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Introduction 
With the addition of the Networking Support Utilities, 

UNIX System V Release 3.0 provides comprehensive support for 
networking services. This Primer describes STREAMS, a major 
building block of that support. The Primer provides a high level, 
technical overview of STREAMS; it is intended for managers and 
developers who have prior knowledge of the UNIX system and net
working or other data communication facilities. For a more 
detailed description of STREAMS, see the STREAMS Programmer's 
Guide. 

The UNIX system was originally designed as a general
purpose, multi-user, interactive operating system for minicomput
ers. Initially developed in the 1970's, the system's communications 
environment included slow to medium speed, asynchronous termi
nal devices. The original design, the communications environment, 
and hardware state of the art influenced the character 
input/output (110) mechanism but the character I/O area did not 
require the same emphasis on modularity and performance as 
other areas of the system. 

Support for a broader range of devices, speeds, modes, and 
protocols has since been incorporated into the system, but the ori
ginal character I/O mechanism, which processes one character at 
a time, made such development difficult. Additionally, a paucity of 
tools and the absence of a framework for incorporating contem
porary networking protocols added to the difficulty. 

The current generation of networking protocols is exemplified 
by Open Systems Interconnection (OSI) , Systems Network Archi
tecture (SNA) , Transmission Control Protocol/Internet Protocol 
(TCP/IP), X.2S, and Xerox Network Systems (XNS). These proto
cols provide diverse functionality, layered organization, and various 
feature options. When developing these protocol suites, develop
ers faced additional problems because there were no relevant 
standard interfaces in the UNIX system. 

Attempts to compensate for the above problems have led to 
diverse, ad-hoc implementations; for example, protocol drivers are 
often intertwined with the hardware configuration in which they 
were developed. As a result, functionally equivalent protocol 
software often cannot interface with alternate implementations of 
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Introduction 

adjacent protocol layers. Portability, adaptability, and reuse of 
software have been hindered. 

AT&T decided to enhance the character 110 area in Release 
3.0. The result is STREAMS, a general, flexible facility and a set of 
tools for development of UNIX system communication services. 
With STREAMS, developers can provide services ranging from 
complete networking protocol suites to individual device drivers. 

STREAMS defines standard interfaces for character 110 within 
the UNIX kernel, and between the kernel and the rest of the UNIX 
system. The associated mechanism is simple and open-ended. It 
consists of a set of system calls, kernel resources, and kernel util
ity routines. The standard interface and open-ended mechanism 
enable modular, portable development and easy integration of 
higher performance network services and their components. 
STREAMS does not impose any specific network architecture. 
Instead, it provides a powerful framework with a consistent user 
interface that is compatible with the existing character 110 inter
face still available in UNIX System V. 

STREAMS modularity and design reflect the "layers and 
options" characteristics of contemporary networking architectures. 
The basic components in a STREAMS implementation are referred 
to as modules. These modules, which reside in the kernel, offer a 
set of processing functions and associated service interfaces. 
From user level, modules can be dynamically selected and inter
connected to provide any rational processing sequence. Kernel 
programming, assembly, and link editing are not required to create 
the interconnection. Modules can also be dynamically "plugged 
into" existing connections from user level. STREAMS modularity 
allows: 

• User level programs that are independent of underlying pro
tocols and physical communication media. 

• Network architectures and higher level protocols that are 
independent of underlying protocols, drivers, and physical 
communication media. 

• Higher level services that can be created by selecting and 
connecting lower level services and protocols. 

1-2 STREAMS PRIMER UP-13672 



Introduction 

• Enhanced portability of protocol modules resulting from 
STREAMS' well-defined structure and interface standards. 

In addition to modularity, STREAMS provides developers with 
integral functions, a library of utility routines, and facilities that 
expedite software design and implementation. The principal facili
ties are: 

• Buffer management - To maintain STREAMS' own, indepen
dent buffer pool. 

• Flow control - To conserve STREAMS' memory and process
ing resources. 

• Scheduling - To incorporate STREAMS' own scheduling 
mechanism. 

• Multiplexing - For processing interleaved data streams, such 
as occur in SNA, X.2S, and windows. 

• Asynchronous operation of STREAMS and user processes -
Allows STREAMS-related operations to be performed effi
ciently from user level. 

• Error and trace loggers - For debugging and administrative 
functions. 

STREAMS is the standard for AT&T UNIX system data com
munications and networking implementations. The original 
STREAMS concepts were developed in the Information Sciences 
Research Division of AT&T Bell Laboratories (see "A Stream Input
Output System" in the October 1984 AT&T Bell Laboratories 
Technical Journa~. 

How this Document is Organized 

The Primer is organized as follows: 

• Chapter 2 provides an overview of the applications and 
benefits of STREAMS and the STREAMS mechanism. 

• Chapter 3 describes how to set up a Stream from user level 
and how this initialization affects the kernel. This and follow
ing chapters are aimed at developers. 
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• Chapter 4 contains a detailed example and discusses it from 
user level. 

• Chapter 5 describes kernel operations associated with the 
Chapter 4 example, together with a discussion of basic 
STREAMS kernel facilities. 

• Chapter 6 includes kernel and user facilities not otherwise 
described. 

• Chapter 7 compares certain design features of character I/O 
device drivers with STREAMS modules and drivers. 

• The Glossary defines terms that are specific to STREAMS. 

Other Documents 
The STREAMS Programmer's Guide contains more detailed 

STREAMS information for programmers: how programmers can 
develop networking applications with STREAMS user-level facilities 
and how system programmers can use STREAMS kernel-level facil
ities to build modules and drivers. 

Section 2 of the Programmer's Reference Manual and the Sys
tem V Interface Definition include descriptions (manual pages) of 
STREAMS-related system calls and other information. 
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A Basic View of a Stream 
"STREAMS" is a collection of system calls. kernel resources. 

and kernel utility routines that can create. use. and dismantle a 
"Stream". A Stream is a full-duplex processing and data transfer 
path between a driver in kernel space and a process in user space 
(see Figure 2-1). 

Stream 
Head 

Module 

Driver 

Figure 2-1: Basic Stream 

User 
Process 

External 
Interface 

__ y~e! .?p~c: __ _ 
Kernel Space 

1 downstream 

(optional) 

i upstream 

A Stream has three parts: A Stream head. module(s) 
(optional). and a driver (also referred to as the Stream end). The 
Stream head provides the interface between the Stream and user 
processes. Its principal function is to process STREAMS-related 
user system calls. A module processes data that travel between 
the Stream head and driver. A STREAMS driver may be a device 
driver. providing the services of an external I/O device. or an inter
nal software driver. commonly called a pseudo-device driver. 
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A Basic View of a Stream 

Using a combination of system calls, kernel routines, and ker
nel utilities, STREAMS passes data between a driver and the 
Stream head in the form of messages. Messages that are passed 
from the Stream head toward the driver are said to travel down
stream, and messages passed in the other direction travel 
upstream. 

The Stream head transfers data between the data space of a 
user process and STREAMS kernel data space. Data sent to a 
driver from a user process are packaged into STREAMS messages 
and passed downstream. Messages arriving at the Stream head 
from downstream are processed by the Stream head, and data 
are copied into user buffers. STREAMS can insert one or more 
modules into a Stream between the Stream head and driver to 
perform intermediate processing of data passing between the 
Stream head and driver. 

System Calls 
Applications programmers can use the STREAMS facilities via a 

set of system calls. This system call interface is upward compatible 
with the existing character I/O facilities. The open (2) system call 
will recognize a STREAMS file and create a Stream to the specified 
driver. A user process can send and receive data using read (2) 
and write(2) in the same manner as with character files and dev
ices. The ioctl(2) system call enables application programs to per
form functions specific to a particular device. In addition, a set of 
generic STREAMS ioctl commands [see streamio(7)] support a 
variety of functions for accessing and controlling Streams. A 
close(2) will dismantle a Stream. 

open, close, read, write, and ioctl support the basic set of 
operations on Streams. In addition, new system calls support 
advanced STREAMS facilities. The poll(2) system call enables an 
application program to poll multiple Streams for various events. 
When used with the STREAMS I_SETSIG ioctl command, poll 
allows an application to process I/O in an asynchronous manner. 
The putmsg (2) and getmsg (2) system calls enable application pro
grams to interact with STREAMS modules and drivers through a 
service interface (described next). 
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A Basic View of a Stream 

These calls are discussed in this document and in the 
STREAMS Programmer's Guide. They are specified in the 
Programmer's Reference Manual and the System Administrator's 
Reference Manual. 
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Benefits of STREAMS 
STREAMS offers two major benefits for applications program

mers: easy creation of modules that offer standard data commun
ications services. and the ability to manipulate those modules on a 
Stream. 

Creati ng Service Interfaces 

One benefit of STREAMS is that it simplifies the creation of 
modules that present a service interface to any neighboring appli
cation program. module. or device driver. A service interface is 
defined at the boundary between two neighbors. In STREAMS. a 
service interface is a specified set of messages and the rules for 
allowable sequences of these messages across the boundary. A 
module that implements a service interface will receive a message 
from a neighbor and respond with an appropriate action (for 
example. send back a request to retransmit) based on the specific 
message received and the preceding sequence of messages. 

STREAMS provides features that make it easier to design vari
ous application processes and modules to common service inter
faces. If these modules are written to comply with industry
standard service interfaces. they are called protocol modules. 

In general. any two modules can be connected anywhere in a 
Stream. However. rational sequences are generally constructed by 
connecting modules with compatible protocol service interfaces. 
For example. a module that implements an X.2S protocol layer. as 
shown in Figure 2-2. presents a protocol service interface at its 
input and output sides. In this case. other modules should only be 
connected to the input and output side if they have the compatible 
X.2S service interface. 

Manipulating Modules 
STREAMS provides the capabilities to manipulate modules 

from user level. to interchange modules with common service inter
faces,. and to present a service interface to a Stream user process. 
As stated in Chapter 1. these capabilities yield benefits when 
implementing networking services and protocols. including: 
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Benefits of STREAMS 

• User level programs can be independent of underlying pro
tocols and physical communication media. 

• Network architectures and higher level protocols can be 
independent of underlying protocols. drivers and physical 
communication media. 

• Higher level services can be created by selecting and con-
necting lower level services and protocols. 

Below are examples of the benefits of STREAMS capabilities to 
developers for creating service interfaces and manipulating 
modules. 

NOTE: All protocol modules used below were selected for 
illustrative purposes. Their use does not imply that 
AT& T offers such modules as products. 

Protocol Portability 

Figure 2-2 shows how the same X.2S protocol module can be 
used with different drivers on different machines by implementing 
compatible service interfaces. The X.2S protocol module interfaces 
are Connection Oriented Network Service (CONS) and Link Access 
Protocol - Balanced (LAPB) driver. 
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MACHINE A 

-----r----
X.2S 

Protocol Layer 
Module 

------ ------

II 
I LAPB 

I Driver 
Machine A 

CONS 
INTERFACE 

SAME 

MODULE 

LAPB 
INTERFACE 

DIFFERENT 
DRIVER 

Figure 2-2: Protocol Module Portability 

Protocol Substitution 

MACHINE B 

-----r----
X.2S 

Protocol Layer 
Module 

I' 

------ ------
II 

I LAPB 
\ 

Driver I 
Machine B 

\ 

Alternative protocol modules (and device drivers) can be inter
changed on the same machine if they are implemented to an 
equivalent service interface(s). 

Protocol Migration 

Figure 2-3 illustrates how STREAMS can migrate functions 
between kernel software and front end firmware. A common 
downstream service interface allows the transport protocol module 
to be independent of the number or type of modules below. The 
same transport module will connect without modification to either 
an X.25 module or X.25 driver that has the same service interface. 

By shifting functions between software and firmware, develop
ers can produce cost effective, functionally equivalent systems 
over a wide range of configurations. They can rapidly incorporate 
technological advances. The same transport protocol module can 
be used on a lower capacity machine, where economics may pre
clude the use of front-end hardware, and also on a larger scale 
system where a front-end is economically justified. 
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Figure 2-3: Protocol Migration 

Module Reusability 

Benefits of STREAMS 
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Figure 2-4 shows the same canonical module (for example, 
one that provides delete and kill processing on character strings) 
reused in two different Streams. This module would typically be 
implemented as a filter, with no downstream service interface. In 
both cases, a TIV interface is presented to the Stream's user pro
cess since the module is nearest the Stream head. 
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Figure 2-4: Module Reusability 
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An Advanced View of a Stream 
The STREAMS mechanism constructs a Stream by serially con

necting kernel resident STREAMS components, each constructed 
from a specific set of structures. As described earlier and shown 
in Figute 2-5, the primary STREAMS components are the Stream 
head, optional module(s), and Stream end. 

___ l.Is~r_S'p!c! ___ _ 

Kernel Space 

Module 

B 

Module 

A 

§
. . ...... . 
: ................................ : 

Message 

"Ad" 
upstream 

Module 

External 

Interface 

Figure 2-5: Stream in More Detail 
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An Advanced View of a Stream 

Stream Head 

The Stream head provides the interface between the Stream 
and an application program. The Stream head processes 
STREAMS-related system calls from the application and performs 
the bidirectional transfer of data and information between the 
application (in user space) and messages (in STREAMS' kernel 
space). 

Messages are the only means of transferring data and com
municating within a Stream. A STREAMS message contains data, 
status/control information, or a combination of the two. Each mes
sage includes a specified message type indicator that identifies the 
contents. 

Modules 

A module performs intermediate transformations on messages 
passing between Stream head and driver. There may be zero or 
more modules in a Stream (zero when the driver performs all the 
required character and device processing). 

Each module is constructed from a pair of QUEUE structures 
(see Au/Ad and Bu/Bd in Figure 2-5). A pair is required to imple
ment the bidirectional and symmetrical attributes of a Stream. 
One QUEUE performs functions on messages passing upstream 
through the module (Au and Bu in Figure 2-5). The other set (Ad 
and Bd) performs another set of functions on downstream mes
sages. (A QUEUE, which is part of a module, is different from a 
message queue, which is described later.) 

Each of the two QUEUEs in a module will generally have dis
tinct functions, that is, unrelated processing procedures and data. 
The QUEUEs operate independently so that Au will not know if a 
message passes through Ad unless Ad is programmed to inform it. 
Messages and data can be shared only if the developer specifically 
programs the module functions to perform the sharing. 
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An Advanced View of a Stream 

Each QUEUE can directly access the adjacent QUEUE in the 
direction of message flow (for example, Au to Bu or Stream head 
to Bd). In addition, within a module, a QUEUE can readily locate 
its mate and access its messages (for example, for echoing) and 
data. 

Each QUEUE in a module may contain or point to messages, 
processing procedures, or data: 

• Messages - These are dynamically attached to the QUEUE 
on a linked list ("message queue", see Au and Bd in Figure 
2-5) as they pass through the module. 

• Processing procedures - A put procedure, to process mes
sages, must be incorporated in each QUEUE. An optional 
service procedure, to share the message processing with 
the put procedure, can also be incorporated. According to 
their function, the procedures can send messages upstream 
and/or downstream, and they can also modify the private 
data in their module. 

• Data - Developers may provide private data if required by 
the QUEUE to perform message processing (for example, 
state information and translation tables). 

In general, each of the two QUEUEs in a module has a distinct 
set of all of these elements. Additional module elements will be 
described later. Although depicted as distinct from modules (see 
Figure 2-5), a Stream head and the Stream end also contain a pair 
of QUEUEs. 

Stream End 

A Stream end is a module in which the module's processing 
procedures are the driver routines. The procedures in the Stream 
end are different from those in other modules because they are 
accessible from an external device and because the STREAMS 
mechanism allows multiple Streams to be connected to the same 
driver. 
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An Advanced View of a Stream 

The driver can be a device driver, providing an interface 
between kernel space and an external communications device, or 
an internal pseudo-device driver. A pseudo-device driver is not 
directly related to any external device, and it performs functions 
internal to the kernel. The multiplexing driver discussed in Chapter 
6 is a pseudo-device driver. 

Device drivers must transform all data and status/control infor
mation between STREAMS message formats and their external 
representation. Differences between STREAMS and character dev
ice drivers are discussed in Chapter 7. 
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Building a Stream 
A Stream is created on the first open(2) system call to a char

acter special file corresponding to a STREAMS driver. A STREAMS 
device is distinguished from other character devices by a field con
tained in the associated cdevsw device table entry. 

A Stream is usually built in two steps. Step one creates a 
minimal Stream consisting of just the Stream head and device 
driver, and step two adds modules to produce an expanded 
Stream (see Figure 3-1). The first step has three parts: head and 
driver structures are allocated and initialized; the modules in the 
head and end are linked to each other to form a Stream; the 
driver open routine is called. 

Minimal 
STREAM 

------ ------------ -------
STR~M 

HEAD 

device driver 

Figure 3-1: Setting Up a Stream 

Expanded 
STREAM 

device driver 

If the driver performs all character and device processing 
required, no modules need be added to a Stream. Examples of 
STREAMS drivers include a raw tty driver (one that passes along 
input characters without change) and a driver with multiple 
Streams open to it (corresponding to multiple minor devices 
opened to a character device driver). 
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Building a Stream 

When the driver receives characters from the device, it places 
them into messages. The messages are then transferred to the 
next Stream component, the Stream head, which extracts the con
tents of the message and copies them to user space. Similar pro
cessing occurs for downstream character output; the Stream head 
copies data from user space into messages and sends them to the 
driver. 

Expanded Streams 

As the second step in building a Stream, modules can be 
added to the Stream. In the right-hand Stream in Figure 3-1, the 
CANONPROC module was added to provide additional processing 
on the characters sent between head and driver. 

Modules are added and removed from a Stream in last-in-first
out (LIFO) order. They are inserted and deleted at the Stream 
head via the ioetl (2) system call. In the Stream on the left of Fig
ure 2-4, the X.25 module was the first added to the Stream, fol
lowed by Class 1 Transport and Canonical modules. To replace 
the Class 1 module with a Class 0 module, the Canonical module 
would have to be removed first, then the Class 1 module, then a 
Class 0 module would be added and the Canonical module put 
back. 

Because adding and removing modules resembles stack 
operations, the add is called a push and the remove a pop. Push 
and pop are two of the ioetl functions included in the STREAMS 
subset of ioetl system calls. These commands perform various 
manipulations and operations on Streams. The modules manipu
lated in this manner are called pushable modules, in contrast to 
the modules contained in the Stream head and end. This stack 
terminology applies only to the setup, modification, and break
down of a Stream. 
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NOTE: 

Building a Stream 

Subsequent use of the word module will refer to 
those pushable modules between Stream head 
and end. 

The Stream head processes the ioetl and executes the push, 
which is analogous to opening the Stream driver. Modules are 
referenced by a unique symbolic name, contained in the STREAMS 
fmodsw module table (similar to the edevsw table associated with 
a device file). The module table and module name are internal to 
STREAMS and are accessible from user space only through 
STREAMS ioetl system calls. The fmodsw table points to the 
module template in the kernel. When a module is pushed, the 
template is located, the module structures for both QUEUES are 
allocated, and the template values are copied into the structures. 

In addition to the module elements described in "A Basic View 
of a Stream" section of Chapter 2, each module contains pointers 
to an open routine and a close routine. The open is called when 
the module is pushed, and the close is called when the module is 
popped. Module open and close procedures are similar to a driver 
open and close. 

As in other files, a STREAMS file is closed when the last pro
cess open to it closes the file by a elose(2) system call. This sys
tem call causes the Stream to be dismantled (modules popped 
and the driver close executed). 

Pushable Modules 
Modules are pushed onto a Stream to provide special func

tions and/or additional protocol layers. In Figure 3-1, the Stream 
on the left is opened in a minimal configuration with a raw tty 
driver and no other module added. The driver receives one char
acter at a time from the device, places the character in a message, 
and sends the message upstream. The Stream head receives the 
message, extracts the single character, and copies it into the read
ing process buffer to send to the user process in response to a 
read (2) system call. When the user process wants to send charac
ters back to the driver, it issues a write(2) system call, and the 
characters are sent to the Stream head. The head copies the 
characters into one or more multi-character messages and sends 

UPa 13672 BUILDING A STREAM 3-3 



Building a Stream 

them downstream. An application program requiring no further 
kernel character processing would use this minimal Stream. 

A user requiring a more terminal-like interface would need to 
insert a module to perform functions such as echoing, character
erase, and line-kill. Assuming that the CANONPROC module in 
Figure 3-1 fulfills this need, the application program first opens a 
raw tty Stream. Then, the CANONPROC module is pushed above 
the driver to create a Stream of the form shown on the right of the 
figure. The driver is not aware that a module has been placed 
above it and therefore continues to send single character mes
sages upstream. The module receives single character messages 
from the driver, processes the characters, and accumulates them 
into line strings. Each line is placed into a message and sent to 
the Stream head. The head now finds more than one character in 
the messages it receives from downstream. 

Stream head implementation accommodates this change in 
format automatically and transfers the multiple-character data into 
user space. The Stream head also keeps track of messages par
tially transferred into user space (for example, when the current 
user read buffer can only hold part of the current message). 
Downstream operation is not affected: the head sends, and the 
driver receives, multiple character messages. 

Note that the Stream head provides the interface between the 
Stream and user process. Modules and drivers do not have to 
implement user interface functions other than open and close. 
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STREAMS System Calls 
After a Stream has been opened, STREAMS-related system 

calls allow a user process to insert and delete (push and pop) 
modules. That process can then communicate with and control 
the operation of the Stream head, modules, and drivers, and can 
send and receive messages containing data and control informa
tion. This chapter presents an example of some of the basic func
tions available to STREAMS-based applications via the system 
calls. Additional functions are described at the end of this chapter 
and in Chapter 6. 

The full set of STREAMS-related system calls is: 

open (2) Open a Stream (described in Chapter 3) 

close (2) 

read (2) 

write (2) 

ioctl(2) 

getmsg(2) 

putmsg(2) 

poll (2) 

Close a Stream (described in Chapter 3) 

Read data from a Stream 

Write data to a Stream 

Control a Stream 

Receive the message at Stream head 

Send a message downstream 

Notify the application program when selected 
events occur on a Stream 

The following two-part example describes a Stream that con
trols the data communication characteristics of a connection 
between an asynchronous terminal and a tty port. It illustrates 
basic user level STREAMS features, then shows how messages can 
be used. Chapter 5 discusses the kernel level Stream operations 
corresponding to the user level operations described in this 
chapter. See the STREAMS Programmer's Guide for more detailed 
examples of STREAMS applications, modules, and drivers. 
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Example 

In the example, our computer runs the UNIX system and sup
ports different kinds of asynchronous terminals, each logging in on 
its own port. The port hardware is limited in function; for example, 
it detects and reports line and modem status, but does not check 
parity. 

Communications software support for these terminals is pro
vided via a STREAMS implemented asynchronous protocol. The 
protocol includes a variety of options that are set when a terminal 
operator dials in to log on. The options are determined by a 
getty-type STREAMS user process, getstrm, which analyzes data 
sent to it through a series of dialogs (prompts and responses) 
between the process and terminal operator. 

The process sets the terminal options for the duration of the 
connection by pushing modules onto the Stream or by sending 
control messages to cause changes in modules (or in the device 
driver) already on the Stream. The options supported include: 

• ASCII or EBCDIC character codes 

• For ASCII code, the parity (odd, even or none) 

• Echo or not echo input characters 

• Canonical input and output processing or transparent (raw) 
character handling 

These options are set with the following modules: 

CHARPROC Provides input character processing functions, 
including dynamically settable (via control mes
sages passed to the module) character echo 
and parity checking. The module's default set
tings are to echo characters and not check 
character parity. 

CANONPROC Performs canonical processing on ASCII char
acters upstream and downstream (note that 
this performs some processing in a different 
manner from the standard UNIX system 
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character I/O tty subsystem). 

Translates EBCDIC code to ASCII upstream 
and ASCII to EBCDIC downstream. 

Initializing the Stream 
At system initialization a user process, getstrm, is created for 

each tty port. getstrm opens a Stream to its port and pushes the 
CHARPROC module onto the Stream by use of an ioctl I_PUSH 
command. Then, the process issues a getmsg system call to the 
Stream and sleeps until a message reaches the Stream head. The 
Stream is now in its idle state. 

The initial idle Stream, shown in Figure 4-1, contains only one 
pushable module, CHARPROC. The device driver is a limited func
tion raw tty driver connected to a limited-function communication 
port. The driver and port transparently transmit and receive one 
unbuffered character at a time. 

I ge~r I 

--------------.-----
STR~M 

HEAD 

device driver 

Figure 4-1: Idle Stream Configuration for Example 
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Upon receipt of initial input from a tty port, getstrm establishes 
a connection with the terminal, analyzes the option requests, veri
fies them, and issues STREAMS system calls to set the options. 
After setting up the options, getstrm creates a user application 
process. Later, when the user terminates that application, getstrm 
restores the Stream to its idle state by use of system calls. 

The next step is to analyze in more detail how the Stream sets 
up the communications options. Before doing so, let's examine 
how messages are handled in STREAMS. 

Message Types 
All STREAMS messages are assigned message types to indi

cate their intended use by modules and drivers and to determine 
their handling by the Stream head. A driver or module can assign 
most types to a message it generates, and a module can modify a 
message's type during processing. The Stream head will convert 
certain system calls to specified message types and send them 
downstream, and it will respond to other calls by copying the con
tents of certain message types that were sent upstream. Mes
sages exist only in the kernel, so a user process can only send and 
receive buffers. The process is not explicitly aware of the message 
type, but it may be aware of message boundaries, depending on 
the system call used (see the distinction between getmsg and 
read in the next section). 

Most message types are internal to STREAMS and can only be 
passed from one STREAMS module to another. A few message 
types, including M_DATA, M_PROTO, and M_PCPROTO, can also 
be passed between a Stream and user processes. M _ DATA mes
sages carry data within a Stream and between a Stream and a 
user process. M_PROTO or M_PCPROTO messages carry both 
data and control information. However, the distinction between 
control information and data is generally determined by the 
developer when implementing a particular Stream. Control infor
mation includes service interface information, carried between two 
Stream entities that present service interfaces, and condition or 
status information, which may be sent between any two Stream 
entities regardless of their interface. An M_PCPROTO message 
has the same general use as an M_PROTO, but the former moves 
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faster through a Stream (see "Message Queue Priority" in Chapter 
6). 

Sending and Receiving Messages 

putmsg is a STREAMS-related system call that sends mes
sages; it is similar to write. putmsg provides a data buffer which 
is converted into an M_DATA message, and can also provide a 
separate control buffer to be placed into an M _PROTO or 
M _PCPROTO block. write provides byte-stream data to be con
verted into M _ DATA messages. 

getmsg is a STREAMS-related system call that accepts mes
sages; it is similar to read. One difference between the two calls is 
that read accepts only data (messages sent upstream to the 
Stream head as message type M _DATA), such as the characters 
entered from the terminal. getmsg can simultaneously accept 
both data and control information (message sent upstream as 
types M _PROTO or M _PCPROTO). getmsg also differs from read 
in that it preserves message boundaries so that the same boun
daries exist above and below the Stream head (that is, between a 
user process and a Stream). read generally ignores message 
boundaries, processing data as a byte stream. 

Certain STREAMS ioctl commands, such as 1_ STR, also cause 
messages to be sent or received on the Stream. 1_ STR provides 
the general "ioctl" capability of the character I/O subsystem. A 
user process above the Stream head can issue putmsg, getmsg, 
the 1_ STR ioctl command, and certain other STREAMS related sys
tem calls. Other STREAMS ioctls perform functions that include 
changing the state of the Stream head, pushing and popping 
modules, or returning special information. ioctl commands are 
described in more detail the STREAMS Programmer's Guide. 

In addition to message types that explicitly transfer data to a 
process, some messages sent upstream result in information 
transfer. When these messages reach the Stream head, they are 
transformed into various forms and sent to the user process. The 
forms include signals, error codes, and call return values. 
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Using Messages in the Example 

Returning to the asynchronous protocol example, the Stream 
was in its idle configuration (see Figure 4-1). getstrm had issued a 
getmsg and was sleeping until the arrival of a message from the 
Stream head. Such a message would result from the driver detect
ing activity on the associated tty port. 

An incoming call arrives at port one and causes a ring detect 
signal in the modem. The driver receives the ring signal, answers 
the call, and sends upstream an M _PROTO message containing 
information indicating an incoming call. getstrm is notified of all 
incoming calls, although it can choose to refuse the call because 
of system limits. In this idle state, getstrm will also accept 
M_PROTO messages indicating, for example, error conditions such 
as detection of line or modem problems on the idle line. 

The M _PROTO message containing notification of the incom
ing call flows upstream from the driver into CHARPROC. CHAR
PROC inspects the message type, determines that message pro
cessing is not required, and passes the unmodified message 
upstream to the Stream head. The Stream head copies the mes
sage into the getmsg buffers (one buffer for control information, 
the other for data) associated with getstrm and wakes up the pro
cess. getstrm sends its acceptance of the incoming call with a 
putmsg system call which results in a downstream M_PROTO mes
sage to the driver. 

Then, getstrm sends a prompt to the operator with a write and 
issues a getmsg to receive the response. A read could have been 
used to receive the response, but the getmsg call allows con
current monitoring for control (M _PROTO and M _PCPROTO) 
information. getstrm will now sleep until the response characters, 
or information regarding possible error conditions detected by 
modules or driver, are sent upstream. 

The first response, sent upstream in a M_DATA block, indicates 
that the code set is ASCII and that canonical processing is 
requested. getstrm implements these options by pushing 
CANONPROC onto the Stream, above CHARPROC, to perform 
canonical processing on the input ASCII characters. 
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The response to the next prompt requests even parity check
ing. getstrm sends an ioctl I_STR command to CHARPROC, 
requesting the module to perform even parity checking on 
upstream characters. When the dialog indicate protocol option 
setting is complete, getstrm creates an application process. At the 
end of the connection, getstrm will pop CANONPROC and then 
send a 1_ STR to CHARPROC requesting the module to restore the 
no-parity idle state (CHARPROC remains on the Stream). 

As a result of the above dialogs, the terminal at port one 
operates in the following configuration: 

• ASCII, even parity 

• Echo 

• Canonical processing 

In similar fashion, an operator at a different type of terminal on 
port two requests a different set of options, resulting in the follow
ing configuration: 

• EBCDIC 

• No Echo 

• Canonical processing 

The resultant Streams for the two ports are shown in Figure 4-
2. For port one, on the left, the modules in the Stream are 
CANONPROC and CHARPROC. 

For port two, on the right, the resultant modules are 
CANONPROC, ASCEBC and CHARPROC. ASCEBC has been 
pushed on this Stream to translate between the ASCII interface at 
the downstream side of CANONPROC and the EBCDIC interface 
of the upstream output side of CHARPROC. In addition, getstrm 
has sent an I STR to the CHARPROC module in this Stream 
requesting it to disable echo. The resultant modification to 
CHARPROC's functions is indicated by the word IImodifiedll in the 
right Stream of Figure 4-2. 
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STR~M 
HEAD 

PORT 
1 

RAW TTY 
DRIVER 

STR~M 
HEAD 

'---.,...---....-...... 

PORT 
2 

Figure 4-2: Asynchronous Terminal Streams 
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Since CHARPROC is now performing no function for port two, 
it might have been popped from the Stream to be reinserted by 
getstrm at the end of connection. However, the low overhead of 
STREAMS does not require its removal. The module remains on 
the Stream, passing messages unmodified between ASCEBC and 
the driver. At the end of the connection, getstrm restores this 
Stre~m to its idle configuration of Figure 4-1 by popping the 
added modules and then sending an I_STR to CHARPROC to 
restore the echo default. 

Note that the tty driver shown in Figure 4-2 handles minor dev
ices. Each minor device has a distinct Stream connected from 
user space to the driver. This ability to handle multiple devices is a 
standard STREAMS feature, similar to the minor device mechanism 
in character I/O device drivers. 
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Other User Functions 
The previous example illustrates basic STREAMS concepts. 

Alternate, more efficient, STREAMS calls or mechanisms could 
have been used in place of those described earlier. Some of the 
alternatives are described in Chapter 6 and others are addressed 
in the STREAMS Programmer's Guide. 

For example, the initialization process that created a getstrm 
for each tty port could have been implemented as a "supergetty" 
by use of the STREAMS-related poll system call. As described in 
Chapter 6, poll allows a single process to efficiently monitor and 
control multiple Streams. The IsupergeUy" process would handle 
all of the Stream and terminal protocol initialization and would 
create application processes only for established connections. 

The M_PROTO notification sent to getstrm could have been 
sent by the driver as an M_ SIG message that causes a specified 
Signal to be sent to the process. As discussed previously under 
"Message Types," error and status information can also be sent 
upstream from a driver or module to user processes via different 
message types. These messages will be transformed by the 
Stream head into a signal or error code. 

Finally, an loct. I_STR command could have been used in 
place of a putmsg M _ PROTO message to send information to a 
driver. The sending process must receive an explicit response 
from an I_STR by a specified time period or an error will be 
returned. A response message must be sent upstream by the 
destination module or driver to be translated into the user 
response by the Stream head. 
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Introduction 
This chapter introduces the use of the STREAMS mechanism 

in the kernel and describes some of the tools provided by 
STREAMS to assist in the development of modules and drivers. In 
addition to the basic message passing mechanism and QUEUE 
Stream linkage described previously, the STREAMS mechanism 
consists of various facilities including buffer management, the 
STREAMS scheduler, processing and message priority, flow con
trol, and multiplexing. Over 30 STREAMS utility routines and mac
ros are available to manipulate and utilize these facilities. 

The key elements of a STREAMS kernel implementation are 
the processing routines in the module and drivers, and the 
preparation of required data structures. The structures are 
described in the STREAMS Programmer's Guide. The following 
sections provide further information on messages and on the pro
cessing routines that operate on them. The example of Chapter 4 
is continued, associating the user-level operations described there 
with kernel operations. 
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Messages 
As shown in Figure 5-1, a STREAMS message consists of one 

or more linked message blocks. That is, the first message block of 
a message may be attached to other message blocks that are part 
of the same message. Multiple blocks in a message can occur, for 
example, as the result of processing that adds header or trailer 
data to the data contained in the message, or because of mes
sage buffer size limitations which cause the data to span multiple 
blocks. When a message is composed of multiple message 
blocks, the message type of the first block determines the type of 
the entire message, regardless of the types of the attached mes
sage blocks. 

Message 
Block 
(type) 

t 
Message 

Block 

t 
Message 

Block 

I 

V 

Figure 5-1: A Message 

STREAMS allocates a message as a single block containing a 
buffer of a certain size (see the next section). If the data for a 
message exceed the size of the buffer containing the data, the 
procedure can allocate a new block containing a larger buffer, 
copy the current data to it, insert the new data and de-allocate the 
old block. Alternately, the procedure can allocate an additional 
(smaller) block, place the new data in the new message block and 
link it after or before the initial message block. Both alternatives 
yield one new message. 
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Messages can exist standalone, as shown in Figure 5-1, when 
the message is being processed by a procedure. Alternately, a 
message can await processing on a linked list of messages, called 
a message queue, in a QUEUE. In Figure 5-2, Message 1 is linked 
to Message 2. 

I 
queue I 

header <- - - r: ::> 

Message 
Block 
(type) 

! 
Message 

Block 

! 
Message 

Block 

Message 
1 

next 
message 

Message 

. Block 
(type) 

t 
Message 

Block 

V 

I 
I 
I 

Message 
2 

next 
- - - - - - - - - - -> fc: message 

Figure 5-2: Messages on a Message Queue 

When a message is on a queue. the first block of the message 
contains links to preceding and succeeding messages on the same 
message queue. in addition to containing a link to the second 
block of the message (if present). The message queue head and 
tail are contained in the QUEUE. 

STREAMS utility routines enable developers to manipulate 
messages and message queues. 
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Message Allocation 

STREAMS maintains its own storage pool for messages. A 
procedure can request the allocation of a message of a specified 
size at one of three message pool priorities. The allocb utility will 
return a message containing a single block with a buffer of at least 
the size requested, providing there is a buffer available at the 
priority requested. When requesting priority for messages, 
developers must weigh their process' need for resources against 
the needs of other processes on the same machine. 

Message pool priority generally has no effect on allocation 
until the pool falls below internal STREAMS thresholds. When this 
occurs, allocb may refuse a lower priority request for a message 
of size "x" while granting a higher priority request for the same size 
message. As examples of priority usage, storage for an urgent 
control message, such as an M_HANGUP or M_PCPROTO could 
be requested at high priority. An M_DATA buffer for holding input 
might be requested at medium priority, and an output buffer 
(presuming the output data can wait in user space) at lowest prior
ity. 
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Put and Service Procedures 
The procedures in the QUEUE are the software routines that 

process messages as they transit the QUEUE. The processing is 
generally performed according to the message type and can result 
in a modified message, new message(s) or no message. A resul
tant message is generally sent in the same direction in which it 
was received by the QUEUE, but may be sent in either direction. 
A QUEUE will always contain a put procedure and may also con
tain an associated service procedure. 

Put Procedures 
A put procedure is the QUEUE routine that receives messages 

from the preceding QUEUE in the Stream. Messages are passed 
between QUEUEs by a procedure in one QUEUE calling the put 
procedure contained in the following QUEUE. A call to the put 
procedure in the appropriate direction is generally the only way to 
pass messages between modules (unless otherwise indicated, 
"modules" infers "module, driver and Stream head"). QUEUEs in 
pushable (see Chapter 3) modules contain a put procedure. In 
general, there is a separate put procedure for the read and write 
QUEUEs in a module because of the "full duplex" operation of 
most Streams. 

A put procedure is associated with immediate (as opposed to 
deferred, see below) processing on a message. Each module 
accesses the adjacent put procedure as a subroutine. For exam
ple, consider that modA, modS, and mode are three consecutive 
modules in a Stream, with mode connected to the Stream head. 
If modA receives a message to be sent upstream, modA processes 
that message and calls modS's put procedure, which processes it 
and calls mode's put procedure, which processes it and calls the 
Stream head's put procedure. Thus, the message will be passed 
along the Stream in one continuous processing sequence. On one 
hand, this sequence has the benefit of completing the entire pro
cessing in a short time with low overhead (subroutine calls). On 
the other hand, if this sequence is lengthy and the processing is 
implemented on a multi-user system, then this manner of process
ing may be good for this Stream but may be detrimental for oth
ers since they may have to wait "too long" to get their turn at bat. 
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In addition, there are situations where the put procedure can
not immediately process the message but must hold it until pro
cessing is allowed. The most typical examples of this are a driver 
which must wait until the current output completes before sending 
the next message and the Stream head, which may have to wait 
until a process initiates a read(2) on the Stream. 

Service Procedures 

STREAMS allows a service procedure to be contained in each 
QUEUE, in addition to the put procedure, to address the above 
cases and for additional purposes. A service procedure is not 
required in a QUEUE and is associated with deferred processing. 
If a QUEUE has both a put and service procedure, message pro
cessing will generally be divided between the procedures. The put 
procedure is always called first, from a preceding QUEUE. After 
the put procedure completes its part of the message processing, it 
arranges for the service procedure to be called by passing the 
message to the putq routine. putq does two things: it places the 
message on the message queue of the QUEUE (see Figure 5-2) 
and links the QUEUE to the end of the STREAMS scheduling 
queue. When putq returns to the put procedure, the procedure 
typically exits. Some time later, the service procedure will be 
automatically called by the STREAMS scheduler. 

The STREAMS scheduler is separate and distinct from the 
UNIX system process scheduler. It is concerned only with 
QUEUEs linked on the STREAMS scheduling queue. The 
scheduler calls the service procedure of the scheduled QUEUE in a 
FIFO manner, one at a time. 

Having both a put and service procedure in a QUEUE enables 
STREAMS to provide the rapid response and the queuing required 
in multi-user systems. The put procedure allows rapid response to 
certain data and events, such as software echoing of input charac
ters. Put procedures effectively have higher priority than any 
scheduled service procedures. When called from the preceding 
STREAMS component, a put procedure executes before the 
scheduled service procedures of any QUEUE are executed. 
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The service procedure implies message queuing. Queuing 
results in deferred processing of the service procedure, following 
all other QUEUEs currently on the scheduling queue. For exam
ple, terminal output and input erase and kill processing would typi
cally be performed in a service procedure because this type of 
processing does not have to be as timely as echoing. Use of a 
service procedure also allows processing time to be more evenly 
spread among multiple Streams. As with the put procedure there 
will generally be a separate service procedure for each QUEUE in 
a module. The flow control mechanism (see Chapter 6) uses the 
service procedures. 
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Kernel Processing 
The following continues the example of Chapter 4, describing 

STREAMS kernel operations and associates them, where relevant, 
with Chapter 4 user-level system calls in the example. As a result 
of initializing operations and pushing a module, the Stream for 
port one has the following configuration: 

-------------------- --------
STREAM 

device driver 

Figure 5-3: Operational Stream for Example 

As shown in Figure 5-3, the upstream QUEUE is also referred 
to as the read QUEUE, reflecting the message flow in response to 
a read system call. Correspondingly, downstream is referred to as 
the write QUEUE. Read side processing is discussed first. 

Read Side Processing 
In our example, read side processing consists of driver pro

cessing, CHARPROC processing, and CANONPROC processing. 
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Driver Processing 
In the example, the user process has blocked on the 

getmsg (2) system call while waiting for a message to reach the 
Stream head, and the device driver independently waits for input 
of a character from the port hardware or for a message from 
upstream. Upon receipt of an input character interrupt from the 
port, the driver places the associated character in an M_DATA 
message, allocated previously. Then, the driver sends the mes
sage to the CHARPROC module by calling CHARPROC's upstream 
put procedure. On return from CHARPROC, the driver calls the 
allocb utility routine to get another message for the next charac
ter. 

CHARPROC 
CHARPROC has both put and service procedures on its read 

side. In the example, the other QUEUEs in the modules also have 
put and service procedures: 

CANONPROC 
Module 

CHARPROC 
Module 

write 

(P1;lt) 

V 
(service) 

(P1;lt) 

V 
(service) 

read 

(service) 
A 

(put) 

(service) 
A 

(put) 

Figure 5-4: Module Put and Service Procedures 
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When the driver calls CHARPROC's read QUEUE put pro
cedure, the procedure checks private data flags in the QUEUE. In 
this case, the flags indicate that echoing is to be performed (recall 
that echoing is optional and that we are working with port 
hardware which can not automatically echo). CHARPROC causes 
the echo to be transmitted back to the terminal by first making a 
copy of the message with a STREAMS utility. Then, CHARPROC 
uses another utility to obtain the address of its own write QUEUE. 
Finally, the CHARPROC read put procedure calls its write put pro
cedure and passes it the message copy. The write procedure 
sends the message to the driver to effect the echo and then 
returns to the read procedure. 

This part of read side processing is implemented with put pro
cedures so that the entire processing sequence occurs as an 
extension of the driver input character interrupt. The CHARPROC 
read and write put procedures appear as subroutines (nested in 
the case of the write procedure) to the driver. This manner of pro
cessing is intended to produce the character echo in a minimal 
time frame. 

After returning from echo processing, the CHARPROC read 
put procedure checks another of its private data flags and deter
mines that parity checking should be performed on the input char
acter. Parity should most reasonably be checked as part of echo 
processing. However, for this example, parity is checked only 
when the characters are sent upstream. This relaxes the timing in 
which the checking must occur, that is, it can be deferred along 
with the canonical processing. CHARPROC uses putq to schedule 
the (original) message for parity check processing by its read ser
vice procedure. When the CHARPROC read service procedure is 
complete, it forwards the message to the read put procedure of 
CANONPROC. Note that if parity checking were not required, the 
CHARPROC put procedure would call the CANONPROC put pro
cedure directly. 

CANONPROC 
CANONPROC performs canonical processing. As imple

mented, all read QUEUE processing is performed in its service pro
cedure so that CANONPROC's put procedure simply calls putq to 
schedule the message for its read service procedure and then 
exits. The service procedure extracts the character from the mes
sage buffer and place it in the "line buffer" contained in another 
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M_DATA message it is constructing. Then, the message which 
contained the single character is returned to the buffer pool. If the 
character received was not an end-of-line, CANONPROC exits. 
Otherwise, a complete line has been assembled and CANONPROC 
sends the message upstream to the Stream head which unblocks 
the user process from the getmsg call and passes it the contents 
of the message. 

Write Side Processing 
The write side of this Stream carries two kinds of messages 

from the user process: ioctl messages for CHARPROC, and 
M_DATA messages to be output to the terminal. 

ioctl messages are sent downstream as a result of an I_STR 
ioctl system call. When CHARPROC receives an ioctl message 
type, it processes the message contents to modify internal QUEUE 
flags and then uses a utility to send an acknowledgement mes
sage upstream (read side) to the Stream head. The Stream head 
acts on the acknowledgement message by unblocking the user 
from the ioctl. 

For terminal output, it is presumed that M_DATA messages, 
sent by write system calls, contain multiple characters. In general, 
STREAMS returns to the user process immediately after process
ing the write call so that the process may send additional mes
sages. Flow control, described in the next chapter, will eventually 
block the sending process. The messages can queue on the write 
side of the driver because of character transmission timing. When 
a message is received by the driver'S write put procedure, the pro
cedure will use putq to place the message on its write-side service 
message queue if the driver is currently transmitting a previous 
message buffer. However, there is generally no write QUEUE ser
vice procedure in a device driver. Driver output interrupt process
ing takes the place of scheduling and performs the service pro
cedure functions, removing messages from the queue. 
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Analysis 

For reasons of efficiency, a module implementation would gen
erally avoid placing one character per message and using separate 
routines to echo and parity check each character, as was done in 
this example. Nevertheless, even this design yields potential bene
fits. Consider a case where alternate, more intelligent port 
hardware was substituted. If the hardware processed multiple 
input characters and performed the echo and parity checking 
functions of CHARPROC, then the new driver could be imple
mented to present the same interface as CHARPROC. Other 
modules such as CANONPROC could continue to be used without 
modification. 
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Introduction 
The previous chapters described the basic concepts of con

structing a Stream and utilizing the STREAMS mechanism. Addi
tional STREAMS features are provided to handle characteristic 
problems of protocol implementation, such as flow control, and to 
assist in development. 

There are also kernel and user-level facilities that support the 
implementation of advanced functions, such as multiplexors, and 
allow asynchronous operation of a user process and STREAMS 
input and output. 
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Message Queue Priority 
As mentioned in the previous chapter, the STREAMS scheduler 

operates strictly FIFO so that each QUEUE's service procedure 
receives control in the order it was scheduled. When a service 
procedure receives control, it may encounter multiple messages on 
its message queue. This buildup can occur if there is a long inter
val between the time a message is queued by a put procedure 
and the time that the STREAMS scheduler calls the associated ser
vice procedure. In this interval, there can be multiple calls to the 
put procedure causing multiple messages. The service procedure 
always processes all messages on its message queue unless 
prevented by flow control (see next section). Each message must 
pass through all the modules connecting its origin and destination 
in the Stream. 

If service procedures were used in all QUEUES and there was 
no message priority, then the most recently scheduled message 
would be processed after all the other scheduled messages on all 
Streams had been processed. In certain cases, message types 
containing urgent information (such as a break or alarm condi
tions) must pass through the Stream quickly. To accommodate 
these cases, STREAMS provides two classes of message queuing 
priority, ordinary and high. STREAMS prevents high-priority mes
sages from being blocked by flow control and causes a service 
procedure to process them ahead of all ordinary priority messages 
on the procedure's queue. This results in the high-priority mes
sage transiting each module with minimal delay. 

QUEUE Message queue 

):;:;;-:-···1 I I I I I I I I I I I 1 
I High I Ordinary _: 
IE ,.,I E ~ 

Head Tail 

Figure 6-1: Streams Message Priority 
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The priority mechanism operates as shown in Figure 6-1. Mes
sage queues are generally not present in a QUEUE unless that 
QUEUE contains a service procedure. When a message is passed 
to putq to schedule the message for service procedure process
ing. putq places the message on the message queue in priority 
order. High priority messages are placed ahead of all ordinary 
priority messages, but behind any other high priority messages on 
the queue. STREAMS utilities deliver the messages to the process
ing service procedure FIFO within each priority class. The service 
procedure is unaware of the message priority and simply receives 
the next message. 

Message priority is defined by the message type; once a mes
sage is created, its priority cannot be changed. Certain message 
types come in equivalent high/ordinary priority pairs (for example. 
M_PCPROTO and M_PROTO). so that a module or device driver 
can choose between the two priorities when sending information. 
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Flow Control 
Even on a well-designed system, general system delays, mal

functions, and excessive message accumulation on one or more 
Streams can cause the message buffer pools to become depleted. 
Additionally, processing bursts can arise when a service procedure 
in one module has a long message queue and processes all its 
messages in one pass. STREAMS provides two independent 
mechanisms to guard its message buffer pools from being 
depleted and to minimize long processing bursts at anyone 
module. 

NOTE: Flow control is only applied to normal priority mes
sages (see previous section) and not to high prior
ity messages. 

The first flow control mechanism is global and automatic and is 
related to the message pool priority, discussed in the "Message 
Storage Pool" section of Chapter 5. When the Stream head 
requests a message buffer in response to a putmsg or write sys
tem call, it uses the lowest level of priority. Since buffer availability 
is based on priority and buffer pool levels. the Stream head will be 
among the first modules refused a buffer when the pool becomes 
depleted. In response. the Stream head will block user output 
until the STREAMS buffer pool recovers. As a result, output has a 
lower priority than input. 

The second flow control mechanism is local to each Stream 
and advisory (voluntary), and limits the number of characters that 
can be queued for processing at any QUEUE in a Stream. This 
mechanism limits the buffers and related processing at anyone 
QUEUE and in anyone Stream, but does not consider buffer pool 
levels or buffer usage in other Streams. 

The advisory mechanism operates between the two nearest 
QUEUEs in a Stream containing service procedures (see diagram 
on next page). Messages are generally held on a message queue 
only if a service procedure is present in the associated QUEUE. 
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Messages accumulate at a QUEUE when its service procedure 
processing does not keep pace with the message arrival rate, or 
when the procedure is blocked from placing its messages on the 
following Stream component by the flow control mechanism. 
Pushable modules contain independent upstream and downstream 
limits, which are set when a developer specifies high-water and 
low-water control values for the QUEUE. The Stream head con
tains a preset upstream limit (which can be modified by a special 
message sent from downstream) and a driver may contain a 
downstream limit. 

Flow control operates as follows: 

1 . Each time a STREAMS message handling routine (for 
example, putq) adds or removes a message from a mes
sage queue in a QUEUE, the limits are checked. 
STREAMS calculates the total size of all message blocks 
on the message queue. 

2. The total is compared to the QUEUE high-water and low
water values. If the total exceeds the high-water value, an 
internal full indicator is set for the QUEUE. The operation 
of the service procedure in this QUEUE is not affected if 
the indicator is set, and the service procedure continues to 
be scheduled. 

3. The next part of flow control processing occurs in the 
nearest preceding QUEUE that contains a service pro
cedure. In the diagram below, if D is full and C has no ser
vice procedure, then B is the nearest preceding QUEUE. 

I I 

~ ~ 
Message Message 
Queue Queue 

Figure 6-2: Flow Control 
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4. The service procedure in 8 uses a STREAMS utility routine 
to see if a QUEUE ahead is marked full. If messages can
not be sent, the scheduler blocks the service procedure in 
8 from further execution. 8 remains blocked until the low
water mark of the full QUEUE, 0, is reached. 

5. While 8 is blocked, any non-priority messages that arrive 
at 8 will accumulate on its message queue (recall that 
priority messages are not blocked). In turn, 8 can reach a 
full state and the full condition will propagate back to the 
last module in the Stream. 

6. When the service procedure processing on 0 causes the 
message block total to fall below the low water mark, the 
full indicator is turned off. Then, STREAMS automatically 
schedules the nearest preceding blocked QUEUE (8 in this 
case), getting things moving again. This automatic 
scheduling is know as back-enabling a QUEUE. 

Note that to utilize flow control, a developer need only call the 
utility that tests if a full condition exists ahead, plus perform some 
housekeeping if it does. Everything else is automatically handled 
by STREAMS. Additional flow control features are described in the 
STREAMS Programmer's Guide. 
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Multiplexing 
STREAMS multiplexing supports the development of internet

working protocols such as IP and ISO CLNS. and the processing 
of interleaved data streams such as in SNA. X.2S. and terminal 
window facilities. 

STREAMS multiplexors (also called pseudo-device drivers) are 
created in the kernel by interconnecting multiple Streams. Con
ceptually. there are two kinds of multiplexors that developers can 
build with STREAMS: upper and lower multiplexors. Lower multi
plexors have multiple lower Streams between device drivers and 
the multiplexor. and upper multiplexors have multiple upper 
Streams between user processes the multiplexor. 

User 
Processes 

AAA 

...... .'!1.\l.~ ...... . 
Upper 

Multiplexor or 
Module 

IP 
Multiplexor 

Driver 

Figure 6-3: Internet Multiplexing Stream 
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Figure 6-3 shows an example of a lower multiplexor. This con
figuration would typically occur where internetworking functions 
were included in the system. This Stream contains two types of 
drivers: the Ethernet, LAPS, and IEEE 802.2 are hardware device 
drivers that terminate links to other nodes; the IP (Internet Proto
col) is a multiplexor. 

The IP multiplexor switches messages among the various 
nodes (lower Streams) or sends them upstream to user processes 
in the system. In this example, the multiplexor expects to see an 
802.2 interface downstream; for the Ethernet and LAPS drivers, 
the Net 1 and Net 2 modules provide service interfaces to the two 
the non-802.2 drivers and the IP multiplexor. 

Figure 6-3 depicts the IP multiplexor as part of a larger 
Stream. The Stream, as shown in the dotted rectangle, would 
generally have an upper TCP multiplexor and additional modules. 
Multiplexors could also be cascaded below the IP driver if the dev
ice drivers were replaced by multiplexor drivers. 

PVC SVC 
Processes Processes Processes 

----------~----

X.2S 
Packet Layer Protocol 

Multiplexor Driver 

LAPB Driver 
or 

Lower Multiplexor 

Figure 6-4: X.25 Multiplexing Stream 
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Figure 6-4 shows an upper multiplexor. In this configuration. 
the driver routes messages between the lower Stream and one of 
the upper Streams. This Stream performs X.2S multiplexing to 
multiple independent SVC (Switched Virtual Circuit) and PVC (Per
manent Virtual Circuit) user processes. Upper multiplexors are a 
specific application of standard STREAMS facilities that support 
multiple minor devices in a device driver. This figure also shows 
that more complex configurations can be built by having one or 
more multiplexed LAPS drivers below and multiple modules above. 

Developers can choose either upper or lower multiplexing. or 
both. when designing their applications. For example. a window 
multiplexor would have a similar configuration to the X.2S confi
guration of Figure 6-4. with a window driver replacing Packet 
Layer. a tty driver replacing LAPS. and the child processes of the 
terminal process replacing the user processes. Although the X.2S 
and window multiplexing Streams have similar configurations. their 
multiplexor drivers would differ significantly. The IP multiplexor of 
Figure 6-2 has a different configuration than the X.2S multiplexor 
and the driver would implement its own set of processing and 
routing requirements. 

In addition to upper and lower multiplexors. more complex 
configurations can be created by connecting Streams containing 
multiplexors to other multiplexor drivers. With such a diversity of 
ne'3ds for multiplexors. it is not possible to provide general pur
pose multiplexor drivers. Rather. STREAMS provides a general 
purpose multiplexing facility. The facility allows users to set up the 
inter-module/driver plumbing to create multiplexor configurations 
of generally unlimited interconnection. 

The connections are created from user space through specific 
STREAMS ioetl system calls. In a lower multiplexor. multiple 
Streams are connected below an application-specific. developer
implemented multiplexing driver. The multiplexing facility will only 
connect Streams to a driver. The ioetl call configures a multi
plexor by connecting one Stream at a time below the opened mul
tiplexor driver. As each Stream is connected to the driver. the 
connection setup procedure identifies the Stream to the driver. 
The driver will generally store this setup information in a private 
data structure for later use. 
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Subsequently, when messages flow into the driver on the vari
ous connected Streams, the identity of the associated Stream is 
passed to the driver as part of the standard procedure call. The 
driver then has available the Stream identification, the previously 
stored setup information for this Stream, and any internal routing 
information contained in the message. These data are used, 
according to the application implemented, to process the incoming 
message and route the output to the appropriate outgoing 
Stream. 

Additionally, new Streams can be dynamically connected to a 
operating multiplexor without interfering with ongoing traffic, and 
existing Streams can be disconnected with similar ease. 
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Monitoring 
STREAMS allows user processes to monitor and control 

Streams so that system resources (such as CPU cycles and pro
cess slots) can be used effectively. Monitoring is especially useful 
to user-level multiplexors, in which a user process can create multi
ple Streams and switch messages among them (similar to 
STREAMS kernel-level multiplexing, described previously). 

User processes can efficiently monitor and control multiple 
Streams with two STREAMS system calls: poll(2) and the ioctl(2) 
1_ SETSIG command. These calls allow a user process to detect 
events that occur at the Stream head on one or more Streams, 
including receipt of a data or protocol message on the read queue 
and cessation of flow control. 

Synchronous monitoring is provided by use of poll alone; in 
this case, the user process cannot continue processing until after 
the system call completes. When the calls are used together, they 
allow asynchronous, or concurrent, operation of the process and 
STREAMS input/output. This allows the user process to monitor 
the Stream while carrying on other activities. 

To monitor Streams with poll, a user process issues that sys
tem call and specifies the Streams to be monitored, the events to 
look for, and the amount of time to wait for an event. poll will 
block the process until the time expires or until an event occurs. If 
an event occurs, poll will return the type of event and the Stream 
on which the event occurred. 

Instead of waiting for an event to occur, a user process may 
want to monitor one or more Streams while processing other data. 
It can do so by issuing the ioctl 1_ SETSIG command, specifying 
one or more Streams and events (as with poll). Unlike a poll, this 
ioctl does not force the user process to wait for the event but 
returns immediately and will issue a signal when an event occurs. 
The process must also request signal (2) or sigset(2) to catch the 
resultant SIGPOLL signal. 
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If any selected event occurs on any of the selected Streams, 
STREAMS will cause the SIGPOLL catching function to be exe
cuted in all associated requesting processes. However, the 
process(es) will not know which event occurred, nor on what 
Stream the event occurred. A process that issues the 1_ SETSIG 
can get more detailed information by issuing a poll after it detects 
the event. 
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Error and Trace Logging 
STREAMS includes error and trace loggers useful for debug

ging and administering modules and drivers. 

Any module or driver in any Stream can call the STREAMS log
ging function strlog, described in log(7). When called, strlog will 
send formatted text to the error logger strerr(1 M), the trace logger 
strace(1 M), or both. The call parameters for strlog include the 
module/driver identification, a severity level, and the formatted text 
describing the condition causing the call. The call also identifies 
the process (strerr and/or strace) to receive the resultant output 
message. 

Error 
Log File 

I module ~--

I module r"" 

Trace 
Log File 

Trace 
Messages 

Log 
Software 
Driver 

--1 driver I 

Figure 6-5: Error and Trace Logging 
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strerr is intended to operate as a daemon process initiated at 
system startup. A call to strlog requesting an error to be logged 
causes an M_PROTO message to be sent to strerr, which formats 
the contents and places them in a daily file. The utility 
strclean(1 M) is provided to periodically purge aged, un referenced 
daily log files. 

A call to strlog requesting trace information to be logged 
causes a similar M_PROTO message to be sent to strace(1 M). 
which places it in a user designated file. strace is intended to be 
initiated by a user. The user can designate the modules/drivers 
and severity level of the messages to be accepted for logging by 
strace. 

A user process can submit its own M _PROTO messages to the 
log driver for inclusion in the logger of its choice through 
putmsg(2). The messages must be in the same format required 
by the logging processes and will be switched to the logger(s) 
requested in the message. 

The output to the log files is formatted, ASCII text. The files 
can be processed by standard system commands such as grep(1) 
or ed(1), or by developer-provided routines. 
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Introduction 
This chapter compares operational features of character 110 

device drivers with STREAMS drivers and modules. It is intended 
for experienced developers of UNIX system character device 
drivers. Details are provided in the STREAMS Programmer's 
Guide. 

Environment 

No user environment is generally available to STREAMS 
module procedures and drivers. The exception is the module and 
driver open and close routines. both of which have access to the 
u_area of the calling process and can sleep. Otherwise. a 
STREAMS driver. module put procedure. and module service pro
cedure has no user context and can neither sleep nor access any 
u area. 

Multiple Streams can use a copy of the same module (that is. 
the same fmodsw). each containing the same processing pro
cedures. This means that module code is reentrant. so care must 
be exercised when using global data in a module. Put and service 
procedures are always passed the address of the QUEUE (for 
example. in Figure 2-5 Au calls Bu's put procedure with Bu as a 
parameter). The processing procedure establishes its environment 
solely from the QUEUE contents. typically the private data (for 
example. state information). 

Drivers 
At the interface to hardware devices. character I/O drivers 

have interrupt entry points; at the system interface. those same 
drivers generally have direct entry points (routines) to process 
open. close. read. write and ioctl system calls. 

STREAMS device drivers have similar interrupt entry points at 
the hardware device interface and have direct entry points only for 
open and close system calls. These entry points are accessed via 
STREAMS. and the call formats differ from character device 
drivers. The put procedure is a driver's third entry point. but it is a 
message (not system) interface. The Stream head translates write 
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and ioctl calls into messages and sends them downstream to be 
processed by the driver's write QUEUE put procedure. read is 
seen directly only by the Stream head, which contains the func
tions required to process system calls. A driver does not know 
about system interfaces other than open and close, but it can 
detect absence of a read indirectly if flow control propagates from 
the Stream head to the driver and affects the driver's ability to 
send messages upstream. 

For input processing, when the driver is ready to send data or 
other information to a user process, it does not wake up the pro
cess. It prepares a message and sends it to the read QUEUE of 
the appropriate (minor device) Stream. The driver's open routine 
generally stores the QUEUE address corresponding to this Stream. 

For output processing, the driver receives messages in place 
of a write call. If the message can not be sent immediately to the 
hardware, it may be stored on the driver's write message queue. 
Subsequent output interrupts can remove messages from this 
queue. 

Drivers and modules can pass signals, error codes, and return 
values to processes via message types provided for that purpose. 

Modules 

As described above, modules have user context available only 
during the execution of their open and close routines. Otherwise, 
the QUEUEs forming the module are not associated with the user 
process at the end of the Stream, nor with any other process. 
Because of this, QUEUE procedures must not sleep when they 
cannot proceed; instead, they must explicitly return control to the 
system. The system saves no state information for the QUEUE. 
The QUEUE must store this information internally if it is to proceed 
from the same point on a later entry. 

When a module or driver that requires private working storage 
(for example, for state information) is pushed, the open routine 
must obtain the storage from external sources. STREAMS copies 
the module template from fmodsw for the I_PUSH, so only fixed 
data can be contained in the module template. STREAMS has no 
automatic mechanism to allocate working storage to a module 
when it is opened. The sources for the storage typically include a 
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module-specific kernel array, installed when the system is config
ured, or the STREAMS buffer pool. When using an array as a 
module storage pool, the maximum number of copies of the 
module that can exist at anyone time must be determined. For 
drivers, this is typically determined from the physical devices con
nected, such as the number of ports on a multiplexor. However, 
certain types of modules may not be associated with a particular 
external physical limit. For example, the CANONICAL module 
shown in Figure 2-4 could be used on different types of Streams. 
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Glossary 

downstream The direction from Stream head to driver. 

driver The end of the Stream closest to an exter
nal interface. The principal functions of the 
driver are handling any associated device, 
and transforming data and information 
between the external interface and Stream. 
It can also be a pseudo-driver, not directly 
associated with a device, which performs 
functions internal to a Stream, such as a 
multiplexor or log driver. 

message One or more linked blocks of data or infor
mation, with associated STREAMS control 
structures containing a message type. 
Messages are the only means of transfer
ring data and communicating within a 
Stream. 

message queue A linked list of messages connected to a 
QUEUE. 

message type A defined set of values identifying the con
tents of a message. 

module Software that performs functions on mes
sages as they flow between Stream head 
and driver. A module is the STREAMS 
counterpart to the commands in a Shell 
pipeline except that a module contains a 
pair of functions which allow independent 
bidirectional (downstream and upstream) 
data flow and processing. 

multiplexor A mechanism for connecting multiple 
Streams to a multiplexing driver. The 
mechanism supports the processing of 
interleaved data Streams and the process
ing of internetworking protocols. The mul
tiplexing driver routes messages among 
the connected Streams. The other end of 
a Stream connected to a multiplexing 
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driver is typically connected to a device 
driver. 

pushable module A module between the Stream head and 
driver. A driver is a non-pushable module 
and a Stream head includes a non
pushable module. 

QUEUE 

read queue 

Stream 

Stream head 

STREAMS 

The set of structures that forms a module. 
A module is composed of two QUEUEs, a 
read (upstream) QUEUE and a write 
(downstream) QUEUE. 

The message queue in a module or driver 
containing messages moving upstream. 
Associated with input from a driver. 

The kernel aggregate created by connect
ing STREAMS components, resulting from 
an application of the STREAMS mechan
ism. The primary components are a 
Stream head, a driver and zero or more 
pushable modules between the Stream 
head and driver. A Stream forms a full 
duplex processing and data transfer path 
in the kernel, between a user process and 
a driver. A Stream is analogous to a Shell 
pipeline except that data flow and process
ing are bidirectional. 

The end of the Stream closest to the user 
process. The Stream head provides the 
interface between the Stream and the user 
process. The principal functions of the 
Stream head are processing STREAMS
related system calls, and bidirectional 
transfer of data and information between a 
user process and messages in STREAMS' 
kernel space. 

A kernel mechanism that supports develop
ment of network services and data com
munication drivers. It defines interface 
standards for character input/output within 
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write queue 
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Glossary 

the kernel, and between the kernel and 
user level. The STREAMS mechanism 
comprises integral functions, utility rou
tines, kernel facilities and a set of struc
tures. 

The direction from driver to Stream head. 

The message queue in a module or driver 
containing messages moving downstream. 
Associated with output from a user pro
cess. 
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