DEC-10-AFDO-D

REPRINTED BY PERMISSION OF DIGITAL EQUIPMENT CORPORATION
FROM MATHEMATICAL LANGUAGES HANDBOOK

FORTRAN IV
PROGRAMMER'S

REFERENCE MANUAL

The information in this document reflects the software as of
Version 26 of the FORTRAN Compiler and Version 32 of the
run-time operating system (L1B40).

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

Price: $3.00

FORTRAN

1st Printing March 1967

2nd Printing (Rev) November 1967
3rd Printing (Rev) September 1968
4th Printing April 1969

5th Printing June 1969

6th Printing September 1969

7th Printing (Rev) February 1970
Update Pages October 1970
Update Pages February 1971
Update Pages October 1971
Update Pages May 1972

Copyright © 1967, 1968, 1969, 1970, 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa-
tion purp and is subject to change with-
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

-3- FORTRAN

CONTENTS

Page
SECTION 1 THE PDP-10 FORTRAN LANGUAGE ‘
CHAPTER 1 INTRODUCTION TO THE FORTRAN LANGUAGE
Il Line Format 15
1.1.1 Statement Number Field ‘ 15
1.1.2 Line Continuation Field 15
1.1.3 Statement Field 16
1.1.4 Comment Line 17
1.2 Character Set 17
CHAPTER 2 CONSTANTS, VARIABLES, AND EXPRESSIONS
2.1 Constants 19
2.1.1 Integer Constants 19
2.1.2 Real Constants 19
2.1.3 Double Precision Constants 20
2.1.4 Octal Constants 20
2.1.5 Complex Constants 20
2.1.6 Logical Constants 2]
2.1.7 Literal Constants 2]
2.2 Variables 22
2,2,1 Scalar Variables 22
2,2.2 Array Variables 22
2.3 Expressions 24
2.3.1 Numeric Expressions 24
2.3.2 Logical Expressions 26
CHAPTER 3 THE -ARITHMETIC STATEMENT
3.1 General Description 29
CHAPTER 4 CONTROL STATEMENTS
4.1 GO TO Statement A 31
4.1.1 Unconditional GO TO Statements 31
4.1.2 Computed GO TO Statements 32
413 Assigned GO TO Statement 32
4.2 IF Statement 32
4.2.1 Numerical IF Statements 33
4.2.2 . Logical IF Statements 33
4.3 DO Statement 34
4.4 CONTINUE Statement 38

4.5 PAUSE Statement 38

FORTRAN -4-
CONTENTS (Cont)

» Page
4.6 STOP Statement 39
4.7 END Statement 39
CHAPTER 5 DATA TRANSMISSION STATEMENTS
5.1 Nonexecutable Statements 4]
5.1.1 FORMAT Statement 4]
5.1.2 NAMELIST Statement 53
5.2 Data Transmission Statements 55
5.2.1 Input/Qutput Lists 56
5.2.2 Input/Output Records 57
5.2.3 PRINT Statement 57
5.2.4 PUNCH Statement 58
5.2.5 TYPE Statement 58
5.2.6 WRITE Statement 58
5.2.7 READ Statement 59
5.2.8 REREAD Statement 61
5.2.9 ACCEPT Statement 62
5.3 Device Control Statements 62
5.4 Encode and Decode Statements 63
CHAPTER 6 SPECIFICATION STATEMENTS
6.1 Storage Specification Statements 66
6.1.1 DIMENSION Statement 66
6.1.2 COMMON Statement 68
6.1.3 EQUIVALENCE Statement 69
6.1.4 EQUIVALENCE and COMMON 70
6.2 Data Specification Statements 70
6.2,1 DATA Statement 70
6.2.2 BLOCK DATA Statement 72
6.3 Type Declaration Statements 72
6.3.1 IMPLICIT Statement 73
CHAPTER 7 SUBPROGRAM STATEMENTS
7.1 Dummy ldentifiers 75
7.2 Library Subprograms 75
7.3 Arithmetic Function Definition Statement 75
7.4 FUNCTION Subprograms 76
7.4.1 FUNCTION Statement 76
7.5 SUBROUTINE Subprogram 78

7.5.1 SUBROUTINE Statement 78

7.5.2
7.5.3
7.6
7.6.1
7.7
7.8

SECTION I
CHAPTER 8

8.1

8.1.1
8.1.2
8.1.3
8.2

8.2.1
8.2.2

CHAPTER 9

9.1
92.1.1
9.1.2
9.1.3
9.1.4
9.2

9.2.1
9.2.2
9.2.3

CHAPTER 10

10.1
10.2
10.2.1
10.2,2
10.2.3
10.3
10.4

10.5
10.6

-5-
CONTENTS (Cont)

CALL Statement

RETURN Statement

BLOCK DATA Subprogram

BLOCK DATA Statement

EXTERNAL Statement

Summary of PDP-10 FORTRAN |V Statements

THE RUNTIME SYSTEM
THE FORTRAN 1V LIBRARY - LIB40

The FORTRAN Operating System

FORSE.

1/0O Conversion Routines

FORTRAN UUOs

Science Library and FORTRAN Utility Subprograms
FORTRAN |V Library Functions

FORTRAN |V Library Subroutines

SUBPROGRAM CALLING SEQUENCES

Macro Subprogram Called by FORTRAN Main Programs
Calling Sequences

Returning of Answers

Use of Accumulators

Examples of Subprogram Linkage

Macro Main Programs Which Reference FORTRAN
Subprograms

Calling Sequences
Returning of Answers
Example of Subprogram Linkage

ACCUMULATOR CONVENTIONS FOR MAIN PROGRAMS

AND SUBPROGRAMS

Locations

Accumulators

Accumulators 0 and 1

Accumulators 2 through 15

Accumulators 16 and 17

UUOs

Subprograms Called by JSA 16, Address
Subprograms Called by PUSHJ 17, Address
Subprograms Calledby UUOs

Page
81
81
82

82

89

90
1
92
92
96

101
101
102
102
102

109
109
109
110

117
17
117
118
118
118
118
118
ne

FORTRAN

FORTRAN

-6-
CONTENTS (Cont)

CHAPTER 11 SWITCHES AND DIAGNOSTICS

1.1

FORTRAN Switches and Diagnostics

CHAPTER 12 FORTRAN USER PROGRAMMING

12.1
12,2
12.3
12.3.1
12.3.2
12.3.3
12.4
12.4,1
12.4.2
12.4.3
12.5

ASCII Character Set
PDP-10 Word Formats
FORTRAN Input/Output
Logical and Physical Peripheral Device Assignments
DECtape and Disk Usage
Magnetic Tape Usage
Random Access Programming
How to Use Random Access
Restrictions

Examples

PDP-10 Instruction Set

APPENDIX A THE SMALL FORTRAN IV COMPILER

Page

121

133
134
135
136
136
138
139
140
140
141
145

2-]
4-]

2-1
3-1
5-1
5-2
5-3
8-1
8-2
8-3

10-1

11-1
11-2
11-3
11-4
12-1
12-2
12-3

-7-
ILLUSTRATION'S

Typical FORTRAN Coding Form
Array Storage
Nested DO Loops

TABLES

Types of Resultant Subexpressions
Allowed Assignment Statements
Magnitude of Intemal Data
Numeric Field Codes

Device Control Statements

1/O Conversion Routine
FORTRAN UUOs

FORTRAN 1V Library Functions
FORTRAN 1V Library Subroutines

Accumulator Conventions for PDP-10 FORTRAN |V

Compiler and Subprograms
FORTRAN Compiler Switch Options

FORTRAN Compiler Diagnostics (Command Errors)
FORTRAN Compiler Diagnostics (Compilation Errors)
FORTRAN Operating System Diagnostics (Execution Errors)

ASCII Character Set

PDP-10 FORTRAN 1V Standard Peripheral Devices

Device Table for FORTRAN IV

Page
16

37

25

SRE8S

N
93
96

19
121
122
123
128
133
135
137

FORTRAN

FORTRAN

_o- FORTRAN

PREFACE

This is a reference manual describing the specific statements and features of the
FORTRAN 1V language for the PDP-10. It is written for the experienced
FORTRAN programmer who is interested in writing and running FORTRAN 1V pro-
grams alone or in conjunction with MACRO-10 programs in the single-user or
time-sharing environment. Familiarity with the basic concepts of FORTRAN pro-
gramming on the part of the user is assumed. PDP-10 FORTRAN IV conforms to
the requirements of the USA Standard FORTRAN.

FORTRAN

-11- FORTRAN

INTRODUCTION TO THE FORTRAN IV SYSTEM

The FORTRAN compiler translates source programs written in the FORTRAN 1V language into the machine
language of the PDP-10. This translated version of the FORTRAN program exists as a retrievable, relocatable
binary file on some storage device. All relocatable binary filenames have the extension .REL if they reside on
a directory-oriented device (disk or DECtape). Binary files may also be created by the MACRO-10 assembler
(see Chapter 9).| .

In order for the FORTRAN program to be processed, the Linking Loader must load the relocatable binary file
into core memory. Also loaded are any relocatable binary files found in the FORTRAN library (LIB40) which
are necessary for the program's execution. Within the FORTRAN source program, the library files may be called

explicitly, such as SIN, in the statement
X = SIN(Y)

or implicitly, such as FLOUT., the floating-point to ASCII conversion routine, which is implied in the follow-

ing statements.

PRINT 3,X
3 FORMAT(1X,F4.2)

A FORTRAN main program and its FORTRAN and/or MACRO-10 subprograms may be compiled or assembled sep-
arately and then linked together by the Linking Loader at load time. The core image may then be saved on a
storage device. When saved on a directory storage device, these files have the extension .SAV in a multipro-

gramming Monitor system and .SVE in a single-user Monitor system.

The Time-Sharing Monitors act as the interface between the user and the computer so that all users are protected
from one another and appear to have system resources available to themselves. Several user programs are loaded
into core at once and the Time-Sharing Monitors schedule each program to run for a certain length of time. All
Monitors direct data flow between 1/O devices and user programs, making the programs device independent, and

overlap 1/O operations concurrently with computations.

In a multiprogramming system, all jobs reside in core and the scheduler decides which of these jobs should run.

In a swapping system, jobs can exist on an external storage device (usually disk) as well as in core. The scheduler

]For further information on the MACRO-10 assembler, see the MACRO-10 ASSEMBLER manual, DEC-10-AMZB-D.

Xl

FORTRAN -12-

decides not only which job is to run but also when a job is to be swapped out onto the disk or brought back into

core.

The number of users that can be handled by a given size time-sharing configuration is further increased by using
the reentrant user-programming capability. This means that a sequence of instructions may be entered by more
than one user job at a time. Therefore, a single copy of a reentrant program may be shared by a number of users

at the same time to increase system economy. The FORTRAN compiler and operating system are both reentrant.

X

-13- FORTRAN

SECTION 1
The PDP-10 FORTRAN 1V Language

The seven chapters of this section deal with the PDP-10 FORTRAN IV language.
Included in these chapters are the language elements of FORTRAN 1V and the
five categories of FORTRAN 1V statements (arithmetic, control, input/output,

specification, and subprogram).

FORTRAN

-14-

-15- FORTRAN

CHAPTER 1
INTRODUCTION TO THE FORTRAN LANGUAGE

The term FORTRAN 1V (FORmula TRANslation) is used interchangeably to designate both the FORTRAN 1V
language and the FORTRAN 1V translator or compiler. The FORTRAN IV language is composed of mathematical-
form statements constructed in accordance with precisely formulated rules. FORTRAN IV programs consist of
meaningful sequences of FORTRAN statements intended to direct the computer to perform the specified operations

and computations.

The FORTRAN 1V compiler is itself-a computer program that examines FORTRAN 1V statements and tells the com-
puter how to translate the statements into machine language. The compiler runs in a minimum of 9K of core.

The program written in FORTRAN 1V language is called the source program. The resultant machine language
program is called the object program. Digital's small FORTRAN compiler, which runs in 5.5K of core, is vir-
tually identical to the larger compiler, except for differences explained in Appendix 2. Operating procedures

and diagnostic messages for both compilers are explained in the PDP-10 System Users Guide (DEC-10-NGCC-D).

1.1 LINE FORMAT

Each line of a FORTRAN program consists of three fields: statement number field, line continuation field, and

statement field. A typical FORTRAN program is shown in Figure 1-1.

1.1.1 Statement Number Field

A statement number consists of from one to five digits in columns 1-5. Leading zeros and all blanks in this field
are ignored. Statement numbers may be in any order and must be unique. Any statement referenced by another
statement must have a statement number. For source programs prepared on a teletypewriter, a horizontal tab may
be used to skip to the statement field with from O through 5 characters in the label field. This is the only place

a tab is not treated as a space.

1.1.2 Line Continuation Field

If a FORTRAN statement is so large that it cannot conveniently fit into one statement field, the statement fields
of up to 19 additional lines may be used to specify the complete statement. Any line which is not continued, or

the first line of a sequence of continued lines, must have a blank or zero in column 6. Continuation lines must

Version 24 FORTRAN
Version 31 LIB40 1-1 October 1971

FORTRAN -16-

FORTRAN co o =
CODING FORM PROBULEM

$ Szmoaie
8 Booleon FORTRAN STATEMENT IDENTIFICATION
SIA:?M[E':V 5
I’;:“A 56|78 91011 121314151617 181920212223 24 252627262930 313233 34 353637383940 41 4243444546 474849 50 51 869 7071 727374 757677 787980
c THIS, PROGRAM CALCULATES PRIME NUMBERS FROM 11 1O 50 . — N

DQ 10, L=d 0 5.0 2 s NI S

=1 .
4 J=J+ 2 — et ; -

=
= LLA, +

L= 1/4

B=A-L

1 F (B), 5., 10,5
3, LF (J. LT . SQRT (FLOAT (1))), GO 1O 4 "

Y P, 105 b b ettt
1 0 £ ONTI NUE N
1,05 FORMAT, (14, ' 1S PRIME!") .
et e e =+ L o o o B
12 ;‘AS . 7‘I‘"W.ll‘l?‘l;l“ll‘lb‘l;l;l"lo‘ﬂ‘n‘ prrreve LA‘LAJa:uL‘l;l:J; - “' '. : verry‘.-. PrTrRTTrPEryEEY “ prvperrey "‘L - b 2ad
PG-3 DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS 100 - 12/64

Figure 1-1 Typical FORTRAN Coding Form

have a character other than blank or zero in column 6. If a continuation line is desired when a TAB is used in

the statement number field, a digit from 1 to 9 must immediately follow the TAB.

1.1.3 Statement Field

Any FORTRAN statement, as described in later sections, may appear in the statement field (columns 7-72). Ex-
cept for alphanumeric data within a FORMAT statement, DATA statement, or literal constant, blanks (spaces)
and TABS are ignored and may be used freely for appearance purposes. Thus the following statements are equiv-
alent.

END (tab) FILE (tab) 2

END (space) FILE (space) 2
ENDFILE2

Version 24 FORTRAN
Version 31 LIB40 October 1971

-17- FORTRAN

1.1.4 Comment Line

Any line that starts with one of the characters $ * / or the letter C in column 1 is interpreted as a line of com-
ments, Comment lines are printed onto any listings requested but are otherwise ignored by the compiler. Col-
umns 2-72 may be used in any format for comment purposes. A comment line must not immediately precede a

continuation line.

As an aid for program debugging, the letter D in column 1 causes the line to be interpreted as a comment unless
the /1 switch appears in the command string. (Refer to Table 11-1 for Compile Switch options.) If the /I switch

is present, the letter D in column 1 is interpreted as a space and the line is compiled as a program statement,

1.2 CHARACTER SET

The following characters are used in the FORTRAN 1V language:

Blank 0 @ P
| 1 A Q
" 2 B R
3 C S
$ 4 D T
% 5 E U
& 6 F v
! 7 G w
(8 H X
) 9 1 Y
* J z
+ ;- K t
, < L
- = M
. > N
/ ? (0]

NOTE

ASCII characters greater than Z (132,) are replaced by
the error character "t". See Chapter 12 for the internal
representation of these characters.

Version 24 FORTRAN
Version 31 LIB40 1-3 February 1971

FORTRAN

-19- FORTRAN

CHAPTER 2
CONSTANTS, VARIABLES, AND EXPRESSIONS

The rules for defining constants and variables and for forming expressions are described in this chapter.

2.1 CONSTANTS

Seven types of constants are permitted in a FORTRAN IV source program: integer or fixed point, real or single-
precision floating point, double-precision floating point, octal, complex, logical, and literal.

2.1.1 Integer Constants

An integer constant consists of from one to eleven decimal digits written without a decimal point. A negative

constant must be preceded by a minus sign. A positive constant may be preceded by a plus sign.

Examples: 3
+10
-528
8085
An integer constant must fall within the range -235+'| to 235-1 . When used for the value of a subscript, the
]8 ’

value of the integer constant is taken as modulo 2 .

2.1.2 Real Constants

Real constants are written as a string of decimal digits including a decimal point. A real constant may consist
of any number of digits but only the leftmost 9 digits appear in the compiled program. Real constants may be
given a decimal scale factor by appending an E followed by a signed integer constant. The field following the
letter E must not be blank, but may be zero.

Examples: 15.
0.0
.579
-10.794
5.0E3(i.e., 5000.)
5.0E+3(i.e., 5000)
5.0E-3(i.e., 0.005)

FORTRAN -20-
A real constant has precision to eight digits. The magnitude must lie appraximately within the range

0.14 x 10-38 to 1.7 x 1038. Real constants occupy one word of PDP-10 storage.

2.1.3 Double Precision Constants

A double precision constant is specified by a string of decimal digits, including a decimal point, which are
followed by the letter D and a signed decimal scale factor. The field following the letter D must not be blank,

but may be zero.

Examples: 24.671325982134D0
3.6D2 (i.e., 360.)
3.6D-2 (i.e., .036)
3.0D0

Double precision constants have precision to 16 digits. The magnitude of a double precision constant must lie

=38 38

approximately between 0.14x 10 © and 1.7 x 10 Double-precision constants occupy two words of PDP-10

storage.

2.1.4 Octal Constants

A number preceded by a double quote represents an octal constant. An octal constant may appear in an arith-
metic or logical expression or a DATA statement. Only the digits 0-7 may be used and only the last twelve
digits are significant. A minus sign may precede the octal number, in which case the number is negated. A

maximum of 12 octal digits are stored in each 36-bit word.

Examples: "7777
"-31563

2.1.5 Complex Constants

FORTRAN 1V provides for direct operations on complex numbers. Complex constants are written as an ordered

pair of real constants separated by a comma and enclosed in parentheses.

Examples: (.70712, -.70712)
(8.763E3,2.297)

The first constant of the pair represents the real part of the complex number, and the second corstant represents
the imaginary part. The real and imaginary parts may each be signed. The enclosing parentheses are part of
the constant and always appear, regardless of context. Each part is internally represented by one single-

precision floating point word. They occupy consecutive locations of PDP-10 storage.

-21- FORTRAN

FORTRAN 1V arithmetic operations on complex numbers, unlike normal arithmetic operations, must be of the

form:
AB = a]iblﬂ(azibz)
A*B = (a]b]-c2b2)+i(02b1+o]b2)
) (<:slb]+02b2)+i (°2b]-°]b2)
AB=—3—3
+

7. 2
1 b by +by

where A = ay+ iaz, B= bl + ib2, and i =4/-1.

b

2.1.6 Logical Constants

The two logical constants, .TRUE. and .FALSE., have the internal valves -1 and 0, respectively. The en-
closing periods are part of the constant and always appear.

Logical constants may be entered in DATA or input statements as signed octal integers (-1 and 0). Logical
quantities may be operated on in either arithmetic or logical statements. Only the sign is tested to determine the

truth value of a logical variable.

2.1.7 Literal Constants

A literal constant may be in either of two forms:

a. Astring of alphanumeric and/or special characters enclosed in single quotes; two adjacent single
quotes within the constant are treated as one single quote.

b. A string of characters in the form

on]xz. X

where X Xge e oX is the literal constant, and n is the number of characters following the H.
Literal constants may be entered in DATA statements or input statements as a string of up to 5 7-bit ASCII char-
acters per variable (10 characters if the variable is double-precision or complex). Literal constants may be

operated on in either arithmetic or logical statements.

NOTE

Literal constants used as subprogram arguments will have a
zero word as an end-of-string indicator.

FORTRAN -22-

Examples: CALL SUB ('LITERAL CONSTANT')
'‘DONT"'T'
5HDON'T
A ="FIVE' + 42
B = (SHABCDE .AND. ''376)/2

2.2 VARIABLES

A variable is a quantity whose value may change during the execution of a program. Variables are specified

by name and type. The name of a variable consists of one or more alphanumeric characters, the first one of
which must be alphabetic. Only the first six characters are interpreted as defining the variable name. The

type of variable (integer, real, logical, double precision, or complex) may be specified explicitly by a type
declaration statement or implicitly by the IMPLICIT statement. If the variable is not specified in this manner,
then a first letter of I, J, K, L, M or N indicates a fixed point (integer) variable; any other first letter indi-
cates a floating-point (real) variable. Variables of any type may be either scalar or array variables. When used

8

. 1
in a subscript or as an index to a DO Statement, the value of the integer variable is taken as modulo 2 .

2.2.1 Scalar Variables

A scalar variable represents a single quantity.

Examples: A
G2
POPULATION

2.2.2 Array Variables

An array variable represents a single element of an n dimensional array of quantities. The variable is denoted

by the array name followed by a subscript list enclosed in parentheses. The subscript list is a sequence of in-
teger expressions, separated by commas. The expressions may be of any form or type providing they are explicitly
changed to type integer when each is completely evaluated. Each expression represents a subscript, and the
values of the expressions determine the array element referred to. For example, the row vector A, would be
represented by the subscripted variable A(J), and the element, in the second column of the first row of the square

matrix A, would be represented by A(1,2). Arrays may have any number of dimensions.

Examples: Y(1)
STATION (K)
A (B*K+2,1, J-1)

The three arrays above (Y, STATION, and A) would have to be dimensioned by a DIMENSION, COMMON,
or type declaration statement prior to their first appearance in an executable statement or in a DATA or

NAMELIST statement. (Array dimensioning is discussed in Chapter 6).

2-4

-23- FORTRAN
1-Dimensional Aray A(10)
[at Jaa [a] a@) | as)ae) [a) [ae) [aco) | atiol]
CONSECUTIVE STORAGE LOCATIONS
2-Dimensional Array B(S,5)
1{sti.n]e |Bu,2)|i] 801,30]16] BC1,0]21] B(1,5)
2 |8(2,1) 7 |B(2,2)|12]B(2,3)|17 | B(2,0)]22] B(2,5)
3 |8(3,1)| 8 |B(3,2)|13|8(3,3)|18 | B(3,9)| 23| B(3,5)]
4 |8(4,1)| 9 |B(4,2)|14] B(4,3)]19] B(4,4)|24] B(4,5)
5 |8(s,1)|10]B(5,2)| 15| B(5,3)|20} B(S,0)]21]|B(5.5)
B(3,1) IS THE THIRD STORAGE WORD IN SEQUENCE
B(3,4) IS THE EIGHTEENTH STORAGE WORD IN SEQUENCE
3-Dimensional Amay C(5,5,5)
1o1]c 1,5 106]c(i28)] 1 11]c,35)]116]c(1.4,5)[121 [c(1,55)
102]c(2,1,5){ 107 ctzgai_u; c(235)| 117]c(2,4,5]122]c(2,5,5)
76 [c1,14)] 81 [c(1,2,4)] 86 [cti,3.0] 91 [cl1.44] 96 [c(1,5,4)]!18 |C(3,4,5)]123 [C(3,5,5)
77 [cl2,1,4)] 82 [c(2,2,4)| 87 [c(2,3.4] 92 [c(2.4,4] 97 [c(2,54)]119 [C(4,4,5)[124C(4,5,5)
51 Tcu1.3)] 56 [ct,2.3)] 61 (1,3, 31] 66 [cii4,3)] 71]ou,5, 3)].28 [C(3.54)| 120][c(5,4.5)] 125 [C(5.,5,5)
52 [02,1,3)] 57 [c2,2,3] 62_[c2,3,3) 67 [C24.3] 72 [C2,5,3)] 99 [C(454)
26 Jc(1,1,2)| 3t |cu,2, 2] 36 Jo,3,2)] 41 |c(1,4, 2)] 46 [¢(1,5,2)] 73 [c(35,31]100 JC(854)
27 [c(252) | 32 |g2.2.2)[37 [a232) [42 |c(24,2) | 47 |[c25.2)] 74 [c(45,3)
1 Jci 0] 6 ez] 11 Jca,3.)] 16 Jcaa)] 21 |c,5,1)] 48 [c3s5.2)] 75 [ci55,3)
2 [cLD] 7 Joe2n] 12 [a23n |7 |c2a,n] 22 [c251) |49 [cias2)
3 jc3,1,1)] 8 Jc321] 13 |C(33,1)] 18 [C(34,1)] 23 [CBS5!) I'so €(55,2)
4 _[C4,,0 | 9 |ca2,)] 14 [ca3,1) [19 [caan] 24 [c(4,51)
5 [c(5,,0) | 10 [c(52,0] 15 [c5,3,0] 20 [c54,1) | 25 [C(5S,1)
C(1,3,2) is the 36th storage word in sequence.
C(1,1,5) is the 101st storage word in sequence.
Figure 2-1 Array Storage

2-5

FORTRAN -24-
Arrays are stored in increasing storage locations with the first subscript varying most rapidly and the last subscript
varying least rapidly. For example, the 2-dimensional array B(I,J) is stored in the following order: B a,mn,
B(2,1,...,B(,1,8(1,2),8(2,2),...,8(,2),...,B(1,J).

2.3 EXPRESSIONS

Expressions may be either numeric or logical. To evaluate an expression, the object program performs the

calculations specified by the quantities and operators within the expression.

2.3.1 Numeric Expressions

A numeric expression is a sequence of constants, variables, and function references separated by numeric

operators and parentheses in accordance with mathematical convention and the rules given below.

The numeric operators are +, -, *, /, **, denoting, respectively, addition, subtraction, multiplication,

division, and exponentiation.

In addition to the basic numeric operators, function references are also provided to facilitate the evaluation
of functions such as sine, cosine, and square root. A function is a subprogram which acts upon one or more
quantities, called arguments, to produce a single quantity called the function value. Function references are
denoted by the identifier, which names the function (such as SIN, COS, etc.), followed by an argument list

enclosed in parentheses:
identifier(argument, argument, ..., argument)

At least one argument must be present. An argument may be an expression, an array identifier, a subprogram

identifier, or an alphanumeric string.

Function type is given by the type of the identifier which names the function. The type of the function is inde-
pendent of the types of its arguments. (See Chapter 7, Section 7.4.1.1.)

A numeric expression may consist of a single element (constant, variable, or function reference):

2.71828
Z(N)
TAN(THETA)

Compound numeric expressions may be formed by using numeric operations to combine basic elements:

X+3.

TOTAL/A

TAN(PI*M)

X+3.) -(TOTAL/A) * TAN (PI1*M)

2-6

-25- FORTRAN

Compound numeric expressions must be constructed according to the following rules:

a. With respect to the numeric operators +, =, *, /, any type of quantity (logical, octal, integer,
real, double precision, complex or literal) may be combined with any other, with one exception:
a complex quantity cannot be combined with a double precision quantity.

The resultant type of the combination of any two types may be found in Table 2-1. The conversions
between data types will occur as follows:

(1) A literal constant will be combined with any integer constant as an integer and with a real
or double word as a real or double word quantity. (Double word refers to both double precision
and complex.)

(2) An integer quantity (constant, variable, or function reference) combined with a real or double
word quantity results in an expression of the type real or double word respectively; e.g., an integer
variable plus a complex variable will result in a complex subexpression. The integer is converted
to floating point and then added to the real part of the complex number. The imaginary part is
unchanged.

(3) A real quantity (constant, variable, or function reference) combined with a double word quan-
tity results in an expression that is of the same type as the double word quantity.

(4) A logical or octal quantity is combined with an integer, real, or double word quantity as if
it were an integer quantity in the integer case, or a real quantity in the real or double word case
(i.e., no conversion takes place).

b. Any numeric expression may be enclosed in parentheses and considered to be a basic element.
(X+Y)/2

(ZETA)
(COS(SIN(PI*M)+X))

Table 2-1
Types of Resultant Subexpressions

Type of Quantity
Logical
Double !
+,=,%,/ Real Complex Precision Otffa', or
Literal
Real Real Double Real
Precision
Integer Integer Complex Double Integer
Precision
Complex Complex Complex Complex Not Complex
Quantity [poyble Double Double Not Double Double
Precision Precision Precision Allowed Precision Precision
Logical, Real Integer Complex Double Logical,
Octal, or Precision Octal, or
Literal Literal

FORTRAN -26-

c. Numeric expressions which are preceded by a + or — sign are also numeric expressions:

+X
-(ALPHA*BETA)
-SQRT(-GAMMA)

d. If the precedence of numeric operations is not given explicitly by parentheses, it is understood
to be the following (in order of decreasing precedence):

Operator Explanation
*x numeric exponentiation
*and/ numeric multiplication and division
+and- numeric addition and subtraction

In the case of operations of equal hierarchy, the calculation is performed from left to right.
e. No two numeric operators may appear in sequence. For instance:
X*=Y
is improper. Use of parentheses yields the correct form:
X*(=Y)
By use of the foregoing rules, all permissible numeric expressions may be formed. As an example of a typical

numeric expression using numeric operators and a function reference, the expression for one of the roots of the

general quadratic equation:

b+ Vb2 - 4ac

2a

would be coded as:

(-B+SQRT(B**2-4, *A*C))/(2l. *A)

2.3.2 Logical Expressions

A logical expression consists of constants, variables, function references, and arithmetic expressions, separated
by logical operators or relational operators. Logical expressions are provided in FORTRAN IV to permit the im-
plementation of various forms of symbolic logic. Logical masks may be represented by using octal constants.

The result of a logical expression has the logical value TRUE (negative) or FALSE (positive or zero) and therefore,

only uses one word.

Version 24 FORTRAN
Version 31 LIB40 2-8 October 1971

-27- FORTRAN

2.3.2.1 Logical Operators - The logical operators, which include the enclosing periods and their definitions,

| are as follows, where P and Q are expressions:

.NOT.P Has the value .TRUE, only if P is ,FALSE., and has the
valve ,FALSE. only if P is .,TRUE.
P.AND.Q Has the value .TRUE. only if P and Q are both . TRUE.,
and has the value ,FALSE, if either P or Q is .FALSE.
P.OR.Q (Inclusive OR) Has the value .TRUE, if either P or Q is .TRUE,,
énd has the value FALSE. only if both P and Q are .FALSE.
P.XOR.Q (Exclusive OR) Has the value .TRUE. if either P or Q but not
both are .TRUE., and has the value .FALSE. otherwise.
P.EQV.Q (Equivalence) Has the value .TRUE. if P and Q are both

<TRUE. or both ,FALSE., and has the value .FALSE. otherwise.

Logical expressions are evaluated by combining the full word values of P and Q (only the high-order part if P
and Q are double precision, only the real part if P and Q are complex) using the appropriate logical operator.
The result is TRUE if it is arithmetically negative and FALSE if it is arithmetically positive or zero.

Logical operators may be used to form new variables, for example,

X=Y.AND.Z
E = E.XOR,""400000000000

2.3.2.2 Relational Operators - The relational operators are as follows:

Operator Relation
.GT. greater than
.GE. greater than or equal to
LT, less than
.LE. less than or equal to
.EQ. equal to
.NE. not equal to

The enclosing periods are part of the operator and must be present.

Mixed expressions involving integer, real, and double precision types may be combined with relationals.
' The value of such an expression will be .TRUE. (-1) or .FALSE. (0).

The relational operators .EQ. and . NE. may also be used with COMPLEX expressions. (Double word quantities

are equal if the corresponding parts are equal.)

Version 24 FORTRAN
Version 31 LIB40 2-9 October 1971

FCRTRAN -28-

A logical expression may consist of a single element (constant, variable, function reference, or relation):

.TRUE.
X.GE.3.14159

Single elements may be combined through use of logical operators to form compound logical expressions, such as:

TVAL.AND.INDEX
BOOL(M). OR.K.EQ.LIMIT

Any logical expression may be enclosed in parentheses and regarded as an element:

(T.XOR.S).AND.(R.EQV.Q)
CALL PARITY ((2.GT.Y.OR.X.GE.Y).AND. NEVER)

Any logical expression may be preceded by the unary operator . NOT. as in:

NOT.T
.NOT.X+7.GT.Y+Z
BOOL(K).AND. .NOT. (TVAL.OR.R)

No two logical operators may appear in sequence, except in the case where .NOT. appears as the second of
two logical operators, as in the example above. Two decimal points may appear in sequence, as in the

example above, or when one belongs to an operator and the other to a constant.

When the precedence of operators is not given explicitly by parentheses, it is understood to be as follows (in

order of decreasing precedence):

* %k

“/

+,-
.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.
.NOT.

.AND.

.OR.

.EQV., .XOR.

For example, the logical expression
.NOT. ZETA**2+Y*MASS.GT.K-2. OR.PARITY.AND.X.EQ.Y

is interpreted as

(. NOT. (((ZETA**2)+(Y *MASS)). GT.(K-2))). OR. (PARITY . AND. (X .EQ.Y))

-29- FORTRAN

CHAPTER 3
THE ARITHMETIC STATEMENT

3.1 GENERAL DESCRIPTION

One of the key features of FORTRAN 1V is the ease with which arithmetic computations can be coded. Compu-
tations to be performed by FORTRAN 1V are indicated by arithmetic statements, which have the general form:

A=B

where A is a variable, B is an expression, and = is a replacement operator. The arithmetic statement causes the
FORTRAN 1V object program to evaluate the expression B and assign the resultant value to the variable A.

Note that the = sign signifies replacement, not equality. Thus, expressions of the form:

A=A+B and
A=A*B

are quite meaningful and indicate that the value of the variable A is to be replaced by the result of the expres-

sion to the right of the = sign.

Examples: Y=1+Y
P=.TRUE.
X(N)=N=*ZETA(ALPHA*M/PI)}+(1.,-1.)

Table 3-1 indicates which type of expression may be equated to each type of variable in an arithmetic statement.
D indicates that the assignment is performed directly (no conversion of any sort is done); R indicates that only

the real part of the variable is set to the value of the expression (the imaginary part is set to zero); C means that
the expression is converted to the type of the variable; and H means that only the high-order portion of evaluated

expression is assigned to the variable.

The expression value is made to agree in type with the assignment variable before replacement occurs. For ex-

ample, in the statement:
THETA=W=(ABETA+E)

if THETA is an integer and the expression is real, the expression value is truncated to an integer before assign-

ment to THETA.

FORTRAN -30-
Table 3-1
Allowed Assignment Statements
Expression
Logical,
Variable Real Integer Complex P?:::Jil::n Of:fael r’cslo r

Real

Constant

Integer C D R,C H,C D

Complex D,R,I C,R,1 D H,D,R,I D,R,I

Double

Precision D,H,L C,H,L R,D,H,L D D,H,L
Logical D D R,D H,D D

D - Direct Replacement

C - Conversion between integer and floating point

R - Real only

I - Set imaginary part to 0

H - High order only

L - Set low order part to 0

-31- FORTRAN

CHAPTER 4
CONTROL STATEMENTS

FORTRAN compiled programs normally execute statements sequentially in the order in which they were presented
to the compiler. However, the following control statements are available to alter the normal sequence of state-
ment execution: GO TO, IF, DO, PAUSE, STOP, END, CALL, RETURN. CALL and RETURN are used to en-

ter and retum from subroutines.

4.1 GO TO STATEMENT

The GO TO statement has three forms: unconditional, computed, and assigned.

4.1.1 Unconditional GO TO Statements

Unconditional GO TO statements are of the form:
GO TOn

where n is the number of an executable statement. Control is transferred to the statement numbered n. An un-
conditional GO TO statement may appear anywhere in the source program, except as the terminal statement of
a DO loop.

4.1.2 Computed GO TO Statements

Computed GO TO statements have the form:
GO 10 (n],nz, ce ,nk),i
where n] ,n2, cee ,nk are statement numbers, and i is an integer expression.

This statement transfers control to the statement numbered LIVLOVRRR if i has the value 1, 2, ..., k, respec-
tively. If i exceeds the size of the list of statement numbers or is less than one, execution will proceed to the
next executable statement. Any number of statement numbers may appear in the list. There is no restriction on

other uses for the integer variable i in the program.

FORTRAN -32-

In the example
GO TO (20,10,5),K

the variable K acts as a switch, causing a transfer to statement 20 if K=1, to statement 10 if K=2, or to state-

ment 5 if K=3.

A computed GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4.1.3 Assigned GO TO Statement

Assigned GO TO statements have two equivalent forms:
GO TO k

and

GO TO k, (n],n2,n3, ...)

| where k is a variable or array element and Ny n are statement numbers. Any number of statement numbers

n
PYERELY
may appear in the list.” Both forms of the assigned GO TO have the effect of transferring control to the statement

whose number is currently associated with the variable k. The second form of the assigned GO TO statement passes
control to the next executable statement if k is not associated with one of the statement numbers in the list. This

association is established through the use of the ASSIGN statement, the general form of which is:
ASSIGN i TO k

' where i is a statement number and k is a variable or array element. If more than one ASSIGN statement refers to

the same integer variable name, the value assigned by the last executed statement is the current value.

Examples: ASSIGN 21 TO INT ASSIGN 1000 TO INT

GO TO INT GO TO INT, (é,2'|,1000,310)

An assigned GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4.2 IF STATEMENT

IF statements have two forms in FORTRAN IV: numerical and logical.

Version 24 FORTRAN
Version 31 LIB40 4-2 October 1971

-33- FORTRAN

4.2.1 Numerical IF Statements

Numerical IF statements are of the form:

IF (expression) ny/npng

where ny/n,/ngare statement numbers. This statement transfers control to the statement numbered nysnpng if
the value of the numeric expression is less than, equal to, or greater than zero, respectively. All three state-

ment numbers must be present. The expression may not be complex.

Examples: IF (ETA) 4,7,12
IF (KAPPA-L (10)) 20,14,14

4.2.2 Logical IF Statements

Logical IF statements have the form:
IF (expression)S

where S is a complete statement. The expression must be logical. S may be any executable statement other than
a DO statement or another logical IF statement (see Chapter 2, Section 2,3.2). If the value of the expression is
.FALSE. (positive or zero), control passes to the next sequential statement. If value of the expression is .TRUE.
(negative), statement S is executed. After execution of S, control passes to the next sequential statement unless
S is a numerical IF statement or a GO TO statement; in these cases, control is transferred as indicated. If the
expression is .TRUE. (negative) and S is a CALL statement, control is transferred to the next sequential state-

ment upon return from the subroutine.

Numbers are present in the logical expression:

IF (B)Y=X+SIN(Z)
W=Y %%2

If the value of B is .TRUE., the statements Y=X+SIN(Z) and W=Yxx2 are executed in that order. If the value of
B is .FALSE., the statement Y=XSIN(Z) is not executed.

Examples: IF (T.OR.S)X=Y+1
IF (Z.GT.X(K)) CALL SWITCH (S,Y)
IF (K.EQ.INDEX) GO TO 15

NOTE

Care should be taken in testing floating point numbers
for equality in IF statements as rounding may cause
unexpected results.

Version 24 FORTRAN
Version 31 LIB40 4-3 February 1971

FORTRAN =34~

4.3 DO STATEMENT

The DO statement simplifies the coding of iterative procedures. DO statements are of the form:
DO n i=my,my,my

where n is a statement number, i is a nonsubscripted integer variable, and m],m2, m3 are any integer expressions.

If my is not specified, it is understood to be 1.

The DO statement causes the statements which follow, up to and including the statement numbered n, to be ex-
ecuted repeatedly. This group of statements is calied the range of the DO statement. The integer variable i of

the DO statement is called the index. The values of m,,m,, and m,, are called, respectively, the initial, limit,

3
and increment values of the index.

A zero increment (m3) is not allowed. The increment m, may be negative if m,>m,. If m]_<_m2, the increment
ma must be positive. The index variable can assume legal values only if (mz-mi)*m320. (mi is the current value

of the index variable m, .)

Examples: Form Restriction
DO 101=1,5,2
DO 101=5,1,-1

DO 101=J,K,5 J<K
DO 101=J,K,-5 I>K

DO 10 L=l, J, K 1<J,K<0 or 1>J,K>0
DO 10 L=1, J,K 1<J,K>0 or 1>J,K>0

Initially, the statements of the range are executed with the initial value assigned to the index. This initial ex-
ecution is always performed, regardless of the values of the limit and increment. After each execution of the
range, the increment value is added to the value of the index and the result is compared with the limit value.
If the value of the index is not greater than the limit value, the range is executed again using the new value

of the index. When the increment value is negative, another execution will be performed if the new value of

the index is not less than the limit value.

After the last execution of the range, control passes to the statement immediately following the range. This

exit from the range is called the normal exit. Exit may also be accomplished by a transfer from within the range.

The range of a DO statement may include other DO statements, provided that the range of each contained DO
statement is entirely within the range of the containing DO statement. When one DO loop is completely con-
tained in another, it is said to be nested. DO loops can be nested to any depth. A transfer into the range of

a DO statement from outside the range is not allowed.

Version 24 FORTRAN
Version 31 LIB40 4-4 . October 1971

-35- FORTRAN

More than one DO loop within a nest of DO loops can end on the same statement. This terminal statement is
considered to belong to the innermost DO loop that ends on the terminal statement. The statement label of
such a terminal statement cannot be used in any GO TO or arithmetic IF statements except those that occur

within the DO loop to which the terminal statement belongs.

Version 24 FORTRAN
Version 31 LIB40 4-4a October 1971

FORTRAN

-36-

-37- FORTRAN

Valid DO Loop Nest Invalid DO Loop Nest
B |A
B
C A
D
C

Control must not pass from within loop A Loop C is not fully within the range of
or loop B into loop D, or from loop D into loop B even though it is within the range
loop A or loop B. of loop A.

Figure 4-1 Nested DO Loops

Within the range of a DO statement, the index is available for use as an ordinary variable. After a transfer
from within the range, the index retains its current value and is available for use as a variable. The value of
the index variable becomes undefined when the DO loop it controls is satisfied. The values of the initial, limit,
and increment variables for the index and the index of the DO loop, may not be altered within the range of the

DO statement.

The range of a DO statement must not end with a GO TO type statement or a numerical IF statement. If an
assigned GO TO statement is in the range of a DO loop, all the statements to which it may transfer must be
either in the range of the DO loop or all must be outside the range. A logical IF statement is allowed as the
last statement of the range. In this case, control is transferred as follows. The range is considered ended when,

and if, control would normally pass to the statement following the entire logical IF statement.
As an example, consider the sequences:

DO 5K =1,4
5 IFX(K).GT. Y(K)Y(K) = X(K)
6 ...

Statement 5 is executed four times whether the statement Y(K) = X (K) is executed or not. Statement 6 is not ex-

ecuted until statement 5 has been executed four times.

4-5

FORTRAN -38-

Examples: DO 22L=1,30
DO 45K = 2,LIMIT, -3
DO 7 X =T,MAX,L

4.4 CONTINUE STATEMENT

The CONTINUE statement has the form:

CONTINUE

This statement is a dummy statement, used primarily as a target for transfers, particularly as the last statement in

the range of a DO statement. For example, in the sequence:

DO 7 K = START,END

IF (X (K))22,13,7
7 CONTINUE

a positive value of X(K) begins another execution of the range. The CONTINUE provides a target address for
the IF statement and ends the range of the DO statement.

4.5 PAUSE STATEMENT

The PAUSE statement enables the program to incorporate operator activity into the sequence of automatic events.

The PAUSE statement assumes one of three forms:

PAUSE
PAUSE n
PAUSE 'xxxxx'

where n is an unsigned string of six or less octal digits, and 'xxxxx' is a literal message.

Execution of the PAUSE statement causes the message or the octal digits, if any, to be typed on the user's tele-
typewriter. Program execution may be resumed (at the next executable FORTRAN statement) from the console

by typing "G, " followed by a carriage return. Program execution may be terminated by typing "X, " followed

by carriage return.

Example: PAUSE 167
PAUSE 'NOW IS THE TIME'

4-6

-39- FORTRAN
4.6 STOP STATEMENT

The STOP statement has the forms:

STOP or
STOP n

where n is an unsigned string of one to five octal digits.

The STOP statement terminates the program and returns control to the monitor system. (Termination of a program
may also be accomplished by a CALL to the EXIT or DUMP subroutines.) Use of the STOP statement implies a
call to the EXIT subroutine.

4.7 END STATEMENT

The END statement has the form:
END

The END statement informs the compiler to terminate compilation and must be the physically last statement of
the program. The END statement implies a STOP statement in a main program or a RETURN statement in a sub-

routine or a function. The END statement is implied by an end-of-file.

FORTRAN

-40-

_41- FORTRAN

CHAPTER 5
DATA TRANSMISSION STATEMENTS

Data transmission statements are used to control the transfer of data between computer memory and either
peripheral devices or other locations in computer memory. These statements are also used to specify the format

of the output data. Data transmission statements are divided into the following four categories.

a. Nonexecutable statements that endble conversions between internal form data within core memory
and external form data (FORMAT), or specify lists of arrays and variables for input/output transfer
(NAMELIST).

b. Statements that specify transmission of data between computer memory and 1/O devices: READ,
WRITE, PRINT, PUNCH, TYPE, ACCEPT.

c. Statements that control magnetic tape unit mechanisms: REWIND, BACKSPACE, END FILE,
UNLOAD, SKIP RECORD.

d. Statements that specify transmission of data between series of locations in memory: ENCODE,
DECODE.

5.1 NONEXECUTABLE STATEMENTS

The FORMAT statement enables the user to specify the form and arrangement of data on the selected external
medium. The NAMELIST statement provides for conversion and input/output transmission of data without

reference to a FORMAT statement.

5.1.1 FORMAT Statement

FORMAT statements may be used with any appropriate input/output medium or ENCODE/DECODE statement.
FORMAT statements are of the form:

1.1 1
n FORMAT (S],Sz,. . .Sn/Sl,Sz, ces ,Sn/. ..)
where n is a statement number, and each S is a data field specification.

F ORMAT statements may be placed anywhere in the source program. Unless the FORMAT statement contains
only alphanumeric data for direct input/output transmission, it will be used in conjunction with the list of a

data transmission statement.

FORTRAN -42-

Slashes are used to specify unit records, which must be one of the following:

a. A tape or disk record with a maximum length corresponding to a line buffer (135 ASCII characters).
b. A punched card with a maximum of 80 characters.

c. A printed line with a maximum of 72 characters for a Teletype ®and either 120 or 132 characters
for the line printer.

During transmission of data, the object program scans the designated FORMAT statement. If a specification

for a numeric field is present (see Section 5.2.1 of this chapter) and the data transmission statement contains
items remaining to be transmitted, transmission takes place according to the specifications. This process ceases
and execution of the data transmission statement is terminated as soon as all specified items have been transmitted.
Thus, the FORMAT statement may contain specifications for more items than are specified by the data transmis-
sion statement. Conversely, the FORMAT statement may contain specifications for fewer items than are specified

by the data transmission statement.

The following types of field specifications may appear in a FORMAT statement: numeric, numeric with scale
factors, logical, alphanumeric. The FORMAT statement also provides for handling multiple record formats,
formats stored as data, carriage control, skipping characters, blank insertion, and repetition. If an input list

requires more characters than the input device supplies for a given unit record, blanks are supplied.

5.1.1.1 Numeric Fields - Numeric field specification codes designate the type of conversion to be performed.

These codes and the corresponding internal and external forms of the numbers are listed in Table 5-2.

The conversions are specified by the forms:

Dw.d

Ew.d

Fw.d

Iw

Ow

Gw.d (for real or double precision)
Gw (for integer or logical)
Gw.d,Gw.d (for complex)

OB WN —

respectively. The letter D, E, F, I, O, or G designates the conversion type; w is an integer specifying the
field width, which may be greater than required to provide for blank columns between numbers; d is an integer
specifying the number of decimal places to the right of the decimal point or, for G conversion, the number of
significant digits. (For D, E, F, and G input, the position of the decimal point in the external field takes

precedence over the value of d in the format.)

® Teletype is a registered trademark of Teletype Corporation.
5-2

-43- FORTRAN

For example,
FORMAT (15,F10.2,D18.10)
conld be used to output the line,
bbb32bbbb-17.60bbb . 5962547681D+03
on the output listing.

The G format is the general format code that is used to transmit real, double precision, integer, logical, or
complex data. The rules for input depend on the type specification of the corresponding variable in the data
list. The form of the output conversion also depends on the individual variable except in the case of real and
double-precision data. In these cases the form of the output conversion is a function of the magnitude of the
data being converted. The following table shows the magnitude of the external data, M, and the resulting

method of conversion.

Table 5-1

Magnitude of Internal Data
Magnitude of Data Resulting Conversion
0.1< MK1 F(w-4).d, 4x
1<M<10 F(w-4).(d-1), 4x
10425 m< 109! Fiw—4). 1, 4x
10+ 1T< m<10d F(w—4). 0, 4x
All others Ew.d

The field width w should always be large enough to include spaces for the decimal point, sign, and exponent.
In all numeric field conversions if w is not large enough to accommodate the converted number, the excess
digits on the left will be lost; if the number is less than w spaces in length, the number is right-adjusted in the
field.

5-3

FORTRAN -4
Table 5-2
Numeric Field Codes
Conversion
Code Internal Form External Form
D Binary floating point Decimal floating point
double-precision with D exponent
E Binary floating point Decimal floating point
with E exponent
F Binary floating point Decimal fixed point
1 Binary integer Decimal integer
(@] Binary integer Octal integer
G One of the following: Single precision
single precision decimal floating point
binary floating point, integer, logical (T or
binary integer, F), or complex (two
binary logical, or decimal floating point
binary complex numbers), depending
upon the internal form

5.1.1.2 Numeric Fields with Scale Factors - Scale factors may be specified for D, E, F, and G conversions.
A scale factor is written nP where P is the identifying character and n is a signed or unsigned integer that

specifies the scale factor.

For F type conversions (or G type, if the extemal field is decimal fixed point), the scale factor specifies a

power of ten so that
external number = (internal number)* lo(scale factor)

For D, E, and G (external field not decimal fixed point) conversions, the scale factor multiplies the number by
a power of ten, but the exponent is changed accordingly leaving the number unchanged except in form. For

example, if the statement:
FORMAT (F8.3,E16.5)
corresponds to the line
bb26.451bbbb—0.41321E-01
then the statement

FORMAT (—1PF8.3,2PE16.5)

5-4

-45- FORTRAN

might correspond to the line
bbb2.645bbb—41.32157E-03

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the only
types affected by scale factors.

When no scale factor is specified, it is understood to be zero. However, once a scale factor is specified, it
holds for all subsequent D, E, F, and G type conversions within the same format unless another scale factor is
encountered. The scale factor is reset to zero by specifying a scale factor of zero. Scale factors have no

effect on I and O type conversions.

5.1.1.3 Logical Fields - Logical data can be transmitted in a manner similar to numeric data by use of the

specification:
Lw

where L is the control character and w is an integer specifying the field width. The data is transmitted as the

value of a logical variable in the input/output list.

If on input, the first nonblank character in the data field is T or F, the value of the logical variable will be

stored as true or false, respectively. If the entire data field is blank or empty, a value of false will be stored.

On output, w minus 1 blanks followed by T or F will be output if the value of the logical variable is true or

false, respectively.

5.1.1.4 Variable Field Width - The D, E, F, G, I, and O conversion types may appear in a FORMAT state-
ment without the specification of the field width (w) or the number of places after the decimal point (d). In
the case of input, omitting the w implies that the numeric field is delimited by any character which would
otherwise be illegal in the field, in addition to the characters -, +, ., E, D, and blank provided they follow

the numeric field. For example, input according to the format
10 FORMAT(21,F ,E,O)
might appear on the input medium as

-10,3/15.621-.0016E-10,777 .

FORTRAN -46-

In this case, commas delimit the numeric fields, blanks may also be used as field delimiters. On output,

omitting the w has the following effect:

Format Becomes
D . D25.16
E E15.7
F F15.7
G G15.7 or G25.16
I 115
(0] Oo15

5.1.1.5 Alphanumeric Fields - Alphanumeric data can be transmitted in a manner similar to numeric data by
use of the form Aw, where A is the control character and w is the number of characters in the field. The alpha-
numeric characters are transmitted as the value of a variable in an input/output list. The variable may be of any

type. For the sequence:

READ 5,V
5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the variable V.

Although w may have any value, the number of characters transmitted is limited by the maximum number of
characters which can be stored in the space allotted for the variable. This maximum depends upon the variable
type. For a double precision variable the maximum is ten characters; for all other variables, the maximum is
five characters. If w exceeds the maximum, the leftmost characters are lost on input and replaced with blanks
on output. If, on input, w is less than the maximum, blanks are filled in to the right of the given characters
until the maximum is reached. If, on output, w is less than the maximum, the leftmost w characters are trans-
mitted to the extemnal medium. Since for complex variables each word requires a separate field specification,

the maximum value for w is 5. For example,

COMPLEX C
ACCEPT 1, C
1 FORMAT (2A5)

could be used to transmit ten alphanumeric characters into complex variable C.

5.1.1.6 Alphanumeric Data Within Format Statements ~ Alphanumeric data may be transmitted directly into or

from the format statement by two different methods: H-conversion, or the use of single quotes.

5-6

-47- FORTRAN

In H-conversion, the alphanumeric string is specified by the form nH. H is the control character and n is the
number of characters in the string counting blanks. For example, the format in the statement below can be used
to print PROGRAM COMPLETE on the output listing.

FORMAT (17H PROGRAM COMPLETE)
The statement

FORMAT (16HPROGRAM COMPLETE)
causes ROGRAM COMPLETE to be printed.

Referring to this format in a READ statement would cause the 17 characters to be replaced with a new string

of characters.

The same effect is achieved by merely enclosing the alphanumeric data in quotes. The result is the same as in
H-conversion; on input, the characters between the quotes are replaced by input characters, and, on output,
the characters between the quotes (including blanks) are written as part of the output data. A quote character

within the data is represented by two successive quote marks. For example, referring to:
FORMAT (' DON''T")

with an output statement would cause DON'T to be printed. Referring to
FORMAT ('"DON'"'T')

causes ON'T to be printed. The first character referenced by the FORMAT statement for output is interpreted
as a carriage control character (see 5.1.1.13). TAB characters in FORMAT statements are converted to single

blanks at runtime by the FORTRAN operating system.

5.1.1.7 Mixed Fields - An alphanumeric format field may be placed among other fields of the format. For

example, the statement:
FORMAT (15,7H FORCE=F10. 5)
can be used to output the line:
bbb22bFORCE=bb17. 68901

The separating comma may be omitted after an alphanumeric format field, as shown above.

FORTRAN -48-

5.1.1.8 Complex Fields - Complex quantities are transmitted as two independent real quantities. The format
specification consists of two successive real specifications or one repeated real specification. For instance,

the statement:
FORMAT (2E15.4,2(F8.3,F8.5))
could be used in the transmission of three complex quantities.
5.1.1.9 Repetition of Field Specifications - Repetition of a field specification may be specified by preceding

the control character D, E, F, 1, O, G, L, or A by an unsigned integer giving the number of repetitions de-

sired. For example:
FORMAT (2E12.4,315)
is equivalent to:
FORMAT (E12.4,E12.4,15,15,15)
5.1.1.10 Repeﬁﬁ/on of Groups - A group of field specifications may be repeated by enclosing the group in
parentheses and preceding the whole with the repetition number. For example:
FORMAT (218,2(E15.5,2F8.3))
is equivalent to:
FORMAT (218,E15.5,2F8.3,E15.5,2F8.3)
5.1.1.11 Multiple Record Formats - To handle a group of input/output records where different records have
different field specifications, a slash is used to indicate a new record. For example, the statement:
FORMAT (308/15,2F8.4)
is equivalent to
FORMAT (308)
for the first record and

FORMAT (15,2F8.4)

for the second record.

5-8

-49- FORTRAN

The separating comma may be omitted when a slash is used. When n slashes appear at the end or beginning of
a format, n blank records may be written on output or records skipped on input. When n slashes appear in the

middle of a format, n-1 blank records are written or n-1 records skipped.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record. If the
list of an input/output statement dictates that transmission of data is to continue after the closing parenthesis
of the format is reached, the format is repeated starting with that group repeat specification terminated by the

last right parenthesis of level one or level zero if no level one group exists.
Thus, the statement

FORMAT (F7.2,(2(E15.5,E15.4),17))

level 0—I _I JL level O
level 1 level 1

causes the format
F7.2,2(E15.5,E15.4),17
to be used on the first record, and the format
2(E15.5,E15.4),17
to be used on succeeding records.
As a further example, consider the statement
FORMAT (F7.2/(2(E15.5,E15.4),17))
The first record has the format
F7.2
and successive records have the format
2(E15.5,E15.4),17
5.1.1.12 Formats Stored as Data - The ASCII character string comprising a format specification may be stored
as the values of an array. Input/output starements may refer to the format by giving the array name, rather than

the statement number of a FORMAT statement. The stored format has the same form as a FORMAT statement ex-
cluding the word "FORMAT." The enclosing parentheses are included.

FORTRAN -50-

As an example, consider the sequence:

DIMENSION SKELETON (2)

READ 1, (SKELETON(), I=1,2)
1 FORMAT (2A4)

READ SKELETON,K,X

The first READ statement enters the ASCII string into the array SKELETON. In the second READ statement,
SKELETON is referred to as the format governing conversion of K and X.

5.1.1.13 Carriage Control - The first character of each ASCII record controls the spacing of the line printer
or Teletype. This character is usually set by beginning a FORMAT statement for an ASCII record with 1Ha,

where a is the desired control character. The line spacing actions, listed below, occur before printing:

FORTRAN Printer Octal Effect Printer
Character Character Value ec Channel
space LF 012 Skip to next line 8

with form feed after
60 lines
0 zero LF,LF 012 Skip a line 8
1 one FF 014 Form feed - go to 1
top of next page
+ plus Suppress skipping -
overprint the line
* asterisk DC3 023 Skip to next line 5
with no form feed
- minus LF,LF,LF 012 Skip two lines 8
2 two DLE 020 Space 1/2 of a page 2
3 three vT 013 Space 1/3 of a page 7
/ slash DC4 024 Space 1/6 of a page 6
period DC2 022 Triple space with a 4
form feed after every
20 lines printed
, comma DCI 021 Double space with a 3

form feed after every
30 lines printed

NOTE: Printer control characters DLE, DC1, DC2, DC3, and DC4 affect only the line printer.

Version 24 FORTRAN
Version 31 LIB40 5-10 October 1971

-51- FORTRA

A $ (dollar sign) as a format field specification code suppresses the carriage return at the end of the Teletype or

line printer line.

5.1.1.14 Spacing - Input and output can be made to begin at any position within a FORTRAN record by use
of the format code

Tw

where T is the control character and w is an unsigned integer constant specifying the character position in a-
FORTRAN record where the transfer of data is to begin. When the output is printed, w corresponds to the (w-1)th
print position. This is because the first character of the output buffer is a carriage control character and is not
printed. It is recommended that the first field specification of the output format be 1x, except where a carriage

control character is used.

Version 24 FORTRAN
Version 31 LIB40 5-10a October 1971

FORTRAN

-52-

-53- FORTRAN

For example,
2 FORMAT (T50, 'BLACK'T30, 'WHITE')
would cause the following line to be printed

Print Position 29 Print Position 49

WHITE BLACK
For input, the statement

1 FORMAT(T35, 'MONTH')
READ (3,1)

cause the first 34 characters of the input data to be skipped, and the next 5 characters would replace the char-

acters M, O, N, T, and H in storage. If an input record containing
ABCbbbXYZ
is read with the format specification
10 FORMAT (17,A3,T1,A3)
then the characters XYZ and ABC are read, in that order.
5.1.1.15 Blank or Skip Fields - Blanks may be introduced into an output record or characters skipped on an

input record by use of the specification nX. The control character is X; n is the number of blanks or characters

skipped and must be greater than zero. For example, the statement
FORMAT (5H STEPI5, 10X2HY=F7.3)
may be used to output the line

bSTE Pbbb28bbbbbbbbbbY=b-3.872

5.1.2 NAMELIST Statement

The NAMELIST statement, when used in conjunction with special forms of the READ and WRITE statements,
provides a method for transmitting and converting data without using a FORMAT statement or an 1/O list. The
NAMELIST statement has the form

FORTRAN -54-
NAMELIST/X /A Ay oo A/X /BBy e Bree /X /C1C, .. .C

where the X's are NAMELIST names, and the A's, B's, and C's are variable or array names.

Each list or variable mentioned in the NAMELIST statement is given the NAMELIST name immediately preceding
the list. Thereafter, an 1/O statement may refer to an entire list by mentioning its NAMELIST name. For

example:

NAMELIST/FRED/A,B,C/MARTHA/D, E
states that A, B, and C belong to the NAMELIST name FRED, and D and E belong to MARTHA,
The use of NAMELIST statements must obey the following rules:

a. A NAMELIST name may not be longer than six characters; it must start with an alphabetic char-
acter; it must be enclosed in slashes; it must precede the list of entries to which it refers; and it must
be unique within the program.

b. A NAMELIST name may be defined only once and must be defined by a NAMELIST statement.
After a NAMELIST name has been defined, it may only appear in READ or WRITE statements. The
NAMELIST name must be defined in advance of the READ or WRITE statement.

c. A variable used in a NAMELIST statement cannot be used as a dummy argument in a subroutine
definition.

d. Any dimensioned variable contained in NAMELIST statement must have been defined in a
DIMENSION statement preceding the NAMELIST statement.

5.1.2.1 Input Data For NAMELIST Statements - When a READ statement refers to a NAMELIST name, the
first character of all input records is ignored. Records are searched until one is found with a $ or & as the
second character immediately followed by the NAMELIST name specified. Data is then converted and placed
in memory until the end of a data group is signaled by a $ or & either in the same record as the NAMELIST name,
or in any succeeding record as long as the $ or & is the second character of the record. Data items must be
separated by commas and be of the following form:

V=K],K2,. .. ,Kn
where V may be a variable name or an array name, with or without subscripts. The K's are constants which may
be integer, real, double precision, complex (written as (A, B) where A and B are real), or logical (written as
T for true and F for false). A series of J identical constants may be represented by J*K where J is an unsigned
integer and K is the repeated constant. Logical and complex constants must be equated to logical and complex
variables, respectively. The other types of constants (real, double precision, and integers) may be equated to

5-12

-55- FORTRAN

any other type of variable (except logical or complex), and will be converted to the variable type. For
example, assume A is a two-dimensional real array, B is a one-dimensional integer array, C is an integer

variable , and that the input data is as follows:

$FRED A(7,2)=4, B=3,6*2.8, C=3.32%

1

Column 2
A READ statement referring to the NAMELIST name FRED will result in the following: the integer 4 will be
converted to floating point and placed in A(7,2). The integer 3 will be placed in B(1) and the floating point

number 2.8 will be placed in B(2), B(3),..., B(7). The floating point number 3.32 will be converted to the
integer 3 and placed in C.

5.1.2.2 Output Data For NAMELIST Statements - When a WRITE statement refers to a NAMELIST name, all
variables and arrays and their values belonging to the NAMELIST name will be written out, each according to

its type. The complete array is written out by columns. The output data will be written so that:

a. The fields for the data will be large enough to contain all the significant digits.
b. The output can be read by an input statement referencing the NAMELIST name.

For example, if JOE is a 2x3 array, the statement

NAMELIST/NAM1/JOE K1, ALPHA
WRITE (u, NAM1)

generate the following form of output.

Column 2
)
$NAMI
JOE = -6.75, .234E-04, 68.0,
-17.8, 0.0, -. 197407,
K1=73.1, ALPHA=3,$

5.2 DATA TRANSMISSION STATEMENTS

The data transmission statements accomplish input/output transfer of data that may be listed in a NAMELIST
statement or defined in a FORMAT statement. When a FORMAT statement is used to specify formats, the data
transmission statement must contain a list of the quantities to be transmitted. The data appears on the external

media in the form of records.

FORTRAN 56
5.2.1 Input/Output Lists

The list of an input/output statement specifies the order of transmission of the variable values. During input,
the new values of listed variables may be used in subscript or control expressions for variables appearing later

in the list. For example:
READ 13,L,A(L),B(L+1)
reads a new value of L and uses this value in the subscripts of A and B.

The transmission of array variables may be controlled by indexing similar to that used in the DO statement. The

list of controlled variables, followed by the index control, is enclosed in parentheses. For example,
READ 7, (X(K),K=1,4),A

is equivalent to:
READ 7, X(1),X(2),X(3),X(4),A

As in the DO statement, the initial, limit, and increment values may be given as integer expressions:
READ 5, N, (GAIN(K),K=1,M/2,N)

The indexing may be compounded as in the following:
READ 11, ((MASS(K,L),K=1,4),L=1,5)

The above statement reads in the elements of array MASS in the following order:
MASS(1,1), MASS(2,1),...,MASS(4,1),MASS(1,2),...,MASS(4,5)

If an entire array is to be transmitted, the indexing may be omitted and only the array identifier written. The
array is transmitted in order of increasing subscripts with the first subscript varying most rapidly. Thus, the

example above could have been written:
READ 11, MASS

Entire arrays may also be designated for transmission by referring to a NAMELIST name (see description of
NAMELIST statement).

-57- FORTRAN
5.2.2 Input/Output Records

All information appearing on external media is grouped into records. The maximum amount of information in
one record and the manner of separation between records depends upon the medium. For punched cards, each
card constitutes one record; on a teletypewriter a record is one line, and so forth. The amount of information
contained in each ASCII record is specified by the FORMAT reference and the 1/O list. For magnetic tape
binary records, the amount of information is specified by the 1/O list.

Each execution of an input or output statement initiates the transmission of a new data record. Thus, the

statement
READ 2, FIRST,SECOND, THIRD
is not necessarily equivalentto the statements

READ 2, FIRST
READ 2, SECOND
READ 2, THIRD

since, in the second case, at least three separate records are required, whereas, the single statement
READ 2, FIRST,SECOND, THIRD
may require one, two, three, or more records depending upon FORMAT statement 2.

If an input/output statement requests less than a full record of information, the unrequested part of the record

is lost and cannot be recovered by another input/output statement without repositioning the record:

If an input/output list requires more than one ASCII record of information, successive records are read.

5.2.3 PRINT Statement

The PRINT statement assumes one of two forms

PRINT f, list
PRINT f

where f is a format reference.

The data is converted from internal to external form according to the designated format. If the data to be

transmitted is contained in the specified FORMAT statement, the second form of the statement is used.

FORTRAN -58-

Examples: PRINT 16,T,(B(K),K=1,M)
PRINT F106,SPEED, MISS

In the second example, the format is stored in array F106.

5.2.4 PUNCH Statement

The PUNCH statement assumes one of two forms

PUNCH f, list
PUNCH f

where f is a format reference.

Conversion from internal to external data forms is specified by the format reference. If the data to be trans-

mitted is contained in the designated F ORMAT statement, the second form of the statement is used.

Examples: PUNCH 12, A,B(A),C(B(A))
PUNCH 7

5.2.5 TYPE Statement

The TYPE statement assumes one of two forms

TYPE f, list
TYPE f

where f is a format reference.

This statement causes the values of the variables in the list to be read from memory and listed on the user's
teletypewriter. The data is converted from internal to external form according to the designated format. If
the data to be transmitted is contained in the designated FORMAT statement, the second form of the statement

is used.

Examples: TYPE 14,K,(A(L),L=1,K)
TYPE FMT

5.2.6 WRITE Statement

The WRITE statement assumes one of the following forms

5-16

-59- FORTRAN

WRITE (u,f) list
WRITE(u,)
WRITE(u, N)
WRITE(u) list
WRITE(u?R, f) list

where u is a unit designation, f is a format reference, N is a NAMELIST name, and R is a record number where
I/0O is to start.

The first form of the WRITE statement causes the values of the variables in the list to be read from memory and
written on the unit designated in ASCII form. The data is converted to external form as specified by the desig-
nated FORMAT statement.

The second form of the WRITE statement causes information to be read directly from the specified format and
written on the unit designated in ASCII form.

The third form of the WRITE statement causes the names and values of all variables and arrays belonging to the
NAMELIST name, N, to be read from memory and written on the unit designated. The data is converted to

external form according to the type of each variable and array.

The fourth form of the WRITE statement causes the values of the variables in the list to be read from memory

and written on the unit designated in binary form.

The fifth form of the WRITE statement causes the variables in the list to be written in the specified record of the
file on the disk unit designated. Either a pound sign (*) ora single quote (') can be used to separate the unit
and the record. This allows a programmer to access fixed-length records directly, and eliminates the sequential
writing of data to accéss one or more records within the file, The file must first be defined properly by a CALL
to DEFINE FILE (see Section 12,4). Output begins when the random WRITE specifying the record to which the

writing is desired is given in the correct format.

5.2.7 READ Statement

The READ statement assumes one of the following forms:

READ f, list

READ f

READ(u,f) list

READ(u,f)

READ(u, N)

READ(u)list

READ(u*R,f) list
READ(u,f,END=C, ERR=d) list
READ(u,f,END=C) list
READ(u,f, ERR=d) list

Version 24 FORTRAN
Version 31 LIB40 5-17 February 1971

FORTRAN -60-

where f is a format reference, u is a unit designation, N is a NAMELIST name, R is a record number where 1/0O
is to start, C is a statement number to which control is transferred upon encountering an end-of-file, and d is

the statement number to which control is transferred upon encountering an error condition on. the input data.

The first form of the READ statement causes information to be read from cards and put in memory as values of the
variables in the list. The data is converted from external to internal form as specified by the referenced

FORMAT statement.
Example: READ 28,71,Z2,73

The second form of the READ statement is used if the data read from cards is to be transmitted directly into the

specified format.
Example: READ 10

The third form of the READ statement causes ASCII information to be read from the unit designated and stored
in memory as values of the variables in the list. The data is converted to internal form as specified by the

referenced FORMAT statement.
Example: READ(1,15)ETA, P1

The fourth form of the READ statement causes ASCII information to be read from the unit designated and trans-

mitted directly into the specified format.
Example: READ(N, 105)

The fifth form of the READ statement causes data of the form described in the discussion of input data for
NAMELIST statements to be read from the unit designated and stored in memory as values of the variables or

arrays specified.
Example: READ(2, FRED)

The sixth form of the READ statement causes binary information to be read from the unit designated and stored

in memory as values of the variables in the list.
Example: READ (M)GAIN, Z,Al

The seventh form of the READ statement causes information to be read from the specified record in a disk file
into the variables of the list. This allows random access of fixed-length records in a disk file. The file from

which records are to be read is defined by the DEFINE FILE call (see Section 12.4).

5-18

-61- FORTRAN

Example: DOUBLE PRECISION FIL
DIMENSION A(6)
DATA FIL/'FILE.ONE'/
CALL DEFINE FILE (4,30, NV,FIL, "11,"23)
READ (4%54,5)A

This example reads the 54th record from FILE.ONE on the disk area belonging to programmer [11,23] into the
list variables A(1) through A(6).

The eighth form of the READ statement causes control to be transferred if an end-of-file or error condition is
encountered on the input data. The arguments END=c and ERR=d are optional and if both are included, either
may appear first. If an end-of-file is encountered, control transfers to the statement specified by END=c. If
an END parameter is not specified, 1/O on that device terminates and the program halts with an error message
to the user's TTY. 1f an error on input is encountered, control transfers to the statement specified by ERR=d.

If an ERR=d parameter is not specified, the program halts with an error message to the user's TTY.

Example: READ (7,7, ,END=888, ERR=999) A
888 (control transfers here if an end-of-file is encountered)

999 (control transfers here if an error on input is encountered)

5.2.8 REREAD Statement

The reread feature allows a FORTRAN program to reread information from the last used input file. The format
used during the reread need not correspond to the original read format, and the information may be read as

many times as desired.

a. To reread from an input device, the following coding would be used:

READ (16, 100)A

REREAD 105, A
The REREAD 105, A statement causes the last input device used to be reread according to format state-
ment 105. The original read format and a subsequent reread format need not be the same.

b. The reread feature cannot be used until an input from a file has been accomplished. If the feature
is used prematurely, an error message will be generated.

c. Information may be reread as many times as desired using either the same or a new format statement
each time.

d. The reread feature must be used with some forethought and care since it rereads from the last input
file used, i.e.:

5-19

FORTRAN -62-

The following example will reread from the file on Device No. 10, not Device No. 16:

READ (16, 100)A
READ (10,200)B

REREAD 110,A

5.2.9 ACCEPT Statement

The ACCEPT statement assumes one of two forms

ACCEPT f, list
ACCEPT f

where f is a format reference.

This statement causes information to be input from the user's teletypewriter and put in memory as values of the
variables in the list. The data is converted to internal form as specified by the format. If the transmission of

data is directly into the designated format, the second form of the statement is used.

Examples: ACCEPT 12,ALPHA,BETA
ACCEPT 27

5.3 DEVICE CONTROL SFATEMENTS

Device control statements and their corresponding effects are listed in Table 5-3.

Table 5-3
Device Control Statements
Statement Effect
BACKSPACE v Backspaces designated tape one ASCII record or one
logical binary record.
ENDFILE v Writes an end-of-file.
REWIND v Rewinds tape on designated unit.
SKIP RECORD u Causes skipping of one ASCII record or one logical
binary record.
UNLOAD v Rewinds and unloads the designated tape.

-63- FORTRAN

5.4 ENCODE AND DECODE STATEMENTS

ENCODE and DECODE statements transfer data, according to format specifications, from one section of user's
core to another. No peripheral equipment is involved. DECODE is used to change data in ASCII format to
data in another format. ENCODE changes data of another format into data in ASCII format.

The two statements are of the form

ENCODE(c,f,v),L(1),...,L(N)
DECOBDE(c,f,v),L(1),...,L(N)

where

= the number of ASCII characters

= the format statement number

= the starting address of the ASCII record referenced
(1),...,L(N) = the list of variables.

c

f

v
L

I A slash cannot appear in the FORMAT statement referenced by an ENCODE or DECODE statement.

Example: Assume the contents of the variables to be as follows:
A(1) contains the floating-point binary number 300.45
A(2) contains the floating-point binary number 3.0
J contains the binary integer value 1.
B is a four-word array of indeterminate contents
C contains the ASCII string 12345

DO2J=1,2
ENCODE (16, 10,B) J, A(J)
10 FORMAT (1X,2HA(,11,4H) = ,F8.2)
TYPE 11,B
FORMAT (4A5)
CONTINUE
DECODE (4, 12, C) B
12 FORMAT (3F1.0, 1X,F1.0)
TYPE 13,8
13 FORMAT (4F5.2)
END

—
N -

Array B can contain 20 ASCII characters. The result of the ENCODE statement after the first iteration of the
DO loop is:

B(1) A(1) Typed as

B(2) =

B(3) 300.4 A(1) = 300.45
B(4) 5

Version 26 FORTRAN
Version 32 LIB40 5-21 May 1972

FORTRAN -64-

The result after the second iteration is:

B(1) A(2) Typed as
B(2) =

B(3) 3.0 A(2) = 3.0
B(4)

The result of the DECODE statement is to extract the digits 1, 2, and 3 from C and convert them to floating-
point binary values and store them in B(1), B(2), and B(3). Then skip the next character (4) and extract the

digit 5 from C, convert it to a floating-point binary value, and store it in B(4).

5-22

-65- FORTRAN

CHAPTER 6
SPECIFICATION STATEMENTS

Specification statements allocate storage and furnish information about variables and constants to the compiler.

Specification statements may be divided into three categories, as follows:

a. Storage specification statements: DIMENSION, COMMON, and EQUIVALENCE.
b. Data specification statements: DATA and BLOCK DATA.

c. Type declaration statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
SUBSCRIPT INTEGER, and IMPLICIT.

By extending the USA Standard in regard to specification statements, PDP-10 FORTRAN 1V allows the following
statements to be used anywhere in the program, provided that the variables they specify appear in executable
statements only after the particular specification statement. The specification statement must not appear in the

range of a DO loop.

DIMENSION statement

EXTERNAL statement (described in Chapter 7)
COMMON statement

EQUIVALENCE statement

Type declaration statements

DATA statement

A sample program that incorporates these statements follows.

DOUBLE PRECISION D
DIMENSION Y(10), D(5)
Y(1)=-1.0
INTEGER XX(5)
Y(2) = ABS(Y(1))
DATA XX/1,2,3,4,5
DO 101=3,7

10 Y()=XX(1-2)
COMMON Z
Z=Y(1)*Y(2)/(Y(3) + Y(5))
END

Only IMPLICIT statements and arithmetic function definition statements (described in Chapter 7) must appear in

the program before any executable statement.

6-1

FORTRAN -66-
In addition, arrays must be dimensional before being referenced in a NAMELIST, EQUIVALENCE, or DATA

statement. DOUBLE PRECISION and COMPLEX arrays must be declared before they are dimensioned.

6.1 STORAGE SPECIFICATION STATEMENTS

6.1.1 DIMENSION Statement

The DIMENSION statement is used to declare identifiers to be array identifiers and to specify the number and
bounds of the amray subscripts. The information supplied in a DIMENSION statement is required for the alloca-
tion of memory for arrays. Any number of arrays may be declared in a single DIMENSION statement. The
DIMENSION statement has the form

DIMENSION S.,S,.,...,S
1772 n

where S is an array specification.

Each array variable appearing in the program must represent an element of an array declared in a DIMENSION
statement, unless the dimension information is given in a COMMON or TYPE statement. Dimension information

may appear only once for a given variable.

Each array specification gives the array identifier and the minimum and maximum values which each of its sub-

scripts may assume in the following form:
identifier(min/max, min/max, . .., min/max)

The minima and maxima must be integers. The minimum must not exceed the maximum. For example, the state-

ment
DIMENSION EDGE(-1/1,4/8)

specifies EDGE to be a two-dimensional array whose first subscript may vary from -1 to 1 inclusive, and the sec-

ond from 4 to 8 inclusive.

Minimum values of 1 may be omitted. For example,
NET(5, 10)

is interpreted as:

NET(1/5,1/10)

6-2

-67- FORTRAN
Examples: DIMENSION FORCE(-1/1,0/3,2,2,-7/3)
DIMENSION PLACE(3, 3, 3), JI(2, 2/4),K(256)

Arrays may also be declared in the COMMON or type declaration statements in the same way:

COMMON X(10,4),Y,Z
INTEGER A(7,32),8B
DOUBLE PRECISION K(-2/6, 10)

6.1.1.1 Adjustable Dimensions - Within either a FUNCTION or SUBROUTINE subprogram, DIMENSION and
TYPE statements may use integer variables in an array specification, provided that the array name and variable
dimensions are dummy arguments of the subprogram. The actual array name and values for the dummy variables
are given by the calling program when the subprogram is called. The variable dimensions may not be altered

within the subprogram (i.e., typing the array DOUBLE PRECISION or COMPLEX after it has been dimensioned)

and must be less than or equal to the explicit dimensions declared in the calling program.

Example: SUBROUTINE SBR(ARRAY, M1, M2, M3, M4)
DIMENSION ARRAY (M1/M2,M3/M4)

DO 27 L=M3, M4
DO 27 K=M1,M2

27 ARRAY(K, L)=VALUE

END
The calling program for SBR might be:

DIMENSION A1(10,20),A2(1000, 4)
CALL SBR(A1, 5, 10, 10, 20)
CALL SBR(A2, 100,250, 2, 4)

END

FORTRAN -68-
6.1.2 COMMON Statement

The COMMON statement causes specified variables or arrays to be stored in an area available to other programs.
By means of COMMON statements, the data of a main program and/or the data of its subprograms may share a

common storage area.

The common area may be divided into separate blocks which are identified by block names. A block is specified

as follows:
/block identifier/identifier,identifier, ..., identifier

The identifier enclosed in slashes is the block name. The identifiers which follow are the names of the variables
or arrays assigned to the block and are placed in the block in the order in which they appear in the block spec-

ification. A common block may have the same name as a variable in the same program.
The COMMON statement has the general form
COMMON/BLOCK1/A,B,C/BLOCK2/D,E,F/...

where BLOCK 1,BLOCK2, ... are the block names, and A,B,C, ... are the variables to be assigned to each

block. For example, the statement
COMMONAR/X,Y,T/C/J,V,W,Z

indicates that the elements X,Y, and T are to be placed in block R in that order, and that U,V,W, and Z are
to be placed in block C.

Block entries are linked sequentially throughout the program, beginning with the first COMMON statement. For

example, the statements

COMMON/D/ALPHAR/A,B/C/S
COMMON/C/X,Y/R/U,V,W

have the same effect as the statement
COMMON/D/ALPHA/R/A,B,U,V,W/C/S,X,Y

One block of common storage, referred to as blank common, may be left unlabeled. Blank common is indicated

by two consecutive slashes. For example,
COMMONR/X,Y//B,C,D

indicates that B, C, and D are placed in blank common. The slashes may be omitted when blank common is the

first block of the statement.

-69- FORTRAN
COMMON B,C,D

Storage allocation for blocks of the same name begins at the same location for all programs executed together.

For example, if a program contains
COMMON A,BR/X,Y,Z

as its first COMMON statement, and a subprogram has
COMMONAR/U,V,W//D,E,F

as its first COMMON statement, the quantities represented by X and U are stored in the same location. A sim-

ilar correspondence holds for A and D in blank common.

Common blocks may be any length provided that no program attempts to enlarge a given common block declared

by a previously loaded program.

Array names appearing in COMMON statements may have dimension information appended if the arrays are not

declared in DIMENSION or type declaration statements. For example,
COMMON ALPHA,T(15,10, 5), GAMMA

specifies the dimensions of the array T while entering T in blank common. Variable dimension array identifiers
may not appear in a COMMON statement, nor may other dummy identifiers. Each array name appearing in a

COMMON statement must be dimensioned somewhere in the program containing the COMMON statement.

6.1.3 EQUIVALENCE Statement

The EQUIVALENCE statement causes more than one variable within a given program to share the same storage

location. The EQUIVALENCE statement has the form
EQUIVALENCE(V‘,VZ, eed)s (Vk'vk+l’ S
where the V's are variable names.

The inclusion of two or more references in a parenthetical list indicates that the quantities in the list are to share

the same memory location. For example,
EQUIVALENCE(RED, BLUE)

specifies that the variables RED and BLUE are stored in the same location.

FORTRAN -70-

The relation of equivalence is transitive; e.g., the two statements,

EQUIVALENCE(A,B), (8,C)
EQUIVALENCE(A,B,C)

have the same effect.

The subscripts of array variables must be integer constants.

Example: EQUIVALENCE(X,A(3),Y(2,1,4)), (BETA(2,2),ALPHA)

6.1.4 EQUIVALENCE and COMMON

Identifiers may appear in both COMMON and EQUIVALENCE statements provided the following rules are ob-

served.

a. No two quantities in common may be set equivalent to one another.

b. Quantities placed in a common block by means of EQUIVALENCE statements may cause the end of
the common block to be extended. For example, the statements

COMMONAR/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(A,Y)

causes the common block R to extend from X to A(4), arranged as follows:

X
Y AQ1) (same location)
Z A(2) (same location)
A(3)
A(4)

c¢. EQUIVALENCE statements which cause extension of the start of a common block are not allowed.
For example, the sequence

COMMONAR/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(X,A(3))

is not permitted, since it would require A(1) and A(2) to extend the starting location of block R.

6.2 DATA SPECIFICATION STATEMENTS

The DATA statement is used to specify initial or constant values for variables. The specified values are compiled

into the object program, and become the values assumed by the variables when program execution begins.

6.2.1 DATA Statement

The data to be compiled into the object program is specified in a DATA statement. The DATA statement has the

form

-71- FORTRAN
DATA Iisf/d],dz, . ./,list/dk,dkﬂ peee/reee

where each list is in the same form as an input/output list, and the d's are data items for each list.

Indexing may be used in a list provided the initial, limit, and increment (if any) are given as constants. Expres-
sions used as subscripts must have the form

c]*iﬂicz

where c' and ¢, are integer constants and i is the induction variable. If an entire array is to be defined, only
the array identifier need.be listed. Variables in COMMON may appear on the lists only if the DATA statement
occurs in a BLOCK DATA subprogram. (See Chapter 7, Section 7.6)

The data items following each list correspond one-to-one with the variables of the list. Each item of the data
specifies the value given to its corresponding variable with no implied type conversion. Thus, integer variables
can only be defined numerically by integer constants, real variables by real constants, double precision variables
by double precision constants, and so forth. Refer to Section 2.1 for definitions of the various constants. Data

items may be numeric constants, alphanumeric strings, octal constants, or. logical constants. For example,

DATA ALPHA, BETA/.5, 16.E-2/

specifies the value .5 for ALPHA and the value . 16 for BETA,

Alphanumeric data is packed into words according to the data word size in the manner of A conversion; however,
excess characters are not permitted. The specification is written as nH followed by n characters or is imbedded
in single quotes. Double precision variables must have at least six characters assigned to them in DATA state-

ments.,

Octal data is specified by the letter O or the character ", followed by a signed or unsigned octal integer of one
to twelve digits.

Logical constants are written as .TRUE. ,.FALSE,, T, or F.

Example: DATA NOTE,K/4HFOOT, O-7712/ .
DATA QUOTE/'QUOTE'/

Any item of the data may be preceded by an integer followed by an asterisk. The integer indicates the number of
times the item is to be repeated. For example,

DATA(A(K),K=1,20)/61E2, 19+32E1/
specifies 20 values for the array A; the value 6100 for A(1); the value 320 for A(2) through A(20). To cause an
array or part of an array to be initialized to blanks, the blank areas must be specified explicitly in the DATA
statement. For example,

DATA(A(D),1=1,10)/"12345" ,9*' '/
causes the first word of A to contain 12345 in ASCII and the next nine words of the array to be blank.

Version 24 FORTRAN
Version 31 LIB40 6-7 October 1971

FORTRAN -72-
6.2.2 BLOCK DATA Statement

The BLOCK DATA statement has the form:
BLOCK DATA

This statement declares the program which follows to be a data specification subprogram. Data may be entered

into labeled or blank common.

The first statement of the subprogram must be the BLOCK DATA statement. The subprogram may contain only the

declarative statements associated with the data being defined.

Example: BLOCK DATA
COMMON/R/S,Y/C/Z,W NV
DIMENSION Y(3)
COMPLEX Z
DATA Y/1E-1,2+3E2/,X,Z/11.877D0,(-1.41421,1.41421)/
END

Data may be entered into more than one block of common in one subprogram.

6.3 TYPE DECLARATION STATEMENTS

The type declaration statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, IMPLICIT, and
SUBSCRIPT INTEGER are used to specify the type of identifiers appearing in a program. An identifier may ap-

pear in only one type statement. Type statements may be used to give dimension specifications for arrays.

The explicit type declaration statements have the general form
type identifier,identifier,identifier. ..

where type is one of the following:

INTEGER,REAL,DOUBLE PRECISION,COMPLEX ,LOGICAL,
SUBSCRIPT INTEGER

In addition, for the sake of compatibility the following types have been made equivalent:

SUBSCRIPT INTEGER is equivalent to INTEGER«2
INTEGER is equivalent to INTEGER«4

REAL is equivalent to REAL+4 -

DOUBLE PRECISION is equivalent to REAL48

LOGICAL is equivalent to LOGICAL«1 and LOGICAL x4
COMPLEX is equivalent to COMPLEX+8

The listed identifiers are declared by the statement to be of the stated type. Fixed-point variables in a SUB-

SCRIPT INTEGER statement must fall between 22 and 227 .

Version 24 FORTRAN
Version 31 LIB40 6-8 February 1971

_73- FORTRAN
6.3.1 IMPLICIT Statement

The IMPLICIT statement has the form
IMPLICIT fype](a] sOnres I ,fype2(03,04, ced)

where type represents INTEGER, REAL, LOGICAL, COMPLEX, DOUBLE PRECISION, or one of the equivalent
types listed in Section 6.3, and a9,/ ... represent single alphabetic characters, each separated by commas, or
a range of characters (in alphabetic sequence) denoted by the first and last characters of the range separated by

a minus sign (e.g., (A-D)).

This statement causes any program variable which is not mentioned in a type statement, and whose first character
is one of those listed in the IMPLICIT statement, to be classified according to the type appearing before the list

in which the character appears. As an example, the statement
IMPLICIT REAL(A-D, L, N-P)

causes all variables starting with the letters A through D,L, and N through P to be typed as real, unless they are

explicitly declared otherwise.
The initial state of the compiler is set as if the statement
IMPLICIT REAL(A-H,0O-Z), INTEGER(I-N)

were at the beginning of the program. This state is in effect unless an IMPLICIT statement changes the above

interpretation; i.e., identifiers, whose types are not explicitly declared, are typed as follows.

a. Identifiers beginning with I, J, K, L, M, or N are assigned interger type.
b. Identifiers not assigned integer type are assigned real type.

If the program contains an IMPLICIT statement, this statement will override throughout the program the implicit
state initially set by the compiler. No program may contain more than one IMPLICIT declaration for the same

letter.

Version 24 FORTRAN
Version 31 LIB40 6-9 February 1971

FORTRAN

-74-

-75- FORTRAN

CHAPTER 7
SUBPROGRAM STATEMENTS

FORTRAN subprograms may be either internal or external. Internal subprograms are defined and may be used
only within the program containing the definition. The arithmetic function definition statement is used to define

internal functions.

External subprograms are defined separately from (i.e., external to) the programs that call them, and are com-
plete programs which conform to all the rules of FORTRAN programs. They are compiled as closed subroutines;
i.e., they appear only once in the object program regardless of the number of times they are used. Extemal sub-
programs are defined by means of the statements FUNCTION and SUBROUTINE.

7.1 DUMMY IDENTIFIERS

Subprogram definition statements contain dummy identifiers, representing the arguments of the subprogram. They
are used as ordinary identifiers within the subprogram definition and indicate the sort of arguments that may ap-
pear and how the arguments are used. The dummy identifiers are replaced by the actual arguments when the sub-

program is executed.

7.2 LIBRARY SUBPROGRAMS

The standard FORTRAN 1V library for the PDP-10 includes built-in functions, FUNCTION subprograms, and
SUBROUTINE subprograms, listed and described in Chapter 8. Built-in functions are open subroutines; that is,
they are incorporated into the object program each time they are referred to by the source program. FUNCTION
and SUBROUTINE subprograms are closed subroutines; their names derive from the types of subprogram statements

used to define them.

7.3 ARITHMETIC FUNCTION DEFINITION STATEMENT

The arithmetic function definition statement has the form:

identifier(identifier, identifier, . . .)=expression

7-1

FORTRAN -76-

This statement defines an internal subprogram. The entire definition is contained in the single statement. The

first identifier is the name of the subprogram being defined.

Arithmetic function subprograms are single-valued functions with at least one argument. The type of the function

is determined by the type of the function identifier.

The identifiers enclosed in parentheses represent the arguments of the function. These are dummy identifiers;
they may appear only as scalar variables in the defining expression. Dummy identifiers have meaning and must
be unique only within the defining statement. Dummy identifiers must agree in order, number, and type with

the actual arguments given at execution time.

Identifiers, appearing in the defining expression, which do not represent arguments are treated as ordinary var-
iables. The defining expression may include external functions or other previously defined arithmetic statement

functions.

All arithmetic function definition statements must precede the first executable statement of the program.

Examples: SSQR(K =K »(K+1)*(2+K+1)/6
ACOSH(X)=(EXP(X /AHEXP(-X /A))/2

In the last example above, X is a dummy identifier and A is an ordinary identifier. At execution time, the

function is evaluated using the current value of the quantity represented by A.

7.4 FUNCTION SUBPROGRAMS

A FUNCTION subprogram is a single-valued function that may be called by using its name as a function name
in an arithmetic expression, such as FUNC(N), where FUNC is the name of the subprogram that evaluates the
corresponding function of the argument N. A FUNCTION subprogram begins with a FUNCTION statement and
ends with an END statement. It retums control to the calling program by means of one or more RETURN state-

ments.

7.4.1 FUNCTION Statement

The FUNCTION statement has the form:
FUNCTION identifier(argument,argument, ...)

This statement declares the program which follows to be a FUNCTION subprogram. The identifier is the name of

the function being defined. This identifier must not be used as a dummy argument or appear in any nonexecutable
statement in the program other than as a scalar variable in a TYPE statement. It must appear as a scalar variable

and be assigned a value during execution of the subprogram which is the function value.

Version 24 FORTRAN
Version 31 LIB40 7-2 October 1971

-77- FORTRAN

Arguments appearing in the list enclosed in parentheses are dummy arguments representing the function argument.
The arguments must agree in number, order, and type with the actual arguments used in the calling program.
FUNCTION subprogram arguments may be expressions, alphanumeric strings, array names, statement labels pre-

ceded by an asterisk (*) or dollar sign ($), or subprogram names.

Dummy arguments may appear in the subprogram as scalar identifiers, array identifiers, subprogram identifiers, or
an asterisk (*) or dollar sign ($), denoting statement labels in the calling program. A function must have at least
one dummy argument. Dummy arguments representing array names must appear within the subprogram in a
DIMENSION statement, or one of the type statements that provide dimension information. Dimensions given as
constants must equal the dimensions of the corresponding arrays in the calling program. In a DIMENSION state-
ment, dummy identifiers may be used to specify adjustable dimensions for array name arguments. For example, in

the statement sequence:

FUNCTION TABLE(A,M,N,B,X,Y)

DIMENSION A(M,N),B(10),C(50)

The dimensions of array A are specified by the dummies M and N, while the dimension of array B is given as a
constant. The various values given for M and N by the calling program must be those of the actual arrays which
the dummy A represents. The arrays may each be of different size but must have two dimensions. The arrays are

dimensioned in the programs that use the function.

Dummy dimensions may be given only for dummy arrays. In the example above the array C must be given abso-
lute dimensions, since C is not a dummy identifier. A dummy identifier may not appear in an EQUIVALENCE
statement in the FUNCTION subprogram.

Dummy arguments representing statement labels can be used only in connection with the RETURN statement .
When the value of the function is not required, a FUNCTION subprogram can be used as a SUBROUTINE subpro-
gram by utilizing the optional return. When the optional return appears in a FUNCTION subprogram, the value
of the function is stored on return only if RETURN or RETURN i (where i = 0) is used.

Example: FUNCTION LIST (A, $,Q)

A function must not modify any arguments which appear in the FORTRAN arithmetic expression calling the func-
tion. Modification of implicit arguments from the calling program, such as variables in COMMON and DO loop
indexes, is not allowed. The only FORTRAN statements not allowed in a FUNCTION subprogram are SUBROU-

TINE, BLOCK DATA, and another FUNCTION statement.

7.4.1.1 Function Type - The type of the function is the type of identifier used to name the function. This iden-

tifier may be typed, implicitly or explicitly, in the same way as any other identifier. Alternatively, the function

7-3

FORTRAN -78-
may be explicitly typed in the FUNCTION statement itself by preceding the word FUNCTION with one of the
types or equivalent types described in Section 6.3. For example:
INTEGER FUNCTION
REAL FUNCTION
COMPLEX FUNCTION
LOGICAL FUNCTION

DOUBLE PRECISION FUNCTION
I REAL+8 FUNCTION

Thus, the statement

COMPLEX FUNCTION HPRIME(S ,N)
is equivalent to the statements

FUNCTION HPRIME(S, N)
COMPLEX HPRIME

Examples: FUNCTION MAY(RANGE ,EP,YP,ZP)
COMPLEX FUNCTION COT(ARG)
DOUBLE PRECISION FUNCTION LIMIT(X,Y)
FUNCTION WORK (A,$,C)

7.5 SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram may be multivalued and can be referred to only by a CALL statement. A SUBROU-
TINE subprogram begins with a SUBROUTINE statement and returns control to the calling program by means of

one or more RETURN statements.

7.5.1 SUBROUTINE Statement
The SUBROUTINE statement has the form:

SUBROUTINE identifier(argument,argument, . ..) \

This statement declares the program which follows to be a SUBROUTINE subprogram. The first identifier is the
subroutine name. This identifier cannot be used as a dummy argument or appear in any nonexecutable statement
in the program other than as a scalar variable in a TYPE statement. The subroutine name can, however, be used
as a scalar variable in any executable statement in the program. The arguments in the list enclosed in parenthe-
ses are dummy arguments representing the arguments of the subprogram. The dummy arguments must agree in num-

ber, order, and type with the actual arguments used by the calling program.

SUBROUTINE subprograms may have expressions, alphanumeric strings, array names, statement labels, and sub-

program names as arguments. The dummy arguments may appear as scalar, array, subprogram identifiers, or an

Version 24 FORTRAN

Version 31 LIB40 7-4 October 1971

-79- FORTRAN

asterisk (*) or dollar sign ($) denoting a statement label in the calling program. Dummy arguments representing

statement labels can be used only in connection with the RETURN statement.

Dummy identifiers which represent array names must be dimensioned within the subprogram by a DIMENSION or

type declaration statement. As in the case of a FUNCTION subprogram, either constants or dummy identifiers

Version 24 FORTRAN

Version 31 LIB40 7-4a October 1971

FORTRAN

-80-

-81- FORTRAN

may be used to specify dimensions in a DIMENSION statement. The dummy arguments must not appear in an
EQUIVALENCE or COMMON statement in the SUBROUTINE subprogram.

A SUBROUTINE subprogram may use one or more of its dummy identifiers to represent results. The subprogram
name is not used for the retum of results. A SUBROUTINE subprogram need not have any argument at all.

Examples: SUBROUTINE FACTOR(COEFF,N,ROOTS)
SUBROUTINE RESIDU(NUM, N, DEN,M,RES)
SUBROUTINE SERIES
SUBROUTINE TYPE(A, $,B, *)

The only FORTRAN statements not allowed in a function subprogram are FUNCTION, BLOCK DATA, and an-
other SUBROUTINE statement .

7.5.2 CALL Statement
The CALL statement assumes one of two forms:

CALL identifier
CALL identifier (argument,argument, . . ., argument)
The CALL statement is used to transfer control to SUBROUTINE subprogram. The identifier is the subprogram

name.

The arguments may be expressions, array identifiers, alphanumeric strings, subprogram identifiers, or statement
labels of the calling program preceded by an asterisk (*), dollar sign ($), or ampersand (&8). Arguments may be
of any type, but must agree in number, order, type, and array size (except for adjustable arrays, as discussed
under the DIMENSION statement) with the corresponding arguments in the SUBROUTINE statement of the
called subroutine. Unlike a function, a subroutine may produce more than one value and cannot be referred

to as a basic element in an expression.

A subroutine may use one or more of its arguments to return results to the calling program. If no arguments at all

are required, the first form is used.

Examples: CALL EXIT
CALL SWITCH(SIN, 2.LE.BETA,X**4,Y)
CALL TEST(VALUE, 123, 275)
CALL TYPE(A,$10,8, *20,&30)

The identifier used to name the subroutine is not assigned a type and has no relation to the types of the arguments.

Arguments which are constants or formed as expressions must not be modified by the subroutine.

7.5.3 RETURN Statement

The RETURN statement has one of two forms:

Version 24 FORTRAN
Version 31 LIB40 7-5 October 1971

FORTRAN -82-
RETURN
RETURN i
where i is an integer constant or an interger variable. The value of i must be positive, and specifies that the

return is to the i-th argument of the referencing statement (where the i-th argument is a statement number pre-

- ceded by a $ or *). If i=0, the return is the same as with the first form of the RETURN statement.

This statement retumns control from a subprogram to the calling program. Normally, the last statement executed
in a subprogram is a RETURN statement. Any number of RETURN statements may appear in a subprogram. For
purposes of debugging functions and subroutines originally written as main programs, the RETURN statement has

been made equivalent to the STOP statement in a main program,

7.6 BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram is a data specification subprogram and is used to enter initial values into variables
in COMMON for use by FORTRAN subprograms and MACRO-10 main programs (see Chapter 9). No executable
statements may appear in a BLOCK DATA subprogram.

7.6.1 BLOCK DATA Statement
The BLOCK DATA statement has the form:
BLOCK DATA

This statement declares the program which follows to be a data specification subprogram and it must be the first

statement of the subprogram (see Chapter 6, Section 6.2.2).

7.7 EXTERNAL STATEMENT

FUNCTION and SUBROUTINE subprogram names may be used as the actual arguments of subprograms. Such sub-
program names must be distinguished from ordinary variables by their appearance in an EXTERNAL statement .
The EXTERNAL statement has the form:

EXTERNAL identifier, identifier, ..., identifier

This statement declares the listed identifiers to be subprogram names. Any subprogram name given as an argument
to another subprogram must have previously appeared in an external declaration in the calling program (i.e., as

an identifier in an EXTERNAL or CALL statement or as a function name in an expression).

Example: EXTERNAL SIN, COS
CALL TR]G.F(SIN, 1.5, ANSWER)
CALL TRIGF(COS, .87, ANSWER)

END

Version 24 FORTRAN
Version 31 LIB40 7-6 February 1971

SUBROUTINE TRIGF(FUNC,AR-G8,3;NSWER) FORTRAN

ANSWER = FUNC(ARG)

RETURN
END

To reference external variables from a MACRO-10 program by name, place the variables in named COMMON.
Use the name of the variable as the name of the COMMON block:

COMMON /A/A/B/B(13)/C/C(6,7)

7.8 SUMMARY OF PDP-10 FORTRAN IV STATEMENTS

CONTROL STATEMENTS

General Form Section References
ASSIGN i tom 4.1.3
CALL name (01,02,...) 7.5.2
CONTINUE 4.4
DO i m=m, ,m,,my 4.3
GO TO i 4.1.1
GOTOm 4.1.3
GO TO m, (i],iz,...) 4.1.3
GO 1O (il,i2,...),m ‘ 4.1.2
IF (e])il,iz,i3 4.2.1
IF (ez)s 4.2.2
PAUSE 4.5
PAUSE 4.5
PAUSE 'h' 4.5
RETURN 7.5.3
RETURN i 7.5.3
STOP 4.6
END 4,7
DATA TRANSMISSION STATEMENTS
General Form Section References
ACCEPT f 5.2.9
ACCEPT f, list 5.2.9
BACKSPACE unit 5.3
DECODE (n,f, v)list 5.4
END FILE unit 5.3
Version 24 FORTRAN 7-7 February 1971

Version 31 LIB40

FORTRAN -84-

General Form

ENCODE (n,f,v)list

FORMAT (g)

PRINT f

PRINT f, list

PUNCH f

READ f

READ f, list

READ (unit, f)

READ (unit,flist

READ (unit)list

READ (unif,namel)

READ (unit #R,flist

READ (unit,f,END=c ,ERR=d)list

READ (unit,f, END=c)list

READ (unit,f,ERR=d)list

REREAD f,list

REWIND unit

SKIP RECORD unit

TYPE f

TYPE f, list

WRITE (unit,f)

WRITE (unit,f)list

WRITE (unit)list

WRITE (unif,name.')

WRITE (unit #R,f)list

UNLOAD unit

SPECIFICATION STATEMENTS

General Form

BLOCK DATA

COMMON a(n],nz,...),b(n3,n4,...),...

COMMON /blk1/a,b/blk2/c,d/...

COMPLEX a(nl,nz,...),b(na,n4,...),...

DATA I‘,U,.../‘(l,k2,|<3,.../
v,w,.../|<4,k5,k6,.../...

Version 24 FORTRAN
Version 31 LIB40 7-8

Section References

5.4

5.1.1
5.2,3
5.2.3
5.2.4
5.2.7
5.2.7
5.2,7
5.2.7
5.2.7
5.2.7
5.2.7
5.2.7
5.2.7
5.2.7
5.2.8
5.3

5.3

5.2.5
5.2.5
5.2.6
5.2,6
5.2.6
5.2.6
5.2.6
5.3

Section References

6.2.2
6.1.2
6.1.2
6.3

6.2.1

February 1971

General Form

-85-

FORTRAN

Section References

DIMENSION o(nl,nz,. ..),b(n],nz,. I

DOUBLE PRECISION c:(nl Nyres .),b(ns,n4, cee)sense

EQUIVALENCE (a(n] ,e ..),b(nz,...),. ee)yene
(c(n3,...),d(n4,...),...),...

EXTERNAL y,z,...

IMPLICIT type (1,-1,),ype,(13-1,), ...
INTEGER a(n] Myres .),b(n3,n4, cee)sene
LOGICAL c:(nl Mo ..),b(n3,n4,. S P
NAMELIST /name l/a,b, .o ./ncmez/c,d, cee
REAL o(nl,nz,...)b(n3,n4,...),...

SUBSCRIPT INTEGER o(n] Nyres .),b(n3, cee)yene

ARITHMETIC STATEMENT FUNCTION DEFINITION

General Form
name(a,b,...)=e

NOTE:

aqGprese
a,b,c,d
blk1,blk2

[

Frigigrees
i
kyrkprees

RPIPYRRS

Version 24 FORTRAN
Version 31 LIB40

Section Reference

6.1.1
6.3
6.1.3

7.7
6.3.1
6.3
6.3
5.1.2
6.3
6.3

are expressions
are variable names
are block names

is the statement number to which
control is transferred upon en-
countering an end-of -file

is the statement number to which
control is transferred upon en-
countering an error condition on
the input data.

is an expression

is a noncomplex expression
is a logical expression

is a format number

is a format specification

is an alphanumeric

are statement numbers

is an integer constant

are constants of the general form jxk
where k is any constant

are letters

7-9

7.3

February 1971

FORTRAN -86-

Section Reference

General Form

list is an input/output list

m is an integer variable name

My .My, My are integer expressions

N iMgrese are dimension specifications

n are the number of ASCII characters

name is a subroutine or function name

name ,name, are NAMELIST names

R is a record number where 1/O begins

s is a statement (not DO or logical IF)

t;u,v,w are variable names or input/output lists

fype] ,fype2,. . are type specifications

unit is an integer variable or constant specifying
a logical device number

v is the starting address of the ASCII record
referenced

Y,z are external subprogram names

7-10

-87- FORTRAN

SECTION 11
THE RUN TIME SYSTEM

The five chapters of this section contain information on LIB40, SUBPROGRAM
calling sequences, accumulator usage, compiler switches and diagnostic messages,

and FORTRAN user programming.

FORTRAN

-88-

_89- ‘ FORTRAN

CHAPTER 8
L1B40

LIB40 is a single file which contains all of the programs in the FORTRAN library. It is composed of three groups

of programs:

(1) The FORTRAN Operating System.
(2) Science Library.
(3) FORTRAN Utility Subprograms.

There are two forms of LIB40, one for the KA-10 and the other for the KI=10. The KA-10 library will run on the
KI-10, but will not take advantage of the speed of the KI-10. The K1-10 library will not run on the KA-10 be-
cause of the hardware differences. Also, the library used must match the compiler used, i.e., KA-10 compiled

code must use the KA=-10 LIB40 and the KI-10 compiled code must use the KI-10 LIB40,

8.1 THE FORTRAN OPERATING SYSTEM

The system programs in the FORTRAN Operating System act as the interface between the user's program and the
PDP-10. All of these programs are invisible to the user's program. The FORTRAN Operating System is loaded
automatically from LIB40 and resides in the user's core area along with the user's main programs and any library

functions and subroutines that his programs reference.

8.1.1 FORSE.

FORSE. is the main program of the FORTRAN Operating System and is loaded whenever a FORTRAN main pro-

gram is in core. The primary functions of FORSE. are

a. FORMAT statement processing,
b. Dispatching of all UUOs, and

c. Control of 1/O devices at runtime.

8.1.1.1 FORMAT Processing - FORSE. assumes that all FORMAT statements are syntactically correct since the
syntax of each statement is checked by the compiler. FORSE. scans the FORMAT statements and performs the
indicated 1/O operations. FORSE. invokes the required conversion routine to actually do data conversion. The
conversion routine that is used is a function of the conversion indicated in the FORMAT statement and of the

data type of the element in the 1/O list.

Version 26 FORTRAN 8-1 May 1972
Version 32 LIB40

8.1.1.2 UUO Dispatching - Some UUOs are handled minimally by FORSE. (NLIN, NLOUT, MTOP), but the
others are handled almost entirely within FORSE.

8.1.1.3 1/O Device Control - FORSE. executes the required carriage control of output devices that are phys-
ical listing devices (LPT, TTY) and stores the carriage control character at the beginning of each line if the out-
put is going to a retrievable medium for deferred listing. When listings are deferred, the appropriate switch in
PIP can be used to list the file and execute the required cor;'iage control .

8.1.1.4 Additional Functions of FORSE. - FORSE. is responsible for the following:

Control of REREAD and ENCODE/DECODE features.
Interaction with EOFTST and READ (unit,f, END=C)list to handle end-of-file testing.

Control of the assignment of devices to software channels.

o Q

(o]

d. Control of the handling of filenames for 1/O associated with directory devices.

e. Control of the opening and closing of data files.

f. Control the handling of the functions associated with the MAGDEN, BUFFER, IBUFF, OBUFF,
DEFINE FILE, TRAPS, and RELEASE subroutines.

8.1.2 1/O Conversion Routines

The 1/O conversion routines convert data from internal PDP-10 format to external format or vice versa. The
calls to these routines are implied by FORMAT and data transfer statements in the FORTRAN source program.

The routines reside as relocatable binary files in LIB40. REL.

Table 8-1
1/O Conversion Routines
Routine Description
ALPHI, Alphanumeric ASCII input conversion
ALPHO. Alphanumeric ASCII output conversion
FLIRT .* Floating point and double precision
input conversion
FLOUT.* Floating point and double precision
output conversion
INTI. Integer input conversion
INTO. Integer output conversion
LINT. Logical input conversion
LOUT. Logical output conversion

*FLIRT. contains two entry points, FLIRT and DIRT. .
FLOUT. contains two entry points, FLOUT and DOUBT.

Version 26 FORTRAN 8-2 May 1972
Version 32 LIB40

-9]- FORTRAN

Table 8-1 (Cont)
1/O Conversion Routines

Routine Description
BINWR. Binary 1/0

OCTI. Octal input conversion
OCTO. Octal output conversion
NMLST. Namelist

8.1.3 FORTRAN UUOs

Operation codes 000 through 077 in the PDP-10 are programmed operators, sometimes referred to as UUO's (Un-
implemented User Operators) since from a hardware point of view their function is not prespecified. Some of
these op-codes trap to the Monitor and the rest trap to the user program. FORTRAN UUO's trap to the FORTRAN
Operating System UUO Handler and are then processed.

Table 8-2
FORTRAN UUOs
Op .

uuo Code Meaning

RESET. 015 Resets all devices, clears tables and flags.

IN. 016 Initializes device for formatted input, does a LOOKUP.

OUT. 017 Initializes device for formatted output, does an ENTER.

DATA. 020 Converts one data element from external to internal for-
mat or vice versa depending upon whether input or out-
put is being done. Actual data transfer takes place.

FIN. 021 Terminates data transfer statements.

RTB. 022 Initializes device for unformatted input, similar to IN.

WTB. 023 Initializes device for unformatted output, similar to OUT.

MTOP. 024 Performs Magtape operations, rewind, rewind and unload,
backspace, end file, skip, write blank record.

SLIST. 025 Converts entire arrays from external to internal format or
vice versa depending upon whether input or output is
being done. Actual data transfer takes place."

INF. 026 IFILE. Sets up input filename, similar to IN. but with
specified filename.

OUTF. 027 OFILE. Sets up output filename, similar to OUT. but
with specified filename.

RERED. 030 REREAD. Reread last record.

NLI. 031 Namelist input.

FORTRAN -92-

Table 8-2 (Cont)
FORTRAN UUOs

(o] .
uuo Coze Meaning
NLO. 032 Namelist output.

DEC. 033 DECODE.
ENC. 034 ENCODE.

8.2 SCIENCE LIBRARY AND FORTRAN UTILITY SUBPROGRAMS

The Science Library and FORTRAN Utility Subprograms extend the capanliﬁes of the FORTRAN language. These
subprograms are called explicitly by the user. The subprograms include the built-in FORTRAN math functions
and the user-called utility subroutines which provide optional 1/O capabilities and control of and information
about the program's environment. The optional 1/O capabilities and environmental control are achieved by the

subroutines from interactions with the FORTRAN Operating System.

8.2.1 FORTRAN 1V Library Functions

This section contains descriptions of all standard function subprograms provided with the FORTRAN 1V library for
the PDP-10. These functions are called by using the function mnemonic as a function name in an arithmetic ex-
pression. The function mnemonics in Table 8-3 have the types specified unless their types are explicitly or im-
plicitly changed. (Refer to Section 6.3, "Type Declaration Statements" and Section 6.3.1, "IMPLICIT State-

ment. ")

Version 24 FORTRAN
Version 31 LIB40 8-4 February 1971

FORTRAN

-93-

*AIDss@dauun 2o Aay} asnNDd3q (|- | Y4 UO PasN JOU 3D sUOIIOUNY BSBY |,

ejqnoq 2|9n°g LNIWGQ
XHl 196a4u] ! _ LNIW
1abajug s9bayu Z< (- \Nm._<\ —m._<v£<< ONIW
|P8y 1P3y LNIWV
1vO4 |poy | Jebayu ONIWY
:9N|DA WNWIUIW
3|9neqg 3|qneqg L XvWa
X1l 1a6a4u] 109y _ z LXYW
19ba4u] 10ba4u] < (*"-*“Bay’ —9<vxo<< OXVYW
IP3y P9y L XYWV
vOld |poy | Jebaju OXVWY
19N|DA WNWXDYY
ajgnoqg ajqnoq z 261y Aq papiatlp aowda uoisioaid s|gnoQ
Jeb3ju] Jabajug Z st | Bay uaym AQOW 19bo4u
SdVil ‘"30¥3 Py P8y 4 dspuibwal 8y | aowv P8y
:Buriepuipway
Jabajug ajqnoQg 1 |6io] > 1INIal 19b34ul o4 a|qno(
Jabayug |09y L J9bajul ysabup| ¥ INI 1ebaju o} |DBY
|09y |09y L * Bio jo ubig INIV |oa4 o4 |paY
:uolypound |
xa|dwo> [CEN Z Nm._<* _+—mh<uu X1dWD xa|dwod oy |pay
(#iod
|jpay | xejdwo)d L OVYWIV Aspuibowi uipyqo)
|pa1 o4 xo|dwod)
Dd xa|dwo (#4od |pa. uIpiqO)
IPey |dwod L vy |p31 o) xa|dwon)
a|gnoQ 19bayuj 1 1vO14a a|gnop oy 1abayu|
3|9n°Q P9y L 318d 9|qnop o4 |PaY
(L 3|qneqg l _ TONS |pa4 o4 8|qnoQ
Jabayug |pay L 0> 19bajul ysabip| s| j|nsay « X141 1eboyuy o) |pOY
|09y Jobaju L »1VO1d |pa4 o4 sebs4uf
:uoisiaAuo)
135S joay | xejdwod L AN>+Nxvuu savd |pas o} xajdwod
a|gqnoQg ajgnoQq l 24 | Bao | sgva uoisioaud ajqnoQ
Jabaju 1abajui l | Bap | sgvi Jobajug
|ooy |ooy L | B1oy sav |09y
:3n|PA 34njosqy
$||PD |PuJex] uoyouny | usuwnbly sjusuinBiy uoniuyag | otuowasuyy uolouny
jo adA} J0 JaqunpN o ; :

suoiyoung Aipiqi] A1 NV3L1¥OA

€-8 8901

May 1972

8-5

Version 26 FORTRAN

Version 32 LIB40

-94-

FORTRAN

dx3'901v
‘HSOD‘HNIS’NIS xa|dwo) | x@jdwo) L SODD xa|dwo
s|qnoq 3|qnog L (Bay) s0o enld (supipoy) 3|qnoq
|03y |02y L asod (s9169p) |y
|09y |09y l SOD (supipoy) |pay
19u|s0?)
dx3‘o01v
‘HSODHNIS’ NIS xa|dwo) | xa|dwod L NISD xa|dwor)
| e | ((omus | Nee | o
I S
|09y |03y 1 NIS Amco__uo._v |09y
H-TV1y
1308 xa|dwo) | xs|dwo) L 2 (K1 +%no 1¥0SD xw_o_.nwu
a|qno 7]
. 3|qneq I9neq L 2/ Aes 13050 _.__ooo
NTOXME | |03y |0y L /1 (B1y) 13408 o0y .,._§~hm
YOI’ 1¥OS
‘INVIV'901V x|dwo) | xa|dwo) L A %@owmo_ 201D x3|dwo)
3|qneq 3|qneq L v) UlBo| | 01901a
3|qnoq 3|qneq L (Bay) %60 201a 3|qnoq
RO E! |ooy |0y L (B1y) OlBoy | 01001V
ROXTE |09y |02y L (62y) “Boj 201V _oww
‘wy4taobon
“YO¥YI‘ 901V
‘SOD’NIS‘dX3 xa|dwo) | x3jdwo) L dx3ad x3)dwor
s|qnoq s|qnoq L A mzov dxaa 3|qnog
*3O¥3 |02y |03y L dx3 ozcoﬁ“_w ;
"_ 1
KRR R G e "
HOUCO‘_O&MO 0>_.—_m0n_
a|qnoQq - a|qnoQq Z NoOIsa uoisioaud ajqnoq
J9baju] Jabajuj z @ —m._< _ *ANm.:qvcmm v NOISI 19b34u
|03y |02y z NOIS |09y
:ub1g jo Jaysuby)
uoiouny ._coE:m..< &coE:m._<
s||pD |PUJByX] Jo 8dA] Jo saquinNy uoyyluyaq 2 luowduw uotyounyg

suoyydung Aioiqi] AL NVYL¥OA

(1uo0D) £-8 3|9PL

May 1972

8-6

Version 26 FORTRAN

Version 32 LIB40

FORTRAN

-95-

xa|dwon
J0’3|qnoqg
‘|pay *0° L ©4 0 y0 8bubi ayj ui
|02y “19b34u] l Jaqunu wopupi D st 4|Nsau NVY JaquinN| wopupy
xajdwo) | xa|dwonr 1 Al-X=D’Al+ X=Bay OFNOD aypbnuoy xa|dwor
403 ‘NvLiva s|qnog | ?|qnoq 4 (Ceay/leay) uoso | znviva
Sdvil z N
‘" I0¥¥3‘NVLIY |ooy |09y Z (“6ay,/"B1y) uoyo INVLV sjuswnBio omy

40 juayjonb

?|9nog 3|qnoqg L (B4y) uoyo NVv1va 3|qneq

103y 103y L (6y) uoyo NVlv |P3y
juabupy duy

R[22
DS NV ooy [0y L (B4y) so20 SOdV au1sod - o1y
“JOu¥3

‘I3OS ‘NV 1Y 103y |09y i (Bay) wiso NISV duis - dy

dXx3 (L |o9y L (B4y) yuoy HNV1 4usbuo)

"40¥¥3‘dX3 1o9y |03y L (B4y) ysod HSOD duisoy

"YyOo¥¥3‘dxa o8y |09y L (Bay) yuis HNIS auts
:31j0qdadAy
$||PD |ouIsixg corocdﬂ &._M”E:m&ﬂ .*Mruﬂp““ﬂ_u uoyyiuysg | 21uowasuyy uoiyduny

suoyjoung Aioiqiy A1 NVYLYOS

(1u0D) £-8 @|qp]

May 1972

8-7

Version 26 FORTRAN

Version 32 LIB40

FORTRAN -96-
8.2.2 FORTRAN 1V Library Subroutines

This section contains descriptions of all standard subroutine subprograms provided within the FORTRAN IV library

for the PDP-10. These subprograms are closed subroutines and are called with a CALL statement.

Table 8-4
FORTRAN 1V Library Subroutines
Subroutine Name Effect
BUFFER Allows the programmer to specify buffering for a

device at one of fifteen levels.
CALL BUFFER (unit*, in/out, number)

where in/out is 1 for input buffering only, 2 for
output buffering only, or 3 for both, and number is
the level of buffering (1 < number < 15). If number
is not specified, 2 is assumed. In calls to two en-
tries in BUFFER, IBUFF and OBUFF, the programmer
can specify a non-standard buffer size if the records
in his data files exceed standard buffer sizes set by
the Monitor. (See Table 12-1.) The programmer
cannot change buffer sizes for the disk; IBUFF

and OBUFF are designed primarily for Magtape.

CALL IBUFF (d,n,s)

where d is the device number, n is the number of
buffers, and s is the size of buffer.

CHAIN Reads a segment of coding (Chain file) into core
and links it to a program already residing in core.

CALL CHAIN (type,device,file)

where type is 0 (the next Chain file is read into core
immediately above the permanent resident area) or
type is 1 (the next Chain file is read into core im-
mediately above the FORTRAN IV program which
marks the end of the removable resident). Device
is0,1,2,... FORTRAN IV logical device number
(Chain files can be stored on DSK, MTA, or DTA
only) corresponding to the device where the Chain
file can be found. File is O for reading the next
file from the selected magnetic tape or 1,2, ... for
the number of the magnetic tape unit where the
Chain file is located.

DATE Places today's date as left-justified ASCII characters
into a dimensioned 2-word array.

CALL DATE (array)

where array is the 2-word array. The date is in the
form

dd-mmm-yy

*For explanation, see page 7-10.

8-8

-97-
Table 8-4 (Cont)

FORTRAN 1V Library Subroutines

FORTRAN

Subroutine Name

Effect

DATE (cont)

DUMP

EOF1(unit*)

EOFC(unit*)

ERRSET

EXIT

IFILE

where dd is a 2-digit day (if the first digit is 0, it
is converted to’a blank), mmm is a 3-digit month
(e.g., MAR), and yy is a 2-digit year. The date
is stored in ASCII code, left-justified in the two
words .

Causes particular portions of core to be dumped and
is referred to in the following form:

CALL DUMP (L, U,,Fy .. L LU LF)

where L. and U, are the variable names which give
the limils of core memory to be dumped. Either

L; or U; may be upper or lower limits. F; isa
number indicating the format in which the dump is
to be performed: O=octal, l=real, 2=integer, and

3=ASCII.

IfF isnot 0,1,2,3, the dump is in octal: If F is
missing, the last section is dumped in octal. If

Un and F,, are missing, an octal dump is made from
L to the end of the job area. IfL,, U,, and F,
are missing, the entire job area is dumped in octal.

The dump is terminated by a call to EXIT.

Skips one end-of-file terminator when found and
retums the value TRUE if an end-of-file was found
and FALSE if it was not found. Subsequent termi-
nators produce an error message.

Skips more than one end-of-file terminators when
found and returns the value TRUE if an end-of-file
was found or FALSE if it was not found.

Allows the user to control the typeout of execution-
time arithmetic error messages, ERRSET is called
with one argument in integer mode.

CALL ERRSET(N)

Typeout of each type of error message is suppressed
after N occurances of that error message. IF ERRSET
is not called, the default value of N is 2.

Returns control to the Monitor and, therefore, ter-
minates the execution of the program.

Performs LOOKUPs for files to be read from DECtape
and disk.

CALL IFILE(unit*, filnam)

where filnam is a filename consisting of five or fewer
ASCII characters enclosed in single quotes ('). e.g.,
CALL IFILE (12, 'FILEY")

*For explanation, see page 7-10.

Version 26 FORTRAN
Version 32 LIB40

May 1972

FORTRAN

98
Table 8-4 (Cont)

FORTRAN 1V Library Subroutines

Subroutine Name

Effect

ILL

LEGAL

MAGDEN

OFILE

PDUMP

RELEAS

SAVRAN

SETRAN

Sets the ILLEG flag. If the flag is set and an illegal
character is encountered in floating-point/double-
precision input, the corresponding word is set to zero.

CALL ILL

Clears the ILLEG flag. If the flag is set and an
illegal character is encountered in floating-point/
double-precision input, the corresponding word is
set to zero.

CALL LEGAL

Allows specification of magnetic tape density and
parity.
CALL MAGDEN(unit*,density, parity)

where density is the tape density desired (200=200
bpi, 556 = 556 bpi, or 800=800 bpi) and parity is
the tape parity desired (0=odd, 1=even). Even
parity is intended for use with BCD-coded tapes
only.

Performs ENTERs for files to be written on DECtape
and disk.

CALL OFILE (unit*, filnam)

where filnam is a filename consisting of five ASCII
characters.

Is referred to in the following form:
CALL PDUMP(L,, U, ,F.,...,L ,U ,F)
177101 n""n’'n

where the arguments are the same as those for DUMP,
PDUMP is the same as DUMP except that control
returns to the calling program after the dump has
been executed.

Closes out 1/0 on a device initialized by the
FORTRAN Operating System and returns it to the
uninitialized state.

CALL RELEAS (unit*)

SAVRAN is called with one argument in integer mode.
SAVRAN sets its argument to the last random number
(interpreted as an integer) that has been generated

by the function RAN.

SETRAN has one argument which must be a non-
negative integer < 2°'. The starting value of the
function RAN is set to the value of this argument,
unless the argument is zero. In this case, RAN uses
its normal starting value.

*For explanation, see page 7-10.

-99- FORTRAN

Table 8-4 (Cont)
FORTRAN 1V Library Subroutines

Subroutine Name Effect

SLITE() Turns sense lights on or off. i is an integer expres-
sion. For 1<i<36 sense light i will be turned on.
If i=0, all sense lights will be turned off.

SLITEG, j) Checks the status of sense light i and sets the var-
iable | accordingly and turns off sense light i. If
iison, jissetto 1; and if i is off, | is set to 2.

SSWTCH(, {) Checks the status of data switch i(0<i<35) and sets
the variable j accordingly. If i is set down, | is
set to 1; and, if i is up, j is set to 2.

TIME Returns the current time in its argument(s) in left-
justified ASCII characters. If TIME is called with
one argument,

CALL TIME(X)
the time is in the form
hh : mm

where hh is the hours (24-hour time) and mm is the
minutes. If a second argument is requested,

CALL TIME(X,Y)

the first argument is returned as before and the sec-
ond has the form

ss.t

where ss is the seconds and t is the tenths of a sec-
ond.

FORTRAN -100-

-101-

FORTRAN

CHAPTER 9

SUBPROGRAM CALLING SEQUENCES

This chapter describes the conventions used in writing MACRO subprograms which can be called by FORTRAN IV

programs, and FORTRAN subprograms which can be linked to MACRO main programs. The reader is assumed to

be familiar with the following texts:

MACRO-10 Assembler (DEC-10-AMZB-D)
Section 2.5.8 "Linking Subroutines"
Figure 7-1, "Sample Program, CLOG"

TOPS-10 Monitor Calls (DEC-10-MRRA-D)
Section 1.2.2 "Loading Relocatable Binary Files"

Science Library and FORTRAN Utility Subprograms
(DEC-10-SFLE-D) '

How to Use This Manual - FORTRAN calling sequences

9.1 MACRO SUBPROGRAMS CALLED BY FORTRAN MAIN PROGRAMS

9.1.1 Calling Sequences

The FORTRAN calling sequence, in the main program, for a subroutine is

FORTRAN Code MACRO Code (Generated by Compiler)

) JSA 16, subprog
ARG codey, adry
ARG codep, adrp

CALL subprog (odr] , adr2, .

where
subprog is the name of the subprogram
adr] , adrz, . are the addresses of the arguments
code] , code2 are the accumulator fields of the ARG instructicns

which indicate the type of argument being passed
to the subprogram. These codes are as follows:

0 Integer argument 4
1 Unused 5
2 Real argument)
3 Logical argument

7

9-1

Octal argument
Hollerith argument
Double-precision
argument

Complex argument

FORTRAN -102-
An example of a FORTRAN calling sequence for a subroutine and the MACRO-10 coding generated by the

compiler is given below.

F ORTRAN Code MACRO Code
CALL PROGT (REAL,INT) JSA 16, PROG!

ARG 02, REAL

ARG 00, INT

The MACRO code generated by the compiler is the same for subroutines and functions; however, the FORTRAN
code is different.

9.1.2 Returning of Answers

A subroutine returns to its answers in specified locations in the main program. These locations are often given

as argument names or as variable names.

A function returns its answer in accumulator O (if a single word result) or in accumulators 0 and 1 (if a double-
precision or complex result). A function may also return its answer in specified locations (given by argument
names in the CALL) or variable names; in any event, however, it must return an answer in accumulator 0 (or

accumulators 0 and 1).

A MACRO subprogram access COMMON by declaring as external common block names for labelled
COMMON and by declaring . COMM. as external for blank common. A common block name always refers
to the same core location as the first element following the block name in a COMMON statement. MACRO

subprograms may refer to the remainder of the variables in the common block through additive globals.

9.1.3 Use of Accumulators

For accumulator usage, see Chapter 10, Accumulator Conventions for PDP-10 Main Programs and Subprograms.

9.1.4 Examples of Subprogram Linkage

Three examples of subprogram linkage, one of a subroutine, one of a function subprogram, and one of a

FORTRAN main program and MACRO subprogram both referencing COMMON, are given below.

9.1.4.1 Example of a Subroutine Linkage - The coding of the subroutine in this example is followed by the

calling sequence.

-103- FORTRAN

ENTRY SUBA
SUBA: 0
MOVE 1,@0(16) ;GET FIRST ARGUME NT
IMULI 1, 12 ;MULTIPLY BY 10)
MOVEM 1,@0(16) ;RETURN RESULT IN ARGUMENT
JRA 16, 1(16) ;RETURN TO MAIN PROGRAM
FORTRAN Calling Sequence MACRO Code (Generated by Compiler)
CALL SUBA (INT) JSA 16, SUBA

ARG 00, INT

9.1.4.2 Example of a Function Subprogram Linkage - The coding of the function subprogram in this example

is followed by the calling sequence.

ENTRY FNC
FNC: 0
MOVE 00,@0(16) ;PICK UP FIRST ARGUMENT
MOVE 01,@1(16) ;PICK UP SECOND ARGUMENT
IMUL 00, 01 ;MULTIPLY BOTH ARGUMENTS
;RESULT IN ACO
JRA 16, 2(16) ;RETURN WITH ANSWER IN ACO
FORTRAN Calling Sequence MACRO Code (Generated by Compiler)
X =FNC (I, 10) JSA 16, FNC
ARG 00, 1

ARG 00, CONST.

9.1.4.3 Example of a FORTRAN Main Program and a MACRO Subprogram Both Referencing COMMON.

-104-

FORTRAN

aN3

29ns 11v2

aHe)D+e’2)a=(2)v

a/a/%/%/v/N/NOWWOD
O NOWWOD

(£)2'(¥'£)a’(S)V NOISNIWIA

[eNeNa]

Wi
0°00
11x3‘91

zans ‘ol
1+V ‘20
24220

£+8°20
a‘zo

yZicl 69-AON-8¢ ELO0A

SAVYIV

0 a

SYVIVIS

11x3

zens

44901

*35¥04

SWYYOO0I4INS

/a/ a

/8/ q

N/ v

/"WWOD*/ o)

NOWWOD
159

“1353Y % NIVW
vsr
vsr
W3IAOW
¥av4
¥av4
JAOW

Nelegl Wl

ovd 1

9-4

FORTRAN

1X3 ,%00000

anNz’

WY3O0¥d NVILIOL OL NINLRY*

-105-

a NI OoUs?
2139¢

(2'1)8 NI O LS!

(ev 139°

(91)'91
a‘o
*"WWOD'‘0
€+49°0
+v’0

zans

1X3,£00000
1X3 000000

aN3
wir
WIAOW
JAOW
W3IAOW
JIAOW

0
AYIN3I

a’‘a’'v’/ "WWOD" TVYN¥3LX3

"WWOD'

‘zans

000000
000000
000000
£00000
200000
000000

1NI', 000000
1X3 000000

319v1 TOIWAS

LLL9T
000202
000002
000¢0¢
00000¢
000000

69-AON-82 €Z:¢l

zans

900000 SI AV I WvIOO0Ud

Q3153130 SYOYY3I ON

G00000
¥00000
€00000
200000
100000
000000

9EA"OWIVW

NIVW*

a3asn 3¥OD X

0 *@31D53130 SYOU3

0
0
0

‘NIVW

o)
!
v

9-5

-106-

FORTRAN

LEY000

£4£5200

¥<v000
000000
$20200
y€¢100
$06200
§0SZ00
¢e1200
€€1200
¢€2200
£05200
905200
¥4L100
000000
GG/100
020z00
000000
§¥2000
000000
000000
10SZ00

941200

€000

€10Z00

000000

000000

$02200

¢/1100

Z9L100

€0¢200
£00200
000000

000000

Ly1100

£02000
000000

000000
0€0200
000000
¥€0200
$€€000

R.[O2-LE]
‘OIX

‘LIVM
"HONN
‘IdAL
"4INd1
‘CWNVL
"IWVNL
‘dW3l
*CINDL
"LINDL
AR
1sns
‘noL3s
"v1S3S
IR
NIy
“13S3Y
ELEL]
‘AQYTY
“1ddvd
‘STdAO
pitple)
Eilgle
‘1NO
‘'LATNO
‘NILXN
“YDUIXN
*AQdNI
"dNI
*dNI
‘NI
41l

*3S¥0 4
‘OTIN

‘TIN
‘ZdIW
‘dOIW

“A001
RIt[0]]

1GZ100
€£2200
¥£2200
000000
cLiLoo
§£2¢00
y12100
502200
£Ly0100
9G6€200
TARAAVY)
¢/1200
£L¥200
00100
000000
942200
044100
€9£100
000200
200200
LeLoo
FARYAVY
¥29100

¥£€200 €0¢000
000000 €02000
6Z1000
900000 G£1000
¥£1000
091000
€51000
051000
9¥1000

G€0000 0v1000

"NLION4
“NILWA
"O4dIWA
‘NI

RE!

103
'$1401
14401
‘NIAN3
‘ANNAd
"AONAQ
‘ONA3IQ
*JIA3d
*10d3d
‘viva
*d4aava
TASY1D
‘noY¥1D
‘I1SOT1D
*SO1D
‘NNIHD
‘aH4ng
‘vodng

*3S¥04
lvasor
aans
NIVW®
a

9

v
‘WWOD*
‘NIVW

‘NIVW

dVW 3OVHOLS

AV WVIOOUd 3FHL ST 991€00

FORTRAN

-107-

€00000

200000

200000

200000

200000

200000

200000

200000

200000

200000

200000

9£2€00
¥£2€00
¥£2€00
2£2€00
2£T€00
0£2€00
0£2¢€00
992€00
992€00

92€00
¥92€00

€9¢€00
29200
09¢€00
092€00
95¢€00
952€00
¥SZ€00
¥S2€00
25200
252€00

05¢€00

1STWNG
‘1001
1no1a
“INM
INIa
*0120
01504
"OINI
OLNIQ
‘1120
11500
*LINI
1INIQ
*1n074
1n014a
13114
1¥n4a
*19N0a
18noaa
* 1¥Ia
13100

‘OHdTVY

200000

200000

¥10000

200000

052£00
92€00
9¥Z€00
262600
262€00

L€ZE00
0€2€00

0€2€00

L€£200
£90€00
004200
9¥£200
0Z1€00
¥€0€00
0¢4¢00
020€00
£0£200
489200
£EL200
$59200
LG0€00
GZ0E00
£00€00
¥€9200
445200
¢4L200
L¥0€00
£9£200
£99200
£££200

OHdIva
“IHdTV
IHd1va

-¥avol

"¥avol

*1IX3
11X3

1IX3

YIIM
wonn
RELTS
R-ECEL]

LALO
R-ENNL
‘WOYON
“YIWN
‘ONSW
‘N3O0
‘91s11
"Y3INI
onnil
‘Al

TOWTI
“HOTI

R.(O):1.E

‘d1aN13

REGI
*434da

RELEC
*3ISHdE

9-7

-108-

FORTRAN

LSY€E00 11

£00000 £5¥€00 11
ZEYE00 *1s7Qd
SZ0000 A% 300 *157ad
29€€00 ‘ldavi
£9€€00 ‘1davi
200000 ‘GOIN
€00000 ‘€OIN
£00000 "COIN
00000 REEL
LEy€00 “TOVIW
€5€€00 TdavIW
2S€E00 *OgdaW
G€0000 *101AQ
£0EE00 R:INE ¢
¢SEE00 ‘ANA3Q
¥¥€€00 ‘S1A3Q
£9€€00 ‘aliva
€£21000 £OEE00 ‘41A3Q
S0EE00 ‘NOL
200000 S0€E00 ND4d1a
€0€€00 "1dNI
£0€€00 “IMNIE
€0€€00 "N3NIg
€0€€00 ‘1dNId
<00000 £0€€00 IMNIEQ
L0€€00 “IW4L
AN SQYOM GZZL XYW dE+E
¥OD X ¥IAVOT ¢00000 LOEE00 1W4dld
<9re00 VO 9£¢€00 *1STWN

§9¥€00 *OIMIl 00€€00 *WIn3d

9-8

-109- FORTRAN
9.2 MACRO MAIN PROGRAMS WHICH REFERENCE FORTRAN SUBPROGRAMS

9.2.1 Calling Sequences

The MACRO code which calls the FORTRAN subprogram should be the same as that produced by the
FORTRAN 1V compiler when it calls a subroutine. That is:

MACRO Code

JSA 16, subprog
ARG code, adrj
ARG codey, adry

where
subprog is the name of the subprogram
adr] , adrz, - are the addresses of the arguments
codel , code2 are the accumulator fields of the ARG instruction

which indicate the type of argument being passed
to the subprogram. These codes are as follows:

Integer argument

Unused

Real argument

Logical argument

Octal argument

Hollerith argument

Double ~precision argument
Complex argument

NO O AhWN—-O

Both subroutines and functions are called in this manner.

9.2.2 Returning of Answers

A FORTRAN subroutine returns its answers in specified locations in the main program. These locations may be

given as variable names in COMMON or as argument names.

A FORTRAN function returns its answer in accumulator 0, if a single word result, or in accumulators 0 and 1,
if a double-precision or complex result. A function may also return its answer in specified locations given by
argument names in the CALL, or variable names in COMMON; in any event, however, it must return an answer

in accumulator 0 (or accumulators 0 and 1).

If it is desired to reference a common block of data in both the MACRO main program and the FORTRAN sub-

program, it is necessary to set up the common area first by loading @ FORTRAN BLOCK DATA program before
the MACRO main program and the F ORTRAN subprogram.

9-9

FORTRAN ~110-

9.2.3 Example of Subprogram Linkage

The following is an example of a FORTRAN subroutine being called by a MACRO main program. Both programs
reference common data. Read and write statements have been omitted for simplification. Because the FORTRAN
operating system, FORSE. , sets up I/O channels at run time, the MACRO programmer must be sure not to ini-
tialize a device on a channel that FORSE. will then try to use, unless he releases the device before FORSE. is
called. FORSE. initializes the first device encountered in the user program on software channel 1, the second

on channel 2, etc.

It is possible to release a device from its associated channel in a FORTRAN program by a call to the subroutine
RELEAS. Channels one through seventeen are available for I/O. If a FORTRAN user wishes to write MACRO
programs which do 1/O, he may use either FORTRAN UUQ's or the channel numbers less than or equal to seven-
teen but greater than the largest number used by FORSE.

The FORTRAN RESET. UUO should be the first instruction executed in any program which accesses FORTRAN
subroutines. For this reason the FORTRAN operating system, which contains f-he FORTRAN UUO handler
routine, must be declared external in the MACRO main program. This causes FORSE. to be loaded. In general,
any program in the FORTRAN library referenced in a MACRO program must be declared external. This results

in the searching of LIB40 by the Linking Loader and loading the referenced program.

9-10

FORTRAN

-111-

anN3

(€'2)8’(S)v NOISNIwIa
a NOWWOD
2/2/8/8/¥/¥/NOWWOD
viva 32018

MGl

a3asn O Az
0 :Q@3Lld313a SYOYI3 ‘lva

0 !
0 v

SAVIIV

0 a
0 o}

SYVIVOS
44907

SWWVIOOUENS

0 X2014 WL

04-NVr-zZ 9L0A or4d ¥4°viaxig

9-1

1X3 ¥00000

1X3 000000 35404 1X3 ,010000
1X3,Z00000 q 1X3 ,£00000
1
N
—
—
1
aNy’ Livis
YIHLI’
35N OL NOILJO SYH ¥3Sn "ONN LIX3 13A3 Y
JOLINOW S1IvD OSTV ANV SIVWWNS 1NO! :)
SINI¥d HOIHM INILNOY LI1X3 NVYL¥O 4 “1IX3! *1IX3'91
SO¥Y INILNOYENS NVYLIO4 OL 09! SOYV‘9L
(€'2)8 NI OIS G+4'1
(ev 139° FAL A
a NI NOoIs? *WWOD' ‘0
D 139! 20
(1'1)8 NI NOULS? ‘0
(L)v 139! v'o
= "3S¥04 NIANNO4 ‘13533 ONN NVILYO4 OQ’ 0’00
= *11X37°3S404SO¥VD e’V "WWOD"*
= IRVATS
o
[

"WWOD*
"1Ix3
SO¥V

aN3

vsr
vsr
W3AOW
JAOW
W3IAOW
JIAOW
W3IAOW
JIAOW
“13SH
TYNY3LX3
A4LN3I

R VAR

1N3 ,000000
1X3 ,£00000
1X3 100000

319V1L TOEWAS

000000

000000
S00000
€00000
000000
000000
000000
000000
000000

LviS
o}
v

JVW* Livis

L10000 ST AV RIT WVIOOUd

Q3123130 SYO¥¥3 ON

004992

00£992
Y0202
0¥000Z
000202
000002
000202
000002
000510

010000

£00000
900000
G00000
¥00000
£00000
€00000
100000
000000

JVW* LIVIS

0£-NVIr-2T S0°9L OVA"OYDVW NIVW*®

9-12

FORTRAN

-113-

aN3

NINLy

a+O+(1’ 1)a=(l)v

(e'2)8’ (S)v NOISN3WIa
a NOWWOD
2/2/8/8/¥/¥/ NOWWOD
SO¥V INLLNO¥ANS

0 a
0 o)
Ll SOV
SYVIVOS
0 / WWOD'/ a
0 /2/ o)
0 /8/ g
0 /N/ v
NOWWOD
(91)0’91 vir
1+°dW3L‘9l JAOW
*dWaL‘SL IAOW WZ
Wi 1591

1+°dW3IL‘9l W3IAOW
*dW3L’'sl W3IAOW
0’00 oWV %SOYY

WeZ 159r

WZ 1s9r

V20 W3IAOW

920 ¥av4d

a‘zo ¥av4

2‘20 IAOW
0 D014 Wl

Sl 04-NVI-22 9LOA Ovd ¥4°SO¥V

9-13

-114-

FORTRAN

$05200
000000
S9LL00
000000
¢10200
902000
000000
oLzeoo
GZ1200
10€200
S00200

€51000

‘AQUY
*41NO
"YILXN
‘'dOIW
*dNI
*3SY04
*NId
‘14403
‘ONAXQ
‘¥aava
‘SO

o)

L0¢e00
000000
000000
£E0Z00
000000
¥S£100
GLitoo
250100
¢05¢00
€100
$ZL100

S¥1000

*1divd
gige)
‘O1IN

‘A001

*3NI
‘NIONA
RE
‘NIAN3
*OIA3Q
"ASYT1D
‘NNIHD

|

§02Z00
£02200
000000
£E£E000
000000
942200
00€200
19€200
£00L00
99100
[44%400]

0¥1000

EE{e)
"LAINO
‘TIN
RIR: 0]
‘NI
‘N3IIWA
‘103
"ANNAQ
'10d3a
‘nNOY¥TD
‘QH4Ng

910200
SZLtoo
££0200
902200
y¥L100
442200
£1Z100
§12200
000000
£00200
£29100

¥££200

000000
¥£1000
020000
GG1000
110000

¥51000
0¥1000

§10000

*11NO
‘NILXN
‘ZdIW
"AQdNI
a1l
"O8IWd
'S1403
‘'AONAQ
‘viva
‘1SO12
‘v2d4ne

902000

902000
SOV
991000
LIvis
G51000
"WWOD*
"1va

0¥1000

*3S¥04

lvagor

SOUV

NIvw*

‘lva

LIVLS 371 NIVW' ©0¥d §51000 SSRAAY ONILYVLS

04-NVI-¢Z

dVW 3OVYIOILS

NIVW®

AV INIWO3IS MO 3HL SI 14€00

a3asn OO AL

0 :@31D3130 SYO¥¥3

0
0

SO¥V

!
v

SAVIIV

9-14

FORTRAN

-115-

€04£200
£€2,200
vL200
Z10€00
¥¥0£00

82100
9€1200
L4100

R-ERL:I

"WOION

‘4181
OWTTI
¥IWNG

‘HONN
"LWVYNL
‘1V1S
1R

164200
£20€00
459200
££9200
¢4£200

£2¥000

£0S200.

S€CT00
000000
052000

R-E(E
REMGH
“¥3INI
"HOTI
R-ELLL

‘OIX
"3dAL
‘dWil
18178

‘NIY

¥€2€00

$€£200
€£1€00
Z1£200
¥50£00
209200
249200

000000
015200
¢15200
094100
000000

*lIX3

YT

LALD
"ONSW
‘onNnl
“YOU¥3
“¥3A3Q

‘gIM
“YINdL
"CINDL
‘NOL3S

*13S3Y

9200
200000
£92£00
200000
192€00
200000
L5200
200000
52200
200000
£52£00
200000
1S2€00
200000

G€CE00
¥10000

£€2€00
200000

¢£0€00
££0€00
2€5200
0€0€00
§4£200
€00€00

L€¥000

£20200
Ge1200
L1S200
€20200
000000

‘IINI
S92€00
*1nO1d
£92€00
pRINE
192€00
*19n0da
£SCE00
R} (¢
gSze00
‘OHd1V
£52€00
"IHdTVY
162€00

¥avol
GEZEOO
1IX3
£€2E00

wonn
R-ELVL
‘N3O0
LR
‘d1aN3
*3SHdE

209200

"lIVM
"CWVNL
‘LINDL
‘V1s3s
NeELEL

IINIQ

JTgloRE ¢

IRINE ¢

18n0Qa

i) (e[¢]

OHdVa

IHdTva

yavol

1IX3

R.[0)-1-E|

9-15

-116-

FORTRAN

200000
¥Zre00
¢L€L00

90€€00

‘'GOIN
“TOVIW
‘41A3Q

“1dNI

S9v€00

€00000
95€€00
GSEE00

90€€00

von

"€OIN
“JEVIW

‘ANA3Q

“AIMNIE

04¥€00

S9€€00
£00000
GS€E00
L¥EE00

90€€0qQ

LOEE00

‘9371

*ldavl
‘TOIN
TO84EW
‘STAXA

“N3INIg

“1STWN

<9ve00
£00000
SEVE00
§20000

99€€00
S00000
S€0000
99€€00

€¢1000
0L€€00
200000

90£€00
¢00000
¥0€€00
€00000
£0€€00
€00000
££2€00
<00000
G£2€00
¢00000
€£2€00
¢00000
1£2€00
¢00000
£92€00
€00000

33U SQYOM TZZL XYW ME+E
RO A€ YIAVO1

T
2900
*157ad
SEVE00

‘ldavil
‘"l93IN
‘lOIAd
‘4llva

CLEE00
‘NOHL
01€€00
*1aNId
90£€00
ALEI
¥0€€00
‘WInaa
L0E€E00
‘1NO1
££2€00
“INIT
S£2€00
‘0120
€£2€00
‘OINI
1£¢€00
'1120
£92¢€00

LAl

*1S7ad

*91A3Q
NDO4d1Q
IMNIEQ

1wdla
._.m._<<20
1No1a
ININQ
0100a

OlNIa

11D0a

9-16

-117- FORTRAN

CHAPTER 10

ACCUMULATOR CONVENTIONS FOR
MAIN PROGRAMS AND SUBPROGRAMS

10.1 LOCATIONS

Locations specified in the calling sequence for a FORTRAN subprogram may be either required locations or
defined locations. A required location is a memory location whose address is specified in the calling sequence

for a subprogram. For example, X is a required location in the calling sequence

JSA 16, SQRT
ARG X

A defined location is a memory location whose address is specified in the definition of a calling sequence. The

location does not appear in the calling sequence. For example in the calling sequence

MOVE 16, MEMORY
PUSHJ 17, DFAS.0

MEMORY is required, and ACO, AC1, and AC2 are defined by DFAS.O.
10.2 ACCUMULATORS

10.2.1 Accumulators 0 and 1

When used for subprograms called by JSA, accumulators 0 and 1 may be used at any time without restoring their
original contents. These accumulators cannot be required locations. A FORTRAN function returns its answer in
accumulator 0 (if a single word result) or in accumulators 0 and 1 (if a double-precision or complex result). A
function may also retumn its answer in specified locations (given by argument names in the CALL) or variable

names; in any event, an answer must be returned either in accumulator 0 or in accumulators 0 and 1.

When used for subprograms called by PUSHJ 17, adr, accumulators 0 and 1 may have their contents destroyed.

Some subprograms by their definition return an argument in accumulator O or 1.

10-1

FORTRAN -118-
10.2.2 Accumulators 2 Through 15

Accumulators 2 through 15 must not be destroyed by FORTRAN functions, but may be destroyed by FORTRAN
subroutines. (Presently subroutines must preserve the contents of accumulator 15.) The contents of these accu-
mulators must not be destroyed by subprograms called by PUSHJ unless the definition of the subroutines requires
it.

10.2.3 Accumulators 16 and 17

Accumulator 16 should be used only for JSA-JRA subprogram calls unless the definition of the subprogram se-
quence requires otherwise. The contents of accumulator 16 may be destroyed by subprograms called by PUSHJ
17, adr.

Accumulator 17 must be used only for pushdown list operations.

10.3 UUOS

User UUO's are not considered subprograms and may not change any locations except those required for input

and the contents of accumulators O or 1.

10.4 SUBPROGRAMS CALLED BY JSA 16, ADDRESS

The calling sequence is

JSA 16, address

ARG adrl
ARG adr2
ARG adiN

where each ARG adrN corresponds to one argument of the subprogram.

There may or may not be arguments. If there are arguments, they must be in accumulators 2 through 15. Sub-
routines called with the FORTRAN CALL statement may, by definition, return an argument in accumulator 0 or
1. Subprograms that are FORTRAN functions (such as SIN or SQRT) may destroy the contents of accumulators 0
and 1. Results are returned in accumulator O for single word results and accumulators 0 and 1 for double word

results.

10.5 SUBPROGRAMS CALLED BY PUSHJ 17, ADDRESS

See section 10.2. In addition, three consecutive accumulators are required for double-precision addition, sub-

traction, multiplication, and division operations. The contents of the third accumulator may be destroyed. The

10-2

-119- FORTRAN

"to memory" modes also leave the answer in the defined accumulators. The two arguments of the double-precision
operation cannot be in the same accumulators. Complex addition, subtraction, multiplication, and division op-

erations do not destroy locations except those required for the answer and accumulator 16. The two arguments of

the complex operation must not be in the same accumulator.

10.6 SUBPROGRAMS CALLED BY UUOS

Subprograms called by UUO's may change the contents of accumulators 0 and 1 only.

Table 10-1

Accumulator Conventions for

PDP-10 FORTRAN IV Compiler and Subprograms

Subprogram
C"'L‘;‘f JSA PUSH) uuo
Accumulators Functions Subroutines ’
0,1 1) May be destroyed. | 1) May be destroyed. | 1) May be destroyed. |1) May be destroyed.
2) May not be used to | 2) May not be used |2) May be used to 2) May be used to pass
pass arguments. to pass arguments. pass arguments if arguments except as
3) A result must be 3) Results must not the subprogram is defined.
retumed in 0 or be retumed. defined with an 3) Results must not be
Oand 1. argument in 0 or retumed.
Oand 1.
3) Results may be re-
tumed if the sub-
program is so de-
fined.
2-15 1) Must be preserved. | 1) May be destroyed. | 1) Must be preserved |1) Must be preserved.
2) Arguments may be | 2) Arguments may be unless the defini- |2) Arguments may be
passed. passed. tion of subprogram passed.
3) Results may be re- | 3) Results must not forces results to 3) Results must not be
turned if required be returned. be returned. retumed.
by calling se- 2) Arguments may be
quence. passed.
3) Results may be re-
tumned if the sub-
program is so de-
fined.
16 1) Must be preserved. | 1) Must be preserved.| 1) Is destroyed. 1) Must be preserved.
Reserved for 2) May not be used 2) May not be used |2) Used for argument [2) May not be used to
JSA-JRA to pass arguments. to pass arguments. address. pass arguments.
Operations 3) Results must not be | 3) Results must not 3) Results must not be |3) Results must not be
(except as not- retumed. be retumed. returned. returned.
ed for PUSHJ)
17 1) Must be preserved. | 1) Must be preserved.|1) Must be preserved. |1) Must be preserved.
Reserved for 2) May not be used 2) May not be used |2) May not be used |2) May not be used to
Pushdown to pass arguments. to pass arguments. to pass arguments. pass arguments.
List Opera- 3) Results must not be | 3) Results must not 3) Results must not be |3) Results must not be
tions retumed. be retumed. returned. retumed.

10-3

FORTRAN -120-

1.1

-121- FORTRAN

CHAPTER 11
SWITCHES AND DIAGNOSTICS

FORTRAN SWITCHES AND DIAGNOSTICS

Table 11-1
FORTRAN Compiler Switch Options
Switch Meaning
Al Advance magnetic tape reel by one file.
st Backspace magnetic tape reel by one file.
ct Generate a CREF-type cross-reference listing. (DSK:CREF.TMP assumed if no list-dev
specified)
Complement: Do not produce cross-reference information (standard procedure). g
E Print an octal listing of the binary program produced by the compiler in addition to the
symbolic listing output.
Complement: Do not produce octal listing (standard procedure).
1 Translate the letter D in column 1 as a space and treat the line as a normal FORTRAN
statement.
Complement: Translate the letter D in column 1 as a comment character and treat the
line as a comment (standard procedure).
M Include MACRO coding in the output listing.
Complement: Eliminate the MACRO coding from the output listing (standard procedure) .
N Suppress output of error messages on the Teletype.
Complement: Output error messages on TTY (standard procedure).
| S If the compiler is running on the KA-10, produce code for execution on the KI-10 and
vice-versa.
TT Skip to the logical end of the magnetic tape reel .
W1L Rewind the magnetic tape reel .
Zf Zero the DECtape directory.
TSwitches A through C and T, W, and Z must immediately follow the device name or filename.ext to which
the individual switch applies.

Version 26 FORTRAN

Version 32 LIB40

1-1 May 1972

FORTRAN

-122-
Table 11-2

FORTRAN Compiler Diagnostics

(Command Errors)

Message

Meaning

?BINARY OUTPUT ERROR dev filename .ext

?CANNOT FIND dev:filename, ext
?DEVICE INPUT ERROR for command string

IMPROPER IO FOR DEVICE dev:

ILLEGAL MEMORY REFERENCE AT loc
COMPILATION TERMINATED

?INPUT DATA ERROR dev:filename, ext
?x IS A BAD SWITCH
?x IS AN ILLEGAL CHARACTER

?dev: IS NOT AVAILABLE

LINKAGE ERROR

?LINKAGE ERROR FOR dev:filename
?LISTING OUTPUT ERROR

?NO ROOM FOR filename . ext

?NO FILE NAMED filename.ext

?NOT ENOUGH CORE FOR LINKAGE
?SYNTAX ERROR IN COMMAND STRING
?X SWITCH ILLEGAL AFTER LEFT ARROW

?X SWITCH ILLEGAL AFTER FIRST STANDARD
FILE

?X SWITCH, NO LISTING FILE

?INSUFFICIENT CORE - COMPILATION
TERMINATED

An output error has occurred on the device specified for
the binary program output.

Filename .ext cannot be found on this device.

Device error occurred while attempting to read Monitor
command file,

An input device is specified for output (or vice versa) or
an illegal data mode was specified (e.g., binary output
to TTY).

An illegal memory reference has occurred and compila-
tion has stopped. The current output files will be closed
and the next source files read,

A read error has occurred on the source device.
This specified switch is not recognizable.

A character in a command string typein is not recogniz-
able (e.g., FORM-FEED).

Either the device does not exist or it has been assigned
to another job.

Input device error while doing Dump Mode 1/O, or not
enough core was available to execute the newly loaded

program,

Specified dev:filename appears in a | Monitor command
string, but cannot be run for some reason.

An output error hds occurred on the device specified for
the listing output.

The directory on dev: DTAn is full and cannot accept
filename.ext as a new file, or a protection failure oc-
curred for a DSK output file.

An illegal filename has been used.

Not enough core available to load (with dump mode 1/O)
the program specified in a | Monitor command string.

A syntax error has been detected in a command string
typein (e.g., the +has been omitted).

Cannot change machine type with a file or clear source
directory.

Cannot clear directory after start of compilation (Batch
Mode).

A CREF listing requires a listing file,

The compiler has insufficient table space to compile the
program.

Version 24 FORTRAN
Version 31 LIB40

11-2 February 1971

-123 FORTRAN

Table 11-2 (Cont)
FORTRAN Compiler Diagnostics
(Command Errors)

Message

Meaning

WORK STACK OVERFLOW AT loc
COMPILATION TERMINATED

The pushdown list used by the compiler for machine
language subroutine calls has overflowed. Compilation
has stopped. The current output files will be closed
and the next source file read.

Table 11-3
FORTRAN Compiler Diagnostics
(Compilation Errors)

Message

Meaning

I-1

I-11

DUPLICATED DUMMY VARIABL
ARGUMENT STRING

EIN A dummy variable (identifier) may appear only once in
any one argument set representing the arguments of a
subprogram. (See Section 7.3)

ARRAY NAME ALREADY IN USE Any attempt to re~dimension a variable or redefine a
scalar as an array is illegal. (See Section 6.1.1)

ATTEMPT TO REDEFINE VARIABLE Once a variable has been defined as either complex,

TYPE double precision, integer, logical, or real it may not

be defined again. (See Section 2.2, 6.3)

NOT A VARIABLE FORMAT ARRAY The variable which contains the FORMAT specification

read-in at object time must be a dimensioned variable,
i.e., an array (see Section 5.1.1) or a subprogram ar-
gument was used as a NAMELIST name with the subpro-
gram (see Section 5.1.2),

NAME ALREADY USED AS NAMELIST After a NAMELIST name has been defined, it may ap-

NAME

DUPLICATED NAMELIST NAME

pear only in READ or WRITE statements and may not be
defined again. (See Section 5.1.2)

A NAMELIST name has already been used as a scalar
array or global dummy argument. (See Section 5.1.2)

A NAME APPEARS TWICE IN AN A subprogram name has been declared EXTERNAL more

EXTERNAL STATEMENT

than once. (See Section 7.7)

ARGUMENT TYPE DOESN'T AGREE The actual arguments for a function do not agree in

WITH FUNCTION SPEC

type with the dummy arguments in the specification of
the function.

THIS FUNCTION REQUIRES MORE Not enough arguments were supplied for a function.
ARGUMENTS

SUBPROGRAM NAME ALREADY IN A subprogram name has appeared in another statement
USE as a scalar or array variable, arithmetic function state-

DUMMY ARGUMENT IN DATA
STATEMENT

ment name, or COMMON block name. (Seé Section
7.5)

Dummy arguments may not appear in DATA statements.
(See Section 6.2.1)

Version 24 FORTRAN
Version 31 LIB40

11-3 October 1971

FORTRAN -124-
Table 11-3 (Cont)
FORTRAN Compiler Diagnostics
(Compilation Errors)
Message Meaning
I-12 NOT A SCALAR OR ARRAY The variable defining the starting address for an

ILLEGAL USE OF DUMMY ARGUMENT

ILLEGAL DO LOOP PARAMETER

I/O VARIABLES MUST BE SCALARS OR
ARRAYS

A CONFLICT EXISTS WITH A COMMON
DECLARATION

ILLEGAL NAME OR DELIMITER OR
KEY CHARACTER

STATEMENT KEYWORD NOT
RECOGNIZED

ILLEGAL FIELD SPECIFICATION

SCALAR VARIABLE - MAY NOT BE
SUBSCRIPTED

ILLEGAL TYPE SPECIFICATION
ARGUMENT IS NOT SINGLE LETTER
'NAMELIST' NOT FOLLOWED BY "/"

ILLEGAL CHARACTER IN LABEL

ENC ODE/DECODE statement must be a scalar or an
array. (See Section 5.4)

The I/O unit name of a READ/WRITE statement is not
a scalar or array. (See Sections 5.2.6, 5.2.7)

An attempt to ASSIGN a label number to a variable that
is not a scalar or array. (See Section 2.2)

An attempt to GO TO through a variable that is not a
scalar or array. (See Section 4.1)

Dummy arguments may be used with functions or subpro-
grams only. (See Sections 7.4.1, 7.5.1)

The DO index must be a non-subscripted integer variable
while the initial , limit, and increment values of the in-
dex must be an integer expression - the index may not
be zero. (See Section 4.3)

Referencing data in an I/O statement other than scalars
or arrays is illegal . (See Section 5.2)

The function name used was previously declared a scalar
variable in a COMMON statement .

A variable name doesn't start with an alphabetic charac-
ter, or a delimiter such as the left parenthesis that be-
gins a format is missing, or a key character such as the
letter D in BLOCK DATA is missing .

A statement keyword such as ERASE was not recognized,
possibly due to misspelling (e.g., ERASC 16).

The field width or decimal specification in a FORMAT
statement must be integer. The number of Hollerith
characters in an H specification must be equal to the
number specified. (See Sections 5.1.1.1, 5.1.1.6)

An undimensioned variable (a scalar variable) is being
illegally subscripted (see Section 2.2.1) or a scalar
variable is subscripted in an ENCODE/DECODE state-
ment (see Section 5.4).

The type of constant specified is illegal or misspelled.
(See Section 2.1)

Arguments in parentheses must be single letters in
IMPLICIT statement. (See Section 6.3.1)

The first character following NAMELIST must be /.
(See Section 5.1.2)

A non-numeric character was detected in the label field
of the statement, possibly because tabs or spaces are
missing .

Version 24 FORTRAN
Version 31 LIB40

11-4 October 1971

-125 FORTRAN

Table 11-3 (Cont)
FORTRAN Compiler Diagnostics
(Compilation Errors)

Message

Meaning

S-14
S-15

S-16

S-18

S-19

$-20

$-21

$-22

S-23

MISSING COMMA OR SLASH IN
SPECIFICATION STATEMENT

ILLEGAL ARITHMETIC "IF" -
TOO MANY LABELS

A NUMBER WAS EXPECTED

IMPLICIT TYPE RANGE OVERLAPS
PREVIOUS SPECIFICATION

ATTEMPT TO USE AN ARRAY OR
FUNCTION NAME AS A SCALAR

ARRAY NOT SUBSCRIPTED

ILLEGAL USE OF AN ARITHMETIC
FUNCTION NAME

MULTIPLE RETURN ILLEGAL
WITHOUT STATEMENT LABEL ARG

INCORRECT PAREN COUNT OR
MISSING IMPLIED DO INDEX

INVALID INDEX IN DO-LOOP OR
IMPLIED DO-LOOP

EQUIVALENCE REQUIRES TWO OR
MORE ELEMENTS

ILLEGAL DEFINITION OF AN
ARITHMETIC STATEMENT FUNCTION

MISSING COMMA IN INPUT/OUTPUT
LIST

STATEMENT CONTINUES PAST
RECOGNIZED END POINT

ILLEGAL COMPLEX CONSTANT

A specification statement (see Section 7.8) requires a
comma or slash and it is missing.

An arithmetic "IF" statement must have no more or less
than three statement labels to transfer to. Special op-
timization will occur if two of the labels are the same,
or one or more labels refer to the next statement.

Only arrays which are subprogram arguments can have
adjustable dimensions. (See Section 6.1.1.1)

An implicit type range encompasses a character that has
already been given an implicit type.

Variables may be either scalar or array but not both.
Variables appearing in a DIMENSION statement must

be subscripted when used. (See Section 2.2) Function
names must be followed by at least one argument enclosed
in parentheses (See Section 7.4).

See S-13

Arithmetic function definition statement name is being
used without arguments (i.e., as a scalar) in an arithme-
tic expression. (See Section 7.3)

A dollar sign ($) or an asterisk (*) must have appeared in
the argument list of this subprogram to represent the po-
sition of a statement label argument in the call.

The number of left and right parentheses does not match,
or an undefined index variable was used in defining a
DO loop (see Section 5.2.1), or the number of implied
DO loops and the number of matching parentheses dif-
fer in a DATA statement. (See Section 6.2.1)

The index of a DO statement must be a non-subscripted
integer variable and must not be zero. (See Section

4.3) The index is not used as a subscript in a DATA list.
(See Section 6.2.1)

The EQUIVALENCE statement must have more than one
argument because it causes variables to share the same
location. (See Section 6.1.3)

The statement function continues past its recognized end
point.

An input/output list continues past its recognized end
point.

A statement other than those mentioned above continued
past its recognized end point.

The parentheses of the complex constant enclose a logical,
Hollerith, or complex constant.

Version 24 FORTRAN
Version 31 LIB40

11-5 October 1971

FORTRAN -126-
Table 11-3 (Cont)
FORTRAN Compiler Diagnostics
(Compilation Errors)
Message Meaning

O-1 BLOCK DATA NOT SEPARATE PRO- Block Data must exist as a separate program. (See
GRAM Sections 6.2.2, 7.6)

O-2 SUBROUTINE IS NOT A SEPARATE A subroutine following a main program or another sub-
PROGRAM routine subprogram may have no statement between it

and the preceding programs END statement and must be-
gin with a SUBROUTINE statement. The previous pro-
gram must have been terminated properly. (See Section
7.5)

0-3 STATEMENT OUT OF PLACE The IMPLICIT specification statement and any arithmetic
function definition statement must appear before any ex-
ecutable statement. (See Chapter 6)

O-4 EXECUTABLE STATEMENTS ILLEGAL Block DATA statements cannot contain executable
IN BLOCK DATA statements.

A-1 MINIMUM VALUE EXCEEDS MAXIMUM Minimum value of an array exceeds the maximum value
VALUE specified. (See Section 6.1.1)

A-2 ATTEMPT TO ENTER A VARIABLE INTO A variable name may appear in COMMON statement
COMMON TWICE only once. (See Section 6.1.2)

A-3 ATTEMPT TO EQUIVALENCE A SUB- An identifier defined as a subprogram name cannot ap-
PROGRAM NAME OR DUMMY pear in EQUIVALENCE statements in the defining pro-
ARGUMENT gram. Dummy argument identifiers of a subprogram may

not appear in EQUIVALENCE statements in that subpro-
gram. (See Sections 6.1.3, 7.1)
A-4 NOT A CONSTANT OR DUMMY Only constant and dummy arguments may be used as ar-
ARGUMENT guments in dimension statements. (See Section 7.4.1)
A-5 CAUTION ** COMMON VARIABLE The variable may be multiply defined in the called sub-
PASSED AS ARGUMENT program. (See Sections 7.4.1,7.5.1)
M-1 TOO MANY SUBSCRIPTS An array variable appears with more subscripts than
specified. (See Sections 2.2.2, 6.1.1)

M-2 WRONG NUMBER OF SUBSCRIPTS An array variable appears with too few subscripts. (See
Sections 2.2.2, 6.1.1)

M-3 CONSTANT OVERFLOW Too many significant digits in the formation of a con~
stant or the exponent is too large. (See Section 2.1)

M-4 ILLEGAL 'IF' ARGUMENT Logical IF or DO statement adjacent to a logical IF
statement, or illegal expression within a logical IF
statement. (See Sections 4.2.2, 4.3)

M-5 ILLEGAL CONVERSION IMPLIED Attempt to mix double precision and complex data in
the same expression. (See Section 2.3.1)

M-6 LABEL OUT OF RANGE OR ARRAY Illegal statement label (See Section 1.1.1) or array size
TOO LARGE is greater than 2187,

M-7 UNTERMINATED HOLLERITH STRING A missing single quote or fewer than n characters follow-

ing an "nH" specification. (See Section 5.1.1.6)

Version 24 FORTRAN
Version 31 LIB40

11-6 October 1971

-127-

FORTRAN

Table 11-3 (Cont)
FORTRAN Compiler Diagnostics
(Compilation Errors)

Message

Meaning

M-19
M-20

SYSTEM ERROR - NO MORE SPACE
FOR RECURSIVE STORAGE

TOO MUCH DATA - WRONG ARRAY
SIZE ORLITERAL TOO LONG

ILLEGAL DO LOOP CLOSE

MORE DATA NEEDED - LITERAL TOO
SHORT OR TYPE CONVERSION EXPECTED

NON-INTEGER PARAMETER IN 'DO'
STATEMENT

NON-INTEGER SUBSCRIPT

ILLEGAL COMPARISON OF COMPLEX
VARIABLES

TOO MANY CONTINUATION CARDS

NON-INTEGER 1/O UNIT OR
CHARACTER COUNT

SYSTEM ERROR-ROLL OUT OF RANGE

SYSTEM ERROR - NO MORE SPACE
FOR RECURSIVE CALLS

ILLEGAL USE OF STATEMENT LABEL
ILLEGAL RECURSIVE CALL

EXCESSIVE COUNT

OPEN DO LOOPS

UNDEFINED LABELS

The compiler's work roll is too small to hold the parts of
all the subexpressions this statement implies. Break this
statement or reassemble the compiler with a larger work-
roll parameter (WORLEN=150g at present).

The list of DATA constants defines more words than the
list of DATA variables specifies. This may be due to an
array of the wrong size in the list of DATA variables, or
definition of an integer, real, or logical DATA variable
with a Hollerith constant of more than five characters.

Illegal statement terminating a DO loop. (See Section
4.3)

The list of DATA constants defines fewer words than the
list of DATA variables specifies. This may be due to a
double precision or complex DATA variable defined
with a Hollerith constant of less than six characters, or
a double precision DATA variable defined with a real
constant.

DO statement parameters must be integers. (See Section
4.3)

Array subscripts must be integer constants, variables, or
expressions, (See Section 4.3)

The only comparison allowed of complex variables is
.NE. or .EQ. (See Sections 2.2, 2.3)

More than 19 continuation cards. (See Section 1.1.2)

The 1/0 unit variable of a READ/WRITE statement, or
the character count variable of an ENCODE/DECODE

statement, is not an integer variable. (See Sections
5.2.,6,5.2.7,5.4)

Compiler error. Report this message and its circumstances
via a Software Trouble Report.

The compiler's exit rol! is too small to hold the return
addresses for all the recursive subroutine calls this state-
ment requires to be compiled. Break up the statement or
reassemble the compiler with a larger exit roll parameter
(EXLEN1=201g at present) .

A GO TO or IF statement transfers to itself.

The statement function called itself. Recursive calls are

illegal in the FORTRAN language.

The number specified is greater than the maximum pos-
sible number of characters in a statement.

The list of statements are specified in DO statements
but not defined.

The list of labels that do not appear in the label field.

Version 26 FORTRAN
Version 32 LIB40

11-7 May 1972

FORTRAN

-128-
Table 11-3 (Cont)

FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

Meaning

MULTIPLY DEFINED LABELS

ALLOCATION ERRORS

The list of labels that appeared more than once in the
label field. '

The list of EQUIVALENCEd COMMON variables which
have attempted to extend the beginning of a COMMON
block .

Table 11-4

FORTRAN Operating System Diagnostics

(Execution Errors)

Message

Meaning

?BLOCK TOO LARGE OR QUOTA
EXCEEDED ON dev

?CANNOT ACCESS FORTR.SHR-
GETSEG ERROR CODE xx

?dev: NOT AVAILABLE

?DEVICE NUMBER n IS ILLEGAL

?DEVICE NUMBER n MUST BE DSK FOR
RANDOM ACCESS

?DIRECT ACCESS DEVICE NUMBER n IS
ILLEGAL

ENCODE - DECODE ERROR

END OF FILE ON dev:
?PEND OF TAPE ON dev:

?FILE NAME filename.ext NOT ON
DEVICE dev:

?ILLEGAL CHARACTER, x, IN FORMAT

?ILLEGAL CHARACTER, x, IN INPUT STRING
?ILLEGAL MAGNETIC TAPE OPERATION,

TAPE dev:

?ILLEGAL PHYSICAL RECORD COUNT,
TAPE dev:

?ILLEGAL USER UUO uuu AT USER loc

?INPUT DEVICE ERROR ON dev:

The user's program attempted to add blocks to a
random access file, which caused the block to be
too large or caused him to exceed his disk quota.

An error occurred when a GETSEG UUO was issued to
access FORTR.SHR. The codes are listed in Appendix E
of the TOPS-10 Monitor Calls manual .

FORSE. tried to initialize a device which either does not
exist or has been assigned to another job.

A nonexistent device number was selected.

The device for random access operations must be disk.

Only devices 1 through 17 can be used for random
access.

The character count in an ENCODE or DECODE state-
ment was incorrect.

A premature end-of-file has occurred on an input device.

The end of tape marker has been sensed during input or
output

Filename .ext cannot be found in the directory of the
specified device.

The illegal character x is not valid for a FORMAT
statement.

The illegal character x is not valid for this type of input.

An attempt was made to skip a record after performing
output on a magnetic tage.

FORSE. has encountered an inconsistency in the physical
record count on a magnetic tape.

An illegal user UUO to FORSE. was encountered a
location loc. -

A data transmission error has been detected in the input
from a device.

Version 26 FORTRAN
Version 32 LIB40

11-8 May 1972

-129- FORTRAN
Table 11-4 (Cont)

FORTRAN Operating System Diagnostics

(Execution Errors)

Message

Meaning

VERSION NUMBERS ARE DIFFERENT

?MORE THAN 15 DEVICES REQUESTED
?NAMELIST SYNTAX ERROR

MNO ROOM FOR FILE filename.ext ON
DEVICE dev:

?NOT ENOUGH CORE FOR BUFFERS

program name NOT LOADED

?0UTPUT DEVICE ERROR ON dev:
?20UTPUT FIELD WIDTH OVERFLOW

?PARITY ERROR ON dev:
?REREAD EXECUTED BEFORE FIRST READ

?TAPE RECORD TOO SHORT ON UNIT n

?devs WRITE PROTECTED

WARNING! /IS ILLEGAL IN ENCODE-
DECODE, END OF FORMAT ASSUMED

?ACOS OF ARG >1.0 IN MAGNITUDE
?ASIN OF ARG > 1.0 IN MAGNITUDE

?FLOATING DIVIDE CHECK
PFLOATING OVERFLOW
?FLOATING UNDERFLOW
?INTEGER DIVIDE CHECK
?INTEGER OVERFLOW

7LIBRARY (FORTR.SHR) AND USER PROGRAM

?ATTEMPT TO TAKE LOG OF NEGATIVE ARG
?PATTEMPT TO TAKE SQRT OF NEGATIVE ARG

The user's executable program is using an obsolete ver=
sion of the library. The program should be recompiled
so that the correct version of the library is used.

Too many devices have been requested.

Improper mode of 1/0 (octal or Hollerith), incorrect
variable name.

There is no room for the file in the directory of the
named device.

Either a call to BUFFER or a random access operation
tried to set up a buffer ring when not enough core was
available.

A dummy routine was loaded instead of the real one.
Generally, this error occurs when a loaded program is
patched to include a call to a library program which
was not called by the original program at load time.

A data transmission error has been detected during out-
put to a device.

A field overflowed on output and was filled with
asterisks.

A parity error has been detected.

A reread was attempted before initializing the first in-
put device.

The data list is too long on a binary tape READ opera-
tion.

The device is WRITE locked.

A slash was used in the FORMAT statement referenced
by an ENCODE or DECODE statement. Since slashes
are illegal in these statements, the operating system
assumes that the slash is the end of the format.

The following messages are typed twice, when the error occurs, and in a final summary. When the error
occurs, the PC value is appended to the message. When the message appears in the final summary, the number
of times that the error occurred in the program is appended to the message.

Version 26 FORTRAN
Version 32 LIB40

11-9 May 1972

FORTRAN -130-
Table 11-4 (Cont.)
FORTRAN Operating System Diagnostics
(Execution Errors)

Message Meaning

The following messages are issued when a LOOKUP, ENTER, or RENAME UUO error occurs. The number in
parentheses indicates the error code. Refer to Appendix E in the TOPS-10 Monitor Calls manual .

?(0) ILLEGAL FILENAME WAS NOT FOUND FILE xx ON DEVICE yy

?(1) NO DIRECTORY FOR PROJECT -PROG RAMMER NUMBER FILE xx ON DEVICE yy
?(2) PROTECTION FAILURE FILE xx ON DEVICE yy

?(3) FILE WAS BEING MODIFIED FILE xx ON DEVICE yy

?(4) RENAME FILE NAME ALREADY EXISTS FILE xx ON DEVICE yy

?(5) ILLEGAL SEQUENCE OF UUOS FILE xx ON DEVICE yy

?(6) BAD UFD OR BAD RIB FILE xx ON DEVICE yy

?(7) NOT A SAV FILE FILE xx ON DEVICE yy

?(10) NOT ENOUGH CORE FILE xx ON DEVICE yy

?(11) DEVICE NOT AVAILABLE FILE xx ON DEVICE yy

?(12) NO SUCH DEVICE FILE xx ON DEVICE yy

?(13) NOT TWO RELOC REG. CAPABLLITY FILE xx ON DEVICE yy
?(14) NO ROOM OR QUOTA EXCEEDED FILE xx ON DEVICE yy
?(15) WRITE LOCK ERROR FILE xx ON DEVICE yy

?(16) NOT ENOUGH MONITOR SPACE FILE xx ON DEVICE Yy
?(17) PARTIAL ALLOCATION ONLY FILE xx ON DEVICE yy

?(20) BLOCK NOT FREE ON ALLOCATION FILE xx ON DEVICE yy

NOTE

With the exception of the messages ILLEGAL USER UUO
uuu AT USER loc and ENCODE/DECODE ERROR, all
messages are followed by a second message

LAST FORTRAN I/O AT USER LOC adr

Several arithmetic error conditions can occur during execution time.

a. Overflow - An attempt was made to create either a positive number greater than the largest repre-
sentable positive number or a negative number greater in magnitude than the most negative representable
number (in the appropriate mode).

Example: For [an integer,
377777777777 < 1 < 400000000000 (octal)

b. Underflow - An attempt was made to create either a positive non-zero number smaller than the
smallest representable positive non-zero number or a negative number smaller in magnitude than the
negative number whose magnitude is the smallest representable.

Version 24 FORTRAN
Version 31 LIB40 11-10 October 1971

-131- FORTRAN

Example: For X a real non-zero number,
777400000000 < X < 000400000000
c. Divide Check - An attempt was made to divide by zero.

d. Improper Arguments for LIB40 math routines - For example, an attempt was made to find the arc
sine of an argument greater than 1.0.

When overflow, underflow, or divide check errors occur in the user's FORTRAN program, the Monitor calls the
L1B40 routine OVTRAP. This routine replaces the resulting numbers, if the numbers are floating point, with
either zero in the case of underflow or * the largest representable number in the cases of overflow and divide
check. OVTRAP does not affect numbers in integer mode.

Overflow, underflow, and divide check errors occurring in LIB40 math routines are handled differently from
when they occur in the user's program: only if the final answer from a routine is in error is an error condition
considered to exist. If the answer is floating point, it is set to the appropriate value as for user program errors.
Integer answers are handled in various ways. (See the Science Library and FORTRAN Utility Subprograms,
DEC-10-SFLE-D.)

When an error condition occurs in a user program or in a final answer from a LIB40 math routine, an error mes-

sage is typed. Presently there are eight distinct error messages.

Error Message No. Error Message

INTEGER OVERFLOW PC=nnnnnn
INTEGER DIVIDE CHECK PC=nnnnnn
FLOATING OVERFLOW PC=nnnnnn
FLOATING UNDERFLOW PC=nnnnnn
FLOATING DIVIDE CHECK PC=nnnnnn
ATTEMPT TO TAKE SQRT OF NEGATIVE ARG
ACOS OF ARG > 1.0 IN MAGNITUDE

8 ASIN OF ARG > 1.0 IN MAGNITUDE
final 1 ? FATAL I/O ERROR

N 00 v & W N —

NOTE

nnnnnn = location at which the error occurred.

After two typeouts of a particular error message, further typeout of that error message is suppressed. At the end
of execution, a summary listing the actual number of times each error message occurred is typed out. If the user
wishes to permit more than two typeouts for each error message, he may do so by calling the routine ERRSET at
the beginning of the executable part of his main program. ERRSET accepts one argument in integer mode. This
argument is the number of typeouts that are pemmitted for each error message before suppression occurs. This

routine is used to obtain the PC information which would otherwise be lost. Alternatively, because of the slow-

Version 24 FORTRAN
Version 31 LIB40 11-1 October 1971

FORTRAN -152-

ness of the Teletype output, the user may wish to suppress typeout of the messages entirely. This can be done by

callitg ERRSET with an argument of zero. Suppression of typeout can also be accomplished during execution by
typing 1O on the Teletype.

Error messages and the summary are output to the Teletype (or the output device when running BATCH), regard-
less of the device assignments that have been made.

The treatment of overflow, underflow, and divide check errors in MACRO programs (those that are loaded with
OVTRAP) can, to a certain extent, be manipulated by the user. (See OVTRAP in the Science Library and
FORTRAN Utility Subprogram manual .)

Version 24 FORTRAN
Version 31 LIB40 11-12 Cctober 1971

-133- FORTRAN
CHAPTER 12
FORTRAN USER PROGRAMMING
12.1 ASCII CHARACTER SET
Table 12-1
ASCII Character Set
SIXBIT Character ?_SBC'::; SIXBIT Character 9};:; Character '7A_SBC‘: :!l'
00 Space 040 40 @ 100 ' 140
01 ! 041 41 A 101 a 141
02 " 042 42 B 102 b 142
03 # 043 43 C 103 c 143
04 $ 044 44 D 104 d 144
05 % 045 45 E 105 e 145
06 & 046 46 F 106 f 146
07 ! 047 47 G 107 g 147
10 (050 50 H 110 h 150
11) 051 51 | m i 151
12 * 052 52 J 112 i 152
13 + 053 53 K 113 k 153
14 , 054 54 L 114 | 154
15 - 055 55 M 115 m 155
16 . 056 56 N 116 n 156
17 / 057 57 (o] 17 o 157
20 0 060 60 P 120 p 160
21 1 061 61 Q 121 q 161
22 2 062 62 R 122 r 162
23 3 063 63 S 123 s 163
24 4 064 64 T 124 t 164
25 5 065 65 V) 125 v 165
26 6 066 66 v 126 v 166
27 7 067 67 w 127 w 167
30 8 070 70 X 130 x 170
31 9 071 71 Y 131 y 171
32 : 072 72 z 132 z 172
33 ; 073 73 [133 { 173
34 < 074 74 \ 134 | 174
35 = 075 75] 135 } 175
36 > 076 76 t 136 ~ 176
37 ? 077 77 - 137 Delete 177

YEORTRAN 1V also accepts the following control codes in 7-bit ASCII:

Horizontal Tab
Line Feed

011

012 Form Feed

Carriage Return

015
014

12-1

FORTRAN -134-

12.2 PDP-10 WORD FORMATS

BASIC INSTRUCTIONS

INSTRUCTION CODE]
(INCLUDING MODE! 1 i | ! o —[!

89 [FEIR 1718 3

IN-OUT INSTRUCTIONS

l 1] DEVICE CODE |"‘5;3‘,‘,§"°"| II x L r
0 23 910 1213 " 17 18 3
PC WORD
FLaGs [oooool pC
L1l
12013 17 18 3
T T FIOATING
CARRY CARRY | FLOATING BYTE ISER NO
vawwl [1 [ovl:nr:o' wtenauer USER niouv[1 I l T”}‘f&:'[0VIDE
0 1 2 3 4 5 6 7 [} 9 10 1" ?

BLT POINTER [xwbD]

SOURCE ADDRESS DESTINATION ADDRESS J
1718 3

BLKI/BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD [IOWD}

— WORD COUNT ADDRESS -1
0 718 3!

BYTE POINTER

POSITION P SIZE S [Ill X l 14
56 "1 13 wu 17 18 3

BYTE STORAGE

S BITS P aiITs
i
l BYTE NEXT BYTE |

0 35 P51 TP 35-Pe 3

FIXED POINT OPERANDS

|Sa(:1 BINARY NUMBER (TWOS COMPLEMENT)

FLOATING POINT OPERANDS

Ig.',“[EXCESS 128 EXPONENT l FRACTION (TWOS COMPLEMENT)
1 {ONES COMPLEMENT)

0 89 ¥

LOW ORDER WORD IN DOUBLE LENGTH FLOATING POINT OPERANDS

Iol EXCE:SP‘S;E'XVP‘O?S:J-U { LOW ORDER HALF OF FRACTION (TWOS COMPLEMENT)

0 89 3

12-2

-135- FORTRAN
12.3 FORTRAN INPUT/OUTPUT

In addition to the arithmetic functions, the PDP-10 FORTRAN 1V library (LIB40) contains several subprograms
which control FORTRAN 1V 1/O operations at runtime. The 1/O subprograms are compatible with the PDP-10

Monitors.

In general FORTRAN IV 1/O is done with double buffering unless the user has either specified otherwise through
calls to IBUFF and OBUFF or is doing random access 1/0 to 'the disk. In these cases, single buffers are used.
The standard buffer sizes for the devices normally available to the user are given in Table 12-2. Note that the
devices and buffer sizes are determined by the Monitor and may be changed by a particular installation. Also a
user may specify buffer sizes for magtape operations through the use of IBUFF and OBUFF.

The logically first device in a FORTRAN program is initialized on software 1/O channel one, the second on
software 1/O channel two, and so forth. Software 1/O channel 0 is reserved for error message and summary
output. The SIXBIT name of the device that is initialized on channel N can be found in a dynamic device table
at location DYNDV. + N. A device may be initialized for input and output on the same 1/O channel. Devices
are initialized only once and are released through either the CALL [SIXBIT/EXIT/] executed at the end of every
FORTRAN program or the LIB40 subroutine RELEAS.

Table 12-2
PDP-10 FORTRAN 1V Standard Peripheral Devices

T e g . S . R
Card Punch cop Yes Yes 26 WRITE
Card Reader CDR Yes Yes 28 READ
Disk
(includes disk DSK Yes Yes 128 READ/WRITE
packs and drums)
DECtapes DTA Yes Yes 127 READ/WRITE
Line Printer LPT Yes No 26 WRITE
Magtape MTA Yes Yes 128 READ/WRITE
Plotter PLT Yes Yes 36 WRITE
Paper Tape Punch PTP Yes Yes 33 WRITE
Paper Tape Reader PTR Yes Yes 33 READ
Pseudo Teletype PTY Yes No 17 READ/WRITE
Teletype - User TTY Yes No 17 READ/WRITE
Teletype -~ Console c1Y Yes No 17 READ/WRITE

12-3

FORTRAN -136-
12.3.1 Logical and Physical Peripheral Device Assignments

Logical and physical device assignments are controlled by either the user at runtime or a table called DEVTB.
The first entry in DEVTB. is the length of the table. Each entry after the first is a sixbit ASCII device name.
The position in the table of the device name corresponds to the FORTRAN logical number for that device. For
example, in Table 12-3, magnetic tape O is the 16th entry in DEVIB. Therefore, the statement

WRITE (16, 13)A

refers to magnetic tape 0. The last five entries in DEVTB. correspond to the special FORTRAN statements READ,
ACCEPT, PRINT, PUNCH, and TYPE. Any device assignments may be changed by reassembling DEVTB.

If the user gives the Monitor command
ASSIGN DSK 16

prior to the running of his program, a file named FOR16.DAT would be written on the disk. Similarly, the

Monitor command
ASSIGN LPT 16

causes output to go to the line printer.

12.3.2 DECtape and Disk Usage

¥

12.3.2.1 Binary Mode - In binary mode, each block contains 127 data words, the first of which is a record

control word of the form:

where w is the word count specifying the number of FORTRAN data words in the block (126 for a full block) and
n is 0 in all but the last block of a logical record, in which case n is the number of blocks in the logical record.
A logical record contains all the data corresponding to one READ or WRITE statement, that is, the maximum num-

ber of logical records per disk/DECtape block is one.

12.3.2.2 ASCII Mode - In ASCII mode, blocks are packed with as many full lines (a line is a unit record as
specified by a format statement) as possible. Lines always begin with a new word. If a line terminates in the
middle of a word, the word is filled out with null characters and the next line begins with the next word. Lines
are not split across blocks. Such a file is created by FORTRAN during output or by PIP with the A switch.
FORTRAN input files must be in this format.

12-4

_137- FORTRAN

Table 12-3
Device Table for FORTRAN 1V

TITLE DEVIB V.017
SUBTTL 1-APR-69
ENTRY DEVTB.,DEVND.,DEVLS.,DVTOT.
ENTRY MTABF., MBFBG ., TABPT.,TABPI1.
ENTRY MTACL.,DATTB.,NEG1.,NEG2.,NEG3. ,NEGS5.
P=17
DEVTB.: EXP DEVND.-. ;NO. OF ENTRIES
;LOGICAL* FILENAME/DEVICE
SIXBIT .DSK. ; 1 FORO1.DAT DISC
CDRPOS: SIXBIT .CDR. ; 2 FOR02.DAT CARD READER
LPTPOS: SIXBIT .LPT. ; 3 FORO3. DAT LINE PRINTER
SIXBIT .CTY. ; 4 FORO4.DAT CONSOLE TELETYPE
TTYPOS: SIXBIT .TTY. ; 5 FOR05.DAT USER TELETYPE
SIXBIT .PTR. ; 6 FOR06.DAT PAPER TAPE READER
PTPPOS: SIXBIT .PTP. ; 7 FORO7.DAT PAPER TAPE PUNCH
SIXBIT .DIS. ; 8 FOR08.DAT DISPLAY
SIXBIT .DTAL. ; 9 FOR09. DAT DECTAPE
SIXBIT .DTA2. : 10 FOR10.DAT
SIXBIT .DTA3. ; 11 FOR11.DAT
SIXBIT .DTA4. ; 12 FOR12.DAT
SIXBIT .DTAS. ; 13 FOR13.DAT
SIXBIT .DTA6. ; 14 FOR14.DAT
SIXBIT .DTA7. ; 15 FOR15.DAT
SIXBIT .MTAO. ; 16 FOR16.DAT MAGNETIC TAPE
SIXBIT .MTAL. ; 17 FOR17.DAT
SIXBIT .MTAZ2. ; 18 FOR18.DAT
SIXBIT .FORTR. ; 19 FORTR.DAT ASSIGNABLE DEVICE, FORTR
SIXBIT .DSKO. ; 20 FOR20.DAT DISK
SIXBIT .DSK1. ; 21 FOR21.DAT
SIXBIT .DSK2. ; 22 FOR22.DAT
SIXBIT .DSK3. ; 23 FOR23.DAT
SIXBIT .DSK4. ; 24 FOR24.DAT
SIXBIT .DEVI. ; 25 FOR25.DAT ASSIGNABLE DEVICES
SIXBIT .DEV2. ; 26 FOR26.DAT
SIXBIT .DEV3. ; 27 FOR27.DAT
SIXBIT .DEV4. ; 28 FOR28.DAT
DEVLS.: SIXBIT .DEV5. ; 29 FOR29.DAT V. 006
SIXBIT .REREAD. ; -6 REREAD
SIXBIT .CDR. ; -5 READ
SIXBIT .TTY. ; -4 ACCEPT
SIXBIT .LPT. ; -3 PRINT
SIXBIT .PTP. ; -2 PUNCH
DEVND.: SIXBIT .TTY. ; -1 TYPE

12.3.2.3 File Names - File names may be declared for DECtapes or the disk through the use of the library sub-

programs IFILE and OFILE. In order to make an entry of the file name FILE1 on unit u, the following statement
could be used:

12-5

FORTRAN -138-
CALL OFILE (u, 'FILEY')

Similarly, the following statements might be used to open the file, RALPH, for reading:

RALPH=5HRALPH
CALL IFILE(u,RALPH)

After writing a file, the END FILE u statement must be given in order to close the current file and allow for
reading or writing another file or for reading or rewriting the same file. If no call to IFILE or OFILE has been
given before the execution of a READ or WRITE referencing DECtape or the disk the file name FORnn.DAT is
assumed where nn is the FORTRAN logical number used in the 1/O statement that references device nn.

The FORTRAN programmer can make logical assignments such that each device has its own unique file as intend-
ed, but each can be on the DSK. In order to use the devices available, the programmer can make assignments

at run time and assign the DSK to those not available.

For example, the FORTRAN logical device numbers, e.g., 1 = DSK, 2= CDR, 3 = LPT, are used in the file
name. The written file names are FORO1.DAT, FOR02.DAT, etc. The same is true for READ. For example, a
WRITE (3, 1) A, B, C, in the FORTRAN program generates the file name FOR03.DAT on the DSK if the DSK has
been assigned LPT or 3 prior to running the program. (Note: REREAD rereads from the file belonging to the de-
vice last referenced in a READ statement, not FOR-6.DAT, as usual.) The programmer must, of course, realize
his own mistake in assigning the DSK as the TTY in the case that FORSE tries to type out error messages or

PAUSE messages.

More than one DSK File may be accessed, without making logical assignments at runtime, by using logical de-
vice numbers 1, and 20 through 24 in the FORTRAN program. Logical device number 19 refers to logical device
FORTR which must be assigned at runtime and accesses file name FORTR.DAT to maintain compatibility with the
past system of default file name FORTR.DAT. In all cases when the operating system fails to find a file specified,
an attempt will be made to read from file FORTR.DAT as before.

The magnetic tape operation REWIND is simulated on DECtape or the disk; a REWIND closes the file and clears
the filename. A call to IFILE or OFILE should be made after a REWIND to open the file and preserve the file-
name, if desired. A program which uses READ, WRITE, END FILE, and REWIND for magnetic tape need only
have the logical device number changed or assigned to a DECtape or disk at runtime in order to perform the

proper input/output sequences on DECtape or the disk.

12.3.3 Magnetic Tape Usage

Magnetic tape and disk/DECtape 1/O are different in the following ways. When a READ is issued, a record is

read in for both magnetic tape and disk. 1f a WRITE is then issued, the next sequential record is written on

Version 26 FORTRAN 12-6 May 1972
Version 32 LIB40

-139- FORTRAN
magnetic tape but not on disk. When one or more READs have been executed on a disk file and a WRITE is
issued, the next record is written. Unless records are written past the existing end-of-file, that end-of-file is

not changed, i.e., the file is not truncated.

12.3.3.1 Binary Mode - The format of binary data on magnetic tape is similar to that for DECtape except that
the physical record size depends on the magnetic tape buffer size assigned in the Time-Sharing Monitor or by
IBUFF/OBUFF (see Section 8.2.2). Normally, the buffer size is set at either 129 or 257 words so that either
128 or 256 word records are written (containing a control word and 127 or 255 FORTRAN data words).

The first word, control word, of each block in a binary record contains information used by the operating sys-
tem. The left half of the first word contains the word count for that block. The right half of the first word con-
tains a null character except for the last block in a logical record. In this case, the right half of the first word

contains the number of blocks in the logical record.

12.3.3.2 ASCII Mode - The format for ASCII data is the same as that used on DECtape.

12.3.3.3 Backspacing and Skipping Records - Both the BACKSPACE u and SKIP RECORD u statements are ex-

ecuted on a logical basis for binary records and on a line basis for ASCII records.

a. Binary Mode - Both BACKSPACE and SKIP RECORD space magnetic tape physically over one (1)
logical record; i.e., the result of one WRITE (u) statement.

b. ASCIl Mode - ASCII records are packed, that is WRITE (u, f) statements do not cause physical writ-
ing on the tape until the output buffers are full or a BACKSPACE, END FILE, or REWIND command is
executed by the program. BACKSPACE and SKIP RECORD on ASCII record space over one (1) line.

c. BACKSPACE and SKIP RECORD following WRITE ASCII commands.
(1) BACKSPACE closes the tape, writes 2 EOF's (tapemark) and backspaces over the last line.
(2) SKIP RECORD cannot be used during a WRITE operation. This is an input function only.

12.4 RANDOM ACCESS PROGRAMMING

In random access programming, data is obtained from (or placed into) storage, where the time required for this
access is independent of the location of the data most recently obtained from (or placed into) storage. Random
access programming allows a programmer to access any record within a file with a single READ or WRITE state-
ment independent of the location of the previously accessed record within that file. For example, a program-
mer may read or write only the 10th record in a file if he wishes. Random 1/0 is desirable when only a few
records in a large file are to be accessed, or, when a file is to be read or wirtten in a non-sequential manner, as

in a sort.

Version 24 FORTRAN
Version 31 LIB40 12-7 February 1971

FORTRAN -140-
Random access applies only to data files on the disk with fixed-length record sizes. Any fixed-length record
file (formatted or unformatted) which has been written on the disk with FORTRAN or with PIP using the A switch

may be read or rewritten non-sequentially.

12.4.1 How to Use Random Acé,ess

A programmer may directly access fixed-length records in a disk file by defining the structure of the file with a
CALL DEFINE FILE and then specifying the record he wishes to access with a READ or WRITE statement. The

file from which records are to be accessed is defined as follows:

CALL DEFINE FILE (U,S,V,F,PJ,PG)
where

U = the unit number expressed as an integer. The number must refer to the disk. The numbers
from 1 to 10 are available unless a particular installation decides to change this range.

S = the size of the records within the file expressed as an integer. The size is specified by the
number of characters per record for formatted records, and the number of words per record
for unformatted records. The size of the records must be constant within the file and may
be from 1 to 132 characters in formatted records, or one word to any size limited by core in
unformatted records.

V = the associated integer variable. Contains any integer value. The record number which
would be accessed next if 1/O were to continue sequentially is returned as an integer in
the associated variable after each random read or write. The associated variable may be
used in the 1/O statements as part of the integer expression which defines the record num-
ber.

| F =the filename and extension. This may be zero, in which case standard default names are
used.

PJ = the project number in octal of the disk area being accessed.

PG = the programmer number in octal of the disk area being accessed. The project-programmer
numbers may be zero, in which case the user's disk area is accessed. Note that the writ-
ing on another user's disk area is restricted by the monitor.

1/0 begins when the random WRITE or READ is specified in the correct format. (See Sections 5.2.6 and 5.2.7.)

12.4.2 Restrictions
A number of restrictions are imposed in random access programming:

l a. A logical unit may not be used for sequential and then random 1/O in the same program unless an
intervening CALL to RELEASE is issued. For example, if sequential 1/O is done to unit 3 then random
I/O to unit 3is illegal and will fail .

b. If the name of a file fo be accessed randomly is specified in a DATA statement or is read in at run-
time, the user must use a full 6-character filename and a 3-character extension.

c. Mixed formatted and unformatted files are not accessible randomly.

| d. Before random I/O is performed through a READ or WRITE statement, the file must be properly defined
through a CALL to DEFINE FILE.
| e. All FORTRAN data files must be created by FORTRAN or PIP with the A switch.

Version 24 FORTRAN
Version 31 LIB40 12-8 February 1971

-141-

f. The records within the file must be of a fixed length.

g. Random access is used for disk files only.

FORTRAN

h. Access to files is controlled by the file protection scheme in effect at each installation. (Refer to
the Timesharing Monitors Manual for a discussion of file access privileges.)

i. CALLs to IFILE or OFILE open files for sequential I/O. They must not be issued for units to be used
for random 1/O. If it is desired to open a file for sequential I/O on a unit that has been used for random
I/O, a CALL to RELEASE must be issued before a CALL to IFILE or OFILE.

12.4.3 Examples

Example 1:

Assume a standard FORTRAN program, the purpose of which is to read the Kth record in a file and ignore

all other records. A section of the program might be as follows:

If K is a large number, time is wasted in obtaining the Kth record using sequential 1/0.

DO 1@ I=1, K
READ (1,1) A,R,C
FORMAT (3A5)

a program written to perform the same function using random access:

CALL DEFINE FILE (1,155N»>0,0,0)

.

READ (1#K,1) A>B,C

FORMAT (3AS)

Now consider

Note that the default filename FORO1.DAT and the user's project-programmer number are used in both

examples.

Example 2:

Consider a program the purpose of which is to change the contents of the Kth record within the file

FORO1.DAT on the user's disk area. Using sequential 1/O, the code might be as follows:

Version 24 FORTRAN
Version 31 LIB40

.

DO 1”4 1=1, K-1
READ (1,1) A5BR.C
WRITE (251) AsB,C
READ (1,1) A>R,C
WRITE (2,51) DLELF
DO 2@ 1=K+1,NEND
RFAD (1,1) A,B>C
WRITE (2,1) A,B,C
FORMAT (3AS)

12-9

February 1971

FORTRAN -142-
There would be two files on the disk, FORO1.DAT and FOR02.DAT, which are identical except for the

Kth record. The code that accomplishes the same result using random access is:

CALL DFFINE FILF (1,15:sN»0,0,0)
WRITE C(1#K,1) D,E>F
1 FORMAT (3AS5)

A new file is not created; the old file remains with the Kth record changed.

Example 3:
The following code creates a new file for random output by first writing K blank records and then up-

dating the file in non-sequential output:

C 49 SPACES PER RECORD USERS
C NFED NO WORRY ARQUT CARKIAGE
C RETURNS AND LINE FEEDS.
DIMENSION A(B), BR(E)
DO 19 I=1,K
19 WRITE (1,1) A
CALL DEFINE FILE (2,40,N,'FORQ1.DAT':0,0)
N=3
DO 20 1=1.,S
20 WRITE (2#N*&,2) B
1 FORMAT (8AS)
2 FORMAT (415,2A5,F10,3)

Example 4:

Read a 1000 record file, the records of which are 27 characters long, backwards. The file is named
FORO1.DAT and resides on the user's disk area. The following program creates a disk file and then reads
it backwards. (Note that the same unit number may not be used for both sequential and random 1/O in the

same program):

12-10

-143- FORTRAN

DIMENSION A(&)
CALL DFFINF FILF (2,27,NV,'FORO1.DAT'>0,0)
DO 1@ 1=1, 10007
10 WRITE (1,1) 1
REWIND (1)
1 FORMAT ('THIS 1S RECORD NUMBER'», 15)
Nv=10A2
DO 20 1=1,1000
20 READ (2#NVv-2,2) A
2 FORMAT(SAS,A2)
END

Example 5:

Use random WRITES to change every 7th record, beginning with record 10, in the file named DATA on

the user's disk area. The file contains 100 records, each of which is 35 characters long.

DIMENSION LIST(7)
CALL DEFINE FILE(S,35,NV,'DATA',0,0)
DO 10 1=10,100,7

10 WRITE (5#1,5) LIST
5 FORMAT (2A45,515)
END

Example 6:

Read one-word binary records, starting with record 26 and ending with record 7, from file FOR07.DAT.
The following program creates a 50-record file of the numbers from 1 to 50, reads the file backwards,
and types the contents of the record it read, NP, along with the contents of the associated variable,

NV. Note that FORTRAN binary output creates files with a maximum of one record per disk block.

«TY BINTST
C RINARY RANDOM ACCESS TEST
c

DOURLE PRECISION FIL
DATA FIL /°'FOR@7.DAT"'/
CALL DEFINE FILE (251,NV,FI1L,0,0)
DO 7 1=1,50
WRITEC(T)1
7 CONTINUE
END FILE (7)
NV=28
DO 2 I=1,20
READ(2#NV-2)NP

WRITE(S5,5)NP,NV

2 CONTINUE

S FORMAT(' NP= ',13,' Nv= ',13)
END '

12-1

FORTRAN -144-

RUN DSK BRINTST

NP= 26 Nv= 27
NP= 25 Nv= 26
NP= 24 Nv= 25
NP= 23 Nv= 24
NP= 22 NV= 23
NP= 21 Nv= 22
NP= 20 Nv= 21
NP= 19 Nv= 20
NP= 18 NVv= 19
NP= 17 Nv= 18
NP = 16 Nv= 17
NP = 15 Nv= 16
NP= 14 NV= 15
NP = 13 Nv= 14
NP= 12 NvV= 13
NP= 11 Nv= 12
NP= 10 NvV= 11

NP= 9 NV= 10
NP= 8 Nv= 9
NP= 7 NV= 8

Revision 2 FORTRAN 12-12 February 1971

-145- FORTRAN
12.5 PDP-10 INSTRUCTION SET
E ADD)
¢ Negative SUBtract
MOV e Magnitude to AC MULtiply {
e Swapped Immediate to Ac Integer MULtiply ~
. no effect to Memory DIVide Immediate
Half word Right Right| | Ones to Self Integer DIVide to Memory
word \ g et | © |Left Zeros and Roundd 1 1© Both
Extend sign Floating AdD ~
BLock Transfer Floating SuBtract Long
Floating MultiPly to Memory
EXCHange ac and memory Floating DiVide to Both
use present pointer LoaD Byte into ac Floating SCale
Increment pointer ‘DePosit Byte in memory Double Floating Negate
Increment Byte Pointer Unnormalized Floating Add
PUSH d°“'“} l ~ Arithmetic SHift
POP up and Jump . . ~
Logical SHift Combined
ROTate moine
Zeros
Ones Z
Ac to SubRoutine
SET to Memory and Save Pc
Complement of Ac and Save Ac
Complement of Memory AC and Restore Ac
- ac Immediate if Find First One
Lt ;
AND with Complement of Ac _ | Memory g: glz;se fg:wClg:C':_ 10)
inclusive OR [| with Complement of Memory Both Jumpq on CaRrY 0 (JFCL 4)’
Complements of Both ’
on CaRrY 1 (JFCL 2,)
lnclusi?'e OR on CaRrY (JFCL 6,)
eXclusive OR "] on Floating OVerflow (JFCL 1,)
EQuiValence ‘and ReSTore
and ReSTore Flags (JRST 2,)
SKIP if memory ’:;;ver Land ENable pi channel (JRST 12))
JUMP if Ac qufal HALT (JRST 4)
Add One to memory and Skip if Less or Equal eXeCuTe
Subtract One from | | Ac and Jump 1 Always
Immediate - Greater DATA
Compare AC {Wlth Memory} and Sklp if AC Greater or Equal BI.K)CK ln
L Not equal Out
i CONditions
. | Positive | all masked bits Zero
Add One to Both halves of Ac and Jump if {Nega tive in and Skip if ‘ some masked bit One
with Direct mask No modification never
with Swapped mask | | set masked bits to Zeros .} if all masked bits Equal 0
Test ac Right with £ set masked bits to Ones and skip if Not all masked bits equal O
Left with £ Complement masked bits Always

12-13

FORTRAN -146-

-147- FORTRAN

APPENDIX A
THE SMALL FORTRAN 1V COMPILER

This compiler runs in 5.5K of core, and to the user, is identical to the large compiler, with the exception of the

following language differences. Operating procedures are given in the Systems User's Guide (DEC-10-NGCC-D).

Language Differences

The IMPLICIT, DATA, and NAMELIST statements are not recognized; constant strings are not collapsed (for ex-
ample, A=5*3 will not be treated as A=15).

FORTRAN -148-

