UNISYS

ALLY®
Software

Development
Environment

System Manager’s
Guide

Copyright © 1987 Unisys Corporation.

All rights reserved.

Unisys is a trademark of Unisys Corporation.
ALLY is a registered trademark of

Foundation Computer Systems, Inc.

Foundation Computer Systems is

a wholly owned subsidiary of Unisys Corporation.

June 1988

Printed in U S America
Priced ltem UP-13765

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT.
Any product and related material disclosed herein are only furnished pursuant
and subject to the terms and conditions of a duly executed Program Product
License or Agreement to purchase or lease equipment. The only warranties
made by Unisys, if any, with respect to the products described in this document
are set forth in such License or Agreement. Unisys cannot accept any financial
or other responsibility that may be the result of your use of the information in
this document or software material, including direct, indirect, special or
consequential damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions
may be issued to advise of such changes and/or additions.

Foundation Computer Systems (Foundation) has written this
manual for use by Foundation customers. The information con-
tained in this manual shall not be reproduced in whole or in part
without Foundation’s prior written approval.

Foundation reserves the right to make changes in specifications
and other information contained in this manual without prior
notice. The reader should, in all cases, consult Foundation to
determine whether any such changes have been made.

ALLY is a registered trademark of Foundation Computer Systems, Inc.

SVT-1210 and SVT-1220 are trademarks of Unisys Corporation.

DEC LP05, VT100, and VT220 are trademarks of Digital Equipment
Corporation.

Esprit III is a trademark of Hazeltine Corporation.
MS-DOS is a trademark of Microsoft Corporation.
Televideo 925 is a trademark of Televideo Systems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

XEROX is a trademark of Xerox Corporation.

© Copyright 1988 by Foundation Computer Systems, Inc.
All rights reserved

Preface

This manual describes ALLY release 2.0.

This manual contains information for system managers on how
to establish and maintain an ALLY environment on UNIX and
MS-DOS systems. If you are running ALLY under another
operating system, see the ALLY installation guide for your sys-
tem.

The manual has nine chapters and four appendixes.

Chapter 1 explains ALLY’s directory structure and files, ALLY
environment variables, AFILE naming conventions, paths to
help and error AFILEs, and compatibility among ALLY
releases.

Chapter 2 describes how to invoke ALLY with commands and
command files.

Chapter 3 describes each section of ALLY’s Format File.

Chapter 4 describes the key-definition file and shows an exam-
ple.

Chapter 5 discusses the terminal definition file and shows an
example.

Chapter 6 explains the Terminal Definer utility.

Chapter 7 describes the printer definition file and shows an
example.

Chapter 8 explains the Printer Definer utility.

Chapter 9 discusses how to route your printer output to different
destinations.

Appendix A lists ALLY subdirectories and the files they contain
in the UNIX environment.

Appendix B lists ALLY files in the MS-DOS environment.

Appendix C lists the mnemonics for all ALLY commands.
These mnemonics are used in Macro Utility text files and in the
key-definition file.

UP-13765 p-1

Preface

Appendix D contains a table of the ASCII character set with
decimal, hexadecimal, and octal codes.

Tf’i ALL Y chum entation— What to Read

The following illustration shows you how the ALLY documenta-
tion is organized.

If you want to develop ALLY applications, we suggest that you
start by reading the ALLY system’s introductory brochure, /ntro-
duction to ALLY. Then, you can build the application in Building
a Simple Application.

[f you want to install ALLY, you should read the installation
guide for your system.

Note that the documentation for the runtime system of ALLY
includes only the installation guide for your system. ALLY Com-
mand Re ference Manual, and AMU User’'s Guide.

Introductory Introduction Instaliing Installation
reading: (Ut: -/:LZE'I)O) ALLY: Guide
Building a System
Simple Manager's
Application Guide
{UP-12501) 1 UP-13765)
Hyouwant = ALLY ‘Designing en ;Bullding an: . ALLY Managing
’";Z”TIM"D” Concepts Application :Application. Commands: Applications
about: hece g
Re,?d'} : Concepts and Designing an Introduction to System

Faciliies ALLY the Dialog Manager's

(UP-12503) Application (UP-12504) Guide
(UP-13767) . (UP-13765)
ALLY Dialog (UP-12509) -
Glossary Tracking User's Guide remrer—— Utilities
(UP-13766) (UP-12505)] User's Guide
T (UP-12508)

AMU
User's Guide
(UP-12506)

F002-0814-00

p-2 UP-13765

Preface

Conventions

You should read carefully the description of documentation con-

1 As h il
ventions before reading s maiuar.

We use the following conventions in this manual:
Single quotes (* *) Identify command names.

Boldface type (bold) Highlights text you are to enter. Boldface
is also used within command syntax state-
ments.

Double quotes (*° ’) Identify text strings within text sections.
These strings are typically located in
examples or as part of the prompts that
ALLY sends to your display.

Sometimes the exact content of a text

string is affected by the traditional rules
of punctuation. In these cases, we place
the closing quotation mark at the end of
the text string. For example, instead of:

You see the prompt “Macro number:.”
We say:
You see the prompt *“Macro number:”.

Brackets (<x>) Enclose a specific key (x = key) to be
typed. Angle-brackets are used in com-
mand syntax and key assignment lines.
For example:

<,> the “‘comma” key on the
numeric keypad

<Return> the “‘Return” key

<Do> the “Do” key

<F18> the *“function” key 18

<2> the 2’ on the numeric
keypad

Empty brackets (<>) Represent a form that requires input in
menu path sequences, e.g., 1 2 <> 3 4.

UP-13765 p-3

Preface

Space (<Space>) Represents a blank to be entered. A
<Space> request asks you to type the
space bar once.

Square brackets ([]) Enclose an argument for the command-
line invocation of a utility. For example,
newprint [printer name] [output file].

The key-definition files that are supplied with ALLY assign keys
to several commands. For convenience, we assume that the fol-
lowing ALLY commands are assigned as shown.

Command Key Assignment
‘add new line’ <Return>

‘up’ <t>

*down’ <>

‘right’ <>

‘left’ <>

‘define macro’ _ (See template)

The < 1>, <>, <—=>, and <<> key assignments typically
use a terminal’s cursor-control keys.

End of Preface

p-4 UP-13765

Contents

Chapter 1. The ALLY Environment

Introductioncooiiiiiiiiiiiiii 1-1
The ALLY Directory Structurec.ccoooveueeieninnnen. 1-1
The ALLY Directory Structure Under UNIX 1-2
The ALLY Directory Structure Under MS-DOS 1-3
ALLY Environment Variableso. 1-3
Using Environment Variablesc....c.c.oll. 1-5
Displaying Environment Variables 1-5
Defining Environment Variables 1-6
Changing an Environment Variable Name 1-7
AFILE Naming Conventionscoooeiiiiiiienenanan.. 1-8
Paths to Help and Error AFILEsc.cccoviiiiani, 1-8
Changing Paths to Message AFILEs 1-10
Changing Paths with the Dialog 1-10
Changing Paths with Directives 1-11
Paths to Application Message AFILEs 1-11
Compatibility Among ALLY Releases 1-13
Upward Compatibilitycoooiiiiiiiiiiiini. 1-13
Downward Compatibilitycccooiiii. 1-14

Chapter 2. Invoking ALLY

INtroductioncceeviiiiiiiiiiiiiiii e, 2-1
Using Commandscocoiuiiiiiiiiiiiiiiiee e 2-2
Using Command Filescooooieiiiiiiiiiininnen.. 2-3
Invoking ALLY ..o 2-3
Invoking an Applicationc..ccccveviiieiiiiinniiinnnnn. 2-4
Invoking the Dialogcoocooiiiiiiiiiii 2-5
Invoking the Application Maintenance Utilities 2-6
Invoking ALLY Ultilitiescoooooiiiii. 2-7
The AFILE Compactorc.ccveeiuiiieienininiinineninnn. 2-7
The AFILE Mergerccooooiiiiiiiiiiiin, 2-7
The AFILE Message Builderc.ocooeiini, 2-8
The AFILE Migratorccoooiiiviiiiiiiiiieieninnen. 2-8
The AFILE Script Writerc.ccoooiiiiiiiin. 2-9
The Data Migratorccoceveeiiniiiiiiiiiiniinin.., 2-9
The Macro Utilityccooveiiiiiiiiiiiiin, 2-10
The Printer Definerco, 2-10
The Terminal Definerc.cooooiiiii, 2-10

UP-13765 1

Contents

Chapter 3. The Format File

Syntax of the Format Filecoiiiil, 3-1
AFILE Compactor Sectionc.ccoeviiiiiiiinniinnenneen. 3-4
AFILE Merger Sectioncccoooiiiiiiiiiiiiiiiniininnen.. 3-5
AFILE Message Builder Sectioncovvveenininn... 3-7

Directives for Message Text Typeccocovviiieiiniin. 3-8

Directives for Paths to Error and Help AFILEs 39
AFILE Migrator Sectioncccoecveiiiiiniiininieniinan... 3-10
AFILE Script Writer Sectionsccoeoevevviiinenininnn... 3-11
Data Migrator Sectionc.ccicoviiiriiniiiiiiiiieininen.. 3-12
Macro Utility Sectioncoiiiiiiiiiiiiiiiiiiiinee, 3-13
Terminal and Printer Definer Section 3-14

Chapter 4. The Key-Definition File

Command-to-Key Assignmentsc.ccoceevienninnn.n. 4-1
Syntax of a Key-Definition Filec............... 4-2

Sections of a Key-Definition File 4-3
Conflicts in Command-to-Key Assignments 4-5
Comments in a Key-Definition File 4-7
The Ignore Commandccoociiiiiiiiiiiiiiiiniiieene. 4-7
Making Commands Unavailable to Users 4-8
User-Defined Key-Definition Files 49
Sample Key-Definition File 4-9

Chapter 5. The Terminal Definition File

Introductionocooiiiiiiiiiiii 5-1
Terminal Capability Entries 5-1
Terminal Capability Codesoooi. 5-3
Sample Terminal Description File 5-5
A Complete Terminal Description Section 5-7
Highlighting Capabilitiesc..coooiiiiiiiiil. 5-10
Permanent Highlighting ... 5-11
Transient Highlightingcooii. 5-11
Highlighting Sequences 5-11
Line-Draw Capability Sectionc..coceviieninnenenn... 5-14
Options for Cursor Movement Capability 5-16
User-Defined Terminal Definition Files 5-18

2 UP-13765

Contents

Chapter 6. The Terminal Definer Utility

Introductionccooioiiiiiiiiiiii 6-1
Terminal Definer Input ... 6-2

The Terminal Definition Filec..ol 6-2

The Key-Definition File 6-2
Terminal Definer Optionsccoevieiiiiiiniiiiiiienen.e. 6-3
Terminal Definer Output ..., 6-4
Invoking the Terminal Definer from the Dialog 6-4
Invoking the Command File for the Terminal Definer 6-7
Terminal Definer Error Messagesc.coeiiieiiinn.n. 6-9

Chapter 7. The Printer Definition File

INtrodUCtionccoiieiniitiiiii e e 7-1
Syntax of the Printer Definition File 7-2
Printer Features ... 7-4
Printer Capability Codesc.ccooveiiiiiiiinn.. 7-6

Chapter 8. The Printer Definer Utility

Introductioncoooiiiiiiiiiii i 8-1
Invoking the Printer Definer from the Dialog 8-1
Invoking the Command File for the Printer Definer 8-4
Printer Definer Error Messagescc.coocciiviiiiianinnn. 8-4

Chapter 9. Managing Printer Output

Introduction ... 9-1
SPOOLINE ...oviiiiiiiii i 9-2
Overriding Printer Specificationsc.ooii. 9-3

UP-13765 3

Contents

Appendix A. UNIX ALLY Directory Structure

Appendix B. MS-DOS ALLY Directory Environment

Appendix C. ALLY Command Mnemonics

Appendix D. ASCIHl Character Codes

4 UP-13765

Contents

Figures
1-1 ALLY Directory Structure Under UNIX 1-3
1-2 Changing an Environment Variable Name 1-7
1-3 Paths to Help and Error Files in Trunk AFILEs 1-9
1-4 Changing Paths with the Dialog 1-10
1-5 Paths to Application Help and Error AFILEs 1-12
1-6 Location of the Dialog Form for Integrity Reports 1-14
2-1 Commands and Command Files 2-2
3-1 Syntax of a Format Fileo 3-2
3-2 Sample AFILE Compactor Section 3-5
3-3 Sample AFILE Merger Section 3-6
3-4 Set 5 Entries for Message Typec..cccccvviviiiiiniann, 3-9
3-5 Format File Entries 83 and 84 from Set5 3-9
3-6 Format File Entries 56 and 63 from Set 5 3-10
3-7 Sample AFILE Migrator Sectioncoocuneen. 3-10
3-8 Sample AFILE Script Writer Section 3-11
3-9 Sample Data Migrator Sectionoeenen. 3-12
3-10 Sample Macro Utility Sectionoooeiiviniinn. 3-13
3-11 Sample Terminal and Printer Definer Section 3-14
4-1 Sample Entries in a Key-Definition File 4-3
4-2 Scroll Percentagec.ccocveveiiiiiiiiiiiiiiiiii 4-4
4-3 Comments in a Key-Definition File 4-7
5-1 Sample Printer Definition File 5-6
5-2 Hazeltine Esprit III Terminal Section 5-14
6-1 The Terminal Defineroooovi 6-1
6-2 Dialog Path to the Terminal Definer 6-5
6-3 Invoking the Terminal Definer 6-6
6-4 Terminal Definer Conflict Checking Options 6-7
7-1 Sample Printer Definition File 7-3
8-1 The Printer Definercoo. 8-1
8-2 Dialog Path to the Printer Definer 8-2
8-3 Invoking the Printer Definer 8-3

UP-13765 5

Contents

Tables
1-1 Subdirectories in the ALLY Directory 1-2
1-2 ALLY Environment Variablesc..c..cooooounl 1-4
1-3 Commands to Display Environment Variables 1-6
1-4 Commands to Define Environment Variables 1-6
1-5 AFILE Naming Conventionsc.ccccoveveuveienaen.. 1-8
3-1 Sections of the Format File 3-4
5-1 ALLY Terminal Capability Codes 5-4
5-2 ALLY Highlighting Codesccocceveiiiiianienan. 5-10
5-3 Televideo Highlighting Sequences 5-13
5-4 Line-Draw Codesc.ccccoiiiiiiiiniiiiiiiiiiiiienan. 5-14
5-5 Cursor Movement Optionsccoceuveueeniiienaenns 5-17
6-1 Terminal Definer Optionsc...oooie. 6-3
7-1 ALLY Printer Capability Codes 7-6

6 UP-13765

Chapter 1
The ALLY Environment

Introduction

This manual contains information for system managers on how to
establish and maintain an ALLY environment under UNIX and
MS-DOS. If you are running ALLY under another operating sys-
tem, see the ALLY installation guide for your system.

This chapter describes the following aspects of establishing and
maintaining ALLY’s working environment:

the structure and contents of the ALLY system’s directories
location of important files

environment variables

AFILE naming conventions

paths to help and error AFILEs

ALLY’s compatibility policy

The ALLY Directory Structure

Each ALLY release is stored in a directory named allyx_yz,
where x_yz is the release number. For example, the directory for
ALLY Release 2.00 is named *‘ally2_00.” The structure of the
ALLY directory depends on the operating system you are using.
The next two sections describe the directory structure for UNIX
and MS-DOS.

UP-13765 1-1

Chapter 1

The ALLY Directory Structure Under UNIX

When you install ALLY Release 2.00 on a UNIX system, ALLY
creates several subdirectories in the “ally2_00"" directory. These
subdirectories are listed in Table 1-1.

Table 1-1. Subdirectories in the ALLY Directory

Subdirectory Contents

/afiles/ Subdirectories that contain AFILEs that ALLY uses

/allyexe/ ALLY executable files

/bin/ Operating-system command files to invoke ALLY
facilities

/formats/ Format File used by ALLY utilities

/objects/ * Compiled sample source code used by an external
link that allows ALLY to communicate with a
high-level language

/printers/ Printer description files

[src/ * A subdirectory that contains sample source code
used by an external link that allows ALLY to com-
municate with a high-level language

/term/ Terminal definition files

* Development systems only

Figure 1-1 shows the structure of ALLY’s top-level directory

under UNIX.

1-2

UP-13765

The ALLY Environment

allyx_yz

I | I I |

afiles allyexe bin formats || objects printers src term
include
allyedit amu commen || dialog errors fcsdemo |{storybook

* Development systems only

F002-0893-00

Figure 1-1. ALLY Directory Structure Under UNIX

The files in these UNIX subdirectories are listed in Appendix A.

The ALLY Directory Structure Under MS-DOS

On MS-DOS systems ALLY creates only one directory. This
directory is installed by default in the C: drive. The “\ally2_00"
directory contains the files that are listed in Appendix B.

ALLY Environment Variables

You can assign the names of files used by your ALLY application
to operating-system environment variables. When an application
executes, ALLY looks for the variable’s value in the operating
system’s environment variable assignments.

UP-13765 1-3

Chapter 1

Environment variables allow you to specify short variable names
instead of longer path names. It is easier to change an environ-
ment variable’s value than it is to change the value in an AFILE.
Environment variables can also make your applications more tran-
sportable across operating systems by minimizing changes due to
syntax differences.

Table 1-2 describes three operating-system environment variables
that ALLY uses.

Table 1-2. ALLY Environment Variables

Variable Value

ally The path, or search list, to the top-level
ALLY directory

TERM The name of a terminal type (e.g., svt1220)

allyprinter ~ Overrides the default printer spooling
device or queue name

The **ally” environment variable is the path to the ALLY direc-
tory. Therefore ““‘ally” must be defined for each user process on
UNIX systems and each time you reboot on MS-DOS. ALLY
must also know what type of terminal you are using. ALLY can
get this information from:

e the “TERM” variable setting on UNIX systems. On MS-
DOS systems, ALLY uses the “pcterm’ terminal descrip-
tion.

e an argument to an ALLY invocation command.

The *allyprinter” environment variable is described in Chapter 9.

i-4 UP-13765

The ALLY Environment

Using Environment Variables

You can specify environment variables for the following parts of
an application:

e help and error library AFILE names.

e utility file names (e.g., the terminal definition and key-
definition files).

e data source file names for some access methods, including
FX and C-ISAM. (See the developer notes for other access
methods.)

e print file characteristics for form/report packets.

e global printer specifications (printer definition file, output
file, spooling information).

Using ALLY environment variables involves three steps:
1) Displaying the values of environment variables.

2) Defining the value of environment variables with
operating-system commands before your ALLY applica-
tion executes. '

3) Directing ALLY to use an environment variable by
enclosing the name in braces in the Dialog.

Displaying Environment Variables

In standard UNIX installations, you can display the setting of an
environment variable by typing the following command:

echo S$variable_name

Table 1-3 lists the UNIX and MS-DOS commands used to display
all of the environment variables that are defined for a user pro-
cess.

UP-13765 1-5

Chapter 1

Table 1-3. Commands to Display Environment Variables

Operating System Command

UNIX Berkeley 4.x printenv
UNIX System 5 env
MS-DOS set

Defining Environment Variables

Table 1-4 lists UNIX and MS-DOS commands used to define an
environment variable.

Table 1-4. Commands to Define Environment Variables

Operating System Command

UNIX C-shell setenv variable value

UNIX Bourne shell variable=value
export variable

MS-DOS set variable=value

The MS-DOS “set’” command defines a variable for the duration
of a PC session. If you include the *‘set variable=value” com-
mand in an “‘autoexec.bat’ file, the variable is automatically re-
defined whenever you reboot the system.

UNIX users can place the appropriate commands in the *“.cshrc”
(C-shell) file or **.login” (Bourne shell) file in their home direc-
tories.

After you have defined an environment variable’s value with
operating system commands, you direct ALLY to find an environ-
ment variable by enclosing the name in braces during a Dialog
session (Figure 1-2).

1-6 UP-13765

The ALLY Environment

Changing an Environment Variable Name

Suppose you want to run your application with a Format File in a
different directory. You can do this by assigning an environment
variable, for example “‘local,”” that contains the path to the new
Format File. To use this Format File, type “{local}” as part of
the name (Figure 1-2).

Macro Utility
Farmat. File: {ally}/formats/allyfmt
Macro file: [
Text. file:
Decampile a macro:
Campile a macro:

U

Macro Utility

Format, File: {local}/allyfmt.
Macro file: [

Text file:

Decanpile a macro:

Compiile a macro:

F002-0909-00
Figure 1-2. Changing an Environment Variable Name

UP-13765 17

Chapter 1

AFILE Naming Conventions

Table 1-5 shows the conventions that ALLY uses to name dif-
ferent types of AFILEs.

Table 1-5. AFILE Naming Conventions

AFILE Type Extension

Application .a
Error message .€
Help message .h

Using these conventions, here are some examples of how ALLY
AFILEs are named:

amu.a AFILE that contains the Application Maintenance
Utilities (AMU) application

amu.h AFILE that contains help messages for the AMU’s
forms and menus

amu.e AFILE that contains error messages for AMU errors

commen.h AFILE that contains help messages for command
menus

errors.e AFILE that contains error messages for general

application-execution errors

Paths to Help and Error AFILEs

All ALLY applications can access a collection of general help and
error messages. These messages are grouped in AFILEs called
library AFILE:s.

1-8 UP-13765

The ALLY Environment

When creating an application, you start with an AFILE **skele-
ton,” called a trunk AFILE. The Dialog creates the trunk
AFILE for you when you specify a new AFILE name. A trunk
AFILE contains default paths to Dialog-specific help and error
AFILEs. These AFILEs, in turn, point to ALLY’s general help
and error AFILEs (see Figure 1-3). Note that every AFILE,
including error AFILEs, can have both an error AFILE and a

help AFILE.
Errors
Trunk
AFILE [P
Help
—p

ALLY’s error AFILE for the Dialog is “dialog.e”

Errors Help
errors.e ——#4 commen.h
dialog.e —¥
Help | commen.h
Erors —| errors.e
dialog.h |—
Help Errors
L1 commen.h P errors.e

ALLY's general error AFILE is “errors.e”

ALLY’s help AFILE for the Dialog is “dialog.h”

ALLY's help AFILE for command menus is “commen.h”

F002-0830-00

Figure 1-3. Paths to Help and Error Files in Trunk AFILEs

UP-13765

Chapter 1

Changing Paths to Message AFILEs

You can create your own help message and error message
AFILE:s to provide messages specific to your application. Your
application should point to its specific help and error AFILEs.
These AFILEs should point to ALLY’s general help and error
AFILEs.

There are two ways to replace default paths with paths to user-
defined message AFILEs:

1) With Dialog forms in the ““Maintaining and Managing
Applications” branch.

2) With special directives in a text file that the AFILE Mes-
sage Builder utility uses to build a message AFILE.

Changing Paths with the Dialog

You can change paths to library AFILEs with application-specific
paths by using two Dialog forms in the **Maintaining and Manag-
ing Applications’ branch (Figure 1-4).

App

- Definition,
: Maintenance,
: & Management

[|] | |

Help, Error, and Runtime Integrit
Security Library AFILE Diagnostic ALLY Utilities niegrity
Information Characteristics Options Report

¥ N

Library AFILE Library AFILE
inf ion — Inf ion —
Help AFILE Error AFILE

<=

<

F002-0901-00

Figure 1-4. Changing Paths with the Dialog

1-10 UP-13765

The ALLY Environment

Use the Library AFILE Information—Error AFILE form to
change the path to your error AFILE. Use the Library AFILE
Information—Help AFILE form to change the the path to your
help AFILE. You can use these Dialog forms to change paths to
message AFILEs in your application’s AFILE or any of its mes-
sage AFILEs. Refer to the Dialog User’s Guide (UP-12505) for
more information.

Changing Paths with Directives

The AFILE Message Builder utility creates a message AFILE
from a text message file. Unless you change the paths, this mes-
sage AFILE is linked to ALLY’s general helps and errors.

When you build an error or help AFILE for your application, you
can include two special directives in the message text file. These
directives signify the path and file name to additional error and
help AFILEs. If you do not include these directives, your mes-
sage AFILE is automatically linked to ALLY’s general help and
error AFILEs. These directives are:

$efn§ The path and file name of an error AFILE
hfn The path and file name of a help AFILE

Refer to the Utilities User's Guide (UP-12508) for more informa-
tion about the AFILE Message Builder.

Paths to Application Message AFILEs

Figure 1-5 shows the paths when an application has its own help
and error AFILEs.

UP-13765 1-11

Chapter 1

L Errors Help
Application errors.e |———» commen.h
error AFILE
Errors
application.e —
Help Error;
L——9 commen.h errors.e
Application L’
AFILE
Errors Hel)
—| errors.e ﬂb commen.h
Help
—— application.h [—
icati Hel) Errors
ﬁgf,’,"ﬁfg _p’ commenh —— errors.e

ALLY's general error AFILE is “errors.e”

ALLY’s help AFILE for command menus is “commen.h”

F002-0831-00

Figure 1-5. Paths to Application Help and Error AFILEs

If the paths to the library AFILEs are not complete, ALLY can-
not find the message text when an error condition occurs or a user
asks for help. Instead of message text, ALLY displays for:

errors An internal ALLY number associated with the

ALLY error condition

helps An error message that ALLY cannot find the mes-

sage text

1-12

UP-13765

The ALLY Environment

Compatibility Among ALLY Releases

Parts of ALLY applications, such as AFILEs and the Format
File, have version numbers that ALLY checks. The ALLY
installation guide for your system lists specific version numbers
that are valid for your ALLY release.

ALLY supports two types of compatibility:

Upward compatibility Any new ALLY release can run any
application AFILE built with an older
ALLY release.

Downward compatibility AFILEs created with new ALLY

releases will execute under some older
ALLY releases.

Upward Compatibility

When you execute the Dialog on an older application, ALLY asks
you if you want to update the AFILE to the newer version
number. If you respond by typing ““Y<<Return>,” the AFILE is
upgraded. You can also upgrade an AFILE with the AFILE
Migrator utility or by compacting it with the AFILE Compactor
utility.

NOTE: Once the AFILE is upgraded, you may not be able to
execute it with an older ALLY release. Therefore, you may
want to make a back-up copy of the old version of an AFILE
before converting it..

UP-13765 1-13

Chapter 1

You can transport applications from one operating system to
another even if both systems are not running the same ALLY
release. However, if you transport an AFILE between different
ALLY releases that do not both support the data’s access method,
you may have to:

e redefine the DSD
e transport the data with the Data Migrator utility

Downward Compatibility

The AFILE Migrator utility will provide downward compatibility
for releases after ALLY version 2.00. That is, you can use a
release 2.+ AFILE Migrator to revert an AFILE to a lower
release number.

If you transport an AFILE to a lower release number, you should
check the integrity of the whole application. The integrity report
will list any elements (e.g., AFILE item types or ADL functions)
that are not supported in the lower version AFILE. Figure 1-6
shows the location of the Dialog form (/ntegrity Report) that you
use to check your application’s integrity.

& Application .
. Definition,

= Maintenance,
& ement

[| T .]

2o

1 Vielp, Error, ana{} - Auntime
: . 1 © Run .
oecurlly iaeal 4| Ubrary AFILE || Diagnostic; {f ALLY Utiites || '3
rermeen Characteristcs || . Options . {} - |

F002-0902-00

Figure 1-6. Location of the Dialog Form for Integrity Reports

End of Chapter 1

1-14 UP-13765

Chapter 2
Invoking ALLY

Introduction

This chapter describes two methods for invoking ALLY and the
ALLY utilities from your operating system. You can invoke
ALLY:

e with a command
e with a command file

A command invokes an ALLY executable file directly. A com-
mand consists of the path and file name of an executable file, fol-
lowed by required arguments.

A command file also invokes an executable file. In addition, com-
mand files check the arguments for validity, provide a default
path to the executable file, and provide default values for some of
the command’s arguments. Because command files provide
default values for arguments, they require less typing than com-
mands do.

Arguments to both commands and command files are positional.
Specify “‘none’ as a position ‘‘placeholder’” for arguments that do
not have a value (e.g., password or symbol table file).

Figure 2-1 shows the relationship of commands and command
files to the executable files that they invoke.

UP-13765 2-1

Chapter 2

Command File

Default paths

Default values for
certain arguments

Validity checking
Command for argument values

path and filename arg , arg ,, ...arg , filename arg qag,..arg,

Executable File

F002-0878-00
Figure 2-1. Commands and Command Files

Using Commands

When you invoke ALLY and its utilities with a command:
e All of the command arguments are positional and required.

e The executable file name, and any other argument that
specifies a file, must include the file’s path.

On UNIX systems, these executable files are in the ““/allyexe/”
subdirectory. On MS-DOS systems, the executable files have an
extension of ““.exe” and are in the “allyx_yz”” directory (x_yz is
the release number).

2-2 UP-13765

Invoking ALLY

Using Command Files

When you invoke ALLY and its utilities with the command files
that are shipped with your ALLY release:

e the arguments are positional. However some have defaults
and are not required. Because the arguments are posi-
tional, you must specify a value for each argument that pre-
cedes the last one you want.

e The default values for ALLY command files specify that
AFILEs have internal symbol tables and are not password-
protected (if you do not provide values for these argu-
ments).

e A command file provides a default path to the executable
file.

e A command file that invokes a utility uses the Format File
installed with your ALLY release.

e A command file provides a default value for the terminal
description file, if the executable file requires one.

o On UNIX systems, the command files are in the **/bin/”
subdirectory and are written in the Bourne shell syntax.
On MS-DOS systems, the command files have an extension
of ““.bat” and are in the “allyx_yz” directory.

e The “ally” environment variable must be defined before
you invoke command files.

Invoking ALLY

This section describes the two versions of the ALLY execution
system, and then shows the syntax of the commands and com-
mand files that are shipped. The commands show the executable
file names; note that they end with an “x.”” You can type a com-
mand file name followed by the single argument ““help” to display
information about the arguments that have default values and are
thus optional.

UP-13765 2-3

Chapter 2

There are two versions of the ALLY execution system: the
development system and the runtime system.

The development system runs:
e the Application Developer's Dialog
the ALLY utilities
any ALLY application
e the ALLY Text Editor

The runtime system:

e runs any application built with the Dialog

e does not run the Dialog; therefore users cannot change an
application

o runs the ALLY Text Editor

e includes a set of utilities, called the Application Mainte-
nance Ultilities (AMU), that allows users to tailor applica-
tions for different terminals and printers

Invoking an Application

The following command runs an AFILE.

allyrunx [terminal description file] [AFILE] [macro file]
[entry point] [debug log]

The arguments for this command are:

terminal description file is the name of the file that contains
information about your terminal.

AFILE is the name of the AFILE that you
want to run.

2-4 UP-13765

Invoking ALLY

macro file is the name of a file, defined in a pre-
vious ALLY session, that contains
ALLY keystrokes. This allows you to
reuse macro files, rather than having
to define macros in each session.
Specify “‘none” if you do not want to
include a macro file.

entry point is the name of the entry point in the
application. By convention,
“MAIN_TASK” is the name of the
default entry point.

debug log is the name of the file to which you
want the AFILE debugger messages
written. The debugger selectively
traces the execution of ALLY actions,
tasks, and data transfers. Specify
“none”” if you do not want a debug
log.

The following command file runs an AFILE.

ally [AFILE] [terminal description file] [entry point]

Only the first argument is required, because the other two have
defaults.

Invoking the Dialog

Because the Dialog is an ALLY application, the arguments to run
the Dialog are the same as the arguments shown previously for
running any application. The Dialog’s AFILE name is
“dialog.a.”

UP-13765 2-5

Chapter 2

The following command invokes the Dialog:

allydevx [terminal description file] [dialog.a] [macro file]
[MAIN_TASK] [debug log]

Type the name of the Dialog AFILE, preceded by its path, for
the second argument. Note that the entry point must be
“MAIN_TASK.”

The Dialog command file is:

dialog [terminal description file]

The terminal description file argument is optional because the
default value is the same as your “TERM” environment variable.

Invoking the Application Maintenance Utilities

The command to invoke the Application Maintenance Utilities
(AMU) is:

amux [terminal description file] [amu.a] [macro file]
[MAIN_TASK] [debug log]

Type the name of the AMU AFILE, preceded by its path, for the
second argument. Note that the entry point must be
“MAIN_TASK.”

The AMU command file is:

amu [terminal description file]

The terminal description file argument is optional.

2-6 UP-13765

invoking ALLY

Invoking ALLY Utilities

This section shows the syntax of the commands and command
files that are shipped with the ALLY utilities. The commands
and the command files are listed below.

See Chapter 6 and Chapter § for details about the arguments for
the Terminal Definer and Printer Definer utilities. Refer to the
Utilities User’s Guide (UP-12508) for details about arguments for
the other utilities’ command files. You can type a command file
name followed by the single argument ““help” to display informa-
tion about the arguments that have default values and are thus
optional.

The AFILE Compactor

The AFILE Compactor command is:

compactx [Format File] [input AFILE] [output AFILE]
[symbol table file] [password] [options]

The AFILE Compactor command file and its arguments are:

acompact [input AFILE] [output AFILE] [symbol table file]
[password] [options]

The last three arguments (symbol table file, password, and
options) have default values.

UP-13765 2-7

Chapter 2

The AFILE Merger
The AFILE Merger command is:

mergex [Format File] [master AFILE] [master AFILE
password] [second AFILE] [second AFILE password]
[output AFILE] [symbol table file] [output AFILE password]
[options]

The AFILE Merger command file and its arguments are:

amerge [master AFILE] [master AFILE password] [second
AFILE] [second AFILE password] [output AFILE] [symbol
table file] [output AFILE password] [options]

The last argument (options) has a default value.

The AFILE Message Builder

The AFILE Message Builder command is:

newmsgx [Format File] [AFILE] [symbol table file]
[password] [Dialog AFILE] [options] [text file(s)]

The AFILE Message Builder command file and its arguments are:

newmsg [AFILE] [options] [text file(s)] [password] [symbol
table file] [Dialog AFILE]

Note that the order of the arguments in the command is different
from the order in the command file. This is because the com-
mand file has default values for the password, symbol table file,
and Dialog AFILE; thus these arguments are optional.

2-8 UP-13765

Invoking ALLY

The AFILE Migrator

The AFILE Migrator command is:

amigratx [Format File] [input file] [output file] [symbol table
or password] [r or w] [v]

The AFILE Migrator command file and its arguments are:

amigrate [input file] [output file] [symbol table or pass-
word] [r or W] [v]

The AFILE Script Writer
The AFILE Script Writer command is:

scriptx [Format File] [input AFILE] [output text file]
[password] [options]

The AFILE Script Writer command file and its arguments are:

ascript [input AFILE] [output text file] [password] [options]

The last two arguments (password and options) have default
values.

The Data Migrator

The Data Migrator command is:

dmigratx [terminal description file] [Format File] [AFILE]
[password] [DSD name] [text file] [r or w]

UP-13765 2-9

Chapter 2

The Data Migrator command file and its arguments are:

dmigrate [AFILE] [password] [DSD name] [text file]
[r or w]

Note that the command file does not require the terminal descrip
tion file argument.

The Macro Utility

The Macro Utility command is:

mmigratx [Format File] [input file] [output file] [c or d]

The Macro Utility command file and its arguments are:

mmigrate [input file] [output file] [c or d]

The Printer Definer

The Printer Definer Command is:

newprntx [Format File] [printer name] [output file] [printer
definition file]

The Printer Definer command file and its arguments are:

newprint [printer name] [output file]

Note that the command file does not require the printer definition
file argument.

2-10 UP-13765

Invoking ALLY

The Terminal Definer

The Terminal Definer command is:

newtermx [Format File] [terminal name] [output file]
[key-definition file] [terminal definition file] [option]

The Terminal Definer command file and its arguments are:

newterm [terminal name] [output file] [key-definition file]
[option]

The last argument (option) has a default value. Note that the
command file does not require the terminal definition file argu-
ment.

End of Chapter 2

UP-13765 2-11

Chapter 3
The Format File

The Format File contains the message text that the ALLY utilities
produce. Error text and status messages are stored in the Format
File and in ALLY’s error AFILE (errors.e). This simplifies
translating ALLY applications to other languages, because you
need to edit only the text in the Format File and the files used to
build the “‘errors.e” AFILE.

When ALLY is shipped, the Format File is named “allyfmt.”” On
UNIX systems, the Format File is in the **/formats/”” subdirectory.
On MS-DOS systems, the Format File is in the **allyx_yz” direc-
tory (x_yz is the release number).

Before you attempt to make any changes to the Format File,
make a copy so that you will always have a valid version. Even a
change that appears innocuous (e.g., the addition of a blank char-
acter) can prevent the utilities from functioning properly.

Format File entries are associated with entry numbers and are
separated by delimiter characters. You should never change the
entry numbers, their positions, or the characters that delimit
them. Changes to the text strings used in reports that the utilities
produce are necessary only when you are translating the applica-
tion to another language.

Syntax of the Format File

Figure 3-1 shows the beginning of a Format File as it is shipped
with ALLY.

UP-13765 3-1

Chapter 3

I @

COPYRIGHT 1985, 1986, 1987, 1988 Foundation Camputer Systems
This software contains confidential and proprietary

infarmation of Fourdation Computer Systems, Inc. @
Set. O
Errar AFIIE path name

|t /{ally}/afiles/errars/errars.el @

Beginning of strings used by the AFILE Compactar
I3|Statistics (starage in bytes): |

14| Displayed text!

|51 Displayed text highlightingl

8| Items|A camment, could go here

F002-0904-00
Figure 3-1. Syntax of a Format File

1) The first three characters in a Format File are the delim-
iter characters. The vertical bar character (!) is the del-
imiter in the Format File that is shipped with ALLY.

All three delimiters can be the same or different charac-
ters. Do not use delimiter characters that you might use
as text in entries or comments.

2) Anything after these initial three delimiter characters, up
to the next start delimiter, is treated as a comment.

3) The Format File is made up of several sections (called
sets) that contain entries. The entry for the first section
(Set 0) must be the path and file name to ALLY’s errors
AFILE, shown here for UNIX systems. The utilities
need this path in order to produce the text for error con-
ditions that can arise.

3-2 UP-13765

The Format File

4) Each set begins with the three delimiter characters and
ends with the same three delimiter characters that began
it. By convention, the three delimiters that end a set and
the three delimiters that start the next set are on the
same line.

5) Each entry contains:

6) the first delimiter character, followed by an entry
number.

7) a delimiter character after the entry number, indi-
cating the start of the entry.

8) a delimiter character after the entry, that indicates
the end-of-entry and the start of an optional com-
ment.

The next characters can be either comments or the delimiters for
the next section. (Space or text between two sets of delimiters is
treated as a comment.) The delimiters do not have to be the
same as those of the previous section.

Although you can change the entry text, you cannot change the
entry number or the item that is associated with the number. The
parts of a Format File that you must not change are:

o delimiters, once you have defined them
e entry numbers
e any specials symbols that are not in a comment

Table 3-1 lists the sections (sets) of the Format File that are pro-
vided with ALLY and the utilities that use them.

UP-13765 3-3

Chapter 3

Table 3-1. Sections of the Format File

Set Number Used by

0 All utilities

The AFILE Compactor

The AFILE Script Writer
The AFILE Script Writer
The Terminal and Printer Definers
The AFILE Message Builder
(reserved)

The AFILE Merger

The Macro Utility

The AFILE Migrator

The Data Migrator

The AFILE Script Writer

VR e NI TR U N N

p—

AFILE Compactor Section

The AFILE Compactor uses set 1 of the Format File
(Figure 3-2). Entries in set 1 provide the text for the statistics
report that the AFILE Compactor produces.

3-4 UP-13765

The Format File

Set 1

Begirming of strings used by the AFILE Campactar
10lundefined |

111.1

121

|

|13|Statistics (storage in bytes):|
14! Displayed text!

15! Displayed text highlightingl
16! Items!|

|71 ADL streams|

18! First block!

19! Used!

110! Empty|

111} Total campacted file sizel
112! Character strings!

113! Symbols|

114! Back pointers!

115Inone |

Figure 3-2. Sample AFILE Compactor Section

AFILE Merger Section

The AFILE Merger utility uses set 7 of the Format File (Figure
3-3). For the most part, the AFILE Merger entries provide the
text for the messages that report global information differences in

the two AFILEs being merged.

UP-13765

Chapter 3

Set 7
Beginning of strings used by the AFILE Merger

|OlCharacter sarting sets are different

11 nonel

12| SYSTEM_SECURTTY |

|3IDifference in mm_parse_chars

|14|A non—context. was encountered when a context was expected
|15/ Input. AFILE 1 is not at the current AFILE version levell
16! Input. AFILE 2 is not at the current AFILE version level|
|7/0ne or mare differences found in first blocks of input AFILEs
18!Global variable conflict |

|91Entry point conflict |

110 *urmseds* |

sk Difference in first block detected by AMGCAF #*
111 | mmiseds|

112|Difference in machine flags
|13|Difference in mm vm puffers

|14 |Difference in help infol
}15|Difference in errar_infol

|16 |Difference in spool_devicel

117 |Difference in printer._ description
118|Difference in print _filel
119|Difference in global memi_type
|20|Difference in path_separatar

121 IDifference in prev_string|
|22|Difference in top_stringl
|23|Difference in mm _in_fmt_chars|

|24 |Difference in mm out, fmt_chars|
|25 |Difference in def_mum attr!

|28 Difference in def_char attr|

127 |Difference in mm def. vall
|28|Difference in char _def vall
|29|Difference in date_def val |
|1301Difference in logan _setl

|31 IDifference in arithmetic_flagsl|
|32|Difference in sec_retries|

|33 |Difference in global, control flags|
|34|Difference in memy_prampst, sizel

135 |Difference in def_date masks|

138 |IDifference in date_strings|

| 37 | *urmiseds* |

#k Messages related to integrity check sk

138! Integrity errars found in AFILE
End of strings used by the AFIIE Merger
It

Figure 3-3. Sample AFILE Merger Section

3-6 UP-13765

The Format File

AFILE Message Builder Section

The AFILE Message Builder utility uses set S of the Format File.
Set S entries:

e define defaults for message AFILE structures and values
that are constant for most applications at a site

e define special strings, called directives, that control
highlighting or signify the type, beginning, and end of each
message

e provide default values for invocation command arguments,
such as “‘none” for an external symbol table file or pass-
word

e provide special directives for paths to user-defined help and
error AFILEs that override default paths to ALLY’s helps
and errors

When the Message Builder creates a message AFILE from an
input text file, that AFILE has:

e error message text for each message in the text file that
starts with the ““e” directive

e help message text for each message in the text file that
starts with the ““h” directive

e embedded string text for each message that starts with the
“s” directive

e legend text for each message that starts with the “$I1$”
directive

The text is displayed exactly as it is entered in the input text file,
except that the directives and control characters (other than “tab”
and “newline”) are removed. It is a good idea to limit the length
of all lines to eighty characters to eliminate difficulty when:

e working with text editors that have an eighty-column length
limitation. (ALLYedit does not have this limitation.)

e transporting message files to different computer systems.

UP-13765 3-7

Chapter 3

Each error message, help message, embedded string, and legend
must be assigned the same number as the internal AFILE number
of an event that calls the message. The message number (or
numbers) is specified after the message start directive (**e,”
*h,” or I7).

You can associate a message with more than one number, so that
the same message can be used by many fields, menus, choices, or
forms/reports. The number(s) must be the first characters after
the start directive and must be specified on one line, unless a con-
tinuation character is present at the end of the first line. The con-
tinuation character is defined by entry 49, which is a back slash
(\) in the Format File that is shipped with ALLY. Separate the
message numbers with the character specified by entry 122, which
is the message header number separator. Entry 122 is a space in
the Format File that is shipped with ALLY. Do not specify dupli-
cate message numbers.

Directives for Message Text Type

Set S entries 1 through 3, 67, and 124 are directives that identify
text as either a help or error message, a legend, or an embedded
string. Entry 67 is the directive for assigning a second-level help
message (a help message for a help message). Entry 4 is the
directive that signals the end of the message. These entries are
shown in Figure 3-4.

The numbers that follow these message type directives are those
that you have assigned as help, error, and legend numbers for
parts of your application. Directive 34 specifies the default help
number assigned to help and error messages that do not have an
explicitly assigned message number.

3-8 UP-13765

The Format File

111e errar header

121 s | embedded string header
131h 'help header

141$+$lend of message
134132764 | farm/repart help rumber
|67 | $help$Imessage help mmber

11241$1$|1egend header

Figure 3-4. Set 5 Entries for Message Type

Directives for Paths to Error and Help AFILEs

The Format File provides default paths and file names to ALLY's
general error and help AFILEs. The AFILE Message Builder
uses these default paths when it builds message AFILEs. The
default path to ALLY’s general error AFILE is entry 83. The
default path to ALLY’s general help file is entry 84. Figure 3-5
shows entries 83 and 84 from Set 5 in the Format File for UNIX
systems.

1831{ally}/afiles/errars/errars.e errar AFILE
184|{ally}/afiles/camen/cammen.h help AFILE

Figure 3-5. Format File Entries 83 and 84 from Set 5

You can change the default paths to user-defined error and help
AFILEs by including special directives that override these defaults
at the beginning of your text file for input to the Message Builder
utility. This establishes paths from the application’s help and
error AFILEs to ALLY’s general help and error AFILEs. The
overriding directive for a user-defined error AFILE is entry 56.
The overriding directive for a user-defined help AFILE is entry
63. Figure 3-6 shows entries 56 and 63 from Set 5 in the Format
File for UNIX systems.

UP-13765 3-9

Chapter 3

156 |efn| |directive far user—defined errar AFIIE

163Ihfn! |directive far user—defined help AFILE

Figure 3-6. Format File Entries 56 and 63 from Set 5

AFILE Migrator Section

The AFILE Migrator section of the Format File is set 9 (Figure
3-7).

Set. 9
Begimning of strings used by the AFILE Migratar

|OIAFILE item name, AFILE item type, AFILE version mmber |

111DED AFIIE item name, access method mmber|

121 sormaseds |

|3!ncnel no external symbol table file

141, |

151.1

|6 NONAME |

17/The |

|8|version of the AFILE Migratar did not recognize thel

access method of the following DED AFILE items.

The DSD AFILE items are fraom an AFIIE with version mmber |

|9|Far a description of the access method mummber, see the documentation
far the version of ALLY that supparts version |

110! AFILEs. |

1111The AFIIE cantains the following urrecognized types of AFILE items.
Far a description of the following item type mmbers,

see the documentation far the version of ALLY that supparts the AFIIE
version mmber listed. !

End of strings far the AFILE Migratar
[IAARY;

Figure 3-7. Sample AFILE Migrator Section

3-10 UP-13765

The Format File

AFILE Script Writer Sections

The AFILE Script Writer sections of the Format File are:

Set 2 Contains ALLY internal item names
Set 3 Contains error messages

Set 11 Contains control strings that govern Script Writer
execution and the text for Script Writer output

You can change only the ASCII text strings in set 11 that are used
to produce Script Writer reports. Figure 3-8 shows part of the
Script Writer’s section 11.

Set 11

Beginning of strings used by the AFILE Script Writer

MENU|S
7% ($108)
5473536
Developer camment: $328% 15 $515$$36%

No text defined for this memf¥

Mer window: (606,607) to ($5088,$5098)
Prompt. area: (611,$6128) to ($513%,514)$5108$61$

Figure 3-8. Sample AFILE Script Writer Section

UP-13765 3-11

Chapter 3

Data Migrator Section

The Data Migrator uses set 10 of the Format File (Figure 3-9).

These text strings produce the descriptions of the elements in a
DSD.

Set 10

Begimning of strings used by the Data Migratar utility

1121, |

1131) |

1141MY/DD/YYYY HH24:MI:SS|
115! contimiing without, date staings
|

116 FLOAT'|

117 IFIXI

1181 TRAILING BLANKS!

1191 Itaen pointer!
12018tring pointer|

|21 |References 1 byte flag!
|22|References 2 byte flag!
|231AFILE

|

|24 references bit |

125! negative logicl

128] poeitive logicl

127 |mumber farmat.|

128! width |

129! precisian |

130! string farmat!

131! length |

|32]date picture !
133ICall type mmber|

|34 |Aptr to an action|

Figure 3-9. Sample Data Migrator Section

3-12 UP-13765

The Format File

Macro Utility Section

The Macro Utility uses set 8 of the Format File (Figure 3-10).
Most of these text strings are the names of ALLY commands.

Set. 8
Beginning of strings used by the Macro Utility

01?1

111?21

12121

13121

| 4| ABORTACTION!
| 5| EXTTACTION!
161 ABORTTASK|
|7 | EXTTTASK |

|81 ABORTAPPL.|
|9 EXTTAPPL |
10| REFRESH |
111 |KHELP|

112 SHELL |

113! SET_REPEAT_ONT |
114 | PRNTSCRN|
115 PRNIVN(M |
116 | EXPANDWDW |
117 | COMPRESSWDW |
118 IMOVEANDW |
1191 DEFINENDW |
1201 SCROLLWDW |
121 | EXPLODEWDW |
|22 | RESTZEWNDW |
23| DEFMACRO |
124 MACTOFTLE |
|25 IMACFMFILE |
|28 | SAVEMACROS|
127 | LOADMACROS |
128 EXEMACO |

| 291 EXEMAC1 |

Figure 3-10. Sample Macro Utility Section

UP-13765 3-13

Chapter 3

Terminal and Printer Definer Section

The Terminal Definer and Printer Definer share set 4 of the For-
mat File (Figure 3-11). Most of the text strings in set 4 describe
problems that prevent the terminal or printer description files
from being created.

Set 4

|OIWARNING: |

11|FRRR : |

12/}oeyname |

13| in line mmber |

14| in keydef file |

|5linvalid octal character

|8linvalid “Q ar °S in control sequence mmbers |
17! has incarrect farmat |

18| execution stopping |

191key canflict |

1101 at lines |

1111 and |

112 not found|

113 terminal |

1141 |

11611ine mmber|

1161 carmot. open termdef database file |
117| not found in termdef database |
118 *#urmseds* |

19| carmot. open cutput. file |

1201 printer |

1211 not in printdef database |

|22] cannot. open key definition file: |

End of strings used by the Terminal Definer and Printer Definer utilities
[RNRREI

Figure 3-11. Sample Terminal and Printer Definer Section

End of Chapter 3

3-14 UP-13765

Chapter 4
The Key-Definition File

ALLY provides extensive support for keyboards. Because ALLY
commands can be assigned to different keys or key sequences,
ALLY and ALLY applications are as independent of keyboards
as they are of terminals and printers.

A key-definition file assigns commands to terminal keys. The
Terminal Definer utility uses the key-definition file to build a
terminal-description file that defines the terminal to ALLY.
There must be a key-definition file for each terminal on which
ALLY executes. Key-definition files for several terminals are
included in your ALLY release.

Command-to-Key Assignments

You can assign any ALLY command to any terminal key or keys.
You make these key assignments in a key-definition file.

Each key on an asynchronous terminal sends one or more octal
codes to the operating system. The terminal manufacturer deter-
mines the code or sequence of codes that a key transmits. The
documentation supplied by the terminal manufacturer lists the
octal code(s) transmitted by each key. You assign a command to
a key or keys by specifying in the key-definition file the
mnemonic for the command next to the octal code for one or
more keys.

Certain keys are defined to be used in combination with another
key; that is, you type one key and while pressing it, you type
another key. The “Ctrl” key is often used in combination with
another key in this fashion.

You can also assign commands to a key combination, or to a
series of keys, where you type one key and then type another key.
For example, suppose the command to refresh the terminal screen
is assigned to the key series, <PF1> and <PF2>. To invoke the
‘refresh’ command, you first type <PF1> and then type <PF2>,
instead of continuing to press <PF1> while you type <PF2>.

UP-13765 4-1

Chapter 4

It is useful to understand all of the ALLY commands that can be
invoked by key. A list of ALLY command mnemonics is
included in Appendix C. You can refer to the ALLY Command
Re ference Manual (UP-12509) for a complete description of each
ALLY command.

Syntax of a Key-Definition File

Because there are more ALLY commands than keys, ALLY pro-
vides key-definition files with the most commonly used commands
assigned to keys. The remaining commands can be used through
the Command Menus. However, you must assign the ‘do’ com-
mand to a key in order to access the Command Menus.

There are eight sections in a key-definition file. The first two are
global sections that affect the remaining six local sections. Key
assignments in a local section apply only to that section. There-
fore, different commands can be assigned to the same key (or
keys) from one local section to another. It is important to note
that a key can have a different command assigned to it for dif-
ferent ALLY subsystems (e.g., menus, forms/reports,
ALLYedit).

For example, <Return> can invoke the ‘next field’ command in
forms/reports and the ‘add new line’ command in ALLYedit
because the commands are in different local sections of the key-
definition file.

The syntax rules for a key-definition file are:
e Each mnemonic must be followed by a colon (:).

e The octal code or code sequence for the key (or keys) that
invokes the command must follow the colon.

e A line that begins with a semicolon (;) is a comment.

e Each section must terminate with an *‘at” sign (@) at the
beginning of a line.

Figure 4-1 shows the format of a key-definition file. The Termi-
nal Definer displays an error message if the key-definition file
deviates from the correct format. A complete key-definition file
is included at the end of this chapter.

4-2 UP-13765

The Key-Definition File

; WINDOW COMMANDS

; Function Octal Code Key Assignment
wimip: 03 133 101 ; up arTow
windown: a3 133 102 ; down arTow
winright.: 3B 13 18 ; right arrow
winleft.: 03 133 104 ; left arrow
windone: 015 ; carriage return
Q

Mnemonic Key assignment Comment

Figure 4-1. Sample Entries in a Key-Definition File

Sections of a Key-Definition File

The sections of the key-definition file are arranged in the follow-
ing order:

global flag definitions and scroll percentage
global commands

text editing commands

form/report commands

window commands

menu cursor roam commands

menu function task commands

e menu prompt line terminators

Each section is briefly described in the following pages.

Global Flag Definitions and Scroll Percentage Section

The commands in this section are global to ALLY and are not
active commands. Rather, they are flags and variables that
specify initial settings for things such as case sensitivity for search-
ing and the amount to scroll a page when editing. The OFF set-
ting for these flags and variables is octal 000 and the ON setting is
octal 001. The default for the scroll percentage variable is 012,
which leaves ten percent of the screen on page scroll (Figure 4-2).

UP-13765 4-3

Chapter 4

‘down page'
10%

F002-0563-00

Figure 4-2. Scroll Percentage

Global Commands Section

The global commands in this section:

e invoke macros and help messages
e activate and manipulate tasks, including Command Menus
e abort and exit from an action, a task, and an application

They are called global commands because they can be used in any
ALLY subsystem (text editor, image editor, form/report, etc.).

Text Editing Commands Section

These text editing commands apply whether you are editing a text
file or a field in an ALLY application.

Form/Report Commands Section

ALLY forms and reports are unified and use the commands in
this section.

Window Commands Section

These commands are for changing window size or location, and
for moving the cursor within windows (e.g., ‘scroll window’).
Window commands are typically assigned to the four arrow keys
and the “‘Return’ key.

4-4 UP-13765

The Key-Definition File

Menu Cursor Roam Commands Section

These commands allow users to move among menu choices when
in menu-roam mode. These commands are usually assigned to
the four arrow keys.

Menu Function Task Commands Section

These commands allow users to make menu choices with function
keys.

Menu Prompt Line Terminators Section

These commands specify how the user can exit from the menu’s
prompt line. Users can go to the first or last roam-mode choice
(if that mode is active), pick a choice, or go to the previous or top
menu.

Conflicts in
Command-to-Key Assignments

The Terminal Definer displays error or warning messages if there
are conflicts in key assignments (i.e., two or more commands are
assigned to the same key or keys). Note that an error or warning
is issued if the complete command assigned to one key is the same
as the beginning of a command assigned to another key. For
example, the following command assignments are in conflict with
each other:

exemac(): 004 013
exemacl: 004 013 010

An error message is issued if there are key-assignment conflicts
between a command in a global section and any other section in
the key-definition file. A warning message is issued if there are
key-assignment conflicts between commands within a section or
between local sections.

UP-13765 4-5

Chapter 4

It is important to note that a key can have a different command
assigned to it for different ALLY subsystems. However,
command-to-key assignments in global sections take precedence
over local key assignments.

You can assign the same command to more than one key (or set
of keys) within a section. This allows the user to choose what
keys to use when invoking the command. The following example
shows the ‘find’ command assigned to two different keys.

f£ind:033 117 122; FF3
£ind:033 133 061 178; Find key

A conflict occurs when a key (or given set of keys) has more than
one command assigned to it. It is acceptable to have conflicts
among sections and even within sections; however, key-assignment
conflicts can cause some commands to become unavailable.

The rules for resolving key-assignment conflicts are:

e The commands in global sections of a key-definition file

supercede those in any other section. Thus, if a command
in the form/report section and a command in the global sec-
tion are assigned to the same key (or keys), the global com-
mand assignment overrides the form/report command
assignment.

If you assign more than one command to the same key (or
keys) within a section of the key-definition file, the first
command assignment overrides any later assignments to
that key within the section.

If you assign a window command and another local com-
mand to the same key (or keys), the window command is
invoked only when you type the key while in a window
command function.

For example, if ‘window up’ (window command) and ‘up’
(text editing command) share a key assignment, ‘window
up’ is invoked only if the preceding command invoked a
window operation (‘scroll window’, ‘resize window’, or
‘move window’).

Do not assign commands to “Q (<Ctrl>Q) and "S (<Ctrl>5),
because the octal codes associated with "Q (021) and “S (023) are

4-6

UP-13765

The Key-Definition File

part of the XON/XOFF protocol that ALLY uses to coordinate
input and output with terminals. The Terminal Definer displays
an error message and ignores a command assigned to a key that
has 021 or 023 in its octal sequence. Also, because ALLY
ignores the ASCII NUL character (octal 000), do not include the
NUL character in key sequences.

Comments in a Key-Definition File

In a key-definition file, everything on a line following a semicolon
(;) is treated as a comment and is ignored by the Terminal
Definer. The comment symbol can be placed anywhere on the
line.

The following example shows two placements of the comment
symbol. First, all heading lines are commented out. On the last
line, the Terminal Definer processes the mnemonic and octal code
for the ‘help’ command but ignores the key assignment comment.

; Function Octal Code Key Assignment
»

GLOBAL. COMMANDS

khelp: 001 010 ;°A'H

Figure 4-3. Comments in a Key-Definition File

The Ignore Command

You can assign the ‘ignore’ command to any key or sequence of
keys that you want ALLY to ignore. Normally, when a key is
pressed that is not assigned to an ALLY command, the key’s
octal sequence is displayed. However, when you press a key that
is assigned the ‘ignore’ command, no action is taken and the
display remains unaltered. This is useful when you want to leave
a key without a command assignment. The ignore command can
be assigned to keys in any section in the key-definition file. The
following example shows how to assign the ignore command to
the delete key.

UP-13765 4-7

Chapter 4

ignare: 177 ; delete key

The ignore command’s action depends on whether it is assigned in
a global section or in a local section.

e A key assigned the ignore command in a global section is
ignored throughout the application.

e A key assigned the ignore command in a local section is
ignored only in that section.

Making Commands Unavailable to Users

You may not want a particular command to be available because
it is not appropriate for your application. You can make a com-
mand unavailable to an application user with the key-definition
file by:

e not assigning the command to a key

e assigning the ignore command to the key usually assigned
to the command

e preceding the command mnemonic with a semicolon, which
makes the key-to-command assignment a comment

In this example, the second key assignment for the ‘expand win-
dow’ command is commented out. (However, the user can still
use the command through ALLY’s Command Menus.)

expandwdw: 001 006 ;3 ATV
;expandwdw: 033 137 113 O3 134 ; ehift F3

4-8 UP-13765

The Key-Definition File

User-Defined Key-Definition Files

You can define your own key-definition files by editing a copy of
the key-definition file that is shipped with ALLY. Key-definition
files that you define and store in a different directory are
preserved when you install a new ALLY release.

Sample Key-Definition File

The command-to-key assignments in the following key-definition
file are for a Unisys SVT-1220 terminal. The assignments were
made for use by ALLY developers, so this key-definition file may
differ from one used in a production environment:

e All commands in the list are defined—something few appli-
cation users require.

e Many of the commands are assigned to obscure control
character sequences (combinations of control character
keys).

e Assumes that the SVT-1220’s numeric keypad is in applica-
tion mode rather than numeric mode (i.e., that keys send
escape sequences, instead of numbers, when typed).

UP-13765 4-9

Chapter 4

; COPYRIGHT: 1985, 1986, 1987, 1988 Foundation Camputer Systems, Inc.
This software oontains confidential and proprietary
infarmation of Foundation Camputer Systems, Inc.
ALLY Key definitions: sample key—definition file

Standard key assigmments far Unisys SVI-1220 terminals
UNIX Version Foundation Camputer Systems

The arrow keys and the hame key can transmit more than one octal
code sequence. Any ALLY command assigned to these keys must be
defined far all octal sequences that these loeys can tranamit.

; Function Octal Code Key Assignment

H IMPORTANT NOIE:
H GLOBAL FLAG DEFINITIONS AND SCROEI. PERCENTAGE

: 000 ; overtype off
powertype: 000 ; powertype off
drammode : 000 ; draw mode off
casesense: 00,8 ; case sensitive
H search an
findremain 001 ; dm't move cursar
H if find fails
findtoend: 000 ; £ind end of string
; aoff
?
clearfield: ool ; clear fields befare
H
scrollprent o12 ; leave 10 of screen

H GLOBAL COMMANDS

khelp: 001 010 ; "AH

khelp: 033 133 062 070 178 ; Help key

abartaction: 003 001 ; "CA

exitaction: 003 006 ; "CE

abarttask: 003 003 001 ; "CCA

exittask: 003 003 006 ; "CCE

abartappl : 003 003 003 001 ; "C°C°CA .
exitappl : 003 003 003 005 ; “"C°CC’E continued

4-10 UP-13765

The Key-Definition File

shell: o33 117 120 033 117 167 ; FF1 7
shell: 003 010 ; "CH
refresh: 001 032 5 A°Z
setrptent: 033 117 121 ; PF2
protvmm: 001 028 5 AV
prmtecrn: 0oL ; "A°P
prmtscrn: o33 120 ; EBSCP
expandwdw: 001 006 ; "A’E
definewdw: 001 004 ; "A°D
canpresswiw: 001 003 ; TA°C
movewdw: 001 015 5 TAM
scrollwdw: 001 014 ; AL
explodewdw: Qo1 030 ; TAX
regizewdw: 0oL ; "A'R
toggletask: 001 061 015 ; "AM
toggletask 033 117 115 ; Enter
picktask: 024 020 ; TP
plcktask: 033 117 120 033 117 115 ; FF1 ENIER
defmacro: 004 014 ; DL
mactafile: [o0 - Werrd ; DW
macfmfile: 004 ; DR
SAVEmACTOS ¢ 004 013 ; DK
loadmacros : Q04 007 ; DG
examacO: Q05 060 ; "ED
examac] : Q06 061 ; "E1
ecemac?: 005 062 ; E=2
exanac3: 006 063 ; 'E3
exemacd : 005 064 ; "E4
eemach: 006 065 ; BB
exemact : 006 068 ; "BB
eocemac’? Q05 067 ; "E7
entemacB: 006 070 ; BB
exemac9: 006 071 ; “B9
ewenact : Q06 006 ; 'E°F
task: 001 003 013 061 ; DO key
task: o2 003 013 062 ; TAK merm
task: o3 003 013 083 ; MENU merm
task: 004 003 013 064 ; FORM/REPORT merm
task: 006 003 013 085 ; TEXT EDIT mem
task: 006 003 013 066 ; WINDOW menu continued

UP-13765 4-11

Chapter 4

H

T TRRRRRERRES

i

oo7 003 013 067
(673 Q24 061
6 24 062
o7 024 063
030 Q24 064
o3t 024 065
032 024 068
3 024 067
034 024 070
o35 024 071

TEXT EDITING COMMANDS

015

177

033 117 163

033 117 120 033 117 164
o2

017 003 003

017 004 003

017 017 003

017 020 003

033 117 120 033 117 166
017 014 003

033 133 063 062 176
033 117 120 033 117 170
003 017

033 117 120 033 117 163
033 117 120 033 117 162
o3 117 123

033 117 166

33 117 1586

o33 117 102

033 133 102

033 117 164

a33 133 066 176

o33 117 162

33 117 164

33 117 122

033 133 061 178

017 006 004

a33 133 178

e ms M wi Mi me s Ne W M Mo ME e ms o ws Me W W we e we we W W Wa e we we e

3-EXCO0s
FFl 4

“0D~C

Remove continued

4-12

UP-13765

The Key-Definition File

glblreplace: 033 117 120 033 117 171 ; FF1 9
hightamark: 017 010 010 ; "OCH'H
hightamark: 033 133 063 063 176 ; F19 key
hightypeset: 017 010 005 ; "O°H'E
hame: o33 117 170 ; 8

ignare: 033 117 120 033 117 154 ; PF1 ,
ignare: 033 117 120 O3 117 121 ; PF1 FF2
ignare: 033 133 062 176 ; Insert Here key
ignare: 033 133 064 178 ; Select key
ignare: 033 133 062 071 176 ; Do key
ignare: o33 133 061 067 176 ; F6 key
ignare: o33 133 081 070 176 ; F7 key
ignare: 033 133 061 071 176 ; FB key
ignare: o33 133 062 080 178 ; FO key
ignare: 033 133 062 061 176 ; F10 key
ignare: 033 133 062 063 176 ; Fi1 key
ignare: 033 133 062 064 176 ; F12 key
ignare: 033 133 062 065 176 ; F13 key
ignare: o33 133 062 066 176 ; F14 key
insertline 033 117 120 033 117 160 ; FF1 O
Jumptomark o3 117 120 033 117 156 ; FF1 .
1dtomark: 017 010 014 ; "O°H'L
1dtamark: o33 133 063 064 176 ; F20 key
left: o3 117 104 ; left arrow
left: o33 133 104 ; left arrow
left: 010 ; left arrow
removeblk: 017 014 015 ; TO°L°M
removeblk: 033 133 063 081 176 ; F17 key
mark: o33 117 156 HE
nextline: 012 ; linefeed
nextline: 33 117 160 ; 0
nexcmord : o33 117 161 5 1
prevward: a3 117 120 63 117 161 ; FF1 1
readfile: o3 022 ; "CR
Tedraw: o2 Hilar'A
replace: ; R
replace: o33 117 171 ; 9

right: o33 117 108 ; Tight arrow
right: a3 133 163 ; Tight arrow
save: a3 117 167 3 7
setcasesens: 017 003 006 ; "0CC’E
setdrammode : 017 004 006 ; "OCD°E
setovertype: 017 017 006 ; "0°0°E
setpwrtype: 017 Q20 006 ; “0CE continued

UP-13765 4-13

Chapter 4

—
togcasesens: 033 117 120 G33 117 122 ; FF1 PF3
togcasesens: 017 003 024 ; "0°C°T
togdrammode : 017 004 24 ; "0°D°T
togovertype: 017 017 Q24 ; “0°0°T
togpRrtype: 017 00 24 ; 70°C°T
top: 033 117 120 033 117 166 ; FF1 5
tartlehl: 017 024 010 ; "0°T"H
turtleld: 017 024 014 ; 70°T°L
tartleclear 017 024 003 ; 70°TC
uldtamaric: 017 010 025 ; "O°HU
uldturtle: 017 024 (5 ; 0°TU
unbax: (0753 ;U
undelline: 033 117 120 033 117 123 ; FF1 FF4
undelward: 033 117 120 033 117 186 ; FFi
up: a33 117 101 5 Up arrow
up: 033 133 101 ; up axTOW
uppage: a3 117 1656 ; B
uppage: 03 133 065 176 ; Prev Screen
writefile o3 27 ; CW
Q
H FORM/REPORT COMMANDS
;
insafter 008 011 001 ; FIA
insbefare 008 011 002 ; 'F'I'B
budmode : 008 002 ; 'FB
gbe: 006 025 002 ; 'FUB
gwhere: 006 025 027 ; FUw
query: 006 (25 006 ; "FUE
delrec: 006 004 ; 'FD
commit: 008 003 ; 'FC
rallback 006 22 ; 'FR
dupdate: 008 024 004 ; F'TD
pall: 008 024 001 ; FTA
ppage: 008 Q24 ; FTP
prest.: 006 024 ; F'TR
plckfield 008 013 025 ; FKU
putfield 008 013 004 ; “F’K'D
pnext: Q06 016 020 ; “F'N'P
porev: 006 020 020 ; 'F°P°P
phame: 006 008 020 ; 'F°FP
plast: 006 014 020 ; 'FLP continued

4-14 UP-13765

The Key-Definition File

rghome: 006 006 007 ; 'F°'FG
rglast: 006 014 007 ; "FL°G
rgnext: 006 016 007 ; 'F'NG
rgprev: 006 020 007 ; 'FPG
rhame: 006 006 02 ; 'FFFR
rlast: 006 014 02 ; "F'L'R
rmext: 006 016 o222 ; "F'N'R
rprev: 006 020 022 ; 'FPR
prhame: 006 006 001 ; "F'FA
prlast: 006 014 001 ; “F°'L"A
prnext.: Q06 016 001 ; FNA
prprev: 006 ool ; FPA
fhame: 006 006 006 ; 'FFF
flast.: 006 014 006 ; F°L°F
fnext.: 006 016 006 ; F°'N°F
Pfnext.: 016 ;M

fnext.: 033 117 102 ; down arrow
fnext.: 033 133 102 ; down arrow
fprev: 006 o0 ; "F'P°F
fprev: 117 101 ; up arrow
forev: 033 133 101 ; up arrow
fpdckval : 006 026 020 ; F VP
flistval : 006 025 014 ; F°V'L
finsnext.: 006 011 016 ; FFI°N
frfunction 006 011 008 ; 'F°I°F

[-]

H WINDOW COMMANDS

wirp: 033 117 101 ; up axrTOow
wimp: a3 133 101 ; up axrTow
windown : a3 117 102 ; down arrow
windown : 033 133 102 ; down arrow
winright.: o33 117 103 ; right arrow
winright: a3 133 168 ; right arrow
winleft: 33 117 104 ; left arrow
winleft: 33 133 104 ; left arrow
windone: o33 117 186 ; .-ECOn
windaone: 015 ; carriage return
(] continued
UP-13765 4-15

Chapter 4

; MENU CURSCR ROAM CTMMANDS

o33 117 101
3 133 101
33 117 104
3 133 104
3 117 102
03 133 102
033 117 103
033 133 108
010

015

o1 003 015 061
0073 o3 015 ce2
o3 003 015 063
004 003 015 064

033 117 101
o33 133 101
033 117 102
a3 133 102
a5

24 015
015

017 015

LT T T S T S

.. e e we

e ws we we we we we we

up arrow
up arrow

left arrow
left arrow
down arrow
down arrow
right arrow
right arrow

“cMi
‘M2
“cM3

4-16

End of Chapter 4

UP-13765

Chapter 5
The Terminal Definition File

Introduction

This chapter describes the terminal definition file that the Termi-
nal Definer uses when it builds an encoded Terminal Description
file. The chapter also explains terminal capabilities, shows a sam-
ple terminal definition file that describes two terminals, and
explains their entries.

The terminal definition file defines:
e capabilities for terminals on which ALLY can run
e the character sequences that invoke these capabilities

The terminal definition file is divided into sections, with each sec-
tion describing a different terminal. The section for a given ter-
minal defines the number of lines the terminal displays, the keys
that move the cursor, the terminal’s highlighting and line-draw
capabilities, and its initialization sequences.

If there is not a section in the terminal definition file for your ter-
minal type, you can write one. Look in the file named ‘“‘termdef”
to see if there is a definition section for your terminal type. (On
UNIX systems, the “‘termdef™ file is in the *“/term/”” subdirec-

tory.)

Terminal Capability Entries

There are three types of terminal capability entries: Boolean,
numeric, and string. The sequences that invoke a terminal’s
characteristics are described in the manufacturer’s documentation
for the terminal.

UP-13765 5-1

Chapter 5

The Terminal Definer utility recognizes a standard notation for
control characters in capability entries. The caret (°) signifies the
character generated by pressing the control key (<Ctrl>) on a
terminal along with the key specified (e.g., "H means press the
control key along with “H”).

Boolean

Boolean entries specify whether a terminal has a given feature.
ALLY has two Boolean capability codes:

bs means that "H backspaces (moves the cursor one space
to the left).

im means enter insert mode.

Numeric

Numeric entries specify counts and sizes for various terminal
characteristics. The code is followed by a pound sign (#) and an
integer number. For example, an entry of *‘:li#24:” specifies that
the terminal displays 24 lines.

String

A string entry specifies that a capability is available, and provides
the ASCII character sequence, or string, that invokes the capabil-
ity. A string-capability code is followed by an equal sign (=) and
the invocation sequence. For example, “:nd="L:" specifies that
"L moves the cursor one space to the right.

Some terminals require a delay between executing a function and
receiving the next character from ALLY. The length of this
delay in milliseconds must be given as a decimal integer between
the equal sign and the string. For example, “*:cl=50\E[2J:” indi-
cates that a ““clear screen” takes 50 milliseconds on the terminal,
and is invoked with the ASCII ESCAPE character (represented
by ‘“\E”), followed by these three characters: [2J. After sending
this sequence, ALLY sends enough pad characters to provide the
delay.

5-2 UP-13765

The Terminal Definition File

To list the character sequence for a string entry, use either the
character itself or its octal code preceded with a back slash (\).
For some commonly used ASCII characters that do not have a
printable letter equivalent, use the following symbols:

\E ASCII ESCAPE character, octal 033

\n ASCII line feed (or new line), octal 012
\r ASCII carriage return, octal 015

\t ASCII horizontal tab, octal 011

\f ASCII form feed, octal 014

Because the colon (:) is the capability entry delimiter, a colon that
is part of a string entry must be represented with its octal code
(\072). The Televideo 925 entry ““h5=\041\EG\072:” illustrates
the use of a colon within an entry. This entry defines the termi-
nal sequence for invoking underline and blink highlighting.

Terminal Capability Codes

All terminal capability codes consist of two letters. Table 5-1 lists
the code for each terminal capability, identifies its type, and
describes the code. Codes for highlighting and line-draw capabili-
ties are presented later in the chapter.

UP-13765 5-3

Chapter 5

Table 5-1. ALLY Terminal Capability Codes

Code Type Description
al string Insert a blank line before the cursor line
be string Move the cursor one space left (backspace), if not with "H
bs Boolean = Move the cursor one space left (backspace) with "H
ce string Clear from the cursor position to the end of the line
cl string Clear the entire terminal display
cm string Move the cursor to a specific line and column
co number Number of columns displayed on a terminal line
dc string Delete one character at the cursor position
dl string Delete the line that the cursor is on
do string Move the cursor down one line
ei string End insert mode and enter overtype mode
ic string Insert a character at the cursor position,
shifting text to the right
im Boolean Enter insert mode
is string Initialize the terminal for cursor movement
and screen editing
ke string Exit special ‘‘keypad transmit” mode
ks string Enter “keypad transmit” mode, where the

numeric keypad sends special command
sequences instead of numbers

li number Number of lines displayed on a terminal
nd string Move the cursor to the right without overwriting text
pc string Pad character for delays
(if not ASCI NUL \000)
rd string Downward scroll in a region of the display
rl string Left scroll in a region of the display
™ string Right scroll in a region of the display
ru string Upward scroll in a region of the display
tc string Cross-reference to another terminal that

shares capabilities not listed
in this terminal’s description

te string Terminate cursor-motion mode
ti string Initialize cursor-motion mode
up string Move the cursor up one line

5-4 UP-13765

The Terminal Definition File

Sample Terminal Description File

Terminal definition files are usually created by defining a terminal
that has extensive capabilities. You can append sections for addi-
tional terminals to the file as needed by:

e defining only the capabilities that differ from the first ter-
minal defined

e referencing the first terminal defined (with a “‘tc="" entry)

The first terminal defined in ALLY’s terminal definition file is
the Televideo 925. This terminal requires character positions on
the screen to store a change in highlighting style. These positions,
or spaces, cannot be used to display data. This is called per-
manent highlighting and is associated with a physical area on the
screen.

The second terminal defined is the Hazeltine Esprit III because it
also uses permanent highlighting. In addition, it has line-drawing
capabilities. Figure 5-1 shows a terminal definition file with two
sections that describe the Televideo 925 and the Hazeltine Esprit
IIL

The Televideo 925 section is described first. Note that the Televi-
deo entries have been separated with blank lines for readability.
However, the terminal definition file can have blank lines only
between two sections; there cannot be blank lines within a section.
Explanations of the capability codes defined in each section follow
Figure 5-1.

UP-13765 5-5

Chapter 5

®

The Televideo 925
V7 1tvig25 925 televideo 925:\

PO 6

:1i#24: :oo#80:\

® @ ®
O®® O ® @

dc=\ER: :al=\EE: :do\EW: :dIS\ER: ed=\Er: :ime\Eqg:\

- ® ®
@ ®
+16=\BO\BGO\ENO47\E (VBABX\EL\EXA\r\200: \

:hO=\041\FG0: h1=\041\EG8: h2=\041\EG4 : h3=\041 \FEG<: \
@ :h4=\041\BG2: h5=\O41 \EG\072: h6=\O41 \EG6 : h7=\O41 \E>>: \

:h8=\341\E) \COO\E(\OOO\EG0: h9=\341 \E) \OOCO\E (\COO\EGB: \
:hA=\341\E) \OOO\E (\OOO\HG4 : hB=\341\E) \OOO\E(\OOO\EG< : \
:hC=\341\E) \O0O\E(\OOO\HE2: hD=\341\E) \OOO\E (\COO\EG\O72: \
+hE=\341\E) \00O\E(\OOO\EGS : hF=\341 \E) \OOO\E (\OOO\EG> :

Hazeltine esprit ITI - similar to the televideo line
v7\|esp3| I11 |Esprit III:\

1= \ECAEGO\ER\E " \EQBABX\EL \EeA\r \200\ED\Er\En\E! 2\
\Ee \E\\1"0\E":\
:hG=\300\E$\OOO\E%: :gc=FGEEMNLIKJI: :tc=tvi9zs:

F002-0912-00

Figure 5-1. Sample Printer Definition File

5-6 UP-13765

The Terminal Definition File

A Complete Terminal Description Section

The main components of the Televideo 925 section in the sample
terminal definition file are:

e terminal names and editing capabilities
e initialization sequences
e highlighting capabilities

Explanations of the entries and the syntax rules are listed in the
following pages. The numbers refer to Figure 5-1.

Terminal Names and Editing Capabilities

1)

2)

3)

4)

5)

A comment can precede or follow each terminal descrip-
tion. The Terminal Definer considers any line that
begins with the pound sign (#) in the terminal definition
file to be a comment.

The first entry in a section contains at least three names
for a terminal, separated by the vertical bar (1) and ter-
minated by a colon (:).

The first name must be a two-character field that does
not contain blanks. Usually this name is a letter followed
by a digit, in this case, “v7.” However, these two char-
acters can be any that you choose to assign to a terminal.
This name does not have to be unique within the termi-
nal definition file.

The second name must be the mnemonic by which
ALLY and the utilities reference the terminal. This
should be a relatively short name consisting of letters and
digits, in this case, “tvi925” for the Televideo 925 termi-
nal.

The third and subsequent names can contain blanks. At
least one should fully identify the terminal. In

Figure 5-1, the terminal is also known as **925,”” and its
complete name is “‘televideo 925.”

UP-13765 5-7

Chapter 5

6)

7)

8)
9)
10)

Each line preceding the last line of a section must end
with a back slash “\”’. A back slash signifies that the
next line is a continuation of the section. The back slash
must be the very last character on the line; do not leave a
blank after it.

The remaining ertries in a section describe the terminal
capabilities. Each entry consists of a two-character code
(e.g., nd) followed by a number or a character string and
terminated by a colon (:). The order in which the capa-
bility codes are listed is arbitrary.

The Televideo’s display is twenty-four lines long.
You can leave space between fields for readability.

The Televideo’s display is eighty columns wide.

The Televideo can move the cursor:

11)
12)
13)
14)
15)

One space to the left (backspace) with "H.
One space to the right with "L.

One line up with "K.

One line down with "V.

To a given line and column. (This entry is explained in
the section, **Options for Cursor Movement Capabilities”
at the end of this chapter.)

The next group of codes describes the sequences that invoke the
insert/delete character and line functions:

16)
17)

18)
19)

Move the text at the cursor position to the right to insert
a character.

Move the current line down one line to insert a blank
line.

Delete the character at the cursor position.

Delete the line at the cursor position.

UP-13765

The Terminal Definition File

20) Enter overtype mode.

21) Enter insert mode.

The next codes describe the two strings that:

22) Clear the display from the cursor position to the end of
the line.

23) Clear the whole display at one time.

Initialization Sequence

The initialization sequence contains the characters that ALLY
sends to a terminal when execution begins. An initialization
sequence sets up the terminal screen and keyboard for cursor
movement and other screen editing functions. It should turn off
unused features such as automatic margins, protected fields, and
initial highlighting.

24) The initialization sequence for the Televideo 925:

e sets the terminal to conversational mode

e sets highlighting to normal display

e turns off protect and half-intensity modes

o turns off the automatic homing of the cursor when it
gets to the end of the screen

turns off monitor mode

turns on the function keys for editing

e sets the terminal’s “send” character to carriage return.

Highlighting Capabilities

25) The last entries describe the highlighting invocation
sequences.

UP-13765 5-9

Chapter 5

Highlighting Capabilities

ALLY uses four types of highlighting—underline, reverse video,
blink, and altered intensity (higher or lower than normal).
ALLY can use sixteen combinations of these four types. The
codes for these are h0 through h9, and hA to hF (A through F
are the hexadecimal digits for decimal 10 through 15). Table 5-2
lists the ALLY highlighting codes by the type of highlighting they
produce.

Table 5-2. ALLY Highlighting Codes

Highlight Codes
Reverse Altered
Code Type Underline Video Blink Intensity
hO string - - - -
hl string X - - -
h2 string - X - -
h3 string X X - -
h4 string - - X -
hS string X - X -
h6 string - X X -
h7 string X X X -
h8 string - - - X
h9 string X - - X
hA string - X - X
hB string X X - X
hC string - - X X
hD string X - X X
hE string - X X X
hF string X X X X

For example, the code “*h0” sends the terminal sequence that
turns off all highlighting, and “*hA” sends the sequence that pro-
duces reverse video with altered intensity. Each ALLY highlight-
ing code turns on the highlighting styles it represents and turns off
all the others.

5-10 UP-13765

The Terminal Definition File

Permanent Highlighting

The video attribute codes for the Televideo 925 and Hazeltine
Esprit III terminals require a space on the display screen. That is,
one character space on the screen must be reserved for the code
that turns on highlighting and another space must be reserved for
the code that turns off highlighting. This is called permanent
highlighting because it is associated with a physical area on the
screen. Because permanent highlighting can require up to three
spaces before and after the highlighted area to mark it, these
spaces cannot display characters.

Permanent highlighting marks the beginning and end of an area
on the terminal screen to be permanently highlighted. If new text
overwrites text in a permanent area, the new text is highlighted.

Transient Highlighting

Another type of highlighting, called transient, is associated with
the highlighted text and does not require extra display space.

Text sent to the terminal between the time that transient
highlighting is turned on and the time that transient highlighting is
turned off is highlighted. If the text changes, the highlighting
disappears. Because transient highlighting does not require space
for marks before and after the highlighted text, the entire area
can be used to display characters.

Highlighting Sequences

The first part of a highlighting entry, called a flag byte, comes
before the invocation sequence. The flag byte is not sent to the
terminal, but instead, tells ALLY how a terminal handles
highlighting. Some terminals must have multiple codes to invoke
a highlighting style. For example, the Televideo 925 must send a
code for reverse video and a code for altered intensity to highlight
an area with reverse video at altered intensity. The SVT-1220,
however, needs only one code to highlight with reverse video at
altered intensity.

UP-13765 5-11

Chapter 5

The flag byte tells ALLY whether a highlighting sequence consists
of a single code or multiple codes. The flag byte for multiple
highlighting codes tells ALLY which codes are for permanent
highlighting and which are for transient.

To calculate the value of the flag byte, sum the octal codes (from
the list below) in the highlighting sequence, plus the number of
spaces (0-3) needed to mark the beginning and end of a per-
manent highlight area. The octal code values that comprise a
highlighting sequence are:

\200 Transient-On
\100 Transient-Off
\040 Permanent

The value of the flag byte reflects the number of codes (one to
three) the highlighting sequence contains. For example, a
highlighting sequence containing only a transient-on code has a
flag byte value of octal 200. The flag byte for a sequence contain-
ing a transient-on code, a transient-off code, and a permanent-on
code requiring one space to set, has an octal value of

200+ 100+040+ 1, or 341. Note that there is only one code for
permanent highlighting (\040). Permanent highlighting remains
on until the code to turn off highlighting (h0) is sent.

If the highlighting sequence consists of more than one code, they
must be in the order listed above. Each code that is followed by
another code must end with \000. For example, in the entry
“h8=\341\E)\OOO\E(\OOO\EGO:” the first \00O tells ALLY that
this is the end of the transient-on code and that the beginning of
the transient-off code follows. If a sequence string must contain
an ASCII NUL (\000), encode that NUL as \200 to avoid confu-
sion.

The following expansions of two of the sixteen highlighting
sequences for the Televideo 925 terminal illustrate this process.
The sequence “*h2=\041\EG4:” turns on reverse video. The flag
byte, \041, tells ALLY that the sequence contains a permanent-on
code requiring one space to set. To highlight text in reverse
video, ALLY sends “\EG4” to the terminal, then sends the text,
and then sends *“\EGO” to turn off highlighting. (The \EGO0
sequence is defined in the Televideo’s terminal definition file for
the ALLY code that turns off all highlighting, “*h0”.)

5-12 UP-13765

The Terminal Definition File

The sequence “*h8=\341\E)\OOO\E(\OOO\EGO:” turns on altered
intensity. The value of the flag byte, \341, tells ALLY that the
sequence contains a transient-on part “\E)”’, a transient-off part
*\E(”, and a permanent-on part “\EGO” that requires one space
to mark. To highlight text in altered intensity, ALLY sends to
the terminal ‘“\EGO\E)”’, then the text, then “E(\EGO0”.

Table 5-3 separates the Televideo highlighting sequences to make
them more readable.

Table 5-3. Televideo Highlighting Sequences

Terminal Sequence That Invokes
Definition Flag
Code Byte Transient-On Transient-Off Permanent-On
:h0 \041 \EGO0
‘hl \041 \EGS8
:h2 \041 \EG4
:h3 \041 \EG<
-h4 \041 \EG2
:hS \041 \EG\072*
:h6 \041 \EG6
:h7 \041 \EG>
:h8 \341 \E)° \E(° \EGO0
:h9 \341 \E)° \E(° \EGS8
thA \341 \E)° \E(° \EG4
:hB \341 \E)° \E(° \EG<
thC \341 \E)° \E(° \EG2
chD \341 \E)° \E(° \EG\072*
hE \341 \E)° \E(° \EG6
:hF \341 \E)° \E(° \EG>

* 072 is the octal representation of a colon
° In the terminal definition entry, this part of the sequence is
followed by the separator \000.

UP-13765

5-13

Chapter 5

Line-Draw Capability Section

In addition to the standard Televideo 925 terminal features, the
Hazeltine Esprit III terminal can produce line-draw characters for
making boxes with corners on the display. Table 5-4 describes the
line-draw codes available.

Table 5-4. Line-Draw Codes

Line-Draw Codes
Code Type Description

gc string List of letters that specify
line-draw characters

hG string Initialize line-draw characters and strings
(used with the characters in gc entry)

Figure 5-2 shows the section of the sample terminal definition file
that describes the Esprit. This section lists only an initialization
sequence and the line-draw sequences, and references the Televi-
deo 925 for the remainder of its characteristics. We have inserted
blank lines for readability, but a terminal definition file can con-
tain blank lines only between sections.

©

Hazeltine esprit III - similar to the televideo line
v7|esp3|I11 |[Esprit ITI:\

@ + 15=\EC\EGONERE” \E (\ERABX\EL \Eed \r\20ONED\EF\En\E-Y 2\
\Ee \E\\1"0\E":\

:hG=\300\E$\OOO\NER: :gc=FEEHMNLKII: :tc=tvigas:

® ® O)

Figure 5-2. Hazeltine Esprit Illl Terminal Section

5-14 UP-13765

1)
2)

3)

4)

The Terminal Definition File

The description begins with a comment about the termi-
nal.

This entry lists the names by which this terminal is
known.

The Esprit III requires a separate initialization sequence
to ensure that line-draw mode is off when ALLY initial-
izes the terminal.

The “*hG” entry has a flag byte that tells ALLY that the
sequence contains a transient-on code and a transient-off
code for turning line-draw mode on and off. To draw
boxes and lines on the Esprit III, ALLY must send it
“\E$”, followed by the letter(s) listed in the *‘gc’” entry
to draw the lines, followed by ‘“\E%’’ to turn off line
drawing.

Line-Draw Capability

5)

6)

The “‘gc” entry lists letters for the eleven line-draw char-
acters that the Esprit III can produce. The letters that
represent the line-draw characters must be listed in this
order:

upper-left corner

upper-right corner

lower-left corner

lower-right corner

left T-bar (intersection of horizontal line with
the middle of a vertical line to its left)

upper T-bar

right T-bar

lower T-bar

horizontal line

vertical line

a cross (vertical line and horizontal line both
intersecting in the middle)

The last entry, “tc=1tvi925,” tells ALLY to obtain the
remaining capabilities for the Esprit III from the
“tvi925” entry. The "tc’’ entry, if included in a
terminal’s description, must come last in the section.

— =0 00 J O\ Vi H W =

—0

UP-13765 5-15

Chapter 5

The “tc” entry references the characteristics of another
terminal in the terminal definition file. The terminal
being described shares all of the capabilities of a terminal
referenced by *‘tc”’ except those itemized in the
terminal’s section. ALLY checks the terminal named in
the *‘tc” entry for each capability not listed in the
terminal’s description.

A terminal definition file usually contains a full descrip-
tion for the terminal with the most capabilities. Sections
for other terminals that share many of these capabilities
list only capabilities that are different, and end with a
“tc” entry.

Options for Cursor Movement Capability

This section describes the options for the *“move cursor to line X,
column Y” terminal definition entry, ‘‘cm”. The cursor move-
ment options are listed and described in Table 5-5. These options
are specified after the sequence that signals cursor motion in a
“cm’ sequence.

A “move cursor’’ sequence directs a terminal to move its cursor
to a specified line and column. Terminal manufacturers use dif-
ferent ways to encode this, so the ““‘cm” terminal definition entry
must be capable of describing many different formats. The
manufacturer’s documentation for the terminal specifies its
requirements.

Some terminals require that the ‘““move cursor” sequence give the
line first, then the column, while other terminals require the
opposite. Some terminals number lines and columns beginning
with zero, while others begin with one. Some require complex
encodings of the line and column numbers. These are all speci-
fied with options in the *"cm” sequence.

The “‘cm” sequence options are marked with percent signs, “*%,”
followed by one or more letters that specify the option. The line
and column numbers are substituted in the “‘cm’ string in place of
the option when the string is sent to the terminal.

5-16 UP-13765

The Terminal Definition File

Table 5-5. Cursor Movement Options

Option

Description

900

Yot

ol

%>ab

Yon

%B

%0D

%%

The order of the values to be sent out for region scrol-
ling.

Reverse the line and column output order—send column
first, then line. By default, ALLY substitutes the line
number followed by the column number.

Increment the line and column numbers. By default,
ALLY starts lines and columns at 0; with this option,
ALLY starts lines and columns at 1.

If either the line or the column number is greater than
the value of the number in the *a’ position (expressed in
octal), then add to that number the value of the number
in the ‘b’ position (also expressed in octal). In the exam-
ple “%>\010\050,” a line value of 5 is left as is, and a
column value of 12 is converted to 52 (octal 050 is
decimal 40, plus 12 is decimal 52).

Exclusive-Or the line and column numbers with octal
140.

Convert the line and column numbers to BCD (Binary
Coded Digits) before sending them.

For each line and column number: divide by 16, multiply
the remainder by 2, and subtract the result from the line
or column number. This is required by the Delta Data
terminal.

Send a single percent sign.

The remaining options must be placed in the sequence after any
of the preceding options.

UP-13765

5-17

Chapter 5

Option Description

%ed Send the line or column number as an integer. For
example, ALLY sends column 25 as the two characters
s525.”

%2 Same as %d, but send the number as two digits. For

example, ALLY sends 2 as ““02” and 79 as ©"79.”

%3 Same as %d, but send the number as three digits. For
example, ALLY sends 6 as 006 and 125 as *"125.”

%+n Add the octal value of the number in the ‘n’ position to
the number and send the result as one character. For
example, “%+ A’ sends 5 as ASCII “F” (5§ + 101,
which is the value of A, = 106, which is the value of F).

%. Send the number as the ASCII character equivalent of its
octal value. For example, ALLY sends column 39 as a
single quote () since ASCII 39 equals octal 047, and
octal 047 is a single quote.

The sequence to move the cursor to line X and column Y on the
Televideo 925 is “‘cm=\E=%+ %+ . It begins with the two
ASCII characters, ESCAPE and equal sign (\E=), followed by
the ASCII character whose octal value is the line number added
to the octal value of an ASCII blank ** ”, followed by the ASCII
character whose octal value is the column number added to an
ASCII blank. For example, ALLY sends “\E= & to the termi-
nal to move the cursor to row 0, column 6.

User-Defined Terminal Definition Files

If you create separate terminal definition files and store them in a
different directory, they are preserved when you install a new
ALLY release. However, if you define a terminal by appending
its description to the terminal definition file that is shipped with
ALLY, it is lost when you install a new ALLY release.

End of Chapter 5

5-18 UP-13765

Chapter 6
The Terminal Definer Utility

Introduction

The Terminal Definer builds the terminal description file that pro-
vides ALLY’s portability from terminal to terminal. ALLY, and
applications built with it, execute on most RS232 ASCII terminals
that support a *‘position cursor to x,y”” function. The terminal
description file contains information about the highlighting abili-
ties, line drawing abilities, and optimizations for each terminal an
application uses. Figure 6-1 shows the basic operation of the Ter-
minal Definer.

Terminal
Definition

File

Terminal
Description

Terminal
Definer

Key — File

Definition
Format File

Figure 6-1. The Terminal Definer

File

F002-0556-00

UP-13765 6-1

Chapter 6

Terminal Definer Input

The Terminal Definer utility requires input from:

e the Format File
e the terminal definition file
e the key-definition file

The sections of the Format File that the Terminal Definer uses
are described in Chapter 3. The next two sections discuss the
terminal-definition and key-definition files.

The Terminal Definition File

The ALLY terminal definition file provides the Terminal Definer
with information about the capabilities of the terminals that an
application uses. The terminal definition file supplied with ALLY
contains descriptions for several common terminals. If a terminal
that your application uses is not currently listed in the terminal
definition file, you can build a terminal definition file for it.
Chapter 5 describes the terminal definition file.

The Key-Definition File

Any ALLY command that can be invoked by a key can be
assigned to any key or key sequence. (Throughout this manual,
““key sequence” can be substituted for ‘’key.’’) These assignments
are made in a terminal’s key-definition file. The key-definition
file assigns commands to keys by specifying the key’s octal code or
code sequence next to the command mnemonic. Chapter 4
describes the key-definition file.

6-2 UP-13765

The Terminal Definer Utility

Terminal Definer Options

The Terminal Definer displays error or warning messages if there
are conflicts in the commands assigned to keys (i.e., two or more
commands assigned to the same key or keys). The Terminal
Definer issues an error message if there are command-assignment
conflicts between a global section key and a key in any other sec-
tion in a key-definition file. The Terminal Definer issues a warn-
ing message if there are key-assignment conflicts between com-
mands within a section or between commands in local sections.

It is acceptable to have conflicts among sections and even within
sections; however, key-sequence conflicts can cause some com-
mands to become unavailable to users. The rules for resolving
key-assignment conflicts are described in Chapter 4.

Table 6-1 shows the Terminal Definer options for checking con-
flicts in key assignments in the key-definition file.

Table 6-1. Terminal Definer Options

Option Action

Every key with global keys Compare every key in
the key-definition file
for conflicts with the
keys assigned in the
two global keys sec-
tions.

Each key with every key Compare each key in
the key-definition file
with every other key
in that file for an
assignment conflict.

Each key with the same section =~ Compare each key in
the key-definition file
with other keys in the
same section for an
assignment conflict.

UP-13765 6-3

Chapter 6

_ R
Option Action
No conflict checking Do not compare keys

in the key-definition
file for assignment
conflicts.

Terminal Definer Output

The output produced by the Terminal Definer is an encoded file
that contains all of the information needed for an ALLY applica-
tion to run on a specific terminal. This output file is optimized
for ALLY execution time.

The name of this encoded file is the first argument you specify
when you invoke ALLY. The distributor, application developer,
or end-user can run the same application on different terminals by
changing this single argument in the ALLY command. Or, a sys-
tem manager can build these arguments into operating-system
command files for each terminal in the system.

Invoking the Terminal Definer
from the Dialog

Figure 6-2 shows the location of the Dialog forms you use to
invoke the Terminal Definer.

6-4 UP-13765

The Terminal Definer Utility

Main Menu *

Application .

Developer's
Dialog

Application
Definition,
Maintenance,
& Management

ALLY Utilities

AFILE -
Utilities

Auxiliary
. Utilities

Terminal
Definer Utility

F002-0583-01
Figure 6-2. Dialog Path to the Terminal Definer

Figure 6-3 shows the Dialog form that you use to run the Termi-
nal Definer.

UP-13765

Chapter 6

Formst, File: (a11y}/formata/altyta. (1)
Description file to build: @

Terminal name: @

Key—definition file: @

Terminal definition file: {ally}/term/termief @

Display conflict checking options: (Y/N) N @

Terminal Definer Utility

1))

Figure 6-3. Invoking the Terminal Definer

The name of the current Format File is filled in. Type
<Return> to use this file, or, edit or delete the
displayed name to use a different Format File.

Enter the following information in the remaining fields:

2)

3)

4)

5)

6)

Specify a name for the file that is to contain the
terminal’s character mapping information. The file name
must be compatible with your operating system’s naming
conventions.

Type the ALLY mnemonic from the terminal definition
file that identifies the terminal for which you are building
this description file.

Type the name of the file that specifies the key-to-
command assignments for the terminal named above.

The name of the file that lists terminal capabilities when
ALLY is shipped is filled in. If you want to use a dif-
ferent terminal definition file, type in the name of the
one you want.

Type <Return> to accept the default level of conflict
checking—that keys are not checked for assignment con
flicts. The cursor moves to the confirmation field.

Type “Y<Return>" to display the subform (Figure 6-4)
that lists the conflict checking options.

UP-13765

The Terminal Definer Utility

Terminal Definer Utility
Farmat File: {ally}/farmats/al1yfmt.
Description file to build:
Terminal name:
Key—definition file:
Each key with global keys:
Each key with every key:

Each key with same section:
No acanflict checking:

Figure 6-4. Terminal Definer Conflict Checking Options

Type “X<Return>" or **Y<Return>" in the field of a level of
conflict checking that you want to select.

After you enter the required information and use the ‘exit action’
command, the Terminal Definer executes. The cursor moves to
the lower-left corner of the form while the Terminal Definer runs.
After the processing is completed, the cursor moves to the menu
titled Auxiliary Utilities.

Invoking the Command File
for the Terminal Definer

The command file for this utility automatically uses the current
Format File and terminal definition file.

The Terminal Definer command file and its arguments are:

newterm [terminal name] [output file] [keydef file] [option]

This command requires only the first three arguments. If you
choose to specify only three arguments, the Terminal Definer does
not check for conflicts in key assignments.

UP-13765 6-7

Chapter 6

You must specify these arguments:

terminal name The ALLY mnemonic from the terminal defini-
tion file that identifies the terminal for which the
terminal description file is being built.

output file The terminal description file produced that con-
tains the key-mapping information for the termi-
nal specified by “‘terminal name.”

keydef file The name of the file that contains the command-
to-key assignments for your keyboard.

options One of the options that specifies the level of con-
flict checking for key assignments. The Terminal
Definer options for conflict checking level are
listed below.

a compare each key with every other key for a
conflict in assignment

g compare each key with the keys assigned in
the two global sections for an assignment con-
flict

n do not check for conflicts in key assignments

o compare each key with other keys in the
same set for an assignment conflict.

Invocation Example

newterm tvi925 descript tvig925.kdf a

This example invokes the command file for the Terminal Definer
to build a terminal description file for a Televideo 925 terminal.
The description file produced is named “‘descript.” The ALLY
mnemonic that identifies the Televideo 925 terminal in the termi-
nal definition file is ““tvi925.” Its key-definition file is named
“tvi925.kdf’. The **a’ option checks all keys for command
assignment conflicts.

6-8 UP-13765

The Terminal Definer Utility

Terminal Definer Error Messages

The Terminal Definer produces an error message if it finds:

no entry in the terminal definition file for the named termi-
nal

an invalid octal number in the key-definition file (such as
089)

an illegal character ("Q or "S) in the key-definition file

a line in the key-definition file that is not in the correct for-
mat

a conflict between two command-to-key assignments
an incorrect number of arguments

an inaccessible terminal definition file

End of Chapter 6

UP-13765 6-9

Chapter 7
The Printer Definition File

Introduction

ALLY applications can use any standard ASCII printer. The
printer definition file provides the Printer Definer utility with
information about the features of the printers that ALLY applica-
tions use. These features include boldfacing and underscoring.

The Printer Definer uses the printer definition file to create an
encoded file that identifies a printer to ALLY. ALLY provides a
printer definition file named “‘printdef”’ that describes several
printers. (On UNIX systems, this file is in the**/printers/”
subdirectory.) Look at this file to see if there is a printer descrip-
tion for your printer.

If a printer your application uses is not currently in the printer
definition file, you can either add its description to the *‘printdef”
file or create a separate printer definition file in a different direc-
tory. The latter method preserves printer descriptions that you
create when you install a new ALLY release. The printer defini-
tion file is very similar to the terminal definition file. Before you
try to create a printer description for a printer definition file, you
should read Chapter 5, which explains how to create terminal
descriptions for a terminal definition file.

ALLY provides commands that print:

the current display image

the current page of a form/report
all remaining pages of a form/report
all pages of a form/report

UP-13765 7-1

Chapter 7

All images, whether a single screen or an entire report, are
translated from ALLY’s standard internal format to a format suit-
able for the specified printer. The printer definition file gives
ALLY information on how to translate display images to print
files. When a print command is issued, ALLY routes the request
to the appropriate printer and transforms the material to a print-
able form by translating:

e formatting characters (such as newlines and page-breaks)
from a display format to a format for printing

e highlighting (such as reverse video) to a form that can be
printed

ALLY tries to optimize the print format for the printer’s require-
ments.

Syntax of the Printer Definition File

The printer definition file encodes printer features in the same
way that the terminal definition file encodes terminal features. A
printer description in the printer definition file starts with a list of
names, or mnemonics, by which a printer is known (e.g.,
XEROXP for the Xerox 2700 II Laser Printer with portrait font).
The remainder of the printer description enumerates capabilities
and the characters necessary to invoke them.

Figure 7-1 shows the format of printer definition file entries for
the Xerox 2700 II Laser Printer. There are two descriptions for
the Xerox 2700:

XEROXP Portrait font that prints pages that are 63 lines long,
80 columns wide

XEROXL Landscape font that prints pages rotated sideways, 63
lines by 132 columns

7.2 UP-13765

The Printer Definition File

;Xeruxmn laser printer with portrait fant
Assumes that font 1 is a ten character per inch fant.
#
XP | XEROXP | XER(OX-2700 laser printer w/ partrait font:
:ig=\E+P, ALLY\O12\E1\En6560, 15, 15, 15,496\012: £5="L\O12\E+X\012: \
1 ££="1: cof80: 1i#63: 50=\Eb: 8e=\Ep : us=\Eu: ue=\Ew:

#
Xerax 2700 II laser printer with landscape font
#
XL | XEROXL | XEROX-2700 laser printer w/ landscape fant:\
:1s=\E+P, ALLY\O12\EO\Em512, 24, 24, 40,625\012: £5="L\O12\E+X\012: \
£f="L: :oo#l32: :1li#66: :sc=\Eb: :se=\Ep: :us=\Bu: :ue=\BEw:

®

F002-0905-00
Figure 7-1. Sample Printer Definition File

1) Comment lines begin with a pound sign (#).

2) A description section begins with the printer’s mnemon-
ics, separated by “1”.

3) Continuation lines within each entry end with “\.

4) Each printer capability is represented with a two-letter
code. A capability can be Boolean, numeric, or string
(see Table 7-1). The manufacturer’s documentation for
the printer specifies the sequences that invoke each capa-
bility.

S) Fields are delimited with a colon (:). Fields can be
separated with spaces for readability.

UP-13765 7-3

Chapter 7

Printer Features

Printers vary in the way they handle margins, pagination, and
highlighting.

Page Margins

Characters exceeding the printer’s maximum line length are
printed on the next line, starting in column one. Note that this
can affect pagination.

Pagination

To move the printer to the next page, a form feed (also called a
page eject) normally follows each page that is printed. When a
page exceeds the printer page length, the extra lines are printed
on the top of the next physical page. A form feed follows the last
line on the page.

The form-feed string causes the printer to go to a new page. If
this string is set to null (:ff=:), ALLY assumes the printer does
not provide the form-feed function. In this case, ALLY outputs
blank lines to reach a new page. It is important to note that there
is a difference between omitting the form-feed string and setting it
to null. If you omit the form-feed string, the default value is "L
(see Table 7-1).

Aside from how the printer advances to the next form, you can
specify a string to pad output with leading and trailing blank pages
before and after each print job. Even if these strings are not
specified, ALLY automatically advances to the next form after
the last page so that the next print job does not start on the same
page as the previous job.

7-4 UP-13765

The Printer Definition File

Highlighting

ALLY supports sixteen highlighting styles for a display. How-
ever, standard printers are capable of only a few styles of text
emphasis. Therefore, ALLY supports only two terminal display
highlighting modes for printed output: reverse video and under-
line, and the combination of these two.

Reverse video is translated to boldface, and underline on the
display is translated to underlining on the printed page. All other
display highlighting is ignored.

Highlighting is accomplished in the best way available on each
printer. For efficiency and visual effect, highlighting is usually
done by issuing the appropriate start and stop highlighting com-
mands. Where the string to be highlighted spans multiple print
lines, ALLY automatically turns off highlighting at the end of
each line and turns on highlighting again at the beginning of the
next line.

These highlighting commands are not available on some printers.
In this case, ALLY uses a carriage return string to return to the
start of the line and then overprints the highlighted string.
Highlighting is not possible on printers that do not have either
special commands to turn highlighting on and off or an explicit
carriage return string. In addition, the last character of each line
cannot be highlighted when the printer supports automatic mar-

gins.

UP-13765 7-5

Chapter 7

Printer Capability Codes

Table 7-1 lists each printer capability, identifies its type, and
describes it.

Table 7-1. ALLY Printer Capability Codes

Name Type Description

am Boolean Automatic margins

ap Boolean Automatic end of page

bc string Backspace if not "H

bs Boolean Backspace with "H

co number Number of columns in a line
cr string Carriage return (default "M)
ff string Form feed (default "L)

fs number If printer is a tty, set flag bits (default Q)
is string Printer initialization string

li number Number of lines on a page

nl string Newline character (default 0)
os Boolean Printer overstrikes

se string End standout mode

SO string Begin standout mode

ue string End underscore mode

us string Start underscore mode

End of Chapter 7

7-6 UP-13765

Chapter 8
The Printer Definer Utility

Introduction

The Printer Definer, shown in Figure 8-1, requires input from the
Format File and the printer definition file. The printer definition
file provides the Printer Definer with information about the capa-
bilities of the printers that your application uses. See Chapter 7
for information about the printer definition file.

Printer
Description

Printer
Definition

Printer

File Definer File

Format File

F002-0557-00

Figure 8-1. The Printer Definer

Invoking the Printer Definer
from the Dialog

Figure 8-2 shows the location of the Dialog forms you use to
invoke the Printer Definer.

UP-13765 8-1

Chapter 8

Main Menu
Application -
Developer's
Dialog

Application
Definition,
Maintenance,
& Management

ALLY Utilities
AFILE - Auxiliary
Utilities - Utilities
Printer
Definer Utility

F002-0818-00
Figure 8-2. Dialog Path to the Printer Definer

Figure 8-3 shows the Dialog form that you use to invoke the
Printer Definer.

8-2 UP-13765

The Printer Definer Utility

Printer Definer Utility

Farmat, File: {ally}/farmats/al lyfmt. @

Description file to build: @

-

Printer definition file: {ally}/printers/printdef @

Figure 8-3. Invoking the Printer Definer

1) The name of the current Format File is filled in. Type
<Return> to use this file, or, edit or delete the
displayed name to use a different Format File.

Enter the following information in the remaining fields:

2) Specify a name for the printer description file you want
ALLY to build. This name must be compatible with
your operating system’s naming conventions.

3) Type the ALLY mnemonic from the printer definition
file that identifies the printer for which the printer
description file is being built.

4) The name of the current printer definition file is filled in.
Type <Return> to use this file. To use a different file,
type in the name of the file that lists the capabilities of
the printer for which you are building the description
file.

After you enter the required information and use the ‘exit action’

command, the Printer Definer executes. The cursor moves to the

lower-left corner of the form while the Printer Definer runs.

After processing is completed, the cursor moves to the menu titled
Auxiliary Utilities.

UP-13765 8-3

Chapter 8

Invoking the Command File
for the Printer Definer

The command file for this utility automatically uses the current
Format File and printer definition file.

The Printer Definer command file and its arguments are:

newprint [printer name] [output file]

You must specify for the arguments:

printer name The ALLY mnemonic from the printer definition
file that identifies the printer for which the printer
description file is being built.

output file The printer description file to be produced for the
printer specified by “‘printer name.”

Printer Definer Error Messages

The Printer Definer produces an error message if it finds:

e an output file that cannot be opened
e a printer without an entry in the printer definition file

End of Chapter 8

8-4 UP-13765

Chapter 9
Managing Printer Output

Introduction

Print commands for ALLY applications can be issued either:
e automatically by any form/report, or
e explicitly by the user.

ALLY builds the print file and sends it to the printer with the
operating system’s standard facilities. You tell ALLY how you
want to handle printing for an AFILE by providing information
about the following:

e The printer description file is the encoded file produced by
the Printer Definer utility that tells ALLY how to interpret
screen images for the printer that prints your application’s
reports.

If you have more than one printer, you can choose which
printer to use for printing your application’s forms/reports
by specifying a different printer description file. You do

this by modifying the application with the Dialog.

o The printer output file contains the interpreted screen
images of your application’s reports. This is the default
destination for form/report output. Each print request to
this file writes over the previous file contents. The file is
not printed until you invoke your operating system’s print
command.

You specify a printer output file for your application
AFILE with the Dialog. If you do not specify a printer
output file, the print image is written to a temporary file
that is deleted when the file is printed.

UP-13765 9-1

Chapter 9

e The spooling information names the destination for ALLY
print requests, and can be a physical device or a printer
queue. It can also be the name of a file if you have
assigned “‘copy’’ as the value of the *“allyprinter’’ environ-
ment variable. (See the section, “Overriding Printer
Specifications,” for information about the ‘“‘allyprinter”
variable.)

You specify spooling information for your AFILE with the
Dialog and set environment variables with operating system
commands.

Spooling

Translated display images are written to a print file and sent to
the operating system’s print spooler. Images can also be spooled
to a standard text file that can be edited.

If spooling devices are available, spooling is the default. ALLY
provides a program that simulates a spooler for UNIX operating
systems without print spoolers. The *‘spoolcmd” file is ALLY’s
interface to UNIX printers. There are two **spoolcmd” files
located in the ““/printers/”’ subdirectory:

spoolcmd for UNIX systems with spooling devices.
spoolcmd.noq for UNIX systems without spooling devices.
Follow the steps below if you are not using spooling devices:

1) Make a backup copy of the “spoolcmd” file by copying
the file to a file with a different name. For example,

cd printers
cp spoolcmd spoolcmd.que
2) Write the “‘spoolcmd.noq” file over the *‘spoolcmd” file
with the ‘copy’ command. For example,

cp spoolcmd.noq spoolcmd

9-2 UP-13765

Managing Printer Qutput

ALLY requires a passive spooling device, that is, one that does
not interpret the characters sent to it. If your spooling device is
not a passive service, you need to change the printer definition file
specifications for special and control characters.

Overriding Printer Specifications

You can append the contents of the printer output file to a spool-
ing file and override an application’s global printer specification
by defining an environment variable named *‘allyprinter.” You
assign a value to the “allyprinter” variable with an operating sys-
tem command before running an application.

The ““allyprinter” environment variable can be set to one of three
values:

none Sends interpreted screen images of your
application’s reports to the printer output file.

Use “‘none” when you do not want your output
to be routed to a printer. Each print request to
this file writes over the previous file contents.

copy Sends interpreted screen images of your
application’s reports to the printer output file,
and then appends the file’s contents to the spool-
ing file.

The file is not printed until you invoke your
operating system’s print command. The printer
subsystem continues to append images from the
printer file to the spooling file until you delete
the spooling file.

UP-13765 9-3

Chapter 9

queue_name Sends interpreted screen images of your
application’s reports to the printer output file
and then routes the file to the specified printer
queue.

Specify a valid spooling device for queue_name.
A queue name specified for the value of “ally-
printer”’ overrides the default spooling device
that is displayed in the Dialog’s and AMU’s Glo-
bal Printer Information form.

Neither “‘none’’ nor ‘“‘copy” is case sensitive, though “‘allyprinter”
is. The *allyprinter” variable overrides all other printer routing
information for the application. If the ‘‘allyprinter’” variable is
not defined, output is sent to the printer output file and routed to
the printer or device that is defined for the application. See
Chapter 1 for more information about environment variables.

End of Chapter 9

9-4 UP-13765

Appendix A
UNIX ALLY Directory Structure

This appendix lists the subdirectories and files contained in the
top-level release 2.00 ALLY directory named *‘ally2_00.”

Subdirectory

Contains

Subdirectory File

* Development systems only

afiles

allyexe

bin

UP-13765

allyedit
amu
commen
dialog*
€errors
storybook

allyedit.a

amu.a, amu.e, and amu.h
commen.h

dialog.a*, dialog.e*, and dialog.h*
€errors.e

start.a, HOURS. A, salary.fx,
EMPLOYEE.{x, HOURS.fx

allydevx*
allyrunx
amigratx*
amux
compactx*
dmigratx*
mergex*
mmigratx
newmsgx*
newprntx
newtermx
scriptx*

acompact*
ally
allyedit
amerge*
amigrate*
amu
ascript™
dialog*
dmigrate™

A-1

Appendix A

Subdirectory

Contains

Subdirectory File

* Development systems only

formats
objects™

printers

Src

term

include*

mmigrate
newmsg*
newprint
newterm

allyfmt
usercode.o*

DFLT

LPO5

printdef
spoolcmd
spoolcmd.noq

usercode.in®

svt100c
svt100c.kdf
svt1210
svt1210.kdf
svt1210a
svt1210a.kdf
svt1210c
svt1210c.kdf
svt1210t
svt1210t.kdf
svt1220
svt1220.kdf
svt1220a
svt1220a.kdf
svt1220a132
svt1220c
svt1220c.kdf
svt1220c132
svt1220t
svt1220t. kdf
svt1220t132
termdef

End of Appendix A

UP-13765

Appendix B

MS-DOS ALLY Directory

This appendix lists the file contents of the release 2.00 ALLY
directory, named “ally2_00.”” Note that while all ALLY files are
in a single directory, they are separated by type here.

Type of File

File Name

* Development systems only

AFILE

Executable

Command file

UP-13765

allyedit.a

commen.h

dialog.a*, dialog.e*, and dialog.h*
errors.e

hours.a

start.a

salary.fx

employee.fx

hours.fx

allydevx.exe*
allyrunx.exe
amigratx.exe™
compactx.exe*
dmigratx.exe*
mergex.exe*
mmigratx.exe
newmsgx.exe*
newprntx.exe
newtermx.exe
scriptx.exe*

acompact.bat*
ally.bat
allyedit.bat
amerge.bat*
amigrate.bat*
ascript.bat
dialog.bat*
dmigrate.bat*
install.bat

Appendix B

Type of File

File Name

* Development systems only

Format File

Object code for linking to
3GL driver program®

Printer definition file
C-code file for inclusion
in driver program*

Terminal definition file

Installation information file

System file

install2.bat
mmigrate.bat
newmsg.bat*
newprint.bat
newterm.bat

allyfmt

usercode.obj*

DFLT
printdef

usercode.in*

pcterm
pcterm. kdf
termdef

devmsgl.doc
devmsg2.doc
devmsg3.doc
readme.doc

aconfig.sys
sg_ask.com

End of Appendix B

UP-13765

Appendix C

ALLY Command Mnemonics

Mnemonic Purpose

abortaction Abort action

abortappl Abort application

aborttask Abort task

addnl Add new line

bdelete Back delete

bol Beginning of line

bottom Bottom

box Box

budmode Browse, update, delete mode

clrcasesens
clrdrawmode
clrovertype
clrpwrtype
commit
compresswdw
cpfrombuf
cptobuf
ctrichar

definewdw
defmacro
delbol
deleol
delline
delrec
deltomark
delword
down
downpage
dupdate

UP-13765

Clear case sensitive
Clear draw mode
Clear overtype

Clear powertype
Commit

Compress window
Copy from buffer
Copy to buffer

Enter control character

Define window
Define macro

Delete to beginning of line
Delete to end of line
Delete line

Delete current record
Delete to mark
Delete word

Down

Down page

Deferred update

Appendix C

Mnemonic Purpose

eol End of line

exeman Execute macro
exemacf Execute macro from file
exitaction Exit action

exitappl Exit application
exittask Exit task

expandwdw Expand window
explodewdw Explode window
fdelete Forward delete
fhome First field

find Find

findanddel Find and delete
finsnext Insert first record in next group
flast Last field

flistval Move to list of values
fnext Next field

fpickval Pick from list of values
fprev Previous field
frfunction Invoke local function
glblreplace Global replace
hightomark Highlight to mark
hightypeset Set highlight type
home Home

homemch Home area

ignore Ignore

insafter Insert record after
insbefore Insert record before
insertline Insert line
jumptomark Jump to mark

khelp Help

kmpprint Print menu

UP-13765

ALLY Command Mnemonics

Mnemonic Purpose

Idtomark Line draw to mark
left Left

loadmacros Load macros
macfmfile Macro from file
mactofile Macro to file

mark Set mark

menu Function key choice
movewdw Move window
nextline Next line

nextmch Next area

nextword Next word
overlayblk Overlay block

pall Print all

phome First page

pickfield Copy to field-buffer
picktask Pick task

plast Last page

pnext Next page

ppage Print page

pprev Previous page

prest Print rest

prevmch Previous area
prevmenu Previous menu
prevword Previous word
prhome First display area
prlast Last display area
prnext Next display area
pratscrn Print screen
pratvnum Print version number
prompt Prompt line

prprev Previous display area
putfield Copy from field-buffer

UP-13765

C-3

Appendix C

Mnemonic Purpose

gbe Query by example
query Execute query
qwhere Query by where clause
readfile Read from file
redraw Redraw

refresh Refresh
removeblk Remove block
replace Replace
resizewdw Resize window
rghome First group

rglast Last group

rgnext Next group
rgprev Previous group
rhome First record

right Right

rlast Last record

rnext Next record
roamfirst First area
roamlast Last area

rollback Rollback

rprev Previous record
save Save

savemacros Save macros
scrollwdw Scroll window
select Choose from roam area
setcasesens Set case sensitive
setdelaycnt Pause
setdrawmode Set draw mode
setovertype Set overtype
setpwrtype Set powertype
setrptent Set repeat count
shell Go to OS command line processor

UP-13765

ALLY Command Mnemonics

Mnemonic Purpose

task Start task

terminator Choose from prompt line
togcasesens Toggle case sensitive
togdrawmode Toggle draw mode
toggletask Toggle task

togovertype Toggle overtype
togpwrtype Toggle powertype

top Top

topmenu First menu
turtleclear Clear turtle

turtlehl Highlight with turtle
turtleld Line draw with turtle
uldtomark Erase line draw
uldturtle Erase line draw with turtle
unbox Unbox

undelline Undelete line
undelrec Undelete record
undelword Undelete word

up Up

uppage Up page

windone Window-action
windown Window down
winleft Window left

winright Window right

winup Window up

writefile Write to file

End of Appendix C

UP-13765 C-5

Appendix D

ASCII Character Codes

L & < &
A& N & -
R O W T S e PR WA VY
¢ o ST oF o & oB o &7
@ NUL 00000000 000 000 00 @ 01000000 100 064 40
A SOH 00000001 001 001 01 A 01000001 101 065 41
8 STX 00000010 002 002 02 8 01000010 102 066 42
[+ ETX 00000011 003 003 o3 [+ 01000011 103 067 43
D EOT 00000100 004 004 04 D 01000100 104 068 44
E ENQ 00000101 005 005 05 E 01000101 105 069 45
F ACK 00000110 006 006 06 F 01000110 106 070 46
G 8EL 00000111 007 007 07 G 01000111 107 on 47
H BS 00001000 010 008 08 H 01001000 110 072 48
| HT 00001001 011 009 09 t 01001001 111 073 49
J LF 00001010 012 o010 0A J 01001010 112 074 4A
K vT 00001011 013 o011 0B K 01001011 113 075 4B
L FF 00001100 014 012 ocC L 01001100 114 076 4C
M CR 00001101 015 013 oD M 01001101 115 077 4D
N SO 00001110 016 014 OE N 01001110 116 078 4E
(o] S! 00001111 017 015 OF o 01001111 117 079 4F
P DLE 00010000 020 016 10 P 01010000 120 080 50
Q DC1 00010001 021 017 1 Q 01010001 121 081 51
R DC2 00010010 022 018 12 R 01010010 122 082 52
S Dc3 00010011 023 019 13 s 01010011 123 083 53
T DC4 00010100 024 020 14 T 01010100 124 084 54
U NAK 00010101 025 021 15 u 01010101 125 085 55
v SYN 00010110 026 022 16 v 01010110 126 086 56
w ET8 00010111 027 023 17 w 01010111 127 087 57
X CAN 00011000 030 024 18 X 01011000 130 088 58
Y EM 00011001 031 025 19 Y 01011001 131 089 59
r4 sus 00011010 032 026 1A r4 01011010 132 090 5A
[ESC 00011011 033 027 18 [01011011 133 091 58
\ FS 00011100 034 028 1Cc \ 01011100 134 092 5C
] GS 00011101 035 029 10] 01011101 135 093 5D
A RS 00011110 036 030 1E A 01011110 136 094 5E
_ us 00011111 037 031 1F _ 01011111 137 085 5F
SP 00100000 040 032 20 s 01100000 140 096 60
! 00100001 041 033 21 a 01100001 141 087 61
" 00100010 042 034 22 b 01100010 142 098 62
00100011 043 035 23 c 01100011 143 099 63
$ 00100100 044 036 24 d 01100100 144 100 64
% 00100101 045 037 25 e 01100101 145 101 65
& 00100110 046 038 26 f 01100110 146 102 66
: 00100111 047 039 27 9 01100111 147 103 67
(00101000 050 040 28 h 01101000 150 104 68
) 00101001 051 041 29 i 01101001 151 105 69
. 00101010 052 042 2A] 01101010 152 106 6A
+ 00101011 053 043 2B k 01101011 183 107 6B
H 00101100 054 044 2C | 01101100 154 108 6C
- 00101101 055 045 2D m 01101101 155 1089 6D
. 00101110 056 046 2E n 01101110 156 110 6E
/ 00101111 057 047 2F o 01101111 157 m 6F
[+] 00110000 060 048 30] 01110000 160 112 70
1 00110001 061 049 31 q 01110001 161 113 ral
2 00110010 062 050 32 r 01110010 162 114 72
3 00110011 063 051 33 s 01110011 163 115 73
4 00110100 064 052 34 t 01110100 164 116 74
5 00110101 065 053 35 u 01110101 165 117 75
6 00110110 066 054 36 v 01110110 166 118 76
7 00110111 067 055 37 w 01110111 167 119 77
8 00111000 070 056 38 X 01111000 170 120 78
9 00111001 071 057 39 y 01111001 171 121 79
: 00111010 072 058 3A z 01111010 172 122 7A
H 00111011 073 058 aB { o1111011 173 123 78
< 00111100 074 060 3C | 01111100 174 124 7C
= 00111101 075 061 3D } 01111101 175 125 70
> 00111110 076 062 3E -~ 01111110 176 126 7E
? 00111111 077 063 3F DEL ot11t1111 177 127 7F
UP-13765 End of Appendix D D-1

Index

AFILE Compactor utility
Format File section, 3-4
invocation command, 2-7
invocation command file, 2-7
text strings, 3-4

AFILE compatibility
downward, 1-13, 1-14
upward, 1-13

AFILE Merger utility
Format File section, 3-5
invocation command, 2-7
invocation command file, 2-8
text strings, 3-5

AFTLE Message Builder utility
directives for message text, 3-7, 3-8
directives in Format File, 3-7
Format File section, 3-7
invocation command, 2-8
invocation command file, 2-8
message text numbers, 3-8
message text strings, 3-7

AFILE Migrator utility
Format File section, 3-10
invocation command, 2-8
invocation command file, 2-9
text strings, 3-10

AFILE naming conventions, 1-8

AFILE Script Writer utility
Format File sections, 3-11
invocation command, 2-9
invocation command file, 2-9
text strings, 3-11 v

ALLY Command Menus, 4-2

ALLY command mnemonics, 4-2, C-1
in key-definition file, 4-2

ALLY development system, 2-4
invoking the Dialog, 2-5

with a command, 2-5, 2-6
with a command file, 2-6

ALLY directory structure, 1-1

under MS-DOS, 1-3, B-1
files in, B-1

under UNIX, 1-2, A-1
files in, A-1
subdirectories of, 1-2, A-1

UP-13765

ALLY environment variables, 1-3, 1-4
“allyprinter”’, 9-3
changing names of, 1-7
ALLY execution system, 2-3
development version, 2-4
runtime version, 2-4
ALLY release compatibility, 1-13
among AFILEs, 1-13
downward, 1-13, 1-14
upward, 1-13
ALLY runtime system, 2-4
invoking an application
with a command, 2-4
with a command file, 2-5
invoking the AMU, 2-6
with a command, 2-6
with a command file, 2-6
“allyprinter” environment variable, 9-3
ASCII character codes, D-1

Boldface, p-3
Brackets, p-4

Changing environment variable
names, 1-7
Command files
ALLY, 6-7, 8-4
for ALLY utilities, 2-7
invoking ALLY with, 2-1, 2-3
Printer Definer utility, 8-4
Terminal Definer utility, 6-7
Command-to-key assignments
conflicts in, 4-5, 4-6, 6-6
key combinations, 4-1
key-definition file, 4-1
key series, 4-1
rules for resolving conflicts in, 4-6
Commands, ALLY, C-1
assignments to keys, 4-1
Command Menus, 4-2
ignore, 4-6, 4-7
invoking ALLY with, 2-1, 2-2
mnemonics, 4-1, 4-2, C-1
Compatibility
among ALLY releases, 1-13

Index
.

downward, 1-13, 1-14

upward, 1-13
Conventions, p-3
Cursor-movement options,
terminal definition file, 5-16, 5-17

Data Migrator utility
Format File section, 3-12
invocation command, 2-9
invocation command lile, 2-9
text strings, 3-12
Defining environment variables, 1-6
Directories, ALLY, 1-1, A-1, B-1
under MS-DOS, 1-3, B-1
under UNIX, 1-2, A-1
Displaying environment variables, 1-5
Double quotes, p-3
Downward AFILE compatibility
AFILE Migrator utility, 1-14
checking with integrity
reports, 1-14

Empty brackets, p-4
Environment variables
ALLY, 1-3
“ally”, 1-4
“allyprinter”, 9-3
defining, 1-6
displaying, 1-5
operating system, 1-3
“TERM”, 1-4
using, 1-5
Error messages
Printer Definer utility, 8-4
Terminal Definer utility, 6-9

Format File, 3-1
AFILE Compactor section, 3-4
AFILE Merger section, 3-5
AFTLE Message Builder section, 3-7
AFILE Migrator section, 3-10
AFILE Script Writer sections, 3-11
changing entry text, 3-3
comments in, 3-3
Data Migrator section, 3-12
delimiter characters, 3-2
directives for message text, 3-7, 3-8

directives for paths to message
AFILEs, 3-9

first section (set 0), 3-2

Macro Utility section, 3-13
Printer Definer section, 3-14
sections of, 3-2, 3-3

set delimiters, 3-3

syntax of entries, 3-3

Terminal Definer section, 3-14

Help and error AFTLEs, 1-8
Highlighting, 7-5
Highlighting sequences
flag bytes in, 5-11, 5-12
sample
(Esprit IIT), 5-14
(Televideo 925), 5-13

Input files, printer definition, 7-1
Invocation command

AFILE Compactor utility, 2-7

AFILE Merger utility, 2-7

AFILE Message Builder utility, 2-8

AFILE Migrator utility, 2-8

AFILE Script Writer utility, 2-9

Data Migrator utility, 2-9

Macro Utility, 2-10

Printer Definer utility, 2-10

Terminal Definer utility, 2-10
Invocation command file

AFILE Compactor utility, 2-7

AFILE Merger utility, 2-8

AFILE Message Builder utility, 2-8

AFILE Migrator utility, 2-9

AFILE Script Writer utility, 2-9

Data Migrator utility, 2-9

Macro Utility utility, 2-10

Printer Definer utility, 2-10, 8-4

Terminal Definer utility, 2-11, 6-7
Invoking ALLY, 2-1, 2-3

with a command, 2-1, 2-2

with a command file, 2-1, 2-3
Invoking ALLY utilities, 2-7

AFILE Compactor, 2-7

AFILE Merger, 2-7

AFILE Message Builder, 2-8

AFILE Migrator, 2-8

AFILE Script Writer, 2-9

UP-13765

Index

Data Migrator, 2-9

Macro Utility, 2-10

Printer Definer, 2-10, 8-1, 8-4

Terminal Definer, 2-10, 6-4, 6-7

with a command, 2-7

with a command file, 2-7
Invoking the AMU, 2-6

with a command, 2-6

with a command file, 2-6
Invoking the Dialog, 2-5

with a command, 2-6

with a command file, 2-6

Key-definition file, 4-1, 4-2
command-to-key assignments, 4-1
comments in, 4-7
conflicts in key assignments, 4-5, 6-6

rules for resolving, 4-6
flag definitions, 4-3
form/report commands, 4-4
format of, 4-2, 4-3
global commands, 4-4
global sections, 4-3
ignore command, 4-7
input to the Terminal Definer, 6-2
local section, 4-4, 4-5
making commands unavailable, 4-8
menu cursor roam commands, 4-5
menu function task commands, 4-5
menu prompt line exit
commands, 4-5
sample (SVT-1220), 4-9
scroll percentage, 4-3
sections of, 4-2, 4-3
syntax of, 4-2
text editing commands, 4-4
user-defined, 4-9
window commands, 4-4

Library AFTLEs, see ‘“Message
AFILEs,” 1-8
Line-draw capability

ALLY codes for, 5-14

entries for, 5-15

in terminal definition file, 5-15

Macro Utility
Format File section, 3-13

UP-13765

invocation command, 2-10
text strings, 3-13
Managing printer output, 9-1
“‘allyprinter”” variable, 9-3
overriding global settings, 9-3
printer description file, 9-1
printer output file, 9-1
spooling, 9-2, 9-4
Message AFILEs
changing paths to, 1-10
with directives, 1-11
with the Dialog, 1-10, 1-11
directives for
application paths, 3-9
default paths, 3-9
paths to application, 1-11

Operating system environment
variables, 1-3

Page margins, 7-4
Paths to application message
AFILE;s, 1-11
Printer capabilities
ALLY codes for, 7-6
form feed, 7-4
highlighting, 7-6
page margins, 7-4
pagination, 7-4
types of entries, 7-3
Printer capability codes, 7-3
printer definition file, 7-3
Printer Definer utility, 7-1
command file, invocation
example, 8-4
error messages, 8-4
Format File section, 3-14
input files
Format File, 8-1
printer definition, 7-1, 8-1
invocation command, 2-10
invocation command file, 2-10
invoking
from the Dialog, 8-1, 8-2
with a command, 2-10
with a command file, 2-10, 8-4
output file, 8-1
printer description, 8-1, 9-1

Index

text strings, 3-14
Printer definition file, 7-1

Terminal capability codes, 5-3, 5-4
Terminal Definer utility

capability entries, 7-3
types of, 7-3
comments in, 7-3
continuation lines, 7-3
form feed, 7-4
landscape font, 7-2
portrait font, 7-2
Printer Definer utility, 7-1
sample (XEROX 2700 IT), 7-2
sections in, 7-3
syntax of, 7-3
Printer description file, 8-1, 9-1
Printer highlighting, 7-5
boldface, 7-5
reverse video, 7-5
underline, 7-5
Printer output file, 9-1
Printer spooling, 9-2, 9-4

Running an AFILE
entry point to application, 2-5
reusing macro files, 2-5
with a command, 2-4
with a command file, 2-5
with a debug log, 2-5

Single quotes, p-3

Space, p-4
Square brackets, p-4

Terminal capabilities
ALLY codes for, 5-4
highlighting, 5-10
line-draw, 5-14
cursor movement options, 5-16,
5-17
highlighting, 5-10
highlighting sequences,
flag byte in, 5-11, 5-12
line-draw, 5-14
permanent highlighting, 5-11
transient highlighting, 5-11
types of entries, 5-1
boolean, 5-2
numeric, 5-2
string, 5-2

i-4

command file, 6-7
conflict-checking options, 6-8
invocation example, 6-8
conflict checking options, 6-6
each key with every key, 6-3
each key with the same section, 6-3
every key with global keys, 6-3
no conflict checking, 6-3
error messages, 6-9
Format File section, 3-14
input files, 6-1
Format File, 3-14, 6-1
key-definition file, 6-2
terminal definition file, 6-2
invocation command, 2-10
invoking, 6-4
from the Dialog, 6-4
with a command, 2-11
with a command file, 2-11, 6-4, 6-7
options for conflict checking, 6-3, 6-7
each key with every key, 6-3, 6-8
each key with the same section, 6-3,
6-8
every key with global keys, 6-3, 6-8
no conlflict checking, 6-3, 6-8
output file, 6-4
terminal description, 6-4
text strings, 3-14

Terminal definition file, 5-1

ALLY codes for line-draw, 5-14
ALLY highlighting
capabilities, 5-9, 5-10, 5-11, 5-14
codes, 5-10
sequences, 5-11
blank lines in, 5-5
boolean entries, 5-2
complete terminal description, 5-7
cursor-movement entries, 5-16
editing capability entries, 5-7
initialization sequence, 5-9
line-draw entries, 5-14, 5-15
numeric entries, 5-2
sample
(Hazeltine Esprit IIT), 5-14
line-draw section, 5-14
(Televideo 925), 5-5

UP-13765

Index

sections in, 5-1, 5-5
string entries, 5-2
terminal capability entries, 5-1, 5-2
cursor movement, 5-8, 5-16
highlighting sequence, 5-6, 5-13
initialization sequence, 5-9
input to the Terminal Definer, 6-2
line-draw, 5-15
Terminal Definer, 6-2
terminal name in, 5-7
types of entries, 5-2
user-deflined, 5-18
Terminal description file,
output from the Terminal Definer, 6-4
Terminal highlighting sequences, 5-10
flag bytes in, 5-11, 5-12
sample
(Televideo 925), 5-6, 5-13
Trunk AFILEs, 1-9
paths to message AFILEs, 1-9

Upward AFILE compatibility
AFILE Compactor utility, 1-13

AFILE Migrator utility, 1-13
Using environment variables, 1-5

End of Index

UP-13765

-5

