

SECTION

1
1.1
1.2
1.3
1.4

2
2.1
2.2
2.2.1
2.2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4

3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.5
3.5.1
3.6
3.7
3.8
3.9
3.9.1
3.10
3.10.1
3.10.2
3.10.3

4
4.1
4.1. 1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.3

TABLE OF CONTENTS

ASSEMBLY LANGUAGE
Introduction
Characteristics of Assembly Language
Virtual Memory
Process Elements

SYSTEM ARCHITECTURE
Introduction
Virtual and Monitor Processes
Activation and Deactivation of Virtual Processes
The Process Identification Block
Virtual Memory
Memory Map
Monitor Software
Process Scheduling
Disc Scheduling . .
Automatic Disc Writes
Moni tor IIO . .

DATA ADDRESSING
Information Formats
Frame Formats .
Link Field Format .
Purpose of "NNCF" and "NPCF"
Examples of Linked Frames . .
The Byte Address
Table of Displacements and Addresses
Registers
Referencing AR's and SR's ..
Attached and Detached AR's
Format of an Address Register
Format of a Storage Register
Registers Zero and One
The Primary Control Block .
Register One
Registers Two through Fifteen
Addressing Modes
Symbol Types
Computation of Location from Offsets
Description of Symbol Table Elements
Bits
Characters
Counters or Tallies

THE ASSEMBLER
Introduction
The Assembler and Related Processors
Editing a Source Item ..
Format of a Source Item .
Examples of EDIT Display
Labels
Opcodes .
Operands
Comments
Assembled Object Code

PAGE

2
2
2
2
3

4
4
4

4
6
7

8
9
9
9

10
10

11
11
12
12
12
13
14
14
15
15
16
17
17
18
18
18
19
20
21
22
23
23
23
23

24
24
24
25
25
26
27
27
28
29
30

4.3.1
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.15.1
4.15.2
4.15.3
4.15.4
4.15.5
4.16
4.17

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38

The Mode-id . .
Usable Frames .
Calling the Assembler
listing Output
Assembly Errors . . .
loading a Program Mode
Verifying a loaded Program Mode
Symbols ...
The PSYM File . .
The TSYM File . .
CROSS-INDEX Verb
X-REF Verb
The OSYM File . .
Format of OSYM file entries
Argument Field
Primitive Definition lines
Macro Definitions . . .
Examples of OSYM Entries
literals
Immediate symbols

INSTRUCTION SET .
Introduction
Summary of Instructions
ADD ADDX - Add to Accumulator
ADDR Assembler Directive
ALIGN Assembler Directive . .
AND - logical AND of a Byte .
8 - local 8ranch Unconditionally
BSS BBZ - Test a Bit
BCA BCNA - Test if Character is Alphabetic
BCE BCU - Test Characters
BCH BCHE BCl BClE - Test Characters . .
BCl BClE - See BCH
8CN BCNN - Test if Character is Numeric
BCNA - see BCA
BCNN - see BCN
BCNX - see BCX
BCU - see BCE .
BCX BCNX - Test if Character is Hexadecimal
BDHZ BDHEZ BDlZ BDlEZ - Decrement and Compare
Against Zero
BDlZ BDlEZ - see BDHZ
BDZ BDNZ - Decrement and Compare Against Zero
BE BU - Test Tallies
BE BU - Test Registers
BH BHE Bl BlE - Test Tallies
BHZ BHEZ BlZ BlEZ - Compare Against Zero
Bl BlE - see BH . .
BlZ BlEZ - see BHZ
BNZ - see BZ
BSl - Call a Subroutine
BSl* - Indirect Call to a Subroutine
BSlI - Indirect Call to a Subroutine
BSTE - Compare Delimited Strings
BU - see BE
BZ BNZ - Compare Against Zero
CHR Assembler Directive . . .
CMNT Assembler Directive
DEC INC - Decrement or Increment by One
DEC INC - Decrement or Increment One Operand by
Another

30
31
32
33
34
35
36
37
38
38
39
40
41
41
42
42
43
44
45
47

48
48
49
52
53
53
53
54
54
54
55
56
57
57
57
57
57
57
57
58

58
59
60
61
62
63
63
63
63
64
65
66
67
68
68
68
68
69
70

5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.58
5.59
5.60

5.61

5.62
5.63
5.64
5.65
5.66
5.67
5.68
5.69
5.70
5.71
5.72
5.73
5.74
5.75
5.76
5.77
5.78
5.79
5.80
5.81
5.82
5.83
5.84
5.85
5.86
5.87
5.88
5.89
5.90
5.91
5.92
5.93
5.94
5.95
5.96
5.97
5.98

DEFx Assembler Directives
DEFM Assembler Directive
DEFN Assembler Directive
DETO DETZ - Detach Address Register
DIV DIVX - Divide into Accumulator
DTLY FTLY HTLY TLY Assembler Directives
EJECT Assembler Directive
END Assembler Directive
ENT - External Branch Unconditionally
ENT* - Indirect External Transfer
ENTI - Indirect External Transfer
EQU Assembler Directive
FAR - Force Attachment of Address Register
FRAME Assembler Directive
FTLY - see DTLY . .
HALT - Halt Program
HTLY - see DTLY .
INC - see DEC .
INCLUDE Assembler Directive
LAD - Load Absolute Difference
LOAD LOADX - Load Accumulator .
MBD - Convert Binary to Decimal ASCII Byte
String
MBX MBXN - Convert Binary to Hex ASCII Byte
String
MCC - Move a Character
MCI - Move a Character
MCI extensions
MOB MXB - Convert One ASCII Byte to Binary
MFD MFX - Convert ASCII String to Binary
MIC - Move a Character
MIl - Move a Character
MIl Extensions
MIlD MIIDC - Move a String
MIIR - Move a String
MIlT MIITD - Move a String
MOV - Move One Operand to the Other
MSDB MSXB - Convert ASCII String to Binary
MTLY Assembler Directive
MUL MULX - Multiply into Accumulator
MXB - see MOB .
NEG - Negate Operand
NOP - No Operation
ONE - Set Operand to One
OR - Logical OR of a Byte
ORG Assembler Directive
READ READX - Read Byte
RQM - Release Timeslice Quantum
RTN - Return from a Subroutine
SB - Set Bit
SET.TIME - see TIME
SHIFT - Logical Right Shift of a Byte
SICD - Scan over Multiple Delimiters
SID SIDC - Scan Over a String
SIT SITD - Scan Over a String
SLEEP - Wait
SR Assembler Directive
SRA - Set Register to Address
STORE - Store Accumulator in Operand
SUB SUBX - Subtract from Accumulator
TEXT Assembler Directive
TIME SET.TIME - Get/Set System Time and Date

71
73
74
75
76
77
78
78
78
79
79
80
81
82
82
82
82
82
83
84
85
86

88

89
89
90
91
92
94
94
95
96
98
99

100
101
101
102
102
103
103
103
103
104
105
106
106
106
107
107
108
111
113
114
115
116
117
118
119
119

5.99
5.100
5.101
5.102
5.103
5.104
5.105

6
6.1
6.1.1
6.1.2
6.1. 3
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.10.1
6.10.2
6.11
6.12
6.13
6.13.1
6.13.2
6.13.3
6.13.4
6.13.5
6.14
6.15
6.16
6.17
6.18
6.19
6.20

7
7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.6
7.6.1
7.7
7.7.1
7.8
7.8.1
7.9
7.10

TlY - see DTlY
WRITE - Write Byte
XCC - Exchange Characters
XOR - logical XOR of a Byte
XRR - Exchange Registers
ZB - Zero Bit
ZERO - Set Operand to Zero

THE DEBUGGER
The Assembly Debugger
System Privileges and Debug Usage
Disabling the Debugger
Inhibiting the Break Key
Debug Context Switching.
Debugger Traps and Error Conditions
Summary of Debug Commands
Symbolic Debugging
Address Specification in the Debugger
Indirect Addresses
Windows
Bit Addressing
Displaying Data
Continuing Display
Changing Data . .
Symbolic Display
Debug Traces
Execution Control
Breakpoints . .
Execution Step
Delay Control .
Modal Execution Tracing
Data Value Tracing
Continuing Execution
Terminating Execution and Changing TCl levels
Changing Frame Assignments
Arithmetic Commands .
Other Debug Commands
Debug Messages
Address Representation

SYSTEM CONVENTIONS
Introduction
Global Variables
Re-entrancy
Defining an Additional Control Block
PCB Fields
PCB Fields - The Accumulator
PCB Fields - The Scan Characters
PCB Fields - The Subroutine Return Stack
PCB Fields - XMODE
PCB Fields - RMODE
PCB Fields - WMODE
PCB Fields - OVRFlCTR
PCB Fields - INHIBIT and INHIBITH
SCB Fields
SCB Fields - User Available Elements
Conventional Register and Buffer Usage
Table of Buffers and Buffer Pointers
System Control Flow . . .
Diagram of System Control Flow
TCl Initial Conditions
Interfacing via a Verb

119
120
120
120
121
121
121

122
122
122
122
122
123
124
126
128
128
128
129
129
130
130
131
132
132
133
133
133
133
133
134
134
134
135
135
136
136
136

138
138
138
139
140
141
142
143
143
143
143
143
144
144
145
146
147
148
149
150
151
151

7.11

8
8.1
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9
8.5.10
8.5.11
8.5.12
8.5.13
8.5.14
8.5.15
8.5.16
8.5.17
8.5.18
8.5.19
8.5.20
8.5.21
8.5.22
8.5.23
8.5.24
8.5.25
8.5.26
8.5.27
8.5.28
8.5.29
8.5.30
8.5.31
8.5.32
8.5.33
8.5.34
8.5.35
8.5.36
8.5.37
8.5.38

8.5.39
8.5.40
8.5.41
8.5.42
8.5.43
8.5.44
8.5.45

Conversion Processor Interface

SYSTEM SOFTWARE
Introduction
Documentation Conventions
Summary of System Software Routines
User Program Interfaces . .
TCL-I Interface
TCL-I Interface, Continued
TCL-II Interface
WRAPUP Interface
CONV Interface
PROC Interface
RECALL Interface
XMODE Interface .
System Subroutines
ACONV
ATTOVF
CONV - See User Program Interfaces
CRLFPRINT - See PRINT .
CVDxxx and CVXxxx Subroutines
DATE - See TIME
DECINHIB
ECONV ...
GETACBMS
GETFILE and OPENDD
GETITM
GETOVF and GETBLK .
GLOCK, GUNLOCK, and GUNLOCK. LINE
HASH
HSISOS
LINESUB
LINK
MBDSUB, MBDNSUB, MBDSUBX, and MBDNSUBX
NEWPAGE
NEXTIR and NEXTOVF
OPENDD - See GETFILE
PCRLF
PERIPHREAD1, PERIPHREAD2, and PERIPHWRITE
PERIPHSTATUS
PRINT and CRLFPRINT
PRNTHDR and NEWPAGE
RDLINK and WTLINK .
RDREC
READLIN, READLINX, and READIB
RELBLK, RELCHN, and RELOVF
RESETTERM
RETIX and RETIXU
SETLPTR and SETTERM
SLEEP and SLEEPSUB
SORT
TIME, DATE, and TIMDATE
TPBCK
TPRDLBL, TPRDLBL1, TPWTLBL, TPWTLBL1, and
TPGETLBL
TPREAD, TPWRITE, and TPRDBLK
TPREW .
TPWEOF
UPDITM
WRTLIN and WRITOB
WSINIT
WTLINK - See RDLINK

151

152
152
152
154
156
156
157
159
163
164
167
169
177
179
179
180
180
180
181
181
182
182
183
184
186
188
189
190
191
191
192
193
194
195
196
196
197
198
199
200
201
201
202
204
205
206
208
209
210
212
212
213

215
217
217
218
220
223
223

8.6 Example of a Simple TCl-I Verb 224
8.7 Example of a Simple TCl-II Verb 225
8.8 Example of a User Conversion Subroutine 226
8.9 Example Using Heading and Footing 227
8.10 Example of a PROC User Exit 228

9 lIST OF ASCII CODES 229

ASSEMBLER

THE ULTIMATE CORP.

Documentation

PROPRIETARY INFORMATION

This document contains information which
is proprietary to and considered a trade
secret of THE ULTIMATE CORP. It is
expressly agreed that it shall not be
reproduced in whole or part, disclosed,
divulged, or otherwise made available to
any third party either directly or
indirectly. Reproduction of this
document for any purpose is prohibited
without the prior express written
authorization of THE ULTIMATE CORP.

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 1

CHAPTER 1

ASSEMBLY LANGUAGE

1.1 Introduction

The ULTIMATE operating system is written mainly in a high-level
assembly language which deals with data in virtual space. Users may
also write their own programs in this language. This manual describes
the ULTIMATE assembly language, the procedures for creating,
assembling, and debugging assembly programs, and guidelines for
interfacing with the operating system.

This manual is intended for persons having some familiarity with the
ULTIMATE computer system and with programming concepts in general. An
introductory manual is available from ULTIMATE which provides an
overview of the system, and separate manuals describe the various
programming languages.

1.2 Characteristics of Assembly Language

Assembly language programming on any computer requires greater
attention to detail, but also provides more control over the machine.
Assembly programs tend to be much longer in source form than
equivalent programs written in a high-level language such as BASIC,
but the generated code is often shorter and more efficient.

Traditionally, assembly languages deal with data in terms of main
memory locations, whereas high-level languages are more abstract. A
variable in a BASIC program, for example, may be assigned a value
without regard to its memory location. The ULTIMATE assembly language
differs from traditional assembly languages in that references are not
made to main memory locations, but to virtual memory locations.

1.3 Virtual Memory

"Virtual memory" in the ULTIMATE system refers to a set of locations
consecutively numbered from zero to over one billion. With few
exceptions, every program and data area in the system has a virtual
memory address. This has an important implication in assembly
language programming: since virtual memory addresses are used, any
assembly program can reference any data in virtual memory. This makes
assembly instructions powerful, but also potentially dangerous.

In contrast to programming in BASIC, for example, programming in
assembly language must be done with much more care. If a BASIC
program works incorrectly, it tends to affect only the terminal on
which it is run or the account on which it was compiled. An assembly
program, however, could affect several terminals, or destroy data
throughout the system. It could even destroy most of the operating
system software, which is itself in virtual memory.

Physically, virtual memory is stored on magnetic disc and brought into
main memory a section at a time on an as-needed basis. This is
discussed in more detail in the next chapter.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 2

1.4 Process Elements

An ULTIMATE computer
multi-processing system
port, plus at least one
spooling.

system is normally configured as a
with one process assigned to each terminal

"phantom" process for tasks such as print

Each process is assigned an area of virtual memory for
assembler-related elements such as registers, stacks, and
accumulators. When a process executes an assembly instruction which
references one of these elements, the reference is always relative to
the beginning of the virtual space assigned to that process. This
allows several processes to execute the same program simultaneously.
The assembly language programmer typically does not need to know the
exact virtual memory address of a process element, since it is defined
at the same relative offset for whatever process is executing.

Processes are discussed in greater detail in the next chapter.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 3

CHAPTER 2

SYSTEM ARCHITECTURE

2.1 Introduction

several different types of
This chapter describes the

identical for all the CPU's.

The ULTIMATE operating system runs on
central processing units (CPU's).
underlying system architecture, which is
An ULTIMATE computer system consists of a
memory or disc, asynchronous communication
and other peripheral devices.

CPU, main memory, secondary
channels to serial devices,

The ULTIMATE operating system software is written in a high-level
assembly language that deals with data in the system's virtual memory
space. The assembly instructions are typically decoded by high-speed
control memory, or firmware. In addition to instruction decoding, the
firmware also aids in virtual memory management, resulting in speed
and efficiency. The virtual memory scheme is geared heavily towards
the data and string handling functions in which the system excels.

2.2 Virtual and Monitor Processes

DEFINITION: A VIRTUAL PROCESS (commonly "process") on the system is
an ongoing task that executes a sequence of assembly level
instructions. It is identifiable by a PROCESS IDENTIFICATION BLOCK
(PIB), which is main memory resident and is uniquely assigned to each
process.

DEFINITION: There is one MONITOR PROCESS (commonly "Monitor"). The
Monitor executes memory-resident programs called the KERNEL, and is
responsible for the following tasks:

a. All IIO scheduling and management.
b. Virtual process scheduling and initiation.
c. Special functions when called via a Monitor Call instruction.

A virtual process is typically attached to one of the asynchronous
communication channels available on the system, and is therefore also
commonly called a "channel" or "port." This provides the user with the
standard interactive interface with the system.

However, a process does not necessarily have to be attached to such a
channel. In this case, the process is referred to as a "background"
or "phantom" process. The print spooler is an example of such a
phantom process.

2.2.1 Activation and Deactivation of Virtual Processes

A process may be ACTIVE or INACTIVE.

The Monitor maintains a
relative priority to be

schedule of available
activated. When the

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP.

processes
Monitor

PAGE 4

and
turns

their
over

control by selecting a virtual process which is next in line and has
no roadblocks to prevent activation, that process is said to be
active.

A process is inactive if it has returned control to the Monitor due to
one of the following events, which cause a roadblock in its execution:

a. When a virtual process makes a reference to data that are not in
main memory - a "frame fault" trap to the Monitor.

b. Execution of any Monitor Call instruction. In the case of many
such calls, when the Monitor has completed the function that it
was called upon to perform, it will reactivate the virtual process
immediately.

c. Execution of a READ (asynchronous channel byte) instruction when
the terminal input buffer is empty.

d. Execution of a WRITE (asynchronous channel byte) instruction when
the terminal output buffer is full.

e. Involuntary termination of execution due to an external interrupt
such as a power-failure or time quantum runout.

I Monitor process I

Transfer
of
control

Activation

/

IVirtual1
Iprocessl
I 1 I

ASSEMBLER

Deactivation
v
--->-

/ I \

/ I \
/ I \

I \
--------- ---------
IVirtual1 IVirtual1
I process I I process I
I 2 I I 3 I
--------- ---------

Copyright 06 JUN 1983
THE ULTIMATE CORP.

etc.

PAGE 5

2.2.2 The Process Identification Block

DEFINITION: A PROCESS IDENTIFICATION BLOCK is a fixed block of main
memory that serves to define the status of a process. It is used by
the Monitor for process scheduling and Input/Output operations
associated with a process, and contains all information necessary for
process activation.

The PIB and its extensions constitute the only elements of
which are always in main memory. All other information
with a process is in virtual space, and can remain on
process is not active.

a process
associated

disc if the

Almost all operations involving PIB's are related either to I/O or to
process scheduling. I/O-related PIB fields contain such information
as asynchronous channel status flags and buffers. Examples of process
scheduling-related fields are the roadblock bits and the PIB links.
The Monitor maintains its process activation schedule by linking
available PIB's together in order of activation. It attempts to give
higher priority to "interactive" processes (those performing terminal
I/O) than to non-interactive or batch-type processes, thus ensuring
acceptable terminal response time.

Word 0 is the primary PIB status byte; bits in this byte are defined
as follows:

Bit Number

0
1
2
3
4
5
6
7
8
9

10

11
12-15

Description

Reserved and zero
Set if process is "sleeping"
Set if process is waiting for disc (due to frame fault)
Reserved for multiple byte input
Reserved and zero
Set if process is outputting over asynchronous channel
Set if process is inputting over asynchronous channel
Set to deactivate process via software ("trap" flag)
Set to indicate process is in assembly Debug mode
Reserved and zero
Set to indicate process is not attached to an
asynchronous channel (phantom process)
Set to indicate input pending (multiple byte input)
Used to communicate trap error number to Debugger

If any of the first eight bits are set, the process is said to be
"roadblocked" and will not be activated by the Monitor.

Other PIB fields are subject to change from configuration to
configuration and from one operating system release to another, and so
are not documented here.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 6

2.3 Virtual Memory

The system is accurately defined as a "virtual machine" because all
data references are directly to the secondary memory. The secondary
memory resides on the DISC SET, which is the set of labeled discs
initialized when the system is bootstrapped. There may be other discs
attached to the system which are not part of the DISC SET, and
therefore not a part of the virtual machine.

Data are read into main memory to perform the actual operations, but
the addressing mechanism at the assembly programming level is directly
to disc.

The "Address Space" of the machine is the entire available disc space.
Every process on the system can address this entire space in exactly
the same manner. Software conventions are used to control and limit a
particular process from using space that belongs to some other
process, but there is no hardware enforced "memory execption" type of
error.

This scheme differs considerably from most other virtual memory
mechanisms, in that the assembly programmer does not have a "virtual
main memory" to deal with. The addressing mechanism is dealt with in
later sections.

Another point to note in this regard is that the disc I/O to the Disc
Set is completely under control of the Monitor. A virtual process
cannot explicitly perform any I/O to these discs. When a virtual
process "writes" data, these are changed in main memory and a flag is
set to indicate that a disc write is required. The actual writing of
the disc happens at some time later as determined by the state of the
memory buffer and the Monitor, and is not easily determinable.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 7

2.4 Memory Map

DEFINITION: A FRAME is a fixed block of data resident on the disc,
which can be transferred between disc and main memory. The size of a
frame is 512 bytes.

All frames are uniquely identified by a FRAME NUMBER or FRAME
IDENTIFIER, also called FlO. Frame numbers start at one and continue
as high as the available disc space in the Disc Set permits. The
physical limit on the frame number is 2**24, or 16,777,215. This
gives a total address space of 2**33, or 8 gigabytes. The frame
numbers map directly into disc addresses.

Transfer of data between the main memory and disc is one frame at a
time. A frame in memory resides in a 512-byte block called a BUFFER.

In main memory, the first few kilobytes are reserved for use by the
Monitor for its resident software, tables etc. Other areas of memory
contain the variable-size memory mapping table, the extent of which is
dependent on the size of main memory. All remaining main memory is
available as buffers for paging disc frames.

In order to manage the main memory, there are several tables that
contain information regarding the buffers. These tables are accessed
by the memory management firmware of the system as well as by the
Monitor software. They are not accessible to the virtual processes.
The protection afforded to the tables is set up by the initial
condition of the tables themselves. Since the memory map indicates
the relationship between a disc address and a main memory location,
the protected areas of memory do not have corresponding disc
addresses, and therefore cannot be addressed by a virtual process.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 8

2.5 Monitor Software

The Monitor software, also called the Kernel, is memory-resident and
is different from virtual software in the following respects:

1. Virtual software is written in assembly code that is usually
decoded by the control memory of the machine, and is tied into the
virtual machine's architecture. Monitor software is usually
written in the "native" language of the machine (Honeywell Level
6, DEC LSI-11, etc.), and must explicitly follow the conventions
of the virtual machine.

2. Monitor software can address any locations in memory directly, and
is responsible for all 1/0, manangement of memory tables, and
virtual process scheduling.

2.5.1 Process Scheduling

The Monitor maintains and uses the PIB links to determine which
process can be activated next. The PIB's are searched starting from
the highest priority downwards, until a process with no roadblocks is
found. The Monitor can then transfer control to this virtual process.

2.5.2 Disc Scheduling

The Monitor keeps a queue of disc addresses, sorted by cylinder
number. This table is affected as follows:

1. When a virtual process generates a "frame fault" request to the
Monitor, the entry is added to the disc queue.

2. When the Monitor needs to find a buffer in memory to read a frame
from disc, and the selected buffer has a "write-required" flag on
it, the buffer is added to the disc queue.

3. When a disc 1/0 completes, the entry is deleted from the disc
queue.

Since the disc queue is sorted by cylinder number, the next disc
request to be selected by the Monitor is always in ascending cylinder
number sequence. When the highest cylinder number in the queue is
reached, the table is searched from the lowest entry upwards again.

When an entry is added to the queue that has the same cylinder number
as that of the current disc location, the new entry is placed before
the current one. This prevents too many requests for the same
cylinder to be processed on one pass thorugh the disc, which may
result in one virtual process being satisfied at the expense of many
others.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 9

2.5.3 Automatic Disc Writes

Whenever the system is idle, the Monitor attempts to "flush" memory by
writing buffers to disc which have their write-required flags set.
This ensures that updated data will be safely on disc in case of a
power failure, which could destroy the contents of main memory.

If uninterrupted, the Monitor will write one write-required buffer at
a time to disc and reset its write-required flag, until memory is
flushed. Various types of interrupts, however, such as frame faults
from virtual processes, can suspend the automatic-write mechanism.
During this time, the disc will be kept busy reading in requested
frames, and writing other frames out as needed on a
least-recently-used basis. When the system again becomes idle, the
automatic-write mechanism will be restarted.

The precise criteria for determining when the system is idle is
subject to variation according to configuration and operating system
release.

2.5.4 Monitor liD

All liD operations initiated at the virtual level, except those to or
from the asynchronous communication channel, are accomplished through
special Monitor calls. Since the format and meaning of these Monitor
calls depends heavily on the particular CPU and peripheral device, no
details are given here. Standard system subroutines are provided,
however, for use with common devices such as tape drives and line
printers.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 10

CHAPTER 3

DATA ADDRESSING

3.1 Information Formats

The system can address information in the following formats:

1. A bit

2. A byte

3. A byte string of indefinite length

4. A word or 16 bits

5. A double-word or 32 bits

6. A triple-word or 48 bits

At the assembly level, such information fields are called "elements"
or "fields," and are given symbolic names just as variables are named
in higher level languages.

For the purposes of this documentation, the following conventions
apply:

1. All numbering starts at zero, and is incremented
Thus bit 0 in a byte is the high-order bit,
low-order bit.

left to right.
and bit 7 the

2. Decimal notation is normally used. When hexadecimal (base
sixteen) notation is used, the hexadecimal number is enclosed in
single quotes and preceded by an X, e.g. X'lF' 31. In
hexadecimal notation, the letters A through F represent the values
of 10 through 15.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 11

3.2 Frame Formats

There are two different formats for a frame: LINKED and UNLINKED.
Note that this distinction is purely logical; there is no objective
way of determining whether a frame on disc is linked or unlinked.
Software conventions determine the usage of any particular frame.

Multiple frames may be physically linked together so as to form a
doubly-linked chain of indefinite length. Once the links have been
established, traversing the data in such a chain is automatic and
transparent since the firmware handles the address resolution as
physical frame boundaries are crossed.

A linked frame has 12
data. File data frames
workspaces.

bytes of link information, and 500 bytes of
are linked, as are the larger buffers or

A frame may be used in an unlinked mode, when all 512 bytes are
accessible as data. This is the case when the frame stands by itself,
and does not logically link to other frames. For example, short
buffers and control blocks are unlinked.

3.2.1 Link Field Format

The following describes the format of a linked frame:

Byte no. I-O-I-1-1-2-1-3-1-4-1-5-1-6-1-7-1-8-1-9-I-A-I-B-I-C-I-D .. .
(Hex) I x I NNI Forward Link I Backward Link I NPI x I data

I I CFI Frame number I Frame number I CFI I bytes

Where:

Byte 0 is RESERVED.

Byte I, "NNCF", is a count that represents the number of sequential
frames linked ahead of this one (Number of Next Contiguous
Frames) .

Bytes 2-5, "FRMN", contain the frame number of the next frame in this
logical set; (These are zero if first frame in set).

Bytes 6-9, "FRMP", contain the frame number of the previous frame in
this logical set. (These are zero if last frame in set).

Byte X'A' (10), "NPCF", is a count that
sequential frames linked previous
Previous Contiguous Frames).

represents the number
to this one (Number

Byte X'B' (11) is unused and is referred to as a "dummy data byte."

3.2.2 Purpose of "NNCF" and "NPCF"

of
of

When a frame boundary is reached, the link information is examined to
determine which frame is to be addressed next. Depending on the
direction of movement in the logical chain, the "forward link" or the

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 12

3.2.3

"backward link" is used to continue in the chain.

If the required address is more than 500 bytes ahead or behind the
boundary of the current frame, the "contiguous" counts playa role.
If the contiguous count is non-zero, it may be used to compute the
next frame to be addressed since it is known that the frame numbers
are contiguous or sequential. That is, one or more intervening frames
may be skipped over.

This scheme obviously results in considerable savings in frame
faulting when indexing into large contiguous blocks of frames, or
skipping over large segments of data in such frames.

It is possible that a frame links to a sequential frame, but that the
NNCF (or NPCF) is zero. While this reduces efficiency, it is not an
error.

Examples of Linked Frames

OUMP L,3000

FIO: 3000 7 3001 2999 120 BB8 7 BB9 BB7 78
+ FIO: 3001 6 3002 3000 121 BB9 6 BBA BB8 79
+ FIO: 3002 5 3003 3001 122 BBA 5 BBB BB9 7A
+ FIO: 3003 4 3004 3002 123 BBB 4 BBC BBA 7B
+ FIO: 3004 3 3005 3003 124 BBC 3 BBO BBB 7C
+ FIO: 3005 2 3006 3004 125 BBO 2 BBE BBC 70
+ FIO: 3006 1 3007 3005 126 BBE 1 BBF BBO 7E
+ FIO: 3007 0 0 3006 127 BBF 0 0 BBE 7F

Above is an example of the tail end of a set of 128 contiguously
linked frames. The first figure in each line is the FIO; the second
the NNCF, the third the Forward Link FIO and the fourth the NPCF.
Figures in parentheses are the same in hexadecimal.

OUMP L,12568

FIO: 12568 o o o o 3118: 0

This frame has no Forward or Backward link fields.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE

o 00)

13

3.3 The Byte Address

DEFINITION: All data are referenced via a
address consists of a FRAME NUMBER and a
frame.

BYTE ADDRESS. This
DISPLACEMENT within

byte
the

The displacement within a frame is relative to the zero'th logical
byte of the frame. There are two methods of addressing data in a
frame, depending on whether the link fields are to be considered or
not.

In UNLINKED mode, physical byte 0 of the frame is addressed by a
displacement of 0, and physical byte 511 by a displacement of 511.
Therefore, in unlinked addressing mode, the boundaries of the frame
cannot be crossed, and all 512 bytes of the frame are addressable.

In LINKED mode, physical byte X'C' (12) of the frame is addressed as
byte I, and physical byte 511 is addressed by a displacement of 500.
Addresses with displacements in the range 1-500 are referred as
"normalized."

Displacements outside this range refer to either previous or forward
frames in the logical chain (assuming that such frames exist), and
such addresses are referred to as "unnormalized." Unnormalized
addresses are automatically resolved and normalized before use by the
firmware. The normalization consists of "chasing the links" in the
appropriate direction until the displacement is reduced to the range
1-500.

If the end of the linked set is reached during the normalization
process, the assembly Debugger is entered with a trap condition
indicating either FORWARD LINK ZERO or BACKWARD LINK ZERO. See the
section on the Debugger relating to system traps for futher details.

3.3.1 Table of Displacements and Addresses

Displacement

Less than 0

o

1-500 Or
1-511

Greater than
above

ASSEMBLER

Linked mode
Address

Unlinked mode
Address

. Refers to previous frames INVALID
in logical chain

Temporary if it refers to the Physical byte 0 of frame
"dummy data byte" in frame
at location X'B'. If normalized,
reverts to last byte of previous
frame in chain.

Physical bytes 12-511

Refers to forward frames in
logical chain

Copyright 06 JUN 1983
THE ULTIMATE CORP.

Physical bytes 1-511

INVALID

PAGE 14

3.4 Registers

DEFINITION: There are two types of registers ADDRESS REGISTERS
(AR's) and STORAGE REGISTERS (SR's). These registers are used to
store byte addresses ONLY. They cannot be used to store numbers or
other data.

An AR or SR contains a frame number (FID) and a displacement, which
results in a pointer or reference to a specific byte in a specific
frame. At the assembly instruction level, data can be addressed only
via an address register. A storage register, as its name implies, is
used to save and restore the byte address of an AR. "Address
register" is often abbreviated simply "register."

The terminology "(byte) address of §:. register" will be used to mean
"the address of the byte that the reqister is referencing.·" This
should not be confused with the actual physical location of the
register itself, which is largely a matter of indifference, since at
the assembly level data references have at least one level of
indirection (i.e., data references are made through address
registers) .

3.4.1 Referencing AR's and SR's

An address register may be referenced directly, that is, by its
register number (O-X'F'). In this case it is the contents, or byte
address, of the register that is being referenced. When an indirect
reference is made to the data pointed at by the register, several
methods apply and these are described later under the section
"Addressing Modes."

The contents of a storage register are referenced via an AR as a base
address, plus an offset to its location. The data that an SR are
pointing to cannot be directly referenced; the SR must first be moved
to an AR for this to be possible.

Following is an example of an instruction that moves the byte address
from an SR into an AR. Both the SR and the AR now point to the same
byte.

MOV sr1,ar2
sr1 is
defined via ar1
and offset1

ar1 ------
1 byte add ress 11

--- ar2 --------
Ibyte address 21

(addresses
byte)

v

Result of MOV
1

1
sr1 ------­

~ +Offset1 -> Ibyte address 21

This path cannot be taken directly ... 1
---> ~ <

Byte now addressed by ar2 and sr1 A

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 15

3.4.2 Attached and Detached AR's

DEFINITIONS: An ATTACHED AR is an address register whose referenced
byte (therefore frame) is both resident in main storage, and whose
physical address has been resolved by the firmware and saved in an
internal hardware register or memory location for use in processing
instructions.

A DETACHED AR is one whose referenced byte (therefore frame) mayor
may not be in main storage, and whose associated hardware register or
memory location is in an unresolved state.

Only an attached AR can use its referenced data.

When a process begins execution, all its AR's are in a detached state.
As a first step, the firmware attaches Registers 0 and 1 by searching
the memory map to determine where in main memory the addressed frames
are stored. If the referenced frames are not in main memory, a Frame
Fault trap is generated to the Monitor.

If the referenced frames are in main memory, execution begins and the
other AR's are attached on a demand basis as needed by the
instructions. That is, the memory management routine in the firmware
is entered as above whenever a detached AR is used to reference data.

A specific AR is detached when a storage register is loaded into it.
It will not be re-attached until a data reference is made by using it
in an instruction.

A specific AR also detaches during the execution of an incrementing or
decrementing instruction that causes its byte address to cross the
logical boundary of the current frame. The memory management routine
is entered to re-attach it to the appropriate frame, and if
successful, execution of the interrupted instruction continues. Byte
string instructions may go through this process repeatedly since
strings may be hundreds or thousands of bytes in length.

All AR's are detached when the process deactivates and returns control
to the Monitor, either voluntarily or involuntarily.

Attachment and detachment of registers is automatic and transparent to
the programmer.

An AR should be loaded in only one way: by moving an SR into it,
which automatically detaches it. It is possible, though not
recommended, to set up an AR by physically affecting its fields. If
this is done, it is vital to force detachment of the AR before
affecting its FID or displacement. The "DETZ r" or "DETO r"
instruction may be used to detach the AR explicitly.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 16

3.4.3 Format of an Address Register

There are sixteen AR's, Registers RO through
bytes in length. An AR contains a byte
previously.

R15; each AR is eight
address as described

1---0---1---1---1---2---1---3---1---4---1---5---1---6---1---7---1
AR 1 see below 1 Displacement 1 Flags 1 Frame Number (FID) 1

Bytes 0 and 1 are used by the firmware in some implementations, such
as that for the Honeywell Level 6 WCS. Along with byte 2, these
bytes are used to store the main memory address when the
register is attached. In other implementations, the main memory
address is stored in a hardware register which is inaccessible
to the programmer.

Bytes 2 and 3 are the displacement field. Warning - the
field contains meaningful data only when the AR
detached state, and therefore should not normally
directly in any way.

displacement
is in the
be changed

Byte 4 is a flag field that contains specific bits as follows:

Bit 0 is the Unlinked mode
is in unlinked mode;

flag; if set, the register's address
if zero, it is in linked mode.

Bit 1 is the Special Attachment flag. If set, and the
displacement is zero, the register will be attached to
reference the dummy data byte (byte at physical displacement
X'B' or 11) in the current frame. If zero, a displacement
of 0 causes normalization and attachment to physical byte
511 of the previously linked frame.

The purpose of this bit is to cause the AR to temporarily
address physical byte X'B' of the frame when one of the
pre-incrementing data movement instructions reaches a frame
boundary. It is then pre-incremented to the first data byte
in the frame as instruction execution continues.

Bits 2-7 are reserved.

Bytes 5-7 contain the frame number of the register's address.

3.4.4 Format of a Storage Register

1---0---1---1---1---2---1---3---1---4---1---5---1
SR 1 Displacement 1 Flags 1 Frame number (FID) 1

As can be seen, the format of an SR is identical to the low six bytes
of the AR. All fields have the same meaning as for an AR, except that
the special attachement flag is not used. When a SR is moved into an
AR, the latter is flagged as detached.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 17

3.5 Registers Zero and One

Address Registers Zero and One have hardware defined meanings.

Register Zero addresses a special frame called the PRIMARY CONTROL
BLOCK or PCB (defined next), which is the basis of all data that a
particular process can access.

Register One is the process' PROGRAM COUNTER.

3.5.1 The Primary Control Block

DEFINITION: The PRIMARY CONTROL
unique to a particular process,
reference that the process can
themselves, the Subroutine Return
other data variables.

BLOCK, or PCB, is a single frame
and is the basis for every data

make. The PCB contains the AR's
Stack, the Accumulator, and various

The FlO of the PCB is determined when the system is initialized. When
the Monitor decides to turn control over to a particular process, its
PCB frame number is obtained from the PIB, and the virtual memory
table is searched for that FlO. If that frame is not in main memory,
the process cannot be activated; the Monitor continues on to other
tasks.

If the frame is resident, Register Zero is attached to byte zero
(unlinked format) of the frame, and this main memory address is saved
in a hardware memory register (inaccessible to the programmer). The
hardware register is then used to reference all other PCB elements,
including the other address registers when they are detached.
Register One is attached first, and the other registers are attached
as needed by the program.

Note that although Address Register Zero is stored in the process'
PCB, it is not actually used at all, since its displacement field is
always assumed to be zero and the FlO is supplied by the Monitor.

The format of the PCB is described later in the chapter SYSTEM
CONVENTIONS.

3.6 Register One

Address Register One has two distinct formats, depending on whether
the process is active or inactive. In the inactive state, Register
One is a true program counter in the sense that it addresses the
location (less one byte) of the next instruction that the process will
execute when it is reactivated.

In the active state, it is set attached to byte zero of the program
frame that the process is currently executing. The real program
counter, which actually addresses the next instruction that the
process will execute, is stored in a special hardware register and is
inaccessible to the programmer.

The purpose of this peculiarity is that since Register One always
addresses byte zero of the current program frame, data in that frame

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 18

may be referenced relatively using Register One as ~ base (see the
section on Addressing Modes below). This is the mechanism used to
address literal text and other data in the program frame.

3.7 Registers Two through Fifteen

Registers Two through
thus are general
conventions assign
locations.

Fifteen have no hardware defined meanings, and
purpose registers. But the system software
Registers Two through Thirteen to specific

Register Two points to another control block, called the Secondary
Control Block or SCB whose frame number is fixed as the PCB FID plus
one. This block contains numerous additional elements that have both
system-defined and variable uses.

The format of the SCB and the conventions regarding Registers Three
through Fifteen are described later in the chapter SYSTEM CONVENTIONS.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 19

3.8 Addressing Modes

The system has four modes of addressing data using the address
registers.

DEFINITIONS:

i. Immediate addressing - The datum is in the instruction itself
(literal), and can be only one byte in length. For example,
MCC C'A' ,R4 where the constant character "A" is stored within the
instruction.

Immediate mode operands are either a single byte to be moved, a
masking field for logical operations or a byte used as a parameter
in a variety of instructions.

2. Direct addressing - Reference is to the AR itself; for example,
MOV R14,R15 where R14 is moved to replace the contents of R15, so
that the two registers are then identical.

3. Indirect Addressing - Reference is to the byte or byte string
addressed indirectly by the AR. There are three sub-modes in this
section:

a. Indirect byte: The addressed byte is located indirectly by
using the byte address of the register.

b. Indirect byte pre-incremented: The addressed byte is located
indirectly by first adding one to the byte address of the
register. The register remains altered.

c. Indirect string pre-incremented: The register's byte address
is successively incremented by one to generate the locations
of a string of bytes. The length of the string is dependent
on the exact instruction, which may specify one of several
terminating conditions. The register is left addressing the
last byte in the string.

4. Relative addressing - The field (variable length, see below) is
addressed via a BASE register and an OFFSET (fixed in the
instruction) to get the resultant address. That is, a function of
the offset is added to the byte address of the AR to get the
effective address. The function used is dependent on the actual
field being addressed and is described later. Only forward
addressing is allowed, and going beyond the boundary of the frame
causes a CROSSING FRAME LIMIT abort condition.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 20

3.9 Symbol Types

All symbols or variable names at the assembly level have an associated
symbol type code. This code indicates the addressing mode of the
variable.

Symbols may be predefined and stored in a file called PSYM. Local
symbols which are defined within a program are stored in a file called
TSYM for the duration of the assembly.

The table below describes the PSYM or TSYM symbol type codes.

Symbol Type Description Addressing Unit of Max displace-
code and length Mode Offset ment from AR

--
B A single Bit Relative Bits 32 bytes=256 ... C A character- 1 byte Relative Bytes 256 bytes
D Double Tally- 4 bytes Relative Words 512 bytes
F F-type Tally- 6 bytes Relative Words 512 bytes

« H Hal f Tally- 1 byte Relative Bytes 256 bytes
L Local label Relative Bytes 256 bytes •
M Mode identifier

(External label)
N Literal Immediate
R Address Register Direct/Indirect
S Storage Register- Relative Words 512 bytes

6 bytes
T Tally- 2 bytes Relative Words 512 bytes

Table of Symbol Type Codes

• Local labels are subject to this limitation only in the SRA
instruction, not when used as targets of a branch, in which case
the branch is to an absolute location in the object code.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 21

bits

3.9.1 Computation of Location from Offsets

Symbols referenced in a Relative addressing mode are addressed via a
base register and an. offset displacement. The resultant address may
be offset up to the limit as mentioned in the table above, though it
may not cross the boundary of the frame that the register is
addressing.

Offsets are fixed in the instruction and are in the range 0-255. The
offset value is derived from the symbol's definition in the symbol
file.

The column "Unit of Offset" indicates the function used to convert the
offset to the effective address.

For example, if the symbol being addressed is a BIT, the offset is
also in bits, so that an offset of 15 would address the 7th bit in
byte 1 displaced from the address of the AR. If the symbol is of type
D, the same offset would address bytes 30 through 33 displaced from
the address of the AR.

Graphically,

Address Register points
to byte

v

bits-1012345671012345671012345671 ... 1012345671012345671012345671012345671
byte-I 0 1 1 1 2 1 1 30 1 31 1 32 1 33 1

Fields addressed >
using same Offset >
of 15 (X'F') >

ASSEMBLER

Bit Tally at bytes 30, 31

Double tally at bytes 30-33

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 22

3.10 Description of Symbol Table Elements

Address registers (type R) and storage registers (type S) have already
been described. Local labels (type L) and mode identifiers (type M)
are described in the next chapter. The other symbol types are
described below.

3.10.1 Bits

Any bit within the first 32 bytes offset from the byte address of a
register may be addressed relatively. Bit instructions may set, zero
or test a bit.

3.10.2 Characters

A type C element is a single character or byte addressed relatively
using a base register and an offset. The difference between
addressing a byte as a type C and addressing it indirectly is that in
the latter case, the register must point to the byte itself; in the
former, it may point up to 255 bytes before it (but in the same
frame) .

3.10.3 Counters or Tallies

Counters or TALLIES contain a signed (two's complement form) integer
which may be used in arithmetic operations.

There are four types of counters:
tallies (Type T), 2 bytes; double
F-type tallies (Type F), 6 bytes.

half tallies (Type H), 1 byte;
tallies (Type D), 4 bytes; and

The half tallies are rarely used, since they can only store numbers
in the range -128 through +127.

The tallies are used most frequently, since their range is -32,768
through +32,767.

Double tallies have a range of
typically used to store FlO's (base
to count items in a file.

-2**31 through +2**31-1 and are
FlO of a file, for instance), and

F-type tallies are used
48-bit precision of the
-2**47 through +2**47-1.

for any arithmetic that requires the full
system, and contain numbers in the range

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 23

CHAPTER 4

THE ASSEMBLER

4.1 Introduction

The ULTIMATE assembly language is a
language which has many instructions
base management.

powerful high-level assembly
designed specifically for data

4.1.1 The Assembler and Related Processors

The ULTIMATE Assembler translates source statements into ULTIMATE CPU
machine language equivalents. The source program, or "mode" is an
item in any disc file. The program is assembled in place; that is,
at the conclusion of the assembly process, the item contains both the
original source statements, as well as the generated object code. The
same item can then be used to generate a formatted listing (using the
MLIST verb) or can be loaded for execution (using the MLOAD verb).
The diagram below illustrates the interaction of the various assembly
functions:

EDit a program --> ASsemble the program
1

---> MLIST to get listing

v
assembly errors

1--> MLOAD to load object code
1--> MVERIFY to verify loaded code
1--> CROSS-INDEX to generate

or changes to source concordance listings

The assembler is table driven and performs two passes over the source
code. During the first pass, all instructions that have undefined and
forward references are flagged as requiring re-assembly. Local labels
are stored in the temporary symbol file during this pass, along with
literal definitions that need to be created.

At the end of pass one, the literals are generated and added to the
end of the current object code. Pass two then re-assembles all the
flagged instructions and concludes the assembly.

The assembly instructions generate object code
length, from one to six bytes. Each instruction
three explicitly defined operands. In addition,
implicitly reference Address Register 15 or the
section describing each instruction mentions such
detail.

that is variable in
may have zero to

some instructions
accumulator. The

"side effects" in

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 24

4.2 Editing a Source Item

Each line in the source item contains a single assembly statement.
The general format of a source line is:

{Label} opcode operand{,operand, ... } {comments}

The source item is entered via the system EDITOR, and is free form.
Several commands are available in the EDITOR to display the source
(and object, if any) in conventional assembly listing format, which
makes editing and modification much easier:

Command

AS

M

S

Q/locni

.................. Description

A switch which causes the assembly listing format to
be turned ON or OFF. Each entry of "AS" toggles this
switch. It may also be called into effect by using the
"A" option when calling the EDITOR. When using this
option, the format of the source as displayed should
not be confused with the format used when inserting or
changing lines, which is free form (described next).
A switch which causes the display of assembler Macro
expansions to be turned ON of OFF. It is initially off.
A switch which causes the display of object code to be
turned ON of OFF. It is intially on.
Is used to locate the line with object code location
"locn". This command is different from the L/stringl
in that it searches only in the object code for the
location matching that specified.

When a program is assembled, macro expansions and the generated object
code are stored along with the source statement using system
delimiters to separate the various components. While editing an
already assembled program, any data beyond the source statement may be
completely ignored, since the assembler examines only the source data
on each line as it performs the assembly; existing object code, etc.
are discarded.

4.2.1 Format of a Source Item

1. The assembler expects the assembler directive FRAME to be on the
first line of the source item.

2. The next five lines (lines 2-6) are conventionally used for
comments concerning the program type, revision level, author, etc.
The assembler will automatically write the assembly date (as a
comment) on line 3, unless this line is initially a non-comment
line.

3. A sequence of unconditional branch (B) statements to the entry
pOints (defined under "Mode-id" below) in the frame follow. This
is called the "branch table."

4. There is no need to specify the END statement at the end of the
program, though conventionally one is placed there for clarity.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 25

4.2.2 Examples of EDIT Display

With the AS function off:

013 SAVEIT MCC R4.R5 MOVE THE TERMINATOR\0056 6450
014 MCC R4.R16 SAVE IT ALSO]*ERR: REF: UDEF. REF:UDEF
015 B OK] B: OK\0058 lE45

(Note the spaces in the first column of lines 14 and 15.)

With the AS function ON, S function OFF and M function OFF:

013 0056 6450
014

SAVEIT

ERR: REF:UDEF. REF: UDEF

MCC R4.R5
MCC R4.R16

015 0058 lE45 B OK

MOVE THE TERMINATOR
SAVE IT ALSO

With the AS function ON, S function ON, M function OFF:

013 SAVEIT
014
015

MCC R4.R5
MCC R4.R16
B OK

MOVE THE TERMINATOR
SAVE IT ALSO

(Note that the error message on line 14 was also suppressed.)

With the AS function ON. S function ON. M function ON:

013 0056 6450
014

SAVEIT MCC R4.R5
MCC R4.R16

ERR: REF:UDEF. REF: UDEF
015

0058 lE45

ASSEMBLER

B OK
+B: OK

Copyright 06 JUN 1983
THE ULTIMATE CORP.

MOVE THE TERMINATOR
SAVE IT ALSO

PAGE 26

4.2.3 Labels

The optional label, if it exists, must start· in column one, and must
begin with an alphanumeric character. It may be up to 50 characters
in length, though for listing formatting purposes, only ten spaces are
reserved. Labels should not contain the following characters: *,1,+.

The label is separated from the opcode mnemonic by a space. If there
is no label, at least one space must precede the opcode. If the label
starts with an asterisk (*), the entire source line will be considered
a comment and will be ignored by the assember.

Labels are locally defined symbols that are used to address locations
in the program or other symbolic types. They must be used as the
target of all instructions that execute a conditional or unconditional
branch.

Examples of valid labels are:

LOOP
TEST.TOTAL
RESTART-X
RESTARTl01

4.2.4 Opcodes

The opcode is separated from the label and the operand(s) by at least
one space. The legal opcodes are defined in the OSYM file, which is
described later.

An opcode may be a machine instruction, a macro definition that
expands to a set of machine instructions, or an assembler directive.

Examples of opcode mnemonics are:

MOV
BCHE
EQU

A specific opcode mnemonic does not determine
since the latter is dependent on the operands
The MOV opcode, for example, allows a number
and each combination produces a different
instructions.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP.

the actual instruction,
used with the opcode.
of different operands,

machine instruction or

PAGE 27

4.2.5 Operands

The operands for the instruction follow the opcode and are separated
from it by at least one space.

An operand may be one of the following:

1. A literal in one of the following forms:

a. A single
C' ABCD' .
adjacent
represent

printable character or a text string: C'x' or
If a single~quote is needed as a literal, two

single quotes must be used; for example, to
the string JOHN'S, the operand would be C'JOHN"S'.

b. A decimal integer: n' , for example, 12 or -1234.

c. A hexadecimal constant: X'xxxx' ; for example, X'FE' or
X'8100FF'. If an odd number of hex characters are used, a
leading zero is assumed to fill the left most nybble.

2. A symbol as predefined in the PSYM file, or as defined in the
label field of the source program.

3. The "current location" function, * This function is used to
specify the current location or address being assembled. The
assembler maintains a byte location counter which is the the
location of the first byte of the current instruction being
assembled. This location advances as instructions are assembled
and can be altered only by the assembler directive ORG (origin).
Specific forms of this function are:

*

*n

Returns the current location in bytes.

Returns the current location in units of "n" bits. For
example, *1 would return the location in bits, *8 is identical
to *, and *16 returns the location in words.

4. A combination of literals or the * function combined with a + or a
Symbols cannot be used in such combinations.

Multiple operands are separated from each other by a comma; no spaces
are allowed within this field except in quoted character literals.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 28

Examples of operand fields are:

MOV 100 ,COUNTER

MOV X'64' ,COUNTER

LABEL EQU *-1

BCHE R15,C'A' ,OK.TO.GO

4.2.6 Comments

The optional comment field follows the last operand and is
unrestricted in length, though again the listing processor will
truncate comments at the end of the defined line length.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 29

4.3 Assembled Object Code

There is no link-editing mechanism
into a specific frame, and must
limitations in mind:

in the assembler.
be written with

A program loads
the following

1. The assembled object code must be less than or equal to 512 bytes
in length (one frame).

2. The frame into which the program is to load must be explicitly
specified with the FRAME assembler directive.

3. All interframe linkages must be explicitly established and coded.
Branches outside the current frame use different opcodes than
local branches, though the mnemonic for subroutine calls is
identical whether the destination is local or in another frame.

4. The first executable location in ~ frame is the byte at location
one (unlinked format), not zero. The FRAME assembler directive
also sets the assembler's location counter to one for this reason.
Byte zero can be used for storage (remember Address Register One
points there); to do so, the ORG assembler directive must be used
to reset the location to zero and store a byte there.

4.3.1 The Mode-id

DEFINITION: A MODE-ID is a sixteen-bit field (therefore a tally can
store it) which has a four-bit entry point and a twelve-bit FlO. It
is an encoded address to which execution control can be transferred
via the ENT (external branch) or BSL (external subroutine call)
instructions. The actual location addressed is twice the entry point
number plus one.

Up to sixteen entries to a frame of object code are allowed;
typically there are unconditional branch (B) instructions forming an
entry table (called the Dbranch tableD) at the beginning of each
program. This allows the program body to be changed and reassembled,
without affecting the entry pOints - an important concept.

strictly speaking, for safety, there should be sixteen branches even
if not all of them are used; in practice, only as many branches as
are being used need be present.

A mode-id may be defined by the DEFM assembler directive, which
defines a symbol, or by the MTLY directive, which defines a symbol and
reserves storage in the program for the mode-id. For example,

EXT.SUB DEFM 4,500

defines the symbol EXT.SUB as a mode-id whose value is entry point
four in frame 500, and is therefore byte nine in that frame.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 30

Following are further examples of the relationship between the mode-id
and the value of the resultant address:

Mode-id Entry point Addressed Location
{FlO. location}

01FF 0 511.1
11FF 1 511.3
21FF 2 511. 5

F1FF F (15) 511 .1E

A typical sequence at the beginning of an assembly program is shown
below:

Line Object code Label Opcode Operand(s) Comments

001 0001 7FFF01FF FRAME 511 Establish frame# for MLOAO
002 * Note: lines 2-6 are comments
003 *21 MAY 1983
004 *
005 * Note: the sequence of unconditional branch
006 * instructions (B) , below, must be the first
007 * ones that generate object code.
008 0001 1E34 B START Entry point a - location
009 0003' 1F22 B CaNT Entry point 1 - location
010 0005 1E88 B SUBR1 Entry point 2 - location
011 * ---- end of branch table ... _------
012 0007 31 CHAR.A CHR C'A'
013 0008 START EQU * First inst. For entry 0

etc.

4.4 Usable Frames

Since code has to be loaded into a specific frame, the user should be
extremely careful to ensure that the selected frame is free. It is
almost, but not quite impossible to determine from a DUMP of a frame
whether any legal object code exists in it or not; sometimes the disc
formatter leaves a readily recognizable pattern in unused frames.

Note that the frame number is only twelve bits, and therefore
executable object code can only be loaded in frames 1-4095.

User written code can reside in frames 400 through 599*; but widely
used utilities and routines cut down on the available space.

* Specific to release level; check with ULTIMATE to be sure.

ASSEMBLER
Copyright 06.JUN 1983

THE ULTIMATE CORP. PAGE 31

1
3
5

4.5 Calling the Assembler

The assembler is called by the statement:

AS program-file-name {item-list} {(options)}

which will assemble the item(s) in the file specified. Since the AS
verb is a TCL-II type, the "item-list" above may be one or more
explicit item-ids, an "*" to specify all items in the file, or may be
omitted if the AS statement is preceded by a SELECT, SSELECT, GET-LIST
or QSELECT statement. See the RECALL manual for a complete
explanation of the interface with these statements.

The AS verb requires the three files OSYM, PSYM, and TSYM to be
defined for the user's account. OSYM and PSYM are typically
Q-pointers to the ULTIMATE-supplied OSYM and PSYM files, but TSYM must
be created for each account. These files are discussed in more detail
in later sections.

If there are any assembly errors, the assembler will enter the EDITOR
so that the program may be conveniently corrected for reassembly.

"options" are enclosed in parentheses and are single alphabetic
characters as shown in the table below:

Option

E

L

N

P
Z

Description

When used in conjuction with the L option, specifies that
an "errors-only" listing is to be produced.
Generates a listing (equivalent to the MLIST verb)
during assembly.
Inhibits waiting at end-of-page during listing (for
multiple-item assembly and/or hardcopy terminals);
useful in conjunction with Z option.
Routes listing output to the print spooler.
Specifies that, if assembly errors are found, the EDITOR
is not to be entered. Normally, this is used when multiple
items are being assembled, and the assembly is not to stop
on encountering an error in any item.

As the assembler processes, it outputs an asterisk (*) as every ten
source statements are assembled. At the end of pass one a new line is
started and an asterisk is printed for each ten statements
reassembled.

Examples:

AS SM PROGI
****************** < output from assembler

[236] NO ERRORS

AS SM PROGI PROG2 (L,P)

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 32

4.6 Listing Output

The listing processor may be called by the statement:

MLIST program-rile-name {item-list} {(options)}

where item-list and option rormats are as speciried ror the AS verb.

Options are:

Option Description

E Prints error lines only; also enters the EDITOR ir any
errors are round.

M Prints macro expansions or source statements.
N

P
Inhibits stop at end or page ir listing is to terminal.
Routes output to the print spooler.
Suppresses the display or object code. S

Z
n-m

Inhibits EDIT entry when E option is speciried.
Restricts listing to line numbers n through m inclusive.

The listing is output with a statement
object code and source code, with the
comment fields aligned. A page heading is
new page.

number, location counter,
label, op-code, operand and

output at the top or each

Errors, ir any, appear in the location counter/object
macro expansions appear as source code ir not suppressed,
operation codes prerixed by a plus sign (+).

code area;
with the

Examples:

MLIST SM PROG1 (P)

SELECT SM WITH CLASS "RECALL"
MLIST SM (P,M)

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 33

4.7 Assembly Errors

Assembly errors are stored along with the source line causing the
error. If undefined symbols exist, the last line of source will also
have a list of undefined symbols stored as a message. If any assembly
errors are found, the Editor is entered as a convenience to correct
the source, unless the Z option was used in the assembly .

Error Message

OPCD?
OPRND REQD
ILGL OPCD: xxxx

MUL-DEF
REF: UDEF
TRUNC

UNDEF: xxx {,xxx .. }

. Description

The opcode mnemonic is missing.
The instruction is missing at least one operand.
Either the opcode mnemonic is not valid,
OR the operands specified are not valid for
this opcode.
The label is multiply defined.
The instruction references an undefined symbol.
An operand is out of range; typically this occurs
when a program exceeds the size of a frame and an
instruction tries to reference an assembler-generated
literal beyond location X'IFF'.
List of undefined symbols found.

The following additional error messages:

FRMT. A-FIELD FRMT. B-FIELD OPCD TYP

are due to errors in the OSYM file definitions.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP.

MACRO DEF

PAGE 34

4.8 Loading a Program Mode

The assembled mode may be loaded into the frame specified by the FRAME
opcode by using the statement:

MLOAD program-file-name {item-list} {(options)}

If the load is successful, the message:

[216] MODE 'item-id' LOADED; FRAME nnn SIZE sss CKSUM

is returned, where

nnn is the three-digit number of the frame into which the mode
has been loaded. The number nnn is expressed in decimal.

sss is the number of bytes of object code loaded into the
frame, expressed in hexadecimal (base sixteen) notation.

cccc is the byte checksum for the object code in the loaded mode.

cccc

The mode will not load correctly if its size exceeds 512 bytes, or if
a FRAME statement is not the first statement assembled in the mode.
In either case, a message will be returned indicating the error.

Options are:

Option

E
I
N

P

ASSEMBLER

Description

Only messages relating to errors will be printed
Item-id's will be printed if more than one is MLOADed
Load inhibited but message printed.
Routes message output to the print spooler.

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 35

4.9 Verifying a Loaded Program Mode

The MVERIFY verb may be used to verify previously loaded object code
against the assembled source item. Its format is:

MVERIFY program-file-name {item-list} {(options)}

Options are:

Option Description

See below A

E
I
P

Only messages relating to errors will be printed
Item-id's will be printed if more than one is MVERIFYed
Routes message output to the print spooler.

The A option may be used to display All error bytes.

Examples:

MVERIFY SM EXAMPLI

[217] MODE 'EXAMPLl' VERIFIED; FRAME 511 SIZE - IFB CKSUM - A03C

MVERIFY SM EXAMPL2

014 OC 18
[218] MODE 'EXAMPL2' FRAME = 511 HAS 78 MISMATCHES

The first example
the system informs
have a value of
displayed.

verifies, but the second does not. In example 2,
the user that the first byte at location 14 should
OC, not 18. The other mismatching bytes are not

If the A option is used, each byte in the source file which mismatches
will be listed, followed by the value in the executable frame. For
example:

MVERIFY SM EXAMPL2 (A)

LOC SB AB LOC SB AB
014 OC 18 015 13 17

LOC SB AB
016 OE OD

LOC
017

SB AB
3A 3C

[218] MODE 'EXAMPL2' FRAME 511 HAS 78 MISMATCHES

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 36

4.10 Symbols

A symbol is a named reference to one of the fields that can be
addressed by the system. The symbol name is of the same format and
has the same restrictions as the previously defined Rlabel R field.

A symbol may be:

1. A globally defined symbol, stored in the Permanent Symbol Table
file (PSYM).

2. A locally defined symbol, one that appears in the label field of
the current program. A symbol may either be merely defined in the
program for local usage, or may also reserve storage in the object
code (such as literals).

For example, the instruction:

COUNTER DEFT R4,5

defines COUNTER as a symbol of type T, with a specific base
register of 4 and an offset of 5; whereas the instruction:

COUNTER TLY 1234

defines it implicitly at the current location in the object code,
and stores a value of 1234 at that location in the object code.
This is now a literal in the program.

3. A shared symbol, one that appears in the label field of a program
that is named in an INCLUDE assembler directive in the current
program.

The main reason for the INCLUDE directive is to be able to place a
set of shared definitions in one item, and then use the
definitions in any other program. Typically, variables and
mode-id's that are local to a set of programs are placed in a
single program for inclusion during assembly. The advantage of
this method is that the definitions are not duplicated in every
program that uses them. Such duplicate definitions can lead to
errors and are in general more difficult to maintain than if they
were all in one program.

The format of the INCLUDEd program is identical to that of any
other program, though typically it consists of only DEFx
(definition) assembler directives.

4. An immediate symbol, defined in a later section.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 37

4.11 The PSYM File

The PSYM is a file that contains the set of permanent or global
symbols available to all assembly programs. While symbols in the PSYM
may be redefined locally in a program, it is best to treat all the
symbols in the PSYM as reserved.

Entries in the PSYM file have two or three attributes of data, and the
general format is described below.

The first line in an entry is the SYMBOL TYPE, which is described in
the previous chapter. The symbol type is a single alphabetic
character which determines the method used by the system to address
the field and determines its usage and length, if applicable.

The various symbol types are described in the following table:

Item-id: I symbol-name I symbol-name I symbol-name I symbol-name
I I I I

Line 1 (type) IB/C/D/H/L/F/S/T I R I M I N
I I I I

Line 2 * IOffset I Register IEntry point I Literal
I I number Inumber Ivalue
I I I I

Line 3 * IBase register I (unused) IFrame number I (unused)
I number I I I

* - values are in hexadecimal.

4.12 The TSYM File

The TSYM is a file that contains the set of symbols local to a
program. It is always cleared by the assembler before the start of
each assembly.

program, it stores the
a reference is made to an

the TSYM file. Undefined
if they are later found in

As the assembler finds labels in the source
label in the TSYM file for future use. If
undefined symbol, it is also stored in
symbols are converted to defined symbols
the label field of a source statement.

The format of the entries in the TSYM file is identical to that of
entries in the PSYM file.

A symbol in the TSYM file overrides a corresponding symbol in the PSYM
file, that is, local definitions override global ones.

Warning - only one user can use the assembler on the same account at
the same time, because the TSYM cannot be shared. Each account should
have its own TSYM file, and not a Q-pointer to another account's TSYM.

Due to the method that the assembler uses in generating literals, a
program loaded and then reassembled with a different TSYM MODULO will
not MVERIFY, even though the source statements are identical.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 38

4.13 CROSS-INDEX Verb

The TCL-II verb CROSS-INDEX is used to create a cross-reference of all
symbols used in a program or a set of programs. It requires a file
called CSYM. The format is:

CROSS-INDEX programe-file-name item-list {(options)}

The result of the verb is a set of items in the CSYM file. For each
item, the item-id is the program name; each of the next ten lines
contains multi-valued references to symbols of a specific type.

Attribute#

1
2
3
4
5
6
7
8
9

10

Contains references to symbols of type

B Bits
C Characters
H Half tallies
T Tallies
D Double tallies
F F-type tallies
S Storage registers
R Address registers
M Mode-id's
N Literals or constants

Symbol references are only checked in the PSYM file. To
cross-reference local definitions (such as from an INCLUDEed program)
as well as the standard global definitions, a temporary PSYM file
containing both the global and local definitions must be created.
This is best done on an account other than SYSPROG, to avoid
destroying the standard PSYM. All items in the regular PSYM file
should be copied into the temporary PSYM. Then the INCLUDEd program
should be assembled, and all items in the TSYM file copied into the
temporary PSYM.

Example of CROSS-INDEX:

CROSS-INDEX MODES *

This statement will cross-index all items of the MODES file.

Below is an example of an item in the CSYM file. The item-id, DLOAD,
is the name of a program. The numbers following the symbol names are
the number of times that the symbol is referenced.

DLOAD
001 LISTFLAG 001]RMBIT 002
002 CH8 001
003 NNCF 002
004 CTR1 002]MODULO 007]OBSIZE 001]RSCWA 001]SEPAR 010]TO 001]T4 003
005 BASE 008]DO 001]OVRFLW 001]R15FID 001]RECORD 005
006 FP1 001
007 BMSBEG 001]CSBEG 001]ISBEG 002]OBBEG 001]S2 002
008 CS 006]IS 021]OB 005]R14 003]R15 006]TS 001
009 CRLFPRINT 001]CVDR15 003]CVTNIS 002]GETBLK 001]LINK 001]MBDNSUB 003
010 AM 002

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 39

4.14 X-REF Verb

The TCl-II X-REF verb uses the CSYM file as updated by the CROSS-INDEX
verb for input. X-REF creates a cross-reference listing by symbol
name in the XSYM file, with program names as data (as opposed to the
CSYM file entries, which are by program name, with symbol names as
data). For each XSYM item, the item-id is the symbol name; the only
attribute is a multi-valued list of program names. The XSYM may be
listed to produce a "where-used" listing of symbols.

The format is:

X-REF CSYM-file-name item-list {(options)}

Example:

X-REF CSYM •

would cross reference all items of the CSYM file.

SORT XSYM REFERENCES NONCOl (P)

would produce an alphabetical non-columnar listing on the
printer.

The following is an example of a partial listing:

XSYM : ABIT
REFERENCES EDIT-I

XSYM : AF

EDIT-II EDIT-III

REFERENCES ASTAT WRAP-III EDIT-I EDIT-III

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 40

line

4.15 The OSYM File

The OSYM file contains the set of defined opcode mnemonics. The
item-id of an entry in this file has one of two forms:

1. The opcode mnemonic itself; for example, B for Branch.

2. The opcode mnemonic concatenated with the symbol type of each
operand. For example:

Source line Resultant OSYM entry

MOV R14,R15 MOVRR
Symbol types -> R R

MOV ISBEG,IS MOVSR
Symbol types -> S R

The purpose of this is both to distinguish between different
opcode-operand combinations which may generate completely
different machine instructions, as well as to validate the operand
list. For example, the MOV opcode with operands of types Band H
would result in an OSYM file lookup of MOVBH, which is nonexistent
and therefore invalid.

4.15.1 Format of OSYM file entries

Line one of each OSYM file item contains a code. The valid codes are:

P - Primitive; the following lines in the item are used to generate
object code or perform other symbol manipulation functions.

M - Macro; each succeeding line in the item is used to generate a new
source line that is in turn assembled just as any source line.

Q - Synonym; the following line in the item is used as an item-id in
the OSYM file to continue processing. This is used to "link" from
one item to another to save duplicate definitions.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 41

4.15.2 Argument Field

For the purpose of the next
field" (AF) is used to refer
statement being assembled.
opcode as AF(I), and operands

few sections, the terminology "argument
to the fields in the original source
The label is addressed as AF(O), the
as AF(2) through AF(9), if they exist.

For example, in the following source statement:

LOOP BCE Rll,C'A' ,STOPIT

the following AF equivalences are established:

AF(O)
AF(I)
AF(2)
AF(3)

LOOP
BCE
C'A'
STOPIT

4.15.3 Primitive Definition Lines

Each line in a Primitive OSYM definition is as follows:

G,a1,a2, ... b1,b2, ...
or

(The "a" and "b" fields
are separated by one space)

R,al b1,b2 ...

The G line performs the actual object code generation. There is a
one-to-one correspondence between the "a1", "a2", etc., and the "bl",
"b2". The "aU's are bit counts, and refer to the size in bits of the
object code to be generated by the corresponding "b" expressions. The
sum of the "a" fields must be a multiple of 8, and must be in the
range 8-32.

The "b" field expressions may be:

n A decimal constant.

X'hh' A hexadecimal constant.

=c A single byte character constant.

*{n} Current location counter, where n is as defined previously
in the section on Operands.

An;m

B

Exxxx

References AF(n), and returns the value from the m-th line
of the symbol file defintion if it is a symbol, or the
value of the literal if it is a constant.

Current "base" register (see "Literals" below).

Exit to assembly subroutine whose mode-id is xxxx.

In Returns branch (or jump) address of local label referenced
by AF(n).

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 42

The R line is used to redefine a temporary symbol file entry. The
symbol file item is referenced using AF(a1) (normally, a1 is zero, to
reference the label field of the source statement). Successive lines
in the symbol file entry are replaced with the data generated by the
expressions "b1", "b2", etc.

4.15.4 Macro Definitions

A Macro definition has the character "M" on line one of the OSYM file
item. Each succeeding line generates a new line of source. All text
in the macro definition is literal and copied without change, except
for the following:

(n) References AF(n), which is copied to the source line.

(*) References ALL AF entries, starting with AF(2). This may be
used to copy all references to the macro-generated source line.

(L), (L+n) or (L-n)
If present in the label field of the macro-generated statement,
this will create a unique label by incrementing the macro's
internal label count, and storing that as the generated label.
The +n and -n forms are not allowed here.

If not in the label field, the current internal label count,
modified by the +n or -n, is used to generate a label.

For example, suppose a new instruction is to be created with the
format:

RANGE x,low,high,label

where the instruction tests "x" (a signed integer) to see if it is in
the range between "low" and "high", and branches to "label" if so. An
example of this instruction, its OSYM MACRO definition, and the
generated code would be:

RANGE CTRO,CTR1,CTR2,INRANGE

OSYM file format Generated source code
(Macro label count = 14 at start)

RANGETTTL
001 M
002 BL (2), (3), (L+1)
003 BLE (2), (4), (5)
004 (L) EQU *

BL CTRO,CTR1,=L15
BLE CTRO,CTR2,INRANGE

=L15 EQU *

Note that this is in the label field because no space
precedes the "(no

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 43

4.15.5 Examples of OSYM Entries

Example 1.
Original source line:

OSYM file entry: MCICR
001 M
002 INC (3)
003 MCC (2), (3)

Resultant macro source statements:

Example 2.
Source line:

PSYM file entries:

OSYM file entry: MeeCR
001 P

MCI SCO,R11

INC R11
MCC SCO,R11

MCe seo, Rll

seo Rll
001 C 001 R
002 3 002 B
003 0

002 G,4,4,8,4,4 13,A2;3,A2;2,1,A3;2

Object code generation:
a-field b-field expression Symbol Ref Result

4 13 D
4 A2;3 seo 0
8 A2;2 seo 03
4 1 1
4 A3;2 Rll B

Final result: D0031B

Example 3:
Source line: NEW DEFH 4,5

PSYM file entries: (none)
OSYM file entry: DEFHNN

001 P
002 R,O =H,A3;2,A2;2

TSYM file entry:

(=11 decimal)

Before instruction* After instruction
NEW

001 L
002 xxxxxxxx
003 1

NEW
001 H
002 5
003 4

* Note - symbol NEW in the TSYM was stored as type L (for label),
offset equal to the current location (shown as "xxxxxxxx"), and base
register of 1, before the instruction redefined it.

ASSEMBLER
Copyright 06 JUN :983

THE ULTIMATE CORP. PAGE 44

4.16 Literals

The assembler will automatically assemble certain types of literals.
Such literals are fields that can be addressed via a base register and
an offset displacement. When a program is executing, Address Register
One pOints to byte zero of the frame. Therefore, this may be used by
the assembler as the default base register to address literal fields
that it creates and stores in the frame.

Tallies of type T and D may be generated. The reason that half
tallies are not is that half tallies can only be offset up to 255
bytes from the base register's address, and literals are only
generated at the end of the object code. If the object code is
greater than 255 bytes, half tally literal. will cause a truncation
error if generated. F-type tallies cannot be generated automatically
due to an assembler limitation. If a program needs to use half or
F-type tally literals, they must be defined explicitly with the HTLY
or FTLY instructions.

The mechanism used to generate literals is as follows:

An instruction that needs a literal must be a macro that references a
symbol of the form:

=xvalue

where NXN is a T or D (symbol type). The assembler stores this symbol
(if not already present) as an undefined type in the TSYM file. At
the end of pass one, the TSYM is searched sequentially for undefined
symbols that match the above pattern, and the literals are assembled.
This is done by internally generating source statements using special
opcodes of the form N:XN, which actually generate the literal and
redefine the symbol to the correct type and location.

Examples of literal generation are on the next page.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 45

------------------------ step 1

Source line:

PSYM file entries:

OSYM file entry MOVNO
001 M
002 MOV =0(2) ,(3)

MOV 100,COUNTER

COUNTER
001 0
002 IF
003 0

------------------------ Step 2 -----------~--------------

Resultant macro source statements: MOV =0100,COUNTER

TSYM file entry:

OSYM file entry: MOVOO
001 P

=0100
001 U
002 0
003 1

002 G,4,4,8,4,4,8 15,A3;3,A3;2,8,A2;2,A2;2

Resultant object code: F100801F
[Flagged for reassembly because symbol =0100 is undefined]

------------------------ Step 3

At the end of pass one, an internal source statement is assembled:

Source line:

OSYM file entry: :0
001 P

=0100 :0 100

002 E: 101B <-- Forces Word alignment in object code
003 R,O =0,*16,B
004 G,32 A2;2 <-- Generates double tally object code

Resultant object code: 00000064

TSYM file entry:
Before instruction After instruction*

=0100 =0100
001 U
002 0
003 1

001 0
002 xxx
003 1

* where "xxx" is the offset appropriate to the current location.

------------------------ Step 4 --------------------------

The MOV 100,COUNTER instruction is reassembled on pass two.

ASSEMBLER
Copyright 06 JUW 1983

THE ULTIMATE CORP. PAGE 46

4.17 Immediate symbols

Normally, a symbol must be predefined in the PSYM file, or must appear
as an entry in the label field of the program or in an INCLUDEd
program.

There is an ability to define an "immediate symbol" as an operand.
The purpose of this is when a symbol is only used once and it is
simpler than having to define the symbol in a separate line. These
symbols are not recommended, however, except to reference bits, since
they have a quirk in their syntax that makes them different from the
PSYM/TSYM equivalents. They are documented here for compatibility
only.

The general form of an immediate symbol is:

Rn;xm

where Rn is a base register designator (RO - R15);

x is the symbol type (B, C, D, F, H, S or T);

m is a decimal value that generates the offset displacement:

Offset displacement = m • field.length

In other words, m is the displacement in units of immediate symbols.
For example, the immediate symbol RO;B32 addresses bit 32 displaced
from RO; and R2;T10 addresses the tally displaced from R2 at bytes 20
and 21 (same as PSYM/TSYM entries). But R2;D10 addresses the double
tally displaced from R2 at bytes 40 through 43 (not 20 through 23).

Following are examples of immediate symbols and
DEFinition instructions (see the DEFx assembler
chapter on the Instruction Set):

Immediate Displacement from Equivalent DEF
Symbol Base Register Instruction

RO;BO 0 HIBIT DEFB
R15;B7 7 LOBIT DEFB
R2;C100 100 CHARACT DEFC
R15 ;T10 20-21 TALLY DEFT
RO;D10 40-43 DTALLY DEFD
RO;S10 60-65 STORAGE DEFS
RO;F15 90-95 FTALLY DEFF

their equivalent
directive in the

RO,O
R15,7
R2,100
R15,10
RO,20 ! ! !
RO,30 ! ! !
RO,45 ! ! !

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 47

CHAPTER 5

INSTRUCTION SET

5.1 Introduction

This chapter documents the set of assembly instructions. The
instructions are in alphabetical order, and are summarized in the next
section by function.

Instruction formats show the opcode mnemonic in capitals, with the
operand types in lower-case letters. An instruction is determined
only in conjunction with its operand types. The MOV mnemonic, for
instance, produces a number of different object code equivalents
dependent on the exact operand combination. Operand types correspond
to the SYMBOL TYPES that were described in the last chapter. They are
summarized below:

Symbol type code Description

b A relatively addressed BIT
c A relatively addressed CHARACTER
d A relatively addressed DOUBLE TALLY (32 bits)
f A relatively addressed F-TALLY (48 bits)
h A relatively addressed HALF TALLY (8 bits)
I A locally defined label
m A MODE-ID (16 bits)
n A constant or literal (variable)
r An ADDRESS REGISTER
s A STORAGE REGISTER
t A relatively addressed TALLY (16 bits)

The symbols SM, AM, VM, and SVM denote the "system delimiters" Segment
Mark (X'FF'). Attribute Mark (X'FE'), Value Mark (X'FD'), and
Sub-value Mark (X'FC'), respectively.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 48

5.2 Summary of Instructions

1. Bit instructions

BBS
BBZ
MOV
SB
ZB

Branch if bit is SET (one)
Branch if bit is ZERO
Move bit operand.1 to bit operand.2
Set bit to one
Clear bit to zero

2. Single character instructions

AND
BCA BCNA
BCE
BCH BCHE

BCL BCLE

BCN BCNN
BCU
BCX BCNX
MCC
MCI
MDB
MIC
MII

MXB
OR
READ
SHIFT
WRITE
XCC
XOR

Logical AND of character
Branch if operand. 1 is (is not) alphabetic (A-Z, a-z)
Branch if operand. 1 is EQUAL to operand.2
Branch if operand. 1 is HIGHER than (or EQUAL to)
operand.2
Branch if operand. 1 is LESS than (or EQUAL to)
operand.2
Branch if operand. 1 is (is not) numeric (0-9)
Branch if operand. 1 is UNEQUAL to operand.2
Branch if operand. 1 is (is not) hexadecimal (0-9, A-F)
Move operand. 1 to operand.2
Move pre-incremented operand.1 to operand.2
Convert one ASCII binary character
Move operand.1 to pre-incremented operand.2
Move pre-incremented operand.1 to pre-incremented
operand.2
Convert one ASCII hexadecimal character
Logical OR of character
Read asynchronous channel buffer
Right shift of character
Write asynchronous channel buffer
Exchange characters
Exclusive OR of character

3. String character instructions

BSTE
MBD
MBX MBXN
MIID
MIIDC
MIIR
MIIT
MIITD
MFD MSDB
MFX MSXB
SICD
SID
SIDC
SIT
SITD

ASSEMBLER

Branch if delimited strings are EQUAL
Convert binary to decimal ASCII
Convert binary to hexadecimal ASCII
Move string until DELIMITERs
Move string until DELIMITERs, counting bytes
Move string until REGISTER address equivalence
Move string until TALLY runout
Move string until DELIMITERs or TALLY runout
Convert decimal ASCII string to binary
Convert hexadecimal ASCII string to binary
Scan string over multiple DELIMITERs
Scan string until DELIMITERs
Scan string until DELIMITERs, counting bytes
Scan string until TALLY runout
Scan string until DELIMITERs or TALLY

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE

runout

49

Summary of Instructions continued

4. Register instructions

DEC
DETO DETZ
BE
BU
FAR
INC
LAD
MOV
SRA
XRR

Decrement register by ONE or by operand
Detach a register
Branch if register.! is EQUAL to register.2
Branch if register.! is UNEQUAL to register.2
Force attachment of a register
Increment register by ONE or by operand
Load absolute address difference
Move register operand.! to register operand.2
Set register to address
Exchange address registers

5. Arithmetic instructions

BDHZ BDHEZ

BDLZ BDLEZ

BDNZ BDZ

BE
BH BHE
BHZ BHEZ
BL BLE
BLZ BLEZ
BNZ BZ
BU
ADD ADDX
DIV DIVX
DEC
INC
LOAD LOADX
MOV
MUL MULX
NEG
ONE
STORE
SUB SUBX
ZERO

Branch if operand.!, decremented by ONE or by
operand.2, is HIGHER than or EQUAL to ZERO
Branch if operand.!, decremented by ONE or by
operand.2, is LESS than or EQUAL to ZERO
Branch if operand.!, decremented by ONE or by
operand.2, is NONZERO or ZERO
Branch if operand.! is EQUAL to operand.2
Branch if operand.! is HIGHER than (or EQUAL to) operand.2
Branch if operand is HIGHER than (or EQUAL to) ZERO
Branch if operand.! is LESS than (or EQUAL to) operand.2
Branch if operand is LESS than (or EQUAL to) ZERO
Branch if operand is NONZERO (or ZERO)
Branch if operand.! is UNEQUAL to operand.2
Add operand into accumulator
Divide accumulator by operand
Decrement operand by ONE, or operand.! by operand.2
Increment operand by ONE, or operand.! by operand.2
Load accumulator from operand
Move operand.! to operand.2
Multiply accumulator by operand
Negate operand
Set operand to ONE
Store accumulator in operand
Subtract operand from accumulator
Set operand to ZERO

6. Control instructions

B
BSL
BSL*
BSLI
ENT
ENT*
ENTI
HALT
NOP
RQM
RTN
SLEEP

ASSEMBLER

Branch to local label
Subroutine call to local or external
Subroutine call indirect to external
Subroutine call indirect to external
Branch to external label
Branch to external label· indirect
Branch to external location indirect
Halt program
No operation
Release process' time quantum
Return from subroutine

label
label·
location

Put process to sleep until specified time

Copyright 06 JUN !983
THE ULTIMATE CORP. PAGE 50

Summary of Instructions continued

7. Assembler directives

ADDR
ALIGN
CHR
CMNT
DEFx
DTLY
EJECT
END
EQU
FTLY
FRAME
HTLY
INCLUDE
MTLY
ORG
SR
TEXT
TLY

8. Miscellaneous

SET.TIME
TIME

ASSEMBLER

Create storage of type S
Align location counter on word boundary
Create storage of type C
Insert comment
Define symbol of type x
Create storage of type D
Eject a page in the MLISTing
Indicate end of program
Equate literal to label, or two symbols
Create storage of type F
Define Frame number for object code loader
Create storage of type H
Include a program for shared symbol definition
Create storage of type M
Reset assembler's location counter
Create storage of type S
Store textual data
Create storage of type T

Set system time and date
Get system time and date

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 51

5.3 ADD ADDX - Add to Accumulator

Function: Accumulator = accumulator + relative.operand

These instructions add the contents of the operand to the accumulator.

Arithmetic overflow or underflow cannot be detected.

The following shows the format of the accumulator and the symbolic
names that address various sections of it:

Byte no. :
in PCB

8 I 9 A I B I C I D I E I F

<----------- FPO ---------> <­
<------ D1 -----> I <------ DO -~---> <­
<- T3 ->1 <- T2 ->1 <- T1 ->1 <- TO ->1 <­

H71 H61 H51 H41 H31 H21 H11 HOI <-
B63 BO

ADD

6-byte field
4-byte fields
2-byte fields
1-byte fields
<- bits

The operand is added to the four-byte field DO. One- and two-byte
operands are internally sign-extended to form a four-byte field before
the operation takes place. Neither the original operand nor other
sections of the accumulator are affected.

ADDX

The operand is added to the six-byte field FPO. One-, two-, and
four-byte operands are internally sign-extended to form a six-byte
field before the operation takes place. Neither the original operand
nor other sections of the accumulator are affected.

Formats: ADD d
ADD h
ADD n *
ADD t

ADDX d
ADDX f
ADDX h
ADDX n
ADDX t

* Note: These instructions using a literal normally generate a
two-byte field. If the literal is outside the range -32,768 through
+32,767, an operand of the form =Dxxxx should be used to generate a
four-byte literal (for example, =D40000 or =DX'FC000022'). Six-byte
literals must be separately defined using the FTLY instruction.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 52

5.4 ADDR Assembler Directive

Function: All symbols
a symbol type-code;
storage and sets up
(storage Register).

ADDR
or variable names used as operands must have

this is an assembler directive that reserves
the symbol in the label field to be of type S

ADDR also generates an UNLINKED byte address. The first operand is
used to specify the displacement of the generated byte address, and
the second the FID or frame number. See the section in the chapter on
Data Addressing for a full description of linked and unlinked modes of
addressing; also compare to the SR assembler directive.

Format:
symbol ADDR n,n

Example:

Instruction

F100U ADDR 1,100

MOV FlOOU, R15

5.5 ALIGN Assembler Directive

Generated value

0001 8000 0064 Address is in unlinked mode;
location is 1 in frame 100.

h Note high-order bit (unlinked mode)
flag is set.

This sets R15 to the above address.

ALIGN
Function: This is an assembler directive that is used to align the
assembler's location counter on a two-byte word boundary. If the
location counter is not on a word boundary, a single byte of object
code with a value of zero is generated. It is typically used before a
section of DEFinitions of tallies, double tallies, etc., to ensure
word alignment.

Note that the assembler automatically word-aligns literals that it
creates itself.

Format: ALIGN

5.6 AND - Logical AND of a Byte
AND

Function: Indirect byte = indirect byte logically AND'ed with operand

The byte referenced by the first operand is logically AND'ed with the
byte referenced by the second operand. The byte referenced by the
second operand is unchanged.

Formats: AND r,n
AND r, n

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 53

5.7 B - Local Branch Unconditionally

Function: Tranfers control unconditionally to local label.

The operand of this instruction must be a label that is defined in the
current program frame. To transfer control to an external label, see
the ENT instruction.

Format: B 1

5.8 BBS BBZ - Test a Bit

BBS

Function: If bit = I, branch.

If the referenced bit is "set" (1), a branch is taken to the local
label "1".

Format: BBS b,l

BBZ

Function: If bit = 0, branch.

If the referenced bit is "off" (0), a branch is taken to the local
label "1".

Format: BBZ b,l

5.9 BCA BCNA - Test if Character is Alphabetic

If indirect.character is alphabetic, branch.
Function

BCA
BCNA If indirect.character is not alphabetic, branch.

The character addressed by the address register is tested for the
ASCII character ranges A-Z (X'41'-X'5B'), or a-z (X'61'-X'7B'). If it
is (BCA) or is not (BCNA) in either range, a branch is taken to the
second operand, which is a local label.

Formats: BCA r,l

ASSEMBLER

BCNA r,l

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 54

5.10 BCE BCU - Test Characters

Function
BCE
BCU

If character. 1 is equal to character.2, branch.
If character. 1 is unequal to character.2, branch.

If the character addressed by the first operand is equal (BCE) or is
not equal (BCU) to that addressed by the second, a branch is taken to
the third operand, which is a local label.

Formats: BCE r,r,l BCU r,r,l
BCE r,n,l BCU r,n,l
BCE n,r,l BCU n,r,l
BCE c, r ,I BCU c, r ,I
BCE r,c,l BCU r,c,l

Note - a symbol of type C cannot
constant, a literal, or another symbol

be tested directly against a
of type C. Logical equivalents

to the instructions "BCE c,n,l", "BCE n,c,l", "BCE c,c,l",
"BCU c,n,l", "BCU n,c,l", or "BCU c,c,l" may be coded in one of two
forms:

1. Using an SRA instruction to address a C type as an indirect
reference; for example:

SRA R15,SC1 Set R15 to address the C-type symbol
BCE R15,C'$' ,OK

2. Using a BE or BU instruction to compare a C type as a half tally,
using DEFH and HTLY instructions where necessary to define symbols
of type H. For example:

HSC1
HLIT$

ASSEMBLER

DEFH SC1
HTLY C'$'

Define type H equivalent of SC1
Define a constant of type H

BE HSC1,HLIT$,OK

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 55

5.11 BCH BCHE BCl BClE - Test Characters
BCH

Function BCHE
BCH If character. 1 is higher than character.2, branch. BCl
BCHE If character. 1 is higher than or equal to character. 2, BClE

branch.
BCl If character. 1 is less than character.2, branch.
BClE If character. 1 is less than or equal to character.2, branch.

The character addressed by the first operand is tested as an eight-bit
logical field against that addressed by the second operand. In a
logical comparison, the lowest character is decimal 0 (X'OO') and the
highest character is decimal 255 (X'FF').

If the first character is higher than (BCH), higher than or equal
(BCHE), less than (BCl), or less than or equal (BClE) to the second, a
branch is taken to the third operand, which is a local label.

Formats: BCH r,r,l BCHE r,r,l BCl r,r,l BClE r,r,l
BCH r,n,l BCHE r,n,l BCl r,n,l BClE r,n,l
BCH n,r,l BCHE n,r,l BCl n,r,l BClE n,r,l
BCH c,r,l BCHE c,r,l BCl c,r,l BClE c,r,l
BCH r,c,l BCHE r,c,l BCl r,c,l BClE r,c,l

Note - a symbol of type C cannot be tested directly against a
constant, a literal, or another symbol of type C. logical equivalents
to the instructions "BCH{E} c,n,l", "BCH{E} n,c,l", "BCH{E} c,c,l",
"BCl{E} c,n,l", "BCl{E} n,c,l", or "BCl{E} c,c,l" may be coded in one
of two forms:

1. Using an SRA instruction to address a C type as an indirect
reference; for example:

SRA R15,SC1 Set Rl5 to address the C-type symbol
BCH R15,C'$' ,OK

2. Using a BH, BHE, Bl, or BlE
half tally using DEFH and
define symbols of type H.

instruction to compare a C type as a
HTlY instructions where necessary to

For example:

HSCI
HLIT$

DEFH SC1
HTlY C'$'

Define type H equivalent of SC1
Define a constant of type H

BH HSC1,HlIT$,OK

Note, however, that form 2 above will perform
comparison. In an arithmetic comparison, the lowest
-256 (X'80') and the highest half tally is 255
particular, the system delimiters SM, AM, VM, and SVM
higher than all regular ASCII characters, but are
lower.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE

an arithmetic
half tally is

(X'7F'). In
are logically
ari thmetically

56

5.12 BCl BClE - See BCH

5.13 BCN BCNN - Test if Character is Numeric

If indirect.character is numeric, branch.
Function

BCN
BCNN If indirect.character is not numeric, branch.

The character addressed by the address register is tested for the
ASCII character range 0-9 (X'31'-X'39'). If it is (BCN) or is not
(BCNN) in that range, a branch is taken to the second operand, which
is a local label.

Formats: BCN r,l BCNN r,l

5.14 BCNA - see BCA

5.15 BCNN - see BCN

5.16 BCNX - see BCX

5.17 BCU - see BCE

5.18 BCX BCNX - Test if Character is Hexadecimal

Function
BCX
BCNX

If indirect. character is hexadecimal, branch.
If indirect.character is not hexadecimal, branch.

The character addressed by the address register is tested for the
ASCII character ranges 0-9 (X'31'-X'39') or A-F (X'41'-X'46'). If it
is (BCX) or is not (BCNX) in either range, a branch is taken to the
second operand, which is a local label. Note that lower case
characters "a" through "f" are NOT considered to be hexadecimal, and
will fail this test.

Formats: BCX r,l

ASSEMBLER

BCNX r, I

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 57

5.19 BDHZ BDHEZ BDLZ BDLEZ - Decrement and Compare Against Zero

Function:
a. RelaUve.op.1 relative.op.1 - 1 {or}

relative.op.1 - relative.op.2
b. Then:

BDHZ If relaUve.op.1 is higher than zero, branch.
BDHEZ: If relative.op.1 is higher than or equal to zero,

branch.
BDLZ If relative.op.1 is less than zero, branch.
BDLEZ: If relative.op.1 is less than or equal to zero,

branch.

BOHZ
BDHEZ
BDLZ
BOLEZ

These instructions take the place of a DECrement followed by a Branch
instruction, and are usually used in loop controls. For convenience,
the form without a second relative operand is available, which always
decrements by one.

Formats:

Example:

BDHZ
BDHZ
BDHZ
BDHZ
BDHZ
BDHZ
BDHZ
BDHZ
BDHZ
BDHZ

d,l
d,d,l
d,n,l
f,l
f,f,l
h,l
h,h,l
t,l
t,t,l
t,n,l

BDHEZ d,l
BDHEZ d,d,l
BDHEZ d,n,l
BDHEZ f,l
BDHEZ f,f,l
BDHEZ h,l
BDHEZ h,h,l
BDHEZ t,l
BOHEZ t,t,l
BDHEZ t,n,l

BDLZ
BDLZ
BDLZ
BDLZ
BDLZ
BDLZ
BDLZ
BDLZ
BDLZ
BDLZ

d,l
d,d,l
d,n,l
f,l
f,f,l
h,l
h,h,l
t,l
t,t,l
t,n,l

BDLEZ d,l
BOLEZ d,d,l
BOLEZ d,n,l
BDLEZ f, 1
BOLEZ f,f,l
BOLEZ h,l
BOLEZ h,h,l
BDLEZ t,l
BDLEZ t,t,l
BDLEZ t,n,l

To loop through a section of code, the following can be used:

MOV COUNT,CTR1 set loop counter for iterations
REPEAT BDLZ CTR1,QUITLOOP

I
I ... Body of loop
I

B REPEAT Repeat the cycle
QUITLOOP EQU * Termination of loop

This example does not execute the loop body if the loop count is
initially zero or negative. Compare this to the similar example shown
for the BDZ and BDNZ instructions.

5.20 BDLZ BDLEZ - see BDHZ

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 58

5.21 BDZ BDNZ - Decrement and Compare Against Zero

Function:
a. Relative.op.1

b. Then:

relative.op.1 - 1 {or}
relative.op.1 - relative.op.2

BDZ : If Relative.op.1 is equal to zero, branch.
BDNZ: If Relative.op.1 is unequal to zero, branch.

These instructions take the place of a DECrement followed by a Branch
instruction, and are usually used in loop controls. For convenience,
the form without a second relative operand is available, which always
decrements by one.

Formats: BDZ

Example:

BOZ
BDZ
BOZ
BDZ
BDZ
BDZ
BDZ
BDZ
BDZ

d,l
d,d,l
d,n,l
f,l
f,f,l
h,l
h,h,l
t,l
t,t,l
t,n,l

BDNZ d,l
BDNZ d,d,l
BDNZ
BDNZ
BDNZ
BDNZ
BDNZ
BDNZ
BONZ
BONZ

d,n,l
f,l
f,f,l
h,l
h,h,l
t,l
t,t,l
t,n,l

To loop through a section of code, the following can be used:

MOV 100 ,CTR1 Set loop counter for 100 iterations
REPEAT EQU Start of loop

I
I Body of loop
I

BONZ CTR1,REPEAT

Note that the body of the loop executes at least once with this logic;
compare this to the example in the section on the BOHZ, BOHEZ, BOLZ,
and BOLEZ instructions.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 59

5.22 BE BU - Test Tallies
BE

Function BU
BE If relative.op.1 is equal to relative.op.2, branch.
BU If relative.op.1 is unequal to relative.op.2, branch.

If the first operand is equal (BE) or is not equal (BU) to the second,
a branch is taken to the third operand, which must be a local label.

The two operands MUST be of the
H), two bytes (type T), four
Two- and four-byte literals
assembler, but one- and six-byte
manually coded using the HTLY or

Formats: BE d,d,l
BE d,n,l
BE f,f,l
BE h,h,l
BE n,d,l
BE n,t,l
BE t,n,l
BE t,t,l

Note 1 - A 1i teral or constant
equivalent instructions that

same length, that is, one byte (type
bytes (type D) or six bytes (type F).

are automatically generated by the
literals are not; the latter must be
FTLY assembler directives.

BU d,d,l
BU d,n,l
BU f,f,l
BU h,h,l
BU n,d,l
BU n,t,l
BU t,n,l
BU t,t,l

of zero should not be used. There are
are more efficient and clearer that

perform the comparison against zero. For example, "BZ CTR1,QUIT"
should be used instead of "BE CTR1,O,QUIT".

Note 2 A symbol of type H cannot be tested directly against a
constant or literal. Logical equivalents to the instructions
"BE h,n,l", "BE n,h,l", "BU h,n,l", or "BU n,h,l" may be coded in one
of two forms:

a. Using the SRA instruction to address the H type as an indirect
reference; for example:

SRA
BCE

R15,H7
R15, 10 ,OK

Set R15 to address the H-type symbol

b. Defining an H type as a literal in the program; for example:

HLIT HTLY X'34' Define a constant of type H

BE H7,HLIT,OK

Note 3 - A symbol of type F also cannot be tested
literal. The FTLY instruction should be used
literal.

directly against a
to define a local

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 60

5.23 BE BU - Test Registers

Function
BE If byte address from register. 1 is equal to

byte address from register.2, branch.
BU If byte address from register. 1 is unequal to

byte address from register.2, branch.

These instructions compare the byte addresses of the two registers and
branch on the result of the test, which can only be equal or unequal.

There is no way to determine which register is "less than" or "higher
than" the other.

The byte address of a storage register must be normalized before use
with these instructions, otherwise the comparison may not work
correctly. See the comments under the FAR instruction.

Formats: BE
BE
BE

ASSEMBLER

r,r,l
r,s,l
s,r,l

BU
BU
BU

r,r,l
r,s,l
s,r,l

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 61

5.24 BH BHE BL BLE - Test Tallies

Function
BH
BHE

BL
BLE

If relative.op.1 is higher than relative.op.2, branch.
If relative.op.1 is higher than or equal to

relative.op.2, branch.
If relative.op.1 is less than relative.op.2, branch.
If relative.op.1 is less than or equal to

relative.op.2, branch.

If the first operand is arithmetically higher than (BH), higher than
or equal to (BHE), less than (BL), or less than or equal to (BLE) the
second, a branch is taken to the third operand, which must be a local
label. The relative operands are compared as two's-complement
(signed) integers.

The two operands MUST be of the same length, that is, one byte (type
H), two bytes (type T), four bytes (type D) or six bytes (type F).
Two- and four-byte literals are automatically generated by the
assembler, but one- and six-byte literals are not; the latter must be
manually coded using the HTLY or FTLY assembler directives.

Formats: BH d,d,l BHE d,d,l BL d,d,l BLE d,d,l
BH d,n,l BHE d,n,l BL d,n,l BLE d,n,l
BH f,f,l BHE f,f,l BL f,f,l BLE f,f,l
BH h,h,l BHE h,h,l BL h,h,l BEL h,h,l
BH n,d,l BHE n,d,l BL n,d,l BLE n,d,l
BH n,t,l BHE n,t,l BL n,t,l BLE n,t,l
BH t,n,l BHE t,n,l BL t,n,l BLE t,n,l
BH t,t,l BHE t,t,l BL t,t,l BLE t,t,l

Note 1 - A literal or constant of zero should not be used. There are
equivalent instructions that are more efficient and clearer that
perform the comparison against zero. For example, "BHZ CTR1,QUIT"
should be used instead of "BH CTR1,0,QUIT".

Note 2 - A symbol of type H cannot be tested directly against a
constant or literal. See the description under the BE instruction for
examples of coding the equivalent of a "BL{E} h,n,l" or "BH{E} n,h,l",
etc., but use only form (b), since (a) is a logical comparison.

Note 3 - A symbol
literal. The FTLY
literal.

ASSEMBLER

of type F also cannot be tested directly against a
instruction should be used to define a local

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 62

5.25 BHZ BHEZ BLZ BLEZ - Compare Against Zero
BHZ

Function BHEZ
BHZ If relative.op.1 is higher than zero, branch. BLZ
BHEZ If relative.op.1 is higher than or equal to zero, BLEZ

branch.
BLZ If relative.op.1 is less than zero, branch.
BLEZ If relative.op.1 is less than or equal to zero, branch.

These instructions are faster and clearer than the equivalent BH, BHE,
BL, and BLE instructions used with a literal of zero as one of the
operands.

Formats: BHZ d,l
BHZ f,l
BHZ h,l
BHZ t,l

5.26 BL BLE - see BH

5.27 BLZ BLEZ - see BHZ

5.28 BNZ - see BZ

ASSEMBLER

BHEZ d,l BLZ
BHEZ f,l BLZ
BHEZ h,l BLZ
BHEZ t,l BLZ

Copyright 06 JUN 1983
THE ULTIMATE CORP.

d,l
f,l
h,l
t, 1

BLEZ d,l
BLEZ f,l
BLEZ h,l
BLEZ t,l

PAGE 63

5.29 BSL - Call a Subroutine

Function :
a. The return stack pointer is incremented by four, and the

location less one of the instruction following the
BSL is stored in the next entry in the return stack.

b. Control is transferred to location specified by the operand.

The operand of this instruction must be either a label that is defined
as a mode-id (external entry point), or a local label. If it is a
mode-id, the label may be predefined in the PSYM table as a symbol
with a type code of M, or it may be defined with the DEFM assembler
directive, either locally or in an INCLUDEd program.

Note that the same subroutine may be called either locally from the
same frame or externally by establishing an entry point. When calling
a subroutine in the same frame that happens to have an externally
established entry point, the BSL will execute slightly faster if the
local label is used instead.

the return
Full trap

overwritten
Also see the

If the instruction causes more than eleven entries in
stack, the Debugger is entered with a Return Stack
condition. In this case, the first entry in the stack is
with the location of the instruction causing the abort.
RTN instruction to return from a subroutine.

Return stack entries are four bytes each; their format is described
in the chapter SYSTEM CONVENTIONS. An entry may be deleted from the
return stack by the instruction "DEC RSCWA,4". This is mandatory if a
subroutine is to be exited without using a RTN instruction. The
entire return stack may be reset by the instruction
"MOV X'184' ,RSCWA", which may be useful in conditions where a process
is to be re-initialized, and all current entries in the stack are to
be deleted or ignored.

Formats: BSL I
BSL m

Example of defining an external mode-id:

EXTS DEFM 10,500 Define a constant of type M, which
CMNT * is entry point #10 in frame 500.

BSL EXTS
CMNT
CMNT *
CMNT *

ASSEMBLER

Transfers control to
point #10, which is
Control returns when
a RTN instruction

Copyright 06 JUN 1983
THE ULTIMATE CORP.

frame 500, entry
location 21, or X'15'
subroutine executes

PAGE 64

Example of a local/external subroutine:

FRAME 500

B EXT.S Entry point for external call
CMNT * part of "Branch table" at beginning

BSL EXT.S Local call of same subroutine

EXT.S EQU * Subroutine local· label
Body of subroutine

RTN

5.30 BSL* - Indirect Call to a Subroutine

Function:
a. The return stack pOinter is incremented by four, and the

location less one of the instruction following the
BSL is stored in the next entry in .the return stack.

b. Control is transferred to the location specified in
the operand.

BSL

This instruction operates identically to
that the subroutine address is variable
operand.

the BSL instruction, except
and is obtained from the

This instruction is a macro
operand, and then executes
complete explanation.

Format: BSL* t

that loads the accumulator
the BSLI instruction. See

from the
BSLI for a

Warning: A side effect of this instruction is that it destroys
sections of the accumulator.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 65

5.31 BSLI - Indirect Call to a Subroutine

Function:
a. The return stack pointer is incremented by four, and the

location less one of the instruction following the
BSLI is stored in the next entry in the return stack.

b. Control is transferred to the location specified in TO.

This instruction operates identically to the BSL instruction, except
that the subroutine address is variable and is obtained from the
low-order two bytes of the accumulator, TO, instead of from an
operand. See the BSL instruction for details of the subroutine
linkage.

TO must contain a mode-id, which may be loaded into it from a local
label, an external label or by converting an ASCII string. Typically,
the subroutine address is obtained from a table or from a file.

Format: BSLI

Example:

TABLE EQU
MTLY
MTLY

SRA
INC
LOAD
BSLI
CMNT

ASSEMBLER

*
D,SUB1
7,SUB4

R15,TABLE
R15,CTR1
R15;TO
*

Start of table
Define subroutine exits

Set to start of table
Index into table
Load Tally from table
Call subroutine

* Return here when subroutine executes RTN

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 66

5.32 BSTE - Compare Delimited Strings

Function: If indirect pre-incremented string.l is
equal to pre-incremented string.2, branch.

The two address register operands are incremented by one. The
character addressed by the first operand is tested as an eight-bit
logical field against that addressed by the second operand. In a
logical comparison, the lowest character is decimal 0 (X'OO') and the
highest character is decimal 255 (X'FF'). This operation is repeated
until one of the following conditions is met:

1. One character is logically higher
operand, but the other is not - the
the strings considered unequal.

than or equal to the third
instruction terminates with

2. Both characters are logically higher than or equal to the third
operand - the instruction terminates with the strings considered
equal. Note that the terminating characters need not be the same,
as long as they are both higher than the third operand.

3. The two characters are both less than the third operand, and are
not equal - the instruction terminates with the strings considered
unequal.

Format: BSTE r,r,n,l

Examples:

Instruction: BSTE R4,R5,X'FE' ,LABEL

Before instruction: R4 --v R5 --v
Data: IA IB IC IAMI 11 IB IC ISMIS 16 I ..
After instruction : R4 ___________ A

R5 ___________ A

Strings are considered equal, and a branch is taken to LABEL.

Instruction: BSTE R4,R5,X'FC' ,LABEL

Before instruction: R4 --v R5 --v
Data: IA IB IC IAMI 11 IB IC 10 15 16 I ..
After instruction : R4 ___________ A

R5 ______________ A

Strings are considered unequal, and no branch is taken.

Instruction: BSTE R4,R5,X'FC' ,LABEL

Before instruction: R4 --v R5 --v
Data: IA IB 10 IAMI .. 11 IB IC 10 15 16 I ...
After instruction : R4 ________ A

R5 ________ A

Strings are considered unequal, and no branch is taken.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 67

5.33 BU - see BE

5.34 BZ BNZ - Compare Against Zero

Function
BZ
BNZ

If relative.op.1 is equal to zero, branch.
If relative.op.1 is unequal to zero, branch.

These instructions are faster and clearer than the equivalent BE and
BU instructions used with a literal of zero as one of the operands.

Formats: BZ
BZ
BZ
BZ

d,l
f,l
h,l
t,l

5.35 CHR Assembler Directive

BNZ
BNZ
BNZ
BNZ

d,l
f,l
h,l
t,l

CHR
Function: All symbols or variable names used as operands have a
symbol type-code; this assembler directive reserves storage and sets
up the symbol in the label field to be of type C (Character). It
merely stores the value of the operand if there is no entry in the
label field.

Format:

symbol CHR n

5.36 CMNT Assembler Directive

Function: Place a comment line in the source program

This assembler directive is an alternative to the use of an asterisk
(*) in the label field; both specify that the source line is a
comment and is to be ignored by the assembler. This directive may be
used to align comments in the MLISTing. It may also be used to define
a label as an alternative to the "label EQU *" form.

Format: CMNT

ASSEMBLER

comment line

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 68

5.37 DEC INC - Decrement or Increment by One

Function
DEC
INC

Operand
Operand

operand 1
operand + 1

These instructions are always preferable to the
forms "DEC operand,l", or "INC operand,I",
instructions that also use more object code.

logically equivalent
which are slower

DEC or INC of symbol types D, F, H, T

If the operand is a tally, either one, two, four or six bytes in
length, the contents of the operand are decremented or incremented by
one.

Arithmetic overflow or underflow cannot be detected.
a two-byte tally, the value -3276B (X'BOOO') will
32767B (X'7FFF') using a DEC instruction.

Formats: DEC
DEC
DEC
DEC

d
f
h
t

INC
INC
INC
INC

d
f
h
t

DEC or INC of symbol type R

For example, on
wrap around to

The byte address of the AR is decremented or incremented by one. If
the resultant address crosses a frame boundary, and the register is in
the linked mode, it will be normalized and will attach to the frame
previous (DEC) or next (INC) in the linked chain.

If the beginning of the linked set is reached during the normalization
process, the assembly Debugger will be entered with a trap condition
indicating BACKWARD LINK ZERO.

If the end of the linked set is reached during the normalization
process, the following action is taken:

a. If the exception mode
call is executed to
this condition.

identi fier
that address,

XMODE is non-zero, a subroutine
to allow special handling of

b. If XMODE is zero, the assembly Debugger is entered with a trap
condition indicating FORWARD LINK ZERO.

If the register is in the unlinked mode, and the
reached, the Debugger is entered with a trap
CROSSING FRAME LIMIT.

Formats: DEC r INC r

frame boundary is
condition indicating

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 69

5.38 DEC INC - Decrement or Increment One Operand by Another

Function
DEC
INC

Operand.1
Operand .1

operand. 1 operand.2
operand.1 + operand.2

DEC or INC of symbol types D, F, H, T

The contents of the first operand are decremented (DEC) or incremented
(INC) by the contents of the second operand. The two operands must be
of the same length.

Arithmetic overflow or underflow cannot be detected.

Formats: DEC d,d INC d,d
DEC d,n INC d,n
DEC f,f INC f,f
DEC h,h INC h,h
DEC t,n INC t,n
DEC t,t INC t,t

Note - Symbols of type F
incremented by a constant or
should be used to define a
operand.

and H cannot be directly decremented or
literal. The FTLY or HTLY instruction
local constant to use as the second

DEC or INC of symbol type R

The byte address of the AR is decremented (DEC) or incremented
by the second operand. If the resultant address crosses
boundary, and the register is in the linked mode, it may
detached, unnormalized.

Formats: DEC r,t
DEC r,n

ASSEMBLER

INC
INC

r,t
r,n

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 70

(INC)
a frame

become

5.39 DEFx Assembler Directives
DEFx

Function: These are assembler directives that define a local symbol.
The type of the symbol is specified by the final character of the DEFx
opcode, which may be B, C, D, F, H, M, N, S or T. The DEFM and DEFN
directives are described separately in the next sections.

The base register and offset of the symbol's address may be either
specified as literal values, or implied in the base register and
offset values of a previously defined symbol. A symbol may also be
redefined as equivalent to another symbol, but of a different type.

The symbol in the label field of the DEFx directive is created with
the specified type.

If two operands are present, the first indicates the base register and
the second indicates the offset of the symbol's address. The unit of
offset depends on the symbol type: the offset for a bit (type-code B)
is in number of bits; the offset for a character or a half tally
(type-code C or H) is in number of bytes; the offset for a tally,
double tally, F-type tally, or storage register (type-code T, D, F, or
S) is in number of words (sixteen bits each). If the second operand
is a literal, the offset is the value of the literal. If the second
operand is a previously-defined symbol, the offset is the same as the
previously-defined symbol's offset.

If only one operand is present, it must be a previously-defined
symbol. In this case, both the base register and the offset of the
new symbol are taken from those of the previously-defined symbol.
This form is used to refer to a symbol by a different type-code; for
instance, to refer to a half tally as a character.

Formats:

The following formats are used to define symbols in terms of literal
base register and offset values:

symbol DEFB r,n
symbol DEFC r,n
symbol DEFD r,n
symbol DEFF r,n
symbol DEFH r,n
symbol DEFS r,n
symbol DEFT r,n

The following formats are used to define symbols in terms of
previously-defined symbols:

symbol DEFC r,h symbol DEFH r ,c
symbol DEFD r,t symbol DEFF r,t (Overlay)
symbol DEFS r,t (Overlay)
symbol DEFF r,d symbol DEFS r,d (Overlay)
symbol DEFS r,f symbol DEFF r,s

symbol DEFC h symbol DEFH c
symbol DEFD t symbol DEFF t (Overlay)
symbol DEFS t (Overlay)
symbol DEFF d symbol DEFS d (Overlay)
symbol DEFS f symbol DEFF s

Copyright 06 JUN 1983
ASSEMBLER THE ULTIMATE CORP. PAGE 71

DEFx

The following special formats are used to define one symbol as a
subfield of another:

symbol
symbol
symbol
symbol
symbol

Examples:

LOWBIT

XCURS

NXTFUj

T2Tl

FPOS

SR20FID

SR20DSP

DEFTL d
DEFTU d
DEFTU s
DEFDL s
DEFHL t

DEFB R15,7

DEFT R15,7

DEFD R15,7

DEFD RO,T2

DEFS FPO

DEFDL SR20

DEFTU SR20

ASSEMBLER

(Overlays lower TLY of a DTLY)
(Overlays upper TLY of a DTLY)
(Overlays upper TLY of an SR)
(Overlays lower DTLY of an SR)
(Overlays lower HTLY of a TLY)

Defines a bit with Register 15 as the
base register, and an offset of 7 (low
order bit in the byte ddressed by the
register)

Defines a tally with Register 15 as the
base register, and an offset of 7, which
references bytes 14 and 15 displaced from
the byte address of the AR

Defines a double tally with Register 15
as the base register, and an offset of 7,
which references bytes 14 through 17
displaced from the byte address of the
AR; note this is not the same as a
displacement of 7 double tallies, as used
for immediate symbols; see the section on
Immediate Symbols in the chapter on the
Assembler

Defines T2Tl as a four-byte field that
overlays the fields T2 and Tl (both
tallies) in the accumulator

Redefines the six-byte accumulator FPO as
a storage register FPOS

Defines a symbol that references the FID
field of storage register SR20

Defines a symbol that references the
displacement field of SR20

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 72

5.40 DEFM Assembler Directive
DEFM

Function: This is an assembler directive that defines a local symbol
as a modal entry point, or mode-id.

A mode-id consists of a four-bit entry point number and a twelve-bit
frame number or FlO. The first operand in the instruction is used to
specify the entry point number, and must be in the range 0-15
(O-X'F'). The second operand may be a literal or a previously defined
mode-id, and is used to specify the frame number. More information on
mode-id's can be found in the chapter on the Assembler.

A symbol defined by the DEFM directive may be used in the BSL and ENT
instructions to transfer control to the specified location. It may
also be used in the MOV and LOAD instructions, when it acts as a
literal value (the assembler actually generates a literal at the end
of the object code with the value defined in the DEFM instruction).

Formats:

symbol
symbol

Examples:

EXT.SYM

MYFRAME

ENTRYO

ENTRY1

ENTRY15

DEFM n,n
DEFM n,m

DEFM 3,133

DEFM 0,510

DEFM O,MYFRAME

DEFM 1,MYFRAME

DEFM 15,MYFRAME

Defines the symbol EXT.SYM to be entry
point 3 in frame (decimal) 133, which is
location 7 in the frame

Defines MYFRAME as location 0 in frame
510

Defines ENTRYO as location 0 (entry point
0)

Defines ENTRY1 as location 3 (entry point
1)

Defines ENTRY15 as location 31 (entry
point 15)

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 73

5.41 DEFN Assembler Directive
DEFN

Function: This is an assembler directive that defines a local symbol
as a constant.

A constant may be used in exactly the same fashion as a literal value.
Note that with many instructions, reference to a constant or literal
will generate a literal field at the end of the object code.
Constants have a maximum length of four bytes, giving a numeric range
of -2,147,483,648 to 2,147,483,647 (X'80000000' to X'7FFFFFFF').
Constants more than two bytes long, however, require explicit
four-byte literal generation. See the section on Literals and the
comments about literals under LOAD, ADD, STORE, etc.

Format:

symbol DEFN n

Examples:

MAXNUM DEFN 20
XCONST DEFN X'8010'
DELIM DEFN C'. '
CCONST DEFN C'ABCD'

BH TO,MAXNUM,ERR This generates a two-byte literal
MOV XCONST,CTR30 This also generates two bytes
MOV =DCCONST,D1 Must generate four bytes here
MCC DELIM,R15 Immediate value

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 74

5.42 DETO DETZ - Detach Address Register

Function:
DETO:
DETZ:

Address register
Address register

detached byte address, displacement=l
detached byte address, displacement=O

The purpose of these instructions is to provide a formal method of
"detaching" an address register and setting it to a specific location.
Normally, an AR is loaded by the "MOV sr,ar" instruction, which
detaches it and loads the byte address from the SR. Any other
instruction that affects the fields in an AR must be preceded by the
DETO or DETZ instruction. For a complete understanding of these
instructions, see the section on Attachment and Detachment of an
Address Register in the chapter on Data Addressing.

The register is detached and its displacement field is set to one
(DETO) or zero (DETZ). The frame number and linked/unlinked flag are
unaffected. Since the register is now known to be detached, these
fields can be safely changed.

See also the SR and ADDR directives for other means of loading address
registers.

Formats: DETO r DETZ r

Examples:

DETZ
MOV

R14 Detach R14; set its displacement to zero
X'80000064' ,R14FID Set it to Frame 100, unlinked mode

DETO R15
CMNT
CMNT

ASSEMBLER

Detach R15; set its displacement to one
Now addresses byte 12 (X'C') of frame ..
if it was in linked addressing mode

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 75

5.43 DIV DIVX - Divide into Accumulator

Function: Accumulator = accumulator / relative.operand

Arithmetic overflow or underflow cannot be detected. If the dividend
is zero, the result of the division is undefined.

The following shows the format of the accumulator and the symbolic
names that address various sections of it:

Byte no. :
in PCB

B63

8 I 9 A I B I C I DIE I F
<----------- FPO ---------> <­

<------ D1 -----> I <------ DO -----> <­
<- T3 ->1 <- T2 ->1 <- T1 ->1 <- TO ->1 <­

H71 H61 H51 H41 H31 H21 H11 HOI <-
....................................... BO

DIV

6-byte field
4-byte fields
2-byte fields
1-byte fields
<- bits

The operand is divided into the four-byte field DO. One- and two-byte
operands are internally sign-extended to form a four-byte field before
the operation takes place.

The integer result is stored in DO, and the integer remainder in 01.
The original operand is unaffected.

DIVX

The operand is divided into the six-byte field FPO. One-, two-, and
four-byte operands are internally sign-extended to form a six-byte
field before the operation takes place.

The six-byte integer
remainder is stored
original operand nor

Formats: DIV d
DIV h
DIV n
DIV t

DIVX d
DIVX f
DIVX h
OIVX n
DIVX t

result is stored in FPO, and the six-byte integer
in FPY, an F-type tally in the PCB. Neither the
other sections of the accumulator are affected.

*

*

* Note: These instructions using a literal normally generate a
two-byte field. If the literal is outside the range -32,768 through
+32,767, an operand of the form =Dxxxx should be used to generate a
four-byte literal (for example, =D40000 or =DX'FC000022'). Six-byte
literals must be separately defined using the FTLY instruction.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 76

5.44 DTLY FTLY HTLY TLY Assembler Directives

Function: All symbols or variable names used as operands must
have a symbol type-code; these are assembler directives that
reserve storage and set up the symbol in the label field to be of
a specific type. They may also be used to only reserve storage
if there is no entry in the label field.

DTLY
FTLY
HTLY
TLY

The HTLY directive is used to define a half tally (one byte), and to
store a one-byte value. This directive can only be used when the
assembler's location counter is less than X'100', otherwise it will
generate a TRUNCation error message. This is because the generated
symbol would have an offset of more than X'FF'.

The DTLY directive is used to define a double tally (four bytes), and
to store a four-byte value.

The FTLY directive is used to define an F-type tally (six bytes), and
to store a six-byte value (See the SR directive to define a storage
reg ister) .

The TLY directive is used to define a tally (two bytes), and to store
a two-byte value.

DTLY, FTLY and TLY directives force the location counter to be aligned
on a two-byte boundary (word alignment). These directives may appear
anywhere in the object code.

Formats:
symbol HTLY n
symbol FTLY n,n *
symbol DTLY n
symbol TLY n

The label-symbol is optional.

* - Note: The value stored by the FTLY directive must (due to an
assembler quirk) be specified as an upper two-byte value and a lower
four-byte value. The programmer must be especially careful with
negative values. For example:

Instruction

X.10 FTLY
FTLY

ABCD FTLY
FTLY
FTLY

ASSEMBLER

Equivalent
Hex

0,1 000000000001
0,12345 000000003039
0,10000000 000000989680
2,X'540BE400' 0002540BE400
X'FFFF' ,X'FFFFFFFC' FFFFFFFFFFFC

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE

value
Decimal

1
12345
100000000
10000000000
-3 ,

77

5.45 EJECT Assembler Directive

Function: This is an assembler
(listing) processor to eject a page
the "J" has been specified.

EJECT
directive that causes the MLIST
at this point in the listing if

Format: EJECT

5.46 END Assembler Directive

Function: Indicate end of source program

This assembler directive may be used to indicate the end
program. It has no effect on assembly, and is treated
(see CMNT) .

Format: END

5.47 ENT - External Branch Unconditionally

of a source
as a comment

Function: Transfer control unconditionally to external label.

The operand of this instruction must be a label that is defined as a
mode-id, or external entry point. The label may be predefined in the
PSYM table as a symbol with a type code of M, or it may be locally
defined in the program using the DEFM assembler directive.

To transfer control to a local label, see the B instruction.

Format:

Example:

EXTM

ENT m

DEFM 10,500
CMNT

ENT
CMNT

EXTM
*

Define a constant of type M, which
is entry point #10 in frame 500.

Transfers control to frame 500, entry
point #10, which is location 21, or X'15'

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 78

5.48 ENT* - Indirect External Transfer

Function: Transfer control to external address specified in operand.

This instruction operates identically to the ENT
that the external address is variable and is
operand.

instruction, except
obtained from the

ENT* is a macro that loads the accumulator from the operand, and then
executes the ENTI instruction. See ENTI for a complete explanation.

Format: ENT* t

Warning: A side effect of this instruction is that it destroys
sections of the accumulator.

5.49 ENTI - Indirect External Transfer

Function: Transfer control to external address specified in TO.

This instruction operates identically to the ENT instruction, except
that the external address is variable and is obtained from the
low-order two bytes of the accumulator, TO, instead of from an
operand.

TO must contain a mode-id, which may be loaded into it from a local
label, an external label or by converting an ASCII string. Typically,
the subroutine address is obtained from a table or from a file.

Format: ENTI

Example:

R15 pOints to a hexadecimal ASCII string
v

Ix 17 11 IF IE IAMI ...

BSL CVXR15 This converts the ASCII string value
CMNT * binary value in the accumulator FPO
CMNT * (therefore TO)

to a

ENTI * External branch to specified location;
CMNT *

ASSEMBLER

Frame 510, location 15 (X' F') .

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 79

5.50 EQU Assembler Directive
EQU

Function: This is an assembler directive that is used to set up an
equivalence between the symbol in the label field of the statement and
the operand.

Formats:

label
label

EQU
EQU

n
symbol

EQU will create an entry in the symbol table in the following manner:

1. If the operand is a literal or constant, the label-symbol will be
stored as type L. See the DEFN assembler directive for
information on defining constant values.

2. If the operand is another symbol, the label-symbol will be created
as an exact duplicate of the operand-symbol.

Example:

LABEL EQU *

creates a symbol LABEL, with the current location as its value. This
is a useful way of defining labels, since the label is on a line by
itself, and is therefore clearer.

TEXTS EQU *-1

creates a symbol TEXTS, with the current location less one as its
value. This is useful when an SRA instruction is to address a text
string, and it is necessary to address the location one less than the
start of the string.

INPUT.PTR EQU R5

creates a symbol INPUT.PTR which is equivalent to Address Register 5.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 80

5.51 FAR - Force Attachment of Address Register

Function: Address register = normalized byte address

This instruction attaches an address register, normalizing its byte
address. All instructions which reference data via an address
register (that is, instructions with indirect or relative operands)
attach the register; FAR merely stops at this point. The FAR
instruction is typically used before comparing two byte addresses,
without regard to the data actually addressed.

Byte addresses in storage registers must be normalized before
comparison, since the same location within a set of linked frames may
be addressed in terms of several different frame-displacement
combinations. If a byte address is unnormalized, perhaps due to an
"INC r,t" instruction, it may fail a "BE r,s" or "BE s,s" comparison
with another (normalized) byte address even though it logically
addresses the same location. The FAR instruction may be used to
normalize a byte address before MOVing it to a storage register. For
more information, see the sections on the Byte Address and Attachment
and Detachment of an Address Register in the chapter on Data
Addressing.

Another use of the FAR instruction is to set Address Register 15 to
the link field of the frame containing the byte address, that is, to
byte zero, unlinked. R15 is set up in this manner if bit 5 of the
second operand (the "mask" byte) of the FAR instruction is set. The
other bits of the mask byte are reserved for future use.

For the register operand, the notes under the "INC Register"
instruction apply if the register reaches the boundary of a frame.

Format:

Examples:

FAR

MOV
INC
FAR
MOV

MOV
FAR
LOAD

ASSEMBLER

r,n

ISBEG,IS
IS,CTR30
IS,O
IS,ISEND

SR20,R14
R14,X'04'
R15;H1

Set IS to data start
Inc by length
Ensure normalized SR ...
... for future tests

Get data pointer
Attach R14, set R15 to links
Load nncf

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 81

5.52 FRAME Assembler Directive
FRAME

Function: This is an assembler directive whose operand specifies the
frame into which the object code from the program is to be loaded. It
is normally the first statement in the program (see the chapter on the
assembler), but in any case must precede any statements that generate
object code.

This directive also sets the assembler's location counter to 1,
because executable object code begins at location 1, not O. If it is
necesary to use byte zero of the object code, the FRAME statement must
be followed by an appropriate ORG assembler directive.

Format: FRAME n

5.53 FTLY - see DTLY

5.54 HALT - Halt Program

Function: Halt execution and enter Debugger

This instruction halts execution of the current program and transfers
control to the assembly Debugger at entry point 11 (HALT). Execution
can be resumed only by specifying an address with the Debugger "G"
command. Alternatively, execution may be terminated with the "BYE",
"END", or "OFF" commands. See the chapter on the Debugger for more
information.

The HALT instruction affects only the current process; it does not
halt the entire computer.

Format: HALT

5.55 HTLY - see DTLY

5.56 INC - see DEC

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 82

5.57 INCLUDE Assembler Directive
INCLUDE

Function: This statement is used to "include" another program for the
duration of the assembly, in the program being assembled.

The main reason for the INCLUDE directive is to be able ,to place a set
of shared definitions in one item, and then use the definitions in any
other program. Typically, variables and mode-id's that are local to a
set of programs are placed in a single program for inclusion during
assembly. The advantage of this method is that the definitions are
not duplicated in every program that uses them. Such duplicate
definitions can lead to errors and are in general more difficult to
maintain than if they were all in one program.

The format of the INCLUDEd program is identical to that of any other
program, though typically it consists of only DEFx (definition)
assembler directives. If the INCLUDEd program does generate code, it
may be necessary to save and restore the assembler's location counter
around the INCLUDE statement, as shown in the example below.

Format: INCLUDE program. name

Example:

SAVELOC EQU
INCLUDE TABLE1
INCLUDE TABLE2
ORG SAVELOC Reset location counter

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 83

5.58 LAD - Load Absolute Difference

Function: Accumulator TO = absolute value of difference in byte
addresses of register.op.l and register.op.2

This instruction computes the difference in the byte addresses of the
two register operands, and stores the absolute (unsigned) value in the
low-order two bytes of the accumulator, TO. The result is unsigned,
and may be in the range 0-65,535. The other sections of the
accumulator are unchanged.

The following actions are taken:

1. If the byt~ addresses are
can be compared directly.

/

in the same frame when normalized, they

2.
L If the ~frame numbers of the byte addresses of the registers are

unequal, the following assumptions are made:

a. That the addresses are in a set of contiguously linked frames,
and

b. That the frame numbers differ by no more than 127.

Limitation on the use of LAD:

The result is therefore
conditions:

undefined under ANY of the

a. The byte addresses are in different UNLINKED frames.

following

b. The byte addresses are in a LINKED set, but the frames are not
contiguously linked.

c. The byte addresses are in a contiguous LINKED set, but they are
separated by more than 64Kbytes (127 frames).

It is therefore strongly recommended that the LAD instruction be used
with registers in the same unlinked frame. In order to determine
address 'differences (or string lengths) under other conditions, the
SIDC or MIIDC type of instructions should be used.

Formats: LAD r,s
LAD s,r

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 84

5.59 LOAD LOADX - Load Accumulator

Function: Accumulator = relative.operand

The LOAD and LOADX instructions load the accumulator with the operand.

The following shows the format of the accumulator and the symbolic
names that address various sections of it:

Byte no.:
in PCB

8 I 9 A I B I C I DIE I F
<----------- FPO ---------> <-

<------ D1 -----> I <------ DO -----> <­
<- T3 ->1 <- T2 ->1 <- T1 ->1 <- TO ->1 <­

H71 H61 H51 H41 H31 H21 H11 HOI <-
B63 BO

LOAD

6-byte field
4-byte fields
2-byte fields
1-byte fields
<- bits

The operand is loaded into the four-byte field DO. One- and two-byte
operands are internally sign-extended to form a four-byte field before
the operation takes place. Neither the original operand nor other
sections of the accumulator are affected.

LOADX

The operand is loaded into the six-byte field FPO.
four-byte operands are internally sign-extended to
field before the operation takes place. Neither the
nor other sections of the accumulator are affected.

Formats: LOAD d
LOAD f
LOAD h
LOAD m
LOAD n *
LOAD t

LOADX d
LOADX f
LOADX h
LOADX m
LOADX n *
LOADX t

One-, two-, and
form a six-byte

original operand

* Note: These instructions using a literal normally generate a
two-byte field. If the literal is outside the range -32,768 through
+32,767, an operand of the form =Dxxxx should be used to generate a
four-byte literal (for example, =D40000 or =DX'FC000022'). Six-byte
literals must be separately defined using the FTLY instruction.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 85

5.60 MBD - Convert Binary to Decimal ASCII Byte String

Function:
Pre-incremented string = decimal ASCII equivalent of operand. 1

This instruction converts binary numbers to decimal ASCII strings.
The register operand is incremented by one, and the next converted
byte stored at that location. This operation is repeated until the
entire string has been converted, as determined by the following:

1. MBD without a numeric first operand does not 'create leading
zeroes; the field is variable length. MBD, unlike MBX, generates
one zero for an operand value of zero.

2. MBD with a numeric first operand stores a fixed length, leading
zero filled field. The field is allowed to exceed the specified
length if its precision requires this.

Warning - the MBD instruction is actually a macro that generates a
subroutine call, and is included here for convenience. For case 1
above, either MBDSUB (for one-, two-, or four-byte numbers) or MBDSUBX
(for six-byte numbers) will be called. For case 2 above, either
MBDNSUB (for one-, two-, or four-byte operands) or MBDNSUBX (for
six-byte operands) will be called. The following elements will be
destroyed:

BKBIT
T4
DO
01
R14
R15
FPX (MBDSUBX and MBDNSUBX only; same as SYSRO)
FPY (MBDSUBX and MBDNSUBX only; same as SYSR1)
SYSRO (MBDSUBX and MBDNSUBX only; same as FPX)
SYSR1 (MBDSUBX and MBDNSUBX only; same as FPY)

Neither R14 nor R15 should be used as the register operand in the MBD
instruction, nor should any section of the accumulator be used as the
binary field operand. The subroutine call can be coded directly,
instead of being called with an MBD instruction. See the macro
expansions below, as well as the chapter on System Software, which
illustrate the subroutine interface.

For the address register operand, the notes under the "INC Register"
instruction apply if the register reaches the boundary of a frame.

Formats: MBD
MBD
MBD
MBD

MBD
MBD
MBD
MBD

ASSEMBLER

d,r
f,r
h,r
t,r

n ,d, r
n,f,r
n,h,r
n,t,r

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 86

Examples:

MBD CTR1,R9 MBD 4,CTR1,R9

Macro expansions:

LOAD
MOV
BSL
MOV

ASSEMBLER

CTR1 LOAD CTR1
R9,R15 MOV R9,R15
MBDSUB MOV 4,T4
R15,R9 BSL MBDNSUB

MOV R15,R9

Copyright 06 JUN 1983
THE ULTIMATE CORP.

MBD

PAGE 87

5.61 MBX MBXN - Convert Binary to Hex ASCII Byte String

Function:
Pre-incremented string hex ASCII equivalent of operand. 1

These instructions convert binary numbers to hexadecimal ASCII
strings. The register operand is incremented by one, and the next
converted byte stored at that location. This operation is repeated
until the entire string has been converted, as determined by the
following:

1. MBX does not create leading zeroes; the field is variable length.
MBX, unlike MBD, does not generate a zero for an operand value of
zero.

2. MBXN creates a fixed length, leading zero filled field. If the
field exceeds the spec~fied length, it is truncated on the right.
MBXN is a macro, defined below.

The MBX instruction assumes that
accumulator, HO, is set up as follows:

the low-order byte of the

Bit 0 - Set if the string is to be padded with leading zeroes

Bits 4-7 Contain the number of hexadecimal digits to create,
(leading zeros will be suppressed if bit 0 is 0).

actually a macro and is
the accumulator; see

included
the macro

Warning - the MBXN instruction is
here for convenience. It uses
expansion below. The contents of
either the MBX or MBXN instruction.

HO are undefined after execution of

For the address register operand, the notes under the "INC Register"
instruction apply if the register reaches the boundary of a frame.

Formats: MBX
MBX
MBX
MBX

d,r
f,r
h,r
t,r

Examples:
LOAD X'OC'
MBX FP2,R14

MBXN 4,CTR1,R9

Macro expansion:

LOAD X'84'
MBX CTR1,R9

MBXN n,d,r
MBXN n,f,r
MBXN n,h,r
MBXN n,t,r

output 12 chars; suppress leading zeroes

output 4-char leading-zero-filled string

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 88

5.62

5.63

MCC - Move a Character
MCC

Functions:
Relative character relative character
Relative character indirect character
Indirect character indirect character
Indirect character literal
Indirect character relative character

The character addressed by the first operand is stored at the location
addressed by the second operand.

Formats: MCC c,c
MCC c,r
MCC n,r
MCC r ,c
MCC r,r

MCI - Move a Character
MCI

Functions:

Indirect pre-incremented character indirect character
Indirect pre-incremented character literal
Indirect pre-incremented character relative character

The second operand, which is an address register, is incremented by
one; the character addressed by the first operand is stored at that
location.

For the address register operand, the notes under the "INC Register"
instruction apply if the register reaches the boundary of a frame.

Formats: MCI c,r
MCI n,r
MCI r,r

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 89

5.64 MCI extensions

Function: Indirect pre-incremented string = literal character

This instruction propagates a
specified in the third operand.
will be propagated.

single character as many times as
If it is initially zero, 65,536 bytes

The second operand is incremented by one; the literal character from
the first operand is stored at that location. This operation is
repeated until the terminating condition is met.

These instructions are provided as a convenience in coding. They are
both macros that set up the conditions for the appropriate machine
instruction that moves a string of bytes.

Note the side effects of the instructions.

In both cases Address Register 15 and the accumulator DO are used; a
MIIT instruction is executed. See the MIIT instruction for details.

Formats: MCI n,r,t
MCI n,r,n

Macro expansion:

MOV r,R15
MCI n,r
LOAD op.3
DEC DO
MIIT R15,r

ASSEMBLER

This may be a tally or a constant

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 90

5.65 MOB MXB - Convert One ASCII Byte to Binary

Function
MOB
MXB

Operand.2
Operand.2

MOB
MXB

operand.2 * 10 + binary equivalent of operand. 1
operand.2 * 16 + binary equivalent of operand. 1

These instructions convert ASCII characters to binary. They are
normally used in a loop, with operand.2 (a tally) initially set to
zero. Each execution of the MOB or MXB instruction "shifts" the
previous value in the tally by the appropriate amount, then adds in
the binary equivalent of the character addressed by the first operand.
The example below should clarify this.

If the character addressed by the
MOB) or non-hexadecimal (for MXB),
undefined.

first operand
the result

is non-decimal (for
of the instruction is

Note - these instructions have been largely superseded by the
equivalent string conversion instructions MSOB, MSXB, MFB and MFX.

Formads: MOB
MOB
MOB

Example:

ZERO
LOOP INC

BCNN
MOB
B

ASSEMBLER

r,d
r,f
r,t

FPO
R15
R15,QUIT
R15,FPO
LOOP

MXB r, d
MXB r,f
MXB r,t

Clear the accumulator
Set on next potential numeric character
Oone if not numeric character
Convert one more character

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 91

5.66 MFO MFX - Convert ASCII String to Binary

Function
MFO

MFX

Accumulator FPO

Accumulator FPO

binary equivalent of pre-incremented
decimal ASCII string from operand.l
binary equivalent of pre-incremented
hexadecimal ASCII string from operand. 1

These instructions convert ASCII character strings to binary. The
operand, which is an address register, is incremented by one before
the instruction starts to convert the string. The string addressed by
the operand may optionally contain a leading "+" or "-" sign; it may
also contain a decimal point and fractional digits (see below). The
result of this instruction is a scaled integer in FPO.

The following shows the format of the accumulator
names that address various sections of it:

Byte no.:
in PCB

8 I 9 A I B I C I o I E I F
<----------- FPO ---------> <­

<------ 01 -----> I <------ DO -----> <­
<- T3 ->1 <- T2 ->1 <- Tl ->1 <- TO ->1 <­

H71 H61 H51 H41 H31 H21 Hll HOI <-
B63 BO

and the symbolic

6-byte field
4-byte fields
2-byte fields
I-byte fields
<- bits

Before executing the MFO or MFX instructions, the accumulator must be
initialized as follows:

H7 Contains the number of fractional digits expected in the value.
This must be in the range 0-15 (O-X'F'). The converted value
stored in FPO will be scaled up if there are not enough decimal
places in the string.

H6 Contains the maximum number of digits allowed to the left of the
decimal point; typically used when converting fixed length
strings. A zero is equivalent to 256.

FPO Initial value is typically zero,
"shifted" by multiplying it by 10
byte is converted.

though
(MFO) or

any
by

value in FPO is
16 (MFX) as each

The instruction terminates under one of the following conditions:

1. When a non-numeric (for MFO, a character not in the range 0-9) or
non-hexadecimal (for MFX, a character not in the range 0-9 or A-F)
is found. If the terminating character is a decimal point or is
in the range X'FC'-X'FF' (that is, if it is a system delimiter),
the flag NUMBIT is set; otherwise, NUMBIT is zeroed. The
register addresses the terminating character.

2. When the number of characters specified by H6 have been converted.
NUMBIT is zeroed, and the register addresses the last character
converted.

3. When the number of fractional digits specified by H7 have been
converted, and a system delimiter or decimal point is not found.
NU~BIT is zeroed, and the register addresses the terminating
(unconverted) character.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 92

\y o,,~ c:>.-oII.'f1I,t..}v.. ,\'W'\:)ee ~~e...c:l
'..;y f'\U~ex-\"t..S rouY\O- 0

5~ Je~~oJ.. t>Ol'n,.\. \)ou('\.d..
l,~ ~~et.~'U'~ $\~n \:>oound... MFD

MFX

After execution, H6 will be decremented by one for each digit found to
the left of the decimal point. When converting fixed length strings,
then, H6 may be compared to zero to determine if an entire string was
successfully converted.

Formats: MFD r

Examples:

Instruction: ZERO T3
ZERO FPO
MFD R4

Before instruction: R4 --v

MFX

Data: I A 11 I 8 I AM I
After instruction I: R4 ___________ A

NUMBIT=l

Instruction: MOV X'0200' ,T3
ZERO FPO
MFD R4

r

FPO=O H7=O, H6=0

FPO=18 (X'000000000012')

Before instruction: R4 --v FPO=O H7=2, H6=0
Data: I AM 1- 11 I 8 I. I 7 I 5 I SM I ..
After instruction : R4 _______________________ A

NUMBIT=l

Instruction: MOV X'0200' ,T3
ZERO FPO
MFD R4

FPO=-1875 (X'FFFFFFFFF8AD')
Note integer is scaled

Before instruction: R4 --v FPO=O H7=2, H6=0
Da ta : I AM I + I 1 I 7 I 7 I 5 I 0 I SM I ..
After instruction : R4 ____________________ A

Instruction: MOV
ZERO

NUMBIT=O
Non-numeric
character (0)
found.

X'0004' ,T3
FPO

MFX R4

FPO=177500 (X'00000002B55C')
Note integer is scaled even
though there were no
fractional digits present.

Before instruction: R4 --v FPO=O H7=O, H6=4
Da ta : I 7 I 0 I 1 I F I 7 I A I 2 I 3 I ..
After instruction : R4 ______________ A

ASSEMBLER

NUMBIT=O
Maximum string length reached

Copyright 06 JUN 1983
THE ULTIMATE CORP.

FPO=507 (X'000000000lF7')

PAGE 93

5.67 MIC - Move a Character

Functions:
Indirect character
Relative character

indirect pre-incremented character
indirect pre-incremented character

The first operand, which is an address register, is incremented by
one; the character addressed by the first operand is stored at the
location addressed by the second.

MIC is a macro provided for coding convenience. It is equivalent to
an "INC r" instruction followed by an "MCC r,c" or "MCC r,r".

For the register operand, the notes under the "INC Register"
instruction apply if the register reaches the boundary of a frame.

Formats: MIC r,c
MIC r,r

5.68 MIl - Move a Character

Function: Indirect pre-incremented character
pre-incremented character

indirect

Both operands, which are address registers, are incremented by one;
the character addressed by the first operand is stored at the location
addressed by the second.

For both registers, the notes under the "INC Register" instruction
apply if the register reaches the boundary of a frame.

Format: MIl r,r

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 94

5.69 MII Extensions

Function: Indirect pre-incremented string
pre-incremented string

indirect

Both operands, which are address registers, are incremented by one;
the character addressed by the first operand is stored at the location
addressed by the second. This operation is repeated until the
terminating condition is met.

These instructions are provided as a convenience in coding. They are
both macros that set up the conditions for the appropriate machine
instruction that moves a string of bytes.

Note the side effects of the instructions.

In the case of (1), below, Address Register 15 is used; the third
operand is moved into it, and a MIIR instruction is executed. See the
MIIR instruction for details.

In the case of (2), below, the accumulator DO is used; the third
operand is loaded into it, and a MIIT instruction is executed. See
the MIIT instruction for details.

For both registers, the notes under the "INC Register" instruction
apply if the register reaches the boundary of a frame.

Formats: MII
MII
MII

r,r,s
r,r,t
r,r,n

Macro expansions:

(1)
MOV op.3,R15
MIIR op. 1 ,op. 2

(1)
(2)
(2)

(2)
LOAD
MIIT

op.3
op.1,op.2

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 95

5.70 MIlD MIIDC - Move a String

Function: Indirect pre-incremented string
pre-incremented string

indirect

(string terminates when delimiter found)

In addition, for MIIDC:
Accumulator TO = accumulator TO - length of string moved

The first two operands, which are address registers, are incremented
by one; the character addressed by the first operand is stored at the
location addressed by the second. This operation is repeated until a
"delimiter," or byte specified by the third operand (the "mask" byte),
is encountered. The terminating condition is found by testing each
byte after it has been copied.

Note that the byte addresses of the registers will always be
incremented by at least one, because the delimiter test is done after
the byte copy.

For the MIIDC instruction, as each byte is moved, the low-order
two-byte field of the accumulator, TO, is decremented by one. Other
sections of the accumulator are unaffected. Normally, TO is set to
either ZERO or ONE before this instruction is executed. If set to
zero, the resultant value after the instruction executes is the
negative of the length of the string, including the delimiter. If set
to one, it is the negative of the string length excluding the
delimi ter.

The "mask" operand for this instruction is a byte that is used to
specify under what conditions the string, and therefore the
instruction, terminates. Up to seven different characters can be
tested; four of them are fixed, and are the standard system
delimiters:

Segment mark - SM - X'FF'
Value mark_ - VM - X'FD'

Attribute mark - AM - X'FE'
Sub-value mark - SVM- X'FC'

The other three characters are variable, and may be prestored by the
programmer in the scan characters SCO, SC1, and SC2.

The low order seven bits in the mask byte are used to determine which
of the seven above characters are to be compared; if any bit is set
(1), the corresponding character is tested; if zero, it is ignored.

Bits: ---0-----1-----2------3------4-----5-----6-----7--­
Test: SM AM VM SVM (SCO) (SC1) (SC2)

The parentheses around SCO, SC1 and SC2 are to indicate that it is the
contents of these locations that are being compared.

The high-order
manner: if set
first occurrence
1-7. If zero, it
non-occurrence of

bit (bit 0) of the byte is used in the following
(1), it indicates that the string terminates on the
of a delimiter as specified by the setting of bits
indicates that the string terminates on the first
a delimiter as specified by the setting of bits 1-7.

A few examples should make this clear:

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 96

Mask byte Bit pattern

X'CO' 1100 0000
X'AO' 1010 0000
X'F8' 1111 1000

X'C3' 1100 0011

X'Ol' 0000 0001

-------------Meaning---------------

stop on first occurrence of a SM.
Stop on first occurrence of an AM.
stop on first occurrence of any system
delimiter - SM, AM, VM or SVM.
stop on first occurrence of an SM,
or the contents of SC1 or of SC2.
Stop on the first NON-occurrence of the
contents of SC2 •

MIlD
MIIDC

• - For example, if SC2 contains a BLANK, this mask will cause the
instruction to terminate when the first NON-BLANK is found.

For both registers, the notes under the "INC Register" instruction
apply if the register reaches the boundary of a frame.

Formats: MIlD r,r,n
MIIDC r,r,n

Examples:

MIIDC R4,R5,X'CO'

R4
Data:

R4

R4
Data:

R4

Before
--v

IA IB IC ISMI

-----------1
After

MCC C" ,SC1
MIlD R4,R5,X'82'

Before
--v

IA IB IC ISMI

--------------1
After

COpy UNTIL SM

instruction
R5 --v

11 12 13 14 15 16
11 IB Ie ISMI5 16

R5 ___________ 1'1.

instruction

COpy UNTIL BLANK

instruction
R5 --v

11 12 13 14 15 16
11 IB IC ISMI 16

R5 ______________ A

ins truction

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE

TO 1

TO -2

97

5.71 MIIR - Move a String

Function: Indirect pre-incremented string
pre-incremented string

indirect

(string terminates on register match)

If the second operand's address equals that of Address Register 1Q at
the start of this instruction, no action takes place.

otherwise, both operands, which are
by one; the character addressed by
location addressed by the second.
the second operand's address equals

address registers, are incremented
the first operand is stored at the
This operation is repeated until

that of Address Register 15.

Address Register 15 is not one of the operands in the
instruction, though it is implicitly referenced as the ending location
of the string. R15, therefore, should not be used as one of the
operands. The assembler will not check for this condition, and the
assembled instruction will not execute correctly if it arises.

For all three registers, the notes under the "INC Register"
instruction apply if the register reaches the boundary of a frame.

Format: MIIR r,r

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 98

5.72 MIlT MIITD - Move a String

Function: Indirect pre-incremented string
pre-incremented string

indirect

MIlT: (string terminates on count runout)
(string terminates on cou~t runout OR delimiter found) MIITD:

If the low-order two-byte field of the accumulator, TO, is zero at the
start of these instructions, no action takes place.

Otherwise, the first two operands, which are address registers, are
incremented by one; the character addressed by the first operand is
stored at the location addressed by the second. TO is then
decremented by one. This operation is repeated until the following
condition(s) occur(s):

1. For the MIlT instruction, when TO reaches zero. This instruction
is typically used to move a fixed length string.

2. For the MIITD instruction, when TO reaches zero, or when one of
the delimiter bytes specified by the third operand (the "mask"
byte), is encountered. The terminating condition is found by
testing each byte after it has been copied. This instruction is
typically used to move a delimited string of unknown length to a
location of preset maximum length. If the string is longer than
the destination location, the instruction terminates without
overlaying subsequent data.

See the notes under the MIlD or SID instruction for a complete
description of the "mask" byte.

For both registers, the notes under the "INC Register" instruction
apply if the register reaches the boundary of a frame.

Formats: MIlT r,r
MIITD r,r,n

Examples:
LOAD 4
MIlT 'R4,R5

R4 --v
Data: IA IB IC ISMIZ

R4 --------------1

R4 ___________ A

ASSEMBLER

LOAD 4
MIITD R4,R5,X'CO'

Before instructions:
R5 --v

11 12 13 14 15 16
11 IB IC ISMIZ 16 R5 ______________ A

After MIlT instruction

(Stop on SM)

TO 4

TO o

11 IB IC ISMI5 16 I ... R5 ___________ A

After MIITD instruction

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE

TO 1

99

5.73 MOV - Move One Operand to the Other

The MOV instruction is used to move one operand to another.

MOV of symbol types B, D, F, H, S, T

Function: Operand.2 = Operand.1

The contents of the first operand replace the contents of the second
operand. The two operands must be of the same type.

Formats: MOV b,b
MOV d,d
MOV f,f
MOV h,h
MOV m,t
MOV n,d
MOV n,t
MOV s,s
MOV t,t

Note - Symbols of type F and H cannot be directly loaded with a
constant or literal. The FTLY or HTLY instructions should be used to
define a local constant to move from.

MOV of symbol type R to/from S

Function: Register.2 = "detached" byte address from register.1

These are special instructions which
of the address register. For a
instructions, see the section on

load and store the byte address
complete understanding of these
Attachment and Detachment of an

Address Register in the chapter on Data Addressing.

When an AR is moved to an SR, the byte address of the AR replaces the
previous value in the SR. If the AR was attached, the address is
converted to the detached form before the move. The AR itself remains
unchanged.

When an SR is moved to an AR, the AR is first detached, and then the
byte address from the SR replaces the previous value in the AR.

Formats: MOV r,s
MOV s,r

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 100

5.74 MSDB MSXB - Convert ASCII String to Binary

Function
MSDB

MSXB

Accumulator FPO

Accumulator FPO

binary equivalent of pre-incremented
decimal ASCII string from operand. 1
binary equivalent of pre-incremented
hexadecimal ASCII string from operand. 1

These instructions convert ASCII character strings to binary. They
are macros provided for coding convenience. They first clear the
entire accumulator (T3 and FPO) , and then execute either the MFD (if
MSDB) or MFX (if MSXB) instruction. See the section on MFD and MFX
for more information about these instructions.

Formats: MSDB r
MSXB r

5.75 MTLY Assembler Directive
MTLY

Function: All symbols or variable names used as operands must have a
symbol type-code; this instruction reserves storage and sets up the
symbol in the label field to be of type M, which is a mode-id.

A mode-id consists of a four-bit entry point number and a twelve-bit
frame number or FID. The first operand in the instruction is used to
specify the entry point number, and must be in the range 0-15
(O-X'F'). The second operand may be a literal or a previously defined
mode-id, and is used to specify the frame number. More information on
mode-id's can be found in the chapter on the Assembler.

MTLY is typically used when creating a table of mode-id's. These may
be loaded into the accumulator for use in the BSLI and ENTI
instructions to transfer control indirectly. See also the DEFM
Assembler Directive, which defines a mode-id without creating storage.

Formats:

symbol
symbol

MTLY n ,m
MTLY n,n

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 101

5.76 MUL MULX - Multiply into Accumulator.

Function: Accumulator = accumulator * re1ative.operand

Arithmetic overflow or underflow cannot be detected.

The following shows the format of the accumulator and the symbolic
names that address various sections of it:

Byte no.:
in PCB

B63

8 I 9 A I B I C I DIE I F I
<----------- FPO ---------> I <­

<------ D1 -----> I <------ DO -----> I <­
<- T3 ->1 <- T2 ->1 <- Tl ->1 <- TO ->1 <­

H71 H61 H51 H41 H31 H21 Hll HOI <-
....................................... BO

MUL

6-byte field
4-byte fields
2-byte fields
I-byte fields
<- bits

The operand is multiplied by the four-byte field DO.
two-byte operands are internally sign-extended to form
field before the operation takes place.

One- and
a four-byte

The eight-byte result is stored in Dl and DO. The original operand is
unaffected.

MULX

The operand is multiplied by the six-byte field FPO.
four-byte operands are internally sign-extended to
field before the operation takes place.

One-, two-, and
form a six-byte

The low order eight bytes of the result are stored in Dl and DO. The
original operand is unaffected.

Formats: MUL d
MUL h
MUL n *
MUL t

MULX d
MULX f
MULX h
MULX n *
MULX t

* Note: These instructions using a literal normally generate a
two-byte field. If the literal is outside the range -32,768 through
+32,767, an operand of the form =Dx~xx should be used to generate a
four-byte literal (for example, =D40000 or =DX'FC000022'). Six-byte
literals must be separately defined using the FTLY instruction.

5.77 MXB - see MDB

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 102

5.78 NEG - Negate Operand

Function: Operand = -Operand

The contents of the operand are replaced by the negative (two's
complement) of the operand.

Formats: NEG d
NEG f
NEG h
NEG t

5.79 NOP - No Operation

Function: None

This instruction performs no operation;
sequence is executed.

Format: NOP

5.80 ONE - Set Operand to One

Function: Operand = 1

the next instruction in

The contents of the operand are replaced by a binary one.

Formats: ONE d
ONE f
ONE h
ONE t

5.81 OR - Logical OR of a Byte

Function: Indirect byte = indirect byte logically OR'ed with operand

The byte referenced by the first operand is logically OR'ed with the
byte referenced by the second operand. The byte referenced by the
second operand is unchanged.

Formats: OR r,n
OR r, r

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 103

5.82 ORG Assembler Directive

Function: This is an assembler directive that resets the assembler's
location counter.

The location counter advances as the object code is generated, and the
"Current location function" (*) contains the address of the next byte
to be generated. There are several reasons to change the location
counter in an explicit manner:

1. A typical example of ORG is to use byte zero of the object code.
The FRAME assembler directive sets the location counter to one
(not zero) because the object code begins at one. To use byte
zero for storage:

FRAME xxx

ORG 0
TEXT X'FE' Define an attribute mark
CMNT * (Now location counter is back to 1)

AM EQU Rl This may be used to refernce the byte
CMNT * at location zero symbolically via label AM

2. To save and restore the location counter; for example, if a
program is INCLUDEd that actually generates code:

SAVELOC EQU * Save location counter before INCLUDE
INCLUDE TABLEI Include program to get definitions
ORG SAVELOC Reset in case TABLEI has object code

3. To leave "space" in the object code for variables that the program
uses. This is not a good feature in general, since this leads to
non-re-entrant (non-sharable) code, but is not prohibited. For
example,

COUNT DEFT Rl,*16
ORG *+2

Since the tally COUNT occupies two bytes in the object code, the
ORG *+2 is used to "space" over these two bytes.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 104

5.83 READ READX - Read Byte

Function: Indirect character next byte in asynchronous byte
buffer

The next character from. the asynchronous channel input buffer replaces
the byte addressed by the register. If the input buffer is empty, the
process is suspended until a character is received from the
asynchronous channel. Characters transmitted by the channel are
automatically queued in the PIB for the process, until some
configuration-dependent maximum number of characters is received. If
this condition occurs, no further data are accepted from the channel,
which will output a Bell character (X'07') for each attempted input
character until the condition is cleared.

The READX instruction never echoes characters on the asynchronous
channel.

For the READ instruction, control characters (X'OO' through X'lF') are
never echoed, while non-control characters are echoed unless bit
NOECHO is set. The READ instruction is actually a macro which tests
whether a character should be echoed, and executes a WRITE instruction
if so.

Formats: READ r
READX r

Example:

READ R2

Macro expansion:

READX R2
BCl R2,X'20' ,=l002
BBS NOECHO,=1002
WRITE R2

=l002 EQU *

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 105

5.84 RQM - Release Timeslice Quantum

Function: Release process's timeslice

This instruction is typically used when the process is waiting for an
event to occur. If the process executes instructions continuously, it
is a waste of the system's resources. The RQM instruction is inserted
as a means of delaying the process for a while. It is a request to
the Monitor to turn over control to the next process in line. The
process that executed the RQM will be reactivated after other active
processes in the process chain have executed their timeslices.

See the example in the section on the XCC instruction; also see the
SLEEP instruction.

Format: RQM

5.85 RTN - Return from a Subroutine

Function:
a. An address is obtained from the current entry in the return

stack, and the stack pOinter is decremented by four.
b. Control is transferred to the location so obtained.

This instruction is the correct way to return after a subroutine has
been called via a BSL instruction. It does not matter whether the
subroutine had been called locally or externally.

If there are no entries in the return stack, the Debugger is entered
with a Return Stack Empty trap condition.

Also see the BSL instruction to call a subroutine.

Return stack entries are four bytes each; their format is described
in the chapter SYSTEM CONVENTIONS. An entry may be deleted from the
return stack by the instruction "DEC RSCWA,4". This is mandatory if a
subroutine is to be exited without using a RTN instruction. The
entire return stack may be reset by the instruction
"MOV X'184' ,RSCWA", which may be useful in conditions where a process
is to be re-initialized, and all current entries in the stack are to
be deleted or ignored.

Format: RTN

5.86 SB - Set Bit

Function: Bit = 1

The referenced bit is set to an "on" (lor true) condition.

Format: SB

ASSEMBLER

b

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 106

5.87 SET.TIME - see TIME

5.88 SHIFT - Logical Right Shift of a Byte

Function: Operand.2 = indirect byte right shifted one bit

The value of the byte referenced by the first operand is
shifted one bit; the vacated leftmost bit is set to zero.
is stored at the location addressed by the second operand.
referenced by the first operand is unchanged.

Format: SHIFT r,r

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 107

logically
The result

The byte

5.89 SICD - Scan over Multiple Delimiters

Function: Scan a string until a specific number of delimiters
is found

The first operand, which is an address register, is incremented until
the terminating condition specified by the accumulator, TO, and the
second operand (the "mask" byte) is met. If the initial condition of
the accumulator and the mask byte matches the terminating condition,
no operation is performed.

This instruction can scan a variable number of delimiters. Its
function is to position the register at a specific point within a data
structure containing several levels of delimiters.

The low-order tally of the accumulator, TO, contains the count of
delimiters.

The "mask" byte is used to specify under what conditions the scan
terminates. Note - this "mask" byte is different from the one used in
the SID, SIDC, SIT, SITD, MIID, MIIDC, and MIITD instructions.

Three of the possible scan delimiters are fixed, and are the standard
system delimiters:

Value mark - VM - X'~
Attribute mark - AM - X'FE'
Sub-value mark - SVM- X'FC'

Three other delimiters are variable, and may be prestored by the
programmer in the scan characters SCO, SC1 and SC2. Six bits in the
mask byte are used to determine which of the six above characters are
to be compared; if a bit is set (1), the corresponding character is
tested; if zero, it is ignored. Only one of these bits may be set
for the SICD innstruction.

Bits: ---0-----1-----2------3------4-----5-----6-----7--­
Test: AM VM SVM (SCO) (SC1) (SC2)

The parentheses around SCO, SC1 and SC2 are to indicate that it is the
contents of these locations that are compared.

The high-order bit (bit 0) of the mask, if set, indicates that the
accumulator TO should be DECREMENTED by one BEFORE the scan is started
and the terminating condition tested. If zero, this will not take
place.

Bit 1 specifies the condition for abnormal termination of the scan.
If set, the scan will terminate abnormally if a character is found
which is logically higher than the character in SC2. If zero, the
scan will terminate abnormally if a character is found which is
logically higher than the delimiter being scanned for. If the
delimiter being scanned for is in SC2, therefore, the state of this
bit does not matter.

The scan can terminate either normally or abnormally. It will
terminate normally if the number of delimiters specified in TO
(pre-decremented if required) is encountered. In this case, TO will
be decremented to zero, and the register will point to the final

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 108

SICD

delimiter (or will be unchanged if no scan takes place).

The scan will terminate abnormally if a character higher than that in
SC2 (mask bit 1 on) or higher than the delimiter (mask bit 1 off) is
encountered. In thi~ case, the value remaining in TO will be the
number of delimiters which must be inserted in the data to create the
required data position, and the register will point one byte BEFORE
the character which caused the scan to terminate.

A few examples should make this clear:

Mask byte Bit pattern -------------Meaning---------------

X'AO' 1010 0000

X'20' 0010 0000

X'02' 0000 0010

X'42' 0100 0010

Format: SICD r,n

stop on nth occurrence of an AM, or on the
FIRST SM; decrement TO by 1 before starting scan.
stop on nth occurrence of an AM, or on the
FIRST SM; do not decrement TO before starting scan.
stop on nth occurrence of the contents
of SC1, or on the FIRST character higher;
do not decrement TO before starting scan.
stop on nth occurrence of the contents
of SC1, or on the FIRST character higher than the
contents of SC2; do not decrement TO before
starting scan.

Examples are on the next page.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 109

SICD

Examples for SICD:

The following data structure is used in the examples:

a b c d e f < Register locations noted below

CASE 1 - Scan to attribute 3; RECALL interface; R15 positioned at "a"

LOAD
SICD

3
R15,X'20'

AMC count
Scan to AM delimiter

At completion, R15 will be positioned at "d," and TO 0

CASE 2 - Scan to attribute 6; BASIC interface; R15 positioned at "b"

LOAD
SICD

6
R15,X'AO'

AMC count
Scan to AM delimiter

At completion, R15 will be positioned at "f," and TO = 2
(Note that R15 has been backed off one byte from the SM).

CASE 3 - Scan to attribute 3, value 2, subvalue 2; RECALL interface;
R15 positioned at "a"

LOAD 3
SICD R15,X'20'
LOAD 2
SICD R15,X'90'
LOAD 2
SICD R15,X'88'

AMC count
Scan to AM delimiter
value position
Scan to VM delimiter (DECREMENT TO BEFORE SCAN)
subvalue position
Scan to SVM delimiter (DECREMENT TO BEFORE SCAN)

At completion, R15 will be positioned at He," and TO = 0

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 110

5.90 SID SIOC - Scan Over a String

Function: Scan a string until a delimiter is found

In addition, for SIOC:
Accumulator TO = accumulator TO - length of string scanned

The first operand, which is an address register, is incremented by
one. This operation is repeated until the terminating condition
specified by the second operand (the "mask" byte), is encountered.
The terminating condition is found by testing each byte after it has
been addressed.

Note that the byte address of the register will always be incremented
by at least one, because it is incremented before the byte test is
done.

For the SIOC instruction, as each byte is moved, the low-order
two-byte field of the accumulator, TO, is decremented by one. Other
sections of the accumulator are unaffected. Normally, TO is set to
either ZERO or ONE before this instruction is executed. If set to
zero, the resultant value after the instruction executes is the
negative of the length of the string, including the delimiter. If set
to one, it is the negative of the string length excluding the
delimi ter.

The "mask" operand for this instruction is a byte that is used to
specify under what conditions the string, and therefore the
instruction, terminates. Up to seven different characters can be
tested; four of them are fixed, and are the standard system
delimiters:

Segment mark - SM - X'FF'
Value mark - VM - X'FO'

Attribute mark - AM - X'FE'
Sub-value mark - SVM- X'FC'

The other three characters are variable, and may be prestored by the
programmer in the scan characters SCO, SC1, and SC2.

The low order seven bits in the mask byte are used to determine which
of the seven above characters are to be compared; if any bit is set
(1), the corresponding character is tested; if zero, it is ignored.

Bits: ---0-----1-----2------3------4-----5-----6-----7--­
Test: SM AM VM SVM (SCO) (SC1) (SC2)

The parentheses around SCO, SC1 and SC2 are to indicate that it is the
contents of these locations that are being compared.

The high-order bit (bit 0) of the byte is used in the following
manner: if set (1), it indicates that the string terminates on the
first occurrence of a delimiter as specified by the setting of bits
1-7. If zero, it indicates that the string terminates on the first
non-occurrence of a delimiter as specified by the setting of bits 1-7.

A few examples should make this clear:

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 111

Mask byte Bit pattern

X'CO' 1100 0000
X' AO' 1010 0000
X'F8' 1111 1000

X'C3' 1100 0011

X'Ol' 0000 0001

-------------Meaning---------------

stop on first occurrence of a SM.
stop on first occurrence of an AM.
stop on first occurrence of any system
delimiter - SM, AM, VM or SVM.
stop on first occurrence of an SM,
or the contents of SCI or of SC2.
stop on the first NON-occurrence of the
contents of SC2 *

SID
SIDC

* - For example, if SC2 contains a BLANK, this mask will cause the
instruction to terminate when the first NON-BLANK is found.

For the first operand, the notes under the "INC Register" instruction
apply if the register reaches the boundary of a frame.

Formats: SID r,n
SIDC r, n

Example:

SIDC R4,X'CO'

R4 --v
Data: IA IB IC ISMI

R4 -----------1

Before instruction
TO = 0

TO = -3
After instruction

MCC
SID

C' ',SCI
R4,X'02' SCAN UNTIL NON-BLANK

R4 --v
Data: IXI

R4 -----------1

ASSEMBLER

Before instruction

After instruction

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 112

5.91 SIT SITD - Scan Over a String

Functio~: Scan indirect pre-incremented string

SIT: (string terminates on count runout)
SITD: (string terminate~ on count runout OR delimiter found)

If the low-order two-byte field of the accumulator, TO, is zero at the
start of these instructions, no action takes place.

Otherwise, the first operand, which is an address register, is
incremented by one, and the accumulator TO is decremented by one.
This operation is repeated until the following condition(s) occur(s):

1. For the SIT instruction, when TO reaches zero. This instruction
is typically used to scan over a fixed length string. It is
logically equivalent to the "INC r,t" instruction, except that
additional frames may be linked on to the end of the linked set by
using XMODE.

2. For the SITD instruction, when TO reaches zero, or when a
delimiter byte specified by the third operand (the "mask" byte),
is encountered. The terminating condition is found by testing
each byte as it is scanned. This instruction is typically used to
scan over a delimited string of preset maximum length. Additional
frames may be linked on to the end of the linked set by using
XMODE.

See the notes under the MIID or SID instructions for a complete
description of the "mask" byte.

For the first operand, the notes under the "INC Register" instruction
apply if the register reaches the boundary of a frame.

Formats: SIT r
SITD r,n

Example:

LOAD 4
SIT R4

Before instruction
R4 TO = 4

v
Data: IA IB IC ISMIZ R4 ______________ A

ASSEMBLER

TO = 0
After instruction

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 113

5.92 SLEEP - Wait

Function: Wait for a specified time

This instruction is typically used when the process is waiting for an
event to occur. If the process executes instructions continuously, it
is a waste of the system's resources. The SLEEP instruction is
inserted as a means of delaying the process until a specific time of
day.

The accumulator DO must be loaded with the "awakening" time of day in
internal system format (number of milliseconds past midnight) before
the SLEEP instruction is executed. If DO contains a value higher than
86,400,000, the process will sleep "forever."

A sleeping process can be awakened from the process' own terminal by
the BREAK key.

See also the RQM instruction.

Format: SLEEP

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 114

5.93 SR Assembler Directive
SR

Function: All symbols or variable names used as operands must have a
symbol type-code; this is an assembler directive that reserves
storage and sets up the symbol in the label field to be of type S
(storage Register). It also generates a byte address.

The first operand is used to specify the displacement of the generated
byte address, and the second the FlO or Frame number. If the
high-order bit of the second operand's value (which is a four-byte
field) is set, the byte address is in UNLINKED format; if zero, it is
in LINKED format. See the section in the chapter on Data Addressing
for a full description of linked and unlinked modes of addressing;
also compare to the ADDR assembler directive.

Format:
symbol SR n,n

Examples:

Instruction

FlOO SR

F100U SR

MOV

ASSEMBLER

1,100

Generated value

0001 0000 0064 Addresses frame 100 in linked
mode, therefore address is
location 12 (X'C') in the frame.

l,X'80000064' 0001 8000 0064 Address is in unlinked mode;
location is 1 in frame 100.

F100U,R15

Copyright 06 JUN 1983
THE ULTIMATE CORP.

Sets R15 to the above address.

PAGE 115

5.94 SRA - Set Register to Address

Function: Byte address of operand. 1 address of operand.2

The SRA instruction is used to "point" an address register to a
location that is specified by the second operand. It is typically
used to address locations in the object code (text strings, for
example), or to address the first byte of a symbol so that sections of
it can be manipulated in ways not otherwise possible.

Formats:

* Note
label is

SRA r,c
SRA r,d
SRA r,f
SRA r,h
SRA r,l *
SRA r,s

- SRA to a local label works only when the location of the
less than X'100', that is, in the first half of the frame.

This is because a label is addressed relatively via a byte offset, and
the maximum offset can be 255 or X'FF'. If it is necessary to address
a label in the second half of the frame, one way is to make the label
of type T using instructions of the form:

LABEL
ALIGN *
DEFT R1,*16
CMNT *

Need to align location on word boundary!
Define LABEL as "here" (*16 is to get offset
as words, not bytes)

Now the SRA r,LABEL would work correctly.

Examples:

FILENAME EQU *-1
TEXT C'INVN' ,X'FE'

SRA
CMNT
CMNT
CMNT

SRA
CMNT

SRA

ASSEMBLER

R15,FILENAME
*
*
*

R15,DO
*

R15,H3

This sets R15 to address one byte BEFORE
the byte 'I' in the string 'INV .. '. Typically
R15 is now used in a MIlD instruction to copy
the string, until the AM, to another location.

This sets R15 to point to the first byte of
the accumulator DO.

Same as above (see format of Accumulator) .

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 116

5.95 STORE - Store Accumulator in Operand

Function: Relative.operand = accumulator

The following shows the format of the accumulator and the symbolic
names that address various sections of it:

Byte no. :
in PCB

8 I 9 A I B I C I D I E I F
<----------- FPO ---------> <­

<------ D1 -----> I <------ DO -----> <­
<- T3 ->1 <- T2 ->1 <- T1 ->1 <- TO ->1 <­

H71 H61 H51 H41 H31 H21 H11 HOI <-
B63 BO

6-byte field
4-byte fields
2-byte fields
1-byte fields
<- bits

The contents of the accumulator (HO, TO, DO or FPO) replace the
contents of the operand. The accumulator is not changed.

Formats: STORE d
STORE f
STORE h
STORE t

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 117

5.96 SUB SUBX - Subtract from Accumulator

Function: Accumulator = accumulator - relative.operand

These instructions subtract the contents of the operand from the
accumulator.

Arithmetic overflow or underflow cannot be detected.

The following shows the format of the accumulator and the symbolic
names that address various sections of it:

Byte no. :
in PCB

8 I 9 A I B I C I DIE I F
<----------- FPO --------->

<------ D1 -----> I <------ DO ----->
<- T3 ->1 <- T2 ->1 <- T1 ->1 <- TO ->1

H71 H61 H51 H41 H31 H21 H11 HOI

<­
<­
<­
<-

B63 BO

SUB

The operand is subtracted from the four-byte field
two-byte operands are internally sipn-extended to
field before the operation takes place. Neither the
nor other sections of the accumulator are affected.

SUBX

6-byte field
4-byte fields
2-byte fields
1-byte fields
<- bits

DO. One- and
form a four-byte
original operand

The operand is subtracted from the six-byte field FPO. One-, two-,
and four-byte operands are internally sign-extended to form a six-byte
field before the operation takes place. Neither the original operand
nor other sections of the accumulator are affected.

Formats: SUB d
SUB h
SUB n *
SUB t

SUBX d
SUBX f
SUBX h
SUBX n *
SUBX t

* Note: These instructions using a literal normally generate a
two-byte field. If the literal is outside the range -32,768 through
+32,767, an operand of the form =Dxxxx should be used to generate a
four-byte literal (for example, =D40000 or =DX'FC000022'). Six-byte
literals must be separately defined using the FTLY instruction.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 118

5.97 TEXT Assembler Directive
TEXT

Function: This Assembler directive is used to store text strings. It
may have any number of operands, each of which may specify a string in
either ASCII (character) or hexadecimal formats. It is typically used
to store literal strings, messages, tables of values, etc. See the
SRA instruction for the method of addressing generated data.

Format: TEXT op1{,op2, ... }

Example:

Instruction Generated value

TEXT C'ABCD' ,X'07FF' 4142434407FF

5.98 TIME SET.TIME - Get/Set System Time and Date

Function
TIME

SET.TIME
Accumulator = system time and system date
System time and system date accumulator

TIME
SET.TIME

The TIME instruction is used to get the system's time and date in
internal format. It is a Monitor call that loads the accumulator FPO
as follows:

T3 - (upper two bytes of FPO) contains the date as number of days past
DEC 31,1967;

DO - (lower four bytes of FPO) contains the time as number of
milliseconds past midnight.

The SET.TIME instruction is a Monitor call that resets the system's
internal time and date. The accumulator FPO must be set up as
described above before SET. TIME is executed.

Formats: TIME

5.99 TLY - see DTLY

ASSEMBLER

SET. TIME

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 119

5.100 WRITE - Write Byte

Function: Next byte in asynchronous byte buffer = indirect character

The byte addressed by the register is stored in the next location in
the asynchronous channel output buffer. If the output buffer is full,
the process is suspended until characters are removed from the buffer
by the asynchronous channel controller.

Format: WRITE r

5.101 XCC - Exchange Characters

Function: Indirect character < - > indirect character

The character addressed by the first operand is exchanged with that
addressed by the second operand.

Formats: XCC r,r

This instruction allows the "Test and Set" function to be implemented,
which may be used to prevent shared usage of sections of code. For
example:

SRA R15,LOCKTBL
CMNT *

LOCKED? MCC X' 01' ,R2
XCC R2, R15
BCE R2 , X ' 00' ,OK
RQM
B LOCKED?

OK EQU

MCC X' 00' ,R15

Set R15 to the Lock byte, which may contain
either a X'OO' (unlocked) or X'Ol' (locked).
Move "Locked" flag to scratch location;
Exchange old lock and store "Locked" flag;
If old flag was X'OO', we are ok to continue.
Else wait a while ...
And try again.
Start of non-shared code

Unlock the non-shared code Lock byte

5.102 XOR - Logical XOR of a Byte

Function: Indirect byte (indirect byte) logically XOR'ed with
(operand)

The byte referenced by the first operand is logically exclusive-OR'ed
with the byte referenced by the second operand. The byte referenced
by the second operand is unchanged.

Formats: XOR r,n
XOR r,r

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 120

5.103 XRR - Exchange Registers

Function: Address register < - > address register

The first operand is exchanged with the second operand. The
"attached" or "detached" state of the address registers is not changed
and is not relevant to the operation of this instruction.

Format: XRR r,r

5.104 ZB - Zero Bit

Function: Bit 0

The referenced bit is set to an "off" (0 or false) condition.

Format: ZB b

5.105 ZERO - Set Operand to Zero

Function: Operand = 0

The contents of the operand are replaced by zero.

Formats: ZERO d
ZERO f
ZERO h
ZERO t

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 121

CHAPTER 6

THE DEBUGGER

6.1 The Assembly Debugger

The assembly Debugger is a powerful tool that allows the programmer to
control program execution, to display and change variables, and to set
breakpoints. The Debugger may be called by the terminal's BREAK key.
If the system is executing a BASIC program, the BREAK key calls the
BASIC Debugger instead of the assembly Debugger; in this case, the
BASIC Debug command "DEBUG" or "DE" will transfer control to the
assembly Debugger.

The Debugger signifies its control by typing a message of the form:

I f.l

where "I" is an indication
signal, "f" is the decimal
interrupted, and "1" is the
that was interrupted.

that the system received a BREAK key
frame number where execution was

hexadecimal location of the instruction

The Debugger's prompt character is the exclamation point (!).

The Debugger is also entered when the
unrecoverable error.

6.1.1 System Privileges and Debug Usage

system encounters an

Users with system privilege levels zero and one have only these Debug
commands available: "G", "P", "END" and "OFF". Users with system
privilege level two have access to all Debug commands, except "DI"
(see next section).

6.1.2 Disabling the Debugger

Access to Debug commands other than "G", "P", "END" and "OFF" for all
users may be inhibited by the "DI" (Disable) Debug command from the
SYSPROG account. This is a method of improving system integrity by
preventing inadvertant or deliberate change of data, etc., via the
Debugger.

Once disabled, the Debugger can be enabled only via the same "DI"
command (it is a toggle switch).

6.1.3 Inhibiting the Break Key

The TCl BREAK-KEY-OFF verb may be used
Debugger via the BREAK key for a particular
verb reverses the effect of BREAK-KEY-OFF.
language for more information on these verbs.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP.

to inhibit entry to the
line. The BREAK-KEY-ON
See the Terminal Control

PAGE 122

6.2 Debug context Switching

The Debugger is internally called via a subroutine call to one of the
entry points in frame one (1). At this time, if the Debug state is to
be entered, a special Monitor call is executed. (The Debug call may
be ignored, for example, on a BREAK key entry if the BREAK key is
inhibited).

The Monitor sets a flag in the PIB to indicate that the process is in
the Debug state. In this state, whenever the process is activated,
the special frame at the original PCB FID plus two (the Tertiary
Control Block) is used as the effective PCB. This frame is
permanently assigned as the Debug state control block, and is
sometimes referred to as the Debug Control Block or DCB.

The DCB has its own set of address registers and all functional
elements needed by the Debugger. The DCB's Register One (program
counter) is always set up to start execution at a specific location in
the Debugger's software. By switching PCB context, then, the state of
the virtual machine is preserved, as the original PCB is saved.

When the Debug state is to be exited, another Monitor call is
executed to reset the flag in the PIB, and the normal PCB takes over.
Note that, at this time, the DCB Register One is left pointing to the
instruction immediately following the Monitor call, which is the
"re-entry" point when the Debug state is next entered.

Prior to this, the Debugger may have changed the last entry in the
real PCB's return stack; this has the effect of unconditionally
changing the execution address, and is normally used by the Debug "G"
(GO), "END", "BYE" and "OFF" commands.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 123

6.3 Debugger Traps and Error Conditions

When a process is executing, certain conditions can cause
the Debug state. Typically, these are unrecoverable error
although artificial calls to the Debugger can be forced by
for special processing conditions. The Debugger traps
related entry points are shown on the next page.

it to enter
conditions,
the Monitor
and their

In the case of traps marked with an asterisk (*) the affected register
number is stored in the half tally ACF, for use by the Debugger.

In the case of a FORWARD lINK ZERO trap, if the exception subroutine
tally XMODE is non-zero, the Debugger will transfer control to the
subroutine whose mode-id is stored in XMODE. The subroutine can
perform such error handling as necessary, and when it executes a RTN
instruction, control returns to the instruction which originally
caused the trap condition. Further details are in the next chapter.

In addition, the Debugger is called by the Monitor under the following
conditions:

1. A message has been transmitted to the process by another process
(via the TCl MSG verb). The Debugger saves the context via the
mechanism described earlier, and transfers control to the message
printer. Entry point 13 is used.

2. A disc error has occurred when the process generated a
frame-fault. The disc error handler is invoked to log the message
in the SYSTEM-ERRORS file. Entry point 9 is used.

3. The BREAK key is pressed on the user's terminal.
is used.

Entry point 10

All unrecoverable error conditions cause a message of the form:

ABORT @ f.d

to be displayed on the terminal attached to the process, where f is
the decimal FID and d is the hexadecimal displacement within the
program frame where the trap occurred. In addition, for
register-related error conditions (traps marked with an asterisk on
the next page), the number of the register causing the trap is
displayed, for example:

FORWARD lINK ZERO; REG 4
ABORT @ 511.1

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 124

Debugger Traps (Aborts)

Entry Message Description

o

1

2

3

4 •

5 •

6 •

8

11

ILLEGAL OPCODE

RTN STACK EMPTY

RTN STACK FULL

REFERENCING FRAME ZERO

CROSSING FRAME LIMIT

FORWARD LINK ZERO

BACKWARD LINK ZERO

REFERENCING ILLEGAL
FRAME

HALT

An undefined assembly instruction
has been found.

A RTN (return) instruction has been
executed when there were no entries
in the subroutine return stack.

A BSL or BSLI instruction
(subroutine call) has been executed
when there were already ten entries
in the stack.

An address register has a zero FlO.

Either an address register with a
byte address in the unlinked mode
has been incremented or decremented
beyond the boundaries of the frame;
OR a relative address computation
(base+offset) resulted in an
address that was beyond the
boundary of the frame addressed by
the register.

An incrementing instruction (e.g.
"INC r" or MIlD) has caused the
register to go beyond the end of
the linked frame set.

A decrementing instruction (e.g.
"DEC r") has caused the register to
go before the beginning of the
linked frame set.

A register has a frame number that
is beyond the allowable limits for
this disc configuration.

A HALT instruction has been
executed.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 125

6.4 Summary of Debug Commands

Command format Description

{f}addr{;window} Direct data display.
{f}/symbol{;window}

{f}'addr{;window} Indirect data display.
{f}'symbol{;window}
Rr
R.r

ADDD nl n2

ADDX nl n2

A/symbol

Baddr

BYE

0

DI

DTX n

E{n}

END

Fn,m

G{addr}

Adds decimal "nl" and "n2".

Adds hexadecimal "nl" and "n2".

Displays the address of a symbol.

Adds the address to the execution Breakpoint
table; up to four addresses can be set.

Same as END but preserves the Breakpoint
and Trace tables.

Displays the Breakpoint and Trace tables.

Disables Debugger for all lines.

Converts decimal "n" to hexadecimal.

Sets the execution Step to Un"; if "n" is 0
or null, clears execution step.

Returns unconditionally to TCl.
Clears B, E, N, M, T and F commands.

Frame substitution of FID "m" for FID "n"
during execution of instructions.

Continues execution at address specified, or at
point of interruption if no addr.

line feed or escape Equivalent to "G" command for convenience.

K{addr} Kills specific Breakpoint entry, or all
entries if "addr" missing.

lfid Displays link fields of frame specified.

M Toggle to turn on/off Modal execution trace.

MUlD nl n2 Multiplies decimal "nl" by "n2".

MUlX nl n2 Multiplies hexadecimal "nl" by"n2".

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 126

Summary of Debug Commands continued

Command format

N{n}

OFF

P

SUBD n1 n2

SUBX n1 n2

Description

Sets delay counter to "n" or 0 if null; inhibits
Debug entry until "n" Breaks, steps, etc.

Logs user off system.

Toggle to suppress/allow terminal output.

Subtracts decimal "n2" from "n1".

Subtracts hexadecimal "n2" from "n1".

T{f}addr{;window} Traces location specified; up to four direct and
T{f}/symbol{;window} four indirect traces can be set, and the data so
T{f}"symbol{;window} traced will be displayed on every entry to Debug.

U{addr}

XTD n

Vaddr
V/symbol
V"symbol

>statement

»

«

<

ASSEMBLER

Untrace; clears Trace table entry, or all entries if
"addr" is nUll.

Converts hexadecimal "n" to decimal.

Data Breakpoint; interrupts execution if the value
contained at the address or in the symbol changes.
Up to two traces can be set; "V" turns them both off.

Executes TCL statement and returns to Debug.

Steps up one TCL level.

Steps down one TCL level.

Returns to current TCL level.

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 127

6.5 Symbolic Debugging

One of the powerful features of the
to specify symbolic variable names
use symbols, the SET-SYM verb must
to the Debugger. It is a good idea
an automatic execution of SET-SYM
(via a lOGON PROC) , so as not to
program. The format of SET-SYM is:

assembly Debugger is the ability
for display and data change. To

have been used at TCl before entry
for assembly programmers to set up
when logging on to their account
forget to do so when debugging a

SET-SYM filename {(T)}

Two files can be specified. Normally, "SET-SYM PSYM" is used so that
all the "global" PSYM symbols can be referenced. local references may
be made to another file by using the SET-SYM verb with the (T) option.
This is useful when working with numerous local symbols, such as those
defined in INCLUDEd programs. "SET-SYM TSYM (T)" may be used to
reference any local symbols. In order for this to work correctly,
TSYM must be in the state just after the assembly, so that it has all
the local symbols in it. Alternatively, after the assembly, all TSYM
symbols may be copied to a more permanant file, and the second SET-SYM
made to that file.

Once the SET-SYM(s) has(have) been executed, the Debug symbolic
display commands "/" and "0" can be used.

6.6 Address Specification in the Debugger

There are several ways to specify a byte address in a Debug command.
Typically, a frame number (FlO) and a displacement or location are
required. Each number may be entered either in decimal or in
hexadecimal notation for convenience. The general formats are:

Notation Description

f.l
f,l

. f.l

. f, I

FID f in decimal; location I in hexadecimal.
FlO f in decimal; location I in decimal.
FID f in hexadecimal; location I in hexadecimal .
FlO f in hexadecimal; location I in decimal .

For example, "123.7F" refers to frame 123, byte hexadecimal 7F, and is
therefore equivalent to "123,127", ".7B.7F" and "7B,127".

For convenience, if the FlO is omitted, the
Therefore, for example, the notation ".100"
location hex 100 in the user's PCB.

6.7 Indirect Addresses

user's PCB is assumed.
is the byte address of

An indirect address specifies a register to indirectly address the
required byte. It has the forms:

Notation Description

Rr Register r, where 0 <= r <= 15.
R.r Register r, where 0 <= r <= F (hexadecimal).

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 128

6.8 Windows

When displaying data using one of the Debug display commands, the
number of bytes to be displayed may be specified by the window
notation. A window is a number or numbers that follow the address
notation, separated by a semicolon (;). Its formats are:

Notation

;n
;rn,n

; .m, n

; . n
;m.n

; .m. n

; tn

Description

Display n bytes; n is a decimal number.
Display as above; start m (decimal) bytes
before specified address.
Display as above; start m (hex) bytes
before specified address.
Display n bytes; n is a hexadecimal number.
Display as above; start m (decimal) bytes
before specified address.
Display as above; start m (hex) bytes
before specified address.
"Immediate symbol" window; see Immediate
Symbol in the chapter on the Assembler;
t is the symbol type-code; n is the
offset; typically used to display bits.

6.9 Bit Addressing

The special form of window:

;Bn

is used to address the nth bit displaced off the previous address.
For example,

100.66;BO

displays the high-order bit of the 66th hexadecimal location of frame
decimal 100.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 129

6.10 Displaying Data

To display data at the "I" prompt, the following notation may be used:

{f}addr{;window}

where "addr" and "window" are as defined previously, and "f" is a
single character format code as shown below:

Format Description

C Display data in ASCII character format.
Non-printable characters display as a period (.);
system delimiters SB,SVM,VM,AM and SM display as [,\,],A and
_ (underscore or back-arrow).

X Display data in hexadecimal format.
I Display data in integer format; window must be 1,2,4 or 6.

If format and window are unspecified, the previously used values will
be reused. For example:

C1234.7F;100

will display 100 bytes, in ASCII format, starting at location
hexadecimal 7F (127 decimal) in frame decimal 1234.

6.10.1 Continuing Display

After the Debugger displays data, it will prompt with an "=" rather
than a "!". At this point, the user has the option of continuing the
display, changing the displayed data, terminating the operation, or a
combination of these actions.

1. To terminate the display and return to the "!" prompt, a carriage
return should be entered.

2. To continue the display to the next forward window, a control-N or
a line feed should be entered. The line feed continues display on
the same line; the control-N causes a new line and a new address
to be displayed before the data.

3. To continue the display to the previous window, a control-P should
be entered. This causes a new line and a new address to be
displayed before the data.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 130

6.10.2 Changing Data

Data may be changed at the "=" prompt, before
above four characters. The replacement value may
character, hexadecimal or integer mode, and
correspond to the format that has been displayed
replacement. To change data:

entering one
be entered
does not

of the
in bit,

have to
except for bit mode

Replacement Entry Format
Mode required

Character Enter: 'data..... (i.e., a quote followed by the data).
Note : The character string entered cannot contain control
characters, and its length need not correspond to the
size of the window. Up to 100 characters may be entered.
Also note there is no trailing quote.

Hexadecimal Enter: . data. (i. e., a period followed by the data) .
Note : The hexadecimal string entered must be an even
number of hex digits, and its length need not correspond
to the size of the window. Up to 100 digits may be entered.

Integer Enter: n (i. e., the decimal number).
Note: The displayed window must be 1,2,4 or 6 only.

Bits Enter: xxxxx... where x=O or 1, a string of bits.
Note: This is valid only when a bit is displayed.

The data may be terminated by a carriage return (change data; return
to "!" prompt), a control-N or line feed (change data; display next
window), or a control-P (change data; display previous window).

For example:

Entry at "=" prompt

cr
If
. 1234cr

'Aaron control-N

o If

ASSEMBLER

Action

Terminates display, returns to "!" prompt.
Displays next window on same line.
Replaces two bytes with hex digits 1234, then
terminates display and returns to "!".
Replaces six bytes with string "Aaron";
continues display to next window on next
line; space shown for clarity only.
Replaces window with decimal zero field;
displays next window; space shown for
clarity only.

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 131

6.11 Symbolic Display

There are two symbolic display operators that may be
symbols: the "/" and the "*" To display data at the "I"
following notations may be used:

{f}/addr{;window}
{f}*addr{;window}

used with
prompt. the

The "/" display operator is used as a direct reference to the contents
of the symbol following. It should therefore be used with symbols of
type B (bit). C (character). D (double tally). F (F-type tally). H
(half tally) and S (storage register. if it is desired to see the
contents of the register. not the data that it addresses).

The "*" display operator is used as an indirect reference to the data
addressed by the symbol. which may therefore be only of types R
(address register) and S (storage register). For example.

Entry

/ABIT
/DO
X/DO
/ISBEG
C*ISBEG;300

X*R15;10.20

Action

Displays contents of ABIT (0 or 1).
Displays contents of DO as an integer.
As above. display is in hexadecimal.
Displays contents of SR ISBEG.
Displays 300-byte indirect character string
starting at location addressed by ISBEG.
Displays 20 bytes in hex. starting 10 bytes
BEFORE the location addressed by R15.

It should be noted that if "format" and "window" are not specified for
a symbol. natural defaults are assumed by the Debugger; for example.
if the symbol is of type D (double tally). the format defaults to I
(integer) and window to 4.

6.12 Debug Traces

The "T" command can be used to set up to four traces. Once set. on
every subsequent Debug entry (including system traps). the traced data
will be displayed automatically. The Trace command formats are
similar in structure to the Display command:

T{f}addr{;window}
T{f}/symbol{;window}
T{f}*symbol{;window}

Note - the window display is limited to 127 bytes. and the "m.n"
format window cannot be used.

·The U command may be used to Un-trace specific or all traces.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 132

6.13 Execution Control

The "B", "E", "M", "N" and "Y" commands are used to control execution
of a program.

6.13.1 Breakpoints

The "B" command sets an execution breakpoint at a location as shown on
the MLISTing of a program. If the process reaches that location, the
Debugger is entered. Up to four such breakpoints can be set; each
one individually, or all can be deleted by the K command. For
example, the command:

B511.3

will cause a breakpoint to be set at Frame 511, 10cat10n 3. In
addition the special form:

Bf.O

will cause a breakpoint
This form is useful when
frame execution may begin;
frame.

on every location in the specified frame.
the user is not sure where in a specific
this form will break on any entry to the

6.13.2 Execution step

The "E" command is typically used in the form "E1", which single-steps
execution. If any other value is used, for example "E10", then that
number of instructions is executed before returning to Debug control.
The forms "E" or "EO" turn off the execution step.

6.13.3 Delay Control

The "N" command is used to "delay" entry to Debug for a specific
number of breakpoints, execution steps, etc. If "Nn" is used, n
entries to Debug are inhibited. For example, if the following
commands are used:

E10
N9

100 instructions are executed before Debug gets
instructions, a message is printed (because
execution continues.

6.13.4 Modal Execution Tracing

control. Every
of the "E10"),

ten
but

The "M" command is a switch that turns modal execution tracing on or
off. If on, the Debugger is entered whenever an ENT, ENTI, external
BSL, external BSLI, or RTN from external subroutine instruction is
executed. That is, execution is interrupted whenever the program
frame changes. Local subroutine calls and RTNs cannot be traced.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 133

6.13.5 Data Value Tracing

The "Y" command adds an entry to the data trace table; the address
(symbolic or direct) specified is monitored and the Debugger entered
when the value changes. "Y" by itself turns the data trace off.

6.14 Continuing Execution

The "G" command with no "address" is used to continue execution at the
point of interruption. The line feed or escape command is equivalent
to this form of the "G" for convenience.

The "G addr" command may be used to unconditionally change the point
of execution. If the Debugger was entered via one of the system
traps, the "G" command with no address will not be accepted: "END",
"OFF", "BYE", or "G addr" must be used, the last only if a location is
known where execution can safely resume.

6.15 Terminating Execution and Changing TCl levels

A process may execute at one of several levels of TCl. Typically, the
EXECUTE statement in BASIC steps "up" one level to process a TCl
statement, and steps "down" to return to the BASIC program. Stepping
up and down may also be done via the Debugger.

The "<", "«" , "END" and "BYE" commands provide a means to terminate
execution under different conditions. "END" and "BYE" always
terminate execution and return to the TCl state at the lowest (lOGON)
level. If the process had been executing at a higher TCl level, all
such levels are released. To terminate execution at the current TCl
level, the "<" command should be used. "<" at the lowest level of TCl
is equivalent to "END".

The "»" and "«" commands allow the process to step up or down TCl
levels. "»" by itself will suspend the current level and re-enter
TCl at one level higher; the prompt at TCl will change to "»" as an
indication that the process is not at the lowest level of TCl.
">statement " may be used to execute any short TCl statement from
Debug, and return to Debug. A useful example may be to send another
user a message from a terminal which is in the middle of processing:
Debug is entered via the BREAK key, ">MSG " is typed in, and
after the message is transmitted, Debug is exited via the "G" or line
feed command, returning the process to normal execution.

The "«" command is u'sed to step back down one TCl level.

Summarizing:

Command Action

END BYE Terminate execution; return to TCl at lowest level.
returns to TCl at current level. < Terminates execution;

«
»
>stmnt

Terminates execution; returns to TCl at next lower level.
Suspends current process; goes to TCl at next higher level.
Suspends current process; executes "stmnt" as a TCl
statement; returns to Debug at the current level.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 134

6.16 Changing Frame Assignments

The "F" command is very useful when debugging a program because it can
be used to temporarily reassign an executable frame number for the
user's process only. Its format is:

Fn,m

where Un" is the decimal frame number that is to be changed, and "m"
is the decimal frame number temporarily assigned to it. Once this
command has been executed, the Debugger will monitor every frame
change as the process executes, and any external BSl or ENT
instructions to frame Un" will be internally modified to go to frame
"m".

In practice, the user modifies an existing program. changes the FRAME
statement in the program before reassembly, and MlOADs the object into
the temporary frame, before using the "F" command. For example, when
debugging a program normally assigned to frame 420, the user changes
the FRAME statement in the source program to 511 (a temporary
location), assembles and MlOADs it. The Debug command:

F420,5ll

then routes all execution transfers from frame 420 to frame 511.

Note that if a frame is reassigned, breakpoints must be set using the
reassigned frame number, not the real one.

Only one frame reassignment at a time be in effect for a process.

Entering "F" alone turns frame reassignment off.

6.17 Arithmetic Commands

The following commands may be used for arithmetic computation at the
Debug level, and are identical to their TCl verb equivalents:

ADDD nl n2
ADDX xl x2
SUBD nl n2
SUBX xl x2
DTX n
MUlD nl n2
MUlX xl x2
XTD x

ASSEMBLER

Add decimal values nl and n2.
Add hexadecimal values xl and x2.
Subtract decimal value n2 from nl.
Subtract hexadecimal value x2 from xl.
Convert decimal value n to hexadecimal.
Multiply decimal values nl and
Multiply hexadecimal values xl
Convert hexadecimal value x to

Copyright 06 JUN 1983
·THE ULTIMATE CORP.

n2.
and x2.
decimal.

PAGE 135

6.18 Other Debug Commands

The "P" command is a toggle switch that turns the terminal print on or
off. It is identical in operation to the TCl "P" verb.

The "l" command may be used to display link fields of a frame. Its
formats are:

laddr
L*symbol

where "symbol" should be an address register or storage register only.
The links fields are displayed in the form:

nncf : forward. link backward.link : npcf

where the terms "nncf" and "npcf" are "number of next contiguous
frames" and "number of previous contiguous frames." All four fields
are displayed in decimal. To display link fields of frame "f" in
hexadecimal, use:

Xf.1;1 fur nncf;
Xf.2;4 for forward link;
Xf.6;4 for backward link;
Xf.A;l fur npcf.

6.19 Debug Messages

When the Debugger is entered due to execution interruption, one of the
following messages will display:

Message Interrupt due to

B f.l
E f.l
I f.l
M f.l
R f.l

BREAKPOINT found at frame f, location 1.
EXECUTION step at frame f, location 1.
BREAK KEY at frame f, location 1.
MODAL entry/External BSl to frame f, location 1.
External RTN to frame f, location 1.

6.20 Address Representation

When the Debugger displays an address, the frame number is always in
decimal and the location is always in hexadecimal. If the displayed
address is from a register which is in linked mode, a plus sign (+)
precedes the frame number just as an indication.

For example,

!C*ISBEG +1200.B .TEST=

ISBEG addresses frame (decimal) 1200, displacement (hexadecimal)
B (decimal 11); the "+" in front of the 1200 indicates that ISBEG
is in linked addressing mode.

!C*TSBEG;16 1189 .. 20 JUN 1946

TSBEG addresses frame (decimal) 1189, displacement 0, in unlinked

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 136

addressing mode because there is no "+" in front of 1189.

•
ASSEMBLER

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 137

CHAPTER 7

SYSTEM CONVENTIONS

7.1 Introduction

This is the difficult aspect of working with assembly language. The
operating system has many conventions that must be adhered to at all
times. Generally speaking, these conventions deal with the use of
global variables and shared buffer spaces.

7.2 Global Variables

Note that all Permanent Symbol File (PSYM) variables are GLOBAL and
can be used by all routines. This is where conventional usage comes
in. Each routine uses only a small subset of the available elements.
Local variables are not normally defined as in other assembly
languages, though this is possible (see Defining an Additional Control
Block, later).

Generally, the "lower" the level of a system subroutine, the fewer
elements it uses. Thus a "higher" level subroutine may safely call a
"lower" level subroutine without losing any data. Also, subroutines
that can be grouped together (for example, file I/O routines or
terminal I/O routines) tend to share many elements.

Certain elements, however, are considered "totally scratch"
they may be used by nearly any subroutine. These elements
follows:

Bits SB60, SB61

Tallies T4, T5

Double Tallies Accumulator (DO, 01), 02

in that
are as

F-type Tallies FPX (overlays SYSRO), FPY (overlays SYSR1)

Registers R14, R15

Storage Registers SYSRO (overlays FPX) , SYSR1 (overlays FPY) ,
SYSR2

The use of these elements is not even mentioned in the documentation
for most system subroutines (next chapter).

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 138

7.3 Re-entrancy

In practically all cases, the system software is re-entrant; that is,
the same copy of object code may be used simultaneously by more than
one process. For this reason, no storage internal to a program is
utilized. Instead, each process uses its own storage space.

The storage space most commonly used by a process is that in its
Primary and Secondary Control Blocks. The Primary Control Block (PCB)
is addressed via Address Register Zero, and the Secondary Control
Block (SCB) via Address Register Two. Two other control blocks, the
Tertiary (Debug) and Quaternary Control Blocks, have no registers
pointing to them. The Debug Control Block is used solely by the Debug
processor, and should not be used by any other programs. The
Quaternary Control Block is used by some system software (magnetic
tape routines, for example) which temporarily set a register pointing
to it; its use is reserved for future software extensions.

There are enough PCB and SCB storage areas defined in the PSYM file to
accommodate most user programs. If a program must use storage
internal to itself, however, it must be made non-re-entrant in order
to prevent several processes from modifying data at the same time. A
common method of accomplishing this is with a "lock byte," illustrated
below. The first process to execute the code "locks" it with an XCC
instruction. Any other process attempting to execute the code will
then wait until the first process "unloCks" it:

LOCKED?

OK

UNLOCK

ORG 0
TEXT X'OO'
CMNT
CMNT *

MCC
XCC
BCE
RQM
B
EQU

MCC
BSL

X'01' ,R2
R2,R15
R2,X'00' ,OK

LOCKED?

X'OO' ,R1
DECINHIB

Initial condition for lock byte
(Note usage of storage internal
to program)

Move "Locked" flag to scratch location;
Exchange old lock and store "Locked" flag;
If old flag was X'OO', we are ok to continue.
Else wait a while ...
And try again.
Start of non-shared code

Unlock the "lock" flag
Conventional way to decrement INHIBITH

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 139

7.4 Defining an Additional Control Block

If it is necessary to define storage elements or buffer areas that are
unique to a process, one of the unused frames PCB+30 or PCB+31 may be
used. The following sequence of instructions is one way of setting up
an AR to a scratch buffer:

MOV RO,R3
DETZ R3
INC R3FID,30

Set R3 "detached", with displacement of zero
Set R3 to PCB+30

Register Three can now be used to reference buffer areas, or
functional elements that are addressed relative to R3. None of the
system subroutines use R3, so that a program has to set up R3 only
once in the above manner. However, exit to TCl via WRAPUP will reset
R3 to PCB+3.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 140

7.5 PCB Fields

The Primary Control Block, or PCB, is mapped below. All elements in
the PCB are accessed via Address Register Zero, which always
addresses, in unlinked mode, byte zero of the PCB.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 141

7.5.1 PCB Fields - The Accumulator

The accumulator and its extension occupy fourteen bytes in the PCB.
The accumulator is used:

1. In LOAD and STORE instructions;
2. In arthmetic instructions;
3. In the LAD instruction;
4. In certain string scanning and moving instructions to count the

number of bytes scanned or moved;
5. In certain string-to-binary and binary-to-string conversion

instructions.

The accumulator consists of two four-byte tallies, labeled Dl and DO.
Another six-byte tally, FPY, is used for extended precision division
instructions only. Dl and DO occupy bytes 8 through 15 of the PCB,
and six-, four-, two-, or one-byte tallies, as well as individual
bits, may be addressed symbolically.

The following shows the format of the accumulator and the symbolic
names that address various sections of it:

8 I 9 A I B I C I D I E I F Byte no.:
in PCB <----------- FPO ---------> <­

<------ Dl -----> I <------ DO -----> <­
<- T3 ->1 <- T2 ->1 <- Tl ->1 <- TO ->1 <­

H71 H61 H51 H41 H31 H21 Hll HOI <-

6-byte field
4-byte fields
2-byte fields
I-byte fields
<- bits B63 BO

The symbols used above may be used to address sections of the
accumulator. Individual instructions such as LOAD and ADD also
address the accumulator di fferently depending on the operand, so a
mental picture of the above is important in understanding how the
accumulator functions. Generally speaking:

1. Extended precision arithmetic instructions such as ADDX affect
FPO; DIVX also affects FPY (not shown above);

2. Normal precision arithmetic instructions such as ADD affect DO;
MUL and DIV also affect Dl;

3. Instructions that count string lengths, as well as the LAD
instruction, use TO only;

4. Conversion instructions use FPO for data and T3 as a parameter.

In the documentation for assembly instructions and
the term "accumulator" usually means a section
proper - usually TO or DO. If the precise section
the context, it will be specified by referring
TO," or "the accumulator DO," for example.

system subroutines,
of the accumulator
is not clear from
to "the accumulator

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 142

7.5.2 PCB Fields - The Scan Characters

There are three one-byte fields called SCO, SCI and SC2, which contain
the "scan characters" used in string scanning and moving. See the
MIlD, MIIDC, MIITD, SICD, SID, SIT and SITD instructions for more
information on the use of these fields.

7.5.3 PCB Fields - The Subroutine Return Stack

The Assembly subroutine return stack is in the PCB at bytes X'182'
through X'lAF'. When the process executes a subroutine call, the
address of the last byte of the call is stored in the return stack and
the stack pointer is pushed by four bytes. On executing a subroutine
return instruction, the stack pOinter is used to get the return
address, and the pointer popped by four bytes.

The stack pointer is stored as a two-byte tally at locations X'182'
and X'183', and is symbolically referenced as "RSCWA". An empty stack
condition is when this tally contains the value X'0184'; a full stack
condition is when it contains the value X'OlBO' .

Each stack entry is four bytes:
1-0-1-1-1-2-1-3-1
1 FID 1 displ 1
1 lacementl

Note that the FlO for executable programs has only twelve significant
bits since all executable programs must be in frames 1-4095.

An entry may be deleted from the return stack by the instruction
"DEC RSCWA,4". This is mandatory if a subroutine is to be exited
without using a RTN instruction. The entire return stack may be reset
by the instruction "MOV X'184' ,RSCWA", which may be useful in
conditions where a process is to be re-initialized, and all current
entries in the stack are to be deleted or ignored.

7.5.4 PCB Fields - XMODE

See the section on the XMODE Interface in the next chapter for
information on the use of this element.

7.5.5 PCB Fields - RMODE

When the WRAPUP processor is called to store or print messages, a
return may be requested by placing a mode-id in the tally RMODE. When
WRAPUP completes the requested processing, an ENT* RMODE instruction
transfers control. Also see the section on the WRAPUP processor in
the next chapter.

7.5.6 PCB Fields - WMODE

When WRAPUP
PROC, the
transferred

finishes processing, just before it returns to TCl or
tally WMODE is checked. If it is non-zero, control is
via a BSl* WMODE instruction to the subroutine whose

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 143

mode-id has been stored in it. Processors that require special
handling to "clean up" may gain contol in this way. The control
transfer via WMODE occurs even if the process has been terminated via
the Debugger "END" command. An example of WMODE usage is when writing
to magnetic tape: if the process is stopped for any reason, an EOF
mark should be written on the tape. Setting WMODE to the mode-id of
the subroutine that writes an EOF mark (TPWEOF) automatically ensures
this.

7.5.7 PCB Fields - OVRFlCTR

When the system software gets space from the system's overflow space
pool, the first frame so obtained is placed in the special double
tally OVRFlCTR. This is typically done when a sorting or selecting
function such as SORT, SELECT, etc. is being performed. The extra
space needed by the processor is built up as a chain of frames
obtained as needed. Just before WRAPUP returns control to TCl,
OVRFlCTR is checked, and if it is non-zero, the subroutine RElCHN is
called to return the chain of frames to the overflow pool. To
maintain this convention of releasing space, OVRFlCTR should not be
changed by any processor other than the first one that gets space and
ini tializes it.

User code written as a TCl-I or TCl-II verb may initialize OVRFlCTR if
it uses overflow space that is to be released when the process
terminates by returning to WRAPUP. TCl-II initializes OVRFlCTR,
however, for "update" verbs used with more than one item; in this
case, user code must use some other means of returning space, perhaps
via WMODE.

7.5.8 PCB Fields - INHIBIT and INHIBITH

Normally, the terminal's BREAK key will cause the process to enter the
Debug state (either assembly or BASIC). For sensitive processing that
should not be interrupted, the bit INHIBIT (available to the user) and
the half tally INHIBITH are used to prevent Debug entry. If either
are non-zero, such entry is prevented.

INHIBITH is used by the system during overflow management, disc
writes, etc; it is incremented by one during the sensitive
processing, and decremented on exit. The increment is performed with
an INC INHIBITH instruction. The decrement is performed by calling
the subroutine DECINHIB.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 144

7.6 SCB Fields

The Secondary Control Block, or SCB, is mapped below. All elements in
the SCB are accessed via Address Register Two, which always addresses,
in unlinked mode, byte zero of the SCB.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 145

7.6.1 SCB Fields - User Available Elements

The following elements in the SCB are unused by the system software,
and are thus freely usable by user-written assembly programs:

BITS
CHARACTERS
DOUBLE TALLIES
HALF TALLIES
STORAGE REGISTERS
TALLIES

SB24 through SB35
None
None
None
SR20 thorugh SR29
CTR30 through CTR42

no address registers available freely;
the interface with the system software.
stored by setting up an additional control

Note that there are
availability depends on
Additional elements may be
block (discussed earlier).

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 146

7.7 Conventional Register and Buffer Usage

The following illustrates the pre-assigned buffers, or workspaces,
available to a process. Note that, unlike in other systems, program
space is rarely used to store variables (other than text strings).
All programs should be "pure" or re-entrant code.

The buffers as shown in the table should give
manipulate string data. Counters, bits, and
PSYM-defined PCB and SCB elements.

ample room to store and
pointers are stored in

Conventionally, buffer beginning pointers (ISBEG, etc.) point one byte
before the actual data. This is so that the string scanning and
string moving instructions, which always increment an AR before
testing or moving the next data byte, work correctly.

For example, a typical sequence that initalizes and moves data into
the HS workspace is:

MOV HSBEG,HS
MIlD R15,HS,X'CO'

Set HS Register to start of buffer
Copy a string until a SM

Note that the byte at HSBEG is not affected, since the MIlD
instruction pre-increments and then stores the first byte.

The subroutine WSINIT may be used to reset the BMS, AF, CS, IB and OB
registers and buffer pointers to their initial conditions. The
subroutine ISINT does the same for the IS, OS and HS buffers, and also
calls WSINIT.

The buffer pointers are sometimes changed by processors, but reference
is always made symbolically, so this is mostly transparent. TSBEG,
for example, always defines the beginning of the TS buffer, regardless
of which frames are actually being used for this buffer at any given
time.

In the following table, the various workspace pointers are shown,
along with the size of the buffers. "Not a buffer" indicates that
there is no permanently assigned space associated with the storage
registers.

The Description column indicates the conventional usage of the buffer.
"Freely usable" does not apply to a program entered from the
Conversion interface of BASIC or RECALL, both of which tend to be very
possessive of all available registers, except R14 and R15.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 147

7.7.1 Table of Buffers and Buffer Pointers

Reg PSYM Beginning
num name and Ending

Pointers

o
1
2
3 HS HSBEG Fixed

HSEND Floating;
must point to
current end of
data in the
HS buffer

4 IS ISBEG Fixed
ISEND Floating;
end of current
data pointer

5 OS OSBEG Fixed
OSEND Floating;
end of current
data pOinter

6 IR No pOinters

Size
of buffer

Description

Primary Control Block Pointer
Program Counter
Secondary Control Block Pointer

64 Kbytes Stores messages to be printed at
end of processing; area beyond HSEND
may be used as scratch; if needed
to save data, conventions are:
strings separated by SM's; character
after SM is an X; string terminated
with a SM and a Z; HSEND points
to the SM before the Z

64 Kbytes Stores compiled string for RECALL;
data for EDITOR; no conventions

64 Kbytes Stores compiled string for RECALL;
data for EDITOR; in RECALL, area past
OSEND is scratch; no conventions

Not a buffer Used for file 1/0; pOints to current
item in the file if using standard
system file 1/0 subroutines; not to
be used for other purposes

7 UPD UPDBEG No meaning Not a buffer
UPDEND No meaning

No conventionally fixed usage,
except on tape 1/0; UPD

8 BMS BMSBEG Fixed
BMSEND Floating
on last byte
of item-id

9 AF AFBEG Fixed
AFEND Fixed

10 IB IBBEG Fixed
IBEND Floating,
end of current
data pointer

11 OB OBBEG Fixed
OBEND Fixed

12 CS CSBEG Fixed
CSEND Fixed

13 TS TSBEG Fixed
TSEND Floating;
pOints to current
end of data

14 R14 -
15 R15 -

ASSEMBLER

50 bytes

50 bytes

140 bytes

140 bytes

100 bytes

512 bytes

AR is freely usable
Stores item-id when interfacing
with system file 1/0; item-id's are
terminated with an AM

Scratch buffer in same frame as
BMS; AF AR freely useable
Terminal input buffer; not to be
used for other purposes

Terminal output buffer; not to
be used for other purposes
Scratch buffer in same frame as
BMS; CS AR may be freely used as
a scratch register
The TS buffer is used as a scratch
area by various languages and process-
ors; particularly useful in the Con­
version interface; some processors use
the TS buffer itself; most do not;
but the area from TSBEG on may be
treated as a scratch space in the
Conversion interface; TS AR may be
used as scratch

Scratch Register
Scratch Register

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 148

7.8 System Control Flow

The diagram below shows the flow of control between the operating
system modules. After logging on to the system, a process is at TCl,
which is the main interface with the terminal. An initial command
word entered at TCl may be:

1. A PROC; the PROC processor gains control; it may call the TCl
processor as a subroutine by generating any TCl command and
executing it via the PROC "P" command, or it may return to TCl via
the PROC exit ("X") command.

2. A TCl-I verb; typically these do not require file I/O; examples
are TIME, SLEEP, and POVF.

3. A TCl-II verb; these verbs always access a file,and usually items
in that file; examples are EDIT, COpy and AS. The TCl-II
file-handler opens the file and retrieves the item, and then
transfers control to the specific processor. The latter returns
to the file-handler after completion of processing for that item.

4. A RECAll verb; the RECAll compiler is first called to compile the
statement. The resultant compiled string is passed to the
Selection processor, which acts as the file-handler for the RECAll
run-time. If the verb requires sorting (SORT, SSElECT), the SORT
processor is called to sort the selected items on the specified
sort-keys. The RECAll run-time processor is called as each item
is selected, and it returns control to the selection processor
after completion of processing for that item.

All processors return to TCl via the WRAPUP processor, which cleans
up, closes spooler files, prints messages, etc. If a PROC was in
control, it regains control rather than TCl.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 149

7.8.1 Diagram of System Control Flow

I
I

lOGON <------
I OFF
v verb

I

----------->

/

T C l

/ '\
/ '\

/ '\
/ '\

TCl-I verb / TCl-II
v v

TCl-I I File
type I handler I

1 processor 1
----------- / I

I '\
(2) I

I
I
I
I
I

\

I
I
I
v

/ v (1) I
\/ -----------

A I TCl-II
I I type
I I processor I
I -----------
I I
I 1(2)
I I
I I
I I

I
I

v

/

I
I

I
I

\

/

----> I PROC
<---- I processor

\ RECAll verb
v

/

1 RECAll
Icompiler I

v

1 Selection I ------------
1 processor I-->ISORT
I I<--Iprocessor I
------------- I I

I \
v (1) I \

\
1 RECAll (4)
1 processor ------------
I I-->Ispecial
------------- Iprocessor I

I (3) I (3)
I (2)
v

I WRAPUP processor
I

(5) -----------­
------>1 special
<------1 processing 1

----<-----------------
SYSTEM CONTROL FLOW

Notes:
(1) This path is repeated as each item is retrieved by the file

handler.
(2) Error message store/print path, and final exit.
(3) Control returns using tally RMODE.
(4) Special processing via MODEID3 in RECAll verb.
(5) Subroutine call using tally WMODE, just before return to TCl.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 150

7.9 TCl Initial Conditions

When a process is at TCl, all workspace or buffer pOinters (described
earlier) are initialized (though the buffer data are whatever are left
over from the last program). Also, all bits (flags) are cleared.
Remembering these pOints is important when first writing assembly
programs, since they define initial conditions.

The following defines these initial conditions at TCl:

1. MBASE MMOD MSEP
2. EBASE EMOD ESEP
3. USER

Base/Mod/Sep of the M/DICT.
Base/Mod/Sep of the ERRMSG file.
Contains: 5 = logged on; 3 = logging
off.

4. Scan characters SCO/SC1/SC2 Contain X'FB' (SB), blank and blank.
5. ABIT through ZBIT, Zeroed.

AFlG through ZFlG,
SBO through SB35

6. All workspace pointers

7. Terminal and printer char­
acteristics (such as
paper depth and width).

Initialized to beginning and end of
buffer spaces.
Initialized by the TERM TCl verb.

Note that this means that the process has access to the user's M/DICT
(master dictionary) and to the ERRMSG file (that is, they are "open"
to use classical terminology).

7.10 Interfacing via a Verb

A program that is to be called via a verb on the system may interface
as a TCl-I verb or as a TCl-II verb. The TCl-I interface is adequate
if no disc file I/O is to be done. The TCl-II interface is much more
convenient for accessing a file and/or items in a file since it
relieves the program of responsibility of file opening and item
retrieval.

It is also possible to interface with the RECAll processor; in this
case, RECAll obtains the data in "output" form (correlated and
converted), creates a dummy item in the HS buffer, and then turns
control over to the user program. In fact, the standard lIST-lABEL
and REFORMAT verbs work in exactly this way. The RECAll interface
requires more care than the TCl-I and TCl-II interfaces because the
RECAll processor uses most of the available global elements, but it
provides the full power of the RECAll Selection, Sort and
Correlative/Conversion processing.

All three interfaces are covered in more detail in the next chapter.

7.11 Conversion Processor Interface

The best way of accessing assembly subroutines from the system is via
the Conversion processor interface, described in the next chapter.
This allows subroutines to be called from BASIC or RECAll, and allows
parameters to be passed back and forth.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 151

CHAPTER 8

SYSTEM SOFTWARE

8.1 Introduction

Assembly level programming in the ULTIMATE system is facilitated by a
set of standard system routines that allow easy interaction with the
disc file structure, terminal I/O, and other system routines. These
routines work with a standard set of addressing registers, storage
registers, tallies, character registers, bits, and buffer pointers,
collectively called "functional elements." In order to use any of
these routines, therefore, it is essential that the calling routine
set up the appropriate functional elements as required by the called
routine's input interface.

The standard set of functional elements is pre-defined in the
permanent symbol file (PSYM), and is therefore always available to the
programmer. Also included in the PSYM are the mode-id's (program
entry pOints) for the standard system routines documented in this
chapter.

The first part of this chapter, "User Program Interfaces," covers the
methods of invoking a user-written program from the operating system
and returning control to the operating system. The rest of the
chapter, "System Subroutines," describes the routines available to the
user program once it has been invoked.

8.2 Documentation Conventions

The entry and exit procedures for the user program interfaces are
described individually. The system subroutines, unless otherwise
specified, are meant to be called using a BSL instruction, and they
return to the calling program via a RTN instruction.

A brief description is given for each interface and subroutine. In
each case, the Input Interface, Output Interface, and Element Usage
sections describe the functional elements used by the routine. The
single letter following an element name describes its type: B=b1t,
C=character, H=hal f tally, T=tally (word), D=double tally, F=F-type
tally, R=address register, S=storage register.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 152

Even if not specified, the following elements may be destroyed by any
routine:

Bits SB60, SB61

Tallies T4, T5

Double Tallies Accumulator (DO, D1), D2

F-type Tallies FPX (overlays SYSRO), FPY (overlays SYSR1)

Registers R14, R15

Storage Registers SYSRO (overlays FPX), SYSR1 (overlays FPY) ,
SYSR2

If no description follows an element name, it indicates that the
element is used as a scratch element.

Input interface elements for many routines are divided into two
sections: those labeled "User specified" and those labeled "System
specified." The User specified elements are those that the programmer
sets up explicitly before calling the routine. For example, when
calling the routine to get a number of contiguous frames (GETBLK), the
programmer must obviously specify this number as a parameter.

System specified elements are those that have been implicitly set up
by the system some time prior to the call. For example, when calling
the routine to read a line from the terminal (READLIN), the buffer
location where the data are to be stored is a system standard, and
does not have to be explicitly set up by the programmer.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 153

8.3 Summary of System Software Routines

1. User program interfaces

CONV interface
PROC interface
RECALL interface
TCL-I interface
TCL-II interface
WRAPUP interface
XMODE interface

2. Terminal and printer I/O routines

NEWPAGE
PCRLF
PERIPHREAD1

PERIPHREAD2
PERIPHSTATUS
PERI PH WRITE
PRINT CRLFPRINT
PRNTHDR
READIB READLIN

READLINX
SETLPTR SETTERM

RESETTERM
WRITOB WRTLIN

Skip to new page, print heading/footing
Print cr/lf sequence
Read asynchronous channel

Get status of asynchronous channel
Write asynchronous channel
Print text from object code to terminal
Initialize and print heading/footing
Read a line from the terminal

Set up characteristics of terminal, printer

Write a line to the terminal or printer

3. Disc file I/O routines

GETACBMS
GETFILE OPENDD
GETITM
GLOCK GUNLOCK
GUNLOCK. LINE
HASH
RETIX RETIXU
UPDITM

Open the ACC file
Open a file or dictionary
Get next sequential item from file
Lock or unlock a file group
Unlock all group locks for a line
Compute record that item-id hashes to
Read a specific item from a file
Write a specific item to a file

4. Space management routines

ATTOVF
GETBLK
GETOVF
NEXTIR NEXTOVF
RDLINK
RDREC
RELBLK
RELCHN
RELOVF
WTLINK

ASSEMBLER

Attach overflow frame automatically
Get a block of overflow frames
Get a frame of overflow space
Attach overflow frame via register
Read link fields of frame
Read one frame
Release a block of overflow space
Release a chain of overflow frames
Release a single overflow frame
Write link fields of frame

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 154

Summary of System Software

5. Tape I/O routines

TPBCK
TPRDLBL TPRDLBL1

TPGETLBL
TPREAD TPRDBLK
TPREW
TPWEOF
TPWTLBL TPWTLBLl
TPWRITE

6. Miscellaneous

ACONV
CONV
CVDxx subs
CVXxx subs
DECINHIB
ECONV
HSISOS
LINESUB
MBDSUB MBDNSUB

MBDSUBX
MBDNSUBX

SLEEP SLEEPSUB
TIME DATE

TIMDATE
SORT
WSINIT

ASSEMBLER

Routines continued

Backward space tape 1 record
Read tape label

Read a tape record
Rewind the tape
Write end of file
Write tape label
Write a tape record

Convert ASCII character to EBCDIC
Call Conversion processor
Convert ASCII decimal to binary
Convert ASCII hexadecimal to binary
Decrement the INHIBITH counter
Convert EBCDIC character to ASCII
Initalize IS, OS and HS buffer pointers
Get user's line number
Convert binary to decimal ASCII string

Put terminal to sleep
Get system time and/or date

Sort a string of keys
Initialize buffer pOinters

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 155

8.4 User Program Interfaces

This section describes the various means by which the operating system
can transfer control to a user-written program, and the methods for
returning control to the system from the user program.

8.4.1 TCl-I Interface

The next few sections describe the Tel-I, TCl-II and WRAPUP
interfaces. The system control flow should be kept in mind in order
to understand the interaction between these processors. The flow
diagram appears in the previous chapter. An example of a TCl-I verb
and a TCl-II verb appear at the end of this chapter.

To invoke a user program as a TCl-I or TCl-II verb, a verb definition
item is created in the master dictionary, with the mode-id of the
program specified on line 2 (TCl-I) or on line 3 (TCl-II). line one
consists of a "P", optionally followed by one other character, to
identify the item as a verb. The Terminal Control language (TCl)
processor then uses this information to transfer control to the user
program. The entry point to the TCl processor is known as MOl in the
PSYM, but this is largely irrelevant to a user program. MOl is
normally entered only from WRAPUP or lOGON.

When MOl is entered, TCl checks for PROC control, and if this is
present, enters the PROC processor. If a PROC is not in control (and
bit CHAINFlG is zero), an input line is obtained from the terminal,
and control passes immediately to M01B (documented next).

Input Interface

System specified:

CHAINFlG B

PQFlG B

If set, terminal input is not obtained
(as when chaining from one BASIC program
to another)

Set to indicate PROC control

See M01B (next) for continuation of the TCl-I interface.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 156

8.4.2 TCl-I Interface, Continued

MD1B is the point where TCl attempts to retrieve a verb (first set of
contiguous non-blank data in the input buffer) from a user's master
dictionary, and validate it as such. If no errors are found, the rest
of the data in the input buffer are edited and copied into the IS work
space, and control passes to the processor specified in the
primary-mode-id attribute of the verb, or to the PROC processor if the
data define a PROC (attribute l="PO").

If the TCl statement contains "options," which are an alphabetic
character string and/or numerics enclosed in parentheses at the end of
the statement, the options are parsed as described below. Examples of
options are "(M)" and "(AZ,100-300)".

Input Interface

System specified:

IB R

Output Interface

BASE D
MODULO T
SEPAR T

IB R
IBEND S

BMS R
BMSEND S

IR R

SR4 S

Points one character before the input
data

=MBASE, MMODUlO, MSEPAR

Point to the SM at the end of the
input line

Point to the last character in the verb
name (for RETIX)

Points to the AM following attribute 4
of the verb item, or to the end-of-data
AM in the item, or to the "0" in
attribute one if the item defines a PROC

Points to the AM at the end of the verb
item in the master dictionary

The following specifications are meaningful only if the first two
input characters are not "PO":

SCP C

CTRO T

MODEID2 T

MODEID3 T

ASSEMBLER

Contains the character immediately
following "P" in the verb definition, if
present, otherwise contains a blank

Contains the primary mode-id specified
in the verb definition attribute 2

Contains the secondary mode-id from the
verb attribute 3, if present, otherwise
o

Contains the tertiary mode-id from the
verb attribute 4, if present, otherwise
o

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 157

TCL-I Interface continued

Exits

AFLG thru B
ZFLG B

NUMFLGI

NUMFLG2

NUMFLG3

04
05
03

os

IS
ISBEG

B

B

B

o
o
o

R

R
5

Option flags; AFLG set for NAN option,
BFLG for NBN option, etc., thru ZFLG for
"ZN. Additionally, numeric options of
the form NnN, Nn_mN, N.nN or ".n.m"
(last two are hex) are stored as shown
below

set if any numeric option was present

set if second number was present

set if third number was present

contains first number
contains second number
contains third number

=OSBEG

Point one character before the beginning
of the edited input line; characters
are copied from the IB, subject to the
following rules:

1. All control characters and system delimiters (SB, SM, AM, VM,
SVM) in the input buffer are ignored.

2. Redundant blanks (two or more blanks in
copied, except in strings enclosed by single
marks.

sequence) are not
or double quote

3. Strings enclosed in single quote marks are copied as: SM I
string SB.

4. Strings enclosed in double quote marks are copied as: SM V
string SB.

5. End of data is marked as: SM Z.

To O,PROC-I if first verb line contains "PQ" , otherwise to the
entry point set up in CTRO. If the verb is not found in the
master dictionary, or has a bad format, control passes to M099 in
the WRAPUP processor, which prints an error message.

Error number
(in REJCTR)
2

3
30

ASSEMBLER

Error type

Uneven number of single or double quote
marks in the input data
Verb cannot be identified in the M/OICT
Verb format error (premature end of data
or a non-hexadecimal character present
in the mode-id)

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 158

8.4.3 TCl-II Interface

TCl-II is used whenever a verb requires access to a file, or to all or
explicitly specified items within a file. It is entered from the
TCl-I processor after the verb has been decoded and the primary
mode-id has been identified as that of the TCl-II processor (mode-id =
2). TCl-II exits to the processor whose mode-id is specified in
MODEID2.

Typically processors such as the EDITOR, ASSEMBLER, lOADER, etc.
TCl-II to feed them a set of items which is specified in the
statement. TCl-II uses RMODE to gain control from WRAPUP after
item is processed under these conditions.

use
input
each

On entry, TCl-II checks the verb definition for a set of option
characters in attribute 5; verb options are single characters in any
sequence and combination, and are listed below.

Option

C

F

N

P

U

z

Meaning

Copy - items retrieved are copied to the
IS workspace

File access only - file parameters are
set up, but any item-list is ignored by
TCl-II; if this option is present, any
others are ignored

New item acceptable if the item
specified is not on file, the secondary
processor still gets control (the
EDITOR, for example, can process a new
item)

Display item-id on
item-list (more
retrieval, of if a
effect

a full-file or
than one item)

Select list is in

Updating sequence flagged - if items are
to be updated as retrieved, this option
is mandatory

Final entry required the secondary
processor is entered once more after all
items have been retrieved (the COPY
processor, for instance, uses
option to print a final message)

this

The input data string to TCl-II consists of the file-name (optionally
preceded by the modifier "DICT", which specifies access to the
dictionary of the file), followed by a list of items, or an asterisk
(*) specifying retrieval of all items in the file. If a SELECT,
SSElECT, GET-lIST or QSElECT has preceded the TCl-II statement, the
item-list will not be present; item-id's are obtained from the
select-list instead of from the statement.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 159

TCL-II Interface continued

Input Interface (from TCL-I; system specified)

IR R

SR4 5

MODEID2 T

BMSBEG 5

ISBEG 5

output Interface

*DAF1 B

*DAF2 B

*DAF3 B

*DAF4 B

*DAF5 B

*DAF6 B

DAF8 B

DAF9 B

DAF10 B

IS R

RMBIT B

*FBASE D
*FMOD T
*FSEP T

ASSEMBLER

Points to the AM before attribute 5 of
the verb

POints to the AM at the end of the verb

Contains the mode-id of the processor to
which TCL-II transfers control (assuming
no error conditions are encountered)

Standard system buffer where the
file-name is to be copied, if the HF"
option is present, otherwise where
item-id's are to be copied

Standard system buffer
to be copied, if the
present

Set if the "UN option is

Set if the "C" option is

Set if the "PH option is

Set if the HN" option is

Set if the "ZH option is

Set if the " F" option is

where items are
HCH option is

specified

specified

specified

specified

specified

specified, or
if a full file retrieval is specified
(no "F" option)

Set if a file dictionary is being
accessed, otherwise reset (from GETFILE)

=0

Set if more than
in the input data,
retrieval (H*")

one item is specified
but not a full file

Points one past the end of the file name
in the input string if the "F" option is
present; pOints to the SM in the copied
item if the "C" option is present,
otherwise to the end of the input string

Set if the file or item is
retrieved

Contain the base, modulo,
of the file being accessed

Copyright 06 JUN 1983
THE ULTIMATE CORP.

successfully

and separation

PAGE 160

TCl-II Interface continued

BASE D =FBASE, FMOD, FSEP on the first exit
MODULO T only
SEPAR T

DBASE D Contain the base, modulo, and separation
DMOD T of the dictionary of the file being
DSEP T accessed

The following specifications are meaningful only when the "F"
option is not present:

SRO S

SIZE T

SR4 S

ISEND S

IR R

*RMODE T

XMODE T

Points one prior to the count field of
the retrieved item

Contains the item size in bytes (one
less than the value of the count field)

Points to the last AM of the retrieved
item

Points to the SM terminating the item
data if the "C" option is present

POints to the last AM of the
item copied, if the "C"
present, otherwise pOints
following the item-id on file

retrieved
option is

to the AM

=MD201 if items are
processed, otherwise=O

left to be

=0

Flags as set up by TCl-I if the input data contains an option
string.

Note - Elements marked with an "*" must not be changed by the
next level processor.

Error Conditions

The following conditions cause an exit to the WRAPUP processor
with the error number indicated:

Error

13

199

200

201

ASSEMBLER

Condition

Data pOinter item not found, or in bad
format

IS work space not big enough when the
"C" option is specified

No file name specified

File name illegal or incorrectly defined
in the M/DICT

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 161

TCl-II Interface continued

202

203

ASSEMBLER

Item not on file;
type are stored

all messages of
until all items

been processed; items which are on
are still processed

No item list specified

this
have
file

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 162

8.4.4 WRAPUP Interface

The WRAPUP processor prints error messages and returns to TCl if tally
RMOOE is zero. WRAPUP returns to the location specified in RMOOE if
it is non-zero.

There are several entry points in WRAPUP, used to print messages under
different conditions. In all cases, the messages (and parameters) may
be either stored in the HS buffer or may be immediately printed. They
are stored if bit VOBIT is set; they are printed if VOBIT is reset,
or if RMOOE is zero.

Messages are stored in the HS buffer; HSENO is used as the pointer to
the next available spot in the buffer. The message string is copied
to this location with a SM and an "0" preceding it; the message is
terminated with a SM and a HZ":

. .. SM 0 message ... SM 0 message SM Z
... HSENO

Note that HSEND points to the SM, not the HZ". This is so that on the
next entry, the HZ" is overwritten with the next "0".

On final entry to WRAPUP, the HS buffer is scanned for SM-"O"
sequences, and the messages are printed. (No messages are printed if
HSEND = HSBEG, however.)

If WRAPUP returns via RMOOE, the subroutine return stack is cleared,
and the workspace pOinters and address registers AF, BMS, CS, TS, IB
and OB are reset to standard conditions.

Entry point Description

MD999 Terminates processing; messages previously stored in the HS
buffer are printed if needed; closes spooler files,
releases overflow, etc., and returns to TCl-I

Note: All entries below eventually enter M0999 if RMOOE is non-zero.

M099

M0995

MD994

M0993

M0992

Enter with REJCTR, REJO and REJ1 containing up to three
message numbers; no parameters

Enter with C1 containing the message number; string
parameter is at BMSBEG thru an AM; typically used to print
a message after a file I/O routine has failed, since the
item-id is in the BMSBEG buffer at this point

Enter with C1 containing the message number;
parameter is at IS thru an AM

string

Enter with C1 containing the message number; numeric
parameter is in C2; typically used to print a message with
a count less than 32,767

Enter with C1 containing the message number; numeric
parameter is in 09; typically used to print a message with
a count that may go higher than 32,767

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 163

8.4.5 CONV Interface

There are two distinct interfaces documented here; since they are
closely connected, they are documented together. The entire section
should be read carefully for a complete understanding of the methods
involved.

1. The CONV entry point may be used to call the entire conversion
processor as a subroutine, which will perform any and all valid
conversions specified in the conversion string. It is normally
used when the user writes an assembly program that requires one of
the standard user conversions (as documented in the RECALL
manual).

2. The other use of this interface is to call a user-written
subroutine from BASIC or RECALL. The conversion processor
interface is the single most useful interface in the system. This
is because a conversion routine can be called by BASIC and RECALL
to perform special processing; the interface to both these
processors is identical. From BASIC, a user subroutine is called
via:

CONVERTED. VAL
CONVERTED. VAL

OCONV(RAW.VAL, 'Uxxxx')
ICONV(RAW.VAL, 'Uxxxx')

where the unconverted or raw value in variable RAW.VAL is passed
as a parameter to the user assembly code; the latter performs
such action as needed, and the result is returned to the BASIC
program as a value that (in the above instance) will be stored in
the variable CONVERTED. VAL. ICONV or OCONV is used depending on
whether the user wants "input" or "output" conversion to be
performed (if the distinction does exist).

The value xxxx is the mode-id of the user-written subroutine.

From RECALL, a Correlative or Conversion code of the following
format should be used:

Uxxxx

where xxxx is the mode-id of the user-written subroutine. In this
case, RECALL passes the unconverted or raw value (which may have
previous conversions or correlatives already applied, since these
fields in the dictionary item may be multiple valued) as a
parameter to the user assembly code; the latter performs such
action as needed, and the result is returned to RECALL.

In all cases, the unconverted value is a string stored in the buffer
defined by TSBEG. It is important to note that the actual location of
the buffer is irrelevant. The actual TS buffer, as initialized at
TCL, is only 512 bytes in length. This buffer is rarely used, since
TSBEG can be freely moved around to point to any scratch space
available. However, the symbolic reference via TSBEG always locates
the data, so the physical location need be of no concern.

All conversion processors adopt the convention that the converted
value is returned in the same location, overlaying the original value.
User-written conversions MUST follow this convention. The space
available beyond the original unconverted parameter is considered

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 164

CONV Interface continued

scratch, and may be used freely.

See the examples at the end of this chapter.

1. Input Interface to system conversion processor:

User specified:

TSBEG S

IS R

MBIT B

Points one before the value to be
converted; the value is converted "in
place," and the buffer is used for
scratch space; therefore it must be
large enough to contain the converted
value; the value to be converted must be
terminated by any of the standard system
delimiters (SM, AM, VM, or SVM)

Points to the first character of the
conversion code specification string for
CONV; for CONVEXIT (see below), pOints
at least one before the next conversion
code (after a VM) or AM at the end of
the string, or to the AM; the code
string must end with an AM; initial
semicolons (;) are ignored

Set if "input" conversion is to be
performed; zero for "output" conversion

2. Input interface for user-written subroutine:

TSBEG

IS

MBIT

S

R

B

Points one before unconverted parameter
from BASIC or RECALL processor; value is
terminated by any system delimiter

Points to non-hexadecimal character in
the Uxxxx string

Set for ICONV function or from Selection
processor in RECALL; reset if OCONV
function or LIST/output processor in
RECALL

Output Interface, either set up by CONV in case 1, or
set up by user-written code in case 2

TSBEG S

TS R
TSEND S

IS R

ASSEMBLER

Points one before the converted value

Point to the last character of the
converted value; a SM is also placed one
past this location; TS=TSEND=TSBEG if a
null value is returned

Points to the AM/VM terminating the
conversion code(s)

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 165

CONY Interface continued

Element Usage - scratch

1. On a user-written call to the standard system
routines (via CONV) , the following elements are
scratch and may be destroyed.

conversion
considered

2. As a corollary, therefore, these same elements are freely
usable in user-written subroutines.

SB10 B
SB11 B
SB12 B
SC2 C
T5 T
T6 T
T7 T
CTR1 T
CTR20 T
CTR21 T
CTR22 T
CTR23 T
S4 S
S5 S
S6 S
S7 S
Plus R14, R15, FPO, etc. as defined in Documentation
Conventions

Subroutine Usage

The number of additional levels of subroutine linkage required
depends on the conversions performed.

Exit convention:

For user-written conversions, one of two methods of exit may be
used:

1. The conventional exit is to entry CONVEXIT, which will
process further conversion codes, if any. In this case, the IS
register must point either to the delimiter terminating the Uxxxx
code, which may be a VM or an AM, or anywhere before it.

2. If it is known that no further codes exist, or if these codes
are not to be processed, a RTN instruction may be executed. In
this case, it is irrelevant where the IS register points.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 166

8.4.6 PROC Interface

Summary

A user-written program can gain control during execution of a PROC by
using the Uxxxx or Pxxxx command in the PROC, where "xxxx" is the
hexadecimal mode-id of the user routine ("user exit"). The routine
can perform special processing, and then return control to the PROC
processor. Necessarily, certain elements used by the PROC processor
must be maintained by the user program; these elements are marked
with an asterisk in the table below.

Input Interface

*BASE
*MODULO
*SEPAR

*PQBEG

*PQEND

PQCUR
IR

*PBUFBEG

*ISBEG

*STKBEG

IB

*SBIT

*SC2

IS

UPD

D
T
T

S

S

S
R

S

S

S

R

B

C

R

R

Output Interface

ASSEMBLER

contain the base, modulo, and separation
of the master dictionary

POints one prior to the first PROC
statement

Points to the terminal AM of the PROC

Point to the AM following the Uxxxx or
Pxxxx statement

Points to the buffer containing the
primary and secondary input buffers;
buffer format is SB ... Primary input
. .. SM SB ... Secondary input ... SM

Points to the buffer containing the
primary output line

Points to the buffer containing "stacked
input" (secondary output)

Is the current input buffer pointer (may
point within either the primary or
secondary input buffers)

Set if a ST ON command is in effect

Contains a blank

SBIT on

Points to the last
byte moved into
the secondary
output buffer

Points to the last
byte moved into
the primary output
buffer

SBIT off

Points to the last
byte moved into
the primary output
buffer

Points to the last
byte moved into
the secondary
output buffer

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 167

PROC Interface continued

IR

IS
UPD
IB

Exit Convention

R

R
R
R

Points to the AM preceding the next PROC
statement to be executed; may be altered
to change PROC execution

May be altered as needed to alter data
within the input and output buffers, but
the formats described above must be
maintained

The normal method of returning control to the PROC processor is to
execute an external branch instruction (ENT) to 2,PROC-I. To return
control and also reset the buffers to an empty condition, entry
l,PROC-I may be used. If it is necessary to abort PROC control and
exit to WRAPUP, bit PQFlG should be reset before branching to any of
the WRAPUP entry pOints (see WRAPUP documentation) .

Note that when a PROC eventually transfers control to TCl (via the "P"
operator), certain elements are expected to be in an initial
condition. Therefore, if a user routine uses these elements, they
should be reset before returning to the PROC, unless the elements are
deliberately set up as a means of passing parameters to other
processors. Specifically, the bits ABIT through ZBIT, AFlG through
ZFlG and SBO through SB30 are expected to be reset by the TCl-II and
RECAll processors. It is best to avoid usage of these bits in PROC
user exits. Also, the scan character registers SCO, SCi, and SC2 must
contain a SB, a blank, and a blank, respectively.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 168

8.4.7 RECALL Interface

Summary

It is possible to interface with the RECALL processor at several
levels. A typical LIST or SORT statement passes through the Compiler
and the Selection processor before entering the LIST processor. All
statements must pass through the first two stages, but control can be
transferred to user-written programs from that point onward.

General Conventions

The RECALL processors use a compiled string that is stored in the IS
work space. String elements are separated by SM's. There is one
file-defining element in each string, one element for each attribute
specified in the original statement, and special elements pertaining
to selection criteria, sort-keys, etc. The formats of various string
elements are as follows:

File Defining Element, at ISBEG+1:

SM 0 file-name AM 0 AM conv AM corr AM
type AM just AM SM

Attribute Defining Element:

SM c attribute-name AM amc AM conversion AM correlative AM
type AM just AM SM

c = A - regular attribute
Q - 01 attribute
B - 02 attribute
Bx- SORT-BY, SORT-BY-DSND, etc.; "x" is from

attribute one of the connective

Explicit Item-id's:

SM I item-id SM

End-of-string element:
SM Z

The Selection Processor

This performs the actual retrieval of items which pass the selection
criteria, if specified. Every time an item is retrieved, the
processor at the next level is entered with bit RMBIT set; a final
entry with RMBIT zero is also made after all items have been
retrieved. If a sorted retrieval is required, the Selection processor
passes items to the GOSORT mode, which builds up the sort-keys
preparatory to sorting them. After sorting, GOSORT then retrieves the
items again, in the requested sorted sequence.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 169

RECALL Interface continued

A user program may get control directly from the Selection processor
(or GOSORT if a sorted retrieval is required); the formats of the
verbs are:

Line number

1
2
3
4

Non-sorted

PB
35
xxxx

Sorted

PB
35
4E
xxxx

where "xxxx" represents the mode-id of the user program, which is
loaded into the tally MODEID2 for later use. Note: line one must be
a "PB". Note that in this method of interface, only item retrieval
has taken place; none of the conversion and correlative processing
has been done. For functional element interface, the column headed
"Selection Processor" in the table shown later must be used.

Exit Convention: On all but the last entry, the user routine should
exit indirectly via RMODE (using an ENT* RMODE instruction); on the
last entry, the routine should exit to one of the WRAPUP entry pOints.
Processing may be aborted at any time by setting RMODE to zero and
entering WRAPUP. Bit SBO must also be set on the first entry.

Special Exit From The LIST Processor

A user program may also gain control in place of the normal LIST
formatter, to perform special formatting. The advantage here is that
all conversions, correlatives, etc. have been processed, and the
resultant output data have been stored in the history string (HS
area). The formats of the verbs then are:

Line number

1
2
3
4

Non-sorted

PA
35
4D
xxxx

Sorted

PA
35
4E
xxxx

where "xxxx" is the mode-id of the user program, which is loaded into
the tally MODEID3 for later use. Note: line one must be a "PA".

Output data are stored in the HS area; data from each attribute are
stored in the string, delimited by AM's; multiple values and
sub-multiple-values are delimited within an element by VM's and SVM's,
respectively. Since the HS may contain data other than the retrieved
item, the user program should scan from HSBEG, looking for a segment
preceded by an "X"; all segments except the first are preceded by a
SM. The format is:

X item-id AM value one AM ... AM value n AM SM Z

The program must reset the history string pOinter HSEND as items are
taken out of the string. In special cases, data may not be used
until, say, four items are retrieved, in which case HSEND is reset on
every fourth entry only. HSEND must be reset to point one byte before
the next available spot in the HS work space, normally one before the
first "X" code found.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 170

RECALL Interface continued

The exit convention for the LIST processor is the same as for the
Selection processor (see above).

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 171

RECALL Interface continued

Example: The following program is an example of one which prints
item-id's (only) four at a time across the page.

The format of the RECALL verb is:

LIST4
001 PA
002 35
003 4E (sorted) or 4D (unsorted)
004 01FF (MODEID3 exit to frame 511, entry point zero)

FRAME 511
*
*
*
*
*

ZB SB30
BBS SB1,NOTF

* FIRST TIME SETUP

INTERNAL FLAG
NOT FIRST TIME

*
NOTF

PRINTIT
LOOP

SCANSM

STOREIT

COPYIT

ENDHS

RETURN

QUIT

MOV
BSL

4,CTR32
PRNTHDR

SB SB1
INITIALIZE AND PRINT HEADING

BBZ RMBIT,PRINTIT LAST ENTRY
BDNZ CTR32,RETURN NOT YET 4 ITEMS OBTAINED
MOV 4,CTR32 RESET
MOV HSBEG,R14
INC R14
BCE C'X' ,R14,STOREIT FOUND AN ITEM
BCE C'Z' ,R14,ENDHS END OF HS STRING
SID R14,X'CO' SCAN TO NEXT SM
B LOOP
BBS
SB

SB30,COPYIT
SB30

MOV R14,SR28
CMNT *
MIlD
MCC
INC
B
BSL
MOV
CMNT
DEC
BBZ
ENT*
CMNT
ENT
END

R14,OB,X'AO'
C' , ,OB
OB,5
SCANSM
WRTLIN
SR28,HSEND
*
HSEND
RMBIT ,QUIT
RMODE
*
MD999

NO FIRST ID FOUND
FLAG FIRST ID FOUND
SAVE LOCATION OF FIRST
"X"
COPY ITEM-ID TO OB
OVERWRITE AM
INDEX

PRINT A LINE
RESTORE HS TO FIRST
"X" CODE
BACK UP ONE BYTE

RETURN TO SELECTION
PROCESSOR
TERMINATE PROCESSING

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 172

RECALL Interface continued

Element Usage

The following table summarizes the functional element usage by the
Selection and LIST processors. Only the most important usage is
described; elements that have various usages are labeled "scratch." A

(blank) indicates that the processor does not use the element.
Since the LIST processor is called by the Selection processor, any
element used for "memory" purposes (not to be used by others) in the
former is indicated by a blank usage in the latter column.

In general, user routines may freely use the following elements:

Bits SB24 upwards
Tallies CTR30 upwards
Double tallies: 03-08
SR's SR20 upwards

SBO and SB1 have a special connotation: they are zeroed by the
Selection processor when it is first entered, and not altered
thereafter. They are conventionally used as first-time switches for
the next two levels of processing. SBO is set by the LIST processor
when it is first entered, and user programs that gain control directly
from Selection should do the same. SBO may be used as a first-entry
switch by user programs that gain control from the LIST processor.

A RECALL verb is considered an "update" type of verb if the SCP
character (from line one of the verb definition) is B, C, 0, E, G, H,
I, or J. These SCP characters are reserved for future RECALL verbs.

Bits

ABIT
BBIT
CBIT
OBIT
EBIT
FBIT
GBIT
HBIT
IBIT

JBIT

KBIT
LBIT
MBIT

NBIT
OBIT

PBIT
OBIT
RBIT

SBIT

TBIT
UBIT

ASSEMBLER

Selection Processor LIST Processor

scratch
first entry flag
scratch
scratch
reserved
reserved
reserved
reserved
explicit item-id's
specified
reserved

by-exp flag
scratch
CONV interface;
zero
scratch
selection test on
item-id
scratch
scratch
full-file-retrieval
flag
selection on values
(WITH)
scratch
scratch

non-columnar list flag

scratch
dummy control-break
control-break flag
scratch
scratch
scratch

02 attribute in
process
by-exp flag
left-justified field
zero

scratch

scratch
scratch

print limiter flag
reserved

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 173

RECALL Interface continued

VBIT
WBIT
XBIT
YBIT

ZBIT

SBO

SB1

SB2
SB4
through
SB17
VOBIT

CFLG
DFLG
HFLG
IFLG
CBBIT
DBLSPC
LPBIT
PAGFRMT
TAPEFLG

RMBIT

WMBIT
GMBIT
BKBIT
DAF1

DAF8

Tallies

C1; C3-C7
C2
CTR1-CTR4
CTR5

CTR6
CTR7

CTR8
CTR9
CTR10
CTRll
CTR12

CTR13
CTR14
CTR15
CTR16

ASSEMBLER

reserved
scratch
scratch
left-justified
value being tested
left-justified
item-id
unavailable

unavailable

reserved; zero

scratch
reserved
reserved
left-justified print
limiter test

first entry flag,
level one
first entry flag,
level two

scratch or reserved scratch or reseved

set for WRAPUP
interface
set if C option or COL-HDR-SUPP specified
set if D option or DET-SUPP specified
set if H option or HDR-SUPP specified
set if I option or ID-SUPP specified
set if BREAK-ON or TOTAL specified
set if DBL-SPC specified
set if P option or LPTR specified
set unless N option or NOPAGE specified
set if T-LOAD verb (SCP = "T") or TAPE
specified
set on exit if an
item was retrieved;
zero on final exit
FUNC interface FUNC interface
FUNC intrface FUNC interface
scratch scratch
set if SCP=B, C, D,
E, G, H, I, or J
set if accessing a
dictionary

Selection processor LIST processor

scratch
contents of MODEID2
scratch
scratch

reserved
reserved

reserved
reserved
reserved
reserved
FUNC interface

FUNC interface
reserved
reserved
reserved

scratch

scratch
AMC of the current
element in the IS
scratch
AMC corresponding
to IR
scratch
scratch
scratch
scratch
current sub-value counter
count
current value count
scratch
item size
scratch

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 174

RECALL Interface continued

CTR17
CTR18
CTR19
CTR20-CTR23
CTR24
CTR25
CTR26
CTR27
CTR28

Other storage

D9

D7
FP1-FP5
RMODE
SIZE
FBASE
FMOD
FSEP

SR's

Sl

S2-S9
SRO

SR1

SR2
SR3
SR4

SR5

SR6

SR7
SR8-SR12
SR13

SR14-SR19
PAGHEAD

AR's

AF
BMS

CS
IB
OB
IS
OS

ASSEMBLER

reserved
reserved
reserved
CONV interface
reserved
reserved
reserved
reserved
reserved

reserved
scratch
sequence no for by-exp
CONV interface
scratch
scratch
scratch
current max-length
scratch

Selection processor LIST processor

count of retrieved
items
FUNC interface
FUNC interface
return mode-id
item-size
file base, modulo,
and separation

FUNC interface
FUNC interface

scratch

Selection processor LIST Processor

points to the next
explicit item-id
scratch scratch
points one before
the item count field
points to the
correlative field
scratch
reserved
points to the last
AM of the item
reserved

points to the
conversion field
reserved
reserved
GOSORT only: next
sort-key
reserved
heading in the HS
if HEADING was
specified

current correlative

scratch
scratch

points to the next
segment in the IS
current conversion
field
scratch
reserved
reserved

reserved
generated heading in
the HS

Selection Processor LIST Processor

scratch
within the BMS
area

compiled string

scratch
scratch

scratch
scratch
output data line
compiled string
scratch

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 175

RECALL Interface continued

TS
UPD
IR

within the TS area within the TS area
within the HS area

within the item within the item

Work Space
Usage Selection Processor LIST processor

AF
BMS
CS
IB
OB
IS
OS
HS

TS

scratch
contains the item-id

compiled string

heading data

scratch

output line

scratch
heading data;
attribute data for
special exits
current value in
process

Additional Notes

1. If a full-file-retrieval is specified, the
additional internal elements as used by GETITM
will be used. If explicit item-id's are
specified, RETIX is used for retrieval of each
item.

2. Most elements used by the CONV and FUNC processors
have been shown in the table; both may be called
either by the Selection processor or the LIST
processor.

3. Since the ISTAT and SUM/STAT processors are
independently driven by the Selection processor,
the element usage of these processors is not
shown.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 176

8.4.8 XMODE Interface

AS described before, a subroutine mode-id can be placed in XMODE
before a pre-incrementing instruction such as MIlD, MIlT, etc. is
executed. This subroutine gains control if a forward link zero
condition is reached, and can perform special processing. On return
from the subroutine, the interrupted instruction will continue
execution.

There are two uses for this: one is to allow the standard "FORWARD
LINK ZERO" system abort message to be replaced with a more formal
message; the other is to attach frames automatically when building a
table or string of unknown length.

XMODE should be initialized with the mode-id of a subroutine that will
handle the forward-link-zero condition. An example:

MOV NEXTOVF,XMODE NEXTOVF is a standard routine
CMNT * that can be used to add frames
CMNT * to Register 6

MIlD R15,R6,X'CO' Copy a string until R15 reaches
CMNT * a SM
ZERO XMODE Reset XMODE

The MIlD instruction will automatically generate a subroutine call to
NEXTOVF if either register reaches the end of the linked set of
frames. If R15 does so, the NEXTOVF subroutine will exit to the
Debugger to print the FORWARD LINK ZERO abort message. However, if
Register 6 does so, a new frame from the system's overflow space will
be linked on to the last frame in the linked set addressed by R6. The
MIlD instruction will then continue as if nothing happened.

For user-written subroutines, the Input Interface is:

System specified:

ACF C Contains the number of the register that
caused the forward link zero trap; this
should be checked to ensure that the
correct register is being handled

The example
could have
subroutine.

below uses Register
been used in this case

6; the system subroutine NEXTOVF
also instead of writing a local

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 177

XMODE Interface continued

*
*
*
*
*

*
TRAPSUB
*
ENTRYO

FRAME 511

B
B

ENTRYO
!TRAPSUB

DEFM 1,511

EQU *

Entry point is
Entry point is

01FF
11FF

Define trap subroutine Mode-id

MOV TRAPSUB,XMODE Initialize XMODE with Mode-id

MIITD R15,R6,X'CO' This may reach end-of-frame on R6

* (end of mainline program)
!TRAPSUB EQU

SRA
BCU
STORE
CMNT
DETZ
MOV
CMNT
CMNT
MOV
BSL
LOAD
RTN

NOT6 ZERO
CMNT
CMNT
RTN

ASSEMBLER

*
R15,ACF
R15,6,NOT6
D4
*
R6
500,R6DSP
*
*
R6FID,RECORD
ATTOVF
D4

XMODE
*
*
*

Subroutine entry point 11FF
Reference ACF for test
Cannot handle if not Register 6!
Save accumulator, because subs
below will destroy it !
Force detached;
Set displacement to 500, which is ...
last byte of this frame, so on return
will increment to 1st byte of next frame
Pickup FID from register
Attach another frame from overflow
Restore accumulator
This will return to interrupted inst.
Kill XMODE; when instruction
is re-executed, Debug will be
entered to print
FORWARD LINK ZERO message

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 178

8.5 System Subroutines

This section describes the operating system subroutines available for
use by user-written programs. As mentioned before, they are meant to
be called with a BSL instruction, and return control via a RTN
instruction.

8.5.1 ACONV

This routine translates one character from ASCII to EBCDIC. The
high-order bit of the character is always zeroed before translation.
The subroutine ECONV (documented separately) may be used to translate
a character from EBCDIC to ASCII.

Input Interface

User specified:

IB R

Output Interface

16 R

Element Usage

Points to the character to be translated

Points to the converted
location unchanged

character;

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 179

8.5.2 ATTOVF

ATTOVF is used to obtain a frame from the overflow space pool and to
link it to the frame specified in double tally RECORD. The forward
link field of the frame specified in RECORD is set to point to the
overflow frame obtained, the backward link field of the overflow frame
is set to the value of RECORD, and the other link fields of this
overflow frame are zeroed.

Input Interface

User specified:

RECORD D

Output Interface

OVRFLW D

Element Usage

Contains the FID of the frame to which
an overflow frame is to be linked.

Contains the FID of the overflow frame
if obtained, or zero if no more frames
are available.

None except standard

Subroutine Usage

Two additional levels of subroutine linkage required

8.5.3 CONV - See User Program Interfaces

8.5.4 CRLFPRINT - See PRINT

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 180

8.5.5 CVDxxx and CVXxxx Subroutines

These subroutines convert an ASCII numeric character string to its
equivalent in binary. The character string starts one past the
location addressed by the register used as input interface; it is
terminated by any invalid character, typically a system delimiter.
The converted value is stored in the accumulator FPO; the register
pOints to the delimiter on exit. Both ASCII decimal to binary and
ASCII hexadecimal to binary conversions are available. The register
used as the string pointer is dependent on the exact subroutine
called.

Input Interface

User specified:

Subroutine
Name

CVDIB
CVDIR
CVDIS
CVDOS
CVDR15
CVXIB
CVXIR
CVXIS
CVXOS
CVXR15

output Interface

FPO F

CTRl T

NUMBIT B

Register R

Element Usage

Type of
Conversion

Decimal
Decimal
Decimal
Decimal
Decimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal

Input Register

IB
IR
IS
OS
R15
IB
IR
IS
OS
R15

Contains the converted binary number

Contains the low-order two bytes of FPO,
except for CVDR15 and CVXR15

Set if string was terminated by a system
delimiter or decimal pOint; zero if any
other character

Addresses invalid character or system
delimiter or decimal point

None except standard

8.5.6 DATE - See TIME

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 181

8.5.7 DECINHIB

This subroutine is called to decrement the INHIBITH half tally when
the user has previously incremented it by one to prevent the BREAK key
from calling the Debugger. The protocol of incrementing and
decrementing INHIBITH ensures that several different processors that
require BREAK key inhibition may call one another without fear that
INHIBITH may accidentally reach zero.

DECINHIB decrements INHIBITH if it is non-zero; if it then reaches
zero, and a BREAK key had been previously activated, the Debugger is
entered.

Input Interface

None

Output Interface

INHIBITH decremented as described above

Element Usage

None except standard

8.5.8 ECONV

This routine translates one character from EBCDIC to ASCII.
Characters without ASCII equivalents are returned untranslated. -The
subroutine ACONV (documented separately) may be used to translate a
character from ASCII to EBCDIC.

Input Interface

User specified:

IB R Points to the character to be translated

Output Interface

IB R POints to the converted character;
location unchanged

Element Usage

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 182

8.5.9 GETACBMS

This routine retrieves the base, modulo, and separation of the system
ACC file.

Input Interface

None

Output Interface

BASE
MODULO

D
T

SEPAR T

Element Usage

Same as GETFILE

Subroutine Usage

contain the base, modulo, and separation
of the ACC file, if found

Up to seven additional levels of subroutine linkage required

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 183

8.5.10 GETFILE and OPEN DO

GETFILE is used to set up the base, modulo, and separation parameters
of a disc file from the file name. The file name is specified in a
string pointed to by register IS.

OPEN DO performs a similar function, but in addition the base, modulo
and separation of the dictionary of the file are also returned.

GETFILE and OPEN DO are the only approved methods of opening a disc
file. They perform access code checking as well, and flag the file as
being accessible for read-only, or for read-and-update.

GETFILE and OPEN DO will exit to WRAPUP if the file cannot be
successfully opened, unless bit RTNFLG is set, in which case they will
still return to the calling program.

Input Interface

User specified:

IS R

RTNFLG B

DAF1 B

System specified:

BMSBEG S

Output Interface

BASE
MODULO
SEPAR

FBASE
FMOD
FSEP

DBASE
DMODULO
DSEP

ASSEMBLER

0
T
T

0
T
T

o
T
T

Points at least one character (any
number of blanks) before "(DICT)
(dictname,)filename"; the file name
cannot contain embedded blanks, and must
be followed by a blank, a system
delimiter, or character specified in SCO

Set if GETFILE is to return to the
calling program even if the file cannot
be opened

Set if update
zero, update
granted unless
test fails

access is required; if
access will still be

the update access code

Standard system buffer where the file
name is to be copied; if IS points to
"DICT filename", only "filename" is
copied

Contain the base, modulo, and separation
of the file if found

Contain (OPENDD only) the base, modulo,
and separation of the file if found,
otherwise unchanged

Contain (OPENDD only) the dictionary
base, modulo, and separation, if found;
if IS specifies "DICT", DBASE, DMOD, and
DSEPAR = BASE, MODULO, and SEPAR

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 184

GETFILE OPENDD Interface continued

IS R Points to the first character after the
file name

BMS R Points to an AM added after the copied
file name

RMBIT B Set if the file parameters are
successfully retrieved

SC2 C Contains a blank

Element Usage

SC1 C

Plus elements used by RETIX

Subroutine Usage

Exits

Up to seven additional levels of subroutine linkage required

If RTNFLG = 0: To MD99 with message 200 if the input string is
null (blank to a SM); to MD995 with message 201 if the string
does not refer to a file (item not found or in incorrect format);
to MD995 with message 210 if the access code test fails; or to
MD99 with message 13 if the data section of a file is not found
(no data pointer, or in incorrect format)

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 185

8 . 5 . 11 GETITM

This routine sequentially retrieves all items in a file. It is called
repetitively to obtain items one at a time until all items have been
retrieved. The order in which the items are returned is the same as
the storage sequence.

If the items retrieved are to be updated by the calling routine (using
routine UPDITM), this should be flagged to GETITM by setting bit DAF1.
GETITM then performs a two-stage retrieval process by first storing
all item-id's (per group) in a table, and then using this table to
actually retrieve the items on each call. This is necessary because
if the calling routine updates an item, the data within the updated
group shift around; GETITM cannot simply maintain a pOinter to the
next item in the group, as it does if the "update" option is not
flagged.

GETITM must be called the first time with the flag DAF7 zero, so that
it can set QQ its internal conditions. It sets up and maintains
certain pointers which should not be altered by calling routines until
all the items in the file have been retrieved (or DAF7 is zeroed
again).

Note the functional equivalence of the output interface elements with
those of RETIX.

Input Interface

User specified:

DAF7 B

DAF1 B

BASE D
MOD T
SEP T

System specified:

BMSBEG S

OVRFLCTR D

Output Interface

RMBIT B
SIZE
R14
IR
SR4

ASSEMBLER

T

R
R
S

Ini tial entry flag; must be zeroed on
the first call to GETITM

If set, the "update" option is in effect

Contain the base, modulo, and separation
of the file, reguired on first entr:i
onl:i

Standard system buffer where the item-id
of the item retrieved on each call is
copied

Meaningful only if DAF1 is set; if
non-zero, the value is used as the
starting FID of the overflow space table
where the list of item-id's is stored;
if zero, GETOVF is called to obtain
space for the table

(See RETIX documentation)

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 186

GETITM Interface continued

XMOOE T
RECORD 0

SRO S

Element Usage

BASE 0
MODULO T
SEPAR T
RECORD 0
NNCF H
FRMN 0
FRMP 0
NPCF H

OVRFLW 0

The following
while GETITM

OAF1 B
OAF7 B

SBASE 0

SMOO T
~-.

SSEP T

FBASE 0
FMOO T
FSEP T

NXTITM S

OVRFLCTR 0

Subroutine Usage

Points one before the count field of the
retrieved item

Used by GETITM. and other subroutines for
accessing file data

Used by GETOVF if OAF1 is set and
OVRFLCTR is initially zero

elements should not be altered .Qy any other
is used:

(See Input Interface)

Contains the beginning FlO of the
current group being processed

Contains the number of groups left to be
processed

Contains the separation of the file

Contain the original (saved) base,
modulo, and separation of the file

Points one before the next item-id
the pre-stored table if OAF1 is
otherwise pOints to the SM after
item previously returned

in
set,

the

Contains the starting FlO of the
over10w space table if OAF1 is set;
otherwise unchanged

Four additional levels of subroutine linkage required

Error Conditions

routine

See RETIX documentation ("Exits");
retrieving items until no more
occurrence of errors

GETITM, however, continues
are present even after the

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 187

8.5.12 GETOVF and GETBLK

These routines obtain overflow frames from the overflow space pool
maintained by the system. GETOVF is used to obtain a single frame;
GETBLK is used to obtain a block of contiguous space. Note that the
link fields of the frame(s) obtained by a call to GETBLK are not reset
or initialized in any way - this should be done by the caller, using
subroutine LINK. GETOVF zeroes the link fields of the single frame it
returns.

These routines cannot be interrupted until processing is complete.

Input Interface

User specified:

DO o

Output Interface

OVRFLW o

Element Usage

Contains the number of frames needed
(block size), for GETBLK only

If the needed space is
element contains the FlO
returned (for GETOVF) or
first frame in the block
GETBLK); if the space is
OVRFLW=O

obtained, this
of the frame

the FlO of the
returned (for

unavailable,

None except standard

Subroutine Usage

Two additional levels of subroutine linkage required

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 188

8.5.13 GLOCK, GUNLOCK, and GUNLOCK. LINE

These routines are used to ensure that disc files are not updated by
more than one process at a time, and are used primarily by routine
UPDITM. GLOCK sets a lock on a specified group within a file,
preventing other processes from locking the group. If the group is
already locked by another process, the second process "hangs" until
the lock is unlocked.

GUNLOCK frees the lock on a group (if present, and set by the calling
process), allowing another process to lock it. GUNLOCK.LINE frees .all
locks set by a process.

GLOCK is called at the beginning of UPDITM, before writing an item to
a file, and GUNLOCK is called at the end. GLOCK is also called by
RETIXU, which retrieves a disc file item and leaves the group
containing the item locked (see RETIX/RETIXU).

Input Interface

User specified:

RECORD D

Output Interface

None

Element Usage

CH9 C
R2;CO
CTR1

C
T

Contains the
to be locked
RETIXU)

Scratch

beginning FID of the group
(typically set by RETIX or

Plus standard elements

Subroutine Usage

One additional level of subroutine linkage required

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 189

8.5.14 HASH

This routine computes the starting FlO of the group in which an item
in a file would be stored, given the item-id and the base, modulo, and
separation of the file. Storage register BMSBEG pOints to the
item-id, which must be terminated by an AM.

Input Interface

User specified:

BMSBEG

BASE
MODULO

S

o
T

SEPAR T

Output Interface

RECORD o

Element Usage

Points one byte before the beginning of
the item-id

contain the base, modulo, and separation
of the file

Contains the frame number to which the
item-id hashes

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 190

8.5.15 HSISOS

This routine initializes the register triads for the HS, IS, and OS
work spaces as described below. It does not link frames in the work
spaces.

Input Interface

None

Output Interface

HS
HSBEG
HSEND

IS
ISBEG

ISEND

OS
OSBEG

OSEND

Element Usage

R
5
5

R
5

5

R

5

5

Point to the beginning of the HS work
space (PCB+10)

Point to the beginning of the IS work
space (PCB+16)

Points
primary
ISBEG)

to the last data byte in the
IS work space (3000 bytes past

Point to the beginning of the OS work
space (PCB+22)

Points
primary
OSBEG)

to the last data byte in the
OS work space (3000 bytes past

None except standard

8.5.16 LINESUB

This routine returns the line number (PIB number) of the calling
process in the accumulator.

Input Interface

None

Output Interface

DO D

Element Usage

Contains the line number associated with
the process

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 191

8.5.17 LINK

LINK initial~zes the links of a set of contiguous frames (the set may
be only one frame). The subroutine is called with RECORD containing
the starting frame number of the set, and NNCF the number of frames
less one in the set (that is, NNCF contains the number of next
contiguous frames).

Input Interface

User specified:

RECORD o

NNCF H

Output Interface

Contains the starting FlO of a set of
contiguous frames

Contains one less than the number of
frames in the set

Frames are linked contiguously backwards and forwards

Element Usage

FRMN
FRMP

o
o

NPCF H

Subroutine Usage

Scratch

One additional level of subroutine linkage required

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 192

8.5.18 MBDSUB, MBDNSUB, MBDSUBX, and MBDNSUBX

These routines convert a binary number to the equivalent string of
decimal ASCII characters. The number is specified in the accumulator:
DO for MBDSUB and MBDNSUB, and FPO for MBDSUBX and MBDNSUBX.

MBDSUB and MBDSUBX return only as many characters as are needed to
represent the number, whereas MBDNSUB and MBDNSUBX always return a
specified minimum number of characters (padding with leading zeroes or
blanks whenever necessary). A minus precedes the numeric string if
the number to be converted is negative.

These subroutines are implicitly called by the assembler instructions
MBD (Move Binary to Decimal) and MBDN.

Input Interface

User specified:

DO D

FPO F

T4 T

BKBIT B

R15 R

Output Interface

BKBIT B

R15 R

Element Usage

Contains the number to be converted (for
MBDSUB and MBDNSUB only)

Contains the number to be converted (for
MBDSUBX and MBDNSUBX only)

For MBDNSUB and MBDNSUBX only, contains
the mlnlmum string length; leading
zeroes or blanks are padded to ensure
that the string is at least this length;
the string may exceed this length if the
value is high enough

For MBDNSUB and MBDNSUBX only,
leading blanks are required as
zero if zeroes required as fill

set if
fill;

Points one prior to the area where the
converted string is to be stored; the
area must be at least eighteen bytes in
length for MBDSUBX and MBDNSUBX; MBDSUB
and MBDNSUB require at most eleven
bytes

=0

Points to the last converted character

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 193

8.5.19 NEWPAGE

This routine is used to skip to a new page on the terminal or line
printer and print a heading. No action is performed, however, if bit
PAGINATE or tally PAGSIZE is zero. See PRNTHDR for more information
on page headings and footings.

Input Interface

User specified:

None

System specified:

As for WRTLIN, except OB is first set equal to OBBEG by this
routine

Output Interface

Same as for WRTLIN

Element Usage

Same as for WRTLIN

Subroutine Usage

Additional subroutine linkage required only if WRTLIN is called;
see WRTLIN

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 194

8.5.20 NEXTIR and NEXTOVF

NEXTIR obtains the forward .linked frame of the frame to which register
IR (RS) currently points; if the forward link is zero, the routine
attempts to obtain an available frame from the system overflow space
pool and link it up appropriately (see ATTOVF documentation). In
addition, if a frame is obtained, the IR register is set up before
return, using routine RDREC.

NEXTOVF may be used in a special way to handle end-of-linked-frame
conditions automatically when using register IR with single- or
multiple-byte move or scan instructions (MIl, MCI, MIlD, MIITD, SIT,
SID, etc.). Tally XMODE should be set to the mode-id of NEXTOVF
before the instruction is executed by using a HMOV NEXTOVF,XMODE H
instruction. If the instruction causes IR to reach an
end-of-linked-frame condition (forward link zero), the system will
generate a subroutine call to NEXTOVF, which will attempt to obtain
and link up an available frame, and then resume execution of the
interrupted instruction. Note that the Hincrement register by tallyH
instruction cannot be handled in this manner.

Input Interface

User specified:

IR R

output Interface

IR R

RECORD D

NNCF H
FRMN D
FRMP D
NPCF H

OVRFLW D

Element Usage

Points into the frame whose
forward-linked frame is to be obtained
(displacement unimportant)

Points to the first data byte of the
forward linked frame

Contains the FID of the frame to which
IR points

As set by RDLINK for the FID in RECORD

=RECORD if ATTOVF called,
unchanged

otherwise

Elements used by ATTOVF if a frame is obtained from the overflow
space pool

Subroutine Usage

Three additional levels of subroutine linkage required

ASSEMBLER
Copyright OS JUN 1983

THE ULTIMATE CORP. PAGE 195

8.5.21 OPENDD - See GETFIlE

8.5.22 PCRlF

PCRlF prints a carriage return and line feed on the terminal only,
along with the specified number of delay characters (X'QQ'), as set by
the TCl verb TERM. Note that its use is inconsistent with pagination,
headings, footings, etc., which are always handled correctly by
WRTlIN.

Input Interface

None

Output Interface

None

Element Usage

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 196

8.5.23 PERIPHREADl, PERIPHREAD2, and PERIPHWRITE

These subroutines are used to read and write a string of bytes to
another line's asynchronous channel, on configurations which support
this feature. They are therefore analogous to the READlIN and WRTlIN
subroutines, which read and write to the process' own channel only.

The line number of the affected channel should be loaded into TO. The
affected line must have been previously set to a "trapped" condition
by the TCl :TRAP verb. If the affected line is not "trapped," WRAPUP
is entered with error message 540.

PERIPHWRITE outputs
before the beginning
data.

data just as WRTlIN does; OBBEG points one byte
of the data, and OB points to the last byte of

PERIPHREAD2 inputs data just as READlIN does; control is returned on
detecting a carriage return or line feed. PERIPHREADI inputs data
until a byte matching that in SCO, SCI or SC2 is found. Either
subroutine will return when the number of bytes specified in IBSIZE is
read. The bytes input are stored starting at the location one past
IBBEG (just as in READlIN).

Input Interface - PERIPHWRITE

User specified:

OB R

TO T

System specified:

OBBEG S

Points to the last byte to be output

Contains the
channel

number of the affected

Standard output buffer pointer

Output Interface - PERIPHWRITE

Same as WRTlIN

Input Interface - PERIPHREADI and PERIPHREAD2

User specified:

IBSIZE T

TO T

SCO C
SCI C
SC2 C

System specified:

IBBEG S

ASSEMBLER

Maximum number of bytes to be input

Contains the number of the affected
channel

(PERIPHREADI only) ; contains the
delimi ter characters on which to stop
the input

Standard system input buffer pOinter

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 197

PERIPHREAD1 PERIPHREAD2 PERIPHWRITE Interface continued

Output Interface - PERIPHREAD1 and PERIPHREAD2

Same as READLIN

Element Usage

ABIT B

CTRO T

Plus standard elements

8.5.24 PERIPHSTATUS

PERIPHSTATUS reads the status of the specified asynchronous channel on
hardware configurations where this information is available.

Input Interface

User specified:

TO T

Output Interface

H8 H

Bit#

Element Usage

Contains the line number whose status is
to be retrieved

Contains the status of the line:

0 1 2 3 4 5 6 7

I I I I ... No meaning I
I I I Carrier Detect
I I Clear To Send
I Data Set Ready

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 198

8.5.25 PRINT and CRLFPRINT

These routines send a message to the terminal from textual data in the
calling program; CRLFPRINT precedes the text with a carriage return
and line feed. These routines are not consistent with conventions
regardina the line printer. and paaination. They should therefore be
used only for error messages and short terminal prompts. The message
sent is a string of characters assembled immediately following the
subroutine call in the calling program. The string must be terminated
by one of the three delimiters SM, AM, or SVM. Control is returned to
the instruction at the location immediately following the terminal
delimiter.

For example:

BSL PRINT Call to subroutine
TEXT C'Hello' ,X'FDFF' Message as a literal in object code
CMNT * Note terminating X' FF' (SM).

The above would print the message "Hello there", followed by a blank
line. The text following the BSL to these routines may contain the
following system delimiters; their meaning is explained below:

Delimi ter

SM (X'FF')
AM (X' FE')

VM (X' FD')

SVM (X' FC')

Input Interface

User specified:

Action

End of message; CR/LF printed, and
return to calling program

CR/LF printed, and message processing
continues to next character

End of message; return without printing
CR/LF

Message text MUST follow BSL instruction

Output Interface

None

Element Usage

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 199

8.5.26 PRNTHDR and NEWPAGE

These are entry pOints into the system routine for pagination and
heading control of output (also used by WRTlIN and WRITOB when
pagination is specified). PRNTHDR must be called once to intia1ize
the bits and counters needed to start pagination; it also prints the
heading (if any) for the first page. PRNTHDR should not be called
again unless starting a new pagination sequence; to skip to a new
page at any time, NEWPAGE should be called.

A page heading or footing, if present, must be
defined by storage register PAGHEAD or PAGFOOT.
footing message is a string of data terminated
delimiters in the message invoke special processing

stored in a buffer
The heading or

by a SM; system
as follows:

SM (X'FF')

VM (X'FD')

SVM (X' FC')

Terminates the heading or footing line
with a carriage return and line feed

Prints one line of the heading
footing and starts a new line

or

Inserts data from various sources into
the heading or footing, depending on the
character (s) followi ng the SVM; valid
characters are as follows:
A - inserts data from AFBEG+1 through
a system delimiter;
D - inserts current date;
F - inserts data from ISBEG+3 through
a system delimiter;
I - inserts data from BMSBEG+1 through
a system delimiter;
P - inserts page number right-justified
in a field of 4 blanks;
PN - inserts page number left-justified;
T - inserts current time and date

Carriage returns, line feeds, and form feeds should not be included in
heading or footing messages, or the automatic pagination will not work
properly. A convenient buffer for storing headings and footings is
the HS; this is described in an example at the end of this chapter.

Input Interface

PAGHEAD S

PAGFOOT S

ASSEMBLER

Points one before the start of the page
heading; If the FID of PAGHEAD is zero
(initial condition at TCl) , there is no
heading defined

Points one before
footing; If the
(initial condition
footing defined

the start of the page
FID of PAGFOOT is zero
at TCl) , there is no

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 200

PRNTHDR NEWPAGE Interface continued

Output Interface, Element Usage and Subroutine Usage

Same as for WRTLIN; this subroutine uses WRTLIN to print each
heading or footing line as it is formatted, therefore the OB
buffer is considered scratch and is destroyed

8.5.27 RDLINK and WTLINK

These routines read or write the link fields from or to a frame, to or
from the tallies NNCF, FRMN, FRMP, and NPCF. The FID of the frame is
specified in RECORD.

Input Interface

User specified:

RECORD D Contains the FID of the frame whose
links are to read or written.

User specified for WTLINK; Output Interface from RDLINK:

NNCF H Number of next contiguous frames

FRMN D Forward link

FRMP D Backward link field

NPCF H Number of previous contiguous frames

Element Usage

None except standard

8.5.28 RDREC

RDREC is used to set up the IR register to the beginning of the frame
defined by the double tally RECORD. The subroutine assumes the frame
has the linked format, and therefore IR is set pointing to the
eleventh byte of the frame, that is, one prior to the first data byte
of the frame. Additionally the subroutine RDLINK is entered to set up
R15 pointing to the link portion of the frame, and to set up the link
elements NNCF, NPCF, FRMN, and FRMP.

Input Interface

User specified:

RECORD D Contains the FID required

Output Interface as described above

Element Usage

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 201

8.5.29 READLIN, READLINX, and READIB

READLIN, READLINX and READIB are the standard terminal input routines.
storage register IBBEG points to the standard buffer area where the
routine will input the data. Input continues to this area until
either a carriage return or line feed is encountered, or until a
number of characters equal to the count stored in IBSIZE have been
input. The carriage return or line feed terminating the input line is
overwritten with a segment mark (SM), and storage register IBEND
pOints to this character on return. If the input is terminated
because the maximum number of characters has been input, a SM will be
added at the end of the line.

If READLIN or READLINX is used, a trailing carriage return/line feed
sequence is transmitted to the terminal; if READIB is used, it is
not.

The entry READLIN also provides the facility for taking input from the
stack generated by a PROC (STaN command) or by BASIC (DATA statement)
instead of directly from the terminal. Such input lines are returned
to requesting processors as if they originated at the terminal. If
the last character in a stacked line is a "<", it is replaced by a SM.
This is for processors such as TCL and EDIT that allow for
continuation lines, and is equivalent to a contro1-_ (underscore or
back-arrow) input directly from the terminal as a continuation
character. Terminal input resumes when the stacked input is
exhausted. READLINX does not test for stacked input.

Editing: All three routines perform terminal editing as follows:

Character input
Contro1-H

Action
Backspace input; echo a backspace-space-backspace
unless BSPCH = O.

Character in BSPCH As above.
Contro1-W Backspace word, to last non-numeric, non-alpha.
Contro1-X Cancel line; echo cr/1f or backspaces (see FRMTFLG)
Carriage return Terminate input and return control.
or line feed

READLIN and READIB also perform input tabulation as specified by the
TCL verb TABS, when input is from the terminal. If a tab character
(X'09') is input, it is replaced by the appropriate number of blanks
required to space to the next tab stop.

Input Interface

User specified:

CCDEL B

FRMTFLG B

PRMPC C

ASSEMBLER

If set, control characters are deleted;
this bit is normally zero

If set, entering a contro1-X emits
backspaces instead of
preserve screen forat;
normally zero

Terminal prompt character

Copyright 06 JUN 1983
THE ULTIMATE CORP.

a cr/1f, to
this bit is

PAGE 202

READlIN READlINX READIB Interface continued

System specified:

IBBEG S

IBSIZE T

lFDlY T

BSPCH C

STKFlG B

STKINP S

ITABFlG T

Output Interface

IB R

IBEND S

STKFlG B

STKINP S

Element Usage

Standard system buffer pointer;
one before where input is to be
the buffer is normally two bytes
than the value in IBSIZE

points
stored;
greater

Contains the maximum number of
characters accepted in an
normally fixed at 140

input line;

Contains (in the low-order byte) the
number of idle characters to be output
after a carriage return/line feed; set
by the TCl TERM verb

Contains the character to be echoed to
the terminal when the back space key is
typed, or is zero if no character is to
be echoed; set by the TCl TERM verb

If set, READlIN and READIB test for
"stacked" input; terminal input will not
be requested until stacked input is
exhausted; set by the PROC processor, or
the BASIC DATA statement

Points to the next "stacked" input line;
lines are deliminated by AM's, with a SM
indicating the end of the stack

Set for input tab stops by the TCl
TABS verb

=IBBEG

Points to a SM one byte past the end
of input data (overwrites the CR or IF)

Zeroed if the end of stacked input was
reached; not changed if initially zero

Points to the next line of stacked input
(or end of stack) if stacked input is
being processed

None except standard

Subroutine Usage

Two additional levels of subroutine linkage required

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 203

READLIN READLINX READIB Interface continued

Error Conditions

If a stacked input line exceeds IBSIZE, the line is truncated at
IBSIZE; the remainder of the line is lost.

8.5.30 RELBLK, RELCHN, and RELOVF

These routines are used to release frames to the overflow space pool.
RELOVF is used to release a single frame, RELBLK is used to release a
block of contiguous frames, and RELCHN is used to release a chain of
linked frames (whiCh mayor may not be contiguous). A call to RELCHN
specifies the first FID of a linked set of frames; the routine will
release all frames in the chain until a zero forward link is
encountered.

Input Interface

User specified:

OVRFLW D

DO D

Output Interface

None

Element Usage

Contains the FID of the frame to be
released (for RELOVF), or the first FID
of the block or chain to be released
(for RELBLK and RELCHN, respectively)

Contains the number of frames (block
size) to be released, for RELBLK only

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 204

8.5.31 RESETTERM

This routine is
characteristics.
TCL.

Input Interface

System specified:

OBSIZE T

OBBEG S

Output Interface

TOBSIZE T
TPAGSIZE T
POBSIZE T
PPAGSIZE T
PAGSKIP T
LFDLY T
BSPCH C

CCDEL B
FRMTFLG B
STKFLG B
PAGINATE B
NOBLNK B
LPBIT B
TPAGNUM T
TLINCTR T
PPAGNUM T
PLINCTR T
PAGNUM T
LINCTR T

PAGHEAD S
PAGFOOT S

OB R

OBSIZE T

OBEND S

used to initialize terminal and line printer
RESETTERM is called from WRAPUP before reentering

Contains the size of the output (OB)
buffer

Points to the start of the OB buffer

Initialized to default values, as set up
by the TCL verb TERM

=0

Contain zero in the frame field

=OBBEG

=TOBSIZE

Points to OBBEG + OBSIZE

The area from the address pointed to by OBBEG to that pOinted to
by OBEND is filled with blanks.

Element Usage

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 205

8.5.32 RETIX and RETIXU

These are the entry points to
retrieving an item from a file.
to the routine, as are the
separation.

the standard system routine for
The item-id is explicitly specified

file parameters base, modulo, and

The routine performs a "hashing" algorithm to determine the group (see
HASH documentation). The group is then searched sequentially for a
matching item-id. If the routine finds a match, it returns pOinters
to the beginning and end of the item, and the item size (from the item
count field). If entry RETIXU is used, the group is locked to prevent
other programs from changing the data; the group is automatically
unlocked when the item is later written back to the file (see UPDITM),
or the user may explicitly unlock the group by calling the GUNLOCK or
GUNLOCK. LINE routine.

The item-id is specified
storage register BMSBEG;

in the system-standard buffer
it must be terminated with an AM.

Input Interface

User specified:

BMSBEG

BASE
MODULO

S

D
T

SEPAR T

Output Interface

BMS R
BMSEND S

RECORD D

NNCF H
FRMN
FRMP
NPCF

XMODE

RMBIT

SIZE

R14

ASSEMBLER

D

D

H

T

B

T

R

Points one byte before the item-id

Contain the base, modulo, and separation
of the file to be searched

Point to the last character of the
item-id

Contains the beginning FID of the group
to which the item-id hashes (set by
HASH)

Contain the link fields of the frame
specified in RECORD; set by RDREC

=0

Item Found:

=1

=item size (one
less than value
of count field)

Points one prior
to the item count
field

Item Not Found:

=0

=0

Points to the SM
after the last item
in the group

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 206

defined by

RETIX RETIXU Interface continued

IR

SR4

Element Usage

R

S

Points to the
first AM of the
item

Points to the
last AM of the
item

None except standard

Subroutine Usage

RDREC, HASH, GLOCK (RETIXU only)

Points to the SM
indicating end of
group data (=R14+1)

=IR

Three additional levels of subroutine linkage required

Exits

If the data in the group
frames, or non-hexadecimal
field - the message

are bad - premature end of linked
character encountered in the count

GFE HANDLER INVOKED - RECORD/GFE x/f.d

is returned, where "x" is the starting FID of the group to which
the item hashes, and "f.d" is the approximate frame and
displacement where the error was detected. RETIX and RETIXU then
return with an "item not found" condition under these
circumstances. Data are not destroyed, and the group format
error will remain.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 207

8.5.33 SETLPTR and SETTERM

These routines are used to set output characteristics such as line
width, page depth, etc. to the previously-specified values for either
the terminal or the line printer. In addition, the current line
number and page number are saved so that when switching from terminal
to line printer output, say, and then switching back, pagination will
continue automatically from the previous values.

Input Interface

User specified:

None

System specified:

LINCTR T

PAGNUM T

TPAGSIZE T
or PPAGSIZE T

TOBSIZE T
or POBSIZE T

TLINCTR T
or PLINCTR T

TPAGNUM T
or PPAGNUM T

Contains the current line number

Contains the current page number

Contains the number
per page for the
printer

of printable lines
terminal or line

Contains the size of the output (OB)
buffer for the terminal or line printer

Contains the current line number for the
terminal or lineprinter

Contains the current page number for the
terminal or line printer

Note: TPAGSIZE, TOBSIZE, TLINCTR, and TPAGNUM are required only
by SETTERM; PPAGSIZE, POBSIZE, PLINCTR, and PPAGNUM are required
only by SETLPTR

output Interface

or

LPBIT

PAGSIZE
OBSIZE
LINCTR
PAGNUM

TLINCTR
PLINCTR

OBEND

B

T
T
T
T

T
T

S

Reset by SETTERM; set by SETLPTR

Set to the appropriate characteristics
for terminal or line printer output

=LINCTR; TLINCTR set by SETLPTR, PLINCTR
set by SETTERM

=OBBEG+OBSIZE

The area from the location addressed by OBBEG to that pointed to
by OBEND is filled with blanks.

Element Usage

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 208

8.5.34 SLEEP and SLEEPSUB

These routines cause the
ror a speciried amount
amount or time to sleep
speciTied.

calling process to go into an inactive state
or time. Ir SLEEPSUB is used, either the

or the time at which to wake up may be

Input Interrace

User speciried:

DO D

RMBIT B

Output Interrace

None

Element Usage

to wake up
midnight) ;
number or

For SLEEP, contains the time
(number or milliseconds past
ror SLEEPSUB, contains the
seconds to sleep or the
up, depending on RMBIT

time to wake

For SLEEPSUB, set ir DO contains the
number or seconds to sleep, or zero ir
it contains the time to wake up (number
or milliseconds past midnight)

None except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 209

8.5.35 SORT

This routine sorts an arbitrarily long string of keys in ascending
sequence only; the calling program must complement the keys if a
descending sort is required. The keys are separated by SM's when
presented to SORT; they are returned separated by SB's. Any
character, including system delimiters other than the SM (X'FF'), SB
(X'FB'), X'FO' and X'F1', which have a special meaning, may be present
within the keys. For descending sort sequencing (on non-numeric data)
the individual characters of the sort key must have been one's
complemented by the calling routine.

SORT performs a left-to-right character comparison, except when the
characters X'FO' and X'F1' are present, which have a special meaning:
X'FO' indicates the start of a numeric string, terminated by a SVM;
X'F1' indicates the start of a numeric string, terminated by a SVM,
that is to be compared negatively (for example, this may be set up by
the RECALL BY-DSND connective). The purpose of this is to allow the
sort-keys to contain mixed left-justified (non-numeric) data and
numeric (right-justified comparison) data. For example, the sort keys
"ABC/100X" and "ABC/9Y" may be presented to the SORT subroutine as:

ABC/[FO]100[FC]X and ABC/[FO]9[FC]Y

which will result in correct sequencing of "ABC/9Y" before "ABC/100X."

A six-way polyphase sort-merge sorting algorithm is used. The
original unsorted key string may "grow" by a factor of 10%, and a
separate buffer is required for the sorted key string, which is about
the same length as the unsorted key string. The "growth" space is
contiguous to the end of the original key string; the second buffer
may be specified anywhere. SORT automatically obtains and links
overflow space whenever needed. Due to this, one can follow standard
system convention and build the entire unsorted string in an overflow
table with OVRFLCTR containing the beginning FlO; the setup is then:

Start of
unsorted keys
SM<-------/-

End of "Growth" Start of
unsorted keys space second buffer

-/---------->SM<-------------><----------/-

The user creates the unsorted key list and the 10% "growth space." The
second buffer pointer then is merely set at the end of the "growth"
space, and SORT is allowed to obtain additional space as required.

Alternately, the entire set of buffers may be in the IS or OS
workspace if they are large enough.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 210

Input Interface

User specified:

SR1 5

SR2 5

SR3 5

Output Interface

SR1 5

Element Usage

SB1 B
SC2 C
XMODE T
IS R
OS R
BMS R
TS R
CS R
51 thru 5
59 5

Points to the SM preceding the first key

Points to the SM terminating the last
key

Points to the beginning of the second
buffer

Points before the first sorted key (the
exact offset varies from case to case);
the calling routine should scan from one
byte past this point for a non-SB
character; the end of the sorted keys
(separated by SB's) is marked by a SM

Utili ty

Elements used by ATTOVF

BMS and AF workspaces

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 211

8.5.36 TIME, DATE, and TIMDATE

These routines return the system time and/or the system date, and
store it in the buffer area specified by register R15. The time is
returned as on a 24-hour clock.

Entry

TIME
DATE
TIMDATE"

Input Interface

User specified:

R15 R

Output Interface

R15

Element Usage

D2
D3

R

D
D

Subroutine Usage

Buffer size Format
required (bytes)

9 hh:mm:ss
12 dd mmm yyyy
22 hh:mm:ss dd mmm yyyy

Points one prior to the buffer area

Points to the last byte of the data
stored

Used by TIME and TIMDATE only

TIME used by TIMDATE; MBDSUB used by TIME

Two additional levels of subroutine linkage required by TIMDATE,
one level required by TIME, none by DATE

8.5.37 TPBCK

This routine backspaces the tape one physical record, or block. The
tape must be attached to the process via the TCl T-ATT verb.

No input or output interface; no element usage except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 212

8.5.38 TPRDLBL, TPRDLBL1, TPWTLBL, TPWTLBL1, and TPGETLBL

These routines are used to read and write standard ULTIMATE tape
labels.

The tape I/O routines TPREAD and TPWRITE are capable of processing
both labeled and unlabeled tapes. By default, if a process begins
tape operation via TPREAD or TPWRITE without first calling one of the
tape label routines, the tape is considered unlabeled. If the tape
operation spans multiple reels of tape before entering WRAPUP, each
reel will be unlabeled.

For labeled tapes, the label is the first physical record, or block,
on the tape. In the case of multi-file tapes, such as FILE-SAVE
tapes, each tape file may be preceded by a label, which would follow
immediately after the EOF after the preceding tape file. (Each
account on a FILE-SAVE tape is a separate tape file.)

To read a labeled tape, TPRDLBL or TPRDLBL1 should be called once at
the beginning of processing to read the label and to set the
labeled-tape flag for the tape routines. After that, if tape
operation spans multiple reels, TPREAD will make sure that each reel
has the same label and that the reels are numbered consecutively.

TPRDLBL1 makes sure that the current reel is reel number one. TPRDLBL
accepts any reel number (but still forces subsequent reels to be
numbered consecutively from this point). If the tape record read by
these routines is not a recognizable label, the tape is considered
unlabeled. The tape is then backspaced so that the next call to
TPREAD will read the first record as a data record. TPRDLBL or
TPRDLBL1 may therefore be called if it is not known whether a tape is
labeled or not.

To write a labeled tape, TPWTLBL or TPWTLBL1 should be called once at
the beginning of processing to write the label and to set the
labeled-tape flag for the tape routines. After that, if tape
operation spans multiple reels, TPWRITE will make sure that each reel
has the same label and that the reels are numbered consecutively.

TPWTLBL1 sets the current reel number to one. TPWTLBL does not change
the current reel number. Note that at the beginning of tape
operation, the reel number will be zero, which is an invalid reel
number - TPREAD would consider the tape unlabeled.

TPGETLBL returns the status of the labeled-tape flag, and if it is
set, returns the label data.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 213

Tape Label Routines Interface continued

ULTIMATE tape labels are 80-byte records having the following format:

L bksz hh:mm:ss dd mmm yyyy ... variable label data ... Arr

where _ = Segment Mark
A = Attribute Mark
bksz = block size (four
hh:mm:ss dd mmm yyyy
variable label data =

hex digits), preceded by a blank
time and date, preceded by a blank

string passed to TPWTLBL or TPWTLBL1,
truncated or padded with trailing
blanks if necessary, and preceded by
a blank

rr = reel number (two hex digits)

Input Interface

User specified:

IS R

Output Interface

RMBIT B

R15 R

Element Usage

03 o

For TPWTLBL and TPWTLBL1 only, points
one byte before the beginning of a text
string to be included in the label; the
string may be up to 47 bytes in length
and must be terminated by a SM; if the
first byte is a SM, no label will be
written

For TPGETLBL only, set if a labeled tape
is being processed, otherwise zero

For TPGETLBL only, pOints to the initial
SM (not one before) of the80-byte tape
label in the tape routine label buffer
if RMBIT is set

Scratch

Plus standard elements

Subroutine Usage

Up to seven additional levels of subroutine linkage required

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 214

8.5.39 TPREAO, TPWRITE, and TPROBLK

TPREAO reads a specified number of bytes from the tape into a buffer
area pOinted to by R15 at entry to the routine.

TPWRITE writes a specified number of bytes from the area pointed to by
R15 to the tape.

TPROBLK reads one physical tape record, or block, into an internal
tape buffer (see below), and returns a pointer to the data along with
the number of bytes read.

All three routines use a virtual tape drive. The initial execution of
anyone of them causes initialization of a buffer in virtual space
used for transferring tape records between the controller and main
memory. This buffer typically consists of a set of contiguous frames
obtained from the system overflow pool, linked together to form a
block large enough to accommodate the maximum block size of the tape
drive. These frames are automatically released during WRAPUP
processing, just before return to TCL.

For TPREAO and TPWRITE, the contents of the accumulator, DO, is the
number of characters to transfer to or from the tape buffer. Also,
for these routines, Register R7 is used as the tape buffer pointer and
must be preserved from one call to the next. For TPROBLK, R7 will be
reset on each call.

Bit EOFBIT will be set when the tape mark is reached
tape. End of tape conditions are automatically handled
routines.

on reading a
by the tape

If DO is zero on a write, then TPWRITE will fill the rest of the tape
buffer with the character pointed to by R15, which will cause the
buffer to be written to tape. This is recommended in order to send
the last partial tape record to the tape, after which TPWEOF should
be called.

The tape drive must be attached before calling these routines,
otherwise they will exit to WRAPUP with an error message. The TCL
T-ATT verb is used to attach a tape, and also to set the block size
for TPWRITE.

These routines may be used with either labeled or unlabeled tapes.
For labeled tapes, the routines TPROLBL, TPROLB1, TPWTLBL, and
TPWTLBL1 may be used to read and write the labels. See the
documentation on these routines for more information.

Input Interface

User specified:

R15 R

DO o

ASSEMBLER

For TPREAO and TPWRITE, points to one
byte before the source or destination
buffer area

For TPREAO and TPWRITE, contains the
number of bytes to be transferred to or
from the tape

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 215

TPREAD TPWRITE TPRDBLK Interface continued

/

Output Interface

R15 R

R7 R

DO D

EOFBIT B

Element Usage

For TPREAD and TPWRITE, points to the
last character transferred to or from
the source or destination buffer area

For TPRDBLK, pOints to one
the beginning of data in
tape buffer

byte before
the internal

For TPRDBLK,
bytes read

contains the number of

For TPREAD and TPRDBLK,
end-of-file if set

indicates

The tape handler will stack and restore most of the elements
which it uses. The following elements are modified, however:

T5
T6
T7
D2

YMODE

R7

OVRFLW
RECORD
FRMN
FRMP
NNCF
NPCF

T
T
T
D

T

R

D
D
D
D
H
H

Subroutine Usage

Scratch

Used to save and restore XMODE; the
XMODE routine, if any, on entry to the
tape routines, is not guaranteed to work
until the particular routine is exited
and XMODE has been restored

Tape buffer pointer; must be maintained
between calls to TPREAD and TPWRITE

Used by routine GETBLK

TPREAD and TPWRITE use an extensive set of internal subroutines
in such a way that element usage is transparent outside of the
above set. Both may go to seven levels of subroutine usage if
either encounters a parity error while handling a label on the
second and following reels in a set of tapes. TPRDBLK, which
calls TPREAD, may require eight levels.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 216

8.5.40 TPREW

This routine is used to rewind the tape. The tape must be attached to
the process via the TCl T-ATT verb.

No input or output interface; no element usage except standard

8.5.41 TPWEOF

This routine is used to write a tape mark on the tape. The tape must
be attached to the process via the TCl T-ATT verb.

No input or output interface; no element usage except standard

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 217

8.5.42 UPDITM

UPDITM performs updates to a disc file defined by its base FID,
modulo, and separation. If the item is to be deleted, the routines
compress the remainder of the data in the group in which the item
resides; if the item is to be added, it is added at the end of the
current data in the group; if the item is to be replaced, a
"delete-and-add" function takes place.

If the update causes the data in the group to reach the end of the
linked frames, NEXTOVF is entered to obtain another frame from the
overflow space pool and link it to the previous linked set; as many
frames as required are added. If the deletion or replacement of an
item causes an empty frame at the end of the linked frame set, and
that frame is not in the "primary" area of the group, it is released
to the overflow space pool. Once the item is retrieved, processing
cannot be interrupted until completed.

Note that this routine does NOT perform a merge with the data already
on file. In order to change an item, it must first be read and copied
to the user's workspace, changed there, and then updated back to the
file using UPDITM.

Input Interface

User specified:

BMSBEG

TS

CH8

BASE
MODULO
SEPAR

S

R

C

D

T

T

Output Interface

None

ASSEMBLER

Points one prior to the item-id of the
item to be updated; the item-id must be
terminated by an AM

Points one prior to the item body to be
added br replaced (no item-id or count
field); not needed for deletions; the
item body must be terminated by a SM

Contains
deletion,

the character
"UN for item

replacement

"D" for item
addi tion or

Contain the base, modulo, and separation
of the file being updated

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 218

UPDITM Interface continued

Element Usage

NNCF H
NPCF H
XMODE T
03 0
04 0
RECORD 0 Scratch
FRMN 0
FRMP 0
IR R
BMS R
UPD R

Subroutine Usage

Four additional levels of subroutine linkage required

Error Conditions

If a group format error is encountered (premature end of linked
frames, or non-hexadecimal character found in an item count
field), an error message is printed and the group is terminated
at the end of the last good item before processing continues.

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 219

8.5.43 WRTLIN and WRITOB

These are the standard routines for outputting data to the terminal or
line printer. Entry WRTLIN deletes trailing blanks from the data, and
increments the internal line counter LINCTR; WRITOB does neither.

The data to be output are pOinted to by OBBEG, and continue through
the address pointed to by OB. This is for convenience in calling the
subroutines; normally they are called just after data have been
transferred to the OB buffer, in which case the OB address register
will be on the last byte copied. On return, the OB AR is set back to
OBBEG, again for convenience; the output buffer area is blanked
unless bit NOBLNK is set. The data are transmitted to the terminal if
bit LPBIT is off, otherwise they are stored in the printer spooling
area.

Pagination and page heading and page footing routines are automatic,
invoked if bit PAGINATE is set. If headings or footings are also
needed, the page heading and page footing buffers must be set up by
the user; see the documentation for PRNTHDR.

If PAGINATE is set, the end of page is checked for, and action is
taken automatically to print the page footing (if it exists), to skip
to the next page, and to print a new page heading (if it exists). The
end of page is triggered when either LINCTR reaches PAGSIZE (when
there is no footing), or reaches FOOTCTR (when there is a footing).

A value of zero in PAGSIZE suppresses pagination, however, regardless
of the seting of PAGINATE.

WRTLIN and WRITOB also perform output tabulation as specified by the
TCL verb TABS, when output is to the terminal. In this case, blank
sequences in the output are checked against the output tab stops; if
a sequence of blanks crosses a tab stop, a tab character (X'09') is
output instead of the blanks.

Input Interface

User specified:

OB R

NOBLNK B

PFILE T

System specified:

OBBEG S

ASSEMBLER

Points to the last character in the OB
buffer; the buffer must extend at least
two characters beyond this location

If set, blanking of the output buffer is
suppressed; this bit is normally zero

Contains the spooler print file number;
meaningful only if LPBIT is set; unless
more than one print file is being
simultaneously generated, the normal
value of zero may be used

Standard system buffer used to store
data for terminal or line printer output

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 220

WRTlIN WRITOB Interface continued

lISTFlAG B

lPBIT B

lFOlY T

PAGINATE B

OTABFlG B

If set, all output to the
suppressed; set and reset
verb P, and by the Debug "P"

terminal is
by the TCl

command

If set, output is routed to the spooler
(Note: routine SETlPTR should be used to
set this bit so printer characteristics
are set up correctly)

lower byte contains the number of "fill"
characters to be output after a CR/lF;
set by the TCl verb TERM

If set, pagination and
invoked; usually set
routine in conjunction
and/or footing

page headings are
by the PRNTHOR

with page heading

output tabs in effect if set (by the TCl
verb TABS)

The following specifications are meaningful only if PAGINATE is
set:

User specified:

PAGHEAO S

PAGFOOT S

System specified:

PAGSIZE T

PAGSKIP T

PAGNUM T

ASSEMBLER

Points one byte before the beginning of
the page heading message; if the FlO
field of this storage register is zero,
no heading is printed; this is the
default condition

Points one byte before the beginning of
the page footing message; if the FlO
field of this storage register is zero,
no footing is printed; this is the
default condition

Contains the number of printable lines
per page; set by the TCl verb TERM

Contains the number of lines to be
skipped at the bottom of each page; set
by the TCl verb TERM

Contains the current page number

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 221

WRTlIN WRITOB Interface continued

PAGFRMT B

FOOTCTR T

Output Interface

OB R

Element Usage

T4 T
T5 T
D2 D
D3 D
SYSRO S
SYSR1 S
SYSR2 S

BMS R
ATTOVF
elements

ASSEMBLER

If set, the process pauses at the end of
each page of terminal output, until the
user enters any character to continue; a
control-X will return the process
directly to TCl; normally set, this bit
is zeroed by the "N" option at TCl for
most verbs, or by the NOPAGE connective
in RECAll

Contains the number of
point in the page where
to print, if a footing is
by the PRNTHDR routine;
is changed by the user,
SETFooTCTR must be called
tally

=OBBEG

Scratch

Used if lPBIT set

Copyright 06 JUN 1983
THE ULTIMATE CORP.

lines to the
the FOOTING is
in effect; set

if the footing
the subroutine
to reset this

PAGE 222

8.5.44 WSINIT

This routine initializes the following process workspace pOinter
triads: BMS, BMSBEG, BMSEND; CS, CSBEG, CSEND; AF, AFBEG, AFEND;
TS, TSBEG, TSEND; IB, IBBEG, IBEND; OB, OBBEG, OBEND; also PBUFBEG
and PBUFEND. In each case, the "beginning" storage register (and
associated address register, if present) is set pointing one before
the first byte of the workspace, and the "ending" storage register is
set pointing to the last data byte. All workspaces except the TS and
PROC (PBUFBEG to PBUFEND) are contained in the frame at PCB+4;
PBUFBEG and PBUFEND define a 4-frame linked workspace; TSBEG and
TSEND define a single unlinked frame.

WORK SPACE SIZE (BYTES)

BMSBEG-BMSEND 50
AFBEG-AFEND 50
CSBEG-CSEND 100
IBBEG-IBEND Contents of IBSIZE; max. 140
OBBEG-OBEND Contents of OBSIZE; max. 140
TSBEG-TSEND 511
PBUFBEG-PBUFEND 2000 (4 linked frames)

Input Interface

None

Output Interface

Registers are set up as described above. The first byte of the
AF, CS, IB, and OB workspaces is set to X'OO'. The OB workspace
is filled with blanks (X'20'). IBSIZE and OBSIZE are set to 140
if initially greater.

Element Usage

None except standard

8.5.45 WTLINK - See RDLINK

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 223

8.6 Example of a Simple TCL-I Verb

Here is an example of a simple routine, called via a TCL-I verb, that
performs the equivalent of the BASIC program:

PROMPT '+'
LOOP

INPUT X
UNTIL X = " DO

PRINT X
IF NUM(X) THEN IF X<=140 THEN PRINT STR('+' ,X) ELSE PRINT STR('+' ,140)

REPEAT

*
*
*
*
*
*

*

FRAME 511

This program is called via a verb of the form:
COPYIT

001 P
002 01FF

At TCL, enter COPYIT {(P)}

ENTRYO Entry point is 01FF
ENTRYO

B
EQU
SRA
MCC
BBZ
BSL
BSL
CMNT
INC
BCE
DEC
MIlD
DEC
BSL
CMNT
MOV
BSL
BZ
BLE
LOAD
MOV
MCI
DEC

*

LOOP

OK

*MAP:

R15,PRMPC
C'+' ,R15
PFLG,LOOP
SETLPTR
READLIN
*
IB
IB,SM,STOP
IB
IB,OB,X'CO'
OB
WRTLIN
*
IBBEG,IB
CVDIB
TO,LooP
TO,140,OK
140
OB,R15
C'+' ,OB
TO

* +
* OBBEG & R15 ... AA •••••• OB
*

STOP

MIlT
CMNT
CMNT
BSL
B
ENT

R15,OB
*
*
WRTLIN
LOOP
MD999

PROMPT '+'
"P" option not used
PRINTER ON
INPUT x
Note there was no initialization for above
Set on first character input
If null line entered, quit
Backup to one before first byte
Copy string to output buffer, through SM
Backoff SM to setup interface to WRTLIN
PRINT
Note there was no initialization for above
Set back to one before first byte
Convert numeric from IB to binary in accumulator
If zero or non-numeric, nothing to do
This test needed to ensure number < 140
Else setup to limit to 140 bytes
OBBEG=OB=R15 now (WRTLIN resets OB)
Store first '+', pre-incrementing OB
Adjust for above move

Propagate '+' as many times as value in TO
Note that R15 always pre-increments to a '+'
and that OB always is one ahead of R15.
PRINT
REPEAT
Conventional return to TCL via WRAPUP

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 224

8.7 Example of a Simple TCl-II Verb

This is an example of a routine called via a TCl-II verb that strips
comments from BASIC source file item(s). The stripped source is
written back to the same file, with an item-id of "STRIP-"
concatenated with the original item-id.

OPEN 'filename' TO FILE ELSE STOP 201,'filename'
100 READNEXT 10 ELSE PRINT 'DONE'; STOP

*

*

1=0; READ ITEM FROM FIlE,ID ELSE PRINT 'NOT ON FILE'; GO 100
lOOP 1=1+1; lINE=ITEM<I> UNTIL lINE=" DO

IF lINE[l,l] = '*' THEN
ITEM = DElETE(ITEM,I,O,O)

END
REPEAT
WRITE ITEM ON FILE, 'STRIP-' :10
GO 100

FRAME 511

*DElETE COMMENTS

This program is called via a verb of the form:
STRIPIT

001 P
002 2 TCl-II verb
003 01FF
004 0
005 CU Copy item to IS buffer; verb may update file

At TCl, enter: STRIPIT filename {itemlist}
This routine will be called once as each item is read from file.

STRIPX
B
EQU

ENTRYO
*-1

Entry point is 01FF
Note the '*-1' for SRA instruction, below

TEXT C'STRIP-'
UCHAR CHR
*
ENTRYO EQU

lOOP

SKIPIT

ITMEND

MOV
SRA
MIl
MOV
MIlD
MOV
INC
BCE
BCE
DEC
MIID
B
SID
B
EQU
MCI
MCC
MOV
BSl
ENT

ASSEMBLER

C'U' For MCC below

BMSBEG,BMS Interface to UPDITM; start of item-id
R15,STRIPX Set R15 one before 'STRIP-' string above
R15,BMS,6 Copy 6 bytes
ISBEG,IS location of item copied to IS buffer
IS,BMS,X'AO' Concatenate original item-id, thru AM
OSBEG,OS Scratch location for copy of item
IS To look at first byte of next line
IS,SM,ITMEND If SM found, end of item reached
IS,C'*' ,SKIPIT Asterisk in column one; delete line
IS Backoff first byte for MIlD, below
IS,OS,X'AO' Else copy rest of line
lOOP REPEAT
IS,X'AO'
lOOP
*
SM,OS
UCHAR,CH8
OSBEG,TS
UPDITM
MD999

Scan to end of line (AM)

End of item body reached
Interface to UPDITM; end of new item body
Interface to UPDITM; update flag
Interface to UPDITM; start of new item body
WRITE
Rtn via WRAPUP to TCl-II for next item, if any

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 225

8.8 Example of a User Conversion Subroutine

Here is an example of a conversion subroutine that
nine-digit stored number to nnn-nn-nnnn Social Security
and vice-versa; this routine assumes that the value
valid; since only R14, R15 and TS are used, no elements

FRAME 511
*
*
* RECALL

converts a
Number format
on entry is
are saved.

*Input Conv:
*Output Conv:

BASIC
RAW.VAL=ICONV(VAL,'U01FF')
OUT.VAL=OCONV(VAL,'U01FF')

U01FF in V/CONV field

*

ENTRYO
B
EQU *

ENTRYO Entry point is 01FF

MOV TSBEG,TS Locate start of data
BBS MBIT,INPUTC Process input conversion

---------------Output conversion-------------------------
MOV TS,R14 Save start
SID TS,X'F8' Scan to any delimiter
MOV TS,TSEND Save this location (TSEND is SCRATCH)

*MAP:
* nnnnnnnnnD ... scratch space o is Delimiter
* TSBEG & R14 .. A A •••• TSEND & TS
*

MIl R14,TS,3 Copy 3 numbers;
MCI C'-' ,TS Add a dash;
MIl R14,TS,2 Copy 2 numbers;
MCI C'-' ,TS Add a dash;
MIl R14,TS,4 Copy 4 numbers;
MCI SM,TS

* nnnnnnnnnDnnn-nn-nnnnS o is Delimiter; S is SM
* TSBEG A A ••• TSEND TS
*

MOV
MOV
MIlD

QUIT DEC
MOV

TSBEG,TS
TSEND,R14
R14,TS,X'CO'
TS
TS,TSEND

Reset to start
start of CONVERTED data
Copy back thru SM
Now on last byte of data
Correct EXIT interface

*MAP (for output conversion only)
* nnn-nn-nnnnSn-nn-nnnnS
* TSBEG A A ••• TS & TSEND

ENT CONVEXIT Conventional exit
---------------Input conversion-------------------------
INPUTC EQU * Input side; convert nnn-nn-nnnn to 9n

*MAP:

INC TS,3 Set one before first H "

MOV TS,R14
INC R14 Set on first

* nnn-nn-nnnnD o is Delimiter
* TSBEG A

* TS 1 \ R14
MIl
INC
MIlD
MCC
B

ASSEMBLER

R14,TS,2 Note 2 bytes copied back "in place"
R14 Skip over second " - "
R14,TS,X'F8' Copy rest of data to any delimiter
SM,TS Ensure that delimiter is a SM
QUIT

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 226

8.9 Example Using Heading and Footing

This example shows how to set up a heading and footing area, using the
HS buffer.

*
*

*

HEAD

*---

FRAME 511

This is an example of setting up a heading and footing
It may be added to the program shown in the first example

B ENTRYO Entry 01FF

EQU *-1 Heading text
TEXT C'THIS IS AN EXAMPLE'
TEXT C' OF A HEADING
TEXT
TEXT
CMNT
TEXT
TEXT

C' PAGE'
X'FC' ,C'P' ,X'FDFF'

Note FC P=page#; FD=newline; FF=end of data
X'FD' ,C'ULTIMATE ASSEMBLY MANUAL'
X'FF' To stop MIlD!

ENTRYO EQU

NOTLP

LOOP

MOV
SRA
MCI
MOV
MIlD
CMNT
MCI
MOV
MIID
MOV
MCI

SRA
MCC
BBZ
BSL
BSL

BSL
etc.

ASSEMBLER

HSEND,R15 Note use of HSEND, not HSBEG!
R14,HEAD Set R14 one before heading data
C'X' ,R15 Conventional X in HS area
R15,PAGHEAD Initialize PAGHEAD to one before heading
R14,R15,X'CO' Copy heading data thru SM
* Note R14 is on SM in object, above
C'X' ,R15 Conventional X in HS area
R15,PAGFOOT Initialize PAGFOOT to one before heading
R14,R15,X'CO' Copy footing data thru SM
R15,HSEND Update ending pointer
C'Z' ,R15 Mark new HS end

PROMPT '+'
"P" option not used
PRINTER ON

R15,PRMPC
C'+',R15
PFLG,NOTLP
SETLPTR
PRNTHDR Intialize and print first heading

READLIN INPUT x

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 227

8.10 Example of a PROC User Exit

Here is an example of a PROC user exit
simple conversions such as Date or Time.
exit that can call any RECALL Conversion.

that can be used to perform
In fact, this is a general
The PROC exit format is:

General Format Examples

Uxxxx
x conversion.code

U01FF
;021

U01FF
:TINV;C; ;2

where "x" is a ":" for Output Conversion (similar to OCONV) and is a
";" for Input Conversion (similar to ICONV). The parameter is taken
from the current Input Buffer Pointer (IB), which is . assumed for
simplicity to be the last parameter in the buffer.

FRAME 511
*
*

*

B ENTRYO U01FF
*
ENTRYO EQU

EP10

INC IR Set on or, on next line of PROC
SB MBIT For Input Conversion
BCE C';' ,IR,EP10 Yes
ZB
INC
XRR
MOV
DEC
MOV
BSL
XRR
CMNT
MOV
ZB
ENT

ASSEMBLER

MBIT
IR
IR,IS
TSBEG,SR20
IB
IB,TSBEG
CONV
IR,IS

SR20,TSBEG
MBIT
1,PROC-I

For Output Conversion (should check for here!)
Set on first byte of conversion code
Conversion processor requires IS on code
Save this

Interface to CONV
PROCESS CONVERSION
Restore registers; CONV has kindly
scanned IS (really IR) to an AM, thanks
Restore
Later processors may expect it zero
Return to PROC

Copyright 06 JUN 1983
THE ULTIMATE CORP. PAGE 228

CHAPTER 9

LIST OF ASCII CODES

Note: characters shown under notes in the form "cx" represent
control character using the "x" key, e.g., cA is a control-A.

ASCII EBCDIC ASCII
hex dec hex character

Notes ASCII
hex dec

00 0
01 1
02 2
03 3
04 4
05 5
06 6
07 7
08 8
09 9
OA 10
OB 11
OC 12
OD 13
OE 14
OF 15
10 16
11 17
12 18
13 19
14 20
15 21
16 22
17 23
18 24
19 25
1A 26
1B 27
1C 28
1D 29
1E 30
1F 31
20 32
21 33
22 34
23 35
24 36
25 37
26 38
27 39
28 40
29 41
2A 42
2B 43
2C 44
2D 45
2E 46
2F 47

00
01
02
03
37
2D
2E
2F
16
05
25
OB
OC
OD
OE
OF
10
11
12
3A
3C
3D
32
26
18
19
3F
27
1C
1D
1E
1F
40
5A
7F
7B
58
6C
50
7D
4D
5D
5C
4E
6B
60
4B
61

ASSEMBLER

NUL c@ 30
SOH cA 31
STX cB 32
ETX cC 33
EOT cD 34
ENO cE 35
ACK cF 36
8EL cG bell 37
BS cH backspace 38
HT cI horiz. tab 39
LF cJ linefeed 3A
VT cK 38
FF cL formfeed 3C
CR cM cr/newline 3D
SO cN 3E
SI cO 3F
DLE cP 40
DC1 cO X-ON 41
DC2 cR retype 42
DC3 cS X-OFF 43
DC4 cT 44
NAK cU 45
SYN cV 46
ETB cW back word 47
CAN cX cancel 48
EM cY 49
SUB cZ 4A
ESC c[48
FS c:.." 4C
GS cJ 4D
RS c. " 4E
US C_ 4F
blank 50

$
%

&

*
+

/

51
52
53
54
55
56
57
58
59
5A
58
5C
5D
5E
5F

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Copyright 06 JUN 1983
THE ULTIMATE CORP.

EBCDIC ASCII
hex character

FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
7A
5E
4C
7E
6E
6F
7C
C1
C2
C3
C4
C5
C6
C7
C8
C9
D1
D2
D3
D4
D5
D6
D7
D8
D9
E2
E3
E4
E5
E6
E7
E8
E9
80
EO
90
5F
6D

o
1
2
3
4
5
6
7
8
9

<

>
?
@

A
B
C
D

E

F

G
H

I
J
K

L
M

N
o
P

o
R
S
T
U

V

W
X

Y
Z

[
\

]

PAGE 229

Notes

ASCII EBCDIC ASCII Notes ASCII EBCDIC ASCII Notes
hex dec hex character hex dec hex

60 96 79 System Delimiters
61 97 81 a
62 98 82 b FB 251
63 99 83 c
64 100 84 d
65 101 85 e
66 102 86 f FC 252
67 103 87 g
68 104 88 h
69 105 89 i
6A 106 91 j FD 253
6B 107 92 k
6C 108 93 1
60 109 94 m
6E 110 95 n FE 254
6F 111 96 0

70 112 97 P
71 113 98 q
72 114 99 r FF 255
73 115 A2 s
74 116 A3 t
75 117 A4 u
76 118 A5 v
77 119 A6 w
78 120 A7 x
79 121 A8 Y
7A 122 A9 z
7B 123 CO {
7C 124 6A I
7D 125 DO }
7E 126 Al ""
7F 127 07 DEL

80 128 Undefined characters
through
FA 250

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP.

character

SB Start Buffer
Display: [

SVM Sub-value Mark
Display: \.
Entered via READLIN:
c\

VM Value Mark
Display:]
Entered via READLIN:
c]

AM Attribute Mark
Display: A

Entered via READLIN:
C A

SM Segment Mark
Display: _
Entered via READLIN:
c -

PAGE 230

, ;:)
B
6
3

H7 I H6

T3

RFU

K~? X
ACCUMULATOR OVERLAY DESCRIPTION g ':) f'"

1 '
~l I til:,. ItQr

B B B B B B
4 4 3 3 1 1
8 7 2 1 6 5

H5 I H4 H3 I H2 H1

T2 T1

D1 DO

FPO

REGISTER FORMAT DESCRIPTION

Rx DSP Rx FID

Ii'!) ,',J-"

I HO

TO

PRIMARY CONTROL BLOCK

Addressing register RO set to PCB.

o 2

000 RFU I ACF PRMPC I
010

020

030

()40

050

OEO

070

080

090

OAO

OBO

OCO

ODO

OED

OFO

IDa

110

120

130

140

150

150

170

IBO

190

lAO

180

lCO

1 DO

lEO

1 FO

CHO I CHI CH2 I
02

RECORD

BASE

MBASE

OVRFLW

INHIBITH I SCALE# BOPS

CTRO CTRI

CTRB CTR9

I
REJCTR REJO

l HSEND

I OSBEG

l UPDEND

-

RSCWA

ENTRY #4

ENTRY:'.13

AFBEG

!8END

FBASE

L

Primary Control Block

:3

SCO

CH3

4 5 6 7

SCI I SC2 DEBUG BYTE I RNICTR

A6IT·Z6IT S60, SB35, DAFO·DAF9, MISC. BITS

CH4 I CHB CH9 I SCP

03

FRMN

MODULO SEPAR

MMOO MSEP

LFDLY
LFDELAY'-C FFDELAY BSPCH I TERMTYPE

MODEI02 WMODE

CTR2 CTR3

CTRIO CTRII

IBSIZE OBSIZE

ISBEG

TSEND

BMSBEG

RO (PCB)

R2 ISCBI

R4 (lSI

R6I1R)

RB (BMSI

RIO (IBI

R12 (CSI

R14 (SCRATCH)

RTN STACK ENTRY 1;'1
FID DSP

ENTRY #5

ENTRY ;;9

CSEND

OBBEG

FMOD FSEP

SYSRI (FPY)
----- ---- ---

SEE ACCUMULATOR DESCRIPTION

~ ./'- ~
8 9 A 6 c o E

Dl DO

TAPSTW I MISC. BITS

T4
T5 TG 17 HB I H9

04 05

FRMP NNCF I NOCF SIZE

DBAS~ OMOO OSEP

EBASE EMOO ESEP

3BASc SMOD SSEP

RMODE MODEiD3 XMODE USER

CTR4 eTRS CTRG CTR7

CTRI2 CTRI3 CTRI4 CTRI5

H~8EG

ISE"JD

OSEND (SCALE) TS8EG

UPDBEG

BMSEND

Rl (PROGRAM COUNTER)

R3 (HSI

R5 (aS)

R7 (upol

R9 (AFI

RII (OSI

R13 (TS)

R15 (SCRATCH)

ENTRY #2 ENTRY F3

ENTRY:!6 ENTRY #7

ENTRY =10 ENTRY.:t,1

AFEND CSBEG

I IBBEG

08END

RTNPCB SYSRO IFPX)

L COMDSF- I CHARGE·UNITS I RFU

F

~

J
II

)

II

~
-

SEE
REGISTER
DESCRIPTION

RETURN
STACK

SECONDARY CONTROL BLOCK

Addressing register R2 set to SCB. SCB = PCB + 1.

o 2 3

(SCRATCH) I BSPCH Cl 000

010

020

030

040

050

060

AFLG·ZFLG, NUMFLG1, NUMFLG2, MISC. BITS

070

080

090

OAO

OBO

OCO

000

OEO

OFO

100

110

120

130

140

150

lSO

170

lRO

190

lAO

lBO

lCO

100

lEO

lFO

CTR22

CTR30

CTA38

PFILE

TPSIZE

POBSIZE

PAGNUM

Secondary Control Block

S3

SAl

SR9

SR17

SR25

STKENO

I

CTR23

CTR31

CTR39

YMODE

FP3

SYSA2

S6

SA4

SR12

SR20

SR2B

LOCKSR

FOOTCTR

PBUF

PPAGSIZE

4 5 6 7

C2 C3

CTR16 CTR17

CTR24 CTA25

CTR32 CTR33

CTA40 CTR41

FPl

09 REJl

Sl

S4

S9

SA2

SR7

SR1D

SA15

SR18

SR23

SR26

POCUR

STKBEG

IOFID TPRECL

PAGFOOT

PLiNCTA PPAGNUM

PAGHEAD

8 9 A 8 C o E F

C4 CS C6 C7

CTR1B CTR19 CTR20 CTR21

CTA26 CTR27 CTA2B CTA29

CTR34 CTR35 CTR36 CTR37

CTR42 FPS

FP2

06 07 OS

REJ2 FP4

NXTITM SO

S2

S5

S7 58 i::

SAO

SR3

SA5 SA6 ~

SAB ~

SRll

SR13 SR14

SA16 i=:

SR19

SR21 SR22 ~

SR24

SR27

SR29 POBEG

POENO

SRJ5

QCBSR BOESCT8L

SPSAVE PAGPRINT

PBUFBEG

PBUFEND OVRFlCTR

TOBSIZE TPAGSIZE TLiNCTR TPAGNUM

I LlNCTR PAGSIZE PAGSKIP LFCTR

INDEX FOR ASSEMBLER

* funotion
ACONV
ADD
ADDR

~L*N
AND
AS function in EDITOR
AS verb
ASCII conversion
ATTOVF
Aborts

28,104
179

52
53
52
53
53
25

24,32
179,182

180
122

Accumulator
52,76,85,92,102,117,118,138,1

42,142
Accumulator instructions

52,76,85,102,117,117,118
Activation of a process 4,15
Adding a field to another

69,70
Address 14
Address normalization

14,69,69
Address register

15,17,61,69,70,75,81,100,116
Address space 7,8,12
Address specification in Debu-

g 128
Addressing a label 116
Addressing modes 20
Aligning location counter 53
Alphabetic character test 54
Assembly language 2
Assembly debugger 124
Assembly errors 34
Assembly language 24
Assembly listings 33
Assembly options 32
Assembly source item format

25
Assigning object code to a fr-

ame 82
Asynchronous 1/0
6,6,105,120,197,198,200,202,2

20
Attaching additional overflow-

space 180,195
Attachment of register

16,81,100
Automatic disc writes 10
Available fields, user softwa-

re 146,173
Available frames 31
B M
BACKWARD lINK ZERO 69
BBS 54
BBZ
BCA
BCE

54
54
55

BCH
BCHE
BCl
BClE
BCN
BCNA
BCNN
BCNX
BCU
BCX
BDHEZ
BDHZ
BDLEZ
BDlZ
BDNZ
BDZ
BE
BH
BHE
BHEZ
BHZ
Bl
BlE
BLEZ
BLZ
BNZ
BREAK

BSL
BSL*
BSLI
BSTE
BU
BYE
BZ

key inhibit

Backward link
Backward link zero

56
56
56
56
57
54
57
57
55
57
58
58
58
58
59
59
60
62
62
63
63
62
62
63
63
68

122, 144, 182
64
65
66
67
60

134
68
12
14

Base register 20,45
Binary conversion

86,88,91,92,101
Binary to string conversion

Bit addressing
Bi ts, setting
Bits, shifting
Bits, status in
Bits, testing

in Debug

PIB

193
129
106
107

6
54

Bits, zeroing 121
Branch table 25,30,64
Buffer for terminal 1/0 6
Buffer usage
Byte add ress
Byte reference
CHR
CMNT
CONV
CRLFPRINT
CROSS-INDEX
CROSS-REF verb

147
14
14
68
68

164
199

39
24

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 231

INDEX FOR ASSEMBLER

CROSSING FRAME LIMIT error
69

CVDIB 181
CVDIR 181
CVDIS 181
CVDOS 181
CVDR15 181
CVXIB 181
CVXIR 181
CVXIS 181
CVXOS 181
CVXR15 181
Calling a subroutine

64,65,66
Changing TCL levels 134
Changing data in Debug 131
Changing execution address

134
Changing frame assignments in-

Debug 135
Characteristics - printer, te-

rminal 205,208
Comment line 68,78
Comments 28
Comparison of byte addresses

61
Comparison of registers 61
Comparison of strings 67
Comparison of tallies 60,62
Constants 28,74
Contiguous frames 12
Continuing execution 134
Control block, Primary

18,141
Control block, Secondary

19,145
Control block, additional

140
Control flow of system 149
Conventional buffer usage

147
Conventional register usage

147
Conventions, system 138
Conversion processor interfac-

e 151,164
Conversion, ASCII to binary

91,92,101
Conversion, ASCII-EBCDIC

179,182
Conversion, binary to ASCII

86,88
Conversion, binary to string

193
Conversion, string to binary

101,181
Counters 23
Cross reference 39,40
Current location function

28,104
DO

52,76,85,92,102,117,118,138,1
42,142

D1 138
D2 138
DATE 212
DEC 69,70
DECINHIB 182
DEFB 47,71
DEFC 47,71
DEFD 47,71
DEFDL 71
DEFF 47,71
DEFH 71
DEFHL 71
DEFM 73
DEFN 74
DEFS 47,71
DEFT 47,71
DEFTL 71
DEFTU 71
DETO 75
DETZ 75
DIV 76
DIVX 76
DTLY 77
Data change in Debug 131
Data display window in Debug

Deactivation of a process

address
addressing of bits
command summary
data display
display commands
execution control
format code

129

4,15
128
129
126
129
130
133
130

Debug
Debug
Debug
Debug
Debug
Debug
Debug
Debug frame assignment change

135
Debug link field display 136
Debug messages 136
Debug privileges 122
Debug symbols 128
Debugger traps 124
Debugging a program 122
Defining a Storage Register

115
Defining a storage register

53
Defining an additional contro -

1 block 140
Defining storage

53,68,77,101,115,119
Deleting an item on file 218
Deleting return stack entries

64,106,143
Delimited string 96,111

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 232

INDEX FOR ASSEMBLER

Delimiters 96,111
Detachment of register

16,75,100
Difference in addresses
Direct addressing
Disabling the Debugger
Disc IIO
Disc set

84
20

122
9
7

Displacement 14,53,115,128
Display links in Debug 136
Displaying data in Debug 130
Division
EBCDIC conversion
ECONV
EJECT
END
ENT
ENT*
ENTI
EQU

76
179,182

182
78

78,134
78
79
79
80

Editing a source item 25
Eject a page 194
Enabling the Debugger 122
Entry point modal definition

64,73,78,101
Entry point modal identifier

30
Equating symbols 80
Error message printing 163
Errors, assembly 34
Examples, assembly programs

172,224,225,226,227,228
Exception mode trap 14
Exchange characters 120
Exchange registers 121
Execution aborts 124
Execution control in Debug

Execution traps
133
124

Expressions in operand field
28

External branch
External transfer
FAR

79
78,79

81
FID 8,12,53,73,101,115,128
FPO
52,76,85,92,102,117,118,142,1

42
FPX
FPY
FRAME
FTLY
Field, addressing
File I/O

138
76,138,142

82
45,77

116

183,184,186,190,201,206,218
File open 184
File read 186,206
File write 218
Files, symbol 21

Flushing memory
Format, PIBs
Format, frame
Format, register
Format, source item
Forward link
Forward link zero
Frame
Frame number

10
6

12
17
25
12

14,69,177
8,12

8,12,53,73,101,115
Frames, available 31
G Debug command 134
GETACBMS 183
GETBLK
GETFILE
GETITM
GETOVF
GLOCK
GUNLOCK
GUNLOCK. LINE

188
184
186
188
189
189
189

General purpose registers 19
Generation of literals 24
Global symbols 37
Global variables 138
Group locks 189
HO

HALT
HASH

52,76,85,92,102,117,118,142
82

190
HSISOS 191
HTLY 45,77
Hexadecimal character test

57
IIO calls from virtual proces -
ses 10

INC 69,70
INCLUDE 37,83,83
INHIBIT 144
INHIBITH 144,182
Immediate symbols 47,72
Including an symbol table 83
Indirect addressing 20
Indirect transfer of control

65,66,79,79
Inhibiting the BREAK key

122,144, 182
Initial conditions, TCl 151
Initialization of workspace

191,223
Initializing link fields 192
Initializing printer characte -
ristics 205,208

Initializing terminal charact -
eristics 205,208

Input from terminal 105,202
Interface to system via Conve -

rsion processor 164
Interface to system via a PRO -

C 167

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 233

INDEX FOR ASSEMBLER

Interface to system
b

Interframe linking
Interframe transfer
Kernel
LAD
LINESUB
LINK
LOAD·
LOADX
Label field

via a ver-
151

30
30

9
84

191
192

85
85
27

Label, addressing 116
Line-printer output

Link fields

Linked frame

200,205,208,220

12,14,136,192,201
12

Linked mode address
Links, display in Debug
Links, initializing
Links, reading

14,136
136
192
201
201 Links, writing

Literal generation
Literals

24,45
28,45,74

Loading an address register
100

Loading object code
24,31,35,82

Loading the accumulator 85
Local storage 140
Local symbols 37,38
Location counter, assembler

28,53,104
Logical byte operations

53, 103, 107, 120
M function in EDITOR 25
MBD 86
MBDNSUB
MBDNSUBX
MBDSUB
MBDSUBX
MBX
MBXN
MCC
MCI
MOl
MD1B
MOB
MFD
MFX
MIC
MII
MIID
MIIDC
MIIR
MIIT
MIITD
MLIST verb
MLOAD

86,193
86,193
86,193
86,193

88
88
89

89,90
156
157

91
92
92
94

94,95
96
96

95,98
90,95,99

99
24,33

82

MLOAD verb 24,35
MODEID2 170
MODEID3 150,170
MOV 100
MSDB 10~
MSXB 101
MTLY 101
MUL 102
MULX 102
MVERIFY verb 24,36
MXB 91
Machine language 24
Macro definition 43
Macro definition, OSYM 41
Macro display in EDITOR 25
Mask byte 96,99,111,113
Memory flushing 10
Messages from Debugger 136
Mode-id 30,64,73,78,101,101
Modes of addressing 20
Moni tor IIO 10
Monitor process
Monitor software

4
9

Moving a string of bytes
90,95,96,98,99

Mul tiplication
NEG
NEWPAGE
NEXTIR
NEXTOVF
NOP
Native mode software
New page in listing
No operation
Normalized address
Numeric character test
ONE
OPENDD
OR
ORG
OSYM file
OVRFLCTR

102
103

194,200
195
195
103

9
78

103
14,69,69

57
103
184
103
104

41
144

Object code, display in EDITO -
R 25

Object code, loading
Object code, verifying
Object-code
Offset
Offset computation
Opcode field
Opcode table
Opening a dictionary
Opening a file
Operand field expressions
Operands
Options, MLIST
Options, MLOAD
Options, MVERIFY
Options, assembler

35
36

25,30
20

21,22
27
41

184
184

28
28
33
35

36,36
32

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 234

INDEX FOR ASSEMBLER

output to terminal
120,199,200,220

Overflow frames
Overflow space release
PCB
PCRLF
PERIPHREAD1
PERIPHREAD2
PERIPHSTATUS
PERIPHWRITE
PIB
PIB Status
PRINT
PRNTHDR

188,204
144

18,141
196
197
197
198
197

6
6

199
200
167
228

PROC interface
PROC user exit
PSYM file
Page eject in listing
Page skip
Paging of frames

21,37,38
78

194
8

Passes in the assembler 24
Permanent Symbol Table 38
Permanent symbols 37
Phantom process 4
Primary Control Block 18,141
Primitive definition, OSYM

41,42
Printer characteristics

205,208
Printing error messages 163
Priority scheduling 6
Process 3,4
Process identification block

Process scheduling
Process, definition
Program counter
Propagating a character
Q function in EDITOR
RDLINK
RDREC
READ
READIB
READLIN
READLINX
READX
RECALL
RECALL interface
RELBLK
RELCHN
RELOVF
RESETTERM
RETIX
RETIXU

6
6,9

4
18
90
25

201
201
105
202
202
202
105
149

151,169
204
204
204
205
206
206

RMODE
RQM

143,150,170
106

RTN 106
Re-entrancy 139
Reading an item from a file

Reading links of a frame
Register instructions

186,206
201

Register one
Register usage
Register zero
Register, address

69,70,70
18,18

147
18

15,17,69,70,75,81,100,116
Register, attached 16,81
Register, comparison 61
Register, detached 16,75,100
Register, general purpose 19
Register, storage 15,17,100
Relative addressing 20,21,22
Release of overflow frames

144
Release timeslice 106
Reserved symbols 38
Resetting the location counte -

r 104
Return from WRAPUP 143
Return stack empty error 106
Return stack format 143
Return stack full error

64,65,66
Return stack, deleting entrie -

s 64,106,143
Returning from a subroutine

106
Roadblock flags 6
Roadblocked process 4
5 function in EDITOR 25
SB 106
SB60 138
SB61 138
SCO 96,111,143
SC1 96,111,143
SC2 96,111,143
SCB 19,145
SET-SYM 128
SET.TIME 119
SETLPTR 208
SETTERM 208
SHIFT 107
SICD 108
SID 111
SIDC 111
SIT 113
SITD 113
SLEEP 114,209
SLEEPSUB 209
SORT 210
SR 115
SRA 116
STORE 117
SUB 118
SUBX 118
SYSRO 138

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 235

INDEX FOR ASSEMBLER

SYSR1
SYSR2
Scan Characters

138
138

96,111,143,197
Scanning a string of bytes

108,111,113
Scheduling of disc I/O 9
Scheduling of processes 9
Searching a string

108,111,113
Secondary Control Block

19,145
Set of discs 7
Setting a bit 106
Shared symbols 37,83
Single character test

54,55,56,57,57
Skip to a new page 194
Sorting a string 210
Source item for assembly 25
Source line 25
Space management

180,188,195,204
Special exit from-RECAll 150
Special exit from WRAPUP

143,150
Special exits
Spooler output
Status bits in PIB

150
200,220

6
Status of asynchronous channe-

l I/O 198
Storage declaration

53,68,77,101,115,119
Storage register

15,17,61,100
Storage, local 140
Storing an address register

100
String comparison 67
String move 90,95,96,98,99
String scan 108,111,113
String to binary conversion

Subroutine call
Subroutine return

181
64,65,66

106
Subroutine return stack 143
Subtracting a field from anot-

her 69,70
Summary of Debug commands

126
Summary of instructions 49
Summary of system software ro-
utines 154

Symbol files 21
Symbol names 37
Symbol type-code 21,39
Symbol type-codes

38,41,48,53,68,71,77,115,132
Symbolic data display in Debu-

g 132
Symbols in Debug 128
Symbols, immediate 47,72
Symbols, local 37
Symbols, permanent 37,38
Symbols, reserved 38
Symbols, sharing 37
Symbols, temporary 38
System aborts 122,124
System control flow 149
System conventions 138
System date 119,212
System privilege level 122
System subroutines 179
System time 119,212
TO

52,76,85,92,102,117,118,142,1

T4
T5

42
138
138

TCl initial conditions 151
TCl levels 134
TCl-I 149
TCl-I interface
TCl-II
TCl-II interface
TEXT
TIMDATE
TIME
TLY
TPBCK
TPGETLBl
TPRDBLK
TPRDlBl
TPRDLBLl
TPREAD
TPREW
TPWEOF
TPWRITE
TPWTLBL
TPWTlBLl
TSYM file
Tallies

151,156,157
149

151,159
119
212

119,212
77

212
213
215
213
213
215
217
217
215
213
213

21,37,38,45
23

Tally test
Tape I/O
Tape labels

58,59,60,62,63,68
212,213,215,217,217

213
Temporary Symbol Table
Temporary symbols
Terminal IIO buffer

38
37

6
Terminal characteristics

205,208
Terminal input

105,197,198,202
Terminal output

120,197,199,200,205,208,220
Test against Zero

58,59,63,68
Test and set function 120
Testing a bit 54

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 236

INDEX FOR ASSEMBLER

Traps 124
Type of verbs 149
Type-code, symbol

21,38,41,48,68,71,115
UPDITM 218
Unconditional branch
Unlinked frame
Unlinked mode address
Unnormalized address
Updating an item to disc
Usable frames

54,78
12

14,136
14

218
31

User available elements
146,173

User exit from BASIC/RECALL
164

USEfr exit from PROC 167
User exit from RECALL 169
User programs 156
User-exit from PROC 228
Variables 21
Variables, global 138
Verb interface 151
Verbs, type 149
Verifying object code 24,36
Virtual machine 7
Virtual memory 2,7
Virtual process 4

WMODE
WRAPUP interface
WRITE

143,150
163
120
220
220
223
201

WRITOB
WRTLIN
WSINIT
WTLINK
Wait
Windows

114,209
129

Workspace initialization
191,223

Write required flag 7
Writing an item to file 218
Writing links of a frame 201
Writing to terminal 200,220
X-REF 40
XCC
XMODE
XOR
XRR
ZB
ZERO
Zero test
Zeroing a bit

<
»

120
14,69,124,177,195

120
121
121
121

58,59,63,68
121
134
134
134

ASSEMBLER
Copyright 06 JUN 1983

THE ULTIMATE CORP. PAGE 237

NOTES

NOTES

