
UNIPLUS+ SYSTEM Y·
Document Processing Guide

S Y S IE M S

PN 1172-01

Copyright © 1984 UniSoft Corporation.

Portions of this material have been previously copyrighted by:

Bell Telephone Laboratories, Incorporated, 1980

Western Electric Company, Incorporated, 1983

Regents of the University of California

Holders of a UNIX and UniPlus+ software license are permitted to copy this docu­
ment, or any portion of it, as necessary for licensed use of the software, provided
this copyright notice and statement of permission are included.

UNIX is a Trademark of AT&T Bell Laboratories, Inc.

UniPlus+ is a Trademark of UniSoft Corporation of Berkeley.

PREFACE

An important feature of the UNIX operating system is to provide a
method of document preparation. This guide provides information
needed to make use of the system and describes programs that are used
to format a document in a user-controlled style. A user should be fam­
iliar with the text editing programs (i.e., ed or vi) of the UNIX operat­
ing system before attempting to create a document using the programs
described here.

This guide contains six chapters:

• INTRODUCTION

• TROFF TUTORIAL

• NROFF/TROFF FORMATTING PROGRAM

• TABLE FORMATTING PROGRAM

• MATHEMATICS TYPESETTING PROGRAM

• MEMORANDUM MACROS

Chapter 1, INTRODUCTION, gives beginners an overview of the docu­
ment processing sequence. A beginner should read this chapter before
attempting to use the information covered in the other chapters of this
guide. An experienced user probably does not need to read this intro­
duction to text processing.

Chapter 2, TROFF TUTORIAL, presents information to enable the
user to do simple to complex formatting tasks. When using this docu­
ment keep in mind that, in most respects, the troll formatter is identi­
cal to the nroll formatter. The main differences are spacing capabilities,
font and point size changes, and local motion effects.

Chapter 3, NROFF/TROFF FORMATTING PROGRAM, is a refer­
ence guide for using the formatters and making incremental changes to
existing packages of commands. It contains tables that list the available
requests with defaults and explanations. This chapter is best used in
conjunction with the TROFF TUTORIAL or MEMORANDUM MAC­
ROS chapters.

- i -

PREFACE

Chapter 4, TABLE FORMATTING PROGRAM, describes the tbl pro­
gram usage and the input commands used to generate documents that
contain tables. The examples at the end of the chapter are very helpful
in setting up tables containing similar features.

Chapter 5, MATHEMATICS TYPESETTING PROGRAM, describes
the eqnprogram usage and language for obtaining text with mathemati­
cal expressions. The language interfaces directly with the troff proces­
sor so mathematical expressions can be embedded in the running text
of a manuscript and the entire document produced in one process.

Chapter 6, MEMORANDUM MACROS, is a reference manual for the
Memorandum Macros package. These macros provide a general pur­
pose package of text formatting macros used with the nroff and troff
formatters. The macros provide users of the UNIX operating system a
unified, consistent, and flexible tool for producing many common types
of documents. Although the UNIX operating system provides other
macro packages for various specialized formats, mm is the standard
general purpose macro package for most documents such as letters,
reports, technical memoranda, released papers, manuals, books, design
proposals, and user guides.

- ii -

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

CONTENTS

INTRODUCTION

TROFF TUTORIAL

NROFF/TROFF FORMATTING PROGRAM

TABLE FORMATTING PROGRAM

MATHEMATICS TYPESETTING PROGRAM

MEMORANDUM MACROS

Chapter 1: INTRODUCTION

CONTENTS

1. Overview · · . · · · 1

2. Inputting · · 1
2.1 Requests · · · 2
2.2 Macros · · · · · 3

2.2.1 Macro Packages 3
2.3 Strings · · · · · . . 3
2.4 Registers . . . · · 4

3. Formatting · · · 5
3.1 Using Format Programs · . . 5

4. Preprocessors · · . · 6

- i -

1. Overview

Chapter 1

INTRODUCTION

There are three major steps involved in preparing a document on the
UNIX operation system:

• Inputting

• Formatting

• Printing

Entering data into a computer system is known as inputting. This input
contains the actual text to be printed as well as commands that specify
the format of the text. These formatting commands must be converted
by a text formatter (nroff or troff) to information a printer or photo­
typesetter understands. This process is known as formatting. The nroff
and troff formatters not only format the text, but also send the format­
ted information to the printer or phototypesetter.

Remember that it takes time to learn to use the document processing
tools of the UNIX operating system and don't get discouraged if your
document does not turn out exactly as planned. Practice using the text
formatters as much as possible even on small projects such as letters
and notes to get familiar with the different features and their results.
A t first it may seem easier to just use a typewriter to perform these
tasks, but as your skill increases you will find that using the tools
described in this guide will greatly decrease your overall production
time.

2. Inputting

The input is composed of the text you want printed as well as the for­
matter controls which tell the program how you want your text to look
on the page. The formatter controls appear in your input file but, once
formatted by nroff or troff, will not appear in your printed output.

1-1

INTRODUCTION

Text controls in document preparation can be in the form of:

• Requests

• Macros

• Strings

• Registers

Most documents go through several versions before they are finally
finished. Accordingly, you should do whatever possible to make revi­
sions easy. Start each sentence on a new line. Make lines short and
break lines at natural place, such as after punctuation like commas and
semicolons. These precautions simplify editing since most changes to
documents entail rearranging, adding, or deleting sentences and
phrases.

Keep file size down to a modest size. Larger files edit more slowly. If
any mistakes are made, it is better to ruin a small file rather than the
whole document. Split files at natural boundaries such as sections or
chapters.

2.1 Requests

A request is an instruction to nroff or troff that is interspersed in your
text to direct the appearance -of the output. A text processing request
has the following characteristics:

• The request must be entered on a line by itself.

• The request must start either with, generally, a period (.) or,
occasionally, an acute accent (') at the beginning of the line, fol­
lowed by two lowercase characters.

• The request can be located anywhere in the document but nor­
mally affects only the text that follows it.

• The request can have optional arguments located on the same
line.

A vailable requests range from the very simple such as:

.sp

which will cause a space to appear in your output, to very complex

1-2

INTRODUCTION

environments and diversions. Fortunately, all of the requests do not
have to be used to prepare a document.

2.2 Macros

A macro is a 1- or 2-character abbreviation (name) that replaces a
sequence of formatting requests. This ability to define a group of for­
matter requests into a single macro is one of the most useful functions
of the formatters. The use of macros simplifies the task of formatting a
document by allowing the user to define powerful nroff and troff func­
tions that can be called by a single name and modified easily. As an
example, the collection of requests that makes decisions regarding spac­
ing, indentation, and numbering for a paragraph can be replaced with

.P

on a line by itself. This is done by defining the macro to equal several
requests. It is very difficult for a beginner to define their own macros;
therefore, a "package" of predefined formatting macros is provided.

2.2.1 Macro Packages

The Memorandum Macro package has a set of macros that have been
predefined (collected and named) and make preparing a document
easier than using the basic nroff and troff requests. This macro package
enables you, among other things, to create displays, page headers and
footers, headings, paragraphs, titles, footnotes, lists, and multicolumn
output. It is easier to learn how to use a macro package than to set up
a document by using the nroff and troff requests exclusively.

Formatting macros typically consist of a period and one or two upper­
case letters, such as

.P

that is used to begin a new paragraph or

.BL

to initialize a bullet list.

2.3 Strings

A string is a 1- or 2-character variable that is embedded in the text or
in a macro definition. It is actually a text register that is defined to con­
tain a string of characters that can be printed by simply calling the

1-3

INTRODUCTION

string name. Sequences of words or characters that occur repreatedly in
a document can be replaced by a string.

The contents of a string are printed by entering \ * x where x is a
single-character name of the string or \ * (xx where xx is a two-character
name of the string. For example, if the name of a company appears
several times throughout your document, you could define a string
using the .ds request as shown:

.ds SS Smart Software Corporation

Therefore, whenever the company name should appear in your output,
the following can be substituted:

The \ * (SS is located in Arkansas.

and will output:

The Smart Software Corporation is located in Arkansas.

Note that a string must be defined before it can be used in the text. It
is a good practice to define strings at the beginning of your document.

2.4 Registers

Text processors provide three different kinds of registers:

• Predefined general number registers.

• Predefined read-only number registers.

• User-defined number registers.

The predefined registers have default values. These registers are main­
tained by the text formatters. They are used to define part of the
overall appearance of your document. A general number register can
be read, written, automatically incremented or decremented, and inter­
polated into the input. Number registers may also be used in numerical
expressions, for flags, and for automatic numbers.

For example, in the Memorandum Macros the appearance of a para­
graph is controlled by the the registers Pt (type), Pi (indent), and Ps
(spacing). To set the type of paragraph to be indented with an indent
of 3 and 2 spaces preceding it, the following would be used:

1-4

.nr Pt 1

.nr Pi 3

.nr Ps 2

INTRODUCTION

Number registers tend to be too complicated for a beginning user to
take advantage of their usage.

3. Formatting

Once you have created a file of text, you are ready to format it. Text
processors prepare your files of text for printout on printers and photo­
typesetters.

The nroff program formats files for printing on typewriter-like devices
(low-speed, letter-quality printers) and line printers as well as output on
a terminal. The nroff program formats text into a printable paginated
document.

The troff program formats files for printing on a typesetter. It is
designed to drive a typesetter that produces high-quality output on pho­
tographic paper. This document was formatted with troff.

The basic ideas of formatting programs is that the text to be formatted
contains with it "formatting commands" that determine in detail how
the text is to look. There may be commands that specify the line
length, margins, single- or double-spacing, page numbering and titles to
use on each page.

3.1 Using Format Programs

The input form for invoking formatting programs is:

nroff options .filenames
or

troff options filenames

where options are arguments to nroff and troff (see nroff(I) and troff(I)
in the UniPlus+ User's Manual) and jilenames are the names of the files
containing the document to be formatted.

To produce a document in standard format using the Memorandum
Macros, use the following:

1-5

INTRODUCTION

nroff - mm filenames

for output on a terminal and

troff - mm filenames

for a typesetter.

4. Preprocessors

In the same way that macro packages make it easier to create a docu­
ment than the detailed nroff and troff programs, so do the preproces­
sors make complicated operations simplier to perform.

The tbl program converts files containing tables for nroff and troff out­
put. The eqn program converts files containing mathematical equations
and expressions for troff, and the neqn program converts the same for
nroff.

The tables and equations can be interspersed in your text. Each prepro­
cessor has special names to define the beginning and end of input for it
as follows:

PREPROCESSOR
pon -......

neqn
tbl

START MACRO

.EQ

.EQ
.TS

END MACRO

,EN
.EN
.TE

The preprocessor converts the lines between the start and end macros
into text processing requests to be read by nroff or troff.

To produce a document using the preprocessors, use the following:

neqn options filenames I nroff options
or

eqn options filenames I troff options

tbl options filenames I nroff options
or

tbl options filenames I troff options

1-6

INTRODUCTION

To produce a document using both preprocessors, use the following:

tbl options filenames I neqn I nroff options
or

tbl options filenames I eqn I troff options

1-7

Chapter 2: TROFF TUTORIAL

CONTENTS

1. Overview.

2. Text Filling and Adjusting .

3. Point Sizes and Line Spacing

4. Fonts and Special Characters
4.1 Indents and Line Lengths

5. Tabs

6. Local Motions . . .
6.1 Vertical Motions
6.2 Horizontal Motions
6.3 Overstrikes
6.4 Drawing Lines

7. Strings

8. Introduction to Macros

9. Titles, Pages, and Page Numbering .

10. Number Registers and Arithmetic

11. Macros With Arguments

12. Conditionals .

13. Environments

14. Diversions

15. Macro Examples
15.1 Page Margins
15.2 Paragraphs and Headings
15.3 Multiple Column Output
15.4 Footnote Processing
15.5 Last Page.

- i -

1

3

3

5
7

9

11
11
12
14
15

15

16

18

22

24

27

29

30

31
32
34
36
36
39

LIST OF FIGURES

Figure 4. Font Style Examples

LIST OF TABLES

TABLE 3. Argument Scales to .sp

TABLE 4. Naming Conventions for Non-ASCII
Characters

- ii -

40

5

41

1. Overview

Chapter 2

TROFF TUTORIAL

Troff is a text-formatting program for driving a phototypesetter on the
UNIX operating system. It specifically formats text for a Wang Labora­
tories, Inc., CI A/T phototypesetter, but interfaces have been written to
adapt troff to other devices. High quality text can be produced with
troff since its capabilities include dynamic font and point-size control, a
full Greek alphabet, special characters, mathematical symbols, and
horizontal/vertical local motions at any point.

An important rule of using the troff formatter is to use it through an
intermediary such as a macro package. For one page layouts such as
announcements and forms where it is necessary to have complete con­
trol over spacing, it is sometimes useful to use troff without a macro
package. In many ways the troff formatter resembles an assembly
language, remarkably powerful and flexible, but nonetheless such that
many operations must be specified at a level of detail and in a form that
is too difficult for most people to use effectively.

For special applications several programs provide an interface to the
troff formatter for the majority of users.

• The eqn program provides an easy to learn language for typeset­
ting mathematics. The user does not need to know the troff for­
matter to typeset mathematics. (See the "Mathematics Typeset­
ting Program" in the Document Processing Guide.)

• The tbl program provides an easy to learn language for producing
tables of arbitrary complexity. (See the "Table Formatting Pro­
gram" in the Document Processing Guide.)

• The mm package contains a range of commands from easy to
complicated that are useful for formatting many different styles of
documents.

For producing text that may contain mathematics or tables, there are a
number of macro packages that define formatting rules and operations
for specific styles of documents and reduce the amount of direct contact

2-1

TROFF TUTORIAL

with the troff formatter. In particular, the Memorandum Macros (mm)
package provides most of the facilities needed for a wide range of docu­
ment preparation. (See the "Memorandum Macros" in the Document
Processing Guide.) There are also packages for viewgraphs and other
special applications. These packages are easier to use than the troff for­
matter alone once the user gets beyond the most trivial operations.
They should be considered first.

In the few cases where existing packages do not accomplish the job, the
solution is to make small changes to adapt packages that already exist
rather than to write an entirely new set of troff instructions from
scratch. In accordance with this philosophy, the part of the troff for­
matter described here is only a small part of the whole, although this
document tries to concentrate on the more useful parts. The emphasis
is on doing simple things and making incremental changes to what
already exists. The troff formatter described is the C language version
running on the UNIX operating system.

To use the troff formatter, the user must prepare actual text plus some
information that describes how it is to be printed. Text and formatting
information are intimately intertwined. Most commands to the troff
formatter are placed on a line separate from the text itself, one com-
mand pei line beginning v/ith a period. For example, in no-fill mode
{2}:

Some text.
.ps 12
Some more text.

will change the point size of the letters being printed to 12 point (one
point is 1/72 of an inch) as below:

Some text.
Some more text.

Occasionally, something special occurs in the middle of a line, such as
an exponent. The formula for the area of a circle is input as follows:

Area = \ (*p\fir\fR\\\s7\u2\d\sO

and will produce:

Area = 1T r2

2-2

TROFF TUTORIAL

The backslash (\) is used to introduce troff commands and special
characters within a line of text.

A note concerning the formatting of this document: throughout the
text of this document, UNIX-specific words will appear in bold and ital­
ics will be used to designate variable information and emphasis.
Special-meaning words will be in quotes. Command lines will be
indented with information to be typed as it appears in Roman. Numbers
enclosed in braces ({}) refer to section numbers within this document.
Table numbers correspond to the section in which they are primarily
referred to. If there are two or more tables in one section, an alphabetic
level is used.

2. Text Filling and Adjusting

The troff formatter collects the words from the text input lines (ignor­
ing the layout of the lines) and assembles them to fill up to the current
output line length. When a word does not fit on that line, there is a
break and the text is then begun on the next line. This is "filled" text
and is a troff default feature. In "no-fill" mode troff outputs the exact
layout of the input lines. The no-fill mode can be set with the .nf
request and returned back to fill mode with the .ft request.

Troff will fill the remaining space left by the break by increasing the
space between the words on that line. This is "adjusted" text and and
is a troff default feature. To prevent the adjustment of the line spaces,
the .na (no adjust) request is used and to return back to adjusted text,
the .ad request is used.

This document reflects the troff default features of filled and adjusted
text.

3. Point Sizes and Line Spacing

The .ps request and the \s sequence set the point size of the characters.
Since one point is 1172 inch, 6-point characters are 1112 inch high, and
36-point characters are 112 inch high. There are 15 point sizes - 6, 7,
8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. The default of troff
processor is point size 10. This document has been typeset in 9 point.

2-3

TROFF TUTORIAL

If the number following the .ps request is not a legal value, the point
size is rounded up to the next valid value with a maximum of 36. If no
number follows the .ps request, point size reverts to the previous
value.

Point size can also be changed in the middle of a line or a word with a
\s escape sequence. The \s sequence should be followed by a legal
point size. The \sO sequence causes the size to revert to its previous
value. The "\slOll apples" sequence is understood correctly as "point
size 10, followed by the text, 11 apples".

Relative size changes, ± the current point size, are also legal and use­
ful:

\s-2AUNT\s+2 and \s-2UNCLE\s+2
produces

AUNT and UNCLE

temporarily decreasing the size by two points, then restoring it. Rela­
tive size changes have the advantage that the size difference is indepen­
dent of the starting size of the document. Therefore, the point size of
this entire document can be changed but the above example will still be
2 point sizes smaller. The amount of the relative change is restricted to
a singie digit.

Another parameter that determines what the type looks like is the spac­
ing between lines. It is set independently of the point size. Vertical
spacing is measured from the bottom of one line to the bottom of the
next. The command to control vertical spacing is . vs. For running
text, it is usually best to set the vertical spacing about 20 percent larger
than the character size. Two points is a good space difference between
text lines. For example, this document was typeset with the following
combination:

.ps 10

.vs 12p

Vertical spacing is partly a matter of taste, depending on how much text
is to be squeezed into a given space, and partly a matter of traditional
printing style. By default, the troff formatter uses a point size of 10
and a vertical spacing of 12 points. When. vs is used without argu­
ments, vertical spacing reverts to the previous value.

2-4

TROFF TUTORIAL

The .sp request is used to obtain blank vertical space. Used without
arguments, .sp causes one blank line to be output (at whatever value
. vs is set). Most troff output devices can interpret fractions. Argu­
ments to .sp can be scaled in the following ways:

TABLE 3. Argument Scales to .sp

SCALE DESCRIPTION USAGE

omitted vertical space of current. vs .sp 2
v vertical space of current. vs .sp 3v

inches .sp .5i
p points .sp 12p

These same scale factors can be used after the . vs request to define line
spacing. Scale factors can be used after most commands that deal with
physical dimensions.

All size numbers are converted internally to machine units, which are
1/432 inch (1/6 point). For most purposes, this is enough resolution
to provide good accuracy of representation. The situation is not quite
so good vertically, where resolution is 11144 inch (1/2 point).

4. Fonts and Special Characters

The troff processor and the typesetter allow four different fonts at one
time. Typically, these four fonts are permanently mounted on the phy­
sical typesetter in positions 1, 2, 3, and 4, respectively:

R Times Roman,
I Times Italic,
B Times Bold, and
S Special Mathematics.

The Special Mathematics font contains the Greek alphabet, mathemati­
cal symbols, and miscellaneous symbols. Characters on the special font
are automatically handled by troff 4-character input names (see Table
4) ~ therefore, it is not necessary to request the special font.

The default font in troff is Roman. To change the current font, the .ft
request is used. The argument to the .ft request can be either the

2-5

TROFF TUTORIAL

corresponding letter or number of the font wanted. For example, the
input in no-fill mode:

.ft B
This command changes the font from Roman to bold .
. ft I
This command changes the font from bold to italics .
. ft R
This command changes the font from italics to Roman .
. ft p
This command returns to the previous font (in this case, italics) .
. ft
This command also returns to the previous font (in this case, Roman)

will output:

This command changes the font from Roman to bold.
This command changes the font from bold to italics.
This command changes the font from italics to Roman.
This command returns to the previous font On this case, italics).
This command also returns to the previous font (in this case, Roman)

The above fonts are shown in Fig. 4 at the end of this document.
Depending on the phototypesetter being used, there are other fonts
available besides the standard set of Times, although only four can be
used at any given time. The .fp request can be used to rename the
fonts that are actually mounted on the typesetter. This would be help­
ful, for instance, if an extra Roman font is mounted in place of the
bold font. For example:

.fp 3 H

renames the font mounted on position 3 to H instead of the default B.
Appropriate .fp requests should appear at the beginning of a document
if standard fonts are not used.

Using font numbers instead of letters makes it possible for a document
to be relatively independent of the actual fonts used to print it. There­
fore, the .ft 3 request is interpreted as "change to the font mounted in
position 3". Numbers and letters are interchangeable and both can be
used throughout a document.

2-6

TROFF TUTORIAL

Fonts can be changed within a line or word with the \f escape sequence
followed by R, I, B or 1, 2, 3. For example, the input:

A \fBbold\fR word stands out; a word in \f1italics\fR shows emphasis.

will output:

A bold word stands out; a word in italics shows emphasis.

The .bd request will artificially embolden a font by overstriking letters
with a slight offset. (See Section 4.1, "Fonts," in the Nroffffroff For­
matting Program.)

In troff the underline request CuI) causes the next input line to print in
italics. It can be followed by a number to indicate that more than one
line is to be italicized.

The characters on the Special Mathematics font can be accessed by
their 4-character input name. These names consist of characters pre­
ceded by the \ (sequence. These names may be inserted anywhere in
the text. In particular, Greek letters are all of the form \ (* x, where x is
an uppercase or lowercase Roman font letter reminiscent of the Greek.
A list of these special names is given in Table 4 at the end of this docu­
ment.

In troff some characters are automatically translated into others. Grave
and acute accents become open and close single quotation marks. Simi­
larly, a typed minus sign becomes a hyphen. The \- input will print an
explicit minus sign. Since a backslash (\) is an escape character with a
special meaning in troff, to get an actual backslash to print a \e or \ \
entry must be input.

4.1 Indents and Line Lengths

The default line length in troff is 6.5 inches. To reset the line length
the .11 request is used. Line length can be specified in several scales;
inches are probably the most suitable. Usable page width on the photo­
typesetter is about 7.54 inches.

Page offset is the space from the left edge of the paper to the beginning
of the line of type (e.g., the left margin). The default margin is slightly
less than 1 inch. The .po request is used to set the page offset.

2-7

TROFF TUTORIAL

Basically, to get centered text the line length plus twice the page offset
(right and left margins) should equal the paper width. For instance the
line length and page offset of this 6-inch-wide page is:

.11 4.5i

.po .75i

The .po 0 request sets the offset as far to the left as it will go.

The indent request (.in) causes the left margin to be indented by some
specified amount from the page offset. To obtain an offset block of
text, the .in request can be used to move the left margin to the right
and a negative argument to the .11 request can be used to move the
right margin to the left. As an example:

.in Ii

.11 -Ii
This block of text will be indented by one inch
both on the left margin and on the right margin.
This is a useful method for setting off quotes
or figures from the rest of the text.
The initial .in request does not need to
be incremented .
. 11 + Ii
.in -Ii

will output:

This block of text will be indented by
one inch both on the left margin and
on the right margin. This is a useful
method for setting off quotes or figures
from the rest of the text. The initial
.in request does not need to be incre­
mented.

The use of + and - changes the previous setting by the specified
amount rather than just overriding it. The distinction is quite impor­
tant:

• .I1 + Ii makes lines 1 inch longer to the right

• .I1 -Ii makes lines 1 inch shorter to the left

• .11 Ii makes lines 1 inch long.

With the .in, .11, and .po requests, the previous value is used if no

2-8

TROFF TUTORIAL

argument is specified.

The .ti request is used to temporarily indent a single line. A .ti request
can be used to begin a paragraph. If no units are specified the line is
indented by the default (three ems). Lines can be indented negatively
if the indent is already positive:

.ti - .3i

causes the next line to be moved back 3/10 of an inch.

The default unit for .ti, as for most horizontally oriented requests (.ll,
.in, .po), is ems. An em is roughly the width of the letter m in the
current point size. Precisely, an em in point size n is n points.
Although inches are usually clearer than ems to people who are not
used to setting type, ems have a place: they are a measure of size that
is proportional to the current point size. The ems unit is used to make
text that keeps its proportions regardless of point size. For instance, an
indent of 3 ems in this document (point size 9) is smaller than an
indent of 3 ems in the same document set in the default point size of
10. To make the measurement clearer to the user, the ems can be
specified as scale factors, as in .ti 2.5m.

5. Tabs

A tab (the ASCII horizontal tab character) can be used to produce out­
put in columns or to set the horizontal position of output. Typically,
tabs are used only in unfilled (no-fill mode) text. Tab stops are set by
default every half inch from the current indent but can be changed by
the .ta request. Tabs are specified with numeric measurement as below
but can also be specified with the local motion sequence of \ w {S.2}.
Tab stops are set every inch, for example, with the following entry:

.ta Ii 2i 3i 4i 5i 6i

Tab stops are left justified (as on a typewriter) by default. The charac­
ters Rand C placed after the tab setting will produce right-justified and
centered columns, respectively. In the following examples the (j) sym­
bol represents a tab character. The input:

2-9

TROFF TUTORIAL

.ta 1iC 2iR
first(]) first(]) first
second(]) second(]) second
third(]) third(]) third

will output:

first
second
third

first
second
third

first
second

third

Note that the initial column is not a tabbed column and therefore can
not be specified.

Numeric columns can be lined up and evenly spaced by preceding each
number with enough blanks to make it line up when printed (in troff all
digits have the same width). To make a nonprinting unpaddable blank
space, the escape sequence \0 is used {S.2} The input:

.nf

.ta Ii 2i
\0\01 (]) \0\02(]) \0\03
\040(]) \OSO(]) \060
700(]) 800(]) 900
.fi

will output:

1
40

700

2
50

800

3
60

900

This will only work with numbers. Trying to use this method with
words will be time consuming and most likely ineffective.

The table formatting program (tbI) is the best and fastest way to format
tables and would make the formatting of the most complicated table
easier than the above-mentioned method. The troff processor provides
a general mechanism called "fields" for setting up complicated
columns. This is used by the tbl program.

Tab space can be filled up with some character other than a blank. This
can be done with the .tc request which sets a tab replacement character.

2-10

TROFF TUTORIAL

An underline (\ (ru) is the most common, but any character (such as a
period) can replace the blank character. The \0 sequence can be used
to make a space between the lines drawn and the text. For example,
the input:

.nf

.ta 2i 3i

.tc \ (ru
Name\O(]) \OAge\O(j)
Address\O(j) (j)
.fi

will output:
___________________ Age Name

Address

To reset the tab replacement character to a blank, use the .te request
with no argument. Another way lines can be drawn is with the \1
escape sequence as described in section 6.4.

6. Local Motions

The troff processor provides a number of escape sequences for placing
characters of any size at any place. They can be used to draw special
characters or to tune the output for a particular appearance. Most of
these sequences are straightforward but messy to read and tough to
type correctly. A good rule to follow is to make uniform and logical
sequences. For instance, if a string is to be made a point size smaller,
in italics and with a subscript, the input could be:

\s-1 \f1string\dl \u\fR\s+ 1

as opposed to

\f1\s-lstring\dl\fR\u\s+ 1

Both versions are correct but the first example reads better and makes
it easier for a user to find errors.

6.1 Vertieal Motions

The eqn program is more useful than troff for formatting mathematical
equations. If the eqn program is not used, subscripts and superscripts
are most easily done with the half-line local motions \u (up) and \d
(down) sequences. To go back up the page half the current point size,

2-11

TROFF TUTORIAL

insert a \u at the desired place; to go down half the current point size,
insert a \d. The \u and \d should always be used in pairs because all of
the text following the escape sequence will continue to be either up or
down half a point size. So, for every time something is moved up half
a space it has to be moved back down again. Since \u and \d refer to
the current point size, they should either be both inside or both outside
the size changes. Otherwise, an unbalanced vertical motion will result.

Sometimes the space given by \u and \d is not the exact amount­
wanted. The \ v sequence can be used to request an arbitrary amount of
vertical motion. The in-line sequence \ v' N' causes motion up or down
the page by the amount specified in N. The' symbols are used as
parameters. A minus sign causes upward motion, while no sign or a
plus sign means down the page. For example, the input:

\v'l '\s18D\sO\v' -1 'own

will output:

Down

Thus \v'l' causes a downward vertical motion of one line space and
\ v' -1' causes an upward vertical motion of one line space.

There are several ways to specify the amount of motion:

\ v'O.1i'
\v'3p'
\v'-O.Sm'

(inches)
(points)
(ems)

The scale specifier i, p, or m goes inside the quotes. Any character can
be used in place of the quotes. This is true of all other troff formatter
commands and sequences described in this section.

As with the \u and \d escape sequences, the \v should always balance
vertical motions in a line with the same amount in the opposite direc­
tion.

6.2 Horizontal Motions

Arbitrary horizontal motions are also available, \h is analogous to \ v ,
except that the default scale factor is ems instead of line spaces. A
minus sign causes a backward (to the left) motion, while no sign or a

2-12

TROFF TUTORIAL

plus sign causes a forward (to the right) motion. As an example,

\h' -O.1i'

causes a backwards motion of a tenth of an inch. In a practical situa­
tion, when printing the mathematical symbol > >, the default spacing
is too wide, so eqn replaces this by

>\h'-O.3m'>

to produce ».

Frequently, \h is used with the "width function" \ w to generate
motions equal to the width of some specific character string. The con­
struction

\w'thing'

is a space equal to the width of "thing" in machine units (1/432 inch).
All troff formatter computations are ultimately done in these units. To
move horizontally the width of a word:

\h'\w'word'u

is used. Since the default scale factor for all horizontal dimensions is m
(ems), u must be used to denote machine units. If the u is not
specified, the motion produced will be computed in ems and therefore
will be too large. Nested quotes are acceptable to the troff formatter as
long as none are omitted. An example of this kind of construction
would be to print the string "boldface" in bold by overstriking with a
slight offset. The following example prints "boldface", moves left by
the width of "boldface", moves right one unit, and prints "boldface"
again. The input:

boldface\ h'-\w'boldface'u'\ h'l u'boldface

will output:

boldface

Section 11 describes a way of avoiding typing so much input for each
command name.

As another example of the \ w sequence, to set a tab the width of the
longest word in a list plus two spaces:

2-13

TROFF TUTORIAL

.ta \w'longest\ \ 'u
10ngQ) 1
10ngerQ) 2
10ngestQ) 3

will produce:

long 1
longer 2
longest 3

The following are special-purpose troff escape sequences for local
motion that are most useful when exact spacing is needed:

\0

\<space>

\1
\"
\&

6.3 Overstrikes

is an unpaddable (never widened or split across a
line-by-line justification and filling) white space of the
same width as a digit.

is an unpaddable space the width of a space.

is an unpaddable space the width of 1/6 space.

is an unpaddable space the width of 1/12 space.

is a nonprinting character which has zero width and is
useful in entering a text line that would otherwise
begin with a ..

The \0 sequence causes characters to be overstruck. Up to nine charac­
ters can be listed within parameters and all will be overstruck centered
on the widest character. For example,

\o'n-'
\0'> I'
r\o'e\ (aa'sum\o'e\ (aa'
\o'\s+ 1\ (ci\s-II\-'

produces Ii
produces ::t
produces resume
produces ~

Overstrikes can be made with another special convention, \z, the zero­
motion sequence. Normal horizontal motion is suppressed with the \zx
after printing the single character x, so another character can be laid on
top of it. Although sizes can be changed within \0, all the characters
are centered on the widest character, and there can be no horizontal or
vertical motions. The \z may be the only way to get what is needed.
For example,

2-14

\z\{ - >\u\{ < -\d
\z\ {ua\d\ {- > \u

produces ~
produces L

TROFF TUTORIAL

A more ornate overstrike is given by the bracketing function \b, which
piles up characters vertically, centered on the current base line. Thus
big brackets are obtained by constructing them with piled-up smaller
pieces using their special 4-character names. For example, the input:

\b'\ (It\ (Ik\ (Ib' \b'I23' \b'\ {rt\ {rk\ {rb'

will output:

01
6.4 Drawing Lines

A convenient facility for drawing horizontal {\O and vertical (\L) lines
of arbitrary length with arbitrary characters is provided by the troff for­
matter. A I-inch long line is printed with a \l'Ii' sequence. If the _ is
not appropriate, the length specification can be followed by a different
character. The \l'O.5i.' sequence draws a 112 inch line of dots. Escape
sequence \L is analogous, except that it draws a vertical instead of a
horizontal line. The tbl program describes other ways of providing hor­
izontal and vertical lines (See Table Formatting Program).

7. Strings

If a document contains a iarge number of occurrences of an acute
accent over a letter e, typing \o"e\'" for each e would be a nuisance.
Fortunately, the troff formatter provides a way to store an arbitrary col­
lection of text in a "string", and thereafter use the string name as a
shorthand for its contents. Strings are one of several troff formatter
mechanisms whose judicious use permits typing a document with less
effort and organizing it so that extensive format changes can be made
with few editing changes.

Strings are defined with the .ds request. A reference to a string in the
text is replaced by whatever the string was defined as. The line

.ds e \o"e\'"

defines the string e to have the value \o"e\' ".

2-15

TROFF TUTORIAL

String names may be either 1- or 2-characters long. They are referred
to by *x for I-character names or *(xy for 2-character names. Thus
to get

telephone

given the definition of the string e as above,

t\ *el\ *ephone

is the input. As another example:

.ds ux \s-IUNIX\s+ 1

can be referenced by the string name *(ux to produce the the string
UNIX.

If a string must begin with blanks, it is defined as

.ds xx " text

The double quote signals the beginning of the definition. There is no
trailing quote; the end of the line terminates the string.

A string may be several lines long. If the troff formatter encounters a
\ at the end of any line, it is thrown away and the next line is added to
the current one. A iong string can be made by ending each line except
the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other strings or even in terms of
themselves.

8. Introduction to Macros

Some of the information in this section and the sections following deals
with troff capabilities that will probably be too involved for the begin­
ning or intermediate user. These sections will, however, give a better
understanding of the macro packages available and help in adapting and
implementing them.

2-16

TROFF TUTORIAL

In its simplest form, a macro is a shorthand notation similar to a string.
For instance, if every paragraph is to start in exactly the same way, with
a space and a temporary indent of two ems, the following requests
would perform the operation:

.sp

.ti +2m

To save typing these requests every time used, they could be collapsed
into one shorthand line, such as a troff command, .PP. The .PP is
called a macro. The way to tell the troff formatter what .PP means is
to define it with the .de request:

.de PP

.sp

.ti +2m

The first line names the macro (.PP in this example). It is in upper­
case so it will not conflict with any name that the troff formatter might
already know about. N ames are restricted to one or two characters.
The last line (..) marks the end of the definition. In between are the
requests which are inserted whenever the troff formatter encounters the
.PP macro call. A macro can contain any mixture of text and format­
ting requests.

The definition of a macro has to precede its first use; undefined macros
are ignored. It is a good practice to have all macro definitions at the
beginning of the file. If the same macros are to be used in several files,
they can be put in a separate file. The name of a file containing the
macros can precede the file name of the document being processed
when invoking the troff formatter at the command level.

U sing macros for commonly occurring sequences of requests is impor­
tant since it saves typing and makes later changes easier. If it is
decided that in producing a document the paragraph indent is too small,
the vertical space is too large, and Roman font should be forced, only
the definition of .PP needs to be changed to read

2-17

TROFF TUTORIAL

.de PP

.sp 2p

.ti +3m

.ft R

\"paragraph macro name
\"space 2 points
\"temporary indent of 3 ems
\"set font to Roman
\"end of macro definition

The change takes effect everywhere .PP is used and is easier than
changing commands throughout the whole document.

A troff formatter escape sequence that causes the rest of the line to be
ignored is \". It is used to add comments to the macro definition (a
wise idea once definitions get complicated).

An example of macros that start and end a block of offset, unfilled text
is

.de OS \"offset start macro name

.sp \"one vertical space

.nf \"no-fill mode

.in +O.Si \"indent one-half inch to the right
\"end macro definition

.de OE \"offset end macro name

.sp \"one vertical space

.in -O.Si \"indent one-half inch to the left
\"end macro definition

The .OS and .OE macros can be used before and after text to provide
an indented block of unfilled text. In this example, the indention used
is .in + O.Si instead of .in O.Si. This permits the nesting of the .OS
and .OE macros to get blocks within blocks.

Should the amount of indention be changed at a later date, it is neces­
sary to change only the definitions of .OS and .OE, not individual
requests throughout the whole paper.

9. Titles, Pages, and Page Numbering

Titles, pages, and page numbering is a complicated area where nothing
is done automatically. Of necessity, some of this section is a cookbook
to be copied literally until some experience is obtained.

2-18

TROFF TUTORIAL

To get a title at the top of each page, such as:

left top center top right top

specifications must be provided:

• what to do before and after the title line,
• when to print the title, and
• what the actual title is.

The following new page macro (.NP) is defined to process titles at the
end of one page and the beginning of the next:

.de NP
'bp
'sp O.Si
.tl 'left top'center top'right top'
'sp 0.3i

\"define new page
\"begin page
\"space one-half inch
\"prints title
\"space 3/10 inch
\"end definition

These requests are explained as follows:

• The 'bp (begin page) request causes a skip to the top-of-page.
• The 'sp O.Si request will space down 112 inch.
• The .tl request prints the three-part title.
• The 'sp O.3i request provides another 0.3 inch space.

The reason that the 'bp and 'sp requests are used instead of the .bp
and .sp requests is that the .sp and .bp cause a break to take place.
This means that all the input text collected but not yet printed is
flushed out as soon as possible, and the next input line is guaranteed to
start a new line of output. Had .bp been used in the .NP macro, a
break in the middle of the current output line could occur when a new
page is started. The effect would be to print the left-over part of the
interrupted line at the top of the page, followed by a new output line of
the input line that followed the break. This is not desired. Using"'"
instead of " . " for a request tells the troff formatter that no break is to
take place. The output line currently being filled should not be forced
out before the space or new page but should be stored until the new
page macro is executed.

The list of requests that cause a break is short and natural:

2-19

TROFF TUTORIAL

.bp begin page

.br break

.ce center

.ft fill mode

.nf no-fill mode

.sp space

.in indent

.ti temporary indent

Other requests cause no break, regardless of whether a ". " or a '" "
is used. If a break is really needed, a .br request at the appropriate
place will provide it.

To ask for .NP at the bottom of each page, a statement like "when the
text is within an inch of the bottom of the page, start the processing for
a new page" is used. This is done with the .wh request. For example:

.wh -Ii NP

No" . " character is used before NP since it is simply the name of a
macro and not a macro call. The minus sign means "measure up from
the bottom of the page", so -li means 1 inch from the bottom.

The . wh request appears in the input data outside the definition of the
.NP macro. Typically, the input would be

....1_ Tn .ue l~r
'bp
'sp O.Si
.tl 'left top'center top'right top'
'sp O.3i

.wh -Ii NP

As text is actually being output, the troff formatter keeps track of its
vertical position on the page; and after a line is printed within 1 inch
from the bottom, the .NP macro is activated .

• The .wh request sets a trap at the specified place.
• The trap is sprung when that point is passed.

The .NP macro causes a skip to the top of the next page {that is what
the 'bp was for} and prints the title with appropriate margins.

2-20

TROFF TUTORIAL

When changing fonts or point sizes, beware of crossing a page boun­
dary in an unexpected font or size .

• Titles come out in the size and font most recently specified
instead of what was intended.

• The length of a title is independent of the current line length, so
titles will come out at the default length of 6.5 inches unless
changed. Changing title length is done with the .It request.

There are several ways to fix the problems of point sizes and fonts in
titles. The .NP macro can be changed to set the proper size and font
for the title, and then restore the previous values, like this:

.de NP
'bp
'sp 0.5i
.ft R
.ps 10
.It 6i
.tl 'left top'center top'right top'
.ps
.ft P
'sp O.3i

\"set title font to Roman
\"set point size to 10
\"set title length to 6 inches

\"revert to previous point size
\"revert to previous font

This version of .NP does not work if the fields in the .tl request con­
tain size or font changes. To cope with that contingency requires the
troff formatter "environment" mechanism discussed in section 13.

To get a footer at the bottom of a page, the .NP macro should be
modified. One option is to have the .NP macro do some processing
before the 'bp request. Another option is to split the .NP macro into a
footer macro (invoked at the bottom margin) and a header macro
(invoked at the top of page).

Output page numbers are computed automatically as each page is pro­
duced (starting at 1), but no numbers are printed unless explicitly
requested. To get page numbers printed, the % character should be
included in the .tl request at the position where the number is to
appear. For example:

2-21

TROFF TUTORIAL

.de NP
'sp .5i
. tl "- % -' , \" center page number inside hyphens
'bp

--- header stuff

The page number can be set at any time with either a . bp 0 request
(which immediately starts a new page numbered 0) or with .po 0

(which sets the page number for the next page but does not cause a
skip to the new page). The .bp +0 sets the page number to 0 more
than its current value. The .bp request without an argument means .bp
+1.

10. Number Registers and Arithmetic

The troff processor has a facility for doing arithmetic and defining and
using variables with numeric values, called number registers. Number
registers, like strings and macros, can be useful in setting up a docu­
ment so it is easy to change later. They also serve for any sort of arith­
metic computation.

Like strings, number registers have 1- or 2-character names. They are
set by the .or request and are referenced anywhere by \ox {I-character
name) or \0 (xy (2-character name).

There are quite a few predefined number registers maintained by the
troff formatter, among them:

• % for the current page number
• ol for the current vertical position on the page
• dy, mo, and yr for the current day, month, and year
• .s and .f for the current size and font (the font is a number from

one to four).

Any of these can be used in computations like any other register, but
some, like .s and .f, cannot be changed with .or.

An example of the use of number registers is in an older macro pack­
age where most significant parameters are defined in terms of the
values of a handful of number registers. These include the point size
for text, the vertical spacing, and the line and title lengths. To set the
point size and vertical spacing, a user may input

2-22

.nr PS 9

.nr VS 11

TROFF TUTORIAL

The paragraph macro, .PP, is roughly defined as follows:

.de PP

.ps\\n(PS

.vs \\n(VSp

.ft R

.sp O.5v

.ti +3m

\"define paragraph macro
\"reset size
\"reset spacing
\"set font to Roman
\" space half a line
\"temporary indent of 3 ems
\"end macros definition

This sets the font to Roman and the point size and line spacing to
whatever values are stored in the number registers PS and VS.

The reason for two backslashes is to indicate that a backslash is really
meant. When the troff formatter originally reads the macro definition,
it peels off one backslash to see what is coming next. Two backslashes
in the definition are required to ensure that a backslash is left in the
definition when the macro is used. If only one backslash is used, point
size and vertical spacing will be frozen at the time the macro is defined,
not when it is used.

Protection with an extra layer of backslashes is needed only for \0, \ * ,
\$, and \ itself. Things like \s, \f, \h, \ v, etc. do not need an extra
backslash since they are converted by the troff formatter to an internal
code immediately upon detection.

Arithmetic expressions can appear anywhere that a number is expected.
As an example:

.nr PS \\n(PS-2

decrements register PS by 2. Expressions can use the arithmetic opera­
tors +, -, *, / , % (mod), the relational operators >, > =, <, < = ,
=, ! = (not equal), and parentheses.

So far, the arithmetic has been straightforward~ more complicated
things are tricky .

• Number registers hold only integers. In the troff formatter, arith­
metic uses truncating integer division just like Fortran.

2-23

TROFF TUTORIAL

• In the absence of parentheses, evaluation is done left-to-right
without any operator precedence including relational operators.
Thus:

becomes -1.

Number registers can occur anywhere in an expression and so can scale
indicators like p, i, m, etc. (but no spaces). Although integer division
causes truncation, each number and its scale indicator is converted to
machine units (1/432 inch) before any arithmetic is done, so li/2u
evaluates to O.Si correctly.

The scale indicator u often has to appear when least expected, in partic­
ular when arithmetic is being done in a context that implies horizontal
or vertical dimensions. For example, .ll 7/2i is not 31h inches.
Instead, it is really 7 ems/2 inches. When translated into machine
units, it becomes O. This is because the default units for horizontal
parameters (like .II) are ems. Another incorrect try is .ll 7i/2. The 2
is 2 ems, so 7i12 is small, although not O. The.ll 7i/2u must be used.
A safe rule is to attach a scale indicator to every number, even con­
stants.

For arithmetic done within a .nr request, there is no implication of hor­
izontal or vertical dimension, so the default units are "units", and 7i/2
and 7i/2u mean the same thing. Thus:

.nr 11 7i/2

.11 \ \n(llu

accomplishes what is desired as long as the u on the .ll request is
included.

11. Macros With Arguments

Arguments are variable information that will be incorporated into a
macro. The arguments are on the same line following a macro call.
They enable flexibility from one use of a macro to the the next. Two
things are needed to be able to define macros with arguments:

• When the macro is defined, it must be indicated that some parts
will be provided as arguments when the macro is called.

• When the macro is called, the actual arguments to be plugged into
the definition must be provided. Arguments not provided when

2-24

TROFF TUTORIAL

the macro is called are treated as empty.

An example would be to define a macro (.SM) that will print its argu­
ment two points smaller than the surrounding text.

.de SM
\s-2\\$I\s+2

The macro call would appear:

.SM SMALL

The argument ("SMALL" in this example) would then appear two
points smaller than the rest of the text.

Within a macro definition, the symbol \ \$n refers to the nth argument
with which the macro was called. Thus \ \Sl is the string to be placed
in a smaller point size when .8M is called.

A slightly more complicated version is the following definition of .8M
which permits optional second and third arguments that will be rear­
ranged and printed in the normal size:

.de SM
\ \$3\s- 2\ \$I\s+ 2\\$2

This macro defines .8M as taking the third argument and placing it at
the beginning, the first argument is made two points smaller and put
in the center, and the second argument is restored to the previous point
size and placed last. The macro call as defined above

.SM ABLE),

would output:

ABLE),

The macro call

.SM BAKER). (

produces output:

(BAKER).

It is convenient to reverse the order of arguments because trailing
punctuation is much more common than leading. The number of

2-25

TROFF TUTORIAL

arguments that a macro was called with is available in number register
.$.

The macro, .DD, is used to make "bold Roman." It combines horizon­
tal motions, width computations, and argument rearrangement:

.de BD
\&\ \$3\f1\\$1\h'-\w'\ \$l'u +2u'\ \$1 \fP\ \$2

The \h and \w escape sequences need no extra backslash. The \& is
there in case the argument begins with a period. Two backslashes are
needed with the \ \$0 commands to protect one of them when the
macro is being defined.

A second example will make this clearer. A .SH macro can be defined
to produce automatically numbered section headings with the title in
smaller size bold print. The use is

.SH "Section Title"

If the argument to a macro is to contain blanks, it must be surrounded
by double quotes.

The definition of the .SH macro is

.nr SH 0

.de SH

.sp O.3i

.ft B

.nr SH \\n(SH+1

.ps \\n(PS-1
\\n(SH. \\$1
.ps \\n(PS
.sp O.3i
.ft R

\"initialize section number

\"increment section heading number
\"decrease PS number by 1
\"number and title
\"restore PS

The section number is kept in number register SH, which is incre­
mented each time just before use.

Note: A number register may have the same name as a macro without
conflict but a string may not.

2-26

TROFF TUTORIAL

A \ \n (SH and \ \n (PS was used instead of a \n (SH and \n (PS. Had
\n (SH been used, it would have yielded the value of the register at the
time the macro was defined, not at the time it was used. Similarly, by
using \ \n (PS, the point size at the time the macro was called is
obtained.

An example that does not involve numbers is the .NP macro (defined
earlier) which had the request

.tl 'left top'center top'right top'

The fields could be made into parameters by using instead

.tl '*(LT'*(CT'*(RT'

The title calls the three strings named L T, CT, and R T {7} . If these
are empty, the title will be a blank line. Normally, CT would be set
with

.ds CT - % -

to give just the page number between hyphens. A user could supply
definitions for any of the strings.

12. Conditionals

Suppose it is desired that the .SH macro leave two extra inches of
space just before Section 1, but nowhere else. The cleanest way to do
that is to test inside the .SH macro whether the section number is 1,
and add some space if it is. The.if command provides the conditional
test that can be added just before the heading line is output:

.if \ \n(SH = 1 .sp 2i \"if SH equals 1, then space 2 inches

The condition after the .if request can be any arithmetic or logical
expression. If the condition is logically true or arithmetically greater
than zero, the rest of the line is treated as if it were text (a request in
this case). If the condition is false, zero, or negative, the rest of the
line is skipped.

It is possible to do more than one request if a condition is true. For
example, if several operations are to be done prior to Section 1, the .SI
macro is defined and invoked when Section 1 is almost complete (as
determined by an .if).

2-27

TROFF TUTORIAL

.de SI
--- processing for section 1

.de SH

.if\\n(SH=I.SI

An alternate way is to use the extended form of the .if request, e.g.:

.if \ \n (SH = 1 \ {--- processing
for section 1 ---\}

The braces, "\ {" and "\}", must occur in the positions shown or unex­
pected extra lines will be in the output. The troff processor also pro­
vides an "if-else" construction.

A condition can be negated by preceding it with!. The same effect as
above is obtained (but less clearly) by using

.if !\\n(SH> 1 .SI \"if SH is not greater than 1, do .S}

There are a handful of other conditions that can be tested with .if. For
example:

.if e .tl 'left top'center top'right top'

.if 0 .tl 'left top'center top'right top'
\"even page title
\"odd page title

gives facing pages different titles, depending on whether the page
number is even or odd, when used inside an appropriate new page
macro.

Two other conditions are t and n, which tells whether the formatter is
troff or nroff:

.if t .ta 0.7 5i 1.5i 2.25i

.if n .ta 1i 2i 3i

String comparisons may be made in a .if request.

. if 'string 1 'string2' stuff

executes the program stuff if string1 is the same as string2. The

2-28

TROFF TUTORIAL

character separating the strings can be anything reasonable that is not
contained in either string. The strings themselves can reference strings
with "\ *", arguments with "\$", etc.

13. Environments

There is a potential problem when going across a page boundary:
parameters like size and font for a page title may be different from those
in effect in the text when the page boundary occurs. A general way to
deal with this and similar situations is provided by the troff formatter.

There are three potential troff environments. Each has independently
selectable versions of many parameters associated with processing,
including size, font, line and title lengths, filII no-fill mode, tab stops,
and partially collected lines. Thus the titling problem may be solved by
processing the main text in one environment and titles in another with
its own suitable parameters.

The .ev n request shifts to environment n (n must be 0, 1, or 2). The
.ev request with no argument returns to the previous environment.
Environment names are maintained in a stack, so calls for different
environments may be nested and unwound consistently.

If the main text is processed in environment 0 where the troff for­
matter begins by default, the new page macro, .NP, can then be
modified to process titles in environment 1, e.g.:

.de NP

.ev 1

.It 6i

.ft R

.ps 10

\"shift to new environment
\"set parameters here

--- any other processing
.ev \"return to previous environment

It is also possible to initialize the parameters for an environment out­
side the .NP macro, but the version shown keeps all the processing in
one place and is easier to understand and change.

2-29

TROFF TUTORIAL

14. Diversions

There are numerous occasions in page layout when it is necessary to
store some text for a period of time without actually printing it. Foot­
notes are the most obvious example. Text of the footnote usually
appears in the input well before the place on the page is reached where
it is to be printed. The place where it is output normally depends upon
the magnitude of the footnote. This implies that there must be a way
to process the footnote, at least enough to decide its size without print­
ing it.

A mechanism called a diversion is provided by the trofl' formatter for
doing this processing. Any part of the output may be diverted into a
macro instead of being printed; and at some convenient time, the
macro may be put back into the input.

The .di xy request begins a diversion. All subsequent output is col­
lected into the macro xy until the .di request with no arguments is
encountered. This terminates the diversion. Processed text is available
at any time thereafter by giving the .xy request. The vertical size of
the last finished diversion is contained in the built-in number register
do. For instance, to implement a keep-release operation so that text
between the macros .KS and .KE will not be split across a page boun­
dary (as for a figure or table), the following applies:

• When a .KS is encountered, the output is diverted to determine
its size .

• When a .KE is encountered and if the diverted text will fit on the
current page, it is printed there. If the diverted text does not fit
on the current page, it is printed at the top of the next page.

The definitions of the .KS and .KE macros are as follows:

2-30

.de KS"

.br

.ev 1

.fi

.di XX

.de KE

.br

.di

.if \ \n(dn> =\ \n(.t .bp

.nf

.XX

.ev

TROFF TUTORIAL

\"start keep
\" start new line
\"collect in new environment
\"make it filled text
\"collect in XX

\"end keep
\"get last partial line
\"end diversion
\"bp if does not fit
\"revert to no-fill mode
\"print text
\"return to normal environment

The number register ol indicates the current position on the output
page. Since output was being diverted, it remains at its value when the
diversion started. The do register contains the amount of text in the
diversion. The distance to the next trap is in the built-in register.t. It
is assumed that the next trap is at the bottom margin of the page. If
the diversion is large enough to go past the trap, the .if is satisfied; and
a .bp request is issued. In either case, the diverted output is brought
back with .XX. It is essential to bring it back in no-fill mode so the
troff formatter will do no further processing on it.

This is not the most general keep-release operation nor is it robust in
the face of all conceivable inputs. It would require more space than
available to display it in full generality. This manual is not intended to
teach everything about diversions, but to sketch out enough so that
existing macro packages can be read with some comprehension.

15. Macro Examples

Although the nroff and troff formatters have by design a syntax remin­
iscent of earlier text processors with the intent of easing their use, it is
usually necessary to prepare at least a small set of macro definitions to
describe most documents. However, there are macro packages available
that have done all the calculating already and can be adapted to indivi­
dual needs with much less work than starting from scratch. Such com­
mon formatting needs such as page margins and footnotes are deli­
berately not built into the nroff and troff formatters. Instead, the

2-31

TROFF TUTORIAL

macro and string definition, number register, diversion, environment
switching, page-position trap, and conditional input mechanisms pro­
vide the basis for user-defined implementations.

Examples in the following text are intended to be useful and somewhat
realistic but will not necessarily cover all relevant contingencies. Expli­
cit numerical parameters are used to make the examples easier to read
and to illustrate typical values. In many cases, number registers could
be used to reduce the number of places where numerical information is
kept and to concentrate conditional parameter initialization data that
depends on whether the troff or nroff formatter is being used.

15.1 Page Margins

Header and footer macros are defined to describe the top and bottom
page margin areas, respectively. A trap is planted at page position 0 for
the header and at - N (N from the page bottom) for the footer. A
simple header (space one inch from top of page) and footer (begin new
page when text is one inch from bottom of page) macro definition is

.de hd
'sp Ii

.de fo
'bp

.wh 0 hd

.wh -Ii fo

\"define header

\"end definition
\"define footer

\"end definition

This example provides blank I-inch top and bottom margins. The
header will occur on the first page, only if the definition and trap exist
prior to the initial pseudopage transition. Therefore, it is a good practice
to put macro definitions and traps at the beginning of a file unless they
are specifically needed elsewhere in the document. In fill mode, the
output line that springs the footer trap was typically forced out because
some part or whole word did not fit on it. If anything in the footer and
header that follows causes a break, that word or part word will be
forced out. In this and other examples, requests like bp and sp that
normally cause breaks are invoked using the no-break control character

2-32

TROFF TUTORIAL

(,). When the header/footer design contains material requiring
independent text processing, the environment may be switched to avoid
interaction with running text.

A more realistic example of a header and footer (a page number at the
bottom of the first page and at the top of the remaining pages) follows:

.de hd \"define header

.if t .tl '\ (rn' '\ (rn' \"troff cut mark

.if \\n% > 1 \ {\ \"if page number is greater than 1, then
'sp 10.5i -1 \"tl base at 0.5 inch
.tl "- % -" \"centered page number
.ps \"restore point size
.ft \"restore font
. vs \} \"restore vertical spacing
'sp 11.0i \"space to 1.0 inch
.ns \"turn on no-space mode

.de fo

.ps 10

.ft R

.vs 12p

.if \\n%= 1 \{\
'sp l\\n(.pu-0.5i-1
. tl ' '- % -" \}
'bp

.wh 0 hd

.wh -Ii fo

\"define footer
\"set footer/header point size
\"set font
\"set base-line vertical spacing
\"if page number e,quals 1, then
\"tl base 0.5 inch up
\"first page number

\"header trap
\"footer trap

This example sets the size, font, and base-line spacing parameters for
the footer material. Parameters are restored to their original values
when the header is completed. The material in this case is a page
number at the bottom of the first page and at the top of the remaining
pages. If the troff formatter is used, a cut mark is drawn in the form of
root-en's at each margin. The sp's refer to absolute positions to avoid
dependence on the base-line spacing. Another reason for the sp in the
footer is that the footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as much as the base-line
spacing. The no-space mode is turned on at the end of hd to render
ineffective accidental occurrences of sp at the top of the running text.

2-33

TROFF TUTORIAL

The above method of restoring size, font, etc. presupposes that such
requests (that set previous value) are not used in the running text. A
better scheme is to save and to restore both the current and previous
values as shown for size in the following:

.de fo

.nr sl \ \n (.S

.ps

.nr s2 \ \n (.S

.de hd

.ps \\n(s2

.ps \\n(sl

\"current point size

\"previous point size
\"rest of footer

\"rest of header
\"restore previous point size
\"restore current point size

Page numbers may be printed in the bottom margin by a separate
macro triggered during the footer's page ejection:

.de bn \"define bottom number

. tl ' '- % -" \"centered page number

.wh -O.Si-lv bn\"tl base 0.5 inch up

15.2 Paragraphs and Headings

Housekeeping associated with starting a new paragraph should be col­
lected in a paragraph macro that does the desired preparagraph spacing,
forces the correct font, size, base-line spacing, and indent; checks that
enough space remains for more than one line; and requests a temporary
indent.

2-34

.de pg

.br

.ft R

.ps 10

.vs 12p

.in 0

.sp 0.4

.ne 1 +\\n(.Vu

.ti 0.2i

\"define paragraph
\"break
\"force Roman font,
\"point size 10,
\"vertical spacing 12 points,
\"and no indent
\"prespace
\"need more than 1 line of space
\"temporary indent

TROFF TUTORIAL

The first break in pg will force out any previous partial lines and must
occur before the. vs request. The forcing of font, size, base-line spac­
ing, and indent is partly a defense against prior error and partly to per­
mit things like section heading macros to set parameters only once.
The prespacing parameter is suitable for the troff formatter~ a larger
space, at least as big as the output device vertical resolution, would be
more suitable in the nroff formatter. The choice of remaining space to
test for in the .ne is the smallest amount greater than one line (the .V
is the available vertical resolution).

A macro to automatically number section headings might look like:

.de sc \"define section
\"force font, point size, etc .

. sp 0.4 \"prespace

.ne 2.4+\ \nCVu \"need 2.4+ lines

.fi
\\n+S.

.nr SOl \"initial S (section)

The usage is sc, followed by the section heading text, followed by pg.
The .ne test value includes one line of heading, 0.4 line in the follow­
ing pg, and one line of the paragraph text. A word consisting of the
next section number and a period is produced to begin the heading line.
The format of the number may be set by the .af request.

Another common form is the indented paragraph in which a label pro­
trudes left into the indent space.

.de lp

.pg

.in 0.5i

.ta 0.2i 0.5i

.ti 0
\t\\$l\t\c

The intended usage is

.lp label

\"define labeled paragraph

\"paragraph indent of one-half inch
\"tab set for label at .2 inch, paragraph at .5 inch

\"label is first argument with tab before and after

The label will begin at 0.2 inch and cannot exceed a length of 0.3 inch
without intruding into the paragraph. The label could be right adjusted

2-35

TROFF TUTORIAL

at 0.4 inch by setting the tabs instead with

.ta O.4iR 0.5i

The last line of the Ip macro ends with \c so that it will become a part
of the first line of the text that follows.

15.3 Multiple Column Output

The production of multiple column pages requires the footer macro to
decide whether it was invoked by other than the last column, so that it
will begin a new column rather than produce the bottom margin. The
header can initialize a column register that the footer will increment
and test. The following is arranged for two columns but is easily
modified for more:

.de hd

.nr cl 0 1

.mk

\"define header

\"initial column count
\"mark top of text

.de fo \"define footer

.ie \ \n + (cl < 2 \ {\

.po +3.4i \"next column; 3.1 +0.3

.rt \"return to mark
nC' \ \
.U~ \J

.el \ {\

.po \\nMu

'bp \}

.1l3.1i

.nr M \\n(.o

\"restore left margin

\"column width
\"save left margin

Typically, a portion of the top of the first page contains full width text;
the request for the narrower line length, as well as another .mk
request, will be made where the 2-column output is to begin.

15.4 Footnote Processing

The footnote mechanism is used by imbedding the footnotes in the
input text at the point of reference demarcated by an initial .fn and a
terminal .ef.

2-36

.fn
Footnote text and control lines .
. ef

TROFF TUTORIAL

The following macro definitions cause footnotes to be processed in a
separate environment and diverted for later printing in the space
immediately prior to the bottom margin. There is provision for the
case where the last collected footnote does not completely fit in the
available space:

.de hd

.nr x 0 1

.nryO-\\nb

.ch fo - \ \nbu

.if \ \n (dn .fz

.de fo

.nr dn 0

.if\\nx \{\

.ev 1

.nf

.FN

.rm FN

.if '\ \n (.Z 'fy' .di

.nr x 0

.ev \}

'bp

.de fx

.if \ \nx .di fy

.de fn

.da FN

.ev 1

.if\\n+x=l.fs

.fi

.de ef

.br

.nrz\\n(.v

\"define header

\"initial footnote count
\"current footer place
\" reset footer trap
\"leftover footnote

\"define footer
\"zero last diversion size

\"expand footnotes in environment 1
\" retain vertical size
\"footnotes
\"delete it
\"end overflow diversion
\"disable fx
\"pOp environment

\"define footnote overflow process
\"divert overflow

\"define start footnote
\"divert (append) footnote
\"in environment 1
\"if first, include separator
\"fill mode

\"define end footnote
\"finish output
\" save spacing

2-37

TROFF TUTORIAL

.ev

.di

.nr y -\\n{dn

.if \ \nx= 1 .nr y - (\ \n(.v-\\nz)\

.ch fo \\nyu

.if (\ \n{nl + 1 v) > (\ \n(.p+\ \ny)\

.ch fo \ \n {nlu + 1 v

.de fs
\1' Ii'
.br

.de fz

.fn

.nf

.fy

.ef

.nr b I.Oi

.wh 0 hd

.wh 12i fo

.wh -\\nbu fx

.ch fo - \ \nbu

\"pop environment
\"end diversion
\"new footer position
\"uncertainty correction
\"y is negative

\"it did not fit

\"define separator
\"1 inch rule

\"define get leftover footnote

\"retain vertical size
\"where fx put it

\ "bottom margin size
\"header trap
\"footer trap, temp position
\"fx at footer position
\"conceal fx with fo

• The header macro (hd) initializes a footnote count register x and
sets both the current footer trap position register y and the footer
trap itself to a nominal position specified in register b.

• If the register do indicates a leftover footnote, the fz macro is
invoked to reprocess it.

• The footnote start macro (fo) begins a diversion (append) in
environment 1 and increments the footnote count register x; if
the count is one, the footnote separator macro (fs) is interpolated.
The separator is kept in a separate macro to permit user
redefinition.

• The footnote end macro (ef) restores the previous environment
and ends the diversion after saving spacing size in register z.

• Register y is decremented by the size of the footnote which is
available in register do.

• On the first footnote, register y is further decremented by the
difference in vertical base-line spacings of the two environments.

2-38

TROFF TUTORIAL

This prevents late triggering of the footer trap from causing the
last line of the combined footnotes to overflow.

• The footer trap is set to the lower of y or the current page posi­
tion (ot) plus one line to allow for printing the reference line.

• If indicated by x, the footer fo rereads the footnotes from FN in
no-fill mode in environment 1 and deletes FN. If the footnotes
were too large to fit, the macro fx will be trap-invoked to redivert
the overflow into fy, and the register do will later indicate to the
header whether or not fy is empty.

• Both fo and fx macros are planted in the nominal footer trap posi­
tion in an order that causes fx to be concealed unless the fo trap
is moved.

• The footer terminates the overflow diversion (if necessary) and
zeros x to disable fx. This is because the uncertainty correction,
together with a not-too-Iate triggering of the footer, can result in
footnote macros finishing before reaching the fx trap.

15.5 Last Page

After the last input file has ended, oroff and troff formatters invoke the
end macro, if any, and eject the remainder of the page.

.de en
\c
'bp

.em en

\"define end-macro

During the eject, any traps encountered are processed normally. At the
end of this last page, processing terminates unless a partial line, word,
or partial word remains. If it is desired that another page be started,
the end-macro will deposit a null partial word and effect another last
page.

2-39

TROFF TUTORIAL

Times Roman abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&() ,,* + - .,1:; =? []I
-0 --_IA1h%fiflfIffiffiot'¢®©

Times Italic abcde!ghijklmnopqrstuvwxyz
A BCDEFGHllKLMNOPQRSTUVWXYZ
1234567890
! $ % & () , , * + - . , / :; = ? [11
- 0 - - _ ~ If2 3Jt fiflffffiffl ° t '¢ ® ©

Times Bold abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"* + - .,/:; = ?(II
- 0 - - _ 1/4 V2 314 fi ft if ffi mOt ' ¢ ® ©

Special Mathematical Font

II"" 8/<",>fl:H(@4--=*
\ _" , - \J"~'

a~y8E'~9tKA~vgO~PU~TV~X~W
fa9AETIl:Y<I>vn
.J-~ ~=--==:;c-++-l !x++ u n C:J C:::>

00 a § 'V .., f ex: 0 E * ... -- @ 10 f II J ~ H lJ rll

Figure 4. Font Style Examples

The font examples are printed in 12-point, with a vertical spacing of
14-point, and with non-alphanumeric characters separated by 1,4 em
space. The original Special Mathematical Font was prepared by Wang
Laboratories, Inc., of Hudson, New Hampshire. The Times Roman,
Italic, and Bold are among the many standard fonts available.

2-40

TROFF TUTORIAL

TABLE 4. Naming Conventions for Non-ASCII Characters

Non-ASCII characters and minus on the standard fonts.

CHAR
INPUT CHARACTER INPUT CHARACTER

CHAR
NAME NAME NAME NAME

,
close quote fi \(fi fi , ,
open quote fl \ (t1 fl

- \(em 3A Em dash if \ (if if
- - hyphen or ffi \ (Fi ffi
- \(hy hyphen ill \ (Fl ft1
- \- current font minus 0 \(de degree

• \(bu bullet t \(dg dagger
0 \(sq square

,
\(fm foot mark

- \(ru rule ¢ \ (ct cent sign
1,4 \(14 one-fourth ® \ (rg registered
Ih \(12 one-half © \(co copyright
~ \(34 three-fourths

2-41

TROFF TUTORIAL

CHAR

A
B
r
!l.
E
Z
H
e
I
K
A
M
N -.... -0
II
P
L

T
y

<I>
X
'I'
n

TABLE 4. Naming Conventions for Non-ASCII Characters
(continued)

Non-ASCII Greek characters on the special font.

INPUT CHARACTER INPUT CHARACTER

NAME NAME
CHAR

NAME NAME

\(*A Alphat a \(*a alpha
\(*B Betat {3 \(*b beta
\(*G Gamma 'Y \(*g gamma
\(*D Delta 8 \(*d delta
\(*E Epsilont E \(*e epsilon
\(*Z Zetat , \ (*z zeta
\(*Y Etat 'YI \(*y eta
\(*H Theta () \(*h theta
\ (*1 Iotat f, \ (*i iota
\(*K Kappat K \(*k kappa
\(*L Lambda A \ (*1 lambda
\(*M Mut JL \(*m mu
\(*N Nut v \(*n nu
\(*C Xi g \ (*c xi
\(*0 Omicront 0 \(*0 omicron
\(*P Pi 17' \(*p pi
\(*R Rhot p \ (*r rho
\(*S Sigma u \ (*s sigma

~ \ (ts terminal sigma
\(*T Taut T \ (*t tau
\(*U Upsilon v \(*u upsilon
\(*F Phi 1> \(*f phi
\(*X Chit X \(*x chi
\(*Q Psi I/J \(*q psi
\(*W Omega w \(*w omega

t Mapped into uppercase English letters in the font mounted on font position om

2-42

TROFF TUTORIAL

TABLE 4. Naming Conventions for Non-ASCII Characters
(continued)

Non-ASCII characters and', ',_, +, -, =, and * on the special font.

INPUT CHARACTER INPUT CHARACTER
CHAR

NAME NAME
CHAR

NAME NAME

+ \ (pi math plus * \ (** math star
- \(mi math minus I \(or or
± \(+- plus-minus / \ (sl slash
x \(mu multiply § \(sc section

\(di divide
,

\(aa acute accent
= \(eq math equals

,
\(ga grave accent

~ \(>= greater than or equal - \ (ul underrule
~ \«= less than or equal - \(-> right arrow
- \(== iden tically eq ual - \« - left arrow -
- \(= approximately equal 1 \(ua up arrow

-- \(ap approximates 1 \(da down arrow
;;c \0= not equal :j: \(dd double dagger

-J \(sr square root @ \(bs Bell System logo
\(rn root en extender .,. \(Ih left hand

U \(cu cup (union) ,.,. \(rh right hand
n \(Ca cap (intersection) I \(br box vertical rule
C \(sb subset of 0 \(ci circle
::::> \(sp superset of I \(bv bold vertical
~ \(ib improper subset r \(Ic left ceiling (bracket)
~ \(ip improper superset 1 \ (rc righ t ceiling
E \(mo member of l \ (If left floor
0 \(es empty set J \(rf right floor
00 \ (if infinity (\ (It left top (brace)
a \(pd partial derivative 1 \ (rt right top
V \(gr gradient l \(Ib left bottom

f \ (is integral sign J \(rb right bottom
ex: \(pt proportional to { \(Ik left center
.., \(no not ~ \(rk righ t cen ter

2-43

Chapter 3: NROFF/TROFF FORMATTING PROGRAM

CONTENTS

1. Introduction .

2. Usage

3. General Information .
3.1 Form of Input
3.2 Formatter and Device Resolution.
3.3 Numerical Parameter Input .
3.4 Numerical Expressions
3.5 Notation

4. Font and Character Size Control
4.1 Fonts
4.2 Character Set
4.3 Character Size
4.4 Page Control

5. Text Filling, Adjusting, and Centering .
5.1 Filling and Adjusting .

5.1.1 Interrupted Text
5.2 Centering. . .

6. Vertical Spacing
6.l Base-line Spacing
6.2 Extra Line Space
6.3 Blocks of Vertical Space .

7. Line Length and Indenting

8. Macros, Strings, Diversions, and Position Traps
8.1 Macros and Strings
8.2 Copy Mode Input Interpretation
8.3 Arguments
8.4 Diversions
8.5 Traps

9. N urn ber Registers .

10. Tabs, Leaders, and Fields
10.1 Tabs and Leaders
10.2 Fields

- i -

2

6
6
7
7
8
9

9
9

11
12
13

15
15
18
18

18
18
19
19

21

22
22
22
23
24
25

27

29
29
30

11. Input/Output Conventions and Character
Translations.
11.1 Input Character Translations
11.2 Ligatures • .
11.3 Backspacing, Underlining, and Overstriking
11.4 Control Characters. . .
11.5 Output Translation
11.6 Transparent Throughput. . . .
11.7 Comments and Concealed Newline

Characters

12. Local Horizontal/Vertical Motion and Width
Function
12.1 Local Motion
12.2 Width Function. . . .
12.3 Mark Horizontal Place

13. Overstrike, Zero-Width, Bracket, and Line Drawing
Functions
13.1 Overstrike . . • .
13.2 Zero-Width Characters
13.3 Large Brackets .
13.4 Line Drawing

14. Hyphenation

15. Three-Part Titles

16. Output Line Numbering

17. Conditional Acceptance of Input .

18. Environment Switching . . .

19. Insertions From Standard Input

20. Input/Output File Switching

21. Miscellaneous

22. Output and Error Messages.

23. Compacted Macros
23.1 Building a Compacted Macro Package
23.2 Produce Compacted Files
23.3 Install Compacted Files
23.4 Install Noncompactible Segment

24. Reference Tables

- ii -

31
31
32
32
32
33
34

34

34
34
35
35

36
36
36
36
36

38

39

40

42

44

44

45

46

47

47
48
48
49
49

50

LIST OF FIGURES

Figure 16. Output Line Numbering

LIST OF TABLES

TABLE 3.3. Scale Indicators in troff and nroff .

TABLE 4.1. Font Control Requests

TABLE 4.2.B. ASCII Character Exceptions .

TABLE 4.3. Character Size Control Requests

TABLE 4.4. Page Control Requests

TABLE 5.1. Text Filling, Adjusting, And Centering

41

7

10

11

12

14

Requests 17

TABLE 6.3. Vertical Spacing Requests 19

TABLE 7. Line Length and Indenting Requests. . 21

TABLE 8.5. Macros, Strings, Diversions, and Position Traps
Requests . . . 25

TABLE 9.C. Access Sequences . . . 28

TABLE 9.D. Number Registers Requests.

TABLE 10.1. Internal Tab Stops . . .

TABLE 10.2. Tab, Leader, and Field Requests .

TABLE 11.5. Input and Output Conventions and Character
Translation Requests . .

TABLE 14. Hyphenation Requests

TABLE 15. Three-Part Titles Requests .

TABLE 16. Output Line Numbering Requests

TABLE 17.A. Conditional Acceptance of Input
Requests

TABLE 17.B. Built-in Condition Names

TABLE 18. Environment Switching Request

- iii -

29

30

31

33

38

39

41

42

43

44

TABLE 19. Insertions from Standard Input
Requests

TABLE 20. Input/Output File Switching Requests

TABLE 21. Miscellaneous Requests

TABLE 22. Output and Error Messages Request

TABLE 3.1.A. Cross Reference Request to Table & Page
Number

TABLE 3.1.B. Escape Sequences for Characters, Indicators, and
Functions.

TABLE 4.2.A. Naming Conventions for Non-ASCII
Characters

TABLE 9.A. Predefined General Number Registers

TABLE 9.B. Predefined Read-Only Number
Registers . .•

TABLE 12.1. Local Motions

- iv -

45

45

46

47

50

51

52

55

56

57

Chapter 3

NROFF/TROFF FORMATTING PROGRAM

1. Introduction

This document is not geared toward the beginner but toward a user
who is already familiar with using macro packages and is interested in
altering or writing macros. It is also a useful reference for nroff and
troff commands that are not available in existing macro packages.

Text processors, nroff and troff, under the UNIX operating system for­
mat text for typewriter-like terminals and for a phototypesetter, respec­
tively. Both nroff and troff processors accept lines of text interspersed
with lines of format control information. They format the text into a
printable, paginated document having a user-designed style. The nroff
and troff formatters offer unusual freedom in document styling includ­
ing:

• Versatile paragraph and section control
• Flexible-style headers and footers
• Generation of footnotes
• Automatic sequence numbering for paragraphs and sections
• Multiple column output
• Font and point-size control (troff only)
• Arbitrary horizontal and vertical local motions at any point
• Overstriking, bracket construction, and line drawing functions.

Since nroff and troff formatters are reasonably compatible, it is usually
possible to prepare input acceptable to both. Conditional input is pro­
vided that enables the user to embed input expressly destined for either
program {17}. For example,

.if n .sp

.if t .sp .5
\"if nroff, then go one space
\"if troff, then go one-half space

The major dissimilarity between the two formatters is regarding spacing.
N roff does not have fractional-space capabilities. A troff vertical-space
request such as .sp .5 will be ignored or .sp 1.3 will be treated as one
space by nroff. Keep in mind that nroff output devices use constant­
width characters, whereas in troff, character widths vary. This is

3-1

NROFF/TROFF

important when determining distances for setting tabs. Local-motion
escape characters also have different effects in nroff and troff {I2.Il.

The nroff formatter can prepare output directly for a variety of terminal
types and is capable of utilizing the full resolution of each terminal.

The troff processor is a text-formatting program for driving a photo­
typesetter on the UNIX operating system. Troff specifically formats text
for a Wang Laboratories, Inc., Cf AfT phototypesetter, but there have
been interfaces written to adapt troff to other devices. It is capable of
producing high quality text. The phototypesetter normally runs with
four fonts containing Roman, italic, and bold letters; a full Greek
alphabet; a substantial number of special characters; and mathematical
symbols. Characters can be printed in a range of sizes and placed any­
where on the page.

Full user control over fonts, sizes, and character positions, as well as
the usual features of a formatter (right-margin justification, automatic
hyphenation, page titling and numbering, etc.) are provided by the troff
processor. It also provides macros, arithmetic variables and operations,
and conditional testing for complicated formatting tasks.

A note concerning the formatting of this chapter: throughout the text,
UNIX-specific words will appear in bold and italics will be used to desig­
nate variable information and emphasis. Special-meaning words will be
in quotes. Command lines will be indented with information to be
typed as it appears in Roman. Numbers enclosed in braces ({}) refer to
section numbers within this chapter. Tables numbers correspond to the
section in which they are primarily referred to. If there are two or more
tables in one section, an alphabetic level is used. The request tables
appear within the section they are mentioned. Tables that are useful
formatting tools are placed at the end of this chapter for easy reference.

2. Usage

The general form of invoking an nroff or troff formatter at the UNIX
operating system command level is

3-2

NROFF/TROFF

nroff options files
or

troff options files

where options represents any of a number of option arguments and files
represents the list of files containing the document to be formatted.
An argument consisting of a single minus sign (-) is taken to be a file
name corresponding to the standard input. Input is taken from the
standard input if no file names are given. Options may appear in any
order so long as they appear before the files.

OPTION

- o list

-nN

-sN

-mname

-cname

N roff and Troff Options

EFFECT

Prints only pages whose page numbers appear in list,
which can consist of comma-separated numbers and/or
number ranges.

• A list of comma-separated numbers such as N,M
means pages Nand M.

• A number range has the form N - M and means
pages N through M

• An initial - N means from the beginning to page N
• A final N - means from page N to the end.

Number the first generated page N.

Stop every N pages and cause the bell control character to
be output to the terminal. The nroff formatter will halt
after every N pages (default N = 1) to allow paper load­
ing or changing and will resume upon receipt of a new
line. The troff formatter will stop the phototypesetter
every N pages, produce a trailer to allow changing
cassettes, and resume after the phototypesetter START
button is pressed.

Prepend the macro file

/usr/Ub/tmac/tmac.name

to the input files. Multiple - m macro package requests
on a command line are accepted and are processed in
sequence.

Prepend the macro files

3-3

NROFF/TROFF

-rxN

-i

-q

-z

-kname

OPTION

-Tname

-e

-b

3-4

/usr/lib/macros/cmp. [ntl. [dtl. name
and

/usr/lib/macros/ucmp. [ntl. name

to the input files. Multiple -c macro package requests
on a command line are accepted. The compacted version
of macro package name should be used if it exists. If not,
the nroff/troff formatter will try the equivalent - m name
option instead. This option should be used instead of
-m because it makes the nroff/troff formatters execute
significantly faster.

Set register x (one character) to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input/output mode of the rd
request.

Suppress formatted output. Only message output will
occur (from tm requests and diagnostics).

Produce a compacted macro package from this invocation
of the nroff/troff formatter. This option has no effect if
no .co request is used in the nroff/troff formatter input.
Otherwise, the compacted output is produced in files
d.name and t.name.

N roff Only Options

EFFECT

Specify the name of the output terminal type. Currently
defined names are: 37 (default) for the TELETYPE®
Model 37, tn300 for the GE TermiNet 300 (or any termi­
nal without half-line capabilities), 300 for the DASI 300,
300s for the DASI 300s, and 450 for the DASI 450.

Produce equally spaced words in adjusted lines using full
terminal resolution.

Use output tabs during horizontal spacing to speed output
and to reduce output byte count. Device tab settings are
assumed to be every eight nominal character widths. The
default settings of logical input tabs are also every eight
nominal character widths.

NROFF/TROFF

- un Set the emboldening factor (number of character over­
strikes) in the nrolf formatter for the third font position
(bold) to be n (zero if n is missing).

Trolf Only Options

OPTION

-t

EFFECT

Direct output to the standard output instead of the photo­
typesetter.

-f Refrain from feeding paper and stopping phototypesetter
at the end of the run.

-w Wait until phototypesetter is available if busy.

-b

-a

-pN

Report whether phototypesetter is busy or available. No
text processing is done.

Send a printable approximation in American Standard
Code for Information Interchange (ASCII) character set
of the results to the standard output. This approximates
a display of the document.

Print all characters in point size N while retaining all
prescribed spacings and motions to reduce photo­
typesetter elapsed time.

Each option is invoked as a separate argument. For example:

nroff -04,8-10 -T300s -mabc filel file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in
the files named "filel" and "file2", specifies the output terminal as a
DASI 300s, and invokes the macro package "abc".

Various preprocessors and postprocessors are available for use with the
nrolf and trolf formatters:

• The equation preprocessors are neqn and eqn (for nrolf and trolf
formatters, respectively).

• The table-construction preprocessor is tbl.

• A reverse-line postprocessor for multiple-column nrolf formatter
output on terminals without reverse-line ability is col. The TELE­
TYPE@ Model 37 escape sequences that the nrolf formatter

3-5

NROFF/TROFF

produces by default are expected by col.

• The TELETYPE® Model 37-simulator postprocessor for printing
nroff formatter output on a Tektronix 4014 is 4014.

• The phototypesetter-simulator postprocessor for the troff for­
matter that produces an approximation of phototypesetter output
on a Tektronix 4014 is tc. For example, in:

tbl file I eqn I troff - t I tc

the first I indicates the piping of tbl output to eqn input; the
second I indicates the piping of eqn output to the troff formatter
input; and the third I indicates the piping of the troff formatter
output to the tc postprocessor.

3. General Information

This section describes some general principles of the nroff and troff
formatters.

3.1 Form of Input

Input data consists of text lines, which are destined to be printed, inter­
spersed with control lines, which set parameters or otherwise control
subsequent processing. Control lines begin with a control character,
normany a period or an acute accent ('), followed by a 1- or 2-
character name that specifies a basic request or the substitution of a
user-defined macro in place of the control line. The acute accent con­
trol character suppresses the break function (the forced output of a par­
tially filled line) caused by certain requests. Control characters may be
separated from request/macro names by white space (spaces and/or
tabs) for aesthetic reasons. Names must be followed by either a space
or a newline character. Control lines with unrecognized request/macro
names are ignored. There are tables in each section of this chapter that
contain explanations of the request/macro names. Table 3.l.A at the
end of this chapter (Page 50) is a cross reference of these tables.

Various special functions may be introduced anywhere in the input by
means of an escape character (\). For example, the function \DR
causes the interpolation of the contents of the number register R in
place of the function. Number register R is either x for a single letter
register name or (xx for a 2-character register name. Table 3.1.B at the
end of this chapter (Page 51) itemizes escape sequences for characters,
indicators, and functions.

3-6

NROFF/TROFF

3.2 Formatter and Device Resolution

The troff processor internally uses 432 units/inch, corresponding to the
Wang Laboratories phototypesetter which has a horizontal resolution of
1/432 inch and a vertical resolution of 11144 inch. It rounds
horizontal/vertical numerical parameter input to the actual
horizontal/vertical resolution of the typesetter.

The nroff processor internally uses 240 units/inch, corresponding to the
least common multiple of the horizontal and vertical resolutions of
various typewriter-like output devices. It rounds numerical input to the
actual resolution of the output device indicated by the - T option
(default TELETYPE@ Model 37).

3.3 Numerical Parameter Input

Both nroff and troff formatters accept numerical input with the
appended scale indicators shown in the following table, where S is the
current type size in points, V is the current vertical line spacing in basic
units, and C is a nominal character width in basic units.

TABLE 3.3. Scale Indicators in troff and nroff

SCALE NUMBER OF BASIC UNITS

INDICATOR
MEANING

troff nroff

i Inch 432 240
c Centimeter 432x50/127 240x501127
P Pica = 1/6 inch 72 240/6
m em = S points 6xS C
n en = em/2 3xS C, same as em
p Point = 1172 inch 6 240/72
u Basic unit 1 1
v Vertical line space V V

none Default

In nroff processors, both em and en are taken to be equal to C, which
is output-device dependent~ common values are 1/10 and 1/12 inch.
Actual character widths in the nroff formatter need not be all the same.
Constructed characters (such as - » are often extra wide. Default
scaling is:

• em for horizontally oriented requests (.11, .in, .ti, . fa, .It, .po,

3-7

NROFF/TROFF

.mc) and functions (\h, \1).
• V for vertically oriented requests (.pl, .wh, .ch, .dt, .sp, .sv,

.ne, .rt) and functions (\ v, \x, \L)
• p for. vs request
• u for .nr, .if, and .ie requests.

All other requests ignore scale indicators. When a number register
containing an already appropriately scaled number is interpolated to
provide numerical input, the basic unit scale indicator (u) may need to
be appended to prevent an additional inappropriate default scaling. The
number, N, may be specified in decimal-fraction form but the parame­
ter finally stored is rounded to an integer number of basic units.

The absolute position indicator (I> may be prepended to a number N to
generate the distance to the vertical or horizontal place N.

• For vertically oriented requests and functions, I N becomes the
distance in basic units from the current vertical place on the page
or in a diversion (8} to the vertical place N.

• For all other requests and functions, I N becomes the distance
from the current horizontal place on the input line to the horizon­
tal place N.

For example:

.sp 13.2c

will space in the required direction to 3.2 centimeters from the top of
the page.

3.4 Numerical Expressions

Wherever numerical input is expected, the following may be used:

an expression involving parentheses,
the arithmetic operators +, -, /, *, % (mod), and the
logical operators <, >, <=, >=, =, ==, & (and), : (or).

Except where controlled by parentheses, evaluation of expressions is
left to right; there is no operator precedence. In the case of certain
requests, an initial + or - is stripped and interpreted as an increment
or decrement indicator. In the presence of default scaling, the desired
scale indicator must be attached to every number in an expression for

3-8

NROFF/TROFF

which the desired and default scaling differ. For example, if the
number register x contains 2 and the current point size is 10, then:

.II (4.25i+\nxP+3)/2u

will set the line length to Ih the sum of 4.25 inches + 2 picas + 3 ems
(30 points since the point size is 10).

3.5 Notation

Numerical parameters are indicated in this manual in two ways. A ± N
means that the argument may take the forms N, + N, or - N and that
the corresponding effect is to set the affected parameter to N, to incre­
ment it by N, or to decrement it by N; respectively. Plain N means
that an initial algebraic sign is not an increment indicator but merely
the sign of N. Generally, unreasonable numerical input is either
ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are .sp,
. wh, .ch, .nr, and .if. If no argument is specified, then the .ps, .ft,
.po, . vs, .Is, .ll, .in, and .It requests restore the previous parameter
value.

Single character arguments are indicated by single lowercase letters and
1- or 2-character arguments are indicated by a pair of lowercase letters.
Character string arguments are indicated by multicharacter mnemonics.

4. Font and Character Size Control

4.1 Fonts

Default mounted fonts are Times Roman (R), Times Italic (I), Times
Bold (B), and Special Mathematical (S) on physical typesetter positions
1, 2, 3, and 4, respectively. These font styles are shown in Figure 4 at
the end of Chapter 2 in this guide. The current font, initially Times
Roman, may be changed (among the mounted fonts) by use of the .ft
request or by imbedding at any desired point either \fx, \f (xx, or \f N
where x and xx are the name of a mounted font and N is a numerical
font position. It is not necessary to change to the Special Font; charac­
ters on that font are automatically handled. They are accessed by their
4-character input names {4.2}. A request for a named but not mounted
font is ignored.

3-9

NROFF/TROFF

The troff processor can be informed that any particular font is mounted
by use of the .fp request. The list of known fonts is installation depen­
dent. In the subsequent discussion of font-related requests, F
represents either a 1- or 2-character font name or the numerical font
position, 1 through 4. The current font is available as numerical posi­
tion in the read-only number register .f.

Font control is understood by the nroff formatter which normally
underlines italic characters. Table 4.1 below is a summary and explana­
tion of font control requests.

TABLE 4.1. Font Control Requests

REQUEST INITIAL IF NO

FORM VALUE ARGUMENT

.bd F N off

.bd SF N off

.fp N F R,I,B,S ignored

3-10

EXPLANATION

Embolden font F by N-l units. Charac­
ters in font F will be artificially emboldened
by printing each one twice, separated by
N-l basic units. A reasonable value for N
is 3 when the character size is in the vicinity
of 10 points. If N is missing, the embolden
mode is turned off. The mode must still
(or again) be in effect when the characters
are physically printed. There is no effect in
ihe oroff formaiier.

Embolden special font when current font is
F. The characters in the special font will be
emboldened whenever the current font is F.
The mode must still (or again) be in effect
when the characters are physically printed.
There is no effect in the nroff formatter.

Font position. A font named F is mounted
on position N (I through 4). It is a fatal
error if F is not known. The photo­
typesetter has four fonts physically
mounted. Each font consists of a film strip
which can be mounted on a numbered qua­
drant of a wheel. The default mounting
sequence assumed by the troff formatter is
R, I, B, and S on positions 1, 2, 3, and 4,
respectively.

REQUEST

FORM

.ft F

INITIAL

VALUE

Roman

4.2 Character Set

IF NO

ARGUMENT

previous

NROFF/TROFF

EXPLANATION

Change to font F (F is x, xx, 1 through 4,
or P). Font P means the previous font.
For font changes within a line of text,
sequences \fx, \f(xx, or \f N can be used.
Relevant parameters are a part of the
current environment.

The troff character set consists of the Commercial II character set plus a
Special Mathematical font character set each having 102 characters. All
ASCII characters are included with some on the Special Mathematical
font. The ASCII characters are input as themselves (with three excep­
tions); and non-ASCII characters are input in the form \ (xx, where xx is
a 2-character name given in Table 4.2.A at the end of this chapter
(Page 52). The three ASCII character exceptions are mapped as fol­
lows:

TABLE 4.2.B. ASCII Character Exceptions

ASCII INPUT PRINTED BY troff

Character Name Character Name
,

acute accent
,

close quote
grave accent

,
open quote

- minus - hyphen

The characters', " and - may be input by \', \', and \-, respectively,
or by their names (\ (aa, \ (ga, and \ (mO. The ASCII characters @ , # ,
", " " <, > , \, {, }, ,"', and _ exist on the Special Mathematical
font and are printed as a one em space if that font is not mounted.

The nroff processor understands the entire troff character set but can
print only:

• ASCII characters
• Additional characters as may be available on the output device
• Such characters as may be able to be constructed by overstriking

or other combinations
• Those characters that can reasonably be mapped into other

printable characters.

3-11

NROFF/TROFF

printable characters.

The exact behavior is determined by a driving table prepared for each
device. The characters', " and _ print as themselves.

4.3 Character Size

Character point sizes available in troff are 6, 7, 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 112 inch.
The .ps request is used to change or restore the point size. Alterna­
tively, the point size may be changed between any two characters by
imbedding a \s N at the desired point to set the size to N or a \s ± N (1
~ N ~ 9) to increment/decrement the size by N; \sO restores the pre­
vious size. Requested point size values that are between two valid sizes
yield the larger of the two. The current size is available in the .s
number register. Table 4.3 below is a summary and explanation of
character size requests.

Note that the nroff formatter ignores type size control.

TABLE 4.3. Character Size Control Requests

REQUEST INITIAL IF NO

FORM V ALUE ARGUMENT

.cs F N M off

3-12

EXPLANATION

Set constant character space (width) mode
on for font F (if mounted). The width of
every character is assumed to be Nt 36 ems.
If M is absent, the em is that of the charac­
ter point size; if M is given, the em is M­
points. All affected characters are centered
in this space including those with an actual
width larger than this space. Special font
characters occurring while the current font
is F are also so treated. If N is absent, the
mode is turned off. The mode must still
(or again) be in effect when the characters
are printed. There is no effect in the nroff
formatter.

REQUEST
FORM

.ps ±N

.ss N

INITIAL
VALUE

10 point

12/36 em

4.4 Page Control

IF NO
ARGUMENT

previous

ignored

NROFF/TROFF

EXPLANATION

Set point size to ± N. Any valid positive
size value may be requested; if invalid, the
next larger valid size will result (maximum
of 36). Valid point sizes are: 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 20, 22, 24, and 36. A
paired sequence + N, - N will work
because the previous requested value is
remembered. For point size changes within
a line of text, sequences \sN or \s± N can
be used. Relevant parameters are a part of
the current environment. There is no effect
in the nroff formatter.

Set space-character size to N/36 ems. This
size is the minimum word spacing in
adjusted text. Relevant parameters are a
part of the current environment. There is
no effect in the nroff formatter.

Top and bottom margins are not automatically provided. They may be
defined by two macros which set traps at vertical positions 0 (top) and
-N (N from the bottom) {8.5}. A pseudo-page transition onto the

first page occurs either when the first break occurs or when the first
nondiverted text processing occurs. Arrangements for a trap to occur at
the top of the first page must be completed before this transition. A
summary and explanation of page control requests is shown in
Table 4.4 below. References to the current diversion mean that the
mechanism being described works during both ordinary and diverted
output (the former is considered as the top diversion level).

Usable page width on the phototypesetter is about 7.54 inches. The left
margin begins about 1127 inch from the edge of the 8-inch wide, con­
tinuous roll paper. Physical limitations on the nroff processor output
are output-device dependent.

3-13

NROFF/TROFF

TABLE 4.4. Page Control Requests

REQUEST INITIAL IF NO

FORM VALUE* ARGUMENT

.bp ±N N=I

.mk R none internal

.ne N N = I V

.pl ±N II in Hin

3-14

EXPLANATION

Begin page. The current page is ejected and
a new page is begun. If ± N is given, the
new page number will be ± N. The scale
indicator is ignored if not specified in the
request. The request causes a break. The
use of .. , " as the control character (instead
of ".") suppresses the break function.
The request with no N is inhibited by the
.ns request.

Mark current vertical place in an internal
register (associated with the current diver­
sion level) or in register R ~ if given. The
request is used in conjunction with "return
to marked vertical place in current diver­
sion" request (.rt). Mode or relevant
parameters are associated with current
diversion level.

Need N vertical spaces. The scale indicator
is ignored if not specified in the request.

• If the distance to the next trap position
(D) is less than N, a forward vertical
space of size D occurs which will spring
the trap.

• If there are no remaining traps on the
page, D is the distance to the bottom of
the page.

• If D is less than vertical spacing (V),
another line could still be output and
spring the trap.

In a diversion, D is the distance to the
diversion trap (if any) or is very large.
Mode or relevant parameters are associated
with current diversion level.

Page length set to ± N. The internal limita­
tion is about 75 inches in the troff formatter
and 136 inches in the nroff formatter.
Current page length is available in the .p
register. The scale indicator is ignored if
not specified in the request.

REQUEST INITIAL IF NO

FORM VALUE* ARGUMENT

.pn ± N N = 1 ignored

.po ± N 0; previous
26/27in

.rt ± N none internal

NROFF/TROFF

EXPLANATION

Page number. The next page (when it
occurs) will have the page number ± N.
The request must occur before the initial
pseudopage transition to affect the page
number of the first page. The current page
number is in the % register.

Page offset. The current left margin is set
to ± N. The scale indicator is ignored if not
specified in the request. The troff formatter
initial value provides about 1 inch of paper
margin including the physical typesetter
margin of 1127 inch. In the troff formatter
the maximum (line-length) + (page-offset)
is about 7.54 inches. The current page
offset is available in the .0 register.

Return (upward only) to marked vertical
place in current diversion. If ± N (with
respect to place) is given, the vertical place
is ± N from the top of the page or diver­
sion. If N is absent, the vertical place is
marked by a previous .mk. The .sp
request may be used in all cases instead of
.rt by spacing to the absolute place stored in
an explicit register; e.g., using the sequence
.mk R spl\\nRu. Mode or relevant
parameters are associated with current
diversion level. The scale indicator is
ignored if not specified in the request.

Note: Values separated by " ; " are for the nroff and troff formatters, respectively.

5. Text Filling, Adjusting, and Centering

5.1 Filling and Adjusting

Normally, words are collected from input text lines and assembled into
an output text line until some word does not fit. An attempt may be
made to hyphenate the word in an effort to assemble a part of it into
the output line. The spaces between the words on the output line are
increased to spread out the line to the current line length minus any
current indent. A word is any string of characters delimited by the
space character or the beginning/end of the input line. Any adjacent
pair of words that must be kept together (neither split across output
lines nor spread apart in the adjustment process) can be tied together

3-15

NROFF/TROFF

by separating them with an unpaddable space by using a backslash-space
character (\). The adjusted word spacings are uniform in the troff for­
matter, and the minimum interword spacing can be controlled with the
.ss request. In the nroff formatter, they are normally nonuniform
because of quantization to character-size spaces; however, the com­
mand line option -e causes uniform spacing with full output device
resolution.

Filling, adjustment, and hyphenation can all be prevented or controlled.
The text length on the last line output is available in the .n number
register, and text base-line position on the page for this line is in the nl
number register. The text base-line high-water mark (lowest place) on
the current page is in the .h register.

An input text line ending with ., ?, or ! is taken to be the end of a
sentence, and an additional space character is automatically provided
during filling. Multiple interword space characters found in the input
are retained, except for trailing spaces; initial spaces also cause a break.

To obtain a specific break in a line when filling is in effect, a \p
sequence may be imbedded in or attached to a word to cause a break at
the end of that word and have the resulting output of the line contain­
ing that word spread out to fill the current line length.

A text input line that happens to begin with a control character (such as
a period) can be made to be interpreted as the actual character itself by
prefacing it with the nonprinting, zero-width filler character (\&).
Another way is to specify output translation of some convenient charac­
ter into the control character using the .tr request.

Table 5.1 below is a summary and explanation of filling and adjusting
requests.

3-16

NROFF/TROFF

TABLE 5.1. Text Filling, Adjusting, And Centering Requests

REQUEST
H)RM

.ad N

.br

.ce N

.ft

.ml'

INITIAL
VALUE

adjust

off

fill

adjust

If' NO

ARGUMENT

adjust

N=l

EXPLANATION

Adjust. Output lines are adjusted with
mode N. If the type indicator (N) is
present, the adjustment type is as follows:

l:f. ADJUSTMENT TYPE

adjust left margin only
adjust right margin only

c center
b or n adjust both margins
absent unchanged

The adjustment type indicator N may also
be a number obtained from the .j register.
If fill mode is not on, adjustment will be
deferred. Relevant parameters are a part of
the current environment.

Break. Filling of the line currently being
collected is stopped and the line is output
without adjustment. Text lines beginning
with space characters and empty text lines
(blank lines) also cause a break.

Center. The next N input text lines are
centered within the current line-length. If
N = 0, any residual count is cleared. A
break occurs after each of the N input lines.
If the input line is too long, it will be left
adjusted. The request normally causes a
break. Relevant parameters are a part of
the current environment.

Fill mode. The request causes a break.
Subsequent output lines are filled to provide
an even right margin. Relevant parameters
are a part of the current environment.

No adjust. Output line adjusting is not
done. Since adjustment is turned off, the
right margin will be ragged. Adjustment
type for the .ad request is not changed.
Output line filling still occurs if fill mode is
on. Relevant parameters are a part of the
current environment.

3-17

NROFF/TROFF

REQUEST . INITIAL IF NO

H)RM VALUE ARGUMENT

.nf fill

5.1.1 Interrupted Text

EXPLANATION

No-fill mode. Subsequent output lines are
neither filled nor adjusted. The request
normally causes a break. Input text lines
are copied directly to output lines without
regard for the current line length. Relevant
parameters are a part of the current
environment.

Copying of an input line in no-fill mode can be interrupted by terminat­
ing the partial line with a \c escape sequence. The next encountered
input text line will be considered to be a continuation of the same line
of input text. Similarly, a word within filled text may be interrupted by
terminating the word (and line) with \c; the next encountered text will
be taken as a continuation of the interrupted word. If the intervening
control lines cause a break, any partial line or partial word will be
forced out.

5.2 Centering

A line or lines of text can be centered horizontally with the .ce request.
The basis for centering is the line length minus the indent {7}.

Table 5.1 above contains an explanation of the centering request.

6. Vertical Spacing

A summary and explanation of vertical spacing requests can be found
in Table 6.3.

6.1 Base-line Spacing

Vertical spacing size (V) between base lines of successive output lines
can be set using the .vs request with a resolution of 1/144 inch = 1/2
point in the troff formatter and to the output device resolution in the
nroff formatter. Spacing size must be large enough to accommodate
character sizes on affected output lines. For the common type sizes (9
through 12 points), usual typesetting practice is to set V to two points
greater than the point size; troff default is 10-point type on a 12-point
spacing. The current V is available in the. v register. Multiple- V line
separation (e.g., double spacing) may be obtained with a .Is (line
spacing) request.

3-18

NROFF/TROFF

6.2 Extra Line Space

If a word contains a vertically tall construct requiring the output line
containing it to have extra vertical space before and/or after it, the
extra line space function \x 'N' can be imbedded in or attached to that
word. In this and other functions having a pair of delimiters around
their parameter, the delimiter choice is arbitrary except that it cannot
look like the continuation of a number expression for N.

• If N is negative, the output line containing the word will be pre­
ceded by N extra vertical spaces.

• If N is positive, the output line containing the word will be fol­
lowed by N extra vertical spaces.

• If successive requests for extra space apply to the same line, the
maximum value is used.

The most recently utilized post-line extra line space is available in the
.a register.

6.3 Blocks of Vertical Space

A block of vertical space is ordinarily requested using .sp, which honors
the no-space mode and which does not space past a trap. A contiguous
block of vertical space may be reserved using the .sv request.

Table 6.3 below is a summary and explanation of vertical spacing
requests.

REQUEST

FORM

.Is N

TABLE 6.3. Vertical Spacing Requests

INITIAL

VALUE*

N=I

IF NO

ARGUMENT

previous

EXPLANATION

Line spacing set to ± N. Output N-I blank
lines (Vs) after each output text line. If the
text or previous appended blank line
reached a trap position, appended blank
lines are omitted. Relevant parameters are
a part of the current environment.

3-19

NROFF/TROFF

REQUEST

FORM

.ns

.os

.rs

.sp N

.sv N

.vs N

Blank line

INITIAL

VALUE*

space

1/6in;
12pts

IF NO

ARGUMENT

N = I V

tv = 1 V

previous

EXPLANATION

Set no-space mode on. The no-space mode
inhibits .sp and .bp requests without a next
page number. It is turned off when a line
of output occurs or with the .rs request.
Mode or relevant parameters are associated
with current diversion level.

Output saved vertical space. The request is
used to output a block of vertical space
requested by an earlier .sv request. The
no-space mode (.ns) has no effect.

Restore spacing. The no-space mode (.ns)
is turned off. Mode or relevant parameters
are associated with current diversion level.

Space vertically. The request provides
spaces in either direction. If N is negative,
the motion is backward (upward) and is
limited to the distance to the top of the
page. Forward (downward) motion is trun­
cated to the distance to the nearest trap. If
the no-space mode (.ns) is on, no spacing
occurs. The scale indicator is ignored if not
specified in the request. The request causes
a break.

Save a coniiguous veriicai block of size N.
If the distance to the next trap is greater
than N, N vertical spaces are output. If the
distance to the next trap is less than N, no
vertical space is immediately output; but N
is remembered for later output (.os). Sub­
sequent .sv requests overwrite any still
remembered N. The no-space mode Cns)
has no effect. The scale indicator is ignored
if not specified in the request.

Set vertical base-line spacing size V. Tran­
sient extra vertical spaces are available with
\x' N'. The scale indicator is ignored if not
specified in the request. Relevant parame­
ters are a part of the current environment.

This condition causes a break and output of
a blank line (just as does .sp 1).

Note: Values separated by ";" are for the nroff and troff formatters, respectively.

3-20

NROFF/TROFF

7. Line Length and Indenting

The maximum line length for fill mode may be set with a .Il request.
The indent may be set with a .in request~ an indent applicable to only
the next output line may be set with the .ti (temporary indent) request.

The line length includes indent space but not page offset space. The
line length minus the indent is the basis for centering with the .ce
request. If a partially collected line exists, the effect of .11, .in, or .ti is
delayed until after that line is output. In fill mode, the length of text
on an output line is less than or equal to the line length minus the
indent.

The current line length and indent are available in registers .I and .i,
respectively. The length of 3-part titles produced by .tl is indepen­
dently set by .It {IS}. Table 7 is a summary and explanation of line
length and indenting requests.

TABLE 7. Line Length and Indenting Requests

REQl'EST INITIAL If' NO

FOR 1\1 VALUE ARGUI\1ENT

.in ±N N=O previous

• 11 ± /Ii 6.5 in previous

.ti ± N ignored

EXPLANA nON

Indent. The indent is set to ± Nand
prepended to each output line. The scale
indicator is ignored if not specified in the
request. Relevant parameters are a part of
the current environment. The request
causes a break.

Line length. The line length is set to ± N .
In the troff formatter, the maximum (line­
length) + (page-offset) is about 7.54
inches. The scale indicator is ignored if not
specified in the request. Relevant parame­
ters are a part of the current environment.

Temporary indent. The next output text
line will be indented a distance ± N with
respect to the current indent. The resulting
total indent may not be negative. The
current indent is not changed. The scale
indicator is ignored if not specified in the
request. Relevant parameters are a part of
the current environment. The request
causes a break.

3-21

NROFF/TROFF

8. Macros, Strings, Diversions, and Position Traps

A summary and explanation of macro, string, diversion, and position
trap requests can be found in Table 8.5.

8.1 Macros and Strings

A macro is a named set of arbitrary lines that may be invoked by name
or with a trap. A string is a named string of characters, not including a
newline character, that may be interpolated by name at any point.
Request, macro, and string names share the same name list. Macro
and string names may be 1- or 2-characters long and may usurp previ­
ously defined request, macro, or string names. Any of these entities
may be renamed with .rn or removed with .rm.

• Macros are created by .de and .di and appended by .am and .da
(.di and .da cause normal output to be stored in a macro)

• Strings are created by .ds and appended by .as.

A macro is invoked in the same way as a request; a control line begin­
ning .xx will interpolate the contents of macro xx. The remainder of
the line may contain up to nine arguments. The strings x and xx are
interpolated at any desired point with *x and * (xx, respeciiveiy.
String references and macro invocations may be nested within text.

8.2 Copy Mode Input Interpretation

During the definition and extension of strings and macros (not by
diversion), the input is read in copy mode. The input is copied without
interpretation except that:

• Contents of number registers indicated by \n are interpolated.

• Strings indicated by * are interpolated {8.1}.

• Arguments indicated by \$ are interpolated.

• Concealed newline characters indicated by \ < newline> are elim­
inated.

• Comments indicated by \" are eliminated {I 1. 7}.

• \t and \a are interpreted as ASCII horizontal tab and start of head­
ing (SOH), respectively {lO.1}.

3-22

NROFF/TROFF

• \ \ is interpreted as "\" .

• \. is interpreted as ". ".

These interpretations can be suppressed by prepending a \. For exam­
ple, since \ \ maps into a \, \ \n will copy as \n which will be inter­
preted as a number register indicator when the macro or string is
reread.

8.3 Arguments

When a macro is invoked by name, the remainder of the line may con­
tain up to nine arguments. The argument separator is the space charac­
ter, and arguments may be surrounded by double-quotes to permit
imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the
desired arguments will not fit on a line, a concealed newline character
may be used to continue on the next line.

When a macro is invoked, the input level is pushed down and any argu­
ments available at the previous level become unavailable until the
macro is completely read and the previous level is restored. A macro's
own arguments can be interpolated at any point within the macro with
\SN, which interpolates the Nth argument (1 ~ N ~ 9). If an invoked
argument does not exist, a null string results. For example, the macro
.xx may be defined by

.de xx \" begin definition
Today is \\$1 the \\$2.

\" end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

The \$ was concealed in the definition with a prepended backslash. The
number of currently available arguments is in the .$ register.

3-23

NROFF/TROFF

No arguments are available:

• at the top (nonmacro) level in this implementation,

• from within a string because string referencing is implemented as
an input-level pushdown, or within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are
available for reference. The mechanism does not allow an argu­
ment to contain a direct reference to a long string (interpolated at
copy time), and it is advisable to conceal string references (with
an extra \) to delay interpolation until argument reference time.

8.4 Diversions

Processed output may be diverted into a macro for purposes such as
footnote processing or determining the horizontal and vertical size of
some text for conditional changing of pages or columns. A single
diversion trap may be set at a specified vertical position. The number
registers .dn and .dl, respectively, contain the vertical and horizontal
size of the most recently ended diversion. Processed text that is
diverted into a macro retains the vertical size of each of its lines when
reread in no-fill mode regardless of the current V. Constant-spaced
(.cs) or emboldened (.bd) text that is diverted can be reread correctly
only if these modes are again or still in effect at reread time. One way
to do this is to imbed in the diversion the appropriate .cs or .bd request
with the transparent mechanism described in section 11.6.

Diversions may be nested and certain parameters and registers are asso­
ciated with the current diversion level (the top non-diversion level may
be thought of as diversion level 0). These parameters and registers are:

• diversion trap and associated macro
• no-space mode
• internally saved marked place (see .mk and .rt)
• current vertical place (.d register)
• current high-water text base line (.h register)
• current diversion name (.z register).

3-24

NROFF/TROFF

8.5 Traps

Three types of trap mechanisms are available:

• page trap
• diversion trap
• input-line-count trap.

Macro-invocation traps may be planted using . wh requests at any page
position including the top. This trap position may be changed using the
.ch request. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by
an increase in page length. Two traps may be planted at the same posi­
tion only by first planting them at different positions and then moving
one of the traps; the first planted trap will conceal the second unless
and until the first one is moved. If the first planted trap is moved back,
it again conceals the second trap. The macro associated with a page
trap is automatically invoked when a line of text is output whose verti­
cal size reaches or sweeps past the trap position. Reaching the bottom
of a page springs the top-of-page trap, if any, provided there is a next
page. The distance to the next trap position is available in the .t regis­
ter; if there are no traps between the current position and the bottom
of the page, the distance returned is the distance to the page bottom.

Macro-invocation traps, effective in the current diversion, may be
planted using .dt requests. The.t register works in a diversion. If
there is no subsequent trap, a large distance is returned.

Table 8.5 below is a summary and explanation of macro, string, diver­
sion, and position trap requests.

TABLE 8.5. Macros, Strings, Diversions, and Position Traps Requests

REQUEST I;\iITIAL IF NO

FORM \' ALUE ARGUl\lE;\iT

. am xx J), .n'= ..

.as xx sfrillf.{ ignored

EXPLA;\iATION

Append to macro xx (append version of
.de),

Append sfJ'illf.{ to string xx (append version
of .ds>.

3-25

NROFF/TROFF

REQUEST

FORM

.ch xx N

.da xx

.de XX}}'

.di xx

.ds xx string

.dt N xx

3-26

INITIAL IF NO

V ALUE ARGUMENT

end

.)-:r= ..

end

ignored

off

EXPLANATION

Change trap location. Change the trap posi­
tion for macro xx to be N. In the absence
of N, the trap, if any, is removed. The
scale indicator is ignored if not specified in
the request.

Divert and append to macro xx (append
version of the .di request). Mode or
relevant parameters are associated with
current diversion level.

Define or redefine macro xx. The contents
of the macro begin on the next input line.
Input lines are copied in copy mode until
the definition is terminated by a line begin­
ning with .)-y. The macro yy is then called.
In the absence of yy, the definition is ter­
minated by a line beginning with " .. ". A
macro may contain .de requests provided
the terminating macros differ or the con­
tained definition terminator is concealed~

" .. " can be concealed as "\ \ .. " which
will copy as "\ .. " and be reread as " .. ".

Divert output to macro xx. Normal text
processing occurs during diversion except
that page offsetting is not done. The diver­
sion ends when the request .di or .da is
encountered without an argument~ extrane­
ous requests of this type should not appear
when nested diversions are being used.
Mode or relevant parameters are associated
with current diversion level.

Define a string xx containing string. Any
initial double-quote in string is stripped to
permit initial blanks.

Install a diversion trap at position N in the
current diversion to invoke macro xx.
Another .dt will redefine the diversion trap.
If no arguments are given, the diversion
trap is removed. Mode or relevant parame­
ters are associated with current diversion
level. The scale indicator is ignored if not
specified in the request.

REQUEST
FORM

.em xx

.it N xx

.rm xx

.rn xx yy

.wh N xx

INITIAL
VALUE

none

IF NO
ARGUMENT

none

off

ignored

ignored

9. Number Registers

NROFF/TROFF

EXPLANATION

End macro. Macro xx will be invoked when
all input has ended. The effect is the same
as if the contents of xx had been at the end
of the last file processed.

Input-line-count trap. An input-line-count
trap is set to invoke the macro xx after N
lines of text input have been read (control
or request lines do not count). Text may
be in-line or interpolated by in-line or trap­
invoked macros. Relevant parameters are a
part of the current environment.

Remove. A request, macro, or string is
removed. The name xx is removed from
the name list and any related storage space
is freed. Subsequent references have no
effect.

Rename. Rename request, macro, or string
from xx to yy. If yy exists, it is first
removed.

When. A location trap is set to invoke
macro xx at page position N; a negative N
is interpreted with respect to the page bot­
tom. Any macro previously planted at N is
replaced by xx. A zero N refers to the top
of a page. In the absence of xx, the first
found trap at N, if any, is removed. The
scale indicator is ignored if not specified in
the request.

A variety of predefined number registers are available to the user and
are listed at the end of this chapter in Table 9.A (Page 55). In addi­
tion, the user may define his own named registers. Register names are
1- or 2-characters long and do not conflict with request, macro, or
string names. Except for certain predefined read-only number registers,
a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats.
These read-only number registers are listed at the end of this chapter in
Table 9.B (Page 56). One common use of user-defined registers is to
automatically number sections, paragraphs, lines, etc. A number regis­
ter may be used any time numerical input is expected or desired and
may be used in numerical expressions.

3-27

NROFF/TROFF

Number registers are created and modified using the .or request, which
specifies name, numerical value, and automatic increment size. Regis­
ters are also modified if accessed with an automatic incrementing
sequence. If the registers x and xx both contain N and have the
automatic increment size M, the following access sequences have the
effect shown:

TABLE 9.C. Access Sequences

EFFECT ON VALUE
SEQUENCE

REGISTER INTERPOLATED

nx none N
n(xx none N
n+x x incremented by M N+M
n-x x decremented by M N-M
n+(xx xx incremented by M N+M
n-(xx xx decremented by M N-M

According to the format specified by the .af request, a number register
is converted (when interpolated) to:

• decimal (default)
• decimal with leading zeros
• lowercase Roman
• uppercase Roman
• lowercase sequential alphabetic
• uppercase sequential alphabetic.

Table 9.D below is a summary and explanation of number registers
requests.

3-28

NROFF/TROFF

TABLE 9.D. Number Registers Requests

REQl)EST

FORl\l

.af R c

• nr R ± N M

.rr R

I:\ITIAL IF :\0

VALUE ARGl'l\lE:\T

Arabic

10. Tabs, Leaders, and Fields

EXPLA:\ATIO:\

Assign format. Format c is assigned to
register R. A vailable formats are:

.£ NUMBERING SEQUENCE

I 0,1,2,3,4,5, ...
001 000,001,002,003,004,005, ...

O,i,ii,iii,iv,v, .. .
O,I,II,III,IV, V, .. .

a O,a, b, ... ,z,aa,ab, ... ,zz,aaa, ...
A O,A,B, ... ,Z,AA,AB, ... ,ZZ,AAA, ...

An Arabic format having N digits specifies a
field width of N digits. Read-only registers
and width function are always Arabic .

Number register. The number register R is
assigned the value ± N with respect to the
previous value, if any. The automatic incre­
menting value is set to M. The number
register value (N) is ignored if not specified
in the request.

Remove register. The number register R is
removed. If many registers are being
created dynamically, it may be necessary to
remove registers that are no longer used in
order to recapture internal storage space for
newer registers.

A summary and explanation of tab, leader, and field requests can be
found in Table 10.2.

10.1 Tabs and Leaders

The ASCII horizontal tab character and the ASCII SOH character (the
leader) can both be used to generate either horizontal motion or a
string of repeated characters. The length of the generated entity is
governed by internal tab stops specified with a .ta request. The default
difference is that tabs generate motion and leaders generate a string of
periods~ .te and .Ie offer the choice of repeated character or motion.
There are three types of internal tab stops: left justified, right justified,
and centered. In the following table:

• next-string consists of the input characters following the tab (or

3-29

NROFF/TROFF

leader) up to the next tab (or leader) or end of line
• D is the distance from the current position on the input line

(where a tab or leader was found) to the next tab stop
• W is the width of next-string.

TABLE 10.1. Internal Tab Stops

TAB LENGTH OF MOTION OR LOCATION OF

TYPE REPEA TED CHARACTERS next-string

Left D Following D
Right D-W Right justified within D
Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative but that of a
repeated character string cannot be. Repeated character strings contain
an integer number of characters, and any residual distance is prepended
as motion. Tabs (or leaders) found after the last tab stop are ignored,
but they may be used as next-string terminators.

Tabs and leaders are not interpreted in copy mode. The \t and \a
always generate a noninterpreted tab and leader, respectively, and are
equivalent to actual tabs and leaders in copy mode.

10.2 Fields

A field is contained between a pair of field delimiter characters. It con­
sists of substrings separated by padding indicator characters. The field
length is the distance on the input line from the position where the
field begins to the next tab stop. The difference between the total
length of all the substrings and the field length is incorporated as hor­
izontal padding space that is divided among the indicated padding
places. The incorporated padding is allowed to be negative. For exam­
ple, if the field delimiter is # and the padding indicator is " , then

#"xxx"right#

specifies a right-justified string with the string "xxx" centered in the
remaining space.

Table 10.2 below is a summary and explanation of tab, leader, and field
requests.

3-30

NROFF/TROFF

TABLE 10.2. Tab, Leader, and Field Requests

REQUEST INITIAL II' NO

FORM VALUE ARGUMENT

.fe a b off off

.Ie c

.ta Nt ...

.te c

8n~
0.5 in

none

none

none

none

EXPLANATION

Field delimiter is set to a. The padding
indicator is set to the space character or to
b, if given. In the absence of arguments,
the field mechanism is turned off.

Leader repetition character becomes c or is
removed specifying motion. Relevant
parameters are a part of the current
environment.

Set tab stops and types. The adjustment
within the tab is as follows:

1 ADJUSTMENT TYPE

R right
C centering
absent left

Tab stops for the troff formatter are preset
every 0.5 inch~ Tab stops for the nroff for­
matter are preset every eight nominal char­
acter widths. Stop values are separated by
spaces, and a value preceded by + is
treated as an increment to the previous stop
value. Relevant parameters are a part of
the current environment. The scale indica­
tor is ignored if not specified in the request.

Tab repetition character becomes c or is
removed specifying motion. Relevant
parameters are a part of the current
environment.

Note: Values separated by ";" are for the llroff and troff formatters, respectively.

11. Input/Output Conventions and Character Translations

11.1 Input Character Translations

The newline character delimits input lines. In addition, STX, ETX,
ENQ, ACK, and BEL are accepted and may be used as delimiters or
translated into a graphic with a .tr request. All others are ignored.

The escape character (\) introduces sequences that cause the following
character to mean another character or to indicate some function. A
complete list of such sequences is given in Table 3.1.B. The escape

3-31

NROFF/TROFF

character:

• should not be confused with the ASCII control character ESC of
the same name

• can be input with the sequence \ \
• can be changed with .ec, and all that has been said about the

default \ becomes true for the new escape character.

A \e sequence can be used to print the current escape character. If
necessary or convenient, the escape mechanism may be turned off with
.eo and restored with .ec. A summary and explanation of input charac­
ter translations requests are contained in Table 11.5.

11.2 Ligatures

Five ligatures are available in the troff character set: fi, fl, ff, ffi, and m.
They may be input (even in the nroff formatter) by \ (fi, \ (fl, \ (ff, \ (Fi,
and \ (FI, respectively. The ligature mode is normally on in the troff
formatter and automatically invokes ligatures during input. A summary
and explanation of ligature requests are included in Table 11.5.

11.3 Backspacing, Underlining, and Overstriking

Unless in copy mode, the ASCII backspace character is replaced by a
backward horizontal motion having the width of the space character.
Underlining as a form of line drawing and, as a generalized over striking
function, is described in section 13.

The nroff processor underlines characters automatically in the underline
font, specifiable with the .uf request. The underline font is normally
on font position 2 (Times Italic). In addition to .ft request and \fF
escape sequence, the underline font may be selected by .ul and .Cll

requests. Underlining is restricted to an output-device-dependent sub­
set of reasonable characters. A summary and explanation of backspac­
ing, underlining, and overstriking requests are included in Table 11.5.

11.4 Control Characters

Both the break control character (.) and the no-break control character
(') may be changed, if desired. Such a change must be compatible
with the design of any macros used in the span of the change and par­
ticularly of any trap-invoked macros. A summary and explanation of
the .cc and .c2 control character requests are included in Table 11.5.

3-32

NROFF/TROFF

11.5 Output Translation

One character can be made a stand-in for another character using the
.tr request. All text processing (e.g., character comparisons) takes
place with the input (stand-in) character which appears to have the
width of the final character. Graphic translation occurs at the moment
of output (including diversion). Included in Table 11.5 below is a sum­
mary and explanation of the output translation request.

TABLE 11.5. Input and Output Conventions and Character Transla­
tion Requests

REQUEST

FORM

.cc c

.co N

.c2 e

.ec e

. eo

.Ig N

.tr abed ...

.uf F

INITIAL IF NO

VALUE ARGUMENT

off N=l

\ \

on

off;on on

none

Italic Italic

EXPLANATION

Set control character to c or reset to ". "
Relevant parameters are a part of the
current environment.

Continuous underline in the nroff for­
matter. A variant of .ul that causes every
character to be underlined. Identical to .ul
in the troff formatter. Relevant parameters
are a part of the current environment.

Set no-break control character to c or reset
to "'''. Relevant parameters are a part of
the current environment.

Set escape character to \ or to c if given.

Turn escape character mechanism off .

Ligature mode is turned on if N is absent or
nonzero and turned off if N= O. If N= 2,
only the 2-character ligatures are automati­
cally invoked. Ligature mode is inhibited
for request, macro, string, register, file
names, and copy mode. There is no effect
in the nroff formatter.

Translate a into b, c into d, etc. on output.
If an odd number of characters is given, the
last one will be mapped into the space char­
acter. To be consistent, a particular transla­
tion must stay in effect from input to output
time. Initially there are no translate values.

Underline font set to F (to be switched to
by .ul). In the nroff formatter F may not
be on position I (initially Times Roman).

3-33

NROFF/TROFF

REQUEST

FORM

.ul N

INITIAL

VALUE

off

n'NO

ARGUMENT

N=I

EXPLANATION

Underline in the nroff formatter (italicize in
troff) the next N input text lines. Switch to
underline font saving the current font for
later restoration; other font changes within
the span of a .ul will take effect, but the
restoration will undo the last change. Out­
put generated by .tl is affected by the font
change but does not decrement N. If N is
greater than I, there is the risk that a trap
interpolated macro may provide text lines
within the span, which environment switch­
ing can prevent. Relevant parameters are a
part of the current environment.

Notes: Values separated by " ; " are for the nrolf and trolf formatters, respectively.

11.6 Transparent Throughput

An input line beginning with a \! is read in copy mode and tran­
sparently output {without the initial \0; the text processor is otherwise
unaware of the line's presence. This mechanism may be used to pass
control information to a post-processor or to imbed control lines in a
macro created by a diversion.

11. 7 Comments and Concealed Newline Characters

An uncomfortably long input line that must stay one line (e.g., a string
definition or no-filled text) can be split into many physical lines by end­
ing all but the last one with the escape character (\). The sequence
\ < newline> is ignored except in a comment. Comments may be
imbedded at the end of any line by prefacing them with \". The new­
line character at the end of a comment cannot be concealed. A line
beginning with \" will appear as a blank line and behave like .sp 1; a
comment can be on a line by itself by beginning the line with .\It.

12. Local Horizontal/Vertical Motion and Width Function

12.1 Local Motion

The functions \ v' N' and \h' N' can be used for local vertical and hor­
izontal motion, respectively. The distance N may be negative; the posi­
tive directions are rightward and downward. A local motion is one con­
tained within a line. To avoid unexpected vertical dislocations, it is
necessary that the net vertical local motion {within a word in filled text

3-34

NROFF/TROFF

and otherwise within a line) balance to zero. The above and certain
other escape sequences providing local motion are summarized and
explained in Table 12.1 at the end of this chapter (Page 57).

As an example, E2 is generated by the sequence

E\ v' - .5'\s-4\&2\sO\ v' .5'

12.2 Width Function

The width function \ w' string' generates the numerical width of string
(in basic units). Size and font changes may be imbedded in string and
will not affect the current environment. For example,

.ti -\ w'1. 'u

could be used to temporarily indent leftward a distance equal to the size
of the string "1.".

The width function also sets three number registers. The registers st
and sb are set respectively to the highest and lowest extent of string
relative to the baseline; then, for example, the total height of the string
is \n {stu-\n {sbu. In the troff formatter, the number register ct is set
to a value between 0 and 3:

• 0 means that all characters in string are short lowercase characters
without descenders (like the character e)

• 1 means that at least one character has a descender (like the
character y)

• 2 means that at least one character is tall (like the character H)
• 3 means that both tall characters and characters with descenders

are present.

12.3 Mark Horizontal Place

The escape sequence \kx will cause the current horizontal position in
the input line to be stored in register x. As an example, the construc­
tion:

\kx\f1word\fR\h'l\nxu+2u'\f1word\fR

will embolden word by backing up to almost its beginning and over­
printing it, resulting in

word

3-35

NROFF/TROFF

13. Overstrike, Zero-Width, Bracket, and Line Drawing Func­
tions

13.1 Overstrike

Automatically centered overstriking of up to nine characters is provided
by the overstrike function \0' string'. Characters in string are over­
printed with centers aligned; the total width is that of the widest charac­
ter. The string should not contain local vertical motion. For example:

\o'e\"
\0' > I'

produces e
produces ">

13.2 Zero-Width Characters

The function \zc will output c without spacing over it and can be used
to produce left-aligned overstruck combinations. As examples,
\z\ {ci\ {pi will produce E9, and \ {br\z\ (rn \ (ul\ (br will produce the
smallest possible constructed box (D).

13.3 Large Brackets

The Special Mathematical Font contains a number of bracket construc­
tion pieces that can be combined into various bracket styles. The func­
tion \b'string' may be used to pile up vertically the characters in string
(the first character on top and the last at the bottom); the characters are
vertically separated by one em and the total pile is centered one-half
em above the current base line (one-half line in the nroff formatter).
For example:

\ b'\(Ic\(If'\IE\I\ b'\(rc\ (rf'\x'-O.5m'\x'O.5m'

produces

13.4 Line Drawing

The \1' Nc' function will draw a string of repeated c's toward the right
for a distance N (I is lowercase L).

• If c looks like a continuation of an expression for N, it may be
insulated from N with a \&.

• If c is not specified, the base-line rule (_) is used (underline
character in nroff).

• If N is negative, a backward horizontal motion of size N is made

3-36

NROFF/TROFF

before drawing the string.

Any space resulting from NI (size of c) having a remainder is put at the
beginning (left end) of the string. In the case of characters that are
designed to be connected, such as base-line rule (_), underrule (\ (uI),
and root en (\ (ru), the remainder space is covered by overlapping. If
N is less than the width of c, a single c is centered on a distance N.
As an example, a macro to underscore a string can be written:

.de us
\ \ $1 \ l' 10\ (ul'

or one to draw a box around a string:

.de bx
\ (br\ 1\\$1 \ 1\ (br\l' 10\ (rn '\1' 10\ (ul'

such that

.us "underlined words"
and

.bx "words in a box"

yield

underlined words
and

Iwords in a box I

The function \L' Nc' will draw a vertical line consisting of the optional
character c stacked vertically apart one em (one line in nroff), with the
first two characters overlapped, if necessary, to form a continuous line.
The default character is box rule (\ (br); the other suitable character is
bold vertical (\ (bv). The line is begun without any initial motion rela­
tive to the current base line. A positive N specifies a line drawn down­
ward, and a negative N specifies a line drawn upward. After the line is
drawn, no compensating motions are made; the instantaneous base line
is at the end of the line.

The horizontal and vertical line drawing functions may be used in com­
bination to produce large boxes. The zero-width box-rule and the one­
half em wide underrule were designed to form corners when using one
em vertical spacings. For example, the macro

3-3-7

NROFF/TROFF

.de eb

.sp -1 \"compensate for next automatic base-line spacing

.nf \"avoid possibly overflowing word buffer
\h' - .5n'\L'I\\nau-l '\l'\\nClu+ In\ (ul'\L'-I\\nau + 1 '\1' lOu - .5n\
\ (ul' \"draw box
.ft

will draw a box around some text whose beginning vertical place was
saved in number register a (e.g., using .mk a).

14. Hyphenation

The automatic hyphenation may be switched off and on. When
switched on with .by, several variants may be set. A hyphenation indi­
cator character may be imbedded in a word to specify desired hyphena­
tion points or may be prepended to suppress hyphenation. In addition,
the user may specify a small exception word list. The default condition
of hyphenation is off.

Only words that consist of a central alphabetic string surrounded by
nonalphabetic strings (usually null) are considered candidates for
automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\ (em), or hyphenation indicator characters (such
as mother-in-law) are always subject to splitting after those characters
whether or not automatic hyphenation is on or off. Table 14 below is a
summary and explanation of hyphenation requests.

REQUEST
FORM

.he c

3-38

TABLE 14. Hyphenation Requests

INITIAL
VALUE

\%

IF NO
ARGUMENT

\%

EXPLANA nON

Hyphenation character. Hyphenation indi­
cator character is set to c or to the default
"\%". The indicator does not appear in the
output. Relevant parameters are a part of
the current environment.

REQUEST
FORM

.hw word 1 ...

.hy N

,Dh

INITIAL IF NO
VALUE ARGUMENT

ignored

off,N = 0 on,N= I

no hyphen

15. Three-Part Titles

NROFF/TROFF

EXPLANATION

Exception words. Hyphenation points in
words are specified with imbedded minus
signs. Versions of a word with terminal s
are implied; i.e., dig-il implies dig-ils. This
list is examined initially and after each
suffix stripping. Space available is small -
about 128 characters.

Hyphenate. Automatic hyphenation is
turned on for N ~ I or off for N = O. If
N = 2, last lines (ones that will cause a trap)
are not hyphenated. For N= 4 the last two
characters of a word are not divided. For
N = 8 the first two characters of a word are
not divided. These values are additive; i.e.,
N = 14 invokes all three restrictions.
Relevant parameters are a part of the
current environment.

No hyphenation. Automatic hyphenation is
turned off. Relevant parameters are a part
of the current environment.

The titling function .tl provides for automatic placement of three fields
at the left, center, and right of a line with a title length specifiable with
.It. The.tl may be used anywhere and is independent of the normal
text collecting process. A common use is in header and footer macros.
Table 15 below is a summary and explanation of 3-part title requests.

REQUEST
FORM

.It ± N

. pc ('

TABLE 15. Three-Part Titles Requests

INITIAL

VALUE

6.5 in

%

IF NO
ARGUMENT

previous

off

EXPLANATION

Length of title set to ± N. Line length and
title length are independent. Indents do not
apply to titles; page offsets do. Relevant
parameters are a part of the current
environment. The scale indicator is ignored
if not specified in the request.

Page number character set to (' or removed .
The page number register remains 'ViI.

NROFF/TROFF

REQUEST INITIAL IF NO

FORM V ALUE ARGUMENT

.t1'[eji' center' right'

16. Output Line Numbering

EXPLANATION

Three-part title. The strings [eji, center,
and right are respectively left-adjusted, cen­
tered, and right-adjusted in the current title
length. Any of the strings may be empty,
and overlapping is permitted. If the page
number character (initially %) is found
within any of the fields, it is replaced by the
current page number having the format
assigned to register %. Any character may
be used as the string delimiter.

Automatic sequence numbering of output lines may be requested with
.om. When in effect, a 3-digit, Arabic number plus a digit-space is
prepended to output text lines. Text lines are offset by four digit­
spaces and otherwise retain their line length. A reduction in line length
may be desired to keep the right margin aligned with an earlier margin.
Blank lines, other vertical spaces, and lines generated by . tl are not
numbered. Numbering can be temporarily suspended with .00 or with
a .om followed by a later .om + o. In addition, a line number indent 1
and the number-text separation S may be specified in digit-spaces.
Further, it can be specified that only those line numbers that are multi­
ples of some number M are to be printed (the others wili appear as
blank number fields). Table 16 is a summary and explanation of output
line numbering requests.

3-40

NROFF/TROFF

TABLE 16. Output Line Numbering Requests

REQUEST

FORM

.nm ±N M S /

.nn N

INITIAL IF NO

VALUE ARGUMENT

off

N=1

EXPLANATION

Line number mode. If ± N is given, line
numbering is turned on, and the next out­
put line is numbered ± N. Default values
are M=l, S=I, and /=0. Parameters
corresponding to missing arguments are
unaffected; a non-numeric argument is con­
sidered missing. In the absence of all argu­
ments, numbering is turned off, and the
next line number is preserved for possible
further use in number register In. Relevant
parameters are a part of the current
environment.

Next N lines are not numbered. Relevant
parameters are a part of the current
environment.

Figure 16 is an example of output line numbering. Paragraph portions
are numbered with M = 2.

Automatic sequence numbering of output lines may be requested
2 with .nm. When in effect, a 3-digit, Arabic number plus a digit­

space is prepended to output text lines. Text lines are offset by
4 four digit-spaces and otherwise retain their line length. A reduc­

tion in line length (such as .ll - \ w'OOOO'u in this example) may
6 be desired to keep the right margin aligned with an earlier margin.

Blank lines, other vertical spaces, and lines generated by .tl are not
8 numbered. Numbering can be temporarily suspended with .nn or

with a .nm followed by a later .nm + O.

10 In addition, a line number indent I and the number-text separation
S may be specified in digit-spaces. Further, it can be specified that

12 only those line numbers that are multiples of some number Mare
to be printed (the others will appear as blank number fields). This

14 example uses the multiple of 2.

Figure 16. Output Line Numbering

•• ll - \ w'OOOO'u was placed at the beginning to keep the right

3-41

NROFF/TROFF

margin aligned
• .om 1 2 was placed at the beginning
• .om + 0 was placed in front of the second and third paragraphs
• .nm was placed at the end
• .11 + \ w'OOOO'u was placed at the end to return to the original line

length

Another example is:

.nm +5 5 x 3

which turns on numbering with the line number of the next line to be
five greater than the last numbered line, with M= 5, spacing S
untouched, and the indent I set to 3.

17. Conditional Acceptance of Input

In Table 17 below, which is a summary and explanation of conditional
acceptance requests:

• c is a I-character, built-in condition name.
• ! signifies not.
• N is a numerical expression.
• string1 and string2 are strings delimited by any nonblank, non­

numeric character not in the strings.
• anything represents what is conditionally accepted.

TABLE 17.A. Conditional Acceptance of Input Requests

REQUEST

FORM

. el anything

.ie c anything

.if c anything

• if ! c anything

.if N anything

3-42

EXPLANATION

The "else" portion of "if-else" .

The "if' portion of "if-else". The c can be
any of the forms acceptable with the .if
request.

If condition c true, accept anything as input;
for multiline case, use \{anything\). The
scale indicator is ignored if not specified in
the request.

If condition c false, accept anything .

If expression N > 0, accept anything. The
scale indicator is ignored if not specified in
the request.

NROFF/TROFF

REQUEST

FORM

.if ! N anything

.if 'string 1 ' string2 ' anything

.if ! 'string 1 ' string2 ' anything

EXPLANATION

If expression N ~ 0 accept anything. The
scale indicator is ignored if not specified in
the request.

If string 1 is identical to string2, accept any­
thing.

If string1 is not identical to string2, accept
anything.

TABLE 17.B. Built-in Condition Names

CONDITION
NAME

TRUE IF

0 Current page number is odd
e Current page number is even
t Formatter is troff
n Formatter is nroff

If condition c is true, if number N is greater than zero, or if strings
compare identically (including motions and character size and font),
anything is accepted as input. If a ! precedes the condition, number, or
string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are
skipped over. The anything can be either a single input line (text,
macro, or whatever) or a number of input lines. In the multiline case,
the first line must begin with a left delimiter \ { and the last line must
end with a right delimiter \} .

The request .ie (if-else) is identical to .if except that the acceptance
state is remembered. A subsequent and matching .el (else) request
then uses the reverse sense of that state. The .ie - .el pairs may be
nested. For example:

.if e .tl ' Even Page %'"

outputs a title if the page number is even, and

3-43

NROFF/TROFF

.ie \n%> 1\{\
'sp O.Si
.tl 'Page %' , ,
'sp 11.2i\}
.el .sp 12.Si

treats page 1 differently from other pages.

18. Environment Switching

A number of parameters that control text processing are gathered
together into an environment, which can be switched by the user.
Environment parameters are those associated with some requests. The
request tables in this chapter indicate in the EXPLANATION column
those requests so affected. In addition, partially collected lines and
words are in the environment. Everything else is global; examples are
page-oriented parameters, diversion-oriented parameters, number regis­
ters, and macro and string definitions. All environments are initialized
with default parameter values. Table 18 is a summary and explanation
of the environment switching request.

TABLE 18. Environment Switching Request

REQUEST INITIAL IF NO

FORM V ALUE ARGUMENT

. ev N N = 0 previous

EXPLANATION

.tnVlronment switched to 0, 1, or 2 .
Switching is done in pushdown fashion so
that restoring a previous environment must
be done with .ev rather than specific refer­
ence.

19. Insertions From Standard Input

The input can be switched temporarily to the system standard input
with .rd and switched back when two newline characters in a row are
found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On the UNIX operat­
ing system, the standard input can be the user keyboard, a pipe, or a
file.

If insertions are to be taken from the terminal keyboard while output is
being printed on the terminal, the command line option - q will turn
off the echoing of keyboard input and prompt only with BEL. The reg­
ular input and insertion input cannot simultaneously come from the
standard input. As an example, multiple copies of a form letter may be

3-44

NROFF/TROFF

prepared by entering insertions for all copies in one file to be used as
the standard input and causing the file containing the letter to reinvoke
itself by using the .ox request. The process would be ended by a .ex
request in the insertion file. Table 19 below is a summary and explana­
tion of insertions from the standard input requests.

TABLE 19. Insertions from Standard Input Requests

REQUEST INITIAL
H)RM VALUE

.ex

.rd prompt

II' NO
ARGUMENT

EXPLANATION

Exit from the oroff/troff formatter. Text
processing is terminated exactly as if all
input had ended.

prompt=BEL Read insertion from the standard input until
two newline characters in a row are found.
If standard input is the user keyboard, a
prompt (or a BEL) is written onto the user
terminal. The request behaves like a
macro; arguments may be placed after
pmmpt.

20. Input/Output File Switching

Table 20 below is a summary and explanation of input/output file
switching requests.

TABLE 20. Input/Output File Switching Requests

REQUEST
FORM

.ox filename

.pi program

.so jilename

INITIAL II' NO
VALUE ARGUMENT

end-of-file

EXPLANATION

Next file is filename. The current file is con­
sidered ended, and the input is immediately
switched to filename.

Pipe output to program (nroff formatter
only). This request must occur before any
printing occurs. No arguments are
transmitted to program.

Switch source file (pushdown). The top
input level (file reading) is switched to
filename. Contents are interpolated at the
point the request is encountered. When the
new file ends, input is again taken from the
original file. The .so requests may be
nested.

3-45

NROFF/TROFF

21. Miscellaneous

Table 21 below is a summary and explanation of miscellaneous
requests.

REQUEST

FORM

.co

.ft

.ig yy

• mc eN

.pm I

.tm sIring

3-46

TABLE 21. Miscellaneous Requests

INITIAL
VALUE

IFNO
ARGUMENT

.yy= ..

off

all

newline

EXPLANATION

Specify the point in the macro file at which
compaction ends. When - k name is called
on the command line, all lines in the file
name before the .co request will be com­
pacted.

Flush output buffer. U sed in interactive
debugging to force output. The request
causes a break.

Ignore input lines until call of yy. This
request behaves like the .de request except
that the input is discarded. The input is
read in copy mode, and any automatically
incremented registers will be affected.

Sets margin character c and separation N .
Specifies that a margin character c appear a
distance N to the right of the right margin
after each nonempty text line (except those
produced by .tI). If the output line is too
long (as can happen in no-fill mode), the
character will be appended to the line. If N
is not given, the previous N is used; the ini­
tial N is 0.2 inches in the nroff formatter
and 1 em in troff. Relevant parameters are
a part of the current environment. The
scale indicator is ignored if not specified in
the request.

Print macros. The names and sizes of all
defined macros and strings are printed on
the user terminal. If t is given, only the
total of the sizes is printed. Sizes are given
in blocks of 128 characters.

Print string on terminal (UNIX operating
system standard message output). After
skipping initial blanks, string (rest of the
line) is read in copy mode and written on
the user terminal.

NROFF/TROFF

22. Output and Error Messages

Output from .tm, .pm, and prompt from .rd, as well as various error
messages are written onto the UNIX operating system standard message
output. The latter is different from the standard output, when com­
pared to the nroff formatted output. By default, both are written onto
the user's terminal, but they can be independently redirected.

Various error conditions may occur during the operation of the nroff
and troff formatters. Certain less serious errors having only local
impact do not cause processing to terminate. Two examples are:

• word overflow - caused by a word that is too large to fit into the
word buffer (in fill mode)

• line overflow - caused by an output line that grew too large to fit
in the line buffer.

In both cases, a message is printed, the offending excess is discarded,
and the affected word or line is marked at the point of truncation with a
* (in nroff) or a"" (in troff). The philosophy is to continue process­
ing, if possible, on the grounds that output useful for debugging may
be produced. If a serious error occurs, processing terminates, and an
appropriate message is printed. Examples are the inability to create,
read, or write files, and the exceeding of certain internal limits that
make future ·output unlikely to be useful. Table 22 is a summary and
explanation of output and error messages requests.

TABLE 22. Output and Error Messages Request

REQUEST INITIAL IF NO

FORM V ALUE ARGUMENT

.ab text

23. Compacted Macros

EXPLANATION

Prints text on the message output and ter­
minates without further processing. If text
is missing, "User Abort." is printed. This
request does not cause a break. The output
buffer is flushed.

The time required to read a macro package by the nroff formatter may
be lessened by using a compacted macro (a preprocessed version of a
macro package). The compacted version is equivalent to the noncom­
pacted version, except that a compacted macro package cannot be read
by the .so request. A compacted version of a macro package, called
name, is used by the - cname command line option, while the

3-47

NROFF/TROFF

uncompacted version is used by the -mname option. Because -cname
defaults to -mname if the name macro package has not been com­
pacted, the user should always use - c rather than - m.

23.1 Building a Compacted Macro Package

Only macro, string, and diversion definitions; number register
definitions and values; environment settings; and trap settings can be
compacted. End macro (em) requests and any commands that may
interact during package interpretation with command-line settings (such
as references in the MM package to the number register P, which can
be set from the command line) are not compactible. There are two
steps to make a compaCted macro from a macro package:

• Separate compactible from noncompactible parts
• Place noncompactible material at the end of the macro package

with a .co request. The .co request indicates to the nroff for­
matter when to compact its current internal state.

Compactible Material

.co
Noncompactible Material

23.2 Produce Compacted Files

When compactible and noncompactible segments have been esta­
blished, the nroff formatter may be run with the - k option to build
the compacted files. For example, if the output file to be produced is
called "mac", the following may be used to build the compacted files:

nroff - kmac mac

This command causes the nroff formatter to create two files in the
current directory, d.mac and t.mac. The macro file must contain a .co
request. Only lines before the .co request will be compacted. Both - k
and .co are necessary. If no .co is found in the file, the - k is ignored.
Likewise, if no - k appears on the command line, the .co is ignored.

Each macro package must be compacted separately by the nroff for­
matter. Compacted macro packages depend on the particular version of
the nroff formatter that produced them. Any compacted macro

3-48

NROFF/TROFF

packages must be recompacted when a new version of an nroff for­
matter is installed. If it is discovered that a macro package was pro­
duced by a different version than that attempting to read it, the - c will
be abandoned, and the equivalent - m option attempted instead.

23.3 Install Compacted Files

The two compacted files, d.mac and t.mac, must be installed into the
system macro library (/usr/lib/macros) with the proper names. If the
files were produced by an nroff formatter, cmp.n. must be prepended to
their names. For example, if the macro package is called mac, the two
nroff formatter compacted files may be installed by

cp d.mac lusr/lib/macros/cmp.n.d.mac
or

cp t.mac lusr/lib/macros/cmp.n.t.mac

23.4 Install Noncompactible Segment

The noncompactible segment from the original macro package must be
installed on the system as

I usr I libl macrosl ucmp. [n d. mac

where n of lntl means the nroff formatter version, and t means the
troff formatter version. The noncompactible segment must be pro­
duced manually by using the editor. Using the mac package as an
example, the following could be used to install the nroff formatter non­
compactible segment:

$ ed mac
I A \ .co$1 + ,$w lusr/lib/macroslucmp.n.mac

3-49

NROFF/TROFF

24. Reference Tables

TABLE 3.t.A. Cross Reference Request to Table & Page Number

REQUEST TABLE PAGE REQUEST TABLE PAGE
NAME NUMBER NUMBER NAME NUMBER NUMBER

ab 22 47 Is 6.3 19
ad 5.1 17 It 15 39
af 9.D 29 me 21 46
am 8.5 25 mk 4.4 14
as 8.5 25 na 5.1 17
bd 4.1 10 ne 4.4 14
bp 4.4 14 nf 5.1 18
br 5.1 17 nh 14 39
e2 U.5 33 nm 16 41
ee U.5 33 nn 16 41
ee 5.1 17 nr 9.D 29
eh 8.5 26 ns 6.3 20
co 21 46 nx 20 45
es 4.3 12 os 6.3 20
eu U.5 33 pc 15 39
da 8.5 26 pi 20 45
de 8.S 26 pi 4.4 14
di 8.5 26 pm 21 46
ds 8.S 26 pn 4.4 15
dt 8.S 26 po 4.4 15
ee U.S 33 ps 4.3 13
el 17.A 42 rd 19 45

em 8.S 27 rm 8.S 27
eo 1l.S 33 rn 8.S 27
ev 18 44 rr 9.D 29
ex 19 45 rs 6.3 20
fe 10.2 31 rt 4.4 15
fi 5.1 17 so 20 45
ft 21 46 sp 6.3 20
fp 4.1 10 ss 4.3 13
ft 4.1 10 sv 6.3 20
he 14 38 ta 10.2 31
hw 14 39 te 10.2 31
hy 14 39 ti 7 21
ie 17.A 42 tl IS 40
if 17.A 42 tm 21 46
ig 21 46 tr 11.5 33
in 7 21 uf 11.5 33
it 8.5 27 ul 11.S 34
Ie 10.2 31 vs 6.3 20
Ig 11.5 33 wh 8.S 27
II 7 21

3-50

NROFF/TROFF

TABLE 3.1.B. Escape Sequences for Characters, Indicators, and Func­
tions

ESCAPE
MEANING

SEQUENCE

\\ \ (to prevent or delay the interpretation of \)
\' Acute accent (equi~alent to \ (aa)
\' Grave accent (equivalent to \ (ga)
\- - (minus sign in the current font)
\ . Period (dot) (see de)
\ <space> Unpaddable space-size space character
\0 Unpaddable digit width space
\1 1/6 em narrow space character (zero width in nroff)
\A 1112 em half-narrow space character (zero width in nroff)
\& Nonprinting zero width character
\! Transparent line indicator
\" Beginning of comment
\$N Interpolate argument (1 ~ N ~ 9)
\% Default optional hyphenation character
\ (.xx Character named xx
\ * x, \ * (xx Interpolate string x or xx
\{ Begin conditional input
\} End conditional input
\ <newline> Concealed (ignored) newline character
\a N oninterpreted leader character
\b'abc ... ' Bracket building function
\c Continuation of interrupted text
\d Forward (down) 1/2 em vertical motion (112 line in nroff)
\e Printable version of current escape character
\fx, \f(xx, \fN Change to font named x or xx or position N
\gx, \g(xx Return the .af-type format of the register x or xx

(returns nothing if x or xx has not yet been referenced)
\h'N' Local horizontal motion
\jx, \j (xx Mark current horizontal output position in register x or xx
\kx Mark horizontal input place in register x
\1' Nc' Horizontal line drawing function (optionally with c)
\L'Nc' Vertical line drawing function (optionally with c)
\nx, \n(xx Interpolate number register x or xx
\0' abc. .. ' Overstrike characters a, b, c ...
\p Break and spread output line
\r Reverse 1 em vertical motion (reverse line in nroff)
\sN,\s± N Point-size change function
\t N oninterpreted horizontal tab
\u Reverse (up) 1/2 em vertical motion (1/2 line in nroff)
\v'N' Local vertical motion
\ w' strin~' Interpolate width of string
\x'N' Extra line-space function (negative before, positive after)
\ze Print e with zero width (without spacing)
\X Any character not listed above

Note: Escape sequences \\, \., \", \ $, \ *, \a, \ n, \ t, \ < newline> are interpreted in copy mode.

3-51

NROFF/TROFF

TABLE 4.2.A. Naming Conventions for Non-ASCII Characters

Non-ASCII characters and minus on the standard fonts.

INPUT CHARACTER INPUT CHARACTER
CHAR

NAME
CHAR

NAME NAME NAME

, ,
close quote fi \(fi fi , ,
open quote fl \01 fl

- \(em % Em dash ff \ (ff ff
- - hyphen or ffi \(Fi ffi
- \(hy hyphen m \(FI m
- \- current font minus 0 \(de degree

• \(bu bullet t \(dg dagger
0 \(sq square

,
\(fm foot mark

- \(ru rule ¢ \ (ct cent sign
1/4 \(14 one-fourth ® \(rg registered
Ih \(12 one-half © \(co copyright
% \(34 three-fourths

3-52

CHAR

A
B
r
~

E
Z
H
E>
1
K
A
M
N -:::.
0
n
P
1:

T
y
<I>
X
'I'
n

NROFF/TROFF

TABLE 4.2.A. Naming Conventions for Non-ASCII Characters
(continued)

Non-ASCII Greek characters on the special font.

INPUT CHARACTER INPUT CHARACTER
CHAR

NAME NAME NAME NAME

\(*A Alphat a \ (*a alpha
\(*B Betat f3 \(*b beta
\(*G Gamma ')' \(*g gamma
\(*0 Delta S \(*d delta
\(*E Epsilont E \ (*e epsilon
\(*Z Zetat , \(*z zeta
\(*Y Etat 11 \ (*y eta
\(*H Theta () \(*h theta
\ (*1 lotat (. \ (*i iota
\(*K Kappat K \(*k kappa
\(*L Lambda A \ (*1 lambda
\(*M Mut JL \(*m mu
\(*N Nut v \(*n nu
\(*C Xi e \ (*c xi
\(*0 Omicront 0 \(*0 omicron
\(*P Pi 11' \(*p pi
\(*R Rhot p \ (*r rho
\(*S Sigma a \ (*s sigma

~ \ (ts terminal sigma
\(*T Taut T \ (*t tau
\(*U Upsilon v \(*u upsilon
\(*F Phi ¢ \ (*f phi
\(*X Chit X \(*x chi
\(*Q Psi I/J \(*q psi
\(*W Omega w \(*w omega

t Mapped into uppercase English letters in the font mounted on font position one.

3-53

NROFF/TROFF

TABLE 4.2.A. Naming Conventions for Non-ASCII Characters
(continued)

Non-ASCII characters and " " _, +, -, =, * on special font.

INPUT
CHAR

+

±
x

--

u
n
c

00

a
"V
f
ex:
..,

3-54

NAME

\(pl
\(mi
\(+­
\(mu
\(di
\(eq
\(>=
\«=
\(==
\(=

\(ap
\0=
\(sr
\(rn
\(cu
\(ca
\(sb
\(sp
\(ib
\(ip
\(mo
\(es
\ (if
\(pd
\(gr
\ (is
\(pt
\(no

CHARACTER
NAME

math plus
math minus
plus-minus
multiply
divide
math equals
greater than or equal
less than or equal
identically equal
approximately equal
approximates
not equal
square root
root en extender
cup (union)
cap (intersection)

superset of
improper subset
improper superset
member of
empty set
infinity
partial derivative
gradient
integral sign
proportional to
not

CHAR

*
I
/
§

--
1
!
:\:

@ ...
--I
o
I
r
1
l
J
r
1
l
J
~
~

INPUT
NAME

\(**
\(or
\(sl
\(sc
\(aa
\(ga
\(ul
\(->
\«­
\(ua
\(da
\(dd
\(bs
\Oh
\(rh
\(br
\(ci
\(bv
\Oc
\(rc
\Of
\(rf
\Ot
\(rt
\Ob
\(rb
\Ok
\(rk

CHARACTER
NAME

math star
or
slash
section
acu te accent
grave accent
underrule
right arrow
left arrow
up arrow
down arrow
double dagger
Bell System logo
left hand
right hand
box vertical rule
circle
bold vertical
left ceiling (bracket)
right ceiling
left floor
right floor
left top (brace)
right top
left bottom
right bottom
left center
right center

NROFF/TROFF

TABLE 9.A. Predefined General Number Registers

RE<;ISTER
DESCRIPTION

NAME

% Current page number.
ct Character type (set by width function).
dl Width (maximum) of last completed diversion.
dn Height (vertical size) of last completed diversion.
dw Current day of the week (I through 7).
dy Current day of the month (1 through 31).
hp Current horizontal place on input line.
In Output line number.
mo Current month (I through 12).
nl Vertical position of last printed text base line.
sb Depth of string below base line (generated by width function).
st Height of string above base line (generated by width function).
yr Last two digits of current year.
c. Provides general register access to the input line number in

the current input file. Contains the same value as the read-
only .c register .

. R Number of number registers that remain available for use .
. b Emboldening factor of the current font.

3-55

NROFF/TROFF

TABLE 9.B. Predefined Read-Only Number Registers

REGISTER

NAME

3-56

.$
.A

• F
. H
.L

.P

.T

• V
. a
• C

.d

.f
. h
.i
.j

.k

.I
. n
.0

. p

. s
• t
. U

• V

. W

• X

. y
• Z

DESCRIPTION

N umber of arguments available at the current macro level.
Set to 1 in the troff formatter if -a option used~ always 1 in
the nroff formatter.
Value is a string that is the name of the current input file .
A vailable horizontal resolution in basic units .
Contains the current line spacing parameter (the value of
the most recent .Is request).
Contains the value I if the current page is being printed and
is zero otherwise, i.e., if the current page did not appear in
the - 0 option list.
Set to 1 in the nroff formatter if -T option used~ always 0 in
the troff formatter.
A vailable vertical resolution in basic units .
Post-line extra line space most recently utilized using x' N .
Number of lines read from current input file .
Current vertical place in current diversion~ equal to nl if no
diversion.
Current font as physical quadrant (1 through 4).
Text base-line high-water mark on current page or diversion .
Current indent.
Indicates the current adjustment mode and type. Can be
saved and iater given io ihe .ad request to restore a previous
mode.
Contains the horizontal size of the text portion (without
indent) of the current partially collected output line, if any,
in the current environment.
Current line length .
Length of text portion on previous output line .
Current page offset.
Current page length .
Current point size .
Distance to the next trap .
Equal to 1 in fill mode and 0 in no-fill mode .
Current vertical line spacing .
Width of previous c~aracter .
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion .

NROFF/TROFF

TABLE 12.1. Local Motions

Vertical Local Motion

EFFECT IN
FUNCTION

troff nroff

\v' N' Move distance N
\u 112 em up 112 line up
\d 112 em down 1/2 line down
\r 1 em up 1 line up

Horizontal Local Motion

EFFECT IN
FUNCTION

troff nroff

\h'N' Move distance N
\ (space) U npaddable space-size space
\0 Digit-size space
\1 116 em space ignored
\A 1/12 em space ignored

3-57

Chapter 4: TABLE FORMATTING PROGRAM

CONTENTS

1. Introduction . · ·
2. General Usage . ·
3. Multipage Tables ·
4. Usage with EQN •

5. Input Requests · . ·
5.1 Global Options •
5.2 Format Key Letters

5.2.1 Format Layout
5.2.2 Numerical Column
5.2.3 Key Letter Features

5.3 Table Data · ·
6. Additional Command Lines

7. Examples · .

LIST OF FIGURES

Figure 7.A. Table Using "box" and Option

Figure 7.B. Table Using "allbox" and "center"
Options

Figure 7.C. Table Using "vertical bar" Key Letter
Feature

Figure 7.D. Table Using Horizontal Lines in Place of Key
Letters.

Figure 7.E. Table Using Additional Command Lines

Figure 7.F. Table Using Text Blocks

- i -

.

1

1

2

3

3
4
5
5
6
7
9

12

12

13

14

15

16

17

18

Chapter 4

TABLE FORMATTING PROGRAM

1. Introduction

The tbl program is a document formatting preprocessor for the troff
and nroff formatters which makes fairly complex tables easy to specify
and enter. Tables consist of columns which may be independently cen­
tered, right-adjusted, left-adjusted, or aligned by decimal points. Head­
ings may be placed over single columns or groups of columns. A table
entry may contain equations or consist of several rows of text. Hor­
izontal or vertical lines may be drawn as desired in the table, and any
table or element may be enclosed in a box.

A description of a table is put by the tbl program into an nroff/troff
formatter list of requests that prints the table. The tbl program isolates
and processes the portion of a job that contains tbl commands and
leaves the remainder for other programs. Thus, tbl may be used with
the equation formatting program (eqn) and/or various formatter layout
macro packages without function duplication.

2. General Usage

On the UNIX operating system, the tbl program can be run on a simple
table with the command

tbl filename I nroff
or

tbl filename I troff

Any of the usual options may be used to the nroff and troff formatters.
If a file name is " - ", the standard input is read at that point.

When there are several input files containing tables, equations, and mm
macro requests, the correct sequence would be

tbl file! file2 file3 I eqn I troff - mm

Usage of the nroff formatter is similar to that of troff, but only TELE­
TYPE@ Model 37 and Diablo-mechanism (DASI or GsI) terminals can
print vertical lines or boxed tables. For the convenience of users

4-1

TBL

employing line printers without adequate driving tables or post-filters,
there is a special - TX command-line option to tbl which produces
output that does not have fractional line motions. The only other
command-line options recognized by tbl are - ms and - mm. They
are turned into commands to fetch the corresponding macro files. It is
usually more convenient to place these arguments on the nroff/troff
formatter part of the command line, but they are accepted by tbl as
well.

The tbl program accepts up to 35 columns; the actual number that can
be processed may be smaller depending on availability of nroff/troff
formatter number registers. Number register names used by fbi must
be avoided within tables. These include 2-digit numbers from 31 to 99
and strings of the form 4x, 5x, #x, x+, xl, AX, and X-, where xis any
lowercase letter. The names ##, # - , and #A are also used in certain
circumstances. To conserve register names, the n and a key letters
(key letters are introduced in section 5.2) share a register. Hence, the
restriction that they may not be used in the same column.

3. Multipage Tables

As an aid in writing layout macros, fbi defines a number register TW
which is the table width. The TW number register is defined by the
time that the • TE maCiO is invoked and may be used in the expansion
of that macro. More importantly, to assist in laying out multipage
boxed tables, the macro T# is defined to produce the bottom lines and
side lines of a boxed table and then be invoked at its end. By use of
this macro in the page footer, a multipage table can be boxed.

In particular, the ms and mm macros can be used to print a multipage
boxed table with a repeated heading by giving the argument H to the
. TS macro. If the table start macro is written

.TS H

then a line of the form

.TH

must be given in the table after any table heading (or at the start if
none) . Material up to the . TH is placed at the top of each page of the
table. The remaining lines in the table are placed on several pages as
required. This is not a feature of tbl but of the ms and mm macros,
and therefore, must be used in conjunction with either of these macro
packages.

4-2

TBL

4. Usage with EQN

When both tbl and eqn programs operate on the same file, tbl should
be called first. It is usually faster to execute tbl first since eqn normally
produces a larger expansion of the input. However, if there are equa­
tions within tables, tbl must be executed first or the output will be
scrambled. If there are no equations within tables, either sequence
works.

Use of equations in n-style (numerical) columns should be avoided
since tbl attempts to split numerical format items into two parts. The
delim (xy) global option in the table prevents splitting numerical
columns within delimiters. For example, if the eqn delimiters are

1245 $\ (+- 16$

to be divided after 1245, not after 16.

5. Input Requests

Input to tbl is text for a table preceded by a . TS (table start) request
and followed by a .TE (table end) request. The tbl program processes
the tables, generates formatting requests, and leaves the text
unchanged. The. TS and . TE lines are copied so that troff formatter
layout macros (such as memorandum macros) can use these lines as
delimiters. Arguments on the . TS or . TE lines are copied, but other­
wise ignored, and may be used by document layout macro requests.

The general format of the input is

preceding text
.TS
table
.TE
more text
.TS
table
.TE
more text

The format of each table is

4-3

TBL

.TS
options;
format.
data
.TE

Each table is independent and contains:

• Global options.
• A format line describing individual columns and rows of the table.
• Data to be printed.

The format section and data are always required but global options are
not.

5.1 Global Options

There may be a single line of options affecting the whole table. If
present, this line must immediately follow the • TS line and must con­
tain a list of option names separated by spaces, tabs, or commas and
must be terminated by a semicolon. Allowable options are:

• center - center entire table (default is left-adjust)

• expand - make table as wide as current line length

• box - enclose table in a box

• allbox - enclose each item of table in a box

• doublebox - enclose table in two boxes

• tab (x) - separate data items by using x instead of tab

• linesize (n) - set lines or rules (e.g., from box) in n-point type

• delim (xy) - recognize x and y as eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing
appropriate .ne (need) requests. These requests are calculated from the
number of lines in the tables. If there are spacing requests embedded
in the input, the .ne requests may be inaccurate. Normal troff for­
matter procedures, such as keep-release macros or specifying the .ne N
request, are used in that case. If a multi page boxed table is required,
macros designed for this purpose (. TS Hand. TH) should be used.

4-4

TBL

5.2 Format Key Letters

The format section of the table specifies the layout of the columns.
Each line in the format section corresponds to one line of table data,
except for the last format line which corresponds to all following data
lines up to the table end (. TE) request or a . T & request line {6}. Each
format line contains a key letter for each column of the table. Key
letters may be separated by spaces or tabs for readability purposes. Key
letters are:

L or I

R or r

Cor c

Nor n

A or a

S or s

Indicates a left-adjusted column entry.

Indicates a right-adjusted column entry.

Indicates a centered column entry.

Indicates a numerical column entry. Numerical entries
are aligned so that the digits of numbers line up (it
recognizes decimal points).

Indicates an alphabetic subcolumn. All corresponding
entries are aligned on the left and positioned so that
the widest entry is centered within the column.

Indicates a spanned heading. The entry from the pre­
vious column continues across this column (not
allowed for the first column of the table).

Indicates a vertically spanned heading. The entry from
the previous row continues down through this row
(not allowed for the first row of the table).

5.2.1 Format Layout

The end of the format section is indicated by a period. The layout of
key letters in the format section resembles the layout of the actual data
in the table. Thus, a simple 3-column format might appear as

css
Inn.

The first line of the table contains a centered heading spanned across all
three columns. Each remaining line contains a left-adjusted item in the
first column followed by two columns of numerical data. A sample
table in this format is:

4-5

TBL

Overall Title

Item-a
Item-b
Item-c

Total

34.22
12.65
23

69.87

9.1
.02

5.8

14.92

Instead of listing the format of successive lines of a table on consecu­
tive lines of the format section, successive line formats may be given
on the same line, separated by commas. The format for the above
example could be written:

c s s, Inn.

Spaces between the key letters are not necessary but are visually helpful
in setting up or changing a table format.

5.2.2 Numerical Column

When numerical column alignment (n) is specified, a location for the
decimal point is sought. The rightmost dot (.) adjacent to a digit is
used as a decimal point. If there is no dot adjoining a digit, the right­
most digit is used as a units digit. If no alignment is indicated, the item
is centered in the column. However, the special nonprinting character
string \& may be used to override dots and digits or to align alphabetic
data. This string lines up where a dot normally would (the \& disap­
pears from the final output). In the following example, items shown in
the INPUT column will be aligned {in a numerical column} as shown in
the OUTPUT column.

INPUT: OUTPUT:

13 13
4.2 4.2
26.4.12 26.4.12
abcdefg abcdefg
abcdefg\& abcdefg
43\&3.22 433.22
749.12 749.12

If numerical data is used in the same column with wider 1- or r-type
table entries, the widest number is centered relative to the wider I or r
items. Alignment within the numerical items is preserved. For exam­
ple, the input:

4-6

.TS
I I
n n.
shorto) longest entry
130) 13
42,347.990) 42,347.99
0.50) 0.5
.TE

will output:

short
13

42,347.99
0.5

longest entry
13

42,347.99
0.5

TBL

This is similar to the behavior of a type data. Alphabetic subcolumns
(requested by the a key letter) are always slightly indented relative to I
items. If necessary, the column width is increased to force this. This is
not true for n type entries.

Note: The n and a items should not be used in the same column.

5.2.3 Key Letter Features

Additional features of the key letter system are:

• Horizontal lines - A key letter may be replaced by underscore (_)
to indicate a horizontal line in place of the column entry or equal
sign (=) to indicate a double horizontal line. If an adjacent
column contains a horizontal line or if there are vertical lines
adjoining this column, the horizontal line is extended to meet
nearby lines. If any data entry is provided for this column, it is
ignored and a warning message is printed.

• Vertical lines - A vertical bar (I) placed between column key
letters will cause a vertical line between the corresponding
columns of the table. A vertical bar to the left of the first key
letter or to the right of the last one produces a line at the edge of
the table. If two vertical bars appear between key letters, a dou­
ble vertical line is drawn.

• Space between columns - A number may follow the key letter
indicating the amount of separation between this column and the
next column. The number specifies the separation in ens. One en

4-7

TBL

4-8

is about the width of the letter "n". More precisely, an en is the
number of points (1 point = 1172 inch) equal to half the current
type size. If the expand option is used, these numbers are multi­
plied by a constant such that the table is as wide as the current .
line length. The default column separation number is 3. If the
separation is changed, the worst case (largest space requested)
governs.

• Vertical spanning - Vertically spanned items extending over
several rows of the table are centered in their vertical range. This
is done by using the A symbol as a key letter in the columns the
item is to be spanned. If a key letter is followed by t or T, any
corresponding vertically spanned item will begin at the top line of
its range.

• Font changes - A key letter followed by a string containing a font
name (such as R, I, or B) or number (such as 1, 2, or 3) pre­
ceded by the letter f or F indicates that the corresponding column
should be in a different font from the default font (usually
Roman). All font names are one or two letters. A I-letter font
name should be separated from whatever follows by a space or
tab. The single letters B, b, I, and i are shorter synonyms for m
and fl. Font-change requests given within the table data override
these specifications.

• Point size changes - A key letter followed by p or P and a
number indicates the point size of the corresponding table entries.
If the number is a signed (+ or -) digit, it is taken as an incre­
ment or decrement from the current point size. If both a point
size and a column separation value are given, one or more blanks
must separate them.

• Vertical spacing changes - A key letter followed by v or V and a
number indicates the vertical line spacing used within a multiline
table entry. The number may be a signed (+ or -) digit, in
which case it is taken as an increment or decrement from the
current vertical spacing. A column separation space value must
be separated by blanks or some other specification from a vertical
spacing request. This request has no effect unless the correspond­
ing table entry is a block of text.

• Column width indication - A key letter followed by w or Wand a
width value in parentheses indicates minimum column width. If
the largest element in the column is not as wide as the width
value given after the w, the largest element is assumed to be that

TBL

wide. If the largest element in the column is wider than the
specified value, its width is used. The width is also used as a
default line length for text blocks. Normal troff formatter units
can be used to scale the width value. The default value is ens if
none are used. If the width specification is a unitless integer, the
parentheses may be omitted. If another width value is given in a
column, the last one controls the width.

• Equal-width columns - A key letter followed by e or E indicates
equal-width columns. All columns whose key letters are followed
by e or E are made the same width. This permits a group of reg­
ularly spaced columns.

• Staggered columns - A key letter followed by u or U indicates that
the corresponding entry is to be moved up one-half line. This
makes it easy to have a column of differences between numbers
in an adjoining column. Note: The aI/box option does not work
with staggered columns.

• Zero-width item - A key letter followed by z or Z indicates that
the corresponding data item is to be ignored in calculating column
widths. This may be useful in allowing a long heading to run
across adjacent columns where a spanned heading would be inap­
propriate.

• De/ault - Column descriptors missing from the end of a format
line are assumed to be I. The longest line in the format section,
however, defines the number of columns in the table. Extra
columns in the data are ignored.

The order of the features is immaterial. They need not be separated by
spaces except as indicated to avoid ambiguities involving point size and
font changes. Thus, a numerical column entry in italic font and 12-
point type with a minimum width of 2.5 inches and separated by 6 ens
from the next column could be specified as

np12w(2.5i)tl 6

5.3 Table Data

Data for the table is input after the format section. Each table line is
typed as one line of data. Very long input lines can be broken. Any
line whose last character is a backslash (\) is combined with the follow­
ing line; i.e., the backslash vanishes. Data for each column is separated
by a tab or by whatever character has been specified in the tab x global

4-9

TBL

option {4.1}. There are a few special cases of data entries:

• troff requests within tables - An input line beginning with a dot
and followed by anything but a number (.xx) is assumed to be a
request to the formatter and is passed through unchanged retain­
ing its position in the table. For example, a space within a table
may be produced with the .sp request in the data.

• Full-width horizontal lines - An input line containing only the
(underscore) character or = (equal sign) is taken to be a single
or double line, respectively, extending the full width of the table.

• Single-column horizontal lines - An input table entry containing
only the _ character or the = is taken to be a single or double
line, respectively, extending the full width of the column. Such
lines are extended to meet horizontal or vertical lines adjoining
this column. To actually obtain these characters explicitly in a
column, they should be preceded by a \& or followed by a space
before the usual tab or newline character.

• Short horizontal lines - An input table entry containing only the
string _ is assumed to be a single line as wide as the contents of
the column. It is not extended to meet adjoining lines.

• Repeated characters - An input table entry containing only a
string of the form \Rx, where x is any character, is replaced by
repetitions of the character x as wide as data in the column. The
sequence is not extended to meet adjoining columns.

• Vertically spanned items - An input table entry containing only
the \" character string indicates that the table entry immediately
above spans downward over this row. It is equivalent to a table
format key letter of " .

• Text blocks - In order to include a block of text as a table entry,
precede it by T{ and input text on a new line, then follow the text
by a new line and T}. Thus, the sequence

4-10

... T{
block of
text
T} ...

is the way to enter something as a single entry that cannot con­
veniently be typed as a simple string between tabs. The}T (begin
delimeter) must be followed by a new line. The T} (end delime­
ter) must begin a new line; however, additional columns of data

TBL

may follow after a tab on the same line. Text blocks are pulled
out from the table, processed separately by the formatter, and
replaced in the table as a solid block.

Various limits in the troff program are likely to be exceeded if 30
or more text blocks are used in a table. This produces diagnostic
messages such as "too many string/macro names" or "too many
number registers".

If no line length is specified in the block of text or in the table
format, the default used is

Lx C / (N + 1)

where L is the current line length, C is the number of table
columns spanned by the text, and N is the total number of
columns in the table.

Other parameters (point size, font, etc.) used in typesetting the
text block are:

(a) those in effect at the beginning of the table (including the
effect of the .TS macro)

(b) any table format specifications of size, spacing, and font
using the p, v, and f modifiers to the column key letters

(c) troff requests within the text block itself (requests within
the table data but not within the text block do not affect
that block).

Although any number of lines may be present in a table, only the first
200 lines are used in setting up the table. A multipage table may be
arranged as several single-page tables if this proves to be a problem.

When calculating column widths, all table entries are assumed to be in
the font and size being used when the . TS request was encountered.
This is true except for font and size changes indicated in the table for­
mat section or within the table data (as in the entry \s+3Data\sO).
Because arbitrary troff requests may be sprinkled in a table, care must
be taken to avoid confusing width calculations.

4-11

TBL

6. Additional Command Lines

To change the format of a table after many similar lines, as with sub­
headings or summarizations, the . T & (table continue) request is used
to change column parameters. It is not recognized after the first 200
lines of a table. It is not possible to format changes to the number of
columns, the space between columns, the global options such as box, or
the selection of columns to be made equal in width. An example of
such a table input is:

.TS
box expand;
c s s
I I 1.
data
.T&
Iss
c c c.
data
.T&
I I 1.
data
.TE

Using this procedure, each data line can be close to its corresponding
format line.

7. Examples

Figures 7.A through 7.F are included to show input and output infor­
mation that illustrate the basic concepts of the tbl program. The (j)

symbol in the input data represents a tab character. Although each
figure has a title that indicates an option or feature, other examples of
use may be gleaned from them. For instance, Fig. 7.E shows the use
of additional request lines and also specifies bold type print in the for­
mat area.

4-12

INPUT:

.TS
box expand;
c c c
I In.
Namea> Departmenta> Extension
.sp
Susan Thompsona> Marketing(]) 224
Diane Spencer(]) Technical Support(]) 360
Ramona Goodman(]) Documentation(]) 114
Terry O'Malley(]) Programming(]) 101
Willette Taylor(]) Accounting(]) 600
.TE

OUTPUT:

Name

Susan Thompson
Diane Spencer
Ramona Goodman
Terry O'Malley
Willette Taylor

Department Extension

Marketing 224
Technical Support 360
Documentation 114
Programming 101
Accounting 600

Figure 7.A. Table Using "box" and Option

TBL

4-13

TBL

4-14

INPUT:

.TS
allbox center;
c s s
c c c
n n n.
Paradox Common Stock
Yearel> Priceel> Dividend
1971 eI> 41-54e1> $2.60
2e1> 41-54e1> 2.70
30> 46-55e1> 2.87
4e1> 40-53e1> 3.24
50> 45-52e1> 3.40
6e1> 51-59e1> .95*
.TE
.ce
* (first quarter only)

OUTPUT:

Paradox Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95*

* (first quarter only)

Figure 7.B. Table Using "allbox" and "center" Options

INPUT:

.TS
box;
c s s
clclc
I I I In.
Major New York Bridges

-
Bridge(1) Designer(1) Length

Brooklyn(1) J. A. RoeblingO> 1595
WilliamsburgO> L. L. Bucko> 1600

-
Queensborougho> Palmer &0> 1182
0> \O\OHornbostel

0> 0> 1380
Triborough(1) o. H. Ammann(1) _
0> (1) 383

Bronx Whitestone(1) O. H. Ammann(1) 2300
Throgs Necko> O. H. Ammann(1) 1800
.TE

OUTPUT:

Major New York Bridges

Bridge Designer Length

Brooklyn J. A. Roebling 1595
Williamsburg L. L. Buck 1600

Queensborough Palmer & 1182
Hornbostel

1380
Triborough o. H. Ammann

383

Bronx Whitestone o. H. Ammann 2300
Throgs Neck O. H. Ammann 1800

Figure 7.C. Table Using "vertical bar" Key Letter Feature

TBL

4-15

TBL

INPUT:

.TS
doublebox tab(:);
LLL
LL
L L fLB
LL
L L L.
january: february: march
april: may
june :july: Months
august: september
october: november: decem ber
.TE

OUTPUT:

january
april
june
august

II october

february march
may
july I Months
september
novenlber december II

Figure 7.D. Table Using Horizontal Lines in Place of Key Letters

4-16

INPUT:

.TS
box;
cfB s s s.
Composition of Foods

.T&
c I c s s
c I c s s
c I c I c I c.
Fooda> Percent by Weight
\"a> _
\ "a> Proteina> Fata> Carbo­
\ "a> \ "a> \ "a> hydrate

-
.T&
1 I n I n I n.
Apples(j) .4(j) .5a> 13.0
Halibuta> 18.4a> 5.2(j) ...
Lima beans(j) 7.5(j) .8a> 22.0
Mushroomsa> 3.5a> .4(j) 6.0
Rye breada> 9.0a> .6(j) 52.7
.TE

OUTPUT:

Composition of Foods

Percent by Weight
Food

Protein Fat
Carbo-
hydrate

Apples .4 .5 13.0
Halibut 18.4 5.2 ...
Lima beans 7.5 . 8 22.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

Figure 7.E. Table Using Additional Command Lines

TBL

4-17

TBL

4-18

INPUT:

.TS
allbox;
cp+ Ifl s s
c c cw(1.5i)
I I 1.
New York Area Rocks
.sp .5
EraCD FormationCD Age (years)
Precambrian CD Readiang ProngCD > 1 billion
PaleozoicCD Manhattan ProngCD 400 million
MesozoicCD T{
Newark Basin, incl.
Stockton,Lockatong, and Brunswick
T}CD 200 million
CenozoicCD coastal PlainCD T{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation
T}
.TE

OUTPUT:

New York Area Rocks

Era Formation Age (years)

Precambrian Reading Prong > 1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin, 200 million

incl. Stockton,
Lockatong, and
Brunswick

Cenozoic Coastal Plain On Long Island 30,000
years; Cretaceous sedi-
ments redeposited by
recent glaciation

Figure 7.F. Table Using Text Blocks

Chapter 5: MATHEMATICS TYPESETTING PROGRAM

CONTENTS

1. Introduction . . 1

2. User Guide . . 2
2.1 Delimiters 3
2.2 Spaces and New Lines . 5

2.2.1 Input Spaces · 5
2.2.2 Output Spaces 5

2.3 Symbols, Special Names, and Greek Alphabet 6
2.4 Subscripts and Superscripts 7
2.5 Braces . · 8
2.6 Fractions 9
2.7 Square Roots · 10
2.8 Summations, Integrals, and Similar

Constructions . 10
2.9 Size and Font Changes . 11
2.10 Diacritical Marks . . 13
2.11 Quoted Text . . 14
2.12 Aligning Equations 15
2.13 Big Brackets 16
2.14 Piles 17
2.15 Matrices 18
2.16 Defines 19
2.17 Local Motions 21
2.18 Precedence . 21

3. Usage 22

4. Troubleshooting 23

LIST OF TABLES

TABLE 2.3. Naming Convention for the EQN 24

- i -

Chapter 5

MATHEMATICS TYPESETTING PROGRAM

1. Introduction

Mathematical text is known in the publishing trade as "penalty copy"
because it is slower, more difficult, and more expensive to set in type
than any other kind of copy normally occurring in books and journals.

One difficulty is the multiplicity of characters, sizes, and fonts. Many
mathematical expressions require an intimate mixture of Roman, italic,
and greek letters (in three sizes) and a number of special characters.
Typesetting such expressions by traditional methods is essentially a
manual operation.

A second difficulty is the 2-dimensional character of mathematics. This
is illustrated by the following example which shows line-drawing, built­
up characters (such as braces and radicals), and a spectrum of position­
ing problems:

1 Jaemx-.Jb
2 m.Jab log -Ja-=a=-e-m-x-+-.Jb-=b=-

The eqn software for typesetting mathematics has been designed to be
easy to learn and to use by people who know neither mathematics nor
typesetting. The language can be learned in an hour or so since it has
few rules and fewer exceptions. It interfaces directly with the photo­
typesetting language, the troff formatter, so mathematical expressions
can be embedded in the running text of a manuscript, and the entire
document produced in one process. Typical mathematical expressions
include size and font changes, positioning, line drawing, and other
necessary functions to print according to mathematical conventions, and
are done automatically. The syntax of the language is specified by a
small context-free grammar; a compiler-compiler is used to make a
compiler that translates this language into typesetting commands. It is

5-1

EQN

assumed that the input is to be typed on a computer terminal much like
an ordinary typewriter, i.e., that eqn needs no special key~~ to input
even the most complicated equation. Output may be produced on
either a phototypesetter or on a terminal with forward and reverse
half-line motions.

There are few rules, keywords, special symbols, and operators This
keeps the language easy to learn and remember. Furthermore, there
are even fewer exceptions to the rules that do exist. If sor.1ething
works in one situation, it should work everywhere. If a variaole can
have a subscript, then a subscript can have a subscript, etc., Nithout
limit.

Subscripts and superscripts are printed automatically (with no special
intervention) in appropriately smaller size. Fraction bars are made the
right length and positioned at the correct height. A mechanism for
overriding default actions exists, but its application is the exception, not
the rule.

The system is easy to build and to change. To this end and to guaran­
tee regularity, the language is defined by a context-free grammar. The
compiler for the language was built using a compiler-compiler.

2. User Guide

Since the eqn program is useful for typesetting mathematics only, it
interfaces with the underlying typesetting language in order to get inter­
mingled mathematics and text. The troff processor performs this work
for the mathematics typesetting function. eqn reads the input and
treats as comments those things which are not mathematics passing
them through untouched. (It should be noted, however, that any
"comments" read by eqn will be converted to an italic font by troff).
Text strings are passed to the troff formatter omitting the need for a
separate storage management package. The user need not be concerned
with most details of the particular device and character set currently in
use. For example, the troff formatter computes the widths of all strings
of characters; the user does not need to know about them.

At the same time, eqn converts mathematical inputs into troff formatter
commands. The resulting output is passed directly to the formatter
where comments and mathematical parts become text and/or formatter
commands.

5-2

EQN

2.1 Delimiters

Mathematical expressions can be input by beginning and ending an
equation with the .EQ and .EN delimiters, respectively. When using
troff alone, an equation delimited with .EQ/.EN will be output embed­
ded in the text surrounding it. When troff is used with the - ms, - me
or - mm macro packages, the equation will be output as a display, i.e.,
on a line by itself preceded and followed by half a vertical space.

The .EQ and .EN delimiters are passed through to the formatter
untouched, so they can be further manipulated by either pre-defined
macro packages or formatter commands to, for example, center equa­
tions or number them automatically. The formatter macro packages
- me and - ms allow equations to be centered, indented, left-justified
by adding an argument to .EQ. To left-justify an equation, the .EQ L
macro is used, and a .EQ I macro will indent the equation. The - ms
and - me packages center equations by default. The default for - mm
is left-justified. Any of these sequences can be followed by an arbitrary
equation number placed at the right margin. For example, the input:

.EQ I (4.la)
x = f (y over 2) + y over 2
.EN

produces (using - ms or - me) the output:

To get the same output when suing - mm, the input is:

.DS 1

.EQ (4.la)
x = f (y over 2) + y over 2
.EN
.DE

(4.1a)

The .EQ and .EN macros can be supplemented by troff commands as
desired. A centered equation can be produced with the input

5-3

EQN

.ce

.EQ
x sub
.EN

y sub

Since it is tedious to type .EQ and .EN around very short expressions
(e.g., single letters), and the formatter macro packages have defined
.EQ and .EN to create display equations, two characters can be defined
to serve as the beginning and ending delimiters of in-line equations.

The most common character chosen for both the beginning and ending
delimiter in this shorthand notation is a dollar sign ($) and is defined at
the beginning of the text file by entering:

.EQ
delim $$
.EN

These characters are then recognized by eqn anywhere in the subse­
quent text. Any text between the delimiters will be treated as an equa­
tion. For example, the input:

This is an example of an in-line
equation $ x sub y + y = z $ using delimiters.

would output:

This is an example of an in-line
equation ~r+ y=z using delimiters.

In order to produce something like y-ray, it is easily input using the
in-line equation shorthand, for example:

$ gamma $-ray

To turn off the delimiters so that the chosen eqn delimiter can be used
within the text without invoking eqn, enter the following into your file:

.EQ
delim off
.EN

Thereafter, eqn will no longer recognize the delimiter symbol.

5-4

EQN

Note: The following should be observed when using the in-line equa­
tions format:

• Do not use braces, tildes, circumflexes, or double quotes as delim­
iters as these have special significance to the .EQ and .EN macros .

• In-line font changes must be closed before in-line equations are
encountered.

2.2 Spaces and New Lines

2.2.1 Input Spaces

Input is free form. Space and newline characters in the input are used
by eqn to separate pieces of the input~ they are not used to create space
in the output. Thus an input such as:

.EQ
x y

+ z + 1
.EN

produces the output:

x=y+z+l

Free-form input is easier to type initially. Space and newline characters
should be freely used to make input equations readable and easy to
edit. Very long lines are hard to correct if a mistake is made.

For the in-line equations, if impossible, the formatter will try to keep
the text between the delimiters on one line. If the equation is very
long troff will break the equation based on the spacing of characters not
mathematical logic and may force the spacing between words of text to
be larger than is preferable. This can be prevented by dividing the in­
line equation in appropriate sections. For example:

$ x + y = $ $ (c su b d) $ $ + pi $

2.2.2 Output Spaces

Extra white space can be forced into the output by several characters of
various sizes. A tilde (-) gives a space equal to the normal word spac­
ing in text, a circumflex (") gives half this much, and a tab character
spaces to the next tab stop (tab stops must be set by troff commands).
Spaces, tildes, circumflexes, and tabs also serve to delimit pieces of

5-5

EQN

input. For example, the input:

.EQ
x-=-y-+-z
.EN

produces the output:

x=y+z

2.3 Symbols, Special Names, and Greek Alphabet

Mathematical symbols, mathematical names, and the Greek alphabet
are known by eqn. For example, the input:

.EQ
x=2 pi int sin (omega ddt
.EN

produces the output:

X=21T f sin(Cdt)dt

Spaces in the input are necessary to indicate that sin, pi, int, and omega
are separate entities and should get special treatment. The eqn program
looks up each string of characters in a table, and if found, gives it a
translation. Digits, parentheses, brackets, punctuation marks, and the
following mathematical words are converted to Roman font:

sin cos tan sin cos tan arc
max min lim log In exp
Re 1m and if for det

In the previous example, pi and omega become their Greek equivalents
(1T and Cd), int becomes the integral sign (which is moved down and
enlarged), and sin is output in Roman font, following conventional
mathematical practice. Parentheses, digits, and operators are output in
Roman font.

Spaces should be put around separate parts of the input. A common
error is to type "f(pi)" without leaving spaces on both sides of the
"pi". As a result, eqn does not recognize pi as a special word, and it
appears as "j(pi)" in the output. A list of eqn names appears in
Table 2.3 at the end of this chapter. Four-character troff names can
also be used for anything eqn does not recognize, e.g., "\ (pi" for the
+ sign.

5-6

EQN

The only way eqn can deduce that some sequence of letters may be
special is if that sequence is separated from the letters on either side of
it. This can be done by surrounding a special word by ordinary space,
tab, or newline characters. Special words can also be made to stand out
by surrounding them with tildes or circumflexes, e.g.:

.EQ
x-=-2-pi-inCsin-(-omega-C)-dt
.EN

is much the same as the previous example, except tildes separate words
like sin, omega, etc., and also add an extra space in the output per tilde.
The output of this example is:

x = 2 7T f sin (co t) dt

2.4 Subscripts and Superscripts

Subscripts and superscripts are introduced by the keywords "sub" and
"sup":

.EQ
x sup 2-+-y sub k
.EN

produces:

x2 + Yk

The eqn program takes care of all size changes and vertical motions
needed to make the hard copy look right. The words "sub" and "sup"
must be surrounded by spaces. A space or tilde is used to mark the
end of a subscript or superscript. Return to the original base line is
automatic.

Multiple levels of subscripts or superscripts are allowed. Subscripted
subscripts and superscripted superscripts such as:

.EQ
x sub i sub 1
.EN

produces:

x­
'I

A subscript and superscript on the same thing are printed one above

5-7

EQN

the other if the subscript comes first. The construct "something sub
something sup something" is recognized as a special case:

.EQ
x sub i sup 2
.EN

outputs:

xl

Other than this special case, "sub" and "sup" group to the right:

.EQ
x sup y sub z
.EN

generates:

not
l'

x=

A common erroneous expression is of the form:

.EQ
y = (x sup 2) + 1
.EN

which causes

y=(x2>+}

instead of the intended

y=(x2)+1

The error is in omitting a delimiting space. The correct input expres­
sion is

y = (x sup 2) + 1

2.5 Braces

Complicated expressions can be formed by using braces ({ }) to keep
objects together in unambiguous groups. Braces indicate what goes
over what or what terms are to be grouped before applying another

5-8

EQN

mathematical function.

Normally, the end of a subscript or superscript is marked by a space,
tilde, circumflex, or tab. If the subscript or superscript is something
that has to be typed with spaces in it, braces are used to mark the
beginning and end. The input:

.EQ
e sup {i omega t}
.EN

produces the output:

Braces can be used to force eqn to treat something as a unit or just to
make the intent perfectly clear.

Braces can occur within braces if necessary. The statement:

.EQ
e sup {i pi sup {rho + I}}
.EN

generates:

A general rule is that an arbitrarily complicated string enclosed in
braces can be used in place of a single character (such as x). The eqn
program administers formatting details. In all cases, complete pairs of
braces must be used. Omitting one or adding an extra one causes eqn
to complain.

The braces convention is an example of the power of using a recursive
grammar to define the language. It is part of the language that dictates
if a construct can appear in some context, then any expression within
braces can also occur in that context.

2.6 Fractions

Fractions are specified with the keyword over.

5-9

EQN

.EQ
a+b over c+d+e 1
.EN

produces

a+b 1
c+d+e

The division line is made the correct length and positioned automati­
cally. When there is both an "over" and a "sup" in the same expres­
sion, eqn performs the "sup" first.

is

.EQ
-b sup 2 over pi
.EN

'IT

2.7 Square Roots

There is a sqrt operator for making square roots of the appropriate size .

. EQ
x = {-b +- sqrt{b sup 2 -4ac}} over 2a
.EN

yields

Note: Since large radicals look poor on some typesetters, sqrt is not
recommended for tall expressions.

2.8 Summations, Integrals, and Similar Constructions

Summations, integrals, and similar constructions are easy. The input:

.EQ
sum from i=O to {i= inf} x sup i
.EN

produces:

5-10

EQN

Braces indicate where the upper part ("i = inf") begins and ends.
None are necessary for the lower part ("i=O") because it contains no
spaces. Braces will never hurt; but if the "from" and "to" parts con­
tain any spaces, braces must be put around them.

The "from" and "to" parts of the construction are optional; but if
both are used, they have to occur in that order.

Other useful characters can replace the sum in the above example.
They are:

int prod union inter

which become, respectively:

f II u n
Since characters before the "from" can be anything, even something in
braces, "from-to" can often be used in unexpected ways. The input:

.EQ
lim from {n - > inf} x sub n =0
.EN

produces the output:

lim XI/=O
11-00

2.9 Size and Font Changes

Although eqn makes an attempt to use correct sizes and fonts, there
are times when default assumptions are not what is wanted. Slides and
transparencies often require larger characters than normal text. Thus
size and font changing commands are also provided. By default, equa­
tions are set in lO-point type with standard mathematical conventions
to determine what characters are in Roman and italic font. Size
changes are made with size n and font changes with roman, italic, bold,
or fat operations. As with the "sub" and "sup" keywords, size and
font changes affect only the string that follows and revert to the normal
situation afterward. Thus, the input:

5-11

EQN

.EQ
bold x y
.EN

produces:

xy

Braces can be used if something more complicated than a single letter is
to be affected. The input:

.EQ
bold {x y} z
.EN

produces:

xyz

If fonts other than Roman, italic, and bold are to be used, the font X
statement (X is a I-character troff name or number for the font) can be
used. Since eqn is tuned for Roman, italic, and bold fonts, other fonts
may not give as good an appearance.

The fat operation takes the current font and widens it by overstriking.
For instance:

.EQ
A = fat {pi r sup 2}
.EN

produces

A=fI'r2

Legal sizes which may follow size are:

6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 36.

The size can also be changed by a given amount. For example:

size +2

makes the size two points larger. This has the advantage that
knowledge of the current size is not necessary.

5-12

EQN

If an entire document is to be in a nonstandard size or font, it is a nui­
sance to write out a size and font change for each equation. Accord­
ingly, a global size or font can be set that thereafter affects all equa­
tions. The following statements would appear at the beginning of any
equation to set the size to 16 and the font to Roman:

.EQ
gsize 16
gfont R

.EN

In place of "R", any of the troff font names may be used. The size
after gsize can also be a relative change with + or -.

Generally, gsize and gfon! appear at the beginning of a document. They
can also appear throughout a document. The global font and size can
be changed as often as needed, for example, in a footnote in which the
size of equations should match the size of the footnote text. Footnote
text is usually two points smaller than the main text. Global size
should be reset at the end of the footnote.

2.10 Diacritical Marks

Diacritical marks, a problem in traditional typesetting, are straightfor­
ward in eqn. There are several words used to get marks on top of
letters.

INPUT OUTPUT

X dot x
x dotdot x
x hat .x-
x tilde x
x vec x
x dyad x
x bar x
x under :!

The diacritical mark is placed at the correct height, and bar and under
are made the right length for the entire construct. Other marks are
centered. An example of an expression using diacritical marks is:

5-13

EQN

.EQ
x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar
.EN

will output:

i+x+ji+X+ ¥=z+Z

2.11 Quoted Text

An input entirely within quotes (" ... ") is not subject to font changes or
spacing adjustments normally done by the typesetting program. This
provides for individual" spacing and adjusting if needed. For example:

.EQ
bold "sin (x)" + sin (x)
.EN

produces:

sin (x) +sin (x)

Quotes are also used to get braces and other eqn keywords printed.
The input:

.EQ
"{ alpha is the name for the Greek letter"-alpha "}"
.EN

prints:

{ alpha is the name jor the Greek letter a}

The "" construction is often used as a place-holder when grammatically
eqn needs something, but nothing is actually wanted on the output.
For instance, eqn does not accept a right bracket, brace, or parenthesis
without a left one. Trying to do so will produce an error message and
may prevent the successful printing of the equation. However, the
input:

5-14

.EQ
left ""
x over y
right]
.EN

produces:

;1
This point is elaborated in section 2.13.

EQN

The "" construction can also be used to add a superscript to a word in
the text when the word itself will not be within the eqn delimiters. For
example, the input:

What happened to the water in the mathematician's freezer?
It got iceS"" sup 3 S (ice cubed).

produces:

What happened to the water in the mathematician's freezer?
It got ice3 (ice cubed).

2.12 Aligning Equations

Sometimes it is necessary to align a series of equations at a horizontal
position, often at an equals sign. This is done with two operations
called mark and lineup.

The word mark may appear once at any place in an equation. It
remembers the horizontal position where it appeared. Successive equa­
tions can contain one occurrence of the word lineup. The place where
lineup appears is made to line up with the place marked by the previous
mark if at all possible. For example, the input:

.EQ
x+y mark = z
.EN
.EQ
x lineup 1
.EN

produces:

5-15

EQN

x+y=z
x=l

When eqn and - ms are used, either .EQ I or .EQ L should be used.
The mark and lineup operations do not work with centered equations.
Also, mark does not look ahead:

.EQ
x mark = 1
.EN
.EQ
x+y lineup = z
.EN

is not going to work because there is not room for the "x+y" part
after the mark remembers where the "x" is. In order to correctly line
up the example equations, the following input is necessary:

.EQ
x = mark 1
.EN
.EQ
x + y
.EN

lineup z

x=l
x+y=z

2.13 Big Brackets

To get large brackets I I, braces { }, parentheses (), and bars I I
around information that exists on more than one line, the left and right
keywords are used:

.EQ
left { a over b + 1 right }

= left (cover d right)
+ left [e right]
.EN

produces:

The resulting brackets are made large enough to cover whatever they

5-16

EQN

enclose. Other characters can be used besides these, but they are not
likely to look very good. Exceptions are the .floor and ceiling characters:

.EQ
left floor x over y right floor
< = left ceiling a over b right ceiling
.EN

produces:

Braces are larger than brackets and parentheses because they are made
up of three, five, seven, etc., pieces while brackets can be made up of
two, three, four, etc., pieces. Large left and right parentheses often
look strange because of the design of the character set.

The right keyword may be omitted. A "left something" need not have
a corresponding "right something". If the right part is omitted, braces
are put around the thing that the left bracket is to encompass. Other­
wise, resulting brackets may be too large. If the left part is to be omit­
ted, things are more complicated because technically a right cannot exist
without a corresponding left. Instead, the following input will do:

.EQ
left "" ... right)
.EN

The left "" means a "left nothing" which satisfies the rules without
hurting the output.

2.14 Piles

Large braces, brackets, parenthesis, and vertical bars are often used
with another facility (piles) which makes vertical piles of objects. Ele­
ments of the pile (there can be any number) are centered one above
another, at the right height for most purposes. The keyword above is
used to separate the pieces; braces are used around the entire list. Ele­
ments of a pile can be as complicated as needed, even containing more
piles.

Three other forms of pile exist:

5-17

EQN

• /pile makes a pile with the elements left-justified

• rpile makes a right-justified pile

• cpile makes a centered pile, just like pile.

Vertical spacing between pieces is somewhat larger for lpile, rpile, and
cpile than it is for ordinary piles. For example, to get

Sign(X)=\ ~
-1

if x>O
if x=O

if x<O

the following is input:

.EQ
sign (x) = = left "{"

rpile {I above 0 above -1}-­
lpile {if above if above if}--
lpile {x>O above x=O above x<O}

.EN

The" left II {'''' construction makes a left brace large enough to enclose
the "rpile { ... } ", which is a right-justified pile. The lpile construction
makes a left-justified pile.

2.15 Matrices

It is possible to make matrices. For example, to make a neat array like

Xi x 2

Yi y2

the following is the input:

.EQ
matrix {

}

ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

.EN

This produces a matrix with two centered columns. Elements of the
columns are then listed just as for a pile. Each element is separated by
the word "above". The lcolor rcol keyword can also be used to left- or
right-justify columns. Each column can be separately adjusted, and
there can be as many columns as desired.

5-18

EQN

The reason for using a matrix instead of two adjacent piles is if the ele­
ments of the piles are not all the same height they will not line up
properly. A matrix forces them to line up because it looks at the entire
structure before deciding the spacing to use.

Note: Each column must have the same number of elements. To
make force each column to have the same number of elements it is
possible to use the eqn keyword "nothing" which will give the con­
struction the proper number of elements. For instance, the input:

.EQ
matrix {

ccol { x above y sub 1 above z sup 2 }
ccol { z above nothing above z sub 1 }

}
.EN

produces:

x z

2.16 Defines

There is a definition facility within eqn which allows a user to define an
equation or part of an equation. Henceforth, any occurrence of name
within an eqn expression will be expanded into whatever was inside the
quotes in its definition. This lets users tailor the language to their own
specifications. It is possible include keywords like sup, sub, or over in a
definition. For example, if the sequence:

.EQ
x sub i sub 1 + y sub i sub 1
.EN

appears repeatedly throughout a paper; typing time can be saved each
time the sequence is used by defining it:

.EQ
define xy 'x sub sub 1 + y sub i sub l'
.EN

This define makes xy a shorthand for whatever characters occur
between the single quotes in the definition. (Any character can be used
instead of the quote to mark the beginning and end of the definition as

5-19

EQN

long as it does not appear inside the definition.) Therefore, after
defining xy, the input:

.EQ
roman "The definition xy now expands to read" - xy
.EN

produces:

The definition xy now expands to read Xi 1 + Yi 1

Each occurrence of xy will expand into its definition. Spaces (or their
equivalent) are to be left around the name when used. The eqo pro­
gram will identify it as special.

Although definitions can use previous definitions, as in:

.EQ
define xi 'x sub i '
define xiI 'xi sub 1 '
.EN

it is erroneous to define something in terms of itself. For instance:

define X 'roman X '

Since .. ¥ is now defi!led in terms of itself, pioblems will result. He,,,-
ever, if the following expression is used, the quotes protect the second
X, and everything works fine.

define X 'roman "X" ,

The eqn keywords can be redefined. By making / mean over with the
following statement:

.EQ
define / 'over'
.EN

or by redefining over as / with:

.EQ
define over '/'
.EN

the keyword is redefined.

5-20

EQN

If different things are needed to be printed on a terminal and on the
typesetter, symbols may be defined differently in neqn and eqn. This
can be done with ndefine and tdefine. A definition made with ndefine
takes effect when running neqn. When tdefine is used, the definition
applies only for the eqn processor. Names defined with the define facil­
ity apply to both eqn and neqn.

2.17 Local Motions

Although the eqn formatter tries to position things correctly on the
paper, it occasionally needs tuning to make the output just right. Small
extra horizontal spaces can be obtained with tilde and circumflex. By
using back n and fwd n, small amounts are moved horizontally, where
n is how far to move in 1I100's of an em (an em is about the width of
the letter "m"). Thus, back 50 moves back about half the width of an
"m". Similarly, things can be moved up or down with an up n and a
down n. As with sub or sup, local motions affect the next thing in the
input, and this can be something arbitrarily complicated if it is enclosed
in braces.

2.18 Precedence

Precedence rules resolve the ambiguity in a construction like

.EQ
a sup 2 over b
.EN

The "sup" is defined to have a higher precedence than "over". A user
can force a particular analysis by placing braces around expressions. If
braces are not used to group functions, the eqn formatter will do opera­
tions in the following order:

dyad vec under bar tilde hat dot dotdot

fwd back down up

fat roman italic bold size

sub sup

from to

sqrt over

The following operations group to the left:

over sqrt left right

All others group to the right.

5-21

EQN

3. Usage

On the UNIX operating system, the phototypesetter is driven by a text
formatting program, troff, which was designed for typesetting text.
Facilities needed for printing mathematical expressions, such as arbi­
trary horizontal and vertical motions, line drawing, and font size chang­
ing are also provided. Syntax for describing these special operations is
difficult to learn and difficult even for experienced users to type
correctly. For this reason, the troff formatter is used as an assembly
language by the eqn program which describes and compiles mathemati­
cal expressions.

Running a preprocessor is easy on the UNIX operating system. To
typeset text stored in files, the following command is issued:

eqn files I troff

The vertical bar connects the output of one eqn process to the input of
another troff process. Any troff formatter options are located following
the troff formatter part of the command. For example:

eqn filename I troff -ms

A compatible version of eqn can be used on devices like TELETYPE@
l'.-iodei 37, Dp. .. SI, and GS! terminals which have half-liile forward and
reverse capabilities. Input language is identical, but neqn and the nroff
formatter are used instead of eqn and the troff formatter. Some things
will not look as good because terminals do not provide the variety of
characters, sizes, and fonts that a typesetter does, but the output is usu­
ally adequate for proofreading.

To print equations on a TELETYPE@ Model 37, the following command
is used:

neqn files I nroff

To use a GSI or DASI terminal as the output device, the following com­
mand is used:

neqn files I nroff -T x

where x is the terminal type being used, such as 300 or 300S.

The eqn and neqn programs can be used with the tbl program for
typesetting tables that contain mathematics

5-22

tbl files I eqn I troff
tbl files I neqn I nroff

EQN

Missing delimiters and some equation errors can be detected early with
program aids. Using the troubleshooting devices described in section 5
should be considered as an initial step in formatting a document.

4. Troubleshooting

If a mistake is made in an equation, such as omitting a brace, having
one too many braces, or having a "sup" with nothing before it, the eqn
formatter produces the following message:

syntax error between lines x and y, file z

where x and yare approximately the lines between which the trouble
occurred, and z is the name of the file in question. There are also self­
explanatory messages that arise when a quote is omitted or eqn is run
on a nonexistent file. To check a document before printing

eqn files> Idev/null

discards the output but prints the message.

It is easy to leave out a dollar sign when used as delimiters. The
checkeq program checks for misplaced or missing dollar signs (in-line
delimiters) and similar troubles.

In-line equations can be only so big because of an internal buffer in the
troff formatter. If a "word overflow" message is received, the limit has
been exceeded. One solution is to break the equation into smaller units
with the in-line delimiters. Also, printing the equation as a displayed
equation usually causes the message to go away. The "line overflow"
message indicates that an even bigger buffer has been exceeded. In this
case, the equation must be broken into two separate ones, marking
each with .EQ/.EN delimiters. The eqn program does not warn about
equations that are too long for one line.

5-23

EQN

TABLE 2.3. Naming Convention for the EQN

CHARACTER INPUT
OUTPUT CHARACTER

SEQUENCE NAME

>= ~ DELTA Il.
<= ~ GAMMA r

- LAMBDA A
!= ~ OMEGA n
+- ± PHI <I»
-> - PI II
<- - PSI 'I'
« « SIGMA 1:
» » THETA 9
inf 00 UPSILON Y
partial a XI -=.
half Ih alpha a
prime beta {3
approx - chi X
nothing delta 8
cdot epsilon E

times x eta ."
del " gamma 'Y
--~..I ~ !_ ... -

t I 5. au. v I !\.na

kappa K

, ... , lambda A
sum 1: mu II-

int f nu "
prod II omega c.u
union U omicron 0

inter n phi ~
pi 11'

psi t/J
rho p
sigma u
tau T

theta 9
upsilon v
xi ~
zeta ,

5-24

Chapter 6: MEMORANDUM MACROS

CONTENTS

1. Introduction . · .
1.1 Purpose . · · .
1.2 Conventions · . . . · .
1.3 Document Structure · . ·
1.4 Input Text Structure.
1.5 Definitions ·

2. Usage • • • •
2.1 The mm Command .
2.2 The - cm or - mm Flag
2.3 Typical Command Lines
2.4 Parameters Set From Command Line •
2.5 Omission of -cm or -mm Flag

3. Formatting Concepts
3.1 Basic Terms
3.2 Arguments and Double Quotes • .
3.3 Unpaddable Spaces
3.4 Hyphenation
3.5 Tabs....
3.6 BEL Character ..••...
3.7 Bullets
3.8 Dashes, Minus Signs, and Hyphens. .
3.9 Trademark String.
3.10 Use of Formatter Requests

4. Paragraphs and Headings
4.1 Paragraphs............

4.1.1 Paragraph Indention
4.1.2 Numbered Paragraphs
4.1.3 Spacing Between Paragraphs

4.2 Numbered Headings. . . .
4.2.1 Default Headings
4.2.2 Altering Appearance

4.2.2.1 Prespacing and Page
Ejection

4.2.2.2 Spacing After Headings
4.2.2.3 Centered Headings . .

- i -

1
1
1
1
2
2

4
4
6
6
9

11

12
12
13
13
14
15
15
16
16
17
17

18
18
18
19
19
20
20
21

21
22
23

4.3
4.4
4.5

4.6
4.7

5. Lists
5.1
5.2

5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

4.2.2.4 Bold, Italic, and Underlined
Headings . •
4.2.2.4.1 Control by Level:
4.2.2.4.2 NROFF Underlining

Style:
4.2.2.4.3 Heading Point

Sizes:
4.2.2.5 Marking Styles - Numerals and

Concatenation
Unnumbered Headings .• •..•
Headings and Table of Contents. .
First-Level Headings and Page Numbering
Style
User Exit Macros . ..
Hints for Large Documents

List Spacing
List Macros . ••.
5.2.1 List-Initialization Macros •
Automatically Numbered or Alphabetized
List •
Bullet List .
Dash List
Marked List
Reference List .
Variable-Item List
List-Item Macro .
List -End Macro
Example of Nested Lists ...•
List-Begin Macro and Customized Lists
User-Defined List Structures

6. Memorandum and Released-Paper Style
Documents. ... •
6.1 Sequence of Beginning Macros
6.2 Title....
6.3 Authors •.
6.4 TM Numbers
6.5 Abstract.... •
6.6 Other Keywords
6.7 Memorandum Types
6.8 Date Changes •

- ii -

23
23

23

24

24
25
26

26
27
29

30
30
30
31

31
32
32
32
33
33
35
36
36
38
40

42
43
43
45
46
46
47
47
49

6.9 Alternate First-Page Format
6.1 0 Example.
6.11 End of Memorandum Macros

6.11.1 Signature Block
6.11.2 "Copy to" and Other Notations
6.11.3 Approval Signature Line .

6.12 One-Page Letter .

49
50
50
50
51
53
53

7. Displays 54
7.1 Static Displays. . . 54
7.2 Floating Displays 56
7.3 Tables 59
7.4 Equations 60
7.5 Figure, Table, Equation, and Exhibit Titles . 61
7.6 List of Figures, Tables, Equations, and

Exhibits 62

8. Footnotes
8.1 Automatic Numbering of Footnotes
8.2 Delimiting Footnote Text . . .
8.3 Format Style of Footnote Text
8.4 Spacing Between Footnote Entries

9. Page Headers and Footers
9.1 Default Headers and Footers
9.2 Header and Footer Macros

9.2.1 Page Header . . .
9.2.2 Even-Page Header .
9.2.3 Odd-Page Header
9.2.4 Page Footer . . .
9.2.5 Even-Page Footer .
9.2.6 Odd-Page Footer

9.3
9.2.7 First Page Footer
Default Header and Footer With Section-Page
Numbering.

9.4 Strings and Registers in Header and Footer
Macros

9.5 Header and Footer Example
9.6 Generalized Top-of-Page Processing
9.7 Generalized Bottom-of-Page Processing
9.8 Top and Bottom (Vertical) Margins
9.9 Proprietary Marking .
9.10 Private Documents

- iii -

62
62
63
64
65

65
66
66
66
67
67
67
67
67
68

68

68
69
69
70
71
71
72

10. Table of Contents and Cover Sheet · 72
10.1 Table of Contents · · · · 72
10.2 Cover Sheet · · · · 75

11. References · · · 75
11.1 Automatic Numbering of References 76
11.2 Delimiting Reference Text · · · 76
11.3 Subsequent References · · · · · · 76
11.4 Reference Page · · · · 76

12. Miscellaneous Features · · · · 77
12.1 Bold, Italic, and Roman Fonts 77
12.2 Justification of Right Margin · 79
12.3 SCCS Release Identification 79
12.4 Two-Column Output · 80
12.5 Column Headings for Two-Column Output 81
12.6 Vertical Spacing · · 82
12.7 Skipping Pages · · · · · · 82
12.8 Forcing an Odd Page · · · · · · 83
12.9 Setting Point Size and Vertical Spacing 83
12.10 Reducing Point Size of a String · 84
12.11 Producing Accents · · · 84
12.12 Inserting Text Interactively · 85

13. Errors and Debugging 86
13.1 Error Terminations · · · · · 86
13.2 Disappearance of Output · 86

14. Extending and Modifying Memorandum Macros . 87
14.1 Naming Conventions · · · · 87

14.1.1 Names Used by Formatters · · 87
14.1.2 Names Used by Memorandum

Macros · · · · · . 88
14.1.3 Names Used by cw, eqn/neqn, and

tbl . · · · . . 88
14.1.4 Names Defined by User 88

14.2 Sample Extensions · · · 89
14.2.1 Appendix Headings · · · 89
14.2.2 Hanging Indent With Tabs. · 89

15. Summary. · · 91

16. Figures and Tables · · 92

- iv -

LIST OF FIGURES

Figure 16.A. Example of a Simple Letter - Input
File

Figure 16.A. Example of a Simple Letter - NROFF
Output

Figure 16.A. Example of a Simple Letter - TROFF
Output

LIST OF TABLES

TABLE 16.A. Memorandum Macro Names

TABLE 16.B. String Names

TABLE 16.C. Number Register Names

TABLE 16.D. Error Messages. . . .

- v -

93

94

95

96

102

103

107

Chapter 6

MEMORANDUM MACROS

1. Introduction

1.1 Purpose

This chapter is a guide and reference for users of the Memorandum
Macros. These macros provide a general purpose package of text for­
matting macros for use with the UNIX operating system text formatters
nroff and troff (refer to nroff and troff(l) in the UniPlus+ User's
Manual, Section 1, for more details).

Note: A reference of the form name (N) points to page name in sec­
tion N of the UniPlus+ User's Manual

1.2 Conventions

Each part of this section explains a single facility of mm and progresses
from general case to special-case facilities. It is recommended that a
user read a part in detail only to the point where there is enough infor­
mation to obtain the desired format, then skim the rest because some
details may be of use to only a few.

Numbers enclosed in brackets ({ }) refer to section numbers within
this chapter. For example, this is section {1.2}.

In the synopses of macro calls, square brackets ([]) surrounding an
argument indicate that it is optional. Ellipses (. . .) show that the
preceding argument may appear more than once.

Figure 16.A at the end of this chapter shows both nroff and troff for­
matter outputs (of files using mm macros) for a simple letter.

1.3 Document Structure

Input for a document to be formatted with the mm text formatting
macro package has four major segments, any of which may be omitted;
if present, the segments must occur in the following order:

• Parameter setting segment sets the general style and appearance of
a document. The user can control page width, margin

6-1

MEMORANDUM MACROS

justification, numbering styles for heading and lists, page headers
and footers, and many other properties of the document. Also,
the user can add macros or redefine existing ones. This segment
can be omitted entirely if the user is satisfied with default values;
it produces no actual output, but performs only the formatter
setup for the rest of the document.

• Beginning segment includes those items that occur only once, at
the beginning of a document, e.g., title, author's name, date.

• Body segment is the actual text of the document. It may be as
small as a single paragraph or as large as hundreds of pages. It
may have a hierarchy of headings up to seven levels deep {4}.
Headings are automatically numbered (if desired) and can be
saved to generate the table of contents. Five additional levels of
subordination are provided by a set of list macros for automatic
numbering, alphabetic sequencing, and "marking" of list items
{5}. The body may also contain various types of displays, tables,
figures, footnotes, and references {7, 8, II}.

• Ending segment contains those items that occur only once at the
end of a document. Included are signature(s) and lists of nota­
tions (e.g., "Copy to" lists) {6.11}. Certain macros may be
invoked here to print information that is wholly or partially
derived from the rest of the document, such as the table of con­
tents or the cover sheet for a document {to}.

Existence and size of these four segments varies widely among different
document types. Although a specific item (such as date, title, author
names, etc.) of a segment may differ depending on the document, there
is a uniform way of typing it into an input text file.

1.4 Input Text Structure

In order to make it easy to edit or revise input file text at a later time:

• Input lines should be kept short.

• Lines should be broken at the end of clauses.

• Each new sentence should begin on a new line.

1.5 Definitions

Formatter refers to either the nroff or troff text-formatting program.

6-2

MEMORANDUM MACROS

Requests are built-in commands recognized by the formatters.
Although a user seldom needs to use these requests directly {3.10}, this
chapter contains references to some of the requests. For example, the
request

.sp

inserts a blank line in the output at the place the request occurs in the
input text file.

Macros are named collections of requests. Each macro is an abbrevia­
tion for a collection of requests that would otherwise require repetition.
The mm package supplies many macros, and the user can define addi­
tional ones. Macros and requests share the same set of names and are
used in the same way. Table 16.A at the end of this chapter is an
alphabetical list of macro names used by mm. The first line of each
item lists the name of the macro, a brief description, and a reference to
the section in which the macro is described. The second line illustrates
a typical macro structure.

Strings provide character variables, each of which names a string of
characters. Strings are often used in page headers, page footers, and
lists. These registers share the pool of names used by requests and
macros. A string can be given a value via the .ds (define string)
request, and its value can be obtained by referencing its name, pre­
ceded by "\ *" (for I-character names) or "\ * (" (for 2-character
names). For instance, the string DT in mm normally contains the
current date, thus the input line

Today is \ * (DT.

may result in the following output:

Today is September 15, 1984.

The current date can be replaced, e.g.:

.ds DT 01/01185

by invoking a macro designed for that purpose {6.8}. Table 16.B at the
end of this chapter is an alphabetical list of string names used by mm.
A brief description, paragraph reference, and initial (default) value(s)
are given for each.

6-3

MEMORANDUM MACROS

N umber registers fill the role of integer variables. These registers are
used for flags and for arithmetic and automatic numbering. A register
can be given a value using a .nr request and be referenced by preceding
its name by \n (for I-character names) or \n ((for 2-character names).
For example, the following sets the value of the register d to one more
than that of the register dd :

.nr d 1 +\n(dd

Table 16.C at the end of this chapter is an alphabetical list of number
register names giving for each a brief description, paragraph reference,
initial (default) value, and legal range of values.

Section 14.1 contains naming conventions for requests, macros, strings,
and number registers. Tables 16.A, 16.B, and 16.C lists all macros,
strings, and number registers defined in mm.

2. Usage

This part describes how to access mm, illustrates UNIX operating sys­
tem command lines appropriate for various output devices, and
describes command line flags for the mm text-formatting macro pack­
age.

2.i The mm Command

The mm (I) command can be used to prepare documents using the
nroff formatter and the Memorandum Macros; this command invokes
nroff with the -em flag {2.2l. The mm command has options to
specify preprocessing by tbl and/or by neqn and for postprocessing by
various output filters.

Note: Options can occur in any order but must appear before the file
names.

Any arguments or flags that are not recognized by the mm command,
e.g., -rC3, are passed to the nroff formatter or to mm, as appropriate.
Options are:

OPTION

-e

6-4

MEANING

The neqn is to be invoked; also causes neqn to
read /usr/pub/eqnehar [see eqnchar(7»).

MEMORANDUM MACROS

- t The tbl (1) processor is to be invoked.

-c The coHO postprocessor is to be invoked.

- E The - e option of the nroff formatter is to be
invoked.

-y The -mm (uncompacted macros) is to be used
instead of - cm.

-12 The 12-pitch mode is to be used. The pitch
switch on the terminal should be set to 12 if
necessary.

-T450 Output is to a DASI 450. This is the default ter­
minal type [unless $TERM is set; see sh (1) 1. It
is also equivalent to - T1620.

-T450-12 Output is to a DASI 450 in 12-pitch mode.

-T300 Output is to a DASI 300 terminal.

- T300 -12 Output is to a DASI 300 in 12-pitch mode.

- T300s Output is to a DASI 300S.

- T300s -12 Output is to a DASI 300S in 12-pitch mode.

-T4014

-T37

-T382

-T4000a

-TX
-Thp

-T43

-T40/4

-T745

-T2631

Output is to a Tektronix 4014.

Output is to a TELETYPE@ Model 37.

Output is to a DTC-382.

Output is to a Trendata 4000A.

Output is prepared for an EBCDIC line printer.

Output is to a HP264x (implies -c).

Output is to a TELETYPE@ Model43 (implies
-c).

Output is to a TELETYPE@ Model 40/4 (implies
-c).

Output is to a Texas Instrument 700 series termi­
nal (implies - c) .

Output is prepared for a HP2631 printer where
-T2631-e and -T2631-c may be used for
expanded and compressed modes, respectively

6-5

MEMORANDUM MACROS

-Tip

(implies - e).

Output is to a device with no reverse or partial
line motions or other special features (implies
-c).

Any other - T option given does not produce an error; it is equivalent
to -Tip.

A similar command is available for use with the trolf formatter [see
mmt(1)].

2.2 The - em or - mm Flag

The mm package can also be invoked by including the - em or - mm
flag as an argument to the formatter. The - em flag causes the precom­
pacted version of the macros to be loaded. The - mm flag causes the
file lusr/lib/tmae/tmae.m to be read and processed before any other
files. This action:

• defines the Memorandum Macros,

• sets default values for various parameters, and

• initializes the formatter to be ready to process input text files.

2.3 Typieal Command Lines

The prototype command lines are as follows (various options are
explained in section 2.4):

6-6

• Text without tables or equations:

mm [options] filename . ..
or

nrolf [options] - em filename . ..

mmt [options] filename ...
or

trolf [options] -em filename ...

• Text with tables:

MEMORANDUM MACROS

mm - t [options] filename . ..
or

tbl filename. .. I nroft' [options] - em

mmt - t [options] filename . ..
or

tbl filename ... I troft' [options] -em

• Text with equations:

mm - e [options] filename ...
or

neqn /usr/pub/eqnehar filename . .. I nroft' [options] - em

mmt - e [options] filename . ..
or

eqn /usr/pub/eqnehar filename ... I troft' [options] -em

• Text with both tables and equations:

mm - t - e [options] filename . ..
or

tbl filename ... I neqn /usr/pub/eqnehar I nroft' [options] -em

mmt - t - e [options] filename . ..
or

tbl filename ... I eqn /usr/pub/eqnehar I troft' [options] -em

When formatting a document with the nroft' processor, the output
should normally be processed for a specific type of terminal because the
output may require some features that are specific to a given terminal
(e.g., reverse paper motion or half-line paper motion in both direc­
tions) . Some commonly used terminal types and the command lines
appropriate for them are given below. More information is found in
section 2.4 of this chapter and in 3000),4500),4014(1), hp(1),
eoI(O, termio (4), and term (5) of the UniPlus+ User's Manual.

• DASI 450 in 10-pitch, 6 lineslinch mode, with 0.75 inch offset,
and a line length of 6 inches (60 characters) where this is the
default terminal type so no - T option is needed (unless $TERM
is set to another value):

6-7

MEMORANDUM MACROS

mm filename . ..
or
nroff - T 450 - h - em filename . ..

• DASI 450 in 12-pitch, 6 lineslinch mode, with 0.75 inch offset,
and a line length of 6 inches (72 characters):

mm -12 filename . ..
or

nroff -T450-12 - h -em filename ...

or to increase the line length to 80 characters and decrease the
offset to 3 characters:

mm -12 - rW80 - r03 filename . ..
or

nroff -T450-12 -rW80 -r03 -h -em filename ...

• Hewlett-Packard HP264x CRT family:

mm - Thp filename . ..
or

nroff - em filename. .. I col I hp

• Any terminal incapable of reverse paper motion and also lacking
hardware tab stops (Texas Instruments 700 series, etc.):

mm - T745 filename . ..
or

nroff - em filename. .. I col - x

The tbl (1) and eqn/neqn (1) formatters must be invoked as shown in
the command lines illustrated earlier.

If 2-column processing {12.4} is used with the nroff formatter, either
the -c option must be specified to mm(1) [mm(I) uses eoH1)
automatically for many terminal types {2.I}] or the nroff formatter out­
put must be postprocessed by coH1). In the latter case, the - T37 ter­
minal type must be specified to the nroff formatter, the - h option
must not be specified, and the output of coH1) must be processed by
the appropriate terminal filter [e.g., 450(1)]; mm(1) with the -c option
handles all this automatically.

6-8

MEMORANDUM MACROS

2.4 Parameters Set From Command Line

Number registers are commonly used within mm to hold parameter
values that control various aspects of output style. Many of these
values can be changed within the text files with .nr requests. In addi­
tion, some of these registers can be set from the command line. This
is a useful feature for those parameters that should not be permanently
embedded within the input text. If used, the number registers (with
the exception of the P register) must be set on the command line or
before the mm macro definitions are processed. The number register
meanings are:

-rAn

-rCn

-rDl

-rEn

-rLk

n = 1, has effect of invoking the .AF macro without
an argument {6.9}.
n = 2, permits use of Bell System logo, if available, on
a printing device (currently available for Xerox 9700
only) .

sets type of copy (e.g., DRAFT) to be printed at bot­
tom of each page {9.2.4}.
n = 1, OFFICIAL FILE COPY.
n = 2, DATE FILE COPY.
n = 3, DRAFT with single spacing and default para­
graph style.
n = 4, DRAFT with double spacing and 10-space para­
graph indent.

sets debug mode.
This flag requests formatter to continue processing
even if mm detects errors that would otherwise cause
termination. It also includes some debugging informa­
tion in the default page header {9.2.1, 12.3}.

controls font of Subject/Date/From fields.
n = 0, fields are bold (default for the troff formatter).
n = 1, fields are Roman font (regular text default for
the nroff formatter).

sets length of physical page to k lines.
For the nroff formatter, k is an unscaled number
representing lines.
For the troff formatter, k must be scaled (i.e., i for
inches, v for vertical spaces).
Default value is 66 lines per page.
This flag was used, for example, when printing the 6-
by-9 format of this document (i.e., - rL9i).

6-9

MEMORANDUM MACROS

-rNn

n

0
1
2
3
4
5

-rOk

-rPn

6-10

specifies page numbering style.
n = 0, {default} all pages get the prevailing header
{9.2.1} .
n = 1, page header replaces footer on page 1 only.
n = 2, page header is omitted from page 1.
n = 3, "section-page" numbering {4.5} occurs (.FD
{8.3} and .RP {Il.4} define footnote and reference
numbering in sections).
n = 4, default page header is suppressed; however, a
user-specified header is not affected.
n = 5, "section-page" and "section-figure" number­
ing occurs.

PAGEl PAGES 2ff

header header
header replaces footer header
no header header
"section-page" as footer same as page 1
no header no header unless .PH defined
"section-page" as footer same as page 1

and "section-figure"

Contents of the prevailing header and footer do not
depend on number register N value; N controls only
whether the header (N=3) or the footer (N=5) is
printed, as well as the page numbering style. If header
and footer are null {9.2.1, 9.2.4}, the value of N is
irrelevant.

offsets output k spaces to the right.
For the nroff formatter, k is an unsealed number
representing character positions.
For the troff formatter, k must be scaled.
This flag is helpful for adjusting output positioning on
some terminals. If this register is not set on the com­
mand line, the default offset is 0.75 inch.

Note: Register name is the capital letter "0".

specifies that pages of the document are to be num­
bered starting with n.
This register may also be set via a .Dr request in the
input text.

-rSn

-rTn

-rU1

-rWk

MEMORANDUM MACROS

sets point size and vertical spacing for the document.
The default n is 10, i.e., 10-point type on 12-point
vertical spacing, giving six lines per inch {12.9}.
This flag applies to the troll formatter only.

provides register settings for certain devices.
n = 1, line length and page offset are set to 80 and 3,
respectively.
n = 2, changes the page length to 84 lines per page
and inhibits underlining; it is meant for output sent to
the Versatec® printer.
The default value for n is O.
This flag applies to the nrofl' formatter only.

controls underlining of section headings.
This flag causes only letters and digits to be under­
lined. Otherwise, all characters (including spaces) are
underlined {4.2.2.4.2}.
This flag applies to the nrofl' formatter only.

sets page width (line length and title length) to k.
For the nrofl' formatter, k is an unsealed number
representing character positions.
For the trofl' formatter, k must be scaled.
This flag can be used to change page width from the
default value of 6 inches (60 characters in 10 pitch or
72 characters in 12 pitch).

2.5 Omission of - em or - mm Flag

If a large number of arguments is required on the command line, it
may be convenient to set up the first (or only) input file of a document
as follows:

zero or more initializations of registers listed in section 2.4
.so /usr/lib/tmac/tmac.m
remainder of text

In this case, the user must not use the -em or - mm flag [nor the
mm (1) or mmt (1) command]; the .so request has the equivalent
effect, but registers shown in section 2.4 must be initialized before the
.so request because their values are meaningful only if set before macro
definitions are processed. When using this method, it is best to lock

6-11

MEMORANDUM MACROS

into the input file only those parameters that are seldom changed. For
example:

.nr W 80

.nr 0 10

.nr N 3

.so /usr/lib/tmac/tmac.m

.H 1 "INTRODUCTION"

specifies, for the nroff formatter, a line length (W) of 80, a page offset
(0) of 10, and "section-page" (N) numbering.

3. Formatting Concepts

3.1 Basic Terms

Normal action of the formatters is to fill output lines from one or more
input lines. Output lines may be justified so that both the left and right
margins are aligned. As lines are being filled, words may also be
hyphenated {3.4} as necessary. It is possible to turn any of these modes
on and off (.SA {12.2}, Hy {3.4}, and the .nf and .ft formatter
requests) . Turning off fill mode also turns off justification and hyphe­
nation.

Certain formatting commands (requests and macros) cause filling of the
current output line to cease, the line (of whatever length) to be
printed, and subsequent text to begin a new output line. This printing
of a partially filled output line is known as a break. A few formatter
requests and most of the mm macros cause a break.

Formatter requests {3.10} can be used with mm; however, there are
consequences and side effects that each such request might have. A
good rule is to use formatter requests only when absolutely necessary.
The mm macros described herein should be used in most cases
because:

• It is much easier to control (and change at any later point in time)
overall style of the document.

• Complicated features (such as footnotes or tables of contents) can
be obtained with ease.

6-12

MEMORANDUM MACROS

• User is insulated from complexities of the formatter language.

3.2 Arguments and Double Quotes

For any macro call, a null argument is an argument whose width is
zero. Such an argument often has a special meaning; the preferred
form for a null argument is "". Omitting an argument is not the same
as supplying a null argument (e.g., the .MT macro {6.7}). Omitted
arguments can occur only at the end of an argument list; null argu­
ments can occur anywhere in the list.

Any macro argument containing ordinary (paddable) spaces must be
enclosed in double quotes. A double quote (") is a single character
that must not be confused with two apostrophes ("), acute accents
("), or grave accents ("). Otherwise, it will be treated as several
separate arguments.

Double quotes are not permitted as part of the value of a macro argu­
ment or of a string that is to be used as a macro argument. If it is
necessary to have a macro argument value, two grave accents (")
and/or two acute accents (") may be used instead. This restriction is
necessary because many macro arguments are processed (interpreted) a
variable number of times. For example, headings are first printed in
the text and may be reprinted in the table of contents.

3.3 Unpaddable Spaces

When output lines are justified to give an even right margin, existing
spaces in a line may have additional spaces appended to them. This
may distort the desired alignment of text. To avoid this distortion, it is
necessary to specify a space that cannot· be expanded during
justification, i.e., an unpaddable space. There are several ways to
accomplish this:

• The user may type a backslash followed by a space (\). This pair
of characters directly generates an unpaddable space.

• The user may sacrifice some seldom-used character to be
translated into a space upon output.

Because this translation occurs after justification, the chosen character
may be used anywhere an unpaddable space is desired. The tilde (-) is
often used with the translation macro for this purpose. To use the tilde
in this way, the following is inserted at the beginning of the document:

6-13

MEMORANDUM MACROS

.tr -

If a tilde must actually appear in the output, it can be temporarily
"recovered" by inserting

.tr --

before the place where needed. Its previous usage is restored by
repeating the .tl - after a break or after the line containing the tilde has
been forced out.

Note: Use of the tilde in this fashion is not recommended for docu­
ments in which the tilde is used within equations.

3.4 Hyphenation

Formatters do not perform hyphenation unless requested. Hyphenation
can be turned on in the body of the text by specifying

.nr Hy 1

once at the beginning of the document input file. Section 8.3 describes
hyphenation within footnotes and across pages.

If hyphenation is requested, formatters will automatically hyphenate
wnrrl~ if npprl hp Hnwpvpr thp l1~pr tn~V ~npr.ifv hvnhpnMinn nnint~ _ .. _-&&_-- --- _ ... _._ .. , .. .a.&_ --_ -.1 -1""-_111"" _ _ ... _ r-& -

for a specific occurrence of any word with a special character known as
a hyphenation indicator or may specify hyphenation points for a small
list of words (about 128 characters).

If the hyphenation indicator (initially, the 2-character sequence "\ %")
appears at the beginning of a word, the word is not hyphenated. Alter­
natively, it can be used to indicate legal hyphenation points inside a
word. All occurrences of the hyphenation indicator disappear on out­
put.

The user may specify a different hyphenation indicator .

. HC [hyphenation-indicator]

The circumflex (") is often used for this purpose by inserting the fol­
lowing at the beginning of a document input text file:

6-14

MEMORANDUM MACROS

.HC"

Note: Any word containing hyphens or dashes (also known as em
dashes) will be hyphenated immediately after a hyphen or dash if it is
necessary to hyphenate the word, even if the formatter hyphenation
function is turned off.

The user may supply, via the exception word .hw request, a small list
of words with the proper hyphenation points indicated. For example, to
indicate the proper hyphenation of the word "printout", the user may
specify

.hw print-out

3.5 Tabs

Macros .MT {6.7}, .TC {to.1}, and .CS {IO.2} use the formatter .ta
(tab) request to set tab stops and then restore the default values of tab
settings (every eight characters in the nroff formatter; every Ih inch in
the troff formatter). Setting tabs to other than the default values is the
user's responsibility.

Default tab setting values for nroff are 9, 17, 25, ... , 161 for a total of
20 tab stops. Values may be separated by commas, spaces, or any other
non-numeric character. A user may set tab stops at any value desired.
For example:

.ta 1.Si 3i 4.5i

A tab character is interpreted with respect to its position on the input
line rather than its position on the output line. In general, tab charac­
ters should appear only on lines processed in no-fill Cnf) mode {3.1}.

The tbI(l) program {7.3} changes tab stops but does not restore default
tab settings.

3.6 BEL Character

The nonprinting character BEL is used as a delimiter in many macros to
compute the width of an argument or to delimit arbitrary text, e.g., in
page headers and footers {9}, headings {4}, and lists {S}. Users who
include BEL characters in their input text file (especially in arguments
to macros) will receive mangled output.

6-15

MEMORANDUM MACROS

3.7 Bullets

A bullet (.) is often obtained on a typewriter terminal by using an
"0" overstruck by a "+". For compatibility with the troff formatter, a
bullet string is provided by mm with the following sequence:

*(BU

The bullet list (.BL) macro {5.4} uses this string to generate automati­
cally the bullets for bullet-listed items.

3.8 Dashes, Minus Signs, and Hyphens

The troff formatter has distinct graphics for a dash, a minus sign, and a
hyphen; the nroff formatter does not.

• Users who intend to use the nroff formatter only may use the
minus sign (-) for the minus, hyphen, and dash.

• Users who plan to use the troff formatter primarily should follow
troff escape conventions (i.e., \ (mi for minus, \ (em for dash and
\ (hy for hyphen).

• Users who plan to use both formatters must take care during
input text file preparation. Unfortunately, these graphic charac­
ters cannot be represented in a way that is both compatible and
convenient for both formatters.

The following approach is suggested:

6-16

Dash Type" \ *(EM" for each text dash for both nroff and
troff formatters. This string generates an em (-)
dash in the troff formatter and two dashes (--) in the
nroff formatter. Dash list (.DL) macros {5.5}
automatically generate the em dash for each list item.

Hyphen Type" -" and use as is for both formatters. The nroff
formatter will print it as is. The troff formatter will
print a true hyphen.

Minus Type" \-" for a true minus sign regardless of for­
matter. The nroff formatter will ignore the "\". The
troff formatter will print a true minus sign (-).

MEMORANDUM MACROS

3.9 Trademark Striog

A trademark string "\ * (Tm" is available with mm. This places the
letters "TM" one-half line above the text that it follows. For example:

The
U niP Ius + \ * (Tm manual
is available from the library.

yields:

The UniPlus+ ™ manual is available from the library.

3.10 Use of Formatter Requests

Most formatter requests should not be used with mm because mm pro­
vides the corresponding formatting functions in a much more user­
oriented and surprise-free fashion than do the basic formatter requests.
However, some formatter requests are useful with mm, namely the fol­
lowing:

.af assign format

.br break

.ce center

.de define macro

.ds define string

.ft fill output lines

.hw hyphen word exceptions

.Is line spacing

.of no filling of output lines

.or number register define and set

.ox next file (does not return)

.rm remove macro

.rr remove register

.rs restore spacing

.so source file and return

.sp space

.ta tab stop settings

.ti temporary indent

.tl title

.tr translate

.! escape

6-17

MEMORANDUM MACROS

The .fp (font position), .lg (ligature mode), and .ss (space-character
size) requests are also sometimes useful for the troff formatter. Use of
other requests without fully understanding their implications very often
leads to disaster.

4. Paragraphs and Headings

4.1 Paragraphs

.P [type]

one or more lines of text.

The .P macro is used to control paragraph style.

4.1.1 Paragraph Indention

An indented or a nonindented paragraph is defined with the type argu­
ment:

type RESULT

o left justified
1 indent

In a left-justified paragraph; the first line begins at the left margin. In
an indented paragraph, the paragraph is indented the amount specified
in the Pi register (default value is 5 ens) For example, to indent para­
graphs by ten spaces in nroff the following is entered at the beginning
of the document input file:

.nr Pi 10

A document input file possesses a default paragraph type obtained by
specifying .P before each paragraph that does not follow a heading
{4.2}. Default paragraph type is controlled by the Pt number register.

• The initial value of Pt is 0, which provides left-justified para­
graphs.

• All paragraphs can be forced to be indented by inserting the fol­
lowing at the beginning of the document input file:

.nr Pt 1

• All paragraphs can be indented except after headings, lists, and
displays by entering the following at the beginning of the

6-18

document input file:

.nr Pt 2

MEMORANDUM MACROS

Both the Pi and Pt register values must be greater than zero for any
paragraphs to be indented.

Note: Values that specify indentation must be unscaled and are treated
as character positions, i.e., as a number of ens. In the nroff formatter,
an en is equal to the width of a character. In the troff formatter, an en
is the number of points (1 point = 1/72 of an inch) equal to half the
current point size.

Regardless of the value of Pt, an individual paragraph can be forced to
be left-justified or indented. The .P 0 macro request forces left
justification; .P 1 causes indentation by the amount specified by the
register Pi.

If .P occurs inside a list, the indent Of any) of the paragraph is added
to the current list indent {5}.

4.1.2 Numbered Paragraphs

Numbered paragraphs may be produced by setting the Np register to 1.
This produces paragraphs numbered within first level headings, e.g.,
1.01, 1.02, 1.03, 2.01, etc.

A different style of numbered paragraphs is obtained by using the .nP
macro rather than the .P macro for paragraphs. This produces para­
graphs that are numbered within second level headings .

. H 1 "FIRST HEADING"

.H 2 "Second Heading"

.nP
one or more lines of text

The paragraphs contain a "double-line indent" in which the text of the
second line is indented to be aligned with the text of the first line so
that the number stands out.

4.1.3 Spacing Between Paragraphs

The Ps number register controls the amount of spacing between para­
graphs. By default, Ps is set to 1, yielding one blank space in nroff,
one-half a vertical space in troff.

6-19

MEMORANDUM MACROS

4.2 Numbered Headings

.H level [heading-text] [heading-suffix]
zero or more lines of text

The level argument provides the numbered heading level. There are
seven heading levels; level 1 is the highest, level 7 is the lowest.

The heading-text argument is the text of the heading. If the heading
contains more than one word or contains spaces, the entire argument
must be enclosed in double quotes.

The heading-suffix argument may be used for footnote marks which
should not appear with heading text in the table of contents.

There is no need for a .P macro immediately after a .H or .HU {4.3}
because the .H macro also performs the function of the .P macro. Any
immediately following .P macro is ignored. It is, however, good prac­
tice to start every paragraph with a .P macro, thereby ensuring that all
________ _ _!.f' ___ 1 _ !_ : ... 1... D 4-1... .. ",. .. ,.,\.., "' _ : .. n rI.n..,·n'~.o. ... +
p4145111pll;:) UllIIU.lIlI1.Y U~5111 WILli 4 • .1. LIlIVU511UUL all "'IILII'" UV"Ull1"'IIL.

4.2.1 Default Headings

The effect of the .H macro varies according to the level argument.
First-level headings are preceded by two blank lines in nroff and one
vertical space in troff; all other levels are preceded by one blank line in
nroff and one-half a vertical space in troff. The following describes the
default effect of the level argument.

.H 1 heading-text

.H 2 heading-text

6-20

Produces a bold font heading, one point
size smaller than the text (troff only), fol­
lowed by a single blank line (nroff) or one­
half a vertical space (troff). The text that
follows begins on a new line and is indented
according to the current paragraph type.
Full capital letters can be used to make the
heading stand out.

Produces a bold font heading followed by a
single blank line (nroff) or one-half a

.H n heading-text

MEMORANDUM MACROS

vertical space (troff). The text that follows
begins on a new line and is indented
according to the current paragraph type.
Initial capitals can be used in the heading
text.

(n = 3, 4, 5, 6, or 7) Produces an under­
lined (nroff) or italicized (troff) heading
followed by two spaces The text that fol­
lows begins on the same line, Le., these are
run-in headings.

Appropriate numbering and spacing (horizontal and vertical) occur
even if the heading-text argument is omitted from a .H macro call.

Note: Users satisfied with the default appearance of headings may skip
to the section entitled "Unnumbered Headings" {431.

4.2.2 Altering Appearance

The user can modify the appearance of headings quite easily by setting
certain registers and strings at the beginning of the document input text
file. This permits quick alteration of a document's style because this
style-control information is concentrated in a few lines rather than
being distributed throughout the document.

4.2.2.1 Prespacing and Page Ejection

A first-level heading (.H 1) normally has two blank lines (nroff) or one
vertical space (troff) preceding it, and all other headings are preceded
by one blank line (nroff) or one-half a vertical space (troff). If a multi­
line heading were to be split across pages, it is automatically moved to
the top of the next page. Every first-level heading may be forced to the
top of a new page by inserting:

.nr Ej 1

at the beginning of the document input text file. Long documents may
be made more manageable if each section starts on a new page. Setting
the Ej (eject) register to a higher value causes the same effect for head­
ings up to that level, i.e., a page eject occurs if the heading level is less
than or equal to the Ej value.

6-21

MEMORANDUM MACROS

4.2.2.2 Spacing After Headings

Three registers control the appearance of text immediately following a
.H call. The registers are Hb (heading break level), Hs (heading space
level), and Hi (post-heading indent).

If the heading level is less than or equal to the value of Hb, a break
{3.I} occurs after the heading.

If the heading level is less than or equal to the value of Hs, a blank
line (nroff) or one-half a vertical space (troff) is inserted after the
heading.

If a heading level is greater than the value of Hb and also greater than
the value of Hs, then the heading (if any) is run into the following
text. These registers permit headings to be separated from the text in a
consistent way throughout a document while allowing easy alteration of
white space and heading emphasis. The default value for Hb and Hs is
2.

For any stand-alone heading, i.e., a heading not run into the following
t~vt ~lionrn~nt nf th~ n~vt lin~ nf nntnnt 1~ l'nntrnll~n hv thp Hi ... ,.,,6110. .. , ... &&Z,&&&.a.a"' ""a...,,~110. .. &.a, _ ... __ .. y_, __ .& &".a& ~ -J _

number register.

• If Hi is 0, text is left-justified.

• If Hi is 1 (the default value), text is indented according to the
paragraph type as specified by the Pt register {4 .1.1 }.

• If Hi is 2, text is indented to line up with the first word of the
heading itself so that the heading number stands out more clearly.

To cause a blank line (nroff) or one-half a vertical space (troff) to
appear after the first three heading levels, to have no run-in headings,
and to force the text following all headings to be left-justified (regard­
less of the value of PO, the following should appear at the beginning of
the document input text file:

6-22

.nr Hs 3

.nr Hb 7

.nr Hi 0

MEMORANDUM MACROS

4.2.2.3 Centered Headings

The He register can be used to obtain centered headings. A heading is
centered if its level argument is less than or equal to He and if it is also
a stand-alone heading. The He register is 0 initially (no centered head­
ings).

4.2.2.4 Bold, Italie, and Underlined Headings

4.2.2.4.1 Control by Level:

Any heading that is underlined by the' nroff formatter is italicized by
the troff formatter. The string HF (heading font) contains seven codes
that specify fonts for heading levels 1 through 7. Legal codes, code
interpretations, and defaults for HF codes are:

HF CODE DEFAULT
FORMATTER

HF CODE 1 2 3

nroff Roman underline bold 3 3 2 2 222
troff Roman italic bold 3 3 2 2 222

Thus, levels 1 and 2 are bold; levels 3 through 7 are underlined by the
nroff formatter and italicized by the troff formatter. The user may reset
HF as desired. Any value omitted from the right end of the list is
assumed to be a 1. The following request would result in levels 1
through 5 in bold font and levels 6 and 7 in Roman font:

.ds HF 3 3 333

4.2.2.4.2 NROFF Underlining Style:

The nroff formatter underlines in either of two styles:

• The normal style (.ul request) is to underline only letters and
digits.

• The continuous style (.eu request) underlines all characters
including spaces.

By default, mm attempts to use the continuous style on any heading
that is to be underlined and is short enough to fit on a single line. If a
heading is to be underlined but is longer than a single line, the heading
is underlined in the normal style (only letters and digits).

6-23

MEMORANDUM MACROS

All underlining of headings can be forced to the normal style by using
the - rUl flag when invoking the nroff formatter {2.4}.

4.2.2.4.3 Heading Point Sizes:

The user may specify the desired point size for each heading level with
the HP string (for use with the troff formatter only) .

. ds HP [psi] [ps2] [ps3] [ps4] [ps5] [ps6] [ps7]

By default, the text of headings (.H and .HU) is printed in the same
point size as the body except that bold stand-alone headings are printed
in a size one point smaller than the body. The string HP, similar to
the string HF, can be specified to contain up to seven values,
corresponding to the seven levels of headings. For example:

.ds HP 12 12 10 10 10 10 10

specifies that the first- and second-level headings are to be printed in
12-point type with the remainder printed in 10-point. Specified values
may also be relative point-size changes, for example:

.ds HP +2 +2 -1 -1

If absolute point sizes are specified, then absolute sizes will be used
regardless of the point size of the body of the document. If relative
point sizes are specified, then point sizes for headings will be relative to
the point size of the body even if the latter is changed.

Null or zero values imply that default size will be used for the
corresponding heading level.

Note: Only the point size of the headings is affected. Specifying a large
point size without providing increased vertical spacing (via .HX and/or
.HZ) may cause overprinting.

4.2.2.5 Marking Styles - Numerals and Concatenation

.HM [argl] ... [arg7]

The registers named HI through H7 are used as counters for the seven
levels of headings. Register values are normally printed using Arabic
numerals. The .HM macro (heading mark style) allows this choice to
be overridden thus providing "outline" and other document styles.

6-24

MEMORANDUM MACROS

This macro can have up to seven arguments; each argument is a string
indicating the type of marking to be used. Legal arguments and their
meanings are:

ARGUMENT

1
0001

A
a
I
i

omitted
illegal

MEANING

Arabic (default for all levels)
Arabic with enough leading zeroes

to get the specified number of digits
Uppercase alphabetic
Lowercase alphabetic
Uppercase Roman
Lowercase Roman
Interpreted as 1 (Arabic)
No effect

By default, the complete heading mark for a given level is built by con­
catenating the mark for that level to the right of all marks for all levels
of higher value. To inhibit the concatenation of heading level marks,
i.e., to obtain just the current level mark followed by a period, the
heading mark type register (Ht) is set to 1. For example, input for a
commonly used "outline" style is:

.HM I A 1 a i

.nr Ht 1

4.3 Unnumbered Headings

.HU heading-text

The .HU macro is a special case of .H; it is handled in the same way as
.H except that no heading mark is printed. In order to preserve the
hierarchical structure of headings when .H and .HU calls are inter­
mixed, each .HU heading is considered to exist at the level given by
register Hu, whose initial value is 2. Thus, in the normal case, the
only difference between:

.HU heading-text

and

.H 2 heading-text

is the printing of the heading mark for the latter. Both macros have
the effect of incrementing the numbering counter for level 2 and

6-25

MEMORANDUM MACROS

resetting to zero the counters for levels 3 through 7. Typically, the
value of Hu should be set to make unnumbered headings (if any) be
the lowest-level headings in a document.

The .HU macro can be especially helpful in setting up appendices and
other sections that may not fit well into the numbering scheme of the
main body of a document {14.2.1}.

4.4 Headings and Table of Contents

The text of headings and their corresponding page numbers can be
automatically collected . for a table of contents. This is accomplished by
doing the following:

• specifying in the contents level register, CI, what level headings
are to be saved

• invoking the • TC macro {I 0.1} at the end of the document.

Any heading whose level is less than or equal to the value of the CI
register is saved and later displayed in the table of contents. The
default value for the CI register is 2, i.e., the first two levels of head­
ings are saved.

Due to the way headings are saved, it is possible to exceed the
formatter's storage capacity, particularly when saving many levels of
many headings, while also processing displays {7} and footnotes {8}. If
this happens, the "Out of temp file space" formatter error message
(Table 16.0) will be issued; the only remedy is to save fewer levels
and/or to have fewer words in the heading text.

4.5 First-Level Headings and Page Numbering Style

By default, pages are numbered sequentially at the top of the page. For
large documents, it may be desirable to use page numbering of the
"section-page" form where "section" is the number of the current
first-level heading. This page numbering style can be achieved by
specifying the -rN3 or -rN5 flag on the command line {9.3}. As a
side effect, this also has the effect of setting Ej to 1, which causes each
first-level section to begin on a new page. In this style, the page
number is printed at the bottom of the page so that the correct section
number is printed.

6-26

MEMORANDUM MACROS

4.6 User Exit Macros

Note: This paragraph is intended primarily for users who are accus­
tomed to writing formatter macros .

. HX die vel ,level heading-text

.HY die vel ,level heading-text

.HZ dlevel ,level heading-text

The .HX, .HY, and .HZ macros are the means by which the user
obtains a final level of control over the previously described heading
mechanism. These macros are not defined by mm, they are intended
to be defined by the user. The.H macro call invokes .HX shortly
before the actual heading text is printed; it calls .HZ as its last action.
After .HX is invoked, the size of the heading is calculated. This pro­
cessing causes certain features that may have been included in .HX,
such as .ti for temporary indent, to be lost. After the size calculation,
.HY is invoked so that the user may respecify these features. All
default actions occur if these macros are not defined. If .HX, .HY, or
.HZ are defined by the user, user-supplied definition is interpreted at
the appropriate point. These macros can therefore influence handling
of all headings because the .HU macro is actually a special case of the
.H macro.

If the user originally invoked the .H macro, then the derived level
argument (dleve!) and the real level argument (rleve!) are both equal to
the level given in the .H invocation. If the user originally invoked the
.HU macro {4.3}, dlevel is equal to the contents of register H u, and
r1evel is O. In both cases, heading-text is the text of the original invoca­
tion.

By the time .H calls .HX, it has already incremented the heading
counter of the specified level, produced blank lines (vertical spaces) to
precede the heading {4.2.2.l}, and accumulated the "heading mark",
i.e., the string of digits, letters, and periods needed for a numbered
heading. When .HX is called, all user-accessible registers and strings
can be referenced, as well as the following:

string }o If r1evel is nonzero, this string contains the "heading
mark". Two unpaddable spaces (to separate the mark
from the heading) have been appended to this string.
If r1evel is 0, this string is null.

6-27

MEMORANDUM MACROS

register ;0 This register indicates the type of spacing that is to fol­
low the heading {4.2.2.2}.
A value of 0 means that the heading is run-in.
A value of 1 means a break (but no blank line) is to
follow the heading.
A value of 2 means that a blank line (nroff) or one­
half a vertical space (troff) is to follow the heading.

string }2 If "register ;0" is 0, this string contains two unpadd­
able spaces that will be used to separate the (run-in)
heading from the following text.
If "register ;0" is nonzero, this string is null.

register ;3 This register contains an adjustment factor for a .ne
request issued before the heading is actually printed.
On entry to .HX, it has the value 3 if dlevel equals 1,
and a value of 1 otherwise. The .ne request is for the
following number of lines: the contents of the "regis­
ter ;0" taken as blank lines (nroff) or halves of vertical
space (troff) plus the contents of "register ;3" as
blank lines (nroff) or halves of vertical space (troff)
plus the number of lines of the heading.

The user may alter the values of }O, }2, and ;3 within .HX. The fol­
lowing are examples of actions that might be performed by defining
.HX to include the lines shown:

• Change first-level heading mark from format n. to n.O:

.if\\$I=1 .ds}O \\n(Hl.O\<sp>\<sp>

(where < sp> stands for a space)

• Separate run-in heading from the text with a period and two
unpaddable spaces:

.if\\n(;O=O .ds}2 .\<sp>\<sp>

• Assure that at least 15 lines are left on the page before printing a
first-level heading:

.if\\$I=1 .nr;3 05-\\n(;0)v

• Add three additional blank lines before each first-level beading:

.if \ \ $1 = 1 . sp 3

6-28

MEMORANDUM MACROS

• Indent level 3 run-in headings by five spaces:

.if \\$1 =3 .ti 5n

If temporary strings or macros are used within .HX, their names should
be chosen with care {14.1}.

When the .HY macro is called after the .ne is issued, certain features
requested in .HX must be repeated. For example:

.deHY

.if \\ $1 = 3 . ti 5 n

The .HZ macro is called at the end of .H to permit user-controlled
actions after the heading is produced. In a large document, sections
may correspond to chapters of a book; and the user may want to change
a page header or footer, e.g.:

.de HZ

.if \\$1 = 1 .PF "Section \\$3"

4.7 Hints for Large Documents

A large document is often organized for convenience into one input
text file per section. If the files are numbered, it is wise to use enough
digits in the names of these files for the maximum number of sections,
i.e., use suffix numbers 01 through 20 rather than 1 through 9 and 10
through 20.

Users often want to format individual sections of long documents. To
do this with the correct section numbers, it is necessary to set register
HI to one less than the number of the section just before the
corresponding .H I call. For example, at the beginning of Part 5, insert

.nr HI 4

It will also be necessary to set the correct page number by using the .pn
request or the - rP n flag.

6-29

MEMORANDUM MACROS

Note: This is not good practice. It defeats the automatic
(re) numbering of sections when sections are added or deleted. Such
lines should be removed as soon as possible.

5. Lists

This part describes different styles of lists; automatically numbered and
alphabetized lists, bullet lists, dash lists, lists with arbitrary marks, and
lists starting with arbitrary strings, i.e., with terms or phrases to be
defined.

5.1 List Spacing

Spacing at the beginning of the list and between items can be
suppressed by setting the list space register (Ls). The Ls register is set
to the innermost list level for which spacing is done. For example:

.nr Ls 0

specifies that no spacing will occur around any list items. The default
value for Ls is six (which is the maximum list nesting level).

5.2 List Macros

In order to avoid repetitive typing of arguments to describe the style or
appearance of items in a list; mm provides a convenient way to specify
lists. All lists share the same overall structure and are composed of the
following basic parts:

• A list-initialization macro (.AL .DL, .DL, .ML, .RL, or . VL)
determines the style of the list: line spacing, indentation, marking
with special symbols, and numbering or alphabetizing of list
items.

• One or more list-item macros (.LI) identifies each unique item to
the system. It is followed by the actual text of the corresponding
list item.

• The list-end macro (.LE) identifies the end of the list. It ter­
minates the list and restores the previous indentation.

Lists may be nested up to six levels. The list-initialization macro saves
the previous list status (indentation, marking, style, etc.); the .LE
macro restores it.

6-30

MEMORANDUM MACROS

With this approach, the format of a list is specified only once at the
beginning of the list. In addition, by building onto the existing struc­
ture, users may create their own customized sets of list macros with
relatively little effort ({5.12} and (5.13}).

5.2.1 List-Initialization Macros

List-initialization macros are implemented as calls to the more basic
.LD macro {5.12}. They are:

.AL Automatically Numbered or Alphabetized List

.DL Bullet List

.DL Dash List

.ML Marked List

.RL Reference List

. VL Variable-Item List

5.3 Automatically Numbered or Alphabetized List

.AL [type] [text-indent] [1]

The .AL macro is used to begin sequentially numbered or alphabetized
lists. If there are no arguments, the list is numbered; and text is
indented by Li (default is six) spaces from "the indent in force when the
.AL is called. This leaves room for a space, two digits, a period, and
two spaces before the text. Values that specify indentation must be
unscaled and are treated as "character positions", i.e., number of ens.
(The string .AL A 5 is used to initialize the following list.)

A. The type argument may be given to obtain a different type of
sequencing. Its value indicates the first element in the sequence
desired. If type argument is omitted or null, the value 1 is
assumed.

ARGUMENT

1
A
a
I

INTERPRETA TION

Arabic (default for all levels)
Uppercase alphabetic
Lowercase alphabetic
Uppercase Roman
Lowercase Roman

B. If text-indent argument is non-null, it is used as the number of
spaces from the current indent to the text, i.e., it is used instead
of the Li register for this list only. If text-indent argument is null,
the value of Li will be used.

6-31

MEMORANDUM MACROS

c. If the third argument is given, a blank line (nroff) or one-half a
vertical space (troff) will not separate items in the list. A blank
line will occur before the first item however.

5.4 Bullet List

.BL {text-indent] [1]

The .BL macro begins a bullet list. Each list item is marked by a bullet
(.) followed by one space. (The string .BL 5 is used to initialize the
following list.)

• If the text-indent argument is specified (non-null), it overrides the
default indentation which is the amount of paragraph indentation
as given in the Pi register {4.1}. In the default case, the text of a
bullet list lines up with the first line of indented paragraphs.

• If the second argument is specified, no blank lines will separate
items in the list.

5.5 Dash List

.DL [text-indent] [1]

The .DL macro begins a dash list. Each list item is marked by a dash
(-) followed by one space. (The string .DL 5 is used to initialize the
following list.)

If the text-indent argument is specified (non-null), it overrides the
default indentation which is the amount of paragraph indentation
as given in the Pi register {4.I}. In the default case, the text of a
dash list lines up with the first line of indented paragraphs.

If the second argument is specified, no blank lines will separate
items in the list.

5.6 Marked List

.ML mark [text-indent] [1]

The .ML macro is much like .BL and .DL macros but expects the user
to specify an arbitrary mark which may consist of more than a single
character. (The string .ML \ (sq 5 is used to initialize the following

6-32

MEMORANDUM MACROS

list.)

o Text is indented text-indent spaces if the second argument is
specified (non-null); otherwise, the text is indented one more
space than the width of mark.

o If the third argument is specified, no blank lines will separate
items in the list.

Note: The mark must not contain ordinary (paddable) spaces because
alignment of items will be lost if the right margin is justified {3.3}.

5.7 Reference List

.RL [text-indent} [1]

A .RL macro call begins an automatically numbered list in which the
numbers are enclosed by square brackets «()). (The string .RL 5 is
used to initialize the following list.)

[1] If text-indent argument is specified (non-null), it is used as the
number of spaces from the current indent to the text, i.e., it is
used instead of Li for this list only. If text-indent argument is
omitted or null, the value of Li is used.

[2] If the second argument is specified, no blank lines will separate
the items in the list.

5.8 Variable-Item List

. VL text-indent [mark-indent} [1]

When a list begins with a .VL macro, there is effectively no current
mark; it is expected that each .LI will provide its own mark. This form
is typically used to display definitions of terms or phrases.

• Text-indent provides the distance from current indent to beginning
of the text.

• Mark indent produces the number of spaces from current indent
to beginning of the mark, and it defaults to 0 if omitted or null.

• If the third argument is specified, no blank lines will separate
items in the list.

An example of • VL macro usage is shown below:

6-33

MEMORANDUM MACROS

.VL 20 5

.LI "First\ Mark"
This is the first mark specified for this list .
. LI "Second\ Mark"
.br
This is the second mark specified for this list.
The \ffi.br\fR request causes a break so that this
text will appear one line below the mark .
. LI "Third\ Mark\ Longer\ Than\ Indent"
This item shows the effect of a long mark;
one space separates the mark from the text.
.LI "\ "
This item has a nonprinting mark and effectively
produces a list item that is indented .
. LI
This item has an omitted mark and produces a "hanging indent".
The first line of text is at the left margin and
the second is indented .
. LE

when formatted yields:

First Mark

Second Mark

This is the first mark specified for this list.

This is the second mark specified for this list.
The .br request causes a break so that this text
appears one line below the mark.

Third Mark Longer Than Indent This item shows the effect of a
long mark; one space separates the mark from
the text.

This item has a non printing mark (an unpaddable
space) and effectively produces a list item that is
indented.

This item has an omitted mark and produces a "hanging indent".
The first line of text is at the left margin and the
second is indented.

Note: The mark must not contain ordinary (paddable) spaces because
alignment of items will be lost if the right margin is justified {3.3}.

6-34

MEMORANDUM MACROS

5.9 List-Item Macro

.LI [mark] [1]
one or more lines of text that make up the list item.

The .LI macro is used with all lists and for each list item. It normally
causes output of a single blank line (oroff) or one-half a vertical space
(troff) before its list item although this may be suppressed.

• If no arguments are given, .LI labels the item with the current
mark (except in • VL lists) which is specified by the most recent
list-initialization macro.

• If a single argument is given, that argument is output instead of
the current mark.

• If two arguments are given, the first argument becomes a prefix to
the current mark thus allowing the user to emphasize one or more
items in a list. One unpaddable space is inserted between the
prefix and the mark.

For example:

.BL 5

.LI
This is a simple bullet item .
. LI +
This replaces the bullet with a "plus" .
. LI + I
This uses a "plus" as prefix to the bullet.
.LE

when formatted yields:

• This is a simple bullet item.

+ This replaces the bullet with a "plus".

+ • This uses a "plus" as prefix to the bullet.

Note: The mark must not contain ordinary (paddable) spaces because
alignment of items will be lost if the right margin is justified {3.3}.

If the current mark (in the current list) is a null string and the first
argument of .LI is omitted or null, the resulting effect is that of a
"hanging indent", i.e., the first line of the following text is moved to

6-35

MEMORANDUM MACROS

the left starting at the same place where mark would have started {5.8}.

5.10 List-End Macro

.LE [1]

The .LE macro restores the state of the list to that existing just before
the most recent list-initialization macro call. If the optional argument is
given, the .LE outputs a blank line (nroff) or one-half a vertical space
(troff) . This option should generally be used only when the .LE is fol­
lowed by running text but not when followed by a macro that produces
blank lines of its own such as the .P or .H macro.

The .H and .HU macros automatically clear all list information. The
user may omit the .LE macros that would normally occur just before
either of these macros and not receive the "LE:mismatched" error
message. Such a practice is not recommended because errors will occur
if the list text is separated from the heading at some later time (e.g., by
insertion of text) .

5.11 Example of Nested Lists

An example of input for the several lists and the corresponding output
is shown below. The .AL and .DL macro cans {5.3, 5.5j coniained
therein are examples of list-initialization macros. Input text is:

6-36

MEMORANDUM MACROS

.ALA 5

.LI
This is automatically alphabetized list item A.
This list item has an indentation of 5 ens .
. AL
.LI
This is automatically numbered list item 1.
This list item also has an indentation of 5 ens .
. DL
.LI
This is a dash list item .
. LI + 1
This is another dash item in the same list
as the above item with a "plus" as prefix.
This is the last item in the dash list.
.LE
.LI
This is item 2 in the automatically numbered list.
This is the last item in the automatically numbered list.
.LE
.LI
This is item B in the automatically alphabetized list.
This is the last item in the automatically numbered list.
.LE

The output is:

A. This is automatically alphabetized list item A. This list item has
an indentation of 5 ens.

1. This is automatically numbered list item 1. This list item
also has an indentation of 5 ens.

This is a dash list item.

+ - This is another dash item in the same list as the above item
with a "plus" as prefix. This is the last item in the dash list.

2. This is item 2 in the automatically numbered list. This is
the last item in the automatically numbered list.

B. This is item B in the automatically alphabetized list. This is the
last item in the automatically numbered list.

6-37

MEMORANDUM MACROS

5012 List-Begin Macro and Customized Lists

oLB text-indent mark-indent pad type [mark] [LI-space] [LB-space]

List-initialization macros described above suffice for almost all cases.
However, if necessary, the user may obtain more control over the lay­
out of lists by using the basic list-begin macro (oLB). The oLB macro
is used by the other list-initialization macros. Its arguments are as fol­
lows:

• The text-indent argument provides the number of spaces that text
is to be indented from the current indent. Normally, this value is
taken from the Li register (for automatic lists) or from the Pi
register (for bullet and dash lists).

• The combination of mark-indent and pad arguments determines
the placement of the mark. The mark is placed within an area
(called mark area) that starts mark-indent spaces to the right of
the current indent and ends where the text begins (i.e., ends text­
indent spaces to the right of the current indent). The mark-indent
argument is typically O.

• Within the mark area, the mark is left justified if the pad argu­
ment is O. If pad is a number n (greater than 0) then n blanks
are appended to the mark; the mark-indent value is ignored. The
resulting string immediately precedes the text. The mark is
effectively right justified pad spaces immediately to the left of
text.

• Arguments type and mark interact to control the type of marking
used. If type is 0, simple marking is performed using the mark
character{s) found in the mark argument. If type is greater than
0, automatic numbering or alphabetizing is done; and mark is
then interpreted as the first item in the sequence to be used for
numbering or alphabetizing, i.e., it is chosen from the set (I, A,
a, I, n as in {5.3}. This is summarized in the following table:

ARGUMENT
RESULT

type mark
0 omitted hanging indent
0 string string is the mark

>0 omitted Arabic numbering
>0 one of: automatic numbering or

1, A, a, I, i alphabetic sequencing

6-38

MEMORANDUM MACROS

Each nonzero value of type from one to six selects a different way of
displaying the marks. The following table shows the output appearance
for each value of type:

VALUE APPEARANCE
1 x.
2 x)
3 (x)
4 [x]
5 <x>
6 { x}

where x is the generated number or letter ..

Note: The mark must not contain ordinary (paddable) spaces because
alignment of items will be lost if the right margin is justified {3.3}.

• The LI-space argument gives the number of blank lines (nroff) or
halves of a vertical space «roft') that should be output by each .LI
macro in the list. If omitted, LI-space defaults to 1; the value 0
can be used to obtain compact lists. If LI.space is greater than 0,
the .LI macro issues a .ne request for two lines just before print­
ing the mark.

• The LB-space argument is the number of blank lines (nroff) or
half vertical spaces (troft') to be output by ~LB itself. If omitted
LB-space defaults to O.

There are three combinations of LI-space and LB-space:

• The normal case is to set LI-space to 1 and LB-space to 0 yielding
one blank line (nroft') or one-half a vertical space (troft') before
each item in the list; such a list is usually terminated with a .LE 1
macro to end the list with a blank line (nroft') or one-half a verti­
cal space (troft').

• For a more compact list, LI-space is set to 0, LB-space is set to 1,
and the .LE 1 macro is used at the end of the list. The result is a
list with one blank line (nroft') or one-half a vertical space (troft')
before and after it.

• If both LI-space and LB-space are set to 0 and the .LE macro is
used to end the list, a list without any blank lines will result.

6-39

MEMORANDUM MACROS

Section 5.13 shows how to build upon the supplied list of macros to
obtain other kinds of lists.

5.13 User-Defined List Structures

Note: This part is intended for users accustomed to writing formatter
macros.

If a large document requires complex list structures, it is useful to
define the appearance for each list level only once instead of having to
define the appearance at the beginning of each list. This permits con­
sistency of style in a large document. A generalized list-initialization
macro might be defined in such a way that what the macro does
depends on the list-nesting level in effect at the time the macro is
called. Levels 1 through 5 of the lists to be formatted may have the
following appearance:

A.

[1]

•
a)

+

The following code defines a macro (.aL) that always begins a new list
and determines the type of list according to the current list level. To
understand it, the user should know that the number register :g is used
by the mm list macros to determine the current list level; it is 0 if there
is no currently active list. Each call to a list-initialization macro incre­
ments :g, and each .LE call decrements it.

6-40

\" register g is used as a local temporary to save
\" :g before it is changed below
.de aL
.nr g \\n(:g
.if \\ng=O .AL A
.if \\ng = 1 .LB \\n (Li 0 1 4
.if \\ng = 2 .BL
.if \\ng=3 .LB \\n(Li 0 2 2 a
.if \\ng=4 .ML +

\" produces an A .
\" produces a [1]
\" produces a bullet
\" produces an a)
\" produces a +

MEMORANDUM MACROS

This macro can be used (in conjunction with .LI and .LE) instead of
.AL, .RL, .DL, .LD, and .ML. For example, the following input:

.al

.LI
First line .
. aL
.LI
Second line .
. LE
.LI
Third line .
. LE

when formatted yields

1. First line.

n] Second line.

2. Third line.

There is another approach to lists that is similar to the .H mechanism.
List-initialization, as well as the .LI and the .LE macros, are all
included in a single macro. That macro (defined as .bL below) requires
an argument to tell it what level of item is required; it adjusts the list
level by either beginning a new list or setting the list level back to a
previous value, and then issues a .LI macro call to produce the item:

.de bL

.ie \\n(.$.nr g \\$1

.el .nr g \ \n(:g

.if \\ng-\\n(:g> 1 .)D

.\"

.if\\ng>\\n(:g \{.aL \\ng-l

.nr

.\"

.if \ \n(:g> \ \ng .Le \ \ng

\" if there is an argument, that
is the level
\" if no argument, use current
level
\" **ILLEGAL SKIPPING OF
LEVEL

increasing level by more
than 1
\" if g > :g, begin new list
\" and reset g to current level

CaL changes g)
\" if :g > g, prune back to
correct level

6-41

MEMORANDUM MACROS

.\" if:g = g, stay within current list
.LI \" in all cases, get out an item

For .bL to work, the previous definition of the .aL maCH> must be
changed to obtain the value of g from its argument rather than from :g.
Invoking .bL without arguments causes it to stay at the current list
level. The .LC (list clear) macro removes list descriptions until the
level is less than or equal to that of its argument. For example, the .H
macro includes the call ".LC 0". If text is to be resumed at the end of
a list, insert the call ".LC 0" to clear out the lists completely. The
example below illustrates the relatively small amount of input needed
by this approach. The input text

The quick brown fox jumped over the lazy dog's back .
. bL 1
First line .
. bL 2
Second line .
. bL 1
Third line .
. bL

.LC 0
Fifth line.

when formatted yields

The quick brown fox jumped over the lazy dog's back.

A. First line.

[1] Second line.

B. Third line.

C. Fourth line.
Fifth line.

6. Memorandum and Released-Paper Style Documents

Note: Some of the information in this section is applicable for Bell
Laboratories only. However, most of the features discussed here can
be tailored to specific needs.

MEMORANDUM MACROS

One use of the Memorandum Macros is for the preparation of
memoranda and released-paper documents which have special require­
ments for the first page and for the cover sheet. Data needed (title,
author, date, case numbers, etc.) is entered the same for both styles; an
argument to the .MT macro indicates which style is being used.

6.1 Sequence of Beginning Macros

Macros, if present, must be given in the following order:

.ND new-date
· TL [charging-case] [filing-case]
one or more lines of text
.AF [company-name]
.AU name [initials] [/oe] [dept] [ext] [room] [arg] [arg]
.AT [title] ...
· TM [number] ...
. AS [arg] [indent]

one or more lines of abstract text
.AE
.NS [arg]
one or more lines of "Copy to" notation
.NE
.OK [keyword] ...
. MT [type] [addressee]

The only required macros for a memorandum for file or a released­
paper document are .TL, .AU, and .MT; all other macros (and their
associated input lines) may be omitted if the features are not needed.
Once .MT has been invoked, none of the above macros (except .NS
and .NE) can be reinvoked because they are removed from the table of
defined macros to save memory space.

If neither the memorandum nor released-paper style is desired, the
.TL, .AU, .TM, .AE, .OK, .MT, .ND, and .AF macros should be
omitted from the input text. If these macros are omitted, the first page
will have only the page header followed by the body of the document.

6.2 Title

· TL [charging-case] [filing-easel
one or more lines of title text

6-43

MEMORANDUM MACROS

Arguments to the . TL macro are the charging-case number(s) and
filing-case number(s).

• The charging-case argument is the case number to which time was
charged for the development of the project described in the
memorandum. Multiple charging-case numbers are entered as
"subarguments" by separating each from the previous with a
comma and a space and enclosing the entire argument within dou­
ble quotes .

• The filing-case argument is a number under which the memoran­
dum is to be filed. Multiple filing case numbers are entered simi­
larly. For example:

.TL "12345, 67890" 987654321
Construction of a Table of All Even Prime Numbers

The title of the memorandum or released-paper document follows the
. TL macro and is processed in fill mode. The .br request may be used
to break the title into several lines as follows:

.TL 12345
First Title Line
.br
\!.hr
Second Title Line

On output, the title appears after the word "Subject" in the memoran­
dum style and is centered and bold in the released-paper document
style.

If only a charging case number or only a filing case number is given, it
will be separated from the title in the memorandum style by a dash and
will appear on the same line as the title. If both case numbers are
given and are the same, then "Charging and Filing Case" followed by
the number will appear on a line following the title. If the two case
numbers are different, separate lines for "Charging Case" and "File
Case" will appear after the title.

6-44

MEMORANDUM MACROS

6.3 Authors

.AU name [initials] [/oe] [dept] [ext] [room] [arg] [arg]

.AT [title] ...

The .AU macro receives as arguments information that describes an
author. If any argument contains blanks, that argument must be
enclosed within double quotes. The first six arguments must appear in
the order given. A separate .A U macro is required for each author.

The .AT macro is used to specify the author's title. Up to nine argu­
ments may be given. Each will appear in the signature block for
memorandum style {6.11} on a separate line following the signer's
name. The .AT must immediately follow the .AU for the given author.
For example:

.AU "S. J. Jones" JJJ PY 9876 5432 1Z-234

.A T Director "Materials Research Laboratory"

In the "From" portion in the memorandum style, the author's name is
followed by location and department number on one line and by room
number and extension number on the next line. The "x" for the
extension is added automatically. Printing of the location, department
number, extension number, and room number may be suppressed on
the first page of a memorandum by setting the register Au to 0; the
default value for Au is 1. Arguments 7 through 9 of the .A U macro, if
present, will follow this normal author information in the "From" por­
tion, each on a separate line. These last three arguments may be used
for organizational numbering schemes, etc. For example:

.AU "S. P. Lename" SPL IH 9988 7766 5H-444 9876-543210.01MF

The name, initials, location, and department are also used in the signa­
ture block. Author information in the "From" portion, as well as
names and initials in the signature block will appear in the same order
as the .A U macros.

Note: Names of authors in the released-paper style are centered below
the title. Following the name of the last author, "Bell Laboratories"
and the location are centered. The paragraph on memorandum types
{6.7} contains information regarding authors from different locations.

6-45

MEMORANDUM MACROS

6.4 TM Numbers

. TM [number] ...

If the memorandum is a technical memorandum, the TM numbers are
supplied via the . TM macro. Up to nine numbers may be specified.
For example:

.TM 7654321 77777777

This macro call is ignored in the released-paper and external-letter
styles {6.7}.

6.5 Abstract

.AS [arg] lindent]
text of abstract
.AE

If a memorandum has an abstract, the input is identified with the .AS
(abstract start) and .AE (abstract end) delimiters. Abstracts are printed
on page 1 of a document and/or on its cover sheet. There are three
styles of cover sheet:

• released paper

• technical memorandum

• memorandum for file (also used for engineer's notes, memoranda
for record, etc.)

Cover sheets for released papers and technical memoranda are obtained
by invoking the .CS macro {lO.2}.

In released-paper style (first argument of the .MT macro {6.7} is 4) and
in technical memorandum style if the first argument of .AS is:

o - Abstract will be printed on page 1 and on the cover sheet
(if any).

1 - Abstract will appear only on the cover sheet (if any).

In memoranda for file style and in all other documents (other than
external letters), if the first argument of .AS is:

6-46

o - Abstract will appear on page 1 and there will be no cover
sheet printed.

MEMORANDUM MACROS

2 - Abstract will appear only on the cover sheet which will be
produced automatically (i.e., without invoking the .CS
macro).

It is not possible to get either an abstract or a cover sheet with an
external letter (first argument of the .MT macro is 5).

Notations such as a "Copy to" list {6.11.2} are allowed on memoran­
dum for file cover sheets; the .NS and .NE macros must appear after
the .AS 2 and .AE macros. Headings {4.2, 4.3} and displays {7} are not
permitted within an abstract.

The abstract is printed with ordinary text margins; an indentation to be
used for both margins can be specified as the second argument of .AS.
Values that specify indentation must be unsealed and are treated as
"character positions", i.e., as the number of ens.

6.6 Other Keywords

.OK [keyword] ...

Topical keywords should be specified on a technical memorandum
cover sheet. Up to nine such keywords or keyword phrases may be
specified as arguments to the .OK macro; if any keyword contains
spaces, it must be enclosed within double quotes.

6.7 Memorandum Types

.MT [type] [addressee]

The .MT macro controls the format of the top part of the first page of a
memorandum or of a released-paper document and the format of the
cover sheets. The type arguments and corresponding values are:

type

""
o

none
1
2
3
4

VALUE

no memorandum type printed
no memorandum type printed
MEMORANDUM FOR FILE
MEMORANDUM FOR FILE
PROGRAMMER'S NOTES
ENGINEER'S NOTES
released-paper style

6-47

MEMORANDUM MACROS

5 external-letter style
" string" string (enclosed in quotes)

If the type argument indicates a memorandum style document, the
corresponding statement indicated under "VALUE" will be printed
after the last line of author information. If type is longer than one
character, then the string, itself, will be printed. For example:

.MT "Technical Note #5"

A simple letter is produced by calling .MT with a null (but not omit­
ted) or 0 argument.

The second argument to .MT is the name of the addressee of a letter.
If present, that name and the page number replace the normal page
header on the second and following pages of a letter. For example:

.MT 1 "Steve Jones"

produces

Steve Jones - 2

The addressee argument may not be used if the first argument is 4
(released-paper style document).

The released-paper style is obtained by specifying

.MT 4 [1]

This results in a centered, bold title followed by centered names of
authors. The location of the last author is used as the location follow­
ing "Bell Laboratories" (unless the .AF macro specifies a different
company) . If the optional second argument to .MT 4 is given, then the
name of each author is followed by the respective company name and
location. Information necessary for the memorandum style document
but not for the released-paper style document is ignored.

If the released-paper style document is utilized, most BTL location
codes are defined as strings that are the addresses of the corresponding
BTL locations. These codes are needed only until the .MT macro is
invoked. Thus, following the .MT macro, the user may reuse these
string names. In addition, the macros for the end of a memorandum
{6.11} and their associated lines of input are ignored when the

6-48

MEMORANDUM MACROS

released-paper style is specified.

Authors from non-BTL locations may include their affiliations in the
released-paper style by specifying the appropriate .AF macro {6.9} and
defining a string (with a 2-character name such as ZZ) for the address
before each .A U. For example:

.TL
A Learned Treatise
.AF "Getem Inc."
.ds ZZ "22 Maple A venue, Sometown 09999"
.AU "F. Swatter" "" ZZ
.AF "Bell Laboratories"
.AU "Sam P. Lename" "" CB
.MT 41

In the external-letter style document (.MT 5), only the title (without
the word "Subject") and the date are printed in the upper left and
right corners, respectively, on the first page. It is expected that pre­
printed stationery will be used with the company logo and address of
the author.

6.8 Date Changes

.ND new-date

The .ND macro alters the value of the string DT, which is initially set
to produce the current date. If the argument contains spaces, it must
be enclosed within double quotes.

6.9 Alternate First-Page Format

.AF [company-name]

An alternate first-page format can be specified with the .AF macro.
The words "Subject", "Date", and "From" Gn the memorandum
style) are omitted and an alternate company name is used.

If an argument is given, it replaces "Bell Laboratories" without
affecting other headings. If the argument is null, "Bell Laboratories" is
suppressed; and extra blank lines are inserted to allow room for

6-49

MEMORANDUM MACROS

stamping the document with a Bell System logo or a Bell Laboratories
stamp.

The .AF with no argument suppresses "Bell Laboratories" and the
"Subject/Date/From" headings, thus allowing output on preprinted
stationery. The use of .AF with no arguments is equivalent to the use
of -rA1 {2.4}, except that the latter must be used if it is necessary to
change the line length and/or page offset (which default to 5.8i and li,
respectively, for preprinted forms). The command line options - rOk
and -rWk {2.4} are not effective with .AF. The only .AF use
appropriate for the troff formatter is to specify a replacement for "Bell
Laboratories" .

The command line option -rEn {2.4} controls the font of the
"Subject/Date/From" block.

6.10 Example

Input text for a document may begin as follows:

.TL
MM\ * (EM Memorandum Macros
.AU "D. W. Smith" DWS PY

.AU "E. C. Pariser (January 1980 Revision)" ECP PY

.AU "N. W. Smith (June 1980 Revision)" NWS PY

.MT4

Figure 16.A at the end of this chapter shows the input text file and
both the nroff and troff formatter outputs for a simple letter.

6.11 End of Memorandum Macros

At the end of a memorandum document (but not of a released-paper
document), signatures of authors and a list of notations can be
requested. The following macros and their input are ignored if the
released-paper style document is selected.

6.11.1 Signature Block

.FC [closing]

.SG [arg] [1]

6-50

MEMORANDUM MACROS

The .FC macro prints "Yours very truly," as a formal closing, if no
closing argument is used. It must be given before the .SG macro. A
different closing may be specified as an argument to .FC.

The .SG macro prints the author's name(s) after the formal closing, if
any. Each name begins at the center of the page. Three blank lines are
left above each name for the actual signature.

• If no arguments are given, the line of reference data (Iocation
code, department number, author's initials, and typist's initials, all
separated by hyphens) will not appear.

• A non-null first argument is treated as the typist's initials and is
appended to the reference data.

• A null first argument prints reference data without the typist's ini­
tials or the preceding hyphen.

• If there are several authors and if the second argument is given,
reference data is placed on the line of the first author.

Reference data contains only the location and department number of
the first author. Thus, if there are authors from different departments
and/or from different locations, the reference data should be supplied
manually after the invocation (without arguments) of the .SG macro.
For example:

.SG

.rs

.sp -Iv
PY /MH-9876/5432-JJJ/SPL-cen

6.11.2 "Copy to" and Other Notations

.NS [arg]
zero or more lines of the notation
.NE

Many types of notations (such as a list of attachments or "Copy to"
lists) may follow signature and reference data. Various notations are
obtained through the .NS macro, which provides for proper spacing and
for breaking notations across pages, if necessary.

6-51

MEMORANDUM MACROS

Codes for arg and the corresponding notations are:

arg NOTATIONS

none Copy to
"" Copy to
0 Copy to
1 Copy (with att.) to
2 Copy (without att.) to
3 Att.
4 Atts.
5 Enc.
6 Encs.
7 Under Separate Cover
8 Letter to
9 Memorandum to

"string' Copy (string) to

If arg consists of more than one character, it is placed within
parentheses between the words "Copy" and "to". For example:

.NS "with atL 1 only"

will generate

Copy (wiih aii. 1 oniy) io

as the notation. More than one notation may be specified before the
.NE macro because a .NS macro terminates the preceding notation, if
any. For example:

.NS 4
Attachment I-List of register names
Attachment 2-List of string and macro names
.NS 1
S. J. Jones
.NS 2
S. P. Lename
G. H. Hurtz
.NE

would be formatted as

6-52

MEMORANDUM MACROS

Atts.
Attachment I-List of register names
Attachment 2-List of string and macro names

Copy (with att.) to
S. J. Jones

Copy (without att.) to
S. P. Lename
G. H. Hurtz

The .NS and .NE macros may also be used at the beginning following
.AS 2 and .AE to place the notation list on the memorandum for file
cover sheet {6.S}. If notations are given at the beginning without .AS
2, they will be saved and output at the end of the document.

6.11.3 Approval Signature Line

.A V approver's-name

The .A V macro may be used after the last notation block to automati­
cally generate a line with spaces for the approval signature and date.
For example:

.A V "Jane Doe"

produces

APPROVED:

Jane Doe Date

6.12 One-Page Letter

At times, the user may like more space on the page forcing the signa­
ture or items within notations to the bottom of the page so that the
letter or memo is only one page in length. This can be accomplished
by increasing the page length with the -rLn option, e.g., -rL90. This
has the effect of making the formatter believe that the page is 90 lines
long and therefore providing more space than usual to place the signa­
ture or the notations.

6-53

MEMORANDUM MACROS

7. Displays

Displays are blocks of text that are to be kept together on a page and
not split across pages. They are processed in an environment that is
different from the body of the text (see the .ev request in Chapter 3).
The Memorandum Macros package provides two styles of displays - a
static (.DS) style and a floating (.DF) style.

• In the static style, the display appears in the same relative position
in the output text as it does in the input text. This may result in
extra white space at the bottom of the page if the display is too
long to fit in the remaining page space.

• In the floating style, the display "floats" through the input text to
the top of the next page if there is not enough space on the
current page. Thus input text that follows a floating display may
precede it in the output text. A queue of floating displays is
maintained so that their relative order of appearance in the text is
not disturbed.

By default, a display is processed in no-fill mode with single spacing and
is not indented from the existing margins. The user can specify inden­
tation or centering as well as fill-mode processing.

Note: Displays and footnotes {S} may nevei be nested in any combina­
tion. Although lists {s} and paragraphs {4.1} are permitted, no headings
(.H or .HU) {4.2, 4.3} can occur within displays or footnotes.

7.1 Static Displays

.DS (format] [fill] [rindent]
one or more lines of text
.DE

A static display is started by the .DS macro and terminated by the .DE
macro. With no arguments, .DS accepts lines of text exactly as typed
(no-fill mode) and will not indent lines from the prevailing left margin
indentation or from the right margin.

• The format argument is an integer or letter used to control the left
margin indentation and centering with the following meanings:

6-54

format

""
omitted
o or L
1 or I
2 or C

3 or CB

MEMORANDUM MACROS

MEANING

no indent
no indent
no indent
indent by standard amount
center each line
center as a block

• The fill argument is an integer or letter and can have the follow­
ing meanings:

fill

omitted
o or N
1 or F

MEANING

no-fill mode
no-fill mode
no-fill mode
fill mode

• The rindent argument is the number of characters that the line
length should be decreased, i.e., an indentation from the right
margin. This number must be unsealed in the nroff formatter and
is treated as ens. It may be scaled in the troff formatter or else
defaults to ems.

The standard amount of static display indentation is taken from the Si
register, a default value of five spaces. Thus, text of an indented
display aligns with the first line of indented paragraphs, whose indent is
contained in the Pi register {4.1}. Even though their initial values are
the same (default values), these two registers are independent.

The display format argument value 3 (or CD) centers (horizontally) the
entire display as a block (as opposed to .DS 2 and .DF 2 which center
each line individually). All collected lines are left justified, and the
display is centered based on width of the longest line. This format
must be used in order for the eqn/neqn "mark" and "lineup" feature
to work with centered equations {7.4}.

By default, a blank line (nroff) or one-half a vertical space (trolf) is
placed before and after static and floating displays. These blank lines
before and after static displays can be inhibited by setting the register
Ds to O.

6-55

MEMORANDUM MACROS

The following example shows usage of all three arguments for static
displays. This block of text will be indented five spaces (ems in troff)
from the left margin, filled, and indented five spaces (ems in troff)
from the right margin (i.e., centered). The input text

.DS I F 5
"We the people of the United States,
in order to form a more perfect union,
establish justice, ensure domestic tranquillity,
provide for the common defense,
and secure the blessings of liberty to
ourselves and our posterity,
do ordain and establish this Constitution to the
United States of America."
.DE

produces the output:

"We the people of the United States, in order to form
a more perfect union, establish justice, ensure domes­
tic tranquillity, provide for the common defense, and
secure the blessings of liberty to ourselves and our
posterity, do ordain and establish this Constitution to
the United States of America."

7.2 Floating Displays

.DF [format] [fill] [rindent]
one or more lines of text
.DE

A floating display is started by the .DF macro and terminated by the
.DE macro. Arguments have the same meanings as static displays
described above~ except indent, no indent, and centering are calculated
with respect to the initial left margin. This is because prevailing indent
may change between when the formatter first reads the floating display
and when the display is printed. One blank line (nroff) or one-half a
vertical space (troff) occurs before and after a floating display.

The user may exercise precise control over the output positioning of
floating displays through the use of two number registers, De and Df
(see below). When a floating display is encountered by the iuoff or
troff formatter, it is processed and placed onto a queue of displays

6-56

MEMORANDUM MACROS

waiting to be output. Displays are removed from the queue and printed
in the order entered, which is the order they appeared in the input file.
If a new floating display is encountered and the queue of displays is
empty, the new display is a candidate for immediate output on the
current page. Immediate output is governed by size of display and the
setting of the Df register code. The De register code controls whether
text will appear on the current page after a floating display has been
produced.

As long as the display queue contains one or more displays, new
displays will be automatically entered there, rather than being output.
When a new page is started (or the top of the second column when in
2-column mode), the next display from the queue becomes a candidate
for output if the Df register code has specified "top-of-page" output.
When a display is output, it is also removed from the queue.

When the end of a section (using section-page numbering) or the end
of a document is reached, all displays are automatically removed from
the queue and output. This occurs before a .SG, .CS, or .TC macro is
processed.

A display will fit on the current page if there is enough room to contain
the entire display or if the display is longer than one page in length and
less than half of the current page has been used. A wide (full-page
width) display will not fit in the second column of a 2-column docu­
ment.

The De and Df number register code settings and actions are as fol­
lows:

De REGISTER

CODE ACTION

o No special action occurs (also the default condition).

1 A page eject will always follow the output of each floating
display, so only one floating display will appear on a page
and no text will follow it.

Note: For any other code, the action performed is the same as for code
1.

6-57

MEMORANDUM MACROS

Df REGISTER

CODE ACTION

o Floating displays will not be output until end of section
(when section-page numbering) or end of document.

1 Output new floating display on current page if there is
space; otherwise, hold it until end of section or docu­
ment.

2 Output exactly one floating display from queue to the top
of a new page or column (when in 2-column mode).

3 Output one floating display on current page if there is
space; otherwise, output to the top of a new page or
column.

4 Output as many displays as will fit (at least one) starting
at the top of a new page or column.

o If the De register is set to 1, each display will be followed
by a page eject causing a new top of page to be reached
where at least one more display will be output (this also
applies to code 5).

5 Output a new floating display on the current page if there
is rOOD] (default condition). Output as many displays
(but at least one) as will fit on the page starting at the
top of a new page or column.

Note: For any code greater than 5, the action performed
is the same as for code 5. If the De register is set to 1,
each display will be followed by a page eject causing a
new top of page to be reached where at least one more
display will be output.

The .WC macro {12.4} may also be used to control handling of displays
in double-column mode and to control the break in text before floating
displays.

6-58

7.3 Tables

.TS [H]
global options~
column descriptors.
title lines
[.TH [N]1
data within the table .
. TE

MEMORANDUM MACROS

The .TS (table start) and .TE (table end) macros make possible the
use of the tb((1) program. These macros are used to delimit text to be
examined by tb(and to set proper spacing around the table. The
display function and the tb(delimiting function are independent. In
order to permit the user to keep together blocks that contain any mix­
ture of tables, equations, filled text, unfilled text, and caption lines, the
. TS/. TE block should be enclosed within a display (.DSI .DE). Float­
ing tables may be enclosed inside floating displays (.DF I .DE).

Macros . TS and . TE permit processing of tables that extend over
several pages. If a table heading is needed for each page of a multipage
table, the "H" argument should be specified to the . TS macro as
above. Following the options and format information, table title is
typed on as many lines as required and is followed by the . TH macro.
The . TH macro must occur when ". TS H" is used for a multipage
table. This is not a feature of tb(but of the definitions provided by the
Memorandum Macros package.

The .TH (table headed macro may take as an argument the letter N.
This argument causes the table header to be printed only if it is the first
table header on the page. This option is used when it is necessary to
build long tables from smaller. TS HI. TE segments. For example:

6-59

MEMORANDUM MACROS

.TSH
global options;
column descriptors.
Title lines
.TH
data
.TE
.TS H
global options;
column descriptors.
Title lines
.THN
data
.TE

will cause the table heading to appear at the top of the first table seg­
ment and no heading to appear at the top of the second segment when
both appear on the same page. However, the heading will still appear at
the top of each page that the table continues onto. This feature is used
when a single table must be broken into segments because of table
complexity (e.g., too many blocks of filled text). If each segment had
its own . TS HI. TH sequence, it would have its own header. However,
if each table segment after the first uses . TS HI. TH N, the table
h""<>,1",, .. ,.,;11 <>nn",,<>r An 1" <>t th.,. h.,.n;nn;nn Af tho", t<> h1.,. ",n,1 th.,. tn" nf .1.1....,,,,,,,,,,,,,1. 't'.,. J..l.& up!',."u.. V.l.l.l~ " 1..1..1.'-01' v""'bI..I..I..I..I.b va ".I.,,'" ... u.v, '-&. u., .. "!' "' ...

each new page or column that the table continues onto.

For the nroff formatter, the -e option [- E for mmO) {2.I}] may be
used for terminals, such as the 450, that are capable of finer printing
resolution. This will cause better alignment of features such as the
lines forming the corner of a box. The -e is not effective with coHO.

7.4 Equations

.DS

.EQ [label]
equation (s)
.EN
.DE

Mathematical typesetting programs eqn/neqnO) expect to use the .EQ
(equation start) and .EN (equation end) macros as delimiters in the
same way that tbl (I) uses . TS and • TE; however, .EQ and .EN must

6-60

MEMORANDUM MACROS

occur inside a .DS/ .DE pair. There is an exception to this rule - if
.EQ and .EN are used to specify only the delimiters for in-line equa­
tions or to specify eqn/neqn defines, the .DS and .DE macros must
not be used; otherwise, extra blank lines will appear in the output.

The .EQ macro takes an argument that will be used as a label for the
equation. By default, the label will appear at the right margin in the
"vertical center" of the general equation. The Eq register may be set
to 1 to change labeling to the left margin.

The equation will be centered for centered displays; otherwise, the
equation will be adjusted to the opposite margin from the label.

7.S Figure, Table, Equation, and Exhibit Titles

.FG [title] [override] [flag]

. TB [title] [override] [flag]

.EC [title] [override] [flag]

.EX [title] [override] [flag]

The .FG (figure title), • TB (table title), .EC (equation caption), and
.EX (exhibit caption) macros are normally used inside .DS/ .DE pairs
to automatically number and title figures, tables, and equations. These
macros use registers Fg, Tb, Ec, and Ex, respectively (see section 2.4
on - rNS to reset counters in sections). For example:

.FG "This is a Figure Title"

yields

Figure 1. This is a Figure Title

The • TB macro replaces "Figure" with "TABLE", the .EC macro
replaces "Figure" with "Equation", and the .EX macro replaces "Fig­
ure" with "Exhibit". The output title is centered if it can fit on a sin­
gle line; otherwise, all lines but the first are indented to line up with
the first character of the title. The format of the numbers may be
changed using the .af request of the formatter. By setting the Of regis­
ter to 1, the format of the caption may be changed from

Figure 1. Title

to

6-61

MEMORANDUM MACROS

Figure 1 - Title

The override argument is used to modify normal numbering. If the flag
argument is omitted or 0, override is used as a prefix to the number; if
the flag argument is 1, override is used as a suffix; and if the flag argu­
ment is 2, override replaces the number. If - rNS {2.4} is given,
"section-figure" numbering is set automatically and user-specified over­
ride argument is ignored.

As a matter of formatting style, table headings are usually placed above
the text of tables, while figure, equation, and exhibit titles are usually
placed below corresponding figures and equations.

7.6 List of Figures, Tables, Equations, and Exhibits

A list of figures, tables, exhibits, and equations are printed following
the table of contents if the number registers Lf, Lt, Lx, and Le
(respectively) are set to 1. The Lf, Lt, and Lx registers are 1 by
default; Le is 0 by default.

Titles of these lists may be changed by redefining the following strings
which are shown here with their default values:

.ds Lf LIST OF FIGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS

.ds Le LIST OF EQUATIONS

8. Footnotes

There are two macros (.FS and .FE) that delimit text of footnotes, a
string (F) that automatically numbers footnotes, and a macro (.FD)
that specifies the style of footnote text. Footnotes are processed in an
environment different from that of the body of text (refer to .ev
request in Chapter 3).

8.1 Automatic Numbering of Footnotes

Footnotes may be automatically numbered by typing the three charac­
ters "\ *F" (i.e., invoking the string F) immediately after the text to be
footnoted without any intervening spaces. This will place the next
sequential footnote number (in a smaller point size) a half line above
the text to be footnoted.

6-62

MEMORANDUM MACROS

8.2 Delimiting Footnote Text

.FS [label]
one or more lines of footnote text
.FE

There are two macros that delimit the text of each footnote. The .FS
(footnote start) macro marks the beginning of footnote text, and the
.FE (footnote end) macro marks the end. The label on the .FS macro,
if present, will be used to mark footnote text. Otherwise, the number
retrieved from the string F will be used. Automatically numbered and
user-labeled footnotes may be intermixed. If a footnote is labeled (.FS
labe/} , the text to be footnoted must be followed by label, rather than
by "\ *F". Text between .FS and .FE is processed in fill mode.
Another .FS, a .DS, or a .DF are not permitted between .FS and .FE
macros. If footnotes are required in the title, abstract, or table {7.3},
only labeled footnotes will appear properly. Everywhere else automati­
cally numbered footnotes work correctly. For example, the input for an
automatically numbered footnote is:

This is the line containing the word\ *F
.FS
This is the text of the footnote .
. FE
to be footnoted and automatically numbered.

and the input for labeled footnote is:

This is a labeled*
.FS *
The footnote is labeled with an asterisk .
. FE
footnote.

Text of the footnote (enclosed within the .FS/ .FE pair) should
immediately follow the word to be footnoted in the input text, so that
"\ *F" or label occurs at the end of a line of input and the next line is
the .FS macro call. It is also good practice to append an unpaddable
space {3.3} to "\ *F" or label when they follow an end-of-sentence
punctuation mark (i.e., period, question mark, exclamation point).

6-63

MEMORANDUM MACROS

8.3 Format Style of Footnote Text

.FD [arg] [1]

Within footnote text, the user can control formatting style by specifying
text hyphenation, right margin justification, and text indentation, as
well as left or right justification of the label when text indenting is used.
The .FD macro is invoked to select the appropriate style.

The first argument (arg) is a number from the left column of the fol­
lowing table. Formatting style for each number is indicated in the
remaining four columns. Further explanation of the first two of these
columns is given in the definitions of the .ad, .na, . by, and .nb
(adjust, no adjust, hyphenation, and no hyphenation, respectively)
requests in Chapter 3.

TEXT LABEL

arg HYPHENATION ADJUST INDENT JUSTlFlCA T10N

0 .nb .ad yes left
1 .by .ad yes left
2 .nb .na yes left
3 .by .na yes left
A .nh .ad no l_rA
~ !t::! !.

5 .by .ad no left
6 .nb .na no left
7 .by .na no left
8 .nb .ad yes right
9 .by .ad yes right

10 .nb .na yes right
11 .by .na yes right

If the first argument to .FD is greater than 11, the effect is as if .FD 0
were specified. If the first argument is omitted or null~ the effect is
equivalent to .FD 10 in the nroff formatter and to .FD" in the troff
formatter; these are also the respective initial default values.

If the second argument is specified, then when a first-level heading is
encountered, automatically numbered footnotes begin again with 1.
This is most useful with the "section-page" page numbering scheme.
As an example, the input line

6-64

MEMORANDUM MACROS

.FD "" 1

maintains the default formatting style and causes footnotes to be num­
bered afresh after each first-level heading in a document.

Hyphenation across pages is inhibited by mm except for long footnotes
that continue to the following page. If hyphenation is permitted, it is
possible for the last word on the last line on the current page footnote
to be hyphenated. The user has control over this situation by specify­
ing an even .FD argument.

Footnotes are separated from the body of the text by a short line rule.
Those that continue to the next page are separated from the body of
the text by a full-width rule. In the troff formatter, footnotes are set in
type two points smaller than the point size used in the body of text.

8.4 Spacing Between Footnote Entries

Normally, one blank line (nroff) or a 3-point vertical space (troff)
separates footnotes when more than one occurs on a page. To change
this spacing, the Fs number register is set to the desired value. For
example:

.nr Fs 2

will cause two blank lines (nroff) a 6-point vertical space (troff) to
occur between footnotes.

9. Page Headers and Footers

Text printed at the top of each page is called page header. Text printed
at the bottom of each page is called page jooter. There can be up to
three lines of text associated with the header - every page, even page
only, and odd page only. Thus the page header may have up to two
lines of text - the line that occurs at the top of every page and the line
for the even- or odd-numbered page. The same is true for the page
footer.

This part describes the default appearance of page headers and page
footers and ways of changing them. The term header (not qualified by
even or odd) is used to mean the page header line that occurs on every
page, and similarly for the term jooter.

6-65

MEMORANDUM MACROS

9.1 Default Headers and Footers

By default, each page has a centered page number as the header. There
is no default footer and no even/odd default headers or footers except
as specified in section 9.3.

In a memorandum or a released-paper style document, the page header
on the first page is automatically suppressed provided a break does not
occur before the .MT macro is called. Macros and text in the following
categories do not cause a break and are permitted before the memoran­
dum types (.MT) macro:

• Memorandum arid released-paper style document macros (. TL,
.AU, .AT, .TM, .AS, .AE, .OK, .ND, .AF, .NS, and .NE)

• Page headers and footers macros (.PH, .EH, .OH, .PF, .EF, and
.OF)

• The .nr and .ds requests.

9.2 Header and Footer Macros

For header and footer macros (.PH, .EH, .OH, .PF, .EF, and .OF)
the argument [arg] is of the form:

"'left-part' center-part 'right-part' "

If it is inconvenient to use apostrophe (') as the delimiter because it
occurs within one of the parts, it may be replaced uniformly by any
other character. The .fc request redefines the delimiter. In formatted
output, the parts are left justified, centered, and right justified, respec­
tively.

9.2.1 Page Header

.PH [arg]

The .PH macro specifies the header that is to appear at the top of every
page. The initial value is the default centered page number enclosed by
hyphens. The page number contained in the P register is an Arabic
number. The format of the number may be changed by the .af macro
request.

If "debug mode" is set using the flag -rDl on the command line {2.4},
additional information printed at the top left of each page is included in

6-66

MEMORANDUM MACROS

the default header. This consists of the Source Code Control System
(SCCS) release and level of Memorandum Macros (thus identifying the
current version {I2.3}) followed by the current line number within the
current input file.

9.2.2 Even-Page Header

.EH [arg]

The .EH macro supplies a line to be printed at the top of each even­
numbered page immediately following the header. Initial value is a
blank line.

9.2.3 Odd-Page Header

.OH [arg]

The .OH macro is the same as the .EH except that it applies to odd­
numbered pages.

9.2.4 Page Footer

.PF [arg]

The .PF macro specifies the line that is to appear at the bottom of each
page. Its initial value is a blank line. If the - rC n flag is specified on
the command line {2.4}, the type of copy follows the footer on a
separate line. In particular, if - rC3 or - rC4 (DRAFT) is specified,
the footer is initialized to contain the date {6.8} instead of being a blank
line.

9.2.5 Even-Page Footer

.EF [arg]

The .EF macro supplies a line to be printed at the bottom of each
even-numbered page immediately preceding the footer. Initial value is
a blank line.

9.2.6 Odd-Page Footer

.OF [arg]

6-67

MEMORANDUM MACROS

The .OF macro supplies a line to be printed at the bottom of each odd­
numbered page immediately preceding the footer. Initial value is a
blank line.

9.2.7 First Page Footer

By default, the first page footer is a blank line. If, in the input text file,
the user specifies .PF and/or .OF before the end of the first page of the
document, these lines will appear at the bottom of the first page.

The header (whatever its contents) replaces the footer on the first page
only if the -rNI flag is specified on the command line {2.4}.

9.3 Default Header and Footer With Section-Page Numbering

Pages can be numbered sequentially within sections by "section­
number page-number" {4.5}. To obtain this numbering style, - rN3 or
-rN5 is specified on the command line. In this case, the default footer
is a centered "section-page" number, e.g., 7-2; and the default page
header is blank.

9.4 Strings and Registers in Header and Footer Macros

String and register names may be placed in arguments to header and
rooier macros. if the vaiue of the string or register is to be computed
when the respective header or footer is printed, invocation must be
escaped by four backslashes. This is because string or register invoca­
tion will be processed three times:

1. As the argument to the header or footer macro

2. In a formatting request within the header or footer macro

3. In a .tI request during header or footer processing.

For example, page number register P must be escaped with four
backslashes in order to specify a header in which the page number is to
be printed at the right margin, e.g.:

.PH ,,, , 'Page \ \ \ \nP' II

creates a right-justified header containing the word "Page" followed by
the page number. Similarly, to specify a footer with the "section-page"
style, the user specifies (see section 4.2.2.5 for meaning of HI):

6-68

MEMORANDUM MACROS

.PF '''''- \\\\n(Hl-\\\\nP -'"

If the user arranges for the string "aJ" to contain the current section
heading which is to be printed at the bottom of each page, the .PF
macro call would be:

.PF '" '*(a1""

If only one or two backslashes were used, the footer would print a con­
stant value for aJ, namely, its value when .PF appeared in the input
text.

9.S Header and Footer Example

The following sequence specifies blank lines for header and footer
lines, page numbers on the outside margin of each page (i.e., top left
margin of even pages and top right margin of odd pages), and "Revi­
sion 3" on the top inside margin of each page (nothing is specified for
the center):

.PH""

.PF""

.EH '" \ \ \ \nP' 'Revision 3' "

.OH '''Revision 3' '\ \ \ \nP' "

9.6 Generalized Top-of-Page Processing

Note: This part is intended only for users accustomed to writing for­
matter macros.

During header processing, mm invokes two user-definable macros:

• The • TP (top of page) macro is invoked in the environment
(refer to .ev request) of the header.

• The .PX is a page header user-exit macro that is invoked (without
arguments) when the normal environment has been restored and
with the "no-space" mode already in effect.

The effective initial definition of . TP (after the first page of a docu­
ment) is

6-69

MEMORANDUM MACROS

.de TP

.sp 3

.tl *Ot

.if e 'tl \ \ * Oe

.if 0 'tl *00

.sp 2

The string "}t" contains the header, the string "}e" contains the
even-page header, and the string "}o" contains the odd-page header as
defined by the .PH, .EH, and .OH macros, respectively. To obtain
more specialized page titles, the user may redefine the . TP macro to
cause the desired header processing {12.5}. Formatting done within the
• TP macro is processed in an environment different from that of the
body. For example, to obtain a page header that includes three cen­
tered lines of data, i.e., document number, issue date, and revision
date, the user could define the. TP as follows:

.de TP

.sp

.ce 3
777 -888-999
Iss. 2, AUG 1977
Rev. 7, SEP 1977
.sp

The .PX macro may be used to provide text that is to appear at the top
of each page after the normal header and that may have tab stops to
align it with columns of text in the body of the document.

9.7 Generalized Bottom-of-Page Processing

.BS
zero or more lines of text
.BE

Lines of text that are specified between the .BS (bottom-block start)
and .BE (bottom-block end) macros will be printed at the bottom of
each page after the footnotes (if any) but before the page footer. This
block of text is removed by specifying an empty block, i.e.:

6-70

MEMORANDUM MACROS

.BS

.BE

The bottom block will appear on the table of contents, pages, and the
cover sheet for memorandum for file, but not on the technical
memorandum or released-paper cover sheets.

9.8 Top and Bottom (Vertical) Margins

.VM [top] [bottom]

The . VM (vertical margin) macro allows the user to specify additional
space at the top and bottom of the page. This space precedes the page
header and follows the page footer. The. VM macro takes two unsealed
arguments that are treated as vertical spaces (v). For example:

.VM 10 15

adds 10 vertical spaces to the default top of page margin and 15 vertical
spaces to the default bottom of page margin. Both arguments must be
positive (default spacing at the top of the page may be decreased by
redefining. TP).

9.9 Proprietary Marking

.PM [code]

The .PM (proprietary marking) macro appends to the page footer a
PRIVATE, NOTICE, BELL LABORATORIES PROPRIETARY, or
BELL LABORATORIES RESTRICTED disclaimer. The code argument
may be:

CODE DISCLAIMER

none turn off previous disclaimer, if any
P PRIVATE
N NOTICE
BP BELL LABORATORIES PROPRIETARY
BR BELL LABORATORIES RESTRICTED

These disclaimers are in a form approved for use by the Bell System.
The user may alternate disclaimers by use of the .BS/.BE macro pair.

6-71

MEMORANDUM MACROS

9.10 Private Documents

.nr Pv value

The word "PRIVATE" may be printed, centered, and underlined on
the second line of a document (preceding the page header). This is
done by setting the Pv register value:

VALUE

o
1
2

MEANING

do not print PRIVATE (default)
PRIV A TE on first page only
PRIV ATE on all pages

If value is 2, the user definable. TP macro may not be used because the
. TP macro is used by mm to print "PRIVATE" on all pages except the
first page of a memorandum on which. TP is not invoked.

10. Table of Contents and Cover Sheet

The table of contents and the cover sheet for a document are produced
by invoking the. TC and .CS macros, respectively.

Note: This section refers to cover sheets for technical memoranda and
released papers only. The mechanism fOi pioducing a memoiandum
for file cover sheet was discussed earlier {6.S}.

These macros normally appear once at the end of the document, after
the Signature Block {6.11.1} and Notations {6.11.2} macros, and may
occur in either order.

The table of contents is produced at the end of the document because
the entire document must be processed before the table of contents can
be generated. Similarly, the cover sheet may not be desired by a user
and is therefore produced at the end.

10.1 Table of Contents

. TC [sleve/] [spacing] [tleve/] [tab] [headl] [head2] [head3] [head4]
[head5]

The . TC macro generates a table of contents containing heading levels
that were saved for the table of contents as determined by the value of

6-72

MEMORANDUM MACROS

the CI register {4.4}. Arguments to .TC control spacing before each
entry, placement of associated page number, and additional text on the
first page of the table of contents before the word "CONTENTS".

Spacing before each entry is controlled by the first and second argu­
ments (slevel and spacing). Headings whose level is less than or equal
to slevel will have spacing blank lines (uroff) or half vertical spaces
(troff) before them. Both slevel and spacing default to 1. This means
that first-level headings are preceded by one blank line (nroff) or one­
half a vertical space (troff). The slevel argument does not control what
levels of heading have been saved; saving of headings is the function of
the Cl register.

The third and fourth arguments Ctlevel and tab) control placement of
associated page number for each heading. Page numbers can be
justified at the right margin with either blanks or dots (called leaders)
separating the heading text from the page number, or the page numbers
can follow the heading text.

For headings whose level is less than or equal to tlevel (default 2), page
numbers are justified at the right margin. In this case, the value of tab
determines the character used to separate heading text from page
number. If tab is 0 (default value), dots (Le., leaders) are used. If tab
is greater than 0, spaces are used.

For headings whose level is greater than tie vel, page numbers are
separated from heading text by two spaces (i.e., page numbers are
"ragged right", not right justified).

Additional arguments (head1 ... head5) are horizontally centered on
the page and precede the table of contents.

If the. TC macro is invoked with at most four arguments, the user-exit
macro .TX is invoked (without arguments) before the word "CON­
TENTS" is printed or the user-exit macro. TY is invoked and the word
"CONTENTS" is not printed.

By defining. TX or . TY and invoking. TC with at most four arguments,
the user can specify what needs to be done at the top of the first page

6-73

MEMORANDUM MACROS

of the table of contents. For example:

.deTX

.ce 2
Special Application
Message Transmission
.sp
.in + IOn
Approved: \1'3i'
.in 0
.sp

.TC

yields the following output when the file is formatted

Special Application
Message Transmission

Approved: __________________________________ ___

CONTENTS

If the • TX macro were defined as . TY, the word "CONTENTS" would
be suppressed. Defining .TY as an empty macro will suppress "CON­
TENTS" with no replacement:

.deTY

By default, the first level headings will appear in the table of contents
left justified. Subsequent levels will be aligned with the text of head­
ings at the preceding level. These indentations may be changed by
defining the Ci string which takes a maximum of seven arguments
corresponding to the heading levels. It must be given at least as many
arguments as are set by the CI register. Arguments must be scaled.
For example, with "CI = 5":

.ds Ci .25i .5i .7 5i 1i 1i \"troff

or

6-74

MEMORANDUM MACROS

.ds Ci 0 2n 4n 6n 8n \"nroff

Two other registers are available to modify the format of the table of
contents - Oc and Cp.

By default, table of contents pages will have lowercase Roman numeral
page numbering. If the Oc register is set to 1, the . TC macro will not
print any page number but will instead reset the P register to 1. It is
the user's responsibility to give an appropriate page footer to specify the
placement of the page number. Ordinarily, the same .PF macro (page
footer) used in the body of the document will be adequate.

The list of figures, tables, etc. pages will be produced separately unless
Cp is set to 1 which causes these lists to appear on the same page as the
table of contents.

10.2 Cover Sheet

.CS [pages] [other] [total] [jigs] [tbls] [refs]

The .CS macro generates a cover sheet in either the released paper or
technical memorandum style (see section 6.5 for details of the
memorandum for file cover sheet). All other information for the cover
sheet is obtained from data given before the .MT macro call {6.1}. If
the technical memorandum style is used, the .CS macro generates the
"Cover Sheet for Technical Memorandum". The data that appear in
the lower left corner of the technical memorandum cover sheet (counts
of: pages of text, other pages, total pages, figures, tables, and refer­
ences) are generated automatically (0 is used for "other pages").
These values may be changed by supplying the corresponding argu­
ments to the .CS macro. If the released-paper style is used, all argu­
ments to .CS are ignored.

11. References

There are two macros (.RS and .RF) that delimit the text of refer­
ences, a string that automatically numbers the subsequent references,
and an optional macro (.RP) that produces reference pages within the
document.

6-75

MEMORANDUM MACROS

11.1 Automatic Numbering of References

Automatically numbered references may be obtained by typing \ *(Rf
(invoking the string Rf) immediately after the text to be referenced.
This places the next sequential reference number (in a smaller point
size) enclosed in brackets one-half line above the text to be referenced.
Reference count is kept in the Rf number register.

11.2 Delimiting Reference Text

.RS [string-name]

.RF

The .RS and .RF macros are used to delimit text of each reference as
shown below:

A line of text to be referenced.\ *(Rf
.RS
reference text
.RF

11.3 Subsequent References

The .RS macro takes one argument, a string-name. For example:

.RS aA
reference text
.RF

The string aA is assigned the current reference number. This string
may be used later in the document as the string call, \ *(aA, to refer­
ence text which must be labeled with a prior reference number. The
reference is output enclosed in brackets one-half line above the text to
be referenced. No .RS/ .RF pair is needed for subsequent references.

11.4 Reference Page

.RP [argJ] [arg2]

A reference page, entitled by default "References", will be generated
automatically at the end of the document (before table of contents and
cover sheet) and will be listed in the table of contents. This page con­
tains the reference items (i.e., reference text enclosed within .RS/.RF
pairs). Reference items will be separated by a space (nroff) or one-half

6-76

MEMORANDUM MACROS

a vertical space (troff) unless the Ls register is set to 0 to suppress this
spacing. The user may change the reference page title by defining the
Rp string:

.ds Rp "New Title"

The .RP (reference page) macro may be used to produce reference
pages anywhere else within a document (i.e., after each major section).
It is not needed to produce a separate reference page with default spac­
ings at the end of the document.

Two .RP macro arguments allow the user to control resetting of refer­
ence numbering and page skipping.

argl MEANING

o reset reference counter (default)
1 do not reset reference counter

arg2 MEAN IN G

o put on separate page (default)
1 do not cause a following .SK
2 do not cause a preceding .SK
3 no .SK before or after

If no .SK macro is issued by the .RP macro, a single blank line will
separate the references from the following/preceding text. The user
may wish to adjust spacing. For example, to produce references at the
end of each major section:

.sp 3

.RP 1 2

.H 1 "Next Section"

12. Miscellaneous Features

12.1 Bold, Italic, and Roman Fonts

.B [bold-arg] [previous-jont-arg] •••
• 1 [italic-arg] [previous-!ont-arg] •••
• R

6-77

MEMORANDUM MACROS

When called without arguments, the .B macro changes the font to bold
and the .1 macro changes to underlining (nroff) or italic (troff). This
condition continues until the occurrence of the .R macro which causes
the Roman font to be restored. Thus:

.I
here is some text.
.R

yields underlined text via nroff(1) and italic text via troff(1).

If the .B or .1 macro is called with one argument, that argument is
printed in the appropriate font (underlined in the nroff formatter for
.1). Then the previous font is restored (underlining is turned off in the
nroff formatter). If two or more arguments (maximum six) are given
with a .B or .1 macro call, the second argument is concatenated to the
first with no intervening space (1/12 space if the first font is italic) but
is printed in the previous font. Remaining pairs of arguments are simi­
larly alternated. For example:

.I one" two" three -four

produces

one two three-four

The .B and .1 macros alternate with the prevailing font at the time the
macros are invoked. To alternate specific pairs of fonts, the following
macros are available:

.IB - italic bold

.BI - bold italic

.IR - italic Roman

.RI - Roman italic

.RB - Roman bold

.BR - bold Roman

Each macro takes a maximum of six arguments and alternates argu­
ments between specified fonts.

When using a terminal that cannot underline, the following can be
inserted at the beginning of the document to eliminate all underlining:

6-78

.rm ul

.rm cu

MEMORANDUM MACROS

Note: Font changes in headings are handled separately {4.2.2.4.1}.

12.2 Justification of Right Margin

.SA [arg]

The .SA macro is used to set right-margin justification for the main
body of text. Two justification flags are used - current and default.
Initially, both flags are set for no justification in the nroff formatter and
for justification in the troff formatter. The argument causes the follow­
ing action:

arg MEANING

o Sets both flags to no justification. It acts like
the .na request.
Sets both flags to cause both right and left
justification, the same as the .ad request.

omitted Causes the current flag to be copied from the
default flag, thus performing either a .na or .ad
depending on the default condition.

In general, the no adjust request (.na) can be used to ensure that
justification is turned off, but .SA should be used to restore
justification, rather than the .ad request. In this way, justification or no
justification for the remainder of the text is specified by inserting" .SA
0" or ".SA I" once at the beginning of the document.

12.3 SCCS Release Identification

The RE string contains the sees release and the Memorandum Macros
text formatting package current version level. For example:

This is version \ * (RE of the macros.

produces

This is version 10.129 of the macros.

6-79

MEMORANDUM MACROS

This information is useful in analyzing suspected bugs in mm. The
easiest way to have the release identification number appear in the out­
put is to specify - rDl {2.4} on the command line. This causes the RE
string to be output as part of the page header {9.2. I}.

12.4 Two-Column Output

.2C
text and formatting requests (except another .2C)
.1C

The Memorandum Macros text formatting package can format two­
columns on a page. The .2C macro begins 2-column processing which
continues until a .1C macro (I-column processing) is encountered. In
2-column processing, each physical page is thought of as containing 2-
columnar "pages" of equal (but smaller) "page" width. Page headers
and footers are not affected by 2-column processing. The .2C macro
does not balance 2-column output.

It is possible to have full-page width footnotes and displays when in 2-
column mode, although default action is for footnotes and displays to
be narrow in 2-column mode and wide in I-column mode. Footnote
and display width is controlled by the , we (width control) macro;
which takes the following arguments:

6-80

arg

N

WF

-WF

FF

-FF

WD

-WD

MEANING

Default mode (-WF, -FF, -WD, FB).

Wide footnotes (even in 2-column mode).

DEFAULT: Turn off WF. Footnotes follow column
mode; wide in I-column mode (Ie), narrow in 2-
column mode (2C), unless FF is set.

First footnote. All footnotes have same width as first
footnote encountered for that page.

DEFAULT: Turn off FF. Footnote style follows set­
tings of WF or - WF.

Wide displays (even in 2-column mode).

DEFAULT: Displays follow the column mode in effect
when display is encountered.

MEMORANDUM MACROS

FB DEFAULT: Floating displays cause a break when out­
put on the current page.

- FB Floating displays on current page do not cause a break.

Note: The .WC WD FF command will cause all displays to be wide
and all footnotes on a page to be the same width while . WC N will
reinstate default actions. If conflicting settings are given to . WC, the
last one is used. A . WC WF - WF command has the effect of a
.WC -WF.

12.5 Column Headings for Two-Column Output

Note: This section is intended only for users accustomed to writing
formatter macros.

In 2-column processing output, it is sometimes necessary to have
headers over each column, as well as headers over the entire page.
This is accomplished by redefining the . TP macro {9.6} to provide
header lines both for the entire page and for each of the columns. For
example:

.de TP

.sp 2

.tl 'Page \ \nP'OVERALL"

.tl "TITLE"

.sp

.nf

.ta 16C 31R 34 50C 65R
left(j) center(j) right(j) left(j) center(j) right
(j) first column(j) (j) (j) second column
.fi
.sp 2

where (j) stands for the tab character.

The above example will produce two lines of page header text plus two
lines of headers over each column. Tab stops are for a 65-en overall
line length.

6-81

MEMORANDUM MACROS

1206 Vertical Spacing

oSP [lines]

There exists several ways of obtaining vertical spacing, all with different
effects. The osp request spaces the number of lines specified unless the
no space (.ns) mode is on, then the osp request is ignored. The no
space mode is set at the end of a page header to eliminate spacing by a
osp or obp request that happens to occur at the top of a page. This
mode can be turned off by the ors (restore spacing) request.

The oSP macro is used to avoid the accumulation of vertical space by
successive macro calls. Several oSP calls in a row will not produce the
sum of the arguments but only the maximum argument. For example,
the following produces only three blank lines:

.SP 2

.SP 3

.SP

Many Memorandum Macros utilize oSP for spacing. For example,
"oLE I" {5.9} immediately followed by "oP" {4.1} produces only a sin­
gle blank line (nroff) or one-half a vertical space (troff) between the
end of the list and the following paragraph. An omitted argument
defaults to one blank line (nroff) or one vertical space (troff). Negative
arguments are not permitted. The argument must be unsealed but frac­
tional amounts are permitted. The oSP macro (as well as osp) is also
inhibited by the ons (no space) request.

1207 Skipping Pages

oSK [pages]

The oSK macro skips pages but retains the usual header and footer pro­
cessing. If the pages argument is omitted, null, or 0, oSK skips to the
top of the next page unless it is currently at the top of a page (then it
does nothing). A" oSK n" command skips n pages. A" oSK" posi­
tions text that follows it at the top of a page, while" oSK 1" leaves one
page blank except for the header and footer.

6-82

MEMORANDUM MACROS

12.8 Forcing an Odd Page

.OP

The .OP macro is used to ensure that formatted output text following
the macro begins at the top of an odd-numbered page.

• If currently at the top of an odd-numbered page, text output
begins on that page (no motion takes place).

• If currently on an even page, text resumes printing at the top of
the next page.

• If currently on an odd page (but not at the top of the page), one
blank page is produced, and printing resumes on the next odd­
numbered page after that.

12.9 Setting Point Size and Vertical Spacing

.S [point size] [vertical spacing]

The prevailing point size and vertical spacing may be changed by invok­
ing the .S macro. In the troff formatter, the default point size
{obtained from the mm register S {2.4}) is 10 points, and the vertical
spacing is 12 points (six lines per inch). The mnemonics D (default
value), C (current value), and P (previous value) may be used for both
arguments.

• If an argument is negative, current value is decremented by the
specified amount.

• If an argument is positive, current value is incremented by the
specified amount.

• If an argument is unsigned, it is used as the new value.

• If there are no arguments, the .S macro defaults to P.

• If the first argument is specified but the second is not, then
(default) D is used for the vertical spacing.

Default value for vertical spacing is always two points greater than the
current point size. Footnotes {8} are two points smaller than the body
with an additional 3-point space between footnotes. A null ("") value
for either argument defaults to C (current value). Thus, if n is a
numeric value:

6-83

MEMORANDUM MACROS

.S .S P P

.S "" n .S C n

.S n "" .S nC

.S n .S nD

.S "" .SCD

.S "" "" .SCC

.S n n .S n n

If the first argument is greater than 99, the default point size (10
points) is restored. If the second argument is greater than 99, the
default vertical spacing (current point size plus two points) is used. For
example:

.S 100

.S 14 111
.S 10 12
.S 14 16

12.10 Reducing Point Size of a String

.SM string] [string2] [string3]

The .8M macro allows the user to reduce by one point the size of a
string. If the third argument (string3) is omitted, the first argument
(string]) is made smaller and is concatenated with the second argument
(string2) if specified. If an three argu.ments are present (even if any
are null), the second argument is made smaller and all three arguments
are concatenated. For example:

INPUT
.SMX
.SMXY
.SM Y X Y
.SM YXYX
.SM YXYX)
.SM (YXYX)
.SM Y XYX ""

OUTPUT
X
XY
YXY
YXYX
YXYX)
(YXYX)

YXYX

12.11 Producing Accents

Strings may be used to produce accents for letters as shown in the fol­
lowing examples:

6-84

MEMORANDUM MACROS

INPUT OUTPUT
Grave accent c*' c
Acute accent e*' e
Circumflex 0*' 0

Tilde n*- n

Cedilla c*, ~

Lower-case umlaut u*: ii

Upper-case umlaut U*; U

12.12 Inserting Text Interactively

.RD [prompt] [diversion] [string]

The .RD (read insertion) macro allows a user to stop the standard out­
put of a document and to read text from the standard input until two
consecutive newline characters are found. When newline characters are
encountered, normal output is resumed.

• The prompt argument will be printed at the terminal. If not given,
.RD signals the user with a BEL on terminal output.

• The diversion argument allows the user to save all text typed in
after the prompt in a macro whose name is that of the diversion.

• The string argument allows the user to save for later reference the
first line following the prompt in the named string.

The .RD macro follows the formatting conventions in effect. Thus, the
following examples assume that the .RD is invoked in no fill mode
(.nf) :

.RD Name aA bB

produces

Name: S. Jones (user types name)
16 Elm Rd.,
Piscataway

The diverted macro .aA will contain

6-85

MEMORANDUM MACROS

s. Jones
16 Elm Rd.,
Piscataway

The string bB (*(bB) contains "S. Jones".

A newline character followed by an EOF (user specifiable CONTROL-d)
also allows the user to resume normal output.

13. Errors and Debugging

13.1 Error Terminations

When a macro detects an error, the following actions occur:

• A break occurs.

• The formatter output buffer (which may contain some text) is
printed to avoid confusion regarding location of the error.

• A short message is printed giving the name of the macro that
detected the error, type of error, and approximate line number in
the current input file of the last processed input line. Error mes­
sages are explained in Table 16.D.

• Processing terminates unless register D {2.4} has a positive value.
In the latter case, processing continues even though the output is
guaranteed to be deranged from that point on.

The error message is printed by outputting the message directly to the
user terminal. If an output filter, such as 300 (1), 450 (1), or bp (1) is
being used to post-process the nroff formatter output, the message may
be garbled by being intermixed with text held in that filter's output
buffer.

Note: If any of cw (1), eqnl neqn (1), and tbl (1) programs are being
used and if the -olist option of the formatter causes the last page of the
document not to be printed, a harmless "broken pipe" message may
result.

13.2 Disappearance of Output

Disappearance of output usually occurs because of an unclosed diver­
sion (e.g., a missing .DE or .FE macro). Fortunately, macros that use

6-86

MEMORANDUM MACROS

diversions are careful about it, and these macros check to make sure
that illegal nestings do not occur. If any error message is issued con­
cerning a missing .DE or .FE, the appropriate action is to search back­
wards from the termination point looking for the corresponding associ­
ated .DF, .DS, or .FS (since these macros are used in pairs).

The following command:

grep -n '''\.[EDFRT][EFNQS)' filename! filename2

prints all the .DF, .DS, .DE, .EQ, .EN, .FS, .FE, .RS, .RF, .TS, and
.TE macros found in filename1 and filename2 each preceded by its file
name and the line number in that file. This listing can be used to
check for illegal nesting and/or omission of these macros.

14. Extending and Modifying Memorandum Macros

14.1 Naming Conventions

In this part, the following conventions are used to describe names:

n: Digit
a: Lowercase letter
A: Uppercase letter
x: Any alphanumeric character (n, a, orA, i.e., letter or digit)
s: Any nonalphanumeric character (special character)

All other characters are literals (characters that stand for themselves).

Request, macro, and string names are kept by the formatters in a single
internal table; therefore, there must be no duplication among such
names. Number register names are kept in a separate table.

14.1.1 Names Used by Formatters

requests:

registers:

aa (most common)

an (only one, currently: c2)

aa (normal)

.x (normal)

.s (only one, currently: .)

a. (only one, currently: c.)

% (page number)

6-87

MEMORANDUM MACROS

14.1.2 Names Used by Memorandum Macros

macros and strings:

registers:

A, AA, Aa (accessible to users; e.g.,
macros P and HU, strings F, BU, and
Lt)

nA (accessible to users; only two,
currently: 1 C and 2C)

aA (accessible to users; only one,
currently: nP)

s (accessible to users; only the seven
accents, currently (12.10})

)x, lx, lx, > x, ? x {internal}

An, Aa (accessible to users; e.g., HI,
Fg)

A (accessible to users; meant to be set
on the command line; e.g., C)

:X, ;x, #x, ? x, !x (internal)

14.1.3 Names Used by eft', eqiiiiieqii, and tbi

The ew (1) program is the constant-width font preprocessor for the troff
formatter. It uses the following five macro names:

.CD .CN .CP .CW .PC

This preprocessor also uses the number register names cE and eW.
Mathematical equation preprocessors, eqn(I) and neqn(l), use registers
and string names of the form nn. The table preprocessor, tbl(1), uses
T&, T#, and TW, and names of the form:

a- a+ al nn na "a #a #s

14.1.4 Names Defined by User

Names that consist either of a single lowercase letter or a lowercase
letter followed by a character other than a lowercase letter (names .e2
and .nP are already used) should be used to avoid duplication with

6-88

MEMORANDUM MACROS

already used names. The following is a possible naming convention:

macros:
strings:
registers:

aA (e.g., bG, kW)
as (e.g., C), fl, p})
a (e.g., f, t)

14.2 Sample Extensions

14.2.1 Appendix Headings

The following is a way of generating and numbering appendix headings:

.nr Hu 1

.nr a 0

.de aH

.nr a + 1

.nr P 0

.PH '''''Appendix \ \na - \ \ \ \ \ \ \ \nP'"

.SK

.HU "\\1"

After the above initialization and definition, each call of the form

.aH "title"

begins a new page (with the page header changed to "Appendix
a - n") and generates an unnumbered heading of title, which, if
desired, can be saved for the table of contents. To center appendix
titles the He register must be set to 1 {4.2.2.3}.

14.2.2 Hanging Indent With Tabs.

The following example illustrates the use of the hanging indent feature
of variable-item lists {5.8}. A user-defined macro is defined to accept
four arguments that make up the mark. In the output, each argument
is to be separated from the previous one by a tab; tab settings are
defined later. Since the first argument may begin with a period or apos­
trophe, the "\&" is used so that the formatter will not interpret such a
line as a formatter request or macro call.

Note: The 2-character sequence "\&" is understood by formatters to
be a "zero-width" space. It causes no output characters to appear, but
it removes the special meaning of a leading period or apostrophe.

6-89

MEMORANDUM MACROS

The "\t" is translated by the formatter into a tab. The "\c" is used to
concatenate the input text that follows the macro call to the line built
by the macro. The user-defined macro and an example of its use are:

.de aX

.LI
\&\\$1 \t\\$2\t\\$3\t\\$4\t\c

.ta .Si Ii I.Si 2i

.VL 2i

.aX .nh off \ - no
No hyphenation.
Automatic hyphenation is turned off.
Words containing hyphens
(e.g., mother-in-law) may still be split across lines .
. aX .hy on \- no
Hyphenate.
Automatic hyphenation is turned on .
. aX .hc\<sp>c none none no
Hyphenation indicator character is set to "c" or removed.
During text processing, the indicator is suppressed
and will not appear in the output.
Prepending the indicator to a word has the effect
of preventing hyphenation of that word .
. LE

where < sp> stands for a space.

The resulting output is:

.nh off no

.hy on no

.hc c none none no

6-90

No hyphenation. Automatic hyphena­
tion is turned off. Words containing
hyphens (e.g., mother-in-law) may still
be split across lines.

Hyphenate. Automatic hyphenation is
turned on.

Hyphenation indicator character is set
to "c" or removed. During text pro-

15. Summary

MEMORANDUM MACROS

cessing, the indicator is suppressed and
will not appear in the output. Prepend­
ing the indicator to a word has the
effect of preventing hyphenation of that
word.

The following are qualities of mm that have been emphasized in its
design in approximate order of importance:

• Robustness in the face of error - A user need not be an nroff / troff
expert to use the Memorandum Macros. When the input is
incorrect, either the macros attempt to make a reasonable
interpretation of the error or an error message describing the error
is produced. An effort has been made to minimize the possibility
that a user would get cryptic system messages or strange output as
a result of simple errors.

• Ease of use for simple documents - It is not necessary to write
complex sequences of commands to produce documents. Reason­
able macro argument default values are provided where possible.

• Parameterization - There are many different preferences in the
area of document styling. Many parameters are provided so that
users can adapt input text files to produce output documents to
their respective needs over a wide range of styles.

• Extension by moderately expert users - A strong effort has been
made to use mnemonic naming conventions and consistent tech­
niques in construction of macros. Naming conventions are given
so that a user can add new macros or redefine existing ones if
necessary.

• Device independence - A common use of mm is to produce docu­
ments on hard copy via teletypewriter terminals using the nroff
formatter. Macros can be used conveniently with both 10- and
12-pitch terminals. In addition, output can be displayed on an
appropriate CRT terminal. Macros have been constructed to allow
compatibility with the troff(1) formatter so that output can be
produced on both a phototypesetter and a teletypewriter/CRT ter­
minal.

• Minimization of input - The design of macros attempts to minim­
ize repetitive typing. For example, if a user wants to have a blank
line after all first- or second-level headings, the user need only set
a specific parameter once at the beginning of a document rather

6-91

MEMORANDUM MACROS

than type a blank line after each such heading.

• Decoupling of input format from output style - There is but one way
to prepare the input text although the user may obtain a number
of output styles by setting a few global flags. For example, the .H
macro is used for all numbered headings, yet the actual output
style of these headings may be made to vary from document to
document or within a single document.

16. Figures and Tables

This section contains Figure 16.A which is an example of an input file
of a simple letter that is also shown formatted by both nroff and troff
using the Memorandum Macros. This example illustrates how the for­
matters work and what to expect from your input file.

There are also four tables in this section that are useful reference tools
when using the Memorandum Macros. The tables are:

Table 16.A

Table 16.B

Table 16.C

Table 16.D

6-92

Macro Names: This table is a alphabetical sum­
mary of all the Memorandum Macro names avail­
able for producing a document.

String Names: This table is a summary of all the
predefined string names in the Memorandum
Macro package.

Number Register Names: This table is a summary
of all the predefined number register names in
the Memorandum Macro package.

Error Messages: This table is a list of error mes­
sages that you may encounter when formatting a
document. Memorandum Macro error messages
as well as nrofl/trofl error messages are
explained.

MEMORANDUM MACROS

INPUT: .nr N 2 \" specifies header to be omitted from page 1
.ta 3i
Septem ber 15, 1984
.SP 2
Mr. Steven 1. Jones
.br
386 Broderick Street
.br
San Francisco, CA 94111
.SP
Dear Mr. Jones:
.P
Enclosed please find a copy of the
.I
UniPlus+*F System V Document Processing Guide .
. R
.FS
U niPlus + is a trademark of U niSoft Corporation .
. FE
.P
This manual is intended for use by those
who intend to use the \s-IUNIX\s+I*F
.FS
\s-1 UNIX\s+ 1 is a trademark of AT&T Bell Laboratories .
. FE
operating system for preparing documentation .
. P
This manual covers topics such as:
.VL 17
.LI \f1Formatters:\fR
the \ffinroff/troft\fR formatters are discussed in great detail
with tables listing defaults and explanations of all requests .
. LI \f1Tables:\fR
the \ffitbl\fR program is explained
with very helpful examples at the end of the chapter.
.LI \f1Equations:\fR
input of mathematical expressions is made simple by the \ffieqn\fR program;
the text contains many examples .
. LI "\f1Macro\ Package:\fR"
the \ffimm\fR macro package chapter gives a complete outline
of all the capabilities of this powerful document processing tool.
.LE
.P
I hope you will find this guide useful in preparing your report.
.SP
.nf
Sincerely,
.SP 2
Rosemary Clooney
Documentation Specialist
RC/jfb
Ene .
. fi

Figure 16.A. Example of a Simple Letter - Input File
6-93

MEMORANDUM MACROS

nroft OUTPUT: September 15, 1984

Mr. Steven J. Jones
386 Broderick Street
San Francisco, CA 94111

Dear Mr. Jones:

Enclosed please find a copy of the UniPlus+~ System y
Document Processing ~.

This manual is intended for use by those who intend to use
the UNIX2 operating system for preparing documentation.

This manual covers topics such as:

Formatters:

Tables:

Equations:

~ Package:

the nroff/troff formatters are discussed in
great detail with tables listing defaults
and explanations of all requests.

the tbl program is explained with very
helpful examples at the end of the chapter.

input of mathematical expressions is made
simple by the eqn program~ the text
contains many examples.

the mm macro package chapter gives a
complete outline of all the capabilities of
this powerful document processing tool.

I hope you will find this guide useful in preparing your
report.

RC/jfb
Enc.

Sincerely,

Rosemary Clooney
Documentation Specialist

1. UniPlus+ is a trademark of UniSoft Corporation.

2. UNIX is a trademark of AT&T Bell Laboratories.

6-94

Figure 16.A. Example of a Simple Letter - NROFF Output
(continued)

troff OUTPUT

Mr. Steven J. Jones
386 Broderick Street
San Francisco, CA 94111

Dear Mr. Jones:

MEMORANDUM MACROS

September 15, 1984

Enclosed please find a copy of the UniPlus +1 System V Document
Processing Guide.

This manual is intended for use by those who intend to use the UNIX2

operating system for preparing documentation.

This manual covers topics such as:

Formatters: the nroff/troff formatters are discussed in great
detail with tables listing defaults and explanations of
all requests.

Tables: the tbl program is explained with very helpful
examples at the end of the chapter.

Equations: input of mathematical expressions is made simple by
the eqn program~ the text contains many examples.

Macro Package: the mm macro package chapter gives a complete
outline of all the capabilities of this powerful
document processing tool.

I hope you will find this guide useful in preparing your report.

RC/jfb
Ene.

1. UniPlus+ is a trademark of UniSoft Corporation.

2. UNIX is a trademark of AT&T Bell Laboratories.

Sincerely,

Rosemary Clooney
Documentation Specialist

Figure 16.A. Example of a Simple Letter - TROFF Output

6-95

MEMORANDUM MACROS

I

MACRO

IC

2C

AE

AF

AL

AS

AT

AU

--AV
I

B

BE

BI

BL

TABLE 16.A. Memorandum Macro Names

SECTION

12.4

12.4

6.5

6.9

5.3

6.5

6.3

6.3

- --b.l1.3
I

12.1

9.7

12.1

5.4

DESCRIPTION

I-column processing
.IC

2-column processing
.2C

A bstract end
.AE

Alternate format of "Subject/Date/From" block
.AF [company-name]

Automatically incremented list start
.AL [type] [text-indent1 [I]

A bstract start
.AS [arg] [indent1

Author's title
.A T [title] '"

Author information
.AU name [initials] [loc] [dept1 [ext] [room] [arg]

[arg] [arg]

Approval slgnamre
.AV [name]

Bold
.B [bold-arg] [prev-font-arg] [bold] [prev] [bold]

[prev1

Bottom block end
.BE

Bold/Italic
.BI [bold-arg] [italic-arg1 [bold] [italic] [bold] [italic]

Bullet list start
.BL [text-indent1 [1]

* Macros marked with an asterisk are not, in general, called (invoked) directly by the
user. They are "user exits" defined by the user and called by the Memorandum
Macros from inside header, footer, or other macros.

6-96

MACRO

DR

DS

CS

DE

DF

DL

DS

EC

EF

EH

EN

EQ

EX

Fe

FD

MEMORANDUM MACROS

Table 16.A. Memorandum Macro Names
(continued)

SECTION DESCRIPTION

12.1 Bold/Roman
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold]

[Roman]

9.7 Bottom block start
.BS

10.2 Cover sheet
.CS [pages] [othed [total] [figs] [tbls] [refs]

7.1 Display end
.DE

7.2 Display floating start
.DF [format] [fill] [right-indent]

5.5 Dash list start
.DL [text-indent] [1]

7.1 Display static start
.DS [format] [fill] [right-indent]

7.5 Equation caption
.EC [title] [override] [flag]

9.2.5 Even-page footer
.EF [arg]

9.2.2 Even-page header
.EH [arg]

7.4 End equation display
.EN

7.4 Equation display start
.EQ [label]

7.5 Exhibit caption
.EX [title] [override] [flag]

6.11.1 Formal closing
.FC [closing]

8.3 Footnote default format
.FD [arg] [1]

6-97

MEMORANDUM MACROS

MACRO

FE

FG

FS

H

He

HM

HU

HX·

I
HY~

I

HZ·

I

IB

IR

LB

6-98

Table 16.A. Memorandum Macro Names
(continued)

SECTION DESCRIPTION

8.2 Footnote end
.FE -

7.5 Figure title
.FG [title] [override] [flag]

8.2 Footnote start
.FS UabeI1

4.2 Heading-numbered
.H level [heading-text] [heading-suffix]

3.4 Hyphenation character
.He [hyphenation-indicator]

4.2.2.5 Heading mark style
(Arabic or Roman numerals, or letters)
.HM [argI) ... [arg7]

4.3 Heading- unnumbered
.HU heading-text

4.6 Heading user exit X (before printing heading)
.HX dlevel rlevel heading-text

4.6 I Heading user exit Y <hefOic piinting heading)
.HY dlevel rlevel heading-text

4.6 Heading user exit Z (after printing heading)
.HZ dlevel rlevel heading-text

12.1 Italic (underline in the nroif formatter)
.I [italic-arg] [prev-font-arg] [italic] [prev]

[italic] [prev]

12.1 Italic/Bold
.IB [italic-arg] [bold-arg] [italic] [bold] [italic] [bold]

12.1 Italic/Roman
.IR [italic-arg] [Roman-arg] [italic] [Roman]

[italic] [Roman]

5.12 List begin
.LB text-indent mark-indent pad type [mark]

[LI -space] [LB-space]

MACRO

LC

LE

LI

ML

MT

ND

NE

NS

nP

OF

OH

OK

OP

P

PF

PH

MEMORANDUM MACROS

Table 16.A. Memorandum Macro Names
(continued)

SECTION DESCRIPTION

5.13 List-status clear
.Le lIist-level]

5.10 List end
.LE [1]

5.9 List item
.LI [mark] [I]

5.6 Marked list start
.ML mark [text-indent] [1]

6.7 Memorandum type
.MT [type] [addressee] O/' .MT [4] [1]

6.8 New date
.ND new-date

6.11.2 Notation end
.NE

6.11.2 Notation start
.NS [arg]

4.1.2 Double-line indented paragraphs
.nP

9.2.6 Odd-page footer
.OF [arg]

9.2.3 Odd-page header
.OH [arg]

6.6 Other keywords for Technical Memo cover sheet
.OK [keyword] ...

12.8 Odd page
.OP

4.1 Paragraph
.P [type]

9.2.4 Page footer
.PF [arg]

9.2.1 Page header
.PH [arg]

6-99

MEMORANDUM MACROS

MACRO

PM

px*

R

RB

RD

RF

RI

RL

RP

RS

S

SA

SG

SK

SM

6-100

Table 16.A. Memorandum Macro Names
(continued)

SECTION DESCRIPTION

9.9 Proprietary Marking
.PM [code]

9.6 Page-header user exit
.PX

12.1 Return to regular (Roman) font
.R

12.1 Roman/Bold
.RB [Roman-arg] [bold-arg] [Roman] [bold]

[Roman] [bold]

12.12 Read insertion from terminal
.RD [prompt] [diversion] [string]

11.2 Reference end
.RF

12.1 Roman/Italic
.RI [Roman-arg] litalic-arg] [Roman] litalic1

[Roman] [italic1

5.7 Reference list start
noT r ... ___ ~. __ 1 _ ._ 1 r ... 1

.I'L LH:::X!-!!!uI;;!H.! L!.!

11.4 Produce Reference Page
.RP [arg] [arg]

11.2 Reference start
.RS [string-name]

12.9 Set troff formatter point size and vertical spacing
.S [size] [spacing]

12.2 Set adjustment (right-margin justification) default
.SA [arg]

6.11.1 Signature line
.SG [arg] [1]

12.7 Skip pages
.SK [pages]

12.10 Make a string smaller
.SM string 1 [string2] [string3]

MACRO

SP

TB

TC

TE

TH

TL

TM

TP*

TS

TX*

TY*

VL

VM

WC

MEMORANDUM MACROS

Table 16.A. Memorandum Macro Names
(continued)

SECTION DESCRIPTION

12.6 Space vertically
.SP [lines]

7.5 Table title
.TB [title] [override] [flag]

10.1 Table of contents
.TC [sleveI1 [spacing] [tleveI1 [tab] [head I]

[head2] [head3] [head4] [headS]

7.3 Table end
.TE

7.3 Table header
.TH [N]

6.2 Title of memorandum
.TL [charging-case] {filing-case]

6.4 Technical Memorandum number(s)
.TM [numbed ...

9.6 Top-of-page macro
.TP

7.3 Table start
.TS [H]

10.1 Table of contents user exit
.TX

10.1 Table of contents user exit (suppress CONTENTS)
.TY

5.8 Variable-item list start
.VL text-indent [mark-indent] [1]

9.8 Vertical margins
.VM [top] [bottom]

12.4 Footnote and Display Width Control
.WC [format]

* Macros marked with an asterisk are not, in general, called (invoked) directly by the
user. They are "user exits" defined by the user and called by the Memorandum Mac­
ros from inside header, footer, or other macros.

6-101

MEMORANDUM MACROS

TABLE 16.B. String Names

STRING SECTION DESCRIPTION

BU 3.7 Bullet (nroff: tr., troff: e)

Ci 10.1 Table of contents indent list
Up to seven scaled arguments for heading levels

DT 6.8 Date (current date, unless overridden)
Month, day, year (e.g., May 31,1984)

EM 3.8 Em dash string
Produces an em dash in the troff formatter and a
double hyphen in nroff

F 8.1 Footnote number generator
nroff: \u\ \n + (:p\d
troff: \ v' - .4m'\s- 3\ \n + (:p\sO\ v'.4m'

HF 4.2.2.4.1 Heading font list
Up to seven codes for heading levels 1 through 7
3 3 2 2 2 2 2 (levels 1 and 2 bold, 3 through 7
underlined by nroff and italicized by troff)

HP 4.2.2.4.3 Heading point size list
Up to seven codes for heading levels 1 through 7

Le 7.6 Title for LIST OF EQUATIONS

Lf 7.6 Title for LIST OF FIGURES

Lt i.6 Tide for LiST OF TABLES

Lx 7.6 Title for LIST OF EXHIBITS

RE 12.3 sees Release and Level of Memorandum Macros
Release.Level (e.g., 15.129)

Rf 11.1 Reference number generator

Rp 11.4 Title for References

Tm 3.9 Trademark string
Places "TM" 'h line above text that it follows

12.10 Seven accent strings are also available.

Note I: If the released-paper style is used, then (in addition to the above strings) certain
BTL location codes are defined as strings and are needed only until the .MT macro is
called. The following codes are recognized: AK, AL, ALF, CB, CH, CP, DR, FJ,
HL, HO, HOH, HP, IH, IN, INH, IW, MH, MV, PY, RD, RR, WB, WH, and
WV.

Note 2: Section 1.5 has notes on setting and referencing strings.

6-102

MEMORANDUM MACROS

TABLE 16.C. Number Register Names

REGISTER SECTION DESCRIPTION

A *t 2.4 Handles preprinted forms and Bell System logo
0, [0:2]

Au 6.3 Inhibits printing of author information
1, [0:1]

C *t 2.4 Copy type (original, DRAFT, etc.)
o (Original), [0:4]

CI 4.4 Level of headings saved for table of contents
10.1 2, [0:7]

Cp 10.1 Placement of list of figures, etc.
1 (on separate pages), [0:1]

D *t 2.4 Debug flag
0, [0:1]

De 7.2 Display eject register for floating dislays
0, [0:1]

Df 7.2 Display format register for floating displays
5, [0:5]

Ds 7.1 Static display pre- and post-space
1, [0:1]

E * t 2.4 Controls font of the Subject/Date/From fields
1 (nroff) 0 (troff), [0: 1]

Ec 7.5 Equation counter, used by .EC macro
0, [0:?1, incremented by one for each .EC call.

Ej 4.2.2.1 Page-ejection flag for headings
o (no eject), [0:7]

Eq 7.4 Equation label placement
o (right-adjusted), [0:1]

* An asterisk attached to a register name indicates this register can be set only from the
command line or before the macro definitions are read by the formatter.

t Section 1.5 has notes on setting and referencing registers. Any register having a
single-character name can be set from the command line.

6-103

MEMORANDUM MACROS

REGISTER

Ex

Fg

Fs

HI-H7

Hb

He

Hi

u'"

Ht

Hu

Hy

L * t

Le

Lf

6-104

Table 16.C. Number Register Names
(continued)

SECTION

7.5

7.5

8.4

4.2.2.5

4.2.2.2

4.2.2.3

4.2.2.2

L1 ') ') ')

4.2.2.5

4.3

3.4

2.4

7.6

7.6

DESCRIPTION

Exhibit counter, used by .EX macro
0, [O:?l, incremented by one for each .EX call.

Figure counter, used by .FG macro
0, [O:?l, incremented by one for each .FG call.

Footnote space (i.e., spacing between footnotes)
1, [O:?]

Heading counters for levels 1 through 7
0, [O:?], incremented by the .H macro of corresponding
level or the .HU macro if at level given by the Hu
register. The H2 through H7 registers are reset to 0 by
any .H tHU) macro at a lower-numbered level.

Heading break level (after .H and .HU)
2, [0:7]

Heading centering level for .H and .HU
o (no centered headings), [0:7]

Heading temporary indent (after .H and .HU)
1 (indent as paragraph), [0:2]

U~arl;no "nat'<> 1~'I<>1 (<>ft~r U <>nrl UI n
2 (space only after .H 1 and .H 2), [0:7]

Heading type (for .H: single or concatenated numbers)
o (concatenated numbers: 1.1.1, etc'), [0:1]

Heading level for unnumbered heading tHU)
2 tHU at the same level as.H 2), [0:7]

Hyphenation control for body of document
o (automatic hyphenation off), [0: 1]

Length of page
66, [20:?] (I Ii, [2i:?] in troff formatted

List of equations
o (tist not produced) [0: 1]

List of figures
1 (tist produced) [0: 1]

REGISTER

Li

Ls

Lt

Lx

N *t

Np

o *t

Oc

Of

Pt

Pi

Ps

Pt

MEMORANDUM MACROS

Table 16.C. Number Register Names
(continued)

SECTION DESCRIPTION

5.3 List indent
6 (nroff) 5 (troff), [O:?]

5.1 List spacing between items by level
6 (spacing between all levels) [0:6]

7.6 List of tables
1 (list produced) [0:1]

7.6 List of exhibits
1 (list produced) [0:1]

2.4 Numbering style
0, [0:5]

4.1 Numbering style for paragraphs
o (unnumbered) [0:1]

2.4 Offset of page
.75i, [O:?] (0.5i, [Oi:?] in troff formatted
For nroff formatter, these values are unscaled
numbers representing lines or character positions.
For trolf formatter, these values must be scaled.

10.1 Table of contents page numbering style
o (lowercase Roman), [0: 1]

7.5 Figure caption style
o (period separator), [0: 1]

2.4 Page number managed by Memorandum Macros
0, [O:?J

4.1 Paragraph indent
5 (nroff) 3 (troff), [O:?]

4.1 Paragraph spacing
1 (one blank space between paragraphs), [O:?J

4.1 Paragraph type
o (paragraphs always left justified), [0:2]

6-105

MEMORANDUM MACROS

REGISTER

Pv

Rf

S *t

Si

T *t

Tb

U *t

w *t

Table 16.C. Number Register Names
(continued)

SECTION DESCRIPTION

9.10 "PRIV ATE" header
o (not printed), [0:2]

11.1 Reference counter, used by .RS macro
0, [O:?], incremented by one for each .RS call.

2.4 The troff formatter default point size
10, [6:36]

7.1 Standard indent for displays
5 (nroff) 3 (troff), [O:?]

2.4 Type of nroff output device
0, [0:2]

7.5 Table counter, used by .TB macro
0, [0:?1, incremented by one for each .TB call.

2.4 Underlining style (nroff) for .H and .HU
o (continuous underline when possible), [0:11

2.4 Width of page (line and title length)
6i, [10:1365] (6i, [2i:7.54il in the troff formatter)

* An asterisk attached to a register name indicates this register can be set only from the
command line or before the macro definitions are read by the formatter.

t Section 1.5 has notes on setting and referencing registers. Any register having a
single-character name can be set from the command line. [head5]

6-106

MEMORANDUM MACROS

TABLE 16.D. Error Messages

Memorandum Macro Error Messages

An mm error message has a standard part followed by a variable part. The
standard part has the form:

ERROR: Uilename}input line 11:

Variable part n consists of a descriptive message usually beginning with a
macro name. They are listed below in alphabetical order by macro name, each
with a more complete explanation.

ERROR MESSAGE DESCRIPTION

Check TL, AU, AS, AE, The correct order of macros at the start of a
MT sequence memorandum is shown in section 6.1. Something

has disturbed this order.

Check TL, AU, AS, AE, The correct order of macros at the start of a
NS, NE, MT sequence memorandum is shown in section 6.1. Something

has disturbed this order. Occurs if the .AS 2 {6.S}
macro was used.

CS:cover sheet too long

DE:no DS or DF active

Text of the cover sheet is too long to fit on one
page. The abstract should be reduced or the indent
of the abstract should be decreased {6.S}.

A .DE macro has been encountered, but there has
not been a previous .DS or .DF macro to match it.

DF:illegal inside TL or AS Displays are not allowed in the title or abstract.

DF:missing DE

DF:missing FE

DF:too many displays

A .DF macro occurs within a display, i.e., a .DE
macro has been omitted or mistyped.

A display starts inside a footnote. The likely cause is
the omission (or misspelling) of a .FE macro to end
a previous footnote.

More than 26 floating displays are active at once,
i.e., have been accumulated but not yet output.

6-107

MEMORANDUM MACROS

ERROR MESSAGE

Table 16.D. Error Messages
(continued)

DESCRIPTION

DS:illegal inside TL or AS Displays are not allowed in the title or abstract.

DS:missing DE

DS:missing FE

FE:no FS active

FS:missing DE

FS:missing FE

H:bad arg: value

H:missing arg

H:missing DE

H:missing FE

I

A .DS macro occurs within a display, i.e., a .DE has
been omitted or mistyped.

A display starts inside a footnote. The likely cause is
the omission (or misspelling) of a .FE to end a pre­
vious footnote.

A .FE macro has been encountered with no previous
.FS to match it.

A footnote starts inside a display, i.e., a .DS or .DF
occurs without a matching .DE.

A previous .FS macro was not matched by a closing
.FE, i.e., an attempt is being made to begin a foot­
note inside another one.

The first argument to the .H macro must be a single
digit from one to seven, but value has been supplied
instead.

The .H macro needs at least one argument.

A heading macro (.H or .HU) occurs inside a
display.

A heading macro (.H or .HU) occurs inside a foot­
note.

HU:missing arg The .HU macro needs one argument.

LB:missing arg(s) The .LB macro requires at least four arguments.

LB:too many nested lists Another list was started when there were already six
active lists.

LE:mismatched The .LE macro has occurred without a previous .LB
or other list-initialization macro {5.2.l}. This is not a
fatal error. The message is issued because there
exists some problem in the preceding text.

6-108

ERROR MESSAGE

LI:no lists active

ML:missing arg

ND:missing arg

RF:no RS active

RP:missing RF

RS:missing RF

S:bad arg: value

SA:bad arg: value

SG:missing DE

SG:missing FE

SG:no authors

VL:missing arg

WC:unknown option

MEMORANDUM MACROS

Table 16.D. Error Messages
(continued)

DESCRIPTION

The .LI macro occurred without a preceding list­
initialization macro. The latter probably has been
omitted or entered incorrectly.

The .ML macro requires at least one argument.

The .ND macro requires one argument.

The .RF macro has been encountered with no previ­
ous .RS to match it.

A previous .RS macro was not matched by a closing
.RF.

A previous .RS macro was not matched by a closing
.RF.

The incorrect argument value has been given for the
.S macro {12.9}.

The argument to the .SA macro (if any) must be
either 0 or 1. The incorrect argument is shown as
value.

The .SG macro occurred inside a display.

The .SG macro occurred inside a footnote.

The .SG macro occurred without any previous .A U
macro(s).

The .VL macro requires at least one argument.

An incorrect argument has been given to the .WC
macro {12.4}.

6-109

MEMORANDUM MACROS

Table 16.D. Error Messages
(continued)

Formatter Error Messages

Most messages issued by the formatter are self-explanatory. Those error mes­
sages over which the user has some control are listed below. Any other error
messages should be reported to the local system support group.

ERROR MESSAGE

Cannot do ev

Cannot execute Jilename

Cannot open .filename

Exception word list full

Line overflow

Nonexistent font type

6-110

DESCRIPTION

Can be caused by:

• setting a page width that is negative or extremely
short

• setting a page length that is negative or extremely
short

• reprocessing a macro package (e.g., performing a
.so request on a macro package that was already
requested on the command line)

• requesting the troff formatter - sl option on a
document that is longer than ten pages.

Given by the.! request if the .fiIename is not found.

Indicates one of the files in the list of files to be pro-
I cessed cannot be opened.

Indicates too many words have been specified in the
hyphenation exception list (via .hw requests).

Indicates output line being generated was too long
for the formatter line buffer capacity. The excess
was discarded. Likely causes for this message are
very long lines or words generated through the
misuse of \c of the .Cll request, or very long equa­
tions produced by eqn/ neqn (I) .

Indicates a request has been made to mount an unk­
nown font.

ERROR MESSAGE

Nonexistent macro file

MEMORANDUM MACROS

Table 16.D. Error Messages
(continued)

DESCRIPTION

Indicates the requested macro package does not
exist.

Nonexistent terminal type Indicates the terminal options refer to an unknown
terminal type.

Out of temp file space Indicates additional temporary space for macro
definitions, diversions, etc. cannot be allocated. This
message often occurs because of unclosed diversions
(missing .FE or .DE), unclosed macro definitions
(e.g., missing " .. "), or a huge table of contents.

Too many page numbers Indicates the list of pages specified to the -0 for­
matter option is too long.

Too many number registers Indicates the pool of number register names is full.
Unneeded registers can be deleted by using the .rr
request.

Too many strings/macros Indicates the pool of string and macro names is full.
Unneeded strings and names macros can be deleted
using the .rm request.

Word overflow Indicates a word being generated exceeded the for­
matter word buffer capacity. Excess characters were
discarded. Likely causes for this message are very
long lines, words generated through the misuse of \c
of the .ell request, or very long equations produced
byeqn/neqn(I).

6-111

	0001
	0002
	001
	002
	003
	004
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-001
	02-002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	03-001
	03-002
	03-003
	03-004
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	06-0001
	06-0002
	06-0003
	06-0004
	06-0005
	06-001
	06-002
	06-003
	06-004
	06-005
	06-006
	06-007
	06-008
	06-009
	06-010
	06-011
	06-012
	06-013
	06-014
	06-015
	06-016
	06-017
	06-018
	06-019
	06-020
	06-021
	06-022
	06-023
	06-024
	06-025
	06-026
	06-027
	06-028
	06-029
	06-030
	06-031
	06-032
	06-033
	06-034
	06-035
	06-036
	06-037
	06-038
	06-039
	06-040
	06-041
	06-042
	06-043
	06-044
	06-045
	06-046
	06-047
	06-048
	06-049
	06-050
	06-051
	06-052
	06-053
	06-054
	06-055
	06-056
	06-057
	06-058
	06-059
	06-060
	06-061
	06-062
	06-063
	06-064
	06-065
	06-066
	06-067
	06-068
	06-069
	06-070
	06-071
	06-072
	06-073
	06-074
	06-075
	06-076
	06-077
	06-078
	06-079
	06-080
	06-081
	06-082
	06-083
	06-084
	06-085
	06-086
	06-087
	06-088
	06-089
	06-090
	06-091
	06-092
	06-093
	06-094
	06-095
	06-096
	06-097
	06-098
	06-099
	06-100
	06-101
	06-102
	06-103
	06-104
	06-105
	06-106
	06-107
	06-108
	06-109
	06-110
	06-111

