
• UNISYS System V Operating
System
STREAMS
Primer
Unisys is a trademark of Unisys Corporation.

Priced Item

January 1988

Printed in U S America
UP-13672

This document is intended for software releases based on AT&T Release 3 of
UNIX System V or a subsequent release of the System unless otherwise
indicated.

The names, places, and/or events used in this publication are not intended to
correspond to any individual, group, or association existing, living, or otherwise.
Any similarity or likeness of the names, places and/or events with the names
of any individual living or otherwise, or that of any group or association is purely
coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT.
Any product and related material disclosed herein are only furnished pursuant
and subject to the terms and conditions of a duly executed Program Product
License or Agreement to purchase or lease equipment. The only warranties
made by Unisys, if any, with respect to the products described in this document
are set forth in such License or Agreement. Unisys cannot accept any financial
or other responsibility that may be the result of your use of the information in
this document or software material, including direct, indirect, special or
consequential damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions
may be issued to advise of such changes and/or additions.

Ethernet is a trademark of Xerox Corporation.
UNIX is a registered trademark of AT&T in the USA and other countries.

Portions of this material are copyrighted iCI by
AT&T Technologies

and are reprinted with their permiSSion.

Table of Contents

Chapter 1: Introduction 1-1

How this Document is Organized 1-3

Other Documents 1-4

Chapter 2: Overview 2-1

A Basic View of a Stream 2-1

System Calls 2-2

Benefits of STREAMS 2-3

Creating Service Interfaces 2-3
Manipulating Modules 2-3

Protocol Portability 2-4

Protocol Substitution 2-5

Protocol Migration 2-5

Module Reusability 2-6

An Advanced View of a Stream 2-8

Stream Head 2-9
Modules 2-9

Stream End 2-10

Chapter 3: Building a Stream 3-1

Expanded Streams 3-2

Pushable Modules 3-3

UP-13672 TABLE OF CONTENTS iii

Table of Contents

Chapter 4: User Level Functions

STREAMS System Calls

An Asynchronous Protocol Stream Example

Initializing the Stream

Message Types

Sending and Receiving Messages

Using Messages in the Example

Other User Functions

Chapter 5: Kernel Level Functions

Introduction

Messages

Message Allocation

Put and Service Procedures

Put Procedures

Service Procedures

Kernel ProceSSing

Read Side Processing

Driver Processing

CHARPROC
CANONPROC

Write Side Processing

Analysis

iv STREAMS PRIMER

4-1

4-1

4-2

4-3

4-4

4-5

4-5

4-10

5-1

5-7

5-8

5-8

5-8

5-10

5-10

5-11

UP-13672

Table of Contents

Chapter 6: Other Facilities 6-1

Introduction 6-1

Message Queue Priority 6-2

Flow Control 6-4

Multiplexing 6-7

Monitoring 6-12

Error and Trace Logging 6-13

Chapter 7: Driver Design Comparisons 7-1

Introduction 7-1

Environment 7-1

Drivers 7-1

Modules 7-2

Glossary G-1

UP-13672 TABLE OF CONTENTS v

List of Figures

Figure 2-1: Basic Stream 2-1

Figure 2-2: Protocol Module Portability 2-6

Figure 2-3: Protocol Migration 2-7

Figure 2-4: Module Reusability 2-8

Figure 2-5: Stream In More Detail 2-9

Figure 3-1: Setting Up a Stream 3-1

Figure 4-1: Idle Stream Configuration for Example 4-3

Figure 4-2: Asynchronous Terminal Streams 4-8

Figure 5-1: A Message 5-2

Figure 5-2: Messages on a Message Queue 5-3

Figure 5-3: Operational Stream for Example 5-8

Figure 5-4: Module Put and Service Procedures 5-9

Figure 6-1: Streams Message Priority 6-2

Figure 6-2: Flow Control 6-5

Figure 6-3: Internet Multiplexing Stream 6-7

Figure 6-4: X.25 Multiplexing Stream 6-8

Figure 6-5: Error and Trace Logging 6-13

UP-13672 LIST OF FIGURES vii

Introduction
With the addition of the Networking Support Utilities,

UNIX System V Release 3.0 provides comprehensive support for
networking services. This Primer describes STREAMS, a major
building block of that support. The Primer provides a high level,
technical overview of STREAMS; it is intended for managers and
developers who have prior knowledge of the UNIX system and net
working or other data communication facilities. For a more
detailed description of STREAMS, see the STREAMS Programmer's
Guide.

The UNIX system was originally designed as a general
purpose, multi-user, interactive operating system for minicomput
ers. Initially developed in the 1970's, the system's communications
environment included slow to medium speed, asynchronous termi
nal devices. The original design, the communications environment,
and hardware state of the art influenced the character
input/output (110) mechanism but the character I/O area did not
require the same emphasis on modularity and performance as
other areas of the system.

Support for a broader range of devices, speeds, modes, and
protocols has since been incorporated into the system, but the ori
ginal character I/O mechanism, which processes one character at
a time, made such development difficult. Additionally, a paucity of
tools and the absence of a framework for incorporating contem
porary networking protocols added to the difficulty.

The current generation of networking protocols is exemplified
by Open Systems Interconnection (OSI) , Systems Network Archi
tecture (SNA) , Transmission Control Protocol/Internet Protocol
(TCP/IP), X.2S, and Xerox Network Systems (XNS). These proto
cols provide diverse functionality, layered organization, and various
feature options. When developing these protocol suites, develop
ers faced additional problems because there were no relevant
standard interfaces in the UNIX system.

Attempts to compensate for the above problems have led to
diverse, ad-hoc implementations; for example, protocol drivers are
often intertwined with the hardware configuration in which they
were developed. As a result, functionally equivalent protocol
software often cannot interface with alternate implementations of

UP-13672 INTRODUCTION 1-1

Introduction

adjacent protocol layers. Portability, adaptability, and reuse of
software have been hindered.

AT&T decided to enhance the character 110 area in Release
3.0. The result is STREAMS, a general, flexible facility and a set of
tools for development of UNIX system communication services.
With STREAMS, developers can provide services ranging from
complete networking protocol suites to individual device drivers.

STREAMS defines standard interfaces for character 110 within
the UNIX kernel, and between the kernel and the rest of the UNIX
system. The associated mechanism is simple and open-ended. It
consists of a set of system calls, kernel resources, and kernel util
ity routines. The standard interface and open-ended mechanism
enable modular, portable development and easy integration of
higher performance network services and their components.
STREAMS does not impose any specific network architecture.
Instead, it provides a powerful framework with a consistent user
interface that is compatible with the existing character 110 inter
face still available in UNIX System V.

STREAMS modularity and design reflect the "layers and
options" characteristics of contemporary networking architectures.
The basic components in a STREAMS implementation are referred
to as modules. These modules, which reside in the kernel, offer a
set of processing functions and associated service interfaces.
From user level, modules can be dynamically selected and inter
connected to provide any rational processing sequence. Kernel
programming, assembly, and link editing are not required to create
the interconnection. Modules can also be dynamically "plugged
into" existing connections from user level. STREAMS modularity
allows:

• User level programs that are independent of underlying pro
tocols and physical communication media.

• Network architectures and higher level protocols that are
independent of underlying protocols, drivers, and physical
communication media.

• Higher level services that can be created by selecting and
connecting lower level services and protocols.

1-2 STREAMS PRIMER UP-13672

Introduction

• Enhanced portability of protocol modules resulting from
STREAMS' well-defined structure and interface standards.

In addition to modularity, STREAMS provides developers with
integral functions, a library of utility routines, and facilities that
expedite software design and implementation. The principal facili
ties are:

• Buffer management - To maintain STREAMS' own, indepen
dent buffer pool.

• Flow control - To conserve STREAMS' memory and process
ing resources.

• Scheduling - To incorporate STREAMS' own scheduling
mechanism.

• Multiplexing - For processing interleaved data streams, such
as occur in SNA, X.2S, and windows.

• Asynchronous operation of STREAMS and user processes -
Allows STREAMS-related operations to be performed effi
ciently from user level.

• Error and trace loggers - For debugging and administrative
functions.

STREAMS is the standard for AT&T UNIX system data com
munications and networking implementations. The original
STREAMS concepts were developed in the Information Sciences
Research Division of AT&T Bell Laboratories (see "A Stream Input
Output System" in the October 1984 AT&T Bell Laboratories
Technical Journa~.

How this Document is Organized

The Primer is organized as follows:

• Chapter 2 provides an overview of the applications and
benefits of STREAMS and the STREAMS mechanism.

• Chapter 3 describes how to set up a Stream from user level
and how this initialization affects the kernel. This and follow
ing chapters are aimed at developers.

UP-13672 INTRODUCTION 1-3

Introduction

• Chapter 4 contains a detailed example and discusses it from
user level.

• Chapter 5 describes kernel operations associated with the
Chapter 4 example, together with a discussion of basic
STREAMS kernel facilities.

• Chapter 6 includes kernel and user facilities not otherwise
described.

• Chapter 7 compares certain design features of character I/O
device drivers with STREAMS modules and drivers.

• The Glossary defines terms that are specific to STREAMS.

Other Documents
The STREAMS Programmer's Guide contains more detailed

STREAMS information for programmers: how programmers can
develop networking applications with STREAMS user-level facilities
and how system programmers can use STREAMS kernel-level facil
ities to build modules and drivers.

Section 2 of the Programmer's Reference Manual and the Sys
tem V Interface Definition include descriptions (manual pages) of
STREAMS-related system calls and other information.

1-4 STREAMS PRIMER UP-13672

A Basic View of a Stream
"STREAMS" is a collection of system calls. kernel resources.

and kernel utility routines that can create. use. and dismantle a
"Stream". A Stream is a full-duplex processing and data transfer
path between a driver in kernel space and a process in user space
(see Figure 2-1).

Stream
Head

Module

Driver

Figure 2-1: Basic Stream

User
Process

External
Interface

__ y~e! .?p~c: __ _
Kernel Space

1 downstream

(optional)

i upstream

A Stream has three parts: A Stream head. module(s)
(optional). and a driver (also referred to as the Stream end). The
Stream head provides the interface between the Stream and user
processes. Its principal function is to process STREAMS-related
user system calls. A module processes data that travel between
the Stream head and driver. A STREAMS driver may be a device
driver. providing the services of an external I/O device. or an inter
nal software driver. commonly called a pseudo-device driver.

UP-13672 OVERVIEW 2-1

A Basic View of a Stream

Using a combination of system calls, kernel routines, and ker
nel utilities, STREAMS passes data between a driver and the
Stream head in the form of messages. Messages that are passed
from the Stream head toward the driver are said to travel down
stream, and messages passed in the other direction travel
upstream.

The Stream head transfers data between the data space of a
user process and STREAMS kernel data space. Data sent to a
driver from a user process are packaged into STREAMS messages
and passed downstream. Messages arriving at the Stream head
from downstream are processed by the Stream head, and data
are copied into user buffers. STREAMS can insert one or more
modules into a Stream between the Stream head and driver to
perform intermediate processing of data passing between the
Stream head and driver.

System Calls
Applications programmers can use the STREAMS facilities via a

set of system calls. This system call interface is upward compatible
with the existing character I/O facilities. The open (2) system call
will recognize a STREAMS file and create a Stream to the specified
driver. A user process can send and receive data using read (2)
and write(2) in the same manner as with character files and dev
ices. The ioctl(2) system call enables application programs to per
form functions specific to a particular device. In addition, a set of
generic STREAMS ioctl commands [see streamio(7)] support a
variety of functions for accessing and controlling Streams. A
close(2) will dismantle a Stream.

open, close, read, write, and ioctl support the basic set of
operations on Streams. In addition, new system calls support
advanced STREAMS facilities. The poll(2) system call enables an
application program to poll multiple Streams for various events.
When used with the STREAMS I_SETSIG ioctl command, poll
allows an application to process I/O in an asynchronous manner.
The putmsg (2) and getmsg (2) system calls enable application pro
grams to interact with STREAMS modules and drivers through a
service interface (described next).

2-2 STREAMS PRIMER UP-13672

A Basic View of a Stream

These calls are discussed in this document and in the
STREAMS Programmer's Guide. They are specified in the
Programmer's Reference Manual and the System Administrator's
Reference Manual.

UP-13672 OVERVIEW 2-3

Benefits of STREAMS
STREAMS offers two major benefits for applications program

mers: easy creation of modules that offer standard data commun
ications services. and the ability to manipulate those modules on a
Stream.

Creati ng Service Interfaces

One benefit of STREAMS is that it simplifies the creation of
modules that present a service interface to any neighboring appli
cation program. module. or device driver. A service interface is
defined at the boundary between two neighbors. In STREAMS. a
service interface is a specified set of messages and the rules for
allowable sequences of these messages across the boundary. A
module that implements a service interface will receive a message
from a neighbor and respond with an appropriate action (for
example. send back a request to retransmit) based on the specific
message received and the preceding sequence of messages.

STREAMS provides features that make it easier to design vari
ous application processes and modules to common service inter
faces. If these modules are written to comply with industry
standard service interfaces. they are called protocol modules.

In general. any two modules can be connected anywhere in a
Stream. However. rational sequences are generally constructed by
connecting modules with compatible protocol service interfaces.
For example. a module that implements an X.2S protocol layer. as
shown in Figure 2-2. presents a protocol service interface at its
input and output sides. In this case. other modules should only be
connected to the input and output side if they have the compatible
X.2S service interface.

Manipulating Modules
STREAMS provides the capabilities to manipulate modules

from user level. to interchange modules with common service inter
faces,. and to present a service interface to a Stream user process.
As stated in Chapter 1. these capabilities yield benefits when
implementing networking services and protocols. including:

2-4 STREAMS PRIMER UP-13672

Benefits of STREAMS

• User level programs can be independent of underlying pro
tocols and physical communication media.

• Network architectures and higher level protocols can be
independent of underlying protocols. drivers and physical
communication media.

• Higher level services can be created by selecting and con-
necting lower level services and protocols.

Below are examples of the benefits of STREAMS capabilities to
developers for creating service interfaces and manipulating
modules.

NOTE: All protocol modules used below were selected for
illustrative purposes. Their use does not imply that
AT& T offers such modules as products.

Protocol Portability

Figure 2-2 shows how the same X.2S protocol module can be
used with different drivers on different machines by implementing
compatible service interfaces. The X.2S protocol module interfaces
are Connection Oriented Network Service (CONS) and Link Access
Protocol - Balanced (LAPB) driver.

UP-13672 OVERVIEW 2-5

Benefits of STREAMS

MACHINE A

-----r----
X.2S

Protocol Layer
Module

------ ------

II
I LAPB

I Driver
Machine A

CONS
INTERFACE

SAME

MODULE

LAPB
INTERFACE

DIFFERENT
DRIVER

Figure 2-2: Protocol Module Portability

Protocol Substitution

MACHINE B

-----r----
X.2S

Protocol Layer
Module

I'

------ ------
II

I LAPB
\

Driver I
Machine B

\

Alternative protocol modules (and device drivers) can be inter
changed on the same machine if they are implemented to an
equivalent service interface(s).

Protocol Migration

Figure 2-3 illustrates how STREAMS can migrate functions
between kernel software and front end firmware. A common
downstream service interface allows the transport protocol module
to be independent of the number or type of modules below. The
same transport module will connect without modification to either
an X.25 module or X.25 driver that has the same service interface.

By shifting functions between software and firmware, develop
ers can produce cost effective, functionally equivalent systems
over a wide range of configurations. They can rapidly incorporate
technological advances. The same transport protocol module can
be used on a lower capacity machine, where economics may pre
clude the use of front-end hardware, and also on a larger scale
system where a front-end is economically justified.

2-6 STREAMS PRIMER UP-13672

Class 1
Transport
Protocol

------- -------
I

X.2S
Packet Layer

Protocol

II
I \

LAPB
-1 Driver t-

\

SAME
MODULES

CONS
Interface

KERNEL

HARDWARE

Figure 2-3: Protocol Migration

Module Reusability

Benefits of STREAMS

Class 1
Transport
Protocol

I'
------- -------

II
I

X.2S
\

-1
Packet Layer

t-
Driver

\ I

Figure 2-4 shows the same canonical module (for example,
one that provides delete and kill processing on character strings)
reused in two different Streams. This module would typically be
implemented as a filter, with no downstream service interface. In
both cases, a TIV interface is presented to the Stream's user pro
cess since the module is nearest the Stream head.

UP-13672 OVERVIEW 2-7

Benefits of STREAMS

User
Process

Canonical
Module

Class 1
Transport
Protocol

X.2S
Packet Layer

Protocol

LAPB
Driver

SAME
INTERFACE

SAME
MODULE

Figure 2-4: Module Reusability

2-8 STREAMS PRIMER

User
Process

Canonical
Module

Raw
ITY

Driver

UP·13672

An Advanced View of a Stream
The STREAMS mechanism constructs a Stream by serially con

necting kernel resident STREAMS components, each constructed
from a specific set of structures. As described earlier and shown
in Figute 2-5, the primary STREAMS components are the Stream
head, optional module(s), and Stream end.

___ l.Is~r_S'p!c! ___ _

Kernel Space

Module

B

Module

A

§
.
: :

Message

"Ad"
upstream

Module

External

Interface

Figure 2-5: Stream in More Detail

UP·13672

Stream

End

OVERVIEW 2·9

An Advanced View of a Stream

Stream Head

The Stream head provides the interface between the Stream
and an application program. The Stream head processes
STREAMS-related system calls from the application and performs
the bidirectional transfer of data and information between the
application (in user space) and messages (in STREAMS' kernel
space).

Messages are the only means of transferring data and com
municating within a Stream. A STREAMS message contains data,
status/control information, or a combination of the two. Each mes
sage includes a specified message type indicator that identifies the
contents.

Modules

A module performs intermediate transformations on messages
passing between Stream head and driver. There may be zero or
more modules in a Stream (zero when the driver performs all the
required character and device processing).

Each module is constructed from a pair of QUEUE structures
(see Au/Ad and Bu/Bd in Figure 2-5). A pair is required to imple
ment the bidirectional and symmetrical attributes of a Stream.
One QUEUE performs functions on messages passing upstream
through the module (Au and Bu in Figure 2-5). The other set (Ad
and Bd) performs another set of functions on downstream mes
sages. (A QUEUE, which is part of a module, is different from a
message queue, which is described later.)

Each of the two QUEUEs in a module will generally have dis
tinct functions, that is, unrelated processing procedures and data.
The QUEUEs operate independently so that Au will not know if a
message passes through Ad unless Ad is programmed to inform it.
Messages and data can be shared only if the developer specifically
programs the module functions to perform the sharing.

2-10 STREAMS PRIMER UP-13672

An Advanced View of a Stream

Each QUEUE can directly access the adjacent QUEUE in the
direction of message flow (for example, Au to Bu or Stream head
to Bd). In addition, within a module, a QUEUE can readily locate
its mate and access its messages (for example, for echoing) and
data.

Each QUEUE in a module may contain or point to messages,
processing procedures, or data:

• Messages - These are dynamically attached to the QUEUE
on a linked list ("message queue", see Au and Bd in Figure
2-5) as they pass through the module.

• Processing procedures - A put procedure, to process mes
sages, must be incorporated in each QUEUE. An optional
service procedure, to share the message processing with
the put procedure, can also be incorporated. According to
their function, the procedures can send messages upstream
and/or downstream, and they can also modify the private
data in their module.

• Data - Developers may provide private data if required by
the QUEUE to perform message processing (for example,
state information and translation tables).

In general, each of the two QUEUEs in a module has a distinct
set of all of these elements. Additional module elements will be
described later. Although depicted as distinct from modules (see
Figure 2-5), a Stream head and the Stream end also contain a pair
of QUEUEs.

Stream End

A Stream end is a module in which the module's processing
procedures are the driver routines. The procedures in the Stream
end are different from those in other modules because they are
accessible from an external device and because the STREAMS
mechanism allows multiple Streams to be connected to the same
driver.

UP-13672 OVERVIEW 2-11

An Advanced View of a Stream

The driver can be a device driver, providing an interface
between kernel space and an external communications device, or
an internal pseudo-device driver. A pseudo-device driver is not
directly related to any external device, and it performs functions
internal to the kernel. The multiplexing driver discussed in Chapter
6 is a pseudo-device driver.

Device drivers must transform all data and status/control infor
mation between STREAMS message formats and their external
representation. Differences between STREAMS and character dev
ice drivers are discussed in Chapter 7.

2-12 STREAMS PRIMER UP-13672

Building a Stream
A Stream is created on the first open(2) system call to a char

acter special file corresponding to a STREAMS driver. A STREAMS
device is distinguished from other character devices by a field con
tained in the associated cdevsw device table entry.

A Stream is usually built in two steps. Step one creates a
minimal Stream consisting of just the Stream head and device
driver, and step two adds modules to produce an expanded
Stream (see Figure 3-1). The first step has three parts: head and
driver structures are allocated and initialized; the modules in the
head and end are linked to each other to form a Stream; the
driver open routine is called.

Minimal
STREAM

------ ------------ -------
STR~M

HEAD

device driver

Figure 3-1: Setting Up a Stream

Expanded
STREAM

device driver

If the driver performs all character and device processing
required, no modules need be added to a Stream. Examples of
STREAMS drivers include a raw tty driver (one that passes along
input characters without change) and a driver with multiple
Streams open to it (corresponding to multiple minor devices
opened to a character device driver).

UP-13672 BUILDING A STREAM 3-1

Building a Stream

When the driver receives characters from the device, it places
them into messages. The messages are then transferred to the
next Stream component, the Stream head, which extracts the con
tents of the message and copies them to user space. Similar pro
cessing occurs for downstream character output; the Stream head
copies data from user space into messages and sends them to the
driver.

Expanded Streams

As the second step in building a Stream, modules can be
added to the Stream. In the right-hand Stream in Figure 3-1, the
CANONPROC module was added to provide additional processing
on the characters sent between head and driver.

Modules are added and removed from a Stream in last-in-first
out (LIFO) order. They are inserted and deleted at the Stream
head via the ioetl (2) system call. In the Stream on the left of Fig
ure 2-4, the X.25 module was the first added to the Stream, fol
lowed by Class 1 Transport and Canonical modules. To replace
the Class 1 module with a Class 0 module, the Canonical module
would have to be removed first, then the Class 1 module, then a
Class 0 module would be added and the Canonical module put
back.

Because adding and removing modules resembles stack
operations, the add is called a push and the remove a pop. Push
and pop are two of the ioetl functions included in the STREAMS
subset of ioetl system calls. These commands perform various
manipulations and operations on Streams. The modules manipu
lated in this manner are called pushable modules, in contrast to
the modules contained in the Stream head and end. This stack
terminology applies only to the setup, modification, and break
down of a Stream.

3-2 STREAMS PRIMER UP-13672

NOTE:

Building a Stream

Subsequent use of the word module will refer to
those pushable modules between Stream head
and end.

The Stream head processes the ioetl and executes the push,
which is analogous to opening the Stream driver. Modules are
referenced by a unique symbolic name, contained in the STREAMS
fmodsw module table (similar to the edevsw table associated with
a device file). The module table and module name are internal to
STREAMS and are accessible from user space only through
STREAMS ioetl system calls. The fmodsw table points to the
module template in the kernel. When a module is pushed, the
template is located, the module structures for both QUEUES are
allocated, and the template values are copied into the structures.

In addition to the module elements described in "A Basic View
of a Stream" section of Chapter 2, each module contains pointers
to an open routine and a close routine. The open is called when
the module is pushed, and the close is called when the module is
popped. Module open and close procedures are similar to a driver
open and close.

As in other files, a STREAMS file is closed when the last pro
cess open to it closes the file by a elose(2) system call. This sys
tem call causes the Stream to be dismantled (modules popped
and the driver close executed).

Pushable Modules
Modules are pushed onto a Stream to provide special func

tions and/or additional protocol layers. In Figure 3-1, the Stream
on the left is opened in a minimal configuration with a raw tty
driver and no other module added. The driver receives one char
acter at a time from the device, places the character in a message,
and sends the message upstream. The Stream head receives the
message, extracts the single character, and copies it into the read
ing process buffer to send to the user process in response to a
read (2) system call. When the user process wants to send charac
ters back to the driver, it issues a write(2) system call, and the
characters are sent to the Stream head. The head copies the
characters into one or more multi-character messages and sends

UPa 13672 BUILDING A STREAM 3-3

Building a Stream

them downstream. An application program requiring no further
kernel character processing would use this minimal Stream.

A user requiring a more terminal-like interface would need to
insert a module to perform functions such as echoing, character
erase, and line-kill. Assuming that the CANONPROC module in
Figure 3-1 fulfills this need, the application program first opens a
raw tty Stream. Then, the CANONPROC module is pushed above
the driver to create a Stream of the form shown on the right of the
figure. The driver is not aware that a module has been placed
above it and therefore continues to send single character mes
sages upstream. The module receives single character messages
from the driver, processes the characters, and accumulates them
into line strings. Each line is placed into a message and sent to
the Stream head. The head now finds more than one character in
the messages it receives from downstream.

Stream head implementation accommodates this change in
format automatically and transfers the multiple-character data into
user space. The Stream head also keeps track of messages par
tially transferred into user space (for example, when the current
user read buffer can only hold part of the current message).
Downstream operation is not affected: the head sends, and the
driver receives, multiple character messages.

Note that the Stream head provides the interface between the
Stream and user process. Modules and drivers do not have to
implement user interface functions other than open and close.

3·4 STREAMS PRIMER UP·13672

STREAMS System Calls
After a Stream has been opened, STREAMS-related system

calls allow a user process to insert and delete (push and pop)
modules. That process can then communicate with and control
the operation of the Stream head, modules, and drivers, and can
send and receive messages containing data and control informa
tion. This chapter presents an example of some of the basic func
tions available to STREAMS-based applications via the system
calls. Additional functions are described at the end of this chapter
and in Chapter 6.

The full set of STREAMS-related system calls is:

open (2) Open a Stream (described in Chapter 3)

close (2)

read (2)

write (2)

ioctl(2)

getmsg(2)

putmsg(2)

poll (2)

Close a Stream (described in Chapter 3)

Read data from a Stream

Write data to a Stream

Control a Stream

Receive the message at Stream head

Send a message downstream

Notify the application program when selected
events occur on a Stream

The following two-part example describes a Stream that con
trols the data communication characteristics of a connection
between an asynchronous terminal and a tty port. It illustrates
basic user level STREAMS features, then shows how messages can
be used. Chapter 5 discusses the kernel level Stream operations
corresponding to the user level operations described in this
chapter. See the STREAMS Programmer's Guide for more detailed
examples of STREAMS applications, modules, and drivers.

UP-13672 USER LEVEL FUNCTIONS 4·1

An Asynchronous Protocol Stream
Example

In the example, our computer runs the UNIX system and sup
ports different kinds of asynchronous terminals, each logging in on
its own port. The port hardware is limited in function; for example,
it detects and reports line and modem status, but does not check
parity.

Communications software support for these terminals is pro
vided via a STREAMS implemented asynchronous protocol. The
protocol includes a variety of options that are set when a terminal
operator dials in to log on. The options are determined by a
getty-type STREAMS user process, getstrm, which analyzes data
sent to it through a series of dialogs (prompts and responses)
between the process and terminal operator.

The process sets the terminal options for the duration of the
connection by pushing modules onto the Stream or by sending
control messages to cause changes in modules (or in the device
driver) already on the Stream. The options supported include:

• ASCII or EBCDIC character codes

• For ASCII code, the parity (odd, even or none)

• Echo or not echo input characters

• Canonical input and output processing or transparent (raw)
character handling

These options are set with the following modules:

CHARPROC Provides input character processing functions,
including dynamically settable (via control mes
sages passed to the module) character echo
and parity checking. The module's default set
tings are to echo characters and not check
character parity.

CANONPROC Performs canonical processing on ASCII char
acters upstream and downstream (note that
this performs some processing in a different
manner from the standard UNIX system

4-2 STREAMS PRIMER UP-13672

ASCEBC

An Asynchronous Protocol Stream Example

character I/O tty subsystem).

Translates EBCDIC code to ASCII upstream
and ASCII to EBCDIC downstream.

Initializing the Stream
At system initialization a user process, getstrm, is created for

each tty port. getstrm opens a Stream to its port and pushes the
CHARPROC module onto the Stream by use of an ioctl I_PUSH
command. Then, the process issues a getmsg system call to the
Stream and sleeps until a message reaches the Stream head. The
Stream is now in its idle state.

The initial idle Stream, shown in Figure 4-1, contains only one
pushable module, CHARPROC. The device driver is a limited func
tion raw tty driver connected to a limited-function communication
port. The driver and port transparently transmit and receive one
unbuffered character at a time.

I ge~r I

--------------.-----
STR~M

HEAD

device driver

Figure 4-1: Idle Stream Configuration for Example

UP-13672 USER LEVEL FUNCTIONS 4-3

An Asynchronous Protocol Stream Example

Upon receipt of initial input from a tty port, getstrm establishes
a connection with the terminal, analyzes the option requests, veri
fies them, and issues STREAMS system calls to set the options.
After setting up the options, getstrm creates a user application
process. Later, when the user terminates that application, getstrm
restores the Stream to its idle state by use of system calls.

The next step is to analyze in more detail how the Stream sets
up the communications options. Before doing so, let's examine
how messages are handled in STREAMS.

Message Types
All STREAMS messages are assigned message types to indi

cate their intended use by modules and drivers and to determine
their handling by the Stream head. A driver or module can assign
most types to a message it generates, and a module can modify a
message's type during processing. The Stream head will convert
certain system calls to specified message types and send them
downstream, and it will respond to other calls by copying the con
tents of certain message types that were sent upstream. Mes
sages exist only in the kernel, so a user process can only send and
receive buffers. The process is not explicitly aware of the message
type, but it may be aware of message boundaries, depending on
the system call used (see the distinction between getmsg and
read in the next section).

Most message types are internal to STREAMS and can only be
passed from one STREAMS module to another. A few message
types, including M_DATA, M_PROTO, and M_PCPROTO, can also
be passed between a Stream and user processes. M _ DATA mes
sages carry data within a Stream and between a Stream and a
user process. M_PROTO or M_PCPROTO messages carry both
data and control information. However, the distinction between
control information and data is generally determined by the
developer when implementing a particular Stream. Control infor
mation includes service interface information, carried between two
Stream entities that present service interfaces, and condition or
status information, which may be sent between any two Stream
entities regardless of their interface. An M_PCPROTO message
has the same general use as an M_PROTO, but the former moves

4-4 STREAMS PRIMER UP-13672

An Asynchronous Protocol Stream Example

faster through a Stream (see "Message Queue Priority" in Chapter
6).

Sending and Receiving Messages

putmsg is a STREAMS-related system call that sends mes
sages; it is similar to write. putmsg provides a data buffer which
is converted into an M_DATA message, and can also provide a
separate control buffer to be placed into an M _PROTO or
M _PCPROTO block. write provides byte-stream data to be con
verted into M _ DATA messages.

getmsg is a STREAMS-related system call that accepts mes
sages; it is similar to read. One difference between the two calls is
that read accepts only data (messages sent upstream to the
Stream head as message type M _DATA), such as the characters
entered from the terminal. getmsg can simultaneously accept
both data and control information (message sent upstream as
types M _PROTO or M _PCPROTO). getmsg also differs from read
in that it preserves message boundaries so that the same boun
daries exist above and below the Stream head (that is, between a
user process and a Stream). read generally ignores message
boundaries, processing data as a byte stream.

Certain STREAMS ioctl commands, such as 1_ STR, also cause
messages to be sent or received on the Stream. 1_ STR provides
the general "ioctl" capability of the character I/O subsystem. A
user process above the Stream head can issue putmsg, getmsg,
the 1_ STR ioctl command, and certain other STREAMS related sys
tem calls. Other STREAMS ioctls perform functions that include
changing the state of the Stream head, pushing and popping
modules, or returning special information. ioctl commands are
described in more detail the STREAMS Programmer's Guide.

In addition to message types that explicitly transfer data to a
process, some messages sent upstream result in information
transfer. When these messages reach the Stream head, they are
transformed into various forms and sent to the user process. The
forms include signals, error codes, and call return values.

UP·13672 USER LEVEL FUNCTIONS 4·5

An Asynchronous Protocol Stream Example

Using Messages in the Example

Returning to the asynchronous protocol example, the Stream
was in its idle configuration (see Figure 4-1). getstrm had issued a
getmsg and was sleeping until the arrival of a message from the
Stream head. Such a message would result from the driver detect
ing activity on the associated tty port.

An incoming call arrives at port one and causes a ring detect
signal in the modem. The driver receives the ring signal, answers
the call, and sends upstream an M _PROTO message containing
information indicating an incoming call. getstrm is notified of all
incoming calls, although it can choose to refuse the call because
of system limits. In this idle state, getstrm will also accept
M_PROTO messages indicating, for example, error conditions such
as detection of line or modem problems on the idle line.

The M _PROTO message containing notification of the incom
ing call flows upstream from the driver into CHARPROC. CHAR
PROC inspects the message type, determines that message pro
cessing is not required, and passes the unmodified message
upstream to the Stream head. The Stream head copies the mes
sage into the getmsg buffers (one buffer for control information,
the other for data) associated with getstrm and wakes up the pro
cess. getstrm sends its acceptance of the incoming call with a
putmsg system call which results in a downstream M_PROTO mes
sage to the driver.

Then, getstrm sends a prompt to the operator with a write and
issues a getmsg to receive the response. A read could have been
used to receive the response, but the getmsg call allows con
current monitoring for control (M _PROTO and M _PCPROTO)
information. getstrm will now sleep until the response characters,
or information regarding possible error conditions detected by
modules or driver, are sent upstream.

The first response, sent upstream in a M_DATA block, indicates
that the code set is ASCII and that canonical processing is
requested. getstrm implements these options by pushing
CANONPROC onto the Stream, above CHARPROC, to perform
canonical processing on the input ASCII characters.

4-6 STREAMS PRIMER UP-13672

An Asynchronous Protocol Stream Example

The response to the next prompt requests even parity check
ing. getstrm sends an ioctl I_STR command to CHARPROC,
requesting the module to perform even parity checking on
upstream characters. When the dialog indicate protocol option
setting is complete, getstrm creates an application process. At the
end of the connection, getstrm will pop CANONPROC and then
send a 1_ STR to CHARPROC requesting the module to restore the
no-parity idle state (CHARPROC remains on the Stream).

As a result of the above dialogs, the terminal at port one
operates in the following configuration:

• ASCII, even parity

• Echo

• Canonical processing

In similar fashion, an operator at a different type of terminal on
port two requests a different set of options, resulting in the follow
ing configuration:

• EBCDIC

• No Echo

• Canonical processing

The resultant Streams for the two ports are shown in Figure 4-
2. For port one, on the left, the modules in the Stream are
CANONPROC and CHARPROC.

For port two, on the right, the resultant modules are
CANONPROC, ASCEBC and CHARPROC. ASCEBC has been
pushed on this Stream to translate between the ASCII interface at
the downstream side of CANONPROC and the EBCDIC interface
of the upstream output side of CHARPROC. In addition, getstrm
has sent an I STR to the CHARPROC module in this Stream
requesting it to disable echo. The resultant modification to
CHARPROC's functions is indicated by the word IImodifiedll in the
right Stream of Figure 4-2.

UP-13672 USER LEVEL FUNCTIONS 4-7

An Asynchronous Protocol Stream Example

STR~M
HEAD

PORT
1

RAW TTY
DRIVER

STR~M
HEAD

'---.,...---....-......

PORT
2

Figure 4-2: Asynchronous Terminal Streams

4-8 STREAMS PRIMER

User Space
----------Kernel Space

UP-13672

An Asynchronous Protocol Stream Example

Since CHARPROC is now performing no function for port two,
it might have been popped from the Stream to be reinserted by
getstrm at the end of connection. However, the low overhead of
STREAMS does not require its removal. The module remains on
the Stream, passing messages unmodified between ASCEBC and
the driver. At the end of the connection, getstrm restores this
Stre~m to its idle configuration of Figure 4-1 by popping the
added modules and then sending an I_STR to CHARPROC to
restore the echo default.

Note that the tty driver shown in Figure 4-2 handles minor dev
ices. Each minor device has a distinct Stream connected from
user space to the driver. This ability to handle multiple devices is a
standard STREAMS feature, similar to the minor device mechanism
in character I/O device drivers.

UP-13672 USER LEVEL FUNCTIONS 4-9

Other User Functions
The previous example illustrates basic STREAMS concepts.

Alternate, more efficient, STREAMS calls or mechanisms could
have been used in place of those described earlier. Some of the
alternatives are described in Chapter 6 and others are addressed
in the STREAMS Programmer's Guide.

For example, the initialization process that created a getstrm
for each tty port could have been implemented as a "supergetty"
by use of the STREAMS-related poll system call. As described in
Chapter 6, poll allows a single process to efficiently monitor and
control multiple Streams. The IsupergeUy" process would handle
all of the Stream and terminal protocol initialization and would
create application processes only for established connections.

The M_PROTO notification sent to getstrm could have been
sent by the driver as an M_ SIG message that causes a specified
Signal to be sent to the process. As discussed previously under
"Message Types," error and status information can also be sent
upstream from a driver or module to user processes via different
message types. These messages will be transformed by the
Stream head into a signal or error code.

Finally, an loct. I_STR command could have been used in
place of a putmsg M _ PROTO message to send information to a
driver. The sending process must receive an explicit response
from an I_STR by a specified time period or an error will be
returned. A response message must be sent upstream by the
destination module or driver to be translated into the user
response by the Stream head.

4-10 STREAMS PRIMER UP-13672

Introduction
This chapter introduces the use of the STREAMS mechanism

in the kernel and describes some of the tools provided by
STREAMS to assist in the development of modules and drivers. In
addition to the basic message passing mechanism and QUEUE
Stream linkage described previously, the STREAMS mechanism
consists of various facilities including buffer management, the
STREAMS scheduler, processing and message priority, flow con
trol, and multiplexing. Over 30 STREAMS utility routines and mac
ros are available to manipulate and utilize these facilities.

The key elements of a STREAMS kernel implementation are
the processing routines in the module and drivers, and the
preparation of required data structures. The structures are
described in the STREAMS Programmer's Guide. The following
sections provide further information on messages and on the pro
cessing routines that operate on them. The example of Chapter 4
is continued, associating the user-level operations described there
with kernel operations.

UP·13672 KERNEL LEVEL FUNCTIONS 5·1

Messages
As shown in Figure 5-1, a STREAMS message consists of one

or more linked message blocks. That is, the first message block of
a message may be attached to other message blocks that are part
of the same message. Multiple blocks in a message can occur, for
example, as the result of processing that adds header or trailer
data to the data contained in the message, or because of mes
sage buffer size limitations which cause the data to span multiple
blocks. When a message is composed of multiple message
blocks, the message type of the first block determines the type of
the entire message, regardless of the types of the attached mes
sage blocks.

Message
Block
(type)

t
Message

Block

t
Message

Block

I

V

Figure 5-1: A Message

STREAMS allocates a message as a single block containing a
buffer of a certain size (see the next section). If the data for a
message exceed the size of the buffer containing the data, the
procedure can allocate a new block containing a larger buffer,
copy the current data to it, insert the new data and de-allocate the
old block. Alternately, the procedure can allocate an additional
(smaller) block, place the new data in the new message block and
link it after or before the initial message block. Both alternatives
yield one new message.

5-2 STREAMS PRIMER UP-13672

Messages

Messages can exist standalone, as shown in Figure 5-1, when
the message is being processed by a procedure. Alternately, a
message can await processing on a linked list of messages, called
a message queue, in a QUEUE. In Figure 5-2, Message 1 is linked
to Message 2.

I
queue I

header <- - - r: ::>

Message
Block
(type)

!
Message

Block

!
Message

Block

Message
1

next
message

Message

. Block
(type)

t
Message

Block

V

I
I
I

Message
2

next
- - - - - - - - - - -> fc: message

Figure 5-2: Messages on a Message Queue

When a message is on a queue. the first block of the message
contains links to preceding and succeeding messages on the same
message queue. in addition to containing a link to the second
block of the message (if present). The message queue head and
tail are contained in the QUEUE.

STREAMS utility routines enable developers to manipulate
messages and message queues.

UP-13672 KERNEL LEVEL FUNCTIONS 5-3

Messages

Message Allocation

STREAMS maintains its own storage pool for messages. A
procedure can request the allocation of a message of a specified
size at one of three message pool priorities. The allocb utility will
return a message containing a single block with a buffer of at least
the size requested, providing there is a buffer available at the
priority requested. When requesting priority for messages,
developers must weigh their process' need for resources against
the needs of other processes on the same machine.

Message pool priority generally has no effect on allocation
until the pool falls below internal STREAMS thresholds. When this
occurs, allocb may refuse a lower priority request for a message
of size "x" while granting a higher priority request for the same size
message. As examples of priority usage, storage for an urgent
control message, such as an M_HANGUP or M_PCPROTO could
be requested at high priority. An M_DATA buffer for holding input
might be requested at medium priority, and an output buffer
(presuming the output data can wait in user space) at lowest prior
ity.

5·4 STREAMS PRIMER UP·13672

Put and Service Procedures
The procedures in the QUEUE are the software routines that

process messages as they transit the QUEUE. The processing is
generally performed according to the message type and can result
in a modified message, new message(s) or no message. A resul
tant message is generally sent in the same direction in which it
was received by the QUEUE, but may be sent in either direction.
A QUEUE will always contain a put procedure and may also con
tain an associated service procedure.

Put Procedures
A put procedure is the QUEUE routine that receives messages

from the preceding QUEUE in the Stream. Messages are passed
between QUEUEs by a procedure in one QUEUE calling the put
procedure contained in the following QUEUE. A call to the put
procedure in the appropriate direction is generally the only way to
pass messages between modules (unless otherwise indicated,
"modules" infers "module, driver and Stream head"). QUEUEs in
pushable (see Chapter 3) modules contain a put procedure. In
general, there is a separate put procedure for the read and write
QUEUEs in a module because of the "full duplex" operation of
most Streams.

A put procedure is associated with immediate (as opposed to
deferred, see below) processing on a message. Each module
accesses the adjacent put procedure as a subroutine. For exam
ple, consider that modA, modS, and mode are three consecutive
modules in a Stream, with mode connected to the Stream head.
If modA receives a message to be sent upstream, modA processes
that message and calls modS's put procedure, which processes it
and calls mode's put procedure, which processes it and calls the
Stream head's put procedure. Thus, the message will be passed
along the Stream in one continuous processing sequence. On one
hand, this sequence has the benefit of completing the entire pro
cessing in a short time with low overhead (subroutine calls). On
the other hand, if this sequence is lengthy and the processing is
implemented on a multi-user system, then this manner of process
ing may be good for this Stream but may be detrimental for oth
ers since they may have to wait "too long" to get their turn at bat.

UP·13672 KERNEL LEVEL FUNCTIONS ~5

Put and Service Procedures

In addition, there are situations where the put procedure can
not immediately process the message but must hold it until pro
cessing is allowed. The most typical examples of this are a driver
which must wait until the current output completes before sending
the next message and the Stream head, which may have to wait
until a process initiates a read(2) on the Stream.

Service Procedures

STREAMS allows a service procedure to be contained in each
QUEUE, in addition to the put procedure, to address the above
cases and for additional purposes. A service procedure is not
required in a QUEUE and is associated with deferred processing.
If a QUEUE has both a put and service procedure, message pro
cessing will generally be divided between the procedures. The put
procedure is always called first, from a preceding QUEUE. After
the put procedure completes its part of the message processing, it
arranges for the service procedure to be called by passing the
message to the putq routine. putq does two things: it places the
message on the message queue of the QUEUE (see Figure 5-2)
and links the QUEUE to the end of the STREAMS scheduling
queue. When putq returns to the put procedure, the procedure
typically exits. Some time later, the service procedure will be
automatically called by the STREAMS scheduler.

The STREAMS scheduler is separate and distinct from the
UNIX system process scheduler. It is concerned only with
QUEUEs linked on the STREAMS scheduling queue. The
scheduler calls the service procedure of the scheduled QUEUE in a
FIFO manner, one at a time.

Having both a put and service procedure in a QUEUE enables
STREAMS to provide the rapid response and the queuing required
in multi-user systems. The put procedure allows rapid response to
certain data and events, such as software echoing of input charac
ters. Put procedures effectively have higher priority than any
scheduled service procedures. When called from the preceding
STREAMS component, a put procedure executes before the
scheduled service procedures of any QUEUE are executed.

5-6 STREAMS PRIMER UP-13672

Put and Service Procedures

The service procedure implies message queuing. Queuing
results in deferred processing of the service procedure, following
all other QUEUEs currently on the scheduling queue. For exam
ple, terminal output and input erase and kill processing would typi
cally be performed in a service procedure because this type of
processing does not have to be as timely as echoing. Use of a
service procedure also allows processing time to be more evenly
spread among multiple Streams. As with the put procedure there
will generally be a separate service procedure for each QUEUE in
a module. The flow control mechanism (see Chapter 6) uses the
service procedures.

UP-13672 KERNEL LEVEL FUNCTIONS 5-7

Kernel Processing
The following continues the example of Chapter 4, describing

STREAMS kernel operations and associates them, where relevant,
with Chapter 4 user-level system calls in the example. As a result
of initializing operations and pushing a module, the Stream for
port one has the following configuration:

-------------------- --------
STREAM

device driver

Figure 5-3: Operational Stream for Example

As shown in Figure 5-3, the upstream QUEUE is also referred
to as the read QUEUE, reflecting the message flow in response to
a read system call. Correspondingly, downstream is referred to as
the write QUEUE. Read side processing is discussed first.

Read Side Processing
In our example, read side processing consists of driver pro

cessing, CHARPROC processing, and CANONPROC processing.

5-8 STREAMS PRIMER UP-13672

Kernel Processing

Driver Processing
In the example, the user process has blocked on the

getmsg (2) system call while waiting for a message to reach the
Stream head, and the device driver independently waits for input
of a character from the port hardware or for a message from
upstream. Upon receipt of an input character interrupt from the
port, the driver places the associated character in an M_DATA
message, allocated previously. Then, the driver sends the mes
sage to the CHARPROC module by calling CHARPROC's upstream
put procedure. On return from CHARPROC, the driver calls the
allocb utility routine to get another message for the next charac
ter.

CHARPROC
CHARPROC has both put and service procedures on its read

side. In the example, the other QUEUEs in the modules also have
put and service procedures:

CANONPROC
Module

CHARPROC
Module

write

(P1;lt)

V
(service)

(P1;lt)

V
(service)

read

(service)
A

(put)

(service)
A

(put)

Figure 5-4: Module Put and Service Procedures

UP·13672 KERN EL LEVEL FUNCTIONS 5·9

Kernel Processing

When the driver calls CHARPROC's read QUEUE put pro
cedure, the procedure checks private data flags in the QUEUE. In
this case, the flags indicate that echoing is to be performed (recall
that echoing is optional and that we are working with port
hardware which can not automatically echo). CHARPROC causes
the echo to be transmitted back to the terminal by first making a
copy of the message with a STREAMS utility. Then, CHARPROC
uses another utility to obtain the address of its own write QUEUE.
Finally, the CHARPROC read put procedure calls its write put pro
cedure and passes it the message copy. The write procedure
sends the message to the driver to effect the echo and then
returns to the read procedure.

This part of read side processing is implemented with put pro
cedures so that the entire processing sequence occurs as an
extension of the driver input character interrupt. The CHARPROC
read and write put procedures appear as subroutines (nested in
the case of the write procedure) to the driver. This manner of pro
cessing is intended to produce the character echo in a minimal
time frame.

After returning from echo processing, the CHARPROC read
put procedure checks another of its private data flags and deter
mines that parity checking should be performed on the input char
acter. Parity should most reasonably be checked as part of echo
processing. However, for this example, parity is checked only
when the characters are sent upstream. This relaxes the timing in
which the checking must occur, that is, it can be deferred along
with the canonical processing. CHARPROC uses putq to schedule
the (original) message for parity check processing by its read ser
vice procedure. When the CHARPROC read service procedure is
complete, it forwards the message to the read put procedure of
CANONPROC. Note that if parity checking were not required, the
CHARPROC put procedure would call the CANONPROC put pro
cedure directly.

CANONPROC
CANONPROC performs canonical processing. As imple

mented, all read QUEUE processing is performed in its service pro
cedure so that CANONPROC's put procedure simply calls putq to
schedule the message for its read service procedure and then
exits. The service procedure extracts the character from the mes
sage buffer and place it in the "line buffer" contained in another

5-10 STREAMS PRIMER UP·13672

Kernel Processing

M_DATA message it is constructing. Then, the message which
contained the single character is returned to the buffer pool. If the
character received was not an end-of-line, CANONPROC exits.
Otherwise, a complete line has been assembled and CANONPROC
sends the message upstream to the Stream head which unblocks
the user process from the getmsg call and passes it the contents
of the message.

Write Side Processing
The write side of this Stream carries two kinds of messages

from the user process: ioctl messages for CHARPROC, and
M_DATA messages to be output to the terminal.

ioctl messages are sent downstream as a result of an I_STR
ioctl system call. When CHARPROC receives an ioctl message
type, it processes the message contents to modify internal QUEUE
flags and then uses a utility to send an acknowledgement mes
sage upstream (read side) to the Stream head. The Stream head
acts on the acknowledgement message by unblocking the user
from the ioctl.

For terminal output, it is presumed that M_DATA messages,
sent by write system calls, contain multiple characters. In general,
STREAMS returns to the user process immediately after process
ing the write call so that the process may send additional mes
sages. Flow control, described in the next chapter, will eventually
block the sending process. The messages can queue on the write
side of the driver because of character transmission timing. When
a message is received by the driver'S write put procedure, the pro
cedure will use putq to place the message on its write-side service
message queue if the driver is currently transmitting a previous
message buffer. However, there is generally no write QUEUE ser
vice procedure in a device driver. Driver output interrupt process
ing takes the place of scheduling and performs the service pro
cedure functions, removing messages from the queue.

UP·13672 KERNEL LEVEL FUNCTIONS 5·11

Kernel Processing

Analysis

For reasons of efficiency, a module implementation would gen
erally avoid placing one character per message and using separate
routines to echo and parity check each character, as was done in
this example. Nevertheless, even this design yields potential bene
fits. Consider a case where alternate, more intelligent port
hardware was substituted. If the hardware processed multiple
input characters and performed the echo and parity checking
functions of CHARPROC, then the new driver could be imple
mented to present the same interface as CHARPROC. Other
modules such as CANONPROC could continue to be used without
modification.

5-12 STREAMS PRIMER UP-13672

Introduction
The previous chapters described the basic concepts of con

structing a Stream and utilizing the STREAMS mechanism. Addi
tional STREAMS features are provided to handle characteristic
problems of protocol implementation, such as flow control, and to
assist in development.

There are also kernel and user-level facilities that support the
implementation of advanced functions, such as multiplexors, and
allow asynchronous operation of a user process and STREAMS
input and output.

UP-13672 OTHER FACILITIES 6·1

---- ----

Message Queue Priority
As mentioned in the previous chapter, the STREAMS scheduler

operates strictly FIFO so that each QUEUE's service procedure
receives control in the order it was scheduled. When a service
procedure receives control, it may encounter multiple messages on
its message queue. This buildup can occur if there is a long inter
val between the time a message is queued by a put procedure
and the time that the STREAMS scheduler calls the associated ser
vice procedure. In this interval, there can be multiple calls to the
put procedure causing multiple messages. The service procedure
always processes all messages on its message queue unless
prevented by flow control (see next section). Each message must
pass through all the modules connecting its origin and destination
in the Stream.

If service procedures were used in all QUEUES and there was
no message priority, then the most recently scheduled message
would be processed after all the other scheduled messages on all
Streams had been processed. In certain cases, message types
containing urgent information (such as a break or alarm condi
tions) must pass through the Stream quickly. To accommodate
these cases, STREAMS provides two classes of message queuing
priority, ordinary and high. STREAMS prevents high-priority mes
sages from being blocked by flow control and causes a service
procedure to process them ahead of all ordinary priority messages
on the procedure's queue. This results in the high-priority mes
sage transiting each module with minimal delay.

QUEUE Message queue

):;:;;-:-···1 I I I I I I I I I I I 1
I High I Ordinary _:
IE ,.,I E ~

Head Tail

Figure 6-1: Streams Message Priority

6-2 STREAMS PRIMER UP-13672

Message Queue Priority

The priority mechanism operates as shown in Figure 6-1. Mes
sage queues are generally not present in a QUEUE unless that
QUEUE contains a service procedure. When a message is passed
to putq to schedule the message for service procedure process
ing. putq places the message on the message queue in priority
order. High priority messages are placed ahead of all ordinary
priority messages, but behind any other high priority messages on
the queue. STREAMS utilities deliver the messages to the process
ing service procedure FIFO within each priority class. The service
procedure is unaware of the message priority and simply receives
the next message.

Message priority is defined by the message type; once a mes
sage is created, its priority cannot be changed. Certain message
types come in equivalent high/ordinary priority pairs (for example.
M_PCPROTO and M_PROTO). so that a module or device driver
can choose between the two priorities when sending information.

UP-13672 OTHER FACILITIES 6-3

Flow Control
Even on a well-designed system, general system delays, mal

functions, and excessive message accumulation on one or more
Streams can cause the message buffer pools to become depleted.
Additionally, processing bursts can arise when a service procedure
in one module has a long message queue and processes all its
messages in one pass. STREAMS provides two independent
mechanisms to guard its message buffer pools from being
depleted and to minimize long processing bursts at anyone
module.

NOTE: Flow control is only applied to normal priority mes
sages (see previous section) and not to high prior
ity messages.

The first flow control mechanism is global and automatic and is
related to the message pool priority, discussed in the "Message
Storage Pool" section of Chapter 5. When the Stream head
requests a message buffer in response to a putmsg or write sys
tem call, it uses the lowest level of priority. Since buffer availability
is based on priority and buffer pool levels. the Stream head will be
among the first modules refused a buffer when the pool becomes
depleted. In response. the Stream head will block user output
until the STREAMS buffer pool recovers. As a result, output has a
lower priority than input.

The second flow control mechanism is local to each Stream
and advisory (voluntary), and limits the number of characters that
can be queued for processing at any QUEUE in a Stream. This
mechanism limits the buffers and related processing at anyone
QUEUE and in anyone Stream, but does not consider buffer pool
levels or buffer usage in other Streams.

The advisory mechanism operates between the two nearest
QUEUEs in a Stream containing service procedures (see diagram
on next page). Messages are generally held on a message queue
only if a service procedure is present in the associated QUEUE.

6-4 STREAMS PRIMER UP-13672

Flow Control

Messages accumulate at a QUEUE when its service procedure
processing does not keep pace with the message arrival rate, or
when the procedure is blocked from placing its messages on the
following Stream component by the flow control mechanism.
Pushable modules contain independent upstream and downstream
limits, which are set when a developer specifies high-water and
low-water control values for the QUEUE. The Stream head con
tains a preset upstream limit (which can be modified by a special
message sent from downstream) and a driver may contain a
downstream limit.

Flow control operates as follows:

1 . Each time a STREAMS message handling routine (for
example, putq) adds or removes a message from a mes
sage queue in a QUEUE, the limits are checked.
STREAMS calculates the total size of all message blocks
on the message queue.

2. The total is compared to the QUEUE high-water and low
water values. If the total exceeds the high-water value, an
internal full indicator is set for the QUEUE. The operation
of the service procedure in this QUEUE is not affected if
the indicator is set, and the service procedure continues to
be scheduled.

3. The next part of flow control processing occurs in the
nearest preceding QUEUE that contains a service pro
cedure. In the diagram below, if D is full and C has no ser
vice procedure, then B is the nearest preceding QUEUE.

I I

~ ~
Message Message
Queue Queue

Figure 6-2: Flow Control

UP·13672 OTHER FACILITIES 6·5

Flow Control

4. The service procedure in 8 uses a STREAMS utility routine
to see if a QUEUE ahead is marked full. If messages can
not be sent, the scheduler blocks the service procedure in
8 from further execution. 8 remains blocked until the low
water mark of the full QUEUE, 0, is reached.

5. While 8 is blocked, any non-priority messages that arrive
at 8 will accumulate on its message queue (recall that
priority messages are not blocked). In turn, 8 can reach a
full state and the full condition will propagate back to the
last module in the Stream.

6. When the service procedure processing on 0 causes the
message block total to fall below the low water mark, the
full indicator is turned off. Then, STREAMS automatically
schedules the nearest preceding blocked QUEUE (8 in this
case), getting things moving again. This automatic
scheduling is know as back-enabling a QUEUE.

Note that to utilize flow control, a developer need only call the
utility that tests if a full condition exists ahead, plus perform some
housekeeping if it does. Everything else is automatically handled
by STREAMS. Additional flow control features are described in the
STREAMS Programmer's Guide.

6-6 STREAMS PRIMER UP-13672

Multiplexing
STREAMS multiplexing supports the development of internet

working protocols such as IP and ISO CLNS. and the processing
of interleaved data streams such as in SNA. X.2S. and terminal
window facilities.

STREAMS multiplexors (also called pseudo-device drivers) are
created in the kernel by interconnecting multiple Streams. Con
ceptually. there are two kinds of multiplexors that developers can
build with STREAMS: upper and lower multiplexors. Lower multi
plexors have multiple lower Streams between device drivers and
the multiplexor. and upper multiplexors have multiple upper
Streams between user processes the multiplexor.

User
Processes

AAA

...... .'!1.\l.~
Upper

Multiplexor or
Module

IP
Multiplexor

Driver

Figure 6-3: Internet Multiplexing Stream

UP-13672 OTHER FACILITIES 6-7

Multiplexing

Figure 6-3 shows an example of a lower multiplexor. This con
figuration would typically occur where internetworking functions
were included in the system. This Stream contains two types of
drivers: the Ethernet, LAPS, and IEEE 802.2 are hardware device
drivers that terminate links to other nodes; the IP (Internet Proto
col) is a multiplexor.

The IP multiplexor switches messages among the various
nodes (lower Streams) or sends them upstream to user processes
in the system. In this example, the multiplexor expects to see an
802.2 interface downstream; for the Ethernet and LAPS drivers,
the Net 1 and Net 2 modules provide service interfaces to the two
the non-802.2 drivers and the IP multiplexor.

Figure 6-3 depicts the IP multiplexor as part of a larger
Stream. The Stream, as shown in the dotted rectangle, would
generally have an upper TCP multiplexor and additional modules.
Multiplexors could also be cascaded below the IP driver if the dev
ice drivers were replaced by multiplexor drivers.

PVC SVC
Processes Processes Processes

----------~----

X.2S
Packet Layer Protocol

Multiplexor Driver

LAPB Driver
or

Lower Multiplexor

Figure 6-4: X.25 Multiplexing Stream

6·8 STREAMS PRIMER

........ ll
: Modules

....... :::.::".
,.,

UP·13672

Multiplexing

Figure 6-4 shows an upper multiplexor. In this configuration.
the driver routes messages between the lower Stream and one of
the upper Streams. This Stream performs X.2S multiplexing to
multiple independent SVC (Switched Virtual Circuit) and PVC (Per
manent Virtual Circuit) user processes. Upper multiplexors are a
specific application of standard STREAMS facilities that support
multiple minor devices in a device driver. This figure also shows
that more complex configurations can be built by having one or
more multiplexed LAPS drivers below and multiple modules above.

Developers can choose either upper or lower multiplexing. or
both. when designing their applications. For example. a window
multiplexor would have a similar configuration to the X.2S confi
guration of Figure 6-4. with a window driver replacing Packet
Layer. a tty driver replacing LAPS. and the child processes of the
terminal process replacing the user processes. Although the X.2S
and window multiplexing Streams have similar configurations. their
multiplexor drivers would differ significantly. The IP multiplexor of
Figure 6-2 has a different configuration than the X.2S multiplexor
and the driver would implement its own set of processing and
routing requirements.

In addition to upper and lower multiplexors. more complex
configurations can be created by connecting Streams containing
multiplexors to other multiplexor drivers. With such a diversity of
ne'3ds for multiplexors. it is not possible to provide general pur
pose multiplexor drivers. Rather. STREAMS provides a general
purpose multiplexing facility. The facility allows users to set up the
inter-module/driver plumbing to create multiplexor configurations
of generally unlimited interconnection.

The connections are created from user space through specific
STREAMS ioetl system calls. In a lower multiplexor. multiple
Streams are connected below an application-specific. developer
implemented multiplexing driver. The multiplexing facility will only
connect Streams to a driver. The ioetl call configures a multi
plexor by connecting one Stream at a time below the opened mul
tiplexor driver. As each Stream is connected to the driver. the
connection setup procedure identifies the Stream to the driver.
The driver will generally store this setup information in a private
data structure for later use.

UP-13672 OTHER FACILITIES 6-9

Multiplexing

Subsequently, when messages flow into the driver on the vari
ous connected Streams, the identity of the associated Stream is
passed to the driver as part of the standard procedure call. The
driver then has available the Stream identification, the previously
stored setup information for this Stream, and any internal routing
information contained in the message. These data are used,
according to the application implemented, to process the incoming
message and route the output to the appropriate outgoing
Stream.

Additionally, new Streams can be dynamically connected to a
operating multiplexor without interfering with ongoing traffic, and
existing Streams can be disconnected with similar ease.

6-10 STREAMS PRIMER UP-13672

Monitoring
STREAMS allows user processes to monitor and control

Streams so that system resources (such as CPU cycles and pro
cess slots) can be used effectively. Monitoring is especially useful
to user-level multiplexors, in which a user process can create multi
ple Streams and switch messages among them (similar to
STREAMS kernel-level multiplexing, described previously).

User processes can efficiently monitor and control multiple
Streams with two STREAMS system calls: poll(2) and the ioctl(2)
1_ SETSIG command. These calls allow a user process to detect
events that occur at the Stream head on one or more Streams,
including receipt of a data or protocol message on the read queue
and cessation of flow control.

Synchronous monitoring is provided by use of poll alone; in
this case, the user process cannot continue processing until after
the system call completes. When the calls are used together, they
allow asynchronous, or concurrent, operation of the process and
STREAMS input/output. This allows the user process to monitor
the Stream while carrying on other activities.

To monitor Streams with poll, a user process issues that sys
tem call and specifies the Streams to be monitored, the events to
look for, and the amount of time to wait for an event. poll will
block the process until the time expires or until an event occurs. If
an event occurs, poll will return the type of event and the Stream
on which the event occurred.

Instead of waiting for an event to occur, a user process may
want to monitor one or more Streams while processing other data.
It can do so by issuing the ioctl 1_ SETSIG command, specifying
one or more Streams and events (as with poll). Unlike a poll, this
ioctl does not force the user process to wait for the event but
returns immediately and will issue a signal when an event occurs.
The process must also request signal (2) or sigset(2) to catch the
resultant SIGPOLL signal.

OTHER FACILITIES 6-11

Monitoring

If any selected event occurs on any of the selected Streams,
STREAMS will cause the SIGPOLL catching function to be exe
cuted in all associated requesting processes. However, the
process(es) will not know which event occurred, nor on what
Stream the event occurred. A process that issues the 1_ SETSIG
can get more detailed information by issuing a poll after it detects
the event.

6-12 STREAMS PRIMER

Error and Trace Logging
STREAMS includes error and trace loggers useful for debug

ging and administering modules and drivers.

Any module or driver in any Stream can call the STREAMS log
ging function strlog, described in log(7). When called, strlog will
send formatted text to the error logger strerr(1 M), the trace logger
strace(1 M), or both. The call parameters for strlog include the
module/driver identification, a severity level, and the formatted text
describing the condition causing the call. The call also identifies
the process (strerr and/or strace) to receive the resultant output
message.

Error
Log File

I module ~--

I module r""

Trace
Log File

Trace
Messages

Log
Software
Driver

--1 driver I

Figure 6-5: Error and Trace Logging

OTHER FACILITIES 6-13

Error and Trace Logging

strerr is intended to operate as a daemon process initiated at
system startup. A call to strlog requesting an error to be logged
causes an M_PROTO message to be sent to strerr, which formats
the contents and places them in a daily file. The utility
strclean(1 M) is provided to periodically purge aged, un referenced
daily log files.

A call to strlog requesting trace information to be logged
causes a similar M_PROTO message to be sent to strace(1 M).
which places it in a user designated file. strace is intended to be
initiated by a user. The user can designate the modules/drivers
and severity level of the messages to be accepted for logging by
strace.

A user process can submit its own M _PROTO messages to the
log driver for inclusion in the logger of its choice through
putmsg(2). The messages must be in the same format required
by the logging processes and will be switched to the logger(s)
requested in the message.

The output to the log files is formatted, ASCII text. The files
can be processed by standard system commands such as grep(1)
or ed(1), or by developer-provided routines.

6-14 STREAMS PRIMER

Introduction
This chapter compares operational features of character 110

device drivers with STREAMS drivers and modules. It is intended
for experienced developers of UNIX system character device
drivers. Details are provided in the STREAMS Programmer's
Guide.

Environment

No user environment is generally available to STREAMS
module procedures and drivers. The exception is the module and
driver open and close routines. both of which have access to the
u_area of the calling process and can sleep. Otherwise. a
STREAMS driver. module put procedure. and module service pro
cedure has no user context and can neither sleep nor access any
u area.

Multiple Streams can use a copy of the same module (that is.
the same fmodsw). each containing the same processing pro
cedures. This means that module code is reentrant. so care must
be exercised when using global data in a module. Put and service
procedures are always passed the address of the QUEUE (for
example. in Figure 2-5 Au calls Bu's put procedure with Bu as a
parameter). The processing procedure establishes its environment
solely from the QUEUE contents. typically the private data (for
example. state information).

Drivers
At the interface to hardware devices. character I/O drivers

have interrupt entry points; at the system interface. those same
drivers generally have direct entry points (routines) to process
open. close. read. write and ioctl system calls.

STREAMS device drivers have similar interrupt entry points at
the hardware device interface and have direct entry points only for
open and close system calls. These entry points are accessed via
STREAMS. and the call formats differ from character device
drivers. The put procedure is a driver's third entry point. but it is a
message (not system) interface. The Stream head translates write

UP-13672 DRIVER DESIGN COMPARISONS 7-1

Introduction

and ioctl calls into messages and sends them downstream to be
processed by the driver's write QUEUE put procedure. read is
seen directly only by the Stream head, which contains the func
tions required to process system calls. A driver does not know
about system interfaces other than open and close, but it can
detect absence of a read indirectly if flow control propagates from
the Stream head to the driver and affects the driver's ability to
send messages upstream.

For input processing, when the driver is ready to send data or
other information to a user process, it does not wake up the pro
cess. It prepares a message and sends it to the read QUEUE of
the appropriate (minor device) Stream. The driver's open routine
generally stores the QUEUE address corresponding to this Stream.

For output processing, the driver receives messages in place
of a write call. If the message can not be sent immediately to the
hardware, it may be stored on the driver's write message queue.
Subsequent output interrupts can remove messages from this
queue.

Drivers and modules can pass signals, error codes, and return
values to processes via message types provided for that purpose.

Modules

As described above, modules have user context available only
during the execution of their open and close routines. Otherwise,
the QUEUEs forming the module are not associated with the user
process at the end of the Stream, nor with any other process.
Because of this, QUEUE procedures must not sleep when they
cannot proceed; instead, they must explicitly return control to the
system. The system saves no state information for the QUEUE.
The QUEUE must store this information internally if it is to proceed
from the same point on a later entry.

When a module or driver that requires private working storage
(for example, for state information) is pushed, the open routine
must obtain the storage from external sources. STREAMS copies
the module template from fmodsw for the I_PUSH, so only fixed
data can be contained in the module template. STREAMS has no
automatic mechanism to allocate working storage to a module
when it is opened. The sources for the storage typically include a

7-2 STREAMS PRIMER UP-13672

Introduction

module-specific kernel array, installed when the system is config
ured, or the STREAMS buffer pool. When using an array as a
module storage pool, the maximum number of copies of the
module that can exist at anyone time must be determined. For
drivers, this is typically determined from the physical devices con
nected, such as the number of ports on a multiplexor. However,
certain types of modules may not be associated with a particular
external physical limit. For example, the CANONICAL module
shown in Figure 2-4 could be used on different types of Streams.

UP-13672 DRIVER DESIGN COMPARISONS 7-3

Glossary

downstream The direction from Stream head to driver.

driver The end of the Stream closest to an exter
nal interface. The principal functions of the
driver are handling any associated device,
and transforming data and information
between the external interface and Stream.
It can also be a pseudo-driver, not directly
associated with a device, which performs
functions internal to a Stream, such as a
multiplexor or log driver.

message One or more linked blocks of data or infor
mation, with associated STREAMS control
structures containing a message type.
Messages are the only means of transfer
ring data and communicating within a
Stream.

message queue A linked list of messages connected to a
QUEUE.

message type A defined set of values identifying the con
tents of a message.

module Software that performs functions on mes
sages as they flow between Stream head
and driver. A module is the STREAMS
counterpart to the commands in a Shell
pipeline except that a module contains a
pair of functions which allow independent
bidirectional (downstream and upstream)
data flow and processing.

multiplexor A mechanism for connecting multiple
Streams to a multiplexing driver. The
mechanism supports the processing of
interleaved data Streams and the process
ing of internetworking protocols. The mul
tiplexing driver routes messages among
the connected Streams. The other end of
a Stream connected to a multiplexing

UP-13672 GLOSSARY G-1

Glossary

driver is typically connected to a device
driver.

pushable module A module between the Stream head and
driver. A driver is a non-pushable module
and a Stream head includes a non
pushable module.

QUEUE

read queue

Stream

Stream head

STREAMS

The set of structures that forms a module.
A module is composed of two QUEUEs, a
read (upstream) QUEUE and a write
(downstream) QUEUE.

The message queue in a module or driver
containing messages moving upstream.
Associated with input from a driver.

The kernel aggregate created by connect
ing STREAMS components, resulting from
an application of the STREAMS mechan
ism. The primary components are a
Stream head, a driver and zero or more
pushable modules between the Stream
head and driver. A Stream forms a full
duplex processing and data transfer path
in the kernel, between a user process and
a driver. A Stream is analogous to a Shell
pipeline except that data flow and process
ing are bidirectional.

The end of the Stream closest to the user
process. The Stream head provides the
interface between the Stream and the user
process. The principal functions of the
Stream head are processing STREAMS
related system calls, and bidirectional
transfer of data and information between a
user process and messages in STREAMS'
kernel space.

A kernel mechanism that supports develop
ment of network services and data com
munication drivers. It defines interface
standards for character input/output within

G-2 STREAMS PRIMER UP-13672

upstream

write queue

UP·13672

Glossary

the kernel, and between the kernel and
user level. The STREAMS mechanism
comprises integral functions, utility rou
tines, kernel facilities and a set of struc
tures.

The direction from driver to Stream head.

The message queue in a module or driver
containing messages moving downstream.
Associated with output from a user pro
cess.

GLOSSARY G·3

Index

alloc ... 5:4,9
applications ... 1 :3-4; 2:2,4,10;

3:4; 4:1,4,7,10; 6:9-10
ASCEBC ... 4:3,7,9
ASCII ... 4:2-3,6-7; 6:13
asynchronous ... 1 :1,3; 2:2;

4:1-2,6; 6:1,11
block ... 1:1; 4:5-6; 5:2-4,9,11;

6:2,4-6,11
buffer ... 1 :3; 2:2; 3:3-4; 4:4-6;

5:1-2,4,11; 6:4; 7:3
calls ... 1 :2,4; 2:1-4,10; 3:1-3;

4: 1,3-6,10; 5:3,5-6,8-11;
6:2,4,6-7,9-13; 7:1-2

CANONICAL ... 7:3
CANONPROC ... 3:2,4; 4:3,6-7;

5:8,10-12
character I/O ... 1 :1-2; 2:2; 4:9
character strings ... 2:7; 3:4
characters ... 1: 1-2,4;

2:2,7,10,12; 3:1-4; 4:2-3,5-
7,9; 5:6,9-12; 6:4; 7:1

CHARPROC ... 4:2-3,6-7,9;
5:8-12

Class ... 3:2
close routine ... 3:3
common service interfaces ...

2:4,6
communications options ...

4:2,4
configurations ... 1:1; 2:6; 3:3;

4:6-7,9; 5:8; 6:8-9
CONS ... 2:5
cpu cycles ... 6:11
daemon process ... 6: 13
data space ... 2:1-2,10; 3:2,4;

5:4

UP-13672

data transfer path ... 2:1
debugging ... 1 :3; 6: 12
device driver ... 1 :2,4; 2:1-

2,4,6,10-12; 3: 1-3; 4:2-3,9;
5:9,11; 6:3,7-9; 7:1-3

dialogs ... 4:2,7
EBCDIC ... 4:2-3,7
echoing ... 2:11; 3:4; 4:2,7,9;

5:6-7,10,12
error codes ... 4:5,10; 7:2
Ethernet ... 6:8
even parity checking ... 4:7;

5:12
excessive message accumula-

tion ... 6:4
external sources ... 7:2
FIFO ... 5:6; 6:2-3
firmware ... 2:6
flow control ... 1 :3; 5:1,7,11;

6: 1-2,4-6, 11; 7:2
fmodsw ... 3:3; 7: 1-2
full-duplex ... 2:1
getmsg ... 2:2; 4:1,3-6; 5:9,11
getstrm ... 4:2-4,6-7,9-10
HANGUP ... 5:4
hardware configuration ... 1:1;

2:6; 6:8
hardware device interface ...

7:1
I/O ... 1 :1-2; 2:1-2; 4:9
IEEE 802 ... 6:8
incoming call ... 4:6
initialization process ... 4:3,10
initializing stream ... 1 :3; 3: 1 ;

4:3,10; 5:8
interface ... 1 :1-4; 2:1-2,4-

7,10,12; 3:4; 4:4,7; 5:12;
6:8; 7:1-2

INDEX 1·1

Index ---

interleaved data ... 1 :3; 6:7
internal streams thresholds ...

5:4
ioctl ... 2:2; 3:2-3; 4:1 ,3,S,7, 10;

5:11; 6:9,11; 7:1-2
ip multiplexor ... 6:8-9
iso ... 6:7
kernel ... 1 :2-4; 2:1-2,6,9-10,12;

3:3-4; 4:1,4; 5:1,8; 6:1,7;
7:3

LAPS ... 2:S; 6:8-9
last-in-first-out ... 3:2
LIFO ... 3:2
line-kill ... 3:4
Link Access Protocol ... 2:S
log driver ... 6:12-13
log files ... 6:13
logger ... 1 :3; 6:12-13
lower multiplexing ... 6:7,9
lower multiplexor ... 6:7-9
lower Streams ... 6:7-9
M data messages ... 4:4-S
Message ... 4:4-S, 1 0; 5:3-4;

6:2-4
message allocation ... 5:4
message arrival rate ... 6:S
message buffer pools .. .

5:4,11; 6:4
message flow ... 2:11; 4:6;

5:1,8,11; 6:2,4-S, 10-11; 7:2
message pool priority ... 5:4;

6:4
message priority 4:S; 5:1,4;

6:2-4,6
message queue priority ... 4:S;

5:1; 6:2-3,6
message queues ... 2:10-11;

4:S; 5: 1 ,3,S-8, 1 0-12; 6:2-
6,11; 7:1-2

1-2 STREAMS PRIMER

message queuing ... 2:10-11;
4:S; 5:1 ,3,S-8, 10-12; 6:2-
6,11;7:1-2

message Storage Pool ... 6:4
message type ... 2:10; 4:4-

6,10; 5:2,S, 11; 6:2-3; 7:2
Message Types ... 4:4,10
modem ... 1: 1; 4:2,6
modes ... 1:1; 4:2,6
module ... 1 :2-4; 2:1-2,4-7,9-11;

3:1-4; 4:1-7,9-10; 5:1,5,7-9;
6:2-6,8-9,12; 7: 1-3

multiple-character data ... 3:4
multiplexors ... 6:1,7-11; 7:3
Net 1 ... 6:8
Net 2 ... 6:8
Networking Support Utilities ...

1 :1
OSI ... 1:1
Packet Layer ... 6:9
parity check character ... 4:2,7;

5:10,12
parity checking ... 4:2,7;

5:10,12
PCPROTO ... 4:4-6; 5:4; 6:3
Permanent Virtual Circuit ... 6:9
pointers ... 3:3
poll ... 2:2; 4:1,10; 6:11-12
pool falls ... 5:4
pop ... 3:2; 4:1,7
port ... 4:1-4,6-7,9-10; 5:8-10;

7:3
priority ... 4:S; 5: 1,4,6; 6:2-4,6
private data flags ... 5:10
private working storage ... 7:2
PROTO ... 4:4-6,10; 6:3,13
protocol drivers ... 1 :1-2; 2:5-6;

3:3; 6:8
protocol migration ... 2:6

UP-13672

--- Index

protocol portability ... 1 :2-3;
2:5

protocol substitution ... 2:6
protocols ... 1 :1-3; 2:4-6; 3:3;

4:2,6-7,10; 6:1,7-8,11
PUSH ... 4:3; 7:2
putmsg ... 2:2; 4:1,5-6,10;

6:4,13
PVC ... 6:9
QUEUE ... 2:10-11; 5:1,3,5-11;

6:2-6; 7:1-2
read queue ... 5:5,8-11; 6: 11 ;

7:2
ring detect signal ... 4:6
service ... 1: 1-2; 2: 1.-2,4-7,11 ;

4:4; 5:5-7,9-11; 6:2-6,8; 7:1
SETSIG ... 2:2; 6:11-12 .
SIGPOLL ... 6:11
SNA ... 1:1,3; 6:7
stack operations ... 3:2
storage ... 5:4; 6:4; 7:2-3
STR ... 4:5,7,9-10; 5:11
STREAMS ... 1 :1-4; 2:1-6,9-12;

3: 1-3; 4: 1-2,4-5,9-1 0; 5: 1-
4,6,8,10; 6:1-7,9,11-12;
7:1-3

strerr ... 6:12-13
SVC ... 6:9
Switched Virtual Circuit ... 6:9
synchronous ... 6:11
TCP/IP ... 1:1
TTY ... 2:7
upstream queue ... 2: 1 0;

5:8,11; 6:5
user designated file ... 6:13
user level ... 1 :2-4; 2:4-5; 4:1;

6:4,13
user process ... 1 :2-3; 2:1-

2,4,7,10; 3:2-4; 4: 1-5, 10;
5:9,11; 6:1,7-9,11,13; 7:1-2

UP-13672

user space ... 2: 1-2, 1 0; 3:2-4;
4:9; 5:4; 6:9

user-level facilities ... 1 :4; 6:1
utility routines ... 1 :2-3; 2: 1 ;

5:1,3
X. 25 ... 1:1,3; 2:4-6; 3:2; 6:7,9
XNS ... 1:1

INDEX 1-3

Index --------------------------------------

1·4 STREAMS PRIMER UP·13672

