
PN: 1174-01

UNIPLUS+ SYSTEM V
Programming Guide

Copyright © 1984 U niSoft Corporation.

Portions of this material have been previously copyrighted by:

Bell Telephone Laboratories, Incorporated, 1980

Western Electric Company, Incorporated, 1983

Regents of the University of California

Holders of a UNIX and U niPlus + software license are permitted to copy this docu,
ment, or any portion of it, as necessary for licensed use of the software, provide<
this copyright notice and statement of permission are included.

UNIX is a Trademark of AT&T Bell Laboratories, Inc.

UniPlus+ is a Trademark of UniSoft Corporation of Berkeley.

PREFACE'

This guide describes the C programming language supported by the
UniPlus+* System V operating system. The user should have at least
two years of specialized training in computer-related fields. The user is
also expected to use UniPlus+ for system development.

This guide contains eight chapters:

• C INTERFACE NOTES

• C LANGUAGE

• C LIBRARY

• MA TH LIBRARY

• EFL: PROGRAMMING LANGUAGE

• LINT: C PROGRAM CHECKER

• UNIX IMPLEMENTATION

• UNIX 110

Chapter 1, C INTERFACE NOTES, describes the way in which the
U niSoft 68000 C programming language represents data in storage and
how that data is passed between functions.

Chapter 2, C LANGUAGE, provides a summary of the grammar and
rules of the C programming language which was used to write most of
the UNIXt operating system.

Chapter 3, C LIBRARY, describes the functions and declarations that
support the C Language and how to use these functions.

* UniPlus+ is a trademark of UniSoft Systems.
t UNIX is a trademark of AT&T Bell Laboratories.

-i-

PREFACE

Chapter 4, MATH LIBRARY, describes the Math library that is sup­
ported on UniPlus+.

Chapter 5, EFL: PROGRAMMING LANGUAGE, describes the pro­
gramming language EFL. The reader should have a fair degree of fami­
liarity with some procedural language.

Chapter 6, LINT: C PROGRAM CHECKER,- describes a program that
attempts to detect compile-time bugs and non-portable features in C
programs.

Chapter 7, UNIX IMPLEMENTATION, describes the implementation
of the resident UNIX kernel which includes how the system views
processes, users, and programs.

Chapter 8, UNIX 110 SYSTEM, gives an overview of the 110 system
and guides writers of device driver routines. The reader should have a
good knowledge of the overall structure of the file system.

Throughout this document, any reference of the form name OM),
name (7), or name (8) refers to entries in the UniPlus+ System V
Administrator's Manual. Any reference of the form name (N) where N
is a number 1 through 6, possibly followed by a letter, refers to entry
name in section N of the UniPlus+ System V User's Manual.

-ii-

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

CONTENTS

C INTERFACE NOTES

C LANGUAGE

C LIBRARY

MATH LIBRARY

EFL: PROGRAMMING LANGUAGE

LINT: C PROGRAM CHECKER

UNIX IMPLEMENTATION

UNIX 110 SYSTEM

Chapter 1: C INTERFACE NOTES

CONTENTS

INTRODUCTION

DATA REPRESENTATIONS. .

PARAMETER PASSING IN C

SETTING UP THE STACK

ALLOCATION OF LOCAL VARIABLES AND
REGISTERS

RETURNING FROM A FUNCTION OR SUBROUTINE

SYSTEM CALLS • •

OPTIMIZATIONS •.....

USE OF REGISTER VARIABLES

- i -

1

2

3

5

6

7

8

8

9

Chapter 1

C INTERFACE NOTES

INTRODUCTION

This chapter describes the way in which the U niSoft 68000 C program­
ming language represents data in storage, and how that data is passed
between functions. Also described is the environment of a function,
and the calling mechanism for functions.

The information in this chapter is intended for programmers who have
detailed knowledge of the interface mechanisms in order to match C
code with the assembler. It is also intended for those who wish to write
new system functions or mathematical functions.

When a C program is compiled and assembled, the program is split into
three parts. These are:

.text The executable code of the program .

. data The initialized data area. This contains literal constants,
character strings, and so on .

. bss The uninitialized data areas.

These three parts of the program appear in the above order. The
compiler/assembler combination produces the first two. The loader
actually generates the .bss area at load time.

The .bss area is cleared to zero (0) by the loader at load time. This is a
feature of the system and can be relied upon.

During execution of a program, the stack area contains indeterminate
data. In other words, its previous contents (if any) cannot be relied
upon.

1-1

CINTERFACE

DATA REPRESENTATIONS

In general, all data elements of whatever size are stored such that their
least significan t bit is in the highest addressed byte and their most
significant bit is in the lowest addressed byte. The list below describes
the representation of data.

char 6 Values of type char occupy 8 bits. Such values can be
aligned on any byte boundary.

short 6 Values of type short occupy 16 bits. Values of type short
are aligned on word (16-bit) address boundaries.

long 6 Values of type long occupy 32 bits. A long value is the
same as an int value in 68000 C. Values of this type are
aligned on word (16-bit) boundaries.

float 6 Values of type float occupy 32 bits. All float values are
automatically converted to type double for computation
purposes. Values of this type are aligned on word (16-
bit) boundaries. A float value consists of a sign bit, fol­
lowed by an 8-bit biased exponent, followed by a 23-bit
mantissa.

double 6 Values of type double occupy 64 bits. Values of this type
are aligned on word (16-bit) boundaries. A double value
consists of a sign bit, followed by an 8-bit biased
exponent, followed by a 55-bit mantissa.

pointers 6 All pointers are represented as long (32-bit) values.
Pointers are aligned on word (16-bit) boundaries.

arrays 6 The base address of an array value is always aligned on a
word (16-bit) address boundary.

Elements of an array are stored contiguously, one after
the other. Elements of multi-dimensional arrays are
stored in row-major order. That is, the last dimension of
an array varies the fastest.

When a multi-dimensional array is declared, it is possible
to omit the size specification for the last dimension. In
such a case, what is allocated is actually an array of
pointers to the elements of the last dimension.

structures and unions

1-2

Within structures and unions, it is possible to obtain
unfilled holes of size char. This is due to the compiler

CINTERFACE

rounding addresses up to 16-bit boundaries to accommo­
date word-aligned elements.

This situation can best be demonstrated by an example.
Consider the following structure:

struct {
int x; /* This is a 32-bit element */

};

char y;
short z;

/* Takes up a single byte */
/* Aligned to a 16-bit boundary */

The total number of bytes declared above is seven: four
for the int, one for the char, and two for the short.

In reality, the "z" field which is a short will be aligned on
a 16-bit boundary by the C compiler. In this case, the
compiler inserts a hole after the char element "y", to
align the short element "z". The net effect of these
machinations is a structure that behaves like this:

struct {
int x' , /* This is a 32-bit element */
char y; /* Takes up a single byte */
char dummy; /* Fills the structure */
short z· , /* Aligned to a 16-bit boundary */

} ;

The C compiler never reorders any parts of a structure.

Similar considerations apply to arrays of structures or
unions. Each element of an array (other than an array of
char) begins on a 16-bit boundary.

For a detailed treatment of data storage, consult The C Programming
Language by Kernighan and Ritchie.

PARAMETER PASSING IN C

The C programming language is unique in that it really has only func­
tions. The effect of a subroutine is achieved simply by having a func­
tion which does not return a value.

1-3

CINTERFACE

Another unique feature of C is that parameters to functions are always
passed by value. The C programming language has no concept of
declaring parameters to be passed by reference, as there is in languages
such as Pascal. In order to pass a parameter by reference in a C pro­
gram, the programmer must explicitly pass the address of the parame­
ter. The called function must be aware that it is receiving an address
instead of a value, and the appropriate code must be present to handle
that case.

When a function is called, its parameters (if any) are evaluated and are
then pushed onto the stack in reverse order. All parameters are pushed
onto the stack as 32-bit longs. If a parameter is shorter than 32 bits, it
is expanded to a 32-bit value with sign-extension, if necessary. The
calling procedure is responsible for popping the parameters off the
stack.

Consider a C function call like this:

ferry (charon, 7, &styx, 1« 10);

After evaluation, but just before the call, the stack looks like this:

Sp - value of variable 'charon'

7

address of variable 'styx'

1024
... previous stack contents ...

Functions are called by issuing either a "bsr" instruction or a "jsr"
instruction, depending upon whether the callee is within a 16-bit
addressing range or not, and whether the C optimizer was used. The
"bsr" or "jsr" instruction pushes the return address upon the stack,
and then branches to the indicated function. After the call, on entry to
the function, the stack looks like this:

1-4

CINTERFACE

SP - Return address

value of variable 'charon'
7

address of variable 'styx'

1024
... previous stack contents ...

In each function, register A6 is used as a stack frame base. The stack
location referenced by A6 contains the return address.

SETTING UP THE STACK

Upon entry into the function, the prolog code is executed. The prolog
code allocates enough space on the stack for the local variables, plus
enough space to save any registers that this function uses. The prolog
code then ensures that there is enough stack space available for execut­
ing the function. If there is not enough space, the system grows the
stack to allot more space. The prolog code looks like this:

link
tstb
moveml

a6,#-.FI
sp@ (-page_size)
#.SI,a6@(-.FI)

The ".FI" constant is the size of the stack frame for the local vari­
ables, plus four bytes for each register variable.

The "page_size" constant is an implementation dependent constant. It
is used to probe the stack region at some place below the current stack
top. If the probe generates a trap, the system grows the stack by an
amount sufficient to include the probe address.

Finally, the ".S 1" constant is a mask to determine which registers need
to be saved on the stack for this particular function. This is, of course,
dependent on the register variables that the programmer declared for
that particular routine.

1-5

CINTERFACE

ALLOCATION OF LOCAL VARIABLES AND REGISTERS

A total of nine registers are available for register variables. Five of
these are the 68000 data (D) registers, and four are the 68000 address
(A) registers. The available A registers are A2 through AS. The avail­
able D registers are D3 through D7.

Any variable declared as a pointer variable is always allocated to an
address register. Non-pointer variables are assigned to data registers.
Register variables are allocated to registers in the order in which they
are declared in the C source program, starting at the high end (AS or
D7) of the appropriate type of register.

If there are more register variables of either kind than there are regis­
ters to accommodate them, the remaining variables are allocated on the
stack as local variables, just as if the register attribute had never been
given in the declaration.

Upon completion of the prolog code, the stack then looks like this:

1-6

CINTERFACE

...
Register Save Area

SP - ...

...
Local Variables

...

A6 - Old A6

Return Address

value of variable 'charon'

7

address of variable 'styx'

1024
... previous stack contents ...

RETURNING FROM A FUNCTION OR SUBROUTINE

Upon reaching a "return" statement, either explicit or implicit, the
function executes the epilog code. If the function has a return value,
generated from a

return (expression);

statement, the value of the expression (which is synonymous with the
value of the function) is placed in register DO. The epilog code is then
executed to effect a return from the function:

moveml
unlk
rts

a6@(-.Fl),#.Sl
a6

The "moveml" instruction restores any registers which were saved dur­
ing the prolog. The stack frame base pointer in A6 is then put back to
the point where A6 once again points to the return address. The

1-7

CINTERFACE

function is then exited via the "rts" instruction, which pops the stack
to the state it was in prior to the original call, and then returns to the
function that called it.

SYSTEM CALLS

The C compiler generates code for system calls in the following way:

• The system call number is placed in register DO.

• The first parameter is placed in register AO; the second parameter
goes in register D 1; the third parameter is placed in register AI;
and the fourth parameter is placed in register D2.

• A "TRAP #0" instruction is executed.

The C compiler sometimes generates code which uses register D2, so if
your code uses D2, you must save it before executing the system call.
On return from the system call, errors are signaled by the carry flag
being set. The C interface to the system calls typically returns a -Ion
error as the carry flag cannot be tested from C.

OPTIMIZATIONS

This section describes some of the ways in which the programmer can
optimize the use of the C language.

The C compiler can be run to optimize the code it generates, making
that code both compact and fast. Using a C command line as follows:

cc -0 file

generates optimized code. The option for optimized code generation is
an upper-case "0".

If a C program contains a "do" loop of the form:

register short x;
x = 10;
do {

statement
} while (--x != -1);

1-8

CINTERFACE

Such a loop is optimized to use the "dbra" instruction, resulting in fas­
ter execution.

USE OF REGISTER VARIABLES

The decision as to whether to declare a variable in a register depends
on the number of times that variable is referenced in the function. If a
variable is used more than twice in a function, it can be. declared as a
register variable. If a variable is used less than twice in a· function, it is
not useful to declare it as a register variable because the amount of
time spent saving and restoring that register is more than the time
saved in using a register instead of a location on the. stack.

1-9

Chapter 2: C LANGUAGE

CONTENTS

LEXICAL CONVENTIONS .
Comments
Identifiers (Names) . . • . .
Keywords•.•
Constants

Integer Constants .
Explicit Long Constants .
Character Constants . .
Floating Constants
Enumeration Constants

Strings .•....
Hardware Characteristics

SYNTAX NOTATION

NAMES
Storage Class
Type

OBJECTS AND LVALUES

CONVERSIONS . • . . .
Characters and Integers .
Float and Double
Floating and Integral
Pointers and Integers.
Unsigned.
Arithmetic Conversions .

EXPRESSIONS
Primary Expressions . .
U nary Operators
Multiplicative Operators .
Additive Operators
Shift Operators
Relational Operators
Equality Operators.
Bitwise AND Operator
Bitwise Exclusive OR Operator

- i -

1
1
1
2
2
2
2
3
3
4
4
4

6

6
7
7

9

9
9

10
10
10
10
11

12
12
15
17
18
19
19
20
20
20

Bitwise Inclusive OR Operator . .
Logical AND Operator
Logical OR Operator .
Conditional Operator
Assignment Operators
Comma Operator . .

DECLARATIONS
Storage Class Specifiers
Type Specifiers . . .
D.eclarators
Meaning of Declarators
Structure and Union Declarations
Enumeration Declarations
Initialization .
Type Names.
Typedef . .

STATEMENTS
Expression Statement
Compound Statement or Block
Conditional Statement
While Statement
Do Statement
For Statement
Switch Statement
Break Statement
Continue Statement •
Return Statement . •
Goto Statement
Labeled Statement . . . • .
Null Statement . . .

EXTERNAL DEFINITIONS. .
External Function Definitions
External Data Definitions • . • . .

SCOPE RULES . . . •
Lexical Scope
Scope of Externals

COMPILER CONTROL LINES .
Token Replacement
File Inclusion . • • •
Conditional Compilation. .

- ii -

21
21
21
22
22
23

24
24
25
26
27
29
33
34
37
38

39
39
39
40
40
40
41
41
42
43
43
44
44
44

44
45
46

47
47
48

49
49
50
51

Line Control

IMPLICIT DECLARATIONS

TYPES REVISITED
Structures and Unions
Functions .•••
Arrays, Pointers, and Subscripting
Explicit Pointer Conversions . . • • . .

CONST ANT EXPRESSIONS

PORTABILITY CONSIDERATIONS .

SYNTAX SUMMARY
Expressions •
Declarations. • . .
Statements
External definitions
Preprocessor

LIST OF FIGURES

Figure 2.1. 68000 Hardware Characteristics

- iii -

52

53

53
53
54
55
56

57

58

59
60
62
65
65
66

5

Chapter 2

C LANGUAGE

LEXICAL CONVENTIONS

There are six classes of tokens - identifiers, keywords, constants,
strings, operators, and other separators. Blanks, tabs, new-lines, and
comments (collectively, "white space") as described below are ignored
except as they serve to separate tokens. Some white space is required
to separate otherwise adjacent identifiers, keywords, arid constants.

If the input stream has been parsed into tokens up to a given
character, the next token is taken to include the longest string of
characters which could possibly constitute a token.

Comments

The characters 1* introduce a comment which terminates with the
characters *1. Comments do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first character
must be a letter. The underscore (_) counts as a letter. Uppercase
and lowercase letters are different. Although there is no limit on the
length of a name, only initial characters are significant: at least eight
characters of a non-external name, and perhaps fewer for external
names. Moreover, some implementations may collapse case
distinctions for external names. The external name sizes include:

68000 7 characters, 2 cases

2-1

CLANGUAGE

Keywords

The following identifiers are reserved for use as keywords and may
not be used otherwise:

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static while
continue external long struct
default float register switch

Some implementations also reserve the words fortran and asm.

Constants

There are several kinds of constants. Each has a type; an
introduction to types is given in "NAMES." Hardware characteristics
that affect sizes are summarized in "Hardware Characteristics"
under "LEXICAL CONVENTIONS."

Integer Constants

An integer constant consisting of a sequence of digits is taken to be
octal if it begins with 0 (digit zero). An octal constant consists of the
digits 0 through 7 only. A sequence of digits preceded by Ox or OX
(digit zero) is taken to be a hexadecimal integer. The hexadecimal
digits include a or A through f or F with values 10 through 15.
Otherwise, the integer constant is taken to be decimal. A decimal
constant whose value exceeds the largest signed machine integer is
taken to be long; an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be long. Otherwise,
integer constants are into

Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately
followed by I (letter ell) or L is a long constant. As discussed below,
on some machines integer and long values may be considered
identical.

2-2

C LANGUAGE

Character Constants

A character constant is a character enclosed in single quotes, as in
'x'. The value of a character constant is the numerical value of the
character in the machine's character set.

Certain nongraphic characters, the single quote (') and the backslash
(\), may be represented according to the following table of escape
sequences:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backs lash \ \\
single quote \'
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal
digits which are taken to specify the value of the desired character.
A special case of this construction is \0 (not followed by a digit),
which indicates the character NUL. If the character following a
backslash is not one of those specified, the behavior is undefined. A
new-line character is illegal in a character constant. The type of a
character constant is into

Floating Constants

A floating constant consists of an integer part, a decimal point, a
fraction part, an e or E, and an optionally signed integer exponent.
The integer and fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be
missing. Either the decimal point or the e and the exponent (not
both) may be missing. Every floating constant has type double.

2-3

CLANGUAGE

Enumeration Constants

Names declared as enumerators (see "Structure, Union, and
Enunleration Declarations" under "DECLARATIONS") have type
into

Strings

A string is a sequence of characters surrounded by double quotes, as
in n ••• n. A string has type "array of char" and storage class static
(see "NAMES") and is initialized with the given characters. The
compiler places a null byte (\0) at the end of each string so that
programs which scan the string can find its end. In a string, the
double quote character (n) must be preceded by a \; in addition, the
same escapes as described for character constants may be used.

A \ and the immediately following new-line are ignored. All strings,
even when written identically, are distinct.

Hardware Characteristics

The following figures summarize certain hardware properties that
vary from machine to machine.

2-4

C LANGUAGE

68000
(ASCII)

char 8 bits
int 32
short 16
long 32
float 32
double 64

float range ±10
±38

double range ± 10 ±307

Figure 2.1. 68000 Hardware Characteristics

2-5

C LANGUAGE

SYNTAX NOTATION

Syntactic categories are indicated by italic type and literal words and
characters in bold type. Alternative categories are listed on separate
lines. An optional terminal or nonterminal symbol is indicated by
the subscript "opt," so that

{expression t} op

indicates an optional expression enclosed in braces. The syntax is
summarized in "SYNTAX SUMMARY".

NAMES

The C language bases the interpretation of an identifier upon two
attributes of the identifier - its storage class and its type. The
storage class determines the location and lifetime of the storage
associated with an identifier; the type determines the meaning of the
values found in the identifier's storage.

2-6

C LANGUAGE

Storage Class

There are four declarable storage classes:

• Automatic
• Static
• External
• Register.

Automatic variables are local to each invocation of a block (see
"Compound Statement or Block" in "STATEMENTS") and are
discarded upon exit from the block. Static variables are local to a
block but retain their values upon reentry to a block even after
control has left the block. External variables exist and retain their
values throughout the execution of the entire program and may be
used for communication between functions, even separately compiled
functions. Register variables are (if possible) stored in the fast
registers of the machine; like automatic variables, they are local to
each block and disappear on exit from the block.

Type

The C language supports several fundamental types of objects.
Objects declared as characters (char) are large enough to store any
member of the implementation's character set. If a genuine
character from that character set is stored in a char variable, its
value is equivalent to the integer code for that character. Other
quantities may be stored into character variables, but the
implementation is machine dependent. In particular, char may be
signed or unsigned by default.

Up to three sizes of integer, declared short int, int, and long int,
are available. Longer integers provide no less storage than shorter
ones, but the implementation may make either short integers or long
integers, or both, equivalent to plain integers. "Plain" integers have
the natural size suggested by the host machine architecture. The
other sizes are provided to meet special needs.

2-7

C LANGUAGE

The properties of enum types (see "Structure, Union, and
Enumeration Declarations" under "DECLARATIONS") are identical
to those of some integer types. The implementation may use the
range of values to determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic
modulo 2

n
where n is the number of bits in the representation.

Single-precision floating point (float) and double precision floating
point (double) may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as
numbers, they will be referred to as arithmetic types. Char, int of
all sizes whether unsigned or not, and enum will collectively be
called integral types. The float and double types will collectively be
called floating types.

Besides the fundamental arithmetic types, there is a conceptually
infinite class of derived types constructed from the fundamental
types in the following ways:

• Arrays of objects of most types
• Functions which return objects of a given type
• Pointers to objects of a given type
• Structures containing a sequence of objects of various types
• Unions capable of containing anyone of several objects of

various types.

In general these methods of constructing objects can be applied
recursi vely.

2-8

C LANGUAGE

OBJECTS AND LVALUES
An object is a manipulatable region of storage. An Ivalue is an
expression referring to an object. An obvious example of an lvalue
expression is an identifier. There are operators which yield lvalues:
for example, if E is an expression of pointer type, then *E is an
lvalue expression referring to the object to which ~ points. The
name "lvalue" comes from the assignment expression El = E2 in
which the left operand El must be an lvalue expression. The
discussion of each operator below indicates whether it expects lvalue
operands and whether it yields an lvalue.

CONVERSIONS
A number of operators may, depending on their operands, cause
conversion of the value of an operand from one type to another. This
part explains the result to be expected from such conversions. The
conversions demanded by most ordinary operators are summarized
under "Arithmetic Conversions." The summary will be supplemented
as required by the discussion of each operator.

Characters and Integers

A character or a short integer may be used wherever an integer may
be used. In all cases the value is converted to an integer. Conversion
of a shorter integer to a longer preserves sign. Whether or not sign­
extension occurs for characters is machine dependent, but it is
guaranteed that a member of the standard character set is non­
negative.

On machines that treat characters as signed, the characters of the
ASCII set are all non-negative. However, a character constant
specified with an octal escape suffers sign extension and may appear
negative; for example, \377' has the value -1.

When a longer integer is converted to a shorter integer or to a char,
it is truncated on the left. Excess bits are simply discarded.

2-9

C LANGUAGE

Float and Double

All floating arithmetic in C is carried out in double precision.
Whenever a float appears in an expression it is lengthened to
double by zero padding its fraction. When a double must be
converted to float, for example by an assignment, the double is
rounded before truncation to float length. This result is undefined if
it cannot be represented as a float.

Floating and Integral

Conversions of floating values to integral type are' rather machine
dependent. In particular, the direction of truncation of negative
numbers varies. The result is undefined if it will not fit in the space
provided.

Conversions of integral values to floating type are well behaved.
Some loss of accuracy occurs if the destination lacks sufficient bits.

Pointers and Integers

An expression of integral type may be added to or subtracted from a
pointer; in such a case, the first is converted as specified in the
discussion of the addition operator. Two pointers to objects of the
same type may be subtracted; in this case, the result is converted to
an integer as specified in the discussion of the subtraction operator.

Unsigned

Whenever an unsigned integer and a plain integer are combined, the
plain integer is converted to unsigned and the result is unsigned. The
value is the least unsigned integer congruent to the signed integer
(modulo 2wordsize). In a 2's complement representation, this
conversion is conceptual; and there is no actual change in the bit
pattern.

When an unsigned short integer is converted to long, the value of
the result is the same numerically as that of the unsigned integer.
Thus the conversion amounts to padding with zeros on the left.

2-10

C LANGUAGE

Arithmetic Conversions

A great many operators cause conversions and yield result types in a
similar way. This pattern will be called the "usual arithmetic
conversions."

1. First, any operands of type char or short are converted to
int, and any operands of type unsigned char or unsigned
short are converted to unsigned into

2. Then, if either operand is double, the other is converted to
double and that is the type of the result.

3. Otherwise, if either operand is unsigned long, the other is
converted to unsigned long and that is the type of the result.

4. Otherwise, if either operand is long, the other is converted to
long and that is the type of the result.

5. Otherwise, if one operand is long, and the other is unsigned
int, they are both converted to unsigned long and that is the
type of the result.

6. Otherwise, if either operand is unsigned, the other IS

converted to unsigned and that is the type of the result.

7. Otherwise, both operands must be int, and that is the type of
the result.

2-11

C LANGUAGE

EXPRESSIONS
The precedence of expression operators is the same as the order of
the major subsections of this section, highest precedence first. Thus,
for example, the expressions referred to as the operands of + (see
"Additive Operators") are those expressions defined under "Primary
Expressions", "Unary Operators", and "Multiplicative Operators".
Within each subpart, the operators have the same precedence. Left­
or right-associativity is specified in each subsection for the operators
discussed therein. The precedence and associativity of all the
expression operators are summarized in the grammar of "SYNTAX
SUMMARY".

Otherwise, the order of evaluation of expressions IS undefined. In
particular, the compiler considers itself free to compute
subexpressions in the order it believes most efficient even if the
subexpressions involve side effects. The order in which subexpression
evaluation takes place is unspecified. Expressions involving a
commutative and associative operator (*, +, &, I, A) may be
rearranged arbitrarily even in the presence of parentheses; to force a
particular order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is
undefined. Most existing implementations of C ignore integer
overflows; treatment of division by 0 and all floating-point exceptions
varies between machines and is usually adj ustable by a library
function.

Primary Expressions

Primary expressions involving 0, ->, subscripting, and function calls
group left to right.

2-12

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression 1
primary-expression (expression-list t)
primary-expression. identifier op
primary-expression -> identifier

expression-list:
expression
expression-list, expression

C LANGUAGE

An identifier is a primary expression provided it has been suitably
declared as discussed below. Its type is specified by its declaration.
If the type of the identifier is "array of ... ", then the value of the
identifier expression is a pointer to the first object in the array; and
the type of the expression is "pointer to ... ". Moreover, an array
identifier is not an lvalue expression. Likewise, an identifier which is
declared "function returning ... ", when used except in the function­
name position of a call, is converted to "pointer to function returning

"

A constant is a primary expression. Its type may be int, long, or
double depending on its form. Character constants have type int
and floating constants have type double.

A string is a primary expression. Its type is originally "array of
char", but following the same rule given above for identifiers, this is
modified to "pointer to char" and the result is a pointer to the first
character in the string. (There is an exception in certain initializers;
see "Initialization" under "DECLARATIONS.")

A parenthesized expression is a primary expression whose type and
value are identical to those of the unadorned expression. The
presence of parentheses does not affect whether the expression is an
lvalue.

2-13

C LANGUAGE

A primary expression followed by an expression in square brackets is
a primary expression. The intuitive meaning is that of a subscript.
Usually, the primary expression has type "pointer to ... ", the
subscript expression is int, and the type of the result is " ... ". The
expression El[E2] is identical (by definition) to *((El)+(E2». All
the clues needed to understand this notation are contained in this
subpart together with the discussions in "Unary Operators" and
"Additive Operators" on identifiers, * and +, respectively. The
implications are summarized under "Arrays, Pointers, and
Subscripting" under "TYPES REVISITED."

A function call is a primary expression followed by parentheses
containing a possibly empty, comma-separated list of expressions
which constitute the actual arguments to the function. The primary
expression must be of type "function returning ... ," and the result of
the function call is of type " ... ". As indicated below, a hitherto
unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer;
thus in the most common case, integer-valued functions need not be
declared.

Any actual arguments of type float are converted to double before
the call. Any of type char or short are converted to into Array
names are converted to pointers. No other conversions are performed
automatically; in particular, the compiler does not compare the types
of actual arguments with those of formal arguments. If conversion is
needed, use a cast; see "Unary Operators" and "Type Names" under
"DECLARATIONS."

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A
function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. It is
possible to pass a pointer on the understanding that the function may
change the value of the object to which the pointer points. An array
name is a pointer expression. The order of evaluation of arguments
is undefined by the language; take note that the various compilers
differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is
an expression. The first expression must be a structure or a union,

2-14

C LANGUAGE

and the identifier must name a member of the structure or union.
The value is the named member of the structure or union, and it is
an lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from - and>)
followed by an identifier is an expression. The first expression must
be a pointer to a structure or a union and the identifier must name a
member of that structure or union. The result is an lvalue referring
to the named member of the structure or union to which the pointer
expression points. Thus the expression El->MOS is the same as
(*El).MOS. Structures and unions are discussed in "Structure,
Union, and Enumeration Declarations" under "DECLARATIONS."

Unary Operators

Expressions with unary operators group right to left.

un ary -expression:
* expression
& lvalue
- expression
! expression

expression
++ lvalue
--lvalue
lvalue ++
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection; the expression must be a
pointer, and the result is an lvalue referring to the object to which
the expression points. If the type of the expression is "pointer to
... ," the type of the result is " ... ".

The result of the unary & operator is a pointer to the object referred
to by the lvalue. If the type of the lvalue is " ... ", the type of the
result is "pointer to ... ".

2-15

C LANGUAGE

The result of the unary - operator is the negative of its operand. The
usual arithmetic conversions are performed. The negative of an
unsigned quantity is computed by subtracting its value from 2

n

where n is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator! is one if the value of its
operand is zero, zero if the value of its operand is nonzero. The type
of the result is into It is applicable to any arithmetic type or to
pointers.

The - operator yields the one's complement of its operand. The usual
arithmetic conversions are performed. The type of the operand must
be integral.

The object referred to by the lvalue operand of prefix ++ is
incremented. The value is the new value of the operand but is not an
lvalue. The expression ++x is equivalent to x=x+ 1. See the
discussions "Additive Operators" and "Assignment Operators" for
information on conversions.

The lvalue operand of prefix
prefix ++ operator.

is decremented analogously to the

When postfix ++ is applied to an lvalue, the result is the value of the
object referred to by the lvalue. After the result is noted, the object
is incremented in the same manner as for the prefix ++ operator.
The type of the result is the same as the type of the lvalue
expression.

When postfix -- is applied to an lvalue, the result is the value of the
object referred to by the lvalue. After the result is noted, the object
is decremented in the manner as for the prefix -- operator. The type
of the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type
causes conversion of the value of the expression to the named type.
This construction is called a cast. Type names are described in "Type
Names" under "Declarations."

2-16

C LANGUAGE

The size of operator yields the size in bytes of its operand. (A byte is
undefined by the language except in terms of the value of sizeof.
However, in all existing implementations, a byte is the space required
to hold a char.) When applied to an array, the result is the total
number of bytes in the array. The size is determined from the
declarations of the objects in the expression. This expression is
semantically an unsigned constant and may be used anywhere a
constant is required. Its major use is in communication with
routines like storage allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type
name. In that case it yields the size in bytes of an object of the
indicated type.

The construction sizeof(type) is taken to be a unit, so the
expression sizeof(type)-2 is the same as (sizeof(type »-2.

Multiplicative Operators

The multiplicative operators *, /, and % group left to right. The
usual arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The * operator is
associative, and expressions with several multiplications at the same
level may be rearranged by the compiler. The binary / operator
indicates division.

The binary % operator yields the remainder from the division of the
first expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the
form of truncation is machine-dependent if either operand is
negative. On all machines covered by this manual, the remainder has
the same sign as the dividend. It is always true that (a/b)*b + a%b
is equal to a (if b is not 0).

2-17

C LANGUAGE

Additive Operators

The additive operators + and - group left to right. The usual
arithmetic conversions are performed. There are some additional
type possibilities for each operator.

addi ti ve-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to
an object in an array and a value of any integral type may be added.
The latter is in all cases converted to an address offset by
multiplying it by the length of the object to which the pointer points.
The result is a pointer of the same type as the original pointer which
points to another object in the same array, appropriately offset from
the original object. Thus if P is a pointer to an object in an array,
the expression P+ 1 is a pointer to the next object in the array. No
further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions
at the same level may be rearranged by the compiler.

The result of the - operator is the difference of the operands. The
usual arithmetic conversions are performed. Additionally, a value of
any integral type may be subtracted from a pointer, and then the
same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result
is converted (by division by the length of the object) to an int
representing the number of objects separating the pointed-to objects.
This conversion will in general give unexpected results unless the
pointers point to objects in the same array, since pointers, even to
objects of the same type, do not necessarily differ by a multiple of
the object length.

2-18

C LANGUAGE

Shift Operators

The shift operators « and » group left to right. Both perform the
usual arithmetic conversions on their operands, each of which must
be integral. Then the right operand is converted to int; the type of
the result is that of the left operand. The result is undefined if the
right operand is negative or greater than or equal to the length of
the object in bits.

shift-expression:
expression < < expression
expression > > expression

The value of El«E2 is El (interpreted as a bit pattern) left­
shifted E2 bits. Vacated bits are 0 filled. The value of El»E2 is
El right-shifted E2 bit positions. The right shift is guaranteed to be
logical (0 fill) if El is unsigned; otherwise, it may be arithmetic.

Relational Operators

The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression < = expression
expression > = expression

The operators < (less than), > (greater than), <= (less than or equal
to), and >= (greater than or equal to) all yield 0 if the specified
relation is false and 1 if it is true. The type of the result is into The
usual arithmetic conversions are performed. Two pointers may be
compared; the result depends on the relative locations in the address
space of the pointed-to objects. Pointer comparison is portable only
when the pointers point to objects in the same array.

2-19

C LANGUAGE

Equality Operators

equality-expression:
expression == expression
expression != expression

The == (equal to) and the != (not equal to) operators are exactly
analogous to the relational operators except for their lower
precedence. (Thus a<b == c<d is 1 whenever a<b and c<d have
the same truth value).

A pointer may be compared to an integer only if the integer is the
constant o. A pointer to which 0 has been assigned is guaranteed not
to point to any object and will appear to be equal to o. In
conventional usage, such a pointer is considered to be null.

Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be
rearranged. The usual arithmetic conversions are performed. The
result is the bitwise AND function of the operands. The operator
applies only to integral operands.

Bitwise Exclusive OR Operator

excl usi ve-or-expression:
expression expression

The operator is associative, and expressions involving A may be
rearranged. The usual arithmetic conversions are performed; the
result is the bitwise exclusive OR function of the operands. The
operator applies only to integral operands.

2-20

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression 1 expression

C LANGUAGE

The 1 operator is associative, and expressions involving 1 may be
rearranged. The usual arithmetic conversions are performed; the
result is the bitwise inclusive OR function of its operands. The
operator applies only to integral operands.

Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its
operands evaluate to nonzero, 0 otherwise. Unlike &, && guarantees
left to right evaluation; moreover, the second operand is not
evaluated if the first operand is o.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always into

Logical OR Operator

logical-or-expression:
expression II expression

The II operator groups left to right. It returns 1 if either of its
operands evaluates to nonzero, 0 otherwise. Unlike I, II guarantees left
to right evaluation; moreover, the second operand is not evaluated if
the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always into

2-21

C LANGUAGE

Conditional Operator

condi tionaJ-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is
evaluated; and if it is nonzero, the result is the value of the second
expression, otherwise that of third expression. If possible, the usual
arithmetic conversions are performed to bring the second and third
expressions to a common type. If both are structures or unions of the
same type, the result has the type of the structure or union. If both
pointers are of the same type, the result has the common type.
Otherwise, one must be a pointer and the other the constant 0, and
the result has the type of the pointer. Only one of the second and
third expressions is evaluated.

Assignment Operators

There are a number of assignment operators, all of which group right
to left. All require an lvalue as their left operand, and the type of an
assignment expression is that of its left operand. The value is the
value stored in the left operand after the assignment has taken place.
The two parts of a compound assignment operator are separate
tokens.

assignmen t-expression:
Ivalue = expression
Ivalue += expression
Ivalue -= expression
Ivalue *= expression
Ivalue /= expression
Ivalue % = expression
Ivalue > > = expression
Ivalue < < = expression
Ivalue &= expression
Ivalue A = expression
Ivalue 1= expression

In the simple assignment with =, the value of the expression replaces
that of the object referred to by the lvalue. If both operands have
arithmetic type, the right operand is converted to the type of the left

2-22

C LANGUAGE

preparatory to the assignment. Second, both operands may be
structures or unions of the same type. Finally, if the left operand is
a pointer, the right operand must in general be a pointer of the same
type. However, the constant 0 may be assigned to a pointer; it is
guaranteed that this value will produce a null pointer distinguishable
from a pointer to any object.

The behavior of an expression of the form El op = E2 may be
inferred by taking it as equivalent to El = El op (E2); however, El
is evaluated only once. In += and -=, the left operand may be a
pointer; in which case, the (integral) right operand is converted as
explained in "Additive Operators." All right operands and all
nonpointer left operands must have arithmetic type.

Comma Operator

comma-expression:
expression, expression

A pair of expressions separated by a comma is evaluated left to right,
and the value of the left expression is discarded. The type and value
of the result are the type and value of the right operand. This
operator groups left to right. In contexts where comma is given a
special meaning, e.g., in lists of actual arguments to functions (see
"Primary Expressions") and lists of initializers (see "Initialization"
under "DECLARATIONS"), the comma operator as described in this
subpart can only appear in parentheses. For example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

2-23

C LANGUAGE

DECLARATIONS
Declarations are used to specify the interpretation which C gives to
each identifier; they do not necessarily reserve storage associated
with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-list t;

op

The declarators in the declarator-list contain the identifiers being
declared. The decl-specifiers consist of a sequence of type and
storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers t
sc-specifier decl-specifiers °t'P

op

The list must be self-consistent in a way described below.

Storage Class Specifiers

The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a
"storage class specifier" only for syntactic convenience. See
"Typedef" for more information. The meanings of the various
storage classes were discussed in "Names."

The auto, static, and register declarations also serve as definitions
in that they cause an appropriate amount of storage to be reserved.
In the extern case, there must be an external definition (see
"External Definitions") for the given identifiers somewhere outside
the function in which they are declared.

2-24

CLANGUAGE

A register 'declaration is best thought of as an auto declaration,
together with a hint to the compiler that the variables declared will be
heavily used. Only the first few such declarations in each function are
effective. Moreover, only variables of certain types will be stored in
registers. One other restriction applies to register variables: the
address-of operator & cannot be applied to them. Smaller, faster
programs can be expected if register declarations are used appropriately,
but future improvements in code generation may render them
unnecessary.

A t most, one sc-specifier may be given in a declaration. If the sc­
specifier is missing from a declaration, it is taken to be auto inside a
function, extern outside. Exception: functions are never automatic.

Type Specifiers

The type-specifiers are

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double

A t most one of the words long or short may be specified in
conjunction with int; the meaning is the same as if int were not
mentioned. The word long may be specified in conjunction with
float; the meaning is the same as double. The word unsigned may
be specified alone, or in conjunction with int or any of its short or
long varieties, or with char.

2-25

C LANGUAGE

Otherwise, at most on type-specifier may be given in a declaration.
In particular, adjectival use of long, short, or unsigned is not
permitted with typedef names. If the type-specifier is missing from
a declaration, it is taken to be into

Specifiers for structures, unions, and enumerations are discussed in
"Structure, Union, and Enumeration Declarations." Declarations with
typedef names are discussed in "Typedef."

Declarators

The declarator-list appearing in a declaration is a comma-separated
sequence of declarators, each of which may have an initializer.

declara tor-list:
init-declarator
init-declarator, declarator-Jist

ini t-declara tor:
declarator initializer t op

Initializers are discussed in "Initialization". The specifiers in the
declaration indicate the type and storage class of the objects to which
the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression t J op

The grouping is the same as in expressions.

2-26

C LANGUAGE

Meaning of Declarators

Each declarator is taken to be an assertion that when a construction
of the same form as the declarator appears in an expression, it yields
an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier
that is declared. If an unadorned identifier appears as a declarator,
then it has the type indicated by the specifier heading the
declaration.

A declarator in parentheses is identical to the unadorned declarator,
but the binding of complex declarators may be altered by
parentheses. See the examples below.

Now imagine a declaration

TDl

where T is a type-specifier (like int, etc.) and Dl is a declarator.
Suppose this declaration makes the identifier have type "... T ,"
where the" ... " is empty if Dl is just a plain identifier (so that the
type of x in 'int x" is just int). Then if Dl has the form

*D

the type of the contained identifier is " ... pointer to T ."

If D 1 has the form

DO

then the contained identifier has the type" ... function returning T."

2-27

C LANGUAGE

If D 1 has the form

D[constan t-expression]

or

D[]

then the contained identifier has type" array of T." In the first
case, the constant expression is an expression whose value is
determinable at compile time, whose type is int, and whose value is
positive. (Constant expressions are defined precisely in "Constant
Expressions.") When several "array of" specifications are adjacent, a
multidimensional array is created; the constant expressions which
specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful when the array is
external and the actual definition, which allocates storage, is given
elsewhere. The first constant expression may also be omitted when
the declarator is followed by initialization. In this case the size is
calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a
pointer, from a structure or union, or from another array (to
generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually
permitted. The restrictions are as follows: functions may not return
arrays or functions although they may return pointers; there are no
arrays of functions although there may be arrays of pointers to
functions. Likewise, a structure or union may not contain a function;
but it may contain a pointer to a function.

As an example, the declaration

int i, *ip, fO, *fipO, (*pfi)O;

declares an integer i, a pointer ip to an integer, a function f
returning an integer, a function fip returning a pointer to an integer,
and a pointer pfi to a function which returns an integer. It is
especially useful to compare the last two. The binding of *fip() is

2-28

C LANGUAGE

*(fipO). The declaration suggests, and the same construction in an
expression requires, the calling of a function fip. Using indirection
through the (pointer) result to yield an integer. In the declarator
(*pfi)O, the extra parentheses are necessary, as they are also in an
expression, to indicate that indirection through a pointer to a
function yields a function, which is then called; it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float
numbers. Finally,

static int x3d[3][5][7];

declares a static 3-dimensional array of integers, with rank 3x5x7.
In complete detail, x3d is an array of three items; each item is an
array of five arrays; each of the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d[i], x3d[i][j], x3d[i][j][k]
may reasonably appear in an expression. The first three have type
"array" and the last has type into

Structure and Union Declarations

A structure is an object consisting of a sequence of named members.
Each member may have any type. A union is an object which may,
at a given time, contain anyone of several members. Structure and
union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-Jist }
struct-or-union identifier

struct-or-union:
struct
union

2-29

CLANGUAGE

The struct-decl-list is a sequence of declarations for the members of
the structure or union:

struct-decl-Jist:
struct-declara tion
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator ~ struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a
member of a structure or union. A structure member may also
consist of a specified number of bits. Such a member is also called a
field; its length, a non-negative constant expression, is set off from
the field name by a colon.

struct-declara tor:
declarator
declarator: constant-expression
: constant-expression

Within a structure, the objects declared have addresses which
increase as the declarations are read left to right. Each nonfield
member of a structure begins on an addressing boundary appropriate
to its type; therefore, there may be unnamed holes in a structure.
Field members are packed into machine integers; they do not straddle
words. A field which does not fit into the space remaining in a word
is put into the next word. No field may be wider than a word.

A struct-declarator with no declarator, only a colon and a width,
indicates an unnamed field useful for padding to conform to
externally-imposed layouts. As a special case, a field with a width of

2-30

C LANGUAGE

o specifies alignment of the next field at an implementation
dependant boundary.

The language does not restrict the types of things that are declared
as fields, but implementations are not required to support any but
integer fields. Moreover, even int fields may be considered to be
unsigned.

It is strongly recommended that fields be declared as unsigned. In all
implementations, there are no arrays of fields, and the address-of
operator & may not be applied to them, so that there are no pointers to
fields.

A union may be thought of as a structure all of whose members begin
at offset 0 and whose size is sufficient to contain any of its members.
At most, one of the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the
structure specified by the list. A subsequent declaration may then
use the third form of specifier, one of

struct identifier
union iden tifier

Structure tags allow definition of self-referential structures.
Structure tags also permit the long part of the declaration to be
given once and used several times. It is illegal to declare a structure
or union which contains an instance of itself, but a structure or union
may contain a pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to
a declaration which gives the complete specification of the structure
or union in situations in which the size of the structure or union is
unnecessary. The size is unnecessary in two situations: when a

2-31

C LANGUAGE

pointer to a structure or union is being declared and when a typedef
name is declared to be a synonym for a structure or union. This, for
example, allows the declaration of a pair of structures which contain
pointers to each other.

The names of members and tags do not conflict with each other or
with ordinary variables. A particular name may not be used twice in
the same structure, but the same name may be used in several
different structures in the same scope.

A simple but important example of a structure declaration is the
following binary tree structure:

struct tnode

t.
J'

char tword[20];
int count;
struct tnode *left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two
pointers to similar structures. Once this declaration has been given,
the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer
to a structure of the given sort. With these declarations, the
expression

sp->count

refers to the count field of the structure to which sp points;

s.left

2-32

C LANGUAGE

refers to the left subtree pointer of the structure s; and

s.right->tword[O]

refers to the first character of the tword member of the right
subtree of s.

Enumeration Declarations

Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-Jist, enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may
appear wherever constants are required. If no enumerators with =
appear, then the values of the corresponding constants begin at 0 and
increase by 1 as the declaration is read from left to right. An
enumerator with = gives the associated identifier the value indicated;
subsequent identifiers continue the progression from the assigned
value.

The names of enumerators in the same scope must all be distinct
from each other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous
to that of the structure tag in a struct-specifier; it names a particular
enumeration. For example,

2-33

C LANGUAGE

enum color { chartreuse, burgundy, claret=20, winedark };

enum color *cp, col;

col = claret;
cp = &col;

if (*cp == burgundy) ...

makes color the enumeration-tag of a type describing various colors,
and then declares cp as a pointer to an object of that type, and col
as an object of that type. The possible values are drawn from the set
{0,1,20,21} .

Ini tializa tion

A declarator may specify an initial value for the identifier being
declared. The initializer is preceded by = and consists of an
expression or a list of values nested in braces.

ini ti alizer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list, initializer-list
{ initializer-list }
{ initializer-list, }

All the expressions in an initializer for a static or external variable
must be constant expressions, which are described in "CONSTANT
EXPRESSIONS", or expressions which reduce to the address of a
previously declared variable, possibly offset by a constant expression.
Automatic or register variables may be initialized by arbitrary
expressions involving constants and previously declared variables and
functions.

2-34

C LANGUAGE

Static and external variables that are not initialized are guaranteed
to start off as zero. Automatic and register variables that are not
initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of
arithmetic type), it consists of a single expression, perhaps in braces.
The initial value of the object is taken from the expression; the same
conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array),
the initializer consists of a brace-enclosed, comma-separated list of
initializers for the members of the aggregate written in increasing
subscript or member order. If the aggregate contains subaggregates,
this rule applies recursively to the members of the aggregate. If
there are fewer initializers in the list than there are members of the
aggregate, then the aggregate is padded with zeros. It is not
permitted to initialize unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins with a
left brace, then the succeeding comma-separated list of initializers
initializes the members of the aggregate; it is erroneous for there to
be more initializers than members. If, however, the initializer does
not begin with a left brace, then only enough elements from the list
are taken to account for the members of the aggregate; any
remaining members are left to initialize the next member of the
aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string.
In this case successive characters of the string initialize the members
of the array.

For example,

int x[1 = { 1, 3, 5 };

declares and initializes x as a one-dimensional array which has three
members, since no size was specified and there are three initializers.

2-35

C LANGUAGE

float y[413] =
{

};

{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

is a completely-bracketed initialization: 1, 3, and 5 initialize the first
row of the array y[O], namely y[O][O], y[OIl], and y[OI2]. Likewise,
the next two lines initialize y[l] and y[2]. The initializer ends early
and therefore y[3] is initialized with o. Precisely, the same effect
could have been achieved by

float y[4I3] =
{

1, 3, 5, 2, 4, 6, 3, 5, 7
};

The initializer for y begins with a left brace but that for y[O] does
not; therefore, three elements from the list are used. Likewise, the
next three are taken successively for y[l] and y[2]. Also,

float y[413] =
f
l

{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional
array) and leaves the rest o.

Finally,

char msg[] = " Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

2-36

C LANGUAGE

Type Names

In two contexts (to specify type conversions explicitly by means of a
cast and as an argument of sizeof), it is desired to supply the name
of a data type. This is accomplished using a "type name", which in
essence is a declaration for an object of that type which omits the
name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression t] op

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this
restriction, it is possible to identify uniquely the location in the
abstract-declarator where the identifier would appear if the
construction were a declarator in a declaration. The named type is
then the same as the type of the hypothetical identifier. For
example,

int
int *
int *[3]
int (*)[3]
int *()
int (*)()
int (*[3])()

name respectively the types "integer," "pointer to integer," "array of
three pointers to integers," "pointer to an array of three integers,"
"function returning pointer to integer," "pointer to function

2-37

C LANGUAGE

returning an integer," and "array of three pointers to functions
returning an integer."

Typedef

Declarations whose "storage class" is typedef do not define storage
but instead define identifiers which can be used later as if they were
type keywords naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier
appearing as part of any declarator therein becomes syntactically
equivalent to the type keyword naming the type associated with the
identifier in the way described in "Meaning of Declarators." For
example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLI CKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of
metricp is "pointer to int, " and that of z is the specified structure.
The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only synonyms for
types which could be specified in another way. Thus in the example
above distance is considered to have exactly the same type as any
other int object.

2-38

C LANGUAGE

STATEMENTS
Except as indicated, statements are executed in sequence.

Expression Statement

Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

Compound Statement or Block

So that several statements can be used where one is expected, the
compound statement (also, and equivalently, called "block") is
provided:

compound-statement:
{declaration-list t statement-list t} op op

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously
declared, the outer declaration is pushed down for the duration of the
block, after which it resumes its force.

Any initializations of auto or register variables are performed each
time the block is entered at the top. It is currently possible (but a
bad practice) to transfer into a block; in that case the initializations
are not performed. Initializations of static variables are performed
only once when the program begins execution. Inside a block, extern
declarations do not reserve storage so initialization is not permitted.

2-39

C LANGUAGE

Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is nonzero, the
first substatement is executed. In the second case, the second
substatement is executed if the expression is o. The "else" ambiguity
is resolved by connecting an else with the last encountered else-less
if.

While Statement

The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the
expression remains nonzero. The test takes place before each
execution of the statement.

Do Statement

The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the
expression becomes O. The test takes place after each execution of
the statement.

2-40

C LANGUAGE

For Statement

The for statement has the form:

for (exp-l t; exp-2 t; exp-3 t) statement op op op

Except for the behavior of continue, this statement is equivalent to

exp-l;
while (exp-2)
{

statement
exp-3 ;

Thus the first expression specifies initialization for the loop; the
second specifies a test, made before each iteration, such that the loop
is exited when the expression becomes o. The third expression often
specifies an incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2
makes the implied while clause equivalent to while(I); other
missing expressions are simply dropped from the expansion above.

Switch Statement

The switch statement causes control to be transferred to one of
several statements depending on the value of an expression. It has
the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but
the result must be into The statement is typically compound. Any

2-41

C LANGUAGE

statement within the statement may be labeled with one or more case
prefixes as follows:

case constant-expression:

where the constant expression must be into No two of the case
constants in the same switch may have the same value. Constant
expressions are precisely defined in "CONSTANT EXPRESSIONS."

There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated
and compared with each case constant. If one of the case constants is
equal to the value of the expression, control is passed to the
statement following the matched case prefix. If no case constant
matches the expression and if there is a default, prefix, control
passes to the prefixed statement. If no case matches and if there is
no default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control,
which continues unimpeded across such prefixes. To exit from a
switch, see "Break Statement."

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but
initializations of automatic or register variables are ineffective.

Break Statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or
switch statement; control passes to the statement following the
terminated statement.

2-42

Continue Statement

The statement

continue;

CLANGUAGE

causes control to pass to the loop-continuation portion of the smallest
enclosing while, do, or for statement; that is to the end of the loop.
More precisely, in each of the statements

while (...) do for (...)
{

contin: ; contin: ; contin: ;
} } while (...); }

a continue is equivalent to goto contino (Following the contin: is
a null statement, see "Null Statement".)

Return Statement

A function returns to its caller by means of the return statement
which has one of the forms

return;
return expression ;

In the first case, the returned value is undefined. In the second case,
the value of the expression is returned to the caller of the function.
If required, the expression is converted, as if by assignment, to the
type of function in which it appears. Flowing off the end of a
function is equivalent to a return with no returned value. The
expression may be parenthesized.

2-43

C LANGUAGE

Goto Statement

Control may be transferred unconditionally by means of the
statement

goto identifier;

The identifier must be a label (see "Labeled Statement") located in
the current function.

Labeled Statement

Any statement may be preceded by label prefixes of the form

iden tifier :

which serve to declare the identifier as a label. The only use of a
label is as a target of a goto. The scope of a label is the current
function, excluding any subblocks in which the same identifier has
been redeclared. See "SCOPE RULES."

Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a
compound statement or to supply a null body to a looping statement
such as while.

EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An
external definition declares an identifier to have storage class
extern (by default) or perhaps static, and a specified type. The
type-specifier (see "Type Specifiers" in "DECLARATIONS") may also
be empty, in which case the type is taken to be into The scope of

2-44

C LANGUAGE

external definitions persists to the end of the file in which they are
declared just as the effect of declarations persists to the end of a
block. The syntax of external definitions is the same as that of all
declarations except that only at this level may the code for functions
be given.

External Function Definitions

Function definitions have the form

function-definition:
decl-specifiers t function-declarator function-body op

The only sc-specifiers allowed among the decl-specifiers are extern
or static; see "Scope of Externals" in "SCOPE RULES" for the
distinction between them. A function declarator is similar to a
declarator for a "function returning ... " except that it lists the
formal parameters of the function being defined.

function-declarator:
declarator (parameter-list t) op

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

function-body:
declaration-list t compound-statement op

The identifiers in the parameter list, and only those identifiers, may
be declared in the declaration list. Any identifiers whose type is not
given are taken to be into The only storage class which may be
specified is register; if it is specified, the corresponding actual
parameter will be copied, if possible, into a register at the outset of
the function.

2-45

C LANGUAGE

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;

int m;

m = (a > b) ? a : b;
return«m > c) ? m : c);

Here int is the type-specifier; max(a, b, c) is the function­
declarator; int a, b, c; is the declaration-list for the formal
parameters; { ... } is the block giving the code for the statement.

The C program converts all float actual parameters to double, so
formal parameters declared float have their declaration adjusted to
read double. All char and short formal parameter declarations are
similarly adjusted to read into Also, since a reference to an array in
any context (in particular as an actual parameter) is taken to mean a
pointer to the first element of the array, declarations of formal
parameters declared "array of ... " are adjusted to read "pointer to

"

External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default)
or static but not auto or register.

2-46

C LANGUAGE

SCOPE RULES
A C program need not all be compiled at the same time. The source
text of the program may be kept in several files, and precompiled
routines may be loaded from libraries. Communication among the
functions of a program may be carried out both through explicit calls
and through manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may
be called the lexical scope of an identifier, which is essentially the
region of a program during which it may be used without drawing
"undefined identifier" diagnostics; and second, the scope associated
with external identifiers, which is characterized by the rule that
references to the same external identifier are references to the same
object.

Lexical Scope

The lexical scope of identifiers declared· in external definitions
persists from the definition through the end of the source file in
which they appear. The lexical scope of identifiers which are formal
parameters persists through the function with which they are
associated. The lexical scope of identifiers declared at the head of a
block persists until the end of the block. The lexical scope of labels is
the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head
of a block, including the block constituting a function, any declaration
of that identifier outside the block is suspended until the end of the
block.

Remember also (see "Structure, Union, and Enumeration
Declarations" in "DECLARATIONS") that tags, identifiers associated
with ordinary variables, and identities associated with structure and
union members form three disjoint classes which do not conflict.
Members and tags follow the same scope rules as other identifiers.
The enum constants are in the same class as ordinary variables and
follow the same scope rules. The typedef names are in the same

2-47

C LANGUAGE

class as ordinary identifiers. They may be redeclared in inner blocks,
but an explicit type must be given in the inner declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would be
taken to be a declaration with no declarators and type distance.

Scope of Externals

If a function refers to an identifier declared to be extern, then
somewhere among the files or libraries constituting the complete
program there must be at least one external definition for the
identifier. All functions in a given program which refer to the same
external identifier refer to the same object, so care must be taken
that the type and size specified in the definition are compatible with
those specified by each function which references the data.

It is illegal to explicitly initialize any external identifier more than
once in the set of files and libraries comprising a multi-file program.
It is legal to have more than one data definition for any external
non-function identifier; explicit use of extern does not change the
meaning of an external declaration.

In restricted environments, the use of the extern storage class takes
on an additional meaning. In these environments, the explicit
appearance of the extern keyword in external data declarations of
identities without initialization indicates that the storage for the
identifiers is allocated elsewhere, either in this file or another file. It
is required that there be exactly one definition of each external
identifier (without extern) in the set of files and libraries
comprising a mult-file program.

Identifiers declared static at the top level in external definitions are
not visible in other files. Functions may be declared static.

2-48

C LANGUAGE

COMPILER CONTROL LINES
The C compiler contains a preprocessor capable of macro
substitution, conditional compilation, and inclusion of named files.
Lines beginning with # communicate with this preprocessor. There
may be any number of blanks and horizontal tabs between the # and
the directive. These lines have syntax independent of the rest of the
language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

Token Replacement

A compiler-control line of the form

#define identifier token-string t op

causes the preprocessor to replace subsequent instances of the
identifier with the given string of tokens. Semicolons in or at the
end of the token-string are part of that string. A line of the form

#define identifier(identifier, ...)token-string t
op

where there is no space between the first identifier and the (, is a
macro definition with arguments. There may be zero or more formal
parameters. Subsequent instances of the first identifier followed by
a (, a sequence of tokens delimited by commas, and a) are replaced
by the token string in the definition. Each occurrence of an identifier
mentioned in the formal parameter list of the definition is replaced
by the corresponding token string from the call. The actual
arguments in the call are token strings separated by commas;
however, commas in quoted strings or protected by parentheses do
not separate arguments. The number of formal and actual
parameters must be the same. Strings and character constants in the
token-string are scanned for formal parameters, but strings and
character constants in the rest of the program are not scanned for
defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined
identifiers. In both forms a long definition may be continued on
another line by writing \ at the end of the line to be continued.

2-49

C LANGUAGE

This facility is most valuable for definition of "manifest constants,"
as in

#define T ABSIZE 100

int table[T ABSIZE];

A control line of the form

#undef identifier

causes the identifier's preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with
no intervening #undef, then the two token-strings are compared
textually. If the two token-strings are not identical (all white space
is considered as equivalent), then the identifier is considered to be
redefined.

File Inclusion

A compiler control line of the form

#include " filename"

causes the replacement of that line by the entire contents of the file
filename. The named file is searched for first in the directory of the
file containing the #include, and then in a sequence of specified or
standard places. Alternatively, a control line of the form

#include <filename>

searches only the specified or standard places and not the directory
of the #include. (How the places are specified is not part of the
language.)

#includes may be nested.

2-50

C LANGUAGE

Conditional Compilation

A compiler control line of the form

#if res tric ted-con s tan t-expression

checks whether the restricted-constant expression evaluates to
nonzero. (Constant expressions are discussed in "CONSTANT
EXPRESSIONS"; the following additional restrictions apply here: the
constant expression may not contain sizeof casts, or an enumeration
constant.)

A restricted constant expression may also contain the additional
unary expression

defined iden tifier
or
defined(identifier

which evaluates to one if the identifier IS currently defined In the
preprocessor and zero if it is not.

All currently defined identifiers in restricted-constant-expressions
are replaced by their token-strings (except those identifiers modified
by defined) just as in normal text. The restricted constant
expression will be evaluated only after all expressions have finished.
During this evaluation, all undefined (to the procedure) identifiers
evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor;
i.e., whether it has been the subject of a #define control line. It is
equivalent to #ifdefUdentifier). A control line of the form

#ifndef identifier

2-51

C LANGUAGE

checks whether the identifier is currently undefined in the
preprocessor. It is equivalent to #ifldefinedUdentifier}.

All three forms are followed by an arbitrary number of lines,
possibly containing a control line

#else

and then by a control line

#endif

If the checked condition is true, then any lines between #else and
#endif are ignored. If the checked condition is false, then any lines
between the test and a #else or, lacking a #else, the #endif are
ignored.

These constructions may be nested.

Line Control

For the benefit of other preprocessors which generate C programs, a
line of the form

#line constan t " filename"

causes the compiler to believe, for purposes of error diagnostics, that
the line number of the next source line is given by the constant and
the current input file is named by "filename'. If" filename" is
absent, the remembered file name does not change.

2-52

C LANGUAGE

IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and the
type of identifiers in a declaration. The storage class is supplied by
the context in external definitions and in declarations of formal
parameters and structure members. In a declaration inside a
function, if a storage class but no type is given, the identifier is
assumed to be int; if a type but no storage class is indicated, the
identifier is assumed to be auto. An exception to the latter rule is
made for functions because auto functions do not exist. If the type
of an identifier is "function returning ... ," it is implicitly declared to
be extern.

In an expression, an identifier followed by (and not already declared
is contextually declared to be "function returning int:~

TYPES REVISITED

This part summarizes the operations which can be performed on
o bj ects of certain types.

Structures and Unions

Structures and unions may be assigned, passed as arguments to
functions, and returned by functions. Other plausible operators, such
as equality comparison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right
of the -> or the. must specify a member of the aggregate named or
pointed to by the expression on the left. In general, a member of a
union may not be inspected unless the value of the union has been
assigned using that same member. However, one special guarantee is
made by the language in order to simplify the use of unions: if a
union contains several structures that share a common initial

2-53

C LANGUAGE

sequence and if the union currently contains one of these structures,
it is permitted to inspect the common initial part of any of the
contained structures. For example, the following is a legal fragment:

union

} u;

struct

int type;
} n;
struct
{

int type;
int intnode;

} ni;
struct
{

int
float

} nf;

type;
floatnode;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)
... sin(u.nf.floatnode) ...

Functions

There are only two things that can be done with a function m call it
or take its address. If the name of a function appears in an
expression not in the function-name position of a call, a pointer to
the function is generated. Thus, to pass one function to another, one
might say

int fO;

g(f);

2-54

C LANGUAGE

Then the definition of g might read

g(funcp)
int (*funcp)O;

(*funcp)O;

Notice that f must be declared explicitly in the calling routine since
its appearance in g(f) was not followed by (.

Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is
converted into a pointer to the first member of the array. Because of
this conversion, arrays are not lvalues. By definition, the subscript
operator [] is interpreted in such a way that El[E2] is identical to
*«El)+(E2». Because of the conversion rules which apply to +, if
El is an array and E2 an integer, then El[E2] refers to the E2 -th
member of El. Therefore, despite its asymmetric appearance,
subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays.
If E is an n-dimensional array of rank ixjx ... xk, then E appearing in
an expression is converted to a pointer to an (n-l)-dimensional array
with rank j x ... xk. If the * operator, either explicitly or implicitly as
a result of subscripting, is applied to this pointer, the result is the
pointed-to (n-l)-dimensional array, which itself is immediately
converted into a pointer.

For example, consider

int x[315];

Here x is a 3x5 array of integers. When x appears in an expression,
it is converted to a pointer to (the first of three) 5-membered arrays
of integers. In the expression x[i], which is equivalent to *(x+i), x is
first converted to a pointer as described; then i is converted to the

2-55

C LANGUAGE

type of x, which involves multiplying i by the length the object to
which the pointer points, namely 5-integer objects. The results are
added and indirection applied to yield an array (of five integers)
which in turn is converted to a pointer to the first of the integers. If
there is another subscript, the same argument applies again; this
time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and
the first subscript in the declaration helps determine the amount of
storage consumed by an array. Arrays play no other part in
subscript calculations.

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have
implementation-dependent aspects. They are all specified by means
of an explicit type-conversion operator, see "Unary Operators"
under"EXPRESSIONS" and "Type Names"under
"DECLARATIONS."

A pointer may be converted to any of the integral types large enough
to hold it. Whether an int or long is required is machine dependent.
The mapping function is also machine dependent but is intended to
be unsurprising to those who know the addressing structure of the
machine. Details for some particular machines are given below.

An object of integral type may be explicitly converted to a pointer.
The mapping always carries an integer converted from a pointer back
to the same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type.
The resulting pointer may cause addressing exceptions upon use if
the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object of a given size
may be converted to a pointer to an object of a smaller size and back
again without change.

For example, a storage-allocation routine might accept a size (in
bytes) of an object to allocate, and return a char pointer; it might be
used in this way.

2-56

extern char *allocO;
double *dp;

dp = (double *) alloc(sizeof(double»;
*dp = 22.0 / 7.0;

C LANGUAGE

The alloc must ensure (in a machine-dependent way) that its return
value is suitable for conversion to a pointer to double; then the use
of the function is portable.

On the 68000, pointers are 32-bits long and measure bytes. The char's
have no alignment requirements; everything else must have an even
address.

CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant:
after case, as array bounds, and in ini tializers. In the first two
cases, the expression can involve only integer constants, character
constants, casts to integral types, enumeration constants, and size of

2-57

CLANGUAGE

expressions, possibly connected by the binary operators

+ _ * / % &1 A«» ==!= < > <= >= &&11

or by the unary operators

or by the ternary operator

?:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant
expressions as discussed above, one can also use floating constants
and arbitrary casts and can also apply the unary & operator to
external or static objects and to external or static arrays subscripted
with a constant expression. The unary & can also be applied
implicitly by appearance of unsubscripted arrays and functions. The
basic rule is that initializers must evaluate either to a constant or to
the address of a previously declared external or static object plus or
minus a constant.

PORT ABILITY CONSIDERATIONS
Certain parts of C are inherently machine dependent. The following
list of potential trouble spots is not meant to be all-inclusive but to
point out the main ones.

Purely hardware issues like word size and the properties of floating
point arithmetic and integer division have proven in practice to be
not much of a problem. Other facets of the hardware are reflected in
differing implementations. Some of these, particularly sign extension
(converting a negative character into a negative integer) and the
order in which bytes are placed in a word, are nuisances that must be
carefully watched. Most of the others are only minor problems.

2-58

C LANGUAGE

The number of register variables that can actually be placed in
registers varies from machine to machine as does the set of valid
types. Nonetheless, the compilers all do things properly for their own
machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used.
It is exceedingly unwise to write programs that depend on any of
these properties.

The order of evaluation of function arguments is not specified by the
language. The order in which side effects take place is also
unspecified.

Since character constants are really objects of type int,
multicharacter character constants may be permitted. The specific
implementation is very machine dependent because the order in
which characters are assigned to a word varies from one machine to
another.

Fields are assigned to words and characters to integers right to left
on some machines and left to right on other machines. These
differences are invisible to isolated programs that do not indulge in
type punning (e.g., by converting an int pointer to a char pointer
and inspecting the pointed-to storage) but must be accounted for
when conforming to externally-imposed storage layouts.

SYNTAX SUMMARY
This summary of C syntax is intended more for aiding comprehension
than as an exact statement of the language.

2-59

C LANGUAGE

Expressions

The basic expressions are:

expression:
primary
* expression
&lvalue
- expression
! expression

expression
++ lvalue
--lvalue
lvalue ++
lvalue --
size of expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression, expression

primary:
identifier
constant
string

2-60

(expression)
primary (expression-list t)
primary [expression 1 op
primary. iden tifier
primary -> identifier

lvalue:
identifier
primary [expression]
lvalue . identifier
primary -> iden tifier
* expression
(lvalue)

The primary-expression operators

o [] . ->

C LANGUAGE

have highest priority and group left to right. The unary operators

* & - ! - ++ -- sizeof (type-name)

have priority below the primary operators but higher than any
binary operator and group right to left. Binary operators group left
to right; they have priority decreasing as indicated below.

binop:
*
+
»
<

&

&&
II
II

/ %

«
> <= >=
!=

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right
to left.

2-61

C LANGUAGE

asgnop:
+= _= *= /= %= »= «= &= A= 1=

The comma operator has the lowest priority and groups left to right.

Declarations

declaration:
decl-specifiers init-declarator-list t; op

decl-specifiers:
type-specifier decl-specifiers t
sc-specifier decl-specifiers °t'P

op

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type: '
char
short

2-62

int
long
unsigned
float
double

enum-specifier:
enum { enum-Jist }
enum identifier { enum-list }
enum identifier

enum-Jist:
enumerator
enum-Jist, enumerator

enumerator:
identifier
iden tifier = cons tan t-expression

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

,ini t-declara tor:
declarator initializer t op

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression t J op

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-Jist }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-Jist }
union iden tifier

struct-decl-Jist:
struct-declaration
struct-declaration struct-decJ-list

C LANGUAGE

2-63

C LANGUAGE

struct-declaration:
type-specifier struct-declarator-list;

struct-declarator-Jist:
struct-declara tor
struct-declarator, struct-declarator-list

struct-declara tor:
declarator
declarator: constant-expression
: constant-expression

initiajizer:
= expression
= { initializer-list }
= { initializer-list, }

ini tializer-list:
expression
initializer-list, initializer-list
{ initializer-list }
{ initializer-list, }

type-name:
type-specifier abstract-declarator

abstract-declara tor:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression t J op

typedef-name:
identifier

2-64

Statements

compound-statement:
{declaration-list t statement-list t} op op

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statemen t
expression;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expr.ession) ;
for (expopvexpopvexPopt) statement
switch (expression) statement
case constant-expression: statement
default: statement
break;
continue;
return;
return expression;
go to identifier;
identifier: statement

External definitions

program:
external-definition
external-definition program

C LANGUAGE

2-65

C LANGUAGE

externaJ-defini tion:
function-definition
data-defini tion

function-definition:
decl-specifier t function-declarator function-body op

function-declarator:
declarator (parameter-list t) op

parameter-list:
identifier
identifier, parameter-list

function-body:
declaration-list t compound-statement op

data-definition:
extern declaration;
static declaration;

Preprocessor

#define identifier token-stringo t
#define identifier(identifier, ...) raken-string t

d f °d or op #un e 1 entl11er
#include " filename"
#include <filename>
#if restricted-constant-expression
#ifdef identifier
#ifndef iden tifier
#else
#endif
#line constant" filename"

2-66

Chapter 3: C LIBRARIES

CONTENTS

GENERAL
Including Functions
Including Declarations

THE C LIBRARY
Input/Output Control
File Access Functions
File Status Functions
Input Functions
Output Functions
Miscellaneous Functions
String Manipulation Functions.
Character Manipulation
Character Testing Functions
Character Translation Functions
Time Functions ..•.
Miscellaneous Functions
Numerical Conversion
DES Algorithm Access
Group File Access. . .
Password File Access .
Parameter Access
Hash Table Management
Binary Tree Management
Table Management
Memory Allocation
Pseudorandom Number Generation .
Signal Handling Functions .
Miscellaneous . •

- i -

1
2
2

3
3
4
5
5
6
7
8
9

10
11
11
12
13
13
14
15
15
16
17
17
18
19
20
21

Chapter 3

C LIBRARIES

GENERAL

This chapter describes the C library that is supported on the UniPlus+
operating system. A library is a collection of related functions and/or
declarations that simplify programming effort by linking only what is
needed, allowing use of locally produced functions, etc. All of the func­
tions described are also described in Section 3 of the UniPlus + System V
User's Manual. Most of the declarations described are in Section 5 of
the UniPlus+ System V User's Manual.

The two main libraries on the UniPlus+ system are:

C library

Math library

This is the basic library for C language programs.
The C library is composed of functions and
declarations used for file access, string testing and
manipulation, character testing and manipulation,
memory allocation, and other functions. This
library is described later in this chapter.

This library provides exponential, bessel func­
tions, logarithmic, hyperbolic, and trigonometric
functions. This library is described in Chapter 4.

Some libraries consist of two portions - functions and declarations. In
some cases, the user must request that the functions (and/or declara­
tions) of a specific library be included in a program being compiled. In
other cases, the functions (and/or declarations) are included automati­
cally.

3-1

C LIBRARIES

Including Functions

When a program is being compiled, the compiler will automatically
search the C language library to locate and include functions that are
used in the program. This is the case only for the C library and no
other library. In order for the compiler to locate and include
functions from other libraries, the user must specify these libraries
on the command line for the compiler. For example, when using
functions of the math library, the user must request that the math
library be searched by including the argument -1m on the command
line, such as:

cc file.c -1m

The argument -1m must come after all files that reference functions
in the math library in order for the link editor to know which
functions to include in the a.out file.

This method should be used for all functions that are not part of the
C language library.

Including Declarations

Some functions require a set of declarations in order to operate
properly. A set of declarations is stored in a file under the
lusrlinclude directory. These files are referred to as header files. In
order to include a certain header file, the user must specify this
request within the C language program. The request is in the form:

#include <file.h>

where fiJe.h is the name of the file. Since the header files define the
type of the functions and various preprocessor constants, they must
be included before invoking the functions they declare.

The remainder of this chapter describes the functions and header
files of the C Library. The description of the library begins with the
actions required by the user to include the functions and/or header
files in a program being compiled (if any). Following the description

3-2

C LIBRARIES

of the actions required is information in three-column format of the
form:

function reference (N) Brief description.

The functions are grouped by type while the reference refers to section
'N' in the UniPlus+ System V User's Manual. Following this, are
descriptions of the header files associated with these functions (if any).

THE C LIBRARY

The C library consists of several types of functions. All the
functions of the C library are loaded automatically by the compiler.
Various declarations must sometimes be included by the user as
required. The functions of the C library are divided into the
following types:

• Input/output control
• String manipulation
• Character mani pula tion
• Time functions
• Miscellaneous functions.

Input/Output Control

These functions of the C library are automatically included as needed
during the compiling of a C language program. No command line
request is needed.

The header file required by the input/output functions should be
included in the program being compiled. This is accomplished by
including the line:

#include <stdio.h>

near the beginning of each file that references an input or output
function.

3-3

C LIBRARIES

The input/output functions are grouped into the following categories:

• File access
• File status
• Input
• Output
• Miscellaneous.

File Access Functions

FUNCTION REFERENCE

fclose fclose(3S)

fdopen fopen(3S)

fileno ferror(3S)

fopen fopen(3S)

freopen fopen(3S)

fseek fseek(3S)

pclose popen(3S)

popen popen(3S)

3-4

BRIEF DESCRIPTION

Close an open stream.

Associate stream with
an open(2) ed file.

File descriptor associated
wit~ an open stream.

Open a file with
specified permissions.
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

Substitute named file
in place of open
stream.

Reposition the file
pointer.

Close a stream opened
by popen.

Create pipe "as a stream
between calling process
and command.

rewind fseek(3S)

setbuf setbuf(3S)

File Status Functions

C LIBRARIES

Reposition file
pointer at beginning
of file.

Assign buffering to
stream.

FUNCTION REFERENCE BRIEF DESCRIPTION

clearerr ferror(3S)

feof ferror(3S)

ferror ferror(3S)

ftell fseek(3S)

Input Functions

FUNCTION REFERENCE

fgetc getc (3S)

fgets gets (3S)

fread fread (3S)

Reset error condition on
stream.

Test for "end of file"
on stream.

Test for error condition
on stream.

Return current position
in the file.

BRIEF DESCRIPTION

True function for getc
(3S).

Read string from stream.

General buffered read
from stream.

3-5

C LIBRARIES

fscanf scanf(3S)

getc getc(3S)

getchar getc(3S)

gets gets(3S)

getw getc(3S)

scanf scanf(3S)

sscanf scanf(3S)

ungetc ungetc(3S)

Output Functions

FUNCTION REFERENCE

fflush fclose(3S)

fprintf printf(3S)

fputc putc(3S)

fputs puts (3S)

fwrite fread(3S)

3-6

Formatted read from
stream.

Read character from
stream.

Read character from
standard input.

Read string from standard input.

Read word from stream.

Read using format from
standard input.

Formatted from
string.

Put back one character on
stream.

BRIEF DESCRIPTION

Write all currently buffered
characters from stream.

Formatted write to
stream.

True function for putc
(3S).

Write string to stream.

General buffered write to
stream.

printf printf(3S)

putc putc(3S)

putchar putc(3S)

puts puts(3S)

putw putc(3S)

sprintf printf(3S)

Miscellaneous Functions

FUNCTION REFERENCE

ctermid ctermid(3S)

cuserid cuserid(3S)

system system(3S)

C LIBRARIES

Print using format to
standard output.

Write character to
standard output.

Write character to
standard output.

W ri te string to
standard output.

Write word to stream.

Formatted write to
string.

BRIEF DESCRIPTION

Return file name for
controlling terminal.

Return login name for
owner of current process.

Execute shell command.

3-7

C LIBRARIES

tempnam tmpnam(3S)

tmpnam tmpnam(3S)

tmpfile tm pfile (3S)

String Manipulation Functions

Create temporary file
name using directory and
prefix.

Create temporary file
name.

Create temporary file.

These functions are used to locate characters within a string, copy,
concatenate, and compare strings. These functions are automatically
located and loaded during the compiling of a C language program.
No command line request is needed since these functions are part of
the C library. The string manipulation functions are declared in a
header file that may be included in the program being compiled.
This is accomplished by including the line:

#include <string.h>

near the beginning of each file that uses one of these functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

strcat string(3C) Concatenate two strings.

strchr string(3C) Search string for
character.

strcmp string(3C) Compares two strings.

strcpy string(3C) Copy string.

strcspn string (3C) Length of initial string
not containing set of
characters.

strlen string(3C) Length of string.

3-8

strncat string(3C)

strncmp string(3C)

strncpy string(3C)

strpbrk string(3C)

strrchr string(3C)

strspn string(3C)

strtok string(3C)

Character Manipulation

C LIBRARIES

Concatenate two strings
with a maximum length.

Compares two strings
with a maximum length.

Copy string over string
with a maximum length.

Search string for any
set of characters.

Search string backwards
for character.

Length of initial string
containing set of
characters.

Search string for token
separated by any of a
set of characters.

The following functions and declarations are used for testing and
translating ASCII characters. These functions are located and loaded
automatically during the compiling of a C language program. No
command line request is needed since these functions are part of the
C library.

The declarations associated with these functions should be included
in the program being compiled. This is accomplished by including
the line:

#include <ctype.h>

near the beginning of the file being compiled.

3-9

C LIBRARIES

Character Testing Functions

These functions can be used to identify characters as uppercase or
lowercase letters, digits, punctuation, etc.

FUNCTION REFERENCE

isalnum ctype(3C)

is alpha ctype(3C)

isascii ctype(3C)

iscntrl ctype(3C)

isdigit ctype(3C)

isgraph ctype(3C)

islower ctype(3C)

is print ctype(3C)

ispunct ctype(3C)

isspace ctype(3C)

isupper ctype(3C)

isxdigit ctype(3C)

3-10

BRIEF DESCRIPTION

Is character
alphanumeric?

Is character alphabetic?

Is integer ASCII
character?

Is character a control
character?

Is character a digit?

Is character a printable
character?

Is character a
lowercase letter?

Is character a printing
character including
space?

Is character a
punctuation character?

Is character a white
space character?

Is character an uppercase
letter?

Is character a hex digit?

C LIBRARIES

Character Translation Functions

These functions provide translation of uppercase to lowercase,
lowercase to uppercase, and integer to ASCII.

FUNCTION REFERENCE BRIEF DESCRIPTION

toascii conv(3C) Convert integer to
ASCII character.

tolower conv(3C) Convert character to
lowercase.

toupper conv(3C) Convert character to
uppercase.

Time Functions

These functions are used for accessing and reformatting the systems
idea of the current date and time. These functions are located and
loaded automatically during the compiling of a C language program.
No command line request is needed since these functions are part of
the C library.

The header file associated with these functions should be included in
the program being compiled. This is accomplished by including the
line:

#include <time.h>

near the beginning of any file using the time functions.

These functions (except tzset) convert a time such as returned by
time(2).

3-11

C LIBRARIES

FUNCTION REFERENCE

asctime ctime(3C)

ctime ctime(3C)

gmtime ctime(3C)

localtime ctime(3C)

tzset ctime(3C)

Miscellaneous Functions

BRIEF DESCRIPTION

Return string
representa tion
of date and time.

Return string
. representation of

date and time, given
integer form.

Return Greenwich
Mean Time.

Return local time.

Set time zone field
from environment
variable.

These functions support a wide variety of operations. Some of these
are numerical conversion, password file and group file access,
memory allocation, random number generation, and table
management. These functions are automatically located and included
in a program being compiled. No command line request is needed
since these functions are part of the C library.

Some of these functions require declarations to be included. These
are described following the descriptions of the functions.

3-12

C LIBRARIES

Numerical Conversion

The following functions perform numerical conversion.

FUNCTION REFERENCE BRIEF DESCRIPTION

a641 a641(3C) Convert string to
base 64 ASCII.

atof atof(3C) Convert string to
floating.

atoi atof(3C) Convert string to
integer.

atol atof(3C) Convert string to long.

frexp frexp(3C) Split floating into
mantissa and exponent.

13tol 13tol(3C) Convert 3-byte integer
to long.

ltol3 13tol(3C) Convert long to 3-byte
integer.

ldexp frexp(3C) Combine mantissa and
exponent.

164a a641(3C) Convert base 64 ASCII
to string.

modf frexp(3C) Split mantissa into
integer and fraction.

DES Algorithm Access

The following functions allow access to the Data Encryption
Standard (DES) algorithm used on the UNIX operating system. The
DES algorithm is implemented with variations to frustrate use of
hardware implementations of the DES for key search.

3-13

C LIBRARIES

FUNCTION

crypt

encrypt

setkey

Group File Access

REFERENCE

crypt (3C)

crypt(3C)

crypt (3C)

BRIEF DESCRIPTION

Encode string.

Encode/ decode string of
Os and Is.

Initialize for subsequent
use of encrypt.

The following functions are used to obtain entries from the group
file. Declarations for these functions must be included in the
program being compiled with the line:

#include <grp.h>

FUNCTION REFERENCE

endgrent getgrent (3C)

getgrent getgrent(3C)

getgrgid getgrent(3C)

getgrnam getgrent (3C)

setgrent getgrent(3C)

fgetgrent getgrent(3C)

3-14

BRIEF DESCRIPTION

Close group file being
processed.

Get next group file
entry.

Return next group with
matching gid.

Return next group with
matching name.

Rewind group file being
processed.

Get next group file entry
from a specified file.

C LIBRARIES

Password File Access

These functions are used to search and access information stored in
the password file (I etc/passwd). Some functions require declarations
that can be included in the program being compiled by adding the
line:

#include <pwd.h>

FUNCTION REFERENCE

endpwent getpwent (3C)

getpw getpw(3C)

getpwent getpwent (3C)

getpwnam getpwent (3C)

getpwuid getpwent (3C)

putpwent putpwent (3C)

setpwent getpwent (3C)

fgetpwent getpwent(3C)

Parameter Access

BRIEF DESCRIPTION

Close password file
being processed.

Search password file
for uid.

Get next password file
entry.

Return next entry with
matching name.

Return next entry with
matching uid.

Write entry on stream.

Rewind password file
being accessed.

Get next password file
entry from a specified
file.

The following functions provide access to several different types of
parameters. None require any declarations.

3-15

C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

getopt getopt(3C) Get next option from
option list.

getewd getewd(3C) Return string
representation of
current working directory.

getenv getenv(3C) Return string value
associated with
environment variable.

getpass getpass (3C) Read string from terminal
without echoing.

Hash Table Management

The following functions are used to manage hash search tables. The
header file associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION

here ate

hdestroy

hseareh

3-16

REFERENCE

hseareh(3C)

hseareh (3C)

hseareh (3C)

BRIEF DESCRIPTION

Create hash table.

Destroy hash table.

Search hash table for
entry.

C LIBRARIES

Binary Tree Management

The following functions are used to manage a binary tree. The
header file associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION

tdelete

tsearch

twalk

Table Management

REFERENCE

tsearch (3C)

tsearch (3C)

tsearch (3C)

BRIEF DESCRIPTION

Deletes nodes from
binary tree.

Look for and add
element to binary
tree.

Walk binary tree.

The following functions are used to manage a table. Since none of
these functions allocate storage, sufficient memory must be allocated
before using these functions. The header file associated with these
functions should be included in the program being compiled. This is
accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

3-17

C LIBRARIES

FUNCTION

bsearch

lsearch

qsort

Memory Allocation

REFERENCE

bsearch(3C)

lsearch (3C)

qsort(3C)

BRIEF DESCRIPTION

Search table using
binary search.

Look for and add
element in binary
tree.

Sort table using
quick-sort algorithm.

The following functions provide a means by which memory can be
dynamically allocated or freed.

FUNCTION REFERENCE BRIEF DESCRIPTION

calloc malloc(3C) Allocate zeroed storage.

free malloc(3C) Free previously allocated
storage.

malloc malloc(3C) Allocate storage.

realloc malloc(3C) Change size of allocated
storage.

3-18

C LIBRARIES

Pseudorandom Number Generation

The following functions are used to generate pseudorandom numbers.
The functions that end with 48 are a family of interfaces to a
pseudorandom number generator based upon the linear congruent
algorithm and 48-bit integer arithmetic. The rand and srand
functions provide an interface to a multiplicative congruential
random number generator with period of 232.

FUNCTION REFERENCE

drand48 drand48(3C)

Icong48 drand48(3C)

Irand48 drand48 (3C)

mrand48 drand48(3C)

rand rand(3C)

BRIEF DESCRIPTION

Random double over
the interval [0 to 1).

Set parameters for
drand48, Irand48,
and mrand48.

Random long over the
interval [0 to 231).

Random lo~ over the
interval [-2 to 231).

Random integer over the
interval [0 to 32767).

3-19

C LIBRARIES

seed48 drand48(3C)

srand rand (3C)

srand48 drand48 (3C)

Signal Handling Functions

Seed the generator for
drand48, Irand48, and
mrand48.

Seed the generator
for rand.

Seed the generator for
drand48, Irand48, and
mrand48 using a long.

The functions gsignal and ssignal implement a software facility similar
to signaI(2) in the + System V User's Manual. This facility enables
users to indicate the disposition of error conditions and allows users to
handle signals for their own purposes. The declarations associated with
these functions can be included in the program being complied by the
line

#include <signal.h>

These declarations define ASCII names for the 15 software signals.

FUNCTION

gsignal

ssignal

ttyname

3-20

REFERENCE

ssignal(3C)

ssignal(3C)

ttyname(3C)

BRIEF DESCRIPTION

Send a software signal.

Arrange for handling
of software signals.

Return pathname of
terminal associated with
integer file descriptor.

C LIBRARIES

Miscellaneous

The following functions do not fall into any previously described
category.

FUNCTION REFERENCE

abort abort (3C)

abs abs(3C)

ecvt ecvt(3C)

fcvt ecvt(3C)

gcvt ecvt(3C)

isatty ttyname(3C)

mktemp mktemp(3C)

monitor monitor (3C)

swab swab(3C)

BRIEF DESCRIPTION

Cause an lOT signal
to be sent to the
process.

Return the absolute
integer value.

Convert double to
string.

Convert double to
string using Fortran
Format.

Convert double to
string using Fortran
F or E format.

Test whether integer
file descriptor is
associated with a
terminal.

Create file name
using template.

Cause process to record
a histogram of program
counter location.

Swap and copy bytes.

3-21

Chapter 4: MATH LIBRARY

CONTENTS

GENERAL •....•

THE MATH LIBRARY. •
Trigonometric Functions
Bessel Functions. . .
Hyperbolic Functions . . .
Miscellaneous Functions

- i -

1

1
2
3
3
3

GENERAL

Chapter 4

MATH LIBRARY

This chapter describes the Math Library that is supported on the UNIX
operating system. A library is a collection of related functions and/or
declarations that simplify programming effort. All of the functions
described are also described in Part 3 of the UniPlus+ System V User's
Manual; most of the declarations described are in Part 5. The two
main libraries on the UNIX system are:

C library

Math library

This is the basic library for C language programs.
The C library is composed of functions and
declarations used for file access, string testing and
manipulation, character testing and manipulation,
memory allocation, and other functions. This
library is described in Chapter 3.

This library provides exponential, bessel func­
tions, logarithmic, hyperbolic, and trigonometric
functions. This library is described in this
chapter.

THE MATH LIBRARY

The math library consists of functions and a header file. The
functions are located and loaded during the compiling of a C
language program by a command line request. The form of this
request is:

cc file -1m

which causes the link editor to search the math library. In addition
to the request to load the functions, the header file of the math

4-1

MATH LIBRARY

library should be included in the program being compiled. This is
accomplished by including the line:

#include <math.h>

near the beginning of the (first) file being compiled.

The functions are grouped into the following categories:

• Trigonometric functions

• Bessel functions

• Hyperbolic functions

• Miscellaneous functions.

Trigonometric Functions

These functions are used to compute angles (in radian measure),
sines, cosines, and tangents. All of these values are expressed in
double precision.

FUNCTION REFERENCE BRIEF DESCRIPTION

acos trig(3M) Return arc cosine.

asin trig(3M) Return arc sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of
a ratio.

cos trig(3M) Return cosine.

4-2

MATH LIBRARY

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

Bessel Functions

These functions calculate bessel functions of the first and second
kinds of several orders for real values. The bessel functions are jO,
jl, jn, yO, y 1, and yn. The functions are located in section
bessel(3M).

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and
tangent for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION

cosh sinh(3M) Return hyperbolic cosine.

sinh sinh (3M) Return hyperbolic sine.

tanh sinh (3M) Return hyperbolic tangent.

Miscellaneous Functions

These functions cover a wide variety of operations, such as natural
logarithm, exponential, and absolute value. In addition, several are
provided to truncate the integer portion of double precision numbers.

FUNCTION REFERENCE

ceil floor(3M)

exp exp(3M)

BRIEF DESCRIPTION

Returns the smallest
integer not less than a
given value.

Returns the exponential
function of a given value.

4-3

MATH LIBRARY

fabs floor(3M) Returns the absolute value
of a given value.

floor floor (3M) Returns the largest integer
not greater than a given
value.

fmod floor (3M) Returns the remainder
produced by the division of
two given values.

gamma gamma(3M) Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

hypot hypot(3M) Return the square root
of the sum of the squares
of two numbers.

log exp(3M) Returns the natural
logarithm of a given
value.

loglO exp(3M) Returns the logarithm base
ten of a given value.

matherr matherr(3M) Error-handling function.

pow exp(3M) Returns the result of a
given value raised to
another given value.

sqrt exp(3M) Returns the square root
of a given value.

4-4

Chapter 5: EFL: PROGRAMMING LANGUAGE

INTRODUCTION

LEXICAL FORM
Character Set

CONTENTS

Lines. .•
White Space . .•..
Comments
Include Files
Continuation
Multiple Statements on a Line.

Tokens • . .
Identifiers • . . .
Strings..
Integer Constants
Floating Point Constants.
Punctuation .
Operators

Macros . . .

PROGRAM FORM .
Files . .
Procedures
Blocks
Statements . .
Labels

DATA TYPES AND VARIABLES
Basic Types
Constants
Variables

Storage Class
Scope of Names
Precision

Arrays
Structures

EXPRESSIONS
Primaries

Constants. .

- i -

1

2
2
2
3
3
3
3
4
4
4
5
5
6
6
6
7

8
8
8
8
9

10

10
10
11
12
12
12
12
12
13

13
14
14

Variables . • • . .
Array Elements. . •
Structure Members
Procedure Invocations
Input/Output Expressions
Coercions ..•.•.
Sizes . . • .

Parentheses
U nary Operators . •

Arithmetic
.... ogical

Binary Operators .
Arithmetic
Logical
Relational Operators
Assignment Operators

Dynamic Structures
Repetition Operator
Constant Expressions

DECLARATIONS
Syntax
Attributes

Basic Types
Arrays. . .
Structures
Precision .
Common
External

Variable List
The Initial Statement

EXECUTABLE STATEMENTS
Expression Statements . . .

Subroutine Call. .
Assignment Statements .

Blocks
Test Statements

Loops

If Statement .
If-Else. . .
Select Statement

While Statement

- ii -

14
14
15
15
16
16
17
17
18
18
18
18
18
19
20
21
21
22
22

22
22
23
23
23
24
25
25
25
26
26

26
27
27
27
27
28
28
28
29
30
30

For Statement. . . • • . .
Repeat Statement
Repeat ... Until Statement
Do Loop ...

Branch Statements
Goto Statement.
Break Statement
Next Statement .
Return

Input/Output Statements • .
Input/Output Units
Binary Input/Output .
Formatted Input/Output. .
Iolists
Formats
Manipulation Statements

PROCEDURES
Procedures Statement
End Statement
Argument Association .
Execution and Return Values
Known Functions ...•

Minimum and Maximum Functions .
Absolute Value.
Elementary Functions
Other Generic Functions

ATAVISMS
Escape Lines . . .
Call Statement
Obsolete Keywords .
Numeric Labels
Implicit Declarations
Computed Goto
Goto Statement
Dot Names
Complex Constants .
Function Values . .
Equivalence
Minimum and Maximum Functions

COMPILER OPTIONS .
Default Options

- iii -

30
31
31
32
33
33
34
35
35
35
36
36
36
37
37
38

38
39
39
39
40
40
40
40
41
41

41
41
42
42
42
42
43
43
43
44
44
44
45

45
46

Input Language Options
Input/Output Error Handling
Continuation Conventions
Default Formats
Alignments and Sizes
Default Input/Output Units
Miscellaneous Output Control Options

EXAMPLES
File Copying
Matrix Multiplication
Searching a Linked List
Walking a Tree

PORTABILITY
Primitives . .

Character String Copying
Character String Comparisons•.

DIFFERENCES BETWEEN RATFOR AND EFL

COMPILER
Current Version
Diagnostics.
Quality of Fortran Produced

CONSTRAINTS ON EFL .
External Names . . .
Procedure Interface . .
Pointers.
Recursion
Storage Allocation

- iv -

46
46
46
47
47
48
48

48
48
49
49
50

53
53
53
53

54

54
54
54
55

57
57
57
58
58
58

Chapter 5

EFL: PROGRAMMING LANGUAGE

INTRODUCTION

EFL is a clean, general purpose computer language intended to
encourage portable programming. It has a uniform and readable
syntax and good data and control flow structuring. EFL programs
can be translated into efficient Fortran code, so the EFL programmer
can take advantage of the ubiquity of Fortran, the valuable libraries
of software written in that language, and the portability that comes
with the use of a standardized language, without suffering from
Fortran's many failings as a language. It is especially useful for
numeric programs. Thus, the EFL language permits the programmer
to express complicated ideas in a comprehensible way, while
permitting access to the power of the Fortran environment.

The name EFL originally stood for "Extended Fortran Language.'~
The current compiler is much more than a simple preprocessor: it
attempts to diagnose all syntax errors, to provide readable Fortran
output, and to avoid a number of niggling restrictions.

In examples and syntax specifications, boldface type is used to
indicate literal words and punctuation, such as while. Words In
italic type indicate an item in a category, such as an expression. A
construct surrounded by double brackets represents a list of one or
more of those items, separated by commas. Thus, the notation

[item D

could refer to any of the following:

item
item, item
item, item, item

5-1

EFL

The reader should have a fair degree of familiarity with some
procedural language. There will be occasional references to Ratfor
and to Fortran which may be ignored if the reader is unfamiliar with
those languages.

LEXICAL FORM

Character Set

The following characters are legal in an EFL program:

Jetters abcdefghijklm
nopqrstuvwxyz

digits 0123456789
white space bJank tab
quotes ' "
sharp #
continuation
braces { }
paren theses ()
other , ; : . + * /

= < > & - I $ I

Letter case (upper or lower) is ignored except within strings, so "a"
and "A" are treated as the same character. All of the examples
below are printed in lower case. An exclamation mark ("!") may be
used in place of a tilde ("-"). Square brackets ("[" and "]") may be
used in place of braces ("{" and "}").

Lines

EFL is a line-oriented language. Except in special cases (discussed
below), the end of a line marks the end of a token and the end of a
statement. The trailing portion of a line may be used for a comment.
There is a mechanism for diverting input from one source file to
another, so a single line in the program may be replaced by a number
of lines from the other file. Diagnostic messages are labeled with the
line number of the file on which they are detected.

5-2

EFL

White Space

Outside of a character string or comment, any sequence of one or
more spaces or tab characters acts as a single space. Such a space
terminates a token.

Comments

A comment may appear at the end of any line. It is introduced by a
sharp (#) character, and continues to the end of the line. (A sharp
inside of a quoted string does not mark a comment.) The sharp and
succeeding characters on the line are discarded. A blank line is also
a comment. Comments have no effect on execution.

Include Files

It is possible to insert the contents of a file at a point in the source
text, by referencing it in a line like

include joe

No statement or comment may follow an include on a line. In
effect, the include line is replaced by the lines in the named file, but
diagnostics refer to the line number in the included file. Includes
may be nested at least ten deep.

Continuation

Lines may be continued explicitly by using the underscore (_)
character. If the last character of a line (after comments and
trailing white space have been stripped) is an underscore, the end of
a line and the initial blanks on the next line are ignored.
Underscores are ignored in other contexts (except inside of quoted
strings). Thus

5-3

EFL

There are also rules for continuing lines automatically: the end of
line is ignored whenever it is obvious that the statement is not
complete. To be specific, a statement is continued if the last token on
a line is an operator, comma, left brace, or left parenthesis. (A
statement is not continued just because of unbalanced braces or
parentheses.) Some compound statements are also continued
automatically; these points are noted in the sections on executable
statements.

Multiple Statements on a Line

A semicolon terminates the current statement. Thus, it is possible to
write more than one statement on a line. A line consisting only of a
semicolon, or a semicolon following a semicolon, forms a null
statement.

Tokens

A program is made up of a sequence of tokens. Each token is a
sequence of characters. A blank terminates any token other than a
quoted string. End of line also terminates a token unless explicit
continuation (see above) is signaled by an underscore.

Identifiers

An identifier is a letter or a letter followed by letters or digits. The
following is a list of the reserved words that have special meaning in
EFL~ They will be discussed later.

5-4

EFL

array exit precision
automatic external procedure
break false read
call field readbin
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal true
double lengthof until
doubleprecision logical value
else long while
end next write
equivalence option writebin

The use of these words is discussed below. These words may not be
used for any other purpose.

Strings

A character string is a sequence of characters surrounded by
quotation marks. If the string is bounded by single-quote marks (,),
it may contain double quote marks ("), and vice versa. A quoted
string may not be broken across a line boundary.

'hello there'
"ain't misbehavin'"

Integer Consta.nts

An integer constant is a sequence of one or more digits.

o
57
123456

5-5

EFL

Floating Point Constants

A floating point constant contains a dot and/or an exponent field.
An exponent field is a letter d or e followed by an optionally signed
integer constant. If I and J are integer constants and E is an
exponent field, then a floating constant has one of the following
forms:

Punctuation

.1
I.
I.J
IE
I.E
.IE
I.JE

Certain characters are used to group or separate objects in the
language. These are

parentheses ()
braces { }
comma
semicolon
colon
end -of-line

The end-of-line is a token (statement separator) when the line IS

neither blank nor continued.

Operators

The EFL operators are written as sequences of one or more non­
alphanumeric characters.

5-6

+ - * / **
< <= > >=
&& II &
+= -=
&&= 11=
-> . $

/= **=
&= 1=

EFL

A dot (".") is an operator when it qualifies a structure element name,
but not when it acts as a decimal point in a numeric constant. There
is a special mode (see" ATAVISMS") in which some of the operators
may be represented by a string consisting of a dot, an identifier, and
a dot (e.g., .It.).

Macros

EFL has a simple macro substitution facility. An identifier may be
defined to be equal to a string of tokens; whenever that name appears
as a token in the program, the string replaces it. A macro name is
given a value in a define statement like

define count n += 1

Any time the name count appears in the program, it is replaced by
the statement

n += 1

A define statement must appear alone on a line; the form is

define name rest-ai-line

Trailing comments are part of the string.

5-7

EFL

PROGRAM FORM

Files

A file is a sequence of lines. A file is compiled as a single unit. It
may contain one or more procedures. Declarations and options that
appear outside of a procedure affect the succeeding procedures on
that file.

Procedures

Procedures are the largest grouping of statements in EFL. Each
procedure has a name by which it is invoked. (The first procedure
invoked during execution, known as the main procedure, has the null
name.) Procedure calls and argument passing are discussed in
" PROCEDURES."

Blocks

Statements may be formed into groups inside of a procedure. To
describe the scope of names, it is convenient to introduce the ideas of
block and of nesting level. The beginning of a program file is at
nesting level zero. Any options, macro definitions, or variable
declarations are also at level zero. The text immediately following a
procedure statement is at level 1. After the declarations, a left
brace marks the beginning of a new block and increases the nesting
level by 1; a right brace drops the level by 1. (Braces inside
declarations do not mark blocks.) (See " Blocks" under
"EXECUTABLE STATEMENTS.") An end statement marks the end
of the procedure, level 1, and the return to level o. A name (variable
or macro) that is defined at level K is defined throughout that block

5-8

EFL

and in all deeper nested levels in which that name is not redefined or
redeclared. Thus, a procedure might look like the following:

block 0
procedure george
real x
x=2

if(x> 2)
{ # new block
integer x # a different variable
do x = 1,7

write(,x)

} # end of block
end # end of procedure, return to block 0

Statements

A statement is terminated by end of line or by a semicolon.
Statements are of the following types:

Option
Include
Define

Procedure
End

Declarative
Executable

The option statement is described in "COMPILER OPTIONS". The
include, define, and end statements have been described above;
they may not be followed by another statement on a line. Each
procedure begins with a procedure statement and finishes with an
end statement; these are discussed in "PROCEDURES".
Declarations describe types and values of variables and procedures.
Executable statements cause specific actions to be taken. A block is
an example of an executable statement; it is made up of declarative
and executable statements.

5-9

EFL

Labels

An executable statement may have a label which may be used in a
branch statement. A label is an identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal(" bad input")

DATA TYPES AND VARIABLES
EFL supports a small number of basic (scalar) types. The
programmer may define objects made up of variables of basic type;
other aggregates may then be defined in terms of previously defined
aggregates.

Basic Types

The basic types are

logical
integer
field(m:n)
real
complex
long real
long complex
character(n)

A logical quantity may take on the two values true and false. An
integer may take on any whole number value in some machine­
dependent range. A field quantity is an integer restricted to a
particular closed interval ([m:n D. A "real" quantity is a floating
point approximation to a real or rational number. A long real is a
more precise approximation to a rational. (Real quantities are
represented as single precision floating point numbers; long reals are
double precision floating point numbers.) A complex quantity is an
approximation to a complex number, and is represented as a pair of
reals. A character quantity is a fixed-length string of n characters.

5-10

Constants

There is a notation for a constant of each basic type.

A logical may take on the two values

true
false

EFL

An integer or field constant is a fixed point constant, optionally
preceded by a plus or minus sign, as in

17
-94
+6
o

A long real ("double precision") constant is a floating point constant
containing an exponent field that begins with the letter d. A real
("single precision") constant is any other floating point constant. A
real or long real constant may be preceded by a plus or minus sign.
The following are valid real constants:

17.3
-.4
7.ge-6 (= 7.9XIO-6)

14e9 (= 1.4XI010)

The following are valid long real constants

7.9d-6 (= 7.9XIO-6)

5d3

A character constant is a quoted string.

5-11

EFL

Variables

A variable is a quantity with a name and a location. At any
particular time the variable may also have a value. (A variable is
said to be undefined before it is initialized or assigned its first value,
and after certain indefinite operations are performed.) Each variable
has certain attributes:

Storage Class

The association of a name and a location is either transitory or
permanent. Transitory association is achieved when arguments are
passed to procedures. Other associations are permanent (static). (A
future extension of EFL may include dynamically allocated variables.)

Scope of Names

The names of common areas are global, as are procedure names:
these names may be used anywhere in the program. All other names
are local to the block in which they are declared.

Precision

Floating point variables are either of normal or long precision. This
attribute may be stated independently of the basic type.

Arrays

It is possible to declare rectangular arrays (of any dimension) of
values of the same type. The index set is always a cross-product of
intervals of integers. The lower and upper bounds of the intervals
must be constants for arrays that are local or common. A formal
argument array may have intervals that are of length equal to one of
the other formal arguments. An element of an array is denoted by
the array name followed by a parenthesized comma-separated list of
integer values, each of which must lie within the corresponding
interval. (The intervals may include negative numbers.) Entire
arrays may be passed as procedure arguments or in input! output
lists, or they may be initialized; all other array references must be to
individual elements.

5-12

EFL

Structures

It is possible to define new types which are made up of elements of
other types. The compound object is known as a structure; its
constituents are called members of the structure. The structure may
be given a name, which acts as a type name in the remaining
statements within the scope of its declaration. The elements of a
structure may be of any type (including previously defined
structures), or they may be arrays of such objects. Entire structures
may be passed to procedures or be used in input/output lists;
individual elements of structures may be referenced. The uses of
structures will be detailed below. The following structure might
represent a symbol table:

struct tableentry
{
character(8) name
integer hashvalue
integer numberofelements
field(O:l) initialized, used, set
field(O:10) type
}

EXPRESSIONS
Expressions are syntactic forms that yield a value. An expression
may have any of the following forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

In the following table of operators, all operators on a line have equal
precedence and have higher precedence than operators on later lines.
The meanings of these operators are described in "Unary Operators"
and" Binary Operators" under" EXPRESSIONS" .

5-13

EFL

-> .
**
* / unary + - ++
+
< <= > >= == -
& &&
I II
I II

$
= += -= *= /= **=

Examples of expressions are

a<b && b<c

&= 1= &&=

-(a + sin(x» / (5+cos(x»**2

Primaries

Primaries are the basic elements of expressions. They include
constants, variables, array elements, structure members, procedure
invocations, input/output expressions, coercions, and sizes.

Constants

Constants are described in "Constants" under" DATA TYPES AND
VARIABLES" .

Variables

Scalar variable names are primaries. They may appear on the left or
the right side of an assignment. Unqualified names of aggregates
(structures or arrays) may appear only as procedure arguments and
in input/output lists.

Array Elements

An element of an array is denoted by the array name followed by a
parenthesized list of subscripts, one integer value for each declared
dimension:

a(5)
b(6, -3, 4)

5-14

EFL

Structure Members

A structure name followed by a dot followed by the name of a
member of that structure constitutes a reference to that element. If
that element is itself a structure, the reference may be further
qualified.

Procedure Invocations

a.h
x(3).y(4).z(5)

A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-l, ... , expression-n)

The procedurename is either the name of a variable declared
external or it is the name of a function known to the EFL compiler
(see" Known Functions" under" PROCEDURES"), or it is the actual
name of a procedure, as it appears in a procedure statement. If a
procedurename is declared external and is an argument of the
current procedure, it is associated with the procedure name passed as
actual argument; otherwise it is the actual name of a procedure.
Each expression in the above is called an actual argument. Examples
of procedure invocations are

f(x)
workO
g(x, y+3, 'xx')

When one of these procedure invocations is to be performed, each of
the actual argument expressions is first evaluated. The types,
precisions, and bounds of actual and formal arguments should agree.
If an actual argument is a variable name, array element, or structure
member, the called procedure is permitted to use the corresponding

5-15

EFL

formal argument as the left side of an assignment or in an input list;
otherwise it may only use the value. After the formal and actual
arguments are associated, control is passed to the first executable
statement of the procedure. When a return statement is executed in
that procedure, or when control reaches the end statement of that
procedure, the function value is made available as the value of the
procedure invocation. The type of the value is determined by the
attributes of the procedurename that are de~lared or implied in the
calling procedure, which must agree with the attributes declared for
the function in its procedure. In the special case of a generic
function, the type of the result is also affected by the type of the
argument. See" PROCEDURES".

Input/Output Expressions

The EFL input/output syntactic forms may be used as integer
primaries that have a non-zero value if an error occurs during the
input or output. See " Input/Output Statements" under
"EXECUTABLE STATEMENTS".

Coercions

An expression of one precision or type may be converted to another
by an expression of the form

attributes (expression)

At present, the only attributes permitted are precision and basic
types. Attributes are separated by white space. An arithmetic value
of one type may be coerced to any other arithmetic type; a character
expression of one length may be coerced to a character expression of
another length; logical expressions may not be coerced to a nonlogical
type. As a special case, a quantity of complex or long complex
type may be constructed from two integer or real quantities by
passing two expressions (separated by a comma) in the coercion.
Examples and equivalent values are

5-16

integer(5.S) = 5
long real(5) = 5.0dO
complex(5,S) = 5+Si

EFL

Most conversions are done implicitly, since most binary operators
permit operands of different arithmetic types. Explicit coercions are
of most use when it is necessary to convert the type of an actual
argument to match that of the corresponding formal parameter in a
procedure call.

Sizes

There is a notation which yields the amount of memory required to
store a datum or an item of specified type:

sizeof (leftside)
sizeof (attributes)

In the first case, leftside can denote a variable, array, array element,
or structure member. The value of sizeof is an integer, which gives
the size in arbitrary units. If the size is needed in terms of the size
of some specific unit, this can be computed by division:

sizeof(x) / sizeof(integer)

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal
sizeof because certain data types require final padding on some
machines. The lengthof operator gives this larger value, again in
arbitrary units. The syntax is

Parentheses

lengthof (leftside)
lengthof (attributes)

An expression surrounded by parentheses is itself an expression. A
parenthesized expression must be evaluated before an expression of
which it is a part is evaluated.

5-17

EFL

Unary Operators

All of the unary operators in EFL are prefix operators. The result of
a unary operator has the same type as its operand.

Arithmetic

Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator ++ adds one to its operand. The prefix operator
-- subtracts one from its operand. The value of either expression is
the result of the addition or subtraction. For these two operators,
the operand must be a scalar, array element, or structure member of
arithmetic type. (As a side effect, the operand value is changed.)

Logical

The only logical unary operator is complement (-). This operator is
defined by the equations

- true = false
- false = true

Binary Opera tors

Most EFL operators have two operands, separated by the operator.
Because the character set must be limited, some of the operators are
denoted by strings of two or three special characters. All binary
operators except exponentiation are left associative.

Arithmetic

The binary arithmetic operators are

+ addition
subtraction

* multiplication
/ division

** exponen tia tion

5-18

EFL

Exponentiation is right associative: a**b**c = a**(b**c) = a (be) The
operations have the conventional meanings: 8+2 = 10, 8-2 = 6,
8*2 = 16,8/2 = 4, 8**2 = 82 = 64.

The type of the result of a binary operation A
the types of its operands:

Type of A

r
I r
c

I c

r
r

r r
I r I r
c c
I c I c

i = integer
r = real

Type of B

I r
I r
I r
I r
I c
1 c

I r = long real
c = complex
I c = long complex

op B is determined by

c I c
c I c
c I c
I c I c
c I c
I c I c

If the type of an operand differs from the type of the result, the
calculation is done as if the operand were first coerced to the type of
the result. If both operands are integers, the result is of type integer,
and is computed exactly. (Quotients are truncated toward zero, so
8/3=2.)

Logical

The two binary logical" operations in EFL, and and or, are defined by
the truth tables:

A B A and B A or B
false false false false
false true false true
true false false true
true true true true

5-19

EFL

Each of these operators comes in two forms. In one form, the order
of evaluation is specified. The expression

a&&b

is evaluated by first evaluating a; if it is false then the expression is
false and b is not evaluated; otherwise, the expression has the value
of b. The expression

allb

is evaluated by first evaluating a; if it is true then the expression is
true and b is not evaluated; otherwise, the expression has the value
of b. The other forms of the operators (& for and and I for or) do
not imply an order of evaluation. With the latter operators, the
compiler may speed up the code by evaluating the operands in any
order.

Relational Operators

There are six relations between arithmetic quantities. These
operators are not associative.

EFL Operator Meaning

< < less than
<= :::; less than or equal to

equal to
- ~ not equal to

> > greater than
>= :2:: greater than or equal

Since the complex numbers are not ordered, the only relational
operators that may take complex operands are == and -= . The
character collating sequence is not defined.

5-20

EFL

Assignment Operators

All of the assignment operators are right associative. The simple
form of assignment is

basic-left-side expression

A basic-left-side is a scalar variable name, array element, or
structure member of basic type. This statement computes the
expression on the right side, and stores that value (possibly after
coercing the value to the type of the left side) in the location named
by the left side. The value of the assignment expression is the value
assigned to the left side after coercion.

There is also an assignment operator corresponding to each binary
arithmetic and logical operator. In each case, a op = b is equivalent
to a = a op b. (The operator and equal sign must not be separated
by blanks.) Thus, n+=2 adds 2 to n. The location of the left side is
evaluated only once.

Dynamic Structures

EFL does not have an address (pointer, reference) type. However,
there is a notation for dynamic structures,

leftside -> structurename

This expression is a structure with the shape implied by
structurename but starting at the location of leftside. In effect, this
overlays the structure template at the specified location. The leftside
must be a variable, array, array element, or structure member. The
type of the leftside must be one of the types in the structure
declaration. An element of such a structure is denoted in the usual
way using the dot operator. Thus,

place(i) -> st.elt

refers to the elt member of the st structure starting at the i th

element of the array place.

5-21

EFL

Repetition Operator

Inside of a list, an element of the form

in teger-constan t-expression $ constan t-expression

is equivalent to the appearance of the expression a number of times
equal to the first expression. Thus,

(3, 3$4, 5)

is equivalent to

(3,4, 4, 4, 5)

Constant Expressions

If an expression is built up out of operators (other than functions)
and constants, the value of the expression is a constant, and may be
used anywhere a constant is required.

DECLARATIONS

Declarations statement describe the meaning, shape, and size of
named objects in the EFL language.

Syntax

A declaration statement is made up of attributes and variables.
Declaration statements are of two forms:

attributes variable-list
attributes { declarations

In the first case, each name in the variable-list has the specified
attributes. In the second, each name in the declarations also has th€
specified attributes. A variable name may appear in more than on€
variable list, so long as the attributes are not contradictory. Each

5-22

EFL

name of a nonargument variable may be accompanied by an initial
value specification. The declarations inside the braces are one or
more declaration statements. Examples of declarations are

Attributes

Basic Types

integer k=2

long real b(7,3)

common(cname)
{
integer i
long real array(5,O:3) x, y
character(7) ch
}

The following are basic types in declarations

logical
integer
field(m:n)
character(k)
real
complex

In the above, the quantities k, m, and n denote integer constant
expressions with the properties k>O and n >m.

Arrays

The dimensionality may be declared by an array attribute

Each of the hi may either be a single integer expression or a pair of
integer expressions separated by a colon. The pair of expressions
form a lower and an upper bound; the single expression is an upper
bound with an implied lower bound of 1. The number of dimensions
is equal to n, the number of bounds. All of the integer expressions

5-23

EFL

must be constants. An exception is permitted only if all of the
variables associated with an array declarator are formal arguments
of the procedure; in this case, each bound must have the property
that upper -lower +1 is equal to a formal argument of the procedure.
(The compiler has limited ability to simplify expressions, but it will
recognize important cases such as (O:n-l). The upper bound for the
last dimension (bn) may be marked by an asterisk (*) if the size of
the array is not known. The following are legal array attributes:

Structures

array(5)
array(5, 1:5, -3:0)
array(5, *)
array(O:m-l, m)

A structure declaration is of the form

struct structname { declaration statements}

The structname is optional; if it is present, it acts as if it were the
name of a type in the rest of its scope. Each name that appears
inside the declarations is a member of the structure, and has a
special meaning when used to qualify any variable declared with the
structure type. A name may appear as a member of any number of
structures, and may also be the name of an ordinary variable, since a
structure member name is used only in contexts where the parent
type is known. The following are valid structure attributes

struct xx
{
integer a, b
real x(5)
}

struct { xx z(3); character(5) y }

The last line defines a structure containing an array of three xx's
and a character string.

5-24

EFL

Precision

Variables of floating point (real or complex) type may be declared
to be long to ensure they have higher precision than ordinary
floating point variables. The default precision is short.

Common

Certain objects called common areas have external scope, and may be
referenced by any procedure that has a declaration for the name
using a

common (commonareaname)

attribute. All of the variables declared with a particular common
attribute are in the same block; the order in which they are declared
is significant. Declarations for the same block in differing
procedures must have the variables in the same order and with the
same types, precision, and shapes, though not necessarily with the
same names.

External

If a name is used as the procedure name in a procedure invocation, it
is implicitly declared to have the external attribute. If a procedure
name is to be passed as an argument, it is necessary to declare it in a
statement of the form

external [name]

If a name has the external attribute and it is a formal argument of
the procedure, then it is associated with a procedure identifier passed
as an actual argument at each call. If the name is not a formal
argument, then that name is the actual name of a procedure, as it
appears in the corresponding procedure statement.

5-25

EFL

Variable List

The elements of a variable list in a declaration consist of a name, an
optional dimension specification, and an optional initial value
specification. The name follows the usual rules. The dimension
specification is the same form and meaning as the parenthesized list
in an array attribute. The initial value specification is an equal sign
(=) followed by a constant expression. If the name is an array, the
right side of the equal sign may be a parenthesized list of constant
expressions, or repeated elements or lists; the total number of
elements in the list must not exceed the number of elements of the
array, which are filled in column-major order.

The Initial Statement

An initial value may also be specified for a simple variable, array,
array element, or member of a structure using a statement of the
form

initial [var = val]

The var may be a variable name, array element specification, or
member of structure. The right side follows the same rules as for an
initial value specification in other declaration statements.

EXECUTABLE STATEMENTS
Every useful EFL program contains executable statements, otherwise
it would not do anything and would not need to be run. Statements
are frequently made up of other statements. Blocks are the most
obvious case, but many other forms contain statements as consti­
tuents.

To increase the legibility of EFL programs, some of the statement
forms can be broken without an explicit continuation. A square (0)
in the syntax represents a point where the end of a line will be
ignored.

5-26

EFL

Expression Statements

Subroutine Call

A procedure invocation that returns no value is known as a
subroutine call. Such an invocation is a statement. Examples are

work(in, out)
run()

Input/output statements (see "Input/Output Statements" under
"EXECUTABLE STATEMENTS") resemble procedure invocations
but do not yield a value. If an error occurs the program stops.

Assignment Statements

An expression that is a simple assignment (=) or a compound
assignment (+= etc.) is a statement:

a=b
a = sin(x)/6
x *= y

Blocks

A block is a compound statement that acts as a. statement. A block
begins with a left brace, optionally followed by declarations,
optionally followed by executable statements, followed by a right
brace. A block may be used anywhere a statement is permitted. A
block is not an expression and does not have a value. An example of
a block is

{
integer i # this variable is unknown

outside the braces

big = 0
do i = 1,n

if(big < a(i»
big = a(i)

}

5-27

EFL

Test Statements

Test statements permit execution of certain statements conditional
on the truth of a predicate.

If Statement

The simplest of the test statements is the if statement, of form

if (logical-expression) D statement

The logical expression is evaluated; if it is true, then the statement is
executed.

If-Else

A more general statement is of the form

if (logical-expression) D statement-l D
else D statement-2

If the expression is true then statement-l is executed, otherwise,
statement-2 is executed. Either of the consequent statements may
itself be an if-else so a completely nested test sequence is possible:

5-28

if(x<y)
if(a<b)

k=l
else

k=2
else

if(a<b)
m = 1

else
m =2

EFL

An else applies to the nearest preceding un-elsed if. A more
common use is as a sequential test:

Select Statement

if(x==I)
k=1

else if(x==3 x==5)
k=2

else
k=3

A multiway test on the value of a quantity is succinctly stated as a
select statement, which has the general form

select(expression) 0 block

Inside the block two special types of labels are recognized. A prefix
of the form

case [consta.nt] :

marks the statement to which control is passed if the expression in
the select has a value equal to one of the case constants. If the
expression equals none of these constants, but there is a label
default inside the select, a branch is taken to that point; otherwise
the statement following the right brace is executed. Once execution
begins at a case or default label, it continues until the next case or
default is encountered. The else-if example above is better written
as

select(x)
{
case 1:

k=1
case 3,5:

k=2
default:

k=3

Note that control does not "fall through" to the next case.

5-29

EFL

Loops

The loop forms provide the best way of repeating a statement or
sequence of operations. The simplest (while) form is theoretically
sufficient, but it is very convenient to have the more general loops
available, since each expresses a mode of control that arises
frequently in practice.

While Statement

This construct has the form

while (logical-expression) D statement

The expression is evaluated; if it is true, the statement is executed,
and then the test is performed again. If the expression is false,
execution proceeds to the next statement.

For Statement

The for statement is a more elaborate looping construct. It has the
form

for (initial-statement, D logical-expression,
D iteration-statement) D body-statement

Except for the behavior of the next statement (see "Brand:
Statement" under" EXECUTABLE STATEMENTS"), this construc1
is equivalent to

5-30

initial-statement
while (logical-expression)

{
body-statement
iteration-statement

EFL

This form is useful for general arithmetic iterations, and for various
pointer-type operations. The sum of the integers from 1 to 100 can be
computed by the fragment

n=O
for(i = 1, i <= 100, i += 1)

n += i

Alternatively, the computation could be done by the single statement

for({ n = 0 ; i = 1 } , i<=100 , { n += i ; ++i })

Note that the body of the for loop is a null statement in this case.
An example of following a linked list will be given later.

Repeat Statement

The statement

repeat D statement

executes the statement, then does it again, without any termination
test. Obviously, a test inside the statement is needed to stop the loop.

Repeat ... Until Statement

The while loop performs a test before each iteration. The statement

repeat D statement D until (logical-expression)

executes the statement, then evaluates the logical; if the logical is
true the loop is complete; otherwise, control returns to the statement.

5-31

EFL

Thus, the body is always executed at least once. The until refers to
the nearest preceding repeat that has not been paired with an until.
In practice, this appears to be the least frequently used looping
construct.

Do Loop

The simple arithmetic progression is a very common one in numerical
applications. EFL has a special loop form for ranging over an
ascending arithmetic sequence

do variable = expression-l, expression-2, expression-3
statement

The variable is first given the value expression-l. The statement is
executed, then expression-3 is added to the variable. The loop is
repeated until the variable exceeds expression-2. If expression-3 and
the preceding comma are omitted, the increment is taken to be 1.
The loop above is equivalent to

t2 = expression-2
t3 = expression-3
for(variable=expression-l, variable<=t2, variable+=t3)

statement

(The compiler translates EFL do statements into Fortran DO
statements, which are in turn usually compiled into excellent code.)
The do variable may not be changed inside of the loop, and
expression-l must not exceed expression-2. The sum of the first
hundred positive integers could be computed by

5-32

n=O
do i = 1, 100

n += i

EFL

Branch Statements

Most of the need for branch statements in programs can be averted
by using the loop and test constructs, but there are programs where
they are very useful.

Goto Statement

The most general, and most dangerous, branching statement is the
simple unconditional

goto label

After executing this statement, the next statement performed is the
one following the given label. Inside of a select the case labels of
that block may be used as labels, as in the following example:

select(k)

case 1:
error(7)

case 2:
k=2
goto case 4

case 3:
k=5
goto case 4

case 4:
fixup(k)
goto default

default:
prmsg(" ouch")

5-33

EFL

(If two select statements are nested, the case labels of the outer
select are not accessible from the inner one.)

Break Statement

A safer statement is one which transfers control to the statement
following the current select or loop form. A statement of this sort
is almost always needed in a repeat loop:

repeat
{
do a computation
if (finished)

break

More general forms permit controlling a branch out of more than one
construct.

break 3

transfers control to the statement following the third loop and/or
select surrounding the statement. It is possible to specify which
type of construct (for, while, repeat, do, or select) is to be
counted. The statement

break while

breaks out of the first surrounding while statement. Either of the
statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

5-34

EFL

Next Statement

The next statement causes the first surrounding loop statement to
go on to the next iteration: the next operation performed is the test
of a while, the iteration-statement of a for, the body of a repeat,
the test of a repeat ... until, or the increment of a do. Elaborations
similar to those for break are available:

next
next 3
next 3 for
next for 3

A next statement ignores select statements.

Return

The last statement of a procedure is followed by a return of control
to the caller. If it is desired to effect such a return from any other
point in the procedure, a

return

statement may be executed. Inside a function procedure, the function
value is specified as an argument of the statement:

return (expression)

Input/Output Statements

EFL has two input statements (read and readbin), two output
statements (write and writebin), and three control statements
(endfile, rewind, and backspace). These forms may be used
either as a primary with a integer value or as a statement. If an
exception occurs when one of these forms is used as a statement, the
result is undefined but will probably be treated as a fatal error. If
they are used in a context where they return a value, they return zero
if no exception occurs. For the input forms, a negative value
indicates end-of-file and a positive value an error. The input/output
part of EFL very strongly reflects the facilities of Fortran.

5-35

EFL

Input/Output Units

Each I/O statement refers to a "unit," identified by a small positive
integer. Two special units are defined by EFL, the standard input
unit and the standard output unit. These particular units are
assumed if no unit is specified in an I/O transmission statement.

The data on the unit are organized into records. These records may
be read or written in a fixed sequence, and each transmission moves
an integral number of records. Transmission proceeds from the first
record until the end of file.

Binary Input/Output

The readbin and write bin statements transmit data in a machine­
dependent but swift manner. The statements are of the form

writebin(unit, binary-output-list)
readbin(unit, binary-input-list)

Each statement moves one unformatted record between storage and
the device. The unit is an integer expression. A binary-output-list is
an iolist (see below) without any format specifiers. A binary-input­
list is an iolist without format specifiers in which each of the
expressions is a variable name, array element, or structure member.

Formatted Input/Output

The read and write statements transmit data in the form of lines of
characters. Each statement moves one or more records (lines).
Numbers are translated into decimal notation. The exact form of the
lines is determined by format specifications, whether provided
explicitly in the statement or implicitly. The syntax of the
statements is

5-36

write(unit, formatted-output-list)
read(unit, formatted-input-list)

EFL

The lists are of the same form as for binary 110, except that the lists
may include format specifications. If the unit is omitted, the
standard input or output unit is used.

lolists

An iolist specifies a set of values to be written or a set of variables
into which values are to be read. An iolist is a list of one or more
ioexpressions of the form

expression
{ iolist }
do-specification { iolist }

For formatted 110, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar
effect: the values in the braces are transmitted repeatedly until the
do execution is complete.

Formats

The following are permissible format-specifiers. The quantities w, d,
and k must be integer constant expressions.

i(w)
f(w,d)

e(w,d)

l(w)

integer with w digits
floating point number of w characters,
d of them to the right of the decimal point.
floating point number of w characters,
d of them to the right of the decimal point,
with the exponent field marked
wi th the letter e
logical field of width w characters,
the first of which is t or f
(the rest are blank on output, ignored on input)
standing for true and false respectively

5-37

EFL

c character string of width equal to
the length of the datum

c(w) character string of width w
s(k) skip k lines
x(k) skip k spaces

use the characters inside the
string as a Fortran format

If no format is specified for an item in a formatted input/output
statement, a default form is chosen.

If an item in a list is an array name, then the entire array is
transmitted as a sequence of elements, each with its own format.
The elements are transmitted in column-major order, the same order
used for array initializations.

A1anipulation Stater.nents

The three input/output statements

backspace(unit)
rewind(unit)
endfile(unit)

look like ordinary procedure calls, but may be used either as
statements or as integer expressions which yield non-zero if an error
is detected. backspace causes the specified unit to back up, so that
the next read will re-read the previous record, and the next write will
over-write it. rewind moves the device to its beginning, so that the
next input statement will read the first record. endfile causes the
file to be marked so that the record most recently written will be the
last record on the file, and any attempt to read past is an error.

PROCEDURES
Procedures are the basic unit of an EFL program, and provide the
means of segmenting a program into separately compilable and
named parts.

5-38

Procedures Statement

Each procedure begins with a statement of one of the forms

procedure
attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename ([name])

EFL

The first case specifies the main procedure, where execution begins.
In the two other cases, the attributes may specify precision and type,
or they may be omitted entirely. The precision and type of the
procedure may be declared in an ordinary declaration statement. If
no type is declared, then the procedure is called a subroutine and no
value may be returned for it. Otherwise, the procedure is a function
and a value of the declared type is returned for each call. Each name
inside the parentheses in the last form above is called a formal
argument of the procedure.

End Statement

Each procedure terminates with a statement

end

Argument Association

When a procedure is invoked, the actual arguments are evaluated. If
an actual argument is the name of a variable, an array element, or a
structure member, that entity becomes associated with the formal
argument, and the procedure may reference the values in the object,
and assign to it. Otherwise, the value of the actual is associated with
the formal argument, but the procedure may not attempt to change
the value of that formal argument.

If the value of one of the arguments is changed in the procedure, it is
not permitted that the corresponding actual argument be associated
with another formal argument or with a common element that is
referenced in the procedure.

5-39

EFL

Execution and Return Values

After actual and formal arguments have been associated, control
passes to the first executable statement of the procedure. Control
returns to the invoker either when the end statement of the
procedure is reached or when a return statement is executed. If the
procedure is a function (has a declared type), and a return(value) is
executed, the value is coerced to the correct type and precision and
returned.

Known Functions

A number of functions are known to EFL, and need not be declared.
The compiler knows the types of these functions. Some of them are
generic; i.e., they name a family of functions that differ in the types
of their arguments and return values. The compiler chooses which
element of the set to invoke based upon the attributes of the actual
arguments.

Minimum and Maximum Functions

The generic functions are min and max. The min calls return the
value of their smallest argument; the max calls return the value of
their largest argument. These are the only functions that may take
different numbers of arguments in different calls. If any of the
arguments are long real then the result is long real. Otherwise, if
any of the arguments are real then the result is real; otherwise all
the arguments and the result must be integer. Examples are

Absolute Value

min(5, x, -3.20)
max(i, z)

The abs function is a generic function that returns the magnitude of
its argument. For integer and real arguments the type of the result
is identical to the type of the argument; for complex arguments the
type of the result is the real of the same precision.

5-40

EFL

Elementary Functions

The following generic functions take arguments of real, long real,
or complex type and return a result of the same type:

sin
cos
exp
log
log10
sqrt

sine function
cosine function
exponential function (eX).
natural (base e) logarithm
common (base 10) logarithm
square root function (Vx).

In addition, the following functions accept only real or long real
arguments:

atan

atan2

Other Generic Functions

atan (x)=tan-1x

a tan 2(x ,Y)=tan-1 .!5...
Y

The sign functions takes two arguments of identical type;
sign(x ,y) = sgn (y) I x I. The mod function yields the remainder of
its first argument when divided by its second. These functions accept
integer and real arguments.

ATAVISMS

Certain facilities are included in the EFL language to ease the
conversion of old Fortran or Ratfor programs to EFL.

Escape Lines

In order to make use of nonstandard features of the local Fortran
compiler, it is occasionally necessary to pass a particular line through
to the EFL compiler output. A line that begins with a percent sign
("%") is copied through to the output, with the percent sign removed
but no other change. Inside of a procedure, each escape line is
treated as an executable statement. If a sequence of lines constitute
a continued Fortran statement, they should be enclosed in braces.

5-41

EFL

Call Statement

A subroutine call may be preceded by the keyword call.

call joe
call work(17)

Obsolete Keywords

The following keywords are recognized as synonyms of EFL keywords:

Fortran

double precision
function
subroutine

EFL

long real
procedure
procedure (untyped)

Numeric Labels

Standard statement labels are identifiers. A numerIC (positive
integer constant) label is also permitted; the colon is optional
following a numeric label.

Implicit Declarations

If a name is used but does not appear in a declaration, the EFL
compiler gives a warning and assumes a declaration for it. If it is
used in the context of a procedure invocation, it is assumed to be a
procedure name; otherwise it is assumed to be a local variable defined
at nesting level 1 in the current procedure. The assumed type is
determined by the first letter of the name. The association of letters
and types may be given in an implicit statement, with syntax

implicit (letter-list) type

where a letter-list is a list of individual letters or ranges (pair of
letters separated by a minus sign). If no implicit statement appears,
the following rules are assumed:

5-42

implicit (a-h, o-z) real
implicit (i-n) integer

EFL

Computed Goto

Fortran contains an indexed multi-way branch; this facility may be
used in EFL by the computed GOTO:

goto ([label]), expression

The expression must be of type integer and be positive but be no
larger than the number of labels in the list. Control is passed to the
statement marked by the label whose position in the list is equal to
the expression.

Goto Statement

In unconditional and computed goto statements, it is permissible to
separate the go and to words, as in

go to xyz

Dot Names

Fortran uses a restricted character set, and represents certain
operators by multi-character sequences. There is an option
(dots=on; see" COMPILER OPTIONS") which forces the compiler to
recognize the forms in the second column below:

< .It.
<= .Ie.
> .gt.
>= .ge.

.eq .
- . ne.

& .and .
. or.

&& .andand.
II .oror. II

.not.
true .true.
false .false.

5-43

EFL

In this mode, no structure element may be named It, Ie, etc. The
readable forms in the left column are always recognized.

Complex Constants

A complex constant may be written as a parenthesized list of real
quantities, such as

(1.5, 3.0)

The preferred notation is by a type coercion,

complex(1.5, 3.0)

Function Values

The preferred way to return a value from a function in EFL is the
return(value) construct. However, the name of the function acts as
a variable to which values may be assigned; an ordinary return
statement returns the last value assigned to that name as the
function value.

Equivalence

A statement of the form

declares that each of the Vi starts at the same memory location.
Each of the Vi may be a variable name, array element name, or
structure member.

5-44

EFL

Minimum and Maximum Functions

There are a number of non-generic functions in this category, which
differ in the required types of the arguments and the type of the
return value. They may also have variable numbers of arguments,
but all the arguments must have the same type.

Function Argument Type Result Type
aminO integer real
amin! real real
minO integer integer
minI real integer
dmini long real long real

amaxO integer real
amaxi real real
maxO integer integer
maxI real integer
dmaxi long real long real

COMPILER OPTIONS
A number of options can be used to control the output and to tailor it
for various compilers and systems. The defaults chosen are
conservative, but it is sometimes necessary to change the output to
match peculiarities of the target environment.

Options are set with statements of the form

option [opt]

where each opt is of one of the forms

optionname
optionname = option value

5-45

EFL

The optionvalue is either a constant (numeric or string) or a name
associated with that option. The two names yes and no apply to a
number of options.

Default Options

Each option has a default setting. It is possible to change the whole
set of defaults to those appropriate for a particular environment by
using the system option. At present, the only valid values are
system=unix and system=gcos.

Input Language Options

The dots option determines whether the compiler recognizes .It. and
similar forms. The default setting is no.

Input/Output Error Handling

The ioerror option can be given three values: none means that none
of the I/O statements may be used in expressions, since there is no
way to detect errors. The implementation of the ibm form uses
ERR= and END= clauses. The implementation of the fortran77
form uses IOSTAT= clauses.

Continuation Conventions

By default, continued Fortran statements are indicated by a
character In column 6 (Standard Fortran). The option
continue=columnl puts an ampersand (&) in the first column of
the continued lines instead.

5-46

EFL

Default Formats

If no format is specified for a datum in an iolist for a read or write
statement, a default is provided. The default formats can be changed
by setting certain options

Option
iformat
rformat
dformat
zformat
zdformat
lformat

Type
integer
real
long real
complex
long complex
logical

The associated value must be a Fortran format, such as

option rformat=f22.6

Alignments and Sizes

In order to implement character variables, structures, and the
sizeof and lengthof operators, it is necessary to know how much
space various Fortran data types require, and what boundary
alignment properties they demand. The relevant options are

Fortran Type
integer
real
long real
complex
logical

Size Option
isize
rsize
dsize
zsize
lsize

Alignment Option
ialign
ralign
dalign
zalign
lalign

The sizes are given in terms of an arbitrary unit; the alignment is
given in the same units. The option charperint gives the number of
characters per integer variable.

5-47

EFL

Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard input
and output units. The default values are ftnin=5 and ftnout=6.

Miscellaneous Output Control Options

Each Fortran procedure generated by the compiler will be preceded
by the value of the procheader option. .

No Hollerith strings will be passed as subroutine arguments if
hollincall=no is specified.

The Fortran statement numbers normally start at 1 and increase by
1. It is possible to change the increment value by using the
deltastno option.

EXAMPLES
In order to show the flavor or programming in EFL, we present a few
examples. They are short, but show some of the convenience of the
language.

File Copying

The following short program copies the standard input to the
standard output, provided that the input is a formatted file
containing lines no longer than a hundred characters.

procedure # main program
character(lOO) line

while(read(, line) == 0)
write(, line)

end

Since read returns zero until the end of file (or a read error), this
program keeps reading and writing until the input is exhausted.

5-48

EFL

Matrix Multiplication

The following procedure multiplies the m Xn matrix a by the n xp
matrix b to give the m Xp matrix c. The calculation obeys the
formula Cij = Dik bkj .

procedure matmul(a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), c(m,p)

do i = I,m
do j = I,p

end

{
c(i,j) = 0
do k = I,n

c(i,j) += a(i,k) * b(k,j)

Searching a Linked List

Assume we have a list of pairs of numbers (x ,y). The list is stored
as a linked list sorted in ascending order of x values. The following
procedure searches this list for a particular value of x and returns
the corresponding y value.

5-49

EFL

define LAST 0
define NOTFOUND -1

integer procedure val(list, first, x)

list is an array of structures.
Each structure contains a thread index value,
an x, and a y value.

struct
{
integer nextindex
integer x, y
} list(*)

integer first, p, arg

for(p = first, p-=LAST && list(p).x<=x ,
p = list(p).nextindex)

if(list(p).x == x)
return(list(p).y)

return(NOTFOUND)
end

The search is a single for loop that begins with the head of the list
and examines items until either the list is exhausted (p==LAST) or
until it is known that the specified value is not on the list (list(p).x >
x). The two tests in the conjunction must be performed in the
specified order to avoid using an invalid subscript in the list(p)
reference. Therefore, the && operator is used. The next element in
the chain is found by the iteration statement p=list(p}.nextindex.

Walking a Tree

As an example of a more complicated problem, let us imagine we
have an expression tree stored in a common area, and that we want
to print out an infix form of the tree. Each node is either a leaf
(containing a numeric value) or it is a binary operator, pointing to a

5-50

EFL

left and a right descendant. In a recursive language, such a tree walk
would be implement by the following simple pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a non recursive language like EFL, it is necessary to maintain an
explicit stack to keep track of the current state of the computation.
The following procedure calls a procedure outch to print a single
character and a procedure outval to print a value.

procedure walk(first) # print an expression tree

integer first # index of root node
integer currentnode
integer stackdepth
common(nodes) struct

struct

{
character(1) op
integer leftp, rightp
real val
} tree(IOO) # array of structures

{
integer nextstate
integer nodep
} stackframe(IOO)

define NODE tree(currentnode)
define STACK stackframe(stackdepth)

nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

5-51

EFL

initialize stack with root node
stackdepth = 1
STACK.nextstate = DOWN
ST ACK.nodep = first

while(stackdepth > 0)

end

5-52

{
currentnode = ST ACK.nodep
select(ST ACK.nextstate)

}

{
case DOWN:

if(NODE.op ==" ") # a leaf
{
outval(NODE. val)
stackdepth -= 1
}

else { # a binary operator node
outch("(")
ST ACK.nextstate = LEFT
stackdepth += 1
STACK.nextstate = DOWN
ST ACK.nodep = NODE.leftp
}

case LEFT:
outch(NODE.op)
STACK.nextstate = RIGHT
stackdepth += 1
STACK.nextstate = DOWN
STACK.nodep = NODE.rightp

case RIGHT:

}

outch(")")
stackdepth -= 1

EFL

PORTABILITY

One of the maj or goals of the EFL language is to make it easy to
write portable programs. The output of the EFL compiler is intended
to be acceptable to any Standard Fortran compiler (unless the
fortran77 option is specified).

Primitives

Certain EFL operations cannot be implemented in portable Fortran,
so a few machine-dependent procedures must be provided in each
environment.

Character String Copying

The subroutine efl asc is called to copy one character string to
another. If the target string is shorter than the source, the final
characters are not copied. If the target string is longer, its end is
padded with blanks. The calling sequence is

subroutine eflasc(a, la, b, lb)
integer a(*), la, b(*), lb

and it must copy the first lb characters from b to the first la
characters of a.

Character String Comparisons

The function eflcmc is invoked to determine the order of two
character strings. The declaration is

integer function eflcmc(a, la, b, lb)
integer a(*), la, b(*), lb '

The function returns a negative value if the string a of length la
precedes the string b of length lb. It returns zero if the strings are
equal, and a positive value otherwise. If the strings are of differing
length, the comparison is carried out as if the end of the shorter
string were padded with blanks.

5-53

EFL

DIFFERENCES BETWEEN RATFOR AND EFL

There are a number of differences between Ratfor and EFL, since EFL
is a defined language while Ratfor is the union of the special control
structures and the language accepted by the underlying Fortran
compiler. Ratfor running over Standard Fortran is almost a subset
of EFL. Most of the features described in the" ATAVISMS" are
present to ease the conversion of Ratfor programs to EFL.

There are a few incompatibilities: The syntax of the for statement is
slightly different in the two languages: the three clauses are
separated by semicolons in Ratfor, but by commas in EFL. (The
initial and iteration statements may be compound statements in EFL
because of this change). The input/output syntax is qllite different in
the two languages, and there is no FORMAT statement in EFL.
There are no ASSIGN or assigned GOTO statements in EFL.

The major linguistic additions are character data, factored
declaration syntax, block structure, assignment and sequential test
operators, generic functions, and data structures. EFL permits more
general forms for expressions, and provides a more uniform syntax.
(One need not worry about the Fortran/Ratfor restrictions on
subscript or DO expression forms, for example.)

COMPILER

Current Version

The current version of the EFL compiler is a two-pass translator
written in portable C. It implements all of the features of the
language described above except for long complex numbers.

Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line and
file name (if known) on which the error was detected. Warnings are
given for variables that are used but not explicitly declared.

5-54

EFL

Quality of Fortran Produced

The Fortran produced by EFL is quite clean and readable. To the
extent possible, the variable names that appear in the EFL program
are used in the Fortran code. The bodies of loops and test constructs
are indented. Statement numbers are consecutive. Few unneeded
GOTO and CONTINUE statements are used. It is considered a
compiler bug if incorrect Fortran is produced (except for escaped
lines). The following is the Fortran procedure produced by the EFL
compiler for the matrix multiplication example (See" EXAMPLES" .)

subroutine matmul(a, b, c, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3 i = 1, m

do 2 j = 1, P
c(i, j) = 0
do 1 k = 1, n

c(i, j) = c(i, j)+a(i, k)*b(k, j)
1 continue
2 continue
3 continue

end

5-55

EFL

The following is the procedure for the tree walk:
subroutine walk(first)
integer first
common Inodesl tree
integer tree(4, 100)
real treel(4, 100)
integer staame(2, 100), stapth, curode
integer constl(l)
equivalence (tree(I,I), treel(I;I»
data constl(I)/4h I

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = I
staame(I, stapth) = I
staame(2, stapth) = first

I if (stapth .Ie. 0) goto 9
curode = staame(2, stapth)
goto 7

2 if (tree(l, curode) .ne. constl(l» goto 3

c a leaf
call outval(treel(4, curode»

stapth = stapth-I
goto 4

3 call outch(Ih()
c a binary operator node

staame(I, stapth) 2
stapth = stapth+ I
staame(l, stapth) I
staame(2, stapth) = tree(2, curode)

4 goto 8
5 call outch(tree(l, curode»

staame(l, stapth) = 3
stapth = stapth+ I
staame(I, stapth) I
staame(2, stapth) tree(3, curode)
goto 8

6 call outch(Ih»
stapth = stapth-I
goto 8

5-56

EFL

7 if (staame(1, stapth) .eq. 3) goto 6
if (staame(1, stapth) .eq. 2) go to 5
if (staame(1, stapth) .eq. 1) go to 2

8 continue
goto 1

9 continue
end

CONSTRAINTS ON EFL
Although Fortran can be used to simulate any finite computation,
there are realistic limits on the generality of a language that can be
translated into Fortran. The design of EFL was constrained by the
implementation strategy. Certain of the restrictions are petty (six
character external names), but others are sweeping (lack of pointer
variables). The following paragraphs describe the major limitations
imposed by Fortran.

External Names

External names (procedure and COMMON block names) must be no
longer than six characters in Fortran. Further, an external name is
global to the entire program. Therefore, EFL can support block
structure within a procedure, but it can have only one level of
external name if the EFL procedures are to be compilable separately,
as are Fortran procedures.

Procedure Interface

The Fortran standards, in effect, permit arguments to be passed
between Fortran procedures either by reference or by copy-in/copy­
out. This indeterminacy of specification shows through into EFL. A
program that depends on the method of argument transmission is
illegal in either language.

There are no procedure-valued variables in Fortran: a procedure
name may only be passed as an argument or be invoked; it cannot be
stored. Fortran (and EFL) would be noticeably simpler if a procedure
variable mechanism were available.

5-57

EFL

Pointers

The most grievous problem with Fortran is its lack of a pointer-like
data type. The implementation of the compiler would have been far
easier if certain hard cases could have been handled by pointers.
Further, the language could have been simplified considerably if
pointers were accessible in Fortran. (There are several ways of
simulating pointers by using subscripts, but they founder on the
problems of external variables and initialization.)

Recursion

Fortran procedures are not recursive, so it was not practical to
permit EFL procedures to be recursive. (Recursive procedures with
arguments can be simulated only with great pain.)

Storage Allocation

The definition of Fortran does not specify the lifetime of variables.
It would be possible but cumbersome to implement stack or heap
storage disciplines by using COMMON blocks.

5-58

Chapter 6: LINT: C PROGRAM CHECKER

GENERAL
Usage .

TYPES OF MESSAGES

CONTENTS

Unused Variables and Functions
Set/Used Information
Flow of Control
Function Values
Type Checking .
Type Casts
N onportable Character Use .
Assignments of "longs" to "ints"
Strange Constructions
Old Syntax
Pointer Alignment
Multiple Uses and Side Effects

- i -

1
1

3
3
5
5
6
7
9
9

10
10
11
12
13

Chapter 6

LINT: C PROGRAM CHECKER

GENERAL
The lint program examines C language source programs detecting a
number of bugs and obscurities. It enforces the type rules of C
language more strictly than the C compiler. It may also be used to
enforce a number of portability restrictions involved in moving
programs between different machines and/or operating systems.
Another option detects a number of wasteful or error prone
constructions which nevertheless are legal. The lint program accepts
multiple input files and library specifications and checks them for
consistency.

Usage

The lint command has the form:

lint [options] files ... library-descriptors ...

where options are optional flags to control lint 'checking and
messages; files are the files to be checked which end with .c or .In;
and library-descriptors are the names of libraries to be used in
checking the program.

The options that are currently supported by the lint command are:

-a

-b

-c

Suppress messages about assignments of long values to
variables that are not long.

Suppress messages about break statements that cannot
be reached.

Only check for intra-file bugs; leave external
information in files suffixed with .In.

6-1

LINT

-h

-n

-0 name

-p

-u

-v

-x

Do not apply heuristics (which attempt to detect bugs,
improve style, and reduce waste).

Do not check for compatibility with either the standard
or the portable lint library.

Create a lint library from input files named llib­
lname.ln.

Attempt to check portability to other dialects of C
language.

Suppress messages about function and external variables
used and not defined or defined and not used.

Suppress messages about unused arguments in functions.

Do not report variables referred to by external
declarations but never used.

When more than one option is used, they should be combined into a
single argument, such as, -ab or -xha.

The names of files that contain C language programs should end with
the suffix .c which is mandatory or lint and the C compiler.

The lint program accepts certain arguments, such as:

-ly

These arguments specify libraries that contain functions used in the
C language program. The source code is tested for compatibility with
these libraries. This is done by accessing library description files
whose names are constructed from the library arguments. These
files all begin with the comment:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The
critical parts of these definitions are the declaration of the function

6-2

LINT

return type, whether the dummy function returns a value, and the
number and types of arguments to the function. The V ARARGS and
ARGSUSED comments can be used to specify features of the library
functions.

The lint library files are processed almost exactly like ordinary
source files. The only difference is that functions which are defined
on a library file but are not used on a source file do not result in
messages. The lint program does not simulate a full library search
algorithm and will print messages if the source files contain a
redefinition of a library routine.

By default, lint checks the programs it is given against a standard
library file which contains descriptions of the programs which are
normally loaded when a C language program is run. When the -p
option is used, another file is checked containing descriptions of the
standard library routines which are expected to be portable across
various machines. The -n option can be used to suppress all library
checking.

TYPES OF MESSAGES

The following paragraphs describe the major categories of messages
printed by lint.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and
arguments to functions may become unused. It is not uncommon for
external variables or even entire functions to become unnecessary
and yet not be removed from the source. These types of errors rarely
cause working programs to fail, but are a source of inefficiency and
make programs harder to understand and change. Also, information
about such unused variables and functions can occasionally serve to
di scover bugs.

The lint program prints messages about variables and functions
which are defined but not otherwise mentioned. An exception is

6-3

LINT

variables which are declared through explicit extern statements but
are never referenced; thus the statement

extern double sinO;

will evoke no comment if sin is never used. Note that this agrees
with the semantics of the C compiler. In some cases, these unused
external declarations might be of some interest and can be discovered
by using the -x option with the lint command.

Certain styles of programming require many functions to be written
with similar interfaces; frequently, some of the arguments may be
unused in many of the calls. The -v option is available to suppress
the printing of messages about unused arguments. When -v is in
effect, no messages are produced about unused arguments except for
those arguments which are unused and also declared as register
arguments. This can be considered an active (and preventable) waste
of the register resources of the machine.

Messages about unused arguments can be suppressed for one function
by adding the comment:

/* ARGSUSED * /

to the program before the function. This has the effect of the -v
option for only one function. Also, the comment:

/* V ARARGS * /

can be used to suppress messages about variable number of
arguments in calls to a function. The comment should be added
before the function definition. In some cases, it is desirable to check
the first several arguments and leave the later arguments unchecked.
This can be done with a digit giving the number of arguments which
should be checked. For example:

/* VARARGS2 */

will cause only the first two arguments to be checked.

6-4

LiNT

There is one case where information about unused or undefined
variables is more distracting than helpful. This is when lint is
applied to some but not all files out of a collection which are to be
loaded together. In this case, many of the functions and variables
defined may not be used. Conversely, many functions and variables
defined elsewhere may be used. The -u option may be used to
suppress the spurious messages which might otherwise appear.

SetiU sed Information

The lint program attempts to detect cases where a variable is used
before it is set. The lint program detects local variables (automatic
and register storage classes) whose first use appears physically
earlier in the input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a "use",
since the actual use may occur at any later time, in a data dependent
fashion.

The restriction to the physical appearance of variables in the file
makes the algorithm very simple and quick to implement since the
true flow of control need not be discovered. It does mean that lint
can print messages about some programs which are legal, but these
programs would probably be considered bad on stylistic grounds.
Because static and external variables are initialized to zero, no
meaningful information can be discovered about their uses. The lint
program does deal with initialized automatic variables.

The set/used information also permits recognition of those local
variables which are set and never used. These form a frequent source
of inefficiencies and may also be symptomatic of bugs.

Flow of Control

The lint program attempts to detect unreachable portions of the
programs which it processes. It will print messages about unlabeled
sta tements immediately following goto, break, continue, or
return statements. An attempt is made to detect loops which can
never be left at the bottom and to recognize the special cases
while (1) and for(;;) as infinite loops. The lint program also prints
messages about loops which cannot be entered at the top. Some valid

6-5

LINT

programs may have such loops which are considered to be bad style
a t best and bugs at worst.

The lint-program has no way of detecting functions which are called
and never returned. Thus, a call to exit may cause an unreachable
code which lint does not detect. The most serious effects of this are
in the determination of returned function values (see "Function
Values"). If a particular place in the program cannot be reached but
it is not apparent to lint, the comment

/* NOTRE ACHED */

can be added at the appropriate place. This comment will inform
lint that a portion of the program cannot be reached.

The lint program will not print a message ~bout unreachable break
statements. Programs generated by yacc and especially lex may
have hundreds of unreachable break statements. The -0 option in
the C compiler will often eliminate the resulting object code
inefficiency. Thus, these unreached statements are of little
importance. There is typically nothing the user can do about them,
and the resulting messages would clutter up the lint output. If these
messages are desired, lint can be invoked with the -b option.

Function Values

Sometimes functions return values that are never used. Sometimes
programs incorrectly use function "values" that have never been
returned. The lint program addresses this problem in a number of
ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return;

6-6

LINT

statements is cause for alarm; the lint program will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function
return is implied by flow of control reaching the end of the function.
This can be seen with a simple example:

f (a) {
if (a) return (3);
gO;
}

Notice that, if a tests false, f will call g and then return with no
defined return value; this will trigger a message from lint. If g, like
exit, never returns, the message will still be produced when in fact
nothing is wrong.

In practice, some potentially serious bugs have been discovered by
this feature.

On a global scale, lint detects cases where a function returns a value
that is sometimes or never used. When the value is never used, it
may constitute an inefficiency in the function definition. When the
value is sometimes unused, it may represent bad style (e.g., not
testing for error conditions).

The dual problem, using a function value when the function does not
return one, is also detected. This is a serious problem.

Type Checking

The lint program enforces the type checking rules of C language
more strictly than the compilers do. The additional checking is in
four major areas:

• Across certain binary operators and implied assignments

• At the structure selection operators

6-7

LINT

• Between the definition and uses of functions

• In the use of enumerations.

There are a number of operators which have an implied balancing
between types of the operands. The assignment, conditional (?:),
and relational operators have this property. The argument of a
return statement and expressions used in initialization suffer
similar conversions. In these operations, char, short, int, long,
unsigned, float, and double types may be freely intermixed. The
types of pointers must agree exactly except that arrays of x's can, of
course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the
left operand of the -> be a pointer to structure, the left operand of
the . be a structure, and the right operand of these opera tors be a
member of the structure implied by the left operand. Similar
checking is done for references to unions.

Strict rules apply to function argument and return value matching.
The types float and double may be freely matched, as may the
types char, short, int, and unsigned. Also, pointers can be
matched with the associated arrays. Aside from this, all actual
arguments must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or
members are not mixed with other types or other enumerations and
that the only operations applied are =, initialization, ==, !=, and
function arguments and return values.

If it is desired to turn off strict type checking for an expression, the
comment

/* NO STRICT * /

should be added to the program immediately before the expression.
This comment will prevent strict type checking for only the next line
in the program.

6-8

LINT

Type Casts

The type cast feature in C language was introduced largely as an aid
to producing more portable programs. Consider the assignment

p = 1;

where p is a character pointer. The lint program will print a
message as a result of detecting this. Consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character
pointer. The programmer obviously had a strong motivation for
doing this and has clearly signaled his intentions. It seems harsh for
lint to continue to print messages about this. On the other hand, if
this code is moved to another machine, such code should be looked at
carefully. The -c flag controls the printing of comments about casts.
When -c is in effect, casts are treated as though they were
assignments subject to messages; otherwise, all legal casts are passed
without comment, no matter how strange the type mixing seems to
be.

N onportable Character Use

On some systems, characters are signed quantities with a range from
-128 to 127. On other C language implementations, characters take
on only positive values. Thus, lint will print messages about certain
comparisons and assignments as being illegal or nonportable. For
example, the fragment

char c;

if((c = getchar(» < 0) ...

will work on one machine but will fail on machines where characters
always take on positive values. The real solution is to declare c as an
integer since getchar is actually returning integer values. In any
case, lint will print the message "nonportable character comparison".

6-9

LINT

A similar issue arises with bit fields. When assignments of constant
values are made to bit fields, the field may be too small to hold the
value. This is especially true because on some machines bit fields are
considered as signed quantities. While it may seem logical to
consider that a two-bit field declared of type int cannot hold the
value 3, the problem disappears if the bit field is declared to have
type unsigned

Assignments of "longs" to "ints"

Bugs may arise from the assignment of long to an int, which will
truncate the contents. This may happen in programs which have
been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working
because some intermediate results may be assigned to ints, which are
truncated. Since there are a number of legitimate reasons for
assigning longs to ints, the detection of these assignments is
enabled by the - a option.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are
detected by lint. The messages hopefully encourage better code
quality, clearer style, and may even point out bugs. The -h option is
used to suppress these checks. For example, in the statement

*p++ ;

the * does nothing. This provokes the message "null effect" from lint.
The following program fragment:

unsigned x ;
if(x < 0) ...

results in a test that will never succeed. Similarly, the test

if(x > 0) ...

6-10

LINT

is equivalent to

if(x != 0)

which may not be the intended action. The lint program will print
the message "degenerate unsigned comparison" in these cases. If a
program contains something similar to

if(1 != 0) ...

lint will print the message "constant in conditional context" since
the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence.
Bugs which arise from misunderstandings about the precedence of
operators can be accentuated by spacing and formatting, making such
bugs extremely hard to find. For example, the statement

if(x&077 == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to
parenthesize such expressions, and lint encourages this by an
appropriate message.

Finally, when the -b option has not been used, lint prints messages
about variables which are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal but is
considered to be bad style, usually unnecessary, and frequently a
bug.

6-11

LINT

Old Syntax

Several forms of older syntax are now illegal. These fall into two
classes - assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ...) could cause
ambiguous expressions, such as:

a =-1 ;

which could be taken as either

a =- 1;

or

a = -1 ;

The situation is especially perplexing if this kind of ambiguity arises
as the result of a macro substitution. The newer and preferred
operators (e.g., +=, -=, ...) have no such ambiguities. To encourage
the abandonment of the older forms, lint prints messages about these
old-fashioned operators.

A similar issue arises with initialization. The older lan~uage allowed

int xl;

to initialize x to 1. This also caused syntactic difficulties. For
example, the initialization

int x (-1);

looks somewhat like the beginning of a function definition:

int x (y) { ...

6-12

LINT

and the compiler must read past x in order to determine the correct
meaning. Again, the problem is even more perplexing when the
initializer involves a macro. The current syntax places an equals sign
between the variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines
and illegal on others due entirely to alignment restrictions. The lint
program tries to detect cases where pointers are assigned to other
pointers and such alignment problems might arise. The message
"possible pointer alignment problem" results from this situation.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate
subexpressions may be highly machine dependent. For example, on
machines (like the PDP-II) in which the stack runs backwards,
function arguments will probably be best evaluated from right to left.
On machines with a stack running forward, left to right seems most
attractive. Function calls embedded as arguments of other functions
mayor may not be treated similarly to ordinary arguments. Similar
issues arise with other operators which have side effects, such as the
assignment operators and the increment and decrement operators.

In order that the efficiency of C language on a particular machine
not be unduly compromised, the C language leaves the order of
evaluation of complicated expressions up to the local compiler. In
fact, the various C compilers have considerable differences in the
order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect and also used
elsewhere in the same expression, the result is explicitly undefined.

6-13

LINT

The lint program checks for the important special case where a
simple scalar variable is affected. For example, the statement

a[i] = b[i++];

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

6-14

Chapter 7: UNIX IMPLEMENTATION

CONTENTS

INTRODUCTION

PROCESS CONTROL
Process Creation and Program Execution
Swapping.
Synchronization and Scheduling

I/O SYSTEM
Block I/O System . . .
Character I/O System

Disk Drivers
Character Lists. .
Other Character Devices

THE FILE SYSTEM
File System Implementation
Mounted File Systems
Other System Functions. .

- i -

1

1
3
3
5

6
7
8
8
9

10

10
12
14
14

Chapter 7

UNIX IMPLEMENTATION

This chapter describes the implementation of the resident UNIX kernel.
The first section is a brief introduction. The second section describes
how the UNIX system views processes, users, and programs. The third
section describes the 110 system. The last section describes the UNIX
file system.

INTRODUCTION

The UNIX kernel consists of 20,000 lines of C code and 500 lines of
assembly code. The assembly code can be further broken down into 200
lines included for efficiency (they could have been written in C) and
300 lines performing hardware functions not possible in C.

This code represents 5 to 10 percent of what has been called '·'the
UNIX operating system." The kernel is the only UNIX code that can­
not be changed by a user. For this reason, the kernel should make as
few real decisions as possible. The user doesn't need a million options
to do the same thing. Rather, there should be one way to do a thing,
but that way should be the least-common divisor of all the options that
might have been provided.

PROCESS CONTROL

In the UNIX system, a user executes programs in an environment
called a user process. When a system function is required, the user pro­
cess calls the system as a subroutine. At some point in this call, there is
a distinct switch of environments. After this, the process is said to be a
system process. In the normal definition of processes, the user and sys­
tem processes are different phases of the same process (they never exe­
cute simultaneously). For protection, each system process has its own
stack.

The user process may execute from a read-only text segment, shared by
all processes executing the same code. There is no functional benefit
from shared-text segments. An efficiency benefit is that there is no need
to swap read-only segments out because the original copy on secondary
memory is still current. This is a great benefit to interactive programs

7-1

UNIX IMPLEMENTATION

that tend to be swapped while waiting for terminal input. Furthermore,
if two processes are executing simultaneously from the same copy of a
read-only segment, only one copy needs to reside in primary memory.
This is a secondary effect, because simultaneous execution of a program
is not common. It is ironic that this effect, which reduces the use of
primary memory, only comes into play when there is an overabundance
of primary memory - that is, when there is enough memory to keep
waiting processes loaded.

All current read-only text segments in the system are maintained from
the text table. A text table entry holds the location of the text segment
on secondary memory. If the segment is loaded, that table also holds
the primary memory location and the number of processes sharing this
entry. When this count is reduced to zero, the entry is freed along with
any primary and secondary memory holding the segment. When a pro­
cess first executes a shared-text segment, a text table entry is allocated
and the segment is loaded onto secondary memory. If a second process
executes a text segment that is already allocated, the entry reference
count is simply incremented.

A user process has some strictly private read-write data in its data seg­
ment. As far as possible, the system does not use the user's data seg­
ment to hold system data. There are no 110 buffers in the user address
space.

The user data segment has two growing boundaries. One, increased
automatically by the system as a result of memory faults, is used for a
stack. The second boundary is only grown (or shrunk) by explicit
requests. The contents of newly allocated primary memory are initial­
ized to zero.

Also associated and swapped with a process is a small, fixed-size system
data segment. This segment contains all the data about the process that
the system needs only when the process is active. Examples of the kind
of data contained in the system data segment are: saved central proces­
sor registers, open file descriptors, accounting information, scratch data
area, and the stack for the system phase of the process. The system
data segment is not addressable from the user process and is therefore
protected.

7-2

UNIX IMPLEMENTATION

Last, there is a process table with one entry per process. This entry
contains all the data needed by the system when the process is not
active. Examples are the process's name, the location of the other seg­
ments, and scheduling information. The process table entry is allocated
when the process is created, and freed when the process terminates.
This process entry is always directly addressable by the kernel.

Process Creation and Program Execution

Processes are created by the system primitive fork. The newly created
process (child) is a copy of the original process (parent). There is no
detectable sharing of primary memory between the two processes. (Of
course, if the parent process is executing from a read-only text seg­
ment, the child shares the text segment.) Copies of all writable data
segments are made for the child process. Files that were open before
the fork are shared after the fork. The processes are informed of their
part in the relationship, allowing them to select their own (usually
non-identical) destiny. The parent may wait for the termination of any
of its children.

A process may exec a file. This consists of exchanging the current text
and data segments of the process for new text and data segments
specified in the file. The old segments are lost. Doing an exec does not
change processes; the process that did the exec persists, but after the
exec it is executing a different program. Files that were open before the
exec remain open after the exec.

If a program (for example, the first pass of a compiler) wishes to over­
lay itself with another program (for example, the second pass) then it
simply execs the second program. This is analogous to a "goto." If a
program wishes to regain control after execing a second program, it
should fork a child process, have the child exec the second program,
and have the parent wait for the child. This is analogous to a "call."
Breaking up the call into a binding followed by a transfer is similar to
the subroutine linkage in SL-S.

Swapping

The major data associated with a process (the user data segment, the
system data segment, and the text segment) -a-re swapped to and from

7-3

UNIX IMPLEMENTATION

secondary memory, as needed. The user data segment and the system
data segment are kept in primary memory to reduce swapping latency.
(When using low-latency devices-such as bubbles, CCDs, or
scatter/gather devices-this decision has to be reconsidered.) Allocation
of both primary and secondary memory is performed by the same sim­
ple first-fit algorithm. When a process grows, a new piece of primary
memory is allocated. The contents of the old memory are copied to the
new memory. If necessary, the old memory is freed and the tables are
updated. If there is not enough primary memory, secondary memory is
allocated instead. The process is swapped out onto the secondary
memory, ready to be swapped in with its new size.

One separate process in the kernel, the swapping process, simply swaps
the other processes in and out of primary memory. It examines the pro­
cess table looking for a process that is swapped out and is ready to run.
It allocates primary memory for that process and reads its segments into
primary memory, where that process competes for the central processor
with other loaded processes. If no primary memory is available, the
swapping process makes memory available by examining the process
table for processes that can be swapped out. It selects a process to swap
out, writes it to secondary memory, frees the primary memory, and
then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which
of the possibly many processes that are swapped out is to be swapped
in? This is decided by secondary storage residence time. The one with
the longest time out is swapped in first. There is a slight penalty for
larger processes. Which of the possibly many processes that are loaded
is to be swapped out? Processes that are waiting for slow events (i.e.,
not currently running or waiting for disk 110) are picked first, by age in
primary memory, again with size penalties. The other processes are
examined by the same age algorithm, but are not taken out unless they
are at least of some age. This adds hysteresis to the swapping and
prevents total thrashing.

These swapping algorithms are the most suspect in the system. With
limited primary memory, these algorithms cause total swapping. This is
not bad in itself, because the swapping does not impact the execution
of the resident processes. However, if the swapping device must also be

7-4

UNIX IMPLEMENTATION

used for file storage, the swapping traffic severly impacts the file system
traffic. It is exactly these small systems that tend to double the use of
limited disk resources.

Synchronization and Scheduling

Process synchronization is accomplished by having processes wait for
events. Events are represented by arbitrary integers. By convention,
events are chosen to be addresses of tables associated with those
events. For example, a process that is waiting for any of its children to
terminate will wait for an event that is the address of its own process
table entry. When a process terminates, it signals the event represented
by its parent's process table entry. Signaling an event on which no pro­
cess is waiting has no effect. Similarly, signaling an event on which
many processes are waiting will wake all of them up. This differs con­
siderably from Dijkstra's P and V synchronization operations, in that no
memory is associated with events. Thus, there need be no allocation of
events prior to their use. Events exist simply by being used.

On the negative side, because there is no memory associated with
events, no notion of "how much" can be signaled via the event
mechanism. For example, processes that want memory might wait on
an event associated with memory allocation. When any amount of
memory becomes available, the event would be signaled. All the com­
peting processes would then wake up to fight over the new memory. (In
reality, the swapping process is the only process that waits for primary
memory to become available.)

If an event occurs between the time a process decides to wait for that
event and the time that process enters the wait state, then the process
will wait on an event that has already happened (and may never happen
again). This race condition happens because there is no memory associ­
ated with the event to indicate that the event has occurred; the only
action of an event is to change a set of processes from wait state to run
state. This problem is relieved largely by the fact that process switching
can only occur in the kernel by explicit calls to the event-wait mechan­
ism. If the event in question is signaled by another process, then there
is no problem. But if the event is signaled by a hardware interrupt, then
special care must be taken. These synchronization races pose the big­
gest problem when UNIX is adapted to multiple-processor
configurations.

7-5

UNIX IMPLEMENTATION

The event-wait code- in the kernel is like a co-routine linkage. At any
time, all but one of the processes has called event-wait. The remaining
process is the one currently executing. When it calls event-wait, a pro­
cess whose event has been signaled is selected and that process returns
from its call to event-wait.

Which of the runable processes is to run next? Each process is associ­
ated with a priority. The priority of a system process is assigned by the
code issuing the wait on an event. This is roughly equivalent to the
response that one would expect on such an event. Disk events have
high priority, teletype events are low, and time-of-day events are very
low. (From observation, the difference in system process priorities has
little or no performance impact.) All u'ser-process priorities are lower
than the lowest system priority. User-process priorities are assigned by
an algorithm based on the recent ratio of the amount of compute time
to real time consumed by the process. A process that used a lot of com­
pute time in the last real-time unit is assigned a low user priority.
Because interactive processes are characterized by low ratios of compute
to real time, interactive response is maintained without any special
arrangemen ts.

The scheduling algorithm simply picks the process with the highest
priority, thus picking all system processes first and user processes
second. The compute-to-real-time ratio is updated every second. Thus,
all other things being equal, looping user processes are scheduled
round-robin with a I-second quantum. A high-priority process waking
up will preempt a running, low-priority process. The scheduling algo­
rithm has a desirable negative feedback character. If a process uses its
high priority to hog the computer, its priority drops. At the same time,
if a low-priority process is ignored for a long time, its priority rises.

lID SYSTEM

The 110 system is broken into two completely separate systems; the
block 110 system and the character 110 system. In retrospect, the
names should have been "structured 110" and "unstructured 110,"
respectively. While the term "block I/O" has some meaning, "charac­
ter 110" is a complete misnomer.

7-6

UNIX IMPLEMENTATION

Devices are characterized by a major device number, a minor device
number, and a class (block or character). For each class, there is an
array of entry points into the device drivers. The major device number
is used to index the array when calling the code for a particular device
driver. The minor device number is passed to the device driver as an
argument. The minor number has no significance other than that attri­
buted to it by the driver. Usually, the driver uses the minor number to
access one of several identical physical devices.

U sing the array of entry points (configuration table) as the only connec­
tion between the system code and the device drivers is important. Early
versions of the system had a much less formal connection with the
drivers, making it extremely hard to handcraft differently configured
systems. Now it is possible to create new device drivers in an average
of a few hours. The configuration table, in most cases, is created
automatically by a program that reads the system parts list.

Block I/O System

The model block 110 device consists of randomly addressed, secondary
memory blocks of 512 or 1024 bytes each. The blocks are uniformly
addressed 0, 1, ... up to the size of the device. The block device driver
emulates this model on a physical device.

The block 110 devices are accessed through a layer of buffering
software. The system maintains a list of buffers (typically between 10
and 70) each assigned a device name and a device address. This buffer
pool constitutes a data cache for the block devices. On a read request,
the cache is searched for the desired block. If the block is found, the
data are made available to the requester without any physical 110. If the
block is not in the cache, the least recently used block in the cache is
renamed, the correct device driver is called to fill up the renamed
buffer, and then the data are made available. Write requests are han­
dled in an analogous manner. The correct buffer is found and relabeled,
if necessary. The write is performed simply by marking the buffer as
"dirty." The physical I/O is then deferred until the buffer is renamed.

The benefits in reduction of physical I/O of this scheme are substantial,
especially considering the file system implementation. There are, how­
ever, some drawbacks. The asynchronous nature of the algorithm

7-7

UNIX IMPLEMENTATION

makes error reporting and meaningful user error handling almost
impossible. The cavalier approach to I/O error handling in the UNIX
system is partly due to the asynchronous nature of the block I/O sys­
tem. A second problem is in the delayed writes. If the system stops
unexpectedly, it is almost certain that there is a lot of logically com­
plete, but physically incomplete, I/O in the buffers. There is a system
primitive to flush all outstanding I/O activity from the buffers. Periodic
use of this primitive helps, but does not solve, the problem. Finally,
the associativity in the buffers can alter the physical 1/0 sequence from
that of the logical I/O sequence. This means that there are times when
data structures on disk are inconsistent, even though the software is
careful to perform I/O in the correct order. On non-random devices,
notably magnetic tape, the inversions of writes can be disastrous. The
problem with magnetic tapes is "cured" by allowing only one outstand­
ing write request per drive.

Character I/O System

The character I/O system consists of all devices that do not fall into the
block 1/0 model. This includes the "classical" character devices-such
as communication lines, paper tape, and line printers. It also includes
magnetic tape and disks when they are not used in a stereotyped way
(for example, 80-byte physical records on tape and track-at-a-time disk
copies). In short, the character I/O interface means "everything other
than block." 1/0 requests from the user are sent to the device driver
essentially unaltered. The implementation of these requests is, of
course, up to the device driver. There are guidelines and conventions to
help the implementation of certain types of device drivers.

Disk Drivers

Disk drivers are implemented with a queue of transaction records. Each
record holds a readlwrite flag, a primary memory address, a secondary
memory address, and a transfer byte count. Swapping is accomplished
by passing a record to the swapping device driver. The block I/O inter­
face is implemented by passing such records with requests to fill and
empty system buffers. The character I/O interface to the disk drivers
create a transaction record that points directly into the user area. The
routine that creates this record also ensures that the user is not
swapped during this I/O transaction. Thus, by implementing the general

7-8

UNIX IMPLEMENTATION

disk driver, it is possible to use the disk as a block device, a character
device, and a swap device. The only really disk-specific code in normal
disk drivers is the pre-sort of transactions to minimize latency for a par­
ticular device, and the actual issuing of the 110 request.

Character Lists

Real character-oriented devices may be implemented using the common
code to handle character lists. A character list is a queue of characters.
One routine puts a character on a queue. Another gets a character from
a queue. It is also possible to ask how many characters are currently on
a queue. Storage for all queues in the system comes from a single com­
mon pool. Putting a character on a queue allocates space from the com­
mon pool and links the character onto the data structure defining the
queue. Getting a character from a queue returns the corresponding
space to the pool.

A typical character-output device (paper tape punch, for example) is
implemented by passing characters from the user onto a character
queue until some maximum number of characters is on the queue. The
110 is prodded to start as soon as there is anything on the queue and,
once started, it is sustained by hardware completion interrupts. Each
time there is a completion interrupt, the driver gets the next character
from the queue and sends it to the hardware. The number of characters
on the queue is checked and, as the count falls through some inter­
mediate level, an event (the queue address) is signaled. The process
that is passing characters from the user to the queue can be waiting on
the event, and refill the queue to its maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is
handled in a very similar manner.

Another class of character devices is terminals. A terminal is
represented by three character queues. There are two input queues
(raw and canonical) and an output queue. Characters going to the out­
pu t of a terminal are handled by common code exactly as described
above. The main difference is that there is also code to interpret the
output stream as ASCII characters and to perform some translations,
e.g., escapes for deficient terminals. Another common aspect of termi­
nals is code to insert real-time delay after certain control characters.

7-9

UNIX IMPLEMENTATION

Input on terminals is a little different. Characters are collected from the
terminal and placed on a raw input queue. Some device-dependent code
conversion and escape interpretation is handled here. When a line is
complete in the raw queue, an event is signaled. The code catching this
signal then copies a line from the raw queue to a canonical queue per­
forming the character erase and line kill editing. User read requests on
terminals can be directed at either the raw or canonical queues.

Other Character Devices

Finally, there are devices that fit no general category. These devices
are set up as character I/O drivers. An example is a driver that reads
and writes unmapped primary memory as an I/O device. Some devices
are too fast to be treated a character at a time, but do not fit the disk
I/O mold. Example are fast communications lines and fast line printers.
These devices either have their own buffers or "borrow" block I/O
buffers for a while and then give them back.

THE FILE SYSTEM
In the UNIX system, a file is a (one-dimensional) array of bytes. No
other structure of files is implied by the system. Files are attached any­
where (and possibly multiply) onto a hierarchy of directories. Direc­
tories are simply files that users cannot write.

The UNIX file system is a disk data structure accessed completely
through the block I/O system. As stated before, the canonical view of a
"disk" is a randomly addressable array of 512-byte or 1024-byte blocks.
A file system breaks the disk into four self-identifying regions. The first
block (address 0) is unused by the file system. It is left aside for boot­
ing procedures. The second block (address 1) contains the so-called
"super-block." This block, among other things, contains the size of the
disk and the boundaries of the other regions. Next comes the ilist, a list
of file definitions. Each file definition is a 64-byte structure, called an
inode. The offset of a particular inode within the ilist is called its
inumber. The combination of device name (major and minor numbers)
and inumbers uniquely names a particular file. After the ilist, and at the
end of the disk, are free storage blocks available for the contents of
files.

7-10

UNIX IMPLEMENTATION

The free space on a disk is maintained by a linked list of available disk
blocks. Every block in this chain contains a disk address of the next
block in the chain. The remaining space contains the address of up to
50 disk blocks that are also free. Thus with one I/O operation, the sys­
tem obtains 50 free blocks and a pointer showing where to find more.
The disk allocation algorithms are straightforward. Since all allocation
is in fixed-size blocks and there is strict accounting of space, there is no
need to compact or garbage collect. However, as disk space becomes
dispersed, latency gradually increases. Some installations choose to
occasionally compact disk space to reduce latency.

An inode contains 13 disk addresses. The first 10 of these addresses
point directly at the first 10 blocks of a file. If a file is larger than 10
blocks, then the eleventh address points at a block that contains the
addresses of the next 128 blocks of the file. If the file is still larger than
this, then the twelfth block points at up the 128 blocks, each pointing
to 128 blocks of the file. Files yet larger use the thirteenth address for a
"triple indirect" address. The algorithm ends here with the maximum
file size of 1,082,201,087 bytes for a 512-byte file system, or
2,164,402,175 bytes for a 1024-byte file system.

A logical directory hierarchy is added to this flat physical structure sim­
ply by adding a new type of file - the directory. A directory is accessed
exactly as an ordinary file. It contains 16-byte entries consisting of a
14-byte name and an inumber. The root of the hierarchy is at a known
inumber (viz., 2). The file system structure allows an arbitrary, directed
graph of directories with regular files linked in at arbitrary places in this
graph. In fact, very early UNIX systems used such a structure.
Administration of this structure became so chaotic that later systems
were restricted to a directory tree. Even now, with regular files linked
multiply into arbitrary places in the tree, accounting for space is a prob­
lem. It may be necessary to restrict the entire structure to a tree, and
allow a new form of linking that is subservient to the tree structure.

The file system allows easy creation, easy removal, easy random access­
ing, and very easy space allocation. With most physical addresses
confined to a small contiguous section of disk, it is also easy to dump,
restore, and check the consistency of the file system. Large files suffer
from indirect addressing, but the cache prevents most of the implied
physical 110 without adding much execution. The space overhead pro­
perties of this scheme are quite good. For example, on one particular

7-11

UNIX IMPLEMENTATION

file system, there are 25,000 files containing 130M bytes of date-file
content. The overhead Gnode, indirect blocks, and last block breakage)
is about II.SM. The directory structure supporting these files has about
1,500 directories containing 0.6M bytes of directory content and about
O.SM bytes of overhead in accessing the directories. This comes out to
less than a 10 percent overhead for actual stored data. Most systems
have this much overhead in padded trailing blanks alone.

File System Implementation

Because the inode defines a file, the implementation of the file system
centers around access to the inodes. The system maintains a table of all
active inodes. As a new file is accessed, the system locates the
corresponding inode, allocates an inode table entry, and reads the inode
into primary memory. As in the buffer cache, the table entry is con­
sidered to be the current version of the inode. Modifications to the
inode are made to the table entry. When the last access to the inode
goes away, the table entry is copied back to the secondary store ilist and
the table entry is freed.

All I/O operations on files are carried out with the aid of the
corresponding inode table entry. Accessing a file is a straightforward
implementation of the algorithms mentioned previously. The user is
not aware of inodes and inumbers. References to the file system are
made in terms of path names of the directory tree. Converting a path
name into an inode table entry is also straightforward. Starting at some
known inode (the root or the current directory of some process), the
next component of the path name is searched by reading the directory.
This gives an inumber and an implied device (that of the directory).
Thus, the next inode table entry can be accessed. If that was the last
component of the path name, then this inode is the result. If not, this
inode is the directory needed to look up the next component of the
path name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The
most common of these are open, creat, read, write, seek, and close.

In the system data segment associated with a user, there is room for
some (usually between 10 and 50) open files. This open file table con­
sists of pointers that can be used to access corresponding inode table

7-12

UNIX IMPLEMENTATION

entries. Associated with each of these open files is a current 110
pointer. This is a byte offset of the next read/write operation on the
file. The system treats each read/write request as random with an
implied seek to the 110 pointer. The user usually thinks of the file as
sequential with the 110 pointer automatically counting the number of
bytes that have been read/written from the file. The user may, of
course, perform random 110 by setting the 110 pointer before
reads/writes.

With file sharing, it is necessary to allow related processes to share a
common 110 pointer and yet have separate 110 pointers for indepen­
dent processes that access the same file. To fill these two conditions,
the 110 pointer cannot reside in the inode table nor can it reside in the
list of open files for the process. A new table (the open file table) was
invented for the sole purpose of holding the 110 pointer. Processes
that share the same open file (the result of forks) share a common
open file table entry. A separate open of the same file will share the
inode table entry, but will have distinct open file table entries.

The main file system primitives are implemented as follows. open con­
verts a file system path name into an inode table entry. A pointer to the
inode table entry is placed in a newly created open file table entry. A
pointer to the file table entry is placed in the system data segment for
the process. creat first creates a new inode entry, writes the inumber
into a directory, and then builds the same structure as for an open.
read and write access the inode entry as described above. seek mani­
pulates the I/O pointer. No physical seeking is done. close frees the
structures built by open and creat. Reference counts are kept on the
open file table entries and the inode table entries to free these struc­
tures after the last reference goes away. unlink decrements the count
of the number of directories pointing at the given inode. When the last
reference to an inode table entry goes away, if the inode has no direc­
tories pointing to it, then the file is removed and the inode is freed.
This delayed removal of files prevents problems arising from removing
active files. A file may be removed while still open. The resulting
unnamed file vanishes when the file is closed. This is a method of
obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of
pipes consists of implied seeks before each read or write to implement
first-in first-out. There are also checks and synchronization to prevent

7-13

UNIX IMPLEMENTATION

the writer from grossly outproducing the reader and to prevent the
reader from overtaking the writer.

Mounted File Systems

The file system of a UNIX system starts with some designated block
device formatted as described above to contain a hierarchy. The root of
this structure is the root of the UNIX file system. A second formatted
block device may be mounted at any leaf of the current hierarchy. This
logically extends the current hierarchy. The implementation of mount­
ing is trivial. A mount table is maintained containing pairs of designated
leaf inodes and block devices. When converting a path name into an
inode, a check is made to see if the new inode is a designated leaf. If it
is, the inode of the root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the device
on which the file lives. Thus a file system consisting of many mounted
devices does not have a common pool of free secondary storage space.
This separation of space on different devices is necessary to allow easy
unmounting of a device.

Other System Functions

There are some other things that the system does for the user-a little
accounting, a little tracing/debugging, and a little access protection.
Most of these things are not very well developed because our use of
the system in computing science research does not need them. There
are some features that are missed in some applications (for example,
better inter-process communication).

The UNIX kernel is an 110 multiplexer more than a complete operating
system. This is as it should be. Because of this outlook, many features
found in most other operating systems are missing from the UNIX ker­
nel. For example, the UNIX kernel does not support file access
methods, file disposition, file formats, file maximum size, spooling,
command language, logical records, physical records, assignment of log­
ical file names, logical file names, more than one character set, an
operator's console, an operator, log-in, or log-out. Many of these things
are symptoms rather than features. Many of these things are

7-14

UNIX IMPLEMENTATION

implemented in user software using the kernel as a tool. A good exam­
ple of this is the command language. Each user may have his own com­
mand language. Maintaining such code is as easy as maintaining user
code. The idea of implementing "system" code with general user prim­
itives comes directly from MUL TICS.

7-15

Chapter 8: UNIX I/O SYSTEM

DEVICE CLASSES. . .

OVERVIEW OF I/O

CONTENTS

CHARACTER DEVICE DRIVERS

THE BLOCK-DEVICE INTERFACE .

BLOCK DEVICE DRIVERS. •

RAW BLOCK-DEVICE 1/0 • • • .

- i -

1

2

3

7

10

11

Chapter 8

UNIX I/O SYSTEM

This chapter is an overview of the UNIX 110 system. It guides writers
of device driver routines, and therefore focuses on the environment
and nature of device drivers, rather than the implementation of that
part of the file system dealing with ordinary files. We assume that the
reader has a good knowledge of the overall structure of the file system.

This chapter was updated and revised in 1984 by UniSoft Systems to
reflect additions to the UniPlus+ kernel for System V.

DEVICE CLASSES

There are two classes of device: block and character. The block inter­
face is for devices, like disks and tapes, which can work with address­
able 512-byte blocks. Ordinary magnetic tape only fits in this category
because it can read any block using forward and backward spacing.
Block devices can potentially contain a mounted file system. The inter­
face to block devices is highly structured; the drivers for these devices
share a great many routines as well as a pool of buffers.

Character-type devices have a much more straightforward interface,
although the driver itself must do more work.

Both types of devices are named by a major and a minor device
number. These numbers are generally stored as an integer. The minor
device number is in the low-order 8 bits and the major device number
is in the next-higher 8 bits. The major and minor macros access these
numbers. The major device number selects which driver deals with the
device; the minor device number is not used by the rest of system but
is passed to the driver at appropriate times. Typically, the minor
number selects a subdevice attached to a given controller, or one of
several similar hardware interfaces.

8-1

UNIX I/O SYSTEM

The major device numbers for block and character devices are used as
indices in separate tables; they both start at 0 and therefore overlap.

OVERVIEW OF I/O

The open and creat system calls set up entries in three separate system
tables. The first is the u_ofile table, stored in the system's per-process
data area, u. This table is indexed by the file descriptors returned by
the open or creat, and is accessed during a read, write, or other opera­
tion on the open file. Each entry is a pointer to the corresponding
entry in the file table, which is a per-system data base. There is one
entry in the file table for each open or creat. This table is per-system
because the same instance of an open file must be shared among the
several processes which can result from forks after the file is opened. A
file table entry contains flags indicating whether the file was open for
reading or writing, and a count which is used to determine when all
processes using the entry have terminated or closed the file (so the
entry can be abandoned). There is also a 32-bit file offset which indi­
cates where in the file the next read or write takes place. Finally, there
is a pointer to the entry for the file in the inode table, which contains a
copy of the file's inode.

An entry in the file table corresponds to an instance of open or creat; if
the same file is opened several times, it will have several entries in this
table. However, there is only one entry in the inode table for a file.
Also, a file may enter the inode table not only because it is open, but
also because it is the current directory of some process or because it is
a special file containing a currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding
inode stored on the disk - the modified and accessed times are not
stored, and a flag word containing information about the entry is added.
This flag word contains a count used to determine when it may be
allowed to disappear, and the device and i-number the entry came
from. Also, the several block numbers that give addressing informa­
tion for the file are expanded from the 3-byte, compressed format to
full long quantities.

During the processing of an open or creat call for a special file, the sys­
tem always calls the device's open routine to allow for any special

8-2

UNIX I/O SYSTEM

processing (rewinding a tape, turning on the data-terminal-ready lead of
a modem, etc.) However, the close routine is called only when the last
process closes a file; that is, when the inode table entry is being deallo­
cated. Thus, it is not feasible for a device to maintain or depend on a
count of its users, although it is quite possible to implement an
exclusive-use device which cannot be reopened until it has been closed.

When a read or write takes place, the user's arguments and the file
table entry are used to set up the variables u.u base, u.u count, and
u.u_ offiet. These arguments respectively contain~ the (user) address of
the 110 target area, the byte-count for the transfer, and the current
location in the file. If the file referred to is a character-type special file,
the appropriate read or write routine is called. This routine is responsi­
ble for transferring data and updating the count and current location
appropriately, as discussed below. Otherwise, the current location is
used to calculate a logical block number in the file. If the file is an
ordinary file, the logical block number must be mapped (possibly using
indirect blocks) to a physical block number; a block-type special file
need not be mapped. The bmap routine performs this mapping. The
resulting physical block number is used (as discussed below) to read or
write the appropriate device.

CHARACTER DEVICE DRIVERS

The cdevsw table specifies the interface routines for character devices.
Each device provides five routines: open, close, read, write, and
special-function (to implement the ioctl system call). Any of these may
be missing. If a call on the routine should be ignored (e.g., open on
non-exclusive devices that require no setup), the cdevsw entry can be
nulldev. If a call on a routine should be considered an error (e.g., write
on read-only devices) use nodev. For terminals, the cdevsw structure
also contains a pointer to the tty structure associated with the terminal.

The open routine is called each time the file is opened with the full
device number as argument. The second argument is a flag which is
non-zero only if the device is to be written on.

The close routine is called only when the file is closed for the last time.
That is, when the last process closes the file. This means that it is not
possible for the driver to maintain its own count of its users. The first

8-3

UNIX I/O SYSTEM

argument is the device number; the second is a flag which is non-zero
if the file was open for writing in the process which closes it.

When write is called, it is supplied the device as argument. The per­
user variable u.u_count has been set to the number of characters indi­
cated by the user; for character devices, this number may be 0 initially.
u.u_base is the address, supplied by the user, from which to start taking
characters. The system may call the routine internally, For this reason,
the flag u.u_setflg indicates, if on, that u.u_base refers to the system
address space instead of the user's.

The write routine copies up to u.u_ count characters from the user's
buffer to the device, decrementing u.u count for each character passed.
For most drivers (which work one character at a time) the routine
cpass() picks up characters from the user's buffer. Successive calls on
it return the characters to be written, until u.u count goes to 0 or an
error occurs (when it returns -1). Cpass updates-u.u_count.

Write routines which transfer a large number of characters into an
internal buffer may also use the routine iomove (buffer, offset, count,
.flag). This routine is faster when moving many characters. Iomove
transfers up to count characters into the buffer starting offset bytes from
the start of the buffer; .flag should be B_ WRITE (which is 0) in the
write case. Caution: You are responsible for making sure the count is
not too large or non-zero. Iomove is much slower if buffer + offset,
count, or u. u_ base is odd.

The device's read routine is called under conditions similar to write,
except that u.u_count is non-zero. The routine pass(c) returns charac­
ters to the user. It takes care of housekeeping, like cpass, and returns
-1 when the last character specified by u.u_count is returned to the user.
Before that, it returns O. You can also use iomove as you do with write
-the flag should be B_READ but the same cautions apply.

The "special functions" routine is invoked by the ioctl system call:

(*p) (dev,cmd,arg,mode)

where p is a pointer to the address of the device, dev is the device
number, cmd is the user ioctl command argument, arg is the user argu­
ment, and mode is the file table flag word for the opened device

8-4

UNIX I/O SYSTEM

Finally, each device should have appropriate interrupt routines. When
an interrupt occurs, it is turned into a C-compatible call to the device's
interrupt routine. The interrupt-catching mechanism makes 16 bits of
data available to the interrupt handler in a-dev (see
< inc/ude/sys/reg.h>). This is conventionally used by drivers dealing
with multiple similar devices to encode the minor device number.

Several subroutines are available for character device drivers. For
example, most of these handlers need a place to buffer characters in the
internal interface between their "top half' (read/write) and "bottom
half' (interrupt) routines. For relatively low data-rate devices, the best
mechanism is the character queue maintained by the routines gete and
pute. A queue header has the structure:

struct clist
int c cc' - , /* character count */

struct cblock *c cf" - , /* pointer to first */
struct cblock *c cl' - , /* pointer to last */
}

PUle places a character on the end of a queue (c. &queue) where c is
the character and queue is a clist structure. The routine returns -1 if
there is no space to put the character. Otherwise, it returns O. Gete
may retrieve the first character on the queue (&queue). This returns
either the (non-negative) character or -1 (if the queue is empty).

The space for characters in queues is shared among all devices in the
system. In the standard system there are only 600 character slots avail­
able. Thus, device handlers, especially write routines, must avoid gob­
bling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup
mechanism. The call sleep (event, priority) makes the process wait
(allowing other processes to run) until the. event occurs. When the event
occurs, the process is marked ready-to-run and the call returns when
there is no process with higher priority.

The call wakeup (event) indicates that the event has happened, causing
processes sleeping on the event to wake up. The event is arbitrary­
agreed upon by the sleeper and the waker-up. By convention, it is the

8-5

UNIX I/O SYSTEM

address of some data area used by the driver. This guarantees that
events are unique.

Processes sleeping on an event should not assume that the event has
really happened. They should check that the conditions which caused
them to sleep are no longer true.

Priorities range from 0 to 127. A larger number indicates less-favored
scheduling. There is a distinction between processes sleeping at a prior­
ity less than the parameter PZERO, and those sleeping at a priority
greater than PZERO. The former cannot be interrupted by signals,
although it is conceivable that it may be swapped out. For this reason
it is a bad idea to sleep with priority less than PZERO on an event
which might never occur. On the other hand, calls to sleep with larger
priority may never return if the process is terminated by some signal in
the meantime. Incidentally, it is a gross error to call sleep in a routine
called at interrupt time, since the process which is running is almost
certainly not the process which should go to sleep. Likewise, none of
the variables in the user area "u." should be touched, let alone
changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is incon­
venient or impossible to supply a wakeup (for example, a device going
on-line, which does not generally cause an interrupt), the call sleep
(&bolt, priority) may be given. Lbolt is an external cell whose address
is awakened once every second by the clock interrupt routine.

The routines sp140, sp150, sp160, spl70 set the processor priority
level as indicated to avoid inconvenient interrupts from the device.

Timeout (junc,arg,interval) is useful if a device needs to know about
real-time intervals. After interval sixtieths of a second, Junc is called
with arg as argument, in the style (*junc) (arg). Timeouts provide
real-time delays after function characters (like new-line and tab) in
typewriter output and terminate an attempt to read the 201 Dataphone
(dp) if there is no response within a specified number of seconds.
Notice that the number of sixtieths of a second is limited to 2**31-1,
since it must appear to be positive, and that only a bounded number of
timeouts can be going on at once. Also, the specified June is called at
clock-interrupt time, so it should conform to the requirements of
interrupt routines in general.

8-6

UNIX I/O SYSTEM

THE BLOCK-DEVICE INTERFACE

Handling block devices is mediated by a collection of routines. These
routines manage a set of buffers containing the images of blocks of data
on the various devices. These routines assure that several processes
accessing the same block of the same device in multiprogrammed
fashion maintain a consistent view of the data in the block. A secon­
dary but still important purpose is increasing the efficiency of the sys­
tem by keeping in-core copies of blocks that are accessed frequently.
The main data base for this mechanism is the table of buffers, buJ.
Each buffer header contains

• A pair of pointers (bJorw, b_back) maintaining a doubly-linked
list of the buffers associated with a particular block device.

• A pair of pointers (avJorw, av_back) maintaining a doubly-linked
list of "free" blocks (blocks which can be reallocated for another
transaction). Buffers that have I/O in progress or are busy for
other purposes do not appear in this list.

• The device and block number to which the buffer refers.

• A pointer to the actual storage associated with the buffer.

• A word count (the number of bytes to be transferred to or from
the buffer).

• An error byte and a residual byte count to communicate informa­
tion from an I/O routine to its caller.

• A flag word with bits indicating the status of the buffer. These
flags are discussed below.

The interface with the rest of the system is primarily made up to seven
routines. Both bread and getblk return a pointer to a buffer header for
the block when given a device and a block number. The difference is
that bread returns a buffer containing the current data for the block,
while getblk returns a buffer containing the data in the block only if it is
already in core (this is indicated by the B DONE bit; see below). In
either case, the buffer (and the corresponding device block) is "busy."
Other processes referring to it have to wait until it becomes free. For
example, getblk can be used when a block is about to be totally
rewritten- no other process can refer to the block until the new data is
placed in it.

8-7

UNIX I/O SYSTEM

The breada routine implements read-ahead. It is logically similar to
bread, but takes an additional argument-the block number of a block
(on the same device) to read asynchronously after the specifically
requested block is available.

The brelse routine makes the buffer available to other processes when
given a pointer to a buffer. It is called, for example, after data is
extracted following a bread. There are three subtly different write rou­
tines, all of which take a buffer pointer as argument, and all of which
logically release the buffer for use by others and place it on the free list.

• Bwrite puts the buffer on the appropriate device queue, waits for
the write, and sets the user's error flag, if required.

• Bawrite places the buffer on the device's queue, but does not wait
for completion. For this reason, errors are not reflected directly to
the user.

• Bdwrite does not start any I/O operation at all, but marks the
buffer so that, if it is grabbed from the free list to contain data
from some other block, the data in it will first be written out.

Use bwrite when you want to be sure that I/O takes place correctly, and
that errors are reflected to the proper user- for example, when updat­
ing inodes. Use bawrite when you want more overlap (because no wait
is required for 110 to finish) but when you are reasonably certain that
the write is required. Use bdwrite when you are not sure that the write
is needed at the moment. For example, bdwrite is called when the last
byte of a write system call falls short of the end of a block, on the
assumption that another write will be given soon which will re-use the
same block. On the other hand, as the end of a block is passed, bawrite
is called, since the block will probably not be accessed again soon and
you want to start the writing process soon.

The routines getblk and bread dedicate the given block exclusively to
the caller's use and make others wait. On the other hand, brelse,
bwrite, bawrite, or bdwrite must eventually be called to free the block
for use by others.

8-8

UNIX I/O SYSTEM

Each buffer header contains a flag word indicating the status of the
buffer. Since they provide one important channel for information
between the drivers and the block 110 system, it is important to under­
stand these flags. The following names are manifest constants which
select the associated flag bits.

B READ This bit is set when the buffer is handed to the device
strategy routine (see below). It indicates a read opera­
tion. The symbol B_ WRITE is defined as 0 and does not
define a flag. It is a mnemonic convenience for callers of
routines, like swap, which have a separate argument indi­
cating read or write.

B DONE This bit is set to 0 when a block is handed to the device
strategy routine and is turned on when the operation
completes, whether normally or as the result of an error.
It is also used as part of the return argument of getblk­
if it is 1, it indicates that the returned buffer actually
contains the data in the requested block.

B_ERROR This bit may be set to 1 when B_DONE is set to indicate
that an 110 or other error occurred. If it is set, the
b _ error byte of the buffer header may contain an error
code. If b_error is 0, the error code is not specified.
Actually, no driver at present sets b _ error.

B BUSY This bit indicates that the buffer header is dedicated to
someone's exclusive use. However, the buffer remains
attached to the list of blocks associated with its device.
When getblk (or bread, which calls it) searches the buffer
list for a given device and finds the requested block with
this bit on, it sleeps until the bit clears

B PHYS This bit is set for raw 110 transactions.

B WANTED This flag is used in conjunction with the B_BUSY bit.
Before sleeping (described above), getblk sets this flag.
Conversely, when the block is freed and the busy bit
goes down (in brelse) a wakeup is given for the block
header whenever B_ WANTED is on. This avoids having
to call wakeup every time a buffer is freed on the chance
that someone might want it.

B AGE This bit may be set on buffers just before releasing them.
If it is on, the buffer is placed at the head of the free list,
rather than at the tail. It is a performance heuristic used

8-9

UNIX I/O SYSTEM

when the caller decides that the same block will not soon
be used again.

B _ASYNC This bit is set by bawrite. It indicates to the appropriate
device driver that the buffer should be released when the
write is finished (usually at interrupt time). The
difference between bwrite and bawrite is that bwrite starts
110, waits until it is done, and frees the buffer. Bawrite
sets this bit and starts 110. The bit indicates that brelse
should be called for the buffer on completion.

B_DELWRI This bit is set by bdwrite before releasing the buffer.

B STALE

When getblk (while searching for a free block) discovers
the bit is 1 in a buffer it would otherwise grab, it writes
block out before re-using it.

This flag invalidates the association between the buffer
and the device/block number. It is set when an error
occurs or when the buffer is associated with a block on a
file system that is unmounted.

BLOCK DEVICE DRIVERS

The bdevsw table contains the names of the interface routines and a
table for each block device.

As with character devices, block device drivers may supply an open and
a close routine, called respectively on each open and on the final close
of the device. Instead of separate read and write routines, each block
device driver has a strategy routine which is called with a pointer to a
buffer header as argument. The buffer header contains a read/write
flag, the core address, the block number, a byte count, and the major
and minor device numbers. The strategy routine carries out the opera­
tion requested by the information in the buffer header. When the tran­
saction is complete,the B_DONE (and possibly the B_ERROR) bits are
set. If the B_ ASYNC bit is set, brelse should be called; otherwise,
wakeup is called. When the device is capable (under error-free opera­
tion) of transferring fewer words than requested, the device's word­
count register should be placed in the residual count slot of the buffer
header. Otherwise, the residual count should be set to O. This is for
the benefit of the magtape driver-it tells the user the actual length of
the record.

8-10

UNIX I/O SYSTEM

Although the most usual argument of the strategy routines is a genuine
buffer header allocated as discussed above, all that is actually required
is that the argument be a pointer to a place containing the appropriate
information. For example, the swap routine, which manages move­
ment of core images to and from the swapping device, uses the strategy
routine for this device. Care has to be taken that no extraneous bits
get turned on in the flag word.

The device's table specified by bdevsw has a byte containing an active
flag and an error count, a pair of links constituting the head of the
chain of buffers for the device (bJorw, b_back) , and a first and last
pointer for a device queue. All of these are used solely by the device
driver itself, except for the buffer-chain pointers. Typically, the flag
encodes the state of the device, and is used at a minimum to indicate
that the device is currently engaged in transferring information and no
new command should be issued. The error count is useful for counting
retries when errors occur. The device queue remembers stacked
requests. In the simplest case, it may be maintained as a first-in first­
out list. Since buffers which have been handed over to the strategy
routines are never on the list of free buffers, the pointers in the buffer
which maintain the free list (avJorw, av_back) are also used to contain
the pointers which maintain the device queues.

A few routines are useful to block device drivers. [odone(bp) arranges
that the buffer to which bp points be released or awakened when the
strategy module has finished with the buffer (either normally or after
an error). (If after an error, the B ERROR bit has presumably been
set.) -

The routine geterror(bp) can examine the error bit in a buffer header
and reflect any error indication found there to the user. It may be
called only in the non-interrupt part of a driver when 110 has com­
pleted (i.e., B_ DONE has been set).

RAW BLOCK-DEVICE I/O

Block device drivers may be used to transfer information directly
between the user's core image and the device without using buffers and
in blocks as large as the caller requests. This involves setting up a
character-type special file corresponding to the raw device and providing

8-11

UNIX I/O SYSTEM

read and write routines. These routines set up what is usually a private,
non-shared buffer header with the appropriate information and call the
device's strategy routine. Separate open and close routines may be pro­
vided but this is usually unnecessary. A special-function routine might
come in handy, especially for magtape.

A great deal of work has to be done to generate the "appropriate infor­
mation" to put in the argument buffer for the strategy module. The
worst part is mapping relocated user addresses to physical addresses.
Most of this work is done by physio(strat, bp, dey, rw) whose argu­
ments are: the name of the strategy routine strat; the buffer pointer bp;
the device number dey; and a read-write flag rw, whose value is either
B READ or B WRITE. Physio makes sure that the user's base address
and count are even (because most devices work in words) and that the
core area affected is contiguous in physical space. It delays until the
buffer is not busy, and makes it busy while the operation is in progress,
and it sets up user error return information.

8-12

	0001
	0002
	001
	002
	003
	004
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	02-001
	02-002
	02-003
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	02-65
	02-66
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	04-001
	04-01
	04-02
	04-03
	04-04
	05-001
	05-002
	05-003
	05-004
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12

