
UNIPLUS+ SYSTEM Y
. Administrator Cuide

-~ .- ----~ -
--------- -----=-- ----------------_~ ~~ ---r-_____ • .. _ ~ _ L. -=--.....:.J....: ----. - _.----- -- - ---,. _. --________ _________ _ I ~ • _.I ~

• __ _ I ___ ___

s Y S T EMS
r.

• • ___ __ I _ ___ _

--~ - ----===_ 1 I: ~ I !!!! -=- - =
-------~ - - ----...:.....--~ --

PN: 1180-01

Copyright © 1984 UniSoft Corporation.

Portions of this material have been previously copyrighted by:

Bell Telephone Laboratories, Incorporated, 1980

Western Electric Company, Incorporated, 1983

Regents of the University of California

Holders of a UNIX and UniPlus+ software license are permitted to copy this docu­
ment, or any portion of it, as necessary for licensed use of the software, provided
this copyright notice and statement of permission are included.

UNIX is a Trademark of AT&T Bell Laboratories, Inc.
\

UniPlus+ is a Trademark of UniSoft Corporation of Berkeley.

PREFACE

This guide is a . reference for those who administer and operate the
UniPlus+ system. It contains a description of console operations and
general instructions for normal operator and administrator functions as
they apply to the family of MC68000 processors running the UniPlus+
System V operating system. This guide should be used to supplement
the information contained in the UniPlus+ System V User's Manual and
the UniPlus+o System V Administrator's Manual.

This guide contains 11 chapters:

• INTRODUCTION

• ADMINISTRATIVE ADVICE

• MC68000/MC68010 OPERATIONS

• START-UP PROCEDURES

• SINGLE USER AND MULTIUSER MODE

• DUTIES

• SYSTEM ACCOUNTING

• FSCK: FILE SYSTEM CHECKING

• LP SPOOLING SYSTEM

• SYSTEM ACTIVITY PACKAGE

• UUCP ADMINISTRATION

Chapter 1, INTRODUCTION, gives an overview of the system operator
and administrator responsibilities.

Chapter 2, ADMINISTRATIVE ADVICE, contains helpful advice and
suggestions for system administrators of UniPlus+.

Chapter 3, MC68000/MC68010 OPERATIONS, explains some basic
operations of MC68000/MC68010 computers.

- i -

PREFACE

Chapter 4, START-UP PROCEDURES, explains how to start up your
UniPlus+ system.

Chapter 5, SINGLE USER AND MULTIUSER MODE, describes the
two modes of operation of the UniPlus+ . operating system and the
commands necessary to set the mode.

Chapter 6, DUTIES, gives specific examples of duties performed by
either a computer operator or a system administrator.

Chapter 7, SYSTEM ACCOUNTING, describes the structure, imple­
mentation, and management of the accounting system.

Chapter 8, FSCK: FILE SYSTEM CHECKING, describes the file sys­
tem check program (fsek) of the UniPlus+ system. Fsek audits and
interactively repairs inconsistency in the file system.

Chapter 9, LP SPOOLING SYSTEM, defines the lp program and
describes the role of the LP administrator in performing restricted func­
tions and overseeing the smooth operation of lp.

Chapter 10, SYSTEM ACTIVITY PACKAGE, describes the design and
implementation of the UniPlus+ system activity package. The package
reports UniPlus+ system-wide statistics.

Chapter 11, UUCP ADMINISTRATION, describes how a uuep net­
work is set up, the format of the control files, and administrative pro­
cedures.

Throughout this guide, each reference of the form name(1M) ,
name(7) , or name(8) refers to entries in the UniPlus+ System V
Administrator's Manual. All other references of the form name(N) ,
where N is a number, possibly followed by a letter, refer to entries in
section N of the UniPlus+ System V User's Manual.

- ii -

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

CONTENTS

INTRODUCTION

ADMINISTRATIVE ADVICE

MC68000/MC68010 OPERATIONS

START-UP PROCEDURES

SINGLE USER AND MULTIUSER MODE

DUTIES

'SYSTEM ACCOUNTING

FSCK: FILE SYSTEM CHECKING

LP SPOOLING SYSTEM

SYSTEM ACTIVITY PACKAGE

UUCP ADMINISTRATION

Chapter 1: INTRODUCTION

CONTENTS

1. General

2. System Console

3. Input/Output Notations .

4. Local Needs

- i -

1

1

2

2

1. General

Chapter 1

INTRODUCTION

In this guide, procedures and examples are given for starting up your
system (booting and powering), changing run levels (that is, single user
and multiuser), saving and restoring files, bringing down the system in
an orderly manner, and restoring the system after a crash. You should
always consult documentation for your processor before performing any
of the procedures in this guide.

2. System Console

Most of the operations you do will involve the system console. All
messages to the operator and input from the operator are via the sys­
tem console. You will be using the system console in one of three
modes:

• Monitor/Boot - The U niPlus+ operating system is halted. In
this optional mode, a monitor or stand alone operating system
may be available to operate the processor and load ~n the boot
program, or the boot program may be already running. See the
software and hardware reference manuals for your computer for
initial procedures and monitor commands.

• Single user - The UniPlus+ operating system is executing. The
commands you enter on the system console are UniPlus+ system
commands. In single-user mode you are always super-user.
When the system is halted or in single-user mode, the console is
the only interface to the system, unless you specifically change the
configuration so that another terminal acts as a console.

• Multiuser - The UniPlus+ operating system is executing. The
system console (and any other configured terminal) is treated as a
normal user terminal.

In halt mode or single-user mode, the console will not be treated as a
login terminal (therefore, you are super-user). When you change the
system to multiuser mode, a login message will appear on the console.
You must provide a login and password at this point in order to use the
console. Normally you should log in as root. Here, it must be

1-1

INTRODUCTION

mentioned that the login you use is a local decision. In fact, the sys­
tem administrator may configure your system so that it is not even
necessary for you to log in after changing to multiuser.

Normal daily maintenance requirements are described and examples
provided of normal operations (not including local procedures). For
more information on the console (for example, set-up procedures),
consult your console terminal owner's manual.

3. Input/Output Notations

Throughout this guide, the following notation is used for computer
input/output:

1. Special characters are in all caps (for example, when you see CON­
TRoL read this as the "control" or "CTRL" keyboard character
and RETURN as the "carriage return" key).

2. Items within [)s are optional.

3. You should type in literally any indented command field that
appears boldface (a keyword).

4. You should substitute with the appropriate information any com­
mand field that appears in italics.

5. All commands (system or console commands) should be ter­
minated with a carriage return.

4. Local Needs

Because this guide is intended to be as general as possible, no
machine-specific or installation-specific information has been included.
Also, some operations may vary according to local procedures. It is
suggested that you add specific information about:

• Hardware configuration

• Software configuration of administrative files

• Data.set configuration

• Specific logging and record-keeping practices

• Contacts for hardware and software problems

• Site-dependent diagnostic procedures.

1-2

Chapter 2: ADMINISTRATIVE ADVICE

CONTENTS

1. Introduction

2. Administrator's Road Map

3. A Few Words About System Tuning

4. File System Backup Programs

5. Controlling Disk Usage

6. Reorganizing File Systems

7. Keeping Directory Files Small

8. Administrative Use of "cron"

9. Watch Out for Files and Directories that Grow

10. Allocating Resources to Users

11. The Matter of Accounting and Usage. .

12. Dial-Line Utilization

13. "Bird-Dogging" .

14. Terminals

15. Line Printers •

16. Security

17. Communicating with the Users

18. Null Modem Wiring

LIST OF FIGURES

Figure 2.1. File System Backup Programs •

- i -

1

1

2

2

4

5

5

6

6

7

7

8

8

8

8

8

9

9

3

Chapter 2

ADMINISTRATIVE ADVICE

1. Introduction

The information contained in this chapter is relative to
MC68000/MC68010 processors.

2. Administrator's Road Map

This chapter contains administrative advice based on the experience and
suggestions of many system administrators. Other reasonable
approaches may be taken to solve many of the problem areas described.

Getting started as a UNIX system administrator is hard work. There are
no real shortcuts to a working knowledge of the system. The system
administrator will need time for reading, studying, and hands-on exper­
imenting. The system administrator should not go "live" with the sys­
tem until hel she have had several weeks to learn the job and get the
initial hardware quirks ironed out.

The administrator should be familiar with most of the distributed docu­
mentation. All of the sections of the UniPlus+ System V Administrator's
Manual should be studied.

Pay special attention to the following in the UniPlus+ System V
Administrator's Manual and UniPlus+ System V User's Manual:

2-1

ADMINISTRATIVE ADVICE

chmod(1)
chown(1)
cpio(1)
date(1)
du(1)
ed(1)
env(1)
find (1)
kill (1)

acct(1 M)
checkall (1 M)
dcopy(1 M)
df(1M)
errpt(1M)
fsck(1 M)
fuser(1M)

acct(4)

all of section 7

crash (8)

mail (1)
mkdir(1)
ps(l)
rm(1)
rmdir(1)
su(1)
time(1)
who(l)
write (1)

mkfs(IM)
ncheck(1M)
shutdown(1M)
sync(IM)
volcopy (1 M)
wall(IM)

3. A Few Words About System Tuning

A file system reorganization can help throughput but at the expense of
down time. If the reorganization is done during nonprime time, it can
help.

If normal shutdown and filesave procedures are used, the file system
check program [fsck (1 M), - S option] will help keep the disk free list
in reasonable order. Try to keep disk drive usage balanced. If there
are over 20 users, the root file system (lbin, Itmp, and lete) deserves
a drive of its own. If there is a noisy modem (poorly executed do-it­
yourself null-modem) or a disconnected modem cable, the UniPlus+
system will spend a lot of CPU time trying to get it logged in. A ran­
dom check of systems uncovers a lot of this going on.

4. File System Backup Programs

The following backup programs are distributed:

2-2

ADMINISTRATIVE ADVICE

• Find/cpio: The UniPlus+ system is distributed in cpio format.
The - cpio option of the find command can be used for saving
only those files that have changed or been created over a definite
period.

• Volcopy: Physical file system copying to disk or tape. For those
with a spare drive, volcopy to disk provides convenient file restore
and quick recovery from disk disasters. Tape volcopy provides
good long-term backup because the file system can be read-in
fairly quickly, mounted, and browsed over. Disk and tape volcopy
are generally used together for short- and long-term backup.
Note that a volcopy from a mounted file system may result in an
inconsistent copy (files being written at the time can contain
invalid data).

Figure 2.1 summarizes attributes of these programs. In the figure, the
file system size is 65,500 KB in all cases; times are in minutes; judge­
men ts are su bjective.

FIND/CPIO VOLCOPY (DISK) VOLCOPY (TAPE)

Full dump time 40 2 15
Incremental dump time 7 - -
Full restore time 80 2 15
Incremental restore time 10 - -
Ease of restoring:

one file fair good fair
a directory fair good good
scattered files poor good good
full restore fair very good good

Needs tape drive yes no yes
Needs spare file system

(two CPUs can share) - yes -
Maintains pack/tape labels no yes -
Handles multireel tape yes - yes
512 KB per record 1.10 88 10
Interactive

(i.e., ties up console) yes yes yes
May require separate

I/O space no no* no

* KB per record are cut to 22 without separate I/O space.

Figure 2.1. File System Backup Programs

The spare disk drive is strongly recommended. The speed and conveni­
ence of volcopy are by no means the only advantage of a spare drive.

2-3

ADMINISTRA TIVE ADVICE

It is strongly recommended that the administrator modify the
/ etc/files ave and / etc/ checklist files to meet the operational needs and
update the local operator's manual accordingly. Remember, the more
the administrator automates and documents operational procedures, the
less downtime will be encountered.

5. Controlling Disk Usage

Once the UniPlus+ system is a success, disk space will soon become
limited. During the long delay before more drives become available,
usage should be controlled. Try to maintain the start-of-day counts
recommended. Watch usage during the day by executing the df(I)
command regularly.

The du (I) command should be executed (after hours) regularly (e.g.,
daily), and the output kept in an accessible file for later comparison. In
this way, users rapidly increasing their disk usage may be spotted. This
can also be accomplished by running the accounting system's acctdusg
program.

The findO) command can be used to locate inactive (or large) files.
For example:

find / -mtime +90 -atime +90 -print >somefile

records in "somefile" the names of files neither written nor accessed in
the last 90 days.

The administrator will also have to balance usage between file systems.
To do this, user directories must be moved. Users should be taught to
accept file system name changes (and to program around them prefer­
ably ahead of time). The user's login directory name (available in the
shell variable HOME) should be utilized to minimize path name depen­
dencies. User groups with more extensive file system structures should
set up a shell variable to refer to the file system name (e.g., FS).

The find (I) and cpio (I) commands can be used to move user direc­
tories and to manipulate the file system tree. The following sequence is
useful (it moves the directory trees userx and usery from file system
filesys1 to file system filesys2 where, presumably, more space is avail­
able) :

2-4

ADMINISTRATIVE ADVICE

cd lfilesys1
find userx usery - print I cpio - pdm lfilesys2
Make sure new copy is OK.
Change userx and usery login directories
in the I elcl passwd file.
Notify userx and usery via mail(1) that
they have been moved and that pathname
dependencies in their .profile and shell
procedures may need to be changed. See the
discussion on $HOME above.
rm - rf I filesys 1 I userx I filesys 1 I usery

When moving more than one user in this way, keep users with com­
mon interests in the same file system (these users may have linked
files) and move groups of users who may have linked files with a single
cpio command (otherwise linked files will be unlinked and duplicated).

6. Reorganizing File Systems

There is a new file system reorganization utility called dcopy (1 M). On
an otherwise idle system, a reorganized file system has almost twice the
110 throughput of a randomly organized file system. This applies to file
copying, finds, fscks, etc. Dcopy can take up to 2.S hours to initially
reorganize (copy) a large file system. During reorganization, the sys­
tem can be up, but the file system being copied must be unmounted.

For those who can afford the operator time, root reorganization once a
week (requires system reboot) and user file system reorganization once
a month will improve system performance. Dcopy is an interim step.

7. Keeping Directory Files Small

Directories larger than SK bytes (320 entries) are very inefficient
because of file system indirection. A UNIX system user once com­
plained that it took the system 10 minutes to complete the login pro­
cess; it turned out that his login directory was 2SK bytes long, and the
login program spent that time fruitlessly looking for a nonexistent
".profile" file. A large /usr/mail or /usr/spool/uucp directory can
also really slow the system down. The following will ferret out such
directories:

find I - type d - size + 10 - print

2-5

ADMINISTRATIVE ADVICE

Removing files from directories does not make the directories get
smaller (the empty directory entries are available for reuse). The fol­
lowing will "compact" /usr/mail (or any other directory):

mv lusr/mail lusr/omail
mkdir I usr I mail
chmod 777 lusr/mail
cd lusr/omail
find. -print I cpio -plm . .lmail
cd ..
rm -rf omail

8. Administrative Use of "cron"

The program crOll (I M) is useful in the administration of the system; it
can be used to:

• Turn off the programs in directory /usr/games during prime time.

• Run programs off-hours:

- accounting~

- file system administration;
- long-running, user-written shell procedures.

9. Watch Out for Files and Directories that Grow

Most of the files below are restarted automatically by entries in /etc/rc
at system reboot.

• Accounting files:

2-6

/etc/wtmp-login information; grows extremely fast with
terminal line difficulties; use acctcoll (I M) to determine the
offending line(s).

/usr/adm/pacct-per process accounting records; gets big
quickly; monitored automatically by ckpacct from crOll (I M).

/usr/Hb/croll/log-status log of commands executed by
crOll (I M); also watch this file for error messages from the
programs being executed in /usr/spool/croll/crolltab/*.

/usr/adm/errfile-hardware error logging info; also read
login adm's mail periodically.

/usr/adm/ctlog-a log of the people who use ct (Ie) com­
mand.

ADMINISTRATIVE ADVICE

/usr/adm/sulog-a log of those who execute the superuser
command.

/usr/adm/Spacct-process accounting files left over from
an accounting failure; remove these files unless the account­
ing files that failed are to be rerun.

• Other files:

/usr/spool-spooling directory for line printers, uucp(1C),
etc., and whose subdirectories should be compacted as
described above.

10. Allocating Resources to Users

A prospective user should first obtain authorization to use the system
and then apply for a login by providing the following information to the
System Administrator:

• User's name.

• Suggested login name (not more than eight characters, beginning
with a lowercase letter and not containing special or uppercase
letters) .

• Relationships to other users (this influences the choice of the file
system).

• Estimate of required file space (this also influences the choice of
the file system) and connect hours. This aids in hardware growth
planning.

Users must have passwords with at least six characters. (Only the first
eight characters are significant.)· Also, every password must have at
least two alphabetic characters and one numeric or special character.
The password must differ from the user's login name and any reverse
or circular shift of it. Refer to passwd(I) and passwd(4) for more
information on password selection and password aging.

11. The Matter of Accounting and Usage

You should run the accounting programs even if there is not a "bill"
for service. Otherwise, users' habits (especially bad habits) will be a
mystery to you. Accounting information can also help you find perfor­
mance bottlenecks, unused logins, bad phone lines, etc.

2-7

ADMINISTRATIVE ADVICE

12. Dial-Line Utilization

If prime-time dial-line utilization gets much over 70 percent, users will
start to encounter busy signals when dialing in. This, in turn, will lead
to "line hogging". The only solutions are to acquire more dial-up
ports, get a larger (another) machine, or to get rid of users. Manual
policing will help some, but "automatic" policing will be invariably sub­
verted by users.

13. "Bird-Dogging"

When the system is busy (lines busy andlor slow response), someone
should determine why this is so. The who(I) command lists the people
logged in. The ps (I) command shows what they are doing. U nfor­
tunately, ps operates from heuristics that can consistently fail to report
certain processes in a busy system. That is, one must be careful about
hanging up an apparently inactive line. The acctcom(IM) command
can read the process accounting file /usr/adm/pacct backwards from
the most recent entry. It will print entries for selected lines or login
names.

14. Terminals

Do not use uppercase only terminals. Use full-duplex, full-ASCII asyn­
chronous terminals. Hardware horizontal tabbing is very desirable
because it increases output speed and lowers system overhead. A fair
proportion of the terminals should provide for correspondence-quality
hard copy output to take advantage of the UniPlus+ system word pro­
cessing capabilities~ see term (5) .

15. Line Printers

Most line printers are troublesome and impose considerable overhead
on the system. Most also lack hardware tabs, character overstrike capa­
bility, etc. A printer that will work over an asynchronous link
(DC 1 IDC3 protocol required) is the best bet.

16. Security

The current UNIX operating system is not tamperproof. The system
administrator cannot keep people from "breaking" the system but can
usually detect that they have done so. The following command will
mail (to root) a list of all "set user ID" programs owned by root
(superuser) :

2-8

ADMINISTRATIVE ADVICE

find / - user root - perm - 41 00 - exec Is -1 {} \; I mail root

Any surprises in root's mail should be investigated. In dealing with
security,

• Change the superuser password regularly. Do not pick obvious
passwords (choose 6-to-8 character nonsense strings that combine
alphabetics with digits or special characters).

• Dial ports that do not require passwords usually cause trouble.

• The chroot (I M) and su (I) commands are inherently dangerous as
are group passwords.

• Login directories, ".profile" files, and files in Ibin, lusr/bin,
libin, and letc that are writable by others than their respective
owners are security weak spots; police the system regularly against
them.

• Remember, no time-sharing system with dial ports is really
secure. Do not keep top secret information on the system.

17. Communicating with the Users

The directory lusr/news and the news(I) command are provided as a
way to get "brief" announcements to your users. More pressing items
(one-liners) can be entered in the letc/motd (message of the day) file;
motd and (new to the user) news are announced at login time.

To reach users who are already logged in, use the wall(IM) (write all)
command. Do not use wall while logged-in as superuser, except in
emergencies.

The lusr/news directory should be cleaned out once a week by remov­
ing everything older than 2 months. It has been found that on most
systems a file in lusr/news will reach 50 percent of the users within a
day and over 80 percent within a week; motd should be cleaned out
daily.

18. Null Modem Wiring

Improperly wired null modems can cause spurious interrupts, especially
at higher baud rates. A single bad modem on a 9600-baud line can
waste 15 percent of your CPU power. The following (symmetrical)

2-9

ADMINISTRATIVE ADVICE

wiring plan will prevent such problems:

pin 1 to 1

2-10

pin 2 to 3
pin 3 to 2
strap pin 4 to 5 in the same plug
pin 6 to 20
pin 7 to 7
pin 8 to 20
pin 20 to 6 and 8
ground unused pins

Chapter 3: MC68000/MC68010 OPERATIONS

CONTENTS

1. Introduction

2. Booting . . .

3. Shutting Down

4. Powering Down

- i -

1

2

2

Chapter 3

MC68000/MC68010 OPERATIONS

1. Introduction

Information on system operations should be obtained from the
manufacturer of your box. Console commands and start-up procedures
vary, depending on hardware configurations.

2. Booting

In general, a boot program is used to start up UniPlus+. This boot pro­
gram can reside in PROM, or on a floppy, or in the beginning of a hard
disk. The boot program must first find out where UniPlus+ resides
either by looking at a specific place on the disk, or prompting the user
for this information. Once UniPlus+ is located on the file system, the
boot program will load it from disk to memory. For specific booting
instructions, refer to the manual from the manufacturer of your box.

Once loaded, the UniPlus+ operating system is ready to come up. The
system will scan the letclinittab file to determine among other things,
which run level will be entered. If this file specifies a run level (or a
default level is found), the system will enter the run level specified.
Otherwise, do the following steps:

1. This message should appear on the console:

ENTER RUN LEVEL (0-6, s or S):

Enter 2<cr> to go to multiuser state, or s<cr> to go to single
user state.

2. If you requested multiuser in step 1, the system will ask you to
verify the date. Then you will be asked if the file systems are to
be checked. Finally, the following message will be printed on the
console:

Console Login:

If you requested single user in step 1, the # prompt will be
printed. In this case, typing telinit 2 will change the operating
system state to multiuser.

3-1

OPERATIONS

3. Shutting Down

The shutdown procedure is designed to gracefully turn off all processes
and bring the system back to single user state with all buffers flushed.
To do this you shol;!ld execute shutdown as described in Chapter 6. If
shutdown is not successful, use the following sequence of commands:

k ill all
sync
init S
fsck This is optional

4. Powering Down

The shutdown sequence should always be run before powering down.
Disk drives, where they require separate powering, should be powered
down before powering down the processor. Refer to instructions from
the manufacturer for any other specific procedures.

3-2

Chapter 4

START-UP PROCEDURES

Below is a description of how to start up your UniPlus+ system. A
variety of procedures may be necessary to start the system. The pro­
cessor and peripherals (such as disk drives) may need to be powered
up. Additionally, a combination of hardware and software resets and
monitor commands may be required. The final step in starting up the
system is generally the boot. The boot procedure loads a copy of the
UniPlus+ operating system from disk, floppy, tape, or some other
media into memory and executes it.

You will need to reboot the UniPlus+ operating system when one of
the following conditions occur:

• system crash or restart~

• loading of a new software release~ or

• updating of the software release.

Once loaded, the UniPlus+ operating system will typically enter the
single-user "run level" awaiting your commands. When properly
configured by the system administrator, the U niPlus + operating system
uses init to automatically enter the final run level. Run levels are dis­
cussed in the "Single User and Multiuser Mode" chapter of this guide.
Normally, run level s indicates single user and 2 indicates multiuser.
For more information on init refer to init(1M) in the UniPlus+ System
V Administrator's Manual, inittab(4) in the UniPlus+ System V User's
Manual, or, if you are an operator, consult the local system administra­
tor.

See the relevant software or hardware reference manual for your com­
puter for detailed powering and booting procedures.

4-1

Chapter 5: SINGLE USER AND MULTIUSER MODE

1. Introduction

2. Single-User Environment
2.1 The fsck Command

CONTENTS

2.2 The telinit 2 Command

3. Multiuser Environment. . .

- i -

1

1
2
4

5

Chapter 5

SINGLE USER AND MULTIUSER MODE

1. Introduction

There are two main modes of operation of the U niP Ius + operating sys­
tem: single user (level S) and multiuser Clevel 2). The run level has
eight possible values: 0-6 and S (or s). Single user is always S or s.
Although multiuser is normally level 2, the system administrator can
configure the letc!inittab file to run multiuser at any level from 0 to 6.

The letc!inittab file can also be configured so that certain procedures are
followed automatically only the first time that a certain run level is
entered. For example, normally you will be asked to verify date and
file systems the first time you change your system to multiuser. This is
caused by an entry in the inittab file. Subsequent changes in run level
will not perform this procedure automatically unless you specifically
change the inittab file. For more information on init refer to init(1M)
in the UniPlus+ System V Administrator's Manual, inittab(4) in the
UniPlus+ System V User's Manual, or, if you are an operator, consult
your local system administrator.

When in single-user mode, all dial-up ports and hard-wired terminals
are disabled and only the console terminal may interact with the proces­
sor. This mode of operation allows you to make necessary changes to
the system without any other processing taking place. However, you
will normally run the UniPlus+ operating system in multiuser mode.
Consult the documentation for your particular processor before
proceeding with any of these procedures.

2. Single-User Environment

In single-user mode, you may type any available system command (fol­
lowed by a RETURN). When the system has completed execution of
the command, it will prompt with the "#" again on the next line. You
use the single-user environment primarily to do filesaves, system
maintenance, modification, or repair operations. The typical sequence
of commands to change the system to multiuser mode is:

1. fsck

5-1

USER MODE

2. telinit 2

2.1 The fsck Command

The command fsck will interactively repair any damaged file systems
that result from a crash of the operating system. You should also use it
to ensure that the file systems are not damaged before going into mul­
tiuser mode or taking filesaves. Usually, you will want to respond
"yes" to all the prompts; however, in the event of a system crash, the
damage may be extensive enough to warrant recovery from a backup
pack. The procedure for this is discussed under "Filesaves" in Chapter
6. See fsck in the UniPlus+ System V Administrator's Manual for details
on the various options available and Chapter 8 in this guide for a
description of all the different errors that can occur.

An example of a check of a consistent file system is illustrated below:

fsck /dev/rsmdl
Idev/rsmd1
File System: usr Volume: p0603
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
2441 files 16547 blocks 31889 free

A file system that has been damaged can be repaired as shown below.
The y is your response. When checking a file system, you can avoid
the questions asked by fsck concerning inconsistencies found by using
the y option. This option will automatically attempt repairs as though
you answered "yes" to the questions. Use this with caution-the
corrections usually involve some data loss. If you decide to interac­
tively repair the file system, then follow the example below:

fsck /dev/rsmd2

The UniPlus+ operating system responds:

5-2

USER MODE

Idev/rsmd2
File System: fs1 Volume: p0603
** Phase 1 - Check Blocks and Sizes
POSSIBLE FILE SIZE ERROR 1=2500
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
UNREF FILE 1=2500 OWNER=255 MODE=100755
SIZE=O MTIME=Dec 31 19830 1983
CLEAR?y
** Phase 5 - Check Free List
2441 files 16547 blocks 889 free
***** FILE SYSTEM WAS MODIFIED *****

All mountable file systems should be listed in the file /etc/checklist
which fsck uses, and you should check these file systems each time the
system is rebooted.

A faster alternative to using fsck is checkall. The checkall command
uses dfsck (a front end for fsck) to simultaneously check two file sys­
tems in different disk drives. Included in check all are the file system
names that normally appear in / etc/ checklist (see checkall in the
UniPlus+ System V User's Manual).

WARNING: Never execute fsck on a mounted file system~ it will
have a bad effect since you are repairing only the physical disk. The
only exception to this is the root file system which is always mounted.

An example of repairing the root file system follows:

5-3

USER MODE

fsck / dey / smdO
/dev/smdO
File System: root Volume: pOOO 1
** Phase 1 - Check Blocks and Sizes
POSSIBLE FILE SIZE ERROR 1=416
POSSIBLE FILE SIZE ERROR 1= 61 0
POSSIBLE FILE SIZE ERROR 1=614
POSSIBLE FILE SIZE ERROR 1=618
POSSIBLE FILE SIZE ERROR 1=625
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
UNREF FILE 1=416 OWNER=uucp MODE=100400
SIZE=O MTIME=Nov 20 16:23 1983
CLEAR?y
UNREF FILE 1=610 OWNER=csw MODE=100400
SIZE=O MTIME=Nov 20 16:26 1983
CLEAR?y
UNREF FILE 1=625 OWNER=cath MODE=100400
SIZE=O MTIME=Nov 20 16:26 1983
CLEAR?y
FREE INODE COUNT WRONG IN SUPERBLK
FIX? y
** Phase 5 - Check Free List
1 D UP BLKS IN FREE LIST
BAD FREE LIST
SALVAGE?y
** Phase 6 - Salvage Free List
585 files 5463 blocks 4223 free
***** BOOT UNIX (NO SYNC!) *****

At this time you must immediately halt the processor and then reboot
the system (see the relevant software or hardware reference manual for
your computer for start-up procedures.)

2.2 The telinit 2 Command

After you have checked the file systems, you may change the UniPlus+
operating system to multiuser. Do this by entering the command tel­
init 2. This command activates processes that allow users to log in to
the system, turn on the accounting and error logging, mount any

5-4

USER MODE

indicated file systems, and start the cron and any indicated daemons.
Depending upon the type of data set your site has, you may have to
manually flip the toggles or pop the buttons on the data sets to allow
users to log in.

3. Multiuser Environment

There are two ways to get to this level: by typing telinit 2~ or, specify­
ing a rU~1 level of 2 after the boot. Users are permitted to access all
mounted file systems and execute all available commands. In this
mode, you can perform file restore procedures and take periodic status
checks of the system. Some of these periodic status checks can include:

• A check of free blocks (df) remaining on all mounted file systems
to ensure that a file system does not run out of space.

• A check on mail to root or whatever login receives requests for
file restores.

• A check on the number of users on the system (who).

• A check of all running processes ("ps - eaf" or whodo) to deter­
mine if there is some process using an abnormally large amount
of CPU time.

If your site has other run levels defined, you can use the telinit com-'
mand to change to those run levels. Finally, to change a multiuser sys­
tem to single user, refer to "System Shutdown" in Chapter 6.

5-5

Chapter 6: DUTIES

CONTENTS

1. Introduction

2. Filesaves
2.1 Saving the Root File System on Disk
2.2 Saving the User File System on Disk
2.3 Saving the User File System on Tape

3. File Restores
3.1 Restoring from Disk
3.2 Restoring from Tape . .

4. Message of the Day

5. System Shutdown
5.1 Shutdown Program

6. System Crash Recovery

- i -

1

1
2
3
3

5
5
6

10

11
11

12

1. Introduction

Chapter 6

DUTIES

This chapter is a guide for the normal duties of a computer operator or
system administrator. These descriptions do not represent what specific
job duties are; they merely outline the general procedures to ensure
that the system operates properly. Consult instructions for your proces­
sor before proceeding with any of these procedures.

2. Filesaves

Unless you make frequent copies of the file systems, a major system
crash could devastate your user community. The user files could be
destroyed or become inaccessible.

You should take daily jilesaves. Should the system crash and lose files,
then, at most, only a day's work will be lost. If your last filesave (or
backup) was a week ago, then even after restoring the file any changes
made since that backup will be lost.

There are two ways you can do filesaves: by disk and by tape. Most
sites use volcopy to save files. See volcopy in the UniPlus + System V
Administrator's Manual for more information on the available options
and use this command. You should normally do your file saving while
in single-user mode, with the file system unmounted, to preclude any
file system activity and subsequent damage on the saved copy. Also, to
ensure system buffers are flushed and file systems are up to date, exe­
cute the sync command before filesaves.

Normally the filesave procedure is automated by the system administra­
tor. You or your administrator may have created a shell script to per­
form the ·filesave as part of your site's local operation. Daily filesaves
usually are made on disk; whereas, a weekly filesave would be more
efficiently made on tape. Tape saves are necessary for long-term
storage or for regular saves if you do not have a spare disk. Tapes may
be previously labeled, or may be labeled by the volcopy command.
You or your administrator may have created separate shell scripts for
disk and tape saves (incorporating the procedures that follow).

6-1

DUTIES

You must have at least two disks, one of them a spare, for the follow­
ing procedures. For ease of mapping, file systems are normally saved
in the same partitions on the backup disk as they exist on the working
disk. This is imperative if you ever need to boot from a backup version
of root. The root file system must reside on partition a of the disk.

2.1 Saving the Root File System on Disk

In this example, the root file system on disk 0 will be saved on disk 1.

1. Connect the disk to contain the filesave as disk 1.

2. Enter the commands:

sync
fsck /dev/wOa
volcopy root /dev/rwOa S3B001 /dev/rw/a S3B002

to copy the root file system from disk 0 partition a to disk 3 parti­
tion O. The following messages should appear: The following
messages should appear:

From: /dev/rwOa, to: /dev/rw/a? (DEL if wrong)
END: 23000 blocks.

If the from and file systems are correct, wait for the prompt~ oth­
erwise, press the DELETE key to abort the copy.

3. Do step 3 for all the partitions of the disk to copy.

4. Disconnect and remove disk 1.

In the above procedure, fsck in step 3 asks you to concur with any
repairs necessary before attempting them. If you respond no, no action
will be taken and fsck will continue. Also, volcopy verifies the label
information on the to and from file system (for example, pack number,
file system name, date last modified). You will be asked to override
inconsistencies before the copy proceeds. For example:

6-2

volcopy root /dev/rwOa pOOOl /dev/rw/a pOl05
arg.(p0105) doesn't agree with to vol. 0
Type 'y' to override: y
warning! from fs(root) differs from to fsO
Type 'y' to override: y
From: /dev/rwOa, to: /dev/rw/a? (DEL if wrong)
END: 23000 blocks.

DUTIES

Note: In this example, the to partition is unlabeled, as indicated by the
null volume and file system fields. For more information see volcopy
in the UniPlus+ System V Administrator's Manual.

2.2 Saving the User File System on Disk

In this next example, the nsr file system, on partition 6 of disk 0, will
be saved on disk 1, volume p0603.

1. Connect the disk to contain the file-save on disk 1.

2. Enter the commands:

sync
nmonnt /dev/wOb
fsck /dev/rwOb
volcopy nsr /dev /rwOb pOOOl /dev /rw /b p0603

to copy the nsr file system from disk 0 partition b to disk 1 parti­
tion 2. The following messages should appear:

From: /dev/rwob, to: /dev/rw/b? (DEL if wrong)
END: 23000 blocks.

If the from and to file systems are correct, wait for the prompt;
otherwise, press the DELETE key to abort the copy.

3. Do step 3 for all the partitions of the disk to copy.

4. Disconnect and remove the disk.

2.3 Saving the User File System on Tape

In this example, the nsr file system is saved on tape volume t0001,
mounted on transport O. The labelit command is used to label the tape

6-3

DUTIES

before the copy. You should place an external paper label on the out­
side of the reel carrying the same information as is written in the tape
header label. The external label should also indicate the sequence
number of the tape if it is from a set (multi-reel volume) for the file
system. Note the use of the - 0 option to labelit. Unless this option
is used on an unlabeled tape, the program will scan the entire reel look­
ing for a label to change before it rewinds and labels the beginning.
This can be very time-consuming on 2400-foot reels.

You can store approximately 65,000 blocks of a file system on a 2400-
foot tape using vol copy and recording at 1600 bpi. You may specify the
size and type of tape in the volcopy command, or you can let the sys­
tem prompt for the information as shown. In the example that follows,
the file system requires two reels. Although this example uses only one
drive, you can have both reels mounted on different drives. In that
case, when the first has finished, you would simply enter the name of
the second drive when asked.

1. Load the tape in transport 0, and label it:

labelit Idev/rmtO nsr tOOOI -0

Skipping label check!
NEW fsname = usr, NEW volume = tOOOl -- DEL if wrong!!

2. Enter the following commands:

6-4

sync
umount Idev/wOb
fsck -y Idev/rwOb
volcopy usr Idev/rwOb p0001 Idev/rmtO tO001
Enter size of reel in feet for < t0001 >: 2400

Reel t0001, 2400 feet, 1600 BPI
You will need 2 reels.
(The same size and density is expected for all reels)
From: Idev/rwOb, to: Idev/rmtO? (DEL if wrong)

Writing REEL 1 of 2, VOL = tO001

DUTIES

Changing drives? (RETURN if no, Idev/rmt_ if yes): RETURN

Mount tape 2
Type volume-ID when ready: t0002
Cannot read header (This tape has not been labeled!)
Type y to override: y
Volume is < garbage>, not < t0002>.
Want to override? y

Writing REEL 2 of 2, VOL = t0002
END: 90000 blocks.

3. File Restores

3.1 Restoring from Disk

When a request is made to restore a file from a backup disk, you
should first locate that disk and determine on which partition the
requested file system resides. Then at the console terminal, log in to
the system as root and proceed as the example illustrates. Following is
the procedure for restoring the file lusr/adm/acct/sum/tacct from a
previous backup disk. For this example, disk 1 is the backup disk and
lusr is on partition 0 of the disk.

1. Connect the disk as disk 1.

2. Enter the command:

mount Idev/w/b Ibck -r

This will mount the backup file system as Ibck read-only. The

6-5

DUTIES

following message should appear:

WARNING!! - mounting <usr> as </bck>

3. Enter the command:

Is - I /bck/ adm/ acct/ sum/ tacct

This will verify the existence of the file and the identity of the
owner. The following output will appear:

-rw-rw-r-- 1 adm bin 1932 Aug 9 14:27 Ibck/adm/acct/sum/tacct

4. Enter the command:

cp Ibck/adm/acct/sum/tacct /usr/adm/acct/sum/tacct

to copy the file from the backup to the specified place.

5. Enter the command:

chown adm /usr/adm/acct/sum/tacct

to change the owner of the file.

6. Enter the command:

umount /dev/w/b

This will unmount the backup file system.

7. Disconnect and remove the backup disk.

When you perform a file restore, it is usually a good practice to mail a
message to the user asking for the restore when you are finished. Also,
to avoid confusion, your message should refer to the file using a full
pathname. The procedure for this is:

mail user
I have restored the file /usr/adm/acct/sum/tacct
from Friday's backup.
your initials

3.2 Restoring from Tape

If the file does not exist on any of the backup disks or if your installa­
tion does not perform disk filesaves, then you will have to recover the
file from a tape save. It is assumed that you do your tape saves in the
same manner as disk saves, that is, with volcopy. Filesaves are

6-6

DUTIES

discussed earlier in this chapter. To restore a file from tape, you must
place the whole file system on a spare partition of the disk. The backup
tape version can then be accessed in the same way as a disk save. For
this example, it is assumed that there are two small file systems stored
on a single tape and that the usr file system is the second file on the
tape. Also, it is assumed that partition e of disk 0 is a spare partition
on that disk. The tape drive is already in service.

1. Mount tape on tape drive O.

2. Enter the command:

echo < Idev ImtO

This will space past the first file on the tape, with no rewind.

3. Enter:

volcopy usr Idev ImtO tO004 dey IrwOe S3B003

This will copy the file system from tape to the spare disk partition.
The following messages should appear:

From: Idev/mtO, to: IdevlrwOe? (DEL if wrong)
END: 90000 blocks.

4. Enter the command:

mount Idev/wOe Ibck -r

This will mount the backup partition. The following message
should appear on the screen:

WARNING!! - mounting: <usr> as </bck>

5. Enter the command:

Is -I Ibck/adm/acct/sum/tacct

This will verify the existence of the file and identify the owner.
The following output will appear:

-rw-rw-r-- 1 adm bin 1932 Aug 9 14:27 Ibck/adm/acct/sum/tacct

6. Enter:

cp Ibck/adm/acct/sum/tacct lusr/adm/acct/sum/tacct

This will copy the file to the specified place.

6-7

DUTIES

7. Enter the command:

chown adm lusr/adm/acct/sum/tacct

to change the owner of the file.

8. Enter the command:

umount Idev/wOa

This will unmount the spare partition.

Sometimes a file system is so large it requires more than one tape to
store the contents. In this situation, you follow the same procedure to
restore a file as in the previous example. The volcopy command
prompts you for additional reels when necessary. In this example, the
second reel has the wrong label. The y response overrides the incon­
sistency and the reel is read anyway.

1. Mount tape on tape drive O.

2. Enter:

6-8

volcopy - bpi1600 -feet2400 usr Idev/rmtO t0004 dev/rwOe S3B003

This will copy the file system from tape to the spare disk partition.
The following messages should appear:

DUTIES

Reel 1, 2400 feet, 1600 BPI
From: /dev/rmtO, to: /dev/rwOe? (DEL if wrong)

Reading REEL 1 of 3, VOL = 1
Changing drives? (RETURN if no, /dev/rmt_ if yes): RETURN
Mount tape 2
Type volume-ID when ready: 2
Volume is < 1 >, not <2>.
Want to override? y

Reading REEL 2 of 3, VOL = 1
Fri Jul 29 12:00:02 EDT 1983

Changing drives? (RETURN if no, /dev/rmt_ if yes): RETURN
Mount tape 3
Type volume-ID when ready: 3

Reading REEL 3 of 3, VOL = 3
END: 90000 blocks.

3. Enter the command:

mount Idev/wOe Ibck -r

This will mount the backup partition. The following message
should appear on the screen:

WARNING!! - mounting: <usr> as </bck>

4. Enter the command:

Is -I Ibck/adm/acct/sum/tacct

This will verify the existence of the file and identify the owner.
The following output will appear:

-rw-rw-r-- 1 adm bin 1932 Aug 9 14:27 /bck/adm/acct/sum/tacct

5. Enter:

cp Ibck/adm/acct/sum/tacct lusr/adm/acct/sum/tacct

This will copy the file to the specified place.

6. Enter the command:

chown adm lusr/adm/acctlsum/tacct

to change the owner of the file.

6-9

DUTIES

7. Enter the command:

umount Idev/wOe

This will unmount the spare partition.

4. Message of the Day

When a user logs into the system, part of the login procedure prints
out a message of the day. This message can contain several lines of
useful information concerning scheduled down-time for hardware
preventive maintenance (PM), clean-up messages for space-low file sys­
tems, or any other useful warnings. The trick to maintaining this file is
to keep it short and to the point. A user does not want to wait ten
minutes while eloquent and wordy dialogue is spewed from the terminal
before he or she can begin working.

The contents of this message are stored in the file letc/motd. You may
change the contents of this file by using the U niPlus+ system text edi­
tor. See ed or vi in the UniPlus+ System V User's Manual. A sample
of adding and deleting a line from this file is shown below.

ed I etcl motd
26
p
9/23: Reboot at Spm today.
d
a
9/24: Down for PM 1700-2100 on 9/30.

w
37
q

You can also remove the contents of the entire file (do not remove the
file itself; it needs to exist so the login process can read it) by:

cp Idev Inull letc/motd

6-10

DUTIES

5. System Shutdown

You will perform three distinct steps when bringing down your
UniPlus+ system. These steps must be performed in the indicated
order, although it is not necessary to bring the system completely down
for certain maintenance operations. For example, preventive mainte­
nance (such as filesaves) must be done while in single-user mode
without halting the UniPlus+ system. Whereas, repairing a hard fault
would necessitate removing power completely. You should never
remove power from a piece of equipment that is in service, and
definitely do not power down the system until the UniPlus+ operating
system has been halted. To bring down the system:

• Run the shutdown program (changes a multiuser system to
single-user mode).

• Halt the UniPlus+ program (the operating system).

• Remove power.

5.1 Shutdown Program

Whenever the system must be shut down, such as for filesaves or a
reboot, you should run the program fete/shutdown. The shutdown
procedure is designed to gracefully turn off all processes and bring the
system back to single-user state with all buffers flushed.

You must be in the root directory (/) to use the shutdown program.
You may specify the amount of grace period between sending a warning
message out and actually shutting down. This grace period is the
number of seconds of delay. For example, specifying a grace period of
300 will result in a 5-minute delay. You may also send your own mes­
sage. A default message is sent to all logged-in users if you don't type
your own. The following printout is an example of a typical shutdown
sequence. Enter the following:

cd /
shutdown 300

Your shutdown procedure may vary slightly from the following,
depending on how it is set up in your system. The shutdown script may
be modified ator according to local procedures. A typical output is as
follows:

6-11

DUTIES

SHUTDOWN PROGRAM

Thu Sep 1 18:51:58 EST 1983

Do you want to send your own message? (y or n): y
Type your message followed by < ctrl> d

System coming down for filesaves!
Please log off.
<ctrl>d

System coming down for filesaves!
Please log off.
(waits for 5 minutes)
SYSTEM BEING BROUGHT DOWN NOW! ! !

Busy out (push down) the appropriate
phone lines for this system.

Do you want to continue? (y or n): y
Process accounting stopped.
Error logging stopped.
All currently running processes will now be killed.

Wait for 'INIT: SINGLE USER MODE' before halting.

If you executed the shutdown program while in single-user mode,
(which is neither useful nor recommended) the system will not respond
with the 'INIT' message above.

A t the completion of this program you can either halt the system (and
reboot if necessary), power down, start the filesave routine or other
preventive maintenance, or bring the system back to multiuser mode.
To go to multiuser, type in telinit 2. See the Chapter 5, SINGLE
USER AND MULTIUSER MODE, for more information on changing
run level.

6. System Crash Recovery

An operating system is considered to have crashed when it halts itself
without being asked to. The reason for the halt is often unknown and
can be hardware failure or software related. It is important, for obvious

6-12

DUTIES

reasons, to determine the nature of the crash so that it will not happen
again. Note any messages that appear on the console, and any per­
tinent information on the processing that was going on at the time the
crash occurred.

6-13

Chapter 7: SYSTEM ACCOUNTING

CONTENTS

1. Introduction .

2. General

3. Files and Directories . .

4. Daily Operation

5. Setting Up the Accounting System

6. RUNACCT

7. Recovering From Failure

8. Restarting RUNACCT

9. Fixing Corrupted Files.
9.1 Fixing WTMP Errors
9.2 Fixing TACCT Errors

10. Updating Holidays. .

11. Daily Reports
11.1 Daily Report
11.2 Daily Usage Report
11.3 Daily Command and Monthly Total Command

Summaries
11.4 Last Login

12. Summary. . . .

LIST OF FIGURES

Figure 7.1. Directory Structure of the "adm" Login

LIST OF TABLES

TABLE 7.1. Files in the / usr / adm directory

TABLE 7.2. Files in the /usr/adm/acctlfiscal directory .

- i -

1

1

1

2

3

4

6

8

8
8
9

9

10
10
11

13
14

15

2

16

16

TABLE 7.3. Files in the lusr/adm/acctlnite directory (Page 1 of
2) • . 17

TABLE 7.3. Files in the lusr/adm/acctlnite directory (Page 2 of
2) 18

TABLE 7.4. Files in the I usr I adml acctl sum directory 19

- ii -

Chapter 7

SYSTEM ACCOUNTING

1. Introduction

The UniPlus+ system accounting provides methods to collect per­
process resource utilization data, record connect sessions, monitor disk
utilization, and charge fees to specific logins. A set of C language pro­
grams and shell procedures is provided to reduce this accounting data
into summary files and reports. This chapter describes the structure,
implementation, and management of this accounting system, as well as
a discussion of the reports generated and the meaning of the columnar
data.

2. General

The following list is a synopsis of the actions of the accounting system:

• At process termination, the UniPlus+ system kernel writes one
record per process in /usr/adm/pacct in the form of acct.h.

• The login and init programs record connect sessions by writing
records into /etclwtmp. Date changes, reboots, and shutdowns (via
acctwtmp) are also recorded in this file.

• The disk utilization program acctdusg and diskusg break down
disk usage by login.

• Fees for file restores, etc., can be charged to specific logins with
the chargefee shell procedure.

• Each day the runacct shell procedure is executed via crOD to
reduce accounting data and produce summary files and reports.

• The monacct procedure can be executed on a monthly or fiscal
period basis. It saves and restarts summary files, generates a
report, and cleans up the sum directory. These saved summary
files could be used to charge users for UniPlus+ system usage.

3. Files and Directories

The /usrllib/acct directory contains all of the C language programs and
shell procedures necessary to run the accounting system. The adm
login (currently user ID of 4) is used by the accounting system and has
the login directory structure shown in Figure 7.1.

7-1

ACCOUNTING

/usr/adm

I
acct

I
I I

nite sum fiscal

Figure 7.1. Directory Structure of the "adm" Login

The lusrladm directory contains the active data collection files. (For a
complete explanation of the files used by the accounting system, see
the table at the end of this section.) The nite directory contains files
that are re-used daily by the runacct procedure. The sum directory
contains the cumulative summary files updated by runacct. The fiscal
directory contains periodic summary files created by monacct.

4. Daily Operation

When the UniPlus+ system is switched into multiuser mode,
lusrlliblacctlstartup is executed which does the following:

1. The acctwtmp program adds a "boot" record to letciwtmp. This
record is signified by using the system name as the login name in
the wtmp record.

2. Process accounting is started via turnacct. Turnacct on executes
the accton program with the argument lusrladm/pacct.

3. The remove shell procedure is executed to clean up the saved
pacct and wtmp files left in the sum directory by runacct.

The ckpacct procedure is run via cron every hour of the day to check
the size of lusrladm/pacct. If the file grows past 1000 blocks (default),
turnacct switch is executed. The advantage of having several smaller
pacct files becomes apparent when trying to restart runacct after a
failure processing these records.

The chargefee program can be used to bill users for file restores, etc. It
adds records to lusrladm/fee which are picked up and processed by the
next execution of runacct and merged into the total accounting records.

Runacct is executed via cron each night. It processes the active
accounting files, lusrladm/pacct, letciwtmp, lusrladmlacctlniteldisktacct, and

7-2

ACCOUNTING

/usr/adm/fee. It produces command summaries and usage summaries by
login.

When the system is shut down using shutdown, the shutacct shell pro­
cedure is executed. It writes a shutdown reason record into /etclwtmp
and turns process accounting off.

After the first reboot each morning, the computer operator should exe­
cute /usrllib/acct/prdai/y to print the previous day's accounting report.

5. Setting Up the Accounting System

In order to automate the operation of this accounting system, several
things need to be done:

1. If not already present, add this line to the /etclrc file in the state 2
section:

Ibin/su - adm -c lusr/lib/acct/startup

2. If not already present, add this line to /etclshutdown to turn off the
accounting before the system is brought down:

I usr I Ii bl acct/ sh u tacct

3. For most installations, the following three entries should be made
in /usr/spoo/lcronlcrontab/adm so that cron will automatically run
the daily accounting.

04* * 1-6 lusr/lib/acct/runacct 2> lusr/adm/acct/nite/fd2log
o 2 * * 4 lusrllib/acct/dodisk
5 * * * * lusrllib/acct/ckpacct

4. To facilitate monthly merging of accounting data, the following
entry in /usr/spoo/lcronlcrontab/adm will allow monacct to clean up
all daily reports and daily total accounting files and deposit one
monthly total report and one monthly total accounting file in the
fisca / directory.

15 5 1 * * lusrllib/acct/monacct

The above entry takes advantage of the default action of monacct
that uses the current month's date as the suffix for the file names.
Notice that the entry is executed at such a time as to allow
runacct sufficient time to complete. This will, on the first day of
each month, create monthly accounting files with the entire

7-3

ACCOUNTING

month's data.

5. The PATH shell variable should be set in lusrladm!,profile to:

PATH = /usr/lib/acct/bin:/usr/bin

6. RUNACCT

Runacct is the main daily accounting shell procedure. It is normally
initiated via cron during nonprime time hours. Runacct processes con­
nect, fee, disk, and process accounting files. It also prepares daily and
cumulative summary files for use by prdaily or for billing purposes.
The following files produced by runacct are of particular interest

nite/lineuse Produced by acctcon, reads the wtmp file, and
produces usage statistics for each terminal line on
the system. This report is especially useful for
detecting bad lines. If the ratio between the
number of logoffs to logins exceeds about 3/1,
there is a good possibility that the line is failing.

nite/ daytacct This file is the total accounting file for the previ­
ous day in tacct.h format.

sum/tacct This file is the accumulation of each day's
niteldaytacct and can be used for billing purposes.
I t is restarted each month or fiscal period by the
monacct procedure.

sum/daycms Produced by the acctcms program. It contains
the daily command summary. The ASCII ver­
sion of this file is niteldaycms.

sum/cms The accumulation of each day's command sum­
maries. I t is restarted by the execution of
monacct. The ASCII version is nite/cms.

sum/loginlog Produced by the lastiogin shell procedure. It
maintains a record of the last time each login was
used.

sum/rprtMMDD Each execution of runacct saves a copy of the
daily report that can be printed by prdaily.

Runacct takes care not to damage files in the event of errors. A series
of protection mechanisms are used that attempt to recognize an error,
provide intelligent diagnostics, and terminate processing in such a way

7-4

ACCOUNTING

that runacet can be restarted with minimal intervention. It records its
progress by writing descriptive messages into the file active. (Files used
by runaect are assumed to be in the nite directory unless otherwise
noted.) All diagnostics output during the execution of runacct is writ­
ten into jd2log. Runacct will complain if the files lock and lock1 exist
when invoked. The lastdate file contains the month and day runacet
was last invoked and is used to prevent more than one execution per
day. If runaeet detects an error, a message is written to Idev/console,
mail is sent to root and adm, locks are removed, diagnostic files are
saved, and execution is terminated.

In order to allow runaeet to be restartable, processing is broken down
into separate reentrant states. A file is used to remember the last state
completed. When each state completes, state./ile is updated to reflect
the next state. After processing for the state is complete, state./ile is
read and the next state is processed. When runacct reaches the
CLEANUP state, it removes the locks and terminates. States are exe­
cuted as follows:

SETUP

WTMPFIX

CONNECTl

CONNECT2

PROCESS

The command turnacet switch is executed. The
process accounting files, lusr/adm/pacct ?, are
moved to lusrladmlSpacct ?MMDD. The letc/wtmp
file is moved to lusrladmlacctlnitelwtmp.MMDD
with the current time added on the end.

The wtmp file in the nite directory is checked for
correctness by the wtmpfix program. Some date
changes will cause acetconl to fail, so wtmpfix
attempts to adjust the time stamps in the wtmp
file if a date change record appears.

Connect session records are written to ctmp in
the form of ctmp.h. The Iineuse file is created,
and the reboots file is created showing all of the
boot records found in the wtmp file.

Ctmp is converted to ctacct.MMDD which are
connect accounting records. (Accounting records
are in tacct.h format.)

The acctprcl and acctprc2 programs are used to
convert the process accounting files,
lusrladmlSpacct ?MMDD, into total accounting
records in ptacct ?MMDD. The Spacct and placct

7-5

ACCOUNTING

files are correlated by number so that if runacct
fails the unnecessary reprocessing of Spacct files
will not occur. One precaution should be noted;
when restarting runacct in this state, remove the
last ptacct file because it will not be complete.

MERGE Merge the process accounting records with the
connect accounting records to form daytacct.

FEES Merge in any ASCII (acct records from the file
fee into daytacct.

DISK On the day after the dodisk procedure runs,
merge disktacct with daytacct.

MERGET ACCT Merge daytacct with sum/tacct, the cumulative
total accounting file. Each day, daytacct is saved
in sum/tacctMMDD, so that sum/tacct can be
recreated in the event it becomes corrupted or
lost.

CMS Merge in today's command summary with the
cumulative command summary file sumlcms.
Produce ASCII and internal format command
summary files.

USEREXIT Any installation dependent (local) accounting
programs can be included here.

CLEANUP Clean up temporary files, run prdaily and save its
output in sum/rprtMMDD, remove the locks, then
exit.

7. Recovering From Failure

The runacct procedure can fail for a variety of reasons; usually due to a
system crash, /usr running out of space, or a corrupted wtmp file. If the
activeMMDD file exists, check it first for error messages. If the active
file and lock files exist, check jd2log for any mysterious messages. The
following are error messages produced by runacct and the recom­
mended recovery actions:

7-6

ACCOUNTING

ERROR: locks found, run aborted

The files lock and lock] were found. These files must be removed
before runacct can restart.

ERR 0 R: acctg already run for date check
/ u sr / adm/ acct/ ni te/lastda te

The date in lastdate and today's date are the same. Remove last­
date.

ERROR: turnacct switch returned rc = ?

Check the integrity of turnacct and accton. The accton program
must be owned by root and have the setuid bit set.

ERROR: Spacct ?MMDD already exists

File setups probably already run. Check status of files, then run
setups manually.

ERROR: /usr/adm/acct/nite/wtmp.MMDD already exists, run setup
manually

Self-explanatory.

ERROR: wtmpfix errors see /usr/adm/acct/nite/wtmperror

Wtmpfix detected a corrupted wtmp file. Use fwtmp to correct the
corrupted file.

ERROR: connect acctg failed: check /usr/adm/acct/nite/log

The acctconl program encountered a bad wtmp file. Use fwtmp to
correct the bad file.

7-7

ACCOUNTING

ERROR: Invalid state, eheek lusr/adm/aeet/nite/aetive

The file state./ile is probably corrupted. Check state./ile and read
active before restarting.

8. Restarting RUN ACCT

Runaeet called without arguments assumes that this is the first invoca­
tion of the day. The argument MMDD is necessary if runaeet is being
restarted and specifies the month and day for which runaeet will rerun
the accounting. The entry point for processing is based on the contents
of state./ile. To override state./ile, include the desired state on the com­
mand line. For example:

To start runaeet:

nohup runacct 2> /usr/adm/acctlnite/fd210g&

To restart runaeet:

nohup runacct 0601 2> /usr/adm/acctlnite/fd210g&

To restart runaeet at a specific state:

nohup runacct 0601 WTMPFIX 2> /usr/adm/acctlnite/fd210g&

9. Fixing Corrupted Files

Unfortunately, this accounting system is not entirely foolproof. Occa­
sionally, a file will become corrupted or lost. Some of the files can sim­
ply be ignored or restored from the file save backup. However, certain
files must be fixed in order to maintain the integrity of the accounting
system.

9.1 Fixing WTMP Errors

The wtmp files seem to cause the most problems in the day-to-day
operation of the accounting system. When the date is changed and the
UniPlus+ system is in multiuser mode, a set of date change records is
written into /etc/wtmp. The wtmpfix program is designed to adjust the
time stamps in the wtmp records when a date change is encountered.
However, some combinations of date changes and reboots will slip

7-8

ACCOUNTING

through wtmpfix and cause acctconl to fail. The following steps show
how to patch up a wtmp file.

cd / usr / adm/ acct/ ni te
fwtmp < wtmp.MMDD > xwtmp
ed xwtmp

delete corrupted records or
delete all records from beginning up to the date change

fwtmp -ic < xwtmp > wtmp.MMDD

If the wtmp file is beyond repair, create a null wtmp file. This will
prevent any charging of connect time. Acctprcl will not be able to
determine which login owned a particular process, but it will be charged
to the login that is first in the password file for that user id.

9.2 Fixing TACCT Errors

If the installation is using the accounting system to charge users for sys­
tem resources, the integrity of sum/tacct is quite important. Occasion­
ally, mysterious tacct records will appear with negative numbers, dupli­
cate user IDs, or a user ID of 65,535. First check sum/tacctprev with
prtacct. If it looks all right, the latest sum/tacct.MMDD should be
patched up, then sum/tacct recreated. A simple patchup procedure
would be:

cd / usr / adm/ acct/ sum
acctmerg - v < tacct. MMDD > xtacct
ed xtacct

remove the bad records
write duplicate uid records to another file

acctmerg - i < xtacct > tacct. MMDD
acctmerg tacctprev < tacct.MMDD> tacct

Remember that the monacct procedure removes all the tacct.MMDD
files; therefore, sum/tacct can be recreated by merging these files
together.

10. Updating Holidays

The file /usrllib/acctlholidays contains the prime/nonprime table for the
accounting system. The table should be edited to reflect your location's
holiday schedule for the year. The format is composed of three types
of entries:

7-9

ACCOUNTING

1. Comment Lines: Comment lines may appear anywhere in the file
as long as the first character in the line is an asterisk.

2. Year Designation Line: This line should be the first data line (non­
comment line) in the file and must appear only once. The line
consists oC three fields of four digits each (leading white space is
ignored). For example, to specify the year as 1985, prime time at
9:00 a.m., and nonprime time at 4:30 p.m., the following entry
would be appropriate:

1985 0900 1630

A special condition allowed for in the time field is that the time
2400 is automatically converted to 0000.

3. Company Holidays Lines: These entries follow the year designation
line and have the following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is a number in the range of 1 through 366
indicating the day for the corresponding holiday (leading white
space is ignored). The other three fields are actually commentary
and are not currently used .by other programs.

11. Daily Reports

Runacct generates five basic reports upon each invocation. They cover
the areas of connect accounting, usage by person on a daily basis, com­
mand usage reported by daily and monthly totals, and a report of the
last time users were logged in.

The following paragraphs describe the reports and the meanings of their
tabulated data.

11.1 Daily Report

In the first part of the report, the from/to banner should alert the
administrator to the period reported on. The times are the time the last
accounting report was generated until the time the current accounting
report was generated .. It is followed by a log of system reboots, shut­
downs, power fail recoveries, and any other record dumped into
/etc/wtmp by the acctwtmp program [see acct(1M) in the UniPlus+ Sys­
tem V Administrator's Manual].

7-10

ACCOUNTING

The second part of the report is a breakdown of line utilization. The
TOT AL DURATION tells how long the system was in multiuser state
(able to be accessed through the terminal lines). The ,columns are:

LINE

MINUTES

PERCENT

SESS

ON

OFF

The terminal line or access port.

The total number of minutes that line was in use
during the accounting period.

The total number of MINUTES the line was in
use divided into the TOTAL DURATION.

The number of times this port was accessed for a
login (1) session.

This column does not have much meaning any
more. It used to give the number of times that
the port was used to log a user on; but since
login (1) can no longer be executed explicitly to
log in a new user, this column should be identical
with SESS.

This column reflects not just the number of times
a user logged off but also any interrupts that
occur on that line. Generally, interrupts occur
on a port when the geUy(1M) is first invoked
when the system is brought to multiuser state.
Where this column does come into play is when
the # OFF exceeds the # ON by a large factor.
This usually indicates that the multiplexer,
modem, or cable is going bad, or there is a bad
connection somewhere. The most common
cause of this is an unconnected cable dangling
from the multiplexer.

During real time, letc!wtmp should be monitored as this is the file that
the connect accounting is geared from. If it grows rapidly, execute
acctcon1 to see which tty line is the noisest. If the interrupting is
occurring at a furious rate, general system performance will be effected.

11.2 Daily Usage. Report

This report gives a by-user breakdown of system resource utilization.
Its data consists of:

7-11

ACCOUNTING

UID

LOGIN NAME

CPU (MINS)

KCORE-MINS

CONNECT (MINS)

DISK BLOCKS

OF PROCS

7-12

The user ID.

The login name of the user; there can be
more than one login name for a single user
ID, this identifies which one.

This represents the' amount of time the user's
process used the central processing unit. This
category is broken down into PRIME and
NPRIME (nonprime) utilization. The
accounting system'S idea of this breakdown is
located in the /usrllib/acctlho/idays file. As
delivered, prime time is defined to be 0900
through 1700 hours.

This represents a cumulative measure of the
amount of memory a process uses while run­
ning. The amount shown reflects kilobyte
segments of memory used per minute. This
measurement is also broken down into
PRIME and NPRIME amounts.

This identifies "Real Time" used. What this
column really identifies is the amount of time
that a user was logged into the system. If this
time is rather high and the column "# OF
PROCS" is low, this user is what is called a
"line hog". That is, this person logs in first
thing in the morning and does not hardly
touch the terminal the rest of the day. Watch
out for these kinds of users. This column is
also subdivided into PRIME and NPRIME
utilization.

When the disk accounting programs have
been run, the output is merged into the total
accounting record (tacct.h) and shows up in
this column. This disk accounting is accom­
plished by the program acctdusg.

This column reflects the number of processes
that was invoked by the user. This is a good
column to watch for large numbers indicating
that a user may have a shell procedure that
runs amock.

OF SESS

DISK SAMPLES

FEE

ACCOUNTING

This is how many times the user logged onto
the system.

This indicates how many times the disk
accounting was run to obtain the average
number of DISK BLOCKS listed earlier.

An often unused field in the total accounting
record, the FEE field represents the total
accumulation of widgets charged against the
user by the chargefee shell procedure [see
acctsh (1 M)]. The chargefee procedure is
used to levy charges against a user for special
services performed such as file restores, etc.

11.3 Daily Command and Monthly Total Command Summaries

These two reports are virtually the same except that the Daily Com­
mand Summary only reports on the current accounting period while the
Monthly Total Command Summary tells the story for the start of the
fiscal period to the current date. In other words, the monthly report
reflects the data accumulated since the last invocation of monacct.

The data included in these reports gives an administrator an idea as to
the heaviest used commands and, based on those commands' charac­
teristics of system resource utilization, a hint as to what to weigh more
heavily when system tuning.

These reports are sorted by TOTAL KCOREMIN, which is an arbitrary
yardstick but often a good one for calculating "drain" on a system.

COMMAND NAME This is the name of the command. Unfor­
tunately, all shell procedures are lumped
together under the name sh since only object
modules are reported by the process account­
ing system. The administrator should monitor
the frequency of programs called a.out or core
or any other name that does not seem quite
right. Often people like to work on their
favorite version of backgammon only they do
not want everyone to know about it. Acctcom
is also a good tool to use for determining who
executed a suspiciously named command and

7-13

ACCOUNTING

NUMBER CMOS

also if superuser privileges were used.

This is the total number of invocations of this
particular command.

TOT AL KCOREMIN The total cumulative measurement of the
amount of kilobyte segments of memory used
by a process per minute of run time.

TOTAL CPU-MIN The total processing time this program has
accumulated.

TOT AL REAL-MIN The total real-time (wall-clock) minutes this
program has accumulated. This total is the
actual "waited for" time as opposed to kick­
ing off a process in the background.

MEAN SIZE-K This is the mean of the TOTAL KCOREMIN
over the number of invocations reflected by
N.UMBER CMOS.

MEAN CPU-MIN

HOG FACTOR

CHARS TRNSFO

BLOCKS REAO

11.4 Last Login

This is the mean derived between the
NUMBER CMOS and TOTAL CPU-MIN.

This is a relative measurement of the ratio of
system availability to system utilization. It is
computed by the formula

(total CPU time) / (elapsed time)

This gives a relative measure of the total
available CPU time consumed by the process
during its execution.

This column, which may go negative, is a
total count of the number of characters
pushed around by the read(2) and write(2)
system calls.

A total count of the physical block reads and
writes that a process performed.

This report simply gives the date when a particular login was last used.
This could be a good source for finding likely candidates for the
archives or getting rid of unused logins and login directories.

7-14

ACCOUNTING

12. Summary

The UniPlus+ system accounting was designed from a system
administrator's point of view. Every possible precaution has been taken
to ensure that the system will run smoothly and without error. It is
important to become familiar with the C programs and shell procedures.
The manual pages should be studied, and it is advisable to keep a
printed copy of the shell procedures handy. The accounting system
should be easy to maintain, provide valuable information for the
administrator, and provide accurate breakdowns of the usage of system
resources for charging purposes.

7-15

ACCOUNTING

TABLE 7.1. Files in the lusr/adm directory

diskdiag

dtmp

fee

pacct

pacct?

Spacct? .MMDD

diagnostic output during the execution of disk
accounting programs

output from the acctdusg program

output from the chargefee program, ASCII
tacct records

active process accounting file

process accounting files switched via turnacct

process accounting files for MMDD during
execution of runacct

TABLE 7.2. Files in the lusr/adm/acctlfiscal directory

ems?

fiscrpt?

tacct?

7-16

total command summary file for fiscal ? in
internal summary format

report similar to prdaily for fiscal ?

total accounting file for fiscal ?

ACCOUNTING

TABLE 7.3. Files in the lusr/adm/acctlnite directory (Page 1 of2)

active

cms

ctacct.MMDD

ctmp

daycms

daytacct

disktacct

fd210g

used by runacct to record progress and print
warning and error messages. activeMMDD
same as active after runacct detects an error

ASCII total command summary used by
prdaily

connect accounting records in tacct.h format

output of acctcon1 program, connect session
records in ctmp.h format

ASCII daily command summary used by
prdaily

total accounting records for 1 day in tacct.h
format

disk accounting records in tacct.h format,
created by dodisk procedure

diagnostic output during execution of runacct
(see cron entry)

7-17

ACCOUNTING

TABLE 7.3. Files in the /usr/adm/acct/nite directory (Page 2 of 2)

lastdate

lock lock!

lineuse

log

10gMMDD

reboots

statefile

tmpwtmp

wtmperror

wtmperrorMMDD

wtmp.MMDD

7-18

. last day runaeet executed ,in date + %m%d
format

used to control serial use of runaect

tty line usage report used by prdaily

diagnostic output from aeeteonl

same as log after runaeet detects an error

contains beginning and ending dates from
wtmp, and a listing of reboots

used to record current state during execution
of runaeet

wtmp file corrected by wtmpjix

place for wtmpjix error messages

same as wtmperror after runacct detects an
error

previous day's wtmp
file

ACCOUNTING

TABLE 7.4. Files in the lusr/adm/acct/sum directory

cms

cmsprev

daycms

loginlog

pacct.MMDD

rprtMMDD

tacct

tacctprev

tacctMMDD

wtmp.MMDD

total command summary file for current fiscal
in internal summary format

command summary file without latest update

command summary file for yesterday in inter­
nal summary format

created by lastlogin

concatenated version of all pacct files for
MMDD, removed after reboot by remove pro­
cedure

saved output of prdaily program

cumulative total accounting file for current
fiscal

same as tacct without latest update

total accounting file for MMDD

saved copy of wtmp file for MMDD, removed
after reboot by remove procedure

7-19

Chapter 8: FSCK: FILE SYSTEM CHECKING

CONTENTS

1. Introduction 1

2. General 1
2.1 System Administrator Advice 2

3. Update of the File System 2
3.1 Superblock . 2
3.2 Inodes 2
3.3 Indirect Blocks 3
3.4 Data Blocks 3
3.5 First Free-List Block 3

4. Corruption of the File System 3
4.1 Improper System S.hutdown and Startup 3
4.2 Hardware Failure 4

5. Detection and Correction of Corruption 4
5.1 Superblock . . . 4

5.1.1 File System Size and Inode-List Size . 5
5.1.2 Free-Block List 5
5.1.3 Free-Block Count 5
5.1.4 Free-Inode Count 6

5.2 Inodes . 6
5.2.1 Format and Type 6
5.2.2 Link Count 7
5.2.3 Duplicate Blocks . 7
5.2.4 Bad Blocks 8
5.2.5 Size Checks 8

5.3 Indirect Blocks 9
5.4 Data Blocks 9
5.5 Free-List Blocks 10

6. FSCK Error Conditions 10
6.1 Conventions 10
6.2 Initialization 11
6.3 PHASE 1: CHECK BLOCKS AND SIZES 14
6.4 PHASE IB: RESCAN FOR MORE DUPS 17
6.5 PHASE 2: CHECK PATHNAMES . 17
6.6 PHASE 3: CHECK CONNECTIVITY. 19

- i -

6.7 PHASE 4: CHECK REFERENCE COUNTS 20
6.8 PHASE 5: CHECK FREE LIST. . 24
6.9 PHASE 6: SALVAGE FREE LIST. 26
6.10 CLEANUP 26

- ii -

Chapter 8

FSCK: FILE SYSTEM CHECKING

1. Introduction

The File System Check Program (fsck) is an interactive file system
check and repair program. Fsck uses the redundant structural informa­
tion in the UniPlus+ system file system to perform several consistency
checks. If an inconsistency is detected, it is reported to the operator,
who may elect to fix or ignore each inconsistency. These inconsisten­
cies result from the permanent interruption of the file system updates,
which are performed every time a file is modified. Fsck is frequently
able to repair corrupted file systems using procedures based upon the
order in which the UniPlus+ system honors these file system update
requests.

The purpose of this chapter is to describe the normal updating of the
file system, to discuss the possible causes of file system corruption, and
to present the corrective actions implemented by fsck. Both the pro­
gram and the· interaction between the program and the operator are
described.

The fsck error conditions are listed in the last section of this chapter.
The meanings of the various error conditions, possible responses, and
related error conditions are explained.

2. General

When a UniPlus+ operating system is brought up, a consistency check
of the file systems should always be performed. This precautionary
measure helps to ensure a reliable environment for file storage on disk.
If an inconsistency is discovered, corrective action must be taken.

The updating of the file system and file system corruption is described
in this chapter. Finally, the set of heuristically sound corrective actions
used by fsck are presented.

8-1

FSCK

2.1 System Administrator Advice

Remember that system buffers are 1024 bytes. When configuring the
operating system, take into consideration that the same number of
buffers as before will use more main memory. Weigh this against
reducing the number of buffers, which reduces the cache hit ratio and
degrades performance.

3. Update of the File System

Every working day hundreds of files are created, modified, and
removed. Every time a file is modified, the UniPlus+ system performs
a series of file system updates. These updates, when written on disk,
yield a consistent file system. To understand what happens in the event
of a permanent interruption in this sequence, it is important to under­
stand the order in which the update requests were probably being
honored. Knowing which pieces of information were probably written
to the file system first, heuristic procedures can be developed to repair a
corrupted file system.

There are five types of file system updates. These involve the super­
block, inodes, indirect blocks, data blocks (directories and files), and
free-list blocks.

3.1 Superblock

The superblock contains information about the size of the file system,
the size of the inode list, part of the free-block list, the count of free
blocks, the count of free inodes, and part of the free-inode list.

The superblock of a mounted file system (the root file system is always
mounted) is written to the file system whenever the file system is
unmounted or a sync command is issued.

3.2 Inodes

An inode contains information about the type of inode (directory, data,
or special), the number of directory entries linked to the inode, the list
of blocks claimed by the inode, and the size of the inode.

An inode is written to the file system upon closure of the file associated
with the inode. (All "in" core blocks are also written to the file system
upon issue of a sync system call.)

8-2

FSCK

3.3 Indirect Blocks

There are three types of indirect blocks-single-indirect, double­
indirect, and triple-indirect. A single-indirect block contains a list of
some of the block numbers claimed by an inode. Each one of the 128
entries in an indirect block is a data-block number. A double-indirect
block contains a list of single-indirect block numbers. A triple-indirect
block contains a list of double-indirect block numbers.

Indirect blocks are written to the file system whenever they have been
modified and released by the operating system. More precisely, they
are queued for eventual writing. Physical I/O is deferred until the
buffer is needed by the UNIX system or a sync command is issued.

3.4 Data Blocks

A data block may contain file information or directory entries. Each
directory entry consists of a file name and an inode number.

Data blocks are written to the file system whenever they have been
modified and released by the operating system.

3.5 First Free .. List Block

The superblock contains the first free-list block. The free-list blocks
are a list of all blocks that are not allocated to the superblock, inodes,
indirect blocks, or data blocks. Each free-list block contains a count of
the number of entries in this free-list block, a pointer to the next free­
list block, and a partial list of free blocks in the file system.

Free-list blocks are written to the file system whenever they have been
modified and released by the operating system.

4. Corruption of the File System

A file system can become corrupted in a variety of ways. Improper
shutdown procedures and hardware failures are the most common.

4.1 Improper System shuidown and Startup

File systems may become corrupted when proper shutdown procedures
are not observed, e.g., forgetting to sync the system prior to halting the
CPU, physically write-protecting a mounted file system, or taking a

8-3

FSCK

mounted file system off-line.

File systems may also become further corrupted by allowing a corrupted
file system to be used (and, thus, to be modified further) can be disas­
trous.

4.2 Hardware Failure

Any piece of hardware can fail at any time. Failures can be as subtle as
a bad block on a disk platter or as blatant as a nonfunctional disk con­
troller.

5. Detection and Correction of Corruption

A quiescent file system (an unmounted system and not being written
on) may be checked for structural integrity by performing consistency
checks on the redundant data intrinsic to a file system. The redundant
data is either read from the file system or computed from other known
values. A quiescent state is important during the checking of a file sys­
tem because of the multipass nature of the fsck program.

When an inconsistency is discovered, fsck reports the inconsistency for
the operator to chose a corrective action.

Discussed in this part are how to discover inconsistencies (and possible
corrective actions) for the superblock, the inodes, the indirect blocks,
the data blocks containing directory entries, and the free-list blocks.
These corrective actions can be performed interactively by the fsck .
command under control of the operator.

5.1 Superblock

One of the most common corrupted items is the superblock. The
superblock is prone to corruption because every change to the file
system's blocks or inodes modi~es the superblock.

The superblock and its associated parts are most often corrupted when
the computer is halted and the last command involving output to the
file system was not a sync command.

8-4

FSCK

The superblock can be checked for inconsistencies involving file system
size, inode-list size, free-block list, free-block count, and the free-inode
count.

5.1.1 File System Size and Inode-List Size

The file system size must be larger than the number of blocks used by
the superblock and the number of blocks used by the list of inodes.
The number of inodes must be less than 65,535. The file system size
and inode-list size are critical pieces of information to the fsck pro­
gram. While there is no way to actually check these sizes, fsck can
check for them being within reasonable bounds. All other checks of
the file system depend on the correctness of these sizes.

5.1.2 Free-Block List

The free-block list starts in the superblock and continues through the
free-list blocks of the file system. Each free-list block can be checked
for a list count out of range, for block numbers out of range, and for
blocks already allocated within the file system. A check is made to see
that all the blocks in the file system were found.

The first free-block list is in the superblock. Fsck checks the list count
for a value of less than 0 or greater than 50. It also checks each block
number for a value of less than the first data block in the file system or
greater than the last block in the file system. Then it compares each
block number to a list of already allocated blocks. If the free-list block
pointer is nonzero, the next free-list block is read in and the process is
repeated.

When all the blocks have been accounted for, a check is made to see if
the number of blocks used by the free-block list plus the number of
blocks claimed by the inodes equals the total number of blocks in the
file system.

If anything is wrong with the free-block list, then fsck may rebuild the
list, excluding all blocks in the list of allocated blocks.

5.1.3 Free-Block Count

The superblock contains a count of the total number of free blocks
within the file system. Fsck compares this count to the number of

8-5

FSCK

blocks it found free within the file system. If the counts do not agree,
then fsck may replace the count in the superblock by the actual free­
block count.

5.1.4 Free-Inode Count

The superblock contains a count of the total number of free inodes
within the file system. Fsck compares this count to the number of
inodes it found free within the file system. If the counts do not agree,
then fsck may replace the count in the superblock by the actual free­
inode count.

5.2 Inodes

An individual inode is not as likely to be corrupted as the superblock.
However, because of the great number of active inodes, there is almost
as likely a chance for corruption in the inode list as in the superblock.

The list of inodes is checked sequentially starting with inode 1 (there is
no inode 0) and going to the last inode in the file system. Each inode
can be checked for inconsistencies involving format and type, link
count, duplicate blocks, bad blocks, and inode size.

5.2.1 Format and Type

Each inode contains a mode 'word. This mode word describes the type
and state of the inode. Inodes may be one of four types:

1. Regular

2. Directory

3. Special block

4. Special character.

If an inode is not one of these types, then the inode has an illegal type.
Inodes may be found in one of three states-unallocated, allocated, and
neither unallocated nor allocated. This last state indicates an incorrectly
formatted inode. An inode can get in this state if bad data is written
into the inode list through,' for example, a hardware failure. The only
possible corrective action is for fsck to clear the inode.

8-6

FSCK

5.2.2 Link Count

Contained in each inode is a count of the total number of directory
entries linked to the inode. Fsck verifies the link count of each inode
by traversing down the total directory structure, starting from the root
directory, and calculating an actual link count for each inode.

If the stored link count is nonzero and the actual link count is zero, it
means that no directory entry appears for the inode. If the stored and
actual link counts are nonzero and unequal, a directory entry may have
been added or removed without the inode being updated.

If the stored link count is nonzero and the actual link count is zero,
fsck can, under operator control, link the disconnected file to the
lost +/ound directory. If the stored and actual link counts are nonzero
and unequal, fsck can replace the stored link count by the actual link
count.

5.2.3 Duplicate Blocks

Contained in each inode is a list or pointers to lists (indirect blocks) of
all the blocks claimed by the inode. Fsck compares each block number
claimed by an inode to a list of already allocated blocks. If a block
number is already claimed by another inode, the block number is added
to a list of duplicate blocks. Otherwise, the list of allocated blocks is
updated to include the block number. If there are any duplicate blocks,
fsck will make a partial second pass of the inode list to find the inode
of the duplicated block. This is necessary because without examining
the files associated with these inodes for correct content there is not
enough information available to decide which inode is corrupted and
should be cleared. Most of the time, the inode with the earliest modify
time is incorrect and should be cleared. This condition can occur by
using a file system with blocks claimed by both the free-block list and
by other parts of the file system.

A large number of duplicate blocks in an inode may be due to an
indirect block not being written to the file system. Fsck will prompt
the operator to clear both inodes.

8-7

FSCK

5.2.4 Bad Blocks

Contained in each inode is a list or pointer to lists of all the blocks
claimed by the inode. Fsck checks each block number claimed by an
inode for a value lower than that of the first data block or greater than
the last block in, the file system. If the block number is outside this
range, the block number is a bad block number.

If there is a large number of bad blocks in an inode, this may be due to
an indirect block not being written to the file system. Fsck will prompt
the operator to clear both inodes.

5.2.5 Size Checks

Each inode contains a 32-bit (4-byte) size field. This size indicates the
number of characters in the file associated with the inode. This size
can be checked for inconsistencies, e.g., directory sizes that are not a
multiple of 16 characters or the number of blocks actually used not
matching that indicated by the inode size.

A directory inode within the file, system has the directory bit on in the
inode mode word. The directory size must be a multiple of 16 because
a directory entry contains 16 bytes (2 bytes for the inode number and
14 bytes for the file or directory name).

Fsck will warn of such directory misalignment. This is only a warning
because not enough information can be gathered to correct the
misalignment.

A rough check of the consistency of the size field of an inode can be
performed by computing from the size field the number of blocks that
should be associated with the inode and comparing it to the actual
number of blocks claimed by the inode.

Fsck calculates the number of blocks that there should be in an inode
by dividing the numb~r of characters in an inode by the number of
characters per block and rounding up. Fsck adds one block for each
indirect block associated with the inode. If the actual number of blocks
does not match the computed number of blocks, fsck will warn of a
possible file-size error. This is only a warning because the system does
not fill in blocks in files created in random order.

8-8

FSCK

5.3 Indirect Blocks

Indirect blocks are owned by an inode. Therefore, inconsistencies in
indirect blocks directly affect the inode that owns it.

Inconsistencies that can be checked are blocks already claimed by
another inode and block numbers outside the range of the file system.

For a discussion of detection and correction of the inconsistencies asso­
ciated with indirect blocks, see parts "Duplicate Blocks" and "Bad
Blocks".

5.4 Data Blocks

The two types of data blocks are plain data blocks and directory data
blocks. Plain data blocks contain the information stored in a file.
Directory data blocks contain directory entries. Fsck does not attempt
to check the validity of the contents of a plain data block.

Each directory data block can be checked for inconsistencies involving
directory inode numbers pointing to unallocated inodes, directory inode
numbers greater than the number of inodes in the file system, incorrect
directory inode numbers for "." and " .. ", and directories discon­
nected from the file system. In addition, the validity of the contents of
a directory's data block is checked.

If a directory entry inode number points to an unallocated inode, then
fsck may remove that directory entry. This condition probably
occurred because the data blocks containing the directory entries were
modified and written out while the inode was not yet written out.

If a directory entry inode number is pointing beyond the end of the
inode list, fsck may remove that directory entry. This condition occurs
if bad data is written into a directory data block.

The directory inode number entry for"." should be the first entry in
the directory data block. Its value should be equal to the inode number
for the directory data block.

8-9

FSCK

The directory inode number entry for" .. " should be the second entry
in the directory data block. Its value should be equal to the inode
number for the parent of the directory entry (or the inode number of
the directory data block if the directory is the root directory).

If the directory inode numbers are incorrect, fsck may replace them
with the correct values.

Fsck checks the general connectivity of the' file system. If directories
are found not to be linked into the file system, fsck will link the direc­
tory back into the file system in the lost +jound directory. This condi­
tion can be caused by inodes being written to the file system with the
corresponding directory data blocks not being written to the file system.

5.5 Free-List Blocks

Free-list blocks are owned by the superblock. Therefore, inconsisten­
cies in free-list blocks directly affect the superblock.

Inconsistencies that can be checked are a list count outside of range,
block numbers outside of range, and blocks already associated with the
file system.

For a discussion of detection and correction of the inconsistencies asso­
ciated with free-list blocks, see part "Free-Block List".

6. FSCK Error Conditions

6.1 Conventions

Fsck is a multipass file system check program. Each file system pass
invokes a different phase of the fsck program. After the initial setup,
fsck performs successive phases over each file system performing
cleanup, checking blocks and sizes, pathnames, connectivity, reference
counts, and the free-block list (possibly rebuilding it).

When an inconsistency is detected, fsck reports the error condition to
the operator. If a response is required, fsck prints a prompt message
and waits for a response. This appendix explains the meaning of each
error condition, the possible responses, and the related error conditions.

8-10

FSCK

The error conditions are organized by the "Phase" of the fsck program
in which they can occur. The error conditions that may occur in more
than one phase will be discussed in the next section.

6.2 Initialization

Before a file system check can be performed, certain tables have to be
set up and certain files opened. This section describes the opening of
files and the initialization of tables. Error conditions resulting from
command line options, memory requests, opening of files, status of
files, file system size checks, and creation of the scratch file are listed
below.

C option?

C is not a legal option to fsck; legal options are - y, - n, - s, - S, - t,
- r, - q, and - D. Fsck terminates on this error condition. See the
fsck (IM) entry in the UniPlus+ System V Administrator's Manual for
further details.

Bad - t option

The - t option is not followed by a file name. Fsck terminates on this
error condition. See the fsck(IM) entry in the UniPlus+ System V
Administrator's Manual for further details.

Invalid - s argument, defaults assumed

The - s option is not suffixed by 3, 4, or blocks-per-cylinder:blocks-to­
skip. Fsck assumes a default value of 400 blocks-per-cylinder and 9
blocks-to-skip. See the fsck (IM) entry in the UniPlus+ System V
Administrator's Manual for further details.

Incompatible options: - nand - s

It is not possible to salvage the free-block list without modifying the file
system. Fsck terminates on this error condition. See the fsck (1 M)
entry in the UniPlus+ System V Administrator's Manual for further
details.

Can not fstat standard input

Fsck's attempt to fstat standard input failed. The occurrence of this
error condition indicates a serious problem which may require addi­
tional assistance. Fsck terminates on this error condition.

8-11

FSCK

Can not get memory

Fsck's request for memory for its virtual memory tables failed. The
occurrence of this error condition indicates a serious problem which
may require additional assistance. Fsck terminates on this error condi­
tion.

Can not open checkall file: F

The default file system checkall file F (usually letclcheckal!) cannot be
opened for reading. Fsck terminates on this error condition. Check
access modes of F.

Can not stat root

Fsck's request for statistics about the root directory "I" failed. The
occurrence of this error condition indicates a serious problem which
may require additional assistance. Fsck terminates on this error condi­
tion.

Can not stat F

Fsck's request for statistics about the file system F failed. It ignores
this file system and continues checking the next file system given.
Check access modes of F.

F is not a block or character device

Fsck has been given a regular file name by mistake. It ignores this file
system and continues checking the next file system given. Check file
type of F.

Can not open F

The file system F cannot be opened for reading. It ignores this file sys­
tem and continues checking the next file system given. Check access
modes of F.

Size check: fsize X isize Y

More blocks are used for the inode list Y than there are blocks in the
file system X, or there are more than 65,535 inodes in the file system.
It ignores this file system and continues checking the next file system
given.

8-12

FSCK

Can not create F

Fsck's request to create a scratch file F failed. It ignores this file sys­
tem and continues checking the next file system given. Check access
modes of F.

CAN NOT SEEK: BLK B (CONTINUE)

Fsck's request for moving to a specified block number B in the file sys­
tem failed. The occurrence of this error condition indicates a serious
problem which may require additional assistance.

Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check. Often,
however, the problem will persist. This error condition
will not allow a complete check of the file system. A
second run of fsck should be made to recheck this file
system. If block was part of the virtual memory buffer
cache, fsck will terminate with the message "Fatal 110
error" .

NO Terminate program.

CAN NOT READ: BLK B (CONTINUE)

Fsck's request for reading a specified block number B in the file system
failed. The occurrence of this error condition indicates a serious prob­
lem which may require additional assistance.

Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check. Often,
however, the problem will persist. This error condition
will not allow a complete check of the file system. A
second run of fsck should be made to recheck this file
system. If block was part of the virtual memory buffer
cache, fsck will terminate with the message "Fatal 110
error" .

NO Terminate program.

8-13

FSCK

CAN NOT WRITE: BLK B (CONTINUE)

Fsck's request for writing a specified block number B in the file system
failed. The disk is write-protected.

Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check. Often,
however, the problem will persist. This error condition
will not allow a complete check of the file system. A
second run of fsck should be made to recheck this file
system. If block was part of the virtual memory buffer
cache, fsck will terminate with the message "Fatal I/O
error" .

NO Terminate program.

6.3 PHASE 1: CHECK BLOCKS AND SIZES

This phase concerns itself with the inode list. This part lists error con­
ditions resulting from checking inode types, setting up the zero-link­
count table, examining inode block numbers for bad or duplicate
blocks, checking inode size, and checking inode format.

UNKNOWN FILE TYPE I = I (CLEAR)

The mode word of the inode 1 indicates that the inode is not a special
character inode, regular inode, or directory inode.

Possible responses to CLEAR prompt are:

YES Deallocate inode 1 by zeroing its contents. This will
always invoke the UNALLOCATED error condition in
Phase 2 for each directory entry pointing to this inode.

NO Ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)

An internal table for fsck containing allocated inodes with a link count
of zero has no more room. Recompile fsck with a larger value of
MAXLNCNT.

Possible responses to CONTINUE prompt are:

8-14

FSCK

YES Continue with program. This error condition will not
allow a complete check of the file system. A second run
of fsck should be made to recheck this file system. If
another allocated inode with a zero link count is found,
this error condition is repeated.

NO Terminate program.

B BAD 1=1

Inode 1 contains block number B with a number lower than the
number of the first data block in the file system or greater than the
number of the last block in the file system. This error condition may
invoke the EXCESSIVE BAD BLKS error condition in Phase 1 if inode
1 has too many block numbers outside the file system range. This error
condition will always invoke the BADIDUP error condition in Phase 2
and Phase 4.

EXCESSIVE BAD BLKS l= I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a
number lower than the number of the first data block in the file system
or greater than the number of the last block in the file system associ­
ated with inode I.

Possible responses to CONTINUE prompt are:

YES Ignore the rest of the blocks in this inode and continue
checking with next inode in the file system. This error
condition will not allow a complete check of the file sys­
tem. A second run of fsck should be made to recheck
this file system.

NO Terminate program.

B DUP 1=1

Inode 1 contains block number B which is already claimed by another
inode. This error condition may invoke the EXCESSIVE DUP BLKS
error condition in Phase 1 if inode 1 has too many block numbers
claimed by other inodes. This error condition will always invoke Phase
1 b and the BADIDUP error condition in Phase 2 and Phase 4.

8-15

FSCK

EXCESSIVE DUP BLKS I = I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks claimed
by other inodes.

Possible responses to CONTINUE prompt are:

YES Ignore the rest of the blocks in this inode and continue
checking with next inode in the file system. This error
condition will not allow a complete check of the file sys­
tem. A second run of fsck should be made to recheck
this file system.

NO Terminate program.

DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers has no
more room. Recompile fsck with a larger value of DUPTBLSIZE.

Possible responses to CONTINUE prompt are:

YES Continue with program. This error condition will not
allow a complete check of the file system. A second run
of fsck should be made to recheck this file system. If
another duplicate block is found, this error condition will
repeat.

NO Terminate program.

POSSIBLE FILE SIZE ERROR I = I
The inode I size does not match the actual number of blocks used by
the inode. This is only a warning. If the - q option is used, this mes­
sage is not printed.

DIRECTORY MISALIGNED 1=1

The size of a directory inode is not a multiple of the size of a directory
entry (usually 16). This is only a warning. If the - q option is used,
this message is not printed.

PARTIALLY ALLOCATED IN ODE 1=1 (CLEAR)

Inode I is neither allocated nor unallocated.

8-16

FSCK

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

6.4 PHASE IB: RESCAN FOR MORE DUPS

When a duplicate block is found in the file system, the file system is
rescanned to find the inode which previously claimed that block. This
part lists the error condition when the duplicate block is found.

B DUP 1=1

Inode I contains block number B which is already claimed by another
inode. This error condition will always invoke the BAD/DUP error
condition in Phase 2. Inodes with overlapping blocks may be deter­
mined by examining this error condition and the DUP error condition
in Phase 1.

6.5 PHASE 2: CHECK PATHNAMES

This phase concerns itself with removing directory entries pointing to
error conditioned inodes from Phase 1 and Phase 1 b. This part lists
error conditions resulting from root inode mode and status, directory
inode pointers in range, and directory entries pointing to bad inodes.

ROOT INODE UNALLOCATED. TERMINATING

The root inode (always inode number 2) has no allocate mode bits.
The occurrence of this error condition indicates a serious problem
which may require additional assistance. The program will terminate.

ROOT INODE NOT DIRECTORY (FIX)

The root inode (usually inode number 2) is not directory inode type.

Possible responses to FIX prompt are:

YES Replace the root inode's type to be a directory. If the root
inode's data blocks are not directory blocks, a very large
number of error conditions will be produced.

NO Terminate program.

8-17

FSCK

DUPS/BAD IN ROOT IN ODE (CONTINUE)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks in the
root inode (usually inode number 2) for the file system.

Possible responses to CONTINUE prompt are:

YES Ignore DUPS/BAD error condition in root inode and
attempt to continue to run the file system check. If root
inode is not correct, then this may result in a large
number of other error conditions.

NO Terminate program.

lOUT OF RANGE 1=1 NAME=F (REMOVE)

A directory entry F has an inode number I which is greater than the
end of the inode list.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

UNALLOCATED 1=1 OWNER=O MODE=M SIZE=S
MTIME=T NAME=F (REMOVE)

A directory entry F has an inode I without allocate mode bits. The
owner 0, mode M, size S, modify time T, and file name F are printed.
If the file system is not mounted and the - n option was not specified,
the entry will be removed automatically if the inode it points to is char­
acter size O.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD 1=1 OWNER=O MODE=M SIZE=S MTIME=T
DIR=F (REMOVE)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associ­
ated with directory entry F, directory inode I. The owner 0, mode M,
size S, modify time T, and directory name F are printed.

8-18

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD 1=1 OWNER=O MODE=M SIZE=S MTIME=T
FILE = F (REMOVE)

FSCK

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associ­
ated with directory entry F, inode 1. The owner 0, mode M, size S,
modify time T, and file name F are printed.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

BAD BLK B IN DIR 1=1 OWNER=O MODE=M SIZE=S
MTIME=T

This message only occurs when the - q option is used. A bad block
was found in DIR inode 1. Error conditions looked for in directory
blocks are nonzero padded entries, inconsistent"." and" .. '" entries,
and imbedded slashes in the name field. This error message indicates
that the user should at a later time either remove the directory inode if
the entire block looks bad or change (or remove) those directory
entries that look bad.

6.6 PHASE 3: CHECK CONNECTIVITY

This phase concerns itself with the directory connectivity seen in Phase
2. This part lists error conditions resulting from unreferenced direc­
tories and missing or full lost + found directories.

UNREF DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T
(RECONNECT)

The directory inode 1 was not connected to a directory entry when the
file system was traversed. The owner 0, mode M, size S, and modify
time T of directory inode 1 are printed. Fsck will force the reconnec­
tion of a nonempty directory.

8-19

FSCK

Possible responses to RECONNECT prompt are:

YES Reconnect directory inode 1 to the file system in directory
for lost files (usually !ost+found). This may invoke
lost +found error condition in Phase 3 if there are prob­
lems connecting directory inode 1 to lost +found. This
may also invoke CONNECTED error condition in Phase 3
if link was successful.

NO Ignore this error condition. This will always invoke
UNREF error condition in Phase 4.

SORRY. NO lost +found DIRECTORY

There is no lost + found directory in the root directory of the file system;
fsck ignores the request to link a directory in lost + found. This will
always invoke the UNREF error condition in Phase 4. Check access
modes of lost+found. See fsck(1M) in the System V Administrator's
Manual for further details.

SORRY. NO SPACE IN lost + found DIRECTORY

There is no space to add another entry to the lost+found directory in
the root directory of the file system; fsck ignores the request to link a
directory in lost+found. This will always invoke the UNREF error con­
dition in Phase 4. Clean out unnecessary entries in lost +found or make
lost + found larger. See fsck (1 M) in the System V Adminstrator's Manual
for further details.

DIR 1=11 CONNECTED. PARENT WAS 1=12

This is an advisory message indicating a directory inode 11 was success­
fully connected to the lost+found directory. The parent inode 12 of the
directory inode 11 is replaced by the inode number of the lost + found
directory.

6.7 PHASE 4: CHECK REFERENCE COUNTS

This phase concerns itself with the link count information seen in
Phase 2 and Phase 3. This part lists error conditions resulting from
unreferenced files; missing or full lost + found directory~ incorrect link
counts for files, directories, or special files; unreferenced files and
directories; bad and duplicate blocks in files and directories~ and
incorrect total free-inode counts.

8-20

FSCK

UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T
(RECONNECT)

Inode I was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode
I are printed. If the - n option is not set and the file system is not
mounted, empty files will not be reconnected and will be cleared
automatically.

Possible responses to RECONNECT prompt are:

YES Reconnect inode 1 to file system in the directory for lost
files (usually lost + fou nd) . This may invoke lost + found
error condition in Phase 4 if there are problems connect­
ing inode I to lost +found.

NO Ignore this error condition. This will always invoke
CLEAR error condition in Phase 4.

SORRY. NO lost + found DIRECTORY

There is no lost +found directory in the root directory of the file system;
fsck ignores the request to link a file in lost + found. This will always
invoke CLEAR error condition in Phase 4. Check access modes of
lost + found.

SORRY. NO SPACE IN lost + found DIRECTORY

There is no space to add another entry to the lost + found directory in
the root directory of the file system; fsck ignores the request to link a
file in lost + found. This will always invoke the CLEAR error condition
in Phase 4. Check size and contents of lost +found.

(CLEAR)

The inode mentioned in the immediately previous error condition can­
not be reconnected.

Possible responses to CLEAR prompt are:

YES Deallocate inode mentioned in the immediately previous
error condition by zeroing its contents.

NO Ignore this error condition.

8-21

FSCK

LINK COUNT FILE 1=1 OWNER=O MODE=M SIZE=S
MTIME=T COUNT=X SHOULD BE Y (ADJUST)

The link count for inode I, which is a file, is X but should be Y. The
owner 0, mode M, size S, and modify time T are printed.

Possible responses to ADJUST prompt are:

YES Replace link count of file inode I with Y.

NO Ignore this error condition.

LINK COUNT DIR 1=1 OWNER=O MODE=M SIZE=S
MTIME=T COUNT=X SHOULD BE Y (ADJUST)

The link count for inode I, which is a directory, is X but should be Y.
The owner 0, mode M, size S, and modify time T of directory inode I
are printed.

Possible responses to ADJUST prompt are:

YES Replace link count of directory inode I with Y.

NO Ignore this error condition.

LINK COUNT F 1=1 OWNER=O MODE=M SIZE=S
MTIME=T COUNT=X SHOULD BE Y (ADJUST)

The link count for F inode I is X but should be Y. The file name F,
owner 0, mode M, size S, and modify time T are printed.

Possible responses to ADJUST prompt are:

YES Replace link count of inode I with Y.

NO Ignore this error condition.

UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T
(CLEAR)

Inode I, which is a file, was not connected to a directory entry when
the file system was traversed. The owner 0, mode MR, size S, and
modify time T of inode I are printed. If the - n option is not set and
the file system is not mounted, empty files will be cleared automati­
cally.

8-22

FSCK

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

UNREF DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T
(CLEAR)

Inode I, which is a directory, was not connected to a directory entry
when the file system was traversed. The owner 0, mode M, size S,
and modify time T of inode I are printed. If the - n option is not set
and the file system is not mounted, empty directories will be cleared
automatically. Nonempty directories will not be cleared.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

BAD/DUP FILE 1=1 OWNER=O MODE=M SIZE=S
MTIME = T (CLEAR)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associ­
ated with file inode I. The owner 0, mode M, size S, and modify time
T of inode I are printed.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

BAD/DUP DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T
(CLEAR)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associ­
ated with directory inode I. . The owner 0, mode M, size S, and
modify time T of inode I are printed.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

8-23

FSCK

NO Ignore this error condition.

FREE IN ODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in the
superblock of the file system. If the - q option is specified, the count
will be fixed automatically in the superblock.

Possible responses to FIX prompt are:

YES Replace count in superblock by actual count.

NO Ignore this error condition.

6.8 PHASE 5: CHECK FREE LIST

This phase concerns itself with the free-block list. This part lists error
conditions resulting from bad blocks in the free-block list, bad free­
blocks count, duplicate blocks in the free-block list, unused blocks from
the file system not in the free-block list, and the total free-block count
incorrect.

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10)
of blocks with a value less than the first data block in the file system or
greater than the last block in the file system.

Possible responses to CONTINUE prompt are:

YES Ignore rest of the free-block list and continue execution of
fsck. This error condition will always invoke "BAD
BLKS IN FREE LIST" error condition in Phase 5.

NO Terminate program.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10)
of blocks claimed by inodes or earlier parts of the free-block list.

Possible responses to CONTINUE prompt are:

YES Ignore the rest of the free-block list and continue execu­
tion of fsck. This error condition will always invoke

8-24

FSCK

"DUP BLKS IN FREE LIST" error condition in Phase 5.

NO Terminate program.

BAD FREEBLK COUNT

The count of free blocks in a free-list block is greater than 50 or less
than O. This error condition will always invoke the "BAD FREE
LIST" condition in Phase 5.

X BAD BLKS IN FREE LIST

X blocks in the free-block list have a block number lower than the first
data block in the file system or greater than the last block in the file
system. This error condition will always invoke the "BAD FREE
LIST" condition in Phase 5.

X DUP BLKS IN FREE LIST

X blocks claimed by inodes or earlier parts of the free-list block were
found in the free-block list. This error condition will always invoke the
"BAD FREE LIST" condition in Phase 5.

X BLK (S) MISSING

X blocks unused by the file system were not found in the free-block
list. This error condition will always invoke the "BAD FREE LIST"
condition in Phase 5.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)

The actual count of free blocks does not match the count in the super­
block of the file system.

Possible responses to FIX prompt are:

YES Replace count in superblock by actual count.

NO Ignore this error condition.

BAD FREE LIST (SALVAGE)

Phase 5 has found bad blocks in the free-block list, duplicate blocks in
the free- block list, or blocks missing from the file system. If the - q
option is specified, the free-block list will be salvaged automatically.

8-25

FSCK

Possible responses to SAL V AGE prompt are:

YES Replace actual free-block list with a new free-block list.
The new free-block list will be ordered to reduce time
spent !?y the disk waiting for the disk to rotate into posi­
tion.

NO Ignore this error condition.

6.9 PHASE 6: SALVAGE FREE LIST

This phase concerns itself with the free-block list reconstruction. This
part lists error conditions resulting from the blocks-to-skip and blocks­
per-cylinder values.

Default free-block list spacing assumed

This is an advisory message indicating the blocks-to-skip is greater than
the blocks-per-cylinder, the blocks-to-skip is less than 1, the blocks­
per-cylinder is less than 1, or the blocks-per-cylinder is greater than
500. The default values of 9 blocks-to-skip and 400 blocks-per-cylinder
are used. See fsck OM) in the System V Administrator's Manual for
fUJther details.

6.10 CLEANUP

Once a file system has been checked, a few cleanup functions are per­
formed. This part lists advisory messages about the file system and
modify status of the file system.

X files Y blocks Z free

This is an advisory message indicating that the file system checked con­
tained X files using Y blocks leaving Z blocks free in the file system.

***** BOOT UNIX (NO SYNC!) *****

This is an advisory message indicating that a mounted file system or the
root file system has been modified by fsck. If the UniPlus+ system is
not rebooted immediately without sync, the work done by fsck may be
undone by the in-core copies of tables the UniPlus+ system keeps.

***** FILE SYSTEM WAS MODIFIED *****

This is an advisory message indicating that the current file system was
modified by fsck.

8-26

Chapter 9: LP SPOOLING SYSTEM

CONTENTS

1. General

2. Overview of LP Features
2.1 Definitions
2.2 Commands

2.2.1 Commands for General Use
2.3 Commands for LP Administrators

3. Building LP .

4. Configuring LP-The "Ipadmin" Command .
4.1 Introducing New Destinations
4.2 Modifying Existing Destinations
4.3 Specifying the System Default Destination .
4.4 Removing Destinations

5. Making an Output Request-The "lp" Command

6. Finding LP Status- "lpstat"

7. Canceling Requests- "cancel"

8. Allowing and Refusing Requests-Accept and
Reject

9. Allowing and Inhibiting Printing-Enable and
Disable'

10. Moving Requests Between Destinations-
"lpmove"

11. Stopping and Starting the Scheduler- "lpshut" and
"lpsched"

12, Printer Interface Programs

13. Setting Up Hard-Wired Devices and Login Terminals as LP
Printers
13.1 Hard-wired Devices
13.2 Login Terminals

14. Summary.

- i -

1
1
2
2
2

3

4
4
6
7
8

8

10

10

10

11

12

13

14

16
16
17

18

Chapter 9

LP SPOOLING SYSTEM

1. General

The line printer (LP) program is a series of commands that perform
diverse spooling functions under UniPlus+. Since the primary LP
application is off-line printing, this document focuses mainly on spool­
ing to line printers. LP allows administrators to spool to a collection of
line printers of any type and to group printers into logical classes to
maximize the throughput of the devices. Users can:

• Queue and cancel print requests.

• Prevent and allow queuing to devices.

• Start and stop LP from processing requests.

• Change printer configuration.

• Find status of the LP system.

This chapter describes the role of an LP administrator.

2. Overview of LP Features

2.1 Definitions

We define several terms before presenting a brief summary of LP com­
mands. The LP was designed to meet the needs of users on different
UniPlus+ systems. Changes to the LP configuration are performed by
the Ipadmin (lM) command.

LP makes a distinction between printers and printing devices. A device
is a physical peripheral device or a file and is represented by a full
UniPlus+ system pathname. A printer is a logical name that represents
a device. At different times, a printer may be associated with different
devices. A class is a name given to an ordered list of printers. Every
class must contain at least one printer. Each printer may be a member
of zero or more classes. A destination is a printer or a class. One desti­
nation may be designated as the system default destination. The lp(l)
command directs all output to this destination unless the user specifies
otherwise. Output that is routed to a printer will be printed only by

9-1

LP SPOOLING

that printer, whereas output directed to a class will be printed by the
first available class member.

Each invocation of Ip creates an output request that consists of the files
to be printed and options from the Ip command line. An interface pro­
gram which formats requests must be supplied for each printer. The
LP scheduler, Ipsched (I M), services requests for all destinations by
routing requests to interface programs to do the printing on devices.
An LP configuration for a system consists of devices, destinations, and
interface programs.

2.2 Commands

2.2.1 Commands for General Use

The Ip(I) command is used to request printing files. It creates an out­
put request and returns a request id of the form

dest-seqno

to the user, where seqno is a unique sequence number across the entire
LP system and dest is the destination where the request was routed.

Cancel cancels output requests. The user supplies request ids as
returned by Ip or printer names, in which case the currently printing
requests on those printers are canceled.

Disable prevents lpsched from routing output requests to printers.

Enable (I) allows lpsched to route output requests to printers.

2.3 Commands for LP Administrators

Each LP system must designate a person or persons as LP administrator
to perform the restricted functions listed below. Either the superuser
or any user who is logged into the U niPlus+ system as lp qualifies as an
LP administrator. All LP files and commands are owned by lp except
for Ipadmin and Ipsched which are owned by root. The following com­
mands are described in more detail later in this chapter.

Ipadmin (1 M)

9-2

Modifies LP configuration. Many features of this
command cannot be used when Ipsched is running.

Ipsched (I M)

Ipshut

accept(lM)

reject

Ipmove

3. Building LP

LP SPOOLING

Routes output requests to interface programs which
do the printing on devices.

Stops Ipsched from running. All printing activity is
halted, but other LP commands may still be used.

Allows Ip to accept output requests for destinations.

Prevents Ip from accepting requests for destinations.

Moves output requests from one destination to
another. Whole destinations may be moved at one
time. This -command cannot be used when Ipsched
is running.

All LP commands are built from source code that resides in the
lusr/srckmd/lp directory, including the make file, /p.mk. Unless some of
the definitions in /p. mk are changed, LP may be installed only by the
superuser. Before installing a new LP system, make sure there is a
login called "lp" on your system and that the spool directory,
lusrlspoo//Ip, does not exist. To install LP, do the following:

cd lusrlsrc/cmd/lp
make - f lp.mk install

This builds all LP commands and creates an initial LP configuration
consisting of no printers, classes, or default destination. LP must be
configured by an LP administrator using the Ipadmin command to
create a useful spooler.

In addition, add the following code to letclrc.

rm -f lusrlspoolllp/SCHEDLOCK
lusr/lib/lpsched
echo "LP scheduler started"

This starts the LP scheduler each time that UniPlus+ is restarted.

Several variables in /p.mk may be changed before installing LP to cus­
tomize the system:

9-3

LP SPOOLING

Variable Default Value Meaning

SPOOL lusr/spoo/Ilp spool directory
ADMIN /p logname of LP Administrator
GROUP bin group owning LP commands/data
ADMDIR lusrllib commands of administrator
USRDIR lusr/bin user commands reside here

If an existing LP spool directory is corrupted (but not the LP programs)
or if it needs to be rebuilt from scratch, make sure that Ipsched is not
running and do the following as superuser:

1. Make copies of any interface programs that are not standard LP
software. DO NOT make these copies underneath the spool
directory. The pathname for printer "p" is lusr/spoo/llplinterJace/p.

2. rm -fr /usr/spooIllp

3. Make -j /p.mk new. (This recreates the bare LP configuration
described above,)

PRECAUTIONS

1. Some LP commands invoke other LP commands. Moving them
after they are built will cause some commands to fail.

2. The files under the SPOOL directory should be modified only by
LP commands.

3. All LP commands require set-user-id permission. If this is
removed, the commands will fail.

4. Configuring LP-The "Ipadmin" Command

Changes to the LP configuration should be made by using the Ipadmin
command and not by hand. Lpadmin will not attempt to alter the LP
configuration when Ipsched is running, except where explicitly noted
below.

4.1 Introducing New Destinations

The following information must be supplied to Ipadmin when introduc­
ing a new printer:

1. The printer name (- p printer) is an arbitrary name which must
conform to the following rules:

9-4

LP SPOOLING

• It must be no longer than 14 characters.

• It must consist solely of alphanumeric characters and under­
scores.

• It must not be the name of an existing LP destination
(printer or class).

2. The device associated with the printer (- v device). This is the
pathname of a hard-wired printer, a login terminal, or other file
that is writable by Ip.

3. The printer interface program. This may be specified in one of
three ways:

• It may be selected from a list of model interfaces supplied
with LP (- m model).

• It may be the same interface that an existing printer uses
(- e printer).

• It may be a program supplied by the LP administrator (- i
interface) .

Information which need not always be supplied when creating a new
printer includes:

1. The user may specify - h to indicate that the device for the
printer is hardwired or the device is the name of a file (this is
assumed by default). If, on the other hand, the device is the
pathname of a login terminal, then -I must be included on the
command line. This indicates to fpsched that it must automatically
disable this printer each. time fpsched starts running. This fact is
reported by fpstat when it indicates printer status:

$ lpstat -pa
printer a (login terminal) disabled Oct 31 11: 15 -

disabled by scheduler: login terminal

This is done because device names for login terminals can be (and
usually are) associated with different physical devices from day to
day. If the scheduler did not take this action, somebody might
log in and be surprised that LP is spooling to his/her terminal!

2. The new printer may be added to an existing class or added to a
new class (-cclass). New class names must conform to the same
rules for new printer names.

9-5

LP SPOOLING

EXAMPLES

The following examples will be referenced by further examples in later
sections.

1. Create a printer called prl whose device is /dev/printer and whose
interface program·is the model hp interface:

$ /usrllibllpadmin -pprl -v/dev/printer -mhp

2. Add a printer called pr2 whose device is /dev/tty22 and whose
interface is a variation of the model prx interface. It is also a
login terminal:

$ cp /usr/spooillp/model/prx xxx
< edit xxx>

$ /usr/libllpadmin -ppr2 -v/dev/tty22 -ixxx -1

3. Create a printer called pr3 whose device is /dev/tty23. The pr3 will
be added to a new class called cll and will use the same interface
as printer pr2:

$ /usrllibllpadmin -ppr3 -v/dev/tty23 -epr2 -ccll

4.2 Modifying Existing Destinations

Modifications to existing destinations must always be made with respect
to a printer name (- pprinter). The modifications may be one or more
of the following:

1. The device for the printer may be changed (- vdevice). If this is
the only modification, then this may be done even while fpsched is
running. This facilitates changing devices for login terminals.

2. The printer interface program may be changed (-mmodel,
- eprinter, - iinterface).

3. The printer may be specified as hardwired (- h) or as a login ter­
minal (- I).

4. The printer may be added to a new or existing class (- cclass).

5. The printer may be removed from an existing class (- rclass) .

9-6

Removing the last remaining member of a class causes the class
to be deleted. No destination may be removed if it has pending
requests. In that case, lpmove or cancel should be used to move
or delete the pending requests.

LP SPOOLING

EXAMPLES

These examples are based on the LP configuration created by those in
the previous section.

1. Add printer pr2 to class ell:

$ lusr/lib/lpadmin - ppr2 -cell

2. Change pr2's interface program to the model prx interface,
change its device to Idevluy24, and add it to a new class called cl2:

$ lusr/lib/lpadmin -ppr2 -mprx -v/dev/tty24 -ecl2

Note that printers pr2 and pr3 now use different interface pro­
grams even though pr3 was originally created with the same inter­
face as pr2. Printer pr2 is now a member of two classes.

3. Specify printer pr2 as a hard-wired printer:

$ lusr/lib/lpadmin - ppr2 - h

4. Add printer prl to class cl2:

$ lusr/lib/lpadmin - pprl - ccl2

The members of class cl2 are now pr2 and prl, in that order.
Requests routed to class cl2 will be serviced by pr2 if both pr2
and prl are ready to print; otherwise, they will be printed by the
one which is next ready to print.

5. Remove printers pr2 and pr3 from class ell:

$ lusr/lib/lpadmin -ppr2 -rell
$ lusr/lib/lpadmin -ppr3 -rcll

Since pr3 was the last remaining member of class ell, the class is
removed.

6. Add pr3 to a new class called cl3.

$ lusr/lib/lpadmin - ppr3 -ecl3

4.3 Specifying the System Default Destination

The system default destination may be changed even when Ipsched is
funning.

9-7

LP SPOOLING

EXAMPLES

1. Establish class cll as the system default destination:

$ /usrllibllpadmin - dcll

2. Establish no default destination:

$ /usr/libllpadmin -d

4.4 Removing Destinations

Classes and printers may be removed only if there are no pending
requests that were routed to them. Pending requests must either be
canceled using cancel or moved to other destinations using lpmove
before destinations may be removed. If the removed destination is the
system default destination, then the system will have no default desti­
nation until the default destination is respecified. When the last
remaining member of a class is removed, then the class is also
removed. Removing a class never implies removing printers.

EXAMPLES

1. Make printer prl the system default destination:

$ /usrllib/lpadmin - dpr1

Remove printer pr1:

$ /usrllibllpadmin -xprl

Now there is no system default destination.

2. Remove printer pr2:

$ /usr/lib/lpadmin - xpr2

Class cl2 is also removed since pr2 was its only member.

3. Remove class cl3:

$ /usr/lib/lpadmin -xcl3

Class c13 is removed, but printer pr3 remains.

5. Making an Output Request- The "lp" Command

Once LP destinations have been created, users may request output by
using the lp command. The request id that is returned may be used to
see if the request has been printed or to cancel the request.

9-8

LP SPOOLING

The LP program determines the destination of a request by checking
the following list in order:

• If the user specifies - d dest on the command line, then the
request is routed to dest.

• If the environment variable LPDEST is set, the request is routed
to the value of LPDEST.

• If there is a system default destination, then the request is routed
there.

• The request is rejected.

EXAMPLES

1. There are at least four ways to print the password file on the sys-
tem default destination:

lp / etc/ passwd
lp < /etc/passwd
cat / etc/ passwd I lp
lp -c /etc/passwd

The last three ways print copies of the file, whereas the tirst way
prints the file directly. Thus, if the file is modified between the
time the request is made and the time it is actually printed, the
changes will be reflected in the output.

2. Print two copies of file abc on printer xyz and title the output
"my file":

pr abc I lp - dxyz - n2 - t"my file"

3. Print file xxx on a Diablo* 1640 printer called zoo in 12-pitch and
write to the user's terminal when printing has completed:

lp -dzoo -012 -w xxx

In this example, "12" is an option that is meaningful to the
model Diablo 1640 interface program that prints output in 12-
pitch mode [see Ipadmin (1M)].

* Registered trademark of Xerox Corporation

9-9

LP SPOOLING

6. Finding LP Status- "lpstat"

The lpstat command finds status information about LP requests, desti­
nations, and the scheduler.

EXAMPLES

1. List the status of all pending output requests made by this user:

lpstat

The status information for a request includes the request id, the
log name of the user, the total number of characters to be printed,
and the date and time the request was made.

2. List the status of printers pI and p2:

lpstat -ppl,p2

7. Canceling Requests- "cancel"

You can cancel LP requests with the cancel command. Two kinds of
arguments may be given to the command-request ids and printer
names. The requests named by the request ids are canceled and
requests that are currently printing on the named printers are canceled.
Both types of arguments may be intermixed.

EXAMPLE

Cancel the request that is now printing on printer xyz:

cancel xyz

If the user that is canceling a request is not the same one that made the
request, then mail is sent to the owner of the request. LP allows any
user to cancel requests in order to eliminate the need for users to find
LP administrators when unusual output should be purged from printers.

8. Allowing and Refusing Requests - Accept and Reject

When a new destination is created, lp rejects requests that are routed to
it. When the LP administrator is sure that it is set up correctly, he or
she should allow lp to accept requests for that destination. The accept
command performs this function.

9-10

LP SPOOLING

Sometimes it is necessary to prevent lp from routing requests to desti­
nations. If printers have been removed or are waiting to be repaired or
if too many requests are building for printers, then you may want to
have lp reject requests for those destinations. The reject command per­
forms this function. After the condition that led to the rejection of
requests has been remedied, the accept command should be used to
allow requests to be taken again.

The acceptance status of destinations is reported by the - a option of
lpstat.

EXAMPLES

1. Cause lp to reject requests for destination xyz:

/usr/lib/reject - r"printer xyz needs repair" xyz

Any users that try to route requests to xyz will encounter the fol­
lowing:

$ lp - dxyz file
lp: can not accept requests for destination "xyz"

-- printer xyz needs repair

2. Allow lp -to accept requests routed to destination xyz:

/usr/lib/accept xyz

9. Allowing and Inhibiting Printing-Enable and Disable

The enable command allows the LP scheduler to print requests on
printers. That is, the scheduler routes requests only to the interface
programs of enabled printers. Note that it is possible to enable a
printer and at the same time prevent further requests from being
routed to it.

The disable command will undo the effects of the enable command. It
prevents the scheduler from routing requests to printers, independently
of whether lp is allowing them to accept requests. Printers may be dis­
abled for several reasons including malfunctioning hardware, paper
jams, and end of day shutdowns. If a printer is busy at the time it is
disabled, then the request that was printing will be reprinted in its
entirety either on another printer (if the request was originally routed
to a class of printers) or on the same one when the printer is re­
enabled. The - c option cancels the currently printing requests on busy

9-11

LP SPOOLING

printers in addition to disabling the printers. This is useful if strange
output is causing a printer to behave abnormally.

EXAMPLE

Disable printer xyz because of a paper jam:

$ disable - r"paper jam" xyz
printer "xyz" now disabled

Find the status of printer xyz:

$ lpstat - pxyz
printer "xyz" disabled since Jan 5 10:15 -

paper jam

Now, re-enable xyz:

$ enable xyz
printer "xyz" now enabled

10. Moving Requests Between Destinations- "lpmove"

Occasionally, it is useful for LP administrators to move output requests
between destinations. For instance, when a printer is down for repairs,
it may be desirable to move all of its pending requests to a working
printer. This is one way to use the Ipmove command. The other use
of this command is moving specific requests to a different destination.
Lpmove will refuse to move requests while the LP scheduler is run­
ning.

EXAMPLES

1, Move all requests for printer abc to printer xyz:

$ lusrllibllpmove abc xyz

All of the moved requests are renamed from abc-nnn to xyz-nnn.
As a side effect, destination abc is no longer accepting further
requests.

2. Move requests zoo-543 and abc-1200 to printer xyz:

$ lusr/libllpmove zoo-543 abc-1200 xyz

The two requests are now renamed xyz-543 and xyz-1200.

9-12

LP SPOOLING

11. Stopping and Starting the Scheduler- "Ipshut" and
"Ipsched"

Lpsched is the program that routes the output requests (made with Ip)
through the appropriate printer interface programs to be printed on line
printers. Each time the scheduler routes a request to an interface pro­
gram, it records an entry in the log file, lusr/spooll/pl/og. This entry con­
tains the logname of the user that made the request, the request id, the
name of the printer that the request is being printed on, and the date
and time that printing first started. If a request has been restarted,
more than one entry in the log file may refer to the request. The
scheduler also records error messages in the log file. When lpsched is
started, it renames lusrlspooll/pl/og to lusrlspooll/p/oldlog and starts a new
log file.

No printing will be performed by the LP system unless Ipsched is run­
ning. Use the command

lpstat - r

to find the status of the LP scheduler.

Lpsched is normally started by the letc/rc program, as described above,
and continues to run until the UniPlus+ system is shut down. The
scheduler operates in the lusr/spooll/p directory. When it starts running,
it will exit immediately if a file called SCHEDLOCK exists. Otherwise,
it creates this file to prevent more than one scheduler from running at
the same time.

Occasionally, it is necessary to shut down the scheduler to reconfigure
LP or to rebuild the LP software. The command

/usrllibllpshut

causes lpsched to stop running and terminates all printing. All requests
that were in the middle of pr~nting will be reprinted in their entirety
when the scheduler is restarted.

To restart the LP scheduler, use the command

/usrllibllpsched

9-13

LP SPOOLING

Shortly after this command is entered, Ipstat should report that the
scheduler is running. If not, it is possible that a previous invocation of
Ipscbed exited without removing SCHEDLOCK, so try the following:

rm -f /usr/spooillp/SCHEDLOCK
/usr/libllpsched

The scheduler should be running now.

12. Printer Interface Programs

Every LP printer must have an interface program which does the actual
printing on the device that is currently associated with the printer.
Interface programs may be shell procedures, C programs, or any other
executable program. The LP model interfaces are all written as shell
procedures and can be found in the lusrlspool/lplmodel directory. At the
time Ipscbed routes an output request to a printer P, the interface pro­
gram for P is invoked in the directory lusrlspool/lp as follows:

interface/P id user title copies options file ...
where
id is the request id returned by Ip
user is logname of user who made the request
title is optional title specified by the user
copies is number of copies requested by user
options is a blank-separated list of class or
printer-dependent options specified by user
file is the full pathname of a file to be printed

EXAMPLES

The following examples are requests made by user "smith" with a sys­
tem default destination of printer "xyz". Each example lists an Ip
command line followed by the corresponding command line generated
for printer xyz's interface program:

1. lp / etc/passwd / etc/ group
interface/xyz xyz-52 smith "" 1 "" /etc/passwd /etc/group

2. pr /etc/passwd IIp -t"users" -n5
interface/xyz xyz-53 smith users 5 '"'

/usr/spooillp/request/xyz/ dO - 53

3. lp /etc/passwd -oa -ob
interface/xyz xyz-54 smith "" 1 "a btl /etc/passwd

9-14

LP SPOOLING

When the interface program is invoked, its standard input comes from
Idevlnull and both the standard output and standard error output are
directed to the printer's device. Devices are opened for reading as well
as writing when file modes permit. When a device is a regular file, all
output is appended to the end of the file.

Given the command line arguments and the output directed to a dev­
ice, interface programs may format their output in any way they choose.
Interface programs must ensure that the proper stty modes (terminal
characteristics such as baud rate, output options, etc.) are in effect on
the output device. This may be done in a shell interface only if the
device is opened for reading:

stty mode ... < &1

That is, take the standard input for the stty command from the device.

When printing has completed, it is the responsibility of the interface
program to exit with a code indicative of the success of the print job.
Exit codes are interpreted by Ipsched as follows:

CODE

o
1 to 127

greater than 127

MEANING TO LPSCHED

The print job has completed successfully.

A problem was encountered in printing this par­
ticular request (e.g., too many nonprintable char­
acters). This problem will not affect future print
jobs. Lpsched notifies users by mail that there
was an error in printing the request.

These codes are reserved for internal use by
Ipsched. Interface programs must not exit with
codes in this range.

When problems that are likely to affect future print jobs occur (e.g., a
device filter program is missing), the interface programs would be wise
to disable printers so that print requests are not lost. When a busy
printer is disabled, the interface program will be terminated with signal
15.

9-15

LP SPOOLING

13. Setting Up Hard-Wired Devices and Login Terminals as
LP Printers

13.1 Hard-wired Devices

As an example of how to set up a hard-wired device for use as an LP
printer, consider using tty line 15 as printer xyz. As superuser, per­
form the following:

1. Avoid unwanted output from non-LP processes and ensure that
LP can write to the device:

$ chown lp /dev/ttyI5
$ chmod 600 /dev/ttyI5

2. Change fetc!inittab so that tty15 is not a login terminal. In other
words, ensure that fetc!getty is not trying to log users in at this ter­
minal. Change the entries for tty 15 to:

15:2:off:/etc/getty -t60 tty15 1200

Enter the command:

$ telinit Q

If there is currently an invocation of fetc!getty running on ttyl5,
kill it. When the UniPlus+ system is rebooted, tty15 will be ini­
tialized with default stty modes. Thus, it is up to LP interface
programs to establish the proper baud rate and other stty modes
for correct printing to occur.

3. Introduce printer xyz to LP using the model prx interface pro­
gram:

$ /usr/lib/lpadmin -pxyz -v/dev/ttyI5 -mprx

4. When xyz is created, it will initially be disabled and lp will be
rejecting requests routed to it. If it is desired, allow lp to accept
requests for xyz:

/usr/lib/accept xyz

This will allow requests to build up for xyz and to print when it is
enabled at a later time.

5. When it is desired for printing to occur, be sure that the printer is
ready to receive output. For several printers, this means that the
top of form has been adjusted and that the printer is on-line.
Enable printing to occur on xyz:

9-16

LP SPOOLING

enable xyz

When requests have been routed to xyz, they will begin printing.

13.2 Login Terminals

Login terminals may also be used as LP printers. To do this for a Dia­
blo 1640 terminal called abc, perform the following:

1. Introduce printer abc to LP using the model 1640 interface pro­
gram:

$ /usrllib/lpadmin -pabc -v/dev/null -m1640 -1

Note that Idev/null is used as abc's device because we will specify
the actual device each time that abc is enabled. This device may
be different from day to day. When abc is created, it will initially
be disabled; and lp will be rejecting requests routed to it. If it is
desired, allow lp to accept requests for abc:

/usr/lib/accept abc

This will allow requests to build up for abc and to be printed
when it is enabled at a later time. It is not advisable to enable abc
for printing, however, until the following steps have been taken.

2. Log terminal in if this has not already been done.

3. Assuming the tty(l) command reports that this terminal is
/de v/tty 02, associate this device with printer abc:

$ /usr/lib/lpadmin -pabc -v/dev/tty02

Note that Ipadmin may be used only by an LP administrator. If it
is desired for other users to routinely perform this step, then an
LP A may establish a program owned by Ip or by root with set­
user-id permission that performs this function.

4. When it is desired for printing to occur, be sure that the printer is
ready to receive output. For several printers, this means that the
top of form has been adjusted. Enable printing to occur on abc:

enable abc

When requests have been routed to abc, they will begin printing.

5. When all printing has stopped on abc or when you want it back as
a regular login terminal, you may prevent it from printing more
output:

9-17

LP SPOOLING

$ disable abc
printer "abc" now disabled

If abc is enabled when UniPlus+ is rebooted or when Ipsched is
restarted, it will be disabled automatically.

14. Summary

The administrative functions of the LP administrator have been
described in detail. These functions include configuring and
reconfiguring LP~ maintaining printer interface programs~ accepting,
rejecting, and moving print requests~ stopping and starting the LP
scheduler~ and enabling and disabling printers. LP offers administrators
the following advantages over other centrally supported printer pack­
ages:

• Printers may be grouped into classes.

• LP may be configured to meet the needs of each site.

• Administrators may supply interface programs to format output in
any way desirable.

• LP functions are performed by simple commands and not by
hand.

9-18

Chapter 10: SYSTEM ACTIVITY PACKAGE

CONTENTS

1. General

2. System Activity Counters .

3. System Activity Commands . .
3.1 The "sar" Command
3.2 The "sag" Command
3.3 The "timex" Command
3.4 The "sadp" Command . .

4. Daily Report Generation . .
4.1 Facilities
4.2 Suggested Operational Setup

5. File Descriptions

6. The "sysinfo" Structure . . .

7. Reporting Items . . .
7.1 CPU Utilization
7.2 Cache Hit Ratio
7.3 Disk or Tape I/O Activity
7.4 Queue Activity.
7.5 The Rest of System Activity

- i -

2

5
5
6
6
6

7
7
8

9

11

12
12
12
12
12
12

Chapter 10

SYSTEM ACTIVITY PACKAGE

1. General

This chapter describes the design and implementation of the UniPlus+
System Activity Package. UniPlus+ contains several counters that are
incremented as system actions occur. The system activity package
reports UniPlus+ system-wide measurements, including central pro­
cessing unit (CPU) utilization~ disk and tape input! output (I/O) activi­
ties, terminal device activity, buffer usage, system calls, system switch­
ing and swapping, file-access activity, queue activity, and message and
semaphore activities.

The package has four commands that generate various types of reports.
Procedures that automatically generate daily reports are also included.
The five functions of the activity package are:

• sarC!) command-allows a user to generate system activity
reports in real-time and to save system activities in a file for later
use.

• sag(1G) command-displays system activity in a graphical form.

• sadp(1) command-samples disk activity once every second dur­
ing a specified time interval and reports disk usage and seek dis­
tance in either tabular or histogram form.

• timex(!) -a modified time(1) command that times a command
and also (optionally) reports concurrent system activity and pro­
cess accounting activity.

• system activity daily reports-provides procedures for sampling
and saving system activities in a data file periodically and for gen­
erating the daily report from the data file.

The system activity information reported by this package is derived
from a set of system counters located in the operation system kernel.
These system counters are described in the section "System Activity
Counters." The section "System Activity Commands" describes the
commands provided by this package. The procedure for generating
daily reports is given in "Daily Report Generation." For a description

10-1

SYSTEM ACTIVITY PACKAGE

of the files used by the system activity package, see the section "File
Descriptions.' ,

2. System Activity Counters

UniPlus+ manages several counters that record various activities and
provide the basis for the system activity reporting system. The data
structure for most of these counters is defined in the sysinJo structure in
lusrlincludelsyslsysinJo.h. The system table overflow counters are kept in
the _ syserr structure. The device activity counters are extracted from
the device status tables. In this version, the 110 activity of the follow­
ing devices is recorded: RP06, RM05, RS04, RFll, RK05, RP03,
RL02, TM03, and TMll.

The following paragraphs describe the system activity counters sampled
by the system activity package.

Cpu time counters-There are four time counters that may be incre­
mented at each clock interrupt 60 times per second. According to the
mode the CPU is in at the interrupt (idle, user, kernel, and wait for
I/O completion), one of the cpu[] counters is incremented.

Lread and lwrite-The lread and lwrite counters count logical read and
write requests issued by the system to block devices.

Bread and bwrite-The bread and bwrite counters count the number of
times data is transferred between the system buffers and the block dev­
ices. These actual I/Os are triggered by logical 1I0s that cannot be
satisfied by the current contents of the buffers. The ratio of block 110
to logical 110 is a common measure of the effectiveness of the system
buffering.

Phread and phwrite-The phread and phwrite counters count read and
write requ.ests issued by the system to raw devices.

Swapin and swapout-The swapin and swapout counters are incre­
mented for each system request initiating a transfer from or to the swap
device. More than one request is usually involved in bringing a process
in to or out of memory because text and data are handled separately.
Frequently-used programs are kept on the swap device and are swapped

10-2

SYSTEM ACTIVITY PACKAGE

in rather than loaded from the file system. The swapin counter reflects
these initial loading operations as well as resumptions of activity, while
the swapout counter reveals the level of actual "swapping." The
amount of data transferred between the swap device and memory are
measured in blocks and counted by bswapin and bswapout.

Pswitch and syscall-These counters are related to the management of
multiprogramming. Syscall is incremented every time a system call is
invoked. The numbers of invocations of read (2), write (2) , fork (2),
and exec (2) system calls are kept in counters sysread, sys write , sysjork,
and sysexec, respectively. Pswitch counts the times the switcher was
invoked, which occurs when:

1. A system call resulted in a road block

2. An interrupt occl,lrred resulting in awakening a higher priority
process

3. A 1 second clock inter"rupt occurred.

Iget, namei, and dirblk - These counters apply to file-access operations.
1get and namei, in particular, are the names of UniPlus+ routines. The
counters record the number of times the respective routines are called.
Namei is the routine that performs file system path searches. It
searches the various directory files to get the associated i-number of a
file corresponding to a special path. 1get is a routine called to locate the
inode entry of a file (i-number). It first searches the in-core inode
table. If the inode entry is not in the table, routine iget will get the
inode from the file system where the file resides and make an entry in
the in-core inode table for the file. 1get returns a pointer to this entry.
Namei calls iget, but other file access routines also call iget. Therefore,
counter iget is always greater than counter namei.

Counter dirblk records the number of directory block reads issued by
the system. The directory blocks read divided by the number of namei
calls esti~ates the average path length of files.

Runque, runocc, swpque, and swpocc- These counters record queue
activities. They are implemented in the clock.c routine. At every one­
second interval, the clock routine examines the process table to see
whether any processes are in core and in ready state. If so, the counter
runocc is incremented and the number of such processes are added to

10-3

SYSTEM ACTIVITY PACKAGE

counter runque. While examining the process table, the clock routine
also checks whether any processes in the swap device are in ready state.
The counter swpocc is incremented if the swap queue is occupied, and
the number of processes in swap queue is added to counter swpque.

Readch and writech - the readch and writech counters record the total
number of bytes (characters) transferred by the read and write system
calls, respectively.

Monitoring terminal device activities-There are six counters monitor­
ing terminal device activities. Rcvint, xmtint, and mdmint are counters
measuring hardware interrupt occurrences for receiver, transmitter, and
modem individually. Rawch, canch, and outch count number of char­
acters in the raw queue, canonical queue, and output queue. Charac­
ters generated by devices operating in the cooked mode, such as termi­
nals, are counted in both rawch and (as edited) in canch; but characters
from raw devices, such as communication processors, are counted only
in rawch.

Msg and serna counters - These counters record message sending and
receiving activities and semaphore operations, respectively.

Monitoring I/O activities-As to the 110 activity for a disk or tape
device, four counters are kept for each disk or tape drive in the device
status table. Counter io _ ops is incremented when an 110 operation has
occurred on the device. It includes block 110, swap 110, and physical
110. 10 bent counts the amount of data transferred between the device
and memory in 512-byte units. lo_act and io_resp measure the active
time and response time of a device in time ticks summed over all 110
requests that have completed for each device. The device active time
includes the device seeking, rotating, and data transferring times, while
the response time of an 110 operation is from the time the 110 request
is queued to the device to the time when the 110 completes.

Inodeovf, fileovf, textovf, and procovf - These counters are extracted
from _ syserr structure. When an overflow occurs in any of the inode,
file, text, and process tables, the corresponding overflow counter is
incremented.

10-4

SYSTEM ACTIVITY PACKAGE

3. System Activity Commands

The system activity package provides three commands for generating
various system activity reports and one command for profiling disk
activities. These tools facilitate observation of system activity during

• A controlled stand-alone test of a large system.

• An uncontrolled run of a program to observe the operating
environment.

• Normal production operation.

Commands sar and sag permit the user to specify a sampling interval
and number of intervals for examining system activity and then to
display the observed level of activity in tabular or graphical form. The
timex command reports the amount of system activity that occurred
during the precise period of execution of a timed command. The sadp
command allows the user to establish a sampling period during which
access location and seek distance on specified disks are recorded and
later displayed as a tabular summary or as a histogram.

3.1 The' 'sar" Command

The sar command can be used in the following two ways:

• When the frequency arguments t and n are specified, it invokes
the data collection program sadc to sample the system activity
counters in the operating system every t seconds for n intervals
and generates system activity reports in real-time. Generally, you
will want to include the option to save the sampled data in a file
for later examination. The format of the data file is shown in
sar(1M). In addition to the system counters, a time stamp is also
included. It gives the time at which the sample was taken.

• If no frequency arguments are supplied, it generates system
activity reports for a specified time interval from an existing data
file that was created by sar at an earlier time.

A convenient use is to run sar as a background process saving its sam­
ples in a temporary file but sending its standard output to /dev/null.
Then an experiment is conducted after which the system activity is
extracted from the temporary file. The sar(1) manual entry describes
the usage and lists various types of reports. See the section "Reporting
Items," which gives the formula for deriving each reported item.

10-5

SYSTEM ACTIVITY PACKAGE

3.2 The "sag" Command

Sag displays system activity data graphically. It relies on the data file
produced by a prior run of sar after which any column of data or the
combination of columns of data of the sar report can be plotted. A
fairly simple but powerful command syntax allows the specification of
cross plots or time plots. Data items are selected using the sar column
header names. The sar(1G) manual entry describes its options and
usage. The system activity graphical program invokes graphics(1G)
and tplot(1G) commands to have the graphical output displayed on any
of the terminal types supported by tplot.

3.3 The "timex" Command

The timex command is an extension of the time(1) command. Without
options, timex behaves like time. In addition to giving the time infor­
mation, it can also print a system activity report and a process account­
ing report. For all the options available, refer to the manual entry
timex (1). It should be emphasized that the user and sys times reported
in the second and third lines are for the measured process itself includ­
ing all its children while the remaining data (including the "cpu user
%" and "cpu sys %") are for the entire system.

While the normal use of timex will probably be to measure a single
command, multiple commands can also be timedeither by combining
them in an executable file and timing it or by typing:

timex sh -c "cmdl; cmd2; ... ;"

This establishes the necessary parent-child relationships to correctly
extract the user and system times consumed by cmd1, cmd2, ... (and
the shell).

3.4 The "sadp" Command

Sadp is a user level program that can be invoked independently by any
user. It requires no storage or extra code in the operating system and
allows the user to specify the disks to be monitored. The program is
reawakened every second, reads system tables from Ide v/km em , and
extracts the required information. Because of the 1 second sampling,
only a small fraction of disk requests are observed; however, compara­
tive studies have shown that the statistical determination of disk locality
is adequate when sufficient samples are collected.

10-6

SYSTEM ACTIVITY PACKAGE

In the operating system, there is an iobuj for each disk drive. It con­
tains two pointers which are head and tail of the 1/0 active queue for
the device. The actual requests in the queue may be found in three
buffer header pools-system buffer headers for block I/O requests, phy­
sical buffer headers- for physical I/O requests, and swap buffer headers
for swap I/O. Each buffer header has a forward pointer that points to
the next request in the I/O active queue and a backward pointer that
points to the previous request.

Sadp snapshots the iobuj of the monitored device and the three buffer
header pools once every second during the monitoring period. It then
traces the requests in the I/O queue, records the disk access location,
and seeks distance in buckets of 8-cylinder increments. At the end of
monitoring period, it prints out the sampled data. The output of sadp
can be used to balance load among disk drives and to rearrange the lay­
out of a particular disk pack. This command is described in manual
entry sadp(I).

4. Daily Report Generation

The previous part described the commands available to users to initiate
activity observations. It is probably desirable for each installation to
routinely monitor and record system activity in a standard way for his­
torical analysis. This part describes the steps that a system administra­
tor may follow to automatically produce a standard daily report of sys­
tem activity.

4.1 Facilities

• sadc-The executable module of sadc.c (see "File Descriptions")
which reads system counters from Idevlkmem and records them to
a file. In addition to the file argument, two frequency arguments
are usually specified to indicate the sampling interval and number
of samples to be taken. In case no frequency arguments are
given, it writes a dummy record in the file to indicate a system
restart.

• sal-The shell procedure that invokes sadc to write system
counters in the daily data file lusrladmlsadd where dd represents
the day of the month. It may be invoked with sampling interval
and iterations as arguments.

• sa2-The shell procedure that invokes the sar command to gen­
erate daily report lusrladmlsalsardd from the daily data file

10-7

SYSTEM ACTIVITY PACKAGE

/usr/adm/sa/sadd. It also removes daily data files and report files
after 7 days. The starting and ending times and all report options
of sar are applicable to sa2.

4.2 Suggested Operational Setup

It is suggested that the cron OM) control the normal data collection and
report generation operations. For example, the sample entries in
/usr/spoo/lcronkrontab/sys:

o * * * 0,6 /usr/lib/sa/sal
o 18-7 * * 1-5 /usr/lib/sa/sal
o 8 -17 * * 1-5 /usrllib/sa/sal 1200 3

would cause the data collection program sadc to be invoked every hour
on the hour. Moreover, depending on the arguments presented, it
writes data to the data file one to three times at every 20 minutes.
Therefore, under the control of cron OM), the data file is written every
20 minutes between 8:00 and 18:00 on weekdays and hourly at other
times.

Note that data samples are taken more frequently during prime time on
weekdays to make them available for a finer and more detailed graphi­
cal display. It is suggested that sal be invoked hourly rather than
invoking it once every day; this ensures that if the system crashes data
collection will be resumed within an hour after the system is restarted.

Because system activity counters restart from zero when the system is
restarted, a special record is written on the data file to reflect this situa­
tion. This process is accomplished by invoking sadc with no frequency
arguments within letclrc when going to multiuser state:

su adm -c "/usrllib/sa/sadc /usr/adm/sa/sa'date +%d'"

CronOM) also controls the invocation of sar to generate the daily
report via shell procedure sa2. One may choose the time period the
daily report is to cover and the groups of system activity to be reported.
For instance, if:

o 20 * * 1-5 /usrllib/sa/sa2 -s 8:00 -e 18:00 -i 3600 -uybd

is an entry in lusr/spoo/lcronlcrontablsys, cron will execute the sar com­
mand to generate daily reports from the daily data file at 20:00 on
weekdays. The daily report reports the CPU utilization, terminal device
activity, buffer usage, and device activity every hour from 8:00 to
18:00.

10-8

SYSTEM ACTIVITY PACKAGE

In case of a shortage of the disk space or for any other reason, these
data files and report files can be removed by the superuser. The
manual entry sar(I M) describes the daily report generation procedure.

5. File Descriptions

The source files and shell programs of the system activity package are
in directory /usr/src!cmd/sa.

sa.h

sadc.c

sar.c

saghdr.h

saga.c & sagb.c

sal.sh

The system activity header file defines the struc­
ture of data file and device information for
measured devices. It is included in sadc.c,
sar.c, and timex.c.

The data collection program that accesses
/devlkmem to read the system activity counters
and writes data either on standard output or on
a binary data file. It is invoked by the sar com­
mand generating a real-time report. It is also
invoked indirectly by entries in
/usr/spool!cron!crontab/sys to collect' system
activity data.

The report generation program invokes sadc to
examine system activity data, generates reports
in real-time, and saves the data to a file for later
use. It may also generate system activity reports
from an existing data file. It is invoked
indirectly by crOll to generate daily reports.

The header file for saga.c and sagb.c. It con­
tains data structures and variables used by
saga.c and sagb.c.

The graph generation program that first invokes
sar to format the data of a data file in a tabular
form and then displays the sar data in graphical
form.

The shell procedure that invokes sadc to write
data file records. It is activated by entries in
/usr/spoo/!cron!cronta b/sys.

10-9

SYSTEM ACTIVITY PACKAGE

sa2.sh

timex.c

sadp.c

10-10

The shell procedure that invokes sar to generate
the report. It also removes the daily data files
and daily report files after a week. It is activated
by an entry in /usr/spoo/kronkrontab/sys on week­
days.

The program that times a command and gen­
erates a system activity or process accounting
report.

The program that samples and reports disk
activities.

SYSTEM ACTIVITY PACKAGE

6. The "sysinfo" Structure

struct sysinfo
time_t cpu[4];

#define CPU IDLE 0
#define CPU USER 1
#define CPU KERNAL 2
#define CPU WAIT 3

time t wait[3] ;
#define W 10 0
#define W SWAP 1
#define W_PIO 2

long bread;
long bwrite;
long lread;
long lwrite;
long phread;
long phwrite;
long swapin;
long swapout;
long bswapin;
long bswapout;
long pswitch;
long syscall;
long sysread;
long syswrite;
long sysfork;
long sysexec;
long runque;
long runocc;
long swpque;
long swpocc;
long iget;
long namei;
long dirblk;
long readch;
long writech;
long rcvint;
-long xmtint;
long mdmint;
long rawch;
long canch;
long outch;
long msg;
long serna;

};

10-11

SYSTEM ACTIVITY PACKAGE

7. Reporting Items

The derivation of the reported items is giveri in this section. Each item
discussed below is the data difference sampled at two distinct times t2
and t1.

7.1 CPU Utilization

%-of-cpu-x = cpu-xl (cpu-idle+cpu-user+cpu-kernel+cpu-wait) * 10

where cpu-x is cpu-idle, cpu-user, cpu-kernel (cpu-sys), or cpu-wait.

7.2 Cache Hit Ratio

%-of-cache-I/O = (logical-I/O - block-I/O) I logical-I/O * 100

where cache I/O is cache read or cache write.

7.3 Disk or Tape I/O Activity

%-of-busy = I/O-active I (t2 - t1) * 100;
avg-queue-Iength = I/O-resp I I/O-active;
avg-wait = (I/O-resp - I/O-active) I I/O-ops;
avg-service-time = I/O-active I I/O-ops.

7.4 Queue Activity

avg-x-queue-Iength = x-queue I x-queue-occupied-time;
%-of-x-queue-occupied-time = x-queue-occupied-time I (t2 - t1);

where x-queue is run queue or swap queue.

7.5 The Rest of System Activity

avg-rate-of-x = x I (t2 - t1)

where x is swap in/out, blks swapped in/out, terminal device activities,
read/write characters, block read/write, logical read/write, process
switch, system calls, read/write, forkl exec, iget, namei, directory blocks
read, diskltape I/O activities, message, or semaphore activities.

10-12

Chapter 11: UUCP ADMINISTRATION

CONTENTS

1. Introduction

2. Planning
2.1 Extent of the Network
2.2 Hardware and Line Speeds
2.3 Maintenance and Administration

3. U ucp Software

4. Installation
4.1 Object Modules
4.2 Password File
4.3 Lines File

4.3.1 Naming Conventions
4.4 System File- "L.sys"
4.5 Dialing Prefixes- "L-dialcodes"
4.6 Userfile
4.7 Forwarding File

5. Administration
5.1 Cleanup

5.1.1 Cleanup of Undeliverable Jobs
5.1.2 Cleanup of the Public Area
5.1.3 Compaction of Log Files

5.2 Polling Other Systems
5.3 Problems

5.3.1 Out of Space
5.3.2 Bad ACU and Modems
5.3.3 Administrative Problems

6. Debugging.

LIST OF FIGURES

Figure 11.1. Uucp Network Daemon

Figure 11.2. Uucico Daemon Functional Blocks

- i -

1

1
1
2
2

2

3
3
3
4
5
5
7
7
9

9
10
10
10
10
10
10
11
11
11

11

13

14

Chapter 11

UUCP ADMINISTRATION

1. Introduction

This chapter describes how a uucp network is set up, the format of con­
trol files, and administrative procedures. Administrators should be
familiar with the manual pages for each of the uucp related commands.

2. Planning

In setting up a network of UNIX systems, there are several considera­
tions that should be taken into account before configuring each system
on the network. The following parts attempt to outline the most
important considerations.

2.1 Extent of the Network

Some basic decisions about access to processors in the network must be
made before attempting to set up the configuration files. If an adminis­
trator has control over only one processor and an existing network is
being joined, then the administrator must decide what level of access
should be granted to other systems. The other members of the net­
work must make a similar decision for the new system. The UNIX sys­
tem password mechanism is used to grant access to other systems. The
file /usrllib/uucp/USERFILE restricts access by other systems to parts of
the file system tree, and the file /usrllib/uucp/L.sys on the local processor
determines how many other systems on the network can be reached.

When setting up more than one processor, the administrator has con­
trol of a larger portion of the network and can make more decisions
about the setup. For example, the network can be set up as a private
network where only those machines under the direct control of the
administrator can access each other. Granting no access to machines
outside the network can be done if security is paramount; however, this
is usually impractical. Very limited access can be granted to outside
machines by each of the systems on the private network. Alternatively,
access to/from the outside world can be confined to only one processor.
This is frequently done to minimize the effort in keeping access infor­
mation (passwords, phone numbers, login sequences, etc.) updated and
to minimize the number of security holes for the private network.

11-1

UUCP ADMINISTRATION

2.2 Hardware and Line Speeds

There are only two supported means of interconnection by uucp(l),

1. Direct connection using a null modem.

2. Connection over the Direct Distance Dialing (DDD) network.

In choosing hardware, the equipment used by other processors on the
network must be considered. For example, if some systems on the net­
work have only 103-type (300-baud) data sets, then communication
with them is not possible unless the local system has a 300-baud data
set connected to a calling unit. (Most data sets available on systems are
1200-baudJ If hard-wired connections are to be used between systems,
then the distance between systems must be considered since a null
modem cannot be used when the systems are separated by more than
several hundred feet. The limit for communication at 9600-baud is
about 800 to 1000 feet. However, the RS232 specification and Western
Electric Support Groups only allow for less than 50 feet. Limited dis­
tance modems must be used beyond 50 feet as noise on the lines
becomes a problem.

2.3 Maintenance and Administration

There is a minimum amount of maintenance that must be provided on
each system to keep the access files updated, to ensure that the network
is running properly, and to track down line problems. When more than
one system is involved, the job becomes more difficult because there
are more files to update and because users are much less patient when
failures occur between machines that are under local control.

3. Uucp Software

Figure 11.1 (at the end of this chapter) is an illustration of the dae­
mons used by the uucp network to communicate with another system.
The uucp(1) or uux(1) command queues users' requests and spawns
the uucico daemon to call another system. Figure 11.2 (at the end of
this chapter) illustrates the structure of uucico and the tasks that it per­
forms in communicating with another system. Uucico initiates the call
to another system and performs the file transfer. On the receiving side,
uucico is invoked to receive the transfer. Remote execution jobs are
actually done by transferring a command file to the remote system and
invoking a daemon (uuxqt) to execute that command file and return
the results.

11-2

UUCP ADMINISTRATION

4. Installation

4.1 Object Modules

The following object modules are installed as part of the uucp make
procedure.

l. uucp-The file transfer command (bin/uucp).

2. uux- The remote execution command (bin/uux).

3. uucico-The uucp network daemon (usrllib/uucp/ .. ,).

4. uustat-Network status command (bin/uustat).

5. uuto-Sends source files to destination (bin/uuto).

6. uulog -Queries a summary log of uucp and uux transactions
(bin/uulog) .

7. uuname-lists the uucp names of known systems (bin/uuname).

8. uuclean -Cleanup command (usrllib/uucp/ .. ,).

9. uusub-The command for monitoring and creating a subnetwork
(bin/uusub) .

10. uuxqt-The remote execution daemon (usr/lib/uucp/ .. ,).

11. uudemon.day - A shell procedure that is invoked each day to
maintain the network. Shell scripts for execution each week
(uudemon.wk) and each hour (uudemon.hr) are also distributed
(usr/lib/uucp/ .. ,) .

4.2 Password File

To allow remote systems to call the local system, password entries must
be made for any uucp logins. For example,

nuucp:zaaAA:6: 1: UUCP .Admin:/ usr/ spool/uucppublic:/ usr/lib/uucp/ uucico

Note that the uucico daemon is used for the shell, and the spool direc­
tory is used as the working directory.

There must also be an entry in the passwd file for an uucp administra­
tive login. This login is the owner of all the uucp object and spooled
data files and is usually "uucp". For example, the following is a entry in
letc!passwd for this administrative login:

11-3

UUCP ADMINISTRATION

uucp:zAvLCKp:5:1:UUCP.Admin:/usr/lib/uucp:

Note that the standard shell is used instead of uucico.

4.3 Lines File

The file /usrllib/uucp/L-devices contains the list of all lines that are
directly connected to other systems or are available for calling other
systems. The file contains the attributes of the lines and whether the
line is a permanent connection or can call via a dialer. The format of
the file is

type line call-device speed protocol

where each field is

type

line

Two keywords are used to describe whether a line is
directly connected to another system (DIR) or uses an
automatic calling unit (ACU). An X.25 permanent
virtual circuit would use the DIR keyword.

This is the device name for the line (e.g., ttyab for a
direct line, culO for a line connected to an ACU).

call-device If the ACU keyword is specified, this field contains the
device name of the ACU. Otherwise, the field is
ignored; however, a placeholder must be used in this
field so that the protocol field can be interpreted.

spe(.j The line speed that the connection is to run at. (The
speed field is currently ignored if an X.25 link is used.)

protocol This is an optional field that needs only be filled in if
the connection is for a protocol other than the default
terminal protocol. The X.25 protocol is the only other
protocol supported and the single character x is used to
select this protocol.

The following entries illustrate various types of connections:

D IR ttyab 0 9600
ACU culO cuaO 1200
DIR x25.s0 0 300 x

The first entry is for a hard-wired line running at 9600-baud between
two systems. Note that the acu-device field is zero. The second entry is
for a line with a 1200-baud ACU. The last entry is for an X.25

11-4

UUCP ADMINISTRATION

synchronous direct connection between systems. Note that the protocol
field is filled in and that the acu-device and line speed fields are meaning­
less.

4.3.1 Naming Conventions

It is often useful when naming lines that are directly connected
between systems or which are dedicated to calling other systems to
choose a naming scheme that conveys the use of the line. In the ear­
lier examples, the name ttyab is used for the line that directly connects
two systems named a and b. Similarly, lines associated with calling
units are best given names that relate them to the calling unit (note the
names cu/O and cuaO to specify the line and calling unit, respectively).

4.4 System File- "L.sys"

Each entry in this file represents a system that can be called by the local
uucp programs. More than one line may be present for a particular sys­
tem. In this case, the additional lines represent alternative communica­
tion paths that will be tried in sequential order. The fields are
described below.

system name

time

device

N arne of the remote system.

This is a string that indicates the days-of-week and
times-of-day when the system should be called (e.g.,
MoTuTh0800-1730).

The day portion may be a list containing Su, Mo, Tu,
We, Th, Fr, Sa~ or it may be Wk for any week-day or
Any for any day. The time should be a range of times
(e.g.,0800-1230). If no time portion is specified, any
time of day is assumed to be allowed for the call. Note
that a time range that spans 0000 is permitted~ 0800-
0600 means all times are allowed other than times
between 6 and 8 am. An optional subfield is available
to specify the minimum time (minutes) before a retry
following a failed attempt. The subfield separator is a
"," (e.g., Any, 9 means call any time but wait at least 9
minutes before retrying the call after a failure has
occurred) .

This is either A C U or the hard-wired device name to
be used for the call. For the hard-wired case, the last

11-5

UUCP ADMINISTRATION

class

phone

login

11-6

part of the special file name is used (e.g., ttyO).

This is usually the line speed for the call (e.g., 300).

The phone number is made up of an optional alpha­
betic abbreviation (dialing prefix) and a numeric part.
The abbreviation should be one that appears in the L­
dialcodes file (e.g., mh1212, boston555 -1212). For
the hard-wired devices, this field contains the same
string as used for the device field.

The login information is given as a series of fields and
subfields in the format

[expect send] ...

where expect is the string expected to be read and send
is the. string to be sent when the expect string is
received.

The expect field may be made up of subfields of the
form

expect[- send - expect] ...

where the send is sent if the prior expect is not success­
fully read and the expect following the send is the next
expected string. (For example, login--Iogin will expect
login; if it gets it, the program will go on to the next
field; if it does not get login, it will send null followed
by a new line, then expect login again.) If no characters
are initially expected from the remote machine, the
string "" (a null string) should be used in the first
expect field.

There are two special names available to be sent during
the login sequence. The string EOT will send an EOT
character, and the string BREAK will try to send a
BREAK character. (The BREAK character is simu­
lated using line speed changes and null characters and
may not work on all devices and/or systems.) A
number from 1 to 9 may follow the BREAK (e.g.,
BREAK 1, will send 1 null character instead of the
default of 3). Note that BREAK1 usually works best
for 300-/1200-baud lines.

UUCP ADMINISTRATION

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm matches all or part of the input string as illus­
trated in the password field above.

4.5 Dialing Prefixes- "L-dialcodes"

This file contains the dial-code abbreviations used in the L.sys file (e.g.,
py, mh, boston). The entry format is

abb dial-seq

where abb is the abbreviation and dial-seq is the dial sequence to call
that location.

The line

py 165-

would be set up so that entry py7777 would send 165 -7777 to the dial
unit.

4.6 Userfile

The USERFILE contains user accessibility information. It specifies four
types of constraints:

1. Files that can be accessed by a normal user of the local machine.

2. Files that can be accessed from a remote computer.

3. Login name used by a particular remote computer.

4. Whether a remote computer should be called back in order to
confirm its identity.

Each line in the file has the format

login,sys [c] pathname [pathname]

where

login is the login name for a user or the remote computer.

sys is the system name for a remote computer.

c is the optional call-back required flag.

11-7

UUCP ADMINISTRATION

pathname is a pathname prefix that is acceptable for sys.

The constraints are implemented as follows:

1. When the program is obeying a command stored on the local
machine, the pathnames allowed are those given on the first line
in the USERFILE that has the login name of the user who
entered the command. If no such line is found, the first line with
a null login name is used.

2. When the program is responding to a command from a remote
machine, the pathnames allowed are those given on the first line
in the file that has the system name that matches the remote
machine. If no such line is found, the first one with a null system
name is used.

3. When a remote computer logs in, the login name that it uses must
appear in the USER FILE. There may be several lines with the
same login name but one of them must either have the name of
the remote system or must contain a null system name.

4. If the line matched in (3.) contains a "c", the remote machine is
called back before any transactions take place.

The line

u,m /usr/xyz

allows machine m to login with name u and request the transfer of files
whose names start with /usrixyz. The line

you, /usr/you

allows the ordinary user you to issue commands for files whose name
starts with /usr/you. (This type restriction is seldom used.) The lines

u,ni /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u. If its system name is
not m, it can only ask to transfer files whose names start with /usr/spool.
If it is system m, it can send files from paths /usrixyz as well as
/usr/spool. The lines

11-8

root, /
, /usr

UUCP ADMINISTRATION

allow any user to transfer files beginning with lusr but the user with
login root can transfer any file. (Note that any file that is to be
transferred must be readable by anybody.)

4.7 Forwarding File

There are two files that allow restrictions to be placed on the forwarding
mechanism. The format of the entries in each file is the same,

system
or

system, user, user2, ...

The file ORIGFILE (lusrllibluucpIORIGFILE) restricts the access of sys­
tems that are attempting to forward through the local system. The file
contains the list of systems (and users) for whom the local system is
willing to forward. Each entry refers to the system that was the source
of the original job and not the name of the last system to forward the
file. The second file, FWDFILE (lusrllibluucpIFWDFILE) , is a list of
valid systems that a job can be forwarded to. (It is not necessarily the
name of the destination of a job, but merely the next valid node.) This
file will be a subset of the L.sys file and can be used to prevent forward­
ing to systems that are very expensive to reach but to which access by
local users is allowed (e.g., links to overseas universities). If neither of
these files exist, uucp will be perfectly happy to forward for any system.
As an example, if the entry for system australia were in the ORIGFILE
but not in the FWDFILE on system mhtsa, it would mean that system
australia would be capable of forwarding jobs into the network via sys­
tem mhtsa. However, no systems in the network could forward a job to
australia via system mhtsa.

5. Administration

The role of the uucp administrator depends heavily on the amount of
traffic that enters or leaves a system and the quality of the connections
that can be made to and from that system. For the average system,
only a modest amount of traffic (100 to 200 files per day) pass through
the system and little if any intervention with the uucp automatic
cleanup functions is necessary. Systems that pass large numbers of files
(200 to 10,000) may require more attention when problems occur. The
following parts describe the routine administrative tasks that must be
performed by the administrator or are automatically performed by the
uucp package. The part on problems describes what are the most fre­
quent problems and how to effectively deal with them.

11-9

UUCP ADMINISTRATION

5.1 Cleanup

The biggest problem in a dialup network like uucp is dealing with the
backlog of jobs that cannot be transmitted to other systems. The fol­
lowing cleanup activities should be routinely performed by shell scripts
started from cron (1).

5.1.1 Cleanup of Undeliverable Jobs

The uudemon.day procedure usually contains an invocation of the
uuclean command to purge any jobs that are older than some fixed
time (usually 72 hours). A similar procedure is usually used to purge
any lock or status files. An example invocation of uuclean (I M) to
remove both job files and old status files every 48 hours is:

/usrllib/uucp/uuclean - pST - pC - n48

5.1.2 Cleanup of the Public Area

In order to keep the local file system from overflowing when files are
sent to the public area, the uudemon.day procedure is usually set up
with a find command to remove any files that are older than 7 days.
This interval may need to be shortened if there is not sufficient space to
devote to the public area.

5.1.3 Compaction of Log Files

The files SYSLOG and LOGFILE that contain logging information are
compacted daily (using the pack command from the shell script
uudemon.day) and should be kept for 1 week before being overwritten.

5.2 Polling Other Systems

Systems that are passive members of the network must be polled by
other systems in order for their files to be sent. This can be arranged
by using the uusub(l) command as follows:

uusub -cmhtsd

which will call mhtsd when it is invoked.

5.3 Problems

The following sections list the most frequent problems that appear on
systems that make heavy use of uucp (I) .

11-10

UUCP ADMINISTRATION

5.3.1 Out of Space

The file system used to spool incoming or outgoing jobs can run out of
space and prevent jobs from being spawned or received from remote
systems. The inability to receive jobs is the worse of the two condi­
tions. When file space does become available, the system will be
flooded with the backlog of traffic.

5.3.2 Bad ACU and Modems

The ACU and incoming modems occasionally cause problems that
make it difficult to contact other systems or to receive files. These
problems are usually readily identifiable since LOGFILE entries will
usually point to the bad line. If a bad line is suspected, it is useful to
use the cu (I) command to try calling another system using the
suspected line.

5.3.3 Administrative Problems

Some uucp networks have so many members that it is difficult to keep
track of changing passwords, changing phone numbers, or changing
logins on remote systems. This can be a very costly problem since
ACU's will be tied up calling a system that cannot be reached.

6. Debugging

In order to verify that a system on the network can be contacted, the
uucico daemon can be invoked from a user's terminal directly. For
example, to verify that mhtsd can be contacted, a job would be queued
for that system as follows:

uucp - r file mhtsd! - / tom

The - r option forces the job to be queued but does not invoke the
daemon to process the job. The uucico command can then be invoked
directly:

/usr/lib/uucp/uucico - r1 - x4 - smhtsd

The - rl option is necessary to indicate that the daemon is to start up
in master mode (i.e., it is the calling system). The - x4 specifies the
level of debugging that is to be printed. Higher levels of debugging can
be printed (greater than 4) but requires familiarity with the internals of
uucico. If several jobs are queued for the remote system, it is not pos­
sible to force uucico to send one particular job first. The contents of
LOGFILE should also be monitored for any error indications that it

11-11

· UUCP ADMINISTRATION

posts. Frequently, problems can be isolated by examining the entries in
LOGFILE associated with a particular system. The file ERRLOG also
contains error indications.

11-12

INTERCONNECTION
SYSTEM A MEDIA SYSTEM B

SPOOL SPOOL
WORK LIST AREA AREA

D B B
e \

8
/

Figure 11.1 Uucp Network Daemon

WORKLIST
I--

SEQUENCE OIALING

ANO ODD
INTERLOCK I DATAKIT

(X.25) INITIAL I FILE -... CONNECTION I TRANSFER

I
PROTOCOL

I
I

BYTE I PACKET
STREAM I PROTOCOL

I

UUCICO DAEMON

7 UNIX SYSTEM OS

I HARDWARE

~ DDD NETWORK

Figure 11.2 Uucico Daemon Functional Blocks

	0001
	0002
	001
	002
	003
	004
	01-001
	01-002
	01-01
	01-02
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-001
	03-01
	03-02
	04-01
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	08-001
	08-002
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14

