
• UNISYS System V Operating
System
Programmer's
Reference Manual

Volume 3
Copyright © 1987 Unisys Corporation.
Unisys is a trademark of Unisys Corporation.

Priced Item

December 1987

Printed in U S America
UP-13713

This document is intended for software releases based on AT&T Release 3 of UNIX
System V or a subsequent release of the System unless otherwise indicated.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only fumished pursuant and subject to
the terms and conditions of a duly executed Program Product Ucense or Agreement to
purchase or lease equipment. The only warranties made by Unisys, if any, with respect
to the products described in this document are set forth in such Ucense or Agreement.
Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, indirect.
special or consequential damages.

You should be very careful to ensure that the use of this Information and/or software
material complies with the laws, rules, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may be
issued to advise of such changes and/or additions.

PDP and VAX are trademarks of Digital Equipment Corp.
Diablo is a registered trademark of Xerox Corp. Xerox is a trademark of Xerox Corp.
DOCUMENTER'S WORKBENCH is a trademark of AT&T. Teletype is a registered
trademark of AT&T. UNIX is a registered trademark of AT&T in the USA and other
countries.
HP is a registered trademark of Hewlett-Packard, Inc.
IBM is a registered trademark of International Business Machines Corp.
TEKTRONIX and TEKTRONIX 4014 are registered trademarks of Tektronix, Inc.
UNIVAC is a registered trademark of Unisys Corporation.
Versatec D1200A is a registered trademark of Versatec Corp.
Wyse75 is a trademark of Wyse Technology.

Portions of this material 818 copyrighted C by
AT&T Technologies

and 818 reprinted with their pennission.

this documentation Is based In part on the fourth Berkeley Software DisIrtIuIIon, under license from the Regents of the
UniYer8Ity of California. We acknowledge the following Individuals and InsIItutIons for their role In lis development:

Computer ScIence Division
0epaItment of ElecIricaI Eng'"-lng and Computer ScIence

University of CaIIfornIs
Berkeley, CalIfornIs 94720

Table of Contents

(The following are contained in three volumes.)

1. Commands
intro(1) introduction to programming commands
admin(1) .. create and administer sees files
ar(1) archive and library maintainer for portable archives
as(1) ... common assembler
cb(1) ... e program beautifier
cc(1) .. e compiler
cdc(1) change the delta commentary of an sees delta
cflow(1) ... generate e flowgraph
comb(1) .. combine sees deltas
cpp(1) .. the e language preprocessor
cprs(1) .. compress a common object file
ctags(18) .. create a tags file
ctrace{1} .. e program debugger
cxref(1} generate e program cross-reference
delta(1) make a delta (change) to an sees file
dis(1) .. object code disassembler
dump(1) dump selected parts of an object file
gencc(1 M) create a front-end to the cc command
get(1) .. get a version of an sees file
infocmp(1 M) compare or print out terminfo descriptions
install{1 M) ' .. install commands
Id(1) ... link editor for common object files
lex(1) generate programs for simple lexical tasks
lint(1) a e program checker
list(1) produce e source from a common file
lorder(1) find relation for an object library
m4(1) .. macro processor
make(1) maintain, update, and groups of programs
mcs(1) " manipulate the object file comment section
mkshlib(1) ... create a shared library

UP-13713 Contents 1

Table of Contents

mkstr(1 B) create error message file from e source
nm(1) print name list of common object file
prof(1) ... display profile data
prs(1) .. print an sees file
regcmp(1) .. regular expression compile
rmdel(1) .. remove a delta from an sees file
sact(1) print current sees file editing activity
sccsdiff(1) compare two versions of an sees file
sdb(1) ... symbolic debugger
size(1) print section sizes in bytes of common object files
strip(1) strip symbol & line no. info. from a common object file
tic(1 M) ... terminfo compiler
tsort(1) .. topological sort
unget(1) undo a previous get of an sees file
val(1) ... validate sees file
vc(1) .. version control
what(1) ... identify sees files
xstr(1 B) .. extract string from e program
yacc(1) .. yet another compiler-compiler

2. System Calls
intro(2) introduction to system calls and error numbers
access (2) ... determine accessibility of a file
acct(2) enable or disable process accounting
alarm (2) .. set a process alarm clock
brk(2) change data segment space allocation
chdir(2) ... change working directory
chmod (2) ... change mode of file
chown(2) change owner and group of a file
chroot(2) ... change root directory
close(2) .. close a file descriptor
creat(2) create a new file or rewrite an existing one
dup(2) ... duplicate an open file descriptor
exec (2) .. execute a file
exit(2) .. terminate process
fcntl (2) ... file control
fork(2) ... create a new process
getdents(2) read directory entries and put in a file
getmsg (2) ... get next message off a stream
getpid(2) get process, process group, and parent process IDs
getuid(2) .. get real user, effective user, real grp., effective grp. IDs

Contents 2 UP-13713

Table of Contents

ioctl(2) .. control device
kill(2) send a signal to a process or a group of processes
link (2) ... link to a file
Iseek(2) ... move read/write file pointer
mkdir(2) .. make a directory
mknod(2) make a directory, or a special or ordinary file
mount (2) .. mount a file system
msgctl(2) .. message control operations
msgget(2) .. get message queue
msgop(2) ... message operations
nice(2) .. change priority of a process
open (2) .. open for reading or writing
pause (2) .. suspend process until signal
pipe(2) ... create an interprocess channel
plock (2) lock process, text, or data in memory
poll(2) .. STREAMS input/output multiplexing
profil (2) ... execution time profile
ptrace(2) ... process trace
putmsg(2) .. send a message on a stream
read (2) .. read from file
rmdir(2) ... remove a directory
semctl (2) ... semaphore control operations
semget(2) .. get set of semaphores
semop(2) ... semaphore operations
setpgrp(2) .. set process group ID
setuid(2) ... set user and group IDs
shmctl(2) shared memory control operations
shmget(2) get shared memory segment identifier
shmop(2) ... shared memory operations
signal (2) specify what to do upon receipt of a signal
sigset(2) ... signal management
stat (2) ... get file status
statfs(2} .. get file system information
stime(2) .. set time
sync(2) .. update super block
sysfs(2} .. get file system type information
time(2) ... get time
times (2) get process and child process times
uadmin (2) .. administrative control
ulimit(2) .. get and set user limits
umask(2) ... set and get file creation mask

UP-13713 Contents 3

Table of Contents

umount(2) .. unmount a file system
uname(2) get name of current UNIX system
unlink(2) .. remove directo~y entry
ustat(2) ... get file system statistics
utime(2) set file access and modification times
wait(2) wait for child process to stop or terminate
write (2) ... write on a file

3. Subroutines
intro(3) introduction to functions and libraries
a641(3C) convert between long integer and base-64 ASCII string
abort(3C) ... generate an lOT fault
abs(3C) ... return integer absolute value
bsearch(3C) ... binary search a sorted table
clock(3C) .. report CPU time used
conv(3C) .. translate characters
crypt(3C) .. generate hashing encryption
ctermid (3S) generate file name for terminal
ctime(3C) .. convert date and time to string
ctype(3C) ... classify characters
cuserid (3S) get character login name ~ of the user
dial (3 C) establish an out-going terminal line connection
drand48(3C) ... generate uniformly distributed pseudo-random no.s
dup2(3C) .. duplicate an open file descriptor
ecvt(3C) convert floating-point number to string
end (3 C) ... last locations in program
fclose(3S) ... close or flush a stream
ferror(3S) .. stream status inquiries
fopen (3S) .. open a stream
fpgetround(3C) IEEE floating point environment control
fread(3S) .. binary input/output
frexp(3C) manipulate parts of floating-point numbers
fseek(3S) reposition a file pointer in a stream
ftw(3C) .. walk a file tree
getc(3S) get character or word from a stream
getcwd(3C) get path-name of current working directory
getenv(3C) return value for environment name
getgrent(3C) .. get group file entry
getlogin (3C) ... get login name
getopt(3C) get option letter from argument vector
getpass(3C) .. read a password

Contents 4 UP-13713

Table of Contents

getpw(3C) ... get name from UID
getpwent(3C) ... get password file entry
gets (3S) .. get a string from a stream
getut(3C) ... access utmp file entry
hsearch (3C) .. manage hash search tables
isnan(3C) test for floating point NaN (Not-A-Number)
13tol(3C) convert between 3-byte integers and long integers
lockf(3C) .. record locking on files
Isearch(3C) .. linear search and update
malloc(3C) .. main memory allocator
memory(3C) ... memory operations
mktemp(3C) .. make a unique file name
monitor(3C) .. prepare execution profile
nlist(3C) ... get entries from name list
perror(3C) .. system error messages
popen(3S) .. initiate pipe to/from a process
printf(3S) ... print formatted output
putc(3S) put character or word on a stream
putenv(3C) change or add value to environment
putpwent(3C) .. write password file entry
puts (3S) ... put a string on a stream
qsort(3C) ... quicker sort
rand (3 C) simple random-number generator
scanf(3S) ... convert formatted input
setbuf(3S) ... assign buffering to a stream
setjmp(3C) .. non-local goto
sleep(3C) .. suspend execution for interval
sSignal (3C) ... software signals
stdio(3S) standard buffered input/output package
stdipc(3C) standard interprocess communication package
string(3C) .. string operations
strtod(3C) convert string to double-precision number
strtol(3C) .. convert string to integer
swab (3C) .. swap bytes
system (3S) ... issue a shell command
tmpfile(3S) .. create a temporary file
tmpnam(3S) create a name for a temporary file
tsearch(3C) .. manage binary search trees
ttyname(3C) .. find name of a terminal
ttyslot(3C) find the slot in the utmp file of the current user
ungetc(3S) ; push character back into input stream

UP-13713 Contents 5

Table of Contents

vprintf(3S) print formatted output of a varargs argument list
bessel (3M) ... Bessel functions
erf(3M) error function and complementary error function
exp(3M) exponential, logarithm, power, square root functions
floor(3M) floor, ceiling, remainder, absolute value functions
gamma(3M) .. log gamma function
hypot(3M) ... Euclidean distance function
matherr(3M) ... error-handling function
sinh (3M) .. hyperbolic functions
trig(3M) ... ; trigonometric functions
t_ accept (3N) .. accept a connect request
t_alloc(3N) ... allocate a library structure
t_bind(3N) bind an address to a transport endpoint
t_ close (3N) ... close a transport endpoint
t_ connect (3N) .. establish a connection with another transport user
t_ error(3N) ... produce error message
t_ free(3N) .. free a library structure
t_getinfo(3N) get protocol-specific service information
t_getstate(3N) .. get the current state
tJisten(3N) ... listen for a connect request
tJook(3N) look at the current event on a transport endpoint
t_ open (3N) ... establish a transport endpoint
t_ optmgmt(3N) manage options for a transport endpoint
t_rcv(3N) receive data or expedited data sent over a connection
t_rcvconnect(3N) . receive the confirmation from a connect request
t rcvdis(3N) retrieve information from disconnect
t_rcvrel(3N) ... acknowledge receipt of an orderly release indication
t_rcvudata(3N) ... receive a data unit
t_rcvuderr(3N) receive a unit data error indication
t snd (3N) send data or expedited data over a connection
t_ snddis(3N) send user-initiated disconnect request
t_sndrel(3N) .. initiate an orderly release
t_sndudata(3N) ... send a data unit
t_ sync(3N) .. synchronize transport library
t_ unbind(3N) ... disable a transport endpoint
assert (3X) .. verify program assertion
crypt(3X) password and file encryption functions
curses(3X) terminal screen handling and optimization package
directory(3X) ... directory operations
Idahread(3X) ... read archive header of a member of an archive file
Idclose(3X) ... close a common object file

Contents 6 UP-13713

Table of Contents

Idfhread(3X) read the file header of a common object file
Idgetname(3X) retrieve sym. name for common obj. file sym. table
Idlread(3X) manipulate line no. entries of common obj. file function
Idlseek(3X) seek to line no. entries of sect of a common obj. file
Idohseek(3X) seek to optional file header of common obj file
Idopen(3X) open a common object file for reading
Idrseek(3X) seek to relocation entries of sect. of a common obj. file
Idshread(3X) read indexed/named sect. header of common obj. file
Idsseek(3X) seek to indexed/named sect. of common obj. file
Idtbindex(3X) ... compute index of sym. table entry of com. obj. file
Idtbread(3X) read indexed sym. table entry of common obj. file
Idtbseek(3X) seek to the symbol table of a common object file
logname(3X) .. return login name of user
malloc(3X) ... fast main memory allocator
plot(3X) .. graphics interface subroutines
regcmp(3X) compile and execute regular expression
abort(3F) .. terminate Fortran program
abs(3F) .. Fortran absolute value
acos(3F) : Fortran arccosine intrinsic function
aimag(3F) Fortran imaginary part of complex argument
aint(3F) Fortran integer part intrinsic function
asin(3F) ... Fortran arcsine intrinsic function
atan(3F) Fortran arctangent intrinsic function
atan2(3F) Fortran arctangent intrinsic function
bool(3F) .. Fortran Bitwise Boolean functions
conjg(3F) Fortran complex conjugate intrinsic function
cos(3F) ... Fortran cosine intrinsic function
cosh (3 F) Fortran hyperbolic cosine intrinsic function
dim (3F) positive difference intrinsic functions
dprod(3F) double precision product intrinsic function
exp(3F) Fortran exponential intrinsic function
ftype(3F) .. explicit Fortran type conversion
getarg(3F) return Fortran command-line argument
getenv(3F) return Fortran environment variable
iargc(3F) return the number of command line arguments
index(3F) return location of Fortran substring
len(3F) ... return length of Fortran string
log(3F) Fortran natural logarithm intrinsic function
log10(3F) Fortran common logarithm intrinsic function
max(3F) ... Fortran maximum-value functions
mclock(3F) .. return Fortran time accounting

UP-13713 Contents 7

Table of Contents

mil (3F) .. Fortran Military Standard functions
min(3F) ... Fortran minimum-value functions
mod (3F) Fortran remaindering intrinsic functions
rand (3F) ... random number generator
round(3F) Fortran nearest integer functions
sign (3F) Fortran transfer-of-sign intrinsic function
signal(3F) specify Fortran action on receipt of a system signal
sin (3F) .. Fortran sine intrinsic function
sinh(3F) Fortran hyperbolic sine intrinsic function
sqrt(3F) Fortran square root intrinsic function
strcmp(3F) string comparison intrinsic functions
system(3F) issue a shell command from Fortran
tan(3F) ... Fortran tangent intrinsic function
tanh(3F) Fortran hyperbolic tangent intrinsic function

4. File Formats
intro(4) .. introduction to file formats
a.out(4) common assembler and link editor output
acct(4) ... per-process accounting file format
ar(4) ... common archive file format
checklist (4) list of file systems processed by fsck and ncheck
core (4) ... format of core image file
cpio(4) .. format of cpio archive
dir(4) ... format of directories
dirent(4) file system independent directory entry
filehdr(4) file header for common object files
fS(4) ... format of system volume
fspec(4) .. format specification in text files
fstab(4) .. file-system-table
gettydefs(4) speed and terminal settings used by getty
gpS(4) graphical primitive string, format of graphical files
group(4) .. group file
inittab(4) .. script for the init process
inode(4) .. format of an i-node
isort(4) ... international sort
issue(4) ... issue identification file
Idfcn(4) common object file access routines
Iimits(4) file header for implementation-specific constants
Iinenum(4) line number entries in a common object file
master(4) ... master configuration database
mnttab(4) .. mounted file system table

Contents 8 UP-13713

Table of Contents

passwd(4) ... password file
plot(4) .. graphics interface
profile (4) setting up an environment at login time
prsetup(4) ... international printer spooler
reloc(4) relocation information for a common object file
rfmaste r (4) Remote File Sharing name server master file
sccsfile(4) ... format of SCCS file
scnhdr(4) section header for a common object file
scr _ dump(4) format of curses screen image file
syms(4) common object file symbol table format
system(4} system configuration information table
term (4) ... format of compiled term file
terminfo(4) .. terminal capability data base
timezone(4) .. set default system time zone
unistd(4) file header for symbolic constants
utmp(4} .. utmp and wtmp entry formats

5. Miscellaneous Facilities
intro(5) ... introduction to miscellany
ascii(5) ... map of ASCII character set
environ(5) ... user environment
fcntl(5) .. file control options
math (5) ... math functions and constants
prof(5) .. profile within a function
regexp(5) regular expression compile and match routines
stat(5) .. data returned by stat system call
term(5) ... conventional names for terminals
types (5) .. primitive system data types
values(5) ... machine-dependent values
varargs(5) ... handle variable argument list

UP-13713 Contents 9

INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struc­
ture declarations for the file formats 'are given where applica­
ble. Usually, the header files containing these structure
declarations can be found in the directories lusr/include or
lusr/include/sys. For inclusion in C language programs, how­
ever, the syntax #include < filename.h > or #include
< sys/filename.h > should be used.

UP-13713 Page 1

INTR() (4)

•
[This page left blank.]

Page 2 UP-13713

A.OUT(4)

NAME
a.out - common assembler and link editor output

SYNOPSIS
#include < a.out.h >

DESCRIPTION
The file name a.out is the default output file name from the
link editor Id (1). The link editor will make a.out executable if
there were no errors in linking. The output file of the assem­
bler as (1), also follows the common object file format of the
a.out file although the default file name is different.

A common object file consists of a file header, a UNIX* sys­
tem header (if the file is link editor output), a table of section
headers, relocation information, (optional) line numbers, a
symbol table, and a string table. The order is given below.

File header.
UNIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

'*UNIX is a registered trademark of AT&T in the USA and other
countr i es • Port ions of the Un i sys System V Operat i ng System
are derived from the AT&T V.3 UNIX release.

UP-13713 Page 1

A.OUT(4)

The last three parts of an object file (line numbers, symbol
table and string table) may be missing if the program was
linked with the -s option of /d(1) or if they were removed by
strip (1). Also note that the relocation information will be
absent after linking unless the -r option of /d(1) was used.
The string table exists only if the symbol table contains sym­
bols with names longer than eight characters.

The sizes of each section (contained in the header, discussed
below) are in bytes.

When an a.out file is loaded into memory for execution, three
logical segments are set up: the text segment, the data seg­
ment (initialized data followed by uninitialized, the latter actu­
ally being initialized to all O's), and a stack.

The a.out shared text executable file produced by /d(1) has
the magic number in the first field of the UNIX system header.
The headers (file header, UNIX system header, and section
headers) are loaded at the beginning of the text segment and
the text immediately follows the headers in the user address
space. The first text address will equal the starting location of
the text segment plus the size of the headers. and will vary
depending upon the number of section headers in the a.out
file. The text segment is not writable by the program; if other
processes are executing the same a.out file, the processes will
share a single text segment.

The data segment starts at the next 512K boundary past the
last text address. The first data address. is determined by the
following: If an a.out file were split into SK chunks. one of the
chunks would contain both the end of text and the beginning
of data. When the core image is created. that chunk will
appear twice; once at the end of text and once at the begin­
ning of data (with some unused space in between). The dupli­
cated chunk of text that appears at the beginning of data is
never executed; it is duplicated so that the operating system
may bring in pieces of the file in multiples of the page size
without having to realign the beginning of the data section to
a page boundary. Therefore the first data address is the sum
of the next segment boundary past the end of text plus the
remainder of the last text address divided by SK. If the last
text address is a multiple of SK no duplication is necessary.

Page 2 UP-13713

A.OUT(4)

For relocatable files the value of a word in the text or data
portions that is not a reference to an undefined external sym­
bol is exactly the value that will appear in memory when the
file is executed. If a word in the text involves a reference to
an undefined external symbol, there will be a relocation entry
for the word, the storage class of the symbol-table entry for
the symbol will be marked as an .. external symbol", and the
value and section number of the symbol-table entry will be
undefined. When the file is processed by the link editor and
the external symbol becomes defined, the value of the symbol
will be added to the word in the file.

File Header
An example format of the filehdr header is

struct f 11 ehdr

I;

unsigned short
unsigned short
long
long
long

f_magicj
f_nscns;
f_timdatj
f_syq>tr;
f_nsymsj

unsigned short f_opthdrj
unsigned short f_flags;

I'll mag i c nun'ber * I
I'll number of sections 'Ill

I'll time and date staq> "III

I'll file ptr to symtab "III

I'll # symtab entries "III

I'll sizeof(opt hdr) "III

I'll flags "III

UNIX System Header
An example format of the UNIX system header is

typedef struct aouthdr
I

short magic;
short vstaq>;
long tsize;
long dsize;
long bsizej
long entry;

I'll magic nun'ber 'Ill

I'll version staq> "III

I'll text size in bytes, padded "III

I'll initialized data (.data) "III

I'll uninitialized data (.bss) "III

I'll entry point "III

long text_start;
long data_start;

I'll base of text used for this file "III

I'll base of data used for this file "III

I AOUTHDR;

Section Header
An example format of the section header is

UP-13713 Page 3

A'()UT(4)

struct scnhdr

I;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

Relocation

s_name[SYMNMLEN);/* section name */
s-paddr;/* physical address */
s_vaddr;/* virtual address */
s_size;/* section size */
s_scnptr;/* file ptr to raw data */
s_relptrj/* file ptr to relocation */
s_lnnoptr;/* file ptr to line numbers */
s_nreloc;/* # reloc entries */
s_nlnno;/* # line number entries */
s_flags;/* flags */

Object files have one relocation entry for each relocatable
reference in the text or data. If relocation information is
present, it will be in the following example format:

struct reloc

long
long r_syrmdx;
ushort r_type;

} ;

/* (virtual) address of reference */
/* index into symbol table */
/* relocation type */

The start of the relocation information is s _relptr from the sec­
tion header. If there is no relocation information, sJelptr is O.

Symbol Table
An example format of each symbol in the symbol table is

#define SYMNMLEN
#define FILNMLEN
#define DIMNUM

struct syment
1

union

8
14
4

/* to get a symbol name */

char
struct

_n_name[SYMNMLEN];j* name of symbol */

Page 4

long _n_zeroes;
long _n_offset;

/* = = OL if in string table */
/* location in string table */

UP-13713

A.OUT(4)

_n_n;
char *_n_nptr[2];

_n;
/* allows overlaying */

long n_value;
short n_senum;
unsigned short n_type;
char
char

n_selass;
n_numaux;

/* value of symbol */
/* section number */
/* type and derived type */
/* storage class */
/* number of aux entries */

#define n_name _n._n_name
#define n_zeroes _n._n_n._n_zeroes
#define n_offset _n._n_n._n_offset
#define n_nptr _n._n_nptr[1]

Some symbols require more information than a single entry;
they are followed by auxiliary entries that are the same size as
a symbol entry. An example format follows.
union auxent 1

struct i
long x_tagndx;
union I

struet I
unsigned shortx_lnno;
unsigned shortx_size;

x_lnszj
long x_fsize;

x_misc;
union

struet
long x_lnnoptr;
long x_endndx;

x_fen;
struct I

unsigned shortx_dimen[DIMNUM];
J x_aryj

x_fenarYi
unsigned short x_tvndx;

x_sym;

struct !
char x_fname[FILNMLEN]j

UP-13713 Page 5

A.OUT(4)

struct I
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

1 x_scn;

struct I
long x_tvfil1;
unsigned short x_tv 1 en;
unsigned short x_tvran[2];

I x_tv;
I;
Indexes of symbol table entries begin at zero. The start of the
symbol table is f _ symptr (from the file header) bytes from the
beginning of the file. If the symbol table is stripped, f _ symptr
is O. The string table (if one exists) begins at f_symptr +
(f_nsyms * SYMESZ) bytes from the beginning of the file.

SEE ALSO
as(1), cc(1), Id(1), brk(2) , filehdr(4), Idfcn(4) , linenum (4) ,
reloc(4), scnhdr(4), syms(4).

Page 6 UP-13713

ACCT(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include < sys/acct.h >

DESCRIPTION
Files produced as a result of calling aeet (2) have records in
the form defined by < sys/acct.h > I whose contents are:

typedef ushort cOq)_t; /* "floating point" */
/* 13-bit fraction, 3-bit exponent */

struct acct

char
char
ushort
ushort
dev_t
time_t
cOq)_t
cOq)_t
cOq)_t
cOq)_t
cOq)_t
cOq)_t
char

1; .

ac_flag; /* Accounting flag */
ac_stat; /* Exit status */
ac_uid; /* Accounting user 10 */
ac_gid; /* Accounting group 10 */
ac_tty; 1* control typewriter */
ac_btime;/* Beginning time */
ac_utime;/* acctng user time in clock ticks */
ac_stime;/* acctng system time in clock ticks */
ac_etime;/* acctng elapsed time in clock ticks */
ac_mem; /* memory usage in cl icks */
ac_io; /* chars trnsfrd by read/write */
ac_rw; /* number of block reads/writes */
ac_comm[8];/* command name */

extern struct acct
extern struct i node

acctbuf;
acctp; / inode of accounting file */

#define
#define
#define

AFORK

ASU

ACCTF

01/* has executed fork, but no exec */
02/* used super-user privileges */
0300/* record type: 00 = acct */

In ae_flag, the AFORK flag is turned on by each fork(2) and
turned off by an exee (2). The ae _ eomm field is inherited from
the parent process and is reset by any exee. Each time the
system charges the process with a clock tick, it also adds to
ae _ mem the current process size, computed as follows:

UP-13713 Page 1

ACCT(4)

(data size) + (text size) I (number of in-core processes using
text)

The value of ac_mem / (ac_stime + ac_utime) can be viewed as
an approximation to the mean process size, as modified by
text-sharing.

The structure taeet.h, which resides with the source files of
the accounting commands, represents the total accounting
format used by the various accounting commands:

I'll

* total accounting (for acct period), also for day
'Ill

struct tacct

1;

uid_t ta_uid;
char ta_name[8];
float ta_cpu(2);
float ta_kcore[2];
float ta_con[2];
float ta_du;
long ta-pc;
uns i gned short ta_sc;
uns i gned short ta_dc;
uns i gned short ta_fee;

SEE ALSO
acct(2), exec(2), fork(2).

I'll userid 'Ill

I'll login name 'Ill

I'll cum. cpu time, plnp (mins) 'Ill

!* cum kcore-.minutes, plnp *1

!* cum. connect time, plnp, mins 'Ill

I'll cum. disk usage *1

I'll count of processes 'Ill

I'll count of login sessions 'Ill

I'll count of disk samples 'Ill

I'll fee for special services 'Ill

acct(1 M) in the System Administrator's Reference Manual.
acctcom(1) in the User's Reference Manual.

BUGS
The ac_mem vaiue for a short-Uved command gives littie infor­
mation about the actual size of the command, because
ac_mem may be incremented while a different command (e.g.,
the shell) is being executed by the process.

Page 2 UP-13713

AR(4)

NAME
ar - common archive file format

SYNOPSIS
#include < ar.h >

DESCRIPTION
The archive command ar(1) is used to combine several files
into one. Archives are used mainly as libraries to be searched
by the link editor Jd(1).

Each archive begins with the archive magic string.

#define ARMAG "I<arch>\n"
#define SARMAG 8

/* magic string */
/* length of magic string */

Each archive which contains common object files [see
a.out (4)] includes an archive symbol table. This symbol table
is used by the link editor Jd (1) to determine which archive
members must be loaded during the link edit process. The
archive symbol table (if it exists) is always the first file in the
archive (but is never listed) and is automatically created
and/or updated by ar.

Following the archive magic string are the archive file
members. Each file member is preceded by a file member
header which is of the following format:

#define ARFMAG "'\n" /* header trailer string */

/* file member header */

char ar_name[16]; /* 'I' terminated file member name */
char ar_date[12]; /* file member date */
char ar_uid[6]; /* file member user identification */
char ar_gid[6]; /* file member group identification */
char ar_mode[8]; /* file member mode (octal) */
char ar _size[10]; /* file member size */
char ar_fmag[2]; /* header trailer string */

};

All information in the file member headers is in printable ASCII.
The numeric information contained in the headers is stored as
decimal numbers (except for ar mode which is in octal).

UP-13713 Page 1

AR(4)

Thus, if the archive contains printable files, the archive itself is
printable.

The ar _name field is blank-padded and slash (/) terminated.
The ar date field is the modification date of the file at the time
of its insertion into the archive. Common format archives can
be moved from system to system as long as the portable
archive command ar(1) is used. Conversion tools such as
convert(1} exist to aid in the transportation of non-common
format archives to this format.

Each archive file member begins on an even byte boundary; a
newline is inserted between files if necessary. Nevertheless
the size given reflects the actual size of the file exclusive of
padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive
has a zero length name (Le., ar_name[O] = = '/'). The con­
tents of this file are as follows:

The number of symbols. Length: 4 bytes.

The array of offsets into the archive file. Length: 4 bytes
* "the number of symbols".

The name string table. Length: ar _size - (4 bytes * (lithe
number of symbols" + 1)).

The number of symbols and the array of offsets are managed
with. sgetl and sputl. The string table contains exactly as
many null terminated strings as there are elements in the
offsets array. Each offset from the array is associated with
the corresponding name from the string table (in order). The
names in the string table are all the defined global symbols
found in the common object files in the archive. Each offset is
the location of the archive header for the associated symbol.

SEE ALSO
ar(1), Id(1), strip(1), sputl(3X), a.out(4}.

WARNINGS
Strip (1) will remove all archive symbol entries from the header.
The archive symbol entries must be restored via the ts option
of the ar(1) command before the archive can be used with the
link editor /d(1).

Page 2 UP-13713

CHECKLIST (4)

NAME
checklist - list of file systems processed by fsck and ncheck

DESCRIPTION
checklist resides in directory fete and contains a list of, at
most, 15 special file names. Each special file name is con­
tained on a separate line and corresponds to a file system.
Each file system will then be automatically processed by the
fsck(1 M) command.

FILES
/etc/checklist

SEE ALSO
fsck(1 M) I ncheck(1 M) in the System Administrator's Reference
Manual.

UP-13713 Page 1

CHECKLIST(4)

[This page left blank.]

Page 2 UP-13713

C()RE(4)

NAME
core - format of core image file

DESCRIPTION
The UNIX system writes out a core image of a terminated pro­
cess when any of various errors occur. See signa/(2) for the
list of reasons; the most common are memory violations, ille­
gal instructions, bus errors, and user-generated quit signals.
The core image is called core and is written in the process's
working directory (provided it can be; normal access controls
apply). A process with an effective user ID different from the
real user ID will not produce a core image.

The first section of the core image is a copy of the system's
per-user data for the process, including the registers as they
were at the time of the fault. The size of this section depends
on the parameter usize, which is defined in < sys/param.h > .
The remainder represents the actual contents of the user's
core area when the core image was written. If the text seg­
ment is read-only and shared, or separated from data space,
it is not dumped.

The format of the information in the first section is described
by the user structure of the system, defined in
< sys/user.h >. Not included in this file are the locations of
the registers. These are outlined in < sys/reg.h > .

SEE ALSO
sdb(1), setuid(2), signal(2).
crash(1 M) in the System Administrator's Reference Manual.

UP-13713 Page 1

CORE(4)

[This page left blank.]

Page 2 UP-13713

CPIO(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio (1) is not
used, is:

struct

1 Hdrj

short h_magic,
h_dev;

ushort h_ino,
h_mode,
h_uid,
h_gid;

short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2]j

char h_name[h_namesize rounded to word]j

When the -c option is used, the header information is
described by:

sscanf (Chdr , ',%60%60%60%60%60%60%60%60%1110%60%1110%5" ,
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h _ mtime and
Hdr.h _filesize , respectively. The contents of each file are
recorded in an element of the array of varying length struc­
tures, archive I together with other items describing the file.
Every instance of h _magic contains the constant 070707
(octal). The items h_dev through h_mtime have meanings
explained in stat (2). The length of the null-terminated path
name h _name, including the null byte, is given by h _ namesize.

The last record of the archive always contains the name
TRAILER!!!. Special files, directories, and the trailer are
recorded with h Jilesize equal to zero.

SEE ALSO
stat(2).
cpio(1), find(1) in the User's Reference Manual.

UP-13713 Page 1

CPI()(4)

[This page left blank.]

Page 2 UP-13713

DIR(4)

NAME
dir - format of directories

SYNOPSIS
#include < sys/dir.h >

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no
user may write into a directory. The fact that a file is a direc­
tory is indicated by a bit in the flag word of its i-node entry
[see fS(4)]. A common structure of a directory entry as given
in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

ino t dJno;
char d_name[DIRSIZ];

};

By convention, the first two entries in each directory are for.
and .•. The first is an entry for the directory itself. The
second is for the parent directory. The meaning of •. is modi­
fied for the root directory of the master file system; there is
no parent, so .• has the same meaning as ..

SEE ALSO
fS(4).

UP-13713 Page 1

DIR(4)

[This page left blank.]

Page 2 UP-13713

DIRENT(4)

NAME
dirent - file system independent directory entry

SYNOPSIS
#include < sys/dirent.h >
#include < sys/types.h >

DESCRIPTION
Different file system types may have different directory
entries. The dirent structure defines a file system indepen­
dent directory entry, which contains information common to
directory entries in different file system types. A set of these
structures is returned by the getdents (2) system call.

An example dirent structure is defined below.
struct dirent {

};

long
off t
unsigned short
char

dJno;
d_off;
d_reclen;
d_name[1];

The d Jno is a number which is unique for each file in the file
system. The field d_off is the offset of that directory entry in
the actual file system directory. The field d_name is the
beginning of the character array giving the name of the direc­
tory entry. This name is null terminated and may have at
most MAXNAMLEN characters. This results in file system
independent directory entries being variable length entities.
The value of d_reclen is the record length of this entry. This
length is defined to be the number of bytes between the
current entry and the next one, so that it will always result in
the next entry being on a long boundary.

FILES
/usr /include/sys/ dirent.h

SEE ALSO
getdents(2) .

UP-13713 Page 1

DIRENT(4)

[This page left blank.]

Page 2 UP-13713

FILEHDR(4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include < filehdr.h >

DESCRIPTION
Every common object file begins with a 20-byte header. The
following C struct declaration is used:
struct fi1ehdr

unsigned short f_magic ; /* mag i c nurmer * /
unsigned short f_nscns ; /* nurmer of sections */
long f_timdat ; /* time & date stamp */
long f_symptr ; /* file ptr to symtab */
long f_nsyms ; /* # symtab entries */
unsigned short f_opthdr ; /* sizeof(opt hdr) */
unsigned short f_f1ags ; /* flags */

F _symptr is the byte offset into the file at which the symbol
table can be found. Its value can be used as the offset in
fseek (3S) to position an I/O stream to the symbol table. The
UNIX system optional header is 28-bytes. The valid magic
numbers are given below:
#define FBOMAGIC 0560 /* 382 and 385 computers */

/* 3820 computer */ #define N3BMAGIC 0550
#define NTVMAGIC 0551 /* 3820 computer */

#define VAXWRMAGIC 0570 /* VAX writable text segments */
#define VAXROMAGIC 0575 /* VAX r. o. sharable text seg. */

The value in f _timdat is obtained from the time (2) system call.
Flag bits currently defined are:

#define F_RElFlG
#define F_EXEC
#define F_lNNO
#define F_lSYMS
#define F_MINMAL
#define F_UPDATE

0000001 /* relocation entries stripped */
0000002 /* file is executable */

0000004 /* line numbers stripped */
0000010 /* local syrmo1s stripped */
0000020 /* minimal object file */

0000040 /* update file, ogen produced */
#define F _SWABD 0000100 /* file is "pre-swabbed" */
#define F_AR16WR 0000200 /* 16-bit DEC host */
#define F_AR32WR 0000400 /* 32-bit DEC host */
#define F_AR32W 0001000 /* non-DEC host */

UP-13713 Page 1

FILEHDR(4)

#define F_PATCH
#define F_BM3210
#define F_BM328
#define F_BM32MAU
#define F_BM32RST

SEE ALSO

0002000 /* "patch" list in opt hdr */
0160000 /* WE32000 family 10 field */
0020000 /* file contains WE 32100 code */
0040000 /* file reqs MAU to execute */
0010000 /* contains restore work around

[385/382 only] */

time(2}, fseek(3S), a.out(4}.

Page 2 UP-13713

NAME
fs: file system - format of system volume

SYNOPSIS
#include < sys/filsys.h >
#include < sys/types.h >
#include < sys/param.h >

DESCRIPTION

FS(4)

Every file system storage volume has a common format for
certain vital information. Every such volume is divided into a
certain number of S12-byte, or 1024-byte long sectors,
depending upon your particular machine. Sector 0 is gen­
erally unused and is available to contain a bootstrap program
or other information.

Sector 1 is the super-block. An example format of a super­
block is:
struct f i1 sys
l

ushort s_isize; /* size .in blocks of i-l ist */
daddr_t s_fsize; /* size in blocks of entire volume */
short s_nfree; /* number of addresses in s_free */
daddr_t s_free[NICFREE]j/* free block list */
short s_ninodej /* number of i-nodes in s_inode */
ino_t s_inode[NICINOO]j/* free i-node list */
char s_flockj /* lock during free list manip. */
char s_ilockj /* lock during i-list manipulation */
char s_fmodj /* super block modified flag */
char s_ronlYj /* mounted read-only flag */
time_t s_timej /* last super block update */
short s_dinfo[4]; /* device information */
daddr_t s_tfreej /* total free blocks*/
ino_t s_tinodej /* total free i-nodes */
char s_fname[6]j /* file system name */
char s_fpack[6]j /* file system pack name */
long s_fil1[12]j /* ADJUST to make sizeof filsys

long
long

s_statej
s_magicj

be 512 */
/* file system state */
/* magic number to denote new

file system */
long

Ij
/* type of new file system */

UP-13713 Page 1

FS(4)

#define FsMAGIC Oxfd187e20 /* s_magic number */

#define Fs1b 1 /* 512-byte block */
#define Fs2b 2 /* 1024-byte block */

#define FsOKAY Ox7c269d38 /* s_state: clean */
#d.efine FsACTlVE Ox5e72d81a /* s_state: active */
#define FsBAD Oxcb096f43 /* s_state: bad root */
#define FsBADBlK Oxbadbc14b /* s_state: bad

block corrupted it */

S_type indicates the file system type. Currently, two types of
file systems are supported: the original 512-byte logical block
and the improved 1024-byte logical block. S Jrlagic is used to
distinguish the original 512-byte oriented file systems from the
newer file systems. If this field is not equal to the magic
number, fsMAGIC, the type is assumed to be fs1b, otherwise
the s_type field is used. In the following description, a block is
then determined by the type. For the original 512-byte
oriented file system, a block is 512-bytes. For the 1024-byte
oriented file system, a block is 1024-bytes or two sectors. The
operating system takes care of all conversions from logical
block numbers to physical sector numbers.

S_state indicates the state of the file system. A cleanly
unmounted, not damaged file system is indicated by the
FsOKAY state. After a file system has been mounted for
update, the state changes to FsACTIVE. A special case is
used for the root file system. If the root file system appears
damaged at boot time, it is mounted but marked FsBAD.
Lastly, after a file system has been unmounted, the state
reverts to FsOKAY.

S -.!size is the address of the first data block after the i-list; the
i-list starts just after the super-block, namely in block 2; thus
the i-list is s}size-2 blocks long. SJsize is the first block not
potentially available for allocation to a file. These numbers are
used by the system to check for bad block numbers; if an
"impossible" block number is allocated from the free list or is
freed, a diagnostic is written on the on-line console. More­
over, the free array is cleared, so as to prevent further alloca­
tion from a presumably corrupted free list.

Page 2 UP-13713

FS(4)

The free list for each volume is maintained as follows. The
s _free array contains, in s _free [1], ... , s _free [s _ nfree-1] I up
to 49 numbers of free blocks. S _free [0] is the block number
of the head of a chain of blocks constituting the free list. The
first long in each free-chain block is the number (up to 50) of
free-block numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the next
member of the chain. To allocate a block: decrement
s_nfree, and the new block is s_free[s_nfree]. If the new
block number is 0, there are no blocks left, so give an error. If
s _nfree became 0, read in the block named by the new block
number, replace s_nfree by its first word, and copy the block
numbers in the next 50 longs into the s _free array. To free a
block, check if s _nfree is 50; if so, copy s _ nfree and the
s_free array into it, write it out, and set s_nfree to O. In any
event set s_free[s_nfree] to the freed block's number and
increment s nfree.

S _tfree is the total free blocks available in the file system.

S nino de is the number of free i-numbers in the s inode - -
array. To allocate an i-node: if s_ninode is greater than 0,
decrement it and return s_inode[s_ninode]. If it was 0, read
the i-list and place the numbers of all free i-nodes (up to 100)
into the s_inode array, then try again. To free an i-node, pro­
vided s _ninode is less than 100, place its number into
sjnode[s_ninode] and increment s_ninode. If s_ninode is
already 100, do not bother to enter the freed i-node into any
table. This list of i-nodes is only to speed up the allocation
process; the information as to whether the i-node is really free
or not is maintained in the i-node itself.

S _tinode is the total free i-nodes available in the file system.

S _flock and s _ilock are flags maintained in the core copy of
the file system while it is mounted and their values on disk are
immaterial. The value of s _fmod on disk is likewise immaterial;
it is used as a flag to indicate that the super-block has
changed and should be copied to the disk during the next
periodic update of file system information.

S _ronly is a read-only flag to indicate write-protection.

S _time is the last time the super-block of the file system was
changed, and is the number of seconds that have elapsed

UP-13713 Page 3

FS(4)

since 00:00 Jan. 1, 1970 (GMT). During a reboot, the s_time
of the super-block for the root file system is used to set the
system's idea of the time.

S Jname is the name of the file system and s _fpack is the
name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in
block 2. Also, i-nodes are 64 bytes long. I-node 1 is reserved
for future use. I-node 2 is reserved for the root directory of
the file system, but no other i-number has a built-in meaning.
Each i-node represents one file. For the format of an i-node
and its flags, see inode (4).

SEE ALSO
mount(2), inode(4).
fsck(1M), fsdb(1M), mkfs(1M) in the System Administrator's
Reference Manual.

Page 4 UP-13713

FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the UNIX
system with non-standard tabs, (Le., tabs which are not set at
every eighth column). Such files must generally be converted
to a standard format, frequently by replacing all tabs with the
appropriate number of spaces, before they can be processed
by UNIX system commands. A format specification occurring
in the first line of a text file specifies how tabs are to be
expanded in the remainder of the file.

A format specification consists of a sequence of parameters
separated by blanks and surrounded by the brackets <: and
: >. Each parameter consists of a keyletter, possibly followed
immediately by a value. The following parameters are recog­
nized:

ttabs The 1 parameter specifies the tab settings for the
file. The value of tabs must be one of the follow­
ing:

1. a list of column numbers separated by com­
mas, indicating tabs set at the specified
columns;

2. a • followed immediately by an integer n,
indicating tabs at intervals of n columns;

3. a· followed by the name of a "canned" tab
specification.

Standard tabs are specified by 1-8, or equivalently,
11,9,17,25,etc. The canned tabs which are recog­
nized are defined by the tabs (1) command.

ssize The s parameter specifies a maximum line size.
The value of size must be an integer. Size check­
ing is performed after tabs have been expanded,
but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to
be prepended to each line. The value of margin
must be an integer.

UP-13713 Page 1

FSPEC(4)

d The d parameter takes no value. Its presence indi­
cates that the line containing the format specifica­
tion is to be deleted from the converted file.

e The e parameter takes no value. Its presence indi­
cates that the current format is to prevail only until
another format specification is encountered in the
file.

Default values, which are assumed for parameters not sup­
plied, are t-8 and mO. If the s parameter is not specified, no
size checking is performed. If the first line of a file does not
contain a format specification] the above defaults are
assumed for the entire file. The following is an example of a
line containing a format specification:

* <:t5,10,15 s72: > *
If a format specification can be disguised as a comment. it is
not necessary to code the d parameter.

SEE ALSO
ed(1). newform(1). tabs(1) in the User's Reference Manual.

Page 2 UP-13713

FSTAB(4)

NAME
fstab - file-system-table

DESCRIPTION
The /etc/fstab file contains information about file systems for
use by mount (1 M) and mountall(1 M). Each entry in
/etc/fstab has the following format:

column 1 block special file name of file system or
advertised remote resource

column 2

column 3

column 4

column 5+

mount-point directory

lI_rll if to be mounted read-only;
lI-d[r]1I if remote

(optional) file system type string

ignored

White-space separates columns.
Lines beginning with .. # .. are
comments.
Empty lines are ignored.

A file-system-table might read:

/dev/dsk/c1 dOs2 /usr 851 K
/dev/dsk/c1d1s2/usr/src -r
adv _resource /mnt -d

FILES
/etc/fstab

NOTE
The name of the file-system-table is machine specific. Other
possible names could be /etc/mountable or /etc/mntnodes.

SEE ALSO
mount(1 M) I mountall{1 M) I rmountall{1 M) in the System
Administrator's Reference Manual.

UP-13713 Page 1

FSTAB(4)

[This page left blank.]

Page 2 UP-13713

GETTYDEFS(4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty (1 M)
to set up the speed and terminal settings for a line. It sup­
plies information on what the login prompt should look like. It
also supplies the speed to try next if the user indicates the
current speed is not correct by typing a <break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-Iabel

Each entry is followed by a blank line. The various fields can
contain quoted characters of the form \b, \n, \c, etc., as well
as \nnn, where nnn is the octal value of the desired character.
The various fields are:

label

initial-flags

final-flags

UP-13713

This is the 'string against which getty tries to
match its second argument. It is often the
speed, such as 1200, at which the terminal is
supposed to run, but it need not be (see
below).

These flags are the initial ioct/ (2) settings to
which the terminal is to be set if a terminal type
is not specified to getty. The flags that getty
understands are the same as the ones listed in
/usr/include/sys/termi9.h [see termio (7)].
Normally only the speed flag is required in the
initial-flags. Getty automatically sets the termi­
nal to raw input mode and takes care of most
of the other flags. The initial-flag settings
remain in effect until getty executes login (1).

These flags take the same values as the initial­
flags and are set just prior to getty executes
login. The speed flag is again required. The
composite flag SANE takes care of most of the
other flags that need to be set so that the pro­
cessor and terminal are communicating in a
rational fashion. The other two commonly
specified final-flags are T AB3, so that tabs are
sent to the terminal as spaces, and HUPCL, so
that the line is hung up on the final close.

Page 1

GETTYDEFS(4)

login-prompt This entire field is printed as the login-prompt.

next-label

Unlike the above fields where white space is
ignored (a space, tab or new-line), they are
included in the login-prompt field.

If this entry does not specify the desired speed,
indicated by the user typing a < break> char­
acter, then getty will search for the entry with
next-label as its label field and set up the termi­
nal for those settings. Usually, a series of
speeds are linked together in this fashion, into
a closed set; For instance, 2400 linked to 1200,
which in turn is linked to 300, which finally is
linked to 2400.

If getty is called without a second argument, then the first
entry of letc/gettydefs is used, thus making the first entry of
letc/gettydefs the default entry. It is also used if getty can
not find the specified label. If letc/gettydefs itself is missing,
there is one entry built into the command which will bring up a
terminal at 300 baud.

It is strongly recommended that after making or modifying
letc/gettydefs. it be run through getty with the check option
to be ·sure there are no errors.

FILES
I etcl gettydefs

SEE ALSO
ioctl(2).
getty(1M). termio(7) in the System Administrator's Reference
Manual.
login(1) in the User's Reference Manual.

Page 2 UP-13713

GPS(4)

NAME
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines
have been developed to edit and display GPS files on various
devices. Also, higher level graphics programs such as plot [in
stat (1G)] and vtoc [in toc{1G)] produce GPS format output
files.

A GPS is composed of five types of graphical data or primi­
tives.

GPS PRIMITIVES
lines The lines primitive has a variable number of points

from which zero or more connected line segments
are produced. The first point given produces a
move to that location. (A move is a relocation of
the graphic cursor without drawing.) Successive
points produce line segments from the previous
point. Parameters are available to set color,
weight, and style (see below).

arc The arc primitive has a variable number of points to
which a curve is fit. The first point produces a
move to that point. If only two points are included,
a line connecting the points will result; if three
pOints a circular arc through the points is drawn;
and if more than three, lines connect the points~

(In the future, a spline will be fit to the points if they
number greater than three.) Parameters are avail­
able to set color, weight, and style.

text The text primitive draws characters. It requires a
single point which locates the center of the first
character to be drawn. Parameters are color, font,
textsize, and textangle.

hardware The hardware primitive draws hardware characters
or gives control commands to a hardware device.
A single point locates the beginning location of the
hardware string.

comment A comment is an integer string that is included in a
GPS file but causes nothing to be displayed. All
GPS files begin with a comment of zero length.

UP-13713 Page 1

GPS(4)

GPS PARAMETERS
color Color is an integer value set for arc, lines, and text

primitives.

weight Weight is an integer value set for arc and lines
primitives to indicate line thickness. The value 0 is
narrow weight, 1 is bold, and 2 is medium weight.

style Style is an integer value set for lines and arc primi­
tives to give one of the five different line styles that
can be drawn on TEKTRONIX 4010 series storage
tubes. They are:

o solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

font An integer value set for text primitives to designate
the text font to be used in drawing a character
string. (Currently font is expressed as a four-bit
weight value followed by a four-bit style value.)

textsize Textsize is an integer value used in text primitives
to express the size of the characters to be drawn.
Textsize represents the height of characters in
absolute universe-units and is stored at one-fifth
this value in the size-orientation (so) word (see
below).

textangle Textangle is· a signed integer value used in text
primitives to express rotation of the character string
around the beginning point. Textangle is
expressed in degrees from the positive x-axis and
can be a positive or negative value. It is stored in
the size-orientation (so) word as a value 256/360 of
it's absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines
arc
text
hardware
comment

Page 2

cw points sw
cw points sw
cw pOint sw so [string]
cw point [string]
cw [string]

UP-13713

GPS(4)

cw Cw is the control word and begins all primitives. It
consists of four bits that contain a primitive-type
code and twelve bits that contain the word-count
for that primitive.

point(s) Point(s) is one or more pairs of integer coordinates.
Text and hardware primitives only require a single
point. Point(s) are values within a Cartesian plane
or universe having 64K (-32K to + 32K) points on
each axis.

sw Sw is the style-word and is used in lines, arc, and
text primitives. For all three, eight bits contain color
information. In arc and lines eight bits are divided
as four bits weight and four bits style. In the text
primitive eight bits of sw contain the font.

so So is the size-orientation word used in text primi­
tives. Eight bits contain text size and eight bits
contain text rotation.

string String is a null-terminated character ·string. If the
string does not end on a word boundary, an addi­
tional null is added to the GPS file to insure word­
boundary alignment.

SEE ALSO
graphics(1G), stat (1 G), toc(1G) in the User's Reference
Manual.

UP-13713 Page 3

GPS(4)

[This page left blank.]

Page 4 UP-13713

NAME
group - group file

DESCRIPTION
group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each
group is separated from the next by a new-line. If the pass­
word field is null. no password is demanded.

This file resides in directory fetc. Because of the encrypted
passwords, it can and does have general read permission and
can be used. for example, to map numerical group ID's to
names.

FILES
/etc/group

SEE ALSO
passwd(4).
passwd(1) in the User's Reference Manual.
newgrp(1 M) in the System Administrator's Reference Manual.

UP·13713 Page 1

(;ROUP(4)

[This page left blank.]

Page 2 UP-13713

INITTAB(4)

NAME
inittab - script for the in it process

DESCRIPTION
The inittab file supplies the script to init's role as a general
process dispatcher. The process that constitutes the majority
of init's process dispatching activities is the line process
/etc/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the
shell.

The inittab file is composed of entries that are position depen­
dent and have the following format:

id: rstate:action: process

Each entry is delimited by a newline, however, a backslash (\)
preceding a newline indicates a continuation of the entry. Up
to 512 characters per entry are permitted. Comments may be
inserted in the process field using the sh (1) convention for
comments. Comments for lines that spawn gettys are
displayed by the who(1) command. It is expected that they
will contain some information about the line such as the loca­
tion. There are no limits (other than maximum entry size)
imposed on the number of entries within the inittab file. The
entry fields are:

id This is one or two characters used to uniquely iden­
tify an entry.

rstate

UP-13713

This defines the run-level in which this entry is to be
processed. Run-levels effectively correspond to a
configuration of processes in the system. That is,
each process spawned by init is assigned a run-level
or run-levels in which it is allowed to exist. The run­
levels are represented by a number ranging from 0
through 6. As an example, if the system is in run­
level 1, only those entries having a 1 in the rstate
field will be processed. When init is requested to
change run-levels, all processes which do not have
an entry in the rstate field for the target run-level will
be sent the warning signal (SIGTERM) and allowed
a 20-second grace period before being forcibly ter­
minated by a kill signal (SIGKILL). The rstate field
can define multiple run-levels for a process by

Page 1

INITTAR(4)

action

Page 2

selecting more than one run-level in any combina­
tion from 0-6. If no run-level is specified, then the
process is assumed to be valid at all run-levels 0-6.
There are three other values, a, band c, which can
appear in the rstate field, even though they are not
true run-levels. Entries which have these characters
in the rstate field are processed only when the telinit
[see init (1 M)] process requests them to be run
(regardless of the current run-level of the system).
They differ from run-levels in that init can never
enter run-level a, b or c. Also, a request for the exe­
cution of any of these processes does not change
the current run-level. Furthermore, a process
started by an a, b or c command is not killed when
init changes levels. They are only killed if their line
in /etc/inittab is marked off in the action field, their
line is deleted entirely from /etc/inittab, or init goes
into the SINGLE USER state.

Key words in this field tell init how to treat the pro­
cess specified in the process field. The actions
recognized by init are as follows:

respawn If the process does not exist then start
the process, do not wait for its termina­
tion (continue scanning the inittab file),
and when it dies restart the process. If
the process currently exists then do
nothing and continue scanning the init­
tab file.

wait

once

Upon init's entering the run-level that
matches the entry's rstate, start the
process and wait for its termination. All
subsequent reads of the inittab file
while init is in the same run-level will
cause init to ignore this entry.

Upon init's entering a run-level that
matches the entry's rstate, start the
process, do not wait for its termination.
When it dies, do not restart the process.
If upon entering a new run-level, where
the process is still running from a

UP-13713

UP-13713

INITTAB(4)

previous run-level change, the program
will not be restarted.

boot The entry is to be processed only at
init's boot-time read of the inittab file.
Init is to start the process, not wait for
its termination; and when it dies, not
restart the process. In order for this
instruction to be meaningful, the rstate
should be the default or it must match
init's run-level at boot time. This action
is useful for an initialization function fol­
lowing a hardware reboot of the sys­
tem.

bootwait The entry is to be processed the first
time init goes from single-user to multi­
user state after the system is booted.
(If initdefault is set to 2, the process
will run right after the boot.) Init starts
the process, waits for its termination
and, when it dies, does not restart the
process.

powerfail Execute the process associated with
this entry only when init receives a
power fail signal [SIGPWR see sig­
na/(2)].

powerwait Execute the process associated with
this entry only when init receives a
power fail signal (SIGPWR) and wait
until it terminates before continuing any
processing of inittab.

off If the process associated with this entry
is currently running, send the warning
signal (SIGTERM) and wait 20 seconds
before forcibly terminating the process
via the kill signal (SIGKILL). If the pro­
cess is nonexistent, ignore the entry.

ondemand This instruction is really a synonym for
the respawn action. It is functionally
identical to respawn but is given a

Page 3

INITTAB(4)

different keyword in order to divorce its
association with run-levels. This is used
only with the a, b or c values described
in the rstate field.

initdefault An entry with this action is only
scanned when init initially invoked. Init
uses this entry, if it exists, to determine
which run-level to enter initially. It does
this by taking the highest run-level
specified in the rstate field and using
that as its initial state. If the rstate field
is empty, this is interpreted as 0123456
and so init will enter run-level 6. Addi­
tionally I if init does not find an initde­
fault entry in letc/inlttab, then it will
request an initial run-level from the user
at reboot time.

syslnit Entries of this type are executed before
init tries to access the console (i.e.,
before the Console Login: prompt). It
is expected that this entry will be only
used ~to initialize devices on which init
might try to ask the run-level question.
These entries are executed and waited
for before continuing.

process This is a sh command to be executed. The entire
process field is prefixed with exec and passed to a
forked sh as sh -c 'exec command'. For this rea­
son, any legal sh syntax can appear in the process
field. Comments can be inserted with the ; Hcom­
ment syntax.

FILES
/etc/inittab

:SEEALSO
exec(2), open(2), signal(2).
getty(1 M), init(1 M) in the System Administrator's Reference
Manual.
sh(1), who(1) in the User's Reference Manual.

Page 4 UP-13713

NAME
inode - format of an i-node

SYNOPSIS
#include < sys/types.h >
#include < sys/ino.h >

DESCRIPTION

INODE(4)

An i-node for a plain file or directory in a file system could
have the following structure defined by < sys/ino.h > .

/* Inode structure as it appears on a disk block. * /
struct dinode

Ii
/*

ushort
short
ushort
ushort
Off_t
char
time_t
time_t
time_t

di_modei
di_nlink;
di_uidj
dCgidj
di_sizej
di_addr[40];
di_atimej
di_mtimej
di_ctime;

* the 40 address bytes:

*
*
*/

39 used; 13 addresses
of 3 bytes each.

/* mode and type of file */
/* number of links to file */
/* owner's user id */
/* owner's group id */
/* number of bytes in file */
/* disk block addresses */
/* time last accessed */
/* time last modified */
/* time last file stat

change */

For the meaning of the defined types off _t and time t see
types (5).

SEE ALSO
stat(2)' fs(4), types (5) .

UP-13713 Page 1

IN()I)E(4)

[This page left blank.]

Page 2 UP-13713

IS()RT(4)

NAME
USER-DEFD. USER-DEFD_dict. USER-DEFD_fold

DESCRIPTION
Isort(1) (international sort) uses sorting sequences defined in
language tables. If the -IU option is specified, isort uses the
tables in the files listed above.

BUILDING ISORT TABLES
The following three tables are found in
/usr /spool/isort/TABLES:

USER-DEFD
USER-DEFD_dict (used by isort with -d option)
USER-DEFD _fold (used by isort with -f option)

The predefined tables for the languages listed in isort(1) are
also found in /usr/spool/isort/TABLES. You may find them
useful references for building your user-defined tables.

Following is an excerpt from the table USER-DEFD:

/* 0101 */ 0101 0 /* 'A' */
/* 0102 */ 0102 0 /* 'B' */
/* 0103 */ 0103 0 /* 'CI */
/* 0104 */ 0104 0 /* 'D' */
/* 0105 */ 0105 0 /* IE' */

The "/*" and "*P' must be in the first and third positions
respectively or isort will abort and return an illegal language
file error.

The first column of numbers in each table is the ASCII
equivalent in octal notation, and must not be changed. The
second and third columns of numbers can be changed if
necessary to establish a user-defined collating sequence. Nor­
mally, entries in the third column will be zero, but in certain
languages diacritical marks will require that you enter a dif­
ferent number in the third column. For example, an a with an
umlaut is sorted alphabetically as ae. Therefore, the octal
numbers for both a and e must be entered; the number for a
will be in the second column, and the number for e will
replace the zero in the third column. The column of ASCII
characters identifies the letter, digit, or symbol that the octal
notation signifies.

UP-13713 Page 1

ISORT(4)

The table in USER-DEFD establishes a collating sequence for
all letters, numbers, and symbols, and distinguishes between
uppercase and lowercase letters. The table in USER­
DEFD _ dict treats only letters, digits, and spaces, by setting
everything else to zero; it distinguishes between uppercase
and lowercase. The table in USER-DEFD _fold treats uppercase
and lowercase letters as identical by setting them to the same
value.

The following rules must be observed as you edit the files to
establish the desired collation order:

1) Octal 00 to 015 and octal 040 are reserved; no entry in
column 2 and 3 can be associated with these values.

2) The digits (0-9) should not be changed from their
assigned value of 060-071.

3) Uppercase and lowercase alphabetic characters should be
040 (octal) apart to facilitate building tables to fold lower­
case to uppercase.

SEE ALSO
isort(1).

Page 2 UP-13713

ISSUE(4)

NAME
issue - issue identification file

DESCRIPTION
The file fete/issue contains the issue or project identification
to be printed as a login prompt. This is an ASCII file which is
read by program getty and then written to any terminal
spawned or respawned from the lines file.

FILES
letc/issue

SEE ALSO
login(1) in the User's Reference Manual.

UP-13713 Page 1

ISSUE(4)

[This page left blank.]

Page 2 UP-13713

NAME
Idfcn - common object file access routines

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

DESCRIPTION

LI>FCN(4)

The common object file access routines are a collection of
functions for reading common object files and archives con­
taining common object files. Although the calling program
must know the detailed structure of the parts of the object file
that it processes, the routines effectively insulate the calling
program from knowledge of the overall structure of the object
file.

The interface between the calling program and the object file
access routines is based on the defined type LDFILE, defined
as struct Idfile. declared in the header file Idfcn.h. The pri­
mary purpose of this structure is to provide uniform access to
both simple object files and to object files that are members
of an archive file.

The function /dopen (3X) allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling
program. The fields of the LDFILE structure may be
accessed individually through macros defined in Idfcn.hand
contain the following information:

LDFILE *Idptr;

TYPE(ldptr) The file magic number used to distinguish
between archive members and simple object
files.

IOPTR(ldptr) The file pointer returned by fopen and used
by the standard input/output functions.

OFFSET(ldptr) The file address of the beginning of the object
file; the offset is non-zero if the object file is a
member of an archive file.

HEADER (Idptr) The file header structure of the object file.

UP-13713 Page 1

LDFCN(4)

The object file access functions themselves may be divided
into four categories:

Page 2

(1) functions that open or close an object file

Idopen (3X) and Idaopen [see Idopen (3X)]
open a common object file

Idclose(3X) and Idaclose[see Idclose(3X)]
close a common object file

(2) functions that read header or symbol table informa­
tion

Idahread (3X)
read the archive header of a member of an
archive file

Idfhread (3X)
read the file header of a common· object file

Idshread (3X)and Idnshread[see Idshread (3X)]
read a section header of a common object file

Idtbread (3X)
read a symbol table entry of a common object
file

Idgetname (3X)
retrieve a symbol name from a symbol table
entry or from the string table

(3) functions that position . an object file at. (seek to) the
start of the section, . relocation,or line number information
for a particular section.

Idohseek(3X)
seek to the optional file header of a common
object file

/dsseek (3X) and /dnsseek[see /dsseek (3X)]
seek to a section of· a common object file

Idrseek (3X) and ·/dnrseek[see Idrseek(3X)]
seek to the relocation· information for a section of
a common object file

/dlseek(3X) and Idnlseek[see Idlseek(3X)]
seek to the line number information for a section
of a common object file

Idtbseek (3X)
seek to the symbol table of a common object file

UP-13713

LDFCN(4)

(4) the function Idtbindex(3X) which returns the index of a
particular common object file symbol table entry.

These functions are described in detail on their respective
manual pages.

All the functions except Idopen (3X), Idgetname (3X),
Idtbindex(3X) return either SUCCESS or FAILURE, both con­
stants defined in Idfcn.h. Ldopen (3X) and Idaopen [(see
Idopen (3X)] both return pointers to an LDFILE structure.

Additional access to an object file is provided through a set of
macros defined in Idfcn.h. These macros parallel the stan­
dard input/output file reading and manipulating functions,
translating a reference of the LDFILE structure into a refer­
ence to its file descriptor field.

The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GElW (Idptr)
UNGETC(c, Idptr)
FGETS(s, n, Idptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, Idptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND (Idptr)
FEOF (Idptr)
FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

The. STROFFSET macro calculates the address of the string
table. See the manual entries for the corresponding standard
input/output library functions for details on the use of the rest
of the macros.

The program must be loaded with the object file access rou­
tine library libld.a.

SEE ALSO
fseek(3S),
Idfh read (3X) ,
Idopen (3X) ,

UP-13713

Idahread (3X) ,
Idlread(3X),

Idrseek(3X) ,

Idclose(3X) ,
Idlseek(3X) ,
Idlseek(3X) ,

Idgetname(3X),
Idohseek(3X) ,
Idshread(3X),

Page 3

LDFCN(4)

Idtbindex(3X) I Idtbread(3X) I Idtbseek(3X) I stdio(3S) I intro(5).

WARNING
The macro FSEEK defined in the header file Idfcn.h translates
into a call to the standard input/output function fseek(3S).
FSEEK should not be used to seek from the end of an archive
file since the end of an archive file may not be the same as
the end of one of its object file members!

Page 4 UP-13713

LIMITS (4)

NAME
limits - file header for implementation-specific constants

SYNOPSIS
#include < limits.h >

DESCRIPTION
The following example header file < limits.h > is a list of mag­
nitude limitations imposed by a specific implementation of the
operating system. All values are specified in decimal.

#define ARG_MAX 5120 /* max length of args to exec */
#define CHAR_BIT 8 /* # of bits in a char */
#define CHAR_MAX 127 /* max integer value of a char */
#define CHAR_MIN -128 /* min integer value of a char */
#define CHilD_MAX 25 /* max # of processes per user */
#define ClK_TCK 100 /* # of clock ticks per second */
#define DBl_DIG 16 /* digits of precision of double */
#define DBl_MAX 1.79769313486231470e+308 /* max decimal value

of a double */
#define DBl_MIN 4.94065645841246544e-324 /* min decimal value

of a,double */
#define FCHR_MAX 1048576 /* max size of'a file in bytes */
#define FlT_DIG 7 /* digits of precision of float */
#define FlT_MAX 3.40282346638528860e+38 /* max decimal value

of a float */
#define FlT_MIN 1.40129846432481707e-45 /* min decimal value

of a float */
#define HUGE_VAl 3.40282346638528860e+38

#define INT_MAX 2147483647

/* error value returned by
Math lib */

/* max decimal value of an int */
#define INT_MIN -2147483648

/* min decimal value of an int */
#define LINK_MAX 32767 /* max # of 1 inks to a file */
#define lONG_MAX 2147483647 /* max decimal value of a long */
#define lONG_MIN -2147483648/* min decimal value of a long */
#def i ne NAME_MAX 14 /* max # of chars ina f i 1 e name * /
#def i ne OPEN_MAX 20 /* max # of f i 1 es open * /
#define PASS_MAX 8 /* max # of chars in a password */
#define PATH_MAX 256 /* max # of chars in a path name */
#define PID_MAX 30000 /* max value for a process 10 */

UP-13713 Page 1

LIMITS (4)

#define PIPE_BUF 5120 /* max # bytes atomic in write
to a pipe */

#define PIPE_MAX 5120 1* max # bytes wr i tten to a
pipe in a write */

#define SHRT_MAX 32767 /* max decimal value of a short */
#define SHRT_MIN -32767 /* min decimal value of a short */
#define STD_BLK 1024 /* # bytes in a physical

I/O block */
#define SVS_NMLN 9 /* # of chars in uname-returned

strings */
#def i ne U ID_MAX 30000 /* max va 1 ue for a user or

group ID */
#define USI_MAX 4294967296 /* max decimal value of an

unsigned */
#define WORD_BIT 32 /* # of bits in a word or int */

Page 2 UP-13713

LINENUM(4)

NAME
linenum - line number entries in a common object file

SYNOPSIS
#include < linenum.h >

DESCRIPTION
The cc command generates an entry in the object file for each
C source line on which a breakpoint is possible [when invoked
with the -g option; see cc(1)]. Users can then reference line
numbers when using the appropriate software test system
[see sdb(1)]. An example structure of these line number
entries appears below.

struct lineno
{

union
{

long L symndx ;
long Lpaddr ;

} '_addr;
unsigned short '-,nno;

} ;

Numbering starts with one for each function. The initial line
number entry for a function has '-,nno equal to zero, and the
symbol table index of the function's entry is in '_symndx. Oth­
erwise, '-,nno is non-zero, and /...paddr is the physical address
of the code for the referenced line. Thus the overall structure
is the following:

, addr ,-'nno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

UP-13713 Page 1

LINENUM(4)

SEE ALSO
cc(1), sdb(1), a.out(4}.

Page 2 UP-13713

MASTER(4)

NAME
master - master configuration database

DESCRIPTION
The master configuration database is a collection of files.
Each file contains configuration information for a device or
module that may be included in the system. A file is named
with the module name to which it applies. This collection of
files is maintained in a directory called /etc/master .d. Each
individual file has an identical format. For convenience, this
collection of files will be referred to as the master file, as
though it was a single file. This will allow a reference to the
master file to be understood to mean the individual file in the
master.d directory that corresponds to the name of a device
or module. The file lS used by the mkboot(1 M) program to
obtain device information to generate th,e device driver and
configurable module files. It is also used by the sysdef(1 M)
program to obtain the names of supported devices. master
consists of two parts; they are separated by a line with a dol­
lar sign ($) in column 1. Part 1 contains device information for
both hardware and software devices, and loadable modules.
Part 2 contains parameter declarations used in part 1. Any
line with an asterisk (*) in column 1 is treated as a comment.

Part 1. Description
Hardware devices, software drivers and loadable modules can
be defined with a line containing information found in the
example below. Field 1 must begin in the left most position
on the line. Fields are separated by white space (tab or
blank). An example of a typical format for these files is shown
here.

Field 1:

UP-13713

element characteristics:
o specify only once
r required device
b block device

character device c
a generate segment descriptor

array
t
s
f

initialize cdevsw[].d _ ttys
software driver
STREAMS driver

Page 1

MASTER (4)

Field 2:

Field 3:
Field 4:

Field 5:
Field 6:

Field 7:

m STREAMS module
x not a driver; a loadable module
number The first interrupt vector for an

integral device
number of interrupt vectors required by a
hardware device: "." if none.
handler prefix (4 chars. maximum)
software driver external major number; "." if
not a software driver, or to be assigned dur·
ing execution of drvinstall(1 M)
number of sub-devices per device; "." if none
interrupt priority level of the device; 11." if
none
dependency list (optional); this is a comma
separated list of other drivers or modules
that must be present in the configuration if
this module is to be included

For each module. two classes of information are required
by mkboot(1 M): external routine references and variable
definitions. Routine and variable definition lines begin
with white space and immediately follow the initial module
specification line. These lines are free form. thus they
may be continued arbitrarily between non·blank tokens as
long as the first character of a line is white space.

Part 1. Routine Reference Lines
If the UNIX system kernel or other dependent module contains
external references to a module, but the module is not config·
ured, then these external references would be undefined.
Therefore, the routine reference lines are used to provide the
information necessary to generate appropriate dummy func·
tions at boot time when the driver is not loaded.
Example Routine references are defined as follows:

Field 1: routine name 0
Field 2: the routine type: one of

{} routine_nameO{}
{nosys}

routine _ nameO {return nosysO;}
{nodev}

routine _ nameO {return nodevO;}

. Page 2 UP·13713

{false}
routine_nameO{return a;}

{true}
routine _ nameO {return 1;}

MASTER (4)

Part 1. Variable Definition Lines
Variable definition lines are used to generate all variables
required by the module. The variable generated may be of
arbitrary size, be initialized or not, or be arrays containing an
arbitrary number of elements.
Example variable references are defined as follows:

Field 1: variable name
Field 2: [expr] - optional field used to indicate array

size
Field 3: (length) - required field indicating the size of

the variable
Field 4: = { expr,. .. } - optional field used to initialize

individual elements of a variable
The length field is mandatory. It is an arbitrary sequence of
length specifiers, each of which may be one of the following:

%i
%1
%s

an integer
a long integer
a short integer
a single character
a field which is number bytes long

%c
%number
%number c a character string which is number bytes long

For example, the length field

(%8c %1 %Ox58 %1 %c %c)

could be used to identify a variable consisting of a character
string 8-bytes long, a long integer, a Ox58 byte structure of
any type, another long integer, and two characters. Appropri­
ate alignment of each % specification is performed (%number
is word aligned) and the variable length is rounded up to the
next word boundary during processing.
The expressions for the optional array size and initialization
are infix expressions consisting of the usual operators for
addition, subtraction, multiplication, and division: +, -, *, and
/. Multiplication and division have the higher precedence, but

UP-13713 Page 3

MASTER (4)

parentheses may be used to override the default order. The
builtin functions min and max accept a pair of expressions,
and return the appropriate value. The operands of the expres­
sion may be any mixture of the following:

&name address of name where name is any symbol
defined by the kernel, any module loaded or
any variable definition line of any module
loaded

#name sizeof name where name is any variable
name defined by a variable definition for any
module loaded; the size is that of the indivi­
dual variable--not the size of an entire array

#C number of controllers present; this number is
determined by the EDT for hardware devices,
or by the number provided in the system file
for non-hardware drivers or modules

#C(name) number of controllers present for the module
name; this number is determined by the EDT
for hardware devices, or by the number pro­
vided in the system file for non-hardware
drivers or modules

#D number of devices per controller taken
directly from the current master file entry

#D(name) number of devices per controller taken
directly from the master file entry for the
module name

#M the internal major number assigned to the
current module if it is a device driver; zero of
this module is not a device driver

#M(name) the internal major number assigned to the
module name if it is a device driver: zero if
that module is not a device driver

name value of a parameter as defined in the
second part of master

number arbitrary number (octal, decimal, or hex
allowed)

string a character string enclosed within double
quotes (all of the character string conven­
tions supported by the C language are
allowed); this operand has a value which is
the address of a character array containing

Page 4 UP-13713

MASTER (4)

the specified string

When initializing a variable, one initialization expression should
be provided for each %i, %1, %s, or %c of the length field. The
only initializers allowed for a '%number c' are either a charac­
ter string (the string may not be longer than number) I or an
explicit zero. Initialization expressions must be separated by
commas, and variable initialization will proceed element by ele­
ment. Note that %number specification cannot be initialized-­
they are set to zero. Only the first element of an array can be
initialized, the other elements are set to zero. If there are
more initializers than size specifications, it is an error and exe­
cution of the mkboot (1 M) program will be aborted. If there
are fewer initializations than size specifications, zeros will be
used to pad the variable. For example:

= { "V2.L 1", #C*#D, max(10,#D), #C(OTHER), #M(OTHER)
}

would be a possible initialization of the variable whose length
field was given in the preceding example.

Part 2. Description
Parameter declarations may be used to define a value symbol­
ically. Values can be associated with identifiers and these
identifiers may be used in the variable definition lines.

Parameters are defined as follows:

Field 1:
Field 2:
Field 3:

EXAMPLE

identifier (8 characters maximum)
=
value, the value may be a number (decimal.
octal, or hex allowed), or a string

A sample master file for a tty device driver would be named
"atty" if the device appeared in the EDT as "ATTY". The driver
is a character device, the driver prefix is at, two interrupt vec­
tors are used, and the interrupt priority is 6. In addition,
another driver named "ATLOG" is necessary for the correct
operation of the software 'associated with this device.

UP-13713 Page 5

MASTER (4)

*FLAG #VEe PREFIX SOFT #DEY IPL DEPENDENCIES/VARIABLES
tca 2 at 2 6 ATLOG

atpoint()ifalseJ
at_tty [He*#D 1 (%Ox58)
at_cnt(%i) ={ He*#D }
at_logmaj(%i) ={ #M(ATLOG) }
at_id(%8c) ={ ATID J
at_table(%i%1%31%s)

$
A TI D = "fred"
ATMAX = 6

={ max(He,ATMAX),
&at_tty,
He}

This master file will cause a routine named atpoint to be gen­
erated by the boot program if the ATTY driver is not loaded,
and there is a reference to this routine from any other module
loaded. When the driver is loaded, the variables at_tty, at_ont,
at_logmaj, at_id, and at_table will be allocated and initialized
as specified. Due to the t flag, the d _ttys field in the character
device switch table will be initialized to point to at_tty (the first
variable definition line contains the variable whose address will
be stored in d _ ttys). The A TTY driver· would reference these
variables by coding:

extern struct tty at_ tty[];
extern int at_ cnt;
extern int atJogmaj;
extern char atJd[8];
extern struct {

int member1;
struct tty *member2;
char junk[31];
short member3;
} at_table;

FILES
/etc/master.d/*

Page 6 UP-13713

SEE ALSO
system{4}.

MASTER (4)

mkboot(1 M}, sysdef(1 M) in the System Administrator's Refer­
ence Manual.

UP-13713 Page 7

MASTER(4)

[This page left blank.]

PageS UP-13713

MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#inelude < mnttab.h >

DESCRIPTION
mnttab resides in directory fete and contains a table of dev­
ices, mounted by the mount (1 M) command, in the following
structure as defined by < mnttab.h > :

struct mnttab {
char

};

char
short
time t

mt_dev[32];
mt_filsys[32];
mt_ro_flg;
mt_time;

Each entry is 70 bytes in length; the first 32 bytes are the
null-padded name of the place where the special file is
mounted; the next 32 bytes represent the null-padded root
name of the mounted special file; the remaining 6 bytes con­
tain the mounted special file's read/write permissions and the
date on which it was mounted.

SEE ALSO
mount(1 M), setmnt(1 M) in the System Administrator's Refer­
ence Manual.

UP-13713 Page 1

MNTTAB(4)

[This page left blank.]

Page 2 UP-13713

PASSWD(4)

NAME
passwd - password file

DESCRIPTION
passwd contains for each user the following information:

login name
encrypted password
numerical user 10
numerical group 10
GCOS job number, box number, optional GCOS user 10
initial working directory
program to use as shell

This is an ASCII file. Each field within each user's entry is
separated from the next by a colon. The GCOS field is used
only when communicating with that system, and in other ins­
tallations can contain any desired information. Each user is
separated from the next by a new-line. If the password field is
null, no password is demanded; if the shell field is null, the
shell itself is used.

This file resides in directory letc. Because of the encrypted
passwords, it can and does have general read permission and
can be used, for example, to map numerical user IDs to
names.

The encrypted password consists of 13 characters chosen
from a 64-character alphabet (., I, 0-9, A-Z, a-z) , except when
the password is null, in which case the encrypted password is
also null. Password aging is effected for a particular user if his
encrypted password in the password file is followed by a
comma and a non-null string of characters from the above
alphabet. (Such a string must be introduced in the first
instance by the super-user.)

The first character of the age, M say, denotes the maximum
number of weeks for which a password is valid. A user who
attempts to login after his password has expired will be forced
to supply a new one. The next character, m say, denotes the
minimum period in weeks which must expire before the pass­
word may be changed. The remaining characters define the
week (counted from the beginning of 1970) when the pass­
word was last changed. (A null string is equivalent to zero.)
M and m have numerical values in the range 0-63 that

UP-13713 Page 1

PASSWI> (4)

correspond to the 64-character alphabet shown above (Le., /
= 1 week; z = 63 weeks). If m = M = 0 (derived from the
string • or .•) the user will be forced to change his password
the next time he logs in (and the "age" will disappear from his
entry in the password file). If m > M (signified, e.g., by the
string .J) only the super-user will be able to change the pass­
word.

FILES
letc/passwd

SEE ALSO
a641(3C). getpwent(3C). group(4).
login(1), passwd(1) in the User's Reference Manual.

Page 2 UP-13713

PLOT (4)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in
plot (3X) and are interpreted for various devices by commands
described in tplot(1G). A graphics file is a stream of plotting
instructions. Each instruction consists of an ASCII letter usu­
ally followed by bytes of binary information. The instructions
are executed in order. A point is designated by four bytes
representing the x and y values; each value is a signed
integer. The last designated point in an I, m, n, or p instruc­
tion becomes the "current point" for the next instruction.

Each of the following descriptions begins with the name of the
corresponding routine in plot (3X) .

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given
by the next four bytes [see tplot(1G)].

p point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four
bytes to the point given by the following four bytes.

t label: Place the following ASCII string so that its first char­
acter falls on the current point. The string is terminated by
a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the
style for drawing further lines. The styles are "dotted",
"solid" t "Iongdashed" t "shortdashed", and II dotdashed".
Effective only for the -T4014 and -Tver options of tplot(1G)
(TEKTRONIX 4014 terminal and Versatec plotter).

s space: The next four bytes give the lower left corner of
the plotting area; the following four give the upper right
corner. The plot will be magnified or reduced to fit the
device as closely as possible.

Space settings that exactly fill the plotting area with unity scal­
ing appear below for devices supported by the filters of
tplot (1 G). The upper limit is just outside the plotting area. In
every case the plotting area is taken to be square; points

UP-13713 Page 1

PLOT (4)

outside may be displayable on devices whose face is not
square~

DASI300
DASI300s
DASI450
TEKTRONIX 4014
Versatec plotter

SEE ALSO

space (0, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, A, 4096, 4096);
space (0, 0, 3120, 3120);
space(O, a, 2048, 2048);

plot(3X), gpS(4), term(5).
graph(1 G), tplot(1 G) in the User's Reference Manual.

WARNING
The plotting library plot (3X) and the curses library curses (3X)
both use the names eraseO and moveO. The curses versions
are macros. If you need both libraries, put the plot (3X) code
in a different source file than the curses (3X) code, and/ or
#undef moveO and eraseO in the plot (3X) code.

Page 2 UP-13713

PROFILE (4)

NAME
profile - setting up an environment at login time

SYNOPSIS
/ete/profile
$HOM E/ .profile

DESCRIPTION
All users who have the shell, sh(1), as their login command
have the commands in these files executed as part of their
login sequence.

/ete/profile allows the system administrator to perform ser­
vices for the entire user community. Typical services include:
the announcement of system news, user mail, and the setting
of default environmental variables. It is not unusual for
/ete/profile to execute special actions for the root login or the
su(1) command. Computers running outside the Eastern time
zone should have the line

. /etc/TIMEZONE

included early in /ete/profile (see ·timezone(4)).

The file $HOME/.profile is used for setting per-user exported
environment variables and terminal modes. The following
example is typical (except for the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 027
Tell me when new mail comes in
MAIL = lusr/mail/$LOGNAME
Add my Ibin directory to the shell search sequence
PATH = $PATH:$HOME/bin
Set terminal type
while:
do echo "terminal: \c"

read TERM
if [-1 ${TERMINFO:-/usr/lib/terminfo}/?/$TERM]
then break

UP-13713

elif [-1 /usr/lib/terminfo/?/$TERM]
then break

Page 1

PR()FILE(4)

done

else echo "invalid term $TERMII 1 > &2
fi

Initialize the terminal and set tabs
The environmental variable TERM must have been exported
before the lit put initll command is executed.
tput init
Set the erase character to backspace
stty erase'" H' echoe

FILES
letc/TIMEZONE
$HOME/.profile
letc/profile

SEE ALSO

timezone environment
user-specific environment
system-wide environment

terminfo(4), timezone(4), environ(5), term(5).
env(1), login(1), mail(1), sh(1), stty(1), su(1), tput(1) in the
User's Reference Manual.
su(1 M) in the System Administrator's Reference Manual.
User's Guide.
Chapter 10 in the Programmer's Guide.

NOTES
Care must be taken in providing system-wide services in
letclprofile. Personal .profile files are better for serving all but
the most global needs.

Page 2 UP-13713

PRSETUP(4)

NAME
/usr /spool/lp/prsetup

DESCRIPTION
I1p(l) (international printer spooler) uses the international char­
acter set associated with a specific printer. The association
between a printer and its character set is specified in
/usr /spool/lp/prsetup.

INSERTING ENTRIES IN PRSETUP
Each entry in prsetup is a line with three fields, separated by
spaces or tabs. The first field is the logical printer name (e.g.,
prl). The second field is the printer model number (e.g., 031
for a Model 31 printer). The third field is the international
character set (e.g., SPANISH).

Character Sets Supported
The following European character sets are supported:

BRITISH
CANADIAN
DANISH
DUTCH
FINNISH
FLEMISH
FRENCH-BELGIAN
GERMAN

Models

ITALIAN
NORTH
NORWEGIAN
SPANISH
SWEDISH
SWISS (FRENCH)
SWISS (GERMAN)

Supported entries for printer model are noted in the "printer
model" column below:

Printer Model Menu/lpadmin Model Name

258 ssp25 or spp25
25C ssp25 or spp25
031 ssp31
035 ssp35 or spp35
037 ssp37 or spp37
047 ssp47 or ssp47hs
105 sspl05 or sppl05
115 sspl15 or sppl15
789 ssp789

UP-137l3 Page 1

PRSETUP(4)

EXAMPLE
To associate the Spanish character set with a Model 31 printer
known logically as pr1, place the following line in
/usr /spool/I p/ prsetu p:

SEE ALSO
ilp(1).

Page 2

pr1 031 SPANISH

UP-13713

RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#include < reloc.h >

DESCRIPTION
Object files have one relocation entry for each relocatable
reference in the text or data. The following is an example of
the possible format if relocation information is present.

struct reloc
{

long r_vaddr; (virtual) address of ref * /
long r_symndx' index into symbol table "* /
ushort relocation */

} .

0
#define R_DIR32 06
#define 012

As the link editor reads each input section and relo-
the relocation entries are read. direct how refer-

ences found within the input section are treated.

DIR32

The reference is absolute and no relocation
is necessary. The will be

A direct 32-bit reference to the
virtual address.

A direct 32-bit reference to the C'urY'lI"\,I"\"C'

virtual with the 32-bit value stored
in the reverse order in the file.

More relocation exist for other processors.
relocation on different processors have values and

New relocation will be defined new
are needed.

Relocation entries are 0' ... 01"-:>'1'.0'1'"1

bier and
J"\n1~iJ"\""C' exist for both nr"'.C'o.·'''n, '"':,,-.,"'''',...,... the relocation
entries from files.

UP-13713 Page 1

RELOC(4)

SEE ALSO
as(1), Id(1). a.out{4}, symS(4).

Page 2 UP-13713

NAME
rfmaster Remote File ~h':, .. i..-,,... name server master file

DESCRIPTION

name

RFMASTER(4)

start Remote File Sharing, this file is read to determine the
address of the primary. If rfmaster is missing, the -p option
of rfstart must be used to identify the primary. After that, a
copy of the primary's rfmaster file is automatically placed on
the machine.

Domains not served by the primary can also be listed in the
rfmaster file. By adding primary, secondary, and address
information for other domains on a network, machines served
by the primary will be able to share resources with machines
in other domains.

A primary name server may be a primary for more than one
domain. However, the secondaries must then also be the
same for each domain served by the primary.

Example
An exampJe of an rfmaster file is shown below. (The network
address examples, comp1.serve and comp2.serve, are STAR­
LAN network addresses.)

ccs p ccs.comp1
ccs s ccs.comp2
ccs.comp2 a comp2.serve
ccs.comp1 a comp1.serve

NOTE: If a line in the rfmaster file begins with a # character,
the entire line will be treated as a comment.

FILES
/usr /nserve/rfmaster

SEE ALSO
rfstart{1 M) in the """'TArn Administrator's Reference Manual.

2

SCCSFILE(4)

NAME
sccsfile - format of SCCS file

OESCRIPTION
An SCCS (Source Code Control System) file is an ASCII file. It
consists of six logical parts: the checksum I the delta table
(contains information about each delta) I user names (contains
login names and/or numerical group IDs of users who may
add deltas), flags (contains definitions of internal keywords),
comments (contains arbitrary descriptive information about
the file), and the body (contains the actual text lines inter­
mixed with control lines).

Throughout an SCCS file there are lines which begin with the
ASCII SOH (start of heading) character (octal 001). This char­
acter is hereafter referred to as the control character and will
be represented graphically as @. Any line described below
which is not depicted as beginning with the control character
is prevented from beginning with the control character.

Entries of the form 00000 represent a five-digit string (a
number between 00000 and 99999).

Each logical part of an file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The form
of the line is:

@hOOOOO

The value of the checksum is the sum of all characters,
except those of the first line. The @h provides a magic
number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of
the form:

@s 00000/00000/00000
@d <type> <SCCS 10> yr/mo/da hr:mi:se

<pgmr> 00000 00000
@i 00000 .. .
@xOOOOO .. .
@g 00000 .. .
@m <MR number>

UP-13713 Page 1

SCCSFILE(4)

@c < comments>

@e

The

'"'Y'\'T',rt ",. text

Page 2 UP-13713

SCCSFILE(4)

The following flags are defined:
@f t < type of program>
@f v < program name>
@f i < keyword string>
@fb
@f m < module name>
@f f <floor>
@f c < ceiling>
@f d < default-sid>
@fn
@f j
@f I < lock-releases>
@f q < user defined>
@f z < reserved for use in interfaces>

The t flag defines the replacement for the % V% identifica­
tion keyword. The v flag controls prompting for MR
numbers in addition to comments; if the optional text is
present it defines an MR number validity checking pro­
gram. The i flag controls the warning/error aspect of the
"No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is
present, this message will cause a "fatal" error (the file
will not be gotten, or the delta will not be made). When
the b flag is present the ·b keyletter may be used on the
get command to cause a branch in the delta tree. The m
flag defines the first choice for the replacement text of
the %M% identification keyword. The f flag defines the
"floor" release; the release below which no deltas may be
added. The c flag defines the "ceiling" release; the
release above which no deltas may be added. The d flag
defines the default SID to be used when none is specified
on a get command. The n flag causes delta to insert a
"null" delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new
release when delta 5.1 is made after delta
releases 3 and 4 are The absence of the n

SKIIJD€!a releases to be The j
to allow concurrent edits of the same

defines a list of releases that are
with the De The

re~)la(~ernellt for the %0% identification

UP-13713 Page 3

SCCSFILE(4)

keyword. The z flag is used in certain specialized inter­
face programs. Comments Arbitrary text is surrounded
by the bracketing lines and The comments sec­
tion typically will contain a description of the file's pur­
pose.

Body
The body consists of text lines and control lines. Text
lines do not begin with the control character, control lines
do. There are three kinds of control lines: insert, delete,
and end, represented by:

@IDDDDD
@D 00000
@EDDDDD

respectively. The digit string is the serial number
corresponding to the delta for the control line.

SEE ALSO
admin(1), delta(1), get(1). prs(1).

4

SCNHDR(4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
#include < scnhdr.h >

DESCRIPTION
Every common object file has a table of section headers to
specify the layout of the data within the file. Each section
within an object file has its own header. An example C struc­
ture appears below.

struct scnhdr

char s_name[SYMNMLEN];

long
long
long
long
long

long

unsigned short
short

long
J ;

s-paddr;
s_vaddr;
s_size;
s_scnptr;
s_relptr;

s_lnnoptr;

s_nreloc;
s_nlnno;
s_fl ags;

/* section name
physical address
virtual address
section size
file ptr to raw data
file ptr to reloca­
tion
fi le ptr to 1 ine
numbers */
reloc entries
line number entries
flags

File are offsets into the can be used as
the offset in a call to Idfcn
tialized, the file contains the actual
tion is somewhat different. It has a defined in it,
and symbols that refer to it. But it can have no relocation
entries, line numbers, or data. Consequently, an uninitialized
section has no raw data in the object file, and the values for
s _ scnptr I s _relptr, s -,nnoptr, s _ nreloc I and are zero.

SEE ALSO
Id(1), fseek(3S), a.out(4).

Page 1

SCNHDR(4)

[This page left blank.]

Page 2 UP-13713

NAME
scr _dump - format of curses screen image file.

SYNOPSIS
scr _ dump(file)

DESCRIPTION
The curses (3X) function scr _ dump 0 will copy the contents of
the screen into a file. The format of the screen image is as
described below.

The name of the tty is 20 characters long and the modification
time (the mtime of the tty that this is an image of) is of the
type time _t. All other numbers and characters are stored as
chtype (see < curses.h >). No newlines are stored between
fields.

< magic number: octal 0433 >
< name of tty>
< mod time of tty>
< columns> < lines>
< line length> < chars in line>

for each line on the screen
< line length> < chars in line>

<labels?> 1
if soft screen labels are present

< cursor row> < cursor column>

Only as many characters as are in a line will be listed. For
example, if the < line length> is 0, there will be no characters
following < line length>. If < labels? > is TRUE, following it
will be

UP-13713

< number of labels>
< label width>
< chars in label 1 >
. < chars in label 2 >

Page 1

SEE ALSO
curses(3X) .

2 UP-13713

SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include < syms.h >

DESCRIPTION
Common object files contain information to support symbolic
software testing [see sdb (1)]. Line number entries, line­
num (4) I and extensive symbolic information permit testing at
the C source level. Every object file's symbol table is organ­
ized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The
members of the structure hold the name (null padded) I its
value, and other information. An example C structure is given
below.

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

struct syment

UP-13713 Page 1

SYMS(4)

union

char
struct

long

long

J _n_n;
char

J _n;
long

/* to get symbol name */

_n_name [SYMN-iLEN]; /* symbo 1 name * /

_n_zeroes;

_n_offset;

/* == OL when in string
table */
/* location of name in
table */

_n_nptr[2]; / allows overlaying */

n_value;
short n_scnum;

/* value of symbol */
/* section number */

unsigned short n_type;

I;

char
char

Hdefine n_name

n_sclass;
n_numaux;

/* type and derived type */
/* storage class */
/* number of aux entries */

Hdefine n_zeroes _n._n_n._n_zeroes
Hdefine n_offset _n._n_n._n_offset
Hdefine n_nptr _n._n_nptr[1J

Meaningful values and explanations for them are given in both
syms.h and Common Object File Format. Anyone who needs
to interpret the entries should seek more information in these
sources. Some symbols require more information than a sin­
gle entry; they are followed by auxiliary entries that are the
same size as a symbol entry. The format follows.

union auxent

struct

long
union

struct

x_tagndx;

unsigned short x_lnno;
unsigned short x_size;

Page 2 UP-13713

I;

struet

1 x_lnsz;
long x_fsize;

x_mise;
union

struet

struet

long x_lnnoptr;
long x_endndx;
x_fen;

SYMS(4)

unsigned short x_dimen[OIMNUM];
x_ary;
x_fenary;

unsigned short x_tvndx;
x_sym;

ehar x_fname[FILNMlEN];
x_file;

struet

struet

long x_sen 1 en;
unsigned short x_nreloe;
unsigned short x_nlinno;
x_sen;

long
unsigned short x_tv 1 en;
unsigned short x_tvran[2];
x_tv;

Indexes of symbol table entries begin at zero.

SEE ALSO
sdb(1), a.out(4), Iinenum{4}.
"Gommon Object File Format" in the Programming Guide.

UP-13713 Page 3

SYMS(4)

WARNINGS
On machines on which ints are equivalent to longs, all longs
have their type changed to into Thus the information about
which symbols are declared as longs and which, as ints, does
not show up in the symbol table.

Page 4 UP-13713

SYSTEM (4)

NAME
system - system configuration information table

DESCRIPTION
This file is used by the boot program to obtain configuration
information that cannot be obtained from the equipped device
table (EDl) at system boot time. This file generally contains a
list of software drivers to include in the load, the assignment
of system devices such as pipedev and swapdev, as well as
instructions for manually overriding the drivers selected by the
self-configuring boot process.

The syntax of the system file is given below. The parser for
the fete/system file is case sensitive. All upper case strings in
the syntax below should be upper case in the Jete/system file
as well. Nonterminal symbols are enclosed in angle brackets
II < > II while optional arguments are enclosed in square brack­
ets II[]". Ellipses " ... " indicate optional repetition of the argu­
ment for that line.

<fname> ::= pathname

<string> ::= driver file name from /boot or EDT entry name

<device> ::= special device name: DEV«major>,<minor»

<major> ::= <number>

<minor> ::= <number>

<number> ::= decimal, octal or hex literal

The lines listed below may appear in any order. Blank lines
may be inserted at any point. Comment lines must begin with
an asterisk. Entries for EXCLUDE and INCLUDE are cumula­
tive. For all other entries, the last line to appear in the file is
used -- any earlier entries are ignored.

BOOT: < fname >
specifies the kernel a.out file to be booted.

EXCLUDE: [< string>] ...

UP·13713

specifies drivers to exclude from the load
even if the device is found in the EDT.

Page 1

SYSTEM (4)

INCLUDE: [< string> [(< number>)]] ...

PIPEDEV:

FILES
/etc/system

SEE ALSO
master{4}.

specifies software drivers or loadable
modules to be in the load. This is
necessary to include the drivers for software

The number
"' ''' i~·.''',.. the number

This number ",""~""".",,",,,.,-I,..
the builtin variable #c which may
referred to
jete/master file.
device
identifies the device /"'I"'\, .. +.::.;;,..i.."

device> number
identifies the
space, the block
starts and
available.

device

number
to be

identifies the device to be used
space.

crash(1 M) in the System Administrator's Reference Manual.

Page 2 UP-13713

TERM (4)

NAME
term - format of compiled term file.

SYNOPSIS
/usr /lib/terminfo/? /*

DESCRIPTION
Compiled terminfo(4) descriptions are placed under the direc­
tory /usr/lib/terminfo. In order to avoid a linear search of a
huge UNIX system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the termi­
nal, and c is the first character of name. Thus, att4425 can be
found in the file /usr/lib/terminfo/a/att4425. Synonyms for the
same terminal are implemented by multiple links to the same
compiled file.

The format has been chosen so that it will be the same on all
hardware. An a-bit byte is assumed, but no assumptions
about byte ordering or sign extension are made. Thus, these
binary terminfo(4) files can be transported to other hardware
with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte
contains the least significant 8 bits of the value, and the
second byte contains the most significant a bits. (Thus, the
value represented is 256*second + first.) The value -1 is
represented by 0377,0377, and the value -2 is represented by
0376,0377; other negative values are illegal. Computers
where this does not correspond to the hardware read the
integers as two bytes and compute the result, making the
compiled entries portable between machine types. The -1
generally means that a capability is missing from this terminal.
The .. 2 means that the capability has been cancelled in the ter­
minfo (4) source and also is to be considered missing.

The compiled file is created from the source file descriptions
of the terminals (see the -I option of infocmp (1 M)) by using
the terminfo (4) compiler, tic (1 M) I and read by the routine
setuptermO. (See curses (3X).) The file is divided into six
parts: the header I terminal names, boolean flags, numbers,
strings, and string table.

The header section begins the file. This section contains six
short integers in the format described below. These integers
are (1) the magic number (octal 0432); (2) the size, in bytes,

UP-13713 Page 1

TERM (4)

of the names section; (3) the number of bytes in the boolean
section; (4) the number of short integers in the numbers sec­
tion; (5) the number of offsets (short integers) in the strings
section; (6) the size, in bytes, of the string table.

The terminal names section comes next. It contains the first
line of the terminfo (4) description, listing the various names for
the terminal, separated by the bar (:) character (see
term (5)). The section is terminated with an ASCII NUL charac­
ter.

The boolean flags have one byte for each flag. This byte is
either 0 or 1 as the flag is present or absent. The value of 2
means that the flag has been cancelled. The capabilities are
in the same order as the file < term.h > .

Between the boolean section and the number section, a null
byte will be inserted, if necessary, to ensure that the number
section begins on an even byte. All short integers are aligned
on a short word boundary.

The numbers section is similar to the boolean flags section.
Each capability takes up two bytes, and is stored as a short
integer. If the value represented is .. 1 or -2, the capability is
taken to be missing.

The strings section is also similar. Each capability is stored as
a short integer, in the format above. A value of ·1 or ·2
means the capability is missing. Otherwise, the value is taken
as an offset from the beginning of the string table. Special
characters in "X or \c notation are stored in their interpreted
form, not the printing representation. Padding information
($ < nn » and parameter information (%x) are stored intact in
uninterpreted form.

The final section is the string table. It contains all the values
of string capabilities referenced in the string section. Each
string is null terminated.

Note that it is possible for setuptermO to expect a different
set of capabilities than are actually present in the file. Either
the database may have been updated since setuptermO has
been recompiled (resulting in extra unrecognized entries in the

or the program may have been recompiled more recently
than the database was updated in missing entries).
The routine must be prepared for both

2 UP-13713

TERM (4)

possibilities - this is why the numbers and sizes are included.
Also, new capabilities must always be added at the end of the
lists of boolean, number, and string capabilities.

As an example, an octal dump of the description for the AT&T
Model 37 KSR is included:

37:tty37:AT&T model 37 teletype,
hc, os, xon,
bel=AG1 cr=\r, cubl=\b, cudl=\n, cuul=\E7, hd=\E9,
hu=\E8, ind=\n,

00000oo 032 001 \0 032 \0 013 \0 021 001 3 \0
0000020 t Y 3 7 A T & T m 0

()()()()()4() 3 7 t e 1 e t y P e \0
0000060 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 001

3 7 t
d e 1

\0 \0 \0 \0
\0 \0 \0 \0

0000100 001 \0 \0 \0 \0 \0 377 377 377 377 377 377 377 377 377 377
0000120 377 377 377 377 377 377 377 377 377 377 377 371 377 377 & \0
0000140 \0 377 377 377 377 377 377 377 377 377 377 377 377 317 377
0000160 377 377 "\0 377 377 377 377 (\0 377 377 377 377 377 377
0000200 377 377 0 \0 377 377 377 377 377 377 377 377 \0 377 377
0000220 377 377 377 377 377 377 317 377 377 317 311 371 377 377 317 377

'*
0000520 377 377 377 377 377 371 377 317 317 371 377 377 377 317 $ \0
0000540 317 377 377 377 317 377 317 371 377 377 377 377 377 377 '* \0
0000560 377 377 377 377 377 377 377 377 377 377 377 377 377 377 371 377

'*
0001160 317 377 377 377 377 377 377 377 377 377 377 377 377 377 3
0001200 t t Y 3 7 A T & T m 0 d

0001220 3 7 t e 1 e t y P e \0 \r
0001240 \n \0 \n \0007 \0 \b \0 033 8 \0 033 9 \0 033
0001260 \0 \0
0001261

7
e

\0
7

Some limitations: total compiled entries cannot exceed 4096
bytes; all entries in the name field cannot exceed 128 bytes.

FILES
/usr/lib/terminfo/?/'* compiled terminal description data-
base
/usr/inciude/term.h terminfo(4) header file

UP-13713 Page 3

TERM (4)

SEE ALSO
curses(3X). terminfo(4), term(5).
infocmp(1 M) in the Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

Page 4 UP-13713

TERM INFO (4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr /Ii b/terminfo/? /*

DESCRIPTION
terminfo is a compiled database (see tic(1 M)) describing the
capabilities of terminals. Terminals are described in terminfo
source descriptions by giving a set of capabilities which they
have, by describing how operations are performed, by
describing padding requirements, and by specifying initializa­
tion sequences. This database is used by applications pro­
grams, such as vi{1} and curses (3X), so they can work with a
variety of terminals without changes to the programs. To
obtain the source description for a terminal, use the -1 option
of infocmp (1 M).

Entries in terminfo source files consist of a number of
fields. White space after each comma is

The first line of each terminal in the ter-
the name which terminfo knows the

bar () characters. The first name
given is the most common abbreviation for the terminal (this is
the one to use to set the environment variable TERM in

see profile(4)). the last name given should be
a long name fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All names
but the last should contain no blanks and must be unique in
the first 14 characters; the last name may contain blanks for
readability.

Terminal names (except for the last, verbose entry) should be
chosen using the following conventions. The particular piece
of hardware making up the terminal should have a root name
chosen, for example, for the AT&T 4425 terminal, att4425.
Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator
of the mode. term (5) for examples and more information
on choosing names and synonyms.

CAPABILITIES
In the table the Variable is the name which the C
programmer accesses the
The is the short name for this variable used in the

UP-13713 Page 1

TERMINF() (4)

text of the database. It is used by a person updating the
database and the tput(1) command when asking what the
value c of the capability is for a terminal. The

CoII"B.",.,..~n Code is a two-letter code that to the
to.J1'n'!r-::::.n capalJiilitv name.

names have no hard but an informal
limit of 5 characters has been to them short.
Whenever names are chosen to be the same
similar to the ANSI X3.64-1979 standard. are also
intended match those of the C't"\,~,....i1Fi,......,.+i >

All CaIDa[)IIIl:leS listed below may have n~,nnlinn SPleClne~J.
ex(~e[)tla~n of those used for

listed under the
names with
appear at the end of the

indicates that the

indicators
lCo~:;''''.·in1ti.nn for a variable.

parameters (parms) as
with

indicates that padding may be based on the number of
lines affected.

(#j) indicates the jth parameter.

Variable

Booleans

has_meta _key
has_status _line
insert _null_glitch
memory_above
memory_below
move _insert_mode

Page 2

Cap-
name

bw
am
xsb
xhp
xenl
eo
gn
he
chts
km
hs
in
da
db
mir
msgr
nxon
nrrmc
npc

Term-
cap
Code

bw
am

Xl>

eo
gn
he
HC
km
hs
in
da
db
mi
ms
nx
NR
NP

Deacrlptlon

cub1 wraps from column 0 to last column
Terminal has automatic margins
Beehive (11 = escape, f2 = ctrl C)
Standout not erased by overwriting (hpj
Newline ignored after 80 cols Concept
Can erase overstrikes with a blank
Generic line type (e.g. dialup, switch).
Hardcopy terminal
Cursor is hard to see.
Has a meta key (shift, sets parity bit)

Has extra "status line"
Insert mode distinguishes nulls
Display may be retalned above the screen
Display may be retalned below the screen
Safe to move while in insert mode
Safe to move in standout modes
Padding won't work, xonlxoff required
amcl.lp does not reverse rmcup
Pad character doesn't exist

UP-13713

over_strike
prtr_silent
status_line_esc ok
dest _ tabs_magic _ smso
tilde_glitch
transparent_underline
xoo_xoff

Numbers:
columns
init_tabs
label_height
label_width
lines
lines_of_memory
magic_cookie _glitch
num_labels
padding_baud_fate
virtual_terminal
width_status _line

bell
carriage_return
change _scroll_region
char -PRdding
clear _ ail_tabs
clear_margins
clear_screen
e1r_bol

clr_eos
column_address
command_character
cursor_address
cursor_down
cursor_home
cursor_invisible
cursor_left

cursor_normal
cursor_right

cursor_to _"
cursor_up
cursor_visible
delete_character

dis_status _line
down_half_line

UP-13713

os
mc5i
eslok
xt

hz
ul
xon

os
5i
es
xt

hz

ul
xo

cols co
it it
Ih Ih
Iw Iw
lines
1m 1m
xmc sg
nlab NI
pb pb
vt vt
wsl ws

aese ac
cbt bt
bel bI
cr cr
csr os
rmp rP
tbc ct
mgc MC
clear cI
eli cb
el ce
ad cd
hpa ch
cmdch CC
cup em
0001 do
home he
eMs vi
cub1 Ie
mrcup CM
cnorm ve
cuf1 nd

cuu1 up
cwis vs
dch1 de
dl1 dl
dsI ds
hd hd

TERMINFO(4)

Terminal overstrikes 00 hard-copy terminal
Printer woo't echo 00 screen.
Escape can be used on the status line
Destructive tabs, magic ISmso char (t1 061)
Hazeltine; can't print tildes(-)
Underline character overstrikes
Terminal uses xonlxoff handshaking

Number of columns in a line
Tabs initially every # spaces.
Number of rows in each label
Number of cols in each label
Number of lines on screen or page
Lines of memory if > lines ; 0 means varies
Number blank chars left by smso or mIlO
Number of labels 00 screen (start at 1)
lowest baud rate where padding needed
Virtual terminal number (UNIX system)
Numbar of columns in status line

Graphic charset pairs aAbBcC - def = vt100 +
Back tab
Audible signal (bell)
Carriage return (*)

Change to lines #1 thru #2 (vt100) (G)
like Ip but when in replace mode
Clear all tab stops
Clear left and right soft margins
Clear screen and home cursor (*)
Clear to beginning of line, inclusive
Clear to end of line
Clear to end of display (*)
Horizontal position absolute (G)
Term. settable cmd char in prototype
Cursor motion to row #1 col #2 (G)
Down one Une
Home cursor (if no cup)
Make cursor invisible
Move cursor left one space.
Memory relative cursor addressing (G)
Make cursor appaar normal (undo vs/vl)
Non-destructive space (cursor right)
Last Une, first column (if no cup)
UpUne (cursor up)
Make cursor very visible
Delete character (*)
Delete line (0)
Disable status Rne
HaIf-Une down (forward 1/2 linefeed)

Page 3

TERMINF() (4)

ena_acs enacs eA Enable alternate char set
enter _ alt_ charset mode smacs as Start a1temate character set
enter_am_mode smam SA Tum on automatic margins
enter _ blink_mode blink mb Tum on blinking
enter_bold _mode bold md Tum on bold (extra bright) mode
enter_ C8_ mode smcup ti String to begin programs that use cup
enter _delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Tum on half-bright mode
enter_Insert_mode smir im Insert mode (enter);
enter --P"Otected _mode prot mp Tum on protected mode
enter_ reverse_mode rav mr Tum on reverse video mode
enter _secura_ mode invis mk Tum on blank mode (chars invisible)
enter _standout_mode smso so Begin standout mode
enter_underline_mode smul us Start underscore mode
enter_ xon_mode smxon SX Tum on xonlxoff handshaking
erase_chars ech ec Erase #1 characters (G)
exit_ a1t_ charset_ mode rmacs ae End alternate character set
exit_ am_mode rmam RA Tum off automatic margins
exiL attribute_mode sgrO me Tum off all attributes
exit_C8_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_insert_ mode rmir ei End insert mode;
exit_ standout_mode rmso se End standout mode
exit_underline_mode rmul ue End underscore mode
eXiL xon _ mode rmxon RX Tum off xon/xoff handshaking
flash_screen flash vb Visible bell (may not move cursor)
form_feed ff ff Hardcopy terminal page eject (e)
from_ status_line isl fs Retum from status Nne
iniL 1 string lsi i1 Terminal initialization string
init_2strIng i52 is Terminal initialization string
init _ 3strIng !53 i3 Terminal iniliallzation string
init_file if if Name of initialization lile containing is

initJrog iprog iP Path name of program for init.
insert_character ich1 ic Insert character
insert_Hne iii aI Add new blank Hne (0)

insertJadding ip ip Insert pad after character inserted (*)
key_a1 ka1 K1 KEY _ A 1, 0534, Upper left of keypad
key_53 ka3 K3 KEY _A3, 0535, Upper right of keypad
key_b2 kb2 K2 KEY _B2, 0536, Center of keypad
key_backspace kbs kb KEY_BACKSPACE, 0407, Sent by backspace key
key_beg kbeg @1 KEY_BEG, 0542, Sent by beg(inning) key
key_btab kcbt kB KEY_BTAB, 0541, Sent by back-tab key
key_C1 kc1 K4 KEY_C1, 0537, Lower left of keypad
key_c3 kc3 K5 KEY _ ca, 0540, Lower right of keypad
key_cancel kcan @2 KEY_CANCEl, 0543, Sent by cancel key
key_catab ktbc ka KEY_CATAB, 0526, Sent by clear-all-tabs key
key_clear kclr kC KEY_CLEAR, 0515, Sent by clear-screen or erase key
key_close kclo @3 KEY_CLOSE, 0544, Sent by close key
key_command kcmd @4 KEY_COMMAND, 0545, Sent by cmd (command) key

key_copy kcpy @5 KEY_COPY, 0546, Sent by copy key

key_create kcrt @6 KEY_CREATE. 0547, Sent by create key
key_ctab kctab kt KEY_CTAB. 0525. Sent by clear-tab key

Page 4 UP-13713

TERMINF() (4)

key_de kdeh1 kD KEY_DC, 0512, Sent by delete-character key
key_dl kdl1 kl KEY _ Dl, 0510, Sent by delete-line key
key_down kcud1 kd KEY_DOWN, 0402, Sent by terminal down-arrow key
key_eic krmir kM KEY _EIC, 0514, Sent by rmlr or ImIlr in insert mode
key_end kend @7 KEY_END, 0550, Sent by end key
key_enter kent @8 KEY_ENTER, 0527, Sent by enter/send key
keY_601 kel kE KEY_EOL, 0517, Sent by clear-to-end-of-line key

keY_60s ked kS KEY_EOS. 0516, Sent by clear-to-end-of-screen key
key_exit kext @9 KEY_EXIT, 0551, Sent by exit key
key_to kfO kO KEY _F(O), 0410, Sent by function key to
key_f1 kf1 k1 KEY_F(1}, 0411, Sent by function key f1
key_12 kf2 k2 KEY _F(2), 0412, Sent by function key 12
key_13 kf3 k3 KEY _F(3l, 0413, Sent by function key 13
key_f4 kf4 k4 KEY _F(4), 0414, Sent by function key f4

key_'5 kf5 k5 KEY_F(5), 0415, Sent by function key f5
key_ffi kf6 k6 KEY _F(6), 0416, Sent by function key f6
key_17 kf7 k7 KEY _F(7), 0417, Sent by function key 17
key_fB kf6 k8 KEY _F(8), 0420, Sent by function key f8
key_f9 kf9 k9 KEY _F(B), 0421, Sent by function key f9
key_fi0 kfi0 k; KEY _F(1 0), 0422, Sent by function key 110
key_f11 kf11 F1 KEY_F(11), 0423, Sent by function key f11
key_f12 kf12 F2 KEY _F(12), 0424, Sent by function key f12
key_fi3 kf13 F3 KEY _F(13), 0425. Sent by function key 113
key_f14 kf14 F4 KEY_F(14), 0426, Sent by function key f14
key_fiS kf15 F5 KEY _F(15), 0427, Sent by function key f15
key_f16 kfi6 F6 KEY _F(16), 0430, Sent by function key f16
key_f17 kf17 F7 KEY _F(17}, 0431, Sent by function key 117
key_f18 kfi8 F8 KEY _F(18), 0432, Sent by function key f18
key_f19 kfi9 F9 KEY _F(19), 0433, Sent by function key f19
key_f20 kf20 FA KEY _F(2O), 0434, Sent by function key 120
key_121 kf21 FB KEY _F(21), 0435, Sent by function key 121
key_122 kf22 FC KEY _F(22), 0436, Sent by function key 122
key_123 kf23 FD KEY _F(23), 0437, Sent by function key 123
key_124 kf24 FE KEY _F(24), 0440, Sent by function key 124
key_125 kf25 FF KEY _F(25), 0441, Sent by function key 125
key_126 kf26 FG KEY _F(26), 0442, Sent by function key 126
key_127 kf27 FH KEY _F(27), 0443, Sent by function key 127
key_128 kf28 FI KEY _F(28), 0444, Sent by function key 128
key_129 kf29 FJ KEY _F(29), 0445, Sent by function key 129
key_130 kf30 FK KEY _F(30), 0446, Sent by function key 130
key_131 kf31 Fl KEY _F(31). 0447, Sent by function key 131
key_132 kf32 FM KEY _F(32), 0450, Sent by function key 132
key_f33 kf33 FN KEY _F(13), 0451, Sent by function key f13
key_134 kf34 FO KEY _F(34), 0452, Sent by function key 134
key_135 kf35 FP KEY _F(35), 0453, Sent by function key 135
key_136 kf36 FQ KEY _F(36), 0454, Sent by function key 136
key_137 kf37 FR KEY _F(37), 0455, Sent by function key 137
key 138 kf38 FS KEY _F(38), 0456, Sent by function key 138
key_139 kf39 FT KEY _F(39), 0457, Sent by function key 139

UP-13713 Page 5

TERMINF()(4)

key_f40 kf40 FU KEY_F(4O), 0460, Sent by function key f40
key f41 kf41 FV KEY_F(41}, 0461, Sent by function key f41
key_f42 kf42 FW KEY _F(42), 0462, Sent by function key f42
key_f43 kf43 FX KEY _F(43), 0463, Sent by function key f43
key_f44 kf44 FY KEY _F(44), 0464, Sent by function key f44
key_f45 kf45 FZ KEY _F(45), 0465, Sent by function key f45
key_f46 kf46 Fa KEY _F(46), 0466, Sent by function key f46
key_f47 kf47 Fb KEY _F(47), 0467, Sent by function key f47
key_f46 kf48 Fe KEY _F(48), 0470, Sent by function key f48
key_f49 kf49 Fd KEY _F(49), 0471, Sent by function key f49
key_ISO kf50 Fe KEY _F(SO), 0472, Sent by function key fSO
key_151 1dS1 Ff KEY _F(51), 0473, Sent by function key 151
key_152 kf52 Fg KEY _F(52), 0474, Sent by function key f52
key_153 kf53 Fh KEY _F(53), 0475, Sent by function key 153
keyf54 kf54 R KEY _F(54), 0476, Sent by function key f54
key_f55 kf55 Fj KEY _F(55), 04n, Sent by function key f55

key_f56 kf56 Fk KEY _F(56), 0500, Sent by function key f56
key_157 1dS7 FI KEY _F(57), 0501, Sent by function key f57
keyf56 kf56 Fm KEY _F(56), 0502, Sent by function key f56
key_f59 kf59 Fn KEY _F(59), 0503, Sent by function key f59
key_too kf60 Fa KEY _F(60), 0504, Sent by function key too
key_f61 kf61 Fp KEY _F(61). 0505, Sent by function key f61
key_f62 kf62 Fq KEY _F(62), 0506, Sent by function key f62
key_f63 kf63 Fr KEY _F(63), OS07, Sent by function key f63
key_find kfnd @O KEY_FIND, 0552, Sent by find key
key_help khlp %1 KEY_HELP, 0553, Sent by help key
key_home khome kh KEY_HOME, 0406, Sent by home key
key_ic kich1 kl KEY _IC, 0513, Sent by ins-char/enter ins-mode key
key_iI kill leA KEY_II., 0511, Sent by insert-line key
key_left kcub1 kl KEY_LEFT, 0404, Sent by terminal left-arrow key
key_II til kH KEY _LL. 0533, Sent by home-down key
key_mark kmrk %2 KEY_MARK, 0554, Sent by mark key
key_message kmsg %3 KEY_MESSAGE, 0555, Sent by message key
key_move kmov %4 KEY_MOVE, 0556, Sent by move key
key_next knxt %5 KEY_NEXT, 0551, Sent by next-object key
key_npage knp kN KEY _NPAGE, 0522, Sent by next-page key
key_open kopn %6 KEY_OPEN, 0560, Sent by open key
key_options kopt %1 KEY_OPTIONS, 0561, Sent by options key
keyJPIIge kpp kP KEY_PPAGE, 0523, Sent by previous-page key

key Jrevious kprv %8 KEY_PREVIOUS, 0562, Sent by previoua-object key
keyJrint kprt %9 KEY_PRINT, 0532, Sent by print or copy key
key redo !erdo %0 KEY_REDO, 0563. Sent by redo key
key_reference kref &1 KEY_REFERENCE, 0564. Sent by ref(erence) key
key refresh km &2 KEY_REFRESH, 0565, Sent by refresh key
key_replace krpI &3 KEY_REPLACE, 0565, Sent by replace key
key restart krat &4 KEY_RESTART, 0567, Sent by restart key
key_resume kres &5 KEY_RESUME, 0510, Sent by resume key
key_right kcuf1 kr KEY_RIGHT, 0405, Sent by terminal right-arrow key

Page 6 UP-13713

TERMINFO(4)

key_save ksav &6 KEY_SAVE, OS71, Sent by save key
key_sbeg kBEG &9 KEY _ SBEG, OS72, Sent by shifted beginning key
key_seancel kCAN &0 KEY _ SCANCEL, OS73, Sent by shifted cancel key
key_ scommand kCMD *1 KEY_SCOMMAND, OS74, Sent by shifted command key
key_scopy kCPY "2 KEY _ SCOPY, OS7S, Sent by shifted copy key
key _ screate kCRT *3 KEY _ SCREA TE, OS76, Sent by shifted create key
key_sdc kDC *4 KEY_SOC, OS77, Sent by shifted delete-char key
key_sdl kDL *S KEY _ SDL, 0600, Sent by shifted delete-line key
key_salect kslt "6 KEY_SELECT, 0601, Sent by select key
key_send kEND "7 KEY_SEND, 0602, Sent by shifted end key
key_saol kEOL *S KEY _ SEOL, 0603, Sent by shifted clear-line key
key_sexit kEXT '9 KEY_S8m, 0604, Sent by shifted exit key
key_sf kind kF KEY_SF, OS20, Sent by scroll-forward/down key
key_stind kFND 0 KEY _ SFIND, 060S, Sent by shifted find key
key_shelp kHLP #1 KEY_SHELP, 0606, Sent by shifted help key
key_shome kHOM #2 KEY_SHOME, 0607, Sent by shifted home key
keY_SiC klC #3 KEY_SIC, 0610, Sent by shifted input key
key_sleft kLFT #4 KEY_SLEFT, 0611, Sent by shifted left-arrow key
key_ smessage kMSG %a KEY_SMESSAGE, 0612, Sent by shifted message key
keY_SffiOve kMOV %b KEY_SMOVE, 0613, Sent by shifted move key
key_snext kNXT %c KEY_SNEXT, 0614, Sent by shifted next key
key_ soptions kOPT oM! KEY _ SOPTIONS, 0615, Sent by shifted options key
key _ sprevious kPRV %e KEY _ SPREVIOUS, 0616, Sent by shifted prev key
key_sprint kPRT %f KEY_SPRINT, 0617, Sent by shifted print key
key_sr kri kR KEY _ SR, 0521, Sent by scroll-backward/up key
key_sredo kRDO %g KEY _ SREDO, 0620, Sent by shifted redo key
key_ sreplace kRPL %h KEY _ SREPLACE, 0621, Sent by shifted replace key
key_slight kRIT %i KEY _ SRIGHT, 0622, Sent by shifted right-arrow key
key_srsume kRES %j KEY _ SRSUME, 0623, Sent by shifted resume key
key __ ssave kSAV 11 KEY _ SSAVE, 0624, Sent by shifted save key
key _ ssuspend kSPD 12 KEY _ SSUSPEND, 0625, Sent by shifted suspend key
key_stab khts kT KEY_STAB, OS24, Sent by set-tab key
key_sundo kUND 13 KEY _ SUNDO, 0626, Sent by shifted undo key
key_suspend kspd &7 KEY_SUSPEND, 0627, Sent by suspend key
key_undo kund &S KEY_UNDO, 0630, Sent by undo key
key_up kcuu1 ku KEY_UP, 0403, Sent by terminal up-arrow key
keypad_local rmkx ke Out of "I<eyped-transmir mode
keypad_xmit smkx ks Put terminal in "I<eyped-transmit" mode
lab_fa Ito 10 Labels on function key fa if not 10
lab_'i ttl 11 Labels on function key f1 if not Ii
lab_f2 tf2 12 Labels on function key f2 if not f2
lab_f3 If3 13 Labels on function key f3 if not f3
lab_f4 !f4 14 Labels on function key f4 if not 14
lab_fS !fS 15 Labels on function key 1S if not fS
lab_f6 If6 16 Labels on function key 16 if nol 16
lab_f7 If7 17 Labels on function key f7 if not f7
lab_fS If6 IS Labels on function key f8 if not 18
lab_19 If9 19 Labels on function key 19 if not 19
lab_flO !flO la Labels on function key 110 if not flO
labeLoff rmln LF Tum off soft labels
label_on smln LO Tum on soft labels

Page 7

TERMINF() (4)

meta_off rmm mo Tum off "mela mode"
meta_on smm mm Tum on "mela mode" (8th bit)
newline nel nw Newline (behaves like cr followed by II
pad char pad pc Pad character (rather than nUll)
parm dch dch DC Delete #1 chars (G*)
parm _delete_ line dl DL Delete #1 lines (G*)
parm_down _cursor cud DO Move cursor down #1 lines. (GO)
parm ich ich IC Insert #1 blank chars (G*)
parm_index indn SF Scroll forward #1 lines. (G)
parm_insert_ line il AL Add #1 new blank lines (GO)

parm _left_cursor cub LE Move cursor left #1 spaces (G)
parm_ right_cursor cut RI Move cursor right #1 spaces. (G*)
parm rindex rin SR Scroll backward #1 lines. (G)
parm _up_cursor cuu UP Move cursor up #1 lines. (G*)
pkey_key pfkey pk prog funct key #1 to type string #2

pkey_ local pfloc pi Prog funct key #1 to executa string #2
pkey_xmit pfx px Prog tunct key #1 to xmit string #2
plab_norm pin pn Prog label #1 to show string #2
print screen mcO ps Print contents of the screen
prtf_non mc5p pO Tum on the printer for #1 bytes
prtr off mc4 pf Tum off the printer
prtr_on mc5 po Tum on the printer
repeat_char rep rp Repeat char #1 #2 times (G*)
~for_input rfi RF Send next input char (for ptys)

reset_1 string rsi r1 Reset terminal completely to sane modes
reset_ 2string rs2 r2 Reset terminal completely to sane modes
reset_ 3string rs3 r3 Reset terminal completely to sane modes
reset_file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row_address vpa cv Vertical position absolute (G)
save_cursor sc sc Save cursor position.
scroll_forward ind sf Scroll text up
scroll_ reverse ri sr Scroll text down
set_attributes sgr sa Define the video attributes #1-#9 (G)
set _left_margin smgl ML Set soft left margin
set_ right_margin smgr MR Set soft right margin

set_tab hts st Set a tab in all rows, current column.

set_window wind wi Current window is lines #1-#2 cols #3-#4 (G)

tab hi Ia Tab to next 8 space hardware tab stop.

to _status_line tsi 15 Go to status line, col #1 (G)
underline_char uc uc Underscore one char and move past it

up_hall_line hu hu Hall-line up (reverse 1/2 lnefeed)

xoff _character xoffc XF X-off character
xon _character xonc XN X-on character

PageS UP-13713

SAMPLE ENTRY
The following entry, which describes the Concept-100 terminal,
is among the more complex entries in the terminfo file as of
this writing.

concept100: c100: concept c104: c100-4p: concept 100,
am, db, eo, in, mir, ul, xenl,
cols#BO, lines#24, pb#9600, vt#B,
bel = A G, blank = \EH, blink = \EC, clear = A L$ < 2* > ,
cnorm= \Ew, cr= "M$<9>. cub1 = "H, cud1 =" J,
cuf1 =\E= I cup=\Ea%p1%' '%+%c%p2%' '%+%c,
cuu1 =\E;, cwis=\EW, dch1 =\E"A$< 16*>, dim=\EE,
dl1 =\E"B$<3*>, ed=\E"C$< 16*>, el=\E"U$< 16>,
flash=\Ek$<20>\EK, ht=\t$, il1 =\E"R$<3*>,
ind =" J, .ind =" J$<9> I ip=$< 16*> I
is2 = \EU\Ef\E7\E5\EB\EI\ENH\EK\E\0\Eo& \0\Eo\47\E,
kbs= "hi kcub1 =\E>, kcud1 = \E<, kcuf1 = \E= I kcuu1 = \E;,
kf1 = \E5, kf2 = \E6, kf3 = \E7, khome = \E?,
prot = \EI, rep = \Er%p1 %c%p2%' '% + %c$ < .2* >,
rev = \ED. rmcup = \Ev\s\s\s\s$ < 6 > \Ep\r\n,
rmir = \E\O, rmkx = \Ex, rmso = \Ed\Ee, rmul = \Eg,
rmul = \Eg, sgrO = \EN\O, smcup = \EU\Ev\s\sBp\Ep\r,
smir=\E"P, smkx= \EX, smso=\EE\ED, smul=\EG,

Entries may continue onto multiple lines by placing white
space at the beginning of each line except the first. Lines
beginning with II #" are taken as comment lines. Capabilities
in terminfo are of three types: boolean capabilities which indi­
cate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or particular
features, and string capabilities, which give a sequence which
can be used to perform particular terminal operations.

Types of Capabilities
All capabilities have names. For instance, the fact that the
Concept has automatic margins an automatic return and
linefeed when the end of a line is reached) is indicated by the

UP-13713 Page 9

TERMINFO(4)

capability am. Hence the description of the Concept includes
am. Numeric capabilities are followed by the character · #'
and then the value. Thus cols, which indicates the number of
columns the terminal has, gives the value 80 for the Concept.
The value may be specified in decimal, octal or hexadecimal
using normal C conventions.

Finally, string-valued capabilities, such as el (clear to end of
line sequence) are given by the two- to five-character cap­
name, an '=', and then a string ending at the next following
comma. A delay in milliseconds may appear anywhere in
such a capability, enclosed in $ < .. > brackets, as in
el = \EK$ < 3 >, and padding characters are supplied by
tputsO (see curses(3X)) to provide this delay. The delay can
be either a number, e.g., 20, or a number followed by an '*'

(Le., 3*), a 'I' (Le., 51), or both (Le., 10*/). A '*' indicates that
the padding required is proportional to the number of lines
affected by the operation, and the amount given is the per­
affected-unit padding required. (In the case of insert charac­
ter, the factor is still the number of lines affected. This is
always one unless the terminal has in and the software uses
it.) When a '*' is specified, it is sometimes useful to give a
delay of the form 3.5 to specify a delay per unit to tenths of
milliseconds. (Only one decimal place is allowed.) A'/, indi­
cates that the padding is mandatory. Otherwise, if the termi­
nal has xon defined, the padding information is advisory and
will only be used for cost estimates or when the terminal is in
raw mode. Mandatory padding will be transmitted regardless
of the setting of xon.

A number of escape sequences are provided in the string
valued capabilities for easy encoding of characters there.
Both \E and \e map to an ESCAPE character, "x maps to a
control-x for any appropriate x, and the sequences \1, \t,
\b, \f, and \s give a newline, linefeed, return, tab, backspace,
formfeed, and space, respectively. Other escapes include: \ A

for caret ("); \ \ for backslash (\); \, for comma (,); \: for colon
(:); and \0 for null. (\0 will actually produce \200, which does
not terminate a string but behaves as a null character on most
terminals.) Finally, characters may be given as three octal
digits after a backslash (e.g., \123).

Page 10 UP-13713

TERMINFO(4)

Sometimes individual capabilities must be commented out. To
do this, put a period before the capability name. For example,
see the second ind in the example above. Note that capabili­
ties are defined in a left-to-right order and, therefore, a prior
definition will override a later definition.

Preparing Descriptions
The most effective way to prepare a terminal description is by
imitating the description of a similar terminal in terminfo and to
build up a description gradually, using partial descriptions with
vi(1) to check that they are correct. Be aware that a very
unusual terminal may expose deficiencies in the ability of the
terminfo file to describe it or the inability of vi(1) to work with
that terminal. To test a new terminal description, set the
environment variable TERMINFO to a pathname of a directory
containing the compiled description you are working on and
programs will look there rather than in /usr/lib/terminfo. To
get the padding for insert-line correct (if the terminal manufac­
turer did not document it) a severe test is to comment out
xon, edit a large file at 9600 baud with vi(1), delete 16 or so
lines from the middle of the screen, then hit the u key several
times quickly. If the display is corrupted, more padding is
usually needed. A similar test can be used for insert­
character.

Basic Capabilities
The number of columns on each line for the terminal is given
by the eols numeric capability. If the terminal has a screen,
then the number of lines on the screen is given by the lines
capability. If the terminal wraps around to the beginning of
the next line when it reaches the right margin, then it should
have the am capability. If the terminal can clear its screen,
leaving the cursor in the home position, then this is given by
the clear string capability. If the terminal overstrikes (rather
than clearing a position when a character is struck over) then
it should have the os capability. If the terminal is a printing
terminal, with no soft copy unit, give it both he and os. (os
applies to storage scope terminals, such as Tektronix 4010
series, as well as hard-copy and APL terminals.) If there is a
code to move the cursor to the left edge of the current row,
give this as cr. (Normally this will be carriage return, control
M.) If there is a code to produce an audible signal (bell, beep,
etc) give this as bel. If the terminal uses the xon-xoff flow-

UP-13713 Page 11

TERMINFO(4)

control protocol, like most terminals, specify xon.

If there is a code to move the cursor one position to the left
(such as backspace) that capability should be given as cub1.
Similarly, codes to move to the right, up, and down should be
given as cuf1, cuu1, and cud1. These local cursor motions
should not alter the text they pass over; for example, you
would not normally use "cufi = \s" because the space would
erase the character moved over.

A very important point here is that the local cursor motions
encoded in terminfo are undefined at the left and top edges of
a screen terminal. Programs should never attempt to back­
space around the left edge, unless bw is given, and should
never attempt to go up locally off the top. In order to scroll
text up, a program will go to the bottom left corner of the
screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of
the screen and sends the ri (reverse index) string. The strings
ind and ri are undefined when not on their respective corners
of the screen.

Parameterized versions of the scrolling sequences are indn
and rin which have the same semantics as ind and ri except
that they take one parameter, and scroll that many lines.
They are also undefined except at the appropriate edge of the
screen.

The am capability tells whether the cursor sticks at the right
edge of the screen when text is output, but this does not
necessarily apply to a cuf1 from the last column. The only
local motion which is defined from the left edge is if bw is
given, then a cub1 from the left edge will move to the right
edge of the previous row. If bw is not given, the effect is
undefined. This is useful for drawing a box around the edge
of the screen, for example. If the terminal has switch select­
able automatic margins, the terminfo file usually assumes that
this is on; i.e., am. If the terminal has a command which
moves to the first column of the next line, that command Cdn
be given as nel (newline). It does not matter if the command
clears the remainder of the current line. so if the terminal has
no cr and If it may still be possible to craft a working nel out
of one or both of them.

Page 12 UP-13713

TERMINFO(4)

These capabilities suffice to describe hardcopy and screen ter­
minals. Thus the model 33 teletype is described as

33: tty33 : tty : model 33 teletype, bel = "G, cols#72,
cr= "M, cud1 =" J, hc, ind =" J, os,

while the Lear Siegler ADM-3 is described as

adm3: lsi adm3, am, bel= "G, clear = "Z, cols#80, cr= AM,
cub1 = "H, cud1 =" J, ind =" J, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in
the terminal are described by a parameterized string capabil­
ity, with printf(3S)-like escapes (%x) in it. For example, to
address the cursor, the cup capability is given, using two
parameters: the row and column to address to. (Rows and
columns are numbered from zero and refer to the physical
screen visible to the user, not to any unseen memory.) If the
terminal has memory relative cursor addressing, that can be
indicated by mrcup.

The parameter mechanism uses a stack and special % codes
to manipulate it in the manner of a Reverse Polish Notation
(postfix) calculator. Typically a sequence will push one of the
parameters onto the stack and then print it in some format.
Often more complex operations are necessary. Binary opera­
tions are in postfix form with the operands in the usual order.
That is, to get x-5 one would use %gx%{5}%-.

The % encodings have the following meanings:

%% outputs '%'
% [[:]f/ags] [width [.precision]] [doxXs]

as in printf, flags are [- and space
%c popO gives %c

%p[1-9]
%P[a-z]
%g[a-z]

%{nn}
%1

push /h parm
set variable to
get variable [a-z] and it
push char constant c
push decimal constant nn
push Cynicn "',

%+ %- %* %/ %m
arithmetic (%m is mod): push(popO op popO)

UP-13713 Page 13

TERMINF()(4)

%& %: %"
%= %> %<
%A%O
%!%-
%i

bit operations: push(popO op popO)
logical operations: push(popO op popO)
logical operations: and, or
unary operations: push(op popO)
(for ANSI terminals)

add 1 to first parm, if one parm present,
or first two parms, if more than one parm present

%1 expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional;
else-it's are possible ala Algol 68:
%1 c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b

4
%e bs%;

cj are conditions, OJ are oodies.

If the "-" flag is used with "%[doxXs]", then a colon (:) must
be placed between the "%" and the "." to differentiate the
flag from the binary "%-" operator, .e.g "%:-16.16s".

Consider the Hewlett-Packard 2645, which, to get to row 3 and
column 12, needs to be sent \E&a12c03Y padded for 6 mil­
liseconds. Note that the order of the rows and columns is
inverted here, and that the row and column are zero-padded
as two digits. Thus its cup capability is
"cup = \E&a%p2%2.2dc%p1 %2.2dY$ < 6 > ".

The Micro-Term ACT-IV needs the current row and column
sent preceded by a AT, with the row and column simply
encoded in binary, "cup = "T%p1%c%p2%c". Terminals which
use "%c" need to be able to backspace the cursor (cub1),
and to move the cursor up one line on the screen (cuu1).
This is necessary because it is not always safe to transmit \n,
"0, and \r, as the system may change or discard them. (The
library routines dealing with terminfo set tty modes so that
tabs are never expanded, so \t is safe to send. This turns out
to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and
column offset by a blank character, thus
"cup=\E=%p1%'\s'%+%c%p2%'\s'%+%c". After sending
"\E = ", this pushes the first parameter, pushes the ASCII
value for a space (32) I adds them (pushing the sum on the
stack in place of the two previous values), and outputs that
value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the

Page 14 UP-13713

TERMINFO(4)

stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very
upper left corner of screen) then this can be given as home;
similarly a fast way of getting to the lower left-hand corner can
be given as II; this may involve going up with cuu1 from the
home position, but a program should never do this itself
(unless II does) because it can make no assumption about the
effect of moving up from the home position. Note that the
home position is the same as addressing to (0,0): to the top
left corner of the screen, not of memory. (Thus, the \EH
sequence on Hewlett-Packard terminals cannot be used for
home without losing some of the other features on the termi­
nal.)

If the terminal has row or column absolute-cursor addressing,
these can be given as single parameter capabilities hpa (hor­
izontal position absolute) and vpa (vertical position absolute).
Sometimes these are shorter than the more general two­
parameter sequence (as with the Hewlett-Packard 2645) and
can be used in preference to cup. If there are parameterized
local motions (e.g., move n spaces to the right) these can be
given as cud, cub, cuf, and cuu with a single parameter indi­
cating how many spaces to move. These are primarily useful
if the terminal does not have cup, such as the Tektronix 4025.

Area
If the terminal can clear from the current position to the end
of the line, leaving the cursor where it this should be given
as el. If the terminal can clear from the beginning of the line
to the current leaving the cursor where it is,
this should be given as eU. If the terminal can clear from the
current position to the end of the display, then this should be
given as ed. ed is only defined from the first column of a line.
(Thus, it can be simulated by a request to delete a large
number of lines, if a true ed is not available.)

Insert/delete line
If the terminal can open a new blank line before the line where
the cursor is, this should be given as il1, this is done only
from the first position of a line. The cursor must then appear
on the newly blank line. If the terminal can delete the line
which the cursor is on, then this should be given as dl1; this is

UP-13713 Page 15

TERMINFO(4)

done only from the first position on the line to be deleted.
Versions of il1 and dl1 which take a single parameter and
insert or delete that many lines can be given as iI and dl.

If the terminal has a settable destructive scrolling region (like
the VT100) the command to set this can be described with the
csr capability, which takes two parameters: the top and bot­
tom lines of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get the
effect of insert or delete line using this command -- the sc and
rc (save and restore cursor) commands are also useful.
Inserting lines at the top or bottom of the screen can also be
done using ri or ind on many terminals without a true
insert/delete line, and is often faster even on terminals with
those features.

To determine whether a terminal has destructive scrolling
regions or non-destructive scrolling regions, create a scrolling
region in the middle of the screen, place data on the bottom
line of the scrolling region, move the cursor to the top line of
the scrolling region, and do a reverse index (1'1) followed by a
delete line (dl1) or index (ind). If the data that was originally
on the bottom line of the scrolling region was restored into the
scrolling region by the dl1 or ind, then the terminal has non­
destructive scrolling regions. Otherwise, it has destructive
scrolling regions. Do not specify csr if the terminal has non­
destructive scrolling regions, unless ind, fi, indn, fin, dl, and
dl1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of
memory, which all commands affect. it should be given as the
parameterized string wind. The four parameters are the start­
ing and ending lines in memory and the starting and ending
columns in memory. in that order.

If the terminal can retain display memory above, then the da
capability should be given; if display memory can be retained
below, then db should be given. These indicate that deleting
a line or scrolling a full screen may bring non-blank lines up
from below or that scrolling back with ri may bring down non­
blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect
to insert/delete character operations which can be described

Page 16 UP-13713

TERMINFO(4)

using terminfo. The most common insert/delete character
operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals,
such as the Concept 100 and the Perkin Elmer Owl, make a
distinction between typed and untyped blanks on the screen,
shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two
untyped blanks. You can determine the kind of terminal you
have by clearing the screen and then typing text separated by
cursor motions. Type "abc def" using local cursor motions
(not spaces) between the abc and the def. Then position the
cursor before the abc and put the terminal in insert mode. If
typing characters causes the rest of the line to shift rigidly and
characters to fall off the end, then your terminal does not dis­
tinguish between blanks and untyped positions. If the abc
shifts over to the def which then move together around the
end of the current line and onto the next as you insert, you
have the second type of terminal, and should give the capabil­
ity in, which stands for "insert null". While these are two logi­
cally separate attributes (one line versus multiline insert mode,
and special treatment of untyped spaces) we have seen no
terminals whose insert mode cannot be described with the sin­
gle attribute.

terminfo can describe both terminals which have an insert
mode and terminals which send a simple sequence to open a
blank position on the current line. Give as smir the sequence
to get into insert mode. Give as rmir the sequence to leave
insert mode. Now give as ich1 any sequence needed to be
sent just before sending the character to be inserted. Most
terminals with a true insert mode will not give ich1; terminals
which send a sequence to open a screen position should
it here. (If your terminal has both, insert mode is usually
preferable to ich1. Do not both unless the terminal actu­
ally requires both to be used in combination.) If

is give this as a number of milliseconds
ding in (a string other sequence which may
need to be sent after an insert of a single character may also
be given in ip. If your terminal needs both to be placed into
an 'insert mode' and a special code to precede each inserted
character, then both smir/rmir and ich1 can be given, and
both will be used. The ich capability, with one parameter, n,

UP-13713 Page 17

TERMINF()(4)

will repeat the effects of ich1 n times.

If padding is necessary between characters typed while not in
insert mode, give this as a number of milliseconds padding in
rmp.

It is occasionally necessary to move around while in insert
mode to delete characters on the same line (e.g., if there is a
tab after the insertion position). If your terminal allows motion
while in insert mode you can give the capability mil' to speed
up inserting in this case. Omitting mil' will affect only speed.
Some terminals (notably Oatamedia's) must not have mil'
because of the way their insert mode works.

Finally, you can specify dch1 to delete a single character, dch
with one parameter, n, to delete n characters, and delete
mode by giving smdc and rmdc to enter and exit delete mode
(any mode the terminal needs to be placed in for dch1 to
work).

A command to erase n characters (equivalent to outputting n
blanks without moving the cursor) can be given as ech with
one parameter.

Highlighting. Underlining. and Visible Bells
If your terminal has one or more kinds of display attributes,
these can be represented in a number of different ways. You
should choose one display form as standout mode (see
curses(3X)), representing a good, high contrast, easy-on-1he­
eyes, format for highlighting error messages and other atten­
tion getters. (If you have a choice, reverse-video plus half­
bright is good, or reverse-video alone; however, different users
have different preferences on different terminals.) The
sequences to enter and exit standout mode are given as
smso and rmso, respectively. If the code to change into or
out of standout mode leaves one or even two blank spaces on
the screen, as the TVI 912 and Teleray 1061 do, then xmc
should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given
as smul and rmul respectively. If the terminal has a code to
underline the current character and move the cursor one
space to the right, such as the Micro-Term MIME, this can be
given as uc.

Page 18 UP-13713

TERMINFO(4)

Other capabilities to enter various highlighting modes include
blink (blinking), bold (bold or extra-bright), dim (dim or half­
bright), invis (blanking or invisible text), prot (protected) I rev
(reverse-video), sgrO (turn off all attribute modes), smacs
(enter alternate-character-set mode), and rmacs (exit
alternate-character-set mode). Turning on any of these modes
singly mayor may not turn off other modes. If a command is
necessary before alternate character set mode is entered, give
the sequence in enacs (enable alternate-character-set mode).

If there is a sequence to set arbitrary combinations of modes,
this should be given as sgr (set attributes), taking nine param­
eters. Each parameter is either 0 or non-zero, as the
corresponding attribute is on or off. The nine parameters are,
in order: standout, underline, reverse, blink, dim, bold, blank,
protect, alternate character set. Not all modes need be sup­
ported by sgr, only those for which corresponding separate
attribute commands exist. (See the example at the end of this
section.)

Terminals with the "magic cookie" glitch (xmc) deposit special
"cookies" when they receive mode-setting sequences, which
affect the display algorithm rather than having extra bits for
each character. Some terminals, such as the Hewlett-Packard
2621, automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout
mode should exit standout mode before moving the cursor or
sending a newline, unless the msgr capability, asserting that it
is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an
error quietly (a bell replacement) I then this can be given as
flash; it must not move the cursor. A good flash can be done
by changing the screen into reverse video, pad for 200 ms,
then return the screen to normal video.

If the cursor needs to be made more visible than normal when
it is not on the bottom line (to make, for example, a non­
blinking underline into an easier to find block or blinking
underline) give this sequence as cvvis. The boolean chts
should also be given. If there is a way to make the cursor
completely invisible, give that as civis. The capability cnorm
should be given which undoes the effects of either of these
modes.

UP-13713 Page 19

TERMINF()(4)

If the terminal needs to be in a special mode when running a
program that uses these capabilities, the codes to enter and
exit this mode can be given as smcup and rmcup. This
arises, for example, from terminals like the Concept with more
than one page of memory. If the terminal has only memory
relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the
terminal for cursor addressing to work properly. This is also
used for the Tektronix 4025, where smcup sets the command
character to be the one used by terminfo. If the smcup
sequence will not restore the screen after an rmcup sequence
is output (to the state prior to outputting rmcup) I specify
nrrmc.

If your terminal generates underlined characters by using the
underline character (with no special codes needed) even
though it does not otherwise overstrike characters, then you
should give the capability ul. For terminals where a character
overstriking another leaves both characters on the screen, give
the capability os. If overstrikes are erasable with a blank, then
this should be indicated by giving eo.

Example of highlighting: assume that the terminal under
question needs the following escape sequences to turn on
various modes.

tparm
parameter

p1
p2
p3
p4
p5
p6
p7
p8
p9

attribute

none
standout
underline
reverse
blink
dim
bold
invis
protect
altcharset

escape sequence

\E[Om
\E[O;4;7m
\E[O;3m
\E[O;4m
\E[O;5m
\E[O;7m
\E[O;3;4m
\E[O;8m
not available
"'0 (off) "N(on)

Note that each escape sequence requires a 0 to turn off other
modes before turning on its own mode. Also note that, as
suggested above, standout is set up to be the combination of
reverse and dim. Also, since this terminal has no bold mode,

Page 20 UP-13713

T~RMINF()(4)

bold is set up as the combination of reverse and underline. In
addition, to allow combinations, such as underline + blink, the
sequence to use would be \E[O;3;5m. The terminal doesn't
have protect mode, either, but that cannot be simulated in any
way, so pS is ignored. The altcharset mode is different in that
it is either "'0 or AN depending on whether it is off or on. If all
modes were to be turned on, the sequence would be
\E[O;3;4;5;1;Sm AN.

Now look at when different sequences are output. For exam­
ple, ;3 is output when either p2 or p6 is true, that is, if either
underline or bold modes are turned on. Writing out the above
sequences, along with their dependencies, gives the following:

sequence when to output terminfo translation

\E[O always \E[O
;3 if p2 or p6 %?%p2%p6%: %t;3%;
;4 if P 1 or p3 or p6 %?%p1%p3% :%p6% :%t;4%;
;5 if p4 %?%p4%t;5%;
;1 if p1 or p5 %?%p1%p5% :%t;7%;
;8 if p7 %?%p7%t;8%;
m always m
AN or "0 if p9 "N, else "0 %?%p9%f'N%e"0%;

Putting this all together into the sgr sequence gives:

sgr = \E[O% ?%p2%p6% : %t;3%;% ?%p1 %p3% : %p6%
: %t;4%;%?%p5%t;5%;%?%p1 %p5%
: %t;7%; % ?%p7%t;8%; m% ?%p9%t" N%e" 0%; I

Keypad
If the terminal has a keypad that transmits codes when the
keys are pressed, this information can be given. Note that it
is not possible to handle terminals where the keypad only
works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as smkx and rmkx.
Otherwise the keypad is assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kcub1, kcuf1, kcuu1,
kcud1, and khome respectively. If there are function keys
such as fO, f1, ... , f63, the codes they send can be given as

UP-13713 Page 21

TERMINFO(4)

kID, kf1, ... , kf63. If the first 11 keys have labels other than
the default fO through f10, the labels can be given as Ito, If1,
.•. , If10. The codes transmitted by certain other special keys
can be given: kn (home down), kbs (backspace), ktbc (clear
all tabs) I kctab (clear the tab stop in this column) I kcDr (clear
screen or erase key). kdch1 (delete character), kdl1 (delete
line), krmir (exit insert modeL kel (clear to end of line), ked
(clear to end of screen), kich1 (insert character or enter insert
mode) I kll1 (insert line) I knp (next page) I kpp (previous page),
kind (scroll forward/down), kri (scroll backward/up), khts (set
a tab stop in this column). In addition, if the keypad has a 3
by 3 array of keys including the four arrow keys, the other five
keys can be given as ka1, ka3, kb2, kc1, and kc3. These
keys are useful when the effects of a 3 by 3 directional pad
are needed. Further keys are defined above in the capabilities
list.

Strings to program function keys can be given as pfkey,
pfloc, and ph. A string to program their soft-screen labels
can be given as pin. Each of these strings takes two parame­
ters: the function key number to program (from 0 to 10) and
the string to program it with. Function key numbers out of
this range may program undefined keys in a terminal­
dependent manner. The difference between the capabilities is
that pfkey causes pressing the given key to be the same as
the user typing the given string; pfloc causes the string to be
executed by the terminal in local mode; and ph causes the
string to be transmitted to the computer. The capabilities
nlab, Iw and Ih define how many soft labels there are and
their width and height. If there are commands to turn the
labels on and off, give them in smln and rmln. smln is nor­
mally output after one or more pin sequences to make sure
that the change becomes visible.

Tabs and Initialization
If the terminal has hardware tabs, the command to advance to
the next tab stop can be given as ht (usually control I). A
"backtab" command which moves leftward to the next tab
stop can be given as cbt. By convention, if the teletype
modes indicate that tabs are being expanded by the com­
puter rather than being sent to the terminal, programs should
not use ht or cbt even if they are present, since the user may
not have the tab stops properly set. If the terminal has

Page 22 UP-13713

TERMINF() (4)

hardware tabs which are initially set every n spaces when the
terminal is powered up, the numeric parameter it is given,
showing the number of spaces the tabs are set to. This is
normally used by tput init (see tput(1)) to determine whether
to set the mode for hardware tab expansion and whether to
set the tab stops. If the terminal has tab stops that can be
saved in nonvolatile memory, the terminfo description can
assume that they are properly set. If there are commands to
set and clear tab stops, they can be given as tbc (clear all tab
stops) and hts (set a tab stop in the current column of every
row).

Other capabilities include: is1, is2, and is3, initialization
strings for the terminal; iprog, the path name of a program to
be run to initialize the terminal; and if, the name of a file con­
taining long initialization strings. These strings are expected
to set the terminal into modes consistent with the rest of the
terminfo description. They must be sent to the terminal each
time the user logs in and be output in the following order: run
the program iprog; output is1; output is2; set the margins
using mgc, smgl and smgr; set the tabs using tbc and hts;
print the file if; and finally output Is3. This is usually done
using the init option of tput(1); see profi/e(4).

Most initialization is done with is2. Special terminal modes
can be set up without duplicating strings by putting the com­
mon sequences in is2 and special cases in is1 and is3.
Sequences that do a harder reset from a totally unknown
state can be given as rs1, rs2, rf, and rs3, analogous to is1,
is2, is3, and if. (The method using files, if and rf, is used for
a few terminals, from lusrllibltabsetl*; however, the recom­
mended method is to use the initialization and reset strings.)
These strings are output by tput reset, which is used when
the terminal gets into a wedged state. Commands are nor­
mally placed in rs1, rs2, rs3, and rf only if they produce
annoying effects on the screen and are not necessary when
logging in. For example, the command to set a terminal into
aD-column mode would normally be part of is2, but on some
terminals it causes an annoying glitch on the screen and is not
normally needed since the terminal is usually already in ao­
column mode.

UP-13713 Page 23

TERMINFO(4)

If a more complex sequence is needed to set the tabs than
can be described by using tbc and hts, the sequence can be
placed in is2 or if.

If there are commands to set and clear margins, they can be
given as mac (clear all margins) , sma I (set left margin) I and
smar (set right margin).

Delays
Certain capabilities control padding in the tty(7) driver. These
are primarily needed by hard-copy terminals, and are used by
tput init to set tty modes appropriately. Delays embedded in
the capabilities cr, Ind, cub1, ft, and tab can be used to set
the appropriate delay bits to be set in the tty driver. If pb
(padding baud rate) is given, these values can be ignored at
baud rates below the value of pb.

Status lines
If the terminal has an extra "status line!! that is not normally
used by software, this fact can be indicated. If the status line
is viewed as an extra line below the bottom line, into which
one can cursor address normally (such as the Heathkit h19's
25th line, or the 24th line of a VT100 which is set to a 23-line
scrolling region). the capability hs should be given. Special
strings that go to a given column of the status line and return
from the status line can be given as tsl and fsl. (fsl must
leave the cursor position in the same place it was before tsl.
If necessary, the sc and re strings can be included in tsl and
fsl to get this effect.) The capability tsl takes one parameters
which is the column number of the status line the cursor is to
be moved to.

If escape sequences and other special commands, such as
tab, work while in the status line, the flag eslok can be given.
A string which turns off the status line (or otherwise erases its
contents) should be given as dsl. If the terminal has com­
mands to save and restore the position of the cursor, give
them as se and re. The status line is normally assumed to be
the same width as the rest of the screen, e.g., eols. If the
status line is a different width (possibly because the terminal
does not allow an entire line to be loaded) the width, in
columns, can be indicated with the numeric parameter wsl.

Page 24 UP-13713

TERMINFO(4)

line Graphics
If the terminal has a line drawing alternate character set, the
mapping of glyph to character would be given in acsc. The
definition of this string is based on the alternate character set
used in the DEC VT100 terminal, extended slightly with some
characters from the AT&T 4410v1 terminal.

glyph name vt100+
character

arrow pointing right +
arrow pointing left
arrow pointing down
solid square block 0
lantern symbol I
arrow pointing up
diamond
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right corner j
upper right corner k
upper left corner I
lower left corner m
plus n
scan line 1 0

horizontal line q
scan line 9 s
left tee (1-) t
right tee (1) u
bottom tee (L) v
top tee (I) w
vertical line x
bullet

The best way to describe a new terminal's line graphics set is
to add a third column to the above table with the characters
for the new terminal that produce the appropriate glyph when
the terminal is in the alternate character set mode. For exam­
ple.

UP-13713 Page 25

TERMINF() (4)

glyph name vt100 + new tty
char char

upper left corner R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q
vertical line x

Now write down the characters left to right, as in
"acsc = IRmFkTjGq\,x.".

Miscellaneous
If the terminal requires other than a null (zero) character as a
pad, then this can be given as pad. Only the first character of
the pad string is used. If the terminal does not have a pad
character, specify npc.

If the terminal can move up or down half a line, this can be
indicated with hu (half-line up) and hd (half-line down). This is
primarily useful for superscripts and subscripts on hardcopy
terminals, If a hardcopy terminal can eject to the next page
(form feed) I give this as ff (usually control L).

If there is a command to repeat a given character a given
number of times (to save time transmitting a large number of
identical characters) this can be indicated with the parameter­
ized string rep. The first parameter is the character to be
repeated and the second is the number of times to repeat it.
Thus, tparm(repeat_ char, 'x', 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the
Tektronix 4025, this can be indicated with cmdch. A proto­
type command character is chosen which is used in all capa­
bilities. This character is given in the cmdch capability to iden­
tify it. The following convention is supported on some UNIX
systems: If the environment variable CC exists, all
occurrences of the prototype character are replaced with the
character in CC.

Terminal descriptions that do not represent a specific kind of
known terminal, such as switch, and na'Mclfl<:
should include the gn (generic) capability so that programs
can complain that they do not know how to talk to the

Page 26 UP-13713

TERMINFO(4)

terminal. (This capability does not apply to virtual terminal
descriptions for which the escape sequences are known.) If
the terminal is one of those supported by the UNIX system vir­
tual terminal protocol, the terminal number can be given as vt
A line-tum-around sequence to be transmitted before doing
reads should be specified in "I.
If the terminal uses xon/xoff handshaking for flow control, give
xon. Padding information should still be included so that rou­
tines can make better decisions about costs, but actual pad
characters will not be transmitted. Sequences to turn on and
off xon/xoff handshaking may be given in smxon and rmxon.
If the characters used for handshaking are not ftS and AQ,
they may be specified with xonc and xoffc.

If the terminal has a "meta key" which acts as a shift key, set­
ting the 8th bit of any character transmitted, this fact can be
indicated with km. Otherwise, software will assume that the
8th bit is parity and it will usually be cleared. If strings exist to
turn this "meta mode" on and off, they can be given as smm
and rmm.

If the terminal has more lines of memory than will fit on the
screen at once, the number of lines of memory can be indi­
cated with 1m. A value of Im#O indicates that the number of
lines is not fixed, but that there is still more memory than fits
on the screen.

Media copy strings which control an auxiliary printer con­
nected to the terminal can be given as mcO: print the con­
tents of the screen, mc4: turn off the printer, and mc5: turn
on the printer. When the printer is on, all text sent to the ter­
minal will be sent to the printer. A variation, mc5p, takes one
parameter, and leaves the printer on for as many characters
as the value of the parameter, then turns the printer off. The
parameter should not exceed 255. If the text is not displayed
on the terminal screen when the printer is on, specify mc5i
(silent printer). All text, including mc4, is transparently passed
to the printer while an mc5p is in effect.

Special Cases
The working model used by terminfo fits most terminals rea­
sonably well. However, some terminals do not completely
match that model, requiring special support by terminfo.
These are not meant to be construed as deficiencies in the

UP-13713 Page 27

TERMINF() (4)

terminals; they are just differences between the working
model and the actual hardware. They may be unusual devices
or, for some reason, do not have all the features of the ter­
minfo model implemented.

Terminals which can not display tilde C) characters, such as
certain Hazeltine terminals, should indicate hz.

Terminals which ignore a linefeed immediately after an am
wrap, such as the Concept 100, should indicate xent Those
terminals whose cursor remains on the right-most column until
another character has been received, rather than wrapping
immediately upon receiving the right-most character, such as
the VT100, should also indicate xent

If el is required to get rid of standout (instead of writing nor­
mal text on top of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved
over to blanks, should indicate xl (destructive tabs). This
capability is also taken to mean that it is not possible to posi­
tion the cursor on top of a "magic cookie" therefore, to erase
standout mode, it is instead necessary to use delete and
insert line.

Those Beehive Superbee terminals which do not transmit the
escape or control-C characters, should specify xsb, indicating
that the f1 key is to be used for escape and the f2 key for
control-C.

Similar Terminals
If there are two very similar terminals, one can be defined as
being just like the other with certain exceptions. The string
capability use can be given with the name of the similar termi­
nal. The capabilities given before use override those in the
terminal type invoked by use. A capability can be canceled
by placing xx@ to the left of the capability definition, where xx
is the capability. For example, the entry

attQQ2q-2:Teletype QQ2Q in display function group ii, reV@,
sg~, smu18, use=attQQ2Q,

defines an AT&T 4424 terminal that does not have the rev,
sgr, and smul capabilities, and hence cannot do highlighting.
This is useful for different modes for a terminal, or for

Page 28 UP-13713

TERMINFO(4)

different user preferences. More than one use capability may
be given.

FILES
/usr /Iib/terminfo/? /*

/usr /Iib/. COREterm/? /*

/usr /Iib /tabset/*

SEE ALSO

compiled terminal description data­
base
subset of compiled terminal
description database
tab settings for some terminals, in
a format appropriate to be output
to the terminal (escape sequences
that set margins and tabs)

curses(3X), printf(3S), term(5).
captoinfo(1 M), infocmp(1 M), tic(1 M), tty (7) in the System
Administrator's Reference Manual .
tput(1) in the User's Reference Manual.
Chapter 10 of the Programmer's Guide.

WARNING
As described in the "Tabs and Initialization" section above, a
terminal's initialization strings, is1, is2, and is3, if defined,
must be output before a curses (3X) program is run. An avail­
able mechanism for outputting such strings is tput init (see
tput(1) and profile(4)).

Tampering with entries in /usr/lib/.COREterm/?/* or
/usr/lib/terminfo/?/* (for example, changing or removing an
entry) can affect programs such as vi(l) that expect the entry
to be present and correct. In particular I removing the descrip­
tion for the "dumb" terminal will cause unexpected problems.

NOTE
The term cap database (from earlier releases of UNIX System
V) may not be supplied in future releases.

UP-137l3 Page 29

TIMEZONE(4)

NAME
timezone - set default system time zone

SYNOPSIS
letelTIM EZON E

DESCRIPTION
This file sets and exports the time zone environmental variable
TZ.

This file is "dotted" into other files that must know the time
zone.

EXAMPLES
lete/TIM EZON E for the east coast:

Time Zone
TZ=EST5EDT
export TZ

SEE ALSO
ctime(3C)I profile(4).
rc2(1 M) in the System Administrator's Reference Manual.

UP-13713 Page 1

TIMEZ()NE(4)

[This page left blank.]

Page 2 UP-13713

UNISTD(4)

NAME
unistd - file header for symbolic constants

SYNOPSIS
#include < unistd.h >

DESCRIPTION
The header file < unistd.h > lists the symbolic constants and
structures not already defined or declared in some other
header file.

/* Symbolic constants for the "access" routine: */

#define R_OK
#define \leOK
#define X_OK
#define F_OK

#define F_ULOCK
#define F_LOCK
#define F_TLOCK

#define F_TEST

4

2

0

0

1

2

3

/*Test for Read permission
/*Test for Write permission */
/*Test for eXecute permission
/*Test for existence of File

/*Unlock a previously locked region */
/*Lock a region for exclusive use
/*Test and lock a region for

exclusive use
/*Test a region for other processes

locks */

/*Symbolic constants for the "lseek" routine:

#define SEEK_SET
#define SEEK_CUR

#define SEEK_END

#define GF_PATH
#define PF_PATH

UP-13713

0

2

/* Set file pointer to "offset" */
/* Set file pointer to current

plus "offset"
Set file pointer to EOF
plus "offset"

I'l";'D'~t-lhn<'.......,. of the group f i 1 e
of the passwd file

Page 1

UNISTD(4)

[This page left blank.]

Page 2 UP-13713

UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include < sys/types.h >
#include < utmp.h >

DESCRIPTION
These files, which hQld user and accounting information for
such commands as who(1), write(1). and login(1), have the
following structure as defined by < utmp.h > :

#define
#define
#define

struct

char
char

char
short
short
struct

UTMP_FILE
WTMP_FILE
ut_name

utlll>

ut_user[8]j
ut_id[4];

ut_l i ne [12] ;
utJ)id;
ut_typej
exit_status

"/etc/utlll>"
"/etc/wtlll>"
ut_user

/* User login name */
/* /etc/inittab id (usually

1 ine #) */
/* device name (console, lnxx) */
/* process id */
/* type of entry */

short e_termination;/* Process termination status */
short e_exit; /* Process exit status */

ut_exit; /* The exit status of a process

time_t ut_time;
J;

/* Definitions for ut_type
#define EMPTY 0

#define RUN_LVL 1

#define BOOT_TIME 2

#define OLD_TIME 3

#define NE\lCTIME 4
#define INIT_PROCESS 5
#define LOGIN_PROCESS 6

#define USER_PROCESS 7

UP-13713

* marked as DEAD_PROCESS. */
/* time entry was made */

*/

/* Process spawned by "init" */
/* A "getty" process waiting

for login */
/* A user process */

Page 1

UTMP(4)

#define DEAD_PROCESS
#define ACCOUNTING
#define UTMAXTYPE

8

9
ACCOUNTING /* Largest legal

value of ut_type */

/* Special strings or formats used in the "ut_line" filed */

/* when accounting for something other than a process */
/* a process. No string for the ut_line field can be more */

/* than 11 chars + a NULL in length */

#define RUNLVL_MSG
#define BOOT_MSG
#define OTIME_MSG
#define NTIME_MSG

FILES
/etc/utmp
/etc/wtmp

SEE ALSO
getut(3C).

"run-level %e"
"system boot"
"old time"
"new time"

login(1), who(1), write(1) in the User's Reference Manual.

Page 2 UP-13713

INTRO(5)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as macro
packages, character set tables, etc.

UP-13713 Page 1

INTR() (5)

[This page left blank.]

Page 2 UP-13713

ASCII(5)

NAME
ascii - map of ASCII character set

DESCRIPTION
ascii is a map of the ASCII character set, giving both octal
and hexadecimal equivalents of each character, to be printed
as needed. It contains (octal is shown first followed by hexi-
decimal):

:000 nul l001 soh 1002 stx 1003 etx 1004 eat 1005 enq 1006 ack :007 bel
:010 bs :011 ht 1012 n1 :013 \It :014 np 1015 cr :016 so :017 s(
:020 d1e 1021 dcl 1022 dc2 :023 dc3 :024 dc4 :025 nak :026 syn :027 etb
:030 can 1031 em :032 sub :033 esc :034 fs :035 gs :036 rs 1037 us
1040 sp 1041 I 1042 " :043 # 1044 $:045 % 1046 & 1047 •
1050 (1051) :052 * :053 + 1054 • 1055 - 1056 • 1057 I
10600 1061 1 1062 2 :063 3 10644 10655 1066 6 1067 7
:0708 :071 9 :072 : 1073 : :074 < :075 = :076 > :on ?
:100 , 1101 A :102 B 1103 C :104 D :105 E :106 F :107 G

1'10 H 1111 I /112 J :113 K 1114 L IllS M :116 N :1170
:120 P 1121 Q 1122 R 1123 S :124 T 1125 U :126 V 1127 \If
1130 X 1131 V :132 Z 1133 (lUll \ :135 J :136 A :137 _

11110 • :1111 II :1112 b 11113 c :11111 d :1115 e 1146 f :'117 9
:150 h :151 f 1152 j :153 k :1511 1 1155 m :156 n :157 a
1160 p /161 q 1162 r :163 s 11611 t :165 u /166 v :167 'II

\170 x 1171y :172 z 1173 1 :17'~ : :175 J :176 • :177 del

: 00 nul : 01 soh : 02 stx : 03 etx : 04 eat 1 05 enq 06 sck : 07 bel
: 08 bs : 09 ht • Oa n1 : Ob \It : OC np : oct cr Oe so 1 Of 51
I 10 dle : 11 del 12 dc2 13 dc3 : 14 dcll : 15 nak 16 510 : 17 etb
I 18 can : 19 em 1. sub lb esc : 1c fs : ld gs le rs : If us
: 20 sp : 21 I 22 " 23 # I 211 $: 25 % 26 i 1 27 •
: 28 (: 29) 2a * 2b + 2c • : 2d - 2e • : 2f I
• 300 : 31 1 32 2 33 3 34 4 : 355 36 6 : 37 7

388 : 399 3a : 3b ; 3c < : 3d = 3e > : 3f ?
40. : 41 A 42 B 113 C 1111 D : 115 E 46 F : 117 C
48 H' : 49 I 4a J 4b K IIc L : 4d H 4e N : 4f 0
50 P : 51 Q 52 R 53 S 54 T : 55 U : 56 V : 57 W
58 X : 59 V 5a Z 5b [5c \ : 5d] : 5e

A : Sf _

60 • 1 61 a 62 b : 63 e 611 d I 65 e : 66 f : 67 9
68 h : 69 i 6a j :6bk 6e 1 : 6d 11\ / 6e n : 6f 0

• 70 P Inq 72 r : 73 s 711 t : 75 u : 76 v In'll
I 78 x : 79 y 7a z : 7b i l 7e : : 7d J : 7e - I If del

UP-13713 Page 1

ASCII(5)

[This page left blank.]

Page 2 UP-13713

ENVIRON (5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available
by exec (2) when a process begins. By convention, these
strings have the form "name = value". The following names
are used by various commands:

PATH
The sequence of directory prefixes that sh(1), time (1),
nice(1). nohup(1), etc., in searching for a file known
by an incomplete path name. The are separated
by colons (1) sets PATH =

HOME
Name of the user's from
the file na~~sw'Ci

TERM

This information
(1 which

terminal.
TZ Time zone information. The format is xxxnzzz where xxx is

standard local time zone n is the difference
in hours from and zzz is the abbreviation the

local time if for
EST5EDT.

Further names in the environment the
"name = value" in (1, or

1"'1""..,fli,"'+ with certain shell variables
Inll'n1'Ut:I files: PS1,

IFS.

SEE ALSO

in
the User's Reference Manual.

) in the
Manual.

UP-13713

WORKBENCH Reference

Page 1

ENVIRON (5)

[This page left blank.]

Page 2 UP-13713

FCNTL(5)

NAME
fcntl - file control options

SYNOPSIS
#include < fcntl.h >

DESCRIPTION
The tent! (2) function provides for control over open files. This
include file describes requests and arguments to fent! and
open (2).

/* Flag values accessible to open(2) and fcntl(2) */
/* (The first three can only be set by open) */
#define O_RDONLY 0
#define O_WRONLY 1
#define O_RDWR 2

/* Non-blocking 1/0 */ #define O_NDELAY 04
#define O_APPEND 010
#define O_SYNC 020

/* append (writes at the end) */
/* synchronous write option */

/* Flag values accessible only to open(2) */
#define O_CREAT 00400 /* open with file create (3rd arg)*/
#define O_TRUNC 01000 /* open with truncation
#define O_EXCL 02000 /* exclusive open */

/* Duplicate fildes */
/* Get fildes flags */
/* Set fildes flags */
/* Get file flags */
/* Set file flags */
/* Get file lock */
/* Set file lock */
/* Set file lock and wait */

/* fcntl(2) requests */
#define F_DUPFD 0
#define F_GETFD 1
#define F_SETFD 2
#define F_GETFL 3
#define F_SETFL 4
#define F_GETLK 5
#define F_SETLK 6
#define F_SETLKW 7
#define F_CHKFL 8 /* Ck legality of file flag changes */

/* file segment locking control structure */
struct f1 ock ~

UP-13713

short l_type;
short '_whence;
long l_start;
long 1_1 en;
short l_sysid;

/* if 0 then until EOF */
/* returned with F_GETLK*/

Page 1

FCNTL(5)

short l.J)id;

fil segment 1
#define F_RDLCK
#define
#define F_UNLCK 03

SEE ALSO

Page 2

returned with

UP-13713

MATH(5)

NAME
math - math functions and constants

SYNOPSIS
#include < math.h >

DESCRIPTION
This file contains declarations of all the functions in the Math
Library (described in Section 3M), as well as various functions
in the C Library (Section 3C) that return floating-point values.

It defines the structure and constants used by the
matherr(3M) error-handling mechanisms, including the follow­
ing constant used as an error-return value:

HUGE The maximum value of a Single-precision
floating-point number.

The following mathematical constants are defined for user
convenience:

M E

M_LOG2E

M_LOG10E

M LN2

M_LN10

M_PI

M PI2

M PI4

M 1 PI

M 2 PI

M_2_SQRTPI

M_SQRT2

M_SQRT1_2

The base of natural logarithms (e).

The base-2 logarithm of e.

The base-10 logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

1T, the ratio of the circumference of a cir­
cle to its diameter.

1T/2.

1T/4.

1/1T.

2/1T.

2/1T.

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent "constants,"
see the description of the < values.h > header file.

SEE ALSO
intro(3), matherr(3M), values(5).

UP-13713 Page 1

MATH(S)

[This page left blank.]

Page 2 UP-13713

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include < prof.h >

void MARK (name)

DESCRIPTION

PROF(5)

MARK will introduce a mark called name that will be treated
the same as a function entry point. Execution of the mark will
add to a counter for that mark, and program-counter time
spent will be accounted to the immediately preceding mark or
to the function if there are no preceding marks within the
active function.

Name may be any combination of numbers or underscores.
Each name in a single compilation must be unique, but may
be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined
before the header file < prof.h > is included. This may be
defined by a preprocessor directive as in the synopsis, or by a
command line argument, i.e:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may be
left in the source files containing them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much
time is spent in each loop. Unless this example is compiled
with MARK defined on the command line, the marks are
ignored.

#include < prof.h >
foo()
{

int i. j;

MARK(loop1);

UP-13713 Page 1

PROF(5)

}

for (i = 0; i < 2000; i + +) {

}
MARK(loop2);
for U = 0; j < 2000; j + +) {

}

SEE ALSO
prof(1). profil(2}, monitor(3C).

Page 2 UP-13713

REGEXP(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT < declarations>
#define GETCO < getc code>
#define PEEKC() < peekc code>
#define UNGETC(c) < ungetc code>
#define RETURN(pointer) < return code>
#define ERROR(val) < error code>

#include < regexp.h >

char *compile (instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;
int eof;

int step (string, expbuf)
char *string, *expbuf;

extern char *loc1, *loc2, *Iocs;

extern int circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression
matching routines in the form of ed(1), defined in
<regexp.h> . Programs such as ed(1). sed(1), grep(1),
bs(1), expr(1), etc., which perform regular expression match­
ing use this source file. In this way, only this file need be
changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs
that include this file must have the following five macros
declared before the .. #include < regexp.h > " statement.
These macros are used by the compile routine.

GETCO

PEEKCO

UP-13713

Return the value of the next character in
the regular expression pattern. Succes­
sive calls to GETCO should return suc­
cessive characters of the regular expres­
sion.

Return the next character in the regular
expression. Successive calls to PEEKCO
should return the same character [which
should also be the next character
returned by GETCO].

Page 1

REGEXP(5)

UNGETC(c)

R ETUR N (pointer)

ERROR (val)

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

Cause the argument c to be returned by
the next call to GETCO [and PEEKCO].
No more that one character of pushback
is ever needed and this character is
guaranteed to be the last character read
by GETC(). The value of the macro
UNGETC(c) is always ignored.

This macro is used on normal exit of the
compile routine. The value of the argu­
ment pointer is a pointer to the charac­
ter after the last character of the com­
piled regular expression. This is useful
to programs which have memory alloca­
tion to manage.

This is the abnormal return from the
compile routine. The argument val is an
error number (see table below for mean­
ings). This call should never return.

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.
More than 2 numbers given in \{ \}.
} expected after \.
First number exceeds second in \{ \}.
[] imbalance.
Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the­
compile routine but is useful for programs that pass down dif­
ferent pointers to input characters. It is sometimes used in
the INIT declaration (see below). Programs which call func­
tions to input characters or have characters in an external
array can pass down a value of ((char *) 0) for this parameter.

Page 2 UP-13713

REGEXP(5)

The next parameter expbuf is a character pointer. It points to
the place where the compiled regular expression will be
placed.

The parameter endbuf is one more than the highest address
where the compiled regular expression may be placed. If the
compiled expression cannot fit in (endbuf-expbuf) bytes, a call
to ERROR(50) is made.

The parameter eof is the character which marks the end of
the regular expression. For example, in ed(1), this character
is usually a I.

Each program that includes this file must have a #define
statement for INIT. This definition will be placed right after the
declaration for the function compile and the opening curly
brace ((). It is used for dependent declarations and initializa­
tions. Most often it is used to set a register variable to pOint
the beginning of the regular expression so that this register
variable can be used in the declarations for GETC() , PEEKCO
and UNGETC(). Otherwise it can be used to declare external
variables that might be used by GETCO, PEEKCO and
UNGETC(). See the example below of the declarations taken
from grep(1).

There are other functions in this file which perform actual reg­
ular expression matching, one of wtlich is the function step.
The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of charac­
ters to be checked for a match. This string should be null ter­
minated.

The second parameter expbuf is the compiled regular expres­
sion which was obtained by a call of the function compile.

The function step returns non-zero if the given string matches
the regular expression, and zero if the expressions do not
match. If there is a match, two external character pointers are
set as a side effect to the call to step. The variable set in step
is loc1. This is a pointer to the first character that matched
the regular expression. The variable loc2, which is set by the
function advance, points to the character after the last charac­
ter that matches the regular expression. Thus if the regular

UP-13713 Page 3

REGEXP(5)

L">"" .. ,,·L">"t"'.r' matches the entire foc1 will to the first
character of and foc2 will to the null at the end

uses the external variable
the with

If more than one
before the first is executed the value of should

saved for each and should be set to

The function advance is called from with the same argu-
. The purpose of is to the

and call advance until advance returns non-
zero inrlil""-::.i"il'""lll'1

If one wants to constrain
all cases, step need not be

the end of reached.
to the beginning of the line in

simply call advance.

When advance encounters a * or \{ \} sequence in the regu­
lar expression, it will advance its pointer to the string to be
matched as far as possible and will recursively call itself trying
to match the rest of the string to the rest of the regular
expression. As long as there is no match, advance will back
up along the string until it finds a match or reaches the point
in the string that initially matched the * or \{ \}. It is some­
times desirable to stop this backing up before the initial point
in the string is reached. If the external character pointer locs
is equal to the point in the string at sometime during the back­
ing up process, advance will break out of the loop that backs
up and will return zero. This is used by ed(1) and sed(1) for
substitutions done globally (not just the first occurrence, but
the whole line) so, for example, expressions like s/y*/Ig do not
loop forever.

The additional external variables sed and nbra are used for
special purposes.

EXAMPLES
The following is an example of how the regular expression
macros and calls look from grep(1):

#define INIT register char *sp = instring;
#define GETCO (*sp + +)
#define PEEKC() (*sp)

Page 4 UP-13713

#define UNGETC(c)
#define AETUAN(c)
#define EAAOA(c)

#include < regexp.h >

(--sp)
return;
regerrO

REGEXP(5)

(void) compile(*argv, expbuf, &expbuf[ESIZE]. '\0');

SEE ALSO

if (step(linebuf, expbuf))
succeed();

ed(1), expr(1), grep(1), sed(1) in the User's Reference Manual.

UP-13713 Page 5

REGEXP(5)

[This page left blank.]

Page 6 UP-13713

NAME
stat - data returned by stat system call

SYNOPSIS
#include < sys/types.h >
#include < sys/stat.h >

DESCRIPTION

STAT (5)

The system calls stat and (stat return data whose structure is
defined by this include file. The encoding of the field st _mode
is defined in this file also.

Structure of the result of stat

struct stat

dev_t
ushort
ushort
short
ushort
ushort
dev_t
off_t
time_t
time_t
time_t

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atimej
st_mtime;
st_ctimej

#define S_IFMT 0170000 /* type of file */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_IFIFO 0010000 /* fifo */
#define S_ISUID 04000 /* set user id on execution */
#define S_ISGID 02000 /* set group id on execution */
#define S_ISVTX 01000 /* save swapped text even after use */
#define S_IREAD 00400 /* read permission, owner */
#define S_IWRITE 00200 /* write permission, owner */
#define S_IEXEC 00100 /* execute/search permission, owner */
#define S_ENFMT S_ISGJD /* record locking enforcement flag */
#define S_IRWXU 00700 /* read,write, execute: owner */

UP-13713 Page 1

STAT(S)

#define S_IRUSR
#define S_IWUSR
#define S_IXUSR
#define S_IR\llXG
#define S_IRGRP
#define S_IWGRP
#define S_IXGRP
#define S_IR\IIXO
I/deffne S_IROTH
I/define S_I\I«>TH
I/define S_IXOTH

SEE ALSO
stat(2). types(5).

Page 2

00400
00200
00100
00010
00040
00020
00010
00001
00004

00002

00001

/* read permission: owner */
/* write permission: owner */
/* execute permission: owner */
/* read, write, execute: group */
/* read permission: group */
/* write permission: group */
/* execute permission: group */
/* read, write, execute: other */
/* read permission: other */
/* write permission: other */
1* execute permission: other */

UP-13713

TERM(5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g., man (1),
tabs(1), tput(1), vi(1) and curses and are maintained as
part of the shell environment in the environment variable
TERM (see sh (1). profile (4), and environ

Entries in term info source files consist of a number of
fields. (To obtain the source description for

a use the -I of (1.) White space
after each comma is ignored. The first line of each terminal
description in the terminfo database the names
which terminfo knows the bar (
characters. The first name is the most common abbrevi-
ation for the terminal the one to use to set the environ-
ment variable TERMINFO in
the
the +0 , <=>1

name may contain blanks for rea:aalOlllllV

Terminal names for the verbose
chosen using the conventions. The
of hardware making up the terminal should have a root name
chosen. This name should not contain hyphens, except that
synonyms may be chosen that do not conflict with other
names. Up to 8 characters, chosen from [a-zO-9], make up a
basic terminal name. Names should generally be based on
original vendors, rather than local distributors. A terminal
acquired from one vendor should not have more than one dis­
tinct basic name. Terminal sub-models, operational modes
that the hardware can be in, or user preferences, should be
indicated by appending a hyphen and an indicator of the
mode. The following suffixes should be used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) att4425-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
ana No arrow keys (leave them in local) c100-na

UP-13713 Page 1

TERM(5)

-np
-rv

Number of pages of memory
Reverse video

c100-4p
att441S-rv

To avoid conflicts with the naming conventions used in
describing the different modes of a terminal (e.g., ow), it is
recommended that a terminal's root name not contain
hyphens. Further, it is good practice to make all terminal
names used in the ferminfo(4) database unique. Terminal
entries that are present only for inclusion in other entries via
the use = facilities should have a '+' in their name, as in
4415+nl.

Some of the known terminal names may include the following
(for a complete list, type: Is -C lusr/lib/terminfo/?):

2621,hp2621
2631
2631-c
2631-e
2640,hp2640
2645,hp2645
3270
33,tty33
35,tty35
37,tty37
4000a
4014,tek4014
40,tty40
43 , tty43
4410,5410
441 0-nfk,541 O-nfk
441 0-nsl,541 O-nsl
4410-w,5410-w
4410v1,5410v1
441 Ov1-w ,541 Ov1-w
4415,5420
4415-nl,5420-nl
4415-rv,5420-rv
4415-rv-nl,5420-rv-nl
4415-w,5420-w
4415-w-nl,5420-w-nl

4415-w-rv ,5420-w-rv

Page 2

Hewlett-Packard 2621 series
Hewlett-Packard 2631 line printer
Hewlett-Packard 2631 line printer - compressed mode
Hewlett-Packard 2631 line printer - expanded mode
Hewlett-Packard 2640 series
Hewlett-Packard 2645 series
IBM Model 3270
AT&T Teletype Model 33 KSR
AT&T Teletype Model 35 KSR
AT&T Teletype Model 37 KSR
Trendata 4000a
TEKTRONIX 4014
AT&T Teletype Dataspeed 40/2
AT&T Teletype Model 43 KSR
AT&T 4410/5410 terminal in BO-column mode - version 2
AT&T 4410/5410 without function keys - version 1
AT&T 4410/5410 without pin defined
AT&T 4410/5410 in 132-column mode
AT&T 4410/5410 terminal in BO-column mode - version 1
AT&T 4410/5410 terminal in 132-column mode - version 1
AT& T 4415/5420 in BO-column mode
AT&T 4415/5420 without changing labels
AT&T 4415/5420 BO columns in reverse video
AT&T 4415/5420 reverse video without changing labels
AT&T 4415/5420 in 132-column mode
AT&T 4415/5420 in 132-column mode without changing

labels
AT&T 4415/5420 132 columns in reverse video

UP-13713

4415-w-rv-nl.5420-w-rv-nl

4418,5418
4418-w,5418-w
4420
4424
4424-2
4425,5425
4425-fk,5425-fk
4425-nl,5425-nl

4425-w,5425-w
4425-w-fk,5425-w-fk

4425-nl-w,5425-nl-w

4426
450
450-12
500,att500
510,510a
513bct,att513
5320
5420_2
5420_2-w
5620,dmd
5620-24, dmd-24
5620-34,dmd-34
61O,610bct
610-w,610bct-w
7300,pc7300,unix _pc
735,ti
745
dumb

hp
Ip
pt505
pt505-24
SVT1210, UVT1210
SVT1220, UVT1220
UVT1224
sync

UP-13713

TERM(5)

AT&T 4415/5420 132 columns reverse video
without changing labels

AT&T 5418 in 80-column mode
AT&T 5418 in 132-column mode
AT&T Teletype Model 4420
AT&T Teletype Model 4424
AT&T Teletype Model 4424 in display function group ii
AT&T 4425/5425
AT&T 4425/5425 without function keys
AT&T 4425/5425 without changing labels in 80-column

mode
AT&T 4425/5425 in 132-column mode
AT&T 4425/5425 without function keys in 132-column

mode
AT&T 4425/5425 without changing labels in 132-column

mode
AT&T Teletype Model 4426S
DASI 450 (same as Diablo 1620)
DASI 450 in 12-pitch mode
AT&T-IS 500 terminal
AT&T 5i0/5i0a in 80-column mode
AT&T 513 bct terminal
AT&T 5320 hardcopy terminal
AT&T 5420 model 2 in 80-column mode
AT&T 5420 model 2 in 132-column mode
AT&T 5620 terminal 88 columns
AT&T Teletype Model DMD 5620 in a 24x80 layer
AT&T Teletype Model DMD 5620 in a 34x80 layer
AT&T 610 bct terminal in 80-column mode
AT&T 610 bct terminal in 132-column mode
A T& T UNIX PC Model 7300
Texas Instruments TI735 and TI725
Texas Instruments TI745
generic name for terminals that lack reverse

line-feed and other special escape sequences
Hewlett-Packard (same as 2645)
generic name for a line printer
AT&T Personal Terminal 505 (22 lines)
AT&T Personal Terminal 505 (24-line mode)
UNISYS Video Terminal Model 1210
UNISYS Video Terminal Model 1220
UNISYS Video Terminal Model 1224
generic name for synchronous Teletype Model

4540-compatible terminals

Page 3

TERM(5)

Commands whose behavior depends on the type of terminal
should accept arguments of the form -Tterm where term is
one of the names given above; if no such argument is
present, such commands should obtain the terminal type from
the environment variable TERM, which, in turn, should contain
term.

FILES
/usr/lib/terminfo/? /* compiled terminal description database

SEE ALSO
curses (3X), profile(4), terminfo(4), environ(5).
man(1). sh(1), stty(1), tabs(1), tput(1), tplot(1G), vi(1) in the
User's Reference Manual.
infocmp(1 M) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

NOTES
Not all programs follow the above naming conventions.

Page 4 UP-13713

TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include < sys/types.h >

DESCRIPTION
The data types defined in the include file are used in UNIX
system code; some data of these types are accessible to user
code:

typedef struct { int r[1]; } *physadr;
typedef long daddr _ t;
typedef char * caddr _ t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef ushort ino _ t;
typedef short cnt_ t;
typedef long time _ t;
typedef int label_t[10];
typedef short dev _ t;
typedef long off _ t;
typedef long paddr _ t;
typedef int key _ t;
typedef unsigned char use _ t;
typedef short sysid _ t;
typedef short index _ t;
typedef short lock _ t;
typedef unsigned int size _ t;

The form daddr _t is used for disk addresses except in an i­
node on disk, see fs (4). Times are encoded in seconds since
00:00:00 GMT, January 1, 1970. The major and minor parts of
a device code specify kind and unit number of a device and
are installation-dependent. Offsets are measured in bytes
from the beginning of a file. The /abel_t variables are used to
save the processor state while another process is running.

SEE ALSO
fS(4) .

UP-13713 Page 1

TVPES(5)

[This page left blank.]

Page 2 UP-13713

VALUES (5)

NAME
values - machine-dependent values

SYNOPSIS
#include < values.h >

DESCRIPTION
This file contains a set of manifest constants, conditionally
defined for particular processor architectures.

The model assumed for integers is binary representation
(one's or two's complement), where the sign is represented by
the value of the high-order bit.

BITS (type) The number of bits in a specified type
(e.g., int).

HIBITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

The value of a short integer with only the
high-order bit set (in most implementa­
tions, Ox8000).

The value of a long integer with only the
high-order bit set (in most implementa­
tions, Ox80000000).

The value of a regular integer with only
the high-order bit set (usually the same
as HIBITS or HIBITL).

The maximum value of a signed short
integer (in most implementations,
Ox7FFF, decimal 32767).

The maximum value of a signed long
integer (in most implementations,
Ox7FFFFFFF, decimal 2147483647).

MAXI NT The maximum value of a signed regular
integer (usually the same as MAXSHORT
or MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a
single-precision floating-point
number, and its natural loga­
rithm.

MAXDOUBLE,LN_MAXDOUBLE

UP-13713

The maximum value of a
double-precision floating-point

Page 1

VALUES (5)

number, and its natural loga­
rithm.

MINFLOAT, LN _ MINFLOAT The minimum positive value
of a single-precision floating­
point number, and its natural
logarithm.

MINDOUBLE, LN _ MINDOUBLE The minimum positive value
of a double-precision
floating-paint number, and its
natural logarithm.

FSIGNIF

DSIGNIF

SEE ALSO
intro(3) , math (5).

Page 2

The number of significant bits in the
mantissa of a single-precision floating­
point number.

The number of significant bits in the
mantissa of a double-precision floating­
point number.

UP-13713

NAME
varargs - handle variable argument list

SYNOPSIS
#inelude < varargs.h >

va_alist

va del

void va _ start(pvar)
va Jist pvar;

type va_arg(pvar, type)
va Jist pvar;

void va _ end(pvar)
va Jist pvar;

DESCRIPTION

VARARGS(5)

This set of macros allows portable procedures that accept
variable argument lists to be written. Routines that have vari­
able argument lists [such as printf(3S)] but do not use varargs
are inherently nonportable, as different machines use different
argument-passing conventions.

va _ alist is used as the parameter list in a function header.

va del is a declaration for va alist. No semicolon should fol-- -
low va dcl.

va Jist is a type defined for the variable used to traverse the
list.

va_start is called to initialize pvar to the beginning of the list.

va _ arg will return the next argument in the list pointed to by
pvar. Type is the type the argument is expected to be. Dif­
ferent types can be mixed, but it is up to the routine to know
what type of argument is expected, as it cannot be deter­
mined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va _ endJ are
possible.

EXAMPLE
This example is a possible implementation of execl (2).

#include <varargs.h>

UP-13713 Page 1

VARARGS(5)

#define MAXARGS 100

execl is called by

execl (file, argl, arg2, ... , (char

execl(va_alist)
va_dcl

va_list ap;
char *file;
char *args[MAXARGS];
int argno = 0;

va_start(ap);
file = va_arg(ap, char
while «args[argno++] va_arg(ap, char *) != (char *)0)

va_end(ap);
return execv(file, args);

SEE ALSO
exec (2) printf(3S), vprintf(3S).

NOTES
It is up to the calling routine to how many arguments
there are, since it is not always possible to determine this from
the stack frame. For execl is a zero pointer
to signal the end of the list. Printf can tell how many argu-
ments are there the format.
It is non-portable to a second of
or float to since arguments seen by the called function
are not char, short I or float. C converts char and short argu­
ments to int and converts float arguments to double before
passing them to a function.

Page 2 UP-13713

