
 UBC CLPARSER

 A_COMMAND_LANGUAGE_PARSING_FACILITY _ _______ ________ _______ ________

 by

 Alan Ballard

 Computing Centre

 UNIVERSITY OF BRITISH COLUMBIA

 2075 Wesbrook Place

 Vancouver, B.C., Canada V6T 1W5

 August 1979

 Revised November 1982

 Acknowledgement _______________

 The original version of this program was

 based in part on the Spires parser and

 grammar analyzer. See "Design of SPIRES II",

 published by Spires Project, Stanford

 University, July 1973. They have been

 completely rewritten (in PLUS) and

 extensively modified for use in MTS.

 Note ____

 This writeup corresponds to Version 2 of the

 parser and table generator as implemented in

 July 1981.

 Table_of_Contents _____ __ ________

 I. INTRODUCTION ..1

 II. THE TABLE GENERATOR3

 A. TERMINAL PRODUCTIONS3

 B. NONTERMINAL PRODUCTIONS4

 C. EXTERNAL NONTERMINAL PRODUCTIONS10

 D. GOAL PRODUCTIONS11

 E. SEMANTIC PROCEDURE DECLARATIONS12

 F. SEMANTIC LABEL DECLARATIONS13

 III. THE PARSER ...14

 A. PARSER CONTROL BLOCK14

 B. PARSER SUBROUTINE DESCRIPTIONS14

 1. Parse_Initialize15

 2. Parse_Initialize_Nonmts15

 3. Parse ..16

 4. Parse_Terminate17

 5. Parse_Set ..17

 6. Parse_Get ..18

 7. Parse_Get_Stack20

 8. Parse_Get_Stack_Size21

 9. Parse_Reset22

 10. Current_Position23

 11. Command_Text23

 12. Production_Text24

 13. Last_Terminal_Text24

 14. Parse_Help25

 C. USER-SUPPLIED SUBROUTINES25

 1. Semantic Routines26

 2. The Attention-Testing Routine27

 3. The Parser Input Routine27

 D. SYSTEM SERVICES USED28

 1. Getspace ...29

 2. Freespace ..29

 3. Guser ..29

 4. Sercom ...30

 5. Guinfo ...30

 6. Cuinfo ...30

 7. Getfd ..30

 8. Freefd ...30

 9. Read ...30

 E. THE SEMANTIC STACK30

 F. MULTIPLE-LINE INPUT PROCESSING32

 IV. SYSTEM TERMINALS34

 V. PARSER VARIABLES41

 VI. ERROR CORRECTION54

 A. THE ERROR STRING54

 B. SPELLING CORRECTION54

 ii

 C. ERROR REPLACEMENT55

 D. RETRYING AFTER ERROR CORRECTION55

 E. ERROR HELP ..55

 VII. HELP FILES ...57

 A. HELP FILE FORMAT57

 B. USING THE HELP MECHANISM57

 VIII. USING THE TABLE GENERATOR AND PARSER59

 A. RUNNING THE TABLE GENERATOR59

 B. TABLE GENERATOR OPTIONS59

 C. TABLE GENERATOR OUTPUT61

 1. Listings ...61

 2. Object Program61

 3. Declarations62

 D. PLUS SOURCE LIBRARY63

 1. Parser Procedures64

 2. Parse_Goal_Type64

 3. Semantic_Procedure_Type64

 4. Other Procedure Types64

 5. Parse_Trace_Type65

 6. Parse_String_Type65

 E. RUNNING THE PARSER65

 F. PARSER TRACING65

 APPENDIX A - TABLE GENERATOR INPUT LANGUAGE67

 APPENDIX B - EXAMPLES70

 A. THE GRAMMAR ...70

 B. RUNNING THE TABLE GENERATOR71

 C. A PLUS PROGRAM71

 D. THE HELP FILE72

 E. RUNNING THE PROGRAM72

 F. TRACE OUTPUT ..73

 G. FORTRAN EXAMPLE77

 H. EXTERNAL GRAMMAR EXAMPLE80

 APPENDIX C - ERROR MESSAGES AND CODES82

 APPENDIX D - SUBROUTINE CALLING SEQUENCES84

 A. LINKAGE CONVENTIONS84

 B. PARAMETER PASSING84

 INDEX ...93

 UBC CLPARSER

 1

 I. INTRODUCTION ____________

 This writeup describes a facility that assists in the

 development of programs which perform some kind of syntactic

 analysis of input. Such analysis is typically found in programs

 which read input commands and must determine the command and its

 operands.

 The facility consists of two parts: a self-contained program

 called the table generator, and a library of subroutines called

 the parser.

 The table generator processes a description of the command

 language to be implemented. This description uses a notation

 which is based on BNF, with some extensions. It is similar to

 the notation frequently used in the documentation of command

 prototypes. The complete description is called a grammar and _______

 consists of a number of productions describing the elements of ___________

 the command language. The table generator produces as output an

 object deck containing syntax tables which are basically a

 digested form of the grammar. It also produces some PLUS

 declarations or Assembler equates which may be useful in writing

 the command-processing program.

 The productions define the structure of the language in terms of

 other productions and basic symbols called terminals. Each _________

 production consists of one or more alternates, and each __________

 alternate consists of one or more terms. A term may be the name _____

 of another production, a literal (keyword), a character_class _______ _________ _____

 defining an allowable sequence of characters, or a special

 predefined system_terminal. Productions also indicate points at ______ ________

 which a user-supplied semantic_routine is to be called. ________ _______

 The parser is a subroutine which attempts to parse a given

 character string by interpreting the tables produced by the

 table generator. During the process, the parser will call the

 user’s semantic routines as specified in the grammar. A semantic

 routine performs semantic__actions to save and act upon the ________ _______

 command elements that are encountered.

 The parser, starting from a given goal_symbol, attempts to match ____ ______

 the input against the grammar definition. Each term may succeed _______

 or fail. If a term succeeds, the process continues with the next ____

 term of the current alternate. If a term fails, the parser backs

 over input matched by previous terms of the alternate, and tries

 again with the next alternate of the production. If all terms of

 an alternate succeed, the production as a whole succeeds. If no

 alternate succeeds, then the production fails. During the

 process, the parser also maintains a semantic__stack which ________ _____

 contains values corresponding to various terms in the

 productions processed. Values may be placed on the stack by the

 parser or by a semantic routine.

 Introduction

 UBC CLPARSER

 2

 To use the parser one must write a grammar (using the table

 generator’s input language) to describe the syntax of the

 language to be parsed. One must then write (at least) a main

 program and semantic routine to perform the required semantic

 actions. These programs may be written in any language which

 supports either the PLUS (coding conventions) linkage or the

 OS/Fortran S-type linkage. The table generator produces extra

 output (a number of declarations) which are useful when writing

 the semantic routines in either PLUS or Assembler.

 The user’s main program will usually initialize the parser, read

 the input lines to be processed, and call the parser to analyze

 each input line. The parser then calls the user’s semantic

 routine as specified in the grammar. The user’s semantic routine

 may in turn call other routines (provided as part of the parser)

 to obtain further information about the elements that have been

 parsed.

 Most programs using the parser take one of two forms. In one

 form, the semantic routine only sets switches or builds a data

 structure representing the structure and contents of the input

 being parsed. Then, when the parser returns, the main program

 interprets the resulting information to perform the actual

 semantics of the command. In the other form, the semantic

 routine is responsible for actually performing the commands as

 they are parsed. In this case, the main program is usually

 little more than a loop, reading input and passing it to the

 parser.

 It is also possible to specify, within the grammar, points at

 which a new line is to be processed. The user’s program

 specifies a routine which the parser is to call for input, then

 calls the parser which will request input as necessary. Using

 the parser in this mode is relatively complicated and is

 generally not necessary for most applications.

 Introduction

 UBC CLPARSER

 3

 II. THE_TABLE_GENERATOR ___ _____ _________

 A grammar consists of a series of productions and declarations. ___________ ____________

 The productions and declarations may appear in any order. A

 production may be a goal_production, a nonterminal_production, ____ __________ ___________ __________

 or a terminal__production. A declaration may be a semantic ________ __________ ________

 procedure_declaration or a semantic_label_declaration. _________ ___________ ________ _____ ___________

 Each production defines a symbol called the production_name. A __________ ____

 production name is an arbitrary sequence of alphanumeric

 characters, surrounded by "<" and ">". Each production is

 terminated by a semicolon.

 A terminal production defines a "character-class" terminal by

 specifying a set of allowed characters. A nonterminal production

 defines a construct of the language in terms of other

 nonterminals and terminals. It may also specify that the

 production is defined externally, i.e., in another grammar. A

 goal production is exactly the same as a nonterminal production,

 except that it defines a top-level construct of the language--a

 "goal" of the parsing process. When the parser is called, a

 parameter specifies which goal it is to parse.

 The following sections describe the syntax of the table

 generator’s input language. Upper-case letters are used to

 denote keywords. Appendix A contains a grammar which uses the

 table generator’s input language to describe itself.

 A. TERMINAL_PRODUCTIONS ________ ___________

 A terminal production specifies the production name, the

 minimum and maximum allowed lengths, and a set of characters

 to be allowed or excluded in terminals of that type.

 It has one of the forms

 TERMINAL <symbol> IS length-specification OF strings;

 or

 TERMINAL <symbol> IS

 length-specification EXCLUDING strings;

 or

 TERMINAL <symbol> IS length-specification CHARACTERS;

 A length-specification defines an allowable length range. It

 may be given in any of the forms

 n

 n TO m

 n OR MORE

 where n and m are unsigned integers in the range 0 to 255.

 The Table Generator

 UBC CLPARSER

 4

 The set of characters allowed or excluded is given by one or

 more quoted strings and/or hexadecimal strings. A quoted

 string consists of arbitrary characters surrounded by

 quotation marks ("). If a quotation mark is to appear in the

 string, it must be doubled. A hexadecimal string consists of

 an arbitrary sequence of hexadecimal characters (0-9, A-F)

 and blanks surrounded by apostrophes.

 The third form above is used to match a number of arbitrary

 characters.

 The parser always attempts to match the longest possible

 sequence of allowed characters, subject to the maximum length

 restriction.

 Examples ________

 1) terminal <Blanks> is 0 or more of " ";

 This matches the longest sequence of blanks.

 2) terminal <Sign> is 1 of "+-*/";

 This matches any one character from the set +, -, *, /.

 3) terminal <Special> is 1 of ’00 FF’;

 This matches either of the hexadecimal values 0 or FF.

 4) terminal <Nonblank> is 0 or more excluding " ";

 This matches an arbitrary sequence of nonblank characters.

 5) terminal <Rem> is 0 or more characters;

 This matches all possible characters; i.e., the remainder

 of the input line.

 B. NONTERMINAL_PRODUCTIONS ___________ ___________

 A nonterminal production specifies the production name, and

 one or more alternates defining possible forms of the

 construct. The alternates are separated by the word OR.

 Each alternate consists of one or more terms specifying the

 constituent elements of the alternate.

 Thus the overall form of a nonterminal is:

 <symbol> IS term ...

 OR term ...

 ... ;

 The Table Generator

 UBC CLPARSER

 5

 The terms out of which an alternate is built are the

 following.

 <symbol> The name of any terminal, nonterminal or

 goal production, including the surrounding

 < >. The parser will attempt to match the

 specified production. This term succeeds

 if the production specified succeeds.

 {expression} or

 (/expression/) An arbitrary subexpression consisting of

 one or more alternates surrounded by

 braces. This is a nested production

 definition. The parser will attempt to

 match the subexpression. The term succeeds

 if any alternate within the braces

 succeeds. (/ /) may be used as a

 substitute for braces.

 [expression] or

 (expression) An arbitrary subexpression consisting of

 one or more alternates surrounded by

 square brackets. This denotes an optional

 occurrence of the nested definition. The

 parser will attempt to match the

 expression, but the term will succeed (and

 hence continue with the next term of the

 alternate containing it) regardless of

 whether the expression succeeds or fails.

 Parentheses may be used as a substitute

 for brackets.

 The subexpression may, of course, be as

 simple as a single term. For example,

 [<Sign>] denotes an optional occurrence of

 <Sign>.

 term... The ellipsis (...) following a term means

 that it may be repeated. If the term

 succeeds, then the parser will retry it on

 the remaining input until it fails. The

 parser then continues with the next term

 of the alternate containing this term.

 If the ellipsis follows an optional term

 (i.e., [expression]...), then the effect

 is to match zero or more occurrences of

 expression; in this case the term... will

 always succeed. If it follows a

 nonoptional term (e.g., <symbol>... or

 {expression}...), then the effect is to

 match one or more occurrences of the

 element; the alternate will fail if the

 The Table Generator

 UBC CLPARSER

 6

 term doesn’t match the first time.

 literal-symbol A literal symbol may be specified as a

 quoted string (quotation marks within the

 literal are doubled) or a hexadecimal

 string (surrounded by apostrophes). This

 term succeeds if the next characters in

 the input match the literal.

 The parser normally works with an

 upper-case version of the text being

 parsed. Hence literal symbols should

 usually contain upper-case letters only.

 Case-dependent parsing can be performed by

 setting the parser variable Case_Convert.

 |literal-symbol| Vertical bars surrounding a literal symbol

 indicate that an arbitrary initial

 substring (including zero characters) of

 the literal may be matched. This term

 always succeeds, matching the longest

 substring it can.

 This is most often used in conjunction

 with a literal symbol to indicate

 allowable abbreviations of keywords in the

 language being defined. For example

 "SYS"|"TEMSTATUS"| matches the input SYS

 followed by any substring of TEMSTATUS.

 #symbol Indicates a point at which a user semantic

 routine should be called. The grammar must

 contain one or more procedure declarations

 (see section E in this chapter) which

 specify the procedures to be called. The

 table generator associates a value with

 each symbol used in a semantic call, and

 passes this value as a parameter to the

 semantic routine.

 The semantic routine returns a Boolean

 result indicating whether the term should

 succeed (True) or fail (False).

 symbol(parameters)*

 or *symbol* The symbol specified must be defined as a

 system terminal name. The parser will

 attempt to match the specified system

 terminal. See Chapter IV for a description

 of currently implemented system terminals.

 Certain system terminals expect

 parameters; these are specified in the

 The Table Generator

 UBC CLPARSER

 7

 grammar following the symbol name.

 Parameters may be integers, quoted

 character strings, or hexadecimal strings.

 The table generator distinguishes between

 the use of a symbol as a system terminal

 name and possible use of the same symbol

 in a production name or semantic action

 name. Thus the user need not be aware of

 exactly what symbols have been defined as

 system terminals, and new ones can be

 added without affecting existing grammars.

 GO TO <symbol> This item causes the parser to continue

 processing from the first term of the

 first alternate of the specified

 production (which must be a nonterminal or

 goal production).

 It will not return to subsequent terms or

 alternates of the production containing

 it; therefore it makes sense only as the

 last term of an alternate.

 label:term Any simple term (not an expression in

 braces or brackets) may be preceded by a

 label, which is separated from the term by

 a colon. A label is an alphanumeric

 symbol.

 The table generator will associate a value

 with each label. The label is used as a

 "tag" to identify the value (if any) left

 on the semantic stack by the term. A

 semantic routine may retrieve a stacked

 value by calling Parse_Get_Stack with the

 code for the label as one of the

 parameters.

 The grammar may optionally include one or

 more label declarations (Section F below)

 specifying the symbols which are used as

 labels in productions.

 See Section E in Chapter III for details

 of the semantic stack.

 FAIL This term causes the production containing

 it to fail immediately, without attempting

 other alternates. Subsequent terms of the

 alternate containing FAIL will not be

 processed, hence it makes sense only as

 the last term of an alternate.

 The Table Generator

 UBC CLPARSER

 8

 FAIL is normally used to negate the result

 of a preceding item. That is, in the

 fragment

 <term1> FAIL

 OR <term2>

 if <term1> succeeds, then the production

 containing this fragment will fail.

 However, if <term1> fails, the parser will

 switch to the next alternate (and so the

 term FAIL is never processed).

 Note that, if FAIL is used within a nested

 production (inside {...} or [...]), then

 only that sub-production fails; the outer

 production will continue as it would for

 any other failing term.

 SUCCEED This term causes the production containing

 it to succeed immediately. Its only use is

 as the last alternate of a production,

 when it is desired that the production

 should succeed without matching any input.

 As with FAIL, if SUCCEED is used inside a

 nested production, it is only the

 sub-production that succeeds; processing

 continues in the outer production.

 READ This term is used in parsing multiple-line

 input. It always fails unless the program

 has set up an input routine by calling

 Parse_Set. If an input routine is defined,

 READ passes to the next line of the input,

 calling the input routine if the next line

 has not yet been read. It fails if an

 end-of-file indication is returned from

 the input routine.

 See Section F in Chapter III for further

 information about input routines and the

 READ term.

 FENCE This term is used to prevent the parser

 backing up from the current point in the

 parse. If a subsequent term in the

 alternate containing FENCE fails, then the

 entire parse will fail (returning from the

 parser) rather than trying other

 alternates.

 FENCE also indicates that any values left

 The Table Generator

 UBC CLPARSER

 9

 on the semantic stack by previous terms,

 and any preceding input lines, are of no

 further interest and can be discarded by

 the parser. FENCE also indicates the point

 from which parsing should be retried if

 either CORRECT or RETRY is encountered

 subsequently.

 Whenever a fenced production is completed

 successfully, the production from which it

 was called is automatically fenced at that

 point in the input. This is necessary

 because the parser has no way of retrying

 from "inside" a completed production.

 RETRY This term causes the parser to back up and

 retry the parse from the point of the last

 FENCE, or from the beginning of the input

 if there has been no FENCE.

 This normally only makes sense if the

 input has been changed by some semantic

 action (by calling Parse_Set to change one

 of the items Current_Production_Text or

 Terminal_Text). It is intended for use in

 programming error correction.

 CORRECT This term causes the parser to attempt

 error correction. It is generally used as

 the last of a list of alternates. The

 parser will attempt to replace some part

 of the current input, then will retry the

 parse from the beginning, or from the

 position of the last FENCE.

 The error recovery actions are described

 in Chapter VI. Note that parser variables

 may be used to disable error correction.

 QUIT This term causes the parser to abandon the

 current parse and return to the program

 that called it. QUIT is generally used as

 the last of a list of alternates, perhaps

 following a semantic action to issue an

 error message.

 The parse will return failure (i.e.,

 False) if this term is executed.

 The Table Generator

 UBC CLPARSER

 10

 Examples ________

 1. <Expression> is <Term> [{"+" or "-"} <Term>]...

 Defines an "expression" to be a sequence consisting of a

 "term" followed by zero or more repetitions of (operator,

 term) pairs, where an operator may be either "+" or "-".

 2. <Term> is *Blanks* Expr:*Integer* *Blanks* #Copy_Top

 or *Blanks* "(" Expr:<Expression> ")" *Blanks*

 #Copy_Top;

 The system terminal *Blanks* matches zero or more blanks,

 and *Integer* matches an integer. Thus this production

 matches either an integer or a parenthesized expression,

 optionally surrounded by blanks.

 In each case, the term corresponding to the value of the

 expression is labelled with "Expr:", and the semantic

 action Copy_Top is applied at the end. This will

 presumably fetch the value of the labelled term, and leave

 it on top of the semantic stack.

 3. <Command> is "ST"|"OP"| *Blanks* *End_Of_Line*;

 End_Of_Line succeeds only at the end of the input. Hence

 this production matches "STOP" (or a substring), followed

 by zero or more blanks only.

 4. <Commmand> is

 "LIST" {" " *Blanks* or *End_Of_Line*} <Rem>;

 If <Rem> is defined to match the rest of the input line as

 in the previous section, then this production matches LIST

 followed by an optional operand. If the operand is given,

 then there must be at least one blank separating it from

 the operand. Note that, if LIST is followed either by

 blanks only, or by nothing, the string matched by <Rem>

 will be null.

 C. EXTERNAL_NONTERMINAL_PRODUCTIONS ________ ___________ ___________

 An alternative form of nonterminal production is used to

 specify that the production is defined in another grammar.

 The external production has the form:

 <Symbol> IS EXTERNAL;

 or

 <Symbol> IS EXTERNAL extname;

 If "extname" is given, it specifies the external (loader)

 name defining the production. It may be specified as either

 The Table Generator

 UBC CLPARSER

 11

 an alphanumeric symbol, or an arbitrary quoted string. If it

 is not given, then the production name "symbol" is used. If

 the symbol is longer than eight characters, the external name

 is generated by taking the first four characters and the last

 four characters.

 The external name must be defined as the entry point name for

 a goal in some other grammar, as described in the next

 section.

 Example _______

 <Command> is external "CMD";

 The production <Command> is defined in another grammar by a

 goal production with the entry name "CMD".

 D. GOAL_PRODUCTIONS ____ ___________

 A goal production is just like a nonterminal production,

 except it is preceded by the word GOAL. Each goal production

 defines an entry point in the object deck produced by the

 table generator. A goal name is passed as a parameter when

 the parser is called, to indicate the starting point for the

 parse. A goal name may also be used from another grammar to

 invoke the production as a subgrammar.

 The external symbol for the entry point may be given

 explicitly in the form

 GOAL <symbol> ENTRY extname IS alternates;

 where, as before, extname may be an alphanumeric symbol or an

 arbitrary quoted string. If extname is not given, the

 production name "symbol" is used. Goal productions may also

 be used like nonterminal productions within the same grammar,

 as terms in the definitions of other productions.

 Example _______

 goal <Command> entry "CMD"

 is "ST"|"OP"| #Stop

 or "HE"|"LP"| *Blanks* *Help_Command*;

 defines <Command> to be the goal, with external symbol CMD. A

 command may be either STOP or HELP followed by a help

 command.

 The Table Generator

 UBC CLPARSER

 12

 E. SEMANTIC_PROCEDURE_DECLARATIONS ________ _________ ____________

 A procedure declaration is used to specify what semantic

 procedure is to be called for the various semantic actions

 used in the grammar.

 There are two forms of procedure declaration:

 PROCEDURE extname FOR ALL;

 or

 PROCEDURE extname FOR symbol-list;

 In each case, extname is the external (loader) symbol for the

 semantic routine to be called. It may be either an

 alphanumeric symbol, or a quoted string. If it is longer than

 eight characters, the table generator will form an external

 name by taking the first four and last four characters.

 The first form specifies that the procedure is to be called

 for all semantic actions used in the grammar. If this appears

 in the grammar, then it must be the only procedure

 declaration; the second form may not also be used.

 The second form specifies a list (separated by commas) of

 symbols that are used as semantic action names in the

 grammar. The specified procedure will be called for each

 action in the list. There may be any number of such

 declarations in the grammar. However, if this form is used,

 every semantic action must be named in some procedure _____

 declaration. A semantic action may only appear in one list.

 One of the parameters of a call to a semantic procedure is a

 code for the specific semantic action to be performed. The

 table generator will associate a code with each semantic

 action name. If the first form of declaration is used, the

 codes will be assigned in alphabetical order of the symbols,

 starting from zero. If the second form is used, the codes are

 assigned in the order the symbols appear in the symbol list,

 starting from zero for the first symbol in each list.

 The table generator will also produce PLUS declarations or

 Assembler equates specifying the codes assigned. These can be

 incorporated into the semantic routine. For languages other

 than PLUS or Assembler, it is advisable to specify all

 semantic action names in a declaration, so that the

 association between symbols and values is fixed by the person

 writing the grammar and doesn’t change if the grammar is

 modified.

 By default, the parser will perform an R-type call to the

 semantic routine, with the parameters contained in registers.

 A Fortran-compatible S-type call may be requested in a

 procedure declaration:

 The Table Generator

 UBC CLPARSER

 13

 PROCEDURE extname S-TYPE FOR ...

 R-TYPE may also be specified explicitly if desired.

 Example _______

 procedure Cmdsem for Mts_Command, Stop_Command,

 Print_Result;

 procedure Exprsem for Operation, Copy_Top;

 The procedure Cmdsem will be called for semantic actions

 Mts_Command, Stop_Command and Print_Result in the grammar.

 The codes passed for the semantic actions will be 0, 1, and 2

 respectively.

 The procedure Exprsem will be called for actions Operation

 and Copy_Top, with codes 0 and 1.

 F. SEMANTIC_LABEL_DECLARATIONS ________ _____ ____________

 A grammar may also include an optional label declaration:

 LABEL symbol-list;

 where "symbol-list" is a list of symbols, separated by

 commas, that are used as semantic labels in the grammar.

 As with semantic action symbols, the table generator assigns

 a code to each label. If the label declaration appears, these

 codes will be assigned, in the order that the symbols appear

 in the list. Labels which are not defined in a LABEL

 declaration are assigned codes in alphabetical order.

 The table generator will produce PLUS declarations or

 Assembler equates defining the codes assigned. The use of a

 label declaration is recommended if the parser is used from

 other languages, since it fixes the association between

 symbols and the codes used.

 Example _______

 label Expr, Opnd, Op;

 defines the three symbols to be labels which should be

 assigned codes of 0, 1, and 2 respectively.

 The Table Generator

 UBC CLPARSER

 14

 III. THE_PARSER ___ ______

 A. PARSER_CONTROL_BLOCK ______ _______ _____

 Information about the current state of the parse is

 maintained in a data structure called a Parser Control Block.

 The routine Parse_Initialize or Parse_Initialize_Nonmts

 allocates and initializes a Parser Control Block, and returns

 its address to the caller. This address is then passed to the

 parser and other parser routines to provide the required link

 between them. By calling the initialization routine multiple

 times, it is possible to have a number of completely

 independent parsing processes going on simultaneously.

 A user’s semantic routine should not examine the Parser

 Control Block in any way¹ However, much of the information

 contained in it may be accessed (changed or retrieved) by

 calling the routines Parse_Set and Parse_Get. These routines

 take as a parameter a code for the item to be accessed. The

 descriptions of parser variables in Chapter V give the

 symbolic names that would be used from a PLUS program, and

 the equivalent numeric values that would be used from

 Assembler or other languages.

 B. PARSER_SUBROUTINE_DESCRIPTIONS ______ __________ ____________

 This section describes the subroutines provided by the

 parser. Appendix B contains a number of examples illustrating

 how the routines are used from PLUS or Fortran programs.

 Most of the subroutines have two entry points. One provides a

 standard OS/Fortran subroutine linkage, with an S-type

 parameter list. The second entry point provides for the

 subroutine linkage used by PLUS and the Assembler coding

 conventions used internally in MTS. These entries use R-type

 parameter passing. Details of the linkage and parameter

 passing for all routines are given by Appendix D.

 The subroutine descriptions refer to the routines by

 descriptive names rather than the actual external symbols

 used in linking to the subroutines. The external symbol names

 for the two entry points are given in each subroutine

 description. The descriptive names would be used by a PLUS

 program which calls the subroutines. (Declarations for these

 names are contained in a source library for using the parser

 from PLUS.)

 ¹ Although for debugging purposes, it may be useful to know that

 the first eight bytes of a Parser Control Block always contain

 "PARSERCB", and the 17th byte contains the trace flag.

 The Parser

 UBC CLPARSER

 15

 1. Parse_Initialize _____ __________

 Purpose: Allocates and initializes a Parser Control

 Block.

 Parameters: One only. An arbitrary "user psect

 pointer" which is passed to the semantic

 procedures called from the parser.

 Result: The address of the allocated and

 initialized Parser Control Block.

 External Names: R-type entry: CPINITCC

 S-type entry: CPINIT

 Description: This routine allocates a Parser Control

 Block and initializes it.

 2. Parse_Initialize_Nonmts _____ __________ ______

 Purpose: Allocates and initializes a Parser Control

 Block without requiring the MTS

 environment.

 Parameters: 1) An arbitrary "user psect pointer" which

 is passed to the semantic procedures

 called from the parser.

 2) A routine that the parser may call to

 dynamically allocate storage.

 3) A routine that the parser may call to

 release storage.

 Result: The address of the allocated and

 initialized Parser Control Block.

 External Names: R-type entry: CPINMCC

 S-type entry: CPINM

 Description: This routine allocates a Parser Control

 Block and initializes it. Parameters

 specify getspace/freespace routines that

 may be used by this call, or by subsequent

 calls to any of the parser routines.

 When Parse_Initialize_Nonmts is used,

 error correction and spelling correction

 are not available, unless other system

 services are also supplied.

 The system services used by the parser are

 described in Section D of this chapter.

 The Parser

 UBC CLPARSER

 16

 3. Parse _____

 Purpose: To parse a given sequence of characters.

 Parameters: 1) The address of the Parser Control Block

 (as returned from Parse_Initialize).

 2) The external name of the parsing goal.

 3) The address of the first byte of the

 input to be parsed.

 4) The number of bytes, starting at the

 address given, that are to be parsed.

 Result: A Boolean. True if the parse succeeded;

 False if it failed.

 External Names: R-type entry: CPARSECC

 S-type entry: CPARSE

 Description: This routine parses the given string,

 starting from the specified goal. The goal

 determines which syntax table gets used,

 which in turn determines which semantic

 routines are called during the parsing

 process.

 The routine returns True if the specified

 goal was successfully parsed, False

 otherwise. Whenever False is returned, an

 error code and error message will have

 been set as the values of Last_Error_Code

 and Last_Error_Message. These may be

 retrieved by calling Parse_Get. The

 possible codes and corresponding messages

 are listed in Appendix C.

 If a null pointer is passed as the third

 parameter, the parser will initially begin

 parsing with a null string (length 0)

 input. (The fourth parameter can be

 omitted in this case.) This is generally

 only useful in grammars that use the READ

 term to obtain more input. For such

 grammars, an input subroutine must be

 specified with a call to Parse_Set.

 The parser copies the input specified by

 parameters 3 and 4. Hence the user program

 does not need to preserve these locations

 during the entire parsing process.

 The Parser

 UBC CLPARSER

 17

 Parse normally works with an upper case

 version of the text passed, so that the

 parsing is done on a case-independent

 basis. The semantic routines can obtain

 either the upper-case or the original case

 versions of the parsed items. Parse_Set

 can be used to set the variable

 Case_Convert if it is desired to parse the

 original, unconverted text.

 The parser may be reentered recursively

 from a semantic routine with a new input

 to parse, using the same parser control

 block. The state of the previous parse

 will be stacked, and will resume when the

 semantic routine returns. The second call

 may leave a value on the semantic stack

 which becomes the result left by the

 semantic action.

 4. Parse_Terminate _____ _________

 Purpose: Releases a Parser Control Block and

 associated storage.

 Parameters: One only. The address of the Parser

 Control Block.

 Result: A Boolean. False if any problems were

 encountered.

 External Names: R-type entry: CPTERMCC

 S-type entry: CPTERM

 Description: This routine releases the parser control

 block and other associated storage, and

 performs any other required cleaning up.

 5. Parse_Set _____ ___

 Purpose: To set various parser variables.

 Parameters: 1) The address of the Parser Control

 Block.

 2) A code specifying the item to be set.

 From a PLUS program this will be a value

 of type Parse_Item_Type. From other

 languages, it will be an appropriate

 numeric code.

 3) A variable containing the new value. In

 a PLUS program, this is specified as a

 The Parser

 UBC CLPARSER

 18

 "reference value parameter", allowing the

 use of either a variable or a constant.

 4) For certain codes, a fourth parameter

 is required. This specifies the number of

 bytes represented by parameter 3.

 Currently, this is only used when setting

 the variable Semantic_Result.

 Result: A Boolean. False if the specified item is

 one that cannot be set.

 External Names: R-type entry: CPSETCC

 S-type entry: CPSET

 Description: This routine is used to set parser

 variables. It may be called before

 beginning parsing, or from a semantic

 routine during the parsing process. The

 list of items that may be specified is

 described in Chapter V.

 Note that the type and length of the third

 parameter variable depend on which item is

 being set. Some care must be taken since

 this procedure is unable to do much

 checking. It is important to be sure that

 the correct number of bytes are passed,

 and that the correct reference level is

 used. The requirements are described in

 Chapter V.

 6. Parse_Get _____ ___

 Purpose: To get the current value of various parser

 variables.

 Parameters: 1) The address of the Parser Control

 Block.

 2) A code specifying the item to be

 returned. From a PLUS program this will be

 a value of type Parse_Item_Type. From

 other languages, it will be an appropriate

 numeric code.

 3) A variable to be assigned the value.

 4) The number of bytes of memory at the

 location specified by parameter 3. The

 parser will modify at most the specified

 number of bytes.

 The Parser

 UBC CLPARSER

 19

 5) Certain parser variables, representing

 portions of the input text, may be

 returned in either the original mixed-case

 form, or an upper-case-only form.

 Parameter 5 is required only for these

 items. It should be a Boolean (Fortran

 LOGICAL*4) True to return the upper-case

 form, False for the original form.

 The descriptions of the parser variables

 in Chapter V indicate whether this

 parameter is required.

 Result: An integer, specifying the actual number

 of bytes required for the item requested.

 A value of -1 means the requested item is

 unavailable.

 If the value returned is bigger than the

 integer given as parameter 4, then the

 returned value will have been truncated.

 External Names: R-type entry: CPGETCC

 S-type entry: CPGET

 Description: This routine may be called before

 beginning parsing, or from a semantic

 routine during a parse. It is used to

 access items from the parser.

 The list of items that may be specified is

 described in Chapter V. They include

 various options that may be set by the

 user, the values of system terminals that

 have been processed, and substrings of the

 input text corresponding to the current

 state of the parse. Some items can only be

 accessed when Parse_Get is called from a

 semantic routine (e.g., the text

 corresponding to the current production).

 Items corresponding to system terminals

 can only be accessed if there is an

 appropriate element on the semantic stack.

 Note that the type of variable expected

 for the third parameter depends on which

 item is being requested. Some care is

 required, since the procedure is unable to

 do much checking. The fourth parameter to

 Parse_Get specifies the number of bytes of

 memory occupied by the third parameter, as

 protection against unintentionally

 overwriting other storage.

 The Parser

 UBC CLPARSER

 20

 7. Parse_Get_Stack _____ ___ _____

 Purpose: To retrieve a value that has been left on

 the semantic stack by a previous term of

 the current production.

 Parameters: 1) The address of the Parser Control

 Block.

 2) A fullword numeric code for the label

 of the stack element to be returned. For

 PLUS or Assembler programs, symbolic

 declarations for the labels used in the

 grammar will be produced by the table

 generator.

 3) A variable to be assigned the value.

 4) The number of bytes of memory at the

 location specified by parameter 3. The

 parser will modify at most the specified

 number of bytes.

 5) This parameter is required only when

 the stack element to be returned is a

 portion of the input text. This occurs

 when the stack entry corresponds to a

 terminal or a literal in the grammar.

 These values may be returned in either the

 original mixed-case form, or an

 upper-case-only form. Parameter 5 should

 then be a Boolean (Fortran LOGICAL*4) True

 to return the upper-case form, False for

 the original form.

 Result: An integer, specifying the actual number

 of bytes required for the item requested.

 A value of -1 means there is no element

 with the specified label among the stack

 elements for the current production.

 If the value returned is bigger than the

 integer given as parameter 4, then the

 returned value will have been truncated.

 External Names: R-type entry: CPGSTKCC

 S-type entry: CPGSTK

 Description: This routine may be called only from a

 semantic routine during a parse. It is

 used to access values left on the semantic

 stack during parsing.

 The Parser

 UBC CLPARSER

 21

 The routine searches the values left on

 the stack by preceding terms of the

 current production, starting from the

 leftmost term. It returns the first stack

 entry found with the label specifed by

 parameter 2. The entry found is removed _______

 from the stack, so that it will not be

 found by subsequent calls to

 Parse_Get_Stack with the same label code.

 See Section E in this chapter for further

 information about the operation of the

 semantic stack, and the interaction of the

 grammar and semantic routines.

 Note that the type of variable expected

 for the third parameter depends on what is

 on the stack at the position requested.

 Some care is required, since the procedure

 is unable to do much checking. The fourth

 parameter to Parse_Get_Stack specifies the

 number of bytes of memory occupied by the

 third parameter, as protection against

 unintentionally overwriting other storage.

 The routine Parse_Get_Stack_Size can be

 used to determine the number of bytes

 required, before calling Parse_Get_Stack.

 8. Parse_Get_Stack_Size _____ ___ _____ ____

 Purpose: To determine the size (in bytes) of a

 value that has been left on the semantic

 stack by a previous term of the current

 production.

 Parameters: 1) The address of the Parser Control

 Block.

 2) A fullword numeric code for the label

 of the stack element to be returned. For

 PLUS or Assembler programs, symbolic

 declarations for the labels used in the

 grammar will be produced by the table

 generator.

 Result: An integer, specifying the number of bytes

 required for the item requested. A value

 of -1 means there is no element with the

 specified label among the stack elements

 for the current production.

 The Parser

 UBC CLPARSER

 22

 External Names: R-type entry: CPGSSCC

 S-type entry: CPGSS

 Description: This routine may be called only from a

 semantic routine during a parse. It is

 used to determine the size of a value left

 on the semantic stack during parsing.

 The routine searches the values left on

 the stack by preceding terms of the

 current production, starting from the

 leftmost term. It returns the size of the

 first stack entry found with the label

 specifed by parameter 2. The entry found

 is not removed from the stack. Thus ___

 Parse_Get_Stack_Size indicates the number

 of bytes required for the value that would

 be returned by a call to Parse_Get_Stack.

 9. Parse_Reset _____ _____

 Purpose: Resets a Parser Control Block and

 associated memory to indicate no parse is

 in progress.

 Parameters: One only. The address of the Parser

 Control Block.

 Result: A Boolean. False if any problems were

 encountered.

 External Names: R-type entry: CPRSETCC

 S-type entry: CPRSET

 Description: This routine must be called if, for any

 reason, the parsing process is interrupted

 and not allowed to return normally. For

 example, if an attention-handling routine

 wishes to abort the parser and branch

 somewhere else, it should call Parse_Reset

 to reset the Parser Control Block to the

 initial state with no parse in progress

 Parse_Reset also does some cleaning up, so

 it may be good practice to call it

 occasionally in other situations. Various

 data structures in the parser are allowed

 to grow dynamically as necessary during

 parsing. Parse_Reset shrinks these

 structures back to the original size. It

 also releases the Fdub acquired for the

 help file if any HELP requests have been

 processed.

 The Parser

 UBC CLPARSER

 23

 Note that, if the parser is being used

 recursively, Parse_Reset will clear the

 state of all parses currently in progress

 (using the same Parse_Control_Block).

 10. Current_Position _______ ________

 Purpose: To access the current scan position.

 Parameters: One only. The address of the Parser

 Control Block.

 Result: A fullword integer specifying the scan

 position, 0-relative.

 External Names: R-type entry: CPCURPCC

 S-type entry: CPCURP

 Description: This routine may be called from a semantic

 routine to determine the position of the

 next character to be matched by the

 parser. It returns the offset from the

 beginning of the input string.

 The routine is equivalent to calling

 Parse_Get for the variable Scan_Position.

 11. Command_Text _______ ____

 Purpose: To retrieve the text being parsed.

 Parameters: 1) The address of the Parser Control

 Block.

 2) A Boolean. True means the upper-case

 version should be returned; False means

 the original, unmodified version.

 Result: A character string containing the text

 being parsed. See Appendix D for calling

 sequence details.

 External Names: R-type entry: CPCTXTCC

 S-type entry: none

 Description: This routine may be called from a semantic

 routine to retrieve the parser text.

 Use of this routine is similar to calling

 Parse_Get for the item Input_Text.

 However, Command_Text will return at most

 255 bytes.

 The Parser

 UBC CLPARSER

 24

 Note there is no S-type (Fortran-callable)

 version of this routine.

 12. Production_Text __________ ____

 Purpose: To retrieve the text corresponding to the

 current production.

 Parameters: 1) The address of the Parser Control

 Block.

 2) A Boolean. True means the upper-case

 version should be returned; False means

 the original, unmodified version.

 Result: A character string containing the text.

 See Appendix D for calling sequence

 details.

 External Names: R-type entry: CPPTXTCC

 S-type entry: none

 Description: This routine may be called from a semantic

 routine to retrieve the portion of the

 input text corresponding to the production

 currently being performed. That is, it

 returns the text from the scan position

 when the production was started up to the

 current scan position.

 Use of this routine is similar to calling

 Parse_Get for Current_Production_Text,

 except that at most 255 bytes will be

 returned.

 Note there is no S-type (Fortran-callable)

 version of this routine.

 13. Last_Terminal_Text ____ ________ ____

 Purpose: To retrieve the text for the last terminal

 that was successfully scanned.

 Parameters: 1) The address of the Parser Control

 Block.

 2) A Boolean. True means the upper-case

 version should be returned; False means

 the original, unmodified version.

 The Parser

 UBC CLPARSER

 25

 Result: A character string containing the text.

 See Appendix D for calling sequence

 details.

 External Names: R-type entry: CPLTTCC

 S-type entry: none

 Description: This routine may be called from a semantic

 routine to retrieve the value of the last

 character-class terminal that was scanned.

 Use of this routine is similar to calling

 Parse_Get for the item Terminal_Text,

 except that at most 255 bytes will be

 returned.

 Note there is no S-type (Fortran-callable)

 version of this routine.

 14. Parse_Help _____ ____

 Purpose: To print an entry from the help file.

 Parameters: 1) The address of the Parser Control

 Block.

 2) A character string (in the form of a

 halfword length followed by the specified

 number of characters), to be looked up in

 the help file.

 Result: A Boolean. True if the specified string

 was found in the help file directory and

 the corresponding member printed; False if

 it was not found.

 External Names: R-type entry: CPHELPCC

 S-type entry: CPHELP

 Description: This routine may be called to print out an

 entry from the help file. The help file

 must have been previously specified by

 calling Parse_Set to set the parser

 variable Help_File_Name.

 See Chapter VII for details of help file

 format and processing.

 C. USER-SUPPLIED_SUBROUTINES _____________ ___________

 This section describes the routines called by the parser, but

 written by the user. Every program will have one or more

 semantic routines. The attention test routine and parser

 input routine are only required for some applications.

 The Parser

 UBC CLPARSER

 26

 1. Semantic_Routines ________ ________

 Purpose: To perform requested semantic actions

 encountered during the parse.

 Parameters: 1) The address of the Parser Control

 Block.

 2) The user psect pointer specified in the

 call to Parse_Initialize. (Or as set by a

 subsequent call to Parse_Set.)

 3) A fullword containing a code for the

 semantic action to be performed.

 Result: A Boolean. False if the semantic action

 has failed.

 Description: This routine performs any desired

 processing to save or act upon the grammar

 elements that have been parsed.

 It is passed, as parameters: a code for

 the semantic action to be performed; the

 Parser Control Block address; and the user

 psect pointer. (The values used for

 semantic actions are defined by the

 declarations produced by the table

 generator.)

 The value returned determines whether the

 parse continues with the current alternate

 (True), or fails and tries the next

 alternate (False).

 A semantic routine can call Parse_Get or

 Parse_Get_Stack to obtain information

 about the elements that have been scanned.

 The user psect pointer can be used to pass

 the address of a storage area to the

 semantic routines. This may be needed to

 record the various components of a command

 as they are identified, to communicate

 between semantic actions, etc. In many

 situations, a program will just use global

 storage for this, and will not need to use

 the psect pointer.

 Semantic routines may also communicate by

 saving values on the semantic stack for

 retrieving during later semantic actions.

 See Section E in this chapter.

 The Parser

 UBC CLPARSER

 27

 Note that semantic procedures may be

 called with either an S-type or R-type

 parameter list, as specified in the

 grammar. Linkage details are given in

 Appendix D.

 2. The_Attention-Testing_Routine ___ _________________ _______

 Purpose: To test whether an attention interrupt has

 occurred.

 Parameters: One only. The user psect pointer specified

 in the call to Parse_Initialize. (Or as

 set by a subsequent call to Parse_Set.)

 Result: A Boolean. True if an attention has

 occurred; False if not.

 Description: The user program may provide an

 attention-testing routine by calling

 Parse_Set to set the parser variable

 Attention_Test_Routine.

 If such a routine has been provided, the

 parser will call it at appropriate points

 during error recovery, help file

 processing, and READ processing, to

 determine whether the attention key has

 been pressed.

 3. The_Parser_Input_Routine ___ ______ _____ _______

 Purpose: To obtain another input line for a READ

 term in the grammar.

 Parameters: 1) The address of the Parser Control

 Block.

 2) The user psect pointer specified in the

 call to Parse_Initialize. (Or as set by a

 subsequent call to Parse_Set.)

 3) A buffer into which the input should be

 read.

 4) The length of the buffer provided by

 parameter 3.

 Result: An integer specifying the actual length of

 the next input record. -1 should be

 returned if end-of-file has been received.

 The Parser

 UBC CLPARSER

 28

 Description: The user program may provide an input

 routine by calling Parse_Set to set the

 parser variable Input_Routine.

 If such a routine has been provided, the

 parser will call it when input lines are

 required as a result of READ terms in the

 grammar.

 The parser provides a buffer into which

 the input line should be read. The length

 of this buffer can be controlled by

 setting the parser variable

 Input_Buffer_Length via a call to

 Parse_Set. The buffer passed to the input

 routine will always be at least that long.

 The default value is 255.

 If the buffer provided for a call to read

 is not big enough (perhaps as a result of

 passing to another input file or device

 with longer records), the input routine

 can indicate this by returning the length

 required. In this case, the parser will

 repeat the call to the input routine with ______

 a new, bigger buffer. If the input routine

 wants subsequent calls to also provide the

 larger buffers, it should reset

 Input_Buffer_Length.

 See Section F in this chapter for further

 explanation of the use of parser input

 routines.

 D. SYSTEM_SERVICES_USED ______ ________ ____

 The parser uses a small number of system services during its

 processing. Normally, regular MTS system subroutines are

 used. However, it is possible to replace any of the routines

 with functionally equivalent ones. Options to the Parse_Get

 subroutine can be used to specify the routines to be called.

 When the parser is initialized with the

 Parse_Initialize_Nonmts routine, substitute getspace and

 freespace routines are provided as parameters. The other

 routines are set to Null, indicating the functions they are

 used for are not available. For the most part, other

 subroutines are required only for error correction and help

 processing.

 The following descriptions specify the system subroutines

 called by the parser, and the purposes for which they are

 required. For details of the calling sequences of system

 The Parser

 UBC CLPARSER

 29

 subroutines, see the MTS system subroutine descriptions.

 1. Getspace ________

 This is used to allocate storage as required by the

 parser. It is the only system subroutine that is

 absolutely necessary when using the parser.

 If a routine other than MTS’s Getspace is to be used, it

 is normally specified by using the non-MTS initialization

 routine, and passing the Getspace substitute as a

 parameter. The routine to call can also be changed with

 Parse_Set by setting the parser variable Getspace_Routine.

 The parser will pass a value of zero for the first

 parameter on all calls to the getspace routine.

 The MTS Getspace routine does not require that R13 point

 to a save area. However, all calls from the parser will

 provide a save area (in fact a stack) in R13, except if ______

 the S-type initialization entry CPINM is used.

 2. Freespace _________

 This is used to release space formerly allocated by

 calling Getspace.

 If a routine other than MTS’s Freespac is to be used, it

 is normally specified by using the non-MTS initialization

 routine, and passing the Freespac substitute as a

 parameter. The routine to call can also be changed with

 Parse_Set by setting the parser variable

 Freespace_Routine.

 The parser will pass a value of zero for the first

 parameter on all calls to the freespace routine.

 If Null is specified as a freespace routine, the parser

 will function correctly, but will be unable to release any

 space it acquires.

 The MTS Freespac routine does not require that R13 point

 to a save area. However, all calls from the parser will

 provide a save area (in fact a stack) in R13, except if ______

 the S-type initialization entry CPINM is used.

 3. Guser _____

 Guser is used only to get confirmations or replacement

 strings during error correction. Hence it is required only

 for grammars that include CORRECT terms.

 The Parser

 UBC CLPARSER

 30

 4. Sercom ______

 Sercom is used for issuing prompts during error

 correction, and for printing help information.

 Certain serious error conditions also result in a message

 to Sercom. However, if Sercom is not defined, the parser

 will continue without issuing these messages (but

 successful continuation may be doubtful).

 5. Guinfo ______

 Guinfo is used to obtain the prefix string during prompts

 issued for error recovery.

 If Guinfo isn’t available, operation will continue

 normally without changing the prefix.

 6. Cuinfo ______

 Cuinfo is used to change the prefix string during prompts

 issued for error recovery.

 If Cuinfo isn’t available, operation will continue

 normally without changing the prefix.

 7. Getfd _____

 Getfd is used to obtain an Fdub for the help file during

 help processing. It is also used to get an Fdub for parsed

 Fdname system terminals, if Parse_Get is called with the

 option Parsed_Fdub.

 If the routine is not available, then help processing and

 Parsed_Fdub will not be available.

 8. Freefd ______

 Freefd is used to free the Fdub obtained for the help

 file. If it is not available, the parser will continue

 normally, but Fdubs will never be released.

 9. Read ____

 Read is used to read lines of the help file. If it is not

 available, then Help cannot be used.

 E. THE_SEMANTIC_STACK ___ ________ _____

 While parsing the input text, the parser maintains a stack of

 values associated with terms from the input. This stack is

 known as the "semantic stack". The parser subroutine

 Parse_Get_Stack can be used to retrieve values from the

 The Parser

 UBC CLPARSER

 31

 stack. Certain cases of Parse_Get also access the stack.

 Various terms in a grammar may put a value on the stack, as

 follows:

 1. Every terminal and literal stacks the text that it

 matches.

 2. System terminals may place various values on the stack.

 The descriptions of the system terminals in Chapter IV

 state what, if anything, is put on the stack.

 3. A semantic action may put an arbitrary value on the stack

 by calling Parse_Set specifying one of the items:

 Semantic_Result, Semantic_Result_Word, or

 Semantic_Result_String.

 When a nonterminal production finishes, all the values

 stacked by earlier terms in the production are popped off the

 stack, then the last value is returned to the stack. Thus, ____

 generally, the values stacked during a production must be

 retrieved and processed by semantic actions later in the same

 production, except that the last value placed on the stack is

 returned as a "result" to the higher-level production. If no

 values were left by terms in the production, then no result

 is returned.

 The stack is not popped in this way when an internal nested ___

 production (a grammar expression surrounded by braces or

 brackets), is completed. Values left by terms inside the

 expression remain until the end of the enclosing production.

 Any term in a grammar may be labelled. The table generator ________

 associates a code with each symbol used as a label. A label

 code can be used as a parameter to Parse_Get_Stack in order

 to retrieve the value that was stacked by the term having

 that label.

 The same label may be used on more than one term in the

 grammar. Moreover, when a term is repeated (followed by

 "...") each successful repetition may leave a value with the

 same label. When Parse_Get_Stack is called, it searchs

 through all values left by terms from the current production.

 This search is from left-to-right in the production. It will

 return the first found with the specified label. The element

 will then be removed from the semantic stack, so that

 successive calls with the same label will access different

 elements.

 Following the return from the parser, the value (if any) of

 the goal production remains on the stack. It may be retrieved

 by calling Parse_Get with the option Parse_Result.

 The Parser

 UBC CLPARSER

 32

 Note that, if a FENCE term in the grammar is processed, all

 stacked semantic values (from the current and higher__level ______ _____

 productions) are popped off the stack.

 Example _______

 <Expr> is Opnd:<Term> [Op:<Addop> Opnd:<Term>

 Opnd:#Do_Operation]...;

 <Addop> is "+" or "-";

 These productions might be used in implementing arithmetic

 expressions.

 <Addop> leaves either a "+" or a "-" on the semantic stack,

 which is passed back as the value of the <Addop> production.

 The label Op can be used from the semantic routine for

 Do_Operation to retrieve the value.

 Note that the production <Expression> could not contain

 --- Op:{"+" or "-"} ---

 since subexpressions cannot be labelled. It could contain

 --- {Op:"+" or Op:"-"} ---

 with equivalent effect if desired.

 The semantic routine for Do_Operation will call

 Parse_Get_Stack for two entries with label Opnd, and one with

 label Op. It will perform the requested operation, then

 return the result to the semantic stack. Since the semantic

 call is itself labelled Opnd, it will serve as one of the

 <Term>’s to be retrieved during the next iteration if any.

 See the examples in Appendix B for further details.

 F. MULTIPLE-LINE_INPUT_PROCESSING _____________ _____ __________

 Normal use of the parser is to process a single line of

 input, which is specified by parameters to Parse.

 It is also possible to process multiline inputs. To do so,

 the grammar must specify the points at which line transitions

 may occur, and the program must set up an input subroutine

 that the parser can call to obtain successive lines of the

 input.

 The input subroutine is specified by calling Parse_Set for

 the option Input_Routine. The input routine functioning is

 described in Section C-3 of this chapter. Note that the

 length of the buffer provided is controlled by the Parse_Set

 option Input_Buffer_Length.

 The Parser

 UBC CLPARSER

 33

 A transition to a new input line is indicated by READ in the

 grammar. Note that this can be used in conjunction with other

 terms to produce quite flexible free-format parsing. The

 system terminals *More* and *To_Nonblank* are useful for

 constructing grammars that pass across multiple input lines.

 For example,

 "A" *To_Nonblank* "=" *To_Nonblank* "B"

 would match inputs of the form "A = B", with arbitrary

 interleaved blanks and crossing over an arbitrary number of

 input lines.

 Since an alternate in a production may fail, causing the

 parse to back up, it is necessary for the parser to buffer

 input lines which it has read so it can return to them if

 necessary. The term FENCE in the grammar instructs the parser

 not to back up past the point where it occurs. The parser

 will then release any buffered lines that have been

 completely processed. Grammars which may process long

 sequences of input lines in this way, should generally

 include FENCE at appropriate points to avoid using

 unnecessarily large amounts of memory. Note that FENCE also

 causes all previous values from the semantic stack to be

 discarded.

 The Parser

 UBC CLPARSER

 34

 IV. SYSTEM_TERMINALS ______ _________

 System terminals are predefined syntactic items for various

 useful command language elements. Most system terminals consist

 of a syntactic definition which matches some sequence of input

 characters, and a semantic action which produces a value from

 the matched characters. Values produced by system terminals are

 always left on the semantic stack. For each such system

 terminal, there is an option of Parse_Get that returns the value

 of the last one on the semantic stack. As with all other terms

 that leave values on the semantic stack, the system terminal may

 be labelled in the grammar so that Parse_Get_Stack can be used

 to access the value.

 Some system terminals require one or more parameters, which are

 specified in the grammar in parentheses following the terminal

 name. Parameters may be integers or quoted character strings,

 depending on the particular terminal. A hexadecimal string,

 surrounded by apostrophes, may be used as an alternative way of

 specifying a character string.

 Some system terminals may fail because of semantic restrictions.

 For example, *Integer* must not only be syntactically valid (an

 optional sign followed by a sequence of digits), but must also

 evaluate to an integer within the allowed range of the machine.

 If it does not, the terminal will fail. In such cases, an error

 message and error code will be set by the system terminal and

 may be retrieved by calling Parse_Get. Semantic restrictions and

 the resulting error codes and error messages are indicated in

 the following descriptions.

 The currently defined system terminals are:

 Blanks matches an arbitrary (possibly null) string

 of blanks. It always succeeds, and leaves

 nothing on the semantic stack.

 Ccid matches an MTS CCID. For the purposes of

 this terminal, an MTS CCID is considered to

 be 1 to 4 arbitrary characters, excluding

 any of the following:

 blank , ; () ’ " : =

 The result is padded to four characters, and

 left on the semantic stack. It may be

 accessed by Parse_Get by requesting the

 value of Parsed_Ccid.

 System Terminals

 UBC CLPARSER

 35

 End_Of_File is intended for use with grammars that READ

 input. It succeeds if the current input

 position is at the end of the last line of

 the input. (That is, if the input routine

 has returned end-of-file, and the parse has

 reached the end of the last line.) It leaves

 nothing on the semantic stack.

 End_Of_Line succeeds if the current scan position is the

 end of the input line, and fails otherwise.

 Nothing is left on the semantic stack.

 Fdname matches an arbitrary MTS file or device

 name.

 The result is left on the semantic stack,

 with one trailing blank appended. It may be

 retrieved by Parse_Get as the item

 Parsed_Fdname. The Parse_Get item

 Parsed_Fdub may be used to obtain an Fdub

 for the last parsed Fdname.

 Help(item-name) may be used in implementing a simple help

 facility. In order to use this, a help file

 must first be specified by setting the value

 of "Help_File_Name" via a call to Parse_Set.

 This system terminal takes a single

 parameter, which must be a character string.

 The value of the string is a name which

 should be defined in the help file

 directory. The corresponding lines of the

 file are then listed. See Chapter VII for

 details.

 This system terminal always succeeds. No

 input characters are matched, and no value

 is left on the semantic stack.

 Help_Command may be used in implementing a simple help

 facility. In order to use this, a help file

 must first be specified by setting the value

 of "Help_File_Name" via a call to Parse_Set.

 This system terminal skips over blanks, then

 matches an arbitrary sequence of nonblank

 characters. The characters matched represent

 the name of the "help item" to be looked up

 in the help file. The corresponding lines of

 the file are then listed. See Chapter VII

 for details.

 It always succeeds, and leaves nothing on

 System Terminals

 UBC CLPARSER

 36

 the semantic stack.

 Hex_Integer matches a sequence of one to eight

 hexadecimal characters (0-9, A-F). It

 converts the value to a binary integer which

 is left on the semantic stack. It may be

 retrieved with the Parse_Get option

 Parsed_Integer.

 Hex_String matches a sequence of hexadecimal characters

 (0-9, A-F) with possible interspersed blanks

 and commas. It converts the value to a

 character string which is left on the

 semantic stack. It may be retrieved with the

 Parse_Get option Parsed_String.

 Note: This terminal does not assume any

 particular delimiter for the hex characters.

 Grammars using this terminal will often want

 to specify delimiters. For example:

 <Hex> is "X’" *Hex_String* "’"

 matches hexadecimal strings of the form

 X’cccc,cccc’

 etc.

 Integer matches a signed decimal integer. The value

 of the integer is left on the semantic

 stack, and may be accessed with the

 Parse_Get item Parsed_Integer.

 If the value of the integer will not fit in

 a fullword, it will fail, after setting

 Last_Error_Code and Last_Error_Message as

 follows:

 10 "Integer out of range"

 Line_Number matches an MTS line number. The internal

 form of the line number is left on the

 semantic stack, and is available from

 Parse_Get as the value of

 Parsed_Line_Number.

 If the value of the line number is invalid,

 the terminal will fail, after setting

 Last_Error_Code and Last_Error_Message as

 follows:

 System Terminals

 UBC CLPARSER

 37

 11 "Line number has too many

 fractional digits"

 At most three are allowed.

 12 "Line number out of range"

 The converted value will not fit in a

 fullword. (Note that this terminal does not

 restrict line numbers to the range

 ±99999.999.)

 Message(string,...)

 may be used to issue a simple message from

 within a grammar. It takes zero or more

 parameters, each a quoted character string.

 The strings are written to SERCOM. It

 matches no input, and leaves nothing on the

 semantic stack. It will fail if SERCOM is

 not available, but otherwise always

 succeeds.

 More is intended for use with multiline input. It

 moves to the next input line if the parse is

 currently positioned at the end of the

 current line (calling the input subroutine

 if the line has not already been read). No

 input characters are matched. It fails if

 positioned at end-of-file.

 Nothing is left on the semantic stack.

 Primed_String matches a character string delimited by

 apostrophes (’). An apostrophe within the

 string is represented by ’’. The value of

 the string (with delimiters removed) is left

 on the semantic stack, and is available with

 the Parse_Get option Parsed_String.

 The string may be up to 32767 characters

 long. If it is longer, the semantic will

 fail, after setting Last_Error_Code and

 Last_Error_Message as follows:

 13 "String longer than 32767 characters"

 Project matches an MTS project code (department

 code). This is identical to *Ccid*, except

 that project codes are padded with blanks.

 The result is left on the semantic stack,

 and may be accessed with the Parse_Get item

 Parsed_Project.

 System Terminals

 UBC CLPARSER

 38

 Push(constant) just leaves a value on the semantic stack.

 It takes a single parameter, which may be a

 quoted string, a hexadecimal string, or an

 integer.

 The system terminal always succeeds, and no

 input is matched. The specified constant is

 left on the semantic stack. It may be

 retrieved with the Parse_Get option

 Semantic_Result_Word (if the parameter is an

 integer) or Semantic_Result_String (if the

 parameter is a string).

 Qualified_Fdname matches a file or device name with optional

 modifiers or line number range, but no

 concatenations.

 The result is left on the semantic stack,

 with one trailing blank appended. It may be

 retrieved by Parse_Get as the item

 Parsed_Fdname. The Parse_Get item

 Parsed_Fdub may be used to obtain an Fdub

 for the last parsed Fdname.

 Quoted_String matches a character string delimited by

 quotation marks ("). A quotation mark within

 the string is represented by "". The value

 of the string (with delimiters removed) is

 left on the semantic stack, and is available

 with the Parse_Get option Parsed_String.

 The string may be up to 32767 characters

 long. If it is longer, the semantic will

 fail, after setting Last_Error_Code and

 Last_Error_Message to:

 13 "String longer than 32767 characters"

 Real matches a "real number" in the form

 ±digits.digitsE±digits

 where "digits" represents decimal digits,

 and most of the pieces are optional. The

 number must contain at least one digit and

 either a decimal point or an exponent to be

 valid. There may be up to 35 decimal digits.

 The number is converted to an

 extended-precision floating-point number.

 The converted value is saved on the semantic

 stack, and can be accessed by the Parse_Get

 item Parsed_Real. The value returned by

 System Terminals

 UBC CLPARSER

 39

 either Parse_Get or Parse_Get_Stack will be

 an extended-precision number if a 16-byte

 return area is specified. It will be rounded

 to double precision if an 8-byte area is

 provided, and rounded to single precision if

 a 4-byte area is given.

 The system terminal will fail if the number

 is syntactically valid, but is outside the

 possible range of the machine. It will set

 Last_Error_Code and Last_Error_Message as

 follows:

 14 "REAL number out of range"

 Simple_Fdname matches a simple unqualified file or device

 name (no modifiers, no line number range, no

 concatenation).

 The result is left on the semantic stack,

 with one trailing blank appended. It may be

 retrieved by Parse_Get as the item

 Parsed_Fdname. The Parse_Get item

 Parsed_Fdub may be used to obtain an Fdub

 for the last parsed Fdname.

 String matches a character string delimited by

 either apostrophes or quotation marks. Any

 occurrence of the delimiter within the

 string must be doubled. The value of the

 string (with delimiters removed) is left on

 the semantic stack, and is available with

 the Parse_Get option Parsed_String.

 The string may be up to 32767 characters

 long. If it is longer, the semantic will

 fail, after setting Last_Error_Code and

 Last_Error_Message as follows:

 13 "String longer than 32767 characters"

 To_Nonblank is intended for use with multiline input. It

 skips to the next nonblank character,

 passing to new input lines as necessary.

 It always succeeds. Nothing is left on the

 semantic stack.

 Trace(integer) can be used to enable or disable the parser

 tracing from within a grammar. It requires a

 single parameter which must be an integer 0,

 1 or 2, and sets the Parse_Set option

 Parse_Trace accordingly. This can be used to

 System Terminals

 UBC CLPARSER

 40

 easily implement a trace command for use

 while debugging the program.

 It matches no input characters, and leaves

 nothing on the semantic stack.

 System Terminals

 UBC CLPARSER

 41

 V. PARSER_VARIABLES ______ _________

 This section describes the various parser variables which may be

 accessed by means of routines Parse_Set and Parse_Get. Most can

 both be set and retrieved. However, some variables can be

 retrieved but may not be changed, and some can be accessed only

 from a semantic routine. Variables corresponding to system

 terminals may be accessed only if there is a value of the

 appropriate type on the semantic stack. Parse_Get returns a

 result of -1 if the item requested is not one that can be

 retrieved.

 The third parameter to both Parse_Get and Parse_Set is of

 various types, depending on the particular parser variable being

 requested. Note that Parse_Get requires a length parameter which

 specifies how many bytes have actually been provided for the

 return area. Each of these descriptions refers to the type of

 variable required as the third parameter to Parse_Set or

 Parse_Get.

 For several of the variables below, the third parameter is

 described as "a halfword length followed by the specified number

 of characters". When used from a PLUS program, the corresponding

 parameter should normally be a varying-length, character-string

 type, with maximum length defined as at least 256. This will

 conform to the halfword-length format expected. Note also, that

 the parser variable Short_Strings can be used to modify the

 behaviour of these subroutines, such that these variables are

 set or returned by using one-byte lengths, followed by the ________

 characters. In this case, a PLUS string type with maximum length

 <=255 (such as the type Varying_String) must be used.

 The names used below are the names of PLUS constants which can

 be used as the second parameter when calling Parse_Set or

 Parse_Get from a PLUS program. The numbers following in

 parentheses can be used by the Assembler (or other language)

 programmer.

 Scan_Position (0) This variable may be accessed only from a

 semantic routine.

 The current scan position, as an offset from

 the beginning of the current input line, is

 set or returned. The scan position may be

 set either less than its current value (thus

 "backing up" in the input) or greater than

 its current value (thus ignoring the text in

 between).

 The third parameter must be a fullword

 integer variable.

 Parser Variables

 UBC CLPARSER

 42

 Production_Start_Position (1)

 This variable may be accessed only with

 Parse_Get and only from a semantic routine.

 If parsing multiple-line input, it will fail

 if the current production began in a

 different input line.

 The scan position at which the current

 production started, as an offset from the

 beginning of the input line, is returned.

 The third parameter must be a fullword

 integer variable.

 Input_Text (2) This variable may be accessed only with

 Parse_Get, and only from a semantic routine.

 A copy of the current input line is

 returned, in the form of a halfword length

 followed by the specified number of

 characters.

 The fifth parameter to Parse_Get is required

 for this variable. If the value passed is

 True, the upper-case version is returned. If

 it is False, the original mixed-case version

 is returned.

 Current_Production_Text (3)

 This variable may be accessed by Parse_Set

 or Parse_Get, but only from a semantic

 routine. If parsing multiple-line input, it

 will fail if the current production began in

 a different input line.

 When Parse_Get is called, the portion of the

 input text corresponding to the production

 currently being performed is returned. That

 is, it returns that portion of the input

 string from the scan position when the

 production was started, to the scan position

 when the semantic routine was called. The

 value is returned in the form of a halfword

 length followed by the specified number of

 characters.

 The fifth parameter to Parse_Get must be

 given to specify whether the upper-case-only

 version of the text or the original

 mixed-case version should be returned.

 When Parse_Set is called, the specified

 string replaces the portion of the input ________

 Parser Variables

 UBC CLPARSER

 43

 text corresponding to the current

 production. The third parameter consists of

 a halfword length followed by the specified

 number of characters.

 Changing the production text normally makes

 sense only if grammar specifies RETRY

 following the semantic action doing the

 replacement. With some care in the grammar,

 this is one way that a semantic routine can

 interact with the parser in performing error

 recovery.

 Terminal_Text (4) This variable may be accessed by Parse_Set

 or Parse_Get, but only from a semantic

 routine, and only if a terminal is on the

 semantic stack.

 It is used to set or retrieve the input text

 corresponding to the last terminal scanned.

 When Parse_Get is called, the value is

 returned in the form of a halfword length

 followed by the specified number of

 characters.

 The fifth parameter to Parse_Get must be

 given to specify whether the upper-case-only

 version of the text or the original

 mixed-case version should be returned.

 When Parse_Set is called, the specified

 string replaces the portion of the input ________

 text corresponding to the terminal. The

 third parameter consists of a halfword

 length followed by the specified number of

 characters.

 Changing the terminal text normally makes

 sense only if grammar specifies RETRY

 following the semantic action doing the

 replacement. With some care in the grammar,

 this is one way that a semantic routine can

 interact with the parser in performing error

 recovery.

 Literal_Text (5) This variable may be accessed by Parse_Set

 or Parse_Get, but only from a semantic

 routine, and only if a literal is on the

 semantic stack.

 It is used to set or retrieve the input text

 corresponding to the last literal scanned.

 Parser Variables

 UBC CLPARSER

 44

 When Parse_Get is called, the value is

 returned in the form of a halfword length

 followed by the specified number of

 characters.

 The fifth parameter to Parse_Get must be

 given to specify whether the upper-case-only

 version of the text or the original

 mixed-case version should be returned.

 When Parse_Set is called, the specified

 string replaces the portion of the input ________

 text corresponding to the literal. The third

 parameter consists of a halfword length

 followed by the specified number of

 characters.

 Changing the literal text normally makes

 sense only if grammar specifies RETRY

 following the semantic action doing the

 replacement. With some care in the grammar,

 this is one way that a semantic routine can

 interact with the parser in performing error

 recovery.

 Semantic_Name (6) This variable may be accessed only by

 Parse_Get, and only from a semantic routine.

 The name for the current semantic action (as

 used in the grammar), is returned in the

 form of a halfword length followed by the

 specified number of characters.

 If the syntax tables were generated with the

 /NOSYMBOLS option, the names will not be

 available. In this case, the semantic action

 number, converted to a character string,

 will be returned.

 Semantic_Result (7) This variable may be accessed with Parse_Get

 or Parse_Set, but only from a semantic

 routine.

 It is used with Parse_Set to save a value on

 the semantic stack for retrieving later with

 Parse_Get or Parse_Get_Stack. The third

 parameter is an arbitrary variable. A fourth

 parameter must also be given, for this item,

 to specify the length in bytes of the third

 parameter.

 When used with Parse_Get, it returns the top

 element from the semantic stack which was

 Parser Variables

 UBC CLPARSER

 45

 previously set with the code

 Semantic_Result. The returned value of

 Parse_Get indicates how many bytes were

 saved. (Remember, if this is greater than

 the fourth parameter of the call, the value

 has been truncated.)

 Semantic_Result_Word (8)

 This variable may be accessed with Parse_Get

 or Parse_Set, but only from a semantic

 routine.

 It is used with Parse_Set to save a value on

 the semantic stack for retrieving later with

 Parse_Get or Parse_Get_Stack.

 When used with Parse_Get, it returns the top

 element from the semantic stack which was

 previously set with the code

 Semantic_Result_Word.

 The third parameter is an arbitrary fullword

 variable.

 Semantic_Result_String (9)

 This variable may be accessed with Parse_Get

 or Parse_Set, but only from a semantic

 routine.

 It is used with Parse_Set to save a value on

 the semantic stack for retrieving later with

 Parse_Get or Parse_Get_Stack. The third

 parameter specifies the value to be saved.

 It is a variable consisting of a halfword

 length, followed by the specified number of

 characters.

 When used with Parse_Get, it returns the top

 element from the semantic stack which was

 previously set with the code

 Semantic_Result_String. The value is

 returned in the form of a halfword length

 followed by the characters.

 Parse_Result (10) This variable may be accessed only from

 Parse_Get, and only after completion of a

 parse.

 It returns the value, if any, left on the

 semantic stack at completion of the goal

 production.

 The type of variable required for the third

 Parser Variables

 UBC CLPARSER

 46

 parameter depends on what kind of value is

 left by the parse.

 Last_Error_Code (11)

 This variable may be accessed only by

 Parse_Get.

 Last_Error_Code is set by Parse before

 returning, and during the processing of some

 system terminals. It contains a code

 describing an error condition; a

 corresponding error message is always set as

 the value of Last_Error_Message. A code of 0

 always indicates no error. See Appendix C

 for a list of possible error codes and error

 messages.

 The third parameter must be a fullword

 integer variable.

 Last_Error_Message (12)

 This variable may be accessed only by

 Parse_Get.

 The message corresponding to Last_Error_Code

 is returned, in the form of a halfword

 length followed by the specified number of

 characters. A null string always indicates

 no error.

 Error_Correction (13)

 This variable determines whether error

 correction is attempted or suppressed in

 response to CORRECT terms in the grammar.

 A value of True means attempt error

 correction; False suppresses it. The value

 is set initially to True in conversational

 mode and False in batch. When the parser is

 initialized by Parse_Initialize_Nonmts,

 error correction is set to False. See

 Chapter VI for details of the

 error-correction actions.

 The third parameter must be a one-byte

 Boolean (Fortran LOGICAL*1) variable.

 Spelling_Correction (14)

 This variable determines whether spelling

 correction is attempted or suppressed in

 response to CORRECT terms in the grammar.

 A value of True means attempt spelling

 Parser Variables

 UBC CLPARSER

 47

 correction; False suppresses it. The value

 is set initially to False in batch mode. In

 conversational mode it is set to True if the

 MTS option SPELLCOR is ON or PROMPT. When

 the parser is initialized by

 Parse_Initialize_Nonmts, spelling correction

 is set to False.

 The third parameter must be a one-byte

 Boolean (Fortran LOGICAL*1) variable.

 Help_File_Name (15) This variable is used to set or retrieve the

 name of the file to be used in processing

 the system terminal "Help_Command". It is

 initially a null string.

 The third parameter consists of a halfword

 followed by the specified number of

 characters. If the string is longer than 17

 on a call to Parse_Set, only the first 17

 characters will be used.

 Case_Convert (16) This variable determines whether an

 upper-case form of the input text is parsed,

 or the original (possibly mixed-case) text.

 Its initial value is True, meaning parse an

 upper-case form. The value at the time the

 input text is set determines whether an

 upper-case form is parsed or not.

 The third parameter must be a one-byte

 Boolean (Fortran LOGICAL*1) variable.

 Note that, if this is set False, then the

 parser will not create an upper-case form of

 the input text. In this case the options of

 Parse_Get, Parse_Get_Stack, Production_Text,

 etc., which request an upper-case copy of

 the input, will return the original-case

 input, not an upper-case-only form. ___

 Parse_Trace (17) This variable controls tracing of the

 parser’s actions in processing its input.

 The third parameter is a fullword integer. A

 value of 0 means no tracing, 1 means trace

 all semantic actions, and 2 means trace each

 term as it is processed. The value is

 initially set from an external variable

 CPTRAC, which is normally 0.

 The format of the parse trace is described

 Parser Variables

 UBC CLPARSER

 48

 in Section F of Chapter VIII.

 Short_Strings (18) This variable is used to modify the way that

 string values are passed between the parser

 and semantic routines by Parse_Get,

 Parse_Set and Parse_Get_Stack.

 The third parameter is a Boolean (Fortran

 LOGICAL*1) variable.

 A value of False means that strings are to

 be passed in the form of a halfword length

 followed by a variable number of characters,

 as stated in other descriptions in this

 section. A value of True for this variable

 means that strings should be passed as a

 one-byte length, followed by a variable

 number of characters instead. In this case,

 the maximum length of string that can be set

 or returned is, of course, limited to 255.

 The value is initially False.

 This option is intended to simplify use in

 some PLUS applications.

 Print_Errors (19) By default, certain severe errors will cause

 a message to be printed on Sercom (providing

 Sercom is defined). This variable controls

 that printing. If it is set False, the

 messages will not be printed, but will just

 set the value of Last_Error_Code and

 Last_Error_Message. See Appendix C for

 details.

 The third parameter must be a Boolean

 (Fortran LOGICAL*1) variable.

 Input_Buffer_Length (20)

 This variable controls the default length of

 buffers allocated for input lines when a

 READ term is processed. The initial value is

 set to 255.

 The third parameter should be a fullword

 integer variable.

 User_Psect (21) This variable is an arbitrary fullword,

 usually containing a pointer. It is not used

 at all by the parser, but allows a user to

 pass the address of a storage area ("Psect")

 to the semantic routine. The value to be

 passed is set up as a parameter to

 Parse_Initialize; it can be changed

 Parser Variables

 UBC CLPARSER

 49

 subsequently, if necessary, by calling

 Parse_Set.

 This mechanism can be used in situations

 where global storage cannot be used to

 communicate between the main program and the

 various semantic actions.

 The third parameter is an arbitrary

 fullword, usually a variable of some pointer

 type.

 Table_Generation_Time (22)

 This variable may be accessed only from

 Parse_Get and only from a semantic routine.

 It contains the Julian date and time (in

 minutes since March 1 1900) at which the

 syntax tables defining the current

 production were generated. It is intended

 for use in "version control", since it

 provides, in effect, a version

 identification for the version of the user’s

 grammar that is in use.

 The third parameter must be a fullword

 (normally an integer).

 Parser_Generation_Time (23)

 This variable may be accessed only from

 Parse_Get.

 It contains the Julian date and time at

 which the version of the parser in use was

 generated.

 The third parameter must be a fullword

 (normally an integer).

 Analyzer_Generation_Time (24)

 This variable may be accessed only from

 Parse_Get, and only from a semantic routine.

 It contains the Julian date and time at

 which the version of the table generator

 (grammar analyzer), which produced the

 current parse tables, was itself generated.

 The third parameter must be a fullword

 (normally an integer).

 Parser Variables

 UBC CLPARSER

 50

 Getspace_Routine (25)

 This variable allows setting or accessing

 the getspace subroutine to be used by the

 parser for subsequent getspace calls. See

 Section D of Chapter III for further

 details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Freespace_Routine (26)

 This variable allows setting or retrieving a

 subroutine to be used by the parser as a

 substitute for Freespac. See Section D of

 Chapter III for further details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Guser_Routine (27) This variable allows setting or retrieving a

 subroutine to be used by the parser as a

 substitute for Guser. See Section D of

 Chapter III for further details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Sercom_Routine (28) This variable allows setting or retrieving a

 subroutine to be used by the parser as a

 substitute for Sercom. See Section D of

 Chapter III for further details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Getfd_Routine (29) This variable allows setting or retrieving a

 subroutine to be used by the parser as a

 substitute for Getfd. See Section D of

 Chapter III for further details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Freefd_Routine (30) This variable allows setting or retrieving a

 subroutine to be used by the parser as a

 substitute for Freefd. See Section D of

 Chapter III for further details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Parser Variables

 UBC CLPARSER

 51

 Read_Routine (31) This variable allows setting or retrieving a

 subroutine to be used by the parser as a

 substitute for the MTS Read routine. See

 Section D of Chapter III for further

 details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Guinfo_Routine (32) This variable allows setting or retrieving a

 subroutine to be used by the parser as a

 substitute for Guinfo. See Section D of

 Chapter III for further details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Cuinfo_Routine (33) This variable allows setting or retrieving a

 subroutine to be used by the parser as a

 substitute for Cuinfo.

 The third parameter is a fullword containing

 the address of the routine to be called. See

 Section D of Chapter III for further

 details.

 Input_Routine (34) This variable allows setting or retrieving a

 subroutine to be used by the parser to

 perform READ operations requested in the

 grammar. See Section C of Chapter III for

 further details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Attention_Test_Routine (35)

 This variable allows setting or retrieving a

 subroutine to be used by the parser during

 error and help processing, to determine

 whether an attention interrupt has occurred.

 See Section C of Chapter III for further

 details.

 The third parameter is a fullword containing

 the address of the routine to be called.

 Parsed_Fdub (36) This variable may be accessed only from

 Parse_Get, only from a semantic routine, and

 only if a system terminal has left an Fdname

 on the semantic stack. Parse_Get will obtain

 an Fdub for the specified Fdname and return

 it.

 Parser Variables

 UBC CLPARSER

 52

 The third parameter must be a fullword

 variable.

 Parsed_Integer (37) This variable may be accessed only from

 Parse_Get, only from a semantic routine, and

 only if a system terminal has left an

 integer on the semantic stack.

 The numeric value of the integer is

 returned.

 The third parameter must be a fullword

 integer variable.

 Parsed_String (38) This variable may be accessed only from

 Parse_Get, only from a semantic routine, and

 only if a system terminal has left a string

 on the semantic stack.

 The value of the string (with delimiters

 removed) is returned, in the form of a

 halfword length, followed by the specified

 number of characters.

 Parsed_Fdname (39) This variable may be accessed only from

 Parse_Get, only from a semantic routine, and

 only if a system terminal has left an Fdname

 on the semantic stack. The Fdname string,

 with one trailing blank, will be returned in

 the form of a halfword length, followed by

 the specified number of characters.

 Parsed_Ccid (40) This variable may be accessed only from

 Parse_Get, only from a semantic routine, and

 only if the system terminal *Ccid* has left

 a value on the semantic stack.

 The value of the CCID scanned (padded to 4

 characters with the appropriate substring of

 ".$.") is returned.

 The third parameter must be a 4-byte

 character variable (character(4) in PLUS).

 Parsed_Project (41) This variable may be accessed only from

 Parse_Get, only from a semantic routine, and

 only if the system terminal *Project* has

 left a value on the semantic stack.

 The value of the project code scanned

 (padded to 4 characters with blanks) is

 returned.

 Parser Variables

 UBC CLPARSER

 53

 The third parameter must be a 4-byte

 character variable (character(4) in PLUS).

 Parsed_Line_Number (42)

 This variable may be accessed only from

 Parse_Get, only from a semantic routine, and

 only if the system terminal *Line_Number*

 has left a value on the semantic stack.

 The internal form of the MTS line number is

 returned.

 The third parameter must be a fullword

 integer.

 Parsed_Real (43) This variable may be accessed only from

 Parse_Get, only from a semantic routine, and

 only if a system terminal has left a parsed

 real on the semantic stack.

 The third parameter may be a 4-, 8- or

 16-byte floating-point variable. If a

 16-byte return area is provided, the value

 will be returned as an extended-precision

 real. If an 8-byte area is provided, the

 value will be rounded and returned as a

 double-precision (REAL*8) result. If a

 4-byte area is provided, the value will be

 rounded to single precision and returned.

 Default_Help_Name (44)

 This variable is used to set or retrieve the

 name of an entry in the help file that is to

 be printed for help requests that specify a

 nonexistent or no symbol.

 It is initially the string "DEFAULT".

 The third parameter consists of a halfword

 followed by the specified number of

 characters. If the string is longer than 10

 on a call to Parse_Set, only the first 10

 characters will be used.

 Parser Variables

 UBC CLPARSER

 54

 VI. ERROR_CORRECTION _____ __________

 In attempting to parse a given string, the parser simply works

 its way through the grammar trying all alternatives until it

 either completes the goal production or fails to find a path

 that succeeds. Thus it has no a_priori knowledge of "errors" in _ ______

 the input--other than that the entire string is invalid.

 A mechanism has been provided to allow the parser to perform

 some error correction in response to extra information in the

 grammar. The item CORRECT in the grammar indicates that, if this

 point in the production is reached, the parser should attempt to

 replace part of the input and retry the parse.

 Error correction may be enabled or disabled by the parser

 variable Error_Correction. When it is enabled (True), the parser

 will first attempt spelling correction, and if this is

 unsuccessful, ask the user for a replacement string. If error

 correction is disabled, neither part of the error correction is

 attempted, and the parser will return to the calling program

 with Last_Error_Code set as described in Appendix C.

 A. THE_ERROR_STRING ___ _____ ______

 When error recovery is to be attempted, the parser must

 select a substring of the input as a possible candidate for

 replacement. The string chosen is called "the error string"

 in the following descriptions.

 The error string will always begin at the scan position when

 the current production was started. It will extend as least

 as far as the furthest point reached in any unsuccessful

 production alternate. The parse looks beyond that point for

 one of a small set of delimiters to determine the end of the

 error string.

 B. SPELLING_CORRECTION ________ __________

 Spelling correction may be enabled or disabled with the

 parser variable Spelling_Correction. If it is disabled, the

 parser will proceed directly to error replacement. If it is

 enabled, the parser will scan the syntax tables to determine

 whether the error string is a possible misspelling of any

 literal, optional literal, or combination of the two, that is

 syntactically allowed by the current production.

 Where an optional literal or a literal followed by an

 optional literal is allowed, the parser will determine

 whether the error string is a possible misspelling of any

 valid substring.

 If a possible spelling correction is detected, the user will

 Error Correction

 UBC CLPARSER

 55

 be asked to confirm the substitution. If the user OK’s it,

 the substitution is made and the parser retries part of the

 parse. Alternatively, the user can reject the substitution

 and look for an alternative correction, suppress further

 attempts at error correction and proceed to error

 replacement, or cancel the parse in progress and return from

 the parser.

 C. ERROR_REPLACEMENT _____ ___________

 If spelling correction is bypassed or unsuccessful, then the

 parser computes a new (possibly longer) error string to be

 replaced, and prompts the user for a replacement for this

 error string. The user may either enter a replacement, or

 cancel the parse in progress and return from the parser.

 D. RETRYING_AFTER_ERROR_CORRECTION ________ _____ _____ __________

 After spelling correction is applied or a portion of the

 input replaced, the parser will back up the parse to the

 nearest production which includes a FENCE term, or if there

 is none, back to the beginning. It will then retry parsing

 the (presumably modified) input that resulted from the

 correction processing, starting from the position

 corresponding to the FENCE (or from the beginning of the

 input if there was none).

 Note that when a production including FENCE is completed

 successfully, then the production calling it is automatically

 fenced at that point. Hence if a fenced production finishes

 successfully, any subsequent errors will retry from the end ___

 of that production.

 E. ERROR_HELP _____ ____

 A simple HELP mechanism is provided as part of the parser’s

 error handling. When a prompt is issued, in either spelling

 correction or error replacement modes, the user may enter a

 help command for further information. The following are

 allowed:

 HELP with no parameter, HELP produces an

 explanation of the allowable responses.

 HELP KEYWORDS produces a list of all the literals (but not

 terminals or system terminals) that are

 valid at the point of the error.

 HELP CONTEXT echoes the current input line, with a row of

 dashes to indicate the error string.

 Error Correction

 UBC CLPARSER

 56

 HELP symbol provides application-dependent help. If the

 program has set up a help file (see next

 chapter), then the help information for the

 given symbol is printed. If there is no help

 file, this form is treated the same as HELP

 with no parameter.

 Error Correction

 UBC CLPARSER

 57

 VII. HELP_FILES ____ _____

 To encourage programmers to provide a HELP command for command

 languages, a simple mechanism has been provided to look up

 symbols in a file and print corresponding information.

 A. HELP_FILE_FORMAT ____ ____ ______

 The help file is an MTS line file with a special "library

 format". It consists of a directory, followed by an arbitrary

 number of members.

 The directory consists of any number of lines, each

 consisting of a symbol and the line number in the file at

 which its definition is found. The library is terminated by a

 record containing "/END", starting in column 1.

 The symbols in the directory are "help items" that may be

 requested. A directory record may indicate that substrings of

 the symbol should also be accepted as valid help items. This

 is done by surrounding the optional part with "|...|". For

 example

 EXPR|ESSION| 1000

 indicates that the library member at line 1000 should be

 printed for help requests "EXPR", "EXPRE", ... "EXPRESSION",

 etc.

 Each member of the library begins with a record "/BEGIN x",

 where x is the full form of the symbol in the directory. This

 record must be at the line specified in the directory. The

 member ends with the record "/END".

 A library member may copy other elements of the same help

 file by containing a line of the form

 /INCLUDE helpitem

 where "helpitem" is another symbol in the help file

 directory.

 A simple example of a help file is given in Appendix B.

 B. USING_THE_HELP_MECHANISM _____ ___ ____ _________

 The programmer must initialize the help mechanism by

 specifying the help file with a call to Parse_Set.

 The help file may be used from a program or a grammar in a

 variety of ways.

 Help Files

 UBC CLPARSER

 58

 1. The subroutine Parse_Help may be called directly to

 request the information for an item specified as a

 parameter.

 2. The grammar may contain calls to the system terminal

 Help(helpitem) which specify what is to be printed from

 the help file.

 3. The grammar may use the system terminal *Help_Command*.

 This skips over blanks, then matches an arbitrary nonblank

 symbol, or a null string. If a symbol is given, it is

 looked up in the directory of the library and the

 corresponding lines of the file are written to SERCOM. If

 no symbol is given, the symbol "DEFAULT" is looked up

 instead. If a symbol is given, but is not defined in the

 directory, a message is printed, then the symbol DEFAULT

 is used instead. (An alternative symbol to use instead of

 DEFAULT may be specified by calling Parse_Set to set the

 variable Default_Help_Name.)

 Thus the simplest form of help command can be provided with

 just a production of the form:

 <Help_Command> is "HE"|"LP"| *Help_Command*;

 More elaborate forms can be implemented by using *Help* and

 calling the help routine directly.

 Help Files

 UBC CLPARSER

 59

 VIII. USING_THE_TABLE_GENERATOR_AND_PARSER _____ ___ _____ _________ ___ ______

 A. RUNNING_THE_TABLE_GENERATOR _______ ___ _____ _________

 The table generator is invoked with the command

 $RUN *CLPARSEGEN [I/O units] [PAR=parameters]

 The following logical I/O units may be used.

 SCARDS specifies the file or device containing the

 grammar to be processed.

 SPRINT specifies the destination of the listing and

 cross-reference produced by the table generator.

 SPUNCH specifies the destination of the object deck

 produced by the table generator.

 SERCOM is used, if different from SPRINT, to echo error

 messages produced by the table generator.

 1 specifies the destination of Assembler or PLUS

 source statements produced by the table generator

 for use by the user’s semantic routine.

 The PAR field may be used to specify any of the options

 described below. If two or more options are given, they must

 be separated by commas.

 Input to the table generator, specified by SCARDS, is

 free-format. It consists of productions and declarations

 defining the command language, table generator options, and

 comments. Blank lines may appear anywhere.

 An input line beginning with "/" is used to specify options.

 Any number of options may appear in a single command line,

 separated by commas.

 The characters "--" are used to begin a comment. The

 remainder of the input line is ignored by the table

 generator.

 B. TABLE_GENERATOR_OPTIONS _____ _________ _______

 The following options may appear either in the PAR field or

 following "/" in an input command line. Underlining in these

 descriptions indicates minimum allowed abbreviations.

 Using the Table Generator and Parser

 UBC CLPARSER

 60

 LIST or NOLIST controls whether a listing of the _ _ _

 input lines is produced on SPRINT. It

 defaults to LIST.

 XREF or NOXREF specifies whether a cross-reference _ _ _

 of symbols in the grammar is to be

 produced. The default is XREF.

 TITLE "quoted string" specifies a title to appear in the _

 source listing.

 OBJECT or NOOBJECT determines whether an object module ___ _ ___

 is to be produced. The default is

 OBJECT.

 DECK or NODECK is a synonym for OBJECT/NOOBJECT. _ _ _

 DECLARATIONS [decl-option] ____

 or NODECLARATIONS determines whether auxiliary output _ ____

 is produced on unit 1 in PLUS,

 Assembler, or neither. "decl-option"

 may be PLUS, PLUS LIBRARY or ____ ____ ___

 ASSEMBLER. The form PLUS LIBRARY will ___

 cause the generated PLUS declarations

 to be in the form of a PLUS source

 library with a single member. The

 default is DECLARATIONS PLUS.

 EJECT [eject-option] causes the table generator listing to __

 skip to a new page. The optional

 "eject-option" is used to skip to a

 "double page". It may be EVEN or ODD

 to skip to an even- or odd-numbered

 page, or DOUBLE, which is equivalent ___

 to ODD.

 OPTIMIZE or NOOPTIMIZE determines whether the table ___ _ ___

 generator attempts to perform table

 optimizations.

 Currently the only optimization

 performed is to attempt to "fold"

 character strings used in the grammar

 by searching for strings embedded in

 other strings. This results in a

 rather small reduction in the table

 size, with a large increase in the

 time required by the table generator.

 The default is NOOPTIMIZE.

 Using the Table Generator and Parser

 UBC CLPARSER

 61

 SYMBOLS or NOSYMBOLS determines whether the names of ___ _ ___

 productions, semantics, and labels

 are put into the object module

 generated. These names are used by

 the parser’s tracing procedure, and

 for the Parse_Get item Semantic_Name.

 Omitting the symbols will make the

 object deck a lot smaller. If the

 symbols are not included in the

 object module, numeric codes will be

 used instead for tracing and

 Semantic_Name. The default is

 SYMBOLS.

 NAME "quoted symbol" specifies a name which may be used to _

 qualify the PLUS declaration for

 labels, and to form the library

 member name if the PLUS LIBRARY

 declarations option is specified. It

 defaults to the name of the first

 goal symbol.

 TRACE or FULLTRACE or NOTRACE __ ______ _ __

 is used in debugging the table

 generator to turn on tracing of the

 input parsing. The default is

 NOTRACE. This option is only of use

 to programmers maintaining the table

 generator.

 C. TABLE_GENERATOR_OUTPUT _____ _________ ______

 1. Listings ________

 The table generator normally produces a listing of the

 input grammar and a cross-reference of all symbols used in

 the grammar as output to SPRINT. These may be suppressed

 by specifying either or both of the options NOLIST and

 NOXREF.

 Any input line in which an error is detected is listed

 regardless of the setting of the listing option. Input

 lines containing errors and error messages are echoed to

 SERCOM if it refers to a different file or device from

 SPRINT.

 2. Object_Program ______ _______

 An object program is produced on SPUNCH unless the option

 NOOBJECT is specified. The object module defines a single

 csect, whose name is that of the first goal. It includes

 entry points for each goal symbol in the grammar.

 Using the Table Generator and Parser

 UBC CLPARSER

 62

 3. Declarations ____________

 Auxiliary declarations may be produced in PLUS, Assembler

 or both (or may be suppressed) according to the

 DECLARATIONS option. These declarations are produced on

 unit 1.

 The declarations are intended to assist in the writing of

 semantic procedures. The declarations consist of three

 parts:

 a. definitions specifying the correspondence between

 semantic action symbols used in the grammar and the

 numeric values which will be used in calls to the

 semantic routine.

 For PLUS declarations, this is given by a PLUS

 identifier-list type declaration for each semantic

 procedure specified in the grammar. The declarations

 have the form:

 type x_Semantic_Action_Type is

 (symbol0,...,symboln);

 where "x" is the name of the semantic procedure and

 symbol0,...,symboln are the semantic actions for which

 calls will be made to that procedure.

 For Assembler declarations, a series of equates of the

 form:

 symbol0 EQU 0

 symbol1 EQU 1

 .

 .

 .

 symboln EQU n

 will be generated for the semantic actions of each

 semantic procedure.

 b. definitions specifying the correspondence between label

 symbols used in the grammar, and the numeric values

 that will be used as parameters to Parse_Get_Stack.

 For PLUS declarations, another PLUS identifier-list

 type declaration is produced, of the form:

 type y_Label_Type is (symbol0,...,symbolm);

 where "y" is the grammar name. This defaults to the

 name of the first goal symbol in the grammar. It may be

 changed with the /NAME option.

 Using the Table Generator and Parser

 UBC CLPARSER

 63

 For Assembler declarations, another sequence of equates

 is produced to specify the codes.

 c. definitions for the goals of the grammar.

 For PLUS programs, this takes the form of a series of

 PLUS external variable declarations of the form:

 variable goali is Parse_Goal_Type

 external "extnamei";

 where goali is the production name of a goal symbol,

 and extnamei is the corresponding external symbol, as

 specified with ENTRY, or determined by default from the

 production name.

 Corresponding Assembler declarations are not currently

 produced. A simple EXTRN is all that is required.

 If the declarations were requested in the form of a PLUS

 library (/DECLARATIONS PLUS LIBRARY), then the output file

 will be a library with a single member. The member will

 have the name

 y_Definitions

 where y is the grammar name determined from the first goal

 or the /NAME option.

 D. PLUS_SOURCE_LIBRARY ____ ______ _______

 To assist in writing PLUS programs which use the parser, a

 PLUS source library is provided. This source library contains

 definitions of parser routines and types which are required

 when using the parser. Thus a PLUS program will normally use

 %Include to include the definitions of those procedures and

 types it requires. See Appendix B for a complete example

 program using the definitions from the library.

 The library is contained in the file *CLPARSELIB. When using

 this library, the standard PLUS source library is required

 also. Thus to compile a PLUS program using the parser, one

 specifies a run command of the form:

 $RUN *PLUS ... 0=*CLPARSELIB+*PLUS.SOURCELIB

 The library contains the following:

 Using the Table Generator and Parser

 UBC CLPARSER

 64

 1. Parser_Procedures ______ __________

 The library contains a member defining each of the

 procedures of the parser. Each of these includes any

 associated definitions it requires. In particular, the

 definitions of Parse_Set and Parse_Get will include the

 definitions of codes for all the parser variables

 described in Chapter V.

 Those routines which return a result indicating success or

 failure are declared in the library to have an "optional

 result". Thus programs calling these parser routines may

 choose to ignore the returned value.

 2. Parse_Goal_Type _____ ____ ____

 Member Parse_Goal_Type contains a type definition that is

 used in defining the goal symbols to be passed to the

 parser.

 3. Semantic_Procedure_Type ________ _________ ____

 Member Semantic_Procedure_Type defines the type required

 for the semantic procedures called by the parser.

 The PLUS program will usually contain something like:

 %Include(Semantic_Procedure_Type);

 procedure Command_Semantics is

 Semantic_Procedure_Type;

 If this declaration is used, the semantic routine may

 refer to its parameters by the names Parser_Control_Block,

 Psect_Pointer, and Semantic_Action, and to the result by

 the name Success.

 4. Other_Procedure_Types _____ _________ _____

 The library also contains members:

 Parse_Attention_Test_Type, Parse_Input_Type,

 Parse_Getspace_Type and Parse_Freespace_Type

 each of which defines procedure types for procedures that

 may be provided to the parser.

 Parse_Attention_Test_Type may be used to define the

 procedure to be called to test for attentions during error

 and help processing. (See Section C of Chapter III.)

 Parse_Input_Type may be used to define the procedure to be

 called by the parser for input.

 Using the Table Generator and Parser

 UBC CLPARSER

 65

 Parse_Getspace_Type and Parse_Freespace_Type define

 procedures to be passed to Parse_Initialize_Nonmts.

 5. Parse_Trace_Type _____ _____ ____

 This simply defines constants that may be used for

 Parse_Set when setting the Parse_Trace variable.

 6. Parse_String_Type _____ ______ ____

 This defines a PLUS varying-length string of maximum

 length 256. It may be used when the halfword-length string

 form is required, but only fairly short strings are

 actually involved.

 E. RUNNING_THE_PARSER _______ ___ ______

 The parser routines, and PLUS run-time support routines are

 contained in the resident system. They will normally be found

 as part of the usual MTS library-searching process.

 The PLUS/coding-conventions entry points are defined by a

 low-core symbol table CCSYMBOL. A program using these entry

 points must contain the necessary loader control records to

 cause this table to be searched. These records are normally

 generated by the PLUS compiler.

 F. PARSER_TRACING ______ _______

 The parser includes a built-in mechanism for tracing the

 actions performed as it attempts to parse its input. This is

 useful when debugging grammars or programs using the parser.

 Two levels of tracing are provided. The first level prints

 out a line of input immediately before each semantic action

 is performed. The second level prints out a line as each term

 of a production is begun.

 The lines printed contain two parts. To the left is a

 description of the term, more-or-less as it appears in the

 grammar. When the second level of tracing is used, these

 terms are indented to indicate the production nesting. To the

 right of this is a portion of the input text being parsed,

 with a vertical bar "|" indicating the point currently being

 examined by the parser.

 The parse trace may be enabled from a program by calling

 Parse_Set to set the parser variable Parse_Trace.

 The system terminal *Trace* may be used within a grammar to

 set tracing. For example, the following provides a possible

 implementation of a trace command:

 Using the Table Generator and Parser

 UBC CLPARSER

 66

 <Trace_Cmd> is "TRACE" *blanks*

 { "OFF" *Trace(0)*

 or "ON" *Trace(1)*

 or "FULL" *Trace(2)*};

 Tracing can also be enabled under SDS by patching the 17th

 byte of the parser control block to the option required (0

 for no tracing, 1 for semantic tracing, 2 for full tracing).

 The example in Appendix B includes a sample of the trace

 output.

 Using the Table Generator and Parser

 UBC CLPARSER

 67

 APPENDIX_A_-_TABLE_GENERATOR_INPUT_LANGUAGE ________ _ _ _____ _________ _____ ________

 This Appendix uses the table generator’s input language to

 define itself. The grammar is similar to that actually used by

 the table generator in parsing its input, but has been

 simplified by removing all semantic calls, and all

 considerations of comments, options, and error handling.

 goal <Grammar> is [<Sep> <Production>] ... ;

 <Production> is *End_Of_File* fail

 or <Next_Production> <Sep> ";" ;

 <Next_Production> is "TERMINAL" <Sep> <Terminal>

 or "PROCEDURE" <Sep> <Semantic_Declaration>

 or "GOAL" <Sep> <Goal_Definition>

 or "LABEL" <Sep> <Label_Declaration>

 or <Nonterminal_Definition>;

 -- Semantic declarations...

 <Semantic_Declaration> is <Entry_Name> <Sep> [<Linkage> <Sep>]

 "FOR" <Sep> <Semantic_Names>;

 <Semantic_Names> is "ALL"

 or <Semantic_Name> [<More_Semantic_Names>]...;

 <Linkage> is "R-TYPE"

 or "S-TYPE";

 <More_Semantic_Names> is <Sep> "," <Sep> <Semantic_Name>;

 -- Label declarations...

 <Label_Declaration> is <User_Name> [<More_Label_Name_Decl>]...;

 <More_Label_Name_Decl> is <Sep> "," <Sep> <User_Name>;

 -- Terminals...

 <Terminal> is <Prod_Name> <Sep> "IS" <Sep> <Integer> <Sep>

 [<Upper> <Sep>] <Terminal_Characters>;

 <Upper> is "TO" <Sep> <Integer>

 or "OR" <Sep> "MORE";

 <Terminal_Characters> is "CHARACTER"|"S"|

 or {"OF" or "EXCLUDING"}

 <Terminal_String>...;

 <Terminal_String> is <Sep> <Terminal_Segment>;

 <Terminal_Segment> is <Qstring>

 Table Generator Input Language

 UBC CLPARSER

 68

 or <Hex_String>;

 -- Goal definitions...

 <Goal_Definition> is <Prod_Name> <Sep> [<Entry>] "IS"

 <Sep> <Alternate_List>;

 <Entry> is "ENTRY" <Sep> <Entry_Name> <Sep>;

 -- Define nonterminal rules...

 <Nonterminal_Definition> is <Prod_Name> <Sep> "IS" <Sep>

 <Right_Part>;

 <Right_Part> is "EXTERNAL" <Sep> [<Entry_Name>]

 or <Alternate_List>;

 -- Alternates...

 <Alternate_List> is <Alternate> ["OR" <Sep> <Alternate>];

 <Alternate> is <Term>...;

 -- Terms. This fails only when at end-of-alternate...

 <Term> is [<Term_Label>] <Simple_Term> <Sep> [<Repeated>];

 <Term_Label> is <Id> <Sep> ":" <Sep>;

 <Simple_Term> is <Prod_Name>

 or <Lbracket> <Sep> <Alternate_List> <Rbracket>

 or <Lbrace> <Sep> <Alternate_List> <Rbrace>

 or "GO" <Sep> "TO" <Prod_Name>

 or "#" <Sep> <Semantic_Name>

 or "*" <Sep> <Sys_Term> <Sep> [<Params>] "*"

 or <Literal>

 or "|" <Literal> "|"

 or "SUCCEED"

 or "FAIL"

 or "READ"

 or "FENCE"

 or "RETRY"

 or "CORRECT"

 or "QUIT";

 <Repeated> is "..." <Sep>;

 <Params> is "(" <Sep> <Parlist> <Sep> ")" <Sep>;

 <Parlist> is <Parameter> [<Sep> "," <Sep> <Parameter>]...;

 <Parameter> is <Integer>

 or <Literal>;

 Table Generator Input Language

 UBC CLPARSER

 69

 -- Various kinds of symbols...

 <Prod_Name> is "<" <User_Name> ">";

 <Entry_Name> is <Id>

 or <Qstring>;

 <Semantic_Name> is <User_Name>;

 <User_Name> is <Id>;

 <Sys_Term> is <Id>;

 <Literal> is <Qstring>

 or <Hex_String>;

 <Hex_String> is "’" [Hex] "’";

 <Qstring> is """" [String_Seg]... """";

 <String_Seg> is <Nonq>

 or """"""; -- double quote

 <Lbrace> is "{" or "(/";

 <Rbrace> is "}" or "/)";

 <Lbracket> is "[" or "(";

 <Rbracket> is "]" or ")";

 -- Separator used between any two tokens...

 <Sep> is <Sp> [*End_Of_Line* read <Sp>]...;

 -- Scan-classes used above...

 terminal <Sp> is 0 or more of " ";

 terminal <Nonq> is 1 or more excluding """";

 terminal <Hex> is 1 or more of " 1234567890ABCDEF";

 terminal <Integer> is 1 to 15 of "1234567890";

 terminal <Id> is 1 to 100 of

 "ABCDEFGHIJKLMNOPQRSTUVWXYZ_1234567890";

 Table Generator Input Language

 UBC CLPARSER

 70

 APPENDIX_B_-_EXAMPLES ________ _ _ ________

 This appendix contains some simple but complete examples. It

 consists of three variations of grammars and programs to process

 simple integer arithmetic expressions. The input consists of

 either an expression, or one of the commands HELP, TRACE, MTS or

 STOP.

 A. THE_GRAMMAR ___ _______

 The following grammar defines the allowed input. Note that

 the definition of expression is recursive, and proceeds

 through two levels, processing "sums" and "products". This

 format, which is typical of grammars defining expressions,

 forces the semantic actions to be performed in the right

 order to implement the standard "precedence rules" of

 arithmetic.

 The label Expr is used on two alternatives of <Factor> to

 label the term that has a "value" to keep. The semantic

 action #Copy_Top will fetch the value of the term labelled

 Expr, and save it as the value of the production, thus

 passing it back to the <Term> production. This isn’t

 necessary for the first alternative, since *Integer* is the

 last term, and hence the value is already on top of the

 stack.

 Also note that the <Term> and <Expression> productions are

 very similar. The operation is left on the semantic stack by

 one of the productions <Addop> or <Multop>. Each time the

 semantic action Operation is performed, it will fetch two

 operands and an operation, perform the operation, then set a

 semantic value. This value is itself labelled Opnd, and thus

 serves as one of the operands to be fetched on the next

 iteration, if any.

 /title "Example grammar for simple expressions"

 procedure Semantics for all;

 goal <Command> is "ST"|"OP"| #Stop_command

 or "MT"|"S"| #Mts_command

 or "HE"|"LP"| *Help_Command*

 or "TRACE" *Blanks* { "ON" *Trace(1)*

 or "OFF" *Trace(0)*

 or "FULL" *Trace(2)*}

 or Res:<Expression> <Nothing> #Print_Result

 or correct;

 <Expression> is Opnd:<Term>

 [Op:<Addop> Opnd:<Term> Opnd:#Operation]...;

 <Term> is *Blanks* Opnd:<Factor> *Blanks*

 [Op:<Multop> Opnd:<Factor> Opnd:#Operation]..

 Examples

 UBC CLPARSER

 71

 <Factor> is *Integer*

 or "’" Expr:*Hex_Integer* "’" #Copy_Top

 or "(" Expr:<Expression> ")" #Copy_Top;

 <Nothing> is *End_Of_Line*

 or correct;

 <Addop> is "+" or "-";

 <Multop> is "*" or "/";

 B. RUNNING_THE_TABLE_GENERATOR _______ ___ _____ _________

 If the grammar is in the file SYNTAX, the table generator can

 be run with a command of the form:

 $RUN *CLPARSEGEN SCARDS=SYNTAX SPUNCH=-TABLES 1=-DECL

 The following declarations are produced in file -DECL by the

 table generator:

 %Include(Parse_Goal_Type);

 type Semantics_Action_Type is (Copy_Top, Mts_Command,

 Operation, Print_Result, Stop_Command);

 type Command_Label_Type is (Expr, Op, Opnd, Res);

 variable Command is Parse_Goal_Type external "COMMAND ";

 C. A_PLUS_PROGRAM _ ____ _______

 The program to evaluate expressions uses the semantic stack

 to maintain intermediate results. The basic elements of

 expressions (*Integer* and *Hex_Integer*) leave the parsed

 numbers on the stack. The semantics for a binary operation

 will pop two values off the stack, apply the operation, and

 push the result back on the stack. The final result is popped

 off the stack and printed.

 The entire program appears on the following pages. In the

 interests of brevity, it does not check the return values

 from the various parser routines called.

 The program requires declarations from the parser source

 library and the standard PLUS source library. If the program

 is in the file EXPR.S, it can be compiled with a command of

 the form:

 $RUN *PLUS SCARDS=EXPR.S SPUNCH=-EXPR -

 0=*CLPARSELIB+*PLUS.SOURCELIB

 Examples

 UBC CLPARSER

 72

 D. THE_HELP_FILE ___ ____ ____

 The program expects a help file in the file CCID:HELPFILE. A

 listing of possible contents for this file follows:

 1 default 1000

 2 stop 2000

 3 mts 3000

 4 expr|ession| 4000

 5 /end

 1000 /begin default

 1001 To stop, enter STOP or an end-of-file.

 1002

 1003 To calculate an arithmetic expression, enter the

 expression

 1004 Enter HELP EXPRESSION for description of expressions

 allowed

 1005 /end

 2000 /begin stop

 2001 The STOP command terminates execution of this program.

 2002 /end

 3000 /begin mts

 3001 The MTS command returns to MTS. $RESTART can be used to

 3002 resume execution of this program.

 3003 /end

 4000 /begin expression

 4001 An expression is an arbitrary sequence of constants

 4002 connected with the operators +, - , *, /.

 4003

 4004 The expression is evaluated according to the standard

 4005 arithmetic precedence rules. Parentheses may be used in

 4006 the normal way to control order of evaluation.

 4007

 4008 A constant may be an optional signed integer, or

 4009 a hexadecimal number surrounded by apostrophes.

 4010 /end

 E. RUNNING_THE_PROGRAM _______ ___ _______

 The complete program consists of the object generated by the

 compiler, the object generated by the table generator and the

 resident system parser and library routines. Thus a possible

 run command would be:

 $RUN -EXPR+-TABLES

 Following is a sample session, illustrating error correction

 and help processing. (Input from user is in upper case,

 output from program/parser in mixed upper and lower case.)

 Examples

 UBC CLPARSER

 73

 #$RUN -EXPR+-TABLES

 2+2

 = 4

 2 * (3+4)

 = 14

 ’FF’

 = 255

 X+2

 "X+2" is invalid.

 Enter replacement, "CANCEL", or a help command.

 ?HELP

 The current input line is invalid.

 You may enter:

 (... here it explains the allowed responses)

 Enter replacement, "CANCEL", or a help command.

 ?HELP KEYWORDS

 The following keywords are valid:

 STOP

 MTS

 HELP

 TRACE

 Enter replacement, "CANCEL", or a help command.

 ?HELP EXPR

 An expression is an arbitrary sequence of constants

 (... etc.; explanation comes from help file)

 Enter replacement, "CANCEL", or a help command.

 ? 2+2

 = 4

 NT

 "ST" ("STOP") for "NT"?

 ?NO

 "MT" ("MTS") for "NT"?

 ?YES

 F. TRACE_OUTPUT _____ ______

 The example grammar includes a "TRACE" command to enable

 parser tracing. The following is an example of the output

 that might be produced if this is activated. (The numbers at

 the beginning of each line are not part of the trace output;

 they are included for reference in the following

 explanations.)

 1 "ST" | ’00f0’

 2 "MT" | ’00f0’

 3 "HE" | ’00f0’

 4 "TRACE" | ’00f0’

 5 Res:<Expression> | ’00f0’

 6 Opnd:<Term> | ’00f0’

 7 *Blanks* | ’00f0’

 8 ({44}) | ’00f0’

 9 <Sp> | ’00f0’

 10 #Reset_Semantic_Stack |’00f0’

 Examples

 UBC CLPARSER

 74

 11 Opnd:<Factor> |’00f0’

 12 *Integer* |’00f0’

 13 ("+") |’00f0’

 14 <Number> |’00f0’

 15 "-" |’00f0’

 16 "’" |’00f0’

 17 Expr:*Hex_Integer* ’|00f0’

 18 <Hexint> ’|00f0’

 19 #Set_Hex_Integer ’00f0|’

 20 "’" ’00f0|’

 21 #Copy_Top ’00f0’|

 22 *Blanks* ’00f0’|

 23 ({44}) ’00f0’|

 24 <Sp> ’00f0’|

 25 ({12})... ’00f0’|

 26 Op:<Multop> ’00f0’|

 27 "*" ’00f0’|

 28 "/" ’00f0’|

 29 ({11})... ’00f0’|

 30 Op:<Addop> ’00f0’|

 31 "+" ’00f0’|

 32 "-" ’00f0’|

 33 <Nothing> ’00f0’|

 34 *End_Of_Line* ’00f0’|

 35 #Check_Eol ’00f0’|

 36 #Print_Result ’00f0’|

 This is a complete trace, as the parser attempts each term of

 the grammar. To the right is the input being parsed (the

 string " ’00f0’"). The vertical bar shows the current scan

 position.

 The first four lines show the attempt to match the first

 alternatives of <Command>. At line 5, the parser is

 attempting the <Expression> term (which is labelled Res:).

 This requires that it attempt to match <Term> (indented, line

 6), which in turn attempts to match *Blanks*. Lines 8-10 are

 the internal expansion of *Blanks*. The parse then continues

 with the next element of <Term>, by attempting to match a

 <Factor>. Note the input position has moved over the blanks.

 The parse looks first for an *Integer*; then, since this

 fails, for a *Hex_Integer*. The parse continues in this way,

 printing each term from the grammar as it is processed.

 The numbered productions at line 8, 23, 25, etc. correspond

 to nested, unnamed productions used in the grammar. The

 numbers are internal names for these productions. For

 example, line 25 corresponds to the element

 [Op:<Multop> Opnd:<Term> Opnd:#Operation]...

 in the grammar, and the lines following show the attempt to

 match this subexpression.

 Examples

 UBC CLPARSER

 75

 ______________________PLUS_Example_Program ______________________ ____ _______ _______

 %Title := "Example program for parser";

 /* Include some standard SOURCELIB definitions */

 %Include(Numeric_Types, String_Types);

 %Include(Integer_To_Varying);

 %Include(Sercom_String, Guser);

 %Include(Mts);

 /* Include the parser declarations that are needed. */

 %Include(Semantic_Procedure_Type,

 Parse_String_Type, Parse, Parse_Initialize, Parse_Terminate,

 Parse_Set, Parse_Get, Parse_Get_Stack);

 %Include(Parse_Goal_Type);

 type Semantics_Action_Type is (Copy_Top, Mts_Command, Operation,

 Print_Result, Stop_Command);

 type Command_Label_Type is (Expr, Op, Opnd, Res);

 variable Command is Parse_Goal_Type external "COMMAND ";

 /* Global variables used by the semantic routines. */

 global Semantics_Definitions;

 variable Stop_Flag is boolean;

 end Semantics_Definitions;

 procedure Main;

 procedures Semantics is Semantic_Procedure_Type;

 definition Main;

 variable Input_Buffer is character(256),

 Input_Len is Short_Integer,

 Line_Number is Integer,

 Rc is Integer;

 variable Pcb is pointer to Parser_Control_Block_Type;

 Pcb := Parse_Initialize(Null);

 /* Set up the help file. */

 Parse_Set(Pcb, Help_File_Name,

 Parse_String_Type("CCID:HELPFILE"));

 Stop_Flag := False;

 cycle

 Guser(Input_Buffer, Input_Len, 0, Line_Number, return code

 Rc);

 exit when Rc = 0;

 Parse(Pcb, Command, Address(Input_Buffer), Input_Len);

 exit when Stop_Flag;

 end cycle;

 Rc := Parse_Terminate(Pcb);

 end;

 Examples

 UBC CLPARSER

 76

 definition Semantics

 Success := True;

 select Semantic_Action from

 case Operation:

 variable Opstr is Parse_String_Type,

 Operand1, Operand2 are Integer;

 Parse_Get_Stack(Parser_Control_Block, Opnd, Operand1,

 Byte_Size(Operand1));

 Parse_Get_Stack(Parser_Control_Block, Op, Opstr,

 Byte_Size(Opstr), True);

 Parse_Get_Stack(Parser_Control_Block, Opnd, Operand2,

 Byte_Size(Operand2));

 select Substring(Opstr, 0, 1) from

 case "+":

 Operand1 +:= Operand2

 case "-":

 Operand1 -:= Operand2

 case "*":

 Operand1 *:= Operand2

 case "/":

 if Operand2 ¬= 0

 then

 Operand1 /:= Operand2

 else

 Operand1 := 0;

 Success := False;

 end;

 end select;

 Parse_Set(Parser_Control_Block, Semantic_Result_Word,

 Operand1);

 case Copy_Top:

 variable Value# is Integer;

 Parse_Get_Stack(Parser_Control_Block, Expr, Value#,

 Byte_Size(Value#));

 Parse_Set(Parser_Control_Block, Semantic_Result_Word,

 Value#);

 case Print_Result: /* print */

 variable Value# is Integer;

 Parse_Get_Stack(Parser_Control_Block, Res, Value#,

 Byte_Size(Value#));

 Sercom_String(" = " || Integer_To_Varying(Value#, 0));

 case Stop_Command: /* Stop */

 Stop_Flag := True;

 case Mts_Command: /* MTS */

 Mts();

 end select;

 end;

 Examples

 UBC CLPARSER

 77

 G. FORTRAN_EXAMPLE _______ _______

 This example repeats the previous one, using a Fortran

 semantic routine instead.

 Minor changes to the grammar are necessary. The semantic

 procedure must be declared to be S-TYPE, and its name must be

 no more than six characters. Similarly, the goal symbol must

 have an external name of six characters or less. It is also

 advisable to specify the semantic actions and labels, so that

 the codes are determined by the programmer rather than by the

 table generator.

 Thus the declarations should be:

 procedure Semant S-type for Print_Result, Stop_Command,

 Mts_Command, Operation, Copy_Top;

 label Expr, Opnd, Op, Res;

 goal <Command> entry "CMD" is

 --- etc. ---

 The semantic action Print_Result will have code 0,

 Stop_Command will be 1, and so on.

 A possible Fortran program comparable to the preceding PLUS

 program follows. Note that the goal symbol is declared

 EXTERNAL in the program that calls the parser.

 This program also fails to check the return values from the

 parser routines called. A safer version would declare the

 routines as LOGICAL (CPSET, CPARSE) or INTEGER (CPGSTK, etc.)

 and invoke them as functions in order to check for successful

 operation.

 Examples

 UBC CLPARSER

 78

 _____________________Fortran_Example_Program ____________________ _______ _______ _______

 C Parser example program in Fortran

 C

 C

 C Define symbols for codes used in calls to Parse_Get/Parse_Set

 INTEGER HELPFN/15/

 C Variables for I/O

 INTEGER*2 LEN

 INTEGER LNUM, ILEN

 LOGICAL*1 BUF(100)

 C Parser declarations

 INTEGER CPINIT, PCB

 EXTERNAL CMD

 C Semantic variables

 LOGICAL*1 STOP

 COMMON /PCOM/ STOP

 C Help file

 INTEGER*2 HELPF(8) /13, ’CC’, ID’, ’:H’, ’EL’,

 1 ’PF’, ’IL’, ’E ’/

 C Initialize

 PCB = CPINIT(0)

 CALL CPSET(PCB, HELPFN, HELPF)

 STOP = .FALSE.

 C Command processing loop

 10 CALL GUSER(BUF, LEN, 0, LNUM, &99)

 ILEN = LEN

 CALL CPARSE(PCB, CMD, BUF, ILEN)

 IF (.NOT. STOP) GO TO 10

 99 CALL CPTERM(PCB)

 STOP

 END

 C

 LOGICAL FUNCTION SEMANT(PCB, PSECT, ACTION)

 C

 C procedure Semant S-type for Print_Result, Stop_Command,

 C Mts_Command, Operation, Copy_Top;

 C label Expr, Opnd, Op, Res;

 C

 C Define symbols for labels...

 INTEGER EXPRL, OPNDL, OPL, RESL/0,1,2,3/

 C Parse_Get/Set codes...

 INTEGER SEMRES/8/

 C

 C Parameters...

 INTEGER PCB, PSECT, ACTION

 C Character constants

 INTEGER*2 PLUS/’ +’/, MINUS/’ -’/, MULT/’ *’/, DIV/’ /’/

 C Kludge for character compares

 INTEGER*2 ITEST / ’ ’/

 LOGICAL*1 LTEST(2)

 EQUIVALENCE (ITEST, LTEST)

 Examples

 UBC CLPARSER

 79

 C Semantic variables

 LOGICAL*1 STOP

 COMMON /PCOM/ STOP

 C Local Temporaries

 INTEGER IWORD1, IWORD2

 C Return area for operation (2-byte length + 1 character)

 LOGICAL*1 IOP(3)

 C

 C Set default result

 SEMANT = .TRUE.

 C Offset to one-origin

 ACTION = ACTION + 1

 GO TO (10,20,30,40,50), ACTION

 C

 C Error

 SEMANT = .FALSE.

 RETURN

 C Print_Result

 10 CALL CPGSTK(PCB, RESL, IWORD1, 4)

 WRITE (6,999) IWORD1

 RETURN

 C Stop Command

 20 STOP = .TRUE.

 RETURN

 C MTS command

 30 CALL MTS

 RETURN

 C Operation

 40 CALL CPGSTK(PCB, OPNDL, IWORD1, 4)

 CALL CPGSTK(PCB, OPL, IOP, 3, .TRUE.)

 CALL CPGSTK(PCB, OPNDL, IWORD2, 4)

 LTEST(2) = IOP(3)

 IF (ITEST.EQ.PLUS) GO TO 41

 IF (ITEST.EQ.MINUS) GO TO 42

 IF (ITEST.EQ.MULT) GO TO 43

 C Divide

 IF (IWORD2.EQ.0) GO TO 44

 IWORD1 = IWORD1 / IWORD2

 GO TO 45

 44 IWORD1 = 0

 SEMANT = .FALSE.

 GO TO 45

 C Plus

 41 IWORD1 = IWORD1 + IWORD2

 GO TO 45

 C Minus

 42 IWORD1 = IWORD1 - IWORD2

 GO TO 45

 C Mult

 43 IWORD1 = IWORD1 * IWORD2

 C Set result.

 45 CALL CPSET(PCB, SEMRES, IWORD1)

 RETURN

 Examples

 UBC CLPARSER

 80

 C

 C Copy Top

 50 CALL CPGSTK(PCB, EXPRL, IWORD1, 4)

 CALL CPSET(PCB, SEMRES, IWORD1)

 C

 999 FORMAT(’ = ’, I8)

 END

 H. EXTERNAL_GRAMMAR_EXAMPLE ________ _______ _______

 As a final example, we will split the grammar and semantic

 routines for evaluating the expressions into a separate

 external package which could then be used in implementing the

 grammar of the previous examples.

 The grammar for the expressions is:

 procedure Exprsem for Operation, Copy_Top;

 goal <Expression> entry "EXPR"

 is Opnd:<Term> [Op:<Addop> Opnd:<Term>

 Opnd:#Operation]...;

 <Term> is *blanks* Opnd:<Factor> *blanks*

 [Op:<Multop> Opnd:<Term> Opnd:#Operation]...;

 <Factor> is Expr:*Integer* #Copy_Top

 or "’" Expr:*Hex_Integer* "’" #Copy_Top

 or "(" Expr:<Expression> ")" #Copy_Top;

 <Addop> is "+" or "-";

 <Multop> is "*" or "/";

 This is just the "expression" productions from the previous

 grammar. <Expression> is now a goal, however, and a new

 semantic routine has been introduced.

 The program for the expressions is as follows. This can be

 compiled independently of any programs that may use it. The

 procedure Exprsem will evaluate expressions parsed by goal

 <Expression> and leave the result on the semantic stack.

 Expression_Semantic_Routine __________ ________ _______

 %Title := "Expression Semantics";

 /* Include some standard SOURCELIB definitions */

 %Include(Numeric_Types, String_Types);

 %Include(Integer_To_Varying);

 /* Include the parser declarations that are needed. */

 %Include(Semantic_Procedure_Type,

 Parse_String_Type, Parse_Set, Parse_Get_Stack);

 Examples

 UBC CLPARSER

 81

 %Include(Parse_Goal_Type);

 type Exprsem_Action_Type is (Operation, Copy_Top);

 type Expression_Label_Type is (Expr, Op, Opnd);

 variable Expression is Parse_Goal_Type external "EXPR ";

 procedures Exprsem is Semantic_Procedure_Type;

 definition Exprsem

 Success := True;

 select Semantic_Action from

 case Operation:

 /* As in previous example

 ...

 */

 case Copy_Top:

 /* As in previous example

 ...

 */

 end select;

 end;

 A possible grammar to use this package might be:

 procedure Semant for Print_Result, Stop_Command,

 Mts_Command;

 goal <Command> is "ST"|"OP"| #Stop_command

 or "MT"|"S"| #Mts_command

 or "HE"|"LP"| *Help_Command*

 or "TRACE" *blanks* { "ON" *Trace(1)*

 or "OFF" *Trace(0)*

 or "FULL" *Trace(2)*}

 or Res:<Expression> <Nothing> #Print_Result

 or correct;

 <Expression> is external "EXPR";

 <Nothing> is *End_Of_Line*

 or correct;

 <Expression> is now defined as an external production. The

 parser will invoke the other grammar at the appropriate

 points, and call its semantic routine as necessary.

 The corresponding main program and semantic routines are

 straightforward.

 Examples

 UBC CLPARSER

 82

 APPENDIX_C_-_ERROR_MESSAGES_AND_CODES ________ _ _ _____ ________ ___ _____

 The parser variables Last_Error_Code and Last_Error_Message may

 be set by various error conditions that occur during parsing.

 They will always be set before the parser returns, and may be

 set during semantic processing for certain system terminals.

 Error codes >= 100 indicate serious errors, which make

 successful continuation unlikely. For these, the error message

 will normally be written to Sercom. This can be prevented by

 setting the parser variable Print_Errors.

 The currently defined codes are as follows:

 0 ""

 The parse succeeded.

 1 "Parse failed"

 This message occurs if the input cannot be matched by

 the specified goal production.

 2 "Correction cancelled"

 This means CANCEL was entered in response to an error

 recovery prompt.

 3 "Correction suppressed"

 This message occurs if a "CORRECT" item is encountered

 at some point in the parse, but the value of the

 parser variable Error_Correction suppresses error

 correction.

 4 "Can’t correct - more than one input line"

 Error correction will not be attempted when parser is

 reading input if the "error string" crosses input

 lines.

 5 "Fenced production failed"

 This occurs if an alternate which contains FENCE

 fails. The parser abandons the parse in this case.

 6 "QUIT executed"

 This means the parser terminated by executing a QUIT

 term.

 Error Messages and Codes

 UBC CLPARSER

 83

 7 "READ terminated by attention"

 This means an attention interrupt was generated while

 the parser was attempting to read more input.

 10 "Integer out of range"

 This may be set by the *Integer* system terminal.

 11 "Line number has too many fractional digits"

 12 "Line number out of range"

 The above two may be set by the *Line_Number* system

 terminal.

 13 "String longer than 32767 characters"

 This may be set by the *String*, *Quoted_String*,

 Primed_String system terminals.

 14 "REAL number out of range"

 This may be set by the *Real* system terminal.

 101 "Invalid table format"

 The syntax tables are invalid. This may indicate that

 they have been clobbered by stray stores from the

 program.

 102 "System service not available"

 This may occur if error correction is requested when

 the required services haven’t been defined.

 110 "Unable to expand parser stack"

 111 "Unable to expand semantic stack"

 112 "Unable to get space for semantics"

 114 "Unable to get space for internal buffer"

 These all indicate a nonzero return code from the

 Getspace subroutine.

 Error Messages and Codes

 UBC CLPARSER

 84

 APPENDIX_D_-_SUBROUTINE_CALLING_SEQUENCES ________ _ _ __________ _______ _________

 This section describes the linkage and parameter passing used by

 the parser routines.

 Most of the routines are available in two versions. One version

 uses a Fortran/OS linkage with standard S-type parameter list.

 The other uses subroutine linkage providing a stack, known as

 the "coding-conventions (CC) linkage". These routines also use

 R-type parameters. The coding-conventions versions should be

 used from PLUS programs, and may also be used with Assembler

 programs.

 A. LINKAGE_CONVENTIONS _______ ___________

 For all coding-conventions routines, at entry to a procedure,

 R13 must contain the address of a stack to be used by that

 procedure. R11 contains the address of the global

 pseudo-register vector. The pseudo-register is not used by

 any of the parser routines, and so does not necessarily have

 to be provided. The parser will pass on to the semantic

 routines whatever value is in R11 when it is called.

 For all OS-linkage routines, at entry, R13 must contain the

 address of an 18-word save area. The OS-linkage

 initialization routines CPINIT and CPINM allocate a stack

 whose address is saved in the parser control block. The other

 routines use the same stack, retrieved from the parser

 control block.

 On calls to S-type semantic routines, R13 will point to a

 save area.

 In both kinds of routines, the procedure is called by:

 L R15,=V(procname)

 BALR R14,R15

 B. PARAMETER_PASSING _________ _______

 For the coding-conventions R-type routines, parameters are

 passed in general registers R0-Rn.

 For the OS-linkage S-type routines, at entry to the

 procedure, general register R1 points to a list of addresses,

 which in turn point to the actual parameters.

 For both types of routines, results (if any) are returned in

 general register R0.

 The following descriptions indicate the parameters and

 results expected for each of the routines. The correspondence

 Subroutine Calling Sequences

 UBC CLPARSER

 85

 is not totally consistent. In some cases a parameter to the

 R-type routine is the same as an address from the parameter

 list for the S-type routine. In other cases, the R-type

 parameter corresponds to the word pointed to from the

 parameter list.

 The_Attention-Testing_Routine ___ _________________ _______

 Attention-testing routines always take S-type parameters.

 The call always provides a stack, hence is valid for

 either OS or CC linkage.

 S-type Parameters:

 0(R1) address of a fullword containing the user

 psect pointer specified in the call to

 Parse_Initialize.

 Result: R0 a Boolean. 1 means attention occurred; 0

 means no attention.

 Command_Text _______ ____

 CC External Name: CPCTXTCC

 R-type Parameters:

 R0 address of a parser control block.

 R1 address of a 258-byte area in which the

 result is returned as a halfword length

 followed by a variable number of characters.

 R2 a Boolean value indicating whether to return

 upper-case (¬0) or mixed-case (=0) form.

 Note that the PLUS declaration of this procedure is

 such that it actually appears to be a function

 returning a character string, rather than being

 passed a pointer to one as a parameter.

 There is no OS-linkage/S-type version of this routine.

 Current_Position _______ ________

 CC External Name: CPCURPCC

 R-type Parameters:

 R0 address of a parser control block.

 OS External Name: CPCURP

 S-type Parameters:

 0(R1) address of a fullword containing address of

 a parser control block.

 Subroutine Calling Sequences

 UBC CLPARSER

 86

 Result: R0 integer specifying position.

 Last_Terminal_Text ____ ________ ____

 CC External Name: CPLTTCC

 R-type Parameters:

 R0 address of a parser control block.

 R1 address of a 258-byte area in which the

 result is returned as a halfword length

 followed by a variable number of characters.

 R2 a Boolean value indicating whether to return

 upper-case (¬0) or mixed-case (=0) form.

 Note that the PLUS declaration of this procedure is

 such that it actually appears to be a function

 returning a character string, rather than being

 passed a pointer to one as a parameter.

 There is no OS-linkage/S-type version of this routine.

 Parse _____

 CC External Name: CPARSECC

 R-type Parameters:

 R0 address of a parser control block.

 R1 address of the goal; V(goalsym).

 Note that this is a PLUS reference

 parameter, so for a PLUS program,

 Address(...) is automatically supplied.

 R2 address of first byte of text to be parsed.

 R3 integer length of text to be parsed.

 OS External Name: CPARSE

 S-type Parameters:

 0(R1) address of a fullword containing the address

 of a parser control block.

 4(R1) address of a fullword containing V(goalsym).

 8(R1) address of first byte of text to be parsed.

 12(R1) address of a fullword containing the integer

 length of text to be parsed.

 Result: R0 a Boolean value indicating whether parse

 succeeded (=0) or failed (=1).

 Parse_Get _____ ___

 CC External Name: CPGETCC

 Subroutine Calling Sequences

 UBC CLPARSER

 87

 R-type Parameters:

 R0 address of a parser control block.

 R1 integer code for item to get.

 R2 address of first byte of area to return

 value. Note that for a PLUS program the

 Address(...) is automatically supplied.

 R3 integer length of space provided for

 returning item.

 R4 (when required) a Boolean value indicating

 whether to return upper-case (¬0) or

 mixed-case (=0) form.

 OS External Name: CPGET

 S-type Parameters:

 0(R1) address of fullword containing the address

 of a parser control block.

 4(R1) address of a fullword containing an integer

 code for item to get.

 8(R1) address of first byte of area to return

 value.

 12(R1) address of a fullword containing the integer

 length of space provided for returning item.

 16(R1) (when required) address of a fullword value

 indicating whether to return upper-case (¬0)

 or mixed-case (=0) form.

 Result: R0 integer specifying actual length of item

 requested.

 Parse_Get_Stack _____ ___ _____

 CC External Name: CPGSTKCC

 R-type Parameters:

 R0 address of a parser control block.

 R1 integer code for label of element to get.

 R2 address of first byte of area to return

 value. Note that for a PLUS program the

 Address(...) is automatically supplied.

 R3 integer length of space provided for

 returning item.

 R4 (when required) a Boolean value indicating

 whether to return upper-case (¬0) or

 mixed-case (=0) form.

 OS External Name: CPGSTK

 S-type Parameters:

 0(R1) address of fullword containing the address

 of a parser control block.

 4(R1) address of a fullword containing an integer

 code for the label of the element to get.

 Subroutine Calling Sequences

 UBC CLPARSER

 88

 8(R1) address of first byte of area to return

 value.

 12(R1) address of a fullword containing the integer

 length of space provided for returning item.

 16(R1) (when required) address of a fullword value

 indicating whether to return upper-case (¬0)

 or mixed-case (=0) form.

 Result: R0 integer specifying actual length of item

 requested.

 Parse_Get_Stack_Size _____ ___ _____ ____

 CC External Name: CPGSSCC

 R-type Parameters:

 R0 address of a parser control block.

 R1 integer code for label of element to get.

 OS External Name: CPGSS

 S-type Parameters:

 0(R1) address of fullword containing the address

 of a parser control block.

 4(R1) address of a fullword containing an integer

 code for the label of the element to get.

 Result: R0 integer specifying length in bytes of item

 requested.

 Parse_Help _____ ____

 CC External Name: CPHELPCC

 R-type Parameters:

 R0 address of a parser control block.

 R1 address of help item in form of halfword

 length followed by variable number of

 characters. Note that for a PLUS program the

 Address(...) is automatically supplied.

 OS External Name: CPHELP

 S-type Parameters:

 0(R1) address of a fullword containing the address

 of a parser control block.

 4(R1) address of help item in form of halfword

 length followed by variable number of

 characters.

 Subroutine Calling Sequences

 UBC CLPARSER

 89

 Result: R0 a Boolean. True (=1) indicates requested

 item was found; False (=0) indicates it was

 not found.

 Parse_Initialize _____ __________

 CC External Name: CPINITCC

 R-type Parameters:

 R0 arbitrary fullword (usually a psect address)

 to pass to semantic routine.

 OS External Name: CPINIT

 S-type Parameters:

 0(R1) address of a fullword containing an

 arbitrary value (usually a psect address) to

 pass to semantic routine.

 Result: R0 address of a parser control block.

 Parse_Initialize_Nonmts _____ __________ ______

 CC External Name: CPINMCC

 R-type Parameters:

 R0 arbitrary fullword (usually a psect address)

 to pass to semantic routine.

 R1 address of a getspace routine.

 R2 address of a freespace routine.

 OS External Name: CPINM

 S-type Parameters:

 0(R1) address of a fullword containing an

 arbitrary value (usually a psect address) to

 pass to semantic routine.

 4(R1) address of a fullword containing the address

 of a getspace routine.

 8(R1) address of a fullword containing the address

 of a freespace routine.

 Result: R0 address of a parser control block.

 The_Parser_Input_Routine ___ ______ _____ _______

 The input routines always take S-type parameters. The call

 always provides a stack, hence is valid for either OS or

 CC linkage.

 Subroutine Calling Sequences

 UBC CLPARSER

 90

 S-type Parameters:

 0(R1) address of a fullword containing the address

 of a parser control block.

 4(R1) address of fullword containing the user

 psect pointer.

 8(R1) address of area in which to return next line

 of input.

 12(R1) address of a fullword integer specifying the

 number of bytes that may be used for input

 line.

 Result: R0 integer specifying number of bytes returned.

 Parse_Reset _____ _____

 CC External Name: CPRSETCC

 R-type Parameters:

 R0 address of a parser control block.

 OS External Name: CPRSET

 S-type Parameters:

 0(R1) address of a fullword containing the address

 of a parser control block.

 Result: R0 a Boolean. False (=0) if anything went

 wrong.

 Parse_Set _____ ___

 CC External Name: CPSETCC

 R-type Parameters:

 R0 address of a parser control block.

 R1 integer code for item to set.

 R2 address of first byte of area containing

 value. Note that for a PLUS program the

 Address(...) is automatically supplied.

 R3 (when required) length of item passed in R2.

 OS External Name: CPSET

 S-type Parameters:

 0(R1) address of a fullword containing the address

 of a parser control block.

 4(R1) address of a fullword containing an integer

 code for the item to set.

 8(R1) address of first byte of area containing

 value.

 12(R1) (when required) address of fullword

 containing the length of item passed as

 parameter 3.

 Subroutine Calling Sequences

 UBC CLPARSER

 91

 Result: R0 a Boolean. True (=1) if item set

 successfully; False (=0) if not.

 Parse_Terminate _____ _________

 CC External Name: CPTERMCC

 R-type Parameters:

 R0 address of a parser control block.

 OS External Name: CPTERM

 S-type Parameters:

 0(R1) address of a fullword containing the address

 of a parser control block.

 Result: R0 a Boolean. False (=0) if anything went

 wrong.

 Production_Text __________ ____

 CC External Name: CPPTXTCC

 Parameters:

 R0 address of a parser control block.

 R1 address of a 258-byte area in which the

 result is returned as a halfword length

 followed by a variable number of characters.

 R2 a Boolean value indicating whether to return

 upper-case (¬0) or mixed-case (=0) form.

 Note that the PLUS declaration of this procedure is

 such that it actually appears to return a character

 string, rather than being passed a pointer to one as

 a parameter.

 There is no OS-linkage/S-type version of this routine.

 The_Semantic_Procedures ___ ________ __________

 A semantic procedure is called as a CC-linkage/R-type,

 unless the declaration in the grammar specifies "S-TYPE".

 R-type Parameters:

 R0 address of a parser control block.

 R1 psect pointer as passed to Parse_Initialize.

 R2 numeric code for semantic action to be

 applied.

 S-type Parameters:

 0(R1) address of a fullword containing the address

 of a parser control block.

 4(R1) address of a fullword containing the psect

 Subroutine Calling Sequences

 UBC CLPARSER

 92

 pointer as passed to Parse_Initialize.

 8(R1) address of a fullword containing a numeric

 code for semantic action to be applied.

 Result: R0 a Boolean. True (=1) if semantic action is

 to succeed; False (=0) if it is to fail.

 UBC CLPARSER

 93

 INDEX

 Abbreviation, 6 CPGETCC, External Name, 19,86

 Allocation, Parser Control CPGSS, External Name, 22,88

 Block, 15 CPGSSCC, External Name, 22,88

 Alternate, 1,4 CPGSTK, External Name, 20,87

 Analyzer, See Table Generator CPGSTKCC, External Name, 20,87

 Analyzer_Generation_Time, CPHELP, External Name, 25,88

 Parser Variable, 49 CPHELPCC, External Name, 25,88

 Assembler Declarations, 60 CPINIT, External Name, 15,89

 Attentions, 27,51 CPINITCC, External Name, 15,89

 Attention-testing, Routine, CPINM, External Name, 15,89

 27,85 CPINMCC, External Name, 15,89

 Attention_Test_Routine, Parser CPLTTCC, External Name, 25,86

 Variable, 27,51 CPPTXTCC, External Name, 24,91

 CPRSET, External Name, 22,90

 Backup, 8-9,33,41 CPRSETCC, External Name, 22,90

 Blanks, Skipping, 39 CPSET, External Name, 18,90

 System Terminal, 34 CPSETCC, External Name, 18,90

 BNF, 1 CPTERM, External Name, 17,91

 Braces, 5 CPTERMCC, External Name, 17,91

 Brackets, 5 CPTRAC, External Name, 47

 Cross-reference, 61

 Call, R-type, 12 Grammar, 60

 S-type, 12 Option, 60

 Case Conversion, Cuinfo, Routine, 30

 6,17,19-20,42-44,47 Cuinfo_Routine, Parser

 Case_Convert, Parser Variable, Variable, 51

 6,47 Current_Position, Routine,

 CC, See Coding Conventions 23,85

 Ccid, 34 Current_Production_Text, Parser

 System Terminal, 34 Variable, 24,42

 CCSYMBOL, Low-core Symbol

 Table, 65 DECK, Option, 60

 Character-class, 3,25 Declaration, 3,62

 *CLPARSEGEN, 59 Example, 71

 *CLPARSELIB, 63 Goal, 63

 Code, Error, 16,34,46,82 Label, 13

 Label, 62 Procedure, 12

 Parser Variable, 17-18,41 Semantic Routine, 12

 Semantic Action, 12,62 Declarations, Generated,

 Semantic Label, 13 2,12-13

 Coding Conventions, 84 Option, 60

 Linkage, 2,84 Routine, 14,64

 Command_Text, Routine, 23,85 Default_Help_Name, Parser

 Comment, Grammar, 59 Variable, 53

 Confirmation, 29 Department Code, 37

 CONTEXT, Help, 55 Directory, 57

 CORRECT, Term, 9,54

 Correction, See Error EJECT, Option, 60

 Correction End-of-file, 27,35

 CPARSE, External Name, 16,86 *End_Of_File*, System Terminal,

 CPARSECC, External Name, 16,86 35

 CPCTXTCC, External Name, 23,85 *End_Of_Line*, System Terminal,

 CPCURP, External Name, 23,85 35

 CPCURPCC, External Name, 23,85 Entry Point, 11

 CPGET, External Name, 19,87 Routine, 14

 UBC CLPARSER

 94

 INDEX

 Equates, Assembler, 62 CPTERM, 17,91

 Error, Code, 16,34,46,82 CPTERMCC, 17,91

 Message, 16,30,34,46,82 CPTRAC, 47

 Error Correction, Creation Of, 12

 9,27,29,43-44,46,54 External Production, 10

 And System Services, 15 Example, 11

 Example, 72

 Routines Required, 28 Fail, 1

 Error Handling, 9 Term, 7

 Error_Correction, Parser Fdname, 35,38-39

 Variable, 46,54 System Terminal, 35

 Example, 70 Fence, And Error Correction, 55

 Declaration, 71 Term, 8,32-33

 Error Correction, 72 Floating-point Number, 38

 Expression, 70 Fortran, Example, 77

 External Grammar, 80 Linkage, 2

 External Production, 11 Freefd, Routine, 30

 Fortran, 77 Freefd_Routine, Parser

 Goal Production, 11 Variable, 50

 Help File, 72 Freespace, Routine, 29

 How To Run, 71 Freespace_Routine, Parser

 Label Declaration, 13 Variable, 29,50

 Nonterminal, 10

 PLUS, 71 Generated Declarations, 2,12-13

 Procedure Declaration, 13 Getfd, Routine, 30

 Terminal, 4 Getfd_Routine, Parser Variable,

 Trace, 73 50

 Expression, Example, 70 Getspace, Routine, 29

 Term, 5 Getspace_Routine, Parser

 EXTERNAL, 10 Variable, 29,50

 External Grammar, Example, 80 Goal, 3,11,16

 External Name, 10,12 Declaration, 63

 CPARSE, 16,86 Goal Production, 11

 CPARSECC, 16,86 Example, 11

 CPCTXTCC, 23,85 Goal Symbol, 1

 CPCURP, 23,85 GO TO, Term, 7

 CPCURPCC, 23,85 Grammar, 1,3,59

 CPGET, 19,87 Comment, 59

 CPGETCC, 19,86 Cross-reference, 60

 CPGSS, 22,88 Listing, 60

 CPGSSCC, 22,88 Table Generator, 67

 CPGSTK, 20,87 Version, 49

 CPGSTKCC, 20,87 Guinfo, Routine, 30

 CPHELP, 25,88 Guinfo_Routine, Parser

 CPHELPCC, 25,88 Variable, 51

 CPINIT, 15,89 Guser, Routine, 29

 CPINITCC, 15,89 Guser_Routine, Parser Variable,

 CPINM, 15,89 50

 CPINMCC, 15,89

 CPLTTCC, 25,86 Help, 25,30,35,55,57

 CPPTXTCC, 24,91 CONTEXT, 55

 CPRSET, 22,90 KEYWORDS, 55

 CPRSETCC, 22,90 System Terminal, 35,58

 CPSET, 18,90 Help File, 25,30,35,47,53,57

 CPSETCC, 18,90 Example, 72

 UBC CLPARSER

 95

 INDEX

 Releasing, 22 Listing, Grammar, 60

 Help_Command, System Table Generator, 61

 Terminal, 35,58 Title, 60

 Help_File_Name, Parser Literal, 1,43

 Variable, 25,35,47 Optional, 6

 Hexadecimal Integer, 36 Semantic Value, 31

 Hexadecimal String, 4,6,36 Symbol, 6

 Hex_Integer, System Terminal, Term, 6

 36 Literal_Text, Parser Variable,

 Hex_String, System Terminal, 43

 36 Loader Symbol, 10-12

 How To Run, Example, 71 Low-core Symbol Table,

 Table Generator, 59 CCSYMBOL, 65

 /INCLUDE, In Help File, 57 Message, 37

 Initialization, 15 Error, 16,30,34,46,82

 Input, Multiline, 32,37 System Terminal, 37

 Parser, 2,8 *More*, System Terminal, 33,37

 Routine, 8 MTS Line Number, 36

 Input_Buffer_Length, Parser Multiline Input, 32,37

 Variable, 28,32,48

 Input_Routine, Parser Variable, Name, Entry, 11

 28,32,51 External, 10,12

 Input_Text, Parser Variable, Option, 61

 23,42 Production, 3,5

 Integer, 36 Semantic Action, 44

 System Terminal, 36 Negation, 8

 Nested Production, 31

 Keyword, 1,6 Nested Term, 5

 KEYWORDS, Help, 55 Nonterminal, 4

 Example, 10

 Label, 7,20-21,31,62 Semantic Value, 31

 Code, 62 Number, Floating-point, 38

 Declaration, 13

 Label Declaration, Example, 13 OBJECT, Option, 60

 Labelled Term, 7,31 Object Module, 60-61

 Last_Error_Code, Parser OPTIMIZE, Option, 60

 Variable, 46,82 Option, Cross-reference, 60

 Last_Error_Message, Parser DECK, 60

 Variable, 46,82 DECLARATIONS, 60

 Last_Terminal_Text, Routine, EJECT, 60

 24,86 LIST, 60

 Length Specification, 3 NAME, 61

 Library, 65 OBJECT, 60

 PLUS, 63 OPTIMIZE, 60

 PLUS Source, 63 Parser, See Parser Variable

 Line Number, 36 SYMBOLS, 44,61

 Line_Number, System Terminal, Table Generator, 59

 36 TITLE, 60

 Linkage, 14,84 TRACE, 61

 Coding Conventions, 2,84 XREF, 60

 Fortran, 2 Optional, Literal, 6

 OS, 2,84 Optional Literal, Term, 6

 PLUS, 2,84 Optional Term, 5

 LIST, Option, 60 OS, Linkage, 2,84

 UBC CLPARSER

 96

 INDEX

 Parameter, 14 Last_Error_Code, 46,82

 System Terminal, 7,34 Last_Error_Message, 46,82

 Parameters, 84 Literal_Text, 43

 Parse, Routine, 16,86 Parsed_Ccid, 34,52

 Parsed_Ccid, Parser Variable, Parsed_Fdname, 35,38-39,52

 34,52 Parsed_Fdub, 30,35,38-39,51

 Parsed_Fdname, Parser Variable, Parsed_Integer, 36,52

 35,38-39,52 Parsed_Line_Number, 36,53

 Parsed_Fdub, Parser Variable, Parsed_Project, 37,52

 30,35,38-39,51 Parsed_Real, 38,53

 Parsed_Integer, Parser Parsed_String, 36-39,52

 Variable, 36,52 Parser_Generation_Time, 49

 Parsed_Line_Number, Parser Parse_Result, 31,45

 Variable, 36,53 Parse_Trace, 39,47,65

 Parsed_Project, Parser Print_Errors, 48,82

 Variable, 37,52 Production_Start_Position, 42

 Parsed_Real, Parser Variable, Read_Routine, 51

 38,53 Retrieving, 18

 Parsed_String, Parser Variable, Scan_Position, 23,41

 36-39,52 Semantic_Name, 44

 Parser, Trace, 39,47,61,65 Semantic_Result, 44

 Version, 49 Semantic_Result_String, 38,45

 Parser Control Block, 14 Semantic_Result_Word, 38,45

 Allocation, 15 Sercom_Routine, 50

 Releasing, 17 Setting, 17

 Resetting, 22 Short_Strings, 41,48

 Parser Input, Spelling_Correction, 46,54

 2,8,16,27,32,39,51 Table_Generation_Time, 49

 Retrieving, 23 Terminal_Text, 25,43

 Routine, 27,89 User_Psect, 48

 Parser Option, See Parser Parse_Get, Routine, 18,86

 Variable Parse_Get_Stack, Routine,

 Parser_Generation_Time, Parser 20,30,87

 Variable, 49 Parse_Get_Stack_, Routine, 88

 Parser Variable, 41 Parse_Get_Stack_Size, Routine,

 Accessing, 18 21

 Analyzer_Generation_Time, 49 Parse_Goal_Type, 64

 Attention_Test_Routine, 27,51 Parse_Help, Routine, 25,58,88

 Case_Convert, 6,47 Parse_Initialize, Routine,

 Code, 17-18,41 15,89

 Cuinfo_Routine, 51 Parse_Initialize_Nonmts,

 Current_Production_Text, Routine, 15,89

 24,42 Parse_Item_Type, 17-18

 Default_Help_Name, 53 Parse_Reset, Routine, 22,90

 Error_Correction, 46,54 Parse_Result, Parser Variable,

 Freefd_Routine, 50 31,45

 Freespace_Routine, 29,50 Parse_Set, Routine, 17,90

 Getfd_Routine, 50 Parse_String_Type, 65

 Getspace_Routine, 29,50 Parse_Terminate, Routine, 17,91

 Guinfo_Routine, 51 Parse_Trace, Parser Variable,

 Guser_Routine, 50 39,47,65

 Help_File_Name, 25,35,47 Parse_Trace_Type, 65

 Input_Buffer_Length, 28,32,48 Parsing, 16

 Input_Routine, 28,32,51 PLUS, Example, 71

 Input_Text, 23,42 Library, 63

 UBC CLPARSER

 97

 INDEX

 Linkage, 2,84 Current_Position, 23,85

 PLUS Declarations, 60 Declarations, 14,64

 PLUS Library Declarations, 60 Freefd, 30

 Precision, 39 Freespace, 29

 Prefix String, 30 Getfd, 30

 Primed_String, System Getspace, 29

 Terminal, 37 Guinfo, 30

 Print_Errors, Parser Variable, Guser, 29

 48,82 Input, 8

 Procedure, See Routine Last_Terminal_Text, 24,86

 Procedure Declaration, 12 Parse, 16,86

 Example, 13 Parser Input, 27,89

 Production, 1,3 Parse_Get, 18,86

 External, 10 Parse_Get_Stack, 20,30,87

 Goal, 3,11 Parse_Get_Stack_, 88

 Nonterminal, 4 Parse_Get_Stack_Size, 21

 Result, 31 Parse_Help, 25,58,88

 Terminal, 3 Parse_Initialize, 15,89

 Production Name, 3 Parse_Initialize_Nonmts,

 Production_Start_Position, 15,89

 Parser Variable, 42 Parse_Reset, 22,90

 Production_Text, Routine, 24,91 Parse_Set, 17,90

 Project, System Terminal, 37 Parse_Terminate, 17,91

 Project Code, 37 Production_Text, 24,91

 Prompt, 30 Read, 30

 Psect Pointer, 15,26,48 Semantic, 1,6,12,26

 Pseudo-register Vector, 84 Sercom, 30

 Push, System Terminal, 38 R-type Call, 12

 R-type Parameters, 84

 Qualified_Fdname, System

 Terminal, 38 Save Area, 29,84

 QUIT, Term, 9 Scan Position, 23,41-42

 Quoted String, 4,6,38 Scan_Position, Parser Variable,

 Quoted_String, System 23,41

 Terminal, 38 Semantic, Routine, 91

 Semantic Action, 1,6,12,26

 Read, Routine, 30 Code, 12,62

 Term, 8,27,32 Name, 44

 Read_Routine, Parser Variable, Semantic Value, 31

 51 Trace, 65

 Real, System Terminal, 38 Semantic Label, 13

 Real Number, 38 Code, 13

 Recursion, 17 Use Of, 20-21

 Releasing, Parser Control Semantic Routine, 1,6,12,26,91

 Block, 17 Declaration, 12

 Repeated Term, 5 Semantic Stack, 1,26,30,38

 Resetting, 22 Accessing, 20

 Result, Production, 31 And FENCE, 8

 Results, 84 Semantic_Name, Parser Variable,

 Retry, 43-44,55 44

 Term, 9 Semantic_Procedure_Type, 64

 Routine, Attention-testing, Semantic_Result, Parser

 27,85 Variable, 44

 Command_Text, 23,85 Semantic_Result_String, Parser

 Cuinfo, 30 Variable, 38,45

 UBC CLPARSER

 98

 INDEX

 Semantic_Result_Word, Parser Parameter, 7,34

 Variable, 38,45 *Primed_String*, 37

 Semantic Value, 7,31 *Project*, 37

 Literal, 31 *Push*, 38

 Nonterminal, 31 *Qualified_Fdname*, 38

 Retrieving, 20 *Quoted_String*, 38

 Semantic Action, 31 *Real*, 38

 Terminal, 31 Semantic Value, 31

 Sercom, Routine, 30 *Simple_Fdname*, 39

 Sercom_Routine, Parser *String*, 39

 Variable, 50 *To_Nonblank*, 33,39

 Short_Strings, Parser Variable, *Trace*, 39,65

 41,48

 Simple_Fdname, System Table Generator, 3,59

 Terminal, 39 Grammar, 67

 Source Library, PLUS, 63 How To Run, 59

 Spelling Correction, 54 Listing, 61

 Spelling_Correction, Parser Version, 49

 Variable, 46,54 Table_Generation_Time, Parser

 Stack, 84 Variable, 49

 Storage Allocation, 29 Term, 1,5

 String, 39 CORRECT, 9,54

 Hexadecimal, 4,6,36 (expression), 5

 Parameter Format, 41 FAIL, 7

 Primed, 37 FENCE, 8,32-33

 Quoted, 4,6,38 GO TO, 7

 System Terminal, 39 Labelled, 7,31

 S-type Call, 12 Literal, 6

 S-type Parameters, 84 Nested, 5

 Subexpression, 5 Optional, 5

 Succeed, 1 Optional Literal, 6

 Term, 8 QUIT, 9

 Symbol, Goal, 1 READ, 8,27,32

 Label, 7 Repeated, 5

 Literal, 6 RETRY, 9

 Loader, 10-12 SUCCEED, 8

 Production Name, 5 <symbol>, 5-6

 Term, 5-6 ..., 5

 SYMBOLS, Option, 44,61 {expression}, 5

 Syntax, 3,67 [expression], 5

 System Services, 28 |literal|, 6

 System Terminal, 1,6,34 Terminal, 1,24

 Blanks, 34 Example, 4

 Ccid, 34 Semantic Value, 31

 End_Of_File, 35 System, 1,6

 End_Of_Line, 35 Terminal Production, 3

 Fdname, 35 Terminal_Text, Parser Variable,

 Help, 35,58 25,43

 Help_Command, 35,58 Termination, 17

 Hex_Integer, 36 Title, Listing, 60

 Hex_String, 36 Option, 60

 Integer, 36 *To_Nonblank*, System Terminal,

 Line_Number, 36 33,39

 Message, 37 Trace, Enabling, 66

 More, 33,37 Example, 73

 UBC CLPARSER

 99

 INDEX

 Option, 61

 Parser, 39,47,61,65

 Semantic Action, 65

 System Terminal, 39,65

 Tracing, 65

 User Psect, 15,26,48

 User_Psect, Parser Variable, 48

 Version, Grammar, 49

 Parser, 49

 Table Generator, 49

 XREF, Option, 60

 ..., Term, 5

 {expression}, Term, 5

 [expression], Term, 5

 |literal|, Term, 6

