© 1974, TYMSHARE, INC., Litho in US.A.

TYMSHARE MANUALS
TYMCOM-X

XEXEC

DECEMBER 1974

TYMSHARE, INC.
10340 BUBB ROAD
CUPERTINO, CALIFORNIA 95014

PRICE: $4.00

PO2

CONTENTS

Section 1 — INTRODUCTION
SYMBOL CONVENTIONS
ABOUT THIS MANUAL .

ENTERING AND LEAVING THE SYSTEM .
Calling the Tymshare Network
Identifying the Terminal
Logging In .
Logging Out

Section 2 — USING XEXEC
THE FORM OF XEXEC COMMANDS .o
REQUESTING INFORMATION ABOUT XEXEC COMMANDS

USER INTERACTION
Entering Data at the Terminal
Line-Editing Features .
Declaring Special Terminal Propertles .

Section 3 — USING FILES IN XEXEC
RULES FOR NAMING FILES

REFERRING TO FILES IN COMMANDS
Asterisk (*) Notation . .
Crosshatch (#) or Question Mark (") Notatlon .
NOT or Minus Sign (-) Notation . .
Referring to Files in Another User’s Storage Area .

INTRODUCTION TO EDITOR
Creating a File
Editing a File .
Summary

THE COPY COMMAND .
Creating a File
Duplicating a File
Concatenating Files .

DELETING FILES
RENAMING FILES

PRINTING FILES .
The Form of the Printing Commands .
Specifying Format Switches .

COMPARING THE CONTENTS OF TWO FILES

Page

O D WWW N = a

10
10
10
1

13
13

15
15
15
16
16

17
17
19
21

22
22
23
24

24
26

26
27
27

31

Section 4 — THE USER FILE DIRECTORY
FILE SECURITY CONTROLS

Declaring and Printing General Protection for the Flle Dlrectory .

Declaring File Security Controls .
Declaring Files Accessible Through Program Use

LISTING FILE INFORMATION
The FILES Command . .
The DIRECTORY Command
Switches

ACCESSING THE FILE DIRECTORY OF ANOTHER USER .

Section 5 — EDITOR, CONVERSATIONAL LANGUAGES,

AND APPLICATIONS PROGRAMS .

ENTERING AND LEAVING THE EDITOR .
Entering the EDITOR .
Leaving the EDITOR

CONVERSATIONAL LANGUAGES
APPLICATIONS PROGRAMS .

Section 6 — RUNNING USER PROGRAMS IN XEXEC .

THE COMPILE-TYPE COMMANDS .
The COMPILE Command
The LOAD Command .
The EXECUTE Command
The CDEBUG Command .
The FDEBUG Command .
The DEBUG Command
The TRY Command
Command Switches .
Compiler and Assembler Sw1tches .
Loader Switches .
Extended Command Forms

ADDITIONAL DEBUGGING AIDS .
The DDT Command
The D Command
The E Command .
The CROSS Command

INITIATING OR CONTINUING EXECUTION
The START and CSTART Commands .
The CONTINUE and CCONTINUE Commands

CORE IMAGE FILES .
The SAVE and SSAVE Commands
The GET, RUN, and GO Commands

RELEASING FILES
DETACHED PROCESSING

Page

35

35
35
37
40

40
41
41
42

45

45
45
45

47
47

49

51
52

53

55
55

28888

60
60
61
61

63
63
64

65
65
66

67
67

Section 7 — SYSTEM INFORMATION AND CONTROL .

PRINTING SYSTEM AND JOB INFORMATION
The CORE Command e ..
The DATE and DAYTIME Commands
The DSK Command
The PJOB Command
The PPN Command . . .

The RESOURCES Command
The SET LIMIT Command
The SYSNO Command

The SYSTAT Command

The TIME Command

The USERS Command

The VERSION Command
The WATCH Command

The WHERE Command

The WHO Command

DEVICE ASSIGNMENTS
The ASSIGN Command
The DEASSIGN Command

OPERATION MODES

Section 8 — INDIRECT COMMANDS
COMMAND STRING FILES

THE PERFORM COMMAND .
Legal Commands in a PERFORM File .
Interrupting the PERFORM Command

Appendix A — XEXEC COMMAND SUMMARY
Appendix B — TERMINAL FILLER CLASSES

Index 0 e e e e e e e e

Page

VA

7
7
72
72
72
73
73
73
74
74
75
75
76
76
77
77

78
78
78

79

81
81

82
82

85

91

93

Section 1
INTRODUCTION

XEXEC is the key to the TYMCOM-X system. XEXEC activates all the programs and languages
on the system through user commands. In addition, XEXEC commands provide an effective and
flexible file and file security system. XEXEC commands are simple and easy to use.

The XEXEC user has at his disposal a complete set of commands to handle all his activities on
the TYMCOM-X, including
Entering and leaving the Tymshare system
Creating, modifying, deleting, and renaming files
Setting file access controls
Running programs

Determining terminal connect time, machine number, etc.

Initiating detached processing

e Executing commands indirectly

SYMBOL CONVENTIONS

The symbols used in this manual to indicate user-typed Carriage Returns and Alt Mode/Escapes
are

Carriage Return: D

Alt Mode/Escape: o

To indicate clearly what the computer prints and what the user types, all user-typed information
is underlined. For example, in the lines

*WRITE 5

TO: TIMES 5

the computer prints an asterisk (*) and the user types WRITE followed by a Carriage Return. Then

the computer prints TO: and the user responds by typing TIMES followed by a Carriage Return.
Lowercase letters in a command form represent the type of information to be entered. For

example, the characters file name in the command form

-GO file name>

indicate that the user types the name of a file at that point.

Braces in a command form indicate that the user must enter one of the items enclosed in the
braces. The braces are not part of the command. For example, the command form

TYPE
- 2

PRINT} file list
LIST

2

indicates that the user precedes the file list with one of the words TYPE, PRINT, or LIST.

Brackets in a command form indicate an option; they are not part of the command. For example,
the command

-MODIFY ([file name]

indicates that the user may optionally specify a file name.

Control characters are denoted by a superscript c. For example, Z¢ denotes Control Z. A con-
trol character typed by the user is shown in italics and is underlined. Control characters do not
print on the terminal but are shown in examples for clarity. For example,

-DIRCAC\C\ECTORY 5

indicates the following activity: the user types DIRC, then types a Control A to delete the letter C;
the system prints \C\; then the user types the rest of the word and a Carriage Return.

The method of typing a control character depends upon the type of terminal being used. Con-
sult the literature for your terminal or see your local Tymshare representative for information
about typing control characters.

ABOUT THIS MANUAL

The rest of this section discusses the use of the Tymshare TYMCOM-X system. It explains how
to make the connection to the Tymshare network via the user’s terminal and how to log in,
identify the terminal, and log out.

Section 2 provides a general description of XEXEC commands; it also describes the user’s
interaction with the system including how to enter information, the use of line-editing features,
and the methods for declaring special terminal properties.

Section 3 explains the use of program and data files. The first part outlines the rules for naming
files and notations that may be used when referring to files in commands. These notations
allow the user to refer to many files with one expression, to exclude individual files when referring
to a group of files, and to refer to files in another user’s storage area. This section also contains
a short description of Tymshare’s EDITOR. The commands presented are adequate for the user to
create and edit any file with ease. Finally, the section includes the commands for printing, dupli-
cating, renaming, deleting, and comparing files.

Section 4 discusses the user file directory and file security controls. It explains the procedure for
establishing a given level of security for individual files and for the entire file directory. This
section also presents the commands used for obtaining information about the file directory. Finally,
the switches that may be used to control the listing of directory information are presented.

Section 5 describes the EDITOR and conversational languages available on the TYMCOM-X
and tells how to activate them. This section also discusses the use of applications programs available
to XEXEC users.

Section 6 presents the commands and the various options for running user-written programs
from XEXEC. Most of the options direct the compilation and execution of the user’s program; for
example, the user may specify libraries to be loaded with the program or may request a cross-
reference listing. This section also discusses the extended command forms which are useful when
working with many programs at one time, as well as the debugging aids available for user-written
programs. Finally, Section 6 describes how to execute programs independently of the terminal.

Section 7 details the commands provided for listing information about the system and the user’s

3

job. These commands display such information as the amount of unused core available, the current
time, and the current job number. This section also presents the commands that change device
assignments and the commands that transfer control from one operating mode to another.

Section 8 describes two methods of indirectly executing commands. Command string files allow
the user to execute certain commands for a series of files; the PERFORM command allows the
user to execute a sequence of commands stored on a file.

Appendix A contains an alphabetized list of all XEXEC command forms with a short description
of each command.

Appendix B contains a table describing the terminal filler classes.

ENTERING AND LEAVING THE SYSTEM

Entering the Tymshare system requires three steps: calling the Tymshare network (TYMNET),
identifying the type of terminal, and identifying the user. The name of this process is logging in.

Calling the Tymshare Network

The specific procedure for contacting the Tymshare network depends upon the terminal
configuration. Most terminals communicate through an acoustic coupler or a data phone. This
subsection describes the procedure for using these two devices.

Acoustic Coupler

1. Plug both cords from the terminal into the acoustic coupler, and plug the coupler into a
standard three-prong wall outlet.

2. Put the terminal in the on-line or compute mode.
3. Using a regular telephone, dial the local TYMNET access number.

4. When a high-pitch tone sounds, place the telephone handset into the coupler with the
telephone cord on the side indicated.

5. Push the ORIGINATE button on the acoustic coupler.

Data Phone

1. Put the terminal in the on-line or compute mode.

2. Push the TALK button.

3. Dial the local TYMNET access number.

4. When a high-pitch tone sounds, push the DATA button and replace the handset.

Identifying the Terminal

As soon as the user makes the connection to the Tymshare network, the system activates the
terminal and sends a message. It transmits the message at 10 characters per second, which prints

4

legibly only on 10-character-per-second terminals. On other speed terminals, a sequence of usually
unintelligible characters prints, and then the terminal pauses.

The user must first type the identification character for his terminal. This character tells the
system which code and transmission speed to use in communicating with the terminal.

The table below lists the terminal identification characters. If the user has a question about
which one applies to his particular terminal, he should contact his Tymshare representative.

. . Comments
I
(hf/'(’)su " deptification | Tymshare Other Terminals (Unless noted, ASCII and
no parity assumed)

10 D 200, 201 Teletype Model 33

15 B Teletype Model 37 (without
parity)

15 Carriage Return IBM 2741, Datel/UCC, Correspondence or EBCD code,
Itel/Dura, Novar, Trendata, depending on the telephone
AJ 841 number called

15 J Teletype Model 37 (with even | ASCII (even parity)
parity)

15/30 F Syner-Data Beta Terminal must be equipped
with dual-speed input/output
30 A 400 CRT Terminals No Carriage Return or Line
Feed delay
30 C 300, 301, Univac, Syner-Data Beta and
310,311 Totalterm, Gulton

30 G 321 Memorex 1240 and 1280, Delay after Line Feed
TermiNet 300

30 E 100, 110, 211, | Execuport, Texas Instruments | Short Carriage Return delay

212,213,221, | Models 725 and 733,
1030 NCR 260 Series

After the system receives the identification character, it prints the TYMNET node and port
number followed by the request

PLEASE LOG IN:

Logging In

The log-in procedure requires typing a user name and a password which are both registered by
Tymshare. A program called the Network Supervisor checks both the user name and the password
before admitting the user to the computer system. In addition to the user name and password, the
user may also specify a project code and a job number during the log in. The project code is useful
when assigning costs since the billing information sent to each customer includes the project code.
The job number is specified if the user wants to resume a job which had been previously detached.

1 - Detached processing is described on page 67.

After the system prints
PLEASE LOG IN:

the user enters his name, password, and an optional project code. The user may also enter an
optional job number at this point, to attach the terminal to a specified job.! The most efficient
procedure is to type all entries on the same line, separating them with semicolons (;). In the
example below, the user types his user name, MOORE, a password, and the project code, K-333,
separating the entries by semicolons. A Carriage Return comnletes the log-in procedure. The
system then prints the time and date, returns the carriage, and prints a prompt () at the beginning
of the line.? For example,

-1002-21=-~

PLEASE LOG IN: MOORE;;K=-3334

TYMSHARE 1116 29-APR-1974

The dash indicates that the user is in XEXEC and that the system is ready to accept a XEXEC
command.

An alternative method of logging in is to type a Carriage Return after each entry and wait for
the system to request the next entry. For example,

-1002-21=--

PLEASE LOG IN: ANDREWS The user enters his user name.
PASSWORD: 2 The password is not printed.

PROJ CODE: 2 The user does not choose to enter a project

code, so he types a Carriage Return only.
TYMSHARE 1120 29-APR-1974

If the user makes an error while logging in, the system replies with

ERROR, TYPE

followed by another request for the information. In the following example, the user types an
unacceptable user name, corrects his error, and continues to log in.

1 - Detached processing is described on page 67. R
2 - If the user is validated on a TYMCOM-X system other than XEXEC, the prompt for that system is printed rather than a dash (-).

6

-1002-21~~
PLEASE LOG IN: MORE,
ERROR, TYPE USER NAME: MOORE>

PASSWORD: >
PROJ CODE: K-333,

TYMSHARE 1210 30-APR-1974

The user can correct an error made while typing his project code by typing a Control A to delete
the previous character. Each additional Control A deletes one additional character. For example,
the system accepts the following project code as THERMAL

PROJ CODE: THARAS\RAA\ERMAL -

Note that Control A prints a back slash (\) followed by each character as it is deleted. When the
user types a character other than Control A, the new character is preceded by a second back
slash, thereby enclosing all deleted characters within a pair of back slashes.

NOTE: Control A cannot be used to correct a user name or password.
The error messages are the same regardless of which log-in procedure the user follows.

Associated with every user name is a specific computer system referred to as the user’s home
system. If a user is validated on more than one computer system, the log-in procedures described
previously connect him with his home system. To log into a system other than his home system,
the user types a colon (:) and the system number after his user name. For example, user HANSEN
is validated on system 2 and system 34; system 2 is his home system. To log into system 2, he
types his user name and password as shown below:

PLEASE LOG IN: HANSEN;;
To log into system 34, he types his user name and password as shown below:

PLEASE LOG IN: HANSEN:34;;~

The Network Supervisor allows two minutes to log in. Tymshare sets this time limit to prevent
an unauthorized user from accessing the system. If the user does not complete the log in within
the time limit, the Network Supervisor prints a disconnect message and terminates the connection.

If the user has difficulty logging into the system or receives no response, he should call the
local Tymshare office. Local TYMNET telephone numbers are usually posted on the terminal.

Logging Out
To leave the system, the user types LOGOUT, or simply LOG, followed by a Carriage Return.

The BYE and KJOB commands also perform this function. In response, the system prints the
Tymshare Resource Units (TRUs) and terminal connect time used.

0.89 TRU TRUs consumed.
TERMINAL TIME: 0:00:14 Connect time.

PLEASE LOG IN:

The EXIT command may also be used to leave the system. It is the same as LOGOUT except that
the system does not print the number of TRUs consumed or the terminal connect time.

After leaving the system, the user disconnects the terminal, logs into another system, or lets
another user log in. The next user should not retype the terminal identification character when
logging in on the same network connection.

If the terminal remains connected to the Network Supervisor and a user does not log in within
two minutes, the Network Supervisor prints a disconnect message and terminates the telephone
connection.

Section 2
USING XEXEC

This section provides an overview of XEXEC describing general information about XEXEC
commands. The user is introduced to XEXEC commands and shown how to enter information at
the terminal, correct errors made while entering information, and declare special terminal
properties.

THE FORM OF XEXEC COMMANDS
The different elements of a XEXEC command are separated from each other by spaces. For
example,
-RENAME FILE1 AS FILE2)

The elements of a command need not be separated by spaces if no confusion is caused by omitting
the spaces. For example, the space between the file name NEWPR and the switch name /SMALL
can be omitted in the command

-TYPE NEWPR/SMALL

but not in the command

-TYPE /SMALL NEWPR >

Many XEXEC commands have the form

—command file list 5

where file list is a list of file designations and possibly switches which modify the command.! The
format of the file list is governed by the following rules:

e Multiple file names are separated by commas.

e Multiple switches are optionally separated by spaces.

e A switch that immediately follows a file name need not be separated from the file name by
a space.

e A switch that precedes a file name must be separated from the file name by one or more
spaces.

e A switch that precedes a list of file names applies to all the file names that follow the switch.
e A switch that immediately follows a file name applies to that file name only.

e A switch that immediately follows a file name takes precedence over a switch that precedes a
list of file names.

REQUESTING INFORMATION ABOUT XEXEC COMMANDS

To obtain a list of XEXEC commands, the user simply types

-HELP,

1 - Command switches are described on page §S.

10

To obtain a list of options or switches available for a particular command, the user types the
command name followed by /HELP or by /?. For example,

-FILES /2?5

OPTIONS ARE:LPT,EXTENS,REVERS,ALPHAB,SIZE,CREATI,TIME,SECOND,TOT
, PROTEC, ACCESS,MODE , TEMPS,K, FAST ,EVERYT, UNSORT , STORAG, UFDBIT,NOP
, STATUS ,BEFORE, AFTER, TODAY ,WAIT ,RUN.

USER INTERACTION

The procedures for communicating with the system include entering information at the terminal,
editing information as it is entered, and declaring special terminal properties. These procedures
are discussed below.

Entering Data at the Terminal

Throughout a session at the terminal, the system prompts the user whenever it is ready to accept
a command, a response, or any user input. XEXEC prompts the user with a dash (=) to indicate
that it can accept a XEXEC command. The user may abbreviate any XEXEC command to the fewest
leftmost characters required to uniquely identify the command.

NOTE: As new commands are added to XEXEC, the number of characters required to uniquely
identify a command may change.

If XEXEC does not recognize a command, it responds by printing what the user typed surrounded
by question marks. For example,

-NOCOMMAND 5
’NOCOMMAND?

Subsystems of XEXEC prompt the user with a character other than a dash.! The example below
illustrates the user’s interaction with the system as he calls EDITOR and enters an EDITOR
command.

-EDITOR> XEXEC prints a prompt and the user enters a XEXEC command.

#READ INVENo The subsystem prints a prompt and the user enters an EDITOR command.
1 980 CH RS
The subsystem prompts the user for another EDITOR command.

Line-Editing Features
The user can edit information being entered by deleting a character or by deleting an entire line.

Control A deletes the preceding character; it may be used repeatedly to delete several preceding
characters. The system surrounds the character(s) deleted with back slashes (\). For example, the line

1 - XEXEC subsystems are discussed on page 45.

1

-DELTEAC\EACT\ETE PROG15
is accepted as
-DELETE PROG1 5

Control Q deletes an entire line of user input. After the user types a Control Q, the system prints
an up arrow (1) followed by a Carriage Return and waits for the user to reenter the line. For
example,

-TYPE PG1, PG2Q¢*
TYPE PG1, PG2-

If the user types an Alt Mode/Escape at any time before the terminating Carriage Return, the
command is aborted.

NOTE: When a program is waiting for input from the terminal, one Alt Mode/Escape returns
control to XEXEC. Unless a program is designed so that only a direct command terminates
execution, two consecutive Alt Mode/Escapes terminate current operations, abort any commands
that bave not been executed, and return control to XEXEC.

Declaring Special Terminal Properties

The user may declare the special properties of his terminal with the TTY command. The TTY
command can be used to simulate features such as tabs and form feeds on terminals not equipped
with these functions.

The table below explains the various commands for special terminals, their meanings to the
system, the standard state of TYMCOM-X terminals, and the procedures which normally take
place.

Speé:?rln'll;:::imal Meaning Standard State Meaning

TTY TAB This terminal is equipped with TTY NO TAB The system simulates the TAB
TAB stops; when a tab appears in output by sending an appropriate
text, the system sends Control I number of spaces instead of

Control I

TTY FORM This terminal is equipped with TTY NO FORM | The system simulates FORM
FORM (page) and VT (vertical with eight Line Feeds, and VT
tab) characters. The system with four Line Feeds
sends these characters without
simulation

TTY FILL n The terminal is assigned filler TTY NO FILL | The filler class is 0. All fillers are
classn.! The filler character is equal to 0
DEL or RUBOUT

(Table continues)

1 - The filler classes are described in Appendix B on page 91.

12

Special Terminal

Command Meaning Standard State Meaning

TTY LC The system accepts lowercase TTY NO LC The system translates lowercase
characters and does not convert characters entered by the user to
them to upper case uppercase characters

TTY WIDTH n | The width of the carriage is set to | TTY WIDTH 72 | The carriage is 72 characters wide
n, which determines the number with an automatic Carriage
of characters per line preceding Return inserted after column 72
the automatic Carriage Return at
the end of the line. The value of
n may range from 17 to 200

TTY NO CRLF | The system suppresses the TTY CRLF Restores the normal insertion of
automatic insertion of a Carriage Carriage Returns
Return when the carriage exceeds
its width

TTY NO ECHO | This suppresses the normal echo TTY ECHO Restores the normal procedure of

sent from the system after
receiving input from the user

echoing each character after it is
received

13

Section 3
USING FILES IN XEXEC

Files are an important part of the Tymshare system. A file contains information such as a
program or data and is stored on a storage device. Unless the user declares files as temporary,
files are permanent storage; that is, they stay on the system until the user explicitly removes
them, even though he logs off after each session at the terminal. XEXEC has commands to
create and modify files, list descriptive information about the files, change the standard
protection controls for files, copy files, print files, rename files, and delete files from the
storage area.

RULES FOR NAMING FILES

The user identifies a file with a file name and an optional extension. A file name may
contain as many as six characters, with any combination of letters and digits. The following
are acceptable file names:

PGM3 LDATA 3TEST SURVEY FPROG

The user may find it convenient to include an extension in the file identifier to indicate the
type of information stored on the file. Usually the extension is a standard one which XEXEC
recognizes. A period (.) separates the file name from its extension. The extension may contain
no more than three alphanumeric characters. Some standard extensions and their meanings are
listed on the following page. The following list of file names with standard extensions demon-
strates the contents of a typical user’s storage area:

STAT.F4 STAT.SAV ACCTG.SAV
ROUT3.CRF POLL.DAT ROUT3.REL
PGM1.REL ROUT3.MAC PGM1.F4

14

A list of standard XEXEC extensions and their meanings is presented below.

Extension Meaning to the System
F4 FORTRAN 1V source program
FTF FORTRAN source program

MAC MACRO source program

BAS BASIC source program
CBL COBOL source program
BLI BLISS source program
FAS FASBOL source program
SIM SIMPLE source program

FAL' FAIL source program

SAI! SAIL source program

ALG! ALGOL source program

LSP! LISP source program

SNO! SNOBOL source program

VAS Varian assembler source program
REL Relocatable binary file that the compiler/assembler produces
SAV Executable file that the SAVE command produces and the RUN command uses

HGH? Executable file containing the high segment of a two-segment program produced by the SAVE
command

LOW? Executable file containing the low segment of a two-segment program produced by the SAVE or

SSAVE command

SHR? Executable file containing the sharable high segment of a two-segment program produced by the
SSAVE command

LST Ordinary listing

CRF? Cross-reference data which the CROSS command processes

CMD* File containing text to be used as part of a command

DAT Data file

T™P Temporary file which the system automatically deletes when the user logs out

1 - These extensions refer to language compilers that are available on the system although Tymshare does not currently support these
languages.

2- See the DECsystem10 Assembly Language Handbook for further explanation.

3 - The user creates the CRF file using the /CREF switch, discussed on page 56; the CROSS command, discussed on page 61,
processes the CRF files.

4 - See the @ construction on page 81.

15

NOTE: The source program or data file name may bave the null or blank extension. For
example, the following names bave the null extension:

FPROG PGM2 CDATA TEXT2

The system reserves certain file names which the user should not attempt to use to identify his
files. The following are reserved file names: ALL, HELP, NOT, SAME, and any left subset of
the words TERMINAL and TELETYPE.

REFERRING TO FILES IN COMMANDS

All XEXEC commands recognize a reference to an existing file if both the file name and
extension are specified. Certain XEXEC commands allow the user to refer to a file without
specifying an extension provided that the file identifier has a standard extension or no extension.
The compile-type commands, described on page 51, search for a standard extension or append a
standard extension to a file identifier that has no extension.! The GET, RUN, and GO commands,
described on page 66, search for the HGH extension first, then the SHR extension, then the SAV
extension. If the file identifier has no extension, SAV is assumed. If a file identifier has a non-
standard extension, the extension must be specified when referring to the file.

Asterisk (*) Notation

Asterisk notation allows the user to specify several files with a single identifier. An asterisk (*)
can be used as either part of a file identifier to indicate all file names or all extensions. For example,
TEST1.* refers to all files with the name TEST1, regardless of the extension. Similarly, *.F4 refers
to all files with the F4 extension. The user may refer to all files in his directory with *.* or the
word ALL.

Asterisk notation can be used with the following commands: COPY, DECLARE, DELETE,
DIRECTORY, FILES, LIST, PRINT, RENAME, and TYPE.

Crosshatch (#) or Question Mark (?) Notation

Crosshatch or question mark notation also allows the user to specify several files with a single
identifier. A crosshatch (#) or a question mark (?) can be used instead of a character in a file
identifier to mean any character. The crosshatch or question mark can be used repeatedly and
can be interspersed throughout the file identifier. For example, #P##.F4 could refer to CP12.F4,
APPS.F4, etc. If the crosshatch or question mark is at the end of a file name or extension, it repre-
sents no character as well as any character. TEST#.REL, for example, refers to all file identifiers
with the REL extension and the file name TEST followed by one character or by no characters as
in the case of TEST.REL. Consider the file identifiers listed below.

TEST TEST1.SAV TESTA.NEW
TEST1.F4 TEST2.F4 TESTA.REL
TEST1.REL TEST3.SAV TESTS

1 - The user should specify the extension if he has more than one file with the same name but with extensions that imply different
compilers, for example, TEST.F4 and TEST.CBL.

16

The user may refer to all the files previously listed by typing

TEST#.*

To refer to all TEST1 files, the user types

TEST1.#

To refer once to all the above files that have the NEW or REL extension, the user types
TEST#.#E#

The crosshatch or question mark notation can be used with the following commands: COPY,
DECLARE, DELETE, DIRECTORY, FILES, and RENAME.

NOT or Minus Sign (-) Notation

- To exclude a particular file or group of files from a command, the user may type NOT or a
minus sign (-) followed by the file name or group of file names to be excluded. For example, to
refer to all files except those with the .F4 extension, the user types

ALL NOT *.F4
To refer to all files that begin with TEST, except TEST4 and TESTS5, the user types
TEST#.*-TEST4.*-TEST5.*

The NOT or minus sign notation can be used with the following commands: DECLARE,
DELETE, DIRECTORY, and FILES.

Referring to Files in Another User’s Storage Area

A user can refer to a file in another user’s storage area by preceding the file name with the
owner’s user name, enclosed in parentheses. For example, (OLSON)INVEN refers to the file
INVEN located in OLSON’s storage area. One user may gain access to a file in another user’s
storage area if the owner declares that file to be sharable.! The owner can allow another user
to run programs from his storage area, read files from his storage area, or change files in his
storage area.

For example, if user WONG declares his file COMPUTE to be sharable, user ALVIN can copy
COMPUTE to a file named MYCOMP which is in ALVIN’s storage area by typing?

—COPY (WONG)COMPUTE TO MYCOMP

In the FILES, DIRECTORY, DELETE, and DECLARE commands, only the first file name in
a list of file names can have a user name associated with it. This user name applies to all the files
in the list. For example,

-DELETE (MARGE)FIL1,FIL2, FIL3 -

deletes FIL1, FIL2, and FIL3 in MARGE’s storage area if the protection of each file has been
declared ALL.

1 - The DECLARE command is described on page 37.
2 - The COPY command is described on page 22.

17

INTRODUCTION TO EDITOR

EDITOR allows the Tymshare user to create or edit any file easily and quickly. The file may
contain text, a computer program in any language, or symbolic data which the user wants to
enter into the system at a later time. The user may enter information into EDITOR from a file
or directly from the terminal.

The user calls EDITOR from XEXEC by typing
-EDITOR 5
Then EDITOR prompts with an asterisk (*) and waits for the user to enter a command.

The Tymshare EDITOR Reference Manual and the Tymsbare Addendum to EDITOR thoroughly
describe EDITOR’s convenient commands and elaborate capabilities. This discussion is simply an
introduction to the most popular features for creating and editing files.

Creating a File

Most files are created in EDITOR. To create a file, the user must first enter the contents of
the file as lines of text using the APPEND command. He first types

*APPEND-,

Next, the user types as many lines of text as desired. Each line is terminated by a Carriage Return.
To quit entering text, the user types a Control D as the first character of a line.! EDITOR
responds by printing an asterisk prompt character. The user may then type the WRITE command
to save on a file the text just entered. The command form is

*WRITE file identifier 5

or simply WRITE followed by a Carriage Return. When the user types WRITE only, EDITOR
prompts for a file identifier on which to store the data. For example,

-EDITOR>
#APPEND>
98.6 99.0 98.7 100.0,

99.0 98.6 98.5 99.0
99.6 98.6 101.0 105.05

D¢ The user types a Control D to terminate the APPEND
*WRITE 5 command and then enters the WRITE command.
TO: TDATAS

NEW rILE>
70 CHRS
¥QUIT 5 The QUIT command returns control to XEXEC.

1-If a Control D is typed in midline, it adds the remaining characters of the previous line onto the current line; it does not terminate
the APPEND command.

18

Whenever the user types the WRITE command, EDITOR checks to see whether a file with the
identifier specified already exists in the user’s storage area. The system prints NEW FILE if the
user types a new file name, or OLD FILE if a file name already exists. Then, EDITOR waits for
the user to confirm or abort the WRITE command. A Carriage Return confirms the WRITE
command. If the user types a Carriage Return after the OLD FILE message, his current text
replaces the contents of the old file. The user may abort the WRITE command and save the
contents of the old file by typing any character other than a Carriage Return; EDITOR auto-
matically returns the carriage and allows the user to enter another command. The example
shown below illustrates this feature.

-EDITOR>
*APPENDS
THIS IS RANDOM TEXT,
D¢
*WRITE TDATAS
OLD FILE N> The user types an N to abort the command. He may enter
#* the WRITE command again with a different file name.

The example below demonstrates the use of a few control characters to perform editing
functions while creating a file. Control A deletes the preceding character and prints a back
slash (\) and the deleted character. The user may type it repeatedly to delete several characters;
each repeated use prints the deleted character. Control Q deletes the current line and prints an
up arrow (1). Control W deletes the preceding word, defined as the immediately preceding blanks,
if any, plus the immediately preceding nonblank characters, up to but not including the first blank
preceding them; the deleted characters are printed surrounded by back slashes.

-EDITORS

¥APPEND 5

ABCDFAS\F\EFGH~ Control A deletes F.

IKJLMNOPGQOC ¢ Control Q deletes the line and returns the carriage.

IJKLMNOPQ >

RSTUVWXYZ>

THE ALPHBETWe\TEBHPLANALPHABET > Control W deletes ALPHBET.

D¢ Control D terminates the APPEND mode.

*/ The system prints the prompt character, and the user

ABCDEFGH requests a listing of the current text by typing a slash.

JJKLMNOPQ

RSTUVWXYZ

THE ALPHABET

*WRITE ALPHA> The user enters the command to write the text on a
NEW rILES file named ALPHA.

50 CHRS

*QUIT 5 The QUIT command returns control to XEXEC.

The slash (/) can be used to print all or part of the current text in EDITOR. To print all the text,
the user simply types a slash. To print a line or a range of lines, the user types

*r/

where r represents a line, or a range of lines. The range is indicated by the numbers of the first and
last lines; the numbers are separated by a comma.

For example,
*3 4/
prints lines 3 and 4.

Editing a File

The user may change the contents of an existing file using EDITOR. First, he must instruct
EDITOR to read the file into the text area. He accomplishes this with the READ command.
For example,

-EDITOR>

“READ E EXAMEL;
65 CHRS

*/ The user types a slash to print the contents of the file.
124456789

400 200 300 400 500

THERE IS A MUSTAKE IN THIS LINE

#*

The user may make changes within a line of text with the EDIT command. The command
form is

+r EDIT 5

where 7 represents a line or a range of lines which the user wants to edit; a range of lines is
indicated by typing the first and last line of the range, separated by commas. For example, to
edit lines 1 through 5, the user types

*1,5 EDIT -
The user edits the first line of the example printed above:

#1 EDITo EDITOR prints the line to which the EDIT command refers and returns the carriage.
124456789

123456789) The user retypes the line, making the changes desired.

#

The Tymsbare EDITOR Reference Manual describes many additional editing capabilities and
conveniences. This subsection presents an explanation of two control characters that may be
used in editing a line.

Control D copies the remainder of the old line after the user makes changes to the beginning
of the line. In this example, the user wishes to edit line 2, changing the first 4 to a 1. First, he
specifies the line number and types the EDIT command. EDITOR prints line 2.

#2 EDITo
400 200 300 400 500

1Dc 00 200 300 400 500 The user typesa I and then Control D, which
copies the rest of the old line to the new line.

19

20

Control Z copies characters from the old line up to and including the character typed after it.
For example, the user wants to edit line 3.

#3 EDIT,
THERE IS A MUSTAKE IN THIS LINE
ZCMTHERE IS A MID¢STAKE IN THIS LINE Control Z followed by an M copies the

*/ old line through the first occurrence of
12 3456789 M. Next, the user types the correction
100 200 300 400 500 followed by a Control D, which copies
THERE IS A MISTAKE 1IN THIS LINE the rest ofthe line and returns the

. carriage.

The DELETE command removes one or more lines from a file. The command form is

*r DELETE >

where 7 represents a line or range of lines. In the example below, the user deletes line 3. Next,
he adds two lines to the end of the text. He accomplishes this with the APPEND command,
discussed on page 17.

#3 DELETE
*APPEND>

135795

1155335

Dc A Control D typed immediately after a Carriage Return terminates the
*/ APPEND mode. The user types a slash to examine the current text.
123456789

100 200 300 400 500

13579

l 15533

Whereas the APPEND command adds additional lines at the end of the text, the INSERT
command adds additional lines anywhere in the text. In the following example, the user inserts
two lines before line 2.

*

ABCDEF 5

GHIJKL >

D¢ A Control D typed immediately after a Carriage Return terminates the
*/ INSERT mode. The user types a slash to examine the current text.
123456789

ABCDEF

GHIJKL

100 200 300 400 500

13579

115533

*WRITES The user writes the edited text on the same file.

TO: EXAMPL
OLD FILE> He confirms the WRITE command, which deletes the previous
65 CHRS contents of EXAMPL .

*QUIT, The QUIT command returns control to XEXEC.

21

The QUIT command returns control to XEXEC. The user can also return control to XEXEC
by typing one or more Alt Mode/Escapes. If the user inadvertently returns control to XEXEC by
typing Alt Mode/Escapes before he writes his file, he should immediately type the CONTINUE
or REENTER command to return control to EDITOR.! The user will find his text intact, with
the possible exception of the last line typed. If the user attempts to leave EDITOR by typing
QUIT before he writes his file, EDITOR warns him with the message

FILE NOT WRITTEN - OK?

An N or NO answer leaves control in EDITOR. A Carriage Return or Y returns control to XEXEC
and the edited text is lost.

Summary

The tables which follow summarize the information presented in this section.

EDITOR Command Action

READ file name Reads the specified file into the text area. The command is terminated with a
Carriage Return

APPEND Adds the following lines to the end of the current text. The entry is terminated
with a Control D

WRITE file name Stores the current text on the specified file. The command is terminated with a
Carriage Return

r EDIT Prints the specified range of lines one line at a time and allows the user to change
them. The user edits each line and the edited lines replace the old lines. The
command is terminated with a Carriage Return

r DELETE Deletes the specified range of lines. The command is terminated with a Carriage
Return

n INSERT Inserts the following text before line n. The entry is terminated with a Control D

[n]/ Prints line # or all the current text if # is not specified. No Carriage Return is

required after a slash.

QUIT Returns control to XEXEC. The command is terminated with a Carriage Return

1 - See page 46 for an explanation of the CONTINUE and REENTER commands.

22

Control Character Function

A€ Deletes preceding character; it may be used repeatedly to delete several
characters

D€ (after a Carriage Return) | Terminates the APPEND or INSERT command

D€ (within a line) Copies the rest of the old line (in EDIT), or copies the rest of the preceding
line (in APPEND or INSERT)

oc Deletes the entire line

we Deletes the preceding word, defined as the immediately preceding blanks, if

any, plus the immediately preceding nonblank characters, up to but not
including the first blank preceding them

ZE€ (followed by a character) | Copies the previous contents of the line up to and including the character
typed after Control Z (in EDIT), or copies the preceding line up to and
including the character typed after Control Z (in APPEND or INSERT)

THE COPY COMMAND

The COPY command enables the user to create a new file, copy an existing file in his own or
another user’s storage area, or concatenate two or more files. The form of the COPY command
is

—COPY source {TO} destinationp

where source and destination are file identifiers. The contents of the source file are copied and
saved on the destination file. If the user simply types COPY followed by a Carriage Return, the
system prompts for the file identifiers. For example,

-COPY>
FROM FILE: OLDF >
TO FILE: NEWFo)

Creating a File

The user may create a file directly in XEXEC with the COPY command by specifying the
terminal as the source. For example,

—COPY TERMINAL TO NEWFIL 5

creates a file named NEWFIL, which contains the text entered after the COPY command. If
NEWFIL already exists, the COPY command deletes the old contents of the file and replaces
them with the new text.

NOTE: The word TERMINAL may be abbreviated to any left subset of the word.

23

After typing the COPY command, the user enters his text. Only two editing characters are
available with the COPY command: Control A and Control Q, which are described on pages 10
and 11. The user types a Control D or a Control Z to terminate entering text and to create the
file with the designated file identifier. For example,

-COPY T TO SDATA>
25,11,21,46,
21,5,25,50
57,546, 10

56,4,1,155

Duplicating a File

The user may duplicate a file using the COPY command by specifying an existing file as the
source. For example, to duplicate the contents of file ADDRS1 on another file named ADDRS2,
the user types

-COPY ADDRS1 TO ADDRS2,
The same text exists on two different files, ADDRS1 and ADDRS2.

The user may also copy the contents of a file to or from another user’s storage area. This is
possible only if protection of the file to be copied allows other users to read it. See page 37 for
a discussion of file protection.

The form of the COPY command to copy a file to the current user’s storage area is

—COPY (user name)file name TO file name o

To copy a file to another user’s storage area, the form is
—COPY (user name)file name TO (user name)file name o

A destination file identifier of SAME assigns the new file the same name it had in the other user’s
storage area. For example,

-COPY (MOORE)LANI TO SAME |,

copies the contents of the file named LANI in user MOORE'’s storage area to a file named LANI
in the storage area of the current user.

If the user specifies the terminal as the destination, the contents of a file are printed at the
terminal. For example,

-COPY AMT TO TERMINAL>
457.39
500.00
1434.90
892.47
1553.79
231.38

24

Concatenating Files

The user may concatenate the contents of two or more files and store the result on another
file by using a plus sign (+) between the files to be concatenated. The appropriate form of the
COPY command is

~COPY sourcej+sourcea+ - - - +sourcey, {TO} destination o
9

For example, assume that file A contains the text
LINE 1 FROM FILE A
and file B contains the text

LINES 2 AND
3 FROM FILE B

The user types the command
—COPY A+B,C

File C now contains the text shown below.

-TYPE C>

LINE 1 FROM FILE A
LINES 2 AND

3 FROM FILE B

This form of the COPY command can also be used to concatenate and copy files from another
user’s storage area. When a user name precedes a file in the list, it applies to all subsequent files
joined by plus signs until a new user name appears in the list. For example,

—COPY (SFS)TEST+TEST1+(VIOLET)FILEA+FILEB,A o

concatenates files TEST and TEST1 in user SFS’s storage area and files FILEA and FILEB in
user VIOLET’s storage area, and writes the result on file A in the storage area of the current user.

NOTE: If the user specifies the word SAME as the destination, the files are not concatenated
but are copied individually on files with the same name in the user’s storage area. For example,
the command

—COPY (SFS)TEST+TEST1 TO SAME

duplicates the contents of (SFS)TEST on a file named TEST in the user’s storage area and
duplicates the contents of (SFS)TEST1 on a file named TEST1 in the user’s storage area.

DELETING FILES

The DELETE command removes a file or group of files from the user’s directory. The
command form is

-DELETE file list 5

where file list is a list of file names separated by commas and optional switches, including the
/WAIT switch, described below, or any of the item, sort, or select switches listed on page 42;
these switches provide additional information about the files, delete the files in a certain order,
or select certain files to delete.

The system deletes the file only if its protection allows deletion,! that is, if its protection is
ALL. If the user attempts to delete a file that has protection other than ALL, the system prints

file name *+PROTECTED**
and does not delete the file. For example,

-DELETE TDATAD

TDATA ¥#PROTECTED*#*

The /WAIT switch instructs the system to ask the user to verify the DELETE command for
each file specified in the command. The system prints the heading

FILES DELETED:

followed by a file identifier and a question mark (?) for each file specified in the command. The
user must type Y to delete the file and N to prevent the deletion of the file. A Carriage Return
need not be typed after the response. For example, the user wants to delete the files INV.SEP,
PGM1.REL, and PGM1.F4:

-DELETE /WAIT INV.SEP,PGM1.%*,

FILES DELETED:

PGM1 FY ?2Y
PGM1 REL ?Y
INV SEP 7Y
PGM1 CRF ?N ¥**NOT DELETED##¥

In the example shown below, the user wants to delete specific files created after April 24.
He uses the /WAIT switch and also requests that the system print the size with the file
identifier.?

-DELETE ALL /WAIT /SIZE /AFTER 24-APR5

FILES DELETED:

OLDF 5 ?2Y

TDATA 5 7Y ##pPROTECTED## Note that, even though the user
TEXT LST 10 ?N **NOT DELETED%*#* ®ypesY, the system does not
TEXT 5 7N ##NOT DELETED#¥* delete the file because the file’s
A 5 ?§ protection prevents deletion.

1 - Refer to page 37 for a discussion of file protection.
2 - The /SIZE and /[AFTER switches are discussed on pages 42 and 43.

26

RENAMING FILES

The RENAME command changes the identifiers of existing files. The command form is

_RENAME old file identifier {AS} new file identifier

For example, to change the name of file LDATA to MDATA, the user types
-RENAME LDATA AS MDATA 5

The user may simply type RENAME followed by a Carriage Return, and the system prompts for
the file identifiers. For example,

-RENAME >
OLD NAME: PROG>
NEW NAME: LPROGo

The system prevents the user from changing the file identifier to an existing file identifier.

The user may change several file identifiers with one command by using *, #, or ? notation.
For example, the command

-RENAME TEST1.+ AS TEST6.*5

changes the names of all files named TEST1, regardless of extension, to TEST6 with the same
extension. The command

-RENAME EOM### AS ACCT### >

renames all files whose names begin with EOM and contain six characters to ACCT followed by
the last three characters of the previous name; that is, EOM122 is changed to ACCT122, EOMNTH
is changed to ACCTNTH, etc.

PRINTING FILES

The TYPE, PRINT, and LIST commands allow the user to print files on the terminal or on the
line printer at Tymshare’s computer center.!

The TYPE command prints a file(s) on the terminal; the LIST command prints a file(s) on the
line printer in page format with a heading on each page, and the PRINT command prints a file(s)
on the line printer without page format and without a heading on each page. A heading consists
of a page number, the file name, the date, and the time.

The switches described in the subsections below change the format of the listings produced by
each of the printing commands.

1 - The user should consult his Tymshare representative if he wants to arrange to use a local line printer.

27

The Form of the Printing Commands
The general form of the printing commands is

TYPE
~{PRINT, file listo
LIST

where the file list is one or more file identifiers and optional switches which control the form of
the output.

Examples of valid print commands are listed below.

Command Effect
TYPE FILE1 Prints the contents of file FILE1 on the terminal
PRINT DATI1,DAT2 Prints the contents of files DAT1 and DAT?2 on the line printer with no
headings!)
LIST AA,BB,CC Prints the contents of files AA, BB, and CC on the line printer.! Each file

starts on a new page and each page begins with a heading

PRINT /SMALL FORTFL,A1 | Prints th;. contents of file FORTFL and Al on the line printer, 43 lines
per page

The user can store a copy of the printed output on a disk file by specifying a file identifier
after the command. For example, the command

-LIST PRFIL=DAT1,DAT2+
stores the contents of files DAT1 and DAT2 on PRFIL in page format with a heading on each
page.

Specifying Format Switches

The TYPE, PRINT, and LIST commands allow the user to control the format of the listing by
altering any of the preset switches. Switches may be set to apply to one or more files named in
the command.

A switch applies to only one file if it immediately follows a file identifier and is separated
from subsequent file identifiers by a comma (,).> For example, the command

-PRINT DATCOR/HEAD,GPFIN,PALALT
prints the listing of DATCOR with headings, but prints GPFIN and PALALT without headings.

1 - The line printer is located at Tymshare Computer Operations.
2 - The /[SMALL switch is described on page 28.
3 - The /COUNT switch is an exception to this rule. See page 28 for a description of this switch.

28

To make a switch apply to several files, it must precede the list of file identifiers. For example,
the command

~PRINT /HEAD FILEA,DATFIL,BDATA |
prints each of the specified files with headings.

These two methods of specifying format switches may be combined in the same command. A
switch that applies to only one file overrides a switch that applies to several files. For example,
in the command

-PRINT /ONENUM /HEAD VOLE.BAL,HANBAL,BASE.BAL/NOHEAD,FOOT.BAL -
the switch /NOHEAD cancels the switch /HEAD for the printing of BASE.BAL, but /HEAD is
in effect for the file FOOT.BAL.

The following table lists both the preset and the optional switches for the TYPE, PRINT, and
LIST commands. Each switch may be abbreviated to as few characters as necessary for uniqueness.
For example, /DOUBLE may be abbreviated to /D, and /NOHEAD may be abbreviated to /NOH.

Preset For .
Control Switch Result
LIST | PRINT | TYPE
Spacing [SINGLE Single spacing . . °
/DOUBLE Double spacing
/MULTISPACE n | Spacing of n lines between printed
lines
Paper size /LARGE 58 lines per page printed; standard L] L
for 11- by 147/s-inch paper
/SMALL 43 lines per page printed; standard
for 8'/2- by 11-inch paper
[SIZE n Page length of » lines per page,]
including any heading and blank lines n=54
Line length /LOL n Line length of n characters; n must
be an integer greater than or equal to
20
Page count /COUNT The total number of pages in the

listing printed at the user’s terminal

NOTE: Once this switch is specified,
all file names typed after it are
affected by it

29

Control

Switch

Result

Preset For

LIST

PRINT

TYPE

Heading

/HEAD

Heading printed on each page of the -

listing. The heading consists of the
page number, file name, date, and
time of printing

/NOHEAD

Heading not printed

/CHEAD

File identification information
printed at the beginning of the file
listing on a separate page. The place
of printing, system number, directory
name, file name, date, and time of
printing are printed

/NOCHEAD

File identification information not
printed

/TWONUM

Two-digit page numbers (PAGE 1-1,
PAGE 1-2, ..., PAGE m-n) printed
on each page of the listing. The first
number is the logical page number
and is incremented each time a top-
of-form character, Control L, is
encountered in the text of the file
being printed. The second number is
the sequential subpage number of the
logical page number’

NOTE: Since the page number is
part of the heading, the user must
also enter the [HEAD switch in con-
junction with either the |ONENUM
or the [TWONUM switch if he uses
the PRINT command

/ONENUM

Pages numbered sequentially
(PAGE 1,PAGE 2, ...,PAGE n)

Case

/CASE

Both uppercase and lowercase
alphabetic characters printed, as well
as numbers, 27 special symbols, and
the space

/NOCASE

Same as /CASE, except lowercase
alphabetic characters printed as
uppercase alphabetic characters

/NOFULL

The special characters ({ } Vo~
RUBOUT) not available

/{FULLCH

Full set of 96 characters available

(Table continues)

1- A Control V must be used to insert a Control L as text in the file itself. For further information on the use of control characters,
refer to the Tymshare EDITOR Reference Manual.

30

Control

Switch

Result

Preset For

LIST

PRINT

TYPE

Special case

/NOQUESTION

Control characters and control shift
characters not printed

/QUESTION

Control characters and control shift
characters printed as ?“‘character”.
For example, S€ is printed as ?.
and H€ is printed as ?(

Special program

/SEQUENCE

Line numbers contained in a
sequentially numbered file are
printed

/NOSEQUENCE

Line numbers contained in a
sequentially numbered file are not
printed

/FORTRAN

File printed as a FORTRAN data file
if it contains FORTRAN carriage
control as the first character in each
line of the file

/NOFORTRAN

The effect of the /[FORTRAN switch
nullified

Default switches

/NORMAL

All preset switches restored

Refer to the Tymshare Remote Line Printer Software Reference Manual for a description of all
commands and switches that apply to remote line printers.

In the example below, the user prints the file TRIG on the terminal with double spacing and a

heading.

-TYPE TRIG /DOUBLE /HEAD,

PAGE 1-1

TRIG

WRITE (5,10)

MON 29-APR-T4 17:40

READ (5,100) ANGLE

X=SIN(ANGLE)

Y=COS(ANGLE)

WRITE(5,20)X,Y

10 FORMAT (14H ENTER ANGLE:)

31

20 FORMAT (6H SIN= ,F5.2,5X,6H COS= ,F5.2)
100 FORMAT(FT7.2)
END

COMPARING THE CONTENTS OF TWO FILES
The DIFFERENCES command compares the contents of two files specified by the user and
lists all differences between the files. The general form of the DIFFERENCES command is
~DIFFERENCES [file identifierg =] file identifier;, file identifier;, [switch(es)]

If file identifiery = is omitted, the differences are listed on the terminal. The user may cause the
system to prompt for the input and output file identifiers by typing the command name and
optional switches followed by a Carriage Return. For example,

-DIFFERENCES [switches]~
OUTPUT TO: file identifierg 5
INPUT FILE 1: file identifier;
INPUT FILE 2: file identifier;

file identifier, Indicates the output file; it may be any disk file identifier or TER for the
terminal.

file identifier; and Specify the files to be compared.
file identifier,

switches Represents any of the DIFFERENCES switches described below.

The DIFFERENCES command compares files in any one of three modes: symbolic, binary,
or core image.! Files compared in the symbolic mode are compared line by line; files compared
in the binary or core-image mode are compared word by word. Octal locations printed during
core-image comparisons are core addresses rather than locations within the file. The comparison
mode is determined by the switches entered with the DIFFERENCES command or, if no switch
is specified, by file name extensions.> The extensions that imply a core-image comparison are
HGH, LOW, SAV, and SHR. The following extensions imply a binary comparison:

BAC DCR QUC RTB
BIN DMP QUE SFD
BUG MFD QUF SYM
CAL MSB REL SYS

CHN OVL RIM UFD
DAE OVR RMT XPN

All other extensions imply a symbolic comparison.

1 - Symbolic files contain symbolic source code or text; binary files contain relocatable object code; core-image files contain an exact
copy of a program and subprograms loaded in core.
2 - If the extension on file identifier is not specified, it is assumed to be the same as the extension on file identifier.

32

When DIFFERENCES compares two symbolic files, it prints the file number and page
number(s) for each file, followed by all lines that are not identical in both files; if the files are
the same, DIFFERENCES prints NO DIFFERENCES ENCOUNTERED. For reference purposes
DIFFERENCES follows each set of nonidentical lines with a line that matches in both files. For
example,

’

-DIFFERENCES

OUTPUT TO: TERo5

INPUT FILE 1: TRIG.Fl5
INPUT FILE 2: TRIG1.Fl5

DIFFERENCES prints the lines from
01 WRITE (5,10) TRIG.F4 that do not match the corre-
1) READ (5,100) ANGLE sponding lines in TRIG1.F4.
ll** X=SIN(ANGLE) This line is the same in both files.
DIFFERENCES prints the lines from
2)1 WRITE (1,10) TRIG1.F4 that do not match the corre-
2) READ (0, 1;00) ANGLE sponding lines in TRIG.F4.
2) X=SIN(ANGLE) This line is the same in both files.
Y 3222223111

Files are different

When DIFFERENCES compares two binary files, it prints the nonidentical words from each
file side by side. Each line of the comparison has the following format:

octal location first file word second file word difference?

For example, the binary relocatable files from the compilation of TRIG and TRIG1 are compared
below.

-DIFrERENCES TRIG.REL,TRIG1.RELo

000011 017040 000005 017040 000001 000004
000016 016040 000005 016040 000000 000005

riles are different

When DIFFERENCES compares two core-image files, it prints the same comparison as for
binary files, but the octal location is a core address rather than a location in the file.

1 -If only the right halves of the words differ, the difference printed represents the subtraction of one word from the other. If the
left halves of the words differ, the difference printed represents the exclusive OR of the two words; that is, a bit-by-bit comparison
results in true if one or the other is true, but not if both are true or both are false.

33

The user can include switches in the DIFFERENCES command to specify a particular type of
comparison. If a switch and a file name extension conflict, the switch overrides the extension.
The switches available for symbolic and binary comparisons are listed below, as well as the

function of each switch.

Switch Function

/ASCII (or [SYMBOLIC) | Compares in ASCII mode

/BLANK Compares blank lines. If this switch is not used, blank lines are ignored

J/COMMENT Ignores comments, that is, all text on a line after a semicolon (;). Spacing is also
ignored

/SPACING Ignores spacing and tabs. The following two lines match if this switch is on:

"AB CD EF

ABC DE F

J/HELP Prints the list of available switches

/LOWER n Sets n as the first word to be compared in a partial binary comparison; # is an
octal number

/UPPER n Sets n as the last word to be compared in a partial binary comparison; # is an
octal number

/QUICK Compares files and notifies the user whether or not they match; does not print
nonidentical lines

/UPDATE Causes the second file to be written on the output file with flags next to the lines
that differ from the first file (update mode)

/WORD Compares actual file contents without core-image expansion

/EXPAND Expands core-image files before comparing them

Section 4
THE USER FILE DIRECTORY

The user file directory (UFD) contains descriptive information about each file in the user’s
storage area. Tymshare’s file security controls provide maximum security and determine who can
access the directory and the files, who can read them, and who can write on them.

XEXEC has commands to set security controls on individual files and on an entire file directory.
This section discusses how to set the controls using the DECLARE and FDC commands and how
to use switches to list information about all the files or specific files.

FILE SECURITY CONTROLS

The user sets controls on individual files with the DECLARE command, and on the entire file
directory with the FDC (File Directory Controls) command. If there is a conflict between these
controls, the more restrictive protection takes precedence. For example, if a user protects his
entire directory from the public’s sharing his files, an individual file is not sharable, regardless of
the individual controls set for it with the DECLARE command.

Declaring and Printing General Protection for the File Directory

The user sets controls on the entire file directory for two classes of users: ACCOUNT and
PUBLIC. The ACCOUNT controls refer to controls on the directory with respect to other users
in the same account;' the PUBLIC controls refer to controls on the directory for all other users
on the computer system.

To set the controls on his entire file directory, the user types
-FDC >
The system responds with the same three questions for each of the two classes of users:

Question Y Response Enables Others To

SHARABLE? Access the user’s files

NEW FILES? | Add new files to the user’s directory

LISTABLE? List file directory information. This does not
permit others to list the contents of the user’s files

1 - The term ACCOUNT refers to all users having the same Account Supervisor.

36

The user responds to each question with a Y or N, followed by a Carriage Return. For example,

-FDC O

ALLOW ACCOUNT:
SHARABLE? Yo
NEW FILES? Yo
LISTABLE? Yo

PUBLIC:
SHARABLE? Yo
NEW FILES? N>
LISTABLE? N>

The PFDC (Print File Directory Controls) command prints the controls established for the
user’s file directory. For example,

-PFDC>

ACCOUNT: SHARABLE NEW rILES LISTABLE
PUBLIC: SHARABLE

If the user has typed N in response to all questions in the FDC command, that is, if the user sets
all restrictions, PFDC does not print anything.

The user need only type the FDC command to alter the standard protection. Tymshare
currently sets the initial file directory controls for new users as follows:!

ACCOUNT: SHARABLE LISTABLE
PUBLIC: SHARABLE

When using the FDC command, the user may type a dash (-) in response to the first question in
either set to request the standard protection for that class of users.? In the following example,
the user restores the directory controls to the standard protection.

-FDC >

ALLOW ACCOUNT:
SHARABLE? =5

PUBLIC:
SHARABLE? -5

-PFDC 5

ACCOUNT: SHARABLE LISTABLE This is the standard protection.
PUBLIC: SHARABLE

1 - An individual file becomes sharable only when so declared. See page 37 for the discussion of the DECLARE command.
2 - The dash option also works with the prompting form of the DECLARE command shown on page 39.

The DECLARE command sets file security controls for individual files. These controls
recognize three classes of users: PRIVATE, ACCOUNT, and PUBLIC. For each class, the user

Declaring File Security Controls

may control the extent of access to be permitted.
The general form of the DECLARE command is
-DECLARE private account public file list

private Specifies the file security controls for the user himself.
account Specifies the file security controls for other users in the same account.
public Specifies the file security controls for users on the Tymshare system who are not in

the same account.

file list Indicates the file or files for which the controls are established. Multiple file names
are separated by spaces or commas. Switches may be used to select files according

to certain criteria. These switches are described on page 42.

The file security controls that can be entered for PRIVATE, ACCOUNT, and PUBLIC users
are shown in the table below. The table is arranged in order of controls allowing the most
privileges to controls allowing the least privileges so that a given file security control implies all

the privileges of the controls following it in the table.

FILE SECURITY CONTROLS

Symbol

Protection

ALL
CP
UPD
RD
RUN
LK
NO

Allows deletion of the file

Allows change of protection of the file

Allows changes and additions to the file

Allows reading of the file

Allows executing the file

Allows access to the directory information pertaining to the file
Allows no access to the file

For example, the command
-DECLARE ALL RUN NO PROG1, PROG2+

establishes the following protection for files PROG1 and PROG2. The user himself can access,
modify, or delete the files as he chooses. Other users in the same account can execute the files
and obtain directory information about them. Users on the system who are not in the same

account have no access to or knowledge of the files.

The system prompts the XEXEC user if he types

-DECLARE

37

by asking a series of questions for each user class that can be answered by a Y or N followed by a
Carriage Return. The system prints

ALLOW PRIVATE:
MODIFY?

38

If the user answers N, no modifications are allowed and the system skips the next three questions.
If the user answers Y, the system prints

RENAME AND DELETE(ALL)?
CHANGE PROT(CP)?
UPDATE(UPD)?

If the user responds to any of these questions with a Y, the remaining questions are skipped. If
the user answers N, the system prints

READ(RD)?
RUN(RUN)?
LOOKUP(LK)?

If the user responds to any of these questions with a Y, the remaining questions are skipped.

The same sequence of questions is then repeated for ACCOUNT, or users in the same account,
and for PUBLIC, or users on the system who are not in the same account.

The following chart details the specific questions asked and the pattern for all classes of users:
PRIVATE, ACCOUNT, and PUBLIC.

Y
MODIFY?
N
Y
RENAME & DELETE (ALL)? ! Allows renaming and deletion.
N
v \
CHANGE PROT (CP)? »1 Allows change of protection.
/ N \
Y
UPDATE (UPD)? Allows any content changes.
N !
/ -
»1 Allows no file modifications.
Y
Y
READ (RD)? > Allows reading of the file.
:)
Y
RUN(RUN)? — ™| Allows running the program.
N y
Y Allows looking at
LOOKUP(LK)? g directory information.
N
NOTHING (NO)
Others may know Protection determined
nothing about the file. for that class of users

39

After the user determines the protection for PRIVATE, ACCOUNT, and PUBLIC, the system
prints

FILE(S)?

and the user types file names and/or switches to specify the files that are to receive this protection.
The switches that may be used to select files are described on page 42.

In the example shown below, the user wants to change the protection on a group of his files to
allow himself to do anything to the files, to allow other users in his account to run but not to read
them, and to prevent other Tymshare users from accessing the files in any way.

-DECLARE>
ALLOW PRIVATE:
MODIFY? Yo
RENAME & DELETE(ALL)? Yo
ACCOUNT:
MODIFY? N>
READ(RD)? N>
RUN(RUN)? Yo
PUBLIC:
MODIFY? No
READ(RD)? N>
RUN(RUN)? N>
LOOKUP(LK)? N>
NOTHING(NO)
FILE(S): PGM1.*,PGM2.%

FILES RENAMED:

PGM2 SAV
PGM2 LST
PGM1 CRF

-FILES /PROTECTION PGM1.%*,6PGM2,*, The FILES command is discussed on page 41.

PGM2 SAV ALL RUN NO
PGM2 LST ALL RUN NO
PGM1 CRF ALL RUN NO

NOTE: The user can always change the protection for bis own files even if the private protection
is NO.

Tymshare initially sets the controls for each file as
ALL RD NO

meaning that the user can do anything to his files, other users in his account may only read or run
them, and users outside his account may not access or utilize them in any way. Therefore, the
user types the DECLARE command only to alter the standard protection. He may type a

dash (-) in response to the first question to request the standard protection for that class of users.

40

For example, the user can set the same file controls used in the previous example more quickly by
using the dash.

-DECLARES
ALLOW PRIVATE:
MODIFY? =>
ACCOUNT:
MODIFY? N>
READ(RD)? N>
RUN(RUN)? Yo
PUBLIC:
MODIFY? =5
FILE(S): FCALCo

-FILES /PROTECTION FCALC-

FCALC ALL RUN NO

Declaring Files Accessible Through Program Use

The SETLIC system program allows a user to set a home files license. This license allows others
to access to the user’s files which are utilized by a sharable file in his directory. For example, user
ALLEN has a program on the file BUSTAT that he has given RUN protection. This program uses
the following files in his directory: ACCT, INV, and DATBS. He uses the SETLIC program to
allow other users access to ACCT, INV, and DATBS when they run BUSTAT. He executes
SETLIC as follows:

-B SETLICS

FILE NAME: BUSTAT>
HOME FILE ACCESS? Yo

EXIT

LISTING FILE INFORMATION

XEXEC offers commands which print descriptive information about the files in the user’s
directory. The FILES command prints the names and extensions of the files in the directory.
The DIRECTORY command prints the names and extensions of the files as well as the size,
creation date and time, date of most recent access, and protection of each file.

The user can request that the FILES or DIRECTORY command print information about
specified files instead of the entire directory. For example, the command

-DIRECTORY PDATA, PGM.SAV, TDATA 4
prints the directory information for the files PDATA, PGM.SAV, and TDATA only.

41

When referring to specific files in the directory, the user may use the special notation *, #,
?, NOT (or -) and ALL to specify the desired files.! For example, if the user wants to list all
his files except those with the REL extension, he uses the command
~FILES ALL-*.REL-

The user can modify the information printed by the FILES or DIRECTORY command by
including switches in the command. These switches may be used to request additional information
about files, to specify the order of listing files, or to select files according to various criteria. The
switches are described on page 42.

The FILES Command
The FILES command prints the names and extensions of the specified files in the user’s
directory and any additional information requested by switches. The form of the command is
-FILES (file list] 5

where file list is a list of file names separated by commas, and optional switches.? If the file list
is omitted, all files are listed.

Some examples of the FILES command are shown below.

Command Result
FILES Lists the names and extensions of all the user’s files
FILES *REL Lists the names and extensions of the files with the extension REL
FILES /HELP Prints all switches available with the FILES command
FILES /ALPHA /ACCESS Lists all the user’s files in alphabetical order, showing the most recent
access date for each file

The DIRECTORY Command

The DIRECTORY command prints the name, extension, size, creation date and time, file
protection, and date of most recent access for the specified files in the user’s directory. The form
of the command is

-DIRECTORY ([file list] 5

where file list is a list of file names separated by commas, and optional switches.? If the file list
is omitted, the command prints directory information for all files.

Some examples of the DIRECTORY command are shown below.

Command Result
DIRECTORY Prints the directory information for all the user’s files
DIRECTORY PROG.x* Prints the directory information for all files with the name PROG

regardless of extension

DIRECTORY /FAST Prints the name and extension for all files

1 - The use of special notation when referring to files in commands is described on page 15.
2 - All switches are described on pages 42 and 43.

42

Switches

There are three types of switches: switches to request additional or restricted information
about files, switches to specify the order of listing files, and switches to select files according to
various criteria. A switch can be abbreviated to the minimum number of characters required to
uniquely identify it and can be terminated by any nonalphanumeric character such as a blank or
comma. The switches described in this subsection can be used with any of the following
commands: FILES, DIRECTORY, DELETE, RENAME, and DECLARE.

The following switches request additional or restricted information about the user’s files.

Switch Information Requested
/ACCESS Date of most recent access
J/CREATION Creation date
/FAST File name and extension
/PROTECTION Protection assigned to the file
/SECONDS Creation date and time to the second
[SIZE Size of the file (number of storage blocks of 640 characters)
/WORDS Size of the file in words
/TIME Creation date and time to the minute
/TOTAL Number of storage blocks and files in the file list. This switch is automatic for
the DIRECTORY or the FILES command with no file list
/EVERYTHING Everything above, plus the mode of the file’

NOTE: The user may include several switches in a single command.

Files are normally listed in reverse chronological order by creation date; that is, the system
prints the most recently created file first. If the user wants to see the files and corresponding
information in a different order, the following switches are available.

Switch Order Listed
/ALPHABETICAL Alphabetically by file name and secondarily by extension
/EXTENSION Files with extensions are arranged in alphabetical order by extension, followed
by the files with no extensions
/[STORAGE Decreasing order of storage size; that is, the name of the largest file is listed first
J/UNSORTED Order in which files appear in the user’s file directory
/REVERSE Chronological order of creation. /REVERSE can be used with any other switch

in this table to reverse the order established by that switch

1 - Mode information is of use only in machine language programming. See the DECsystem10 Assembly Language Handbook for a
description.

43

NOTE: The switches in the preceding table must be used only one to a command except when
the /REVERSE switch appears with another switch to reverse its order.

The remaining switches select files according to the criteria specified with the switch. All files
in the user’s directory except for those with the extension TMP are selected when a command is
not followed by file designations or by any of the switches shown below.

Switch Files Selected
/AFTER date Files created on and after the date specified
/BEFORE date Files created before the date specified
/TODAY Files created during the present day
/TEMPS All files including those with the extension TMP, which the system normally
does not print

NOTE: The /AFTER and /BEFORE switches can be used together to indicate a range of dates.

The user specifies the date by the day, first three letters of the month, and last two digits of
the year, all separated by dashes. For example,

29-SEP-73 21-NOV-73 5-JUN-74

If the user omits the year and/or month, the system assumes the current one. Therefore, if a user
is working on the system on October 12, 1974 and wants to specify the date October 5, 1974,
any of the three following ways of entering the date is acceptable:

/BEFORE 5-0CT-74

/BEFORE 5-0OCT

/BEFORE 5

In the following example, the user requests a complete directory listing in alphabetical order,
including time of creation to the second, for all files created on or after April 20.

~-DIRECTORY /ALPH/SEC/AFTER 20-APR

BOM 5 23-APR-T4 1350.54 ALL RD NO 26-MAR-TU(A)
BUSTAT 5 29-APR-T4 1739.43 ALL RUN NO 30-APR=-T4(A)
INVEN 5 23-APR-T4 1344.19 ALL RD NO 23-APR=-T4(A)
PGM1 CRE 5 29-APR-T4 1213.20 ALL RD RD 30-APR=-T4(A)
PGM2 LST 5 29-APR-T74 1751.57 ALL RUN NO 30-APR=-T4(A)
PGM2 SAV 5 29-APR-TH4 1752.41 ALL RUN NO 30-APR-T4(A)
PO 5 23-APR-T4 1350.53 ALL RD NO 13-MAR=-T4(A)
TEXT LST 10 24-APR-TH4 1438.35 ALL RD NO 2U~APR=-T4(A)
TEXT 5 24-APR-T74 1438.26 ALL RD NO 24-APR-T4(A)
TRIG Fy 5 29-APR-T4 1743.20 ALL RD NO 30-APR-T4(A)
TRIG REL | 5, 29-APR-T4, 117“51-\1'9 ALL RD NO 30-APR-TU(A)
1
- Siz; in Crealtion O'eatilon Seconds Ft!le Date of most
blocks of date time protection recent access

640 characters

ACCESSING THE FILE DIRECTORY OF ANOTHER USER

The GFD (Get File Directory) command allows one user to gain access to another user’s
storage area, or directory. Access to a directory is granted only if the directory has been made
sharable by its owner.! The form of the GFD command is

—GFD user name

When a user gains access to another user’s directory using this command, he may perform any
operations as though he had logged into that user name.> Once a user has gained access to another
user’s directory, he no longer has access to his own directory; he can access his own directory
again by entering the GFD command with his own user name.

The GFD command allows more than one user to access the same file directory simultaneously.
Thus, a set of files that is used very often by the member of an account can be stored in a sharable
directory where they can be accessed by all the account’s members. This reduces the storage costs
for the account.

1- See your Tymshare representative if you want to make your directory sharable.
2 - The GFD command also notifies the user of any damaged files in the directory.

Section 5
EDITOR, CONVERSATIONAL I.ANGUAGES,
AND APPLICATIONS PROGRAMS

The user can access all TYMCOM-X languages and applications packages, as well as the EDITOR
described on page 17, through XEXEC. The TYMCOM-X system offers its users a variety of
conversational languages and a large, constantly increasing selection of applications programs.

The subsections which follow describe various ways of entering and leaving EDITOR, using
conversational languages, and accessing applications programs. For a complete description of
EDITOR, a particular language, or an applications program, refer to the appropriate Tymshare
document.

ENTERING AND LEAVING THE EDITOR

This subsection describes the commands that transfer control between EDITOR and XEXEC.

Entering the EDITOR

The commands EDITOR, CREATE, and MODIFY access the EDITOR from XEXEC. The
EDITOR command simply transfers control to the EDITOR. Its form is
-EDITOR 5

The CREATE command transfers control to EDITOR for the purpose of creating a file. Its
form is

—-CREATE file identifier
where file identifier specifies a file that does not yet exist.

The MODIFY command transfers control to EDITOR for the purpose of modifying an existing
file. Its form is

-MODIFY [file identifier] 5

where file identifier refers to an existing file. If the file identifier is omitted, the command reads
the file specified by the most recent CREATE or MODIFY command.

Leaving the EDITOR

The EDITOR commands QUIT, EXIT, and GO return control to XEXEC from the EDITOR.

The QUIT command simply returns control to XEXEC. If the user has added to or modified
text in the EDITOR text area since entering EDITOR, the system prints

FILE NOT WRITTEN,OK?
and control returns to XEXEC only if the user types Y.

The EXIT command writes the current text on a file before returning control to XEXEC. The
form of the command is

*EXIT [file identifier]

46

where file identifier specifies the file on which the EDITOR text is to be written. If a file
identifier is not specified in the command, the output file is determined by the command used
to enter the EDITOR. If the EDITOR was entered using the EDIT command, EDITOR prompts
for a file name after the EXIT command. If the EDITOR was entered using the CREATE com-
mand, the current text is written on the file specified in the CREATE command. If the EDITOR
was entered using the MODIFY command, the current text is written on the file specified in the
MODIFY command; or, if none was specified, the text is written on the file specified in the most
recent CREATE or MODIFY command.

The GO command performs the same functions as the EXIT command and then performs the
most recent compile-type command specified before EDITOR was entered.!

The example shown below demonstrates a typical interaction between XEXEC and EDITOR.

-COMPILE PROG1> The user compiles PROGI.

F=IV: PROG1

Ldd 10 FORMAT (15H ENTER ANGLE:)

* %

* % S-3 ILLEGAL FIELD SPECIFICATION Thecompiler

MAIN. ERRORS DETECTED: 1 detects one
error.

? TOTAL ERRORS DETECTED: 1
EXIT

-MODIFY PROG1> The user calls EDITOR to correct PROGI.
240 CHRS
*¥:10:MODIFY>
10 FORMAT (14H ENTER ANGLE:)5 Line 10 is changed using EDITOR
*GOo> The GO command writes the revised text ~ commands and control characters.
PROG1 on PROG]1 and recompiles the program.
240 CHRS
F=-IV: PROG1

MAIN.

EXIT

When the user interrupts an operation currently in progress in EDITOR by typing one or more
Alt Mode/Escapes, the system returns control to XEXEC. The user may type any of three com-
mands to return control to the subsystem: CONTINUE, REENTER, or START. The CONTINUE
command returns control to EDITOR and continues the operation from the point of interruption.
The REENTER command returns control to EDITOR command level and preserves the user’s
work as it was when he typed the Alt Mode/Escapes. The START command returns control to
EDITOR command level and clears the user’s work from the subsystem.

NOTE: The user may type any XEXEC command that does not cause the EDITOR text area
to be lost before returning to bis previous work in EDITOR.*> After entering any other XEXEC
command, be may not return to EDITOR using the commands described above.

1 - The compile-type commands are described on page 51.
.2 - The commands that do not destroy the current core image are indicated in Appendix A, page 85.

47

CONVERSATIONAL LANGUAGES

Using the conversational languages available on the TYMCOM-X system, the user can develop,
execute, and revise programs in an interactive environment. The user calls a language by typing
its name after the XEXEC dash. For example,

~XBASIC 5

The user may then enter either program statements or commands in response to a prompt
character. The prompt character printed depends upon which language is being used.

APPLICATIONS PROGRAMS

The TYMCOM-X has a large library of applications programs. The emphasis in these programs
is on conversational problem solving. The applications programs include data management
systems, linear programming packages, statistical aids, engineering programs, computer simulation
packages, financial forecasting systems, and many others.

The XEXEC user calls most applications programs by typing

-R program name

For example,
-R_STATPAK 5

Some applications programs are part of the User Program Library. These programs are called
by typing
-RUN (UPL)program name —

For example,
-RUN_(UPL)MACE 5

To access a particular applications program, the user should refer to the appropriate reference
manual or consult his Tymshare representative.

Section 6

RUNNING USER PROGRAMS IN XEXEC

This section explains the methods for executing a previously created program. First, the
system must read and translate the source program into internal machine language; this is the
compilation phase. Next, the system must organize and move the program’s relocatable code
and all subprograms used by the program into core memory; the name of this step is loading.

Finally, the system executes the loaded instructions. If errors are encountered during execution,

the user can use a debugging package to examine the execution of his program. The commands
that perform these steps are presented in this subsection.

The following table summarizes all the functions performed by each command used in

program execution.

49

unction
Compile Load Debug Execute Other
Command
COMPILE °
LOAD ° [
EXECUTE ° ° °
CDEBUG ° [Loads COBOL
debugger with
the program
FDEBUG ° o Loads
FORTRAN
debugger with
the program
DEBUG] ° Loads DDT
with the
program
TRY [o Loads DDT °
with the
program
DDT Enters DDT
environment if
DDT is loaded
. D Deposits infor-
mation in a
core location
E Examines
specified core
location

(Table continues)

Function

Comman

Compile

Load

Debug

Execute

Other

START

CSTART

Allows
simultaneous
execution of
any command
that does not
destroy current
core image'!

CROSS

Produces
cross-reference
listing of files
compiled in
the current
session, using
the CREF
switch

CONTINUE

Continues
execution
from point

of interruption

CCONTINUE

Continues
execution
from point

of interruption

Allows
simultaneous
execution of
any command
that does not
destroy the
current core
image’

SAVE

Saves core
image on file

SSAVE

Saves core
image on file.
High segment,
if present, is to
be sharable

GET

Loads file cre-
ated by SAVE
or SSAVE

GO
RUN

Loads file cre-
ated by SAVE
or SSAVE

1 - The commands that do not destroy the current core image are indicated in Appendix A, page 85.

51

Function
Compile Load Debug Execute Other
Comman

FINISH Terminates any
input or output
currently in
progress on the
specified device
and closes the
specified device

CLOSE Writes end-of-
file indicator
and closes the
specified file

THE COMPILE-TYPE COMMANDS

The commands COMPILE, LOAD, EXECUTE, CDEBUG, FDEBUG, DEBUG, and TRY are
called compile-type commands because each of these commands includes compilation as one of
its functions. The compile-type commands compile a program only if a compiled version of the
current source code does not exist. The form of a compile-type command is

-command name [file list]

command name COMPILE, LOAD, EXECUTE, CDEBUG, FDEBUG, DEBUG, or TRY.

file list Indicates a file identifier or a list of file identifiers. Multiple file identifiers
are separated by commas. It may also include any of the switches described
on page 55. If the file list is omitted, the command uses the file(s) indicated
in the most recent compile-type command.

NOTE: The user may not use the asterisk (*), crosshatch (#), question mark (?), NOT (or -),
or ALL notation to refer to files in this command; be must specify each file individually.

The compile-type commands produce relocatable binary files of the specified programs and
list diagnostic messages on the terminal. The relocatable binary file of a program has the same
name as the program and the extension REL. For example, the command

—COMPILE MAINS

produces a file named MAIN.REL. No compilation occurs when a relocatable file newer than the
source file already exists for the specified file.! In other words, the system does not recompile a
program unless the source program file has been changed since the last compilation. For example,

-COMPILE PGM5>5

F=-IV: PGM5 The compiler message indicates the language translator used.
MAIN.

EXIT

-COMPILE PGMb5> The system does not recompile PGMS.

1 - See page 57 for a discussion of the forced-compile switch to alter the usual procedure.

52

The extension of the source file identifier determines which processor converts the source
program into internal machine language. The user need not specify the extension in the command
unless it is not a standard language extension. The system checks for the standard extensions and
compiles with the appropriate processor according to the table on page 14.

NOTE: When the file name bas a nonstandard extension or no extension, the system uses the
FORTRAN 1V compiler.

Each time the user types a COMPILE, LOAD, EXECUTE, CDEBUG, FDEBUG, DEBUG, or
TRY command with a file list, the system stores the command and the file list. The next time
the user types a compile-type command, he can omit the file list and the system will use the file

list entered with the previous compile-type command. For example, the user enters the file list,
/COMPILE FCALC, with the COMPILE command.

-COMPILE /COMPILE FCALC
F-IV: FCALC

MAIN.
FACTRL

EXIT

He then enters a LOAD command without a file list and the system uses the file list, /COMPILE
FCALC.

= 2

F-IV: FCALC The system recompiles the program because the
MAIN. stored file list contains the |COMPILE switch.
FACTRL

LOADING

5K CORE

NOTE: When the user takes advantage of the stored file list, be can only type the command
word, such as COMPILE, LOAD, EXECUTE, CDEBUG, FDEBUG, DEBUG, or TRY; be cannot
add to the file list.

If the user wants to work with another file or if the next command does not apply to all files
and switches specified in the previous command, the user must respecify the file name(s) and/or
switches.

The COMPILE Command

The COMPILE command translates each source program specified in the file list to its machine
language equivalent producing a relocatable binary file and any appropriate error messages. For
example, the command

—COMPILE ABC, COMP.CBL, XFILE.F4-

53

translates ABC and XFILE with the FORTRAN IV compiler and COMP with the COBOL
compiler, since F4 and CBL are standard extensions and FORTRAN IV is the default processor.
The extensions could have been omitted since they are standard.

The LOAD Command

The LOAD command compiles, if necessary, and then loads the programs and subprograms
stored on each file in the file list. The LOAD command also attempts to LOAD all subprograms
called by the main program (the first program loaded). The user must include in the LOAD
command the names of the files that contain the required subprograms unless these subprograms
are provided by the system. For example, the command

-LOAD PGM5>

compiles PGMS5, if necessary, loads the file PGM5.REL, and attempts to load any subprograms
called by PGMS5. Suppose PGMS5 calls subroutine SUBR, which is not a system subprogram. The
subroutine SUBR must be included on file PGMS5 or the user must load with the program a file
that contains the subroutine. For example,

-LOAD PGM5, SUBFIL o
where SUBFIL contains the subprogram SUBR.

The EXECUTE Command

The EXECUTE command compiles each file in the file list, if necessary, loads the compiled
program and associated subprograms into core, and begins execution. In the example shown
below, the user compiles, loads, and executes the program TRPRG and the subroutine SINCOS,
which is called by TRPRG.

-EXECUTE TRPRG, SINCOS,
F-IV: TRPRG
MAIN.
F-IV: SINCOS.rd4
SINCOS
LOADING
EXECUTION

ENTER ANGLE:
1.55

SIN= 1.00 COS= 0.07
EXIT

The CDEBUG Command

The CDEBUG command compiles each file in the file list, if necessary, loads the compiled
program and associated subprograms into core, loads the COBOL debugger, and begins execution.!
At this point, the user may set breakpoints, execute his program one statement at a time, or
perform any of the CDEBUG operations.

NOTE: Tbhe relocatable files used by the COBOL debugger must be created by the CDEBUG
command.

In the example below, the user compiles and loads the program MINPGM, then enters the
COBOL debugger, sets a breakpoint, and begins execution.

-CDEBUG MINPGM> The CDEBUG command compiles, loads, and
COBOL: MINPGM [MINPGM.CBL] executes MINPGM.

LOADING

EXECUTION

STARTING COBOL DDT The COBOL debugger is entered.

*BREAK TOT-LOOP> The user sets a breakpoint at TOT-LOOP.
*MD The user begins execution of the program.
ADDING MACHINE-

BREAK AT <<TOT-LOOP>> The breakpoint at TOT-LOOP is encountered.
#*

The FDEBUG Command

The FDEBUG command compiles each file in the file list, if necessary, loads the compiled
program and associated subprograms into core, and enters the FORTRAN debugger.? At this
point, the user may perform any of the FDEBUG operations.

NOTE: The relocatable files used by the FORTRAN debugger must be created by the FDEBUG
command.

In the example shown below, the user calls FDEBUG with the file TRIG, which has already
been compiled by a previous FDEBUG command. The command loads TRIG and enters the
FORTRAN debugger; the user sets the value of variable X to 5.

-F
LOADING

DEBUG:
*SET X=5>

#*

1 - For more information about the COBOL debugger, refer to the discussion of COBDDT in the Tymshare TYMCOM-X COBOL
Reference Manual.

2 - The FORTRAN debugger is described in the Tymshare TYMCOM-X DEBUG Reference Manual.

The DEBUG Command

The DEBUG command can be used to debug MACRO programs or FORTRAN programs. It
compiles each file in the file list, if necessary, loads the compiled programs and associated sub-
programs into core, and enters the DDT debugger.!

In the example shown below, the user compiles and loads the MACRO assembly language
program MULT.MAC and enters DDT using the DEBUG command. He then sets a breakpoint
and begins execution.

-DEBUG MULT>
MACRO: MULT
LOADING

DDT

NLOOP+2/ MOVEM V,BUNAP(ME) .;B ;G

5 3 1BONLOOP+2

The TRY Command

The TRY command begins execution of a program with all the debugging tools available for
use. It isidentical to the DEBUG command except that it begins execution of the program
indicated by the file list. In the example shown below, the user specifies the same file with the
TRY command as with the DEBUG command in the previous example. The command does not
compile MULT.MAC because a relocatable file already exists for the file MULT. The command
loads the program and begins execution. ”

-TRY MULT>
LOADING
EXECUTION

Command Switches

The user can modify the COMPILE, LOAD, EXECUTE, CDEBUG, FDEBUG, DEBUG, and
TRY commands with a variety of switches. The user precedes the switch with a slash (/) and
terminates the switch with any nonalphanumeric character, usually a space or a comma (,). The
user may abbreviate the switch name, provided that he uniquely identifies it.

A switch may apply either to a single file or to many files in a command. A single-file switch
immediately follows a file identifier and applies only to that file. For example,

-COMPILE X, Y/MACRO, Z
The /MACRO switch applies only to file Y.

1 - The DDT debugger is described in the DECsystem10 Assembly Language Handbook.

56

A multifile switch applies to all files following the switch unless the user cancels the switch
with a subsequent switch. In the examples given below, the /LIST switch applies to files A and B
only.

—COMPILE /LIST A,B5

—COMPILE D, /LIST A,B,

-COMPILE D, /LIST A,C/NOLIST,B~
-COMPILE D, /LIST A,B,/NOLIST C,Z,V 5

Processor Switches

Processor switches allow the user to change the default processor for files listed in a compile-
type command or to specify the processor for a particular file. The processor switches are listed
in the table below.

Switch Processor

/COBOL or /CO COBOL
/MACRO or /M MACRO
* [FORTRAN or [F | FORTRAN IV

Normally, FORTRAN is the default processor for files without standard extensions listed in a
compile-type command. Thus, in a compile-type command that does not have processor switches
the FORTRAN processor compiles all files without standard extensions and the processors indi-
cated by the extensions compile files with standard extensions.! To change the default processor
for a list of files, the user inserts the processor switch in the file list before the file name(s) he
wants to affect. For example, in the command

—COMPILE AA, /MACRO BB, CC

the /MACRO switch applies to file names BB and CC. When a processor switch is used this way,
it is overridden by a standard extension in a file identifier. For example, if BB in the command
shown above has the extension F4 and CC has no extension, then BB is compiled by FORTRAN
and CC is compiled by MACRO.

A processor switch applies to a single file if it immediately follows the file name in a command.
For example, in the command

-COMPILE AA, BB/MACRO, CC+

the /MACRO switch applies to file name BB only. A processor switch used this way overrides
the extension of the file identifier; that is, BB in the example shown above is compiled by
MACRO even if it has an extension such as F4 or CBL.

Listing Switches

Switches are available to generate ordinary listings and cross-reference listings of the file. The
operation of the switch produces a file with the same name and the extension LST or CRF, as
appropriate.

1 - A list of standard XEXEC extensions and their meanings is shown on page 14.

57

The /LIST switch generates a listing of the file and a list of the subprograms referred to in the
main program. The /NOLIST switch is available to cancel the /LIST switch.

For example, when the command
-COMPILE /LIST A,B/NOLIST,C o
is executed, it creates the files A.REL, A.LST, B.REL, C.REL, and C.LST.

The /CREF (or /CROSS) switch is the same as the /LIST switch except that it produces a cross-
reference listing, which the user accesses with the CROSS command.!

Compilation Control Switches

Compilation normally occurs when no relocatable file exists for the source file or when the
source file is newer than the existing relocatable file. If the relocatable file is newer than the
source file, the system normally does not perform the compilation.

However, there are situations when the user may want an extra compilation, for example, when
he desires a listing. To force the compilation, he uses the /COMPILE switch. For example, the
command

—COMPILE /CREF /COMPILE A5

creates the crossreference listing file A.CRF, although a current A.REL file already exists. The
system also re-creates the relocatable file.

The /NOCOMPILE switch cancels the effect of the /COMPILE switch.

The /REL switch causes a compile-type command to use the existing relocatable file even if a
newer source file exists.

Library Search Switch

Normally, when a program is loaded with a file that contains associated subprograms, the
whole file is loaded into core. The /LIBRARY switch allows the user to load only selected
subroutines from a file that may contain many subroutines. This can save a significant amount
of core space. If, for example, the user’s program calls three subroutines that are written on a
file containing twenty subroutines, he can use the /LIBRARY switch to select only those
subroutines used by his program.

In the example shown below, the main program is on the file MAINPG. The main program
calls subroutines SUB1, SUB2, and SUB3. Subroutine SUB2 is stored on file MAINPG after the
main program. Subroutines SUB1 and SUB3 are stored on the file SUBODD, along with several
other subroutines. To load only subroutines SUB1 and SUB3 from SUBODD, the user executes
the program as follows:

-EXECUTE MAINPG, SUBODD/LIBRARY

If the /LIBRARY switch were not included in the command, all the Subroutmcs stored on the
file SUBODD would be loaded into core.

NOTE: Tbhe system automatically searches the FORTRAN library to locate standard library
routines.

1 - The CROSS command is described on page 61.

58

Compiler and Assembler Switches

Compiler and assembler switches request options from the compiler or assembler for a specific
language. The switch consists of a letter, or letters, enclosed in parentheses; it must immediately
follow a file name. For example, the FORTRAN switch option to suppress output of error
messages to the terminal is (N). Therefore, the command

—~COMPILE FILEB(N)o

instructs the FORTRAN processor to eliminate the individual error messages for incorrect
statements in the FILEB program when it compiles the program.

For a list of FORTRAN IV compiler switches, see the Tymshare TYMCOM-X FORTRAN IV
Reference Manual.

Loader Switches

The switches described below are available for the commands LOAD, EXECUTE, CDEBUG,
FDEBUG, DEBUG, and TRY. Occasionally, the user may want to set switches to direct loader
operations. A loader switch consists of one letter, or a sequence of digits and one letter, preceded
by a percent sign (%). A loader switch is inserted immediately before the file name to which it
applies except for the %U switch, described below.

Common loader switches are:

Switch Function

%S Loads with symbols

%nQ | Sets the program origin to n octal

%F Causes an early search of the FORTRAN library

%P Prevents a FORTRAN library search

%U Prints all globals that are undefined after the files
preceding the switch in the file list have been loaded

For example, the command
-LOAD F1, F2 %U, F3,
instructs the loader to print a list of all undefined globals as soon as F1 and F2 are loaded.

Extended Command Forms

The user can employ more complex command forms for the compile-type commands as
described below. These extended command forms allow the user to concatenate files during
compilation, change a binary file name from its default name, and compile each of several files
with the same file.

59

Concatenating Files in Compilation

The user may request that the system produce one relocatable file from a group of source files
with any of the compile-type commands. In other words, the source files are compiled as if one
large source file contained the concatenated text of all the individual files. He specifies this with
the + construction. For example, the following command compiles the files PAR.F4, MAIN1.F4,
and MAIN2.F4, producing one relocatable file, then loads and executes the file.

-EXECUTE PAR+MAIN1+MAIN2 5

The system assigns the name of the last file in the specification as the file name for the output file
and appends the REL extension. In the example given above, the name of the output file is
MAIN2.REL.

Changing Default Binary File Names

Usually, the relocatable file has the same name as the source file. The = construction allows
the user to specify a file name other than the source file name for the relocatable file. The
command form is

—COMPILE binary file name = source file name

For example, the command
~COMPILE BIN6 = PGM6 5
compiles PGM6 and writes the relocatable binary file with the name BIN6.REL.

The user may combine the + construction with the = construction. The following command
assigns the name WHOLE.REL to the relocatable file produced by compiling PAR.F4, MAIN1.F4,
and MAIN2.F4, and loads the relocatable file into core.

-LOAD WHOLE = PAR+MAIN1+MAIN2

Translations Using Parameter Files

The user may specify a group of programs, each of which he wants to compile with the same
file, by using the <> construction.

NOTE: The + must always precede the <> construction.

For example, to compile AFILE, BFILE, and CFILE, each with the file PARAM, the user types
—-COMPILE PARAM+<AFILE,BFILE,CFILE>—~
This is equivalent to the command
-COMPILE PARAM+AFILE,PARAM+BFILE,PARAM+CFILE 5
Both commands create the following relocatable files: AFILE.REL, BFILE.REL, and CFILE.REL.

ADDITIONAL DEBUGGING AIDS

The commands described below help the user examine his program closely and provide
extensive information about the symbols and subprograms so the user can debug his program
more easily.

The DDT Command

The DDT command allows the user to access DDT when his program(s) and DDT are already
in core as the result of a previous TRY, DEBUG, GET, or RUN command. The form of the
command is

-DDT 5

In the example shown below, the user executes the program PGM with the TRY command and
encounters a program error; then he reenters DDT and examines the error.

-TRY PGM5
MACRO: MOULT
LOADING
EXECUTION

ILL MEM REF AT USER 005615
-DDT5

56 15«BEG
BEG/ MOVE AC,202400

The D Command

The D command stores (or deposits) information in the user’s high or low segment area.! The
form of the command is

-D left right [address]

left Indicates the octal value to be stored in the left half of the location.
right Indicates the octal value to be stored in the right half of the location.

address Specifies the address of the location into which information is to be stored. If this
argument is omitted, the information is stored in the location following that specified
in the last D or E command.

1 - For a description of high and low segments of core, refer to the DECsysteml0 Assembly Language Handbook.

61

The E Command

The E command examines a specified core location in the user’s high or low segment area,
printing the contents in half-word octal form. The form of the command is

-E [address] o

where the address specifies an octal core location. If the address is omitted, the command
examines the next sequential core location. For example,

-E 1170>

001170/ 254000 001175 -E>
001171/ 603000 000040 -E>
001172/ 254000 001253 -

The CROSS Command

The CROSS command produces a cross-reference listing for every file compiled using the
/CREF or /CROSS switch since the last CROSS command was executed or since logging in; then
it deletes all files with the CRF extension. The form of the command is

—CROSS >
The cross-reference listing is printed on the line printer unless the user specifies another device

with the ASSIGN command. If the user specifies that DSK replace the line printer, the listings
are written on a disk file with the same name as the source file and the extension LST.

In the example shown below, the user compiles TRIG with the /CREF switch and causes a cross-
reference listing to be written on the file TRIG.LST.

-COMPILE TRIG/CREF
F-IV: TRIG.F4

MAIN.
EXIT

-ASSIGN DSK LPT>
DSK ASSIGNED

-CROSS 5

62

-TYPE TRIG.LST>

TRIG.FU4 FU40 V26 (14) 1-MAY=-T4 13:55 PAGE 1
1 WRITE (5,10)
2 READ (5,100) ANGLE
3 X=SIN(ANGLE)
4y Y=COS(ANGLE)
5 WRITE(5,20)%X,Y
6 10 FORMAT (14H ENTER ANGLE:)
7 20 FORMAT (6H SIN= ,F5.2,5X,6H C0S= ,F5.2)
8 100 FORMAT(FT7.2)
9 END
SUBPROGRAMS
FORSE. JOBFF SIN CoS FLOUT. FLIRT. EXIT
SCALARS
ANGLE 45 X 46 Y y7
MAIN.

SYMBOL CROSS REFERENCE

ANGLE 2 3 y
cos y

SIN 3

X 3 5

Y y 5

MACRO/OPDEF CROSS REFERENCE

10P 1 6
20Pp 5 7
100P 100P 2 8

INITIATING OR CONTINUING EXECUTION

The commands described below begin execution of the user’s program(s) or continue execution
after an interruption.

The START and CSTART Commands

The START command begins execution of the program(s) currently in core. The form of the
START command is

-START
In the example shown below, the user compiles and loads the program PGM and begins execution.

-LOAD PGM>
r-IV: PGM
MAIN.
LOADING

6K CORE

-START>

EXECUTION COMPLETE
EXIT

The CSTART command begins execution as does the START command, but permits certain
XEXEC commands to be entered while the program is running.! The commands that are allowed
are commands such as TIME, DETACH, etc., which do not destroy the user’s core image or begin
execution.? For example,

-LOAD TRPRG, SC-
F-IV: SC

sc

LOADING

6K CORE

~-CSTART 5 The user begins execution of the loaded program.

-TIME> He executes the TIME command while his program is being executed.
11.83 TRU

35.97 TRU

TERMINAL TIME: 0:24:01

1 - See page 67 for information about the use of the CSTART command in detached processing.
2 - Commands that do not destroy the current core image are indicated in Appendix A, page 85.

64

If a command is entered that would destroy the user’s core image, the system prints
PLEASE TYPE ESC FIRST

The user can interrupt execution initiated by CSTART by typing one Alt Mode/Escape or by
typing the HALT command. A program being executed by the CSTART command cannot
receive input from the terminal. Execution is suspended if the program requests input from the
terminal.

The CONTINUE and CCONTINUE Commands

The CONTINUE command resumes execution of an interrupted program. The form of the
command is

~CONTINUE 5

If the user had typed two Alt Mode/Escapes during program execution to interrupt execution and
return to XEXEC, he could subsequently (1) enter the CONTINUE command to resume execution
immediately or (2) enter any XEXEC command(s) that do not destroy the current core image
before continuing execution.’

NOTE: Typing Alt Mode/Escapes clears the terminal output buffer; some of the program’s
output may be lost during this process.

In the example given below, the user loads and begins execution of TLOOP, interrupts execution,
and then continues execution using the CONTINUE command.

-EXECUTE TLOOP 5 The user begins execution of TLOOP, which prints data on the terminal.
LOADING
EXECUTION
0.84 0.54
0.91 -0.42
0.14 -0.99
) The user types two Alt Mode/Escapes to interrupt the execution.
~TIME> The user checks the number of TRUs the program has used.
3.01 TRU
40.90 TRU
TERMINAL TIME: 0:24:01
-CONTINUE 5 He types the CONTINUE command to continue execution of
TLOOP from the point of interruption.
-0.43 -0.90
-0.99 -0.13
-0.64 0.77
0.30 0.96
0.96 0.27
0.75 -0.67

1 - The XEXEC commands that do not destroy the current core image are indicated in Appendix A, page 85.

65

The CCONTINUE command is identical to the CONTINUE command except that CCONTINUE
allows the user to enter commands that do not destroy the current core image while the program
is running.!

-EXECUTE NPLOOPo

LOADING

EXECUTION

Y-} The user interrupts execution of NPLOOP.

~CCONTINUE 5 He continues execution of NPLOOP.

-WHO He tries to execute a command that would destroy the core image.

KHEVD
PLEASE TYPE ESC FIRST

-DAY > _ The DAY command does not destroy the core image so it can be
1-MAY-1974 15:03:01 executed while NPLOOP is running.

ENTER THE NEW COUNT: NPLOOP requests input from the user.

_3_3 2> The user types the requested data.
2337 The system is at XEXEC command level and attempts to interpret
33 as a XEXEC command.
-9
The user types one Alt Mode/Escape and the CONTINUE command
-CONTINUE so he can enter data into his program from the terminal.
335

THE AVERAGE rOR A POPULATION OrF 33 = 2.77

CORE IMAGE FILES

When a user loads a program into core, the entire environment needed for the execution of the
program is loaded into core as well. The program and its environment, or the core image of the
loaded program, can be saved on a disk file so that it is not necessary to load the program and
associated subprograms each time it is run. The commands presented below create or use core-
image files.

The SAVE and SSAVE Commands

The SAVE command stores on a file the image of the program and environment currently
loaded in core. The form of the SAVE command is

—-SAVE file identifier 5

1 - The XEXEC commands that do not destroy the current core image are indicated in Appendix A, page 85.

66

If the user does not specify an extension in the file identifier, the system assigns the SAV
extension. If the user has divided his program into two segments, the system assigns the HGH
extension to the high segment and the LOW extension, or the extension given by the user, to the
low segment. In the example shown below, the user loads the program PGM5 and saves the core
image of the program with the name PGM5.SAV.

-LOAD PGMS5-
LOADING
6K CORE

-SAVE PGM5>
JOB SAVED

The SSAVE command is identical to the SAVE command except that SSAVE assigns the SHR
extension to the high segment of a program if a high segment exists. The high segment of the
program is then sharable with other users. As with the SAVE command, SSAVE assigns the LOW
extension or the user-specified extension to the low segment of a program divided into two
segments.

The GET, RUN, and GO Commands

The GET command loads a core-image file but does not begin execution.! The form of the
command is
—GET file identifier 5
If the user does not specify an extension in the file identifier, the extension is assumed to be SAV,
HGH and LOW, or SHR and LOW.

The RUN and GO commands load a core image file and begin execution. The forms of the
commands are
—-RUN file identifier [n]5
where 7 is the maximum core to be allowed for program execution, and
~GO file identifier 5

If the user does not specify an extension in the file identifier, the extension for the low segment
is assumed to be SAV or LOW. If there is a high segment, the extension is HGH or SHR. In the
example shown below, the user loads the file MAIN and all subroutines called by MAIN, and
saves the core image of MAIN and the associated subprograms on the file PACKG.SAV.

-LOAD_ HMAIN,rRONT,BD,COMNEW
LOADING
8K CORE

-SAVE PACKG>
JOB SAVED

1 - Execution may be initiated by the START command, or DDT may be accessed with the DDT or REENTER command after the
core-image file is loaded.

67

The core image of the loaded program and associated subprograms is now stored on the file
PACKG; henceforth, it can be executed simply by typing

~-RUN_PACKG 5

RELEASING FILES
The CLOSE command allows the user to terminate input and output and close all files when a
program has been interrupted with Alt Mode/Escapes. The form of the command is
—CLOSE [device name] -

The CLOSE command terminates input and output on all devices or on the specified device. The
CLOSE command preserves all device assignments.

The FINISH command is identical to the CLOSE command except that FINISH releases device
assignments. The form of the command is

-FINISH [device name]

The FINISH command terminates input and output on all devices, and all device assignments are
released; or, if a device is specified, the command terminates input and output and releases assign-
ments of the specified device.

DETACHED PROCESSING

Detached processing enables the user to free his terminal from a job while it is running. Thus,
the user can begin execution of a job and detach the job from the terminal leaving him free to
log in again and begin execution of another job or attach to a previously detached job. The
commands used for detached processing are described in the table below.

Command Function

CCONTINUE | Continues execution of an interrupted program and at the same time allows the user to type
certain commands at the terminal. See page 64 for more information

CSTART Begins execution of the user’s program in core and allows the user to type certain commands
at the terminal. See page 63 for more information

DETACH Detaches the terminal from the current job. It is usually preceded by CSTART or
CCONTINUE. If a detached job requests terminal input or output, execution of the
program is suspended until a terminal is attached to the job again

ATTACH Detaches the user from his current job and attaches him to another running job

Two methods for detaching a job from the terminal are described below.

Method A Method B
1. The user loads his program into core. 1. The user begins execution of his program.
2. He interrupts the program by typing two Alt
2. He types the CSTART command to begin Mode/Escapes.
execution of the program while allowing him 3. He uses the CCONTINUE command to con-
to type other commands. tinue execution of the program while allowing

- him to type other commands.

3. He types the DETACH command to detach the 4. He types the DETACH command to detach the
running job from the terminal. running job from the terminal.

When the user detaches his job from the terminal, he is logged off automatically. When he logs in
again, he can attach the terminal to the detached job or he can log in to a new job.

The example given below illustrates the use of detached processing.

PLEASE LOG IN: SUSAN;;D The user logs in under user name SUSAN.

TYMSHARE 1050 10-MAY-T4

-EXECUTE LPROGH The user begins execution of her job.

LOADING

EXECUTION

) She types two Alt Mode/Escapes to return control to XEXEC.

-CCONTINUED The CCONTINUE command continues execution of the interrupted program
and allows the user to type certain commands at the terminal as well,

-DETACH > The DETACH command prints the number of the running job and returns the

FROM JOB 4 user to TYMNET. The program continues execution.

69

PLEASE LOG IN: SUSAN;;
TYPE JOB NUMBER A 8H, JOB 4 OR C.R. TO LOGIN, The user types a

Carriage Return
TYMSHARE 1051 10-MAY=-T4 to log in under
a new job.
-GET PGM5> The user loads a core image file into core.
JOB SETUP
-CSTART D The CSTART command begins execution of the user’s program in core
and allows the user to type certain commands at the terminal as well.
-DETACH > The user detaches the terminal from job 6.
FROM JOB 6
PLEASE LOG IN: _S_US_AE_;_;_;_QD The user logs into job 4, which
is running in the detached mode.
EXIT The program running under job 4 runs to completion.
~-ATTACH 6 2 The user attaches job 6 to the terminal.
FROM JOB 4

PGM5 PROCESSING COMPLETE

EXIT

-LOGOUT > The user logs out.

ANOTHER JOB STILL LOGGED IN UNDER SUSAN The system notifies the user that

2.87 TRU another job (job 4) is still logged in

TERMINAL TIME: 0:01:01 under user name SUSAN, prints the
system resources used for the com-

PLEASE LOG IN: pleted job, and returns control to

TYMNET.

A

Section 7
SYSTEM INFORMATION AND CONTROL

The commands described in this section allow the user to print information about the system
or about his job(s), to change the assignments of devices, and to change operation modes.!

PRINTING SYSTEM AND JOB INFORMATION

The commands described below provide information about the current status of the system
and the user’s job(s). The information printed by some of these commands is determined by the
license and status of the user. For example, an Account Supervisor has access to information
about all users in his account, whereas a typical user has access to information about his own jobs
only. The different levels of information available from each command are described in the
following subsections.

The CORE Command

The CORE command prints the amount of core assigned to the user’s job and the amount of
unused core available. This information is printed in the form

m+n/p CORE

VIR. CORE LEFT=v

m Indicates the number of blocks in the low segment; » is in units of 1000 blocks.?

n Denotes the number of blocks in the high segment; # is in units of 1000 blocks.

p Shows the amount of core available to this job.

v Indicates the number of blocks of unused core available to the user’s job; v is in units of
1000 blocks.?

For example,

-CORE
6+0/50K CORE
VIR. CORE LEFT=736

The command
—CORE 75

changes the amount of core assigned to the user’s job to #. If # is 0, the command clears the low
and high segments of core assigned to the user’s job.?

1 - The TYMCOM-X operation modes are presented on page 79.
2 - A block consists of 1024 computer words.
3 - For a description of low and high segments of core, refer to the DECsystem]0 Assembly Language Handbook.

72

The DATE and DAYTIME Commands

These commands print the calendar and clock information. The DATE command prints the
time since log in or since the last DATE command. The DAYTIME command always prints the
time since log in. For example,

-DATE 5

MAY 7, 1974 15:57
-DAYTIME
T-MAY=-T4 15:57:12

The DSK Command

The DSK command prints (1) the number of 128-word disk blocks read and written since the
last DSK command, or since log in if there has been no DSK command in the current session,
and (2) the total number of disk blocks read and written since log in. For example,

-DSK>
RD,WT=25,2
RD,WT=31,6

The PJOB Command

The PJOB command prints the number of the job to which the user’s terminal is currently
attached. For example,

-PJOBS
13

73

The PPN Command

The PPN command prints the global account number (GAN) and the file directory number for
the specified user name. For example,

-PPNo
USER NAME: WMS>
12051, 105547

or

-PPN WMS>
12051, 105547

The RESOURCES Command

The RESOURCES command prints the names of all input and output devices available to the
user. For example,

-RESOURCES>
DSKB,LPT The disk and the line printer are available to the user.

The SET LIMIT Command
The SET LIMIT command allows the user to limit the TRUs used. For example,

-SET LIMIT 205 The user sets a limit of 20 TRUs.

-RUN _PROG> He executes a program.

TIME LIMIT EXCEEDED The program is interrupted when 20 TRUs are used. The user
can reset the TRU limit and continue, or he can abort the run.

74

The SYSNO Command

The SYSNO command prints the computer system number and the current version number of
the monitor. For example,

-SYSNO>
TYMSHARE C33-P012/M 4-18-T74
1

- 1 I
Computer Version Release date
system 33 of monitor of this version

of the monitor

The SYSTAT Command

The SYSTAT command informs the user of the status of his jobs. For example,

-SYSTATS

TYMSHARE C33-P012/M 4-18-74 AT 15:57:59 ON WED MAY 1,1974
10 JOBS IN USE OUT OF 59.

JOB TYMNET PROG SIZE STATE TRU CONNECT USER NAME
19% AME1 63D SYSTAT 3+6 RN 0.90 0:00:12 AUSTIN $
$ MEANS RUN ONLY PROGRAM

PROGRAM HIGH(K) USERS OWNER
SYSTAT 6 1 SYS

If the user is an Account Supervisor, the SYSTAT command prints the above information for
all users in the account. For example,

-SYSTATS

TYMSHARE C33-P012/M 4-18-74 AT 17:30:41 ON WED MAY 1,1974
4 JOBS IN USE OUT OF 59. 1 DETACHED

JOB TYMNET PROG SIZE STATE TRU CONNECT USER NAME
9% AME1 73D SYSTAT 3+6 RN 8.08 0:02:53 COLLINS $
15 DETACHED LOGINN 1+0 °C 0.98 0:00:36 SFS

17 AME1 65D WHO 3+6 °C 1.75 0:00:53 SFS $

18 WC0O2 64D STAR 5 “Cc ‘ 1.40 0:00:37 PARK

$MEANS RUN ONLY PROGRAM

PROGRAM HIGH(K) USERS OWNER
SYSTAT 6 2 SYS

75

The SYSTAT command provides many options for printing the requested information. Some
of the more popular options are shown below. The user can include as many options as he
chooses in a SYSTAT command.

Option Meaning Sample SYSTAT Command

CONTINUOUS | Displays the requested information repeatedly so that the | ~-SYSTAT CONTINUOUS 5
information can be observed as it is being changed by the

program
<program> Prints information about all jobs running the specified -SYSTAT <STATPAK>
program
(user name) Prints information about all jobs running under the -SYSTAT (SFS)
specified user name
Prints information about the user’s current job -SYSTAT . >
ME Prints the job number and user name of the current user -SYSTAT ME
EVERYTHING | Prints all system information available to the user —-SYSTAT EVERYTHING 5
? Prints operating instructions for SYSTAT and all available | -SYSTAT ? 5
options

The TIME Command

The TIME command prints the number of TRUs used since the last TIME command and since
log in; it also prints the total connect time used. For example,

-TIME 5
1.36 TRU TRUs since the last TIME command.
40.07 TRU Total number of TRUs consumed since log in.

TERMINAL TIME: 0:38:55 Total connect time.

The USERS Command

The USERS command prints a summary of information about jobs on the system. For a typical
user, the USERS command prints information about the jobs logged in under his user name; for
an Account Supervisor, the command prints information about all the jobs logged in under his
account. The summary is in the following form:

USR=i RUN=j DIO=k TIO=!/ 10=m SPC=n DET=p [g,]

Indicates the number of jobs logged in.

-,

Specifies the number of jobs running.
Indicates the number of jobs waiting for disk input or output.

~ xR~ .

Denotes the number of jobs waiting for terminal input or output.

m Indicates the number of jobs waiting for input or output on devices other than a disk file or
the terminal.

76

Shows the number of special queues being used.
Indicates the number of detached jobs.
Denotes the number of people logged in within the user’s global account.

ST

Indicates the number of jobs logged in under the current user name.

For example,

-USERS 5
USR=11 RUN=2 DIO=0 TIO=§ I0=2 SPC=2 DET=0 [1,1]

%]

The VERSION Command

The VERSION command prints the version number of the program currently in core. For
example, to determine the version of STATPAK on the system, the procedure is

-GET SYS:STATPAK > The user loads the program with the GET command,
JOB SETUP

-VERSIONS
421441 404415

The current version number of STATPAK is printed on the terminal.

The WATCH Command

The WATCH command causes time or disk information to print automatically when execution
of a program or command is begun or halted. This command provides the user with a tool for
measuring the performance of his program. The form of the WATCH command is

~WATCH [arguments] o

arguments The arguments included in the command determine what information is printed
when program execution is begun or halted. Multiple arguments are separated
by commas or spaces. The argument DAY prints the time of day when control
passes to a user program or a XEXEC command. The following arguments print
information for the command or the program executed whenever control returns

to XEXEC:

READ Prints the number of disk blocks read, modulo 4096.

RUN Prints the elapsed run time which is the time expended in actual
execution.

WAIT Prints the wait time which is the time expended while waiting for
execution to commence.

WRITE Prints the number of disk blocks written, modulo 4096.
If no arguments are included, the command cancels any existing WATCH options.

NOTE: Each WATCH command overrides the previous WATCH command.

77

In the example shown below, the user requests that the system print the time of day and the
run time for each XEXEC command; he then enters the USERS and SYSNO commands. The
user terminates the previous WATCH command by typing WATCH followed by a Carriage Return.
Finally, he enters the SYSNO command.

-WATCH DAY, RUN

-USERS>
[16:18:54] The time of day and run time are printed with each command.
USR=26 RUN=2 DIO=1 TIO=21 I0=0 SPC=2 DET=0 [1,1][2.21]

-SYSNO >

[16:19:06] Time of day.

TYMSHARE C33-P012/M 4-18-T74[0.37 1 Run time.

-WATCH> The user cancels the previous WATCH command.
SYSNO 5

TYMSHARE C33-P012/M U=18=TYU The time of day and run time are not
printed for the SYSNO command.

The WHERE Command

The WHERE command prints the job number to which the specified user is attached. The
form of the command is

~-WHERE user name>
For example,

-WHERE CHAMBERLAIN 5

ON JOB 8

The WHO Command

For a typical user, the WHO command prints the job number of each currently active job under
his user name. For example,

-WHO S
19% RUTZ

78

If the user is an Account Supervisor, the WHO command prints the job numbers and user
names for all jobs logged in under his account. In the example below, an Account Supervisor
enters the WHO command.

-WHO
g#* ND EWLY An asterisk follows the job number of the user executing the WHO command.
15 S¥FS
17 SFS3
18 PARK

DEVICE ASSIGNMENTS

The user can change the assignments of the terminal, line printer, or disk from their default
assignments; the default assignments vary with different commands. For example, the default
device assignment for the TYPE command is the terminal and the default device assignment for
the LIST command is the line printer. The device assignments can be changed using the ASSIGN
and DEASSIGN commands, described below.

The ASSIGN Command

The ASSIGN command changes a device assignment. The form of the command is

—ASSIGN device; device;

device; Indicates the desired device name.
device, Indicates the name of the device to be replaced.

The device names that can be entered are TTY for terminal, DSK for disk, and LPT for line printer.
For example, the command
-ASSIGN TTY LPT S

causes all commands and programs that normally print information on the line printer to write
the information on the terminal instead.

The DEASSIGN Command
The DEASSIGN command ends device assignments made by the ASSIGN command. The form
of the command is '
—-DEASSIGN [device] o

where device specifies the name of the device to be deassigned. If no device is specified, the
command ends all device assignments.

For example,
-DEASSIGN TTY>
ends the assignment of the terminal made by a previous ASSIGN command.

OPERATION MODES

There are two operation modes available on the TYMCOM-X besides XEXEC. They are the
PDP-10 and SUDS modes. If the user should want to access one of these modes from XEXEC
or transfer between modes, he simply types the appropriate command to enter the operation
mode, as detailed below.

To enter XEXEC from PDP-10 or SUDS, the user types XEXEC and a Carriage Return. To

enter PDP-10 from XEXEC or SUDS, the user types PDP10 and a Carriage Return. To enter
SUDS from XEXEC or PDP-10, the user types HELLO and a Carriage Return.

79

81

Section 8
INDIRECT COMMANDS

XEXEC provides two methods for executing commands indirectly: the user can store file
names and switches on a file, called a command string file, and then use the command string file
name in certain commands, or the user can store commands on a file and then execute them
one by one using the PERFORM command.

COMMAND STRING FILES

When the user wants to specify the same group of files and switches for a number of commands,
he may store the information on a command string file to avoid typing it with each command.
Then, when entering the command, the user simply types the name of the command string file
preceded by the character @. Command string files can be used with any XEXEC command that
allows multiple file names and switches. These commands are COPY, DECLARE, DELETE,
DIRECTORY, FILES, LIST, PRINT, TYPE, RENAME, CDEBUG, COMPILE, DEBUG,
EXECUTE, FDEBUG, LOAD, and TRY.

For example, if the file ROUT3 contains the string
PROG2/LIBRARY,PROG3,PROG4
the command
-COMPILE PROG1,@ROUT3,PROG7
is equivalent to
-COMPILE PROG1,PROG2/LIBRARY,PROG3,PROG4,PROG7 5

The command string file identifier may have any extension. If the extension is CMD or there
is no extension, the user can refer to the file in 2 command by typing the file name only; other-
wise, the user must include the extension with the file name.

The user can write a multiline command string file by using a semicolon (;) to continue onto
the next line. For example, the command string file above can also be written as follows:

PROG2/LIBRARY,;
PROG3,PROG4

As all text on a line after a semicolon is ignored, the user can include comments in a command
string file after the semicolon. For example, the file INV.CS contains the lines

INV.SEP,PGM1,NEWDAT.DAT;NEWDAT IS NEW DATA
; INVENTORY PROGRAMS

The command

~DELETE @INV.CS 5
deletes the files INV.SEP, PGM1, and NEWDAT.DAT.

82

The user may nest command string files within command string files; as many as nine levels of
nesting are allowed. For example, if the file AC1.CMD contains the string

ACCT.A1,@INV.CS

the command

~LIST @AC15

lists the contents of ACCT.A1, INV.SEP, PGM1, and NEWDAT.DAT on the line printer.

THE PERFORM COMMAND

The PERFORM command instructs the system to read XEXEC commands from a specified file
and execute them one by one. The form of the PERFORM command is

-PERFORM file identifier 5

where the file identifier specifies the file on which the XEXEC commands are stored. This file is
called a PERFORM file. When the user enters the PERFORM command, the system reads the
commands from the PERFORM file and begins executing them in order. If a command in the
PERFORM file requires terminal input such asa Y or N to confirm file deletion, the system pauses
for the appropriate input from the terminal. Terminal input or responses must not be included

in the PERFORM file itself, but have to be typed at the terminal.

Each command in 2 PERFORM file must be entered on a separate line and should not be
abbreviated. Any text, switches, or notations which would normally be allowed in the commands
can be included in the PERFORM file. The XEXEC commands that may be used in a PERFORM
file are listed below.

Legal Commands in a PERFORM File

The XEXEC commands that may appear in a PERFORM file may be divided into four groups:
commands that return control to PERFORM, commands that transfer control to a subsystem,
commands that execute a program, and commands that terminate the user’s TYMCOM-X session.

Commands That Return Control to PERFORM

A command that returns control to PERFORM may appear anywhere in the PERFORM file.
The commands in this group are:

COMPILE DATE DIFFER FILES PDP10 PRINT XEXEC
COPY DECLARE DIRECTORY HELP PFDC RENAME
CROSS DELETE FDC LIST PPN TYPE

If the last command in the PERFORM file is one of the commands listed above, the system
executes the-command, prints

END PERFORM JOB
and returns control to XEXEC.

83

For example, the user employs the PERFORM command and a PERFORM file to print a list
of all files created since the seventh day of the current month, with their sizes and creation dates,
and an alphabetical directory listing of the files that have the extension F4.

-IYPE P11, The user prints his PERFORM file.
FILES /AFTER 7 /SIZE /CREATION
DIRECTORY #.r4 /ALPHABETICAL

-PERFORM P11

P11 5 10-MAY-T74

TRIG REL 5 10-MAY=-T4

PGM5 SAV 40 T-MAY-T74 The FILES command produces this list.

SUBODD r4 15 T-MAY-T4

BIGrIL 5 T-MAY-T4

SINCOS F4 5 26-APR=-T4 1215 ALL RD NO 28-APR=-T4(A)
SUBODD rY4 15 7-MAY-T4 1455 ALL RD NO T-MAY-T4(A)
TRIG £y 5 T-MAY-T4 1627 ALL RD NO 10-MAY-T4(A)

The DIRECTORY command produces this list.
END PERFORM JOB

Commands That Transfer Control to EDITOR or a Conversational Language

A command that transfers control to EDITOR or a conversational language terminates execution
of the PERFORM file; therefore, it must appear as the last command in the PERFORM file. The
commands in this group are:

CREATE MODIFY CFORTRAN

EDITOR XBASIC :
(any conversational language)

Commands That Execute a Program

A command that executes a program usually appears as the last command in the PERFORM file
since an executed program does not return control to the PERFORM file unless it is specifically
designed to do so. The commands in this group are:

EXECUTE R CDEBUG
TRY RUN FDEBUG
The user may design a FORTRAN, COBOL, or MACRO program to return control to the

PERFORM file rather than to XEXEC; a command that executes such a program may appear
anywhere in the PERFORM file.

In FORTRAN, control is returned to the PERFORM file by the statement
CALL EXITPE

For example, the following FORTRAN program returns control to a PERFORM file at the end
of execution

ACCEPT 20,A

20 FORMAT(E12.5)
B = A++.25
TYPE 20,B
CALL EXITPE
END

In COBOL, control is returned to a PERFORM file by the subroutine call
ENTER MACRO EXITPE
In MACRO, control is returned to a PERFORM file by a RUN UUO consisting of the following

instructions:!

MOVE AC,[1,, RUNBLK]
RUN AC,
HALT -1

RUNBLK: SIXBIT/SYS/
SIXBIT/PERFOR/
EXP 0,0,0,0

The user may include statements that return control to XEXEC and statements that return
control to a PERFORM file in the same program. If no PERFORM file exists, either type of
statement returns control to XEXEC.

Commands That Terminate the User’s TYMCOM-X Session

Any of the following commands can be included in a PERFORM file to terminate the user’s
TYMCOM-X session:

EXIT KJOB LOGOUT

These commands are described on pages 6 and 7.

Interrupting the PERFORM Command

The user may interrupt execution of the commands in a PERFORM file by typing two Alt
Mode/Escapes to return control to XEXEC. The interruption leaves the PERFORM file active;
thus, the user can return to the point at which the interruption occurred by typing the REENTER
or CONTINUE command provided that the command he interrupted allows him to do so.

NOTE: If the user interrupts a PERFORM command and then executes a program that is
designed to return control to a PERFORM file, control returns from the executed program to
the interrupted PERFORM file even though the program itself was not executed by this PERFORM

file.

1- See the DECsystem10 Assembly Language Handbook for a discussion of machine language programming and UUOs.

Appendix A

XEXEC COMMAND SUMMARY

85

The table below lists the XEXEC commands in alphabetical order. The format and description
of each command is given, as well as information about the command’s effect on core and the
number of the page on which the command is fully documented.

Command

Destroys
Current
Core Image

Description

Page

ASSIGN device; device;

Changes a device assignment from
device, to device;

78

ATTACH n

Attaches the terminal to job n

67

CCONTINUE

Continues program execution from
point of interruption and permits
concurrent execution of XEXEC
commands that do not destroy the
core image

64

CDEBUG [file list]

Compiles the specified file(s) if
necessary and loads the file(s) and
the COBOL debugger

54

CLOSE [device name]

Terminates input and output on the
specified device or on all devices

67

COMPILE [file list]

Compiles specified file(s)

52

CONTINUE

Continues execution from point of
interruption

64

COPY source {TO

2

} destination

Writes a copy of the source file on the
destination file

22

CORE [r]

Changes the amount of core assigned
to the user’s job to n. If n is not
specified, prints the amount of core
assigned to the user’s job and the
amount of unused core available

71

CREATE file identifier

Transfers control to EDITOR to
create a new file

45

CROSS

Produces cross-reference listing for all
files compiled with the /CREF or
/CROSS switch

61

(Table continues)

86

user’s file directory

Destroys
Command Current Description Page
Core Image
CSTART ° Begins program execution and 63
permits concurrent execution of
XEXEC commands that do not
destroy the core image
D left right [address] Stores information in the left half and | 60
right half of the specified location
DATE] Prints date and time to the minute 72
DAYTIME Prints date and time to the second 72
DDT L] Calls DDT debugger 60
DEASSIGN [device] Ends assignment of specified device or | 78
of all devices
DEBUG ([file list] ° Compiles the specified files(s) if 55
necessary and loads the file(s) and the
DDT debugger
DECLARE private account public file name(s) . Sets protection for specified file(s) 37
DELETE file list (] Deletes specified file(s) 24
DETACH Detaches the terminal from the 67
current job
DIFFERENCES (] Compares two files and lists all 31
differences
DIRECTORY ([file list] ° Prints descriptive information about 41
the specified file(s) or all files in the
user’s directory
DSK Prints number of disk blocks read and | 72
written since last DSK command and
since log in
E [address] Prints contents of specified core 61
. location
EDITOR L] Transfers control to EDITOR 45
EXECUTE ° Compiles, if necessary, loads, and 53
executes the specified files
EXIT . Terminates the TYMCOM-X session 7
without printing TRUs and connect
time used
FDC] Sets general protection for access to 35

87

Destroys
Command Current Description Page
Core Image

FDEBUG [file list] ° Compiles the specified file(s), if 54
necessary, and loads the file(s) and
the FORTRAN debugger

FILES [file list]] Prints specified file names or all file 41
names

FINISH [device name] . Terminates input and output on the 67
specified device and releases the
device assignment, or performs this
function for all devices

GET file identifier] Loads the specified core-image file 66
into core

GFD user name [Accesses the directory of another user | 44
in the same account if license permits

GO file identifier ° Loads and executes the specified 66
core-image file

HELLO ° Transfers control to SUDS mode 79

HELP ° Prints a list of XEXEC commands 10

KJOB] Terminates TYMCOM-X session and 6
prints TRUs and connect time used

| LIST file list . Prints the specified files on the line 27

printer with page headings

LOAD (file list]] Compiles, if necessary, and loads the 53
specified files

LOGOUT ° Terminates TYMCOM-X session and 6
prints TRUs and connect time used

MODIFY [file identifier]] Transfers control to EDITOR and 45
reads the specified file, or the file
specified in the most recent CREATE
or MODIFY command

PDP10 ° Transfers control to PDP-10 mode 79

PERFORM file identifier] Executes commands stored on the 82
specified file

PFDC (] Prints general protection for accessto | 36
user’s file directory

(Table continues)

88

the user’s job or the status of all jobs
in the account

Destroys
Command Current Description Page
Core Image

PJOB Prints the current job number 72

PPN user name ° Prints the global account number 73
(GAN) and the file directory number
for the specified user name

PRINT file list ° Prints the specified files on the 27
terminal without headings

R program name ° Executes specified system program 47

REENTER ° Returns control to interrupted pro- 46
gram, preserving the user’s work

RENAME old file name {AS} new file name ° gﬁa&ges the name(s) of the specified 26

RESOURCES ° Prints names of available input and 73
output devices

RUN file identifier [Loads and executes specified core- 66
image file

SAVE file identifier ° Writes current core image on the 65
specified file

SET LIMIT »n Interrupts execution when the 73
number of TRUs consumed is n

SSAVE file identifier (] Writes current core image on specified | 65
file making the high segment sharable

START . Begins execution of program 63
currently in core

SYSNO o Prints system number, the current 74
version number, and release data of
the monitor

SYSTAT ° Prints information about the status of | 74

89

Destroys
Command Current Description Page
Core Image

TIME Prints the number of TRUs consumed | 75
since the last TIME command and
since log in, and prints the total con-
nect time used

TRY [file list] ° Compiles the specified file(s), if 55
necessary, loads the files and the DDT
debugger, and begins execution

TTY terminal feature Sets specified terminal feature 11

TYPE file list o Prints the specified file(s) on the 27
terminal

USERS ° Prints information about all accessible | 75
files in the user’s account

VERSION (] Prints version number of the program | 76
currently in core

WATCH [argument(s)] Prints requested information with 76
each subsequent XEXEC command;
arguments are DAY, READ, RUN,
WAIT, and WRITE

WHERE user name Prints job number(s) that the 77
specified user is logged into

WHO L] Prints job number and user name for 77
all accessible jobs in the user’s
account

XEXEC (] Transfers control to XEXEC mode 79

Appendix B
TERMINAL FILLER CLASSES

The filler classes for output and echoing are listed in the table below. These classes can be
assigned to a terminal by using the TTY FILL command, described on page 11.

Number of Fillers for Filler Class
Character Name Octal Code

0 1 2 3
BS 010 0 2 6 6
HT 011 0 lor2 lor2 1o0r2*
LF 012 0 1 6 6
VT 013 0 2 6 6
FF 014 0 12 21 21
CR 015 0 lor2 20r4 2 or 4**
XON 021 0 1 1 1
TAPE 022 0 1 1 1
XOFF 023 0 1 1 1
NTAP 024, 0 1 1 1

*1 if 0—3 spaces to tab stop; 2 if 4—7 spaces to tab stop.
#] or 2 if CR is typed; 2 or 4 if CR is supplied because the line is too long.

INDEX

NOTE: Page numbers which appear in bold face type refer to those
pages where the listed item receives the most detailed discussion.

in file identifier, 15,26, 41

% F switch, 58
9%n0 switch, 58
%P switch, 58
%S switch, 58
%U switch, 58

* as EDITOR prompt, 17
* in file identifier, 15, 26, 41

— in file identifier, 16

/ command in EDITOR, 21
/? switch, 10

/ACCESS switch, 42
/AFTER switch, 43
J/ALPHABETICAL switch, 42
/ASCII switch, 33
/BEFORE switch, 43
/BLANK switch, 33
/CASE switch, 29
J/CHEAD switch, 29
/COBOL switch, 56
/COMMENT switch, 33
/COMPILE switch, 52, 57
J/COUNT switch, 28
J/CREATION switch, 42
/CREF switch, 57, 61
J/CROSS switch, 57, 61
/DOUBLE switch, 28
J/EVERYTHING switch, 42
JEXPAND switch, 33
J/EXTENSION switch, 42
/FAST switch, 42

/FULLCH switch, 29
/HEAD switch, 29

J/HELP switch, 10, 33
/LARGE switch, 28
/LIBRARY switch, 57
JLIST switch 57

/LOL switch, 28

/LOWER switch, 33
/MACRO switch, 56
/MULTISPACE switch, 28
/NOCASE switch, 29
/NOCHEAD switch, 29
/NOCOMPILE switch, 57
/NOFORTRAN switch, 30
/NOFULL switch, 29
/NOHEAD switch, 29
/NOLIST switch, 57
/NOQUESTION switch, 30
/NORMAL switch, 30
/NOSEQUENCE switch, 30
J/ONENUM switch, 29
/PROTECTION switch, 42
J/QUESTION switch, 30
/QUICK switch, 33

/REL switch, 57
/REVERSE switch, 42, 43
/SECONDS switch, 42
/SEQUENCE switch, 30
/SINGLE switch, 28
/SIZE switch, 28, 42
/SMALL switch, 28
/SPACING switch, 33
/STORAGE switch, 42
/SYMBOLIC switch, 33

93

94

/TEMPS switch, 43 BAS extension, 14

/TIME switch, 42 BASIC source program, 14

/TODAY switch, 43 Binary comparison of files, 31, 32
/TOTAL switch, 42 Binary file names, changing default, 59
/TWONUM switch, 29 Binary files, relocatable, 14, 51, 52, 57, 59
/UNSORTED switch, 42 Blank extension, 15

/UPDATE switch, 33 Blank lines in files, comparing, 33
/UPPER switch, 33 BLI extension, 14

[WAIT switch, 25 ' BLISS source program, 14

/WORDS switch, 42 Braces in a command form, 1

/WORK switch, 33 Brackets in a command form, 2

BYE command, 6, 85
? in file identifier, 15, 26, 41

@ Used for command string files, 81

Calendar and clock information, printing, 72
Calling the Tymshare Network, 3

Calling TYMNET, 3

Carriage Return control, setting, 12

Abbreviating commands, 10
Abbreviating switches, 28, 55
Aborting commands, 11

Accessing the file directory of another user, 44 Carriage width, setting, 12

ACCOUNT controls, 35 CBL extension, 14
Account Supervisor, 71, 75, 78 CCONTINUE command, 50, 64, 65, 67, 68, 85
ACCOUNT user class, 37, 38 CDEBUG command, 49, 51, 54, 81, 83, 85
Acoustic coupler, 3 CFORTRAN command, 83
ALG extension, 14 Changing amount of core assigned to job, 71
ALGOL source program, 14 Changing default binary file names, 59
ALL as file identifier, 15 Changing device assignments, 78
ALL file protection, 37, 38 Character deletion, 6, 10, 18,22
ALL notation in file identifier, 15, 41, 51 Classes of users
Alt Mode/Escape, 11, 21, 46, 64, 84 ACCOUNT, 37, 38
APPEND command in EDITOR, 17, 20, 21 PRIVATE, 37, 38
Appending lines in EDITOR, 17, 20, 21 PUBLIC, 37, 38
Applications programs, 45, 47 CLOSE command, 51, 67, 85
ASCII comparison of files, 33 CMD extension, 14, 81
Assembler switches, 58 COBOL programs, debugging, 54
ASSIGN command, 61, 78, 85 COBOL source program, 14
Asterisk (*) notation in file identifier, 15, 26, Command
41,51 abbreviations, 10
Asterisk (*) prompt in EDITOR, 17 abortion, 11
ATTACH command, 67, 85 file list, 9

Attaching jobs, 67 form, 1,9

Command form
braces in, 1
brackets in, 2
extended, 58
Command string files, 14, 81
comments in, 81
multiline, 81
nesting, 82
Command switches, 9, 24, 42, 55
Commands in PERFORM file that
execute a program, 83
log out, 84
return control to PERFORM file, 82

transfer control to EDITOR or a conversational

language, 83

Commands that allow multiple file names and
switches, 81

Commands that do not destroy the current
core image, 63, 64, 85

Commands that may be used in PERFORM
file, 82

Commands
ASSIGN, 61, 78, 85
ATTACH, 67, 85
BYE, 6, 85
CCONTINUE, 50, 64, 65, 67, 68, 85
CDEBUG, 49, 51, 54. 81, 83, 85
CFORTRAN, 83
CLOSE, 51, 67, 85
COMPILE, 49, 51, 52, 81, 82, 85
compile-type, 15, 51
CONTINUE, 21, 46, 50, 64, 84, 85
COPY, 15, 16, 22, 81, 82, 85
CORE, 71, 85
CREATE, 45, 46, 85
CROSS, 50, 57, 61, 82, 85
CSTART, 50, 63, 67, 68, 86
D, 49, 60, 86
DATE, 72, 82, 86
DAYTIME, 72, 86
DDT, 49, 60, 86

Commands (continued)

DEASSIGN, 78, 86

DEBUG, 49, 51, 55, 81, 86
DECLARE, 15, 16, 35, 37, 81, 82, 86
DELETE, 15, 16, 24, 25, 81, 82, 86
DETACH, 67, 68, 86

DIFFER, 82

DIFFERENCES, 31, 82, 86
DIRECTORY, 15, 16, 40, 41, 81, 82, 86
DSK, 72, 86 -

E, 49, 61, 86

EDITOR, 17, 45, 46, 83, 86
EXECUTE, 49, 51, 53, 81, 83, 86
executing from file, 82

EXIT, 7, 84, 86

FDC, 35, 36, 82, 86

FDEBUG, 49, 51, 54, 81, 83, 87
FILES, 15, 16, 40, 41, 81, 82, 87
FINISH, 51, 67, 87

GET, 15, 50, 66, 87

GFD, 44, 87

GO, 15, 50, 66, 87

HELLO, 79, 87

HELP, 9, 82, 87

KJOB, 6, 84, 87

LIST, 15, 26, 27, 81, 82, 87
LOAD, 49, 51, 53, 81, 87
LOGOUT, 6, 84, 87

MODIFY, 45, 46, 83, 87

PDP10, 79, 82, 87

PERFORM, 81, 82, 87

PFDC, 36, 82, 87

PJOB, 72, 88

PPN, 73, 82, 88

PRINT, 15, 26, 27, 81, 82, 88

R, 47, 83, 88

REENTER, 21, 46, 84, 88
RENAME, 15, 16, 26, 81, 82, 88
RESOURCES, 73, 88

RUN, 15, 50, 66, 83, 88

95

96

Commands (continued)

SAVE, 50, 65, 88

SET LIMIT, 73, 88
SSAVE, 50, 65, 66, 88
START, 46, 50, 63, 88
SYSNO, 74, 88

SYSTAT, 74, 88

TIME, 75, 89

TRY, 49, 51, 55, 81, 83, 89
TTY, 11, 89

TTY FILL, 91

TYPE, 15, 26, 27, 81, 82, 89
USERS, 75, 89

VERSION, 76, 89
WATCH, 76, 89

WHERE, 77, 89

WHO, 77, 89

XBASIC, 83

XEXEC, 79, 82, 89

Comments in a command string file, 81
Comments, ignoring for comparisons, 33
Comparing

blank lines in files, 33

core image files, 33

files, 31

files and flagging differences, 33

files in ASCII mode, 33
Compilation control switches, 57
COMPILE command, 49, 51, 52, 81, 82, 85
Compile-type commands, 15, 51
Compiler switches, 58
Compiling and concatenating files, 59
Compiling programs, 51
Compiling user programs, 49, 52
Concatenating files, 24
Concatenating files in compilation, 59

Connect time, printing, 6, 75

CONTINUE command, 21, 46, 50, 64, 84, 85
Continuing execution, 21, 46, 50, 64, 84

CONTINUOUS option in SYSTAT command, 75

Control
A,6,10,18,22,23
characters, 2
characters in EDITOR, 22
D,17,19,22,23
I 11
Q,11,18,22,23
W, 18,22
Z,20,22,23
Controlling character set for file listings, 29
Controlling page numbers for file listings, 29

Controlling upper- and lowercase for file listings,

29

Controls

ACCOUNT, 35

PUBLIC, 35
Conventions, symbol, 1
Conversational languages, 47
COPY command, 15, 16, 22, 81, 82, 85
COPY command, plus sign (+) in, 24
Copying

files, 22, 23

files from or to another user’s storage area,

23,24

part of a line in EDITOR, 20, 22

previous line in EDITOR, 19, 22
Core assigned to job, changing, 71
CORE command, 71, 85
Core image comparison of files, 31, 32
Core image files, 65

comparing, 31, 32

executing, 66

loading, 66

saving, 65
Core information, 71
Coupler, acoustic, 3
CP file protection, 37, 38
CREATE command, 45, 46, 83, 85

Creating a file in EDITOR, 17, 45

Creating a file with the COPY command, 22
CRF extension, 14, 56

CROSS command, 50, 57, 61, 82, 85
Crosshatch (#) notation, 15, 26, 41, 51
Cross-reference listing, 56, 57, 61
Cross-reference listing file, 14

CSTART command, 50, 63, 67, 68, 86

Current user, printing job numbers of, 77

D command, 49, 60, 86
DAT extension, 14
Data file, 14
Data phone, 3
Data transmission speed, 4
DATE command, 72, 82, 86
DAYTIME command, 72, 86
DDT command, 49, 60, 86
DEASSIGN command, 78, 86
DEBUG command, 49, 51, S5, 60, 81, 86
Debugging
COBOL programs, 54
FORTRAN programs, 54, 55
MACRO programs, 55
programs, 49, 60
user programs, 49
DECLARE command, 15, 16, 35, 37, 81, 82, 86
Declaring
file protection, 35, 37
file security controls, 35-38
files accessible through program use, 40
general protection for directory, 35
special terminal properties, 11
Default
binary file names, changing, 59
device assignments, 78
processor, 56
switches, 30

DELETE command in XEXEC, 15, 16, 24,
25, 81, 82, 86

DELETE command in EDITOR, 20, 21

Deleting

characters, 6,10, 18, 22

files, 24

line, 11, 18, 22

lines in EDITOR, 20

word, 18,22
DETACH command, 67, 68, 86
Detached processing, 4, 67, 68
Detaching jobs, 67, 68
Device assignments, 78
Devices, printing names of available, 73
DIFFERENCES command, 31, 82, 86
DIFFERENCES switches, 31, 33
DIFFERENCES switches, printing, 33
Directory, 35

DIRECTORY command, 15, 16, 40, 41, 81,
82, 86

Disk blocks read and written, printing, 72
Disk information, printing, 76

DSK command, 72, 86

Duplicating a file, 23

E command, 49, 61, 86
Echo filler classes, 91
Echo, setting, 12
EDIT command in EDITOR, 19, 21
Editing a file, 17, 19
Editing lines as they are entered, 10
EDITOR on the TYMCOM-X, 17, 45
EDITOR command in XEXEC, 17, 45, 46, 83, 86
EDITOR commands, 21

APPEND, 17, 20, 21

DELETE, 20, 21

EDIT, 19, 21

EXIT, 45, 46

GO, 45, 46

INSERT, 20, 21

QUIT, 21, 45

READ, 19, 21

WRITE, 17, 18, 21
EDITOR prompt character, 17
Ending device assignments, 78

97

98

Entering data at the terminal, 10 Extensions (continued)
Entering EDITOR, 45 TMP, 14
Entering the system, 3, 4 VAS, 14
Equals (=) construction in compile-type commands,
59
EVERYTHING option in SYSTAT command, 75 F4 extension, 14
Examining a core location, 61 FAIL source program, 14
Executable file, 14 FAL extension, 14
EXECUTE command, 49, 51, 53, 81, 83, 86 FAS extension, 14
Executing a core image file, 66 FASBOL source program, 14
Executing commands indirectly, 81 FDC command, 35, 36, 82, 86
Executing user programs, 49, 53 FDEBUG command, 49, 51, 54, 81, 83, 87
EXIT command, 7, 84, 86 File directories, sharable, 44
EXIT command in EDITOR, 45, 46 File directory, 35
EXITPE subroutine, 84 accessing another user’s, 44
Extended command forms, 58 information, printing, 40
Extensions, 13, 14, 15, 52 number, printing, 73
AlLG, 14 File identifiers, 13, 15
BAS, 14 ALL notation in, 15, 41, 51
blank, 15 Asterisk notation in, 15, 26, 41, 51
BLI, 14 crosshatch notation in, 15, 26, 41, 51
CBL, 14 NOT (or -) notation in, 16, 41, 51
CMD, 14, 81 question mark notation in, 15, 26, 41, 51
CRF, 14, 56 SAME, 23
DAT, 14 : File list in a command, 9
F4, 14 File listing, 57
FAL, 14 File name extensions, 13, 14, 15, 52
FAS, 14 File names, 13
FTF, 14 changing default binary, 59
HGH, 14, 15, 66 reserved, 15
LOW, 14, 66 File protection, 16, 23, 25, 35
LSP, 14 ALL, 37, 38
LST, 14, 56, 61 CP, 37, 38
MAC, 14 declaring, 35, 37
null, 15 LK, 37, 38
REL, 14, 51, 52, 59 NO, 37, 38
SAIL 14 printing, 35, 36
SAV, 14, 15, 66 RD, 37, 38
SHR, 14, 15, 66 RUN, 37, 38
SIM, 14 setting, 36
SNO, 14 standard, 36, 39

standard, 14, 15, 52 UPD, 37,38

File security controls (see File protection)
FILES command, 15, 16, 40, 41, 81, 82, 87
Files in XEXEC, 13
Files
binary comparison of, 31, 32
binary relocatable, 51, 52, 57, 59
command string, 81
comments in command string, 81
comparing, 31
concatenating, 24
copying, 22, 23

copying from or to another user’s storage
area, 23,24

core image, 65
core image comparison of, 31, 32

creating, 17, 45
cross-reference listing, 14

data, 14

declaring accessible through program use, 40
deleting, 24

editing, 17-22

executable, 14

executing commands from, 82
executing core image, 66

generating listings on, 14, 56

listing cross-reference information, 56
listing in order, 42

loading core image, 66

modifying, 45

multiline command string, 81
naming, 13

nesting command string, 82
parameter, 59

PERFORM, 82

permanent, 13

printing, 23, 26, 27

referring to, 15

referring to another user’s, 16
releasing, 67

relocatable binary, 14, 51, 52, 57, 59
renaming, 26

requesting additional information about, 42

Files (continued)

saving core image, 65
selecting by creation date, 43
selecting for listing, 42, 43
sharable, 14
suppressing information about, 42
symbolic comparison of, 31, 32
temporary, 13, 14
Filler classes, 91
Filler classes, setting, 11
FINISH command, 51, 67, 87
Flagging differences between files, 33
Form control, setting, 11
Format switches, specifying, 27
FORTRAN data file, printing file as, 30
FORTRAN programs, debugging, 54, 55
FORTRAN source program, 14
FTF extension, 14

GET command, 15, 50, 66, 87

GFD command, 44, 87

Global account number, printing, 73
GO command in XEXEC, 15, 50, 66, 87
GO command in EDITOR, 45,46

HELLO command, 79, 87

HELP command, 10, 82, 87

HGH extension, 14, 15, 66

High segment of a two-segment program, 14

Home system, 6

Identification character for terminal, 4
Identifying the terminal, 4

Ignoring comments in file comparisons, 33
Ignoring spacing and tabs in file comparisons, 33
Indirect execution of commands, 81

Initiating execution, 63

INSERT command in EDITOR, 20, 21

100

Inserting lines in EDITOR, 20
Interrupting

EDITOR operations, 21, 46

program execution, 64

the PERFORM command, 84
Introduction to XEXEC, 1

Job information, printing, 75

Job number, 5

Job number, printing, 72

Job number of a specified user, printing, 77

Job status, printing, 74
KJOB command, 6, 84, 87

Languages on the TYMCOM-X, 45
Languages, conversational, 47

Leaving EDITOR, 45

Leaving the system, 6

Legal command in PERFORM file, 82

Less than/greater than (<>) construction in
compile-type commands, 59

Library programs, 47
Library search switch, 57
License of the user, 71
Limiting TRUs used, 73
Line
deletion, 11, 18, 22
length for printed files, 28
numbers in file listings, 30
printer, printing on, 26
range in EDITOR commands, 19
Line-editing features, 10
LISP source program, 14
LIST command, 15, 26, 27, 81, 82, 87
Listing
cross-reference information, 56, 57, 61
file directory information, 40
of program file, 14, 56, 57
switches, 56

LK file protection, 37, 38

LOAD command, 49, 51, 53, 81, 87
Loader switches, 58

Loading a core image file, 66

Loading user programs, 49, 51, 53, 81, 87
Log-in procedure, 4

Logging in, 4

Logging out, 6

LOGOUT command, 6, 84, 87

LOW extension, 14, 66

Low segment of a two-segment program, 14

Lowercase character feature, setting, 12
LSP extension, 14

LST extension, 14, 56, 61

MAC extension, 14

MACRO programs, debugging, 55
MACRO source program, 14

ME option in SYSTAT command, 75
Minus Sign (=) in file identifier, 16
Model numbers for terminals, 4
MODIFY command, 45, 46, 83, 87
Modifying a file, 45

Monitor version number, printing, 74
Multiline command string file, 81

Multiple file names and switches, commands that
allow, 81

Naming files, 13

Nesting command string files, 82

Network Supervisor, 4, 7

NO file protection, 37, 38

NOT (or-) notation in file identifier, 16, 41, 51
Null extension, 15

Operation modes, 79
PDP-10, 79
SUDS, 79
XEXEC, 79

Ordered listing of files, 42
Output filler classes, 91

Page count for printed files, 28
Page size for printed files, 28
Parameter files, 59
Partial binary comparisons, 33
Password, 5
PDP-10 operation mode, 79
PDP10 command, 79, 82, 87
PERFORM command, 81, 82, 87
PERFORM command, interrupting, 84
PERFORM file, 82
commands that return control to, 82
legal commands in, 82
programs that return control to, 83
returning control to, 84

PERFORM file commands that execute a program,
83

PERFORM file commands that log out, 84

PERFORM file commands that transfer control to
EDITOR or a conversational language, 83

Period (.) option in SYSTAT command, 75
PFDC command, 36, 82, 87
PJOB command, 72, 88

Plus (+) construction in compile-type commands, 59

Plus sign (+) in COPY command, 24
PPN command, 73, 82, 88
PRINT command, 15, 26, 27, 81, 82, 88
Printing
a file at the terminal, 23
calendar and clock information, 72
computer system number, 74
control characters, 30
current monitor version number, 74
DIFFERENCES switches, 33
disk information, 76
file as FORTRAN data file, 30
file directory information, 40
file identification information for file listings, 29

file protection, 35, 36

Printing (continued)

101

global account number and file directory number,

73
headings for file listings, 29
job information, 71, 75
job number, 72
job number of a specified user, 77
job numbers of current user, 77
job status, 74
names of available devices, 73
number of disk blocks read and written, 72
system information, 71
system program version number, 76
time information, 76
total connect time, 75

Tymshare Resource Units, 75

Printing Files, 26, 27
character set control, 29
control characters, 30
default switches, 30
line length, 28
line numbers, 30
page count, 28
page numbering, 29
page size, 28
spacing, 28
upper and lowercase control, 29
with or without headings, 29
with or without identification information, 29

PRIVATE user class, 37, 38
Processor switches, 56

Processor, default, 56
Program execution, 63
Program execution, interrupting, 64

Programs that return control to a PERFORM file,
83 N

Programs
applications, 47
compiling, 49, 51, 52
debugging, 49, 54, 60
debugging COBOL, 54

102

Programs (continued)
debugging FORTRAN, 54, 55
debugging MACRO, 55
executing, 49, 53
library, 47
loading, 49, 53
SETLIC, 40
Project code, 4
Prompt character in XEXEC, 10
Protection of files, 16, 23, 25, 35
ALL, 37,38
CP, 37,38
declaring, 35, 37
LK, 37, 38
NO, 37, 38
printing, 35, 36
RD, 37, 38
RUN, 37, 38
setting, 36
standard, 36, 39
UPD, 37, 38
PUBLIC controls, 35
PUBLIC wuser class, 37, 38

Question mark (?) notation, 15, 26,41, 51
Question mark (?) option in SYSTAT command, 75
QUIT command in EDITOR, 21, 45

R command, 47, 83, 88

Range of lines in EDITOR commands, 19
RD file protection, 37, 38

READ argument in WATCH command, 76
READ command in EDITOR, 19, 21
REENTER command, 21, 46, 84, 88
Reentering EDITOR, 46

Referring to files in another user’s storage area, 16
Referring to files in commands, 15

REL extension, 14, 51, 52, 57, 59
Releasing files, 67

Relocatable binary files, 14, 51, 52, 57, 59

RENAME command, 15, 16, 26, 81, 82, 88
Renaming files, 26
Requesting additional information about files, 42
Requesting information about XEXEC commands, 9
Reserved file names, 15
RESOURCES command, 73, 88
Returning control to
a PERFORM file, 84
EDITOR from XEXEC, 21
XEXEC from EDITOR, 21
RUN argument in WATCH command, 76
RUN command, 15, 50, 66, 83, 88
RUN file protection, 37, 38

SAI extension, 14

SAIL source program, 14

SAME as a file identifier, 23

SAV extension, 14, 15, 66

SAVE command, 50, 65, 88

Saving a core image file, 65

Section descriptions, 2

Security controls for files, 35

Selecting files by creation date, 43

Selecting files for listing file identifiers, 42, 43

Semicolon (;) in command string file, 81

SET LIMIT command, 73, 88
SETLIC program, 40

Setting file protection, 36
Sharable directories, 44

Sharable file, 14

SHR extension, 14, 15, 66

SIM extension, 14

SIMPLE source program, 14
SNO extension, 14

SNOBOL source program, 14
Spacing in printed files, 28
Spacing, ignoring for comparison, 33
SSAVE command, 50, 65, 66, 88
Standard extensions, 14,15, 52

Standard file protection, 36, 39
START command, 46, 50, 63, 88
Status of the user, 71
Storing data in a core location, 60
Subroutines, EXITPE, 84
SUDS operation mode, 79
Suppressing information about files, 42
Switches in commands, 9, 24, 42, 55
Switches

%F, 58

%n0, 58

%P, 58

%S, 58

%U, 58

/2,10

/ACCESS, 42

/AFTER, 43

/{ALPHABETICAL, 42

/ASCIL, 33

/BEFORE, 43

/BLANK, 33

/CASE, 29

/CHEAD, 29

/COBOL, 56

/COMMENT, 33

J/COMPILE, 52, 57

/COUNT, 28

/CREATION, 42

/CREF, 57, 61

/CROSS, 57, 61

/DOUBLE, 28

/EVERYTHING, 42

J/EXPAND, 33

J/EXTENSION, 42

/FAST, 42

J/FORTRAN, 30, 56

J/FULLCH, 29

J/HEAD, 29

/HELP, 9, 33

/LARGE, 28

/LIBRARY, 57

103

Switches (continued)

[LIST, 57

/LOL, 28
/LOWER, 33
/MACRO, 56
/MULTISPACE, 28
/NOCASE, 29
/NOHEAD, 29
/NOCOMPILE, 57
/NOFORTRAN, 30
/NOFULL, 29
/NOHEAD, 29
/NOLIST, 57
/NOQUESTION, 30
/NORMAL, 30
/NOSEQUENCE, 30
/ONENUM, 29
/PROTECTION, 42
/QUESTION, 30
/QUICK, 33

/REL, 57
/REVERSE, 42, 43
/SECONDS, 42
/SEQUENCE, 30
/SINGLE, 28
[SIZE, 28, 42
[SMALL, 28
/SPACING, 33
[STORAGE, 42
/{SYMBOLIC, 33
/TEMPS, 43
/TIME, 42
/TODAY, 43
/TOTAL, 42
/TWONUM, 29
/UNSORTED, 42
J/UPDATE, 33
/UPPER, 33
/WAIT, 25
/WORDS, 42
/WORK, 33

104

Switches (continued) Terminating APPEND command in EDITOR, 22
abbreviating, 28, 55 Terminating INSERT command in EDITOR, 22
assembler, 58 Terminating text entry in EDITOR, 17
command, 55 TIME command, 75, 89

compilation control, 57
compiler, 58
DIFFERENCES, 31, 33
format, 27
library search, 57
listing, 56
loader, 58
processor, 56
Symbol conventions, 1
Symbolic comparison of files, 31, 32
SYSNO command, 74, 88
SYSTAT command, 74, 88
CONTINUOUS option, 75
EVERYTHING option, 75
ME option, 75
period (.) option, 75
question mark (?) option, 75
System information, 71

System number, printing, 74

Tabs, ignoring for comparison, 33
Tabs, setting, 11
Temporary file, 14
Terminal
Carriage Return control, 12
carriage width, 12
connect time, printing, 6
echo suppression, 12
filler classes, 11
form control, 11
identification character, 3, 4
lowercase feature, 12
model numbers, 4
properties, declaring, 11
tab settings, 11

Time information, printing, 76

TMP extension, 14

Translations using parameter files, 59
Transmission speed, 4

TRUs, printing, 6

TRUs, setting limit to, 73

TRY command, 49, 51, 55, 81, 83, 89
TTY command, 11, 89

TTY FILL command, 91

TYMCOM-X applications packages, 45
TYMCOM-X languages, 45
TYMCOM-X system, 1, 45

TYMNET, calling, 3

Tymshare Network, calling, 3
Tymshare Resource Units, printing, 6, 75
TYPE command, 15, 26, 27, 81, 82, 89

UFD, 35

UPD file protection, 37, 38

User classes
ACCOUNT, 37, 38
PRIVATE, 37, 38
PUBLIC, 37, 38

User file directory, 35
Printing information about, 40

User interaction, 10

User license, 71

User name, 5

User Program Library, 47

User status, 71

USERS command, 75, 89

Varian assembler source program, 14
VAS extension, 14
VERSION command, 76, 89

Version number of a system program, printing, 76

WAIT argument in WATCH command, 76

WATCH command, 76, 89
READ argument, 76
RUN argument, 76
WAIT argument, 76
WRITE argument, 76
WHERE command, 77, 89
WHO command, 77, 89
Width of carriage, setting, 12
Word deletion, 18, 22
WRITE argument in WATCH command, 76

WRITE command in EDITOR, 17, 18, 21
Writing a file in EDITOR, 18

XBASIC command, 83

XEXEC command, 79, 82, 89
XEXEC, commands in, 9, 85
XEXEC manual, description of, 2
XEXEC operation mode, 79
XEXEC prompt, 5,10

105

