the
variable ANSWER. In this example the value of SUM
is returned to ANSWER in the main program. This is
one way of returning data values from the main pro-
gram to the subroutine. The other way is to use
COMMON statements to declare variables that share
the same value. The following program is equivalent
to the program above:

C: MAIN PROGRAM
DIMENSION B(10)
COMMON ANSWER
ACCEPT B

CALL TOTAL2(B,10)
DISPLAY ‘THE SUM IS’ ANSWER

95

END
C: SUBROUTINE
SUBROUTINE TOTAL2(A,N)
COMMON SuM
DIMENSION A(x)
SUM = 0.
DO 10 I=1,N
SUM = SUM + A(l)
10 CONTINUE
END

A SUBROUTINE subprogram may be called from
the main program or from any subprogram except it-
self. Subroutines may not be recursive. The SUBROU-

TINE statement is nonexecutable.

ARGUMENTS

Two types of arguments are found in subprograms,
the dummy arguments or formal parameters, specified
in the definition of the subprogram; and the actual ar-
guments, or actual parameters, specified when the
subprogram is called. Subprogram arguments are a
way of passing information (variable values, array
values, etc.) between the calling program and the
subprogram.

Dummy arguments are merely place holders. No
space is reserved for them in memory; however, they
do have type, and dummy arrays must be dimensioned
using special dimensioning methods discussed below.
Only nonsubscripted variables and array names may
be used as dummy arguments. When a subprogram is
called, the dummy arguments will be identified, one
for one, with the actual arguments listed in the calling
statement according to their order in the list. Because
this replacement process is position-oriented, the or-
der and number of arguments specified must be the
same in both the actual and the dummy argument
list. However, the names of the variables and/or arrays
used are usually different.

The actual arguments which are given when the
subprogram is called may be variables, array elements,
array names, or arithmetic expressions. For example,
the subroutine TOTAL(A,N,SUM) defined previously
(See Page 94) could be called with any of the follow-
ing:

CALL TOTAL(A,5,X)
CALL TOTAL(B,N(2),Y)
CALL TOTAL(C,R+2,2)

A, B, C are previously dimensioned real arrays.
The first CALL will cause the first five elements of

the array to be summed and the result stored in X.
The second CALL will cause N(2) (a subscripted in-
teger variable previously assigned a value) elements of
the array B to be summed and the result stored in Y.
The third CALL will cause R+2 (an expression of any
type; see below) elements of the array C to be
summed and the result stored in Z. A constant or
arithmetic expression is used only to initialize the
dummy variables. In this case, information may be
passed only to the subprogram; any values assigned
in the subprogram to the corresponding dummy var-
iable will not be transferred back to the calling pro-
gram. If the actual argument is specified as a variable,
array element, or array name, information may be
passed both to and from the subprogram. In this case,
if the value of the corresponding dummy variable is
changed in the subprogram, the value stored in the
actual argument will be changed.

All formal parameters within a subprogram have a
fixed type. If they are not specifically declared within
the subprogram, they implicitly assume the type im-
plied by their spelling. When the subprogram is called,
the types of the actual parameters must, with some
exceptions, exactly match the types of the formal
parameters.

Thus, if a subroutine header appears:

SUBROUTINE S(1,J,A)

and there are no internal type declarations, then
CALL S(M,N,X)

is valid, whereas

CALL S(X,M,N)

would be an error and would interrupt execution,
assuming spelling indicates type.

96

The following exceptions should be noted:
A. Expressions

The statement
CALL S(M,N,N+1)

where S is defined as above is allowed. SUPER FOR-
TRAN will automatically convert expressions (other
than constants and variables) to the type required by
the formal parameter.

B. Strings

A formal string must be matched by an actual
string, but the length specification of the formal
string is ignored. The length of the actual string is
dynamically adopted.

All formal array parameters of a subprogram must
be dimensioned. There are two valid ways of doing
this; specifically, using constant bounds and asterisks.

1. Constant-Bound Arrays

With this method of dimensioning formal array
parameters, the dimensioning statement appears in its
usual farm, such as

DIMENSION A(200)
REAL ALPHA (20,40)

However, dimensioning a formal parameter this way,
asin

SUBROUTINE S(X)
INTEGER X(5,7)

is understood to be a local mapping of an externally
supplied array. When an actual array is passed to the
formal parameter X in the above example, the actual
array is checked to see that it contains at least 35
words of storage. But the arrays need not agree in
type or number of dimensions. For example,

DIMENSION 1(60)

CALL S(I)

END
SUBROUTINE S(X)
INTEGER X(5,7)

END

is valid. The first 35 elements of | will be passed to
the formal name X when the subroutine is called.
1(1) will be passed to X(1,1), 1{2) to X(2,1), etc.
(See Arrangement of Arrays In Storage, Page 82).

When constant-bound arrays are used in dimen-
sioning formal parameters, subscript out of range
checking is performed recognizing the local limits
((5,7) in the above).

2. Asterisk Arrays

A formal array can be declared which dynamically
assumes the bounds of an actual array. The formal

specifications

REAL A(*,*)
DIMENSION SIGMA(+)

are two examples. When an actual array is passed to
the formal name A, above, it must be real and have
precisely two dimensions. The bounds of the actual
array are adopted. Range checking is on those actual
bounds. This is the recommended method to dimen-
sion formal parameters, since it allows control over
the type and number of dimensions of arrays used as
actual parameters. At the same time, maximum flexi-
bility and storage economy are assured.

THE RETURN STATEMENT

The statement

RETURN

in a FUNCTION subprogram or a SUBROUTINE sub-
program returns control to the calling program. In a
SUBROUTINE subprogram, the RETURN statement
causes a transfer back to the statement following the
CALL statement; in a FUNCTION subprogram, con:

trol returns to the evaluation of the expression in
which the function reference appeared. In Tymshare
SUPER FORTRAN it is unnecessary to include a
RETURN in a subprogram. If not included, program
control will return to the main program at the end of
the subprogram. However, there may be one or more
RETURN statements for conditional return to the
calling program.

97

BLOCK DATA SUBPROGRAMS

Many implementations of FORTRAN do not allow
the user to initialize, by means of a normal DATA
statement, variables which appear in COMMON. Such
implementations require that the initialization of var-
iables appearing in COMMON be done in a special
BLOCK DATA subprogram.

A BLOCK DATA subprogram contains no execut-
able statements. The first statement of the program is
BLOCK DATA. It is followed by the COMMON state-
ment. The DATA, DIMENSION, EQUIVALENCE,
and TYPE statements associated with the data being
defined follow. An example of a BLOCK DATA sub-
program is:

BLOCK DATA

COMMON /DIMS/X,Y,Z,R/ALPHA/A B,C
DIMENSION A(10), B(2,2)

DATA X/2.1/,R(3)/3%1.0/

END

Note that all elements of the COMMON block must
be listed whether or not they are initialized.

Since SUPER FORTRAN makes no restrictions on
including COMMON variables in a DATA statement,
the user would normally use a DATA statement
rather than a BLOCK DATA subprogram to initialize
these variables. However, the BLOCK DATA subpro-
gram is incorporated into SUPER FORTRAN for
compatibility.

98

SECTION 9
EXECUTION STATEMENTS

PROGRAM LINKING

SUPER FORTRAN allows very rapid linking,
preserving COMMON, between separately compiled
binary programs. This feature allows the user to
increase his total effective program size indefinitely
by linking any number of binary programs.

Program linking is accomplished with the statement
LINK “file name’’
which causes the binary program on the specified file
to be loaded rapidly with its COMMON area auto-

matically initialized to the values currently present in
COMMON storage.

The binary program file specified in the LINK
statement must be created with the CCS SAVE
command, discussed in Storing A Program On A
Disk File: SAVE, Page 107. Such binary program files
contain the binary object program as well as the
symbolic source text. However, when such a file is
linked, only the binary program is brought into
storage; the symbolic source text is not. Thus, the
text of the previous program is retained when a LINK
statement is executed.

Example
Suppose the file AREA contains the program

1 COMMON AREA

2 ACCEPT “ENTER BASE AND HEIGHT: ”,

BASE HEIGHT

3 AREA=BASE+HEIGHT/2 -

4 DISPLAY “AREA OF TRIANGLE IS:”,AREA

5 LINK “VOLUME”

6 END

and the binary program file VOLUME contains the
program whose symbolics are

1 COMMON ARBASE

2 ACCEPT “ENTER HEIGHT: “ ,HEIGHT

3 VOLUME=ARBASE+HEIGHT

4 DISPLAY “VOLUME OF REGULAR PRISM

1S:”,VOLUME
5 END

Then ...

>LOAD AREA

OK.

>RUN 5

ENTER BASE AND HEIGHT: 3.1,5.2 5

AREA OF TRIANGLE IS: 8.06

ENTER HEIGHT: 9. 5

VOLUME OF REGULAR PRISM IS: 72.54
Here, the statement LINK “VOLUME" causes the
binary object code in the file named VOLUME to
be loaded and executed. The value of the variable
ARBASE is initialized to the value of AREA com-
puted in the first program since both these values are
declared in COMMON.

Any interruptions of a linked program (including
the end of the program) return the user to the com-
mand mode indicated by the >. At this point, all
CCS commands which operate on the program text
apply to the text of the program present when the
LINK was executed (AREA in the above example).!
In particular,

® RUN runs the previous program only; to re-run
the linked program, another LINK statement
(or a CCS LINK command) must be executed.

® LIST (and FAST and COPY) will list the pre-
vious program only.

® SAVE will save the previous program only. If
SAVE is used to create a binary program file,
the binary program stored will be the previous
program and not the linked program.

No CCS commands which apply to a running pro-
gram are allowed after a linked program is interrupted,
except for NEXT and CONTINUE, which apply to
the binary program. In particular, no direct statements
or breakpoints will be accepted.

There is no limit to the number of programs that
may be linked. For example, a LINK statement
could have been included in the binary program file
VOLUME, above, to execute another binary program
file.

The SUPER FORTRAN statement LINK should be
distinguished from the CCS command LINK which
may also be used to execute binary program files. The
CCS command LINK works just like the SUPER
FORTRAN statement LINK except that the former
initializes COMMON storage to zero instead of to the
current values. When in the command mode, a direct
LINK statement may be used to link a binary program
file and still preserve COMMON. For example,

50 > @LINK “BFILE” Distinguished from >LINK
BFILE

1 - See Section 10 - CCS SUPER FORTRAN Commands, Page 101, for descriptions of the commands mentioned here.

COMMAND FILES

It is possible to instruct SUPER FORTRAN to
take commands and/or data from a file instead of
from the terminal. Such a file is called a command
file; it may be created in EDITOR, the EXECUTIVE,
or in SUPER FORTRAN with the CCS COPY TEL
TO file name command.’

When creating a command file, the commands
should be typed into the file exactly as they would
normally be given from the terminal. For example,
the command file COM may be created as follows:

> COPY TEL TO COM
NEW FILE ,

BEGIN INPUT.

COPY DATA1 TO TEL 5
COPY DATA2 TO TEL
LOAD PROG 5

LIST 5

RUN b)

QuIT 5

LOGOUT ,

Dc

>

Note that the file COM contains an EXECUTIVE
command (LOGOUT) as well as CCS commands. Any
commands that can be typed at the terminal can be
included in a command file. Since SUPER FORTRAN
program lines are simply one form of the CCS ENTER
command, program statements may also be entered
from a command file.

The commands stored in a command file can be
executed either with the CCS COMMANDS command
discussed in Executing Command Files In CCS,
Page 123, or with the following form of the OPEN
statement:

OPEN (*,”“file name"’)
For example, the statement
OPEN (*,“COMS"’)

opens COMS as a command file. Each time a com-
mand is sought, it will be taken from the file COMS.
Thus if a PAUSE or a STOP statement is executed,
CCS commands are taken from COMS rather than
entered at the terminal. Encountering the end of the
program will also cause commands to be taken from
COMS.

The statement

CLOSE ()

closes a command file. When a command file is closed,
the source of commands again becomes the terminal.

Example
Suppose the file TEST contains the commands

@DISPLAY “WE ARE IN TEST”

@DISPLAY “NOW, THE CONTINUE COMMAND:""
CONTINUE

@DISPLAY “BACK IN TEST!”

@DISPLAY “NOW, END OF COMMAND FILE:"

The following program opens TEST and executes the
commands in it.

> FAST 5

1 OPEN (x,”TEST")

2 DISPLAY “MAIN PROGRAM”

3 PAUSE “COMMANDS NOW TAKEN FROM -
TEST:"”

4 DISPLAY “BACK IN MAIN PROGRAM!”

5 DISPLAY “NOW, THE PROGRAM END:”

6 END

> RUN)

MAIN PROGRAM

COMMANDS NOW TAKEN FROM TEST:

WE ARE IN TEST
NOW, THE CONTINUE COMMAND:

BACK IN MAIN PROGRAM!
NOW, THE PROGRAM END:

BACK IN TEST!
NOW, END OF COMMAND FILE:

(@6)>

First, a PAUSE in the main program causes com-
mands to be taken from TEST. A CONTINUE in the
command file causes execution to resume at line 4.
Then the program end is encountered and commands
are again taken from TEST. When the end of the
command file is reached, control is returned to the
terminal.

After it has been opened, data can be read from a
command file by using an asterisk as the file number;
for example,

READ (*,100) N,(A(1),I=1,N)

If file number O is specified, data is always read from
the terminal, as it is with ACCEPT. However, the free
form READ statement may be used to read data from
a command file; for example:

READ (*)X,Y,Z2

1 - See Section 10 - CCS SUPER FORTRAN Commands, for descriptions of commands mentioned here.

100

If a file opened by the CCS command COMMANDS
is still open during program execution, it may be
referred to as file * in the program being executed.

For example, consider the command file named COM
which contains

> COMMANDS COM o,

LOAD DEM P
LIST P

RUN)

7o

This file is used as follows:

Command Taken
From COM:

«——— LOAD DEM

«————RUN
A was read from terminal,
but B was read from COM,

OK.
1 ACCEPT “A IS " A +———LIST
2 READ(*) B
3 DISPLAY “THIS IS B:”,B
4 END
A IS 155
THIS IS B: 7
(@) >

referred to as file * in line
2 above.

101

SECTION 10
CCS SUPER FORTRAN COMMANDS

CCS commands are not part of the FORTRAN IV
language but are special commands in the Tymshare
SUPER FORTRAN system allowing easy, efficient
program manipulation. CCS includes commands for
creating, storing, retrieving, editing, executing, and

debugging SUPER FORTRAN programs.

Whenever CCS types a >, the user is in the com-
mand mode. He then may use any of the CCS com-
mands described in this section.

LINES AND LINE NUMBERS

Each line of a SUPER FORTRAN program has a
line number. The numbered line may contain one
statement or several executable statements separated
by semicolons; the line is terminated by a Carriage
Return. Line numbers may range from .001 to
999.999, inclusive.

Examples

35 10 CONTINUE Has line number 35,

but statement label 10.

40.99 1=J+2;2(1)=X(1)+Y(1) Has line number 40.99;
it contains two execut-
able statements.

Line numbers are independent of any statement
label, and may not be referred to in control state-
ments. Thus,

DO 10 I=1,N
would be a legal reference to the first line above, but
DO 35 I1=1,N

would not.

There is no limit to the number of statements that
may be contained in the same line (except that im-
posed by available program storage). However, the
following restrictions must be observed when more
than one statement is included in a line:

® Only the first statement in the line may be
labelled.

® Only executable statements may be contained
in the same line.

The Line Feed may be used to continue a CCS line.

All statements are compiled and executed accord-
ing to the order of their line numbers. When more
than one statement is contained on the same line,
they are executed from left to right and listed as
created, with semicolons separating the statements.

The maximum number of lines in a SUPER FOR-
TRAN program is 1023; there is no limit to the num-
ber of statements.

LISTING A PROGRAM

All or part of a program can be listed in a for-
matted form for easy reading, or in an unformatted
form for quicker printing. It may be listed either on
the terminal or on a file.

THE LIST COMMAND:
FORMATTED LISTINGS

This command lists all or part of a program in a
formatted form with line numbers, statement labels,

and statements aligned vertically. It has the general
form

> LIST -I:Iine numbers or ranges:]- {TO file name}p
where everything in braces is optional.
The command

> LIST 5

lists the entire program on the terminal.

102

Example
> LIST)
1 C: PROGRAM TO COMPUTE
THE AREA OF A TRIANGLE
3 C:
5 ACCEPT “ENTER VALUES—l
OF ABC",ABC
7 S=(A+B+C)/2.
9 AREA=SQRT(S(S-A)*(S-B)
*(S-C))
1 WRITE (1,200) A,B,C,AREA
13 200 FORMAT (4F16.8)
15 STOP
17 END
>

The command

> LIST line number 5

types the line with the specified line number (if one
exists) together with its line number.

Example

>LIST 95

9 AREA=SQRT(S*(S-A)*(S-B) ,
*(S-C))
The command
> LIST starting line number:terminating line
number)

lists on the terminal all lines in the specified range (if
any exist) together with their line numbers. The range
consists of all lines from the starting line number to
the terminating line number, inclusive.

Example

>LIST 11:15 5

11 WRITE(1,200) A,B,C,AREA
13 200 FORMAT(4F16.8)
15 STOP

Several line numbers and/or ranges may be specified
in the LIST command by separating the line numbers
and ranges with commas.

Example
> LIST 1:4,7,13:15 5
1 C: PROGRAM TO COMPUTE
THE AREA OF A TRIANGLE
3 C:
7 S=(A+B+C)/2.
13 200 FORMAT (4F16.8)
15 sTOP

To list all or part of a program to a file, use any
of the above forms with the TO file name option.
For example,

> LIST TO PRETTYFILE 5 Lists entire program
on the file named
PRETTYFILE.

NEW FILE 5

OK.

> LIST 1,3:5,49:60 TO @F1 Lists the lines 1, 3

through 5, and 49

through 60 on the

file named @F1.

NEW FILE 5

OK.

When lines are listed to a file, the computer re-
sponds with OLD FILE or NEW FILE depending on
whether or not the file specified already exists in the
user’s directory. These responses are discussed in
detail on Page 107.

THE FAST COMMAND:
QUICK LISTINGS

An unformatted quick listing can be obtained with
the FAST command. FAST has the general form

> FAST {line numbers or ranges}
{TO file name} b
where everything in braces is optional.
The various forms of FAST are analogous to the

forms of LIST. For example, a quick listing of the
previous program could be obtained as follows:

> FAST b

1 C: PROGRAM TO COMPUTE THE AREA
OF A TRIANGLE

3 C:

5 ACCEPT “ENTER VALUES OF A,B,C",—¢
AB,C

7 S=(A+B+C)/2.

9 AREA=SQRT(S*(S-A)*(S-B)*(S-C))

11 WRITE (1,200) AB,C,AREA

13 200 FORMAT(4F16.8)

15 STOP

17 END

Other examples are:

>FAST 3

> FAST 5:15 ps)

>FAST 1,7,11:17 5

> FAST TO QUICKFILE
> FAST 5:17 TO TRI ,

103

LINE ADDRESSING

Like LIST and FAST, many other CCS commands
allow the user to specify the line or lines upon which
the command is to operate. This may be done by
using any of the various methods of line addressing
provided by CCS to specify the address of a single
line or range of lines. The address of a range of lines
always takes the form
ay:a,
where a; is the address of the first line in the range
and a, is the address of the last line in the range.

To illustrate the various methods of line address-
ing, we assume that the following program has been
entered into CCS:

10 A=2.7;B=7.1
20 ACCEPT C
25 D=A+C+B
30 DISPLAY D
35 END

ADDRESSING A LINE
BY ITS LINE NUMBER

The easiest way to address a line is by its line
number, as we did in the previous section on LIST
and FAST.

Example

> FAST 10 2
10 A=2.7,B=7.1
>

ASTERISK ADDRESSES

An address of the form

*

n
where n is an integer, refers to the nth line in the pro-
gram.

Examples

> FAST *15
10 A=2.7,B=7.1
>

> LIST #2:+4 2

20 ACCEPT C
25 D=A+C+B
30 DISPLAY D

>

ADDRESSING THE CURRENT LINE

The current line, or line upon which CCS has most
recently operated, may be addressed by a period. For
example, since we just listed the fourth line in the
program, we may list it again as follows:
> LIST)

30 DISPLAY D
>

The command
> FAST .,10:25 TO FILEZQ

writes the current line and lines 10 through 25 on
the file named FILE2.

ADDRESSING THE LAST LINE
IN A PROGRAM

A dollar sign may be used to address the last line
in a program.

Example 1
> FAST $ 2

35 END

>

Example 2

> LIST +3:$ 2
25 D=A+C+B
30 DISPLAY D

35 END
>

RELATIVE ADDRESSING

The user may address any line by indicating its
position relative to another line. Such relative ad-
dresses may be specified as follows:

a+n Refers to the nth line after the line addressed
by a.
a-n Refers to the nth line preceding the line ad-

dressed by a.
Here, a is a line address and n is an integer.
Example

Lines 20 through 30 in the above program may be
addressed as in the following:

> LIST 10+1:$-1)

20 ACCEPT C
25 D=A+C+B
30 DISPLAY D

104

These lines could also be listed using any of the following:

> LIST 10+1:10+3 5
> LIST 10+1:35-1 Qo
> LIST %2:35-1)
> LIST 20:.-1 2

If the current line is the last line in the program when this command is executed, lines 20

through the line before the last line will be listed.

ENTERING, STORING, AND RETRIEVING A PROGRAM

ENTERING STATEMENTS
FROM THE TERMINAL

Statements may be entered from the terminal by
using any one of three forms of the ENTER com-
mand. In all cases, the word ENTER is optional.

ENTERING STATEMENTS
BY LINE NUMBER

A single line may be entered from the terminal
when in the command mode by using either

> line number statement or statementsD
or
> ENTER line number statement or statements 2

A Line Feed may be used to continue the line on
the next physical line as it appears on the terminal.
The entire line must be terminated by a Carriage Re-
turn. If the line number specified in the command is
already the line number of a statement in the pro-
gram, the line typed replaces the original line. If the
line number specified in the command is not already
given to a line in the program, the line typed is in-
serted into the program according to line number
order. Remember that more than one statement may
be included in the same line only if all statements in
the line are executable.

Example

If this program has already been entered,
1 DIMENSION X(10),Y(10)

2 INTEGER 2z

3 Z(=X()+Y(D);w()=(X(1+Y(1))12
4 END

the commands

>2 INTEGER Z(10)
>2.5 DO 10 I1=1,10 5
> ENTER 3.5 10 CONTINUE _,
>3 Z(D=X(+Y():;wi=znt2 5

produce the program

1 DIMENSION X(10),Y(10)
2 INTEGER 2(10)

2.5 DO 10 1=1,10

3 Z(N=X(D+Y(1);W(1)=2Z(1)12
3.5 10 CONTINUE

4 END

Since the word ENTER is optional, the user can
create a program by typing each line preceded by its
intended line number. Lines can be changed, or new
lines inserted, simply by using line numbers which
are identical to, or fall between, line numbers pre-
viously used in the program.

ENTER WITH A
LINE NUMBER RANGE

A line or range of lines may be entered without
typing line numbers by using ENTER in either of the
following forms:

> ENTER line number:line number -
lines to be entered

Dc

or

> line number:line numberp
lines to be entered
Dc

After the Carriage Return following the command,
CCS prompts the user with an @ sign. The user may
now type his lines without line numbers; CCS prompts
with the @ sign at the beginning of each line. To ter-
minate the command, type a Control D immediately
after the @. CCS assigns line numbers to the lines
typed, beginning with the first number in the range
and choosing as increment the first of 1, .1, .01,
and .001 that will allow the lines typed to fit in the
range specified. All statements already in the pro-
gram with line numbers in the range specified in the
ENTER command are deleted; then the lines typed
are entered into the range.

Example
If this program has already been entered,

1 DIMENSION X(10),Y(10)

2 INTEGER Z

3 Z(M=X+Y(1);w(n)=(X(1)+Y())t2
4 END

the following ENTER command
>2:3)

@INTEGER Z(10)

@Do 10 1=1,10
@Z(1)=X(N+Y();,wW(1)=2(1)12 b
@10 CONTINUE

@p°

>

produces the program

The four state-
ments typed are
assigned line num-
bers between 2
and 3 in incre-
ments of .1. All
old lines in the
range 2:3 are de-
leted.

1 DIMENSION X(10),Y(10)

2 INTEGER 2(10)

2.1 DO 10 1=1,10

2.2 Z()=X()+Y(1);w(1)=2(N12
2.3 10 CONTINUE

4 END

ENTER WITH PROMPTED
LINE NUMBERS

The third form of ENTER allows the user to enter
a line or range of lines by specifying a starting line
number, an increment, and, if desired, a terminating
line number. The command may be used in either of
the following forms:

> ENTER line number(increment)line number)
or

> line number(increment)line number)

105

During this form of ENTER, CCS prompts the user
by typing, at the beginning of each line, the line num-
ber to be assigned to the next line entered.

The terminating line number in the command is
optional. When it is specified, CCS responds to the
command by first deleting all lines from the starting
line number to the terminating line number, inclusive;
then it begins prompting the user as he types his lines.
When" the terminating line number is reached, CCS
terminates the command. However, the user may ter-
minate the command at any time before the terminat-
ing line number is reached by typing a Control D just
after a line number is printed.

Example

>10(1)100) In response to this command,

10 A=5;B=2xA bs) CCS first deletes lines 10

11 X=SQRT(A+B) 2 through 100 and then enters

12 Y=SQRT(A-B) o the new lines typed.

13 D¢ If a D¢ were not used to ter-
minate the command, CCS
would terminate it after line
100 was typed.

When the terminating line number is omitted from
the ENTER command, statements will be accepted
until the user types a Control D after a prompted line
number. Thus, the above program could also be en-
tered as follows:

>10(1) 2

10 A=5,‘B=2*A2

1 X=SQRT(A+B)Z)
12 Y=SQRT(A-—B)2
13 D¢

>

When using ENTER in this form, the user is protected
against accidentally changing or interleaving program
lines. If the next entry would cause changing or inter-
leaving of lines, CCS automatically terminates the
command instead of giving a line number prompt.

Example

> FAST)

20 DISPLAY 2

>1(10) 5

1 ACCEPT X)Y ,

11 Z=SQRT(Xx**2+Y*x2) o

> CCS terminates the com-
mand, since the next en-
try (line 21) would be
entered after the exist-
ing line 20.

106

SYNTAX ERRORS DURING ENTER

In any of the three*forms of ENTER, a syntacti-
cally incorrect statement causes an error message to
be typed. Control is returned to the user as follows:

If a single line is being entered, CCS types a >.
The user may then correct the statement or type an
entirely different line with a different line number.

Example
>10 A=B++D

* MISUSED
> 10 A=B+C+D)
>

If lines are being entered with the @ prompt, CCS
reprompts with an @ after printing the error message.
The statement may then be typed correctly. The cor-
rected statement is entered into the program in place
of the incorrect statement.

Example

> 10:203
@ A=B+«D 2

* MISUSED
@A=B+C+D 5
@

If lines are being entered with line number
prompts, CCS reprompts with the same line number
and the statement may be corrected.

Example

>10(2) 5
10 A=B++D

*+ MISUSED
10 A=B+C+D
12

ENTERING A PROGRAM
FROM PAPER TAPE

If the user’s program is on paper tape, either of
two commands may be used to enter it from paper
tape. .

If each line of the program on paper tape has a
line number, use the command

>LOAD TEL Py
The system will type

EACH LINE MUST HAVE A LINE NUMBER.
BEGIN INPUT.

Now turn on the paper tape reader. After the tape is
read, turn off the paper tape reader and type a Con-
trol D.

The LOAD TEL command deletes any program
lines already in CCS before it loads the new program
lines. Thus LOAD cannot be used to enter corrections
from paper tape.

If the lines of the program on paper tape do not
have line numbers, any of the following forms of the
COPY command may be used to enter the program:

> COPY TEL TO line number:line numberp

> COPY TEL TO line number(increment)
line number b}

> COPY TEL TO line number(increment) by
After all three forms, the system will type

NO LINE MAY HAVE A LINE NUMBER.
BEGIN INPUT.

Now turn on the paper tape reader. After the tape is
read, turn off the reader and type a Control D. State-
ments are assigned line numbers as specified in the
COPY command used.!

These two commands should not be used for ter-
minal input because syntactically incorrect statements
are not printed until Control D is pressed, and are
then discarded, thus preventing immediate keyboard
correction.

STORING A PROGRAM
ON PAPER TAPE

A program entered into CCS may be stored on
paper tape either with or without line numbers.

To store the entire program with line numbers,
use either

> LIST TO TEL To store a formatted listing
of the program on paper
tape.

or

> FAST TO TEL To store a quick listing of

the program on paper tape.

Then turn on the paper tape punch and type a Car-
riage Return. The program will be punched on paper
tape and printed on the terminal. After punching is
completed, turn the tape punch off.

The commands LIST and FAST may also be used
to store part of the program on paper tape using the
usual forms of these commands with TEL specified
as the output file.

1 - The rules for assigning line numbers during COPY are like those for the various forms of ENTER. For details,

see The COPY Command, Page 111.

Examples
> LIST 10:55 TO TEL
> FAST x1:%100,500:$-1 TO TEL

Programs stored on paper tape with LIST or FAST
may be read back into CCS using the LOAD TEL
command discussed in the preceding section.

To store all or part of the program on paper tape
without line numbers, use the following form of the
COPY command:

> COPY line list TO TEL

After typing the command, turn on the paper tape
punch and type a Carriage Return. The program will
be punched on paper tape and printed on the termi-
nal without line numbers. After the program is
punched, turn the tape punch off.

This form of COPY may be used to save either all
or part of the program depending on which lines are
specified in the line list. The line list may contain any
valid addresses of single lines or line ranges, separated
by commas.

Examples

> COPY 10:500 TO TEL

> COPY 10,15:20,$ TO TEL
>COPY x16:.-5 TO TEL

Programs stored on paper tape with COPY may be
read back into CCS using the COPY command in the
forms discussed in the preceding section.

STORING A PROGRAM ON A
DISK FILE: SAVE

The command SAVE allows the user to store his
program on a disk file, either as

® the symbolic source text alone, or

® the symbolic text and the binary object program.

The symbolic version offers more economical use of
disk storage; the symbolic text and binary program
together allow more rapid loading and execution by
means of the LINK command.’

The symbolic text stored on a file with SAVE
always includes all program lines, together with their
line numbers.

The general form of SAVE is
>SAVE file name 5

After typing the Carriage Return following the com-
mand, the system responds with

TEXT ONLY?

1-See The LINK Command, Page 109.

107

The user may now type either a Y to create a sym-
bolic program file, or an N to create a binary program
file. He then types a Carriage Return. If the response
is Y, CCS types

NEW FILE If there is no file with the chosen
name in the user’s directory.

or

OLD FILE If there is a file with the chosen

name in the user’s directory.

In either case, the user may type a Carriage Return
to confirm the command, or an ALT MODE or ES-
CAPE to abort it.

Example

>SAVE PROG

TEXT ONLY?Y b5
OLD FILEe ALT MODE aborts this com-

mand, so no new text is saved

>SAVE NPROG > on the old file.

TEXT ONLY?Y)

NEW FILE) This command is confirmed;
CCS prints OK. and saves a
symbolic version of the pro-

gK' gram on the file NPROG.

If the symbolic option is taken and the OLD/NEW
FILE response is confirmed, CCS saves the program
text on the specified file. However, if the binary op-
tion is taken, the OLD/NEW FILE message is not
typed until CCS checks the program for faulty
structure (such as a missing END statement, duplicate
declaration statements, etc.). If the program structure
is faulty, a diagnostic is typed. Otherwise, the
OLD/NEW FILE message is typed, the user confirms
it, and the binary, compiled program is stored on the
file, followed by the symbolic text.

Example: Creating A Binary Program File

>10 ACCEPT AB,.C b
> 30 DISPLAY Do
>SAVE APROG) The user writes a program
and attempts to save a bi-
nary version of it on the
file named APROG.

TEXT ONLY?N b

MISSING FINAL ol CCS detects a structural er-

“END"’ ror and types the appro-
30 DISPLAY D priate reference line in the
>40 END) program. The user corrects

>SAVE APROG , the error and attempts the

SAVE again.

108

TEXT ONLY?N 5

NEW FILE 2
OK. This time, the program
structure is sound. CCS
saves the compiled pro-
gram followed by the sym-
bolic program on the file
S named APROG.

Symbolic program files may be entered into CCS
using either the LOAD or the MERGE command,
discussed on Page 109. They are much slower to enter
and execute than binary program files since CCS must
compile the symbolic text each time the program is
run. However, they do have the following advantages:

® Symbolic program files use less storage space
than binary program files.

® Program statements on symbolic program files
may be merged with program statements already
entered into CCS by using the MERGE com-
mand; the symbolics stored on binary program
files may not be so merged.

® The user may type only part of his program
and then save it on a symbolic file to be re-
trieved and completed later. This is not pos-
sible with binary program files, since struc-
turally incomplete programs abort the SAVE

command with the N option, as discussed
above.

The compiled program stored on a binary program
file may be loaded and executed extremely rapidly
by using either the SUPER FORTRAN link state-
ment! or the CCS LINK command.?

The symbolic text stored at the end of the file
may also be loaded into CCS using the LOAD com-
mand; however, MERGE will not enter the symbolics
of a binary program file.

The primary advantages of binary program files
are that they:

® May be loaded and executed extremely rapidly.

® May be linked to other program files, thus
allowing a larger total program size.!

® Help provide complete program security, since
linked programs may not be listed.?

Binary files are thus very useful for debugged pro-
duction programs that are to be run quite often,
while symbolic files are more useful during program
developmeént and for smaller programs that are to be
run only occasionally.

RETRIEVING A STORED PROGRAM

A program stored on a file with the SAVE com-
mand may be retrieved at any time by using the
appropriate command from the following table:

SUMMARY OF COMMANDS FOR RETRIEVING A SAVED PROGRAM

Effect On

Command Model Symbolic Program File

Effect On

Binary Program File Remarks

LOAD file name p>) Clears current program
(and all other informa-
tion) from CCS, then
loads program from

specified file.

Each line in the file must
have a line number; the
lines must be stored in
line number order.

Clears CCS, then
loads symbolic
text only.

MERGE file name 5 Merges by line number
the contents of the spec-
ified file with any cur-
rent program. Lines
from the file replace
any current program
lines with the same line
number.

Each line must have a line
number; the lines may be
stored in any order. Much
slower than LOAD.

May not be used
on binary pro-
gram files.

May not be used on
symbolic program files.

LINK file name h»)

Current program text is
retained. COMMON area
of binary program is ini-
tialized to zero.

Loads binary ver-
sion of program
and executes it
immediately.
Does not load
symbolic text.

1 - See Program Linking, Page 98.
2 -See The LINK Command, Page 109.

The LOAD Command

This command allows rapid loading of symbolic
program text from either a symbolic program file or a

binary file. It has the form
> LOAD file name o

After the Carriage Return is typed, CCS prints OK.
It then completely clears any current program (in-
cluding variable values and all other information) and
loads the program text from the specified file. Each
line in the file must have a line number; the lines in
the file must be stored in ascending line number
order.

During program loading, syntactically incorrect
statements are printed with error messages and then
discarded. These statements should be entered cor-
rectly before the program is executed.

An ALT MODE or ESCAPE during LOAD aborts
the command. No information is retained.

Example

>LOAD TRI 5
OK.
>

After a program is loaded, it is ready for execution
or modification. If the user modifies his program and
wishes to keep the modifications, he should save the
program again under either the same file name or a
different file name.

Since LOAD completely clears any current pro-
gram, it can be used for initial program entry only.
The MERGE command may be used to merge pro-
gram statements from a file with the current program
statements.

The MERGE Command

MERGE allows the user to insert corrections and
additions from a file into a program currently in CCS.
It should not be used for initial program loading since
it is much slower than LOAD. The form of this com-
mand is

> MERGE file name 2

After the Carriage Return, CCS loads the program
from the specified file. Each line in the file must have
a line number; however, the lines may be stored in
any order. If any line on the file has the same line
number as a line in the current program, it replaces
the line in the current program.

109

Just as during LOAD, syntactically incorrect state-
ments are printed with error messages and then dis-
carded. These should be entered correctly before the
program is executed.

NOTE: MERGE may not be used to merge the sym-

bolic text from a binary program file (created with
the N option to the SAVE command).

The following example uses the LOAD command
to enter a program stored on the file PROG, and then
uses the MERGE command to merge corrections from
the file CORR. The file PROG contains the text

1 ACCEPT XY

2 Z=SQRT(X=x*2+Y)

3 THETA=ATAN2(X,Y)
4 END

and the file CORR contains

3.5 DISPLAY X,Y,ZTHETA
2 Z=SQRT(X**2+Yx+2)

thus,
>LOAD PROG 5
OK.
>MERGE CORR
> LIST)
1 ACCEPT XY
2 Z=SORT(Xx*#2+Y*%2)
Line 2 from CORR replaced
line 2 from PROG.
3 THETA=ATAN2(X.,Y)
35 DISPLAY X,Y,Z THETA
Line 3.5 from CORR was
merged between lines 3 and 4
from PROG.
4 END
>

Note that the line numbers in the merged file CORR
are not ordered. This file could not be entered with
LOAD.

THE LINK COMMAND
The CCS command
> LINK file name b)

has very nearly the same effect as the SUPER FOR-
TRAN statement LINK. It loads the binary program
from the specified file (created with the N option to
the SAVE command) and begins executing the pro-
gram immediately. The text of any current program
is retained; the text on the file is not brought into
CCS. When LINK is executed, the binary program

110

is loaded with its COMMON area and local storage
automatically initialized to zero.

Example

A binary program on the file named CROOT is
rapidly loaded and executed as follows:

> LINK CROOT P
TYPE THE NUMBER: 8.352 5
CUBE ROOT: 2.028913

>

Any interruptions of the linked program (including
the end of the program) return the user ta the com-
mand mode indicated by the >. At this point, all
CCS commands which operate on the program text

apply to the text of the program present before the
LINK was executed. In particular,

® RUN runs the previous program only; to rerun
the linked program, another LINK command
(or a SUPER FORTRAN LINK statement)
must be executed.

® LIST, FAST, and COPY will list the previous
program only. SAVE saves the previous pro-
gram only. This ensures program security, as
discussed below.

No CCS commands which apply to the running
program are allowed after a program executed with
the LINK command is interrupted, except for NEXT
and CONTINUE, which apply to the binary program.
In particular, no direct statements or breakpoints will
be accepted.!

Example

> LOAD CROOT 2

OK.

> RUN 2

TYPE THE NUMBER: 7777
CUBE ROOT: 19.812413

(@7)>LINK CHECK

19.812413 CUBED = 7777.000

Loads symbolic program on file CROOT.

Executes this program.

Loads binary program on file CHECK.
ROOT TO BE CHECKED IS 19.812413 b

> LIST bs)
1 *CROOT: CUBE ROOT PROGRAM Symbolics of CROOT
2 ACCEPT “TYPE THE NUMBER: " X are retained. They are
25 IF (X .EQ. 0) (APPROX1=0,GO TO 20) /istedwith LIST,and....
3 APPROX0=X/3 ®
4 10 APPROX1=(2+*APPROX0**3+X) /
(3*APPROXO0x%2)
5 IF (ABS(APPROX1-APPROXO0) .GE. 1E-8)
(APPROX0=APPROX1;GO TO 10)
6 20 WRITE (1,100) APPROX1
6.5 100 FORMAT(“CUBE ROOT: ",F11.6)
7 END
> RUN) ... executed with RUN.
TYPE THE NUMBER: —45.92
CUBE ROOT: -3.580450

(@7)>LINK CHECK 2

ROOT TO BE CHECKED IS -3.580450

-3.580450 CUBED = -45.900
>

LINK must be used to
execute CHECK again.

1 - See Executing A Program, Page 113, and Program Control And Debugging Aids, Page 116, for

details on the features discussed in this paragraph.

Since linked binary program files cannot be listed
in CCS, the user may ensure security for files he
wishes to share by storing them with the N option
to the SAVE command. To prevent other users from
knowing the name of the link file (so that they can-
not LOAD the symbolics and then list them), the
link file may be shared by running it from a remote,
proprietary command file, which can never be copied
or listed. (See the Tymshare EXECUTIVE Manual,
Reference Series, for details.)

In the rest of this section we discuss two com-
mands, COPY and MOVE, which may be used for
program storage and retrieval as well as for manip-
ulating lines within CCS.

THE COPY COMMAND

This command allows the user to copy all or part
of a program. It may be used to

® Enter program lines from a file, provided the
lines on the file do not have line numbers.

® Store program lines on a file without line num-
bers.

® Enter program lines from paper tape, and store
program lines on paper tape (as was discussed
on Pages 106 and 107).

® Copy one file to another file, no matter what
the file type.

® Copy lines from one part of a program to
another.

The general form of the command is
> COPY source TO destination)

It copies the source to the destination; the source is
never deleted by this command.

The source can be either a file name (including
TEL for the terminal) or a line list (a list of one or
more line or range addresses, separated by commas).
If the source is a line list, the destination may be
omitted to list the source lines on the terminal with-
out line numbers. For example,

> COPY x1,50:100,$)

lists the first line in the program, lines 50 through
100, and the last line in the program on the terminal
without line numbers. This command is equivalent to

> COPY %1,50:100,$ TO TEL 5

111

The destination can be either a file name (including
TEL) or one of the following:

line number:line number
line number(increment)line number
line number(increment)
The form
> COPY source TO line number:line number p)

first deletes the lines in the destination range and
then inserts a copy of the source lines into that range,
numbered beginning with the first line number speci-
fied and choosing as increment the first of 1, .1,
.01, and .001 which will fit the specified range. If
the source is a file, no line in the file may have a
line number.

Example

Suppose the file AA contains the lines

ACCEPT XY
Z=ABS(X-Y)

DISPLAY Z

then

>COPY AA TO 50:70@
OK.

> FAST >

50 ACCEPT XY
51 Z=ABS(X-Y)
52 DISPLAY 2
>

The form

> COPY source TO line number(increment)line—\t
number D

is the same as the previous form except that the in-
crement is specified by the user. For example, using
the file AA above.

> COPY AA TO 50(10)70, Note that this com-
OK. mand deletes any
> FAST lines between 50 and

50 ACCEPT XY 70 before inserting
60 2=ABS(X-Y) the lines from AA.

70 DISPLAY Z
The form
> COPY source TO line number(increment)p

inserts a copy of the source lines into the program,
numbered beginning with the line number specified
in the destination, in the increment specified. If the
source is a file, no line on the file may have a line
number.

112

Example

>COPY LINES TO TEL 5
Z1=ABS(X+Y)
Z2=ABS(X-Y)

> FAST 5

10 ACCEPT X)Y
50 DISPLAY 21,22
> COPY LINES TO 20(10))
OK.

> FAST 5

10 ACCEPT XY
20 Z1=ABS(X+Y)
30 Z2=ABS(X-Y)
50 DISPLAY 21,22
>

When this form is used, the user is protected from
deleting or interleaving program lines. If a line being
copied would be assigned a line number that would
cause deletion or interleaving, a message is printed
and the command is terminated. All lines up to, but
not including, the offending line number are copied.
Thus,

>FAST 5

10 ACCEPT XY

50 DISPLAY 21,22

> COPY LINES TO 35(15) b\

OK.

TOO MANY LINES FOR SPECIFIED RANGE

Z2=ABS(X-Y)

> FAST 5

10 ACCEPT XY

35 Z1=ABS(X+Y)

50 DISPLAY 21,22 The second line in LINES

> is not copied since it would
be assigned line number 50.

NOTE: The CCS command
COPY file name TO file name

is equivalent to the EXECUTIVE command of the
same form. Any file name (including TEL) may be
used as. source or destination;, the files specified need
not contain SUPER FORTRAN statements. The
source file may contain SUPER FORTRAN state-
ments with line numbers, if it does, the statements
will be copied to the destination file with line num-
bers.

Additional Examples Using COPY
>COPY 10:25 TO 75:1002

Deletes lines 75 through 100 and
then inserts lines 10 through 25 re-
numbered in the range 75 to 100.
Lines 10 to 25 are undisturbed.

>COPY 1:100 TO EE

Copies lines 1 through 100 to file
EE without line numbers. Lines 1
through 100 are undisturbed.

> COPY EE TO 200:300

Deletes lines 200 through 300, then
inserts the contents of the file EE
numbered in the range 200 to 300.
The lines on file EE must not have
line numbers.

>COPY A TO B

Copies the contents of the file A
to the file B. Files A and B may be

any type.
> COPY TEL TO 40:50 2

Deletes lines 40 through 50 and in-
serts the lines typed on the terminal
(or read from paper tape) during
this command, numbered in the
range 40 to 50. Statements typed
on the terminal must not have line
numbers. A D€ terminates the com-
mand.

>COPY TEL TO TEXT

Copies the lines typed on the termi-
nal (or read from paper tape) during
this command to the file named
TEXT. Lines copied may comprise
arbitrary text. A D€ terminates the
command.

> COPY ABC TO 100(5)200

Deletes lines 100 through 200 and
inserts the lines on the file ABC
numbered in the range 100 to 200
beginning with line number 100 in
increments of 5. The lines in ABC
must not have line numbers.

> COPY 3:10,x500:$ TO PROG)

Copies lines numbered 3 through
10, and the 500th line in the pro-
gram through the last line, to the
file named PROG without line num-
bers.

> COPY @T2 TO TEL 5

Copies contents of the file named
@T2 to the terminal. @T2 may be
any symbolic file. If the file con-
tains a SUPER FORTRAN program,
the entire program, including any
line numbers, is printed.

THE MOVE COMMAND

Program lines may be moved to a file or line range
using the MOVE command. The general form of this
command is

> MOVE line list TO destination)

The destination can be either a file name (including
TEL for the terminal) or one of the following:

line number:line number
line number(increment)line number

line number(increment)

The saurce line list is deleted when MOVE is executed.
Otherwise, MOVE works exactly like COPY.

113

Examples
>MOVE 1,20:50 TO SAVE b

Moves lines numbered 1 and 20
through 50 to the file named SAVE
without line numbers, then deletes
them from the program.

>MOVE #1:$-50 TO Ao

Moves the first line in the program
through line $-50 to the file named
A without line numbers, then de-
letes them from the program.

>MOVE 1:10 TO 150:160@

Deletes lines 150 through 160, in-
serts lines 1 through 10 into the
range 150:160 (renumbered begin-
ning with 150 in increments of the
first of 1, .1, .01, and .001 that fits
this range), then deletes lines 1
through 10.

>MOVE 1:10 TO 150(2)170 5

Deletes lines 150 through 170, in-
serts lines 1 through 10 into the
range 150 to 170 (renumbered be-
ginning with 150 in increments of
2), then deletes lines 1 through 10.

EXECUTING A PROGRAM

To begin execution of a symbolic program after it
is entered, use the command

> EXECUTE
or
> RUN 5

Program execution will start with the first executable
statement.

When a free form terminal input statement is exe-
cuted, a bell will ring, signaling that data is to be
typed from the terminal. One value must be typed
for each variable in the input list.

Execution will terminate at the end of a program,
when a PAUSE or STOP statement is executed, or

when an error is detected. In addition, the user may
interrupt execution by pressing the ALT MODE or
ESCAPE key, or by setting breakpoints with the
BREAK command before executing the program.
These features are discussed in detail in Program Con-
trol And Debugging Aids, Page 116. Whenever execu-
tion is terminated, CCS prints a message (such as an
error diagnostic when an error is encountered, or
PAUSE when a PAUSE statement is encountered).
It then prints either

>

or

(@line number)>
or

line number >

114

Bl

3y} uo pa.ols si weibosd a1ud syl ‘paniwo 4 {leuofrdo si S| PUe | S 4 Ul lsi| aulj 3y

$'0L-$:00L°0G*:L+ :3s| aul| e jo ajdwex3 :310N

*3j14 91joquiAs e y1im se 1snl
weiboud jo soijoquwiAs ui sbulig gvol

‘siaquinu aulf
Yum “1x31 91j0qQUIAS AqG pamojjoy

@ aweu 9|y Avon weiboud yo uorsien Aseuiq sares

‘pauielas s wesboid snoinaid aj1 wedboud
Aue O 1xa} ‘Uo1INJaxa suels pue weid e NéATNO LX3L AHYNIE
-04d J0 uoissan Aseuiq ui sbuiig NI @ aweu 3y MINI ¢ sweu a1y IAVS 10 NI
C (1)L OL 05:0z IAOW
< 00L(5)0L OL D AdOD
‘ajdwexa 104
‘abues uoneunsap ayl ui paiyioads aq C aweu ajiy 01 18! 3ul) IAOW siaquinu
Aew 1UBWAIOUI UY "924N0S 3yl salajap @ abuels 1aquinu aul] O aweu ajiy AdOD aul| oYM
Jan8u AdQD "824Nn0s 3y} saidjap JA0N Caweu ajy 0L 181l Ul AdOD 3|} oljoquiAg
‘3943 ueyl o (Bunsi pallew.oy)
19158} YINW sI QVOT "Jepio Aue u aweu ajy OLfis!l dulikLSIT
aq Aew sjuawailels ‘weisbosd Builsixa (Bunisi| »o1nb)
YUM Bj13 uo sjuawalels sabiaw IOYIN C aweu 3!} 3OHIN € sweu ajyy OL ._wm__ o:__H_. 1Sv4
slaqunu
*J9pJO Jagwinu aul| uj 3q 1sNW sjuaw C AJATINO LX3L aul] yum
-a1e1s ‘weiboud snojnaud sa18jep AvO1 € aweu ajiy VO € aweu 3y JAVS 3|1} d1joquAg
s)ieway YA\ PanaLilay ag ue) U3 paleas) ag ued 3|14 wesboud
$0 puny

IVAIIHL3Yd ANV 3OVHOLS
3714 WNVHD0Hd HO4 STIAOWN ANVININOD 40 AHVINANS

where the line number typed in the last two cases
indicates the line in which program execution was
interrupted.

If only a > is typed after an interruption, the user
should correct any errors and re-execute the program
from the beginning (by typing RUN or EXECUTE).
This situation occurs after certain error messages.

Example 1

>1 ACCEPT AB 2
>2 C=A+BD

>3 DISPLAY CD
> RUN)

MISSING FINAL “END” A two-line error diag-

3 DISPLAY C nostic followed by a >
>4 END 5 is typed. The user cor-
> RUN) rects the error by add-
4,8 5 ing line 4 to the pro-
12 gram. He then reruns
the program, which now
(@4)> runs correctly.
Example 2
> LIST 5
1 ACCEPT |
2 J=2+x|
3 K=J%%2
4 L=J+K
5 WRITE (1,100) K,L
6 100 FORMAT (2N5)
7 END
> RUN 5 The computer prints an

My
FORMAT ERROR:

(2N5)

error diagnostic with a
reference line from the
program.

115

ments preceded by an @ for immediate execution.
Such statements are called direct statements'. This
situation occurs when the end of the program or a
STOP statement is encountered. In the previous ex-
ample, the user could print the value of J after execu-
tion of his program as follows:

> RUN b>)

15
484 506

(@7)>@DISPLAY J
22

(@7)>

If any changes in the program text are made (such as
changing a statement in the program, inserting state-
ments, or deleting statements), direct statements may
no longer be entered. CCS will stop printing (@line
number)> and print only a > if any such change is
made.

If CCS prints

line number >

after a program interruption, the user may not only
enter direct statements but also may continue the
program from the point of interruption by typing
CONTINUE. This feature allows the user to change
his program temporarily and continue execution with-
out having to re-execute his program from the begin-
ning. This is extremely useful in debugging programs.
Example

> FAST 5
2 DOUBLE PRECISION X

3 Y=1/X

4 DISPLAY “Y=")Y

4.1 DISPLAY “THE REST IS EXECUTED”
5 END

>RUN

ATTEMPT TO DIVIDE
BY ZERO

Execution is halted at
line 3 when the com-

ILLEGAL CHARACTER IN FORMAT
5 WRITE (1,100) K,L
5>6 100 FORMAT (2I5) oHere the error is cor-

> RUN > rected by retyping the
1 p) incorrect line.

484 506
(@7)>

If (@line number)> is typed after an interruption,
the user may enter SUPER FORTRAN language state-

3 Y=1/X
3 > @DISPLAY X
0

3 >ex=3.p

3 > CONTINUE
Y= 33333333

puter attempts to divide
by zero. The user types
a direct statement for
immediate execution.

The user gives X a value
other than zero by typ-
ing another direct state-
ment. Program execu-

THE REST IS EXECUTED tion resumes at line 3

(@5)>

when the user types
CONTINUE.

1 - See Immediate Execution Of Statements: Direct Statements, Page 118, for further details on this feature.

116

The direct statement @X=3. was executed and dis-
carded. If the user wishes to make this a permanent
change in the program, he must now type

2 X=3.2
and save the program on a file.

If the user makes changes in a statement, inserts a
new statement, or deletes a statement, he will not be
able to continue execution using CONTINUE, nor
will he be able to execute direct statements. Execu-
tion must be started from the beginning. When any
such changes to the program text are made, CCS
stops printing a line number followed by a > and
prints only a >.

If either line number > or (@line number)> is
printed when a program is interrupted, the user may
refer to parts of the program other than the current
program block with direct statements. This is accom-
plished using the AT command. (See Referring To
Different Parts Of A Program: AT, Page 119.)

To execute a binary program file, use the CCS
LINK command (discussed on Page 109 or the

SUPER FORTRAN LINK statement (discussed in
Program Linking, Page 98). These commands both
load and execute a binary program file. Program
interruptions result in different command prompts.

When execution of a binary program is interrupted,
CCS prints one of the following prompts: (Recall that
direct statements cannot be entered when a running
binary program is interrupted.)

Prompt Meaning

> Neither direct statements nor CON-
TINUE may be typed.

*n > Execution of binary program may
be continued at the nth line in the
program.

After the linked program is interrupted

® Commands operating on the program text (such
as LIST and RUN) apply to any symbolic pro-
gram present before the LINK.

® Commands applying to the running program
are illegal, except for NEXT and CONTINUE.

RETURNING TO THE EXECUTIVE: QUIT

The user may return to the EXECUTIVE by using the command

>QuIT 2

The dash typed by the computer means that the user is in the EXECUTIVE.

PROGRAM CONTROL AND DEBUGGING AIDS

PROGRAM INTERRUPTION

Execution of a running program can be interrupted
by the various situations summarized in the table be-
low. After a program has been interrupted, certain
debugging aids (such as the ability to execute direct
statements or to continue execution from the point

of interruption) are available. The kinds of debugging
features available after an interruption depend on the
type of interruption; the user can determine which
features are available by the kind of command prompt
CCS prints after an interruption. This will always be
one of the prompts discussed in Executing A Program,
Page 113.

117

SUMMARY OF PROGRAM INTERRUPTIONS
/ = line number of line in which interruption occurred.
*n indicates that interruption occurred in nth line of program.
Type Of Message And Prompt Printed Direct
Interruption Statements?
If Program Is If Program Is Contin-
Symbolic Binary Symbolic Binary uable?

ALT MODE/ INTERRUPT INTERRUPT Yes No Yes
ESCAPE /> *n >
Breakpoint BREAK Breakpoints not Yes No Yes

1> allowed in binary

program

End of Program (@/)> > Yes No No
Error Diagnostic Diagnostic No No No
Two alterna- > >
tives possible Diagnostic Diagnostic Yes No Yes

!> *n >
PAUSE comment! comment! Yes No Yes
Statement !> *n >
in Program
STOP comment! comment’ Yes No No
Statement (@)> >
in Program
QUIT comment! comment’ Not applicable; user is No
Statement — - now in EXECUTIVE.
in Program

Whenever a program has been interrupted, CCS
commands such as LIST, DELETE, RUN, etc., may
be executed. However, if any changes in the program
text are made after an interruption, the program is
not continuable; nor may direct statements then be
executed.

Notice that whenever a symbolic program is con-
tinuable, direct statements may be executed. How-
ever, the converse is not true; when a STOP statement
or the end of the program is encountered, direct state-
ments may be executed but the program is not con-
tinuable. Direct statements may not be entered after
interrupting a binary program.

BREAKPOINTS

Breakpoints can be set in a program using the
command

1 - Optional comment specified by user in statement.

> SET list of breakpoints >
or the equivalent command
> BREAK list of breakpoints ps)

The list of breakpoints consists of the line numbers
and/or line number ranges at which breakpoints are
to be set, separated by commas. For example,

>SET 5,8,10:14 , (or BREAK 5,8,10:14@)

sets a breakpoint at line 5, line 8, and at every line
between 10 and 14, inclusive. There is no limit to the
number of breakpoints that may be set.

When a breakpoint is encountered during program
execution, the program is interrupted just before ex-
ecuting the statement(s) in the line where the break-
point was set. CCS prints

BREAK
1>

118

where / is the number of the line where the break-
point was set. Now, direct statements may be entered;
execution may be continued with the CONTINUE
command.

To clear breakpoints, use the command
> RESET list of breakpoints)

For example, if the BREAK command above has been
executed, the command

> RESET 5,10:13 5

clears the breakpoints at lines 5 and 10 through 13,
having active breakpoints at lines 8 and 14.

The command
> RESET)

clears all active breakpoints.

The command
>BREAK 2

lists the line numbers of all active breakpoints. For
example,

> SET 5,10,100:150
>BREAK 5,

100 : 150

10 : 10

5:5

>

CONTINUING PROGRAM EXECUTION:
CONTINUE

Whenever CCS prints
line number >

after an interruption of a running program, execution
of the program may be continued from the point of
interruption using the command

line number >C0NTINUE2

The line number printed by CCS, called the CON-
TINUE point, is the number of the line in which the
program was interrupted; CONTINUE causes execu-
tion to resume beginning with the following line.

A program is continuable after certain kinds of
error interrupts, after a PAUSE, when a breakpoint
is reached, or when the user interrupts the program
by pressing ALT MODE/ESCAPE once. Whenever a
program is continuable, direct statements may be
executed.

>FAST 5

1 DISPLAY “DEMONSTRATING CONTINUE.”
2 PAUSE “THIS IS A PAUSE"

3 DISPLAY “THE REST IS EXECUTED.”

4 END

>RUN 5

DEMONSTRATING CONTINUE.

THIS IS A PAUSE
2 > @DISPLAY “NOW WE CONTINUE @

Note the direct statement.
NOW WE CONTINUE...

2 >CONTINUE 5
THE REST IS EXECUTED.

(@4)>

IMMEDIATE EXECUTION OF
STATEMENTS: DIRECT STATEMENTS

Whenever CCS prints either

(@line number)>
or
line number >

SUPER FORTRAN language statements may be en-
tered for immediate execution. The statements en-
tered must be executable statements and must be
preceded by an @. As soon as a Carriage Return fol-
lowing the direct statement is typed, the statement
is compiled and, if syntactically correct, executed.
Then the statement is discarded.

A direct statement is considered to be temporarily
inserted into the current running program at the line
number printed in the command prompt (that is,
when CCS prints line number >). This point is
called the CONTINUE point. When a direct statement
is executed, variables used in the statement assume
values depehdent upon the location of the CONTINUE
point in the program. For example, for the program
set up in part as

10 ACCEPT X

25 Y=X12
25.1 PAUSE
25.2 DISPLAY “EXECUTION CONTINUES"”

47 Y=Y+6
48 STOP

the following may occur:

> RUN 2
12. b»)

The value for X is ac-
cepted.

25.1 >@DISPLAY Yo CONTINUE point is
144 25.1,50 Y=X*=144.

25.1 >CONTINUE b)
EXECUTION CONTINUES

(@48)>@DISPLAY Y , Now, all the statements
150 have been executed, so
Y=Y+6=150.

(@48)>
Direct statements are particularly useful debugging

aids. For example, after a program interruption they
may be used to

® Print the current values of variables, as in
15 >@DISPLAY A,B,C(5) b

® Assign new values to variables, as in
35.1 >@ALPHA = 3.1

119

® Skip parts of a program, as in
(@100)>@GO TO 40 bs)

This direct statement causes execution to be
resumed starting at the statement labelled 40.

REFERRING TO DIFFERENT
PARTS OF A PROGRAM: AT

In the preceding discussion of direct statements,
we defined the @ point as the point at which a direct
statement is considered to be temporarily inserted
into the program. Usually, the @ point is the point
at which the program was interrupted, and is equal
to the CONTINUE point if the program is continu-
able. However, the user may change the @ point at
any time direct statements are executable by typing

AT line numberp

This command changes the @ point (but not the
CONTINUE point) to the line number typed. It is
useful when the user wishes to refer to variables not
defined in the current program block with direct
statements. (A program block is a group of program
statements constituting either the main program or a
subprogram.)

Example

Lines 2-7 comprise one pro-
gram block, the main program.

Lines 9-16 comprise another,
the function subprogram.

> LIST 2
2 DIMENSION R(10)
3 ACCEPT R
4 RM=MEAN(R,10)
5 PAUSE
6 DISPLAY “MEAN=",RM
7 END
9 REAL FUNCTION MEAN(S,N)
9.1 DIMENSION S(=)
10 Z=0.
11 DO 100 I1=1,N
12 2=2+S(1)
13 100 CONTINUE
14 MEAN=Z/N
15 RETURN

16 END

120

>RUN2

2.2,2.15,1.98,3.001,1.99,2.14,2.12,2.67,2.55,2.71 P

5 >@DISPLAY “MEAN IS”,RMQ
MEAN IS 2.3511

5 >@DISPLAY ““SUM 18,2 5

“Z" UNDEFINED

5 >AT 15,

(@15)5 >@DISPLAY ““SUM IS".Z2 5
SUM IS 23.511

(@15)5 >CONTINUE
MEAN= 2.3511

(@7) >

In this program, a PAUSE at line 5 occurs after the
function subprogram MEAN is called. During this
pause, the user wishes to print both the value of the
mean of the ten elements of R and the value of the
sum of these elements. However, since the @ point is
in the main program (line 5), the sum Z, a variable
local to the function subprogram, is not defined here.
To print the value of Z using a direct statement, he
must change the @ point to some point in the func-
tion subprogram. He does this using the command

>AT 15 2
CCS responds with
(@15)5 >

indicating that the @ point is now 15, but the CON-
TINUE point is still 5.

Notice that any line number in the subprogram
could have been used in place of 15 in the AT com-
mand above. The value of a variable printed by a di-
rect statement is always the value most recently as-
signed to the variable when the line at the @ point
was executed. Thus, in the above example, the user
could have set the @ point to 10 (where Z was set to

zero) and Z would still have the value 23.511 as in
the following:

5 >AT 10

(@10)5>@ DISPLAY “SUM IS”, Z5
SUM IS 23.511

(@10)5 >

Here, @ point = CONTINUE
point=5,

Z is not defined in the main
program.

Here, @ point is changed to
15, a line in the function sub-
program. Now Z is defined,
and its current value is printed.
CONTINUE resumes execu-
tion after line 5, not line 15,

The purpose of changing the @ point is to refer to
variables not defined in the current program block,
and not to restore values of variables assigned earlier
in the program and subsequently assigned new values.
The latter cannot be done.

Certain restrictions on the use of direct statements
apply when the @ point has been changed using AT:

® Direct statements causing transfer of control to

a labelled statement (such as @GO TO 20) may
not be executed.

® Dummy arguments of a subprogram may not
be displayed.
NOTE: The @ point may be restored to the CON-
TINUE point.

PARTIAL PROGRAM EXECUTION

Step Execution: NEXT

Whenever program execution is continuable, the
user may single step through his program, executing
one statement at a time. This is accomplished by
typing
NEXT

to execute the next statement. After a NEXT com-
mand is executed, the program is continuable at the
line following the line just executed.

Example

> FAST 5

1 DISPLAY “FIRST, A BREAKPOINT...”

2 DISPLAY “LINE 2 IS EXECUTED.”

3 DISPLAY “NOW, LINE 3 IS EXECUTED.”
4 DISPLAY "THE REST IS EXECUTED.”

5 END

>SET 2 A breakpoint is set at line 2.
> RUN 2

FIRST, A BREAKPOINT...

BREAK

2 >NEXT 5

LINE 2 IS EXECUTED.

3 >NEXT@
NOW, LINE 3 IS EXECUTED.

4 > CONTINUE 2
THE REST IS EXECUTED.

(@5)>

Executing A Specified
Range Of Lines
We have already seen a method of executing a

specified range of lines; that is, setting a breakpoint
and then typing RUN or CONTINUE. For example,

> RESET)

>SET 25.1 ? Executes all lines in the
> RUN b range *1-25.1-1, inclusive.
BREAK

25.1 >RESETD
25.1 > SET 100 5
25.1 >CONTINUE@

However, CCS provides special forms of RUN and
CONTINUE which make procedures such as the above
more convenient.

Executes all lines in the
range 25.1:100-1, inclusive.

The command
>RUN TO list of breakpoints
is equivalent to

> RESET b)

> SET list of breakpoints 2 (or BREAK list 3
of breakpoints @)

> RUN >

For example,

>RUN TO 5,10,50:70

121

is equivalent to

> RESET ps)
>SET 5,10,50:70)
> RUN 2

Similarly, the command
line number >CONTINUE TO list of breakpoints@
is equivalent to

line number >RESET2
line number >SET list of breakpointsQ
line number >CONTINUE2

Thus, the example given at the beginning of this sec-
tion could also be accomplished as follows:

>RUN TO 25.1 2
BREAK.

25.1 >CONTINUE TO 100

LOCATING LABEL AND VARIABLE
REFERENCES AND DEFINITIONS

The REFERENCES Command

The command

variable name
> REFERENCES or
statement label

line list

prints lines with their line numbers which contain the
variable name or statement label specified. The line
list is optional. If included, only occurrences of the
variable or label in the lines specified are printed. If
omitted, occurrences of the variables or label through-
out the program are printed. In both cases, only non-
declarative statements are printed; declarative state-
ments (such as DIMENSION statements, type declara-
tion statements, subroutine declarations, etc.) may
be printed using the DEFINITIONS command dis-
cussed below.

Examples
> REFERENCES 30 by

Prints the statement labelled 30 and all non-
declarative statements in the program which
refer to the statement labelled 30 (such as
GO TO 30 and IF (A) 10,20,30).

> REFERENCES Z 10:50 5

Prints all nondeclarative statements contain-
ing the variable name Z in the line range
10:50.

122

> REFERENCES X %1:#50,200:400 -,

Prints all nondeclarative statements contain-
ing the variable name X which are found in
either of the ranges *1:*50 or 200:400.

The DEFINITIONS Command
The command

variable name
>DEFINITIONS or
statement label

line list 2

prints declarative statements (with line numbers)
which contain the variable name or statement label
specified. The line list is optional. If included, only
declarative occurrences of the variable or label in the
lines specified are printed. If omitted, all declarative
occurrences of the variable or label throughout the
program are printed.

Examples
> DEFINITIONS Z p)

Prints all declarative occurrences of the var-
ijable Z in the program, such as DIMENSION
Z(10).

> DEFINITIONS SUM 10:50)
Prints all declarative references to the varia-
ble SUM in the range 10:50.

> DEFINITIONS SUM 1:50,.:$)
Prints all declarative references to SUM found
in either of the ranges 1:50 or . : 8.

> DEFINITIONS 20 2

Prints any statement labelled 20, such as
20 CONTINUE or
20 FORMAT (F16.8).

Examples Using REFERENCES And
DEFINITIONS In Program Debugging

Example 1

Suppose that during the execution of a program, the
user gets the error message

“Z'" DECLARED TWICE

3.7 REAL XY, Z

If he then uses the DEFINITIONS command as fol-
lows,

> DEFINITONS Z P

1.4 SUBROUTINE S(L,M,2)

3.2 INTEGER I,L,T,Z

3.7 REAL X,)Y,Z

he can see immediately that he has declared Z to be
both integer and real. He may then change either
statement 3.2 or 3.7.

Suppose he decides that Z should be real and changes
statement 3.2 to

3.2 INTEGER I,T,L

keeping statement 3.7. He then runs the program
again and gets the error message
ACTUAL ARGUMENT DOES NOT MATCH

FORMAL PARAMETER
12.2 CALL S(5,7,1)

The integer argument | does not match the real var-
iable Z.

Using the REFERENCE command, he checks all calls
to subroutine S as follows:

> REFERENCES S 5,

9.1 CALL S(5,6,3.9)

12.2 CALL S(5,7,1)

14.5 CALL S(11,2,SQRT(17.4))
>

The user learns there is only one subroutine call con-
flicting with the definition of Z. He may now correct
his error by declaring | real or by using a different
argument, and then rerun the program.

Example 2

Suppose the user has a subroutine in his program
called GEM and wishes to add a parameter to all ref-
erences to the subroutine. He may locate these ref-
erences by simply using the command

> REFERENCES GEM

which prints all subroutine calls to GEM. He then
may modify these lines.

Example 3
Suppose the user encounters the error message

SUBSCRIPT OUT OF RANGE
30 X=A(35)

He then uses the command
30 >DEFINITIONS A o)
which prints

10 DIMENSION A(20)

He now knows he must change line 10 to reserve
more space for A.

VERIFYING PROGRAM
EXECUTABILITY

The commands CHECK and INITIALIZE allow
easy verification of program executability without
actually running the program.

The CHECK Command

The command
> CHECK ps)

tests the current program for structural soundness,
detecting such errors as missing END statements in
subprograms or the main program, 'abelling or dec-
laration errors, calls to undefined subroutines, etc.
If a structural error is found, an error message is
printed and control is returned to the user. If not,
CCS prints OK. and returns control to the user.

Example

>CHECK 5

““100” DECLARED TWICE
36.1 100 A=3
>36.1 200 A=3 5

An error is detected.

The error is cor-

rected.
>CHECK 5
OK. Now the program is
structurally sound.
>

123

The INITIALIZE Command

The command
> INITIALIZE p)

first checks the structural soundness of the current
program, just like the CHECK command. If a struc-
tural error is found, a message is printed and control
is returned to the user. However, if a structural error
is not found, this command allocates data storage and
begins execution of the program, breaking just before
the first executable statement in the program. CCS
prints the line number of this statement and a >, in-
dicating that direct statements may be entered and
that the program is continuable.

Example

Using INITIALIZE instead of CHECK in the previ-
ous example yields the following:

>INITIALIZE

“100”" DECLARED TWICE
36.1 100 A=3
>36.1 200 A=3 o When the program is struc-
turally sound, INITIALIZE
breaks before the first execut-
able statement (line 1 in this
case). CON TINUE would now
start executing the program
atline 1.

>INITIALIZE)

1>

EXECUTING COMMAND FILES IN CCS

In Section 9 we discussed command files and how
to execute them with the SUPER FORTRAN lan-
guage statements OPEN and PAUSE.! Command files
may also be executed in the command mode using
the CCS command

> COMMANDS file name

When this command is executed, commands are taken
from the specified file immediately.

As an example, consider the file C1 which contains
the commands

LIST 5

RUN 5

@DISPLAY “NOW, QUIT AND LOGOUT"D
QuIT 5

LOGOUT P

and may be used as follows:

1 - See Command Files, Page 99, for information on the structure and creation of a command file.

124

Command Taken

_SFORTRAN 5 From C1:
> LOAD SUM 5
OK.
> COMMANDS C15,
1 SUM=0. LIST
2 ACCEPT “HOW MANY NUMBERS? "N
3 DISPLAY “ENTER NUMBERS TO BE ADDED:"
4 DO 10 I=1N
5 ACCEPT X
6 SUM=SUM+X
7 10 CONTINUE
8 DISPLAY “THE SUM IS”,SUM
0 END
HOW MANY NUMBERS? 5 >, RUN
ENTER NUMBERS TO BE ADDED:
23 5
17 5
98
54
41 5
THE SUM IS 125
NOW QUIT AND LOGOUT @ DISPLAY

CPU TIME: 2 SECS.
TERMINAL TIME: 0:2:05
PLEASE LOG IN:

Notice that the command file in the above example
includes an EXECUTIVE command (LOGOUT) as
well as CCS commands. Any commands that can be
typed at the terminal can be included in a command
file. This means that SUPER FORTRAN statements
(with line numbers) may also be included in a com-

PROGRAM

One of the most powerful features of Tymshare
SUPER FORTRAN is the ability to edit both pro-
gram statements and CCS commands without calling
EDITOR. Editing features to insert, delete, and re-
number program statements are available. In addition,
commands and statements may be edited while they
are being typed, and program statements may be
changed using the editing control characters which

“NOW QUIT AND LOGOUT”

QuIT
LOGOUT

mand file, since they are simply implied ENTER com-
mands.

If a file opened by COMMANDS is still open
during program execution, it may be referred to as
file * in the program being executed (see Command
Files, Page 99).

EDITING

SUPER FORTRAN shares with Tymshare’s text edit-
ing language EDITOR.

INSERTING PROGRAM LINES

Program lines may be inserted into a program sim-
ply by entering the lines from the terminal with line
numbers that fall between the line numbers of the

existing program. (See Entering Statements From The
Terminal, Page 104.) For example, the statement

Z=X*%2+Y%%2
may be inserted into the program

1 ACCEPT XY
2 DISPLAY Z

by typing

> 1.3 Z=X*%2+Y %2 b

Statements may also be inserted from a file by using
the MERGE or COPY commands, and may be copied
or moved from one part of a program to another us-
ing the commands COPY and MOVE. These com-
mands have all been discussed in Entering, Storing,
And Retrieving A Program, Pages 104-113.

DELETING PROGRAM LINES

The commands DELETE and CLEAR are used to
delete part or all of a program.

The DELETE Command

This command deletes any line or group of lines
from a program. It has the general form
> DELETE line list)

where the line list consists of one or more line or
range addresses separated by commas. DELETE de-
letes all lines addressed in the line list.

Examples

> DELETE 35 2 Deletes the line numbered

35.

Deletes the 12th line in the
program.

> DELETE +12 p>)

Deletes all lines from line
20 through the last line in
the program.

> DELETE 20:$ 2

> DELETE .,200:200+10,*400)

Deletes the current line,
the range of lines addressed
by 200:200+10, and the
400th line in the program.

In the last example above, the address *400 refers
to the 400th line before execution of the DELETE
command, not the 400th line after the lines addressed
by . and 200:200+10 are deleted.

The CLEAR Command

This command erases the entire program. It has
the form

125

>CLEAR 2
After the Carriage Return is typed, CCS replies with
ERASE PROGRAM?

This question may be answered by typing a Y (for
Yes) or an N (for No) followed by a Carriage Return.
If a Y is typed, CCS prints OK. and erases the pro-
gram. If an N is typed, the command is aborted.

Example

>CLEAR ,
ERASE PROGRAM?Y ,,
OK.

>

CHANGING PROGRAM LINES

The easiest way to change a line in a program is to
retype the line with the same line number when in
the command mode. The line typed replaces the old
line with the same line number. For example, line 2
in the following program

1 ACCEPT AB,C
2 X=A+B
3 DISPLAY XY

may be changed using
> 2 X=A+B;Y=ABS(X#*2-Cx%2) p)
to produce the program

1 ACCEPT ABC
2 X=A+B;Y=ABS(X#%2-Cx%2)
3 DISPLAY XY

Whole ranges of program lines may be changed using
the following forms of ENTER (discussed in Entering
Statements From The Terminal, Page 104).

> ENTER line number:line numbera

> ENTER line number(increment)line number

In addition, the control characters explained in the
following section may be used for more efficient
editing of program lines.

Editing With Control Characters

Although the user may change program lines by
retyping the entire line that needs changing, SUPER
FORTRAN provides control characters for more effi-
cient editing of program lines. These control charac-
ters, which are the same as those available in Tym-
share’s EDITOR, are summarized in the table below.
Certain of these control characters may also be used
to edit commands or statements while they are being

126

typed, and to edit input data being typed from the
terminal. Details on the use of the various characters

follow the table.

EDITING CONTROL CHARACTERS (Cont)

Control Symbol
Character Printed Action
For Copying (Cont)

c¢ Copies the next character
in the old line.

0O€ and a Copies the old line up to

character but not including the char-
acter typed after it, print-
ing the characters copied.

ZCand a Copies the old line up to

character and including the charac-
ter typed after, printing
the characters copied.

uc Copies characters from old
line up to the next tab stop
in the new line, printing
the characters copied.!

For Inserting
EC < Inserts text into old line;
> first EC prints <, second
EC prints >.
Others

Ic Spaces up to the next tab
stop.!

Line Feed Continues line being typed.

Carriage Ends the new line and the

Return edit.

NC « Backspaces in the old and
new lines.

VCand a Indicates that the control

control character that follows is to

character be accepted as any other

character instead of per-
forming its usual editing
function.

EDITING CONTROL CHARACTERS

Control Symbol

Character Printed Action

For Deleting

AC <« Deletes the preceding char-
acter in the line being
typed. Repeated use de-
letes several characters.

Q¢ t Deletes the entire line be-
ing typed.

we \ Deletes the preceding word
in the line being typed.

PCand a % Deletes characters from old

character line up to but not includ-
ing the character typed
after it.

XCand a % Deletes characters from old

character line up to and including
the character typed after
it.

K¢ Deletes the next character
in the old line; prints the
character it deletes.

s¢ % Deletes the next character

‘ in the old line.
For Copying

D¢ Copies and prints rest of
old line and ends the edit.

FC Copies but does not print
rest of old line and ends
the edit.

HC Copies and prints rest of
old line; edit continues at
end of new line.

Y¢ Copies but does not print
rest of old line; edit con-
tinues with the new line
acting as the old line.

RC Prints rest of old line plus
new line up to the point
where RC was typed; edit
continues at this point.

T Same as RC except that it
aligns old and new lines.

Notice that many of the control characters in the
above table (such as Z€) operate on the old line to
form the new line. When these characters are being
used to change program lines, the old line is the line
being changed; the new line is the edited line that
replaces the old line in the program.

Editing The Line Being Typed

Whenever CCS commands or SUPER FORTRAN
statements are being typed at the terminal, the con-
trol characters AC, QC, and W€ are available.

1 - CCS has tab stops at print position 7, and every 7th print position thereafter.

AC deletes the preceding character in the line being
typed.

WC deletes the preceding word in the line being
typed.

QC deletes the entire line being typed.

Both AC and W€ may be used repeatedly to delete
more than one preceding character or word in the
line being typed.

Example

>20 IF (XGRACAC.GT.Y)
THEN WS\GO TO 100,

>FAST 20

20.IF (X.GT.Y) GO TO 100

Note that WE deletes any
spaces following the word
deleted, but does not de-
lete any spaces preceding
the word.

A Control Y may be typed while typing a com-
mand or statement to allow the line being typed to
become the old line for editing purposes. All the edit-
ing control characters summarized above may then
be used.

Example 1

>LIFT 1:10,Y¢ Note that CCS returns
ZC LISHCT 1:10,$-10:$, the carriage when YC is
typed.

Lines 1 through 10 and the last 11 lines in the pro-
gram are listed.
>

In this example, the Y€ returns the carriage and allows

edit of the command being typed. The user types Z€I

to copy the old line up to and including the |. He

types an S to replace the F in the old line; then types

an HC to copy the rest of the old line (out to the

comma). He then finishes typing the command. As

soon as the terminating Carriage Return is typed, the

command (LIST 1:10,$-10:9) is executed.

CAUTION: If Control Y is used to edit a line that

follows a longer line, Control Y will copy the excess

characters from the longer line.

Example

>14 C: THIS IS A TEST OF CONTROL Y.

> 15 A=SQRT(X+Y)Y¢

>Z%15 A=SQRT(X+ZD®), Note that Y copied

A TEST OF CONTROL Y. the excess characters
in line 14.

= MISUSED

> Z%+15 A=SQRT(X+Z))

127

Editing A Line Already Typed

Editing The Previous Line

Immediately after a line of a program has been
entered from the terminal, it becomes the old line
for editing purposes; all the editing control charac-
ters may then be used.

Example

>35 X=SQRT(A); IF (X.LT.X) GO TO 60
>2ZC€.35 X=SQRT(A); IF (X.LT.AD®) GO TO 60
>FAST 355

35 X=SQRT(A); IF (X.LT.A) GO TO 60

>

In this example, control characters are used to edit
the previous line (line 35). After line 35 has been en-
tered, the user types ZC. to copy characters up to
and including the first . in line 35. He then types
LT .A followed by a DC, which copies the rest of the
old line and ends the edit. The new line 35 replaces
the old line 35 in the program.

Example 2

>17 X=SQRT(A-B) 5

>18 YOC-=SQRT(A+B) 5 The OF- copies charac-
>FAST 17:18 5 ters up to but not in-
17 X=SQRT(A-B) cluding the -. The user

18 Y=SQRT(A+B) types the rest of the
> new line.

In this example, the previous line (line 17) is used as
an edit image in creating line 18. Here, both the old
line (line 17) and the new line (line 18) become part
of the current program.

The previous line is also available as the old line
when a syntax error occurs after it is entered. Thus,

>10 A=3-*SQRT(3.14159) 2

* MISUSED

>Z¢-10 A=3-EC<AE®>DC+SQRT(3.14159)
>FAST 10,

10 A=3-AxSQRT(3.14159)

>

In this example a syntax error occurs when line 10 is
entered. CCS prints an error message followed by a >.
To correct the error, the user types a Z¢- which
copies characters from the old line (the line in which
the syntax error occurred) up to and including the -.
He then uses EC€ to insert the variable name A by typ-
ing ECAEC. The first EC prints a <; the second, a >.
A DC then copies the rest of the old line and ends

128

the edit. The correct line 10 is now entered into the
program.

Control characters may also be used to edit the
previous line during ENTER with @ prompts and dur-
ing ENTER with line number prompts, whether or
not a syntax error occurs.

Example 1

> 1:10 2

@ACCEPT AB 5

@Z=SQRT(A-B) by

@0°-2=SQRT(A+B) 5 OF- copies the previous
@DISPLAY ZQ line up to but not in-
@DC¢ cluding the -.

> FAST 5

1 ACCEPT AB

2 Z=SQRT(A-B)

3 Z=SQRT(A+B)

4 DISPLAY Z

>

Notice that a D¢ typed immediately after an @ or
line number prompt terminates the ENTER com-
mand, but a D¢ typed anywhere else copies the rest
of the previous line and ends the new line.

Example 2

>10(2)20 5

10 ACCEPT B.CD ,
12 A=B+xD 2

* MISUSED
12 Z°+A=B+EC€<CE®>DC+D
14 DISPLAY A 5

Z%+ copies char-
acters up to and

16 D¢ including the +,
>FAST 5 ECCEC inserts a C,
10 ACCEPT B,C,D DC copies rest of
12 A=B+C+D old line (but D¢
14 DISPLAY A in line 16 termi-

> nates command.)

The EDIT And MODIFY Commands

The EDIT and MODIFY commands may be used
to edit any line or group of lines in CCS. All the
editing control characters may be used during these
commands.

The EDIT command has the form
> EDIT line list 2

where the line list consists of one or more line or
range addresses, separated by commas.

If only one line is addressed in the line list, the
command causes the line addressed to be printed on

the terminal; the line is then available as the old line
for editing purposes.

Example

>EDIT 2)
2 S=A-B/2 CCS prints the old line 2
and the number 2 on the
2 S=(A+B+C)/2. 5 next line. The user types

> the text of the new line 2.

If more than one line is addressed in the line list,
CCS prints the lines addressed one at a time. After
printing a line, it waits for the user to edit it and then
goes on to the next line. When the last line has been
edited, control is returned to the user. The process
can be terminated early by typing D€ at the beginning
of a line.

Example
>LIST 5
1 ACCEPT AB
2 S=(A+B+C)/2.
3 AREA=SQRT(S*(S+A)*S«
(S+B)*S*(S-C))
4 WRITE (1,200) A,B,C, AREA
5 200 FORMAT(4F10.2)
6 STOP
7 STOP

This command allows
edit of lines 1, 3 through
5, and the last line.

>EDIT 1,3:5$ b\

1 ACCEPT AB
1 HCACCEPT A,B,C 2 HC copies old line, user

types ,C >

3 AREA=SQRT(S*(S+A)*S*(S+B)*S*(S-C))
3 AREA=SQRT(S*(S-A)*(S-B8)*P¢(%%%%DC(S-C))
User types new line up
to the * after (S-B),
then a PC(to delete
characters up to but not
including the (. D€ cop-
ies rest of old line.
WRITE (1,200) A,B,C,AREA
4 FC This line is OK; F€ cop-
ies it without printing
it,
200 FORMAT (4F10.2)
5 Z¢1200 FORMAT(4F16.8)
User changes the format
specification.

H

(4]

7 STOP

7 END b) The last line is edited.

> LIST po)
1 ACCEPT AB,C
2 S=(A+B+C)/2.
3 AREA=SQRT(S*(S-A)*(S-B)
*($-C))
4 WRITE (1,200) A,B,C,AREA
5 200 FORMAT(4F16.8)
6 STOP
7 END

>
The MODIFY command has the form
> MODIFY line list 5

It is the same as the EDIT command except that the
lines addressed in the line list are not printed on the
terminal.

Editing Input Data

Data typed into a running program may be edited
with the following editing control characters:

AC deletes the preceding character unless that char-
acter is one of the terminators used to separate
data items (comma, space, Line Feed, Carriage
Return).

WE deletes the current data item. It has no effect
on the characters A€ does not delete.

Q€ restarts the entire input statement from the
beginning.

Example 1

> 10(10) 2

10 DIMENSION A(5) 5

20 ACCEPT A,

30 DISPLAY A,

40 END 5

50 D¢

>RUN 5
2354A%«,34.6A%«78,23.4,56.7W°\46.8,10.1 p)
235 34.78 234 46.8 10.1

(@40)>

Example 2

> FAST b}

10 DIMENSION A(5)
20 ACCEPT A

30 DISPLAY A

40 END

129

> RUN)
11.17,33.9,46.1,39Q¢t
11.7,85,33.9,46.1,39 5

11.7 85. 339 46.1 39.

(@40 })>

RENUMBERING A PROGRAM

The user may change the line numbers of some or
all of the lines in his program by using the RENUM-
BER command. This command may be used in any
of the following forms, where /;, /5, /5, and /4 are
all line numbers:

> RENUMBER 2

>RENUMBER /;:/;

> RENUMBER /;:/;, AS /3:/4 2

> RENUMBER /,:/, AS /3 (increment) /5 5
> RENUMBER /,:/, AS /3 (increment) b
The form

> RENUMBER 2

reassigns line numbers to all lines in the program be-
ginning with 1 in increments of 1.

Example
> LIST 2
A C: THIS PROGRAM COM-
PUTES THE AREA OF A
TRIANGLE
.2 C: A,B,C REPRESENT SIDES
OF THE TRIANGLE
3 ACCEPT “ENTER VALUES OF
ABC ",ABC
35 S=(A+B+C)/2.
4 AREA=SQORT(S*(S-A)*(S-B)*
(s-C))
5 WRITE (1,200) AB,C,AREA
6 200 FORMAT (4F16.8)
7 STOP
298 END
>RENUMBER b
> LIST)
1 C: THIS PROGRAM COM:-
PUTES THE AREA OF A
TRIANGLE
2 C: A,B,C REPRESENT SIDES
OF THE TRIANGLE
3 ACCEPT “ENTER VALUES OF

AB.C ",ABC

130

4 S=(A+B+C)/2.
5 AREA=SQRT(S*(S-A)*(S-B) =
(S-C))
6 WRITE (1,200) A,B,C,AREA
7 200 FORMAT (4F16.8)
8 STOP
9 END
>
The form

> RENUMBER /,:/; 5

reassigns line numbers to the lines in the range speci-
fied beginning with the first line number in the range
(/1) in increments of the first of 1, .1, .01, and
.001 which fits the range specified. For example, if
the above program had line numbers as in the follow-
ing,

1 C: THIS PROGRAM COM-
PUTES THE AREA OF A
TRIANGLE

2 C: A,B,C REPRESENT SIDES
OF THE TRIANGLE

3 ACCEPT “ENTER VALUES OF
AB.C ",AB.C

3.1 S=(A+B+C)/2.

4 AREA=SQRT(S*(S-A)*(S-B)*
(S-C))

4.6 WRITE (1,200) A,B,C,AREA

5 200 FORMAT (4F16.8)

8 STOP

9 END

the command
> RENUMBER 3:5)

reassigns line numbers as follows:

1 C: THIS PROGRAM COM-
PUTES THE AREA OF A
TRIANGLE

2 C: A,B,C REPRESENT SIDES
OF THE TRIANGLE

3 ACCEPT “ENTER VALUES OF
AB,C ",AB,C

3.1 S=(A+B+C)/2.

3.2 AREA=SQRT(S*(S-A)*(S-B)*
(s-C))

3.3 WRITE (1,200) A.,B,C,AREA

34 200 FORMAT (4F16.8)

8 STOP

9 END

The form
> RENUMBER /1 :/2 AS /3:/4)

reassigns line numbers to the lines in the range/, :/;,
beginning with line number /3 and choosing as incre-
ment the first of 1, .1, .01, and .001 that will allow
the lines to fit the range /3 :/4. Any lines in the range
/5:/4 before the command is given are deleted when
the command is given. Thus, the user should be sure
that he does not accidentally delete program lines
that he wishes to keep when using this form of RE-
NUMBER. For example, if the command

> RENUMBER 3:4 AS 8:13 5

is applied to the revised version of the preceding pro-
gram, the last two lines in the program are lost, pro-
ducing the program

1 C: THIS PROGRAM COM-
PUTES THE AREA OF A
TRIANGLE

2 C: A,B,C REPRESENT SIDES
OF THE TRIANGLE

8 ACCEPT “ENTER VALUES OF
ABC "ABC

9 S=(A+B+C)/2.

10 AREA=SQRT(S*(S-A)=*(S-B)«
(s-C))

11 WRITE (1,200) A,B,C,AREA

12 200 FORMAT (4F16.8)

The form
RENUMBER /,:/; AS /3(increment)/;

reassigns line numbers to the lines in the range/;:/;,
beginning with line number /3 in the increment speci-
fied in the command. Any lines in the range /3 through
14 before the command is given are deleted when the
command is given.

Example

If the foilowing program is in CCS:

1 ACCEPT “ENTER VALUES
OF AB,C "AB,C

2 S=(A+B+C)/2.

2.1 AREA=SQRT(S*(S-A)*(S-B) *
(s-C))

2.25 WRITE (1,200) A,B,C,AREA

2.3 200 FORMAT (4F16.8)

9 STOP

10 END

the command
> RENUMBER 2.1:2.3 AS 4(2)83

produces the program

1 ACCEPT “ENTER VALUES OF
ABC "ABC

2 S=(A+B+C)/2.

4 AREA=SORT(S*(S-A)*(S-B) =
(s-c))

6 WRITE (1,200) A,B,C,AREA

8 200 FORMAT (4F16.8)

9 STOoP

10 END

The last form of RENUMBER,
> RENUMBER /,:/, AS /;(increment) 2

reassigns line numbers to the lines in the range/; :/,,
beginning with line number /3 in the increment speci-
fied. In this form of the command, the user is pro-
tected against accidentally deleting or interleaving
program lines. No lines, other than /5 itself, are de-
leted when the command is executed; if any lines in
/1:1, would cause deletion or interleaving when re-
numbered, the lines are not renumbered.

Example
If this program is in CCS:

1 C: THIS PROGRAM COM-
PUTES THE AREA OF A
TRIANGLE

131

2 ACCEPT “ENTER VALUES OF
A,B,C ",AB,C

3 S=(A+B+C)/2.

3.1 AREA=SQRT(S*(S-A) *(S-B) *
(S-C))

3.2 WRITE (1,200) A,B,C,AREA

3.9 200 FORMAT (4F16.8)

10 STOP

13 END

the command
> RENUMBER 3.1:3.9 AS 4(2)@

produces the following program:

1 C: THIS PROGRAM COM-
PUTES THE AREA OF A
TRIANGLE

2 ACCEPT “ENTER VALUES OF
AB,C “,AB,.C

3 S=(A+B+C)/2.

4 AREA=SQRT(S*(S-A)*(S-B)
(s-c))

6 WRITE (1,200) A,B,C,AREA

8 200 FORMAT (4F16.8)

10 STOP

13 END

132

SECTION T1
SAMPLE PROGRAMS

This section contains programs written in SUPER FORTRAN and executed on the
Tymshare system. The problems are presented in an increasing degree of complexity.

MONTHLY PAYMENT PROGRAM

DEFINE THE PROBLEM

Compute the monthly interest and payment on a debt, and then print the amount
of the payment.

Input

1. Original debt (P)

2. Annual interest (1)

3. Number of monthly payments to be made (N)

Compute
Monthly interest (1=1/12)
Monthly payment (M)

_pegN
(+1)N -1

M

Output
Monthly payment, M.

FLOWCHART

START

INPUT
DEBT (P)
INTEREST (1)
MONTHS (N)

COMPUTE:

MONTHLY

INTEREST
1=1/12

COMPUTE:
Q=1+1
M=P+1+QN/((QTN)-1)

OUTPUT:
MONTHLY
PAYMENT
(M)

133

134

SUPER FORTRAN CODE AND SAMPLE EXECUTION

>5(5)

5 REAL I,N,-M

10 7 DISPLAY ""kkx"

15 ACCEPT "PRINCIPAL= $",FP,"INTEREST= "5 I,"NO«MONTHS= ''>N
20 I=1/12

25 Q=I+1

30 M=P*xI*%QtN/(C(QtNY=-1)

35 DISPLAY "MONTHLY PAYMENT = $',M
40 GO TO 7

45 END

S0

>RUN

ok k

PRINCIPAL= $1200

INTEREST= .06

ND«MONTHS= 12

MONTHLY PAYMENT = & 103.27972
ok

PRINCIPAL= $1200

INTEREST= .06

NO e MONTHS= 6

MONTHLY PAYMENT = $ 203451455
sk %k

FPRINCIPAL= $1200

INTEREST= .06

NO «MONTHS= 18

MONTHLY PAYMENT = § 69878077
sok %

PRINCIPAL= $

INTERRUPT

15 >

DOUBLE DECLINING BALANCE DEPRECIATION

DEFINE THE PROBLEM

Compute the double declining balance depreciation on any given asset over any

specified number of years using formatted 1/0.

Input
1. Cost of the asset (C).

2. Estimated useful lifetime (U).

Compute

1. Depreciation D=2 ¢
U

2. Book values cC=C-D

Output

For the entire range of years:
1. Year (1)

2. Amount of depreciation (D)
3. Book value (C)

FLOWCHART

(START)

INPUT

cC, U

COMPUTE
» D=2s+C/U

DO
I=1u c=c-D

l

(stor) OUTPUT

I,D,C

CONTINUE

135

136

SUPER FORTRAN CODE AND SAMPLE EXECUTION

SLIST

10 C: DOUBLE DECLINING BALANCE DEPRECIATION PROGRAM
20 WRITE(1,2) '"COST OF ASSET= %"

30 2 FORMAT(//Ss&)

40 READ(0,3) C

50 3 FORMAT(F12.2)

60 WRITE(1,4) ‘*ESTIMATED USEFUL LIFETIME= °

70 4 FORMAT(S,&)

80 READ(0,3)> U

90 WRITE(1,5) 'YEAR','DEPRECIATION', 'BOOK VALUE'
100 S FORMAT(/S5>8X5558%X55)

110 DO 100 I=1,U

120 D=2%C/U

130 C=C-D

140 WRITEC157) IsDsC

150 7 FORMAT(I4,8%Xs'5"'5F10258%X5'%'5F8.2)

160 100 CONTINUE

170 END

>RUN

COST OF ASSET= $3500.00
ESTIMATED USEFUL LIFETIME= 7.

YEAR DEPRECIATION BOOK VALUE
1 $ 1000.00 $ 2500.00
2 $ 71429 $ 1785.71
3 $ 510.20 $ 1275.51
4 $ 36443 $ 911.08
5 $ 260.31 $ 650077
6 3 18593 $ 464.84
7 $ 132.81 $ 332.03

@170)>>

137

LEAST SQUARE LINE

DEFINE THE PROBLEM

Fit a least square line of the form Y=A+BX to the following set of data, where X is
the independent and Y the dependent variable.

X 1 314 (6 |89 1 14
Y 1 2 |14 |4 |57 8 9

Solution

Compute first the sums shown below.

X Y x? XY
1 1
3 2 9 6
4 4 16 16
6 4 36 24
8 5 64 40
9 7 81 63
1 8 121 88
14 9 196 126
ZX=56 2Y=40 TX2%=524 TXY=364

Then compute the regression coefficients A and B.

Ao (ZY) (EX?) - (EX) (EXY)

N ZX? - (ZX)?
B = N ZXY - (ZX) (ZY)
N =X2 - (ZX)?
Then
Y=A+BX
Input

1. Number of data points (N)
2. The X values (X(1) - X(8))
3. The Y values (Y(1) - Y(8))

Compute

Equations given above:
1. Sums needed

2. Coefficients A and B

Output

The equation of the least square line

138

SUPER FORTRAN CODE AND SAMPLE EXECUTION

>FAST

10 * THIS PROGRAM FITS A LEAST SQUARE LINE OF FORM: Y=A+BX TO
A SET OF DATA (X,Y) WHERE X 1S THE INDEPENDENT VARIABLE.
15

20 STRING FMT(90)

25 DIMENSION X(8),Y(8),XX(8),XY(8)

30 ACCEPT ''NUMBER OF DATA POINTS= °''»N
35 ACCEPT "“THE X VALUES ARE '"»,X

40 ACCEPT “THE Y VALUES ARE ", Y

45

50 * LOOP TO CALCULATE XX AND XY

55

60 DO 100 I=1,N

65 XX(IX)=X(1)>t2

70 XYCI)=XCI)*Y(I)

75 100 CONTINUE

80

85 * LOOP TO CALCULATE TOTALS

90

95 DO 200 I=1,N

100 TX=TX+X(I)

105 TY=TY+Y(I)

110 TXX=TXX+XX(I)

115 TXY=TXY+XY(I)

120 200 CONTINUE

125

130 * TO CALCULATE COEFFICIENTS A.,B
135

140 A=(TY*TXX=TX*TXY)/ (N*TXX=TX*TX)
145 B=(N*TXY=-TX*TY)/ (N*TXX=TX*TX)

150

155 * TO COMPUTE OUTPUT FORMAT

160

165 I=TRUNC(LOG10CA)+5)+4

170 J=TRUNCC(LOG10(B)+«5)+4

175 FMT="(°'THE LEAST SQUARE LINE ISt Y=',F"+STR(I)+"e3,'+',F"
+STRC(JI+" 35X)"

180 WRITEC1,FMT) A,B

185 END

>RUN

NUMBER OF DATA POINTS= 8

THE X VALUES ARE 1,3,4565859511,514
THE Y VALUES ARE 152545455575859

THE LEAST SQUARE LINE IS¢ Y=¢545+.636X

(e185)>>

Input

139
COST OF PAINTING A BOX

DEFINE THE PROBLEM

Enter from the terminal the dimensions of the box, cost of paint, and area that a gallon
of paint will cover.

Compute

The cost and amount of paint needed to paint the box.

Output

The surface area of the box, gallons of paint needed, and cost of the paint needed.
NOTE: This program demonstrates the use of labelled COMMON.

SLIST
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210

220
230
240
>RUN

10

20

30

SUPER FORTRAN CODE AND SAMPLE EXECUTION

COMMON /SUBL1/ D1,D2,D3//A/5UB2/5,C1
DISPLAY ‘'ENTER THE DIMENSIONS OF THE BOX®
ACCEPT D1,D2,D3

WRITE(1,10) °*COST OF PAINT = §°

ACCEPT C1

WRITE(1,10) 'SQ FEET PER GALLON ='
ACCEPT S

CALL SA

CALL CA

FORMAT(S,&)

END

SUBROUTINE SA

COMMON /SUB1/DIM1sDIM2,DIM3//A
A=2*%(DIMI*DIM2+DIM1*DIM3+DIM2%DIM3)
WRITE(1,20) °'SURFACE AREA =',A
FORMAT(S,F8+4)

RETURN

END

SUBROUTINE CA

COMMON AREA /5UB2/ SQFT,COST
WRITE(1,30) °'GALLONS OF PAINT NEEDED =',AREA/SQFT,
'COST TO PAINT BOX = $', AREAX*COST/SQFT
FORMAT(SsF6.2)

RETURN

END

ENTER THE DIMENSIONS OF THE BOX
5¢495Te6T75498

PAINT = %$4.89

PER GALLON =312.

COST OF
S@ FEET
SURFACE
GALLONS
COST TO

(110)J>

AREA

=215.2902

OF PAINT NEEDED = «69
PAINT BOX = $ 3.37

140

PAYROLL CHECKS
(FILE 1/0)

DEFINE THE PROBLEM
Input

1. Read from file PRF each employee’s number (EMP(l)), pay rate (RATE(l)), and
hours worked (HRS(I)).

2. Enter from the terminal any changes to an employee’s pay rate and/or hours worked.

Compute

Gross pay for each employee.

Output
1. Updated file of pay rates and hours. The file PRF is in the form:

employee number, pay rate; hours;

employee number, pay rate, hours,

Before execution it appears as:

>COPY PRF TO TEL
99 2.00 48.00
77 250 40.00
88 3475 40.00
55 550 40.00
66 335 40.00
44 2.10 48.00

2. Gross pay file.
The file GPF has the form:
employee number; pay;

employee number, pay,

NOTE: This program demonstrates random file input/output.

>LIST
10
15
a5
30
33
35
40
42
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
>RUN

33
35
15

20
25

200

210

30

141

SUPER FORTRAN CODE AND SAMPLE EXECUTION

DIMENSION EMP(100)>RATE(100),HRS(100),PAY(100)
OPEN(3, 'PRF"'»RANDIO,SYMBOLIC)
FORMAT(IZ2)
READ(3,58,END=33)(EMP(I)»RATECI)»HRS(I)»1I=1,20)
N=I-1

DISPLAY ‘'ENTER ANY UPDATES'
ACCEPT EMPNOs»RTsHR

IF (EMPNO +.EQe 0) GO TO 25

DO 20 I=1,100

IREC=1I

IF (EMPNO +EQe EMP(I)) GO TO 30
CONTINUE

CLOSE(3)

OPEN(4,'"GPF'">0UTPUT, SYMBOLIC)

DO 200 I=1,N

J=EMP(I)

PAY(J)=HRS(I)*RATE(I)
WRITE(4,5,ERR=210) EMP(I)»PAY(J)
CONTINUE

FORMAT(I3,2%XsF7.2)

CLOSE(4)

STOP

POSITION(35,1+(IREC~-1)%16)
RATE(IREC)>=RT$3 HRS(IREC)=HR
WRITE(3,9) EMPNOs»RT»HR

GO TO 35

FORMAT(I3»F6¢25F642)
FORMAT(I3sF6¢2sF6¢25&)

END

ENTER ANY UPDATES

77520

50,48.

ENTER ANY UPDATES

5556

00540

ENTER ANY UPDATES

0,050

STOP

(@110 >>COPY PRF TO TEL
2.00 48.00
250 48.00
3¢75 4000
600 40.00
335 40.00
210 48.00

99
77
88
55
66
44

142

(e110 >Y»>COPY GPF TO TEL
99 96«00
77 120.00
88 150.00
55 240.00
66 134.00
44 100.80

(@110)>QUIT

The file PRF now contains the updated values, and the gross pay has been computed
and stored in the file GPF.

143

CHECKING ACCOUNT SERVICE CHARGES

In this problem, we wish to compute the monthly service charge for a regular checking
account. The amount of the service charge is based on the average monthly balance and
the number of checks written. The charge may be computed from the following table.

AVERAGE MONTHLY BALANCE

NUMBER $200 $300 $400 $500 $600 $700 $800 $900 $1000 $1100 $1200 $1300 $1400 $1500
OF UNDER to to to to to to to to to to to to to to
CHECKS $200 $299 $399 $499 $599 $699 $799 $899 $999 $1099 $1199 $1299 $1399 $1499 $1599

o$sH5 s/ LS § § § 8 § §$ 8§ 8 5 $
82 54 40

89 61 47 033

96 68 54 40

103 75 61 47

110 82 68 .54

117 8 75 6l

124 9% 82 68 54

131 103 89 .75 .61

138 110 96 82 .68 .54
145 117 103 8 .75 .61

11 15 124 110 96 82 .68 .54

12 15 131 117 103 8 .75 .61

13 166 138 124 110 96 .82 .68 .54

4 173 145 131 117 103 89 .75 .61

15 18 152 138 124 110 96 82 68 .54

16 18 15 145 131 117 103 89 .75 .61

17 194 166 152 138 124 110 96 82 68 .54

18 201 173 159 145 131 117 103 89 .75 .61

19 208 180 166 152 138 124 110 96 .82 .68 .54
20 215 18 173 159 145 131 117 103 .89 .75 .61

21 222 194 18 166 152 138 124 110 .96 82 .68 .54

22 229 201 18 173 159 145 131 117 103 .89 .75 .61

23 23 208 194 18 166 152 138 124 110 9 .82 68 .54

24 243 215 201 187 173 159 145 131 117 103 89 75 .61

25 25 222 208 194 18 166 152 138 124 110 96 .82 68 54 .00

b
O WO NN U &aWN =

Input

1. Number of checks written (NUMCHKS)
2. Average monthly balance (AVGBAL)
3. Current monthly balance (CURBAL)

Compute
1. This month’s service charge (MATRIX (1,J))
2. New balance (CURBAL)

Output
1. This month’s service charge

2. New balance

144

SUPER FORTRAN CODE AND SAMPLE EXECUTION

>LIST

10 C:s CHECKING ACCOUNT

20 C:

30 WRITEC1,10) °*'THIS IS A PROGRAM TO COMPUTE THE MO
NTHLY SERVICE CHARGE FOR A REGULAR','CHECKING ACCOUN
T AT A COMMERCIAL BANKe.'

40 10 FORMAT(S)

50 Cs

60 REAL MATRIX(15,26)sNUMCHKS

70 WRITEC1,50) CURRENT BALANCE = °*

80 50 FORMAT(//5,&)

90 75 FORMAT(/S5&)

100 ACCEPT CURBAL

110 DO 100 I=1,515

120 IF(I+LTe15) MATRIX(I,26)=2.50-(1%¢14)

130 IF(I.EQe15) MATRIX(1,26)=0.00

140 IFCI+EQel) MATRIX(I»26)=250

150 100 CONTINUE

160 DO 200 I=1,15

170 DO 200 J=1,25

180 MATRIX(1,J) = MATRIX(I»26)=((26=J)*«07)

190 200 CONTINUE

200 WRITE(1,75) ! AVERAGE BALANCE FOR THIS MONTH = °

210 ACCEPT AVGBAL

220 WRITEC1,75) ' NUMBER OF CHECKS THIS MONTH = °

230 ACCEPT NUMCHKS

240 I1=AVGBAL/100

250 J=NUMCHKS + 1

260 IF (MATRIX(I,J)eGE.0e54) GO TO 400

270 MATRIX(I»J) = 0.00

280 IF CCIeEQe2¢0e¢ANDeJeEQele0)eORe(Ie¢EQe3¢0¢ANDeJEQe3.0)
eORe (I eEQed4¢0eANDeJeEQReS5¢0)) MATRIX(I»dJ) = 047

290 IF (CI1¢EQe3¢0¢ANDeJeERQe1¢0)eORe(I¢ERed4e0eANDeJeEQe440))
MATRIX(I»J) = 040

300 IF (C(l1eEQe3¢0eANDeJsERe1¢0)eORe(IeEQed4e0eANDeJeEQe3:0))
MATRIX(Is»J) = 033

310 400 DISPLAY °*THIS MONTHS SERVICE CHARGE =',MATRIX(I,J)

320 CURBAL = CURBAL - MATRIX(I»J)

330 DISPLAY 'THE NEW CURRENT BALANCE =',CURBAL

340 END

>RUN

THIS IS A PROGRAM TO COMPUTE THE MONTHLY SERVICE CHARGE FOR A REGULAR
CHECKING ACCOUNT AT A COMMERCIAL BANK-.

CURRENT BALANCE = 513.67
AVERAGE BALANCE FOR THIS MONTH = 336.71
NUMBER OF CHECKS THIS MONTH = 13

THIS MONTHS SERVICE CHARGE = 1.24

THE NEW CURRENT BALANCE = 512.43

(6340 >

145

UPDATING FILES

DEFINE THE PROBLEM

There are three files that must be kept current: the EMPLOYEE file, DISTRICT file,
and JOB file. The program allows additions and corrections to the JOB and DISTRICT
files. It allows additions, corrections, and deletions to the EMPLOYEE file and alphabe-
tizes by employee name.

The files are in the following forms:
@JOB file

A, B, where A represents the job code, and B represents the job name.
AZ ’ BZ

An, Bn

@DISTRICT file

A;, B where A represents the district code, and B the district name.
A2 ’ 32

Anr Bn

@EMPLOYEE file
A;,B;,C,,D;,E1,Fy1, Gy Hy where A through H represent last name, first name,

A;,B,,C;,D5,Ey, Fy, Gy, Hy district code, employee number, job code, home
: address, city and state, and telephone number.

An, Bnl Cnl Dnl En, Fnl Gn: Hn

Input

New data for the file
Output

Updated file

Execution
Initially the @DISTRICT file contains

>COPY @DISTRICT TO TEL
DC»WASHINGTON DC

P, PALO ALTO

BO»BOSTON

NY»NEW YORK
ME,METROPOLITAN

DA, DALLAS

LA,LOS ANGELES

SF»SAN FRANCISCO

SDs SAN DIEGO

>

146

Initially the @JOB file contains

>COPY @J0B TO TEL

SECs SECRETARY

UP»VICE PRESIDENT

PW> PROGRAMMER WRITER
PR» PROGRAMMER

SR> SALES REPRESENTATIVE
IM,DISTRICT MANAGER
CO»COMPUTER OPERATOR
ME,MAINTENANCE ENGINEER

>

Initially the @ EMPLOYEE file contains

>COPY @EMPLOYEE TO TEL

ADAMS > ANSEL,DC»111,UP>211 HAVEN AVE,WASHINGTON DC,399-8474
EVERSsEVERETT» PA» 222, PW,890 RAND ST,»PALO ALTO CA»,983-3333
INGLESs INGRID»B0,»333,SEC»38 FREEDOM WAY»BOSTON MASS,233-3355
OLSONsOLLIE,>NY»444,PR>,1010 EIGHTH AVE,NEW YORK NY»,626-3554
UPDIKE,URSULAsME»5555»SR» 881 BROADWAY,NEW YORK NY»211-5467

>

147

SUPER FORTRAN CODE
UPDATE PROGRAM

>FAST

STRING FNAME(9)

STRING DJ(2,503C40)

STRING FI(25,50)C40)

DISPLAY "WHAT FILE DO YOU WISH TO UPDATE?"
ACCEPT FNAME

IF (FNAME.NE.'"@EMPLOYEE") GO TO 3

*EMPLOYEE UPDATE

VRN L WM -

10 LINK " eBALPH" Note that @BALPH is called as
11 3 OPEN(4,FNAME, INPUT»SYMBOLIC) a LINK file.

13 *JOB OR DISTRICT UPDATE

15 READC(4,END=18)((FI(I5,J)s1=152),J=1,50)

16 18 NFI=J=-1

17 CLOSE(4)

18 OPEN(4,FNAME,OUTPUT>SYMBOLIC)

19 IF (FNAME.EQ.'@J0B') GO TO 9

20 DISPLAY "ENTER UPDATES TO THE e@eDISTRICT FILE IN THE FOLLOW
ING FORM:'"

21 DISPLAY "DISTRICT CODE, DISTRICT NAME"

22 GO TO SO

23 9 DISPLAY "ENTER UPDATES TO THE eJOB FILE IN THE FOLLOWING
FORM:"

24 DISPLAY "JOB CODE, JOB NAME"

25 50 DISPLAY '"TO TERMINATE INPUT, TYPE AN *'
26 ICNT=0

27

28 *ACCEPT DATA FROM THE TERMINAL

29

30 89 DO 55 J=1,100

31 DO 660 I=1,2

32 ACCEPT DJ(I,J)

33 IF (DJC(IsJ)EQe"%'") GO TO 30

34 660 CONTINUE

35 DO 666 L=1,NFI

36 IF (DJ(15J)EQ.FICl,L)) GO TO 56

37 666 CONTINUE

38 ICNT=ICNT+1

39 (FICIL,ICNT+NFI)=DJ(I,J))»I=1,2

40 55 CONTINUE

41 30 CONTINUE

42 *

43 WRITEC4527)CC(C(FICISLI)5»I=152)5L=1,NFI+ICNT)
44 29 CLOSE(4)

45 27 FORMAT(S,»'»5'55)

46 STOP

47 56 (FI(K,L)I)=DJ(K»J))s>K=1,2

48 GO TO 89

49 END

>

148

BINARY PROGRAM ON FILE @BALPH

>FAST

1 STRING EDAT(8,50)(30),DUMMY(8)(30)

3 OPEN(4,'"@EMPLOYEE", INPUT»SYMBOLIC)

4 OPEN(S,"ALPHEM"»0UTPUT,»SYMBOLIC)

5 DISPLAY "ENTER UPDATES TO THE @EMPLOYEE FILE IN THE FOLLOWING
FORM:"

6 DISPLAY '""LAST NAME», FIRST NAME, DISTRICT CODE, EMPLOYEE
NUMBER, *'

7 DISPLAY ""JOB CODEs, HOME ADDRESS, CITY AND STATE, PHONE NUM
mR"

8 DISPLAY "

9 DISPLAY "TO DELETE TYPE: LAST NAME, FIRST NAME,"

10 DISPLAY ' EMPLOYEE NUMBER», DELETE"

11 DISPLAY *'°*

i11.5 DISPLAY '"TO RETYPE LINE, TYPE AN ALTMODE"

12 DISPLAY "TO TERMINATE INPUT, TYPE AN x*'"

13

14 *ACCEPT DATA FROM TERMINAL

15

16 16 DO 134 K=1,50

16«5 17 DISPLAY "ENTRY: "

17 DO 133 I=1,8

18 ACCEPT EDAT(I,K)

195 ON INTERRUPT GO TO 222

20 IF (EDAT(1,5K)«EQ«"%") GO TO 30

20«5 IF (EDAT(I>K)eEQe'*') (DISPLAY 'ERROR IN INPUT--START AGAIN';
GO TO 16) .
209 IF (EDAT(I>K)«EQ+"DELETE")(IF(INE+4)(DISPLAY"ERROR: TO
DELETE TYPE LAST NAME, FIRST NAME»> EMP.NO.», DELETE"; GO TO 17)
*ELSE.GO TO 134)

21 133 CONTINUE

22 134 CONTINUE

23 DISPLAY "MORE THAN S50 UPDATES. ONLY SO ACCEPTED"

24 30 NUP=K-1

25

26 *ALPHABETIZE

27

28 IF (NUP.LT.2) GO TO 40

29 DO 15 I=1,NUP

30 DO 15 M=NUPs2,-1

31 IF ¢ (EDAT(1,M)+EDAT(2,M))«GE«. (EDAT(1,M-1)+EDAT(2,M-1)))G0 TO 15
32 (DUMMY(J)=EDAT(J>M))»J=1,8

33 (EDAT(J>»M)=EDAT(JsM=-1))5J=1,8
34 (EDAT(Js>M-1)=DUMMY(J))»J=158
35 15 CONTINUE

36

37 *COMPARE TO @EMPLOYEE FILE

38

39 I0UT=0

40 40 READ(4,END=102)(DUMMY(I),1=1,8)
41 IF (IOUT.GE.NUP) GO TO 20

149

42 DO 202 I=I0UT+1,NUP

43 IF (PACK(DUMMY(1)+DUMMY(2))EQePACKC(EDAT(1,I)+EDAT(2,1)))
GO TO 10

44 1IF ((DUMMY(C1)+DUMMY(2))LT«(EDAT(1,I)+EDAT(2,51)3)) GO TO 20
45 *EDAT < DUMMY

46 IF (EDAT(4,1).NE."DELETE") WRITE(S5,70)CEDAT(K>1)

2K=1,8)

47 10UT=1

48 202 CONTINUE

49 20 WRITE(S5,70)(DUMMY(K)>»K=1,8)

50 GO TO 40

S0.5 222 OFF INTERRUPT; GO TO 17
51

52 *IDENTICAL NAMES

53

54 10 IF (PACK(DUMMY(4)).EQ.PACK(EDAT(C4,1I))) GO TO 103

55 IF (PACK(DUMMY(4)).EQ.FACK(EDAT(3,1I%)) GO TO 40

56 WRITE(5,70)(DUMMY(K)»K=1,8)

57 103 IF (EDAT(4,51)«NE+"DELETE") WRITE(S»70)CEDAT(K»>I)>K=1,8)
58 I0OUT=I

59 GO TO 40

60 102 IF C(IOUT.LT«NUP) WRITE(S5,70)((EDAT(Ms>N)»>M=158),
N=I0UT+1,NUP)

61 CLOSE(43>3CLOSE(S) [Note that a Command File is called to copy ALPHEM
62 * to EMPLOYEE:

63 OPEN(*,'""COMALF'™) B E———

64 PAUSE > COPY COMALF TO TEL

65 CLOSE(*) COPY ALPHEM TO EMPLOYEE

66 70 FORMAT(S)

665 END >

668

669 *FUNCTION TO ELIMINATE BLANKS

6695

67 STRING FUNCTION PACK(STR)(30)

68 STRING STR(*),S3(30)

685 S3=STR

69 1 I=INDEX(S3,' ')

70 IF (I>LS3=LEFT(S3,1-1)+SUBSTR(S3,I+1)3G0 TO 11
71 PACK =S3

71«5 RETURN

72 END

>

150

SAMPLES OF PROGRAM EXECUTION

>RUN

WHAT FILE DO YOU WISH TO UPDATE?

@DISTRICT

ENTER UPDATES TO THE @DISTRICT FILE IN THE FOLLOWING FORM:
DISTRICT CODE», DISTRICT NAME

TO TERMINATE INPUT, TYPE AN *

SE» SEATTLE

SD»SAN DIEGO/ORANGE CTY

*

(@46)>)>COPY @DISTRICT TO TEL
DC» WASHINGTON DC

PA, PALO ALTO

BO»BOSTON

NY,NEW YORK
ME,METROPOLITAN

DA, DALLAS

LA,LOS ANGELES

SFsSAN FRANCISCO

SE» SEATTLE

SD»SAN DIEGO/ORANGE CTY

(@46)>RUN

WHAT FILE DO YOU WISH TO UPDATE?

eJoB

ENTER UPDATES TO THE @JOB FILE IN THE FOLLOWING FORM:
JB CODE, JOB NAME

TO TERMINATE INPUT» TYPE AN *

TA>» TECHNICAL ANALYST

TY>sTYPIST

TS>»TYPE SETTER

*

(e46 >>COPY eJOB TO TEL
SEC» SECRETARY

VP>VICE PRESIDENT

PWs> PROGRAMMER WRITER
PR, PROGRAMMER

SR, SALES REPRESENTATIVE
DM>sDISTRICT MANAGER
CO»COMPUTER OPERATOR
ME, MAINTENANCE ENGINEER
TA, TECHNICAL ANALYST
TY» TYPIST

TS»TYPE SETTER

(046)>RUN

WHAT FILE DO YOU WISH TO UPDATE?

€EMPLOYEE

ENTER UPDATES TO THE @EMPLOYEE FILE IN THE FOLLOWING FORM:
LAST NAME, FIRST NAME, DISTRICT CODE, EMPLOYEE NUMBERS»

JOB CODE, HOME ADDRESSs CITY AND STATE, PHONE NUMBER

TO DELETE TYPE: LAST NAME, FIRST NAME,
EMPLOYEE NUMBERs DELETE

TO RETYPE LINE, TYPE AN ALTMODE

TO TERMINATE INPUT, TYPE AN *

ENTRY:

VALE, SALLY»B0»2865,SEC,934 INLAND DR,BOSTON MASS»343-9886
ENTRY¢

JOHNSON» JONsBO» 143,SR»877 ALTA WAY APT. 2,BOSTON MASS,543-9855
ENTRY:

BAKERsROBERT»>B05, 1355,SR»34 WEST ALVIN STe.sBOSTON MASS,»984-6545
ENTRY¢

KRUMMETsLeL«»1L.A»322,PR>832 AVENUE I,VENICE CA»999-3598

ENTRY:

ROLIMsEeAes»LA»8745PR>113 VALLEY ST,LOS ANGELES CA»877-9656
ENTRY:

CARDOS,» JOSE»SF»2835PR> 18 MARINA DRs,OAKLAND CA»349-4345

ENTRY:

OLSONsOLLIEsNYs»444,PR>564 NINTH AVELNEW YORK NY»748-9478
ENTRY:

%

OLD FILEOKo.
*69>

151

152

>FA
51
10
15
20
25
»ED
30
35
40
45
50
55
60
65
70
75
GO
80
90
95
105
110
115
120
125
130
135
4))
140
145
150
155
160
165
169

DISPLAYING EMPLOYEE INFORMATION

DEFINE THE PROBLEM

The program must display data according to the option specified by the program user.
The data is found on three files: @JOB, @DISTRICT, and @EMPLOYEE. The formats
for these files are given in the previous sample problem, UPDATING FILES.

The output options available to the program user are ROSTER, NAME, DISTRICT,
and JOB. With the last two, the user may specify particular districts or jobs, or he may
request ALL. With the NAME option, the user may specify any name or names, or he
may request ALL. For all options except ROSTER, the user may request a COMPLETE
or PARTIAL list of data for each employee.

SUPER FORTRAN CODE

ST

NTEGER DCNT

STRING NM(503(30)

STRING FMT(70)» JB(50,2)(25)

STRING DST(30,2)C40)

STRING OPT(4)3(8),LIST(8)>,0PTION(8)
ATAC85,50)(30>

STRING OPT2(8),JOB(30)(25),DSINC20)C40)

DATA (OPT(K)»K=1,4)/ROSTERsNAME»DISTRICT,» JOB/
FMT ='(Ss"s "5S5T245545545s53»,5/5T3555/5T355527)>"
ICNT=300

* PROCESS OPTION

ACCEPT "OPTION="'>O0PTION
N1=23 N2=6

IF (OPTION.EQeOPT(1))(FMT=LEFT(FMT»14)+°S,", "55/,T24,527)"*;
TO 1)
N1=5
DO 10 K=2,4

IF (OPTIONSEQeOPT(K)) KODE=KODE+K

10 CONTINUE

IF (ISK)> GO TO 105

ISK=1

WRITEC1) "'

105 ACCEPT "COMPLETE OR PARTIAL LIST?",LIST

WRITE(1)> " ’

IF (LIST.EQe.'PARTIAL')(N2=8;FMT=LEFT(FMT»23)+RIGHT(FMT>

IF (KODE.EQe2) GO TO 2
IF (KODE.EQe3)> GO TO 3
IF (KODE+EQ+4) GO TO 4
* PRINT BY DISTRICT

3 DISPLAY "TYPE IN DISTRICT CODES *“

153

170 DO 5 M=1,20

172 ACCEPT DSIN(M)

174 IF ((DSINC(M)+EQe'"ALL'") «ORe (DSIN(M)+EQe"END'"))(ND=
M=13GO TO 1)

175 5 CONTINUE

185 1 OPEN(4,'"@DISTRICT'",»INPUT)

190 READ(4,END=71)((DST(IsJ)s»J=1,2),1=1,30)
195 71 DCNT=I-1

200 CLOSE(4)

205 145 DO 502 N=1,DCNT

210 IF (KODE.EQ.0) GO TO 555

215 DO 73 M=1,ND

220 IF (DSIN(M)EQeDST(N»1)) GO TO 555

225 73 CONTINUE

230 IF (DSINC(1)eNEs"ALL'") GO TO 502

235 555 WRITEC(1) "

240 WRITE(1,200) DST(N»2)

e45 WRITE(1) "

255 OPEN(2, 'eEMPLOYEE', INPUT)

260 144 DO 500 L=1,ICNT

265 I=1

270 READ(2,END=501)(EDATA(J»1)5J=1,8)

275 IF (EDATA(351)«NE.DST(N»1)) GO TO 500

280 WRITE(1,FMT)(EDATA(K»I)»K=15N1)s (EDATA(K>I)s»K=N2,8)
285 500 CONTINUE

290 501 CLOSE(2)

295 502 CONTINUE

300 STOP 1

305

445

450 * PRINT BY NAME

455

460 2 DISPLAY "LAST NAME(S) REQUIRED; "

465 DO 20 L=1,50

470 ACCEPT NM(L)D

475 IF ((NMCL)EQ+'"ALL'")+0OR«s (NM(L)+EQ«"END"))(LLL=L=-13G0 TO 600)
480 20 CONTINUE

485

490 * READ FROM @EMPLOYEE FILE

495

500 600 OPEN(2,"@EMPLOYEE'", INPUT)

505 601 MORE=0

510 READ(2,END=603)((EDATA(I»J)»1I=158),J=1550)
515 MORE=1

520 603 ICNT=dJ-1

525 DO 123 L=1,LLL

530 607 DO 122 J=1,ICNT

535 IF ((NMC1)eNE."ALL'")+«AND«.(NM(L)+NE<EDATA(15J))) GO TO 122
540 WRITEC1,FMT)(EDATACI»J)»1I=155),(EDATACI»J)»I=N2,8)
545 122 CONTINUE

550 123 CONTINUE

555 IF (MORE) GO TO 601

560 CLOSE(2)

565 STOP 2

154

570
575
580
585
590
595
600
605
610
615
620
622
625
630
635
640
645
650
655
660
665
670
675
680
685
650
695
700
705
710
712
715

* PRINT BY JOB

4 OPEN(3,"@JOB"» INPUT>SYMBOLIC)
READ(3,END=30)((JB(I,J)»J=152)51=1550)
30 JCNT=I-1

CLOSE(3) 4

DISPLAY “TYPE IN JOB CODES"

DO 25 N=1,25

ACCEPT JOB(ND

IF ((JOB(NJ)+EQ+"ALL")e0Re (JOB(N)+EQ«*"END"))(NP=N-13G0 TO 15)
25 CONTINUE

15 DO 335 L=1,JCNT

DO 332 N=1,NP

IF(JOB(N)+EQeJB(Ls1)) GO TO 99

332 CONTINUE

IF (JOB(l).NE."ALL'") GO TO 335

99 WRITE(C1) "

WRITE(1,200) "POSITION:",JB(L,»2)
WRITEC1) "

OPEN(2, '@EMPLOYEE "', INPUT)

DO 333 I=1,ICNT

M=1

READ(2,END=334)(EDATA(JsM)» J=1,8)

IF (EDATA(5sM)eNE.JB(L,»1)) GO TO 333
WRITEC1>FMT)(EDATA(KsMI»K=155), (EDATA(K,M)»K=N2,8)
333 CONTINUE

334 CLOSE(2)

335 CONTINUE

STOP "“END"

200 FORMAT(S»1X,5)

END

155

SAMPLES OF PROGRAM EXECUTION

>RUN
OPTION=ROSTER

WASHINGTON DC

ADAMS, ANSEL 211 HAVEN AVE, WASHINGTON DC
399-8474

PALO ALTO

EVERS» EVERETT 890 RAND ST, PALO ALTO CA
983-3333

BOSTON

BAKERs ROBERT 34 WEST ALVIN STe.» BOSTON MASS
984-6545

INGLESs, INGRID 38 FREEDOM WAY, BOSTON MASS
233-3355

JOHNSON, JON 877 ALTA WAY APT. 2, BOSTON MASS
543-9855

VALE, SALLY 934 INLAND DR» BOSTON MASS
343-9886

NEW YORK

OLSON» OLLIE ' 564 NINTH AVE, NEW YORK NY
748-9478

METROPOLITAN

UPDIKE, URSULA 881 BROADWAY, NEW YORK NY
211-5467

DALLAS

LOS ANGELES

KRUMMET, LeLe 832 AVENUE I, VENICE CA
999-3598

ROLIMs EeAe 113 VALLEY ST, LOS ANGELES CA
B877-9656

SAN FRANCISCO

CARDOSs, JOSE 18 MARINA DRs, OAKLAND CA
349-4345

SEATTLE

SAN DIEGO/ORANGE CTY

1
(e300)Y»>

156

>RUN
OPTION=NAME

COMPLETE OR PARTIAL LIST?COMPLETE

LAST NAME(S) REQUIRED3
JOHNSON

BAKER

END

JOHNSON, JON

BAKERs ROBERT

2

(8565)>>
>RUN
OPTION= JOB

BO

BO

143 SR

135 SR

COMPLETE OR PARTIAL LIST? PARTIAL

TYPE IN JOB CODES
234
END

FOSITION: PROGRAMMER

CARDOS», JOSE
KRUMMET> LeLo
OLSON, OLLIE
H)LIM: EOA.

END
(e710 1>

SF
LA
NY
LA

283 PR
322 PR
444 PR
874 PR

877 ALTA WAY APT. 2
BOSTON MASS
543-9855

34 WEST ALVIN ST.
BOSTON MASS
984-6545

349-4345
999-3598
748=-9478
877-9656

>RUN
OPTION=DISTRICT

COMPLETE OR PARTIAL LIST?PARTIAL

TYPE IN DISTRICT CODES
BO

NY

END

BOSTON

BAKERs ROBERT
INGLES» INGRID
JHNSON,» JON
VALE, SALLY
NEW YORK
OLSON» OLLIE

1
(e300)>>

BO
BO
BO
BO

NY

135
333
143
286

444

SR 984-6545
SEC233-3355
SR 543-9855
SEC343-9886

PR 748-9478

157

158

APPENDIX A
STORAGE ALLOCATION

The computer has a specified amount of memory available for both program and data.
The total number of statements and amount of data that can be used can be greatly in-
creased by linking programs together; that is, running one program, loading another binary
program from a file and running it, and so forth.

Approximately 8000 words of memory are available for each program and its data.

The amount of storage required for a program and for data may be found using the
CCS command MAP.

The following values show the allocation of storage:

1 Real Number = 2 Words

1 Integer Number = 1 Word

1 Complex Number = 4 Words

1 Double Precision Number = 3 Words

1 String = 1/3 Word times the declared length of the string (rounded up to a whole
number)

Thus, if a program contains the real array A(130,20), 5200 words would be required
for data storage, leaving 2800 words for program storage.

The actual program size and storage used for data may be determined by using the
CCS command MAP. The MAP command prints a table as shown in the example below.

>MAP

SOURCE PROGRAM:

13 LINES

TEXT = 206 CHARS (OF 24000)
COMPILATION = 148 BYTES (OF 18000)
NAMES = 6

(0,0)

OBJECT PROGRAM:

SIZE = 103 WORDS
COMMON = 0 WORDS

DATA STORAGE = 8 WORDS
7988 WORDS UNUSED

>
If a program exceeds the maximum size allowed, it must be reduced in size before it

will run. The program size can be reduced either by deleting statements from the program
or by reducing the bounds of dimensioned variables.

INTERNAL REPRESENTATION OF ASCII CODE

APPENDIX B

Representation Representation
Character Character
Decimal Octal Decimal Octal
00 00 Space 32 40 @
01 01 ! 33 41 A
02 02 " 34 42 B
03 03 # 35 43 C
04 04 $ 36 44 D
05 05 % 37 45 E
06 06 & 38 46 F
07 07 ! 39 47 G
08 10 (40 50 H
09 11) 41 51 |
10 12 * 42 52 J
11 13 + 43 53 K
12 14 , 44 54 L
13 15 - 45 55 M
14 16 . 46 56 N
15 17 / 47 57 0]
16 20 0 48 60 P
17 21 1 49 61 Q
18 22 2 50 62 R
19 23 3 51 63 S
20 24 4 52 64 T
21 25 5 53 65 U
22 26 6 54 66 \)
23 27 7 55 67 W
24 30 8 56 70 X
25 31 9 57 71 Y
26 32 : 58 72 4
27 33 ; 59 73 [
28 34 < 60 74 \
29 35 = 61 75]
30 36 > 62 76 t
31 37 ? 63 77 <«

NOTE 1) The ASCI! codes for control characters can be obtained by adding the decimal
number 64 or the octal number 100 to the appropriate representation for the specific
alphabetic character. For example, since the code for A is decimal 33 or octal 41, the
code for Control A is decimal 97 or octal 141.

2) A Line Feed followed by a Carriage Return may be generated by a Control J.

A Carriage Return followed by a Line Feed may be generated by a Control M.

159

160

APPENDIX C
EXECUTIVE SUMMARY

ENTERING THE SYSTEM

To gain access to the Tymshare system, the user
must log in.

As soon as the computer has answered, place the
telephone handset into the MARK V data modem,
press the ORIGINATE button on the MARK V, and
turn on your terminal. If your terminal is a Teletype
Model 33 or 35, the system will ask that the identify-
ing character D be typed. NOTE: For the identifica-
tion character for other terminals, consult your local
Tymshare representative. The system will then type:

PLEASE LOG IN:
Optional
The user may respond with: ptiona

account number password; user name; project code
to log in quickly, or he may respond with a Carriage
Return to be prompted by the system. The system
replies with:

ACCOUNT: A3 p)

The user types his account number and a
Carriage Return. The system responds with:

PASSWORD:)

The user types his password followed by a
Carriage Return. The password does not
print. The system types:

USER NAME: JONES

The user types his user name followed by a
Carriage Return. The system then types:

PROJ CODE: S1222
The user types his project code and a Car-
riage Return. The project code is optional.
The user may simply respond with a Carriage

Return.
The system will now type:

TYMSHARE 12/8 11:20

The dash indicates that the user is in the EXECU-
TIVE and may give any EXECUTIVE command.
Calling a language is an EXECUTIVE function. Thus,
typing
—SFORTRAN for SFOR 2}

>

calls SUPER FORTRAN which acknowledges with a
> indicating it is ready to accept a command.

RULES FOR NAMING FILES

1. File names that are not surrounded by slashes or
quotes may contain only A through Z, O through
9, and @. Thus, @Z1 is a valid file name.

2. A file name may begin and end with single quote
marks. Inside the quote marks can be any char-
acters (including control characters) except a single
quote mark.

3. A file name may begin and end with a slash, and

may contain any characters (including control char-
acters) except a slash. For example, /@Z1/ or
/GC;/ are valid file names.

METHODS OF CREATING
SYMBOLIC DATA FILES

1. Read from paper tape.
2. Using the EXECUTIVE COPY command.

—COPY TEL TO /#'S/@

NEW FILE)

NO. 1, 1.873

NO. 2, 3.152

D¢

3. Using the EDITOR commands READ, WRITE,
and APPEND.

#*READ /#’8/2

24 CHARACTERS

* APPEND)

NO. 3, 4.222

NO. 4, 2.532

D¢

*WRITE

TO ‘NO/S';)

NEW FILE p)

48 CHARACTERS

4. Using the SUPER FORTRAN commands READ,
WRITE, and OPEN.

OPEN(3,F13",RANDOUT,SYMBOLIC)

WRITE(3,100)X,Y,2

or

WRITE(3)X,Y,Z

for free form output.

5. Using the CCS command, COPY.
> COPY 5:100 TO NUMS

APPENDIX D
SUPER FORTRAN LANGUAGE SUMMARY

CONSTANTS
Type Examples
Integer 0, -15, 425
Real 0., 1.9, -.127, 1.7E2, -5E+4, 1.2E-3
Complex (-3, 5.2), (1.8, .5E2)
Logical .TRUE. .FALSE.
Hollerith 3HYES, 6HAB CDE
String “MEAN”, ‘CODE4’
VARIABLES

Types: Integer, Real, Double Precision, Complex, Logical, String

Names: No more than 31 characters beginning with a letter of the alphabet.
Scalar Variable: N, ALPHA, XX, R1

Subscripted Variable: A(2), B(-2,4), C(1,1,1)

ARITHMETIC OPERATORS
(In Order Of Priority)

*+ or 1 Exponentiation

— Unary Minus

* and / Multiplication and Division
+and - Addition and Subtraction

RELATIONAL OPERATORS

.EQ. Equal to

.NE. Not equal to

LT. Less than

.LE. Less than or equal to
.GT. Greater than

.GE. Greater than or equal to

LOGICAL OPERATORS
(In Order Of Priority)

.NOT.

.AND.

.EQV. Equivalence
.IMP. Implication
.OR. Inclusive OR

.EOR. Exclusive OR

161

162

EXPRESSIONS

Arithmetic Expressions Logical Expressions

45 A .EQ.B

X X-5.LT.C#10

A(4) (G .GT. 5) .AND. (Y .LE. 4)
SQRT(Y)

FUNT(3,4)

N/(1+2.)

D-B*C

REPLACEMENT STATEMENTS

Model Examples
variable=expression X=(Y+Z)/HEIGHT
AREA(1)=(1-1)*SQRT(B)
A=TRUE.
B(2)=A .AND.C

(SUM=SUM+A(1)),1=1,20

CONTROL STATEMENTS
statement label = 1 to 99999

Models Examples
IF (logical expression) statement IF (A .GT. 100) (P=1;GO TO 10)
IF (arithmetic expression) n;, n,, n3 IF (C-D) 10,10,20

where n;, n,, n3 are statement labels.
IF (expression) statement .ELSE. statement
IF (A.EQ.5) GO TO 10.ELSE.GO TO 20

DO statement label variable=initial value, final value, increment

DO 10 1=1,10,.2
DO 35 J=9,3,-1

DO 20 M=J,10
GO TO statement label GO TO 25
GO TO (n;,n,,n3), expression GO TO (10,25,40),K

where n;, ny, n3 are statement labels

ASSIGN statement number TO variable @ ASSIGN 10 TO L

GO TO variable, (n;, n,y, ..., ny) GO TO L,(10,20,30)

where n; to ni are a list of statement labels.

ON INTERRUPT GO TO statement label ON INTERRUPT GO TO 50

OFF INTERRUPT OFF INTERRUPT

CONTINUE 10 CONTINUE

PAUSE ‘‘text’” or number PAUSE “NOW, CONTINUE”
STOP “text” or number 25 STOP 4

QUIT ““text’”” or number QUIT “DONE”

END END

163

INPUT/OUTPUT STATEMENTS
Free Format Input/Output

Model Examples
ACCEPT variable list or literal text ACCEPT “X="X, ‘NUMBER OF VALUES=’,N
DISPLAY variable list or literal text DISPLAY “TOTAL 1S”,S,R+5,(S(1),1=1,K)
READ (file number) variable list READ (0) AB,SOL

READ (2) DATA
WRITE (file number) variable list WRITE (1) (A(1),1=1,N)

WRITE (5) STS, RDS

Formatted Input/Output

Field Specification

Type Example Sample Value

| - Integer 13 123

F - Real (fixed point) F7.2 1487.25

E - Real (floating point) E8.1 .3E+08

G - Real (general) G12.3 .244E+4

L - Logical L1 TorF

A - Alphanumeric Ab JONES

H - Hollerith 4HTIME TIME

S - String variables S5 AB123

X - Spacing 5X spaces 5 times

T - Tabs T20 tabs to print position 20
P - Scaling factor 3PF5.2 scales value by factor of 103

/ - Generates a Carriage Return
& - Suppresses a Carriage Return

FORMAT statement
Model Examples

statement number FORMAT (S;.,S;,...,Sk) 100 FORMAT (12,F8.3,E10.1/4(14,G9.2))
where S; to Sy are field specifications.
25 FORMAT (S4,F12.3,6HMETERS)

Terminal Input/Output

File number O refers to the terminal in the READ statement, file number 1 to the terminal in the WRITE
statement.

Models Examples

READ(0,format number, error condition) variable list READ(0,100,ERR=5)N,(A(l),1=1,100)
100 FORMAT(I5/F10.3)

WRITE(1,format number, error condition) variable list WRITE(1,35)1,R+5,DEC

35 FORMATI(I6,F12.4,A5)

The error condition is optional.

164

File Input/Output
Opening A File
Four files can be open at a time. File numbers 0 and 1 are reserved for terminal input/output.

Model

INPUT
OUTPUT SYMBOLIC
OPEN (file number, ‘“file name’, | RANDIN , | BINARY , error condition)
RANDOUT
RANDIO
Examples
OPEN(3,”QUAD", RANDIN, SYMBOLIC)
OPEN(5,”ROOTS"”, OUTPUT, SYMBOLIC)
OPEN(4,”STOR"", RANDIO, BINARY,ERR=100)
Closing A File
Model Example
CLOSE (file number) CLOSE (3)
Symbolic File Input/Output
Models Examples

READ(file number, format number, end of file and/or error condition) variable list

READ(3,25,END=100,ERR=5) A, (BC(l),I=1,N)
READ(2,FMT)S1,52

where FMT may be entered as input.

WRITE(file number, format number, error condition) variable list

WRITE (2,10,ERR=15)R1,R2+4
WRITE (5,50) ARAY1

The end of file and error conditions are optional. The format statement label is omitted for free format 1/0.

Binary File Input/Output

Models

READ(file number) variable list
WRITE(file number) variable list

Examples
READ(4)(Y(1),1=1,1000)
WRITE(3) AGE, VOL

Random File Functions

Models

POSITION(file number)
Finds position in an opened random file.

SIZE(file number)

Finds size of an opened random file.

Examples
K=POSITION(2)

NR=S{ZE(5)-20

165

Random File Statements

Models Examples

POSITION(file number, position number) POSITION(5,S1ZE(5)-10) .
Sets position in an opened random file POSITION(2,1)

ERASE(file number) (first position, last position) ERASE(3) (1,100)

ERASE(4) (256,%)
Erases from position 256 to the end of file 4.

DECLARATION STATEMENTS

C: THIS IS A COMMENT
* THIS IS ANOTHER COMMENT

Models Examples
DATA variable, /value, /,variable, /value, /, ... variable, /value,/
DATA A/4.1/,B/2E7/,1/100/
DATA variable,, variable,, ..., variable,/value,, value,,. . ., value,/
DATA A,B,1/4.1,2E7,100/
DATA (2(1),1=1,5)/1,2,3,4,5/

DIMENSION array name (maximum size of each subscript)
DIMENSION HT(60),BP(15,20)
DIMENSION array name (lower limit:upper limit of each subscript)
DIMENSION A(-2:10, 0:20),CAM(3, 0:4, -2:5)

COMMON variable list COMMON H, P(20,20)/LABL/R,T//A
INTEGER variable list INTEGER A, POUND, GAL, R(5)
REAL variable list REAL 1(10), MIN, MAX(-2:4)
DOUBLE PRECISION or LONG variable list DOUBLE PRECISION AR, X(20)

LONG DPX
COMPLEX variable list COMPLEX X,BAT,COM(25),J
LOGICAL variable list LOGICAL FIR,SEC,TR(4)
EQUIVALENCE (variable list), (variable list) ... EQUIVALENCE (A(1), LIST(155)),(A,B,C)
STRING variable list STRING NAME(15), ADD(30), SARAY(3,5)(10)

SUBPROGRAMS
Statement Function

Models Examples
Function name (dummy arguments)=expression SRT (A,B)=A**2-4*B

Reference in main program:

Y=SRT(3,4)

CHIS (X,Y,Z)=X+Y-Z+SQRT(M)
Reference in main program:
DISPLAY CHIS(3.1,4.2,5)

166

FUNCTION Subprogram

Models

FUNCTION function name (dummy arguments)
function name=expression

END
type FUNCTION name (arguments)

function name=expression

END

Examples

FUNCTION TAG(A,B)

IF (A .LT.200) GO TO 50
TAG=SQRT(A+B)

RETURN

50 INT=0

RETURN

END

DISPLAY TAGI(R,X) Call in main program.
REAL FUNCTION I(X)

|=X**2

END

The function type may be any variable type: REAL, DOUBLE PRECISION, and so on.

Subroutine Subprogram

Models
SUBROUTINE name

END

SUBROUTINE name (dummy arguments)

END

CALL subroutine name
CALL subroutine name (actual arguments)

Model

Direct:

(@line number)>@ LINK ‘“file name"”
Indirect:

> line number LINK ‘‘file name”

Examples

SUBROUTINE PRINT
DISPLAY *““CHECK DATA"
END

SUBROUTINE TR(N,A,TOTAL,MEAN)

END

CALL PRINT
CALL TR(10,B,SUM,MN)

LINKING

Example

(@100)>@LINK “K2"

> 100 LINK “BPROG"”

167

COMMAND FILE IN A FORTRAN PROGRAM

Model Example
CLOSE(*) CLOSE(*)
OPEN(*,“TEST")

OPEN(*,"file name'’)

READ(*,format number) variable list READ(*,100) N,(A(1),I=1,N)

168

APPENDIX E
CCS SUPER FORTRAN COMMANDS SUMMARY

Line Number = .001 to 999.999

ENTERING A PROGRAM

From The Terminal

Single Statement Entry
>ENTER 10.2 Y=Z+1 p)
> 12 DISPLAY XY p»)
Multiple Statement Entry
>1:10 5

@DOo 25 I=1,5
@A(1)=0)
@B()=Cc(-15

@25 CONTINUE 5

@p¢

>

Multiple Statement Entry With Prompted Line Numbers
>10(10))

10 A=3 5

20 B=A+SQRT(X) b)

30 D¢

>

From A Symbolic File Without Line Numbers
> COPY file name TO line range 5
Example
> COPY ABC TO 1(5)800;)

From A Symbolic File With Line Numbers
> LOAD file name 2 Clears current program and then loads file.
Example
> LOAD CHI1 o

> MERGE file name ps) Merges by line number the contents of the
symbolic file with any current program.

Example
>MERGE MON@ 2

169

From A Binary File

> LINK file name b Loads binary version of program and exe-
cutes itimmediately. COMMON is set to zero.

> LOAD file name bs) Loads source and binary programs.

Example

> LINK /ACCT#/ 5

From Paper Tape
>LOAD TELD Statements must have line numbers.
> COPY TEL TO line number range) Statements must not have line numbers.

Example
>COPY TEL TO 1:2009

SAVING A PROGRAM

> SAVE file name > SAVE file name 5
TEXT ONLY?Y 5 TEXT ONLY?N 5

Saves only symbolic version Saves symbolic and binary versions.

of program.
OLD oLD
or FILE o or FILE 5
NEW NEW
OK. OK.
> >

COPYING

> COPY file name or line list TO file name or line range 5 File name can be TEL,
Examples
> COPY XYZ TO 10(5)200 Copies file XYZ to lines 10 through 200 in

increments of 5.
> COPY #1:100 TO ‘RT/FL’ 2

> COPY 5:$ TO 75:90 5

The command MOVE is the same as COPY except it deletes the source after it is moved.

Examples
> MOVE 1:100 TO /1'ST/ b»)
> MOVES5:20 TO 75:90 bs) A space is unnecessary between the command

and the line range.
> MOVE .:$ TO CR@ p»)

170

LISTING

Formatted Listing Quick Listing
> LIST 5 > FAST 2

Lists entire program on terminal.
> LIST line list 3 > FAST line list 5

Lists specified lines on terminal.
> LIST line list TO file name 5 > FAST line list TO file name)

Lists specified lines on file named.
Examples
> LIST 10:100
> FAST 25
> LIST 50:$ TO LFIL 5
> FAST=*1 5

RENUMBERING
> RENUMBER b) Reassigns line numbers starting at 1 in
steps of 1.

> RENUMBER line number range b) Reassigns line numbers in the range speci-

fied in increments of the first of 1, .1,
.01, and .001 which fits the specified
range.

> RENUMBER line number range AS line number range
Examples

> RENUMBER 2.1 AS 25 5 or > RENUMBER 2.1,25 5
> RENUMBER 1:15 AS 10(5)50;) or > RENUMBER 1:15,10(5)502

DELETING A PROGRAM OR STATEMENTS
> DELETE line list) Deletes the lines specified.
>CLEAR , or DELETE Deletes the entire program.

ERASE PROGRAM?Y o
OK.
>

Examples
> DELETE 5.3)
> DELETE x1:$-2 p)

EXECUTING A PROGRAM
> RUN ;5 or > EXECUTE b Executes a symbolic program.

> LINK binary file name o Enters and executes binary program on
file named.

DEBUGGING

variable name . .
> REFERENCES l: or :l line list 5
el

statement lab

Examples
> REFERENCES zZ 10:502
> REFERENCES 30 P

variable name
> DEFINITIONS or
statement label

line list o

Examples

> DEFINITIONS 5

> DEFINITIONS 20 100:$

> DEFINITIONS CARGO *1:200

> SET list of breakpoints by

or
> BREAK list of breakpoints b
Examples
>SET >

>SET 8,10:12

>BREAK 15,22,100 5

> RESETQ

> RESET list of breakpoints 2

Example
> RESET 20,45:50 b»)
line number >CONTINUE2

line number >@ statement

Example
(@30)>@X(1)=0 b

line number; >AT line number, b

Example
15 >AT 55 b)

(@55)15 >@DISPLAY VALUEQ

The line list is optional. Prints
lines containing variable name or
statement label specified in the
range specified.

Prints declarative statements
which contain the variable name
or statement label specified. The
line list is optional.

Prints all declarative statements.

Sets breakpoints as specified in
the list.

Lists all breakpoints in the pro-
gram.

Clears all breakpoints.

Clears breakpoints specified in
the list.

Execution resumes at line num-
ber.

The direct statement is executed
immediately.

Moves orientation of direct state-
ments to block containing line
number,.

The direct statement @DISPLAY
VALUE refers to the variable
value as it is defined in the sub-
program containing line 55.

171

172

line number >NEXT) Executes statement with the given line
number.
> RUN TO list of breakpoints b) Clears and sets new breakpoints as speci-

fied in the list, then begins execution.
Example
>RUN TO 5,10,

line number >CONTINUE TO list of breakpoints 5

Clears and sets new breakpoints as speci-
fied in the list, then continues execution

at line number,
Example
25 >CONTINUE TO #12:50,$-3 5
EDITING
> EDIT line list b Prints and allows editing, line by line.
> MODIFY line list) Allows line by line editing, but does. not
print the line to be edited.
Examples
>EDIT25

> EDIT =10,55:60,$-1)
> MODIFY 25,70 b

OTHER COMMANDS
> CHECK) Checks to see whether or not program
is executable.

> INITIALIZE) Prepares program for execution. Performs
all declarations and data statements. Can
be followed by direct statements.

> COMMANDS file name bs) Takes commands from the file named.

> MAP) Describes program resource utilization.

>QuiT o Returns to the EXECUTIVE.

173

APPENDIX F
USER AIDS

ABBREVIATED COMMANDS

To save time, any CCS command may be abbre-
viated to as few characters as necessary to identify
the command uniquely. Thus the command FAST
may be abbreviated simply as
>F
since there are no other commands that start with
the letter F. But to list a program, at least
> LIS)

is required since the command LINK also starts with
the letters LI.

If insufficient identification is given to a command,
the message

AMBIGUOUS COMMAND, PLEASE TYPE MORE
CHARACTERS

will be printed.

ELIMINATING AS AND TO
FROM COMMANDS

A comma may be used in place of the words AS
and TO in any CCS command as long as no ambiguity
results. For example,

> COPY /A/,/B/

may be used instead of
> COPY /A/ TO /B/
but

> COPY 1,10,15,/A/

is not allowed since it is not evident which comma
replaces the TO.

SPACES IN CCS COMMANDS

A space is usually required between parts of a
command. For example, typing

LOADPROG

to load the file named PROG causes an error diag-
nostic; the user must type

LOAD PROG ,

However, spaces may be omitted between alphabetic
and nonalphabetic characters. For example,

> LIST5,15,20:100 b)
is legal.

Spaces are not allowed in the actual line list, since
a space terminates a line list. For example,

> LIST 5,10:17,20:30 ps)
is allowed, but

> LIST 5,10:17, 20:30
is not.

NOTE: Spaces are not allowed in the variable name
in either the REFERENCES or DEFINITIONS com-
mands. For example,

> REFERENCES ALPHA1 1:1003
is allowed, but
> REFERENCES ALPHA 1 1:1002

is not.

COMMAND MODELS

If the user is not certain how to use a particular
command, he may type a question mark after the
command name. A model of the command is then
typed. For example,

1
>COPY ? 5
SHOULD BE:

COPY <FILE OR LINES>

>

[TO <FILE OR

LINE-RANGE>]

174

The following is a summary of the various prompts that may be printed by CCS.

In the table,

A REVIEW OF CCS PROMPTS

Iy and I, are line numbers.

*n indicates that an interruption occurred just before the nth line of the program.

i is an increment.

PROMPT

WHEN PRINTED

MEANING

>

Just after SUPER FORTRAN
is called; after certain kinds
of errors, after various CCS
commands, such as DELETE;
after binary program execu-
tion is interrupted by a STOP
statement, the end of the pro-
gram, or by certain errors.

CCS is ready to accept a
command (but not a direct
statement).

(@line number) >

When symbolic program exe-
cution is interrupted by a
STOP statement or the end of
the program.

CCS is ready to accept a
command or a direct state-
ment (a SUPER FOR-
TRAN statement preceded
by an @).

line number >

When symbolic program exe-
cution is interrupted by cer-
tain kinds of errors, ALT
MODE, a breakpoint, or a
PAUSE; after the commands
NEXT and INITIALIZE.

CCS will accept a CCS
command or a direct state-
ment; in addition the CON-
TINUE command may be
used to resume execution
at the line number printed
in the prompt..

After a continuable interrup-
tion of a linked binary pro-
gram.

The CONTINUE command
will continue execution at
nth line in program; NEXT
will execute nth line. No
direct statements or break-
points are accepted.

@), >

After the @ point has been
changed with the AT com-
mand.

CCS will accept acommand
or a direct statement. Var-
iables defined in the pro-
gram block containing line
I; may be referred to with
direct statements. Typing
CONTINUE resumes exe-

cution at line |,.

During the command
> ENTER Il:lz p

CCS will accept a SUPER
FORTRAN statement.
The statement will be
placed in the current pro-
gram with a line number in
the range I;:1,.

line number

During the command
> ENTER [, (i), 2
or

> ENTER I, (i) b}

CCS will accept a SUPER
FORTRAN statement!.
The statement will be
placed in the current pro-
gram with the line number
prompted.

1 - Or a group of executable SUPER FORTRAN statements separated by semicolons.

INDEX

NOTE: Page numbers which appear in bold face type refer to those pages where the listed

item receives the most detailed discussion.

A field specification, 58
Abbreviated commands, 173
ABS, 26

ACCEPT, 7,45
input in response to, 46

ACOS, 26

Addressing, see Line addressing
ALT MODE/ESCAPE, 3, 38
AND, 24

Argument, function, 25, 91
subroutine, 94, 95

Arithmetic operators, 22
expressions, 21
replacement statements, 30

Array, asterisk, 96
constant bound, 96
definition, 12
dimensioning, 82, 84
storage arrangement, 82
subscripts, 20

ASC, 42

ASCII code, internal representation of, 159

ASIN, 26

ASSIGN, 32

Assigned GO TO, 32

Assignment statement, see Replacement statement
AT, 119

ATAN, 26

ATAN2, 26

Binary file, 45, 70
input/output of, 164

Blank COMMON, 85

Block data subprograms, 97
BREAK, 117, 118
Breakpoints, 117

CALL statement, 94

CCS command summary, 168
commands, 101
prompts, 174

CHAR, 42

CHECK, 123

CLEAR, 125

CLOSE, 69, 99

Command files, 99, 123, 167
COMMANDS, 100

Commands, abbreviated, 173
CCS, Section 10
models, 173

Comments, 79

COMMON, blank, 85
declaration, 84
dimensioning in, 86
labelled, 86

Complex, constants, 19
declaration, 83
functions, 27
input, 56
variables, 20

COMPLX, 27
Computed GO TO, 32
Concatenation, 40
CONJG, 27

Constants, complex, 19
DATA statements, 80
double precision, 19
integer, 19
literal, 81
logical, 20, 81
numeric, 80
real, 19
string, 20, 81

CONTINUE, 36, 118
command, 118
statement, 36
CONTINUE TO, 121

175

176

Control characters, see Editing statement implied, 36

Control statements, 7, 8, 12, 31 transfer to and from, 35

summary of, 31 DO (statement), 33
Conversational Compiler System, 1 Documenting, 6
commands in, Section 10 DOUBLE PRECISION, 83
Conversion functions, 28 Double precision constants, 19
COPY, 106, 111 declaration, 83
COS, 26 variables, 20
COSH, 26 Dynamic format, 67
D field specification, 53 E field specification, 53
Data, block, 97 EDIT, 128
file, 62 Editing control characters, summary of, 126
records, 62 Editing, data input, 129
DATA statement, 79 program, 126, 172
constants, 80 END, 8, 10, 39

literal constants, 81 B
logical constants, 81 End of file condition, 76
numeric constants, 80 End of record, 62
DATE, 28 early encounter of, 63
specification of, 64

DBLE, 28 suppression of, 64
Debugging aids, 116, 170, 171 ENTER. 104
Debugging, definition of, 6 syntax errors during, 106
Declaration, COMMON, 84 Entering, program from paper tape, 106, 169
COMPLEX, 83 statements, 104, 168
DIMENSION, 82, 84 statements by line humbers, 104
DOUBLE PRECISION, 83 statements line number range, 104
implicit, 12, 20, 84 statements prompted line numbers, 105
INTEGER, 83
' E R
LOGICAL, 83 NTIER, 27
REAL, 83 .EQ. (equal to), 23
STRING, 84 EQUIVALENCE, 87
summary of statements, 165 EQV. 24
type, 83 !
DEFINITIONS, 122 ERASE, 74
R
DELETE, 125 ERR, 76
. Error processing, input/output, 76
Deleting statements, 125, 170
DIM. 27 ESCAPE/ALT MODE, 3, 38

Exclusive OR, 24
EXECUTE, 10, 113

Executing a program, 170

DIMENSION declaration, 82, 84
Direct statements, 118
Disk file input/output, 68

Execution, step, 120
DISPLAY, 7, 46

EXECUTIVE, 2
DO loop, 34 summary of commands, 160
extended range of, 36
implied, 36 EXP, 26
input/output list implied, 37 Expression, arithmetic, 21

nested, 35 logical, 23

mixed, 22

mode, 22

order of operation, 24
string, 40

summary, 162

value, 21

EXTERNAL, 88

F field specification, 52
FAST, 102

Field specification &, 64
/,64
A, 58
D, 53
E, 53
F,52
G, 49,54
H, 61
1,51
L, 58
nonnumeric, 50, 58
numeric, 49
numeric input to, 54
P, 56
replication of, 66
S, 59
T, 64
utility, 50
X, 62

File, binary, 45, 70
command, 99
creation of, 160
data, 62
input/output, 164
naming, 160
random, see Random files
sequential, 68
symbolic, 45

Flowchart, 6

FORMAT, 48
dynamic, 67
free, 45, 68
literal textin, 61
rescan of, 66
statement, 48, 163

Formatted input/output, 47, 163
Formatted output, 12

FRACT, 27

Free format input/output, 45, 68, 163

Function, alternate names of, 25
arguments, 25

A

177

complex, 27

conversion, 28

library, 12

mathematical, 25, 26
programmer defined, 89
random file, 164

random number generator, 28
statement, 89

string, 41

utility, 28

G field specification, 49, 54
.GE. (greater than or equal to), 23

GO TO, 8, 31
assigned, 32
computed, 32
unconditional, 31

.GT. (greater than), 23

H field specification, 61

| field specification, 51

IF (statement), 32
arithmetic, 33
IF .ELSE., 33
logical, 8, 33

IMAG, 27

IMP, 24

Implicit declaration, 84
Inclusive OR, 24

INDEX, 41

INDEXS, 41

INITIALIZE, 123
Initialization of variables, 21

Input, complex numbers, 56
data field, 54
list, 45
literal textin, 47

Input/output, error processing of, 76
formatted, 47
free format, 45, 68

INT, 27

Integer constants, 19
declaration, 83
variables, 11, 20

Interruption of program summary, 117

Interrupts, user controlled, 38

178

L field specification, 58
Labelled COMMON, 86
.LE. (less than or equal to), 23
LEFT, 41
LENGTH, 41
Library functions, 12
Line addressing, 103
asterisk, 103
current line, 103
last line, 103

line number, 103
relative addressing, 103

Line continuation, 101
Line Feed, 101

Line numbers, 9, 101
prompted, 14

LINK, CCS command, 98, 166
statement, 98, 109, 166

Linking, program, 98
LIST, 11, 101
Listing a program, 170

Literal constants, 81

Literal text in input/output list, 47

LOAD, 11, 109

LOG, 26

Log In procedure, 2, 160
LOG10, 26

Logical, constants, 20, 81
declaration, 83
expressions, 23
IF, 33
operators, 24
replacement statements, 30
variables, 20

LOGOUT, 2
LONG, 83
.LT. (less than), 23

Manual, arrangement of, 1
MAP, 158

Mathematical functions, 25, 26
MAX, 26

MERGE, 109

MIN, 26

MOD, 26

MODIFY, 128
MOVE, 113

Multiple statement, 37

.NE. (not equal to), 23
NEXT, 120

NOT, 24

Numeric constants, 80

OFF INTERRUPT, 38
ON INTERRUPT, 38
OPEN, 68, 71, 99

Operators, arithmetic, 7, 22, 161

logical, 24, 161
priority of, 7, 22
relational, 8, 23, 161

Output, formatted, 12
Output list, 46

P field specification, 56
Paper tape input, 106, 169
PAUSE, 38

POLAR, 27

POSITION, 71

Program, maximum size of, 101, 158

Programmer defined functions, 89

Programming, key steps in, 5
QUIT, 39, 116

RAND, 28

Random file, 70
current position, 71
elements, 70
erasing data, 74
fixed record length, 73
input, 74, 164
opening, 71
output, 72, 164
position, 70
position function, 71
position statement, 71
READ, 72
record length, 70
records, 70
size, 73

special input/output rules, 72
WRITE, 72

Random number generator, 28
READ, 47, 68, 72, 99
REAL, 28

Real constants, 19
declaration, 83
variables, 20

Record, end of, 62, 63, 64
length, 70

Records, data, 62
REFERENCES, 121

Relational operators, 8, 23, 161
RENUMBER, 129
Renumbering, 170

Replacement statement, arithmetic, 30
definition, 7, 30
logical, 30
string, 40
summary, 162

Rescan of FORMAT, 66
RESET, 118

RETURN, 96

RIGHT, 41

ROUND, 27

RUN, 10,113

RUN TO, 121

S field specification, 59
Sample programs, 132-157
SAVE, 11, 107

Scaling specification, 56

Sequential file, closing, 69
opening, 68

SET, 117

SETRAND, 28

SIGN, 27

SIGNUM, 26

SIN, 26

SINH, 26

SIZE, 73

Spacing specification, 62

Specification, see Field specification

SQRT, 26

Statement, arithmetic replacement, 30
assignment, see Replacement statement
continuation, 101
control, 8, 12, 31
DATA, 79
declaration, 12, 79
definitions, 16
direct, 118
entering, 104
EQUIVALENCE, 87
execution, 98
EXTERNAL, 88
FORMAT, 12
function calling, 90
input, 7, 45, 163
label, 8, 31
logical replacement, 30
multiple, 37
number, 8
output, 7, 45, 163
replacement, 7, 30
source language, 1

summary of, 161
string replacement, 40

Step execution, 120
STOP, 39

Storage allocation, 84, 87, 158
array arrangement in, 82

Storing program on disk file, 107
STR, 41

String, comparison, 40
concatenation, 40
constants, 20, 81
declaration, 84
expressions, 40
functions, 41
input, 42
output, 42
replacement statements, 40
variables, 20

Subprograms, 89
block data, 97
function, 91, 165
function calling, 92
function definition, 91
function type declaration, 92

Subroutine, 93, 165
arguments, 95
expressions, 96
strings, 96

179

180

call, 94 Unconditional GO TO, 31
return, 96 User controlled interrupts, 38
SUBSTR, 41 VAL, 42
SUBSTR3, 41 Variables, complex, 20
Symbolic file, 45 double precision, 20
input/output of, 164 initialization, 21
integer, 11, 20
. o logical, 20
T field specification, 64 names, 7, 11, 20
TAB specification, 64 real, 11, 20
TAN, 26 scalar, 20
string, 20
TANH, 26 subscripted, see Array
Terminal input/output, 163 types, 20
TIME, 28

WRITE, 47, 68, 72
TRUNC, 27

Type declaration, see Declaration statement X field specification, 62

