
PN 1178-01

UNIPLUS+ SYSTEM V
User Guide

Copyright © 1984 UniSoft Corporation.

Portions of this material have been previously copyrighted by:

Bell Telephone Laboratories, Incorporated, 1980

Western Electric Company, Incorporated, 1983,

Regents of the University of California

Holders of a UNIX and UniPlus+ software license are permitted to copy this docu­
ment, or any portion of it, as necessary for licensed use of the software, provided
this copyright notice and statement of permission are included.

UNIX is a Trademark of AT&T Bell Laboratories, Inc.
\

UniPlus+ is a Trademark of UniSoft Corporation of Berkeley.

PREFACE

The UniPlus+* System V User Guide is a description of the features and
a general overview of the capabilities of UniPlus+. Instructions on how
to use the system are also included. Not all of the capabilities of the
operating system are described or illustrated herein, but enough are
described so that a new user can become familiar with its use.

This guide contains seven chapters:

• INTRODUCTION

• BASICS FOR BEGINNERS

• TEXT EDITOR - ED

• VISUAL TEXT EDITOR - VI

• THE SHELL - SH

• THE C SHELL - CSH

• GLOSSARY

Chapter 1, INTRODUCTION, gives beginners an overview of
UniPlus+. A beginner should read this chapter before attempting to
use the information covered in the other chapters of this guide. An
experienced user probably does not need to read this introductory
chapter.

Chapter 2, BASICS FOR BEGINNERS, discusses aspects of UniPlus+
that helps the beginning user get started on the system. It also contains
a brief explanation of document preparation and programming.

Chapter 3, TEXT EDITOR - ED, is designed to help users get started
with text editing and discusses the user's day-to-day needs regarding
the use of the text editor ed.

* U niPlu5 + is a trademark of U niSoft Corporation.

- i -

PREFACE

Chapter 4, VISUAL TEXT EDITOR - VI, provides the information
necessary to use the display-oriented text editor. It is suggested to run
the vi program while reading this chapter.

Chapter 5, THE SHELL - SH, covers simple commands and pro­
cedures and contains helpful information for writing shell scripts.

Chapter 6, THE C SHELL - CSH, outlines the C shell's unique
features, commands, procedures, and also contains helpful information
for writing shell scripts.

Chapter 7, GLOSSARY, is an alphabetical list of common UNIXt
terms. This is a helpful tool for any user.

Throughout this guide, each reference of the form name(IM),
name(7), or name(8) refers to entries in the UniPlus+ System V
Administrator's Manual. Other references to entries of the form
name(N), where N is a number (1 through 6) possibly followed by a
letter, refer to entry name in section N of the UniPlus+ System V User's
Manual.

t UNIX is a trademark of AT&T Bell Laboratories, Inc.

- ii -

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

CONTENTS

INTRODUCTION

BASICS FOR BEGINNERS

TEXT EDITOR - ED

VISUAL TEXT EDITOR - VI

THE. SHELL - SH

THE C SHELL - CSH

GLOSSARY

Chapter 1: INTRODUCTION

CONTENTS

1. Overview.

2. Terminal • • • • • . . .
2.1 Strange Terminal Behavior

3. Logging In

4. Current Directory .

5. Path Names .
6. Entering Commands

6.1 Command Line Syntax
6.2 Read-Ahead .
6.3 Correction and Deletion

7. Programs.
7.1 Running a Program .
7.2 Stopping a Program .
7.3 Writing a Program

8. Text Processing

9. Mail

10. W ri ting to Other Users

11. On-line Manual

12. Logging Out. . .

- i -

·
. ·
. ·

. .
· .

· ·
·
· ·

·
·
·
·
·

1

1
2

2

4

5

5
5
6
6

7
7
7
8

8

8

9

10

11

1. Overview

Chapter 1

INTRODUCTION

It is not intended for this chapter to be a detailed description, rather to
give a beginner an overview of UniPlus+, the high performance UNIX
operating system, and general instructions on how to begin working on
the system. Many of the subjects described are discussed in detail in
other sections of this guide or in the UniPlus+ System V User's Manual.

In this guide, software programs that can be executed by users are
referred to as programs. A program that is'in some state of execution is
referred to as a process. The request typed by the user is referred to as
a command or command line. The following graphic conventions are
used in the examples:

RETURN Indicates that the user should press the RETURN (car­
riage return) key on the terminal keyboard.

DEL Indicates that the user should press the key marked
DEL, DELETE, or RUBOUT (whichever is appropriate
for the terminal being used).

Throughout this guide, each reference of the form name(1M),
name(7), or name(8) refers to entries in the UniPlus+ System V
Administrator's Manual. Other references to entries of the form
name(N), where N is a number (1 through 6) possibly followed by a
letter, refer to entry name in section N of the UniPlus+ System V User's
Manual.

2. Terminal

In order to log in, the power to the terminal must be turned on and the
appropriate switches set. Before you can begin to use the system, you
must be connected or dialed up to the system from a full-duplex ASCII
terminal. Most terminals have a a half-tfull-duplex switch that should
be set to full, meaning that input and output can be transmitted simul­
taneously.

1-1

INTRODUCTION

The terminal will also have a speed switch. Common terminal speeds
are 10, 15, 30, and 120 characters per second (110, 150,300, and 1,200
baud); speeds of 240, 480, and 960 characters per second (2,400,
4,800, and 9,600 baud) are also available. Hard-wired terminals are
usually set to the correct speed.

If you have a hard-wired terminal, you need only to turn it on and hit
the RESET/BREAK or ATTENTION key until the "login:" message
appears. However, you may need to get an appropriate telephone
number from your system administrator to dial up the system.
Depending on the type of terminal and communication link, the user
may need to press the RESET/BREAK key a couple of times. This is to
synchronize your terminal with the system.

2.1 Strange Terminal Behavior

Sometimes your terminal acts strangely. For example, each letter may
be typed twice (terminal may be in the half-duplex mode) or the
RETURN may not cause a line feed or a return to the left margin. The
user can· often remedy this by logging out and logging back in. If log­
ging back in fails to correct the problem, check the following areas:

keyboard

dataphone

switches

Keys such as caps lock, local, block, etc. should not
be in depressed position.

For terminals connected via phone lines, the baud
rate could be incorrect.

The rear panel of your terminal normally has
several switches used to control terminal opera­
tions. These switches should be set to be compati­
ble with the operating system.

If all else fails, the description of the stty(I) command can be read to
determine the appropriate action to take.

3. Logging In

UniPlus+ is accessed by the use of a login. A login name is used by
the system to uniquely identify users. Before the user can access the
system, the user must be assigned a login account by the system
administrator.

1-2

INTRODUCTION

A login name is a unique string of letters (should be all lowercase)
and/or numbers that identifies an individual to the system. The login
name must begin with a letter. If you type uppercase letters, the sys­
tem will assume that your terminal cannot generate lowercase letters
and that you intend all subsequent uppercase input to be treated as
lowercase. In many cases, a person's login name is their real first
name, last name, initials, or nickname. Any string of letters and/or
digits can be used as your login name, as long as it is unique (i.e.,
different from all other login names). Only the first eight characters of
a login name are used by the system. Login names are assigned by the
system administrator.

The password is a string of up to 13 characters chosen from a 64-
character alphabet (., \, 0-9, A-Z, a-z) that serves to control access to a
login. The password for a login is the main security feature of
UniPlus+. Usually, every login is assigned a password. When a user
logs in to the system, the password (if any) assigned to the login being
used is requested. Access to the system is not permitted until the
correct password is entered. The user can change their password as
needed to ensure that others are not accessing their login (and conse­
quently their data). Any string of letters, numbers, etc., can be used as
a password as long as it is from six to thirteen characters in length and
composed of uppercase letters, lowercase letters, numbers, or punctua­
tion.

It is recommended that obvious strings such as the user's social security
number, birth date, or other data that could be well known about the
user not be used as passwords. If the password is something that is
well known about the user, someone could gain access to the user's
login with little effort. The more unusual your password, the more
effective your security.

When communication is established, the system will prompt with:

login:

The user should type in his/her login name followed by a RETURN.
After the system digests your login name, it will prompt for your pass­
word with:

1-3

INTRODUCTION

Password:

The user should then type his/her password followed by a RETURN.
The system does not echo (print) your password on the terminal as you
type it in. This is an extra security measure. If you entered your login
name and password correctly, the system may print one or more "mes­
sages of the day". Following the messages, the system will prompt you
with the primary prompt string, which is usually the "$" or "%" sym­
bol. If a mistake is made while logging in or the system administrator
has not set up the user's login on the system, the following error mes­
sage is printed:

login incorrect

This error message is followed by the "login:" message. The user
should attempt to log in again.

4. Current Directory

The UniPlus+ file system is arranged in a hierarchy of directories.
When the system administrator gave you a user name, s/he also created
a directory for you (ordinarily with the same name as your user name,
and known as your login or home directory). When you log in, that
directory becomes your current or working directory, and any file name
you create is by default assumed to be in that directory. (When the sys­
tem assumes something, this is called a default value.)

The user may, however, create one or more directories under the home
directory. Under a directory or a subdirectory, the user may create files
as necessary. The user is the owner of the home directory and all sub­
directories created under the home directory. As the owner, the user
has full permission to create, alter, and remove (destroy) all files and
subdirectories of the home directory. Permissions to have your will
with others directories and files will have been granted or denied to you
by their respective owners, or by the system administrator.

The user may change from one directory to another by using the cd
(change directory) command. See cd(l) for details.

1-4

INTRODUCTION

5. Path Names

To refer to files not in the current directory, you must use a path name.
Full path names begin with /, which is the name of the root directory
of the whole file system. After the slash comes the name of each direc­
tory containing the next sub-directory, followed by a /, until the file
name is reached For example, "/usr/scr/filex" refers to file "filex" in
directory "scr", which is itself a subdirectory of "usr". The "usr"
directory springs directly from the root directory. See intro(2) for a
formal definition of path name.

If your current directory contains subdirectories, the path names of files
therein begin with the name of the corresponding subdirectory (without
a prefixed /). With few exceptions, a path name may be used any­
where a file name is required.

Important commands that modify the contents of files are: cp, which
copies a file (resulting in two identical files); mv, which moves the con­
tents of one file into another, removing the first file; and rm, which
deletes a file or files. To find out the status of files or contents of
directories, use Is. Use mkdir to make directories and rmdir to
remove directories. These commands are explained in greater detail in
Section 1 of the UniPlus+ System V User's Manual.

6. Entering Commands

The operating system shell (command interpreter) serves as the inter­
face between the user and the system. The shell accepts requests from
the user in the form of a command line and invokes the appropriate pro­
gram to fulfill the request. The shell prompts (i.e., notifies) the user
when it is ready to accept another request.

6.1 Command Line Syntax

Commands or requests to the shell are usually in the form of a single
line-that is, a string of one or more words followed by a return. This
single line request entered following the prompt is referred to as a com­
mand line. The command line is divided into two major parts-the pro­
gram name and arguments.

The first word of the command line is the name of the program to be
executed. This is referred to as the command. All subsequent words

1-5

INTRODUCTION

are arguments to the command. Arguments are used to provide infor­
mation required by the program.

Spaces and tabs serve as the delimiters for words on the command line.
That is, all characters on the command line up to the first space or tab
are interpreted as the command. All characters between the first space
(or tab) and the second space (or tab) are the first argument, etc.
Thus, the syntax for the command line is:

command argument argument argument ... RETURN

6.2 Read-Ahead

UniPlus+ has full read-ahead, which means that you can type at any
time, even while a program is typing at you. So the user can type
several commands one after another without waiting for the first to
finish or even begin. Of course, if you type during output, the output
will be interspersed with the input characters. However, whatever you
type will be saved and interpreted in the correct sequence. There is a
limit to the amount of read-ahead, but it is generous and not likely to
be exceeded unless the system is in trouble. When the read-ahead limit
is exceeded, the system throws away all the saved characters.

6.3 Correction and Deletion

All users are likely to make mistakes, especially when typing. Two
features are provided to correct command lines. These features are
only effective for the current line (i.e., you have not ended the line
with a return yet).

The first correction feature is the erase character (by default, #).
When inputting a command line, the erase character erases the charac­
ter preceding it. Successive uses of # will erase characters back to, but
not beyond, the beginning of the line.

The second correction feature is the kill character (by default, @). The
kill character deletes the entire current line.

If the actual # or @ character is needed in a command line, the
backslash character (\) preceding it will turn off the "erase last charac­
ter" or "delete entire line" meaning of the symbol. For example,
entering the line

1-6

mail ann\ @uam

results in "mail ann@uam".

INTRODUCTION

These default erase and kill characters can be changed; see stty(l).

7. Programs

7.1 Running a Program

Once logged in, you are in direct communication with a program called
sh (the shell). The shell reads the lines you type, splits them into a
command name and its arguments, and executes the command.

A command is simply an executable program. Normally, the shell
looks first in your current directory for a given program, and if none is
there, then in system directories. There is nothing special about
system-provided commands except that they are kept in directories
where the shell can find them. You can also keep commands in your
own directories and arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the
command and its arguments are separated from one another by space
and/or tab characters. The command sequence is followed by typing a
RETURN.

When a program terminates, the shell will ordinarily regain control and
display a prompt sign to indicate it is ready for another command. The
shell has many other capabilities, which are described in detail in shU)
and csh(1) of the UniPlus+ System V User's Manual.

7.2 Stopping a Program

Most programs can be stopped by typing the character DEL (perhaps
called DELETE or RUBOUT on your terminal). The INTERRUPT or
BREAK key found on most terminals can also be used. In a few pro­
grams, like the text editor, DEL stops whatever the program is doing
but leaves you in that program. Hanging up the phone with the talk
button depressed will also stop most programs.

1-7

INTRODUCTION

7.3 Writing a Program

To enter the text of a source program into the UniPlus+ file system,
use the text editors ed, ex or vi. The principal languages available
under UniPlus+ are C [see cc(I)] and assembly language [see as(I)].
After the text has been entered with the editor and written into a file,
you can give the name of that file to the language processor as an argu­
ment. Normally, the output of the language processor will be left in a
file in the current directory named "a. out. " If that output is precious,
use mv to give it a less vulnerable name. If the program is written in
assembly language, you will probably need to load library subroutines
(see Id(I». C language calls the loader automatically.

When you have finally gone through this entire process without provok­
ing any diagnostics, the resulting program can be run just like you
would run any other command.

Your programs can receive arguments from the command line just as
system programs do [see exec (2)] .

8. Text Processing

You can enter text with the editor ed or ex, or with the visual text edi­
tor, vi, which is screen oriented and more suitable for writing docu­
ments.

Commands often used to write text on a terminal are: cat , pr, and
nroff/troff. The cat command dumps text on the terminal with no pro­
cessing at all. The pr command paginates the text, supplies headings,
and has a facility for multi-column output. Nroff/troff is an elaborate
text formatting program requiring careful forethought in entering both
text and formatting commands. Troff is very similar to nroff, but can
accept instructions to produce its output on a phototypesetter (it was
used to typeset this manual). There are several "macro" packages
(specifically, the mm package) that significantly ease the effort required
to use nroff and troff. The UniPlus+ System V Documentation Processing
Guide provides detailed tutorials in the above text processing programs.

9. Mail

After logging in, the user may sometimes get the following message:

1-8

INTRODUCTION

You have mail.

UniPlus+ provides a postal system so you can communicate with other
users of the system. To read your mail, type the following command:

mail

Your mail will be printed, one message at a time, most recent message
first. After each message, mail waits for you to say what to do with it.
The two basic responses are d, which deletes the message, and
RETURN, which prints the next message but does not delete the previ­
ous message. Other responses and features are described in mail (1) in
the UniPlus+ System V User's Manual.

To send mail to another user, type the following:

mail user-login-name
one or more lines of message
CONTROL-d

The "CONTROL-d" sequence, often called End-Of-File (EOF), is used
to mark the end of input from a terminal.

For practice, try sending mail to yourself. (This is not as strange as it
might sound - mail to oneself is a handy reminder mechanism.)

10. Writing to Other Users

At some point, out of the blue will come a message like

Message from diane tty07 ...

which is accompanied by a startling beep on terminals that have the
capability to beep. It means that Diane (diane) wants to talk to you,
but unless you take explicit action, you will not be able to talk back.
To respond, type the following command:

write diane

This establishes a 2-way communication path. Now whatever diane
types on her terminal will appear on yours and vice versa. However, if
you are in the middle of some program, you must get back to a state

1-9

INTRODUCTION

where you are talking to the command interpreter. Normally, whatever
program you are running has to terminate or be terminated. If you are
editing, you can escape temporarily from the editor by typing a
CONTROL-z. This will put the file you are editing in the background so
that you can execute the write program. To resume your editing job,
type fg which will bring the job to the foreground.

If you are printing and do not want this message in your printout or
you simply do not want to be disturbed, enter the following:

mesg n

A protocol is needed to keep what you type from getting garbled up
with what diane types. Typically, a sequence like the following is used:

Diane

types "write ralph" and waits

types a message of as many
lines as necessary [when she
is ready for a reply, she sig­
nals it by typing (0) which
stands for "over"]

Ralph

types "write diane" and waits

types a reply, also terminated
by (0)

This cycle repeats until someone gets tired;
s/he then signals her or his intent to quit with
(00) for "over and out".

To terminate the conversation, each side must type a CONTROL-d char­
acter alone at the beginning of a line (DELETE also works). When the
other person types CONTROL-d, you will get the message EOF on your
terminal.

If you write to someone who is not logged in or who does not want to
be disturbed, you will be told. If the target is logged in but does not
answer after a decent interval, simply type a CONTROL-d.

11. On-line Manual

The UniPlus+ System V User's Manual and the UniPlus+ System V
Administrator's Manual are kept on-line. If you get stuck on something

1-10

INTRODUCTION

and can not find an expert to assist you, you can print on your terminal
some manual section that might help. This is also useful for getting the
most up-to-date information on a command. To print a manual sec­
tion, type "man command-name". Thus to read up on the wbo(1)
command, type

man who

and

man man

tells all about the man(1) command.

12. Logging Out

After completing your work, it is best to log off the system. Before
logging off, you should have received the prompt symbol from the sys­
tem. That is, all your commands have been completed, and the system
is ready for another command.

A common method for logging off is accomplished by typing an Ameri­
can Standard Code for Information Interchange (ASCII) End Of Text
(EOT) character which is sometimes called the End-Of-File (EOF). On
most terminals, the EOT character is generated by holding down the
CONTROL key and pressing the lowercase "d" key once. This is also
referred to as a CONTROL-d. Regardless of the terminal type, the
power to it should be turned off when the terminal is no longer needed.
For a terminal connected via a phone line, you should hang up the
phone.

Another way to log off the system is by simply typing:

logout

1-11

Chapter 2: BASICS FOR BEGINNERS

CONTENTS

1. Day-to-Day Use 1
1.1 Creating Files - The Editor 1
1.2 What Files Are Out There? . . . 2
1.3 Printing Files 3
1.4 Moving Files Around 5
1.5 What's in a File Name . 6
1.6 Directories and Pathnames . 9
1.7 Using Files for Input and Output . 13
1.8 Pipes 14
1.9 The Shell 15

2. Document Preparation 17
2.1 Formatting Packages 17
2.2 Supporting Tools 19
2.3 Hints for Preparing Documents 20

3. Programming 21
3.1 Shell Programming 21
3.2 Programming in C 23

- i -

Chapter 2

BASICS FOR BEGINNERS

1. Day-to-Day Use

1.1 Creating Files - The Editor

If you have to type a paper, a letter, or a program, how do you get the
information into the machine? These tasks can be performed using the
UniPlus+ "text editor". See ed(1), vi(l) and Chapters 3 and 4 of this
guide for a detailed description.

The UniPlus+ text editor operates on a file. A file is a collection of
information stored in the machine. The following describes how to
make some flies. For example, to create a file called "junk" with text
in it, do the following:

edjunk
a
now type in
whatever text you want . ..

(invokes the text editor)
(command to "ed" to add text)

(signals the end of text addition)

The "." signals the end of adding text and must be at the beginning of
a line by itself. Do not forget it, for until it is typed, no other ed com­
mands will be recognized-everything you type will be treated as text to
be added. Also note that no system prompt appears while you are
appending, inserting, or changing text in the text editor.

After a file exists, the user can edit the text which was typed in­
correct spelling mistakes, rearrange paragraphs, etc.

Finally, the user must write the information typed into a file with the
editor command:

w

Ed responds with the number of characters it wrote into the file
"junk."

2-1

BASICS FOR BEGINNERS

Nothing is stored permanently in the "junk" file until you type w. If
you are editing a file and hang up before typing w, the changes are not
stored in the working file. Instead, they are saved in a file called
"ed.hup" which you can continue working with at the next editing ses­
sion. But after typing w, the information is there permanently. You
can retrieve it any time by typing:

edjunk

Type q to quit the editor. (If you try to quit without writing, ed prints
? to remind you to save the file. Typing q again exits you from the
editor without saving the file, if that's really what you want to do.) Now
create a second file called "temp," following the procedures you used
to create "junk.~' You should now have two files, "junk" and "temp."

1.2 What Files Are Out There?

The Is command lists the names (not contents) of the files the system
knows about. If you type

Is

the response is:

junk
temp

which are the two files you just created.

The file names are automatically listed in alphabetical order, but you
can change this. For example, typing

Is -t

lists the files in the order in which they were last changed, most recent
first. The -I option gives a "long" listing and is used as follows

Is -1

to produce something like

-rw-rw-rw- 1 bwk bsk 41 Jul 22 02:56 junk
-rw-rw-rw- 1 bwk bsk 78 Jul 22 12:57 temp

The date and time is the date and time of the last change to the file.
"41" and "78" are the number of characters (which should agree with

2-2

BASICS FOR BEGINNERS

the numbers you got from eel). "bwk" is the owner of the file, i.e., the
person who created it. "bsk" identifies the group associated with
"bwk". "-rw-rw-rw-" determines who has permission to read, write,
or execute the file. In this case the owner, group, and others all have
permission to read (r) and write (w). There is no permission for anyone
to execute (x). The first character in "-rw-rw-rw-" is a "-" which indi­
cates this is a data file. A "d" as the first character indicates a directory.
The remaining nine characters are divided into three sets of permis­
sions. Each set consists of three characters. The three sets correspond
to the permissions of the owner, group, and all other users.

Options can be combined: Is -It has the same listing as Is -I but is
sorted into time order. You can also specify the files you're interested
in, and Is will list only the information about them. More details can
be found in Is(1).

Optional arguments that begin with a minus sign (like -t and -It) are a
common convention for UniPlus+ programs. In general, if a program
accepts such optional arguments, they precede any file name. It is also
vital that you separate the various arguments with spaces: Is-I is not
the same as Is -I since the command Is must be separated from its
argument -I by a space.

1.3 Printing Files

Now that you've created a text file, how can you print it? There are
several ways to print a file. If you want to print your file on the screen,
one simple way is to use the editor. The editor prints as follows:

edjunk
1,$p

Ed will reply with the count of the characters in "junk" and then print
all the lines in the file. The user can also select the parts of a file to
print as follows:

edjunk
20,35p

which will print only lines 20 through 35.

2-3

BASICS FOR BEGINNERS

There are times when it's not feasible to use the editor for printing.
For example, there is a limit on how big a file ed can handle (several
thousand lines). Secondly, it will only print one file at a time; and
sometimes you want to print several, one after the other. Finally, ed is
not designed to print files on a printer. Here are a couple of alterna­
tives.

The simplest of all the printing programs is cat. Cat simply prints the
contents of all the files named in the order listed. Thus the files are
concatenated (joined together) and printed. For example:

cat junk

prints one file, and

cat junk temp

prints two files. The files are simply concatenated onto the terminal.

The more command stops after each page is printed on your screen.
This keeps cat from scrolling the text off the screen before you can
read it. For example, to use more, type the following

cat junk temp I more

<I is called a pipe and is described later in this chapter.)

The pr command produces formatted printouts of files. As with cat, pr
prints all the files named in a list. The difference is that it produces
headings with date, time, page number, and file name at the top of
each page. It also will give extra lines to skip over the fold in the paper
when you print a file on the printer.

Thus,

pr junk temp I lpr

prints "junk" neatly, then skips to the top of a new page and prints
"temp" neatly.

Pr can also produce multicolumn output. Typing

pr -3 junk

prints "junk" in 3-column format. You can use any reasonable

2-4

BASICS FOR BEGINNERS

number in place of "3," and pr will do its best. The pr command has
other capabilities also. See pr(t) for more information.

It should be noted that pr is not a formatting program in the sense of
shuffling lines around and justifying margins. The true formatters are
nroff and troff, which we will get to in the section on document
preparation.

There are other programs that send your files to a hard copy printer.
See Ip(t) and Ipr(t) for more information.

1.4 Moving Files Around

You are ready for bigger things after gaining experience in creating and
printing files. For example, you can move a file from one place to
another (which amounts to giving it a new file name), like this:

mv junk precious

This means that what used to be named "junk" is now named "pre­
cious." Typing Is results in the following:

precious
temp

The contents of "junk" are now in "precious." Notice that the "junk"
file no longer exists. If you move a file to one that already exists, the
already existing file contents are lost forever.

If you want to make a copy of a file (i.e., to have two versions), use
the cp command as follows:

cp precious tempi

This makes a duplicate copy of "precious" in "templ."

When you are finished creating and moving files, the files can be
removed from the file system with the rm command. The command is
used as follows:

2-5

BASICS FOR BEGINNERS

rm temp tempI

This will remove both the "temp" and "tempI" files.

You will get a warning message if one of the named files is not there,
but otherwise rm, like most UniPlus+ commands, does its work
silently. There is no prompting or response, and error messages are
short. This terseness is sometimes disconcerting to newcomers, but
experienced users prefer it.

1.5 What's in a File Name

So far we have used file names without ever saying what is a legal
name, so it is time for a couple of rules. First, file names are limited to
14 characters. Second, although any character can be used in a file
name, common sense dictates sticking to ones that are visible and
avoiding characters that could have other meanings. We have already
seen, for example, that in the Is command, Is -t lists in time order.
So, if a file were named "-t" you would have a tough time listing it by
name. In addition to the minus sign, there are other characters which
have special meaning. To avoid pitfalls, use only letters, numbers, and
the period until you are familiar with the system.

Suppose you are typing a large document, like a book. Logically, this
can be divided into many small pieces, like chapters and perhaps sec­
tions. Physically, it must be divided too, for eel will not handle really
big (over 90,000 characters) files. Thus the document should be typed
as many files. One possible method is to have a separate file for each
chapter as follows:

chap 1
chap2
etc

Another method is breaking each chapter into several files as follows:

2-6

chap1.l
chap1.2
chap 1. 3

chap2.l
chap2.2

BASICS FOR BEGINNERS

It can now be determined at a glance where a particular file fits into the
whole.

There are advantages to a systematic naming convention which are not
obvious to the novice user. To print the whole book, you could type
the following:

pr chap1.l chap1.2 chap1.3 ...

Using the pr command like this would be tiring and possibly lead to
mistakes. Fortunately, there is a shortcut. You can type:

pr chap·

The * means "anything at all," so this translates into "print all files
whose names begin with chap listed in numerical and then alphabetical
order."

This shorthand notation is not a property of the pr command by the
way. It is system-wide, a service of the program that interprets
commands- the "shell," sh and csh. The files in the book can be
listed by using

Is chap·

which produces the following:

chap1.l
chap1.2
chapl.3

The * can be in any position in a file name and can occur several times.
Thus, typing

2-7

BASICS FOR BEGINNERS

rm *junk* *temp*

removes all files that contain "junk" or "temp" as any part of their
name. * by itself matches every file name, so

pr * .

prints all your files (in alphabetical order), and

rm *

removes all files. (Before using rm *, be sure you want to remove all
your files!)

The * is not the only pattern-matching feature available. To print only
chapters 1 through 4 and 9, type the following:

pr chap[I2349]*

The [...] means to match any of the characters inside the brackets. A
range of consecutive digits can be abbreviated as follows:

pr chap[I-9]*

Letters can also be used within brackets. [a-z] matches any character in
the range a through z.

A? matches any single character, so

Is ?

lists all files which have single-character names, and

Is -I chap?1

lists information about the first file of each chapter ("chap1.1,"
"chap2.1," etc.).

Of these niceties, * is the most useful. The others are frills, but worth
knowing.

If the special meaning of *, ?, etc., needs to be turned off, enclose the
entire argument in single quotes as follows:

2-8

BASICS FOR BEGINNERS

Is '?'

Some examples of this are shown in the following paragraphs.

1.6 Directories and Pathnames

When you first create the file called "junk," how does the system know
that there is not another "junk" somewhere else, especially since the
person in the next office could also be reading this tutorial? The
answer is that generally each user has a private directory, which contains
only the files that belong to that particular user. When you login, you
are in your directory. Unless you take special action when creating a
new file, the new file is made in the directory that you are currently in.
This is most often your own directory, and thus the file is unrelated to
any other file of the same name that might exist in someone else's
directory.

The set of all files is organized into a tree with your files located several
branches into the tree. It is possible for you to "walk" around this tree
and find any file in the system by starting at the root of the tree and
walking along the proper set of branches. You can also start at your
present location and walk toward the root.

Try the latter first. The basic tool is the command pwd (print working
directory) which prints the name of the directory you are currently in.

Although the details vary, pwd prints something like:

lusr/your-name

This indicates that you are currently in the directory "your-name,"
which is in turn in the directory "usr," which is in turn in the root
directory called by convention just "I". (Even if it is not called "/usr"
on your system, the message will be something analogous. Recognize
any differences between your machine's path name and the standard
setup and make the corresponding changes to the following command
lines,)

If you now type

2-9

BASICS FOR BEGINNERS

Is lusr/your-name

the results should be exactly the same list of file names as a plain Is.
With no arguments, Is lists the contents of the current directory.
Given the name of a directory, it lists the contents of that directory.

Next, try the following command:

Is lusr

This should print a long series of names, among which is your own
login name "your-name." On many systems, "usr" is a directory that
contains the directories of all the normal users of the system.

The next step is to try the following:

Is I

The response should be something like this:

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files that the system
knows about; we are at the root of the tree.

If "junk" is still in your directory, enter the following:

cat lusr/your-name/junk

The name

lusr/your-name/junk

is called the path name of the file that is normally thought of as "junk."
The pathname represents the full name of the path as followed from
the root through the tree of directories to get to a particular file. It is a
rule in the UniPlus+ system that the pathname can be substituted
anywhere an ordinary file name can be used.

2-10

BASICS FOR BEGINNERS

This is not too exciting if all the files of interest are in your own direc­
tory; but if you work with someone else or on several projects con­
currently, it becomes handy. For example, your friends can print your
book by typing the following:

pr /usr/your-name/chap*

Similarly, you can find out what files your neighbor has by entering:

Is lusr/neighbor

The "neighbor" represents the login name of your neighbor. You can
copy one of your neighbor's files as follows:

cp /usr/neighbor/their-file your-file

If a file owner does not want someone else to have access to the
owner's files, privacy can be arranged. Each file and directory has
read-write-execute (rwx) permissions for the owner, a group, and
everyone else, which can be set to control access. See Is (I) and
chmod(1) for details. Most users find openness of more benefit than
privacy (most of the time).

As a final experiment with pathnames, try the following:

Is /bin /usr/bin

Do some of the names look familiar? When a program is run by typing
its name after the prompt character, the system simply looks for a file
of that name. It normally looks first in your directory (where it typi­
cally does not find it), then in "/bin" and finally in "/usr/bin." There
is nothing magic about commands like cat or Is, except that they have
been collected into places where they are easy to find and administer.

It is possible for two or more users to work regularly with common
information in the same document. If this common document is
located in the one directory, the users can change the current working
directory as follows:

cd full-path-name

2-11

BASICS FOR BEGINNERS

Now you are ready to edit files in this directory.

Another method of working on the same document is to locate the files
in your friend's directory and login as your friend. This defeats the
accounting purpose of individual logins. If you are already logged in as
yourself and want to work in a friend's files, change the current work­
ing directory as follows:

cd lusr/your-friend

Now when a file name is used in something like cat or pr, the com­
mand refers to the file in your friend's directory. Changing directories
does not affect any permissions associated with a file. If you cannot
access a file, get the owner to change permissions via chmod. Of
course, if you forget what directory you are in, type

pwd

to find out.

It is usually convenient to arrange your own files so that all the files
related to one thing are in a directory separate from other projects. For
example, when writing your book, you might want to keep all the text
in a directory called "book." A directory can be made using the mkdir
command. The "book" directory is made as follows:

mkdir book

You can access the "book" directory as follows:

cd book

If you logged in as yourself, the pathname of "book" is:

lusr/your-name/book

To remove the "book" directory, type:

2-12

BASICS FOR BEGINNERS

or

rm bookl*
rmdir book

rm -r book

The "rm book/·" command removes all files in the "book" directory,
and then the "rmdir book" command removes the empty directory.
The "book" directory must be empty before the rmdir command will
work. The "rm -r book" command deletes the entire contents of the
"book" directory and then removes the "book" directory itself.
WARNING: Be extra careful when using the "rm -r" command.

You can go up one level in the tree of files by typing:

cd ..

The " .. " pattern is the name of the parent of whatever directory you
are currently in. "." is an alternate name for the directory you are in.

1.7 Using Files for Input and Output

Most of the commands used so far produce output on the terminal.
Other commands, like the editor, take input from the terminal. The
terminal can be replaced by a file for input and output.

As an example,

Is

lists files on your terminal. But if you enter

Is > file list

a list of your files is placed in the file "filelist" (which is created if it
does not already exist or overwritten if it does). The symbol> means
"put the output of this command in the following file rather than
displaying it on the terminal." Nothing is produced on the terminal.
As another example, you could combine several files into one by cap­
turing the output of cat in a file:

cat f1 f2 f3 > temp

2-13

BASICS FOR BEGINNERS

Another symbol that operates very much like> does is ». »
means "add to the end of." That is,

cat fl f2 f3 » temp

means to concatenate "fl," "f2," and "f3" to the end of whatever is
already in "temp" instead of overwriting the existing contents. If
"temp" does not exist, you will receive an error message.

In a similar way, the symbol < means to take the input for a program
from the following file instead of from the terminal. Thus, you could
make up a script of commonly used editing commands and put them
into a file called "script." The script could then be run on a file by typ­
ing:

ed file < script

Another example is preparing a letter in file "let." The letter could
then be sent to several people as follows:

mail adam eve mary joe < let

1.8 Pipes

One of the novel contributions of the UniPlus+ system is the idea of a
pipe. A pipe is simply a way to connect the output of one program to
the input of another program, so the two run as a sequence of
processes-a pipeline.

For example,

pr f g h

will print the files "f," "g," and "h," beginning each on a new page.
Instead of printing the files separately, the files can be printed together
as follows:

cat f g h > temp
pr < temp
rm temp

This method is more work than necessary. To take the output of cat
and connect it to the input of pr, use the following pipe:

2-14

BASICS FOR BEGINNERS

cat f g h I pr

The vertical bar I means to take the output from eat, which would nor­
mally have gone to the terminal, and put it into pro

There are many other examples of pipes. For example,

Is I pr -3

prints a list of your files in three columns. The program we counts the
number of lines, words, and characters in its input; while the who com­
mand prints a list of users currently logged on the system.

Thus typing

who I wc-l

tells how many people are logged on.

Is I wc-l

counts your files.

Most programs that read from the terminal can read from a pipe
instead. Most programs that write on the terminal can write on a pipe
instead. There can be as many commands in a pipeline as desired.

1.9 The Shell

The mysterious shell mentioned previously is actually the sh or csh
command interpreter. The shell is the program that translates what
you type into commands and arguments. The shell also looks after
translating *, etc., into lists of file names, and <, >, and I into
changes of input and output streams.

The shell has other capabilities as well. For example, you can run two
programs with one command line by separating the commands with a
semicolon. The shell recognizes the semicolon and breaks the line into
two commands. Thus

date; who

performs both commands before returning with a prompt character.

2-15

BASICS FOR BEGINNERS

More than one program can run simultaneously if desired. This is
beneficial when doing something time-consuming, like using the editor
script. Running programs in the background prevents waiting around
for the results before starting something else. When you type:

ed file < script &

the ampersand (&) at the end of the line means "start running this
command, then return a prompt immediately." That is, don't wait for
the command to complete. Thus the script begins running in the back­
ground, but you can do something else at the same time.

When a command is initiated with &, the system replies with a number
called the process number. Programs running in the background can be
terminated as follows:

kill process-number

The process number identifies the command to stop. If you forget the
process number, the ps command lists the process number for all pro­
grams you are running. (Typing kill 0 kills all your processes,) If you
are curious about other people, ps -a provides information about all
active programs that other users are running.

To start three commands that execute in the order specified in the
background, enter the following:

(command-I; command-2; command-3) &

A background pipeline can be started as follows:

command-l I command-2 &

Just as the editor can get its input from a file instead of from the termi­
nal, the shell can read a file to get commands. For example, suppose
you want to perform a sequence of actions after every login such as:

• Set the tabs on the terminal
• Find out the date
• Find out who's on the system.

2-16

BASICS FOR BEGINNERS

The three commands (tabs, date, and who) could be put in a file called
"startup." The "startup" file would then be run as follows:

sh startup

This instruction commands the machine to run the shell with the file
"startup" as input. The eifect is the same as typing the contents of
"startup" on the terminal.

If this is a regular thing, you can get around typing sh every time by
typing the following command only once:

chmod + x startup

To run the sequence of commands thereafter, you only needs to type:

startup

The chmod command marks the file as being executable. The shell
recognizes this and runs it as a sequence of commands.

If you want "startup" to run automatically every time you login, create
a file in your login directory called ". profile" and place in it the line
"startup." Upon logging in, the shell gains control and executes the
commands found in the ".profile" file. We will get back to the shell in
the section on programming.

2. Document Preparation

UniPlus+ is used extensively for document preparation. There are two
major formatting programs (programs that produce a text with justified
right margins, automatic page numbering and titling, automatic hyphe­
nation, etc.). The nroff (pronounced "en-roif") program produces out­
put on terminals and line-printers. The troff (pronounced "tee-roif")
program produces output on a phototypesetter, which produces very
high-quality output on photographic paper. This document was format­
ted with troff.

2.1 Formatting Packages

The basic idea of nroff and troff is that the text to be formatted con­
tains within it formatting commands that indicate in detail how the

2-17

BASICS FOR BEGINNERS

formatted text is to look. For example, there may be commands that
specify how long lines are, whether to use single or double spacing, and
the running titles to use on each page.

Because nroff and troff are relatively hard to learn to use effectively,
several packages of canned formatting requests are available to let you
specify paragraphs, running titles, footnotes, multicolumn output, etc.,
with little effort and without having to learn nroff and troff. These
packages take a modest effort to learn, but the rewards for using them
are so great that it is time well spent.

This section provides a brief description of the "memorandum macros"
package known as mm. Formatting requests typically consist of a
period and one or two uppercase letters, such as

.TL

which is used to introduce a title or

.P

to begin a new paragraph.

The text of a typical document looks something like this:

.TL
title
.AU "author information"
.MT "memorandum type"
.P
Enter text ---

.P
More text ---

.SG "signature"

Lines that begin with a period are the formatting macro requests. For
example, .P starts a new paragraph. The precise meaning of .P
depends on the output device being used (typesetter or terminal, for
instance). For example, -mm normally assumes that a paragraph is
preceded by a space-one line in nroff, and one-half line in troff, and
the first word is indented. You can change these rules, but they are

2-18

BASICS FOR BEGINNERS

changed by changing the interpretation of .P, not by retyping the docu­
ment.

To actually produce a document in standard format using -mm, use
the command

trolf -mm files ...

for the typesetter and

nrolf -mm files ...

for a terminal. The -mm argument tells trolf and nrolf to use the
manuscript package of formatting requests. There are several similar
packages; check with a local expert to determine which ones are used
on your machine. The proper terminal filter for the terminal should be
used in the command line. The terminal filter option is indicated by
-T followed by the terminal type. The terminal types are known by
various UniPlus+ system utility calls found in the UniPlus+ System V
User's Manual.

2.2 Supporting Tools

In addition to the basic formatters, there are supporting programs that
help with document preparation. The list in the next few paragraphs is
far from complete, so browse through the UniPlus + System V User's
Manual and check with other UniPlus+ users for other possibilities.

Both eqn and neqn (see eqn (1) for more information) programs let
you integrate mathematics into a document in an easy-to-Iearn language
that resembles the way you would speak it aloud.

For example, the eqn input

sum from i=O to n x sub

produces the output

II 7T LX=-
i=O I 2

pi over 2

The program tbl provides an analogous service for preparing tables.
The tbl program does all the computations necessary to align compli­
cated columns with elements of varying widths.

2-19

BASICS FOR BEGINNERS

The spell program detects possible spelling mistakes in a document.
The spell program compares the words in your document to a diction­
ary (stored in memory) and prints those words that are not in the dic­
tionary. It knows enough about English spelling to detect plurals and
the like, so it does a good job.

The grep program looks through a set of files for lines that contain a
particular text pattern (rather like the editor's context search does, but
on a bunch of files). For example,

grep 'ing$' chap*

finds all lines that end with the letters "ing" in the files "chap*." The
"$" indicates that the pattern to search for is at the end of the line,
whereas """ indicates that the pattern to search for is at the beginning
of a line. (It is almost always good practice to put single quotes around
the pattern to search for in case it contains characters like * or $ that
have a special meaning to the shell.) The grep program is often used to
locate the misspelled words detected by the spell program.

The diff program prints a list of the differences between two files, so
that two versions of something can automatically be compared. This is
a vast improvement over proofreading by hand.

The we program counts the words, lines, and characters in a set of files.
The tr program translates characters into other characters. For exam­
ple, this translates uppercase into lowercase:

tr [A-Z] [a-z] < input> output

The sort program sorts files, while exref makes cross-references. The
ptx program makes a permuted index (keyword-in-context listing).
The sed program is like ed but can be used with long files. These pro­
grams are for more advanced users and are not limited to document
preparation. Put them on your list of things to learn.

2.3 Hints for Preparing Documents

Most documents go through several versions (always more than
expected) before they are finally finished. You should do whatever
possible to make the job of changing them easy.

2-20

BASICS FOR BEGINNERS

First, type so that subsequent editing will be easy. Start each sentence
on a new line. Make lines short, and break lines at natural places, such
as after commas and semicolons, rather than randomly. Since most
people change documents by rewriting phrases and adding, deleting,
and rearranging sentences, these precautions simplify any editing
needed later.

Keep the individual files of a document down to modest size, perhaps
10,000 to 15,000 characters. Larger files edit more slowly. If you make
a dumb mistake, it is better to clobber a small file than a big one. Split
the files at natural boundaries in the document for the same reasons
that you start each sentence on a new line.

The second aspect of making changes to documents easy is not to com­
mit to the formatting details too early. One of the advantages of for­
matting packages is permitting format decisions to be delayed until the
last possible moment. Until a document is printed it is not even
decided whether it will be typeset or printed out on a line printer.

As a rule of thumb, a document should be produced in terms of a set
of requests or commands (macros) for all but the most trivial jobs.
The macros used should then be defined either by using one of the
existing macro packages (the recommended way) or by defining your
own nroff and/or troff macros. As long as the text is entered in some
systematic way, it can always be cleaned up and formatted by a judi­
cious combination of editing commands and macro definitions.

3. Programming

We will not teach any of the programming languages available, but a
few words of advice are in order. One of the reasons why the
UniPlus+ system is a productive programming environment is that
there is already a rich set of tools available. Facilities like pipes,
input/output redirection, and the capabilities of the shell often make it
possible to do a job by pasting together programs that already exist
instead of writing a program completely from scratch.

3.1 Shell Programming

The pipe mechanism lets you fabricate quite complicated operations out
of spare parts that already exist. For example, the first draft of the
spell program was (roughly)

2-21

BASICS FOR BEGINNERS

cat .. .
I tr .. .
I tr .. .
I sort
I uniq
Icomm

collect the files
put each word on a new line
delete punctuation, etc.
into dictionary order
discard duplicates
print words in text but not in dictionary

More pieces have been added subsequently, but this goes a long way
for such a small effort.

The editor can be made to do things that would normally require spe­
cial programs on other systems. For example, to list the first and last
lines of each of a set of files, such as a book, you could laboriously
type:

ed
e chap1.1
1p
$p
e chap1.2
lp
$p
etc.

The same job can be performed much more easily. One way is to type

Is chap* > temp

to get the list of file names into a file called "temp." The "temp" file
is then edited using global commands as follows:

1,$ st'.*$/e &\
1p\
$p/

The results are written into the "script" file (1,$ w script) and then the
following command is entered:

ed < script

This will produce the same output as the laborious hand typing.
Another method is using shell loops to repeat a set of commands over

2-22

BASICS FOR BEGINNERS

and over again for a set of arguments as illustrated below:

for i in chap·
do

ed Si < script
done

This sets the shell variable i to each file name in turn, then does the
command. This command can be entered at the terminal or put in a
file for later execution. Before the file can be executed, it may be
necessary to change the mode by entering the following:

chmod + x filename

An option often overlooked by new users is that the shell is itself a
programming language, with variables, control flow if-else, while, for,
case, subroutines, and interrupt handling. Since there are many
building-block programs, the user can sometimes avoid writing a new
program merely by piecing together some of the building blocks with
shell command files.

We will not go into any details here; examples and rules can be found
in Chapters 5 and 6 in this guide.

3.2 Programming in C

The C language is a reasonable choice of a programming language when
undertaking anything substantial. Everything in the UniPlus+ system
is based on the C language. The system itself is written in C, as are
most of the programs that run on the system. The C language is also
an easy language to use once you get started. The C language is intro­
duced and fully described in The C Programming Language by B. W.
Kernighan and D. M. Ritchie (Prentice-Hall, 1978). Several sections of
the manual describe the system interfaces, that is, how to do
input/output and similar functions.

Most input and output in C is best handled with the standard
input! output library, which provides a set of 110 functions that are in a
compatible form with most machines that have C compilers. In gen­
eral, it's wisest to confine the system interactions in a program to the
facilities provided by this library. (Refer to Section 3 of the UniPlus+
System V User's Manual.)

2-23

BASICS FOR BEGINNERS

There are several supporting programs that go with C. The lint pro­
gram checks C programs for potential portability problems and detects
errors such as mismatched argument types and uninitialized variables.

For larger programs (anything whose source is on more than one file),
the make program allows you to specify the dependencies among the
source files and the processing steps needed to make a new version.
The program then checks the times that the pieces were last changed
and does the minimal amount of recompiling to create a consistent
updated version.

The C compiler provides a limited statistical service, so a user can find
where programs spend their time executing and what parts of a program
are worth optimizing. Compile the programs with the -p option; after
the test run, use the prof command to print a program execution
profile. The command time will give the gross run-time statistics of a
program, but the times are not very accurate or reproducible.

2-24

Chapter 3: TEXT EDITOR - ED

CONTENTS

1. Introduction . .

2. General
2.1 Disclaimer.

3. Getting Started
3.1 Creating Text.
3.2 Error Messages
3.3 Writing a Text File .
3.4 Leaving ed. . . .
3.5 Editing Text Files
3.6 Reading Text . . .
3.7 Printing Buffer Contents
3.8 Current Line .
3.9 Deleting Lines
3.10 Changing Text
3.11 Context Searching
3.12 Change and Insert Commands
3.13 Moving Text

4. Global Commands .

5. Special Characters
5.1 Period
5.2 Circumflex
5.3 Dollar Sign
5.4 Asterisk
5.5 Brackets
5.6 Ampersand
5.7 Backslash

6. Summary of Commands

- i -

2
2
3
4
4
6
6
9

10
12
13
16
19
21

22

22
23
23
23
24
24
24
25

26

1. Introduction

Chapter 3

TEXT EDITOR - ED

This is a tutorial to help beginners get started with text editing.
UniPlus+ has three text editors: ed, ex, and vi. Of these, ed is con­
sidered the easiest to learn; however, many users prefer vi. We recom­
mend reading this chapter first before going on to vi. The ex program
is the root of the text editors and is used mostly by systems program­
mers and persons very familiar with ed.

Although this chapter does not cover everything about the text editor
ed, it does discuss enough for most day-to-day needs. This includes:

• Printing, appending, changing, deleting, moving, and inserting
text.

• Reading from and writing to files.
• Searching for text.
• Making substitutions.
• Making changes throughout a file automatically.
• Using some special characters for easier editing.

2. General

The ed program is a text editor-an interactive program for creating
and modifying text. The text can be a document (like this one), data
for a program, instructions for the computer, etc.

Do the exercises. They illustrate techniques discussed in the text. A
summary of commands appears at the end of this chapter.

2.1 I>isclainBer

We cover only a few ed commands. (although we include the most
common commands). Also, we assume that you know how to log onto
UniPlus+ and understand what a file is. For more information about
UniPlus+, refer to the Chapters 1 and 2 in this guide.

You also need to know how to end a line on your terminal. On most
terminals, you will end a line by pressing RETURN or the newline key.

3-1

TEXT EDITOR-ED

We refer to this key as RETURN in this chapter.

3. Getting Started

To follow along with the tutorial, you should be logged onto UniPlus+
and see the prompt character, usually a $ or 0/0.

To start the editor, type:

ed

and press RETURN.

3.1 Creating Text

We describe creating text first. Making changes and corrections is
described later.

When you start ed, it presents you with an empty file. This is similar to
starting to write on a blank piece of paper. To put text in the file, you
must type it in or retrieve it from another file. We will begin by the
initial typing in of some text and later will describe reading in files.

The text we are working on in ed is kept in a buffer. The buffer is like
the piece of paper on which we write things, then change some of
them, and finally file the whole thing away for another day.

You direct ed by typing instructions called commands. Most commands
consist of one lowercase letter. Each command is typed on a separate
line. Ed doesn't print any messages in response to most commands.

Once in the editor (by typing ed and RETURN), to start adding text,
type

a

on a line by itself and press RETURN. (a means "append (or add) text
lines to the buffer as typed in.") Type the text you want to add, like
this:

3-2

TEXT EDITOR-ED

a
Now is the time
for all good men
to come to the aid of their party.

As shown in the last line of this example, we stop appending by typing
a period on a line by itself and pressing RETURN. This tells ed that you
have finished adding text and want to give a new command. (Even
experienced users sometimes forget to type the period when they have
finished adding text. If ed seems to be ignoring your commands, type .
on a line by itself. You may then find some command lines in your
text, which you will have to take out later.)

After you finish appending, the buffer contains these three lines:

Now is the time
for all good men
to come to the aid of their party.

The a and the . are not included since they are commands and not text.

To add more text, type a and continue typing.

3.2 Error Messages

If ed doesn't understand something you type, it prints

?

on the screen.

This is pretty cryptic, but with practice, you'll learn to recognize the
mistake. For some assistance, type

h

The h (help) command explains the most recent?

3-3

TEXT EDITOR-ED

3.3 Writing a Text File

After you have added some text to your file, you will want to save it.
The w (write) command writes the contents of the buffer onto a file.
For example, type

w filename

with filename as the name of the file you want your text to be saved to.
This copies the buffer's contents into the specified file (destroying any
previous information in that file). For example, if we wanted to save
the text we created in a file called "junk," we would type:

w junk RETURN

Leave a space between wand the file name. In our example, ed
responds with:

68

Ed prints the number of characters it wrote into the file. (Blank spaces
and end-of-line characters are included in the character count.) Writing
a file just makes a copy of the text-the buffer's contents are not dis­
turbed. This is similar to making a carbon copy of the piece of paper
you're writing on and putting this copy in a file folder-it does not
change the original, it simply duplicates it. This is an important point.
Ed only works on a copy of a file (by placing it in the buffer), not the
file itself. The file doesn't change until you write your changes to it
with the w command. (It's a good idea to write your text onto a file at
least every hour. If the system crashes or you make some horrible mis­
take, you will lose all the text in the buffer, but any text in a file will be
safe,)

3.4 Leaving ed

To leave ed, first save your text by writing it onto a file with the w
(write) command and then type q (for quit). For example, in the edit­
ing session described above the following is what will appear on the ter­
minal screen:

3-4

TEXT EDITOR-ED

ed
a
N ow is the time
for all good men
to come to the aid of their party.

(initialize the command)
(append)
(text)
(text)
(text)
(end append)
(write to file "junk") w junk

68
q

(character count system response)
(quit)

The system will respond with the prompt character.

When you leave ed your buffer is destroyed, which is why you write
your changes to a file before quitting. Actually, ed will print

?

if you try to quit without writing. If you want to save the additions to a
file, type wand press RETURN. If you don't want to save your addi­
tions, typing q again gets you out of ed without saving any changes
since the last w command.

EXERCISE 1

Enter ed and create some text using the append command, a

ed
a
This is Exercise 1
to show how to create a file
using the text editor ed.

No prompt appears in the text editor. When you have finished adding
text, type "w sometext" and press RETURN to save your text in a file
called "sometext." Type q to leave ed. When you are out of ed, you
will see the system prompt $. To print the file you just created, type

more sometext RETURN

3-5

TEXT EDITOR-ED

3.5 Editing Text Files

After you have created and saved a file, you may want to edit it. The e
(edit) command retrieves a file you have saved and places it in the
buffer. To edit a file, type

e filename RETURN

If you had saved a file called "junk" as described above and wanted to
edit it, you would type

ed
e junk RETURN

Ed retrieves "junk," places it in the buffer, and prints the character
count:

68

When you use e to edit a file, ed replaces the contents of the buffer
with the new file. If you don't save the buffer before using e, ed des­
troys the old contents of the buffer.

If you read a file into the buffer with e, ed uses that file name when
you type w to write the file. For example, an editing session might
look like this:

ed
e filename
{editing session]

w
q

The file you edited is automatically save in filename when you type w.
You can find out which file w will write to using the f (file) command.

3.6 Reading Text

Sometimes you want to add a file to the buffer without destroying any­
thing already in the buffer. This is done with the r (read) command:

3-6

TEXT EDITOR-ED

r filename

adds the contents of filename to the end of the file already in the
buffer. For example, if you type

ejunk
68 (system response)
r junk
68 (system response)

ed first places "junk" in the buffer to edit it, and then reads in "junk"
again and appends it to the end. You now have two copies of the origi­
nal text:

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the wand e commands, r prints the number of characters read.

The r command can read a file and add it anywhere in the current
buffer:

.r filename

will read the contents of filename into the buffer immediately after the
current line as opposed to appending it to the end of the file.

The file in the buffer is not destroyed-it continues after the last line of
the file you read in. For example, using the original "junk" file:

3-7

TEXT EDITOR-ED

ed
ejunk
68
1
Now is the time
.r junk
68
w
136
q

(system response)
(go to line 1)
(system response)

(system response)

(system response)

would place this in your buffer:

Now is the time
Now is the time
for all good men
to come to the aid of their party.
for all good men
to come to the aid of their party.

The file you read remains in its original file also. You only copied it
into the buffer.

EXERCISE 2

Experiment with the e command-try reading and printing files. You
may get an error like ? name where name is the name of a file. This
means that the file you referred to does not exist which can be caused
by misspelling the file name or trying to read a file you don't have per­
mission to read. Try alternately reading and appending to see that they
work similarly.

Verify that

ed filename

is the same as

ed
e .filename

3-8

TEXT EDITOR-ED

What does

f filename

do?

3.7 Printing Buffer Contents

To print all or part of the buffer on the terminal, use the p (print) com­
mand. You must specify the line numbers where you want printing to
begin and end. These numbers should have a comma between them
(beginning line number, ending line number p). For example, to print the
first ten lines of the buffer (tines 1 through 10), type:

1,10p

Suppose you want to print all the lines in the buffer. If you knew the
exact number of lines in the buffer, such as 30, you could type
"1 ,30p." However, if you don't know how many lines there are in the
buffer, ed has a symbol meaning "line number of the last line in the
buffer" -the dollar sign, $. Therefore, to print all the lines in the
buffer, type:

l,$p

Since this is a common command, "1,$p" can be abbreviated to "$,p."
To stop printing, hit the DEL or DELETE key. Ed responds with

?

and waits for the next command.

To print the last line of the buffer, you can type

or
$,$p

$p

You can print any single line by typing the line number. For example,
typing

prints

3-9

TEXT EDITOR-ED

Now is the time

which is the first line of the buffer.

You can also use $ in combinations like

$-5,$p

This example prints the last five lines of the buffer.

EXERCISE 3

Create some text with a and experiment with the p command. You
may find that you can't print line 0 or a line beyond the last line of the
buffer. Ed also won't print the buffer in reverse order. For example,

3,lp

will not work.

3.8 Current Line

Suppose the buffer contains this text:

N ow is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Typing:

1,3p

will print the first three lines.

Now type:

p

This prints

3-10

TEXT EDITOR-ED

to come to the aid of their party.

which is the third line of the buffer. It is the last (most recent) line
that anything was done to- the line last printed. If you hit p again, it
will print line 3 again.

The reason for this is that ed remembers the last line that anything was
done to (in this case, line 3 - the last line printed). This most recent
line is referred to as

(pronounced "dot")

Dot is a line number in the same way that $ is. Dot means "the
current line," or "the line something was done to most recently." You
can use dot in several ways-one possibility is to enter:

.,$p

This prints everything from the current line to the last line of the
buffer. In our example, these are lines 3 through 6.

Some commands change the value of dot, others do not. The p com­
mand resets dot to the number of the last line printed. For example,
.,$p sets"." to the last line in the buffer (line 6).

Dot is most useful in combinations like:

. + 1 (this is equivalent to . + 1 p)

This means "print the next line" and is a handy way to step slowly
through a buffer. You can also type:

.-1 (or .-1p)

which means "print the line before the current line." This allows you
to move backward through the buffer. Another useful example is:

.-3,.-1p

which prints the previous three lines.

Don't forget that all of these commands change the value of dot. You
can find out what dot is by typing

3-11

TEXT EDITOR-ED

Let's summarize the p command and dot. You can precede p by 0, 1,
or 2 line numbers. If you don't specify a line number, p prints the
current line (the line that dot refers to). If you specify one line
number, (with or without the letter p), ed prints that line and sets dot
there. If you specify two line numbers separated by a comma and fol­
lowed by p, ed prints everything from the first number to the last
number, and sets dot to the last line printed. (The first number must
be smaller than the second number-ed won't print backwards')

Pressing RETURN once prints the next line. It is equivalent to:

.+lp

Typing A or the minus - moves the current line back one line. It can
be used in multiples; typing the AA" moves the current line back three
lines. The "-" and "A" are the same as "-1 p. "

3.9 Deleting Lines

The d (delete) command deletes lines. You specify the lines to delete
as follows:

starting line, ending line d

This is the same format you just learned for the p command. Typing:

4,$d

deletes everything from line 4 to the end of the buffer. In our exam­
ple, this deletion leaves us with three lines. We can check these lines
by typing:

1,$p

The last line, $, is now line 3. Dot is set to the line after the last line
deleted (unless you delete the last line in the buffer). If you delete the
last line (as in the last example), dot is set to $.

The d (delete) command and the p (print) command may be used
together. For example, typing:

3-12

TEXT EDITOR-ED

dp

deletes the current line, prints the following line, and sets dot to the
line printed.

EXERCISE 4

Experiment with a, e, r, W, p, and d until you are familiar with them.
Use "dot," $, and line numbers to get familiar with their use.

Try using line numbers with a, r, and w. You will find that a appends
lines after the line number you specify; r reads a file in ajier the line
number you specify; and W writes out the lines you specify. For exam­
ple, you can insert a file at the beginning of the buffer by typing:

Or filename

You can enter lines at the beginning of the buffer by typing:

Oa
text

You might also notice that

.w

is very different from

w

3.10 Changing Text

We are now ready to try one of the most important commands-the s
(substitute) command.

This command changes words or letters. For example, you will use the
substitute command to correct spelling mistakes and typing errors.

3-13

TEXT EDITOR-ED

Suppose that line 1 is;

Now is th time

You can change "th" to "the" by typing:

Is/th/thel

This says: in line 1, change "th" to "the." Since ed doesn't print the
change automatically, type

p

to make sure that the substitution worked. You should get

Now is the time

You may have noticed that the substitute command reset the current
line (that's why we typed p instead of Ip).

The general format of the substitute command is:

starting-line, ending-line sl change thisl to thisl

The characters between the first and second slashes are replaced by the
characters between the second and third slashes. This substitution
takes places on aI/lines between starting-line and ending-line. However,
only the first occurrence on eaclt line is changed. To change every
occurrence, add g (for "global") to the s command, like this:

sl somethingl something elselgp

The rules for line numbers are the same as those you learned for the
print command, p. However, if substitute can't find the characters you
asked it to change, it doesn't change the current line. Ed tells you
when this has happened by printing? on the screen.

As an example of substitute, you could type

1, $sl spelingl spellingl

to correct the first spelling mistake ("speling," in this case) on each

3-14

TEXT EDITOR-ED

line. (This is useful for people who make the same mistake con­
sistently.)

If you don't specify a line number, s assumes you want to make the
substitution on the current line. For example, you could type:

sl somethingl something e/selp

This corrects a mistake on the current line and then prints the current
line to make sure it worked out.

You can also type:

sl somethingl I

This replaces "something" with nothing, i.e., removes it. This is useful
for deleting extra words in a line or removing extra letters from words.

For example,

Nowxx is the time

can be corrected by typing

s/xxl I

The line now reads:

Now is the time

The / / (two adjacent slashes) means "no characters," not a blank.

EXERCISE 5

Experiment with the substitute command. For example, type:

a
the other side of the coin

sl thel on thel p

3-15

TEXT EDITOR-ED

This produces the following:

on the other side of the coin

This substitute command changes only the first occurrence. You can
change all occurrences by adding g.

Try using characters (except blanks and tabs) other than slashes to set
off the two sets of characters in the s command. For example, try typ­
ing

s'the'other'p

Strange results may be produced by using

$ * \ &

Read "Special Characters" in this chapter.

3.11 Context Searching

When you master the substitute command, you may want to try
another important feature of ed -context searching.

Suppose you have these three lines in your buffer:

Now is the time
for all good men
to come to the aid of their party.

If you wanted to locate the word "their," you could type 3. However,
if the buffer contained several hundred lines and you had been deleting
and rearranging lines, you might have a difficult time locating this line.
Context searching lets you find a line by specifying some context
(unique text) in it.

To search for a line that contains a particular string of characters, type:

I string of characters to findl

3-16

For example,

Itheirl

TEXT EDITOR-ED

locates the next occurrence of "their." It also makes that line the
current line and prints it for verification.

"Next occurrence" means ed starts looking for the string at line after
the current line (. + 1) and searches to the end of the buffer. Then it
searches from line 1 to the line that it started searching at (dot). That
is, the search "wraps around" from $ to 1. It scans all the lines in the
buffer until it either finds the desired string or gets back to dot again.
If ed can't find the characters, it types the error message

?

Otherwise, it prints the line it found.

You can search for the desired line and make a substitution to it in the
same command, like this:

I their lsI their I thel p

This tells ed to: search for the word "their," substitute "the" for
"their," and print the new line. When it has finished, ed prints this:

to come to the aid of the party.

You can repeat a context search. For example,

Istringl

finds the next occurrence of "string." If this is not the line you want,
you can search for the next occurrence by typing:

II

This stands for "the previous context search expression." This abbrevi­
ation can also be used as the first string of the substitute command. For
example:

I string 1 lsI I string21

3-17

TEXT EDITOR-ED

finds the next occurrence of "stringl" and replaces it with "string2."
Similarly,

??

scans backwards for the previous expression.

Context searches (like "/their/") are interchangeable with line
numbers. They can be used alone to find a desired line or as line
numbers for some other command-like s.

Suppose the buffer contains these three familiar lines:

N ow is the time
for all good men
to come to the aid of their party.

The following context search expressions:

/Now/+l
/good/
/party/-l

all refer to the same line (line 2). To make a change in line 2, you can
type:

/Now / + 1 s/ good/bad/
or

/good/s/good/bad/
or

/party/-ls/good/bad/

You could print all three lines by typing either:

/N ow / ,I party / p
or

/Now/,INow/+2p

The first of these might be better if you don't know how many lines
there are. A context search expression is the same as a line number, so
it can be used wherever you would use a line number.

3-18

TEXT EDITOR-ED

EXERCISE 6

Experiment with context searching. Try using context searches as line
numbers for the substitute, print, and delete commands. They can also
be used with r, W, and a.

Try context searching using "?text?" instead of "/text!" This searches
backwards for the character string.

If you have any problems with the characters

$ * \ &

read the section on "Special Characters."

3.12 Change and Insert Commands

In this section we discuss the c (change) command-which changes the
current line or replaces the current line with one or more lines; and the
i (insert) command-which inserts one or more lines before the current
line.

For example, to replace everything past the current line to the last line,
type:

. + l,$c
one or more lines of text

The text typed after the c command to the ". " command will take the
place of the original text between the ". + 1" line and the last line.
This command is useful when you want to replace a line or several
lines which have errors.

If you specify only one line, then just that line is replaced. (You can
type in as many replacement lines as you like.) Notice that you end
your changes by typing a period (.) at the beginning of a line-this is
the same way you stopped adding text with the a (append) command.
If you don't specify a line number, c replaces the current line. When
you finish making changes, dot is set to the last line you inserted.

3-19

TEXT EDITOR-ED

Insert is similar to append except that it inserts the text before rather
than after the current or specified line-for example, typing:

2i
one or more lines of text

inserts the text before the second line. If you don't specify a line
number, the text is inserted before the current line. Dot is set to the
last line inserted.

EXERCISE 7

A change is like a combination of a delete followed by an insert.
Experiment to verify that:

starting-line, ending-lined
i
text

is almost the same as

starting-line, ending-linec
text

These are not exactly the same if the last line is deleted. What is dot in
this case?

Experiment with the append command a and the insert command i to
see that they are similar but not the same. You will notice that

line-numbera
text

appends after the given line, while

3-20

line-numberi
text

TEXT EDITOR-ED

inserts before it. If you don't specify a line number, i inserts before the
current line, a appends after the current line, and c changes the current
line.

3.13 Moving Text

The m (move) command moves lines from one place to another. Sup­
pose you want to move the first three lines of the butTer to the end.
You could type:

1,3w filename
Sr filename
1,3d

This would work, but the following is easier:

1,3mS

The general case is:

starting-line, ending-Iinem ajter-this-Iine

The text is moved after the specified line number. You can use con­
text searches instead of line numbers. For example, if in your butTer
you had:

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two by typing:

/Second/ ,/ end of second/ m/First/-l

The "-1" was used because the text is moved ajter the line specified.
Dot is set to the last line moved.

3-21

TEXT EDITOR-ED

4. Global Commands

The two global commands are g and v. G executes commands on all
lines that match some specified string. For example

gl spelingl p

prints all lines that contain "speling."

gl spelingl sl I spellingl gp

replaces "speling" with "spelling" each time it occurs (even if it occurs
more than once in a line), then prints each corrected line.

Compare this to

1 ,$sl spelingl spellingl gp

This only prints the last line substituted. G doesn't print? if "speling"
is not found.

You can use several commands at a time with g. Just remember to end
every line but the last with a backslash "\". For example:

gl xxxI -1 sl abcl def/\
. +2s/ghi/jkll\
.-2,.p

makes changes in the lines before and after each line containing
"xxx," then prints all three lines.

The v command is the same as g except that it executes the commands
on lines that don't match the string. For example:

vlld

deletes every line that does not contain a blank.

5. Special Characters

You may have noticed that some characters (such as ., *, $) changed
the meaning of context searches and the s command. This is because
these characters have special meanings for ed.

3-22

TEXT EDITOR-ED

The following is a complete list of the special characters that can cause
trouble:

$ * [] & \

5.1 Period

The "." (period) signifies any character. In a context search or the
first string of the substitute command,

Ix.yl

means

Ix any-charactery I

This example will find all the following:

x+y
x-y
x y
x.y
xAy

5.2 Circumflex

The circumflex ,,"" signifies the beginning of a line. For example:

I "stringl

finds "string" only if it is at the beginning of a line. That is, it will find

string

but not

the string

5.3 Dollar Sign

The dollar sign "$" is just the opposite of the circumflex; it means the
end of a line.

Typing:

IstringSI

finds "string" only at the end of some line.

3-23

TEXT EDITOR-ED

I "stringSI

will find a line containing only "string" and

r.sl
finds a line containing one character.

5.4 Asterisk

The asterisk (*) is the repetition character. Therefore, "a*" means
"any number of a's." ".*" matches any number of any things.

For example,

s/. * I stuffl

changes an entire line to "stuff," and

s/. * ,II

deletes all the characters in a line up to and including the last comma.
(Since ". *" finds the longest possible match, this matches the last
comma rather than the firstJ

5.5 Brackets

The left bracket ([) is used with right bracket (]) to enclose character
classes. For example,

/[01234567891/

matches any single digit. This can be abbreviated as

[0-9]

It can also represent the alphabet:

[A-Z)
or

[a-z]

5.6 Ampersand

Finally, the ampersand (&) (used only on the right-hand part of a sub­
stitute command) means "whatever was matched on the left-hand
side. "

3-24

TEXT EDITOR-ED

Suppose the current line contained

Now is the time

and you wanted to put parentheses around it. You could input:

srl(/
s/$/) I

However, an easier way to accomplish the same thing is to type:

s/.* 1(&)1

This says "match the whole line and replace it by itself surrounded by
parentheses." The "&" can be used several times in a line. Using the
above example text:

s/.*I&? &!!/

produces:

Now is the time? Now is the time!!

You don't have to match the whole line. If the buffer contains

the end of the world

you could type:

Iworld/sll & is at handl

to produce:

the end of the world is at hand

the sequence "/world/" found the desired line; the sequence "i I"
found the same word in the line; and the "&" saved you from typing
world again.

The "&" is a special character only in the replacement text of a substi­
tute command.

5.7 Backslash

If you have to use one of the special characters without its special
meaning in a substitute command, precede it with the backslash. For
example:

3-25

TEXT EDITOR-ED

s/\./dot/

changes the first occurrence of a "." into the word "dot" on the
current line. If the" . " was not preceded by the "\," the result would
have been that the first character would have been changed into the
word "dot" on the current line.

6. Summary of Commands

The general form of ed commands is name, which may be preceded by
one or two line numbers. The edit command e, the read command r,
and the write command w, are also followed by a "file name." Most
commands are used separately.

a

c

d

e

f

g

3-26

append adds text after the current line, or after the
line number specified. To stop adding text, type a
period (.) at the beginning of a line and hit RETURN.
Dot is set to the last line appended.

change the specified lines to the new text which fol­
lows. To stop replacing text, type a period (.) at the
beginning of a line and hit RETURN. If you don't
specify a line, the current line is replaced. Dot is set
to last line changed.

delete the specified lines. If you don't specify a line,
the current line is deleted. Dot is set to the line after
the last deleted line. If you delete the last line in the
buffer, dot is set to the new last line.

edit new file. The previous contents of the buffer are
destroyed, so save your work before you read in a new
file with e.

Print the current file name. This is the file ed assumes
you mean if you don't specify a file. To change the
current file name, type f filename.

The global command "g/ ---I commands" executes the
commands on lines containing "---".

insert lines before the specified line or the current line.
To stop inserting text, type a period (.) at the begin­
ning of a line and hit RETURN. Dot is set to last line
inserted.

m

n

p

q

r

s

v

w

/ -----/

TEXT EDITOR-ED

move the text (between the first two specified lines)
after the third line specified. Dot is set to the last line
moved.

Print the number of the addressed line(s), a tab, and
the line itself.

print the lines specified. If you don't specify any line
number, p prints the current line. Pressing RETURN
prints the next line.

The quit command exits ed. You will most likely want
to write your text before using quit. However, if you
don't want to save your changes, hit q twice.

read a file into the end of the buffer. ".r .filename"
reads the file into the buffer after the current line.
Dot is set to the last line read.

substitute "string2" for "stringl" in the specified
lines (s/ string 1/ string2/). If you don't specify any
lines, it makes the substitution in the current line.
The s changes only the first occurrence of "stringl"
on a line. To change all occurrences, type g at the end
of the command. Dot is set to last line in which a sub­
stitution took place~ if no substitution took place, dot
is not changed.

The exclude command (v / ---I commands) executes
commands only on lines not containing "" ___ no

The write command writes the buffer onto a file. Dot
is not changed.

The ". =" string prints the current line number. The
"=" by itself prints the line number of the last line in
the file.

The "!" is a temporGlY escape command. Typing
"! command-line" within ed executes "command-line"
and then returns you to the editor.

The context search command searches for next line
containing ,,----" and prints it. The search starts at the
line after the current line, reads to the end of the
buffer, then wraps around to line 1 and searches to the
original line. Dot is set to the line where the string is
found.

3-27

TEXT EDITOR-ED

?----- ?

3-28

Performs a backwards context search. It begins search­
ing at the line before the current line, reads backwards
to the start of the file, then wraps around to the end of
the file and searches backwards to the original line.
Dot is set to the line where the string is found.

Chapter 4: VIS4UAL TEXT EDITOR - VI

CONTENTS

1. Getting Started
1.1 Editing a File •
1.2 Visual Editor's Copy: The Buffer
1.3 Arrow Keys. • .
1.4 Special Characters: ESC, RETURN and DEL
1.5 Getting Out of the Editor

2. Moving Around in the File
2.1 Scrolling and Paging • • . .
2.2 Searching, Goto, and Previous Context
2.3 Moving Around on the Screen
2.4 Moving Within a Line . . • •
2.5 Summary
2.6 Viewing a File . . .

3. Making Simple Changes . . •
3.1 Inserting •
3.2 Making Small Corrections
3.3 More Corrections: Operators
3.4 Operating on Lines . • •
3.5 Undoing • . .
3.6 Summary ...•..•

4. Moving About; Rearranging and Duplicating Text
4.1 Working with Characters . . • . . .
4.2 Working on Sentences, Paragraphs, and

Sections •
4.3 Rearranging and Duplicating Text
4.4 Summary

5. High-Level Commands
5.1 Writing, Quitting, Editing New Files
5.2 Escaping to the Shell. .
5.3 Marking and Returning .
5.4 Adjusting the Screen. .

6. Special Topics
6.1 Editing on Slow Terminals
6.2 Options, Set, and Editor Startup Files

- i -

1
1
2
2
2
3

4
4
4
6
6
7
8

8
8
9

10
10
11
12

12
12

13
14
16

16
16
17
17
18

18
18
20

6.3 Recovering Lost Lines 22
6.4 Recovering Lost Files 22
6.5 Continuous Text Input · · · · 23
6.6 Features for Editing Programs 23
6.7 Filtering Portions of the Buffer . · · 24
6.8 Macros · · · · . . . 25
6.9 Word Abbreviations · · · · · 26

7. Nitty-Gritty Details . · · · · · · 26
7.1 Line Representation in the Display 26
7.2 Counts · · · · · · · · 27
7.3 More File-Manipulation Commands. 29
7.4 More About Searching for Strings 30
7.5 More About Input Mode 31
7.6 Vi and Ex · · · · · · · 33
7.7 Open Mode: Vi on Hardcopy Terminals and Glass

ttys · · · · · · · · . . · · 33

- ii -

Chapter 4

VISUAL TEXT EDITOR - VI

The visual editor vi is a screen-oriented, interactive text editor. It uses
your screen as a window into the file you are editing. When you make
a change, you see it on your screen.

Vi inserts new text easily. Most of the vi commands move the cursor
around the file. For example, there are commands that move the cur­
sor forward and backward over characters, words, sentences, and para­
graphs. You can combine motion commands with some operators
(such as d for delete and c for change) to form larger operations (such
as delete word or change paragraph). This regularity and the mnemonic
assignment of commands makes vi commands easy to remember and to
use.

The vi commands are available on all terminals. You can also use com­
mands for ed (the line-oriented editor) within vi; it is easy to switch
between these two editors.

1. Getting Started

This chapter introduces vi (pronounced vee-eye). The first part of this
chapter (sections 1 through 5) describes the basic uses of vi. We
present some special-interest topics in section 6, and some nitty-gritty
details in section 7.

There is also an appendix listing the special meanings of some charac­
ters in vi.

1.1 Editing a File

Make a copy of an existing file called "temp" to use for practicing text
editing with vi. Start to edit this file by typing:

% vi temp RETURN

where "temp" is the name of the file copy you just created. The
screen clears and the text of your file appears on the screen. If some­
thing else happens, refer to the footnote. *

4-1

VISUAL TEXT EDITOR - VI

where "temp" is the name of the file copy you just created. The
screen clears and the text of your file appears on the screen. If some­
thing else happens, refer to the footnote. *

1.2 Visual Editor's Copy: The Buffer

The visual editor does not directly modify the file you edit. Rather, it
makes a copy of this file and places it in the buffer. You do not change
the contents of the file until you write the changes you make back into
the original file.

1.3 Arrow Keys

The arrow keys on your keyboard move the cursor in vi. You can also
use the h j k and I keys to move the cursor:

h moves a space to the left (the same as a backspace),

j moves down a line (in the same column),

k moves up a line (in the same column), and

moves a space to the right.

1.4 Special Characters: ESC, RETURN and DEL

Look on your keyboard for a key labelled ESC or ALT. It is probably
near the upper-left corner of your keyboard. Try pressing this key a
few times. On most terminals a bell will ring. This means that the
visual editor does not understand why you pressed this key. t You will

* If there is no text on your screen, you probably typed the wrong file name. If typed
the incorrect file name, vi creates a new file with the name that you input. To get out
of the file type ":q" and try again. You might also have copied an empty file-in this
case, quit the file by typing ":q" and remove the file you created by typing "rm
temp". Try copying another file.

t On some terminals the visual editor will quietly flash the screen rather than ringing
the bell.

4-2

VISUAL TEXT EDITOR - VI

be using the ESC key to cancel commands and to signal that you are
through inserting text.

The RETURN or CR (carriage return) key terminates certain commands.
It is usually at the right side of the keyboard and is the same key you
press at the end of each shell command. We indicate pressing this key
in our examples with RETURN.

Another very useful key is the DEL (possibly DELETE or RUB on some
keyboards) key, which tells vi to stop what it is doing. It is a forceful
way of making vi listen to you, or to stop it from doing something you
don't want it to do.

Try pressing the" /" key. Pressing this key means you want to search
for some text. The cursor should now be at the bottom line of the ter­
minal. You can get the cursor back to the current position by hitting
the DEL key; try this now.* From now on we will simply refer to press­
ing the DEL key as "sending an interrupt."

Vi often shows your commands on the last line of the terminal. If the
cursor is on the first position of this last line, the visual editor is work­
ing on something (such as finding a new position in the file after a
search or reformatting the buffer). When this happens, you can stop vi
by sending an interrupt.

1.5 Getting Out of the Editor

After you have worked with this introduction for a while, you can give
the command ZZ or :wq. This will write the contents of the buffer
back into the file you are editing, and then quit (leave) the visual edi­
tor. You can also quit an editing session by giving the command

:q!RETURN

this is a dangerous but occasionally essential command which ends the
session and discards all your changes. You will use this command if
you make major changes you don't want to keep, such as erasing half

* Backspacing over the "/" will also cancel the search.

4-3

VISUAL TEXT EDITOR - VI

of your file by mistake. Don't use this command if you want to save
your changes.

2. Moving Around in the File

2.1 Scrolling and Paging

The visual editor has several commands that move you around your
file. The most useful of these is CONTROL-D (this is produced by
holding down the key labelled CONTROL or CTRL while you press the
"d" key). We will use this notation for referring to these control keys
from now on.

A CONTROL-D scrolls half a screenful (12 lines) down in the file. The
"d" stands for down. Many vi commands are mnemonic and this
makes them much easier to remember. For instance, the command to
scroll up is CONTROL-U.

If you want to see more of the file below where you are, you can press
CONTROL-E to expose one more line at the bottom of the screen, leav­
ing the cursor where it is. The command CONTROL-Y (which is hope­
lessly non-mnemonic, but next to CONTROL-U on the keyboard)
exposes one more line at the top of the screen.

There are other ways to move around in a file; the keys CONTROL-B
and CONTROL-F move backward and forward a page (a screenfuI),
respectively, keeping a couple of lines of continuity between screens.

Notice the difference between scrolling and paging. If you are trying to
read through a file, pressing CONTROL-F to move forward a page will
leave you only a little context to look back at. Scrolling, on the other
hand, leaves more context. Sometimes you can continue to read the
text as scrolling takes place.

2.2 Searching, Goto, and Previous Context

You can also move around by searching for text that appears at the
location you want to go to. To do this you would type" I" and a string
of characters to search for, then press RETURN. For example, type:

ItheRETURN

4-4

VISUAL TEXT EDITOR - VI

Vi moves the cursor to the next occurrence of this string. Press n to
search for the next occurrence of this string. Pressing? searches back­
wards for the string.

If the visual editor cannot find the string you're searching for, it will
print a message on the last line of the screen and return the cursor to
its initial position.

If you want to search for a string that only appears at the beginning of a
line, type " before the string. For example, typing:

I"theRETURN

searches for the incidence of the word "the" only when it appears at
the beginning of a line. To search for a string that appears only at the
end of a line, end a search string with a $. Thus:

Ithe$RETURN

searches for the incidence of the word "the" only when it appears at
the end of a line.

Typing a line number and G moves your cursor to that line in the file.
For example,

IGRETURN

moves the cursor to the first line of the file. If you type G with no line
number, the visual editor moves your cursor to the end of the file.

Move to the end of your file by hitting G. Notice that vi places only
the tilde character (-) on each line past the last line of your text. This
means that the lines marked with "-,, are past the end of the file.

You can find out information about the file you are editing by typing
CONTROL-G. The last line of your screen will show you the name of
the file you are editing, the current line number, the total number of
lines in the buffer, and the percentage of the way through the buffer
you are.

You can get back to a previous position by using the two back quotes
("). This is often more convenient than G because frequently you

4-5

VISUAL TEXT EDITOR - VI

don't remember the previous line number. Move to line 5 in your file
by typing "SG". Now type G which will bring you to the end of your
file, then type " to get back to where you were (line 5). If you acciden­
tally hit another command which moves you away from where you
wanted to be, you can quickly get back by pressing ".

2.3 Moving Around on the Screen

N ow move the cursor around on the screen. If your terminal has arrow
keys use them. Also you can always use the keyboard letters h to
move left, j to move down, k to move up, and I to move right.
Experienced users of vi prefer these keys to arrow keys because they
are usually right underneath their fingers.

Press the + key. Each time you do, the cursor moves to the next line
in the file. The RETURN key has the same effect as the + key. The­
key moves you back a line.

These are common keys for moving up and down lines in the file. If
you go off the bottom or top of the screen with these keys, the screen
scrolls down or up to bring one line at a time into view.

Vi also has commands to take you to the top, middle, and bottom of
the screen:

H top
M middle
L last

H takes you to the top (home) line on the screen. Try preceding it
with a number, for example, "3H". This takes you to the third line on
the screen. M takes you to the middle line on the screen. L takes you
to the last line on the screen. You can also precede L with a number.
For example, "SL" takes you to the fifth line from the bottom.

2.4 Moving Within a Line

Pick out a word somewhere in the middle of the screen. Move the cur­
sor (using RETURN or -) to the line where the word is. Press the w
key. This advances the cursor to the start of the next word on the line.
Press the b key to back up words in the line. Also press the e key to
move to the end of the current word rather than to the beginning of the

4-6

VISUAL TEXT EDITOR - VI

next word. Hitting the space bar moves right one character and the
BACKSPACE key key moves left one character. (Also, as we men­
tioned before, h moves you to the left and I moves you to the right.)

If you move on a line with punctuation in it, you may notice the wand
b keys stop at each punctuation mark. You can go forward and back­
ward without stopping at punctuation by using Wand B, respectively,
rather than the lowercase equivalents. Try these on a few lines with
punctuation to see how they differ from the lowercase wand b.

The word keys wrap around the end of line, rather than stopping at the
end. Move to a word on the line below by repeatedly pressing w.

2.5 Summary

CONTROL-B
CONTROL-D
CONTROL-E
CONTROL-F
CONTROL-G
CONTROL-H
CONTROL-N
CONTROL-P
CONTROL-U
CONTROL-Y
+

/
?
B
G
H
M
L
W
b
e
n
w

move backwards to previous page
scroll down in the file
expose another line at the bottom
move forward to next page
tell what is going on
move the cursor back a space
move to next line, same column
move to previous line, same column
scroll up in the file
expose another line at the top
move to next line, at the beginning
move to previous line, at the beginning
search forward for the following string
search backward for the following string
move back a word, ignoring punctuation
go to specified line, default is last line
go to home screen line
go to middle screen line
go to last screen line
move forward a word, ignoring punctuation
move back a word
move to end of current word
search for next instance of / or ? pattern
move to word after this word

4-7

VISUAL TEXT EDITOR - VI

2.6 Viewing a File

If you want to look at a file, rather than make changes, start the visual
editor by typing: .

view filename

instead of vi. This prevents you from accidently overwriting or chang­
ing the file.

3. Making Simple Changes

3.1 Inserting

One of the most useful commands is the i (insert) command. After
you type i, everything you type is inserted into the file. To finish insert­
ing, press the ESC key. Try this now; move to the beginning of a word
in your file and insert text before this word by and pressing i and typing
in some words and then ESC. If you are on an dumb terminal it will
seem, for a minute, that some of the characters in your line have been
overwritten, but they will reappear when you press ESC.

Notice that i inserts what you have typed before the cursor position.
The a command appends text after the cursor position. Move to the
start of a word that can be pluralized and type e (to move to end of
word), then a (to append) and type the letter "s" and ESC. This
sequence of commands pluralizes a word.

Insert and append a few times to make sure you understand how this
works; i places text to the left of the cursor, a to the right.

You will often want to add new lines to the file you are editing. Press 0

which creates (opens) a new line after the line you are on. Use the 0
command to create a new line before the line you are on. After you
create a new line in this way, everything you type is inserted on the
new line. To stop inserting, press ESC.

Many related editor commands are started by the same letter but one is
lowercase and the other is uppercase. The uppercase key often works
backward and/or up, while the lowercase key moves forward and/or
down.

4-8

VISUAL TEXT EDITOR - VI

To type in more than one line of text, press RETURN where you want
to end a line. This creates a new line for text and you can continue typ­
ing. If you are on a slow or dumb terminal, the visual editor may wait
to redraw the screen, and will let you type over the existing screen
lines. This avoids waiting for the editor to keep the end of the screen
up to date. The end of the screen will be fixed, and the missing lines
will reappear when you press ESC.

While you are in insert mode (inserting new text using), you can press
CONTROL-H or # to backspace over the last character you typed; and
@, CONTROL-X, or CONTROL-U to erase the current line you typed.
CONTROL-W erases a whole word and leaves you after the previous
word; it is useful for quickly erasing an insert.

When you backspace during an insertion, the characters you backspace
over remain on your screen. This is useful if you want to type in
something similar. The characters disappear when when you press ESC.

When you are in insert mode you cannot erase characters which you
didn't just insert, and you cannot backspace up to the previous line. If
you need to back up to the previous line to make a correction, press
ESC and move the cursor back to the previous line. After making the
correction (see next section), you can return to where you were and
use the insert or append command again.

3.2 Making Small Corrections

You can make small corrections in existing text quite easily. Find a
single character to correct. Use the arrow keys or word motion keys to
move the cursor to the character. Press the x key to delete the charac­
ter. This is analogous to the way you "x" out characters when you
make mistakes on a typewriter (except it's not as messy).

If the character is incorrect, you can replace it with the correct character
by typing rc, where c is the correct character. Also, if you want to
replace a character with more than one character,

sstringESC

makes the substitution. If there are a few characters which are wrong,
you can precede s with the number of characters to replace. Counts are
also useful with x to specify the number of characters to delete.

4-9

VISUAL TEXT EDITOR - VI

3.3 More Corrections: Operators

You already know almost enough to make changes at a higher level.
All you need to know now is that the operator d deletes. Move to the
beginning of a word and type dw to delete a word.

Try hitting the. a few times. Notice that this repeats the dw command.
The command . repeats the last command which made a change. You
can remember it by analogy with an ellipsis " ... ".

Now try db. This deletes a word backwards. Try d and a space; this
deletes a single character and is equivalent to the x command.

Another very useful operator is c for change. The command cw changes
a single word. You need to follow the command with a replacement
word or words, and then press ESC. Move to the beginning of a word
and type:

cw newwordESC

Notice that the end of the text to be changed was marked with the
character "$".

3.4 Operating on Lines

The command dd deletes a line. If you are on a dumb terminal, vi may
just erase the line on the screen, replacing it with a line with only an
"@" symbol on it. This line does not correspond to any line in your
file, but acts as a place holder. It helps to avoid a lengthy redraw of the
rest of the screen.

The command cc changes a whole line, erasing its previous contents
and replacing them with text you type until you press the ESC.*

* The command S is the same as CC. Think of S as a substitute of lines, while s is a
substitute on characters.

4-10

VISUAL TEXT EDITOR - VI

You can delete or change more than one line by preceding the dd or cc
with a number. For example, "Sdd" deletes 5 lines. You can also give
a command like "dL" to delete all the lines up to and including the last
line on the screen, or "d3L" to delete through the third line from the
bottom. Try some commands like this now.

One way to use these operators involves using the / search command.
For example:

d/ pattern

will delete all characters from the current position to the pattern.

Vi lets you know when you change many lines by broadcasting the
message on the last line of the screen. The visual editor also tells you
when a change affects text which you cannot see.

3.5 Undoing

Suppose that the last change you made was incorrect; the visual editor
has a u (undo) command to reverse the last change you made. Try this
a few times. Notice that u also undoes a u.

The undo command reverses only a single change. After you make
several changes to a line, you may decide that you would rather have
the original line back. The U command restores the current line to the
way it was before you started changing it.

You can recover text which you delete, even if undo will not bring it
back; see the section on recovering lost text below.

4-11

VISUAL TEXT EDITOR - VI

3.6 Summary

CONTROL-W
CONTROL-H
CONTROL-X
CONTROL-U

o
U
a
c
d

o
u

erase a word during insert mode
erase a character during insert mode
kill the insert on this line
kill the insert on this line
repeat the last changing command
open and input new lines, above the current line
undo the changes made to the current line
append text after the cursor
change the object you specify to the following text
delete the object you specify
insert text before the cursor
open and input new lines, below the current
undo the last change

4. Moving About; Rearranging and Duplicating Text

4.1 Working with Characters

Move the cursor to a line with a parenthesis, comma, or period. Try
the command:

fx

where x is the punctuation mark. This command finds the next x char­
acter to the right of the cursor in the current line. Try pressing ;
(semi-colon). This finds the next occurrence of the same character.
There is also a F command, which is like f, but searches backward.
The ; command repeats F also.

Type

dfx

where x is a character on the current line. Notice that text up to and
including the x character is deleted. Undo this with u and then try

dtx

where x is a character on the current line. This command deletes up to
but not including the x. The t command stands for to. The command
T is the reverse of t (it works backwards).

4-12

VISUAL TEXT EDITOR - VI

The" character moves the cursor to the first non-white position on the
line, and a S moves it to the end of the line. Thus Sa appends new text
to the end of the current line.

Your file may have tab (CONTROL-I) characters in it. These characters
are represented as several spaces expanding to a tab stop, where tab
stops are every 8 positions. When the cursor is at a tab, it sits on the
last of the spaces which represent that tab. Try moving the cursor back
and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it.
These characters are displayed as a two-character code, the first charac­
ter of which is """. On the screen, non-printing characters resemble a
,,"" character adjacent to another, but spacing or backspacing over the
character reveals that the two characters are treated as a single charac­
ter.

The visual editor sometimes discards control characters (depending on
the character and the setting of the beautify option) if you attempt to
insert them in your file. You can get a control character in the file by
beginning an insert and then typing a CONTROL-V before the control
character. The CONTROL-V quotes the following character, inserting it
directly into the file.

4.2 Working on Sentences, Paragraphs, and Sections

You may want to use commands on whole sentences, paragraphs, and
sections. The (and) move to the beginning of the previous and next
sentences, respectively. Thus the command "d)" 'will delete the rest of
the current sentence; likewise "d(" will delete the previous sentence if
you are at the beginning of the current sentence, or the current sen­
tence up to where you are if you are not at the beginning of the current
sentence.

A sentence ends at a . ! or ? which is followed by either the end of a
line or by two spaces. Any number of closing)] " and' characters
may appear after the . ! or ?

The { and } move over paragraphs and [[and)) move over sections.

4-13

VISUAL TEXT EDITOR - VI

A paragraph begins after each empty line, and also at a paragraph
macro. The default setting for this option defines the paragraph macros
of the - ms and - mm macro packages, i.e., the .IP, .LP, .PP and
.QP, .P and .LI macros. t The troff request .bp also starts a paragraph.
Each paragraph boundary is also a sentence boundary. The sentence and
paragraph commands can be given counts to operate over groups of
sentences and paragraphs.

Sections begin after each macro in the sections option (normally .NH,
.SH, .H and .HU) and each line with a formfeed (CONTROL-L) in the
first column. Section boundaries are always line and paragraph boun­
daries.

Try experimenting with the sentence and paragraph commands until
you are sure how they work. If you have a large document, try looking
through it using the section commands. The section commands inter­
pret a preceding count as a different window size for newly drawn win­
dows until you specify another size. This is very useful if you are on a
slow terminal and are looking for a particular section. You can give the
first section command a small count to then see each successive section
heading in a small window.

4.3 Rearranging and Duplicating Text

Vi has a single unnamed buffer where the last deleted or changed text
is saved, and a set of named buffers (a through z) which you can use to
save copies of text and to move text around in your file and between
files.

The operator y yanks a copy of the object which follows into the
unnamed buffer. For example, pressing "y3w" puts three words in the
buffer. If preceded by a buffer name, such as:

"xy

where x is replaced by a letter a-z, it places the text in the named
buffer. The text can then be put back in the file with the commands p

t You can easily change or extend this set of macros by assigning a different string to
the paragraphs option in your EXINIT.

4-14

VISUAL TEXT EDITOR - VI

and P; p puts the text after or below the cursor, while P puts the text
before or above the cursor.

If the text you yank forms part of a line, or partially spans more than
one line, when you put the text back, it will be placed after the cursor
(or before, if you use P). If the yanked text forms whole lines, they
will be put back as whole lines, without changing the current line. In
this case, the put acts much like a 0 or 0 command.

Try the command YP. This makes a copy of the current line and places
it before the current line. The command Y is a convenient abbrevia­
tion for yy. The command Yp also makes a copy of the current line
and places it after the current line. You can give Y a count of lines to
yank and duplicate several lines. Try typing "3YP".

To move text within the buffer, you need to delete it in one place and
put it back in another. You can precede a delete command by the name
of a buffer to store the text in. For example:

"a5dd

deletes 5 lines and places them in the buffer "a". You can then move
the cursor to where you want the lines moved to and type

"ap
or

"aP

to put them back. An ordinary delete command saves the text in the
unnamed buffer, so an ordinary put can move it elsewhere. However,
the unnamed buffer is lost when you make any changes,

4-15

VISUAL TEXT EDITOR - VI

4.4 Summary

first non-white on line
$ end of line
) forward sentence
} forward paragraph
II forward section
(backward sentence
{ backward paragraph
([backward section
fx find x forward in line
tx to x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
F x find x backward in line
P put text back, before cursor or above current line
T x to x backward in line

5. High-Level Commands

5.1 Writing, Quitting, Editing New Files

So far we have seen how to enter vi and write our file using either ZZ
or :w. The first exits from the visual editor (writing any changes
made), the second writes and stays in the visual editor.

If you have made changes in the file but do not want to save your
changes, type ":q!RETURN" to leave vi without writing the changes.
You can also re-edit the same file (starting over) by giving the com­
mand ":e!RETURN". These commands should be used with caution,
since you cannot retrieve your changes once you've used either of
these commands.

You can edit a different file without leaving the visual editor by typing:

:e nameRETURN

If you have not written your file before you do this, vi will tell you so.
You can then type ":wRETURN" to save your work and then retype
the above ":e" command again.

4-16

VISUAL TEXT EDITOR - VI

5.2 Escaping to the Shell

You can get to the shell to execute a single command by giving a vi
command of the form:

:! cmdRETURN

The system will run the single command cmd and ask you to press
RETURN when the shell command is finished. When you have finished
looking at the output on the screen, press RETURN and the visual edi­
tor clears the screen and redraws it. You can then continue editing.
You can also remain in the shell by typing: instead of RETURN; in this
case, the screen will not be redrawn.

To execute more than one command in the shell, type:

:shRETURN

This gives you a new shell. When you finish with the shell, type
CONTROL-D. The visual editor clears the screen and continues.

5.3 Marking and Returning

The command " returned to the previous place after moving the cursor
with commands such as /, ? or G. You can also mark lines, using the
m command, in the file with single letter tags and return to these marks
later by typing the tags. Try marking the current line with the com­
mand:

mx

where x stands for a letter. Then move the cursor to a different line
(any way you like) and press:

'x

where x stands for the letter you choose in the above example. The
cursor returns to the place you marked. Marks last only until you edit
another file.

When using operators such as d and referring to marked lines, you may
want to delete whole lines rather than deleting to the exact position in
the line marked by m. In this case you can use

4-17

VISUAL TEXT EDITOR - VI

'x

rather than

'x

Used without an operator, "'x' moves to the first non-white character
of the marked line; similarly " moves to the first non-white character
of the line containing the previous context mark ".

5.4 Adjusting the Screen

To clean up your screen, press CONTROL-L, the ASCII form-feed char­
acter.

On a dumb terminal, if there are "@" lines in the middle of the screen
as a result of line deletion, you may get rid of these lines by typing
CONTROL-R.

You can redraw your screen to that a certain line will be placed at the
top, middle, or bottom of your screen. To do this move the cursor to
that line and type z. You should follow the z command with a
RETURN if you want the line to appear at the top of the window, a . if
you want it at the center, or a - if you want it at the bottom.

6. Special Topics

6.1 Editing on Slow Terminals

When you are on a slow terminal, you should limit the output to your
screen. We have already shown how vi optimizes screen updating dur­
ing insertions to limit the delays, and how the visual editor erases lines
to "@" when they are deleted on dumb terminals.

If you have a slow terminal, you should set the slowopen option. You
can force the visual editor to use this mode even on faster terminals by
giving the command:

:se slowRETURN

If your system is sluggish, this helps lessen the amount of output com­
ing to your terminal. You can disable this option by:

4-18

VISUAL TEXT EDITOR - VI

:se noslowRETURN

A dumb terminal can can simulate an intelligent terminal. Try giving
the command

:se redrawRETURN

This generates a great deal of output and is generally tolerable only on
lightly loaded systems and fast terminals. You can disable this by giv­
ing the command:

:se noredrawRETURN

Vi also makes editing more pleasant at low speed by starting editing in
a small window, and letting the window expand as you edit. This works
particularly well on intelligent terminals. The window easily expands
when you insert in the middle of the screen on these terminals. If pos­
sible, try editing on an intelligent terminal to see how it works.

You can control the size of the window redrawn when the screen is
cleared by giving window sizes as argument to the commands:

/ ? [[]]

If you are searching for a common string in a file, you can precede the
first search command by a small number (for instance, 3) and vi will
draw three line windows around each instance of the string.

You can easily expand or contract the window, placing the current line
where you want, by giving a number after the z command and before
the following RETURN, . or -. For example, the command:

z5.

redraws the screen with the current line in the center of a five line win­
dow.*

* The command "5z." has an entirely different effect, placing line 5 in the center of a
new window.

4-19

VISUAL TEXT EDITOR - VI

If the visual editor is updating large portions of the display, you can
interrupt by pressing DEL. This may partially confuse vi about what is
displayed on the screen. You can still edit the text on the screen if you
wish; clear up the confusion by pressing CONTROL-L; or move or
search again, ignoring the current state of the display.

See the section on open mode for another way to use the vi command
set on slow terminals.

6.2 Options, Set, and Editor Startup Files

Vi has a set of options, some of which have been mentioned above.
The most useful options are the following:

Name Default Description

autoindent noai Supply indentation automatically
autowrite noaw Automatic write before :0, :t8, ~l, !
ignorecase noic Ignore case in searching
list nolist Tabs print as CONTROL-I; end-of-lines as $
magic nomagic The characters . [and * are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para = IPLPPP Macro names which start paragraphs

QPbpPLI
redraw nore Simulate a smart terminal on a dumb one
sections sect= Macro names which start new sections

NHSHHHU
shiftwidth sw=8 Shift distance for <, > and input

CONTROL-D and CONTROL-T
showmatch nosm Show matching (or { as) or } is typed
slowopen slow Postpone display updates during inserts
term dumb The kind of terminal you are using.

There are three kinds of options: numeric options, string options, and
toggle options. You can set numeric and string options by a statement
of the form

set opt = val

and toggle options can be set or unset by statements of one of the
forms

4-20

VISUAL TEXT EDITOR - VI

set opt
set noopt

These statements can be placed in your EXINIT in your environment,
or given while you are running vi by preceding them with a : and fol­
lowing them with a RETURN.

You can get a list of all options you have changed by typing

:setRETURN

or the value of a single option by typing

:set opt ?RETURN

You can list all possible options and their values by typing

:set allRETURN

The set command can be abbreviated to se. Multiple options can be
placed on one line, e.g.,

:se ai aw nuRETURN

Options set by the set command only last while you stay in vi. If you
want certain options set whenever you edit, create a list of editor com­
mands to run every time you start up ex, ed, or vi. A typical list
includes a set command and a few map commands (we discuss map
commands later in this chapter). You can fit these commands on one
line by separating them with the I character, for example:

set ai aw terse I map @ dd I map # x

which sets the options autoindent, auto write, terse, (using the set com­
mand), makes @ delete a line, (the first map), and makes # delete a
character, (the second map). This string should be placed in the vari­
able EXINIT in your environment. If you use csh, put this line in the
file ".login" in your home directory:

setenv EXINIT ' set ai aw terse I map @ dd I map # x'

Of course, the particulars of the line would depend on which options
you wanted to set.

4-21

VISUAL TEXT EDITOR - VI

6.3 Recovering Lost Lines

You might have a serious problem if you delete lines and then regret
that they were deleted. Despair not, the visual editor saves the last 9
deleted blocks of text in a set of numbered registers 1-9. You can get
the nth previous deleted text back in your file by the command

"np

The" here says that a buffer name follows, n is the number of the
buffer (use the number 1 for now), and p is the put command, which
puts text in the buffer after the cursor. If this doesn't bring back the
text you wanted, type u to undo this and then. (period) to repeat the
put command. In general the. command repeats the last change you
made. When the last command refers to a numbered text buffer, the.
command increments the number of the buffer before repeating the
command. For example, typing

"1pu.u.u.

will show you all the deleted text which has been saved for you. You
can omit the u commands here to gather up all this text in the buffer,
or stop after any . command to keep just the text recovered so far. The
command P can be used instead of p to put the recovered text before
rather than after the cursor.

6.4 Recovering Lost Files

If the system crashes, you can recover the work you were doing. You
will normally receive mail when you next login giving you the name of
the file saved for you. You should then change to the directory where
you were when the system crashed and give a command of the form:

% vi -r name

replacing name with the name of the file you were editing. This recov­
ers your work to a point near where you left off. t

t In some cases, some of the lines of the file may be lost. Vi will give you the
numbers of these lines and the text of the lines will be replaced by the string 'LOST'.
These lines will almost always be the last few you changed. You can either discard
the changes you made (if they are easy to remake) or replace the few lost lines by
hand.

4-22

VISUAL TEXT EDITOR - VI

You can get a listing of the files saved for you by typing the command:

% vi -r

If there is more than one copy of a file saved, the visual editor gives
you the newest copy each time you recover it. You can get an older
saved copy back by first recovering the newer copies.

For this feature to work, vi must be correctly installed by a super user
on your system, and the mail program must receive mail. The com­
mand "vi -r" will not always list all saved files, but they can be
recovered even if they are not listed.

6.S Continuous Text Input

When you are typing in large amounts of text, it is convenient to have
lines broken near the right margin automatically. You can set this by
giving the command

:se wm=10RETURN

which breaks all lines at least 10 columns from the right edge of the
screen.

If vi breaks an input line and you wish to put it back together, you can
join the lines with J. You can give J a count of the number of lines to
join. For example, 3J joins 3 lines. Vi supplies white space, if
appropriate, at the juncture of the joined lines, and leaves the cursor at
this white space. You can kill the white space with x if you don't want
it.

6.6 Features for Editing Programs

Vi has several commands for editing programs. The thing that distin­
guishes editing programs from editing text is the need to indent the
body of the program. The visual editor's autoindent helps you correctly
indent programs.

To set this facility, type

:se aiRETURN

4-23

VISUAL TEXT EDITOR - VI

Now open a new line with 0, press the tab key a few times, and type
some characters. If you now start another line, the visual editor sup­
plies white space at the beginning of the line to line it up with the pre­
vious line. You cannot backspace over this indentation, but you can
use CONTROL-D to backtab over the indentation.

Each time you type CONTROL-D, you back up one position, normally
to an 8-column boundary. You can set this with the shiftwidth option.
Type

:se sw=4RETURN

and then experiment with autoindent again.

To shift lines left and right, use the operators < and>. These shift
lines right or left by one shiftwidth. Type « and » which shift one
line left or right, and < Land > L which shift the rest of the display
left and right.

If you have a complicated expression and want to make sure the
parentheses match, put the cursor at a left or right parenthesis and
press %. This shows you the matching parenthesis. This also works for
braces { and }, and brackets [and].

If you are editing C programs, you can use the 1I and II keys to advance
or retreat to a line starting with a {, i.e., a function declaration at a
time. When you use 11 with an operator, it stops after a line which
starts with } ~ this is sometimes useful with y1l.

6.7 Filtering Portions of the Buffer

You can run system commands over portions of the buffer using the
operator !. You can use this to sort lines in the buffer, or to reformat
portions of the buffer with a pretty-printer. Type a list of words, one
per line, and end the list with a blank line. Back up to the beginning of
the list, and type

!}sortRETURN

which sorts the next paragraph, and the blank line ends a paragraph.

4-24

VISUAL TEXT EDITOR - VI

6.S Macros

Vi has a parameterless macro facility, which lets you set a single key
equal to some longer sequence of keys. You can set this up if you find
yourself typing the same sequence of commands repeatedly.

Briefly, there are two kinds of macros:

a) Ones where you put the macro body in a buffer register, for
example, x. You can then type @x to start the macro. You
may follow @ with another @ to repeat the last macro.

b) You can use the map command from vi (typically in your
EXINIT) with a command of the form:

:map Ihs rh~ETURN

mapping Ihs into rhs. There are restrictions: Ihs should be one
keystroke (either one character or one function key) since it
must be entered within one second (unless notimeout is set, in
which case you can type it as slowly as you wish) The Ihs can
be no longer than 10 characters, the rhs no longer than 100.
To get a space, tab, or newline into Ihs or rhs you should
escape them with a CONTROL-V. (It may be necessary to
double the CONTROL-V if the map command is given inside
vi, rather than in ex.) Spaces and tabs inside the rhs need not
be escaped.

For example, to make q write and exit the editor, you can give the
command

:map q :wqCONTROL-VCONTROL-VRETURN

which means that whenever you type q, it will be as though you had
typed the four characters ":wqRETURN". CONTROL-Vs are needed
because, without them, the RETURN would end the: command, rather
than becoming part of the map definition. There are two CONTROL­
Vs because from within vi, two CONTROL-Vs must be typed to get
one. The first RETURN is part of the rhs, the second terminates the
command.

You can delete macros with

unmap Ihs

4-25

VISUAL TEXT EDITOR - VI

If the Ihs of a macro is "#0" through "#9", this maps the particular
function key instead of the two-character "#" sequence. So that ter­
minals without· function keys can access such definitions, the form
"#x" means function key x on all terminals (and need not be typed
within one second.) The character "#" can be changed by using a
macro in the usual way. For example, to use tab you could type

:map CONTROL-VCONTROL-VCONTROL-! #

(This won't affect the map command, which still uses #, but just the
invocation from visual mode).

The undo command. reverses an entire macro call as a unit, if it made
any changes.

Placing an ! after the word map causes the mapping to apply to input
mode, rather than command mode. For CONTROL-T to be the same
as 4 spaces in input mode, you can type:

:map CONTROL-T CONTROL-V~~~~

where ~ is a blank. The CONTROL-Vis necessary to prevent the
blanks from being taken as white space between the Ihs and rhs.

6.9 Word Abbreviations

A feature similar to macros in input mode is word abbreviation. This
allows you to type a short word and have it expanded into a longer
word or words. The commands are :abbreviate and :unabbreviate (:ab
and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

changes the word "eecs" into the phrase "Electrical Engineering and
Computer Sciences". Word abbreviation is different from macros in
that only whole words are affected. If "eecs" were typed as part of a
larger word, it would be left alone. Also, the partial word is echoed as
it is typed. An abbreviation to be any number of keystrokes.

7. Nitty-Gritty Details

7.1 Line Representation in the Display

Vi folds long logical lines onto many physical lines in the display.
Commands which advance lines advance logical lines and will skip over

4-26

VISUAL TEXT EDITOR - VI

all the segments of a line in one motion. The command I moves the
cursor to a specific column, and may be useful for getting near the mid­
dle of a long line to split it in half. Type 801 on a line which is more
than 80 columns long.*

The visual editor only puts full lines on the display; if there is not
enough room on the display to fit a logical line, the visual editor leaves
the physical line empty, placing only an @ on the line as a place holder.
When you delete lines on a dumb terminal, vi often just clears the lines
to @ to save time (rather than rewriting the rest of the screen,) You
can always maximize the information on the screen by giving the
CONTROL-R command.

You can have line num bers before each line on the display. Type

:se nuRETURN

to enable this, and

:se nonuRETURN

to turn it off. You can have tabs represented as CONTROL-I and the
ends of lines indicated with "$" by giving the command

:se listRETURN

and to turn this off

:se nolistRETURN

Finally, lines consisting of only the character "-,, are displayed when
the last line in the file is in the middle of the screen. These represent
physical lines which are past the logical end of file.

7.2 Counts

Most vi commands will take a preceding count. The following table
gives the common ways counts are used:

:j: You can make long lines very easily by using J to join together short lines.

4-27

VISUAL TEXT EDITOR - VI

new window size
scroll amount
line/column number
repeat effect

:/?((II"
CONTROL-D CONTROL-U
z G I
most of the rest

Vi maintains the current default window size. On terminals which run
at speeds greater than 1200 baud, the visual editor uses the full termi­
nal screen. On terminals which are slower than 1200 baud (most dial­
up lines are in this group), the visual editor uses 8 lines as the default
window size. At 1200 baud, the default is 16 lines.

This is the size used when vi clears and refills the screen. The com­
mands which take a new window size as count all redraw the screen. If
you do not need as large a window as you are currently using, you may
change the screen size by specifying the new size before these com­
mands. In any case, the number of lines used on the screen will
expand if you move off the top with a - or similar command or off the
bottom with a command such as RETURN or CONTROL-D. The win­
dow reverts to the last specified size the next time it is cleared and
refilled.*

The scroll commands CONTROL-D and CONTROL-U likewise
remember the amount of scroll last specified, using half the basic win­
dow size initially. The simple insert commands use a count to specify a
repetition of the inserted text. Thus

10a+----ESC

inserts a grid-like string of text. A few commands also use a preceding
count as a line or column number.

Except for a few commands which ignore any counts (such as
CONTROL-R), the rest of the visual editor commands use a count to
indicate repetition. Thus "Sw" advances five words on the current
line, while "SRETURN" advances five lines. A useful example of a
count as a repetition is a count given to the. command, which repeats

* But not by a CONTROL-L which just redraws the screen as it is.

4-28

VISUAL TEXT EDITOR - VI

the last changing command. If you do dw and then "3.", you will
delete first one and then three words. Typing "2." deletes two more
words.

7.3 More File-Manipulation Commands

The following table lists the file-manipulation commands in vi.

:w
:wq
:x
:e name
:e!
:e + name
:e +n
:e #
:w name
:w! name
:x,}W name
:r name
:r !cmd
:n
:n!
:n args
:ta tag

write back changes
write and quit
write (if necessary) and quit (same as ZZ).
edit file name
reedit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag tag, at tag

All of these commands are followed by a RETURN or ESC. The most
basic commands are :w and :e. A normal editing session on a single
file will end with a ZZ command. If you are editing for a long time,
you can give :w commands after major edits, and finish with a ZZ.
When you edit more than one file, you can finish with :w and start
editing a new file by typing :e, or set auto write and use :n < file> .

If you make changes to vi's copy of a file, but do not want to write
them back, then you must type! after the command you would other­
wise use; this forces vi to discard any changes you have made. Use this
carefully.

You can add + to the :e command to start at the end of the file, or + n
to start at line n. The n may be any command not containing a space,
for example, a scan like + / pat or +? pat. In adding new names to the
e command, you can use % which is replaced by the current file name,

4-29

VISUAL TEXT EDITOR - VI

or # which is replaced by the alternate file name. The alternate file
name is generally the last name you typed other th,an the current file.
If you type :e and get a diagnostic that you haven't written the file, you
can give a :w command and then a :e # command to redo the previous
:e.

You can write part of the buffer to a file by finding out the lines that
bound the range to be written (using CONTROL-G), and giving these
numbers after the: and before the w, separated by ,'s. For example,
"5,20w fred" writes lines 5 through 20 to the file "fred". You can
also mark these lines with m and then use an address of the form 'x,' y
on the w command here.

You can read another file into the buffer after the current line by using
the :r command. You can read in the output from a command, just
use ! cmd instead of a file name.

To edit a set of files in succession, give all the names on the command
line, and then edit each one in turn using the command :n. You can
also respecify the list of files to edit by giving the :n command a list of
file names, or a pattern to be expanded as you would have given it on
the initial vi command.

If you are editing large programs, you will find the :ta command very
useful. It utilizes a data base of function names and their locations,
which can be created by programs, such as ctags, to quickly find a func­
tion whose name you give. If the :ta command requires the editor to
switch files, you must :w or abandon any changes before switching.
You can repeat the :ta command without any arguments to look for the
same tag again.

7.4 More About Searching for Strings

When you are searching for strings in the file with / and ?, vi normally
places you at the next or previous occurrence of the string. If you are
using an operator such as d, c or y, you may want to affect lines up to
the line before the line containing the pattern. You can give a search
of the form

/pat/- n

to refer to the nth line before the next line containing pat, or you can

4-30

VISUAL TEXT EDITOR - VI

use + instead of - to refer to the lines after the one containing pat. If
you don't give a line offset, the visual editor affects characters up to the
match place, rather than whole lines; use "+0" to affect to the line
which matches.

You can have the visual editor ignore the case of words in the searches
it does by giving the command

:se icRETURN

The command

:se noicRETURN

turns this off.

Strings given to searches may actually be regular expressions. If you do
not want or need this facility, you should

set nomagic

in your EXINIT. When you do this, only the characters A and $ are spe­
cial in patterns. The character \ is also special (as it is most every­
where in the system), and may be used to get at the an extended pat­
tern matching facility. You must also use \ before a / in a forward
scan or a ? in a backward scan. The following table gives the extended
forms when magic is set.

$

\<
\>
[sui
(" sui
[x- y]

*

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between x and y
matches any number of the preceding pattern

If you use nomagic mode, then the. [and * primitives are given with a
preceding \.

7.5 More About Input Mode

There are several characters you use to make corrections during input
mode. These are summarized in the following table.

4-31

VISUAL TEXT EDITOR - VI

CONTROL-H
CONTROL-W
erase
kill
\
ESC
DEL
RETURN
CONTROL-D
OCONTROL-D
"CONTROL-D
CONTROL-V

deletes the last input character
deletes the last input word, defined as by b
your erase character, same as CONTROL-H
your kill character, deletes the input on this line
escapes a following CONTROL-H and your erase and
ends an insertion
interrupts an insertion, terminating it abnormally
starts a new line
backtabs over autoindent
kills all the autoindent
same as OCONTROL-D, but restores indent next line
quotes the next non-printing character into the file

To correct your insertion, type CONTROL-H to correct a single charac­
ter, or type one or more CONTROL-Ws to back over incorrect words.
If you use # as your erase character in the normal system, it will work
like CONTROL-H.

Your system kill character, normally @, CONTROL-X, or CONTROL­
U, erases all the input you have given on the current line. In general,
you can neither erase past a line boundary nor erase characters you did
not insert with this insertion command. To make corrections on the
previous line, press ESC to end the insertion, make the correction, and
then return to where you were. A, which appends at the end of the
current line, is often useful for continuing.

To type in your erase or kill character (# or @), precede it with a \,
just as you would do at the normal system command level. A more
general way of typing non-printing characters into the file is to precede
them with a CONTROL-V. The CONTROL-V echoes as a A character
on which the cursor rests. This indicates that the editor expects you to
type a control character. In fact, you may type any character and it will
be inserted into the file at that point. t

t This is not quite true. Vi does not allow the NULL (CONTROL-@) character to
appear in files. Also the LINEFEED Oinefeed or CONTROL-J) character is used by vi
to separate lines in the file, so it cannot appear in the middle of a line. You can insert
any other character, however, if you wait for vi to echo the - before you type the
character. In fact, the visual editor will treat a following letter as a request for the
corresponding control character. This is the only way to type CONTROL-S or
CONTROL-Q, since the system normally uses them to suspend and resume output
and never gives them to vi to process.

4-32

VISUAL TEXT EDITOR - VI

If you are using autoindent, you can backtab over the indent which it
supplies by typing CONTROL-D. This backs up to a shiftwidth boundary.
This only works immediately after the supplied autoindent.

When you are using autoindent, you may want to place a label at the
left margin of a line. The way to do this easily is to type " and then
CONTROL-D. The editor moves the cursor to the left margin for one
line, and restores the previous indent on the next. You can also type a
o followed immediately by a CONTROL-D to kill all the indent and not
have it come back on the next line.

7.6 Vi and Ex

Vi is one mode of editing within the editor ex. When you are running
vi, you can escape to ex by typing Q. All of the : commands intro­
duced above are available in ex. Likewise, most ex commands can be
run from vi using : (colon). Since ex supplies the colon, start the
command by typing just the letter and pressing RETURN.

Occasionally, an internal error occurs in vi. If this happens, you get a
diagnostic and are left in the command mode of ex. You can then save
your work and quit by typing x after the: which ex prompts you with,
or you can re-enter vi by giving ex a vi command.

There are several things you can do more easily in ex than in vi. Sys­
tematic changes in line-oriented material are particularly easy. You can
read the advanced editing documents for the editor ed to find out more
about this style of editing. Experienced users often mix their use of ex
and vi to speed the work they are doing.

7.7 Open Mode: Vi on Hardcopy Terminals and Glass ttys

If you are on a hardcopy terminal or a terminal which does not have a
cursor which can move off the bottom line, you can still use the vi
command set, but in a different mode. When you give a vi command,
the editor will tell you that it is using open mode. This name comes
from the open command in ex, which is used to get into the same
mode.

The only difference between visual mode and open mode is the way in
which the text is displayed.

4-33

VISUAL TEXT EDITOR - VI

In open mode, the editor uses a single line window into the file, and
moving backward and forward in the file displays new lines, always
below the current line. Two vi commands work differently in open: z
and CONTROL-R. The z command does not take parameters, but
rather draws a window of context around the current line and then
returns you to the current line.

If you are on a hardcopy terminal, the CONTROL-R command retypes
the current line. On such terminals, the visual editor normally uses
two lines to represent the current line. The first line is a copy of the
line as you started to edit it, and you work on the line below this line.
When you delete ch~racters, the editor types \ 's to show you the char­
acters which are deleted. The visual editor also reprints the current line
soon after such changes so that you can see what the line looks like
again.

It is sometimes useful to use this mode on very slow terminals which
can support vi in the full screen mode. You can do this by entering ex
and typing "open".

4-34

Chapter 5: THE SHELL - SH

CONTENTS

1. Introduction

2. Simple Commands 1
2.1 Background Commands 2
2.2 Input/Output Redirection 2
2.3 Pipelines and Filters 3
2.4 File Name Generation 4

2.4.1 Quoting 5
2.5 Prompting by the Shell 6
2.6 The Shell and Login 6
2.7 Summary 6

3. Shell Procedures . 7
3.1 Control Flow-for 8
3.2 Control Flow-case 9

3.2.1 Here Documents 11
3.2.2 Shell Variables . 13
3.2.3 Test Command 16

3.3 Control Flow-while 16
3.4 Control Flow-if 17
3.5 Command Grouping 20
3.6 Debugging Shell Procedures 20
3.7 The man Command 21

4. Keyword Parameters 21
4.1 Parameter Transmission . 22
4.2 Parameter Substitution 22
4.3 Command Substitution 24
4.4 Evaluation and Quoting 25
4.5 Error Handling . 27
4.6 Fault Handling 29
4.7 Command Execution 31
4.8 Invoking the Shell 34

5. Tables 35

- i -

1. Introduction

Chapter 5

THE SHELL - SH

The shell is a command programming language that provides an inter­
face to the operating system. Its features include control-flow primi­
tives, parameter passing, variables, and string substitution. Constructs
such as while, if then else, case, and for are available. Two-way com­
munication is possible between the shell and commands. String-valued
parameters, typically file names or flags, may be passed to a command.
A return code is set by commands that may be used to determine
control-flow, and the standard output from a command may be used as
shell input.

The shell can modify the environment in which commands run. Input
and output can be redirected to files, and processes that communicate
through pipes can be invoked. Commands are found by searching
directories in the file system in a sequence that can be defined by the
user. Commands can be read either from the terminal or from a file
which allows command procedures to be stored for later use.

The shell is both a command language and a programming language
that provides an interface to the operating system. This chapter
describes, with examples, the shell. The "Simple Commands" part of
this chapter covers most of the everyday requirements of terminal
users. Some familiarity with the system is an advantage when reading
this section; refer to Chapters 1 and 2 if you are a novice. The "Shell
Procedures" part of this chapter describes those features of the shell
primarily intended for use within shell commands or procedures. These
include the control-flow primitives and string-valued variables provided
by the shell. A knowledge of a programming language would be help­
ful when reading this section. The last part, "Keyword Parameters,"
describes the more advanced features of the shell. See T&ble 5.A for a
defined listing of grammar words used in this chapter.

2. Simple Commands

Simple commands consist of one or more words separated by blanks.
The first word is the name of the command to be executed; any

5-1

THE SHELL - SH

remaining words are passed as arguments to the command. For exam­
ple,

who

is a command that prints the names of users logged in. The command

Is -I

prints a list of files in the current directory. The argument -I tells Is to
print status information, size, and the creation date for each file.

2.1 Background Commands

To execute a command, the shell normally creates a new process and
waits for it to finish. A command may be run without waiting for it to
finish. For example,

cc pgm.c &

calls the C compiler to compile the file "pgm.c." The trailing "&" is
an operator that instructs the shell not to wait for the command to
finish. To help keep track of such a process, the shell reports a process
number following its creation. A list of currently active processes may
be obtained using the ps command.

2.2 Input/Output Redirection

Most commands produce output to the standard output that is initially
connected to the terminal. This output may be directed to a file by the
notation ">" :

Is -I > file

The notation "> file" is interpreted by the shell and is not passed as
an argument to Is. If "file" does not exist, the shell creates it; other­
wise, the original contents of "file" are replaced with the output from
Is. Output may be appended to the end of a file using the notation
"»" as follows:

Is -I » file

In this case, if "file" does not already exist, you will receive an error
message.

5-2

THE SHELL - SH

The standard input of a command may be taken from a file instead of
the terminal by the notation "<":

wc < file

The command we reads its standard input (in this case redirected from
"file") and prints the number of characters, words, and lines found. If
only the number of lines is required, then

wc -1 < file

can be used.

2.3 Pipelines and Filters

The standard output of one command may be connected to the stan­
dard input of another by writing the pipe operator, indicated by I,
between commands as in

Is-II wc

Two or more commands connected in this way constitute a pipeline, and
the overall effect is the same as

Is -1 > file; wc < file

except that a file is not used. Instead the two processes are connected
by a pipe [see pipe(2)] and are run in parallel. Pipes are unidirectional,
and synchronization is achieved by halting we when there is nothing to
read and halting Is when the pipe is full.

A filter is a command that reads its standard input, transforms it in
some way, and prints the result as output. One such filter, grep(I),
selects from its input those lines that contain some specified string. For
example,

Is I grep old

prints those lines, if any, of the output from Is that contain the string
"old." Another useful filter is sort (I). For example,

who I sort

will print an alphabetically sorted list of logged in users.

5-3

THE SHELL - SH

A pipeline may consist of more than two commands, for example,

Is I grep old I wc -I

prints only the number of file names in the current directory containing
the string "old."

2.4 File N arne Generation

Many commands accept arguments which are file names. For example,

Is -I main.c

prints only information relating to the file "main.c." The Is -I com­
mand alone prints the same information about all files in the current
directory.

The shell provides a mechanism for generating a list of file names that
match a pattern. For example,

Is -I ·.c

generates as arguments to Is all file names in the current directory that
end in ".c." The character "*,, is a pattern that will match any string
including the null string. In general, patterns are specified as follows:

*
?

l ••• 1

Matches any string of characters including the null string.

Matches any single character.

Matches anyone of the characters enclosed. A pair of char­
acters separated by a minus will match any character lexi­
cally between the pair.

For example,

[a-z]·

matches all names in the current directory beginning with one of the
letters "a" through "z."

The input

Is lusr/fred/testl?

lists all names in the directory "/usr/fred/test" that consist of a single
character. If a file name is not found that matches the pattern, then
you will receive the error message "No match."

5-4

THE SHELL - SH

This mechanism is useful both to save typing and to select names
according to some pattern. It may also be used to find files. For exam­
ple,

echo lusr/fred/*/core

finds and prints the names of all "core" files in subdirectories of
"Iusr/fred." [The echo(1) command is a standard UniPlus+ command
that prints its arguments, separated by blanks.1 This last feature can be
expensive, requiring a scan of all subdirectories of "Iusr/fred."

There is one exception to the general rules given for patterns. The
character "." at the start of a file name must be explicitly matched.
The input

echo *

will therefore echo all file names in the current directory not beginning
with a period (.). The input

echo .*

will echo all those file names that begin with " .. " This avoids inadver­
tent matching of the names"." and" .. " which mean "the current
directory" and "the parent directory," respectively. [Notice that Is(1),
by default, suppresses information for the files"." and" .. " .1

2.4.1 Quoting

Characters that have a special meaning to the shell, such as

< > * ? &

are called metacharacters. A complete list of metacharacters is given in
Table S.B. Any character preceded by a \ is quoted and loses its special
meaning, if any. The \ is omitted so that

echo \?
will echo a single ?, and

echo \ \

will echo a single \. To allow long strings to be continued over more
than one line, the sequence \new line (or RETURN) is ignored. The \ is
convenient for quoting single characters. When more than one charac­
ter needs quoting, the above mechanism is clumsy and error prone. A
string of characters may be quoted by enclosing the string between

5-5

THE SHELL - SH

single quotes. For example,

echo xx'···· 'xx

will echo

xx····xx

The quoted string may not contain a single quote but may contain new
lines which are preserved. This quoting mechanism is the most simple
and is recommended for casual use. A third quoting mechanism using
double quotes is also available and prevents interpretation of some but
not all metacharacters.

2.5 Prompting by the Shell

When the shell is used from a terminal, it will issue a prompt to the
terminal user indicating it is ready to read a command from the termi­
nal. By default, this primary prompt is "$ ". The prompt may be
changed by entering

PSI = newprompt

This sets the prompt to be the string "newprompt." If a new line is
typed and further input is needed, the shell will issue the secondary
prompt "> ." Sometimes this can be caused by mistyping a character
such as a quote mark. If it is unexpected, then an interrupt (DEL) will
return the shell to read another command. This other prompt (" >")
may be changed by entering:

PS2 = newprompt2

2.6 The Shell and Login

Following the user's login, the shell is called to read and execute com­
mands typed at the terminal. If the user's login directory contains the
file ".profile," then it is assumed to contain commands and is read
immediately by the shell before reading any commands from the termi­
nal.

2.7 Summary

Is

5-6

Prints the names of files in the current
directory.

Is > file

Is we-I

Is grep old

THE SHELL - SH

Puts the output from Is into "file."

Prints the number of files in the current
directory.

Prints those file names containing the string
"old. "

Is grep old I we -I Prints the number of files whose name con­
tains the string "old."

ee pgm.e & Runs ee in the background.

3. Shell Procedures

The shell may be used to read and execute commands contained in a
file. For example, the following call

sh file [args ...]

calls the shell to read commands from "file." Such a file call is called a
command procedure or shell procedure. Arguments may be supplied with
the call and are referred to in "file" using the positional parameters $1,
$2, For example, if the file "wg" contains

who I grep $1

then the call

sh wg fred

is equivalent to

who I grep fred

All UniPlus+ files have three independent attributes (often called per­
missions), read, write, and execute (rwx). The command ehmod(I)
may be used to make a file executable. For example,

chmod +x wg

will ensure that the file "wg" has execute status (permission). Follow­
ing this, the command

wg fred

is equivalent to the call

sh wg fred

5-7

THE SHELL - SH

This allows shell procedures and programs to be used interchangeably.
In either case, a new process is created to execute the command.

As well as providing names for the positional parameters, the number
of positional parameters in the call is available as $#. The name of the
file being executed is available as $0.

A special shell parameter $* is used to substitute for all positional
parameters except $0. A typical use of this is to provide some default
arguments, as in,

nroff - T450 -cm $*

which simply prepends some arguments to those already given.

3.1 Control Flow-for

A frequent use of shell procedures is to loop through the arguments
($1, $2, .••) executing commands once for each argument. An exam­
ple of such a procedure is tel that searches the file "/usrllib/telnos"
that contains lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do

grep $i lusr/lib/telnos
done

The command

tel fred

prints those lines in "/usr/lib/telnos" that contain the string "fred."

The command

tel fred bert

5-8

THE SHELL - SH

prints those lines containing "fred" followed by those for "bert."

The for loop notation is recognized by the shell and has the general
form

for name in wi w2
do

command-list
done

A command-list is a sequence of one or more simple commands
separated or terminated by a new line or a semicolon. Furthermore,
reserved words like do and done are only recognized following a new
line or semicolon. A name is a shell variable that is set to the words
wi w2 ... in turn each time the command-list following do is executed.
If "in wi w2 ... " is omitted, then the loop is executed once for each
positional parameter; that is, "in $*" is assumed.

Another example of the use of the for loop is the create command
whose text is

for i do > $i; done

The command

create alpha beta

ensures that two empty files "alpha" and "beta" exist and are empty.
The notation "> file" may be used on its own to create or clear the
contents of a file. Notice also that a semicolon (or new line) is
required before done.

3.2 Control Flow -case

A multiple way (choice) branch is provided for by the case notation.
For example,

case $# in
1) cat »$1 ~~
2) cat »$2 <$1 ;;
*) echo 'usage: append [from] to' ;~

esac

is an append command. (Note the use of semicolons to delimit the

5-9

THE SHELL - SH

cases.) When called with one argument as in

append file

$# is the string "1," and the standard input is appended (copied) onto
the end of "file" using the cat command.

append file 1 file2

appends the contents of "filel" onto "file2." If the number of argu­
ments supplied to append is other than 1 or 2, then a message is
printed indicating proper usage.

The general form of the case command is

case wordin
pattern) command-list;;

esac

The shell attempts to match word with each pattern in the order in
which the patterns appear. If a match is found, the associated
command-list is executed and execution of the case is complete. Since
* is the pattern that matches any string, it can be used for the default
case.

Caution: No check is made to ensure that only one pattern matches
the case argument.

The first match found defines the set of commands to be executed. In
the example below, the commands following the second "*" will never
be executed since the first" *" executes everything it receives.

case $# in
*) ... ;;
*) ... ;;

esac

Another example of the use of the case construction is to distinguish
between different forms of an argument. The following example is a
fragment of a cc command.

5-10

for i
do

case Si in
- [oes]) ... ;;
-*) echo 'unknown flag Si' ;;
* .c) /lib/cO Si ... ;;

THE SHELL - SH

*) echo 'unexpected argument Si' ;;
esac

done

To allow the same commands to be associated with more than one pat­
tern, the case command provides for alternative patterns separated by a
I . For example,

case Si in
-xl-y) ...

esac

is equivalent to

case Si in
-[xy]) ...

esac

The usual quoting conventions apply so that

case Si in
\ ?) ...

will match the character ?

3.2.1 Here Documents

The shell procedure tel uses the file "/usr/lib/telnos" to supply the
data for grep(I). An alternative is to include this data within the shell
procedure as a here document, as in:

5-11

THE SHELL - SH

for i
do

done

grep $i «!

fred mhOl23
bert mh0789

In this example, the shell takes the lines between < <! and ! as the
standard input for grep. The string "!" is arbitrary. The document is
being terminated by a line that consists of the string following « .

Parameters are substituted in the document before it is made available
to grep as illustrated by the following procedure called edg.

ed $3 «%
g/l/sll2/g
w
%

The call

edg string 1 string2 file

is then equivalent to the command

ed file «%
gl string 1 I sl I string21 g
w
%

and changes all occurrences of "stringl" in "file" to "string2." Substi­
tution can be prevented using \ to quote the special character $ as in:

ed $3 «+
1 ,\$s/$l/$2/g
w
+

(This version of edg is equivalent to the first except that ed will print a
? if there are no occurrences of the string $1.)

5-12

THE SHELL - SH

Substitution within a here document may be prevented entirely by quot­
ing the terminating string, for example,

grep $i «#

The document is presented without modification to grep. If parameter
substitution is not required in a here document, this latter form is more
efficient.

3.2.2 Shell Variables

The shell provides string-valued variables. Variable names begin with a
letter and consist of letters, digits, and underscores. Variables may be
given values by writing

user = fred box = mOOO acct = mhOOOO

which assigns values to the variables "user," "box," and "acct." A
variable may be set to the null string by entering

null =

The value of a variable is substituted by preceding its name with $; for
example,

echo $user

will echo "fred."

Variables may be used interactively to provide abbreviations for fre­
quently used strings.

For example,

b= /usr/fred/bin
mv file $b

wiH move the "file" from the current directory to the directory
"/usr/fred/bin." A more general notation is available for parameter
(or variable) substitution, as in:

echo ${ user}

which is equivalent to

5-13

THE SHELL - SH

echo $user

and is used when the parameter name is followed by a letter or digit.
For example,

tmp= Itmp/ps
ps a > ${tmp}a

will direct the output of ps to the file "/tmp/psa," whereas,

ps a >$tmpa

would cause the value of the variable "tmpa" to be substituted.

Except for $?, the following are set initially by the shell.

$? The exit status (return code) of the last command exe­
cuted as a decimal string. Most commands return a zero
exit status if they complete successfully; otherwise, a
nonzero exit status is returned. Testing the value of
return codes is dealt with later under if and while com­
mands.

$# The number of positional parameters in decimal. Used,
for example, in the append command to check the
number of parameters.

$$ The process number of this shell in decimal. Since pro­
cess numbers are unique among all existing processes, this
string is frequently used to generate unique temporary file
names. For example,

$!

$-

ps a >Itmp/ps$$

rm Itmp/ps$$

The process number of the last process run in the back­
ground (in decimal).

The current shell flags, such as -x and -v .

Some variables have a special meaning to the shell and should be
avoided for general use.

$MAIL

5-14

When used interactively, the shell looks at the file
specified by this variable before it issues a prompt. If the
specified file has been modified since it was last looked at,

$HOME

$PATH

THE SHELL - SH

the shell prints the message "You have mail" before
prompting for the next command. This variable is typi­
cally set in the file ". profile" in the user's login directory.
For example:

MAIL = /usr/mail/fred

The default argument for the cd command. The current
directory is used to resolve file name references that do
not begin with a / and is changed using the cd command.

For example,

cd /usr/fred/bin

makes the current directory "/usr/fred/bin." Then

cat wn

will print on the terminal the file "wn" in this directory.
The command cd with no argument is equivalent to

cd $HOME

This variable is also typically set in the user's login profile.

A list of directories containing commands (the search
path). Each time a command is executed by the shell, a
list of directories is searched for an executable file. If
$P A TH is not set, the current directory, "/bin," and
"/usr/bin" are searched by default. Otherwise, $PATH
consists of directory names separated by :. For example,

PATH = :/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before
the first:), "/usr/fred/bin," "/bin," and "/usr/bin" are
to be searched in that order. In this way, individual users
can have their own private commands that are accessible
independently of the current directory. If the command
name contains a /, this directory search is not used; a sin­
gle attempt is made to execute the command.

$PSI The primary shell prompt string, by default, "$."

$PS2 The shell prompt when further input is needed, by
default, "> . "

5-15

THE SHELL - SH

SIFS The set of characters used by blank interpretation.

3.2.3 Test Command

The test command is intended for use by shell programs. For example,

test -f file

returns zero exit status if "file" exists and nonzero exit status other­
wise. In general, test evaluates a predicate and returns the result as its
exit status. Some of the more frequently used test arguments are given
below [see test (1) for a complete specification].

test s

test -f file

test -r file

test -w file

test -d file

true if the argument s is not the null string

true if "file" exists

true if "file" is readable

true if "file" is writable

true if "file" is a directory

3.3 Control Flow-while

The actions of the for loop and the case branch are determined by data
available to the shell. A while or until loop and an if then else branch
are also provided, whose actions are determined by the exit status
returned by commands.

A while loop has the general form

while command-listl
do

command-list2
done

The value tested by the while command is the exit status of the last
simple command following while. Each time round the loop
command-listl is executed; if a zero exit status is returned, then
command-list2 is executed; otherwise, the loop terminates. For exam­
ple,

5-16

THE SHELL - SH

while test $1
do

shift
done

is equivalent to

for i
do

done

The shift command is a shell command that renames the positional
parameters $2, $3, . .. as $1, $2, . .. and loses $1.

Another kind of use for the while/until loop is to wait until some
external event occurs and then run some commands. In an until loop,
the termination condition is reversed. For example,

until test -f file
do

sleep 300
done
commands

will loop until "file" exists. Each time round the loop, it waits for 5
minutes (300 seconds) before trying again. (Presumably, another pro­
cess will eventually create the file.)

3.4 Control Flow-if

Also available is a general conditional branch of the form,

if command-list
then

command-list
else

command-list
fi

that tests the value returned by the last simple command following if.

5-1-7

THE SHELL - SH

The if command may be used in conjunction with the test command to
test for the existence of a file as in:

if test -f file
then

process file
else

do something else
fi

A multiple test if command of the form

if ...
then

else
if ...
then

else
if ...

fi
fi

fi

may be written using an extension of the if notation as,

if ...
then

elif ...
then

elif ...

fi

The touch command changes the last modified time for a list of files.
The command may be used in conjunction with make(I) to force
recompilation of a list of files.

5-18

The following example is the touch command:

flag =
for i
do

case $i in
-c)
*)

flag=N ;;
if test -f $i
then

In $i junk$$
rm junk$$

elif test $flag
then

THE SHELL - SH

echo file \'$i\' does not exist

esac
done

else
>$i

The -c flag is used in this command to force subsequent files to be
created if they do not already exist. Otherwise, if the file does not
exist, an error message is printed. The shell variable flag is set to some
non-null string if the -c argument is encou'htered. The commands

In ... ; rm ...

make a link to the file and then remove it.

The sequence

if command!
then

command2
fi

may be written

command! && command2

Conversely,

command! II command2

executes "command2" only if "command!" fails. In each case, the

5-19

THE SHELL - SH

value returned is that of the last simple command executed.

3.5 Command Grouping

Commands may be grouped in two ways,

{ command-list; }

and

(command-list)

The first form, command-list, is simply executed. The second form exe­
cutes command-list as a separate process. For example,

(cd x; rm junk)

executes "rm junk" in the directory "x" without changing the current
directory of the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory "x."

3.6 Debugging Shell Procedures

The shell provides two tracing mechanisms to help when debugging
shell procedures. The first is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they
are read. It is useful to help isolate syntax errors. It may be invoked
without modifying the procedure by entering

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used
in conjunction with the -0 flag which prevents execution of subsequent
commands. (Note that typing "set -n" at a terminal will render the
terminal useless until an end-of-file is typed.)

The command

set -x

5-20

THE SHELL - SH

will produce an execution trace with flag -x. Following parameter sub­
stitution, each command is printed as it is executed. (Try the above at
the terminal to see the effect it has.) Both flags may be turned off by
typing

set -

and the current setting of the shell flags is available as $- .

3.7 The man Command

The following discussion of the man command assumes the existence
of the document preparation features available as an option on the
UniPlus+ system.

The following is the man command which is used to print sections of
the UniPlus+ System V User's Manual. It is called by entering

man sh
man -t ed
man 2 fork

In the first call, the manual section for sh is printed. Since no section
is specified, section 1 is used. The second call will typeset (-t option)
the manual section for ed. The last call prints the fork manual page
from section 2 of the manual.

4. Keyword Parameters

Shell variables may be given values by assignment or when a shell pro­
cedure is invoked. An argument to a shell procedure of the form
name = value that precedes the command name causes value to be
assigned to name before execution of the procedure begins. The value
of name in the invoking shell is not affected. For example,

user=fred command

will execute command with "user" set to "fred." The -k flag causes
arguments of the form name = value to be interpreted in this way any­
where in the argument list. Such names are sometimes called keyword
parameters. If any arguments remain, they are available as positional
parameters $1, $2, • .• .

5-21

THE SHELL - SH

The set command may also be used to set positional parameters from
within a procedure.

For example,

set - *

will set $1 to the first file name in the current directory, $2 to the next,
etc. Note that the first argument, -, ensures correct treatment when
the first file name begins with a - .

4.1 Parameter Transmission

When a shell procedure is invoked, both positional and keyword param­
eters may be supplied with the call. Keyword parameters are also made
available implicitly to a shell procedure by specifying in advance that
such parameters are to be exported. For example,

export user box

marks the variables "user" and "box" for export. When a shell pro­
cedure is invoked, copies are made of all exportable variables for use
within the invoked procedure. Modification of such variables within
the procedure does not affect the values in the invoking shell. It is
generally true of a shell procedure that it may not modify the state of
its caller without an explicit request on the part of the caller. (Shared
file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared
readonly. The form of this command is the same as that of the export
command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

4.2 Parameter Substitution

If a shell parameter is not set, then the null string is substituted for it.
For example, if the variable "d" is not set,

echo $d

or

5-22

THE SHELL - SH

echo ${d}

will echo nothing. A default string may be given as in:

echo ${d-.}

which will echo the value of the variable "d" if it is set and". " other­
wise. The default string is evaluated using the usual quoting conven­
tions so that

echo ${d- '*'}

will echo * if the variable "d" is not set. Similarly,

echo ${d-$I}

will echo the value of "d" if it is set and the value (if any) of $1 other­
wise. A variable may be assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if "d" were not previously set, it will be set to the string ".".
(The notation ${ ... = ... } is not available for positional parameters.)

If there is no sensible default, the notation

echo ${d ?message}

will echo the value of the variable "d" if it has one; otherwise, message
is printed by the shell and execution of the shell procedure is aban­
doned. If message is absent, a standard message is printed. A shell
procedure that requires some parameters to be set might start as fol­
lows:

: ${user?} ${acct?} ${bin?}

Colon (:) is a command built into the shell and does nothing once its
arguments have been evaluated. If any of the variables "user,"
"acct," or "bin" are not set, the shell will abandon execution of the
procedure.

5-23

THE SHELL - SH

4.3 Command Substitution

The standard output from a command can be substituted in a similar
way to parameters. The command pwd prints on its standard output
the name of the current directory. For example, if the current direc­
tory is "/usr/fred/bin," the command

d='pwd'

is equivalent to

d=/usr/fred/bin

The entire string between single quotes (' ... ') is taken as the command
to be executed and is replaced with the output from the command.
The command is written using the usual quoting conventions except
that a ' must be escaped using a \.

For example,

Is 'echo "$1'"

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitu­
tion occurs (including here documents), and the treatment of the
resulting text is the same in both cases. This mechanism allows string
processing commands to be used within shell procedures. An example
of such a command is basename, which removes a specified suffix from
a string. For example,

base name main.c .c

will print the string "main." Its use is illustrated by the following frag­
ment from a cc command.

case $A in

*.c) B='basename $A .c'

esac

that sets "B" to the part of "$A" with the suffix" .c" stripped.

5-24

Here are some composite examples .

• for i in 'Is -t'; do ...

The variable "i" is set
to the names of files in time order,
most recent first.

• set 'date'; echo $6 $2 $3, $4

will print, e.g., "1977 Nov 1, 23:59:59"

4.4 Evaluation and Quoting

THE SHELL - SH

The shell is a macro processor that provides parameter substitution,
command substitution, and file name generation for the arguments to
commands. This section discusses the order in which these evaluations
occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in Table
5.A. Before a command is executed, the following substitutions occur:

1. Parameter substitution, e.g., Suser

2. Command substitution, e.g., 'pwd'

Only one evaluation occurs so that if, for example, the value of
the variable "X" is the string "$y" then

echo $X

will echo "$y."

3. Blank interpretation

Following the above substitutions, the resulting characters are
broken into nonblank words (blank interpretation). For this pur­
pose, blanks are the characters of the string "SIFS." By default,
this string consists of blank, tab, and newline. The null string is
not regarded as a word unless it is quoted. For example,

echo' ,

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable "null" is not set
or set to the null string.

5-25

THE SHELL - SH

4. File name generation

Each word is then scanned for the file pattern characters *, ?, and
(•..); and an alphabetical list of file names is generated to replace
the word. Each such file name is a separate argument.

The evaluations just described also occur in the list of words associated
with a for loop. Only substitution occurs in the word used for a case
branch.

As well as the quoting mechanisms described earlier using \ and ' ... ' ,
a third quoting mechanism is provided using double quotes. Within
double quotes, parameter and command substitution occurs; but file
name generation and the interpretation of blanks does not.

The following characters have a special meaning within double quotes
and may be quoted using \.

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $, n \

For example,

echo n$x"

will pass the value of the variable "x" as a single argument to echo.
Similarly,

echo "$*"

will pass the positional parameters as a single argument and is
equivalent to

echo "$1 $2 ... "

The notation $@ is the same as $* except when it is quoted. Inputting

echo "$@"

will pass the positional parameters, unevaluated, to echo and is
equivalent to

5-26

THE SHELL - SH

echo "$1" "$2" ...

The following illustration gives, for each quoting mechanism, the shell
metacharacters that are evaluated.

quoting metacharacters
mechanism \ $ *

,
"

,

,
n n n n n t ,
Y n n t n n

" y y n y t n

t terminator
y interpreted
n not interpreted

In cases where more than one evaluation of a string is required, the
built-in command eval may be used. For example, if the variable "X"
has the value "$y" and if "y" has the value "pqr," then

eval echo $X

will echo the string "pqr."

In general, the eval command evaluates its arguments (as do all com­
mands) and treats the result as input to the shell. The input is read
and the resulting command(s) executed. For example,

wg=' eval who I grep'
$wg fred

is equivalent to

who I grep fred

In this example, eval is required since there is no interpretation of
metacharacters, such as I, following substitution.

4.5 Error Handling

The treatment of errors detected by the shell depends on the type of
error and on whether the shell is being used interactively. An interac­
tive shell is one whose input and output are connected to a terminal [as

5-27

THE SHELL - SH

determined by gUy(2»). A shell invoked with the -j flag is also
interactive.

Execution of a command may fail for any of the following reasons:

• Input! output redirection may fail. For example, if a file does not
exist or cannot be created.'

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a bus
error or memory jaulf signal.

• The command terminates normally but returns a nonzero exit
status.

In all of these cases, the shell will go on to execute the next command.
Except for the last case, an error message will be printed by the shell.
All remaining errors cause the shell to exit from a command procedure.
An interactive shell will return to read another command from the ter­
minal. Such errors include the following:

• Syntax errors, e.g., if •.. then ... done

• A signal such as interrupt. The shell waits for the current com­
mand, if any, to finish execution and then either exits or returns
to the terminal.

• Failure of any of the built-in commands such as cd (I).

The shell flag -e causes the shell to terminate if any error is detected.
The following is a list of the U niPlus+ signals:

hangup

2 interrupt

3* quit

4* illegal instruction

5* trace trap

6* lOT instruction

7* EMT instruction

5-28

THE SHELL - SH

8* floating point exception

9 Kill (cannot be caught or ignored)

10* bus error

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it

14 alarm clock

15 software termination [from killO)]

The UniPlus+ system signals marked with an asterisk H*" as shown in
the list produce a core dump if not caught. However, the shell itself
ignores quit which is the only external signal that can cause a dump.
The signals in this list of potential interest to shell programs are 1, 2, 3,
14, and 15.

4.6 Fault Handling

Shell procedures normally terminate when an interrupt is received from
the terminal. The trap command is used if some cleaning up is
required, such as removing temporary files. For example,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt); and if this signal is
received, it will execute the following commands:

rm /tmp/ps$$; exit

The exit is another built-in command that terminates execution of a
shell procedure. The exit is required; otherwise, after the trap has
been taken, the shell will resume executing the procedure at the place
where it was interrupted.

UniPlus+ system signals can be handled in one of three ways.

1. They can be ignored, in which case the signal is never sent to the
process.

2. They can be caught, in which case the process must decide what
action to take when the signal is received.

5-29

THE SHELL - SH

3. They can be left to cause termination of the process without it
having to take any further action.

If a signal is being ignored on entry to the shell procedure, for exam­
ple, by invoking it in the background, trap commands (and the signal)
are ignored.

The use of trap is illustrated by this modified version of the touch
command illustrated below:

flag =

trap'rm -f jun}($$; exit' 1 2 3 15
for i
do

case $i in
-c) flag = N ;;
*) if test -f $i

then
In $i junk$$; rm junk$$

elif test $flag
then

echo file \'$i\' does not exist
else

>$i
fi ..

"
esac

done

The cleanup action is to remove the file "junk$$." The trap command
appears before the creation of the temporary file; otherwise, it would be
possible for the process to die without removing the file.

Since there is no signal 0 in +, it is used by the shell to indicate the
commands to be executed on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null
string as the argument to trap. The following:

trap , , 1 2 3 15

is a fragment taken from the nohup(I) command which causes the

5-30

THE SHELL - SH

system HANGUP, INTERRUPT, QUIT, and SOFTWARE TERMINATION
signals to be ignored both by the procedure and by invoked commands.

Traps may be reset by entering

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list
of the current values of traps may be obtained by writing

trap

The scan procedure is an example of the use of trap where there is no
exit in the trap command. The scan takes each directory in the current
directory, prompts with its name, and then executes commands typed at
the terminal until an end of file or an interrupt is received. Interrupts
are ignored while executing the requested commands but cause termi­
nation when scan is waiting for input. The scan procedure follows:

d='pwd'
for i in *
do

if test -d $d/$i
then

fi
done

cd $d/$i
while echo "$i:" && trap exit 2 && read x
do

done

trap: 2
eval $x

The "read x" is a built-in command that reads one line from the stan­
dard input and places the result in the variable "x." It returns a
nonzero exit status if either an end-of-file is read or an interrupt is
received.

4.7 Command Execution

To run a command (other than a built-in), the shell first creates a new
process using the system call fork (2). The execution environment for
the command includes input, output, and the states of signals and is

5-31

THE SHELL - SH

established in the child process before the command is executed. The
built-in command exec is used in rare cases when no fork is required
and simply replaces the shell with a new command. For example, a
simple version of the nohup command looks like

trap , , 1 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by sub­
sequently created commands, and exec replaces the shell by the com­
mand specified.

Most forms of input! output redirection have already been described.
In the following, word is only subject to parameter and command sub­
stitution. No file name generation or blank interpretation takes place so
that, for example,

echo ... >*.c

will write its output into a file whose name is "*.c." Input/output
specifications are evaluated left to right as they appear in the command.
Some input/output specifications are as follows:

> word

» word

< word

« word

>&digit

5-32

The standard output (file descriptor 1) is sent to the
file "word" which is created if it does not already
exist.

The standard output is sent to file "word." If the file
exists, then output is appended (by seeking to the
end); otherwise, the file is created.

The standard input (file parameter 0) is taken from the
file "word."

The standard input is taken from the lines of shell
input that follow up to but not including a line consist­
ing only of "word." If "word" is quoted, no interpre­
tation of the document occurs. If "word" is not
quoted, parameter and command substitution occur
and \ is used to quote the characters \, $, " and the
first character of "word." In the latter case, \newline
is ignored (e.g., quoted strings).

The file descriptor "digit" is duplicated using the sys­
tem call dup(2), and the result is used as the standard

THE SHELL - SH

output.

<& digit The standard input is duplicated from file descriptor
"digit. "

< &- The standard input is closed.

> &- The standard output is closed.

Any of the above may be preceded by a digit in which case the file
descriptor created is that specified by the digit instead of the default 0
or 1. For example,

... 2> file

runs a command with message output (file descriptor 2) directed to
"file." Another example,

... 2>&1

runs a command with its standard output and message output merged.
(Strictly speaking, file descriptor 2 is created by duplicating file descrip­
tor 1 ~ but the effect is usually to merge the two streams.)

The environment for a command run in the background such as

list *.c I lpr &

is modified in two ways. First, the default standard input for such a
command is the empty file "/dev/nulL" This prevents two processes
(the shell and the command), which are running in parallel, from trying
to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input
at the same time.

The other modification to the environment of a background command
is to turn off the QUIT and INTERR UPT signals so that they are ignored
by the command. This allows these signals to be used at the terminal
without causing background commands to terminate. For this reason,
the U niP Ius + convention for a signal is that if it is set to I (ignored),
then it is never changed even for a short time. Note that the shell
command trap has no effect for an ignored signal.

5-33

THE SHELL - SH

4.8 Invoking the Shell

The following flags are interpreted by the shell when it is invoked. If
the first character of argument zero is a minus, commands are read
from the file" . profile ."

-c string If the -c flag is present, then commands are read from
"string. "

-s If the -s flag is present or if no arguments remain, com­
mands are read from the standard input. Shell output is
written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are
attached to a terminal, this shell is interactive. In this case,
TERMINATE is ignored (so that "kill 0" does not kill an
interactive shell, and INTERRUPT is caught and ignored (so
that wait is interruptible). In all cases, QUIT is ignored by
the shell.

5-34

THE SHELL - SH

5. Tables

item

TABLE 5.A. Grammar

word
input-output
name = value

simple-command: item
simple-command item

command: simple-command

pipeline:

andor:

command-list:

input-output:

.lile

case-part:

pattern:

(command-list)
{ command-list}
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part . .. esac
if command-list then command-list else-part fi

command
pipeline I command

pipeline
andor && pipeline
andor II pipeline

andor
command-list;
command-list &
command-list; andor
command-list & andor

> word
< word
» word
« word

word
& digit
&-
pattern) command-list;;

word
pattern I word

5-35

THE SHELL - SH

else-part:

empty:

word:

name

digit:

5-36

elif command-list then command-list else-part
else command-list

empty

sequence of nonblank characters

sequence of letters, digits, or underscores
starting with a letter

0123456789

THE SHELL - SH

TABLE 5.B. Metacharacters and Reserved Words

(a) syntactic:

pipe symbol

&& 'andf' symbol

II 'orf' symbol

command separator

" case delimiter

& background commands

() command grouping

< input redirection

« input from a here document

> output creation

» output append

(b) patterns:

* match any character(s) including none

? match any single character

(••• 1 match any of the enclosed characters

(c) substitution:

${ ••• } substitute shell variable

, ••• ' substitute command output

(d) quoting:

\ quote the next character

' ... ' quote the enclosed characters except for the'

" ... " quote the enclosed characters except for the $, ' ,\, and"

5-37

THE SHELL - SH

(e) reserved words:

5-38

if then else elif fi

case in esac

for while until do done

{} [] test

Chapter 6: THE C SHELL - CSH

CONTENTS

1. Introduction

2. Using the C Shell 1

3.

4.

2.1 Basic Notion of Commands 2
2.2 Flag Arguments 3
2.3 Output to Files. 4
2.4 Input from Files 5
2.5 Metacharacters in the C Shell 6

2.5.1 Pipelines.. 6
2.5.2 Pathnames 7
2.5.3 File Names 8
2.5.4 Asterisk 8
2.5.5 Question Mark 9
2.5.6 Brackets 9
2.5.7 Tilde 10
2.5.8 Braces 11
2.5.9 Escaping Metacharacters 11

2.6 Terminating Commands. . 12

Details of the C Shell
3.1 Startup and Termination
3.2 C Shell Variables
3.3 History
3.4 Aliases
3.5 More Redirection
3.6 Background and Foreground
3.7 Working Directories
3.8 Useful Built-in Commands

14
14
15
18
21
23
24
24
25

Shell Control Structures and Command Scripts 27
28
28
29
31
32
35
35
36

4.1 Make
4.2 Invocation and the argv Variable
4.3 Variable Substitution .
4.4 Expressions
4.5 Sample C Shell Script
4.6 Other Control Structures
4.7 Supplying Input to Commands
4.8 Catching Interrupts

- i -

4.9 What Else? •

5. Other, Less Commonly Used, C Shell Features
5.1 Loops at the Terminal; Variables as Vectors
5.2 Braces { ... } in Argument Expansion
5.3 Command Substitution . . .
5.4 Other Details Not Covered Here • .

6. Appendix - Special Characters. .

- ii -

37

37
37
38
39
40

40

Chapter 6

THE C SHELL - CSH

1. Introduction

The C shell (csh) is a new command language interpreter for UNIX sys­
tems. It incorporates useful features of other shells and a history
mechanism. While incorporating many features of other shells which
make writing shell programs (shell scripts) easier, most of the features
unique to csh are designed more for the interactive UNIX user.

Users who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interac­
tion with csh is possible after reading just the first part of this chapter.
The second part describes the shell's capabilities which you can explore
after you have begun to become acquainted with the shell. Later sec­
tions introduce features which are useful, but not necessary for all
users of the shell.

There is an appendix listing of special characters of the shell at the end
of this chapter. In addition, the csh(1) entry in the UniPlus+ System V
User's Manual provides a description of the features of the C shell and
is a final reference for questions about the C shell.

2. Using the C Shell

A shell is a command language interpreter. Csh is the name of one
particular command interpreter of UniPlus+. The primary purpose of
csh is to translate command lines typed at a terminal into system
actions, such as invoking other programs. Csh is a user program just
like any you might write. We hope csh will be a very useful program
for you in interacting with the UniPlus+ system. While csh has a set
of built-in functions which it performs directly, most commands cause
execution of programs that are, in fact, external to the shell. The shell
is thus distinguished from the command interpreters of other systems
both by the fact that it is just a user program, and by the fact that it is
used almost exclusively as a mechanism for invoking other programs.

6-1

THE C SHELL - CSH

2.1 Basic Notion of Commands

Commands in the UniPlus+ system expect a list of strings or words as
arguments. Thus the command line

% mail bill

consists of two words and the prompt "%". The first word "mail" is
the name of the command to be executed, in this case the mail pro­
gram which sends messages to other users. The shell uses the name of
the command in attempting to execute the program for you. It will
look in a number of directories for a file with the name "mail" which is
expected to contain the mail program.

The rest of the words on the command line are given as arguments to
the command. In this case, the argument "bill" is interpreted by the
mail program as the name of a user to whom the message is to be sent.
The following is an example of using the mail command (the % is the
C shell prompt):

% mail bill
Let's have lunch to discuss the changes proposed
at this morning's meeting.
How does tomorrow noon sound?

maf
EOT
%

The prompt (%) indicates that the shell is ready to read input from the
terminal. After the command line (mail bUb was input, the shell exe­
cuted the mail program with argument "bill" and went dormant wait­
ing for it to complete. The mail program then read input from the ter­
minal as the message to be sent until signaled with an end-of-file. (An
end-of-file is indicated with CONTROL-d i.e., striking both the CON­
TROL and "d" keyboard characters simultaneously.) The mail program
was then completed and the shell issued another prompt (%) to indicate
that it was ready to read from the terminal again.

This is the essential pattern of all interaction with the UniPlus+ system
through the shell:

1. A complete command is typed at the terminal,

6-2

THE C SHELL - CSH

2. the shell executes the command,

3. then the shell prompts for a new command.

If you run the editor for an hour, the shell will patiently wait for you to
finish editing and obediently prompt you again whenever you finish
editing.

An example of a useful command you can execute now is the tset com­
mand, which sets the default erase and kill characters on your
terminal- the erase character erases the last character you typed and
the kill character erases the entire line you have entered so far. By
default, in the shell, the erase character is "#" and the kill character is
"@". Most people who use CRT terminals prefer to use the backspace
character keyboard character or CONTROL-h as their erase character.
To change the erase character to backspace, give the following com­
mand:

% tset -e

which tells the program tset to set the erase character (-e) to the
default setting which is the backspace character [see tset (1) 1. It should
be noted that CONTROL-h and backspace are used interchangeably here
due to the fact that, on most terminals, the backspace key sends a
CONTROL-h character to the system.

2.2 Flag Arguments

A useful notion is that of a flag or option argument to programs. While
many arguments to commands specify file names or user names, some
arguments specify an optional capability of the command which you
wish to invoke. By convention, such arguments begin with the hyphen
character (-). For example, the command:

% Is

will produce a list of the files located in the current working directory.
The - s is the size option to Is. Thus:

% Is-s

will produce a list of the file names as well as the size of the file in
blocks of 512 characters. The manual entry for each command in the
UniPlus+ System V User's Manual gives the available options for each
command. The Is command has a large number of useful and

6-3

THE C SHELL - CSH

interesting options.

2.3 Output to Files

Commands that normally read input or write output on the terminal
can also be executed with this input andlor output done to a file.

Suppose you wish to save the current date in a file called "now". The
command

% date

prints the current date on the terminal. This is because the terminal is
the default standard output. The shell lets us redirect the standard out­
put of a command through a notation using the special character "> "
and the name of the file where output is to be placed. Thus the com­
mand:

% date> now

runs the date command such that its standard output is the file "now"
rather than the terminal. Therefore, it places the current date and time
into the file "now". It is important to know that the date command is
unaware that its output is going to a file rather than to the terminal.
The shell performed this redirection before the command began execut­
ing.

If the file "now" did not exist before date was executed, the shell
would have created the file. If the file already existed, the previous
version would have been discarded. Note: A shell option noclobber
prevents this from happening accidentally.

The default is for files to be permanent, meaning that it will remain
until removed by the user. If you wish to create a file which will be
removed automatically, you can begin the file name with a "#" symbol
character*, this scratch character denotes that the file may be discarded
after a few days or even sooner if file space becomes tight. Thus, using
the example above, the file "now" probably does not need to be saved

• Note that if your erase character is a #, you will have to precede the # with a \.

6-4

THE C SHELL - CSH

forever, so it would be more appropriate to give the following com­
mand:

% date> #now

2.4 Input from Files

We discussed above how to redirect the standard output of a command
to a file. It is also possible to redirect the standard input of a command
from a file. This is not often necessary since most commands will read
from a file whose name is given as an argument. Using the mail pro­
gram from our earlier example, we could have put the message to
"bill" in a file called "note" and sent the message by giving the fol­
lowing command:

% mail bill < note

The mail program would accept as the message the contents of the file
"note", rather than going dormant and waiting for the message to be
input from the terminal. In this case, a CONTROL-d would not be
necessary to terminate mail.

It is not often necessary to route the standard input of a command from
a file since most commands will read from a file whose name is given as
an argument. For example, assuming there exists a file called "data",
the command lines:

% sort < data
or

% sort data

would sort the contents of "data" alphabetically, line by line. The
latter command line lets sort open the file "data" itself and, since it is
less to type, is preferred.

You should note, however, that the command line:

% sort

would sort lines from the standard input. Since we did not redirect the
standard input, it would sort lines as we typed them on the terminal
until we entered a CONTROL-d to indicate an end-of-file, at which point
it would print the alphabetized list on the standard output.

6-5

THE C SHELL - CSH

2.S Metacharacters in the C Shell

The shell has a large number of special characters (like the redirection
characters ">" and "<") which indicate special functions. These
notations have syntactic and semantic meaning to the shell and are
called metacharacters. In general, most characters which are neither
letters nor digits have special meaning to the shell. We shall shortly
learn a means of quotation which allows use of these metacharacters
without the shell treating them in any special way.

Metacharacters normally have effect only when the shell is reading
input. You need not worry about placing shell metacharacters in the
text of a letter you are sending via mail, or when typing in text or data
to some other program. Note that the shell is only reading input when
a prompt (%) has been displayed.

2.S.1 Pipelines

A useful capability that UniPlus+ has is to combine the standard output
of one command with the standard input of another, i.e., to run the
commands in a sequence known as a pipeline. For instance, the com­
mand:

% Is-s

normally produces a list of the files in a directory with the size of each
in blocks of 512 characters. If we are interested in learning which of
our files is the largest, we may prefer to have this list sorted by size.
The default in which Is lists is ASCII. Checking the options of Is, we
see that there isn't a specific option to list by number within Is. How­
ever, the sort command has just the options required. We can combine
the Is command and the sort command with options and get what we
want.

The - n option of sort specifies a numeric sort rather than an alpha­
betic sort. Thus:

% Is - s I sort - n

specifies that the output of the Is command run with the option - s
(size) is to be piped to the command sort with the - n (numeric)
option. This would give produce a sorted list of our files by size, but
with the smallest size first. We could then use the - r (reverse) sort
option:

6-6

THE C SHELL - CSH

% Is - s I sort - n - r

Reading this command line left to right, first the contents of the direc­
tory were listed, each with the size (- s) in blocks. Then this was
given as the standard input to the sort command asking it to sort
numerically (- n) in reverse order (- r) (largest first).

The notation introduced above is called the pipe mechanism. Com­
mands separated by a "I" character are connected together by the shell
and the standard output of each is run into the standard input of the
next. The leftmost command in a pipeline will normally take its stan­
dard input from the terminal and the rightmost will place its standard
output on the terminal. Other examples of pipelines will be given later
when we discuss the history mechanism.

2.5.2 Path names

Many commands to be executed will need the names of files as argu­
ments. Path names consist of a number of components separated by a
" / ". Each component (except the last, which is the file name) names
a directory in which the next component resides; in effect, specifying
the path of directories to follow to reach the file. Thus the pathname:

/etc/motd

specifies the file "motd" in the directory "etc" which is a subdirectory
of the root directory "/". A pathname that begins with a slash is said
to be an absolute pathname since it is specified from the absolute top of
the entire directory hierarchy of the system (the root). Path names
which do not begin with" /" are interpreted as starting in the current
working directory, which is initially your home directory and can be
changed dynamically by the cd (change directory) command. Such
path names are said to be relative to the working directory since they are
found by starting in the working directory and descending to lower lev­
els of directories for each component of the pathname. If the path­
name contains no slashes at all, then the file is contained in the work­
ing directory itself and the pathname is merely the name of the file in
this directory. Absolute pathnames, those beginning with "/", have
no relation to the working directory.

6-7

THE C SHELL - CSH

2.5.3 File Names

Most file names consist of a number of alphanumeric characters and
periods. In fact, all ASCII characters except" I" (slash) may appear in
file names. It is inconvenient to have most non-alphanumeric charac­
ters in file names because many of these have a special meaning to the
shell.

Note: Files with the character"." at the beginning are treated spe­
cially. This prevents accidental matching of the file names"." and
" .. " in the working directory, which have special meaning to the sys­
tem, as well as other files such as ".cshrc", which are not normally
visible.

The period character is not a shell-metacharacter and is often used to
separate the extension of a file name from the base of the name. For
example:

prog.c prog.o prog.err prog.out

are four related files. They share a base portion of a name which is part
of the name that is common to all of the related file and is left when a
trailing"." and the extension (the characters following the period) is
stripped off. The file "prog.c" might be the source for a C program,
the file "prog.o" the corresponding object file, the file "prog.err" the
errors resulting from a compilation of the program, and the file
"prog.out" the output of a run of the program.

2.5.4 Asterisk

Using the above example, if we wished to refer to all four of files in a
command, we could use the notation

prog.*

This notation is expanded by the shell into a list of names which begin
with "prog.". The asterisk (*) matches any sequence (including the
empty sequence) of characters in a file name. The names which match
are placed in the argument list of the command. Thus, the command:

% echo prog. *

will echo (print on the standard output) the names

6-8

THE C SHELL - CSH

prog.c prog.err prog.o prog.out

The echo command receives four words as arguments, even though we
only typed one word as as argument directly. The four words were gen­
erated by the filename expansion mechanism of the C shell on the one
input word.

2.5.5 Question Mark

Other notations for filename expansion are also available. The character
"?" matches any single character in a file name. Thus:

% echo? ?? ???

will return a list of file names: first those with one character names,
then those with two character names, and finally those with three char­
acter names. The file names of each of the lengths will be indepen­
dently sorted. Also, the command:

% echo prog.? prog.?? prog.???

will match and echo files which begin with the base "prog." and end in
one character, then two characters and finally those that end with three
characters. If there were no match for "prog.??", but there are
matches for both "prog.?" and "prog.???", the shell would not return
a "No match" message. However, it would do so if it found no match
to any of the file name requests.

2.5.6 Brackets

Another mechanism consists of a sequence of characters between "["
and "]". This metasequence matches any single character from the
enclosed set. Thus:

prog.[co]

will match the files:

prog.c prog.o

in the example above. We can also place two characters around a "-"
in this notation to denote a range. For example,

chap.U-S]

would match files

6-9

THE C SHELL - CSH

chap. 1 chap.2 chap.3 chap.4 chap.5

if they existed. This is a shorthand notation for

chap. [12345]

and otherwise equivalent.

As another example of the use of brackets, the notation:

chap. [a-z]

would match "chap." files that had extensions of a single lowercase
letter The notation "[A-Z]" could be used for an uppercase match and
"[a-z,A-Z]" to match any letter, regardless of case.

If an argument list to a command contains filename expansion syntax
and this syntax fails to match any existing file names (and the C shell
variable nonomatch is not set), then the shell considers this to be an
error and prints a diagnostic

No match.

and does not execute the command.

2.5.7 Tilde

Another filename expansion mechanism gives access to the path name
of the home directory of other users. This notation consists of the tilde
character (-) followed by user's login name. For instance,

-bill

would map to the home directory of "bill". Since, on large systems,
users may have login directories scattered over many different disk
volumes with different prefix directory names, this notation provides a
reliable way of accessing the files of other users.

A special case of this notation consists of using "-,, alone. This nota­
tion is expanded by the shell into your home directory. This can be
very useful if you have used cd to change to another directory and have
found a file you wish to copy into your home directory. The command:

% cp thatfile -

would copy "thatfile" into your home directory.

THE C SHELL - CSH

2.5.8 Braces

There also exists a mechanism using the characters "{" and "}" for
abbreviating a set of words which have common parts. This mechanism
is described in the section "Other, Less Commonly Used, C Shell
Features."

2.5.9 Escaping Metacharacters

We have already seen a number of metacharacters used by the shell.
These metacharacters pose a problem as we cannot use them directly as
parts of words. Thus, the command:

% echo •

will not echo the character ".". It will either echo a list of file names
in the current working directory, or print the message "No match" if
there are no files in the working directory.

The method for inhibiting the expansion syntax of metacharacters is to
enclose it in single quotation characters, i.e.,

% echo'·

There is a special character "!" which is used by the history mechan­
ism of the shell and which cannot be escaped by placing it within single
quotes. It and the character ",,, itself can be preceded by a single "\"
to prevent their special meaning. Thus:

% echo \'\!

prints:
, !

Also,

% echo \".'

prints:

'.
since the first "\" escaped the first ,,'" and the "." was enclosed
between ,,'" characters.

6-11

THE C SHELL - CSH

2.6 TerminatingCommands

When you are executing a command and the shell is waiting for it to
complete, there are several ways to force it to stop. For instance, if
you type the. command:

% cat /etc/passwd

the system will concatenate (print) a copy of a list of all users of the
system on your terminal. This is likely to continue for several minutes
unless you stop it. You can send an interrupt signal to the cat com­
mand by typing the DELETE, DEL or RUBOUT key on your terminal.*
Since cat does not take any precautions to avoid or otherwise handle
this signal, the interrupt will cause it to terminate. The shell notices
that cat has terminated and displays another prompt (%). If you hit an
interrupt again, the shell will just repeat its prompt since it handles
interrupt signals and chooses to continue to execute commands rather
than terminating, which would have the effect of logging you out.

Another way in which many programs terminate is when they get an
end-of-file from their standard input. The shell also terminates when it
receives an end-of-file. This can happen when you input a CONTROL-d
at a prompt. This means that typing CONTROL-d one too many times
could cause you to logout accidently, however, the shell has a mechan­
ism for preventing this. This option is called ignoreeof. You can set
this option in your ".cshrc" file and the shell will then effectively
"ignore the (eof) end-of-file" sent by a CONTROL-d character. If this
option is set, you must give the command logout to log off the system.

If a command has its standard input redirected from a file, then it will
normally terminate when it reaches the end of this file. Thus, if we
execute:

mail bill < note

the mail will terminate without typing a CONTROL-d. This is because
it read to the end of the file "note".

* Many users use SIIy(I) to change the interrupt character to CONTROL-c.

6-12

THE C SHELL - CSH

If you write or run programs which are not fully debugged, then it may
be necessary to stop them somewhat ungracefully. This can be done by
sending them a quit signal, sent by typing a CONTROL-\. This will usu­
ally provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file "core" has been created containing information
about the program state when it terminated due to the quit signal. You
can examine this file yourself, or forward information to the maintainer
of the program telling him/her where the core file is.

Background commands will ignore interrupt and quit signals from the
terminal. To stop these processes you must use the kill command.
For example,

% nroft' bigfile &
17594
% kill 17594

The process "nroff bigfile" was put in the background with the "&"
symbol and was followed by the process number. Then, the kill com­
mand was issued. The kill command accepts the process number as an
argument (without a %). The ps command can be used to find out the
process number.

If you want to examine the output of a command, but realize that the
output will be more than one screenful, you can use the more com­
mand. For example,

% more / etc/ passwd

will print the contents of "/etc/passwd" on the standard output one
screenful at a time. The more program pauses after each complete
screenful and types "- - More- -". You then hit the space bar to
get another screenful, a RETURN to get another line, or a "q" to end
the more program. You can also use more as a filter, i.e.

% sort /etc/passwd I more

which pipes the standard output from the sort command through the
more program and prints that output one screenful at a time.

6-13

THE C SHELL - CSH

For stopping output of commands not involving more, you can use the
CONTROL-s key to stop the output. The output will resume when you
hit CONTROL-q (or any other key), but CONTROL-q is normally used
because it only restarts the output and does not become input to the
program which is running. This works well on low-speed terminals, but
at 9600 baud it is hard to type CONTROL-s and CONTROL-q fast
enough to paginate the output nicely, and a program like more is usu­
ally used.

3. Details of the C Shell

Much of the discussion in the preceding sections has been applicable to
both the shell (sh) .and the C shell (csh) of the U niPlus + operating
system. The following sections will introduce many features particular
to csh so you will need to be using the C shell to try these features.
The shell that you are using when you login to the system is specified
in the "/etc/passwd" file [see passwd(4»). If you are using the shell
"/binl sh ", you can switch to the C shell by typing the following com­
mand line:

chsh your_name Ibinl csh

You only need to do this once; it takes effect at all subsequent logins.

3.1 Startup and Termination

When you login the C shell is started by the system and begins by read­
ing commands from a file" .cshrc" in your home directory. All C shell
commands which you may execute during your terminal session will
read from this file. We will later see what kinds of useful commands
are placed there. However, the C shell does not complain about its
absence, and for now you need not have this file.

After you login to the system, the C shell will, after it reads commands
from ".cshrc", read commands from a file ".login" also in your home
directory. This file contains commands which you wish to do each time
you login to the UniPlus+ system. A sample" .login" file looks some­
thing like:

6-14

set ignoreeof
set noclobber
set mail = (/ usr / spool/ mail/ bill)
set time = 15 history = 10
stty 9600

THE C SHELL - CSH

This file contains several commands to be executed at the time of log­
ging into the system. The first is a set command which is interpreted
directly by the C shell. It sets the C shell variables ignoreeof (which
causes the C shell to not log out if a CONTROL-d is hit), noclobber
(which prevents overwriting of existing files), and mail (which causes
the C shell to watch every 5 minutes for incoming mail to tell the user
if more mail has arrived) . Next the C shell variable time is set to "15"
(which causes the C shell to automatically print out statistics lines for
commands which execute for at least 15 seconds of CPU time), and his­
tory is set to "1 0" (which indicates that user wants the C shell to
remember the last 10 commands given). The stty command is used to
specify the terminal baud rate to 9600. When the stty program is
finished, the C shell finishes processing the .login file and begins read­
ing commands from the terminal, prompting for each with a percent
(%).

When logging off by giving the logout command, the C shell will print
"logout" and execute commands from the file" .logout" if it exists in
the home directory. The C shell will then terminate and you will be
logged off the system. From this point, the C shell will no longer read
commands from the terminal. If the system is not going down, you
will receive a new login message.

3.2 C Shell Variables

The C shell maintains a set of variables. We saw above the variables
time and history which had values "IS" and "10". In fact, each C shell
variable has as value an array of zero or more strings. Shell variables
may be assigned values by the set command. It has several forms, the
most useful of which was given above and is

set name = value

The C shell variables may be used to store values which are to be used
in commands later through a substitution mechanism. The C shell
variables most commonly referenced are, however, those which the C

6-15

THE C SHELL - CSH

shell itself refers to. By changing the values of these variables one can
directly affect the behavior of the C shell.

One of the most important variables is the variable path. This variable
contains a sequence of directory names where the C shell searches for
commands. The set command with no arguments shows the value of
all variables currently defined (we usually say set) in the C shell. The
default value for path will be shown by set, for example:

% set
argv
home
path
prompt
shell
status
%

o
lusr/bill
(. lusr/ucb Ibin lusr/bin)
%
Ibin/csh
o

This output indicates that the path variable points to the current direc­
tory"." and then "/usr/ucb", "/bin" and "/usr/bin". Commands
which you may write might be in "." (usually one of your directories).
Commands developed at U.C. Berkeley reside in "/usr/ucb", while
commands developed at Bell Laboratories live in "I bin" and
"/usr/bin".

A number of locally developed programs on the system live in the
directory "/usrllocal". If you wish all commands that you invoke to
have access to these new programs, you can place the command

set path = (. lusr/ucb Ibin lusr/bin lusr/local)

in your ".cshrc" file in your home directory. Try doing this; then
logout and login and do:

% set

to see that the value assigned to path has changed.

One thing you should be aware of is that the C shell examines each
directory which you insert into your path and determines which com­
mands are contained there. Therefore, if commands are added to a
directory in your path after you have started the C shell, they will not
necessarily be found by the C shell. This is true for all but the current

6-16

THE C SHELL - CSH

directory "." (which the C shell treats specially). If you wish to use a
command which has been added in this way, you should give the com­
mand

% rehash

which will cause it to recompute its internal table of command locations
so that it will find the newly added command.

Other useful built-in variables are home which shows your home direc­
tory and cwd which contains your current working directory. The
ignoreeo! variable can be set in your ".login" file to tell the C shell not
to exit when it receives an end-of-file from a terminal. The C shell
does not care about the value of several variables, such as ignoreeo/,
only whether they are set or unset. Thus, to set this variable you sim­
ply do

set ignoreeof

and to unset it do

unset ignoreeof

Finally, some other built-in C shell variables of use are noc/obber and
mail. The metasyntax

> filename

which redirects the standard output of a command to "file" will
overwrite and destroy the previous contents of the named file if it
already exists. You may accidentally overwrite a file which is valuable.
If you would prefer that the C shell not overwrite ,files in this way, you
can input:

set noclobber

in your" .login" file.

6-17

THE C SHELL - CSH

Then, trying to do

date> now

twice will cause the diagnostic "now: File exists". You could type:

date >! now

if you really wanted to overwrite the contents of "now". The ">!" is
a special metasyntax indicating that clobbering the file is ok. t

3.3 History

The C shell can maintain a history list into which it places previous
command lines. It is possible to use a notation to reuse command lines
or words from command lines in forming new commands. This
mechanism can be used to repeat previous commands or to correct
minor typing mistakes in commands.

The string "!$" refers to the last argument to the previous command.
The "!" is the history mechanism invocation metacharacter, and the
"$" stands for the last argument (similarly, "$" in the text editor
stands for the end of the line). For example:

% sort list.1 > list.2
% pr !$Ilpr
pr list.2 Ilpr
%

Notice that the C shell echoed the command, as it would have been
typed without use of the history mechanism, and executed it.

The "!" history metacharacter can be used in conjunction with a com­
mand name or part of a command name to repeat a previous command
line. Thus, using the example above:

t The space between the"!" and the file name "now" is critical here as "!now" would
be an invocation of the history mechanism and have a totally different effect.

THE C SHELL - CSH

% !p
pr list.2 Ilpr
%

repeats the last occurrence of a command line beginning with "p" and
executes it. It is also possible to add to the repeated command, such
as:

% Is -I chap.1
-rw-rw-rw- 1 bill 680 Apr 13 09:45 chap.1
% chmod 600 !$; !l
chmod 600 chap. 1 ; Is -I chap. 1
-rw------- 1 bill 680 Apr 13 09:45 chap. 1
%

where the file "chap.1" is listed in the long format, the mode for
"chap.1" is changed without retyping the file name by using "!$", and
is then listed again using "!1" notation.

The "!!" string can also be used to repeat the immediately preceding
command. This notation can be added to as well, for example:

% Is -I chap. 1 chap.2
-rw---~--- 1 bill 514 Apr 13 12:03 chap.2
-rw------- 1 bill 839 Apr 13 15:54 chap.3
% !! Ilpr
Is -I chap. 1 chap.2 I Ipr
%

Another history feature is the "*" which denotes the argument list.
For example:

% Is -I chap.2 chap.3
-rw-rw-rw- 1 bill 514 Apr 13 12:03 chap.2
-rw-rw-rw- 1 bill 839 Apr 13 15:54 chap.3
% chmod 600 !* ; !!
chmod 600 chap. 1 chap.2 ; Is -I chap. 1 chap.2
-rw------- 1 bill 514 Apr 13 12:03 chap.2
-rw------- 1 bill 839 Apr 13 15:54 chap.3
%

If a command line needs to be changed slightly - perhaps a spelling
error or different option, there is a substitute feature in history that is

6-19

THE C SHELL - CSH

similar to the substitute command in the text editor. For example:

% Is -I chat.l
No match.
%"(p
Is -I chap.l
-rw------- 1 bill 680 Apr 13 09:45 chap.1
%

replaces the letter "t" with the correct letter "p". The""" character
is used a the substitute delimiters. Note that only first occurrence will
be changed, Le.:

% Is -I chat. 1 chat.2
chat. 1 not found
chat.2 not found
% "t"p
Is -I chap.l chat.2
chat.2 not found
-rw------- 1 bill 680 Apr 13 09:45 chap.1
%

If you were to type the history command, depending on what is set in
you ".login" file, it would print a history list. For example:

1 % sort list. 1 > list.2
2 % pr list.2 Ilpr
3 % pr list.2 Ilpr
4 % Is -I chap.l
5 % chmod 600 chap.! ; Is -I chap.!
6 % Is -I chap.! chap.2
7 % Is -I chap. 1 chap.2 I Ipr
8 % Is -I chap.2 chap.3
9 % chmod 600 chap.! chap.2 ; Is -I chap.! chap.2

10 % Is -I chat.!
11 % Is -I chap.!
12 % Is -I chat. 1 chat.2
13 % Is -I chap. 1 chat.2

Each command line is numbered consecutively starting with ! (your
first command to the C shell) continuing until you logout. This
number can be used with the "!" character to repeat commands, such
as:

6-20

THE C SHELL - CSH

% !II
Is -1 chap.l
-rw------- 1 bill 680 Apr 13 09:45 chap. 1
%

The history mechanism not only saves a lot of typing (especially when
you input extremely long command lines), but it is also a very useful
reminder of the most recent commands you executed.

Frequently you would just like to look at a previous command without
executing it again. The ":p" string can be used to accomplish this, Le.:

% !chmod:p
chmod 600 chap. 1 chap.2 ; Is -1 chap. I chap.2
%

does not change the mode of the files nor does it list them.

There is a way to refer to a previous command by searching for a string
which appeared in it, and there are other less common ways to select
arguments to include in a new command. A complete description of all
these mechanisms is given in the csh(I) entry in the UniPlus+ System
V User's Manual.

3.4 Aliases

The C shell has an alias mechanism which can be used to make
transformations on input commands. This mechanism can be used to
simplify the commands you type, to supply default arguments to com­
mands, or to perform transformations on commands and their argu­
ments. The alias facility is similar to a macro facility. Some of the
features obtained by aliasing can be obtained also using C shell com­
mand files, but these take place in another instance of the C shell and
cannot directly affect the current shell's environment or involve com­
mands such as cd which must be done in the current shell.

As an example, suppose that there is a new version of the mail pro­
gram on the system called newmail you wish to use, rather than the
standard program which is called mail. If you place the C shell com­
mand:

6-21

THE C SHELL - CSH

alias mail newmail

in your ".cshrc" file, the C shell will transform an input line of the
form

% mail bill

into

% newmail bill

Suppose you prefer the command Is to always show sizes of files, that
is to always use the - s option. You can input:

alias Is Is - s

or perhaps:

alias dir Is - s

creating a new command syntax dir which does an "Is - s ". If you
were to then input:

% dir -bill

the C shell will translate this to

% Is - s /usr/bill

Thus, the alias mechanism can be used to provide short names for
commands, to provide default arguments, and to define new short com­
mands in terms of other commands. It is also possible to define aliases
which contain multiple commands or pipelines that also show where the
arguments to the original command are to be substituted. This is
accomplished by using the facilities of the history mechanism. Thus,
the definition:

alias cd 'cd \!* ; Is '

would do an Is command after each change directory cd command.
The entire alias definition is enclosed in ",,, characters to prevent sub­
stitutions from occurring and the character ";" from being recognized
as a metacharacter. The"!" is escaped with a "\" to prevent it from
being interpreted when the alias command is typed in. The "\!*" sub­
stitutes the entire argument list to the pre-aliasing cd command without
giving an error if there were no arguments. The" ;" separating com­
mands is used here to indicate that one command is to be done and
then the next.

6-22

THE C SHELL - CSH

Warning: The C shell currently reads the ".cshrc" file each time it
starts up. If you place a large number of commands there, the C shell
will tend to start slowly. You should try to limit the number of aliases
you have to a reasonable number-IO or 15 is reasonable, 50 or 60 will
cause a noticeable delay in starting up the C shell and make the system
seem sluggish when you execute commands from within the text editor
and other programs.

3.5 More Redirection

There are a few more notations useful to the user which have not been
introduced yet.

In addition to the standard output, commands also have a diagnostic out­
put which is normally directed to the terminal even when the standard
output is redirected to a file or a pipe. It is occasionally desirable to
direct the diagnostic output along with the standard output. For
instance, if you want to redirect the output of a long running command
into a file and wish to have a record of any error diagnostic it produces,
you can input:

% command > & file

The ">&" tells the C shell to route both the diagnostic output and the
standard output into "file". Similarly you can give the command:

% command 1& lpr

to route both standard and diagnostic output through the pipe to the
line printer daemon Ipr.*

Finally, it is possible to use the form:

% command > > file

to place output at the end of an existing file. t

* A command form "command >&! file" exists and is used when noclobber is set and
"file" already exists.

t If noclobber is set, then an error will result if "file" does exist, otherwise the C shell
will create "file" if it doesn't exist. A form "command »! file" prevents it from
being an error for "file" to not exist when noclobber is set.

6-23

THE C SHELL - CSH

3.6 Background and Foreground

If the metacharacter "&" is typed at the end of a command line, then
that command line is started as a background process. This means that
the C shell does not wait for it to complete but immediately prompts
and is ready for another command. The process runs in the background
at the same time that a foreground process is running. The processes
continue to be read and executed by the C shell one at a time. Thus:

% du > usage &

would run the du program, put the output into the file "usage" and
return immediately with a prompt for the next command without wait­
ing for du to finish. The du program would continue executing in the
background until it finished, even though you can type and execute
more commands in the meantime. Background processes are
unaffected by any signals from the keyboard like the stop, interrupt, or
quit signals mentioned earlier.

Processes are recorded in a table inside the C shell until they terminate.
In this table, the C shell remembers the command names, arguments
and the process numbers of all commands in the process as well as the
working directory where the process was started. Each process in the
table is either running in the foreground with the C shell waiting for it
to terminate or running in the background. Only one process can be
running in the foreground at one time, but several process can be run­
ning in the background at once. When a process is started in the back­
ground using "&", the process numbers of all its (top level) com­
mands, is typed by the C shell before prompting you for another com­
mand.

3.7 Working Directories

The C shell is always in a particular working directory. The chdir
(change directory) command (its short form cd may also be used)
changes the working directory of the C shell, that is, changes the direc­
tory you are located in.

It is useful to make a directory for each project you wish to work on
and to place all files related to that project in that directory. The mkdir
(make directory) command creates a new directory. The pwd (print
working directory) command reports the absolute path name of the
working directory of the C shell- that is, the directory you are located

6-24

in. Thus, in the example below:

% pwd
lusr/bill
% mkdir newpaper
% chdir newpaper
% pwd
lusr/bill/newpaper
%

THE C SHELL - CSH

the user has created and moved to the directory "newpaper" where he
can place a group of related files.

No matter where you have moved to in a directory hierarchy, you can
return to your home directory by typing:

% cd

with no arguments. The name " .. " always means the directory above
the current one in the hierarchy, thus:

% cd ..

changes the C shell's working directory to the one directly above the
current one. The name " .. " can be used in any pathname, thus:

% cd .. I programs

means change to the directory "programs" contained in the directory
above the current one. If you have several directories for different pro­
jects under, perhaps, your home directory, this shorthand notation per­
mits you to switch easily between them.

3.8 Useful Built-in Commands

We now give a few of the useful built-in commands of the C shell
describing how they are used.

The alias command described above is used to assign new aliases and
to show the existing aliases. With no arguments it prints the current
aliases. It may also be given only one argument such as

alias Is

to show the current alias for, e.g., Is.

6-25

THE C SHELL - CSH

The echo command prints its arguments. It is often used in shell scripts
or as an interactive command to see what filename expansions will pro­
duce.

The history command will show the contents of the history list. The
numbers given with the history events can be used to reference previ­
ous events which are difficult to reference using the contextual mechan­
isms introduced above. There is also a C shell variable called prompt.
By placing a "!" character as its value, the C shell will substitute the
number of the current command in the history list. You can use this
number to refer to this command in a history substitution. Thus you
could

set prompt='\! % '

Note that the"!" character had to be escaped even within ,,'" charac­
ters.

The logout command can be used to terminate a login C shell which
has ignoreeoj set.

The rehash command causes the C shell to recompute a table of com­
mand locations. This is necessary if you add a command to a directory
in the current shell's search path and wish the C shell to find it. Other­
wise the hashing algorithm may tell the C shell that the command
wasn't in that directory when the hash table was computed.

The repeat command can be used to repeat a command several times.
Thus to make 5 copies of the file "one" in the file "five", you could
type:

% repeat 5 cat one » five

The setenv command can be used to set variables in the environment.
Thus:

% setenv TERM adm3a

will set the value of the environment variable TERM to "adm3a". A
user program printenv exists which will print out the environment. It
might then show:

6-26

THE C SHELL - CSH

% printenv
HOME==/usr/bill
SHELL == Ibinl csh
PATH == :/usr/ucb:/bin:/usr/bin:/usrllocal
TERM == adm3a
USER == bill
%

The source command can be used to force the current shell to read
commands from a file. Thus

% source .cshrc

can be used after editing a change to the ".cshrc" file which you wish
to take effect before the next time you login.

The time command can be used to cause a command to be timed no
matter how much CPU time it takes. Thus:

% time cp letc/rc lusr/bill/rc
O.Ou O.ls 0:01 8%
% time we letc/rc lusr/bill/rc

52 178 1347 letc/rc
52 178 1347 lusr/bill/rc

104 3562 2694 total
0.1 u O.1s 0:00 13%
%

indicates that the cp command used a negligible amount of user time
(u) and about 1I10th of a system time (s); the elapsed time was 1
second (0:01). The word count command wc on the other hand used
0.1 seconds of user time and 0.1 seconds of system time in less than a
second of elapsed time. The percentage "13%" indicates that over the
period when it was active the command wc used an average of 13 per­
cent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases and
variable definitions from the C shell.

4. Shell Control Structures and Command Scripts

It is possible to place commands in files and to cause the C shell to be
invoked to read and execute commands from these files. These

6-27

THE C SHELL - CSH

executable files are called shell scripts. This chapter outlines some of the
information necessary in writing these scripts.

4.1 Make

It is important to note what shell scripts are not useful for. There is a
program called make which is very useful for maintaining a group of
related files or performing sets of operations on related files. For
instance, a large program consisting of one or more files can have its
dependencies described in a "makefile" which contains definitions of
the commands used to create these different files. Definitions of the
means for printing listings, cleaning up the directory in which the files
reside, and installing the resultant programs are easily, and most
appropriately placed in this "makefile". This format is superior and
preferable to maintaining a group of shell procedures to maintain these
files.

Similarly when working on a document a "makefile" may be created
which defines how different versions of the document are to be created
and which options of the text formatter programs, nroff or troff, are
appropriate.

4.2 Invocation and the argv Variable

A csh command script may be interpreted by saying

% csh script ...

where "script" is the name of the file containing a group of csh com­
mands and " ... " is replaced by a sequence of arguments. The C shell
places these arguments in the variable argv and then begins to read
commands from the script. These parameters are then available
through the same mechanisms which are used to reference any other
shell variables.

If you make the file "script" executable by doing

% chmod 755 script

or

% chmod + x script

and place a C shell comment at the beginning of the shell script (i.e.,
begin the file with a "#" character), a "/bin/csh" will automatically be

6-28

invoked to execute "script" when you type

% script

THE C SHELL - CSH

If the file does not begin with a "#", then the standard shell
"/bin/sh" will be used to execute it. This allows you to convert your
older shell scripts to use csh at your convenience.

4.3 Variable Substitution

After each input line is broken into words and history substitutions are
done on it, the input line is parsed into distinct commands. Before
each command is executed a mechanism know as variable substitution is
done on these words. Keyed by the character "$", this substitution
replaces the names of variables by their values. Thus:

echo $argv

when placed in a command script, would cause the current value of the
variable argv to be echoed to the output of the shell script. It is an
error for argv to be unset at this point.

A number of notations are provided for accessing components and attri­
butes of variables. The notation

$?name

expands to "1" if name is set, or to "0" if name is not set. It is the
fundamental mechanism used for checking whether particular variables
have been assigned values. All other forms of reference to undefined
variables cause errors.

The notation

$#name

expands to the number of elements in the variable name. Thus:

6-29

THE C SHELL - CSH

% set argv= (a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
o
% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has
several values. Thus:

$argv[I]

gives the first component of argv, or in the example above "a". Simi­
larly,

$argv [$#argv]

would give "c", and

$argv[I -2]

would give "a b". Other notations useful in shell scripts are

$n

where n is an integer as a shorthand for

$argv[n]

the nth parameter.

One minor difference between "$n" and "$argv[n]" should be noted
here. The form "$argv[n]" will yield an error if n is not in the range
"l-$#argv" while "$n" will never yield an out-of-range subscript
error. This is for compatibility with the way older shells handled
parameters.

Another important point is that it is never an error to give a subrange
of the form "n -"; if there are less than n components of the given
variable, then no words are substituted. A range of the form "m - n"
likewise returns an empty vector without giving an error when m

6-30

THE C SHELL - CSH

exceeds the number of elements of the given variable, provided the
subscript n is in range.

The notation:

$*

is a shorthand for

$argv

The form

$$

expands to the process number of the current shell. Since this process
number is unique in the system, it can be used in generation of unique
temporary file names.

4.4 Expressions

In order for interesting shell scripts to be constructed, it must be possi­
ble to evaluate expressions in the C shell based on the values of vari­
ables. In fact, all the arithmetic operations of the language C are avail­
able in the C shell with the same precedence that they have in C. In
particular, the operations "= =" and "! =" compare strings and the
operators "&&" and "II" implement the boolean and/or operations.
The special operators "=-" and "!-" are similar to "==" and "!="
except that the string on the right side can have pattern matching char­
acters (like *, ? or []), and the test is whether the string on the left
matches the pattern on the right.

The C shell also allows file enquiries of the form:

-? filename

where "?" is replaced by a number of single characters. For instance,
the expression primitive:

-e filename

tells whether the file "filename" exists. Other primitives test for read
(- r), write (- w) and execute (- x) access to the file, whether it is a
directory (- d), or has non-zero length (- z).

6-31

THE C SHELL - CSH

It is possible to test whether a command terminates normally by a
primitive of the form "{command}" which returns true, i.e., "1" if the
command succeeds exiting normally with exit status 0, or "0" if the
command terminates abnormally or with exit status non-zero. If more
detailed information about the execution status of a command is
required, it can be executed and the variable "$status" examined in the
next command. Since "$status" is set by every command, it is very
transient. It can be saved if it is inconvenient to use it only in the sin­
gle immediately following command.

4.5 Sample C Shell Script

A sample C shell script which makes use of the expression mechanism
of the C shell and some of its control structure follows:

% cat copyc

Copyc copies those C programs in the specified list
to the directory -/backup if they differ from the files
already in -/backup

set noglob
foreach i ($argv)

end

if ($i !- *.c) continue # not a .c file so do nothing
if (! - r -/backup/$i:t) then

endif

echo $i:t not in backup ... not cp\' ed
continue

cmp - s $i -/backup/$i:t # to set $status
if ($status ! = 0) then

echo new backup of $i
cp $i -/backup/$i:t

endif

This script makes use of the foreach command, which causes the C
shell to execute the commands between the foreach and the matching
end for each of the values given between "(" and ")" with the named
variable, in this case "i" set to successive values in the list. Within
this loop we may use the command break to stop executing the loop
and continue to prematurely terminate one iteration and begin the next.
After the foreach loop, the iteration variable ("i" in this case) has the
value at the last iteration.

6-32

THE C SHELL - CSH

We set the variable noglob here to prevent filename expansion of the
members of argv. This is a good idea, in general, if the arguments to a
shell script are file names which have already been expanded, or if the
arguments may contain filename expansion metacharacters. It is also
possible to quote each use of a "$" variable expansion, but this is
harder and less reliable.

The other control construct used here is a statement of the form:

if (expression) then
command

endif

The placement of the keywords here is not flexible due to the current
implementation of the C shell.:J:

The C shell does have another form of the if statement of the form:

if (expression) command

which can be written:

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The
command must not involve "I", "&" or ";" and must not be another
control command. The second for~ requires the final "\" to immedi­
ately precede the end-of-line.

:j: The following two formats are not currently acceptable to the C shell:
if (expression) # Won't work!
then

command

endif
and

if (expression) then command endif # Won't work

6-33

THE C SHELL - CSH

The more general if statements above also admit a sequence of else - if
pairs followed by a single else and an endif, e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is the ":" modifier.
We can use the modifier ":r" here to extract a root of a file name or
":e" to extract the extension". Thus, if the variable "i" has the value
"/mnt/foo.bar", then

% echo $i $i:r $i:e
/mnt/foo.bar /mnt/foo bar
%

shows how the ":r" modifier strips off the trailing ".bar" and the the
":e" modifier leaves only the "bar". Other modifiers will take off the
last component of a pathname leaving the head ":h" or all but the last
component of a pathname leaving the tail ":t". These modifiers are
described in the csh(1) manual entry. It is also possible to use the
command substitution mechanism described in the next major section to
perform modifications on strings to then reenter the C shell's environ­
ment. Since each usage of this mechanism involves the creation of a
new process, it is much more expensive to use than the ":"
modification mechanism.* Finally, we note that the character "#" lexi­
cally introduces a C shell comment in shell scripts (but not from the
terminal). All subsequent characters on the input line after a "#" are
discarded by the C shell. This character can be quoted using ",,, or
"\" to place it in an argument word.

* It is also important to note that the current implementation of the C shell limits the
number of ":" modifiers on a "$" substitution to 1. Thus:

% echo $i $i:h:t
lalblc la/b:t
%

does not do what one would expect.

6-34

THE C SHELL - CSH

4.6 Other Control Structures

The C shell also has control structures while and switch similar to
those of C. These take the forms:

and

while (expression)
commands

end

switch (word)
case strl:

commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

C programmers should note that we use breaksw to exit from a switch
while break exits a while or foreach loop. A common mistake to make
in csh scripts is to use break rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they do in
C, i.e.:

loop:
commands
goto loop

4.7 Supplying Input to Commands

Commands run from shell scripts receive (by default) the standard
input of the shell which is running the script. This allows shell scripts
to fully participate in pipelines, but requires that there be extra notation
for commands which are to take inline data.

Thus, we need a metanotation for supplying inline data to commands in
shell scripts. As an example, consider this script which runs the editor

6-35

THE C SHELL - CSH

to delete leading blanks from the lines in each argument file

% cat deblank
deb lank - - remove leading blanks
foreach i ($argv)
ed - $i « 'EOF'
1,$s/CONTROL[]*//
w
q
'EOF'
end
%

The notation "« 'EOF'" means that the standard input for the ed
command is to come from the text in the shell script file up to the next
line consisting of exactly "'EOF'''. The fact that the "EOF" is
enclosed in ",,, characters (i.e., quoted) causes the C shell to not per­
form variable substitution on the intervening lines. In general, if any
part of the word following the "< <" which the C shell uses to ter­
minate the text to be given to the command is quoted, then these sub­
stitutions will not be performed. In this case, since we used the form
"1,$" in our editor script, we needed to insure that this "$" was not
variable substituted. We could also have insured this by preceding the
"$" here with a "\", i.e.:

1,\$s/CONTROL[]*//

but quoting the "EOF" terminator is a more reliable way of achieving
the same thing.

4.8 Catching Interrupts

If our shell script creates temporary files, we may wish to catch interr­
uptions of the shell script so that we can clean up these files. We can
then do:

onintr label

where "label" is a label in our program. If an interrupt is received, the
C shell will do a "goto label" and we can remove the temporary files
and then do an exit command (which is built in to the C shell) to exit
from the shell script. If we wish to exit with a non-zero status, we can
do:

exit(1)

e.g., to exit with status "1".

6-36

THE C SHELL - CSH

4.9 What Else?

There are other features of the C shell useful to writers of shell pro­
cedures. The verbose and echo options and the related - v and - x
command line options can be used to help trace the actions of the C
shell. The - n option causes the C shell only to read commands and
not to execute them and may sometimes be of use.

One other thing to note is that csh will not execute shell scripts which
do not begin with the character "#", that is shell scripts that do not
begin with a comment. Similarly, the "/binl sh" on your system may
well defer to csh to interpret shell scripts which begin with "#". This
allows shell scripts for both shells to live in harmony.

There is also another quotation mechanism using """ which allows
only some of the expansion mechanisms we have so far discussed to
occur on the quoted string and serves to make this string into a single
word as ,,'" does.

5. Other, Less Commonly Used, C Shell Features

5.1 Loops at the Terminal; Variables as Vectors

It is occasionally useful to use the foreach control structure at the ter­
minal to aid in performing a number of similar commands. For
instance, if there were three shells in use on one of your systems -
"/bin/sh", "/bin/nsh", and "/bin/csh", to count the number of per­
sons using each shell you could issue the commands

% grep - c cshS I etcl passwd
27
% grep -c nshS letc/passwd
128
% grep - c - v shS I etcl passwd
430
%

Since these commands are very similar it is possible to do this more
easily using foreach. For example:

6-37

THE C SHELL - CSH

% foreach i (' - v sh$')
? grep -c $i /etc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with "? " when reading the
body of the loop.

Very useful with loops are variables which contain lists of file names or
other words. You can, for example, do:

% set a = Cis')
% echo $a
csh.n csh.rm
% Is
csh.n
csh.rm
% echo $#a
2
%

The set command here gave the variable "a" a list of all the file names
in the current directory as value. We can then iterate over these names
to perform any chosen function.

The output of a command within "'" characters is converted by the
shell to a list of words. You could also place that quoted string within
'''''' characters to take each (non-empty) line as a component of the
variable, preventing the lines from being split into words at blanks and
tabs. A modifier ":x" exists which can be used later to expand each
component of the variable into another variable splitting it into separate
words at embedded blanks and tabs.

5.2 Braces { ... } in Argument Expansion

Another form of filename expansion, alluded to before involves the
characters "{" and "}". These characters specify that the contained
strings separated by "," are to be consecutively substituted into the
containing characters and the results expanded left to right. Thus:

6-38

THE C SHELL - CSH

A{strl,str2, ... strn}B

expands to:

Astr 1 B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may
be nested. The results of each expanded string are sorted separately,
left to right order being preserved. The resulting file names are not
required to exist if no other expansion mechanisms are used. This
means that this mechanism can be used to generate arguments which
are not file names, but which have common parts.

A typical use of this would be:

% mkdir -I {hdrs,retrofit,csh}

to make subdirectories "hdrs", "retrofit" and "csh" in your home
directory. This mechanism is most useful when the common prefix is
long, Le.:

% chown root lusr/{ucb/{ex,edit},lib/{ex??*,how_ex}}

5.3 Command Substitution

A command enclosed in ",,, characters is replaced, just before file
names are expanded, by the output from that command. Thus, it is
possible to do:

set pwd= 'pwd'

to save the current directory in the variable "pwd" or to do:

% ex 'grep -1 TRACE *.c'

to run the editor ex supplying as arguments those files whose names
end in ".c" which have the string "TRACE" in them. t

t Command expansion also occurs in input redirected with "«" and within .. ,,,,
Quotations. Refer to the csh(I) manual entry for fuJI details.

6-39

THE C SHELL - CSH

5.4 Other Details Not Covered Here

In particular circumstances it may be necessary to know the exact
nature and order of different substitutions performed by the C shell.
The exact meaning of certain combinations of quotations is also occa­
sionally important.

The shell has a number of command line option flags mostly of use in
writing programs and debugging shell scripts. See the csh (1) entry in
the UniPlus+ System V Users Manual.

6. Appendix - Special Characters

The following table lists the special characters of the C shell. A
number of these characters also have special meaning in expressions.
See the csh(1) manual entry for a complete list.

Syntactic metacharacters

,
I
()
&

separates commands to be executed sequentially
separates commands in a pipeline
brackets expressions and variable values
follows commands to be executed in the background

File name metacharacters

/ separates components of a file's pathname;
appearing alone, represents the root directory
separates root parts of a file name from extensions

? expansion character matching any single character
* expansion character matching any sequence of characters
[] expansion sequence matching any single character from a ~

used at the beginning of a file name to indicate home dire(
{ } used to specify groups of arguments with common parts

Quotation metacharacters

\ ,

"

6-40

prevents meta-meaning of following single character
prevents meta-meaning of a group of characters
like " but allows variable and command expansion

THE C SHELL - CSH

Input/ output metacharacters

<
>

indicates redirected input
indicates redirected output

Expansion/ substitution metacharacters

$ indicates variable substitution
indicates history substitution
precedes substitution modifiers
used as parameter of history substitution
indicates command substitution

Other metacharacters

%

begins scratch file names; indicates C shell comments
prefixes option (flag) arguments to commands
prefixes job name specifications

6-41

Chapter 7

GLOSSARY

The following alphabetical list defines terms and acronyms used in this
guide which may not be familiar to the user .

• - The name of your current directory. The character "." is also
used in separating components of filenames. At the beginning of
a file name, "." is treated specially and not matched by the
filename expansion metacharacters ?, *, [, and].

•• - The name of your parent directory. The command line "cd
moves you from your present directory to the directory above it.

"

alias- Specifies an abbreviation for a command or se~ies of com­
mands. The C shell has an alias command which sets aliases and
a command unalias to remove aliases.

argument- Words following the command on a command line that
provide information necessary to execute a program. Command
arguments are very often file names.

ASCII- American Standard Code for Information Interchange.

background- A mode of program execution when the shell does not
wait for the command to terminate before prompting for another
command. The background can be invoked by ending the com­
mand line with an ampersand (&).

bin - A directory containing binaries of programs and shell scripts to be
executed. The standard bin directories are "/bin" containing the
most frequently used commands and "/usr/bin," which contains
most other user programs.

builtin command- A function performed by the shell.

C language- A general purpose, low-level programming language used
to write programs (such as numerical, text-processing, and data
base) and operating systems (such as the UNIX operating system).

7-1

GLOSSARY

command - The first word of a command line. It is the name of an
executable file that is a compiled program.

command line- A sequence of words separated by blanks or tabs typed
in by a user. The first words usually specifies the name of a com­
mand and the others are arguments to the command.

command list- A sequence of one or more simple commands
separated or terminated by a new line or a semicolon.

command procedure- An executable file that is not a compiled pro­
gram. It is a call to the shell to read and execute commands con­
tained in a file. A sequence of commands may thus be preserved
for repeated use by saving it in a file which can also be called a
shell procedure, shell script, a command file, or a runcom accord­
ing to local preference.

command substitution - When the shell reads a command line, any
command or commands enclosed between grave accents (....•)
are executed first and the output from these commands replace
the whole expression (' .. .').

CONTROL character- Special character produced by holding down the
CONTROL key on your terminal keyboard and simultaneously
pressing another character.

csh - The command name of the C shell program.

current working directory-The ;;urrent point of reference for access­
ing data within the file system.

DELETE- The DELETE, DEL or RUBOUT key on the terminal key­
board which normally causes an interrupt to be sent to the current
job.

directory- A structure which contains files that is used to group and
organize files and other directories.

EOF - The End-Of-File character is the same as an ASCII EOT charac­
ter.

7-2

GLOSSARY

EOT - The End-Of-Text character is generated by holding down the
CONTROL key and pressing the lowercase "d" key once. The
EOT is used to terminate the shell which usually logs a user off
the system.

erase character- The character which is used to delete the previous
character input on the current line. To turn off the special mean­
ing of the erase character, it must be preceded with a "\." By
default, the erase character is #. See stty(I) to change the
default character.

escape- A character "\", when used to prevent the shell from reading
the special meaning of a metacharacter, is said to escape that
character's special meaning. There is also a non-printing key­
board character usually labelled ESC, ESCAPE or ALTMODE that is
needed, for example, when using vi.

file- An organized collection of information containing data, pro­
grams, or both which allows users to store, retrieve, and modify
information. A simple file name is a sequence of characters other
than a slash (/).

filter- A command that reads its standard input, transforms it in some
way, and prints the result as output.

flag - Many commands accept arguments which are not the names of
files but are used to modify the action of the commands. These
are referred to as flag options and consist of one or more letters
preceded by the character "- ."

foreground- A mode of program execution when the shell waits for
the command to terminate before prompting for another com­
mand.

full pathname- The pathname of a specific file starting from the root
directory (also called absolute pathname).

group identification number (gid) - A unique number assigned to one
or more login names that is used to identify groups of related
users.

7-3

GLOSSARY

here documents- A command procedure that has the form
"command « eofstring" which causes the shell to read subse­
quent lines as standard input to the command until a line is read
consisting of only the eojstring. Any arbitrary string can be used
for the eojstring.

history- The mechanism of the C shell that allows previous com­
mands to be repeated, with or without modification.

home- Another name for the login directory.

job- One or more commands on the same input line separated by "I"
or " ; " characters.

keyword parameters- An argument to a command procedure of the
form "name=value command argi arg2 ••. " here name is
called the keyword parameter. This allows shell variables to be
assigned values when a shell procedure is called. The value of
name in the invoking shell is not affected, but the value is
assigned to name before execution of the procedure. The argu­
ments (argl arg2 ...) are available as positional parameters
($1 $2 ...).

kill character- The character which is used to delete all the characters
typed before it on the current line. To turn off the special mean­
ing of the kill character, it must be preceded with a "\." By
default, the kill character is @. The default character can be
changed via sUy (1) .

login- A means by which a user can gain access to the UniPlus+
operating system.

login name- A unique string of letters and numbers used to identify a
login.

logout- A procedure to disconnect the user from the UniPlus+ operat­
ing system.

memorandum macros- The standard general-purpose package of text
formatting macros used in conjunction with nroff and troff to pro­
duce documents.

7-4

GLOSSARY

metacharacters - Characters that have a special meaning to the shell,
such as < > * ? 1 & $; () \ " ' , [] ,etc.

mode- An absolute mode is an octal number used in conjunction with
chmod (I) to change permissions of files.

nroff- A text formatting program for driving typewriter-like terminals
and printers to produce a screen copy or a hardcopy of a docu­
ment.

parent directory- The directory immediately above another directory.
A " .. " is the shorthand name for the parent directory. To make
the parent directory of your current working directory your new
current directory enter the "cd .. " command.

partial pathname- The path name between the current working direc­
tory and a specific file.

password- A string of up to 13 characters chosen from' a 64 character
alphabet (., \, 0-9, A -Z, a-z).

path name- A sequence of directory names separated by the / charac­
ter and ending with the name of a file. The pathname defines the
connection path between some directory and a file.

pipe- A simple way to connect the output of one program to the input
of another program, so that each program will run as a sequence
of processes.

pipeline- A series of filters separated by the character I. The output of
each filter becomes the input of the next filter in the line. The last
filter in the line will write to its standard output.

positional parameters - Arguments supplied with a command pro­
cedure that are placed into variable names $1, $2, ... when the
command procedure is invoked by the shell. The name of the file
being executed is positional parameter $0.

primary prompt- A notification (by default "$ ") to the user that the
shell is ready to accept another request.

7-5

GLOSSARY

process- A program that is in some state of execution. The execution
of. a cbmputer environment including contents of memory, regis­
ter values, name of the current directory, status of open files,
information recorded at login. time, and various other items.

program - Software that can be executed by a user; a binary file or
shell command script which performs a function is called a pro­
gram.

prompt- The shell and many programs will print a prompt on the ter­
minal when input is expected.

root- The directory that is at the top of the entire directory structure.

script- Sequences of shell commands placed in a file.

secondary prompt- A notification (by default" > ") to the user that
the command typed in response to the primary prompt is incom­
plete.

sh - The command name of the shell program.

shell- A UniPlus+ system user program written in C language that is
is a command language interpreter, i.e., handles the communica­
tion between the system and users. The shell accepts commands
and causes the appropriate program to be executed.

shell procedure- See command procedure.

standard input- The standard input of a command is sent to an open
file which is normally connected to the keyboard. An argument to
the shell of the form "< file" opens the specified file as the stan­
dard input thus redirecting input to come from the file named
instead of the keyboard.

standard output- Output produced by most commands is sent to an
open file which is normally connected to the printer or screen.
This output may be redirected by an argument to the shell of the
form "> file" which opens the specified file as the standard out­
put.

7-6

GLOSSARY

text editor- An interactive program (ed, ex or vi) for creating ,and
modifying text, using commands provided by a user ~a terminal.

troff- A text formatting program for driving a phototypesetter to pro­
duce high-quality printed text.

user-defined variables- A user variable can be defined using an
assignment statement of the form "name=value" where name
must begin with a letter or underscore and may then consist of
any sequence of letters, digits, or underscores up to 512 charac­
ters. The name is the variable. Positional parameters cannot be in
the name.

user identification number (uid) - A unique number assigned to each
login that is used to identify users and the owner of information
stored on the system.

variables- A variable is a name representing a string value. Variables
which are normally set only on a command line are called parame­
ters (positional parameters and keyword parameters). Other vari­
ables are simply names to which the user (user-defined variables)
or the shell itself may assign string values.

7-7

	0001
	0002
	001
	002
	003
	004
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07

