

ULTIMATE BASIC LANGUAGE

REFERENCE GUIDE

HOW TO ORDER THIS GUIDE

The ULTIMATE BASIC Reference Guide is included with the
system documentation set.

For additional copies, please call your dealer or the
ULTIMATE corporation.

PROPRIETARY INFORMATION

This document contains information which is proprietary to
and considered a trade secret of the ULTIMATE CORPORATION.
It is expressly agreed that it shall not be reproduced in
whole or in part, disclosed, divulged, or otherwise made
available to any third party either directly or indirectly.
Reproduction of this document for any purpose is prohibited
without the prior express written authorization of the
ULTIMATE CORPORATION.

Copyright September, 1985, THE ULTIMATE CORP.
Operating System Release 10 - Rev 140

Document No. BAS-01

HOW TO USE THIS MANUAL

This manual is intended as a reference for programmers using
the ULTIMATE BASIC programming language. Although not a
tutorial, it covers all aspects of using BASIC with the
ULTIMATE system file structure and operating system. The
material is presented in a structured format, with text and
graphics integrated into single-topic units.

How the manual is organized

Chapter I gives an overview of programming with ULTIMATE
BASIC. It covers the program file structure, components of a
program, compiler options and directives, and methods of
executing programs.

Chapter 2 discusses how data can be represented in a BASIC
program: as constants (literals), variables, or arrays. It
also covers the use of expressions (arithmetic, logical,
string, and relational) and the extended arithmetic package
(floating point and string).

Chapter 3 lists all statements and functions in alphabetical
order. Each statement and function is detailed in a
single-topic unit.

Chapter 4 explains the testing and debugging procedure and
each command in the BASIC Debugger.

Chapter 5 reviews the ULTIMATE data file structure and gives
some recommended coding techniques. The chapter also
contains several sample programs for reference. These
programs illustrate the use of ULTIMATE BASIC for file
updating, job control, and other special applications.

The appendixes list error messages, ASCII codes, debugger
commands and messages.

How the manual is formatted

This manual is presented in a structured format. Each
individual topic is an independent unit with its own
headline, summary, text, and one or more exhibits.

with a structured format the reader can easily locate the
specific topic(s) needed, and all pertinent information is
included within the unit.

All topics are numbered within their section, except for the
BASIC statements and functions in Chapter 3. The statements
and functions are in alphabetical order for easy reference.
Each statement/function name is centered as the topic heading
without a topic number.

BASIC Reference Page P- 1 Preface

Each topic typically has one or more exhibits. Figure A is
always the first exhibit, Figure B is the second exhibit, and
so on.

conventions used

This manual presents general formats for each of the BASIC
statements and intrinsic functions. In presenting and
explaining these general forms, the following conventions
apply:

Example

READ

expr

{expr}

Meaning

Words printed in capital letters are required and
must appear exactly as shown.

Words printed in lower-case letters are parameters
to be supplied by the user (i.e., variables,
expressions, etc.).

Parameters are underlined for easy reference in
the text explanation below the general form.

Braces enclosing a word and/or a parameter
indicates that the word and/or parameter is
optional and may be included or omitted at the
user's option. If an ellipsis (i.e., three dots ...)
follows the terminating bracket, then the word
and/or parameter may be omitted or repeated an
arbitrary number of times.

RND(expr) All functions require a set of parentheses, which
COL1() usually enclose a parameter. No space is allowed

between the function name and the left parenthesis.

The figures on the opposite page illustrate the general
figure identifications and content for the topics describing
the BASIC Statements and Intrinsic Functions.

other conventions used throughout the manual are:

BOLD

<CR>

Bold face type is used for section and unit
headings. It is also used in exhibits to indicate
user input as opposed to system-displayed data, and
in the Appendix message listings.

The <CR> symbol indicates a physical carriage
return pressed at the keyboard.

BASIC Reference Page P- 2 Preface

THIS FIGURE USUALLY PRESENTS A GENERAL

FORMAT FOR THE FUNCTION OR STATEMENT

Figure A. General Format

THIS FIGURE USUALLY PRESENTS A NUMBER OF

EXAMPLES OF CORRECT USAGE.

Figure B. Examples of Correct Usage

THIS FIGURE, IF PRESENT, USUALLY PRESENTS A NUMBER OF

EXAMPLES OF INCORRECT USAGE.

Figure C. Examples of Incorrect Usage

BASIC Reference Page P- 3 Preface

Topic

THE ULTIMATE BASIC REFERENCE MANUAL

TABLE OF CONTENTS

How to Use This Manual P-l

Chapter 1 OVERVIEW OF PROGRAMMING WITH THE BASIC LANGUAGE

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

An Overview of the BASIC Language
The File Structure of BASIC Source Programs
The Components of a BASIC Program
compiler Directives ($) within BASIC Programs
The Process of creating and Compiling BASIC Programs ..
BASIC compiler options: A, C, E, L, N, and P options ..
BASIC Compiler options: M, S, and X options
Cataloging BASIC Programs: CATALOG and DE CATALOG Verbs
Executing Compiled BASIC Programs
Executing BASIC Source (Compile-and-go) Programs

2
4
5
8

10
13
15
16
18
22

Chapter 2 REPRESENTING DATA (CONSTANTS, VARIABLES, EXPRESSIONS)

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

Representing Data Values: Numbers and strings
Multi-valued Strings: Dynamic Arrays
Defining Data Values as Constants or Variables
Representing changing Data Values: Variables
Multi-valued Variables: Dimensioned Arrays
Arithmetic Expressions: Standard Arithmetic
Ext7nded (Floa~ing Point and String) Arithmetic
Strl.ng Expressl.ons
Format strings: Numeric Mask and Format Mask Codes
Relational Expressions
Rel~tional Expr7ssions: Pattern Matching•.
Logl.cal Expressl.ons
Summary of Expression Evaluation•........
How Variables are Structured and Allocated

24
26
29
30
32
34
36
39
42
46
48
50
52
53

Chapter 3 BASIC STATEMENTS AND FUNCTIONS

3.1 A Summary of the Statements and Functions 58
3.2 Alphabetical Listing of Statements and Functions...... 59

! statement... 60
* statement... 60
= Assignment Statement................................ 62
@ Function.. 64
ABORT S ta tement. 67
ABS Function.. 68
ALPHA Function............... 69
ASCII Function... 70
Assignment Statements................................. 71
BEGIN CASE Statement.................................. 72
BREAK (ON/OFF) Statement.............................. 73
CALL Statement. 74
CASE statement.. 78
CHAIN Statement....................................... 80
CHAR Function.. 82

CLEARFILE Statement ..••.•
CLOSE Statement •..•...••.
COLI and COL2 Functions ..
COMMON Statement.
COS Function ...
COUNT Function.
DATA Statement ••.•.....
DATE Function ..
DCOUNT Function ..•
DEL Statement •.•
DELETE Function •.
DELETE Statement •.
DIM Statement ..•..•...•..•••••
DISPLAY Statement.
EBCDIC Function •.••.
ECHO (ON/OFF) Statement ..
END Statement ••.••.•
END CASE Statement ..
ENTER Statement ...
EOF Function .•.•.•.
EQUATE Statement ..
EXECUTE Statement.
EXIT Statement •..
EXP Function .•.•.
EXTRACT Function .•
FADD Function.
FCMP Function ••
FDIV Function ••
FFIX Function •.
FFLT Function ..
FIELD Function .••••••
FMUL Function ..•
FOOTING Statement •.
FOR Statement •.
FSUB Function •.••.
GET Statement ••••
GOSUB Statement ••
GOTO Statement .•.
HEADING Statement •.
ICONV Function .•
IF Statement ••.••
INDEX Function •••.
INPUT Statement •••••••••
INPUTCLEAR statement ••
INS Statement ••.••
INSERT Function ••
INT Function •••
LEN Function •••.•••••••
LET Statement ••
LN Function •••.
LOCATE Statement •.
LOCK Statement ••.
LOOP Statement •....•.......•
MAT = Statement ••
MATREAD statement .•.
MATREADU Statement.
MATWRITE Statement •.
MATWRITEU Statement .•
MOD Function ••.•.•••

' ...

84
86
88
90
92
93
94
95
96
98
99

101
103
104
105
106
107
108
109
110
112
114
118
119
120
122
123
125
127
129
130
132
133
135
138
139
142
143
145
147
149
153
155
159
160
161
163
164
165
166
167
170
172
174
176
178
180
182
183

NOT Function
NULL statement ..
NUM Function
OCONV Function ..
ON GOSUB and ON GOTO statements.
OPEN statement
PAGE statement
PRECISION Statement.
PRINT Statement
PRINTER Statement .. .
PRINTERR Statement.
PROCREAD Statement ..
PROCWRITE Statement.
PROGRAM Statement.
PROMPT Statement.
PUT Statement ..
PWR Function
READ Statement
READNEXT Statement ..
READT Statement.
READU Statement ...
READV Statement ..
READVU Statement.
RELEASE Statement.
REM Function
REM Statement
REPEAT Statement.
REPLACE Function ..
RETURN (TO) Statement ..
REWIND Statement ..
RND Function ..
RQM Statement.
SADD Function.
SCMP Function ..
SDIV Function ...
SEEK Statement ..
SELECT Statement ..
SEQ Function ..
SIN Function
SMUL Function .. .
SPACE Function ..
SQRT Function ...
SSUB Function ..
STOP Statement ..
STORAGE Statement.
STR Function
SUBROUTINE Statement ..
SYSTEM Function
TAN Function
TIME Function
TIMEDATE Function.
TRIM Function
UNLOCK Statement.
UNTIL Statement.
WEOF Statement ..
WHILE Statement.
WRITE Statement
WRITET Statement.
WRITEU Statement.

186
187
188
189
191
193
196
197
199
204
206
207
209
210
211
212
214
216
219
222
224
226
229
231
233
234
235
236
238
240
242
243
244
245
246
248
250
253
254
255
256
257
258
259
261
262
263
267
270
271
272
273
274
276
277
279
280
283
285

WRITEVU Statement ..•..•••.•••...•...........•......... 289

Chapter 4 TESTING AND DEBUGGING BASIC PROGRAMS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

BASIC Symbolic Debugger ••••••.••.••••.•••......••....
The Symbol Table
Displaying Source Code: Land Z Commands •.•.....•....•
The Trace Table: T and U Commands •..•••........•....•.
Breakpoint Table: Band K Commands•••.•..•...••
Displaying Tables: D Command
Execution Control: E, G, and N Commands ..•............
Execution Control: END and OFF Commands
Displaying and Changing Variables: the / Command •.....
Special Commands
Example of Using the BASIC Debugger•.....••.....•.

Chapter 5 REFERENCE FOR PROGRAMMERS

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Understanding the ULTIMATE System File Structure ...•.
Programming Techniques for Handling I/O ..••.•.•.......
Programming Considerations about I/O for
Network Users .. .
Programming Techniques for Handling File Items
Guidelines for Cursor Positioning•..........
Programming for Maximum System Performance•.
Programming Example: PRIME ..•..••••.................•.
Programming Example: COLOR•........•............•.
Programming Example: POOOO (File Update) ••••........•.
Programming Example: ITEMS.BY.CODE (Job Control) .••.•.
Programming Example: SUMMARY.REPORT (Menu/Report) ..•..

APPENDIX A: BASIC Compiler Error Messages
APPENDIX B: BASIC Run-time Error Messages
APPENDIX C: Lis~ of ASCII Codes
APPENDIX D: Summary of BASIC Debugger Commands
APPENDIX E: BASIC Debugger Messages

INDEX

292
294
295
296
298
300
301
303
304
305
307

310
313

316
317
320
321
323
324
325
327
329

CHAPTER 1

OVERVIEW OF PROGRAMMING WITH THE BASIC LANGUAGE

1.1 An Overview of the BASIC Language
Figure A. BASIC Statements
Figure B. BASIC Intrinsic Functions
Figure C. BASIC Compiler Directives
Figure D. BASIC Redirection Variables

1.2 The File Structure of BASIC Source Programs

1.3 The Components of a BASIC Program
Figure A. Sample BASIC Program
Figure B. Sample Program with Remark Statements

1.4 Compiler Directives within a BASIC Program

1.5 The Process of Creating and compiling BASIC Programs
Figure A. General Forms for Editing/compiling Programs
Figure B. BASIC Program "COUNT" Created,. Filed, Compiled

1.6 BASIC Compiler Options: A, C, E, L, N, and P Options
Figure A. General Description of Compiler Options
Figure B. Sample Code Conversions During compilation

1.7 BASIC compiler Options: M, S, and X Options

1.8 Cataloging BASIC Programs: CATALOG and DE CATALOG Verbs

1.9 Executing Compiled BASIC Programs
Figure A. Options at TCL for Executing BASIC Programs
Figure B. Alternative Ways to Execute a BASIC Program

1.10 Executing BASIC Source (Compile-and-go) Programs

BASIC Reference Page 1 Overview

1.1 AN OVERVIEW OF THE BASIC LANGUAGE

This manual describes the ULTIMATE BASIC programming
language, which is an extended version of Dartmouth BASIC.

BASIC (Beginners All-Purpose Symbolic Instruction Code) is a
simple yet versatile programming language suitable for
expressing a wide range of problems. Developed at Dartmouth
College in 1963, BASIC is a language especially easy for the
beginning programmer to master. ULTIMATE BASIC includes the
following extensions to Dartmouth BASIC:

optional alphanumeric or numeric statement labels

- Statement labels of any length

- Multiple statements on one line

- Single statements on multiple lines

- Computed GOTO statements

- Complex and multi-line IF statements

- Priority case statement selection

- string handling with variable length
strings up to 32,267 characters

- External subroutine calls

- Direct and indirect calls

- Magnetic tape input and output

- Fixed point arithmetic with up to
15 digit precision

- Floating point and string arithmetic

- Data conversion capabilities

- ULTIMATE file access and update capabilities

- File level or group level lock capabilities

- Pattern matching

- Dynamic arrays

- Job control capabilities

- Shared source code between programs

- Linked programs

BASIC Reference Page 2 overview

Figure A lists the BASIC statements. The BASIC intrinsic
functions are listed in Figure B. Figures C and D list the
BASIC compiler directives and redirection variables,
respectively. All terms listed are BASIC "keywords" and
cannot be used as variable names.

! END LOCK PROGRAM STORAGE

* END CASE LOOP PROMPT SUBROUTINE
= (Assignmt) ENTER MAT = PUT UNLOCK
ABORT EQUATE MATREAD READ UNTIL
BEGIN CASE EXECUTE MATREADU READNEXT WEOF
BREAK EXIT MATWRITE READT WHILE
CALL FOOTING MATWRITEU READU WRITE
CASE FOR NEXT READV WRITET
CHAIN GET NULL READVU WRITEU
CLEAR GOSUB ON GOSUB RELEASE WRITEV
CLEARFILE GO TO (GO TO) ON GOTO REM WRITEVU
CLOSE HEADING OPEN REPEAT
COMMON IF PAGE RETURN (TO)
DATA INPUT PRECISION REWIND
DEL INPUTCLEAR PRINT RQM
DELETE INS PRINTER SEEK
DIM LET PRINTERR SELECT
DISPLAY LOCATE PROCREAD STOP
ECHO PROCWRITE

Figure A. BASIC Statements

@ DELETE FSUB REM STR
ABS EBCDIC ICONV REPLACE SYSTEM
ALPHA EOF INDEX RND TAN
ASCII EXP INSERT SADD TIME
CHAR EXTRACT INT SCMP TIMEDATE
COLl FADD LEN SDIV TRIM
COL2 FCMP LN SEQ
COS FDIV MOD SIN
COUNT FFIX NOT SMUL
DATE FFLT NUM SPACE
DCOUNT FIELD OCONV SQRT

FMUL PWR SSUB

Figure B. BASIC Intrinsic Functions

$CHAIN $INCLUDE $NODEBUG $*

Figure C. BASIC Directives

ARG. MSG. SELECT. IN. OUT.

Figure D. BASIC Redirection Variables

BASIC Reference Page 3 overview

1.2 The File structure of BASIC Source Programs

BASIC source programs are stored as items in disk files.
Object code is referenced through pointer items in file
dictionaries.

BASIC source programs are stored as items in the data section
of a disk file. The compiler generates pointers to object
code in the dictionary section of the file. In order to
compile programs, the data and dictionary sections must be
distinct files.

Stored along with the object code of each program (unless
suppressed at compile-time) is a symbol table for use with
the BASIC debugger. The symbol table contains all variable
names defined in the program. (For details on the BASIC
debugger, please refer to Chapter 4, Testing and Debugging
BASIC Programs.)

Object pointer items have a format similar to that of
POINTER-FILE items used with Recall save-list statements:

Attribute

a (item-id)
1
2
3
4
5

Contents

Program name
CC
Starting FID of object code
Number of frames of object code
(null)
Time and date of compilation

The term "FID" stands for "frame-id", or frame number.
Attributes a through 4 are protected by the system against
alterations by the Editor or any other file-updating program.

When object pointer items are saved on tape as part of a
file-save or account-save, the associated object code is also
saved. Individual object programs may also be saved on tape
using the T-DUMP verb by T-DUMPing specified pointers in a
file dictionary. Programs may be restored from file-save and
account-save tapes using ACCOUNT-RESTORE or SEL-RESTORE
(specifying a file dictionary). Object programs may be
T-LOADED into file dictionaries from T-DUMP tapes.

BASIC Reference Page 4 overview

1.3 The Components of a BASIC Proqram

A BASIC proqram is comprised of BASIC statements. A program
may also include directives that are interpreted and used by
the compiler.

A BASIC program consists of a sequence of BASIC statements.
Each BASIC statement tells the system to perform a specific
program operation. A statement may include one or more data
values, expressions, and/or intrinsic functions. (Please
refer to Chapter 2 for details on representing data and
expressions. Refer to Chapter 3 for an alphabetical listing
and discussion of each BASIC statement and intrinsic
function.)

More than one statement may appear on the same program line,
separated by semicolons. For example:

x = 0; Y = 0; GOTO 50

certain statements which take an indefinite number of
arguments may be continued on several lines; each line except
the last must end with a comma. For example:

CALL A.BIG.SUBROUTINE(LONGPARAMETERNAME1,
LONGPARAMETERNAME2, EVEN. LONGER. PARAMETERNAME3)

The continued lines may be indented to improve program
clarity, but this is not required by the BASIC Compiler.
statements with the multi-line option are noted in their
individual discussions.

Any BASIC statement may begin with an optional statement
label. A statement label is used so that the statement may be
referenced from other parts of the program. A statement label
may be either alphanumeric or numeric. Numeric statement
labels may be any constant whole number. The following INPUT
statement, for example, has a statement label of 100:

100 INPUT X

Alphanumeric statement labels may contain letters, numbers,
dollar signs, and periods, but the first character must be a
letter. When an alphanumeric label is used, it must be
followed by a colon before the statement which it labels.
(The colon is optional with numeric labels.) The following
subroutine has a statement label of INPUTLOOP and references
two other labels:

INPUTLOOP: GOSUB GET INPUT
GOSUB DOlT
GOTO INPUTLOOP

A label may be the only text on a line, in which case it
labels the next non-blank non-null line. For example:

BASIC Reference Page 5 Overview

TOP:

GOSUB DOITAGAIN

A helpful feature to use when writing a BASIC program is the
Remark statement. A Remark statement is used to explain or
document the program. It allows the programmer to place
comments anywhere in the program without affecting program
execution. (The Remark statement, which can be written as
REM, !, or *, is detailed in Chapter 3.)

A BASIC program can also include compiler directives.
Directives always begin with "$". They appear similar to
BASIC statements, but they affect the way a program is
compiled, not the way it runs. (For details, see the next
topic.)

Except for situations explicitly called out in the following
sections, blank spaces appearing in the program line (which
are not part of a data item) will be ignored. All-blank
lines and null lines (containing no text and no blanks) will
also be ignored. Thus, blanks and null lines may be used
freely within the program for purposes of appearance.

A simple BASIC program is illustrated in Figure A to show
overall program format. Figure B illustrates the same program
with a number of Remark statements and a null line added for
clarity.

The user should note that a BASIC program, when stored,
constitutes a file item, and is referenced by its item-id.
The item-id is the name given to the program when it is
created via the EDITOR; refer to Section 1.5, entitled "The
Process of Creating and Compiling BASIC Programs". An
individual line within a BASIC program constitutes an
attribute.

BASIC Reference Page 6 Overview

I = 1
5 PRINT I

IF I = 10 THEN STOP
I = I + 1
GO TO 5
END

Figure A. Sample BASIC Program

REM PROGRAM TO PRINT THE
* NUMBERS FROM ONE TO TEN

*
I = 1; * START WITH ONE

5 PRINT I; * PRINT THE VALUE
IF I = 10 THEN STOP; * STOP IF DONE
I = I + 1; * INCREMENT I
GOTO 5; * START OVER
END

Figure B. BASIC Program with Remark Statements

BASIC Reference Page 7 Overview

1.4 compiler Directives within a BASIC Program

compiler directives can be included in programs just like
BASIC statements. Any line in a BASIC source program which
begins with "$" is interpreted as a compiler directive and
not a BASIC statement.

Compiler directives appear similar to BASIC statements, but
they affect the way a program is compiled, not the way it
runs. Each type of directive is detailed below.

$INCLUDE Directive = Sharing Source Code Among Programs

The $INCLUDE directive may be used to include source code
stored in one program file item as part of another. The
general format of the $INCLUDE directive is:

$INCLUDE {filename} itemname

If filename is omitted, the file is assumed to be the one
containing the program currently being compiled. The
itemname specifies the name under which the program item is
stored. $INCLUDE directives may be nested up to three levels
deep. Users should note that the object code of any BASIC
program or external subroutine, whether or not it contains
$INCLUDE directives, should not exceed 32768 bytes in size.

A typical use for the $INCLUDE directive is with a set of
related BASIC programs using variables in COMMON. The COMMON
statements can be placed in a single item which is "included"
in each program by the $INCLUDE directive. This has the
advantages of saving space, making changes easier, and
reducing the chance of declarations in one program
mismatching those in another.

$CHAIN directive = Linking program file items

The $CHAIN directive can be used to link program file items
together at compilation. The general format of the $CHAIN
directive is:

$CHAIN {filename} itemname

If filename is omitted, the file is assumed to be the one
containing the program currently being compiled. The $CHAIN
directive continues compilation with the specified program
itemname. Since any source code appearing after the $CHAIN
directive is ignored, the directive should be the last line
in the source code.

Note that the final object code size should not exceed 32768
bytes.

BASIC Reference Page 8 overview

$NODEBUG directive = Omitting test capabilities

The $NODEBUG directive may be used after a program has been
debugged. It directs the compiler to discard information
used during program testing. The general format is:

$NODEBUG

The $NODEBUG directive causes the compiler to not save the
EOL opcodes and the symbol table as part of the object code.
(This has the same effect as specifying the "C" and "S"
options on the COMPILE or BASIC verb.)

$* directive = Inserting specified text

The $* directive can be used to embed text (such as a
copyright notice) in a program's object code. The general
format is:

$* text

The text is specified immediately after the asterisk (*), to
the end of the line. The text appears in the object code in
a code sequence not generated by any BASIC statement.

BASIC Reference Page 9 overview

1.5 The Process of creating and Compiling BASIC Programs

A BASIC program is created via the Editor as any other
data-file item. Once this source code item has been filed, it
is compiled by issuing a COMPILE command (or a BASIC command)
at the TCL level.

BASIC programs are created via the ULTIMATE system Editor.
To enter the Editor, issue the following command at the TCL
level:

ED{IT} filename item-id
EEDIT filename item-id

The system will then enter the Editor, and you may begin
entering the BASIC program. The EEDIT command performs the
same function as EDIT, but compresses the storage space used
by eliminating all spaces when the item is filed.

Program listings are easier to follow when you indent
statements within a loop or routine. You may set tab stops
at the TCL level or within the Editor, as shown in Figure B.
(See the System Command Guide for further discussion of the
EDIT command: see the Editor manual for details about using
the Editor.)

The program will be stored in the file specified by filename
under the name specified by item-ide

Once the BASIC program has been entered and filed, it may be
compiled at the TCL level. Two TCL verbs are available to
create the object code: COMPILE and BASIC: either verb may be
used since they perform the same operation. The EBASIC form
of BASIC must be used to compile programs created with an
EEDIT command. EBASIC expands the item to include any spaces
that were compressed by EEDIT.

Compiling a program creates object code that can be executed
with the RUN verb and can be cataloged. The symbol table is
also included with the object code (unless suppressed by the
"s" option). The general compile command formats are:

COMPILE filename item-list {(options)}
BASIC filename item-list {(options)}
EBASIC filename item-list {(options)}

The item-list may contain one or more explicit item-ids
(program names) separated by one or more blanks, or may be an
asterisk (*) to indicate all programs in the file. The
options parameter is optional: if used, it must be enclosed
in parentheses. An option is specified as an alphabetic
character: multiple options used in a single command should
be separated by commas.

BASIC Reference Page 10 Overview

The valid options are listed below. For detailed
descriptions of each, see the next two section topics.

A Assembled code option
C Suppress End Of Line (EOL) opcodes from object

code.
E List error lines only.
L List BASIC program.
M List map of BASIC program
N No page
P Print compilation output on line printer
S Suppress generation of symbol table
X Cross reference all variables

The BASIC compiler stores a compiler version number in each
program's object code. The run-time system program checks
this number each time before running a program to see if it
is compatible with the current compiler version. If it is
not, the program is not allowed to run; the system issues an
error message (B23). The message indicates that the program
must be recompiled before it can be run.

Note that compiling does not create an item in the user's
Master Dictionary. Master Dictionary items are created by
cataloging the compiled program or by using the compile-and­
go format in the BASIC source program.

The BASIC, COMPILE, and EBASIC commands are also discussed in
the System Commands Guide.

BASIC Reference Page 11 overview

EEDIT filename item-id

ED{IT} filename item-id

COMPILE filename item-list {(options)}

BASIC filename item-list {(options)}

EBASIC filename item-list {(options)}

Figure A. General Forms for Editing and compiling a BASIC Program

>TABS I 4,8,12 <CR>

>ED BP COUNT <CR>

New Item
Top
.I <CR>

<------------ User sets input tabs
at TCL level

<------------ User edits item 'COUNT'
in file 'BP' (Basic Programs)

<------------ User enters input mode and
begins to enter program

001*
002
003
004
005
006
TOP

PROGRAM COUNTS FROM 1-10 <CR>
FOR I = 1 TO 10 <CR> <----- Entered with CTL/I (or TAB key)

PRINT I <CR> <------- pressed once for indentation
NEXT I <CR> I to first tab stop.

END <CR> I
<CR> ----- CTL/I (or TAB key) pressed

.FI <CR> <-----------
I

twice for second tab stop
indentation

-------- User files item
'COUNT' Filed

>COMPILE BP COUNT <CR> <---------- User issues compile command
***** Successful compile; 1 frames used.

Figure B. BASIC Program "COUNT" Created (edited), Filed and Compiled

BASIC Reference Page 12 overview

1.6 BASIC Compiler options: A, C, E, L, N, and P Options

Nine options are available with the BASIC compile statement.
six are described below: They are the "A" for assembled code,
the "c" for suppression of end of line opcode, "E" for the
listing of error lines only, the "L" for the listing of the
program during compilation, the "P" for routing output to
the printer, and the "N" option for no paging. The next topic
describes the remaining three compiler options.

The general forms of the BASIC compile command are:

BASIC filename item-list {(options)}
COMPILE filename item-list {(options)}
EBASIC filename item-list {(options)}

Multiple options are separated by commas. The options are:

A The Assembled code option. The "A" option generates a
listing of the source code line numbers, the labels and
the BASIC opcodes used by the program. This is a
'pseudo' assembly code listing which allows the user to
see what BASIC opcodes his program has generated. The
hexadecimal numbers on the left of the listing are the
BASIC opcodes and the mnemonics are listed on the right.
The assembled code listing of the BASIC program "COUNT"
(from previous section) is shown, as an example, in
Figure B.

C The Compress option. The Compress option suppresses the
end-of-line (EOL) opcodes from the object code. The EOL
opcodes are used to count lines for error messages.
This eliminates 1 byte from the run time object code for
every line in the source code. This option is designed
to be used with debugged cataloged programs. Any run
time error message will specify a line number of 1.

E The 'list error lines only' option. The liE" option
generates a listing of the error lines encountered
during the compilation of the program. The listing
indicates the line number in the source code item, the
source line itself and a description of the error
associated with the line.

L The list program option. The ilL" option generates a
line by line listing of the program during compilation.
Error lines with associated error messages are
indicated.

N No page. Inhibits automatic paging on terminal when
using the "L" and/or "M" options.

P The printer option. The "P" option routes all output
generated by the compilation to the Spooler.

BASIC Reference Page 13 Overview

OPTIONS

A

C

E

L

M

N

P

S

x

MEANING

Assembled Code listing

Compress -- EOL Opcodes suppressed
from object code item

Error lines only listing

Listing of source code

Map (variable and statement)

No page

Route compilation output to printer

Suppress symbol table

Cross reference

Figure A. General Description of Compiler options

SOURCE BASIC PSEUDO
CODE OBJECT ASSEMBLY
LINE NO. CODE CODE

001 01 EOL
002 03 LOADA I
002 FD LOAD. 1
002 20 ONE
002 2D SUBTRACT
002 5F STORE
002 1001
002 05 LOADN 10
002 03 LOADA I
002 20 ONE
002 28 FORTEST 2001
002 01 EOL
003 5D LOAD I
003 50 PRINTCRLF
003 01 EOL
004 06 BRANCH 1001
004 2001
004 01 EOL
005 01 EOL
006 45 EXIT

[BO] LINE 6 COMPILATION COMPLETED

Figure B. Sample Code Conversions During Compilation

BASIC Reference Page 14 overview

i
/

1.7 BASIC compiler options: X, S, & X options

This section describes the remaining three options available
when issuing the BASIC compile statement. They are the "M"
for map, the "s" for suppressing generation of the symbol
table, and the "X" for cross reference.

The options are:

M The map option. The "M" option generates a variable map
and a statement map, both of which are printed out after
compilation. These maps show where the program data has
been stored in the user's workspace. The variable map
lists the offset in decimal (from the beginning of the
seventh frame of the IS buffer) of every BASIC variable
in the program. For example, the form:

20 xxx 30 yyy

shows that the descriptor of variable 'xxx' starts on
byte 20 and the descriptor of variable 'yyy' starts on
byte 30 of the seventh frame of the IS buffer.
Descriptors are 10 bytes in length.

The statement map shows which statements of the BASIC
program are contained in which object code frames.
Frame 01 is the starting FID stored in the object
pointer item. The statement map may be used to determine
if frequently executed loops cross frame boundaries.

S The suppress symbol table option. The "s" option
suppresses saving the symbol table generated during
compilation. The symbol table is used exclusively by
the BASIC Debugger for reference; therefore it must be
kept only if the user wishes to use the Debugger.

X The cross reference option. The "X" option creates a
cross reference of all the labels and variables used in
a BASIC program and stores this information in the BSYM
file. NOTE: A BSYM file must exist (a modulo and
separation of 1,1 should be sufficient). The "X" option
first clears the information in the BSYM file, then
creates an item for every variable and label used in the
program. The item-id is the variable or label name. The
attributes contain the line numbers of where the
variable or label is referenced. An asterisk will
precede the line number where a label is defined, or
where the value of the variable is changed.

No output is generated by this option. An attribute
definition item should be placed in the dictionary of
the "BSYM" file which allows a cross reference listing
of the program to be generated by the command:

>SORT BSYM BY LINE-NUMBER LINE-NUMBER

BASIC Reference Page 15 Overview

1.8 Cataloging BASIC Programs: CATALOG and DE CATALOG Verbs

Compiled BASIC programs can be cataloged and used
at the TCL level. They can also be decataloged.
and DE CATALOG verbs are used to create and delete
commands for compiled BASIC programs.

The general form of the CATALOG command is:

CATALOG filename item-list {(L)}

as commands
The CATALOG
TCL

The filename specifies the file containing programs to be
cataloged. Item-list consists of one or more program names
(item-ids), or "*" to indicate all programs in the file. The
~ option indicates that the program is not to be executed
automatically at logon time. When the ~ option is not
present, if a program name is the same as an account name,
that program will be automatically run whenever the account
logs on. (For details, please refer to section 1.9,
"Executing Compiled BASIC Programs".)

Programs to be cataloged must first be compiled. The program
may not have the same name as an existing item in the user's
Master Dictionary unless that item is also a cataloged
program verb. For example, if the BASIC source program "A"
is in the Master Dictionary, another program cannot be
cataloged with the name "A". If a conflicting item already
exists in the user's Master Dictionary, the system will
respond with:

[4l5J (item-id) exists on file

and the program will not be cataloged.

For each program successfully cataloged, the system responds
with

[244J (item-id) cataloged

Once a program is cataloged, it may be run simply by typing
its name at the TCL prompt. CATALOG adds the program name as
a verb in the user's Master Dictionary (when not already
present) with the following form:

1) PC
2) E6
3)
4)
5) filename item-id

When the "(L)" option is used with CATALOG, line one of each
verb in the Master Dictionary will be "P" instead of "PC".
This will inhibit automatic execution of the program at logon
time if the program name is the same as the account name.

BASIC Reference Page 16 overview

The DE CATALOG verb has the primary purpose of removing the
object code from the system. The general form of the
DE CATALOG command is:

DE CATALOG filename item-list

DE CATALOG removes the object programs specified by item-list
in the file filename by deleting the appropriate pointer
items from the dictionary of the file; the associated frames
containing the object code are returned to the system's
available pool ("overflow"). DE CATALOG also deletes the
verbs for cataloged programs from the Master Dictionary, but
a program does not have to be cataloged before it is
decataloged.

External subroutines used with the BASIC CALL statement may
also be cataloged, though it is unnecessary when both the
subroutine and the calling routine are in the same program
file. The CALL statement will first search the Master
Dictionary for a catalog verb in order to locate a
subroutine's object code. If not found, it will then look
for an object pointer in the dictionary of the program file
for the calling routine.

The CATALOG and DE CATALOG commands are also discussed in the
System Commands Guide.

BASIC Reference Page 17 Overview

1.9 Executing Compiled BASIC Programs

All execution of BASIC programs is performed at the TCL
level.TCL can interpret a RUN command, a PROC name, and/or
a BASIC program name (both source and compiled versions). A
compiled BASIC program can be executed by issuing a RUN
command. If the program has been cataloged, it can be
executed by issuing only the program name. Programs with the
same name as an account name can be automatically executed at
logon time.

The general format of the RUN command is:

RUN filename item-id {argument list} {(options)}

The filename and item-id specify the compiled BASIC program
to be executed. The optional argument list specifies any
parameters that must be passed to the program. If used, the
options must be enclosed in parentheses. Multiple options may
be separated by commas. Valid options are as follows:

A Abort option. The "A" option inhibits entry to the Basic
Debugger under all error conditions; instead, the program
will print a message and terminate execution.

D Run-time debug option; causes the BASIC Debugger to be
entered before the start of program execution. Note that
the BASIC Debugger may also be called at any time while
the program is executing, by pressing the BREAK key on
the terminal.

E Errors option. The "E" option forces the program to enter
the Basic Debugger whenever an error condition occurs.
The use of this option will force the operator to either
accept the error by using the Debugger, or exit to TCL.

I Inhibit initialization of data area (refer to the
description of the BASIC CHAIN statement).

N Nopage option. The "N" option cancels the default wait at
the end of each page of output when that output has been
routed to the terminal by a program using the HEADING,
FOOTING, and/or PAGE statements.

P Printer on (has same effect as issuing a BASIC PRINTER ON
statement). Directs all program output to the Spooler.

S Suppress run-time warning messages.

BASIC Reference Page 18 Overview

Issuing ~ Program Name directly from TCL

A compiled and cataloged program can be executed directly from
the TCL level using the following general format:

>progname {argument list}

The pro~name must be entered exactly as the program name is
stored ln the user's Master Dictionary. The optional argument
list contains any parameters that need to be passed to the
program.

Executing BASIC programs from ~ FROC or other BASIC program

PROCs (procedures) may be used to perform various tasks from a
single integrated "procedure". A TCL command, and special
PROC commands are stored within the PROC. The following
example illustrates the use of a BASIC program in conjunction
with a Recall SSELECT (Sort Select) command.

A PROC named LISTBT is as follows:

PQ
HSSELECT BASIC/TEST
STON
HRUN BASIC/TEST LISTIDS
P

A BASIC program named LISTIDS is as follows:

OPEN 'BASIC/TEST' ELSE PRINT 'FILE MISSING'; STOP
10 N = 0
20 READNEXT ID ELSE STOP

PRINT ID 'L#18':
N = N + 1
IF N>= 4 THEN PRINT; GO TO 10
GO TO 20
END

By typing in LISTBT at the TCL level, the PROC LISTBT selects
the item-ids contained in file BASIC/TEST and invokes the
BASIC program LISTIDS to list the item-ids selected, four to a
line, left justified in a field of 18 blanks.

A PROC can be executed automatically at logon time if the PROC
name is the same as the logon account name. For further
information about PROCs, refer to the ULTIMATE PROC Manual.

As an alternative to using PROCs for job control tasks, users
can execute BASIC programs, PROCs, and TCL verbs within a
"controlling" BASIC program. The controlling program can use
an EXECUTE statement(s), as well as other supporting
statements (PUT, GET, SEEK) and a function (EOF) to implement
the job control tasks.

BASIC Reference Page 19 Overview

For details on using these statements, please refer to the
appropriate statement name, listed alphabetically in Chapter 3
of this manual.

Executing Programs at Logon Time

When a user logs on, the system will attempt to execute a
program in the user's Master Dictionary with the same name as
the logon account name. This program may be a PROC, or a
compile-and-go BASIC program, or a cataloged BASIC program.

This feature is useful to run a standard job control sequence
or present a custom tailored menu of choices to the user.

In some cases, users may need to catalog a BASIC program with
the same name as the account name but NOT to run it auto­
matically at logon time. To avoid automatic execution, the
program can be cataloged with the L option. For example, if
INVENTORY were an account name, the CATALOG command:

CATALOG BP INVENTORY (L)

would catalog the program, but would not link it for automatic
execution whenever a user logs on the INVENTORY account.

For details on cataloging programs, refer to Section 1.8,
"Cataloging BASIC Programs: CATALOG and DECATALOG Verbs".

BASIC Reference Page 20 Overview

TCL COMMAND: >RUN filename item-id {argument list} {(options)}

PROC: >PROC1

CATALOGED or
SOURCE PROG: >progname {argument list}

LOGON: Logon please:ACCOUNTNAME {argument list}

Figure A. options at TCL Level for Executing BASIC Programs

NOTE: In each example below, the same "RUN PROGRAMS TESTING"
command is interpreted at the TCL level, regardless of the
point of origin of the command.

TCL COMMAND:

PROC:

PROGRAM:

>RUN PROGRAMS TESTING <CR>

HRUN PROGRAMS TESTING
P

EXECUTE "RUN PROGRAMS TESTING"

In the example below, the program name "TESTING" is executed if an
account name of "TESTING" has been established.

LOGON: Logon please:TESTING

Figure B. Alternative Ways to Execute a BASIC Program

BASIC Reference Page 21 Overview

1.10 Executing BASIC Source (Compi1e-and-go) Programs

BASIC source programs may be entered as items in Master
Dictionaries and treated as compile-and-go verbs or PROCs.
Programs and PROCs may be executed automatically at logon
time. BASIC source programs can also be executed from within
other BASIC programs via the EXECUTE statement.

Compile-and-go

A BASIC source program can be executed from the TCL level
without previous compilation. This option, called
"compile-and-go", requires only that the source program be
entered as an item in a Master Dictionary. These BASIC
programs must have a PROGRAM statement beginning at the first
character (no leading blanks) of line one. The PROGRAM
statement can be abbreviated as PROG. For example:

HELLO
001 PROG
002 PRINT "HELLO"
003 END

The general format for running the program is:

>progname {argument list}

For example:

>HELLO

would compile and execute the BASIC source program named
"HELLO" .

The effect of compile-and-go is that of writing a PROC in
BASIC, with BASIC's more powerful run-time and debugging
features. compile-and-go programs can be executed at logon
time if the program name is the same as an account name.

NOTE: When a compile-and-go program has been established in
a user's Master Dictionary, that name cannot be used as the
name of another program when it is cataloged.

BASIC Reference Page 22 Overview

CHAPTER 2

REPRESENTING DATA:
CONSTANTS, VARIABLES, AND EXPRESSIONS

2.1 Representing Data Values: Numbers and strings
Figure A. Correct and Incorrect Usage of Strings

2.2 Multi-valued strings: Dynamic Arrays
Figure A. General Form of Dynamic Array
Figure B. Examples of Correct Usage of Dynamic Arrays

2.3 Defining Data Values as Constants or Variables

2.4 Representing Changing Data Values: Variables
Figure A. Correct and Incorrect Usage of Variable Names

2.5 Multi-valued Variables: Dimensioned Arrays

2.6 Arithmetic
Figure A.
Figure B.

Figure C.

Expressions: Standard Arithmetic
Arithmetic Operators
Examples of Correct Usage of
Arithmetic Expressions
Examples of Incorrect Arithmetic Expressions

2.7 Extended (Floating Point and String) Arithmetic

2.8 string Expressions
Figure A. General Form of Concatenation and Sub-strings
Figure B. Examples of string Exressions and Arithmetic

2.9 Format Strings: Numeric Mask and Format Mask Codes
Figure A. Explanation of the Format String Codes
Figure B. General Form and Summary of

Format String Codes
Figure C. Examples of Correct Usage of Format Strings
Figure D. Examles of Incorrect Format strings

2.10 Relational Expressions
Figure A. Relational Operators
Figure B. Examples of Correct Relational Expressions

2.11 Relational Expressions: Pattern Matching
Figure A. General Form of Pattern Matching Relation
Figure B. Examples of Correct Pattern Matching Relation

2.12 Logical Expressions
Figure A. Logical Operators
Figure B. Examples of Correct Logical Expressions

2.13 Summary of Expression Evaluation

2.14 How Variables are Structured and Allocated

BASIC Reference Page 23 Representing Data

2.1 Representing Data Values: Numbers and Strings

In ULTIMATE BASIC, there are two types of data: numeric and
string. Numeric data consists of a series of digits and
represents an amount (e.g., 255). String data consists of a
set of ASCII characters which may be alphabetic, numeric,
and/or keyboard symbols.

Numbers and Numeric Data

A number may contain up to 15 digits, including the digits
following the decimal point. In a BASIC program, the
PRECISION statement establishes the number of fractional
digits. The default PRECISION is 4, so that numbers must be
in the range:

-14,073,748,835.0000 to 14,073,748,835.0000

when a program uses the default PRECISION. To change the
acceptable form and range of numbers, the PRECISION statement
must be used.

Since a number can have a maximum of "n" fractional digits,
where "n" is the PRECISION, the value:

1234.567

is a legal number if the PRECISION is 3 or 4, but is not a
legal number if the PRECISION is 0, 1, or 2. By changing the
PRECISION to a value less than 4, the range of the allowable
whole numbers is increased accordingly. (For details, see
the PRECISION statement, listed alphabetically in Chapter 3.)

The unary minus sign is used to specify negative numbers. For
example:

-17000000
-14.3375

BASIC Reference Page 24 Representing Data

string Data

A string is represented by a set of characters enclosed in
single quotes, double quotes, or backslashes. For example:

"THIS IS A STRING" 'ABCD1234#*' \3A\

If a string value contains one string delimiter (', ", or \),
then another delimiter must be used to delimit that string.
For example:

"THIS IS A 'STRING' EXAMPLE"
'THIS IS A "STRING" EXAMPLE'

A string may contain from 0 to 32,267 characters (i.e.,
maximum length of an ULTIMATE file item). Internally, a
string is delimited by a Segment Mark (SM) , which is a
character having a decimal value of 255. No string,
therefore, may contain a Segment Mark. Figure A presents a
number of valid and invalid string constants.

A string having the format of an ULTIMATE file item is called
a "dynamic array". Since values within a file item may
change, dynamic array strings usually contain variable,
rather than constant, data. Dynamic array strings are
explained in the next topic.

Data consisting of only digits may be defined as numeric
(e.g., 2.5) or string (e.g., "2.5"); either data type is
legal. The choice normally depends on the type of operations
and expressions in which the value will be used. For
arithmetic usage, the numeric data type is more efficient;
for joining (i.e., concatenation), the string data type is
more efficient. Either type, however, will be processed with
accurate results without programmer intervention.

VALID STRING

"ABC%123#*4AB"

, lQ2 Z •... '

"A 'LITERAL' STRING"

'A "LITERAL" STRING'

INVALID STRING

ABC123
(i.e., quotes are missing)

'ABC%QQR"
(i.e., either two single quotes
or two double quotes
must be used)

" (Le., the empty string) "12345678910
(i.e., terminating double

\DEF\ quote missing)

Figure A. Correct and Incorrect Usage of strings

BASIC Reference Page 25 Representing Data

2.2 Multi-valued Strings: Dynamic Arrays

A string having the format of an ULTIMATE file item is called
a dynamic array. The string is an "array" in that its
component data elements can be referenced using subscripts.
It is "dynamic" in that individual elements may be added,
changed, or deleted within the string, causing the relative
positions of the elements to be subject to change.

Dynamic arrays are significant in ULTIMATE BASIC because they
may be used to represent data in disk files. Special
constructs are available for manipulating dynamic arrays,
thus making it easier to access and update files.

Review of ULTIMATE File Structure

An ULTIMATE data file consists of a set of file items. Each
item consists of a string that is in item format. Such a
string is called a dynamic array.

A dynamic array consists of one or more attributes; multiple
attributes are separated by attribute marks (i.e., an
attribute mark has an ASCII equivalent of 254, shown as """).
An attribute, in turn, may consist of one or more values;
multiple values in an attribute are separated by value marks
(i.e, a value mark has an ASCII equivalent of 253, shown as
"]"). Finally, a value may consist of one or more subvalues;
multiple subvalues in a value are separated by subvalue marks
(i.e., a subvalue mark has an ASCII equivalent of 252, shown
as "\"). This structure is summarized in Figure A.

An example of a dynamic array is as follows:

"55"ABCD"732XYZ"100000.33"

where "55", "ABCD", "73XYZ", and "100000.33" are attributes.

The following illustrates a more complex dynamic array:

"Q5"AAAA"952]ABC] 12345"A"B"C]TEST\12I\9\99. 3]2"555"

where "Q5", "AAAA", "952]ABC]12345", "A", "B",
"C]TEST\12I\9\99.3]2" and "555" are attributes; "952", "ABC",
"12345", "C", "TEST\12I\9\99. 3" , and "2" are values; and
"TEST", "12I", "9", and "99.3" are subvalues.

The maximum length of a dynamic array (including attribute
marks, value marks, and subvalue marks) is 32,266 characters.

Additional examples of correctly formed dynamic arrays are
illustrated in Figure B. For complete details on the
ULTIMATE file structure, please see the ULTIMATE system
documentation.

BASIC Reference Page 26 Representing Data

,;

Accessing Elements of ~ Dynamic Array

Individual elements of a dynamic array can be referenced by
specifying the appropriate subscript position (attribute,
value, and subvalue number) within the string. Attributes,
values, and subvalues are numbered beginning with 1.
Subscripts are normally written in angle brackets following
the string, with the first subscript specifying an attribute,
the second subscript (if present) specifying a value within
the selected attribute, and the third subscript (if present)
specifying a subvalue within the selected value.

For example, if X represents the first example dynamic array
above, then X<2> denotes attribute two of the string, or
"ABCD". If Y represents the second dynamic array above, then
Y<3,2> = "ABC" and Y<6,2,1> = "TEST".

If a program attempts to access a non-existent attribute,
value, or subvalue, the system returns a null string. Each
of the elements in the arrays below, for example, would be
returned as a null string:

Element

<3>
<3,2>
<3,2,2>

Array

"Q5"'AAAA"
"Q5"'AAAA'" 3 "

"Q5"'AAAA"'3]2"

Dynamic arrays may also be referenced with BASIC functions
and statements such as EXTRACT, DELETE, INSERT, REPLACE, and
LOCATE. For details, please refer to the appropriate
function or statement, listed alphabetically in Chapter 3.

ULTIMATE file items are stored as variable data in a BASIC
program. A dynamic array, however, is simply any string
expression (not necessarily a variable) treated as having the
format of a disk file item. This string may be stored in a
simple variable or in element(s) of a dimensioned array. See
the following topics for more information on variables and
dimensioned arrays.

BASIC Reference Page 27 Representing Data

ARRAY

"aAaAaAaAaAa .•• Aa"
I

=============================
v]v]v]v]v]v]v]v]v] •••]v

I
================================

sv\sv\sv\sv\sv\sv\ .•• \sv

where a = attribute
v = value

sv = subvalue

Figure A. General Form of Dynamic Array

EXPLANATION

"123", "456", "789]ABC]DEF" are
attributes; "789", "ABC" and "DEF"
are values.

1234567890

Q56 A3.22]3.56\88\B]2 A99

"1234567890" is an attribute.

"Q56" , "3.22]3.56\88\B]C", and "99"
are attributes; "3.22", "3.56\88\B",
and "c" are values; "3.56", "88", and
"B" are subvalues.

"A]B]C]D", "E]F]G]H", and "I]J" are
attributes; "A", "B", "C", "D", "E",
"F", "G", "H", "I", and "J" are
values.

Figure B. Examples of Correct Usage of Dynamic Arrays

BASIC Reference Page 28 Representing Data

2.3 Defining Data Values as Constants or variables

Within a BASIC program, a numeric or string data value may be
represented as either a variable or a constant. A constant is
a value that may have an associated name. A variable is a name
for a storage location that may have a changing value.

Constants

A "constant", as its name implies, has the same value
throughout the execution of a program. A constant may be a
literal value such as the number 2 or string "HELLO" when used
in a BASIC statement. A constant may also be a named value.
In this case, a symbolic name would be equated with a constant
value; for example, the name "AM" could be equated to
CHAR(254). To improve a program's readability, the name would
be used instead of the value in BASIC statements.

The EQUATE statement can be used to associate a name with a
value. For details, see the EQUATE statement, listed
alphabetically in Chapter 3.

variables

A IIvariable" has both a name and a value (or may identify a
file). The value of a variable may be either numeric or string,
and may change dynamically during the execution of the program.
A variable may contain one or more value elements, as in the
case of a dynamic array assigned as the value of a variable.

A simple variable is associated with a single storage location,
and has only one value at any given time. By contrast, a
dimensioned array variable is associated with multiple storage
locations, each of which has a separate value and, in general,
can function as a simple variable. A particular location (or
element) within a dimensioned array is specified by following
the array name with subscripts (numbers or other arithmetic
expressions) in parentheses. For example, A(lO) refers to the
tenth element of the one-dimensional array A.

Subscripts in angle brackets are also used to refer to elements
of dynamic arrays. If variable X contains a dynamic array, for
example, X<3> specifies the third attribute of the dynamic
array. However, dynamic arrays, which are strings, should not
be confused with dimensioned arrays, which are sets of storage
locations. Unlike dimensioned array elements, the individual
attributes, values, and subvalues of a dynamic array are not
directly addressable, and are searched for on each reference
since they may move as the dynamic array changes.

storage space for variables is allocated in the order that the
variables appear in a program. No special statements are
needed to allocate space for simple variables (except COMMON
variables), but the size of each dimensioned array must be
specified in a DIM or COMMON statement to allocate its space.

BASIC Reference Page 29 Representing Data

2.4 Representing Changing Data Values: Variables

Data values that may change in a BASIC program are defined as
variables. The name of a variable refers to a particular data
storage area. The value(s) of a variable refer to the current
contents of the storage area. Values may be either numeric or
string, and may change dynamically throughout the execution of
a BASIC program.

Naming Variables

The name of a variable identifies the variable; the name
remains the same throughout program execution. Variable names
consist of an alphabetic character followed by zero or more
letters, numerals, periods, or dollar signs. Variable names
ending with a period are reserved for ULTIMATE pre-defined
variables. Variable names may be of any length.

The following terms would all be valid variable names:

X
DATA. LENGTH

QUANTITY
B$ •• $

BASIC keywords (i.e., words that define BASIC statements,
functions, and system variables) may not be used as variable
names. The BASIC keywords are listed in the figures of Section
1.1, entitled "An Overview of the BASIC Language".

The name of a variable and its storage location are assigned by
the first BASIC statement in a program that uses the name.
This is typically an assignment, INPUT, or READ statement,
which assigns the variable a value.

Assigning and Accessing Values in ~ Variable

The value of a variable may change during the execution of the
program. The variable X, for example, may be assigned the
value 100 at the start of a program, and may then later be
assigned the value "THIS IS A STRING". A program can retrieve
the value of a variable by specifying the variable name. For
example:

A = "12"
PRINT A

would print the number "12".

When a variable contains a dynamic array string, each element
of the dynamic array can be addressed by specifying its
position within angle brackets. The angle brackets "<" and ">"
enclose the element identifier, as in <2>. For example:

A = B<2>

assigns the second attribute of variable B to variable A. And:

BASIC Reference Page 30 Representing Data

B<2,6>

would access the 6th value of attribute 2 of variable B.

Multi-valued variables are called "dimensioned arrays", or
simply "arrays". Dimensioned arrays are variables with a
pre-defined number of storage locations assigned by a DIM or
COMMON statement. Dimensioned arrays should not be confused
with dynamic arrays, which are simply strings in file item
format. A dynamic array may be stored in any variable,
including an element of a dimensioned array. See the next
topic for more information about dimensioned arrays.

The following statements pertain to assigning variables. (For
details, see the appropriate statement, listed alphabetically
in Chapter 3.)

Name

=

EQUATE

COMMON

STORAGE

DIM

Purpose

(Assignment). Names and assigns a value, and a
storage location if needed, to a variable.

Allows one variable to be defined as the
equivalent of another variable.

Allows certain variables to be allocated storage
space before any other variables in the program;
also allows for the passing of values between
programs.

Allows a program to change the buffer size for
storing variables in a program.

(Dimension). Names and assigns a specified number
of storage locations to a multi-valued array
variable.

VALID VARIABLE NAME INVALID VARIABLE NAME

A5 ABC 123
(i.e., no space allowed)

ABCDEFGHI
5AB

QUANTITY. ON. HAND (i.e., must begin with letter)

R$$$$P$ Z. , $
(i.e., comma not allowed)

J1B2Z
A-B

INTEGER (i.e., "_II not allowed)

THIS.IS.A.NAME

Figure A. Correct and Incorrect Usage of Variable Names

BASIC Reference Page 31 Representing Data

2.5 Multi-valued Variables: Dimensioned Arrays

Dimensioned arrays are variables that have been dimensioned
by a DIM or COMMON statement and contain a pre-defined number
of elements.

Before a dimensioned array may be used in a BASIC program,
the maximum dimension(s) of the array must be specified. The
DIM or COMMON statement reserves the array's variable name
and the number of storage locations. (Please refer to the
DIM or COMMON statement, listed alphabetically in Chapter 3.)

A BASIC program can address any element of a dimensioned
array as a separate variable. It can assign values to
any/all elements in a single statement. When an array is
dimensioned, values can be stored in each separate "slot" or
element in the array.

A dimensioned array contains one value per element. For
example, Array A has been dimensioned as A(4):

3 1---- The first element of A has value 3

8 1---- The second element of A has value 8

1-20.31---- The third element of A has value -20.3

1 ABC 1---- The fourth element of A has string value "ABC"

The above example illustrates a one-dimensional array (called
a vector). A two-dimensional array (called a matrix) is
characterized by having rows and columns. For example, Array
Z has been dimensioned as Z(3,4):

COL.l COL.2 COL.3 COL.4

Row 1 1 3 1 XYZ 1 A 1 -8.2 1
1-------------------------1

Row 2 1 8 1 3. 1 1 500 1 . 333 1
1-------------------------1

Row 3 1 2 1 -5 1 Ql23 1 84 1

Any array element may be accessed by specifying its position
in the array. This position is like an offset from the
beginning of the array. In specifying an element, the user
must have one offset or subscript for each dimension of the
array. For example, this is Array B:

BASIC Reference Page 32 Representing Data

\
J ,

1 -7 1---------- Element B(l)
1------1
1 23 1---------- Element B(2)
1------1
IXYZABCI---------- Element B(3)

In this example element B(l) has a value of -7, while element
B(3) has a string value of "XYZABC". For a two-dimensional
array (matrix) the first subscript specifies the row, while
the second specifies the column. For example, in array Z
above:

Element Z(l,l)
Element Z(2,3)

has a value of 3
has a value of 500.

When reading from ULTIMATE disk files into dimensioned
arrays, the MATREAD or MATREADU statement may be used to
assign each attribute of an item to an individual vector
element. Conversely, the MATWRITE or MATWRITEU statement may
be used to construct an item from a vector when writing to a
file. (For details, see the appropriate statement, listed
alphabetically in Chapter 3.)

BASIC Reference Page 33 Representing Data

2.6 Arithmetic Expressions: Standard Arithmetic

Expressions are formed by combining operators with variables,
constants, or BASIC intrinsic functions. Arithmetic
expressions are formed by using arithmetic operators.

When an expression is encountered as part of a BASIC program
statement, it is evaluated by performing the operations
specified by each of the operators on the adjacent operands,
i.e., the adjacent constants, variables, or intrinsic
functions.

Arithmetic expressions are formed by using the arithmetic
operators listed in Figure A. The simplest arithmetic
expression is a single unsigned numeric constant, variable,
or Intrinsic Function. A simple arithmetic expression may
combine two operands using an arithmetic operator. More
complicated arithmetic expressions are formed by combining
simple expressions using arithmetic operators.

When more than one operator appears in an expression, certain
rules are followed to determine which operation is to be
performed first. Each operator has a precedence rating. In
any given expression the highest precedence operation will
be performed first. Figure A shows the precedence of the
arithmetic operators. If there are two or more operators with
the same precedence (or an operator appears more than once)
the leftmost operation is performed first. For example,
consider this expression: -R/A+B*C. The division and
multiplication operators have the same (high) precedence;
since the division operator is leftmost, it is evaluated
first (Le., R/A = result 1). The expression then becomes:
-(result l)+B*C. The multiplication operation is performed
next (i.e., B*C = result 2). The expression then becomes:
-(result l)+(result 2). The negation and addition operators
have the same precedence; since the negation operator is
leftmost, it is evaluated first (i.e., -(result 1) = result
3). The expression then becomes: (result 3)+(result 2). The
addition is then performed, yielding the final result.

Using some figures in the above expression illustrates, for
example, that the expression -50/5+3*2 evaluates to -4.

Any sUb-expression may be enclosed in parentheses. within the
parentheses, the rules of precedence apply. However, the
parenthesized subexpression as a whole has highest precedence
and is evaluated first. For example: (10+2)*(3-1) = 12*2 =
24. Parentheses may be used anywhere to clarify the order of
evaluation, even if they do not change the order.

Arithmetic operators may not appear adjacent to one another.
This means, for example, that 2*-3 is not a valid expression,
though 2*(-3) is.

If a string value containing only numeric characters is used
in an arithmetic expression, it is considered as a decimal

BASIC Reference Page 34 Representing Data

number. For example, 123 + "456" evaluates to 579.

If a string value containing non-numeric characters is used
in an arithmetic expression, a warning message will be
printed (refer to APPENDIX B - BAStC RUN-TIME ERROR MESSAGES)
and zero will be assumed for the string value.

The following expression, for example, evaluates to 123:

123 + "ABC"

OPERATOR SYMBOL

A

*
/
+

OPERATION

exponentiation
multiplication
division
addition or identity
subtraction or negation

PRECEDENCE

1 (high)
2
2
3
3 (low)

Figure A. Arithmetic Operators

CORRECT USE EXPLANATION

2+6+8/2+6 Evaluates to 18

12/2*3 Evaluates to 18

12/(2*3) Evaluates to 2

A+75/25 Evaluates to 3 plus
the current value of variable A.

-5+2 Evaluates to -3

-(5+2) Evaluates to -7

8*(-2) Evaluates to -16

5 * "3" Evaluates to 15

Figure B. Examples of Correct Usage of Arithmetic Expressions

BASIC Reference Page 35 Representing Data

2.7 Extended (Floating Point and string) Arithmetic

For some applications, the precision or magnitude of regular
arithmetic is not sufficient to represent the data or
functions needed. For these cases, ULTIMATE BASIC supports
two types of extended arithmetic: floating point and string.

For both floating point arithmetic and string arithmetic, the
standard operations of add, subtract, multiply, divide, and
compare have been implemented as intrinsic functions within
BASIC. These arithmetic functions are not constrained by the
PRECISION statement that affects regular numeric values and
arithmetic. They can handle values of a much greater
precision and magnitude.

Values to be used in floating point or string arithmetic must
be specially-formatted strings. Intrinsic functions are
provided which convert regular numeric or string values of
constants or variables to strings of the required format.
Another set of intrinsic functions may be used after string
or floating point operations to convert the results back to
regular numeric or string values.

"String arithmetic" means any of the supported string-based
arithmetic functions. Whereas regular arithmetic operates on
binary numeric values, converting numeric strings to binary
as necessary, string arithmetic operates directly on numeric
strings, converting binary constants or variables to internal
string equivalents if required.

Once numbers are defined as "strings", they can be used in
string arithmetic without any conversions. Numeric values
(non-strings) are, in most cases, handled successfully; the
system converts them to their equivalent string values before
performing the arithmetic.

A string number can have virtually any magnitude and any
precision, including the entire range of numbers that are
valid with the standard arithmetic, plus much more. The
following examples are all valid string numbers:

"1"
"-300.23"
"5000000000000000000000000"
".000000000000000000000000023"

The add, subtract, compare, and multiply functions can handle
any magnitudes and precisions of string numbers. The result
of a divide function is limited to 14 significant digits.

"Floating point arithmetic" means any of the supported
floating point-based arithmetic functions. Before a floating
point function can be used, numeric arguments must be
converted to floating point string representation. Special
float and fix functions are used to allow conversion of
numbers to floating point string and back to regular string

BASIC Reference Page 36 Representing Data

format after the arithmetic function(s) are completed.

Floating point numbers have a considerably different format
from that of standard numbers. A floating point number con­
sists of a mantissa and an exponent. ULTIMATE BASIC floating
point uses an integer mantissa and a base-l0 exponent. The
mantissa may contain from 1 to 13 digits and may be either
positive or negative. A negative mantissa uses a minus sign
in front of it; a positive mantissa is unsigned. The
exponent may be in a range of -255 to 255. Like the
mantissa, a negative exponent uses a minus sign; a positive
exponent is unsigned. An E is used to separate the mantissa
from the exponent. The following examples show the floating
point string representation of various numbers:

FLOATING POINT
STRING VALUE

"OEO"
"lEO"
"lE3"
"lE-20"
"-1234567890123E-5"
"98765432109876E-13"
"-28855E-2"

NUMBER

o
1
1000
.00000000000000000001
-12345678.90123
9.98765432109876
-288.55

Guidelines for Using Extended Arithmetic Functions

When a program requires calculations beyond the precision or
magnitude of the standard arithmetic, either the string or
floating point arithmetic may be used. It is usually best to
select one of the two types and do all calculations in that
mode. This minimizes confusion and also reduces the number
of conversions which must be performed.

String arithmetic can handle virtually any operation and it
requires the least conversion since all standard numbers are
automatically string numbers as well. One might decide to
always use string arithmetic except for speed considerations.

The speed of floating point operations and string operations
are essentially the same except in multiplication. Floating
point multiplication is considerably faster, depending on the
number of digits involved. For example, it is four times
faster to multiply 12345678909.87 by 1.00327 in floating
point than in string and it is seven times faster to multiply
two 13-digit numbers together in floating point.

BASIC Reference Page 37 Representing Data

ULTIMATE BASIC provides twelve intrinsic functions to handle
floating point and string arithmetic operations:

Operation

Addition
Subtraction
Multiplication
Division
Comparison
Convert (Float)
Convert (Fix)

String Function

SADD
SSUB
SMUL
SDIV
SCMP

Floating Point Function

FADD
FSUB
FMUL
FDIV
FCMP
FFLT
FFIX

For details, please refer to the appropriate function, listed
alphabetically in Chapter 3.

BASIC Reference Page 38 Representing Data

I
)

2.8 string Expressions

A string is a set of characters enclosed in single or double
quotes or backslashes. A string expression may be any of the
following: a string constant, a variable with a string value,
a sub-string, or a concatenation of string expressions.
String expressions may be combined with arithmetic
expressions.

A sub-string is a set of characters which makes up part of a
whole string. For example, "SO.", "123", and "ST." are
sub-strings of the string "1234 SO. MAIN ST." sub-strings are
specified by a starting character position and a sub-string
length, separated by a comma and enclosed in square brackets
(see Figure A). For example, if the current value of variable
S is the string "ABCDEFG", then the current value of S[3,2]
is the sub-string "CD" (i.e., the two character sub-string
starting at character position 3 of string S). Furthermore,
the value of S[I,I] would be "A", and the value of S[2,6]
would be "BCDEFG".

If the "starting character" specification is past the end of
the string value, then an empty sub-string value is selected
(e.g., if A has a value of 'XYZ', then A[4,1] will have a
value of "). If the "starting character" specification is
negative or zero, then the first character is assumed (e.g.,
if X has a value of 'JOHN', then X[-5,1] will have a value of
'J') .
If the "sub-string length" specification exceeds the
remaining number of characters in the string, then the
remaining string is selected (e.g., if B has a value of
'123ABC', then B[5,10] will have a value of 'BC'). If the
"sub-string length" specification is negative or zero, then
an empty sub-string is selected (e.g., B[5,-2] and B[5,O]
both have a value of 'I).

Concatenation operations may be performed on strings.
Concatenation is specified by a colon (:) or CAT operator.
The concatenation of two strings (or sub-strings) is the
appending of the characters of the second operand onto the
end of the first. For example:

"AN EXAMPLE OF " CAT "CONCATENATION"

evaluates to:

"AN EXAMPLE OF CONCATENATION"

The precedence of the concatenation operator is lower than
any of the arithmetic operators. So if the concatenation
operator appears in the same expression with an arithmetic
operator, the concatenation operation will be performed last.
Multiple concatenation operations are performed from left to
right. Parenthesized sUb-expressions are evaluated first.

BASIC Reference Page 39 Representing Data

The precedence of the sub-string operator (square brackets),
however, is higher than that of the arithmetic operators. So
in an expression like A+B[7,3], a SUb-string of B will be
converted to a numeric value and then added to the value of
A.

The concatenation and sub-string operators both consider
their operands to be string values. If numeric values are
used, the system converts them into equivalent string values
before performing the operation. For example:

56:"ABC" concatenates to "56ABC"

BASIC Reference Page 40 Representing Data

expression expression

expression CAT expression

I specifies starting I
I character position I

I
variable [expression, expression]

I

I specifies sub-string
I length (no. of characters)

Figure A. General Form of Concatenation and Sub-strings

NOTE: For the following examples:

CORRECT USE

Z[1,4]

A : Z[l,l]

Z [1, 1] CAT A [4,3]

3*3:3

A[6,1]+5

Z CAT A Z

Z CAT " ONE"

A = ABC123
Z = EXAMPLE

EXPLANATION

Evaluates to "EXAM".

Evaluates to "ABC123E".

Evaluates to "E123"

3*3 is evaluated first and results in
the number 9. 9:3 is then evaluated
and results in "93" (i. e., the string
value "93").

Evaluates to 8.

Evaluates to "EXAMPLEABC123EXAMPLE".

Evaluates to "EXAMPLE ONE".

Figure B. Examples of String Expressions and Arithmetic

BASIC Reference Page 41 Representing Data

2.9 Format strings: Numeric Mask and Format Mask Codes

Expressions may be formatted by the use of format strings. A
format string immediately following a variable name or
expression specifies that the value will be formatted as
specified by the characters within the format string.

A format string may contain a numeric mask of up to 7
characters and/or a format mask. It is virtually identical
to the Recall Mask Conversion Code, and may be used to format
both numeric and non-numeric strings. The format string has
the following general form:

"{ j Hn{m} HZ H , H c}{ $ H (format mask) }"

The entire format string is enclosed in single or double
quotes or backslashes when it is used as a literal. If the
format mask is used, it is enclosed in parentheses.

The format string may be used as a literal, or it may be
assigned to a variable. In either case the format string or
variable immediately follows the expression it is to format.
The resultant formatted value may be used anywhere an
expression is permitted, including an assignment statement
'which stores a variable's formatted value back into the same
variable or to a new variable, and in PRINT statements of the
form: PRINT X "format string". Formatting has higher
precedence than concatenation, but lower than sub-string and
arithmetic operations.

Figure A gives an explanation of the numeric mask and format
mask codes. The numeric mask is represented by the symbols:
i, n, m, Z, L' C and $, which control justification,
precisIon~ scalIng, and credit indication. The format mask
controls field length and fill characters. It may consist of
any combination of field specifications and literal data.
Each field specification consists of a format character
optionally followed by a numeric field length specification,
such as "#3" or "%5". The format characters are "#", n*" and
n%". Field lengths must not exceed 99. Any other character
in the format field, including parentheses, may be used as a
literal character.

NOTE: If a dollar sign is placed outside of the format
mask, it will be output just prior to the value,
regardless of the filled mask. If a dollar sign is used
within the format mask it will be output in the leftmost
position regardless of the filled field.

Figure B shows the general form and a summary of the codes.
Figures C and D show correct and incorrect format strings.

BASIC Reference Page 42 Representing Data

NUMERIC MASK CODES:

j

n

m

z

specifies justification. May specify "R" for right justification or "L"
for left justification. Default justification is left.

is a single numeric digit defining the number of digits to print out
following the decimal point (with rounding). If n = 0, the decimal point
will not be output following the value.

is an optional 'scaling factor' specified by a single numeric digit
which 'descales' the converted number by the 'mth' power of 10. Because
BASIC assumes 4 decimal places (unless otherwise specified by a
PRECISION statement), to descale a number by 10 m should be set to 5, to
descale a number by 100, m should be set to 6, etc.

is an optional parameter specifying the suppression of leading zeros.

is an optional parameter for output which inserts commas between every
thousands position of the value.

c The following five symbols are Credit Indicators which are optional
parameters of the form:

C Causes the letters 'CR' to follow negative values and
causes two blanks to follow positive or zero values.

D Causes the letters 'DB' to follow positive values; two
blanks to follow negative or zero values.

M Causes a minus sign to follow negative values; a blank to
follow positive or zero values.

E Causes negative values to be enclosed with a "< >,,
sequence; a blank follows positive or zero values.

N Causes the minus sign of negative values to be suppressed.

$ Is an optional parameter for output which appends a dollar sign to the
leftmost position of the value, prior to conversion.

FORMAT MASK CODES:

#n specifies that the data is to be filled on a field of 'n' blanks.

*n specifies that the data is to be filled on a field of 'n' asterisks.

%n specifies that the data is to be filled on a field of 'n' zeros and to
force leading zeros into a fixed field.

NOTE: Any other character, including parentheses may be used as a field
fill.

Figure A. Explanation of the Format String Codes

BASIC Reference Page 43 Representing Data

GENERAL FORM:

"{ j }{ n{m} }{ Z}{ , }{ c}{ $}{ (format mask) }"

NUMERIC MASK

MASK CODE

j

n

m

Z

c

$

VALID CODE VALUES

R or L

single numeric

single numeric

Z

C,D,M or E

$

MEANING

Right or Left justification
(default is left justification).

of decimal places.

'Descaling' factor.

Suppress leading zeros.

Insert commas every thousands
position.

Credit indicators.

outputs dollar sign prior to value.

FORMAT MASK (enclosed in parentheses)

MASK CODE

$

#n

%n

*n

EXAMPLE

$

#10

%10

*10

MEANING

outputs a dollar sign in the
leftmost position of field.

Fills data on a field of 10 blanks.

Fills data on a field of 10 zeros.

Fills data on a field of 10 asterisks,
or on a field of any other specified
character.

NOTE: If a dollar sign is placed outside of the format mask, it will be
output just prior to the value, regardless of the filled field. If a
dollar sign is used within the format mask it will be output in the
leftmost position regardless of the filled field.

Figure B. General Form and Summary of Format String Codes

BASIC Reference Page 44 Representing Data

\
/

UNCONVERTED STRING ~

X = 1000

X = 1234567

X = -1234567

X = 38.16

X = -1234

X = -1234

X = -1234

X = 072458699

X = 072458699

X = SMITH, JOHANNSEN

X = 12.25

X = 12345

X = 1

FORMAT STRING

V = X"R26"

V = X"R27,"

V = X"R27,E$"

V = "I"

V = X"R25$,M(*10#)"

V = X"R25,M($*10#)"

V = X"R25,M($*10)"

V = X"L(###-##-####)"

V = X"L(#3-#2-#4)"

V = X"L«#13))"

Y = "I"; PRINT X Y

PRINT X "R2"

INPUT @(2,4):X "R(%%)"

RESULT

10.00

1,234.57

$<1234.57>

38.2

***$123.40-

$****123.40-

$***123.40-

072-45-5866

072-45-5866

(SMITH, JOHANN)

12.3

12345.00

01

Figure C. Examples of Correct Usage of Format String

INCORRECT USAGE

V = X"MR26"

V = X"RL26"

V = X"R212"

V = X"L(#lOO)"

V = X"R(9%)"

V = X"L*32"

EXPLANATION

MR and ML are the codes for RECALL Mask Conversions.
In BASIC use simply R or L.

Both right and left justification cannot be used.

The descaling factor may only be a single numeric
digit. If necessary, the Precision may be set to
zero (i.e. no decimal places) so that a descaling
factor of 2 will descale by 100, etc.

Fill field should not exceed 99 characters.

Format code characters must precede the
numeric.

Format string must be enclosed in parentheses.

Figure D. Examples of Incorrect Format Strings

BASIC Reference Page 45 Representing Data

2.10 Relational Expressions

Relational expressions are the result of applying a
relational operator to a pair of arithmetic or string
expressions.

The relational operators are listed in Figure A. Note that
the MATCH(ES) operator is discussed in a separate topic; all
others are discussed below. A relational operation
evaluates to 1 if the relation is true, and evaluates to 0 if
the relation is false. Relational operators have lower
precedence than all arithmetic and string operators;
therefore, relational operators are only evaluated after all
arithmetic and string operations have been evaluated.

For purposes of clarification, relational expressions may be
divided into two types: arithmetic relations and string
relations. An arithmetic relation is a pair of arithmetic
expressions separated by anyone of the relational operators.
For example:

3 < 4 (3 is less than 4) = (true) = 1

3 = 4 (3 is equal to 4) = (false) = 0

3 GT 3 (3 is greater than 3) = (false) = 0

3 >= 3 (3 is greater than or equal to 3) = (true) =1

5+1 > 4/2 (5 plus 1 is greater than 4 divided by 2) =
(true) =1

A string relation is a pair of string expressions separated
by anyone of the relational operators. A string relation may
also be a string expression and an arithmetic expression
separated by a relational operator (i.e., if a relational
operator encounters one numeric operand and one string
operand, it treats both operands as strings). To resolve a
string relation, character pairs (one from each string) are
compared one at a time from leftmost characters to rightmost.
If no unequal character pairs are found, the strings are
considered to be 'equal'. If an unequal pair of characters
are found, the characters are ranked according to their
numeric ASCII code equivalents (refer to the LIST OF ASCII
CODES in APPENDIX C of this manual). The string contributing
the higher numeric ASCII code equivalent is considered to be
"greater" than the other string. Consider the following
relation:

"MB" > "AAA"

This relation evaluates to 1 (true) since the ASCII
equivalent of B (66) is greater than the ASCII equivalent of
A (65).

If the two strings are not the same length, but the shorter

BASIC Reference 46 Representing Data

string is otherwise identical to the beginning of the longer
string, then the longer string is considered "greater" than
the shorter string. The following relation, for example, is
true and evaluates to 1:

"STRINGS" GT "STRING"

OPERATOR SYMBOLS OPERATION

< or LT Less than

> or GT Greater than

<= or =< or LE Less than or equal to

= or EQ Equal to

or <> or >< or NE Not equal to

>= or => or GE Greater or equal

MATCH or MATCHES Pattern matching

Figure A. Relational Operators

CORRECT USE

4 < 5

"0" EQ "A"

"0" > "A"

"Q" LT 5

6+5 = 11

Q EQ 5

"ABC" GE "ABB"

"XXX" LE "XX"

EXPLANATION

Evaluates to 1 (true).

Evaluates to 0 (false).

ASCII equivalent of 0 (X'44') is greater than
ASCII equivalent of A (X'41'), so expression
evaluates to 1.

ASCII equivalent of Q (X'51') is not less than
ASCII equivalent of 5 (X'35'), so expression
evaluates to O.

Evaluates to 1.

Evaluates to 1, if current value of variable Q
is 5; evaluates to 0 otherwise.

Evaluates to 1 (i. e., C is "greater" than B).

Evaluates to O.

Figure B. Examples of Correct Usage of Relational Expressions

BASIC Reference Page 47 Representing Data

2.11 Relational Expressions: Pattern Matching

BASIC pattern matching allows the comparison of a string
value to a predefined pattern. Pattern matching is specified
by the MATCH or MATCHES relational operator.

The general form of the pattern matching relation is shown in
Figure A. The MATCH or MATCHES relational operator compares
the string value of the expression to the predefined pattern
(which is also a string value) and causes the relation to
evaluate to I (true) or 0 (false). The pattern may consist of
any combination of the following:

- An integer number followed by the letter N (which tests
for that number of numeric characters).

- An integer number followed by the letter A (which tests
for that number of alphabetic characters).

- An integer number followed by the letter X (which tests
for that number of any characters).

- A literal string enclosed in quotes (which tests for that
literal string of characters).

Consider the following expression:

DATA MATCHES "4N"

This relation evaluates to I if the current string value of
variable DATA consists of four numeric characters.

If the integer number used in the pattern is 0, then the
relation will evaluate to I only if all the characters in the
string conform with the "specification letter" (Le., N,A,
or X). For example:

X MATCH "OA"

This relation evaluates to I if the current string value of
variable X consists only of alphabetic characters.

As a further example, consider the following expression:

A MATCHES "IA4N"

This relation evaluates to 1 if the current string value of
variable A consists of an alphabetic character followed by
four numeric characters.

BASIC Reference Page 48 'Representing Data

expression MATCH "pattern"

or
I"pattern" is I

<----------1 defined on I
Iprevious pagel

expression MATCHES "pattern"

Figure A. General Form of Pattern Matching Relation

CORRECT USE

Z MATCHES 19NI

Q MATCHES "ON"

B MATCH '3N"-"2N"-"4N'

B="4N1A2N"
C MATCHES B

A MATCHES "aNI. ION"

"ABC" MATCHES "#N"

"XYZ" MATCHES "3A"

"XYZ1" MATCH "4X"

X MATCHES I I

EXPLANATION

Evaluates to 1 if current string
value of variable Z consists of 9
numeric characters; evaluates to a
otherwise.

Evaluates to 1 if current value of
Q is any unsigned integer evaluates
to a otherwise.

Evaluates to 1 if current value of
B is, for example, any social
security number; evaluates to a
otherwise.

Evaluates to 1 if current string
value of C consists of four numeric
characters followed by one
alphabetic character followed by
two numeric characters;
evaluates to a otherwise.

Evaluates to 1 if current value of
A is any number containing a decimal
point; evaluates to a otherwise.

Evaluates to a.

Evaluates to 1.

Evaluates to 1.

Evaluates to 1 if current string
value of X is the empty string;
evaluates to a otherwise.

Figure B. Examples of Correct Usage of Pattern Matching Relation

BASIC Reference Page 49 Representing Data

2.12 Logical Expressions

Logical expressions (also called Boolean expressions) are the
result of applying logical (Boolean) operators to relational
or arithmetic expressions.

The logical operators are listed in Figure A. Logical
operators operate on the true or false results of relational
or arithmetic expressions. (Relational expressions are
considered false when equal to zero, and are considered true
when equal to one; arithmetic expressions are considered
false when equal to zero, and are considered true when not
equal to zero.) Logical operators have the lowest precedence
and are only evaluated after all other operations have been
evaluated. If two or more logical operators appear in an
expression, the leftmost is performed first.

Logical operators act on their associated operands as
follows:

A OR B is true (evaluates to 1) if A is true or B is
true; is false (evaluates to 0) only when A
and B are both false.

A AND B is true (evaluates to 1) only if both A and B
are true; is false (evaluates to 0) if A is
false or B is false or both are false.

Consider, for example, the following logical expression:

A*2-5>B AND 7>J

The multiplication operation has highest precedence, so it is
evaluated first (i.e., A*2 = result 1). The expression then
becomes:

result 1 - 5>B AND 7>J

The subtraction operation is next (i.e., result 1 - 5=result
2). The expression then becomes:

result 2 > BAND 7>J

The two relational operators are of equal precedence, so the
leftmost is evaluated first (i.e., result 2 > B=result 3,
where result 3 has a value of 1 indicating true, or a value
of 0 indicating false). The expression then becomes:

result 3 AND 7>J

The remaining relational operation is then performed (i.e.,
7>J = result 4, where result 4 equals 1 or 0). The final
expression therefore becomes:

result 3 AND result 4

BASIC Reference Page 50 Representing Data

\

'.

)

which is evaluated as true (1) if both result 3 and result 4
are true, and is evaluated as false (0) otherwise.

The NOT function may be used in logical expressions to negate
(invert) the expression or sub-expression. For details,
please refer to the description of the NOT Intrinsic
Function, listed alphabetically in Chapter 3.

OPERATOR SYMBOL OPERATION

AND or & Logical AND operation
OR or ! Logical OR operation

Figure A. Logical Operators

CORRECT USE EXPLANATION

1 AND A Evaluates to 1 if current value of
variable A is non-zero; evaluates
to 0 if current value of A is o.

8-2*4 OR Q5-3 Evaluates to 1 if current value of
Q5-3 is non-zero; evaluates to 0 if
current value of Q5-3 is O.

A>5 OR A<O Evaluates to 1 if the current value
of variable A is greater than 5 or
is negative; otherwise, to O.

1 AND (0 OR 1) Evaluates to 1.

J EQ 7 AND I EQ 5*2 Evaluates to 1 if the current value
of variable J is 7 and the current
value of variable I is 10; evaluates
to 0 otherwise.

"XYZ1" MATCH "4X" AND X Evaluates to 1 if the current value
of variable X is non-zero; evaluates
to 0 if current value of X is o.

Xl AND X2 AND X3 Evaluates to 1 if the current value
of each variable (Xl, X2, and X3) is
non-zero; evaluates to 0 if the
current value of either or all
variables is o.

Figure B. Examples of Correct Usage of Logical Expressions

BASIC Reference Page 51 Representing Data

2.13 Summary of Expression Evaluation

Expressions may consist of
references, and operators.
which determines the order
expression are performed.

constants, variables, function
Each operator has a precedence

in which operations within an

The operands of an expression may be constants, variables,
function references, and other expressions enclosed in
parentheses. All expressions, whether in parentheses or not,
are evaluated according to the same rules of operator
precedence. Parenthesized expressions are evaluated before
using the results as operands in other expressions.

The precedence of the operators is shown below. Operators
with higher precedence are processed first; a series of
operators with equal precedence is processed left to right.

OPERATOR SYMBOL OPERATION PRECEDENCE

< ... > Dynamic array subscripting 1 (high)
[...] Sub-string specification 1
A Exponentiation 2
* Multiplication 3
/ Division 3
+ Addition or Identity 4

Subtraction or Negation 4
expression Formatting 5 . or CAT Concatenation 6 .
< or LT Less than 7
> or GT Greater than 7
<= or =< or LE Less than or equal to 7
= or EQ Equal to 7
or <> or >< or NE Not equal to 7
>= or => or GE Greater than or equal to 7
MATCH or MATCHES Pattern Matching 7
AND or & Logical AND 8
OR or Logical OR 8

As an example, the expression:

A + B : C[D,(EAF*G)] H MATCH I AND J

would be evaluated as follows (rl .•• r8 are results of prior
operations) :

A + B
A + B
A + B
A + B

(r4)
(r4)
(r6)
(r7)
(r8)

C[D,(EAF*G)] H MATCH I AND J
C[D, «rl)*G)] H MATCH I AND J
C[D, (r2)] H MATCH I AND J
(r3) H MATCH I AND J
(r3) H MATCH I AND J
(r5) MATCH I AND J

MATCH I AND J
AND J

BASIC Reference Page 52 Representing Data

,
\

)

2.14 How Variables are structured and Allocated

The variable data area used by a BASIC program is composed of
a descriptor table, free storage area, and a buffer size
table.

Descriptor Table Structure

The descriptor table contains In' entries of 10 bytes each
where In' is the number of variables (including array
elements) in the program. The number of descriptors is
limited to 3224. A descriptor contains a code byte which
identifies the type of the descriptor as one of the
following:

content of Descriptor

6-byte binary number

8-byte string
terminated by a SM

6-byte pointer to
the free space area

base (4 bytes),
modulo (2 bytes),
separation (2 bytes)

6-byte pointer to
external subroutine code

Free storage

Usage

for numeric values

for string values of eight
characters or less

for string values with
more than eight characters

for file variables

for external subroutines

The free storage area is made up of buffers of various sizes.
These buffers are assigned to a variable if the string to be
stored in the variable can't fit in its descriptor (more than
eight characters). A pointer to this area is stored in the
descriptor.

Buffer allocation

Strings longer than eight bytes are placed in storage buffers
located in the free storage space. These fixed-length
buffers are, by default, 50 bytes, 150 bytes, or multiples of
250 bytes in length. There is overhead involved; the BASIC
run-time package reserves seven (7) bytes per buffer for
internal usage. The maximum length for strings in 50-byte
buffers, then, is 43 bytes.

When a string requires a new buffer, the system looks in a
table of abandoned buffers for a buffer of the appropriate
size. If one can't be found, a buffer size is calculated, and
a buffer of this size is then allocated to the variable in
question. The effect of allocating free storage in this
manner is that a buffer is made somewhat larger than the

BASIC Reference Page 53 Representing Data

string it will contain. This allows for larger strings to be
stored in the same buffer. This is important because of the
allocation procedure.

Initially, free storage is one contiguous block of space.
Buffers are allocated from the beginning of the free storage
area. When a string is assigned to a variable which exceeds
the variable's current buffer size, the buffer is abandoned
and a new buffer is allocated from the remaining contiguous
portion of free storage. If there is not enough contiguous
space for the new buffer, a procedure called 'garbage
collection' takes place. Garbage collection collects the
abandoned buffer space and forms a single block of contiguous
space. If, after garbage collection takes place, there is
still not enough contiguous space, the program is aborted
with the message:

NOT ENOUGH WORK SPACE

A program can change the default buffer sizes of 50 bytes,
150 bytes, and multiples of 250 bytes, by executing a STORAGE
statement. (Please refer to the STORAGE statement, listed
alphabetically in Chapter 3.)

Variable allocation

Variables are allocated descriptors in the following order:

Common variables
Simple variables
Dimensioned variables

Passing values - subroutines

The arrangement of descriptors for a main program and an
external subroutine is illustrated as follows:

1-------------------1
1 --------------- 1 values passed
1 1 1 1 through
1 1 1 1 argument list
1 1 1 1

·--------------1--1--1---------1---1--1------·
DESCRIPTORS 1 COMMON 1 VARIABLES 1 VARIABLES 1

used by both
main and
subroutine

used locally
by main program
only

used locally by
subroutine program
only

Variables declared as COMMON in both the main program and the
subroutine refer to the same locations. There is a one to one
correspondence between the variables in both COMMON statements. When
values are passed through the argu~ent list on the CALL and
SUBROUTINE statements, the values are copied back and forth between
the two local areas as indicated above.

BASIC Reference Page 54 Representing Data

If subroutine calls are nested, the arrangement of descriptors is:

1---------------1 1------------1
values passed through 1 ----------- 1 1 -------- 1

argument list 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1----------------------1--1---------1--1---1--1------1--1--------1
1 COMMON 1 VARIABLES 1 VARIABLES 1 VARIABLES 1

1--1
used by both used locally by used locally by used locally by
main and main program subroutine 1 subroutine 2
subroutines only only only

Values passed through the argument list are copied as indicated
above.

It is illegal to CHAIN or ENTER from a subroutine, but it is
permissable to CHAIN or ENTER a program that calls a sUbroutine.

Passing values - CHAIN and ENTER programs

The ENTER statement may be used to transfer control to a new BASIC
program which inherits the values of variables from the old program.
The CHAIN statement may be used in a similar way when invoking the
RUN verb with the I option to run a new program without initializing
variables. (For details, please refer to the CHAIN and ENTER
statements, listed alphabetically in Chapter 3.)

It is permissable to CHAIN or ENTER a program that calls a
subroutine but it is illegal to CHAIN or ENTER from a subroutine.

BASIC Reference Page 55 Representing Data

NOTES

BASIC Reference Page 56 Representing Data

i
,I

CHAPTER 3

BASIC STATEMENTS AND FUNCTIONS

3.1 A Summary of the Statements and Functions

3.2 Alphabetical Listing of Statements and Functions

The BASIC Statements:

END LOCK PROGRAM STORAGE

* END CASE LOOP PROMPT SUBROUTINE
= (Assignmt) ENTER MAT = PUT UNLOCK
ABORT EQUATE MATREAD READ UNTIL
BEGIN CASE EXECUTE MATREADU READNEXT WEOF
BREAK EXIT MATWRITE READT WHILE
CALL FOOTING MATWRITEU READU WRITE
CASE FOR NEXT READV WRITET
CHAIN GET NULL READVU WRITEU
CLEAR GOSUB ON GOSUB RELEASE WRITEV
CLEARFILE GOTO (GO TO) ON GOTO REM WRITEVU
CLOSE HEADING OPEN REPEAT
COMMON IF PAGE RETURN (TO)
DATA INPUT PRECISION REWIND
DEL INPUTCLEAR PRINT RQM
DELETE INS PRINTER SEEK
DIM LET PRINTERR SELECT
DISPLAY LOCATE PROCREAD STOP
ECHO PROCWRITE

The BASIC Intrinsic Functions:

@ DELETE FSUB REM STR
ABS EBCDIC ICONV REPLACE SYSTEM
ALPHA EOF INDEX RND TAN
ASCII EXP INSERT SADD TIME
CHAR EXTRACT INT SCMP TIMEDATE
COLl FADD LEN SDIV TRIM
COL2 FCMP LN SEQ
COS FDIV MOD SIN
COUNT FFIX NOT SMUL
DATE FFLT NUM SPACE
DCOUNT FIELD OCONV SQRT

FMUL PWR SSUB

BASIC Reference Page 57 Statements/Functions

3.1 A Summary of the Statements and Functions

Figure A lists the BASIC statements. The BASIC intrinsic
functions are listed in Figure B. Figure C lists the BASIC
compiler directives, which are discussed in Section 1.4. Figure
D lists the redirection variables used with certain BASIC
statements.

! END LOCK PROGRAM STORAGE
* END CASE LOOP PROMPT SUBROUTINE
= (Assignmt) ENTER MAT = PUT UNLOCK
ABORT EQUATE MATREAD READ UNTIL
BEGIN CASE EXECUTE MATREADU READNEXT WEOF
BREAK EXIT MATWRITE READT WHILE
CALL FOOTING MATWRITEU READU WRITE
CASE FOR NEXT READV WRITET
CHAIN GET NULL READVU WRITEU
CLEAR GOSUB ON GOSUB RELEASE WRITEV
CLEARFILE GOTO (GO TO) ON GOTO REM WRITEVU
CLOSE HEADING OPEN REPEAT
COMMON IF PAGE RETURN (TO)
DATA INPUT PRECISION REWIND
DEL INPUTCLEAR PRINT RQM
DELETE INS PRINTER SEEK
DIM LET PRINTERR SELECT
DISPLAY LOCATE PROCREAD STOP
ECHO PROCWRITE

Figure A. BASIC Statements

@ DELETE FSUB REM STR
ABS EBCDIC ICONV REPLACE SYSTEM
ALPHA EOF INDEX RND TAN
ASCII EXP INSERT SADD TIME
CHAR EXTRACT INT SCMP TIMEDATE
COLI FADD LEN SDIV TRIM
COL2 FCMP LN SEQ
COS FDIV MOD SIN
COUNT FFIX NOT SMUL
DATE FFLT NUM SPACE
DCOUNT FIELD OCONV SQRT

FMUL PWR SSUB

Figure B. BASIC Intrinsic Functions

$CHAIN $INCLUDE $NODEBUG $*

Figure C. BASIC Compiler Directives

ARG. MSG. SELECT. IN. OUT.

Figure D. BASIC Redirection Variables

BASIC Reference Page 58 Statements/Functions

\ ,

)

3.2 Alphabetical Listing of statements and Functions

Each statement and function is described in detail in its own
separate topic. The topics are presented in alphabetical
order, according to the statement or function name. All
statements and functions have been integrated into one
alphabetical listing.

A BASIC statement performs a complete operation. Statements
may appear anywhere in a program. All statements must be
formatted with a space separating the statement name from any
parameters that follow; for example:

CALL SUBRl

A BASIC intrinsic function performs a function within a
statement operation. Functions may appear anywhere that
expressions can be used in a statement. All functions must
be formatted with a left parenthesis following the function
name, any parameters, and a right parenthesis; for example:

ALPHA (N)
CaLl ()

Each topic about a statement or function begins on a new
page. Topics may be presented on one or more pages, as
necessary. In general, the text description is covered on
the first page, followed by a page of figures. The figures
review the general form, which is also covered in the text,
and give examples of usage with explanation.

For one-page topics, the text is in the upper portion of the
page and the figures are below the text. For mUlti-page
topics, the text precedes the figures. Some complex
statements are divided into two separate topics to explain
the special cases.

The statements and functions identified by symbols, such as
the Assignment (=) statement and the @ function, are listed
before the statements and functions with alphabetical names.
Thus, the topics begin with:

! and * Statement
= Statement
@ Function
ABORT Statement
ABS Function

and end with:

WRITEVU Statement

BASIC Reference Page 59 Statements/Functions

! and *
statements

The "1" and "*" statements are alternative forms of the
Remark (REM) statement. Remarks can identify a function or
section of program code, as well as explain its purpose and
method.

A Remark statement can be specified in one of three ways: by
the characters "REM", by the asterisk character (*), or by
the exclamation point (1). Thus, there are three general
forms of the Remark statement:

REM text ...
1 text
* text ...

REM, lL or * must be placed at the beginning of the
statemen~ but may appear anywhere on a line (e.g., after
another statement on the same line). A semicolon must be
used to separate a Remark statement from any other BASIC
statement on the same line. The text may be any arbitrary
characters, up to the end of the line.

Remarks are useful, when writing BASIC programs, to
summarize, introduce, explain or document the program
instructions and routines. A Remark statement allows
programmers to place comments anywhere in the program without
affecting program execution.

For example:

REM THE TEXT FOLLOWING THESE STATEMENTS
1 DOES NOT AFFECT
* PROGRAM EXECUTION

Note that there are extra blank spaces in some of the
statements above. These blank spaces appearing in the
program line (which are not part of a data item) will be
ignored. Thus, blanks may be used freely within the program
to enhance the appearance and readability of a program and
its comments.

Figure B shows a sample program with Remark statements.

BASIC Reference Page 60 Statements/Functions

REM text ! text * text

Figure A. General Forms of Remark statement

REM PROGRAM TO PRINT THE
* NUMBERS FROM ONE TO TEN

I = 1;
BEG: PRINT I;

IF I = 10 THEN
I = I + 1;
GOTO BEG;
END

* START WITH ONE
* PRINT THE VALUE

STOP; * STOP IF DONE
* INCREMENT I

* BEGIN LOOP AGAIN

Figure B. Sample Program With Remark Statements

BASIC Reference Page 61 Statements/Functions

= (Assignment)
statement

The = (Assignment) statement is used to assign a value to a
variable, or to an element of a dynamic array stored in a
variable. The variable may be either a simple variable or an
element of a dimensioned array.

The general forms of the Assignment statement are:

variable = expression
variable <attr# {,value# {,subval#}}> = expression

In the first form, the value of the expression becomes the
current value of the variable on the left side of the
equality sign. The expression 'may be any legal BASIC
expression. For example:

ABC = 500

X2 = (ABC+100)/2

The first statement will assign the value of 500 to the
variable ABC. The second statement will asign the value 300
to the variable X2 (i.e., X2 = (ABC+100)/2 = (500+100)/2
600/2 = 300).

String values may also be assigned. For example:

VALUE = "THIS IS A STRING"

SUB = VALUE [6,2]

The first statement above assigns the string "THIS IS A
STRING" to variable VALUE. The second statement assigns the
string "IS" to variable SUB (i.e., assigns to SUB the two­
character sub-string starting at character position 6 of
VALUE) .

In the second form of the Assignment statement, the dynamic
array element in variable specified by attr#, value#, and
subval# is replaced by the value of the expression. The
values of attr#, value#, and subval#, determine whether the
data being assigned is an attribute, a value, or a subvalue.
If value# and subval# both have a value of 0 or are both
absent, then an entire attribute is assigned. If subval# has
a value of 0 or is absent but value# is present, then a value
is assigned. If attr#(value#, and subval# are all non-zero,
then a subvalue is asslgned. If the last (or only) index
specified (attr#, value#, or subval#) has a value of -1, then
expression is inserted after the last attribute, value, or
subvalue.

Arrays must be declared using DIM or COMMON statements before
their elements can be addressed in an assignment statement.

BASIC Reference Page 62 Statements/Functions

The LET statement may optionally be prefixed to an assignment
statement, as in LET X = 12.

NOTES: 1. An equated symbol may not be used in place of a
variable in an assignment statement if the symbol
has already been assigned a constant (literal)
value in the program. (Please refer to the EQUATE
statement, listed alphabetically in this chapter.)

2. All elements in a dimensioned array can be
assigned a value(s) by the MAT = assignment
statement. (Please refer to the MAT = statement,
listed alphabetically in this chapter.)

variable = expression <-----------IThe equality sign means assign
Ithe value of the expression on

var<attr# {value# {,subval#}}> = expr Ithe right to the variable on
Ithe left.

LET variable = expression

LET var<attr# {,value# {,subval#}}> = expr

Figure A. General Forms of the Assignment Statement

CORRECT USE

X=5

X=X+l

ST="STRING"

ST1=ST[3,1]

TABLE(I,J)=A(3)

A=B=O

A<2>=O

EXPLANATION

Assigns 5 to X.

Increments X by 1.

Assigns the character string to ST.

Assigns sub-string "R" to ST1.

Assigns matrix element from vector
element.

Assigns 1 to A if "B=O" is true,
assigns 0 to A if "B=O" is false.

Assigns 0 to attribute 2 of dynamic
array A.

Figure B. Correct Examples of Assignment Statement

BASIC Reference Page 63 Statements/Functions

@
Function

The @ ("at" sign) function generates a string of control
characters used for cursor positioning or other terminal or
printer control features. The terminal or printer is
affected when the string is later output to it with a PRINT
statement.

The general form of the @ function is:

@(expression1 {,expression2})

If both expression1 and ex~ression2 are present, expression1
specifies the column to wh~ch the cursor is to be positioned,
and expression2 specifies the row, or line. Columns and rows
are numbered starting with zero (0), left to right and top to
bottom on the screen. If only expression1 is present, and
its value is non-negative, then it is a column specification
for the cursor, as before, and the cursor is assumed to
remain on the current line. Note, however, that not all
terminals support column-only cursor positioning, so the
results are not guaranteed. For this reason, both column and
row specifications should be used when positioning the
cursor. For example:

PRINT @ (30): "HELLO"

This statement prints the message "HELLO" on the current line
position of the cursor, starting at column position 30.
Another example:

PRINT @(10,15): "GOOD-BYE"

This statement prints the message "GOOD-BYE" on line 15,
starting at column position 10.

If only expression1 is present and its value is negative,
then the @ function returns a terminal or printer control
string as determined by the table in Figure C.

When positioning the cursor, the values of the expression(s)
used in the @ function must be within the row and column
limits of the terminal screen.

The @ function generates values based on the current terminal
or printer type for the port (line) on which the BASIC
program is run. The terminal type is determined by the most
recent TERM command executed for the port, or by a terminal
type logon parameter set up with the TERMINAL command, or by
the system's default terminal type, which may be changed with
the SET-TERM command. The printer type is shown and changed
with the PRINTER command. For more information about these
commands, please refer to the ULTIMATE System Commands
manual.

BASIC Reference Page 64 Statements/Functions

)

Note that not all terminals (or printers attached to terminal
auxiliary ports) will respond to all control codes listed
here. The documentation for each terminal or printer must be
consulted for information about which features are supported.
If a non-supported feature is used, a null string is normally
returned.

@(expressionl {,expression2})
A A

I specifies I
I column I
lor cursor I
I control I
I character I

I specifies I
Iline I

Figure A. General Form of @ Function

CORRECT USE

X = 7
Y = 3
PRINT @(X,Y): Z

Q = @ (3): "HI"
PRINT Q

A = 5
PRINT @(A,A+5):A

PRINT @ (-1)

EXPLANATION

Prints the current value of variable Z
at column position 7 of line 3.

Prints "HI" at column position 3 of
current line.

Prints the value 5 at column position
5 of line 10.

Clears the screen and positions
the cursor at 'home' position.

Figure B. Examples of Correct Usage of @ Function

BASIC Reference Page 65 Statements/Functions

CODE

@ (-1)

@(-2)
@(-3)
@(-4)
@ (-5)
@(-6)
@(-7)

@(-S)
@(-9)
@(-10)
@ (-11)
@(-12)
@(-13)
@(-14)
@(-15)
@ (-16)
@(-17)
@(-IS)
@(-19)
@(-20)
@(-21)
@(-22)
@(-23)
@(-24)
@(-25)
@(-26)
@(-27)
@(-2S)
@(-29)

EXPLANATION

Generates the clear-screen character; clears the
screen and positions the cursor at 'home' (upper
left corner of the screen).
positions the cursor at 'home' (upper left corner).
Clears from cursor positon to the end of the screen.
Clears from cursor position to the end of the line.
starts blinking on subsequently printed data.
stops blinking.
Initiates 'protect' field. All printed data will be
'protected', that is, it cannot be written over.
stops protect field.
Backspaces the cursor one character.
Moves the cursor up one line.
Moves the cursor down one line.
Moves the cursor right one column.
Enables auxiliary (slave) port.
Disables auxiliary (slave) port.
Enables auxiliary (slave) port in transparent mode.
Initiates slave local print.
starts underlining.
stops underlining.
starts inverse video.
stops inverse video.
Deletes a line.
Inserts a line.
Scrolls the screen display up one line.
starts boldface type.
stops boldface type.
Deletes one character.
Inserts one blank character.
Starts insert character mode.
stops insert character mode.

The following @ function values affect ULTIMATE-supported
letter-quality printers:

@(-101,p)
@(-102,1)
@(-103)
@(-104)
@(-105)
@ (-106)
@(-107)
@(-10S)
@(-109)
@(-110)
@(-111)
@(-112)
@(-113)
@(-114)

sets VMI (Vertical Motion Index) to p.
Sets HMI (Horizontal Motion Index) to 1.
Sets alternate font.
Sets standard font.
Generates a half line-feed.
Generates a negative half line-feed.
Generates a negative line-feed.
Prints black ink.
Prints red ink.
Loads cut sheet feeder.
Selects feederl.
Selects feeder2.
Selects standard thimble.
Selects proportional space thimble.

Figure C. Explanation of @ Function Negative Values

BASIC Reference Page 66 Statements/Functions

ABORT
statement

The ABORT statement terminates program execution. If the
program was run from a PROC, the PROC is terminated as well.

The general form of the ABORT statement is:

ABORT {errnum{,param, param, ... }}

An ABORT statement may optionally be followed by an error
message name, and error message parameters separated by
commas. The error message name errnum is a reference to an
item in the ERRMSG file. The param parameters are variables
or literals to be used within the error message format.

An ABORT statement may be placed anywhere within the BASIC
program to indicate the end of one of several alternative
paths of logic.

U~on the execution of an ABORT statement, the BASIC program
wlll terminate.

A sample BASIC program illustrating the correct use of the
ABORT statement is presented in Figure B. This program
requests a file name from the user and attempts to open the
file. If an incorrect file name is entered, the standard
system error message [20l]--"xxx IS NOT A FILE"--will be
printed, and the program is then terminated.

NOTE: The STOP statement can also be used for program
termination. (Refer to the STOP statement, listed
alphabetically in this chapter.)

ABORT {errnum{,param, param, ... }}

Figure A. General Form of ABORT Statement

PRINT 'PLEASE ENTER FILE NAME':
INPUT FN
OPEN FN TO FFN ELSE ABORT 201, FN

Figure B. Sample Program using the ABORT Statement

BASIC Reference Page 67 Statements/Functions

ABS
Function

The ABS function returns an absolute value.

The general form of the ABS function is:

ABS(expression)

The ABS function generates the absolute numeric value of the
expression. For example:

A = 100
B = 25
C = ABS(B-A)

These statements assign the value 75 to variable C.

ABS(expression)

Figure A. General Form of ABS Function

CORRECT USE EXPLANATION

A = ABS(Q) Assigns the absolute value of
variable Q to variable A.

A = 600 Assigns the value 400 to vari-
B = ABS(A-IOOO) able B.

Figure B. Examples of Correct Usage of ABS Function

INCORRECT USE

Y = "ABCD"
Z = ABS(Y)

EXPLANATION

Expression in ABS functions must
be numeric.

Figure C. Example of Incorrect Usage of ABS Function

BASIC Reference Page 68 Statements/Functions

ALPHA
Function

The ALPHA function returns a value of true (1) if the given
expression evaluates to an alphabetic character or string.

The general form of the ALPHA function is:

ALPHA (expression)

The ALPHA function tests the specified expression for an
alphabetic value. If the expression evaluates to a letter
or alphabetic string, the function will return a value of
true (a value of 1). otherwise, the ALPHA function will
return a value of false (0).

Consider the following example:

IF ALPHA (ADAB) THEN PRINT "ALPHABETIC DATA"

This statement will print the text "ALPHABETIC DATA" if the
current value of variable ADAB is a letter or an alphabetic
string.

Alphabetic characters are the 26 letters of the alphabet, in
upper or lower case. The empty string (") is not considered
to be an alphabetic string. (It is, however, a valid numeric
string.)

ALPHA (expression)

Figure A. General Form of ALPHA Function

CORRECT USE

IF ALPHA(I CAT J) THEN GOTO 5

PRINT ALPHA(N) OR ALPHA(M)

EXPLANATION

Transfers control to state­
ment label 5 if current value
of both variables I and J are
letters or alphabetic strings.

Prints a value of 1 if the
current value of either M or
N is a letter or alpha string.

Figure B. Examples of Correct Usage of ALPHA Function

BASIC Reference Page 69 statements/Functions

ASCII
Function

The ASCII function returns the ASCII value of an EBCDIC
string_

The general form of the ASCII function is:

ASCII (expression)

The string value of the expression is converted from EBCDIC
to ASCII, the normal ULTIMATE string representation. For
example:

A = ASCII(B)

The value in variable B is assumed to be in EBCDIC, and is
converted to its equivalent ASCII value. The ASCII value is
stored in variable A.

NOTE: The inverse function, EBCDIC, is discussed as a
separate function. (Please refer to the EBCDIC function,
listed alphabetically in this chapter.)

ASCII (expression)

Figure A. General Form of ASCII Function

CORRECT USE

READT X ELSE STOP
Y = ASCII(X)

EXPLANATION

Reads a record from the magnetic tape
unit and assigns value to variable x.
Assigns ASCII value of record to
variable Y.

Figure B. Example of Correct Usage of ASCII Function

BASIC Reference Page 70 Statements/Functions

Assignment
statements

Assignment statements assign values to variables. There are
two forms: the = statement and the MAT = statement.

The = statement assigns a value to a simple variable. A
simple variable is contained in one storage location. Please
refer to the = (Assignment) statement, listed in the first
part of this chapter. (statements/functions idenfified by
symbols precede the statements/functions beginning with "A".)

The MAT = statement assigns values to dimensioned arrays. A
dimensioned array contains one storage location for each
element in the array. Please refer to the MAT = (Assignment)
statement, listed alphabetically in this chapter.

BASIC Reference Page 71 statements/Functions

BEGIN' CASE
statement

The BEGIN CASE statement is the first statement in the CASE
statement sequence.

The general form of the BEGIN CASE statement is:

BEGIN CASE

Please refer to the CASE statement for information about the
entire CASE statement sequence.

BASIC ReferencE' Page 72 Statements/Functions

\

)

BREAK (ON/OFF)
statement

The BREAK ON and BREAK OFF statements control the BREAK key
on the terminal through a BASIC program.

The general forms of the BREAK statement are:

BREAK OFF

BREAK ON

The BREAK OFF statement disables the BREAK key on the
terminal. When disabled, pressing the BREAK key will not be
able to stop a program from executing. This is useful when
the BREAK key must not be operative during critical processes
such as file updates.

The BREAK ON statement enables the BREAK key on the terminal.
When enabled, the BREAK key is set to its normal state so as
to allow interrupting a program, going to the BASIC debugger,
etc.

Note that these commands increment/decrement the BREAK
inhibit counter. Since these are cumulative, an equal number
of BREAK ON's and BREAK OFF's must be executed to restore a
break-able status.

BASIC Reference Page 73 Statements/Functions

CALL
statement

The CALL statement provides external subroutine capabilities
for a BASIC program. An external subroutine is a subroutine
that is compiled (and possibly cataloged) separately from the
program or programs that call it. An external subroutine can
be called directly or indirectly.

The general form of the CALL statement is:

CALL {@}name {(argument list)}

The CALL statement with no @ is a direct call, and transfers
control to the external subroutine named name. The name
(item name of a program) may not have any special characters
in it. The optional argument list consists of one or more
expressions, separated by commas, that represent actual
values passed to the .subroutine. The argument list can pass
an array to a subroutine by preceding the array argument with
the word MAT. (See the next topic.) An argument list may
continue on multiple lines; each line except the last must
conclude with a comma.

The CALL @ form is used to specify an indirect call. When
@name is present, name is a variable containing the name of
the external subroutine to be called. The argument list
performs the same function as in a direct call. For example:

NAME = 'XSUBI'
CALL @NAME
NAME = 'XSUB2'
CALL @NAME

The first call invokes subroutine XSUBI. The second call
invokes subroutine XSUB2.

There is no correspondence between variable names or labels
in the calling program and the subroutine. The only
information passed between the calling program and the
subroutine are the values of the arguments (plus any COMMON
variables). External subroutines may call other external
subroutines, including themselves. A sample external
subroutine that involves two arguments, together with
correctly formed CALL statements, is shown below.

CALL Statements

CALL ADD (A,B,C)
CALL ADD (A+2,F,X)
CALL ADD (3,495,Z)

Subroutine ADD

SUBROUTINE ADD (X,Y,Z)
Z=X+Y
RETURN
END

When the CALL statement is executed, subroutine arguments are
first evaluated and their values assigned to the
corresponding variables named in the subroutine's SUBROUTINE

BASIC Reference Page 74 Statements/Functions

statement. These variables may then be assigned new values
by the subroutine. When control returns to the calling
program, any variables used as subroutine arguments will be
updated to reflect the most recent values of the
corresponding variables in the" subroutine. constants and
other expressions used as subroutine arguments will not be
changed.

Care should be taken not to update the same variable
referenced by more than one name in an external subroutine.
This can occur if a variable in COMMON is also passed as a
subroutine parameter.

NOTE: The SUBROUTINE statement must be used in conjunction
with CALL. For details, refer to the SUBROUTINE statement,
listed alphabetically in this chapter. The called external
subroutine must begin with a SUBROUTINE statement and contain
a RETURN statement. GOSUB and RETURN may be used within the
subroutine, but when a RETURN is executed with no
corresponding GOSUB, control passes to the statement
following the corresponding CALL statement in the calling
program. If the subroutine terminates execution without
executing a RETURN (such as by executing a STOP statement, or
by "running out" of statements at the end of the subroutine),
control never returns to the calling program. The CHAIN
statement should not be used to chain from an external
subroutine to another BASIC program.

CALL {@}name {(argument list)}

Figure A.

CORRECT USE

CALL REVERSE (A,B)

CALL REPORT

CALL VENDOR (NAME,
ADDRESS, NUMBER)

CALL DISPLAY (A,B,C)

General Form of CALL Statement

EXPLANATION

Subroutine REVERSE has two arguments.

Subroutine REPORT has no arguments.

Subroutine VENDOR returns three
values.

Subroutine DISPLAY accepts (and
returns) three argument values.

Figure B. Examples of Correct Usage of CALL Statements

BASIC Reference Page 75 Statements/Functions

CALL
statement (cont'd)

(Passing Arrays)

Arrays may be passed to external subroutines.

The general form for specifying an array in an argument list of
CALL statements is:

CALL name (MAT variabl0)

The variable is the name of an array given in a DIM statement.
The array must be dimensioned in both the calling program and
the subroutrne.-Xrray dimensions may be different, as long as
the total number of elements matches. Arrays are copied in row
major order. Consider the following example:

Calling Program

DIM X(4,5)
CALL COPY (MAT X)
END

Subroutine

SUBROUTINE COPY (MAT A)
DIM A(IO,2)
PRINT A(8,1)
RETURN
END

In this subroutine the parameter passing facility is used to
copy array X specified in the CALL statement of the calling
program into array A of the subroutine. Printing A(8,1) in the
subroutine is equivalent to printing X(3,5) in the calling
program. Additional examples of array passing, both correct and
incorrect, are shown in Figure B.

BASIC Reference Page 76 Statements/Functions

t CALL name (MAT variable)

Figure A. General Forms of CALL statement with Array Passing

CORRECT USE EXPLANATION

DIM A(4,10),B(10,S) Subroutine REV accepts two input
CALL REV (MAT A, MAT B) array variables, one of size 40

and one of size 50 elements.

SUBROUTINE REV (MAT C, MAT B)
DIM C(4,10), B(SO)

INCORRECT USE

DIM TAB(lOO)
CALL SHORT(TAB)

DIM FOUR (2,2)
CALL GOF (MAT FOUR)

SUBROUTINE GOF(MAT NIX)
DIM NIX(S)

EXPLANATION

The word 'MAT' must precede array
TAB in the parameter list.

corresponding arrays must have the
same number of elements in the
calling program and the subroutine.

Figure B. Examples of Array Parameters

BASIC Reference Page 77 Statements/Functions

CASE
statement

The CASE statement provides conditional selection of a
sequence of BASIC statements.

The general form of the CASE statement is:

BEGIN CASE
CASE expression
statements
CASE expression
statements

END CASE

If the logical value of the first expression is true (i.e.,
non-zero), then the statement or sequence of statements that
immediately follows, up to the next CASE or END CASE, is
executed, and control passes to the statement following END
CASE. If the first expression is false (i.e., zero), then
control passes to the next test expression, and so on.

Consider the following example:

BEGIN CASE
CASE A < 5
PRINT 'A IS LESS THAN 5'
CASE A < 10
PRINT 'A IS GREATER THAN OR EQUAL TO 5 AND LESS THAN la'
CASE 1
PRINT 'A IS GREATER THAN OR EQUAL TO la'

END CASE

If A<5, then the first PRINT statement will be executed. If
5<=A<10, then the second PRINT statement will be executed.
Otherwise, the third PRINT statement will be executed. (Note that
a test expression of 1 means "always true.")

BASIC Reference Page 78 Statements/Functions

(

BEGIN CASE
CASE expression
statements
CASE expression
statements

END CASE

Figure A. General form of CASE statement

CORRECT USE

BEGIN CASE
CASE Y=B
Y=Y+l

END CASE

BEGIN CASE
CASE A=O; GOTO 10
CASE A<O; GOTO 20
CASE 1; GOTO 30

END CASE

BEGIN CASE
CASE ST MATCHES "lA"
MAT LET=l
CASE ST MATCHES ''IN''
SGL=l; A.l(I)=ST
CASE ST MATCHES "2N"
DBL=l; A.2(J)=ST
CASE ST MATCHES "3N"
GOSUB 103

END CASE

EXPLANATION

Increment Y if Y is equal to B.
Note that this single-case example
is equivalent to the statement
IF Y=B THEN Y=Y+l.

program control branches to the
statement with label 10 if the
value of A is zero; to 20 if A
is negative; or to 30 if A is
greater than zero.

If ST is one letter, "1" is assigned
to all LET elements and the entire
CASE is ended. If ST is one number,
"1" is assigned to SGL, ST is stored
at element A.l(I), and the entire
case is ended. If ST is two numbers,
"1" is assigned to DBL, ST is stored
at element A.2(J), and the entire
case is ended. If ST is three
numbers, subroutine 103 is executed.

Figure B. Examples of Correct Usage of CASE Statement

BASIC Reference Page 79 Statements/Functions

CHAIN
statement

The CHAIN statement terminates program execution and executes
a specified TCL command. The TCL command may be used to
initiate another BASIC program using values from the first
program.

The general form of the CHAIN statement is:

CHAIN "any TCL command"

The CHAIN statement causes the specified TCL command to be
executed. The CHAIN statement may contain any valid verb or
PROC name in the user's Master Dictionary. Consider the
following example:

CHAIN "RUN FILEI PRO GRAM 1 (I)"

This statement causes the previously compiled program named
PROGRAMI in the file named FILEI to be executed. The I option
specifies that the variables are not to be initialized. This
causes them to take on values from variables in the first
program, since variable data is always stored beginning at
the same location in a user's workspace.

The variables in one program that are to be passed to another
program must be in the same location. Variables are
allocated in the order in which they first appear in a
program except that arrays are allocated (in the order of
their DIM statements) after all other variables are
allocated. consider, for example, the following two BASIC
programs:

Program ABC in file BP

A=500
B=l;C=l
CHAIN "RUN BP XYZ (I)"
END

Program XYZ in file BP

PRINT X;PRINT Y;PRINT Z
END

Program ABC causes program XYZ to be executed. The I option
used in the CHAIN statement specifies that the variable data
area is not to be initialized, thus allowing program ABC to
pass the values "500", "1", and "2" to program XYZ. Program
XYZ, in turn, prints the values "500", "1", and "2" since
they were allocated and passed in that order. The variable
names do not need to correspond; only the order is
significant to program XYZ.

Users should note that the workspace areas used for variable

BASIC Reference Page 80 Statements/Functions

storage are also used by other system software so their
contents cannot be guaranteed when CHAINing from one BASIC
program to another if there is any intermediate processing.
In particular, cHAINing to a PROC which performs a Recall
SELECT-type statement before invoking a BASIC program with
the I option may cause the BASIC program's variables to be
initialized to garbage.

Users should also note that control is never returned to the
BASIC program originally executing the CHAIN statement. In
order to accomplish this, an EXECUTE statement must be used
instead of a CHAIN statement. (Please refer to the EXECUTE
statement, listed alphabetically in this chapter.)

IMPORTANT: It is illegal to CHAIN from a subroutine, but
legal to CHAIN a program that calls a subroutine.

CHAIN "any TCL command"

Figure A. General Form of CHAIN Statement

CORRECT USE

CHAIN "RUN FN1 LAX (I)"

CHAIN "LISTU"

CHAIN "LIST FILE"

CHAIN "RUN PROGRAMS ABC"

EXPLANATION

Causes the execution of program
LAX in file FN1. I option
specifies that data area is not to
be initialized (i.e., the program
executing the CHAIN statement will
pass values to program LAX) .

Causes the execution of the LISTU
PROC.

Causes the execution of the LIST
Recall Verb.

Causes the execution of program
ABC in file PROGRAMS. Since I
option is not used, values will
not be passed to program ABC.

Figure B. Examples of Correct Usage of CHAIN Statement

BASIC Reference Page 81 Statements/Functions

CHAR
Function

The CHAR function converts a numeric value to its
corresponding ASCII character value.

The general form of the CHAR function is:

CHAR(expression)

The CHAR function converts the numeric value specified by the
expression to its corresponding ASCII character string value.
For example, the following statement assigns the string
value for an Attribute Mark to the variable AM:

AM = CHAR(254)

CHAR always returns one character: if the value of
expression is greater than 255, then CHAR (expression) =
CHAR(expression MOD 256) .

NOTE: The inverse function, SEQ, is discussed as a separate
function. (Please refer to the SEQ function, listed alpha­
betically in this chapter.)

NOTE: For a complete list of ASCII codes, refer to Appendix C
of this manual.

CHAR (expression)

Figure A. General Form of CHAR Function

CORRECT USE

VM = CHAR (253)

X = 252
SVM = CHAR(X)

EXPLANATION

Assigns the string value for a
Value Mark to variable VM.

Assigns the string value for a
Secondary Value Mark to
variable SVM.

Figure B. Examples of Correct Usage of CHAR Function

BASIC Reference Page 82 Statements/Functions

CLEAR
statement

The CLEAR statement is used to initialize all variables to a
value of zero.

The general form of the CLEAR statement is:

CLEAR

The CLEAR statement initializes all possible variables to
zero (i.e., assigns the value 0 to all variables). It may
appear anywhere in a program.

CLEAR

Figure A. General Form of CLEAR statement

CORRECT USE EXPLANATION

CLEAR Assigns the value 0 to all
possible variables.

Figure B. Correct Example of CLEAR Statement

BASIC Reference Page 83 Statements/Functions

CLEARFlLE
statement

The CLEARFILE statement is used to clear all data from a
specified file.

The general form of the CLEARFILE statement is:

CLEARFILE {file-variable} {ON ERROR statements}

Upon execution of the CLEARFILE statement, the file which was
previously assigned to the specified file-variable (via an
OPEN statement) will be emptied (i.e., the data in the file
will be deleted, but the file itself will not be deleted). If
the file-variable is omitted from the CLEARFILE statement,
then the internal default file-variable is used (thus
specifying the file most recently opened without a file
variable) .

Consider the following example:

OPEN 'AFILE' TO X ELSE PRINT "CANNOT OPEN"; STOP
CLEARFILE X

These statements cause the data section of the file named
AFILE to be cleared.

The user should note that the BASIC program will abort with
an appropriate error message if the specified file has not
been opened prior to the execution of the CLEARFILE
statement. (Refer to Appendix B describing run-time error
messages.)

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be cleared due to a network error condition.
In this case, the value of SYSTEM(O) will indicate the
UltiNet error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when clearing local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be cleared due to network errors, the

BASIC Reference Page 84 Statements/Functions

program may terminate with an error message if no ON ERROR
clause is present.

CLEARFILE {file-variable} {ON ERROR statements}

Figure A. General Form of CLEARFILE statement

CORRECT USE

OPEN 'FN1' ELSE PRINT 'NO FN1';STOP
READ I FROM '11' ELSE STOP
CLEARFILE

OPEN 'FILEA' TO A ELSE STOP
OPEN 'FILEB' TO B ELSE STOP
CLEARFILE A
CLEARFILE B

OPEN 'ABC' ELSE PRINT 'NO FILE'; STOP
READV Q FROM 'IB3', 5 ELSE STOP
IF Q='TEST' THEN CLEARFILE

EXPLANATION

Opens the data section of file
FN1, reads item 11 and assigns
value to variable I, and
finally clears the data
section of file FN1.

Clears the data sections of
files FILEA AND FILEB.

Clears the data section of
file ABC if the 5th attribute
of the item with name IB3 has
a string value of 'TEST'.

Figure B. Examples of Correct Usage of CLEARFILE Statement

BASIC Reference Page 85 Statements/Functions

CLOSE
Statement

The CLOSE statement closes a file by breaking the connection
between that file and a file variable. The file must have
been previously connected to the file variable via an OPEN
statement.

The general form of the CLOSE statement is:

CLOSE {file-variable} {ON ERROR statements}

The file-variable, if present, specifies the file variable to
use in closing the file. If file-variable is omitted, the
internal default file variable is assumed.

When an Ultimate data file is opened, file items are always
read into and written from a file variable. The OPEN
statement establishes a connection between the file and the
BASIC file variable. The file variable may be explicitly
named in the OPEN statement. If no file variable is named,
the internal default file variable is used.

The CLOSE statement closes the file indicated by the
file-variable, or by the internal default file variable if no
file-variable is specified. In the latter case, it would
close the file most recently opened by an OPEN statement
without a file variable. If the file is not currently
connected to the file variable, an error message is generated
and the program may abort to the Debugger. For more
information about opening files, refer to the OPEN statement,
listed alphabetically in this chapter.

closing a file breaks the connection between a file and the
specified file variable. The file will, however, remain
connected to any other file variables to which it is
currently assigned in the program. In order to use the
specified (closed) file variable again in I/O statements such
as READ or WRITE, the variable must be re-connected to a file
by means of another OPEN statement. In order to perform I/O
on the file itself, the file must be OPENed to a different
file variable, or re-OPENed to the same file variable.

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be closed due to a network error condition.
In this case, the value of SYSTEM(O) will indicate the
UltiNet error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when local files are being closed.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

BASIC Reference Page 86 Statements/Functions

)

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be closed due to network errors, the
program may terminate with an error message if no ON ERROR
clause is present.

Normally, local files do not need to be closed with a CLOSE
statement. A file is implicitly closed whenever a file
variable (including the internal default file variable) is
assigned a new value, such as in an OPEN statement or
Assignment statement. That is, if a file has been opened to
a file variable, it is not necessary to CLOSE the file
variable before assigning it a different value. Also, all
open files are automatically closed when a program terminates
execution.

When working with remote files, however, the advantage of
closing a file when it is no longer needed in a program is
that the corresponding remote open-file table entry is freed.
Since the number of entries in this table is limited, freeing
unused connections could allow greater use of the network.
On the other hand, excessive opening and closing of remote
files would merely increase network traffic and decrease
program efficiency.

CLOSE {file-variable} {ON ERROR statements}

Figure A.

CORRECT USE

CLOSE

CLOSE F

CLOSE F ON ERROR
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GOTO TOP

END

General Form of CLOSE Statement

EXPLANATION

Closes file most recently opened
without a file variable.

Closes file OPENed TO file-variable F.

Closes file opened to F, or retrieves
error number and performs local
subroutine on UltiNet error number.

Figure B. Examples of Correct Usage of CLOSE Statement

BASIC Reference Page 87 Statements/Functions

COLI and COL2
Functions

The COLI and COL2 functions return the numeric values of the
column positions immediately preceding and immediately
following the sub-string selected by the most recent FIELD
function.

The general form of the COLI and COL2 functions are:

COLI ()
COL2 ()

The COL functions are used in conjunction with the FIELD
function. COLI() returns the numeric value of the column
position immediately preceding the sub-string selected via
the most recent FIELD function. For example:

B = FIELD("XXX.YYY.ZZZ.555",".",2)
BEFORE = COLI ()

These statements assign the numeric value 4 to the variable
BEFORE (i.e., the value "YYY" which is returned by the FIELD
function is preceded in the original string by column
position 4).

COL2() returns the numeric value of the column position
immediately following the sub-string selected via the most
recent FIELD function. COL2() returns zero if the sub-string
is not found. For example:

B = FIELD("XXX.YYY.ZZZ.555",".",2)
AFTER = COL2 ()

These statements assign the numeric value 8 to the variable
AFTER (Le., the value "YYY" which is returned by the FIELD
function is followed in the original string by column
position 8).

BASIC Reference Page 88 statements/Functions

\

COL1() <----------------1 returns column position preceding 1
1 sub-string returned by FIELD function 1

COL2() <----------------Ireturns column position following 1
1 sub-string returned by FIELD function 1

Figure A. General Form of COLl and COL2 Functions

CORRECT USE

Q = FIELD("ABCBA","B",2)
R = COLl ()
S = COL2 ()

EXPLANATION

Assigns the string value "c" to
variable Q, the numeric value 2 to
variable R, and the numeric value 4
to variable S.

Figure B. Examples of Correct Usage of COLl and COL2 Functions

BASIC Reference Page 89 Statements/Functions

COMMON
statement

The COMMON statement may be used to control the order in
which space is allocated for the storage of variables, and
for the passing of values between programs.

The general form of the COMMON statement is:

COM{MON} variable {,variable} ••.

The COMMON statement allows one or more variables specified
by variable to be shared by a main program and its external
subroutines without having to pass the variables as
parameters on each subroutine call. The list of variables
may be continued on several linesi each line except the last
must end with a comma.

COMMON variables differ from subroutine arguments used with
the CALL statement in that the actual storage locations of
COMMON variables are shared by the main program and
subroutines, whereas subroutine arguments are copied to local
variables on entry to a subroutine and copied back to the
calling program on exit. COMMON variables, then, may be used
to increase program efficiency.

COMMON variables must be declared before any other variables,
and in the same order, in all routines which access them.
COMMON statements, then, should appear before any other
statements which refer to variables.

Arrays in COMMON must have their dimensions specified in a
COMMON statement rather than in a DIM statement. This is
accomplished by specifying the dimensions in parentheses
after the array name, as in the DIM statement: COMMON A(IO),
for example.

COMMON variables (including arrays) are allocated in the
order in which they appear in COMMON statements. They may be
referred to by different names in different routines since
they are accessed by their relative position in the COMMON
area, rather than by name. For example:

MAINPROG SUBR

COMMON X, Y, Z(5) COMMON Q, R, S(5)

Variable X in MAINPROG above refers to the same location as
variable Q in SUBRi Y in MAINPROG refers to the same location
as R in SUBRi and array Z in MAINPROG refers to the same set
of locations as array S in SUBR. If SUBR had instead
specified "COMMON Q(2), R(5)", then Q(l) would have
corresponded to X, and Q(2) to Y.

BASIC Reference Page 90 statements/Functions

(

COM{MON} variable {,variable} ••.

Figure A. General Form of COMMON statement

CORRECT USE

Item MAINPROG

COMMON A,B,C(lO)
A = "NUMBER"
B = "SQUARE ROOT"
FOR I = 1 TO 10

C(I) = SQRT(I)
NEXT I
CALL SUBPROG
PRINT "DONE"
END

Item SUBPROG

COMMON X(2),Y(10)
PRINT X(l), X(2)
FOR J = 1 TO 10

PRINT J, Y(J)
NEXT J
RETURN
END

EXPLANATION

variables A, B, and array Care
allocated space before any other
variables.

Subroutine call to program SUBPROG.

The 2 elements of array X contain
respectively, the values of A and
B from the main-line program. The
array Y contains the values of C
from the main-line program.
Returns to main-line program.

Figure B. Example of Correct Usage of COMMON statement.

BASIC Reference Page 91 Statements/Functions

COS
Function

The COS trigonometric function returns the cosine of an angle
expressed in degrees.

The general form of the COS function is:

COS (expression)

The exeression must evaluate to a numeric expression that
specif1es the number of degrees in the angle.

Figure A shows a summary of all trigonometric functions. The
value M represents the largest allowable number in BASIC,
which is 14,073,748,835.5327, with PRECISION 4.

NOTE: Each trigonometric function is discussed separately.
(Please refer to the function names, listed alphabetically in
this chapter.)

FUNCTION RANGE

COS (X) -M <= X <= M

SIN (X) -M <= X <= M

TAN (X) -M <= X <= M

LN(X) ° <= X <= M

EXP (X) -M <= RESULT <= M

PWR(X,Y) -M <= RESULT <= M

DESCRIPTION

Returns the cosine of
an angle of X degrees.

Returns the sine of
an angle of X degrees.

Returns the tangent
of an angle of X degrees.

Returns the natural (base e)
logarithm of the expression X.

Raises the number lei
(2.7183) to the value of X.

Raises the first expression
to the power denoted by
the second expression.

Figure A. Summary of Trigonometric Functions

BASIC Reference Page 92 Statements/Functions

\

)

COUNT
Function

,
The COUNT function counts the number of occurrences of a
substring within a string.

The general form of the COUNT function is:

COUNT(string,substring)

strin~ and substring may be any valid expression, and may
conta~n any number of characters.

The COUNT function returns a value of zero if the substring
is not found, and returns the number of characters in the
string if the substring is nUll. (That is, a null matches on
any character.) For example:

COMMAND VALUE OF X

X = COUNT('THIS IS A TEST','IS')
X = COUNT('THIS IS A TEST','X')
X = COUNT('THIS IS A TEST',")

2
a

14

(There are 14 characters in the string.)

X = COUNT ('AAAA' , 'AA') 3

There are 3 substrings within the string AAAA.

AAAA
XX

XX
XX

STRING
SUBSTRING 1
SUBSTRING 2
SUBSTRING 3

A variation of the COUNT function is DCOUNT, which is
particularly useful for counting elements in dynamic arrays.
(See DCOUNT, listed alphabetically in this chapter.)

COUNT(string,substring)

Figure A. General Form of COUNT Function

CORRECT USE

A = "1234ABC5723"
X = COUNT(A,'23')

X = COUNT('ABCDEFG',")

EXPLANATION

Value returned in X is 2 since
there are two occurrences of
'23' in the string A.

Value returned in X is 7 since a
null substring will match any
character.

Figure B. Examples of Correct Usage of COUNT Function

BASIC Reference Page 93 Statements/Functions

DATA
statement

The DATA statement is used to store data for stacked input
when using the CHAIN statement.

The general form of the DATA statement is:

DATA expression {,expression ... }

Expression may be any valid expression, and any number of
expressions may be included in one DATA statement. The list
of expressions may continue on several lines; each line
except the last must end with a comma.

Each expression in a DATA statement generates one line of
stacked input. Normally, an input request such as from a
BASIC INPUT statement prints a prompt character on the
terminal and waits for the user to type in a line of data,
ending with a carriage return. When stacked input is
present, however, each input request causes a line of data to
be taken from the input stack, until the stack is empty or
the program terminates and returns to TCL, at which time the
input stack is unconditionally cleared.

DATA statements can be used to pre-store input for commands
or other BASIC programs invoked via the CHAIN statement. One
BASIC program can set up parameters using DATA statements and
then CHAIN to another program, which retrieves the parameters
with INPUT statements. (For more information, see the INPUT
and CHAIN statements, listed alphabetically in this chapter.)

Stacked input is removed (such as via the BASIC INPUT
statement) in the same order that it is added via DATA
statements. Stacked input may also be generated by the
EXECUTE statement and by a PROC. (For more details, see the
EXECUTE statement, listed alphabetically in this chapter.)

DATA expression {,expression ... }

Figure A. General Form of the DATA Statement

CORRECT USE EXPLANATION

DATA A
DATA B
DATA C
CHAIN 'RUN BP TEST'

Stacks the values of A, B
and C for subsequent input requests.
Program 'TEST' may have three
input requests which will be
satisfied by the stacked input.

Figure B. Examples of Correct Usage of the DATA Statement.

BASIC Reference Page 94 Statements/Functions

DATE
Function

The DATE function returns the current internal date.

The general form of the DATE function is:

DATE ()

The DATE function returns the string value containing the
internal date. The internal date is the number of days since
December 31, 1967. For example:

A = DATE ()

This statement assigns the string value of the internal date
to variable A.

DATE ()

Figure A. General Form of DATE Function

CORRECT USE

Q = DATE ()

WRITET DATE() ELSE STOP

EXPLANATION

Assigns string value of current
internal date to variable Q.

writes the string value of the
current internal date onto a
magnetic tape record.

Figure B. Examples of Correct Usage of DATE Function

BASIC Reference Page 95 Statements/Functions

DCOUNT
Function

The DCOUNT function counts the number of sub-strings which
are separated by a specified delimiter in a string. It
returns the number of sub-strings counted.

The general form of the DCOUNT function is:

DCOUNT (string, delimiter)

string and delimiter may be any valid expression. The
strin~ specifies the string to examine. Delimiter is the
delim1ter (string character) to use. The function returns
the number of sub-strings within string that are separated by
the delimiter. If string is null, a value of zero is
returned.

Note that DCOUNT is similar to the COUNT function. (Please
refer to the COUNT function, listed alphabetically in this
chapter.) The DCOUNT function, however, differs from the
COUNT function in that it returns a count of sub-strings
separated by the specified delimiter, rather than the number
of occurrences of the delimiter within the string. For
example, consider the following string, where IIAII represents
an attribute mark, or AM:

statement Value of X

X = COUNT(A,AM) 3
X = DCOUNT(A,AM) 4

The DCOUNT function is useful in manipulating ULTIMATE data
files. It may be used to count the number of attributes in
an item, or the number of values (or subvalues) within an
attribute.

BASIC Reference Page 96 statements/Functions

DCOUNT (string, delimiter)

Figure A. General Form of DCOUNT Function

CORRECT USE

AM = CHAR (254)
A = "123"456"ABC"
X = DCOUNT(A,AM)

VM = CHAR (2 53)
A = "123]456"ABC]DEF]HIJII
X DCOUNT(A<l>,VM)

A = ""
X = DCOUNT(A,AM)

EXPLANATION

Value returned in X is 3 as there
are three substrings in the string
separated by Attribute Marks.

Value returned in X is 2 as there
are two sub-strings in the string
separated by Value Marks.

Value returned in X is 0 since
the string is nUll.

Figure B. Examples of Correct Usage of DCOUNT Function

BASIC Reference Page 97 Statements/Functions

DEL
statement

The DEL statement deletes the specified attribute, value, or
subvalue from a dynamic array.

The general form of the DEL statement is:

DEL variable <attribute# {, value# {,subval#}}>

The variable name identifies the dynamic array. The
attribute#, value#, and subval# number(s) specify the
position of the attribute, value, or subvalue to be deleted.
The number(s) must be enclosed in angle brackets. For
example, <3,5,1> denotes attribute 3, value 5, subvalue 1.

NOTE: This statement performs the same operation as the
DELETE intrinsic function but also stores the function result
back into the source variable. For example, DEL X<3> is
equivalent to X=DELETE(X,3)

DEL variable <attribute# {, value# {, subvalue#}}>

Figure A. General Form of the DEL statement

CORRECT USE EXPLANATION

DEL NAMELIST <5> Deletes attribute 5 from variable
NAMELIST.

DEL PAYHIST <2,4,6> Deletes subvalue 6 from value 4
in attribute 2 of variable
PAYHIST.

Figure B. Examples of Correct Usage of DEL Statement

BASIC Reference Page 98 Statements/Functions

\

.
~

I
I

i
I

DELETE
Function

The DELETE function returns a dynamic array with a specified
attribute, value, or subvalue deleted.

The general form of the DELETE function is:

DELETE(var,attr# {,value# {,subval#}})

The var is any expression that specifies the dynamic array to
be used in the function. The other parameters may be any
expressions that specify whether an attribute, a value, or a
subvalue is deleted. Attr# specifies an attribute number,
value# specifies a value, and subval# specifies a subvalue.
If value# and subval# both have a value of a (or are both
absent, then the attr# attribute is entirely deleted. If
subval# only has a value of a (or is absent), then the
value# value is deleted. If the attr#, value#, and subval#
are all non-zero, then the subval# subvalue is deleted. In
all cases, var remains unchanged.

If a value is deleted (i.e., subval# is zero or not
expressed), the value mark associated with the value is also
deleted. If an attribute is deleted (i.e., value# and
subval# are are both zero or not expressed), the attribute
mark associated with the attribute is also deleted.

Consider the following example:

OPEN 'INVENTORY' ELSE STOP
READ VALUE FROM 'ITEM2' ELSE STOP
VALUE = DELETE(VALUE,1,2,3)
WRITE VALUE ON 'ITEM2'

These statements delete subvalue 3 of value 2 of attribute 1
of item ITEM2 in file INVENTORY. The delimiter associated
with subvalue 3 is also deleted.

Consider next the following example:

OPEN 'TEST' ELSE STOP
READ X FROM 'NAME' ELSE STOP
WRITE DELETE(X,2) ON 'NAME'

These statements delete attribute 2 (and its associated
delimiter) of item NAME in file TEST.

NOTE: The DEL statement may be used to store the results of
a DELETE operation on a variable back into the variable. For
more information, see the DEL statement, listed
alphabetically in this chapter .

BASIC Reference Page 99 Statements/Functions

DELETE(variable,attr# {,value# {,subval#}})
A A A A

Idynamic array I
I I

I attribute I
I I

Ivaluel
I I

Isubvalue I
I I

Figure A. General Form of DELETE Function

CORRECT USE

Y = DELETE(X,3,2)

A=1;B=2;C=3
DA = DELETE(DA,A,B,C-A)

X = DELETE (X,7)

PRINT DELETE(X,7,l)

EXPLANATION

Assigns to y the dynamic array obtained
by deleting value 2 (and its associated
delimiter) of attribute 3 of dynamic
array X.

Deletes subvalue 2 (and
its associated delimiter) of
value 2 of attribute 1 of dynamic
array DA.

Deletes attribute 7 (and its
associated delimiter) of dynamic
array X.

Prints the dynamic array which
results when value 1 of attribute
7 of dynamic array X is deleted.

Figure B. Examples of Correct Usage of DELETE Function

BASIC Reference Page 100 Statements/Functions

DELETE
statement

The DELETE statement deletes a file item.

The general form of the DELETE statement is:

DELETE {file-variable,} item-id {ON ERROR statements}

The DELETE statement deletes the item which is specified by
the expression item-ide If a file-variable is given, the
item is assumed to be located in the file previously assigned
to that specified file-variable via an OPEN statement. If the
file-variable is omitted, then the internal default file
variable is used; the default is the file most recently
opened without a file-variable. For example:

DELETE AB,"TESTITEM"

This statement will delete the item named TESTITEM in the
file previously opened and assigned to,variable AB.

No action is taken if a non-existent item is specified in the
DELETE statement.

The user should note that the BASIC program will abort with
an appropriate error message if the specified file has not
been opened prior to the execution of the DELETE statement.
(Please refer to Appendix B for run-time error messages.)

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be accessed due to a network error condition.
In this case, the value of SYSTEM(O) will indicate the
UltiNet error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when accessing local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be accessed due to network errors,
the program may terminate with an error message if no ON
ERROR clause is present.

BASIC Reference Page 101 Statements/Functions

DELETE {file-variable,} item-id {ON ERROR statements}

Figure A. General Form of DELETE statement

CORRECT USE

DELETE X, "XYZ"

Q="JOB"
DELETE Q

DELETE X, "XYZ" ON ERROR
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GOTO TOP

END

EXPLANATION

Deletes item XYZ in the file
opened and assigned to variable
X.

Deletes item JOB in the file
opened without a file variable.

Deletes item XYZ, or retrieves
error number and performs local
subroutine on UltiNet error
number.

Figure B. Examples of Correct Usage of DELETE Statement

BASIC Reference Page 102 Statements/Functions

• 1 ;

DIM
statement

A DIM statement declares the dimensions of an array with
constant whole numbers, separated by commas.

The general form of the DIM statement is:

DIM variable(dimensions) {,variable(dimensions) ... }

The variable specifies the array name. The dimensions
specify the size of the array. If the array is a vector
(one-dimensional), dimensions is the number of elements in
the array; A(lO), for example. If the array is a matrix
(two-dimensional), dimensions gives the number of rows and
the number of columns, separated by a comma, as in A(10,2) .

Any number of arrays may be dimensioned in one DIM statement.
The list of arrays may continue on several lines; each line
except the last must end with a comma.

Before an array may be used in a BASIC program, the maximum
dimension(s) of the array must be specified for storage
purposes. The DIM (or COMMON) statement(s) must precede any
references to the array(s), and are therefore usually placed
at the beginning of the program. (Arrays need only be
dimensioned once throughout the entire program.)

In the following example, the statement declares array Al as
a 10 by 5 matrix and declares array X as a 50 element vector:

DIM Al(10,5), X(50)

DIM variable(dimensions){,variable(dimensions)} ...
I I

lone number for a vector, two numbers I
I separated by a comma for a matrix I

Figure A. General Form of DIM Statement

CORRECT USE

DIM MATRIX(10,12)

DIM Q(lO))R(lO),
S(lO)

DIM Ml(50,10),X(2)

EXPLANATION

Specifies 10 by 12 matrix named MATRIX.

specifies three vectors named Q, R, and
S (each to contain 10 elements).

Specifies 50 by 10 matrix named Ml,
and two-element vector named X.

Figure B. Examples of Correct Usage of DIM Statement

BASIC Reference Page 103 Statements/Functions

DISPLAY
Statement

The DISPLAY statement outputs data to the terminal.

The general form of the DISPLAY statement is:

DISPLAY {print-list}

The print-list may consist of a single expression, or a
series of expressions separated by commas, optionally ending
with a colon. If the ~rint-list is absent, only a carriage
return and line feed w~ll be displayed.

The DISPLAY statement is similar to the PRINT statement in
that both statements may be used to print data at the
terminal, but DISPLAY differs in the following respects:

1. Output is always to the terminal, regardless of
PRINTER ON statements or the P option on the RUN
verb.

2. Output cannot be redirected via OUT. in an EXECUTE
statement.

3. Output is not affected by HEADING, FOOTING, or PAGE
statements.

DISPLAY {print-list}

Figure A. General Form of DISPLAY Statement

CORRECT USE EXPLANATION

PRINTER ON
LOOP

DISPLAY "ALIGNED?":
INPUT ANS

UNTIL ANS="Y" DO
PRINT FIRSTLINE
PAGE

REPEAT

Causes PRINT statements to print
on printer.
Displays message on CRT.
Requests operator input.

PRINT on printer,
Eject page.
Repeat until "Y" entered at CRT.

Figure B. Example of Correct Usage of DISPLAY Statement

BASIC Reference Page 104 statements/Functions

'" \

EBCDIC
Function

The EBCDIC function returns the EBCDIC value of an ASCII
string.

The general form of the EBCDIC function is:

EBCDIC (expression)

The string value of the expression is converted from ASCII,
the normal ULTIMATE string representation, to EBCDIC.

For example:

B = EBCDIC(A)

NOTE: The inverse of this function is the ASCII function.
(Please refer to the ASCII function, listed alphabetically in
this chapter.)

EBCDIC (expression)

Figure A. General Form of EBCDIC Function

CORRECT USE

B = EBCDIC(A)

EXPLANATION

Assigns the EBCDIC value of
variable A to variable B.

Figure B. Example of Correct Usage of EBCDIC Function

BASIC Reference Page 105 Statements/Functions

ECHO (ON/OFF)
statement

The ECHO ON and ECHO OFF statements control the system echo
on the terminal.

The general forms of the ECHO statement are:

ECHO OFF

ECHO ON

The ECHO OFF statement disables the echo on the terminal.
When the ECHO feature is disabled, characters typed on the
keyboard are not displayed on the screen.

The ECHO ON statement enables the echo on the terminal. The
ECHO feature will perform in its normal state, which is to
display on the terminal screen the characters typed in on the
keyboard.

BASIC Reference Page 106 statements/Functions

END
statement

The END statement may be used to designate the physical end
of a program.

The general form of the END statement is:

END

The END statement may be used to indicate the end of a
program. It is not required. Any statements appearing after
an end-of-program END statement will be ignored.

The END statement is also used to designate the physical end
of alternative sequences of statements within the IF
statement and within other statements ending with THEN, ELSE,
LOCKED, or ON ERROR clauses. (Please refer to the sections
discussing these statements for details on using the END
statement with them.)

A sample BASIC program illustrating the correct use of the
END statement is presented in Figure B.

END

Figure A. General Form of END Statement

*
*
* A=500
B=750
C=235
D=1300
REM COMPUTE PROFIT:
REVENUE=A+B
COST=C+D
PROFIT=REVENUE-COST
REM PRINT RESULTS
IF PROFIT > 1 THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"
STOP <--------------------------- If this path taken,

10 PRINT "POSITIVE PROFIT" program will terminate
END <-----------~---------------- Physical program end

Figure B. Sample Program with Correct Usage of END Statement

BASIC Reference Page 107 Statements/Functions

END CASE
Statement

The END CASE is the last statement in a CASE statement
sequence.

The general form of the END CASE statement is:

END CASE

Please refer to the CASE statement for information about the
entire CASE statment sequence.

BASIC Reference Page 108 Statements/Functions

ENTER
statement

The ENTER statement transfers control to a cataloged BASIC
program and retains variable values from the first program.

The two forms of the ENTER statement are:

ENTER program-name

where program-name is the item-id of the program to be
ENTERed, and:

ENTER @variable

where variable has been assigned the program name to be
ENTERed.

The ENTER statement suppresses initialization of variables in
the program being ENTERed in the same way the I option on the
RUN verb suppresses initialization. This allows several
programs which ENTER each other to be viewed as components of
one large program, provided the variables in each individual
program correspond correctly to their counterparts in the
other programs. Variables correspond based on the order in
which they are declared or otherwise introduced in each
program. COMMON statements may be used to ensure that the
same variables are allocated in the same order (even if with
different names) in all component programs.

It is permissible to ENTER a program that calls a subroutine,
but it is illegal to ENTER a program from a subroutine.

ENTER program-name
ENTER @variable

Figure A. General Forms of ENTER Statement

CORRECT USE EXPLANATION

ENTER PROGRAM.l Causes execution of the cataloged
program "PROGRAM. 1".

N=2
PROG = "PROGRAM."
ENTER @PROG

N
Causes execution of the cataloged
program "PROGRAM.2".

Figure A. Examples of Correct Usage of ENTER Statement

BASIC Reference Page 109 Statements/Functions

EOF
Function

The EOF function tests either the argument list or the
internal system error buffer for an end-of-file condition and
returns the current status.

The general forms of the EOF function are:

EOF (ARG.)

EOF (MSG.)

The function must specify either the ARG. or MSG. redirection
variable. When used with ARG., the function examines the
program's argument list. When used with MSG., the function
examines the internal system message buffer. The EOF
function examines the specified redirection variable and
returns a value of 1 if the end-of-file has been reached;
otherwise, it returns a value of O.

Checking the argument list

The ARG. redirection variable contains the arguments
associated with a program. Arguments are specified following
the program name in a statement which invokes a program. The
arguments stored in ARG. are retrieved by the GET statement,
which maintains a pointer into the argument list to determine
which argument to return. If the last GET statement
attempted to read past the end of the argument list, the EOF
function returns a "true" value (1); if not, it returns a
"false" value (0). Thus, the EOF function allows a program
to check for the end of a list of arguments.

Checking the system message buffer

The MSG. redirection variable contains error messages
associated with programs executed from the most recent
EXECUTE statement. The messages stored in MSG. are retrieved
by the GET statement. The EOF function is used in
conjunction with the GET statement. If the last GET
statement attempted to read past the end of the internal
system message buffer, an EOF function returns a "true" value
(1); if not, it returns a "false" value (0). Thus, the EOF
function allows a program to check for the end of the list of
errors.

BASIC Reference Page 110 Statements/Functions

Consider the following example:

LOOP
GET (MSG.) X

UNTIL EOF(MSG.) DO
PRINT X

REPEAT

This loop prints the messages stored in the MSG. redirection
variable until the EOF function encounters the end-of-file
condition. Then the loop exits.

EOF (MSG.)

EOF (ARG.)

Figure A.

CORRECT USE

LOOP
GET (ARG.) X

UNTIL EOF(ARG.) DO
PRINT X

REPEAT

General Forms of EOF Function

EXPLANATION

Prints arguments stored in the
ARG. redirection variable until
the EOF function (end-of-file)
is true; then the loop exits.

Figure B. Example of Correct Usage of EOF Function

BASIC Reference Page 111 Statements/Functions

EQUATE
statement

The EQUATE statement allows a symbol to be defined as the
equivalent of a literal number or string (constant) or a
variable.

The general form of the EQUATE statement is:

EQU{ATE} symbol TO equate-val {, symbol TO equate-val ... }

The symbol must be a previously undefined name. A symbol
name has the same criteria as a variable name in that it
starts with an alphabetic character followed by letters,
numerals, periods, or dollar signs. The equate-val may be a
literal number or string, a variable, or an array element.
The e~ate-val may also be a CHAR function; the CHAR
funct~on, however, is the only function allowed in an EQUATE
statement. The EQUATE statement must appear before the first
reference to the equate-val.

Any number of equated symbols can be defined in one EQUATE
statement. The symbol list may be continued on several
lines; each line except the last must end with a comma.

The EQUATE statement differs from an assignment statement
(where a variable is assigned a value via an = sign) in that
there is no storage location generated for the symbol.
Instead, the symbol becomes just another name for the
equate-val. The advantage this offers is that the value is
compiled directly into the object code and does not need to
be re-assigned every time the program is executed.

The EQUATE statement is therefore particularly useful under
the following two conditions:

1. Where a constant is used frequently within a program, and
therefore the program would read more clearly if the constant
were given a symbolic name. In the example below, "AM" is the
commonly used symbol for "attribute mark", one of the
standard data delimiters.

2. Where a MATREAD statement is used to read in an entire
item from a file and disperse it into a dimensioned array. In
this case, the EQUATE statement may be used to give symbolic
names to the individual array elements, which makes the
program more meaningful. For example:

DIM ITEM(20)

EQUATE BIRTHDATE TO ITEM(l), SOC.SEC.NO. TO ITEM(2)

EQUATE SALARY TO ITEM(3)

In this case, the variables BIRTHDATE, SOC.SEC.NO. and SALARY
are rendered equivalent to the first three elements of the

BASIC Reference Page 112 Statements/Functions

array ITEM. These meaningful variables are then used in the
remainder of the program.

EQU{ATE} symbol TO equate-val {, symbol TO equate-val ... }

Figure A. General Form of EQUATE statement

CORRECT USE

EQUATE X TO Y

EQUATE PI TO 3.1416

EQUATE STARS TO 11*****11

EQUATE AM TO CHAR(254)

EQUATE PART TO ITEM(3),
NAME TO ITEM(4)

EXPLANATION

Symbol X and variable Y may be used
interchangably within the program.

Symbol PI is compiled as the value
3.1416.

Symbol STARS is compiled as the
value of five asterisks.

Symbol AM is equivalent to the ASCII
character generated by the CHAR
function.

Symbol PART is equivalent to
element 3 of array ITEM, and NAME to
element 4 of the same array.

Figure B. Examples of Correct Usage of EQUATE Statement

BASIC Reference Page 113 Statements/Functions

EXECUTE
statement

The EXECUTE statement allows a BASIC program to execute any
valid TCL command and use the results of the command in later
processing.

The general form of the EXECUTE statement is:

EXECUTE expression {,//redirection phrase ... }

The expression is a string in the format of a TCL command,
just as it would be typed in at the terminal; it names a
verb, or cataloged BASIC program to be executed, followed by
any parameters and options. After the verb/PROC/program
being executed is completed, program control returns to the
next statement following the EXECUTE statement.

An optional form of the EXECUTE statement uses "redirection
phrases". A redirection phrase allows programs to redirect
data to/from the verb/PROC/program being executed. Any number
of redirection phrases may be included in one EXECUTE
statement. The redirection phrases may continue on several
lines; each line except the last must end with a comma.

Each redirection phrase has the following format:

redirection-variable direction expr

redirection-variable:
direction:
expr :

either IN., OUT., or SELECT.
either> or <.
a BASIC expression or variable to
store output or use as input.

Selecting one of the three redirection variables

The names of these variables end with a period, as follows:

IN. (used only with direction symbol "<") specifies
that expr data is to be re-directed to the input of
the verb/PROC/program to be executed. "Input"
usually means the user's CRT keyboard. This
variable is equivalent to BASIC/PROC stacked input.
If the verb, PROC, or program to be executed
accepts more than one line of data, the redirected
data must be delimited by attribute marks.

OUT. (used only with direction symbol ">") specifies
that output from the verb/PROC/program being
executed is to be redirected to expr. "Output"
usually means the user's CRT screen or the spooler
print file. If the verb, PROC, or program being
executed produces more than one line of data, the
redirected data is delimited by attribute marks.
The last (or only) line of data is always
terminated by an attribute mark.

BASIC Reference Page 114 Statements/Functions

SELECT. (used with either "<" or ">") specifies that a
select list is to be redirected. Data on the list,
typically item-ids, must be delimited by attribute
marks; there is an attribute mark after the last
datum. (See also Notes 2 and 3 below.)

Direction Symbols

< redirects to the input of the verb/PROC/program.

> redirects from the output of verb/PROC/program.

NOTES:

1. IN., OUT., and SELECT. are pre-defined variables with
special meaning in the EXECUTE statement. They should not be
used as ordinary variables in other statements. Although a
BASIC variable name may end with a period (.), it is
recommended that programmers not use names in this format for
their own variables in order to distinguish the variables
pre-defined by the ULTIMATE system. Since variable names in
this format mayor may not be treated as names of pre-defined
variables in all cases, depending on the operating system
release, the ULTIMATE Corp. strongly suggests programmers
rewrite their software, if necessary, to avoid possible
conflict.

2. The select-list produced by an EXECUTE statement (e.g.,
EXECUTE "SELECT ... ") cannot be carried over automatically to
the next EXECUTE statement. It can be redirected or used in
a READNEXT statement in the same program. Thus:

EXECUTE "SELECT MD 'ED'"
EXECUTE "LIST MD"

will list all items in MD. But:

EXECUTE "SELECT MD 'ED''', //SELECT. > X
EXECUTE "LIST MD", //SELECT. < X

will list the selected items. And:

EXECUTE "SELECT MD 'ED'"
10 READNEXT ID ELSE STOP

PRINT ID
GOTO 10

will print just one item.

3. The select list produced by an EXECUTE statement is a
list of data (typically item-ids), each of which terminates
in an attribute mark, including the last (or only) datum. If
a program counts the number of item-ids with the
DCOUNT(list,CHAR(254)) function, the number returned is one
higher than the actual number of item-ids in the list.

BASIC Reference Page 115 Statements/Functions

4. When the select list is stored in a variable
(... //SELECT. > X), the list X may be used directly in a
READNEXT statement. It is not a dynamic array, and no SELECT
statement should be used prior to the READNEXT.

5. The list X (see 4, above) may be used as a dynamic array
in that elements may be retrieved directly from X without
affecting its function as a list. For example, A = X<17>
will put the 17th item-id into A and X can still be used in a
READNEXT statement.

6. But, if a dynamic array element is changed in the list
X, the list itself is converted into a dynamic array. To
then use READNEXT, the program must SELECT the dynamic array
to a list. Assuming select list X:

X<l> = "ABC"
READNEXT ID FROM X

X<l> = "ABC"
SELECT X TO X
READNEXT ID FROM X

BASIC Reference

will fail

will work

Page 116 Statements/Functions

~\
I

,;

\,

EXECUTE expression {,//redirection phrase ... }

Figure A. General Form of EXECUTE statement

CORRECT USE

EXECUTE "WHO"

EXECUTE "WHO", flOUT. > X
IF X<l> # "0 SYSPROG" THEN

PRINT "MUST BE ON LINE 0"
STOP
END

EXECUTE "COPY BP PROGl",
//IN. < "BACKUPPROGl"

EXECUTE "RUN BP TWOINPUT",
//IN. < "ONE":CHAR(254):"TWO"

EXECUTE "ED BP X",
//IN. < "L22":CHAR(254):"EX",
flOUT. > X

EXPLANATION

The command WHO is executed; the output
(e.g., "0 SYSPROG") is displayed on
user's CRT screen; program control
continues in sequence.

The command WHO is executed; the output
(e.g., "0 SYSPROG":AM) is redirected to
variable X. X is tested for access to
program, resulting in either a message
and halt or program execution.

The command COpy is executed using,
instead of a user's keyboard input,
the redirected string "BACKUPPROGl".

Assume that the BASIC program TWO INPUT
has two INPUT statements. The first
INPUT statement will receive the data
"ONE"; the second, the data "TWO".

The EXECUTE statement allows multiple
redirection variables. Two lines of
data, "L22" and "EX" are redirected to
the command ED. The output is re­
directed to variable X.

EXECUTE 'SELECT EMPFILE WITH SAL >= "10000"', //SELECT. > X
EXECUTE 'LiST EMP.ADDR.FILE',

//SELECT. < X In the first EXECUTE statement, the
select list is redirected to variable
X, with the item-ids separated by
attribute marks; this makes X a variable
array comprised of item-ids from SELECT.
The select list is then redirected into
the LIST command in the second EXECUTE
statement.

Figure B. Examples of Correct Usage of EXECUTE Statement

BASIC Reference Page 117 Statements/Functions

EXIT
statement

The EXIT statement transfers control out of a program loop
initiated by a LOOP statement.

The general form of the EXIT statement is:

EXIT

When executed, EXIT transfers control to the next statement
after the REPEAT statement of a loop. When loops are
embedded within other loops, each EXIT transfers control to
the statement after the nearest REPEAT. The EXIT statement
must be used within a LOOP ... REPEAT program loop; otherwise,
the BASIC compiler will flag an error.

EXIT

Figure A. General Form of EXIT Statement

CORRECT USE EXPLANATION

LOOP i1l
READNEXT ID ELSE EXIT
GOSUB PROCESSIT

REPEAT
PRINT "DONE"

Subroutine PROCESSIT is called
after each value from a pre­
selected list is read by
READNEXT. When the list is
exhausted, the program loop is
exited, causing the message
"DONE" to be printed.

Figure B. Example of Correct Usage of EXIT Statement

BASIC Reference Page 118 Statements/Functions

EXP
Function

The EXP trigonometric function returns the value of the
number Ie' raised to a specified power.

The general form of the EXP function is:

EXP(expression)

The EXP (exponential) function raises the number Ie' (2.7183)
to the value of the expression. The EXP function is the
inverse of the LN (natural logarithm) function. If the value
of the expression is such that Ie' to that power is greater
than the largest allowable number, the function returns a
value of zero.

In the following summary M is used to denote the largest
allowable number in BASIC, which is 14,073,748,835.5327 with
PRECISION 4.

FUNCTION RANGE DESCRIPTION

COS (X) -M <= X <= M Returns the cosine of
an angle of X degrees.

SIN(X) -M <= X <= M Returns the sine of
an angle of X degrees.

TAN (X) -M <= X <= M Returns the tangent
of an angle of X degrees.

LN(X) ° <= X <= M Returns the natural (base e)
logarithm of the expression X.

EXP(X) -M <= RESULT <= M Raises the number Ie'
(2.7183) to the value of X.

PWR(X,Y) -M <= RESULT <= M Raises the first expression
to the power denoted by
the second expression.

Figure A. Summary of Trigonometric Functions

BASIC Reference Page 119 Statements/Functions

EXTRACT
Function

The EXTRACT function returns an attribute, a value, or a
subvalue from a dynamic array.

The general form of the EXTRACT function is:

EXTRACT(expr,attr# {,value#} {,subvalue#})

The value of expr specifies the dynamic array to extract data
from. The values of attr#, value#, and subvalue# determine
whether the data is an attribute, a value, or a subvalue.
Attr# specifies an attribute, value# specifies a value, and
subvalue# specifies a subvalue. If value# and subvalue# both
have a value of 0 (or are both absent), then an entire
attribute is extracted. If subvalue# only has a value of 0
(or is absent), then a value is extracted. If attr#, value#,
and subvalue# are all non-zero, then a subvalue is extracted.

Consider the following example:

OPEN 'TEST' ELSE STOP
READ X FROM 'NAME' ELSE STOP
PRINT EXTRACT(X,3,2)

These statements cause value 2 of attribute 3 of item NAME in
file TEST to be printed.

Consider next the following example:

OPEN 'ACCOUNT' ELSE STOP
READ ITEMI FROM 'ITEMl' ELSE STOP
IF EXTRACT(ITEM,3,2,1)=25 THEN PRINT "MATCH"

These statements cause the message "MATCH" to be printed if
subvalue 1 of value 2 of attribute 3 of item ITEM1 in file
ACCOUNT is equal to 25.

NOTE: The EXTRACT intrinsic function has the same effect as
following a dynamic array reference by attribute, value, and
subvalue numbers in angle brackets. That is, EXTRACT(X,4,l)
is equivalent to X<4,1>.

BASIC Reference Page 120 Statements/Functions

EXTRACT(expr,attr# {,value# {,subvalue#}})
A A A A

Idynamic array I I attribute I Ivaluel Isubvalue I

Figure A. General Form of EXTRACT Function

CORRECT USE

Y=EXTRACT(X,2)

A=3
B=2
Q1=EXTRACT(ARR,A,B,A+1)

IF EXTRACT(B,3,2,1»5 THEN
PRINT MSG
GOSUB 100

END

PRINT EXTRACT(D,25,2)

EXPLANATION

Assigns attribute 2 of dynamic
array X to variable Y.

Assigns subvalue 4 of
value 2 of attribute 3 of
dynamic array ARR to variable
Ql.

If subvalue 1 of value 2
of attribute 3 of dynamic array
B is greater than 5, then the
value of MSG is printed and a
subroutine call is made to
statement 100.

Prints value 2 of attribute 25
of dynamic array D.

Figure B. Examples of Correct Usage of EXTRACT Function

BASIC Reference Page 121 Statements/Functions

FADD
Function

The FADD (floating point addition) function adds two floating
point numbers and returns the result as a floating point
number.

The general form of the FADD function is:

FADD (FX, FY)

FX and FY may be any valid floating point numbers.

A standard or string number must be converted to floating
~oint before performing the FADD function. The FFLT function
1S provided to float a number or string. The FFIX function is
provided to fix a floating point number, returning a string
number. (Please refer to the FFLT and FFIX functions, listed
alphabetically in this chapter.)

If either FX or FY contains an invalid (non-floating point)
value, an error message is generated; the result of the
addition will be "OEO".

The result of the FADD function is a floating point number.
Thus, the function can be used in any expression where a
floating point number or a string would be valid.

FADD (FX,FY)

Figure A. General Form of FADD Function

CORRECT USE EXPLANATION

TOTAL=FADD(SUBTOT1,SUBTOT2) Assigns sum of variables SUBTOT1
and SUBTOT2 to variable TOTAL.

PRINT (FADD(X,"4E-3")

A=FADD("l030476E-6" ,B)

X=FADD(A, FADD(B,C))

Prints sum of variable X and
floating point constant (.004).

Assigns to variable A the sum of
floating point constant
(1.030476) and variable B.

Uses floating point sum of
variables Band C in floating
point addition with variable
A; assigns sum to variable X.

Figure B. Examples of Correct Usage of FADD Function

BASIC Reference Page 122 Statements/Functions

FCMP
Function

The FCMP (floating point compare) function compares two
floating point numbers and returns a result of -1 (less
than), 0 (equal), or 1 (greater than).

The general form of the FCMP function is:

FCMP (FX, FY)

FX and FY may be any valid floating point numbers.

A standard or string number must be converted to floatin~
~oint before performing the FCMP function. A FFLT funct10n
1S provided to float a number or string. A FFIX function is
provided to fix a floating point number, returning a string
number. (Please refer to the FFLT and FFIX functions, listed
alphabetically in this chapter.)

If either FX or FY contains an invalid (non-floating point)
value, an error message is generated; the result of the
comparison will be zero (0).

The result of the FCMP function is a number: -1, 0, or 1.
If FX is less than FY, the result is -1. If they are equal,
the result is o. If FX is greater than FY, the result is 1.
The function can be used in any expression where a number or
string would be valid.

BASIC Reference Page 123 Statements/Functions

FCMP (FX,FY)

Figure A. General Form of FCMP Function

CORRECT USE EXPLANATION

IF FCMP(FX,FY) = a THEN
GOTO 100

The result of the comparison
determines whether program
execution branches to statement
100 or continues in sequence.

IF FCMP(FX,FY) < a THEN The PRINT operation is executed
PRINT X:" IS LESS THAN ":Y only if the result of the IF

statement is true (-1 was the
result of the FCMP function).

IF FCMP(FX,FY) > a THEN The PRINT operation is executed
PRINT X:"IS GREATER THAN ":Y only if the result of the IF

statement is true (1 was the
result of the FCMP function).

ON 2+FCMP(VAL1,VAL2) GO TO la, The result of the comparison
110,120 creates an index of 1,2, or 3

for the ON GO TO statement.

Figure B. Examples of Correct Usage of FCMP Function

BASIC Reference Page 124 Statements/Functions

\

)

FDIV
Function

The FDIV (floating point division) function divides the first
floating point number by the second and returns the result as
a floating point number.

The general form of the FDIV function is:

FDIV (FX, FY)

FX and FY may be any valid floating point numbers.

A standard or string number must be converted to floatin~
~oint before performing the FDIV function. A FFLT funct~on
~s provided to float a number or string. A FFIX function is
provided to fix a floating point number, returning a string
number. (Please refer to the FFLT and FFIX functions, listed
alphabetically in this chapter.)

If either FX or FY contains an invalid (non-floating point)
value, an error message is generated; the result of the
addition will be "OED". If FY is zero, an error message will
state that division by zero IS illegal; the result will be
"OED".

The result of the FDIV function is a floating point number.
Thus, the function can be used in any expression where a
floating point number or a string would be valid.

BASIC Reference Page 125 Statements/Functions

FDIV (FX,FY)

Figure A. General Form of FDIV Function

CORRECT USE EXPLANATION

VELOCITY=FDIV(DISTANCE,TIME) Assigns result of variables
DISTANCE divided by TIME to
variable VELOCITY.

PRINT (FDIV(X, "4E-3")

A=FDIV("I030476E-6" ,B)

X=FDIV(A, FDIV(B,C))

Prints quotient of
variable X divided by
floating point constant (.004).

Assigns to variable A the result
of dividing floating point
constant (1.030476) by variable
B.

Uses floating point result of
variable B divided by variable
C in floating point division
with variable A; assigns sum
to variable X.

Figure B. Examples of Correct Usage of FDIV Function

BASIC Reference Page 126 Statements/Functions

FFIX
Function

The FFIX (fix a floating point number) function returns the
value of a floating point number as a string number.

The general form of the FFIX function is:

FFIX (FX (,N})

FX may be any valid floating point number. The optional N
operand may be any valid integer number. When present, N
sets the maximum number of digits to the right of the decimal
point in the result. If ~ is omitted or is negative, the
result will contain all possible digits to the right of the
decimal point. Whenever the result has fewer digits to the
right of the decimal than the maximum allowed, the unused
digits are truncated. The result is not rounded.

NOTE: This function is normally used after floating point
arithmetic functions: FADD, FSUB, FMUL, FDIV. (Please refer
to these functions, listed alphabetically in this chapter.)

The result of the FFIX function is a string number. The
function can be used in any expression where a string or
string number would be valid, but not necessarily where a
standard number would be valid. This is because string
numbers may exceed the range of numbers which can be
accommodated with standard arithmetic operators.

BASIC Reference Page 127 Statements/Functions

FFIX(FX {N})

Figure A. General Form of FFIX Function

CORRECT USE EXPLANATION

PRINT FFIX(FADD(FX,FY)) The result of the floating point
addition is fixed as a string
number and printed.

A=FFIX(FMUL(n4E-6 n ,FFLT(B)),4)
The variable B is converted into
a floating point number for the
floating point multiplication
operation~ the result is con­
verted to a string number with
a maximum of 4 decimal places
and assigned to variable A.

LINE=FFIX(FX,O):" n:FFIX(FY,O)
The variable LINE is assigned
the value of FX converted into
a string integer, concatenated
with 3 spaces, concatenated with
the value of FY converted into
a string integer.

Figure B. Examples of Correct Usage of FFIX Function

BASIC Reference Page 128 Statements/Functions

FFLT
Function

The FFLT (float a number or string number) function converts
a number or string number into a floating point number.

The general form of the FFLT function is:

FFLT(X)

X may be any valid number or string number. If X is not
valid, an error message is generated and the result will be
"OED". If the number contains more than 13 significant
digits, it will be truncated to 13 significant digits.

This function must precede floating point arithmetic
performed on a standard number or string number.

NOTE: The FFLT function is normally used with the floating
point arithmetic functions: FADD, FSUB, FMUL, FDIV. (Please
refer to these functions, listed alphabetically in this
chapter.)

The result of the FFLT function is a floating point number.
Thus, it can be used in any expression where a floating point
number or a string would be valid.

FFLT(X)

Figure A. General Form of FFLT Function

CORRECT USE EXPLANATION

X=FFLT(Y) The floating point value of Y is
assigned to X.

A=FMUL(FFLT(X),FFLT(Y)) The variables X and Y are floated
and then used in a floating point
multiplication function; the
result is assigned to variable A.

FLOAT.PI=FFLT("3.1415926") The constant pi is floated and
assigned to FLOAT. PI.

Figure B. Examples of Correct Usage of FFLT Function

BASIC Reference Page 129 Statements/Functions

FIELD
Function

The FIELD function returns a sub-string from a string by
specifying a delimiter character.

The general form of the FIELD function is:

FIELD (string, delimiter, occurrence)

All three FIELD parameters may be any valid expression. The
FIELD function searches string for a sub-string delimited by
the delimiter character. Occurrence specifies which
occurrence of the sub-string is to be returned. If
occurrence has a value of 1, then the FIELD function will
return the sub-string from the beginning of the string up to
the first occurrence of the delimiter. For example, the
statement below assigns the string "XXX" to the variable A:

A = FIELD("XXX.YYY.ZZZ.555",".",1)

If occurrence has a value of 2, then the sub-string delimited
by the first and second occurrences of the specified
delimiter character delimiter will be returned. A value of 3
for occurrence will return the sub-string delimited by the
second and third occurrences of delimiter, and so on. For
example, the statement below assigns the string "ZZZ" to
variable C:

C = FIELD("XXX.YYY.ZZZ.555",".",3)

Note that the end of the string also delimits sub-strings, so
that:

FIELD("XXX.YYY.ZZZ.555",".",4)

returns a value of "555". If the specified substring is not
found, the function returns a null string (").

NOTE: The COLl() and COL2() functions are used in
conjunction with the FIELD function. (Please refer to the
COL functions, listed alphabetically in this chapter.)

BASIC Reference Page 130 Statements/Functions

(
\

FIELD(string, delimiter, occurrence)

Figure A. General Form of FIELD Function

CORRECT USE

T = "12345A6789A98765A"
G = FIELD(T,"A",l)

T = "12345A6789A98765A"
G = FIELD(T,"A",3)

Q = FIELD ("ABCBA", "B", 2)
R = COLl ()
S = COL2 ()

X = "77ABCXX"
Y = "$"
Z = "ABC"

EXPLANATION

Assigns the string value "12345"
to variable G.

Assigns the string value "98765"
to variable G.

Assigns the string value "c" to
variable Q, the numeric value 2
to variable R, and the numeric
value 4 to variable S.

The IF statement will cause the
program to terminate (i.e., the
value returned by the FIELD

IF FIELD(X,Y,2)=Z THEN STOP function is "ABC", which equals
the value of Z, thus making the
test condition true) .

Figure B. Examples of Correct Usage of FIELD Function

BASIC Reference Page 131 Statements/Functions

FMUL
Function

The FMUL (floating point multiplication) function multiplies
two floating point numbers and returns the result as a
floating point number.

The general form of the FMUL function is:

FMUL (FX, FY)

FX and FY may be any valid floating point numbers.

A standard or string number must be converted to floatin~
~oint before performing the FMUL function. A FFLT funct10n
1S provided to float a number or string. A FFIX function is
provided to fix a floating point number, returning a string
number. (Please refer to the FFLT and FFIX functions, listed
alphabetically in this chapter.)

If either FX or FY contains an invalid (non-floating point)
value, an error message is generatedi the result of the
multiplication will be "OEO".

The result of the FMUL function is a floating point number.
Thus, the function can be used in any expression where a
floating point number or a string would be valid.

FMUL (FX , FY)

Figure A. General Form of FMUL Function

CORRECT USE EXPLANATION

PAY=FMUL(HOURS,RATE) The variable PAY is assigned the
product of HOURS times RATE.

PRINT FMUL(X,"10015E-4")

A=FMUL("1030476E-6" ,B)

X=FMUL(A, FMUL(B,C))

The variable X is multiplied by
constant 1.0015 and the result
is printed.

The constant 1.030476 is
multiplied by variable B and the
result is assigned to variable A

The product of variables Band C
is multiplied with variable Ai
the result is assigned to X.

Figure B. Examples of Correct Usage of FMUL Function

BASIC Reference Page 132 Statements/Functions

\

)

FOOTING
statement

The FOOTING statement causes the specified text string to be
printed at the bottom of each page of output.

The FOOTING statement has the following general form:

FOOTING expression

The first FOOTING or HEADING statement executed in a program
will initialize the page parameters. Subsequently, the
footing literal data may be changed at any time in the BASIC
program by another FOOTING statement; this change will take
effect when the end of the current page is reached. The
special footing option characters listed in Figure B may be
used as part of a FOOTING string expression. When used,
these special characters will be converted and printed as
part of the footing. option characters are enclosed in
single quotes.

Consider, for example:

FOOTING "STATISTICS AS OF 'T' PAGE 'PL'"

This statement will print at the bottom of each page a
footing consisting of the words "STATISTICS AS OF", followed
by the current time and date, followed by the word "PAGE",
followed by the current page number, followed by a carriage
return and line feed. Page numbers are assigned in ascending
order starting with page 1.

NOTE: The FOOTING statement affects only print file zero,
the default output device.

BASIC Reference Page 133 Statements/Functions

FOOTING expression

Figure A. General Form of Footing statements

Character Used in
FOOTING string Expression

PN
P

L
T
C
Cn
D

Character is Converted to:

Current page #, left-justified
Current page #, right-justified

in a field of 4 blanks
Carriage return/line feed
Current time and date
Centers the line
Centers with specified line length
Current date

Figure B. Special Control Characters for FOOTING Statement

CORRECT USE

FOOTING "TIME & DATE: 'TL'"

FOOTING "'C60'PAGE 'PL'"

FOOTING '" LTPL ' "

EXPLANATION

The text "TIME & DATE:" will be
printed, followed by the current
time and date plus a carriage
return/line feed.

The text "PAGE" will be centered,
within a page width of 60, followed
by the current page number and a
carriage return-line feed.

The following footing will be
printed: the current time, date,
and page number.

Figure C. Examples of Correct Usage of FOOTING Statements

BASIC Reference Page 134 Statements/Functions

(

FOR
statement

The FOR statement is used to specify the beginning point of a
program loop. A loop is a portion of a program written in
such a way that it will execute repeatedly until some test
condition is met. The FOR statement is always used with a
NEXT statement that specifies the ending point of the loop.

The general forms of the FOR statement are:

FOR variable = exprl TO expr2 {STEP expr3} {WHILE expr4}
FOR variable = exprl TO expr2 {STEP expr3} {UNTIL exprS}

A FOR and NEXT loop causes execution of a set of statements
for successive values of the specified variable until the
limit is reached. The values of the expressions are used as
follows: exprl is the initial value for variable; expr2 is
the limit value; the optional ex~r3 is the increment value to
be added to the value of the varlable at the end of each pass
through the loop. If the STEP phrase is absent, the increment
value is assumed to be +1. When the limit value (expr2) is
exceeded, program control proceeds to the statement after the
NEXT statement.

Exprl is evaluated only once (when the FOR statement is
executed). Expr2 and expr3 are evaluated on each iteration of
the loop.

One of the optional condition clauses (WHILE and UNTIL) may
be used in a FOR statement. If the WHILE clause is used,
expr4 will be evaluated for each iteration of the loop. If it
evaluates to false (i.e., zero), then program control will
pass to the statement immediately following the accompanying
NEXT statement. If it evaluates to true (i.e., non-zero) the
loop will re-iterate.

If the UNTIL clause is used, expr5 will be evaluated for each
iteration of the loop. If it evaluates to true (i.e.,
non-zero), then program control will pass to the statement
immediately following the accompanying NEXT statement. If it
evaluates to false (i.e., zero) the loop will re-iterate.

The following FOR and NEXT loop, for example, will execute
until I=lO or until the statements within the loop cause
variable A to exceed the value 100:

FOR I=l TO 10 STEP .S UNTIL A>lOO

NEXT I

The program loop concludes with a NEXT statement. The
function of the NEXT statement is to return program control
to the beginning of the loop after a new value of the

BASIC Reference Page 135 Statements/Functions

variable has been computed. The NEXT statement is discussed
in a separate topic. (For details, please refer to the NEXT
statement, alphabetically listed in this chapter.)

The following example shows a complete FOR/NEXT loop:

150 FOR J=2 TO 11 STEP 3
160 PRINT J+5
170 NEXT J

statement 150 sets the initial value of J to 2 and specifies
that J thereafter will be incremented by 3 each time the loop
is performed, until J exceeds the limiting value, 11.
Statement 160 prints the current value of the expression J+5.
statement 170 assigns J its next value (i.e., J=2+3=5) and
causes program control to return to statement 150. Statement
160 is again executed, and statement 170 again increments J
and causes the program to loop back. This process continues
with J being incremented by 3 after each pass through the
loop. When J attains the limiting value of 11, statement 160
will again be executed and control will pass to 170. J will
again be incremented (i.e., J=11+3=14), and since 14 is
greater than the limiting value of 11, the program will "fall
through" statement 170 and control will pass to the next
sequential statement following statement 170.

FOR and NEXT loops may be "nested"; a nested loop is a loop
which is wholly contained within another loop. For example:

FOR I=l TO 10
FOR J=l TO 10

PRINT B(I,J)
NEXT J

NEXT I

The above statements illustrate a two-level nested loop. The
inner loop will be executed ten times for each of ten passes
through the outer loop, i.e., the statement PRINT B(I,J)
will be executed 100 times, causing matrix B to be printed
in the following order: B(l,l), B(1,2), B(1,3), ... , B(1,10),
B(2,1), B(2,2), •.. , B(10,10).

Loops may be nested any number of levels. However, a nested
loop must be completely contained within the range of the
outer loop (i.e., the ranges of the loops may not cross).

BASIC Reference Page 136 Statements/Functions

\

)

FOR variable = expr1 TO expr2 {STEP expr3 } {WHILE expr4}
FOR variable = expr1 TO expr2 {STEP expr3} {UNTIL expr5}

I I I
I I I --------- ---------- -----------

I initial I I limiting I I increment I
I value I I value I I value I
--------- ---------- -----------

Figure A. General Forms of FOR Statement

CORRECT USE

FOR A=1 TO 2+X-Y

NEXT A

FOR K=10 TO 1 STEP -1

NEXT K

FOR VAR= 0 TO 1 STEP .1

NEXT VAR

EXPLANATION

Limiting value is current value of
expression 2+X-Yi increment value
is +1.

Increment value is -1 (i.e., variable K
will decrement by -1 for each of 10
passes through the loop).

Increment value is .1 (i.e., variable K
will decrement by .1 for each of 11
passes through the loop).

Figure B. Examples of Correct Usage of FOR/NEXT Statements

CORRECT USE

ST="X"
FOR B=1 TO 10 UNTIL ST="XXXXX"

ST=ST CAT "X"
NEXT B

A=20
FOR J=1 TO 10 WHILE A<25

A=A+l
PRINT J,A

NEXT J

A=O
FOR J=1 TO 10 WHILE A<25

A=A+l
PRINT J,A

NEXT J

EXPLANATION

Loop will execute 4 times (i.e.,
an "X" is added to the string
value of variable ST until the
string equals "XXXXX").

Loop will execute 5 times (i.e.,
variable A reaches 25 before
variable J reaches 10).

Loop will execute 10 times (i.e.,
variable J reaches 10 before
variable A reaches 25).

Figure C. Examples of UNTIL and WHILE Clauses in FOR/NEXT Statements

BASIC Reference Page 137 Statements/Functions

FSUB
Function

The FSUB (floating point subtraction) function subtracts the
second floating point number from the first floating point
number and returns the result as a floating point number.

The general form of the FSUB function is:

FSUB (FX, FY)

FX and FY may be any valid floating point numbers.

A standard or string number must be converted to floating
~oint before performing the FSUB function. The FFLT function
1S provided to float a number or string. The FFIX function is
provided to fix a floating point number, returning a string
number. (Please refer to the FFLT and FFIX functions, listed
alphabetically in this chapter.)

If either FX or FY contains an invalid (non-floating point)
value, an error message is generated; the result of the
subtraction will be "OEO".

The result of the FSUB function is a floating point number.
Thus, the function can be used in any expression where a
floating point number or a string would be valid.

FSUB (FX,FY)

Figure A. General Form of FSUB Function

CORRECT USE EXPLANATION

TOTAL=FSUB(SUBTOT1,SUBTOT2) Assigns difference of variables
SUBTOTl and SUBTOT2 to variable
TOTAL.

PRINT (FSUB(X, "4E-3 11)

A=FSUB("1030476E-6" ,B)

X=FSUB(A, FSUB(B,C»

Prints difference of variable X
and floating point constant
(.004).

Assigns to variable A the diff­
erence of floating point con­
stant 1.030476 and variable B.

Uses the difference of variable
Band C in floating point
subtraction with variable A;
the result is assigned to X.

Figure B. Examples of Correct Usage of FSUB Function

BASIC Reference Page 138 Statements/Functions

GET
statement

The GET statement allows a program to retrieve data stored in
either the ARG. or MSG. redirection variable. When used with
ARG., it retrieves an argument from the program's argument
list. When used with MSG., it retrieves a message resulting
from the last EXECUTE statement.

The general forms of the GET statement are:

GET (ARG. {, arg#}) var {THEN stmt} {ELSE stmt}
GET (MSG. {, arg#}) var {THEN stmt} {ELSE stmt}

ARG. refers to the list of arguments (if any) following the
program name in the TCL command which invoked the program.
For example,

RUN BP MYPROG ARGl ARG2

invokes program MYPROG, which can retrieve the strings "ARG1"
and "ARG2" using the GET (ARG.) statement.

MSG., as used in the GET statement, refers to the list of
message identifiers and parameters (if any) resulting from
the last EXECUTE statement's program execution. A message
identifier is the item-id of an item in the system ERRMSG
file. Each message element in MSG. contains a message
identifier and any parameter values for the message
generated. One or more GET (MSG.) statements, then, can be
used to retrieve the system messages generated by a program
invoked via an EXECUTE statement. These messages are
normally formatted according to the ERRMSG items and printed
on the terminal or printer, but only the essential data
(item-ids and parameters) are copied to MSG .. MSG. is reset
to null just prior to the execution of an EXECUTE statement.

Retrieving Arguments

When using the GET statement syntax to retrieve arguments:

GET (ARG. {, arg#}) var {THEN stmt} {ELSE stmt}

arg# is an integer that specifies the argument to be
retrieved; if ~rg# is not present, the next argument on the
argument list 1S returned. (If this is the first GET
statement executed, the first argument on the list is
returned.) If an argument is present in the position
specified, it is returned to the BASIC var and the THEN
branch, if specified, is taken. If no argument is present in
that position, var is not changed and the ELSE branch, if
specified, is taken.

BASIC Reference Page 139 Statements/Functions

Retrieving Messages

When using the GET statement syntax to retrieve messages:

GET (MSG. {, arg#}) var {THEN stmt} {ELSE stmt}

arg# is an integer that specifies the message to be
retrieved; if arg# is not present, the next message in the
list is returned. (If this is the first GET statement
executed, the first message is returned.) If a message is
present in the position specified, it is returned to the
BASIC variable var in the following format:

msg-id VM parmI VM parm2 ...

where VM is a value mark, msg-id is the message identifier
(ERRMSG item-id) and the parm#'s are the parameters
associated with the system error. The THEN branch is taken
if a message was found; if no message is in that position,
the ELSE branch is taken.

NOTE: The EOF function is available to test for end-of­
arguments or end-of-messages. (Please refer to the EOF
function, listed alphabetically in this chapter.)

System messages are typically generated by commands or BASIC
programs just before terminating execution. BASIC programs
may generate messages using the PUT, STOP, and ABORT
statements. For further information, please refer to these
statements, listed alphabetically in this chapter.

ARG. and MSG. are pre-defined variables with special meaning
in the GET statement and should not be used as ordinary
variables in other statements. It is recommended that
programmers not use names ending in a period in order to
distinguish them from the variables pre-defined by ULTIMATE.
Since variable names in this format mayor may not be treated
as names of pre-defined variables in all cases, depending on
operating system release, the ULTIMATE Corp. strongly
suggests programmers rewrite their software, if necessary, to
avoid possible conflicts.

BASIC Reference Page 140 Statements/Functions

\
)

GET

GET

ARG. {, arg#}

MSG. {, arg#}

var {THEN stmt} {ELSE stmt}

var {THEN stmt} {ELSE stmt}

Figure A. General Forms of the GET Statement

CORRECT USE EXPLANATION

GET(ARG.} PARAMl ELSE PARAMl = 0
GET(ARG.} PARAM2 ELSE PARAM2 = 0

GET(ARG.,2) PARAM2 ELSE
PRINT "NEED MORE PARAMETERS"
STOP

GET (ARG.) PARAM3

GET(MSG.,1) ERRl ELSE GOTO START
PRINT ERR1; STOP

The first GET statement retrieves
the first argument on the list;
the second retrieves the next
argument.

The first GET statement retrieves
the second argument on the list
or prints a message and the
program terminates. The second
GET statement retrieves the next
(third) argument.

The first GET statement retrieves
the first message; if found,
it is printed and the program
terminates. If no message has
been stored in MSG., the program
branches to START.

Figure B. Examples of Correct Usage of the GET Statement

BASIC Reference Page 141 Statements/Functions

GOSUB
statement

The GOSUB statement transfers control to an internal sub­
routine. An internal subroutine is a subroutine that is
contained within the program that calls it. The GOSUB
statement is always used with a RETURN or RETURN TO statement
that transfers control back to the main routine.

The general form of the GOSUB statement is:

GOSUB statement-label

The GOSUB statement transfers control to the subroutine that
starts at the specified statement-label. Execution proceeds
sequentially from that statement until a RETURN or RETURN TO
statement is encountered. Either of these statements can be
used to transfer control back to the main (branched-from)
routine.

The ON GOSUB statement is a "computed" GOSUB statement, a
combination of the ON GOTO statement and the GOSUB statement.
An expression is used to compute which subroutine to execute
next. The ON GOSUB statement is discussed in a separate
topic. (Please refer to the ON GOSUB statement, listed
alphabetically in this chapter.)

GOSUB statement-label

Figure A. General Form of GOSUB statement

GOSUB FIRST

FIRST:

RETURN

Transfers control to subroutine
FIRST. After the subroutine's RETURN
statement is encountered, control
returns to the statement after the
GOSUB statement.

Figure B. Example of Correct Usage of GOSUB Statement

BASIC Reference Page 142 Statements/Functions

{~
Ii
~

GOTO (GO TO)
statement

The GO{TO} statement unconditionally transfers program
control to any statement within the BASIC program.

The general form of the GO{TO} statement is:

GOTO statement-label or GO statement-label

Execution of the GO{TO} statement causes program control to
be transferred to the statement which begins with the
specified statement-label. If a statement does not exist with
the specified statement-label an error message will be
printed at compile time. (Refer to Appendix A describing
compiler error messages.)

Figure B illustrates a correct use of the GO{TO} statement.
Flow of program control is illustrated by the arrows. Note
that control may be transferred to statements following the
GO{TO} statement, as well as to statements preceding the
GO{TO} statement. Figure C illustrates incorrect use of the
GO{TO} statement.

BASIC Reference Page 143 Statements/Functions

GO{TO} statement-label

Figure A. General Form of GOTO statement

-----> 100 A-a

1

REM BRANCH TO STATEMENT 500
200 GOTO 500

1--> 500 A-B+C
D-IOO

REM REPEAT PROGRAM
GOTO 100 ---

----------------------1
Figure B. Example of Correct Usage of GOTO Statement

STATEMENTS

100 A-a

--> 200 GOTO 200 --
1-----------------1

EXPLANATION

GO TO statement branches to
itself. Program will
permanently "hang", re-executing
this statement.

Figure C. Example of Incorrect Usage of GOTO Statement

BASIC Reference Page 144 Statements/Functions

HEADING
statement

The HEADING statement causes the specified text string to be
printed as the next page heading.

The general form of the HEADING statement is:

HEADING expression

The first HEADING or FOOTING statement executed in a program
will initialize the page parameters. Subsequently, the
heading literal data may be changed at any time in the BASIC
program by another HEADING statement; this change will take
effect at the beginning of the next page. The special
HEADING option characters listed in Figure B may be used as
part of a HEADING string expression. When used, these
special characters will be converted and printed as part of
the heading. option characters are enclosed in single
quotes.

Consider, for example:

HEADING "'C'INVENTORY LIST 'T' PAGE 'PL'"

This statement will print at the top of each page a centered
heading (using the default page width). The heading will
consist of the words "INVENTORY LIST", followed by the
current time and date, followed by the word "PAGE", followed
by the current page number, followed by a carriage return and
line feed. Page numbers are assigned in ascending order
starting with page 1.

NOTE: The HEADING statement affects only print file zero,
the default output device.

BASIC Reference Page 145 Statements/Functions

HEADING expression

Figure A. General Form of HEADING statements

Character Used in
HEADING string Expression

PN
P

L
T
C
Cn
D

Character is Converted to:

Current page#, left-justified
Current page#, right-justified

in a field of 4 blanks
Carriage return/line feed
Current time and date
Centers the line
Centers, with specified line length
Current date

Figure B. Special Control Characters for HEADING Statement

CORRECT USE EXPLANATION

HEADING "TIME & DATE: 'TL'" The text "TIME & DATE:" will be

HEADING "'C60'PAGE 'PL'"

HEADING '" LTPL' "

printed followed by the current time and
date plus a carriage return/line feed.

The text "PAGE" will be centered,
within a page width of 60, followed by
the current page number and
a carriage return/line feed.

The following heading will be
printed: the current time, date and page.

Figure C. Examples of Correct Usage of HEADING Statements

BASIC Reference Page 146 Statements/Functions

(

ICONV
Function

The ICONV function converts a string according to a specified
type of input conversion.

The general form of the INCONV function is:

ICONV(string, code)

The string specifies a string value. The code specifies the
type of input conversion. The resultant value is always a
string value.

The value of code must be a string. The following codes may
be used for input conversions:

D convert date to internal format

G Extract group of characters

L Test string length

MC Mask characters by numeric, alpha, or upper/lower
case

ML Mask left-justified decimal data

MP convert integer to packed decimal

MR Mask right-justified decimal data

MT Convert time to internal format

MX Convert ASCII to hexadecimal

P Test pattern match

R Test numeric range

T Convert by table translation. The table file and
translation criteria must be given. (Please refer
to the section "Defining File Translation" in the
Recall Reference Manual for details.) NOTE: This
type of conversion is inefficient if several items
or attributes will be accessed.

U Convert by subroutine call to assembly routine,
either system- or user-defined. The absolute
address of the routine must be given. The value of
the string may be a parameter to be passed to the
subroutine, or a null string if none is needed. If
two or more parameters are to be passed, they must
be compressed into a single string in string and
parsed by the called routine. (For details, please
refer to the Assembler Manual.)

BASIC Reference Page 147 Statements/Functions

The conversion codes are the same as those used for Recall
Conversions and Correlatives. For a detailed treatment of
these and other conversion capabilities, refer to the
ULTIMATE Recall Reference Manual.

WARNING: Some conversion codes used in Recall, such as "F",
cannot be used with the ICONV function. Also note that "MR"
and "ML" conversions may be done with format strings. In
general, values which cannot be successfully converted will
cause a null string to be returned as a result. For example,
a string which is not a valid date will cause ICONV to return
a null string when used with the "0" conversion code. (For
details on format strings, refer to the chapter "Representing
Data" in this manual.)

ICONV(string,code)
I I

.1 I

I string value being I
I converted I

Ispecifies type I
lof conversion I

Figure A. General Form of ICONV Function

CORRECT USE EXPLANATION

IDATE = ICONV("07-0l-74","D") Assigns the string value
"2374" (Le., the internal
date) to the variable IDATE.

CHR=ICONV("4l" , "MX") Assigns the string "A"
(corresponding to hexadecimal
value "41") to variable CHR.

IF ICONV(T,"MT")="" THEN Causes a branch to label 10 if
GOTO 10 the value of T is not a valid

time of day (if the "MT"
conversion returns a null
string) .

Figure B. Examples of Correct Usage of ICONV Function

BASIC Reference Page 148 Statements/Functions

IF
statement

The single-Line IF statement provides the conditional
execution of a sequence of BASIC statements, or the
conditional execution of one of two sequences of statements.

The general form of the single-Line IF statement is:

IF expression {THEN statements} {ELSE statements}

The expression may be any legal BASIC expression. If the
result of the test condition specified by the expression is
true (i.e., non-zero), then the statement or sequence of
statements in the THEN clause (if present) are executed. If
the result of the expression is false (i.e., zero), then the
statement or sequence of statements in the ELSE clause (if
present) are executed.

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present. The sequence
of statements in the THEN or ELSE clauses may consist of one
or more statements on the same line. For example:

IF X>l THEN GOTO 50

In this example control will be transferred to statement 50
if the current value of X is greater than 1. Since the ELSE
clause is not used here, control will pass to the next
statement in the program if X is not greater than 1. An ELSE
clause can be used instead of a THEN clause:

IF X ELSE GO 100

In this example, if X is false (zero), control is passed to
the ELSE clause. If X is true (non-zero), control will simply
pass to the next statement in the program. This statement
then replaces the longer forms:

IF X THEN NULL ELSE GO 100
or

IF NOT (X) THEN GO 100

If more than one statement is contained in either the THEN or
ELSE clause, they must be separated by semicolons. Consider
the example:

IF ITEM THEN PRINT X; X=X+l ELSE PRINT X*5i GOTO 10

If the current value of ITEM is non-zero (i.e., true), then
this statement will print the current value of X, add 1 to
the current value of X, and then transfer control to the next
sequential instruction in the program. If the value of ITEM
is zero (i.e., false), then the value of X*5 will be printed
and control will transfer to statement 10.

BASIC Reference Page 149 Statements/Functions

Any statements may appear in the THEN and ELSE clauses,
including additional IF statements.

IF expression {THEN statements} {ELSE statements}

Figure A. General Form of IF statement

CORRECT USE EXPLANATION

IF A = "STRING" THEN PRINT "MATCH"

IF X>5 THEN IF X<9 THEN GOTO 10

IF Q THEN PRINT A ELSE PRINT B; STOP

Prints "MATCH" if value of
A is the string "STRING".

Transfers control to state­
ment 10 if X is greater
than 5 but less than or
equal to 10.

The value of A is printed
if Q is non-zero. If Q=O,
then the value of B is
printed and the program is
terminated.

F A#"STRING" ELSE PRINT "NO MATCH" Prints "NO MATCH" if value
of A is not the string
"STRING" .

IF X>9 ELSE IF X>5 THEN GOTO 10 Transfers control to state­
ment 10 if X is greater
than 5 but less than 10.

IF A=B ELSE IF C THEN GOTO 20 Program goes to next
statement if A=B; control is
passed to statement 20 if A
does not equal B and if C is
non-zero.

IF A=B THEN STOP ELSE IF C THEN GOTO 20 Program is terminated if
A=B; control is passed to
statement 20 if A does not
equal B and if C is
non-zero.

Figure B. Examples of Correct Usage of Single-Line IF Statement

BASIC Reference Page 150 Statements/Functions

(

\

"-I

IF
statement

(Multi-Line)

The Multi-Line IF statement is functionally identical to the
Single-Line IF statement. It provides the conditional
execution of a sequence of BASIC statements, or the
conditional execution of one of two sequences of statements.
The statement sequences, however, may be placed on multiple
program lines.

The Multi-Line IF statement is actually an extension of the
single-Line format. with this format, the statement sequences
in the THEN and ELSE clauses may be placed on multiple
program lines, with each sequence being terminated by an
END. There are four general formats of the Multi-Line IF
statement as shown in Figure A.

In these forms, either the THEN clause or ELSE clause may be
omitted, but at least one must be present. Any statements
may appear in the THEN and ELSE clauses.

FORM 1:

FORM 2:

FORM 3:

FORM 4:

IF expression THEN
statements

END ELSE statements

IF expression ELSE
statements

END

IF expression THEN
statements

END ELSE
statements

END

IF expression THEN statements ELSE
statements

END

Figure A. General Form of Multi-Line IF Statement

BASIC Reference Page 151 Statements/Functions

CORRECT USE

IF ABC=ITEM+5 THEN
PRINT ABC
STOP

EXPLANATION

END ELSE PRINT ITEM; GOTO 10

The value of ABC is printed and the
program terminates if ABC=ITEM+5;
otherwise the value of ITEM is
printed and control passes to
statement 10.

IF VAL THEN
PRINT MESSAGE
PRINT VAL
VAL=100

END

10 IF S="XX" THEN PRINT
PRINT "NO MATCH"
PRINT S
STOP

END
20 REM REST OF PROGRAM

IF X>l THEN
PRINT X
X=X+1

END ELSE

END

PRINT "NOT GREATER"
GOTO 75

If the value of VAL is non-zero
then the value of MESSAGE is
printed, the value of VAL is
printed, and VAL is assigned a
value of 100; otherwise control
passes to the next statement
following END.

"OK" ELSE If the value of S is the string
"XX" then the message "OK" is
printed and control passes to
statement 20; otherwise "NO MATCH"
is printed, the value of S is
printed and the program terminates.

If X>l the value of X is printed
and then incremented, and control
passes to the next statement fol­
lowing the second END: otherwise
"NOT GREATER" is printed and
control passes to statement 75.

Figure B. Examples of Correct Usage of Multi-Line IF Statement

BASIC Reference Page 152 Statements/Functions

\

\

I
/

INDEX
Function

The INDEX function searches a string for the occurrence of a
sub-string and returns the starting column position of that
sub-string.

The general form of the INDEX function is:

INDEX (string, sub-string, occurrence)

All of the INDEX function parameters may be any valid
expressions. The string specifies the string to be examined.
The sub-string specifies the sub-string to search for. The
occurrence specifies which occurrence of that sub-string is
sought. The resultant numeric value of the function is the
starting column position of the sub-string within the string.
If the sub-string is not found, a value of 0 is returned.

Consider the following example:

START = INDEX("ABCDEFGHI","DEF",l)

The first occurrence of the sub-string "DEF" starts at column
position 4 of the string "ABCDEFGHI". This statement assigns
the value of 4 to the variable START.

Next, consider the example:

A = INDEX (" AAXXAAXXAA" , "XX" , 2)

The second occurrence of sub-string "XX" starts at column
position 7 of string "AAXXAAXXAA". This statement assigns
the value of 7 to variable A.

The following example assigns a value of 0 to the variable
VAR because the sub-string "Z" is not present within the
string "ABC123":

Q = "Z"
R = "ABC123"

VAR = INDEX(R,Q,l)

BASIC Reference Page 153 statements/Functions

---I sub-string I
I I sought I
I ------------
I

INDEX(string,sub-string,occurrence)
I I
I I
I --------------
---I string to I

Ibe searched I
I occurrence I
lof sub-string I

Figure A. General Form of INDEX Function

CORRECT USE

A = INDEX (" ABCAB" , "A" , 2)

X = "1234ABC"
Y = "ABC"
IF INDEX(X,Y,1)=5 THEN

GO TO 3

Q = INDEX ("PROGRAM" , "S" , 5)

S = "XIXXIXXlXX"
FOR I=l TO INDEX(S,"1",3)
NEXT I

EXPLANATION

Assigns value of 4 to variable A
(i.e., 2nd occurrence of "A" is
at column position 4 of "ABCAB").

The IF statement will transfer
control to statement 3 (i.e.,
"ABC" starts at column position
5 of "1234ABC", so the result of
the IF statement is "true".

Assigns value of 0 to variable Q
(i.e., "S" does not occur in
"PROGRAM").

The loop will execut~ 8 times
(i.e., 3rd occurrenc~ of "1"
appears at column position 8 of
the string named S).

Figure B. Examples of Correct Usage of INDEX Function

BASIC Reference Page 154 Statements/Functions

INPUT
statement

The INPUT statement is used to request input data from the user's
terminal. The cursor position and data format may also be
specified. If stacked input is present, the next line of stacked
input will be used instead of requesting data from the terminal
(see DATA statement).

The general form of the INPUT statement is:

INPUT {@(x,y){:}} var {,len}{:}{format}{_}
{THEN stmt} {ELSE stmt}

where: @(x,y) is a specified cursor position
: (after @(x,y» means display old value as the
- default before updating
var specifies the variable for storage of input data
len is the maximum length (default is 140 char. maximum)
:-Tafter var or len) means do not echo carriage
- return and line feed at end of input
format is the format string for input validation and

output formatting
sounds the bell until <CR> pressed if more than the

- maximum len (or 140 characters) is entered
THEN signals statements to execute when at least one

character is input by the user
ELSE signals statements to execute when only <CR>

is pressed by the user

All options must be in the order shown above. An INPUT statement
causes a prompt character to be printed at the user's terminal.
The user's response is assigned to the specified variable (var).

The @(x,y) option allows the input to be placed at a specified
cursor position. The values (x,y) are the coordinates for the
cursor location where input is to be supplied (x is the column;
y is the row). ~ and y may be any BASIC expressions. The prompt
character is printed one character prior to the x coordinate. If
@(x,yl is followed by a colon (:), the existing value of var, if
any, 1S displayed at the (x,y) position, formatted accordIng to
format, if present.

If the @(x,y) option is omitted, the prompt character is
displayed at the current cursor position. (For more information
about prompt characters, please refer to the PROMPT statement,
listed alphabetically in this chapter.)

Maximum input is 140 characters unless len specifies a different
maximum. If the user enters the maximum number of characters, an
automatic <CR> is executed unless the underline () option is
present. If the optional is used, the operator-must physically
press <CR>, and the bell sIgnal is echoed to the terminal if the
operator attempts to enter more than the maximum number of
characters before pressing <CR>. If the optional : is used, a
<CR> entry will be inhibited on the screen and the-cursor will

BASIC Reference Page 155 Statements/Functions

remain positioned after the input data. The automatic <CR>
feature is useful when programming fixed length input fields as
it eliminates requiring the operator to enter a carriage return.

Format may
details on
strings.)
Conversion

contain any ULTIMATE format string characters. (For
format strings, please refer to section 2.9, Format
It may, alternatively, contain any v~lid Recall Date
Code.

When the @(x,y): options (position cursor and display old value
as the default) are used, format is used to format the original
value of var and to reformat and re-display\the input data after
it is entered at the terminal.

If the user presses only the carriage return,<CR>, then no input
validation or formatting takes place. If th~ user enters one or
more characters and, if needed, a <CR>, the input will be
validated against the format, if present.

If format contains a decimal digit specification and/or a scaling
factor, then numeric checking will be performed. If format
contains a length specification (eg. R#10) , th~n length checking
will be performed. If format is '0' (or any ot~er valid date
format) then a date verification will be performed. If the input
data does not conform, a warning message is printed at the bottom
of the screen, and the user is re-prompted for input. (Also, the
type-ahead buffer is cleared, if type-ahead is in effect.) The
possible warning messages are:

Entry must be a NUMBER
Entry must be a DATE
Entry is too long
Entry must be greater than or equal to ZERO
Entry does not match its pattern

Warning messages disappear automatically when a correctly
formatted value is input, at which time it is ass~gned to var.

Note that data is converted on output and input. Thus, if a date
is to be input, the default should be stored in internal format;
it will be displayed in external format. Input values will be
converted from external format and stored in var in internal
format; they will be re-displayed in the external format
specified by format. For further information on conversions,
please see the ICONV and OCONV functions, listed alphabetically
in this chapter; also see the ULTIMATE Recall Manual.

Note also that the percent sign ("%") is a numeric character
verification symbol. Thus, for example, the statement:

INPUT @(20,10):SOC.SEC '%%%-%%-%%%%'

may be used to input social security numbers. If the data
entered is 423-15-6897, then the variable SOC.SEC will contain
the value 423156897, though it will be re-displayed with the
embedded hyphens as 423-15-6897.

BASIC Reference Page 156 statements/Functions

(
I,
\

\
I

)

,

The THEN and ELSE clauses are optional; one, both, or none may be
used. These clauses may be on a single line or multiple lines.
If multiple lines are used, the clause must be terminated by an
END statement as in the multi-line IF statement.

The THEN clause specifies statement(s) to be executed only if the
operator enters at least one character of input other than a
carriage return. The ELSE clause specifies statement(s) to be
executed only if the operator enters no characters, just a
carriage return.

If either THEN or ELSE is used, a null input (only <CR» causes
var to retain its old value. If no THEN or ELSE is present, null
InPut stores a null string (") in var. For example:

INPUT A

This statement will cause a prompt character to be printed at the
user's terminal. The data which the user then inputs, or a null
string if only <CR> is pressed, will become the current value of
variable A.

NOTE: Two statements, INPUTCLEAR and PRINTERR, and a system
function, SYSTEM(ll) , are useful for type-ahead control in
systems with the type-ahead feature. (Please refer to
INPUTCLEAR, PRINTERR, and the SYSTEM function listed
alphabetically in this chapter.)

BASIC Reference Page 157 Statements/Functions

INPUT {@(x,y){:}} var {,len}{:}{format}{_}
{THEN stmt} {ELSE stmt}

Figure A. General Form of INPUT Statement

CORRECT USE EXPLANATION

INPUT VAR will request a value for variable VAR
at the user's terminal.

INPUT X,3

INPUT X,3

INPUT X:

INPUT ZIP,5:

INPUT X ELSE STOP
INPUT X THEN RETURN

INPUT @(25,2):INV.DATE 'D'
INPUT @(35,7):AMOUNT 'R2, ,
INPUT @(20,14):NAME 'L#40'

INPUT @ (0,10) : DESC

Figure B. Examples

BASIC Reference

will request input for variable X. When
3 characters have been entered, an
automatic carriage return will be
executed.

Same as above but will wait and beep
for operator-entered carriage return.

Requests input for variable X. No
carriage return and line feed will be
printed after a value is entered.

Requests a value for ZIP.
return and line feed will
after a value is entered.
and the program continues
characters (not including
entered.

No carriage
be printed

Input stops
if five
a <CR» are

stops only if a <CR> is entered.
Returns unless only a <CR> entered.

Inputs a date.
Inputs a dollar value.
Inputs a text field with
a length specification.

Inputs data with no mask.

of Correct Usage of INPUT Statement

Page 158 Statements/Functions

INPUTCLEAR
statement

The INPUTCLEAR statement allows users with the type-ahead
feature to clear the type-ahead buffer for the terminal line
on which the BASIC program is running.

The general form of the INPUTCLEAR statement is:

INPUTCLEAR

When typeahead is enabled (the default case on most systems),
users may type in data in anticipation of input requests,
before the system has even printed a prompt character and
waited for input. Data typed in ahead is not echoed on the
screen until the input request (a BASIC INPUT statement, for
example) is executed.

The INPUTCLEAR statement erases any previously entered data
in the typeahead buffer, forcing new input to be entered for
the next input request. This may be useful when errors are
discovered and the typeahead data must not be used under the
error condition(s).

NOTE: The typeahead buffer is also cleared by the PRINTERR
statement. (Please refer to the PRINTERR statement, listed
alphabetically in this chapter.)

BASIC Reference Page 159 statements/Functions

INS
Statement

The INS statement allows a program to insert data into a
dynamic array.

The general form of the INS statement is:

INS expression BEFORE var < attr# {, value# {, subval#}} >

The expression may be any valid BASIC expression. The value
of the expression is inserted into the dynamic array
specified as var before (preceding) the specified attribute,
value, or subvalue expressions. Attr# specifies an
attribute, value# specifies a value, subval# specifies a
subvalue. If value# and subval# both have a value of 0 (or
are both absent, then the expression is an attribute to be
inserted before attr#. If subval# only has a value of 0 (or
is absent), then expression is a value to be inserted before
value#. If attr#, value#, and subval# are all non-zero, then
expression is ~ subvalue to be inserted before subval#.

To insert the expression after the last attribute, value, or
subvalue in the dynamic array, -1 should be specified as the
value of attr#, value#, or subval#, respectively.

Note: The INSERT function performs the same operation as an
intrinsic function rather than a separate statement. (Please
refer to the INSERT function, listed alphabetically in this
chapter.)

INS expression BEFORE var < attr# {, value# {, subval#}} >

Figure A. General Form of INS Statement

CORRECT USE EXPLANATION

INS "JOHN" BEFORE NAMELIST<3,1> Inserts the string "JOHN"
before the first value of the
third attribute of dynamic
array NAMELIST.

INS "LAST" BEFORE V<l,l,-l> Inserts the string "LAST"
after the last subvalue of
the first value in the first
attribute of V.

Figure B. Examples of Correct Usage of INS Statement

BASIC Reference Page 160 Statements/Functions

INSERT
Function

The INSERT function returns a dynamic array with a specified
attribute, value, or subvalue inserted.

The general forms of the INSERT function are:

INSERT (array-var, attr#,value#, subval#, expr)
or

INSERT(array-var,attr# {,value# {,subval#}} iexpr)

The value of the expression array-var specifies the dynamic
array to insert data into. The values of attr#, value#, and
subval# determine whether the data is an attribute, a value,
or a subvalue. If value# and subval# both have a value of °
(or are both absent), then an entire attribute is inserted.
If subval# only has a value of ° (or is absent), then a value
is inserted. If attr#, value#, and subval# are all non-zero,
then a subvalue is inserted. The value of e~pr specifies the
data to be inserted. The data is normally 1nserted before
the specified attribute, value, or subvalue, except when an
index of -1 is used (see below) .

The following example shows two ways to code a function:

Using First Form

OPEN I TEST-FILE I ELSE STOP
READ X FROM I NAME I ELSE STOP
X = INSERT(X,10,0,0,'XXXXX')
WRITE X ON I NAME I

Using Second Form

OPEN I TEST-FILE I ELSE STOP
READ X FROM I NAME I ELSE STOP
X = INSERT(X,10i'XXXXX')
WRITE X ON I NAME I

These statements insert before attribute 10 of item NAME the
value "XXXXX", thus creating a new attribute.

Note that in the second form, trailing zero subvalue or value
numbers are not required and that a semicolon separates the
attribute, value, and subvalue'numbers from the new data
expression (expr).

If the last index specified (attr#, value#, or subval#) has a
value of -1, the new data is inserted after the last
attribute, last value, or last subvalue (respectively) of the
dynamic array. For example:

Using First Form

OPEN IFN11 ELSE STOP
READ B FROM IIT5 1 ELSE STOP
A = INSERT(B,-l,O,O, 'EXAMPLE')
WRITE A ON I IT5 I

Using Second Form

OPEN IFN11 ELSE STOP
READ B FROM IIT5 1 ELSE STOP
A = INSERT(B,-li ' EXAMPLE')
WRITE A ON 'IT5 1

These statements insert the string value "EXAMPLE" after the
last attribute of item IT5 in file FN1.

BASIC Reference Page 161 Statements/Functions

Note: The INS statement may be used to insert an attribute,
value, or subvalue into a dynamic array and store the result
back into the variable containing the original dynamic array.
For more information, please refer to the INS statement,
listed alphabetically in this chapter.

INSERT(array-var,attr#,value#,subval#,expr)

INSERT(array-var,attr# {,value# {,subval#}} iexpr)
A A A A A

Idynamic array I
I I

I attribute I
I I

I value I
I I

Isub- I
Ivaluel

I new
I value

Figure A. General Forms of INSERT Function

CORRECT USE

Y = INSERT(X,3,2,O,"XYZ")
or

Y = INSERT(X,3,2i"XYZ")

NEW = "VALUE"
TEMP = INSERT(TEMP,9,O,O.,NEW)

or
TEMP = INSERT(TEMP,9iNEW)

A = "123456789"
B = INSERT(B,3,-1,O,A)
or B = INSERT(B,3,-liA)

Z = INSERT(W,5,1,1,"B")
or

Z = INSERT(W,5,1,li"B")

EXPLANATION

Inserts before value 2 of attribute
3 of dynamic array X the
string value "XYZ" (thus creating
a new value), and assigns the
resultant dynamic array to variable Y.

Inserts before attribute 9 of
dynamic array TEMP the string
value "VALUE" (thus creating a
new attribute) .

Inserts the value "123456789"
after the last value of attribute
3 of dynamic array B.

Inserts the string value "B"
before subvalue 1 of value 1
of attribute 5 in dynamic array W
(thus creating a new subvalue),
and assigns the resultant
dynamic array to variable Z.

Figure B. Examples of Correct Usage of INSERT Function

BASIC Reference Page 162 Statements/Functions

INT
Function

The INT function returns an integer value.

The general form of the INT function is:

INT(expression)

The INT function returns the integer portion of the specified
numeric expression. (The fractional portion of expression is
truncated.) For example:

PRINT INT(5.37)

This statement causes the value 5 to be printed.

INT(expression)

Figure A. General Form of INT Function

CORRECT USE EXPLANATION

A = 3.55 Assigns the value 7 to variable C.
B = 3.6
C = INT (A+B)

J = INT (5/3) Assigns the value 1 to variable J.

Figure B. E~amples of Correct Usage of INT Function

BASIC Reference Page 163 Statements/Functions

LEN
Function

The LEN function returns the length of a string.

The general form of the LEN function is:

LEN (expression)

The LEN function returns the length of the string specified
by the expression in number of characters. For example:

A = "1234ABC"
B = LEN (A)

These statements assign the value of 7 to variable B.

LEN (expression)

Figure A. General Form of LEN Function

CORRECT USE

Q = LEN (" 12 3")

X = "123"
Y = "ABC"
Z LEN(X CAT Y)

EXPLANATION

Assigns the value 3 to variable Q
(Le., the length of string "123").

Assigns the value 6 to variable z.

Figure B. Examples of Correct Usage of LEN Function

BASIC Reference Page 164 Statements/Functions

)

LET
statement

The LET statement is an optional part of the Assignment (=)
statement.

The general form of an Assignment statement using LET is:

LET variable = expression

For more information, please see the Assignment (=)
statement, listed at the beginning of this chapter.

BASIC Reference Page 165 statements/Functions

LN
Function

The LN (natural logarithm) function returns the natural
logarithm of a number.

The general form of the LN function is:

LN(expression)

The LN (natural logarithm) function generates the natural
(base e) logarithm of the expression. Expression must
evaluate to a numeric expression. If the value of the
expression is less than or equal to zero, the LN function
returns a value of zero.

NOTE: The LN function is the inverse of the EXP function.
(Please refer to the EXP function, listed alphabetically in
this chapter.)

In the following summary M is used to denote the largest
allowable number in BASIC, which is 14,073,748,835.5327 with
PRECISION 4.

FUNCTION

COS (X)

SIN (X)

TAN eX)

LN(X)

EXP (X)

PWR(X,Y)

RANGE

-M <= X <= M

-M <= X <= M

-M <= X <= M

° <= X <= M

DESCRIPTION

Returns the cosine of
an angle of X degrees.

Returns the sine of
an angle of X degrees.

Returns the tangent
of an angle of X degrees.

Returns the natural (base e)
logarithm of the expression X.

-M <= RESULT <= M Raises the number leI
(2.7183) to the value of X.

-M <= RESULT <= M Raises the first expression
to the power denoted by
the second expression.

Figure A. Summary of Trigonometric Functions

BASIC Reference Page 166 Statements/Functions

\

LOCATE
statement

The LOCATE statement may be used to find the index of an
attribute, a value, or a subvalue within a dynamic array. A
starting position for the search may be specified. The
elements of the dynamic array may be specified as being in
ascending or descending ASCII sequence, and sorted with
either right or left justification. If the specified
attribute, value, or subvalue is not present in the dynamic
array in the proper position, an index value is returned.
The index value may be used in an INS statement to place the
sought element into its proper location.

There are two general forms for the LOCATE statement. Both
operate identically, with a single exception. The first form
starts the search at the beginning of the dynamic array,
while the second form starts the search at a specified
attribute, value, or subvalue.

The general forms of the LOCATE statement are as follows:

LOCATE (expr, item {,attr# {,val#}}i var {i seq})
{THEN statements} {ELSE statements}

LOCATE exprl IN item {<attr# {,val#} >} {, expr2}
{BY seq} SETTING var {THEN stmt} {ELSE stmt}

Note that either the THEN clause or the ELSE clause may be omitted,
but not bothi at least one of them must be present.

Both expr and exprl are the element to be located in dynamic array
item; var is the variable into which the index of expr is to be
stored. Attr# and val# are optional parameters which restrict the
scope of the search within item. Attr# limits the search to a
specific attribute. If val# is also present, the search is limited
to a specific value in the specified attribute.

The second form of LOCATE allows for further restriction of scopei
expr2 is the starting attribute, value, or subvalue number for the
search. If expr2 is not present, the default of 1 is assumed.

If none of the above optional parameters are present, expr is tested
for equality with any attribute in item, and var returns an attribute
number. ---- ---

If attr# is present, expr is compared with values within the
specified attribute, and var returns a value number. If val# is also
present, the search is conducted for subvalues of the specified
attribute and value, and var returns a subvalue number.

The optional seq must be a string whose first (or only) character is
either "A" or "0". Any other values for seq are ignored. If the
first character is "A", the elements in item are assumed to be sorted
in ascending sequencei if "0", in descending sequence.

BASIC Reference Page 167 Statements/Functions

The second character of seq, if present, determines the justification
to be used when sorting the elements. "R" indicates right
justificationi this is useful with numeric elements. For any other
value, including null, left justification is used.

If the element is located, its index is stored as specified and the
THEN statements, if any, are executed. If the element is not
located, var contains the index of the correct position (the "next"
position)-rn the array where the element could be inserted. (Please
refer to the INS statement or the INSERT function, listed
alphabetically in this chapter.)

For example, a program may need to locate and/or insert data within a
dictionary item. One statement can perform both the LOCATE and
INSERT operations:

LOCATE('D',ITEM,4;VAR) ELSE ITEM = INSERT(ITEM,4,VAR,O,'D')

If the string 'D' is not found in attribute 4 of ITEM, it is inserted
as the "next" value number (with no subvalues).

NOTE: This single statement eliminates the need for a loop that
specifically extracts and tests the attribute, then takes one of two
alternative paths before the next item can be searched.

LOCATE (expr, item {,attr# {,val#}}i var {i seq}) {THEN stmt} {ELSE stmt}

LOCATE exprl IN item {<attr# {,val#} >} {, expr2}
{BY seq} SETTING var {THEN stmt} {ELSE stmt}

where:

expr/exprl Sought element. May be a literal string, variable,
array element or function.

item A dynamic array.

attr# optional: if present restricts scope of search
to specified attribute. Returns value number index.

val# optional: if present restricts scope of search
to specified value. Returns subvalue number index.

expr2 Optional in second form: if present, specifies starting
point (attribute, value, subvalue) of search.

var Index of sought element returned in Var.

seq Optional: 'A', 'D', 'AL', 'DL', 'AR', or 'DR'. If
seq is not specified and the string is not found
the default will be to the last position.

Figure A. General Forms of LOCATE Statement.

BASIC Reference Page 168 Statements/Functions

\

)

CORRECT USE:

LOCATE('55',ITEM,3,1;VAR;'AR') ELSE ITEM = INSERT(ITEM,3,1,VAR,'55')

EXPLANATION

The third attribute, first
the numeric literal '55'.
numeric is found, and will
numeric is not found.

value of dynamic array 'ITEM' is searched for
'VAR' will return with the subvalue index if the
return with the correct subvalue index if the

If it is not found, control passes to the ELSE clause which inserts the
numeric into the correct position by virtue of the index contained in
'VAR'. The optional parameter 'AR' specifies ascending sequence and right
justification.

CORRECT USE:

LOCATE (STR,REC;VAR) THEN NAME=REC<VAR> ELSE NAME=' INVALID'
PRINT NAME

EXPLANATION

The element STR is sought in item REC; the resulting index is in VAR.
Depending on the result, the variable NAME is assigned and printed.

CORRECT USE:

LOCATE "JOHN" in NLIST<3> SETTING X ELSE INS "JOHN" BEFORE NLIST<3,X>

EXPLANATION

If "JOHN" is not found, it is inserted at the correct position.

OTHER CORRECT EXAMPLES OF THE SECOND FORM OF LOCATE:

LOCATE DESC IN NLIST SETTING X ELSE GOTO 100

LOCATE DATE IN NLIST <4> BY "AR" SETTING X THEN DEL NLIST<4,X>

LOCATE NEXT IN NLIST <7>,LAST SETTING X ELSE NULL

EXPLANATION

These examples illustrate locating attributes and values, using the
sequence option, and specifying a starting location for a search.

Figure B. Examples of Correct Usage of the LOCATE Statement

BASIC Reference Page 169 Statements/Functions

LOCK
statement

The LOCK statement provides a file and execution lock
capability for BASIC programs. The LOCK statement sets
execution locks. This statement works in conjunction with
the UNLOCK statement, which unsets the locks.

The general form of the LOCK statement is:

LOCK expression {ELSE statements}

The value of the expression specifies which execution lock is
to be set (0-47). If the execution lock is currently
unlocked, the statement sets the lock. If the lock is
already set by the current program, the LOCK statement has no
effect. If the specified execution lock has already been set
by another concurrently running program (and the ELSE clause
is not used), then program execution will temporarily halt
until the lock is released by the other program. If the ELSE
clause is used, then the statement(s) following the ELSE will
be executed. The statements in the ELSE clause may be
placed on the same line separated by semicolons, or may be
placed on multiple lines terminated by an END, as in the IF
statement.

The LOCK statement sets an execution lock that "locks out"
other BASIC programs while the lock remains set. When any
other BASIC program attempts to set the same lock, that
program will either execute an alternate set of statements or
will pause until the lock is released (via an UNLOCK
statement) by the program which set the lock.

The ULTIMATE system provides 48 execution locks, numbered
from 0 through 47. Execution locks are used as program
control devices; they may also be used as file locks to
prevent multiple BASIC programs from updating the same files
simultaneously.

The following is an example of a complete execution lock
sequence. Process A sets execution lock 42 before executing
a non-reentrant section of code (that is, code which should
not be executed by more than one process simultaneously).
Process B executing the same program :;:eaches the "LOCK 42"
instruction, but cannot lock that section of code until
Process A has unlocked 42. Thereby, the code is rendered
non-reentrant.

When a program terminates execution (for any reason,
including the BASIC Debugger END command), any execution
locks still locked for that line are unlocked.

NOTE: The UNLOCK statement is discussed in a separate topic.
(Please refer to the UNLOCK statement, listed alphabetically
in this chapter.)

BASIC Reference Page 170 Statements/Functions

LOCK expression {ELSE statements}

Figure A. General Form of LOCK Statement

CORRECT USE EXPLANATION

LOCK 15 ELSE STOP Sets execution lock 15. if lock 15
is already set, program will terminate.

LOCK 2 Sets execution lock 2. If lock 2 is
already set program will temporarily
halt until lock 2 is released.

LOCK 10 ELSE PRINT X; GOTO 5 Sets execution lock 10; if lock 10
is already set, the value of X
will be printed and the program
will branch to statement 5.

Figure B. Examples of Correct Usage of LOCK Statement

BASIC Reference Page 171 Statements/Functions

LOOP
statement

The LOOP statement constructs a program loop.

The general forms of the LOOP statement are:

LOOP {statements} {WHILE expression DO {statements}} REPEAT
LOOP {statements} {UNTIL expression DO {statements}} REPEAT

Both the WHILE clause and UNTIL clause are optional. If
neither clause is used, an endless loop can be constructed
which executes all statements (if any) between LOOP and
REPEAT repeatedly until control is transferred outside the
loop by a statement such as EXIT or GOTO. (Please refer to
the EXIT and GOTO statements, listed alphabetically in this
chapter.)

Execution of a LOOP statement with a WHILE or UNTIL clause
proceeds as follows. First the statements (if any) following
"LOOP" will be executed. Then the WHILE or UNTIL expression
is evaluated. One of the following is then performed
depending upon the form used:

1. If the "WHILE" form is used, then the statements
following "DO" (if any) will be executed. If the
expression evaluates to true (i.e., non-zero), program
control will loop back to the beginning of the loop. If
the expression evaluates to false (i.e., zero), program
control will proceed with the next sequential statement
following "REPEAT" (i.e., control passes out of the
loop).

2. If the "UNTIL" form is used, then the statements
following "DO" (if any) will be executed. If the
expression evaluates to false (i.e., zero), program
control will loop back to the beginning of the loop. If
the expression evaluates to true (i.e., non-zero),
program control will proceed with the next sequential
statement following "REPEAT" (i.e. 1 control passes out
of the loop).

statements used within the LOOP statement may be placed on
one line separated by semicolons, or may be placed on
multiple lines.

Consider the following example:

LOOP UNTIL A=4 DO A=A+l; PRINT A REPEAT

Assuming that the value of variable A is a when the LOOP
statement is first executed, this statement will print the
sequential values of A from 1 through 4 (i.e., the loop will
execute 4 times). As a further example, consider the
statement:

BASIC Reference Page 172 statements/Functions

LOOP X=X-10 WHILE X>40 DO PRINT X REPEAT

Assuming, for instance, that the value of variable X is 100
when the above LOOP statement is first executed, this
statement will print the values of X from 90 down through 50
in increments of -10 (i.e., the loop will execute 5 times).

LOOP {statements} {WHILE expression DO {statements}} REPEAT
I

Itest condition I

I
LOOP {statements} {UNTIL expression DO {statements}} REPEAT

Figure A. General Forms of LOOP statement

CORRECT USE

J=O
LOOP

PRINT J
J=J+1
WHILE J<4 DO REPEAT

Q=6
LOOP Q=Q-l WHILE Q DO

PRINT Q
REPEAT

Q=6
LOOP PRINT Q WHILE Q DO

Q=Q-l REPEAT

B=l
LOOP UNTIL B=6 DO

B=B+l
PRINT B

REPEAT

EXPLANATION

Loop will execute 4 times (i.e.,
sequential values of variable J
from 0 through 3 will be
printed.

Loop will execute 5 times (i.e.,
values of variable Q will be
printed in the following order:
5, 4, 3, 2, and 1).

Loop will execute 7 times (i.e.,
values of variable Q will be
printed in the following order:
6, 5 , 4, 3, 2, 1 , and 0).

Loop will execute 5 times (i.e.,
sequential values of variable
B from 2 through 6 will be
printed) .

Figure B. Examples of Correct Usage of LOOP Statement

BASIC Reference Page 173 Statements/Functions

MAT =
statement

(Assignment and Copy)

The MAT = (Assignment and Copy) statements are used to assign
a value to each element in the array. The MAT Assignment
statement assigns a specified value to all elements. The MAT
Copy statement copies one array to another.

The general form of the MAT Assignment statement is:

MAT variable = expression

The value of the expression (which may be any legal
expression) is assigned to each element of the array. The
variable specifies the array, which must have been previously
dimensioned via a DIM statement. The following statement, for
example, assigns the current value of X+Y-3 to each element
of array A:

MAT A = X+Y-3

The general form of the MAT Copy statement is:

MAT variable = MAT variable

The first element of the array variable on the right becomes
the first element of the array variable on the left, the
second element on the right becomes the second element on the
left, and so forth. Each variable name must have been
dimensioned, and the number of elements in the two arrays
must match; if not, an error message occurs.

Arrays are copied in row major order, i.e., with the second
subscript (column) varying first. Consider the following
example:

Program Code Resulting Array Values

DIM X (5,2) , Y(lO) X(I,l) = Y (1) = 1
FOR 1=1 TO 10 X(I,2) = Y (2) = 2
Y(I)=I X(2,1) = Y (3) 3
NEXT I
MAT X = MATY

X(5,2) = Y (10) = 10

The above program dimensions two arrays as both having ten
elements (5x2=10), initializes array Y elements to the
numbers 1 through 10, and then copies array Y to array X,
giving the array elements the indicated values.

NOTES: 1. The MAT = statement assigns values to
dimensioned arrays. The = (Assignment) statement
assigns a value to a simple variable. See the =

BASIC Reference Page 174 Statements/Functions

(Assignment) statement in this chapter; the =
statement precedes statements that begin with "A".)

2. The MAT = statement is not the same as the MAT
used in an argument list for passing arrays in the
CALL and SUBROUTINE statements. (See CALL and
SUBROUTINE statements, listed alphabetically in
this chapter.)

MAT variable = expression
MAT variable = MAT variable

Figure A. General Forms of MAT Assignment and Copy Statements

CORRECT USE

MAT TABLE=l

MAT XYZ=A+B/C

DIM A(20), B(20)

MAT A = MAT B

DIM TAB1(10,lO), TAB2(50,2)

MAT TAB1 = MAT TAB2

EXPLANATION

Assigns a value of 1 to each element
of array TABLE.

Assigns the expression value to each
element of array XYZ.

Dimensions two vectors of equal length,
and assigns to elements of A the values
of corresponding elements of B.

Dimensions two arrays of the same
number of elements (10xlO=50x2),
and copies TAB2 values to TABl in
row major order.

Figure B. Examples of Correct Usage: MAT Assignment and Copy Statements

BASIC Reference Page 175 Statements/Functions

MATREAD
statement

The MAT READ statement reads a file item and assigns the value
of each attribute to consecutive vector elements.

The general form of the MAT READ statement is:

MATREAD var FROM {file-var,} item-id {ON ERROR statements}
{THEN stmt} {ELSE stmt}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

The MATREAD statement reads the file item specified by the
item-id expression and assigns the string value of each
attribute to consecutive elements of the dimensioned array
vector specified by variable var. If the file-var is used,
the item will be read from the file previously assigned to
that variable via an OPEN statement. If the file-var is
omitted, then the internal default file variable is used
(that is, the file most recently opened without a file
variable). The THEN statements, if any, are then executed.

Unlike the MATREADU statement, the MATREAD statement can
successfully read an item even if it is a locked item or is
in a locked file group. (For details, see the MATREADU
statement, listed alphabetically in this chapter.)

If the item specified in the item-id does not exist, the
contents of the array var remain unchanged. Then the ELSE
statements, if any, wi~be executed. The ELSE clause
statements may appear on one line separated by semicolons, or
on multiple lines terminated by an END, as in the multiple­
line IF statement.

For example:

MATREAD IN FROM 'ITEM' ELSE STOP

This statement will read into array "IN" the item named
"ITEM" from the file most recently opened without a file
variable. If ITEM does not exist, the program stops. Note: If
the number of attributes in the item is less than the
DIMensioned size of the array, the trailing elements are
assigned a null string. If the number of attributes in the
item exceeds the DIMensioned size of the array, the remaining
attributes, separated by attribute marks, will be assigned to
the last element of the array.

NOTE: An overview of the ULTIMATE file structure is given in
section 5.1, along with a summary of the standard ULTIMATE
file delimiters (attribute, value, and subvalue).

NOTE: For file updating, also see the MATWRITE statement and
its variations, listed alphabetically in this chapter.

BASIC Reference Page 176 Statements/Functions

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be read due to a network error condition. In
this case, the value of SYSTEM(O) will indicate the UltiNet
error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when reading local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be read due to network errors, the
program may terminate with an error message if no ON ERROR
clause is present.

---I assigned attribute values I
I ----------------------------
I

MATREAD var FROM {file-var,} item-id {ON ERROR statements}
{THEN stmt} {ELSE stmt}

Figure A. General Form of MATREAD Statement

CORRECT USE

DIM ITEM (20)
OPEN 'LOG' TO Fl ELSE STOP
MATREAD ITEM FROM Fl, 'TEST' ELSE STOP

MATREAD ITEM FROM Fl, 'TEST' ON ERROR
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GOTO TOP

END ELSE STOP

EXPLANATION

Reads the item named
TEST from the data
file named LOG and
assigns the string
value of each attribute
to consecutive elements
of vector ITEM, starting
with the first element.

Reads as above, or retrieves
error number and performs
local subroutine on UltiNet
error number.

Figure B. Example of Correct Usage of MATREAD Statement

BASIC Reference Page 177 Statements/Functions

MATREADU
statement

The MATREADU statement provides the facility to lock a disk
file item prior to updating it. This can be used to prevent
updating an item by two or more programs simultaneously while
still allowing multiple programs to access the file.

The general form of the MATREADU statement is:

MATREADU var FROM {file-var,} item-id {ON ERROR stmt)
{LOCKED stmt} {THEN stmt} {ELSE stmt}

The MATREADU statement functions like the MATREAD statement,
but additionally locks the item lock associated with the item
to be accessed. If the item is currently locked by another
BASIC program, the statement will not perform the read
operation. The item does not have to exist in order for
MATREADU to lock it; in this case, MATREADU executes the ELSE
statements, but still locks the associated item lock.

Item locks are assigned based on (1) the group of the disk
file which contains (or would contain) an item and on (2) a
hash value derived from the item-ide Items in different
groups (in the same file or in different files) are never
assigned the same item lock, but it is possible for more than
one item in the same group to hash to, and be assigned, the
same item lock.

If the LOCKED clause is present, the statements specify an
action to take if the MATREADU statement is unable to lock
the item because another program has already locked it.

If an item is currently unlocked, setting a corresponding
item lock will prevent access to the item, and any other
items in the same group with the same item lock hash value,
by other BASIC programs using the MATREADU, READU, or READVU
statements. The program setting the lock, however, will be
allowed to lock other items in the same group with the same
hash value using these statements.

An item will become unlocked when it, or any other item
sharing the same item lock, is updated by a WRITE, WRITEV, or
MATWRITE statement, or when it is unlocked by a RELEASE
statement, or when the BASIC program is terminated. An item
can be updated without unlocking it by using the WRITEU,
WRITEVU, or the MATWRITEU statement.

There is a maximum number of item locks which may be locked
at anyone time. This number may vary from release to
release. If a program attempts to lock an item when all item
locks are already set, it will be suspended until a lock is
unlocked.

NOTE: Locked items can still be retrieved by the READ, READV,
and MATREAD statements and by other system software, such as

BASIC Reference Page 178 Statements/Functions

Recall, which does not pay attention to item locks.

MATREADU var FROM {file-var,} item-id {ON ERROR stmt}
{LOCKED stmt} {THEN stmt} {ELSE stmt}

Figure A. General Form of MATREADU Statement

CORRECT USE EXPLANATION

MATREADU T FROM XM, "N4" ELSE NULL
The item will be locked regardless
of whether it exists or not.

MATREADU ITEM FROM ID LOCKED GOTO 900 ELSE NULL
If the item is currently locked, the
program branches to label 900.

MATREADU ITEM FROM ID ON ERROR GOTO PROCERR ELSE NULL
If the item cannot be read due to a
network error, the program branches
to local subroutine PROCERR for
processing the UltiNet error number.

Figure B. Example of Correct Usage of MATREADU Statement

BASIC Reference Page 179 Statements/Functions

MATWRITE
statement

The MATWRITE statement writes a file item with the contents
of a dimensioned array vector. If the item was initially
locked, it is unlocked.

The general form of the MATWRITE statement is:

MATWRITE var ON {file-var,} item-id {ON ERROR stmts}

The MATWRITE statement writes the contents of the dimensioned
array vector specified by the array var to the disk file item
specified by the expression item-id. The statement replaces
the attributes of item-id with the string value of the
consecutive elements of the vector named by var. If the
file-var is used, the item will be written in the file
previously assigned to that variable via an OPEN statement.
If the file-var is omitted, then the internal default file
variable is used (that is, the file most recently opened
without a file variable).

If the item-id specifies an item which does not exist, then a
new item will be created.

When updating an existing file item, none of the existing
attributes are retained. The number of attributes written
will generally be the same as the total number of attributes
(elements) in the array, except that null attributes at the
end of the item will be deleted. Normally, each element of
the array will consist of one attribute, though this is not
required; the MATREAD statement, for instance, will store
several attributes in the last element of an array if an item
has more attributes than the array has elements. MATWRITE
will assign a value of 0 to all attributes whose
corresponding array elements have not been assigned a value.

The MATWRITE statement clears the item lock associated with
the item being written, if it was initially locked. Item
locks may be set with the MATREADU, READU, and READVU
statements to prevent simultaneous updates of the same item
by more than one program. (For more information on item
locks, please refer to the MATREADU, READU, and READVU
statements, listed alphabetically in this chapter.)

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be written to due to a network error
condition. In this case, the value of SYSTEM(O) will
indicate the UltiNet error number. (Refer to the SYSTEM
function, listed alphabetically in this chapter; for more
information about remote files, refer to the UltiNet User's
Guide.) The ON ERROR clause has no effect when writing to
local files.

The ON ERROR clause may be on a single line or on multiple

BASIC Reference Page 180 statements/Functions

lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be written to due to network errors,
the program may terminate with an error message if no ON
ERROR clause is present.

MATWRITE var ON {file-var,} item-id {ON ERROR statements}

Figure A. General Form of MATWRITE Statement

CORRECT USE

DIM ITEM (10)
OPEN 'TEST' ELSE STOP
FOR 1=1 TO 10
ITEM(I)=I
NEXT I
MATWRITE ITEM ON "JUNK"

MATWRITE ITEM ON "JUNK"
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GOTO TOP

END

EXPLANATION

writes an item named JUNK
in the file named TEST.
The item written will contain
10 attributes whose string
values are 1 through 10.

ON ERROR
writes as above, or retrieves
error number and performs
local subroutine on UltiNet
error number.

Figure B. Example of Correct Usage of MATWRITE Statement

BASIC Reference Page 181 Statements/Functions

MATWRITEU
statement

The MATWRITEU statement writes a file item with the contents
of a dimensioned array vector. The item remains locked after
execution of the MATWRITEU statement. The letter "U" is
appended to the statement name to imply "update", not
"unlock".

The general form of the MATWRITEU statement is:

MATWRITEU var ON {file-var,} item-id {ON ERROR stmt}

The MATWRITEU statement functions the same as the MATWRITE
statement except for the locking feature. It does not unlock
the item after completing the write operation. This
variation on the MATWRITE statement is used primarily for
master file updates when several transactions are being
processed and an update of the master item is made following
each transaction update.

If the item is not locked before the MATWRITEU statement is
executed, it will be locked afterwards. For more information
on item locks, please refer to the MATREADU, READU, or READVU
statements, listed alphabetically in this chapter.

NOTE: The RELEASE statement can be used to unlock an item.
(Please refer to the RELEASE statement, listed alphabetically
in this chapter.)

MATWRITEU variable ON {file-var,} item-id {ON ERROR stmts)

Figure A. General form of MATWRITEU Statement

CORRECT USAGE EXPLANATION

MATWRITEU ARRAY ON FILE.NAME,IO Replaces the attributes of the item
specified by ID (in the file opened
and assigned to variable FILE. NAME)
with the consecutive elements of
vector ARRAY. Does not unlock the
group.

MATWRITEU A ON ID ON ERROR GOTO PROCESSERR
Writes elements of A to item
specified by 10, or branches to
process ultiNet error number.

Figure B. Example of Correct Usage of MATWRITEU Statements

BASIC Reference Page 182 Statements/Functions

\

MOD
Function

The MOD function generates the remainder of one number
divided by another.

The general form of the MOD function is:

MOD (dividend, divisor)

Both dividend and divisor are expressions. The MOD function
returns the remainder from the (integer) division of
dividend by divisor.

Note: The MOD function is the same as the REM function,
listed alphabetically in this chapter.

MOD (dividend, divisor)

Figure A. General Form of MOD Function

CORRECT USE

Q = MOD(11,3)

EXPLANATION

Assigns the value 2 to
variable Q.

Figure B. Example of Correct Usage of MOD Function

,BASIC Reference Page 183 Statements/Functions

NEXT
statement

The NEXT statement is used to specify the ending point of a
FOR-NEXT program loop. A NEXT statement is always used in
conjunction with a FOR statement.

The general form of the NEXT statement is:

NEXT variable

The variable in the NEXT statement must be the same as the
variable in the FOR statement.

A loop is a portion of a program written in such a way that
it will execute repeatedly until some test condition is met.
A FOR-NEXT loop causes execution of a set of statements for
successive values of a variable until a limiting value is
encountered. The FOR statement is discussed in a separate
section. (Please refer to the FOR statement, listed alpha­
betically in this chapter.)

The function of the NEXT statement is to return program
control to the beginning of the loop after a new value of the
variable has been computed. As an example, consider the
execution of the following statements:

150 FOR J=2 TO 11 STEP 3
160 PRINT J+5
170 NEXT J

statement 150 sets the initial value of J to 2 and specifies
that J thereafter will be incremented by 3 each time the loop
is performed, until J exceeds the limiting value 11.
Statement 160 prints out the current value of the expression
J+5. statement 170 assigns J its next value (i.e., J=2+3=5)
and causes program control to return to statement 150.
Statement 160 is again executed, and statement 170 again
increments J and causes the program to loop back. This
process continues with J being incremented by 3 after each
pass through the loop. When J attains the limiting value of
11, statement 160 will again be executed and control will
pass to 170. J will again be incremented (i.e., J=11+3=14),
and since 14 is greater than the limiting value of 11, the
program will "fall through" statement 170 and control will
pass to the next sequential statement following statement
170.

BASIC Reference Page 184 statements/Functions

NEXT variable

Figure A. General Form of NEXT statement

CORRECT USE

FOR A=l TO 2+X-Y

NEXT A

FOR K=lO TO 1 STEP -1

NEXT K

EXPLANATION

Limiting value is current value of
expression 2+X-Yi increment value
is +1.

Increment value is -1 (i.e., vari­
able K will decrement by 1 for
each of 10 passes through the loop).

Figure B. Examples of Correct Usage of FOR and NEXT Statements

BASIC Reference Page 185 Statements/Functions

NOT
Function

The NOT function returns a value of true (1) if the given
expression evaluates to 0 and a value of false (0) if the
expression evaluates to a non-zero quantity.

The general form of the NOT function is:

NOT (expression)

The NOT function returns the logical inverse of the specified
expression; it returns a value of true (i.e., generates a
value of 1) if the expression evaluates to 0, and returns a
value of false (i.e., generates a value of 0) if the
expression evaluates to a non-zero quantity. The specified
expression must evaluate to a numeric quantity or a numeric
string. The following statement, for example, assigns the
value 1 to the variable X:

X = NOT(O)

As a futher example, the following statements cause the value
o to be printed:

A = 1
B = 5
PRINT NOT(A AND B)

NOT (expression)

Figure A. General Form of NOT Function

CORRECT USE

X=A AND NOT (B)

IF NOT(Xl)THEN STOP

EXPLANATION

Assigns the value 1 to variable X if
current value of variable A is 1 and
current value of variable B is o.
Assigns a value of 0 to X otherwise.

Program terminates if current value
of variable Xl is o.

PRINT NOT(M) OR NOT(NUM(N))
Prints a value of 1 if current value
of variable M is 0 or current value
of variable N is a non-numeric
string. Otherwise prints a zero.

Figure B. Examples of Correct Usage of NOT Function

BASIC Reference Page 186 Statements/Functions

,
"

\

NULL
statement

The NULL statement specifies a non-operation. It may be used
anywhere in the program where a BASIC statement is required.

The general form of the NULL statement is:

NULL

The NULL statement is used in situations where a BASIC
statement is required, but no operation or action is desired.
Consider the following example:

INPUT X ELSE NULL

This statement assigns an input value to variable X if the
value is non-null (that is, if the operator enters more than
just a carriage return in response to the INPUT prompt
character). If the input value is null, X will retain its
old value. Without the ELSE NULL clause, the INPUT statement
would assign X a null value if no value (just a <CR» were
entered.

NULL

General Form of NULL Statement

CORRECT USE

10 NULL

IF A=O THEN NULL ELSE
PRINT "A NON-ZERO"
GOSUB 45
STOP
END

READ A FROM "ABC" ELSE NULL

EXPLANATION

This statement does not result in any
operation or action; however, since it
is preceded by a statement label (10)
it may be used as a program entry point
for GOTO or GOSUB statements elsewhere
in the program.

If the current value of variable A is
non-zero, the sequence of statements
following the ELSE will be executed.
If A=O, no action is taken and control
passes to the next sequential statement
following the END.

File item ABC is read and assigned to
variable A. If ABC does not exist, no
action is taken. (Refer to description
of READ statement for more information.)

Figure B. Examples of Correct Usage of NULL Statement

BASIC Reference Page 187 Statements/Functions

NOM
Function

The NUM function returns a value of true (1) if the given
expression evaluates to a number or a numeric string.

The general form of the NUM function is:

NUM(expression)

The NUM function tests the given expression for a numeric
value. If the expression evaluates to a number or numeric
string the NUM function will return a value of true (i.e., a
value of 1). Inversely, an expression evaluating to an
alphabetic or other non-numeric string will cause the NUM
function to return a value of false.

The NUM function considers a numeric string to be one which
is either:

(1) a sequence of decimal digits, optionally preceded
by a plus or minus sign, and optionally containing
a decimal point, or

(2) a null string (")

Consider the following examples:

IF NUM(X) THEN PRINT "NUMERIC DATA"

This statement will print the text "NUMERIC DATA" if the
current value of variable X is a number or a numeric string.

NUM(expression)

Figure A. General Form of NUM Function

CORRECT USE EXPLANATION

Al=NUM(123) Assigns a value of 1 to variable Al.

A2=NUM("123") Assigns a value of 1 to variable A2.

A3=NUM (" 12C") Assigns a value of 0 to variable A3.

A4=NUM(' ') Assigns a value of 1 to variable A4.

Figure B. Examples of Correct Usage of NUM Function

BASIC Reference Page 188 statements/Functions

OCONV
Function

The OCONV function converts a string according to a specified
type of output conversion.

The general form of the OCONV function is:

OCONV(string, code)

The string specifies a string value. The code specifies the
type of output conversion. The resultant value is always a
string value.

The value of code must be a string. The following codes may
be used for output conversions:

D Convert date to external format

G Extract group of characters

L Test string length

MC Mask characters by numeric, alpha, or upper/lower
case

ML Mask left-justified decimal data

MP Convert packed decimal number to integer

MR Mask right-justified decimal data

MT Convert time to external format

MX Convert hexadecimal to ASCII

P Test pattern match

R Test numeric range

T Convert by table translation. The table file and
translation criteria must be given. (Please refer
to the section "Defining File Translation" in the
Recall Reference Manual for details.) NOTE: This
type of conversion is inefficient if several items
or attributes will be accessed.

u Convert by subroutine call to assembly routine,
either system- or user-defined. The absolute
address of the routine must be given. The value of
string may be a parameter to be passed to the
subroutine, or a null string if none is needed. If
two or more parameters are to be passed, they must
be compressed into a single string in string and
parsed by the called routine. (For details, please
refer to the Assembler Manual.)

BASIC Reference Page 189 Statements/Functions

The conversion codes are the same as those used for Recall
Conversions and Correlatives. For a detailed treatment of
these and other conversion capabilities, refer to the
ULTIMATE Recall Reference Manual.

WARNING: Some conversion codes used in Recall, such as 'F',
cannot be used in the OCONV function. Also note that 'MR'
and 'ML' conversions may be done with format strings. (For
details on format strings, refer to the chapter
"Representing Data" in this manual.)

OCONV(string,code)
I I
I I

I string value being I
I converted I

Ispecifies type I
lof conversion I

Figure A. General Form of OCONV Function

CORRECT USE

COLOR=OCONV ("REDA BLUEAWHITE" ,
"GI A 1")

A="2374"
B="D"
XDATE = OCONV(A,B)

A = OCONV(O, 'U50BB')
PRINT A
END

EXPLANATION

Extracts "BLUE" from the
string and assigns it to
the variable COLOR.

Assigns the string value
of "01 JUL 1974" (Le., the
external date) to the
variable XDATE.

Assigns the string value of
the line number and user
account name to A. User entry
'50BB' is the mode-ID
of the system subroutine that
performs the above operation.

TEAMS=OCONV ("TEEMS" , "TGAMES ; X; 1; 1")
Reads the first attribute of
item "TEEMS" in the file
"GAMES". Consult the section
'Defining File Translation'
in RECALL Manual.

Figure B. Examples of Correct Usage of OCONV Function

BASIC Reference Page 190 Statements/Functions

(
\

/

ON GOSUB and ON GOTO
statements

The ON GOSUB and ON GO TO statements transfer program control
to a computed and selected subroutine or statement-label.
The ON GOSUB statement selects a subroutine, and the ON GOTO
statement selects a statement-label, by the current value of
an index expression.

The general form of the ON GOTO statement is:

ON expression GOTO statement-label, statement-label, •..

The expression is evaluated, and the result is truncated to
an integer value. The value of this index is used to compute
the statement to which control should be transferred.
statement-labels in the list are numbered 1, 2, 3, and so on.
If the index is 1, statement-label 1 (the first label) is
selected; if 2, statement-label 2 (the second label) is
selected, and so on. Upon execution of the ON GOTO statement,
program control is transferred to the statement which begins
with the statement-label selected by the expression.

The ON GOTO statement may continue on multiple lines; each
line except the last must conclude with a comma.

Consider the following example:

ON I GO TO 50, 100, LAST
• 50
• 100 •
· LAST: .

(The labels in the label list may precede or follow the ON
GOTO statement.) If the current value of variable I=l,
control transfers to the first statement-label, i.e., the
statement with label 50. If I=3, control transfers to the
third statement-label, i.e., the statement with label LAST.

If the value of the expression evaluates to less than one or
greater than the number of statement-labels, no action is
taken; that is, the statement immediately following the ON
GOTO will be executed next.

The ON GOSUB statement is a "computed" GOSUB statement: an
expression is used to compute which subroutine to execute
next. The general form of the ON GOSUB statement is:

ON expression GOSUB statement-label, statement-label,

The expression is evaluated and truncated to an integer
value. The result is used as an index into the list of
statement-labels. The ON GOSUB statement may continue on
multiple lines; each line except the last must conclude with
a comma. A subroutine branch is executed to the selected

BASIC Reference Page 191 Statements/Functions

statement-label. When a RETURN statement is encountered,
control returns to the statement following the ON GOSUB.

If the expression evaluates to less than 1 or to a value
greater than the number of statement-labels, no action is
taken; that is, the statement immediately following the ON
GOSUB will be executed next.

ON expression GOSUB statement-label, statement-label .. .

ON expression GOTO statement-label, statement-label
I I

I statements must exist which have I
Ithese statement-labels. I

Figure A. General Form of ON GOSUB and ON GOTO statements

CORRECT USE

ON M+N GOTO 40, 61, 5, 7

ON C GOTO ELEMENTARY,
ELEMENTARY,
ADVANCED.

IF A GE 1 AND A LE 3 THEN
ON A GOTO 110, 120, 130

END

ON I GOSUB 100,150,200

START: ON CHECK GOSUB ONE,
TWO, THREE

EXPLANATION

Transfer control to statement 40, 61, 5,
or 7 depending on the value of M+N being
1, 2, 3, or 4 respectively.

Transfer control to statement-label
ELEMENTARY is C = 1 or 2; to statement­
label ADVANCED is C = 3.

The IF statement assures that A
is in range for the computed
GO TO statement.

Branches to subroutine (SUBROUTINE
statement) located at 100, 150, or 200,
depending on value of I being I, 2, or 3,
respectively.

Branches to subroutine located at ONE,
TWO, or THREE, depending on value of
variable CHECK.

Figure B. Examples of Correct Usage of ON GOSUB and ON GOTO Statements

INCORRECT USE EXPLANATION

ON M+N=l GO TO 40, 61, 5, 7 Index should be an arithmetic,
not logical, quantity. This state­
ment, if executed, would cause
an unconditional jump to statement 40.

Figure C. Example of Incorrect Usage of ON GOSUB and ON GOTO Stmts.

BASIC Reference Page 192 Statements/Functions

OPEN
statement

The OPEN statement is used to select an ULTIMATE file for
subsequent input, output, or update.

Before an ULTIMATE file can be accessed by a read, write, or
updating statement (e.g., READ, WRITE, DELETE, MATREAD,
MATWRITE, READV, or WRITEV), it must be opened via an OPEN
statement.

The general form of the OPEN statement is:

OPEN {expr,} file {TO file-var} {ON ERROR statements}
{THEN stmt} {ELSE stmt}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

An ULTIMATE file name must be specified. This is a string
expression in one of the following formats:

1. II filename"
2. "DICT filename"
3. "DATA filename"
4. "dictname,filename"
5. "DATA dictname,filename"

For all except format 2, above, the data section of the file,
not the dictionary, is opened. Format 3 is equivalent to
format 1; and format 5 is equivalent to format 4. Formats 4
and 5 are useful with data sections of files having names
different from that of their dictionary section.

The optional ex~r may also be used to specify that the
dictionary sect10n of the file is to be opened. Expr is
prefixed to file to form the complete file name, so expr is
typically "DICT". If 7xpr is the null string (' '), then
file is the complete f1le name.

If the liTO file-var" option is used, then the dictionary or
data section of the file will be assigned to the specified
variable for subsequent reference. If the liTO file-var"
option is omitted, then an internal default file variable is
used; subsequent I/O statements not specifying a file
variable will then automatically default to this file.

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be opened due to a network error condition.
In this case, the value of SYSTEM(O) will indicate the
UltiNet error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when opening local files.

BASIC Reference Page 193 Statements/Functions

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be opened due to network errors, the
program may terminate with an error message if no ON ERROR
clause is present.

After the file is opened, the THEN statements, if any, are
executed. If the ULTIMATE file indicated in the OPEN
statement does not exist, then the ELSE statements, if any
are executed. The statements in the ELSE clause may be
placed on the same line separated by semicolons, or may be
placed on multiple lines terminated by an END, as in the
multi-line IF statement.

There is no limit to the number of files that may be open at
any given time. Consider the following example:

OPEN "DICT","QA4", TO Fl ELSE PRINT "NO FILE"; STOP

This statement will open the dictionary portion of the file
named QA4 and will assign it to variable Fl. If QA4 does not
exist, the message "NO FILE" will be printed and the program
will terminate. The data portion of a file named TEST is
opened as illustrated below:

OPEN 'TEST' ELSE

END

PRINT "TEST DOES NOT EXIST"
GO TO 100

In this example, the file is assigned to an internal default
file variable. The message "TEST DOES NOT EXIST" will be
printed and control will pass to statement 100 if the file
named TEST does not exist.

BASIC Reference Page 194 Statements/Functions

OPEN {expr,} file {TO file-var} {ON ERROR stmt}
I {THEN stmt} {ELSE stmt}
I

I 'DICT' specifies
I dictionary section

Figure A. General Form of OPEN Statement

CORRECT USE

A='DICT'
OPEN A, 'XYZ' TO B ELSE

PRINT "NO XYZ"
STOP
END

OPEN 'ABC,X' TO D5 ELSE STOP

X=' ,
Y='TEST1'
Z='NO FILE'
OPEN X, Y ELSE PRINT Zi GOTO 5

EXPLANATION

Opens the dictionary portion of file
XYZ and assigns it to variable B.
If XYZ does not exist, the text
"NO XYZ" is printed and the program
terminates.

Opens data section X of file ABC and
assigns it to variable D5. If ABC,X
does not exist, program terminates.

Opens data section of file TESTl
and assigns it to internal default
variable. If TESTl does not exist,
"NO FILE" is printed and control
passes to statement 5.

OPEN 'DICT DT' TO DT ELSE STOP Opens DICT of file DT and
assigns it to variable DT.

OPEN 'EMPLOY' TO EMP ELSE STOP Opens DATA section of the file

OPEN 'EMPLOY' TO EMP ON ERROR
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GO TO TOP

END ELSE STOP

EMPLOY and assigns it to variable EMP

Opens as above, or retrieves error
number and performs local suroutine
on UltiNet error number.

Figure B. Examples of Correct Usage of OPEN Statement

BASIC Reference Page 195 Statements/Functions

PAGE
statement

The PAGE statement causes the current output device to start
a new page. The page number may optionally be reset.

The general form of the PAGE statement is:

PAGE {expression}

The expression optionally specifies the page number to be
used on the new page being started. If a FOOTING that
includes page numbering is in effect at the time the page
number is changed, the footing on the page just ending will
be printed with a page number one less than expression.

The maximum number of print lines per page is controlled by
the current TERM command. (For details, please refer to the
TERM command in the System Commands manual.) The PAGE
statement allows users to end a page before the maximum
number of lines has been reached and automatic paging occurs.

The most recent FOOTING statement, if any, is used to output
a footing on the completed page. The heading specified by
the most recent HEADING statement, if any, is printed as a
page heading on the new page.

If only a footing is desired, a null HEADING statement should
be assigned. The PAGE statement will cause a new page to be
started even if no heading or footing has been assigned.

PAGE {expression}

Figure A. General Form of PAGE Statement

CORRECT USE
HEADING "ANNUAL STATISTICS"
FOOTING "XYZ CORPORATION"
PAGE

PAGE 1

PAGE X+Y

EXPLANATION
The PAGE statement will cause
both the specified heading and
footing to be printed out when
the paging is executed.

The current footing, if any,
will print (with a page number
of 0). The current heading, if
any, will print with a page
number of 1.

The current footing and heading
will be output, and the page
number set to the evaluated
result of X+Y.

Figure B. Examples of Correct Usage of PAGE Statement

BASIC Reference Page 196 Statements/Functions

PRECISION
statement

The PRECISION declaration statement allows the user to select
the degree of precision to which all numeric values are
calculated within a given program.

The general form of the PRECISION statement is:

PRECISION n

where n is a number from 0 to 9.

The default precision value is 4; that is, all numeric values
are normally stored in an internal form with 4 fractional
places, and all computations are performed to this degree of
precision. A program may specify the desired number of
fractional digits by a PRECISION declaration within the range
of 0 to 9.

Only one PRECISION declaration is allowed in a program. If
more than one is encountered, a warning message is printed
and the declaration is ignored.

Where external subroutines are used, the mainline program and
all external subroutines must have the same PRECISION. If the
precision is different between the calling program and the
subroutine, a warning message will be printed.

Changing the precision changes the acceptable form of a
number; a number is defined as having a maximum of "n"
fractional digits, where "n" is the precision value. Thus,
the value:

1234.567

is a legal number if the preclslon is 3 or 4, but is not a
legal number if the precision is 0, 1 or 2.

Setting a precision of zero implies that all values are
treated as integers.

NOTE: When a program uses floating point or string
arithmetic, the program's PRECISION is ignored by
the routines that perform those arithmetic
calculations. (See section 2.7 for an overview of
floating point and string arithmetic.)

Figure C illustrates some problems to avoid when using
PRECISION declaration statements.

BASIC Reference Page 197 statements/Functions

PRECISION n
I
I

I 'n' must be an integer within the range I
I of 0 - 9. The default PRECISION value I
I is 4. I

Figure A. General Form of PRECISION Declaration

CORRECT USE

PRECISION 0
A = 3
B = A/2

PRECISION 1

PRECISION 2

PRECISION 3

EXPLANATION

All numeric values in the program will
be treated as intege~s. The value
returned for B will be 1, not 1.5.

All numeric values in the program will
be calculated to one fractional digit.

All numeric values in the program will
be calculated to two fractional digits.

All numeric values in the program will
be calculated to three fractional digits.

Figure B. Examples of Correct Usage of PRECISION Declaration

INCORRECT USE

PRECISION 2
A = B + C
PRECISION 3

PRECISION 2
CALL SUBA

SUBROUTINE SUBA
PRECISION 3

EXPLANATION

PRECISION may be set only once within
a given program. Otherwise a warning
message is issued and the second
PRECISION declaration is ignored.

PRECISION must be the same for the
mainline program and any subroutine
it calls. Otherwise a warning
message is issued and the second
PRECISION declaration is ignored.

Figure C. Examples of Incorrect Usage of the PRECISION Declaration

BASIC Reference Page 198 Statements/Functions

(

"'\

PRINT
statement

The PRINT statement outputs data to the current output
device, typically the terminal or the line printer. The
PRINT ON option allows output to multiple print files.

The general form of the PRINT statement is:

PRINT {ON expression} {print-list}

The PRINT statement without the ON option is used to output
variable or literal values to the terminal or other output
destination. By default, output is to the terminal. The
PRINTER statement may be used to route output from PRINT
statements to the line printer or other spooled output
destination. (Refer to the PRINTER statement, listed
alphabetically in this chapter.) The "P" option on the RUN
command will also route output to a line printer or other
spooled output destination. Furthermore, if a program is
invoked via an EXECUTE statement, its output may be
redirected or captured, and therefore appear neither on the
terminal nor on the line printer. (For more information on
output redirection, refer to the EXECUTE statement, listed
alphabetically in this chapter.)

If the optional print-list is absent, only a carriage return
and line feed will be output. The print-list may consist of
a single expression, or a series of expressions separated by
commas. (Commas are used to denote output formatting; refer
to the next section on the PRINT statement). The expressions
may be any legal BASIC expressions. The following statement,
for example, will print the current value of the expression
X+Y:

PRINT X+Y

The PRINT ON statement (i.e., with the ON option) is used,
when PRINTER ON is in effect, to output the print-list items
to a numbered print file. This is usually done when building
several reports at the same time, each having a different
number. The expression following ON indicates the print file
number, which may be from a to 254 (selected arbitrarily by
the program). Consider the following example:

PRINT ON 1 A,B,C,D
PRINT ON 2 E,F,G,H
PRINT ON 3 X,Y,Z

These statements will generate 3 separate output listings,
one containing A, B, C, and D values, one containing E, F, G,
and H values, and the third containing X, Y and Z values.

PRINT ON 1 A,B,C,D
PRINT ON 2 E,F,G,H
PRINT ON 2 X,'i.,Z

BASIC Reference Page 199 Statements/Functions

These statements will generate 2 separate output listings,
one containing A, B, C, and D values, and the second
containing E, F"G, X, Y, and Z values.

When the ON expression is omitted, print file zero is used.

The HEADING and FOOTING statements affect only print file
zero. Pagination must be handled by the program for print
files other than zero. Lack of pagination will result in
continuous printing across page boundaries.

When PRINTER OFF is in effect, both PRINT ON and PRINT
operate identically, i.e., all output is to the terminal. The
contents of all print files used by the program, including
print file zero, will be output to the printer in sequence
when a PRINTER CLOSE statement is given or on termination of
the program.

BASIC Reference Page 200 Statements/Functions

PRINT {ON expression} print-list <---I print-list may consist 1
1 of a single expression 1

1 or a series of expressions 1

1 separated by commas 1

Figure A. General form of PRINT statement

CORRECT USE

PRINT X

PRINTER ON
PRINT X

PRINTER ON
PRINT ON 24 X

N=50
PRINT ON N X,Y,Z

PRINTER ON
PRINT ON 15 "100"
PRINT ON 40 "100"

PRINTER ON
PRINT A
PRINT B

PRINTER ON
PRINT ON 10 Fl,F2,F3
PRINT ON 20 M,N,P
PRINT ON 10 F4,F5,F6

EXPLANATION

Causes the value of X to be output
the terminal (with no PRINTER ON
in effect) .

Causes the value of X to be output
to print file o.

Causes the value of X
to print file 24.

to be output

Outputs print-list to print file
50.

Causes the value 100 to be copied
to both print file 15 and print
file 40.

Print file 0 will contain the
values of A and B.

Print file 10 will contain the
values of Fl through F6; print
file 20 will contain the values
M, Nand P.

to

Figure B. Examples of Correct Usage of PRINT Statement

BASIC Reference Page 201 Statements/Functions

PRINT
statement

(Output Formatting)

The print-list of the PRINT statement may specify tabulation
or concatenation when printing multiple items, and carriage
control at the end of a print line.

The general form of multiple print-list expressions is:

expression,expression,expression ...

The expression(s) may be any valid BASIC expressions.

Output values may be aligned at tab positions across the
output page by using commas to separate the print-list
expressions. Tab positions are pre-set at every 18 character
positions. Consider the following example:

PRINT (50*3)+2, A, "END"

Assuming that the current value of A is 37, this statement
will print the values across the output page as follows:

152 37 END

Normally, after the entire print-list has been printed, a
carriage return and line feed will be executed. The <CR> and
line feed can be suppressed by using the : (concatenation)
operator at the end of the PRINT statement, in the form:

..• expression:

If the print-list ends with a colon (:), the next value in
the next PRINT statement will be printed on the same line at
the very next character position. For example, these
statements:

PRINT A:B,C,D:
PRINT E,F,G

will produce exactly the same output as this statement:

PRINT A:B,C,D:E,F,G

BASIC Reference Page 202 Statements/Functions

expression,expression,expression •.• <----Icommas denote tabulation

expression: <--------------------Icolon denotes no <CR>/line feed I

Figure A. Print-List Formats for PRINT statement

CORRECT USE

PRINT A:B:
PRINT C:D:
PRINT E:F

PRINT A=l

PRINT A*100,Z

PRINT

PRINT "INPUT":

PRINT" ", B

EXPLANATION

Prints the current values of A, B, C, D,
E, and F contiguously across the output
page, each value concatenated to the next.

Prints 1 if "A=l" is true; prints 0
otherwise.

Prints the value of A*100 starting at
column position 1i prints the value of
Z on the same line starting at column
position 18 (i.e., 1st tab position).

Prints an empty (blank) line.

Prints the text "INPUT" and does not
execute a carriage return or line feed.

Prints the value of B starting at column
position 18 (i.e., 1st tab position).

Figure B. Examples of Correct Usage of PRINT Statement Formatting

BASIC Reference Page 203 Statements/Functions

PRINTER
statement

The PRINTER statement selects either the user's terminal or
the line printer for subsequent program output.

The general formats of the PRINTER statement are:

PRINTER ON
PRINTER OFF
PRINTER CLOSE

The PRINTER ON statement directs program output data
specified by subsequent PRINT, HEADING, FOOTING, or PAGE
statements to be output to the line printer (or other
destination as specified by the SP-ASSIGN command). The
PRINTER OFF statement directs subsequent program output to
the user's terminal.

Once executed, a PRINTER ON or PRINTER OFF statement will
remain in effect until a new PRINTER ON or PRINTER OFF
statement is executed. If a PRINTER ON statement has not
been executed, all output will be to the user's terminal,
unless the program was initiated by a RUN command with the P
option.

When a PRINTER ON statement has been issued, subsequent
output data (specified by PRINT, HEADING, FOOTING, or PAGE
statements) is not immediately printed on the line printer
(unless immediate printing is forced via an SP-ASSIGN command
with the I option, as described in the ULTIMATE System
Commands manual). Rather, the data is stored in an
intermediate buffer area and is automatically printed when
the program terminates execution.

A PRINTER CLOSE statement may be used when the user's
application requires that the data be printed on the line
printer prior to program termination. The PRINTER CLOSE
statement will cause all data currently stored in the
intermediate buffer area to be immediately printed.

When a PRINTER OFF statement has been issued, subsequent
output data is always printed at the user's terminal
immediately upon execution of the PRINT, HEADING, FOOTING, or
PAGE statements (i.e., the PRINTER CLOSE statement applies
only to output data directed to the line printer).

BASIC Reference Page 204 Statements/Functions

PRINTER ON <--------------Idirects subsequent output I
Idata to the line printer I

PRINTER OFF <-------------Idirects subsequent output I
Idata to the user's terminal I

PRINTER CLOSE <-----------Icauses all previous output datal
Idirected to the line printer I
Ito be printed immediately I

Figure A. General Form of PRINTER Statements

CORRECT USE

PRINTER ON
PRINT A
PRINTER OFF
PRINT B

PRINTER ON
PRINT A
PRINTER CLOSE
PRINTER OFF
PRINT B

PRINTER ON
PRINT A
PRINTER OFF
PRINT B
PRINTER CLOSE

Figure B. Examples

BASIC Reference

EXPLANATION

Causes the value of variable B to be
immediately printed at the user's ter­
minal, and the value of variable A to
be printed on the line printer when
the program is finished executing.

Causes the value of variable A to be
immediately printed on the line printer,
and thereafter causes the value of
variable B to be printed at the user's
terminal.

Causes the value of variable B to be
immediately printed at the user's ter­
minal, and thereafter causes the value
of variable A to be printed on the line
printer.

of Correct Usage of PRINTER Statements

Page 205 Statements/Functions

PlUHTBRR
statement

The PRINTERR statement prints a specified error message on
the terminal screen.

The general form of the PRINTERR statement is:

PRINTERR error-text

The PRINTERR statement is designed as a support function for
the INPUT statement. It allows a program to signal an opera­
tor with an error message relating to the operator's input.

The message is specified by the error-text, which may be any
valid expression, including a literal string enclosed in
quotation marks.

PRINTERR prints the error-text at the bottom line on the
terminal screen.

The PRINTERR statement sets a flag so that the next time an
INPUT statement is executed the bottom line will be blanked
out. It also clears the type-ahead buffer on systems with the
type-ahead feature.

PRINTERR 'error-text'

Figure A. General Form of PRINTERR statement

CORRECT USE EXPLANATION

PRINTERR "BAD INPUT" Prints BAD INPUT on the bottom of
the screen and sets the flag to
clear that line (the message line)
on next INPUT statement.

Figure B. Example of Correct Usage of PRINTERR statement

BASIC Reference Page 206 statements/Functions

\

PROCREAD
statement

The PROCREAD statement allows programs executed from PROC to
read values in the primary input buffer and store them in a
variable.

The general form of the PROCREAD statement is:

PROCREAD variable {THEN statements} {ELSE statements}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

If the program was invoked from a PROC, the PROCREAD
statement creates a dynamic array from the PROC primary input
buffer and assigns it to variable. Each attribute in the
dynamic array contains one primary input buffer parameter.
The statements after THEN, if any, are then executed.

If the program was not invoked from a PROC, the statements
after ELSE, if any, are executed, and variable retains its
original value.

For more information on PROC, please refer to the ULTIMATE
PROC Reference Manual.

A THEN clause and an ELSE clause may continue on several
lines. When multiple lines are used, the clause must end
with an END statement, as in the multiple-line IF statement.

BASIC Reference Page 207 Statements/Functions

PROCREAD variable ELSE statement(s)

Figure A. General Form of the PROCREAD Statement

CORRECT USE

PROCREAD ITEM ELSE
PRINT 'Not executed from Proc'
GO 100

END
PRINT ITEM

PROCREAD ITEM ELSE ITEM="
PRINT ITEM

PROCREAD ITEM ELSE
PRINT 'ITEM not found'
STOP

END
FOR X=l TO 10

PRINT ITEM<X>
NEXT X

EXPLANATION

PROC primary input buffer is
assigned to variable ITEM. If
the program was not executed
from PROC, the message is
printed and control transfers
to statement-label 100. If the
program is executed from PROC,
then variable ITEM is printed.

'ITEM' is set to null if
program was not executed from
PROC. The contents of ITEM
will always b~ printed.

If the program was executed
from PROC, ITEM is assigned
a multiple parameter primary
input buffer and is displayed
as an array. If the program
was not executed from PROC,
the message is printed and the
program is terminated.

Figure B. Examples of Correct Usage of PROCREAD Statement

BASIC Reference Page 208 Statements/Functions

PROCWRITE
statement

The PROCWRITE statement allows programs executed from PROC to
write to the primary input buffer.

The general form of the PROCWRITE statement is:

PROCWRITE expression

The PROCWRITE command writes the string value of the
expression to the PROC primary input buffer. The expression
is treated as a dynamic array, and each attribute becomes one
parameter in the primary input buffer. This statement will
be ignored if the program was not executed from a PROC.

PROCWRITE expression

Figure A. General Form of the PROCWRITE statements

CORRECT USE

PROCWRITE ITEM

PROCWRITE X+Y
PROCREAD ITEM ELSE STOP

EXPLANATION

PROC primary input buffer is
assigned the value of ITEM. If
the program was not executed
from PROC, the statement is
ignored.

If the program was executed
from PROC, the primary input
buffer is assigned the
sum value of X and Y. The sum
is stored in variable ITEM.
If the program was not executed
from PROC, the program is
terminated.

Figure B. Examples of Correct Usage of PROCWRITE Statement

BASIC Reference Page 209 Statements/Functions

PROGRAM
statement

The PROGRAM statement may be used to indicate the name of a
program.

The general form of the PROGRAM statement is:

PROGRAM {name}

The optional name may be used to indicate the name of a
program, but this is ignored by the compiler. A program is
invoked by specifying the item-id of the program item, or the
item-id of a catalog pointer.

The PROGRAM statement is not required in any program except
compile-and-go programs in an account's Master Dictionary.
If a PROGRAM statement is used, it must be the first
statement in a program.

External subroutines cannot contain PROGRAM statements since
the first statement in an external subroutine must be a
SUBROUTINE statement.

PROGRAM {name}

Figure A. General Form of PROGRAM Statement

CORRECT USE EXPLANATION

PROGRAM Indicates start of main-line program.

PROGRAM MYPROG Indicates start of main-line
program MYPROG.

Figure B. Examples of Correct Usage of PROGRAM Statement

BASIC Reference Page 210 Statements/Functions

PROMPT
statement

The PROMPT statement is used to select the "prompt character"
which is printed at the terminal to prompt the user for
input. Any character may be selected.

The general form of the PROMPT statement is:

PROMPT expression

The value of the expression becomes the prompt character. For
example:

PROMPT ":"

This statement selects the character ":" as the prompt
character for subsequent INPUT statements. If the string
value of the expression consists of more than one character,
the first (leftmost) character will be used. For example:

PROMPT "ABC"

This statement selects the character "A" as the prompt
character.

If the string value of the expression is the null string (II)
then no prompt character will be used.

When a PROMPT statement has been executed, it will remain in
effect until another PROMPT statement is executed. If a
PROMPT statement is not executed, a question mark (?) will be
the prompt character.

NOTE: The PROMPT statement is used with the INPUT statement.
(For additional information, please refer to the INPUT
statement, listed alphabetically in this chapter.)

PROMPT expression

Figure A. General Form of PROMPT statement

CORRECT USE EXPLANATION

PROMPT "@" specifies that the character @ will be
used as a prompt character for subsequent
INPUT statements.

PROMPT A Specifies that the current value of A will
be used as a prompt character.

Figure B. Examples of Correct Usage of PROMPT Statement

BASIC Reference Page 211 Statements/Functions

PUT
statement

The PUT statement places a system message into the output of
a progra~. The message may also be passed back to a calling
program.

The general form of the PUT statement is:

PUT (MSG.) expression1, {expression2, ... }

The PUT statement allows a program to output messages and
continue program execution. Messages can also be generated
with the ABORT and STOP statements, but these statements
terminate program execution after outputting a message.

MSG. is a pre-defined variable with special meaning in the
PUT statement, and should not be used as an ordinary variable
in other statements. As used in the PUT statement, MSG.
refers to the list of messages generated during execution of
the program. Each message consists of a message identifier
and zero or more parameter values. A message identifier is
the item-id of an item in the system ERRMSG file.

In the PUT statement, expressionl specifies the system
message identifier (ERRMSG item-id)i expression2 and any
following expressions are the parameters associated with the
message, if any.

System messages are normally formatted and displayed on the
user's terminal, or on the printer if a PRINTER ON statement
has been executed. If a program is invoked by another
program (the "calling" program) via the EXECUTE statement, or
by a PROC, messages are also copied to a buffer area where
they can be later inspected by the calling program or PROC.

A calling program can retrieve the generated messages using
the GET statement. GET normally retrieves messages in the
same order that they are generated by PUT, STOP, and ABORT
statements. For more information on the GET statement,
please refer to the GET statement, listed alphabetically in
this chapter.

BASIC Reference Page 212 Statements/Functions

PUT (MSG.) expressionl, {expression2, ... }

Figure A.

CORRECT USE

PUT (MSG.) 415

PUT 201, FILENAME

General Form of PUT statement

EXPLANATION

Displays system message 415
(without parameters) and copies
message-id to MSG. output
buffer.

Displays message 201 with one
parameter: the string value of
variable FILENAME; also copies
201 and FILENAME value to MSG.
output buffer.

Figure B. Example of Correct Usage of PUT Statement

BASIC Reference Page 213 Statements/Functions

P~
Function

The PWR trigonometric function raises a number to a specified
power.

The general form of the POWER function is:

PWR(base,exponent)

The base and exponent are expressions with a numeric value;
base specifies the value to be raised to a power and
exponent specifies the value of the power. If exponent is
zero, the function will return the value of one (1). If the
base is zero and exponent is any number other than zero, the
function will return a value of zero (0). If the values of
base and exponent are such that the result would be greater
than the largest allowable number, the function will return
unpredictable numbers.

Note: Another way to express the PWR function is XAy, where X
is raised to the Y power.

IMPORTANT: The PWR function applies only to standard
arithmetic, not the extended arithmetic package (string and
floating point arithmetic). To raise a base resulting from
an extended arithmetic function to a power requires including
a special subroutine in the program. Figure B contains two
subroutines recommended for this task.

In the following summary M is used to denote the largest
allowable number in BASIC, which is 14,073,748,835.5327 with
PRECISION 4.

FUNCTION RANGE

COS (X) -M <= X <= M

SIN(X) -M <= X <= M

TAN (X) -M <= X <= M

LN(X) 0 <= X <= M

EXP(X) -M <= RESULT

PWR(X,Y) -M <= RESULT

<= M

<= M

DESCRIPTION

Returns the cosine of
an angle of X degrees.

Returns the sine of
an angle of X degrees.

Returns the tangent
of an angle of X degrees.

Returns the natural (base e)
logarithm of the expression X.

Raises the number lei
(2.7183) to the value of X.

Raises the first expression
to the power denoted by
the second expression.

Figure A. Summary of Trigonometric Functions

BASIC Reference Page 214 Statements/Functions

FOR USE WITH STRING ARITHMETIC*

SUBROUTINE (BASE, POWER, ANSWER)
ANSWER='l'
IF POWER ELSE RETURN
I=BASE
J=POWER

100 K=REM(J,2)
J=INT(J/2)
IF K THEN

ANSWER=SMUL(ANSWER,I)
IF J ELSE RETURN

END
I=SMUL(I,I)
GOTO 100
END

FOR USE WITH FLOATING POINT ARITHMETIC*

SUBROUTINE (BASE, POWER, ANSWER)
ANSWER='lEO'
IF POWER ELSE RETURN
I=BASE
J=POWER

100 K=REM(J,2)
J=INT(J/2)
IF K THEN

ANSWER=FMUL(ANSWER,I)
IF J ELSE RETURN

END
I=FMUL(I,I)
GOTO 100
END

*These routines are based on an algorithm from Knuth's
The Art of Computer Programming, Volume 2, section 4.6.3,
Page 399.)

Figure B. Subroutines for Extended Arithmetic Power Function

BASIC Reference Page 215 Statements/Functions

READ
statement

The READ statement reads a file item and assigns its value to
a variable.

The general form of the READ statement is:

READ var FROM {file-var,} item-id {ON ERROR statements}
{THEN stmt} {ELSE stmt}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

The READ statement reads the file item specified by the
item-id and assigns its string value to var. The file-var
(file variable) is optional. If file-var-rs present, the item
will be read from the file previously assigned to that
variable via an OPEN statement. If file-var is omitted, then
the internal default file variable is used (thus specifying
the file most recently opened without a file variable).

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be read due to a network error condition. In
this case, the value of SYSTEM(O) will indicate the UltiNet
error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when reading local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be read due to network errors, the
program may terminate with an error message if no ON ERROR
clause is present.

If the item-id specifies the name of an item which does not
exist, then the ELSE statement(s), if any, will be executed;
the value of var will remain unchanged. If the read is
successful, the THEN statement(s), if any, will be executed.

The statements in the THEN or ELSE clauses may appear on one
line separated by semicolons, or on multiple lines terminated
by an END, as in the mUlti-line IF statement.

BASIC Reference Page 216 Statements/Functions

(

\

Consider the following example:

READ Xl FROM W,"TEMP" ELSE PRINT "NON-EXISTENT"; STOP

This statement will read the item named TEMP from the file
opened andasigned to variable W, and will assign its string
value to variable Xl; program control will then pass to the
next sequential statement in the program. If the file item
TEMP does not exist, the message "NON-EXISTENT" will be
printed and the program will terminate.

Note that the BASIC program will abort with an appropriate
error message if the specified file has not been opened prior
to the execution of the READ statement. (Refer to the
appendix describing run-time error messages.)

BASIC Reference Page 217 Statements/Functions

READ var FROM {file-var, } item-id {ON ERROR statements}
I I I {THEN stmt} {ELSE stmt}
I I I
I I I ------------ ---------- ------

lis assigned I Ifile I I item I
litem value I I variable I I name I
------------- ---------- ------

Figure A. General Form of READ Statement

CORRECT USE

READ Al FROM X,"ABC" ELSE
PRINT "NOT ABC"
GOTO 70
END

A="TEST"
B="1"
READ X FROM C, (A CAT B) ELSE STOP

READ Z FROM "Q" ELSE PRINT X: STOP

READ Z FROM "Q" ON ERROR
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GOTO TOP

END ELSE PRINT X: STOP

EXPLANATION

Reads item ABC from the file
opened and assigned to file variable
X, and assigns its value to
variable AI. If ABC does not
exist, the text "NOT ABC" is printed
and control passes to statement 70.

Reads item TEST1 from the file
opened and assigned to file variable
C, and assigns its value to
variable X. Program terminates if
TESTI does not exist.

Reads item Q from the file
opened without a file variable and
assigns its value to variable z.
Prints value of X and terminates
program if Q does not exist.

Reads as above, or retrieves
error number and performs local
subroutine on UltiNet error number.

Figure B. Examples of Correct Usage of READ Statement

BASIC Reference Page 218 Statements/Functions

/

READNEXT
statement

The READNEXT statement reads the next item-id or other data
element from a selected list. If multiple select lists are
present, a select variable specifies the list to use.

The general form of the READNEXT statement is:

READNEXT var {,var}{FROM select-var} {ON ERROR statements}
{THEN stmt} {ELSE stmt}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

The first variable var is assigned the string value of the
next select list element (typically an item-id). If present,
the second variable var is assigned the value number
associated with this element, or zero if no value number is
present. The optional select-var specifies a particular
select list when several such lists are available to a
program. If select-var is absent, the internal default
select variable will be used. The statements in the THEN
clause, if present, are then executed.

If the select list has been exhausted, or if no selection has
been performed, the ELSE statements, if any, will be
executed. The statements in the THEN or ELSE clauses may be
placed on one line separated by semicolons, or may be placed
on multiple lines terminated by an END, as in the multiple
line IF statement.

The statement(s) after ON ERROR, if present, are executed
only if a file is being read and it (1) is a remote file
(accessed via UltiNet) and (2) cannot be accessed due to a
network error condition. In this case, the value of SYSTEM(O)
will indicate the UltiNet error number. (Refer to the SYSTEM
function, listed alphabetically in this chapter; for more
information about remote files, refer to the UltiNet User's
Guide.) The ON ERROR clause has no effect when accessing
local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be accessed due to network errors,

BASIC Reference Page 219 Statements/Functions

the program may terminate with an error message if no ON
ERROR clause is present.

A select list is a list of data generated by a BASIC SELECT
statement, or by a verb such as SELECT, SSELECT, QSELECT, or
GET-LIST. When a select-type command is executed immediately
before running a BASIC program, the list generated is
assigned to the BASIC program's internal default select
variable. READNEXT statements (without specifying a
select-var) can then be used to retrieve each list element in
sequence. For example:

>SSELECT NAMEFILE BY LASTNAME

100 items selected.
>RUN BP COUNTER

Here the Recall SSELECT command is used to generate a select
list of 100 item-ids, corresponding to items in file
NAMEFILE, sorted by attribute LASTNAME. The BASIC program
COUNTER can then retrieve these item-ids in order, using
READNEXT:

LOOP
READNEXT ID ELSE STOP
READ ITEM FROM ID ELSE GOTO ERR
PRINT ITEM<3>

REPEAT

A select list may also be generated by a command specified in
an EXECUTE statement. If not redirected, the list will be
assigned to the internal default select variable of the
program performing the EXECUTE. Alternatively, the select
list may be redirected via the pre-defined variable SELECT.,
setting up a variable as a select variable for use by
READNEXT. For example:

EXECUTE "SSELECT NAMEFILE BY LASTNAME",
//SELECT.>LIST

LOOP
READNEXT ID FROM LIST ELSE STOP
READ ITEM FROM ID ELSE GOTO ERR
PRINT ITEM<3>

REPEAT

Finally, the BASIC SELECT statement may be used to generate a
select list, either to an explicit select variable or to the
internal default select variable. For more information on
SELECT and EXECUTE, please refer to these statements, listed
alphabetically in this chapter.

The value number associated with a select list element is
generated by the SSELECT command when performing an
"exploding" sort. For more information on exploding sorts,
and on all the select-type verbs (SELECT, SSELECT, QSELECT,
GET-LIST), please refer to the ULTIMATE Recall manual.

BASIC Reference Page 220 statements/Functions

READNEXT variable {,variable}{FROM select-variable} {ON ERROR statements}
I {THEN stmt} {ELSE stmt}
I

I Value of next element in
I select list is assigned to
I the variable.

Figure A. General Form of READNEXT Statements

CORRECT USE

READNEXT A FROM X ELSE STOP

READNEXT X2 ELSE
PRINT "UNABLE"
GOTO 50
END

FOR X=1 TO 10
READNEXT B(X) ELSE STOP

NEXT X

SSELECT AFILE BY EXP,INV#
READNEXT ID,VN

READNEXT A FROM X ON ERROR
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GOTO TOP

END ELSE STOP

EXPLANATION

Specifies the list selected
and assigned to the select-variable
X. Assigns the value of that
list's next element to
variable A. If select list is
exhausted, program will terminate.

Specifies the last list selected
without a select-variable. Assigns
the value of the next element to
variable X2. If unable to read,
"UNABLE" is printed and control
transfers to statement 50.

Reads next ten item-ids or other
data and assigns values to array
elements B(1) through B(lO).

Uses select list to read next
item-id and assigns value number.

Reads as first example above, or
retrieves error number and
performs local subroutine on
UltiNet error number.

Figure B. Examples of Correct Usage of READNEXT Statements

BASIC Reference Page 221 Statements/Functions

READT
statement

The READT statement reads a record from magnetic tape. The
tape unit and record length (block size) on the tape is as
specified by the most recent T-ATT command executed at the
TCL level. A tape unit must be previously attached; if it
is subsequently set off line, the system detects the
condition and allows the user to correct it and proceed.

The general form of the READT statement is:

READT variable {THEN statements} {ELSE statements}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

The READT statement reads the next record from the "current"
magnetic tape unit and assigns the string value to the
specified variable. The THEN statements, if any, are then
executed.

If this statement is the first tape instruction (READT,
REWIND, WEOF, or WRITET) in the BASIC program, the tape unit
must have previously been attached. If the tape unit has not
been attached, or if an End-of-File (EOF) mark is read, then
the ELSE statements, if any, will be executed, and the system
function SYSTEM(O) will return a value of 5 (tape off line)
or 6 (cartridge not formatted correctly for this operating
system revision). (Please refer to the SYSTEM function,
listed alphabetically in this chapter.)

For example:

or

READT X ELSE PRINT "CANNOT READ"; STOP

READT X ELSE
PRINT "END OF TAPE OR TAPE NOT ATTACHED"
STOP
END

The next tape record is read and assigned to variable X. If
an EOF is read (or no tape unit is attached), then "CANNOT
READ" is printed and the program terminates.

NOTE: Refer to the SYSTEM Function for an alternative to
printing the error messages.

If, however, the tape drive is adversely set
after the first tape instruction, the system
to correct the condition. When a subsequent
is processed, the system displays:

Tape drive off line (C)ontinue/(Q)uit:

to off line
allows the user
tape instruction

BASIC Reference Page 222 Statements/Functions

If C is entered, the system returns to the BASIC program and
the-tape instruction is re-executed. If 2 is entered, the
BASIC program is aborted and control returns to TCL. Thus,
the ELSE statements are not executed in either case, and the
BASIC program has no way to detect such adverse action.

IMPORTANT: The tape drive should never be put off line while
it is running under the control of any tape operation (BASIC,
T-LOAD, T-DUMP, etc.). By doing so, the tape drive may lose
its momentum and the tape read/write head may not be aligned
with the current data block on tape. Even though the system
allows the user to (c)ontinue, it is not guaranteed that
valid data is then read or written.

Note: The READT statement is used in conjunction with the
WRITET, WEOF, and REWIND statements. (For additional
information, see each statement listed alphabetically in this
chapter.) See the ULTIMATE System Commands manual for more
information on the T-ATT command.

-----------1 is assigned value of tape record 1
I ----------------------------------
I

READT variable ELSE statements

Figure A. General Form of READT Statement

CORRECT USE EXPLANATION

READT B ELSE PRINT II NO II
GOTO 5
END

The next tape record is read and
its value assigned to variable B.
If EOF is read (or tape unit not
attached), then "NO" is printed
and control passes to statement 5.

Figure B. Examples of Correct Usage of READT Statement

BASIC Reference Page 223 Statements/Functions

READU
statement

The READU statement provides the facility to lock a disk file
item prior to updating it. This can be used to prevent
updating an item by two or more programs simultaneously while
still allowing multiple programs to access the. file.

The general form of the READU statement is:

READU var FROM {file-var,} item-id {ON ERROR statments}
{LOCKED stmt} {THEN stmt} {ELSE stmt}

The READU statement functions like the READ statement, but
additionally locks the item lock associated with the item to
be accessed. If the item is currently locked by another
BASIC program, the statement will not perform the read
operation. The item does not have to exist in order for
READU to lock it; in this case, READU executes the ELSE
statements, but still locks the associated item lock.

Item locks are assigned based on (1) the group of the disk
file which contains (or would contain) an item and (2) a hash
value derived from the item-ide Items in different groups
(in the same file or in different files) are never assigned
the same item lock, but it is possible for more than one item
in the same 9roup to hash to, and be assigned, the same lock.

If the LOCKED clause is present, the statements specify an
action to take if the READU statement is unable to lock the
item because another program has already locked it.

If an item is currently unlocked, setting a corresponding
item lock will prevent access to the item, and any other
items in the same group with the same item lock hash value,
by other programs using the MATREADU, READU, or READVU
statements. The program setting the lock, however, will be
allowed to lock other items in the same group with the same
hash value using these statements.

An item will become unlocked when it, or any other item
sharing the same item lock, is updated by a WRITE, WRITEV, or
MATWRITE statement, or when it is unlocked by a RELEASE
statement, or when the BASIC program is terminated. An item
can be updated without unlocking it by using the WRITEU,
WRITEVU, or the MATWRITEU statement.

There is a maximum numgber of item locks which may be locked
at anyone time. This number may vary from release to
release. If a program attempts to lock an item when all item
locks are already set, it will be suspended until a lock is
unlocked.

NOTE: Locked items can still be retrieved by the READ,
READV, and MATREAD statements and by other system software,
such as Recall, which does not pay attention to item locks.

BASIC Reference Page 224 Statements/Functions

READU var FROM {file-var,} item-id {ON ERROR statements}
{LOCKED stmt} {THEN stmt} {ELSE stmt}

Figure A. General Form of READU Statement

CORRECT USE EXPLANATION

READU ITEM FROM INV, S5 ELSE
GOSUB 4
END

Lock item S5. Read S5 to variable ITEM
or, if S5 is non-existent, execute the
ELSE clause; in either case the item
remains locked until it is updated, or
until it is unlocked by a RELEASE
statement •.

READU ITEM FROM INV, "30" LOCKED GOTO 500 ELSE NULL
Lock item "30". If the item is already
locked, go to label 500.

READU ITEM FROM INV, "30" ON ERROR GOTO PROCESSERR ELSE NULL
Read and lock as above, or branch to
local subroutine to process UltiNet

\ error number.

Figure B. Examples of Correct Usage of READU Statement

BASIC Reference Page 225 statements/Functions

READV
statement

The READV statement is used to read a single attribute value
from an item in a file.

The general form of the READV statement is:

READV var FROM {file-var,} item-id, attr#
{ON ERROR stmt} {THEN stmt} {ELSE stmt}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

The READV statement reads the attribute specified in the
attr# (attribute number expression) from the item specified
by the item-id expression. The string value of the attribute
is assigned to variable var.

The file-var is optional and specifies the file variable; if
it is used, the attribute will be read from the file
previously assigned to that variable via an OPEN statement.
If file-var is omitted, then the internal default file
variable is used (thus specifying the file most recently
opened without a file variable).

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be read due to a network error condition. In
this case, the value of SYSTEM(O) will indicate the UltiNet
error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the ultiNet User's Guide.) The ON
ERROR clause has no effect when local files are being read.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be read due to network errors, the
program may terminate with an error message if no ON ERROR
clause is present.

If a non-existent item is specified, the ELSE statements, if
any, will be executed. If the read is successful, the THEN
statements, if any, will be executed. The statements in the
THEN or ELSE clauses may be placed on one line separated by

BASIC Reference Page 226 Statements/Functions

semicolons, or may be placed on multiple lines terminated by
END, as in the multi-line IF statement.

Consider the following example:

READV A FROM F,"XYZ", 3 ELSE STOP

This statement reads the third attribute of item XYZ (in the
file opened and assigned to variable F) and assigns its
value to variable A. If item XYZ does not exist, the program
terminates.

The BASIC program will abort with an appropiate error message
if the specified file has not been opened prior to the
execution of the READV statement.

NOTE: The READV statement makes efficient use of system
resources when a single attribute needs to be accessed from
an item. However, when it is used repeatedly to access
several attributes, this efficiency is lost. When several
attributes need to be accessed, either the READ or MATREAD
statement should be used to read an item into a BASIC
variable. Then dynamic array subscripts (for READ) or
dimensioned array subscripts (for MATREAD) should be used
with the variable to reference individual attributes.

BASIC Reference Page 227 Statements/Functions

----lis assigned I
I lattribute value I
I -----------------
I

READV variable FROM {file-var,} item-id, attr# {ON ERROR statements}
I I I {THEN stmt} {ELSE stmt}
I I I

Ifile variable I litem name I lattribute number I

Figure A. General Form of READV Statement

CORRECT USE

READV X FROM A, "TEST", 5 ELSE
PRINT ERR
GOTO 70
END

EXPLANATION

Reads 5th attribute of item TEST
(in the file opened and assigned
to variable A) and assigns value
to variable X. If item TEST is
non-existent, then value of ERR
is printed and control passes to
statement 70.

READV X FROM A, "TEST",5
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR

ON ERROR Reads as above, or retrieves

GOTO TOP
END ELSE PRINT ERR; GOTO 70

error number and performs local
subroutine on UltiNet error number.

Figure B. Examples of Correct Usage of READV Statements

BASIC Reference Page 228 Statements/Functions

READVU
statement

The READUVU statement provides the facility to lock a disk
file item prior to updating it. This can be used to prevent
updating an item by two or more programs simultaneously while
still allowing multiple program access to the file.

The general form of the READVU statement is:

READVU var FROM {file-var,} item-id, attr# {ON ERROR stmt}
{LOCKED stmt} {THEN stmt} {ELSE stmt}

The READVU statement functions like the READV statement, but
additionally locks the item lock associated with the item to
be accessed. If the item is currently locked by another
BASIC program, the statement will not perform the read
operation. The item does not have to exist in order for
READVU to lock it; in this case, READVU executes the ELSE
statements, but still locks the associated item lock.

Item locks are assigned based on (1) the group of the disk
file which contains (or would contain) an item and (2) a hash
value derived from the item-ide Items in different groups
(in the same file or in different files) are never assigned
the same item lock, but it is possible for more than one item
in the same group to hash to, and be assigned, the same lock.

If the LOCKED clause is present, the statements specify an
action to take if the READVU statement is unable to lock the
item because another program has already locked it.

If an item is currently unlocked, setting a corresponding
item lock will prevent access to the item, and any other
items in the same group with the same item lock hash value,
by other programs using the MATREADU, READU, or READVU
statements. The program setting the lock, however, will be
allowed to lock other items in the same group with the same
hash value using these statements.

An item will become unlocked when it, or any other item
sharing the same item lock, is updated by a WRITE, WRITEV, or
MATWRITE statement, or when it is unlocked by a RELEASE
statement, or when the BASIC program is terminated. An item
can be updated without unlocking it by using the WRITEU,
WRITEVU, or the MATWRITEU statement.

There is a maximum numgber of item locks which may be locked
at anyone time. This number may vary from release to
release. If a program attempts to lock an item when all item
locks are already set, it will be suspended until a lock is
unlocked.

NOTE: Locked items can still be retrieved by the READ,
READV, and MATREAD statements and by other system software,
such as Recall, which does not pay attention to item locks.

BASIC Reference Page 229 Statements/Functions

READVU var FROM {file-var,} item-id, attr# {ON ERROR stmt} {LOCKED stmt}
{THEN stmt} {ELSE stmt}

Figure A. General Form of READVU Statement

CORRECT USE EXPLANATION

READVU ATT FROM B, "REC", Lock item REC. Read attribute 6 to
6 ELSE STOP variable ATT or, if REC is non-existent,

execute the ELSE clause. The item
remains locked in either case.

READVU NAME FROM B, "REC", As above, except that if REC is already
6 LOCKED GOTO BUSY: ELSE STOP locked, branch to statement label BUSY:.

READVU NAME FROM B, "REC",6 ON ERROR GOTO PROCESSERR ELSE STOP
As first example above, or branch to
local subroutine to process UltiNet
error number.

Figure B. Example of Correct Usage of READVU Statement

BASIC Reference Page 230 Statements/Functions

(
\

RELEASE
statement

The RELEASE statement unlocks specified items or all items
locked by the program.

The general form of the RELEASE statement is:

RELEASE {{file-var,} item-id} {ON ERROR statements}

The RELEASE statement unlocks the item lock locked, or
potentially locked, by the expression item-id. If the
file-var is present, the file containing the item referenced
by item-id is the one previously assigned to that variable
via on OPEN statement. If file-var is absent, then the
internal default file variable is used (thus specifying the
file most recently opened without a file variable) .

If the RELEASE statement is used without a file-var or
item-id all items which have been locked by the program will
be unlocked. This form of the statement is:

RELEASE

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be accessed due to a network error condition.
In this case, the value of SYSTEM(O) will indicate the
UltiNet error number. (Refer to the SYSTEM function, listed
alphabetically in this chapter; for more information about
remote files, refer to the UltiNet User's Guide.) The ON
ERROR clause has no effect when accessing local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be accessed due to network errors,
the program may terminate with an error message if no ON
ERROR clause is present.

The RELEASE statement is useful when an abnormal condition is
encountered during multiple file updates. A typical sequence
is to mark the item with an abnormal status, write it to the
file and then RELEASE all other locked items.

NOTE: The RELEASE statement is used in conjunction with the

BASIC Reference Page 231 Statements/Functions

READU, READVU, and MATREADU statements. (Please refer to
these statements, listed alphabetically in this chapter.)

RELEASE {{file-var,} item-id} {ON ERROR statements}

Figure A. General Form of RELEASE Statement

CORRECT USAGE EXPLANATION

RELEASE Releases all items locked
by the program.

RELEASE CUST.FILE, PART.NO Releases item lock corresponding
to PART.NO in the file opened
and assigned to variable
CUST.FILE.

RELEASE AFILE, "ITEM3" Releases ITEM 3's item lock.

RELEASE AFILE, "ITEM3"
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GOTO TOP

END

ON ERROR
Releases as above, or retrieves
error number and performs local
subroutine on UltiNet error
number.

Figure B. Examples of Correct Usage of RELEASE Statement

BASIC Reference Page 232 Statements/Functions

REM
Function

The REM function returns the remainder of one number divided
by another.

The general form of REM function is:

REM (dividend, divisor)

Both dividend and divisor are expressions. The REM function
returns the remainder of the (integer) division of dividend
by divisor.

Note: The REM function operates the same as the MOD (modulo)
function. (Please refer to the MOD function, listed
alphabetically in this chapter.)

REM (dividend, divisor)

Figure A. General Form of REM Function

CORRECT USE

Q = REM(11,3)

EXPLANATION

Assigns the value 2 to
variable Q.

Figure B. Examples of Correct Usage of REM Function

BASIC Reference Page 233 Statements/Functions

REM
statement

The Remark statement, which can be specified as "REM", "!",
or "*", is used to write non-executable comments about a
program. Remarks can identify a function or section of
program code, as well as explain its purpose and method.

A Remark statement can be specified in one of three ways: by
typing the characters "REM", by the asterisk character (*),
or by the exclamation point (!). Thus, there are three
general forms of the Remark statement:

REM text
! text
* text ...

REM, !, or * must be placed at the beginning of the
statement, but may appear anywhere on a line (e.g., after
another statement on the same line). A semicolon must be
used to separate a Remark statement from any other statement
on the same line. The text may be any arbitrary characters,
up to the end of the l~

For example:

REM THE TEXT FOLLOWING THESE STATEMENTS
! DOES NOT AFFECT
* PROGRAM EXECUTION

Note that there are extra blank spaces in some of the
statements above. These blank spaces appearing in the
program line (which are not part of a data item) will be
ignored. Thus-, blanks may be used freely wi thin the program
to enhance the appearance and readability of a program and
its comments.

REM text ! text * text

Figure A. General Forms of Remark Statement

REM PROGRAM TO PRINT THE
* NUMBERS FROM ONE TO TEN

BEG:
I = Ii
PRINT Ii
IF I = 10 THEN
I = I + Ii
GO TO BEGi
END

* START WITH ONE
* PRINT THE VALUE

STOPi * STOP IF DONE
* INCREMENT I

* BEGIN LOOP AGAIN

Figure B. Sample Program With Remark Statements

BASIC Reference Page 234 Statements/Functions

REPEAT
statement

The REPEAT statement is the last statement in a LOOP
statement sequence.

The general form of the REPEAT statement is:

REPEAT

Please refer to the LOOP statement for information about the
entire LOOP statement sequence.

BASIC Reference Page 235 statements/Functions

REPLACE
Function

The REPLACE function returns a dynamic array with a specified
attribute, value, or subvalue replaced.

The general forms of the REPLACE function are:

REPLACE (array-var,attr#,value#, subval#,expr)

REPLACE(array-var,attr# {,value# {,subval#}}; expr)

The value of the expression array-var specifies the dynamic
array in which to replace data. The values of attr#, value#,
and subval# determine whether the data is an attribute, a
value, or a subvalue. Attr# specifies an attribute, value#
specifies a value, and subval# specifies a subvalue. If
value# and subval# both have a value of 0 (or are both
absent), then an entire attribute is replaced. If subval#
only has a value of 0 (or is absent), then a value is
replaced. If attr#, value#, and subval# are all non-zero,
then a subvalue is replaced. The value of expr specifies the
replacement value. Data may be inserted following the last
attribute, value, or subvalue by specifying an index of -1
(see below) .

The following examples show two ways to express the same
replacement function. They replace attribute 4 of item NAME
in file INVENTORY with the string value "ABC":

Using the First Form

OPEN 'INVENTORY' ELSE STOP
READ X FROM 'NAME' ELSE STOP
X = REPLACE(X,4,O,O, 'ABC')
WRITE X ON 'NAME'

Using the Second Form

OPEN 'INVENTORY' ELSE STOP
READ X FROM 'NAME' ELSE STOP
X = REPLACE(X,4;'ABC')
WRITE X ON 'NAME'

Note that in the second form, trailing zero subvalue or value
numbers are not required and that a semicolon separates the
attribute, value, and subvalue numbers from the new data.

If the last index specified (attr#, value#, or subval#) has a
value of -1, the new data is inserted after the last
attribute, last value, or last subvalue of the dynamic array.
In this case, the REPLACE function is identical to an INSERT
function with the same parameters. For example:

Using the First Form

OPEN 'XYZ' ELSE STOP
READ B FROM 'ABC' ELSE STOP
Y=REPLACE(B,3,-1,O, 'NEW VALUE')
WRITE Y ON 'ABC'

using the Second Form

OPEN 'XYZ' ELSE STOP
READ B FROM 'ABC' ELSE STOP
Y=REPLACE(B,3,-1;'NEW VALUE')
WRITE Y ON 'ABC'

These statements insert the string value "NEW VALUE" after the
last value of attribute 3 of item ABC in file XYZ.

BASIC Reference Page 236 Statements/Functions

Note: An assignment statement may be used to replace an
attribute, value, or subvalue in a dynamic array and store the
result back into the variable containing the original dynamic
array. For example, X<2>=6 is equivalent to
X=REPLACE(X,2,O,O,6). For more information, please see the =
(Assignment) statement, listed alphabetically in this chapter.

REPLACE (array-var,attr#,value#, subval#,expr)

REPLACE(array-var,attr#{,value#}{,subval#}:expr)
I I I I I
I I I I I

Idynamic array I
I I

I attribute I Ivaluel Isub- I
Ivaluel

Inew I
Ivaluel I I I

Figure A. General Form of REPLACE Function

CORRECT USE

X=REPLACE(X,4:II)

Y=REPLACE(X,4,O,O, II)

VALUE="TEST STRING"
DA=REPLACE(DA,4,3,2,VALUE)

X="ABC123"
Y=REPLACE(Y,l,l,-l,X)

A=REPLACE (B, 2,3, 0, "XXX")

EXPLANATION

Replaces attribute 4 of dynamic
array X with the empty (null)
string.

Replaces attribute 4 of dynamic
array X with the empty (null)
string, and assigns the resultant
dynamic array to Y.

Replaces subvalue 2 of value 3
of attribute 4 in dynamic
array DA with the string value
"TEST STRING".

Inserts the value "ABC123" after
the last subvalue of
value 1 of attribute 1 in dynamic
array Y.

Replaces value 3 of attribute 2
of dynamic array B with the value
"XXX", and assigns the resultant
dynamic array to A.

Figure B. Examples of Correct Usage of REPLACE Function

BASIC Reference Page 237 Statements/Functions

RETURN (TO)
statement

The RETURN and RETURN TO statements return control from a
subroutine.

The general forms of the RETURN statement are:

RETURN

RETURN TO statement-label

The RETURN statement will transfer control from a subroutine
back to the statement immediately following the GOSUB
statement (for local subroutines) or CALL statement (for an
external subroutine) which invoked the subroutine. The
RETURN TO statement returns control from a subroutine to the
statement within the local BASIC program having the specified
statement-label. Sample RETURN and RETURN TO statements are
included in Figure B.

The statements in a subroutine may be any BASIC statements,
including other GOSUB and CALL statements. To insure proper
flow of control, each subroutine must return to the calling
program by using a RETURN (or RETURN TO) statement, not a
GOTO statement. The user should also insure that a local
subroutine cannot be executed by any flow of control other
than through the execution of a GOSUB statement.

If the RETURN TO statement refers to a statement-label which
is not present in the current program, an error message will
be printed at compile time (refer to APPENDIX A - BASIC
COMPILER ERROR MESSAGES).

Consider the set of statements shown in Figure B. Upon
execution of statement 10, control will transfer to statement
30 as illustrated in the left-hand side of the figure. The
statements within the subroutine will be executed and
statement 40 will then return control to statement 15.
Execution will then proceed sequentially to statement 20,
whereby control will again be transferred to the subroutine
as shown in the right-hand side of the figure. The
conditional RETURN TO path is taken instead of the normal
RETURN if the logical variable ERROR is true (=1).

Further discussion of local subroutines may be found under
the GOSUB statement, and of external subroutines under the
CALL and SUBROUTINE statements. Please refer to these
statements, listed alphabetically in this chapter.

The example in Figure C illustrates incorrect usage of the
BASIC subroutine capability (i.e., the GOTO statement should
not be used to transfer control to a subroutine).

BASIC Reference Page 238 Statements/Functions

RETURN

RETURN TO statement-label <----'A statement must exist which has this,
,statement-label. ,

Figure A. General Form of RETURN and RETURN TO statements

1st Execution of Subroutine 2nd Execution of Subroutine

10 GOSUB 30----- 10 GOSUB 30
---->15 PRINT Xl , 15 PRINT Xl
, , · , , · , , · , , · , , · , , · , 20 GOSUB 30 , 20 GOSUB 30----, , ------> · ,
, , , -----------------, ------------------ , ,
, , , ,
, ->30 REM SUBROUTINE , ->30 REM SUBROUTINE
, , · , , · , , · , , · , , IF ERROR RETURN TO 99 , , IF ERROR RETURN TO 99 , 40 RETURN--- , 40 RETURN---, , , ,
----------------- -----------------

99 REM ERROR RETURN HERE 99 REM ERROR RETURN HERE

Figure B. Example of Correct Subroutine Usage

A=l
GOSUB 100
A=A+l
GOTO 110 <--------
100 PRINT A
110 B=A*D
PRINT B
RETURN

INCORRECT: This statement transfers
control into the body of a subroutine,
causing the "RETURN" to produce an
error message: "RETURN executed with
no GOSUB"

Figure C. Example of Incorrect Subroutine Usage

BASIC Reference Page 239 Statements/Functions

REWIND
statement

The REWIND statement rewinds a magnetic tape unit. The tape
unit is as specified by the most recent T-ATT command
executed at the TCL level.

The general form of the REWIND statement is:

REWIND {THEN statements} {ELSE statements}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

The REWIND statement rewinds the "current" magnetic tape unit
to the Beginning-of-Tape (BOT). The THEN statements, if any,
are then executed. If a previously attached tape unit is
subsequently set off line, the system detects the condition
and allows the user to correct it and proceed.

If this statement is the first tape instruction (READT,
REWIND, WEOF, or WRITET) in the BASIC program, the tape unit
must have been previously attached. If the tape unit has not
been attached, then the ELSE statements, if any, will be
executed, and the system function SYSTEM(O) will return a
value of 5 (tape off line) or 6 (cartridge not formatted
correctly for this operating system revision). (Please refer
to the SYSTEM function, listed alphabetically in this
chapter, for an alternative to printing error messages.)

If, however, the tape drive is adversely set to off line
after the first tape instruction, the system allows the user
to correct the condition. When a subsequent tape instruction
is processed, the system displays:

Tape drive off line (C)ontinue/(Q)uit:

If C entered, the system returns to the BASIC program and the
tape instruction is re-executed. If Q is entered, the BASIC
program is aborted and control returns to TCL. Thus, the
ELSE statements are not executed in either case, and the
BASIC program has no way to detect such adverse action.

IMPORTANT: The tape drive should never be put off line while
it is running under the control of any tape operation (BASIC,
T-LOAD, T-DUMP, etc.). By doing so, the tape drive may lose
its momentum and the tape read/write head may not be aligned
with the current data block on tape. Even though the system
allows the user to (c)ontinue, it is not guaranteed that
valid data is then read or written.

Note: The REWIND statement is used in conjunction with the
READT, WRITET, and WEOF statements. (For additional
information, see each statement listed alphabetically in this
chapter.) See the System Commands manual for more
information on the T-ATT command.

BASIC Reference Page 240 Statements/Functions

'\
i

/

REWIND {THEN statements} {ELSE statements}

Figure A. General Form of REWIND Statement

CORRECT USE EXPLANATION

REWIND ELSE STOP Tape is rewound to BOT.

Figure B. Examples of Correct Usage of REWIND Statement

BASIC Reference Page 241 Statements/Functions

RND
Function

The RND function returns a random number.

The general form of the RND function is:

RND(expression)

The RND function generates an integer between 0 and the
number specified by the expression minus one (inclusive).
For example:

NUMBER = RND(201)

This statement generates a random number between 0 and 200
(inclusive), and assigns its numeric value to the variable
NUMBER.

The value of expression must be a positive number no larger
than 32,767. If a larger number is used, a value of 0 is
returned by the function. The expression value is truncated
if necessary (not rounded) to the nearest integer before
being used as the upper limit in the random number range.

RND(expression)

Figure A. General Form of the RND Function

CORRECT USE

Z = RND (11)

R
Q =
B =

100
50
RND(R+Q+l)

Y = RND(ABS(051))

EXPLANATION

Assigns a random number between
o and 10 (inclusive) to variable Z.

Assigns a random number between
o and 150 (inclusive) to the
variable B.

Assigns a random number between
o and 50 (inclusive) to the
variable Y.

Figure B. Examples of Correct Usage of the RND Function

BASIC Reference Page 242 Statements/Functions

\
)

)

RQM
statement

The RQM (release quantum) statement suspends program
execution for one second.

The general form of the RQM statement is:

RQM

The time-shared environment of the ULTIMATE system allows
concurrent execution of several programs, with each program
executing for a specific time period (called a time-slice or
quantum) and then pausing while other programs continue
execution. The RQM statement relinquishes the program's
current time-slice and causes it to "sleep" for one second.
Thus, RQM may be used to cause pauses in program execution.

CORRECT USE

* PROGRAM SEGMENT TO SOUND
* TERMINAL "BELL" FIVE TIMES.

* BELL=CHAR(7)
FOR I=l TO 5
PRINT BELL:
RQM
NEXT I
END

EXPLANATION

RQM statement causes "beeps"
at one-second intervals.

Figure B. Example of Correct Usage of RQM Statement

BASIC Reference Page 243 Statements/Functions

SADD
Function

The SADD (string addition) function adds two string numbers
and returns the result as a string number.

The general form of the SADD function is:

SADD (X,Y)

X and Y may be any valid numbers or string numbers of any
magnitude and precision. For speed considerations, string
numbers are preferable to standard numbers.

If either X or Y contains non-numeric data, an error message
is generated; the result of the addition will be zero.

The result of the SADD function is a string number. Thus,
the function can be used in any expression where a string or
string number would be valid, but not necessarily where a
standard number would be valid. This is because string
numbers may exceed the range of numbers which can be
accommodated with standard arithmetic operators.

SADD (X,Y)

Figure A. General Form of SADD Function

CORRECT USE EXPLANATION

TOTAL=SADD(SUBTOT1,SUBTOT2) Assigns sum of variables SUBTOTl
and SUBTOT2 to variable TOTAL.

PRINT (SADD(X,".004")

A=SADD("l0 030476", B)

X=SADD(A, SADD(B,C))

Prints sum of variable X and
string constant (.004).

Assigns to variable A the sum of
string constant (1.030476)
and variable B.

Uses string sum of
variables Band C in string
addition with variable
A; assigns sum to variable X.

Figure B. Examples of Correct Usage of SADD Function

BASIC Reference Page 244 State~ents/Functions

SCMP
Function

The SCMP (string compare) function compares two string
numbers and returns a result of -1 (less than), a (equal), or
1 (greater than) .

The general form of the SCMP function is:

SCMP (X,Y)

X and Y may be any valid numbers or string numbers. For
speed considerations, string numbers are preferable to
standard numbers.

If either X or Y contains non-numeric data, an error message
is generated; the result of the comparison will be zero (0).

The result of the SCMP function is a number: -1, 0, or 1. If
X is less than Y, the result is -1. If they are equal, the
result is o. If X is greater than Y, the result is 1. The
function can be used in any expressIon where a number or
string would be valid.

SCMP (X,Y)

Figure A. General Form of SCMP Function

CORRECT USE EXPLANATION

IF SCMP(FX,FY) = a THEN
GOTO 100

The result of the comparison
determines whether program
execution branches to statement
100 or continues in sequence.

IF SCMP(FX,FY) < a THEN The PRINT operation is executed
PRINT X:" IS LESS THAN ":Y only if the result of the IF

statement is true (-1 was the
result of the SCMP function).

IF SCMP(FX,FY) > a THEN The PRINT operation is executed
PRINT X:"IS GREATER THAN ":Y only if the result of the IF

statement is true (1 was the
result of the SCMP function).

ON 2+SCMP(VAL1,VAL2) GOTO la,
110,120

The result of the comparison
is used to create an index
of 1,2, or 3 for the ON GOTO
statement.

Figure B. Examples of Correct Usage of SCMP Function

BASIC Reference Page 245 Statements/Functions

SDIV
Function

The SDIV (string division) function divides the first string
number by the second and returns the result as a string
number.

The general form of the SDIV function is:

SDIV (X,Y)

X and Y may be any valid numbers or string numbers. Although
the two arguments may be of any magnitude and precision, the
precision of the result will be limited to 14 significant
digits. (See examples in Figure B.)

If either X or Y contains non-numeric data, an error message
is generated; the result of the division will be zero. If Y
is zero, an error message will state that division by zero Is
illegal; the result will be zero.

The result of the SDIV function is a string number. Thus,
the function can be used in any expression where a string or
string number would be valid, but not necessarily where a
standard number would be valid. This is because string
numbers may exceed the range of numbers which can be
accommodated with standard arithmetic operators.

BASIC Reference Page 246 Statements/Functions

(
\

"" \

SDIV (X,Y)

Figure A. General Form of SDIV Function

CORRECT USE EXPLANATION

VELOCITY=SDIV (DISTANCE, TIME) Assigns result of variables
DISTANCE divided by TIME to
variable VELOCITY.

PRINT (SDIV(X,".004")

A=SDIV("l. 030476" ,B)

X=SDIV(A, SDIV(B,C))

Y=SDIV("10", "3")
Y=SDIV (II 1 II , II 3 II)

Y-SDIV("O.l", "3")

Prints quotient of
variable X divided by
string constant (.004).

Assigns to variable A the result
of dividing string constant
(1.030476) by variable B.

Uses string result of
variable B divided by variable C
in string division with
variable Ai assigns sum to
variable X.

Result is 3.3333333333333.
Result is .33333333333333.
Result is .033333333333333.

Figure B. Examples of Correct Usage of SDIV Function

BASIC Reference Page 247 Statements/Functions

SEEK
Statement

The SEEK statement allows a program to find data stored in
either the ARG. or MSG. redirection variable. When used with
ARG., it finds an argument in the argument list passed to the
program. When used with MSG., it finds a system message
resulting from the last EXECUTE statement.

The general forms of the SEEK statement are:

SEEK

SEEK

ARG. {, arg#}

MSG. {,arg#}

var {THEN stmt} {ELSE stmt}

var {THEN stmt} {ELSE stmt}

The SEEK statement is always used with one of two system
predefined redirection variables: ARG. and MSG. ARG. refers
to the list of arguments (if any) following the program name
in the TCL command which invoked the program. For example:

RUN BP MYPROG ARGI ARG2

This invokes program MYPROG, which can find the strings
"ARGl" and "ARG2" using SEEK (ARG.) statements.

MSG., as used in the SEEK statement, refers to the list of
input messages generated by the most recent EXECUTE
statement.

The arg# may be any expression that evaluates to an integer
that specifies the argument to be positioned to; if ~rg# is
not present, the next argument on the argument list lS
positioned to. (If this is the first SEEK statement
executed, the first argument on the list is used.) If an
argument is present in the position specified, the internal
pointer is set to that position and the THEN branch, if
specified, is taken. If no argument is present in that
position, the internal pointer is not changed and the ELSE
branch, if specified, is taken.

The SEEK statement is similar to the GET statement except
that no data transfer takes place. Also, the SEEK statement
can be used in conjunction with the GET statement. Once the
internal pointer position has been set by a SEEK statement, a
subsequent GET statement will return the argument set up by
the SEEK statement. For further information on GET, as well
as the MSG. redirection variable, please refer to the GET
statement, listed alphabetically in this chapter.

BASIC Reference Page 248 Statements/Functions

SEEK

SEEK

ARG. {, arg#}

MSG. {, arg#}

{THEN stmt} {ELSE stmt}

{THEN stmt} {ELSE stmt}

Figure A. General Forms of the SEEK Statement

CORRECT USE EXPLANATION

SEEK (ARG., 3) THEN GOSUB 10000 ELSE
PRINT "NOT ENOUGH ARGS"
STOP

END

If the argument is found, the
subroutine is executed;
otherwise, the message is
printed and program
execution terminates.

Figure B. Example of Correct Usage of the SEEK Statement

BASIC Reference Page 249 Statements/Functions

SELECT
statement

The SELECT statement builds a select list from a file or a
dynamic array for use with the READNEXT statement. When a
file is selected, the select list will be a list of items in
the file. When a dynamic array is selected, the list will
contain one list element from each attribute in the array.

The general form of the SELECT statement is:

SELECT {variable} {TO select-variable} {ON ERROR stmt}

If variable is present, it must be either a file variable
previously initialized in an OPEN statement, or a variable
whose current value is a dynamic array. If a file variable
is used, SELECT builds a list of item-ids corresponding to
all items in the file. If a dynamic array is used, SELECT
builds a list whose elements are copies of the attributes in
the dynamic array. Only the first values of multi-valued
attributes are selected.

If select-variable is present, the select list generated will
be assigned to that variable. If select-variable is omitted,
the list will be assigned to the program's internal default
select variable. A select variable, in general, has meaning
only in SELECT and READNEXT statements; its value outside of
these statements is undefined.

Select lists are discussed in more detail under the READNEXT
statement, listed alphabetically in this chapter. Also see
the OPEN statement for more information on this statement.

The statement(s) after ON ERROR, if present, are executed
only if a file is selected and it (1) is a remote file
(accessed via UltiNet) and (2) cannot be accessed due to a
network error condition. In this case, the value of SYSTEM(O)
will indicate the UltiNet error number. (Refer to the SYSTEM
function, listed alphabetically in this chapter; for more
information about remote files, refer to the UltiNet User's
Guide.) The ON ERROR clause has no effect when accessing
local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate
action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

BASIC Reference Page 250 Statements/Functions

If a remote file cannot be accessed due to network errors,
the program may terminate with an error message if no ON
ERROR clause is present.

When selecting file items, the SELECT statement builds the
same list of item-ids as would be built by the Recall SELECT
command without any selection criteria, when executed from
the TCL level. But unlike the Recall SELECT command, which
reads the entire file at one time, the BASIC SELECT statement
reads one group of items at a time.

As an example, the following BASIC program will print the
item-ids of all the items in the file named BP.

OPEN 'BP' ELSE STOP
SELECT

10 READNEXT ID ELSE STOP
PRINT ID
GOTO 10

Each of the six possible formats of the SELECT statement is
illustrated below:

SELECT

Creates a select list of item-ids from the file most recently
opened without a file variable.

SELECT file-variable

Creates a select list of item-ids from the file opened to the
file-variable.

SELECT var

Creates a select list from the attributes of the item
currently stored in the variable var.

SELECT TO select-variable

Creates a select list from the file most recently opened
without a file variable; assigns the selected list to the
select-variable.

SELECT file-variable TO select-variable

Creates a select list of item-ids from the file opened to the
file-variable; assigns the selected list to the
select-variable.

SELECT var TO select-variable

As above, except the list is created from the attributes of
the item in var.

BASIC Reference Page 251 statements/Functions

SELECT {variable} {TO select-variable} {ON ERROR stmt}

Figure A. General Form of SELECT Statement

CORRECT USE

SELECT

SELECT BP TO BLIST

EXPLANATION

Builds list of item-ids using
the default variable of the last
file opened without a file­
variable.

Builds a list of item-ids for the
file opened and assigned to
file-variable 'BP'. Assigns the
list to select-variable 'BLIST'.

READ A FROM FILEX, 'ALIST' ELSE STOP
SELECT A Creates a select list of the

attributes in item ALIST.

SELECT A ON ERROR
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GOTO TOP

END

Creates select list as above, or
retrieves error number and
performs local subroutine on
UltiNet error number.

Figure B. Examples of Correct Usage of SELECT Statements

BASIC Reference Page 252 Statements/Functions

SEQ
Function

The SEQ function converts an ASCII character to its
corresponding numeric value.

The general form of the SEQ function is:

SEQ (expression)

The value of the expression is the ASCII character string to
be converted. The first character of the string is converted
to its corresponding numeric value.

The following example will print the number 49:

PRINT SEQ('1')

NOTE: For a complete list of ASCII codes, refer to the
appendix of this manual.

The SEQ function is the inverse of the CHAR function.
(Please refer to the CHAR function, listed alphabetically in
this chapter.)

SEQ (expression)

Figure A. General Form of SEQ Function

CORRECT USE

DIM C(50)
S = 'THE GOOSE FLIES SOUTH'
FOR 1=1 TO LEN (STRING)
C (I) = SEQ (S [1,1])
NEXT I

EXPLANATION

Encodes in vector C elements
the decimal equivalents of
individual characters of
character string S.

Figure B. Examples of Correct Usage of SEQ Function

BASIC Reference Page 253 statements/Functions

SIN
Function

The SIN trigonometric function returns the sine of an angle
expressed in degrees.

The general form of the SIN function is:

SIN (expression)

The value of the expression specifies the number of degrees
in the angle. The function generates the sine of the angle.

In the following summary M is used to denote the largest
allowable number in BASIC, which is 14,073,748,835.5327 with
PRECISION 4.

FUNCTION RANGE DESCRIPTION

COS (X) -M <= X <= M Returns the cosine of
an angle of X degrees.

SIN(X) -M <= X <= M Returns the sine of
an angle of X degrees.

TAN (X) -M <= X <= M Returns the tangent
of an angle of X degrees.

LN(X) 0 <= X <= M Returns the natural (base e)
logarithm of the expression X.

EXP(X) -M <= RESULT <= M Raises the number 'e'
(2.7183) to the value of X.

PWR(X,Y) -M <= RESULT <= M Raises the first expression
to the power denoted by
the second expression.

Figure A. Summary of Trigonometric Functions

BASIC Reference Page 254 Statements/Functions

SMUL
Function

The SMUL (string multiplication) function multiplies two
string numbers and returns the result as a string number.

The general form of the SMUL function is:

SMUL (X,Y)

X and Y may be any valid numbers or string numbers of any
magnitude and precision.

If either X or Y contains non-numeric data, an error message
is generatedi the result of the mUltiplication will be zero.

The result of the SMUL function is a string number. This
function can be used in any expression where a string or
string number would be valid, but not necessarily where a
standard number would be valid. This is because string
numbers may exceed the range of numbers which can be
accommodated with standard arithmetic operators.

SMUL (X,Y)

Figure A. General Form of SMUL Function

CORRECT USE EXPLANATION

PAY=SMUL(HOURS,RATE) The variable PAY is assigned the
product of HOURS times RATE.

PRINT SMUL (X, "l. 0015")

A=SMUL(11.030476",B)

X=SMUL(A, SMUL(B,C))

The variable X is multiplied by
constant 1.0015 and the result
is printed.

The constant 1.030476 is
multiplied by variable B and the
result is assigned to variable A.

The product of variables Band C
is multiplied by variable Ai
the result is assigned to X.

Figure B. Examples of Correct Usage of SMUL Function

BASIC Reference Page 255 Statements/Functions

SPACE
Function

The SPACE function generates a string value containing a
specified number of blank spaces.

The general form of the SPACE function is:

SPACE (expression)

The expression specifies the number of blank spaces to be
generated in the string.

For example:

PRINT SPACE(10) : "HELLO"

This statement prints 10 blanks followed by the string
"HELLO".

SPACE (expression)

Figure A. General Form of SPACE Function

CORRECT USE

B = 14
A = SPACE(B)

DIM M(10)
MAT M = SPACE(20)

S = SPACE(5)
L = "SMITH"
C = " " ,
F = "JOHN"
N S:L:S:C:S:F

EXPLANATION

Assigns to variable A the string
value containing 14 blank spaces.

Assigns a string consisting of
20 blanks to each of the 10
elements of array M.

Assigns to variable N a concaten­
ated string consisting of
5 blanks, the name "SMITH", 5
blanks, a comma, 5 blanks, and
the name "JOHN".

Figure B. Examples of Correct Usage of SPACE Function

BASIC Reference Page 256 statements/Functions

SQRT
Function

The SQRT function returns the positive square root of a
positive number.

The general form of the SQRT function is:

SQRT(expression)

The value of the expression is the positive number for which
to generate the square root. If the expression evaluates to
less than or equal to zero, the function returns a value of
O.

For example:

Y=SQRT(X)

This statement assigns to variable Y the positive square
root of the positive number X.

SQRT(expression)

Figure A. General Form of the SQRT Function

CORRECT USE

Y = SQRT(36)

EXPLANATION

Assigns the value 6
to variable Y.

Figure B. Example of Correct Usage of the SQRT Function

BASIC Reference Page 257 statements/Functions

SSUB
Function

The SSUB (string subtraction) function subtracts the second
string number from the first string number and returns the
result as a string number.

The general form of the SSUB function is:

SSUB (X,Y)

X and Y may be any valid numbers or string numbers of any
magnitude and precision.

If either X or Y contains non-numeric data, an error message
is generated; the result of the subtraction will be zero.

The result of the SSUB function is a string number. Thus,
the function can be used in any expression where a string or
string number would be valid, but not necessarily where a
standard number would be valid. This is because string
numbers may exceed the range of numbers which can be
accommodated with standard arithmetic operators.

SSUB (X,Y)

Figure A. General Form of SSUB Function

CORRECT USE EXPLANATION

TOTAL=SSUB(SUBTOTl,SUBTOT2) Assigns difference of variables
SUBTOTl and SUBTOT2 to variable
TOTAL.

PRINT (SSUB(X,".004")

A=SSUB (" 1. 030476" ,B)

X=SSUB(A, SSUB(B,C))

Prints difference of variable X
and string constant (.004).

Assigns to variable A the
difference of string constant
1.030476 and variable B.

Uses the difference of variable
Band C in string
subtraction with variable A;
the result is assigned to X.

Figure B. Examples of Correct Usage of SSUB Function

BASIC Reference Page 258 statements/Functions

STOP
statement

The STOP statement terminates program execution.

The general form of the STOP statement is:

STOP {errnum{,param, param, ... }}

U~on the execution of a STOP statement, the BASIC program
w~ll terminate.

The STOP statement may be placed anywhere within the BASIC
program to indicate the end of one of several alternative
paths of logic.

The STOP statement may optionally include an errnum
expression, which identifies the error message name, and one
or more param expressions, which are error message
parameters. The errnum is a reference to an item in the
ERRMSG file. The param(s) are variables or literals to be
used within the error message format.

Note: The ABORT statement may also be used to terminate
program execution. Unlike STOP, however, ABORT also
terminates PROC execution if the program was invoked from a
PROC. STOP terminates a BASIC program but allows a PROC to
continue executing.

A sample BASIC program illustrating the correct use of the
STOP statement is presented in Figure B.

BASIC Reference Page 259 Statements/Functions

STOP {errnum{,param, param, ... }}

Figure A. General Form of STOP Statement

*
*
* A=500
B=750
C=235
D=1300
REM COMPUTE PROFIT:
REVENUE=A+B
COST=C+D
PROFIT=REVENUE-COST
REM PRINT RESULTS
IF PROFIT > 1 THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"
STOP <------------------------- If this path taken,

10 PRINT "POSITIVE PROFIT" program will terminate
END <------------------------ Physical end of program

Figure B. Program Showing Correct Usage of STOP Statement

BASIC Reference Page 260 Statements/Functions

STORAGE
statement

The STORAGE statement allows a program to change the three
buffer sizes used for storing string data in variables.

The general form of the STORAGE statement is:

STORAGE small-buffer, med-buffer, large-buffer

Each parameter is a numeric expression that specifies a
buffer size. Small-buffer, med-buffer, and large-buffer must
all be multiples of 10. Also med-buffer must not be less
than small-buffer, and large-buffer must not be less than
med-buffer.

When a variable takes on a string value, the string is stored
directly in the variable's descriptor area if it is less than
nine characters long. If it is nine or more characters long,
the string is stored in a buffer which the descriptor then
points to. The buffers used to hold these strings are built
in certain sizes specified by three numeric parameters: the
size of a small buffer, the size of a medium buffer, and the
size of a large buffer unit. The size of a large buffer is
one or more large buffer units. strings up to 32266
characters in length can be accommodated.

The default small buffer size is 50 bytes, the default medium
buffer size is 150 bytes, and the default large buffer unit
size is 250 bytes. These three values may be altered by the
STORAGE statement, where they correspond to the small-buffer,
med-buffer, and large-buffer expressions.

STORAGE small-buffer, med-buffer, large-buffer

Figure A. General Form of STORAGE STATEMENT

STORAGE 40, 100, 180

STORAGE 100, 200, 300

Defines buffer sizes at 40
(small), 100 (medium), and 180
(large) .

Defines buffer sizes at 100
(small), 200 (medium), and 300
(large) .

Figure B. Examples of Correct Usage of STORAGE Statement

BASIC Reference Page 261 Statements/Functions

STR
Function

The STR function generates a string value containing a
specified number of occurrences of a specified string.

The general form of the STR function is:

STR(string,count)

Both string and count may be any valid expression. The value
of string specifies the string to be used. The count
contains the number of occurrences to be generated. The STR
function returns a string value that contains string repeated
count number of times.

The following statement, for example, assigns a string value
containing 12 asterisk characters to variable X:

X=STR('*' ,12)

As a further example, the following statement will cause the
string value "ABCABCABC" to be printed:

PRINT STR('ABC',3)

STR(string,count)

Figure A. General Form of STR Function

CORRECT USE

VAR = STR("A" ,5)

A = 'BBB'
B = STR ("B" , 3)
C = B CAT A

N = STR("?%?",4)

EXPLANATION

Assigns to variable VAR a
string containing five A's.

Assigns to variable C the
string containing six B's.

Assigns to variable N the string
value containing 4 consecutive
occurrences of the string "?%?".

Figure B. Examples of Correct Usage of STR Function

BASIC Reference Page 262 Statements/Functions

,
)

SUBROUTINE
statement

The SUBROUTINE statement provides external subroutine
capabilities for a BASIC program. An external subroutine is a
subroutine that is compiled separately from the program or
programs that call it.

The general form of the SUBROUTINE statement is:

SUBROUTINE {name} {(argument list)}

The optional name may be used to indicate the name of the
subroutine, but this is ignored by the compiler. An external
subroutine is invoked by specifying the item-id of the
subroutine program item, or the item-id of a cataloged
subroutine pointer, in a CALL statement.

The optional argument list consists of one or more variables,
separated by commas, that take on the actual values passed to
the subroutine. The arguments may be continued on multiple
lines; each line except the last must end with a comma (after
an argument expression).

The SUBROUTINE statement is used in conjunction with the CALL
statement. The CALL statement transfers control to the
external subroutine, which may then return control using the
RETURN statement. (Please refer to the CALL statement,
listed alphabetically in this chapter.)

The SUBROUTINE statement is used to identify the program as a
subroutine and must be the first statement in the program.

There is no correspondence between variable names or labels
in the calling program and the subroutine. The only
information passed between the calling program and the
subroutine are the values of the arguments. External
subroutines may call other external subroutines, including
themselves. A sample external subroutine that involves two
arguments together with correctly formed CALL statements, is
shown below.

CALL Statements

CALL ADD (A,B,C)
CALL ADD (A+2,F,X)
CALL ADD (3,495,Z)

Subroutine ADD

SUBROUTINE ADD (X,Y,Z)
Z=X+Y
RETURN
END

When the CALL statement is executed, subroutine arguments are
first evaluated and their values assigned to the
corresponding variables named in the subroutine's SUBROUTINE
statement. These variables may then be assigned new values
by the subroutine. When control returns to the calling
program, any variables used as subroutine arguments will be
updated to reflect the most recent values of the

BASIC Reference Page 263 Statements/Functions

corresponding variables in the subroutine. constants and
other expressions used as subroutine arguments will not be
changed.

Care should be taken not to update the same variable
referenced by more than one name in an external subroutine.
This can occur if a variable in COMMON is also passed as a
subroutine parameter.

NOTE: An external subroutine must begin with a SUBROUTINE
statement and contain a RETURN statement. GOSUB and RETURN
may be used within the subroutine, but when a RETURN is
executed with no corresponding GOSUB, control passes to the
statement following the corresponding CALL statement in the
calling program. If the subroutine terminates execution
without executing a RETURN (such as by executing a STOP
statement, or by "running out" of statements at the end of
the subroutine), control never returns to the calling
program. The CHAIN statement should not be used to chain from
an external subroutine to another BASIC program.

SUBROUTINE {name} {(argument list)}

Figure A. General Form of SUBROUTINE Statement

CORRECT USE

CALL REVERSE (A,B)
SUBROUTINE REVERSE (I,X)

CALL REPORT
SUBROUTINE REPORT

CALL VENDOR (NAME, ADDRESS,
NUMBER)
SUBROUTINE VENDOR (NAME,
ADDR,NUM)

CALL DISPLAY (A,B,C)
SUBROUTINE DISPLAY (I,J,K)

CALL COPY (MAT X, MAT Y)
SUBROUTINE COPY (MAT A, MAT B)
DIM A(IO)
DIM B(IO)

EXPLANATION

Subroutine REVERSE has two arguments.

Subroutine REPORT has no arguments.

Subroutine VENDOR returns three
values.

Subroutine DISPLAY accepts (and
returns) three argument values.

Subroutine COpy has two dimensioned
arrays passed to it from the calling
program.

Figure B. Examples of Correct Usage of CALL and SUBROUTINE Statements

BASIC Reference Page 264 statements/Functions

)

'\
)

SUBROUTINE
statement (cont'd)

(Passing Arrays)

Arrays may be passed to external subroutines.

The general form for specifying an array in an argument list
for the SUBROUTINE statement is:

SUBROUTINE name (MAT variable {,MAT variable .•. }

The variable is the name of an array given in a DIM
statement. Multiple arrays may be passed, as needed. The
array(s) must be dimensioned in both the calling program-and
the subroutine.

Individual array dimensions may be different, as long as the
total number of elements matches. Arrays are copied in row
major order. consider the following example:

Calling Program

DIM X4,5)
CALL COPY (MAT X)
END

Subroutine

SUBROUTINE COPY (MAT A)
DIM A(lO,2)
PRINT A(S,l)
RETURN
END

In this subroutine the parameter passing facility is used to
copy array X specified in the CALL statement of the calling
program into array A of the subroutine. Printing A(S,l) in
the subroutine is equivalent to printing X(3,5) in the
calling program.

Additional examples of array passing, both correct and
incorrect, are shown in Figure B.

BASIC Reference Page 265 Statements/Functions

SUBROUTINE name (MAT variable {,MAT variable ... }

Figure A. General Form of SUBROUTINE Statement
with Array Passing

CORRECT USE EXPLANATION

DIM A(4,10),B(10,5) Subroutine REV accepts two input
CALL REV (MAT A, MAT B) array variables, one of size 40

and one of size 50 elements.

SUBROUTINE REV (MAT C, MAT B)
DIM C(4,10), B(50)

INCORRECT USE

DIM FOUR (2,2)
CALL GOF (MAT FOUR)

SUBROUTINE GOF(MAT NIX)
DIM NIX(5)

EXPLANATION

corresponding arrays must have the
same number of elements in the
calling program and the subroutine.

Figure B. Examples of Array Parameters

BASIC Reference Page 266 Statements/Functions

)

SYSTEM
Function

The SYSTEM function allows the user to obtain certain
pre-defined values from the system. The value returned may
either be an error status code (generated as a result of a
previous BASIC statement), or a parameter such as the
page-number or page-width.

The general form of the SYSTEM function is:

SYSTEM (expression)

The value of expression must be in the range 0 through the
maximum value as defined in table A. If the value of
expression is outside the allowable range, the SYSTEM
function will return a value as if the expression evaluated
to zero (the error function).

If the expression used in the SYSTEM function is zero, the
function returns a value determined by the last executed
BASIC statement that set an error condition. Examples of such
BASIC statements are the tape commands such as READT, WRITET,
etc. if the ELSE branch executes. SYSTEM(O), therefore,
allows one to determine exactly what error has occurred when
the program follows the ELSE branch of these statements. If
the ELSE branch was not followed, the value returned by
SYSTEM(O) is zero.

For example, the sequence of BASIC instructions:

READT TAPERECORD ELSE
BEGIN CASE

CASE SYSTEM(O) = 1; PRINT "ATTACH THE TAPE UNIT"; STOP
CASE SYSTEM(O) = 2; PRINT "END OF FILE; DONE! "; STOP

END CASE
END

will result in one of the messages being printed if there is
either an EOF read from the tape, or if the tape unit was not
attached to the line running the BASIC program.

BASIC Reference Page 267 Statements/Functions

FOR SYSTEMS USING ULTINET: When an error occurs during file
transfers causing the ON ERROR clause in a statement to be
executed, SYSTEM(O) returns the UltiNet error message number.
This number is the item-id of the error message in the ERRMSG
file. The ON ERROR clause can then test SYSTEM(O) and take
appropriate action (e.g., via the PUT or STOP statements).
For more information about using the ON ERROR clause, see the
specific statement (any READ or WRITE statement, OPEN, CLOSE,
DELETE, or SELECT), listed alphabetically in this chapter.

The SYSTEM function, with non-zero values of the expression,
returns parameters that have been set external to the BASIC
program. Figure A shows the general format and the SYSTEM
function expressions. Figure B shows the error codes
returned by SYSTEM(O).

BASIC Reference Page 268 Statements/Functions

SYSTEM(expression)

Value of expression

o

1

2

3

4

5

6

7

8

9

10

Value returned

Error function value; see Figure B.

1 if PRINTER ON or (P) option used in RUN;
o if data is being printed to the terminal.

Current page-size (page-width in columns).

Current page-depth (number of lines in page) .

Number of lines remaining in current page.

Current page-number.

Current line-counter (number of lines printed)

One-character terminal-type code.

Current tape record length.

System Serial Number.

Code
HO:
HI:
DO:
Dl:

D2:

for machine BASIC program is running on:
for Honeywell-WCS-based system
for Honeywell-HPP-based system
for DEC-based systems without typeahead
for DEC-based systems with typeahead and
regular memory
for DEC-based systems with typeahead and
dual-ported memory

11 Number of characters in typeahead buffer.

12 Terminating character of last INPUT statement

Figure A. General Form and Expressions for SYSTEM Function

Previously executed Error code Meaning
BASIC statement. returned.

READT, WRITET, 1
WEOF or REWIND 5

6
READT 2
WRITET 3

4

Any statement 2001-2339
with ON ERROR
clause

Tape unit is not attached.
Tape unit is off-line.
cartridge is not formatted correctly.
EOF read from tape unit.
Attempted to write null string.
Attempted to write variable
longer than tape record length.
(Only applicable to systems using
ultiNet). UltiNet error code; see
UltiNet User Guide for specifics.

Figure B. Values Returned by the Error Function: SYSTEM(O)

BASIC Reference Page 269 statements/Functions

TAN
Function

The TAN trigonometric function returns the tangent of an
angle expressed in degrees.

The general form of the TAN function is:

TAN (expression)

The expression specifies the number of degrees in an angle.
The TANGENT function returns the tangent of the angle.

In the following summary M is used to denote the largest
allowable number in BASIC, which is 14,073,748,835.5327 with
PRECISION 4.

FUNCTION RANGE DESCRIPTION

COS (X) -M <= X <=M Returns the cosine of
an angle of X degrees.

SIN (X) -M <= X <= M Returns the sine of
an angle of X degrees.

TAN (X) -M <= X <= M Returns the tangent
of an angle of X degrees.

LN(X) ° <= X <= M Returns the natural (base e)
logarithm of the expression X.

EXP (X) -M <= RESULT <= M Raises the number 'e'
(2.7183) to the value of X.

PWR(X,Y) -M <= RESULT <= M Raises the first expression
to the power denoted by
the second expression.

Figure A. Summary of Trigonometric Functions

BASIC Reference Page 270 Statements/Functions

TIME
Function

The TIME function returns the internal time of day.

The general form of the TIME function is:

TIME ()

This function returns the internal time of day. The internal
time is the number of seconds past midnight. For example:

x = TIME ()

This statement assigns the internal time to variable X.

TIME ()

Figure A. General Form of TIME Function

CORRECT USE

A = TIME ()

EXPLANATION

Assigns current internal time
to variable A.

IF TIME() > 100 THEN GOTO 10 Branches to label 10 if more
than 100 seconds have passed
since midnight.

Figure B. Examples of Correct Usage of TIME Function

BASIC Reference Page 271 Statements/Functions

TlMEDATE
Function

The TIMEDATE function returns the current time and date in
external format.

The general form of the TIMEDATE function is:

TIMEDATE ()

The TIMEDATE function returns the string value containing the
current time and date in external format. This format is:

HH:MM:SS DD MMM YYYY

where: HH=hours
MM=minutes
SS=seconds
DD=day
MMM=month
YYYY=year

For example, the following statement assigns the string value
of the current time and date to variable B:

B = TIMEDATE ()

The string value assigned to variable B could then be, for
example:

"08:30:23 06 MAY 1985"

TIMEDATE ()

Figure A. General Form of TIMEDATE Function

CORRECT USE

PRINT TIMEDATE()

EXPLANATION

Prints the current time and date
in the external format.

Figure B. Example of Correct Usage of TIMEDATE Function

BASIC Reference Page 272 statements/Functions

TRIM
Function

The TRIM function removes extraneous blank spaces from a
specified string.

The general form of the TRIM function is:

TRIM (expression)

The expression specifies the string to be trimmed. The TRIM
function deletes preceding, trailing, and redundant blanks
from the expression. For example:

A=" GOOD MORNING, MR. BRIGGS"
A=TRIM(A)
PRINT A

The PRINT statement will print:

GOOD MORNING, MR. BRIGGS

TRIM(expression)

Figure A. General Form of TRIM Function

CORRECT USE

N=" SMITH
M = TRIM(N)

JOHN "

EXPLANATION

Where N is the above string
variable, assigns to variable M
a string consisting of the name
SMITH, 1 blank, a comma, one
blank, and the name JOHN.

Figure B. Example of Correct Usage of TRIM Function

BASIC Reference Page 273 statements/Functions

UNLOCK
statement

The UNLOCK statement, in conjunction with the LOCK statement,
provides a file and execution lock capability for BASIC
programs. The UNLOCK statement releases the specified
execution lock(s) set by the LOCK statement.

The general form of the UNLOCK statement is:

UNLOCK {expression}

The value of the expression is an integer between 0 and 47,
inclusively, that specifies which execution lock is to be
released (cleared). If the expression is omitted, then all
execution locks which were previously set by the program will
be released.

The UNLOCK statement operates in conjunction with the LOCK
statement, which sets an execution lock. (Please refer to
the LOCK statement, listed alphabetically in this chapter.)

Execution locks may be used as file locks to prevent multiple
BASIC programs from updating the same files simultaneously.
The ULTIMATE system provides 48 execution locks numbered from
o through 47.

Once a LOCK statement has set an execution lock, it can be
released only by the same program that set it.

An attempt to UNLOCK an execution lock which the program did
not LOCK has no effect. All execution locks set by a program
will automatically be released upon termination of the
program, even if it is terminated by the END command from the
BASIC Debugger.

The following is an example of the complete execution lock
capability: Process A sets execution lock 42 before
executing a non-reentrant section of code (that is, code
which should not be executed by more than one process
simultaneously). Process B executing the same program reaches
the "LOCK 42" instruction, but cannot lock that section of
code until Process A has unlocked 42. Thereby, the code is
rendered non-reentrant.

BASIC Reference Page 274 Statements/Functions

UNLOCK {expression}

Figure A. General Form of UNLOCK statement

CORRECT USE

UNLOCK 47

UNLOCK

UNLOCK (5+A)*(B-2)

EXPLANATION

Resets execution lock 47.

Resets all execution locks
previously set by the program.

The current value of the expression
(5+A)*(B-2) specifies which
execution lock is released.

Figure B. Examples of Correct Usage of UNLOCK Statements

BASIC Reference Page 275 Statements/Functions

UNTIL
statement

The UNTIL statement is an optional statement within the
FOR/NEXT or LOOP statement sequences.

The general form of the UNTIL statement is:

UNTIL expression DO statements

Please refer to the FOR statement or the LOOP statement for
information about the entire statement sequence.

BASIC Reference Page 276 statements/Functions

WEOF
statement

The WEOF statement writes an end of file mark on a magnetic
tape. The tape unit is as specified by the most recent T-ATT
command executed at the TCL level.

The general form of the WEOF statement is:

WEOF {THEN statements} {ELSE statements}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

The WEOF statement writes two EOF marks on the magnetic tape
on the "current" unit, then backspaces over the second one.
This correctly positions the tape for subsequent WRITET
operations. The THEN statements, if any, are then executed.
A tape unit must have been previously attached; if it is
subsequently set off line, the system detects the condition
and allows the user to correct it and proceed.

If this statement is the first tape instruction (READT,
REWIND, WEOF, or WRITET) in the BASIC program, the tape unit
must have previously been attached. If the tape unit has not
been attached, then the ELSE statements, if any, will be
executed, and the system function SYSTEM(O) will return a
value of 5 (tape off line) or 6 (cartridge not formatted
correctly for this operating system revision) . (Please refer
to the SYSTEM function, listed alphabetically in this
chapter, for an alternative to printing error messages.)

If, however, the tape drive is adversely set to off line
after the first tape instruction, the system allows the user
to correct the condition. When a subsequent tape instruction
is processed, the system displays:

Tape drive off line (C)ontinue/(Q)uit:

If C is entered, the system returns to the BASIC program and
the-tape instruction is re-executed. If Q is entered, the
BASIC program is aborted and control returns to TCL. (Thus,
the ELSE statements are not executed in either case, and the
BASIC program has no way to detect such adverse action.

IMPORTANT: The tape drive should never be put off line while
it is running under the control of any tape operation (BASIC,
T-LOAD, T-DUMP, etc.) By doing so, the tape drive may lose
its momentum and the tape read/write head may not be aligned
with the current data block on tape. Even though the system
allows the user to (C)ontinue, it is not guaranteed that
valid data is then read or written.

Note: The WEOF statement is used in conjunction with the
READT, WRITET, and REWIND statements. (For additional
information, see each statement listed alphabetically in this

BASIC Reference Page 277 statements/Functions

chapter.) See the ULTIMATE System Commands manual for more
information on the T-ATT command.

WEOF {THEN statements} {ELSE statements}

Figure A. General Form of WEOF Statement

CORRECT USE

WEOF ELSE STOP

EXPLANATION

writes two EOF marks, then
backspaces over the second one.

Figure B. Examples of Correct Usage of WEOF Statement

BASIC Reference Page 278 Statements/Functions

WI~
statement

The WHILE statement is an optional statement within a
FOR/NEXT or LOOP statement sequence.

The general form of the WHILE statement is:

WHILE expression DO statements

Please refer to the FOR statement or LOOP statement for
information about the entire statement sequence.

BASIC Reference Page 279 statements/Functions

WRITE
statement

The WRITE statement is used to update a file item. It also
unlocks the item if it was initially locked.

The general form of the WRITE statement is:

WRITE expression ON {file-var,} item-id {ON ERROR stmt}

The WRITE statement replaces the contents of the item
specified by the item-id expression with the string value of
the first expression. If the item-id expression specifies an
item which does not exist, then a new item will be created.
The optional file-var specifies the file variable; if it is
used, the item will be replaced in the file previously
assigned to that variable via an OPEN statement. If the
variable is omitted, then the internal default file variable
is used (i.e., the file most recently opened without a file
variable) .

The following statements, for example, replace the current
contents of the item named XYZ in the file opened and
assigned to variable F5 with the string value "THIS IS AN
EXAMPLE" :

VALUE = "THIS IS AN EXAMPLE"
WRITE VALUE ON F5,"XYZ"

Alternatively, this example may have been specified as
follows:

WRITE "THIS IS AN EXAMPLE" ON F5,"XYZ"

The user should note that the BASIC program will abort with
an appropriate error message if the specified file has not
been opened prior to the execution of the WRITE statement.
(Refer to run-time error messages in Appendix B.)

The statement(s) after ON ERROR, if present, are executed
only if the file (1) is a remote file (accessed via UltiNet)
and (2) cannot be written on due to a network error
condition. In this case, the value of SYSTEM(O) will
indicate the UltiNet error number. (Refer to the SYSTEM
function, listed alphabetically in this chapter; for more
information about remote files, refer to the UltiNet User's
Guide.) The ON ERROR clause has no effect when writing to
local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the UltiNet error number and take appropriate

BASIC Reference Page 280 Statements/Functions

action. Such action could, for instance, include printing
the associated message text via a PUT statement or STOP
statement, and resuming or terminating program execution. For
more information, see the PUT and STOP statements, listed
alphabetically in this chapter.

If a remote file cannot be written to due to network errors,
the program may terminate with an error message if no ON
ERROR clause is present.

The WRITE statement unlocks the item lock associated with the
item being written, if it was initially locked. Item locks
may be set with the READU, READVU, or MATREADU statements to
prevent simultaneous updates of the same item by more than
one program. For more information on item locks, please see
the READU, READVU, or MATREADU statements, listed
alphabetically in this chapter.

BASIC Reference Page 281 Statements/Functions

WRITE expression ON {file-var,} item-id {ON ERROR statements}
I I
I I

I replacement I
I value I

Ifile I
I variable I

Figure A. General Form of WRITE statement

CORRECT USE EXPLANATION

WRITE "XXX" ON A, "ITEM5" Replaces the current contents of item
ITEM5 (in the file opened and assigned
to variable A) with string value "XXX".

A=/l123456789"
B="X55"
WRITE A ON FN1,B

WRITE 100*5 ON "EXP"

WRITE 10*5 ON "EXP"
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GO TO TOP

END

Replaces the current contents of item
X55 (in the file opened and assigned
to variable FN1) with string value
"123456789".

Replaces the current contents of item
EXP (in the file opened without a file
variable) with string value "500".

ON ERROR Writes the string value "50" to item
EXP, as above, or retrieves error
number and performs local subroutine
on UltiNet error number.

Figure B. Examples of Correct Usage of WRITE Statement

BASIC Reference Page 282 Statements/Functions

\

A
Iii!
I~

)

WRITET
statement

The WRITET statement writes a record on magnetic tape. The
tape unit and record length (block size) on the tape is as
specified by the most recent T-ATT statement executed at the
TCL level.

The general form of the WRITET statement is:

WRITET expression {THEN statements} {ELSE statements}

Either the THEN clause or the ELSE clause may be omitted, but
not both; at least one of them must be present.

The WRITET statement writes the string value of the
expression, if non-null, onto the next record of the
"current" magnetic tape unit. If the length of the string is
less than the current tape block size, the tape record
(block) will be padded with trailing blanks. If the length
of the string is greater than the current block size, the
record will be truncated to the current block size and
trailing characters in the string will not be written; in
this case a warning message will be printed on the terminal,
and the system function SYSTEM(O) will return a value of 4.
After the write operation, the THEN statements, if any, are
executed.

If the string value of the expression is the empty string
("), then the ELSE statements, if any, are executed, and the
system function SYSTEM(O) will return a value of 3. If the
tape unit has not been attached, the ELSE statements, if any,
are executed. For example:

WRITET A ELSE STOP

This writes the string value of A onto the tape. If A is the
empty string or no tape is attached, the program terminates.
(See below for the exception to this procedure.)

A tape unit must have been previously attached; if it is
subsequently set off line, the system detects the condition
and allows the user to correct it and proceed.

If this statement is the first tape instruction (READT,
REWIND, WEOF, or WRITET) in the BASIC program, the tape unit
must have been previously attached. If the tape unit has not
been attached, then the ELSE statements, if any, will be
executed, and the system function SYSTEM(O) will return a
value of 5 (tape off line) or 6 (cartridge not formatted
correctly for this operating system revision). (Please refer
to the SYSTEM function, listed alphabetically in this
chapter.)

NOTE: Refer to the SYSTEM Function for an alternative to
printing the error messages.

BASIC Reference Page 283 Statements/Functions

If, however, the tape drive is adversely set to off line
after the first tape instruction, the system allows the user
to correct the condition. When a subsequent tape instruction
is processed, the system displays:

Tape drive off line (c)ontinue/(Q)uit:

If C is entered, the system returns to the BASIC program and
the-tape instruction is re-executed. If Q is entered, the
BASIC program is aborted and control returns to TCL. (Thus,
the ELSE statements are not executed in either case, and the
BASIC program has no way to detect such adverse action.)

IMPORTANT: The tape drive should never be put off line while
it is running under the control of any tape operation (BASIC,
T-LOAD, T-DUMP, etc.) By doing so, the tape drive may lose
its momentum and the tape read/write head may not be aligned
with the current data block on tape. Even though the system
allows the user to (C)ontinue, it is not guaranteed that
valid data is then read or written.

Note: The WRITET statement is used in conjunction with the
READT, WEOF, and REWIND statements. (For additional
information, see each statement listed alphabetically in this
chapter.) See the System Commands manual for more
information on the T-ATT command.

WRITET expression {THEN statements} {ELSE statements}
!
!

!value is written onto tape record!

Figure A. General Form of WRITET Statement

CORRECT USE

FOR I=l TO 5
WRITET A(I) ELSE STOP
NEXT I

EXPLANATION

The values of array elements A(l)
through A(5) are written onto 5
tape records. If one of the
array elements has a value of "
(or if the tape unit is not
attached, the program will
terminate) .

Figure B. Example of Correct Usage of WRITET Statement

BASIC Reference Page 284 statements/Functions

WRITEU
statement

The WRITEU statement writes a file item. The item remains
locked after execution of the WRITEU statement. The letter
"U" is appended to the statement name to imply "update", not
"unlock".

The general form of the WRITEU statement is:

WRITEU expression ON {file-var,} item-id {ON ERROR stmt}

The WRITEU statement functions the same as the WRITE
statement except for the locking feature. It does not unlock
the item lock, if it was initially locked, after completing
the write operation. This variation on the WRITE statement
is used primarily for master file updates when several
transactions are being processed and an update of the master
item is made following each transaction update.

If the item is not locked before the WRITEU statement is
executed, it will be locked afterwards. For more information
on item locks, please see the READU, READVU, or MATREADU
statement, listed alphabetically in this chapter.

NOTE: The RELEASE statement can be used to unlock the item.
(Please refer to the RELEASE statement, listed alphabetically
in this chapter.)

WRITEU expression ON {file-var,} item-id {ON ERROR stmt}

Figure A. General Form of WRITEU statement

CORRECT USAGE EXPLANATION

WRITEU CUST.NAME ON CUST.FILE,ID Replaces the current contents
of the item specified by
variable ID (in the file
opened and assigned to
variable CUST.FILE) with the
contents of CUST.NAME. Does
not unlock the item.

WRITEU CUST.NAME ON CUST.FILE,ID ON ERROR GOTO PROCESSERR
Writes as above, or branches
to local subroutine to
process UltiNet error number.

Figure B. Example of Correct Usage of WRITEU Statements

BASIC Reference Page 285 Statements/Functions

WRITEV
statement

The WRITEV statement is used to write a single attribute value
to an item in a file. The item is unlocked if it was previously
locked.

The general form of the WRITEV statement is:

WRITEV expression ON {file-var,} item-id, attr#
{ON ERROR statements}

The value of expression replaces the current value of the
attribute number specified by attr# (attribute number
expression), in the item specified by the item-id expression.
If a file-var is specified, the update is to the file previously
assigned to that variable via an OPEN statement. If the
file-var is omitted, then the internal default file variable
will be used (i.e., the file most recently opened without a file
variable) .

If a non-existent item name (or attribute number) is specified,
then a new item (or attribute) will be created. If a new
attribute is created, all attributes between it and the former
last attribute will be null.

The statement(s) after ON ERROR, if present, are executed only
if the file (1) is a remote file (accessed via UltiNet) and (2)
cannot be written on due to a network error condition. In this
case, the value of SYSTEM(O) will indicate the UltiNet error
number. (Refer to the SYSTEM function, listed alphabetically in
this chapter: for more information about remote files, refer to
the UltiNet User's Guide.) The ON ERROR clause has no effect
when writing to local files.

The ON ERROR clause may be on a single line or on multiple
lines. If multiple lines are used, the clause must be
terminated by an END statement as in the multi-line IF
statement.

The purpose of the ON ERROR clause is to allow the program to
retrieve the ultiNet error number and take appropriate action.
Such action could, for instance, include printing the associated
message text via a PUT statement or STOP statement, and resuming
or terminating program execution. For more information, see the
PUT and STOP statements, listed alphabetically in this chapter.

If a remote file cannot be written on due to network errors, the
program may terminate with an error message if no ON ERROR
clause is present.

Consider this example:

Xl = "XXX"
WRITEV Xl ON A2,"ABC",4

BASIC Reference Page 286 statements/Functions

These statements replace the 4th attribute of item ABC (in the
file opened and assigned to variable A2) with the string value
"XXX".

The WRITEV statement will also allow the attribute number to
have a value of either zero or minus one, thus inserting data
prior to the first attribute or following the last attribute,
respectively. For example:

WRITEV XX ON FILE, ITEM-ID, AMC

When AMC=O, the attribute XX is inserted at the begining of the
item. All attributes in the item are shifted by 1 attribute and
the attribute XX becomes attribute 1.

When AMC = -1, the attribute XX is appended to the end of the
item. The number of attributes in the item increases by 1 and
all previously existing attributes are undisturbed.

The WRITEV statement unlocks the item lock associated with the
item being updated, if it was initially locked. Item locks may
be set with the READU, READVU, or MATREADU statements to prevent
simultaneous updates to the same item by more than one program.
For more information on item locks, please see the READU,
READVU, or MATREADU statement, listed alphabetically in this
chapter.

The BASIC program will abort with an appropiate error message if
the specified file has not been opened prior to the execution of
the WRITEV Statement.

BASIC Reference Page 287 Statements/Functions

Ifile variable I litem name I lattribute number I

I I
I I I

WRITEV expression ON {file-var,} item-id,attribute# {ON ERROR stmt}
I
I

I replacement value I

Figure A. General Form of WRITEV statements

CORRECT USAGE

Y="THIS IS A TEST"
WRITEV Y ON X,"PROG",O

WRITEV "XYZ" ON "A7",4

WRITEV "XYZ" ON "A7",4 ON ERROR
ERRNUM=SYSTEM(O)
GOSUB PROCESSERR
GOTO TOP

END

EXPLANATION

The string value "THIS IS A TEST"
is inserted prior to the first
attribute of item PROG in the file
opened and assigned to variable X.

Attribute 4 of item A7 (in the
file opened without a file
variable) is replaced by
string value "XYZ".

writes as above, or retrieves
error number and performs local
subroutine on UltiNet error
number.

Figure B. Examples of Correct Usage of WRITEV Statements

BASIC Reference Page 288 Statements/Functions

WRITEVU
statement

The WRITEVU statement writes an attribute value to a file
item. The item remains locked after execution of the WRITEVU
statement.. The letter "U" is appended to the statement name
to imply "update", not "unlock".

The general form of the WRITEVU statement is:

WRITEVU expression ON {file-var,} item-id, attr#
{ON ERROR statements}

The WRITEVU statement functions the same as the WRITEV
statement except for the locking feature. It does not unlock
the item lock, if it was initially locked, after completing
the write operation. This variation on the WRITEV statement
is used primarily for master file updates when several
transactions are being processed and an update of the master
file item is made following each transaction update.

If the item is not locked before the WRITEVU statement is
executed, it will be locked afterwards. For more information
on item locks, please see the READU, READVU, or MATREADU
statements, listed alphabetically in this chapter.

NOTE: The RELEASE statement can be used to unlock the item.
(Please refer to the RELEASE statement, listed alphabetically
in this chapter.)

WRITEVU expression ON {file-var,} item-id, attr# {ON ERROR statements}

Figure A. General Form WRITEVU Statement

CORRECT USAGE EXPLANATION

WRITEVU CUST.NAME ON CUST.FILE,ID,3 Replaces the third attribute
of item ID (in the file opened
and assigned to variable
CUST.FILE with the contents of
variable CUST.NAME. Does not
unlock the item.

WRITEVU NAME ON CFILE,ID,3, ON ERROR GOTO PROCERR
writes as above, or branches
to local subroutine to process
UltiNet error number.

Figure B. Example of Correct Usage of WRITEVU Statement

BASIC Reference Page 289 Statements/Functions

NOTES

BASIC Reference Page 290 Statements/Functions

)

CHAPTER 4

TESTING AND DEBUGGING BASIC PROGRAMS

4.1 BASIC Symbolic Debugger
Figure A. Summary of BASIC Debugger Features and

Commands

4.2 The Symbol Table

4.3 Displaying Source Code: Land Z Commands
Figure A. General Form of Land Z Commands

4.4 The Trace Table: T and U Commands
Figure A. Trace Table Commands

4.5 Breakpoint Table: Band K Commands
Figure A. Breakpoint Table Commands
Figure B. Correct Examples of Band K Commands

4.6 Displaying Tables: D Command
Figure A. Sample Output from a D Command

4.7 Execution Control: E, G, and N Commands
Figure A. Examples of E, N, and G Commands

4.8 Execution Control: END and OFF Commands

4.9 Displaying and Changing Variables: the / Command
Figure A. Examples of the / Command

4.10 Special Commands
Figure A. Summary of Special BASIC Debugger Commands

4.11 Example of
Figure A.
Figure B.

BASIC Reference

Using the BASIC Debugger
Sample Program
Sample of Terminal Session Using
BASIC Symbolic Debugger

Page 291 Debugging

4.1 BASIC Symbolic Debugger

The BASIC symbolic Debugger facilitates the debugging of new
BASIC programs and the maintenance of existing BASIC
programs.

The BASIC Debugger may be entered at execution time by 1)
depressing the BREAK key or 2) using the 'D' (debug) option
with the RUN verb. It is also entered automatically under
some error conditions. Once the BASIC Debugger has been
entered, it will indicate the source code line number about
to be executed and will prompt for commands with an asterisk
(*) as opposed to the Assembly Debugger prompt: '1' and the
TCL prompt: '>'.
The user has at his disposal the following general
capabilities:

1. Controlled stepping through execution of program by
way of single or multiple steps.

2. Transferring control to a specified step (line number).

3. Breaking (temporary halting) of execution on
specified line number(s) or on the satisfaction of
specified logical conditions.

4. Displaying and/or changing any variable(s),
including dimensioned array variables.

5. Tracing variables.

6. Conditional entry to the Assembly Debugger.

7. Directing output (terminal/printer).

8. Stack manipulation (displaying and/or popping the
stack).

9. Displaying of specified (or all) source code line(s).

NOTE: Variables cannot be referenced in programs compiled
with the S option, which inhibits saving the symbol table.
Line numbers cannot be referenced in programs compiled with
the C option, which inhibits saving end-of-line markers in
object code. (In this case, the BASIC Debugger views the
program as one single "line".)

Figure A shows a summary of the symbolic Debugger features
and related commands. The following sections describe in
detail the commands and their use.

BASIC Reference Page 292 Debugging

During program test runs, SYS2 privileges are required for
all commands other than G, END, and OFF. This prevents users
from making unauthorized changes to data during reporting and
data entry.

BASIC DEBUGGER FEATURE

1. Set breakpoint on logical condition where '0'
is logical operator <,>,=,#; 'v' is variable;
'c' is condition to meet; or In' is line number
where preceded by B$o.

2. Display breakpoint table
3. Escape to Assembly Debugger
4. Single/multiple step execution
5. End program execution and return to TCL
6. Proceed from breakpoint

to specified line In'
7. Remove all breakpoints

specified breakpoint In'
8. Display source code current line

In' number of lines from current one
number of lines from m-n
all lines

9. switch output from terminal to printer/
from printer to terminal

lO.Clear debug entry delay counter
Delay entry until In' breakpoints/steps
encountered

11. Logoff
12.Inhibit/enable output
13.Printer-close output to spooler
14.Pop return stack

Display return stack
15.Turn trace table on/off

Trace specified variable 'v'
16.Remove all traces

specified trace
17.Request source (if not in same file/same name)
18.Display current program name and line number;

verify object code
19.Print value of variable 'v'

of element 'x' in array 'm'
of element 'x,y' in matrix 'm'
of entire array 'm'
entire symbol table

20.Set window
remove window setting

RELATED COMMAND

Bvoc{&voc}
B$on

D
DEBUG or DE
En
END
G
Gn
K
Kn
L
Ln
Lm-n
L*
LP

N

Nn
OFF
P
PC
R
S
T
TU}v
U
UU}v
z

$ or ?
/v
/m(x)
/m(x,y)
/m
/*
[x,y]
[

Figure A. Summary of BASIC Debugger Features and Commands

BASIC Reference Page 293 Debugging

4.2 The Symbol Table

The symbol table is used to reference variables.

The symbol table contains all variable names defined in a
program. It is automatically stored with the object code
when the program is compiled (unless suppressed by the'S'
option). The BASIC Debugger can retrieve the value of a
variable from the symbol table by use of the / command. (For
details, please refer to section 4.8, Displaying and changing
Variables: the / Command).

BASIC Reference Page 294 Debugging

(

4.3 Displaying Source Code: Land Z Commands

The L command displays one or more lines of source code from
the same file as the object code program. The Z command
allows the user to display the source code to the BASIC
program when the source is located outside the object code
program file or is stored under a different program name.

L command

The L command displays source code. The general form is:

L{m-{n}} {*}

If the form L is used, only the current line is displayed. If
the form Ln is used, then the line number specified by n is
displayed. If the form Lm-n is used, then the line number
range specified by m-n is displayed. If the form L* is used,
then all lines in the source program is displayed.

The Z command is used when the source code is from another
file or stored under a different program name. The form of
the Z command is:

z

The BASIC Debugger then displays the following message:

File/prog name?

The user then enters the filename and the program name
(item-id), separated by a blank. If the file and program are
found, the BASIC Debugger returns with a prompt (*). If the
program is not found, the message "No Source" is displayed
before returning to the prompt. If either the filename or
program name is not specified, or the filename is invalid,
the "File/prog name?" message is repeated until a valid
filename and program name are entered, or a carriage return
<CR> is entered, aborting the Z command.

L{m-{n}} Displays program source lines specified by
values of m and n.

L* Displays all source lines of a program.

Z Prompts for source code filename and program
name.

Figure A. General Form of Land Z Commands

BASIC Reference Page 295 Debugging

4.4 The Trace Table: T and U Commands

The trace table is used for the automatic printout of a
specified variable or variables after a break has occurred.

Each program and external subroutine has its own trace and
breakpoint tables. This allows the programmer to set up
different break points and/or variable traces for different
subroutines.

Up to six variables may be entered in the trace table
associated with each program or external subroutine. The
values of these variables will be printed whenever an
execution break occurs. These breaks occur if the BREAK key
is pressed, or a breakpoint is encountered, or after each of
'n' statements is executed where 'n' is a non-zero number
specified with the E command. (For details on the E command,
see section 4.7, Execution Control.)

The trace table may be alternately turned on and off by use
of the T command. If the command is accepted, a plus sign is
printed next to it. If the variable does not exist or the
wrong symbol table is assigned, the message 'Sym not fnd' is
displayed.

Examples of use of the trace table are shown below:

T{/}var

T

The value of the 'variable' will be printed out
at each execution break.

Turns trace off if it was on, or turns trace on
if it was off. The word 'ON' or 'OFF' will be
displayed.

The U command is used to delete variables from the trace
table. A minus sign is printed next to the command to
indicate that an entry has been removed. Its two forms are:

U{/}variable

U

Deletes variable from the trace table

Deletes the entire trace table.

The D command is used to display the trace and breakpoint
tables for the currently executing program or external
subroutine. (For details, please refer to Section 4.6.)

BASIC Reference Page 296 Debugging

TNAME Sets a trace for variable 'NAME'

TDISC(2) Sets a trace for the second element of the
array DISC. Note that only individual array
elements may be traced.

T Turns trace on or off.

D Displays the trace and breakpoint tables.

UNAME Deletes the variable NAME from the trace table.

U Deletes all variables from the trace table.

Figure A. Trace Table Commands

BASIC Reference Page 297 Debugging

4.5 Breakpoint Table: Band K Commands

The breakpoint table is used to establish conditions that
will cause a break in program execution for test purposes.

The B command sets breakpoints, and the K command kills
(removes) breakpoints. The breakpoint table for each program
or external subroutine may contain up to four conditions, any
one of which will, when satisfied, cause a break in
execution. Logical expressions are used to set the break
conditions.

The general form of the B command is:

B condition(s)

The logical operators and special symbols used to set the
break conditions are:

< less than
> greater than
= equal to
not equal to
& a logical connector between conditions (AND).
$ a special symbol to specify a line number condition

The basic forms of breakpoint are shown below:

B variable-name operator expression {& another condition}

B $ operator line-number {& another condition}

where variable-name is a simple variable or an explicitly
stated array element and expression is a variable, constant,
or array element. If the variable does not exist the message
"Sym not fnd" will be printed. string constants must be
enclosed in quotes using the same rules that apply to BASIC
literals. Consider the following examples:

BTAX=500 Indicates that an execution break should occur
when the value of TAX is equal to 500.

B$>15&X=3 Causes program to break when the line number
is greater than 15 and if X is equal to 3.

A plus sign will be printed next to the command if it is
accepted. When the condition is met, an execution break will
occur and the debugger will halt execution of the program and
print:

*Bn m

where n is one of the 4 breakpoint table entries and m is the
program line number that caused the break. -

The D command is used to display the trace and breakpoint

BASIC Reference Page 298 Debugging

\
)

tables for the currently executing program or external
subroutine. (For details, please refer to section 4.6.)

The K command is used to delete breakpoint conditions from
the table. A minus sign will be printed next to the command
to indicate that an entry has been removed. The command has
two forms:

Kn Deletes the 'n'th breakpoint condition where In' is
in the range 1-4. All other breakpoints
remain the same.

K Deletes all breakpoint conditions.

Bvariable-name operator expression

Sets breakpoint(s) by condition of a variable

B$ operator line-number

Sets breakpoint(s) by condition of a line-number

D Displays the trace and breakpoint tables

Kn Deletes specified breakpoint

K Deletes all breakpoints

Figure A. Breakpoint Table Commands

CORRECT USAGE EXPLANATION

BX<42 Sets a break condition to halt
execution when X is less than 42.

BADDRESS=' , Breaks when ADDRESS is null.

BDATE=INV.DATE&$=22 Breaks when variable DATE is equal to
variable INV.DATE and if the line
number is 22.

K2 Kills the second breakpoint
condition.

BPRICE(3)=24.98

K

Sets a break condition to halt
execution when the third element of
the array PRICE is equal to 24.98.
Only individual array elements may be
specified.

Kills all breakpoint conditions.

Figure B. Correct Examples of Band K Commands

BASIC Reference Page 299 Debugging

4.6 Displaying Tables: D command

The D command is used to display the trace and breakpoint
tables.

The general form of the D command is:

D

This command displays all trace and breakpoint tables for the
currently executing program or external subroutine.

Up to six trace tables and four breakpoint tables can be
displayed.

Figure A shows sample output from a D command.

Tl TKN
T2 LINE
T3 ADDR
T4
T6
T6
Bl $=356
B2 ADDR>lOO
B3
B4

Figure A. Sample Output from a D Command

BASIC Reference Page 300 Debugging

4.7.Execution Control: E, G, and N Commands

The commands E, G, and N, in conjunction with the breakpoint
table, control the execution of the program under debug
control.

The general forms of the E command are:

En will execute In' lines and then cause an execution
break.

E execution continues until interrupted by the user,
by a breakpoint, or until the program ends.

The En form allows execution of In' lines in the program
before causing an execution break. This condition will be
overridden if any entry in the breakpoint table is satisfied,
which also causes an execution break. The E form turns off
the E function so that breaks will occur only if an entry in
the breakpoint table is satisfied or the BREAK key is
pressed.

The general forms of the N command are:

Nn bypass In' execution breaks

N do not bypass execution breaks

The Nn form causes the BASIC Debugger to proceed through In'
execution breaks before printing a prompt and returning
control to the user. The variables being traced will still
be printed at each breakpoint. The N form resets this
function so that control is passed to the user on every
execution break.

The general forms of the G command are:

Gn go to line number In'

G go to next line number

linefeed go to next line number

The Gn form specifies that execution is to resume on that
line number within the program. If the line number specified
is greater than the number of lines within the program, the
message 'Nstat' is displayed. The G form specifies that
execution is to resume with the very next line in the
program. The linefeed command is equivalent to G with no In'
option. In any case, control is returned to the user when a
condition in the breakpoint table, if any, is satisfied or
when the BREAK key is pressed.

BASIC Reference Page 301 Debugging

E

El

E4

N

N2

G

G37

Turns the 'E' function off

Only one line of the program is executed at a time

Four lines of the program are executed before an
execution break returns control to the user.

Returns Debugger to the single execution break mode
(normal mode).

Allows two execution brea~s to pass before
returning control back to the user.

Program execution is resumed at the very next line
in the program.

Execution is resumed at line 37 of the program.

Figure A. Examples of E, Nand G commands

BASIC Reference Page 302 Debugging

(
\

/

4.8 Execution Control: END and OFF Commands

The END command allows for program termination and the OFF
command logs the user off.

The general form of the END command is:

END

This will terminate program execution and return the user to
TCL.

The general form of the OFF command is:

OFF

This will terminate program execution and will log the user
off.

BASIC Reference Page 303 Debugging

4.9 Displaying and Changing variables: the / Command

Variables and arrays can be displayed and changed in either
decimal or string formats during program execution.

The general forms of the I command are:

Iv where v is variable name

1* displays all variables

where v is a variable name. The variable may be a simple
variable, array name, explicitly stated array element or a
COMMON variable. If the variable does not exist, then the
message 'Sym not fnd' is displayed. If the variable is found,
the value is displayed and the user will be prompted with an
equals (=) sign. A new value may then be entered, followed
by a carriage return. All values are entered as strings
(without surrounding quotes). Entering a carriage return
alone causes the variable to retain its current value. If
displaying an entire array, each element is displayed until
all elements are exhausted or the BREAK key is pressed.

The form 1* will display all variables, but no changing of
the values of the variables is permitted.

Figure A shows examples of using the I command.

I NAME

IY(3)

/X(2,3)

IZ

1*

Displays the value of the variable NAME.

Displays the value of the third element of
the array Y.

Displays the value of the 4th row, 5th column
of the dimensioned array X (a matrix) .

Displays the value of each element of the
array z.
Displays the values of all variables in the
program. No changing of these values is
permitted.

Figure A. Examples of the I command.

BASIC Reference Page 304 Debugging

4.10 Special Commands

special commands allow the user to control input/output,
display of program name and line number, and to pass control
to the Assembly Debugger.

P command

The P command suppresses all output from the program to the
terminal so that the user may look at only the Debugger
output. Any subsequent P commands issued will toggle this
function and the words 'Off' or 'On' will be printed next to
the command.

LP command

The LP command, which is similar to a PRINTER ON command in
BASIC, sends all output to the printer. Any subsequent LP
commands issued will toggle this function and the words 'Off'
or 'On' will be printed next to the command.

PC command

The PC command is the same as the PRINTER CLOSE command in
BASIC. Normal printer output is held until the program
finishes execution, but by using the 'PC' command, the user
forces printing of data that is waiting to be outputted.

? command and $ command

Either the ? command or the $ command may be used to display
the current program or external subroutine name and current
line number, and to perform a check-sum calculation to verify
the integrity of the object code.

[] command

The general form of the [] (string window) command is:

[s,l]

where s is the starting character position and 1 is the
number-of characters. This command will cause the values of
all variables printed by the BASIC Debugger to be limited to
the specified sUbstring or "window". Setting I to 0 has the
same effect as entering the [command.

[command

The [command resets the effect of a previous [] command,
causing values of variables to be printed in their entirety.

DEBUG command

The DEBUG (or DE) command passes control to the Assembly
Debugger. The Assembly Debugger G or line-feed commands may

BASIC Reference Page 305 Debugging

be used to return to the BASIC Debugger. (For more
information about the Assembly Debugger, please refer to the
Assembly Language Manual.)

P

LP

PC

? or $

[s,lJ

[

DE{BUG}

Suppression of program terminal output. Debugger
output is not affected. Additonal P's toggle this
command.

All program output is to the printer. Additional
LP's toggle this command.

Forces printing of output data prior to program
termination.

Displays program name and current line number.

Sets string window as specified by values of
sand 1.

Resets string window

Passes control to the Assembly Debugger.

Figure A. Summary of Special BASIC Debugger Commands

BASIC Reference Page 306 Debugging

)

)

4.11 Example of Using the BASIC Debugger

This section shows a sample of using the BASIC Debugger.

Figure A is the BASIC program source listing and Figure B is
a sample of using the BASIC Debugger.

The text <CR> indicates the user pressing the carriage
return.

TEST3
001 A=123456.7891
002 B='THIS IS A STRING'
003 DIM X(3)
004 X(1)=123456
005 X(2)='HELLO THERE'
006 X(3)=0
007 PRINT A,B
008 PRINT X(1),X(2),X(3)
009 END

Figure A. Sample Program

BASIC Reference Page 307 Debugging

Dialogue

>RUN BP TEST3 (D)

*El

Explanation

Run program with 'D' option to break
before first line is executed.

Indicates execution halted before line 1.

*/X <CR> X(l) O=<CR> Unasgn var Display array X. Did not change any
X(2) O=<CR> Unasgn var elements; value is zero since no lines
X(3) O=<CR> Unasgn var have been executed. Variable not changed.

*B$=5 <CR> +
*G <CR>
*Bl 5

*/X(l) <CR> 123456 <CR>
*TX(2) <CR> +
*El <CR>
*G <CR>
*E6

X(2) HELLO THERE
*G <CR>
*E7

X(2) HELLO THERE

*E <CR>
*$ <CR> BP TEST3 L 7

object verifies
*/A <CR> 123456.7891= <CR>

*p <CR> Off
*B$=lO <CR> +
*D <CR>
Tl X(2)
T2
T3
T4
T5
T6
Bl $=5
B2 $=10
B3
B4

*Kl <CR> 1 -

Break when line number is 5.
Go
Indicates break condition satisfied;
about to execute line 5.

Display X(l). Leave unchanged.
Trace X(2). Print at each break.
Set single step. Break at each statement.
Go
Indicates execution break caused by Eli
program is about to execute line 6.

X(2) automatically displayed by trace.
Go
Indicates execution break caused by Eli
program is about to execute line 7.

X(2) automatically displayed by trace.

Set execution to normal mode. El off.

Find what line is about to be executed.
Display variable A. Leave unchanged.

Turn terminal print off.
Break when line number is 10.
Display trace and break tables

Kill first break condition ($=5).

*/A <CR> 123456.7891=356.71<CR> Display variable A; change to 345.71.
*/A <CR> 356.71 <CR> Display variable A. Leave unchanged.
*END <CR> End execution of program.

Figure B. Sa~ple of Terminal Session Using BASIC Symbolic Debugger

BASIC Reference Page 308 Debugging

CHAPTER 5

REFERENCE FOR PROGRAMMERS

5.1 Understanding the ULTIMATE System File Structure
Figure A. Diagram of Item in a Data File
Figure B. Sample of an ULTIMATE File: Dictionary/Data

5.2 Programming Techniques for Handling I/O
Figure A. Sample I/O Loop

5.3 Programming Considerations about I/O for Network Users

5.4 Programming Techniques for Handling File Items

5.5 Techniques for Cursor Positioning

5.6 Programming for Maximum System Performance

5.7 Programming Example: PRIME
Figure A. Sample Run of PRIME

5.8 Programming Example: COLOR
Figure A. Sample Run of COLOR

5.9 Programming Example: POOOO (File Update)
Figure A. Sample Terminal Output

5.10 Programming Example: ITEMS.BY.CODE (Use of Job Control)
Figure A. Sample Terminal Output

5.11 Programming Example: SUMMARY.REPORT (Menu/Report)
Figure A. Sample Menu

BASIC Reference Page 309 Programming

5.1 Understanding the ULTIMATE System File Structure

The ULTIMATE system's file structure is unlike that of
conventional indexed or sequential files. An ULTIMATE file
is divided into two main parts: the dictionary and the data
portion, both of which can be accessed by a BASIC program.
In both portions, individual records (items) are retrieved
through random access by record key (item identifier, or
"item-id"). within a record, multiple values can be stored
in a single field. A program can access any level of data
within a record: attributes (fields), values, and subvalues.

ULTIMATE data files are designed for flexibility with
efficient use of system resources. Each file is composed of
two parts: a dictionary section that may be used to define
the attributes (fields) of the file, and a data section that
contains one item (record) for each instance of data (e.g.,
each customer in a Customer file).

Many BASIC programs work with ULTIMATE data files to access
and retrieve, or maintain and update, information. The
ULTIMATE BASIC language is designed to allow programmers to
access and update any level of data: dictionary, records
(items), attributes, values, and subvalues.

A typical data file contains items having a common format.
In a Customer File, for example, each item may contain a
customer name in the first attribute, a corresponding
customer address in the second attribute, one or more invoice
numbers in the third attribute, and so on. This file
structure may be defined explicitly by a set of items
(attribute definition items) in the dictionary of the
Customer File, but this is not required.

The dictionary is a reference tool, but does not need to be
read by a BASIC program unless needed. If the relative
position of the data within items (the structure of the file)
is already known, the program can directly access data (such
as customer names) by attribute number. If only the
attribute name is known, the dictionary can be searched for
the attribute name, and the associated number can be
extracted for use in the program.

Attribute definition items in dictionaries are almost always
created in a standard format for use with system software
such as Recall and UPDATE. For more information on the use
of dictionaries, please refer to the ULTIMATE Recall and
UPDATE manuals.

Each record in a file is identified by its item-id, which is
the name of the item as well as the value of its key field.
All data in an item, including the item-id, is in character
(string) format; each attribute, value, and subvalue is
variable in length and is delimited by special characters
known as system delimiters. The format of an item is also
called a dynamic array.

BASIC Reference Page 310 Programming

Handling System Delimiters

The ULTIMATE system uses three levels of field data:
attributes, values, and subvalues. Figure A shows a sample
of attributes, values, and subvalues within a file.

The ULTIMATE system uses standard attribute, value, and
subvalue delimiters. For efficiency and minimalization of
errors, these should be defined once in the initialization
portion of a program with = (Assignment) or EQUATE
statements, and then referenced by variable name:

AM = CHAR(254) or EQUATE AM TO CHAR(254) Attribute Mark
VM = CHAR(253) or EQUATE VM TO CHAR(253) Value Mark

SVM = CHAR(252) or EQUATE SVM TO CHAR(252) Subvalue Mark

A delimiter mark is inserted in the file at the end of the
data it marks. For the user's ease of reading, these special
characters are usually shown as special symbols:

AM is shown as an up-arrow (A), as in NAMEA
VM is shown as a right bracket (]) as in 100]
SVM is shown as a backslash (\) as in 1\2\

In addition, a fourth delimiter, Segment Mark, is used
internally by the system to mark the end of every string
referenced by a BASIC program. Consequently, no BASIC
program can refer to a Segment Mark character, usually
abbreviated SM. The value of a Segment Mark in BASIC would
be CHAR(255); it is sometimes shown as an underscore or
back-arrow () as in XYZ. However, when discussing data
which is understood to be delimited by a Segment Mark, the
(trailing) SM is often not shown, as in the following
examples.

Figure B shows a sample file with attributes, values, and
subvalues. Note that only one delimiter is needed between
data elements. A subvalue is delimited by "\" if another
subvalue within the current value follows, or by "]" if
another value follows, or by IIAII if an attribute follows, or
by II ". A value is delimited by "J" if another value
follows, or by IIAII if an attribute follows, or by II ". An
attribute can only be delimited by an attribute mark IIAII, or
by " "

BASIC Reference Page 311 Programming

DATA FILE RECORD

MARSHASTAFFA2500]7535 A500\300]400\200\5Al\2\3
I I I I I I I I I I
I I I I I I I I attribute 5 has
I I I I I I I I 1 value containing
I I I I I I attribute 4 has 3 subvalues
I I I I I I 2 values, 1 with
I I I I I I 2 s/v, 1 with 3 s/v
I I I I attribute
I I I I 3 has 2 values
I I attr2
attrl

Figure A. Diagram of Item in a Data File

CUSTOMER FILE
DICTIONARY

Attribute 1: NAME
Attribute 2: ADDRESS
Attribute 3: INVOICES

DATA

SMITHA225 ELMAI00]200 A
WOLFERA941 CHAPELA3\2]10 A .. .

Figure B. Sample of an ULTIMATE File: Dictionary/Data

BASIC Reference Page 312 Programming

5.2 Programming Techniques for Handling I/O

The ULTIMATE BASIC statements for file access and update
(I/O) reflect and accommodate the ULTIMATE file structure.

The following BASIC statements are used for I/O; each has a
particular purpose and "correct" usage:

Name Purpose and Usage

OPEN to open a file; required for any I/O functions

CLOSE to close a file; recommended for UltiNet users

SELECT to create a select list containing the item-ids
of all records in a specified file or the
attributes of a specified dynamic array

READNEXT to sequentially retrieve item-ids from a select
list so that the actual record can be read from
file

READ(U) to read a record specified by an item-id (key)
into a variable

MATREAD(U) to read a record specified by an item-id (key)
into a dimensioned array

READT to read the next record on magnetic tape; note
that tape can only be read sequentially, record
by record.

READV(U) to read a specified attribute number in a record
specified by an item-id (key) into a variable.
NOTE: This statement should only be used when a
single attribute is to be accessed from an item.

DELETE to delete a record with a specified item-id

MATWRITE(U) to write a record with a specified item-id from
a dimensioned array

WRITE(U) to write a record specified by an item-id (key)
from a variable

WRITET to write the next sequential record to tape

WRITEV(U) to write a specified attribute number from a
variable to that attribute in a record specified
by an item-id (key). NOTE: This statement
should only be used when a single attribute is
to be written to an item.

RELEASE to unlock item lock(s) set by the program

CLEARFILE to delete all data items in a file

BASIC Reference Page 313 Programming

File Handling

The OPEN statement is very time consuming and should be
executed as few times as possible. All files should be opened
to file variables at the beginning of the program; access to
the files can then be performed by referencing the file
variables.

Item Selection - Select Lists

To access an item (record) in a file, a BASIC program must
specify the item-id (key). A program cannot sequentially
read through each record in a file without specifying the
keys. It can, however, create a list of item-ids, and then
use READNEXT statements in conjunction with READ statements
to access items in the order specified by the list. The
item-id list is called a "select list", and may be either
generated within a program or set up ahead of time before the
program is run.

The READNEXT statement is designed to sequentially retrieve
item-ids from a select list, thereby making them available
for a subsequent READ statement. The READNEXT statement
requires a select list to be available. Select lists can be
created by a SELECT statement in BASIC or a (S)SELECT command
in Recall. The BASIC SELECT statement does not use any
selection criteria; all items/elements are included on the
list. The (S)SELECT Recall command, however, is very
flexible; it can select (and sort, if desired) items
according to a condition(s) that a specified attribute(s)
must meet. The list usually contains only item-ids, but it
can contain attributes and values as well.

Before running a BASIC program, items can be selected and
sorted according to user specifications, creating a select
list of just the item-ids (not the entire records). The
select list can then be used by the program to retrieve only
the file records needed for processing. The Recall (S)ELECT
command can also be used in an EXECUTE statement to generate
a select list from within a BASIC program, instead of prior
to running the program.

Figure A shows a simple sequence of statements to process all
items in a file.

Using Recall SELECT Commands

The Recall SELECT and SSELECT commands allow sophisticated
pre-processing of a file due to selection criteria which the
user may specify in order to retrieve only those items
meeting certain conditions. The SSELECT command, moreover,
allows access to items in a sorted sequence. For example:

SSELECT CUST BY DATE BY AMOUNT WITH CITY="LOS ANGELES"
OR "NEW YORK"

BASIC Reference Page 314 Programming

\ ,

This statement sorts into date sequence (ascending order) the
items in CUST representing customers in Los Angeles or New
York. If more than one item has the same DATE, these items
are sorted into AMOUNT sequence (ascending order) .

A Recall (S)SELECT command can be executed from the terminal
at the TCL level, or within a PROC, immediately before
running a BASIC program. Or, the (S)SELECT command can be
included within the BASIC program by inserting it in an
EXECUTE statement. (For details, please refer to the EXECUTE
statement, listed alphabetically in Chapter 3.)

If the (S)SELECT command is outside the program, the same
program could be used to produce different results, depending
on the selection criteria and, consequently, the items
selected. The program itself would not need to be modified.

A simple example of this versatility would be a program to
calculate and report information based on dates, company
departments, months, quarters, product lines, etc. Only the
relevant data for each report would be handed to the program
for processing.

More than one select list can be created within a BASIC
program. For example:

SELECT CUST TO NAMES
SELECT INV TO ORDERS

Both statements could be in one program. The CUST select
list is assigned to variable NAMES, the INV list to ORDERS.
Both can be accessed by using these READNEXT statements:

READNEXT CUST FROM NAMES
READNEXT INV FROM ORDERS

OPEN INV ELSE STOP
SELECT

10 READNEXT REC ELSE STOP
READ A FROM REC
process
WRITE A ON REC
GOTO 10

Figure A. Sample I/O Loop

BASIC Reference Page 315 Programming

5.3 Programming Considerations about I/O for Network Users

Network users should consider the UltiNet system properties
when creating programs that may involve remote file access.

For single Ultimate systems, all file access and other I/O
tasks involve only "local" files that are directly connected
to the system. For network users, however, files may be
shared between Ultimate systems via the UltiNet network
equipment. This means that files are passed across physical
cables and/or modems and telephone lines, with the attendant
possibility of errors in the file transfer process.

The ultiNet equipment can identify a wide variety of error
conditions, and is set up to notify the system that requests
a file whenever a network error prevents a successful file
transfer operation. It is the responsibility of the
application (i.e., the BASIC program), however, to retrieve
the specific error information and act upon it. (If no
provision is made for processing network errors, the program
may abort to the Debugger after displaying the error
message.)

ULTIMATE BASIC allows programs to identify network errors and
specify the actions to be taken. The BASIC statements that
involve disk I/O functions (see section 5.2 for a listing)
all have an optional clause called ON ERROR that allows the
program to specify what actions should be taken in case of a
network error. The BASIC SYSTEM(O) function has been set up
to return the error number generated by the UltiNet equipment
as soon as the ON ERROR routine is entered. The PUT and STOP
statements allow a program to print a message associated with
a specified error number, assuming the error number has been
retrieved.

Network users, then, have a number of options when
programming applications that may involve remote file access.
It is recommended that:

1. All I/O statements include an ON ERROR clause;

2. The ON ERROR statement(s) use the SYSTEM(O)
function to retrieve the current error number;

3. Statements such as PUT or STOP are used to
display the error number and associated text
before either resuming the program or
terminating its execution.

BASIC Reference Page 316 Programming

5.4 programming Techniques for Handling File Items

When a record has been read into a variable (or array), any
level of data can be retrieved, changed, and updated in the
file. An item may contain up to three levels of data:
attributes, values, and subvalues.

The method of accessing specific values in an item depends on
how the item has been stored. For example, assume that the
file called CUST has an item called 1234 with these
attributes:

1234 (NUMBER~ the key/item-id)
1 STERN (LAST-NAME)
2 JEFF (FIRST-NAME)
3 125 MORNINGSIDE (ADDRESS)
4 ORANGE (CITY)
5 92667 (ZIP)
6 10]12 (ORDERS)

Assume further that the following BASIC statements have been
executed:

OPEN 'CUST' TO FVAR ELSE STOP 201, 'CUST'
SELECT FVAR
READNEXT REC FROM FVAR ELSE PRINT 'DONE';STOP

At this point REC = 1234. The next statement reads the item:

READ A FROM FVAR,REC ELSE GOTO 9999

After the READ, the item is stored in variable A:

A = STERNAJEFFA125 MORNINGSIDE AORANGEA92667 AIO]12

Several methods are available to access the attributes in
this variable. Another assignment statement could be used:

LAST.NAME = A<l>

Angle brackets enclose the attribute number. If a value is
to be assigned, the angle brackets would enclose the
attribute number and value number; for example:

VAL = A<6,2>

would assign the second value of the sixth attribute to the
variable VAL.

The assignment statement could use an intrinsic function to
do the same operation:

LAST.NAME = EXTRACT(A,l)

A number of intrinsic functions are available for file update
functions. Other functions besides EXTRACT are REPLACE,

BASIC Reference Page 317 Programming

INSERT, and DELETE. (For details, please refer to the
appropriate function, listed alphabetically in Chapter 3.)

An array string can be built from two or more attributes:

NAME = 'STERN':CHAR(254):'JEFF'

To write an updated item to the file, a WRITE statement may
be used:

WRITE A ON FVAR,REC ELSE GOTO 8888

Using Dimensioned Arrays

Another way of handling a file item is to read it into a
dimensioned array. This allows the system to assign each
attribute into its own addressable variable for updating. A
DIM or COMMON statement is used to dimension an array; it
must precede the associated I/O statements: MAT READ and
MATWRITE.

Assume again that REC = 1234. The following statements:

DIM A (6)
MATREAD A FROM FVAR,REC ELSE GOT a 9999

result in the assignment to array A of the following:

A (1) = STERN
A (2) = JEFF
A (3) = 125 MORNINGSIDE
A(4) = ORANGE
A(5) = 92667
A(6) = 10]12

Each attribute is then accessed by its corresponding dynamic
array element:

LAST.NAME = A(l)

An assignment statement for A(l):

A(l) = "STEER"

would change the original value of the LAST.NAME attribute.

When an item read with MATREAD is ready for updating, a
MATWRITE statement may be used:

MATWRITE A ON FVAR,REC

BASIC Reference Page 318 Programming

Dealing with an Unknown Number of Values

The DCOUNT intrinsic function may be used to determine the
number of values (including null values) in an attribute.
For example:

VM=CHAR(253); *OR EQUATE VM TO CHAR(253)
READV ATTR FROM ID, ATTNO ELSE STOP
VALCOUNT=DCOUNT(ATTR,VM)
FOR 1=1 TO VALCOUNT

PRINT ATTR<l,I>
NEXT I

BASIC Reference Page 319 Programming

5.5 Guidelines for CUrsor Positioning

The @ function should be used so that the correct control
characteristics are sent to the terminal regardless of
terminal type, which is specified by the TERM command.

Cursor positioning should be controlled by the following
PRINT statements using the @ Functions. These functions are
detailed in Chapter 3; see the @ Function.

PRINT @ (-1)
PRINT @(-2) =
PRINT @(-3) =
PRINT @(-4) =
PRINT @(-5) =
PRINT @(-6) =
PRINT @(-7) =
PRINT @(-8) =
PRINT @(-9) =
PRINT @(-10) =
PRINT @(-11) =
PRINT @(-12) =
PRINT @(-13) =
PRINT @(-14) =
PRINT @(-15) =

PRINT @(-16) =
PRINT @(-17) =
PRINT @(-18) =
PRINT @(-19) =
PRINT @(-20) =
PRINT @(-21) =
PRINT @(-22) =
PRINT @(-23) =
PRINT @(-24) =
PRINT @(-25) =
PRINT @(-26) =
PRINT @(-27) =
PRINT @(-28) =
PRINT @(-29) =

BASIC Reference

ERASE SCREEN
HOME
CLEAR TO END OF SCREEN
CLEAR TO END OF LINE
START BLINK
STOP BLINK
START PROTECT
STOP PROTECT
CURSOR LEFT 1 CHARACTER
CURSOR UP 1 LINE
CURSOR DOWN 1 LINE
CURSOR RIGHT 1 CHARACTER
ENABLE AUXILIARY (SLAVE) PORT
DISABLE AUXILIARY (SLAVE) PORT
ENABLE AUXILIARY (SLAVE) PORT IN
TRANSPARENT MODE
INITIATE SLAVE LOCAL PRINT
START UNDERLINING
STOP UNDERLINING
START INVERSE VIDEO
STOP INVERSE VIDEO
DELETE LINE
INSERT LINE
SCROLL SCREEN UP 1 LINE
START BOLDFACE TYPE
STOP BOLDFACE TYPE
DELETE ONE CHARACTER
INSERT ONE BLANK CHARACTER
START INSERT CHARACTER MODE
STOP INSERT CHARACTER MODE

Page 320 Programming

5.6 Programming for Maximum System Performance

The size of programs can be reduced, with a corresponding
increase in overall system performance, by reducing the
amount of literal storage. The allocation of variables can
also affect system performance. Operations should be
pre-defined rather than repetitively performed.

Minimizing Program Size

An example of handling literal storage is the following:

200 PRINT 'RESULT IS ':A+B
210 PRINT 'RESULT IS ':A-B
220 PRINT 'RESULT IS ':A*B
230 PRINT 'RESULT IS ':A/B

These statements should have been written as follows:

MSG = 'RESULT IS'

200 PRINT MSG:A+B
210 PRINT MSG:A-B
220 PRINT MSG:A*B
230 PRINT MSG:A/B

variable Allocation

variables are allocated space in the descriptor table as they
are defined in a program. The most frequently used variables
and COMMON variables should be defined at the beginning of a
program. To prevent needless wasted storage space, it is
recommended that standard variable names be agreed upon
within your user group.

BASIC Reference Page 321 Programming

Avoiding Repetitive Operations

As an example of handling repetitive operations, this
statement:

X=SPACE(9-LEN(OCONV(COST,'MCA'») :OCONV(COST, 'MCA')

should have been written as follows:

E=OCONV(COST, 'MCA')
X=SPACE(9-LEN(E»:E

In the same context, the following operation:

FOR 1=1 TO X*Y+Z(20)

NEXT I

should have been written as follows:

TEMP=X*Y+Z(20)
FOR 1=1 TO TEMP

NEXT I

BASIC Reference Page 322 Programming

5.7 Programming Example: PRIME

This program finds prime numbers.

Figure A shows a sample run which finds the prime number
closest to 44.

* * TEST A NUMBER TO SEE IF IT IS PRIME.
* IF IT IS NOT, FIND THE SMALLEST PRIME NUMBER
* GREATER THAN THE ORIGINAL NUMBER.

* PRINT
PRINT 'Enter # to test ':
INPUT NUM

10 NULL
IF REM(NUM,2) = 0 THEN PRINT NUM: ' is even!'; NUM=NUM+l

20 NULL
FOR N=3 TO SQRT(NUM) STEP 2

IF REM(NUM,N) = 0 THEN
PRINT NUM: ' is divisible by ':N
NUM = NUM+2
GOTO 20
END

NEXT N
PRINT NUM: ' is prime! '
STOP
END

>RUN BP PRIME

Enter # to test ?44

44 is even!
45 is divisible by 3
47 is prime!

>

Figure A. Sample Run of PRIME

BASIC Reference Page 323 Programming

5.8 Programming Example: COLOR

This program allows a user with an ADDS viewpoint Color
(terminal type C) terminal to set the screen foreground and
background colors.

Figure A shows a sample run which selects a green foreground
on a black background.

* * PROGRAM TO SELECT FOREGROUND AND BACKGROUND COLORS
* FOR VIEWPOINT COLOR TERMINALS
* EQU AM TO CHAR(254)
C= , X' : AM: 'B' : AM: 'c' : AM: 'R' : AM: 'M' : AM: 'w' : AM: 'Y' : AM: 'G'
D='Black' :AM: 'Blue' :AM: 'Cyan' :AM: 'Red' :AM: 'Magenta' :AM:

'White' :AM: 'Yellow' :AM: 'Green'
AMC=DCOUNT(C,AM)
FOR I=l TO AMC
PRINT C<I>: ' - '~D<I>
NEXT I
* PRINT 'Foreground Color
INPUT F
PRINT 'Background Color
INPUT B
* PRINT CHAR(27) : '7@' :F:B
END

>RUN BP COLOR

X - Black
B - Blue
C - Cyan
R - Red
M - Magenta
W - White
Y - Yellow
G - Green
Foreground Color ?G
Background Color ?X

' . .
' :

Exhibit A. Sample Run of COLOR

BASIC Reference Page 324 Programming

5.9 Programming Example: POOOO (File Update)

This program uses terminal input to update a master file.

Figure A shows a sample of the terminal display.

* *** UPDATE PROM MASTER FILE

* DIM P(5)
EQU BELL TO CHAR(7), FPMSK TO '4N'
CLRL=@(-4); CLR=@(-l); L15='L#15'
TL=CLR:@(12,1):'*** CCARM Corp- Prom Master Update ***':
@(70,1):'POOOO':@(4,4):'Enter Prom Part Number: '
PROMPT' ,
PS=@(0,12):CLRL:BELL
PRMPT=@(0,12) :CLRL:"Enter Line # to change/'D' to delete item/-NL­
to update"
SCR=' COMPANY: 'L15: 'PROM WIDTH;'L15:'PROM DEPTH: 'L15:
'F/P CODE: 'L15: 'FILL CHAR:'L15

* OPEN 'PROMMASTER' TO PM ELSE STOP 201, 'PROMMASTER'
10 FLG1=0; PRINT TL:; INPUT PID

IF PID = "END" ! PID=" THEN STOP
MATREAD P FROM PM,PID ELSE MAT P=' '; FLG1=1 ;
***FLGl = ITEM NOT ON FILE
FOR W=l TO 5
PRINT @(0,W+5):W'R##. ':SCR[(W-l)*15+1,15]:P(W)
NEXT W
IF FLGl THEN GO 200

100 PRINT PRMPT:; INPUT ANS
IF ANS=" THEN MATWRITE P ON PM,PID; GO 10
IF ANS='D' THEN DELETE PM,PID; GO 10
IF ANS>O AND ANS<6 THEN W=ANS; GO 210
GO 100

* 200 * ADD NEW ITEM *
FOR W=l TO 4

210 PRINT @(19,W+5):CLRL:; INPUT peW)
BEGIN CASE
CASE P(W)='B'

W=W-l; IF W=O THEN GO 10 ELSE GO 210
CASE W=2

IF P(2)#4 & P(2)#8 THEN
PRINT PS: 'Must be a 4 or 8 in this field'; GO 210

END
CASE W=3

IF NOT(NUM(P(3») THEN
215 PRINT PS:'Invalid response, must be decimal/K units'

GO 210
END

IF REM(P(3),32)#0 THEN GO 215
CASE W=4

IF NOT(P(4) MATCH FPMSK) THEN
PRINT PS: 'Must be 4 decimal digits'; GO 210
END

BASIC Reference Page 325 Programming

CASE W=5
IF P(5)#0 & P(5)#"F" THEN

PRINT PS: 'Must be "0" or "F" '; GO 210
END

END CASE
IF NOT(FLG1) THEN GO 100
NEXT W
FLG1=0 ; * ITEM NOW EXISTS
GO 100

CCARM Corp - Prom Master Update

Enter Prom Part Number: 222

1. Company:
2. Prom width:
3. Prom Depth:
4. F/P Code:
5. Fill Char:

POOOO

Enter Line # to change/'D' to delete item/-NL- to update

Figure A. Sample Terminal Output

BASIC Reference Page 326 Programming

5.10 Programming Example: ITEMS. BY. CODE (Use of Job Control)

This program illustrates the use of the EXECUTE statement to create a
job control application. The operator enters a dictionary code for
searching the current account's master dictionary. The application
displays a sorted and numbered list of master dictionary items that
have the specified dictionary code. The application can then be re-run
or ended.

Figure A shows a sample of the program's output to the terminal.

*** PROGRAM USING THE EXECUTE STATEMENT***

* OPEN "DICT","MD" TO MD ELSE

END

PRINT "CAN'T OPEN THE FILE CALLED MD"
STOP

CLEAR = @ (-1)
CES = @(-3)
CEL = @(-4)

100 PRINT "ENTER THE DICTIONARY CODE FOR THE SEARCH OR 'END' ":CES:
INPUT CODE
IF CODE = "" OR CODE = 'END' THEN STOP
XXX = ""
ID = ""
* SELECT THE FILE
* PUT SELECT LIST IN VARIABLE ID
* ERROR MSG IN VARIABLE XXX

* EXECUTE 'SSELECT MD WITH D/CODE = "': CODE: ' " , ,
IISELECT. > ID, IIOUT. > XXX

IF XXX[2,3] = "401" THEN
PRINT "NO DICTIONARY ITEMS FOR CODE ":CODE
PRINT @(O,22):
GOTO 100

END
PRINT CLEAR:
PRINT "MASTER DICTIONARY ITEMS WITH A DICTIONARY CODE OF - ":CODE
I = 1
X = a ; Y = 2
LONGEST = a
* PRINT THE ITEM ID'S WITH SEQUENCE NUMBERS
LOOP WHILE ID<I> # "" DO

IF Y = 21 THEN

END

X = X + 5 + LONGEST
Y = 2
LONGEST = a

IF X + LEN(ID<I» + 3 > 79 THEN
PRINT @(0,22) :"I NEED TO CLEAR THE SCREEN TO DISPLAY":CES:
PRINT" THE REMAINING ITEMS, "
PRINT" PRESS <RETURN> TO CONTINUE, OR (C)ANCEL ":
INPUT ANS:
IF ANS[l,l] = "C" THEN PRINT @(O,22): ; GOTO 100
PRINT @(O,2) :CES:

BASIC Reference Page 327 Programming

END

x = 0

END

Y = 2
LONGEST = 0

PRINT @(X,Y):I 'R##':" n:ID<I>
IF LEN(ID<I» > LONGEST THEN LONGEST = LEN(ID<I»
I = I + 1
Y = Y + 1

REPEAT
PRINT @(0,22):
GOTO 100
STOP

MASTER DICTIONARY ITEMS WITH A DICTIONARY CODE OF - Q

1 ACC 20 QFILE
2 ALPHA 21 SYSLIB
3 AREA 22 WORDS
4 BARB 23 ZIP
5 BBP
6 BLOCK
7 CHANNEL
8 COMMS
9 ERRMSG
10 INV.A
11 INV.B
12 INVENTORY
13 INV-PROSPECT
14 LEADS
15 MAIL. FILE
16 NEXT
17 PROCLIB
18 PROSP
19 PUB

ENTER THE DICTIONARY CODE FOR THE SEARCH OR 'END'?

Figure A. Sample Terminal Output

BASIC Reference Page 328 Programming

5.11 Programming Example: SUMMARY.REPORT (Menu/Report Generator)

This program illustrates sample coding from a menu-driven set of report
generation programs. The operator selects the desired report option
from a "D&B Prospect Selector" menu, which is produced by a PROC. The
PROC calls the appropriate application to print the selected report.
The application prints the report and returns to the PROC to re-display
the menu.

Figure A shows the menu of reports. The BASIC program listing below
contains the coding for the "Summary Prospect Report" option. An
abbreviated listing of a subroutine called GET. CRITERIA, which is
called by SUMMARY. REPORT, is included below the main program.

NOTE: In the program below, some lines are too long to fit within the
margins of this document. A right arrow symbol (--» is used to
signify that the same program line is continued on the next display
line, indented ten spaces.

*** PROGRAM TO PROMPT OPERATOR FOR STATE CODES, COUNTY CODES,
*** SIC CODES, AND SALES VOLUME. PROGRAM WILL ALLOW UP TO
*** TEN DIFFERENT REPORT CRITERIA TO BE SET UP BEFORE THE
*** REPORTS ARE GENERATED

COMMON STATES,COUNTIES,SALES,SIC.CODES,SIC.SELECT,SORT.BY
COMMON TITLE,NAME,FLAG
PROMPT' ,
DIM REPORTS (11)
MAT REPORTS = "
REPORT = 1

100 PRINT @(-1):@(10,0):"Selective Prospect Summary Report -->
Report #":REPORT:

*** CALL SUBROUTINE TO PROMPT FOR SELECTION CRITERIA

CALL GET. CRITERIA
IF FLAG = 'X' THEN GO 100
IF FLAG = ,-, THEN GO 900

800 *** BUILD REPORT RECALL STATEMENT

REPORTS (REPORT) = "SORT USC.PROSPECT "
REPORTS (REPORT) = REPORTS: " WITH STATE"
IF STATES = "ALL" THEN GO 810
X = 1
LOOP

STATE = STATES<X>
UNTIL STATE = " DO

REPORTS (REPORT) REPORTS(REPORT):' "':STATE: '" ,
X = X + 1

REPEAT
810 REPORTS (REPORT) = REPORTS(REPORT):" AND WITH COUNTY-CODE"

IF COUNTIES = "ALL" THEN GO 820
X = 1
LOOP

~ COUNTY = COUNTIES<X>

BASIC Reference Page 329 Programming

820
830

UNTIL COUNTY = I I DO
REPORTS (REPORT) = REPORTS(REPORT): I "':COUNTY: I" I
X = X + 1

REPEAT
REPORTS (REPORT) = REPORTS (REPORT) : I AND WITH SALES >= "':SALES:
REPORTS (REPORT) = REPORTS(REPORT):" AND WITH"
IF SIC. SELECT = "P" THEN

REPORTS (REPORT) = REPORTS(REPORT):" PRIMARY-SIC"
END ELSE

REPORTS (REPORT) = REPORTS(REPORT):" SIC-CODES"
END
IF SIC. CODES = 'ALL' THEN GO 840
X = 1
LOOP

FROMSIC = SIC.CODES<X,l>
TOSIC = SIC.CODES<X,2>

UNTIL FROMSIC = II DO
IF X > 1 THEN REPORTS (REPORT) = REPORTS (REPORT) :" OR II
REPORTS (REPORT) = REPORTS(REPORT):I >= III:FROMSIC:IIII
REPORTS (REPORT) = REPORTS (REPORT) : I AND <= "I: TOSIC: I" I
X = X + 1

REPEAT

I " I

840 ***
BEGIN CASE

CASE SORT.BY = 1
REPORTS (REPORT) REPORTS(REPORT):" BY ZIP BY COMPANY"

CASE SORT.BY = 2
REPORTS (REPORT) = REPORTS(REPORT):" BY COMPANY"

CASE SORT.BY = 3
REPORTS (REPORT) = REPORTS(REPORT):" BY PRIMARY-SIC BY COMPANY"

END CASE
REPORTS (REPORT) = REPORTS(REPORT):" COMPANY OFFICER TELEPHONE -->

DMI-LINE SALES "
REPORTS (REPORT) = REPORTS(REPORT):' HEADING" I:" 'T' -->

D&B Prospect Report for - ":NAME
REPORTS (REPORT) = REPORTS(REPORT):" Page Ipi -->

I C I I L I I L I ": TITLE:" I C I I L I I L I ": I " I
REPORTS (REPORT) = REPORTS(REPORT): "DBL-SPC ID-SUPP LPTR "

900 *** BUILD ANOTHER REPORT?

REPORT = REPORT + 1
IF REPORT > 10 THEN GO 1000

910 PRINT @(5,23) :"Do you wish to generate another report (YIN)? -->
":@(51,23):; INPUT RSP,l:

PRINT @(51,23):SPACE(2):
PRINT @(51,23) :RSP:
IF RSP = IXI THEN

REPORT = REPORT - 1
IF REPORT < 1 THEN REPORT = 1
GO 100

END
IF RSP = lyl THEN GO 100
IF RSP # 'NI THEN GO 910

1000 *** EXECUTE REPORTS

BASIC Reference Page 330 Programming

'I
/

)

PRINT @(-1):@(10,0):nNow processing reports ...•. n
REPORT = 1
LOOP

STATEMENT = REPORTS(REPORT)
UNTIL STATEMENT = " DO

PRINT i PRINT
PRINT STATEMENT
EXECUTE STATEMENT
REPORT = REPORT + 1

REPEAT
STOP
END

SUBROUTINE GET. CRITERIA
COMMON STATES, COUNTIES, SALES, SIC. CODES, SIC. SELECT, SORT. BY
COMMON TITLE,NAME,FLAG
FLAG = "

200 *** GET STATES

X = 1
STATES = "
PRINT @(5,2):nEnter State code - n:

202 PRINT @(21+(X*3),2):n## n:@(21+(X*3),2):i INPUT STATE,3:
PRINT @(21+(X*3),2):SPACE(3):
IF STATE = 'X' OR STATE = 'END' THEN

IF X = 1 THEN STOP
FLAG = '_I
GO 799

END
IF STATE = " THEN GO 300
IF STATE = '_I AND X > 1 THEN

PRINT @(21+(X*3),2):SPACE(3):
STATES = DELETE(STATES,X,O,O)
STATES = DELETE(STATES,X-1,0,0)
X = X - 1
GO 202

END
PRINT @(21+(X*3),2):STATE 'L#3':
IF STATE = 'ALL' THEN STATES = 'ALL'i GO 300
IF NOT(STATE MATCHES '2A') THEN GO 202
STATES = REPLACE(STATES,X,O,O,STATE)
X = X + 1
IF X > 12 THEN GO 300
GO 202

300 *** GET COUNTY CODE

400 *** GET MINIMUM SALES VOLUME

BASIC Reference Page 331 Programming

500 *** GET SIC CODE RANGES

600 *** SELECT ON PRIMARY SIC CODES OR ALL SIC CODES

700 *** GET FREE FORM HEADING

730 *** GET OPERATORS NAME

750 *** GET SORT CRITERIA

PRINT @(5,21):"Sort by 1) Zip 2) Company name 3) SIC code # ": -->

@(51,21):; INPUT SORT.BY,l:
PRINT @(51,21):SPACE(1): -
IF SORT.BY = 'X' OR SORT.BY = 'END' THEN FLAG 'X'; GO 799
IF SORT.BY = " THEN GO 750
IF SORT.BY = '_I THEN GO 730
IF SORT.BY < 1 OR SORT.BY > 3 THEN GO 750
PRINT @(51,21):SORT.BY 'R#l':

799 *** RETURN
*** RETURN

BASIC Reference Page 332 Programming

)

'\
)

D&B Prospect Selector

1) Detailed Prospect Report

2) Summary Prospect Report

3) Prospect Label Print

4) Detailed, Summary, and Label Print

5) User instructions

88) Exit to 'TCL'

99) Logoff

Enter option - _

BASIC Reference

Figure A. Sample Menu

Page 333 Programming

NOTES

BASIC Reference Page 334 Programming

, ,
)

APPENDIX A

BASIC COMPILER ERROR MESSAGES

This appendix presents a list of the error messages which may occur
as a result of compiling a BASIC program. The error number and
message are printed in bold-faced type. The cause and explanation
(if needed) are in regular type.

ERROR#

BIOO

BIOI

BI02

BI03

BI04

BIOS

BI06

BI07

BI09

BIIO

BIll

Bl12

ERROR MESSAGE AND CAUSE

Compilation aborted; no object code produced
compilation errors present.

Ambiguous ELSE clause
Statement with optional ELSE clause used in
single-line IF statement.

Bad statement
Unrecognizable statement.

Label 'label' is missing
Label indicated by GOTO or GOSUB was not found or
MATREAD statement uses simple variable instead of
dimensioned array.

Label 'label' is doubly defined
More than one statement was found beginning with the
same label.

'variable' has not been dimensioned
Subscripted variable was not dimensioned.

'variable' has been dimensioned and used without
subscripts

Dimensioned array used without subscripts.

LOOP statement nested too deep
LOOP statement nested within too many outer LOOP
statements.

Variable missing in NEXT statement
Iteration variable from FOR statement is missing in
NEXT statement.

END statement missing
The END statment is missing in a multi-line IF
statement, or invalid use of END statement.

EXIT used outside of LOOP statement
EXIT statement not between LOOP and REPEAT

REPEAT missing in LOOP statement
REPEAT is missing in a LOOP statement.

BASIC Reference Page A- I Appendix

ERROR#

Bll3

Bll4

Bll5

Bll6

Bll7

Bll8

Bll9

Bl20

Bl2l

Bl22

Bl24

Bl25

Bl26

Bl27

ERROR MESSAGE AND CAUSE

Terminator missing
Garbage is following a legal statement, or a quote
is missing.

Maximum number of variables exceeded
More than 3200 variables (including array elements)
used.

Label 'label' is used before the EQUATE stmt.
The symbol is referenced before it has been defined.

Label 'label' is used before the COMMON stmt.
A common variable is referenced before it is put in
common.

Label 'label' is missing a subscript list
A dimensioned array is referenced without a
subscript list.

Label 'label' is the object of an EQUATE statement and is
missing

Variable after TO clause in EQUATE statement has not
been declared or used elsewhere in program.

Warning - precision value out of range - ignored
A precision not in the range of 0-9.

Warning - multiple precision statements - ignored
More than one precision statement was found.

Label 'label' is a constant and cannot be written into
The symbol after EQUATE has been assigned a constant
value (literal number or string), but also is used
as the obj ect of an assignment statement. The
symbol cannot be both a constant and a variable in
the same program.

Label 'label' is improper type
Expression after TO in EQUATE is illegal.

Label 'label' has literal subscripts out of. range
Array subscript less than 1 or greater than value in
DIM statement.

No source statements found; no object code produced
Null source item.

ELSE clause missing
Required ELSE clause missing.

NEXT missing
NEXT statement is missing in FOR-NEXT loop.

BASIC Reference Page A- 2 Appendix

")

)

ERROR #

Bl28

Bl29

Bl99

B220

ERROR MESSAGE AND CAUSE

Item 'name' not found
Object of $INCLUDE or $CHAIN directive is missing.

Illegal: program name same as dictionary item name
program file dictionary already contains an item
(other than object code pointer) with the same name
as the program.

Source file must have separate DIeT and DATA sections
Program file data section defined as same as
dictionary section.

'CSYM' is not a file name or needs a data level
File CSYM not properly defined on the account for
cross-reference purposes.

BASIC Reference Page A- 3 Appendix

APPENDIX B

BASIC RUN-TIME ERROR MESSAGES

This appendix presents a list of the error messages which may occur
as a result of executing a BASIC program. warning messages indicate
that illegal conditions have been smoothed over (by making an
appropriate assumption), and do not result in program termination.
Fatal error messages result in program termination.

ERR#

BI

BIO

ERROR MESSAGE AND CAUSE

Runtime abort at line n
Caused by BASIC statement ABORT.

variable has not been assigned a value; zero used
An unassigned variable was referenced, so a value of a is
assumed.

BII Tape record truncated to tape record length
An attempt was made to write more onto a tape record than
the tape record length. (The record is truncated to tape
record length.)

Bl2 File has not been opened
File indicated in I/O statement has not been opened via
an OPEN statement.

Bl3 Null conversion code is illegal; no conversion done
A string variable that should have a value is actually
nUll.

Bl4 Bad stack descriptor
Number of parameters in CALL statement different from
that in SUBROUTINE statement, or file variable used as an
operand.

Bl5 Illegal opcode: n
Program code contains garbage.

BIG Non-numeric data when numeric required; zero used
A non-numeric string was encountered when a number was
required, so a value of a is assumed.

Bl7 Array subscript out of range
Array subscript is less than 1 or greater than value in
DIM statement.

Bl8 Attribute number less than -1 is illegal
Attribute less than -1 is specified in READV or WRITEV
statement.

BI9 Illegal pattern
Illegal pattern used with MATCH or MATCHES operator.

BASIC Reference Page A- 4 Appendix

\.

/

)

ERR#

B20

B22

B23

B24

B25

B26

B27

B28

ERROR MESSAGE AND CAUSE

COLI or COL2 used prior to executing a FIELD stmt; zero used
COLI or COL2 function used before FIELD function, so a
value of 0 is assumed.

Illegal value for STORAGE statement
STORAGE parameter less than 10 or not a multiple of 10.

Program 'name' must be recompiled
Object code not compatible with current operating system.

Divide by zero illegal; zero used
Division by zero attempted, so a value of 0 is assumed.

Program 'name' has not been cataloged
A subroutine specified in a CALL statement was not found
in the program file and was not cataloged or not found in
the file specified by the M/DICT catalog item.

'UNLOCK n' attempted before LOCK
An attempt was made a unlock a lock which had not been
locked by the program.

RETURN executed with no GOSUB
RETURN statement executed prior to GOSUB.

Not enough work space
Not enough user work space to hold all data values.

B30 Array size mismatch
Array sizes do not match in MAT Copy statement, or in
CALL and SUBROUTINE statements.

B3l Stack overflow
The program has attempted to call too many nested
subroutines.

B32 Page heading exceeds maximum of 1400 characters
Page heading is too long.

B33 Precision declared in subprogram 'name' is different from
that declared in the mainline program

Precision must be the same in both calling programs and
subroutines.

B34 File variable used where string expression expected
Illegal use of file variable.

B4l Lock number greater than 47
LOCK parameter not in range 0-47.

BASIC Reference Page A- 5 Appendix

B209

B2l0

ERROR MESSAGE AND CAUSE

File is update protected.
An attempt was made to update a file that has an update
lock.

File is access protected.
An attempt was made to read a file that has a retrieval
lock.

BASIC Reference Page A- 6 Appendix

APPENDIX C

LIST OF ASCII CODES

This appendix presents a list of ASCII codes for decimal
number values from a through 255 (see DECIMAL column). The
hexadecimal equivalent value and ASCII character generated
are given (see HEX and CHARACTER columns).

BASIC

Note that decimal values 0-31 are assigned as non-printable
functions. Decimal values 1-26 may be specified by control
key sequences (see TERMINAL KEY column). A "control key
sequence" is entered by holding down the <CTRL> key while
pressing a second key (e.g., <CTRL>A). Some of the non­
printable characters have a special use in Ultimate systems
(see SPECIAL USE IN ULTIMATE column).

Decimal values above 127 (Hex '7F') are not defined in the
ASCII character set. The functions or characters assigned to
these values are dependent on the terminal being used.
However, in the ULTIMATE system, special file structure
functions and control key sequences have been assigned to
decimal values 251 through 255 (Hex 'FB' through 'FF').

DECIMAL HEX CHARACTER SPECIAL USE IN ULTIMATE TERMINAL KEY

00 00 NUL
01 01 SOH <CTRL>A
02 02 STX <CTRL>B
03 03 ETX <CTRL>C
04 04 EOT <CTRL>D
05 05 ENQ <CTRL>E
06 06 ACK <CTRL>F
07 07 BEL Bellon terminal <CTRL>G
08 08 BS Backspace <CTRL>H
09 09 HT Tab <CTRL>I
10 OA LF Line feed on terminal <CTRL>J
11 OB VT <CTRL>K
12 OC FF <CTRL>L
13 aD CR Carriage return on terminal <CTRL>M
14 OE SO <CTRL>N
15 OF SI <CTRL>O
16 10 DLE <CTRL>P
17 11 DCl <CTRL>Q
18 12 DC2 Retype entire line <CTRL>R
19 13 DC3 <CTRL>S
20 14 DC4 <CTRL>T
21 15 NAK <CTRL>U
22 16 SYN <CTRL>V
23 17 ETB <CTRL>W
24 18 CAN Cancel line on terminal <CTRL>X
25 19 EM <CTRL>Y
26 lA SUB <CTRL>Z

Reference Page A- 7 Appendix

DECIMAL HEX CHARACTER SPECIAL USE IN ULTIMATE TERMINAL KEY

27 IB ESC
28 lC FS
29 ID GS
30 IE RS
31 IF US
32 20 SPACE
33 21 !
34 22 "
35 23 #
36 24 $
37 25 9.,-

0

38 26 &
39 27
40 28 (
41 29)
42 2A * 43 2B +
44 2C
45 2D
46 2E
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A
59 3B
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F 0

BASIC Reference Page A- 8 Appendix

~\
I

II'
DECIMAL HEX CHARACTER SPECIAL USE IN ULTIMATE TERMINAL KEY

80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 V
87 57 W
88 58 X
89 59 y
90 5A Z
91 5B [
92 5C \
93 5D]
94 5E A

95 5F
96 60
97 61 a
98 62 b
99 63 c

100 64 d
101 65 e
102 66 f
103 67 g

)
104 68 h
105 69 i
106 6A j
107 6B k
108 6C 1
109 6D m
110 6E n
III 6F 0
112 70 P
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 v
119 77 w
120 78 x
121 79 Y
122 7A z
123 7B {
124 7C . .
125 7D }
126 7E
127 7F DEL
128 80
129 81

BASIC Reference Page A- 9 Appendix

DECIMAL HEX CHARACTER SPECIAL USE IN ULTIMATE TERMINAL KEY

130 82
131 83
132 84
133 85
134 86
135 87
136 88
137 89
138 8A
139 8B
140 8C
141 80
142 8E
143 8F
144 90
145 91
146 92
147 93
148 94
149 95
150 96
151 97
152 98
153 99
154 9A
155 9B
156 9C
157 9D
158 9E
159 9F
160 AO
161 A1
162 A2
163 A3
164 A4
165 A5
166 A6
167 A7
168 A8
169 A9
170 AA
171 AB
172 AC
173 AD
174 AE
175 AF
176 BO
177 B1
178 B2
179 B3

BASIC Reference Page A- 10 Appendix

'" I jil'

)

)

DECIMAL HEX CHARACTER SPECIAL USE IN ULTIMATE

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
CO
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
E1
E2
E3
E4
E5

BASIC Reference Page A- 11

TERMINAL KEY

Appendix

(
\

DECIMAL HEX CHARACTER SPECIAL USE IN ULTIMATE TERMINAL KEY -- --
230 E6
231 E7
232 E8
233 E9
234 EA
235 EB
236 EC
237 ED
238 EE
239 EF
240 FO
241 F1
242 F2
243 F3
244 F4
245 F5
246 F6
247 F7
248 F8
249 F9
250 FA
251 FB SB Start buffer <CTRL>[
252 FC SVM Subvalue Mark <CTRL>\
253 FD VM Value Mark <CTRL>]
254 FE AM Attribute Mark <CTRL>"
255 FF SM Segment Mark <CTRL>

BASIC Reference Page A- 12 Appendix

)

"-
\,

j

)

APPENDIX D

SUMMARY OF THE BASIC DEBUGGER COMMANDS

The following is a summary of all the BASIC DEBUGGER commands and
their descriptions.

Bx

D

DEBUG

DE

En

END

G

Gn

K

Kn

Set breakpoint condition table where 'x' is a simple
logical expression, which may be composed of < (less
than), > (greater than), = (equal to), # (not equal
to), & (and), and the special operator $ (1 ine
number) .

Display breakpoint and trace tables.

Escape to Assembly Debugger.

Short form of DEBUG.

Execute 'n' instructions. E <CR> turns mode off.

End execution of BASIC program and return to TCL.

Proceed from breakpoint.

Go to line n.

Kill all breakpoint conditions in table set by 'B'
command.

Kill breakpoint condition 'n' where 'n' is the
breakpoint number from 1-4.

L{m-{n}} Display program source lines.

LP All output forced to printer; reverses status each
time LP is selected.

N stop on every execution break.

Nn Continue thru n execution breaks before stopping.

OFF Log off.

P Inhibit/enable BASIC program output.

PC Printer close - output to spooler.

R Pop return stack.

S Display return stack.

T Turn breakpoint trace table off/on.

BASIC Reference Page A- 13 Appendix

T{/}v

U

U{/}v

z
?

$

Iv
Im(x)

Im(x,y)

1m

1*
[x,y]

set variable 'v' in trace breakpoint table.

Remove all breakpoint trace table variables set by
'T' command.

Remove breakpoint trace variable 'v' from table.

Request symbol table.

Print current program name and line number; verify
object.

Same as "?".

Print value of a variable 'v'.

Print value of a point 'x' in array 'mi.

Print value of point 'x,y' in array 'mi.

Print the entire array where 'm' is the array.

Dump entire symbol table.

Set string window where 'x' equals the start of the
string and 'y' equals the length of the string. This
command effects all Debugger output of variables and
has no effect on input.

Remove string window (setting string length to zero
has the same effect).

line feed Same as G <CR>.

NOTES:

1. An equals sign (=) prints out after the printing of a variable
in any slash command. The value of the variable may be changed
at this point.

2. A carriage return <CR> terminates all commands.

3. pressing the BREAK key breaks to the BASIC Debugger from
BASIC program at end of line.

4. The BASIC Debugger prompts with '*'.

BASIC Reference Page A- 14 Appendix

(
\

\
I

Y

APPENDIX E

BASIC DEBUGGER MESSAGES

The following informative, warning or error messages are used
by the BASIC DEBUGGER.

*E n

*Bm n

Single step execution break at line# In'.

Table breakpoint at line# 'n'i 'm' is
breakpoint number.

*1 n Break key execution break at line# In'.

*v=x Value of variable 'v' at execution break.

Cmnd? Command not recognized.

Nstat statement number out of range of program.

Sym not fnd Symbol not found in table.

Unassigned var Variable not assigned a value.

Stk emp The subroutine return stack is empty.

Ilstk Illegal subroutine return stack format.

Tbl full Trace or break table full.

Illgl sym Illegal symbol.

Not in tbl Not in trace break table.

No source No source code found for program.

BASIC Reference Page A- 15 Appendix

INDEX

! statement
$*
$CHAIN
$INCLUDE
$NODEBUG
* statement
: operator
@ function
ABORT statement
ABS function
Accessing a file
Accessing item-id
Accessing multiple attributes
Accessing single attributes
ALPHA function
AND operator
ARG. redirection variable
ARG. redirection variable, in GET statement
ARITHMETIC

expressions
fix a floating point number
float a number
floating point
floating point addition
floating point compare
floating point division
floating point multiplication
floating point subtraction
operators
string
string addition
string compare
string division
string multiplication
string subtraction

ARRAYS
assignment
dimensioned
dimensioning
dynamic
passing

ASCII - codes (Appendix)
ASCII function
Assigning values to variables
Assignment (=) statement
Attributes - Accessing
Attributes - Updating
BASIC

coding techniques, cursor positioning
compiler
compiler options
directives, list
intrinsic functions, list
keywords
redirection variables, list
statements, list

BASIC compiler error messages, Appendix
BASIC debugger - summary of commands (Appendix)
BASIC PROGRAM

automatic execution at logon time

(,)0,234
8
8
8
8

6 rJ, 234
39
64
67
68

216,280
219,250

176
226

69
50

110,248
139

34,46
127
129

36
122
123
125
132
138

34
36

244
245
246
255
258

174
32

103
26

76,265
7

70
62
62

226
226

320
10
15

3
3
3
3
3
1

13

18

components
editing, compiling, and creating
executing at logon
file structure
in PROC
runtime options
suspending time during execution
termination

BASIC PROGRAMS
linking
sharing

BASIC run-time error messages, Appendix
BASIC verb
Boolean expressions
Boolean functions
BRANCH

Computed
Conditional
Unconditional

Branching
BREAK ON/OFF
BREAK statement
Buffer allocation
Buffer size table
Buffer size, changing defaults
CALL statement
CASE statement
CAT operator
CATALOG verb
CHAIN statement
changing buffer size for variable storage
CHAR codes, Appendix
CHAR function
CLEAR statement
CLEARFILE statement
Clearing a file in BASIC
Clearing variable values
CLOSE statement
COLI function
COL2 function
COM statement
COMMON statement
COMPILE verb
compile-and-go option
COMPILER

directives
options
version number

Compiler error messages, Appendix
Computed branching
Concatenation
Conditional branch
Constants
Constants - Equating
Conversion of character formats
Conversions
COS function
COSINE function
COUNT function

5
10
19

4,59
19
18

243
67,107,259

8
8
4

10
50

69,186,188

191
78,149,151

143
142,143,191

73
73
53
53

261
74
78
39
16
80

261
7

82
83
84
84
83
86
88
88
90
90

10,13
18

8
13,15

10
1

191
39

78,149,151
29

112
70,82,105,253

147,189
92
92
93

Data representation
DATA statement
DATE function
DCOUNT function
DEBUGGER

$ command
/ command
? command
[] command
B command
breakpoint table
D command
DEBUG command
display/change variables
Displaying source
E command
END command
entry to
error messages, Appendix
example program
Execution control
G command
introduction
K command
L command
LP command
N command
OFF command
option
output control
P command
PC command
special commands
Symbol Table
T command
Trace table
U command
Z command

DECATALOG verb
DEL statement
DELETE function
DELETE statement
Descriptor table
DIM statement
Dimensioned arrays
Dimensioning arrays
DISPLAY statement
DO statement
DYNAMIC ARRAYS

COUNT function
DCOUNT function
definition of
DELETE function
deleting attributes
EXTRACT function
INSERT function
inserting data
LOCATE function
REPLACE function

24
94
95
96

305
304
305
305
298
298

298,300
305
304
295
301
303
294

15
307

301,303
301
292
298
295
305
301
303

18
305
305
305
305
294
296
296
296
295

17
98
99

101
53

103
32

103
104
172

93
96
26
99
98

120
161
160
167
236

EBCDIC function
ECHO ON/OFF statements
ED(IT) verb
EED(IT verb
END statement
ENTER statement
EOF function
EQU statement
EQUATE statement
ERROR function
Error messages - Compiler (Appendix)
Error messages - Run-time (Appendix)
EXECUTE statement
Executing PROCs and BASIC programs from
Executing TCL statements from BASIC
Execution locks
EXIT statement
EXP function
EXPONENTIAL function
Expression evaluation summary
Extended arithmetic, raising to a power
External subroutines
EXTRACT function
FADD function
FCMP function
FDIV function
FFIX function
FFLT function
FIELD function
File access
File item structure
File structure, ULTIMATE system
FLOATING POINT ARITHMETIC

addition
compare function
converting to floating point
converting to string
division
list of functions
multiplication
subtraction

FMUL funotion
FOOTING statement
Footings - options
FOR statement
Format conversion
Format mask codes
Format string
Formatting of output
Free storage area
FSUB function
GET statement
GOSUB statement
GO{TO} statement
HEADING statement
Headings - options
Hierarchy of operators
ICONV function
IF statement - multi-line

105
106

10
10

107
109
110
112
112
267

1
4

114
within a program 114

80,94,114
170,274

118
119
119

52
214

74,76,263,265
120
122
123
125
127
129
130

216,226,280,286
26

310

122
123
129
127
125

36
132
138
132
133
134
135

70,82,105,253
43
45

42,202
53

138
139
142
143
145
146

34
147
151

IN. redirection variable
INDEX function
Indirect subroutine calls
INPUT @ statement
Input conversion
INPUT statement
INPUTCLEAR statement
INS statement
INSERT function
Inserting into dynamic arrays
INT function
Internal subroutine branch
Interprogram communication
Interprogram transfers
Item locks
Job control
LEN function
LET statement
LN function
LOCATE statement
LOCK statement
Logical expressions
Logical functions
LOOP statement
Looping
Masking data
MAT = (Assignment) statement
MAT Copy statement

114
153

74
155
147
155
159
160
161
160
163

142,191,238
80

109
178,182,224,229,231,285,289

114
164
165
166
167
170

50
69,186,188

172
135,172,184

42
174

MAT variable in SUBROUTINE statement
MATCH operator

174
265

48
48

176
MATCHES operator
MAT READ statement
MATREADU statement
Matrices
MATWRITE statement
MATWRITEU statement
Maximun size of data representation
MOD function
Modifying file items
MSG. redirection variable
MSG. redirection variable, in GET statement
Multi-line statements
NATURAL LOGARITHM function
Nested loops
Network users, programming I/O
NEXT statement
Non-operation
NOT function
NULL statement
NUM function
NUMERIC

data type
mask
mask codes

NUMERIC FUNCTIONS
ABS function
INT function
MOD function
REM function

178
32

180
182

24
183

101,280
110,248

139
5

166
136
316

135,184
187

50,186
187
188

24
42
43

68
163
183
233

SQRT function
Obtaining system parameters
obtaining terminal characteristics
OCONV function
ON ERROR clause and SYSTEM function
ON GOSUB statement
ON GOTO statement
OPEN statement
opening a file
Operators - arithmetic
OR operator
OUT. redirection variable
OUTPUT

conversion
error messages
footings
formatting
headings
of data

Output formatting
Packed decimal conversion
PAGE statement
Passing values
Passing Values (PROC)
Pattern matching
POWER function
PRECISION declaration
Precision of numbers
PRINT ON statement
PRINT statement
PRINTER CLOSE statement
PRINTER OFF statement
PRINTER ON statement
Printer output
PRINTER statement
PRINTERR Statement
PROCREAD Statement
PROCWRITE Statement
PROGRAM statement
Program, data area
PROGRAMMING

examples
Handling File Items

257
267
267
189
267
191
191
193
193

34
50

114

189
212
133
202

145,196
199,204

42
148,190

196
54

207,209
48

214
197
197
199

199,202
204
204
204

199,204
204
206
207
209
210

53

323,324,325,327,329
317

Handling I/O for ULTIMATE File
Maximizing System Performance

Structure 313

PROMPT statement
PUT statement
PWR function
Random numbers
Read a file with lock
READ statement
Reading a file item into an array
READNEXT statement
READT statement
READU statement
READV statement
READVU statement
REDIRECTION VARIABLES

ARG. AND MSG.

321
211
212
214
242

178,224,229
216
176
219
222
224
226
229

139

\
Relational expressions
Relational operators
Release quantum statement
RELEASE statement
REM function
Remarks' (REM) statement
REPEAT statement
REPLACE function
RETURN statement
REWIND statement
RND function
RQM statement
RUN verb
Runtime options
SADD function
SCMP function
Screen formatting characters
SDIV function
SEEK statement
Select lists, using
SELECT statement
SELECT. redirection variable
Selecting files for subsequent I/O
Selecting item-id
Selecting items
Selecting output device
SEQ function
SIN function
SINE function
SMUL function
SPACE function
SQRT function
SSUB function
statement labels
STEP expression
STOP statement
STORAGE statement
storing variables, changing buffer size
STR function
STRING

data type
expressions
length determination
repetition
spacing

STRING ARITHMETIC
addition
compare function
division
list of functions
multiplication
subtraction

Structured program looping
sub-string functions
Sub-strings
SUBROUTINE statement
Subroutines
Subroutines - External
SYSTEM function

46,48
46

243
231
233
234
172
236
238
240
242
243

18
18

244
245

64
246
248
313
250
114
193
250

219,250
204
253
254
254
255
256
257
258

5
135
259

53,261
261
262

24
39,46

164
262
256

244
245
246

36
255
258
172

88,93,96,130,153,167
39

263
74,76,142,238,263,265

263
267

TAN function
TANGENT function
Tape I/O
Terminal characteristics
Terminal input
Terminal output
TIME function
TIMEDATE function
TRIGONOMETRIC FUNCTIONS

COS function
EXP function
LN function
PWR function
SIN function
TAN function

TRIM function
Type-ahead control
ULTIMATE system file structure
UltiNet users, programming I/O
Unconditional branch
UNLOCK statement
UNTIL expression
Updating multiple attributes
Updating single attributes
VARIABLES

allocation
definition
dimensioned
equating
formatting
naming
space allocation
storage, changing buffer size
'structure

Vectors
WEOF statement
WHILE expression
Write a file with lock
WRITE statement
WRITET statement
WRITEU statement
WRITEV statement
WRITEVU statment
Writing a file
writing a file from an array

270
270

222,240,277,283
267

155,211
199
271
272

92
119
166
214
254
270
273
159
310
316
143
274

135,172
180
286

54
29
32

112
42
30
90

261
53
32

277
135,172

182,285,289
280
283
285
286
289
280
180

•

. ' ,

