
• UNISYS ALLY®
Software
Development
Environment
ADL User's Guide
Copyright © 1987 Unisys Corporation.
Unisys is a trademark of Unisys Corporation.
ALLY is a registered trademark of
Foundation Computer Systems, Inc.
Foundation Computer Systems is
a wholly owned subsidiary of Unisys Corporation.

Priced Item April 1987
Printed in U.S.A.
UP-12507

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT.
Any product and related material disclosed herein are only furnished
pursuant and subject to the terms and conditions of a duly executed
Program Product License or Agreement to purchase or lease equipment.
The only warranties made by Unisys, if any, with respect to the products
described in this document are set forth in such License or Agreement.
Unisys cannot accept any financial or other responsibility that may be the
result of your use of the information in this document or software
material~ including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and!
or software material complies with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

Preface

The ADL User's Guide describes the ALLY Development
Language (ADL) and how you use it in building applications with
the ALLY Application Developer's Dialog.

This manual is for people who are developing ALLY applications.
We assume that you have read Introduction to ALLY, Concepts
and Facilities, and Introduction to the Dialog.

The manual has five chapters and three appendixes.

Chapter!
Appendix

Introduces the ALLY Development Language (ADL)
and provides examples of ADL procedures

2 Describes the four sections that can make up an ADL
procedure

3 Describes ADL's constructs and operators

4 Describes ADL's built-in instructions and functions

5 Describes ADL's Generic Data Manipulation
Language (DML)

A Contains lists of ADL's reserved words and the syntax
of ADL reserved words

B Contains the tables of ADL operators and of pre­
cedence of operators

C Contains tables of data type conversion and arith­
metic, DATE format pictures, and DATE picture
precisions for rounding and truncating dates

UP-12507 p-1

Preface

Conventions

You should read carefully the description of documentation con­
ventions before reading this manual.

We u~e the following conventions in this manual:

Single quotes (" ') Identify command names.

Boldface type (bold) Highlights text you are to enter. Boldface
is also used within command syntax state­
ments.

Double quotes (H ")

p-2

Identify text strings within text sections.
These strings are typically located in
examples or as part of the prompts that
ALL Y sends to your display.

Sometimes the exact content of a text
string is affected by the traditional rules
of punctuation. In these cases, we place
the closing quotation mark at the end of
the text string. For example, instead of:

You see the prompt ""Macro number:."

We say:

You see the prompt ""Macro number:".

End of Preface

UP-12507

Contents

Chapter 1. Introduction to ADL

Examples of ADL Procedures 1-3
Summary 1-4

Chapter 2. Sections of an ADL Procedure

Procedure Declarations... 2-3
Constant Declarations 2-4
Variable Declarations... 2-5

Variable Data Types ... 2-6
Scope of Variables 2-6

LOCAL Scope ... 2-7
GLOBAL Scope ... 2-7
EXPORT and IMPORT Scope 2-8

Anatomy of an ADL Procedure 2-10

Chapter 3. ADL Constructs
Procedure Construction , , . . 3-1
Punctuation and Operator Constructs 3-2

Terminator ... 3-2
Assignment Operator .. 3-2
Relational and Arithmetic Operators.......................... 3-3

Comment Text ... 3-4
ADL Terminology .. 3-5

Reserved Words .. 3-5
Case Sensitivity 3-5
Naming Conventions .. 3-6

Control Statements 3-6
Functions With No Arguments 3-8
BEG IN and EN 0 ... 3-9
Referencing Form/Report and DSD Fields 3-9
Character String Literals... 3-9
The Logical Operators , ,. 3-1 ()

UP-12507 1

Contents

Chapter '4. ADL Functions and Instructions

Manipulating Variable and Field Values......................... 4-1
CHAR Formatting Functions 4-2
NUMBER Formatting Functions 4-4
DATE Formatting Functions 4-7
Manipulating CHAR Strings 4-H

Concatenate (II) 4-9
Calculating with DATE Values 4-10

Arithmetic with DATE Values 4-10
Invoking Tasks and Actions 4-13

Inv()ke a Task ... 4-14
Invoke an Action 4-16

Using ALLY Commands .. 4-1H
Invoking Help and Error Messages 4-20
Reporting Procedure Success or Failure 4-22
Summary .. 4-24

Chapter 5. Generic DML

Introducti()n 5-:2
Mixing FormlReport and ADL Transactions 5~3

Related Data Source Definitions................................... 5-4
Arguments for Generic DML Instructions 5~5

Open_ID Variable............... 5-6
Status_Code Variable 5-6

Generic DML Global Constants 5-7
Generic DML Instructions .. 5-H

Opening and Closing a DSD 5-H
Describing and Modifying Query Criteria 5-14
Retrieving DSD Records ... 5-19
Modifying Access-Method Records 5-23
Performing Access-Method Transactions 5-29
Passing Access-Method-Specific Commands 5-33

Appendix A. ADL Reserved Words

2 UP-12507

Contents

Appendix B. ADL Operators

Appendix C. Data Types and DATE Pictures

Manipulating ADL Data Type's C-l
Input DATE Pictures for TO_DATE Function C-4
DA TE Format Numher Pictures C-6
DATE Format Character Pictures C-H
DATE Format Suffix Pictures C-9
DATE Picture Precisions for Rounding Dates C-IO
DATE Picture Precisions for Truncating Dates C-12

U~1~~ 3

Contents

Figures

I-I ADL's Relationship to ALLy.............................. I-I

2-1 ADL Procedure with One Statement 2-1
2-2 ADL Procedure with Four Sections 2-2
2-3 Procedure Declaration and its Invocation 2-4
2-4 Constant Declarations .. 2-5
2-5 Variable Declarations '................. 2-5
2-6 EXPORT and IMPORT Variables.......................... 2-9

3-1 Free-Form Procedure Construction 3-1
3-2 Comment Text in a Procedure 3-4
3-3 IF Statement .. 3-7
3-4 WHILE Statement .. 3-X
3-5 Functions that Take No Arguments ~........ 3-X

4-1 An Execution Stack 4-14

5-1 Relationship of DSDs in DML Examples 5-12
5-2 Opening and Closing DSDs 5-13
5-3 Procedure With DB_CLAUSE 5-17
5-4 Querying Records 5-IX
5-5 Retrieving Records ~.................................. 5-22
5-6 Modifying Records .. 5-2X
5-7 Performing Transactions 5-32

4 UP-12507

Contents

Tables

2-1 The Sections of an ADL Procedure 2-1
2-2 ADL Data Type Default Values and Attributes 2-6
2.;;3 Anatomy of an ADL Procedure 2-10

3-1 Relational and Arithmetic Operators 3-3
3-2 Precedence of Operators 3-3

4-1 Effect of SET_FAILURE Flag in a Form/Report 4-23
4-2 ADL Functions and Instructions............................. 4-24

5-1 Generic DML Instructions by Operation 5-1

A-I ADL Reserved Words .. A-2
A-2 ADL Functions and Instructions............................ A-4
A-3 ALLY Commands ... A-5

B-1 A DL Operators .. B-1
B-2 Precedence of Operators B-2

C-I ADL Data Type Manipulation C-l
C-2 Input DATE Picture Classifications C-4
C-3 DA TE Format Number Pictures C-6
C-4 DATE Format Character Pictures C-x
C-5 DATE Format Suffix Pictures C-9
C-6 DATE Picture Precisions for Rounding Dates.. C-I0
C-7 DATE Picture Precisions for Truncating Dates C-12

UP-12507 5

Chapter 1
Introduction to ADL

The ALLY Development Language (ADL) is a simple yet power­
ful programming language. ADL provides special built-in func­
tions and instructions that you can combine with the other ele­
ments of ALLY to accomplish special goals in an application.

Application

Developer's

Dialog

Application

8
ALLY

Execution System

Host

Figure 1-1. ADL's Relationship to ALLY

FOO2-0572-00

You include ADL procedures in your applications by writing and
compiling them through the "Procedural Languages" branch of
the Dialog. The ADL compiler runs quickly and provides
descriptive error messages. .

The syntax of ADL is similar to PASCAL. However, a complete
ADL procedure can consist of only one procedure statement.
Many procedures that you write will consist of only a few lines.
For example, the following procedure performs a query and prints

UP-12507 1-1

Chapter 1

a report for the appropriate record. The text within the braces
({ }) is a comment.

BEGIN
IF (FORM..;,PURGER. REC_TYPE : = 'Z')
THEN

BEGIN

END;

CALL_CMD (QUERY);
CALL_CMD (PALL);

{perform the query}
{print the report }

END;

You can invoke anADL procedure from any event in an applica­
tion. You can use ADL to build special field validation, arith­
metic computations, task action and flow control, and database
management interactions. For eX;.lmple, ADL procedures can:

• compute, compare, and validate form/report data
• access.databases and files
• invoke any ALLY task, action, or command
• access global variables
• call other ADL·procedures
• be used as tasks, entry points, or menu choices
• perform d~tabase operations such as:

• posting
• generating fixed sequential files that ALLY can use

through Data Source Definitions

ADL provides buiJt-in functions that manipulate and convert data
in form/report fields and in ADL variables in other currently­
executing ALLY actions. ADL allows you to:

• ~anage flow of control for tasks
• use ALLY commands
• display help and error messages
• report to a calling event the success or failure of a pro-

cedure

ADL also contains a group of special instructions called the Gen­
eric Data Manipulation Language (DML).These instructions
allow you to perform database operations on all databases sup­
ported by ALLY.

1-2 UP-12507

Introduction to ADL

The procedures you write will often consist of statements that ver­
ify a value entered into a field, or do some checking or calcula:
tions. These procedures can be invoked before or after:

• a query, commit, or rollback to a form/report
• an insert, update, or delete to a form/report group
• a field value is changed
• control passes to a:

• form/ report
• form/report field
• menu
• menu choice

The syntax of a procedural statement in ADL is very similar to
the corresponding statement in the PASCAL language in terms of
execution control (IF ELSE,), iteration (WHILE), and construc­
tion of compound statements (BEGIN END). PASCAL pro­
grammers should be aware that ADL does not support all of the
features of PASCAL and that ADL uses semicolons differently.

Examples of ADl Procedures

Here are some examples of simple ADL procedures. This exam­
ple is called before control passes to a form/report. This pro­
cedure sets a state that may be changed by another ADL pro­
cedure during the execution of the form/report.

VAR
mode : NUMBER GLOBAL;

BEGIN
mode := 1;

END;

UP-12507 1-3

Chapter 1

The next example executes the ALLY query command if the
value of a field is null ("').

IF (report.name = ("» THEN
CALL_CMD (QUERY);

{compare to null}
{execute query }

The last example changes the flow of control in a form/report.
When the user invokes the "next field~ command, the first record
is created for a new group.

VAR
C : NUMBER:

BEGIN

END;

C := GET_CMD 0;
IF (C = FNEXT) THEN

CALL_CMD (FINSNEXT);

Summary

{next field command}
{do an insert in next group}

ADL allows you to build special flow control, computations, vali­
dations, and database operations into your ALLY applications.
The remainder of this manual provides a description and example
of each section that can make up a procedure and of each built-in
function, instruction, and operator.

End of Chapter 1

1-4 UP-12507

Chapter 2
Sections of an ADL Procedure

Table 2-1 shows the four sections that can make up an ADL pro-
cedure. .

Table 2-1. The Sections of an ADL Procedure

Procedure declaration Not required unless arguments are
passed in

Constant declarations Not required unless the procedure
uses at least one constant

Variable declarations Not required unless the procedure
uses at least one variable

Procedure statements Required in every ADL procedure

Although a procedure can have four sections, it can also consist of
only one procedure statement. Figure 2-1 shows a valid pro­
cedure with one procedure statement.

employee.hiredate := personnel.date_employed;

Figure 2-1. ADL Procedure with One Statement

UP-12507 2-1

Chapter 2

Figure 2-2 shows a procedure that contains all four sections.

PROCEDURE PERSONNEL_CALCS (VAR countJemales NUMBER;
VAR count_employees NUMBER;);

CONST

VAR

ratel = 0.15;
rate2 = 0.27;

admin CHARi
tech CHAR;

BEGIN

IF (empJorm. salary < 29 I 000)
THEN payroll.withhold := empJorm.salary * rate1;
ELSE payroll. withhold := empJorm.salary * rate2;

count_employees := count_employees + 1;
IF (empJorm.female = 'X')

THEN countJemales : = countJemales + 1;

IF (empJorm.clerical = 'X')
THEN admin := admin + 1;
ELSE tech := tech + 1;

END;

Figure 2-2. ADL Procedure with Four Sections

2-2 'UP-12507

Sections of an ADL Procedure

Procedure Declarations

A procedure declaration allows you to name a procedure. It can
also allow you to pass data between procedures. The syntax of
each type of procedure declaration is:

PROCEDURE name

PROCEDURE name (VAR parameter_name : data_type;);

A procedure declaration begins with the reserved word PRO­
CEDU RE followed by the name of the procedure. Any parame­
ters are declared within a set of parentheses followed by a semi­
colon. A parameter list requires at least one parameter, and it
can contain multiple parameters. A parameter list is easier to
read when you align multiple parameters on succeeding lines.

A procedure that can be called by another procedure must be
named in a procedure statement, even though it passes no param­
eters. If the procedure statement simply names a procedure and
there are no parameters, you omit the list, the parentheses, and
the semicolon.

Procedure Parameters

An ADL procedure parameter Gan receive a value from a calling
procedure argument and return a value to a calling procedure
argument. A parameter name must be preceded by the reserved
word VAR. Each argument of the procedure invocation must be
a container for a value (a variable or a field). An argument can­
not be a constant, because a constant cannot be manipulated.

The information passed from an argument to its corresponding
parameter is not the value but the address of the argument. The
procedure's manipulations of this parameter are made directly to
the corresponding argument.

Figure 2-3 illustrates the communication between the fields
""admin" and "employees" of the '''summary'' form and the
parameters "count_admin" and ··count_employees".

UP-12507 2-3

Chapter 2

{procedure 1}
PROCEDURE PERSONNEL_CALCS (VAR count.-admin

r-=_--:-_____ V_AR_c_o_un-:-.t-employees
I (Remainder of procedure 1)1

{procedure 2}

\ (Beginning of procedure.2)1

NUMBER;)
NUMBER;) ;

CALL PERSONNEL_CALCS (summary.admin. summary.employees);

I (Remainder of procedure 2)1

Figure 2-3. Procedure Declaration and its Invocation .

Procedure Invocation Arguments

The invocation from the calling procedure must include an argu­
ment list with a field or variable for each parameter in the called
procedure. There must be a direct correspondence in number and
in data type between the arguments of the procedure invocation
and the parameters of the called procedure. Values are passed
between these parameters in a one-to-one correspondence~ that is,
from firs~ to first, second to second, and so forth.

Constant Declarations

An ADL constant can be any ALLY data type. The ADL
reserved word CONST must label all constant declarations. Single
quotes must surround the value of a constant of CHAR data type.
Constant declarations are easier to read when each name is
indented on a line beneath the heading. Figure 2-4 shows some
typical constant declarations.

2-4 UP-12507

Sections of an ADL Procedure

CONST
ta.:x.Jate1 .25; {number constant~
self_employed = ' SE' ; {character constant}
year_end" = 12/31/86; {date conatant}

Figure 2-4. Constant Declarations

Variable'Declarations

The ADL reserved word VAR must label a variable declaration
section. A variable declaration specifies a variable name, its data
type, and its scope. Each vari"able must have a name distinct
from all others in a procedure.

For readability, you can declare the name and data type of each
variable on a line following the VAR label.

Figure 2-5 shows the syntax of variable declarations. In it, the
variable "country_name" can contain 120 characters.
"'National_debt" can contain up to eighteen digits to the left of
the decimal and two digits to the right. "Nano-second" can con­
tain 10-9 • "Last_date_paid" can contain date values. We have
made this. list easy' to read by indenting lines and aligning entries.

VAR
countrY...:Jlame
national_debt
nano.Jecond
last_date~aid

CHAR (120);
NUMBER (20,2); {fixed point output}
NUMBER (12); {floating point output}
DATE;

Figure 2-5. Variable Declarations

UP-12507 2-5

Chapter 2

Variable Data Types

Each variable must be declared as the ALLY data type: CHAR
(character), NUMBER (number), or DATE (date). Table 2'-2
lists each data type's characteristics, default value, and default and
maximum attributes. The COllcepts and Facilities manual con­
tains a detailed discussion of data types.

Table 2-2. ADL Data Type Default Values and Attributes

ADL
Reserved

Data Type Word

Character CHAR

Field/Variable Derault Default Maximum
Can Contain Value· Attribute· Attribute

Any ASCII
characters

80 512

Number NUMBER 0 through 9 o (zero) 30
1O:!:32764

500

Date DATE 11114712 BC 01/01/00 n/a nla
through

1213114999

* The defaults are the data type defaults specified for the application that the
ADL procedure belongs to. The values shown in these columns are the defaults
provided when the Dialog builds a new AFILE. If these values are changed ror
the application. then the new values will be the ADL defaults.

Scope of Variables

Each variable has a scope. The scope determines which pro­
cedures may reference a variahle or whether other sections of an
application may reference it. A 'variable's value may be local to
the ADL procedure or global tt) the entire application. The value
of a local variable may also he exported to or imported from other
ALL Y actions that are active.

2-6 UP-12507

Sections of an ADL Procedure

A variable that is:

LOCAL cannot he referenced outside the procedure

GLOBAL C,ln be referenced everywhere in an application

EXPORT can be referenced by selected ADL procedures

The label for a variahle's scope is placed between the data type
and the terminator (;), as shown below.

I mode : NUMBER (15) EXPORT;

LOCAL Scope

A local variable can be referenced only within the ADL pro­
cedure in which it is declared. At the start of each new execution
of a procedure, a local variable has the default value given in
Table 2-2. By default, ADL variables are local. Therefore, you
are not required to label a local variable with the reserved word
LOCAL.

You can use the name of a local variable in several procedures.
That is, each, of your ADL procedures can have a variable named
•. FRED" as long as each FRED variable is local.

Since a variable is local by default, you simply declare the name
and data type, and no scope.

NUMBER (30);

GLOBAL Scope

A value stored in a global variable can be referenced by any ADL
procedure. You designate a variable as global by using the Create
a Global Variable form of the Dialog.

UP-12507 2-7

Chapter 2

To use a global variable in a procedure, you may declare it as a
variable with GLOBAL scope. However, you are.not required to
declare it in the procedure. If you simply use the name in a pro­
cedure statement, ALLY will check its status. An error message
will be displayed if the name is not defined as a global variable.
The following example shows the two ways of referencing a global
variable called "mode" in a procedure.

ADL Procedure 1

VAR
mode : NUMBER GLOBAL;

BEGIN
mode := 1;

END;

EXPORT and IMPORT Scope

ADL Procedure 2

mode ;= 1;

The label EXPORT allows the value of a local variable to be
referenced by other ADL procedures or ALLY tasks or actions
while the defining procedure is active.

To use the value of an EXPORT variable in another procedure,
you declare a variable in the importing procedure and define it as
IMPORT. You then reference the exporting procedure and its
EXPORT variable before terminating the declaration. Figure 2-6
shows the communication of the values of EXPORT and
IMPORT variables between two procedures.

2-8 UP-12507

{exporting procedure}

VAR
student_code : NUMBER

EXPORT;
BEGIN

I (remainder of procedure) I
END;

Sections of an ADL Procedure

{importing procedure

PROCEDURE Proc-2

VAR
snum. NUMBER IMPORT

Proc_l.student_code;
BEGIN

I (remainder of procedure) I
END;

Figure 2-6. EXPORT and IMPORT Variables

The scope of ALLY form/report fields is EXPORT by default, so
their values are available to all ADL procedures that execute
while the form/report is active.

UP-12507 2-9

Chapter 2

Anatomy of an ADL Procedure

The following table summarizes the anatomy of an ADL pro­
cedure. It shows the sections that are required and those that are
optional. It also shows the syntax for each type of ADL state­
ment.

Table 2-3. Anatomy of an ADLProcedure

Element of Procedure

PROCEDURE name;

PROCEDURE name

Required or
Optional

Optional

(V AR parameter_name: daw_type;); Optional

CONST Optional
/lame: \'lILlie;

VAR
flllme : data_type;
name: GLOBAL;
name: data_type EXPORT;
/lame: data_type IMPORT;

BEGIN
procedure statement(s)

Optional

Optional
Optional
Optional

Optional
Required

END; Required with BEGIN

End of Chapter 2

2-10 UP-12507

Chapter 3
ADL Constructs

This section discusses the ADL constructs, grouped into:

• procedure construction
• punctuation and operator constructs
• comment text
• ADL terminology
• control statements
• functions with no arguments
• BEGIN and END
• referencing form/report and DSD fields
• character string literals
• the logical operators

Procedure Construction

ADL allows you to position the words and lines within the parts
of a procedure in any way that you choose. You can include
blank spaces within the procedure statements and blank lines
between the statements.

In Figure 3-1, the assignment operator (:=) ends a line, the plus
sign (+) and terminator (;) are on lines by themselves, and lines
are indented.

portfolio_details.cost :=
(portfolio.buy-price * portfolio.position-puy)
+
portfolio. buy_commission

Figure 3-1. Free-Form Procedure Construction

UP-12507 3-1

Chapter 3

Punctuation and Operator Constructs

Punctuation and operator constructs affect the:

• terminator
• assignment operator
• relational and arithmetic operators

Terminator

A semi-colon (;) must terminate each procedure statement, each
declaration, and each END. This example shows several instances
of the terminator in an ADL procedure.

PROCEDURE count~chools (VAR school_count NUMBER;);

VAR
n~tudents : NUMBER;

BEGIN

END;

n~tudents := school-form.population;
IF (population > 0)

THEN school_count: = school_count + 1;

Assignment Operator

A colon followed by an equal sign (:=) designates the assignment
of value to a variable or form/report field. The following example
illustrates a variable Hnum_students," which was declared as
NUMBER data type, and assigned a value of the "population"
field of the "schooLform."

I n~tudents := school-form.populatibn;

3-2 UP-12507

ADL Constructs

Relational and Arithmetic Operators

The ADL relational and arithmetic operators are shown in Table
3-1. The precedence of operators is shown in Table 3-2, followed
by the rules for evaluating expressions.

Table 3-1. Relational and Arithmetic Operators

Relational
Symbol Meaning

<>
<
>
<=
>=
NOT
OR
AND

equality
inequality
less than
greater than
less than or equal to
greater than or equal to
logical negation
logical or
logical and

Arithmetic
Symbol Meaning

+

*'
/

addition
subtraction
multiplication
division

fhe order of precedence of operators is shown below.

UP-12507

Table 3-2. Precedence of Operators

NOT
,I, AND

+,-,OR
<,<=,=,<>,>=,>

Done first
t

l

Done last

3-3

Chapter 3

The rules for evaluating expressions are:

• When all operators have the same precedence, the expres­
sion is evaluated from left to right.

• When operators do not have the same precedence, the
highest precedence operators are evaluated first from left to
right, then the next highest, etc.

• The preceding two rules can he overridden if you include
parentheses in an expression. Then, the part of the expres­
sion in parentheses is evaluated first, with the above rules
applied within the parentheses.

Comment Text

ADL comments must be enclosed within braces ({ }). Each com­
ment line must begin with a left brace ({) and end with a right
brace (}). Comments may be placed on lines with procedure
declarations and statements. However, the comment portion of
the line must begin and end with the appropriate brace. Figure
3-2 shows the use of each style of comment.

{Example A}
{count only the schools that have students}

VAR count: NUMBER GLOBAL;

IF (nllmLStudents > 0)
THEN count; = count + 1;

{Example B}
VAR count: NUMBER GLOBAL;

IF (nllmLStudents > 0)
THEN count:= count + 1;

{number data type}

{count only the schools}
{that have students }

Figur9 3-2. Comment Text in a Procedure

3-4 UP-12507

ADL Gonstructs

ADL Terminology

In writing an ADL procedure, you can use:

• reserved words
• arithmetic and relational' operators
• the names of forms/reports, fields, constants, and variables

Reserved Words

ADL recognizes some strings as reserved words. These reserved
words are ADL functions, instructions, and ALLY commands
used as arguments for ADL instructions. Each reserved word has
a special meaning to ADL and cannot be used in any other con­
text in an ADL procedure. Reserved words are listed in Appen­
dix A.

Case Sensitivity

ADL is case-sensitive .. All reserved words must be typed in
uppercase. Names of form/reports, fields, and variables must be
typed exactly as you defined them elsewhere in the Dialog. The
following procedure shows the ADL reserved words in uppercase
and the names of the form and the fields in lowercase, as they
were defined.

UP-12507 3-5

Chapter 3

VAR

BEGIN
null_date := TO-DATE ('01/01/01');

{is sell date valid?}
IF (portfQlio.sell_date) = null_date

THEN
portfolio.net := 0;

ELSE
{calculate net return only if sell date is valid}

portfolio.net :=

END;

portfolio. proceeds - portfolio. cost
+ portfolio. dividend;

Naming Conventions

ADL requires that all names:

• consist only of the letters a-z or A-Z, the numbers 0-9, and
the underscore sym bol

• start with' a letter
• contain a maximum of eighty char.acters

Control Statements

ADL provides two constructs that execute statements condition­
ally.

• IF-THEN-ELSE
• WHILE-DO

3-6 UP-12507

ADL Constructs

IF () THEN () ELSE ()

An IF statement can take two forms: IF THEN, and IF THEN
ELSE. In the first, you describe a condition, followed by state­
ments to execute when the condition is true. In the second, you
write statements to execute when the condition is false.

In Figure 3-3, a '''price'' calculation is performed based on the
value of ··cost." One example has multiple statements following
THEN and requires a BEGIN and END. The other demonstrates
an ELSE statement lIsed to display an error message.

{Example A - IF THEN}

IF (invoice. cost > 0) THEN
BEGIN

inventory.iteM-num := invoice.item~um;
inventory.price := 1.5 * invoice. cost;

END;

{Example B - IF. THEN ELSE}

IF (invoice. cost > 0)
THEN

inventory.price .- 1.5 * invoice.cost;
ELSE

ERROR (1234);

Figure 3-3. IF Statement

WHILE () DO

A WHILE statement specifies that WHILE a condition is true
00 one or more statements. When the condition is false, the
statements following 00 will not be executed. BEG IN and END
must surround multiple statements that follow 00.

UP-12507 3-7

Chapter 3

If the WHILE condition is not true for the first iteration, the 00
statements will be skipped and not executed.

Figure 3-4 deletes all records lip to the one with the value
"[EOB]."

CALL_CMD (RGLAST);
WHILE (DEL-FORM.DESC <> '[EOB]') DO

CALL_CMD (DELREC);

Figure 3-4. WHILE Statement

Functions With No Arguments

ADL requires that a set of parentheses he included in procedure
statements using functions that require no arguments. Figure 3-5
lists the ADL functions that take no arguments.

DBJ:ND_GROUPS 0;
DB_OPEN 0;
DBJmLATED_GROUPS 0;
GET_CMD 0;
SET-F AlLURE 0;
SET-.SUCCESS 0;

Figure 3-5. Functions that Take No 'Arguments

3-8 UP-12507

ADL Constructs

BEGIN and END

BEGIN and END must surround multiple statements in IF and
WHILE control constructs.

BEGIN and END must surround the body of a procedure that
begins with the reserved word VAR or CONST. Otherwise they
may optionally surround the procedure body.

Referencing Form/Report
and DSD Fields

ADL requires that references to form/report and DSD fields be
"form_or_DSD_name.fieldname," exactly as they have been
defined in the application. For example, an ADL reference to a
form defined in the application as "portfolio" with a field named
"buy_price" would be "portfolio. buy_price. "

Character String Literals

ADL character string constants are delimited by single quotes.
To get a single quote in a character literal, you must enter two
successive single quotes. This example puts the value "literal with
quote' here" in the string field.

I string . - 'literal with quote " here';

UP-12507 3-9

Chapter 3

The Logical Operators

The logical operators are:

• AND
• OR
• NOT

(expression) AND (expression);

AND is a relational operator that you can use in IF and WHILE
condition statements. Its two arguments must be relational
expressions enclosed within parentheses. The value of the AND
operation is true only when both expressions are true.

In this example, the value of the "'count" variable will be incre­
mented if both expressions joined by AND are true.

VAR
count : NUMBER;

BEGIN
IF (Bchool.num~tudentB > Bchool.n~thleteB) AND

(Bchool.n~tudentB > Bchool.n~uBicianB)
THEN count:= count + 1;

END;

(expression) OR (expression)

OR is a relational operator used in IF and WHILE condition
statements. It requires two arguments that must be relational
expressions and must be enclosed in parentheses. The value of
the OR operation is true if either one or both arguments are true.
The value is false only when both arguments are false.

3-10 UP-12507

ADL Constructs

I,n this example, the value of ""count" is incremented by one when
"a" is greater than either ""b" or H C".

VAR a NUMBER;
NUMBER; b

c NUMBER;
count NUMBER GLOBAL;

BEGIN
IF (a > b) OR (a > c) THEN

count := count + 1;
END;

NOT (expression);

NOT is a relational operator used in IF and WHILE condition
statements. It requires one argument that must be a relational
expression and must be enclosed in a set of parentheses. The
value of the NOT operation is the negative of its, argument. That
is, the value is true when the argument is false, and the value is
false when the argument is true.

In this example, the value in "count" will be incremented by one
whenever "'a" is not greater than "b".

VAR a NUMBER;
b NUMBER;
count NUMBER GLOBAL;

BEGIN
IF NOT (a > b) THEN

count := count + 1;
END;

End of Chapter 3

UP-12507 3-11

Chapter 4
ADL Functions and Instructions

This chapter describes the ADL functions and instructions that
allow you to:

• manipulate variable and field values
• perform calculations with dates
• invoke tasks and actions
• use ALLY commands
• invoke help and error messages
• monitor the success or failure of an ADL statement

Table 4-2, at the end of this chapter, summarizes these functions
and instructions.

Manipulating Variable and Field Values

The MAKE_NULL instruction and following huilt-in functions
nullify the value of a variable or convert it to a different data
type.

• TO_NUMBER
• TO_DATE
• TO_CHAR
• ROUND
• TRUNC

Since the instruction MAKE_NULL affects variables regardless of
data type, it is described below. The functions are grouped by
data type.

UP-12507 4-1

Chapter 4

MA KE_NULL is an instruction that causes a variahle or field of
any data type to have no value (i.e .• to hecome nUll). It allows
you to set a value to null and use it for comparisons.

Null is different from zero. Zero is a value. Null means the con­
tents of the field or variable has no value. Null values are ignored
in the evaluation of all arithmetic expressions and the computa­
tions of all functions. Null values are treated as unknowns in the
evaluation of logical expressions. But. values can he tested to see
if they are null.

In this example, the variable "null" sets the comparison for an
error condition.

VAR
null : NUMBER;

BEGIN

END;

MAKE~L (null);
CALL_CMD (QUERY);
IF (REP-PRINT~ONG.STR-HO = null) THEN

BEGIN

END;

ERROR (16);
CALL_CMD (QBE);

CHAR Formatting Functions

ADL provides two formatting functions that enable you to convert
the value of a variable or field from CHAR to NUMBER or from
CHAR to DATE data type.

4-:2 UP-12507

ADL Functions and Instructions

TO_NUMBER (CHAR argument);

This function converts the internal storage of a value from CHAR
(ASCII) to NUMBER (binary). The result is a value of
NUMBER data type. The character variable or field must con­
tain the character representation of a number.

In this example, the value of the character field ZIP_STRING of
the form/report EMPLOYEE is converted to a number, to he
used suhsequently in a zip code.

VAR
ZIP_CODE.JIUMBER : NUMBER:

BEGIN
ZIP _CODEJruMBER : = TO....NUMBER (EMPLOYEE. ZlP -.STRING) ;

END;

TO_DATE (CHAR_argument, optional_date-picture);

This function converts the internal storage of a CHAR argument
from ASCII to date data. You specify the format of the CHAR
argument with the date picture, which has the ALLY data·type
CHAR. If the format of the CHAR argument is the DATE
default (MM/DD/YY), you are not required to specify the date
picture. The result has the data type DATE. The charactef vari­
able or field must contain the character representation of a date
(e.g., "02-29-H8') in the same format that you specify in the date
picture (e.g., "MM-DD-YY'). TO_DATE converts a date to the
format specified for that field in your form/report. .

If you do not specify a date format picture, TO_DATE converts
the date string to the default format of MMIDD/YY if that date
string will fit into the default format. If the date string will not fit
into the default format, you will receive a syntax error.
TO_DATE ignores both leading and trailing blanks.

UP-12507 4-3

Chapter 4

In this example, the character string 02/29/HH will he converted to
date data type using the date picture MMlDD/YY.

VAR
LEAP_YEAR : DATE;

BEGIN
LEAP_YEAR := TOJ)ATE ('02/29/88'. 'MM/DD/YY');

END;

In the second example, the value of PAY_DATE will be Tuesday
03-0H-H4.

VAR
PAYJ)ATE : DATE;

BEGIN
PAYJ)ATE := TOJ)ATE ('1UES 03-08-84'. 'DAY MM-DD-YY');

NUMBER Formatting Functions

The ADL functions that reformat numbers allow you to:

4-4

• convert the value of a variable or field internally from
binary to ASCII

• round a number value
• truncate a number value

UP-12507

ADL Functions and Instructions

This function converts the value of a number field internally from
binary to ASCII representation. TO_CHAR ignores both leading
and trailing blanks.

This example converts the value of the field ZIP _NUM from
NUMBER to CHAR data type.

VAR
ZIP -STR : CHAR;

BEGIN
ZIP -STR : = TO_CHAR (MAILJ"ORM. ZIP JruM) ;

END;

ROUND (NUMBER.;...argument,
optional_NUMBER-precision);

This function rounds a number to the precision you specify.
ROUND can take two arguments, b)th NUMBER values. The
first argument is required and the second (the precision) is
optional. The result is a NUMBER value when ROUND is lIsed
with a NUMBER argument. If no precision is specified,
ROUND rounds the fractional part of the number up to the next
integer value.

UP-12507 4-5

Chapter 4

In this example, ROUND produces two different re~mlts when a
precision is specified and when it is not.

I

vAJi x NUMBER;
y : NUMBER;
z NUMBER;

BEGIN
x := 1.5367;
y := ROUND (x.2); {value will be 1.54}
z := ROUND (x); {value will be 2}

END;

TRUNC (NUMBER"-argument,
optional_NUMBER-precision);

This function truncates a number to the precision you specify.
The first argument is required' and the second (the precision) is
optional. The result is a NUMBER value when TRUNC is used
with a NUMBER argument. If no number precision is specified,
the f~actional part of the number is truncated.

In this example,TRUNCproduces different results, depending on
whether a precisiori . is specified~.

VAR x Nl.JMI3ER';
y : NUMBER;
z NUMBER;

BEGIN
x := 1.5367;
y := TRUNC (x,2); {value will be 1.53}
z := TRUNC (x); {value will be 1}

END;

4-6 UP-12507

ADL Functions and Instructions

DATE Formatting Functions

TheADL functions th .. it reformat dates allow you to:

• convert the value of a variable or field internally from
DATE to ASCII

• round a date value
• truncate a date value

TO_CHAR (DATE_argument, optional_date-picture);

TO_CHAR converts the value of a date field internally from date
to ASCII representation. The first argument must have the data
type DATE. The second argument, which is the optional date
picture, must be the data type CHA R. Date pictures are
described in Appendix C.

In this example, TO_CHAR extracts the year from the date
stored in the form/report field "hiredate."

VAR year : CHAR;
BEGIN

year : = TO_CHAR (employeeJorm. hiredate. • yyyy'); .
END.:

ROUND (DATE_argument, optional_date-picture);

ROUND rounds a DATE vaJue to the precision you specify. The
optional second argument is the date precision and must be a
CHAR data type. The result is a DATE value when ROUND is
used with a DATE argument. If you do not specify a precision,
ALL Y rounds the new date to MM/DD/YY. The valid date pic­
ture precisions for rounding of dates are listed in Appendix C.

UP-12507 4-7

Chapter 4

In this example, ROUND rounds the employment date to the
nearest year. The date picture YEAR rounds a date to the
current year for dates in January through June and to the n.ext
year for dates in July through December. Both form/report fields
referenced are DATE fields.

employee-iorm.pensioD-Year
:= ROUND (employee-iorm.hiredate. 'YEAR');

TRUNC (DATE_argument I optionai_date-picture);

TRUNC truncates a DATE value to the precision. you specify.
The optional date preciskm is a CHAR data type. The result is a
DATE value when TRUNC is used with a DATE argument. If
you do not specify a precision, ALLY truncates the new date at
MM/DD/YY. The valid date picture precisions for truncating
dates are listed in Appendix C.

The following example shows the use of TRUNC in a form/report
calculation. .

personnel.hireyear := TRUNe (employee.hiredate. 'YY');
{last 2 digits of the year}

Manipulating CHAR Strings

ADL provides two functions for string manipulation:

• SUBSTR
• Concatenate (II)

4-8 UP-12507

ADL Functions and Instructions

SUBSTR (CHAR_container, offset, length);

SUBSTR allows you to assign to a CHA R container a subset of
the value of another CHAR container. The arguments are the
number of the-offset in the string and number of characters of the
subset. The offset and length can be numbers or NUMBER con­
tainers.

To select the substring, ALLY identifies a starting character in
the original string using an offset you supply. T~en ALLY selects
the number of characters indicated by the length argument.
Offsets into a character string start with zero rather than one, and
the length includes the starting character. To illustrate, SUBSTR
("ABCDEFG', 2, 3) will select "CDE", by using the offset of 2 to
identify "C" as the starting point and using the length of 3 to
define the number of characters.

In the following example, the value of hiredate is Ol/02/X6.
SUBSTR will assign the year to "x". Note that multiple ADL
functions can be used together, in this case SUBSTR and
TO_CHAR.

VAR
x : CHAR;

BEGIN
x := SUBSTR (TO_CHAR (emp-Iorm.hiredate), 6, 2);

END;

Concatenate (II)

The string concatenation function is represented by two vertical
bars (II). In this example,.the value assigned to the ""list" field is
the value of the "'form_name" field concatenated with a period
(.) to the value of the ""field_name" field.

forms.list := dept.form-name I I ' . II dept.field-name;

UP-12507 4-9

Chapter 4

Calculating with DATE Values

This subsection describes the arithmetic you can perform with
DA TE values and the ADL functions that allow you to perform
calculations with DATE values.

• ADD_MONTHS
• LAST_DAY
• MONTHS_BETWEEN
• NEXT_DAY

Arithmetic with DATE Values

ADL allows you to add days to dates and subtract days from
dates. To perform either of these arithmetic operations, you
specify the date or the name of the variable or form/report field
that contains the date, the appropriate arithmetic sign (+ or -),
and the number of days to be added or subtracted.

In the following example, the value of the field
INITIAL_REVIEW is calculated by adding ninety days to the
employee's hire date. Then the value of the NEXT_REVIEW
field of the MANAGER_TICKLER form is calculated by sub­
tracting ten days from the review date.

MANAGER...REPORT. INITIAL-REVIEW : = EMPFORM. HlRE..DATE + 90;

MANAGER_TICKLER. NEXT-REVIEW
:= MANAGER...REPORT.INITIAL-REVIEW - 10;

4-10 UP-12507

ADL Functions and Instructions
,:,~, ~-... ----------------
You can also perform date arithmetic using the TO_DATE func­
tion as shown in the following example. The arithmetic in this
example would assign the value -2 to the variable days_diff.

VAR

days_diff := TO-DATE ('01/07/86') - TO-DATE ('01/09/86');

ADD_MONTHS (DATE_argument,
NUMBER_argument);

This function adds the number of months you specify to a date.
The actual calendar months, with their different numbers of days,
are added. The result is a DATE.

The time component that may be a part of the DATE argument is
not modified by the ADD_MONTHS function.

In this example, the'variable "'first_date" will be assigned the
value 6/11/84, ··second_date" will be assigned the value 10/31/84,
and "third_date" will be assigned the value 10/31/84.

VAR first_date DATE;
secon~date DATE:
third_date DATE;

BEGIN
{add 2 months}

first_date := ADD-MONTHS (4/11/84, 2);

{subtract 3 months}
secon~aate := ADD-MONTHS (1/31/84, -3);

{preserve last-day-of-month in result}
thirLdate := ADD-MONTHS (9/30/84, 1);

END;

UP-12507 4-11

Chapter 4

LAST_DAY (DATE argument);

This function· calculates the last day of the month of the date
argument. The result is a DATE value. It takes leap'year into
account in its calculations. So, if the result is the last day of
February 1984, it would return February 29, since 1'~R4 was a
leap year.

In this example, LAST _DA Y will return the last day 'of the
month that employe~s were hired. This might be used to calcu­
late the number of people employed by the ,company on the la~t
day of each month.

VAR montlLend: DATE;
BEGIN

montlLend' := LAST.J>AY (employeeJorm.hiredate);
END;

MONTHS_BETWEEN (DATE_argument,
DA TE~arguiTIent).;

This function calculates the number of months between the first
date and the second date specified. The result has the data type
NUMBER. The time component is not considered when deter­
mining the months between two dates.

If the date in the first argument is later than the date in the
second argument, the returned number is positive. If the date in
the second argument is the later date, the returned number is
negative. .

Only whole months are considered, and the concept of Ulast day"
is preserved. From the last day of one month to the last day of
the next month returns a count of one .month. Thus, from Janu­
ary 31 to February 28 counts as one month in a noit-Ieap year but
in a leap year counts as zero. From January 15 to March 31·
counts as two months.

In this example, MONTHS_BETWEEN will calculate the number
of months between the dates in the ~'end" and Hstart" fields of the

4-12 UP-12507

ADL Functions and InstruqJions

subscription form "subs." The subscription end date is in the first
argument, since it should be later than the subscription start date.

subscription.n~onths

:= MONTHS-BETWEEN (subs.end. subs.start);

This function requires a date and spelled-out day of the week. It
calculates the date of the next occurrence of that day of the week.
The first argument must be DATE and the second CHAR, the
spelled-out day of the week. The result is a DATE data type.

In this example, NEXT _DA Y will calculate the date of the first
payday for each employee, since this company's employees are
paid every Friday. Both form/report fields referenced here are
DA TE fields.

{day of week may be uppercase or lowercase}
employee-iorm.first-paydate

:= NEXT-DAY (employee-iorm.hiredate. Friday);

Invoking Tasks and Actions

ADL uses the concept of a stack of tasks and actions, as does
PASCAL. Figure 4-1 shows an example of an execution stack.
ADL flow of control mechanisms provide access to Jhe actions on
the stack. Invocation mechanisms allow you to determine which
task or action is active. They let you move from one task to
another, and let you set the sequence in which a series of actions
within a task is executed.

up .. 12507

Chapter 4

Active

Form'Report #2.

Second-Level Menu #1

Main Menu

FOO2-0573-00

. Figure 4-1. An Execution Stack

Where PASCAL and other languages provide only one standard
invocation mechanism, ADL provides seven options, three for
tasks and four for actions.

Invoke a Task

A task consists of one or more actions. There are three ADL
instructions for invoking tasks.

• FORK
• START
• RESUME

FORK task_name;

FORK pauses the ADL procedure, then starts executing the first
action in the named task. All activity takes place within the
named task until that task is aborted or exited, or an9ther invoca-

4-14 UP-12507

ADL Functions and Instruc(ions

tion mechanism is encountered. The argument can be the name
of any task.

This example invokes the ALLY Text Editor (ALLYedit) when
the value of Ha" is greater than the value of Hb."

I IF (a > b) THEN
FORK ALLYEDIT_TASK;

START pauses the ADL procedure, then starts executing the first
action in the named task until that task requires user input. The
named task is then paused, and ALLY continues executing the
original action in the original task. It appears to the user that the
application activity has never left the original task, unless the
started task displayed something on the terminal. The argument
must be the name of an ALLY task.

The procedure in the example will start the editing task.

I START ALLYEDIT_TASK;

RESUME pauses the ADL procedure, then resumes executing the
current action in the named, previously-paused task. The argu­
ment must be the name of an ALLY task.

In this example, the procedure resumes the text editor task when
the value of Ha" is greater than the value of Hb".

I
IF (a > b) 1llEN

RESUME ALL YEDIT_TASK;

UP-12507 4-15

Chapter 4

Invoke an Action

An action is a form/report packet, a menu, another ADL pro­
cedure, a parameter packet, an external program link, an action
list, or a text editor. There are four ADL instructions for invok­
ing actions.

• CALL
• EXECUTE
• RETURN_TO
• RETURN

CALL action_name;

CALL leaves the ADL procedure on a task's execution stack,
executes the called action, and returns to the calling action when
the called action ends. CALL marks the original action to show
where the action should be resumed. Its argument must be the
name of an action.

After the called action executes, the ADL procedure. becomes the
active action. As long as an action is present on the task's stack,
the task continues.

This example shows a call to an ADL verification procedure. The
call passes the values of two arguments to the procedure.

I CALL ADL_VERIFY (x. y);

EXECUTE action_name;

EXECUTE removes the ADL procedure from a task's execution
stack, then executes the called action. This means that any state­
ment in an ADL procedure that follows an EXECUTE statement
will not be executed. After the called action executes, the task
terminates unless there is an action pushed beneath the calling
action. Its argument can be any ALLY action.

4-16 UP-12507

ADL Functions and Instructions

The procedure in the example executes the final menu when Ha"
is not greater than zero.

I
IF (a <= 0.) THE. N

. EXECUTE FINALJdENU;

RETURN_TO removes from a task's execution stack all actions
back to the named action, then resumes execution of the called
action .. This means that any statement in your ADL procedure
that follows a RETURN_TO statement will not be executed. Its
argument can be any ALLY action.

This example invokes the application's main menu when it
encounters the end of the fi Ie.

(status := DB-EOF) THEN
RETURN_TO MAINJdENU;

UP-12507 4-17

Chapter 4

RETURN;

RETURN transfers control from the ADL procedure back to the
calling action. It takes no arguments. It is useful as part of error
checking; if an error condition is found, control can leave the pro­
cedure and return to the calling action.

IF (status <> 0) THEN
REnJRN;

Using ALLY Commands

The following ADL instructions allow you to use an ALLY com­
mand.

• CALL_CMD
• EXECUTE_CMD
• GET_CMD

CALL_CMD executes an ALLY command. The argument may
be the name of any ALLY command (listed in Appendix A) or a
constant or variable whose value is the name of an ALLY com­
mand. If the argument is a variable, the variable must have the
data type NUMBER, since ALLY internally stores each ALLY
command as a number value.

In this example, all records will be retrieved for which the value
in the field "last_name" is "SMITH."

CALL_CMD (QBE);
form. last.Jlame : = • SMITII' ;
CALL_CMD (QUERY);

4-18 UP-12507

ADL Functions and Instructions

EXECUTE~CMD (ALL Y _command_name);

EXECUTE_CMD stops the ADL procedure and then executes
the command you specify. The ADL procedure is not restarted,
and any statements in an ADL procedure that follow an
EXECUTE_CMD will not be executed. The argument may be
the name of any ALLY command (listed in Appendix A) or a
constant or variable whose value is the name of an ALLY com­
mand. If the argument is a variable, the variable must have the
data type NUMBER, since ALLY stores ALLY commands as
number values.

In the following example, when the value of the "price_field" is
less than zero, the text of error message 1234 will be displayed.
The form/report and ADL procedure will stop.

IF (form.pr1ce-f1eld < 0) THEN
BEGIN

ERROR (1234);
EXE~CMD (EXITACTION);

END;

GET_CMD requires no argument. It,returns an internal number
that references the form/report command that preceded the invo­
cation of the ADL procedure. ALLY does not execute a
form/report command that immediately precedes a GET_CMD.

You can use GET_CMD only in ADL when a form/report is
active. It is most frequently used in after-field, before- and after­
value change, and validation procedures to compare a returned
command. If it is used outside a form/report, it produces no
result.

You can use GET_CMD in an ""after" field procedure to inter­
cept a form/report command and change it. Or, your pn1Cedure
can perform some manipulations and not change the command.
If you want· the intercepte9 command to perform its original pur­
pose, you must re-invoke that command (with CALL_CMD).

UP-12507 4-19

Chapter 4

This allows you to change the command to another command or
to perform some manipulations and then reuse that command.

In this example,the values of each record will be committed when
the user issues the "next record' command. When the user enters
RNEXT, ALLY internally'references RNEXT as a number.
Note that the "next record' command is invoked after it has been
intercepted and checked since we want to use that command but
not change it. '

V AR LAST_COMMAND : NUMBER;
BEGIN

LAST_COMMAND : = GET_CMD 0;
IF (LAST_COMMAND = RNEXT) 1lIEN

BEGIN

END;
ELSE

END;

CALL_CMD (COMMIT);
CALL_CMD (RNEXT);

Invoking Help and Error Messages

There are two ADL instructions that enable you to display the'
text of a help or error message .

• HELP
• ERROR

4-20 UP-12507

ADL Functions and Instructions

HELP (NUMBER_argument);

HELP displays the text of a help message. The help message can
be part of an application's AFILE or a· library AFILE that con­
tains help and error messages. The application developer creates
the text of a message and assigns it a number through the Dialog.
The argument must be a number or a NUMBER variable.

VAR
LAST_COMMAND : NUMBER;

BEGIN
LAST_COMMAND := GET_CMD ();

IF (LAST_COMMAND = (QUERY» THEN
HELP (342);

END;

ERROR (NUMBER_argument);

ERROR displays the text for an error message. The argument
must be a number or NUMBER variable. The application
developer creates this error number and its text through the Dia­
log while designing an application.

In the following example, when the value of the "price_field" is
less than zero, the text of error message 1234 will appear on the
user's terminal.

IF (SALES-FORM.PRICE-FIELD < 0)
TIlEN

ERROR (1234);

UP-12507 4-21

Chapter 4

Reporting Procedure Success or Failure

These instructions allow you to notify the calling action that a pro­
cedure has succeeded or failed .

• SET_SUCCESS
• SET_FAILURE

SET_SUCCESS 0;

This instruction, which takes no argument, sets a flag that tells the
calling event that the ADL procedure has executed successfully.

If the following procedure is called before a field update then the
update will take place if the field Hnum_students" does not have a
value of zero.

I IF (SCHOOL. NllILSTUDENTS > 0) TIIEN
SETJ)UCCESS 0;

SET_FAILURE 0;

This instruction takes no argument. It sets a flag that tells the cal­
ling event that the ADL procedure has failed.

You can influence the operation of a form/report by your place­
ment of the procedure in which the failure flag is set. Table 4-1
lists the effect of setting a failure flag in forms/reports.

4-22 UP-12507

ADL Functions and Instructions

Table 4-1. Effect of SET_FAILURE Flag in a Form/Report

Event

Before a commit

Before an update

Before a delete

Ji'ailure Flag Set
Effect

The commit will not take place

The update will not take place

The delete will not take place

After a form/report packet The cursor cannot leave the
form/report

Field validation The cursor cannot leave the field

If the following procedure is called to validate the form/report
field '"num_students," then the cursor will not leave that field
when its value is zero. You can use this technique to force users
to enter valid data into a field.

I IF (SCHOOL.NUM..JlTIJDEJITS = 0) THEN
SETJ AlLURE 0;

UP-12507 4-23

Chapter 4

Summary

The ADL functions and instructions that allow you to manipulate
dates, convert data, and manage flow of control for tasks and
actions are listed in Table 4-2.

4-24

Table 4-2. ADL Functions and Instructions

ADL ."unction
Operation
Manipulate variable
and field values

CHAR values

NUMBER values

DATE values

Manipulate CHAR strings

Perform calculations
with dates

Invoke tasks and actions

Name

TO_NUMBER
TO_DATE

TO_CHAR
ROUND
TRUNC

TO_CHAR
ROUND
TRUNC

SUBSTR
Concatenate (II)

ADD_MONTHS
LAST_DAY
MONTHS_BETWEEN
NEXT_DAY

FORK
START
RESUME
CALL
EXECUTE
RETURN_TO
RETURN

UP-12507

Operation

Use ALLY commands

Invoke help and error
messages

Report the success or
failure of a validation

ADL Functions and Instructions

Name

CALL_CMD
EXECUTE_CMD
GET_CMD

HELP
ERROR

SET_SUCCESS
SET_FAILURE

End of Chapter 4

UP-12507 4-25

Chapter 5
Generic DML

The ADL Generic Data Manipulation Language (DML) instruc­
tions provide an interface to any access methods that are sup­
ported by ALLY. The general purpose of these instructions is to
allow input or output, either in addition to or as an alternative to
forms/reports.

Specifically, Generic DML instructions use any Data Source
Definition (DSD) and permit you to:

• open and dose a DSD or a hierarchy of DSDs
• specify and modify selection criteria
• retrieve individual records
• insert, update, or delete individual records
• use access-method-specific commands

Table 5-1 lists the Generic DML instructions, grouped by opera­
tion. DML instructions are distinguished from the rest of ADL
by their names, which all start with ... DB __ "

Table 5-1. Generic DML Instructions by Operation

Instruction Name

DB_OPEN
DB_CLOSE
DB_RELA TED_GROUPS
DB_END_GROUPS

DB_RESET
DB_QUERY
DB_CLAUSE

DB_GET_FIRST
DB_G ET_N EXT

UP-12507

Operation

Open and dose a DSD
or a hierarchy of DSDs

Describe and modify
query criteria

Retrieve DSD records

5-1

Chapter 5

Instruction Name

DB_UPDATE
DB_DELETE
DB_INSERT

DB_COMMIT
DB_ROLLBACK

DB_COMMAND

Introduction

Operation

M6dify DSD records

Perform access
method transactions

Pass access-method­
specific commands

All types of DSDs, including View Definitions and Breakup
Definitions, are supported from ADL. A DSD must have a name
and be associated with a particular dataset, file, or table in a file
system or database. Optional selection criteria may be included if
they are supported by the access method.

Fields are referenced from ADL much as they are from a
form/report. The same DSD can, in fact, be opened in a
form/report concurrently with the opening from an ADL action.
This should be done only where there is no possibility of a
deadlock in which two or more transactions are in a simultaneous
wait state, each waiting for the others to release a lock before it
can proceed. You should refer to documentation that accom­
panies your access method for specific information on deadlocks.

From ADL, you directly reference a DSD with the syntax
HDSD_name.field_name," just as you reference a form/report
field with Hform_report_name. field_name." You do not explicitly
declare DSDs from ADL; they are available once they are opened
with the DB_OPEN instruction. Because of the ADL restriction
of one logical transaction per task, a DSD can be opened only
once wi thi n a task.

5-2 UP-12507

Generic DML

When a DSD is opened, it is identified by an internal "open_id"
number. The DSDs remain open until explicitly closed or until
the task terminates.

ADL provides no interface for managing a commit or rollback
transaction to an individual DSD. Therefore, commit and roll­
back operate on all DSDs that are open and are not access-method
specific .. If the task terminates, each DSD that is open is rolled
back and closed.

Mixing Form/Report and ADL Transactions

There are several ramifications of mixing form/report transactions
with an ADL transaction.

The Generic DML instructions cannot suspend file updates. An
ADL commit calls the corresponding access method directly and
commits only the records that the ADL procedure has changed.
For access methods that support multiple logical transactions in
one process, ADL and form/report transactions are totally dis­
tinct. The form/report changes are stored until they are commit­
ted, and are not affected by an ADL commit.

The form/report mechanism, however, permits rollback even with
access methods that do not normally support it (e.g., fixed-length
sequential files). For access methods that do not support multiple
active transactions for a single operating-system process, the
ALL Y forms/reports manager logs and batches the updates. A
commit on this form/report commits all updates since the last
commit, including those from ADL. This is caused by the
access-method interface not allowing separate, simultaneous tran­
sactions from one ALLY application.

UP-12507 5-3

Chapter 5

Related Data Source Definitions

The structure of each form/report defines hierarchical relation­
ships among its DSDs. In ALLY, such relationships are
represented with either Foreign Key Links or Breakup Defini­
tions.

A OSD can be used by itself, or with any DSbs suix)rdinate to it.
When you use. related DSDs, you must recognize the hierarchy in
the commands you use to open the DSDs and perform operations
on them. For example, in a hierarchy of DSDs, data queries at
one level affect the subset of records retrieved for all" lower levels.

Hierarchy of DSDs

Before you can open a suoordinate DSD in a hierarchy, you must
open all the DSDs logically above it. ADL provides two special
instructions (DB_RELATED_GROUPS and
DB_END_GROUPS) that must surround the openings of two or
more related DSDs.

To specify the opening of a hierarchy of DSDs, you use the
DB_RELATED_GROUPS instruction before a list of
DB_OPENs. You use a DB_OPENfor each DSD, from the top
level down. You use DB_Ef\!D_GROUPS to specify the end of
this group. No other operation can be performed on a DSD that
belongs to a hierarchy until any related OSDs have been opened.
After that, you can set query criteria for any of the DSDs.

Querying DSDs in a Hierarchy

Related DSDs must be queried as a unit. To clear query criteria
and set new criteria for a suoordinate DSD, DB_RESET and
DB_CLAUSE must reference the top-level DSD of the hierarchy.

5-4 UP-12507

Generic DML

Record Retrieval from DSDs in a Hierarchy

Retrieval of records from the DSDs of a hierarchy must be done
in order, fiom the top level DSD down. Before you can retrieve
records (with DB_GET_NEXT or DB_GET_FIRST) of a subor­
dinate DSD, you must first have retrieved at least one record
(with DB_GET_FIRST) of each higher-level DSD. From this,
ALLY determines the chain of subordinate records that is valid
for each record.

Deleting and Inserting DSD Records

You must be careful when deleting and inserting records in the
upper-level DSDs of a DSD hierarchy. Since the deletion and
insertion operations change the record in the upper-level DSD, a
new chain of subordinate records must be established. Therefore,
to access records from subordinate DSDs, you must first issue a
DB GET_FIRST at each of those levels to establish the new
subordinate records that are valid.

Arguments for Generic DML Instructions

The description of each Generic DML instruction includes its syn­
tax. A few instructions require no argument. However, most of
the instructions require the two arguments opel1_id and
status_code. These arguments are described below. Any other
argument required by an instruction is described with that instruc­
tion.

Both open_id and status_code must be declared as variables of
NUMBER data type. You may choose any name for these vari­
ables, however, OPEN_dsd_Illllne_ID and ST A TUS_dsd_lllime are
descriptive.

UP-12507 5-5

Chapter 5

Open_ID Variable

You name an open_id variable for each DSD that your ADL pro­
cedure will access. When a DSD is opened with the DB_OPEN
instruction, ALLY assigns to the open_id variable an internal
number identifying that opening. You must pass this number
(through the open_id variable) to all successive Generic DML
instructions to identify that DSD.

The open_id variable for a DSD must be exported or global if it
will be referenced in another ADL procedure.

Status_Code Variable

ALL Y monitors the success or failure status of DML operations
through the status code it passes to each instruction. Zero (0)
indicates success. An error number is set only when ALLY finds
an access-method-Ievel error that is not fatal. When the error is
fatal, the ADL action terminates immediately without passing
control back to the offending ADL statement.

There are two methods of using the status code to monitor your
DML operations:

• You may declare one status_code variable, and monitor
each DSD by checking the value of the status_code variable
after each DML operation that returns a status code .

• You may declare a status_code variable for each DSD, just
as you assign an open_id variable for each DSD.

You can use the status code to test for errors after each DML
instruction by using the ADL ERROR instruction to display the
error message text for the returned status "code variable. After
each DML instruction, put into the procedure the statement
below. You can then handle any errors appropriately for that
procedure.

5-6 UP-12507

Generic DML

IF (status_code_variable <> 0)
THEN ERROR (status_code_variable);

Generic DML Global Constants

Generic DML provides three global constants you can use to mon­
itor the success or failure of a DML operation:

DB_DUPLICATE_RECORD Signifies that this dataset, file, or
table already contains a record
with the same primary key value
as the one you are attempting to
insert

Signifies that you have reached
the last record in the dataset, file,
or table or that you have reached
the last record in the subset that
you are querying

Signifies that the DSD named in
the DB_OPEN is invalid or that
you have used the DB_OPEN
without a preceding
DB_RELATED GROUPS

To use these global constants in status checking, you compare the
status code variable to the appropriate constant. The following
procedure returns to the calling event if the DSD does not open.

(STATUS_CPDE = DB-PPEN-ERROR)
RE'lURN;

UP-12507

TIlEN

5-7

Chapter 5

Generic DML Instructions

This section is divided into subsections that describe the general
operation of Generic DML instructions.

There is an example at the end of each subsection that shows the
syntax and usage of the appropriate instructions. Each example
uses the same procedure, which we expand as each group of
instructions is added.

Figure 5-1 shows the relationship among the DSDs that are used
in the example procedure. Figure 5-7 shows the completed pro­
cedure that uses each instruction. There is no example of the use
of DB_COMMAND since it is access-method specific, and this
manual addresses no specific access method.

Opening and Closing a DSD

The Generic DML instructions that open and· close a DSD or a
hierarchy of DSDs are:

• DB_OPEN
• DB_CLOSE
• DB_RELATED_GROUPS
• DB_END_GROUPS

In general, you begin an ADL procedure that operates on your
access method with a DB_OPEN for each DSD and end the pro­
cedure with a DB_CLOSE for each DSD. When a procedure uses
a hierarchy of DSDs, you use DB_RELATED_GROUPS before
the DB_OPEN for the top-level DSD in the group and
DB_END_GROUPS after the last DB_OPEN for the group. The
correct positioning of these instructions is illustrated in Figure 5-2.

DSDs that are not related cannot be grouped together between ,
DB_RELATED_GROUPS and DB_END_GROUPS. This is nnt
allowed because it would impose unnecessary constraints on
querying and on the order of record retrieval. Because a DSD

5-8 UP-12507

Generic DML

can be opened only once within an ADL procedure, an attempt to
group unrelated DSDs ,¥ould prevent the opening of any of the
component DSDs until the group opening had ended.

The DB_OPEN instruction readies the named DSD for access.
ALLY puts into the open_id variable the internal number that
identifies the DSD. Any other Generic DML instructions that
operate on. this DSD use this variable as an argument. The DSD
opens with any selection criteria specified in the DSD definition
(e.g.,.the initial SELECT statement).

If the DSD being opened is a top-level DSD, DB_OPEN must be
the first DML instruction issued. If the DSD being opened
belongs to a hierarchy of DSDs to be opened, the instruction
DB_RELATED_GROUPS must precedethe DB_OPEN for the
top-level DSD in the hierarchy. Related DSDs must be opened in
their hierarchical order, from the top down. DB_END_GROUPS
must follow the DB_OPEN of the lowest DSD in the hierarchy.

If the DSD being opened is a Breakup DSD, you open the
Breakup but not the underlying Base Definition, since ALLY
opens it for you.

The DSD remains open until a DB_CLOSE is issued, or until the
task (not the action) terminates.

DB_OPEN can generate an error message if:

• you try to open the same DSD more than once in the pro­
cedure

• the access method cannot open the underlying dataset, file,
access method, or table

• you open related DSDs in the wrong order or fail to use
DSD_RELA TED_G ROUPS

• you try to open a DSD that does not exist

UP-12507 5-9

Chapter 5

DB_CLOSE closes the specified DSD so that no further DML
operations can be performed on it. This frees the memory that
has been allocated to that DSD in the ADL procedure.

A DSD can be closed successfully only if all record modifications
have been either committed or rolled back. Thus, before you
issue a DB_CLOSE on any DSD you must issue either a
DB_COMMIT or a DB_ROLLBACK.

A DB_CLOSE issued on a DSD that belongs to a hierarchy causes
all the other DSDs in that group to be available only for DML
transactions (commit and rollback) and closing. Any other opera­
tion that affects those DSDs displays an error message that indi­
cates that all related DSDs must be opened at the same time.

Although the order of the closings is irrelevant, we recommend
closing related DSDs together in succeeding statements.

DB_RELATED_GROUPS specifies that DSD openings occurring
between it and the next DB_END_GROUPS belong to a hierar­
chy.

ADL will issue an implicit DB_END_GROUPS if a
DB_RELATED_GROUPS was already in progress for the pro­
cedure.

DB_RELA TED_G ROUPS generates no error messages.

DB_END_GROUPS signals to ADL that the opening of a hierar­
chy of related DSDs has ended. The DB_RELATED_GROUPS
instruction must precede the DB_OPEN for the top DSD in a
hierarchy.

5-10 UP-12507

Generic DML

If the ADL procedure terminates prior to the
DB_END_GROUPS, the DSDs in the hierarchy are closed
automatically.

Until the DB_END_GROUPSinstruction is issued for a DSD
hierarchy, other GenericDML instructions can operate only on
DSDs outside of this DSD hierarchy. However, no DML opera­
tions can be performed on any of these related DSDs. There is no
restriction on calling another ADL procedure that starts a separate
tree of related DSDs with another DB_RELATED_GROUPS
statement.

If you have nQt issued a DB_RELATED_GROUPS instruction
prior to opening a hierarchy of related DSDs,
DSD_END_GROUPS does nothing. DB_END_GROUPS gen­
erates no error messages.

Example Illustrating DML Instructions
that Open and Close DSDs

In this example, the names DSD_STR, DSD_ADDENDA, and
DSD_DESC are the names of the DSDs in the application. Note
that we are using the status code and global constants to check for
errors. Figure 5-1 illustrates the relationship among these DSDs.
This relationship exists in all the subsequent examples that use
these DSDs.

UP-12507 5-11

Chapter 5

Slde-by-Slde DSDs
Subordinate to DSD_STR

TopmostDSD

FOO2-0574-00

Figure 5-1. Relationship of DSDs in DML Examples

5-12 UP-12507

Generic OML

VAR
STATUS_CODE NUMBER;
OPEN-STRJD NUMBER;
OPEN-AODENDAJD NUMBER:
OPENJ)ESCJD NUMBER;

BEGIN Opening DSDs ,
DB.....RELATED_GROUPS 0;

DBJ)PEN (DSD-STR. OPEN-STRJD. STATUS_CODE) ;
IF (STATUS_CODE = DBJ)PEN-ERROR) THEN

ERROR (STATUS_CODE);
DBJ)PEN (DSD-AODENDA. OPEN-AODENDAJD. STAnIS_CODE).
IF (STATUS_CODE = DBJ)PEN-ERROR) THEN

ERROR (STATUS_CODE);
DBJ)PEN (DSDJ)ESC. OPENJ)ESC,JD. STAnIS_CODE);
IF (STATUS_CODE = DB-DPEN-ERROR) THEN

ERROR (STATUS_CODE);
DB-END_GROUPS 0;

I (Body of ADL procedure) I Closing DSDs

DB_CLOSE (OPENJ)ESCJD. STATUS_CODE) ;
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);
DB_CLOSE (OPEN-AODENDAJD. STATUS_CODE);
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);
DB_CLOSE (OPEN-STRJD. STATUS_CODE) ;
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS CODE):
END;

)

Figure 5-2. Opening and Closing DSDs

UP-12507

002-0584-00

5-13

Describing and Modifying Query Criteria

This section describes the Generic DML instructions that describe
and modify query criteria:

• DB_RESET,
• DB_QUERY
• DB_CLAUSE

At the end of this section, Figure 5-3 shows these instructions
added to the example procedure. The DB_CLAUSE instruction
is followed by its own example, since DB_CLAUSE cannot be
used with all access methods.

D·B_RESET prepares a DSD, or a hierarchy of DSDs, for new
query criteria. DB_RESET can be issued only on a stand-alone
DSD or the top-level DSD within a hierarchy. When there is a
hierarchy of DSDs, this statement resets the query criteria on all
the subordinate DSDs. Although DSD fields can still be accessed,
no records can be retrieved from any of the subordinate DSDs
until you issue a' DB_GET_FIRST at each level to establish the
new subset of records that is valid.

DB_RESET must be followed by DB_QUERY so that DML
record operations can be performed.

OB __ RESET typically is used prior to setting a search value or set­
ting new query-clause criteria for subsequent record retrieval.
After you have issued this statement, you can set new search cri­
teria in two ways.

• You can assign a search value to a DSD field. New field
value assignments are recognized as search criteria only
when they are placed between a DB_RESET and a
DB_QUERY. You use the usual ADL assignment state­
ment syntax: "dsd_name. field_name : = search_value;".

UP-12507

Generic DML

• You can use DB_CLAUSE to change the query criteria
when the underlying access method supports a query clause.
If supported, this clause must be in the syntax of the access
method. Further, the fields and record types referenced in
the clause must be those of the access method (the names
could be different from the ones used in ALLY). The
DB_CLAUSE instruction is described below. .

DB_RESET can generate an error message if:

• the open_id variable is incorrect for the DSD or the DSD
has not been opened

• you use a previous DB_RELATED_GROUPS but no pre­
vious DB_END_GROUPS

• you use DB_RESET on a subordinate DSD

DB_QUERY executes a query that you have specified. The
query is for the combination of:

• all selection criteria specified in the DSD definition
• all equality field query matches that you have set previously
• the most recent DB_CLAUSE you have set

All of these criteria are set until the next DB_RESET-even if
you assign different values to some DSD fields.

DB_QUERY can be issued only for a stand-alone DSD or for the
top-level DSD of a hierarchy of related DSDs. A DB_QUERY
on the top DSD in a hierarchy executes the query for each subor­
dinate DSD.

DB_QUERY can generate an error message if:

• the open_id variable is incorrect for the DSD or the DSD
has not been opened

• you use a previous DB_RELATED_GROUPS but no pre­
vious DB_END_GROUPS

• you do not use a DB_RESET prior to a DB_QUERY

UP-12507 5-15

Chapter 5

DB_CLAUSE can be used only with access methods that support
a query clause syntax. For example, relational access methods
support this statement, while the ALLY FX access method does
not. Because the query clause is access-method specific, it may
not be portable to other access methods.

DB_CLAUSE alte~s the.·initial selection criteria for the specified
DSD. It appends to the initial criteria a new query clause. If no
query condition exists in the DSD, this clause is set as the first
one. Any appending is done with a logical AND instruction.

The 'query clause must be the query criteria itself or a variable of
CHAR data type that has been assigned the value of the query
clause. The query clause must follow the syntax required by the
underlying access method.

The selection criteria of each DB_CLAUSE overlays the criteria
of any previous one. You can add only one arbitrary query clause
to the initial criteria. You can, however, build a selection string
of greater length by using regular ADL procedures. After build­
ing the string in ADL, you pass it as a unit to the underlying
access method.

The new criteria is not executed against the access method until
the query is performed with a DB_QUERY (and, for some access
methods, until the first record is retrieved with a
DB_GET_FIRST).

You callnotuse DB_CLAUSE until you have executed a
DB_RESET on a given DSD.

Figure 5-3 shows how DB_CLAUSE is used to search for records
in which the value of the Hstate" field is HNC". This example
assumes that DSD_EMPLOYEES supports the type of query
clause illustrated.

UP-12507

VAR
STAnJS_CODE
OPEN-EMPLOYEES-ID

NUMBER;
NUMBER;

BEGIN

DB_OPEN (DSD-EMPLOYEES. OPEN-EMPLOYEES-ID.
STAnJS_CODE);

IF (STAnJS_CODE = DB-DPEN-ERROR) TIiEN
ERROR (STAnJS_CODE);

DB-RESET (OPEN-EMPLOYEES-ID. STAnJS_CODE);
IF (STAnJS_CODE <> 0)

11iEN ERROR (STAnJS_CODE);
DB_CLAUSE (OPEN-EMPLOYEES-ID. ·state="NC"·.

STAnJS_CODE);
DB_QUERY (OPEN-EMPLOYEES-ID. STAnJS_CODE);
IF (STAnJS_CODE <> 0)

TIiEN ERROR (STAnJS_CODE);

GenericDML

DB_GETYIRST (OPEN-EMPLOYEES-ID, STAnJS_CODE);
IF (STAnJS_CODE <> 0)

TIiEN ERROR (STAnJS_CODE);

[(Remainder of ADL Procedure)1

DB_CLOSE (OPEN-EMPLOYEES-ID. STAnJS_CODE); .
IF (STAnJS_CODE <> 0) TIiEN

ERROR (STAnJS_CODE);
END;

Figure 5-3. Procedure With DB_CLAUSE

Example Illustrating Instructions that
Describe and Modify Query Criteria

Our example is expanded to include ADL instructions that set up
the query so that DSD_STR is searched for records that contain a
"B' in the HREC_ TYPE" field.

UP-12507

Chapter 5

VAR
STATUS_CODE NUMBER:
OPEN...sTRJD NUMBER;
OPEN-ADDENDAJD NUMBER:
OPEN.J)ESCJD NUMBER;

BEGIN

DBJl,ELATED_GROUPS ().:
DBJ)PEN (DSD...sTR~ OPEN...sTRJD. STATUS_CODE):
IF (STATUS_CODE = DBJ)PEN-ERROR) THEN

ERROR (STATUS_CODE);
DBJ)PEN (DSD-ADDENDA, OPEN-ADDENDAJD. STATUS_CODE):
IF (STATUS_CODE = DBJ)PEN-ERROR) THEN

ERROR (STATUS_CODE).:
DBJ)PEN (DSD.J)ESC. OPEN.J)ESCJD. STATUS_CODE);
IF (STATUS_CODE = DBJ)PEN-ERROR) THEN

ERROR (STATUS_CODE).:
DB....END_GROUPS ();

DB-RESET (OPEN...sTRJD. STATUS_CODE);
IF (STATUS_CODE <>. 0) THEN

ERROR (STATUS_CODE).:
{query DSD-STR for B }
{in "record type" field}
DSD-STR _ REC_TYPE : = · B' ;
DB.-QUERY (OPEN-STRJD I STATUS_CODE).:
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE).:

I (Rematnderof ADL procedure) I
DB_CLOSE (OPEN.J)ESCJD I STATUS_CODE) .:
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);
DB_CLOSE (OPEN-ADDENDAJD. STATUS_CODE):
IF (STATUS_CODE <> 0) THEN

ERROR (STA1uS_CODE);
DB_CLOSE (OPEN-STRJD I STATUS_CODE) .:
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS~CODE);
END-, I

Figure 5-4. Querying Records

5-18

002-0575-00

UP-12507

Generic DML

Retrieving DSD Records

This section contains the descriptions of the Generic DML instruc­
tions that retrieve the records from an access method. Figure 5-5
shows these instructions added to the example procedure.

• DB_GET_FIRST
• DB_GET_NEXT

DB_GET_FIRST retrieves from the specified DSD the first record
that matches any current selection criteria and group relationships.
For a subordinate DSD in a hierarchy, the selection criteria used
are:

• those set explicitly for that DSD, and
• those that define that DSD's relationship to the higher-level

DSDs'ln its group (e.g., Foreign Key Links, Breakups).

You may issue DB_GET_FIRST forany DSD. However, if the
DSD is a subordinate one, you must have issued a previous
DB_GET_FIRST for any higher-level DSD in that group. When
another record is retrieved for an upper-level DSD, a new chain
of subordinate records must be established and so another
DB_GET_FIRST for each subordinate DSD is required.

If you use this instruction immediately after opening the DSD,
without a preceding DB_RESET and DB_QUERY or
DB_ CLA USE, the search starts with the first record of the DSD
using the query criteria specified in the definition of the DSD.

If no records match the given criteria, the status_code is set to an
end-of-file status. You must issue another DB_GET_FIRST for
each upper-level DSD in order to establish the new subordinate
records that are valid.

UP-12507 5-19

Chapter 5

DB_GET-:-FIRST can generate an error message if:

• the open_id is incorrect for the DSD or the DSD has not
been opened

• you use a previous DB_RELATED_GROUPS but no pre­
vious DB_END_GROUPS

• you do not use DB_ OUER Y after DB_RESET and before
DB_GET_FIRST

• you do not use a previous DB_GET_FIRST on any higher
DSDs in the hierarchy .

• no record is found because it is the end of the file

DB_GET_NEXT retrieves the next record from the DSD you
specify. The next record is determined by the current record and
by the original query criteria. The current record and query cri­
teria are used as long as there is no change in the current record
of any upper-level related DSD. If the current record is changed,
a new chain, of any valid subordinate records must be established.
Therefore allother DB_GET_FIRST is required.

DB_GET_NEXT may be issued for any DSD. However, when it
is issued on a DSD in a hierarchy, you must precede it with a
DB_GET_FIRST for the specified DSD and for any higher-level
DSD in the hierarchy.

5-20 UP-12507

Generic DML

DB_GET_NEXT can generate an error message if:

• the open_id variable is incorrect for the DSD or the DSD
has not been opened

• you use a previous DB_RELATED_GROUPS but no pre-
vious DB_END_GROUPS

• you do not use a DB_QUERY after a DB_RESET
• you do not use a previous DB_GET _FI RST
• you do not use a previous DB_GET_FIRST on any higher

DSDs in the hierarchy
• you have already reached the end of the file

Example Illustrating DML Instructions that Retrieve Records

Figure 5-5 includes the DML instructions that can retrieve th~
records to be searched for the query.

UP-12507 5-21

Chapt~F 5 .

VAR
STA1;US_CODE NUMBER;
OPEN-BTRJD NUMBER;
OPEN..JJ)DENDAJD NUMBER;
OPEN-PESCJD NuMBER;

BEGIN
DBJtELATED_GROUPS 0;

DBJ]PEN (DSD-BTR. OPEN-BTRJP I STATIJS_CODE) ;
'IF (STATIJS_CODE = DBJ]PEN-ERROR) THEN

ERROR (STATIJS_CODE);
DBJ]PEN (DSD.....ADDENDA. OPEN..JJ)DENDAJD. STATIJS_CODE);
IF (STATIJS_CODE = DBJ]PEN....ERRO~) THEN

ERROR (STATIJS_CODE);
,DBJ]PEN (DSP-PESC, OPEN-PESC,JD. STATIJS_CODE) :
IF (STATIJS_CODE' = DBJJPEN....ERROR) THEN

EIm0R (STATIJS_CODE);
DB...END_GROUPS ();
DB-RESET (OPEN-BTR,JD. STATIJS_CODE);
IF (STATIJS_CODE <> 0) THEN

ERROR (STATIJS_CODE);
DSD-BTR. REC_TYPE : = 'B';
DB~UERY (OPEN-BTRJD. STATIJS_CODE):
IF (STATIJS_CODE <> 0) THEN

ERROR (STATIJS_CODE);

DB_GETJ'IRST (OPEN-BTRJD, STATIJS_CODE):
IF (STATIJS_CODE <> 0) THEN

ERROR (STATIJS_CODE):
I(Remainder ot ADL procedure) I
DB_GET..NEXT (OPEN-STRJD. STATIJS_CODE);
IF (STATIJS_CODE = DB-PUPLICATE....RECORD) THEN

ERROR (STATIJS_CODE):

DB_CLOSE (OPEN-PESCJD. STATIJS_CODE);
IF (STATIJS_CODE <> 0) THEN

ERROR (STATIJS_CODE);
DB_CLOSE (OPEN-ADDENDAJD. STATIJS_CODE);
IF (STATIJS_CODE <> 0) 11IEN

ERROR (STATIJS_CODE);
DB_CLOSE (OPEN-STR,JD, STATIJS_CODE) ;
IF (STATIJS_CODE <> 0) THEN

ERROR (STATIJS_CODE);

END:

Figure 5-5. Retrieving Records

002-0576-00

UP-12507

Gen.eric DML

Modifying Access-Method Records

This section describes the Generic DML instructions that allow
you to make updates, deletions, and insertions to access-method
records.

• DB_UPDATE
• DB_DELETE
• DB_INSERT

DB_UPDATE updates the last record retrieved or inserted for the
specified DSD. That record is updated with the data values your
ADL procedure has changed. DB_UPDATE may be issued for
any DSD. However, when a record of an upper-level DSD is
updated, there must be a preceding DB_GET_FIRST or
DB_GET_NEXT for the specified DSD and any upper-level DSDs
within a hierarchy.

An update must obey all rules for an access method. Such rules
might include restrictions on key values (i.e., a primary key). If
an update does not obey these rules, ALLY returns an error
number to the status code for the appropriate DSD.

DSDs defined to be read-only will not support this operation.
Breakup Definitions do not support insert, update, or delete
operations because their definition is the result of a join-type
operation.

DB_UPDATE can generate an error message if:

• the open_id variable is incorrect for the DSD or the DSD
has not been opened .

• you use a previous DB_RELATED_GROUPS but no pre­
vious DB_END_GROUPS

• you do not use a DB_QUERY or DB_GET_FIRST after
DB_RESET

UP-12507 5-23

Chapter 5

• there is no record present
• you try to update a record in a Breakup DSD

DB_DELETE deletes the last record retrieved or inserted for the
specified DSD. This instruction may be issued for any DSD.
However, when a record of an upper-level DSD is deleted, there
must be a DB_GET_FIRST preceding any instructions for a
subordinate DSD to establish the subordinate records that are
valid.

The delete operation must obey any rules for an access method.
After you delete a record from a DSD, you must establish a new
chain of valid subordinate records. Another DB_GET_FIRST is
required for each subordinate DSD before any further operation
can be performed on them.

Depending on the access method, it may still be valid to issue a
DB_GET_NEXT after a DB_DELETE.

DSDs defined as read-only will not support this operation.
Breakup Definitions do not support insert, update, or delete
operations since their definition is the result of a join-type opera­
tion.

DB_DELETE can generate an error message if:

• the open_id variable is incorrect for the DSD or the DSD
has not been opened

• you use a previous DB_RELATED_GROUPS but no pre­
vious DB_END_GROUPS

• you do not use a DB_QUERY or DB_GET_FIRST after a
DB_RESET

• you do not use a previous DB_GET_FIRST on any higher
DSDs in the hierarchy

• you try to delete a record from a Breakup DSD

5-24 UP-12507

Generic DML

DB_INSERT creates a new record in the access method underly­
ing the DSD specified by the open_id. The fields of that r~cord
initially contain the default values defined for the DSD. You may
assign values to the DSD fields prior to the insert and override the
default values.

Some access methods place importance on the position of each
record relative to another. For a DSD used with these access
methods, the new record will be positioned ajier the last record
for the DSD that lvas retrieved or updated.

DB_INSERT requires only that any upper-level related DSDs con­
tain a record. This requirement is necessary so that ALLY can
determine the valid chain of subordinate records.

Since this instruction changes the current record, you must issue a
DB_GET_FIRST at each subordinate level to establish the new
subset of records that is valid. The type of access method deter­
mines whether you can successfully do a DB_GET_NEXT after a
record insertion. (In any case, you must have done a
DB_GET_FIRST before a DB_GET_NEXT.)

DSDs defined as r~ad-only will not support this operation.
Breakup Definitions do not support insert, update, or delete
operations, because their definition is the result of a join-type
operation.

DB_INSERT can generate an error message if:

• the open_id variable is incorrect for the DSD or the DSD
has not been opened

• you use a previous DB_RELATED_GROUPS but no pre­
vious DB_END_GROUPS

• you do not use a previous DB_GET_FIRST on any higher
DSDs in the hierarchy

• you do not use a DB_QUERY or DB_GET_FIRST after a
DB_RESET

• you try to insert a record into a Breakup DSD

UP-12507 5-25

Chapter 5

Example Illustrating DML Instructions that
Modify Access-Method Records

Figure 5-6 illustrates the Generic DML instructions .that. allow you
to modify the records of the access method.

5-26 UP-12507

Generic DML

VAR
STATUS_CODE NUMBER;
OPEN-BTRJD NUMBER;
OPEN.....ADDENDA..JD NUMBER;
OPEN-DESCJD NUMBER;

BEGIN

DBJtELATED_GROUPS 0;
DBJ)PEN (DSD....,STR, OPEN....,STRJD. STATUS_CODE) ;
IF (STATUS_CODE = DB_OPEN-ERROR) THEN

BEGIN
ERROR (STATUS_CODE);
RETURN;

END;
DBJ)PEN (DSD.....ADDENDA, OPEN.....ADDENDAJD. STATUS_CODE):
IF (STATUS_CODE = DBJ)PEN-ERROR) THEN

BEGIN
ERROR (STATUS_CODE);
RETURN:

END;
DB_OPEN (DSD-DESC, OPEN-DESCJD, STATUS_CODE) ;
IF (STATUS_CODE = DBJ)PEN-ERROR) THEN

BEGIN
ERROR (STATUS_CODE);
RETURN;

END;
DB-END_GROUPS 0;
DB.JlESET (OPEN-BTRJD, STATUS_CODE);
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);
{query all DSDs for B}
{in record type field}
DSD....,STR. REC_TYPE : = 'B';
DB_QUERY (OPEN....,STRJD, STATUS_CODE);
IF (STATUS_CODE <> 0) TrlEN

ERROR (STATUS_CODE);
DB_GETJIRST (OPEN....,STRJD. STATUS_CODE);
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);

WHILE (STATUS_CODE <> DB.J;OF) DO
BEGIN

DB_GETJIRST (OPEN.....A!)DENDA..JD. STATUS_CODE);
IF (STATUS_CODE <> 0) THEN continued

UP-12507 5-27

Chapter 5

ERROR (STATUS_CODE);
{assign field values }

DSDJ)ESC. FLDl : = DSD....JJ)DENDA. FLD1·:
{from ADDENDA to DESC}

DSDJ)ESC.FLD2 := DSD....JJ)DENDA.FLD2;

~insert new record}
DB-INSERT (OPENJ)ESC-ID, STATUS_CODE):
IF (STATUS_COPE = DBJ)UPLICATE-RECORD) THEN

ERROR (STATUS_CODE):
~delete record with copied fields from ADDENDA}

DBJ)ELETE (OPEN....JJ)DENDAJD, STATUS_CODE);
IF (STATUS_CODE <> 0) TIIEN

ERROR (STATUS_CODE);
{assign C to record type}

DSDJ)TR. REC_TYPE : = 'C';
~update STR}

DB_UPDATE (OPENJ)TR-ID, STATUS_CODE);
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);

I(Remainder of ADL Procedure) I
END;

DB_CLOSE (OPENJ)ESC-ID, STATUS_CODE);
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);
DB_CLOSE (OPEN....JJ)DENDAJD, STATUS_CODE);
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);
DB_CLOSE (OPENJ)TR-ID, STATUS_CODE) ;
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_Cr,DE);
END;

Figure 5-6. Modifying Records

5-28

FOO2-0sn -00

UP-12507

Generic DML

Performing Access-Method Tral1sactions

Access-method transactions are performed from the last commit
or rollback to the' next one. The open of the procedure is the
implied first commit. The'instructions that perform access
methOd transactions are:

• DB_COMMIT
• DB_ROLLBACK

DB_COMMIT causes all record changes since the last commit or
rollba~k to be saved. This instruction affects each DSD open in
any ADL procedure in the current task.

pB_COMMIT performs a commit to the underlying access .
methOd for each open DSD that has had at least one mOdification
since the last commit or rollback. DSDs that have not been modi­
fied are not committed (a commit is unnecessary in such cases).

DB_COMMIT can generate an error message if no DSD is open
for the commit.

DB_ROLLBACK (status_code);

DB_ROLLBACK removes all record changes made since the last
commit or rollback to open DSDs in ADL procedures in the
current task. These changes are rolled back only to the extent
supported by the underlying access method.

DB_ROLLBACK can generate an error message if no DSD is
open for the rollback.

UP-12507 5-29

Example Illustrating DMLlnstructions that
Perform Access-Method Transactions

Figure 5;.7 shows the DML transaction instructions added to the
example procedure. We have added status variables to monitor
the rollback and the commit operations.

5-30 UP-12507

Generic DML

VAR
STAruS-ROLLBACK NUMBER;
STAruS_cOMMIT NUMBER;
STAruS_CODE NUMBER;
OPEN-STRJD NUMBER;
OPEN....ADDENDJ\.JD NUMBER;
OPEN-DESCJD NUMBER;

BEGIN

DBJELATED_GROUPS 0;

{monitor DB-ROLLBACK}
{monitor DB_COMMIT}

DB-DPEN (DSD-STR, OPEN-STRJD, STAruS_CODE)i
IF (STAIDS_CODE = DB-DPEN-ERROR) THEN

BEGIN
ERROR (STAruS_CODE)i
REruRN;

END:
DB-DPEN (DSD-ADDENDA, OPEN....ADDENDAJD. STAruS_CODE);
IF (STAruS_CODE = DB-DPEN-ERROR) THEN

BEGIN
ERROR (STAruS_CODE)i
REruRN;

END;
DB_OPEN (DSD-DESC. OPEN-DESCJD, . STAruS_CODE) ;
IF (STAruS_CODE = DB-DPEN-ERROR) THEN

BEGIN
ERROR (STAruS_CODE);
RE1URN;

END;
DB....END_GROUPS 0;
DB-RESET (OPEN-STRJD, STAlUS_CODE);
IF (STAruS_CODE <> 0) THEN

ERROR (STAtuS_CODE);
DSD-STR. REC_TYPE : = . B' ;
DB~UERY (OPEN.-.STRJD, . STAlUS_CODE) i
IF (STAlUS_CODE <> 0) THEN

ERROR (STAlUS_CODE);
DB_GET...FIRST (OPEN.-.STRJD. STAruS_CODE);
IF (STAWS_CODE <> 0) THEN

ERROR (STAruS_CODE);

WHILE (STAruS_CODE <> DB...EOF) DO
BEGIN

DB_GET...FIRST (OPEN....ADDENDAJD, STAlUS_CODE) i
IF (STAruS_CODE <> 0) THEN continued

UP-12507 5-31

Chapter 5

ERROR (STATUS_CODE):
DSD-PESC.FLDl := DSD-AODENDA.FLD1:
DSD-PESC.FLD2 := DSD-AODENDA.FLD2;
DBJNSERT (OPEN-PESCJD, STATUS_CODE);
IF (STATUS_CODE = DB-PUPLICATE-RECORD) THEN

ERROR (STATUS_CODE);

END;

DB-PELETE (OPEN-AODENDAJD, STATUS_CODE);
IF (STATUS_CODE <> 0) THEN

ERROR ~STATUS_CODE);

DSD..,STR. REC_TYPE : = 'C';
DB_UPDATE (OPEN..,STRJD, STATUS_CODE);

IF (STATUS_CODE <> 0) THEN
BEGIN

ERROR (STATUS_CODE);
DB-ROLLBACK (STATUS-ROLLBACK);

{on error, rollback record changes}
IF (STATUS-ROLLBACK > 0) THEN

ERROR (STATUS-ROLLBACK);
END;

ELSE
BEGIN
{commit changes}

DB_COMMIT (STATUS_COMMIT);
IF (STATUS-ROLLBACK > 0) THEN

ERROR (STATUS_COMMIT);
END;

DB_CLOSE (OPEN-PESCJD, STATUS_CODE) ;
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);
DB_CLOSE (OPEN-AODENDAJD, STATUS_CODE);
IF (STATUS_CODE <> 0) THEN

ERROR (STATUS_CODE);
DB_CLOSE (OPEN..,STRJD, STATUS_CODE);
IF (STATUS_CODE <> 0) THEN

ERROR (STAlUS_CODE);
END;

Figure 5-7. Performing Transactions

5-32

F002-0578-00

UP-12507

Generic DML

Passing Access-Method-Specific Commands

ADL provides a Generic DML instruction (DB_COMMAND)
that allows you to send a Data Definition Language (DOL) com­
mand directly to an access method. Many access methods (e.g.,
the ALLY FX access method and most ISAMs) do not support
DDL commands.

DB_COMMAND (db_system_name,
ddl_command_string, status_code);

DB_COMMAND allows you to send DOL statements directly
from ADL to an underlying access method. Any legal DOL com­
mand may be sent to an access method. Such commands must
follow the syntax of the underlying access method and must be
DOL commands. DML instructions are not allowed.

As part of its normal operation, ALLY will log you on to all
access methods used in an application at the time the application
is started. Therefore, you need not open any DSD.

The db_system_llame argument must be one of the pre-defined
constants that identify an underlying access method that supports
pass~through DOL commands.

The ddl_commalld_strillg argument is access-method specific. It
must be the actual DOL command or the name of a variable of
CHAR data type that is assigned the value of the DOL command
string. This string must follow the syntax required by the underly­
ing access method. This must be a legal DDL command. Illegal
DDL commands will raise an error.

This command will not corrupt any ALLY DSD status or other
state. Therefore, at runtime, ALLY verifies that the command
string is a legal DDL command.

When ALLY has determined that the command string is a DOL
command, that command is passed directly to the underlying
access method via that access method's standard call-level inter­
face.

UP-12507 5-33

Chapter 5

DB_COMMAND allows you to make runtime decisions about the
structure of the underlying access method or fiI~. While tables
may be created dynamically, DSDs may not be. Therefore, it is
possible to Create a physical environment that is not immediately
usable from ALLY since a required DSD has not yet been
created.

End of Chapter 5

5-34 UP-12507

Appendix A
ADL Reserved Words

Table A-l, Table A-2, and Table A-3 list the ADL reserved
words, the ADL functions and instructions, and the ALLY com­
mands. Each ADL function and instruction is described in the
alphabetical syntax listing that follows the tables. Command argu­
ments show the data type or item required. Optional arguments
are labeled. ALLY commands are described individuall'y in the
ALLY Command Reference Manual.

UP-12S07 A-1

Appendix A

Table A-1. ADL Reserved Words

A BORTAC110N DB_OPEN FLISI'VAL
ABORTAPPL DB_OPEN_ERROR FNEXT
ABOR'ITASK DB_QUERY FOR *
ADD_MONTHS DB_RELATED_GROUPS FORK
ADDNL DB_RESET FPICKVAL
AND DB_ROLLBACK FPREV
ARRAY* DB_UPDATE FRFUNCI10N

DEFINEWDW
BDELETE DEFMACRO
BEGIN DELBOL GET_CMD
BOL DELEOL GLBLREPLACE
BorTOM DELLINE GLOBAL
BOX DELREC GOTO*
BUDMODE DELTOMARK

DELWORD
CALL DO HIGHTOMARK
CALL_CMD DOWN HIGHTYPESE'I'
CASE* DOWNPAGE HOME
CHAR DUPDATE HOMEMCH
CLRCASESENS
CLRDRAWMODE ELSE IF
CLROVERTYPE EOL IGNORE
CLRPWRTYPE ERROR IMPORT
COMMrr EXEcurE INSAFrER

. COMPRESSWDW EXEcurE_CMD INSBEFORE
CONST EXEMACn # INSER'I'LINE
CPTOBUF EXEMACF ISNOI'NULL *
CrRLCHAR EXfl'ACnON ISNULL*

EXfl'APPL
DATE EXrrTASK JUMyrOMARK
DB_CLAUSE EXPANDWDW
DB_CLOSE EXPLODEWDW KHELP
DB_COMMAND EXPORT KMPPRINT
DB_COMMrr
DB_DELETE FALSE* LASCDAY
DB_DUPLICATE_RECORD FDELETE LDTOMARK
DB_END_GROUPS FHOME LOADMACROS
DB_EOF FIND LOCAL
DB_GE'CFIRSr FINDANDDEL
DB_GE'CNEXT ~SNEXT MACFMFILE
DB_INSERT FLAST MACrOFILE

A-2 UP-12507

ADL Reserved Words

MAKE_NULL QBE SHELL
MARK QUERY START
MENU QWHERE SUBSTR
MOD*
MONrHS_BEIWEEN READFILE TASKn @
MOVEWDW REDRAW TERMINATOR

REFRESH
NEXCDAY REMOVEBLK TO_CHAR
NEXTLlNE REPEAT* TO_DATE
NEXTMCH REPLACE TOOCASESENS
NEXIWORD RESIZEWDW TOO DR AWMODE
NIL* RESUME TOOGLETASK
Nor RETURN TOOOVERTYPE
NUMBER RErURN-"I'O TOOPWRTYPE

RGHOME
OR RGLAST TOP
OVERLAYBLK RGNEXT TOPMENU

RGPREV
PALL RHOME TRUNC
PHOME RIGHT TURTLECLEAR
PICKFIELD RLAST TURTLEHL
PICKTASK RNEXT TURTLELD
PLAST ROAMFIRsr
PNEXT ROAMLAsr ULDTOMARK
PPAGE ROLLBACK ULDTURTLE
PPREV RPREV UNBOX
PREST UNDELLINE
PREVMCH SAVE UNDELWORD
PREVMENU SAVEMACROS UNTIL *
PREVWORD SCROLLWDW UP
PRHOME SELEcr UPPAGE
PRLAST SEI'CASESENS
PRNEXT SETDELA YCNT VAR
PRNTSCRN SETDRA WMODE
PRNTVNUM SET_FAILURE WHILE
PROCEDURE SETOVERTYPE WTNOONE
PROMPT SETPWRTYPE WTNOOWN
PRPREV SETRPTCNT WTNLEFI'
purFIELD SET_SUCCESS WTNRIGHT

WINUP

* Not yet implemented
Where n = 0-29
(iv Where n = 1-255

UP-12507 A-3

Appendix A

Table A-2. ADL Functions and Instructions

ADD_MON'IHS+ ELSE NEXCDAY+
AND END NIL'"
ARRAY* ERROR NOT

EXEClJl'E NUMBER
BEGIN EXEClJI'E_CMD

EXPORT OR
CALL
CALL_CMD FALSE'" PROCEDURE
CASE* FOR'"
CHAR FORK REPEAT*
CONST FROM'" RESUME

RETURN
DATE GECCMD+ RETURN_TO
DB_CLAUSE GLOBAL ROUND+
DB_CLOSE GOTO*
DB_COMMAND SECFAILURE
DB_COMMIT HELP SECSUCCESS
DB_DELETE START
DB_END_GROUPS IF SUBSTR
DB_DUPLICATE_RECORD IMPORT
DB_EOF ISNGINULL'" THEN
DB_GECFIRST ISNULL* TO_CHAR +
DB_GET_NEXT TO_DATE +
DB_INSERT LASCDAY+ TO_NUMBER +
DB_OPEN LOCAL TRUE'"
DB_OPEN_ERROR TRUNC+
DB_QUERY MAKE_NULL
DB_RELATED_GROUPS MOD* UNTIL *
DB_RESET MONTHS_BE'IWEEN +
DB_ROLLBACK VAR
DB_UPDATE
DO WHILE

+ ADL function.
'" Not yet implemented

A-4 UP-12507

ADL Reserved Words

Command
Name

Table A-3. ALLY Commands

Command
Number@ Purpose

:Ii These commands are used in ADL only as arguments for the ADL
instructions CALL_CMD and EXECUrE_CMD.

@ You can use this number to reference a command returned by GET CMD.

A BORTACIlON 1100 Abort action
ABORTAPPL 1104 Abort application
ABORTrASK 1102 Abort task
ADDNL 1506 Add new line

BDELETE 1534 Back delete
BOL 1511 Beginning of line
BarrOM 1510 Bottom
BOX 1526 Box
BUDMODE 6004 Browse, update, delete mode

CLRCASESENS 1549 Clear case sensitive
CLRDRA WMODE 1552 Clear draw mode
CLROVERTYPE 1544 Clear overtype
CLRPWRTYPE 1546 Clear powertype
COMMrr 6013 Commit
COMPRESSWDW 1121 Compress window
CPFROMBUF 1524 Copy from buffer
CPTOBUF 1542 Copy to buffer
CrRLCHAR 1540 Enter control character

DEFlNEWDW 1123 Define window
DEFMACRO 1140 Define macro
DELBOL 1512 Delete to beginning of line
DELEOL 1514 Delete to end of line
DELLINE 1531 Delete line
DELREC '6008 Delete current record
DELTOMARK 1523 Delete to mark
DELWORD 1521 Delete word
DOWN 1501 Down
DOWNPAGE 1507 Down page
DUPDATE 6015 Deferred update

EOL 1513 End of line
EXEMACO 1150 Execute macro 0
EXEMACI 1151 Execute macro I
EXEMAC2 1152 Execute macro 2

UP-12507 A-5

Appenqix A

Command
Name

Command
Number@ Purpose

* These commands are used in ADL only as arguments for the ADL
instructions CALL_CMD and EXECUrE_CMD.

({lj You can use this number to reference a command returned by GET CMD.

EXEMAC3 1153 Execute macro 3
EXEMAC4 1154 Execute macro 4
EXEMAC5 1155 Execute macro 5
EXEMAC6 1156 Execute macro 6
EXEMAC7 1157 Execute macro 7
EXEMACS 1158 Execute macro 8
EXEMAC 1159 Execute macro 9
EXEMACIO 1161 Execute macro 10
EXEMACll 1162 Execute macro 11
EXEMAC12 1163 Execute macro 12
EXEMAC13 1164 Execute macro 13
EXEMAC14 1165 Execute macro 14
EXEMAC15 1166 Execute macro 15
EXEMAC16 1167 Execute macro 16
EXEMAC17 1168 Execute macro 17
EXEMAC18 1169 Execute macro 18
EXEMAC19 1170 Execute macro 19
EXEMAC20 1171 Execute macro 20
EXEMAC21 1172 Execute macro 21
EXEMAC22 1173 Execute macro 22
EXEMAC23 1174 Execute macro 23
EXEMAC24 1175 Execute macro 24
EXEMAC25 1176 Execute macro 25
EXEMAC26 1177 Execute macro 26
EXEMAC27 1178 Execute macro 27
EXEMAC28 1179 Execute macro 28
EXEMAC29 1180 Ex~ute macro 29
EXEMACF 1160 Execute macro from file
EXfl'ACnON 1101 Exit action
EXrrAPPL 1105 Exit application
EXflTASK 1103 Exit task
EXPANDWDW 1120 'Expand window
EXPLODEWDW 1125 Explode window

FDELETE 1530 Forward delete
FHOME 6140 First field
FIND 1529 Find
FINDANDDEL 1539 Find and delete
FINSNEXT 6022 Insert first record in next group

A-6 UP-12507

ADL Reserved Words

Command
Name

Command
Number@ Purpose

'" These commands are used in ADL only as arguments for the ADL
instructions CALL_CMD and EXECUI'E_CMD.

([v You can use this number to reference a command returned by GET CMD.

FLAST 6141 Last field
FLISrVAL 6144 Move to list of values
FNEXT 6142 Next field
FPICKVAL 6021 Pick from list of values
FPREV 6143 Previous field
FR FUNC nON 6023 Invoke local function

GLBLREPLACE 1541 Global replace

HIGHTOMARK 1553 Highlight to mark
HIGHTYPESET 1555 Set highlight type
HOME 1504 Home
HOMEMCH 2004 Home area

IGNORE 1538 Ignore
INSAFTER 6002 Insert record after
rNSBEFORE 6003 Insert record before
INSERTLINE 1532 Insert line

JUMPTOMARK 1536 Jump to mark

KHELP 1111 Help
KMPPRrNT 3005 Print menu

LDTOMARK 1554 Line draw to mark
LEFT 1502 Left
LOADMACROS 1144 Load macros

MACFMFILE 1142 Macro from file
MACrOFILE 1141 Macro to file
MARK 1522 Set mark
MENU 2500 Function key choice
MOVEWDW 1122 Move window

NEXTLINE 15()5 Next line
NEXTMCH 2()()J Next area
NEX'IWORD 1520 Next word

OVERLAYBLK 1562 Overlay block

UP-12507 A-7

Appendix A

Command
Name

Command
Number@ Purpose

* These commands are used in ADL only as arguments for the ADL
instructions CALL_ CMD and EXECUrE_CMD.

@ You can use this number to reference a command returned by GET CMD ..

PALL 6016 Print all
PHOME 6102 First page
PICKFIELD 6019 Copy to field-burfer
PICKTASK 1202 Pick task
PLAST 6103 Last page
PNEXT 6100 Next page
PPAGE 6017 Print page
PPREV 6101 Previous page
PREST 6018 Print rest
PREVMCH 2000 Previous area
PREVMENU 3002 Previous menu
PREVWORD 1518 Previous word
PRHOME 6130 First display area
PRLAST 6131 Last display area
PRNEXT 6132 Next display area
PRNTSCRN 1114 Pri nt screen
PRNTVNUM 1115 Print version number
PROMPT 2(X)5 Prompt line
PRPREV 6133 Previous ~isplay area
PUIFIELD 6020 Copy from field-buffer

QBE 6005 Query by example
QUERY 6007 Execute query
QWHERE 6006 Query by where clause

READFILE 1516 Read from file
REDRAW 1535 Redraw
REFRESH 1110 Refresh
REMOVEBLK 1561 Remove block
REPLACE 1528 Replace
RESIZEWDW 1126 . Resize window
RGHOME 6110 First logical group
RGLAST 6111 Last logical group
RGNEXT 6112 Next logical group
RGPREV 6113 Previous logical group
RHOME 6120 Fi rst record
RIGHT 1500 Right
RLAST 6121 Last record

A-8 UP-12507

ADL Reserved Words

Command
Name

Command
Number@ Purpose

* These commands are used in ADL only as arguments for the ADL
instructions CALL_CMD and EXECUrE_CMD.

«j' You can use this number to reference a command returned by GET CMD.

RNEXT 6122 Next record
ROAMFIRSr 3000 First area
ROAMLAST 3001 Last area
ROLLBACK 6014 Rollback
RPREV 6123 Previous record

SAVE 1515 Save
SAVEMACROS 1143 Save macros
SCROLLWDW 1124 Scroll window
SELECr 2006 Choose from roam area
SETCASESENS 1548 Set case sensitive
SETDELA YCNT 1116 Pause
SETDRA WMODE 1551 Set draw mode
SETOVERTYPE 1543 Set overtype
SETPWRTYPE 1545 Set powertype
SETRPTCNT 1113 Set repeat count
SHELL 1112 Go to OS command line processor

TASK 1210 Start task
TERMINATOR 3004 Ch(x)se from prompt line
TOGCASESENS 1547 Toggle case sensitive
TOGDRA WMODE 1550 Toggle draw mode
TOGGLETASK 1200 Toggle task
TOGOVERTVPE 1527 Toggle overtype
TOGPWRTYPE 1537 Toggle powertype
TOP 1509 Top
TOPMENU 3003 First menu
TURTLECLEAR 1558 Clear turtle
TURTLEHL 1556 Highlight with turtle
TURTLELD 1557 Line draw with turtle

ULDTOMARK 1559 Erase line draw
ULDTURTLE 1560 Erase line draw with turtle
UN BOX 1525 Un box
UNDELLINE 1533 Undelete line
UNDELWORD 1519 Undelete word
UP 1503 Up
UPPAGE 1508 Up page

UP-12507 A-9

Appendix A

Command
Name

Command
Number@ Purpose

;II These commands are used in ADL only as arguments [or the ADL
instructions CALL.:CMD and EXECUrE_CMD.

@ You can use this number to reference a command returned by GET CMD.

WlNDONE
WlNDOWN
WlNLEFI'
WlNRIGHT
WlNUP
WRrrEFILE

A-10

7504
7501
7502
7503
7500
1517

Window-action
Window down
Window left
Window right
Window up
Write to file

UP-12507

ADL Reserved Words

Syntax of ADL Reserved Words

ADD_MONTHS (DATE_argument, NUMBER_argument);

Adds a NUMBER argument to a DATE argument. The result is
a DATE.

(expression) AND (expression);

AND· is a relational operator used in IF and WHILE condition
statements. Its two arguments must be relational expressions
enclosed within parentheses.

ARRAY

This is an ADL reserved word to which no action has been
assigned.

BEGIN procedure_statement_sequence END;

BEGIN must precede procedure statements when the program
starts with CONST or VAR. BEGIN is also required to execute
multiple statements in IF or WHILE conditions. "END;" is
required after procedure statements introduced by BEGIN.

Invokes a specified ALLY action-a form/report packet, a menu,
another ADL procedure, a parameter packet, an external link, an
action list, or a text editor.

UP-12507 A-11

Appendix A

Invokes a specified ALLY command. The argument must be the
name of an ALLY command or of a variable whose value is the
name of an ALLY command. If the argument is a variable, the
variable must have the data type NUMBER.

CASE

This is an ADL reserved word to which no action has been
assigned.

variable_name: CHAR;

CHAR labels a variable that can contain character values.

CONST constant_declaration_statement;

CONST labels the constant declaration part of an ADL pro­
cedure. It is required only when a procedure uses as least one
constant.

variable_name : DATE;

DATE labels a variable that can contain date values.

DB_CLAUSE (open_id , query clause, status_code);

DML command used in record retrieval.

A-12 UP-12507

ADL Reserved Words

DML command to close DSDs.

DB_COMMAND (db_system_string, command_string,
status_code);

DML command to pass DOL command through directly to under­
lying access method.

DML command to save changes to records.

DML command to delete current record.

DML global constant signifying that this dataset, file, or table
already contains a record with the same primary key value as the
one you are attempting to insert.

DB_END GROUPS 0;

DML command that ends a related group definition.

UP-12507 A-13

Appendix A

DML global constant signifying that you have reached the last
record in the dataset, file, or table or that you have reached the
last record in the subset that you are querying.

DML command to retrieve first record.

DML command to retrieve next record.

DML command to insert a record.

DML command to open DSDs.

DML global constant signifying that the DSD named in the
DB_OPEN is invalid or that you have used the DB_OPEN
without a preceding DB_RELATED GROUPS.

A-14 UP-12507

ADL Reserved Words

DML command to execute a query.

DML command to introduce related DSDs.

DML command to reset query status ..

DB_ROLLBACK (status_code);

DML command to ignore record changes.

DML command to write currerit record.

DO instruction_statement;

Required for a WHILE statement. If more than one statement
follows 00; they must·be surrounded by BEGIN and END.

ELSE instruction_statement;

ELSE' can be used In an IF condition to specify an alternative to
the statement following IF.! BEGIN must precede compound
ELSE statements and END must follow them.

UP-12507 A-15

App£3ndix A

END;

Required after procedure statement(s) that are preceded by .
BEGIN.

ERROR (NUMBER_argument);

Displays the text of the error number argument.

Invokes a specified ALLY action-a form/report packet, a menu,
another ADL procedure, a parameter packet, an external link, an
action list, or a text editor.

EXECUTE_ CMD (ALL Y _command_argument);

Invokes a specified ALLY command. The argument must be the
name of an ALLY command or of a variable whose value is the
name of an ALLY command. If the argument is a variable, the
variable must have the data type NUMBER.

variable_name: data_type EXPORT;

EXPORT labels a local variable whose value can be used in other
ADL procedures.

FALSE

This is an ADL reserved word to which no action ha't been·
assigned.

A-16 UP-12507

ADL Reserved Words

FOR

This is an ADL reserved word to which no action has been
assigned.

Invokes a specified ALLY task.

FROM

This is an ADL reserved word to which no action has been
assigned.

Returns the last keystroke that has not yet been processed in a
form/report.

variableJ)ame : GLOBAL;

GLOBAL labels a variable that has been defined in'this applica­
tion as a global variable.

GOTO

This is an ADL reserved word to which no action has been
assigned.

UP-12507 A-17

Appendix A

HELP (NUMBER_argument);

Displays the text of a specified help message number.

IF (condition (s)

Introduces a condition statement.

variable_name: data_type IMPORT name_of_form_report.field
or variable;

IMPORT labels a local variable whos(;! value will be imported
from another ADL procedure that is executing concurrently or
from a form/report field in the application.

ISNOTNULL

This is an ADL reserved word to which no action has been
assigned.

ISNULL·

This is an ADL reserved word to which no action has been
assigned.

Calculates the last day of the month for a DATE_argument. The
result is a DATE value.

A-18 UP-125,07

ADL Reserved Words

variable_name : data_type LOCAL;

LOCAL labels a variable whose value is visible only to the ADL
procedure in which it is declared. ADL variables are LOCAL by
default.

Causes the value of a variable or field to have no value, i.e., to
become null.

MOD

This ADL reserved word has not yet been implemented.

MONTHS~BETWEEN (DATE_argument, DATE_argument);

Calculates the num~r of months between the two date argu­
ments. The result has t~e data type NUMBER.

Calculates the next occurrence of a day_of_week argument. The
result is a DATE value.

NIL

This is an ADL reserved word to which no action has been
assigned.

UP-12501 A-19

Appendix A

NOT (expression);

NOT is a relational operator used in IF and WHILE condition
statements. Its argument must be a relational expression.

variable_name: NUMBER;

NUMBER labels a variable that can contain number values.

(expression) OR (expression)

OR is a relational operator used in IF and WHILE condition
statements. Its two arguments must be relational expressions.

PROCEDURE identifier
PROCEDURE identifier (VAR parameter_name : data_type;);

The PROCEDURE statement is optional in an ADL program.
The identifier is the name of the ADL program.

REPEAT

This is an ADL reserved word to which no action has been
assigned.

Invokes an ALLY task.

A-20 UP-12507

ADL Reserved Words

RETURN;

Terminates execution of an ADL procedure and returns to the
event that called the procedure.

Removes from the task's execution stack all actions back to the
named action, then resumes execution of the called action.

ROUND (DATE_argument, optionaCdate-picture);
ROUND (NUMBER_argument, optional-precision_argument);

Rounds a.DATE or NUMBER value to the precision you specify.
The table listing the precisions for the rounding of dates and
numbers is in Appendix B.

SET_FAILURE 0;

Reports to the calling event that the preceding ADL procedure
has failed. This instruction takes no argument.

SET ~SUCCESS ();

Reports to the calling event that the preceding ADL procedure
has succeeded. This instruction takes no argument.

START invokes an ALLY task.

UP-12507 A-21

Appendix A

SUBSTR (CHAR_variable, offset, length);

Assigns to a variable a subset of the value of another variable.
The offset and length can he numbers or NUMBER variables.

IF (condition(s)) THEN

THEN must follow the IF condition statement(s) and precede the
imperative statement(s).

TO_CHAR (DATE_argument, optionaLdate-picture);
TO_CHAR (NUMBER_argument);

Converts both DATE and NUMBER values to CHAR values.

TO_DATE (CHAR_argument, optionaLdate-picture);

Converts a CHAR value to a DATE value with a date picture
you specify. The result is a DATE value.

TO_NUMBER (CHAR_argument);

TO_NUMBER converts a CHAR value to a NUMBER value.
The result is NUMBER data type.

TRUE

This is an ADL reserved word to which no action has been
assigned.

A-22 UP-12507

ADL Reserved Words

TRUNC (DA TE_argument, optionaCdate-picture);
TRUNC (NUMBER_argument, optional-precision_argument);

Truncates a DATE or NUMBER value to the precision you
specify. The table listing the precisions for the truncation of dates
and numbers is in Appendix B.

UNTIL

This is an ADL reserved word to which no action has been
assigned.

VAR variable_name: data_type;

Labels variable declaration statement section of the procedure.
Required when there is at least one variable listed.

WHILE condition(s) DO statement(s);

Executes statement(s) while condition(s) is/are true. Introduces a
condition statement. If the DO statement is to execute multiple
statements, then they must be surrounded by BEGIN and END.

End of Appendix A

UP-12507 A-23

Appendix B
ADL Operators

Table B-1. ADL Operators

Operator Ty~ Operator Operation

Assignment - Assign value

Arithmetic + Addition
Subtraction

* Multiplication
/ Division

Relational = Equality
<> Inequality
< Less than
> Greater than

<= Less than or equal
>= Greater than or equal

Logical NOT Negation
OR Or
AND And

UP-12507 8-1

Appendix 8

Table 8-2. Precedence of Operators

NOT Done first
*,I,AND
+,-,OR l

<, < =, =, < >, > =, > Done last

End of Appendix 8

8-2 UP-12507

Appendix C
Data Types and DATE Pictures

This appendix contains tables of:

• data type conversion and DATE arithmetic
• DATE pictures for TO_DATE function
• DATE format pictures
• DATE picture precisions for rounding and truncating a

date

Manipulating ADL Data Types

Table C-l summarizes the functions and operations that ADL
provides for manipulating data types.

Table C-1. ADL Data Type Manipulation

Beginning Function Name
Data Type or Action

NUMBER ROUND

UP-12507

Operation

Converts value
of container* to
NUMBER

Converts value
of container* to
DATE

Converts value
of container* to
CHAR

Rounds to the
precision speci­
fied

Resulting
Data Type

NUMBER

DATE

CHAR

NUMBER

C-1

Appendix C

Beginning Function Name Resulting
Data Type or Action Operation Data Type

NUMBER TRUNC Truncates to the NUMBER
precision speci-
fied

DATE Add days Value of con- DATE
tainer* plus n**

DATE Subtract days Value of con- DATE
tainer* .minus
n**

DATE Subtract dates container* _focdate NUMBER of days
minus
container* _focdate

DATE ADD_MONTHS Adds a number DATE
of months to a.
date

DATE MONrHS_BElWEEN Determines the NUMBER of months
number or
months between
two dates

DATE LASl'_DAY Calculates last DATE
day in specified
month

DATE NEX'CDAY Calculates the DATE
date of the next
occurrence of
the speci ned day
of the week

DATE ROUND Rounds to the DATE
precision speci-
ned

C-2 UP-12507

Data Types and DA TE Pictures

Beginning Function Name
Data Type or Action

DATE TRUNC

Operation

Q)ftverts value
of date con­
tainer* to char­
acter data type

Truncates to the
precision speci­
ried

• Q>ntainer can be a variable or a rorm/report ri.eld
.. Where un" is the number of days

UP~12507

Resulting
Data Type

CHAR

DATE

C-3

_ Appendix C

Input DATE Pictures
for TO_DATE Function

Input pictures are used for inputting dates with the TO_DATE
function. To avoid a problem with input picture conflicts, only
one entry from each of the sections of Table C-2 is permitted.

Table C-2. Input DATE Picture Classifications

Picture
Class

Y

Month
Week
Day
Hour
Minute
Second
Meridian
Era

Date Pictures

YEAR SYEAR YYYY Y,YYY SYYYY
SY,YYY YYY YY Y J CC SCC
MONTH MON MM J Q DDD WW
DDDDDJQWWW
DAY DY D
HH HHl2 HH24 SSSSS
MM SSSSS
SS SSSSS
AM A.M. PM P.M. HH24 SSSSS
AD A.D. BC B.C. SYEAR SYYYY
SY,YYY J SCC

Notes on Input DATE Picture Classification Table

D, DY, and DA Y may be input even when their presence is
redundant. If the date given _is appropriate for the day entered,
the day is accepted. A conflict causes an error m-essage to be
displayed. For example, if the Julian date has been entered which
corresponds to a Wednesday, then the symbol "Wed'" (DY) will
be accepted along with the Julian designation. If, however, the
day entered is "Sat" (DY), the conflict with the Julian designation
causes an error.

C-4 UP-12507

Data Types and DA TE Pictures

Capitalization is ignored. Except for MONTH, MON, DAY, and
DY, spelled symbols are ignored. Punctuation and literals must
match. All blank literals match all entries.

On input, ALLY does not verify that the symbols completely ,
specify a date. It is possible for you to supply only a "time" sym­
bol without a specific date, day of week, etc. If you ~nter an
incomplete input symbol, ALLY supplies the default value (the
current year, Jan. 1, at midnight) to fill in the missing portions of
the date.

White space (one or more blanks) on input is treated as one blank
on output. On input, unlimited blanks are allowed.

UP;..12507 C-5

~ppendix C

DATE Format Number Pictures

The following table lists the date format number pictures. A sec­
tion of notes that follows the table provides additional information
about the number pictures.

C-6

Table C-3. DATE Format Number Pictures

Number Format
Picture
ee

, sec
syyyy
yyyy
Sy,yyy
y,yyy
yyy
yy
Y
Q
MM
ww
W
000
DO
o
HHorHH12

HH24

MI
ss
sssss
J

Definition
Unsigned centl:1ry value (i.e., 1984)
Signed century value (i.e., -1984)
Signed year
Unsigned year
Signed year with comma (i.e., -1,984)
Unsigned year with comma (i.e., 1,984)
Last 3 digit" of year (0-999)
Last 2 digit" of year (0-99)
Last digit of year (0-9)
Quarter of year (1-4)
Month (1-12)
Week of year (1-53)
Week of month (1-5)
Day of year (1-366)
Day of month (1-31)
Day of week (1-7)
Hour of day
produces a two-digit number based on
a 12-hour clock (1-12)

, Hour of day
produces a two-digit number ba.cied on
a 24-hour clock (0-23)

Minute (0-59)
Seconds (0-59)
Seconds past midnight (0-86399)
Julian day (since Jan 1, 4712 BC)
produces width of 7 (0-3547272)

UP-12507

Data Types and DA TE Pictures

Notes on DA TE Format Number Picture Table

Signed symbols begin with either a leading space or a minus sign,
unless the fill mode (FM) operator has been turned on.

In a number with up to three digits, leading zeros are automati­
cally inserted. For example. the four-digit symbol, YYYY, would
represent the year 783 AD as 0783, and the symbol Y,YYY
would output it as 0;783.

Number picture values are always right justified in a field, with
leading zeros (a leading space or minus sign is also possible).

Comma and leading "'S" pictures produce the same number of
digits or characters (places) of output as in the date picture (e.g.,
Y,YYY = five places).

In the calculation of Julian dates, ALLY includes a year "zero".
To compensate for the year "zero", ALLY starts its Julian date
system on Jan I, 4713 instead of 4712. Therefore, an ALLY BC
date should have a -I added to it to account for this difference
from the classical Julian convention. Although actual Julian dates
are incremented at noon, ALLY increments these dates (as any
other dates) at midnight. .

UP-12507 C-7

Appendix C

DATE Format Character Pictures

The date format character pictures are listed in the following
table. A section of notes follows the table. These notes provide
additional information aoout the character pictures ..

Table C-4. DATE Format Character Pictures

Character
Format Picture
SYEAR or YEAR
MONTH
MON
DAY
DY
AM or PM
A.M. or P.M.
BCor AD
B.C. or A.D.

Definition
Year in English (Le., NINETEEN-EIGHTY-FOUR)
Name of month
Abbreviation of month name
Name of day
Abbreviation of day name
Meridian indicator (AM or PM)
Meridian indicator (A.M. or P.M.)
BC or AD indicator of year
B.C. or A.D. indicator of year

Notes on DA TE Format Character Picture Table

YEAR and SYEAR are not left justified and do not preserve
column alignment.

MONTH and DA Yare always nine columns wide to account for
the maximum length character string that could be output in those
containers. MON and DY are always three columns wide, the
maximum allowable length of month and day abbrevia~ions.
Blanks are added to the right of the string, if needed, to pad out
the container.

The symools AM, PM, BC, and AD always take two characters
while A.M., P.M., B.C., and A.D. take four character places.

The length of a character symbol depends on the language in
which the application is written. The lengths given aoove are for
the English language. The Dialog allows the developer to specify
other lengths to accommodate other languages.

C-8 UP-12507

Data Types and DATE Pictures

DATE Format Suffix Pictures

The date format suffix pictures are listed in the following table.
These suffixes are specified after the number pictures (e.g.,
YYYYTH or YYYYSP or YYYYSPTH). The section of notes
following the table provides additional information about the suf­
fix pictures.

Table C-S. DATE Format Suffix Pictures

Suffix Format
Pictures

TIJ
SP

~ription

Pute; ST,ND,RD.,TIJ after the number (ex. 8th)
Spells the number (e.g., thirty-five or twenty)

SPTIJ or TIJSP Puts suffix on spelled number (ex. thirty-fifth, twentieth)

Notes on DATE Format Suffix Picture Table

TH preserves column alignment, even in languages other than
English.

SP eliminates any column arrangement that had been specified.
The longest character string that can be produced with spelling is
eighty.;.two characters. With the "SP" symbols, the first letter of
"each word in a spelled-out date can be specified as being capital­
ized. And hyphens (-) can be included in the string. The
hyphens are placed between the words to indicate the tens and
unit values of each date word group.

The spelled-out version of the year (YYYYSP) differs from the
character string YEAR. The spelled-out version for 19H5 is ONE
THOUSAND NINE HUNDRED EIGHTY-FIVE. The charac­
ter string version for 19H5 is NINETEEN-EIGHTY-FIVE.

UP-12507 C-9

Appendix C

DATE Picture Precisions
for Rounding Dates

The following table lists the date pictures you can specify as the
precision when you round a date.

Table C-S. DATE Picture Precisions for Rounding Dates

Date Picture

ee, sec

SYEAR, YEAR
SYVYY,YYYY
YYV,YY,Y

Q

MONTH, MON, MM

WW,W

DAY,DY,D

C-10

Level of Precision

To the next century if the year is the 50th
through the 99th.

To the next year if the month is the 7th
through the 12th.

To the next quarter, if the current quarter is
more than 1 month and 15 days old. The
year can change.

To the next month, if the day of the month
is 16 through 31. The year can change.

To next week of year or month, respectively.
If day of week is Wednesday (noon or
later), it rounds to the first day of the next
week of the year or month, respectively.
Otherwise, it rounds to the first day of the
current week (for weeks 1 through 53).
This picture does not change the year.

To the previous Sunday unles.1i the day is
Wednesday (noon or later). The year can
change.

UP-12507

Date Picture

DOD, DO, 0, J

HH, HH24, HH12

MI

UP-12507

Data Types and DATE Pictures

Level. of Precision

To the next day (date and time) of the year,
month, and week, respectively, if the time
of the current day is noon or later.

To the next hour (date and time)
If the minute is 30 through 59, there is a
ripple carry of the hour to the day, the day
to the month, and the month to the year.

To next minute (date and time)
If the second is 30 through 59, there is a rip­
ple carry of the minute to the hour, the hour
to the day, etc.

C-11

Appendix C

DATE Picture Precisions
for Truncating Dates

The following table lists the DATE picture precisions you can
specify for truncating a date.

Table C-7. DATE Picture Precisions for Truncating Dates

Date Picture

ce, see

SYEAR,YEAR
SYVYY, YYYY
YVY,YV,Y

Q

Level or Precision

At the beginning of .the century
day = 1, month = 1, year = 01; (time = midnight)
(e.g., 1984 becomes 1900, -4712 becomes -4700)

At the beginning of the year
day = t, month = 1; (time = midnight).

At the beginning of the quarter
day = t; month = 1 or 4 or 7 or 10; (time = midnight)

MONTH, MON, MM At the beginning of the month
day = 1; (time = midnight)

ww,w

DAY,DY

DOD, DD, D, J

HH, HH12, HH24

MI

C-12

At the beginning of the week of the year or month, respec­
tively
subtracts 0 to 6 days (time = midnight)
This picture does not change the y~r number

At previous Sunday
If date is Sunday, date does not change; (time = midnight)

At the beginning of the day (date and time) of the year,
month or week, respectively (time = .midnight)

At the beginning of the hour (date Clnd time)
Minutes and seconds are removed or set to zero

At the minute (date Clnd time)
Seconds are removed or set to zero

End of Appendix C

UP-12507

Access method
interface 5-1
transactions,

instructions 5-29
specific commands, pass 5-33

Action, invocations 4-16
ADD_MONTHS 4-11, A~lO
ADL

data types, manipulating C-l
functions and instructions

list A-4
table 4-24

operators B-1
table B-1

reserved words A-I
syntax A-.1O
table A-2

ALL Y commands, table A-5
Anatomy, ADL procedure 2-10
AND 3-10, A-1O
Arithmetic, dates 4-10
ARRAY A-1O

BEGIN 3-9, A-1O
Boldface p-2

CALL 4-16, A-1O
CALL_CMD 4-18, A-It
CASE A-II
Case sensitivity 3-5
CHAR 2-5, 2-6, A-II
Ch.aracter format rules C-8
Comment text 3-4
Concatenation, strings 4-9
CONSI' 2-4, A-ll
Constants, DML global 5-7
Construction, procedure 3-1
Control statements 3-6
Conventions p-2

Data
manipulation language 5-1

UP-12507

Index

type
CHAR 2-5, 2-6, A-II
DATE A-II
NUMBER A-19

DATE 2-5, 2-6, A-ll
format character pictures C-8

notes C-7, C-8
format number pictures C-6
format suffix pictures C-9

notes C-9
picture precisions,

truncation C-I2
value calculations,

functions 4-10
Dates,

arithmetic 4-10
rounding C-1O

DB_CLAUSE 5-16, A-II
DB_CLOSE 5-10, A-12
DB_COMMAND 5-33, A-12
DB_COMMIT 5-29, A-I2
DB_DELETE 5-24, A-12
DB_DUPLICATE_RECORD A-12
DB_END_GROUPS 5-10, A-t2
DB_EOF A-I3
DB_GE'LFIRSr 5-19, A-13
DB_GELNEXT 5-20, A-13
DB_INSERT 5-25, A-13
DB_OPEN 5-9, A-13
DB_OPEN_ERROR A-I3
DB_QUERY 5-15, A-14
DB_RELATED_GROUPS 5-10, A-I4
DB_RESET 5-14, A-I4
DB_ROLLBACK 5-29, A-14
DB_UPDATE 5-23, A-14
DML

generic 5-1
mixing forms/reports
and ADL 5-3

query criteria restrictions 5-4
DML global constants 5-7

DB_DUPLICATE_RECORD A-I2

;-1

Index

DB_EOF A-13
DB_OPEN_ERROR A-13

DML instructions,
DB_CLAUSE 5-16, A-II
DB_CLOSE S-IO, A-12
DB_COMMAND 5-33, A-12
DB_COMMrr 5-29, A-12
DB_DELETE 5-24, A-I2
DB_END_GROUPS 5-10, A-12
DB_GELFIRSr 5-19, A-13
DB_GELNEXT 5-20, A-13
DB_INSERT 5-25, A-13
DB_OPEN 5-9, A-13
DB_QUERY 5-15, A-14
DB_R ELATED_G ROUPS
5-10,' A-14

DB_RESET 5-14, A-14
DB_ROLLBACK 5-29, A-14
DB_UPDATE 5-23, A-14
describe and modify query
criteria 5-14

modify access-method records 5-23
open and close a DSD 5-8
pass access-method-speci fic
commands 5-33

retrieve DSD records 5-19
Debugging, status code 5-6
Deleting and inserting DSD
records 5-5

Describe and modify query criteria,
instructions 5- I 4

DO 3-7, A-14
Double quotes p-2
DSD records, deleting and
inserting 5-5

DSDs
dependencies 5-4

ELSE A-14
END A-IS
ERROR 4-21, A-IS
Example,

DB_CLAUSE 5-16
instructions that modify
access-method records 5-26

instructions that open

i-2

and close DSDs 5-11
instructions that retrieve
records 5-21

record querying
instructions 5-17

EXECUrE 4-16, A-15
EXECUrE_CMD 4-19, A-IS
EXPORT A-IS

scope 2-8

FALSE A-IS
FOR A-16
FORK 4-14, A-16
FROM A-16
Function.

ADD_MONTHS 4-11. A-tO
GET_CMD 4-19. A-16
LASLDAY 4-12, A-17
MONTHS_BEIWEEN 4-12, A-18
NEX'I'-DAY 4-13, A-18
ROUND (DATE) 4-7
ROUND (NUMBER) 4-5
ROUND A-20
SUBSTR 4-9
TO_CHAR (DATE) 4-7
TO_CHAR (NUMBER) 4-5
TO_CHAR A-21
TO_DATE 4-3, A-21
TO_NUMBER 4-3, A-21
TRUNC (DATE) 4-8
'I'RUNC (NUMBER) 4-6
TRUNC A-22

Functions,
DATE value
calculations 4-10

manipulate variable and
field values 4-1

Generic DML. instruction ·Iist 5-1
GELCMD 4-19. A-16
GLOBAL A-16

scope 2-7
GOTO A-16

HELP 4-21, A-I7

UP-12507

IF A-I7
statement 3-7

IMPORT A-I7
scope 2-8

Input DATE pictures,
classification table, notes C-4
TO_DATE function C-4

Instruction,
CALL 4-16, A-I0
CALL_CMD 4-18, A-II
DB_CLAUSE 5-16, A-II
DB_CLOSE 5-10, A-12
DB_COMMAND 5-33, A-12
DB_COMMfI' 5-29, A-12
DB_DELETE 5-24, A-12
DB_END_GROUPS 5-10, A-12
DB_GET_RRST 5-19, A-13
DB_GE'CNEXT 5-20, A-13
DB_INSERT 5-25, A-13
DB_OPEN 5-9, A-I3
DB_QUERY 5-15, A-14
DB_RELATED_GROUPS
5-10, A-14
DB_RESET 5-14, A-14
DB_ROLLBACK 5-29, A-14
DB_UPDATE 5-23, A-14
ERROR 4-21, A-15
EXECUI'E 4-16. A-15
EXECUrE_CMD 4-19, A-I5
FORK 4-14, A-16
GET_CMD 4-19, A-I6
HELP 4-21, A-17
invoke help and error
messages 4-20

MAKE_NULL 4-2, A-18
manipulate CHAR strings 4-8
open and close a DSD 5-8
perform access-method
transactions 5-29

RESUME 4-15, A.,I9
retrieve records, example 5-21
RETURN 4-18, A-20
RETURN_TO 4-17, A-20
SET_FAILURE 4-22, A-20
SEI,-SUCCESS 4-22, A-20
START 4-15, A-20

UP-12507

Index

invoke tasks and
actions 4-13, 4-14

report procedure success
or failure 4-22

use ALLY commands 4-18
Invoke

action 4-16
help and error messages,

instruction 4-20
tasks and actions,

instruction 4-13
ISNOINULL A-17
ISNULL A-I7

Label,
CHAR 2-5, 2-6, A-II
CONSI' 2-4, A-II
DATE 2-5, 2-6, A-II
EXPORT 2-7,2-8, A-15
GLOBAL 2-7, A-16
IMPORT 2-7, 2-8, A-17
LOCAL 2-7, A-I8
NUMBER 2-5,2-6, A-19
PROCEDURE 2-3, A-19
VAR 2-5, A-22

LASLDA Y 4-12, A-17
LOCAL A-18

scope 2-7
Logical operator 3-10, 3- I I

AND 3-10

MAKE_NULL 4-2, A-18
Manipulate

CHAR strings, instruction 4-8
variable and field values,
functions 4-1

MOD A-I8
Modify access-method records,

instructions 5-23
example 5-26

MONTHS_BEIWEEN 4-12, A-18

Naming conventions 3-6
NEX'CDA Y 4-13, A-18
NIL A-18
NOr 3-11, A-t9

i-3

Index

NUMBER 2-5, 2-6, A-19

Open_TD variable 5-6
Operator.

assignment B-1
logical 3-10, 3-1 t

AND 3-10,3-11, A-19
NOT 3-11, A-19
OR ::\-10, A-19

Operators,
precedence 3-3, B-2
relational and arithmetic,
table B-1

OR 3-10, A-19

Parameters, procedure 2-3
Pass access-method-specific

commands, instruction 5-33
Pictures,

DATE format character C-8
DATE format number C-6
DATE format suffix C-9

Precedence of operators 3-3, 8-2
PROCEDURE A-19
Procedure,

construction 3-1
declarations, syntax 2-3
label,

CONST 2-2, 2-4, A-II
PROCEDURE 2-2,2-3, A-19
V AR 2-2, 2-3, 2-5, A-22

parameters 2-3
sections 2-1

Querying
instructions, example 5-17
related DSDs 5-4

Record retrieval 5-5
Related DSDs 5-4

querying 5-4
REPEAT A-19
Report procedure success or
failure, instructions 4-22

Reserved words 3-5, A-I
RESUME 4-15, A-19

;-4

Retrieval, records 5-5. 5-19
RETURN 4-18, A-20
RETURN_TO 4-17, A-20
ROUND 4-5,4-7, A-20
Rounding dates, precisions C-I0

Scope,
EXPORT 2-8, A-15
GLOBAL 2-7, A-16
IMPORT 2-8, A-17
LOCAL 2-7, A-18
variable 2-6

Sections or an ADL procedure 2-1
SECF AlLURE 4-22, A-20
SECSUCCESS 4-22, A-20
Single quotes p-2
START 4-15, A-20
Statements, control 3-6
Status code 5-6
String concatenation 4-9
SUBSTR 4-9, A-21
Suffix format rules C-9
Syntax,

ADL reserved words A-to
procedure declarations 2-3

Task, invocation instructions 4-14
THEN 3-7, A-21
TO_CHAR 4-5, 4-7, A-21
TO_DATE 4-3, A-21

function, input DATE
pictures C-4

TO_NUMBER 4-3, A-21
TRUE A-21
TRUNC 4-6, 4-8, A-22
Truncation,
DATE picture precisions C-I2

Unassigned,
ARRAY A-to
FOR A-16
GOTO A-16
TSNOINULL A-17
TSNULL A-I7
MOD A-18
REPEAT A-19

UP-12507

SUBSTR A-21
UNTIL A-22

UNTIL A-22
Use ALLY commands,
instructions 4-18

VAR 2-5, A-22
Variable

declaration list 2-5
scope 2-6

EXPORT 2-8
GLOBAL 2-7
IMPORT 2-8
LOCAL 2-7

WHILE A-22
statement 3-7 I

UP-12507

Index

End of Index

;-5

