date: 12 Jan 1982

from: S. M. Walters

This manual contains the entire set of documents describing “the uMIX
operating system. This particular version is the fourth in a series of
UMIX look-alike svetems built during the last five vyears. It is
intended for a single user and does not support any multi-tasking or
multi—-user features. It is simple to mount add use on Z-80 systems
having &4 Kbytes of RAM and an 8086 version will be available shortly.
The operating system can access different types of storage without
maditication.

It supports a hierarchial file system cbmblete with pathnames and
subdirectories. Files are placed in the filesystem using dynamic
allocation, can be protected and can reach a maximal length of B
Mbytes. Files can be declared to be physical device drivers allowing
uniform treatment of both disk files and real devices such as printers
and modems. The operating system supplies several subroutines for
reading and writing bytes or blocks of bytes to or from files. In
doing so, no constraints are made on the data allowing arbitrary
binary patterns on all 8 bits. It allows simultaneous read and write
access of the same file and permits up to eight files to be open
simultaneously. Entry points for moving the file pointers are provided
for allowing random access of any byte within any file. Volumes of the
filesystem can be mounted and removed at will allowing the user tog
access volumes as subdirectories.

There is a shell programming language which allows the passing of
arguments to commands as well as re-direction of the standard 1/0
channel. Fseudo pipes are provided to pass I/0 between commands
without user intervention. The shell allows multiple commands on a
single line and is easily made to read files containing command lines.
Buch files can be declared executable which will cause the operating
system to interpret their content as commands whenever the file name
iz entered as a command. This allows the user to quickly make new
commands which themselves are built from dther commands.

The operating system also includes edtry peints for printing and
reading numbers or strings. It allows tab stops to be set and provides
& string reading routine which recognizes character and line delete.
It also includes a string comparator which matches two text lines.

There are numerous commands mounted under the operating system for

creating, manipulating and removing files or directories. A8lso mounted
are code generation svstems for both the Z-80 and 80864 DrocessEgrs.
These each include a C compiler, an assembler producing relocatable
code and a link editor for combining modules which were genetrated
separately. A screen oriented text editor as well as a test processor
are included for building programs and doing word processing.
\

Thus, the uNIX operating system provides all neccssary tools for
generating quality software. It has been subjected to intense use on
several machines for nearly two vears. Several applications have been
developed using it including a bit-slice machine programmed entirely
in microcode designed on this system. The 8086 software generation
system mentioned earlier was developed in its entirety using this
cperating system on a Z-80.

)

date: 12 Jan 1982

from: S. M. Walters

e s e S e e el R el Sl LAY WA e

This note describes a procedure for mounting the uMIX operating svstem
on your computer hardware. It is expected that the system consists of
a I-80 processor and 64 kKbytes of RAM. While it is possible to run the
system with less RAM, it is not recommended. To determine whether your
available RAM is adequate, a memory map is attached which shows the
purposes for which varicus blocks aof memory is used.

It is necessary for you to develop disk driver routines which are
compatible with an 8 inch disk using single density sectors having 25&
bytes per sector and 15 sectors per track. This is usually a simple
modification of routines which already exist within vyour system.
Generally, the only modification required is the number of bvtes read
from the disk controller chip, usually a 1771 or 1791.

Once this is done, you should load the uNIX module from the system
disk. The module is located on &4 consecutive sectors starting with
track O, sector 4. This amounts to exactly 146 Kbytes. To check vour
loading procedure, a herxadecimal dump of the first of these sectors is
attached.

Mext, you should construct the "bios" (Basic I1/0 Software) for vour
hardware. To assist you in this task, a sample bios is also attached.
Notice that only five routines are required. Two of these are the
consocle input and output routines. It is recommended that the general
structure of the conin and conout routines in the sample bios be
pressrved. Simple modifications of these will enable vou to use
different ports or to call subroutines for the conscle I/0 such as
would be required for a video RAM. Notice that there are sections
which check for certain control characters (cntl-q, cntl-s, cntl-x)
for restarting the operating system. It is important that these
sections remain as they are.

The remaining routines are for interfacing the disks in vyour system.
There are three such routines which read sectors, write sectors and
format the disk. Two parameters are passed to the disk drivers by the
operating system. The first of these is the memory address where the

236 bvte memory block is located which is to be read or written. The
second is an integer between O and 32747 which is referred to as an
inode. The address is passed to the routines in the HL. register. The
inode is the second value on the stack, the first being the return
address which must be preserved. This inode integer must be decomposed
into the disk, track and sector which you wish it to reference.
Mormally, the value is decomposed as shown below:

disgk id = high_byte(incde/15):
track id = low_bvyte(inode/15);
sector id = l+remainder (inode/15):

Before you panic and begin writing a divide and remainder program, let
ma inform you that the operating system includes one! The sample bios
shows a simple program which unravels the stack to get the address and
inode and goes on to convert it into disk/track/sector. If the disk
system you are using supports something other than 15 szectors per
track, it is only necessary to modify the parameter "15" before
calling the divide/remainder routine.

The third disk driver is a formatter which should re-write the disk
drive named in the L register on entry. To obtain the greatest
performance speed from the operating system, the sequence of sector
numbers given in the sample bios should normally be wsed. I+ an
intelligent disk controller is used, the sequence given may need to be
modified. The scheme here is to interleave the sectors on the disk so
that the "read" subroutine (see the subroutine manual) wastes the
least amount of time possible between sector transfers. This is
determined by experimently loading a large file into memory and timing
the load interval. Then, change the interleave sequence and repeat the
experiment. Continue until the load time appears optimized. In any
event, the formatter is not needed when the system is first brought up
and in no event is the sequence given a requirement to make the system
operational. a&ny interleave sequence can be used initially and
optimization should wait until the operating system is functional.

One final note on the disk driver routines. Each routine should detect
errors in accessing the disk drives and should make several attempts
to accomplish the transfer. If the routine fails to make the required
transfer, do not simply return to the operating system. Instead, print
the command, disk drive, track, sector and memory address and jump to
the warm start entry point (QOCOOIH). This will allow the operating
system to recover gracefully. If desired, the programs could simply
"hang" in an infinite loop after an error. Then, the operator could
remove the disk and reset the system manually. Either is acceptable.

After the five routines are built for location OQCOS7H and the &4
sectors of the operating system have been sucessfully loaded, vou
should simply merge the two by first loading the operating system at

location OCOOOH and then overlaying the new biocs at location QUOETH,

Mote that the new bios cannot extend bevond location OCS1AH. Mewxt,
simply place the operating system disk in drive O and jump to location
QCOO0H. After a few disk accesses, the system will type its cold start

message and you are ready to go! A later section of this marual will
describe a few commands useful for getting started. After vou are sure
the biogs is working properly, vyou should re-write the 64 gectors
starting at track 0, sector 4 with the modified copy of the operating
syatem. After this is done, you can simply load the block at memory
location OCOO00OH and jump to the beginning of the system.

Pl

B B B S B e S e

& -
#* A SEELETAL BIOS FOR gMNizx #

#*
*%*******@%%*%*ﬁ**%%%*%%**%%%%%*%%%***%**%%%%%%%%%%%@%%%

“az ar e

THE FOLLUOWING EQUATES ARE FOR &M 8251 aT I/0
FORT 0. THE MASK WORDS ARE USED TO DETERMINE
» THE STATE OF THE UART USING THE STATUS FORT.

3
3

DaTA EGU © 5 170 FORT FOR UART DATA

STATUS E&U 1 i 170 PORT FOR UART STATUS
IMASE EQU OZH 5 DATAS AVAILABLE MASEKE FOR INFUT
OMASE EQU O1H 3 BUFFER EMFTY MASK FOR QUTRPUT

H

THE JUMF TABLE WHICH FOLLOWS MUST BE FLACED

AT LOCATION OCOS7H IN THE OPERATING SYSTEM.
THE ENTIRE BIOS FACKAGE MUST FIT IN THE BRLOCK
OF MEMORY FROM QOCOS7H TO 0OCS1AMH. THESE FIVE
ROUTINES ARE ALL THAT IS REQUIRED FOR THE USER
TO INTERFACE THE OFERATING SYSTEM.

'RE BE CRE ‘W3 CEE B

ORG QCOS7H

ats

JMF CONIN
JIMF COMOUT
JMF LDAD
JMF SAVE
JMF FORMAT

T

CONSOLE INMNFUTING ROUTINE

USED TO READ CHARACTERS FROM THE CONSOLE
DEVICE AND RETURM THEM TO THE OFERATING SYSTEM.
IT CHECES FOR SEVERAL SFECIAL CHARACTERS WHICH
CAM BE TYFED BY THE USER FOR RESTARTING THE
OFERATING SYSTEM. THESE ARE:

CNTL-X {18H) COLD START (QCOOOH)

CMTL-8 {11H) WaRM START (OCOOIH)

MULL (O0OH) END OF FILE, TRANSLATE TO 8000H
CMTL-5 (1ZH) IGMORE

LINEFEED (0AH) TRANSLATE TO CARRIAGE RETURN {(ODH)

‘88 "UE ‘BB 'EN CER ‘BE AR AR 8y AE

CONIM: IN STATUS 3 CHECK FOR DATA AVAILABLE

j e CE i

ANI IMASH i USING THE MASE

JZ CONIN i WAIT UNTIL A& CHARACTER ARRIVES
IN DATA i GET IT

AMI 7FH 5 MASE FPARITY

MOV L.A ¢ PUT IT IN THE L REGISTER

MVI H,©¢ 3 CLEAR THE H REGISTER

CFI 0AH 3 TEST FOR LINEFEED

JZ NLINE i IF S0, TRANSLATE TO CAR. RET.
CFRI D0H 5 TEST FOR END OF FILE

JZ EOFILE i IF S0, TRANSLATE TO 8000H
CFI 1ZH i TEST FOR CNTL-5

JZ COMIN i IF 50, IGNORE

\J;:{ E LF: o " H
CFI 18+ & TEST FOR CHTL-X
JZ 0Co00H 3 IF 30, COLD 3TarRT
RET i MNOTHING SFECIAL, GQUIT

A S I 21

INED MVI L,0DH i FORCE VAlLUE TO CAR. RET.

RET ioQUIT

EQOFILE: MVI H,80H i FORCE VALUE TO 8000H (EOF)

BB E% ER WE car 8

)

RET PORUIT
CONSOLE QUTFUTING ROUTINE

THIS ROUTINE TRANSMITS & CHARACTER TO THE CONSOLE

WHEN CALLED BY THE OFPERATING SYSTEM. IT IS REQUIRED

TO TRANSLATE CARRIABGE RETURM (0ODH) INTO BROTH CARRIAGE
RETURM AND LINEFEED (0AH). IF & CARRIABE RETURN IS

TO BE SENT, IT CHECKS TO SEE IF ANY SFECIAL CH&RACTERS

HAVE BEEM SENT BY CALLING THE CHEID FROGRAM.

CONOUT: MOV a,L 3 CHAR TO TYFE IN L ON ENTRY

"} an

.

-

R R L Y R R A T T 1]

—_—

{7} =s cas

HEIO:

CRI ODH 3 TEST FOR CAR. RET.

JMZOCONK s IF NOT, JUST SEND THE CHAR

Cal L CHEIO i TEST FOR RESTARTS OF THE OF. SYS.
MUT L, 2AH 5 SET UFP FOR LINE FEED

CaLL CONX i BENMD IT

MYI L, 9ODH i SET UF FOR CAR. RET. AND SEND IT

ORX: IN STATUS 3 TEST THE UART FOR

ANTI OMASE § TRANSMIT BUFFER EMFTY

JZI COMX i WAIT UNTIL NOT BUSY

MOV A,L 3 GET THE CHAR TO SEND FROM L
OUT DATA i SEND IT

RET iOAUIT

CHEID TESBTS THE RESTART STATUS OF THE OF. SYS.

THERE IS A VARIABLE AT LOCATION 9FD&H WHICH
DETERMINES IF RESTARTS ARE ALLOWED OR NOT.

IF THE VARIABLE IS 0, THEY SHOULD EE ALLOWED.
THIS ROUTINE CHECES TO SEE IF THE VARIABLE

IS IN A STATE ALLOWING COLD OR WARM STARTS TO
BE MADE. IF ENABLED, IT THEM TESTS TO SEE IF
THE CONSOLE HAS TYFED A& CNTL-X (COLD START) ,

DR A CNTL-Q (WARM START). IT ALSO CHECKS FOR
CNTL-S WHICH IS USED TO TEMFORARILY STOF OQUTFUT
AT THE CONSOLE.

LDA 9FD&H i THIS VARIABLE SHOULD EBE TESTED
ORA A i FOR ANY NONM-ZERQO VALUE
RNZ i IF NON-ZERO, QUIT

IN STATUS ; OTHERWISE, CHECK FOR DATA AVAILABLE
ANI IMASE i IN THE UART INFUT SIDE

RZ 5 IF NONE, QUIT

IN LATA i+ ELSE, READ THE DATA

ANT 7FH ;3 MASE FPARITY

CFI 11H 3 TEST FOR CNTL-Q

JZ oCOO3H § IF S0, WARM START
CFI 18H 3 TEST FOR CNTL-X

JZ 0CoOGOH 3 IF S0, COLD START
CFI 1Z2H ¢ TEST FOR CNTL-5

HOLD

ELIRYT e

“EE 28 CEx s csw o,

-
!

N B ‘EE &E CRE a3

R R A P B 1]

” 4z sz ‘mr @z @z nz ocan ‘A8 'E¥ 'S= &E mE

OAD: ACHG ;i LOAD ADDRE

-

HOLD Poob @i, Mol D sl oot
T §OMOTHING, S0 ourr

IM STATUS 5 TEST FOR &4 CH&RSUTER
ANI IMASE i IN THE UART
JZ HeLD iOWAIT UNTIL IT ARRIVES
RET i QUIT WITHOUT READING IT

P

I op

LOAD ROUTINE TRANSFERS FROM DISE TO MEMORY

THIS ROUTINE IS FASSED AN INODE VALUE WHICH
IT DECOMPOSES INMTO DISK/TRACK/SECTOR. IT IS
ALSO FASSED THE ADDRESS WHERE IT IS TO FLACE
THE SFECIFIED SECTOR. IF DIFFEREMT DRIVES
ARE TO BE MOUNTED, THIS ROUTINE MUST EE
MODIFIED TO IMTERFACE THEM.

D T
FIAG A N) o3 ESA

FOF H i GET THE RETURN ADDR

KTHL i RESTORE IT, GET THE INODE
FUSH D i SAVE ADDRESS OM STACH

LXI D,15 i+ SET DE TO SCTRS FER TRACK (1%
Call OCO12H 3 DIVIDE,REMAINDER FUNCTION

INR E i NOW, E IS THE SECTOR TO LOA&D
MOV D.L 3 NOW, D IS THE TRACE TO LOAD
MOY C,H & NOW, T IS THE DISE TO ACCESS
FOF H i NMOW, HL IS THE ADDRESS TO LOAD

FLACE YOUR DISK DEFENDENT FROGRAMS HERE. IT

BHOULD TRANSFER THE DISK/TRACE/SECTOR SFECIFIED

BY THE ABOVE REGISTERS TO THE MEMORY FOINTED TO

BY THE HL REGISTER. IT SHOULD MAKE SEVERAL TRIES

TO LOAD THE SECTOR WHICH IS 256 BYTES IN LENGTH.

IF IT IS NOT SUCCESSFUL, IT SHOULD REFORT THE ERROR
AND THEN JUMF TO THE WARM START ENTRY FOINT (0OCOOIH)
IF NO ERRORS WERE MADE, IT SHOULD JUMF TO THE

CHEID ROUTINE TO ALLOW SYSTEM RESTARTS TO BE MADE.

JMFE CHEIO i CHECE FOR RESTARTS

BAVE ROUTINE TRANSFERS FROM MEMORY TO DISK

THIS ROUTINE IS FASSED AN INODE VALUE WHICH
IT DECOMFOSES IMTO DISK/TRACK/SECTOR. IT IS
ALS0 FASSED THE ADDRESS WHERE IT IS TO FIND
THE SFECIFIED SECTOR. IF DIFFERENT DRIVES
ARE TO RBE MOUNTED, THIS ROUTINE MUST RE
MODIFIED TO INTERFACE THEM.

E ACHG i LOAD ADDRESS INTO DE

FOF H i BET THE RETURM ADDR

XTHL i RESTORE IT, GET THE INODE
FUSH D i SAVE ADDRESS ON STACHK
LXI D,15 i SET DE TO SCTRS FER TRACKE {15)

Call OCOléH i DIVIDE,REMAINDER FUNCTIOM
IMR E i NOW, E IS THE SECTOR TO LODAD
MOV D,L 3 MOW, D IS THE TRACKE TO LD&D

LN

= P
Pl T

LTI e~ t T s
HE SR L e EIE anl i) oL
PTR LARD

FOF §OROW, ML I3 TRHE

FLACE YOUR DISK DEFENDEMT FROGRAMS HERE. T

SHOULD WRITE THE DISKE/TRACK/SECTOR SFECIFIED

BY THE AROVE REGISTERS WITH THE MEMORY FOINTED TO
BY THE HL REGISTER. IT SHOULD MAKE SEVERAL TRIES

TO WRITE THE SECTOR WHICH IS 256 BYTES IN LENGTH.
IF IT IS NOT SUCCESSFUL, IT SHOULD REFORT THE ERROR
AND THEN JUMF TO THE WARM START ENTRY FOINT (0COO0TH) .
IF NO ERRORS WERE MADE, IT SHOULD JUMF TO THE
CHEIO ROUTIMNE TO ALLOW SYSTEM RESTARTS TO BE MADE.

‘ag @ csu

2z ostm s

aN cmE e

JHF CHEIO i CHECKE FOR RESTARTS

e ocan cza

i FORMAT ROUTINE FORMATS &M ENTIRE DISE
5 FOR 236 BYTE SECTORS, SINGLE DENSITY

=
L

ﬁORHéT: MOV A,L & GET THE DISK ID INTO &
g FLACE YOUR DISE FORMATTER FROGRAM HERE. THE
3 DISE TO FORMAT IS IN THE L AND A& REGISTERS.
8 ALL TRACKS SHOULD BE FORMATTED. WHILE AMY
3 INTERLEAVE OF SECTORS IS ALLOWED, THE SYSTEM
H WILL FERFORM FASTEST IF THE FOLLOWING INTERLEAVE
H I8 USED.
EVEN TRACKS: 1 2 2 10 3 11 4 12 5 13 & 14 7 15 8
H ODD TRACKS: 5 13 6 14 7 15 8 1 9 2 10 % 11 4 172
ﬁ THIS SELECTION MAY REQUIRE MODIFICATION IF AN
3 INTELLIGENT DISK CONTROLLER SUBSYSTEM IS5 USED.

date: 12 Jan 1982

from: S. M. Walters

A GUINE TO THE uNIX OPERATING SYSTEM

These notes are intended to help the user understand the operation of
uNIX. It attempts to explain how the system operates and what
capabilities it has. Detailed information for each command is
contained in the Command Set section.

THE FILE SYSTEM

The uNIX file system is, perhaps, its most attractive feature. It
supports a hiearchial file system under which directories can have
subdirectories which can have subdirectories ad infinitum. When the
system is booted, it begins in the "root" directory. This 1is the
highest level in the directory tree. Within the root directory, there
can be any number of subdirectories. To find out if there are any
subdirectories in the root, type "ls —-al"., In the output, the leftmost
columns contain the mode of each file. Those having a "d" at the end
of their mode are directories. You will see that "bin" and "lib" are
directoriesz. To move inside a directory, tvpe "cd bin". Mow, type '"lsg
—al" and you will see a different set of files entirely. Ta get back
to the root, type "cd". As you can see, the cd command allows vyou to
move about in the directory tree. Whatever directory you are in at any
given time is referred to as the ‘“"current" directory. It can be
referenced in names as ".". The directory which contains the current
directory as a subdirectory is referred to as the "parent" directory.
It can be referenced in names as "..". A "grandparent" directory can
be referenced using "../..". Any command which references a file will
look for the filename in the current directory unless vyou specify

otherwise. Using the characters "/" and "..", it is possible to
reference files in other parts of the filesvstem. For example, the
file names "hello", "/hello"” and “../hello" can reference three

different files of the same name (hello). The first of these would be
found in the current directory. The second would be in the root
directory and the third would be found in the parent. It is possible
to reference files in subdirectories below the current directory by
names such as "dirx/hello". Other possibilities such as
"eu/Zotdirn/temp/hello” exist. This notion of referencing files in
other than the current directory is referred to as ‘"pathname". A
pathname is the path to a file such as "/dirl/dir2/file" in which case
the path begins in the root (due to the leading slash) ar
"oofdirn/file" in which case the path begins in the current directory
{due to no leading slash). These two referencing technigues are

referred to as "absoclute" path (/Bin/temp) and "relative" path
{../dirx/hello).

It is possible to make new directories (see mkdivr), remove them (see
rimdir) and move them about (see mvdir). There is no limit on the
number of subdirectories that can exist within any single directory or
the total number of them within the system. Directory names {(and
ordinary files as well) can be made to disappear in listings of the
directory in which they appear (see chmod).

Ordinary files can assume any length up to 8 Mbytes which is the
maximum addressing range of the filesystem. Filenames can consist of
any alphabetical character, upper or lower case, any number and the
characters "." and "_". Mames are restricted to 13 characters. Files
can be protected from reading or writing and they can be made to not
list when the directory content is listed. Files can be moved about
{see mv), copied (see cp), removed (see rm) or transfered to other
disks (see uucp, dup). Unlike other filesystems, there is no filetype
for determining the use of the file and for that reason, there is no
restriction as to the way in which files are used. Maming conventions
are generally used to differentiate between files that are C programs
name.c), assembly language programs (name.s), link modules (name.o)
and executable routines (name). However, these are simply conventions
and are not required for the proper operation of the filesvstem or the
operating system. There is no constraint on the content of the files
and any 8 bit pattern can be passed to or from them. End-of-file (EOF)
is denoted by the value 8000H (0Ox8000 in C) which cannot be confused
with any 8 bit data pattern. Operating system entry points are
provided for reading (getc, getchar, read) and writing (putc, putchar,
write) files. Another entry point, seek, allows the user to move the
file pointers allowing random access of any byte within a file. Like
directories, there is no constraint on the number of files in the
filesystem.

RUNMING FROGRAMS

After uNIX is booted, it checks to see if there is a file named
“profile" in the root directory. If there iz, 1t will execute it as a
set of system commands. This is the source of the login message. If
vou wish to set parameters or run programs vyou have developed each
time the system is booted, vou can simply place the appropriate
command line in the "profile" and the system will execute it sach time
it is booted. The profile is list and write protected. To list it, use
"ls -a" and to see its content, use "cat profile" or “wvi profile". To
modify it, you must force the file mode bits to O using “"chmod".

To run a program, simply type its name. The operating system will
search a set of directories specified by the "path" variable for the
name. If found, it will load the program and execute it. The path
variable can be displayed and modified using the stty command. Further
details on it can be found in the system subroutine. The default value
of the path variable will cause the system to first search in the
"/bin" directory and then in the current directory. The bin directory
holds all operating system commands. When entering commands, multiple

r3
I

commands can be entered on a single line from the console if they ares
separated by semicolons (3.

STANDARD I1/0

When any program runs, any output it sends using putchar and any input
it reads using getchar can be directed to or from a file ({instead of
the terminal) when the command is entered. For instance, the command
"l=" sends its output to the standard output (virtually every command
does). If it is desired to save the listing in a file, simply type
"lsifilename" instead. If vou wish to add more output to the end of a

file, an append operator is provided. For example, "ls -1lix:filename"
will place the listing at the end of "filename” without otherwise
modifying the file. Input to commands can be redirected as well. For
example, "cmnd<filename" will cause "cmnd" to read from "filename"

instead of the console. If it is desired to pass the output of one
program to the input of another, a "pipe" for doing this is provided.
For instance "cmndl!cmndZ"” will: cause the output of cmndl to be used
as input to cmnd?. These pipes can be used any number of times within
& command line. For example, "clic2ic3ic4".

FHYSICAL DEVICE DRIVERS

The file system allows uniform treatment of both disk files and
physical devices such as line printers, terminals and modems. To use
thiz feature, simply write a program which reads a character from the
device into the L register (if it reads) or ocutputs the content of the
L register to the device (if it writes). On input, the value 0 (null)
should be converted into 8000H (end-aof-file) in the HL register pair.
On output, the value ODH (carriage return) should cause both ODH and
OAH (line feed) to be sent to the device. If a device is write only
(such as a line printer), it can be read protected (see chmod). I+ a
device is read only (such as a keyboard) it can be write protected. If
it can be read or written (such as a terminal) no protection bits are
necessary but the routine must be informed whether it is to read or
write the device. The operating system manages this by passing the
value 80H in the H register if it is to read and O0H if it is to
write. Thus, a simple check of the H register can be made at the
beginning of the driver to decide which action it should take. Once
the routine is written and an object module has been generated, check
its length with "ls -1", Modules to be used in the capacity must be
256 bytes or less in length. This is plenty for most devices. Now,
change the mode of the file to a physical device (see chmod) with the
appropriate read/write protection. Once this is done, if output is
directed to this filename or inputs are requested from it, the
operating system will not return the actual content of the file.
Instead, it will cause the program in the file to be loaded and run to
provide the requested I1/0. This is a very powerful capability of the
operating system.

SHELL PFROGRAMMING

Frequently, in developing Programs or wusing the system, a user will
wish to execute several lengthy commands each time an experiment iz

performed. Rather than type the commands aver and over again, the user
can place them in a file and cause them to be executed by tvping &
simpler command. For instance, the command ‘“sh<file" causes the
operating shell to read from "“file". This will cause the commands in
"file" to be executed. In deing this, the commands themselves will be
echoed to the terminal as if the user were typing them. IFf this is not
desired, try "sh file". This will eliminate the command echo. In fact,
several files can be executed in this manner if desired as in "eh
filel file2 file3". If the user wishes, the file can be declared to be
an executable file (see chmod) in which case, the operating system
will automatically interpret the file content as commands. Once this
is done, typing "file" will execute the set of commands in the file.

ARGUMENT FASSING

When a command line is entered, the first name is the program to tun
and any other names are called arguments to that program. The
operating system buffers these arguments and they can be accessed by
any program running {(see arqg). Each program run is directly passed the
number of arguments on the command line. Tokens which redirect 1/0
activity are not counted as arguments and will not be passed to the
program. Thus, the program does not have to check its parameters to be
suwre they are really arguments and not 1/0 redirection.

Shell programs can be passed arguments as well. This is discussed in
detail in the system call section (see system). If a command line
inside a file which is declared executable and the user wishes tg
refer to arguments on the command line which invoked the file, the
user can do so using dollar sign (%) followed by &a number where the
number refers to the argument order with © being the first argument on
the line (the command name). Dollar sign followed by no number will
stop and read an argument from the conscle and dollar s=sign follwed
immediately (no spaces or tabs) by a string in double qguotes will
print the string at the console before reading the argument. This
allows the user to prompt for arguments.

Assembly language programs as well can receive arguments from the user
through the operating system. This is done in an identical manner as
any command. Assembly programs can call the arg routine to receive
arguments just as well as C programs. For complete detail on passing
arguments and other operating system entrvy points, see the system call
section of this manual.

CONSOLE OFTIONS

The console represents the primary I/0 device through which a user
communicates with the operating system. The actual routines for
reading and writing the console are placed in the bios section of the
operating system (see mounting instructions). There is a file in the
root directory named "con" which jumps to these routines so if any
programs wish to do I/0 directly to the consocle, they can open the
"focon" file and then use getchar, getc, putchar or putc to read or
write it. Several options can be controlled which relate tao the
console. In particular, the character delete {backspace), the line

delete and tabstops can all be set up to be any valus desired (sge
stty). Even the prompt string which the svstem uses to alert the user
for more input can be set using stty. The visual editor (vi}) has a
file for deriving the sequences it sends to the terminal for moving
the cursor, etc. (see vi). This allows the system to be set up for
almost any smart terminal. Finally, the console terminal should have a
keyboard and display capable of displayving the full ASCII character
set. This is primarily needed for C programming where various brackets
and braces are used. However, the cperating system does distinguish
between upper and lower case itself.

SYSTEM OFERATION

This section gives a brief introduction to the internal operation of
the system. This knowledge is in no way required for its use and is
given only as a matter of information.

The ftilesystem of the operating system is simply a collection of
blocks called i-nodes. Fhysically, these are 295& byte sectors on

disks. The svstem refers to these with an integer between 0 and 327&47.
In doing this, the system becomes completely independent of the disk
subsystem and is easily transported to other disk systems. The

routines in the bios section are responsible for decomposing the
i-node passed to them into disk/track/sector identities. This is made
easy by the inclusion of a routine for producing quotient and
remainder of a divide operation. I-nodes in the tilesystem are used to
store both file content and a forward linked list for determining what
i-nodes are in use for files and what the next i-node in the file is.
The linked list is distributed on the disk and can be found an every
128th i-node starting with i-node 0. Since an i-node which is used for
the linked list also stores 254 bytes, it can be thought of as 128

integers (16 bit). Each integer represents the state of its
corresponding i-node within that block on the filesystem, the First
such integer being its own state {(busy). The integer can be
interpreted as four different states. I+ it is 0, then the

corresponding i-node is idle and can be allocated for a file to
utilize. If it is positive, the i-node is busy and the integer
represents the next i-node in the file being accessed. If its value is
-1 (OFFFFH, Oxffff), the i-node does not exist in the disk system.
This can be used to prevent the operating system from accessing i-node
which do not exist in the "tail" of the dislk and could potentially be
used to prevent access of defective media. If the integer is negative
but not equal te -1, then the corresponding i-node i the last sector
in the file being accessed and if lower byte of the integer is the
actual number of bytes used by the file on the i-node. This linked
list is initialized by the fmt command such that all i-nodes except
thase in the linked list itself are idle. The root directory is also
set up when the media is formatted. It is emnpty except for the name
"." (its own reference value), and the root directory always begins in
i-node 1.

Beyond this, nothing in the filesystem is structured. I-nodes are
allocated sequentially from the linked list and will be used in blocks
if possible. This prevents slow access due to file fragmentation.

I-nodes can be used for files and directories alike. When a nrew
directory is created, the system simply opens a new file, places "."
and ".." in it (along with the starting i-nodes for each) and places
the name and its starting i-node in the parent directory. This simple
structure allows the creation of very sophisticated filesystem trees.

MEMORY

QOOG0H

08C0O0H

OP100H

QATOOH

OCOOOH

MAF

- C8EFFH

- QP0FFH

- OQAQFFH

-~ OBFFFH

- OFFFFH

To begin with,
say 4 kK bytes,

MEMOFY MaR

UNIX commands load at location 0. This allows 35

kK. bytes for commands.

UNIX stack aresa (1 K byte).

UNIX variable area and disk buffers (4 Kk bytes).
This ar=a is not wused by uNIX. Users can place
video RAMs or other software here and rely on it

not being altered by the operating svstem.

The aNIX system kernel (1& kK bytes).

only a small amount of memory is needed at location 0,
but all other segments must be fully supplied.

uNIX COMMAND SET

The following is a list of commands provided in the /bin/ directory on
vyour system disk. They are brieflv described here and the pages that
follow contain a more complete description of each. Any command can be
executed by simply typing its name.

as - ZI-80 assembler
asm - B0B& assembler
cat — concatenate files
cc - Z-80 C compiler

ccc ~ B0OB6 C compiler
cd — change directories

chmod ~- change file mode

cmp —~ compare files

cp - copy files

cpr — print C programs

demount - remove a mounted volume
du - summarize disk usage

dup - duplicate a disk

echo - type arguments

fmt - format a new disk

inode - examine inodes

1d - Z2-80 link editor

ldr - 8086 link editor

lg - list directory contents

mk - prepare a C file for execution
mkdir - make a new directory

mount - access a volume

my — move or rename files

mvdir - move or rename directories
pr — format files for printing

pwd — print working directory
reloc - relocate to absclute

rm ~ remove files

rodir — remove directories
script - the text processor

sh - the command processor

stty - change crt parameters
uuep - unix to unix copy

vi = visual screen editor

#as ~ edecutable ZI-80 assembler
#cc — executable C compiler

#d - dump a file in hexadecimal
#ld — executable link editor

xsh - executable command processor

ARG SRE

NAME arg - get the pointer to an argument

SYNOFSIS arg(number)

DESCRIFTION ARG expects only one argument which it uses as the command
argument number which is being requested. It returns a pointer to the
desired argument if it exists. If not, it returns a pointer to a null.
The argument being requested is found on the command line which
invoked the function that called arg. Argument O on this line is the
command name itself. I/0 redirection tokens are not counted as
arguments and cannot be found using arg. As an example,

cmnd abc def <temp nyz Flooper

will have as arguments:

0 - "emnd”" 1 - "abce" 2 - “def" I - "auyz "

and arg will return pointers to each as requested.

WARNINGS Nene.

BUGS None known.

FILES Norne.

SEE AL50 system.

CLOSE CLOzE

NAME close -~ cease accessing a file

SYNOFSIS close (made)

DESCRIFTION This routine closes the file currently being used for the
standard input and/or the standard output. The argument passed to it
indicates the mode of the file to be closed as indicated below.

0 Close the file being used as the standard input, resume
reading the previous standard input file.

1 Close the file being used as the standard output, resume
writing the previous standard output file.

2 Do both © and 1.

As indicated, the file previously in use as the standard input,
standard output or both resumes its former status. Closing a file
using mode 1 truncates all characters beyvond the current write

pointer. Closing with mode 2 does not. This is important when using
the seek subroutine. Close returns no values.

WARNINGS None.

BUGS None known.

FILES MNone.

SEE ALSO open, seel, getchar, putchar.

COMFARE COMFARE

NAME compare - compare two strings in memory

SYNOFSIS compareisl,&s?)

DESCRIFTION COMFARE is passed two arguments which are assumed to be
addresses of two strings in memory which are terminated by MULL
characters (Ox00). The routine compares the two and returns a value of
O {not equal) or 1 (equal). Either string or both may contain the wild
card (#). Remember that the C compiler treats quoted strings as an
address. This allows the user to program:

if(compare{%stringi,"hello"))
goto do_hellos
for testing input text to desired responses.
WARNINGS None.
BUGS None known.

FILES None.

SEE ALS0O None.

FFRINTF TR

MAME fprintf — print a value into a file
SYNOFSIS fprintfiid,format,value)

DESCRIFTION FFRINTF allows the user to print values inside of strings
in many different fashions. The results can be directed to any file
open for writing in the system. It requires exactly three arguments.
The first is the fileid retwned by open when the desired file was
last opened for writing. The second argument is the address of a
format string which controls the output. The third argument is the
value to print. FPRINTF will read the format string and will simply
type any characters not preceeded by the percent (X)) symbol directly
into the file identified by id. If a percent symbol is found,
subsequent characters contrel the printing as follow.

Y%Nd Frint value as a signed decimal using N character positions.,

ZNu Frint wvalue as an unsigned decimal using N character
positions.

HM Frint wvalue as a hexadecimal number using N character
positions.

Y“No Frint value as an octal number using N character positions.
“Nb Frint value as & binary number using N character positicons.

“c Frint value as a single character.

L Frint the null terminated string at the address value. ie. use

value as a pointer.

Use of a length field (N) is optional. If the number camnot be printed
in N positions, it will be printed anyway using as many as required.
I¥f N has a leading zerao (0), the value will be printed with leading
zeroes. Tabs are expanded as specified by the tabstops set by stty.

WARNINGS Never write to an invalid fileid.

BRUGS Mone known.

FILES None.

FERINTF FRERINTF

SEE ALSO printf, scanf, stty.

GETC GETE

NAME getc - read a single character from a file

SYNOFSIS getc(id)

DESCRIFTION GETC requires a single argument which it uses as a fileid
previously opened for reading. It will return the next character in
the file. Since it returns an integer, binary data can be passed
through files. When end of file is encountered, getc will return the
value Z2768 (O0xB000) for any subsequent call. Note that this cannot be
confused with real data since characters are between -256 and +2S5.

WARNINGS None.

EUGS None known.

FILES None.

SEE ALS0O getchar, open, close.

GETCHAR GETCHER

NAME getchar - read the standard input

SYNOPSIS getchar ()

DESCRIFTION GETCHAR operates exactly like getc but does not reguire an
argument to determine what file to read since it always reads the file
last opened for reading. Like getc, it retwns the value read with
32768 (OxBOOO) meaning end of file.

WARNINGS None.

BUGS None known.

FILES HNone.

SEE ALS0O getc, open, close.

OFEN OFER

NAME cpen - access files

SYNOFSIS open(%filename,mode)

DESCRIFTION This routine opens a file as the standard input, the
standard output, or both. It expects two arguments. The first is the
address of a null terminated file name. The second is the mode of file
access desired. Three values of mode are permitted. They are:

0 - open the file for reading only 1 - open the file for wrriting only
2 — open the file for reading and writing

Once open, the file becomes the standard input or ocutput or both. The
previously accessed file remains open and can be accessed using getc
or putc. It will become the standard input {(or output) once again when
the current file is closed. It is possible to access the old standard
input by using the fileid of the current file - 1 and the old standard
output using the fileid of the current file + 1. This allows the user
to perform I/0 relative to the current fileid. When opening a file faor
writing, the file is assigned zero length. If a file already exists,
it will be truncated to zero length. This action is not taken in mode
2. If a file cannot be accessed, open retuwrns the value -1 which is
not a valid fileid. Modes © and 1 return the value of the fileid which
can be used with getc, putc, and fprintf respectively for accessing
the file. Mode 2 returns a composite id equal tao 16 # input_id +
output_id. Directory names must end in “"/" to be opened.

WARNINGS Users should not modify directories.

BUGS Mone known.

FILES NMone.

SEE ALS0O close.

FRINTF FECIRTF

NAME printf - print a value at the standard output
SYNOFSIS printf (format,value)

DESCRIFTION FRINTF is identical to fprintf except that it does
accept & fileid argument. In lieu of this, it always directs
output to the file currently open as the standard output.

WARNINGS None.
BUGS None known.
FILES None.

SEE ALSO fprintf.

not
its

FUTC AT

NAME putc - write a character to a file

SYMOPSIS putciid,bvyte)

DESCRIFTION FUTC expects two arguments. The first is the fileid of a
previously opened file to write. The second is the character to be
placed in the file. There are no constraints on the byte being
written. This allows transfers of binary data to files.

WARNINGS None.

BUGS Mone known.

FILES None.

SEE ALSO open, close, putchar.

FUTCHAR FLITCHER

NAME putchar - write a character to a file

SYNOFSIS putchar (byte)

DESCRIFTION FUTCHAR sends the byte passed it as an argument to the
file currently open as the standard output. Mo constraints are made on
the byte being passed. This allows binary data to be transferred.

WARNINGS None.

BUGS None known.

FILES None.

SEE ALSO open, close, putc.

READ Al

NAME read - transfer a block from a file to memory

SYNOFSIS read(id, address, nbytes)

DESCRIFTION READ requires three arguments. The first is the fileid to
be used for the transfer. The second is the address in memory where
the block is to be placed. The third is the number of bytes to
transfer. When finished, read will return the actual number of
characters transferred. This routine can be alternated with getec or
getchar on the same file and each will read sequentially. Read is most
efficient when used to trancfer large blocks of data but any length iz
permissible. The third argument, nbytes, is treated as an unsigned
value. This permits moves of up to 65535 characters in a single block.
I¥ the file does not contain as many characters as requested, read
will transfer all that remain and return that number .

WARNINGS None.

BUGS None known.

FILES Mone.

SEE ALS0 open, close, getc, getchar, write.

SCANF BUANF

MAME scanf - text and number reading routine
SYNOFSIS scanf (dbptr,%format,%variable)

DESCRIFTION SCAMF expects three arguments. The first i= the address of
a pointer which CONTAINS the address of the string to process. The
pointer wowld normally be a character pointer previocusly initialized
to the address of a buffer loaded with ASCII text. The second argument
is the address of a format string which will control scan€ in matching
text and reading values. The third argument should be a character, an
integer or a character pointer depending upon the intended value to be
transferred. Scanf will compare the text string to the format string.
If at any time they do not match, scanf will terminate and return the
value O and they buffer pointer variable will not be moved. If they
match to the end of the format string (a null terminates it), scanf
will return the value 1 and the buffer pointer will be moved so that
it points to the next character in the buffer. While matching, scanf
recognizes special sequences in the format string. These are given
below.

* Matches any number of blanks or tabs in the text string.

wd Matches a decimal number. The value of the number will be
placed in the variable.

B

Matches a hexadecimal number. The variable will be set eqgual
to the number.

.
-,
Y

y Al Matches an octal number. The variable is set to its value.

“in Matches a number specifying its own base. Such rnumbers are
40986 (decimal), Ox1000 {hexadecimal), 01234 (octal) and Obolnl
(binary). This is probably the most convenient format.

ic Reads a single character from the text and places it in the
variable. In this case, the variable should be declared as a
character.

s Reads a string from the text into the memory pointed to by the

variable. In this case, the variable should be a character
pointer and must have been initialized with a buffer address.

WARNIMGS None.

SCANF BiZapF

BUGS None known.

FILES None.

SEE ALS0 compare.

)
i

SEEE

NAME seek - move file pointers

SYNOFSIS seek (page,byte, mode)

DESCRIFTION SEEK expects three arguments. The first is the page on
which the file pointer is to be positioned where a page is interpreted
as 286 bytes. The second is the specific byte within the page to which
the file pointer is to point. The combination of these is used to move
the file pointer where the final position is taken to be 256 * page +
byte. It is not necessary for byte to be in the range O to 25%5. For
example, page=0,byte=1024 is equivalent to page=4,byte=0. The third
argument determines which file pointer to move. Mode is decoded as:

0 - read pointer 1 - write pointer 2 - both read and write pointers
Notice that no fileid is passed since seek always moves the standard
input and/or the standard output pointers. After seek is campleted,

getchar, getc, putchar, putc, as well as read and write will begin
accessing the file beginning at the new pointer values.

WARNINGS If the files open are physical devices, seek merely returns.
It is not possible to backup a physical device.

BUGS MNone known.

FILES None.

SEE ALSO open, close.

STRING STRIMGE

NAME string - read a string into memory

SYNOFSIS string{&buffer)

DESCRIFTION STRING expects & single argument which it uses as the
address of a buffer in which it loads a string. Characters making up
the string are read from the standard input until a newline is +ound.
When this occurs, string returns the number of characters read from
the input. The routine also places a null after the received newline
s0 that the string can be processed by other routines but the null
does not count in the count returned by it. While reading the standard
input, characters are echoed to the standard output. It recognizes the
character delete, line delete and tabstops =set by stty. Tabs are
converted to blanks only in the echoed output and the true tabk value
(Ox09) is stored in the buffer. After the string is read, the routine
checks to see if the first character is the exclamation point (). If
it is, string calls the operating system on the remainder of the
buffer and then reads another string from the standard input. This
allows easy access to the operating system from new programs being
built.

WARNINGS None.

BUGS Mone known.

FILES None.

SEE ALSO stty.

SYSTEM 8%

NAME system - execute a command

SYNOFSIS system(&buffer)

DESCRIFTION SYSTEM is the true command processor in the uNIX operating
system. It expects a single argument which it uses as the address of a
null terminated string containing commands. It breaks the tokens found
in the command string into separate strings. The first token which is
not an I/0 redirect control is taken to be the command. The program
having that name will be lopaded into memory and executed as an object
module. The program must be in relocatable format as generated by the
link editor and will be relocated as required by the operating system.
The system will search directories for the command name as specified
by the path variable. The path variable can be modified using stty.
Normally, it is:

"/bin/sii"

which will cause the system to search first in the /bin directory and
then second in the current directory. The colons denote the end of the
path to which the command name is appended. In other words, /bin/:i: is
the path and the command xvz is typed, the following paths will be
used for finding xyz.

/bin/xyz uyz

All other tokens found on the line are considered to be arguments +to
the command. Any argument can be referenced by the user using the arg
function. When the command is actually loaded, it is passed a single
argument which is the number of arguments which was present on the
command line invoking the program named by the command. Tokens are
seperated by spaces, tabs, or 1/0 redirect symbols. Redirect refers to
the operating system ability to establish what files are the standard
input or standard ocutput. This is done by preceding a name with the
less than symbol (<) for the standard input or the greater than symbol
(¥) $or the standard output. Two greater than symbols {(:x) specify
appending to the named file as the standard output. Some examples
follow:

ls*file cmnd<abc>/uyz ls /bin/ >*5file

When specifying 1/0 redirect, the name must immediately follow the
redirect symbol. Pseudo pipes are supported by system. Thiszs allows
output from one command to be run as input to the next command. For

example,

lsipr>/lpr

SYSTEM . BYETEM
will cause the output from ls to be placed as input to pr whose autput
in turn is directed to /lpr.

Multiple commands may be present in the buffer provided they are
separated by semicolons (3).

The arguments of the calling function can be used within the current
function. Dollar sign ($) specifies this action if it is followed
immediately by the argument number desired. For example, a shell
program xyz contains the statement:

pr $1 %7

When invoked by the statement #yz abc temp, the example will become,
pr abcitemp

If dollar sign is not followed by a number, system will read a string
to use as the argument from /fcon. If dollar sign is immediately
followed by a string in double quotes, the string will be printed at
/con and then the argument will be read from /con. It is possible to
concatenate arguments together by simply not placing spaces between
them. For instance,

$l.c #1132 $"Enter name".s

are all proper values. The name of the calling command can be accessed
using $0.

System does not break up strings in double guotes but it does
translate backslash sequences within them. For instance,

"hello there'p”

will be kept intact with only the newline {(\n) being translated.

When system is finished processing the entire command string, it will
return the same value returned to it by the last command executed.

WARMINGS MNone.

BUGS Double quoted strings cannot be used as I1/0 redirect token names
(lg » "Hello there").

FILES None.

SEE ALSO arg, stty.

+3

WRITE ST

NAME write - transfer a block from memory to a file
SYNOFSIS write(id, address,nbytes)

DESCRIFTION WRITE requires three argunents. The first is the fileid to
be used for the transfer. The second i= the address in memory where
the block is to be found. The third is the number of bytes to
transfer. When finished, write will return the actual number of
characters transferred. This routine can be alternated with putc or
putchar on the same file and each will write sequentially. Write is
most efficient when used to transfer large blocks of data but any
length is permissible. The third argument, nbytes, is treated as an
unsigned value. This permits moves of up to 4653535 characters in a
single block.

WARMINGS None.
BUGS None known.
FILES None.

SEE ALSO open, claose, put, putchar, read.

UMIX MR

MNAME unix — start the operating system

SYNOFSIS unix{start)

DESCRIFTION UNIX is the beginning entry peint for the entire operating
system. It expects a single argument. The wvalue of this argument
determines the action taken. If the value is 1., the operating system
makes a cold start. This implies:

The tabs are set to 4. The erase is set to backspace (Ox08), The
prompt is set to "% ". The path is set to "/bin::". Any file 1/0 is
terminated, no files are open. The argument pointer is reset. The
current directory iz set to the rooct (1). If a file named profile
exists in the root, it will be executed as shell commands. The shell
is executed using /con for I1/0.

If the value is 0, the operating system makes a warm start. This
implies:

Any files open will be closed gracefully. The argument pointer is
reset. The shell is executed using /con for I1/0.

-~

If the value is 2, the operating system initializes the file svstem
and returns to the caller. This allows the user to use the file svystem
for transferring files from other operating systems.

WARNIMNGS If sh or /con are missing, the system cannot boot.

BUGS MNorme known.

FILES None.

SEE ALS0 None.

¢
I
i1}

NAME xas - the real Z-80 assembler

SYNOFSIS xas [-11 [-onamel L-p#] [-x1 file_name

DESCRIFTION XAS accepts a nrumber of argument flags. These are
specified below.

-1 Generate a listing

—aname Flace the output in the "name" file

-p# Fage size (for listings) is # lines. (the default is
b6 .

-3 Do not generate relocatable code.

The final argument is the filename to assemble. The input language to
the assembler must be in upper case and 1s a derivative of the
Technical Design Labs (TDL) modifications of the B080 programming
language to include 7-80 extensions.

WARNINGS MNone.

EBUGS None known.

FILES None.

SEE ALBO as, cc, ld.

xce EXINN

NAME xcc - executable C compiler

SYNOFSIS cc sowce destination

DESCRIFTION XCC is the real C compiler. It accepts two arguments. The
tfirst is assummed to be a C program to compile and the =zecond is used
as the destination file name for the resulting assembly language
program. For example,

e file.c result.s

will place an assembly language program in the file result.s. This
compiler accepts standard C program text with some exceptions. It does
not allow for multiple dimensional arrays (one-dimensional only), it
does not support structwes in any way, and it does not allow

initialized variables. It also does not support the #define statement.
It does support all other standard features of the C language.

WARNINGS Unlike cc, xcc does not append the ".c" and ".s" suffines o
remember to enter them if they are required.

BUGS None known.

FILES None.

SEE ALS0O cc.

XD

NAME xd - hexadecimal dump of a file.
SYNOFSIS ud file

DESCRIFTION XD prints the named file (if found) in hexadecimal
notation. The address, beginning with 0, is printed next to sach line
of 1& bytes. XD can only be terminated by cnti-@&.

WARNINGS None.
BUGS Mone known.
FILES Mone.

SEE ALSO None.

LD ALl

MAME xld - the real link editor

SYNOFSIS xl1d [~11 [-onamel [~-el [-r1] [—p#l [files]

DESCRIFTION XLD accepts several arguments which are described bel ow.

-1 Froduce a listing at the console

—-lname Froduce a listing at "name"

-gname Send the resulting module to "name"

=t Offset the relocatable code by #

-p# Fage size (for listings) is # lines

-a Retain any ENTRY definitions in the files (ie. place

them in the output)

WARNINGS Mone.

BUGS None known.

FILES None.

SEE ALS0O 1d, as, cc.

XEH Lo

MAME xsh - executable shell

SYNOFSIS Mever invoke this command

DESCRIFTION XSH is used by the operating system for executing files

which are deemed shell programs. This is determined by the mode byte
of the file and is checked by the operating system when a command is

invoked.

WARNINGS Users should not invoke XSH or in any manner modify it. It is
included here only for completeness.

BUGS None known.

FILES MNone.

SEE ALSO None.

VI

MNAME vi - wvisual editor

SYNOFSIS vi file_name

DESCRIFTION This manual describes the commands and capabilities of the
VI screen oriented text editor. For the duration of this manual, the
character ™ should be interpreted as the word "control'. For instance,
“F means control-F. The symbol <cr: means carriage retun, the svmbol
wepr means the space character, the symbol <bs* means the baclspace
character, and <num> means an optional number. All other characters
should be interpreted exactly as depicted and be sure to observe their
case (upper or lower) as it is significant.

VISUAL MODE COMMANDS

I. Vertical Motion Group

LnumE— Move up num lines in the file, or to top.
DN SN Bt of ol Move down num lines in the file, or to end.

“numig or 6 Go to line number num in the file, or to end if num is
greater than total number of lines in file.

h or H Go to top line currently displayed on screen.

1 or L Go to bottom line currently displayed on screen.
“F Scroll down 1 screen sizre in the file.

R Scroll back 1 screen size in the file.

D Scroll down 1/2 screen size in the file.

U Scroll back 1/2 screen size in the file.

I1. Display Control Group

r

Lor Redraw screen, with cursor on top line.

=. Redraw screen, with cursor on center line.

VI

Redraw screen, with cursor on bottom line.

Fedraw screen.

IIT. Locate Group

/stringicr >

Petringlor >

M

«
A

Go to next occurence of character string "string" in the
file, searching in the forward direction. If end of file
is hit, search will abort.

Go to next occurence of "string" in the file, searching
backwards. If top of file is hit, search will abort.

Go to next occurence of the last locate stiring entered.
Search in same direction as before.

Go to next cccurence of the last locate string entered.
Reverse direction of search.

When the cursor is currently pointing te a brace,
bracket, or parenthesis, this command will locate the
matching brace, bracket, or parenthesis. I+ not found,
terminal will "beep"“.

IV, Horizontal Motion Gi-oup

Tnumslsp

Tnumrihe x

S IIUm W

Lnumre

“numirb

Srum el

Space forward num characters on current line, or to end
of line.

Back up num characters on current line, or to start of
line.

Go to first character in current line.
Go to first non-blank character in current line.
Go to end of current line.

Move forward to start of numth following alpha-numeric
word on current line, or to end of line.

Move forward to end of numth following alpha-numeric
word.

Move back to start of numth previous alpha-numeric word.

Move forward to start of rnumth following blank delimited
word on current line, or to end of line.

k3

VI

LrnumrE

“numsB

Move forward to end of numth following blank delimited
word. ’

Move back to start of numth previous blank delimited
word.

V. Delete Group

Lum e

dd

Lram g

I T DY

d$

L rame

“um

Lrm

Lraml

VI.

s

dw

rde

dld

dE

TRUM Y'Y

LPYLUN oy

vE

b

L

S TRY) e

Wi

wid

Lnumrve

Delete num lines, starting with the cuwrrent line, or
delete to end of file.

Delete the next num characters on the current line,
starting with the current character, or to end of line.

Same as <numid<sp, only shorter.
Delete from cursor to end of current line.

Delete from cursor to start of numth following
alpha-numeric word on current line.

Delete from cursor toc end of numth following
alpha-numeric word on current line.

Pelete from cursor to start of numth following space
delimited word on current line.

Delete from cursor to end of numth following space
delimited word on current line.

Yarlk Group

Yank num lines, starting with the current line, or vank
to end of file.

Yank the next num characters on the current line,
starting with the current character, or to end of line.

Yank from cursor to end of current line.

Yank from cursor to start of numth following
alpha-numeric word on current line.

Yank from cursor to end of numth following alpha—-numeric
word on current line.

Yank from cursor to start of numth following space

VI

< IHAm r

VII.

Srum

vE

Lo}

delimited word on current line.

Yank from cursor to end of numth following space
delimited word on current line.

Change Group

cc

m e

cH

SPm

GRS THY; e

Lrumis

Rum

VIII.

(ESCa

I

Cw

ce

cE

Change num lines, starting with the current line.

Change the next num characters on the current line,
starting with the current character, or to end of line.

Change from cursor to end of current line.

Change from cursor to start of numth tollowing
alpha-numeric word on current line.

Change from cursor to end of numth following
alpha-numeric word on current line.

Change from cursor to start of numth following space
delimited word on current line.

Change from curszor to end of numth following space
delimited word on current line.

Input Group

pe)

Insert new text between current character and previous
character.

Append new text between current character and next
character.

Stop inputing characters into the file.

Feplace the current character with the next character
typed in. New line characters cannot be changed with this
command.

Open a new line below +the current line, and start
inputting on this line.

Open a new line above the current line, and start
inputting on this line.

Fut the contents of the vank buffer between the current
character and the next character (or between the current

VI G
line and the next line, it the vank buffer contains
lines).

F Fut the contents of the vank buffer between the current
character and the previous character (or betweern the

current line and the previous line, if the vank buffer
contains lines).

IX. Macro Group

Macros are allowed to call each other, or themselves. ANy command can

be used in a macro. Any error which causes a "beep" terminates a
macrao.

SrUm > m Execute the current definition of macro num (1 to 4),
“rum M Display the current definition of macro num on the

command line.

“numrs or 8§ Enter a new definition for macro num on the command line.

X. Miscellaneous Commands

~G Frint file statistics on command line.

“humet Set tabstops to every numth character.

D Display the current contents of the vank buffer.

i Join the current line and the line below it intg one

line, deleting the newline between them.
C) Toggle the caps lock option (converts all letters ¢to
capitals while in input mode).

COMMAND MODE COMMAMDS

I. File Manipulation Group

swor Write file to current +ile name displayed with B
command.
Iw fnamedcr Write file to file name fname.

W s Same effect and options available as for wicrr above,

VI ' it

except that a Igicr: will be executed atter the write.
e Restore current file to version currently saved on disik.
‘e fname<cr> Discard current file being edited, and edit a new file
named fname, if the current edited version of the file
matches the version saved on disk.
‘E fnamedcr> Discard current file being edited, and edit a new file
named fname, regardless of the state of the version of

the file saved on disi:.
ry fname<cr:> Flace the contentes of file fname into the vank buffer.
II. Frogram Control Group
cgucr Guit the edit session, if the current edited version af

the file matches the version saved on disk.

R P o Buit the edit session, regardless of the state of the
version of the file saved on disk.

slstringdcr> Execute the character string "string” as a shell
command.

USING DIFFERENT TERMINALS

Each time VI begins running, it reads a terminal profile from the file
/bin/vi.crt which contains the various sequences which cause the
terminal to perform operations on its display. The file contents are
described below.

Lines This is a binary character which is the number of lines
available for display on the terminal screen.

Home clear<cr»This string must contain the sequence which homes and
clears the terminal screen.

Clear to end<cr:>This string must contain the sequence which causes the
terminal to clear the screen from the cuwrrent cursor
location to the end of line.

Insert line<cr>This string must contain the sequence which causes the
terminal to insert an empty line at the cursor location.

Delete line<cr»>This string must contain the sequence which causes the

terminal to delete the line at the cursar location.

Enter insert mode<cr:>This string must contain the sequence which
causes the terminal to begin insertion of characters
received at the cursor location.

Exit insert mode<cr»This string must contain the sequence which causes
the terminal to cease insertion of characters receiwved
at the cursar location.

te charact

Dzl

It

er<cr:This string must contain the sequence which causes
the terminal erase the character at the cursor location.

row offset+1é6 This is a binary character which will specifties how much
offset to add to the row addresses passed to the
terminal. Normally, this value is made to be 16 which
results in no offset.

move rowicr> This is the first part of the string which will cause
the terminal to move its curszor to a new row and column.
This portion specifies the row address as well as any
characters to send before it is sent. The row address
will be send when the specification %d or %c is found.
If %d is used, the value is sent in ASCII decimal. I+
the format is %c, it will be sent as a bimary character.

col offset+ls This is a binary character which will specifies how much
offset to add to the column addresses passed to the
terminal. Normally, this value is made to be 1& which
results in no offset.

move col<cry This is the second part of the string which will: W cause
the terminal to move its cursor to a new row and coluwnn.
This portion specifies the column address as well as any
characters to send before or after it is sent. Like the
row address, the value will be inserted whenever “d or
“c is found.

Fortunately, this file can be created very simply using the ‘Yecha"
command of the operating system. First, write down the sequences and
values to send. Then, determine what ASCII characters have these
values and write them down. In doing this, control characters should
be preceeded by a backslash (\) and remember that carriage return can
be coded as \n. For instance, the sequence ESC % cntl-u can be written
as "N[ENX". Once these sequences are written down, they can be placed
into & file by typing:

echo "the entire sequence" filename

VI

i

An example sequence, which will condition VI for a Hewlett-Fackard
HFZ2&621 is shown below. Notice that the sequence has been broken in two
parts for convenience.

echo "\X\EH\[J\n\EK\n\EL\n\CM\n\ED\n\ER\n\EP\n"Php.crt
echa "\P\[&aXldR\n\FZdC\n" :*hp.crt

Note also that the second piece of the string is appended using the

1/0 redirect append operator (:») supported by the operating svstem.
The content of the file can be viewed using the "xd" command to be
sure it is correctly built. Then, move the file into the “hbin"

directory by typing:

mv filename /bin/vi.crt

Now, VI should be compatible with yvow terminal.

WARNINGS None.

BUGS None known.

FILES /bin/vi.crt

SEE ALSO None.

SCRIFT SCRIFT

MAME script -~ text processor
SYNOFPEIS script file_name

DESCRIFTION This manual describes a teut formatter program entitled
"MICROSCRIFT". MICROSCRIFT accepts a single argument which is the text
file which is to be processed. It accepts no other arguments or flags.

The MICROSCRIFT program has been modelled roughly atter the "SCRIFT"
text formatter program marketed by the University of Waterloo.
Extensive simplifications to the features have been made, however, to
allow efficient implementation on a small microcomputer such as the
{-80. Specifically, any sort of commands which would require extensive
amounts of internal buffering have been eliminated. The primary losses
thus incurred are as follows:

1. Multiple column output is not supported in any way. All output must
be in the form of one column per page.

2. Mo specific support of footnotes is provided.

S« Mo command is supported which requires that text be formatted
first, and then printed later. For example, no support ot
‘conditional paging” to force a block of text to all appear on the
same page is provided.

4. In addition, several little used commands have been eliminated
and/or changed to allow greater generality of use at the cost of a
certain amount of convenience.

Despite these limitations, MICROSCRIFT is quite capable of supporting
a wide range of document styles. Most of the unsupported features can
be accomplished by perfoming a trial format of the document, and then
making a few minor changes to the definition to allew for exact page
placement. Only multiple column output remains impossible.

SCRIFT SCRIFT

FAGE FORMAT:

All documents prepared with MICROSCRIFT are, of cowse, printed on
pages. Every aspect of page size and characteristics are user
definable within the framework of MICROSCRIFT. Each page produced by
MICROSCRIFT has the following basic format:

i S & . tm i
! ! i :
H i H i i

Pl il lmE e em——————— b1l e ——— E i
! i H ! !
i] i H !
i i i H :
: H s L : !
i i i : i
i ket H
i ! i :
: iebt——> .bm !
i i H !

.pl = page length

.tm = top margin

-bm = bottom margin

-Im = left margin

.11 = line length

«in = indent amount within .11

«tt = top title line

bt = bottom title line

8

SCRIFT GURIST

ENTRY OF COMMANDS AND ARGUMENTS:

All commands to MICROSCRIFT are of the +orm My wWith the *.°
beginning in column 1 of an input record, and "ux" being a 1§ or 2
letter command. Command names have been picked as much as possible to
reflect their function. Arguments are optional, depending on the
command, and come in two forms: numerical values, and strings. A

numerical argument may be specified in any one of fouwr ways:

n The numerical wvalue n is assigned to the appropriate

+ The parameter is incremented by the value of n.
-n The parameter is decremented by the value of n.

no arg. If the argument is left off entirely, the parameter returns
to it’s default vaule.

A string argument is any sequence of printable characters surounded
by two "delimiter" characters. The delimiter character can be any
printable character other than space, tab, or “$°. Examples of strings
are as follows:

/this is a string/
"“\go is this"

In some commands, more than one string must be specified at once, with
consecutive delimiters between each. For example:

/stringl/stringZ/stringX/

You can put more than one command on one line, it desired, by
following the first command with a "3i°, and then putting the leading
7.7 of the next command immediately after the “3°. It is also possible
to follow a command with a "3 and then normal text to format all on
one line. For example, if you wish to center just one line, it is

allowable to type:
.ce lijline to center

Finally, if some command .xx is not recognized, MICROSCRIFT will
search on disk for a file with the name xx. (Note that the leading *.°
is not part of the file name.) If the file exists, MICROSCRIFT will
process any commands and input lines in the specified file until it is
erausted, and will then return to the original file being processed.
In this way, "macro" commands can be written for often used sequences.
Nesting of macros iy allowed, and is limited only by the number of

buffers in the operating system.

SCRIFT SORIFT

THE FORMATTING FROCESS:

The MICROSCRIFT text formatter program operates in one of three basic
modes, selected by the user. & description of the functional
characteristics of each follows:

mode 1: The simplest mode of operation is ‘“unformatted” mode,
specified by the ".nf" ar "no-fill" command. In this mode,
lines of text from the input file are copied to the output
file exactly as they appear in the input File. All svystem
parameters listed in the FAGE FORMAT section of this document
are obeyed while in this mode, except for line lengih (.11).
In this case, lines will be whatever length vou make them in
the input file. This mode is primarily useful for entering
tables, diagrams, and other things where the exact placement
of all characters must be undisturbed. For example, the
"picture” of a typical page which appears earlier in this
manual was formatted using this mode.

mode 2@ Both other modes operate in what is krnown as "fill" mode,
specified by the ".fi" command. When in fill mode, words of
text are copied from the input file to a separate output
buffer within MICROSCRIFT, one at a time, with one space
between each word. Any extra blanks between words in the input
file are deleted, and line boundaries within the input file
have no real significance (except for delimiting command
lines). Whenever the ocutput reaches a point where no more
words can be included without exceeding the line length (.11)
parameter, the buffer is printed, emptied, and the process
starts over again.

mode I The last mode available is "fill and adjust" mode, obtained by
specifying both the ".fi" and ".ad" commands. Adjust mode can
be turned off by speciftying ".na". If ".nf" is specified, the
state of adjust mode is unimportant. Fill and adjust mode
operates in exactly the same fashion as fill mode alone,
except that one additional processing step takes place.
Whenever it has been determined that no more words will fit
into the output buffer, extra spaces are inserted between
words already in the buffer until the length of the lime to
print is exactly equal to the line length. This document was
prepared using this mode. Alsoc, this mode i=s the default
condition when MICROSCRIFT is first called.

Az long as at least two full words can fit on any one line (of length
-11), MICROSCRIFT will never hyphenate. If this condition is not met,
MICROSCRIFT will, if necessary, hyphenate words to make them fit
within the specified line length. Since MICROSCRIFT is not overly
intelligent about it°s placement of hyphens, it is best to avoid
letting the line length get this small.

SCRIFPT

L5

Whenever (in fill mode) it becomes necessary to print the output
buffer and start filling it over again, this condition is referred to
as a "break". The most common reason for a break to occur is that the
output buffer is full. However, there are several other conditions
which may occur which will cause a break even if the buffer isz not
full. For example, if a new paragraph is started, the last line of the
old paragraph must be printed before the new paragraph can begin, even
it it is not full. Also, many other commands such as ".sp" (skip
spaces) and ".bp" (begin new page) will cause a brealk. Whenever a
break does occur, the last line printed will pot be adjusted before
printing, even if ".ad" is specified. This is necessary, since the
output buffer is not really full.

UNDERSCORING:

In order to underscore text within MICROSCRIPT, it is only necessary
to surround the text to underscore with “* characters. For example,
if the following line is entered:

\Every good boy does fine\.

The following will be the result:

If in no-fill mode, everything between the *\° characters will be
underscored, including any blanks. If in fill mode, only non-blank
characters can be underscored.

If it is really desired to enter a °\" into the text stream, vyou can
type "\\". Also, if some line contains only one "\°, everything from
the "\" to the end of the line will be underscored. :

LIST OF AVAILABLE COMMANDS:

The remainder of this manual consists of a list of all currently
available commands within MICROSCRIFT, and a short description of the
function of each. Whenever an underscored gquantity appears in a list
of argument options, this quantity is the "default" value, obtained if
the argument is omitted entirely. Also, if a "%’ appears before the
command name, this indicates that the command causes a break.

SCRIFT

. ad

bm o SEIini+ntl-n

¥ Jbp dpp*lint+ni-ni

Turn on "adjust" mode. Note that this command
will do nothing if ".fi" is not specified.

Set bottom of page margin to Largument s lines.
Terminate current page, and begin a new page with

page number <argument>. Default is the next page
number. +n and -n argument values are relative

i

off of the currept page number (not the rext page
number).
* Lbr Initiate a "break". (Refer to section on the
formatting process for a definition of break.)
bt dni+ni-n:- /stringl/string2/string3/ Bottom title line

-.ds

« 80

. fi

* .in <0inl+ni-nk

definition (see section on page format for
placement on page). The bottom title linme will be
printed as the nth line of the bottom margin (n =
“argument). The line will consist of stringl
left adjusted, string2 centered, and string3
right adjusted within the line length parameter.
If the sequence "$&" appears in any string, it
will be replaced by the current page number
printed asz 2 decimal digits. Similarly, the
sequence "$$%" will print the current page number
as I digits. Note that these translations only
apply to title line definitions. MICROSCRIFT
defaults te " .bt O ////". If the value of
fargument> does not fall within the range of the
bottom margin, the title line is not printed.

Center the next <argument> lines in the input
file. If no argument is given, all further lines
will be centered until a ".ec" commanrd is
encountered.

From the next line printed until some other
command overrides, start double spacing between
all printed lines of text.

Terminate line centering mode. If the mode was
already off, this command will do nothing.

Turn on “"fill" mode.

Indent all following printed lines by <argument:
spaces, until some other command overrides. Tf in
fill mode, the "effective" available line length
will be decreased by the indent amount, so that
the overall line length will remain the same.

SCRIFT

i
i
-1
b
—_—
)

* .le Terminate a list item. This is accomplished by
setting the indent amount to O, and then
executing a ".sp 1". (See the ".li" command below
for the definition of a list item.)

* W11 <pi+ni-nk /string/ Start a list item. A list item consists of
a string (the /string/ argument), and a block of
text which is asscociated with that string. The
-1i command will execute a ".sp 1", and then set
the indent amount to <argument>. Note that the

same variable is affected here as in the “.in"
command. All lines printed after the .1i command
will be indented by <argument: spaces. In

addition, the first line printed after the .11
command is issued will have the contents of
/string/ printed on that line, located at the
very beginning of the line (without any indent).
For example, the command list that you are now
reading was formatted with .1i commands, with
“argument> = 21, and with each /string/ = ta the
name and argument list for the command. I+
/string/ is too big to fit within the alloted
space provided by the indent, the ‘"effective"
line length will be decreased accordingly for
that first line only. After the Ffirst line is=
printed, the indent will revert teo the value
specified in the .li command. Note that the .1i
command description that vou are now reading is
an example of this situation.

* W11 “afini+ni—nx Set current line length to Targument > characters.
This value is only used in fill mode. MNote that
-in, .1li, and .p may all cause the ‘"effective"

value of this variable to decreased.

Am o SQinten)~nx Set left margin on page to wargument > characters.
Mote that this variable does not affect the
defined line length.

LA Turn off "adjust" mode.
* .nf Turn off "fill" mode.
* .p Begin a new paragraph. This command executess a

".sp 1", and then increments the indent amount by
“pir* characters. This extra indent amount applies
only to the first line printed after the . B
command. After the first line, the indent amount
reverts to it’'s previous value. The value of Tpiox
can be set with the ".pi" command.

*
(]
[
18]
3
+
3
1
3

Set paragraph indent amcunt *to Targunent .

Set current page length to <argument> lines petr
page.

Skip <argument:> lines in the output file. Note
that if ".ds" is specified, 2#Cargument > lines
will actually be skipped.

P11 From the next line printed until some other
command overrides, start single spacing all
printed lines of text.

SEm dsintdnl-n Set top of page margin to <argument: lines.

-ttt ni+ni-nk /stringl/stringZ2/string3/ Top title line definition.
See the .bt (Bottom title line) description {or
details. This command operates in the same way as
.bt, except that it is associated with the tap
mat-gin.

* <tab If a line of text begins with a tab character,

WARNINGS Maone.

BUGS Nonrme known.

FILES None.

SEE ALS0 None.

MICROSCRIFT will perform the same actions
incurred by issuing a ".p" command, except that
it dces not print the blank line betweesn

paragraphs. When in the unformatted mode, no
action at all is taken.

Is
Ul
=

MNAME asm - the 8084 assembler

SYNOFSIS asm [~1s] filename [filenamel

DESCRIFTION ASM is the 8086 assembler. It accepts one or more
arguments which it treats as the path to a file to assemble. Filenames
given in the arguments +o asm are appended with ".s" prior to
searching. The wild card character (%) is permitted and asm will
assemble all files ending in ".s" which match the name. Asm accepts
two flags, if desired, which can produce a listing and/or a symbol

table.

-1 Froduce a listing

Froduce a svmbol table

|
i

In both cases, the output will appear at the console unless the
standard ocutput has been redirected to a file. An example of this
follows.

asm -1 /temp/* >temp.listing

The assembler accepts lower case files containing standard Intel
mnemonics for the 808s6.

When the assembler is finished, there will be a ".o" file for each
".8" file which it was asked to assemble. These files are ready for
link editing.

WARMINGS MNone.

BUGS MNone known.

FILES bhione.

SEE ALSO ccoc, ldr.

cce LCE

NAME ccc - the 8086 C compiler

SYNOFSIS ccc filename [filenamel

DESCRIFTION CCC is the 808& C compiler. It accepts any number of
arguments greater than one and treats each as a pathname to a ".c¥
tile to be compiled. The wild card character (%) is permitted and the
compiler will compile all ".c" files which match the specified name.
For example,

cCcC xyzzy /temp/ab¥

will compile “"xyzzy.c” and all files in the directory "temp" whose
names begin with "ab" and end in ".c".

When the compiler is finished, there will be a ".s" file for each ".c"
file which was compiled. These files are standard 80854 assembly
language programs and are ready to be assembled by the 8086 assembler.

WARNMNINGS Mone.

BUGS None krown.

FILES None.

SEE ALSO asm, ldr.

LDR e

NAME l1dr - the 380846 link editor

SYNOFPSIS ldr [-1s] filename [filenamel

DESCRIFTION LDR is the 8086 link editor. It accepts any number of
arguments greater than one which it treats as a path to a ".o"% file to
be link edited. The wild card character (#) can be used in which case
the link editor will link all matching Ffiles ending in ".o". It
accepts two flags.

-1 Froduce a listing of the symbol table. The listing will
appear at the standard output and can be re-directed to
a file or printer.

- Flace a copy of the symbol table in the output., This is
useful for debuggers.

When the link editor has finished, there will be a single file created
which will have the name of the first argument but without the ".ao".
This file is the executable module.

WARNINGS None.

RUGS MNone krnown.

FILES blone.

SEE ALSO ccc., asm. .

CFR CFR

NAME cpr - print C programs

SYNOFSIS cpr [—f1 [-i#] [-p#] filename

DESCRIFTION CFR is a useful utility for printing C source programs. It
provides pagination, titles, statement numbering, as well as level and
bracket nesting. It accepts a single argument which is the filename to
print. It also accepts a set of flags for setting options.

- Skip to & new page at the end of each C function.
—1i# Set page indent amount to # (default is 0).

—-p# Set page length to # (default is &&).

~f1i#pH If all options are requested.

WARNINGS None.

BUGS Mone known.

FILES None.

SEE ALSO None.

NAME as - Z-80 assembler
SYNOFSIS as as_pgm

DESCRIFTION AS accepts a single argument which it treats as the name
of a ".s" file. On completion, a new file named as_pgm.o will exist in
the current directory. This file is a load module program ready to be
link edited. For example,

as myfile
will cause "myfile.s" to be assembled producing "myfile.o". Note that
the user should not enter the ".s" suffix. The source file will not be
modified in any manner. For more details on the Z-80 assembly

language, see the xas manual. Listings cannot be produced using this
commnand. If a listing is desired, use xas.

WARNINGS This routine is simply a shell program which calls the real
assembler, xas.

BUGS None known.
FILES None.

SEE ALSO mk, cc, xas, 1ld.

MAME cat - concatenate files

SYNOFSIS cat [file_namel

DESCRIFTION The cat command permits the user to type thosze files named
at the standard output. It accepts any number of arguments including
none. If none are given, it simply echos the standard input to the
standard cutput until the end of file is reached. I+ arguments are
passed, all files named are typed. The wild card (#) is permitted and
cat will tvpe all files with matching names. Some examples are given
below.

cat #.c bios.s
cat ../tempfile
cat /Juser/help/#* manual /x#
This command requires no flags. Tabs are alwavs translated as

specified by the stty setting. (See also STTY)

WARNINGS Binary files (non-aASCII) cannot be viewed By cat. Attempts to
do so may cause system buffers to be overtlowed.

BUGS None known.

FILES None.

SEE ALS0O stty.

M&GME cc - C compiler
SYMNOFSIS cc c_pgm

DESCRIFTION CC accepts & single argument which it treats as the name
of a ".c" file. On completion, & new file named c.pgm.s will exist in
the current directory. This file is an assembly language program ready
to be assembled. For example,

cc myfile

will cause "myfile.c" to be compiled producing "myfile.s". NMNot that
the user should not enter the ".c" suffix. The source file will not be
modified in any manrer. For more details on the C programming

language, see the xcc manual.

WARNINGS This routine is simply a shell program which calls the real
compiler, xcc.

BUGS None known.

FILES None.

SEE ALB0 mk, as, xcc, 1ld.

NAME cd - change directories

SYNOFSIS cd [path_namel

DESCRIFTION The cd command permits motion within the file hiearchy. It
accepts either no arguments or a single argument. If no arguments are
giver, it moves to the roo directory. If an argument is passed, it
moves to that directory. The argument may begin with a slash in which
case the search begins at the root. If there ic no leading slash, it
begins with the current directory. In either case, the argument should
be a path to a wvalid directory. If any fault is found with the path,
an explanatory message is printed. Some examples follow.

cd cd ../temp/abc cd /user/bin

WARNINGS None.

BUGS Mone known.

FILES None.

SEE ALSO mkdir, rmdir, mvdir

CHMOD D

MAME chmod - change mode o+ files

SYNOFSIS chmod newmcde filename [filenames]

DESCRIFTION The chmod command allows the user to modify the mode word
associated with a file. It accepts as arguments a new mode value and a
list of filenames. The filename list can use the wild card (%) and can
be paths to other directories. The new mode value is given in symholic
form using combinations of the letters shown below.

1 No list. The filename will not be listed by the 1=
command unless the —-a option (of lz) is used.

Shell executable. The file will be interpreted as shell
commands when entered as a command rather than be loaded
and executed directly.

p Fhysical device driver. If input or output is directed
to such a file, the file will be used as a program for
doing I/0. The length of such a file must be less than
2836 bytes.

w Write protected. Files protected in this manner can not
be written. This applies to physical device drivers as
well.,

- Read protected. Files protected in this manner can not

be read. This is useful for physical device drivers
which are write only. (ie. line printers).

0 No modes. This removes all protection and/or mede bits
so the file can be manipulated normally.

Any unspecified option is disabled in the resulting mode. When
specifying more than one flag, the flags must be ordered as listed
(lspwr). Directories can onlv be modified by the no list option and
ordinary files cannot be made into directories by chmod. Some examples
follow.

chmod lpw modem /dev/#* chmod 1 /bin/
Note that when directories are named, the name must end in a forward

slash.

Be careful with the use of the wild card (#) and thie command. I+ the
modes of physical device drivers are made wWEong., the File will be

CHMOD

destroyed if written and must be remade. If the conscle driver
is damaged in this manner, the disk becomes usesable.

BUGS None known.

FILES Mone.

{Scon)

CMF L

NAME cmp - compare two files
SYMOFSIS cmp filel file?

DESCRIPTION CMF does file comparison on a character by character
basis. It accepts two arguments which are taken to be Ffilenames. If
either cannot be found, a message is printed. Otherwise, the two are
compared. If equal, CMF merely returns. If nrot, the line, char
pasition and byte number are reported. CMF can be run on any file.

WARMINMGS Mone.
BUGS None known.
FILES None.

SEE ALSO None.

MAME cp - copy files

SYNOFSIS cp filel fileZ cp file [files] directorvy/

DESCRIFTION COFY routine allows users to copy files from one place to
another. It reqguires two or more arguments. The last argument is the
destination file (or directorv) and all others are source files. Like
the "mv” command, it accepts source arguments with wild cards and
copys all matching files into the destination argument which should be

a directory. For example:

cp abc#* uyz/
will copy all files whose names begin with abc into the directory
named xyz. This is guite useful for backing up large groups of files.
When copyed, the name of the filez will be unchanged in the new
destination directory. Copy will overwrite any edisting file by the

same name unless it is r/w protected, a directory or a physical device
drriver.

WARNINGS MNone.

BUGS None krniown.

FILES None.

SEE ALS0 mwv.

DEMOUMT

NAME demount - demount a disk volume

SYMOFSIS demount volume name

DESCRIFTION DEMOUNT allows the user to remove a previously mounted
removable volume from the filesystem. It requires two arguments., The
first is the numeric id of the volume and the second is the directory
name by which it is known. The removable volume will become linked to
the root directory and the directory name will be removed (provided
that it can be found). For example,

demount 1 user
will unlink the disk which has be mounted on drrive 1 and remove the

directory named "user".

WARNINGS The system must be reset if this command is executed fram the
volume being demounted.

BUGS MNone knaown.

FILES None.

SEE ALS0 mount

RMDIR : EMD IR

NAME rmdir - remove directory lists
SYNOFSIS rmdir dir [dirsl

DESCRIFTION RMDIR permits directories to be removed. It &accepts any
number of arguments greater than or equal to one. Arguments may be
pathnames and may include wild cards. If the argument is found, and is
& directory containing only "." and "..", then it will be removed and
will have its secteors deallocated. IFf the directory is not empty, it
will not be removed.

WARNINGS None.
BUGS Mone known.
FILES None.

SEE ALSO mkdir, mvdir, cd.

Dy D

NAME du - summarize disk utilization

SYNOFSIS du [volumel

DESCRIFTION DU command summarizes disk usage. It counts the number of
files on the disk and the number of sectors inm use. The number of
files includes directories, hidden files and all others. In other
words, it really counts ALL files. The number of sectors in Hse
includes those associated with the linked list used for file
management. It can be called with up to one argument which is the
volume number to summarize. I¥ no argument is given, it will summarize
the root volume. An example summary 1s given below.

130 files
busvy: 2135, 229k, 79%
idle: 240, S9k, 21%
For the busy and idle reports, the first value is disk sectors, the

second value is in kKbytes stored on the disk, and the Ffinal value
represents the percent busy or idle of the total volume capacitv.

WARNINGS Unmounted velumes cannot be examined. Attempts to do so will
require system reset.

BUGS None Lrnown.

FILES MNone.

SEE ALS0 None.

BUF oL

NAME dup - duplicate a disk

SYNOFSIS dup

DESCRIFTION DUF allows the user to duplicate the disk currently
mounted in the drive. It is intended for single disk systems onlvy.
Those with multiple drives can use the copy routine instead. It
examines the disk i-map sectors and only leoads those sectors which are
actually in use. These sectors are buffered in memory until 3%k of
store is used. It then prompts the user to mount the slave disk,
copies the store onto the disk and then prompts the user to mount the
master disk. Using this scheme, at most 10 exchanges must be made.
Whern completed, the slave disk will exactly match the master except
for those sectors which were not in use. The content of these should
not matter.

WARNINGS If any disk errors occur while writing the slave, dup cannot
continue. Reset the system and repeat the operation. Be careful not to
exchange the disks incorrectly.

RUGS None known.

FILES hNone.

SEE ALS0O None.

ECHO EOHG

NAME echo - type arguments as strings

SYNOFSIS echo [text]

DESCRIFTION ECHO simplv sends all its arguments to the standard output
as character strings. Mo character is placed between the strings when
sent. Character translations such as n are performed by the system
when strings in double gquotes are passed as arguments. If no arguments
are given, ECHO simply types (exactly) the standard input to the
standard output. Some examples follow.

echo "Hello worldp”

echo abc def "Mow is the time"

ECHO is most useful when its output is redirected.

WARMIMNGS None.

BUGS MNone known.

FILES Mone.

SEE ALS0 None.

FMT Ep T

NAME fmt - format a disk volume

BYNOFSIS fmt [volumel [drivel

DESCRIFTION FMT allows users to format uNIX disks. IFf no argument is
given or if the argument is Q, FMT will create a rooct disk. I+ a
single argument is passed, it denotes the volume number by which the
newly created disk will be refered. If a second argument is given, it
is the drive on which the volume will be mounted for formatting. It
will request the insertion of the disk on the drive requested by the
user. After the new disk is inserted and a return is typed, FMT will
initialize the disk and place a fresh linked list having the directory
"." as well as the "con'" driver in the directory if the disk is a root
disk. If the disk is not a root volume, it will contain "." and "“.."
where ".." is linked to the root. After formatting, the user will be
asked to remount the system disk if drive 0 was used. Mote that volume
and drive are independent. This allows the user to create any volume
using any drive.

WARNINGS Mone.

BUGS MNone known.

FILES None.

SEE ALS0O None.

INOGE LRGEE

NAME inode - display inodes on a disk

SYNOFSIS inode [number]

DESCRIFTION IMODE ROUTINE allows the user to read and modify disk
inodes. To read an inode, simply type the inode number to display in
decimal (10} or hex {(Ox10). To modify an incde, simply type the inode
number, the element to modify in brackets, an equals <ign, and the
value to subsitute. For example,

210151=0144

Any value can be specified in decimal or hexadecimal. Inode accepts at
most one argument which is used as the first cne to dump. It will then
prompt for subsequent inode values. To exit the routine, type
end-of—file (NULL).

WARMIMGS None.

BUGS More known.

FILES None.

SEE ALS0 None.

LD L

NAME 1d - link edit locad modules
SYNOFSIS 1d 1d_module [ld_modulesl

DESCRIFTIONM LD is the system link editor. It accepts. any number of
arguments which are assumed to be names of ".g" files. The tirset of
these is made the entrvy point of the resulting module so order counts.
It auteomatically includes the file /lib/syse.o which links the
operating system entry points {(see LIE). For example,

1d abc uvyz /def/temp
will link edit abc.o, xyz.o, /def/temp.o, and /lib/sys.o into a single
executable file named abc. If no errors occuwr, the result can be

executed by simply typing its name. The resulting module is
relocatable.

WARNINGS This routine is simply a shell program which calls the real
link editor, xld.

BUGS None known.
FILES /lib/sys.o

SEE ALSO mk, cc, as, xld, reloc, LIE.

MAME 1s - ligt files in directories
SYNOFSIS 1s [—ailmst] [file namesl [directory_pathsl

DESCRIFTIOM The LS command allows the user to examine the contents of
directories. It accepts as arguments either filenames to match or
paths to directories. Anvy number of arguments of either type can be
given. The command recognizes the wild card character (#) within
filenames. Some examples follow.

ls

ls *,.c

ls temp tempy

1s /bin/a*.c user/help

If a name ends in forward slash (71, ls will treat it as a dirsctory
and will ligt all files within it. Several flags are available to
influence the command. These are described next.

—& List ALL files, even those marked as unlisted

-1 List the starting inode and the name

-1 Use the long listing. Gives the filemode bvte, the
starting inode (in decimal), the length {(in hex) and the

file name

~in List the filemode bvyte and name
- List the file size (in hex) and name.
-t Trace and print all inode numbers {(in decimal) used in

the file(s).

Several flags can be given at once but they must be in alphabetical
order. For instance,

ls -al

lg -t #*.c¢

ls —at /user/help #*.c ../bozo
Whenever the filemode byte is displayed, it is printed the
following svymbols.

1]
]

1 = No list option {overide with ls -a)
- Shell executable

LS i

- Physical device driver
— Read protected

- UWrite protected

- Directory

[T T

If the option is not enabled, an underline () is primted in the
letter’s place.

WARNINGS None.
BUGS MNMone known.

FILES The names . and .. indicate the current and previous directory
respectivel v.

SEE ALSO chmod.

Mk it

NAME mk — make & C program

SYMOFSIS mi c_pgm [ld_files]

DESCRIFTION MK accepts a variable number of arguments. The Ffirst is
expected to be the name of a C program, c_pgm.c, and any other
arguments are enpected to be load modules, ld file.o. MK will run the
C compiler and the assembler on the first argument. It will +then run
the link editor on all arguments. It auntomatically includes /lib/sys.o
which is the system library. For example,

mb vz /Slib/split ../findex

will compile xyz.c (which generates uyr.s), and as=zemble xyzes {which
generates xyz.o). Finally, it will lcad the files xvyz.o flib/split.o
~/findex.o /lib/svs.o.

WARNIMNGS Remember to omit the ".c' and ".o0" suffives.

BUGS None known.

FILES None.

SEE ALSO cc,as.ld,xcc,nas,xld.

MEDIR PR D

MAME mhkdir - make new directories

SYMOFSIS mkdir name [hamel

DESCRIFTION MEDIR routine permits the user to create new directories
anywhere in the directory tree. Each argument should consist of & new
directory name to place the in the parent directory. If the name is
already taken or cannot be created for some reason, a message will be
printed. Otherwise, the directory will be added and will contain links
te itself and its parent directory. These two links will be marked as
directorys themselves and will have the "list® option off. The new
directory name in the parent directory will be marked as a directory
but will have the “list’ option on. Any number of arguments may be
given.

WARKNIMGS None.

BUGS NMone known.

FILES None.

SEE 4L50 rmdir, cd

MOUNT FHILINT

NAME mount - mount a removable volume
SYMOFSIS mount volume name

DESCRIFTION MOUNT allows the user to access a demountable volume. It
requires two arguments. The first is the volume id to access and the
second is the directery name which it is to be called. MOUNT then
links the two disks so that the specified wvolume id appears as a
subdirectory by the given name. MOUNT can be executed at any location
in the filesystem. This allows a demountable volume to become a leaf
in the root directory tree. If the given name already exists, the
command will not mount the volume. ’

WARNINGS None.
BUGS MNone known.
FILES None.

SEE ALSO demount

MY M

NAME mv — move files within the filesystem
SYNOFSIS mv filel file? mv filei [files] directory/

DESCRIFTION MY command allows files (not directories) to be renamed or
moved about in the directory hiearchy. The command requires at least
two arguments. IFf more than two arguments are given, the last should
be a path name to a directory. For example,

mv abc xvyz def ../dirx/ mv abce ../dirx/

Wildcard (#) is also permitted. For example,

mv abc* xyz temp ../

The more simple (and usual) use is to rename a file. For example,

mv abc xyz mv temp oldfile

WARNINGS If several files are moved and the last argument is NOT a
directory, all files but the last of them will be lost and the last
will assume the new name. For example,

mv abc abcde abcdefg xyzzv mv abcx HYyzzTy

baoth result in lost files. A zingle file will remain named »vzzy which
is the last one found when searching the directory. This command
cannot be used to rename or relocate directories, files which are

physical device drivers or protected files. To move such files, use
chmod to clear the protection bits.

RUGS MNone known.
FILES None.

SEE ALSO cp. rm

MVDIR VD IR

NAME mvdir - move directories within the filesystem
SYNOFSIS mvdir old_dir new_dir mvdir dir [dir_listl directory/

DESCRIPTION MVDIR command allows directories inot files) to be renamed
or moved about in the directory hiearchy. The command requires at
least two arguments. If more than two arguments are given, the last
should be a path name to a directory. For example,

mvdir abc xyz def ../dirx/ mvdir abec ../ dirx/

Wildcard (%) is also permitted. For example,

mvdir abc#* xvz temp ../

The more simple {(and usual) use is to rename a directory. For example,

mvdir abc xyz mvdir temp oldfile

WARNINGS Never move a directory to itself (mvdir abc abc/), or to a

subdirectory beneath it (mvdir abc ®yz/), or operate on the names .
or "..". Either of these can scramble a disk bevond any hope of
recovery.

BUGS None known.
FILES NMone.

SEE ALSO mkdir, rmdir, cd.

F‘ F: ' f:;,

NAME pr — print a list of files

SYMNOFSIS gr [~-h] [filenames]

DESCRIFTION FR does printing and reformatting of files. It accepts any
number of arguments including none and treats each as the pathname to
a file. Wild cards in the pathname are permitted. I+ used, FR will
print all files which are found that match the pathname. It accepts a
single flag, —h, which will suppress printing of the header on each
rage. If no matching files are found, an appropriate message is
printed. Otherwise, the files will be printed at the standard output.
If no arguments are given, FR will read the standard input for the
information to print until it is exhausted. Tabs will be xpanded as
specified by the stty setting. The output of PR should be re-~directed
to the printer driver routine as shown below.

or omanual */lpr

WARNINGS None.

BUGS None known.

FILES None.

SEE ALSO stty.

FWD il

NAME pwd - print warking directory

SYMOFSIS pud

DESCRIFTION FWD prints the working directory. This is done by moving
up the file system from the current directory and seeking directory
names that have the inode of the current directory. The names are
concatenated and printed when no *.." directory is found. This denctes
the top of the tree.

WARNINGS Naone.

BUBS Nene known.

FILES None.

SEE ALSO od, mkdir, rmdir, mvdir.

RELOC RELD

NAME reloc - relocate modules to an absclute address.
SYNOFSIS reloc file address

DESCRIFTION RELOC accepts two arguments. The first is the name of a
module which has been link edited. The second is the address at which
the module will be placed when it runs. The address can be specified
in decimal (4094) or hexadecimal (Ox1000) . Upon completion, a file
named core will exist in the current directory which contains the
absolute image. For example,

reloc bozo OxcOQOO
will generate a core file which is bozo loaded at OxcO00. This command

is most useful for generating ROM images.

WARNINGS Files generated for absolute loads will NOT execute under the
operating svstem. The operating system memory management requires
relocatable images which it converts to absolute images when the file
is executed.

BUGS None known.
FILES core.

SEE ALSO MNane.

R !

MAME rm - remove lists of files

SYNOFSIS rm file [files]

DESCRIFTION RM permits files to be removed. It accepts any number of
arguments greater than or equal to one.They may be pathnames and may
include wildcards. The pathnames are split into directory and file. If
the directory is found, any name in it matching the file will he
removed and have its inodes marked idle. If no matching file is found
in the directory, the filename is printed along with a message. If the
directory is not found, the directory name is printed. Files which are
read protected, write protected, physical device drivers, o
directories cannot be removed. To remove such tfiles, force their mode
bits to 0 using chmod. Some examples follow.

rm abc rm abc* /bin/temp rm . ./uyzzy*.c

WARNINGS Mo second chance is given. Be careful with wild cards.

EBUGS None known.

FILES None.

SEE ALS0 chmod.

RMDIR RN

NAME rmdir - remove directory lists

SYNOFSIS rmdir dir [dirsl

DESCRIFTION RMDIR permits directories to be removed. It accepts any
number of arguments greater than or gqual to one. Arguments may be
pathnames and may include wild cards. If the argument is found, and is
a directory containing only "." and "..", then it will be removed and
will have its sectors deallocated. If the directory is not empty, it
will not be removed.

WAERNINGS None.

BUGS None known.

FILES MNone.

SEE ALS0 mkdir, mvdir, cd.

NAME sh - shell program

SYMOFSIS h [filesl

DESCRIFTION SH provides the basic system operation. It reads strings
from the standard input which it passes to the SYSTEM routine for
execution. It is the first procedure invoked by uNIX. It can be called
with no arguments in which case it will read the standard input. If
arguments are given, it will open each of them as standard input and
execute them as SYSTEM commands until the file is exhausted. GH
accepts no flags. SH is responsible for prompting for new commands.

The prompt string can be changed using the stty command.

WARNINGS None.

BUGS None known.

FILES None.

SEE ALS0 xsh, system, stty.

STTY

NAME stty - set teletype options

SYNOFSIS stty [option [valuel 1

DESCRIFTION STTY allows the user to setup various system options. The
current options are:

stty erase value (system character delete) stty kill value (svystem
line delete) stty tabs value (system tab stops) stty path string
(system command search) stty prompt string (system prompt string)

If no arguments are passed, STTY will print the value of all options.
I+ a single argument is passed, it will print the value of the
selected option. When the system is reset, the initial values of the
options are:

erase = 0Ox08 kill = Ox7f tabs = Ox04 path = “"/bin/::" prompt = "% "

If tabs are set to 0, the system will print the true value of the tab
(On0F). If it is other than 0, the system will replace the tab with an
appropriate number of blanks for that group of tabstops. For further

discugsion of the path variable, see the 'system" subroutine
description.

WARNINGS None.
BUGS Mone known.
FILES None.

SEE ALSO system.

uuceE ULICE

NAME uucp - unix to unix copy

SYMOFSIS uucp [filesl

DESCRIFPTION UUCF permits transfer of blocks of files from one disk to
another using memory as a buffer. It accepts any number of arguments
fincluding none) and treats each as the pathname to a file. Wild cards
in the pathname are permitted. If used, UUCF will load and buffer all
files found that match the pathname. It reguires no flags and if no
matching files are found, an appropriate message is printed. After all
tiles are found and loaded, a message will be printed requesting the
user to exchange disks. When this is done, the buffered files will be
written onto the new disk under their old names but they will be
placed at the root directory. The system will re-start using the new
disk.

WARNINGS Mo check is made for overflowing memory. Do not try to uuep
more than IZ2Z2K of files at a time.

BUGS None bknown.

FILLES None.

SEE ALLS0 dup

RMDIR RHD TR

NAME rmdir - remove directory lists

SYNOFPSIS rmdir dir [dirsl

DESCRIFPTION RMDIR permits directories to be remaoved. It accepts any
number of arguments greater than or equal to one. Arguments may be
pathnames and may include wild cards. If the argument is found. and is
a directory containing only “." and ".."y then it will be removed and
will have its sectors deallocated. If the directory is not empty, it
will not be removed.

WARNINGS None.

BUGS None known.

FILES Nene.

SEE ALS0 mkdir, mvdir, cd.


~~~~~




033 =X awTQ0Q0 et et et et e wu et we me wn e an o
A A A Il|nllvﬁ

®» 3070
A

NX XE£E<C o

>3
-0

ODVOZZrXCcw~Ionmm
[ T T A T e T A I A T |l°fﬂm

<XECC~0D

equates:

equ
equ
equ
equ
equ
aqu
equ
equ
equ
equ
equ
equ
equ
aqu
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
aqu

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
aequ
equ
equ
equ
equ
aequ
equ
equ
equ

061h
062h
063h
064h
065h
066h
067h
068h
069h
O6ah
0O6bh
O6ch
O6dh
O6eh
06fh
070h
O71h
072h
073h
074h
075h
076h
077h
o78h
079h
O7ah

__ equ 020h
_ equ Odh

041h
O42h
043h
044h
045h
046h
047h
048h
049h
O4ah
04bh
O4ch
O4dh
Odeh
04fh
0O50h
051h
052h
053h
0%54h
055h
0S56h
087h
058h
059h

BOOTSTRAP PROGRAM

FOR Z-80 MICROPROCESSOR
by

A,

L.

ascii

‘b’
‘c
‘g
‘a’
X X4
;g:
Th
‘4

)

e
‘g’
XX
‘u’
RV
‘w’
v
/y,
rz

TOMKO

g’
a

‘space’
‘newl ine’

‘A’
‘B’
‘c
‘D’
‘E”
tF
‘G
‘M
S &
rJd’
K
L
‘M
N
‘0
p
‘Q’
‘R
g
I 4
‘u
v
‘W
%
Yy

At
mec® 280 Tt
(o : S
! R A L
| A l\‘ww
| Db““n & Ao
AL‘L ‘(J S \"AVL }\@A MJ l/\‘uﬂ'w
\ 5 :
.D‘.)P ot v
S S
¢ A ks 4
leoﬁ * 4 Pett
. .‘o -
(o



iz
ampersand (¢)

question mark (?)

ESC character

CRT ESCAPE mode

CRT INSERT mode

CRT ROW mode

CRT COLUMN mode

where to start the stack

cursor blinker time constant, in ms (fa = 250)
number of 2-byte words in CRT RAM

beginning of CRT RAM

Z_ equ OSah

amp_ equ 040h

qm_ equ O3fh

ESC equ Oi1bh
ESCMOD equ 1
INSMOD equ 8
ROWMOD equ 3
COLMOD equ 4
spbase equ Oafffh
tau equ Ofah
crtwrds equ 0800h
crtram equ ObOOOh

0 ve et et ws we we

endcrt equ crtram + (2 * crtwrds) - 1 i last of CRT memory

botin equ crtram + OdOOh ; the 1ine below the bottom Jine on the CRT
hibot equ botin/O100h : high byte of bottom line

botlft equ crtram + Oc80h ; lower left of screen

uplft equ crtram + O80h ; Upper left of visible screen
scdlne equ crtram + 0100h ; Second line of the crt

bot1f1 equ botift + 1 next space after bottom left of crt
kbfsze equ 31 keyboard buffer size (32) -must be power of 2 - {.
keyprt equ 0Odé6h 1/0 control port for keyboard PIO
kbvctr equ Oh keyboard interrupt vector

pmodO equ Ofh sets a PI0 to mode O (output)

pmodt equ O4fh sets a PIO to mode 1 (input)

enable equ 083h enables PIO interrupts

disable equ 3 disables PIO interrupts .,

lgosze equ 11 The logo gets printed at the beginning
dskdta equ 0d3h Disk data register (I0 port)

dsksct equ Od2h disk sector register (10 port)
dsktrk equ Odth Disk track register (10 port)
dskcmd equ OdOh Disk command or status (IO port)
SEEK equ Oifh track seek command for disk

DSKRST equ OdOh reset disk controller command

DMA equ OcOh DMA controller

WRSCTR equ OQOa8h Write sector command

RDSCTR equ 084h Read sector command

keybrd equ 0Od4h keyboard data port

mscnt]l equ 0Od7h misc. PIO control port

TP OSP4T @0 s =0 @0 a0 @0 vt et ws 90 90 et et ws e 0 o0 w1 we e wo o

mscio equ 0OdSh misc PIO data port ay\&
RAM equ Of2h RAM turnon port A R )
ROM equ Of3h ROM turnon port p‘;, seul be
t2 equ Of6h timer 2 Tuﬂ by S
FMTBLK equ 06000h start of block data for format routine Lo JO‘
E -.M‘"'Mh"“' L N
; e g U AR
org OCh : starts at the reset location Mﬂ/’,mw“ Te, WMt L

di o i, VR

out (ROM),a : make sure executing from ROM (cold start) It .

im 2 : interupt mode for z-80 per ipherails T::;::;wu*W“mm ’ ’e‘p

1d hl,crtwrds i number of 2-byte words in the CRT RAM ~ eﬂw"“) m1/ /

1d sp,endcrt ; last location of the CRT RAM . C.,Lr V> M

1d de,02020h i two ASCII ’‘blank’s, one in each byte quz
clear: push de i writes two ’‘blanks’ to consecutive CRT locations

dec ht ; looking for h1=0 to stop clearing CRT RAM =

1d a.h : test upper byte first

or a i to make the flags appear

jp nz,clear i certainly not through if upper byte is > O

1d a,l i now look at the lower byte

or a

ip nz,clear i if both are zero, we are done with clearing CRT,

1d a,DSKRST : Reset the disk controller, to abort SEEK command

out (dskcmd),a i which is ineffective because the head is

unloaded during the automatic Reset SEEK.

. we

.«



. et es es

<o et er we we

: Inftialize PIOB, Port

ot 2t a0 we ws

1d hl,crtram
1d de,0121h
add hl,de

ex de,hl

1d bc, 1gosze
id ht, logo
1dir

Now for a little egocentricity, we’ll print a logo

the beginning of the crt ram, for reference
a good relative position to start logo

want the crt ram address in de

length of the logo (it‘s short)

the address of the logo string, tucked away in rom
one of those wonderful z-80 block transfers

Enable the pio chip and the interupts

1d a, pmodi

out (keyprt),a

1d a,kbvctr

out (keyprt),a

1d a,enable

out (keyprt),a

in a, (keybrd)

initfalize 1 ms timer.

1d a,07h
out (Of4h),a
1d a,Ofah
out (0Of4h),a
1d a,08h
out (0Of4h).,a

out (Ocfh).a

xor a
1d (dskrdy),a

1d a, Octh

out (mscntl),a

1d a, 1

out (mscntl),a

1d a,037h

out (mscntl),a

1d a,0feh

out (mscntl),a

1d a,010h

out (mscntl).a

in a,(mscio)

xor a
1d (keyfig).a
1d (kbwptr).,a
1d (kbfptr),a
1d (cstat).a
1d (dskid).a
1d (crtmod),a

.
.
.
B
.
B
.
H

pmodl = 4f, sets the pio to mode 1 (input)
keyport is the control port for keyboard pio
the interrupt vector for the keyboard (=0h)
enable = 083h, enables port interrupt

do one read to set ‘ready’ output.

(u§@‘0 (,A CLuAason-

sets timer mode, non—interrupting,'prescale/iG
f4 is ctc channel 0.
time constant of 250 counts = {1 ms total

ctc vector(s) 8 + counter #

Set single density for floppy controller

a =0
clear ‘disk ready’ flag

for miscellaneous interrupts, including disk

Mode 3 - bit I/0

PIOB, Port B control

DO only is input - all else = outputs

disable interrupt, active high, mask follows

(This tnitialization is repeated in disk routines)
Mask all but DO.

vector

do a read to set ‘ready’ output.

misc. inftialization

ws et ws e we ws we

initialize keyboard flag = off
keyboard write pointer
keyboard read pointer

start with cursor status = off.
default disk ID is 00

set CRT mode to normal

Rbiwker)



1d hl,crtram
1d bc,0200h
add hl,bc

1d (curse), hil
call curson
1d hl,vectab

beginning of CRT RAM
offset for the initial cursor position

start the cursor blinking
the vector transfer table address is vectab (1 hope)

s or o ws et es ws we

1d a,h need upper byte in a to load reg. I.
1d {,a load the high byte of vector table
; ' ﬁA w‘/ ﬁoM T“ ."\(i “r:,*'t,»l
H Load RAM from ROM and change to RAM )1‘! r-e ) .rt“‘"‘"‘ ) ‘
et titraeg e A0 s - - ¢
14 delo : e WRITES o Low onder (0-4o00 ltey] Aset
ld bc,04000nh O Neads' 3TART  gusT
1dir ; ALwAys gllotee,

t (RA R -
out (RAM),a turns RAM on Cra ot . A ‘_rey_ TU"‘J“}'"
load stack pointer so we can call subroutines
enable interrupts so disk will work
set disk to track zero

1d sp, spbase
ei
call restor

now we ask the ailmighty z to monitor the keyboard.

J e e oo w0 o

onitor:

1d sp,spbase : reload the stack pointer
call dskdly ;: wait for controller to clear
1d a,DSKRST : Reset controller, abort any commands
out (dskcmd),a :
1d a,Odh ; first print a ‘cr’ and a ‘$’ on the crt
call putcrt : \n
1d a,024h H
call putcrt HEE 3
e i enable the system interrupts.
1d hl,mon1 : This next little operation clears per ipheral devices
push hl i that may have pending interrupts acknowledged but
reti i not cleared with a "reti®” command. Each iteration

mont: 1d hl,mon2 i clears only one device, so we will do three just
push hl i to be sure!
reti :

mon2: 1d hl,mon3 H
push hl H
reti H

mon3: 4

that’s ‘keyboard character’ - which returns a
character when a key is depressed.

call kbdchr

E
¥

(&
3
3

..

and dump it to the crt at the cursor position
then try again

. Qm_
call putcrt
Jjp monitor

and O7fh i masks the parity bit (maybe not necessary) , s Y‘a’

cp 072h ; Is it an‘'r’? } - ng\ @A 0C
ip z,readkw i if so, it may be a read command L) T‘ ! o s ‘Jl

cp O77h i Is 1t a ‘w'? s LD‘“"A .

iP z,writkw ; maybe a write command ’LA’ﬁyvv“ 5 . ‘ﬂﬁ4ﬁ$C14; b

cp 065h ; how about an ‘e’? A prAe Hine -

jp z,execute i probably an execute command [ —— Al°"§ j

cp b_ i ‘b’ points to boot command -~ L/QBO .

jp z,uboot : \ A
1d a : s L”V‘ :

PR SN .
if anything else, we load a ’‘?‘ into A, e ey [
I’l [ ) t bt \ hou'f

we seem to have a ‘read’ command, but let’s
look at the second character to find out which kind
eadkw: call kbdchr H

N er ar er w0



and O7fh

cp 0O6bh ; is it a ‘k’?

jp z,rdkbd i ‘rk’ means read hex from keyboard to memory
cp 074h ; is it a “t’'?

ip z,rdtape i then load memory from tape

cp 064h s If it’s a ‘d’,

ip z,rddsk : then load memory from disk

cp O6dh i ‘'m’ is for memory examination

ir z,rdmem H ‘

1d a,03fh : otherwise, ‘?’ and back to monttor

call putcrt
jp monitor

start address to examine

T oar e

dmem: call getaddr

push hil : save it
call getaddr : how many to read
push hi H
pop bc ; keep the count in BC
pop hi : use hl for address to read
rdm1t: 1d a,(hl) ;: read the location
call pthxch i PUts out two characters for the byte in A
1d a,sp__ ; ‘blank’
call putcrt : gives a nice space between bytes
inc hl ; next location
dec bc ; decrement the counter
1d a,b '
or c : are we done yet?
ip z,monitor ; If so, go home
jp rdmit ; else do it again.
: rdkbd is a routine to allow input of hex data
H into consecutive memory locations beginning with
: the address specified after the keyword ‘rk‘,
: followed by a space. the hex bytes are separated
H by blanks, may appear as many per line as desired
H (and f1t). a prompt consisting of the next address
B appears after each newline. the sequence is
: terminated by an ‘eof’ character.
rdkbd: call getaddr i getaddr gets the starting address of the command,
B and writes it into a location ‘addr’
rkbstrt;
call kbdchr i next character after address, or after a byte
.and 07fh i should be a blank, newline or eof
cp 020h ; If a blank,
ip z,nxbyte : expect two hex characters to follow.
cp Odh i a newline should prompt a prompt.
jp z.prompt H
cp O4h ;i an @of ends the process.
jp z,monitor i go home.
abrt: 1d a,03fh i else we have garbage, so print ‘?’ and wait for blank
call putcrt H
ip rkbstrt H
H nxbyte looks for two hex characters. if successful,
H it will write the equivalent byte in the current
: location in ‘addr’. {f garbage is received, ‘?'s will
: be displayed until a ‘blank’, newline or eof - {f.e.,
H the particular byte is aborted.
nxbyte: call kbdchr

cp Offh if not hex,

call chkhex i this returns a hex value in a, or ff {f not hex.
jp z,abrt i Print a ‘?’ and look for a blank, eof or newline



Qritkw:

O ne o0 w0 er es w0

Tkmv:

wrtape:

wdsk :

rddsk :

H
exaecute:

'd b,a

call kbdchr
call chkhex
cp Offh

ip z,abrt

1d hi, (addr)
rrd

id a,b

rrd

and the

inc hi
1d (addr),h}
jp rkbstrt

call kbdchr
and O7fh
cp 074h

jp z,wrtape
cp 064h

ip z,wdsk
cp O6dh

P z.blkmv
1d a,03fh
call putcrt
jp monitor

.
v
v
.
.
H
H
.
.
.
H
u
H
o
.
.
H

®s ®s et @k et es es wt 9o ws ar s

tuck the hex digit away for a microsecond
get the next digit
same song second verse

that’'s where we want to store this byte

loads the lower nibble into upper nibble of (addr)
recall, that’'s the upper nibble

presto! the lower nibble shifts to its proper place,
pper nibble slips in behind it. deos ex machinal

get the next address location

and store that in addr

look for blanks, etc.

Write command - tape or disk? or mistake?
Get the next character from keyboard
mask parity bit

‘t’ for tape

‘d’ for disk

‘m’ for memory (block move)

‘2’ if we don’t know what else to do

abort if unrecognizable character sequence

Block Move routine moves from source address to destination

address as many

call getaddr
push hi

call getaddr
push hl

call getaddr
push hil

pop bc

pop de

pop ht

1dir

ip monitor

call gtprms
call wtape
jp monitor

1a c, 1
call dskio
jp monitor

id c,0
call dskio
jp monitor

call kbdchr
cp 078h

b

@s w4 et et e we ws we 00 we we

.t s oo e

s ve os wu

ytes as you please.

next word will be the “from" address
save it

next word will be “to" address

finally, how many bytes to transfer?
BC is the counter for the LDIR command
DE is the destination pointer

and HL is the source.

GO!

done. go home.

Write memory to tape. First find out from where
to read, where to stop, and where to write.

Big tape writing routine. May be a dummy at first.
Back to monitor when finished

Write block to disk.
‘Write’ flag to common disk I/0 routine

Read block from disk
Set ‘Read’ flag to common disk I/0 routine

Jumps to address specified after ‘ex’ keyword
Get character after the ‘e’
Should be an ‘x’



Uboot ;

&bootl:

Ahor st er er oo os

imer:

timlp:

timein:

ip nz,abrt

1d bc,monitor
push bc

call getaddr
ip (h1)

call kbdchr
cp t_

ijp =z, L uboot1
1d a,qm_
call putcrt
ip monitor

1d bc,0f00h
1d de,0aiOOh
id h1,01000h
idir

1d
1d
1d
1d
1d
1d

h1l,0c000h
(strtic),hl
hl1,040h
(endloc),hl
ht,3
(tnode) , hl
id a,0

1d (rwfig).a
call dskiot

1d bc,O0fh

1d de,O0cOS57h
1d h1,0a920h
1dir

ip OatOOh

push af

push bc

1d b,a

1d a,0c7h

out (t2),a
xor a

1d (timfig),a
1d a,b

out (t2),a

1d a,(timf1g)
or a

ip z.timlp
pop bc

pop af

ret

push af
id a,041h
out (t2), a

s s s we we

®s es w0 e ®s w0 we

e et wr e we

s @s @t ve w1 s e ar ws

' ‘Read’

else to do.

go to monitor
the stack.

hex characters,
HL, to which we journey now.

Don’t know what
Want returns to
so load that to
Gets the next 4
into address in

check for ‘bt’ command; boot uNIX if found.

Already got ‘b’; look for ‘t’.
If ‘bt‘, Boot.

Else, ‘?’ and return to monitor.

Boot uNIX.

Number of bytes to move.
Destination .
EPROM source e
Block move

Start of uNIX kernel

Number of sectors to read
First Inode

flag

Overlay jump table

UNIX location of jump table
BIOS location of jump table SMU b
A
LS b
Go To uNIX|
Relow

end monitor

4% S5 es we ve et vs ws ws @0 e es vs wa we

Goofs off for ‘a’ milliseconds
CTC 2 is driven by CTC O

Tuck away the input parameter
setup CTC 2 as counter,
t2 = Of6h = timer 2

A = 0O

zero timer flag

recall input parameter
The count (1-255)

now loop till timer flag is turned on again

Clean up and return when flag is set (by the
‘timein’ interrupt handler routine

Here it is:

Disables counter interrupt and resets it

assembles them
bye!l

fswf

/Lq[,,&? fuem /i'Q'$‘

nally
— LA P o~ bﬂﬁx\ )
’mvouws \T Yo Lo

_r‘* 'S \ (S T—b“* Q g;-75 “4»&‘"‘ ’L"{

'LtoggnAf‘V~1 Tl LﬂﬂA.&f o ﬁD -
RALhARL L ek e

My ‘Bros!
refl A houe

#t#**#**l"%'*‘t**tt**‘***‘****‘****‘***4*****‘*%****4‘#*#***#*******‘*‘l**“t‘

with interrupt enabled

handles the CTC-2 interrupts for timer

LS Lo A+20 ‘;é

l'r') C(JV\ r~‘wﬁ ]
SM‘.Q

We Ank
aleoh -

Wn'&

{600k
An € ALEK

N AL

T ¢

o Vi

-~

>
o~ &}

e
Tos

1

Ly,



1d a, i i Set timer flag, so timer routine will trigger
1d (timfig),a :

pop af

ai i re-enable interrupts

reti H

end timein
*t‘*t***t*‘t*‘t#*tt*#t***#ttt#**#t*t*'t#t*t#***“t‘t‘*t*t*t#

; Times for ‘a’ x 2850 milliseconds
push bc H
1d b,a ; Uses ‘timer’ a times
1d a,250 : 250 ms timer
1tip: call timer H

dec b H

jp nz,1tip H

pop bc :
ret

end 1timer
-#‘*****t***t***v‘*#t#****#**t##ttttttt***#tt****

Eexchr:

i Returns 2 ASCII characters in h and 1,
push af i representing the hex byte in ‘a’
push bc :
d b,a : save byte
and Ofh ; look at lower nibble
cp 10 ; if < 10, must be 0 - 9
ip m, digit :
sub 10 : must be > 10, so subtract 10, and add A
add a,061h s ‘a’
1d 1,a i that’s the lower character
jp thigh H
digit: add a,030h : ‘O’ ASCII
1d 1.,a :
thigh: 1d a,b : the saved byte
rrc a { rotate upper nibble to lower position
rrc a H
rrc a H
rrc a H
and Ofh ; Same song second verse
cp 10 H
ip m, dig2 H
sub 10 H
add a,061h H
1d h,a : upper character
ip thru :
dig2: add a,030h H
1d h,a H
thru: pop bc H
pop af H
ret H
H end hexchr
;******t**tﬁ***#t**t**t*****t*****t*#i*t**tt
H kbdchr returns a character when and if a key is depressed.
kbdchr: : save environment., stash all garbage!




push bc

push hl
keyloop:

1d a, (keyflg)

or a

ip z,keyloop

this flag is set by keyboard interrupt routine

s ea v o4 we we

if not set, there’s nothing in the buffer

1d a,(kbfptr)
inc a

and kbfsze

1d (kbfptr),a

kbfptr is the offset of the last character read.,
this now points to the next character to be read.
kbufsze = 2**n - {1 for buffer size of 2%*n.
reltoad the new pointer

1d c.a i going to construct the address of the next character.

1d b,Oh :

1d hl,kbdbuf ; buffer starting address

add hl,bc i now hl has the address of next character. first, however
1d a, (kbwptr) : check to see if write pointer = read pointer.

cp c i If they are the same, this "read" wil) empty the buffer
jp nz,rdout i 50, we will clear the flag. otherwise, just return.

xor a ; clear accumulator

1d (keyfig),a and thus clear the keyboard flag.

;dout: id a,(h) ‘
pop hi
pop bc
ret

actually reads the character from the buffer into a

restore the fragile environment

s e w0 ws

P

End kbdchr
***********tt******t‘*t****#**‘**‘*tt****#####*t‘t*l(*tt*****‘t*t***#t*‘t#*tt***

; getaddr is a routine to get 4 hex characters and

H assemble them into an address in HL and ‘addr’. Aborts
H to monitor if it doesn’‘t understand anything.

o

etaddr: :
push af H
call kbdchr i get a character
and 07fh B
cp 020h i should be a btank.
ip nz,qmk : amk is the abort for this routine

call kbdchr
call chkhex
cp Offh

ip z,.qmk

1d hl,addr
inc hi

rid

this should be the beginning of the hex number.
returns hex value in a, or ff if invalid.

lock for invalid case

is the

addr {is the place where we will store the result.
since this is the high byte, store in next loc.
shifts digit into addr (4 bits),

es o5 et w4 o0 s we

call kbdchr : get second character
call chkhex
cp Offh

ip z,qmk

1d h1,addr

inc hi

rid

“t we ve e w0 wr w

call kbdchr
call chkhex
cp Offh

jir z,qmk

1d hl,addr

rid

3rd digit

call kbdchr i 4th digit
call chkhex H
cp Offh H



ip z,qmk ;
1d h1,addr ;

rid H

' 1d h1, (addr) i return number in hl as well as (addr)
pop af :
ret : bye!

qmik : 1d a,03fh load a ‘2*

write 1t to crt.
abort and return to the monittor.

call putcrt
jp monitor

H
H End getaddr
:l&**l*t***#**‘t*‘t#**#*‘#t*tt**#t*tt*tt*t**tt"l**t#tt

Write next address at left of screen
‘cr’ and newline

prompt:

1d a,Odh
call putcrt
1d de, (addr)
id a,d

call pthxch
1d a,e

call pthxch
1d a,03ah
call putcrt
td a,020h
call putcrt
ip nxbyte

next address to be entered

Writes hex number (one digit) on CRT

‘space’

e ®e @0 et e oo we we @0 wr on ws

;
This 1s part of monitor: prompt
*#*t#*‘#t****#**t*##t#*t**t*****t*#tt*t*t#***#t###*l\*t*t*#tt#t#*t‘tt*‘t‘**t't:

gets start, end locations and tnode for
tape/disk read/write. Getaddr returns
next parameter in hl, as well as in (addr).

gtprms: H
call getaddr :
1d (strtic),hl ;
call getaddr H
1d (endloc),h) ;
call getaddr :
1d (tnode), hl 3
ret :

H
:t#*****t*******#*t****l****#***#‘***#t***#*t***t*t‘t
H

1d a, (temp1)
jp donasc

Return the byte 1in A

asciti: i Two ASCII chars in hl are combined into a
push de ; byte 1n A
ex de,hl ; heed hl later
1d hl, tempt i a nice utiiity storage location
1d a.d i look at the high byte
call chkhex :
cp Offh i look for non-hex flag
ijp z,hexerr :
rid : Rotate digit into tempit
1d a,e : Do it again for the lower byte
call chkhex H
cp Offh :
ip z,hexerr H
rid H

hexerr: 1d hl,msg3
call pstrng
d a,d
call putcrt

msg3 = ‘{nvalid hex char *
puts the string to CRT
NOW PRINT THE input data

os e wa es



1d a,e H
call putcrt H
xor a i return with O 1n A

donasc: pop de H

ret H
H
ésga: db O49h,06-h,07Gh.061h.06ch.069h.064h.020h.068h.065h
db O78h.020h.063h,068h.061h.072h.020h.0
: End ASCII
:ttt**t!lﬁttltt*#tt‘*t****tv***tttt*#t*tt*t#
éhkhex ; If ASCII character inA i1s 0-9 or a-f, returns
i hex value in A. Else returns ff.
cp O30h : < ‘0 ?
ip m,erhx H
cp O3ah 5 < ‘9 + 1 2
ip m, numhx B
cp 061h i1 < ‘a’ ?
ip m,erhx H
cp 067h P <P+ 12 (1.e., 'g’)
ijp m.,alphx :
érhx: 1d a,0ffh : ff -> A
ret :
numhx: sub 030h i A - ‘0 —-> A
ret H
alphx: sub OS7h : (A - ‘a‘’) + 10 —--> A
ret

End chkhex
. #t\t*#***#t***t‘#****llr‘*#t***tt#**tt**#***#**#

H putcrt writes a character (found in a) to the crt
H much like a serial terminal.

putcrt: push af

push bc
push de
push hl

call cursoff Turn the cursor off, which replaces the character
at the cursor location and prevents interrupts.

cp ESC First look for the ESC character

jp z,setesc If found, set escape mode

ld c,a save the character in C for a while
1d a, (crtmod) Find state of CRT

and 7 look at all but INSERT mode bit

cp ESCMOD escape mode?

jp z,escape .

cp ROWMOD Row mode?

ip z,row

cp COLMOD column mode?

jp z,column
1d a, (crtmod)
cp INSMOD

ip z, insert
or a

reload crt mode to look at INSERT bit

insert mode.

®e ®6 @0 @t ws ve Wi w0 @0 er w4 €t 0t ws ee er e



call nz,audcrti ; Any other modes are illegal

1d a,c ; restore character to A

cp 020h i check for special chars (< 20h)
ip m,special : handle those separately

cp 080h i currently not allowing bit 7 =
ip p.special H

ip z.special :

1d hil, (curse)
1d (hl),a

; pointer to cursor
; that’s where we will write.
now, fiddle with the cursor.
1d a,l ;i lower byte of cursor address
*

cp O4fh that’s eol for even rows

ip z.eo0ln return and scroll

cp Ocfh eol for odd lines

ip z,eo0ln

inc a 1f not eol, just increment cursor address

d V,a don’t worry about carry - never occurs in line.

1d (curse), ht
nullo: call curson
. pop hl

pop de

pop bc

pop af

ret : byel

update the cursor position
Now turn the cursor back on before departing

eoln: 1d de,031h
add hl,de
1d (curse), hl
1d de,botin
id a,d
cp h
ip nz,nullo
1d hl botift
1d (curse), hi
call scrolil

just wrote last char on 1ine. move cursor to
beginning of next line. (by adding 31h)
update the cursor position

if cursor >= xdxx, we must scroll

just look at the upper byte

otherwise, we’'ll just return
scroll needed - first set cursor to bottom left

scroll moves everything up one, but leaves cursor.,

e e et @t 9o v e we we w0 we

jp nullo
épecial: : handles special characters, like tabs, spaces, etc.
cp 0O80Oh
ip p.nulio i inftially, if bit7 = 1 we will just ignore it.
Jp z.nullo H
' cp 08h ; backspace?
* jp z,backsp H
' cp 0%h : tab?
jp z, tab :
' cp Oah : linefeed?
ip z,1¢ :
' cp Och ; formfeed (clear screen)?
ip z,clr H
' cp Odh : carraige return?
ip z.cr :
ip nullo i don’t know what 1t is, so just ignore it,

backspace moves cursor back, does not erase.
stops backspacing at beginning of tine.

backsp: 1d hl, (curse)
1d a,1
cp Oh
ip z.nullo
cp 040h



jp z,.nullo H

dec a i not at beginning of 1ine, so decrement.
1d 1,a H
1d (curse), ht H
ip nullo :
iab: 1d a,020h pPut out spaces until cursor is left at even ‘8’ mult,

call putcrt
1d hi, (curse)

s we we

If not below screen, reload cursor
scroll won’t change curse, so we just leave it alone

ip nz, nxtline
call scroll

1d a,l
and 07h ;: look at last 3 bitts
ip z,nullo : done.
jp tab ; do it again
1f: 1d hil, (curse) i leaves cursor in same relative position.
1d de,080h ; adding 80h to cursor position puts it strt. down
add hl,de :
1d a.h ; however, {f cursor >= 0300h, must scroll
cp hibot i compare bottom of screen (high byte)

oddin: 1d 1,080h odd line: return cursor to xx80h.
1d (curse),hl

ip 1f

ip nulilo gracefully return.
nxtline:
1d (curse),hl ; reload the cursor with the new value
jp nulilo H
clr; 1d a, 26 i going to do 26 scrolls to clear the screen
movup : call scroll :
. dec a H
ip nz, movup H
1d hl,uplift i going to put cursor at top left
1d (curse),hl H
ip nullo ; graceful exit,
cr: 1d hl, (curse) i return to start of line and do line feed
1d a,} : look at the lower byte
cp O7fh i if greater than 7fh, we were on an odd 1ine
ip p.oddin H
1d 1,0h ; even Vine: return to 0.(1)
1d (curse), hl i moves the cursor back to start of current line
jp 1f i how do a line feed. note: routine returns ‘cr’

previous character was and ESC

D < or =v oo on

scape:
1d a, (crtmod)
and INSMOD
1d (crtmod),a

clear all but INSERT mode bit

1d a,c 100k at the new character
cp E_

jp z,.cir Home/Clear routine

cp K_

jp z.clrine Clear to end of line

cp L_
ip z, insine
cp M_

insert new line at cursor row

4 @5 @ 4t es we ws ws es s we ws



() o0 w0 o0 a0

clint:

- v v

insO:

insi:

[« EIERTIRYY

elne:

Trine:

nsine:

d

id
cp
ip
cp
ip
1d
id
inc

ie

cal

id
scf
ccf
sbc
ir

1d hl1,bot1ft-080

td
tdi
scf
ccf
1d
ex

z,delne
amp_

z, insmde
2]

z, exmod
N._-
z,delchr

z, mvrow
nullo

ht, (curse)

a,l
O4fh
z,nullo
Octh
z,nullo
a,sp__
(h1),a
1
cint

1 crsbol

de.botift

hil.,de
z,clrine

bc, 80
(o

bc, OdOh
de, hl

sbc hl,bc

ex

de,hl

sbc hi,bc

1d
1d
cp
ip
'd
cp
jp
ip

cal
1d
id

bc, (curse)
a,e

c

nz,ins1
a,d

b

nz, inst
clrine

1 crsbol
d,h
e,l

et et us w0 ws we or

@r %0 et et 6o wu ws 04 ws ws v wa

©F WP S0 S8 %1 0% 40 99 v 00 ®h et v o4 we vr ws a0 L eo e 0t 90 v vr wr we s

es wo ot wr os me

delete a line

enter insert mode
(capital 0)
exit insert mode.

Delete character at cursor

cursor row set
ignore anything we don‘t understand

Clears from cursor to end of 1ine
Get cursor position

EOL for even rows
done

EOL for odd rows
Also done
Not done,
at (hl)
Next. ..
do it again

sO write a blank

Inserts blank line at current cursor
line, moving lines below it down.
cursor to begining of line, --> HL

clear the carry for 16 bit subtract

Is cursor at bottom row?
If so, just clear the line
; Next row up

80 columns
moves ‘em down

clear carry flag

enough to get to start of next line up
first do DE

subtract

Going to see if the activity is at (curse)
yet.

If not, do some more

blank the row if at cursor

Deletes 1ine of cursor; moves lines below
one up; blank 1ine at bottom; cursor

at beginning of deleted line.

cursor to beginning of current line

HL now has starting cursor position



1d bc,080h

add hl,bc : Next l1ine below
1d bc, 80 ; 80 columns
call repeat i part of scroll: routine.
ip nulio H
crsbol: : Puts cursor at start of current 1ine,
: returns position in HL
push af H
1d hl, (cursae) H
1d a,l H
cp O7fh :
ip p.crsbit : If > 7f, oddline
1d 1,0 ; BOL for even line
1d (curse),hl ;: reload it
pop af H
ret H
crsbi: ;
1d 1,080h ; BOL for odd line = xx80
1d (curse), hi H
pop af H
ret H
insmde: ;: Enter the insert mode
1d a, INSMOD H
1d (crtmod),a :
ip nullo :
mvrow: i enter row address mode
1d a, (crtmod) : : !
or ROWMOD ; Pput rowmode bits in without changing insert mode
1d (crtmod) ., a :
jp nulilo H
setesc: ;i An ESC character has been received; set esc mode
1d a, (crtmod) :
or ESCMOD H
1d (crtmod),a :
ip nulilo :
exmod: : Exit fnsert mode - clear averything
xor a H
1d (crtmod),a :
ip nulilo H
delchr: ; Delete character at cursor position.
1d hl,(curse) ; Move text right of cursor left one slot.
delct: H
1d a,1l :
cp O4fh B
ip z,delc2 i end of line. even row
cp Ocfh H
ijp z,delc2 ; end of line, odd row

inc hi



delc2:

J e e e
0
€

rowi:

coli:

col2:

6013:

- et es e e

nsert:

1d a,(hl)
dec hil

1d (hl1),a
inc hi

jp delct

1d a,sp_
1d (hl),a
jp nullo

1d a,c
cp 285

ijp m,rowt
1d a,24

1d (rowno),a
1d a, (crtmod)
and INSMOD

or COLMOD

1d (crtmod),a
ip nullo

1d a, (crtmod)
and INSMOD

1d (crtmod),a
1d a,c

cp 80

ip m,col1

1d ¢,79

1d de,080h
1d hl,uplift
td a, (rowno)
or a

ip z,co13
add hl,de
dec a

jp nz,co12

1d a,c

add a,

1d 1,a

1d (curse), hl
jp nulilo

1d de, (curse)
1d h,d

1d a,e

cp 80

ip p.,insrt1
1d 1,04fh

®r 00 v vt ws @s w0 0s e

s @5 e ©s o2 as e v ws ar we @t

3 %6 90 @0 e wE % 40 91 a0 s s ve we o5 ee we we

. es we

get char. to right

put it one left

Blank last character in row

load row register

restore the character to A
Only 25 rows

OK if less than 25

else set to max = 24

save it for next time

clear all but Insert Mode bit
concatenate Column mode bits

expect column address

Clear all but the Insert mode

only 80 columns
if less, OK
else change C to 79

Distance between rows

upper left of screen
Row number from previous

read
skip multiply if rowno = O
crude multiplication

add A times!

column offset
add 1t to the hl (don‘’t worry about carry)

Inserts a‘character at cursor
wWon‘’t advance beyond EOL

posttion

> 80 --> odd line
EOL for even line



insrti:

insrt2:

insrt3d:

insrt4:

H
H
H
H
H
H
H
.
.
H
a

udcrtt;

’
.
.
.

curses:

turnoff:

ip insrt2
1d 1,0cfh

1d a,e

cp 1

Jp z,insrt3
dec 1

1d a,(ht)
inc 1

id (hl1),a
dec 1

ip insrt2

1d (h1),c
1d a,1

cp O4fh

jp z,insrt4
cp Octh

ip z,insrt4
inc hi

1d (curse).hl
jp nullo

push at

push hil

1d hl,crtmi
call pstrng
1d a, (crtmod)
1d 1,a

xor a

1d (crtmod),a
1d a,)

U %S S0 4 41 %0 vs we 40 ws @0 Ve ws @6 B0 90 @t @2 we we vt we or ws

EOL for odd line
Are we back to cursor positiomn yet?
get character to left

move it one right

load the incoming character there
Now make sure we are not at the EOL

If not, increment cursor

load cursor

End of putcrt

% S8 % @k €4 et W w0 we ws vs es e e

-**t**‘**t**‘******#**#***t***t****#*#*#***#***#**

“crtmod" had 1llegal value
load message address
prints the message
temporarily store the mode

clear the CRT mode
recall the illegal mode

call putcrt print it

pop hi

pop af

ret

db I_.l-.!_,eh.g_.a_.l_.sp_.C_.R_.T_.sp_.m_.o_,d_.eﬁ.nl_
db (o]

push af
push bc
push hl
1d a,(cstat)

or a
ip z, turnon

id a,{cchar)
1d hl, (curse)

: #*tt*‘*t**t#t*#**#‘*#**‘****#*t**#******l‘!tt**‘*#*‘**‘#*t*#

cursor blinker. handles 250 ms interrupt.

cstat-0 > cursor ‘off’, character at cursor pos.
cstat = 1 > ‘on’; character saved in cchar

if off, turn on

if on, get character from storage
find out where the cursor is



1d (h1),a ; and write the character there

xor a ;. a =0 .

1d (cstat),a ; clear cursor status.

ip home ; return
turnon:

1d hl,(curse) ; find the cursor

1d a,(hl) ;: get the character there

1d bc,cchar ; Ccharacter storage address

1d (bc),a : store the character there

1d a,05fh ; an underscore (the cursor)

1d (h1),a : put it on the crt

1d a,0th s a = 1

1d (cstat),a : set cursor status = ‘on’ (1)
home : pop hi :

pop bc H

pop af :

ei : Turn those interrupts back on!

reti H

H
H End curses

:t#*tt*#t***#***#*t*****tt*#*t***tt'**t*
cursoff: turns cursor off by stopping counter, making sure

push af that screen displays character in the cursor
push hl position.
1d a,043h ctc command to stop counting

f7 is ctc port 3 (cursor counter)
find out what state the cursor was in

out (Of7h),a
1d a, (cstat)
or a

ip z,donoff
1d a, (cchar)
1d hl, (curse)
1d (hl),a

xor a

1d (cstat),a

cursor already off, so just quit

cursor was on, so get character from storage
find the cursor

put ‘er therel ,

now clear the cursor status bit

98 ®3 ¢ vs e or 90 et 95 90 e we @

&onoff: pop hl H
pcp af H
ret ; bye!l

End cursoft
R AR EE SRR LEE R EEEEEE R R R RN E R R TR R R R Y

;
H
H
H
C

urson: push af : turns the cursor on.
1d a,(cstat) i was it on already?
or a :
jp nz,donon ; if so, quit,
1d a,0c7h ; 1f not, set ctc to go
out (Of7h).a :
1d a, tau ; tau = time constant in ms (Ofah = 250 ms)

out (Of7h),a
AOnon: * pop af

ei i Just to make sure, enable interrupts

ret

H
H End curson
:******ttt**'*ﬁ*t**l“*t‘**#t**t*tt***#

scroll: push af scroll moves everything up one notch on crt,

push bc ; without bothering the cursor position.
push de ;i in fact, it turns the cursor off, so user must
push hi : be sure to turn it back on sometime.

call cursoff



keysoft:

1d bc,050h
1d de,uplift
1d hl,scdine
call repeat
pop hl

pop de

pop bc

pop af

ret

LR AL EE RIS IR LS S T

idir

1d bc,030h
add hi ,bc
push hi

ex de,hl
add hl,bc
ex de, hl
pop hi
1d bc,
1d a,h
cp hibot

ip nz,repeat
1d hl,botift
1d de,botlfi
1d (h1),020h
1dir

ret

0S50h

push af

push bc

push hl

in a, (keybrd)
cp 04

jp z.keysoft
cp O18h

iPp z,keyhard
call putcrt
1d c,a

1d a, (kbwptr)
inc a

and kbfsze
1d(kbwptr),a
1d hl,kbdbuf
add a,1

1d 1,a

1d (htl),c

1d a, 1

1d (keyflg),a
pop hl

pop bc

pop af

el

reti

1d hl ,monitor

@r o4 e @4 o0 ws we oo we

80 columns per row

upper left corner of visible screen area
next position down

moves everything below DE up one line

LI EEEEE R RS EE ST Y

9 s et @t 90 en 4o ve w8 we we we 9t we en we we

(de) < (hl1), hl++, de++, bc-- till bc=0.
enough to get to start of next line.

tuck it away

now lets do it to de

did it}

back to de

retreived.

80 columns, as before,

going to see if we are done yet
3dxx is beyond the last row

if not there, do some more.
left of bottom line

next posittion

put a blank in the left position
propagate it across the row.

H End repeat
-’t***********t**t*#t#t**#*ttt***t*#**t*!********t*

99 ¢ w0 eu 41 @ €t Ge 90 er a1 W ws we ws wa es et 9o ws w0

Handles interrupts by the keyboard

Reads keyboard port

if EOF,

soft restart (monitor)

if CAN,

cold restart (loc 00)

Try to write it to the CRT

Tuck it away

Keyboard ‘write’ pointer offset

next position is where to write

modulo kbfsze (size of keyboard buffer)

start position of buffer (3d00)
add offset

put character in buffer

nifty!

keyboard ready flag - there’s something 1in

the buffer.

enable the interrupts



keyhard:

éstrng:

étrglp:

strgrt:

.
.
’

éthxch:

push hi
reti

1d h!,0
push hil
reti

push af

id a,(hl)
cp O

jp z,strgrt
call putcrt
inc hi

jp strgip

pop af
ret

push hil
call hexchr
1d a,h

call putcrt
1d a,]

call putcrt
pop hi

ret

Wk K K K K K K K K K K ok K K kK K

ex de,hl

pop Nl

ex (sp).h!
push de

1d de, 15

ex de,hl

call ccdiv

inc e

1d d,1

1d c,h

pop hl,

1d a, (dskid)
cp c

ip nz,ermsg4
1d a,d

out (dskdta).a
1d a,SEEK

out (dskcmd),a
call waitdk

.

s e we

End keyinr

s ea we me es oo

e w

t***t****#‘**##**“#***t*#*****‘*t*‘l‘***t*#“t*

Put ASCII string found in location HL
to CRT until ‘O’ byte encountered

look at each character

The null character

quit when zero encountered
Else write tt to CRT

next one

End pstrng

®s @2 we wt a3 ee wr ws we

-tt*t*****#**#****#*#*t**‘******!*tt**t*‘**tt*

Futs hax number to CRT as two ASCII characters

returns two ASCII chars in H,L
High one

End pthxch
Ak K K A kot kO R K Kk kK

9 90 99 @1 @0 @t w8 9o G @t or ws @r ee ms e ws @ ec wo

Preparation for disk read or write

Save address in DE (stolen from SMW)

That’s the subroutine return address

pops Tnode from stack and pushes return address
Also save the from/to address on stack
Number of sectors per track

our divide routine divides de/h1

From 2-80 library

1 + remainder = sector

now track = o

C = disk number (use O as default)

now HL contains the address

The current disk id, possibly loaded by hand

If not right disk, abort w message
The desired track

Load to disk data register

SEEK = O1fh, the seek command

send it to controller

Waits for disk controller to interrupt



in a, (dskcmd) get status ;

call pthxch
jp monitor

and 018h ; look at CRC or seek errors
jp nz,ermsgs H
ret :
aermsgS5: 1d hl,msgs : “Seek error "
call pstrng :
erdata: 1d a,d : track
call pthxch :
1d a,e ; sector

ésgS: db O053h, 065h, 065h, 06bh, 020h, 065h, 072h, 072h, 06fh, 020h, O

End ldsv
**t#t***#**t***#t***‘*#!*ttt*#t*tt#**tt**#*t*t

U oe o0 o0 o0

mask follows

ave: : Writes one block to disk

i given address in HL, and Tnode second on
: stack.

pop bc : Return address

pop de : Tnode

push bc ;: Save the return address

push de : Give next routine Tnode in stack

call 1ldsv : Common disk IO program unravels Tnode and gets
: to right track on right disk (or aborts)

call cursoff ; Don‘t want interrupts during write.

call keyoff : Same reason.

1d a,0b7h i enable PIO int; ‘or’ logic; active high;

out (mscntl),a ;

1d a,0feh ; Mask all but DO.

out (mscntil).,a ;

id a,014h 1 Vector --> dskout interrupt handler.

out (mscntl),a ;

in a, (mscio) i clears PIO ready signal.

1d a,e : E should contain sector number

out (dsksct),a ; put that in disk sector register

1d b, Offh : Prevents B from decrementing to zero in ‘dskin’

1d c,0d3h : set C to controlier data port

1d a,WRSCTR ; write sector command (0Oa8h)

out (dskcmd).,a ; to the command register

call waitdk i Now just sit back and wait for disk to finish

call curson ; Let ‘er blink again

call keyon i and listen to the keyboard.

in a, (dskcmd) i get controliler status

and O07ch © ; mask the write-pertinent bits

jp nz,ermsg7 i Print write-error message if any bad bits

ret ; otherwise, return

ermsg7: 1d hil,msg7 ; msg7 = "disk write error"

call pstrng H

d a,d ; should contain Tnode

call pthxch i write it to CRT

1d a,e : lower byte

call pthxch
jp monitor

&sg?: db 044h, 06Sh, 073h, 06bh, 020h, 077h,072h, 069h
db 020h, 065h, 072h, 072h, 06fh, 072h, 020h, O

: End save

. 074h, 065h



SREERRRR R AR AR AR B E R R KRR KRR R R R R R RN AR R R R R Rk R Kk Rk ok kN

ﬁayon:

ieyoff:

d

skout:

.

H
PREEE R R R KRR R R R R R KRR R

load:

push af
1d a,enable
out (keyprt),a

pop af
ret
push af

1d a,disable
out (keyprt).,a
pop af

ret

EERKEE KK AR R R R R KRR R E

outi

in a,(mscntl)
ei

reti

pop bc

pop de

push bc

push de

call ldsv

call cursoff
call keyoff

1d c,0d3h

1d a,0b7h

out (mscntl).a
1d a,Ofeh

out (mscntl).a
1d a,012h

out (mscntl),a
in a,(mscio)
1d a,e

out (dsksct),a
1d b,Offh

1d a,RDSCTR
out (dskcmd),a
call waitdk
call curson
call keyon

in a, (dskcmd)
and Oich

call nz,erprnt
P nz,ermsgé

9o et 9o w1 wa we

Turns on the keyboar@

Turns off keyboard

W K e K o R K K ok oK O O K K R

s ot oo @t ws 0t oo ws et we 9e we

Disk output interrupt handler.

NOTE: this has to be FASTH{

INPUTS: HL contains the address to be written
from. C contains the disk controller data port.
B should be written to a high value to prevent
it from decrementing to zero, which would

set the "z" flag and screw up the dkwait
routine.

(HL) > (C); inc HL; dec B

clears the PIO interrupt.

end dskin '
t*#**t**##ttt**t**t#t*‘#*t*******t***ttt#

.
B
B
H
v
.
’
.
H
.
.
.
.
.
.
.
.
*
.
.
i
.
’
B
.
.
.
B
B
.
.
.
.
’

Reads a sector to memory specified in HL
from disk at Tnode, contained in stack

First exhange the first two stack posttions
Finds the right track and disk, and unravels Tnode

We don‘t want interrupts during disk read.
Don’t want keyboard interrupts, either.

Setup C for the “"diskin® interrupt handler.
enable int, ‘or’ logic, active high, mask follows
Mask all but DO.

vector to "diskin®

Do a read to set ready flag.

E should contain the sector number

load 1t in controller sector register

B will decrement and affect flags at O.
command to read a sector (= 084h)

to command port

wait for execution

restart cursor - interrupts OK now.

get status
Mask CRC and lost data bits
print disk read-error message if bad bits



;rmng:

msg6: db d_,4i_,s_

dskin:

dskiot:

wdsk 1 :

rd:
mop :

ret

1d hl,msgé

call pstrng
1d a,d

call pthxch
d a,e

call pthxch
jp monitor

int
nop

ei
reti

1d a,c

1d (rwflg).a
call gtprms

1d h1, (endloc)
1d a,}

or a

jp nz,wdski

Td ¥V, 14

1d (endloc),hl
1d hi, (tnode)
push hil

1d ht,(strtic)
1d a,(rwflg)
or a

iPp z.rd

call save

ip mop

call load

1d hl, (endloc)
dec 1

ret z

1d (endloc), hl
1d de,0100h

1d hl,(strtic)
add hl,de

1d (strtic),ht

k_.sp_.r_
db t_,r_,a_.,c_.k_,sp_,s_,e_,c_,t_

else done - return
"disk read error "
Track
sector

.e_,a_,d_,sp_.,e_,r_,r_,o_,r_.nl_

.0_.r_,sp_,0

end tload

s s @¢ @8 o0 er @ ws w6 ©s @b 08 os et wo we

. ******#**tt‘***ttt##**tt***t**t********4#****‘##*#*!#*

Interrupt handier for disk reads.

NOTE: this routine must go FASTI

INPUTS: HL contains the start address to be
loaded to. It will be incremented each call.
C contains the input port address.

B will be decremented each time. so

Flag register will be affected when

B becomes O. This may interact with calling
program. Set B to ‘FF’ before starting to
minimize this.

input (C) and inc HL. (16 cycles)

(4 cycles) This is needed temporarily to
prevent bad memory read of ‘ff‘,

(4 cycles)

(14 cycles) resets PIO without reading 1t.

end diskin

e ws ms ws 9 @s et @t ws ws es we we

****#*##*#**#t#tl*‘t#*#*#**#*t*t*t**#l*#*******#t't‘*t

ENTRY: dskiol for uboot operation.else dskio
INPUT: C contains read/write flag (O=read).
Common routine to read/write ‘endloc’ blocks
from/to disk to/from memory beginning at
‘strtic’. The disk sectors are sequential,
beginning at remainder of tnode/ 15 +1

on track tnode/15 low byte.

If endloc = O or 1, a single block is written
just set endloc = {1 if it was zero on input
‘save’ and ‘load’ expect tnode in stack
and starting address in HL.

C contains a write/read flag ( O = read)

Writes a block to disk

Reads a block from disk

mopup: see if we are through

reduce number of blocks left to go by one
go home {f done

resave endloc if not done.

add 256 to the start location



attdk:

£ v = v o0

waitdkit:

wattdk2:

ccdiv:

ccdivt:

ccdiv2:

1d hi, tnode

inc (ht)
Jp wdski

A A A ok K Ok K K ok K K K K K K Ok kK

push af
id a,7

dec a
ip nz,waitdk1

1d b,Offh

in a, (dskcmd)
and 1

ip nz,wattdk2
pop af

ret

o WK K K K A K K K ok K K K A K ok

1d b,h

1d c,1

1d a,d

xor b

push af

1d a,d

or a

call m,ccdeneg
1d a,b

or a

call m,ccbcneg
1d a, t6
push af

ex de,hl

1d de,O

add hi, h1t
call ccrdel
ip z,ccdiv2
call ccmpbcde
ip m,ccdiv2
id a,l

or 1

1d 1,a

1d a,e

sub c

1d e, a

1d a,d

sbc a,b

1d d,a

pop af

dec a

jp z,ccdiv3

prepare to increment tnode (for next

sequential block)

then do it again

End dskio
ttt*ttt***'**#tt*##*#l!**tt**

% T4 ML @0 0 9a wr @8 ®h 90 9t we ve @6 we wr 0r =1 @s we we

waits t111 disk is through with whatever.

setup 49 microsecond wait, so controller
status will be valid after command.

This loop kills 7 microseconds per pass

B is decremented (but not tested) in disk
interrupt routines (diskin, siskout). We
write B to ff to prevent a ‘z‘ condition
in the flag register in case the interrupt
occurs during the "and" operation. We may
therefore miss the resetting of the ‘busy’
status bit for one loop, but no matter.

now start looking at controller status register
LSB is the busy bit
loop if still busy

End waitdk
LA R R R E R R T Y

; Divides DE by HL, returns quotient in HL
with remainder in DE. (signed divide)
from “runtime Library for Small C Compiler

by Ron Cain



ccdiv3:

ccdeneg:

ccbcecneg:

écrdel:

push af
ip ccdivi

pop af

ret p

call ccdeneg
ex de,hl
call ccdeneg
ex de,hl

ret

1d a,d
cpl
1d d,a
1d a,a
cpl

1d e,a
inc de
ret

1d a,b
cpl

id b,a
id a,c
cpl

1d c,a
inc bc
ret

1d a,e
rla

1d e,a
1d a,d
rla

id d,a
or e
ret

ccmpbcde: 1d a,e

vectab:

.

negates the integer in DE

negates the integer in BC

Rotate DE left one bit

compare bc to de

sub c

1d a,d

sbc a,b

ret

ret i dummy tape write program

ret : Dummy tape read program

db O4ch, 04th, 054h, 027h, 073h, 020h

db 046h, O6fh, O6ch, O6ch, 079h, Oh

org 0900h origin of vector table for interrupts
dw keyinr 00 > keyboard interrupt

dw vcterr
dw vcterr
dw vcterr
dw vcterr
dw vcterr
dw timein
dw curses
dw vcterr
dw dskin

dw dskout

e 4v ed 2t 4 @t 40 ve we we e ws

02 > tape output - not implemented vet
DMA controller - not supposed to interrupt

04
06
o8
Oa
Oc
Oe
10
12
14

>

VVVVYVY

tape input - not implemented yet.

CTC channel O - shouldn’t interrupt.

CTC channel 1 - not defined yet.

timer channel. .

cursor interrupt.

PIO interrupt - formerly DISK controller.
PI0 for disk input operations.

Same PIO for disk output operations



H
vcterr:

: routine to handle strange vectors from interrupts.
push h) H
1d hl,msg8 i "\nunknown interrupt vector\n"
call pstrng H
pop hi :
ei ; enable interrupts
reti :
msg8 : db n!_.u_.n_.k_,n_,o_.w_.n_.sp_.1~,n_.t_.o_.r“.r_.u_.p_.t_,sp_
db v_.e_,c_,t_,o_,r_,nl_,0

H end vectab

ERROR MESSAGES

rmsgd4: 1d hl,msg4d i ‘Wanted disk/Found disk: ’
call pstrng H
call pthxch ; desired disk was in A
d a,c ; Loaded disk in C
call pthxch H

ip monitor H
msg4: db 057h, 061h, O6eh, 074h, 065h, 064h, 020h, 064h, 069h, 073h, 06bh
db O2fh, 046h, 06fh, 075h, O6eh, 020h, 064h, 069h, 073h, O6bh
db O3ah, 020h, O
format: A disk formatting program for 8%
single density single side disk.

;*t#*****t****#***#t*!*tt*!*t*t*t****&*t**t****tt*‘#*t*‘tt*t#**#
format:
sets disk to track 0O

D will contain the track No.

generates track format info in memory
beginning at FMTBLK

eliminate cursor interrupts while writing.
and keyboard interrupts, too.

call restor
d 4,0
nxtrk: call trkfmt

call cursoff
call keyoff

1d a,0b7h enable PIO int; ‘or’; act. high; mask follows.
out (mscntl),a

1d a,Ofeh

out (mscntl),a Disable all but DO.

’
»
1d a,014h ;s vector to “dskout"
out (mscntl).,a ;
in a,(mscio) : one read to clear ready flag
1d c,0d3h i set C to controller data port
1d hl,FMTBLK ; start of data block for Format routine
1d a,0f4h : f4 = write track (format)
out (dskcmd),a ;
call waitdk H
call curson :
call keyon H
in a, (dskcmd) :

waits for controller to be done.

OK to get interrupts now
get status

and 044h mask lost data or write protect
call nz,erprnt if error, print registers

inc d next track

1d a,77 last track = 76

cp d

ret z done

1d a,05bh

out (dskcmd),a
call waitdk

in a,(dskcmd)

Step in, update register, no verify, load

get status



and O010h : look for "seek error* bit
call nz, erprnt ; print registers {f error

ip nxtrk do another track
;**#*t*#*m*tt*****#*ttt*tt**t**t**t**#*t***
H
H trkfmt formats 1 track of disk according to IBM 3740 format
: with 256 bytes/sector.
H INPUT: register d contains track No.
trkfmt:

1d h1,FMTBLK Beginning of block storage to keep track info

1d b,40 40 (decimal) bytes to be loaded

1d a,0ffh A = what to load (ff)

call bload writes ‘B’ bytes of (A), incrementing hi
1d b, 6,

id a,0

call bload
1d (h1),0fch

6 ‘O’'s
fch = index mark

®e W4 20 04 %0 w0 @0 05 v o4 ve v ws au v v oy

inc hl point to next location

1d b, 26 .

td a,0ffh

call bload 26 ‘ft’'s

1d ¢, 15 want to write 15 sectors/track
call sect writes (C) sectors

1d b,Offh

1d a,0ffh

call bload write a bunch of ff’s till timeout
ret

end of trkfmt
-‘******t**t#*‘**#*#**##**#t**tt*t*l*‘#***tt

H sect writes (C) sectors worth of info into memory
; INPUT: C is no. of sectors to write (destroyed)

H D is track No. (kept)

sect:

1d b,6

1d a,0

call bload
1d (hl1),0feh

bload writes (B) bytes of (A)., incs hl

ID address mark

1d (h1),0fbh
inc hil
id b,0

data address mark

setup for 256 bytes of e5

inc hl H

1d (ht).,d ; track no.

inc hi :

1d (h1),0 i side no. (always 0)

inc hi :

call secno i returns a sector no. in A, given C and D
'd (hi),a ;: load sector no.

inc hl H

1d (h1),1 i sector length (1 -> 256 bytes)
inc hl . H

1d (h1),0f7h : f7 writes 2 CRC's

inc hi H

1d b, 11 H

1d a,0ffh :

call bload : 11 ff’'s

1d b,6 H

1d a,0 :

call bload i1 6 O's

1d a,0e5h



call bload i actual data field loaded w/ @5

1d (h1),0f7h ; 2 CRC’s

inc h :

1d b,27 H

1d a,0ffh :

call bload : 27 ff’s

dec c ;. next sector

ip nz,sect ; do it agatin

ret ; else done, return.
H end of sect
;**t*t*#***t******ﬁ#**‘**#****t**t**#***tt*tt*tttt#*‘t*tt*
H secno returns a sector No. in A, given a sequence no. in C
H and a track no. in D.
H INPUT: reverse sequence No. in C (kept)
: track No. in D (kept)
secno:

push hi H

1d a,d : track No.

and 1 ; look at lowest bit

ip z,even : odd or even?

id b,O ; 1f odd, look at oddilist

1d hl,oddist : sequence for odd tracks

add hli,bc ; offset by sequence No.

1d a,(ht) : get that value

pop hl : restore

ret ; done
even:

id b,0O : even track No,.

1d hl,evnlst ; SO USE even list

add hil,bc i add offset of seq. No.

1d a, (ht) ; get it.

pop hi H

ret H
oddlst: db Offh,14,13,12,11,10,9,8,7,6,5,4,3,2,1, 15
evnlist: db Offh.14,13.12.11,10,9.8,7,6.5,4.3.?.1.15
: end of secno
:*ttt**tlt**#‘***ﬁt****t*‘##**#t*#tt
H bload loads (B) locations with(A) in memory beginning
: with (hl), incrementing h) as it goes. b!=0
bload

id (hl).,a H

inc hi :

dec b :

jr nz,bload H

ret H

: .
H end of bload
;*#*t**#t*t'-#*#t#**tttt*************

rastor: ; sets disk to track O
push af :
1d a,Obh ; restore, slowest stepping speed, loads head
out (dskcmd),a i write to command register



rprnt:

call wattdk

in a, (dskcmd)
and 010h

call nz,erprnt
1d a,OdOh

out (dskcmd),a
pop af

ret

push af
call pthxch
1d a,h

call pthxch
1d a,1

call pthxch
id a,b

call pthxch
1d a,c

call pthxch
id a, d
call pthxch
1d a,e

call pthxch
inc sp

inc sp

ex (sp),hl
1d a,h

call pthxch
1d a1

call pthxch
ex (sp),hl
dec sp

dec sp

pop af

ret

s @o a0 et 20 or o0 .

4 95 90 @1 et et e vt v v ve wr o es o0

@t @0 %0 cs wo 9s ws as we e

.

wait for controller to interrupt

look for “saeek error" bit
print error if found
Controller reset (force interrupt)

********‘*l‘*#***#***‘*t***#**t*#“*

prints registers and return address
preserve a register
Prints contents of A register

print H and L registers

print B register
print C register
print D register
print E register

look at return address
put it in h! and save hl in stack

print high byte of return address

and low byte
restore the return and hi

restore the sTACK POINTER

.
. *****tt**t***tt#**‘**#t*****##**#t##*#t‘*“‘*#‘***t**t

&skdly:

diy1t:

T

Dskdly delays for 7 x YY microseconds at 2 mhz,
or 3.5 x YY at 4 mhz.

push af

1d a, 16
dec a

ip nz, diy1
pop af

ret

RAM Definitions

dataorg 04000h

addr ;

keyflg:
kbfptr:
kbwptr:
curse:
cstat:
cchar:
dskrdy:

dw Oh
db Ooh
db Ooh
db Ooh
dw Oh
db Oh
db oh
db Ooh

o MK KA K K K R K K R K K K K K K

This is “yy"

LR EEE R RS 2]

place to store the address from keyboard

flag set when keyboard is depressed

offset for reads from keyboard buffer

keyboard entry pointer

address of cursor

status of cursor (on = 1, off = 0)
storage for character under cursor
disk ready flag



timflg:
strtic:
endloc:
tnode:
temp1:
dskid:
trflg:

ipbuf:
stpfilg:

kbdbuf :
rwflg:
crimod:
rowno:

db
dw
dw
dw
db
db
db

db
db

ds
db
db
db

Oh
Oh
Oh
Oh

Ooh
Oh

Oh
Oh

64
o

®s s wr as os ee we

o ws we os

timer flag

starting memory location for transfers to 10
end memory location, or number of blocks fo 10
INODE for disk or tape

just a utility spot

the loaded disk id

tape read flag

single byte tape buffer
danged if I know what that isl

keyboard buffer (64 bytes)

disk read/write flag.

Mode of CRT

row address variable, for direct cursor add.



S 2

O



4 80 ®6 92 v er @1 ec ws o we ot an

equates:

sp_ equ 020h

nl_ equ Odh

amp__ equ 040h

ESC equ O1bh
ESCMOD equ 1
INSMOD equ 8
ROWMOD equ 3
COLMOD equ 4
spbase equ Oafffh

BIOS PROGRAM

FOR Z-80 MICROPROCESSOR

by
L. A. TOMKO

‘space’

‘newline’

ampersand (o)

ESC character

CRT ESCAPE mode

CRT INSERT mode

CRT ROW mode

CRT COLUMN mode

where to start the stack

tau equ Ofah
criwrds equ 0800h
crtram equ ObOOOh

cursor blinker time constant, in ms (fa = 250)
number of 2-byte words in CRT RAM
beginning of CRT RAM

®e @0 40 @3 ar 00 o0 @t w0 oo ws oo

endcrt equ crtram + (2 * crtwrds) -~ 1 : last of CRT memory

botin equ crtram + OdOOh H the 1ine below the bottom line on the CRT
hibot equ botIn/0100h i bigh byte of bottom line

botift equ crtram + Oc80h ;: lower left of screen

uplift equ crtram + 080h ; Upper left of visible screen

scdine equ crtram + O100h ; Second l1ine of the crt

botl1f1 equ botift + 1 next space after bottom left of crt

kbfsze equ 31 keyboard buffer size (32) -must be power of 2 - 1,
keyprt equ Odéh 1/0 control port for keyboard PIOQ

kbvctr equ Oh keyboard interrupt vector

pmodO equ Ofh sets a PI0 to mode O (output)

pmodt equ O4fh sets a PIO to mode 1 (input)

enable equ 083h enables PIO interrupts

disable equ 3 disables PIO interrupts

dskdta equ Od3h Disk data register (10 port)

dsksct equ Od2h disk sector register (10 port)

dsktrk equ Odth Disk track register (10 port)

dskcmd equ OdOh Disk command or status (IO port)

DSKRST equ 0OdOh Resat Disk Controller Command

SEEK equ Oteh track seek command for disk, with verify
UNLOAD equ 0O12h ‘; SEEK without head l1oad or verify (no stepl)
RESTORE equ Oah Restore command for disk, 10 ms step. '
WTRK equ Of4h Write Track Command for disk

DMA equ OcOh DMA controller

WRSCTR equ Oa8h Write sector command

RDSCTR equ 0O80h
keybrd equ Od4h
mscntl equ Od7h
mscio equ OdSh
RAM equ Of2h

ROM equ Of3h

t2 equ Of6h
FMTBLK equ 06000h
COLDST equ OcOOOh

.
.
.
.
.

org O0at1OOh

reboot: di
im 2

1d hl,crtwrds

@5 B0 Ve s G0 @0 e WE @ @0 90 90 s ©r @0 WE 46 @ @0 @6 we Be S0 we B4 ws we @8

Read sector command, no 1Sms delay.
keyboard data port

misc. PIO control port

misc PIO data port

RAM turnon port

ROM turnon port

timer 2

start of block data for format routine
Cold Start location for uNIX.

starts at A100, which is supposedly safe

interupt mode for z-80 peripherals
number of 2-byte words in the CRT RAM



last location of the CRT RAM
two ASCII ‘blank’s, one in each byte
writes two ‘blanks’ to consecutive CRT locations

1d sp,endcrt
1d de,02020h
clear: push de

dec hi : looking for hi=0 to stop clearing CRT RAM
1d a,h : test upper byte first

or a i to make the flags appear

jp nz,clear i certainly not through if upper byte is > O
1d a,} ; how took at the lower byte

or a

jp nz,clear if both are zero, we are done with clearing CRT

Enable the pio chip and the interupts

id a, pmod1
out (keyprt),a
1d a,kbvctr

i pmodi = 4f, sets the pio to mode 1 (input)
out (keyprt),a ;
H

keyport is the control port for keyboard pio
the interrupt vector for the keyboard (=0h)

1d a,enable
out (keyprt),a
in a,(keybrd)

enable = 083h, enables port interrupt

do one read to set ‘ready’ output.

initialize 1 ms timer.

. o0 as v er

1d a,07h : sets timer mode, non-interrupting, prescale/16
out (Of4h),a : 4 is ctc channel O.

1d a,0Ofah ;i time constant of 250 counts = 1 ms total

out (0Of4h),a :

1d a,08h i ctc vector(s) 8 + counter #

out (Of4h),a

out (Ocfh),a i Set single density for flioppy controliler

<.

Initialize P10B, Port for miscellaneous interrupts, tncluding disk

s et ee

vector
out (mscntl),a .
in a,(mscio)

td a, Ocfh ; Mode 3 - bit 1/0

out (mscntl),a ; PIOB, Port B control

1d a, 1 ; DO only is input - all else = outputs

out (mscntl).,a ;

1d a,037h : disable interrupt, active high, mask follows

out (mscntl).a ; (This fnitialization is repeated in disk routtnes)
1d a,0feh : Mask all but DO.

out (mscntl),a

1d a,010h :

do a read to set ‘ready’ output.

misc. initialization

e o @e oo we

xor a

1d (keyflg),a
1d (kbwptr),a
1d (kbfptr),a
1d (cstat),a
1d (dskid),a
1d (crtmod),a
1d hl,crtram

initialize keyboard flag = off
keyboard write pointer
keyboard read pointer

start with cursor status = off.
default disk ID is 00

CRT mode = normatl

beginning of CRT RAM

s 90 w4 = ve es we we



e @ as o0 a0 o0

monitor:

mon1t:

mon2:

mon3:

**r*xexx should jump to

utcrt:

1d bc,0200h

add hl,bc

1d (curse),

call curson

1d hi,vectab
1d a,h

1d 1,a

hl

1d bc,0fh

1d de,O0cOS7h
1d hl,xfrtby,
1dir

1d sp,spbase
call dskdily

1d a,DSKRST
out (dskcmd),a
1d a,nl_

call putcrt

el

1d hl,mont

push hl

raett

1d hl,mon2 :
push hi

reti

id hl,mon3
push hi

rett

nop

ip COLDST

s €4 oo os ws w0 we

. os oo oo

®% 80 me @t ue @0 wo 8s ws @r ws @s we we ee we o0

offset for the initial cursor position

start the cursor blinking

the vector transfer table address is vectab (I hope)
need upper byte in a to load reg. I,

load the high byte of vector table

Load the BIOS jump table.
That’s where 1t goes,
That’s where it comes from.

reload the stack pointer |
wait a few u-saconds for controller clear
Reset controller, abort any commands.

rint a
n
enable the system interrupts.
This next 1ittle operation clears periphera)l devices
that may have pending interrupts acknowledged but
not cleared with a “reti* command. Each iteration
clears only one device, so we will do three just

to be sure!

‘cr’ on the crt

operating system from here. ***%x

operating system entry (cold start).

putcrt writes a character (found in a) to the crt
much like a serial terminatl.

at
bc
de
hi
cursoft

push
push
push
push
call

1d c,a

1d a, (crtmod)
and 7

ESCMOD
z,escape
ROWMOD
z2,row
coLMOD
z,column
a,c

ESC
z,setesc
a, (crtmod)

W ®¢ s w3 u €4 er Bt we es s 00 00 Be we

the character
interrupts.

Turn the cursor off, which replaces
at the cursor location and prevents
save the character in C for a while
Find state of CRT .

look at all but INSERT mode bit
escape mode?

Row mode?

column mode?

Now check for ESC character

since not in ESCMOD, ROWMOD, or COLMOD .

If Char = ESC, set ESCMOD.
reload crt mode to look at INSERT bit



nullo:

eoln:

@ o o

pecial;

-

s

éucksp:

cp INSMOD
ip z, insert
or a

call nz,audcrti

1d a,c

and O7fh

cp 020h

jp m,special
1d a,c

1d hl, (curse)
1d (ht),a

a,l

O4fh
z,eoln
Octh
z,e0ln
inc a

id 1,a

1d (curse), hi
call curson
pop hi

pop de

pop bc

pop af

ret

1d de,031h
add h!,de

1d (curse),hl
1d de.botin
1d a,d

cp h

jp nz, nutlo
1d hl . botlift
id (curse), hl
call scroll
jp nullo

080h
p.nullo
z,nullo

cp
i

0o8h
z ,.backsp

cp
ip

0o9h
z, tab

cp
ip

Oah
z,1f

cp
ip

Och
z.clr

cp
ip

Odh
z,cr
nullo

cp
jp

1d
1o
cp
ip

hl, (curse)
a,l

Oh
z,nullo

@¢ 90 9¢ 90 ot w2 @5 me B0 TJ s we @ 90 we w5 05 @0 wr we W

®s e et ws @0 a8 os 00 ot 00 s

. e - o .. oo . we . w0

. we e

. e oo we

ow,

insert mode.
Any other mode is an

illegal CRT mode
restore character to A
mask off reverse video bit
check for special chars (< 20h)
handie those separately
restore again .
pointer to cursor
that’s where we will write.
fiddle with the cursor.
lower byte of cursor address
that’s eol for even rows
return and scroll
eol for odd 1ines

if not eol, just tncrement cursor address
don’t worry about carry - never occurs in Tine,

update the cursor position
Now turn the cursor back on before departing

bye!

just wrote last char on line. move cursor to
beginning of next line. (by adding 31h)
update the cursor position

if cursor >= xdxx, we must scroll

just look at the upper byte

otherwise, we’ll just return
scroll needed - first set cursor to bottom left

scroll moves everything up one, but leaves curs

handles special characters, 1ike tabs, spaces,

inttially, if bit7 = t we will just ignore it.
backspace?

tab?

1inefeed?

formfeed (clear screen)?

carraige return?

don’t know what 1t is,

s0 just fgnore it.

backspace moves cursor back, does not erase.
stops backspacing at beginning of line.

or.,

etc,



. .

0 o o

cp 040h
jp z,nullo

dec a

1d 1,a

1d (curse),hl
jp nullo

1d a,020h
call putcrt
1d hl,(curse)
1d a,)

and O7h

ip z.nullo
ip tab

1d hl, (curse)
1d de,080h
add hi,de

id a,h

cp hibot

ip nz nxtline
call 'scroll
ip nullo

1d (curse), hl
ip nullo

1d a,26

call scroll
dec a

jp nz,movup
1d hl,uplift
1d (curse), hl
ip nutilo

1d hl, (curse)
1d a,l

cp O7th

ip p.oddin
id 1,0h

1d (curse), hil
ip If

1d 1,080h

1d (curse),hi
ip ¢t

1d a,(crtmod)
and INSMOD

1d (crtmod),a
1d a,c

cp ‘E’
ip z,clr
cp ‘K’

ip z,clirine
cp ‘L’
ip z, tnsine

. o0 we

s we e

s w0 @c o @ vo o0 w0

. o0

@t 2t ®e 0 @ or @r oo @ we

e ¢ wo o¢ @ ot et as o0 o0 wo

not at beginning of 1ine, so decrement.

put out spaces until cursor is left at even ‘8’ mult.

look at tast 3 bits
done.
do it again

leaves cursor in same relative postition.

adding 80h to cursor position puts it strt. down
however, if cursor >s 0300h, must scroll

compare bottom of screen (high byte)

If not below screen, reload cursor

scroll won‘t change curse, so we just leave it alone
gracefully return.

reload the cursor with the new value

going to do 26 scrolls to clear the screen

going to put cursor at top left

graceful exit.

return to start of line and do line feed

look at the lower byte

i1f greater than 7fh, we were on an odd 1ine
evan line: return to 0.(1)

moves the cursor back to start of current 1line

now do a line feed. note: routine returns ‘cr’
odd 1ine: return cursor to xx80h.

previous character was and ESC
clear all but INSERT mode bit
look at the new character
Home/Clear routine . ’hu
Clear to end of line %&p‘

insert new line at cursor row



H
H
:
H
Cc

Irine:

cint:

inst:

&elno:

cp ‘M’

jp z,delne

cp amp__

ip z, tnsmde

cp ‘0’

ip z. exmod
INO .

jp z.delchr
cp ‘Y’

jp z, mvrow
ip nullo

1d hi, (curse)

1d a,1

cp 04fth

ip z.nullo
cp Octh

ip z.mullo
d a,sp_
1d (hl),a
inc 1

ip cInt

call crsbol

1d de.botift

sct '
cct

sbc hl,de

ip z,clirine

1d hl,bot1ft-080

1d bc,80
1dir

scf

ccf

1d bc,0dOh
ex de,hl
sbc hl,bc
ex de, hl
sbc hil,bc
td bc, (curse)
1d a,e

cp c©

jp nz,inst
1d a,d

cp b

p nz, inst
ip cirine

call crsbol
1d d,.h

®s oo or 08 w3 os wn e

@0 @0 @0 s et w¢ @s ve 0s o0 or @

T oo 00 et v w0 an e 4s o0

B9 90 20 s et @8 9F 98 v @ @ o5 45 v wr ee @ ws

s v we er oo

delete a line

enter insert mode
(capital 0)
exit insert mode.

Delete character at cursor

cursor row set
ignore anything we don’t understand

Clears from cursor to end of line
Get cursor postition

EOL for even rows

done

EOL for odd rows

Also done

Not done, so0 write a blank
at (hl)

Next. ..

do it again

Inserts blank line at current curscr
line, moving lines below 1t down.
cursor to begining of 1line, --> HL

clear carry for 16-bit subtract

Cursor at Bottom row?
If so, just clear the line.
: Next row up

80 columns
moves ‘em down

clear carry flag

enough to get to start of next 11ine up
first do DE

subtract

Going to see 1f the activity is at (curse)
yet,
If not, do some more

blank the row if at cursor

Deletes 1ine of cursor; moves lines below
one up; blank line at bottom; cursor

at beginning of deleted line.

cursor to beginning of current line

HL now has starting cursor position



d e,1

1d bc,080h :
add hil,bc ;: Next 1ine below
1d bc,80 ; 80 columns
call repeat i part of scroll: routine.
ip nulilo H
crsbol: ; Puts cursor at start of current tine,
: returns position in HL
push af H
1d hl, (curse) H .
1d a1} H
cp O7th H
jp p.crsbi ; if > 7f, oddline
1d 1,0 . : BOL for even line
1d (curse),hl ; reload it
pop af :
ret :
crsbi: H
1d 1,080h : BOL for odd line = xxB0O
1d (curse), hl s
pop af H
. ret ‘s
insmde: : Enter the inseert mode
1d a, INSMOD H
1d (crtmod),a :
ip nultlo :
mvrow: : enter row address mode
1d a, (crtmod) H
or ROWMOD : put rowmode bits in without changing insert mode
1d (crtmod).a :
jp nullo H
setesc: ;i An ESC character has been received:; set esc mode
1d a,(crtmod) H
or ESCMOD H
1d (crtmod),a :
jp nullo :
exmod; ; Exit insert mode - clear everything
xor a H
1d (crtmod) ., a :
ip nullo H
delchr: ;: Delete character at cursor position.
1d hl, (curse) : Move text right of cursor left one siot.
delct: :
id a,l H
cp O4fh H
Ijp z,delc2 : end of line. even row
cp Ocfh :

‘$p z,delc2 end of line, odd row



F s or e

O or ae on ot a0 or

-k oe oo v s

inc hl

1d a,(ht)
dec hl

1d (hl),a
inc hl

jp delc1

1d a,sp_
1d (h1),a
ip nullo

1d a,c
cp 28

ip m,rowt
1d a,24

1d (rowno),a
1d a, (crtmod)
and INSMOD

or COLMOD

1d (crtmod),a
jp nulilo

1d a, (crtmod)
and INSMOD

1d (crtmod),a
id a,c

cp 80

jp m,colt .

1d c¢,79

1d de,080h
1d hl,upift
1d a, (rowno)
or a

ip z,col13

.

add hl,de
dec a
ip nz,col2

1d a,c

add a,l

1d 1,a

1d (curse), hl
ip nullo

1d de, (curse)
id h,d

1d a,e

cp 80

ip p.insrtt

®s o0 @0 04 s @ es ea o ee

®s 90 @0 00 9o wr @ ws we 00 vo w0

W6 S5 80 ®0 8¢ s ws @6 @e @t w0 @0 45 00 ws @e we we

s @¢ oo wo s o0

get char. to right

put it one left

Blank last character in row

load row register

restore the character to A
Only 2% rows

OK if less than 25

else set to max = 24

save it for next time

clear all but Insert mode bit
concatenate Column mode bits

expect column address
clear all but Insert mode

only 80 columns

if less, OK

else change C to 79

Distance between rows

upper left of screen

Row number from previous read
skip multiply i1f rowno = O
crude multiplication

add A times!

column offset
add i1t to the hl (don‘t worry about carry)

Inserts a character at cursor position
Won‘’t DVANCE BEYOND EOL

> 80 --> odd line



insrtt:

insrt2:

insrt3:

insrt4:

udcrt:

digit:

1d 1,04fh
jp insrt2

id 1,0cth

1d a,e

cp 1

ip z,insrt3
dec 1

id a,(hl)
inc 1\

1d (hl),a
dec 1

ip insrt2

1d (hi),c
1d a,)

cp 04fh

jp z,insrta
cp Ocfh

jp z,insrt4
inc hi

1d (curse),h}

ip nullo

push af
push hi
1d hl,crtmi

call pstrng
1d a,(crtmod)

1d 1,a
xor a

1d (crtmod),a

1d a,}

call putcrt
pop hi

pop af

ret

push af
push bc

1d b,a

and Ofh

cp 10

ip m, digit
sub 10

add a,061h
1d 1,a

ip thigh
add a,030h

@9 S5 U0 90 90 G0 B¢ We W B4 GL GF G S0 B @0 we 00 s v or ws Bs ws o

EOL for even line

EOL for odd l1ine

Are we back to cursor positiomn yet?

get character to left

move it one right

load the incoming character there
Now make sure we are not at the EOL

If not,

load cursor

End of putcrt

®s @0 40 01 we et v w0 ve 9r ot 20 B we

*e ee @0 s @r €t @0 er et os we o

increment cursor

#*t*‘*t*t#*t*tt‘*“‘t‘tt‘*#**t‘!*ttl‘#t‘**“t*t#‘

11legal CRT mode

load message address

print it

save the crt mode

clear the crt mode to normal

print the offending mode

db ‘Illegal CRT mode’,0

Returns 2 ASCII characters in h and ¥,
representing the hex byte in ‘a’

save byte

took at lower nibble
it < 10, must be 0 - 9

must be > 10,

]
a

so subtract 10,

that’s the lower character

‘0’ ASCII

and add A



thigh:

dig2:

thru:

s o1 oo wo we

cunses:

turnoff:

.
turnon:

home :

ursoff:

1d 1,a

1d a.b

rrc a

rrc a

rrc a

rrc a

and Ofh

cp 10

ip m, dig2
sub 10

add a,061h
1d h,a

ip thru
add a,030h
1d h,a

pop bc

pop af

ret

push at
push bc
push hi

1d hl,(curse)

id a,(ht)
xor 080h
1d (hl),a

1d a,(cstat)

or a
jip z,turnon

xor a

1d (cstat),a

ip home

1d a,01h

1d (cstat),a

pop hi
pop bc
pop af
ei
reti

push af
push hi
id a,
or a
P z.blinkck

1d hl, (curse)

1d a,(ht)
xor O80h

id (h1),a

binkck:

xor a

td (cstat),a
1d a,(blink)

(cstat)

@0 ®5 @5 @6 @1 00 0¢ @¢ e we B 25 v we a0 we 06 @b

s 2¢ s e ue wr 00 we o0

e we =s @0 e

the saved byte
rotate upper nibble to lower position

same song second verse

upper character

##‘t#‘t‘#‘*t*ttt‘*‘t‘t‘#‘*"t‘!###t#‘#t#t*#‘*#*‘ltl

cursor blinker. handles 250 ms interrupt.

Get the cursor posttion.

Get the character there.

Reverse-video that character.

and Write 1t back.

cstat-O > cursor ‘off’, character at cursor pos,
cstat = 1 > ‘on’; character saved in cchar

if off, turn on
a=0

clear cursor status.
return

a = {

set cursor status = ‘on’ (1)

Turn those {interrupts back on!

End curses

@t s 00 @0 ws we €v w0 @3 40 we v w0

‘tt“‘t‘*#tt##*##t*#l""*t**t‘t*!*#lt*

turns cursor off, making sure

that screen displays character 1n the cursor
position.

find qut what state the cursor was in

cursor already off, so check blink status
find the cursor

Look at the character tn the cursor position.
Toggle the reverse-video bit.

Pput ‘er therel

now.clear the cuisor status bit

Is the Blinker activated?



or a

ip z, donofft

id a,043n

out (Of7h),.a

xor a

1d (blink), a

éonoff: pop hi
pop af
ret

. o0 os we

curson: push af
push hil
1d a,(cstat)
or a
ip nz,ckblink
1d hl, (curse)
1d a,(ht)
xor 080h
1d (hl1),a
1d a,1
1d (cstat),a

ckbink: 1d a,(blink)
or a
ip nz,donon
1d a,0c7h
out (Of7h),a
1d a, tau
out (Of7h),a
1d a,1
1d (blink), a

donon: pop hil

pop af
ret

croll: push af
push bc
push de
push hi
call cursoff
1d bc,050h
id de,upift
1d hl,scdine
call repeat
pop hi
pop de
pop bc
pop af

. ret

epeat: idir
1d bc,030h
add hi ,bc

If not, return happily.
else K111 the Cursor Counter!

and Zero the Blinker status.

byel

End cursoff

®0 90 €5 @6 wo W 00 95 @ @F 90 e @ we we S8 we ee @5 e

.“**‘t*‘***‘*t“"t‘ll.!‘*#tl*l“‘#*

turns the cursor on.

was it on already?

if so, check for b}inker status.
Get cursor position. .,

Get character at Cursor position,
Toggle the reverse video bit.

Put the toggled character back.

Set the cursor status = ON.
Check whether blinker is activated.

if so, just return happy .

else set CTC to start blinking.

CTC address = f£7,

250 ms time constant (500 ms at 2 mhz)
The CTC 1s expecting this output.

Set blinker staus.

End curson

@0 8¢ we ®e 01 ot ws we or =5 Be we wr e

#"ll‘t*"#ﬁ!t**‘t!“#‘t‘*&*#l“*t*"t*

scroll moves everything up one notch on crt,
without bothering the cursor position.

in fact, {1t turns the cursor off, so user must
be sure to turn it back on sometime.

80 columns per row

upper left corner of visible screen area
next position down

moves everything below DE up one 1ine

‘t‘**‘#####*!’it#““t*t‘*##*t““**ll**tt**ﬁ

(de) < (h1), hl++, de++, bc-- ti1) bc=0. niftyt
enough to get to start of next line.



push hi tuck it away

ex de, hl now lets do it to de

add hl,bc did ittt

ex de,hil back to de

pop hi retreived.

1d bc, 050h 80 columns, as before.

1d a.h going to see if we are done yet
cp hibot 3dxx is beyond the last row

ip nz,repeat
1d'h! ,botift
id de,botif1t
1d (ht),020h

if not there., do some more.

left of bottom 1ine

next posittion

put a blank in the left posttion

%2 @0 00 @5 ®s eu ®s @0 o1 2s 9o os ws we

1dir propagate 1t across the row.

ret
: End repeat
:t#l’*‘tt!t‘t#ttt##*ttt#!'t*##t#lttt##!#t#*t##tt*t
keyinr: Handles interrupts by the keyboard

push af '

push bc

push hi

in a, (keybrd) Reads keyboard port

1d c,a Tuck 1t away

1d a, (kbwptr) Keyboard ‘write’ pointer offset

inc a next position is where to write

and kbfsze
1d(kbwptr).a
1d hl, kbdbuf

modulo kbfsze (size of keyboard buffer)
start position of buffer (3d00)

®6 @5 Ue ©r @5 we ws as s w0 B0 Ce 9e we @e w0

add a,) add offset

1d 1,a

1d (h1),c put character in buffer

1d a,1 keyboard ready flag - there’s something 1n
1d (keyflig),a the buffer, .

pop hl

pop bc

pop af

el : enable the interrupts

reti

.

End keyinr
‘tltt#lttt#ttt*tt###tt‘ttt*‘t“ttlt‘*#ttttttt‘t*

:
H
pstrng:

Put ASCII string found in location HL
push af

to CRT until ‘O’ byte encountered

strgip: 1d a,(ht)
cp O
ip z,strgrt
call putcrt

look at each character

The null character

quit when zero encountered
Else write i1t to CRT

ot us ws o0 wo wer

inc hl next one
ip strgip
;trgrt: pop af :
ret H
End pstrng

‘#‘#“#"*t#t#'I“#"'t.‘tll“““‘t““#"““

thxch: ; ‘Puts hex number to CRT as two ASCII characters

.



-t s oo se as 84 s o0

a
']
<

ldsvi:

push hl
call hexchr
1d a.h

call putcrt
id a,l

call putcrt

Pop hl
ret

1d a,5

1d (dsktry),a
ex de,hl

pop hl

ex (sp),hl
push de

1d de, 18

ex de, hl

call ccdiv

inc e

d o,

1d c,h

1d a,(dskid)
cp ¢

jp nz,ermsg4
in a,(dsktrk)
cp d

jp nz, ldsv1

1d a,0dOh

out (dskcmd),a
call dskdly

in a,(dskcmd)
and 020h

Jp nz,ldsvq

d a,d

cp 77

ip p.ermsg9
out (dskdta),a
call dskdly

1d a,SEEK

out (dskcmd),a
call wattdk

in a, (dskcmd)
call dskdly

" and 018h

ldsvq:

;rmsgﬁz

erdata:

sy

ip nz,idstry
pop hil
ret

1d hl,msgs
call pstrng
1d a.d

call pthxch
Td a,e

call pthxch
jp reboot

db

.

“e ®e ®0 vs w2 as s we

returns two ASCII chars in H,L
High one

End pthxch

O ST SS90 S5 01 50 90 @0 90 90 €0 50 @r wh @ @0 SF @0 €0 90 3 @0 ¢ 06 G0 G0 w4 = or et W 4 @5 s we @0 oo e

@n e ae we oc @8 we

‘t*tt‘*t*tt"#t#m‘*“‘**t‘**#l‘#‘#*‘##‘t‘*

Preparation for disk read or write
Setup for 5 tries to seek track

Save address in DE (stolen from SMW)

That’s the subroutine return address

pPops Tnods from stack and pushes return address
Also save the from/to address on stack
Number of sectors per track

our divide routine divides de/h)

From 2-80 V1ibrary

1 + remainder = sector

now track = d

c = disk number (use O as default)

The current disk 1id, possibly loaded by hand

If not right disk, abort w message
Find out where the head is.

compare with the desired track.

SEEK if not on the right track.

RESET controller to force Type I status

Let controller clear

Look at status

look at Head Load bit.

Head loaded; Right track: so quit,
else load the desired track

Make sure track is in range

Abort with message if not.

Load to disk data register

Wait a few microseconds

SEEK = O1fh, the seek command
send 1t to controller

Waits for disk controller to interrupt
get status

Wait a few microseconds

look at CRC or seek errors

already.

return with r/w address in hil
“Seek error *
track

sector

‘Seek Er;or‘,o



ermsg9: 1d hl,msg9 H
call pstrng H
jp erdata :

“Track out of range"
Also print track and sector.
&sgs: db ‘Track out of range ‘', 0

ldstry:
1d a, (dsktry)
dec a
ijp z,ermsgs
1d (dsktry),a
call restor
ip ldsvi

try (dsktry) times to seek track

Give up after (dsktry) tries.

backup to track 00

e o os ue w3 w0 we

e oo or

End idsv
Habhid A R A L L e T LI I I I

save: ; Writes one block to disk
given address in HL, and Tnode second on
stack.
pop bc Return address
pop de Tnode
push bc Save the return address
push de Give next routine Tnode 1n stack
call ldsv Common disk IO program unravels Tnode and gets
to right track on right disk (or aborts)
id a,8 S tries to write
1d (dsktry),a
push h! save start address in case of abort
saved:

call cursoff

Don’t want interrupts during write.
call keyofft

don’t allow keyboard to interrupt

id a,0b7h enable PI0 int; ‘or’ logic; active high; mask follows
out (mscntl).a
- 1d a,0feh Mask all but DO.

out (mscntl),a

id a,014h Vector --> dskout interrupt handler.

out (mscntl),.a
in a,(msclio)
1d a,e

out (dsksct),a
call dskdly

id b, Offh

1d c,0d3h

1d a,WRSCTR
out (dskcmd),a
call waitdk
call curson
call keyon

tn a, (dskcmd)
call dskdly

clears PIO ready signal.

E should contain sector number

put that in disk sector register

Wait a few microseconds

Prevents B from decrementing to zero 1n ‘dskitn’
set C to controlier data port

write sector command (0Oa8h)

to the command register

Now just sit back-and wait for disk to finish
Let ‘er blink again

and let the keyboard interrupt

get controller status

Wait a few microseconds

T 49 90 90 91 05 @8 ©0 W ©r W6 €4 G 90 Be T0 B0 BT G0 B0 Be G0 Be G ¢ B4 S8 w8 Gs vs @0 s . e 04 @b o0

and O7ch mask the write-pertinent bits

ijp nz,savtry Print write-error message {f any bad bits

pop hi restore stack

ret otherwise, return .

ermsg7: id hi,msg?
call pstrng

msg7 = *disk write error"

id a,d should contain Tnode
call pthxch write it to CRT
id a,e lower byte

®s 8¢ oo wr 0o ws

call pthxch
ip monttor

- LI

sg7: db ‘Disk write error’,0



savtry:
1d a,(dsktry)
dec a
ip z.ermsg7
1d (dsktry),a
pop hil
push hil
jp savet

Fooe o0 o0 o0 ws w0 ar

eyon:
push af
1d a,enable
out (keyprt).a
pop af
ret

keyoff.:
push af
1d a,disable
out (keyprt),a
pop af
ret

H
H
d

skout:

outt

in a,(mscnt})
el

reti

load:

Pop bc

pop de

push bc

push de

call ldsv

id a,5%

1d (dsktry),.a

push hil
loadi:

call cursoff

call keyoff

1d c,0d3h

@ os w5 ac ws es we we

try (dsktry) times
Give up

recall the start address .
save it again, in case another retry

End save

t*“t'!lt*t*‘#*t“#**#*.‘*"‘.*‘t***ll*"#*‘*tll**‘t##!t‘##tll

Turns on the keyboard

s we ws @6 s we

Turns off keyboard

e wr 00 s o we

End keyon/keyoff

#‘*‘Ot*t’.#“tt“‘t“#“‘*#tlt*t*“‘l#"tttt“‘t“#‘t*“#t

Disk output interrupt handler.

NOTE: this has to be FAST!

INPUTS: HL contains the address to be written
from. C contains the disk controller data port.
B should be written to a high value to prevent
it from decrementing to zero, which would

set the "z" flag and screw up the dkwait
routine.

(HL) > (C); inc HL; dec B

clears the PIO interrupt.

s @ ws 20 8 w4 94 @0 we o0 e oo

end dskin

#ﬁt#‘l“*I‘t“*t‘*‘i“ttt*‘t*t“it“#‘*“‘#t‘il*t*lt:&t‘#lt*t#l‘t#

Reads a sector to memory specified in HL
from disk at Tnode, contatned in stack

First exhange the first two stack positions

Finds the right track and disk, and unravels Tnode
S tnties

Save start address in case of abort

We don’t want tnterrupts during disk read.

turn off keyboard, too
Setup C for the "diskin" tnterrupt handler.

@5 ¢ ws W @5 ®s 05 @0 B 20 W4 s v eu o



1d a,0b7h
out (mscntl),a
id a,0Ofeh
out (mscntl),a
1d a,012h

* out (mscntl).a
in a,(mscio)
1d a,e
out (dsksct).a
call dskdly
1d b,Offh
1d a,RDSCTR
out (dskcmd),.a
call wattdk
call curson
call keyon
in a,(dakcmd)
call dskdly
and Oich

* ip nz, tdtry
pop hi
ret

®5 B0 €5 €0 B¢ we B Wr B0 T ws W GF v @¢ @6 os s S =k we w0

ermsgé : .

’ call erprnt
1d hl,msg6
call pstrng
id a,d
call pthxch
1d a,e
call pthxch
jp reboot

s =0 @0 we ot we oe wo

enable int, ‘or’ logic, active high, mask follows

Mask all but DO.

vector to “diskin®

Do a read to set ready flag.

should contain the sector number

load it i1n controller sector register
Wait a few microseconds

will decrement and affect flags at O.

command to read a sector (= 084h)
to command port

wait for execution

restart cursor - interrupts OK now.

get status
Wait a few microseconds
Mask CRC and lost data bits

restore stack

1se done - return

"disk read error *

Track

sector

ésgs: db ‘Disk read error. Track/sector = ‘.0

Tdtry:
1d a, (dsktry)
dec a
ip z,ermsagé
1d (dsktry).a
call restor
1d a,d
out (dskdta).a
call dskdily
1d a,SEEK
out (dskcmd),a
call waitdk -
in a,(dskcmd)
and 018h
ip nz,ldtry
pop hl
push hl
ip load1t

$e 8¢ we @2 @s €0 @ 40 00 e we S8 @0 9o we 00 05 w0

‘dskin:

®e ¢ @e ws oo s ar we

M e e

Try (dsktry) times

Unload, goto track O, relocad, verify

1]

should still be the track No.

load track to controltler
wait for it to settle down
Now get back on the right track

wait for controller tnterrupt
check status

CRC or SEEK errors

try again 1f it fatis (5 times. max)
recall start address {f successful
save 1t for another. retry

o]
8
F

end load
t‘*tt"‘t*t*ltt#tttt‘rt!ttt!tttt‘#tt'ttttt*t“#ttttttt#*

* Interrupt handleri for disk: reads.

‘NOTE: - ‘this routine must go FASTI
INPUTS ;! ‘ML contains the start address .to.be
loadéed to.! {t.will be: thoremented -each call.

“contains: 'the: input port: address .
‘Wil be decremented each: time, .80
lag reginter: Wil I be: affected. when



B becomes O. This may interact with calling
program. Set B to ‘FF’ before starting to
minimize this,

ini input (C) and inc HL. (16 cycles)

@ 40 s we en we we we

nop (4 cycles) This is needed temporarily to
prevent bad memory read of ‘ff-’,
el (4 cycles)
reti (14 cycles) resets PIO without reading 1t.
: end diskin
:‘*'tt"t‘**‘tttt*#*t&'t*‘ttttt*‘t*tttt**t*tt‘#*#tttl#t
waitdk: waits t111 disk is through with whatever,
push af
1d a, 16 * setup 49 microsecond watt, so controller
status will be valid after command,
wattdki: .
dec a o This loop kills 7 microseconds per pass
ip nz, wattdk1 at 2 mhz, 3.5 at 4 mhz system clock.
wattdk2:
8 is decremented (but not tested) in disk

1d b,0ffth
. interrupt routines (diskin, siskout). We
write 8 to ff to prevent a ‘x’ condition
in the flag register in case the interrupt
occurs during the "and” operation. We may
therefore miss the resetting of the ’busy’
status bft for one loop, but no matter.

now start tooking at controller status register
LSB is the busy bit
Toop if still busy

in a, (dskcmd)
and 1
ip nz,waitdk2

pop af
ret

WS 95 €0 ®2 @6 00 0 @i 06 B4 @5 44 B5 €+ w8 W S0 we we @r We

End waitdk
b I T I III

chlv: : Divides DE by HL, returns quotient in HL

id b,h
1d ¢,
id-a,d

o
.
.
I3
.
.

with remainder in DE. (signed divide)
from “runtime Library for Smal)l C Compiler
by Ron Cain : ) ) ’

xor b

push af

'd a,d

or a

call m,ccdeneg

Id a.b

or a

call m,ccbcneg

id a, 16

push af

ex de,hl

1d de,O
ccdivi: add hi, hi

call ccrde)

ijp z.ccdiv2

call ccmpbcde

ip m,ccdiv2

1d a,) :

or §

1d 1,a

id a,e

sub ¢

1d e,a

1d . a,d

sbc a.b



1d d,a
ccdiv2: pop af

dec a

ip z,ccdiv3

push at

Jjp ccdivi

ccdiv3: pop af
ret p
call ccdeneg
ex de, hl
call ccdeneg
ex de,h)
ret

écdon.g: 1d a,d

cpl
id d,a
id a, e
cpl
1d @,a
inc de
ret

ccbcneg: 1d a.b
cpl
id b,a
id a,c
cpl
id c,a
inc bc
ret

ccrdel: 1d a.e
rla
1d @,a
id a,.d
rla
d d,.a
or e
ret

ccmpbede: 1d a, e
sub c
1d a,d
sbc a,b
ret

e @v @ oo a0 s we

org OaB800h
vectab: dw keyinr
dw vcterr
dw vcterr
dw.vcterr
dw vcterr
dw vcterr
dw vcterr
dw curses
dw vcterr
dw dskin
dw dskout

. - -e

.a

®e @5 ¢ we w0 w00 G 90 ws as or

negates the integer in DE

negates the integer in BC

Rotate DE left one bit

compare bc to de

origin of vector table for interrupts

00 > keyboard interrupt

02 > tape output - not tmplemented yet

DMA controlter - not supposed to interrupt

04
06
os
Oa
Oc
Oe
10
12
14

VYVVVYVYVVY

tape input - not implemented yet.
CTC channel O -~ shouldn’t tnterrupt,
CTC channel 1 - not defined yet.
timer channel.

cursor interrupt.

PIO interrupt - formerly DISK controlier.

PIO for disk input operattons.
Same PIO for disk output operations

(

RO

T \

Je t ot



vcterr: ;i routine to handle strange vectors from interrupts.
push hl H
1d hl,msg8 ;. "\nunknown interrupt vector\n*
call pstrng H
pop hi :
[ 3] ;i enable interrupts
reti :
msg8 : db ‘Unknown interrupt vector’,.nt_,0

H end vectab
‘ttll!#t‘#ll"lttt.‘tttt‘l‘ttttltt‘lttt‘t*#ttl#‘.tt‘t#tt“

ERROR MESSAGES

B oe o vo o0 o0

rmsgd: 1d hl,msgs
call pstrng
call pthxch
1d a,c
call pthxch
ip monitor :

msg4: db ‘Wanted disk/Found disk:’,0

-tl‘t#tt!*llk'lit‘t*t'tt“‘tt‘!##ttll"!t#.‘.‘*‘*t*t#'ttt‘#tt##‘t‘tt 3

‘Wanted disk/Found disk;:

desired disk was in A
Loaded disk in C .

. @0 ¢ we we

format: A disk formatting program for 8"
single density single side disk.

“Bee or ws 0o as oo @

ormat:
call restor
1d d,0
nxtrk: call trkfmt

sets disk to track O

D will contatn the track No.
generates track format info in memory
beginning at FMTBLK

call cursof& eliminate cursor interrupts while writing.

1d a,0b7h enable PIO int; ‘or’; act. high; mask follows.
out {macnt!),.a

1d a,0Ofeh

out (mscntl),a Disablie all but DO.

1d a,014h . vector to “"dskout*

out (mscntl).a

in a,(mscto) one read to clear ready flag

1d c,0d3h set C to controller data port
1d hl ,FMTBLK start of data block for Format routine
1d a,0f4h f4 = write track (format)

out (dskcmd),.a
call waitdk
call curson:
in a, (dskcmd)

waits for controller to be done.

get status

call dskdly wait a few microseconds
and O44h mask lost data or write protect
call nz,erprnt tf error, print registers
. inc d next track
id a,77 tast track = 76 .
cp d
ret z done
1d a,08bh Step in, update register, no verify, load

out (dskcmd),a
call waitdk

in a, (dskcmd)
call dskdly
and O10h

get status
wait a little while
look for "seek error" bit

WS B4 60 90 B3 G6 GF GF O U GL WL T G0 WS GL T S0 WE G4 G0 ST G0 G0 VL S WS @B Eo S8 B Ws Go



id (h1),0f7h i 2 CRC's

tnc hl :

1d b, 27 :

1d a,0ffth :

call bload s 27 fr's

dec c i next sector

ip nz, sect : do it agatn

ret ;: eVse done, return.

end of sect
tttttt*#t#tt#*tt*#tttt*t.tt#‘t.#t#t‘#!#!#t“#tt‘#tt"tttt

secno returns a sector No. in A, given a sequence no. in C
and a track no. in D.
INPUT: reverse sequence No. in C (kept)

track No. tn D (kept)

U s oe on ar 0 ot vt 0r a0 or 0o we

ecno:
push hl H
id a,d i track No,
and 1 : look at ltowest bit
B ip z,even ; odd or even?
1d b,0 . : 1f odd, Took at oddlist
1d ' hi,oddist i sequence for odd tracks
add hl,bc i offset by sequence No.
1d a,(ht) : get that value
pop hl : restore
ret : done
even: .
1d b,0 i even track No.
1d hl,evnist : SO USE even list
add hil,bc i add offset of seq. No.
1d a,(ht) : get 1t
pop hl H
ret H
oddist: db Offh.O.iS.?.!4.6.13.8.12.4.1!.3.10.2.9.1
evnist: db Offh.ti.s.io.z.s.1.0.15.7.i4.6.13.s.12.4

end of secno
#t*l*tt#t'tt.‘#‘ltt’.t‘t‘tt“##t'#

bload loads (B) locations with(A) in memory beginning
with (ht), incrementing hl as 1t goes. bits=0

O we o0 o0 o0 o0 o0 we o

load:
1d (h1),a :
inc hi :
dec b :
ir nz ,bload H
ret H R
: end of bload
:‘#tt4*t#"tt.‘t.#ttt’t#tt‘#“#“##
H <<NOTE: Would prefer to unload head first to clear dust,
B etc, but to do 30 would turn off drive as it s
H nhow configured. This 1s a good area for future
H modification. ‘UNLOAD’ has been defined as a
H ‘SEEK’ without head load or verify. This can
H be used to unload head in place, by simply
H loading the data register with the contents



call nz, erprnt ; print registers if error
ip nxtrk : do another track

*ttl*tt*t¥#*#‘##"**tl**tt**‘t‘**‘#*t*###'

; trkfmt formats t track of disk according to IBM 3740 format
: with 286 bytes/sector.

: . INPUT: register d contains track No.

t

rkfmt:

1d hl, FMTBLK Beginning of block storage to keep track info

call sect

Id b,0ffh .
1d a,0ftfth
call bload
ret

writes (C) sectors

1d b,40 i 40 (dectimal) bytes to be loaded
1d a,0ffth i A = what to load (ff)
call bload : writes ‘B’ bytes of (A), incrementing hi
1d b,6 H
1d a,0 H
call bload : 6§ ‘O's
id (ht),0fch : fch = index mark
inc hl : point to next Yocation
id b, 26 H
d a,0ffh H
call. bload : 26 'ft¢’s
1d ¢, 18 i want to write 13 sectors/track
.
H
H

write a bunch of ff's t111 timeout

end of trkfmt
tt#ttt!‘ltttttltt!‘tttt‘t*'l#‘t’ttt'tt‘t#tt

sect writes (C) sectors worth of info tnto memory
INPUT: C is no. of sectors to write (destroyed)
D ts track No. (kept)

O s o0 me on oe we ve @ 0

ect:
1d b,6 H
d a,0 H
call bload : bload writes (B) bytes of (A), tncs hi
1d (ht),Ofeh s ID address mark
inc hi : :
1d (M),d ;: track no.
tnc hl H
1d (h1),0 : side no. (always 0)
inc ht H
call secno i returns a sector no. in A, given C and D
id (h)).a ; load sector no.
fnc hi H .
1d (h1),1 i sector length (1 -> 256 bytes)
inc hi H
1d (h1),0f7h s 7 writes 2 CRC's
inc hi H
1d b, 11 :
id a,0ffh :
call bload : 1t f¢’s
id b,6 H
id a,0 H
call bload : 6 O’'s
id (h1),0fbh : data address mark
tnc hl :
1d b,0O i setup for 2356 bytes of o5
1d a,0eSh :
call bload i actual data field loaded w/ e5



restor:

Qoe we ot o0 w0 o

skdly:

dliyt:

.
H
.
H
-
H
v
H

@

rprnt:

. ae

of the track register before issuing. >>

push aft
1d a,DSKRST

out (dskcmd),.a

call dskdly
td a,RESTORE

out (dskcmd),a

call waitdk
in a, (dskcmd)
call dskdly
and 010h

call nz,erprnt

ip nz,reboot
1d a,0dOh

out (dskcad),a

call dskdly

pop af
ret

W0 S0 WS 90 G5 40 96 B8 G4 s We WO @0 vs %0 00 we @

t#“l‘t"li!.#“!t‘l-.#t#'*“lﬁ'##.“‘*t.ltt‘l#*

sets disk to track O
reset the controller

wait for that to take effect
restore, load head, verify
write to command register

watt for controller to interrupt

wait a few microseconds
look for “seek error® bit
print error 1f found
Give up after printing.
reset controller

wait a few microseconds

Dskdly delays for 7 x YY microseconds at{ 2 mhz,
or 3.5 x YY at 4 mhz.

push af

1d a, 16
dec a

ip nz,diyt
pop af

ret

push af
call pthxch
1d a,h

call pthxch
1d a,l

call pthxch
id a,b

call pthxch
id a,c

call pthxch
id a, d
call pthxch
id a, e

call pthxch
inc sp

inc sp

ex (sp), hi
id a,h

call pthxch
id a,d

call pthxch
ex (sp).h}

d‘csp .

@ e @ os 90 o8

t#‘#.t‘"t*““‘.tt“*.Q*l*“'..'l‘

4% U Ws 69 0t we o0 s °r 4o 00 W O o we

@ 0 @6 90 40 we s we ¥5 e we

this is *vy"

prints registers and return address
preserve a register
prints contents of A register

print H and L registers

print B register

print C register
print D register
print € register

look at return address
put 1t In hl and save h! 1n stack

print high byte of return address

and low byte
restore the return and hi

restore the sTACK POINTER



A kO o o e N o o o R o R ok R o

:

:

H
conin:

coninit:

nline:

eofile:

() o0 o0 o0 ve w0

onout:

conout!:

1d a,(keyfig)
or a

jr z.conin

id a,.(kbfptr)
inc a

and kbfsze

1d (kbfptr).a
1d c,a

1d b,0

1d h1,kbdbuf
add hil ,bc

1d a, (kbwptr)
cp ¢

jr nz,conint
xor a

1d (keyfig).a

1d a,(hi)
and O7th

id 1,a

1d h,0

cp nl_

jr z,nline
cp O .
jr z,@0ftle
cp 013h

jr z,conin
cp Otih

jp z.0c003h
cp Ot8h

jp z,0cO00n

1d a,)

cp nl_

ip z.conoutt
call putcrt.
ret

.

Reads characters from the keyboard,
checks for special characters,

returns these to the operating system.
INPUTS: none. ’
QUTPUTS: character in ML

This flag is set by keyinr

Loop unti) something shows up
Pointer to the last character read

tncrement modulo kbfsze
reload the pointer

keyboard buffer starting address

now HL --> next character in buffer

see {f write ptr = read ptr.

if so, this is the only character there.

last character, so clear keyboard flag.

read character from buffer
mask parity
normal return has character in HL

look for 1ine feed

NULL? .

end of file.
control-s?
ignore 1t.
control-q?

warm start
control-x?

cold start

eise just return

transliate to carriage return

transiate to 8000h

OO S5 SO 02 90 90 00 s €1 9 € BL G0 GT €4 WO Ve ©o We Be e S0 @0 ¢ €I 4 BT WL Vs Be 00 ¢ s WO Te He We 00 €0 06 4s s w0 we

end of conin

“t.tt“t‘l"**t"O"t*‘#““tll‘#t'#"‘t.*t‘*'#“t‘l"“"

transmits a character to the crt.
Actually, it interfaces with
putcrt, which is a software package
of considerable size that does the
work .,

INPUTS: character in L

OUTPUTS: none,

gets character into A.
if newline, check for restarts.

writes character in A to CRT,.

@ 80 @1 s we @4 e %0 0t 90 @5 ws we w8



€ ov o0 o0 o0 o0 o

hkio:

hold:

holdt:

X ws w0 os ws 00 @0 @t oo oo

frtbol:

®s 0 we @0

call) chkio
id a,nl_
call putcrt
ret

1d &, (09Pd6h)
or a

ret nz

1d a,(keyflg)
or a

ret z

1d a, (kbfptr
inc a .
and kbfsze
1d c,a

1d b,0

1d hl, kbdbu?
add hil,bc

1d a,(ht)
and -07fth

cp Otih

P z,0c003nh
cp O18h

i» xz,0c0o00Nn
cp 013h

jr z,hold
ret

xor a
1d (keyflg),a
14 a,c
1d (Kbfptr),a

1d a,(keytlg)

or a

jr z,holdd
ret

reload newline (destroyed by chkio)

.r @0 os ws

end conout

‘l‘##‘t#!t*‘t!‘ttti‘.“‘"#t""t‘l#.#“.#“*‘l."‘#.ll

Tests for system restarts.
This variable allows restarts if zero.

Just return if not allowed to restart.
Keyboard flag, set by keyinr,

Nothing there? just return.
offset to 1ast character read

increment modulo kbfsze

buffer starting address
poinsts to new character
get the character

mask pairtity

warm start

cold start

control-s?

stop output

else just return. Note that keyfig s
st11l on, so conin will pick up the
character. kbfptr has also not been
updated. This may result in multiple
cold/warm starts,

Clear the keyboard filag.
the tncremented buffer pointer
update kbptr

ook for another keystroke

‘Loop t111 you see one

then return without reading character,
or fncrementing buffer pointer.

0 S0 62 90 wo Wh Wk ®e @8 BE €3 €0 Be e @ we Ss s BE SF I OF B4 s &b Ub Ge GO er Bs b 4o Or W wr 06 . we

‘end chkio

.ttttt‘l#*‘%tl‘h“.““t*‘ﬁi‘ﬁti“"l'b&*‘#i“"'.l“““#‘

BIOS jump table. The Tollowing block its relocatable, and
should be Joaded at OcOSTh,

ip contn
jp conout
jp Yoad
jp save
Jjp format

t'.ta#“#‘.t‘.‘t*"#‘..#‘*4."‘#3‘t*‘tt“#““*‘*'.t“*lt



rwflg:
crtmod:
rowno:
dsktry:

RAM Definitions
dw

.

85365 B85 BRBI22HBABERES
00002 99 999999999999999

@¢ 92 92 94 B0 e e W1 B0 we W we B0 04 @

s o wr we we

place to store the address from keyboard
flag set when keyboard s depressed

offsat for reads from keyboard buffer
keyboard entry pointer

address of cursor

8linker status (on = §, off = Q)

status of cursor (on = 1, off = 0)

disk ready flag

timer. flag

starting memory location for transfers to 10
end memory location, or number of blocks fo I0
INODE for disk or tape

just a utitity spot

the loaded disk id

tape read ftlag

single byte tape buffer
danged 1f I know what that is!

keyboard buffer (64 bytes)

disk read/write flag.

Mode of CRT

Row address variable, for direct cursor address
Number of tries to read/write disk (usually S)



	01-01
	01-02
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	06-01
	06-02_arg
	06-03_close
	06-04_compare
	06-05_fprintf
	06-06
	06-07_getc
	06-08_getchar
	06-09_open
	06-10_printf
	06-11_putc
	06-12_putchar
	06-13_read
	06-14_scanf
	06-15
	06-16_seek
	06-17_string
	06-18_system
	06-19
	06-20_write
	06-21_unix
	06-22_xas
	06-23_xcc
	06-24_xd
	06-25_xld
	06-26_xsh
	06-27_vi
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35_script
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43_asm
	06-44_ccc
	06-45_ldr
	06-46_cpr
	06-47_as
	06-48_cat
	06-49_cc
	06-50_cd
	06-51_chmod
	06-52
	06-53_cmp
	06-54_cp
	06-55_demount
	06-56
	06-56_du
	06-56_dup
	06-57_echo
	06-58_fmt
	06-58_inode
	06-59_ld
	06-60_ls
	06-61
	06-62_mk
	06-63_mkdir
	06-64_mount
	06-65_mv
	06-66_mvdir
	06-67_pr
	06-68_pwd
	06-69_reloc
	06-70_rm
	06-71_rmdir
	06-72_sh
	06-73_stty
	06-74_uucp
	06-75_rmdir
	07-01_bootstrap
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	08-01_bios
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26

