
UBC PLUSThe Plus Programming Languageby Alan Ballard and Paul WhaleyO
tober 1976Revised O
tober 16, 1987

Computing CentreUNIVERSITY OF BRITISH COLUMBIA6356 Agri
ultural RoadVan
ouver, B.C., Canada V6T 1W5
Copyright c© 2010

NoteThis manual provides a des
ription of the systems programminglanguage Plus, developed at the University of British Columbia byAlan Ballard and Paul Whaley.This do
ument was originally prepared for the MTS Systems Work-shop at Ann Arbor (O
tober 1976). A major revision in
ludingmany more details and examples was prepared for June, 1986.This edition in
orporates information on the Motorola 68000 Plus
ompiler. It
orresponds to version 28/13 of the Plus
ompilers.The implementations of Plus are not yet
omplete. This version ofthe manual has been annotated to indi
ate language features whi
hare not yet implemented in the
ompilers.Plus/370 is fully supported by the UBC Computing Centre for useunder MTS. Plus-11 has not been oÆ
ially released to ComputingCentre users, and the external support level has not yet been estab-lished. Plus/68000 is
urrently undergoing initial testing.

iiiTable of ContentsI. The Plus Programming Language . 1A. Ba
kground . 1B. Language Goals . 11. Program Stru
tures . 12. Problem-Oriented Data Stru
tures 13. Readability and Understandability 24. Parameterization . 25. Compile-Time and Run-Time Che
king 26. EÆ
ient Code . 37. Systems Programming Fa
ilities 38. Compiler EÆ
ien
y . 3II. Tutorial Introdu
tion . 5A. A Program to Copy a File . 5B. Compiling and Running the Program 7C. Program Format . 7D. De
larations in Plus . 8E. The Sour
e Library . 8F. The Runtime Library . 9G. Types and De
larations . 91. Numeri
 Types . 92. String Types . 10H. Plus I/O . 11I. Table Sear
h Example . 11J. Program Stru
ture . 171. Separate Compilation . 172. Global Blo
ks . 183. Pro
edure De�nitions . 18K. De
larations . 181. S
ope of De
larations . 192. Constant De
larations . 213. Type De
larations . 214. Variable De
larations . 225. Pro
edure De
larations . 22L. Type Des
riptions . 231. Basi
 Types . 232. Re
ord Types . 243. Array Types . 254. Pointer Types . 265. Pro
edure Types . 27a. Call-By-Value . 28b. Call-By-Referen
e . 28
. Pro
edure Results . 29d. Other Pro
edure Type Des
riptions 29e. Pro
edure Variables . 29M. Exe
utable Statements . 311. Assignment . 31

iv Table of Contents2. Expressions . 323. Names and Values . 344. If Statements and Conditions 365. Looping Statements . 38a. Cy
le Statements . 38b. Do Statements . 396. Return Statements . 39N. The Message Pro
edure . 40O. About the semi
olons . 41P. The Rest of Plus . 42III. Language Details . 43A. Program Format . 43B. Compiler Input . 43C. Compilation Stru
tures . 431. Pro
edures . 442. Global Variables and Global Blo
ks 453. Global Environments . 464. External Variables . 485. Entry Constants . 496. External Symbols . 497. Ma
ros . 50D. Identi�ers . 511. Uses of Identi�ers . 512. De�nition of Identi�ers . 523. S
ope of Identi�ers . 52E. Type Des
riptions . 531. Numeri
 Types . 542. Chara
ter Types . 543. Bit Types . 554. Identi�er-List Types . 575. Real Types . 576. Index Types . 587. Subrange Types . 588. Set Types . 589. Array Types . 6010. Pointer Types . 6111. Re
ord Types . 6212. Variant Fields in Re
ords . 6313. Pro
edure Types . 6414. Global types . 67F. Type Attributes . 681. Aligned . 682. Environment . 693. Fast . 694. Left . 705. Pa
ked . 706. Right . 717. Small . 718. System . 71

vTable of Contents9. Value . 72G. De
larations . 731. Constant De
larations . 732. Entry Spe
i�
ation . 743. Type De
larations . 744. Variable De
larations . 745. Allo
ation Spe
i�
ations . 75a. External Allo
ation . 75b. Register Allo
ation . 75
. Absolute Allo
ation . 776. Pro
edure De
larations . 777. Pro
edure Spe
i�
ations . 78a. External . 78b. Linkage . 78
. Sta
ksize . 78H. Constants . 791. Integer
onstants . 792. Chara
ter
onstants . 793. Bit
onstants . 794. Real
onstants . 805. Constants of identi�er-list types 806. Pro
edure
onstants . 817. Pointer
onstants . 818. Constant Displays . 819. Constant storage representation 83I. Expressions . 831. Operands and Operations . 832. Coer
ions . 843. Logi
al Expressions . 84J. Assignment Statements . 85K. Pro
edure Calls . 861. Parameter Passing . 862. Return Codes . 873. Swit
hing Global Storage Environment 87L. Control Stru
tures . 881. If Statements . 882. Sele
t Statements . 893. Cy
le Statements . 904. Do Statements . 915. Begin Blo
ks . 926. Compounds . 927. Exit Statements . 928. Repeat Statements . 939. Return Statements . 93M. Assert . 94N. Open Statements . 94O. Equate Statements . 95P. Pro
edure De�nitions . 961. Linkage Option . 96a. linkage "extname" . 97

vi Table of Contentsb. linkage system . 97
. linkage none . 982. Environment Option . 98Q. Ma
ro De�nitions . 99R. Built-in Pro
edures, Constants, and Variables 1001. Address . 1002. Alignment . 1003. Bit_Size . 1004. Byte_Size . 1015. Code_Base_Register . 1016. Condition . 1017. Environment_Base_Register 1028. External_Name . 1029. False . 10210. Frame_Base_Register . 10211. Global_Base_Register . 10212. Global_Size . 10213. High_Value . 10314. Inline . 103a. Inline for the System 370 103b. Inline for the PDP-11 105
. Inline for the Motorola 68000 10515. Left_Justify . 10716. Length . 10717. Low_Value . 10718. Max . 10719. Min . 10720. Null . 10721. Offset . 10722. Prede
essor . 10723. Program_Counter . 10824. Right_Justify . 10825. Size . 10826. Sta
k_Base_Register . 10827. Sta
k_Pointer . 10828. Substring . 10829. Su

essor . 10930. True . 10931. Version . 109S. Compile-Time Statements . 1091. Compile-Time If Statements 1092. Compiler Variables . 1113. Compiler Pro
edures . 119IV. Using the System 370 Plus Compiler . 121A. Compiler Versions . 121B. Compiling a Program . 121C. Compiler Output . 1221. Sour
e Listing . 1222. Comment Paragraphing . 123

viiTable of Contents3. Paragraphed Copy . 1244. Cross-Referen
e . 1245. Errors . 124D. Running A Plus/370 Obje
t Program 125E. Loader Re
ords Required By Plus Programs 1261. %Linkage="OLD" . 1262. %Linkage="NEW" . 127F. Debugging Plus Programs . 127V. Using the PDP-11 Plus Compiler . 131A. Compiler Versions . 131B. Compiling a Program . 131C. Running a PDP-11 Program . 1311. Use of Link11 . 1312. Building A Test System . 131VI. Using the Motorola 68000 Plus Compiler 133A. Compiler Versions . 133B. Compiling a Program . 133C. Running a Motorola 68000 Program 133VII. Sour
e Libraries . 135A. Library Format . 135B. Spe
ifying Libraries to the Compiler 135C. In
luding Sour
e From a Library . 135D. Sour
e Library Utilities . 1351. Plus Library Generator . 1352. Library Listing Program . 136VIII. Helpful Hints and Dirty Tri
ks . 139A. Using Equate to Improve Code Generation 139B. Plus/370 Register Use . 139C. Exe
ution-time Array Dimensions 140D. Che
king For Optional Parameters 141E. Che
king Addresses . 142F. Moving Arbitrary Data . 143G. Pointer Arithmeti
 . 143H. Return Codes from Plus Pro
edures 144I. Multilevel Pro
edure Returns . 144J. Spe
ial Linkage Routines . 146APPENDIX A { Implementation Notes and Current Status 147APPENDIX B { BNF Syntax . 149APPENDIX C { Plus Reserved Words . 157APPENDIX D { Plus/370 Linkage Conventions and Run-time Organization 159A. Register Usage . 159B. Sta
k and Global Organization . 159C. Plus Pro
edure Linkage . 160

viii Table of ContentsD. Sta
k Frame Layout . 164APPENDIX E { Plus-11 Linkage Conventions and Run-time Organization 165A. Obje
t Modules . 165B. Register Usage . 165C. Parameter Passing . 165D. Pro
edure Linkage . 165E. Sta
k Frame Layout . 167APPENDIX F { Plus/68000 Linkage Conventions and Run-time Organization 169A. Ma
intosh System Support . 1691. Ma
intosh Programmer's Workshop (MPW) 1692. Ma
intosh Development System (MDS) 169B. AMIGA System Support . 169C. Register Usage . 170D. Parameter Passing . 170E. Ma
intosh Pro
edure Linkage . 170F. AMIGA Pro
edure Linkage . 171G. Sta
k Frame Layout . 172APPENDIX G { Plus/68000 Inline Codes 173INDEX . 175

1I. The Plus Programming LanguageA. Ba
kgroundPlus is based to a large extent on the Sue system language, whi
h was developed at theUniversity of Toronto,
ir
a 1971, for the spe
i�
 purpose of implementing an operatingsystem for the IBM System 360
omputers.1 The Sue language was derived (parti
ularlyin its data stru
ture fa
ilities) from Pas
al. The same is true of Plus, although we haveprobably moved a little further from the a
tual syntax of Pas
al. The Sue language had anumber of awkward
onstru
ts and other synta
ti
 rough-spots whi
h we have tried to smoothover. Undoubtedly, some of the
hanges we've made re
e
t personal biases, and will not beunanimously viewed as improvements on either Pas
al or Sue.Plus is super�
ially quite di�erent from Sue or Pas
al; however the underlying languagesemanti
s are really very similar. It also has mu
h in
ommon with the stru
ture and semanti
sof the programming language C. If you're familiar with any of these languages, you shouldn'thave mu
h trouble adapting to Plus.The Plus
ompilers are written entirely in Plus. There are
urrently three versions, generating
ode for the IBM System 370-
ompatible
omputers, for DEC PDP-11's, and for the MotorolaM68000 family of mi
ropro
essors. All run on System 370-
ompatible
omputers under MTS.2The
ode generated by the 370
ompiler is a standard MTS/IBM obje
t module. It doesnot depend on MTS operating system servi
es, ex
ept for a small initialization pro
edurewhi
h must allo
ate storage. The PDP-11
ross-
ompiler generates obje
t
ode for the PDP-11 series in the form of a *Link11 obje
t module. The
ode generated does not dependon the system running in the PDP-11, but expe
ts a small run-time environment whi
h isprovided by assembler routines. The M68000
ross-
ompiler generates obje
t
ode for theMa
intosh Programmer's Workshop, or the Ma
intosh 68000 Development System, or theAMIGA system.3B. Language GoalsThis se
tion des
ribes some of the design
onsiderations and language philosophy of Plus.Most of these goals (and in fa
t, parts of the following des
ription) have been borrowed di-re
tly from Sue. The overriding
onsiderations are that the language must
ontribute to theprodu
tion of
orre
t, easily maintained, eÆ
ient programs. This has a number of impli
a-tions:1. Program Stru
turesThe language provides only
ontrol stru
tures whi
h en
ourage reasonable program stru
-ture. It must provide an eÆ
ient pro
edure
alling/entry sequen
e, in order to en
ouragemodularity.2. Problem-Oriented Data Stru
turesThe data stru
turing fa
ilities of Plus are similar to those of Pas
al. They allow de-
1 IBM is a trademark of International Business Machines Inc.

2 There is also a version of the 370 compiler which runs using a “fake MTS” interface under IBM’s VS-1 or MVS
operating systems. The interface was developed by Peter Ludemann of the Block Brothers Data Processing Centre
in Vancouver, B.C.

3 AMIGA is a trademark of Commodore-Amiga Inc., Macintosh is a trademark licensed to Apple Computer Inc.

2 The Plus Programming Languages
ription of variables in more problem-oriented terms than most languages. That is,any item is des
ribed in terms of the values it will be assigned rather than the storagelo
ations it is to o

upy. For example, a numeri
 variable is de�ned in terms of the rangeof numbers it may be assigned, rather than the number of bits it requires. The datastru
turing fa
ilities tend to be more self-do
umenting than most languages. They alsoassist the
ompiler in making intelligent storage allo
ation and
ode generation de
isionssin
e the
ompiler is provided with a des
ription of the essential properties of variables.The information is also available for use in
ompile-time or run-time
he
king.3. Readability and UnderstandabilityThis is an important requirement of the language and has in
uen
ed its design in manyways. Plus makes no attempt to be terse. In this respe
t our language di�ers in a major,philosophi
al, irre
on
ilable way from what many people
onsider a \good" language.Wherever possible, the language uses English keywords rather than strange pun
tuationmarks. Keywords
annot be abbreviated. The language en
ourages the use of long,self-do
umenting variable names and symboli

onstants. While we haven't yet found away of preventing the use of Fortran-style remove-all-the-vowels
ontra
tions, they are aviolation of the intended style.4A number of features
ommonly found in modern programming languages|su
h as theability to have assignments nested within more
omplex expressions|have been left outof Plus be
ause we believe they lead to programs whi
h are unne
essarily diÆ
ult tounderstand. The small saving in sour
e program size, and possible saving in obje
t
odesize (we hope our
ompiler will eventually
at
h most of the situations where there wouldbe a saving) doesn't seem to justify the in
lusion of su
h features.To in
rease the readability of sour
e program listings, the
ompiler produ
es only a para-graphed listing showing
ontrol stru
tures, et
. by means of indentation. The
ompiler
an also produ
e a paragraphed
opy of the sour
e input that is suitable for use as inputfor subsequent runs of the
ompiler.It is parti
ularly important for systems programs that another programmer should beable to pi
k up a listing and qui
kly a
quire a general idea of how the program works.We believe that the Plus
ontrol stru
tures and data stru
tures, together with reasonableidenti�ers and paragraphed listings, help
onsiderably in a
hieving this.4. ParameterizationTo redu
e maintenan
e diÆ
ulties, it is generally important that a program be written to
ontain as few o

urren
es of \magi
 numbers" as possible. As a general rule su
h thingsas sizes of tables et
., should be de�ned in one pla
e only and referen
ed wherever elsethey are required by means of symboli

onstants and expressions using the
onstants.Plus
ontains the ability to do this kind of parameterization.5. Compile-Time and Run-Time Che
kingThe language is expe
ted to assist a
tively in the dete
tion and isolation of errors, at
ompile-time if possible. To this end, the language requires all variables to be de
lared
4 Within the Plus compiler itself, the average identifier length is about 13.5 characters—longer than the maximum

allowed by many languages.

3The Plus Programming Languageand performs full type
he
king of all expressions at
ompile-time. Type
he
king in
ludes
he
king the types of parameters to pro
edures and the results of following pointers.The
ompiler will also (optionally) generate extra
ode to
he
k at run time for
ertainerrors that
annot be dete
ted at
ompile time. In parti
ular, it
an
he
k that valuesassigned to variables or used as subs
ripts are within the de
lared ranges.Writing the extensive de
larations required is often a lot of work. However, our experien
ewith Plus has been that the
he
king the
ompiler performs will
at
h many of the more
ommon programming errors. Also, the extra
are that is required in writing a programa

ording to Plus's stringent rules seems to result in programs with amazingly few bugs.We often �nd that it takes several runs to get a large program to
ompile su

essfully,but the resulting obje
t
ode will work after only a very few attempts at running it.6. EÆ
ient CodeA systems programming language must ne
essarily produ
e eÆ
ient
ode. One
onse-quen
e of this is that we attempt to avoid in
luding in the language any
onstru
ts thatare inherently ineÆ
ient, or whi
h produ
e obje
t
ode larger than you might expe
tfrom the sour
e
ode.A number of features of the language|in
luding the
ontrol stru
tures provided and thenature of the de
larations|allow the
ompiler to obtain information required to produ
egood
ode.The
urrent version of the Plus
ompiler will generate quite good
ode on a statement-by-statement basis, but is not
lever enough to optimize its register use. Plus allowsyou to spe
ify that
ertain variables should be allo
ated in registers. This means you
an assist the
ompiler in generating good
ode in
riti
al areas of the program. Wehope that future
ompiler development will provide improvements in the
ompiler's useof registers, and thus obviate the need for the programmer to spe
ify register variables.7. Systems Programming Fa
ilitiesWhen you're using a high-level language you shouldn't normally need to worry aboutma
hine idiosyn
rasies. However there are some situations where|either for reasonsof eÆ
ien
y, or to interfa
e with the hardware or external software|you may need toexer
ise pre
ise
ontrol over the instru
tions generated and the allo
ation of storageand registers. There are also situations where, primarily for eÆ
ien
y reasons,
ertainlanguage restri
tions may be una

eptable. The language provides fa
ilities whi
h
an beused, if required, to
ontrol size and alignment of variables, for
e allo
ation of registers,or emit expli
it ma
hine instru
tions. It also in
ludes the ability to
ir
umvent the usualtype-
he
king rules of the language.8. Compiler EÆ
ien
yThe Plus
ompiler is reasonably eÆ
ient, although this has not been a strong requirement.It's hard to do worse than the 370 assemblers. In fa
t Plus programs are generally
onsiderably
heaper to
ompile than equivalent size Assembler programs.The language provides fa
ilities for separate
ompilation of parts of a program, in orderto keep
ompilation
osts reasonable for large programs.Some de
isions in the
ompiler implementation have been a�e
ted by
ost
onsiderationsfor use under MTS|for example we make extensive use of virtual memory rather than

4 The Plus Programming Languages
rat
h �les. Some restri
tions of the language result from
ompilation
ost
onsidera-tions.

5II. Tutorial Introdu
tionThis
hapter provides a qui
k introdu
tion to Plus. It will show you the basi
 elements of thelanguage by presenting and explaining a
ouple of
omplete programs.By the time you've read this
hapter, you should be able to write simple Plus programs for yourself.However, this tutorial is not at all
omplete, and not totally truthful, so if you want to use Plusfor real problems, please read the following
hapters as well.Most of what is des
ribed in this
hapter applies to all the Plus
ompilers. However, several of thelibrary de�nitions and pro
edures des
ribed may only exist for Plus/370.A. A Program to Copy a FileWe'll start with a really simple example. Example 1
ontains a
omplete Plus program. Thenumbers at the left are just for referen
e in the following explanations; they are not part ofthe program.The purpose of this program is to
opy one �le to another, then write out a
ount of thenumber of lines
opied. We'll �rst explain the pie
es of this program very brie
y, then �ll insome details later.Lines 1 to 3 and line 5 are used to in
lude a number of statements from a library of standardde�nitions. Library members typi
ally
ontain de
larations for various
onstants, types, andpro
edures. Symbols beginning with % are
ompiler variables or
ompiler pro
edures. Theyare used to request spe
ial
ompile-time servi
es.Line 5 in
ludes a de
laration for the pro
edure Main from the library. Main is a standardname for the \main program", i.e., the pro
edure whi
h is going to begin exe
uting when yourun the program. Some spe
ial magi
 is required in the de
laration of the main program toget things started up properly when you exe
ute the program. The de
laration in the libraryprovides the ne
essary spe
i�
ations. Later on, when you learn the details of the de
larationof Main, you
an
all your main program something else, if you want to.Lines 7 though 10 are a
omment. Anything between /* and */ is ignored by the
ompiler.Other
omments appear at lines 15{16, line 21, and line 27.Lines 11 through 30
onstitute the de�nition of the pro
edure Main. Between the headingdefinition Main and the ending end Main go de
larations of identi�ers that are private toMain, and the exe
utable statements that are to be performed whenever pro
edure Main isinvoked.Lines 12 and 13 de
lare three variables, Count, Return_Code, and String, whi
h are to beused in the following statements. Count and Return_Code are de�ned to be of type Integer,while String is de�ned to be of type Varying_String. We'll say more about these spe
i�
types in a few minutes. At this point, note that every variable used in a Plus program mustbe de
lared, to asso
iate a type with the variable. The variable
an only be used in
ontextsappropriate to its type.Line 14 is an assignment statement, whi
h sets the value of the variable Count to 0. Notethat Plus uses := for assignment.Lines 17 through 26
onstitute a loop, whi
h
ontinues exe
uting inde�nitely, until the exitstatement at line 22 is exe
uted. That is, exe
ution
ontinues from line 26 by returning toline 17. When the exit is performed, exe
ution
ontinues at line 28, after the end of the loop.

6 Tutorial Introdu
tion
[1℄ %In
lude(String_Types, Numeri
_Types);[2℄ %In
lude(S
ards_Varying, Spun
h_Varying, Sprint_Varying);[3℄ %In
lude(Integer_To_Varying);[4℄[5℄ %In
lude(Main);[6℄[7℄ /* This is an example program. It
opies an input file[8℄ to an output file and prints a message saying how[9℄ many re
ords were
opied.[10℄ */[11℄ definition Main[12℄ variables Count, Return_Code are Integer,[13℄ String is Varying_String;[14℄ Count := 0;[15℄ /* Loop reading and writing re
ords,
ounting number[16℄
opied. */[17℄
y
le[18℄ S
ards_Varying(String, Return_Code);[19℄ if Return_Code := 0[20℄ then[21℄ /* Terminate loop when no more input */[22℄ exit[23℄ end if;[24℄ Spun
h_Varying(String);[25℄ Count := Count + 1[26℄ end
y
le;[27℄ /* Build and print a message. */[28℄ String := " Copied " || Integer_To_Varying(Count, 0) || " re
ords.";[29℄ Sprint_Varying(String)[30℄ end MainExample 1|File Copy ProgramLine 18 invokes a pro
edure1 S
ards_Varying, whose de�nition was in
luded from the libraryby line 2. S
ards_Varying reads a line from MTS I/O unit S
ards, and assigns the valueread to the �rst parameter, whi
h must be a suitable
hara
ter variable. It assigns the return
ode of the operation to the se
ond parameter. Note that the pro
edure
all just
onsists ofthe name of the pro
edure followed by a list of its parameters. There is no \
all" keyword.Lines 19 through 23
onstitute an if statement. Note that the if statement is terminated withan end if. (Just end is allowed also.) Between the keyword then and the end if, there
ouldbe an arbitrary list of statements, although in this
ase there is just the exit statement. Ingeneral, there might also be an else-part before the end if. This parti
ular if statement teststhe variable Return_Code, whi
h S
ards_Varying sets to the return
ode delivered by theS
ards
all. If it is nonzero (indi
ating end-of-�le or an error), then the loop is terminated.

1 To be strictly accurate, S
ards_Varying is not a procedure but a macro. This distinction is unimportant at

this point, and in fact we won’t discuss macros in this tutorial.

7Tutorial Introdu
tionLine 22, the exit statement, terminates exe
ution of the loop. We
ould a
tually have spe
i�edthe
ondition as part of the exit statement, repla
ing all of lines 19 to 23 withexit when Return_Code := 0;Line 24 writes out the line just read to I/O unit Spun
h.Line 25 adds one to the
ounter of lines read. A
tually, this statement isn't very good Plus.Instead, it should be written asCount +:= 1whi
h means the same asCount := Count + 1but may be more eÆ
ient (besides being less typing).Line 28 builds a message spe
ifying the number of re
ords
opied. The operator || is used to
on
atenate
hara
ter strings. Integer_To_Varying is a library fun
tion (whose de
larationwas in
luded at line 3) whi
h
onverts an integer to a
hara
ter string. The parameters ofInteger_To_Varying spe
ify the number to be
onverted, and a �eld width to use. 0 for the�eld width means to format it in the minimum number of
hara
ters. Note that fun
tions inPlus
an return arbitrary obje
ts|in this
ase, a variable length
hara
ter string is returned.Line 29 then prints out this message on I/O unit Sprint, using another library routine.After exe
uting the last statement, the pro
edure automati
ally returns to its
aller|in this
ase terminating exe
ution and returning to the operating system.B. Compiling and Running the ProgramIf this program is in the �le Plusex1.s, it
an be
ompiled by issuing the MTS
ommandRun *Plus S
ards=Plusex1.sThis will produ
e a listing on I/O unit Sprint (whi
h normally defaults to your terminal orprinted output), and an obje
t module in the �le -Load. You
an spe
ify I/O unit Spun
h onthe Run
ommand to put the obje
t module somewhere else.The program (from �le -Load)
an be exe
uted by issuing a
ommand likeRun -Load S
ards=Infile Spun
h=Outfilewhi
h
opies �le Infile to Outfile.C. Program FormatPlus programs are free-format, with line boundaries being ignored. You may format the textin your sour
e �le any way you like, breaking lines wherever is
onvenient, ex
ept that you
annot break in the middle of a single \token". That means you
an't split an identi�er, akeyword, a string
onstant, et
., a
ross two lines. (A
omment is treated as a sequen
e oftokens, so it
an be
ontinued a
ross any number of lines.)Statements are separated with semi
olons. Thus, for example, lines 1, 14, 18,
ontain onestatement ea
h. Line 17, on the other hand, is not a statement. It is just a part of the
ompound statement whi
h goes from line 17 to line 26. We'll say more later about just

8 Tutorial Introdu
tionwhen you need a semi
olon and when you don't. In general, Plus is fairly forgiving if youput in some you don't really need. All the examples in this manual will in
lude exa
tly thesemi
olons that are required, with no extra ones.The listing produ
ed by the Plus
ompiler will always be formatted to indi
ate the stru
tureof your program, indenting the insides of loops, and so on. All the examples in this manualare formatted the way they would be by the
ompiler. You
an also ask the
ompiler toprodu
e a
opy of your program that is formatted in the same way, by assigning unit 1 onthe Run
ommand. This
an be useful to produ
e a
leaned-up sour
e �le after you've editeda program extensively.Plus uses quite a lot of keywords to de�ne the various kinds of statements, operations andtypes, and to make them as readable as possible. These keywords are reserved|you
an'tuse them as names for things you de�ne in your program. A
omplete list of Plus's reservedwords appears in Appendix C. In the example program, and throughout this manual, thereserved words appear in all lower
ase letters, while symbols whi
h are not reserved will havethe �rst letter of ea
h segment
apitalized. So if,
y
le, program are reserved, but Integer,Return_Code, Numeri
_Types are not. This same lower
ase/
apitalization
onvention is usedby the Plus
ompiler in any messages it produ
es. By using the
ompiler option %Lower_Case,you
an ask the
ompiler to format identi�ers and keywords in the listing and reformatted
opy this way too.This is only a
onvention, however. The
ompiler ignores upper/lower
ase distin
tions ininterpreting its input. That is, IF, iF, If, and if are all interpreted as the reserved word if,and Count,
ount, COUNT, et
., are all the same variable.D. De
larations in PlusIn Plus, as in most languages, you will use identi�ers for several di�erent purposes|the namesof variables (of various types), pro
edures, �elds of re
ords, and so on.Most of these will be names whi
h are invented by you and are spe
i�
 to your program. Youmust de�ne all su
h identi�ers in an appropriate de
laration statement.Some identi�ers may be de�ned by in
luding their de
larations from a sour
e library. Thereare a few others that are prede�ned by the
ompiler, but not reserved|you
an use the samesymbol for your own purposes (although you probably shouldn't).The various kinds of de
larations
an appear in any order, and
an be intermixed with ex-e
utable statements. However, every identi�er has to be de
lared before the �rst time it isused in other
ontexts.E. The Sour
e LibraryTo redu
e repetitive
oding, and to help maintain
onsistent de�nitions, the Plus
ompilersprovide a sour
e library fa
ility. The %In
lude pro
edure is used to input Plus sour
e
odefrom su
h a library. In e�e
t, the %In
lude statement is repla
ed by the
ontents of thelibrary members whose names are given as parameters.The �le *Plus.Sour
elib is a standard library that is sear
hed by default. It
ontainsde�nitions of some useful
onstants and types, the de
larations of a number of library routines(su
h as Integer_To_Varying), and de
larations for most of the MTS system subroutines.Ea
h library member in turn in
ludes any other de
larations on whi
h it depends.

9Tutorial Introdu
tionThe de�nitions in *Plus.Sour
elib are do
umented by a separate writeup (UBC PLUSLIBRARY). This tutorial will just des
ribe a few of the more basi
 members.If you're writing a large Plus program, you will probably want to divide it up into a number of�les, whi
h you
an then separately
ompile and modify. You should put
ommon de
larationsin a private library, from whi
h they
an be
an be %In
luded by ea
h
omponent, just likede
larations from the standard library. The libraries to be sear
hed by the
ompiler arespe
i�ed on I/O unit 0 of the Run
ommand. For example, if you want the private libraryMylib sear
hed as well as the default library, you would enterRun *Plus ... 0=Mylib+*Plus.Sour
elibChapter VII (page 135) des
ribes the format of a Plus library, as well as the programPlus:Libgen whi
h
an be used to generate a library.F. The Runtime LibraryThere is a library of pro
edures that are often used by Plus programs (su
h as Integer_To_Varying). These library pro
edures are in the MTS resident system. In order for the systemloader to �nd them when it loads your program, some spe
ial loader re
ords must be presentin your obje
t �le (e.g. -Load). The de
laration for Main that was in
luded by line 5 also
auses these re
ords to be added to the obje
t �le, so this simple program will run as is.However, when you deal with more
omplex programs that have been
ompiled as a numberof separate pie
es, you may have to make sure the re
ords needed are present and in the rightpla
e (generally at the end of the �le). Details of this are in Chapter IV (see page 127).G. Types and De
larationsThe program in Example 1 de
lares variables of two types, Integer and Varying_String.As the
apitalization indi
ates, these are not reserved words. In fa
t, they are not built-intypes at all. Rather, the de�nitions of these two types also
ome from the library, as a resultof the %In
lude at line 1.It might seem strange that these apparently basi
 types are not prede�ned as part of thelanguage. However, in Plus they are not really parti
ularly basi
, as we will indi
ate in thefollowing se
tions.1. Numeri
 TypesThe library member Numeri
_Types that is in
luded at line 1
ontains a number ofde
larations that relate to integer numeri
 pro
essing.The following de
larations are among those in the library member:
onstant Maximum_Integer is 2147483647,Minimum_Integer is -Maximum_Integer - 1;type Integer is (Minimum_Integer to Maximum_Integer)The �rst statement (from the keyword
onstant to the semi
olon at the end of the se
ondline) is an example of a Plus
onstant de
laration. Su
h a statement just asso
iatesone or more identi�ers with
onstants. Thereafter, the identi�er may be used insteadof repeating the
onstant. Thus the identi�er Maximum_Integer refers to the
onstant2147483647 (whi
h is, indeed, the maximum integer available on the 370
omputers).

10 Tutorial Introdu
tionHaving de�ned Maximum_Integer, you
an use it in any
ontext where the
onstantwould be allowed, with equivalent e�e
t.The value asso
iated with the identi�er in a
onstant de
laration may be an expression, aslong as all the elements of the expression are themselves
onstants. That is, the
ompilermust be able to determine the value to be asso
iated with the identi�er. The identi�erMinimum_Integer is asso
iated with the value �2147483647� 1 = �2147483648.2The se
ond statement (beginning with the keyword type) is an example of a type de
-laration. It asso
iates the identi�er Integer with the type represented by the phrasefollowing is. The identi�er Integer
an be used thereafter instead of repeating thephrase (Minimum_Integer to Maximum_Integer).This example illustrates the basi
 me
hanism you use in Plus to de�ne a numeri
 type.You spe
ify a range of values that are to be allowed for variables of the type. So thede
larationvariable Count is Integeris equivalent tovariable Count is (Minimum_Integer to Maximum_Integer)and means that variable Count may be legitimately assigned any number in the indi
atedrange.The
ompiler will (optionally) generate run-time tests to ensure that assignments tonumeri
 variables obey the range limitation indi
ated in the de
laration. This run-time
he
king is often very e�e
tive in dete
ting bugs in programs at an early stage. Youshould be as pre
ise as possible in de�ning the range of variables, sin
e this gives the
ompiler the most opportunity to be helpful. (Moreover, the
ompiler will take advantageof range information in some
ases to improve the
ode generated.)It should really be quite rare for you to need to use the type Integer. In fa
t, even for theexample program, it would be preferable to de�ne Count as (0 to Maximum_Integer),sin
e Count should never a
quire a negative value.2. String TypesThe library member String_Types in
ludes the following de
larations:
onstant Standard_String_Length is 255;type Fixed_String is
hara
ter(Standard_String_Length),Varying_String is
hara
ter(0 to Standard_String_Length)The type de
laration provides examples of two forms of
hara
ter string types imple-mented by Plus.An example of a �xed-length string type is provided by
hara
ter(Standard_String_Length)Variables of this type always
ontain exa
tly 255
hara
ters (the value of the
onstantStandard_String_Length). Assigning a longer value will generate an error message,
2 For obscure reasons, you can’t write this constant directly into a program, but you can get at it indirectly as in

this example.

11Tutorial Introdu
tionwhile a shorter value will leave the last
hara
ters un
hanged. (Short strings will not bepadded to the given length.)A varying-length string type is illustrated by
hara
ter(0 to Standard_String_Length)Variables of this type may be assigned
hara
ter string values
ontaining anything from0 to 255
hara
ters. The variable will keep tra
k of the length of the value last assigned.The length 255 has been somewhat arbitrarily pi
ked as the size of these string types inthe sour
e library de�nition. This is generally adequate for most programs for buildingmessages, et
., without wasting too mu
h memory.Plus allows
hara
ter types (either �xed or varying length) of any length|they are notrestri
ted to the length 255. Note, however, that when a variable of a varying-length
hara
ter type is de
lared, enough memory is allo
ated for the maximum length spe
i�ed(plus a length �eld). So you should avoid de�ning overly-large
hara
ter variables whenpossible.H. Plus I/OThe Plus language doesn't in
lude any input/output statements. Instead, it is assumed thatthe system I/O subroutines su
h as Read, Write, S
ards, et
. will be used.To fa
ilitate use of these routines, there are several de�nitions in *Plus.Sour
elib. Thesein
lude de
larations ne
essary to use the subroutines dire
tly, as well as some interfa
ingde
larations that simplify things for
ommon situations.The routines S
ards_Varying, Spun
h_Varying, Sprint_Varying and similar ones for otherI/O units, provide a simple interfa
e for reading and writing standard Varying_String vari-ables, as des
ribed above. Other routines provide for I/O to or from arbitrary variables in aPlus program.The Plus library in
ludes a rather powerful pro
edure Message for produ
ing formatted output(generally, \readable" messages). The Message routine
an perform a variety of
onversionsand substitute the results into a string whi
h it then prints. The next example programillustrates some simple uses of Message, but for all the details, see the separate do
umentationfor the routine.The
onversion routines in the Plus runtime library may also be useful in building formattedlines to be written.The Plus library also in
ludes a few simple routines for performing \input
onversions"{ e.g.,String_To_Integer will
onvert a
hara
ter string to an integer. However, most Plus pro-grammers prefer to use Clparser, the MTS \Command Language Parser" subroutine pa
kage,to perform input pro
essing. Clparser is des
ribed in the writeup UBC CLPARSER.I. Table Sear
h ExampleThe following pages
ontain a mu
h more substantial example,
ontaining most of the elementsof a typi
al Plus program. The program is a demonstration of linear and binary sear
hingalgorithms. It �rst reads a table of symbols, terminated with /end. Then it reads symbols tolook-up, sear
hes the table using ea
h of linear and binary sear
h te
hniques, and prints outthe symbol position and number of a

esses required to �nd it.

12 Tutorial Introdu
tion
[1℄ %Title := "Plus Example Program - Linear and Binary Sear
hing";[2℄ /*frame,
entre[3℄ Linear and Binary Sear
hing[4℄ *//*[5℄ This example program demonstrates linear and binary[6℄ sear
hing. It first reads a table of "symbols",[7℄ then reads "test
ases" and looks ea
h up in the table[8℄ by both sear
h te
hniques. It prints the position[9℄ of the sear
h item, and how many "probes" it took to[10℄ find it.[11℄ */[12℄ %In
lude(Numeri
_Types, String_Types);[13℄ %In
lude(S
ards_Varying);[14℄ %In
lude(Message_Initialize, Message, Message_Terminate);[15℄[16℄ global Sear
h_Example[17℄ /* Define limits on symbol length and number of[18℄ symbols. */[19℄
onstant Max_Sym_Length is 10;[20℄
onstant Max_Number_Symbols is 600;[21℄[22℄ /* Define types for symbols, table, et
. */[23℄ type Symbol is
hara
ter(0 to Max_Sym_Length);[24℄ type Array_Index is (0 to Max_Number_Symbols),[25℄ Symbol_Array is array (1 to Max_Number_Symbols) of Symbol;[26℄[27℄ /* De
lare the table that the symbols will be entered[28℄ into. */[29℄ variable Table is Symbol_Array,[30℄ Table_Size is Array_Index;[31℄[32℄ /* De
lare
ontrol blo
k for the message routine. */[33℄ variable Msg is pointer to Stream_Type[34℄[35℄ end global Sear
h_Example;[36℄[37℄ %In
lude(Main);[38℄[39℄ pro
edure Getsym is[40℄ pro
edure[41℄ result Sym is Symbol[42℄ end;[43℄Example 2 (part 1 of 5)|Table Sear
h Program

13Tutorial Introdu
tion
[44℄ pro
edure Print_Result is[45℄ pro
edure[46℄ parameter Sym is Symbol,[47℄ Method is
hara
ter(1 to 10),[48℄ Pos is Array_Index,[49℄ A

esses is Integer[50℄ end;[51℄[52℄ pro
edures Linearsear
h, Binarysear
h are[53℄ pro
edure[54℄ parameter Element is Symbol,[55℄ referen
e parameter A

esses is Integer[56℄ result Position is Array_Index[57℄ end;[58℄[59℄ %Eje
t();[60℄ definition Main[61℄ /* Main program reads in symbol table, terminated by /end, then reads[62℄ test
ases and finds them by both linear and binary sear
h.[63℄ */[64℄ variable Return_Code is Integer;[65℄[66℄ /* Initialize the Message routines. */[67℄ Msg := Message_Initialize();[68℄[69℄ /* Display title and prompts... */[70℄ Message(Msg, "*** Demonstrate Linear and Binary Sear
h ***</>");[71℄ Message(Msg, "Enter symbol elements (in alphabeti
al order)</>");[72℄ Table_Size := 0;[73℄[74℄ /* Read in the test table. */[75℄
y
le[76℄ variable Elem is Symbol;[77℄ Elem := Getsym();[78℄ exit when Length(Elem) = 0 or Elem = "/end";[79℄ if Table_Size >= Max_Number_Symbols[80℄ then[81℄ Message(Msg, "Error - too many symbols.</>");[82℄ exit[83℄ end if;[84℄ Table_Size +:= 1;[85℄ Table(Table_Size) := Elem[86℄ end
y
le;[87℄[88℄ Message(Msg, "<hi> data items read.</>", Table_Size);[89℄Example 2 (part 2 of 5)|Table Sear
h Program

14 Tutorial Introdu
tion
[90℄ /* Read in the test
ases and look up ea
h. */[91℄
y
le[92℄ variable Test_Elem is Symbol,[93℄ Pos is Array_Index,[94℄ A

esses is Integer;[95℄ Message(Msg, "Enter data:</>");[96℄ Test_Elem := Getsym();[97℄ exit when Test_Elem = "";[98℄[99℄ /* Look up using linearsear
h and output result. */[100℄ Pos := Linearsear
h(Test_Elem, A

esses);[101℄ Print_Result(Test_Elem, "linear", Pos, A

esses);[102℄[103℄ /* Look up using binarysear
h and output result. */[104℄ Pos := Binarysear
h(Test_Elem, A

esses);[105℄ Print_Result(Test_Elem, "binary", Pos, A

esses)[106℄ end
y
le;[107℄[108℄ Message_Terminate(Msg)[109℄ end Main;[110℄ %Eje
t();[111℄ definition Getsym[112℄ /* This pro
edure reads a symbol, and
he
ks for[113℄ invalid strings. It returns null string at eof. */[114℄[115℄ variable Str is Varying_String,[116℄ Return_Code is Integer;[117℄[118℄ S
ards_Varying(Str, Return_Code);[119℄[120℄ if Return_Code := 0[121℄ then[122℄ Sym := ""[123℄ elseif Length(Str) > Max_Sym_Length[124℄ then[125℄ Message(Msg, "Error - symbol too long</>");[126℄ Sym := Substring(Str, 0, Max_Sym_Length)[127℄ else[128℄ Sym := Str[129℄ end if[130℄ end Getsym;[131℄
Example 2 (part 3 of 5)|Table Sear
h Program

15Tutorial Introdu
tion
[132℄ definition Print_Result[133℄ /* Prints out message saying where symbol was found[134℄ and how many a

esses it took. Parameters[135℄ are the "sear
h method", the symbol, the[136℄ position and the number of a

esses.[137℄ */[138℄[139℄ Message(Msg, "<v> sear
h: <v> ", Method, Sym);[140℄ if Pos = 0[141℄ then[142℄ Message(Msg, "not found")[143℄ else[144℄ Message(Msg, "found at <hi>", Pos)[145℄ end if;[146℄ Message(Msg, " in <i> a

esses.</>", A

esses)[147℄ end Print_Result;[148℄[149℄ %Eje
t();[150℄ definition Linearsear
h[151℄ /* Sear
h linearly for Element in Table.[152℄[153℄ Table and Table_Size are global. The symbol[154℄ to sear
h for is passed as the parameter Element.[155℄[156℄ Returns the position as fun
tion result, or 0 if[157℄ the symbol is not found. Sets referen
e[158℄ parameter A

esses to the number of probes[159℄ required.[160℄ */[161℄ variable Pos is Array_Index;[162℄[163℄ A

esses := 0;[164℄ do Pos := 1 to Table_Size[165℄ A

esses +:= 1;[166℄ return when Table(Pos) = Element with Pos[167℄ end;[168℄ return with 0[169℄ end Linearsear
h;
Example 2 (part 4 of 5)|Table Sear
h Program

16 Tutorial Introdu
tion
[170℄ definition Binarysear
h[171℄ /* Sear
h for Element in Table using a binary sear
h.[172℄[173℄ Table and Table_Size are global. The symbol[174℄ to sear
h for is passed as the parameter Element.[175℄[176℄ Returns the position as fun
tion result, or 0 if[177℄ the symbol is not found. Sets referen
e[178℄ parameter A

esses to the number of probes[179℄ required.[180℄ */[181℄ variables Low, High, Pos are Array_Index;[182℄ /* Low and High delimit the range of the table that[183℄ must
ontain the element, if it is present. */[184℄ Low := 1;[185℄ High := Table_Size;[186℄ A

esses := 0;[187℄[188℄
y
le[189℄ exit when Low > High;[190℄ /* Compute next pl
e to
he
k (midpoint[191℄ between low and high). */[192℄ Pos := (Low + High) / 2;[193℄ A

esses +:= 1;[194℄ return when Table(Pos) = Element with Pos;[195℄ if Element < Table(Pos)[196℄ then[197℄ /* If element is in table, it must be[198℄ between Low and Pos - 1 */[199℄ High := Pos - 1[200℄ else[201℄ /* If element is in table, it must be[202℄ between Pos + 1 and High. */[203℄ Low := Pos + 1[204℄ end if[205℄ end
y
le;[206℄ return with 0[207℄[208℄ end Binarysear
h
Example 2 (part 5 of 5)|Table Sear
h Program

17Tutorial Introdu
tionThe general organization of this program is
hara
teristi
 of many Plus programs.It begins with spe
i�
ation of a title to appear in the listing (line 1), and introdu
tory
om-ments (lines 2 to 11). The words frame,
entre3 immediately after the opening
omment /*
ause the
ompiler to draw a frame of asterisks around the
omment and to
entre ea
h lineof the
omment in the listing.Lines 12 through 14 in
lude library de�nitions, as in the previous example. This exampleuses the library message formatting routines, whose de
larations are in
luded at line 14.Next
ome a number of global de
larations. Global de
larations de�ne identi�ers (types,
onstants and variables) that are to be available to all pro
edures of the program. They arenormally grouped in one or more global blo
ks. Ea
h global blo
k has a name, whi
h isused in asso
iating the same global blo
k a
ross separate
ompilations of pie
es of a program.In this
ase, there is only one global blo
k, lines 16 to 35.A program may have any number of global blo
ks. Generally, you should group relatedde�nitions together as one global blo
k.Following the global blo
ks are a number of global de
larations for the pro
edures making upthe program (lines 37 to 57). You must have a de
laration for every pro
edure that is eitherde�ned in, or
alled from the program. As in Example 1, the de
laration for Main is in
ludedfrom a library.The remainder of the program
onsists of the de�nitions of the pro
edures, ea
h beginningwith definition ... and ending with end as in the previous example.The order in whi
h these pie
es o

ur is typi
al, and is generally
onvenient. However, youaren't required to put the pie
es in any parti
ular order. It is quite permissible to have someglobal de�nitions followed by some pro
edures, followed by more global de�nitions, and soon. The only requirement is that you must de
lare ea
h identi�er before its �rst use.The remaining se
tions of this
hapter will des
ribe the elements of Plus in a more orderlyway, using examples from this program.J. Program Stru
ture1. Separate CompilationA
omplete Plus program
onsists of one or more separately
ompilable pie
es. You'llprobably want to keep su
h pie
es in separate �les. Ea
h pie
e
ontains a sequen
e ofde
larations, globals blo
ks and pro
edure de�nitions. Pro
edure de�nitions may not benested inside other de�nitions. (Global blo
ks
an be nested inside pro
edures or otherglobal blo
ks, although there is rarely any reason to do so.)You
an divide a program up into pie
es however you like, ex
ept that ea
h pie
e mustbe self-
ontained to the extent of in
luding de�nitions of all the identi�ers it referen
es.Of
ourse, you will usually
hoose pie
es
onsisting of groups of related pro
edures andthe global de�nitions they use.When a global blo
k
ontains de�nitions that are required by more than one of theseparately-
ompiled pie
es, you must repeat the entire global blo
k with ea
h pie
e. It's
3 Americans may substitute
enter.

18 Tutorial Introdu
tionbest to put the de�nition of the global blo
k in a private sour
e library and use %In
ludeto in
lude it in ea
h pie
e.If you
hange any of the de
laration in a global blo
k, generally you must re
ompile all
omponents that referen
e that global blo
k.2. Global Blo
ksA global blo
k
ontains a sequen
e of de
larative statements, separated by semi
olons.Ea
h global blo
k has a name (Sear
h_Example in line 16 of Example 2), whi
h be-
omes an external symbol of the program and is used in asso
iating the de�nitions fromindependently-
ompiled pie
es.A global blo
k is mu
h like a Fortran named-
ommon blo
k, ex
ept that it may
ontainde
larations of types,
onstants and pro
edures as well as variables. Moreover, Plusglobals are usually implemented in a way that is fully reentrant (whi
h Fortran
ommonisn't).3. Pro
edure De�nitionsA pro
edure in Plus
onsists of two parts, a pro
edure de
laration whi
h spe
i�esthe type of the pro
edure, and a pro
edure de�nition whi
h
ontains de
larationsand statements to be exe
uted when the pro
edure is
alled. Thus, for example, thepro
edure Linearsear
h is de
lared at lines 52{57, and the de�nition is given at lines150{169. Note more than one pro
edure
an be de
lared in the same de
laration, whenthey have identi
al types.The type of the pro
edure tells what identi�ers are to be used by the de�nition to referto its parameters and return value. It also spe
i�es the types of the parameters andreturn value.A pro
edure with a result is a fun
tion and is used as an element of expressions. A pro
e-dure with no result is a subroutine and is
alled as a separate statement. Getsym (de
laredat line 39,
alled at lines 77 and 96) is an example of a fun
tion with no parameters.Linearsear
h and Binarysear
h are ea
h fun
tions with parameters. Print_Result(de
lared at line 44,
alled at lines 101 and 105) is an example of a subroutine.The de�nition of a pro
edure must be pre
eded by its de
laration. Any
all of a pro
eduremust be pre
eded by a de
laration of the pro
edure
alled. The easiest way to ensurethe
orre
t ordering is to simply pla
e all pro
edure de
larations before any de�nitions,as in the examples.When writing programs that are to be
ompiled in pie
es, you may �nd it helpful toalways pla
e the de
larations of pro
edures in a sour
e library. Then the �le
ontainingthe pro
edure de�nition, and any �les
ontaining
alls to it,
an all in
lude the samede
laration.K. De
larationsThere are four important de
larative statements in Plus. These are
onstant, type, variableand pro
edure de
larations. All of these have been illustrated already. In this se
tion, we'll�ll in a few more details.The four de
larations have a somewhat similar overall syntax. The basi
 form of ea
h isillustrated by

19Tutorial Introdu
tion
onstant Max_Sym_Length is 10;type Symbol is
hara
ter(0 to Max_Sym_Length);variable Msg is pointer to Stream_Type;pro
edure Getsym ispro
edureresult Sym is SymbolendWhen there are a number of variables to be de�ned with the same type, you
an put a list ofidenti�ers in pla
e of the single identi�er in these examples. Thus, for example,variables Low, High, Pos are Array_Indexat line 181 is a shorthand forvariable Low is Array_Index;variable High is Array_Index;variable Pos is Array_Index(The keywords is and are are equivalent, as are variable and variables. You
an usewhi
hever is grammati
ally appropriate.)You
an also run a series of variable de
larations together. So, for example,variable Table is Symbol_Array,Table_Size is Array_Indexat lines 29{30, is equivalent tovariable Table is Symbol_Array;variable Table_Size is Array_IndexSimilar short-
uts are allowed for ea
h of the other kinds of de
larations.1. S
ope of De
larationsIdenti�ers that are de
lared in a global blo
k (or outside of any pro
edure de�nition) are
alled global. Su
h identi�ers may be referen
ed from any subsequent statement in theprogram. In the example program, all of the identi�ers de
lared in lines 1{58 are global.Thus, for example, the two sear
h pro
edures
an referen
e the variable Table withoutit having to be passed to them as a parameter.Identi�ers (type,
onstant, variable, or pro
edure) that are de
lared inside a pro
edurede�nition are lo
al to that pro
edure. The de
larations are not \known" outside ofthe pro
edure. So the de
laration of the variable Return_Code at line 64 in pro
edureMain
an't be referen
ed outside of Main. The pro
edure Getsym has its own variableReturn_Code de
lared at line 116. These are two totally di�erent variables, even thoughthey happen to have the same identi�er. The referen
es inside Main use the variablede
lared in Main, while those inside Getsym use the one de
lared in Getsym. If you tried

20 Tutorial Introdu
tionto referen
e Return_Code in Print_Result or one of the other pro
edures, you'd get a
omplaint from the
ompiler about it being unde
lared.In fa
t, the s
ope of a de
laration may be restri
ted further still. Like Algol and mostof its des
endants, Plus provides for s
ope blo
ks whi
h delimit groups of statementswithin whi
h a given de
laration is known. Unlike most su
h languages, you don't have touse lots of begin ... end groups to introdu
e lo
al de
larations. In Plus, the statementlist inside ea
h \bra
keted"
ontrol stru
ture su
h as the
y
le...end loop or either partof the if...then...else...end statement, is a separate s
ope blo
k. De
larations thato

ur inside su
h a statement list are in e�e
t only for the remainder of the statementlist. This makes it easy to introdu
e a temporary variable at the point where you needit.For example, somewhere inside a sorting program, you might have a statement of theformif Table(I) > Table(J)then/* Inter
hange I
th and J
th elements. */variable Temp is Symbol_Table_Element;Temp := Table(I);Table(I) := Table(J);Table(J) := Tempend ifThe variable Temp is de
lared only for the remainder of the statement list in the then-part. It is unde�ned outside of the if statement, or in the else-part of the statement (hadthere been one).There might already be a de�nition of Temp in e�e
t at the beginning of the if statement,if it had been de
lared either globally or earlier in the statement list
ontaining theif statement. The de�nition inside the if statement is still allowed, and temporarilyoverrides the outer de�nition. At the end of the then-part, the previous de�nition
omesba
k into e�e
t.For example, in a sequen
e of statements su
h as[1℄ variable Temp is Integer;...[2℄ Temp := 1;[3℄ if ...[4℄ then[5℄ variable Temp is Symbol_Table_Element;[6℄ Temp := Table(I);...[7℄ end if;[8℄ X := Tempthe statements at lines 2 and 8 both refer to the variable de
lared at line 1; its value isnot a�e
ted by the assignment statement at line 6. The assignment at line 6 refers tothe variable de
lared at line 5. Its value is independent of the variable de
lared at line 1.

21Tutorial Introdu
tion2. Constant De
larationsThe
onstant de
laration just lets you asso
iate an identi�er with a
onstant value. Fromthen on, you
an use the identi�er instead of writing out the
onstant ea
h time.This helps to \parameterize" the program so that it is easier to
hange in the future.Example 2 assumes that the symbols it has to deal with will be no longer than 10, andthat there will be no more than 600 of them. If either of these assumptions turned outto be inadequate, you would just have to
hange the de
laration at line 19 or 20 andre
ompile the program, without having to sear
h through the program looking for all thepla
es that depend on these limits.A se
ond advantage of using
onstant de
larations is that they often make it easier tounderstand the program, sin
e the purpose of a well-
hosen mnemoni
 identi�er may bemu
h
learer than an anonymous
onstant.3. Type De
larationsSimilarly, a type de
laration lets you asso
iate an identi�er with a type des
ription. On
eagain, this is useful for parameterizing your program, and may make it easier to read.A type de
laration is in some ways like an assembler dse
t (espe
ially when the typeis a re
ord). It de�nes a template des
ribing an area of storage, but does not allo
atestorage. The variable de
laration is used to allo
ate storage for an item of a given type.Type de
larations may be required in some situations to asso
iate an identi�er with atype des
ription whi
h you need to use in more than one pla
e. Plus doesn't attemptto determine if two
omplex type des
riptions are \equivalent". For example, if you hadtwo re
ord variables (we'll explain re
ords soon) de
lared asvariable Element1 isre
ordSymbol is Symbol_Type,Referen
e_Count is Integerend;variable Element2 isre
ordSymbol is Symbol_Type,Referen
e_Count is Integerendthe types of Element1 and Element2 will be
onsidered in
ompatible, so you wouldn't beable to assign one to the other or otherwise intermix them. You must use the same typede�nition for ea
h. The usual way to do this is to de�ne the type with a type de
larationand then use its name:type Symbol_Table_Element isre
ordSymbol is Symbol_Type,Referen
e_Count is Integerend;variable Element1 is Symbol_Table_Element;

22 Tutorial Introdu
tionvariable Element2 is Symbol_Table_Element(If there is no other requirement for the type Symbol_Table_Element, you
ould alter-natively de
lare both in one variable de
laration:variables Element1, Element2 arere
ordSymbol is Symbol_Type,Referen
e_Count is IntegerendBut generally, it is better to use the type de
laration.)The requirement that a type des
ription appear in only one pla
e helps to minimizethe danger of introdu
ing bugs when the de�nitions are
hanged. (It also eliminatesa potentially very expensive
ompile-time a
tion in determining if two de�nitions are\equivalent".)4. Variable De
larationsVariable de
larations are used to allo
ate memory for a variable or variables of a spe
i�edtype. A global variable (one de
lared in a global blo
k) is allo
ated on
e, at the time theprogram begins exe
ution. A lo
al variable (one de
lared inside a pro
edure) is allo
atedea
h time the s
ope blo
k
ontaining it begins exe
ution, and is released at the end ofthe s
ope blo
k. Thus, for example, a variable de
lared inside a loop is released at theend of the statement list forming the body of the loop|you may not assume it will keepits value from one iteration to the next.We should perhaps emphasize that there is no run-time overhead to allo
ating andreleasing variables inside a s
ope blo
k|all the storage allo
ation
al
ulations are doneat
ompile-time. Lo
al variables are allo
ated using a run-time \sta
k" me
hanism. Theonly a
tual allo
ation overhead o

urs at entry to the pro
edure, at whi
h point thesta
k is adjusted to allow for all the lo
al variables de
lared within the pro
edure andtemporary storage required by the generated
ode. Hen
e you may freely de
lare lo
al\temporary" variables at the point where they are required.5. Pro
edure De
larationsA pro
edure de
laration is used to spe
ify the type of a pro
edure. The de
laration atlines 52{57 says that both Linearsear
h and Binarysear
h are pro
edures with typepro
edureparameter Element is Symbol,referen
e parameter A

esses is Integerresult Position is Array_IndexendThe type of a pro
edure must be a pro
edure type, as you might expe
t. (You'll learnsome of the details of pro
edure types in Se
tion L{5, page 27.) Most often, the typewill be spe
i�ed dire
tly in the pro
edure de
laration, as in this example. But as withall other types, it is quite permissible to de�ne the type in a type de
laration and use itsname. So lines 52{57
ould be repla
ed with

23Tutorial Introdu
tiontype Table_Sear
h_Pro
edure ispro
edureparameter Element is Symbol,referen
e parameter A

esses is Integerresult Position is Array_Indexend;...pro
edures Linearsear
h, Binarysear
h are Table_Sear
h_Pro
edureA pro
edure with no parameters and no result may be de
lared as justpro
edure Pro
whi
h is equivalent to the de
larationpro
edure Pro
 ispro
edureendL. Type Des
riptionsA type des
ription is a program fragment that you use to de�ne a data type. Plus providessome primitive data types, and some methods of building new types out of simpler ones. InSe
tion G we des
ribed a
ouple of the basi
 data types of Plus, numeri
 types and stringtypes. In this se
tion we'll tell you about some of the other types, and how they are used ina program. This is just an outline, however. For all the details, see Chapter III.Type des
riptions appear in several
ontexts in the language. The most important
ontextsare variable and type de
larations and in the des
ription of more
omplex types.1. Basi
 TypesPlus's numeri
 and string types were des
ribed in Se
tion G. Other basi
 types in Plusarea. bit(n), where n is an integer
onstant. This just des
ribes the spe
i�ed number ofbits of memory. For example:variable X is bit(32)spe
i�es that the variable X is to be allo
ated as 32 bits. Depending on
ontext,bit types may behave like various other types (integers, strings, and others). Theyare very ma
hine-dependent, so you should generally avoid using them unless youreally need to.b. real(n), where n is an integer
onstant. This spe
i�es a \
oating-point" data item.The number n indi
ates how many digits of pre
ision are required.You
an't do mu
h with
oating-point in Plus at the moment, but you
an de�nevariables.
. identi�er-lists. An identi�er-list type allows you to
reate new basi
 types byenumerating a list of identi�ers whi
h are to be the elements of the type. (Pas
al
alls this type an \enumerated type".) For example:

24 Tutorial Introdu
tion(Printer, Reader, Pun
h, Tape_Drive, Disk_Drive, Terminal)If this des
ription appears in a program, it de�nes a new type. The elements of theidenti�er list are automati
ally de
lared to be symboli

onstants of the given type(and must therefore not be previously de
lared in the same s
ope). The
ompiler isfree to
hoose values to represent ea
h of the
onstants.Most often, su
h types appear in a type de
laration, so that you have a name withwhi
h to refer to them later:type Devi
e_Type is (Printer, Reader, Pun
h, Tape_Drive,Disk_Drive, Terminal)After this de
laration you might de�ne a variable, asvariable Devi
e is Devi
e_Typeassign the variable a value:Devi
e := Disk_Drivetest it in if statements:if Devi
e = Readerthen...end ifand so forth.Identi�er-list types are very useful for variables whose values have no intrinsi
 nu-meri
 meaning. Use of these types is a signi�
ant aid to writing self-do
umenting
ode. These types do the kind of thing a good programmer might do in assemblerwith equates (ex
ept that the
ompiler rather than the programmer does all thebookkeeping to de
ide whi
h value to use for ea
h item).2. Re
ord TypesIn this example program, the symbol table to be sear
hed
ontains just the a
tual symbols(identi�ers). If you were writing a \real" program using a symbol table, however, youwould almost
ertainly need to asso
iate some information with ea
h element of thetable. Su
h a
olle
tion of asso
iated information is implemented in Plus, as in manyother languages, by using re
ord types.Suppose ea
h entry of the symbol table is to
ontain the a
tual symbol and an asso
iatedinteger whi
h just
ounts how many times it has been referen
ed. The elements of thesymbol table
ould then be represented in Plus by the type des
riptionre
ordSymbol is Symbol_Type,Referen
e_Count is IntegerendThis might be used in a type de
laration as

25Tutorial Introdu
tiontype Symbol_Table_Element isre
ordSymbol is Symbol_Type,Referen
e_Count is Integerendand the de�nition of the a
tual symbol table type (line 25) might be repla
ed bytype Symbol_Array is array(1 to Max_Number_Symbols) of Symbol_Table_ElementThe individual items in the re
ord type are known as �elds. Of
ourse, a re
ord type
anhave any number of �elds, and ea
h �eld
an be of any type, in
luding another re
ordtype.The individual �elds of a re
ord are referen
ed using a dot (\."). Continuing the example,if you de
larevariable Sym is Symbol_Table_Elementyou
an set the �elds of the variable asSym.Symbol := Elem;Sym.Referen
e_Count := 0and in
rement the referen
e
ount asSym.Referen
e_Count +:= 1and so forth.3. Array TypesTo des
ribe an array in Plus, you spe
ify the range of the allowed subs
ripts and the typeof data item making up the array. So the type des
ription
ontained in line 25 spe
i�esan array of 600 elements (1 through Max_Number_Symbols). Ea
h element of the arrayin this
ase is a Symbol. Note the lower-bound of an array doesn't have to be one; anyrange is allowed.Individual elements of an array are a

essed in a program using parentheses around asubs
ript expression. SoTable(Table_Size)in line 85 of the example a

esses the element at position Table_Size in the array.An array
an be
omposed of any type of data item. As des
ribed in the previous se
tion,a realisti
 symbol table appli
ation might use an array, for whi
h ea
h element is a re
ord.You
an
reate multi-dimensional arrays by using arrays of arrays. If you need to workwith 50 by 100 matri
es of integers, you might use a type of the formarray (1 to 50) of array (1 to 100) of IntegerThis de�nes an array of 50 elements (array (1 to 50) of ...) ea
h element of whi
his an array of 100 integers.If Matrix is a variable of su
h a type, then

26 Tutorial Introdu
tionMatrix(I)refers to the I'th row of the matrix, andMatrix(I)(J)refers to the J'th element of the I'th row. This
an also be expressed asMatrix(I, J)Array subs
ripts
an be
ombined with re
ord �eld sele
tion in an expression. If thearray in the example were repla
ed with an array of re
ords you might repla
e line 85withTable(Table_Size).Symbol := Elemwhi
h sets the �eld Symbol of the re
ord at position Table_Size in the array.4. Pointer TypesA pointer in Plus is the ma
hine address of a data item. A
ommon use of pointers tobuild linked-lists and other
omplex data stru
tures in whi
h ea
h data item \points to"the next item of the list.For example, if you are building a symbol table, but don't want to have an a priori limiton the number of elements in the table, you might
hoose to use a linked list for thetable. (It would, however, be diÆ
ult to implement a binary sear
h for su
h a table.Other te
hniques for fast sear
hing would be appropriate.) To do so, you'd de�ne ea
helement of the table as a re
ord, something like:type Symbol_Table_Element isre
ordNext_Symbol is pointer to Symbol_Table_Element,Symbol is Symbol_Type,Referen
e_Count is IntegerendThe type des
ription pointer to Symbol_Table_Element within the re
ord is a pointertype. A pointer type always spe
i�es what type of obje
t it points to, so that when youuse the pointer in an expression, Plus knows what type of obje
t it is dealing with.If you used pointers in this way, instead of de�ning an array in the global blo
k, youwould just de�ne a variable to point to the �rst element:variable Symbol_Table is pointer to Symbol_Table_Element(You might also want a se
ond variable to keep tra
k of the end of the list.) The list
anbe initialized to indi
ate it
ontains no elements by using the spe
ial pointer value Null:Symbol_Table := NullTo add another element to the list, you would
all some kind of a memory allo
ationpro
edure. For examples, MTS's Getspa
e routine
ould be
alled dire
tly:variable New_Elem is pointer to Symbol_Table_Element;...New_Elem := Getspa
e(0, Byte_Size(Symbol_Table_Element))

27Tutorial Introdu
tionHere, a built-in pro
edure Byte_Size is used to determine the size of the element tobe allo
ated. This number is passed to the MTS subroutine Getspa
e. It allo
ates therequested amount of memory and returns a pointer to it, whi
h is then assigned to thevariable New_Elem. (Other methods of allo
ating list entries might be appropriate insome situations.)The memory lo
ations pointed at by New_Elem are referred to with an expression of theform New_Elem�. That is, the at sign is used to \follow" a pointer to the item it pointsto. Then the �elds of the new item
an be a

essed with the usual \dot" syntax:New_Elem�.Symbol := Elemwould assign the value of the variable Elem to the �eld Symbol of the variable thatNew_Elem points to.The element
ould be hooked into the list (at the front), by statements of the formNew_Elem�.Next_Symbol := Symbol_Table;Symbol_Table := New_ElemThe �rst of these makes the new element point to the rest of the list, and the se
ondpoints the head-of-list to the new element.Noti
e the di�eren
e betweenSymbol_Table := New_Elemand Symbol_Table� := New_Elem�The �rst of these is simply an assignment of the
urrent value of the variable New_Elemto Symbol_Table. That is, it
opies the pointer, so afterwards both pointers a

ess thesame memory lo
ation. The se
ond, however, assigns the obje
t pointed at by New_Elem to the lo
ation pointed at by Symbol_Table. That is, it
opies the re
ord of typeSymbol_Table_Element. It would only be valid if you had previously set Symbol_Tableto point to a suitable variable. (And it doesn't make mu
h sense in this example!)The built-in pro
edure Address
an be used to get a pointer to a variable. For example,if for some reason you wished to make New_Elem point to the variable Item, you
oulduse New_Elem := Address(Item)This would only be valid if Item was a variable of type Symbol_Element_Type, so thatAddress(Elem) would be of type pointer to Symbol_Element_Type.5. Pro
edure TypesA pro
edure type des
ription is used to des
ribe a pro
edure. The des
ription spe
i�esthe names and types of the parameters and of the result, if any.The de
laration of Print_Result at lines 44{50 illustrates a pro
edure with four pa-rameters and no result. When it is
alled, as at lines 101 and 105, the
all must passvalues that are
ompatible with the spe
i�ed types of the parameters. Thus the �rstparameter must be a Symbol (
hara
ter(10)), the se
ond a
hara
ter(1 to 10), and

28 Tutorial Introdu
tionso on. Sin
e the pro
edure returns no result, its
all must appear as a statement in theprogram|you
an't use it as part of an expression.a. Call-By-ValueBy default, Plus passes parameters from the
aller to the
alled pro
edure by
opyingthe value into a lo
al variable within the
alled pro
edure. Within Print_Result,therefore, the parameter names Sym, Method, et
., a
t just like lo
al variables thathave been preset to the values spe
i�ed in the pro
edure
all. This
opying is a one-way pro
ess. If Print_Result were to assign a new value to one if its parameters,it would a�e
t only the value of this lo
al variable within Print_Result. It wouldnot be re
e
ted ba
k to the
alling pro
edure. So if Print_Result were to
hangethe value of the parameter Sym, it would have no e�e
t on the value of the variableTest_Elem that is passed in the
alls from Main. This type of parameter passing isknown as
all-by-value.b. Call-By-Referen
eSometimes, of
ourse, you want a pro
edure to be able to
hange the value of one ofthe variables that is passed to it. This
an be a

omplished in either of two ways:�� You
an pass a pointer to the variable instead of the a
tual variable. If Print_Result needed to be able to
hange its �rst parameter, you
ould
hange thepro
edure de
laration to spe
ifyparameter Sym is pointer to Symboland the
all toPrint_Result(Address(Test_Elem), ...)Then inside Print_Result, the identi�er Sym would be a lo
al variable whosevalue was a pointer to Test_Elem, so Print_Result
ould
hange Test_Elemindire
tly with a statement su
h asSym� := ...�� You
an spe
ify in the pro
edure type that the parameter is to be a referen
eparameter. This is really equivalent to the �rst solution, but
auses the
ompiler to automati
ally pass a pointer and dereferen
e it at ea
h use insidethe
alled pro
edure. This form of parameter passing is
ommonly known as
all-by-referen
e.The de
laration of Linearsear
h and Binarysear
h at lines 52{57 spe
i�esthat the parameter A

esses is a referen
e parameter. Thus the
alls at lines100 and 104 pass the address of the variable A

esses (a lo
al variable in Main,de
lared at line 94). The statements at lines 163 and 165 in Linearsear
h that
hange the parameter A

esses follow the pointer and update the variable towhi
h it points|i.e., the lo
al variable A

esses in Main is what a
tually gets
hanged.As a rule, using
all-by-referen
e instead of
all-by-value results in the pro
edure
all being somewhat more eÆ
ient, be
ause the
aller doesn't have to do the workof
opying the value. The di�eren
e may be signi�
ant when large data items(array, re
ords, long
hara
ter strings) are involved. Call-by-value also requires

29Tutorial Introdu
tionextra memory to hold the
opy of su
h obje
ts. On the other hand,
all-by-referen
eresults in the
ode inside the
alled pro
edure being rather less eÆ
ient, sin
e ithas to
hase an extra level of indire
tion ea
h time the parameter is used. Withreferen
e parameters, it may also be un
lear to somebody reading the program thatwhen the pro
edure is
alled, the parameter passed is subje
t to
hange. The useof expli
it pointers and the Address makes this rather more obvious.Generally, you should probably use
all-by-value when the parameter is small (in-teger, short string, et
.), and there is no requirement for the
alled pro
edure to beable to \pass ba
k" a
hanged value to the
aller. You should use
all-by-referen
eor expli
it pointers when the parameter is large, or is used to pass ba
k information.
. Pro
edure ResultsPro
edures Linearsear
h and Binarysear
h also spe
ify a result, with the phraseresult Position is Array_IndexThus the pro
edures are used as fun
tions within the
aller (lines 100 and 104). Theyreturn a value of type Array_Index and may be used in any
ontext appropriate tothat type. In this
ase, the value returned is simply assigned to the variable Pos.Within the pro
edure Linearsear
h, Position a
ts like a lo
al variable of typeArray_Index. Whatever value was last assigned to this variable is returned as theresult of the fun
tion. Alternatively, the return statement may dire
tly spe
ify aresult to pass ba
k, whi
h then overrides the value of the result variable.Any kind of data type
an be returned as the result of a pro
edure. For example,Getsym passes ba
k a
hara
ter string. However, it probably isn't a very good ideato return very large data items as fun
tion results, be
ause of the extra memoryrequired, and the overhead of
opying the result. Instead, you should use a referen
eparameter or expli
it pointer parameter if you are writing a pro
edure that needsto set the value of a large variable in the
aller.d. Other Pro
edure Type Des
riptionsPlus programs often need to
all pro
edures that are written in other languages withdi�erent
alling
onventions. Thus Plus provides quite a few options for pro
eduretype des
riptions to allow a

essing su
h routines. It is possible, for example, tomake sure the
all is
ompatible with the OS Type I (\Fortran") linkage, to spe
ifythat parameters are to be passed in registers, that some parameters are optional,to a

ess the \return
ode" from a pro
edure and so forth. For all the details, seeChapter III.e. Pro
edure VariablesPro
edure types are most often used in a pro
edure de
laration, but they are notlimited to su
h use. You
an also have pro
edure variables, arrays of pro
edures,re
ord �elds that are pro
edures, and so on.The value assigned to a pro
edure variable must be a pro
edure name (as de
laredin a pro
edure de
laration) or another pro
edure variable of the same type. You
an also assign the value Null as a spe
ial \no value" indi
ator.A pro
edure variable is
alled just like a pro
edure value. For example, if youde
lared

30 Tutorial Introdu
tiontype Table_Sear
h_Pro
edure ispro
edureparameter Element is Symbol,referen
e parameter A

esses is Integerresult Position is Array_Indexend;pro
edures Linearsear
h, Binarysear
h are Table_Sear
h_Pro
edure;variable Sear
h_Routine is Table_Sear
h_Pro
edureyou
ould assign the variable a value:Sear
h_Routine := Linearsear
hand
all the pro
edure assigned to Sear
h_Routine asPos := Sear
h_Routine(Test_Elem, A

esses)Noti
e the di�eren
e betweenPos := Linearsear
h(Elem, A

esses)and Sear
h_Routine := Linearsear
hSin
e the �rst spe
i�es parameters, it is a pro
edure
all. Linearsear
h is
alled andthe result returned is assigned to Pos. The se
ond does not spe
ify parameters, soit is not a pro
edure
all. It represents the pro
edure \value" whi
h is then assigneddire
tly to the variable Sear
h_Routine. To
all a pro
edure with no parametersyou must still spe
ify a parameter list
onsisting of just the parentheses (), in orderto distinguish the
all from an assignment of the pro
edure value.It is sometimes useful to be able to pass the name of a pro
edure as a parameter toanother pro
edure. If you wanted to generalize Example 2 to implement a pro
edurethat
ould be used for testing other \table sear
hing" pro
edures, you might de
larepro
edure Test_Sear
h ispro
edureparameter Sym is Symbol,Sear
h_Routine is Table_Sear
h_Pro
edure,Method is
hara
ter(1 to 10)endLines 99{105 of Main
ould be repla
ed withTest_Sear
h(Test_Elem, Linearsear
h, "linear");Test_Sear
h(Test_Elem, Binarysear
h, "binary")and the de�nition of Test_Sear
h would be simplydefinition Test_Sear
hvariable Pos is Array_Index,A

esses is Integer;Pos := Sear
h_Routine(Sym, A

esses);

31Tutorial Introdu
tionPrint_Result(Sym, Method, Pos, A

esses)end Test_Sear
hM. Exe
utable Statements1. AssignmentA simple Plus assignment statement is of the formVar := Exprwhere Var is a variable to whi
h a value is to be assigned, and Expr is an expressionyielding the value.You
an assign any type of variable, not just simple values, in an assignment statement.An entire array or re
ord
an be
opied with one assignment. But the two sides of theassignment must be of the same type.The left-hand-side of the assignment may a
tually be any expression whi
h results in a\name"|for example, a subs
ripted array, a �eld of a re
ord, the lo
ation referen
ed bya pointer. We'll say more about names and values soon.You
an assign the same value to more than one variable in a single statement, by writingthe left-hand-sides separated by
ommas. For example,Low, High := 0assigns zero to both variables. The right-hand-side of su
h a multiple assignment isevaluated on
e only.Plus also lets you spe
ify an operator in
onjun
tion with assignment. The statementTable_Size +:= 1(line 68) is a shorthand forTable_Size := Table_Size + 1You
an use similar notation for any of the binary operators +, -, *, /, mod, ||, |, &, orxor, and for any left-hand-side expression.The
ombination of the operator with the := sometimes allows the
ompiler to generatebetter
ode. For example, in a statement likeCount(Pos + 1) +:= 1(where Count is an array), the array subs
ript
al
ulation only has to be done on
e.If Str is a varying-length
hara
ter string, thenStr ||:= " something"is equivalent toStr := Str || " something"However, it appends the right-hand-side dire
tly to the end of Str, without ever needingto
ompute the expression Str || " something". As a matter of fa
t, the form

32 Tutorial Introdu
tionStr := Str || " something"is not really
orre
t Plus. For expressions involving
hara
ter types, you should avoidusing the left-hand-side variable as part of the right-hand-side. This is be
ause the resultis built dire
tly in the left-hand-side variable. It happens to be harmless in this
ase,but for a statement likeVar1 := Var2 || Var1the wrong result will o

ur, sin
e exe
ution will �rst move the value of Var2 into Var1,and then a

ess the wrong value when Var1 is
on
atenated onto it.At the moment, this situation is not usually dete
ted by the
ompiler.2. ExpressionsExpressions in Plus are formed in the usual way, by
ombining various operands withappropriate operators and parentheses.The primitive operands out of whi
h you
ompose an expression in
lude
onstants, sym-boli

onstants, variable names and fun
tion names. The repertoire of operations you
an use in
ludes:a. The usual arithmeti
, bitstring and logi
al operators. For details, see Se
tion I inChapter III (page 83).Expressions involving arithmeti
 operators follow normal pre
eden
e rules. That is,A + B * Cis interpreted as if it wereA + (B * C)Rather than introdu
ing a
omplex pre
eden
e hierar
hy, several other operatorsare given pre
eden
e equal to the arithmeti
 operators. The
omplete pre
eden
ehierar
hy is given on page 84. You
an always use parentheses to override thestandard pre
eden
e or to
larify an expression.b. Array subs
ripting, denoted by a parenthesized expression following the array name,as in:Table(Table_Size)
. Sele
tion of a �eld of a re
ord, denoted by the operator \.". If Elem is of typere
ordSymbol is Symbol_Type,Referen
e_Count is Integerendthen Elem.Symbol is the �rst �eld and Elem.Referen
e_Count is the se
ond.d. Pro
edure
alling, indi
ated by a parenthesized list of parameters following thepro
edure name. For example

33Tutorial Introdu
tionLinearsear
h(Test_Elem, A

esses)
alls Linearsear
h. A pro
edure with no parameters is
alled with an empty pa-rameter list, as inGetsym()e. Following a pointer. The � operator is used to \dereferen
e" a pointer to a

ess theitem that is pointed at. For example, if Sym is of type pointer to Symbol, thenSym�is the Symbol that it points to.Plus stri
tly
ontrols whi
h operators may be applied to di�erent types of operands. Forexample, +
an be applied to numeri
 operands, but not to
hara
ter ones. In a similarway, you
an only use array subs
ripts for arrays, �eld sele
tion for re
ords, and so on.The result of ea
h operation has a type whi
h is derived from the type of the operand oroperands and the operator used.Noti
e that for ea
h
omposite type there is a
orresponding operation that a

essesthe element. The stru
ture of a
omplex expression
orresponds quite dire
tly to thestru
ture of a type. For example, if Ptr is of typepointer to array (1 to 100) ofre
ordField ispro
edureend,...endthen Ptr� is an obje
t of typearray (1 to 100) ofre
ordField ispro
edureend,...endand Ptr�(I) is of typere
ordField ispro
edureend,...endand Ptr�(I).Field is of type

34 Tutorial Introdu
tionpro
edureendwhi
h is a pro
edure with no result, hen
e may be
alled asPtr�(I).Field()This is rather more
ompli
ated than the kind of types and expressions you are likely touse.3. Names and ValuesA name is an expression whi
h
orresponds to a memory lo
ation. The results of someexpressions in Plus are names. Certain
ontexts in Plus (for example the left-hand-sideof an assignment) require name expressions.A value is a quantity that may be stored in a memory lo
ation. All
onstants arevalues, and the result of most expressions is a value. Operands for most operators mustbe values. If a name expression o

urs in a
ontext that requires a value, the
ompilerwill always \dename" the expression and use the
ontents of the spe
i�ed lo
ation asa value. The
onverse is not true|that is, if a value expression o

urs in a
ontextrequiring a name, the
ompiler does not automati
ally generate a name.The simplest name expressions are variable identi�ers. The operations of subs
riptingand �eld sele
tion, when applied to a name result in a name. When these operationsare applied to a value, the result is a value. Similarly, the built-in pro
edure Substringresults in a name if the �rst parameter is a name and the length of the substring is
onstant, and a value otherwise.The dereferen
ing operator � takes a value of a pointer type, and
onverts it to a nameof the resulting obje
t type.The built-in pro
edure Address takes a name-expression of any type as an argumentand gives as its result a value whi
h is a pointer to the argument.The left-hand-side of an assignment must be a name. The parameter of Address mustusually be a name. When a pro
edure parameter is de�ned as a referen
e parameter,the
orresponding argument of a pro
edure
all must be a name.Plus provides an attribute value (see page 72) whi
h may be spe
i�ed for a type toindi
ate that an expression of the type may only be used in a \value"
ontext. This isimplemented by automati
ally \denaming" the name any time it is used in the program,so it won't be valid if the
ontext requires a name. That means you
an't store into itby using it on the left-hand-side of an assignment, or pass it to a pro
edure in su
h away that the pro
edure
ould store into it.If � is applied to a pointer whose obje
t type has the value attribute (i.e, of type pointerto value ...), after dereferen
ing, the resulting name is immediately \denamed", againresulting in a value and so guaranteeing it
annnot be stored into.Address may also be used with a
onstant as a parameter. This will result in a valuewhi
h is a pointer to a value. (And hen
e, you
an't use this pointer as an indire
tway of
orrupting the
onstant.) Similarly, a
onstant may be passed to a referen
e

35Tutorial Introdu
tionparameter, but only if the parameter type spe
i�es value. Currently, Address andreferen
e parameters
annot be used with any kind of value ex
ept
onstants.The following examples may help
larify these intera
tions. Assume these de
larations:type T1 is array (1 to 100) of
hara
ter(1);variables Ind is (1 to 100),V1 is T1,V2 is
hara
ter(1),P1 is pointer to T1,P2 is pointer to value
hara
ter(1);pro
edure Sub1 ispro
edureresult R is T1end;pro
edure Sub2 ispro
edureresult R is pointer to T1end;Then the statementV2 := V1(5)the subs
ripting operation results in a name (of type
hara
ter(1)). This is thendenamed automati
ally to obtain a value whi
h is assigned to the name V2.In the statementV1 := Sub1()Sub1 is a pro
edure
onstant , and hen
e a value. The
all results in a value of type T1whi
h is then assigned to V1.In V1 := Sub1the right-hand-side is a
onstant of a pro
edure type while the left-hand-side is a nameof an array type; hen
e a type error message will be given. (The pro
edure Sub1 is notautomati
allly
alled.)The statementSub1() := V1is illegal, sin
e the result of the
all is a value.In the statementV1 := Sub2()�the
all results in a value of type pointer to T1. The dereferen
ing operator � thenprodu
es a name of type T1, whi
h is then automati
ally denamed to obtain the valueto assign to the name V1.

36 Tutorial Introdu
tionIn this
ase,Sub2()� := V1would be legal, sin
e the left-hand-side results in a name. (Sub2 returns a pointer to somememory lo
ation, then the value of V1 is assigned to whatever lo
ation was returned.)In P2 := Address("X")the
all of Address results in a pointer to a value of type
hara
ter(1). This may thenbe assigned to P2, sin
e it is de�ned as a pointer to a value.P2 := Address(V2)would also be legal. (A pointer to a name may be assigned to a pointer to value.)V2 := P2�would assign the
hara
ter at whi
h P2 points, to the variable V2. The sequen
e ofoperations involved is: P2 is denamed, resulting in a value of type pointer to value
hara
ter(1). This is then dereferen
ed resulting in a name whi
h is immediatelydenamed be
ause of the value attribute. It results in a value of type
hara
ter(1),whi
h is then assigned to V2.P2� := "Z"would be illegal; after the dereferen
e, the left-hand-side is a value of type
hara
ter(1),hen
e an assignment to it is not allowed.4. If Statements and ConditionsIf statements allow you test expressions and
hoose between alternatives. So, in lines195{204:if Element < Table(Pos)thenHigh := Pos - 1elseLow := Pos + 1end ifthe value of Element is
ompared to Table(Pos). If it is \less", the statements in thethen-part are exe
uted; otherwise the statements in the else-part are exe
uted. Aftereither alternative, of
ourse, exe
ution
ontinues with the statement following end if.You
an put an arbitrary list of statements (in
luding other if statements, loops, et
.),in either part of the if statement. The keyword else and following statements may beomitted entirely if there is nothing to be done in that
ase. For example, the if statementat lines 79{83 has no else-part.A sequen
e of nested if's
an be abbreviated using elseif, as in the if statement that runsfrom line 120 through 129. It is equivalent to the following pair of nested if statements:

37Tutorial Introdu
tionif Return_Code := 0thenSym := ""elseif Length(Str) > Max_Sym_LengththenMessage(Msg, "Error - symbol too long</>");Sym := Substring(Str, 0, Max_Sym_Length)elseSym := Strend ifend ifThe sequen
e of ... elseif ...
an be repeated many times.4 Noti
e that when theelseif form is used, there is only one end if to terminate the whole if... then...elseif... then... else... end if
onstru
tion.A long
hain of elseif's
an sometimes be repla
ed by a sele
t statement. In su
h situ-ations, the sele
t statement will generally be mu
h more eÆ
ient. The sele
t statementis des
ribed in Chapter III, page 89.The expression in an if statement must be one that evaluates to a numeri
 value. Itis
onsidered \true" if the value is non-zero and \false" if the value is zero. There isno built-in type \logi
al" or \Boolean" in Plus. The identi�ers True and False areprede�ned as
onstants with the values 1 and 0 respe
tively.Operators like <, <=, =, et
.,
ompare the two operands spe
i�ed, and result in a valueof 1 if the spe
i�ed relationship is true, and 0 if it isn't. So, in exe
uting the aboveif statement, the expression Return_Code := 0, is �rst evaluated. The result of thisis an integer, either 0 or 1. This result is then tested for 0/non-0, and the if bran
hesa

ordingly.Compound
onditions
an be built up using and and or. For example, if you writeif I <= Max_Number_Symbols and Table(I) := Test_Elemthen...end ifthe then-part is exe
uted only if both
onditions are true. When you use su
h a
ompound
ondition, the se
ond
ondition will be evaluated only if ne
essary. That is, if the �rst
ondition is false, then it doesn't matter what the value of the se
ond
ondition is|theoverall e�e
t must be false. So Plus doesn't bother to evaluate the se
ond
ondition.Another way to express this is that the if statement is evaluated as if you had writtenif I <= Max_Number_Symbolsthenif Table(I) := Test_Elemthen...
4 The current compilers limit it to a total of about 25.

38 Tutorial Introdu
tionend ifend ifThis form of evaluation is not only more eÆ
ient than evaluating both expressions;it also means you
an use
ompound
onditions where the se
ond
ondition might beunde�ned or otherwise invalid if the �rst was false. In this example, if I is greater thanMax_Number_Symbols, an array subs
ript error might arise if Plus attempted to evaluateTable(I).Analogous
onsiderations apply to
ompound
onditions using or. If the �rst
onditionis true, then the value of the se
ond is irrelevant, so it isn't evaluated.More
omplex
ompound
onditions
an be used, but if you mix and's and or's in anexpression, you must parenthesize to make the order of evaluation
learer.Conditions and
ompound
onditions su
h as these are just expressions whi
h evaluateto 0 or 1. They most often appear in the
ontext of if statements, but they
an be usedin any appropriate
ontext, su
h as assignment to a numeri
 variable. The standard Plussour
e library in
ludes a de�nition for type Boolean as (False to True)| i.e, (0 to1). You might use this for \
ag" variables in a program as invariable Found is Boolean;...Found := I <= Max_Number_Symbols and Table(I) := Test_Elem;...if Foundthen...end if5. Looping StatementsPlus provides two looping statements, the
y
le statement and the do statement.a. Cy
le StatementsThe
y
le statement is very general. It just spe
i�es that the statements betweenthe keyword
y
le and the mat
hing end
y
le (or just end) are to be be repeatedinde�nitely, until an exit statement inside the loop is performed. For example, lines75{86 are repeated until either the exit at line 78, or the one at line 82 terminates it.In either
ase, exe
ution
ontinues after the end of the
y
le (at line 88). The exitat line 78 spe
i�es a
ondition; this exit terminates the loop only if the
ondition istrue (non-zero). It is exa
tly equivalent toif Length(Elem) = 0 or Elem = "\end"thenexitend ifA
y
le may also be terminated by exe
uting a return statement in the loop, sin
ethat terminates the entire pro
edure
ontaining the loop.

39Tutorial Introdu
tionb. Do StatementsSin
e looping with an in
reasing or de
reasing index is a very
ommon situation, Plusprovides a simple \do loop" to simplify writing su
h loops. Lines 164{167 providean example. The statements between the heading do ... and the mat
hing endare repeated, with the variable Pos assigned su

essive values. The loop terminatesafter it has been exe
uted with the value of Pos equal to Table_Size. It mayalso terminate \early" by exe
uting the return statement inside it. You
an alsoterminate a do loop before the �nal value is rea
hed by exe
uting an exit statement.A do loop of the formdo Index := Start_Value to End_Value/* statement list */...end dois exa
tly equivalent to a
y
le statement of the formif Start_Value <= End_ValuethenIndex := Start_Value;
y
le/* statement list */...exit when Index = End_Value;Index +:= 1end
y
leend ifNote that after the loop �nishes, the value of Index will be the value that it hadthe last time it exe
uted, and that if Start_Value is bigger than End_Value, thebody of the loop is never exe
uted and the value of Index is un
hanged.Plus also allows a loop to \
ount down" by spe
ifying downto instead of to in theloop heading.Do loops always in
rement or de
rement by one. Use the
y
le statement if yourequire more general loop
ontrol.6. Return StatementsThe return statement is just used to terminate a pro
edure and go ba
k to the
aller.You
an spe
ify a return value as part of the statement, soreturn with 0at line 168 is equivalent toPosition := 0;return(Position is the identi�er de
lared as the result.) You
an also spe
ify a
ondition, so

40 Tutorial Introdu
tionreturn when Table(Pos) = Elem with Posat line 166 is equivalent toif Table(Pos) = Elemthenreturn with Posend ifIf both when and with are used, they
an o

ur in either order, so line 166
ould also bewritten asreturn with Pos when Table(Pos) = ElemN. The Message Pro
edureExample 2 illustrates simple use of a Plus library routine, Message, whi
h produ
es formattedoutput. Message is not a part of the Plus language. It is a pro
edure, written entirely inPlus, that has been put into the standard Plus library be
ause it has proven useful in manyPlus programs.Before using Message you must initialize it by
alling the pro
edure Message_Initialize,as at line 67. Message_Initialize returns a pointer to a
ontrol blo
k (of type pointer toStream_Type) whi
h Message uses to keep tra
k of what it is doing. This pointer is passed asthe �rst parameter in all
alls to Message. You should not attempt to
hange anything insidethe
ontrol blo
k returned by Message_Initialize|it is entirely private to the messageroutines.The se
ond parameter to Message is a string to be emitted as the message. The messagestring may spe
ify points at whi
h values are to be substituted via
odes surrounded with <and >. After the message string, there may be zero or more additional parameters, whi
h arethe values to be
onverted and substituted into the string. For example, at line 139, the
allMessage(Msg, "<v> sear
h: <v> ", Method, Sym)emits the string as a message, with the value of Method substituted for the �rst <v> and thevalue of Sym substituted for the se
ond. Here, <v> is a
ode for \varying string" and indi
atesthe
orresponding parameter is a Plus varying-length
hara
ter string to be inserted in themessage.A message may be built up a
ross a series of
alls to the message routine. It is a
tuallyemitted only when the sequen
e </> is en
ountered in the string. Pro
edure Print_Resulttherefore prints only a one line message,
reated by three
alls to the pro
edure (either lines139, 142, and 146 or lines 139, 144, 146). It is terminated by the </> at line 146.You
an also emit more than one line in a single
all to Message|ea
h </> terminates a lineand begins a new one. The two
alls at line 70{71
ould be repla
ed with a single
all withone very long string for the se
ond parameter.The
all to Message_Terminate at line 108 emits any in
omplete messages, then releases the
ontrol blo
k that was allo
ated by Message_Initialize.There are a large number of
odes that may be spe
i�ed between < and >. These may spe
ifyinsertion and various
onversions to be applied to subsequent parameters, as well as variousother operations su
h as emitting the line, tabbing to a spe
i�ed position, padding the next

41Tutorial Introdu
tionparameter, and so on. Unfortunately, the message routine has no way of determining thetypes and size of the parameters to be substituted, so it is up to you to spe
ify this in thesubstitution
odes. This may require some intuition as to how Plus allo
ates variables. Forexample, the variable Pos is de
lared as (0 to 600); this will be allo
ated as a halfword.The
ode <hi> used in line 120 means the
orresponding parameter is a halfword integer,to be
onverted to an integer string. However, A

esses is de
lared as as Integer (= (-2147483648 to 2147483647)) whi
h is allo
ated as a fullword integer. For this, the
ode <i>is used as at line 144. Method is de
lared as
hara
ter(1 to 10), whi
h will be allo
ated asa one byte length �eld followed by the
hara
ters. For this, the
ode <v> is used.There are other
odes for one byte integers, varying strings with a halfword or fullword length�eld, �xed length strings,
oating-point (of various lengths), hexade
imal
onversion, and soon. Ea
h
ode has a short (one or two
hara
ter) form, and a longer, more mnemoni
 form.<halfwordinteger> and <integer>
ould have been used in pla
e of <hi> and <i>.By default, the message routine produ
es its output on Sprint. However, there are
odesthat
an be used to dire
t the output to other output units or spe
i�
 �les and devi
es. You
an set up an arbitrary number of independent output streams by making repeated
alls toMessage_Initialize.For all the details see the writeup for the Message routine.O. About the semi
olonsIn this se
tion, we'll explain just when a semi
olon is needed in a list of statements, and whenit isn't. You don't really need to understand this
ompletely, sin
e the Plus
ompiler willusually let you get away with inserting unne
essary ones in \reasonable" pla
es.Plus follows the Algol tradition of using the semi
olon as a separator between statementsin a list of statements. To fully understand this, you must be aware of what
onstitutes astatement.The program fragment
y
leTable(Table_Size) := Getsym();Table_Size +:= 1end
ontains a list of two assignment statements in the loop, so they are separated by a semi
olon.end, however, is not a statement|it is just one of the pun
tuation marks that makes up theloop|so there's no need for a semi
olon at the end of the se
ond assignment. You may preferto always put a semi
olon there, however, so you don't have to remember to add it if youlater add a third statement to the loop.Similarly,
y
le is not a statement by itself, so you don't follow it with a semi
olon. And inan if statement likeif R
 := 0thenSym := ""elseSym := Strend if

42 Tutorial Introdu
tionyou don't have to separate the keywords (then and else) from the statements in the then-part or else-part. (But again, when a list of statements appears in either alternative, theindividual statements of the list must be separated by semi
olons.)Now, the entire
y
le or if statement is itself a statement, so if this appears as part of a largerlist of statements, it must be separated from its su

essor. Thus in
y
leTable(Table_Size) := Getsym();...Table_Size +:= 1end;Sprint_String("Input Complete")the semi
olon after the end is required to separate the entire
y
le ... end statement fromthe following Sprint_String pro
edure
all.P. The Rest of PlusThis
hapter has
overed the basi
 features of Plus in some detail. However, there is more toPlus that we haven't mentioned here. There are several additional statements, a large numberof built-in pro
edures, and lots of additional options for types, de
larations and pro
edurede�nitions.All these are explained in the next
hapter.

43III. Language DetailsThis
hapter presents a more advan
ed des
ription of Plus. The des
ription is quite informal, andrelies a lot on examples.1 However, it attempts to be a

urate and
omplete. A
omplete BNFde�nition of the
urrent syntax appears as Appendix B.The Plus
ompilers are still under development. Some features of the language des
ribed hereinare partially or totally unimplemented in some
ompilers. Restri
tions and other properties ofthe
urrent implementations of Plus are des
ribed throughout this
hapter. We've attempted,however, to distinguish at all times between the design of the language and the status of its
urrent implementations. Ex
ept as otherwise noted, everything in this
hapter should apply toall
ompilers.A. Program FormatPrograms are
ompletely free-format, with the restri
tion that a single lexeme
annot besplit a
ross two lines. Comments are surrounded by /* and */ as in PL/I or C, and may
ontinue a
ross an arbitrary number of lines. The semi
olon is required as a separator betweentwo statements in a list of statements. The syntax is fairly forgiving, and extra semi
olonsgenerally won't
ause any problems.Keywords of the language are reserved words. A
omplete list of the keywords appears asAppendix C.Case is not signi�
ant in input to the
ompiler.B. Compiler InputInput to the
ompiler
onsists of a sequen
e of statements ea
h of whi
h may be a de
laration,a global blo
k, a pro
edure de�nition, or a
ompile-time statement. See Examples 1 and 2 inthe previous
hapter.De
larations whi
h are not
ontained in a pro
edure de�nition de�ne global identi�ers whi
hmay be referen
ed by all subsequent pro
edure de�nitions or statements. De
larations whi
hare
ontained within a pro
edure de�nition are lo
al to that pro
edure.A pro
edure de�nition
ontains exe
utable statements and de
larations. Exe
utable state-ments are allowed only within a pro
edure de�nition or inside a ma
ro body.Compile-time statements allow
onditional
ompilation and a variety of other
ompile-timea
tions.C. Compilation Stru
turesPlus probably departs furthest from its Pas
al heritage in the area of
ompilation units andglobal variables. Pas
al provides nested pro
edure de�nitions, with variables at one levela

essible by all pro
edures nested within it. The problem with this approa
h is that itdoes not allow for separate
ompilation of the individual pro
edures|separately
ompilablepro
edures generally
annot share variables ex
ept via their parameter lists.The approa
h taken by Plus is similar to that of C or Fortran. A program
onsists of aset of non-nested, separately-
ompilable pro
edures. Communi
ation among pro
edures is by
1 Some day, we’ll add a more precise description of the syntax and semantics!

44 Language Detailsmeans of parameters and global variables. Global variables may be de�ned either by meansof variable de
larations whi
h are external to all pro
edures, or by in
lusion in a sort of\
ommon area"
alled a global blo
k. (Global blo
ks are implemented by the PDP-11 andSystem 370
ompilers by using pseudo-register ve
tors. This allows the
ode to be
ompletelyreentrant and independent of operating system servi
es. The Motorola 68000
ompiler usesthe appli
ation's global area on the Ma
intosh, and \bss" spa
e on the AMIGA.)1. Pro
eduresA pro
edure in Plus
onsists of two parts, a pro
edure de
laration and a pro
edurede�nition. The pro
edure de
laration spe
i�es the type of the pro
edure. The typespe
i�es the names and types of its parameters and return value (if any). The type mayspe
ify that some parameters are optional, and that others may be repeated an arbitrarynumber of times. It may also spe
ify that parameters are to be passed in registers, and/orthat the address of the parameter is to be passed rather than its value. The type mayalso request (via the keyword system) that
alls to the pro
edure must
onform to thestandard linkage used in the operating system. See Se
tion F{8 (page 71) for details ofthis attribute. See Se
tion E{13 (page 64) for details of other aspe
ts of the pro
eduretype.The pro
edure de�nition
ontains the series of statements to be exe
uted when thepro
edure is
alled. The heading of the de�nition may spe
ify that non-standard entry
ode is to be generated. The end of the de�nition is indi
ated by one of end, endpro
edure, end definition, or any of these followed by the name of the pro
edure.The pro
edure de
laration
ontains information that must be known to both the de�ni-tion part and to any other pro
edure that wishes to
all it.The de�nition of a pro
edure must be pre
eded by its de
laration. Any
all of a pro
eduremust be pre
eded by a de
laration of the pro
edure
alled.The de
laration and de�nition of a pro
edure may be presented separately. For example:pro
edure Print_Result ispro
edureparameter Sym is Symbol,Method is
hara
ter(1 to 10),Pos is Array_Index,A

esses is Integerend;.../* other de
larations, globals, definitions,et
. */...definition Print_Result...end Print_ResultAlternatively, the de
laration and de�nition may be
ombined in a single
onstru
t ofthe form

45Language Detailspro
edure Print_Result ispro
edureparameter Sym is Symbol,Method is
hara
ter(1 to 10),Pos is Array_Index,A

esses is Integerenddefinition...end Print_ResultWhen the pro
edure de
laration and de�nition are
ombined, the pro
edure identi�er isnot repeated following the keyword definition.Pro
edure de
larations and de�nitions may be presented separately either to fa
ilitateseparate
ompilation or to permit
ir
ular
alling sequen
es. In the
ase of separate
ompilation, note that ea
h
ompilation whi
h
ontains a
all to a pro
edure must
ontaina de
laration for that pro
edure.2. Global Variables and Global Blo
ksGlobal variables may be a

essed by any pro
edure provided the appropriate de
larationsare present. A variable may be made global in either of two ways:a. by pla
ing the variable de
laration inside a global blo
k. This is the preferredmethod when there are a number of global variables, sin
e it redu
es the run-timeregister requirements;b. by pla
ing the variable de
laration outside of any pro
edure de
laration. Su
h aglobal variable a
ts exa
tly as if it were in a (nameless) global blo
k by itself.A global blo
k may
ontain any of the de
larative statements of the language des
ribedin Se
tion G (see page 73). A global blo
k may appear in the
ompiler input eitheroutside of any pro
edure (in whi
h
ase the de�nitions it
ontains remain for all followingpro
edures) or internally to a pro
edure (in whi
h
ase it is dis
arded at the end of thes
ope blo
k in whi
h it o

urs). There is no limit on the number of global blo
ks in aprogram. However,
ode quality may su�er somewhat if a single pro
edure referen
esvariables from a large number of separate global blo
ks.The heading of a global blo
k may spe
ify an external symbol to be used for the globalarea instead of the default symbol generated from the global blo
k's identi�er. The endof a global blo
k is indi
ated by end or end global, or either followed by the name ofthe global blo
k.At exe
ution time, all pro
edures a

ess the same
opy of any global variable, regardlessof where the de
laration o

urs.On the System 370 and PDP-11 the
ode is kept fully reentrant by using pseudo-registersto implement global variables. Ea
h global blo
k will be one pseudo-register; individualde�nitions within global blo
ks will not generate external symbols. A variable that isneither inside a pro
edure nor inside a global blo
k is a separate pseudo-register.On the Ma
intosh, ea
h global blo
k or global variable is allo
ated spa
e in the appli
a-tion's global storage area, addressed from A5.

46 Language DetailsOn the AMIGA, ea
h global blo
k or global variable de�nes a separate \bss hunk".3. Global EnvironmentsNormally, the global storage a

essible
onsists of all global variables de�ned in theprogram, and remains \�xed" throughout exe
ution of a program.However, Plus provides a way for a family of pro
edures to have its own global storagethat is independent of the global storage used in the rest of the program. Swit
hing fromone global storage to another
an be performed at the time of a pro
edure
all, either bythe
aller, or by the entry sequen
e of the
alled pro
edure. Plus implements the
on
eptof a global environment to support swit
hing global storage.NoteGlobal environments are an \advan
ed topi
". Most programmers should notneed to be aware of the
ompli
ations des
ribed below.System 370 NoteThis fa
ility in Plus/370 mat
hes that of the MTS \Coding Conventions", butimplements the additional me
hanism of swit
hing during the entry sequen
e ofthe
alled pro
edure.Implementation Restri
tion (PDP-11)Plus-11 does not support the me
hanisms for swit
hing global storage environ-ments.Motorola 68000 NotePlus/68000 supports the swit
hing of global storage environments, but this isprobably only useful on the AMIGA, when
alling \system library" pro
edures.Every Plus pro
edure has an asso
iated environment type. An environment type maybe either a spe
ial type global(n), where n is a bit(32)
onstant, or it may be a pointerto a re
ord type. It may also be spe
i�ed as unknown. The environment for a pro
edureis spe
i�ed with the environment attribute; see Se
tion F{2, page 69.An environment of type global(n) means that the global storage is de�ned by the usualmethod of de�ning global storage. A value of su
h a type is just the base address of aregion of storage allo
ated for the global variables. All global variables de
lared in aninput �le to the
ompiler are
onsidered to be part of one global environment, of typeglobal(%Global_Id), where %Global_Id is a settable
ompiler option (it defaults to"PLUS").Implementation Restri
tion (System 370)In Plus/370, a pointer to a re
ord type
an only be used for an environment ifthe initial portion of the re
ord
ontains
ertain reserved �elds and is initializedappropriately as required by the MTS \Coding Conventions". This is des
ribedin Appendix D.

47Language DetailsOne pro
edure may
all another only if either a) the
aller's environment type is
om-patible with the environment type of the
alled pro
edures, or b) the
aller provides avalue of a
ompatible environment type as part of the pro
edure
all.Examples:pro
edure P1 is environment global("QQSV")pro
edure...end,P2 is environment global("FOO")pro
edure...end,P3 is environment pointer to Re
_Typepro
edure...end,P4 ispro
edure...end,P5 is environment unknownpro
edure...endGiven the above, any of P1, P2, P3 or P4
ould
all P5 and vi
e-versa.P1
ould not
all P2 (or vi
e-versa) unless it provided an appropriate environment valueto swit
h to, sin
e they have di�erent global types for environments. Similarly, P1 or P2
ould not
all P3 (or vi
e-versa) unless they provided an appropriate environment valueto swit
h to. Se
tion K{3, page 87 des
ribes the syntax used to swit
h environments atthe time of a
all.The environment of P4 is the default, whi
h is global(%Global_Id). Thus, P1
ould
all P4 dire
tly if and only if %Global_Id had the value "QQSV".The entry sequen
e of a pro
edure may also swit
h environments by spe
ifying a newenvironment as part of the pro
edure heading, as des
ribed by Se
tion P{2, page 98.When this is used, the
aller must still
all with the appropriate environment type. Thisenvironment is in e�e
t for the evaluation of the expression in the entry
ode whi
h loadsthe new environment. The new environment will be in e�e
t for any
alls from withinthe pro
edures, so will be used in determining
ompatibility of subsequent
alls.A Plus pro
edure
an referen
e Plus global variables only if it is exe
uting with en-vironment global(%Global_Id); otherwise the global variables are hidden inside thepro
edure, sin
e they are part of a di�erent environment. If the environment attributeis not given, global(%Global_Id) is assumed, so by default all pro
edures
an a

essglobal variables.Note that all global variables in a given
ompiler run are part of one global type. You
an spe
ify the name of that environment, but
an't have some parts of the program use

48 Language Detailsone and some parts use another. It is possible to have separately
ompiled pie
es of theprogram use di�erent global types.Implementation Restri
tion (System 370)MTS
urrently only provides rudimentary support for loading programs that usemore than one independent PRV. Generally, this is only pra
ti
al with separatelyloaded
omponents, so it is mainly used with pre-loaded subroutine pa
kages.Implementation Restri
tion (Motorola 68000)The Ma
intosh system and appli
ation stru
ture e�e
tively prohibit indepen-dent global storages, and neither the MPW nor MDS linkers have any supportfor them. Plus/68000does implement the use of environments whi
h are pointersto re
ord types.If the pro
edure environment is de�ned by a pointer to a re
ord, Plus global variablesare not a

essible inside the pro
edure. However, in this
ase the �elds of the re
ordtype will be made a

essible inside the pro
edure as if they were global variables; i.e.,they may be referen
ed without quali�
ation.If a pro
edure also has a spe
ial linkage option, the parameters in the prologue that arepassed to the linkage routine in
lude the size of the environment and, for environmentsof type global(n), the value of the
onstant n.The prede�ned register variable Environment_Base_Register always has the same typeas the
urrent environment and may be used if ne
essary to a

ess the environmentvalue. However, it may be used for setting the environment only in a routine that hasthe linkage none option (and then, only by experts). The
ode generated by the Plus
ompiler assumes the environment is
hanged only as allowed by the pro
edure
all andentry sequen
e options, and
hanges made at other times may not work as \expe
ted".4. External VariablesA variable may be de
lared external (see page 75). In this
ase the
ompiler will a

essit through an external symbol referen
e. It will not allo
ate storage for the variable,either as a lo
al or global variable.External variables must be de�ned at load-time either by methods outside of the Pluslanguage (e.g., assembler), or by the use of an entry
onstant.System 370 NoteExternal variables
an be used to a

ess data in Fortran
ommon blo
ks on theSystem 370. To do so, the external variable would be de
lared as a re
ord whose�elds
orrespond to the variables of the Fortran
ommon blo
k.Motorola 68000 NoteExternal variables are
urrently assumed to be in the global data area. This islargely so that they
an be de�ned by an entry
onstant.

49Language Details5. Entry ConstantsA
onstant de
laration in Plus may in
lude the spe
i�
ation entry (see page 74), whi
h
auses generation of an obje
t module
ontaining the value of the
onstant. This isnormally used with
onstant arrays and re
ords to generate tables et
. The
onstant maythen be referen
ed from other
omponents or other languages by means of an appropriateexternal de
laration.Implementation Restri
tion (Motorola 68000)When %Target_Operating_System has the value "MAC/MDS", entry
onstantsare not implemented be
ause the basi
 MDS linker does not have the me
ha-nisms to initialize data areas.6. External SymbolsEa
h pro
edure, global blo
k, external variable, ea
h global variable whi
h is not a mem-ber of a global blo
k, and ea
h entry
onstant, requires an \external symbol". Individualvariables within a global blo
k do not require external symbols.External symbols must obey restri
tions imposed by the system linker. In parti
ular, theMTS loader and *Link11 require that all external symbols be at most eight
hara
terslong. The Ma
intosh and AMIGA loaders do not impose su
h a restri
tion.The external symbol to be used may be spe
i�ed by a string
onstant in the de
larationof a pro
edure or an external variable, or in the heading of a global blo
k. If an externalsymbol is not expli
itly given, then the Plus identi�er is used. If this is longer than thesystem linker allows, the
ompiler will form an external symbol. Plus/370 and Plus-11take the �rst four and last four
hara
ters of the identi�er. The
ompilers will
he
k,within a single run, that any su
h generated symbols are unique; i.e, do not
on
i
t withother external symbols. It is unable to
he
k a
ross separately
ompiled portions of aprogram.Note that the external symbol for a global variable whi
h is not part of a global blo
kis always obtained from its identi�er (if the external spe
i�
ation is used, the variablebe
omes an external variable, not a Plus global variable). To spe
ify the external symbol,the variable must be en
losed in a global blo
k.Example:global Global_Onevariable V1 is (1 to 100);...end Global_One;variable External_One is (1 to 100);variable Case
onv is
hara
ter(256) external;pro
edure Pro
1;pro
edure Pro
2 external "P2";

50 Language Detailsdefinition Pro
1global Global_Two external "G2"variable V2 is (1 to 100)end Global_Two;...end Pro
1;definition Pro
2...end Pro
2;Using Plus/370 or Plus-11 in the above examples, Global_One is an external global withthe external name GLOB_ONE. The variables de
lared within it may be referen
ed withinany pro
edure that follows. These variables are not external symbols. External_One is aglobal variable, with the external name EXTE_ONE whi
h may be referen
ed anywhere inthe following pro
edures. Case
onv is an external variable whi
h must be de�ned outsideof Plus. Its external name is CASECONV; an alternate external symbol
ould be spe
i�edby a string
onstant following the keyword external. Global_Two has external name G2.The variables de
lared within it may be referen
ed only within pro
edure Pro
1, unlessthe de�nition of Global_Two is repeated elsewhere. Pro
1 has external name PROC1, andPro
2 has external name P2.The only di�eren
es using Plus/68000 are that Global_One has the external nameGLOBAL_ONE and External_One has the external name EXTERNAL_ONE.7. Ma
rosPlus
urrently does not provide \internal pro
edures" as su
h. However, ma
ros areprovided to handle some of the situations where internal pro
edures might be useful.A ma
ro asso
iates a name with a pie
e of program text. The text is then substitutedinto the program whenever the name of the ma
ro is subsequently en
ountered in anexe
utable statement. Ma
ros may have parameters, with the text given as the argumentwhen the ma
ro is invoked being substituted for the parameter name in the ma
ro body.Ma
ro substitution is at the \lexeme" level. That is, the ma
ro body or ma
ro argu-ment is interpreted as a sequen
e of tokens (keywords, identi�ers, symbols), before anysubstitution o

urs. The sequen
e of tokens is substituted where the name of the ma
roor a ma
ro parameter o

urs as an identi�er.The body of the ma
ro may be either of two synta
ti

onstru
ts|a parenthesizedexpression, or a s
ope blo
k. (Basi
ally, a s
ope blo
k is a statement or sequen
e ofstatements.) A ma
ro may only be invoked in pla
es where the body is synta
ti
allyvalid.Ma
ros are generally used for one of three reasons. They may be used to avoid theoverhead of a pro
edure
all for small sequen
es of
ode required in several pla
es. Theyare
onvenient for de�ning interfa
e
ode to non-Plus pro
edures, whi
h may requirethe use of Inline, and/or type
heating of parameters. They are also useful for top-down programming, to allow a program to use a name for an a
tion that will be de�nedseparately.Ma
ros may be de�ned either inside or outside of a pro
edure. Ea
h identi�er usedwithin a ma
ro is normally asso
iated with the de�nition in e�e
t at the point where

51Language Detailsthe ma
ro is de�ned. It is possible, however, for a ma
ro to have \free variables", whi
hare asso
iated at expansion time. (Any identi�er whi
h is used in a ma
ro, but is notde�ned at the point where the ma
ro is de�ned, is asso
iated at expansion time.)Further details and examples of ma
ros are given in Se
tion Q, page 99.NoteMa
ros as des
ribed above may be removed from a future version of Plus infavour of internal or \inline" pro
edures. We re
ommend that ma
ros be usedonly in ways that are
ompatible with pro
edures.D. Identi�ersAn identi�er in Plus is a sequen
e of up to 100
hara
ters, whi
h may be letters, digits, or the
hara
ters $, #, or _. The �rst
hara
ter may not be a digit. Upper or lower
ase letters maybe used, but are
onsidered equivalent. Thus the identi�er FALSE is the same as the identi�erFaLsE.1. Uses of Identi�ersIdenti�ers are used in Plus for the purposes listed below. Ea
h type of identi�er isdes
ribed in more detail elsewhere.a. Pro
edure Names|Pro
edure names are spe
i�ed in the pro
edure de
larationsand in the pro
edure de�nition if it o

urs separately. They are used to invoke thepro
edure. See Se
tion C{6, page 49 for restri
tions on identi�ers used as pro
edurenames.b. Global Blo
k Names|Global blo
k names appear only in the heading of theglobal blo
k. Again, see restri
tions in Se
tion C{6, page 49.
. Ma
ro Names|Ma
ro names appear in ma
ro de�nitions and are used to invokethe ma
ro.d. Symboli
 Constants|Symboli

onstants are de�ned expli
itly by means of the
onstant de
laration, or impli
itly by o

urren
e of the identi�er in the list of an\identi�er-list type" de�nition, des
ribed in se
tion E{4, page 57.e. Type Identi�ers|Types may be given names in a type de
laration. These namesmay then be used in any other situation requiring a type des
ription.f. Variable Names|Variables are de
lared with the variable and equate statements.Ea
h variable is asso
iated with a type by its de
laration.g. Pro
edure Parameters and Results|Pro
edure parameters and results aregiven names as part of the pro
edure type. Ea
h parameter and/or the result isgiven a type, and is treated as a variable of that type within the pro
edure de�ni-tion.h. Ma
ro Parameters|Ma
ro parameters are de�ned in the heading of the ma
ro,but are not asso
iated with types. Ma
ro parameters may be repla
ed by expressionsof any type at ma
ro expansion time. The spe
i�ed expressions must be type-
ompatible with whatever
ontext the asso
iated parameters are used in.

52 Language Detailsi. Re
ord Fields|The de�nition of a re
ord type asso
iates an identi�er with ea
h�eld of the re
ord. The re
ord �eld name is used to qualify the name of a variableof the re
ord type, in a

essing the parti
ular �eld.j. Exit Labels|Certain
onstru
ts in Plus may be labelled by pre
eding and follow-ing them with an identi�er en
losed in the symbols < and >. These labels are usedto designate the points to whi
h \es
apes" may be made from within the
onstru
t.k. Compiler Variables|Compiler variables are spe
ial prede�ned identi�ers whi
hare used to set and test various
ompiler options. They always begin with %.l. Compiler Pro
edures|Compiler pro
edures, like
ompiler variables, are identi-�ers beginning with %, and are used to invoke spe
ial
ompile-time a
tions of the
ompiler.2. De�nition of Identi�ersEvery identi�er used in a program must be de�ned, usually by an appropriate de
larativestatement. There are a few built-in pro
edures and
onstants whi
h are prede�nedidenti�ers.With one ex
eption, any identi�er must be de�ned before it is �rst used.The one ex
eption is that a pointer type des
ription may refer to an unde�ned identi�eras its obje
t type. This allows for
ir
ular de�nitions in re
ord types|e.g., a re
ord oftype T1 may have a �eld whi
h points to an obje
t of type T2, whi
h in turn may
ontaina pointer to another obje
t of type T1.The type of the obje
t type identi�er must be de�ned before any exe
utable statementwhi
h a

esses the obje
t of the pointer. However, if no statement within the
ompilationmanipulates the obje
t (i.e., dereferen
es the pointer), the obje
t type is allowed toremain unde�ned. (This provides an aid to separate
ompilation, sin
e a separately
ompiled pro
edure need only in
lude de
larations for those obje
ts whi
h it manipulates,even if it referen
es stru
tures
ontaining pointers to other obje
ts.)Examples:variables V1, V2 are pointer to Undef;...V1 := V2;V1� := 5;...type Undef is (1 to 100);V2� := 5;The assignment of V1 to V2 is valid, sin
e it does not a

ess the obje
t of the pointer. Thedereferen
ing operator � (at sign) is used to a

ess the obje
t pointed at by its operand;hen
e the assignment to V1� will result in an error message be
ause the obje
t of V1 isof type Undef whi
h is not yet de�ned. The assignment to V2� is valid, sin
e the obje
ttype is de�ned previously.3. S
ope of Identi�ersIdenti�ers obey s
ope rules like those of Algol or PL/I. Identi�ers de
lared in one s
ope
an be referen
ed in any s
ope nested within it, unless the same identi�er is de
lared in

53Language Detailsa nested s
ope. Identi�ers may not be referen
ed outside of the s
ope in whi
h they arede
lared. Variables de
lared within a s
ope do not exist outside of that s
ope.The statement list inside any \bra
keted"
ontrol stru
ture forms a separate s
ope inPlus. Extra begin...end blo
ks are not required. A s
ope may
ontain de
larationsand exe
utable statements intermixed.The use of unde�ned identi�ers as pointer obje
t types intera
ts with the s
ope rules inthe following way. If an unde�ned identi�er o

urs as the obje
t of a pointer type in ones
ope, it is assumed to be impli
itly de�ned in that s
ope. If it is subsequently used asthe obje
t of a pointer within a nested s
ope, the se
ond use will be assumed to referto the same type. In this situation, it will be invalid to de�ne the identi�er within thenested s
ope (whi
h would
ause the pointer type in the outer s
ope to refer to a typede�ned in the inner s
ope).For example, in the sequen
evariable V1 is pointer to Undef;begintype Undef is ...variable V2 is pointer to Undef;...endthe de�nition of Undef within the begin blo
k de�nes a new type. Therefore, the variablesV1 and V2 are of di�erent types. On the other hand, in the sequen
evariable V1 is pointer to Undef;beginvariable V2 is pointer to Undef;...endthe use of the symbol Undef in the begin blo
k is assumed to be the same as the usethat is impli
itly de�ned in the outer s
ope, and hen
e the two variables are of the sametype. If a subsequent statement within the begin blo
k attempts to de�ne Undef (as atype, or as anything else), an error message will be issued.E. Type Des
riptionsA type is a des
ription of the values whi
h may be assigned to variables of that type. Thereare
ertain basi
 s
alar types in the language, and rules for
onstru
ting more
omplex typeslike arrays and re
ords out of basi
 types.Type des
riptions may appear in several
ontexts in the language. The most important
ontexts are variable and type de
larations and in the des
riptions of more
omplex types.A type de
laration simply asso
iates an identi�er with a type des
ription. Thereafter, theidenti�er may be used in other type de�nitions in any
ontext. The ability to give a nameto a type allows you to de�ne a type in one pla
e and then use it elsewhere without further
on
ern for the details of its representation.

54 Language DetailsFor ea
h s
alar type, Plus provides a way of expressing
onstants of the type. For ea
h type,
ertain operations are allowed. Every expression has a type, derived from the types of theoperands and the operator involved.The following se
tions des
ribe the types provided and appli
able operations.1. Numeri
 TypesA numeri
 type is a type whose values may be integers in a given range.Examples:type Number is (0 to 32767);type MTS_Line_Number_Type is (-99999999 to 99999999);/* False and True are predefined
onstants. */type Boolean is (False to True)The operations de�ned for this type area. arithmeti
 operators +, -, *, / and mod,2 and unary operations +, - and abs.b. relational operators <, <=, >, >=, = and :=, whi
h perform an arithmeti

ompare,giving a result of 0 (false) or 1 (true).Any numeri
 type is
ompatible, for assignment and for all the above operations, withany other numeri
 type or with
ertain bit types. The
ompiler will optionally providerun-time range
he
king to dete
t assignments of values out of the de
lared range.2. Chara
ter TypesA
hara
ter type is a type whose values may be
hara
ter strings. There are two kinds of
hara
ter types, �xed length types and varying-length types. A varying-length
hara
tertype is expressed by giving the range of lengths that assigned strings may be. (Thisinformation may be used for run-time
he
king, and also sometimes allows the
ompilerto generate better
ode.)The maximum length of a varying
hara
ter type is used in allo
ating storage for avariable of that type.Examples:/* Note Standard_String_Length and Max_Symbol_Length are
onstants. */type Fixed_String is
hara
ter(Standard_String_Length);type Symbol is
hara
ter(0 to Max_Sym_Length)Operations allowed for
hara
ter types are
on
atenation (denoted by ||), and the re-lational (
omparison) operators. There is also a built-in pro
edure Substring whi
hsele
ts substrings of
hara
ter names or values, and a built-in pro
edure Length whi
hreturns the length of a
hara
ter value.
2 Note mod is an operator, not a built-in function. Thus it is used in an expression as X mod Y, not as mod(X,Y),

as Fortran programmers might expect.

55Language DetailsChara
ter types are
ompatible, for the purposes of assignment and the above operations,with other
hara
ter types, even of di�erent lengths. Strings are never extended (withblanks or anything else) during operations. Chara
ter types are also
ompatible with
ertain bit types.The length assigned by an assignment statement is always determined from the sour
e(right-hand-side). It is an error to attempt to assign a value that is too long for thedestination. The
ompiler will optionally generate
ode to test at run-time for invalidstring-lengths that
annot be dete
ted at
ompile time.Chara
ter
omparison is done lexi
ographi
ally. That is, "A" < "AB" < "B" < "BB".For strings of the same length, this is exa
tly what results for the System 370 from aCLC operation. For strings of di�erent lengths the number of
hara
ters of the shorterare
ompared �rst. If these are equal, then the shorter string is
onsidered less than thelonger.Implementation Restri
tion (System 370)The
urrent implementation
heats slightly on this de�nition by
omparing thestrings as if the shorter were padded with (binary) zeros to the required length.(Thus if one string is longer than the other, but ends in zeros, the strings maybe found equal, although the shorter might be less than the longer a

ording tothe de�nition.)Examples:String := "";String ||:= Integer_To_Varying(Count,0) || " re
ords"Note that ||:= has the e�e
t of appending the right-hand-side to the left-hand-side,provided the destination is a varying length string.3. Bit TypesBit types are a ma
hine-oriented type that allows spe
ifying storage allo
ation in termsof a �xed number of bits. For example:type Ma
hine_Address is bit(24)Bit types will be
oer
ed when ne
essary to other s
alar types, so that bit values
an beused to express other types in a ma
hine-dependent way.Plus distinguishes two kinds of bit types, right-justifying (or \index-like") bit types andleft-justifying (or \string-like") bit types. The distin
tion is important when bit-typesof di�erent lengths are mixed in expressions, or when bit-types are mixed in expressionswith other s
alar types. The distin
tion is usually based on the word-size of the obje
tma
hine. In the following dis
ussion, Word_Size is 32 for the 370 and 68000
ompilersand 16 for the PDP-11
ompiler.A bit-type is usually interpreted as right-justifying if its length is less than or equal toWord_Size, and as left-justifying if its length is greater than Word_Size. The attributeleft may be used in a type des
ription to for
e a short bit-type to be treated as left-justifying. The
urrent implementations require that a right-justifying bit-type have

56 Language Detailslength <= Word_Size. The 370 and 68000 implementations further require that a right-justifying bit type must be
ontained within four or fewer bytes. The PDP-11
ompilerrequires that it be
ontained within a word (i.e., it may not
ross a word boundary).A left-justifying bit-type must have a length whi
h is a multiple of 8 bits, and must beallo
ated at a byte boundary.Right-justifying bit-types are
ompatible with any index-type (de�ned on page 58), in-
luding other right-justifying bit-types of di�erent lengths. They are also
ompatiblewith left-justifying bit-types of the same length. Right-justifying bit-type values will be
oer
ed to other index types if used as operands of operators requiring another type.Note that in the
oer
ion to an index type, some right-justifying bit-types are treated assigned and some are not, depending on the a
tual bit length. It is up to the parti
ularimplementation to determine whi
h bit lengths will be signed and whi
h will not.A left-justifying bit-type is
ompatible with any
hara
ter type, with other left-justifyingbit-types (of any length) and with right-justifying bit-types of the same length. Left-justifying bit types of length n behave similarly to
hara
ter-types of length n=8.The logi
al operators |, &, xor and : are de�ned for
ompatible bit-types. (That is,for types of the same justi�
ation or the same length.) Index types will be
oer
edto right-justifying bit-types (of length Word_Size), and
hara
ter types will be
oer
edto left-justifying bit-types if they are used as operands of these operators. When theoperators are applied to a pair of left-justifying operands, the bit-strings are aligned atthe left end, and the length of the result is the length of the shorter. When applied toa pair of right-justifying operands, the right ends are aligned, and the result is always abit string of length Word_Size. When one operand is left-justifying and the other right-justifying (in whi
h
ase the lengths must be the same), the result is a right-justifyingbit(Word_Size).When
omparison operators <, <=, > and >= are used to
ompare two bit-types, anarithmeti

omparison will be performed if the types are right-justifying or of oppositejusti�
ation and a logi
al
omparison if they are left-justifying. The Left_Justifybuilt-in fun
tion
an be used to
oer
e a right-justifying operand into a left-justifyingexpression.System 370 NoteWord_Size is 32 for Plus/370 and bit(16) and bit(32) are signed. A right-justifying bit type must be
ontained within four or fewer bytes.PDP-11 NoteWord_Size is 16 for Plus-11 and bit(16) is signed. A right-justifying bit typemust be
ontained within a word (i.e., it may not
ross a word boundary). |,& and : are not implemented for left-justifying bit types (ex
ept for
onstantexpressions).Motorola 68000 NoteWord_Size is 32 for Plus/68000 and bit(16) and bit(32) are signed. A right-justifying bit type must be
ontained within four or fewer bytes.

57Language Details4. Identi�er-List TypesThe identi�er-list type allows you to
reate new basi
 types by enumerating a list ofidenti�ers whi
h are to be the elements of the type.Example:type Devi
e_Type is (Printer, Reader, Pun
h, Tape_Drive, Disk_Drive,Terminal)The elements of the identi�er list are automati
ally de
lared to be symboli

onstants ofthe given type (and must therefore not be previously de
lared in the same s
ope).The
ompiler is free to
hoose an appropriate internal representation for ea
h element ofthe type. In fa
t, the representation used will be su

essive integers, starting with zero,but you
annot make use of this fa
t ex
ept by type-
heating.The relational operators are de�ned for identi�er-list types, with the values
onsideredordered as they appear in the identi�er list (the �rst is smallest). Values of an identi�er-list type are
ompatible only with other values of the same type, or with right-justifyingbit types.5. Real TypesReal types are used for
oating-point numbers. The type de�nition spe
i�es the numberof de
imal digits of pre
ision wanted.Examples:type Short_Real is real(7),Long_Real is real(16);variable V1 is real(5),V2 is Long_RealReal types are
ompatible with bit types of appropriate size.System 370 NoteFor the 370 implementation, the pre
ision n in real(n) is interpreted as1 <= n <= 7 results in 370 single pre
ision (4 bytes)8 <= n <= 16 results in 370 double pre
ision (8 bytes)17 <= n <= 34 results in 370 extended pre
ision (16 bytes)Currently, real variables of di�erent sizes
annot be mixed, even a
ross assign-ment, so it is ne
essary to use type
heating or Inline to assign from a real ofone size to a real of another.Currently, there are no operations implemented for real types, ex
ept assign-ment. Comparison operations may be used, but will perform a logi
al
ompari-son (string
omparison), not a
oating point
omparison.Implementation Restri
tion (PDP-11)Real types are not implemented for Plus-11.

58 Language DetailsImplementation Restri
tion (Motorola 68000)Real types are not implemented for Plus/68000.6. Index TypesA
ertain subset of the pre
eding s
alar types are known as index types. Index typesmay be used for
ontrol variables in do loops, for subs
ripting arrays, and in
ertain other
ontexts. The index types in
lude all numeri
 types, identi�er-list types,
hara
ter(1)types, and right-justifying bit-types.The built in pro
edures Low_Value, High_Value, Su

essor, Prede
essor, Min, andMax are de�ned for any index type.7. Subrange TypesAny subrange of an index type is itself an index type. Subranges are indi
ated by givingthe lowest and highest values of the type. (In fa
t, any numeri
 type is really a subrangeof a prede�ned, unspe
i�able type `integer'.)Subrange types allow the same operations as their \base type". Any subrange is
om-patible with any other subrange of the same type.Examples:/* Following is a subrange of Devi
e_Type */type Unit_Re
ord_Type is (Reader to Pun
h);/* Following is a subrange of type
hara
ter(1). */type Digit is ("0" to "9")8. Set TypesImplementation Restri
tion (all
ompilers)Set types and all related operations are
urrently not implemented.Set types allow de�ning variables whose values may be arbitrary sets of values from agiven index type. Sets provide a very
onvenient way of expressing some programming
onstru
ts that in other languages would have to be represented by arrays of Booleansor bit strings.Example:type Mts_Modifiers_Type is (Indexed, Binary, Carriage_Control, Prefix,Peel, Ma
hine_C
, Trim, Spe
ial, I
, Case_Conversion);variables Required, Ex
luded are set of Mts_Modifiers_TypeA variable of type Mts_Modifiers_Type
an be assigned a set of values; e.g.,

59Language DetailsRequired := {Indexed, Trim};Ex
luded := {Carriage_Control, Case_Conversion}Theoreti
ally, any index type
an be used as the base of a set, although there will besome implementation restri
tion on the possible size of the range. Sets are implementedusing bit strings. The presen
e of an element in the set is indi
ated by an on-bit.The set bra
es { and } (the alternative notation (| and |) may be used for devi
es whi
hhave no left-bra
e and right-bra
e) allow
onstru
tion of sets. The operators |, & and- are de�ned to mean set union, interse
tion, and di�eren
e when applied to set types.The relational operator subset
an be used to test whether one set value is a subset ofanother. The relational operator in
an be used to test whether a parti
ular value ofthe base type is in a given set.Values of two set types are type-
ompatible if their \base types" are
ompatible. That is,set of (1 to 10) is
ompatible with set of (5 to 20). The result of a set operationon these two might be of type set of (1 to 20).A value of a s
alar type will be
oer
ed into a set
ontaining only that value when
ontextrequires it. For example:Required |:= I
is equivalent toRequired |:= {I
}whi
h meansRequired := Required | {I
}This therefore has the e�e
t of adding the value I
 to the set Required.A type-identi�er for an index type may be used in a
ontext requiring a set of that type,and is equivalent to the set
ontaining all values of the index type.Sets frequently allow the
onstru
tion of eÆ
ient algorithms whi
h would be diÆ
ult todo in most high-level languages. The above example indi
ates how a
on
ept similarto the MTS I/O modi�er pairs might be expressed in this language. Instead of usingadja
ent pairs of bits for modi�ers, two sets are used. The set Required spe
i�es thoseoptions whi
h have been sele
ted (e.g, �I
 results in I
 being pla
ed in set Required).The set Ex
luded spe
i�es those modi�ers whi
h are spe
i�
ally not to be applied (e.g,�:I
 results in I
 being pla
ed in set Ex
luded). With this sense of modi�ers, themodi�er amalgamation algorithm required to
ombine the Fdname modi�ers3 with theoperation modi�ers
an be expressed as:Combined_Required := (Fdname_Required - Op_Ex
luded) | Op_Required;Combined_Ex
luded := (Fdname_Ex
luded - Op_Required) | Op_Ex
ludedThis will generate
ode that is very nearly as good as that in the assembler version.
3 Under MTS, I/O modifiers may be specified as part of a “file or device name” to apply to all operations on that

Fdname, and may also specified on each I/O operation. At each level, the modifier may be asserted as “on” or

“off” or defaulted. In case of conflict, the operation modifiers have precedence over the Fdname modifiers.

60 Language DetailsAs a �nal example, note the following is allowed:if Devi
e in {Reader, Printer}then...end;This means the same asif Devi
e = Reader or Devi
e = Printerthen...endbut the �rst will generate better
ode, and is probably at least as easily understood.9. Array TypesAn array type is
onstru
ted out of two other types, an index type (whi
h de�nes thetype and range of the subs
ripts allowed) and an arbitrary type whi
h de�nes the typeof the elements. Note that any index type is allowed as the subs
ript type. It is possibleto have arrays indexed by
hara
ter, or by identi�er-list types, as well as by numbers.Examples:variable Translate_Table is array
hara
ter(1) of
hara
ter(1);type Symbol_Array is array (1 to Max_Number_Symbols) of SymbolThe elements of an array may be of any type, in
luding another array type. Thus multi-dimensional arrays
an be
onstru
ted out of arrays of arrays. Note that there is no wayto de�ne an array whose size is determined at run-time (but see Chapter VIII, page 140).The only operations that
an be performed on arrays are assignment, subs
ripting and
omparison. An array of a given type
an only be assigned to an array of the sametype. Subs
ripting is denoted in the usual way, by means of a parenthesized expressionfollowing the array name. The subs
ript expression must be type-
ompatible with thespe
i�ed index type of the array, e.g.Translate_Table("a") := "A"Two arrays of the same type
an be
ompared, using the operators = and := only.However, some
aution is required when
omparing entire arrays. In some
ases, theallo
ation of an array may require padding elements to maintain alignment requirements.When arrays are
ompared with a single
omparison, this padding will be in
luded inthe lo
ations
ompared. The result of the
omparison may then be in
orre
t, sin
e thepadding bytes are likely uninitialized. This situation is not dete
ted by the
ompiler.For
onvenien
e in a

essing elements of arrays of arrays, multiple levels of parenthesizedexpressions may be
ondensed into an expression list. For example, given the de
larationvariable Matrix is array (1 to 10) of array (10 to 20) of Numberthe I,J'th element may be referred to as either

61Language DetailsMatrix(I)(J)or Matrix(I,J)When a
onstant subs
ript is applied to a
onstant array, the result is a
onstant whi
hmay be used in any
ontext requiring a
onstant. A variable subs
ript applied to a
onstant array does not result in a
onstant, sin
e it requires a run-time
al
ulation.Hen
e it
annot be used in
ontexts requiring a
onstant.10. Pointer TypesPointers in Plus must usually be de�ned in terms of the type of obje
t that they point to.This allows full
he
king of the types resulting from use of the pointers. Given any type,pointer to that type is another valid type. The values of the pointer type are addressesof variables of the obje
t type. It is also possible to have a pointer to a
onstant. In this
ase the value will be the address of a lo
ation
ontaining that
onstant. See Se
tion H,page 81.Example:variables First_Elem, Last_Elem are pointer to Symbol_Table_ElementThe suÆx operator � may be used to follow (or \dereferen
e") a pointer. The result ofapplying this operator is a name of an element of the given obje
t type. (If the pointeris a pointer to a value, � results in a value, not a name.)A pointer to a variable is
reated by means of the built-in pro
edure Address. Theargument of Address must be a name or a
onstant of any type. The result is a valueof type pointer to the type of the argument. Thus,variable Item is Symbol_Table_Element,First_Elem is pointer to Symbol_Table_Element;First_Elem := Address(Item)will
ause the variable First_Elem to be assigned a pointer to the variable Item.The relational operators (=, :=, <, <=, >, >=) are allowed for pointers.A pointer value is
ompatible with a pointer name (for assignment or
omparison) only ifthe obje
t types, and the ranges and attributes of the types are
ompatible. For example,given the de
larationsvariable V1 is pointer to (1 to 100);variable V2 is pointer to (50 to 200)assignment of V1 to V2 or vi
e-versa would not be allowed be
ause the ranges are di�erent.(This stri
t type
ompatibility is ne
essary to enfor
e range-
he
king of assignments.)In general, pointer assignment is permitted in situations whi
h don't allow violatingrange de
larations or \
orrupting" values.More spe
i�
ally, a pointer to value T
annot be assigned to a pointer to T, buta pointer to T
an be assigned to a pointer to value T. The range restri
tions on

62 Language Detailspointer assignments are relaxed slightly in the presen
e of value. For example a pointerto (1 to 5)
an be assigned to a pointer to value (0 to 10) and a pointer to
hara
ter(0 to 10)
an be assigned to a pointer to value
hara
ter(0 to 100).The range (or length range) of the right-hand-side of the assignment must be withinthat of the left-hand-side. The ranges or attributes must still be su
h that the storagerepresentations of the obje
t types are the same. Thus a pointer to (1 to 5)
annotbe assigned to a pointer to value (0 to 10000), be
ause the �rst numeri
 type usesone byte while the se
ond uses two bytes.The prede�ned
onstant Null is
ompatible with any pointer type. It may be used as adistinguished value to indi
ate the end of a linked list, et
.The spe
ial type unknown may be used as the obje
t of a pointer type.4 The typepointer to unknown is
ompatible with any other pointer type, but values of this typemay not be used to a

ess an obje
t. The result of dereferen
ing a pointer to unknownis an expression of type unknown. This
annot be assigned to or fet
hed. It is possible tospe
ify its type with an open or equate statement however, or to pass it on to a pro
edureexpe
ting a referen
e parameter.Type pointer to unknown is intended for use in interfa
ing to external (non-Plus)subroutines for whi
h it is not
onvenient or not reasonable to provide a proper typede�nition for all parameters. Variables of type pointer to unknown may also be used asa way of type-
heating, to
onvert one pointer type to another. (The equate statementprovides a mu
h more dire
t way of performing su
h type
heating.)11. Re
ord TypesA re
ord type is used to group a series of items of other types as one
on
eptual unit.Ea
h item of the re
ord is
alled a �eld and is named with an identi�er. The end of are
ord type is spe
i�ed by end or end re
ord.Example:type Symbol_Table_Element isre
ordNext_Symbol is pointer to Symbol_Table_Element,Symbol is Symbol_Type,Referen
e_Count is IntegerendAssignment of re
ord types is allowed. The variables assigned must be the identi
alre
ord type (see Se
tion K{3 in Chapter II, page 21). The operation of �eld sele
tion,indi
ated by \." is also de�ned. Thus givenvariable Sym is Symbol_Table_Elementthe �eld Referen
e_Count of variable Sym is a

essed as inSym.Referen
e_Count := 0Field sele
tion may be applied to expressions whi
h result in a re
ord; for example
4 Or, equivalently, as the type of a referen
e parameter in a procedure type description.

63Language DetailsFirst_Elem�.Referen
e_Counta

esses �eld Referen
e_Count of whatever re
ord First_Elem points at. If the expres-sion results in a name, then the result of the �eld sele
tion is a name; if the expression isa value the result of �eld sele
tion is a value. If the expression is a
onstant display, the�eld sele
tion will result in a
onstant|the value will be determined at
ompile time.Note that in order to referen
e a �eld of a re
ord, full quali�
ation is normally required.The open statement, des
ribed in Se
tion N, page 94, provides a way of eliminating someof the quali�
ation.Comparison operators = and := are also allowed for re
ords, but with the same
aveatas for array types: there may be padding bytes within the re
ord layout whi
h are notinitialized and hen
e lead to spurious results when the re
ords are
ompared.12. Variant Fields in Re
ordsA re
ord type des
ription may in
lude a se
tion at the end whi
h may
ontain di�erenttypes of items under di�erent
ir
umstan
es. Su
h an area is
alled a variant part. Theheading of the variant part normally de�nes a sele
tor �eld whose value determineshow the remainder of the variant is supposed to be interpreted. It is permissible to omitthe sele
tor �eld.Example:type Symbol_Table_Element isre
ordNext_Symbol is pointer to Symbol_Table_Element,Symbol is Symbol_Type,Referen
e_Count is Integer,variant Devi
e of Devi
e_Type from
ase Reader, Printer, Pun
h:Re
ord_Length is Integer
ase Disk_Drive:Blo
k_Size is Integer
ase Terminal:Rows, Columns are IntegerendDevi
e is de�ned as a �eld of the re
ord type, whi
h is
alled the sele
tor �eld. Thevalue of this �eld is supposed to determine whi
h of the
ases that follow is in e�e
t.The
ases following may
ontain arbitrary lists of �eld de�nitions. The storage for any
ase overlays that of the other
ases. The labels on the
ases identify the values of thesele
tor �eld for whi
h the shared storage area should be interpreted a

ording to thefollowing �eld list. There may be more than one value spe
i�ed as part of a
ase label.The sele
tor �eld is not set automati
ally when the variant �elds are
hanged. Variantre
ords provide one way of type-
heating in Plus, sin
e it is possible to store into ashared area by referen
ing it with one �eld name and retrieve from it via another name,asso
iated with a di�erent type. However, the equate statement provides a mu
h moredire
t way of type-
heating.The
ompiler may eventually provide optional run-time fa
ilities to
he
k
orresponden
eof referen
ed �elds and the value of the sele
tor �eld. The sele
tor �eld may be omitted

64 Language Details(by simply not spe
ifying an identi�er). In this
ase, of
ourse, no run-time
he
king ispossible. Note that a sele
tor type and
ase labels of that type are still required in thedes
ription of a variant re
ord. For example:type Symbol_Table_Element isre
ordNext_Symbol is pointer to Symbol_Table_Element,Symbol is Symbol_Type,Referen
e_Count is Integer,variant Devi
e_Type from
ase Reader, Printer, Pun
h:Re
ord_Length is Integer
ase Disk_Drive:Blo
k_Size is Integer
ase Terminal:Rows, Columns are Integerendis similar to the previous example, but there is no �eld Devi
e in the re
ord. Theappli
ation program using su
h a variant re
ord is assumed to know by
ontext whi
hvariant applies.A given re
ord type
an only
ontain one variant part whi
h must always be at the endof the re
ord. However, any �eld may be a nested re
ord type whi
h itself has a variantpart.13. Pro
edure TypesA pro
edure type de�nes the names and types of the parameters and result of a
lass ofpro
edures.The parameters and/or result are spe
i�ed in a de�nition similar to a re
ord de�nition.Pro
edures with no parameters and no result are spe
i�ed as typepro
edureendThe parameters and result names and types are spe
i�ed similarly to re
ord �elds, as in:type Table_Sear
h_Pro
edure ispro
edureparameter Element is Symbol,referen
e parameter A

esses is Integerresult Position is Array_Indexend;/* Pro
edure with result but no parameters. */pro
edure Getsym ispro
edureresult Sym is Symbolend

65Language DetailsThe keyword referen
e pre
eding a parameter spe
i�
ation
auses the parameters thatfollow to be passed by referen
e instead of by value. The
orresponding arguments of a
all of the pro
edure must be names or
onstants of the appropriate types; the addressesof the arguments are passed. A
onstant may only be used if the parameter type spe
i�esthe attribute value. The e�e
t is exa
tly the same as de
laring the parameters as typepointer to ..., using the Address pro
edure in the
all to obtain the pointer to pass,and then dereferen
ing the parameter at ea
h use in the
alled pro
edure.The keyword name may be used instead of referen
e. This is a mostly-obsolete feature.name a
ts just like referen
e from the point of the
alling routine (i.e., the addressof a variable is passed). Automati
 dereferen
ing is not done inside the
alled routine,however. That is, the parameter will appear as a pointer within the
alled routine.Optional parameters may be spe
i�ed following the keyword optional. Any optionalparameters must follow all required parameters in the parameter de
larations.For example, givenpro
edure Pro
2 ispro
edureparameter P1 is (1 to 100),optional parameter P2 is
hara
ter(1),P3 is (1 to 100),optional referen
e parameter P4 is (1 to 100)endall the following would be legal
alls of this pro
edure:Pro
2(1, "A", 10, X);Pro
2(1, "A", 10);Pro
2(1, "A");Pro
2(1);Pro
edures written in Plus may have optional parameters; however, there is
urrently nobuilt-in way for them to determine the number of parameters that were passed.System 370 NoteFor
ompatibility with Fortran or other Type I, S-type linkage routines, if thelast parameter passed is a referen
e (or name) parameter it will be
agged inthe high-order bit. If it is not a referen
e-parameter, then the
alled routine willhave to have some way of determining the number of parameters for itself.There is
urrently no built-in method for a pro
edure written in Plus to test thishigh-order bit in order to determine how many parameters were passed (but seeChapter VIII, page 141).A group of parameters that may be repeated an arbitrary number of times may bespe
i�ed following the keyword repeated. This is only useful in interfa
ing to non-Plusroutines, sin
e there is
urrently no way of a

essing the parameters from within a Pluspro
edure. For example, given

66 Language Detailspro
edure Pro
3 ispro
edureparameter P1 is (1 to 100),repeated parameter P2 is (1 to 100),P3 is
hara
ter(1)endAll the following would be allowed:Pro
3(X);Pro
3(X, 1, "A");Pro
3(X, 1, "A", 2, "B");...But not:Pro
3(X, 1, "A", 2)Implementation Restri
tion (all
ompilers)Repeated parameters are not implemented yet.Parameters may be passed in registers by using the register spe
i�
ation in the param-eters de
laration. Similarly, the result of a pro
edure may be de
lared to be returnedin a register or several registers.5 See Se
tion G{5, page 75 for details of the registerspe
i�
ation.The de
laration of register parameters or result only
ontrols the way that the parame-ter/result passing is implemented. Within the body of a pro
edure, the parameters/resultare not ne
essarily retained in registers.The result of a pro
edure may be de
lared to be optional. This just means that the pro-
edure may be used in either an expression
ontext (requiring a result) or in a statement
ontext (the result is to be ignored).Example:pro
edure Read issystem pro
edurereferen
e parametersBuffer is unknown,Buffer_Length is Number,Modifiers is MTS_Modifier_Re
ord_Type,Line_Number is MTS_Line_Number_Type,Fdub is Fdub_Typeoptional resultIo_Result is Dsri_Return_Typesend
5 Note that the normal System 370 Type I linkage convention (result in register 0) is not currently assumed, even for

procedures with the system attribute or linkage specification. It must be explicitly stated in the type declaration.

67Language DetailsThis might be used as inNotifi
ation := Read(Buffer ...)or (when the result is to be ignored):Read(Buffer ...)There is also an \unspe
i�ed" pro
edure type. The syntax ispro
edureunknownendAn unknown pro
edure
annot be
alled, but it
an be passed as a parameter or assignedto a pro
edure variable. The type pro
edure unknown end is
ompatible with any otherpro
edure type. (It is analogous to the pointer to unknown type). It is intendedfor use in de�ning variables and parameters whi
h take di�erent types of pro
edurevalues, depending on
ontext. Some kind of type
heating is ne
essary if the pro
edureis eventually to be
alled.The type attributes system and environment ... may be applied to a pro
edure typedes
ription. Both a�e
t details of the pro
edure
all. See Se
tion F, pages 69 and 71 fordetails.Pro
edure type values are
ompatible only with other values of the identi
al type, withthe prede�ned
onstant Null, or with the \unknown" pro
edure type. All parameterlesspro
edures are
onsidered
ompatible.The only operations implemented for pro
edure types are assignment, pro
edure
alling,and
omparison. Comparison of pro
edure values may spe
ify only = or :=.14. Global typesGlobal types are used only for values to be used as the \global storage environment" ofa pro
edure.Example:variable Pse
t is global("TEST")The variable Pse
t holds a value whi
h may be used to set the global storage for pro
e-dures whi
h are de�ned to require environment global("TEST").The expression in parentheses following the keyword global is
alled the global id. Itis a bit(32)
onstant, or other
onstant that is
ompatible with bit(32).The global id serves only to identify a
lass of
ompatible pro
edure environments. Twoglobal types are
ompatible if and only if their global ids are equal. Global types arealso
ompatible with the prede�ned
onstant Null.The operations of assignment and
omparison (<, <=, =, :=, >, >=) are de�ned.For details of pro
edure environments see Se
tion C{3, page 46.

68 Language DetailsImplementation Restri
tion (PDP-11)The type global(...) is not implemented for Plus-11.F. Type AttributesThere are a number of attributes that
an be applied to a type des
ription. Attributes alwayspre
ede the type des
ription and modify its interpretation in some way.1. AlignedThe aligned attribute is used to spe
ify alignment of variables of a given type.For the purposes of this attribute, the obje
t ma
hine is assumed to have a bit-address-able memory. Aligned spe
i�es an allo
ation boundary requirement, an optional o�setfrom that boundary, and whether the left or right end of the variable is to be so aligned.This attribute
an only be used to strengthen the default alignment of a variable. Forbit types, the alignment spe
i�
ation also overrides the default left- or right-justi�
ationof the type.Examples:type Aligned_Chars is aligned 64 left
hara
ter(4);Variables of this type are 4-byte
hara
ter �elds, aligned su
h that the left-hand end isat an address whi
h is a multiple of 64 bits (i.e., doubleword aligned).type Bit_24 is aligned 8 in 32 left bit(24)Variables of this type are aligned su
h that the left-hand end is 8 bits from a fullwordboundary. This is the same as spe
ifyingtype Bit_24 is aligned 32 right bit(24)ex
ept that the �rst would also
ause type Bit_24 to be a left-justifying bit type, whilethe se
ond would
ause it to be right-justifying.Aligned does not a�e
t the allo
ated size of a variable. It just inserts or removes \�ller"bytes to ensure the requested alignment.type Aligned_Byte is aligned 32 right bit(8)A variable of this type o

upies a single byte, allo
ated su
h that the right-hand end ison a fullword boundary.System 370 NoteFor the 370 implementation, the boundary spe
i�
ation may be a number from1 to 64. The o�set may be a number from 0 to the spe
i�ed boundary. For indextypes, the variable must be
ontained entirely within four or fewer bytes.PDP-11 NoteAligned is ignored by the PDP-11
ompiler, ex
ept for the �elds of a re
ord. Forindex types, the variable must be
ontained entirely within a (16-bit) word.

69Language DetailsMotorola 68000 NoteFor Plus/68000, the boundary spe
i�
ation may be a number from 1 to 64. Theo�set may be a number from 0 to the spe
i�ed boundary. Note, however, thatmany storage allo
ation me
hanisms only give 16-bit alignment whi
h mightresult in variables only being 16-bit aligned during exe
ution.For index types, the variable must be
ontained entirely within four or fewerbytes.2. EnvironmentThe environment attribute is allowed only for pro
edure types. It spe
i�es the type ofglobal storage environment that must be in e�e
t when the pro
edure is
alled.Example:pro
edure Getfrom is environment Dsr_Pse
t_Typepro
edure...endThe attribute keyword environment must be followed by a type des
ription for theenvironment of the routine. The environment type must be one ofa. global(n) where n is a bit(32) or
ompatible
onstant. This indi
ates that thepro
edure uses a pseudo-register ve
tor (\PRV") for its global storage. The
onstantvalue is required to distinguish distin
t PRV environments. The default for theenvironment attribute is global(%Global_Id).b. unknown. The pro
edure's global environment is unde�ned. It may be
alled withany environment, and may make
alls to pro
edures of any environment. You mustensure all su
h
alls provide a suitable environment.
. pointer to r , where r is a re
ord type. This means that the global environmentis de�ned by the spe
i�ed re
ord. For the System 370, to be usable as a globalenvironment the �rst part of the re
ord must have a spe
i�
 format, as des
ribed inAppendix D.Implementation Restri
tion (PDP-11)environment isn't implemented for Plus-11.See Se
tion C{3, page 46 for further information about pro
edure environments.3. FastThis attribute requests the
ompiler to allo
ate variables of the type in su
h a way thata

ess to them is fast if possible. This may mean using a register, or allo
ating in ahalfword rather than a byte, et
.Example:type Subs
ript_Type is fast (1 to 100)

70 Language Details4. LeftThe attribute leftmay be used to for
e a type (normally, a bit type), to be left-justifying.Example:type Four_Chars is left bit(32)5. Pa
kedThe pa
ked attribute is used to request that items of the type be storage pa
ked very
losely. This generally means there will be no sla
k bits left ex
ept as required byalignment
onsiderations.Example:type T1 is pa
ked (0 to 15);variable V1, V2 are T1Without the attribute pa
ked, V1 and V2 would ea
h be allo
ated in a separate byte.With the attribute, the two will be pa
ked into one byte.pa
ked may be spe
i�ed for the �elds of a re
ord type, or the element type of an array,in order to
ause the data stru
ture to be pa
ked.Examples:type Flags isre
ordF1, F2, F3, F4, F5, F6, F7, F8 are pa
ked Booleanend;type Flag_Array is array (0 to 7) of pa
ked BooleanBoth the above data stru
tures use only a single byte, with ea
h element o

upying onebit.Note that spe
ifying pa
ked for an overall re
ord type does not
ause the elements withinit to be pa
ked. Thustype Flags is pa
kedre
ordF1, F2, F3, F4 are Booleanendwould o

upy four bytes. The attribute in this
ase only a�e
ts the overall allo
ationof variables of type Flags. Sin
e they would be byte-aligned anyway, it a
tually has noe�e
t.The obje
t of a pointer type may spe
ify pa
ked only if the type o

upies an integralnumber of bytes, so that all obje
ts of the type will start at an exa
t byte address.System 370 NoteFor index types, a variable must be
ontained in four or fewer bytes.

71Language DetailsPDP-11 Notepa
ked is ignored by the PDP-11
ompiler ex
ept when applied to the �elds of are
ord. Pa
ked �elds of a re
ord are allo
ated starting from the least signi�
antbits of ea
h word. For index types, a variable must be
ontained entirely withina (16-bit) word.Motorola 68000 NoteFor index types, a variable must be
ontained in four or fewer bytes.6. RightThe attribute right may be used to for
e a type (normally, a bit type), to be right-justifying.Example:type Fullword is right bit(32)7. Smallsmall requests the
ompiler to optimize the size of the type in preferen
e to the a

esstime. It does not result in the extreme storage pa
king for
ed by the pa
ked attribute. Itis the inverse of the attribute fast. Sin
e small is the default, it is never really needed.8. SystemThe attribute system may be spe
i�ed only for a pro
edure type. It indi
ates that
allsto the pro
edure must be
ompatible with the standard linkage used in the operatingsystem.The system attribute a�e
ts only the
ode generated for pro
edure
alls and is gener-ally used for de
laring pro
edures written in another language. It does not a�e
t theentry/exit
ode generated as part of the pro
edure de�nition if the pro
edure is writtenin Plus. See the linkage option in Se
tion P, page 96 for related information.System 370 NoteFor the 370 version, the system attribute guarantees
ompatibility with the OSType I linkage.The linkage
onventions used internally in Plus are undergoing a
hange at thetime of this edition of this do
ument. For the older version (%Linkage="OLD"),the attribute system has no e�e
t. With the newer version, %Linkage="NEW",this attribute
auses the pro
edure
all to update a sta
k des
riptor, so that itis later possible for the OS linkage routine to
all ba
k to another Plus linkageroutine.PDP-11 NoteThe attribute system is ignored by Plus-11.

72 Language DetailsMotorola 68000 NoteFor Plus/68000, the e�e
t of the system attribute depends on the %Target_Operating_System
ompiler variable.When %Target_Operating_System has the value "MAC/MPW" or "MAC/MDS",then the system attribute
auses the
ompiler to generate a spe
ial instru
-tion to
all the pro
edure, usually an \A-line trap". The a
tual instru
tion usedis given by the external name of the pro
edure, whi
h must be an even num-ber of bytes (
hara
ters) in length, usually spe
i�ed as a hexade
imal
onstant.Note that this implies that there
annot be variables of a system pro
eduretype, as there is no implemented way to
all them.When %Target_Operating_System has the value "AMIGA", then the systemattribute
auses the
ompiler to
all the pro
edure via an o�set from the globalbase register (whi
h may �rst be loaded by any with phrase in the pro
edure
all). This is used to
all \system library" routines.For example with the Ma
intoshpro
edure Set_Port is systempro
edureparameter Gp is Graf_Ptrend external 'A873'de�nes the Set_Port routine to be the A-line trap A873. For the AMIGA,pro
edure Open_Window_Pro
edure isenvironment pointer to Intuition_Base_Typesystem pro
edurereferen
e parameter New_Window is value New_Window_Typein register A0,result Window is pointer to Window_Typein register D0,end external "_LVOOpenWindow"de�nes the window opening pro
edure for the \Intuition" library. When this pro
edureis
alled, the
all will be made relative to the Intuition_Base_Type that is supplied onthe
all.See Appendi
es D, E and F for further information about Plus linkage
onventions.9. ValueThe value attribute spe
i�es that names of the type are to be automati
ally denamedinto values whenever referen
ed in the program. Thus, the value attribute preventsassignment. It is mainly used as an attribute of the obje
t type for a pointer, in orderto allow the pointer to point to a
onstant.For example, givenvariable P is pointer to value
hara
ter(10)the assignment

73Language DetailsP� := "ab
defghij"would be invalid, sin
e dereferen
ing P produ
es a value, whi
h
annot be assigned to.The
ompiler knows that the obje
t pointed at by P
annot be
hanged, so P is allowedto point to a
onstant:P := Address("ABCDEFGHIJ")would be allowed. The Address fun
tion produ
es a pointer to a value when its argumentis a
onstant. This
an only be assigned to a type with the value attribute. The pointervariable with the value obje
t may, however, have a pointer to a name assigned to it.The attribute value may also be useful when an external variable is to be treated as\read-only" within the program. For example:variable Case
onv is value
hara
ter(256) externalguarantees that the
ompiler will issue an error message if the program
ontains anystatement that might attempt to store in Case
onv (either dire
tly or indire
tly via apointer).G. De
larationsThe
onstant, variable and type de
larations have similar syntax. Examples of de
larationsare:
onstant Max_Sym_Length is 10;type Symbol is
hara
ter(0 to Max_Sym_Length);variable Msg is pointer to Stream_Type;pro
edure Getsym ispro
edureresult Sym is SymbolendA list of identi�ers may appear where the single identi�er is de
lared in ea
h of the above (onthe left of the keyword is). It is also permissible to
ombine a series of de
larations with asingle use of the appropriate keyword. Thus:variables Low, High, Pos are Array_Index,Str is Varying_String1. Constant De
larationsThe
onstant de
laration is used to asso
iate an identi�er with a
onstant value of anytype. The value may be expressed as a
onstant or as an expression all of whose terms are
onstants. On
e a
onstant-identi�er has been de
lared it may be used in any situationrequiring a
onstant.Examples:
onstant Max_Sym_Length is 10;
onstant Max_Number_Symbols is 600

74 Language Details2. Entry Spe
i�
ationA
onstant de
laration may spe
ify the keyword entry following the
onstant expression.This
auses the
onstant to be generated as a separate
se
t in the obje
t module.Example:type Pro
edure_Ve
tor_Type is array (Open#, Do_It, Close) ofpro
edureend;
onstant Pro
edure_Ve
tor is Pro
edure_Ve
tor_Type(Open_Pro
edure,Do_It_Pro
edure, Close_Pro
edure) entry "PROCVECT";will produ
e a
se
t
ontaining the addresses of the three pro
edures.The entry keyword may be followed by a string spe
ifying the external symbol to use|PROCVECT in the above. If the external name is not given, it will be generated from the
onstant identi�er by taking the �rst four letters and the last four letters.Entry-
onstant de
larations are most often used with stru
ture (array and re
ord)
on-stants, so that ea
h routine referen
ing the
onstant doesn't have its own
opy of the
onstant.For simple
onstants, it is possible that a routine may have its own
opy of the
onstantvalue, even if an entry
onstant de
laration is used to de�ne it. This is be
ause the
ompiler uses various te
hniques in a

essing
onstants, some of whi
h do not a
tuallyrequire a value in the literal pool of the program.Implementation Restri
tion (Motorola 68000)When %Target_Operating_System has the value "MAC/MDS", Plus/68000 doesnot implement entry
onstants, due to limitations in the MDS linker.3. Type De
larationsThe type de
laration is used to asso
iate an identi�er with a type des
ription. Manyexamples have already been given.It is not ne
essary to asso
iate an identi�er with every type by means of a type de
la-ration. It is perfe
tly permissible to use the type des
ription dire
tly within a variablede
laration. However, be warned that Plus does absolutely no equivalen
e
al
ulationsfor re
ord, array or pro
edure types in determining type
ompatibility. For these types,a single type des
ription is required, either by using a type de
laration, or by de
laringall relevant variables in the same variable de
laration. See Se
tion K{3 in Chapter II,page 21.4. Variable De
larationsThe variable de
laration is used to allo
ate storage for a variable of a spe
i�ed type.Allo
ation for lo
al variables is normally done on a sta
k, whi
h is pushed and poppedat pro
edure entry and exit only. The sta
k-top at di�erent points within a pro
edure(i.e., as s
opes are begun and ended) is determined at
ompile time. Global variables areallo
ated in global storage at program load time.

75Language DetailsIt should perhaps be noted, for those familiar with Algol-W re
ords, that re
ords in Plusare treated no di�erently from any other type. They are not dynami
ally
reated byreferen
es to them.An external dynami
-allo
ation me
hanism is easily implemented within the languageby de�ning a routine to return a pointer to a re
ord of the required type. This routine
ould then allo
ate a re
ord by
alling the MTS Getspa
e routine.5. Allo
ation Spe
i�
ationsThere are several additional spe
i�
ations that may appear in the variable de
laration,following the type. They a�e
t the way the variable is allo
ated or a

essed.a. External Allo
ationThe external phrase may be used in a variable de
laration to spe
ify that thevariable is allo
ated (at load time), externally to the Plus program. This is typi
allyused to a

ess tables de�ned by other programs. Plus entry
onstants may also beused to de�ne su
h tables.The external symbol to be used may also be spe
i�ed as a string
onstant followingthe keyword external. If the symbol is not spe
i�ed, one is generated from thevariable name, as des
ribed in Se
tion C{6, page 49.Example:variable Case
onv is
hara
ter(256) external;variable Parsetab is Syntax_Tables_Type external;variable As
ii_To_Eb
di
 is
hara
ter(256) external "ASCEBC"b. Register Allo
ationThe de
laration of a variable may spe
ify that the variable is to be allo
ated in ageneral register or a range of
ontiguous registers.This spe
i�
ation may also be applied to the de
laration of pro
edure parametersand results in a pro
edure type des
ription. When it is used for parameters orresults, the spe
i�
ation a�e
ts only the way that the data is passed between the
aller and
alled pro
edure. It does not ne
essarily
ause the variable to remain ina register inside the
alled pro
edure.Examples:variable Temp is Integer in register; /* any register may be used. */variable Temp2 is Integer in register 2;pro
edure Freespa
 issystem pro
edureparameter Flag is Fullword in register 0referen
e parameter Lo
ation is unknown in register 1end;

76 Language Detailspro
edure Julgrgtm issystem pro
edureparameter Jultim is Integer is register 1result Grgtim is
hara
ter(16) in registers 0 to 3endThe
ompiler may reserve
ertain registers for its own use and not allow themto be used for register variables. Ea
h
ompiler provides
ertain prede�ned registervariables that allow a

ess to any reserved registers that may have to be manipulatedfor spe
ial linkage appli
ations. See Se
tion R, page 100 for details. An errormessage will be issued if you attempt to use a register that is in use by the
ompiler.The register spe
i�
ation may be used for eÆ
ien
y reasons, to assist the
ompiler in
ode-generation. However, we expe
t the
ompiler to do a reasonable job of registerallo
ation (eventually).The register spe
i�
ation should also be used in
onjun
tion with the Inline pro
e-dure, to spe
ify variables for the registers required when generating ma
hine-
ode.A variable that is allo
ated in a register
annot be passed by referen
e to anotherpro
edure, nor
an it be used with the Address built-in pro
edure.A parameter or result that spe
i�es register allo
ation may be passed to anotherpro
edure by referen
e or used with Address under some
ir
umstan
es. The reg-ister spe
i�
ation for
es the parameter to be allo
ated as the size of the register(32 bits for Plus/370 and Plus/68000, 16 bits for Plus-11). If this is di�erent fromthe normal size of the type, it will not be possible to pass it by referen
e, be
ausethe
alled pro
edure would not
orre
tly a

ess the storage area. A
ompiler errormessage will be issued.Implementation Restri
tion (System 370)Currently, register may not be spe
i�ed for array, re
ord,
hara
ter, realor left-justifying bit type variables, but may be used for parameters andresults of any type provided the appropriate number of registers are spe
i-�ed.If the register attribute is used for a parameter of type real(n), a generalregister, not a
oating point register will be used.A range of registers may be used for parameters and results, but not forvariables.A pro
edure whi
h returns more than one result in registers may be de�nedby �rst de�ning a re
ord-type
orresponding to the set of values returned,then de
laring the pro
edure to return this re
ord type in the appropriateregister range.Implementation Restri
tion (PDP-11)register may not be spe
i�ed for array, re
ord,
hara
ter, or left-justifyingbit type variables, parameters or results.A range of registers may not be spe
i�ed for the register allo
ation.

77Language DetailsImplementation Restri
tion (Motorola 68000)register may not be spe
i�ed for array, re
ord,
hara
ter, or left-justifyingbit type variables, parameters or results.A range of registers may not be spe
i�ed for the register allo
ation.The register numbers 0 through 7 indi
ate registers D0 through D7, with8 through 15 used for A0 through A7.
. Absolute Allo
ationThe absolute phrase may be used in a variable de
laration to spe
ify that thevariable is lo
ated at a spe
i�ed ma
hine address. This, of
ourse, is mainly usefulin generating highly ma
hine-oriented
ode. For example:Examples:variable Sv
_Old_Psw is Psw_Type at absolute
20
;variable Memory is array bit(24) of bit(8) at absolute 0The latter de
laration allows any byte of memory to be a

essed using its addressas an index.6. Pro
edure De
larationsThe pro
edure de
laration is used to de�ne an identi�er or list of identi�ers to be pro
e-dure
onstants. The pro
edure de
laration normally spe
i�es the type of the pro
edure,whi
h in turn determines the identi�ers and types of the parameters and result. The typemay be omitted from a pro
edure de
laration, in whi
h
ase the simple type pro
edureend is assumed.A pro
edure identi�er must be de
lared before the pro
edure
an be de�ned,
alled,or assigned to a pro
edure variable. Pro
edure de
larations obey the same s
ope rulesas other de
larations. Thus a de
laration given inside a pro
edure or nested s
ope isforgotten at the end of that s
ope while an external de
laration remains in e�e
t for theremainder of the
ompilation.A pro
edure de
laration may be
ombined with the pro
edure de�nition. In this
ase,the pro
edure de
laration is
onsidered external to the pro
edure.Examples:pro
edures Read, Write are Io_Parameter_Type;pro
edure Parameterless_Pro
edureThe latter is equivalent topro
edure Parameterless_Pro
edure ispro
edureendNote that if a series of pro
edure de
larations are
onne
ted together (as with variableor type de
larations), the type may be omitted only from the last list. That is, thede
laration

78 Language Detailspro
edures Read, Write is Io_Parameter_Type,Parameterless_Pro
edureis equivalent topro
edure Read is Io_Parameter_Type;pro
edure Write is Io_Parameter_Type;pro
edure Parameterless_Pro
edure;7. Pro
edure Spe
i�
ationsThere are several additional spe
i�
ations that may appear in a pro
edure de
laration,following the pro
edure type. When more than one is used, they may appear in anyorder.a. ExternalA pro
edure de
laration may spe
ify an external symbol to be used instead of thepro
edure identi�er.Examples:pro
edure Get_From_User is Io_Parameter_Type external "GUSER";pro
edure Get_User_Info ispro
edure...end external "GUINFO"b. LinkageThe linkage spe
i�
ation is used to request a spe
ial entry/exit sequen
e. It isgenerally given as part of the heading for a pro
edure de�nition, but may appear inthe pro
edure de
laration instead. (For de
larations that are to be in
luded fromlibraries, it is sometimes more
onvenient to atta
h the linkage spe
i�
ation to thede
laration.)The allowed options are des
ribed in Se
tion P, page 96.Implementation Restri
tion (Motorola 68000)linkage is not implemented in Plus/68000.Example:pro
edure Main is Main_Pro
edure_Type linkage "PLUSENTR"
. Sta
ksizeThe sta
ksize spe
i�
ation indi
ates the size of the run-time sta
k that should beprovided when the pro
edure is
alled.

79Language DetailsThis option is
urrently used only as part of the entry/exit
ode of a pro
edure. Itis ignored by the
aller.The sta
ksize spe
i�
ation is mainly used by pro
edures that have spe
ial entry/exit
ode to initialize the Plus run-time setup. The value is made available to the entry
ode, whi
h
an use it in allo
ating a sta
k.For Plus/370, if the sta
ksize spe
i�
ation is given and the
ompiler option %Sta
k_Che
k is True, the
ode generated will
he
k the amount of sta
k available againstthe value of sta
ksize, rather than using the a
tual requirements of the pro
edure.See Appendi
es D, E and F for details of the entry/exit
ode and sta
k setup re-quired.Example:pro
edure Spe
ial is Main_Pro
edure_Type sta
ksize 4096H. ConstantsA Plus program may
ontain
onstants of various types. For ea
h s
alar type, the languagede�nes a denotation for values of that type. For stru
tured types (arrays and re
ords),
onstants are
onstru
ted by using a type name, and a list of values for the
omponents ofthe stru
ture, as des
ribed below.Certain \
onstants" have values whi
h are determined at the time the program is loaded, andhen
e are unknown at
ompile time. Su
h
onstants are not valid in
ontexts whi
h requireknowing the value at
ompile-time, su
h as array dimensions,
onstant expressions, et
.1. Integer
onstantsInteger
onstants have the normal de
imal representation. The range of values dependson the obje
t ma
hine; it will always in
lude all integers whi
h the obje
t ma
hinesupports as the basi
 instru
tion level.2. Chara
ter
onstantsChara
ter
onstants are en
losed in the
hara
ter quote ("). A quote within a
onstantis represented by two quotes.The
hara
ter set is ma
hine-dependent. For the System 370 version, EBCDIC is as-sumed. For the PDP-11 and Motorola 68000 version,
hara
ter
onstants are translatedto ASCII.3. Bit
onstantsBit
onstants are denoted by en
losing a series of digits in apostrophes (
). By defaultthe digits are
onsidered to be hexade
imal, but a di�erent base may be spe
i�ed.Examples:
onstant S8_Pun
h is
E0
;
onstant Bit_Example is
(1)10 (3)707

80 Language DetailsA base is spe
i�ed by giving a power-of-two radix in parentheses as part of the bit string.Thus the se
ond example denotes a bit string of 11 bits,
onsisting of 10 in binary (base2j1) followed by 707 in o
tal (base 2j3); i.e, the binary value is 10111000111.4. Real
onstantsImplementation Restri
tion (PDP-11)Real
onstants are not implemented for Plus-11.Implementation Restri
tion (Motorola 68000)Real
onstants are not implemented for Plus/68000.Real
onstants have the same syntax as in Fortran and many other languages, i.e., ade
imal integer and/or fra
tion followed by an optional signed exponent. Up to 34signi�
ant digits are allowed by the 370 implementation. The following are all legalexamples:1.010.579.52E-603.14E20Exponents are always indi
ated with E (or e)|the \D" and \Q" forms used in Fortranare not used.All real
onstants in Plus programs are
onverted to extended pre
ision (16 byte) forms.A
onstant
an be expli
itly
oer
ed to a shorter length by using a
onstant display asin the following example:type Short_Real is real(7);...
onstant Pi is 3.1415926535879, /* extended pre
ision */Short_Pi is Short_Real(Pi) /* single pre
ision */A real
onstant will be rounded when it is
onverted to a shorter length.Implementation Restri
tion (System 370)It is intended that
onstants should be automati
ally
oer
ed to shorter formsas required by
ontext, but this is not implemented yet. Expli
it
onversion asdes
ribed above must be used.5. Constants of identi�er-list typesThe names of the elements of the type form the
onstants of that type. See Se
tion E{4,page 57.

81Language Details6. Pro
edure
onstantsThe name of a pro
edure is a pro
edure
onstant of the spe
i�ed type. A pro
edure
onstant is always a \load-time"
onstant; i.e., the value is not known at
ompile-time.7. Pointer
onstantsUnder
ertain
ir
umstan
es, the result of the Address(: : :) fun
tion will be a
onstant.Currently, this will happen if and only if the argument of Address is a
onstant or anexternal variable. Pointer
onstants are always load-time
onstants; i.e., the value isunknown at
ompile time.Implementation Restri
tion (Motorola 68000)When %Target_Operating_System is set to "MAC/MDS", then Plus/68000 doesnot implement pointer
onstants, due to limitations in the MDS linker.8. Constant DisplaysA
onstant display is a type name followed by a parenthesized list of
onstants. It isused to
reate a
onstant of the given type. This is most often used for the
reationof stru
ture (array and re
ord)
onstants. A
onstant display may be used with s
alartypes to
ontrol the storage representation of the value (see examples below).For array types, the
onstants in the list must be suitable for the elements of the array.The number of elements must agree with the bounds of the array. For re
ord types,the
onstants must be suitable for the �elds of the re
ord. If the re
ord has variants, a
onstant must be spe
i�ed for the sele
tor tag, even if the sele
tor is not de�ned as a�eld. The
onstants whi
h follow the tag are then the ones required for that variant, ifany. With any other type, there will be only one element in the list, and it must be a
onstant whose type is
ompatible with the type-name of the display.Examples:type Awry is array (1 to 5) of
hara
ter(1),Re
1 isre
ordF1 is
hara
ter(2),variant (Red, Green, Blue) from
ase Red:F2 is
hara
ter(0 to 5)elseF3 is (-32768 to 32767)end,Re
2 isre
ordF1 is
hara
ter(1),variant F2 is (0 to 10) from
ase 1:F3 is fast bit(6)end,

82 Language DetailsL_Bit_32 is aligned 32 left bit(32),Short_Real is real(7)Given the above de�nitions, the following are valid
onstant displays:Awry("a", "B", "
", "d", "e");Awry(
00
, "Z",
40
, " ", "0")Note that all �ve elements must be given.Re
1("ab", Red, "ab
");Re
1(
00
, Green, 5)Note that the sele
tor �eld for the variant is given, although it does not appear inthe a
tual
onstant. The sele
tor �eld determines whi
h
ase of the variant is used tointerpret the
onstants that follow it.Re
2("a", 0);Re
2("B", 1,
0
)In this
ase, the sele
tor �eld forms an element of the
onstant. When it has the value0, there are no other �elds in the re
ord.L_Bit_32("ABCD");L_Bit_32(
0001
)This example shows the use of a
onstant display to for
e the spe
i�ed
onstants tobe treated as fullword-aligned, left-justi�ed, bit(32). Without the display, the �rst
onstant ("ABCD") would be a
hara
ter(4) (byte aligned), and the se
ond would be aright-justi�ed bit(32).Short_Real(10.5)This example shows the use of a
onstant display to for
e 10.5 to be single pre
ision.Constant displays
an be used in any
ontext in whi
h a simple
onstant is allowed. Forexample, a table might be de�ned in Plus using a
onstant de
laration su
h as
onstant Spe
ial_Chara
ters is Awry("+", "-", "*", "/", """")whi
h
ould then be used as appropriate in the program:do I := 1 to 5return when Char = Spe
ial_Chara
ters(I)endet
.As another example, a re
ord might be initialized using a re
ord
onstant:variable V is Re
1;...V := Re
1("ab", Red, "ab
")

83Language DetailsNoteA
onstant display will be allo
ated as a separate obje
t module only if it isde
lared in a
onstant de
laration with the entry attribute. Otherwise it maybe emitted as part of the \
onstant pool" for ea
h pro
edure that referen
es it.Implementation Restri
tion (System 370)Constants whi
h should be doubleword-aligned (i.e, the type is aligned...64)will get the spe
i�ed alignment only if they are within a re
ord or array.9. Constant storage representationA
onstant may appear as a parameter of Address(...), or as a referen
e-parameter (insome situations).In order that the resulting pointer obje
t
an be pro
essed
onsistently, and type- andrange-
he
ked where ne
essary, all non-stru
ture
onstants have asso
iated with them adefault storage representation.6 This, in e�e
t, provides a more spe
i�
 type-de�nitionfor the pointer
reated.The default storage representation
an be
hanged by using a
onstant display.The default representations used are:integer fullword (32 bits on 370 and 68000, 16 on PDP-11).
hara
ter
hara
ter(n), where n is the length of the string.bitstring if the length is less than the word size, then fullword, otherwise theallo
ation is
hara
ter(byte-length).pointer fullwordpro
edure fullwordid-list type fullwordreal extended pre
ision (16 bytes)I. ExpressionsExpressions in Plus are formed in the usual way, by
ombining various operands with appro-priate operators and parentheses.1. Operands and OperationsThe primitive operands out of whi
h an expression is
omposed in
lude
onstants, sym-boli

onstants, variable names and pro
edure names. The repertoire of operations in-
ludes all the usual arithmeti
 and logi
al operators, subs
ripting array names, sele
ting�elds of re
ords, following pointers, and
alling pro
edures with an appropriate list ofparameters.
6 The storage representation of a structure constant is determined by the type of the constant.

84 Language DetailsThe language stri
tly
ontrols whi
h operators may be applied to di�erent types ofoperands. Certain operators
an be applied to various types of operands, but the seman-ti
s may depend on the types of the operands. For example if V1 and V2 are numeri
-typevariables, then V1 < V2 denotes the arithmeti

omparison of their values, while if V1and V2 are
hara
ter types, it denotes a logi
al
omparison.Plus expressions follow normal pre
eden
e rules for the arithmeti
 operators. Rather thanintrodu
ing a
omplex pre
eden
e hierar
hy, most other operators are given pre
eden
eequal to the arithmeti
s. The
omplete pre
eden
e hierar
hy is as follows:1 (highest) unary operators +, -, :, not, abs2 multiplying operators *, /, mod, &3 adding operators +, -, ||, |, xor4 relational operators <, <=, >, >=, =, in, subset, and negation of ea
h.Negations may be spe
i�ed with : or not| e.g., not=, :=, not<=, :<=,et
.5 and6 (lowest) or2. Coer
ionsPlus will perform a
ertain set of operations automati
ally if the operations are requiredby the
ontext in order to make operands of other operators type-
ompatible. In Algol-68 terminology, su
h operations are
oer
ions. The
oer
ions that Plus will performin
lude fet
hing the value of a storage lo
ation (denaming),
onverting a value into asingleton set
ontaining that value,
onversion in either dire
tion between bit-types andother s
alar types. Details of the operations and
oer
ions appli
able to di�erent types,together with examples, are given in the se
tions des
ribing the types.3. Logi
al ExpressionsA logi
al expression is really just an expression whose value may be zero (false) orone (true). Any numeri
 value may be used as a logi
al expression, however, with anynon-zero value treated as true. The main use of logi
al expressions is in if statements,although they may be used in other
ontexts. The
omparison operators (<, >, =, :=, et
.)result in logi
al expressions. Logi
al expressions
an be
ombined by using the spe
iallogi
al operators and and or. These operators are sometimes
alled the \M
Carthy-and"and \M
Carthy-or". The semanti
s are su
h that the se
ond operand is not evaluated ifthe out
ome of the logi
al expression
an be determined from the �rst. Thus,if I <= Max_Number_Symbols and Table(I) := Test_Elemthen...end ifis exe
uted as if it were:if I <= Max_Number_Symbolsthen

85Language Detailsif Table(I) := Test_Elemthen...end ifend ifArbitrarily
omplex logi
al expressions
an be built up out of and and or; however, toavoid misunderstandings, the language requires that if the two operators are
ombinedin an expression, parentheses must be used to indi
ate the intended order of evaluation.The logi
al operator not is de�ned to give a result of zero or one always. It is zero if andonly if its operand is non-zero.WarningThe operator : is a bit-string operator whose result is the
omplement of itsoperand. This does not give the same result as the logi
al operator not.: false = : 0 =
FFFFFFFF
 = -1 = true: true = : 1 =
FFFFFFFE
 = -2 = trueThus both a
t as True if used in a logi
al expression.J. Assignment StatementsSimple assignment is denoted by := in Plus. Multiple assignments may be spe
i�ed by sepa-rating left-hand-sides by
ommas. The right-hand-side of a multiple assignment is evaluatedon
e only.Example:Low, High := 0You
an also spe
ify an operator in
onjun
tion with assignment. The statementTable_Size +:= 1is a shorthand forTable_Size := Table_Size + 1Similar notation
an be used for any of the binary operators +, -, *, /, mod, ||, |, & or xor,and for any left-hand-side expression.WarningCertain assignments (mainly of
hara
ter types) may build the result dire
tly in theleft-hand-side variable. Thus the expression forming the right-hand-side should notdepend on the previous value of the left-hand-side. For example,Var1 := Var2 || Var1will �rst move the value of Var2 into Var1, and therefore produ
e the wrong resultwhen Var1 is
on
atenated onto it.At the moment, this situation is not usually dete
ted by the
ompiler.

86 Language DetailsK. Pro
edure CallsPro
edures may be
alled as self-
ontained statements, or as elements of expressions in otherstatements. Pro
edures with no return value are
alled by simply spe
ifying the pro
edureidenti�er, with parameter list (possibly null), as a separate statement, as in Algol. Pro
eduresthat are de
lared to return a value are
alled in an expression in the usual way, with param-eters, if any, given as a parenthesized list following the pro
edure identi�er (or expressionresulting in a pro
edure value). In both
ases, if the pro
edure has no parameters, an emptyparenthesis pair () must appear after the identi�er.Examples:Elem := Getsym();Message(Msg, "Error - too many symbols.</>");Pos := Linearsear
h(Test_Elem, A

esses)1. Parameter PassingParameters may be passed by
opying the value (this is traditionally known as \
all-by-value"), or by passing a pointer to the argument (known as \
all-by-referen
e"). Thetype of the pro
edure's type des
ription spe
i�es whi
h kind of parameter passing isrequired for ea
h parameter.The default is
all-by-value. This applies to any parameter type, in
luding arrays andre
ords. In general, if an array or re
ord is to be used as a parameter, it is preferableto pass a pointer to it, either expli
itly (by de
laring the parameter type as pointer to... and passing Address(...)), or impli
itly by using a referen
e parameter.When
all-by-referen
e is used, there are restri
tions on the possible arguments thatmay be used. A referen
e argument must be a name (or in some
ases a
onstant).Expressions, ex
ept those resulting in a name, are not possible. In addition to beingassignment-
ompatible with the type of the parameter, the type of the argument mustobey the stronger requirements of pointer
ompatibility, as des
ribed in Se
tion E{10,page 61.A
onstant may be passed by referen
e only if the parameter type has the attributevalue, whi
h guarantees that the pointer obje
t
annot be stored into from the
alledroutine.When a
onstant is passed by referen
e, the
ompiler will perform a
oer
ion on the
onstant to the form required by the parameter, if possible, before obtaining the address.This
oer
ion is equivalent to impli
itly using a
onstant display to set the
onstant type.For example, givenpro
edure Test ispro
edurereferen
e parameters Str is value
hara
ter(1 to 10),Num is value fast (0 to 10)endthen the
all

87Language DetailsTest("ab
d", 9)will result in the passing of a pointer to a varying string
onsisting of the length 4 (ina byte) and the
hara
ters "ab
d" for the parameter Str, and a pointer to a halfword(System 370)
onstant 9 for the parameter Num. (Without the impli
it
oer
ion, the
onstant "ab
d" would be of type
hara
ter(4), and 9 would be a fullword integer.The pointers to these would then be in
ompatible with the referen
e-parameters.)2. Return CodesFor
ompatibility with pro
edures written in other languages, whi
h may return a \return
ode", the value of the return
ode may be obtained by spe
ifying a return
ode variableas part of the
all. For example:variable R
 is Number;S
ards(Buffer, Buflen, Mods, Lnum, return
ode R
);if R
 := 0then ...end ifThe expression following the phrase return
ode must be a name expression of anyindex type.There is
urrently no built-in method for a pro
edure written in Plus to set a return
ode to return to its
aller. Generally, fun
tion results or referen
e parameters are usedto return information to the
aller.7System 370 NoteThe System 370 return
ode is assumed to be returned in general register 15.Implementation Restri
tion (PDP-11)return
ode is not implemented in the PDP-11 version.Motorola 68000 NotePlus/68000 assumes the return
ode is in register D0.3. Swit
hing Global Storage EnvironmentIf the pro
edure being
alled requires a di�erent global storage environment from the
aller, the pro
edure
all must provide the address of the required global storage. Thisis done by using the with phrase in the pro
edure
all.Given the following de
larations:
7 However, see Chapter VIII, page 144.

88 Language DetailsExamples:pro
edure P1 is environment global("QQSV")pro
edure...end,P2 is environment global("FOO")pro
edure...end,P3 is environment pointer to Re
_Typepro
edure...end;variable V1 is pointer to Re
_Type,V2 is global("QQSV"),V3 is global("FOO")the following would be legal
alls from any environment:P1(..., with V2);P2(..., with V3);P3(..., with V1)If return
ode and with are both used, they may o

ur in either order.Implementation Restri
tion (PDP-11)Plus-11 does not support the me
hanisms for swit
hing global storage environ-ments.L. Control Stru
turesPlus in
ludes
ontrol stru
tures for sele
ting between alternatives (the if statement and thesele
t statement), for looping (the
y
le and do statements), and for exiting and repeating ablo
k of statements. There is no goto statement.1. If StatementsThe if statement in Plus is a bra
keted
onstru
t, terminated by end (or end if). Thethen-part and else-part are ea
h a s
ope blo
k. That is, a sequen
e of de
larations and ex-e
utable statements may appear as the body, without requiring the use of begin...end.The else-part is optional.Example:if Element < Table(Pos)thenHigh := Pos - 1elseLow := Pos + 1end if

89Language DetailsNested if statements may be abbreviated using the elseif
lause. The statementif Return_Code := 0thenSym := ""elseif Length(Str) > Max_Sym_LengththenMessage(Msg, "Error - symbol too long</>");Sym := Substring(Str, 0, Max_Sym_Length)elseSym := Strend ifend ifmay be repla
ed byif Return_Code := 0thenSym := ""elseif Length(Str) > Max_Sym_LengththenMessage(Msg, "Error - symbol too long</>");Sym := Substring(Str, 0, Max_Sym_Length)elseSym := Strend ifThis pro
ess may, of
ourse, be repeated for further nested if's. There is only one endif to terminate an arbitrary if... elseif... elseif... sequen
e.Implementation Restri
tion (all
ompilers)Currently, a
ompiler \parse sta
k over
ow" will o

ur if an if statement
ontainsa sequen
e of more than about 25 elseif's.2. Sele
t StatementsThe sele
t statement allows a multiple-way bran
h a

ording to the value of a givenexpression. In e�e
t, it is a generalization of the if statement to types other than Boolean.(This statement is similar to what is
alled a
ase statement in Pas
al.)The heading of the sele
t statement spe
i�es an expression whose value determines the
ase to be exe
uted. Note that the range is not restri
ted to numeri
 types; any \indextype" (see Se
tion E{6, page 58) is allowed.The body of a sele
t statement is a series of
ases. Ea
h
ase
onsists of a s
ope blo
k,pre
eded by a label spe
ifying one or more
onstants whi
h are the values of the sele
tionexpression for whi
h this
ase is to be performed. After
ompletion of exe
ution of thestatements in the sele
ted
ase, exe
ution
ontinues following the sele
t statement. Theend of the sele
t statement is delimited by end or end sele
t.

90 Language DetailsNote that a given
onstant may be used as a label on at most one
ase. A list of valuesmay be given for the label on a
ase. The sele
t statement may spe
ify an else
asewhi
h is to be exe
uted for any values that have not been spe
i�ed.Example:sele
t Devi
e from
ase Reader, Pun
h:Re
ord_Length := 80
ase Printer:Re
ord_Length := 132
ase Terminal:Rows := 25;Cols := 80elseSnark()end sele
tSele
t statements are
urrently implemented in all
ompilers by using bran
h tables.This provides for fast exe
ution, but the bran
h table may get quite large. The bran
htable will
ontain one entry for every value between the lowest and highest
ase labelsused. So, for example,sele
t I from
ase 1: ...
ase 1000: ...end sele
twill generate a bran
h table with 1000 entries (two bytes ea
h), even though there areonly two a
tual
ases spe
i�ed.Eventually there may be a \skip-
hain" implementation of sparse sele
t statements. Atpresent, it may be preferable to use if... then... elseif... then... end if in somesituations.3. Cy
le StatementsThe
y
le statement is a general looping
onstru
t. The body of the
y
le (whi
h is againa s
ope), is exe
uted repeatedly until terminated by exe
ution of either a return or exitstatement, des
ribed below. The end of the
y
le statement is marked by end or end
y
le.Example:
y
levariable Elem is Symbol;Elem := Getsym();exit when Length(Elem) = 0 or Elem = "/end";if Table_Size >= Max_Number_SymbolsthenMessage(Msg, "Error - too many symbols.</>");exit

91Language Detailsend if;Table_Size +:= 1;Table(Table_Size) := Elemend
y
le4. Do StatementsPlus
ontains two limited forms of do statements.One form allows for looping with an in
reasing or de
reasing index. It is restri
ted to anin
rement or de
rement of one only. An in
reasing loop is indi
ated by the keyword to,while a de
reasing loop is indi
ated by downto.Example:do Pos := 1 to Table_SizeA

esses +:= 1;return when Table(Pos) = Element with PosendThe se
ond form of do loop is intended ultimately to allow stepping through the membersof a spe
i�ed set value. Currently, this is implemented only for a spe
ial
ase in whi
h atype-identi�er is given to spe
ify the set of values to be stepped through.Example:type Devi
e_Type is (Printer, Reader, Pun
h, Tape_Drive, Disk_Drive,Terminal);variable D is Devi
e_Type;do D := ea
h Devi
e_Type...endThe order in whi
h the do...ea
h form steps through the set is up to the
ompiler|ifa parti
ular order is required you should use do...to or do...downto to spe
ify it.The limits of the loop are determined at the time exe
ution of the loop begins; modi�-
ation of the �nal value of a do...to or do...downto loop within the loop will have noe�e
t. It is possible (though generally not good pra
ti
e) to modify the
ontrol variablewithin the loop.The body of a do loop is also a s
ope blo
k. The exit statement
an be used to terminatea do loop before its limit is rea
hed. The end of a do loop is indi
ated by either end orend do.The value of the
ontrol variable upon termination of a do loop is always the value thatit had during the last exe
ution of the loop. In the
ase of a loop that exe
utes zerotimes, the value of the
ontrol variable will not be
hanged from the value it had beforeexe
ution of the do loop heading.Implementation Restri
tion (all
ompilers)The
ontrol variable of a do loop must
urrently be a simple variable identi�er|array elements and other name expressions are not allowed.

92 Language Details5. Begin Blo
ksThe begin blo
k
onsists simply of a s
ope blo
k surrounded by begin...end. It ismainly used for one of two reasons:a. To restri
t the s
ope of lo
al variables, open statements and equate statements tothe series of statements for whi
h they are required.b. To delimit a series of statements from whi
h it is desired to es
ape with the exit orrepeat statements.Example:beginvariable Temp_Fdub is Fdub_Type;/* Ex
hange new and old Fdubs */Temp_Fdub := New_Fdub�;New_Fdub� := Old_Fdub�;Old_Fdub� := Temp_Fdubend6. CompoundsThe term
ompound refers to
y
le statements, do loops, or begin blo
ks. The state-ments exit and repeatmay be used inside a
ompound to bran
h to the end or beginning(respe
tively) of that
ompound.A
ompound may be labelled by pre
eding it with an identi�er surrounded by < and> (su
h as <Outer> in the example below), and following it with the same identi�er.This label may be used in exit and repeat statements inside the
ompound to refer toit. Normally, the exit or repeat statements refer to the
losest en
losing
ompound.Compound labels allow exiting more than one level.Note that only the spe
i�ed statements form
ompounds; exit and repeat
annot beused to bran
h out of if statements or sele
t statements, unless the statements are em-bedded in begin...end or another
ompound.With labelled
ompounds and multi-level exits, it is possible to synthesize
omplex
on-trol
ows that in most languages
ause one to resort to the use of goto statements.However, it should be noted that if they are used indis
riminately, it is possible to pro-du
e programs that are just as entangled as if gotos were used.7. Exit StatementsThe exit statement is used to bran
h out of a
ompound. The statement may spe
ify a
ondition under whi
h the exit is to be taken. That is,exit when Somethingis equivalent toif Somethingthenexitend;

93Language DetailsExit
onditions may also be spe
i�ed in the form exit unless....exit normally leaves the
losest en
losing
ompound. More than one level
an be es
apedby labelling the
ompound to be exited and spe
ifying the label in the exit statement.Example:<Outer>
y
le...do I := 1 to Max_Symbols...exit <Outer> when Elem = Table(I);...end;/* inner loop
ompleted normally */...end <Outer>In this example, the exit statement inside the do loop will exit both the do loop and the
y
le
ontaining it.8. Repeat StatementsThe repeat statement is similar to the exit statement, ex
ept that instead of terminatingthe loop, it bran
hes ba
k to the beginning of the
ompound, and resumes exe
ution ofthe
ompound from that point.When used in a do loop, repeat \steps" to the next iteration of the loop. That is, the
ontrol variable will be in
remented or de
remented and
ompared to the limit to de
idewhether to re-enter the body of the loop or terminate the loop.Conditions and labels are allowed in repeat statements as for exit statements.Example:
y
leS
ards_Varying(Str, R
);exit when R
 := 0;repeat when Length(Str) = 0;/* Pro
ess the input re
ord. */...endIn this example, the loop terminates via the exit when S
ards_Varying returns a non-zero return
ode, but returns to the beginning of the loop and repeats the read if a nullline is read.9. Return StatementsThe return statement is used to return from the pro
edure
ontaining it. A returnstatement may spe
ify a
ondition, as in exit and repeat statements. It may also spe
ifya return value, if the pro
edure's type spe
i�es a return value.

94 Language DetailsIf a pro
edure is to return a value, its type des
ription spe
i�es an identi�er whose valueis returned by default when the pro
edure returns. If the return statement does notspe
ify a return value, then the value of this identi�er is used.If a
ondition (when or unless) and a return value (with) are both spe
i�ed, they mayappear in either order.A return is automati
ally performed at the end of a pro
edure.Examples:return when Table(Pos) = Element with Pos;return with 0M. AssertThe assert statement
an be used to in
orporate spe
ial run-time
he
ks into a program fordebugging purposes. Code is generated for an assert statement only if the
ompiler option%Assertion_Che
k has the value true. If this option is false, the assert statement is treatedas a
omment.The assert statement spe
i�es a logi
al expression whi
h is to be evaluated when the programis exe
uted. If the expression is true, exe
ution
ontinues normally. If it is false, exe
ution ofthe program is terminated (in MTS, in a RESTARTable way) with an error message.When
oding an assert statement, you should take
are that there are no side e�e
ts of thestatement that might
ause the operation of the program to
hange if assertion
he
king islater disabled. That is, the expression in the statement should not
hange the value of anyvariables in the program or otherwise modify its operation.Example:assert P1 := Null;P1� := 0If P1 is Null when the assertion is exe
uted, exe
ution will be terminated with an errormessage.N. Open StatementsThe open statement allows a

essing �elds of a re
ord without the ne
essity of spe
ifying there
ord name. (It is similar to the \with re
ord" pre�x of Pas
al.)The open statement is treated like a de
larative statement, but may only o

ur within apro
edure body|it is not allowed in a global blo
k or external to a pro
edure. It is in e�e
tfrom the point at whi
h it o

urs, for the remainder of the s
ope blo
k. The e�e
t of thisstatement is to \rede
lare" the �elds of the spe
i�ed re
ord as if they were separate variables,for the duration of the s
ope.The open statement spe
i�es a name expression. It is possible to open elements of arrays ofre
ords or pointers to re
ords.

95Language DetailsExample:type Symbol_Table_Element isre
ordSymbol is Symbol_Type,Referen
e_Count is Integerend;variable Symbol_Table is array (1 to Max_Number_Symbols) of Symbol_Table_Element;...open Symbol_Table(I);...Referen
e_Count +:= 1Following the open statement, for the remainder of the s
ope blo
k
ontaining it, the identi�erReferen
e_Count refers to that �eld of element Symbol_Table(I).Apart from notational
onvenien
e, this
an be an eÆ
ien
y
onsideration, sin
e addressabilityto the required re
ord will be obtained at the time the open is performed.It should be noted that the name expression in an open statement is evaluated at the timethe open is performed. Subsequent
hanges to pointers or array subs
ripts involved will haveno e�e
t on the lo
ations a

essed when the �eld names are used.The open statement may also spe
ify a re
ord-type, whi
h rede�nes the type of the namebeing opened. For example,open Ptr� as Symbol_Table_Elementspe
i�es that, regardless of the a
tual type of Ptr�, it is to be treated as if it were Symbol_Table_Element for the purposes of the open. This provides another form of type
heating inthe language. It is most often useful when pro
essing re
ords pointed at by pointers of typepointer to unknown, in order to spe
ify the obje
t type of the pointer.O. Equate StatementsThe equate statement provides a way of asso
iating a new identi�er with an existing storagelo
ation, and optionally asso
iating a di�erent type with the lo
ation. The statement ine�e
t de
lares a new variable, and spe
i�es that it is to be overlayed on a storage area de�nedpreviously. The identi�er de
lared remains de�ned for the remainder of the s
ope in whi
hthe statement o

urs.Equate provides an \oÆ
ial" way of type-
heating in Plus. It is also sometimes
onvenient touse an equate de�nition to avoid repeating long name expressions. Equate also
ontributesto program eÆ
ien
y, sin
e addressability to the spe
i�ed lo
ations is obtained (if ne
essary)at the time the equate statement is performed.Judi
ious use of this fa
ility
an improve program
larity, by removing \
lutter". It should beused sparingly, however, sin
e overuse may detra
t from the understandability of the resultingprogram by providing multiple names for the same item.Examples:equate Elem to Symbol_Table(I);/* Elem has the same type as Symbol_Table(I). */

96 Language Detailsequate String to Buffer� as
hara
ter(255);/* String is of type
hara
ter(255) regardless of type of Buffer�. */Like the open statement, equate may appear only within a pro
edure body, and the spe
i�edname expression is evaluated at the time the statement is performed. Subsequent
hanges topointers or subs
ripts will have no e�e
t.equate
an also be used to asso
iate a type with an obje
t of type unknown (i.e., the resultof dereferen
ing a pointer of type pointer to unknown).P. Pro
edure De�nitionsA pro
edure de�nition
ontains a sequen
e of de
larations and exe
utable statements
on-stituting the body of the pro
edure. The names of the parameters and result are deter-mined from the type of the pro
edure, and are available as lo
al variables within the de�ni-tion.The heading of a pro
edure de�nition may be immediately followed by either or both of thelinkage and environment options. They may o

ur in either order. A semi-
olon is requiredafter the last option.1. Linkage OptionThe linkage option is used when a pro
edure requires a non-standard entry sequen
e.System 370 NoteThe entry sequen
e normally used by Plus/370 is
ompatible with the MTS
oding
onventions standard. This provides eÆ
ient pro
edure entry/exit/
allbut requires a sta
k and global storage to be set up
orre
tly by the
aller.Spe
ial linkages
an be useful to establish the required set-up when entering aPlus program from a pro
edure that does not follow the Plus
onventions.At the time of writing, the MTS
onventions are undergoing an in
ompatible
hange. The
urrent version of the Plus
ompiler
an be used with either theold or new forms, depending on the setting of the %Linkage
ompiler variable.Implementation Restri
tion (Motorola 68000)Plus/68000 does not implement linkage.The linkage option is normally spe
i�ed as part of a pro
edure de�nition but may alter-natively be given with the pro
edure de
laration.Examples:/* The following example illustrates the linkage optionas part of the pro
edure de
laration. */pro
edure Main ispro
edure...end linkage "PLUSENTR";

97Language Details...definition Main...end Main;/* The following example illustrates the linkage option aspart of the pro
edure definition. */pro
edure Example ispro
edure...end;...definition Examplelinkage "PLUSENTR";...end ExampleThe following are allowed for the linkage option:a. linkage "extname"Given a pro
edure heading su
h asdefinition pro
linkage "extname";where "extname" is a 1 to 8
hara
ter
onstant, the
ompiler generates spe
ial entry
ode whi
h bran
hes from the entry sequen
e of pro
 to a spe
ial linkage routinewith the external symbol extname. The
ode at extname is expe
ted to set up sta
kand global storage and then return to the entry
ode for pro
. The requested sta
ksize of the pro
edure, the \global id" for the pro
edure's environment, the size ofthe environment and some other data are provided in the entry sequen
e of pro
and are a

essible by extname.If the spe
ial linkage requires non-standard exit
ode also, it must set up the registersin the sta
k in su
h a way that when pro
 returns, the spe
ial exit
ode will gain
ontrol.The spe
ial linkage routine
an be written either in Assembler or in Plus by usinglinkage none and lots of Inline's.The details of the interfa
e between pro
 and extname for Plus/370 and Plus-11 areprovided in Appendi
es D and E.b. linkage systemlinkage system requests that the
ompiler generate entry/exit
ode that is
om-patible with the standard \system" linkage.

98 Language DetailsSystem 370 NoteFor Plus/370, linkage system allows the pro
edure to be
alled from anOS Type I (\Fortran") pro
edure. It is a
tually implemented by usinglinkage "QSYSENTR"; i.e., the spe
ial linkage
apability des
ribed above.If a pro
edure must be
alled from both Plus and Fortran routines, itis ne
essary to use both the linkage system option (to request Fortran-
ompatible entry/exit
ode) and the type attribute system (see Se
tionF{8, page 71) for the pro
edure type (to request Fortran-
ompatible
allsto the pro
edure). You should not spe
ify linkage system unless Fortran-
allability is really required, sin
e it is mu
h less eÆ
ient than the normalPlus linkage.PDP-11 NoteFor Plus-11, linkage system is treated the same as the normal Plus link-age; i.e., the option is ignored.
. linkage noneGiven a pro
edure heading su
h asdefinition pro
linkage none;the
ompiler will generate no entry
ode whatsoever. It is intended to make itpossible|though not ne
essarily easy !|to write spe
ial linkage routines within Plus.About the only thing you
an do in a linkage none routine is to use Inline andregister variables to establish the required setup. A great deal of
are is requiredwith su
h routines, sin
e the
ompiler will assume that various registers have beenset up
orre
tly if any statements in the pro
edure require them. See Appendi
esD and E for further details.2. Environment OptionThe environment option allows a pro
edure to swit
h its global storage environment aspart of the entry
ode.Example:pro
edure Example ispro
edureparameter Re
 is pointer to Re
_Type,...end;definition Exampleenvironment Re
;...end

99Language DetailsThe entry
ode would establish the value of Re
 as the
urrent environment, and thetype of Re
 (pointer to Re
_Type) as the environment type in e�e
t throughout thepro
edure. Hen
e Example
ould refer to �elds of Re
_Type dire
tly (without qualifyingthe referen
es with the re
ord pointer), and
ould
all other pro
edures with environmentpointer to Re
_Type without swit
hing environments at the
all.The expression in the entry
ode may be any kind of expression returning a type allowedfor pro
edure environments. It will usually be a parameter value (or obtained via aparameter), but might also be a pro
edure
all, or an element of the environment providedby the
aller.Note that the
aller must still provide an environment
ompatible with the environ-ment type of the pro
edure (from the environment attribute if any, or the defaultglobal(%Global_Id)). This environment is in e�e
t for the evaluation of the expressionin the entry
ode. When setting up an environment from a parameter, as in this example,it will often be appropriate to de�ne the pro
edure to have the attribute environmentunknown, to allow it to be
alled from any environment.Implementation Restri
tion (PDP-11)Plus-11 does not support the me
hanisms for swit
hing global storage environ-ments.Q. Ma
ro De�nitionsThe ma
ro de�nition de�nes the name and parameter names of a ma
ro. The body of thema
ro may be either a statement list, whi
h be
omes a separate s
ope-blo
k, or a parenthe-sized expression. The end of a ma
ro is indi
ated by either end, end ma
ro, or either of thesefollowed by the name of the ma
ro.A ma
ro is invoked mu
h like a pro
edure by use of its name followed by an argument list.The body of the ma
ro is then substituted for the ma
ro name, with appropriate substitutionsof arguments.During expansion of the ma
ro, any identi�ers used in it (but not de
lared within it) obtainthe de�nitions in e�e
t at the time the ma
ro was de�ned . If an identi�er was not de�ned atthe point of the ma
ro de�nition then it is a \free variable", and will assume the de�nitionin e�e
t at the point of expansion. (If there is no de�nition in e�e
t when it is expanded, itis simply an unde�ned identi�er and will result in an error message.)Example:
onstant Sv
 is
0A
,Sv
_Getelt is 38;ma
ro Get_Elapsed_Timeparameter is Time;variable Temp is Fullword in register 2;Inline(Sv
, Sv
_Getelt, Temp, 0, 1, 3); /*
hanges r0 - r3 */Time := (10 * Temp) / 3 /*
onvert to millise
s */end ma
roThis ma
ro has one parameter, Time. Temp is a lo
al variable of the ma
ro. The identi�ersSv
, Sv
_Getelt et
., refer to the de�nitions pre
eding the de�nition of the ma
ro.

100 Language DetailsThis ma
ro would be used in a statement likeGet_Elapsed_Time(Elapsed)Example:ma
ro Current_Chara
ter;(Substring(Str,I,J))end Current_Chara
terThis ma
ro has no parameters. Its body is a parenthesized expression, so it is used in the
ontext of expressions, for example:Char := Current_Chara
ter()NoteMa
ros as des
ribed above may be removed from a future version of the language infavour of internal or \inline" pro
edures. We re
ommend that ma
ros be used onlyin ways that are
ompatible with pro
edures.R. Built-in Pro
edures, Constants, and VariablesPlus provides a number of built-in pro
edures, and a few prede�ned
onstants and variables.The names of these are prede�ned identi�ers. The built-in de�nitions may be overruled byexpli
it de
larations of the same identi�ers.1. AddressThe Address pro
edure is used to
reate pointers. It takes as an argument a nameexpression or a
onstant of any type. The result is a pointer to the spe
i�ed lo
ation (avalue of type pointer to ... the argument type). When the argument is a
onstant,the result type is pointer to value2. AlignmentThe Alignment pro
edure is used to return alignment. The �rst parameter may be aglobal blo
k identi�er, a name, or a type identi�er.Implementation Restri
tion (all
ompilers)Currently, Alignment is implemented only for global blo
k identi�ers.When the parameter is a global blo
k identi�er, it returns the required byte-alignmentfa
tor of the global blo
k as a number from 1 to 8. (1 means byte-aligned, 2 meanshalfword-aligned, and so forth).3. Bit_SizeThe argument of this pro
edure may be a type identi�er, a name or a global blo
kidenti�er. If a name is given, the allo
ated size of that name in bits is returned. If aglobal blo
k identi�er is given, the size of the global blo
k is returned. If a type identi�er

101Language Detailsis given the normal size of that type is returned. (The a
tual size of a variable of a giventype may be bigger than the size of the type, due to padding that may be provided whenvariables of the type are allo
ated.)The Bit_Size pro
edure is always performed at
ompile time.Bit_Size may also be used to �nd the size of a variant of a re
ord. It then has twoparameters. The �rst is a type identi�er, the se
ond a
onstant of the type of thevariant sele
tor. The se
ond parameter is allowed only when the �rst parameter is atype-identi�er for a re
ord type with variants.If the
onstant spe
i�ed does not mat
h one of the variant labels, Bit_Size returns thesize of the else variant, if any, or the size of the �xed part pre
eding the variant if elsewasn't given.If the se
ond parameter is not given, it returns the size of the largest variant.4. Byte_SizeThe arguments and results for this pro
edure are the same as for Bit_Size (see pre
edingitem) ex
ept that the result represents the number of bytes allo
ated.5. Code_Base_RegisterCode_Base_Register is implemented only by Plus/370. It is a prede�ned register vari-able of type bit(32),
orresponding to the register used for
ode addressability (normallyR10). This is intended for use in spe
ial linkage routines that set up the required exe
u-tion environment for Plus.The
ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendix D for information about Plus register usage andentry/exit
ode requirements.6. ConditionCondition is implemented only by Plus/370 and Plus/68000. It is used (normally in
onjun
tion with Inline) to examine the ma
hine
ondition
ode. It a

epts a singleparameter whi
h spe
i�es whi
h
ondition
ode settings to test for, and returns true orfalse a

ording to the value of the
ondition
ode.The parameter is
urrently a numeri
 or bit
onstant in the range (0 to 15) and isinterpreted in the same way as a bran
h mask in an assembler bran
h instru
tion. In afuture version of Plus/370, the parameter will be a set of (0 to 3), spe
ifying dire
tlywhi
h values to test for.Example:Inline(Ltr,1,1);if Condition(8)then /*
ondition
ode 0 - reg 1 was zero */...end

102 Language Details7. Environment_Base_RegisterThis is a prede�ned register variable of type t , where t is the environment type of thepro
edure referen
ing it. It
orresponds to the register
ontaining environment address-ability (R11 for Plus/370, not implemented for Plus-11, A4 for the Ma
intosh and A6 forthe AMIGA). This is intended for use in spe
ial linkage routines that set up the requiredexe
ution environment for Plus.The
ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendi
es D, E and F for information about Plus registerusage and entry/exit
ode requirements.8. External_NameThis pro
edure may have as a parameter a pro
edure, global blo
k, external variable orentry
onstant identi�er. It returns the external (loader) name of the parameter.9. FalseFalse is prede�ned as a numeri

onstant with value 0.10. Frame_Base_RegisterFrame_Base_Register is implemented by Plus-11 and Plus/68000. It is a prede�nedregister variable
orresponding to the register used to address the lo
al sta
k frame. InPlus-11 this variable has type bit(16) and is normally R5. In Plus/68000 it has typebit(32) and is A6 for the Ma
intosh and A5 for the AMIGA. This is intended for use inspe
ial linkage routines that set up the required exe
ution environment for Plus.The
ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendix E for information about Plus register usage andentry/exit
ode requirements.11. Global_Base_RegisterGlobal_Base_Register is usually a synonym for Environment_Base_Register but isof type bit(32) (bit(16) for Plus-11) instead of the environment type of the pro
edure.On the Ma
intosh, it is de�ned to be A5, the global data base, rather than A4, theenvironment base.12. Global_SizeGlobal_Size is a prede�ned
onstant whose value is the total size of the globals requiredby a program. It is a \load-time"
onstant (generated as a CXD), and
annot be usedin situations requiring a
ompile-time
onstant.Implementation Restri
tion (PDP-11)This
onstant is not available for the PDP-11
ompiler sin
e *LINK11 does notsupport the required load-time
onstants.

103Language DetailsImplementation Restri
tion (Motorola 68000)This
onstant is not implemented in Plus/68000 sin
e none of the linkers supportthe required load-time
onstants.13. High_ValueThe High_Value fun
tion takes as an argument a type identi�er for an index type, or aname of some index type. If a name is given, the type of that name is used. It returnsthe highest value of the type.14. InlineThe Inline pro
edure
an be used to emit spe
i�
 ma
hine instru
tions. It is verysimilar to the pro
edure with the same name in XPL or Sue. However, Plus is aware ofthe format of spe
i�
 ma
hine instru
tions and
he
ks that the appropriate parametersare given.Inline a

epts a variable number of parameters. The number and types depend on theobje
t ma
hine for whi
h
ode is being generated, and on the spe
i�
 ma
hine instru
tionbeing emitted. In general, the parameters
orrespond to the required operands of theinstru
tion, in the order that they appear in the ma
hine instru
tion (not the order theywould be spe
i�ed in an assembler instru
tion). Some ex
eptions to this rule may o

ur,however.NoteUsing Inline is quite tri
ky. It is often advisable to turn
ode listing on andhand
he
k the generated
ode.a. Inline for the System 370The �rst parameter of the System 370 Inline is always a numeri
 or bit-type
onstant whose value must be in the range 0 to 255. This parameter gives theop-
ode for the instru
tion to be emitted.The subsequent parameters depend on the parti
ular ma
hine instru
tion beingemitted. They may be any of the following:�� A variable (or other name expression). Su
h a parameter may be used to
orrespond to a base/displa
ement pair of operands in a ma
hine instru
tion.The base/displa
ement may also be given as two separate parameters, a registerand a displa
ement.�� A register lo
al variable. This should be used for an operand that requires aregister.�� A s
alar
onstant (any type). May be used for an \immediate" operand or fora displa
ement. Currently, a
onstant may also be used for a register operand,but this will
hange in a future version. In all
ases, the
onstant must be inthe appropriate range for the operand.

104 Language DetailsNote that, when
oding operand lengths (for SS format instru
tions), the \IBMlength" (a
tual data length�1) must be spe
i�ed. Inline will not automati-
ally adjust the length.Examples:
onstant L is
58
,Ar is
1A
,La is
41
,Sla is
8B
;variable R1 is Integer in register 1,R2 is Integer in register 2,Temp is Integer;Inline(L,R1,0,Temp); /* L 1,Temp(0) - same as R1 := Temp */Inline(L,R2,R1,Temp); /* L 2,Temp(1) */Inline(L,R2,0,R1,4); /* L 2,4(0,1) */Inline(La,R1,0,0," "); /* LA 1,C

 = LA 1,X
40
 = LA 1,64 */Inline(Ar,R1,R2); /* AR 1,2 - same as R1 +:= R2 */Inline(Sla,R1,0,4) /* SLA 1,4 -- note SLA has no index operand. */(Note that the above are examples only. For most of them, it would not be ne
essaryto use Inline to get the required ma
hine instru
tions generated, sin
e Plus sour
estatements would generate the appropriate
ode when used with register variables.)WarningsThe
urrent version of the
ompiler attempts to ensure that the registersused in Inline are available, but does not
urrently guarantee this. Insome situations, the
ompiler may substitute a di�erent register for thespe
i�ed one. When it does so, a warning message will be issued. When aregister substitution is ne
essary, the
ompiler will make the substitution
onsistently though all referen
es to it in a sequen
e of
onse
utive Inlineinstru
tions.The
ompiler is also
urrently unaware of registers used by an Inline'dinstru
tion but not expli
itly referen
ed (e.g., the odd register of even-oddpairs, the intermediate registers of LM and STM, any registers requiredby an SVC). Su
h registers may be spe
i�ed by the programmer by ap-pending them as extra parameters of the Inline instru
tion, as in the nextexample.Example:variable Parlist is pointer to unknown in register 1,R14 is ... in register 14,R15 is ... in register 15;Parlist := Address(X);/* Register 1 is also required for the BALR. */Inline(Balr,R14,R15,Parlist)

105Language Detailsb. Inline for the PDP-11The �rst parameter of the PDP-11 Inline is always a numeri
 or bit(16)
onstantwhose value is used to determine the op-
ode en
oding only for the instru
tion tobe emitted. Any bits whi
h are not part of the op-
ode should be zero.For example, the op-
ode for Mov should be given as
1000
 (although only the�rst digit is a
tually part of the op-
ode.)The subsequent parameters depend on the parti
ular ma
hine instru
tion beingemitted. As for the 370 version, the operands appear in the order that they o

urin the ma
hine instru
tion, ex
ept that the (mode, base, indexword) triplets o

urtogether. This avoids having to in
lude an index word if it is not spe
i�ed by themode.For example, a move from register one to o�set disp from register 3 would bevariable R1 is Integer in register 1,R4 is Integer in register 3;Inline(Mov,0,R1,6,R3,disp)In this example, 0 spe
i�es the mode of the �rst operand (register), R1 is the registervariable, 6 is the mode of the se
ond operand (index), R4 is the register and disp isthe o�set.The parameters for the PDP-11 Inline may be any of the following.�� A variable (or other name expression). Su
h a parameter may be used to
orrespond to a (mode, base, indexword) triple.If the variable is a register variable, then a mode of zero is assumed. Thus theabove example
ould also beInline(Mov,R1,6,R3,disp)The triple may also be given as two or three separate parameters, the last beingomitted if index mode was not spe
i�ed.�� A register variable. This should be used for an operand that requires a register.�� A s
alar
onstant (any type). May be used to indi
ate the mode or indexwordof an operand triple. A
onstant may also be used to spe
ify a register for anoperand, although the use of a register variable is preferred.See also the warnings for the System 370 Inline regarding registers.
. Inline for the Motorola 68000The �rst parameter of the Motorola 68000 Inline is a
hara
ter string
onstantgiving the operation
ode, the size and any spe
i�
 e�e
tive addressing modes. Ithas the format:op
ode.size mode1,mode2The string must be entirely in lower
ase. See Appendix G for a list of all there
ognized op
odes, sizes and modes.

106 Language DetailsThe op
ode is generally an operation
ode as given in the Motorola \Programmer'sReferen
e Manual". For those \instru
tions" that have more than one form, su
has ADD, the
ompiler de�nes a name for ea
h form. Thus the
ompiler re
ognizes"add" as the \ADD <ea>,Dn" form and "addm" as the \ADD Dn,<ea>" form. Thoseinstru
tions that in
lude
ondition
odes
an be spe
i�ed with any of the
ondition
odes de�ned in the Motorola manual. Most 68000 instru
tions have one generale�e
tive address mode operand and one spe
i�
 mode operand. For Plus/68000Inline, you must always spe
ify the general operand �rst. Thus the \ex
lusive or"operation re
ognized by Plus/68000 is "eorm" (ex
lusive or to memory).The .size
an be omitted. If the operation has no size, then it must be omitted. Ifthe operation has a size and none is spe
i�ed, then it defaults to the largest allowedby the operation.The mode1 and mode2 spe
ify either the exa
t addressing modes to be used, or,by their omission, that a Plus storage referen
e is to be used and the
ompilershould provide an appropriate mode. When an exa
t addressing mode is provided,the
orresponding Inline operands must give exa
tly the parts of the mode, usingindex
onstants for parts su
h as displa
ements and register variables for registers.The parts are given in the same order as they would be spe
i�ed to an assembler.For indexed modes, a
onstant 1 or 0 takes the pla
e of the assembler's .L or .W(respe
tively).Examples: /* Do an unsigned multiply of the longwords Int_1 andInt_2, produ
ing the result in Produ
t. */variables Int_1, Int_2, Produ
t, Temp_1, Temp_2 areInteger in register;Temp_1 := Int_1;Inline("swap", Temp_1);Inline("mulu.w", Int_2, Temp_1);Temp_2 := Int_2;Inline("swap", Temp_2);Inline("mulu.w", Int_1, Temp_2);Temp_1 +:= Temp_2;Inline("swap", Temp_1);Inline("move.w #", 0, Temp_1);Variable Temp_3 is Integer in register;Temp_3 := Int_1;Inline("mulu.w", Int_2, Temp_3);Temp_3 +:= Temp_1;Produ
t := Temp_3;variable Base_Addr is pointer to unknown in register,Temp_Word is bit(32) in register;/* Load the (unaligned) 4 bytes pointed to by Base_Addrinto Temp_Word. */inline("move.b (ar)+,-(ar)", Base_Addr, Sta
k_Pointer);inline("move.w (ar)+,dr", Sta
k_Pointer, Temp_Word);inline("move.b (ar)+,dr", Base_Addr, Temp_Word);inline("swap.w dr", Temp_Word);

107Language Detailsinline("move.b (ar)+,-(ar)", Base_Addr, Sta
k_Pointer);inline("move.w (ar)+,dr", Sta
k_Pointer, Temp_Word);inline("move.b (ar)+,dr", Base_Addr, Temp_Word);15. Left_JustifyThis fun
tion
oer
es its operand to be a left-justifying (
hara
ter-string-like) expression.16. LengthThis pro
edure a

epts as a parameter any �xed or varying
hara
ter expression. Itsresult is the length of the value in
hara
ters. Length is performed at
ompile-time ifpossible.17. Low_ValueThe Low_Value pro
edure takes as an argument a type identi�er for an index type, or aname of some index type. If a name is given, the type of that name is used. It returnsthe lowest value of the type.18. MaxThe Max fun
tion takes an arbitrary number of arguments of any index type, and returnsas its result the maximum of the values. The arguments must be type
ompatible.19. MinThe Min pro
edure takes an arbitrary number of arguments of any index type, and returnsas its result the minimum of the values. The arguments must be type
ompatible.20. NullNull is a prede�ned
onstant that is
ompatible with any pointer, pro
edure, or globaltype. It is used as a spe
ial distinguished value, for example to indi
ate the end of alinked list.The value a
tually used to represent Null is 0.21. OffsetIf the �rst parameter of this pro
edure is a global blo
k identi�er, it returns the o�set(in bytes) of that global within the global area (pseudo-register ve
tor). This is a \load-time
onstant" and thus, it a
ts like a
onstant but
annot be used as a
ompile-time
onstant expression. It is equivalent to use of Q(extname) in an assembler program,where extname is the external symbol for the global.The �rst parameter may also be a re
ord type identi�er. In this
ase, a se
ond parameter,whi
h must be the name of a �eld of the type, is also required. Offset then gives theo�set, in bytes, of the �eld from the beginning of the re
ord.22. Prede
essorThe Prede
essor pro
edure takes as its argument a value of any index type, and returnsas its result the next lower value of that type. The result is unde�ned if the argument isthe lowest value of the index type.

108 Language Details23. Program_CounterProgram_Counter is implemented only by Plus-11. It is a prede�ned register variableof type bit(16),
orresponding to the PDP-11 program
ounter register (R7). This isintended for use in spe
ial linkage routines that set up the required exe
ution environmentfor Plus.The
ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendix E for information about Plus register usage andentry/exit
ode requirements.24. Right_JustifyThis fun
tion
oer
es its operand to be a right-justifying (number-like) expression.25. SizeSize is
urrently a synonym for Bit_Size. However, at some time in the future it willbe
ome a synonym for Byte_Size instead. It is strongly re
ommended that you use eitherByte_Size or Bit_Size as appropriate.26. Sta
k_Base_RegisterSta
k_Base_Register is implemented only by Plus/370. It is a prede�ned registervariable of type bit(32),
orresponding to the register used to a

ess the sta
k (R12).This is intended for use in spe
ial linkage routines that set up the required exe
utionenvironment for Plus.The
ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendix D for information about Plus register usage andentry/exit
ode requirements.27. Sta
k_PointerSta
k_Pointer is a prede�ned register variable
orresponding to the sta
k pointer reg-ister. It is implemented by Plus-11 and Plus/68000. In Plus-11, it is of type bit(16)and
orresponds to the PDP-11 sta
k pointer register, (R6). In Plus/68000, it is of typebit(32) and
orresponds to A7. This is intended for use in spe
ial linkage routines thatset up the required exe
ution environment for Plus.The
ompiler makes no attempt to interpret what you do to this register. It should beused only by experts. See Appendi
es E and F for information about Plus register usageand entry/exit
ode requirements.28. SubstringThe Substring pro
edure is used to sele
t a substring from a �xed or varying-length
hara
ter expression.The pro
edure takes two or three parameters. The �rst parameter spe
i�es a stringexpression. The se
ond parameter spe
i�es a starting position within the string. Startingpositions are zero-relative; i.e., a value of zero sele
ts a substring beginning at the �rst
hara
ter of the string. The third parameter, if given, spe
i�es the length of the string to

109Language Detailssele
t. If it is omitted, the remainder of the string, from the spe
i�ed starting position,is assumed.The se
ond and third parameters must be su
h that the sele
ted substring lies withinthe string spe
i�ed by the �rst parameter. The
ompiler will optionally generate extra
ode to run-time
he
k the values of any substring parameters whose
orre
tness
annotbe determined at
ompile time.If the �rst parameter of Substring is a name expression, and the length of the substringsele
ted is
onstant then the result of Substring is also a name, and may be used onthe left-hand-side of an assignment statement.Examples:Substring(String�,I,1) := " ";Hex_Char := Substring("0123456789ABCDEF",I,1)29. Su

essorThe Su

essor fun
tion takes as its argument a value of any index type, and returnsas its result the next value of that type. The result is unde�ned if the argument is thehighest value of the index type.30. TrueTrue is prede�ned as a numeri

onstant with value 1.31. VersionVersion is a prede�ned integer
onstant giving the
urrent
ompiler version numberin the form of 1000 � release +
hange, where release and
hange are as des
ribed inChapter IV, page 121.S. Compile-Time StatementsPlus provides
ompile-time if statements,
ompiler variables and
ompiler pro
edures.A
ompiler variable or
ompiler pro
edure is a prede�ned identi�er beginning with %. (Normalidenti�ers may not
ontain %, so
ompiler variables and pro
edures
annot be
onfused withnormal ones.) Compile-time if statements are also
agged with %.1. Compile-Time If StatementsThe
ompile-time if statement allows
onditional
ompilation of program segments. It issynta
ti
ally just like a regular if statement, ex
ept ea
h keyword is pre
eded by %. Theexpression in the %if part must evaluate to a
onstant at
ompile time, whi
h is used todetermine whether the statements in the %then part or the %else part are in
luded inthe program.The end of the %if statement may be indi
ated by %end, %end %if or %end if.

110 Language DetailsExample:
onstant Debugging is True; /* Set False for produ
tion use. */...%if Debugging%then/* Do this only when debugging. */...%end %ifIn this example, the statements between %then and %end %if are in
luded in the pro-gram, sin
e the
onstant expression Debugging is true. If the
onstant de
laration is
hanged to
onstant Debugging is Falsethen the statements will be skipped.The %if statement may appear anywhere a statement is allowed in Plus, inside or outsideof pro
edures or global blo
ks. The %then part or %else part is in
luded in the en
losinglist of statements and must be appropriate for its
ontext. That is, if the %if statement isnot inside a pro
edure, then the statement list it
ontains must
onsist only of de
larationstatements (or other
ompile-time statements).The statement list in the %then part or %else part must be synta
ti
ally valid even if itis skipped. However, skipped statements may in
lude referen
es to unde
lared variablesand other \semanti
 errors" without
omplaint from the
ompiler.Note that pro
edure de�nitions and global blo
ks are synta
ti
ally allowed as statements,so that entire pro
edures or global blo
ks may be in
luded or skipped by a %if statement.A sequen
e of nested %if's
an be
ombined using %elseif as with regular if statements.Example:%if %Installation = "UBC"%then
onstant Site_Name is "University of B.C."%elseif %Installation = "UM"%then
onstant Site_Name is "University of Mi
higan"%elseif %Installation = "SFU"%then
onstant Site_Name is "Simon Fraser University"%else
onstant Site_Name is "?"%end %ifIn this example, the de
laration of Site_Name is sele
ted a

ording to the value of %In-stallation.Note that a normal if statement is quite di�erent:

111Language Detailsif %Installation = "UBC"then
onstant Site_Name is "University of B.C."...end ifis an exe
utable statement and is only allowed inside a pro
edure, while the %if may goanywhere. In any
ase, the body of the if statement is a separate s
ope blo
k, so thede
larations it
ontains are dis
arded at the end of the if statement, while the de
larationsin a %if statement be
ome part of the s
ope
ontaining it.2. Compiler VariablesCompiler variables are used to set various
ompiler options, and to a

ess their values.A
ompiler variable may appear on the left-hand-side of an assignment statement. Theright-hand-side must be a
onstant (or
onstant expression) of an appropriate type. Thisvalue be
omes the new value of the
ompiler variable while
ompiling the remainder ofthe program (or until
hanged again).A
ompiler variable may also appear in any
ontext where a
onstant is allowed. It isalways repla
ed by its value at that point in the
ompilation.Example:%Title := "This is the way the title is set";%List := True;Message(M, "Error at
oordinate <i> in pro
edure || %Current_Pro
edure|| "</>", %Coordinate)Some of the options a�e
t
ode generation (e.g., run-time
he
king). In general, the
odegenerated will be determined by the values of the options at the end of the pro
edure.You
annot have an option on for parts of the
ode in a pro
edure and o� for other parts.The list of available
ompiler variables is implementation-dependent. The following arethose whi
h are de�ned by the
urrent
ompilers. Ex
ept as noted, they are implementedfor all
ompilers.%Assertion_Che
k := fTrue|Falseg default : TrueIf %Assertion_Che
k is true, then
ode is generated to
he
k the expressions in anyassert statements. If it is false, assert statements are treated as
omments.%Assign_Che
k := fTrue|Falseg default : False%Assign_Che
k is intended to
he
k for assignments in whi
h the destination is usedas part of the sour
e, and is
hanged before it is referen
ed. For example:X := Y || XThis error is not
urrently dete
ted ex
ept in one or two spe
ial
ases.

112 Language Details%Che
k := fTrue|Falseg default : TrueWhen a new value is assigned to %Che
k, ea
h of %Range_Che
k, %String_Che
k,%Assign_Che
k, %Assertion_Che
k and %Sta
k_Che
k is automati
ally reset to thesame value. Thus %Che
k := False may be used to turn o� all run-time
he
king.%Compile := fTrue|Falseg default : TrueIf this option is set o�, the
ompiler will perform syntax
he
king only. It will notperform any other error
he
king or
ompile-time pro
essing and will not generateobje
t
ode. On
e set to False, the option
annot be reset during the run (sin
esubsequent assignments to
ompiler variables are not pro
essed).The
ompiler will still produ
e a paragraphed
opy of the sour
e if requested.%Compiler_Dumps := n default : 1This option
ontrols the printing of linkage tra
e-ba
ks and storage dumps if aprogram interrupt o

urs in the
ompiler. It is primarily of interest to the
ompilerimplementors.%Compiler_Debug := n default : 0This option
ontrols various internal
ompiler debugging options. It is of interestonly to the
ompiler implementors.%Convert := fTrue|Falseg default : FalseThis option requests the
ompiler to
onvert the paragraphed
opy to adjust forin
ompatible
hanges to Plus that may have o

urred.The exa
t e�e
t may vary from time to time. Currently, the a
tions performed are:1) Any symbol that has been %Unreserve'd will be
onverted to a valid identi�er byappending a \#" in the
opy produ
ed on unit 1. Thus, for example, setting %Con-vert := True, in
onjun
tion with the
ompiler pro
edure %Unreserve("entry"),will produ
e a paragraphed
opy in whi
h all o

urren
es of entry are repla
ed byEntry#2) Any uses of the built-in pro
edure Size will be
onverted to use Bit_Size instead.%CoordinateContains the sour
e-
oordinate of the
urrent line, as an integer. This may be usefulin produ
ing error messages for debugging purposes.%Current_Pro
edureContains the name of the pro
edure
urrently being
ompiled. This may be usefulin produ
ing error messages for debugging purposes.%DateContains the date at the start of
ompilation as a
hara
ter string in the form "daymon dd/yy".

113Language Details%Dump_Tree := fTrue|Falseg default : FalseIf true at the end of a pro
edure, the intermediate
ode tree is printed. This isprimarily of interest to the
ompiler implementors.%Entry := "string-
onstant" default : ""This option is ignored by Plus-11.For Plus/370, the spe
i�ed
hara
ter string is used as the name of the entry pointof the program and is pun
hed in an ENT re
ord at the end of the
ompilation. Ifit is a null string, "", as it is by default, no ENT re
ord is produ
ed. (However, thestandard Plus/370 library de�nition of Main sets %Entry to "MAIN".)For Plus/68000 with %Target_Operating_System of "MAC/MPW", if a pro
edurewhose external name mat
hes the string spe
i�ed is de�ned, then it is marked asbeing the entry point of the program.%Footer := fTrue|Falseg default : TrueIf this is set false, footer lines (using
arriage
ontrol ` <') will not be printed in thesour
e listing.%Installation default : installation dependentThis is intended to assist people writing programs that are used at more than oneMTS installation, but that must
ontain installation-spe
i�

ode. The value isinitialized to the CNFGINFO \share
ode" �eld (for example, "UBC" at UBC, "UM"at the University of Mi
higan, et
.). Note it is a
ompile-time value|it re
e
ts theCNFGINFO
ode at the time a program is
ompiled, not at the time it is exe
uted.This may be tested in if statements or
ompile-time %if statements to sele
t betweeninstallation-dependent alternatives.%Installation may be assigned another value to test out the
ompilation of alter-nate versions. For example:Run *Plus ... Par=%Installation:="SFU"would
ompile the \SFU" version of a program.%Global_Id := bit(32)-
onstant default : "PLUS"%Global_Id is implemented only by Plus/370and Plus/68000. It spe
i�es the\global-id" for the global storage type
ontaining all global variables in the pro-gram. See Se
tion C{3, page 46.%Instru
tion_Set := "string-
onstant" default : Plus/370|"STANDARD"Plus-11|"EXTENDED"Plus/68000|"STANDARD"This option may be used to spe
ify the instru
tion set available on the obje
t ma-
hine. The possible values that may be spe
i�ed
urrently are "STANDARD", "BASIC",or "EXTENDED". Currently it is
ompletely ignored by Plus/370 and Plus/68000.For Plus-11, the option "STANDARD" may be used to generate
ode for a ma
hinethat doesn't have the Mul, Div, and Ash instru
tions, and the option "BASIC" maybe used if the ma
hine also doesn't have the Sob instru
tion.

114 Language Details%Library := fTrue|Falseg default : FalseThis option is ignored by Plus-11 and Plus/68000. For Plus/370, it
ontrols whetherspe
ial loader re
ords are output at the end of the obje
t module. These re
ordsare needed to a

ess the resident system Plus library routines. %Library defaults tofalse (the re
ords are not pun
hed). (However, the standard Plus library de�nitionof Main also sets this option to True.) See Chapter IV, page 127 for informationabout the loader re
ords required to run a Plus/370 program.%Lines_Per_Page := n default : 60This option sets the number of lines that the Plus paragrapher will put onto a pageof the listing.%Linkage := "string-
onstant" default : Plus/370|"NEW"Plus-11|"ALTERNATE"Plus/68000|"NEW"This option
ontrols some details of the pro
edure linkage assumed by the
ompilers.The allowed values are
urrently "OLD" or "STANDARD" (whi
h are synonyms) and"NEW" or "ALTERNATE" (whi
h are also synonyms).For Plus/370, "OLD" or "STANDARD" means the old (pre-1986) form of the MTS
oding
onventions is to be used. "NEW" means the new (\1986")
onventions areto be used. The default8 is "NEW".For Plus-11, the use of "ALTERNATE" reverses the
ompiler's use of R4 and R5. SeeAppendix E.Plus/68000 ignores this option.%List := f0|1|2g default : 1This option
ontrols the sour
e listing. If set to 0, no sour
e listing is produ
ed. Ifset to 1, sour
e from S
ards is listed, but any input in
luded from a library is notlisted. If set to 2, all input is listed.The paragraphed sour
e
opy on unit 1 is produ
ed (if unit 1 is assigned) indepen-dently of the setting of %List. The
opy will never in
lude input from a library.%List_Code := fTrue|Falseg default : FalseIf this is true at the end of a pro
edure a listing of the obje
t
ode for that pro
edureis produ
ed.%List_Code may also be assigned the value 2 or 3, whi
h
ause the intermediate
oderepresentation and asso
iated tables to be dumped. This information is probablyof interest to the
ompiler implementors only.
8 As of July 1987. This is likely to change to "STANDARD" when the meaning of "STANDARD" is changed to be

synonymous with "NEW".

115Language Details%Listing_Chara
ter_Set := "string-
onstant" default : "MIXED"This
ompiler variable
an be used to indi
ate to the
ompiler what
hara
ters areavailable on the listing devi
e. This is only a hint|the
ompiler will not ne
essarilyadhere. The values
urrently allowed are:"MIXED" indi
ates upper and lower
ase may be used."UPPERCASE" indi
ates only upper
ase letters are available. The
ompiler will nottranslate everything to upper
ase when this option is sele
ted; it justdoesn't bother
onverting various things to lower
ase."TN" means the IBM TN
hara
ter set may be used. Currently, this just
auses use of TN box
orners and edges for /*BOX ...
omments.%Lower_Case := fTrue|Falseg default : FalseIf this is set true, the sour
e listing and paragraphed
opy will be produ
ed withall keywords and identi�ers
onverted to a standard upper-and-lower
ase format.String
onstants and
omments will be left in their original
ase.%Lower_Case may also be assigned the value 2, in whi
h
ase
omments will be
onverted to all lower-
ase.%Merge_Unref := fTrue|Falseg default : True
ontrols whether the
ross referen
e listing of unreferen
ed identi�ers appears asa separate listing. If it is true at the end of
ompilation, then the listing of anyunreferen
ed symbols is merged in with the regular listing. If it is false at the endof
ompilation, unreferen
ed symbols appear as a separate
ross referen
e listing.Note that in either
ase, whether an identi�er with no referen
es appears or not is
ontrolled by the setting of %Unref when the identi�er was de
lared.%Obje
t_Length := numberThe value of %Obje
t_Length at the end of a pro
edure determines the maximumlength of the obje
t module re
ords that will be pun
hed for that pro
edure.For Plus/370, by default, number is the same as the maximum output re
ord lengthof the �le or devi
e assigned to SPUNCH. It may not be set to a value less than 40or greater than the maximum length of the output devi
e.This option should not be set bigger than 255 with Plus-11, sin
e *Link11 doesn'tsupport long obje
t re
ords.This option is ignored by Plus/68000.%Optimize := f0|1|2|3g default : 0This option is
urrently unimplemented. It will be used to sele
t the kind of opti-mization wanted.0 indi
ates no optimization.1 indi
ates optimization for a \reasonable
ombination" of spa
e and speed.2 means optimize for spa
e.3 means optimize for speed.

116 Language Details%Page_Width := n default : 132This option sets the page width that the paragrapher uses to produ
e the listing.%Preempt := fTrue|Falseg default : TrueBy default, when the
ompiler runs out of general registers during
ode generation,it will
ontinue by storing out some of the registers in use and restoring them whenne
essary. If %Preempt is set to false, the
ompiler will not generate this registerpreemption
ode, but will abandon
ode generation if it
an't
ompile a pro
edurewithout any register preemptions.This option is mainly used with linkage none routines, for whi
h preemption
odemay not be safe (be
ause the sta
k may not be set up at all times). In su
h pro
e-dures, it may be preferable to dete
t that the pro
edure required preemptions viathe resulting error message.As with other
ompiler options a�e
ting
ode generation, the value in e�e
t at theend of the pro
edure applies to the whole pro
edure. You
an't set this option o�for only part of a pro
edure.This option isn't supported by Plus-11 or Plus/68000.%Produ
tions := fTrue|Falseg default : FalseIf this
ompiler variable is assigned the value true, then a line will be printed givingthe number of ea
h syntax produ
tion as it is applied during the parsing of theprogram. This output is primarily of use to the
ompiler implementors.%Range_Che
k := fTrue|Falseg default : TrueIf %Range_Che
k is true, the
ompiler will generate extra
ode for assignments andarray subs
ripts to
he
k that the value is within the de
lared range of the variableor array index. A run-time
he
k will not be generated if the
ompiler is able todetermine at
ompile time that the value should be within the de
lared range. Forexample, when assigning a variable to another with the same range, no run-time
he
k is performed.The range-
he
king fa
ilities will sometimes
at
h uninitialized variables, but
annotbe relied on to do so.Che
king may be disabled by assigning %Range_Che
k the value false.%Regression_Test := fTrue|Falseg default : FalseThis option alters the output of the
ompiler to make it more independent of the
ompiler version number and the time of
ompilation. It is intended to allow
om-parison of the output of di�erent versions of the
ompiler. This is primarily ofinterest to the
ompiler implementors.%Segment := "string-
onstant" default : "Main"This option is only implemented by Plus/68000 and is ignored unless %Target_Operating_System is set to "MAC/MPW". This option sets the loader \segment name"for the following pro
edures.

117Language Details%Sour
e_FileContains the
urrent sour
e �le name as a
hara
ter string. This may be useful inprodu
ing error messages for debugging purposes.%Sour
e_LineContains the MTS line-number of the
urrent sour
e line, in internal form as aninteger. This may be useful in produ
ing error messages for debugging purposes.%Sta
k_Che
k := fTrue|Falseg default : TrueThis option is only implemented by Plus/370. If %Sta
k_Che
k is true, and %Link-age is "NEW", the
ompiler will generate
ode as part of the entry sequen
e to
he
kfor sta
k over
ow. The option is ignored if %Linkage is "OLD".%Statisti
s := fTrue|Falseg default : FalseIf %Statisti
s is true at the end of the input to the
ompiler, a number of messageswill be printed des
ribing the use of various
ompiler tables, and the values of various
ounters.This information is primarily of interest to the
ompiler implementors.%String_Che
k := fTrue|Falseg default : TrueIf %String_Che
k is true, the
ompiler will generate
ode to
he
k for string assign-ments in whi
h the sour
e is longer than the destination, and to
he
k for Substringfun
tions in whi
h the designated substring does not lie within the string.%Subtitle := "string-
onstant" default : noneSets a subtitle to be printed on the third line of ea
h page.%Target_Ma
hine default : Plus/370|"IBM/370"Plus-11|"PDP-11"Plus/68000|"MC68000"This option
ontains a string des
ribing whi
h
ompiler is being used. It may beuseful in
onditional
ompilation statements to isolate ma
hine dependent state-ments.%Target_Operating_System := string-
onstant default : Plus/370|"MTS"Plus-11|"UBCNET"Plus/68000|"MAC/MPW"This option spe
i�es the system that the
ode is to run on. It may a�e
t
odegenerated, parti
ularly for pro
edure
alls and the implementation of loader obje
ts.See the Index for more details.For Plus/370, the possible values are "MTS" and "MVS".This option is ignored by Plus-11, and may be set to any string.For Plus/68000, the possible values are "MAC/MPW", "MAC/MDS" and "AMIGA".

118 Language Details%Test := f0|1|2g default : 1For Plus/370, if this variable is non-zero, the
ompiler will generate SYM re
ordsas part of the obje
t de
k produ
ed, to assist in debugging the obje
t program. Ifthe value is 1 (True), the obje
t program
an be used with either the \
urrent" or\new" versions of SDS. If it is 2, it
an be used with the \new" version of SDS only.See Chapter IV, page 127 for details of the debugging information produ
ed.For Plus-11, it
auses some information about variable and re
ord o�sets to be\dumped" in the listing. This information may assist with debugging.Plus/68000
urrently ignores this option.%TimeContains the time-of-day at the start of
ompilation in the form "hh:mm:ss".%Title := "string-
onstant" default :
ompiler version et
.Sets the title to be printed on the �rst line of ea
h page.%Unref := fTrue|Falseg default : TrueControls printing of the
ross referen
e for identi�ers that are never referen
ed. Iftrue when an id is de
lared, then it appears in the
ross referen
e even if there areno referen
es. If false when an id is de
lared, that symbol will appear only if thereis at least one referen
e.Note that the e�e
t is determined at the point of the de
laration of a symbol. Thismeans it is possible, for example, to set %Unref := False before in
luding libraryde
larations, so that in
luded symbols whi
h are not used don't
lutter up the
rossreferen
e.%Xref := f0|1|2g default : 2Controls how mu
h information is entered in the
ross referen
e. If it is set to 0,then nothing in entered in the
ross referen
e. If it is set to 1, then de
larations willbe entered, but referen
es to the de
lared identi�ers will not be reported. If it is setto 2, then de
larations and all referen
es will be reported.Note that the information
olle
ted for a given identi�er is determined at the pointof the de
laration of the identi�er. That is, if the setting is 1 when a variable isde
lared, then the de
laration will be entered in the
ross referen
e, but referen
esto the identi�er will not be
olle
ted, even if %Xref is subsequently
hanged to 2.%Xref_S
ope := f0| 1| 2| 3g default : 3Controls what identi�ers are in
luded in the
ross-referen
e. If it is set to 0, noidenti�ers are entered. This is the same e�e
t as %Xref := 0. If it is set to 1, onlyexternal symbols (pro
edures, globals, external variables) are entered. If set to 2,only global symbols (everything de�ned in global blo
ks or external to pro
edurede�nitions) are entered. If set to 3, all identi�ers are in
luded.

119Language Details3. Compiler Pro
eduresCompiler pro
edures may appear synta
ti
ally anywhere a normal statement might ap-pear. The e�e
t depends on the spe
i�
 pro
edure invoked.Example:%Eje
t();%In
lude(Integer, String_type)The list of available
ompiler pro
edures is implementation-dependent. The following arethose whi
h are de�ned by the
urrent
ompilers. Ex
ept as noted, they are implementedfor all
ompilers.%Double([n℄)Causes the next output line to be pre
eded by a skip to a \double" page. %Double(1)eje
ts to a page with an odd page number (a \front" page). %Double(2) eje
ts toan even (\ba
k") page. With no parameter, it
urrently behaves like %Double(2)at UBC. This may
hange, however (and may di�er at other installations).%Dump()This pro
edure dumps the
ontents of various pass 1
ompiler tables as they existat the point where %Dump o

urs. This information is primarily of interest to the
ompiler implementors.%Eje
t()Causes the next output line to be pre
eded by a page skip.%In
lude(identi�er,...)%In
lude is used to
onditionally in
lude members of the sour
e libraries, as de-s
ribed in Chapter VII, page 135.%Map(name,...)%Map
an be used to obtain a storage layout map for a re
ord type. It requires oneor more parameters, whi
h must be type-identi�ers or names of a re
ord type.This pro
edure is intended to help in ensuring that a Plus de
laration
orre
tlyre
e
ts a
orresponding assembler dse
t. It produ
es a listing of all �elds of there
ord, giving the \a

ess-address" and a hexade
imal mask indi
ating whi
h bitsare a

essed by the �eld name. It will follow nested re
ord types to a depth of 5levels.%Message("string-
onstant",...)%Message outputs the given string
onstants to the sour
e listing, and to Ser
om ifit is di�erent from Sprint. Ea
h line is
agged with *** Message".%Mts()Causes the
ompiler to return immediately to the operating system, in a RESTART-able way.

120 Language Details%Pop(
ompiler-variable,...)%Pop is used to restore the value of a
ompiler variable previously saved with %Push.If there is no sta
ked value for the spe
i�ed
ompiler variable, the initial defaultvalue is restored.%Print("string-
onstant", ...)%Print outputs the given string
onstants to the listing �le, one line per string. Thisis useful for outputting listing
ontrol lines. These lines are not examined, alteredor
ounted by the paragrapher.%Pun
h("string-
onstant", ...)%Pun
h outputs the given string
onstants to the obje
t �le produ
ed by the
ompiler(one string per re
ord). This is useful for outputting $Continue with lines, orauxiliary loader
ontrol re
ords.%Push(
ompiler-variable,...)%Push may be used to sta
k the values of any
ompiler variables. The
ompilerpro
edure %Pop is used to restore the value. For example:%Push(%Title); /* save
urrent title */%Title :=%Pop(%Title) /* restore saved title */A list of
ompiler variables may be pushed in a single use of %Push.%Unreserve("string",...)This
ompiler pro
edure
an be used to indi
ate that the spe
i�ed strings are not tobe treated as reserved words for the remainder of the
ompilation. This is intendedto allow programs written before the addition of new reserved words to
ontinue to
ompile without other
hanges. For example,%Unreserve("value","referen
e","entry")would
ause these reserved words to still be treated as a identi�ers. If this is used,however, the fa
ilities implemented by the keywords will not be available.Note that %Unreserve
an be used in
onjun
tion with %Convert to produ
e a
opy of the program in whi
h the reserved words have been
onverted to harmlessidenti�ers.

121IV. Using the System 370 Plus CompilerA. Compiler VersionsThe
urrent stable version of the Plus/370
ompiler is found in the �le *Plus.The �le Plus:Plus>
ontains the latest version for testing. The �le Plus:Plus< (when itexists) will
ontain a ba
kup version of the
ompiler. This version will normally exist onlyafter major
hanges.At UBC, the �le Plus:Plus# will always
ontain the most re
ently distributed version of the
ompiler. Any programs to be distributed to other installations should be
ompiled with thisversion to ensure they do not depend on new features or bug �xes.Ea
h version of Plus has a version number (whi
h appears in the default title, and in theobje
t module END re
ord). The version number is of the form `n{m.' `n' is the releasenumber; it is in
remented by one ea
h time the
ompiler is
ompletely regenerated. `m' is the
hange number, in
remented for ea
h
hange installed.All
ompiler
hanges are des
ribed in the *Forum
onferen
e \Plus-Internals". New featuresand in
ompatible
hanges are also announ
ed in the *Forum
onferen
e \Plus".B. Compiling a ProgramThe
ompiler is invoked with an MTS Run
ommand of the following form:Run *Plus [logi
al-units℄ [Par=statements℄The following logi
al units may be spe
i�ed on the Run
ommand:S
ards Spe
i�es the �le or devi
e
ontaining the sour
e program. Input re
ords must notbe longer than 255
hara
ters.Sprint The paragraphed listing is produ
ed on Sprint. See below.Ser
om Error messages and
ertain other messages written to Sprint are e
hoed to Ser
omif Sprint and Ser
om do not refer to the same �le or devi
e.Spun
h The obje
t module is produ
ed on Spun
h. If Spun
h is not spe
i�ed it defaultsto the �le -Load.If Spun
h spe
i�es a temporary �le, it will be emptied automati
ally before use.If Spun
h spe
i�es a permanent �le, the �le must be emptied by the user beforerunning the
ompiler.If a �le (either permanent or temporary) is spe
i�ed with a line-number range,then the spe
i�ed range must be empty, but the whole �le does not need to beempty. The
ompiler will not use the �le if it already
ontains lines in the spe
i�edrange.0 Unit 0 is used to spe
ify a sour
e library or libraries. If it is not spe
i�ed, thedefault library (*Plus.Sour
elib) is assumed. This library
ontains a numberof useful standard de�nitions, in
luding de
larations of many of the MTS systemsubroutines. Do
umentation of the members of *Plus.Sour
elib appears in thewriteup UBC PLUS LIBRARY.

122 Using the System 370 Plus CompilerNote if unit 0 is spe
i�ed, it is used instead of *Plus.Sour
elib. If it is intendedto use both, *Plus.Sour
elib must be
on
atenated to the private library.See Chapter VII for details of library format.1 If unit 1 is spe
i�ed, it will be used for a paragraphed
opy of the sour
e suitablefor use as input to the
ompiler. If unit 1 spe
i�es a temporary �le, it will beautomati
ally emptied. If it spe
i�es a permanent �le, the �le must be emptiedbefore running the
ompiler.2 If unit 2 is spe
i�ed, it will be used for a ma
hine-readable log of the errors in thesour
e.The Par= �eld may spe
ify any valid Plus statements. This is passed to the
ompiler (followedby a terminating semi
olon), as the �rst input re
ord to be pro
essed. The Par= �eld isnormally used in this way as a means of spe
ifying the initial settings of
ompiler options.The
ompiler passes ba
k a return-
ode in R15. This is set as follows:0|no errors or warnings dete
ted.4|warnings but no errors dete
ted.8|errors dete
ted.The return
ode may be tested by MTS
ommand ma
ros.C. Compiler Output1. Sour
e ListingThe sour
e listing is produ
ed paragraphed a

ording to pre
ise paragraphing rules,intended to
learly indi
ate the
ontrol stru
ture of the program. Sour
e listing may beturned on and o� with the %List
ompiler variable, des
ribed on page 114.To the left of the sour
e listing are two
olumns of numbers. The �rst
olumn
ontains theinput line number
orresponding to the text on the line. The se
ond
ontains a \sour
e
oordinate" whi
h is used in
ompile-time and run-time error messages to indi
ate thepoint of the error. The sour
e
oordinate is reset to 1 for ea
h pro
edure and globalblo
k and ea
h ma
ro de�nition. It is in
remented for ea
h \paragraphed line". It is notin
remented when a paragraphed line is split a
ross two printer lines as a result of thepaper width limitation. The sour
e
oordinate is also used in the SYM re
ords generatedby Plus for use with SDS (see Se
tion F, page 127).The input �le name appears to the right of the listing ea
h time it
hanges, and on the�rst sour
e line of ea
h page.A blank line appears in the listing wherever (and only where) one appears in the input.Comments are normally formatted in the output with one blank between ea
h \word".The options frame, box, as_is, and
entre may be spe
i�ed to
ontrol the formattingof the
omment|these are des
ribed below. If a
omment is the �rst thing on an inputline, or if it is to be framed, it will begin a new line in the output.Certain annotations appear in the sour
e listing. Ea
h exit, repeat or return is markedwith \..." to indi
ate the level of the
ompound being exited. A heading appears at thebeginning of a pro
edure de�nition, spe
ifying the names of the parameters and resultof the pro
edure. (This is be
ause the pro
edure de
laration in whi
h they are spe
i�edmay be elsewhere in the listing.)

123Using the System 370 Plus CompilerTitles and subtitles in the listing may be set by the %Title and %Subtitle
ompilervariables. By default, the title spe
i�es the
ompiler version and user id.The
ompiler produ
es footer lines indi
ating the pro
edures and global blo
ks de�nedon ea
h page. This footer may be turned o� (e.g., if output is intended for a printer thatdoes not support footers), by means of the
ompiler variable %Footer.2. Comment ParagraphingThe
omment start symbol /* may be immediately followed (with no intervening blanks)by one or more of the options frame, box, as_is or
entre(or
enter) (separated by
ommas if more than one appears).If the option frame appears, the listing of the
omment will be surrounded by a frameof *"s.If the option box appears, the listing of the
omment will have a line-box drawn aroundit. If the %Listing_Chara
ter_Set
ompiler variable is set to "TN", the box will use theTN box
hara
ters; otherwise it will use
hara
ters from the PN
hara
ter set.If the option as_is appears, the
omment will be output \as-is", with horizontal spa
ingpreserved from the
ompiler input. The entire
omment will be moved left or right toline up the \/*" with the
urrent indentation level, but internal blanks will be preserved,and su

essive lines of the
omment will be moved left or right as ne
essary to maintainthe same relative position.If the option
entre (or
enter) appears, then the lines of the
omment will be
entredin the output. Ea
h input line generates one line of
entred output. as_is is ignored if
entre is spe
i�ed.The words frame, box, as_is, or
entre themselves do not appear in the listing.A new line is started in the listing following any
omment. A null
omment (\/**/")is suppressed in the listing, but still
auses a new line. Hen
e it may be useful in somesituations where the line-breaks determined by the paragrapher are not adequate.For example, if the input isif Substring(Symbol, 0, Symbol_Length) = Test1 /**/or Substring(Symbol, 0, Symbol_Length) = Test2then...end ifthe paragraphed listing will appear asif Substring(Symbol, 0, Symbol_Length) = Test1or Substring(Symbol, 0, Symbol_Length) = Test2then...end ifWithout the /**/, the parapgrapher would �t some part of the se
ond line onto the �rst,and break the expression at a less appropriate pla
e.

124 Using the System 370 Plus CompilerIn a similar way, the sequen
e *//*" within a
omment is suppressed from the listing,but still
auses a new line. New
omment options may follow the \/*". However, if aframe or box is in e�e
t, it will
ontinue to the �nal end-of-
omment.For example,/*box,
entreLinear and Binary Sear
hing*//*This example program demonstrates...*/The entire
omment will be surrounded by a \box" frame, but only the �rst part of the
omment will be
entred.3. Paragraphed CopyIf unit 1 is spe
i�ed on the Run
ommand, a paragraphed
opy suitable for use as inputto the
ompiler is produ
ed. The paragraphed
opy is in most respe
ts the same as thelisting; however, it is intended to be a more exa
t dupli
ate of the input than the sour
elisting.The annotations added to the listing do not appear in the paragraphed
opy. Inputwhi
h is in
luded from a library (via %In
lude) does not appear in the paragraphed
opy. (The %In
lude statement is e
hoed however.)The
omment options and the sequen
e /**/ or *//* are
opied a
ross to the output.A frame or box will not appear around the paragraphed
opy of a
omment.The maximum length of an output line in the paragraphed
opy is 68 (for
onvenientfull-s
reen editing), while in the sour
e listing it is 90. There is
urrently no way to
hange these lengths.4. Cross-Referen
eThe sour
e listing is followed by a
ross-referen
e of identi�ers used by the program.The exa
t
ontents of the
ross-referen
e are
ontrolled by a number of
ompiler variables.The option %Xref
ontrols how mu
h is reported for ea
h identi�er. The options %Xref_S
ope
ontrols whi
h identi�ers are in
luded in the
ross referen
e. The options %Unrefand %Merge_Unref
ontrol printing of identi�ers that are de�ned but never referen
ed.See the des
riptions of these
ompiler variables for details.Entries in the
ross referen
e indi
ate the general
lass of identi�er (
onstant, variable,type, et
.). Referen
es are given in the form `p :
1;
2; :::;
n', where p is a page numberin the listing and
1;
2; :::;
n are sour
e
oordinates of referen
es on that page. (Sin
e
oordinates start over for ea
h pro
edure, and there may be more than one pro
edure ona page, this is not ne
essarily a
ompletely pre
ise referen
e.) Ea
h referen
e
oordinatemay be followed by a one-
hara
ter
ode indi
ating whether the program stores, deref-eren
es, the symbol, et
., at that line in the program. A key for the
odes used appearsat the beginning of the
ross-referen
e.5. ErrorsIf an error o

urs during pass 1 of the
ompilation, the
urrent line is output immediately,

125Using the System 370 Plus Compilerfollowed by the error message. The line listed will always
ontain the
urrent input linenumber and �le name. Errors en
ountered after pass 1
ause a message to be issued atthe end of the pro
edure listing.In all
ases, error messages (and the
urrent line if any) are also e
hoed to Ser
om, ifSprint and Ser
om are di�erent. Whenever an error message is issued, the
ag ***errors *** is pla
ed in the bottom right-hand
orner of the listing for the next twopages. This helps �nd the error messages in a large listing.If unit 2 is spe
i�ed on the Run
ommand, any errors will also be re
orded in the spe
i�ed�le. This �le
an be used to automati
ally step through the errors with an editor.D. Running A Plus/370 Obje
t ProgramIf the main pro
edure for a Plus/370 program is de�ned by in
luding the library de�nition forMain, and the obje
t �le is defaulted to -load when the program is
ompiled, the program
an be exe
uted with a Run
ommand of the form:Run -load ... [Par=options; user-par℄The library de�nition of Main spe
i�es the spe
ial linkage routine PLUSENTR is to be used and
auses required loader
ontrol re
ords to be emitted at the end of the obje
t �le.The spe
ial linkage routine PLUSENTR may pro
ess
ertain options from the Par �eld of theRun
ommand before it passes
ontrol to the main pro
edure.If the pro
edure de
laration for the main pro
edure spe
i�es a sta
ksize option, or if aloader re
ord has been added to de�ne the external symbol STAKSIZE, then PLUSENTR ignoresall the options in the Par �eld.The following options will be pro
essed by the default linkage routine PLUSENTR when thesta
ksize has not been spe
i�ed.STACK={n|nB|nK|nP} spe
i�es the amount of memory to allo
ate for a sta
k. By default,one page is allo
ated. Spe
ifying STACK=nK allo
ates n 1024 byteblo
ks, nP or just n spe
i�es the size in 4096 byte pages while nBis the size in bytes.HIGH_WATER will
ause PLUSENTR to output a message at the end of exe
utionwhi
h gives the amount of sta
k allo
ated and the amount
hangedduring exe
ution.The pro
edure Main1 may optionally be de
lared to have a parameter and return-value, asfollows:pro
edure Main ispro
edurereferen
e optional parameter Par is
hara
ter(0 to 256) inregister 0result R
 is Integer in register 15end linkage "PLUSENTR"
1 It is not required that your main program be called “Main”. You can use any identifier, provided you specifylinkage "PLUSENTR".

126 Using the System 370 Plus CompilerThis is the de
laration that will be in
luded from the standard sour
e library if you spe
ify%In
lude(Main).To de�ne the sta
ksize to allo
ate as part of the de
laration, this should be
hanged topro
edure Main ispro
edure...end linkage "PLUSENTR" sta
ksize nwhere n is an integer
onstant for the size (in bytes) you want.When Main is
alled, it will be passed as a parameter that part of the Par= �eld following thesemi
olon. The value returned by Main will be set in R15 as a return-
ode from the program.The sta
k size is in
reased to the nearest page (4096 byte) multiple. When %Linkage="OLD"is in e�e
t, an extra page is also allo
ated at the end. This extra page is prote
ted so that itwill
ause a prote
tion ex
eption if a program attempts to use storage beyond the end of thesta
k. Thus a prote
tion ex
eption in a Plus program (espe
ially if at the entry sequen
e ora pro
edure), may be an indi
ation that a larger sta
k is required. The only time you mightnot get a prote
tion ex
eption is if you have a large but unused variable on the sta
k, andso \hop over" the sta
k fen
e. If %Linkage="NEW", the sta
k fen
e is not allo
ated, sin
e the
ompiler option %Sta
k_Che
k
an then be used to implement sta
k over
ow
he
king.The run-time
he
ks performed by Plus are implemented by
ausing a program interruptwhi
h is interpreted spe
ially by the program interrupt handler set up by PLUSENTR. Thisnormally dumps the registers and a limited amount of memory and provides a tra
e ba
kfollowing any program interrupt. If the program is being exe
uted under
ontrol of SDS,however, this information will not be given. Instead just a message (for Plus run-time
he
ks)is displayed, then the interrupt handler returns to SDS for further pro
essing.It is not ne
essary to use the run-time support provided by linkage "PLUSENTR", providedthe required sta
k and global storage environment are set up before an Plus pro
edure isexe
uted. See Appendix D for further details of the requirements. Note that if the normalprogram interrupt handler is not used, the program must either be prepared to handle foritself any program interrupts resulting from run-time
he
ks, or must be
ompiled with allrun-time
he
ks disabled.E. Loader Re
ords Required By Plus ProgramsIn order to load
orre
tly, a Plus obje
t �le must
ontain some spe
ial loader re
ords tointerfa
e with pro
edures and global variables de�ned in the resident system. These re
ordsshould normally be at the end of the obje
t �le. The usual loader re
ords are generatedautomati
ally at the end of the obje
t de
k if the option %Library is true. (This optiondefaults to false, but is set true if Main is in
luded from *Plus.Sour
elib.) However, forprograms
ompiled in pie
es and later
ombined, it may be ne
essary to add the re
ords \byhand".1. %Linkage="OLD"If %Linkage is "OLD", the following re
ord is normally required:$Continue With Old:OldCCLib

127Using the System 370 Plus CompilerThis re
ord
auses the in
lusion of the old version of the runtime library. Alternativelythis library
ould be spe
i�ed on the MTS Run
ommand:Run -load+Old:OldCCLib ... [Par=options; user-par℄2. %Linkage="NEW"If %Linkage is "NEW", the following re
ords are normally required:
column → 2 7 17RIP QLCSPRRIP CCSYMBOLLCS LCSYMBOLLCS CCSYMBOLLCSPR QLCSPRThe LCSPR re
ord for QLCSPR is required so that the global (PRV) variables used by theprogram being run will extend the global storage used by the normal Plus entry routinePLUSENTR. The new
oding
onventions require that the �rst two words of the globalstorage be spe
ially de�ned. This LCSPR for QLCSPR ensures the required setup. AnLCSPR for QGLOBAL may be substituted to de�ne only the �rst two words, if the programdoes not use PLUSENTR. The program will not exe
ute
orre
tly if neither QGLOBAL norQLCSPR is used.The LCS re
ord for CCSYMBOL is required to tell the loader to sear
h the symbol tableCCSYMBOL, in order to �nd any Plus library routines used. If the program doesn't useany of the Plus library routines, this re
ord may be omitted.The other re
ords are needed to tell the loader to �nd the de�nitions of QLCSPR andCCSYMBOL.A
opy of these re
ords is in the �le Plus:Endjunk, whi
h
an be
opied to the end ofthe obje
t program.F. Debugging Plus ProgramsIf the
ompiler variable %Test has the value 1 (as it does by default), the
ompiler will generateSYM re
ords to assist in debugging the Plus program under SDS. If it has the value 2, theSYM re
ords will be generated for use with a new version of SDS.2The standard Plus run-time support sets up a program interrupt exit to inter
ept programinterrupts within the program. When a program is run under
ontrol of SDS, this defaultinterrupt handler will return to SDS with the state at the time of the interrupt inta
t; thusSDS
ommands
an be used to explore the problem. Note that run-time errors (range
he
ks,assertion failures, et
.) in Plus programs are signalled by a program interrupt (an operationex
eption with an operation
ode of zero). For these interrupts, the interrupt handler willde
ode the
he
k
ondition and output an appropriate message before returning to SDS.If the program is to be restarted following a run-time error inter
ept, the
ommandGO $PSW+2should be used rather than CONTINUE.

2 You may need to issue the MTS command Set Version(Sds)=New to use the new version.

128 Using the System 370 Plus CompilerThe support provided for debugging Plus with SDS is still rather rudimentary, sin
e SDS isnot prepared to
ope with many of the basi

on
epts of Plus (su
h as programmer de�nedtypes).Currently, SDS symboli
 information is generated as follows:1. Sour
e
oordinates are emitted for all lines of the sour
e for whi
h there is generated
ode. These are referen
ed with symbols of the form #n (for sour
e
oordinate n).2. The pro
edure name (Plus identi�er) is emitted as a label at the beginning of the
ode
se
t.3. A dse
t is generated for ea
h global blo
k. The dse
t name is the external name of theglobal (�rst four and last four
hara
ters of the name).SYM information is generated for all variables in the global. In order to referen
e them,SDS must be told where the global is based. This requires two steps:a. Spe
ify the base of the pseudo-register with the SDS
ommandUSING PRAREA $GR11at any time after the pseudo register ve
tor is allo
ated.b. Tell SDS where the dse
t is based in the PRV. This is done with the SDS
ommandUSING global globalfor the required dse
t global .4. A dse
t is generated for ea
h re
ord type whi
h has a name (i.e., is de�ned in a typede
laration). Ea
h �eld of the re
ord will appear as a variable in this dse
t. If %Test is 2,the name of the dse
t is the type identi�er. If %Test is 1, the dse
t name is generated bythe same rule as for external symbols (�rst four/last four
hara
ters of the type name).In this
ase, if the identi�er is longer than 8
hara
ters, the full form will be de�ned asa label at the beginning of the dse
t.5. A dse
t is generated for the lo
al variables of ea
h pro
edure. This dse
t has the name#pro
 where pro
 is the pro
edure name. If %Test is 1, it will be shortened to at most 8
hara
ters by taking the �rst four/last four.A USING
ommand must be given to tell SDS where the dse
t is based. This is eitherR13 at entry to the pro
edure or R12 after exe
uting the entry sequen
e.6. A dse
t is generated for the parameter/result area of ea
h pro
edure. This dse
t has thename !pro
, possibly shortened to 8
hara
ters as above. This dse
t is based on R1 atentry to the pro
edure. It may be based on another register at other points.Only the following SDS data types are used for variables and �elds of re
ords:F (with appropriate length) is used for all integer and programmer de�ned id-list types.C (with appropriate length) is used for �xed and varying length strings. Note thatfor a varying string, the length �eld is also printed as if it were
hara
ter, and thevariable is printed as the maximum length.

129Using the System 370 Plus CompilerA is used for pointers and pro
edure variables.X is used for anything else.A dupli
ation fa
tor will be in
luded for arrays. Note, however, that SDS always assumes thelower bound for array subs
ripts is 1.

130

131V. Using the PDP-11 Plus CompilerA. Compiler VersionsThe
urrent stable version of the PDP-11 Plus
ompiler is
ontained in the �le *Plus11. The�le Plus:Plus11>
ontains the latest version for testing. The versions of the Plus-11
ompilerare numbered using the same basi
 s
heme as the Plus/370
ompiler.B. Compiling a ProgramThe
ompiler is invoked with the Run
ommand in a similar way to the 370
ompiler. Theuse of logi
al units and the Par= �eld are identi
al, with the ex
eption that unit 0 defaults tothe �le Plus:Sour
elib11.The output produ
ed by the
ompiler is equivalent to that produ
ed by the 370 version (withthe obvious ma
hine-dependent di�eren
es).C. Running a PDP-11 ProgramThe PDP-11 version requires that some run-time support routines be provided. These rou-tines are used in the implementation of pro
edure entry and exit, run-time error
he
king,and
ertain operations on string types. These routines are independent of the exe
utionenvironment of the program.Other routines are required to set up the sta
k and global storage and initiate exe
ution of themain program (whi
h should be
alled Main). Another group provide primitive I/O supportto the De
writer
onsole. These routines are system dependent.At UBC, the obje
t generated by the
ompiler is
ombined with the run-time support andany other required
ode using *Link11 to generate a binary image whi
h
an be loaded intothe PDP-11.1. Use of Link11The �le *Link11
ontains a version of Link11 whi
h supports pseudo-registers. Thissupports the
ommands PR BEGIN and PR END.These
ommands are used to \surround" the in
lusion of all Plus modules whi
h are touse the same global area. (The
omplete input to Link11 might in
lude independentfamilies of pro
edures to be linked into one memory image.)2. Building A Test SystemThis se
tion des
ribes how a Plus program is
urrently linked to build a binary image foruse with the Test Pdp-11 at UBC. This pro
ess will be di�erent at other installationsand when building produ
tion systems at UBC.The �le Plus:Objlib11
ontains the obje
t for the run-time support routines used. The�le Plus:Free
ore
ontains a dummy
se
t whi
h is linked after all
ode to give therun-time support a handle on the beginning of the \free-
ore" after all
ode.Typi
al input to *Link11 to build a test system is therefore

132 Using the PDP-11 Plus CompilerSET �,0200 -- load at 200LINK PLUS:OBJLIB11PR BEGINLINK Plus_obje
t1LINK Plus_obje
t2...PR ENDLINK FEP:NEWDEBUG* -- in
lude debug supportLINK PLUS:FREECORE -- mark endSET #,DEBUG -- enter at DEBUGMAP map_fileWRITE fep_load_fileSTOPPlus:Objlib11
ontains routines required by the obje
t
ode generated for any Plusprogram. It also in
ludes obje
t for routines required only for Plus-11 programs
ompiledwith the "BASIC" or "STANDARD" instru
tion sets. Other routines implement librarysubroutines de
lared in Plus:Sour
elib11.Many appli
ations may wish to sele
t only some of these routines, or to provide substi-tutes for di�erent system or ma
hine environments. The sour
e, whi
h may be useful asa prototype, is
ontained in the �les Plus:Lib11*sa (*11asr assembler routines) andPlus:Lib11*sq (Plus-11 sour
e routines.)

133VI. Using the Motorola 68000 Plus CompilerA. Compiler VersionsThe
urrent stable version of the Motorola 68000 Plus
ompiler is
ontained in the �lePlus:Plus68. The �le Plus:Plus68>
ontains the latest version for testing. The versions ofthe Plus/68000
ompiler are numbered using the same basi
 s
heme as the Plus/370
ompiler.B. Compiling a ProgramThe
ompiler is invoked with the Run
ommand in a similar way to the 370
ompiler. Theuse of logi
al units and the Par= �eld are identi
al, with the ex
eption that unit 0 defaults tothe �le Plus:Ma
sour
elib.The output produ
ed by the
ompiler is equivalent to that produ
ed by the 370 version (withthe obvious ma
hine-dependent di�eren
es).C. Running a Motorola 68000 ProgramPlus/68000 requires that some run-time support routines be provided. These routines areused in the implementation of some operations on string types and long multipli
ation anddivision. These routines do not require any global storage. They are supplied in the �lesPlus:Obj68MPW, Plus:Obj68MDS and Plus:Obj68AMIThe obje
t generated by the
ompiler is
ombined with the run-time support and any otherrequired
ode using the linker
orresponding to the %Target_Operating_System
ompilervariable. The �rst step in this pro
ess is to transfer the obje
t �le from MTS to the targetsystem, using some binary transmission proto
ol, su
h as Kermit. The linking, running anddebugging then pro
eed on the target system.

134

135VII. Sour
e LibrariesA. Library FormatThe Plus
ompilers support a sour
e-library fa
ility whi
h allows segments of sour
e text tobe in
luded from library �les.A library
onsists of a dire
tory followed by 0 or more library members.The dire
tory
onsists of 0 or more lines, terminated by either an end-of-�le or /end. A normaldire
tory re
ord
onsists of a library member name (whi
h must be a valid Plus identi�er)followed by an unsigned integer line number (separated by one or more blanks).The dire
tory portion may use impli
it
on
atenation ($Continue with ... or $Continuewith ... return re
ords) to spe
ify other libraries to be used. Blank lines and Plus-style
omments may also be in
luded within the dire
tory portion.The line-number in a dire
tory re
ord indi
ates the line in the same �le at whi
h the librarymember begins. The re
ord at the spe
i�ed lo
ation must be /begin membername, wheremembername is the identi�er spe
i�ed in the dire
tory. A library member ends with anend-of-�le or /end. Impli
it
on
atenation may be used within a member.B. Spe
ifying Libraries to the CompilerUnit 0 on the Run
ommand is used to spe
ify the library or libraries to be sear
hed. Multiplelibraries may be spe
i�ed by
on
atenation either expli
itly or impli
itly within a librarydire
tory.In e�e
t, the Fdname spe
i�ed for unit 0 de�nes the dire
tory to be sear
hed. A librarymember is always obtained from the �le in whi
h its de�ning dire
tory entry is found. If anidenti�er appears more than on
e in the libraries to be sear
hed, the �rst o

urren
e will beused, without
omplaint.C. In
luding Sour
e From a LibraryThe %In
lude
ompiler pro
edure is used to
onditionally in
lude library members within asour
e program.It appears in the form%In
lude(id1,id2,...,idn)An arbitrary number of idi's may be spe
i�ed. Ea
h id in the list is
onsidered for in
lusionin turn. If the id is not de�ned at the point where it is
onsidered for in
lusion, then thelibrary member with that name is in
luded. If the id has been previously de�ned (as any kindof Plus identi�er: type, variable,
onstant, et
.) then the member is not read in. An errormessage will be issued if the id is not de�ned and is not in the dire
tory of any library.%In
lude(...) may be arbitrarily nested within library members.D. Sour
e Library UtilitiesThere are two utility programs under

id Plus that may be of interest to Plus programmers.1. Plus Library GeneratorThe program Plus:Libgen is a simple program to generate or re
reate a Plus library.

136 Sour
e LibrariesIt is invoked with an MTS
ommand of the formRun Plus:Libgen [logi
al-units℄ [Par=options℄The following logi
al units may be spe
i�ed on the Run
ommand:0 spe
i�es a �le
ontaining an existing Plus sour
e library, or a sequen
e oflibrary members.1 spe
i�es a �le in whi
h a new Plus library is to be built.Ser
om is used to display messages issued by the program.The Par �eld may spe
ify either or both of the optionsBUILDdir indi
ates that the input from unit 0 has no dire
tory, so one should be builtfrom the information on the /begin lines in the input.SORTdir means that the members in the output library should be sorted alphabeti-
ally, rather than preserving the order from the input dire
tory.(Upper
ase letters in the options above indi
ate allowed abbreviations.)The input on unit 0 is intended to be an existing Plus library, possibly with extramembers that aren't in the dire
tory. The program �nds all /begin lines in the input�le, and uses the names from these to build the output library.Line numbers in the input �le are ignored
ompletely. Comments and blank lines fromthe input dire
tory, and the order of all members in the input dire
tory, will be preservedin the output library (unless SORTDIR is spe
i�ed).2. Library Listing ProgramThe �le Plus:Liblist
ontains a simple program that
an be used to produ
e a listingof a Plus sour
e library, with suitable headings et
.It is invoked with a Run
ommand of the formRun Plus:Liblist [logi
al-units℄ [Par=options℄The following logi
al units may be spe
i�ed:S
ards spe
i�es the library �le to be listed.Sprint spe
i�es a �le or devi
e on whi
h the listing is to be produ
ed.The default output is intended to be suitable for the Xerox 9700 in two-sided, portraitmode. The page numbers and titles are alternated for front/ba
k pages.The following options may be spe
i�ed in the Par �eld to modify the output produ
ed.Upper
ase letters in the following indi
ate allowed abbreviations.FORMat=format-name where format-name may be one of LANDSCAPE, PORTRAIT, UNI-VERS_LF, TITAN_PF, or PLUSLIST. This spe
i�es the Xerox 9700format to be used for printing the listing.LANDs
ape The listing will be suitable for printing in \lands
ape" mode, usingan output width of 132.

137Sour
e LibrariesONEsided The output will be produ
ed for printing onesided. In this
asepage numbers and titles will not be alternated for front/ba
kpages.PAGELENgth=n where n is at least 8, spe
i�es the number of lines to be printedper page. The default is 60.PAGEWidth=n where n is between 76 and 254, spe
i�es the width of the page.The default is 76, whi
h is suitable for \portrait" listings.PORTrait The output will be suitable for printing in \portrait" mode, usingan output width of 76. This is the default.SPLit If this option is spe
i�ed, output lines longer than the page widthwill be split a
ross multiple lines. By default, they are just trun-
ated.TWOsided The output will be produ
ed for printing twosided. Page numbersand titles alternate between front page and ba
k page formats.This is the default.

138

139VIII. Helpful Hints and Dirty Tri
ksThis
hapter
ontains a mixed bag of suggestions that should help you to use Plus more eÆ
ientlyand more e�e
tively. It in
ludes ways of
ir
umventing some of Plus's limitations. These aren'talways pretty, but they do work.Most of these points apply to Plus/370 under MTS, but similar
on
erns and approa
hes are oftenappli
able to other environments.A. Using Equate to Improve Code GenerationWhen you use an equate statement, the expression being equated to is evaluated on
e only,at the point where the equate statement o

urs. Thus equate is sometimes useful as a way ofimproving
ode generation by, in e�e
t, removing
ommon subexpressions. For example, tointer
hange two elements of an array, something of the following form
an be used:equate Sour
e to Arr(I),Dest to Arr(I+1);variable Temp is ... in register;Temp := Dest;Dest := Sour
e;Sour
e := TempEa
h of the two subs
ript
al
ulations has to be performed only on
e, instead of twi
e.In this
ase, the saving is relatively small, and using the equate may make the program abit harder to read, so it might not really be an improvement unless the eÆ
ien
y of thesestatements was
riti
al. However, if a
omplex expression is used many times in a pro
edure,the performan
e improvement
ould be substantial, and the use of equate might even makereading the program easier.A somewhat obs
ure spe
ial
ase of this is to improve the
ode generation required to a

essa referen
e parameter. If a pro
edure has a parameter Par whi
h is passed by referen
e,every use of Par in the pro
edure is impli
itly an expression dereferen
ing a pointer; hen
e aseemingly useless equate likeequate Par# to Par(with Par# used through the rest of the pro
edure in pla
e of Par),
an a
tually improve the
ode generation by eliminating this
ommon expression. This is probably only worth doingif performan
e is
riti
al and the parameter is referen
ed a lot of times.You shouldn't try to use equate in this way too mu
h, however, be
ause it uses up registersand may
ause worse
ode to be generated elsewhere, as des
ribed in the next se
tion.B. Plus/370 Register UseThe
ompiler allo
ates the general registers for many purposes. Some registers are allo
atedpermanently throughout a pro
edure, some have a fairly long-term use (a
ross many state-ments) and some are used during expression
al
ulations. If a pro
edure needs more registersthan are available, the
ompiler will generate \preemption"
ode to save and restore registersso the same register
an be used for more than one purpose. If this happens a lot, the qualityof the
ode may su�er
onsiderably. Thus it's a good idea to gain some understanding of howthe sour
e
ode for your program a�e
ts the register allo
ation.

140 Helpful Hints and Dirty Tri
ksOne register is allo
ated for ea
h page of obje
t
ode and for ea
h page of \sta
k frame" (lo
alvariables, temporaries, et
.) used by the pro
edure. Up to three registers may be used forea
h. These registers are allo
ated for the entire pro
edure. By keeping pro
edures small andavoiding using the sta
k for large variables, you
an redu
e the number of registers
ommittedfor these purposes.If the pro
edure has any \storage" parameters, one register is allo
ated to hold the pointerto the parameter list. This is allo
ated for the entire pro
edure.Up to four registers may be allo
ated for addressing the most-often referen
ed global blo
ks.This number will be redu
ed if the pro
edure has more than one
ode or sta
k base register,to avoid
rowding the rest of the register allo
ation too mu
h. These registers are allo
atedat the beginning of the pro
edure and remain allo
ated until the last referen
e to a variablein the global blo
k. For global blo
ks whose addresses aren't preloaded in the entry
ode,extra instru
tions are needed at ea
h referen
e. If you group your global variable de
larationsso that ea
h pro
edure referen
es only a fairly small number of global blo
ks, the generated
ode will usually be better. Note that ea
h global variable that isn't in a global blo
k a
ts asif it were in a global blo
k by itself and so requires separate addressability.Ea
h open statement and equate statement that involves any expression
al
ulation (in
ludingthe \impli
it" expression involved in using a referen
e parameter) will require one register tohold the result of the address
al
ulation. (Opens and equates of simple variables don't useup registers, sin
e the resulting variables
an be addressed from the same base as the originalvariable.) These registers are in use from the point of the open or equate statement throughto the last referen
e to the identi�er or re
ord �elds de�ned by the statement. Similarly, ea
hregister variable requires a register from the point of the de
laration through to the pointwhere it is last used.Over
ommitment of registers to equates, opens, and register variables is the most
ommon
ause of the
ompiler generating large numbers of register preemptions. You
an minimizethe problem by making all su
h statements as lo
al as possible. That is, don't just put themat the beginning of ea
h pro
edure, but move them as
lose as possible to the point wherethey are really needed.If
ompiling a pro
edure resulted in any register preemptions, a message is printed at the endsaying how many were required. Ea
h preemption means one store instru
tion and at leastone load instru
tion. From this you
an make some guesses at how the register preemptionshave a�e
ted
ode generation for the pro
edure. Note that a smallish number of preemptionsisn't ne
essarily bad|the performan
e gains from using register variables, opens, and equates
an often be mu
h greater than the losses from any extra preemptions that might result.C. Exe
ution-time Array DimensionsPlus does not have any built-in way to de�ne an array whose size is determined at exe
utiontime. In pra
ti
e, however, it is possible to
heat by de
laring an array type whose dimensionsare the largest that might be required, then de�ning a pointer variable whi
h points to thearray type. The system storage allo
ation subroutines
an then be used to allo
ate storagefor an array of any required size and store its address in the pointer. All referen
es to thearray must then be indire
tly through the pointer.For exampletype Dynami
_Array_Type is array(1 to 9999999) of Integer;variable Array_Base is pointer to Dynami
_Array_Type;

141Helpful Hints and Dirty Tri
ks.../* Allo
ate array of N integers: */Array_Base := Getspa
e(0, N * Byte_Size(Integer));.../* Initialize the array: */do I := 1 to NArray_Base�(I) := 0endNote that the
ompiler will be unable to do any useful subs
ript
he
king when an array isde�ned and allo
ated in this way, sin
e it believes that any number from 1 to 9999999 is avalid subs
ript.In this example, Byte_Size is used to determine the size of the array element, whi
h ismultiplied by the number of elements required to determine the number of bytes to allo
ate.Some
are is needed when using Byte_Size in this way, sin
e the size may not in
lude anysla
k bytes required by alignment
onsiderations if it is allo
ated as part of an array. To beabsolutely safe, the size of ea
h element of an array of elements of type t
ould be
omputedas: /* Dummy array to get element size: */type T1 is array(1 to 2) of t;
onstant Element_Size is Byte_Size(T1) - Byte_Size(t)D. Che
king For Optional ParametersPlus doesn't
urrently provide any built-in way that a pro
edure
an determine whetheran optional parameter was supplied by the
aller. However, when there are any optionalparameters in the de
laration, and the last one supplied by the
aller is passed by referen
e,Plus does
ag it in the high bit as required by the S Type linkage
onventions. With a littleingenuity and a lot of
heating it is possible to test for this
ag.The easiest way to a

omplish this is to de�ne the parameters as name parameters rather thanreferen
e parameters in the pro
edure de
laration. This doesn't make any di�eren
e to the
aller, but means that the
alled pro
edure
an a

ess the pointer passed dire
tly; that is,the impli
it dereferen
e is suppressed. (Whi
h means you must expli
itly dereferen
e it whenyou want to a

ess that parameter passed.)You
an then equate to the pointer in order to test the high-order bit. For example, given ade
laration likepro
edure Example ispro
edurename parameter P1 is ...optional name parameter P2 is ...endto determine if the
aller provided the se
ond parameter, you
an test the high-order bit ofthe pointer to the �rst:

142 Helpful Hints and Dirty Tri
ksequate Test_Bit to P1 as pa
ked Boolean;...if Test_Bitthen/* P1 is last parameter so P2 wasn
t supplied. */...else/* P2 isn
t last parameter. */...end ifIf all parameters are optional, there is no way to dete
t the situation in whi
h the
allerprovided none. (This isn't supported by the S-Type linkage.)More generally, if there are a number of optional parameters and you need to determinewhi
h was the last one supplied, you
an equate an array to the parameter list in order tostep through the pointers:pro
edure Example2 ispro
edurename parameter P1 is ...optional name parameters P2, P3, P4, P5, P6 are ...end;...definition Example2...equate Pararray to P1 as array (1 to 6) ofre
ordV_Bit is pa
ked Boolean,Rest is pa
ked bit(31)end;...do Number_Of_Parameters := 1 to 6exit when Pararray(Number_Of_Parameters).V_Bitend;/* At this point Number_Of_Parameters spe
ifiesthe total number provided. */...end Example_2E. Che
king AddressesIn Assembler programs under MTS the BPI instru
tion1 is often used following a referen
eto a \questionable" address to
at
h the program interrupt that will result if the address isinvalid. This is mu
h more
onvenient than setting up a program interrupt exit to �eld su
hproblems.There is no dire
t way to do this in Plus. However, *Plus.Sour
elib
ontains a pair of
1 BPI is not a real 370 machine instruction but is simulated by the MTS supervisor.

143Helpful Hints and Dirty Tri
ksma
ros, Fet
h_Che
k and Store_Che
k whi
h use Inline to test whether the lo
ations ref-eren
ed by a pointer
an be fet
hed or stored into without a program interrupt o

urring.For example,Fet
h_Che
k(Ptr, Fet
h_Ok)will set Fet
h_Ok to True if Ptr�
an be referen
ed and to False if referen
ing it
auses aprogram interrupt. Store_Che
k similarly
he
ks if it
an be stored into.These ma
ros
an only be used if the type of Ptr� has a size of less than 256 bytes. Theywill
he
k the entire obje
t
an be fet
hed or stored, not just the �rst byte.Sin
e the ma
ros inline a BPI instru
tion, they will only fun
tion for programs running underMTS.To see how the ma
ros handle the Inline'd bran
h, look at the sour
e in *Plus.Sour
elib.F. Moving Arbitrary DataSometimes it may be ne
essary to move a spe
i�ed number of bytes from one memory lo
ationto another. If it isn't
onvenient to use normal Plus types and assignment statements, theeasiest way to do this in Plus is to \type
heat" the lo
ations as string variables and useassignment of a Substring.For example, to move N bytes from the lo
ation spe
i�ed by pointer Sour
e to the lo
ationspe
i�ed by pointer Dest, whatever the types of Sour
e and Dest, you
an use something ofthe form:equate S to Sour
e� as
hara
ter(Maximum_Address),D to Dest� as
hara
ter(Maximum_Address);D := Substring(S, 0, N)(where Maximum_Address is de�ned by the *Plus.Sour
elib member Ma
hine_Storage_Types).G. Pointer Arithmeti
It is easy to add or subtra
t from a pointer by \type
heating" the pointer as an integer, andthen operating on the integer.This is most tidily done by hiding it inside a ma
ro. For example, a ma
ro to add an arbitrarynumeri
 value to an arbitrary pointer is:ma
ro In
rement_Pointerparameters are Ptr, In
r;equate Cheat_Ptr to Ptr as (0 to Maximum_Address);Cheat_Ptr +:= In
rend ma
roA useful variation is a ma
ro to in
rement a pointer by the size of the item it points to:

144 Helpful Hints and Dirty Tri
ksma
ro In
rement_By_Sizeparameter is Ptr;equate Cheat_Ptr to Ptr as (0 to Maximum_Address);Cheat_Ptr +:= Byte_Size(Ptr�)end ma
roH. Return Codes from Plus Pro
eduresThere isn't
urrently a built-in way for a pro
edure written in Plus to return a Type I linkagereturn
ode. However, there is a pro
edure Return_Code in *Plus.Sour
elib whi
h
an beused to fake it.If a pro
edure
ontainsReturn_Code(value)then when the pro
edure returns, value will be passed ba
k as the return
ode. (The pro
edurea

omplishes this by storing the value in the R15 lo
ation in the savearea.)I. Multilevel Pro
edure ReturnsWhen a pro
edure dete
ts an error, it is sometimes useful for it to be able to for
e a returnthrough more than one level of pro
edure
all. This avoids the ne
essity of passing ba
k errorindi
ations and testing them at all levels.There are pro
edures in *Plus.Sour
elib that implement a simple form of multilevel return.To use them, the pro
edure that is to be returned from must
all Setup_Return_From tosave ne
essary information, and the pro
edure for
ing the return
alls Return_From to e�e
tit. The state information needed is saved in a variable of type Return_Control_Blo
k_Type.This must be a

essible to both pro
edures, so global storage is usually used (although it
ould be passed down as a parameter).For example:%In
lude(Return_Control_Blo
k_Type, Setup_Return_From, Return_From);global Foovariable R
b is Return_Control_Blo
k_Type;...end Foo;pro
edure Level1;pro
edure Level2 ispro
edureresult Su

ess is Booleanend;pro
edure Level3;pro
edure Level4;

145Helpful Hints and Dirty Tri
ksdefinition Level1...if Level2()then/* It worked OK */else/* Some error o

urred. */end if;...end Level1;definition Level2/* Returns with False is anything goes wrong. */Setup_Return_From(R
b, Su

ess);...Level3();...return with Trueend Level2;definition Level3...if ...then/* Something wrong. Return all the way. */Return_From(R
b, False)end if;...Level4();...end Level3;definition Level4...if ...then/* Something wrong. Return all the way. */Return_From(R
b, False)end if;end Level4In this example, Level2 sets things up so that any of the pro
edures it
alls (or any pro
edures
alled from pro
edures it
alls: : :)
an
ause a return as if Level2 has returned itself. The
all to Setup_Return_From spe
i�es a variable whi
h is to be set to a return value. Usually,this will be the result value of the pro
edure
alling Setup_Return_From. Ea
h of the
allsto Return_From spe
ify a value to be assigned to this variable before the return o

urs. Thuswhen Level3 or Level4 exe
utes the Return_From, the e�e
t will be as if Level2 has assignedthe se
ond parameter to Su

ess and then returned.A
all to Return_From is only valid as long as the pro
edure whi
h
alled Setup_Return_Fromis still a
tive; i.e., it hasn't yet returned itself. It is possible to
all Return_From from another

146 Helpful Hints and Dirty Tri
ksroutine whi
h gains
ontrol asyn
hronously, su
h as an attention interrupt routine. In thissituation,
onsiderable
are is needed to ensure that the Return_From is not attempted afterthe setup routine has returned.J. Spe
ial Linkage RoutinesThe best advi
e on spe
ial linkage routines is \don't write them if you
an possibly avoid it".The pro
ess is very tedious and error-prone.There are a number of prede�ned linkage routines in the resident Plus library whi
h shouldhandle many of the more
ommon situations requiring spe
ial linkage. Some do
umentationfor the existing routines
an be found in the *Forum
onferen
e \Plus". For more information,examine the sour
e in the �le Plus:New

s2l>sq.2Spe
ial linkage routines
an be written in Plus by using linkage none. That is, in thefollowing example, the routine Spe
ial_Linkage
ontains the entry
ode required to enterroutine Spe
ial.pro
edure Spe
ial;pro
edure Spe
ial_Linkage external "SPECLINK";definition Spe
iallinkage "SPECLINK";/* This routine requires spe
ial entry/exit
ode. It isperformed by Spe
ial_Linkage. */...end Spe
ial;definition Spe
ial_Linkagelinkage none;/* Linkage routine used to enter routine Spe
ial. */...end Spe
ial_LinkageIf you must write your own linkage routines, there are a number of ma
ros in *Plus.Sour
e-lib member Linkage_Ma
ros whi
h may make it a bit easier. The sour
e for the standardlinkage routines, in Plus:New

s2l>sq may also be useful as a model.

2 This contains versions for use with %Linkage="NEW"

147APPENDIX A - Implementation Notes and Current StatusThe
ompilers have the same overall organization. They are multi-pass
ompilers.The �rst pass performs all de
laration pro
essing, storage allo
ation and type
he
king and
om-piles a tree-representation of the obje
t
ode. The tree
ontains a representation of all
ode-generation semanti
 a
tions required. Pass 1 also builds tables des
ribing the variables used bythe program.The next pass tours the tree and produ
es a stream of pseudo-
ode. This is very
lose to the a
tualma
hine
ode that will be produ
ed, but has not yet bound any register usage or determined a
tualbran
h addresses. It assumes a slightly idealized ma
hine instru
tion set.The register usage is next examined to
ombine registers where possible. Following this, registerallo
ation is performed.The pseudo-
ode is then translated to obje
t ma
hine
ode, and the obje
t module is written.At least the following language features are not implemented
urrently in any
ompiler:Anything to do with sets.Any operations involving reals.The following additional restri
tions of the 370
ompiler should also be noted:The lo
al storage of any pro
edure may not be bigger than three pages.The
ode for any pro
edure may not be bigger than three pages.The following additional restri
tions apply to the PDP-11 version.Total size of all pro
edures must not be bigger than 64K bytes.Total size of the global pseudo-register area must not be bigger than 64K bytes.pa
ked is only implemented for �elds of re
ords.Variables and
onstants of type real are not implemented.The following are the additional restri
tions of the 68000
ompiler:The lo
al storage of any pro
edure may not be bigger than 32767 bytes.The
ode for any pro
edure may not be bigger than 32767 bytes.For the Ma
intosh, the entire global data area may not be bigger than 32767 bytes. (For theMPW linker, this in
ludes all entry
onstants and
onstants whi
h
ontain pointers.)For the MDS linker, entry
onstants and
onstants whi
h
ontain pointers are not imple-mented.Variables and
onstants of type real are not implemented.

148

149APPENDIX B - BNF SyntaxThe grammar that follows is a slightly simpli�ed version of the LALR(1) grammar used by the
ompiler. The a
tual grammar
ontains rules required by the
ompiler to perform semanti
 a
tionsat the appropriate points, rules used by the paragrapher to generate paragraphed listings, andadditional rules to make the language a

ept redundant semi
olons and
ommas in a variety of
ontexts.<program> ::= <statement_list> end_of_�le<statement_list> ::= <statement>| <statement_list> ; <statement><statement> ::= <type_de
laration>| <variable_de
laration>| <
onstant_de
laration>| <pro
edure_de
laration>| <ma
ro_de
laration>| <open_de
laration>| <equate_de
laration>| <es
ape>| <return>| <if_statement>| <%if_statement>| <sele
t_statement>| <assertion>| <assignment>| <
ompound>| <storage_referen
e>| <pro
edure_de�nition>| <global_pa
k><global_pa
k> ::= global identi�er <external_name> <statement_list> <global_end><global_end> ::= end <optional_id>| end global <optional_id><optional_id> ::= identi�er| empty<external_name> ::= external <
onstant_expression>| empty<type_de
laration> ::= type <id_list> is <type>| <type_de
laration> , <id_list> is <type><variable_de
laration> ::= variable <de
laration_element>| <variable_de
laration> , <de
laration_element><de
laration_element> ::= <id_list> is <type> <allo
ation>

150 BNF Syntax<allo
ation> ::= in register| in register <
onstant_expression>| in register <
onstant_expression> to <
onstant_expression>| in storage| at absolute <
onstant_expression>| external| external <
onstant_expression>| entry| entry <
onstant_expression>| empty<
onstant_de
laration> ::=
onstant <id_list> is <
onstant_expression> <allo
ation>| <
onstant_de
laration> , <id_list> is <
onstant_expression> <allo
ation><ma
ro_de
laration> ::= <ma
ro_head> <ma
ro_body> <ma
ro_end><ma
ro_end> ::= end <optional_id>| end ma
ro <optional_id><ma
ro_head> ::= ma
ro identi�er <ma
ro_parameters> ;<ma
ro_parameters> ::= parameter is <id_list>| empty<ma
ro_body> ::= <statement_list>| <parenthesized_expression><open_de
laration> ::= open <open_element>| <open_de
laration> , <open_element><open_element> ::= <storage_referen
e> <equate_type><equate_de
laration> ::= equate <equate_element>| <equate_de
laration> , <equate_element><equate_element> ::= identi�er to <storage_referen
e> <equate_type><equate_type> ::= as <type>| empty<pro
edure_de
laration> ::= <pro
edure_head> <id_list> <pro
_spe
i�
ations>| <pro
edure_de
l><pro
edure_de
l> ::= pro
edure <id_list> is <type> <pro
_spe
i�
ations>| <pro
edure_de
l> , <id_list> is <type> <pro
_spe
i�
ations><pro
_spe
i�
ations> ::= <pro
_spe
i�
ations> external <
onstant_expression>| <pro
_spe
i�
ations> <linkage>| <pro
_spe
i�
ations> sta
ksize <
onstant_expression>| empty

151BNF Syntax<linkage> ::= linkage <
onstant_expression>| linkage system| linkage none<pro
edure_de�nition> ::= <de�nition_head> <statement_list> <pro
edure_end><de�nition_head> ::= definition identi�er| definition identi�er <entry_options> ;| <pro
edure_de
laration> definition| <pro
edure_de
laration> definition <entry_options> ;<entry_options> ::= <entry_option>| <entry_options> <entry_option><entry_option> ::= <linkage>| environment <storage_referen
e><pro
edure_end> ::= end <optional_id>| end pro
edure <optional_id>| end definition <optional_id><id_list> ::= identi�er| <id_list> , identi�er<type> ::= <attribute> <type>| <basi
_type><basi
_type> ::= (<id_list>)| bit (<
onstant_expression>)| real (<
onstant_expression>)|
hara
ter (<
onstant_expression>)|
hara
ter (<
onstant_expression> to <
onstant_expression>)| (<
onstant_expression> to <
onstant_expression>)| <re
ord_type>| pointer to <type>| set of <type>| array <type> of <type>| <pro
edure_type>| unknown| global (<
onstant_expression>)| identi�er<attribute> ::= pa
ked| aligned <alignment> left| aligned <alignment> right| fast| small| value| left| right

152 BNF Syntax| environment <type>| system<alignment> ::= <
onstant_expression>| <
onstant_expression> in <
onstant_expression><re
ord_type> ::= re
ord <�eld_list> <variant_part> <end_re
ord><end_re
ord> ::= end| end re
ord<�eld_list> ::= <de
laration_element>| <�eld_list> , <de
laration_element>| empty<variant_part> ::= <variant_list>| <variant_list> <variant_else>| empty<variant_list> ::= <variant_list> <variant_element>| <variant_head><variant_head> ::= variant identi�er of <type> from| variant <type> from<variant_element> ::= <variant_label_list> : <�eld_list><variant_label_list> ::=
ase <
onstant_expression>| <variant_label_list> , <expression><variant_else> ::= else <�eld_list><pro
edure_type> ::= pro
edure <parameter_list> <result_part> end<parameter_list> ::= <parameter_list> <parameter_part>| empty<parameter_part> ::= <parameter_kind> <de
laration_element>| <parameter_part> , <de
laration_element><parameter_kind> ::= <optional> <referen
e> parameter<optional> ::= optional| repeated| empty<referen
e> ::= name| referen
e| empty

153BNF Syntax<result_part> ::= result <de
laration_element>| optional result <de
laration_element>| empty<es
ape> ::= <es
ape_type> <optional_label> <when_unless><es
ape_type> ::= exit| repeat<optional_label> ::= <label>| empty<label> ::= < identi�er ><when_unless> ::= when <expression>| unless <expression>| empty<return> ::= return <when_unless> <with_part>| return <with_part> <when_unless>| return <when_unless><with_part> ::= with <expression><if_statement> ::= if <if_then_else> <end_if><if_then_else> ::= <expression> <then_part> <else_part><end_if> ::= end| end if<then_part> ::= then <statement_list><else_part> ::= else <statement_list>| elseif <if_then_else>| empty<%if_statement> ::= %if <%if_then_else> <%end_if><%if_then_else> ::= <
onstant_expression> <%then_part> <%else_part><%end_if> ::= %end| %end %if| %end if<%then_part> ::= %then <statement_list><%else_part> ::= %else <statement_list>| %elseif <%if_then_else>| empty

154 BNF Syntax<sele
t_statement> ::= <sele
t_start> <sele
t_alternatives> <end_sele
t><sele
t_start> ::= sele
t <expression> from<end_sele
t> ::= end| end sele
t<sele
t_alternatives> ::= <sele
t_alternatives_list>| <sele
t_alternatives_list> else <statement_list><sele
t_alternatives_list> ::= <sele
t_alternatives_list> <sele
t_alternative>| empty<sele
t_alternative> ::= <sele
t_label_list> : <statement_list><sele
t_label_list> ::=
ase <
onstant_expression>| <sele
t_label_list> , <expression><assertion> ::= assert <expression><assignment> ::= <storage_referen
e> <assign_op> <expression>| <storage_referen
e> , <assignment><assign_op> ::= :=| <adding_op> :=| <multiplying_op> :=<
ompound> ::= <label> <unlabelled_
ompound> <label>| <unlabelled_
ompound><unlabelled_
ompound> ::= begin <statement_list> end|
y
le <statement_list> <end_
y
le>| <do_head> <statement_list> <end_do><end_
y
le> ::= end| end
y
le<end_do> ::= end| end do<do_head> ::= do <storage_referen
e> := <expression> <dire
tion> <expression>| do <storage_referen
e> := ea
h <expression><dire
tion> ::= to| downto<storage_referen
e> ::= identi�er| % identi�er| <pro
edure_or_array_referen
e>)| <storage_referen
e> (<return_
ode>)| <storage_referen
e> . identi�er| <storage_referen
e> �

155BNF Syntax<pro
edure_or_array_referen
e> ::= <subs
ripted_referen
e>| <subs
ripted_referen
e_head>| <subs
ripted_with_return_
ode><subs
ripted_referen
e> ::= <subs
ripted_referen
e_head> <expression><subs
ripted_referen
e_head> ::= <storage_referen
e> (| <subs
ripted_referen
e> ,<subs
ripted_with_return_
ode> ::= <with_return_
ode_head> return
ode <storage_referen
e>| <with_return_
ode_head> with <storage_referen
e><with_return_
ode_head> ::= <subs
ripted_referen
e>| <subs
ripted_referen
e_head>| <subs
ripted_with_return_
ode> ,| <subs
ripted_with_return_
ode><
onstant_expression> ::= <expression><expression> ::= <logi
al_formula>| <
onjun
tion>| <disjun
tion><disjun
tion> ::= <logi
al_formula> or <logi
al_formula>| <disjun
tion> or <logi
al_formula><
onjun
tion> ::= <logi
al_formula> and <logi
al_formula>| <
onjun
tion> and <logi
al_formula><logi
al_formula> ::= <arithmeti
_expression> <relation> <arithmeti
_expression>| <arithmeti
_expression><relation> ::= <relation_op>| : <relation_op>| not <relation_op><relation_op> ::= <| < =| < <| < < =| >| > =| > >| > > =| =| in| subset<arithmeti
_expression> ::= <term>| <arithmeti
_expression> <adding_op> <term>

156 BNF Syntax<adding_op> ::= +| -| ||| || xor<term> ::= <primary>| <term> <multiplying_op> <primary><multiplying_op> ::= *| /| mod| &<primary> ::= <unary_op> <primary>| <storage_referen
e>| number| bit_string| string| <parenthesized_expression>| <set> }| { }<parenthesized_expression> ::= (<expression>)<set> ::= { <expression>| <set> , <expression><unary_op> ::= +| -| :| not| abs

157APPENDIX C - Plus Reserved WordsThe following keywords are reserved in the
urrent versions of Plus, and
annot be used asprogrammer-de�ned identi�ers.abs absolute aligned andare array as assertat begin bit
ase
hara
ter
ode
onstant
onstants
y
le definition do downtoea
h else elseif endentry environment equate exitexternal fast from globalif in is leftlinkage ma
ro mod namenone not of openoptional or pa
ked parameterparameters pointer pro
edure pro
eduresreal re
ord referen
e registerregisters repeat repeated resultreturn right sele
t smallsta
ksize storage subset systemthen to type typesunknown unless use valuevariable variables variant whenwith xorThe following words will be reserved in a future version and should also be avoided.des
riptor set signed unsigned

158

159APPENDIX D - Plus/370 Linkage Conventions and Run-time OrganizationThis appendix des
ribes linkage
onventions used by Plus/370 and the asso
iated run-time orga-nization required.A. Register UsageThe entry sequen
e of a Plus pro
edure loads the sta
k bases and then the
ode bases. Theseare allo
ated from register 12 down, skipping register 11, using as many registers as required.Register 11
ontains the address of the global environment, normally set up before entry.Thus if a pro
edure requires one sta
k base and one
ode base (the normal
ase), register 12will be the sta
k base and register 10 the
ode base.R13 is loaded with the \next sta
k frame" as part of the entry sequen
e, if the pro
edure
ontains any
alls to other pro
edures.Other global addressability may be set up using registers below those needed for the
odebases.B. Sta
k and Global OrganizationThe old version of the Coding Conventions linkage (%Linkage="OLD" or %Linkage="STAN-DARD") pla
es no requirements on the organization of the sta
k and global storage. At entryto a Plus pro
edure, R11 should
ontain the address of the global storage if the pro
edureuses any globals, and R13 should
ontain the address of an area that
an be used as a sta
k.These requirements are also present with %Linkage="NEW", but there are additional require-ments on the way global storage and the sta
k must be initialized at the time it is allo
ated.The bottom six words of the spa
e allo
ated as a sta
k must now be initialized to
ontain asta
k des
riptor. The sta
k des
riptor
ontains pointers to the �rst word of the sta
k spa
e,the last word of the sta
k spa
e (used for
he
king for sta
k over
ow), and a word in whi
hthe
urrent top-of-sta
k is saved if a
all is done to a pro
edure with the system attribute.It also
ontains forward and ba
kward links to other sta
ks that may be used for attentionand program interrupt routines et
. The exa
t format of this sta
k des
riptor is des
ribed byLong_Sta
k_Des
riptor_Type in the library *Plus.Sour
elib.It is also required that R11 be set to point to a global storage area, whether or not the pro-
edure a
tually uses global variables. The �rst two words of global storage are now reserved.The �rst is reserved for a pointer to the \CLS transfer ve
tor" for internal system use. Thisshould normally be initialized to the value Address(Stdtv). The se
ond word must
ontain apointer to a short sta
k des
riptor. The short sta
k des
riptor is a four word area that
on-tains a
opy of the �rst three words from the sta
k being used and a pointer to the long sta
kdes
riptor. Its format is des
ribed by Short_Sta
k_Des
riptor_Type in *Plus.Sour
elib.The LCSPR's QLCSPR and QGLOBAL both de�ne symbols CLSTVPTR and STK_DESC for thesetwo words.The short sta
k des
riptor is used to provide a level of indire
tion in retrieving the sta
kfrom global storage. An appli
ation will only ever allo
ate one short sta
k des
riptor. If theappli
ation is using more than one global storage environment, all environments must pointto the same short sta
k des
riptor, whi
h will in turn point to the sta
k
urrently in use.When initializing a sta
k des
riptor, the sta
k end pointer should a
tually be set to 72 bytes

160 Plus/370 Linkage Conventions and Run-time Organizationbefore the true end, to allow room for registers to be saved in either a
oding
onventions orOS linkage entry sequen
e before any limit
he
king is done.Note that when the environment is de�ned as pointer to ..., the spe
i�ed re
ord type must
onform to the above requirements. That is, the �rst two words of the re
ord must be reservedfor the pointer to the CLS transfer ve
tor and the pointer to the short sta
k des
riptor, andmust be appropriately initialized.C. Plus Pro
edure LinkageThe normal pro
edure linkage used is the MTS
oding
onventions linkage, ex
ept that all(non-result) registers are restored on return from a
all (and are presumed to be restored byany pro
edures
alled).1The linkage
ode
onsists of:1. Prelude (performed by
aller)Load register parameters, and assign storage parameters.Load R1 with address of storage parameters/result if any.For linkage none routines only, load R13 with the next sta
k frame address(in all other
ases it is loaded in
aller's entry sequen
e).If
alled pro
edure has the system attribute, and if %Linkage="NEW", updatethe sta
k des
riptor to indi
ate the top-of-sta
k at the point of the
all.Load R15 with address of
alled pro
edure.If the
all spe
i�es with ..., load R11 with the spe
i�ed environment.Call pro
edure viaBALR R14,R152. Entry (performed by
alled pro
edure)a. normal Plus linkage:Save all 16 general registers on the sta
k viaSTM R0,R15,0(R13)Save any register parameters as lo
al variables on the sta
k.Load
ode base(s).Load sta
k base(s).If %Linkage="NEW" and %Sta
k_Che
k is true, perform sta
k over
ow
he
k.If the pro
edure
ontains any
alls to other pro
edures, load the next sta
kframe.If the pro
edure has storage parameters,
opy R1 to another register.If the de�nition spe
i�es the environment option, load R11 with the new en-vironment.
1 The new (1986) version of the coding conventions also assume this.

161Plus/370 Linkage Conventions and Run-time OrganizationLoad \permanently assigned" global base registers.Note the register parameters are re-saved separately from the entry save-area, sothat the
aller
an assume all non-result registers are restored.Register results are allo
ated in the save-area so that no spe
ial a
tion is requiredby the return.b. linkage "extname":For a \spe
ial linkage" routine, in pla
e of the �rst step (storing all registers on thesta
k), the
ompiler generates
ode whi
h transfers to the external symbol extnamefrom the entry sequen
e of the routine being entered (SUB1 in the following).The exa
t sequen
e generated isSUB1 L R15,LINKADDR Get address of linkage
odeBALR R15,R15 And go thereBALR R15,0 Reestablish addressabilityB SUB1CONT Skip "parameters"DC F
sta
ksize
DC F
framesize
CXDLINKADDR DC V(extname) Address of linkage
odeSELFADDR DC V(SUB1) Address of routine being enteredGLOBALID DC XL4
global-id
 Global idSTAKOFF DC Q(STK_DESC) Offset of sta
k des
riptorSUB1CONT L R10,SELFADDR Set
ode addressabilityThus the linkage
ode is entered with R15
ontaining the return address, and witha number of \parameters" a

essible via o�sets from R15.The requested sta
ksize is at 6(R15). If this was not spe
i�ed in the pro
edurede
laration, then it will be
ompiled as a weak external referen
e to the symbolSTAKSIZE. This allows spe
ifying the sta
k size at load time by in
luding an absoluteDEF loader re
ord in the obje
t de
k.The word at 10(R15)
ontains the a
tual sta
k spa
e requirements of SUB1, whi
hmay be of interest to some linkage routines.The word at 14(R15) is the total global area size of the loaded program
ontainingSUB1. (Note that in general, a linkage routine should use this as the global size,rather than in
luding a CXD or use of Global_Size within the linkage
ode itself.This is be
ause under some
ir
umstan
es, is is possible that the linkage routinesmight be part of an earlier load.) If the pro
edure's environment is spe
i�ed aspointer to re
ord-type, this word will
ontain the size of the re
ord.If the pro
edure's environment is of type global(global-id), the word at 18(R15)
ontains the value of global-id . Otherwise this word is 0. This value may be usefulas a
ode to the Gpse
t subroutine for allo
ating or retrieving the global storage.The word at 22(R15)
ontains the o�set of STK_DESC within the pseudo-registerve
tor. When %Linkage="NEW", this value must be 4. It is just used for error-
he
king purposes by linkage routines to test whether the required loader re
ords(see Chapter IV, page 127) were present when the program was loaded.

162 Plus/370 Linkage Conventions and Run-time OrganizationThe linkage
ode is required to set the address of a sta
k in R13 (not Sta
k_Base_Register). The register values to be restored at return should be stored out intothe bottom of the sta
k. It should also load R11 (Global_Base_Register) with theaddress of the global environment. (R11 must be loaded when %Linkage="NEW".)The linkage routine returns to the
alled pro
edure at the address in R15. If Sub1was
alled with any register parameters, these must be in the original registers onreturn to Sub1, and if it has storage parameters, R1 must be preserved.The
alled pro
edure will then
ontinue the entry sequen
e as for a normal Plusprogram, as des
ribed above.When the
alled pro
edure (Sub1) returns, it will load all 16 registers from thebottom of the sta
k, then bran
h on R14. Thus the linkage routine may inter
ept thereturn by leaving an appropriate value in the 15th word of the savearea. Ultimately,of
ourse, the linkage routine must ensure that the registers on return to the
allerof Sub1 are
onsistent with the environment expe
ted by the
aller.The exa
t steps to be performed in the linkage
ode will vary depending on thesituation. The following are the most
ommon situations (with %Linkage="NEW"assumed):�� If initializing the entire appli
ation, allo
ate one or more sta
ks and initializethe long sta
k des
riptor at the bottom of ea
h. Allo
ate the short sta
kdes
riptor, and set it up to
orrespond to the �rst sta
k to be used. Allo
atethe global storage for the routine being a
tually entered, and make it point tothe short sta
k des
riptor.�� If initializing a subroutine that uses its own global storage, allo
ate the globalstorage and make it point to the existing short sta
k des
riptor.�� If reentering the Plus world from a Fortran-type routine that was previously
alled from a Plus routine, retrieve the global storage (somehow), and from it,obtain the short sta
k des
riptor, and then
e the top of sta
k at the point thatthe Plus routine
alled the Fortran one.�� If entering a routine asyn
hronously (e.g., an attention interrupt handler),swit
h to a new sta
k. This is done by retrieving the global storage, fromit the short sta
k des
riptor, and then the
urrent sta
k. The short sta
k de-s
riptor information is then
opied to the long sta
k des
riptor for the
urrentsta
k. The next sta
k is then obtained, from the links in the
urrent sta
k,or by allo
ating and initializing a new one, and the short sta
k des
riptor isreinitialized from the new sta
k.In general, on returning from a pro
edure with spe
ial linkage
ode, the exit
odeused should undo whatever was done in the entry
ode. However, in some situationsit is more desirable to allo
ate spa
e the �rst time (via Gpse
t), and to not free iton return, so that subsequent
alls will be
heaper.
. linkage system:linkage system is implemented by the
ompiler as if linkage "QSYSENTR" hadbeen spe
i�ed. That is, entry
ode is as des
ribed above, bran
hing to a spe
ialentry routine in the resident system.

163Plus/370 Linkage Conventions and Run-time OrganizationThe following
omments assume %Linkage="NEW". The operation of QSYSENTR issomewhat di�erent (and mu
h less eÆ
ient) for the older linkage.The linkage routine uses the MTS subroutine Gpse
t to allo
ate (the �rst time)or retrieve (subsequently) the global storage, using the global-id from the linkageparameters. It retrieves the sta
k from global storage, or allo
ates it the �rst timeby using Getspa
e. The sta
k size spe
i�ed will be determined from the linkageparameters. A one page sta
k will be allo
ated if 0 is spe
i�ed.On return from the linkage system routine, the sta
k and global storage are notreleased.This linkage
ode does not set up a program interrupt handler to inter
ept run-timeerror
onditions within the Plus
ode.d. linkage none:For linkage none, no entry
ode is generated. The pro
edure must use Inline andregister variables to \bootstrap" to the point where Plus
ode
an exe
ute
orre
tly.The prede�ned register variables Code_Base_Register, Sta
k_Base_Register andEnvironment_Base_Register
an be used in setting up the Plus entry requirements.A great deal of
are is required sin
e the
ompiler will assume the
ode/sta
k/globalbases et
. have been set up
orre
tly if any statements in the pro
edure requirethem. It is advisable to turn
ode listing on to see if all is as planned. It may alsobe prudent to set %Preempt to false, to prevent the
ompiler for doing unexpe
tedregister preemptions, whi
h might interfere with the expe
ted
ode.In parti
ular, note that the Code_Base_Register must be loaded with the address ofthe entry point of the routine before any bran
hes, (in
luding run-time
he
king), orreferen
es to the
onstant pool. The Sta
k_Base_Register must be loaded with theaddress of a sta
k before any instru
tions requiring temporaries, or referen
ing lo
alvariables. The Environment_Base_Register must be loaded before any referen
esto global variables.A linkage none routine returns by doing just a BR R14; you must make sure anyother required register restoration is done before returning.The exa
t details of how all this should be a

omplished depend, of
ourse, on theenvironment from whi
h the routine is being
alled.3. Exit (performed by
alled pro
edure)Restore all registers:LM R0,R15,0(R12)Return to
allerBR R14For linkage none, only the BR is generated; the registers are not restored.4. Postlude (performed by
aller)Restore R11 to the
aller's environment if it was
hanged before the
all.Store the return
ode (R15) if the return-
ode phrase o

urs in the
all.

164 Plus/370 Linkage Conventions and Run-time OrganizationD. Sta
k Frame LayoutThe usage of the sta
k by the Plus/370
ompiler is as follows:... high address
alled lo
al variablespro
edure register parameter arearegister savearea (R0{R15) � R13 at
all, R12 inside pro
edurex??? ... (possible temporaries)result (if any)
alling storage parameters � R1 at
all points herepro
edure ... low address

165APPENDIX E - Plus-11 Linkage Conventions and Run-time OrganizationThis appendix des
ribes linkage
onventions used by Plus-11 and the asso
iated run-time organi-zation required.A. Obje
t ModulesPlus-11 generates obje
t modules in the form expe
ted by *Link11, whi
h is essentially thesame as the IBM obje
t module format used by MTS. The
ode generated depends on auxiliaryroutines, provided by Plus:Objlib11 to perform pro
edure entry and exit sequen
es,
ertainPlus operations (
hara
ter handling), and for run-time
he
k pro
essing.B. Register UsageBy default, the
ode generated by Plus-11 uses R5 to point to the lo
al sta
k frame of the
urrent pro
edure, and R4 points to the base of the pseudo-register (global storage). If theoption %Linkage:="ALTERNATE" is spe
i�ed, the use of R4 and R5 is reversed.C. Parameter PassingParameters and results of Plus-11 pro
edures are normally passed through the sta
k. Spa
efor the result (if any) is allo
ated on the sta
k by the
alling pro
edure, and the values ofparameters are then pushed on the sta
k.The
alled pro
edure a

esses parameters and result lo
ations by positive o�sets from thelo
al sta
k frame pointer (R5) and lo
al variables by negative o�sets from the frame pointer.D. Pro
edure LinkagePro
edure linkage in Plus-11 programs is performed by the following sequen
e:1. Prelude (performed by
aller)Adjust SP to leave spa
e for result if any.Push parameters on the sta
k.Call pro
edure viaJSR PC,pro
name2. Entry (performed by
alled pro
edure)a. normal Plus linkage:Save old sta
k frame pointer on the sta
k.Save registers R0 - R4 on the sta
k.Adjust SP to point above register save area.Adjust R5 to point to the new sta
k frame.Allo
ate spa
e for lo
al variables by adjusting the sta
k pointer.All but the last step is a

omplished by a run-time routine PLUSENTR. The �rstinstru
tion of ea
h Plus-linkage pro
edure isJSR R5,PLUSENTR

166 Plus-11 Linkage Conventions and Run-time Organizationb. linkage "extname":For a \spe
ial linkage" routine, in pla
e of the
all to PLUSENTR, the
ompiler gener-ates
ode to bran
h to the external symbol extname from the entry sequen
e. Theexa
t sequen
e generated is:SUB1 JSR R5,extname Go to linkage
odeBR SUB1CONT Skip "parameters"DC F
sta
ksize
DC F
framesize
DC F
0
 Reserved for global size somedaySUB1CONT ...The
ode at extname should save the registers on the sta
k, set up global storage,et
., as required. It should return with R5 set to point to the new sta
k frame. Fol-lowing the return from extname the entry
ode will allo
ate spa
e for lo
al variablesas with the normal Plus linkage.
. linkage system:Plus-11
ompiles linkage system the same as for the normal Plus linkage.d. linkage none:For linkage none, no entry
ode is generated. The pro
edure must use Inline andregister variables to \bootstrap" to the point where Plus
ode
an exe
ute
orre
tly.The prede�ned register variables Program_Counter, Sta
k_Pointer, Frame_Base_Register and Global_Base_Register
an be used in setting up the Plus entryrequirements.A great deal of
are is required sin
e the
ompiler will assume the
ode/sta
k/globalbases et
. have been set up
orre
tly if any statements in the pro
edure require them.It is advisable to turn
ode listing on to see if all is as planned.In parti
ular, note that Frame_Base_Register must be set up before any referen
esto lo
al variables, and Global_Base_Register must be set before any referen
es toglobal variables.The exa
t details of how all this should be a

omplished depend on the environmentfrom whi
h the routine is being
alled.3. Exit (performed by
alled pro
edure)For all linkage kinds ex
ept linkage none, a Plus return is just
ompiled intoJMP PLUSEXITThis undoes the entry sequen
e, leaving SP pointing to the top of the parameter area.A linkage none routine returns by doing just an RTS PC; you must make sure any otherrequired register restoration is done before returning.4. Postlude (performed by
alling pro
edure)Collapses the spa
e for parameters (if any), leaving SP pointing to the result variable (ifthere is one).

167Plus-11 Linkage Conventions and Run-time OrganizationE. Sta
k Frame LayoutAs a result of the above linkage
onventions, the usage of the sta
k by a Plus11 pro
edure isas follows. (Note this illustration is the opposite way up from the pre
eding Plus/370 version,sin
e Plus-11 sta
ks grow downwards in memory.)... high address
alling result (if any)pro
edure parameters (if any)old PC (return address)?y old sta
k frame (R5) � new R5 points hereregister save area (R0{R4)
alled lo
al variablespro
edure ... low addressNote lo
al variables are a

essed by negative o�sets from R5, parameters and results area

essed by positive o�sets.

168

169APPENDIX F - Plus/68000 Linkage Conventions and Run-time OrganizationThis appendix des
ribes linkage
onventions used by Plus/68000 and the asso
iated run-timeorganization required. The details of this vary depending on whether the
ode is generated for theAMIGA or the Ma
intosh, as spe
i�ed by the %Target_Operating_System
ompiler variable.A. Ma
intosh System SupportThe Ma
intosh system provides a basi
 appli
ation runtime environment with a global dataarea addressed by register A5 and a series of independently loaded segments of
ode. Thesystem uses the global data area with positive o�sets from A5, while the area with negativeo�sets is for the global storage of the program. This �ts fairly well with Plus's notion ofglobal storage, but it does not en
ourage the swit
hing of environments. For this reasonPlus/68000 implements environments whi
h are pointers to re
ord types by using register A4as the environment base register. One of the system data stru
tures in the positive o�set areais the jump table. This is used to do pro
edure
alls from one segment to another. Su
h
alls
an
ause a segment to be impli
itly loaded. When a segment is loaded, only the jumptable is relo
ated. No other relo
ation is done. This makes it diÆ
ult to implement Plus
onstants whi
h
ontain pointers.1. Ma
intosh Programmer's Workshop (MPW)When the %Target_Operating_System
ompiler variable has the value "MAC/MPW",Plus/68000 generates obje
t modules in the form expe
ted by the Ma
intosh Program-mer's Workshop (MPW) Linker. The MPW linker provides for the initialization ofthe global data area, in
luding pointers whi
h point to other global data areas. Thuswith MPW, Plus/68000 uses the global data area for all \entry"
onstants and for any
onstants whi
h
ontain pointers. This does have the drawba
ks of requiring all su
h
onstant data to be
opied from the initialization segment (%A5_Init) to the global dataarea, and enlarging the global data area.The
ode generated depends on auxiliary routines, provided by Plus:Obj68MPW, toperform some string operations, longword multiply and divide, and array of pa
kedoperations.2. Ma
intosh Development System (MDS)When the %Target_Operating_System
ompiler variable has the value "MAC/MDS",Plus/68000 generates obje
t modules in the form expe
ted by the Ma
intosh Devel-opment System (MDS) Linker. The MDS linker does not provide for the initialization ofthe global data area. Thus with MDS, Plus/68000 does not implement \entry"
onstantsor
onstants whi
h
ontain pointers.The
ode generated depends on auxiliary routines, provided by Plus:Obj68MDS, to per-form some string operations, longword multiply and divide, and array of pa
ked opera-tions.B. AMIGA System SupportWhen the %Target_Operating_System
ompiler variable has the value "AMIGA", Plus/68000generates obje
t modules in the form expe
ted by the AMIGA linkers. The
ode gener-ated depends on auxiliary routines, provided by Plus:Obj68AMIGA, to perform some stringoperations, longword multiply and divide, and array of pa
ked operations.

170 Plus/68000 Linkage Conventions and Run-time OrganizationC. Register UsageThe
ode generated by Plus/68000 for the Ma
intosh uses register A5 to point to the globaldata for the program, and A6 to point to the lo
al sta
k frame of the
urrent pro
edure. Forthe AMIGA, the use of these two registers is reversed.D. Parameter PassingParameters and results of Plus/68000 pro
edures are normally passed through the sta
k.Spa
e for the result (if any) is allo
ated on the sta
k by the
alling pro
edure, and the valuesof parameters are then pushed on the sta
k.The
alled pro
edure a

esses parameters and result lo
ations by positive o�sets from thelo
al sta
k frame pointer and lo
al variables by negative o�sets from the frame pointer.E. Ma
intosh Pro
edure LinkagePro
edure linkage in Plus/68000 Ma
intosh programs is performed by the following sequen
e:1. Prelude (performed by
aller)Adjust SP to leave spa
e for result, if any.Push parameters on the sta
k, in left to right order.Push spa
e on the sta
k for any omitted optional parameters.If the
all spe
i�es with ..., load A4 with the spe
i�ed environment.Call pro
edure viaJSR PC,pro
nameor, for system pro
edures, the instru
tion supplied as the external name of thepro
edure.2. Entry (performed by
alled pro
edure)If there are any lo
al variables, save the old sta
k frame pointer on the sta
k, adjuststa
k frame pointer to point to this saved value, and adjust sta
k pointer to allo
atespa
e for the lo
al variables vialink A6,lo
al-sta
k-sizeSave any registers in D3-D7 or A2-A5 whi
h are modi�ed by the
alled pro
edure,usually withmovem.l -(SP),register-maskIf the de�nition spe
i�es the environment option, load A4 with the new environ-ment.3. Exit (performed by
alled pro
edure)Any saved registers are restored, usually withmovemfm.l (SP)+,register-maskIf there are any lo
al variables, the sta
k pointer is restored from the sta
k framepointer, then the sta
k frame pointer is restored by popping it o� the sta
k, via

171Plus/68000 Linkage Conventions and Run-time Organizationunlk A6If there are no parameters, the pro
edure returns viartsIf there are parameters, the
alled pro
edure has to pop the saved PC viamovea.l (SP)+,A0remove the parameters viaaddq.l SP,#nor lea n(SP),SPthen return byjmp (A0)4. Postlude (performed by
alling pro
edure)If the
all spe
i�es with ..., restore the
alling pro
edure's environment base reg-ister (A4).The result, if any, is popped after it has been used.F. AMIGA Pro
edure LinkagePro
edure linkage in Plus/68000 AMIGA programs is performed by the following sequen
e:1. Prelude (performed by
aller)Adjust SP to leave spa
e for result, if any.Push parameters on the sta
k, in right to left order.If the
all spe
i�es with ..., load A6 with the spe
i�ed environment.Call pro
edure viaJSR PC,pro
nameor, for system pro
eduresJSR PC,pro
name(A6)2. Entry (performed by
alled pro
edure)If there are any lo
al variables, save the old sta
k frame pointer on the sta
k, adjuststa
k frame pointer to point to this saved value, and adjust sta
k pointer to allo
atespa
e for the lo
al variables vialink A6,lo
al-sta
k-sizeSave any registers in D2-D7 or A2-A4 or A6 whi
h are modi�ed by the
alled pro
e-dure, usually withmovem.l -(SP),register-maskIf the de�nition spe
i�es the environment option, load A5 with the new environ-ment.

172 Plus/68000 Linkage Conventions and Run-time Organization3. Exit (performed by
alled pro
edure)Any saved registers are restored, usually withmovemfm.l (SP)+,register-maskIf there are any lo
al variables, the sta
k pointer is restored from the sta
k framepointer, then the sta
k frame pointer is restored by popping it o� the sta
k, viaunlk A6The pro
edure returns viarts4. Postlude (performed by
alling pro
edure)The parameters are popped from the sta
k.If the
all spe
i�es with ..., restore the
alling pro
edure's environment base reg-ister (A6).The result, if any, is popped after it has been used.G. Sta
k Frame LayoutAs a result of the above linkage
onventions, the usage of the sta
k by a Plus/68000 pro
edureis as follows. (Note this illustration is the opposite way up from the Plus/370 version, sin
ePlus/68000 sta
ks grow downwards in memory.)... high address
alling result (if any)pro
edure parameters (if any)old PC (return address)?y old sta
k frame base � new sta
k frame base points herelo
al variables
alled register save areapro
edure ... low addressNote lo
al variables are a

essed by negative o�sets from the sta
k frame base, parametersand results are a

essed by positive o�sets.

173APPENDIX G - Plus/68000 Inline CodesThis appendix gives the strings that Plus/68000 re
ognizes for the �rst operand of inline.The re
ognized op
odes are:ab
d add addm adda addiaddq addx and andm andiandi

 andis asl asr aslmasrm atrap bCC b
hgd b
hgb
lrd b
lr bsetd bset bsrbtstd btst
hk
lr
mp
mpa
mpi
mpm dbCC divsdivu eorm eori eori

 eorisexg ext illegal jmp jsrlea link lsl lsr lslmlsrm move movef

 move

 movesrmovefsr moveusp movefusp movea move
movef
 movem movemfm movep movepfmmoveq moves muls mulu nb
dneg negx nop not ororm ori ori

 oris peareset rol ror rolm rormroxl roxr roxlm roxrm rtdrte rtr rts sb
d sCCstop sub subm suba subisubq subx swap tas traptrapv tst unlkThe
odes for the size part are the usual b for byte, w for word (two bytes), and l for long (fourbytes).Those op
odes above that end in CC are formed by repla
ing the CC with one of the following
ondition
odes:t f hi ls hslo ne eq v
 vspl mi ge lt gtleAs well,

 is a

epted for hs,
s for lo, bra for bt and dbra for dbf.The addressing mode spe
i�
ations are:dr ar (ar) (ar)+ -(ar)d(ar) d(ar,xr) abs.w abs.l d(p
)d(p
,xr) # =The = mode is used to indi
ate a PC relative referen
e to a
onstant in the literal pool.

174

175INDEXabs (keyword), 54, 84absolute allo
ation, 77absolute (keyword), 77absolute variable, 77address, 61, 77Address, 27, 34, 61, 73, 81, 100addressability, 101, 102, 140, 159global blo
k, 140Algol, 52, 86Algol-W, 74Algol-68, 84aligned attribute, 68aligned (keyword), 68alignment,global, 100o�set, 68Alignment, 100allo
ation,absolute, 77dynami
, 75external, 75pa
ked, 70re
ord, 74register, 3, 75, 139size, 100storage, 22, 48, 55variable, 74"AMIGA",libraries, 72%Target_Operating_System, 72, 169and (keyword), 37, 84annotation,listing, 122append operator, 31, 55Apple,Ma
intosh, 1apple pie,
see motherhoodare (keyword), 73arithmeti
,with pointers, 143arithmeti
 operator, 54, 83array, 60as parameter, 86
onstant, 61, 74, 81dynami
, 140exe
ution-time, 140multi-dimensional, 25, 60pa
ked, 70run-time, 140

subs
ript, 32type, 25, 60array (keyword), 60ASCII, 79as_is, 123as (keyword), 95, 96assembler, 3listing, 114%Assertion_Che
k, 94, 111, 112assert (keyword), 94assert statement, 94, 111%Assign_Che
k, 111, 112assignment, 34array, 60multiple, 31, 85nested, 2operator, 5, 85operator with, 7, 31pointer, 27, 61prevention of, 72re
ord, 62statement, 5, 31, 85, 111string, 55, 117at (keyword), 77at-sign operator,
see dereferen
e operatorattribute, 68aligned, 68environment, 46, 69, 99fast, 69left, 55, 70pa
ked, 70right, 71small, 71system, 71value, 34, 72, 86ba
kground, 1base register, 103, 108, 159basi
 instru
tion set, 113/begin, 135begin blo
k, 92begin (keyword), 92binary operator, 85binary sear
h, 11bit
onstant, 79bit (keyword), 55bit operator, 56Bit_Size, 100bit type, 23, 55

176 INDEX
oer
ion, 84
omparison, 56blank line,in listing, 122blo
k,begin, 92global, 17, 18, 43, 45, 128s
ope, 20, 22, 52BNF syntax, 149Boolean, 38, 54Boolean, 37box, 123BPI, 142bran
hing, 89built-in,
see built-in pro
edure
see also prede�nedbuilt-in pro
edure, 52, 100Address, 27, 34, 61, 73, 81, 100Alignment, 100Bit_Size, 100Byte_Size, 27, 101, 141Condition, 101External_Name, 102High_Value, 58, 103Inline, 50, 76, 103, 143Left_Justify, 107Length, 54, 107Low_Value, 58, 107Max, 58, 107Min, 58, 107Offset, 107Prede
essor, 58, 107Right_Justify, 108Size, 108Substring, 34, 54, 108, 143Su

essor, 58, 109Byte_Size, 27, 101, 141C, 1, 43
all, 47, 86ma
ro, 99pro
edure, 6, 28, 32, 86
all-by-referen
e, 28, 86
all-by-value, 28, 86
alling sequen
e,
ir
ular, 45
see also linkage
apitalization, 8
ase, 8, 43, 51, 115

ase (keyword), 63, 90
ase label, 63, 89
ase statement,
see sele
t statementCCSYMBOL, 127
enter, 123
entre, 123
hara
ter,
omparison, 55
onstant, 79type, 10, 54
see also string
hara
ter (keyword), 54
hara
ter string,length, 107
heating,type, 50, 62, 63, 95%Che
k, 112
he
king,
ompile-time, 2external symbol, 49parameter, 141pointer, 61, 142range, 3, 10, 54, 61run-time, 2, 10, 54, 94, 109, 116, 117, 126, 127sta
k over
ow, 117, 126, 160string length, 55subs
ript, 3Substring, 117type, 2
ir
ular
alling sequen
e, 45
ir
ular de�nition, 52Clparser (
ommand language parser), 11CLS transfer ve
tor, 159CLSTVPTR, 159
ode,eÆ
ien
y, 3linkage, 160listing, 114reentrant, 43, 45size, 90Code_Base_Register, 101, 163
ode generation, 76
ode (keyword), 87
oding
onventions, 46, 160
oer
ion, 84bit type, 55, 56
onstant, 86denaming, 34parameter, 86

177INDEXreal, 80set, 59
ommand,Run, 7, 9, 121, 125, 131, 133
omment, 5, 17, 43, 122option, 17, 122paragrapher, 122, 123
omment option,as_is, 123box, 123
enter, 123
entre, 123frame, 123Commodore AMIGA,
see "AMIGA"
ommon,Fortran, 18, 48
omparison,arithmeti
, 54array, 60bit type, 56
hara
ter, 55lexi
al, 55operator, 54, 63, 84string, 55
ompatibility,bit type, 56
hara
ter, 54environment, 47global type, 67identi�er-list, 57ma
ro, 51name{value, 35numeri
, 54parameter, 86pointer, 61pro
edure, 67real, 57set, 59subrange, 58type, 21, 84
ompilation,
onditional, 109error, 124separate, 3, 9, 17, 52stru
ture, 43%Compile, 112
ompiler, 7, 121, 131, 133eÆ
ien
y, 3implementation status, 147

input, 121listing, 121logi
al units, 121message, 121option, 52return
ode, 122version, 131, 133version number, 109, 121%Compiler_Debug, 112%Compiler_Dumps, 112
ompiler input, 43
ompiler option,
see
ompiler pro
edure
see also
ompiler variable
ompiler pro
edure, 5, 52, 109, 119%Double, 119%Dump, 119%Eje
t, 119%In
lude, 8, 18, 119, 124, 135%Linkage, 72%Map, 119%Message, 119%Mts, 119%Pop, 120%Print, 120%Pun
h, 120%Push, 120%Unreserve, 112, 120
ompiler variable, 5, 52, 109, 111%Assertion_Che
k, 94, 111, 112%Assign_Che
k, 111, 112%Che
k, 112%Compile, 112%Compiler_Debug, 112%Compiler_Dumps, 112%Convert, 112, 120%Coordinate, 112%Current_Pro
edure, 112%Date, 112%Dump_Tree, 113%Entry, 113%Footer, 113, 123%Global_Id, 46, 69, 113%Installation, 113%Instru
tion_Set, 113%Library, 114, 126%Lines_Per_Page, 114%Linkage, 114, 126%List, 114, 122%List_Code, 114

178 INDEX%Listing_Chara
ter_Set, 115, 123%Lower_Case, 8, 115%Merge_Unref, 115, 124%Obje
t_Length, 115%Optimize, 115%Page_Width, 116%Preempt, 116, 163%Produ
tions, 116%Range_Che
k, 112, 116%Regression_Test, 116%Segment, 116%Sour
e_File, 117%Sour
e_Line, 117%Sta
k_Che
k, 79, 112, 117, 126%Statisti
s, 117%String_Che
k, 112, 117%Subtitle, 117, 122%Target_Ma
hine, 117%Target_Operating_System, 117%Test, 118, 127%Time, 118%Title, 17, 118, 122%Unref, 115, 118, 124%Xref, 118, 124%Xref_S
ope, 118, 124
ompiler version, 121
ompile-time,
he
king, 2if statement, 109statement, 5, 43, 109
ompiling,program, 121, 131, 133
omplement, 85
ompound, 92exit, 93label, 92s
ope, 53
ompound
ondition, 37
ompound statement, 7
on
atenation, 7, 32, 54, 55
ondition,
ompound, 37exit, 92repeat, 93return, 93Condition, 101
onditional
ompilation, 109
ondition
ode, 101
onferen
e, 121
onstant, 34, 79

array, 61, 74, 81as parameter, 64, 86base, 79bit, 79
hara
ter, 79
oer
ion, 86
ompiler variable as, 111de
laration, 9, 21, 73default storage representation, 83display, 81entry, 48, 49, 83expression, 2, 10False, 102hexade
imal, 79identi�er, 73identi�er-list, 80integer, 79load-time, 79numeri
, 79pointer, 81pointer to, 72pre
ision, 80prede�ned, 100pro
edure, 77, 81real, 80re
ord, 74, 81storage representation, 81, 83string, 79stru
ture, 81subs
ript, 61symboli
, 2, 51, 57True, 109Version, 109
see also prede�ned
onstant
onstant (keyword), 73
onstants,entry, 169pointer, 169
onstants (keyword),
see
onstant
ontrol se
tion,
see
se
t
ontrol stru
ture, 1, 88
ontrol variable,do statement, 91
onvention,assembler
oding, 46, 160
apitalization, 8
onversion,input, 11

179INDEXoutput, 11, 40
see also
oer
ion%Convert, 112, 120
oordinate,sour
e, 112, 122%Coordinate, 112
opy,paragraphed, 112, 114, 115, 122, 124sour
e program, 8
opy program example, 5
ross-referen
e, 115, 118, 124
se
t, 49, 74, 83%Current_Pro
edure, 112CXD, 102
y
le (keyword), 90
y
le statement, 38, 90data stru
ture, 1%Date, 112debugging, 118, 122, 127DEC, 1de
laration, 18, 43, 73
onstant, 9, 21, 73global, 17identi�er, 8MTS system subroutines, 121open, 94pro
edure, 17, 18, 22, 44, 77s
ope, 19type, 10, 21, 53, 74variable, 5, 22, 45, 74default storage representation,
onstant, 83de�nition,identi�er, 8ma
ro, 99pro
edure, 5, 18, 44, 77, 96definition (keyword), 44denaming, 34, 72, 84dereferen
e operator, 33, 34, 52, 61des
ription,type, 23, 53des
riptor,sta
k, 159des
riptor (keyword), 157di�eren
e (set operator), 59Digital Equipment Corporation,
see DECdire
tory,library, 135

dirty tri
ks, 139display,
onstant, 81do (keyword), 91do loop,
see do statementdo statement, 39, 91repeat statement in, 93dot operator, 25, 32%Double, 119downto (keyword), 91dse
t, 21, 128map, 119%Dump, 119%Dump_Tree, 113dynami
 allo
ation, 75dynami
 array, 140ea
h (keyword), 91EBCDIC, 79eÆ
ien
y, 3assignment, 7, 31, 85
ompiler, 3equate, 95, 139expression, 10, 38, 54global blo
k, 45linkage, 98open, 95parameter passing, 28register, 76sele
t, 37, 90set, 59storage allo
ation, 22%Eje
t, 119element,array, 60elseif (keyword), 89%elseif (keyword), 110else (keyword), 88%else (keyword), 110/end, 135endjunk, 114, 126end (keyword), 62, 64, 88, 90, 91, 92, 96, 99%end (keyword), 110ENT re
ord, 113, 126entry, 169%Entry, 113entry
ode,pro
edure, 97entry
onstant, 48, 49, 83

180 INDEXentry (keyword), 49, 74, 75entry point, 113entry spe
i�
ation, 74enumerated type,
see identi�er-list typeenvironment, 67, 98attribute, 46, 69, 99
ompatibility, 47global, 46, 69, 87, 113null, 107pointer as, 69re
ord, 46, 48swit
hing, 47, 87, 98type, 46, 113unknown, 69Environment_Base_Register, 48, 102, 163environment (keyword), 47, 67, 69, 98equate (keyword), 96equate statement, 95, 139, 140equivalen
e,type, 21error,
ompilation, 124error �le, 122error message, 121, 124es
ape, 52example program, 5, 11ex
eption, 126exe
utable statement, 43exe
ution, 125exe
ution-time array, 140exit, 88from
y
le, 90from do statement, 91label, 52, 92multilevel, 93statement, 5, 7, 38, 92exit
ode,pro
edure, 97exit (keyword), 92expansion,ma
ro, 50, 99exponent,
onstant, 80expression, 32, 83bit, 55
onstant, 2, 10in open statement, 95logi
al, 84pointer in, 26

pre
eden
e, 84string, 32subs
ript, 60type, 53unknown, 62extended instru
tion set, 113external,allo
ation, 75name, 49, 102variable, 43, 48, 73
see also external symbolexternal (keyword), 48, 49, 75, 78External_Name, 102external symbol, 45, 48, 49, 74, 75, 78, 102
he
king, 49pro
edure, 78false, 37, 84False, 37, 102fast attribute, 69fast (keyword), 69Fet
h_Che
k, 143�eld, 25a

ess, 94identi�er, 52name, 52o�set, 107re
ord, 62sele
tion, 25, 32, 62sele
tor, 63variant, 63�eld sele
tion, 34�le, 17Fixed_String, 10, 54
oating point,
see realfollowing pointer,
see dereferen
e operator%Footer, 113, 123format,library, 135listing, 8program, 7, 43formatted output, 40formatter,
see paragrapherFortran, 43, 80
ommon, 18, 48linkage, 98, 162*Forum, 121

181INDEXframe, 123Frame_Base_Register, 102, 166free variable, 50, 99from (keyword), 63, 90fun
tion, 7, 18, 29
see also pro
eduregeneration,
ode, 76generator,library, 135Getspa
e, 75global,alignment, 100de
laration, 17environment, 46, 69, 87, 113environment id, 67identi�er, 19, 43storage, 69, 159type, 46, 67variable, 43, 45, 74
see also global blo
kGlobal_Base_Register, 102, 166global blo
k, 17, 18, 43, 45, 128addressability, 140identi�er, 51name, 51nested, 17%Global_Id, 46, 69, 113global (keyword), 46, 49, 67, 69Global_Size, 102goals,language, 1goto, 88, 92Gpse
t, 161grammar, 19, 149helpful hints, 139hexade
imal
onstant, 79High_Value, 58, 103HIGH_WATER, 125hints,helpful, 139history, 1IBM, 1identi�er, 8, 21, 51
onstant, 73de�nition, 8, 52global, 19, 43

in ma
ro, 99lo
al, 19ma
ro, 50prede�ned, 8, 100pro
edure, 51, 77, 86s
ope, 52type, 53unde�ned, 52, 53use of, 51variable, 34identi�er-list,
ompatibility, 57
onstant, 80type, 23, 51, 57idiosyn
rasies,ma
hine, 3if (keyword), 88%if (keyword), 110if statement, 6, 36, 84
ompile-time, 109nested, 36%if statement, 109implementation status,
ompiler, 147%In
lude, 8, 18, 119, 124, 135In
rement_Pointer, 143indentation, 2index,array, 60do statement, 91type, 58initialization, 159in (keyword), 59, 68, 75, 84Inline, 50, 76, 103, 143Motorola 68000, 105PDP-11, 105System 370, 103Plus/68000
odes, 173input, 11
ompiler, 43, 121
onversion, 11in (set operator), 59%Installation, 113instru
tions,ma
hine, 103instru
tion set, 113%Instru
tion_Set, 113integer,
onstant, 79type, 54

182 INDEXInteger, 9Integer_To_Varying, 7interfa
ing, 3, 50, 62, 65internal pro
edure,
see ma
rointernal representation, 57International Business Ma
hines,
see IBMinterse
tion, 59invo
ation,ma
ro, 99I/O, 11is (keyword), 73keywords, 2, 8, 43, 120, 157
see also specific index entrieslabel,
ase, 63, 89
ompound, 92exit, 52, 92sele
t, 89<label>, 92LALR grammar, 149language goals, 1LCSPR, 127left attribute, 55, 70Left_Justify, 107left-justifying bit type, 55left (keyword), 55, 68, 70Length, 54, 107lexeme, 7, 50lexi
al
omparison, 55libraries,"AMIGA", 72library,default, 8format, 135generator, 135lister, 136listing, 114obje
t module, 9private, 9, 18pro
edure, 9run-time, 9sour
e, 5, 8, 119, 121, 135utility program, 135%Library, 114, 126library member,Fet
h_Che
k, 143

Linkage_Ma
ros, 146Long_Sta
k_Des
riptor_Type, 159Main, 5, 113, 114Numeri
_Types, 9Return_Code, 144Short_Sta
k_Des
riptor_Type, 159Store_Che
k, 143String_Types, 10limits,do statement, 91linear sear
h, 11%Lines_Per_Page, 114linkage, 44, 78
ode, 160Fortran, 98, 162none, 98option, 96, 114pro
edure, 160, 165, 170, 171routine, 146spe
ial, 97, 146, 161, 166standard, 44S-Type, 65, 162system, 44, 97, 162, 166Type I, 29, 71, 98%Linkage, 72, 114, 126linkage (keyword), 71, 78, 96, 125Linkage_Ma
ros, 146linkage none, 146, 163, 166linked list, 26, 62, 107linking,Plus-11, 131*Link11, 49, 131, 165list,linked, 26, 62, 107statement, 53%List, 114, 122%List_Code, 114lister,library, 136listing, 114, 116annotation, 122assembler, 114
ode, 114
ompiler, 121format, 8sour
e, 2, 114, 115, 122, 124%Listing_Chara
ter_Set, 115, 123loader re
ords, 114, 126load-time
onstant, 79lo
al identi�er, 19

183INDEXlo
al variable, 22, 74lo
ation, 34logi
al, 37logi
al expression, 84logi
al operator, 56, 83, 84logi
al units,
ompiler, 121longjump,
see multilevel returnLong_Sta
k_Des
riptor_Type, 159loop, 5, 38looping, 88, 90, 91lower
ase, 8, 43, 51, 115%Lower_Case, 8, 115Low_Value, 58, 107ma
hine, 117ma
hine address, 26ma
hine idiosyn
rasies, 3ma
hine instru
tions, 103Ma
intosh, 1, 169Ma
intosh Development System,
see "MAC/MDS"Ma
intosh Programmer's Workshop,
see "MAC/MPW""MAC/MDS",restri
tions, 147%Target_Operating_System, 49, 72, 74, 81,169traps, 72"MAC/MPW",restri
tions, 147%Target_Operating_System, 72, 113, 116,169traps, 72ma
ro, 50
all, 99
ompatibility, 51de�nition, 99expansion, 99identi�er, 50, 51invo
ation, 99name, 51parameter, 50, 51, 99use of, 50ma
ro (keyword), 99magi
 number, 2Main, 5, 113, 114, 125main pro
edure, 113map,

dse
t, 119re
ord, 119storage, 119%Map, 119matrix, 25, 60Max, 58, 107Maximum_Integer, 10M
Carthy and, 84M
Carthy or, 84MDS,
see "MAC/MDS"memory, 34
see also storage%Merge_Unref, 115, 124message,
ompiler, 121error, 124Message, 11, 40%Message, 119message building, 7Mi
higan Terminal System,
see MTSMin, 58, 107Minimum_Integer, 10mod (keyword), 54, 84module, 17motherhood, 1Motorola, 1Motorola 68000,Inline, 105Motorola 68000 support,run-time, 133mouthwash, 20moving arbitrary data, 143MPW,
see "MAC/MPW"%Mts, 119MTS, 1, 3, 49, 113, 119, 126system subroutines, 8, 121MTS system subroutines, 1multi-dimensional array, 25, 60multilevel exit, 93multilevel return, 144multiple assignment, 31, 85multiple result, 76MVS, 1M68000, 1name, 34, 61, 63external, 49, 102

184 INDEXparameter, 65, 141
see also identi�ername (keyword), 65nested assignment, 2nested global blo
k, 17nested if statement, 36nested pro
edure, 43news, 121none (keyword), 98non-lo
al variable, 45not (keyword), 84, 85not operator, 85Null, 26, 29, 62, 67, 107numeri
,
ompatibility, 54
onstant, 79operator, 54type, 54Numeri
_Types, 9obje
t
ode des
ription, 159, 165, 169%Obje
t_Length, 115obje
t ma
hine, 113word-size, 55obje
t module, 49, 115, 120, 121library, 9PDP-11, 165stru
ture, 159, 165, 169o�set,alignment, 68re
ord, 107Offset, 107of (keyword), 58, 60, 63Old:OldCCLib, 126open (keyword), 95open statement, 63, 94, 140expression in, 95s
ope of, 94operand, 34, 83Operating System, 117operation,
see operatoroperation ex
eption, 127operator, 83and, 84append, 31, 55arithmeti
, 54, 83assignment, 5, 85binary, 85bit, 56

omparison, 54, 63, 84
on
atenation, 7, 32, 54, 55dereferen
e, 33, 34, 52, 61dot, 25, 32�eld sele
tion, 25, 32, 34, 62logi
al, 56, 83, 84not, 85numeri
, 54or, 84pre
eden
e, 84relational, 54, 57, 61set, 59string, 54subs
ript, 32, 34unary, 54with assignment, 7, 31, 85optimization, 3
see also eÆ
ien
y%Optimize, 115option,
omment, 17, 122
ompiler, 52
see also
ompiler pro
edure
see also
ompiler variableoptional (keyword), 65optional parameter, 44, 65, 141optional result, 66order, 17, 18, 44, 52, 57statement, 8or (keyword), 37, 84output, 11
onversion, 11formatted, 40overlay, 63storage, 95pa
ked,array, 70attribute, 70re
ord, 70with pointer obje
t, 70pa
ked (keyword), 70page skip, 119%Page_Width, 116paragraphed
opy, 112, 114, 115, 122, 124paragrapher, 2, 8, 122
omment, 122, 123line breaks, 123parameter, 18, 43, 44
all-by-referen
e, 86

185INDEX
all-by-value, 86
he
king, 141
oer
ion, 86
ompatibility, 86
onstant as, 64, 86identi�er, 51ma
ro, 50, 51, 99name, 51, 141optional, 44, 141passing, 28, 86, 165, 170referen
e, 28, 34, 139register, 44, 66, 75repeated, 44value, 64parameter (keyword), 44, 64, 99parameterless pro
edure, 23, 64parameter list, 30, 140parameters,of Inline, 103parameters (keyword),
see parameterparser, 11parse sta
k over
ow, 89Par string,
ompiler, 122for exe
ution, 125Pas
al, 1, 43, 89, 94PDP-11, 1Inline, 105obje
t module, 165run-time support, 131per
ent (%), 5philosophy, 2PL/I, 43, 52*Plus, 7, 121Plus:Endjunk, 127PLUSENTR, 125, 126, 165Plus:Libgen, 135Plus:Liblist, 136Plus:Ma
sour
elib, 133Plus:Objlib11, 131Plus:Obj68AMIGA, 133Plus:Obj68MDS, 133Plus:Obj68MPW, 133Plus:Plus#, 121Plus:Plus68, 133*Plus.Sour
elib, 8, 121Plus:Sour
elib11, 131*Plus11, 131pointer, 169

arithmeti
 with, 143as environment, 69assignment, 27
he
king, 142
ompatibility, 61
onstant, 81in expression, 26null, 107to
onstant, 72type, 26, 61pointer (keyword), 61pointer to unknown, 62in equate statement, 96in open statement, 95%Pop, 120pre
eden
e, 32, 84pre
ision, 23, 80real, 57real
onstant, 80Prede
essor, 58, 107prede�ned
onstant,False, 37, 102Global_Size, 102Null, 26, 29, 62, 67, 107True, 37, 109Version, 109prede�ned identi�er, 8, 52, 100prede�ned register variable,Code_Base_Register, 101, 163Environment_Base_Register, 48, 102, 163Frame_Base_Register, 102, 166Global_Base_Register, 102, 166Program_Counter, 108, 166Sta
k_Base_Register, 108, 163Sta
k_Pointer, 108, 166%Preempt, 116, 163preemption,register, 139prevention of assignment, 72%Print, 120private de
laration,
see lo
al identi�erprivate library, 9, 18pro
edure, 44, 49built-in, 100
all, 6, 28, 32, 47, 86
ompatibility, 67
ompiler, 5, 52, 119
onstant, 77, 81de
laration, 17, 18, 22, 77

186 INDEXde�nition, 5, 18, 77, 96environment, 46external symbol, 78identi�er, 77, 86library, 9linkage, 78, 160, 165, 170, 171main, 113Main, 5, 125multiple result, 76nested, 43null, 107parameterless, 23, 64result, 29resultess, 64return, 7return
ode, 87return value, 93sta
ksize spe
i�
ation, 78system, 44type, 18, 22, 27, 64unknown, 67variable, 29pro
edure (keyword), 44, 64, 77, 96pro
edures (keyword),
see pro
edure%Produ
tions, 116program,example, 5, 11format, 7, 43how to
ompile, 7, 121, 131, 133how to run, 7, 125, 131, 133main, 5sour
e, 121stru
ture, 1Program_Counter, 108, 166program interrupt, 112, 126, 127prote
tion ex
eption, 126PRV,
see pseudo-register ve
torpseudo-register, 45, 107pseudo-register ve
tor, 43, 45, 48, 69, 159with SDS, 128%Pun
h, 120%Push, 120Q-
on, 107QGLOBAL, 127QLCSPR, 127QQSV, 47QSYSENTR, 98, 162

radix,bit-
onstant, 80%Range_Che
k, 112, 116range
he
king, 3, 10, 54, 61readability, 2, 21, 24, 95read-only variable, 73real,
oer
ion, 80
onstant, 80pre
ision, 57type, 23, 57real (keyword), 57, 80re
ompilation, 18re
ord,allo
ation, 74as environment, 160as parameter, 86assignment, 62
ir
ular de�nition, 52
onstant, 74, 81environment, 46, 48map, 119o�set, 107pa
ked, 70SYM (for SDS), 122, 128type, 24, 62variant, 63re
ord (keyword), 62reentran
y, 18reentrant
ode, 43, 45referen
e (keyword), 64referen
e parameter, 28, 34, 64, 139register,allo
ation, 3, 75, 139base, 159parameter, 44, 66, 75preemption, 139result, 66, 75usage, 159, 165, 170use, 116, 139variable, 3, 75, 103, 105, 140
see also prede�ned register variableregister (keyword), 66, 75registers (keyword),
see register%Regression_Test, 116relational operator, 54, 57, 61repeated (keyword), 65repeated parameter, 44, 65repeat (keyword), 92, 93

187INDEXrepeat statement, 93in do statement, 93reserved words,
see keywordsrestri
tions,"MAC/MDS", 147"MAC/MPW", 147result, 18, 44, 93identi�er, 51multiple, 76name, 51optional, 66pro
edure, 29register, 66, 75resultess pro
edure, 64result (keyword), 64return,multilevel, 144pro
edure, 7statement, 29, 39, 93value, 44, 86, 93return
ode, 29, 144
ompiler, 122from exe
ution, 126return
ode, 87Return_Code, 144Return_From,library member, 144return (keyword), 87, 94right attribute, 71Right_Justify, 108right-justifying bit type, 55right (keyword), 68, 71Run
ommand, 7, 9, 121, 125, 131, 133run-time,array, 140
he
king, 2, 10, 54, 94, 109, 116, 117, 126, 127library, 9Motorola 68000 support, 133PDP-11 support, 131support, 126run-time option,HIGH_WATER, 125STACK_SIZE, 125s
alar
onstant, 79s
alar type, 53, 58S
ards_Varying, 6s
ope, 20, 22, 45, 52de
laration, 19

in begin blo
k, 92in
y
le, 90in do statement, 91in if statement, 88in ma
ro, 50, 99in sele
t, 89of open statement, 94rules, 52SDS, 118, 122, 126, 127sear
h program example, 11%Segment, 116sele
t,label, 89statement, 37, 89sele
t (keyword), 90sele
tor �eld, 63semi
olon, 41, 43use of, 7separate
ompilation, 3, 9, 17, 52set,
oer
ion, 59
ompatibility, 59operator, 59type, 58set (keyword), 58Setup_Return_From,library member, 144Short_Sta
k_Des
riptor_Type, 159signed (keyword), 157size, 100Size, 108small attribute, 71small (keyword), 71sour
e,library, 5, 8, 119, 121, 135listing, 2, 114, 115, 122, 124program, 121sour
e
oordinate, 112, 122, 128%Sour
e_File, 117%Sour
e_Line, 117spe
ial linkage, 97, 146, 161, 166spelling, 17sta
k, 74, 108, 131, 159des
riptor, 159frame, 102, 140, 164, 167, 172over
ow
he
king, 117, 126, 160size, 78, 125, 161use, 125Sta
k_Base_Register, 108, 163%Sta
k_Che
k, 79, 112, 117, 126

188 INDEXSta
k_Pointer, 108, 166STACK_SIZE, 125sta
ksize (keyword), 78, 126STAKSIZE, 161standard instru
tion set, 113standard linkage, 44statement, 43assert, 94, 111assignment, 5, 31, 85, 111
ompile-time, 109
ompile-time if, 109
ompound, 7
onstant, 73
y
le, 38, 90do, 39, 91equate, 95, 139, 140exit, 5, 7, 38, 92if, 6, 36, 84%if, 109list, 53open, 63, 94, 140order, 8repeat, 93return, 29, 39, 93sele
t, 37, 89%Statisti
s, 117STDTV, 159STK_DESC, 159, 161storage,allo
ation, 22, 48, 55, 70global, 67, 69, 159map, 119overlay, 95value, 34storage (keyword), 157storage representation,
onstant, 81, 83Store_Che
k, 143string,assignment, 55
omparison, 55
onstant, 79expression, 32length, 107length
he
king, 55operator, 54type, 10
see also
hara
ter%String_Che
k, 112, 117String_Types, 10

stru
ture,
ompilation, 43
onstant, 81
ontrol, 1, 88data, 1obje
t module, 159, 165, 169program, 1
see also re
ordstyle, 2, 21, 24S-Type linkage, 65, 162subrange type, 58base type, 58subroutine, 18system, 8
see also pro
eduresubs
ript, 25, 32, 34, 60
he
king, 3subset (keyword), 59, 84subset (set operator), 59substitution,ma
ro, 50Substring, 34, 54, 108, 143
he
king, 117%Subtitle, 117, 122Su

essor, 58, 109Sue, 1, 94, 103support,run-time, 126swit
hing environment, 47, 87, 98symbol,external, 45, 48, 49, 74, 75, 78, 102SDS, 128
see also identi�ersymboli

onstant, 2, 51, 57SYM re
ord, 118, 122, 128syntax,BNF, 149system,attribute, 71linkage, 44, 97, 162, 166pro
edure, 44system (keyword), 67, 71, 97system subroutines,de
larations, 121MTS, 1, 8System 370, 1Inline, 103%Target_Ma
hine, 117%Target_Operating_System, 117, 133

189INDEX"AMIGA", 72, 169"MAC/MDS", 49, 72, 74, 81, 169"MAC/MPW", 72, 113, 116, 169temporary variable, 20, 22terseness, 2%Test, 118, 127test system,Plus-11, 131then (keyword), 88%then (keyword), 110%Time, 118title, 17%Title, 17, 118, 122TN
hara
ter set, 115token, 7, 50to (keyword), 61, 91, 96top-down programming, 50traps,"MAC/MDS", 72"MAC/MPW", 72tri
ks,dirty, 139true, 37, 84True, 37, 109tutorial, 5type, 53array, 25, 60attribute, 68bit, 23, 55Boolean, 37
hara
ter, 10, 54
heating, 50, 62, 63, 95
he
king, 2
ompatibility, 21, 84de
laration, 10, 21, 53, 74des
ription, 23, 53environment, 46equivalen
e, 21expression, 53global, 46, 67identi�er, 51, 53identi�er-list, 23, 51, 57index, 58integer, 54Integer, 9logi
al, 37name, 51numeri
, 54pointer, 26, 61pro
edure, 18, 22, 27, 44, 64

real, 23, 57re
ord, 24, 62s
alar, 53, 58SDS, 128set, 58string, 10subrange, 58unde�ned, 52unknown, 62varying-length
hara
ter, 54varying-length string, 54varying string, 54Type I linkage, 29, 71, 98type (keyword), 73types (keyword),
see typeunary operator, 54unde�ned identi�er, 52, 53understandability, 2union (set operator), 59unknown environment, 69unknown (keyword), 62, 67, 69unknown pro
edure, 67unknown type, 62in equate statement, 96unless (keyword), 93%Unref, 115, 118, 124%Unreserve, 112, 120unsigned (keyword), 157unspe
i�ed pro
edure, 67upper
ase, 8, 43, 51, 115use (keyword), 157use of identi�er, 51use of ma
ro, 50use of registers, 116use of SDS, 127use of semi
olon, 41utility program, 135Plus:Libgen, 135Plus:Liblist, 136value, 34attribute, 72
onstant, 49parameter, 64, 86pointer, 61pro
edure, 86, 93return, 44, 93value (keyword), 34, 72, 86

190 INDEXvariable,absolute, 77allo
ation, 74
ompiler, 5, 52, 111de
laration, 5, 22, 45, 74external, 43, 48, 73free, 50, 99global, 43, 45identi�er, 34, 51lo
al, 22name, 51non-lo
al, 45prede�ned, 100pro
edure, 29read-only, 73real, 57register, 3, 75, 103, 105, 140storage allo
ation, 48temporary, 20, 22variable (keyword), 73variables (keyword),
see variablevariant �eld, 63variant (keyword), 63variant re
ord, 63size of, 101varying-length
hara
ter type, 54varying-length string, 11varying-length string type, 54varying string,type, 54Varying_String, 11V-bit, 65, 141verbosity, 2version,
ompiler, 121, 131, 133Version, 109version number,
ompiler, 109, 121virtual memory, 4VS-1, 1when (keyword), 92with (keyword), 87, 94word-size,obje
t ma
hine, 55xor (keyword), 84XPL, 103Plus-11,

test system, 131Plus/68000
odes,Inline, 173xref,
see
ross-referen
e%Xref, 118, 124%Xref_S
ope, 118, 124

