

ULTIMATE BASIC LANGUAGE

REFERENCE GUIDE

HOW TO ORDER THIS GUIDE

The ULTIMATE BASIC Reference Guide is included with the
system documentation set.

For additional copies, please call your dealer or the
ULTIMATE Corporation.

PROPRIETARY INFORMATION

This document contains information which is proprietary to
and considered a trade secret of the ULTIMATE CORPORATION.
It is expressly agreed that it shall not be reproduced in
whole or in part, disclosed, divulged, or otherwise made
available to any third party either directly or indirectly.
Reproduction of this document for any purpose is prohibited
without the prior express written authorization of the
ULTIMATE CORPORATION.

Copyright September, 1985, THE ULTIMATE CORP.
Operating System Release 10 - Rev 140
Document No. BAS-01

HOW TO USE THIS MANUAL

This manual is intended as a reference for programmers using
the ULTIMATE BASIC programming language. Although not a
tutorial, it covers all aspects of using BASIC with the
ULTIMATE system file structure and operating system. The
material is presented in a structured format, with text and
graphics integrated into single-topic units.

How the manual is organized

Chapter 1 gives an overview of programming with ULTIMATE
BASIC. It covers the program file structure, components of a
program, compiler options and directives, and methods of
executing programs.

Chapter 2 discusses how data can be represented in a BASIC
program: as constants (literals), variables, or arrays. It
also covers the use of expressions (arithmetic, logical,
string, and relational) and the extended arithmetic package
(floating point and string).

Chapter 3 lists all statements and functions in alphabetical
order. Each statement and function is detailed in a
single-topic unit.

Chapter 4 explains the testing and debugging procedure and
each command in the BASIC Debugger.

Chapter 5 reviews the ULTIMATE data file structure and gives
some recommended coding techniques. The chapter also
contains several sample programs for reference. These
programs illustrate the use of ULTIMATE BASIC for file
updating, job control, and other special applications.

The appendixes list error messages, ASCII codes, debugger
commands and messages.

How the manual is formatted

This manual is presented in a structured format. Each
individual topic is an independent unit with its own
headline, summary, text, and one or more exhibits.

With a structured format the reader can easily locate the
specific topic(s) needed, and all pertinent information is
included within the unit.

All topics are numbered within their section, except for the
BASIC statements and functions in Chapter 3. The statements
and functions are in alphabetical order for easy reference.
Each statement/function name is centered as the topic heading
without a topic number.

BASIC Reference Page P- 1 Preface

Each topic typically has one or more exhibits. Figure A is
always the first exhibit, Figure B is the second exhibit, and
so on.

Conventions used

This manual presents general formats for each of the BASIC
statements and intrinsic functions. In presenting and
explaining these general forms, the following conventions

apply:

Example Meaning

READ Words printed in capital letters are required and
must appear exactly as shown.

expr Words printed in lower-case letters are parameters
to be supplied by the user (i.e., variables,
expressions, etc.).

expr Parameters are underlined for easy reference in
the text explanation below the general form.

{expr} Braces enclosing a word and/or a parameter
indicates that the word and/or parameter is
optional and may be included or omitted at the
user's option. If an ellipsis (i.e., three dots...)
follows the terminating bracket, then the word
and/or parameter may be omitted or repeated an
arbitrary number of times.

RND (expr) All functions require a set of parentheses, which
COL1 () usually enclose a parameter. No space is allowed
between the function name and the left parenthesis.

The figures on the opposite page illustrate the general
figure identifications and content for the topics describing
the BASIC Statements and Intrinsic Functions.

Other conventions used throughout the manual are:

BOLD Bold face type is used for section and unit
headings. It is also used in exhibits to indicate
user input as opposed to system-displayed data, and
in the Appendix message listings.

<CR> The <CR> symbol indicates a physical carriage
return pressed at the keyboard.

BASIC Reference Page P- 2 Preface

THIS FIGURE USUALLY PRESENTS A GENERAL

FORMAT FOR THE FUNCTION OR STATEMENT

Figure A. General Format

THIS FIGURE USUALLY PRESENTS A NUMBER OF

EXAMPLES OF CORRECT USAGE.

Figure B. Examples of Correct Usage

THIS FIGURE, IF PRESENT, USUALLY PRESENTS A NUMBER OF

EXAMPLES OF INCORRECT USAGE.

Figure C. Examples of Incorrect Usage

BASIC Reference : Page P- 3 Preface

THE ULTIMATE BASIC REFERENCE MANUAL

TABLE OF CONTENTS

CHAR Function.....eee...

Topic Page
How to Use This Manualceveeessscesecssscsescsncascass Pl
Chapter 1 OVERVIEW OF PROGRAMMING WITH THE BASIC LANGUAGE
1.1 An Overview of the BASIC LanNguUagecoeeeecocsccnsns 2
1.2 The File Structure of BASIC Source ProgramS......seoo. 4
1.3 The Components of a BASIC Progral...ceeseesceoscscssos 5
1.4 Compiler Directives ($) within BASIC Programs... . 8
1.5 The Process of Creating and Compiling BASIC Programs.. 10
1.6 BASIC Compiler Options: A, C, E, L, N, and P Options.. 13
1.7 BASIC Compiler Options: M, S, and X Options........... 15
1.8 Cataloging BASIC Programs: CATALOG and DECATALOG Verbs 16
1.9 Executing Compiled BASIC PrOgralS....seeesseoesseecsss 18
1.10 Executing BASIC Source (Compile-and-go) Programs...... 22
Chapter 2 REPRESENTING DATA (CONSTANTS, VARIABLES, EXPRESSIONS)
2.1 Representing Data Values: Numbers and Strings 24
2.2 Multi-valued Strings: Dynamic ArrayS....ceseeeseescesss 26
2.3 Defining Data Values as Constants or Variables........ 29
2.4 Representing Changing Data Values: VariablesS....ccee.. 30
2.5 Multi-valued Variables: Dimensioned ArrayS...::eceeee. 32
2.6 Arithmetic Expressions: Standard Arithmetic........... 34
2.7 Extended (Floating Point and String) Arithmetic....... 36
2.8 String EXpresSsSionsS.....ceeieceeeeeesecsscesscsansssasses 39
2.9 Format Strings: Numeric Mask and Format Mask Codes.... 42
2.10 Relational EXpPresSsSionS....ceeeeeeesocseseoccasanaonses 46
2.11 Relational Expressions: Pattern Matching..........e... 48
2.12 Logical EXPreSSiONS..ceeeesesssssssssssososessssssnsas 50
2.13 Summary of Expression Evaluation.......eeeeeeeennannas 52
2.14 How Variables are Structured and Allocated........ou.. 53
Chapter 3 BASIC STATEMENTS AND FUNCTIONS
3.1 A Summary of the Statements and Functions 58
3.2 Alphabetical Listing of Statements and Functions...... 59
! Statement....iiiiiiiiiiiiiii ittt anennn 60
* Statement... ..ttt ittt ettt etnasaas 60
= Assignment Statement.......iiiiiiiiiiiiiiiiiiienen 62
I O o Lo o o o 64
ABORT Statement..icieeeieeeeeeeesesssesssssssonnsssscss 67
ABS FUNCEION. ittt enteertenensensestossssassonsonsons 68
ALPHA FUNCEION. tttevensronssennssssessssnsssssssssnans 69
ASCIT FUNCLION. tiveveeeresorososssesnessssssssssnssnas 70
Assignment Statements.....iiiiiii ittt ittt 71
BEGIN CASE Statement.....oee it cecensoosossoccssssssnees 72
BREAK (ON/OFF) Statement......ceeeeenisnnnsnccnncensas 73
CALL Statement.......ccveeerenneceanas c et et ee s 74
CASE Statement....iiieeeeeeeerssssenensossssonaacscssens 78
CHAIN Statement.....oeeieoesisssenecesossssscccsscennes 80

CLEARFILE Statement....
CLOSE Statement........
COLl1l and COL2 Functions

COMMON Statement..
COS Function......
COUNT Function....
DATA Statement....
DATE Function.....
DCOUNT Function...
DEL Statement.....
DELETE Function...
DELETE Statement..
DIM Statement.....
DISPLAY Statement.
EBCDIC Function...

ECHO (ON/OFF) Statemen

END Statement.....
END CASE Statement.
ENTER Statement...
EOF Function......
EQUATE Statement.
EXECUTE Statement
EXIT Statement...
EXP Function.....
EXTRACT Function.
FADD Function....
FCMP Function....
FDIV Function...
FFIX Function...
FFLT Function...
FIELD Function...
FMUL Function.....
FOOTING Statement.
FOR Statement.....
FSUB Function.....
GET Statement.....
GOSUB Statement...
GOTO Statement....
HEADING Statement.
ICONV Function....
IF Statement......
INDEX Function....
INPUT Statement...

INPUTCLEAR Statement

INS Statement.....
INSERT Function...
INT Function......
LEN Function......
LET Statement.....
LN Function.......
LOCATE Statement..
LOCK Statement....
LOOP Statement....
MAT = Statement...
MATREAD Statement.
MATREADU Statement

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.

e o e o o o e o e o

MATWRITE Statement..
MATWRITEU Statement..
MOD FunctioN...eeeee..

e e o o o o e o o ° o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
)
.
.
.
0
.
.
.
.
.
.
.

e e s o o s o s s e o o s e s 8 s 8 s s s e s e s s e e s s s s e s s s s (Fs e s e s s s s e s e

e o o © o o o o o o o & o 8 e ® o e e e o 8 8 e ® 8 e 8 & e ° e & e e s e e s & o o e e e e o s o e e s s s s o o o o

e © o e o o o © » ®© © @ ® © e ®© 8 e 8 e e e s @ & © s e o s o o o o o o

e o o o e e @ e e o o o & s o e e & * o

e e o © e o s ® 8 o ® ® & e & e e e & e 8 8 & e & & s o s o o o e o+ o s e+ o+ o

e ® 8 o e o © o o 8 8 8 o e e ® 8 ® ® e e 8 & ® e & 8 6 © e S e e s s e ° & & e o e ° e & s e s & s s s s s o s o s o

e ® © o ® ® o © o & 8 ® e ® e ® 0o 6 e ® & o e o s e © & & & ° o o o o s o o e s e o o s & e s e s o o s e & 2 s e+ *o o

e ® o o o ® o 8 o e e ® e ® o ® ® e e 8 e s e e & e o e e & e s & e o o e e + e+ s e s s s e e e e e o e o o e o s o o

e o o o o o o o s ® @ ® ®© e e ® ® ® @ ® e ® e e e e e s e e e e e e e e e+ e e o e o s e o s e e & s e o o e + o o o o

e © o 8 6 © o 4 8 ® e ®© e @ e ® ® 8 8 ® 8 e e e @ e e e 8 & ° s & o e e & e e e e e & & e s & s & s o e+ s o s o s o o

e @ o 6 o o o ® s 8 ® ®© e ® e ® 8 o @8 ® ® ® e 8 ® e e e e e * e e e & e * e 0 o o s s & s & o s e * e o e s o o

e ® o 6 o o o o s o @ ® ® e e ® e ® 8 ® 8 8 e e 8 ® e e ® e e e e e s o & & o e o s & e o s e o e e o e s s e o o o o

e o ® ®© ® © ® ® o ® ® o ®© @ ® ® e e 8 ® 8 ° o ® e e 8 & o e s e & e e e * s 3 e e e e s o s o e o o

e ® © o o ® ® e o © ® ® ® © ® e e 8 e & 8 e e ®© & e e e o s s & s 0o e e s ° e & o e s e e s o o o o

ooooooooooooo

e e o & e o e o e ° & e o e e ® e o o o

® o o o e o o o

e » © o o & ® ® o o & 8 8 & e e e & e e 8 8 e & & e s e o & s e o e & e o s e s & e s 2 e e s o o o

e o ® ® © o ® o ® ® ® e o o @ e e ® e e e s e e s o s e s o s+ e s e e e s s & e o o & ° e e s e o o

e o o o e e e o

e o @ © ® ® ® ®© ® ® ® 8 ® ® e @ ® e 8 ® s ° e e e e s e & s e & s * o e s e s e e e e e s

e e o o © ®© @ ® 8 e ® e @ e @ e 8 ® e ° e e e ° o o s ° s s o o s o o+ o

e ® o o o o e o

o s 0 0 0 0 0 0
o e e 0 0 0 0
e e 0o 0 0 0 0 0
e e 0 0 0 0 0 0
e e 0 06 0 0 0 e
e e 0 0 0 0 00
e 0o e e e 0 0 0
e e e 0 0 s 0 0
e e o e 8 00 0
e o s e 0 0 s 0
e 0o 0 0 0 0 o
o e 0 0 0 0 0 0
o e 0 0 00 00

. e e o 0
. o o o o
. o o o o
. e o o o
. e o o o
. e s o o
. e s o o

LY

. .

. .

.

.

.

e © @ o e o © o ® e o © & e e o o o & s s o o
e e o © o o o o ® ® ® s e e ® e e e e e e e e o o+ o o

. .
e 0 0 0 00 00
e o 0 06 00 0 0
e 6 0 0 0 0 0 0
L N R)
® o 0 0 00 00
® o 00 00 0 0
e o 0 0 0 0 o0
® o 0 0 00 o0

.

e & o & e ® o e e ® e * ° e e & ° s o o

e e o o s e e o

e o o o o e e »

e o o ® e ® o o e o e © & & e e e © e e e o e

118
119
120
122
123
125
127
129
130
132
133
135
138
139
142
143
145
147
149
153
155
159
160
161
163
164
165
166
167
170
172
174
176
178
180
182
183

NOT Function.....

NULL Statement......

NUM Function.......

OCONV Function......

ON GOSUB and ON GOTO

OPEN Statement......
PAGE Statement......
PRECISION Statement.
PRINT Statement.....
PRINTER Statement...
PRINTERR Statement..
PROCREAD Statement..
PROCWRITE Statement.
PROGRAM Statement....
PROMPT Statement....
PUT Statement.......
PWR Function......
READ Statement......

READNEXT Statement.
READT Statement....

READU Statement..
READV Statement..
READVU Statement.

RELEASE Statement..

REM Function.....
REM Statement....
REPEAT Statement.
REPLACE Function.

RETURN (TO) Statement.

REWIND Statement.
RND Function.....
RQM Statement....
SADD Function....
SCMP Function....
SDIV Function....
SEEK Statement...

SELECT Statement...

SEQ Function.....

SIN Function........

SMUL Function....
SPACE Function...
SQRT Function....
SSUB Function....
STOP Statement...

STORAGE Statement.
STR Function......

SUBROUTINE Stateme

SYSTEM Function...

TAN Function.....
TIME Function....

TIMEDATE Function.

TRIM Function....
UNLOCK Statement.
UNTIL Statement..
WEOF Statement...
WHILE Statement..
WRITE Statement..
WRITET Statement.
WRITEU Statement.

c e e e e e st cs et st e et es s e et ee st e et esean s
t e e et eececs ettt ececsetes s saeenas
e e eeeccesces s et s et ss e s asaenens
c e e e ceeces e et ec st et seseertece s

Statements...ceeeitiertcttecennes
® & & & 6 & o 5 5 0 8 0 5 0 0 s ® & & 0 ¢ & 0 o 0 0 0° 0 o
e e et eseesees st e s e sttt et aee e
c e st s eeeseees s s nn oo e .o
Gt e e et eecee st e es s ee sttt e e e st e s e
e e et ecc et es et e e eee s ee s s .
e e et e e e e e e st eceees et e ee e .
c e e e e e s et s e seceaseaens .o . ..
e e e et e et e aaeeeee s o et eneeeeenene .
c e e e e s e e s e e st ee s e
c e e et e st e e e eene e e reee e e .
e e e et et et e ettt e et ..
e et e e e e . et e
C e et et et ceeee .o
et e et e e e e ettt et
c et e e e e e st e et e . e e e

et et e e e e e e cececses et e eeeenean e e

c et e et et et ee e e e s eeenne C e e

c e e ettt et e et e st es e et et e s e e -

C e e et e e . it ettt

et e e t e e e s e et e e ettt e e e .

et ettt s e et e e e e e e e eeccet e s oeeeann

et ee e et e e e et e e e e s e e etes e e eenees

.o Gt e et et et c et ee e

c s e e e e e e e e e e e e

c s e et e e et e c et e e ..

. c e e ec e e e e e .

c et et et et C et et .

Ch ettt e e ettt e e et e

c e c et e e e e e e ..

et e e e e et e e e e e e e e

c et et s e et e . e oo

c et et e et c et . e
ettt e e s e et e st e ee et e teeneaeeeene
c e et et e aenen ce et eeee e e

.....................................

c e et et e e escecsee e c et e e e ..

th e e e e e e et e et s et e eeceneeeennen ..

Ct e et e et eesee s e et e et e aeneen e e e

et et st e s et et e e et e e eeeeeceesesoeeenns

sttt et e e e e et et et e et e ceteneneens .
e e et e e e s e e s e s et e e e e s e eeaceeeeeeeeean
0
Gt s e e e et s et s e e et e e e et ese et e eeeeenesen
Gttt e et e e e c et e ettt e e
. e c et e e

c et es e e c e e e e e e Ce e e .

C e e e s et et e e e eet s e et s ees e eoeeeennen .

s e et e et e st e et ee e e et .

t e e e s e s et s e e e e e e e c et e

e e et e e st e e et e e e e e e eeeee e neeens

e et e et st c s e e et e st st e s e eeeeee s .o

c s e s et e et e e s es e s eeeeeseeneane ceee

c et c et e et e e .o

cee e eeen C et e e et e e .

186
187
188
189
191
193
196
197
199
204
206
207
209
210
211
212
214
216
219
222
224
226
229
231
233
234
235
236
238
240
242
243
244
245
246
248
250
253
254
255
256
257
258
259
261
262
263
267
270
271
272
273
274
276
277
279
280
283
285

WRITEVU Statement..ceeeececcececcsscsoscossscssnnes

Chapter 4 TESTING AND DEBUGGING BASIC PROGRAMS

1 BASIC Symbolic Debuggereeeseeesens
The Symbol Table...seeeetsseoessaasaocannss
Displaying Source Code: L and Z Commands..
The Trace Table: T and U CommandS...eeee.e
Breakpoint Table: B and K CommandS........
Displaying Tables: D Command....eoeeeeseas
Execution Control: E, G, and N Commands...
Execution Control: END and OFF Commands.... .
Dlsplaylng and Changing Variables: the / Command
Special COMMANAS.c.eeeseetesesseaassnscnsansonas
Example of Using the BASIC Debugger.............

HHWOUOJONOLAWN

BB DR D DD DD D
H O

Chapter 5 REFERENCE FOR PROGRAMMERS

Understanding the ULTIMATE System File Structure
Programming Techniques for Handling I/0.........
Programming Considerations about I/0O for

NetWOrK USerS..iueeerteseeeesesseosssoasssansnnss
Programming Technigques for Handling File Items.
Guidelines for Cursor Positioning.......eeeeee.
Programming for Maximum System Performance.....

wWN -

Programming Example: PRIME.....eesesescscscens
Programming Example: COLOR:.:seeeesessoanconens
Programming Example: P0000 (File Update)........
Programming Example: ITEMS.BY.CODE (Job Control)

Lo oo Ooro1 O 01 oo,

H 000 ~Jo Ulb

= O

APPENDIX A: BASIC Compiler Error Messages
APPENDIX B: BASIC Run-time Error Messages
APPENDIX C: List of ASCII Codes

APPENDIX D: Summary of BASIC Debugger Commands
APPENDIX E: BASIC Debugger Messages

INDEX

Programming Example: SUMMARY.REPORT (Menu/Report)

e o o o o o o o o o o

289

292
294
295
296
298
300
301
303
304
305
307

310
313

316
317
320
321
323
324
325
327
329

CHAPTER 1
OVERVIEW OF PROGRAMMING WITH THE BASIC LANGUAGE
1.1 An Overview of the BASIC Language
Figure A. BASIC Statements
Figure B. BASIC Intrinsic Functions
Figure C. BASIC Compiler Directives
Figure D. BASIC Redirection Variables
1.2 The File Structure of BASIC Source Programs
1.3 The Components of a BASIC Program
Figure A. Sample BASIC Program
Figure B. Sample Program with Remark Statements
1.4 Compiler Directives within a BASIC Program
1.5 The Process of Creating and Compiling BASIC Programs
Figure A. General Forms for Editing/Compiling Programs
Figure B. BASIC Program "COUNT" Created, Filed, Compiled
1.6 BASIC Compiler Options: A, C, E, L, N, and P Options
Figure A. General Description of Compiler Options
Figure B. Sample Code Conversions During Compilation
1.7 BASIC Compiler Options: M, S, and X Options
1.8 Cataloging BASIC Programs: CATALOG and DECATALOG Verbs
1.9 Executing Compiled BASIC Programs
Figure A. Options at TCL for Executing BASIC Programs
Figure B. Alternative Ways to Execute a BASIC Program

1.10 Executing BASIC Source (Compile-and-go) Programs

BASIC Reference Page 1 Overview

1.1 AN OVERVIEW OF THE BASIC LANGUAGE

This manual describes the ULTIMATE BASIC programming
language, which is an extended version of Dartmouth BASIC.

BASIC (Beginners All-Purpose Symbolic Instruction Code) is a
simple yet versatile programming language suitable for
expressing a wide range of problems. Developed at Dartmouth
College in 1963, BASIC is a language especially easy for the
beginning programmer to master. ULTIMATE BASIC includes the
following extensions to Dartmouth BASIC:

- Optional alphanumeric or numeric statement labels

Statement labels of any length

- Multiple statements on one line

- Single statements on multiple lines
- Computed GOTO statements

- Complex and multi-line IF statements
- Priority case statement selection

- String handling with variable length
strings up to 32,267 characters

- External subroutine calls
- Direct and indirect calls
- Magnetic tape input and output

- Fixed point arithmetic with up to
15 digit precision

- Floating point and string arithmetic

- Data conversion capabilities

- ULTIMATE file access and update capabilities
- File level or group level lock capabilities
- Pattern matching

- Dynamic arrays

- Job control capabilities

- Shared source code between programs

- Linked programs

BASIC Reference Page 2 Overview

Figure A lists the BASIC statements.
functions are listed in Figure B.

The BASIC intrinsic
Figures C and D list the

BASIC compiler directives and redirection variables,

respectively.

All terms listed are BASIC "keywords" and
cannot be used as variable nanes.

! END LOCK PROGRAM STORAGE
* END CASE LOOP PROMPT SUBROUTINE
= (Assignmt) ENTER MAT = PUT UNLOCK
ABORT EQUATE MATREAD READ UNTIL
BEGIN CASE EXECUTE MATREADU READNEXT WEOF
BREAK EXIT MATWRITE READT WHILE
CALL FOOTING MATWRITEU READU WRITE
CASE FOR NEXT READV WRITET
CHAIN GET NULL READVU WRITEU
CLEAR GOSUB ON GOSUB RELEASE WRITEV
CLEARFILE GOTO (GO TO) ON GOTO REM WRITEVU
CLOSE HEADING OPEN REPEAT
COMMON IF PAGE RETURN (TO)
DATA INPUT PRECISION REWIND
DEL INPUTCLEAR PRINT ROM
DELETE INS PRINTER SEEK
DIM LET PRINTERR SELECT
DISPIAY LOCATE PROCREAD STOP
ECHO PROCWRITE
Figure A. BASIC Statements

@ DELETE FSUB REM STR
ABS EBCDIC ICONV REPLACE SYSTEM
ALPHA EOF INDEX RND TAN
ASCII EXP INSERT SADD TIME
CHAR EXTRACT INT SCMP TIMEDATE
COL1l FADD LEN SDIV TRIM
COL2 FCMP LN SEQ
COoSs FDIV MOD SIN
COUNT FFIX NOT SMUL
DATE FFLT NUM SPACE
DCOUNT FIELD OCONV SQRT

FMUL PWR SSUB

Figure B. BASIC Intrinsic Functions
SCHAIN SINCLUDE SNODEBUG S*
Figure C. BASIC Directives

ARG. MSG. SELECT. IN. OUT.

Figure D. BASIC Redirection Variables

BASIC Reference

Page

3

Overview

1.2 The File Structure of BASIC Source Programs

BASIC source programs are stored as items in disk files.
Object code is referenced through pointer items in file
dictionaries.

BASIC source programs are stored as items in the data section
of a disk file. The compiler generates pointers to object
code in the dictionary section of the file. 1In order to
compile programs, the data and dictionary sections must be
distinct files.

Stored along with the object code of each program (unless
suppressed at compile-time) is a symbol table for use with
the BASIC debugger. The symbol table contains all variable
names defined in the program. (For details on the BASIC
debugger, please refer to Chapter 4, Testing and Debugging
BASIC Programs.)

Object pointer items have a format similar to that of
POINTER-FILE items used with Recall save-list statements:

Attribute Contents
0 (item-id) Program name
1 ccC
2 Starting FID of object code
3 Number of frames of object code
4 (null)
5 Time and date of compilation

The term "FID" stands for "frame-id", or frame number.
Attributes 0 through 4 are protected by the system against
alterations by the Editor or any other file-updating program.

When object pointer items are saved on tape as part of a
file-save or account-save, the associated object code is also
saved. Individual object programs may also be saved on tape
using the T-DUMP verb by T-DUMPing specified pointers in a
file dictionary. Programs may be restored from file-save and
account-save tapes using ACCOUNT-RESTORE or SEL-RESTORE
(specifying a file dictionary). Object programs may be
T-LOADED into file dictionaries from T-DUMP tapes.

BASIC Reference Page 4 Overview

1.3 The Components of a BASIC Program

A BASIC program is comprised of BASIC statements. A program
may also include directives that are interpreted and used by
the compiler.

A BASIC program consists of a sequence of BASIC statements.
Each BASIC statement tells the system to perform a specific
program operation. A statement may include one or more data
values, expressions, and/or intrinsic functions. (Please
refer to Chapter 2 for details on representing data and
expressions. Refer to Chapter 3 for an alphabetical listing
and discussion of each BASIC statement and intrinsic
function.)

More than one statement may appear on the same program line,
separated by semicolons. For example:

X=0; Y =0; GOTO 50

Certain statements which take an indefinite number of
arguments may be continued on several lines; each line except
the last must end with a comma. For example:

CALL A.BIG.SUBROUTINE (LONGPARAMETERNAME]1,
LONGPARAMETERNAME2, EVEN.LONGER.PARAMETERNAME3)

The continued lines may be indented to improve program
clarity, but this is not required by the BASIC Compiler.
Statements with the multi-line option are noted in their
individual discussions.

Any BASIC statement may begin with an optional statement
label. A statement label is used so that the statement may be
referenced from other parts of the program. A statement label
may be either alphanumeric or numeric. Numeric statement
labels may be any constant whole number. The following INPUT
statement, for example, has a statement label of 100:

100 INPUT X

Alphanumeric statement labels may contain letters, numbers,
dollar signs, and periods, but the first character must be a
letter. When an alphanumeric label is used, it must be
followed by a colon before the statement which it labels.
(The colon is optional with numeric labels.) The following
subroutine has a statement label of INPUTLOOP and references
two other labels:

INPUTLOOP: GOSUB GETINPUT
GOSUB DOIT
GOTO INPUTLOOP

A label may be the only text on a line, in which case it
labels the next non-blank non-null line. For example:

BASIC Reference Page 5 Overview

TOP:
GOSUB DOITAGAIN

A helpful feature to use when writing a BASIC program is the
Remark statement. A Remark statement is used to explain or
document the program. It allows the programmer to place
comments anywhere in the program without affecting program
execution. (The Remark statement, which can be written as
REM, !, or *, is detailed in Chapter 3.)

A BASIC program can also include compiler directives.
Directives always begin with "$". They appear similar to
BASIC statements, but they affect the way a program is
compiled, not the way it runs. (For details, see the next
topic.)

Except for situations explicitly called out in the following
sections, blank spaces appearing in the program line (which
are not part of a data item) will be ignored. All-blank
lines and null lines (containing no text and no blanks) will
also be ignored. Thus, blanks and null lines may be used
freely within the program for purposes of appearance.

A simple BASIC program is illustrated in Figure A to show
overall program format. Figure B illustrates the same program

with a number of Remark statements and a null line added for
clarity.

The user should note that a BASIC program, when stored,
constitutes a file item, and is referenced by its item-id.
The item-id is the name given to the program when it is
created via the EDITOR; refer to Section 1.5, entitled "The
Process of Creating and Compiling BASIC Programs". An
individual line within a BASIC program constitutes an
attribute.

BASIC Reference Page 6 Overview

I =1
5 PRINT I
IF I = 10 THEN STOP
I=I+1
GO TO 5
END

Figure A. Sample BASIC Program

REM PROGRAM TO PRINT THE
* NUMBERS FROM ONE TO TEN

I = 1; * START WITH ONE
5 PRINT I; * PRINT THE VALUE
IF I = 10 THEN STOP; * STOP IF DONE
I =T+ 1; * INCREMENT I
GOTO 5; * START OVER
END

Figure B. BASIC Program With Remark Statements

BASIC Reference Page 7 Overview

1.4 Compiler Directives within a BASIC Program

Compiler directives can be included in programs just like
BASIC statements. Any line in a BASIC source program which
begins with "$" is interpreted as a compiler directive and
not a BASIC statement.

Compiler directives appear similar to BASIC statements, but
they affect the way a program is compiled, not the way it
runs. Each type of directive is detailed below.

$INCLUDE Directive - Sharing Source Code Among Programs

The $INCLUDE directive may be used to include source code
stored in one program file item as part of another. The
general format of the S$INCLUDE directive is:

SINCLUDE {filename} itemname

If filename is omitted, the file is assumed to be the one
contalining the program currently being compiled. The
itemname specifies the name under which the program item is
stored. S$INCLUDE directives may be nested up to three levels
deep. Users should note that the object code of any BASIC
program or external subroutine, whether or not it contains
SINCLUDE directives, should not exceed 32768 bytes in size.

A typical use for the S$INCLUDE directive is with a set of
related BASIC programs using variables in COMMON. The COMMON
statements can be placed in a single item which is "included"
in each program by the $SINCLUDE directive. This has the
advantages of saving space, making changes easier, and
reducing the chance of declarations in one program
mismatching those in another.

$CHAIN directive - Linking program file items

The $CHAIN directive can be used to link program file items
together at compilation. The general format of the $CHAIN
directive is:

SCHAIN {filename} itemname

If filename is omitted, the file is assumed to be the one
containing the program currently being compiled. The $CHAIN
directive continues compilation with the specified program
itemname. Since any source code appearing after the $CHAIN
directive is ignored, the directive should be the last line
in the source code.

Note that the final object code size should not exceed 32768
bytes.

BASIC Reference Page 8 Overview

SNODEBUG directive - Omitting test capabilities

The SNODEBUG directive may be used after a program has been
debugged. It directs the compiler to discard information
used during program testing. The general format is:

SNODEBUG

The $NODEBUG directive causes the compiler to not save the
EOL opcodes and the symbol table as part of the object code.
(This has the same effect as specifying the "C" and "s"
options on the COMPILE or BASIC verb.)

$* directive - Inserting specified text

The $* directive can be used to embed text (such as a
copyright notice) in a program's object code. The general

format is:
S* text
The text is specified immediately after the asterisk (*), to

the end of the line. The text appears in the object code in
a code sequence not generated by any BASIC statement.

BASIC Reference Page 9 Overview

1.5 The Process of Creating and Compiling BASIC Programs

A BASIC program is created via the Editor as any other
data-file item. Once this source code item has been filed, it
is compiled by issuing a COMPILE command (or a BASIC command)
at the TCL level.

BASIC programs are created via the ULTIMATE system Editor.
To enter the Editor, issue the following command at the TCL
level:

ED{IT}) filename item-id
EEDIT filename item-id

The system will then enter the Editor, and you may begin
entering the BASIC program. The EEDIT command performs the
same function as EDIT, but compresses the storage space used
by eliminating all spaces when the item is filed.

Program listings are easier to follow when you indent
statements within a loop or routine. You may set tab stops
at the TCL level or within the Editor, as shown in Figure B.
(See the System Command Guide for further discussion of the
EDIT command; see the Editor manual for details about using
the Editor.)

The program will be stored in the file specified by filename
under the name specified by item-id.

Once the BASIC program has been entered and filed, it may be
compiled at the TCL level. Two TCL verbs are available to
create the object code: COMPILE and BASIC; either verb may be
used since they perform the same operation. The EBASIC form
of BASIC must be used to compile programs created with an
EEDIT command. EBASIC expands the item to include any spaces
that were compressed by EEDIT.

Compiling a program creates object code that can be executed
with the RUN verb and can be cataloged. The symbol table is
also included with the object code (unless suppressed by the
"S" option). The general compile command formats are:

COMPILE filename item-list { (options))}
BASIC filename item-list {(options))
EBASIC filename item-list {(options)}

The item-list may contain one or more explicit item-ids
(program names) separated by one or more blanks, or may be an
asterisk (*) to indicate all programs in the file. The
options parameter is optional; if used, it must be enclosed
in parentheses. An option is specified as an alphabetic
character; multiple options used in a single command should
be separated by commas.

BASIC Reference Page 10 Overview

The valid options are listed below. For detailed
descriptions of each, see the next two section topics.

Assembled code option

Suppress End Of Line (EOL) opcodes from object
code.

List error lines only.

List BASIC program.

List map of BASIC program

No page

Print compilation output on line printer
Suppress generation of symbol table

Cross reference all variables

noZEHE QP

<

The BASIC compiler stores a compiler version number in each
program's object code. The run-time system program checks
this number each time before running a program to see if it
is compatible with the current compiler version. If it is
not, the program is not allowed to run; the system issues an
error message (B23). The message indicates that the program
must be recompiled before it can be run.

Note that compiling does not create an item in the user's
Master Dictionary. Master Dictionary items are created by
cataloging the compiled program or by using the compile-and-
go format in the BASIC source program.

The BASIC, COMPILE, and EBASIC commands are also discussed in
the System Commands Guide.

BASIC Reference Page 11 Overview

EEDIT filename item-id
ED{IT} filename item-id
COMPILE filename item-list { (options)}

BASIC filename item-list { (options)}

EBASIC filename item-list { (options)}

Figure A. General Forms for Editing and Compiling a BASIC Program

>TABS I 4,8,12 <CR> <K-===—=——=—-- User sets input tabs
at TCL level
>ED BP COUNT <CR> <mmm———————— User edits item 'COUNT'
in file 'BP' (Basic Programs)
New Item
Top
.I <CR> Cmmmmm——————— User enters input mode and

begins to enter program

001* PROGRAM COUNTS FROM 1-10 <CR>

002 FOR I =1 TO 10 <CR> <-==-- Entered with CTL/I (or TAB key)

003 PRINT I <CR> <=====-- pressed once for indentation

004 NEXT I <CR> | to first tab stop.

005 END <CR> |

006 <CR> me———— CTL/I (or TAB key) pressed

TOP twice for second tab stop
indentation

.FI <CR> mmmmm——————

-------- User files item
'COUNT' Filed

>COMPILE BP COUNT <CR> <=========- User issues compile command
* ok k% k

Successful compile; 1 frames used.

Figure B. BASIC Program "COUNT" Created (edited), Filed and Compiled

BASIC Reference Page 12 Overview

1.6 BASIC Compiler Options: A, C, E, L, N, and P Options

Nine options are available with the BASIC compile statement.
Six are described below: They are the "A" for assembled code,
the "C" for suppression of end of line opcode, "E" for the
listing of error lines only, the "L" for the listing of the
program during compilation, the "P" for routing output to
the printer, and the "N" option for no paging. The next topic
describes the remaining three compiler options.

The general forms of the BASIC compile command are:

BASIC filename item-list { (options)}
COMPILE filename item-list {(options)}
EBASIC filename item-list { (options))}

Multiple options are separated by commas. The options are:

A The Assembled code option. The "A" option generates a
listing of the source code line numbers, the labels and
the BASIC opcodes used by the program. This is a
'pseudo' assembly code listing which allows the user to
see what BASIC opcodes his program has generated. The
hexadecimal numbers on the left of the listing are the
BASIC opcodes and the mnemonics are listed on the right.
The assembled code listing of the BASIC program "COQUNT"
(from previous section) is shown, as an example, in
Figure B.

C The Compress option. The Compress option suppresses the
end-of-line (EOL) opcodes from the object code. The EOL
opcodes are used to count lines for error messages.

This eliminates 1 byte from the run time object code for
every line in the source code. This option is designed
to be used with debugged cataloged programs. Any run
time error message will specify a line number of 1.

E The 'list error lines only' option. The "E" option
generates a listing of the error lines encountered
during the compilation of the program. The listing
indicates the line number in the source code item, the
source line itself and a description of the error
assoclated with the line.

L The list program option. The "L" option generates a
line by line listing of the program during compilation.
Error lines with associated error messages are
indicated.

N No page. Inhibits automatic paging on terminal when
using the "L" and/or "M" options.

P The printer option. The "P" option routes all output
generated by the compilation to the Spooler.

BASIC Reference Page 13 Overview

OPTIONS MEANING
A Assembled Code listing

C Compress -- EOL Opcodes suppressed
from object code item

Error lines only listing
Listing of source code

Map (variable and statement)
No page

Route compilation output to printer

n v =2 R H H

Suppress symbol table

X Cross reference

Figure A. General Description of Compiler Options

SOURCE BASIC PSEUDO

CODE OBJECT ASSEMBLY
LINE NO. CODE CODE

001 01 EOL

002 03 LOADA I
002 FD LOAD. 1
002 20 ONE

002 2D SUBTRACT

002 5F STORE

002 1001

002 05 LOADN 10
002 03 LOADA I
002 20 ONE

002 28 FORTEST 2001
002 01 EOL

003 5D LOAD I
003 50 PRINTCRLF
003 01 EOL

004 06 BRANCH 1001
004 2001

004 01 EOL

005 01 EOL

006 45 EXIT

[BO] LINE 6 COMPILATION COMPLETED

Figure B. Sample Code Conversions During Compilation

BASIC Reference Page 14 Overview

1.7 BASIC Compiler Options: M, S, & X Options

This section describes the remaining three options available
when issuing the BASIC compile statement. They are the "M"
for map, the "s" for suppressing generation of the symbol
table, and the "X" for cross reference.

The options are:

M

The map option. The "M" option generates a variable map
and a statement map, both of which are printed out after
compilation. These maps show where the program data has
been stored in the user's workspace. The variable map
lists the offset in decimal (from the beginning of the
seventh frame of the IS buffer) of every BASIC variable
in the program. For example, the form:

20 xxx 30 yyy

shows that the descriptor of variable 'xxx' starts on
byte 20 and the descriptor of variable 'yyy' starts on
byte 30 of the seventh frame of the IS buffer.
Descriptors are 10 bytes in length.

The statement map shows which statements of the BASIC
program are contained in which object code frames.

Frame 01 is the starting FID stored in the object
pointer item. The statement map may be used to determine
if frequently executed loops cross frame boundaries.

The suppress symbol table option. The "S" option
suppresses saving the symbol table generated during
compilation. The symbol table is used exclusively by
the BASIC Debugger for reference; therefore it must be
kept only if the user wishes to use the Debugger.

The cross reference option. The "X" option creates a
cross reference of all the labels and variables used in
a BASIC program and stores this information in the BSYM
file. NOTE: A BSYM file must exist (a modulo and
separation of 1,1 should be sufficient). The "X" option
first clears the information in the BSYM file, then
creates an item for every variable and label used in the
program. The item-id is the variable or label name. The
attributes contain the line numbers of where the
variable or label is referenced. An asterisk will
precede the line number where a label is defined, or
where the value of the variable is changed.

No output is generated by this option. An attribute
definition item should be placed in the dictionary of
the "BSYM" file which allows a cross reference listing
of the program to be generated by the command:

>SORT BSYM BY LINE-NUMBER LINE-NUMBER

BASIC Reference Page 15 Overview

1.8 Cataloging BASIC Programs: CATALOG and DECATAIOG Verbs

Compiled BASIC programs can be cataloged and used as commands
at the TCL level. They can also be decataloged. The CATALOG
and DECATALOG verbs are used to create and delete TCL
commands for compiled BASIC programs.

The general form of the CATALOG command is:
CATALOG filename item-list { (L)}

The filename specifies the file containing programs to be
cataloged. Item-list consists of one or more program names
(item=-ids), or "*" to indicate all programs in the file. The
(L) option indicates that the program is not to be executed
automatically at logon time. When the (L) option is not
present, if a program name is the same as an account name,
that program will be automatically run whenever the account
logs on. (For details, please refer to Section 1.9,
"Executing Compiled BASIC Programs".)

Programs to be cataloged must first be compiled. The program
may not have the same name as an existing item in the user's
Master Dictionary unless that item is also a cataloged
program verb. For example, if the BASIC source program "A"
is in the Master Dictionary, another program cannot be
cataloged with the name "A". If a conflicting item already
exists in the user's Master Dictionary, the system will
respond with:

[415] (item-id) exists on file
and the program will not be cataloged.

For each program successfully cataloged, the system responds
with

[244] (item=-id) cataloged

Once a program is cataloged, it may be run simply by typing
its name at the TCL prompt. CATALOG adds the program name as
a verb in the user's Master Dictionary (when not already
present) with the following form:

1) PC
2) E6
3)
4)

5) filename item-id

When the "(L)" option is used with CATALOG, line one of each
verb in the Master Dictionary will be "P" instead of "PC".
This will inhibit automatic execution of the program at logon
time if the program name is the same as the account name.

BASIC Reference Page 16 Overview

The DECATALOG verb has the primary purpose of removing the
object code from the system. The general form of the
DECATALOG command is:

DECATALOG filename item-list

DECATALOG removes the object programs specified by item-list
in the file filename by deleting the appropriate pointer
items from the dictionary of the file; the associated frames
containing the object code are returned to the system's
available pool ("overflow!"). DECATALOG also deletes the
verbs for cataloged programs from the Master Dictionary, but
a program does not have to be cataloged before it is
decataloged.

External subroutines used with the BASIC CALL statement may
also be cataloged, though it is unnecessary when both the
subroutine and the calling routine are in the same program
file. The CALL statement will first search the Master
Dictionary for a catalog verb in order to locate a
subroutine's object code. If not found, it will then look

for an object pointer in the dictionary of the program file
for the calling routine.

The CATALOG and DECATALOG commands are also discussed in the
System Commands Guide.

BASIC Reference Page 17 Overview

1.9 Executing Compiled BASIC Programs

All execution of BASIC programs is performed at the TCL
level. TCL can interpret a RUN command, a PROC name, and/or
a BASIC program name (both source and compiled versions). A
compiled BASIC program can be executed by issuing a RUN
command. If the program has been cataloged, it can be
executed by issuing only the program name. Programs with the
same name as an account name can be automatically executed at
logon time.

The general format of the RUN command is:
RUN filename item-id {argument list} {(options)}

The filename and item-id specify the compiled BASIC program
to be executed. The optional argument list specifies any
parameters that must be passed to the program. If used, the
options must be enclosed in parentheses. Multiple options may
be separated by commas. Valid options are as follows:

A Abort option. The "A" option inhibits entry to the Basic
Debugger under all error conditions; instead, the program
will print a message and terminate execution.

D Run-time debug option; causes the BASIC Debugger to be
entered before the start of program execution. Note that
the BASIC Debugger may also be called at any time while
the program is executing, by pressing the BREAK key on
the terminal.

E Errors option. The "E" option forces the program to enter
the Basic Debugger whenever an error condition occurs.
The use of this option will force the operator to either
accept the error by using the Debugger, or exit to TCL.

I Inhibit initialization of data area (refer to the
description of the BASIC CHAIN statement).

N Nopage option. The "N" option cancels the default wait at
the end of each page of output when that output has been
routed to the terminal by a program using the HEADING,
FOOTING, and/or PAGE statements.

P Printer on (has same effect as issuing a BASIC PRINTER ON
statement). Directs all program output to the Spooler.

S Suppress run-time warning messages.

BASIC Reference Page 18 Overview

Issuing a Program Name directly from TCL

A compiled and cataloged program can be executed directly from
the TCL level using the following general format:

>progname {argument list}
The progname must be entered exactly as the program name is
stored 1n the user's Master Dictionary. The optional argument
list contains any parameters that need to be passed to the
program.

Executing BASIC programs from a PROC or other BASIC program

PROCs (procedures) may be used to perform various tasks from a
single integrated "procedure'". A TCL command, and special
PROC commands are stored within the PROC. The following
example illustrates the use of a BASIC program in conjunction
with a Recall SSELECT (Sort Select) command.

A PROC named LISTBT is as follows:

PQ

HSSELECT BASIC/TEST
STON

HRUN BASIC/TEST LISTIDS
P

A BASIC program named LISTIDS is as follows:

OPEN 'BASIC/TEST' ELSE PRINT 'FILE MISSING'; STOP
10 N=20
20 READNEXT ID ELSE STOP

PRINT ID 'L#18':

N=N+1

IF N>= 4 THEN PRINT; GO TO 10

GO TO 20

END

By typing in LISTBT at the TCL level, the PROC LISTBT selects
the item-ids contained in file BASIC/TEST and invokes the
BASIC program LISTIDS to list the item-ids selected, four to a
line, left justified in a field of 18 blanks.

A PROC can be executed automatically at logon time if the PROC
name is the same as the logon account name. For further
information about PROCs, refer to the ULTIMATE PROC Manual.

As an alternative to using PROCs for job control tasks, users
can execute BASIC programs, PROCs, and TCL verbs within a
"controlling" BASIC program. The controlling program can use
an EXECUTE statement(s), as well as other supporting
statements (PUT, GET, SEEK) and a function (EOF) to implement
the job control tasks.

BASIC Reference Page 19 Overview

For details on using these statements, please refer to the
appropriate statement name, listed alphabetically in Chapter 3
of this manual.

Executing Programs at Logon Time

When a user logs on, the system will attempt to execute a
program in the user's Master Dictionary with the same name as
the logon account name. This program may be a PROC, or a
compile-and-go BASIC program, or a cataloged BASIC program.

This feature is useful to run a standard job control sequence
or present a custom tailored menu of choices to the user.

In some cases, users may need to catalog a BASIC program with
the same name as the account name but NOT to run it auto-
matically at logon time. To avoid automatic execution, the
program can be cataloged with the L option. For example, if
INVENTORY were an account name, the CATALOG command:

CATALOG BP INVENTORY (L)

would catalog the program, but would not 1link it for automatic
execution whenever a user logs on the INVENTORY account.

For details on cataloging programs, refer to Section 1.8,
"Cataloging BASIC Programs: CATALOG and DECATALOG Verbs".

BASIC Reference Page 20 Overview

TCL COMMAND: >RUN filename item-id {argument list} {(options))

PROC: >PROC1

CATALOGED or

SOURCE PROG: >progname {argument list}

LOGON: Logon please:ACCOUNTNAME {argument list}

Figure A. Options at TCL Level for Executing BASIC Programs

NOTE: 1In each example below, the same "RUN PROGRAMS TESTING"
command is interpreted at the TCL level, regardless of the
point of origin of the command.

TCL COMMAND: >RUN PROGRAMS TESTING <CR>

PROC: .o

HRUN PROGRAMS TESTING
P

PROGRAM: oo
EXECUTE "RUN PROGRAMS TESTING"

In the example below, the program name "TESTING" is executed if an
account name of "TESTING" has been established.

LOGON: Logon please:TESTING

Figure B. Alternative Ways to Execute a BASIC Program

BASIC Reference Page 21 Overview

1.10 Executing BASIC Source (Compile-and-go) Programs

BASIC source programs may be entered as items in Master
Dictionaries and treated as compile-and-go verbs or PROCs.
Programs and PROCs may be executed automatically at logon
time. BASIC source programs can also be executed from within
other BASIC programs via the EXECUTE statement.

Compile-and-go

A BASIC source program can be executed from the TCL level
without previous compilation. This option, called
"compile-and-go", requires only that the source program be
entered as an item in a Master Dictionary. These BASIC
programs must have a PROGRAM statement beginning at the first
character (no leading blanks) of line one. The PROGRAM
statement can be abbreviated as PROG. For example:

HELLO
001 PROG
002 PRINT "HELLO"
003 END

The general format for running the program is:
>progname {argument list)

For example:
>HELLO

would compile and execute the BASIC source program named
"HELLO".

The effect of compile-and-go is that of writing a PROC in
BASIC, with BASIC's more powerful run-time and debugging
features. Compile-and-go programs can be executed at logon
time if the program name is the same as an account name.

NOTE: When a compile-and-go program has been established in

a user's Master Dictionary, that name cannot be used as the
name of another program when it is cataloged.

BASIC Reference Page 22 Overview

CHAPTER 2

REPRESENTING DATA:
CONSTANTS, VARIABLES, AND EXPRESSIONS

Representing Data Values: Numbers and Strings
Figure A. Correct and Incorrect Usage of Strings

Multi-valued Strings: Dynamic Arrays
Figure A. General Form of Dynamic Array
Figure B. Examples of Correct Usage of Dynamic Arrays

Defining Data Values as Constants or Variables

Representing Changing Data Values: Variables
Figure A. Correct and Incorrect Usage of Variable Names

Multi-valued Variables: Dimensioned Arrays

Arithmetic Expressions: Standard Arithmetic
Figure A. Arithmetic Operators
Figure B. Examples of Correct Usage of
Arithmetic Expressions
Figure C. Examples of Incorrect Arithmetic Expressions

Extended (Floating Point and String) Arithmetic

String Expressions
Figure A. General Form of Concatenation and Sub-strings
Figure B. Examples of String Exressions and Arithmetic

Format Strings: Numeric Mask and Format Mask Codes
Figure A. Explanation of the Format String Codes
Figure B. General Form and Summary of

Format String Codes
Figure C. Examples of Correct Usage of Format Strings
Figure D. Examles of Incorrect Format Strings

Relational Expressions
Figure A. Relational Operators
Figure B. Examples of Correct Relational Expressions

Relational Expressions: Pattern Matching

Figure A. General Form of Pattern Matching Relation
Figure B. Examples of Correct Pattern Matching Relation
Logical Expressions

Figure A. Logical Operators

Figure B. Examples of Correct Logical Expressions
Summary of Expression Evaluation

How Variables are Structured and Allocated

BASIC Reference Page 23 Representing Data

2.1 Representing Data Values: Numbers and Strings

In ULTIMATE BASIC, there are two types of data: numeric and
string. Numeric data consists of a series of digits and
represents an amount (e.g., 255). String data consists of a
set of ASCII characters which may be alphabetic, numeric,
and/or keyboard symbols.

Numbers and Numeric Data

A number may contain up to 15 digits, including the digits
following the decimal point. In a BASIC program, the
PRECISION statement establishes the number of fractional
digits. The default PRECISION is 4, so that numbers must be
in the range:

-14,073,748,835.0000 to 14,073,748,835.0000

when a program uses the default PRECISION. To change the
acceptable form and range of numbers, the PRECISION statement
must be used.

Since a number can have a maximum of "n" fractional digits,
where "n" is the PRECISION, the value:

1234.567

is a legal number if the PRECISION is 3 or 4, but is not a
legal number if the PRECISION is 0, 1, or 2. By changing the
PRECISION to a value less than 4, the range of the allowable
whole numbers is increased accordingly. (For details, see
the PRECISION statement, listed alphabetically in Chapter 3.)

The unary minus sign is used to specify negative numbers. For
example:

=17000000
-14.3375

BASIC Reference Page 24 Representing Data

String Data

A string is represented by a set of characters enclosed in
single quotes, double quotes, or backslashes. For example:

"THIS IS A STRING" 'ABCD1234#*! \3A\

If a string value contains one string delimiter (', ", or \),
then another delimiter must be used to delimit that string.
For example:

"THIS IS A 'STRING' EXAMPLE"
'THIS IS A "STRING" EXAMPLE'

A string may contain from 0 to 32,267 characters (i.e.,
maximum length of an ULTIMATE file item). Internally, a
string is delimited by a Segment Mark (SM), which is a
character having a decimal value of 255. No string,
therefore, may contain a Segment Mark. Figure A presents a
number of valid and invalid string constants.

A string having the format of an ULTIMATE file item is called
a "dynamic array". Since values within a file item may
change, dynamic array strings usually contain variable,
rather than constant, data. Dynamic array strings are
explained in the next topic.

Data consisting of only digits may be defined as numeric
(e.g., 2.5) or string (e.g., "2.5"); either data type is
legal. The choice normally depends on the type of operations
and expressions in which the value will be used. For
arithmetic usage, the numeric data type is more efficient;
for joining (i.e., concatenation), the string data type is
more efficient. Either type, however, will be processed with
accurate results without programmer intervention.

VALID STRING INVALID STRING
"ABC%123#*4AB" ABC1l23
(i.e., quotes are missing)
'1Q27Z...."
'ABC%QQR"
"A 'LITERAL' STRING" (i.e., either two single quotes
or two double gquotes
‘A "LITERAL" STRING' must be used)

(i.e., the empty string) "12345678910

(i.e., terminating double
\DEF\ quote missing)

Figure A. Correct and Incorrect Usage of Strings

BASIC Reference Page 25 Representing Data

2.2 Multi-valued Strings: Dynamic Arrays

A string having the format of an ULTIMATE file item is called
a dynamic array. The string is an "array" in that its
component data elements can be referenced using subscripts.
It is "dynamic" in that individual elements may be added,
changed, or deleted within the string, causing the relative
positions of the elements to be subject to change.

Dynamic arrays are significant in ULTIMATE BASIC because they
may be used to represent data in disk files. Special
constructs are available for manipulating dynamic arrays,
thus making it easier to access and update files.

Review of ULTIMATE File Structure

An ULTIMATE data file consists of a set of file items. Each
item consists of a string that is in item format. Such a
string is called a dynamic array.

A dynamic array consists of one or more attributes; multiple
attributes are separated by attribute marks (i.e., an
attribute mark has an ASCII equivalent of 254, shown as "A"),
An attribute, in turn, may consist of one or more values;
multiple values in an attribute are separated by value marks
(i.e, a value mark has an ASCII equivalent of 253, shown as
"1")., Finally, a value may consist of one or more subvalues;
multiple subvalues in a value are separated by subvalue marks
(i.e., a subvalue mark has an ASCII equivalent of 252, shown
as "\"). This structure is summarized in Figure A.

An example of a dynamic array is as follows:
"554ABCDA732XYZ~100000.33"
where "55", "ABCD", "73XYZ", and "100000.33" are attributes.
The following illustrates a more complex dynamic array:
"Q5~AAAAN952]ABC]12345~AABAC]TEST\12I\9\99.3]2~555"
where "Q5", "AAAA", "952]ABC]12345", "A", "B",
"C]JTEST\12I\9\99.3]2" and "555" are attributes; "952", "ABC",
"12345", "c", "TEST\12I\92\99.3", and "2" are values; and
"TEST", "121I", "o", and "99.3" are subvalues.

The maximum length of a dynamic array (including attribute
marks, value marks, and subvalue marks) is 32,266 characters.

Additional examples of correctly formed dynamic arrays are
illustrated in Figure B. For complete details on the
ULTIMATE file structure, please see the ULTIMATE system
documentation.

BASIC Reference Page 26 Representing Data

Accessing Elements of a Dynamic Array

Individual elements of a dynamic array can be referenced by
specifying the appropriate subscript position (attribute,
value, and subvalue number) within the string. Attributes,
values, and subvalues are numbered beginning with 1.
Subscripts are normally written in angle brackets following
the string, with the first subscript specifying an attribute,
the second subscript (if present) specifying a value within
the selected attribute, and the third subscript (if present)
specifying a subvalue within the selected value.

For example, 1f X represents the first example dynamic array
above, then X<2> denotes attribute two of the string, or
"ABCD". If Y represents the second dynamic array above, then
¥<3,2> = "ABC" and ¥<6,2,1> = "TEST".

If a program attempts to access a non-existent attribute,
value, or subvalue, the system returns a null string. Each
of the elements in the arrays below, for example, would be
returned as a null string:

Element Array
<3> "Q5~AAAA"
<3,2> "O5 AAAAN3Y
<3,2,2> "Q5AAAAAA3] 2"

Dynamic arrays may also be referenced with BASIC functions
and statements such as EXTRACT, DELETE, INSERT, REPLACE, and
LOCATE. For details, please refer to the appropriate
function or statement, listed alphabetically in Chapter 3.

ULTIMATE file items are stored as variable data in a BASIC
program. A dynamic array, however, is simply any string
expression (not necessarily a variable) treated as having the
format of a disk file item. This string may be stored in a
simple variable or in element(s) of a dimensioned array. See
the following topics for more information on variables and
dimensioned arrays.

BASIC Reference Page 27 Representing Data

"a/\a/\a/\a/\a/\a. . ./\a"

| viviviv]iviviviviv]...lv |

| sv\sv\sv\sv\sv\sv\...\sv |

where a = attribute
v = value
sv = subvalue

Figure A. General Form of Dynamic Array

ARRAY

12374567789]ABC]DEF

1234567890

Q5673.22]3.56\88\B]2/99

A]B]C]DAE]F]G]HAI]J

EXPLANATION

"123", "456", "789]ABC]DEF" are
attributes; "789", "ABC" and "DEF"
are values.

"1234567890" is an attribute.

"Q56", "3.,22]3.56\88\B]C", and "99"
are attributes; "3.22", "3,56\88\B",
and "C" are values; "3.56", '"88", and
"B" are subvalues.

"A]B]C]D", "E]JF]G]H", and "I]J" are
attributes; "A" ’ "B" ’ "C" , "DH ’ "E" ’
IIFII ’ IOGH ’ IIH" ’ IIIH ’ and "J" are
values.

Figure B. Examples of Correct Usage of Dynamic Arrays

BASIC Reference

Page 28 Representing Data

2.3 Defining Data Values as Constants or Variables

Within a BASIC program, a numeric or string data value may be
represented as either a variable or a constant. A constant is
a value that may have an associated name. A variable is a name
for a storage location that may have a changing value.

Constants

A "constant", as its name implies, has the same value
throughout the execution of a program. A constant may be a
literal value such as the number 2 or string "HELLO" when used
in a BASIC statement. A constant may also be a named value.
In this case, a symbolic name would be equated with a constant
value; for example, the name "AM" could be equated to
CHAR(254). To improve a program's readability, the name would
be used instead of the value in BASIC statements.

The EQUATE statement can be used to associate a name with a
value. For details, see the EQUATE statement, listed
alphabetically in Chapter 3.

Variables

A "variable" has both a name and a value (or may identify a
file). The value of a variable may be either numeric or string,
and may change dynamically during the execution of the program.
A variable may contain one or more value elements, as in the
case of a dynamic array assigned as the value of a variable.

A simple variable is associated with a single storage location,
and has only one value at any given time. By contrast, a
dimensioned array variable is associated with multiple storage
locations, each of which has a separate value and, in general,
can function as a simple variable. A particular location (or
element) within a dimensioned array is specified by following
the array name with subscripts (numbers or other arithmetic
expressions) in parentheses. For example, A(10) refers to the
tenth element of the one-dimensional array A.

Subscripts in angle brackets are also used to refer to elements
of dynamic arrays. If variable X contains a dynamic array, for
example, X<3> specifies the third attribute of the dynamic
array. However, dynamic arrays, which are strings, should not
be confused with dimensioned arrays, which are sets of storage
locations. Unlike dimensioned array elements, the individual
attributes, wvalues, and subvalues of a dynamic array are not
directly addressable, and are searched for on each reference
since they may move as the dynamic array changes.

Storage space for variables is allocated in the order that the
variables appear in a program. No special statements are
needed to allocate space for simple variables (except COMMON
variables), but the size of each dimensioned array must be
specified in a DIM or COMMON statement to allocate its space.

BASIC Reference Page 29 Representing Data

2.4 Representing Changing Data Values: Variables

Data values that may change in a BASIC program are defined as
variables. The name of a variable refers to a particular data
storage area. The value(s) of a variable refer to the current
contents of the storage area. Values may be either numeric or
string, and may change dynamically throughout the execution of
a BASIC program.

Naming Variables

The name of a variable identifies the variable; the name
remains the same throughout program execution. Variable names
consist of an alphabetic character followed by zero or more
letters, numerals, periods, or dollar signs. Variable names
ending with a period are reserved for ULTIMATE pre-defined
variables. Variable names may be of any length.

The following terms would all be valid variable nanes:

X QUANTITY
DATA.LENGTH BS..$

BASIC keywords (i.e., words that define BASIC statements,
functions, and system variables) may not be used as variable
names. The BASIC keywords are listed in the figures of Section
1.1, entitled "An Overview of the BASIC Language".

The name of a variable and its storage location are assigned by
the first BASIC statement in a program that uses the name.

This is typically an assignment, INPUT, or READ statement,
which assigns the variable a value.

Assigning and Accessing Values in a Variable

The value of a variable may change during the execution of the
program. The variable X, for example, may be assigned the
value 100 at the start of a program, and may then later be
assigned the value "THIS IS A STRING". A program can retrieve

the value of a variable by specifying the variable name. For
example:

A = Mhiaon
PRINT A

would print the number "12",.
When a variable contains a dynamic array string, each element
of the dynamic array can be addressed by specifying its
position within angle brackets. The angle brackets "<" and ">"
enclose the element identifier, as in <2>. For example:

A = B<2>
assigns the second attribute of variable B to variable A. And:

BASIC Reference Page 30 Representing Data

B<2,6>
would access the 6th value of attribute 2 of variable B.

Multi-valued variables are called "dimensioned arrays", or
simply "arrays". Dimensioned arrays are variables with a
pre-defined number of storage locations assigned by a DIM or
COMMON statement. Dimensioned arrays should not be confused
with dynamic arrays, which are simply strings in file item
format. A dynamic array may be stored in any variable,
including an element of a dimensioned array. See the next
topic for more information about dimensioned arrays.

The following statements pertain to assigning variables. (For

details, see the appropriate statement, listed alphabetically
in Chapter 3.)

Name Purpose

= (Assignment). Names and assigns a value, and a
storage location if needed, to a variable.

EQUATE Allows one variable to be defined as the
equivalent of another variable.

COMMON Allows certain variables to be allocated storage
space before any other variables in the program;
also allows for the passing of values between

programs.
STORAGE Allows a program to change the buffer size for
storing variables in a program.
DIM (Dimension). Names and assigns a specified number
of storage locations to a multi-valued array
variable.

VALID VARIABLE NAME

A5

ABCDEFGHI
QUANTITY.ON.HAND
RESSSPS

J1B2Z

INTEGER

THIS.IS.A.NAME

INVALID VARIABLE NAME

ABC 123

(i.e., no space allowed)
5AB

(i.e., must begin with letter)
z.,8

(i.e., comma not allowed)
A-B

(i.e., "=" not allowed)

Figure A. Correct and Incorrect Usage of Variable Names

BASIC Reference

Page 31 Representing Data

2.5 Multi-valued Variables: Dimensioned Arrays

Dimensioned arrays are variables that have been dimensioned
by a DIM or COMMON statement and contain a pre-defined number
of elements.

Before a dimensioned array may be used in a BASIC progranm,
the maximum dimension(s) of the array must be specified. The
DIM or COMMON statement reserves the array's variable name
and the number of storage locations. (Please refer to the
DIM or COMMON statement, listed alphabetically in Chapter 3.)

A BASIC program can address any element of a dimensioned
array as a separate variable. It can assign values to
any/all elements in a single statement. When an array is
dimensioned, values can be stored in each separate "slot" or
element in the array.

A dimensioned array contains one value per element. For
example, Array A has been dimensioned as A(4):

| 3 |=-=--- The first element of A has value 3

T——;~-T—--- The second element of A has value 8
7:56?57---- The third element of A has value =-20.3
T-REE—T--—- The fourth element of A has string value "ABC"

The above example illustrates a one-dimensional array (called
a vector). A two-dimensional array (called a matrix) is
characterized by hav1ng rows and columns. For example, Array
Z has been dimensioned as Z(3,4):

COL.1 COL.2 COL.3 COL.4

Row 1 | 3 | X¥Yz2 | A | =-8.2 |
| -------------------------
Row 2 | 8 | 3.1 | 500 | .333 |
| =mmmmm e |
Row 3 | 2 | =5 Ql23 | 84 |

Any array element may be accessed by specifying its position
in the array. This position is like an offset from the
beginning of the array. In specifying an element, the user
must have one offset or subscript for each dimension of the
array. For example, this is Array B:

BASIC Reference Page 32 Representing Data

| =7 |===——————— Element B(1)

| 23 |===m—————- Element B(2)

| XYZABC | —=======—- Element B(3)

In this example element B(l) has a value of -7, while element
B(3) has a string value of "XYZABC". For a two-dimensional
array (matrix) the first subscript specifies the row, while
the second specifies the column. For example, in array Z
above:

Element Z(1,1) has a value of 3
Element Z(2,3) has a value of 500.

When reading from ULTIMATE disk files into dimensioned
arrays, the MATREAD or MATREADU statement may be used to
assign each attribute of an item to an individual vector
element. Conversely, the MATWRITE or MATWRITEU statement may
be used to construct an item from a vector when writing to a
file. (For details, see the appropriate statement, listed
alphabetically in Chapter 3.)

BASIC Reference Page 33 Representing Data

2.6 Arithmetic Expressions: Standard Arithmetic

Expressions are formed by combining operators with variables,
constants, or BASIC intrinsic functions. Arithmetic
expressions are formed by using arithmetic operators.

When an expression is encountered as part of a BASIC program
statement, it is evaluated by performing the operations
specified by each of the operators on the adjacent operands,
i.e., the adjacent constants, variables, or intrinsic
functions.

Arithmetic expressions are formed by using the arithmetic
operators listed in Figure A. The simplest arithmetic
expression is a single unsigned numeric constant, variable,
or Intrinsic Function. A simple arithmetic expression may
combine two operands using an arithmetic operator. More
complicated arithmetic expressions are formed by combining
simple expressions using arithmetic operators.

When more than one operator appears in an expression, certain
rules are followed to determine which operation is to be
performed first. Each operator has a precedence rating. In
any given expression the highest precedence operation will
be performed first. Figure A shows the precedence of the
arithmetic operators. If there are two or more operators with
the same precedence (or an operator appears more than once)
the leftmost operation is performed first. For example,
consider this expression: -R/A+B*C. The division and
multiplication operators have the same (high) precedence;
since the division operator is leftmost, it is evaluated
first (i.e., R/A = result 1). The expression then becomes:
-(result 1)+B*C. The multiplication operation is performed
next (i.e., B*C = result 2). The expression then becomes:
-(result 1)+ (result 2). The negation and addition operators
have the same precedence; since the negation operator is
leftmost, it is evaluated first (i.e., -(result 1) = result
3). The expression then becomes: (result 3)+(result 2). The
addition is then performed, yielding the final result.

Using some figures in the above expression illustrates, for
example, that the expression =-50/5+3%2 evaluates to -4.

Any sub-expression may be enclosed in parentheses. Within the
parentheses, the rules of precedence apply. However, the
parenthesized subexpression as a whole has highest precedence
and is evaluated first. For example: (10+2)*(3-1) = 12%2 =
24. Parentheses may be used anywhere to clarify the order of
evaluation, even if they do not change the order.

Arithmetic operators may not appear adjacent to one another.
This means, for example, that 2%-3 is not a valid expression,
though 2*(-3) is.

If a string value containing only numeric characters is used
in an arithmetic expression, it is considered as a decimal

BASIC Reference Page 34 Representing Data

number. For example, 123 + "456" evaluates to 579.

If a string value containing non-numeric characters is used
in an arithmetic expression, a warning message will be
printed (refer to APPENDIX B - BASIC RUN-TIME ERROR MESSAGES)
and zero will be assumed for the string value.

The following expression, for example, evaluates to 123:

123 + "ABC"
OPERATOR SYMBOL OPERATION PRECEDENCE
A exponentiation 1 (high)
* multiplication 2
/ division 2
+ addition or identity 3
- subtraction or negation 3 (low)

Figure A. Arithmetic Operators

CORRECT USE EXPLANATION

2+6+8/2+6 Evaluates to 18

12/2%3 Evaluates to 18

12/(2%*3) Evaluates to 2

A+75/25 Evaluates to 3 plus

the current value of variable A.

-5+2 Evaluates to -3

-(5+2) Evaluates to -7

8% (-2) Evaluates to -16

5 % mn3n Evaluates to 15

Figure B. Examples of Correct Usage of Arithmetic Expressions

BASIC Reference Page 35 Representing Data

2.7 Extended (Floating Point and String) Arithmetic

For some applications, the precision or magnitude of regular
arithmetic is not sufficient to represent the data or
functions needed. For these cases, ULTIMATE BASIC supports
two types of extended arithmetic: floating point and string.

For both floating point arithmetic and string arithmetic, the
standard operations of add, subtract, multiply, divide, and
compare have been implemented as intrinsic functions within
BASIC. These arithmetic functions are not constrained by the
PRECISION statement that affects regular numeric values and
arithmetic. They can handle values of a much greater
precision and magnitude.

Values to be used in floating point or string arithmetic must
be specially-formatted strings. Intrinsic functions are
provided which convert regular numeric or string values of
constants or variables to strlngs of the required format.
Another set of intrinsic functions may be used after string
or floating p01nt operations to convert the results back to
regular numeric or string values.

"Strlng arithmetic" means any of the supported string-based
arithmetic functions. Whereas regular arithmetic operates on
binary numeric values, convertlng numeric strlngs to blnary
as necessary, strlng arithmetic operates dlrectly on numeric
strlngs, converting binary constants or variables to internal
string equivalents if required.

Once numbers are defined as "strings", they can be used in
string arithmetic without any conversions. Numeric values
(non-strings) are, in most cases, handled successfully, the
system converts them to their equivalent string values before
performing the arithmetic.

A strlng number can have v1rtually any magnitude and any

prec1s1on, including the entire range of numbers that are
valid with the standard arithmetic, plus much more. The

following examples are all valid string numbers:

nin

"-300.23"
"5000000000000000000000000"
",000000000000000000000000023"

The add, subtract, compare, and multlply functions can handle
any magnltudes and pre0151ons of string numbers. The result
of a divide function is limited to 14 significant digits.

"Floating point arithmetic" means any of the supported
floatlng point-based arithmetic functlons. Before a floating
point function can be used, numeric arguments must be
converted to floatlng p01nt string representation. Special
float and fix functions are used to allow conversion of
numbers to floating point string and back to regular string

BASIC Reference Page 36 Representing Data

format after the arithmetic function(s) are completed.

Floating point numbers have a considerably different format
from that of standard numbers. A floating point number con-
sists of a mantissa and an exponent. ULTIMATE BASIC floating
p01nt uses an 1nteger mantissa and a base-10 exponent. The
mantissa may contain from 1 to 13 dlglts and may be either
p051t1ve or negative. A negatlve mantissa uses a minus sign
in front of it; a positive mantissa is uns1gned The
exponent may be in a range of =255 to 255. Like the
mantissa, a negative exponent uses a minus sign; a positive
exponent is unsigned. An E is used to separate the mantissa
from the exponent. The following examples show the floating
point string representation of various numbers:

FLOATING POINT

STRING VALUE NUMBER

" OEO" O

N1EQ" 1

"1E3" 1000

"1E-20" .00000000000000000001
"-1234567890123E-5" -12345678.90123
"98765432109876E-13" 9.98765432109876
"-28855E-2" -288.55

Guidelines for Using Extended Arithmetic Functions

When a program requires calculations beyond the precision or
magnitude of the standard arithmetic, either the string or
floating point arithmetic may be used. It is usually best to
select one of the two types and do all calculations in that
mode. This minimizes confusion and also reduces the number
of conversions which must be performed.

String arithmetic can handle virtually any operation and it
requires the least conversion since all standard numbers are
automatically string numbers as well. One might decide to
always use string arithmetic except for speed considerations.

The speed of floating point operations and string operations
are essentially the same except in multiplication. Floating
point multiplication is considerably faster, depending on the
number of digits involved. For example, it is four times
faster to multiply 12345678909.87 by 1.00327 in floating
point than in string and it is seven times faster to multiply
two 13-digit numbers together in floating point.

BASIC Reference Page 37 Representing Data

ULTIMATE BASIC provides twelve intrinsic functions to handle
floating point and string arithmetic operations:

Operation String Function Floating Point Function
Addition SADD FADD
Subtraction SSUB FSUB
Multiplication SMUL FMUL
Division SDIV FDIV
Comparison SCMP FCMP
Convert (Float) FFLT
Convert (Fix) FFIX

For details, please refer to the appropriate function, listed
alphabetically in Chapter 3.

BASIC Reference Page 38 Representing Data

N

2.8 String Expressions

A string is a set of characters enclosed in single or double
quotes or backslashes. A string expression may be any of the
following: a string constant, a variable with a string value,
a sub-string, or a concatenation of string expressions.
String expressions may be combined with arithmetic
expressions.

A sub-string is a set of characters which makes up part of a
whole string. For example, "SO.", "123", and "ST." are
sub-strings of the string "1234 SO. MAIN ST." Sub-strings are
specified by a starting character position and a sub-string
length, separated by a comma and enclosed in square brackets
(see Figure A). For example, if the current value of variable
S is the string "ABCDEFG", then the current value of S[3,2]
is the sub-string "CD" (i.e., the two character sub-string
starting at character position 3 of string S). Furthermore,
the value of S[1,1] would be "A", and the value of 8S[2,6]
would be "BCDEFG".

If the "starting character" specification is past the end of
the string value, then an empty sub-string value is selected
(e.g., if A has a value of 'XYZ', then A[4,1] will have a
value of ''). 1If the "starting character" specification is
negative or zero, then the first character is assumed (e.g.,
if X has a value of 'JOHN', then X[-5,1] will have a value of
TN,

If the "sub-string length" specification exceeds the
remaining number of characters in the string, then the
remaining string is selected (e.g., if B has a value of
'123ABC', then B[5,10] will have a value of 'BC'). If the
"sub-string length" specification is negative or zero, then
an empty sub-string is selected (e.g., B[5,-2] and B[5,0]
both have a value of '!').

Concatenation operations may be performed on strings.
Concatenation is specified by a colon (:) or CAT operator.
The concatenation of two strings (or sub-strings) is the
appending of the characters of the second operand onto the
end of the first. For example:

"AN EXAMPLE OF " CAT "CONCATENATION"
evaluates to:
"AN EXAMPLE OF CONCATENATION"

The precedence of the concatenation operator is lower than
any of the arithmetic operators. So if the concatenation
operator appears in the same expression with an arithmetic
operator, the concatenation operation will be performed last.
Multiple concatenation operations are performed from left to
right. Parenthesized sub-expressions are evaluated first.

BASIC Reference Page 39 Representing Data

The precedence of the sub-string operator (square brackets),
however, is higher than that of the arithmetic operators. So
in an expression like A+B[7,3], a sub-string of B will be
converted to a numeric value and then added to the value of
A.

The concatenation and sub-string operators both consider
their operands to be string values. If numeric values are
used, the system converts them into equivalent string values
before performing the operation. For example:

56:"ABC" concatenates to "56ABC"

BASIC Reference Page 40 Representing Data

expression : expression

expression CAT expression

| specifies starting |
| character position |

| specifies sub-string
| length (no. of characters) |

Figure A. General Form of Concatenation and Sub-strings

NOTE: For the following examples:
A = ABC1l23
Z = EXAMPLE
CORRECT USE EXPLANATION
Z2[1,4] Evaluates to "EXAM".
A Z[1,1)] Evaluates to "ABC1l23E".

Z[1,1] CAT A[4,3] Evaluates to "E123"

3*%3:3 3*3 is evaluated first and results in
the number 9. 9:3 is then evaluated
and results in "93" (i.e., the string
value "93").

A[6,1]+5 Evaluates to 8.
Z CAT A : 2 Evaluates to "EXAMPLEABC1l23EXAMPLE".
Z CAT " ONE" Evaluates to "EXAMPLE ONE".

Figure B. Examples of String Expressions and Arithmetic

BASIC Reference Page 41 Representing Data

2.9 Format Strings: Numeric Mask and Format Mask Codes

Expressions may be formatted by the use of format strings. A
format string immediately following a variable name or
expression specifies that the value will be formatted as
specified by the characters within the format string.

A format string may contain a numeric mask of up to 7
characters and/or a format mask. It is virtually identical
to the Recall Mask Conversion Code, and may be used to format
both numeric and non-numeric strings. The format string has
the following general form:

"{(IM{n{m}}{2}{,}{c}{($}{ (format mask)}"

The entire format string is enclosed in single or double
quotes or backslashes when it is used as a literal. If the
format mask is used, it is enclosed in parentheses.

The format string may be used as a literal, or it may be
assigned to a variable. In either case the format string or
variable immediately follows the expression it is to format.
The resultant formatted value may be used anywhere an
expression is permitted, including an assignment statement
‘which stores a variable's formatted value back into the same
variable or to a new variable, and in PRINT statements of the
form: PRINT X "format string". Formatting has higher
precedence than concatenation, but lower than sub-string and
arithmetic operations.

Figure A gives an explanation of the numeric mask and format
mask codes. The numeric mask is represented by the symbols:
j, n, m 2, ,, ¢ and §, which control justification,
precision, scaling, and credit indication. The format mask
controls field length and fill characters. It may consist of
any combination of field specifications and literal data.
Each field specification consists of a format character
optionally followed by a numeric field length specification,

such as "#3" or "%5". The format characters are "#", "*" and
"$". Field lengths must not exceed 99. Any other character

in the format field, including parentheses, may be used as a
literal character.

NOTE: If a dollar sign is placed outside of the format
mask, it will be output just prior to the value,
regardless of the filled mask. If a dollar sign is used
within the format mask it will be output in the leftmost
position regardless of the filled field.

Figure B shows the general form and a summary of the codes.
Figures C and D show correct and incorrect format strings.

BASIC Reference Page 42 Representing Data

A4

NUMERIC MASK CODES:

j specifies justification. May specify "R" for right justification or "L"
for left justification. Default justification is left.

n is a single numeric digit defining the number of digits to print out
following the decimal point (with rounding). If n = 0, the decimal point
will not be output following the value.

m 1s an optional 'scaling factor' specified by a single numeric digit
which 'descales' the converted number by the 'mth' power of 10. Because
BASIC assumes 4 decimal places (unless otherwise specified by a
PRECISION statement), to descale a number by 10 m should be set to 5, to
descale a number by 100, m should be set to 6, etc.

Z 1is an optional parameter specifying the suppression of leading zeros.

, 1s an optional parameter for output which inserts commas between every
thousands position of the value.

¢ The following five symbols are Credit Indicators which are optional
parameters of the form:

Cc Causes the letters 'CR' to follow negative values and
causes two blanks to follow positive or zero values.

D Causes the letters 'DB' to follow positive values; two
blanks to follow negative or zero values.

M Causes a minus sign to follow negative values; a blank to
follow positive or zero values.

E Causes negative values to be enclosed with a "<.....>"
sequence; a blank follows positive or zero values.

N Causes the minus sign of negative values to be suppressed.

$ Is an optional parameter for output which appends a dollar sign to the
leftmost position of the value, prior to conversion.

FORMAT MASK CODES:

#n specifies that the data is to be filled on a field of 'n' blanks.
*n specifies that the data is to be filled on a field of 'n' asterisks.

%n specifies that the data is to be filled on a field of 'n' zeros and to
force leading zeros into a fixed field.

NOTE: Any other character, including parentheses may be used as a field
fill.

Figure A. Explanation of the Format String Codes

BASIC Reference Page 43 Representing Data

GENERAL FORM:

"{(IH{n{m}}{Z}{,}{c}{S}{(format mask)}"
NUMERIC MASK

MASK CODE VALID CODE VALUES MEANING

3 R or L Right or Left justification
(default is left justification).

n single numeric # of decimal places.

m single numeric 'Descaling' factor.

Z Suppress leading zeros.

, ’ Insert commas every thousands
position.

c C,D,M or E Credit indicators.

S S Outputs dollar sign prior to value.

FORMAT MASK (enclosed in parentheses)

MASK CODE EXAMPLE MEANING

S $ Outputs a dollar sign in the
leftmost position of field.

#n #10 Fills data on a field of 10 blanks.

%n %10 Fills data on a field of 10 zeros.

*n *10 Fills data on a field of 10 asterisks,
or on a field of any other specified
character.

NOTE: If a dollar sign is placed outside of the format mask, it will be
output just prior to the value, regardless of the filled field. If a
dollar sign is used within the format mask it will be output in the
leftmost position regardless of the filled field.

PNy

Figure B. General Form and Summary of Format String Codes

BASIC Reference Page 44 Representing Data

UNCONVERTED STRING (X)

X

1000
1234567
-1234567
38.16
-1234
-1234
-1234
072458699
072458699

SMITH, JOHANNSEN

= 12.25

= 12345

I T - - - S T o B o)

1

FORMAT STRING RESULT

V = X"R26" 10.00

vV = X"R27," 1,234.57

V = X"R27,E$" $<1234.57>
v = "in 38.2

V = X"R25%,M(*10#)" **%$123.40-
V = X"R25,M($*104)" $**%*%123,40-
V = X"R25,M($*10)" $***123.40-
V o= X"L(###-#4-##44)" 072-45-5866
V = X"L(#3-#2-#4)" 072-45-5866
V = X"L((#13))" (SMITH, JOHANN)
Y = "1"; PRINT X Y 12.3

PRINT X "R2" 12345.00
INPUT @(2,4):X "R(%%)" 01

Figure C. Examples of Correct Usage of Format String

INCORRECT USAGE

vV = X"MR26"
vV = X"RL26"
Vv = X"R212"

V = X"L(#100)"

V = X"R(9%)"
V = X"L#*32"

EXPLANATION

MR and ML are the codes for RECALL Mask Conversions.
In BASIC use simply R or L.

Both right and left justification cannot be used.
The descaling factor may only be a single numeric
digit. If necessary, the Precision may be set to
zero (i.e. no decimal places) so that a descaling
factor of 2 will descale by 100, etc.

Fill field should not exceed 99 characters.

Format code characters must precede the
numeric.

Format string must be enclosed in parentheses.

Figure D. Examples of Incorrect Format Strings

BASIC Reference

Page 45 Representing Data

2.10 Relational Expressions

Relational expressions are the result of applying a
relational operator to a pair of arithmetic or string
expressions.

The relational operators are listed in Figure A. Note that
the MATCH(ES) operator is discussed in a separate topic; all
others are discussed below. A relational operation
evaluates to 1 if the relation is true, and evaluates to 0 if
the relation is false. Relational operators have lower
precedence than all arithmetic and string operators:;
therefore, relational operators are only evaluated after all
arithmetic and string operations have been evaluated.

For purposes of clarification, relational expressions may be
divided into two types: arithmetic relations and string
relations. An arithmetic relation is a pair of arithmetic
expressions separated by any one of the relational operators.
For example:

3 < 4 (3 is less than 4) = (true) =1

3 =4 (3 is equal to 4) = (false) = 0

3 GT 3 (3 is greater than 3) = (false) = 0

3 >= 3 (3 is greater than or equal to 3) = (true) =1

5+1 > 4/2 (5 plus 1 is greater than 4 divided by 2) =
(true)=1

A string relation is a pair of string expressions separated
by any one of the relational operators. A string relation may
also be a string expression and an arithmetic expression
separated by a relational operator (i.e., if a relational
operator encounters one numeric operand and one string
operand, it treats both operands as strings). To resolve a
string relation, character pairs (one from each string) are
compared one at a time from leftmost characters to rightmost.
If no unequal character pairs are found, the strings are
considered to be 'equal'. If an unequal pair of characters
are found, the characters are ranked according to their
numeric ASCII code equivalents (refer to the LIST OF ASCII
CODES in APPENDIX C of this manual). The string contributing
the higher numeric ASCII code equivalent is considered to be
"greater" than the other string. Consider the following
relation:

"AAB LI "AAA"

This relation evaluates to 1 (true) since the ASCII

equivalent of B (66) is greater than the ASCII equivalent of
A (65). -

If the two strings are not the same length, but the shorter

BASIC Reference Page 46 Representing Data

string is otherwise identical to the beglnnlng of the longer
string, then the longer string is considered "greater" than
the shorter string. The following relatlon, for example, is
true and evaluates to 1:

"STRINGS"

"STRING"

OPERATOR SYMBOLS

< or LT

> or GT

<= or =< or LE

= or EQ

or <> or >< or NE
>= or => or GE

MATCH or MATCHES

OPERATION

Less than

Greater than

Less than or equal to
Equal to

Not equal to

Greater or equal

Pattern matching

Figure A. Relational Operators

CORRECT USE

4 < 5
np" EQ "AM

"D" > "All

"Q" LT 5

6+5 = 11

Q EQ 5

" ABC " GE HABB "

" XXX " LE " XX "

EXPLANATION

Evaluates to 1 (true).

Evaluates to 0 (false).

ASCII equivalent of D (X'44') is greater than
ASCITI equivalent of A (X'41l'), so expression
evaluates to 1.

ASCII equivalent of Q (X'51') is not less than
ASCII equivalent of 5 (X'35'), so expression
evaluates to 0.

Evaluates to 1.

Evaluates to 1, if current value of variable Q
is 5; evaluates to 0 otherwise.

Evaluates to 1 (i.e., C is "greater" than B).

Evaluates to 0.

Figure B. Examples of Correct Usage of Relational Expressions

BASIC Reference

Page 47 Representing Data

2.11 Relational Expressions: Pattern Matching

BASIC pattern matching allows the comparison of a string
value to a predefined pattern. Pattern matching is specified
by the MATCH or MATCHES relational operator.

The general form of the pattern matching relation is shown in
Figure A. The MATCH or MATCHES relational operator compares
the string value of the expression to the predefined pattern
(which is also a string value) and causes the relation to
evaluate to 1 (true) or 0 (false). The pattern may consist of
any combination of the following:

- An integer number followed by the letter N (which tests
for that number of numeric characters).

- An integer number followed by the letter A (which tests
for that number of alphabetic characters).

- An integer number followed by the letter X (which tests
for that number of any characters).

- A literal string enclosed in quotes (which tests for that
literal string of characters).

Consider the following expression:
DATA MATCHES "4N"

This relation evaluates to 1 if the current string value of
variable DATA consists of four numeric characters.

If the 1nteger number used in the pattern is 0, then the
relation will evaluate to 1 only if all the characters in the
string conform with the "specification letter" (i.e., N,A,
or X). For example:

X MATCH "oA"

This relation evaluates to 1 if the current string value of
variable X consists only of alphabetic characters.

As a further example, consider the following expression:
A MATCHES "1A4N"
This relation evaluates to 1 if the current string value of

variable A consists of an alphabetic character followed by
four numeric characters.

BASIC Reference Page 48 Representing Data

expression MATCH "pattern" = —c—mmmmmmmmn

or

| "pattern" is |
<mmmmm————— | defined on |
|previous page|

expression MATCHES "pattern" = ——————mmmmmon

Figure A. General Form of Pattern Matching Relation

CORRECT USE

Z MATCHES '9ON'!

Q MATCHES "ON"

B MATCH '3NM"-M"2N"-"4N'!

B="4N1A2N"
C MATCHES B

A MATCHES "ON'.'ON"

"ABC" MATCHES "#N"
"XYZ" MATCHES "3A"
"XYZ1" MATCH "4X"
X MATCHES '!

EXPLANATION

Evaluates to 1 if current string
value of variable Z consists of 9
numeric characters; evaluates to 0
otherwise.

Evaluates to 1 if current value of
Q is any unsigned integer evaluates
to 0 otherwise.

Evaluates to 1 if current value of
B is, for example, any social
security number; evaluates to 0
otherwise.

Evaluates to 1 if current string
value of C consists of four numeric
characters followed by one
alphabetic character followed by
two numeric characters;

evaluates to 0 otherwise.

Evaluates to 1 if current value of
A is any number containing a decimal
point; evaluates to 0 otherwise.
Evaluates to 0.

Evaluates to 1.

Evaluates to 1.

Evaluates to 1 if current string

value of X is the empty string;
evaluates to 0 otherwise.

Figure B. Examples of Correct Usage of Pattern Matching Relation

BASIC Reference

Page 49 Representing Data

2.12 Logical Expressions

Logical expressions (also called Boolean expressions) are the
result of applying logical (Boolean) operators to relational
or arithmetic expressions.

The logical operators are listed in Figure A. Logical
operators operate on the true or false results of relational
or arithmetic expressions. (Relational expressions are
considered false when equal to zero, and are considered true
when equal to one; arithmetic expressions are considered
false when equal to zero, and are considered true when not
equal to zero.) Logical operators have the lowest precedence
and are only evaluated after all other operations have been
evaluated. If two or more logical operators appear in an
expression, the leftmost is performed first.

Logical operators act on their associated operands as

follows:

A OR B is true (evaluates to 1) if A is true or B is
true; is false (evaluates to 0) only when A
and B are both false.

A AND B is true (evaluates to 1) only if both A and B

are true; is false (evaluates to 0) if A is !
false or B is false or both are false.)

Consider, for example, the following logical expression:
A*2-5>B AND 7>J

The multiplication operation has highest precedence, so it is

evaluated first (i.e., A*2 = result 1). The expression then

becomes:

result 1 - 5>B AND 7>J

The subtraction operation is next (i.e., result 1 - 5=result
2) . The expression then becomes:

result 2 > B AND 7>J

The two relational operators are of equal precedence, so the
leftmost is evaluated first (i.e., result 2 > B=result 3,
where result 3 has a value of 1 indicating true, or a value
of 0 indicating false). The expression then becomes:

result 3 AND 7>J
The remaining relational operation is then performed (i.e.,
7>J = result 4, where result 4 equals 1 or 0). The final
expression therefore becomes:

result 3 AND result 4 @

BASIC Reference Page 50 Representing Data

which is evaluated as true (1) if both result 3 and result 4
are true, and is evaluated as false (0) otherwise.

The NOT function may be used in logical expressions to negate
(invert) the expression or sub-expression. For details,
please refer to the description of the NOT Intrinsic
Function, listed alphabetically in Chapter 3.

OPERATOR SYMBOL OPERATION
AND or & Logical AND operation
OR or ! Logical OR operation

Figure A. Logical Operators

CORRECT USE EXPLANATION

1 AND A Evaluates to 1 if current value of
variable A is non-zero; evaluates
to 0 if current value of A is O.

8-2%4 OR Q5-3 Evaluates to 1 if current value of
Q5-3 is non-zero; evaluates to 0 if
current value of Q5-3 1is 0.

A>5 OR A<O Evaluates to 1 if the current value
of variable A is greater than 5 or
is negative; otherwise, to 0.

1 AND (0 OR 1) Evaluates to 1.

J EQ 7 AND I EQ 5%*2 Evaluates to 1 if the current value
of variable J is 7 and the current
value of variable I is 10; evaluates
to 0 otherwise.

"XYZ1" MATCH "4X" AND X Evaluates to 1 if the current value
of variable X is non-zero; evaluates
to 0 if current value of X is 0.

X1 AND X2 AND X3 Evaluates to 1 if the current value
of each variable (X1, X2, and X3) is
non-zero; evaluates to 0 if the
current value of either or all
variables is 0.

Figure B. Examples of Correct Usage of Logical Expressions

BASIC Reference Page 51 Representing Data

2.13 Summary of Expression Evaluation

Expressions may consist of constants, variables, function
references, and operators. Each operator has a precedence
which determines the order in which operations within an
expression are performed.

The operands of an expression may be constants, variables,
function references, and other expressions enclosed in
parentheses. All expressions, whether in parentheses or not,
are evaluated according to the same rules of operator
precedence. Parenthesized expressions are evaluated before
using the results as operands in other expressions.

The precedence of the operators is shown below. Operators
with higher precedence are processed first; a series of
operators with equal precedence is processed left to right.

OPERATOR SYMBOL OPERATION PRECEDENCE
< ue> Dynamic array subscripting 1 (high)
[ee.] Sub-string specification 1

A Exponentiation 2

* Multiplication 3

/ Division 3

+ Addition or Identity 4

- Subtraction or Negation 4
expression Formatting 5

: or CAT Concatenation 6

< or LT Less than 7

> or GT Greater than 7

<= or =< or LE Less than or equal to 7

= or EQ \ Equal to 7

or <> or >< or NE Not equal to 7

>= or => or GE Greater than or equal to 7
MATCH or MATCHES Pattern Matching 7

AND or & Logical AND 8

OR or ! Logical OR 8

As an example, the expression:
A+ B : C[D,(E~F*¥G)] H MATCH I AND J

would be evaluated as follows (rl...r8 are results of prior
operations):

b
+
or}

C[D, (EAF*G)] H MATCH I AND J
C[D, ((rl)*G)] H MATCH I AND J
C[D,(r2)] H MATCH I AND J
(r3) H MATCH I AND J

(r3) H MATCH I AND J

(r5) MATCH I AND J

MATCH I AND J

AND J

bt i
R R+ ++

(oo RN o) B St

NN NN~

BASIC Reference Page 52 Representing Data

2.14 How Variables are Structured and Allocated

The variable data area used by a BASIC program is composed of
a descriptor table, free storage area, and a buffer size
table.

Descriptor Table Structure

The descriptor table contains 'n' entries of 10 bytes each
where 'n' is the number of variables (including array
elements) in the program. The number of descriptors is
limited to 3224. A descriptor contains a code byte which
identifies the type of the descriptor as one of the
following:

Content of Descriptor Usage

6-byte binary number for numeric values

8-byte string for string values of eight
terminated by a SM characters or less

6-byte pointer to for string values with

the free space area more than eight characters
base (4 bytes), for file variables

modulo (2 bytes),
separation (2 bytes)

6-byte pointer to for external subroutines
external subroutine code

Free storage

The free storage area is made up of buffers of various sizes.
These buffers are assigned to a varlable if the string to be
stored in the variable can't fit in its descrlptor (more than
eight characters). A pointer to this area is stored in the
descriptor.

Buffer allocation

Strings 1onger than eight bytes are placed in storage buffers
located in the free storage space. These fixed-length
buffers are, by default, 50 bytes, 150 bytes, or multiples of
250 bytes in length. There is overhead involved; the BASIC
run-time package reserves seven (7) bytes per buffer for
internal usage. The maximum length for strings in 50-byte
buffers, then, is 43 bytes.

When a string requires a new buffer, the system looks in a
table of abandoned buffers for a buffer of the appropriate
size. If one can't be found, a buffer size is calculated, and
a buffer of this size is then allocated to the varlable in
questlon. The effect of allocatlng free storage in this
manner is that a buffer is made somewhat larger than the

BASIC Reference Page 53 Representing Data

string it will contain. This allows for larger strings to be
stored in the same buffer. This is important because of the
allocation procedure.

Initially, free storage is one contiguous block of space.
Buffers are allocated from the beginning of the free storage
area. When a string is assigned to a variable which exceeds
the variable's current buffer size, the buffer is abandoned
and a new buffer is allocated from the remaining contiguous
portion of free storage. If there is not enough contiguous
space for the new buffer, a procedure called 'garbage
collection' takes place. Garbage collection collects the
abandoned buffer space and forms a single block of contiguous
space. If, after garbage collection takes place, there is
still not enough contiguous space, the program is aborted
with the message:

NOT ENOUGH WORK SPACE
A program can change the default buffer sizes of 50 bytes,
150 bytes, and multiples of 250 bytes, by executing a STORAGE
statement. (Please refer to the STORAGE statement, listed
alphabetically in Chapter 3.)

Variable allocation

Variables are allocated descriptors in the following order:
Common variables
Simple variables
Dimensioned variables

Passing values - subroutines

The arrangement of descriptors for a main program and an
external subroutine is illustrated as follows:

| =mmmmmmmmmm———— | values passed
| | through

[| | argument list
| l

I | .
DESCRIPTORS | COMMON | VARIABLES | VARIABLES |

used by both used locally used locally. by
main and by main program subroutine program
subroutine only only

Variables declared as COMMON in both the main program and the
subroutine refer to the same locations. There is a one to one
correspondence between the variables in both COMMON statements. When
values are passed through the argument list on the CALL and
SUBROUTINE statements, the values are copied back and forth between
the two local areas as indicated above.

BASIC Reference Page 54 Representing Data

If subroutine calls are nested, the arrangement of descriptors is:

values passed through |
argument list |

| COMMON | VARIABLES | VARIABLES | VARIABLES |

| __
used by both used locally by used locally by used locally by
main and main program subroutine 1 subroutine 2
subroutines only only only

Values passed through the argument list are copied as indicated

above.

It is illegal to CHAIN or ENTER from a subroutine, but it is
permissable to CHAIN or ENTER a program that calls a subroutine.

Passing values - CHAIN and

ENTER programs

The ENTER statement may be
program which inherits the
The CHAIN statement may be
RUN verb with the I option

used to transfer control to a new BASIC
values of variables from the old program.
used in a similar way when invoking the
to run a new program without initializing

variables. (For details, please refer to the CHAIN and ENTER
statements, listed alphabetically in Chapter 3.)

It is permissable to CHAIN

or ENTER a program that calls a

subroutine but it is illegal to CHAIN or ENTER from a subroutine.

BASIC Reference

Page 55 Representing Data

NOTES

BASIC Reference Page 56 Representing Data

CHAPTER 3

BASIC STATEMENTS AND FUNCTIONS

3.1 A Summary of the Statements and Functions
3.2 Alphabetical Listing of Statements and Functions

The BASIC Statements:

! END LOCK PROGRAM STORAGE
* END CASE LOOP PROMPT SUBROUTINE
= (Assignmt) ENTER MAT = PUT UNLOCK
ABORT EQUATE MATREAD READ UNTIL
BEGIN CASE EXECUTE MATREADU READNEXT WEOF
BREAK EXIT MATWRITE READT WHILE
CALL FOOTING MATWRITEU READU WRITE
CASE FOR NEXT READV WRITET
CHAIN GET NULL READVU WRITEU
CLEAR GOSUB ON GOSUB RELEASE WRITEV
CLEARFILE GOTO (GO TO) ON GOTO REM WRITEVU
CLOSE HEADING OPEN REPEAT

COMMON IF PAGE RETURN (TO)

DATA INPUT PRECISION REWIND

DEL INPUTCLEAR PRINT RQM

DELETE INS PRINTER SEEK

DIM LET PRINTERR SELECT

DISPLAY LOCATE PROCREAD STOP

ECHO PROCWRITE

The BASIC Intrinsic Functions:

@ DELETE FSUB REM STR
ABS EBCDIC ICONV REPLACE SYSTEM
ALPHA EOF INDEX RND TAN
ASCII EXP INSERT SADD TIME
CHAR EXTRACT INT SCMP TIMEDATE
COL1l FADD LEN SDIV TRIM
COL2 FCMP LN SEQ
CoSs FDIV MOD SIN
COUNT FFIX NOT SMUL
DATE FFLT NUM SPACE
DCOUNT FIELD OCONV SQRT

FMUL PWR SSUB

BASIC Reference Page 57 Statements/Functions

3.1 A Summary of the Statements and Functions

Figure A lists the BASIC statements.

functions are listed in Figure B.

The BASIC intrinsic
Figure C lists the BASIC

compiler directives, which are discussed in Section 1.4. Figure
D lists the redirection variables used with certain BASIC
statements.
! END LOCK PROGRAM STORAGE
* END CASE LOOP PROMPT SUBROUTINE
= (Assignmt) ENTER MAT = PUT UNLOCK
ABORT EQUATE MATREAD READ UNTIL
BEGIN CASE EXECUTE MATREADU READNEXT WEOF
BREAK EXIT MATWRITE READT WHILE
CALL FOOTING MATWRITEU READU WRITE
CASE FOR NEXT READV WRITET
CHAIN GET NULL READVU WRITEU
CLEAR GOSUB ON GOSUB RELEASE WRITEV
CLEARFILE GOTO (GO TO) ON GOTO REM WRITEVU
CLOSE HEADING OPEN REPEAT
COMMON IF PAGE RETURN (TO)
DATA INPUT PRECISION REWIND
DEL INPUTCLEAR PRINT ROM
DELETE INS PRINTER SEEK
DIM LET PRINTERR SELECT
DISPIAY LOCATE PROCREAD STOP
ECHO PROCWRITE
Figure A. BASIC Statements

@ DELETE FSUB REM STR
ABS EBCDIC ICONV REPLACE SYSTEM
ALPHA EOF INDEX RND TAN
ASCII EXP INSERT SADD TIME
CHAR EXTRACT INT SCMP TIMEDATE
COL1 FADD LEN SDIV TRIM
COL2 FCMP LN SEQ
COoSs FDIV MOD SIN
COUNT FFIX NOT SMUL
DATE FFLT NUM SPACE
DCOUNT FIELD OCONV SQRT

FMUL PWR SSUB

Figure B. BASIC Intrinsic Functions
SCHAIN SINCLUDE SNODEBUG S*

Figure C. BASIC Compiler Directives
ARG. MSG. SELECT. IN. OUT.

Figure D. BASIC Redirection Variables

BASIC Reference

Page 58

Statements/Functions

L

3.2 Alphabetical Listing of Statements and Functions

Each statement and function is described in detail in its own
separate topic. The topics are presented in alphabetical
order, according to the statement or function name. All
statements and functions have been integrated into one
alphabetical listing.

A BASIC statement performs a complete operation. Statements
may appear anywhere in a program. All statements must be
formatted with a space separating the statement name from any
parameters that follow; for example:

CALL SUBR1

A BASIC intrinsic function performs a function within a
statement operation. Functions may appear anywhere that
expressions can be used in a statement. All functions must
be formatted with a left parenthesis following the function
name, any parameters, and a right parenthesis; for example:

ALPHA (N)
CoL1()

Each topic about a statement or function begins on a new
page. Topics may be presented on one or more pages, as
necessary. In general, the text description is covered on
the first page, followed by a page of figures. The figures
review the general form, which is also covered in the text,
and give examples of usage with explanation.

For one-page topics, the text is in the upper portion of the
page and the figures are below the text. For multi-page
topics, the text precedes the figures. Some complex
statements are divided into two separate topics to explain
the special cases.

The statements and functions identified by symbols, such as
the Assignment (=) statement and the @ function, are listed
before the statements and functions with alphabetical names.
Thus, the topics begin with:

! and * Statement
= Statement

@ Function

ABORT Statement
ABS Function

and end with:

WRITEVU Statement

BASIC Reference Page 59 Statements/Functions

! and *
Statements

The "!" and "*" statements are alternative forms of the
Remark (REM) statement. Remarks can identify a function or
section of program code, as well as explain its purpose and
method.

A Remark statement can be specified in one of three ways: by
the characters "REM", by the asterisk character (*), or by
the exclamation point (!). Thus, there are three general
forms of the Remark statement:

REM text ...
! text ...
* text ...

REM, !, or * must be placed at the beginning of the
statement, but may appear anywhere on a line (e.g., after
another statement on the same line). A semicolon must be
used to separate a Remark statement from any other BASIC
statement on the same line. The text may be any arbitrary

characters, up to the end of the Iine.

Remarks are useful, when writing BASIC programs, to
summarize, introduce, explain or document the program
instructions and routines. A Remark statement allows
programmers to place comments anywhere in the program without
affecting program execution.

For example:

REM THE TEXT FOLLOWING THESE STATEMENTS
! DOES NOT AFFECT
* PROGRAM EXECUTION

Note that there are extra blank spaces in some of the
statements above. These blank spaces appearing in the
program line (which are not part of a data item) will be
ignored. Thus, blanks may be used freely within the program
to enhance the appearance and readability of a program and
its comments.

Figure B shows a sample program with Remark statements.

BASIC Reference Page 60 Statements/Functions

REM text ! text * text

Figure A. General Forms of Remark Statement

REM PROGRAM TO PRINT THE
* NUMBERS FROM ONE TO TEN

I=1; *¥ START WITH ONE

BEG: PRINT I; *¥ PRINT THE VALUE
IF I = 10 THEN STOP; * STOP IF DONE
I=1I+1; * INCREMENT I
GOTO BEG; * BEGIN LOOP AGAIN
END

Figure B. Sample Program With Remark Statements

BASIC Reference Page 61 Statements/Functions

= (Assignment)
Statement

The = (Assignment) statement is used to assign a value to a
variable, or to an element of a dynamic array stored in a
variable. The variable may be either a simple variable or an
element of a dimensioned array.

The general forms of the Assignment statement are:

variable = expression
variable <attr# {,value# {,subval#}}> = expression

In the first form, the value of the expression becomes the
current value of the variable on the left side of the
equality sign. The expression may be any legal BASIC
expression. For example:

ABC = 500
X2 = (ABC+100)/2

The first statement will assign the value of 500 to the
variable ABC. The second statement will asign the value 300
to the variable X2 (i.e., X2 = (ABC+100)/2 = (500+100)/2 =
600/2 = 300).

String values may also be assigned. For example:
VALUE = "THIS IS A STRING"
SUB = VALUE [6,2]

The first statement above assigns the string "THIS IS A
STRING" to variable VALUE. The second statement assigns the
string "IS" to variable SUB (i.e., assigns to SUB the two-
character sub-string starting at character position 6 of
VALUE) .

In the second form of the Assignment statement, the dynamic
array element in variable specified by attr#, value#, and
subval# is replaced by the value of the expression. The
values of attr#, value#, and subval#, determine whether the
data being assigned 1s an attribute, a value, or a subvalue.
If value#4 and subval# both have a value of 0 or are both
absent, then an entire attribute is assigned. If subval# has
a value of 0 or is absent but value# is present, then a value
is assigned. If attr#, value#, and subval# are all non-zero,
then a subvalue is assigned. If the last (or only) index
specified (attr#, value#, or subval#) has a value of -1, then
expression is inserted after the last attribute, value, or
subvalue.

Arrays must be declared using DIM or COMMON statements before
their elements can be addressed in an assignment statement.

BASIC Reference Page 62 Statements/Functions

g

The LET statement may optionally be prefixed to an assignment
statement, as in LET X = 12.

NOTES: 1. An equated symbol may not be used in place of a
variable in an assignment statement if the symbol
has already been assigned a constant (literal)
value in the program. (Please refer to the EQUATE
statement, listed alphabetically in this chapter.)

2. All elements in a dimensioned array can be
assigned a value(s) by the MAT = assignment
statement. (Please refer to the MAT = statement,
listed alphabetically in this chapter.)

variable = expression mmmmm—————— |The equality sign means assign|
| the value of the expression on]
var<attr# {(value# {,subval#)}}> = expr |the right to the variable on |
|the left. |

LET variable = expression

LET var<attr# {,value# {,subval#}}> = expr

Figure A. General Forms of the Assignment Statement

CORRECT USE EXPLANATION

X=5 Assigns 5 to X.

X=X+1 Increments X by 1.

ST="STRING" Assigns the character string to ST.

ST1=ST[3,1] Assigns sub-string "R" to ST1.

TABLE(I,J)=A(3) Assigns matrix element from vector
element.

A=B=0 Assigns 1 to A if "B=0" is true,
assigns 0 to A if "B=0" is false.

A<2>=0 Assigns 0 to attribute 2 of dynamic
array A.

Figure B. Correct Examples of Assignment Statement

BASIC Reference Page 63 Statements/Functions

e
Function

The @ ("at" sign) function generates a string of control
characters used for cursor positioning or other terminal or
printer control features. The terminal or printer is
affected when the string is later output to it with a PRINT
statement.

The general form of the @ function is:
@ (expressionl {,expression2})

If both expressionl and expression2 are present, expressionl
specifies the column to which the cursor is to be positioned,
and expression2 specifies the row, or line. Columns and rows
are numbered starting with zero (0), left to right and top to
bottom on the screen. If only expressionl is present, and
its value is non-negative, then it is a column specification
for the cursor, as before, and the cursor is assumed to
remain on the current line. Note, however, that not all
terminals support column-only cursor positioning, so the
results are not guaranteed. For this reason, both column and
row specifications should be used when positioning the
cursor. For example:

PRINT @(30): "HELLO"

This statement prints the message "HELLO" on the current line
position of the cursor, starting at column position 30.
Another example:

PRINT @(10,15): "GOOD-BYE"

This statement prints the message "GOOD-BYE" on line 15,
starting at column position 10.

If only expressionl is present and its value is negative,
then the @ function returns a terminal or printer control
string as determined by the table in Figure C.

When positioning the cursor, the values of the expression(s)
used in the @ function must be within the row and column
limits of the terminal screen.

The @ function generates values based on the current terminal
or printer type for the port (line) on which the BASIC
program is run. The terminal type is determined by the most
recent TERM command executed for the port, or by a terminal
type logon parameter set up with the TERMINAL command, or by
the system's default terminal type, which may be changed with
the SET-TERM command. The printer type is shown and changed
with the PRINTER command. For more information about these

commands, please refer to the ULTIMATE System Commands
manual.

BASIC Reference Page 64 Statements/Functions

e

Note that not all terminals (or printers attached to terminal
auxiliary ports) will respond to all control codes listed
here. The documentation for each terminal or printer must be
consulted for information about which features are supported.
If a non-supported feature is used, a null string is normally
returned.

@ (expressionl {,expression?})
A A

- ———————— - —————— — o—

| specifies| |specifies]
| column | |line |
|or cursor| =-—=———=—----
|control |
|character|

Figure A. General Form of @ Function

CORRECT USE EXPLANATION

X =17 Prints the current value of variable Z
Y =3 at column position 7 of line 3.

PRINT @(X,Y): Z

Q = @(3): "HI" Prints "HI" at column position 3 of
PRINT Q current line.

A =05 Prints the value 5 at column position
PRINT @(A,A+5):A 5 of line 10.

PRINT @(-1) Clears the screen and positions

the cursor at 'home' position.

Figure B. Examples of Correct Usage of @ Function

BASIC Reference Page 65 Statements/Functions

CODE EXPLANATION

a(-1) Generates the clear-screen character; clears the
screen and positions the cursor at 'home' (upper
left corner of the screen).

Positions the cursor at 'home' (upper left corner).
Clears from cursor positon to the end of the screen.
Clears from cursor position to the end of the line.
Starts blinking on subsequently printed data.

Stops blinking.

Initiates 'protect' field. All printed data will be
'‘protected!, that is, it cannot be written over.
Stops protect field.

Backspaces the cursor one character.

Moves the cursor up one line.

Moves the cursor down one line.

Moves the cursor right one column.

Enables auxiliary (slave) port.

Disables auxiliary (slave) port.

Enables auxiliary (slave) port in transparent mode.
Initiates slave local print.

Starts underlining.

Stops underlining.

Starts inverse video.

Stops inverse video.

Deletes a line.

Inserts a line.

Scrolls the screen display up one line.

Starts boldface type.

Stops boldface type.

Deletes one character.

Inserts one blank character.

Starts insert character mode.

Stops insert character mode.

| I T Y T Y A Y T N I N N O N A |
NoOYOr b Wi
Nt Nast” S S et e

LI T T T T O

WVWONOATOUPPWNDNHFOWONONOB®WNH O~
Nt Nt N Nt Nt st Nt it et it i Nt et st ek sl s il e it

OEOEPOEEPEEEEEEDEOEEDEOEOOD® MM
FTIN SN TN TN TN SN TN TN N TN TN TN SN SN TN NSO N SN NN N NN SN TN NN
NONMNNOMNNOMNOMNOMNMNNREHEREREEEERFEEFEWO®

The following @ function values affect ULTIMATE-supported
letter-quality printers:

@(-101,p) Sets VMI (Vertical Motion Index) to p.
@(-102,1) Sets HMI (Horizontal Motion Index) to 1.
@(-103) Sets alternate font.

@(-104) Sets standard font.

@(-105) Generates a half line-feed.

@(-106) Generates a negative half line-feed.
@(-107) Generates a negative line-feed.
@(-108) Prints black ink.

@(=-109) Prints red ink.

@(-110) Loads cut sheet feeder.

@(-111) Selects feederl.

@(-112) Selects feeder2.

@(-113) Selects standard thimble.

@(=-114) Selects proportional space thimble.

Figure C. Explanation of @ Function Negative Values

BASIC Reference Page 66 Statements/Functions

ABORT
Statement

The ABORT statement terminates program execution. If the
program was run from a PROC, the PROC is terminated as well.

The general form of the ABORT statement is:
ABORT {errnum{,param, param, ...}}

An ABORT statement may optionally be followed by an error
message name, and error message parameters separated by
commas. The error message name errnum is a reference to an
item in the ERRMSG file. The param parameters are variables
or literals to be used within the error message format.

An ABORT statement may be placed anywhere within the BASIC
program to indicate the end of one of several alternative
paths of logic.

Upon the execution of an ABORT statement, the BASIC program
will terminate.

A sample BASIC program illustrating the correct use of the
ABORT statement is presented in Figure B. This program
requests a file name from the user and attempts to open the
file. If an incorrect file name is entered, the standard
system error message [201]--"xxx IS NOT A FILE"--will be
printed, and the program is then terminated.

NOTE: The STOP statement can also be used for program
termination. (Refer to the STOP statement, listed
alphabetically in this chapter.)

ABORT {errnum{,param, param, ...}}

Figure A. General Form of ABORT Statement

PRINT 'PLEASE ENTER FILE NAME':
INPUT FN
OPEN FN TO FFN ELSE ABORT 201, FN

.
.

Figure B. Sample Program Using the ABORT Statement

BASIC Reference Page 67 Statements/Functions

ABS
Function

The ABS function returns an absolute value.

The general form of the ABS function is:
ABS (expression)

The ABS function generates the absolute numeric value of the
expression. For example:

A = 100
B = 25
C = ABS(B-A)

These statements assign the value 75 to variable C.

ABS (expression)

Figure A. General Form of ABS Function

CORRECT USE EXPLANATION
A = ABS(Q) Assigns the absolute value of
variable Q to variable A.
A = 600 Assigns the value 400 to vari-
B = ABS(A-1000) able B.
Figure B. Examples of Correct Usage of ABS Function
INCORRECT USE EXPLANATION
Y = "ABCD" Expression in ABS functions must
Z = ABS(Y) be numeric.

Figure C. Example of Incorrect Usage of ABS Function

BASIC Reference Page 68 Statements/Functions

ALPHA
Function

The ALPHA function returns a value of true (1) if the given
expression evaluates to an alphabetic character or string.

The general form of the ALPHA function is:
ALPHA (expression)

The ALPHA function tests the specified expression for an
alphabetic value. If the expression evaluates to a letter
or alphabetic string, the function will return a value of
true (a value of 1). Otherwise, the ALPHA function will
return a value of false (0).

Consider the following example:
IF ALPHA(ADAB) THEN PRINT "ALPHABETIC DATA"

This statement will print the text "ALPHABETIC DATA" if the
current value of variable ADAB is a letter or an alphabetic
string.

Alphabetic characters are the 26 letters of the alphabet, in

upper or lower case. The empty string ('') is not considered
to be an alphabetic string. (It is, however, a valid numeric
string.)

ALPHA (expression)

Figure A. General Form of ALPHA Function

CORRECT USE EXPILANATION

IF ALPHA(I CAT J) THEN GOTO 5 Transfers control to state-
ment label 5 if current value
of both variables I and J are
letters or alphabetic strings.

PRINT ALPHA(N) OR ALPHA (M) Prints a value of 1 if the
current value of either M or
N is a letter or alpha string.

Figure B. Examples of Correct Usage of ALPHA Function

BASIC Reference Page 69 Statements/Functions

ASCII
Function

The ASCII function returns the ASCII value of an EBCDIC
string.

The general form of the ASCII function is:
ASCII (expression)

The string value of the expression is converted from EBCDIC
to ASCII, the normal ULTIMATE string representation. For
example:

A = ASCII(B)

The value in variable B is assumed to be in EBCDIC, and is
converted to its equivalent ASCII value. The ASCII value is
stored in variable A.

NOTE: The inverse function, EBCDIC, is discussed as a
separate function. (Please refer to the EBCDIC function,
listed alphabetically in this chapter.)

ASCII (expression)

Figure A. General Form of ASCII Function

CORRECT USE EXPLANATION

READT X ELSE STOP Reads a record from the magnetic tape

Y = ASCII(X) unit and assigns value to variable X.
Assigns ASCII value of record to
variable Y.

Figure B. Example of Correct Usage of ASCII Function

BASIC Reference Page 70 Statements/Functions

Assignment
Statements

Assignment statements assign values to variables. There are
two forms: the = statement and the MAT = statement.

The = statement assigns a value to a simple variable. A
simple variable is contained in one storage location. Please
refer to the = (Assignment) statement, listed in the first
part of this chapter. (Statements/functions idenfified by
symbols precede the statements/functions beginning with "A".)

The MAT = statement assigns values to dimensioned arrays. A
dimensioned array contains one storage location for each
element in the array. Please refer to the MAT = (Assignment)
statement, listed alphabetically in this chapter.

BASIC Reference Page 71 Statements/Functions

BEGIN CASE
Statement

The BEGIN CASE statement is the first statement in the CASE
statement sequence.

The general form of the BEGIN CASE statement is:
BEGIN CASE

Please refer to the CASE statement for information about the
entire CASE statement sequence.

BASIC Reference Page 72 Statements/Functions

BREAK (ON/OFF)
Statement

The BREAK ON and BREAK OFF statements control the BREAK key
on the terminal through a BASIC program.

The general forms of the BREAK statement are:
BREAK OFF
BREAK ON

The BREAK OFF statement disables the BREAK key on the
terminal. When disabled, pressing the BREAK key will not be
able to stop a program from executing. This is useful when
the BREAK key must not be operative during critical processes
such as file updates.

The BREAK ON statement enables the BREAK key on the terminal.
When enabled, the BREAK key is set to its normal state so as

to allow interrupting a program, going to the BASIC debugger,
etc.

Note that these commands increment/decrement the BREAK
inhibit counter. Since these are cumulative, an equal number

of BREAK ON's and BREAK OFF's must be executed to restore a
break-able status.

BASIC Reference Page 73 Statements/Functions

CALL
Statement

The CALL statement provides external subroutine capabilities
for a BASIC program. An external subroutine is a subroutine
that is compiled (and possibly cataloged) separately from the
program or programs that call it. An external subroutine can
be called directly or indirectly.

The general form of the CALL statement is:
CALL {(@)name {(argument list)}

The CALL statement with no @ is a direct call, and transfers
control to the external subroutine named name. The name
(1tem name of a program) may not have any special characters
in it. The optional argument list consists of one or more
expressions, separated by commas, that represent actual
values passed to the subroutine. The argument list can pass
an array to a subroutine by preceding the array argument with
the word MAT. (See the next topic.) An argument list may
continue on multiple lines; each line except the last must
conclude with a comma.

The CALL @ form is used to specify an indirect call. When
@name is present, name is a variable containing the name of
the external subroutine to be called. The argument list
performs the same function as in a direct call. For example:

NAME = 'XSUB1'
CALL @NAME
NAME = 'XSUB2'
CALL @NAME

The first call invokes subroutine XSUBl. The second call
invokes subroutine XSUB2.

There is no correspondence between variable names or labels
in the calling program and the subroutine. The only
information passed between the calling program and the
subroutine are the values of the arguments (plus any COMMON
variables). External subroutines may call other external
subroutines, including themselves. A sample external
subroutine that involves two arguments, together with
correctly formed CALL statements, is shown below.

CALL Statements Subroutine ADD
CALL ADD (A,B,C) SUBROUTINE ADD (X,Y,Z)
CALL ADD (A+2,F,X) Z=X+Y
CALL ADD (3,495,2) RETURN
END

When the CALL statement is executed, subroutine arguments are
first evaluated and their values a551gned to the
corresponding variables named in the subroutine's SUBROUTINE

BASIC Reference Page 74 Statements/Functions

statement. These variables may then be assigned new values
by the subroutine. When control returns to the calling
program, any variables used as subroutine arguments will be
updated to reflect the most recent values of the
corresponding variables in the subroutine. Constants and
other expressions used as subroutine arguments will not be
changed.

Care should be taken not to update the same variable
referenced by more than one name in an external subroutine.
This can occur if a variable in COMMON is also passed as a
subroutine parameter.

NOTE: The SUBROUTINE statement must be used in conjunction
with CALL. For details, refer to the SUBROUTINE statement,
listed alphabetically in this chapter. The called external
subroutine must begin with a SUBROUTINE statement and contain
a RETURN statement. GOSUB and RETURN may be used within the
subroutine, but when a RETURN is executed with no
corresponding GOSUB, control passes to the statement
following the corresponding CALL statement in the calling
program. If the subroutine terminates execution without
executing a RETURN (such as by executing a STOP statement, or
by "running out" of statements at the end of the subroutine),
control never returns to the calling program. The CHAIN
statement should not be used to chain from an external
subroutine to another BASIC program.

CALL {@)}name {(argument list)}

Figure A. General Form of CALL Statement

CORRECT USE EXPLANATION

CALL REVERSE (A,B) Subroutine REVERSE has two arguments.
CALL REPORT Subroutine REPORT has no arguments.
CALL VENDOR (NAME, Subroutine VENDOR returns three

ADDRESS, NUMBER) values.

CALL DISPLAY (A,B,C) Subroutine DISPLAY accepts (and
returns) three argument values.

Figure B. Examples of Correct Usage of CALL Statements

BASIC Reference Page 75 Statements/Functions

CALL
Statement (cont'd)
(Passing Arrays)

Arrays may be passed to external subroutines.

The general form for specifying an array in an argument list of
CALL statements is:

CALL name (MAT variable)

The variable is the name of an array given in a DIM statement.

The array must be dimensioned in both the calling program and

the subroutine. Array dimensions may be different, as long as

the total number of elements matches. Arrays are copled in row
major order. Consider the following example:

Calling Program Subroutine
DIM X(4,5) SUBROUTINE COPY (MAT A)
CALL COPY (MAT X) DIM A(10,2)
END PRINT A(8,1)
RETURN
END

In this subroutine the parameter passing facility is used to
copy array X specified in the CALL statement of the calllng
program into array A of the subroutine. Prlntlng A(8,1) in the
subroutine is equivalent to printing X(3, 5) in the calling
program. Additional examples of array passing, both correct and
incorrect, are shown in Figure B.

BASIC Reference Page 76 Statements/Functions

CALL name (MAT variable)

Figure A. General Forms of CALL Statement with Array Passing

CORRECT USE EXPLANATION

DIM A(4,10),B(10,5) Subroutine REV accepts two input
CALL REV (MAT A, MAT B) array variables, one of size 40
and one of size 50 elements.

SUBROUTINE REV (MAT C, MAT B)
DIM C(4,10), B(50)

INCORRECT USE EXPLANATION

DIM TAB(100) The word 'MAT' must precede array
CALL SHORT (TAB) TAB in the parameter list.

DIM FOUR (2,2) Corresponding arrays must have the
CALL GOF (MAT FOUR) same number of elements in the

calling program and the subroutine.

SUBROUTINE GOF (MAT NIX)
DIM NIX(5)

Figure B. Examples of Array Parameters

BASIC Reference Page 77 Statements/Functions

CASE
Statement

The CASE statement provides conditional selection of a
sequence of BASIC statements.

The general form of the CASE statement is:

BEGIN CASE
CASE expression
statements
CASE expression
statements

END CASE

If the logical value of the first expression is true (i.e.,
non-zero), then the statement or sequence of statements that
immediately follows, up to the next CASE or END CASE, is
executed, and control passes to the statement following END
CASE. If the first expression is false (i.e., zero), then
control passes to the next test expression, and so on.

Consider the following example:

BEGIN CASE
CASE A < 5
PRINT 'A IS LESS THAN 5'
CASE A < 10
PRINT 'A IS GREATER THAN OR EQUAL TO 5 AND LESS THAN 10'
CASE 1
PRINT 'A IS GREATER THAN OR EQUAL TO 10'
END CASE

If A<5, then the first PRINT statement will be executed. If
5<=A<10, then the second PRINT statement will be executed.
Otherwise, the third PRINT statement will be executed. (Note that
a test expression of 1 means "always true.")

BASIC Reference Page 78 Statements/Functions

PN

BEGIN CASE
CASE expression
statements
CASE expression
statements

END CASE

Figure A. General form of CASE statement

CORRECT USE

BEGIN CASE
CASE Y=B
¥Y=Y+1

END CASE

BEGIN CASE
CASE A=0; GOTO 10
CASE A<0; GOTO 20
CASE 1; GOTO 30
END CASE

BEGIN CASE
CASE ST MATCHES "1A"
MAT LET=1
CASE ST MATCHES "1N"
SGL=1; A.1(I)=ST
CASE ST MATCHES "2N"
DBL=1; A.2(J)=ST
CASE ST MATCHES "3N"
GOSUB 103

END CASE

EXPLANATION

Increment Y if Y is equal to B.
Note that this single-case example
is equivalent to the statement

IF Y=B THEN Y=Y+1.

Program control branches to the
statement with label 10 if the
value of A is zero; to 20 if A
is negative; or to 30 if A is
greater than zero.

If ST is one letter, "1" is assigned
to all LET elements and the entire
CASE is ended. If ST is one number,
"1" is assigned to SGL, ST is stored
at element A.1(I), and the entire
case is ended. If ST is two numbers,
"1" is assigned to DBL, ST is stored
at element A.2(J), and the entire
case is ended. If ST is three
numbers, subroutine 103 is executed.

Figure B. Examples of Correct Usage of CASE Statement

BASIC Reference

Page 79 Statements/Functions

CHAIN
Statement

The CHAIN statement terminates program execution and executes
a specified TCL command. The TCL command may be used to
initiate another BASIC program using values from the first
program.

The general form of the CHAIN statement is:
CHAIN "any TCL command"

The CHAIN statement causes the specified TCL command to be
executed. The CHAIN statement may contain any valid verb or
PROC name in the user's Master Dictionary. Consider the
following example:

CHAIN "RUN FILE1l PROGRAM1 (I)"

This statement causes the previously compiled program named
PROGRAM1 in the file named FILEl to be executed. The I option
specifies that the variables are not to be initialized. This
causes them to take on values from variables in the first
program, since variable data is always stored beginning at
the same location in a user's workspace.

The variables in one program that are to be passed to another
program must be in the same location. Variables are
allocated in the order in which they first appear in a
program except that arrays are allocated (in the order of
their DIM statements) after all other variables are
allocated. Consider, for example, the following two BASIC
programs:

Program ABC in file BP

A=500

B=1;C=1

CHAIN "RUN BP XYZ (I)"
END

Program XYZ in file BP

PRINT X;PRINT Y;PRINT Z
END

Program ABC causes program XYZ to be executed. The I option
used in the CHAIN statement specifies that the variable data
area is not to be initialized, thus allowing program ABC to
pass the values "500", "1", and "2" to program XYZ. Program
XY¥Z, in turn, prints the values "500", "1", and "2" since
they were allocated and passed in that order. The variable
names do not need to correspond; only the order is
significant to program XYZ.

Users should note that the workspace areas used for variable

BASIC Reference Page 80 Statements/Functions

storage are also used by other system software so their
contents cannot be guaranteed when CHAINing from one BASIC
program to another if there is any intermediate processing.
In particular, CHAINing to a PROC which performs a Recall
SELECT-type statement before invoking a BASIC program with
the I option may cause the BASIC program's variables to be
initialized to garbage.

Users should also note that control is never returned to the
BASIC program originally executing the CHAIN statement. In
order to accomplish this, an EXECUTE statement must be used
instead of a CHAIN statement. (Please refer to the EXECUTE
statement, listed alphabetically in this chapter.)

IMPORTANT: It is illegal to CHAIN from a subroutine, but
legal to CHAIN a program that calls a subroutine.

CHAIN "any TCL command"

Figure A. General Form of CHAIN Statement

CORRECT USE EXPLANATION

CHAIN "RUN FN1 LAX (I)" Causes the execution of program
IAX in file FN1l. I option
specifies that data area is not to
be initialized (i.e., the program
executing the CHAIN statement will
pass values to program LAX).

CHAIN "LISTU" Causes the execution of the LISTU
PROC.
CHAIN "LIST FILE" Causes the execution of the LIST

Recall Verb.

CHAIN "RUN PROGRAMS ABC" Causes the execution of program
ABC in file PROGRAMS. Since I
option is not used, values will
not be passed to program ABC.

Figure B. Examples of Correct Usage of CHAIN Statement

BASIC Reference Page 81 Statements/Functions

CHAR
Function

The CHAR function converts a numeric value to its
corresponding ASCII character value.

The general form of the CHAR function is:
CHAR (expression)

The CHAR function converts the numeric value specified by the
expression to its corresponding ASCII character string value.
For example, the following statement assigns the string
value for an Attribute Mark to the variable AM:

AM = CHAR(254)

CHAR always returns one character: if the value of
expression is greater than 255, then CHAR(expression) =
CHAR (expression MOD 256).

NOTE: The inverse function, SEQ, is discussed as a separate
function. (Please refer to the SEQ function, listed alpha-
betically in this chapter.)

NOTE: For a complete list of ASCII codes, refer to Appendix C
of this manual.

CHAR (expression)

Figure A. General Form of CHAR Function

CORRECT USE EXPLANATION

VM = CHAR (253) Assigns the string value for a
Value Mark to variable VM.

X = 252 Assigns the string value for a

SVM = CHAR(X) Secondary Value Mark to

variable SVM.

Figure B. Examples of Correct Usage of CHAR Function

BASIC Reference Page 82 Statements/Functions

e~

CLEAR
Statement

The CLEAR statement is used to initialize all variables to a
value of zero.

The general form of the CLEAR statement is:
CLEAR
The CLEAR statement initializes all possible variables to

zero (i.e., assigns the value 0 to all variables). It may
appear anywhere in a program.

CLEAR

Figure A. General Form of CLEAR Statement

CORRECT USE EXPLANATION

CLEAR Assigns the value 0 to all
possible variables.

Figure B. Correct Example of CLEAR Statement

BASIC Reference Page 83 Statements/Functions

CLEARFILE
Statement

The CLEARFILE statement is used to clear all data from a
specified file.

The general form of the CLEARFILE statement is:
CLEARFILE {file-variable} {ON ERROR statements}

Upon execution of the CLEARFILE statement, the file which was
previously assigned to the specified file-variable (via an
OPEN statement) will be emptied (i.e., the data in the file
will be deleted, but the file itself will not be deleted). If
the file-variable is omitted from the CLEARFILE statement,
then the internal default file-variable is used (thus
specifying the file most recently opened without a file
variable).

Consider the following example:

OPEN 'AFILE' TO X ELSE PRINT "CANNOT OPEN"; STOP
CLEARFILE X

These statements cause the data section of the file named
AFILE to be cleared.

The user should note that the BASIC program will abort with
an appropriate error message if the specified file has not
been opened prior to the execution of the CLEARFILE
statement. (Refer to Appendix B describing run-time error
messages.)

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be cleared due to a network error condition.
In this case, the value of SYSTEM(0) will indicate the
UltiNet error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when clearing local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be cleared due to network errors, the

BASIC Reference Page 84 Statements/Functions

program may terminate with an error message if no ON ERROR

clause is present.

CLEARFILE {file-variable} {ON ERROR statements}

Figure A. General Form of CLEARFILE Statement

CORRECT USE

OPEN 'FN1'
READ I FROM
CLEARFILE

ELSE PRINT
171!

'NO FN1';STOP
ELSE STOP

OPEN 'FILEA'
OPEN 'FILEB'
CLEARFILE A
CLEARFILE B

TO A ELSE STOP
TO B ELSE STOP

OPEN 'ABC' ELSE PRINT
READV Q FROM 'IB3‘',
IF Q='TEST'

'NO FILE'; STOP
5 ELSE STOP

THEN CLEARFILE

EXPLANATION

Opens the data section of file
FN1, reads item Il and assigns
value to variable I, and
finally clears the data
section of file FN1.

Clears the data sections of
files FILEA AND FILEB.

Clears the data section of
file ABC if the 5th attribute
of the item with name IB3 has
a string value of 'TEST'.

Figure B. Examples of Correct Usage of CLEARFILE Statement

BASIC Reference Page

85

Statements/Functions

CLOSE
Statement

The CLOSE statement closes a file by breaking the connection
between that file and a file variable. The file must have
been previously connected to the file variable via an OPEN
statement.

The general form of the CLOSE statement is:
CLOSE {file~variable} {ON ERROR statements}
The file-variable, if present, specifies the file variable to

use in closing the file. If file-variable is omitted, the
internal default file variable 1s assumed.

When an Ultimate data file is opened, file items are always
read into and written from a file variable. The OPEN
statement establishes a connection between the file and the
BASIC file variable. The file variable may be explicitly
named in the OPEN statement. If no file variable is named,
the internal default file variable is used.

The CLOSE statement closes the file indicated by the
file-variable, or by the internal default file variable if no
file-variable is specified. 1In the latter case, it would
close the file most recently opened by an OPEN statement
without a file variable. If the file is not currently
connected to the file variable, an error message is generated
and the program may abort to the Debugger. For more
information about opening files, refer to the OPEN statement,
listed alphabetically in this chapter.

Closing a file breaks the connection between a file and the
specified file variable. The file will, however, remain
connected to any other file variables to which it is
currently assigned in the program. In order to use the
specified (closed) file variable again in I/O statements such
as READ or WRITE, the variable must be re-connected to a file
by means of another OPEN statement. In order to perform I/O
on the file itself, the file must be OPENed to a different
file variable, or re-OPENed to the same file variable.

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be closed due to a network error condition.

In this case, the value of SYSTEM(0) will indicate the
UltiNet error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when local files are being closed.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

BASIC Reference Page 86 Statements/Functions

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be closed due to network errors, the
program may terminate with an error message if no ON ERROR
clause 1is present.

Normally, local files do not need to be closed with a CLOSE
statement. A file is implicitly closed whenever a file
variable (including the internal default file variable) is
assigned a new value, such as in an OPEN statement or
Assignment statement. That is, if a file has been opened to
a file variable, it is not necessary to CLOSE the file
variable before assigning it a different value. Also, all
open files are automatically closed when a program terminates
execution.

When working with remote files, however, the advantage of
closing a file when it is no longer needed in a program is
that the corresponding remote open-file table entry is freed.
Since the number of entries in this table is limited, freeing
unused connections could allow greater use of the network.

On the other hand, excessive opening and closing of remote
files would merely increase network traffic and decrease
program efficiency.

CLOSE {file-variable} {ON ERROR statements}

Figure A. General Form of CLOSE Statement

CORRECT USE EXPLANATION
CLOSE Closes file most recently opened
without a file variable.
CLOSE F Closes file OPENed TO file-variable F.
CLOSE F ON ERROR Closes file opened to F, or retrieves
ERRNUM=SYSTEM(O) error number and performs local

GOSUB PROCESSERR subroutine on UltiNet error number.
GOTO TOP
END

Figure B. Examples of Correct Usage of CLOSE Statement

BASIC Reference Page 87 Statements/Functions

COL1l and COIL2
Functions

The COL1l and COL2 functions return the numeric values of the
column positions immediately preceding and immediately
following the sub-string selected by the most recent FIELD
function.

The general form of the COL1 and COL2 functions are:

COL1()
coL2 ()

The COL functions are used in conjunction with the FIELD
function. COL1l() returns the numeric value of the column
position immediately preceding the sub-string selected via
the most recent FIELD function. For example:

B = FIELD("XXX.YYY.ZZZ.555",".",2)
BEFORE = COL1 ()

These statements assign the numeric value 4 to the variable
BEFORE (i.e., the value "YYY" which is returned by the FIELD
function is preceded in the original string by column
position 4).

COL2 () returns the numeric value of the column position
immediately following the sub-string selected via the most
recent FIELD function. COL2() returns zero if the sub-string
is not found. For example:

B = FIELD("XXX.YYY.ZZZ.555",".",2)
AFTER = COL2()

These statements assign the numeric value 8 to the variable
AFTER (i.e., the value "YYY" which is returned by the FIELD
function is followed in the original string by column
position 8).

BASIC Reference Page 88 Statements/Functions

COLLl() <=m=————==————e——- | returns column position preceding |
| sub-string returned by FIELD function]

COL2() <==mmmmm—me——————- | returns column position following |
| sub=-string returned by FIELD function|

Figure A. General Form of COLl1l and COL2 Functions

CORRECT USE EXPLANATION

Q = FIELD("ABCBA","B", 2) Assigns the string value "C" to

R = COL1() variable Q, the numeric value 2 to
S = COL2() variable R, and the numeric value 4

to variable S.

Figure B. Examples of Correct Usage of COLl and COL2 Functions

BASIC Reference Page 89 Statements/Functions

COMMON
Statement

The COMMON statement may be used to control the order in
which space is allocated for the storage of variables, and
for the passing of values between programs.

The general form of the COMMON statement is:
COM{MON} variable {,variable}...

The COMMON statement allows one or more variables specified
by variable to be shared by a main program and its external
subroutines without having to pass the variables as
parameters on each subroutine call. The list of variables
may be continued on several lines; each line except the last
must end with a comna.

COMMON variables differ from subroutine arguments used with
the CALL statement in that the actual storage locations of
COMMON variables are shared by the main program and
subroutines, whereas subroutine arguments are copied to local
variables on entry to a subroutine and copied back to the
calling program on exit. COMMON variables, then, may be used
to increase program efficiency.

COMMON variables must be declared before any other variables,
and in the same order, in all routines which access them.
COMMON statements, then, should appear before any other
statements which refer to variables.

Arrays in COMMON must have their dimensions specified in a
COMMON statement rather than in a DIM statement. This is
accomplished by specifying the dimensions in parentheses
after the array name, as in the DIM statement: COMMON A(10),
for example.

COMMON variables (including arrays) are allocated in the
order in which they appear in COMMON statements. They may be
referred to by different names in different routines since
they are accessed by their relative position in the COMMON
area, rather than by name. For example:

MAINPROG SUBR
COMMON X, Y, Z(5) COMMON Q, R, S(5)

Variable X in MAINPROG above refers to the same location as
variable Q in SUBR; Y in MAINPROG refers to the same location
as R in SUBR; and array Z in MAINPROG refers to the same set
of locations as array S in SUBR. If SUBR had instead
specified "COMMON Q(2), R(5)", then Q(l1) would have
corresponded to X, and Q(2) to Y.

BASIC Reference Page 90 Statements/Functions

—

COM{MON} variable {,variable} ...

Figure A. General Form of COMMON Statement

CORRECT USE

Item MAINPROG

COMMON A, B,C(10)

A = "NUMBER"

B = "SQUARE ROOT"
FOR I = 1 TO 10
C(I) = SQRT(I)

NEXT I

CALL SUBPROG
PRINT "DONE"

END

Item SUBPROG

COMMON X (2),Y(10)
PRINT X(1), X(2)
FOR J = 1 TO 10
PRINT J, Y(J)

NEXT J

RETURN

END

EXPLANATION

Variables A, B, and array C are
allocated space before any other
variables.

Subroutine call to program SUBPROG.

The 2 elements of array X contain
respectively, the values of A and
B from the main-line program. The
array Y contains the values of C
from the main-line program.
Returns to main-line program.

Figure B. Example of Correct Usage of COMMON statement.

BASIC Reference

Page 91 Statements/Functions

(o0
Function

The COS trigonometric function returns the cosine of an angle
expressed in degrees.

The general form of the COS function is:
COS (expression)

The exgression must evaluate to a numeric expression that
specifies the number of degrees in the angle.

Figure A shows a summary of all trigonometric functions. The
value M represents the largest allowable number in BASIC,
which is 14,073,748,835.5327, with PRECISION 4.

NOTE: Each trigonometric function is discussed separately.
(Please refer to the function names, listed alphabetically in
this chapter.)

FUNCTION RANGE DESCRIPTION
COS (X) =M <= X <=M Returns the cosine of
an angle of X degrees.
SIN(X) -M <= X <=M Returns the sine of
an angle of X degrees.
TAN (X) -M <= X <=M Returns the tangent
of an angle of X degrees.
LN (X) 0 <= X <=M Returns the natural (base e)

logarithm of the expression X.

EXP (X) -M <= RESULT <= M Raises the number 'e'
(2.7183) to the value of X.

PWR(X,Y) =M <= RESULT <= M Raises the first expression
to the power denoted by
the second expression.

Figure A. Summary of Trigonometric Functions

BASIC Reference Page 92 Statements/Functions

COUNT
Function

The COUNT function counts the humber of occurrences of a
substring within a string.

The general form of the COUNT function is:
COUNT (string, substring)

String and substring may be any valid expression, and may
contalin any number of characters.

The COUNT function returns a value of zero if the substring
is not found, and returns the number of characters 1in the
string if the substring is null. (That is, a null matches on
any character.) For example:

COMMAND VALUE OF X
X = COUNT('THIS IS A TEST','IS') 2
X = COUNT('THIS IS A TEST','X') 0
X = COUNT('THIS IS A TEST','!') 14

(There are 14 characters in the string.)
X = COUNT ('AAAA','AA') 3

There are 3 substrings within the string AAAA.

AAAA STRING

XX SUBSTRING 1
XX SUBSTRING 2
XX SUBSTRING 3

A variation of the COUNT function is DCOUNT, which is
particularly useful for counting elements in dynamic arrays.
(See DCOUNT, listed alphabetically in this chapter.)

COUNT (string,substring)

Figure A. General Form of COUNT Function

CORRECT USE EXPLANATION

A = "1234ABC5723" Value returned in X is 2 since

X = COUNT(A,'23"') there are two occurrences of
'23' in the string A.

X = COUNT ('ABCDEFG','') Value returned in X is 7 since a
null substring will match any
character.

Figure B. Examples of Correct Usage of COUNT Function

BASIC Reference Page 93 Statements/Functions

DATA
Statement

The DATA statement is used to store data for stacked input
when using the CHAIN statement.

The general form of the DATA statement is:
DATA expression {,expression...}

Expression may be any valid expression, and any number of
expressions may be included in one DATA statement. The list
of expressions may continue on several lines; each line
except the last must end with a comma.

Each expression in a DATA statement generates one line of
stacked input. Normally, an input request such as from a
BASIC INPUT statement prints a prompt character on the
terminal and waits for the user to type in a line of data,
ending with a carriage return. When stacked input is
present, however, each input request causes a line of data to
be taken from the input stack, until the stack is empty or
the program terminates and returns to TCL, at which time the
input stack is unconditionally cleared.

DATA statements can be used to pre-store input for commands

or other BASIC programs invoked via the CHAIN statement. One
BASIC program can set up parameters using DATA statements and
then CHAIN to another program, which retrieves the parameters
with INPUT statements. (For more information, see the INPUT
and CHAIN statements, listed alphabetically in this chapter.)

Stacked input is removed (such as via the BASIC INPUT
statement) in the same order that it is added via DATA
statements. Stacked input may also be generated by the
EXECUTE statement and by a PROC. (For more details, see the
EXECUTE statement, listed alphabetically in this chapter.)

DATA expression {,expression...}

Figure A. General Form of the DATA Statement

CORRECT USE EXPILANATION

DATA A Stacks the values of A, B

DATA B and C for subsequent input requests.
DATA C Program 'TEST' may have three

CHAIN 'RUN BP TEST' input requests which will be

satisfied by the stacked input.

Figure B. Examples of Correct Usage of the DATA Statement.

BASIC Reference Page 94 Statements/Functions

DATE
Function

The DATE function returns the current internal date.

The general form of the DATE function is:

DATE ()
The DATE function returns the string value containing the
internal date. The internal date is the number of days since
December 31, 1967. For example:

A = DATE()

This statement assigns the string value of the internal date
to variable A.

DATE ()

Figure A. General Form of DATE Function

CORRECT USE EXPLANATION
Q = DATE() Assigns string value of current
internal date to variable Q.
WRITET DATE() ELSE STOP Writes the string value of the
current internal date onto a
magnetic tape record.

Figure B. Examples of Correct Usage of DATE Function

BASIC Reference Page 95 Statements/Functions

DCOUNT
Function

The DCOUNT function counts the number of sub-strings which
are separated by a specified delimiter in a string. It
returns the number of sub-strings counted.

The general form of the DCOUNT function is:
DCOUNT (string,delimiter)

String and delimiter may be any valid expression. The

string specifies the string to examine. Delimiter is the
delimiter (string character) to use. The function returns
the number of sub-strings within string that are separated by
the delimiter. If string is null, a value of zero is
returned.

Note that DCOUNT is similar to the COUNT function. (Please
refer to the COUNT function, listed alphabetically in this
chapter.) The DCOUNT function, however, differs from the
COUNT function in that it returns a count of sub-strings
separated by the specified delimiter, rather than the number
of occurrences of the delimiter within the string. For
example, consider the following string, where "A" represents
an attribute mark, or AM:

A = ABCADEFAGHI"JKL

Statement Value of X
X = COUNT (A,AM) 3

X = DCOUNT (A,AM) 4

The DCOUNT function is useful in manipulating ULTIMATE data
files. It may be used to count the number of attributes in
an item, or the number of values (or subvalues) within an
attribute.

BASIC Reference Page 96 Statements/Functions

A 4

DCOUNT (string,delimiter)

Figure A. General Form of DCOUNT Function

CORRECT USE EXPLANATION

AM = CHAR(254) Value returned in X is 3 as there

A = "1237456~ABC" are three substrings in the string
X = DCOUNT (A, AM) separated by Attribute Marks.

VM = CHAR(253) Value returned in X is 2 as there

A = "123]1456~ABC]DEF]HIJ" are two sub-strings in the string

X = DCOUNT (A<1>,VM) separated by Value Marks.

A= "r Value returned in X is 0 since

X = DCOUNT(A,AM) the string is null.

Figure B. Examples of Correct Usage of DCOUNT Function

BASIC Reference Page 97 Statements/Functions

DEL
Statement

The DEL statement deletes the specified attribute, value, or
subvalue from a dynamic array.

The general form of the DEL statement is:
DEL variable <attribute# {, value# {,subval#}}>

The variable name identifies the dynamic array. The
attribute#, value#, and subval# number(s) specify the
position of the attribute, value, or subvalue to be deleted.
The number(s) must be enclosed in angle brackets. For
example, <3,5,1> denotes attribute 3, value 5, subvalue 1.

NOTE: This statement performs the same operation as the
DELETE intrinsic function but also stores the function result
back into the source variable. For example, DEL X<3> is
equivalent to X=DELETE (X, 3)

DEL variable <attribute# {, value# {, subvalue#}}>

Figure A. General Form of the DEL Statement

CORRECT USE EXPLANATION

DEL NAMELIST <5> Deletes attribute 5 from variable
NAMELIST.

DEL PAYHIST <2,4,6> Deletes subvalue 6 from value 4
in attribute 2 of variable
PAYHIST.

Figure B. Examples of Correct Usage of DEL Statement

BASIC Reference Page 98 Statements/Functions

DELETE
Function

The DELETE function returns a dynamic array with a specified
attribute, value, or subvalue deleted.

The general form of the DELETE function is:
DELETE (var,attr# (,value# {,subval#}})

The var is any expression that specifies the dynamic array to
be used in the function. The other parameters may be any
expressions that specify whether an attribute, a value, or a
subvalue is deleted. Attr# specifies an attribute number,
value# specifies a value, and subval# specifies a subvalue.
If value# and subval# both have a value of 0 (or are both
absent, then the attr# attribute is entirely deleted. 1If
subval# only has a value of 0 (or is absent), then the
valuef value is deleted. If the attr#, value#, and subvalt
are all non-zero, then the subval# subvalue is deleted. 1In
all cases, var remains unchanged.

If a value is deleted (i.e., subval# is zero or not
expressed), the value mark associated with the value is also
deleted. If an attribute is deleted (i.e., value# and
subval# are are both zero or not expressed), the attribute
mark associated with the attribute is also deleted.

Consider the following example:

OPEN 'INVENTORY' ELSE STOP

READ VALUE FROM 'ITEM2' ELSE STOP
VALUE = DELETE (VALUE,1,2,3)

WRITE VALUE ON 'ITEM2'

These statements delete subvalue 3 of value 2 of attribute 1
of item ITEM2 in file INVENTORY. The delimiter associated
with subvalue 3 is also deleted.

Consider next the following example:

OPEN 'TEST' ELSE STOP
READ X FROM 'NAME' ELSE STOP
WRITE DELETE(X,2) ON 'NAME'

These statements delete attribute 2 (and its associated
delimiter) of item NAME in file TEST.

NOTE: The DEL statement may be used to store the results of
a DELETE operation on a variable back into the variable. For
more information, see the DEL statement, listed
alphabetically in this chapter.

BASIC Reference Page 99 Statements/Functions

DELETE (variable,attr# {,value# {,subval#}})
A A A A

|dynamic array| |attribute| |[|value] | subvalue |

Figure A. General Form of DELETE Function

CORRECT USE EXPLANATION

Y = DELETE (X, 3,2) Assigns to Y the dynamic array obtained
by deleting value 2 (and its associated
delimiter) of attribute 3 of dynamic

array X.

A=1;B=2;C=3 Deletes subvalue 2 (and

DA = DELETE(DA,A,B,C-A) its associated delimiter) of
value 2 of attribute 1 of dynamic
array DA.

X = DELETE (X,7) Deletes attribute 7 (and its
associated delimiter) of dynamic
array X.

PRINT DELETE(X,7,1) Prints the dynamic array which

results when value 1 of attribute
7 of dynamic array X is deleted.

Figure B. Examples of Correct Usage of DELETE Function

BASIC Reference Page 100 Statements/Functions

—

DELETE
Statement

The DELETE statement deletes a file item.

The general form of the DELETE statement is:
DELETE {file-variable,} item-id {ON ERROR statements}

The DELETE statement deletes the item which is specified by
the expression item-id. If a file-variable is given, the
item is assumed to be located in the file previously assigned
to that specified file-variable via an OPEN statement. If the
file-variable is omitted, then the internal default file
variable 1s used; the default is the file most recently
opened without a file-variable. For example:

DELETE AB,"TESTITEM"

This statement will delete the item named TESTITEM in the
file previously opened and assigned to variable AB.

No action is taken if a non-existent item is specified in the
DELETE statement.

The user should note that the BASIC program will abort with
an appropriate error message if the specified file has not

been opened prior to the execution of the DELETE statement.
(Please refer to Appendix B for run-time error messages.)

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be accessed due to a network error condition.
In this case, the value of SYSTEM(0) will indicate the
UltiNet error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when accessing local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be accessed due to network errors,
the program may terminate with an error message if no ON
ERROR clause is present.

BASIC Reference Page 101 Statements/Functions

DELETE {file-variable,} item-id {ON ERROR statements}

Figure A. General Form of DELETE Statement

CORRECT USE EXPLANATION
DELETE X, "XYyz" Deletes item XYZ in the file
opened and assigned to variable
X.
Q="JoB" Deletes item JOB in the file
DELETE Q opened without a file variable.
DELETE X, "XYZ" ON ERROR Deletes item XYZ, or retrieves
ERRNUM=SYSTEM(0) error number and performs local
GOSUB PROCESSERR subroutine on UltiNet error
GOTO TOP number.
END

Figure B. Examples of Correct Usage of DELETE Statement

BASIC Reference Page 102 Statements/Functions

DIM
Statement

A DIM statement declares the dimensions of an array with
constant whole numbers, separated by commas.

The general form of the DIM statement is:
DIM variable(dimensions) {,variable(dimensions)...}

The variable specifies the array name. The dimensions
specify the size of the array. If the array 1s a vector
(one-dimensional), dimensions is the number of elements in
the array; A(10), for example. If the array is a matrix
(two-dimensional), dimensions gives the number of rows and
the number of columns, separated by a comma, as in A(10,2).

Any number of arrays may be dimensioned in one DIM statement.
The list of arrays may continue on several lines; each line
except the last must end with a comma.

Before an array may be used in a BASIC program, the maximum
dimension(s) of the array must be specified for storage
purposes. The DIM (or COMMON) statement(s) must precede any
references to the array(s), and are therefore usually placed
at the beginning of the program. (Arrays need only be
dimensioned once throughout the entire program.)

In the following example, the statement declares array Al as
a 10 by 5 matrix and declares array X as a 50 element vector:

DIM Al(10,5), X(50)

DIM variable(dimensions){,variable(dimensions)}...

| one number for a vector, two numbers|
| separated by a comma for a matrix |

Figure A. General Form of DIM Statement

CORRECT USE EXPLANATION

DIM MATRIX(10,12) Specifies 10 by 12 matrix named MATRIX.

DIM Q(10),R(10), Specifies three vectors named Q, R, and
S(10) S (each to contain 10 elements).

DIM M1(50,10),X(2) Specifies 50 by 10 matrix named M1,

and two-element vector named X.

Figure B. Examples of Correct Usage of DIM Statement

BASIC Reference Page 103 Statements/Functions

DISPLAY
Statement

The DISPLAY statement outputs data to the terminal.

The general form of the DISPLAY statement is:
DISPLAY {print-list}

The print-list may consist of a single expression, or a
series of expressions separated by commas, optionally ending
with a colon. If the print-list is absent, only a carriage
return and line feed will be displayed.

The DISPLAY statement is similar to the PRINT statement in
that both statements may be used to print data at the
terminal, but DISPLAY differs in the following respects:

1. output is always to the terminal, regardless of
PRINTER ON statements or the P option on the RUN
verb.

2. Output cannot be redirected via OUT. in an EXECUTE
statement.

3. Ooutput is not affected by HEADING, FOOTING, or PAGE
statements.

DISPIAY {print-list}

Figure A. General Form of DISPLAY Statement

CORRECT USE EXPLANATION
PRINTER ON Causes PRINT statements to print
LOOP on printer.
DISPLAY "ALIGNED?": Displays message on CRT.
INPUT ANS Requests operator input.
UNTIL ANS="Y" DO
PRINT FIRSTLINE PRINT on printer,
PAGE Eject page.
REPEAT Repeat until "Y" entered at CRT.

Figure B. Example of Correct Usage of DISPLAY Statement

BASIC Reference Page 104 Statements/Functions

EBCDIC
Function

The EBCDIC function returns the EBCDIC value of an ASCII
string.

The general form of the EBCDIC function is:
EBCDIC (expression)

The string value of the expression is converted from ASCII,
the normal ULTIMATE string representation, to EBCDIC.

For example:
B = EBCDIC(A)
NOTE: The inverse of this function is the ASCII function.

(Please refer to the ASCII function, listed alphabetically in
this chapter.)

EBCDIC(expression)

Figure A. General Form of EBCDIC Function

CORRECT USE EXPLANATION

B = EBCDIC(A) Assigns the EBCDIC value of
variable A to variable B.

Figure B. Example of Correct Usage of EBCDIC Function

BASIC Reference Page 105 Statements/Functions

ECHO (ON/OFF)
Statement

The ECHO ON and ECHO OFF statements control the system echo
on the terminal.

The general forms of the ECHO statement are:
ECHO OFF
ECHO ON

The ECHO OFF statement disables the echo on the terminal.
When the ECHO feature is disabled, characters typed on the
keyboard are not displayed on the screen.

The ECHO ON statement enables the echo on the terminal. The
ECHO feature will perform in its normal state, which is to
display on the terminal screen the characters typed in on the
keyboard.

BASIC Reference Page 106 Statements/Functions

P

END
Statement

The END statement may be used to designate the physical end
of a program.

The general form of the END statement is:
END

The END statement may be used to indicate the end of a
program. It is not required. Any statements appearing after
an end-of-program END statement will be ignored.

The END statement is also used to designate the physical end
of alternative sequences of statements within the IF
statement and within other statements ending with THEN, ELSE,
LOCKED, or ON ERROR clauses. (Please refer to the sections
discussing these statements for details on using the END
statement with them.)

A sample BASIC program illustrating the correct use of the
END statement is presented in Figure B.

END

Figure A. General Form of END Statement

REM COMPUTE PROFIT:
REVENUE=A+B

COST=C+D
PROFIT=REVENUE-COST

REM PRINT RESULTS

IF PROFIT > 1 THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"

STOP <==-mmmm e e e e If this path taken,
10 PRINT "POSITIVE PROFIT" program will terminate
END <===-—=--—-—c—mmm e Physical program end

Figure B. Sample Program with Correct Usage of END Statement

BASIC Reference Page 107 Statements/Functions

END CASE
Statement

The END CASE is the last statement in a CASE statement
sequence.

The general form of the END CASE statement is:
END CASE

Please refer to the CASE statement for information about the
entire CASE statment sequence.

BASIC Reference Page 108 Statements/Functions

ENTER
Statement

The ENTER statement transfers control to a cataloged BASIC
program and retains variable values from the first program.

The two forms of the ENTER statement are:
ENTER program-name

where program-name is the item-id of the program to be
ENTERed, and:

ENTER @variable

where variable has been assigned the program name to be
ENTERed.

The ENTER statement suppresses initialization of variables in
the program being ENTERed in the same way the I option on the
RUN verb suppresses initialization. This allows several
programs which ENTER each other to be viewed as components of
one large program, provided the variables in each individual
program correspond correctly to their counterparts in the
other programs. Variables correspond based on the order in
which they are declared or otherwise introduced in each
program. COMMON statements may be used to ensure that the
same variables are allocated in the same order (even if with
different names) in all component programs.

It is permissible to ENTER a program that calls a subroutine,
but it is illegal to ENTER a program from a subroutine.

ENTER program-name
ENTER @variable

Figure A. General Forms of ENTER Statement

CORRECT USE EXPLANATION

ENTER PROGRAM.1 Causes execution of the cataloged
program "PROGRAM.1".

N=2 Causes execution of the cataloged

PROG = "PROGRAM." : N program "PROGRAM.2".

ENTER @PROG

Figure A. Examples of Correct Usage of ENTER Statement

BASIC Reference Page 109 Statements/Functions

EOF
Function

The EOF function tests either the argument list or the
internal system error buffer for an end-of-file condition and
returns the current status.

The general forms of the EOF function are:
EOF (ARG.)
EOF (MSG.)

The function must specify either the ARG. or MSG. redirection
variable. When used with ARG., the function examines the
program's argument list. When used with MSG., the function
examines the internal system message buffer. The EOF
function examines the specified redirection variable and
returns a value of 1 if the end-of-file has been reached;
otherwise, it returns a value of 0.

Checking the argument list

The ARG. redirection variable contains the arguments
associated with a program. Arguments are specified following
the program name in a statement which invokes a program. The
arguments stored in ARG. are retrieved by the GET statement,
which maintains a pointer into the argument list to determine
which argument to return. If the last GET statement
attempted to read past the end of the argument list, the EOF
function returns a "true" value (1); if not, it returns a
"false" value (0). Thus, the EOF function allows a program
to check for the end of a list of arguments.

Checking the system message buffer

The MSG. redirection variable contains error messages
associated with programs executed from the most recent
EXECUTE statement. The messages stored in MSG. are retrieved
by the GET statement. The EOF function is used in
conjunction with the GET statement. If the last GET
statement attempted to read past the end of the internal
system message buffer, an EOF function returns a "true" value
(1); if not, it returns a "false" value (0). Thus, the EOF
function allows a program to check for the end of the list of
errors.

BASIC Reference Page 110 Statements/Functions

Consider the following example:

LOOP
GET (MSG.) X
UNTIL EOF (MSG.) DO
PRINT X
REPEAT

This loop prints the messages stored in the MSG. redirection
variable until the EOF function encounters the end-of-file
condition. Then the loop exits.

EOF (MSG.)
EOF (ARG.)

Figure A. General Forms of EOF Function

CORRECT USE EXPLANATION

LOOP Prints arguments stored in the
GET (ARG.) X ARG. redirection variable until

UNTIL EOF(ARG.) DO the EOF function (end-of-file)
PRINT X is true; then the loop exits.

REPEAT

Figure B. Example of Correct Usage of EOF Function

BASIC Reference Page 111 Statements/Functions

EQUATE
Statement

The EQUATE statement allows a symbol to be defined as the
equivalent of a literal number or string (constant) or a
variable.

The general form of the EQUATE statement is:
EQU{ATE} symbol TO equate-val {, symbol TO equate-val...}

The symbol must be a previously undefined name. A symbol
name has the same criteria as a variable name in that it
starts with an alphabetic character followed by letters,
numerals, periods, or dollar signs. The equate-val may be a
literal number or string, a variable, or an array element.
The eguate-val may also be a CHAR function; the CHAR
function, however, is the only function allowed in an EQUATE
statement. The EQUATE statement must appear before the first
reference to the equate-val.

Any number of equated symbols can be defined in one EQUATE
statement. The symbol list may be continued on several
lines; each line except the last must end with a comma.

The EQUATE statement differs from an assignment statement
(where a variable is assigned a value via an = sign) in that
there is no storage location generated for the symbol.
Instead, the symbol becomes just another name for the
equate-val. The advantage this offers is that the value is
compiled directly into the object code and does not need to
be re-assigned every time the program is executed.

The EQUATE statement is therefore particularly useful under
the following two conditions:

1. Where a constant is used frequently within a program, and
therefore the program would read more clearly if the constant
were given a symbolic name. In the example below, "AM" is the
commonly used symbol for "attribute mark", one of the
standard data delimiters.

2. Where a MATREAD statement is used to read in an entire
item from a file and disperse it into a dimensioned array. In
this case, the EQUATE statement may be used to give symbolic
names to the individual array elements, which makes the
program more meaningful. For example:

DIM ITEM(20)

EQUATE BIRTHDATE TO ITEM(1l), SOC.SEC.NO. TO ITEM(2)

EQUATE SALARY TO ITEM(3)

In this case, the variables BIRTHDATE, SOC.SEC.NO. and SALARY
are rendered equivalent to the first three elements of the

BASIC Reference Page 112 Statements/Functions

array ITEM. These meaningful variables are then used in the
remainder of the program.

EQU{ATE} symbol TO equate-val {, symbol TO equate-val...}

Figure A. General Form of EQUATE Statement

CORRECT USE EXPLANATION

EQUATE X TO Y Symbol X and variable Y may be used
interchangably within the program.

EQUATE PI TO 3.1416 Symbol PI is compiled as the value
3.1416.

EQUATE STARS TO "kkkdkW Symbol STARS is compiled as the
value of five asterisks.

EQUATE AM TO CHAR(254) Symbol AM is equivalent to the ASCII
character generated by the CHAR
function.

EQUATE PART TO ITEM(3), Symbol PART is equivalent to

NAME TO ITEM(4) element 3 of array ITEM, and NAME to

element 4 of the same array.

Figure B. Examples of Correct Usage of EQUATE Statement

BASIC Reference Page 113 Statements/Functions

EXECUTE
Statement

The EXECUTE statement allows a BASIC program to execute any
valid TCL command and use the results of the command in later
processing.

The general form of the EXECUTE statement is:
EXECUTE expression {,//redirection phrase ...}

The expression is a string in the format of a TCL command,
just as 1t would be typed in at the terminal; it names a
verb, or cataloged BASIC program to be executed, followed by
any parameters and options. After the verb/PROC/program
being executed is completed, program control returns to the
next statement following the EXECUTE statement.

An optional form of the EXECUTE statement uses "redirection
phrases". A redirection phrase allows programs to redirect
data to/from the verb/PROC/program being executed. Any number
of redirection phrases may be included in one EXECUTE
statement. The redirection phrases may continue on several
lines; each line except the last must end with a comma.

Each redirection phrase has the following format:

redirection-variable direction expr

redirection-variable: either IN., OUT., or SELECT.

direction: either > or <.
expr : a BASIC expression or variable to

store output or use as input.

Selecting one of the three redirection variables

The names of these variables end with a period, as follows:

IN. (used only with direction symbol "<") specifies
that expr data is to be re-directed to the input of
the verb/PROC/program to be executed. "Input"

usually means the user's CRT keyboard. This
variable is equivalent to BASIC/PROC stacked input.
If the verb, PROC, or program to be executed
accepts more than one line of data, the redirected
data must be delimited by attribute marks.

OUT. (used only with direction symbol ">") specifies
that output from the verb/PROC/program being
executed is to be redirected to expr. "Output"
usually means the user's CRT screen or the spooler
print file. If the verb, PROC, or program being
executed produces more than one line of data, the
redirected data is delimited by attribute marks.
The last (or only) line of data is always
terminated by an attribute mark.

BASIC Reference Page 114 Statements/Functions

SELECT. (used with either "<" or ">") specifies that a
select list is to be redirected. Data on the list,
typically item-ids, must be delimited by attribute
marks; there is an attribute mark after the last
datum. (See also Notes 2 and 3 below.)

Direction Symbols

< redirects to the input of the verb/PROC/program.
> redirects from the output of verb/PROC/program.
NOTES:
1. IN., OUT., and SELECT. are pre-defined variables with

special meaning in the EXECUTE statement. They should not be
used as ordinary variables in other statements. Although a
BASIC variable name may end with a period (.), it is
recommended that programmers not use names in this format for
their own variables in order to distinguish the variables
pre-defined by the ULTIMATE system. Since variable names in
this format may or may not be treated as names of pre-defined
variables in all cases, depending on the operating system
release, the ULTIMATE Corp. strongly suggests programmers
rewrite their software, if necessary, to avoid possible
conflict.

2. The select-list produced by an EXECUTE statement (e.qg.,
EXECUTE "SELECT...") cannot be carried over automatically to
the next EXECUTE statement. It can be redirected or used in
a READNEXT statement in the same program. Thus:

EXECUTE "SELECT MD 'ED'"
EXECUTE "“LIST MD"

will list all items in MD. But:

EXECUTE "SELECT MD 'ED'", //SELECT. > X
EXECUTE "LIST MD", //SELECT. < X

will list the selected items. And:

EXECUTE "SELECT MD 'ED'"
10 READNEXT ID ELSE STOP

PRINT ID

GOTO 10

will print just one itemn.

3. The select list produced by an EXECUTE statement is a
list of data (typically item-ids), each of which terminates
in an attribute mark, including the last (or only) datum. If
a program counts the number of item-ids with the

DCOUNT (list,CHAR(254)) function, the number returned is one
higher than the actual number of item-ids in the list.

BASIC Reference Page 115 Statements/Functions

4, When the select list is stored in a variable
(...//SELECT. > X), the list X may be used directly in a
READNEXT statement. It is not a dynamic array, and no SELECT
statement should be used prior to the READNEXT.

5. The list X (see 4, above) may be used as a dynamic array
in that elements may be retrieved directly from X without
affecting its function as a list. For example, A = X<17>
will put the 17th item-id into A and X can still be used in a
READNEXT statement.

6. But, if a dynamic array element is changed in the list
X, the list itself is converted into a dynamic array. To
then use READNEXT, the program must SELECT the dynamic array
to a list. Assuming select list X:

X<1> = "ABC"
READNEXT ID FROM X will fail

X<1> = "ABC"

SELECT X TO X
READNEXT ID FROM X will work

BASIC Reference Page 116 Statements/Functions

EXECUTE expression {,//redirection phrase ...}

Figure A. General Form of EXECUTE Statement

CORRECT USE

EXECUTE "WHO"

EXECUTE "WHO", //OUT. > X

IF X<1> # "0 SYSPROG" THEN
PRINT "MUST BE ON LINE O"
STOP
END

EXECUTE "COPY BP PROG1",
//IN. < "BACKUPPROG1"

EXECUTE "RUN BP TWOINPUT",
//IN. < "ONE":CHAR(254) :"TwO"

EXECUTE "ED BP X",

//IN. < "L22":CHAR(254):"EX",

//OUT. > X

EXECUTE 'SELECT EMPFILE WITH SAL

EXECUTE 'LIST EMP.ADDR.FILE',
//SELECT. < X

EXPLANATION

The command WHO is executed; the output
(e.g., "0 SYSPROG") is displayed on
user's CRT screen; program control
continues in sequence.

The command WHO is executed; the output
(e.g., "0 SYSPROG":AM) is redirected to
variable X. X is tested for access to
program, resulting in either a message
and halt or program execution.

The command COPY is executed using,
instead of a user's keyboard input,
the redirected string "BACKUPPROG1".

Assume that the BASIC program TWOINPUT
has two INPUT statements. The first
INPUT statement will receive the data
"ONE"; the second, the data "Two".

The EXECUTE statement allows multiple
redirection variables. Two lines of
data, "L22" and "EX" are redirected to
the command ED. The output is re-
directed to variable X.

>= "10000"', //SELECT. > X

In the first EXECUTE statement, the
select list is redirected to variable

X, with the item-ids separated by
attribute marks; this makes X a variable
array comprised of item-ids from SELECT.
The select list is then redirected into
the LIST command in the second EXECUTE
statement.

Figure B. Examples of Correct Usage of EXECUTE Statement

BASIC Reference

Page 117 Statements/Functions

EXIT
Statement

The EXIT statement transfers control out of a program loop
initiated by a LOOP statement.

The general form of the EXIT statement is:
EXIT

When executed, EXIT transfers control to the next statement
after the REPEAT statement of a loop. When loops are
embedded within other loops, each EXIT transfers control to
the statement after the nearest REPEAT. The EXIT statement
must be used within a LOOP...REPEAT program loop; otherwise,
the BASIC compiler will flag an error.

EXIT
Figure A. General Form of EXIT Statement

CORRECT USE EXPLANATION
LOOP # Subroutine PROCESSIT is called

READNEXT ID ELSE EXIT after each value from a pre-

GOSUB PROCESSIT selected list is read by
REPEAT READNEXT. When the list is
PRINT "DONE" exhausted, the program loop is

exited, causing the message
"DONE" to be printed.

Figure B. Example of Correct Usage of EXIT Statement

BASIC Reference Page 118 Statements/Functions

EXP
Function

The EXP trigonometric function returns the value of the

number 'e' raised to a specified power.

The general form of the EXP function is:

EXP (expression)

The EXP (exponential) function raises the number 'e' (2.7183)

to the value of the expression. The EXP

function is the

inverse of the LN (natural logarithm) function. If the wvalue
of the expression is such that 'e' to that power is greater
than the largest allowable number, the function returns a

value of zero.

In the following summary M is used to denote the largest
allowable number in BASIC, which is 14,073,748,835.5327 with

PRECISION 4.

FUNCTION RANGE DESCRIPTION

COS (X) -M <= X <=M Returns the
an angle of

SIN(X) -M <= X <=M Returns the
an angle of

TAN (X) -M <= X <=M Returns the
of an angle

LN (X) 0 <= X <=M Returns the

cosine of

X degrees.

sine of

X degrees.

tangent
of X degrees.

natural (base e)

logarithm of the expression X.

EXP (X) -M <= RESULT <= M Raises the number 'e'

(2.7183) to

the value of X.

PWR(X,Y) -M <= RESULT <= M Raises the first expression
to the power denoted by
the second expression.

Figure A. Summary of Trigonometric Functions

BASIC Reference Page 119

Statements/Functions

EXTRACT
Function

The EXTRACT function returns an attribute, a value, or a
subvalue from a dynamic array.

The general form of the EXTRACT function is:
EXTRACT (expr,attr# {,value#} {,subvalue#})

The value of expr specifies the dynamic array to extract data
from. The values of attr#, value#, and subvalue# determine
whether the data is an attribute, a value, or a subvalue.
Attr# specifies an attribute, value# specifies a value, and
subvalue# specifies a subvalue. If value# and subvalue# both
have a value of 0 (or are both absent), then an entire
attribute is extracted. If subvalue# only has a value of 0
(or is absent), then a value is extracted. If attr#, valuet,
and subvalue# are all non-zero, then a subvalue is extracted.

Consider the following example:

OPEN 'TEST' ELSE STOP
READ X FROM 'NAME' ELSE STOP
PRINT EXTRACT(X,3,2)

These statements cause value 2 of attribute 3 of item NAME in
file TEST to be printed.

Consider next the following example:

OPEN 'ACCOUNT' ELSE STOP
READ ITEM1 FROM 'ITEM1' ELSE STOP
IF EXTRACT(ITEM,3,2,1)=25 THEN PRINT "MATCH"

These statements cause the message "MATCH" to be printed if
subvalue 1 of value 2 of attribute 3 of item ITEM1 in file
ACCOUNT is equal to 25.

NOTE: The EXTRACT intrinsic function has the same effect as
following a dynamic array reference by attribute, value, and
subvalue numbers in angle brackets. That is, EXTRACT (X,4,1)
is equivalent to X<4,1>.

BASIC Reference Page 120 Statements/Functions

EXTRACT (expr,attr# {,value# {,subvalue#}})

Figure A. General Form of EXTRACT Function

CORRECT USE EXPLANATION
Y=EXTRACT (X, 2) Assigns attribute 2 of dynamic
array X to variable Y.
A=3 Assigns subvalue 4 of
B=2 value 2 of attribute 3 of
Q1=EXTRACT (ARR,A,B,A+1) dynamic array ARR to variable
Q1.
IF EXTRACT(B,3,2,1)>5 THEN If subvalue 1 of value 2
PRINT MSG of attribute 3 of dynamic array
GOSUB 100 B is greater than 5, then the
END value of MSG is printed and a

subroutine call is made to
statement 100.

PRINT EXTRACT(D,25,2) Prints value 2 of attribute 25
of dynamic array D.

Figure B. Examples of Correct Usage of EXTRACT Function

BASIC Reference Page 121 Statements/Functions

FADD
Function

The FADD (floating point addition) function adds two floating
point numbers and returns the result as a floating point
number.

The general form of the FADD function is:
FADD (FX, FY)
FX and FY may be any valid floating point numbers.

A standard or string number must be converted to floating
point before performing the FADD function. The FFLT function
is provided to float a number or string. The FFIX function is
provided to fix a floating point number, returning a string
number. (Please refer to the FFLT and FFIX functions, listed
alphabetically in this chapter.)

If either FX or FY contains an invalid (non-floating point)
value, an error message is generated; the result of the
addition will be "OEO".

The result of the FADD function is a floating point number.
Thus, the function can be used in any expression where a
floating point number or a string would be valid.

FADD (FX,FY)

Figure A. General Form of FADD Function

CORRECT USE EXPLANATION

TOTAL=FADD (SUBTOT1, SUBTOT2) Assigns sum of variables SUBTOT1
and SUBTOT2 to variable TOTAL.

PRINT (FADD(X,"4E-3") Prints sum of variable X and
floating point constant (.004).

A=FADD("1030476E-6",B) Assigns to variable A the sum of
: floating point constant
(1.030476) and variable B.

X=FADD(A, FADD(B,C)) Uses floating point sum of
variables B and C in floating
point addition with wvariable
A; assigns sum to variable X.

Figure B. Examples of Correct Usage of FADD Function

BASIC Reference Page 122 Statements/Functions

FCMP
Function

The FCMP (floating point compare) function compares two
floating point numbers and returns a result of -1 (less
than), 0 (equal), or 1 (greater than).

The general form of the FCMP function is:
FCMP (FX, FY)
FX and FY may be any valid floating point numbers.

A standard or string number must be converted to floating
point before performing the FCMP function. A FFLT function
is provided to float a number or string. A FFIX function is
provided to fix a floating point number, returning a string
number. (Please refer to the FFLT and FFIX functions, listed
alphabetically in this chapter.)

If either FX or FY contains an invalid (non-floating point)
value, an error message is generated; the result of the
comparison will be zero (0).

The result of the FCMP function is a number: -1, 0, or 1.
If FX is less than FY, the result is -1. If they are equal,
the result is 0. If FX is greater than FY, the result is 1.
The function can be used in any expression where a number or
string would be valid.

BASIC Reference Page 123 Statements/Functions

FCMP (FX,FY)

Figure A. General Form of FCMP Function

CORRECT USE EXPLANATION
IF FCMP(FX,FY) = 0 THEN The result of the comparison
GOTO 100 determines whether program

execution branches to statement
100 or continues in sequence.

IF FCMP(FX,FY) < 0 THEN The PRINT operation is executed

PRINT X:" IS LESS THAN ":Y only if the result of the IF
statement is true (-1 was the
result of the FCMP function).

IF FCMP(FX,FY) > 0 THEN The PRINT operation is executed

PRINT X:"IS GREATER THAN ":Y only if the result of the IF
statement is true (1 was the
result of the FCMP function).

ON 2+FCMP(VAL1l,VAL2) GOTO 10, The result of the comparison
110,120 creates an index of 1,2, or 3
for the ON GOTO statement.

Figure B. Examples of Correct Usage of FCMP Function

BASIC Reference Page 124 Statements/Functions

FDIV
Function

The FDIV (floating point division) function divides the first
floating point number by the second and returns the result as
a floating point number.

The general form of the FDIV function is:
FDIV (FX, FY)
FX and FY may be any valid floating point numbers.

A standard or string number must be converted to floating
point before performing the FDIV function. A FFLT function
1s provided to float a number or string. A FFIX function is
provided to fix a floating point number, returning a string
number. (Please refer to the FFLT and FFIX functions, listed
alphabetically in this chapter.)

If either FX or FY contains an invalid (non-floating point)
value, an error message is generated; the result of the
addition will be "OEO". If FY is zero, an error message will

state that division by zero is illegal; the result will be
"OEO".

The result of the FDIV function is a floating point number.
Thus, the function can be used in any expression where a
floating point number or a string would be valid.

BASIC Reference Page 125 Statements/Functions

FDIV (FX,FY)

Figure A. General Form of FDIV Function

CORRECT USE

VELOCITY=FDIV(DISTANCE, TIME)

PRINT (FDIV(X,"4E-3")

A=FDIV("1030476E-6",B)

X=FDIV (A, FDIV(B,C))

EXPLANATION

Assigns result of variables
DISTANCE divided by TIME to
variable VELOCITY.

Prints quotient of
variable X divided by .
floating point constant (.004).

Assigns to variable A the result
of dividing floating point
constant (1.030476) by variable
B.

Uses floating point result of
variable B divided by variable
C in floating point division
with variable A; assigns sum
to variable X.

Figure B. Examples of Correct Usage of FDIV Function

BASIC Reference Page 126 Statements/Functions

FFIX
Function

The FFIX (fix a floating point number) function returns the
value of a floating point number as a string number.

The general form of the FFIX function is:
FFIX (FX {,N})

FX may be any valid floating point number. The optional N
operand may be any valid integer number. When present, N
sets the maximum number of digits to the right of the decimal
point in the result. If N is omitted or is negative, the
result will contain all possible digits to the right of the
decimal point. Whenever the result has fewer digits to the
right of the decimal than the maximum allowed, the unused

digits are truncated. The result is not rounded.

NOTE: This function is normally used after floating point
arithmetic functions: FADD, FSUB, FMUL, FDIV. (Please refer
to these functions, listed alphabetically in this chapter.)

The result of the FFIX function is a string number. The
function can be used in any expression where a string or
string number would be valid, but not necessarily where a
standard number would be valid. This is because string
numbers may exceed the range of numbers which can be
accommodated with standard arithmetic operators.

BASIC Reference Page 127 Statements/Functions

FFIX(FX {N})

Figure A. General Form of FFIX Function

CORRECT USE EXPLANATION

PRINT FFIX(FADD(FX,FY)) The result of the floating point
addition is fixed as a string
number and printed.

A=FFIX(FMUL("4E-6",FFLT(B)),4)
The variable B is converted into
a floating point number for the
floating point multiplication
operation; the result is con-
verted to a string number with
a maximum of 4 decimal places
and assigned to variable A.

LINE=FFIX(FX,0):" ":FFIX(FY,0)
The variable LINE is assigned
the value of FX converted into
a string integer, concatenated
with 3 spaces, concatenated with
the value of FY converted into
a string integer.

Figure B. Examples of Correct Usage of FFIX Function

BASIC Reference Page 128 Statements/Functions

FFLT
Function

The FFLT (float a number or string number) function converts
a number or string number into a floating point number.

The general form of the FFLT function is:
FFLT (X)

X may be any valid number or string number. If X is not
valid, an error message is generated and the result will be
"OEO". If the number contains more than 13 significant
digits, it will be truncated to 13 significant digits.

This function must precede floating point arithmetic
performed on a standard number or string number.

NOTE: The FFLT function is normally used with the floating
point arithmetic functions: FADD, FSUB, FMUL, FDIV. (Please
refer to these functions, listed alphabetically in this
chapter.)

The result of the FFLT function is a floating point number.
Thus, it can be used in any expression where a floating point
number or a string would be valid.

FFLT (X)

Figure A. General Form of FFLT Function

CORRECT USE EXPLANATION

X=FFLT (Y) The floating point value of Y is
assigned to X.

A=FMUL(FFLT (X) ,FFLT(Y)) The variables X and Y are floated
and then used in a floating point
multiplication function; the
result is assigned to variable A.

FLOAT.PI=FFLT("3.1415926") The constant pi is floated and
assigned to FLOAT.PI.

Figure B. Examples of Correct Usage of FFLT Function

BASIC Reference Page 129 Statements/Functions

FIELD
Function

The FIELD function returns a sub-string from a string by
specifying a delimiter character.

The general form of the FIELD function is:
FIELD(string,delimiter, occurrence)

All three FIELD parameters may be any valid expression. The
FIELD function searches string for a sub-string delimited by
the delimiter character. Occurrence specifies which
occurrence of the sub-string is to be returned. If
occurrence has a value of 1, then the FIELD function will
return the sub-string from the beginning of the string up to
the first occurrence of the delimiter. For example, the
statement below assigns the string "XXX" to the variable A:

A = FIELD("XXX.YYY.ZZZ.555"," ",k 1)

If occurrence has a value of 2, then the sub-string delimited
by the first and second occurrences of the specified
delimiter character delimiter will be returned. A value of 3
for occurrence will return the sub-string delimited by the
second and third occurrences of delimiter, and so on. For
example, the statement below assigns the string "ZzZz" to
variable C:

C = FIELD("XXX.YYY.ZZZ.555", " ", K 3)

Note that the end of the string also delimits sub-strings, so
that:

FIELD ("XXX.YYY.ZZ2Z.555"," ", 4)

returns a value of "555"., If the specified substring is not
found, the function returns a null string ('').

NOTE: The COL1l() and COL2() functions are used in

conjunction with the FIELD function. (Please refer to the
COL functions, listed alphabetically in this chapter.)

BASIC Reference Page 130 Statements/Functions

PN

FIELD(string,delimiter, occurrence)

Figure A. General Form of FIELD Function

CORRECT USE EXPLANATION

T = "12345A6789A98765A" Assigns the string value "12345"

G = FIELD(T,"A",1) to variable G.

T = "12345A6789A98765A" Assigns the string value "98765"

G = FIELD(T,"A",3) to variable G.

Q = FIELD("ABCBA","B",2) Assigns the string value "C" to

R = COL1() variable Q, the numeric value 2

S = COL2() to variable R, and the numeric
value 4 to variable S.

X = "77$SABCSXX" The IF statement will cause the

Yy = "g" program to terminate (i.e., the

Z = "ABC" value returned by the FIELD

IF FIELD(X,Y,2)=Z THEN STOP function is "ABC", which equals

the value of Z, thus making the
test condition true).

Figure B. Examples of Correct Usage of FIELD Function

BASIC Reference Page 131 Statements/Functions

FMUL
Function

The FMUL (floating point multiplication) function multiplies
two floating point numbers and returns the result as a
floating point number.

The general form of the FMUL function is:
FMUL (FX, FY)
FX and FY may be any valid floating point numbers.

A standard or string number must be converted to floating
point before performing the FMUL function. A FFLT function
1s provided to float a number or string. A FFIX function is
provided to fix a floating point number, returning a string
number. (Please refer to the FFLT and FFIX functions, listed
alphabetically in this chapter.)

If either FX or FY contains an invalid (non-floating point)
value, an error message is generated; the result of the
multiplication will be "OEO".

The result of the FMUL function is a floating point number.
Thus, the function can be used in any expression where a
floating point number or a string would be valid.

FMUL (FX,FY)

Figure A. General Form of FMUL Function

CORRECT USE EXPLANATION

PAY=FMUL (HOURS, RATE) The variable PAY is assigned the
product of HOURS times RATE.

PRINT FMUL(X,"10015E=-4") The variable X is multiplied by
constant 1.0015 and the result
is printed.

A=FMUL("1030476E-6",B) The constant 1.030476 is
multiplied by variable B and the
result is assigned to variable A

X=FMUL (A, FMUL(B,C)) The product of variables B and C
is multiplied with variable A;
the result is assigned to X.

Figure B. Examples of Correct Usage of FMUL Function

BASIC Reference Page 132 Statements/Functions

FOOTING
Statement

The FOOTING statement causes the specified text string to be
printed at the bottom of each page of output.

The FOOTING statement has the following general form:
FOOTING expression

The first FOOTING or HEADING statement executed in a program
will initialize the page parameters. Subsequently, the
footing literal data may be changed at any time in the BASIC
program by another FOOTING statement; this change will take
effect when the end of the current page is reached. The
special footing option characters listed in Figure B may be
used as part of a FOOTING string expression. When used,
these special characters will be converted and printed as
part of the footing. Option characters are enclosed in
single quotes.

Consider, for example:
FOOTING "STATISTICS AS OF 'T' PAGE 'PL'"

This statement will print at the bottom of each page a
footing consisting of the words "STATISTICS AS OF", followed
by the current time and date, followed by the word "PAGE",
followed by the current page number, followed by a carriage
return and line feed. Page numbers are assigned in ascending
order starting with page 1.

NOTE: The FOOTING statement affects only print file zero,
the default output device.

BASIC Reference Page 133 Statements/Functions

FOOTING expression

Figure A. General Form of Footing Statements

Character Used in

FOOTING String Expression Character is Converted to:
PN Current page #, left-justified
P Current page #, right-justified
in a field of 4 blanks
L Carriage return/line feed
T Current time and date
C Centers the line
Cn Centers with specified line length
D Current date

Figure B. Special Control Characters for FOOTING Statement

CORRECT USE EXPLANATION

FOOTING "TIME & DATE: 'TL'" The text "TIME & DATE:" will be
printed, followed by the current
time and date plus a carriage
return/line feed.

FOOTING "'C60'PAGE 'PL'" The text "PAGE" will be centered,
within a page width of 60, followed
by the current page number and a
carriage return-line feed.

FOOTING "'LTPL'" The following footing will be
printed: the current time, date,
and page number.

Figure C. Examples of Correct Usage of FOOTING Statements

BASIC Reference Page 134 Statements/Functions

PN

FOR
Statement

The FOR statement is used to specify the beginning point of a
program loop. A loop is a portion of a program written in
such a way that it will execute repeatedly until some test
condition is met. The FOR statement is always used with a
NEXT statement that specifies the ending point of the loop.

The general forms of the FOR statement are:

FOR variable = exprl TO expr2 {STEP expr3)} {WHILE expr4)
FOR variable = exprl TO expr2 {STEP expr3} {UNTIL expr5}

A FOR and NEXT loop causes execution of a set of statements
for successive values of the specified variable until the
limit is reached. The values of the expressions are used as
follows: exprl is the initial value for variable; expr2 is
the limit value; the optional expr3 is the increment value to
be added to the value of the variable at the end of each pass
through the loop. If the STEP phrase is absent, the increment
value is assumed to be +1. When the limit value (expr2) is
exceeded, program control proceeds to the statement after the
NEXT statement.

Exprl is evaluated only once (when the FOR statement is

executed). Expr2 and expr3 are evaluated on each iteration of
the loop.

One of the optional condition clauses (WHILE and UNTIL) may
be used in a FOR statement. If the WHILE clause is used,
expr4 will be evaluated for each iteration of the loop. If it
evaluates to false (i.e., zero), then program control will
pass to the statement immediately following the accompanying
NEXT statement. If it evaluates to true (i.e., non-zero) the
loop will re-iterate.

If the UNTIL clause is used, expr5 will be evaluated for each
iteration of the loop. If it evaluates to true (i.e.,
non-zero), then program control will pass to the statement
immediately following the accompanying NEXT statement. If it
evaluates to false (i.e., zero) the loop will re-iterate.

The following FOR and NEXT loop, for example, will execute
until I=10 or until the statements within the loop cause
variable A to exceed the value 100:

FOR I=1 TO 10 STEP .5 UNTIL A>100

-

NEXT I

The program loop concludes with a NEXT statement. The
function of the NEXT statement is to return program control
to the beginning of the loop after a new value of the

BASIC Reference Page 135 Statements/Functions

variable has been computed. The NEXT statement is discussed
in a separate topic. (For details, please refer to the NEXT
statement, alphabetically listed in this chapter.)

The following example shows a complete FOR/NEXT loop:

150 FOR J=2 TO 11 STEP 3
160 PRINT J+5
170 NEXT J

Statement 150 sets the initial value of J to 2 and specifies
that J thereafter will be incremented by 3 each time the loop
is performed, until J exceeds the limiting value, 11.
Statement 160 prints the current value of the expression J+5.
Statement 170 assigns J its next value (i.e., J=2+3=5) and
causes program control to return to statement 150. Statement
160 is again executed, and statement 170 again increments J
and causes the program to loop back. This process continues
with J being incremented by 3 after each pass through the
loop. When J attains the limiting value of 11, statement 160
will again be executed and control will pass to 170. J will
again be incremented (i.e., J=11+3=14), and since 14 is
greater than the limiting value of 11, the program will "fall
through" statement 170 and control will pass to the next
sequential statement following statement 170.

FOR and NEXT loops may be '"nested"; a nested loop is a loop
which is wholly contained within another loop. For example:

FOR I=1 TO 10
FOR J=1 TO 10
PRINT B(I,J)
NEXT J
NEXT I

The above statements illustrate a two-level nested loop. The
inner loop will be executed ten times for each of ten