UBC PLUS

The Plus Programming Language

by Alan Ballard and Paul Whaley
October 1976

Revised October 16, 1987

Computing Centre
UNIVERSITY OF BRITISH COLUMBIA
6356 Agricultural Road
Vancouver, B.C., Canada V6T 1W5

Copyright © 2010

Note

This manual provides a description of the systems programming
language Plus, developed at the University of British Columbia by
Alan Ballard and Paul Whaley.

This document was originally prepared for the MTS Systems Work-
shop at Ann Arbor (October 1976). A major revision including
many more details and examples was prepared for June, 1986.

This edition incorporates information on the Motorola 68000 Plus
compiler. It corresponds to version 28/13 of the Plus compilers.

The implementations of Plus are not yet complete. This version of
the manual has been annotated to indicate language features which
are not yet implemented in the compilers.

Plus/370 is fully supported by the UBC Computing Centre for use
under MTS. Plus-11 has not been officially released to Computing
Centre users, and the external support level has not yet been estab-
lished. Plus/68000 is currently undergoing initial testing.

Table of Contents

I. The Plus Programming Language

A
B.

Background

Language Goals

1. Program Structures .
Problem-Oriented Data Structures
Readability and Understandability
Parameterization

Efficient Code
Systems Programming Fa(:lhtles
Compiler Efficiency

PN DO W N

II. Tutorial Introduction

QEEDQWE

=~ m

A Program to Copy a Flle .
Compiling and Running the Program .
Program Format
Declarations in Plus

The Source Library

The Runtime Library
Types and Declarations .
1. Numeric Types

2. String Types

Plus I/O .

Table Search Example
Program Structure .
1. Separate Compilation
2. Global Blocks

3. Procedure Definitions
Declarations

1. Scope of Declaratlons
Constant Declarations
Type Declarations
Variable Declarations
Procedure Declarations
Type Descriptions

Basic Types

Record Types

Array Types

Pointer Types
Procedure Types

a. Call-By-Value .
b. Call-By-Reference
c. Procedure Results

T W

Ol W=

d. Other Procedure Type Descrlptlons

e. Procedure Variables
Executable Statements
1. Assignment

Compile-Time and Run- Tlme Checklng

il

W W WNNN == ==

© © 0 00 =~ I Ot Ot

O W RN NN DNDNDINDNDNDDNDNDNDNDNDNN P =
HF R OO OO TDU R WWNNRFR P OWWWwIIHFR~O©

v

N.
0.
P

Table of Contents

Expressions

Names and Values .
If Statements and Condltlons
Looping Statements

a. Cycle Statements

b. Do Statements

6. Return Statements

The Message Procedure

About the semicolons

The Rest of Plus

Ol N

I11. Language Details

A.
B.
C.

Program Format
Compiler Input
Compilation Structures
1. Procedures

Global Variables and Global Blocks

2
3. Global Environments
4. External Variables
5. Entry Constants .
6. External Symbols
7. Macros

Identifiers .

1. Uses of Identlﬁers

2. Definition of Identifiers

3. Scope of Identifiers

Type Descriptions

Numeric Types
Character Types

Bit Types

Identifier-List Types
Real Types

Index Types

Subrange Types

Set Types

Array Types

10. Pointer Types

11. Record Types .
12. Variant Fields in Records
13. Procedure Types

14. Global types

Type Attributes

Aligned

Environment

Fast

Left

Packed

Right

Small

System

PN DO WD

©

O N DO W

32
34
36
38
38
39
39
40
41
42

43
43
43
43
44
45
46
48
49
49
50
o1
o1
52
52
53
o4
o4
95
o7
o7
o8
o8
o8
60
61
62
63
64
67
68
68
69
69
70
70
71
71
71

vozz

Table of Contents

9. Value

Declarations .

1 Constant Declaratlons

2. Entry Specification

3. Type Declarations

4. Variable Declarations

5. Allocation Specifications
a. External Allocation
b. Register Allocation
c. Absolute Allocation

6. Procedure Declarations

7. Procedure Specifications
a. External

b. Linkage
c. Stacksize
Constants

Integer constants

Character constants

Bit constants

Real constants .
Constants of identifier- hst types
Procedure constants

Pointer constants

Constant Displays .
Constant storage representatlon
Express1ons .

1. Operands and Operatlons

2. Coercions .

3. Logical Express1ons

Assignment Statements

Procedure Calls

1. Parameter Passing

2. Return Codes .

3. Switching Global Storage Env1ronment
Control Structures

1. If Statements

Select Statements

Cycle Statements

Do Statements

Begin Blocks

Compounds

Exit Statements

Repeat Statements

9. Return Statements

Assert .

Open Statements

Equate Statements

Procedure Definitions

1. Linkage Option .

a. linkage "eztname"

© XN O W=

PN DOt W N

72
73
73
74
74
74
75
75
75
7
7
78
78
78
78
79
79
79
79
80
80
81
81
81
83
83
83
84
84
85
86
86
87
87
88
88
89
90
91
92
92
92
93
93
94
94
95
96
96
97

vi

FO

2.

Table of Contents

b. linkage system
¢c. linkage none
Environment Option

Macro Definitions

Built-in Procedures, Constants, and Variables

1.

e N

10.

12.
13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

Address

Alignment

Bit_Size .
Byte_Size
Code_Base_Register
Condition e
Environment_Base_Register
External_Name

False e
Frame_Base_Register
Global_Base_Register
Global_Size

High_Value

Inline e e e
a. Inline for the System 370
b. Inline for the PDP-11

c. Inline for the Motorola 68000

Left_Justify

Length

Low_Value

Max

Min

Null

Offset

Predecessor
Program_Counter
Right_Justify

Size Coe e
Stack_Base_Register
Stack_Pointer
Substring

Successor

True

Version

Compile-Time Statements

1.
2.
3.

Compile-Time If Statements
Compiler Variables
Compiler Procedures

IV. Using the System 370 Plus Compiler
Compiler Versions

Compiling a Program

Compiler Output

A
B.
C.

1.
2.

Source Listing .
Comment Paragraphing

97
98
98
99

. 100
. 100
. 100
. 100
. 101
. 101
. 101
. 102
. 102
. 102
. 102
. 102
. 102
. 103
. 103
. 103
. 105
. 105
. 107
. 107
. 107
. 107
. 107
. 107
. 107
. 107
. 108
. 108
. 108
. 108
. 108
. 108
. 109
. 109
. 109
. 109
. 109
. 111
. 119

121
121
121
. 122
. 122
. 123

F.

Table of Contents

3. Paragraphed Copy

4. Cross-Reference

5. Errors .
Running A Plus/ 370 ObJect Program
Loader Records Required By Plus Programs
1. Y%Linkage="OLD" S

2. %Linkage="NEW"

Debugging Plus Programs

V. Using the PDP-11 Plus Compiler

A.
B.
C.

Compiler Versions

Compiling a Program .
Running a PDP-11 Program
1. Use of Linkll .
2. Building A Test System

VI. Using the Motorola 68000 Plus Compiler

A.
B.
C.

Compiler Versions
Compiling a Program .
Running a Motorola 68000 Program

VII. Source Libraries

Cawe

Library Format

Specifying Libraries to the Compller
Including Source From a Library .
Source Library Utilities

1. Plus Library Generator .

2. Library Listing Program

VIII. Helpful Hints and Dirty Tricks .

CrEQEEDOE R

Using Equate to Improve Code Generatlon
Plus/370 Register Use

Execution-time Array Dimensions
Checking For Optional Parameters
Checking Addresses

Moving Arbitrary Data

Pointer Arithmetic .
Return Codes from Plus Procedures
Multilevel Procedure Returns

Special Linkage Routines

APPENDIX A — Implementation Notes and Current Status

APPENDIX B - BNF Syntax

APPENDIX C — Plus Reserved Words

APPENDIX D — Plus/370 Linkage Conventions and Run-time Organization

A.

B.
C.

Register Usage . .
Stack and Global Orgamzatlon
Plus Procedure Linkage

vil

. 124
. 124
. 124
. 125
. 126
. 126
. 127
. 127

. 131
. 131
. 131
. 131
. 131
. 131

. 133
. 133
. 133
. 133

. 135
. 135
. 135
. 135
. 135
. 135
. 136

. 139
. 139
. 139
. 140
. 141
. 142
. 143
. 143
. 144
. 144
. 146

. 147

. 149

. 157

. 159
. 159
. 159
. 160

viil

D.

Table of Contents

Stack Frame Layout

APPENDIX E - Plus-11 Linkage Conventions and Run-time Organization

A.
B.
C.
D.
E.

Object Modules
Register Usage
Parameter Passing
Procedure Linkage
Stack Frame Layout

APPENDIX F - Plus/68000 Linkage Conventions and Run-time Organization

A.

OEEDAR

Macintosh System Support . .
1. Macintosh Programmer’s Workshop (MPW)
2. Macintosh Development System (MDS)
AMIGA System Support Ce
Register Usage

Parameter Passing

Macintosh Procedure Llnkage

AMIGA Procedure Linkage

Stack Frame Layout

APPENDIX G — Plus/68000 Inline Codes

INDEX

. 164

. 165
. 165
. 165
. 165
. 165
. 167

. 169
. 169
. 169
. 169
. 169
. 170
. 170
. 170
. 171
. 172

. 173

. 175

I. The Plus Programming Language
A. Background

Plus is based to a large extent on the Sue system language, which was developed at the
University of Toronto, circa 1971, for the specific purpose of implementing an operating
system for the IBM System 360 computers.! The Sue language was derived (particularly
in its data structure facilities) from Pascal. The same is true of Plus, although we have
probably moved a little further from the actual syntax of Pascal. The Sue language had a
number of awkward constructs and other syntactic rough-spots which we have tried to smooth
over. Undoubtedly, some of the changes we’ve made reflect personal biases, and will not be
unanimously viewed as improvements on either Pascal or Sue.

Plus is superficially quite different from Sue or Pascal; however the underlying language
semantics are really very similar. It also has much in common with the structure and semantics
of the programming language C. If you’re familiar with any of these languages, you shouldn’t
have much trouble adapting to Plus.

The Plus compilers are written entirely in Plus. There are currently three versions, generating
code for the IBM System 370-compatible computers, for DEC PDP-11’s, and for the Motorola
M68000 family of microprocessors. All run on System 370-compatible computers under MTS.?
The code generated by the 370 compiler is a standard MTS/IBM object module. It does
not depend on MTS operating system services, except for a small initialization procedure
which must allocate storage. The PDP-11 cross-compiler generates object code for the PDP-
11 series in the form of a *Link11 object module. The code generated does not depend
on the system running in the PDP-11, but expects a small run-time environment which is
provided by assembler routines. The M68000 cross-compiler generates object code for the
Macintosh Programmer’s Workshop, or the Macintosh 68000 Development System, or the
AMIGA system.?

B. Language Goals

This section describes some of the design considerations and language philosophy of Plus.
Most of these goals (and in fact, parts of the following description) have been borrowed di-
rectly from Sue. The overriding considerations are that the language must contribute to the
production of correct, easily maintained, efficient programs. This has a number of implica-
tions:

1. Program Structures

The language provides only control structures which encourage reasonable program struc-
ture. It must provide an efficient procedure calling/entry sequence, in order to encourage
modularity.

2. Problem-Oriented Data Structures

The data structuring facilities of Plus are similar to those of Pascal. They allow de-

IBM is a trademark of International Business Machines Inc.

There is also a version of the 370 compiler which runs using a “fake MTS” interface under IBM’s VS-1 or MVS
operating systems. The interface was developed by Peter Ludemann of the Block Brothers Data Processing Centre

in Vancouver, B.C.

AMIGA is a trademark of Commodore-Amiga Inc., Macintosh is a trademark licensed to Apple Computer Inc.

2 The Plus Programming Language

scription of variables in more problem-oriented terms than most languages. That is,
any item is described in terms of the values it will be assigned rather than the storage
locations it is to occupy. For example, a numeric variable is defined in terms of the range
of numbers it may be assigned, rather than the number of bits it requires. The data
structuring facilities tend to be more self-documenting than most languages. They also
assist the compiler in making intelligent storage allocation and code generation decisions
since the compiler is provided with a description of the essential properties of variables.
The information is also available for use in compile-time or run-time checking.

3. Readability and Understandability

This is an important requirement of the language and has influenced its design in many
ways. Plus makes no attempt to be terse. In this respect our language differs in a major,
philosophical, irreconcilable way from what many people consider a “good” language.
Wherever possible, the language uses English keywords rather than strange punctuation
marks. Keywords cannot be abbreviated. The language encourages the use of long,
self-documenting variable names and symbolic constants. While we haven’t yet found a
way of preventing the use of Fortran-style remove-all-the-vowels contractions, they are a
violation of the intended style.*

A number of features commonly found in modern programming languages—such as the
ability to have assignments nested within more complex expressions—have been left out
of Plus because we believe they lead to programs which are unnecessarily difficult to
understand. The small saving in source program size, and possible saving in object code
size (we hope our compiler will eventually catch most of the situations where there would
be a saving) doesn’t seem to justify the inclusion of such features.

To increase the readability of source program listings, the compiler produces only a para-
graphed listing showing control structures, etc. by means of indentation. The compiler
can also produce a paragraphed copy of the source input that is suitable for use as input
for subsequent runs of the compiler.

It is particularly important for systems programs that another programmer should be
able to pick up a listing and quickly acquire a general idea of how the program works.
We believe that the Plus control structures and data structures, together with reasonable
identifiers and paragraphed listings, help considerably in achieving this.

4. Parameterization

To reduce maintenance difficulties, it is generally important that a program be written to
contain as few occurrences of “magic numbers” as possible. As a general rule such things
as sizes of tables etc., should be defined in one place only and referenced wherever else
they are required by means of symbolic constants and expressions using the constants.
Plus contains the ability to do this kind of parameterization.

5. Compile-Time and Run-Time Checking

The language is expected to assist actively in the detection and isolation of errors, at
compile-time if possible. To this end, the language requires all variables to be declared

4 Within the Plus compiler itself, the average identifier length is about 13.5 characters—longer than the maximum
allowed by many languages.

The Plus Programming Language 3

and performs full type checking of all expressions at compile-time. Type checking includes
checking the types of parameters to procedures and the results of following pointers.

The compiler will also (optionally) generate extra code to check at run time for certain
errors that cannot be detected at compile time. In particular, it can check that values
assigned to variables or used as subscripts are within the declared ranges.

Writing the extensive declarations required is often a lot of work. However, our experience
with Plus has been that the checking the compiler performs will catch many of the more
common programming errors. Also, the extra care that is required in writing a program
according to Plus’s stringent rules seems to result in programs with amazingly few bugs.
We often find that it takes several runs to get a large program to compile successfully,
but the resulting object code will work after only a very few attempts at running it.

Efficient Code

A systems programming language must necessarily produce efficient code. One conse-
quence of this is that we attempt to avoid including in the language any constructs that
are inherently inefficient, or which produce object code larger than you might expect
from the source code.

A number of features of the language—including the control structures provided and the
nature of the declarations—allow the compiler to obtain information required to produce
good code.

The current version of the Plus compiler will generate quite good code on a statement-
by-statement basis, but is not clever enough to optimize its register use. Plus allows
you to specify that certain variables should be allocated in registers. This means you
can assist the compiler in generating good code in critical areas of the program. We
hope that future compiler development will provide improvements in the compiler’s use
of registers, and thus obviate the need for the programmer to specify register variables.

Systems Programming Facilities

When you’re using a high-level language you shouldn’t normally need to worry about
machine idiosyncrasies. However there are some situations where—either for reasons
of efficiency, or to interface with the hardware or external software—you may need to
exercise precise control over the instructions generated and the allocation of storage
and registers. There are also situations where, primarily for efficiency reasons, certain
language restrictions may be unacceptable. The language provides facilities which can be
used, if required, to control size and alignment of variables, force allocation of registers,
or emit explicit machine instructions. It also includes the ability to circumvent the usual
type-checking rules of the language.

Compiler Efficiency

The Plus compiler is reasonably efficient, although this has not been a strong requirement.
It’s hard to do worse than the 370 assemblers. In fact Plus programs are generally
considerably cheaper to compile than equivalent size Assembler programs.

The language provides facilities for separate compilation of parts of a program, in order
to keep compilation costs reasonable for large programs.

Some decisions in the compiler implementation have been affected by cost considerations
for use under MTS—for example we make extensive use of virtual memory rather than

The Plus Programming Language

scratch files. Some restrictions of the language result from compilation cost considera-
tions.

II. Tutorial Introduction

This chapter provides a quick introduction to Plus. It will show you the basic elements of the
language by presenting and explaining a couple of complete programs.

By the time you’ve read this chapter, you should be able to write simple Plus programs for yourself.
However, this tutorial is not at all complete, and not totally truthful, so if you want to use Plus
for real problems, please read the following chapters as well.

Most of what is described in this chapter applies to all the Plus compilers. However, several of the
library definitions and procedures described may only exist for Plus/370.

A. A Program to Copy a File

We'll start with a really simple example. Example 1 contains a complete Plus program. The
numbers at the left are just for reference in the following explanations; they are not part of
the program.

The purpose of this program is to copy one file to another, then write out a count of the
number of lines copied. We’ll first explain the pieces of this program very briefly, then fill in
some details later.

Lines 1 to 3 and line 5 are used to include a number of statements from a library of standard
definitions. Library members typically contain declarations for various constants, types, and
procedures. Symbols beginning with % are compiler variables or compiler procedures. They
are used to request special compile-time services.

Line 5 includes a declaration for the procedure Main from the library. Main is a standard
name for the “main program”, i.e., the procedure which is going to begin executing when you
run the program. Some special magic is required in the declaration of the main program to
get things started up properly when you execute the program. The declaration in the library
provides the necessary specifications. Later on, when you learn the details of the declaration
of Main, you can call your main program something else, if you want to.

Lines 7 though 10 are a comment. Anything between /* and */ is ignored by the compiler.
Other comments appear at lines 15-16, line 21, and line 27.

Lines 11 through 30 constitute the definition of the procedure Main. Between the heading
definition Main and the ending end Main go declarations of identifiers that are private to
Main, and the executable statements that are to be performed whenever procedure Main is
invoked.

Lines 12 and 13 declare three variables, Count, Return_Code, and String, which are to be
used in the following statements. Count and Return_Code are defined to be of type Integer,
while String is defined to be of type Varying_String. We'll say more about these specific
types in a few minutes. At this point, note that every variable used in a Plus program must
be declared, to associate a type with the variable. The variable can only be used in contexts
appropriate to its type.

Line 14 is an assignment statement, which sets the value of the variable Count to 0. Note
that Plus uses := for assignment.

Lines 17 through 26 constitute a loop, which continues executing indefinitely, until the exit
statement at line 22 is executed. That is, execution continues from line 26 by returning to
line 17. When the exit is performed, execution continues at line 28, after the end of the loop.

6 Tutorial Introduction

[1] %Include(String_Types, Numeric_Types);

[2] %Include(Scards_Varying, Spunch_Varying, Sprint_Varying);
(3] %Include(Integer_To_Varying);

]

[5] %Include(Main);

(6]

[7] /* This is an example program. It copies an input file
8] to an output file and prints a message saying how

9] many records were copied.

[10] */

[11] definition Main

[12] variables Count, Return_Code are Integer,

[13] String is Varying_String;

[14] Count := 0;

[15] /* Loop reading and writing records, counting number
[16] copied. */

[17] cycle

[18] Scards_Varying(String, Return_Code);

[19] if Return_Code —= 0

[20] then

[21] /* Terminate loop when no more input */

[22] exit

(23] end if;

[24] Spunch_Varying(String) ;

[25] Count := Count + 1

[26] end cycle;

[27] /* Build and print a message. */

[28] String := " Copied " || Integer_To_Varying(Count, 0) || " records.";
[29] Sprint_Varying(String)

[30] end Main

- Example 1—File Copy Program

Line 18 invokes a procedure! Scards_Varying, whose definition was included from the library
by line 2. Scards_Varying reads a line from MTS I/O unit Scards, and assigns the value
read to the first parameter, which must be a suitable character variable. It assigns the return
code of the operation to the second parameter. Note that the procedure call just consists of
the name of the procedure followed by a list of its parameters. There is no “call” keyword.

Lines 19 through 23 constitute an if statement. Note that the if statement is terminated with
an end if. (Just end is allowed also.) Between the keyword then and the end if, there could
be an arbitrary list of statements, although in this case there is just the exit statement. In
general, there might also be an else-part before the end if. This particular if statement tests
the variable Return_Code, which Scards_Varying sets to the return code delivered by the
Scards call. If it is nonzero (indicating end-of-file or an error), then the loop is terminated.

1 To be strictly accurate, Scards_Varying is not a procedure but a macro. This distinction is unimportant at
this point, and in fact we won’t discuss macros in this tutorial.

Tutorial Introduction 7

Line 22, the exit statement, terminates execution of the loop. We could actually have specified
the condition as part of the exit statement, replacing all of lines 19 to 23 with

exit when Return_Code —= 0;
Line 24 writes out the line just read to I/O unit Spunch.

Line 25 adds one to the counter of lines read. Actually, this statement isn’t very good Plus.
Instead, it should be written as

Count +:=1
which means the same as
Count := Count + 1
but may be more efficient (besides being less typing).

Line 28 builds a message specifying the number of records copied. The operator || is used to
concatenate character strings. Integer_To_Varying is a library function (whose declaration
was included at line 3) which converts an integer to a character string. The parameters of
Integer_To_Varying specify the number to be converted, and a field width to use. 0 for the
field width means to format it in the minimum number of characters. Note that functions in
Plus can return arbitrary objects—in this case, a variable length character string is returned.

Line 29 then prints out this message on I/O unit Sprint, using another library routine.

After executing the last statement, the procedure automatically returns to its caller—in this
case terminating execution and returning to the operating system.

Compiling and Running the Program
If this program is in the file Plusexl.s, it can be compiled by issuing the MTS command
Run *Plus Scards=Plusexl.s

This will produce a listing on I/O unit Sprint (which normally defaults to your terminal or
printed output), and an object module in the file ~-Load. You can specify I/O unit Spunch on
the Run command to put the object module somewhere else.

The program (from file -Load) can be executed by issuing a command like
Run -Load Scards=Infile Spunch=0utfile

which copies file Infile to Outfile.

Program Format

Plus programs are free-format, with line boundaries being ignored. You may format the text
in your source file any way you like, breaking lines wherever is convenient, except that you
cannot break in the middle of a single “token”. That means you can’t split an identifier, a
keyword, a string constant, etc., across two lines. (A comment is treated as a sequence of
tokens, so it can be continued across any number of lines.)

Statements are separated with semicolons. Thus, for example, lines 1, 14, 18, contain one
statement each. Line 17, on the other hand, is not a statement. It is just a part of the
compound statement which goes from line 17 to line 26. We’'ll say more later about just

Tutorial Introduction

when you need a semicolon and when you don’t. In general, Plus is fairly forgiving if you
put in some you don’t really need. All the examples in this manual will include exactly the
semicolons that are required, with no extra ones.

The listing produced by the Plus compiler will always be formatted to indicate the structure
of your program, indenting the insides of loops, and so on. All the examples in this manual
are formatted the way they would be by the compiler. You can also ask the compiler to
produce a copy of your program that is formatted in the same way, by assigning unit 1 on
the Run command. This can be useful to produce a cleaned-up source file after you’ve edited
a program extensively.

Plus uses quite a lot of keywords to define the various kinds of statements, operations and
types, and to make them as readable as possible. These keywords are reserved—you can’t
use them as names for things you define in your program. A complete list of Plus’s reserved
words appears in Appendix C. In the example program, and throughout this manual, the
reserved words appear in all lowercase letters, while symbols which are not reserved will have
the first letter of each segment capitalized. So if, cycle, program are reserved, but Integer,
Return_Code, Numeric_Types are not. This same lowercase/capitalization convention is used
by the Plus compiler in any messages it produces. By using the compiler option %Lower_Case,
you can ask the compiler to format identifiers and keywords in the listing and reformatted
copy this way too.

This is only a convention, however. The compiler ignores upper/lower case distinctions in
interpreting its input. That is, IF, iF, If and if are all interpreted as the reserved word if,
and Count, count, COUNT, etc., are all the same variable.

Declarations in Plus

In Plus, as in most languages, you will use identifiers for several different purposes—the names
of variables (of various types), procedures, fields of records, and so on.

Most of these will be names which are invented by you and are specific to your program. You
must define all such identifiers in an appropriate declaration statement.

Some identifiers may be defined by including their declarations from a source library. There
are a few others that are predefined by the compiler, but not reserved—you can use the same
symbol for your own purposes (although you probably shouldn’t).

The various kinds of declarations can appear in any order, and can be intermixed with ex-
ecutable statements. However, every identifier has to be declared before the first time it is
used in other contexts.

The Source Library

To reduce repetitive coding, and to help maintain consistent definitions, the Plus compilers
provide a source library facility. The %Include procedure is used to input Plus source code
from such a library. In effect, the %Include statement is replaced by the contents of the
library members whose names are given as parameters.

The file *Plus.Sourcelib is a standard library that is searched by default. It contains
definitions of some useful constants and types, the declarations of a number of library routines
(such as Integer_To_Varying), and declarations for most of the MTS system subroutines.
Each library member in turn includes any other declarations on which it depends.

Tutorial Introduction 9

The definitions in *Plus.Sourcelib are documented by a separate writeup (UBC PLUS
LIBRARY). This tutorial will just describe a few of the more basic members.

If you’re writing a large Plus program, you will probably want to divide it up into a number of
files, which you can then separately compile and modify. You should put common declarations
in a private library, from which they can be can be %Included by each component, just like
declarations from the standard library. The libraries to be searched by the compiler are
specified on I/O unit 0 of the Run command. For example, if you want the private library
Mylib searched as well as the default library, you would enter

Run *Plus ... O=Mylib+*Plus.Sourcelib

Chapter VII (page 135) describes the format of a Plus library, as well as the program
Plus:Libgen which can be used to generate a library.

The Runtime Library

There is a library of procedures that are often used by Plus programs (such as Integer_To_
Varying). These library procedures are in the MTS resident system. In order for the system
loader to find them when it loads your program, some special loader records must be present
in your object file (e.g. -Load). The declaration for Main that was included by line 5 also
causes these records to be added to the object file, so this simple program will run as is.
However, when you deal with more complex programs that have been compiled as a number
of separate pieces, you may have to make sure the records needed are present and in the right
place (generally at the end of the file). Details of this are in Chapter IV (see page 127).

Types and Declarations

The program in Example 1 declares variables of two types, Integer and Varying_String.
As the capitalization indicates, these are not reserved words. In fact, they are not built-in
types at all. Rather, the definitions of these two types also come from the library, as a result
of the %Include at line 1.

It might seem strange that these apparently basic types are not predefined as part of the
language. However, in Plus they are not really particularly basic, as we will indicate in the
following sections.

1. Numeric Types

The library member Numeric_Types that is included at line 1 contains a number of
declarations that relate to integer numeric processing.

The following declarations are among those in the library member:

constant Maximum_Integer is 2147483647,
Minimum_Integer is -Maximum_Integer - 1;
type Integer is (Minimum_Integer to Maximum_Integer)

The first statement (from the keyword constant to the semicolon at the end of the second
line) is an example of a Plus constant declaration. Such a statement just associates
one or more identifiers with constants. Thereafter, the identifier may be used instead
of repeating the constant. Thus the identifier Maximum_Integer refers to the constant
2147483647 (which is, indeed, the maximum integer available on the 370 computers).

10 Tutorial Introduction

Having defined Maximum_Integer, you can use it in any context where the constant
would be allowed, with equivalent effect.

The value associated with the identifier in a constant declaration may be an expression, as
long as all the elements of the expression are themselves constants. That is, the compiler
must be able to determine the value to be associated with the identifier. The identifier
Minimum_Integer is associated with the value —2147483647 — 1 = —2147483648.2

The second statement (beginning with the keyword type) is an example of a type dec-
laration. It associates the identifier Integer with the type represented by the phrase
following is. The identifier Integer can be used thereafter instead of repeating the
phrase (Minimum_Integer to Maximum_Integer).

This example illustrates the basic mechanism you use in Plus to define a numeric type.
You specify a range of values that are to be allowed for variables of the type. So the
declaration

variable Count is Integer
is equivalent to
variable Count is (Minimum_Integer to Maximum_Integer)

and means that variable Count may be legitimately assigned any number in the indicated
range.

The compiler will (optionally) generate run-time tests to ensure that assignments to
numeric variables obey the range limitation indicated in the declaration. This run-time
checking is often very effective in detecting bugs in programs at an early stage. You
should be as precise as possible in defining the range of variables, since this gives the
compiler the most opportunity to be helpful. (Moreover, the compiler will take advantage
of range information in some cases to improve the code generated.)

It should really be quite rare for you to need to use the type Integer. In fact, even for the
example program, it would be preferable to define Count as (0 to Maximum_Integer),
since Count should never acquire a negative value.

2. String Types
The library member String_Types includes the following declarations:

constant Standard_String_Length is 255;
type Fixed_String is character(Standard_String_Length),
Varying_String is character(0 to Standard_String_Length)

The type declaration provides examples of two forms of character string types imple-
mented by Plus.

An example of a fixed-length string type is provided by
character(Standard_String_Length)

Variables of this type always contain exactly 255 characters (the value of the constant
Standard_String_Length). Assigning a longer value will generate an error message,

2 For obscure reasons, you can’t write this constant directly into a program, but you can get at it indirectly as in
this example.

Tutorial Introduction 11

while a shorter value will leave the last characters unchanged. (Short strings will not be
padded to the given length.)

A varying-length string type is illustrated by
character(0 to Standard_String_Length)

Variables of this type may be assigned character string values containing anything from
0 to 255 characters. The variable will keep track of the length of the value last assigned.

The length 255 has been somewhat arbitrarily picked as the size of these string types in
the source library definition. This is generally adequate for most programs for building
messages, etc., without wasting too much memory.

Plus allows character types (either fixed or varying length) of any length—they are not
restricted to the length 255. Note, however, that when a variable of a varying-length
character type is declared, enough memory is allocated for the maximum length specified
(plus a length field). So you should avoid defining overly-large character variables when
possible.

Plus I/O

The Plus language doesn’t include any input/output statements. Instead, it is assumed that
the system I/O subroutines such as Read, Write, Scards, etc. will be used.

To facilitate use of these routines, there are several definitions in *Plus.Sourcelib. These
include declarations necessary to use the subroutines directly, as well as some interfacing
declarations that simplify things for common situations.

The routines Scards_Varying, Spunch_Varying, Sprint_Varying and similar ones for other
I/O units, provide a simple interface for reading and writing standard Varying_String vari-
ables, as described above. Other routines provide for I/O to or from arbitrary variables in a
Plus program.

The Plus library includes a rather powerful procedure Message for producing formatted output
(generally, “readable” messages). The Message routine can perform a variety of conversions
and substitute the results into a string which it then prints. The next example program
illustrates some simple uses of Message, but for all the details, see the separate documentation
for the routine.

The conversion routines in the Plus runtime library may also be useful in building formatted
lines to be written.

The Plus library also includes a few simple routines for performing “input conversions”— e.g.,
String_To_Integer will convert a character string to an integer. However, most Plus pro-
grammers prefer to use Clparser, the MTS “Command Language Parser” subroutine package,
to perform input processing. Clparser is described in the writeup UBC CLPARSER.

Table Search Example

The following pages contain a much more substantial example, containing most of the elements
of a typical Plus program. The program is a demonstration of linear and binary searching
algorithms. It first reads a table of symbols, terminated with /end. Then it reads symbols to
look-up, searches the table using each of linear and binary search techniques, and prints out
the symbol position and number of accesses required to find it.

12

Tutorial Introduction

[a—y

#Title := "Plus Example Program - Linear and Binary Searching";
/*frame,centre

™)

[1]

2]

(3] Linear and Binary Searching

[4] */7*

[5] This example program demonstrates linear and binary
6] searching. It first reads a table of "symbols",

[7] then reads "test cases" and looks each up in the table
8] by both search techniques. It prints the position
9] of the search item, and how many "probes" it took to
[10] find it.

[11] */

[12] %Include(Numeric_Types, String_Types);

[13] %Include(Scards_Varying);

[14] %Include(Message_Initialize, Message, Message_Terminate);
[15)

[16] global Search_Example

[17] /* Define limits on symbol length and number of

[18] symbols. */

[19] constant Max_Sym_Length is 10;

[20] constant Max_Number_Symbols is 600;

21)

[22] /* Define types for symbols, table, etc. */

[23] type Symbol is character(0 to Max_Sym_Length);

[24] type Array_Index is (0 to Max_Number_Symbols),

[25] Symbol_Array is array (1 to Max_Number_Symbols) of Symbol;
26

[27] /* Declare the table that the symbols will be entered
[28] into. */

[29] variable Table is Symbol_Array,

[30] Table_Size is Array_Index;

31

[32] /* Declare control block for the message routine. */
[33] variable Msg is pointer to Stream_Type

34

[35] end global Search_Example;

[36]

[37] %Include(Main);

[38]

[39] procedure Getsym is

[40] procedure

[41] result Sym is Symbol

[42] end;

43)

-Example 2 (part 1 of 5)—Table Search Program

Tutorial Introduction

13

[44] procedure Print_Result is

[45] procedure

[46] parameter Sym is Symbol,

[47] Method is character(l to 10),

[48] Pos is Array_Index,

[49] Accesses is Integer

[50] end;

51

[52] procedures Linearsearch, Binarysearch are

[53] procedure

[54] parameter Element is Symbol,

[55] reference parameter Accesses is Integer

[56] result Position is Array_Index

[57] end;

[58]

[59] %Eject();

[60] definition Main

[61] /* Main program reads in symbol table, terminated by /end, then read
[62] test cases and finds them by both linear and binary search.
[63] */

[64] variable Return_Code is Integer;

[65]

[66] /* Initialize the Message routines. */

[67] Msg := Message_Initialize();

[68]

[69] /* Display title and prompts... */

[70] Message(Msg, "**x Demonstrate Linear and Binary Search *x*</>");
[71] Message (Msg, "Enter symbol elements (in alphabetical order)</>");
[72] Table_Size := 0;

[73]

[74] /* Read in the test table. */

[75] cycle

[76] variable Elem is Symbol;

[77] Elem := Getsym();

[78] exit when Length(Elem) = O or Elem = "/end";

[79] if Table_Size >= Max_Number_Symbols

[80] then

[81] Message (Msg, "Error - too many symbols.</>");
[82] exit

[83] end if;

[84] Table_Size +:= 1;

[85] Table(Table_Size) := Elem

[86] end cycle;

[87]

[88] Message(Msg, "<hi> data items read.</>", Table_Size);
[89]

-Example 2 (part 2 of 5)—Table Search Program

14 Tutorial Introduction

[90] /* Read in the test cases and look up each. */

[91] cycle

[92] variable Test_Elem is Symbol,

[93] Pos is Array_Index,

[94] Accesses is Integer;

[95] Message(Msg, "Enter data:</>");

[96] Test_Elem := Getsym();

[97] exit when Test_Elem = "";

[98]

[99] /* Look up using linearsearch and output result. */
100] Pos := Linearsearch(Test_Elem, Accesses);

101] Print_Result(Test_Elem, "linear", Pos, Accesses);
102]

103] /* Look up using binarysearch and output result. */
104] Pos := Binarysearch(Test_Elem, Accesses);

105] Print_Result(Test_Elem, "binary", Pos, Accesses)
106] end cycle;

107]

108] Message_Terminate (Msg)

109] end Main;
110] %Eject();
111] definition Getsym

[

[

[

[

[

[

[

[

[

[

[

[

[112] /* This procedure reads a symbol, and checks for
[113] invalid strings. It returns null string at eof. x/
[114]

[115] variable Str is Varying_String,

[116] Return_Code is Integer;

[117]

[118] Scards_Varying(Str, Return_Code);

[119]

[120] if Return_Code —= 0

[121] then

[122] Sym := ""

[123] elseif Length(Str) > Max_Sym_Length

[124] then

[125] Message (Msg, "Error - symbol too long</>");
[126] Sym := Substring(Str, 0, Max_Sym_Length)
[127] else

[128] Sym := Str

[129] end if

[130] end Getsym;

[131]

-Example 2 (part 3 of 5)—Table Search Program

Tutorial Introduction

15

132] definition Print_Result

133 /* Prints out message saying where symbol was found
134 and how many accesses it took. Parameters
135 are the "search method", the symbol, the

136 position and the number of accesses.

137 */

138

139 Message(Msg, "<v> search: <v> ", Method, Sym);
140 if Pos = 0

141 then

142 Message (Msg, '"not found")

143 else

144 Message (Msg, "found at <hi>", Pos)

145 end if;

146 Message(Msg, " in <i> accesses.</>", Accesses)
147|] end Print_Result;

148

149] %Eject();

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
|
150] definition Linearsearch
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

/* Search linearly for Element in Table.
152
153 Table and Table_Size are global. The symbol
154 to search for is passed as the parameter Element.
155
156 Returns the position as function result, or 0 if
157 the symbol is not found. Sets reference
158 parameter Accesses to the number of probes
159 required.
160 */
161 variable Pos is Array_Index;
162
163 Accesses := 0;
164 do Pos := 1 to Table_Size
165 Accesses +:= 1;
166 return when Table(Pos) = Element with Pos
167 end;
168] return with O

-Example 2 (part 4 of 5)—Table Search Program

16

Tutorial Introduction

[170] definition Binarysearch

[171] /* Search for Element in Table using a binary search.
[172]

[173] Table and Table_Size are global. The symbol
[174] to search for is passed as the parameter Element.
[175]

[176] Returns the position as function result, or O if
[177] the symbol is not found. Sets reference

[178] parameter Accesses to the number of probes

[179] required.

[180] */

[181] variables Low, High, Pos are Array_Index;

[182] /* Low and High delimit the range of the table that
[183] must contain the element, if it is present. */
[184] Low := 1;

[185] High := Table_Size;

[186] Accesses := 0;

[187]

[188] cycle

[189] exit when Low > High;

[190] /* Compute next plce to check (midpoint

[191] between low and high). */

[192] Pos := (Low + High) / 2;

(193] Accesses +:= 1;

[194] return when Table(Pos) = Element with Pos;

[195] if Element < Table(Pos)

[196] then

[197] /* If element is in table, it must be

[198] between Low and Pos - 1 x/

[199] High := Pos - 1

[200] else

[201] /* If element is in table, it must be

[202] between Pos + 1 and High. */

[203] Low := Pos + 1

[204] end if

[205] end cycle;

[206] return with O

[207]

[208] end Binarysearch

-Example 2 (part 5 of 5)—Table Search Program

Tutorial Introduction 17

The general organization of this program is characteristic of many Plus programs.

It begins with specification of a title to appear in the listing (line 1), and introductory com-
ments (lines 2 to 11). The words frame, centre® immediately after the opening comment /*
cause the compiler to draw a frame of asterisks around the comment and to centre each line
of the comment in the listing.

Lines 12 through 14 include library definitions, as in the previous example. This example
uses the library message formatting routines, whose declarations are included at line 14.

Next come a number of global declarations. Global declarations define identifiers (types,
constants and variables) that are to be available to all procedures of the program. They are
normally grouped in one or more global blocks. Each global block has a name, which is
used in associating the same global block across separate compilations of pieces of a program.
In this case, there is only one global block, lines 16 to 35.

A program may have any number of global blocks. Generally, you should group related
definitions together as one global block.

Following the global blocks are a number of global declarations for the procedures making up
the program (lines 37 to 57). You must have a declaration for every procedure that is either
defined in, or called from the program. As in Example 1, the declaration for Main is included
from a library.

The remainder of the program consists of the definitions of the procedures, each beginning
with definition ... and ending with end as in the previous example.

The order in which these pieces occur is typical, and is generally convenient. However, you
aren’t required to put the pieces in any particular order. It is quite permissible to have some
global definitions followed by some procedures, followed by more global definitions, and so
on. The only requirement is that you must declare each identifier before its first use.

The remaining sections of this chapter will describe the elements of Plus in a more orderly
way, using examples from this program.

J. Program Structure
1. Separate Compilation

A complete Plus program consists of one or more separately compilable pieces. You’ll
probably want to keep such pieces in separate files. Each piece contains a sequence of
declarations, globals blocks and procedure definitions. Procedure definitions may not be
nested inside other definitions. (Global blocks can be nested inside procedures or other
global blocks, although there is rarely any reason to do so.)

You can divide a program up into pieces however you like, except that each piece must
be self-contained to the extent of including definitions of all the identifiers it references.
Of course, you will usually choose pieces consisting of groups of related procedures and
the global definitions they use.

When a global block contains definitions that are required by more than one of the
separately-compiled pieces, you must repeat the entire global block with each piece. It’s

3 Americans may substitute center.

18

Tutorial Introduction

best to put the definition of the global block in a private source library and use %Include
to include it in each piece.

If you change any of the declaration in a global block, generally you must recompile all
components that reference that global block.

2. Global Blocks

A global block contains a sequence of declarative statements, separated by semicolons.
Each global block has a name (Search_Example in line 16 of Example 2), which be-
comes an external symbol of the program and is used in associating the definitions from
independently-compiled pieces.

A global block is much like a Fortran named-common block, except that it may contain
declarations of types, constants and procedures as well as variables. Moreover, Plus
globals are usually implemented in a way that is fully reentrant (which Fortran common
isn’t).

3. Procedure Definitions

A procedure in Plus consists of two parts, a procedure declaration which specifies
the type of the procedure, and a procedure definition which contains declarations
and statements to be executed when the procedure is called. Thus, for example, the
procedure Linearsearch is declared at lines 52-57, and the definition is given at lines
150-169. Note more than one procedure can be declared in the same declaration, when
they have identical types.

The type of the procedure tells what identifiers are to be used by the definition to refer
to its parameters and return value. It also specifies the types of the parameters and
return value.

A procedure with a result is a function and is used as an element of expressions. A proce-
dure with no result is a subroutine and is called as a separate statement. Getsym (declared
at line 39, called at lines 77 and 96) is an example of a function with no parameters.
Linearsearch and Binarysearch are each functions with parameters. Print_Result
(declared at line 44, called at lines 101 and 105) is an example of a subroutine.

The definition of a procedure must be preceded by its declaration. Any call of a procedure
must be preceded by a declaration of the procedure called. The easiest way to ensure
the correct ordering is to simply place all procedure declarations before any definitions,
as in the examples.

When writing programs that are to be compiled in pieces, you may find it helpful to
always place the declarations of procedures in a source library. Then the file containing
the procedure definition, and any files containing calls to it, can all include the same
declaration.

Declarations

There are four important declarative statements in Plus. These are constant, type, variable
and procedure declarations. All of these have been illustrated already. In this section, we’ll
fill in a few more details.

The four declarations have a somewhat similar overall syntax. The basic form of each is
illustrated by

Tutorial Introduction 19

constant Max_Sym_Length is 10;
type Symbol is character(0 to Max_Sym_Length);
variable Msg is pointer to Stream_Type;

procedure Getsym is
procedure
result Sym is Symbol
end

When there are a number of variables to be defined with the same type, you can put a list of
identifiers in place of the single identifier in these examples. Thus, for example,

variables Low, High, Pos are Array_Index

at line 181 is a shorthand for

variable Low is Array_Index;
variable High is Array_Index;
variable Pos is Array_Index

(The keywords is and are are equivalent, as are variable and variables. You can use
whichever is grammatically appropriate.)

You can also run a series of variable declarations together. So, for example,

variable Table is Symbol_Array,
Table_Size is Array_Index

at lines 29-30, is equivalent to

variable Table is Symbol_Array;
variable Table_Size is Array_Index

Similar short-cuts are allowed for each of the other kinds of declarations.

1. Scope of Declarations

Identifiers that are declared in a global block (or outside of any procedure definition) are
called global. Such identifiers may be referenced from any subsequent statement in the
program. In the example program, all of the identifiers declared in lines 1-58 are global.
Thus, for example, the two search procedures can reference the variable Table without
it having to be passed to them as a parameter.

Identifiers (type, constant, variable, or procedure) that are declared inside a procedure
definition are local to that procedure. The declarations are not “known” outside of
the procedure. So the declaration of the variable Return_Code at line 64 in procedure
Main can’t be referenced outside of Main. The procedure Getsym has its own variable
Return_Code declared at line 116. These are two totally different variables, even though
they happen to have the same identifier. The references inside Main use the variable
declared in Main, while those inside Getsym use the one declared in Getsym. If you tried

20

Tutorial Introduction

to reference Return_Code in Print_Result or one of the other procedures, you'd get a
complaint from the compiler about it being undeclared.

In fact, the scope of a declaration may be restricted further still. Like Algol and most
of its descendants, Plus provides for scope blocks which delimit groups of statements
within which a given declaration is known. Unlike most such languages, you don’t have to
use lots of begin ... end groups to introduce local declarations. In Plus, the statement
list inside each “bracketed” control structure such as the cycle. . .end loop or either part
of the if...then...else...end statement, is a separate scope block. Declarations that
occur inside such a statement list are in effect only for the remainder of the statement
list. This makes it easy to introduce a temporary variable at the point where you need
it.

For example, somewhere inside a sorting program, you might have a statement of the
form

if Table(I) > Table(J)

then
/* Interchange I'th and J'th elements. */
variable Temp is Symbol_Table_Element;
Temp := Table(I);
Table(I) := Table(J);
Table(J) := Temp

end if

The variable Temp is declared only for the remainder of the statement list in the then-
part. It is undefined outside of the if statement, or in the else-part of the statement (had
there been one).

There might already be a definition of Temp in effect at the beginning of the if statement,
if it had been declared either globally or earlier in the statement list containing the
if statement. The definition inside the if statement is still allowed, and temporarily
overrides the outer definition. At the end of the then-part, the previous definition comes
back into effect.

For example, in a sequence of statements such as

[l] variable Temp is Integer;

[2] Temp := 1;

[3] if ...

[4] then

[5] variable Temp is Symbol_Table_Element;
[6] Temp := Table(I);

[7] end if;

[8] X := Temp

the statements at lines 2 and 8 both refer to the variable declared at line 1; its value is
not affected by the assignment statement at line 6. The assignment at line 6 refers to
the variable declared at line 5. Its value is independent of the variable declared at line 1.

Tutorial Introduction 21

Constant Declarations

The constant declaration just lets you associate an identifier with a constant value. From
then on, you can use the identifier instead of writing out the constant each time.

This helps to “parameterize” the program so that it is easier to change in the future.
Example 2 assumes that the symbols it has to deal with will be no longer than 10, and
that there will be no more than 600 of them. If either of these assumptions turned out
to be inadequate, you would just have to change the declaration at line 19 or 20 and
recompile the program, without having to search through the program looking for all the
places that depend on these limits.

A second advantage of using constant declarations is that they often make it easier to
understand the program, since the purpose of a well-chosen mnemonic identifier may be
much clearer than an anonymous constant.

Type Declarations

Similarly, a type declaration lets you associate an identifier with a type description. Once
again, this is useful for parameterizing your program, and may make it easier to read.

A type declaration is in some ways like an assembler dsect (especially when the type
is a record). It defines a template describing an area of storage, but does not allocate
storage. The variable declaration is used to allocate storage for an item of a given type.

Type declarations may be required in some situations to associate an identifier with a
type description which you need to use in more than one place. Plus doesn’t attempt
to determine if two complex type descriptions are “equivalent”. For example, if you had
two record variables (we’ll explain records soon) declared as

variable Elementl is
record
Symbol is Symbol_Type,
Reference_Count is Integer
end;

variable Element2 is
record
Symbol is Symbol_Type,
Reference_Count is Integer
end

the types of Element1 and Element2 will be considered incompatible, so you wouldn’t be
able to assign one to the other or otherwise intermix them. You must use the same type
definition for each. The usual way to do this is to define the type with a type declaration
and then use its name:

type Symbol_Table_Element is
record
Symbol is Symbol_Type,
Reference_Count is Integer
end;
variable Elementl is Symbol_Table_Element;

22

Tutorial Introduction

variable Element2 is Symbol_Table_Element

(If there is no other requirement for the type Symbol_Table_Element, you could alter-
natively declare both in one variable declaration:

variables Elementl, Element2 are
record
Symbol is Symbol_Type,
Reference_Count is Integer
end

But generally, it is better to use the type declaration.)

The requirement that a type description appear in only one place helps to minimize
the danger of introducing bugs when the definitions are changed. (It also eliminates
a potentially very expensive compile-time action in determining if two definitions are
“equivalent”.)

Variable Declarations

Variable declarations are used to allocate memory for a variable or variables of a specified
type. A global variable (one declared in a global block) is allocated once, at the time the
program begins execution. A local variable (one declared inside a procedure) is allocated
each time the scope block containing it begins execution, and is released at the end of
the scope block. Thus, for example, a variable declared inside a loop is released at the
end of the statement list forming the body of the loop—you may not assume it will keep
its value from one iteration to the next.

We should perhaps emphasize that there is no run-time overhead to allocating and
releasing variables inside a scope block—all the storage allocation calculations are done
at compile-time. Local variables are allocated using a run-time “stack” mechanism. The
only actual allocation overhead occurs at entry to the procedure, at which point the
stack is adjusted to allow for all the local variables declared within the procedure and
temporary storage required by the generated code. Hence you may freely declare local
“temporary” variables at the point where they are required.

Procedure Declarations

A procedure declaration is used to specify the type of a procedure. The declaration at
lines 52-57 says that both Linearsearch and Binarysearch are procedures with type

procedure

parameter Element is Symbol,

reference parameter Accesses is Integer
result Position is Array_Index

end

The type of a procedure must be a procedure type, as you might expect. (You’ll learn
some of the details of procedure types in Section L-5, page 27.) Most often, the type
will be specified directly in the procedure declaration, as in this example. But as with
all other types, it is quite permissible to define the type in a type declaration and use its
name. So lines 52-57 could be replaced with

Tutorial Introduction 23

type Table_Search_Procedure is
procedure
parameter Element is Symbol,
reference parameter Accesses is Integer
result Position is Array_Index
end;

procedures Linearsearch, Binarysearch are Table_Search_Procedure

A procedure with no parameters and no result may be declared as just
procedure Proc

which is equivalent to the declaration

procedure Proc is
procedure
end

Type Descriptions

A type description is a program fragment that you use to define a data type. Plus provides
some primitive data types, and some methods of building new types out of simpler ones. In
Section G we described a couple of the basic data types of Plus, numeric types and string
types. In this section we’ll tell you about some of the other types, and how they are used in
a program. This is just an outline, however. For all the details, see Chapter III.

Type descriptions appear in several contexts in the language. The most important contexts
are variable and type declarations and in the description of more complex types.

1. Basic Types

Plus’s numeric and string types were described in Section G. Other basic types in Plus
are

a. bit(n), where n is an integer constant. This just describes the specified number of
bits of memory. For example:

variable X is bit(32)

specifies that the variable X is to be allocated as 32 bits. Depending on context,
bit types may behave like various other types (integers, strings, and others). They
are very machine-dependent, so you should generally avoid using them unless you
really need to.

b. real(n), where nis an integer constant. This specifies a “floating-point” data item.
The number n indicates how many digits of precision are required.

You can’t do much with floating-point in Plus at the moment, but you can define
variables.

c. identifier-lists. An identifier-list type allows you to create new basic types by
enumerating a list of identifiers which are to be the elements of the type. (Pascal
calls this type an “enumerated type”.) For example:

24

Tutorial Introduction

(Printer, Reader, Punch, Tape_Drive, Disk Drive, Terminal)

If this description appears in a program, it defines a new type. The elements of the
identifier list are automatically declared to be symbolic constants of the given type
(and must therefore not be previously declared in the same scope). The compiler is
free to choose values to represent each of the constants.

Most often, such types appear in a type declaration, so that you have a name with
which to refer to them later:

type Device_Type is (Printer, Reader, Punch, Tape_Drive,
Disk_Drive, Terminal)

After this declaration you might define a variable, as
variable Device is Device_Type

assign the variable a value:
Device := Disk_Drive

test it in if statements:

if Device = Reader
then

end if
and so forth.

Identifier-list types are very useful for variables whose values have no intrinsic nu-
meric meaning. Use of these types is a significant aid to writing self-documenting
code. These types do the kind of thing a good programmer might do in assembler
with equates (except that the compiler rather than the programmer does all the
bookkeeping to decide which value to use for each item).

Record Types

In this example program, the symbol table to be searched contains just the actual symbols
(identifiers). If you were writing a “real” program using a symbol table, however, you
would almost certainly need to associate some information with each element of the
table. Such a collection of associated information is implemented in Plus, as in many
other languages, by using record types.

Suppose each entry of the symbol table is to contain the actual symbol and an associated
integer which just counts how many times it has been referenced. The elements of the
symbol table could then be represented in Plus by the type description

record
Symbol is Symbol_Type,
Reference_Count is Integer
end

This might be used in a type declaration as

Tutorial Introduction 25

type Symbol_Table_Element is
record
Symbol is Symbol_Type,
Reference_Count is Integer
end

and the definition of the actual symbol table type (line 25) might be replaced by
type Symbol_Array is array(l to Max_Number_Symbols) of Symbol_Table_Element

The individual items in the record type are known as fields. Of course, a record type can
have any number of fields, and each field can be of any type, including another record

type.

The individual fields of a record are referenced using a dot (“.”). Continuing the example,
if you declare

variable Sym is Symbol_Table_Element

you can set the fields of the variable as

Sym.Symbol := Elem;
Sym.Reference_Count := 0
and increment the reference count as

Sym.Reference_Count +:= 1

and so forth.

Array Types

To describe an array in Plus, you specify the range of the allowed subscripts and the type
of data item making up the array. So the type description contained in line 25 specifies
an array of 600 elements (1 through Max_Number_Symbols). Each element of the array
in this case is a Symbol. Note the lower-bound of an array doesn’t have to be one; any
range is allowed.

Individual elements of an array are accessed in a program using parentheses around a
subscript expression. So

Table(Table_Size)
in line 85 of the example accesses the element at position Table_Size in the array.

An array can be composed of any type of data item. As described in the previous section,
a realistic symbol table application might use an array, for which each element is a record.
You can create multi-dimensional arrays by using arrays of arrays. If you need to work
with 50 by 100 matrices of integers, you might use a type of the form

array (1 to 50) of array (1 to 100) of Integer

This defines an array of 50 elements (array (1 to 50) of ...) each element of which
is an array of 100 integers.

If Matrix is a variable of such a type, then

26

Tutorial Introduction

Matrix(I)

refers to the I'th row of the matrix, and
Matrix(I) (J)

refers to the J’th element of the I’th row. This can also be expressed as
Matrix(I, J)

Array subscripts can be combined with record field selection in an expression. If the
array in the example were replaced with an array of records you might replace line 85
with

Table(Table_Size) .Symbol := Elem

which sets the field Symbol of the record at position Table_Size in the array.

Pointer Types

A pointer in Plus is the machine address of a data item. A common use of pointers to
build linked-lists and other complex data structures in which each data item “points to”
the next item of the list.

For example, if you are building a symbol table, but don’t want to have an a prior: limit
on the number of elements in the table, you might choose to use a linked list for the
table. (It would, however, be difficult to implement a binary search for such a table.
Other techniques for fast searching would be appropriate.) To do so, you'd define each
element of the table as a record, something like:

type Symbol_Table_Element is
record
Next_Symbol is pointer to Symbol_Table_Element,
Symbol is Symbol_Type,
Reference_Count is Integer
end

The type description pointer to Symbol_Table_Element within the record is a pointer
type. A pointer type always specifies what type of object it points to, so that when you
use the pointer in an expression, Plus knows what type of object it is dealing with.

If you used pointers in this way, instead of defining an array in the global block, you
would just define a variable to point to the first element:

variable Symbol_Table is pointer to Symbol_Table_Element

(You might also want a second variable to keep track of the end of the list.) The list can
be initialized to indicate it contains no elements by using the special pointer value Null:

Symbol_Table := Null

To add another element to the list, you would call some kind of a memory allocation
procedure. For examples, MTS’s Getspace routine could be called directly:

variable New_Elem is pointer to Symbol_Table_Element;

New_Elem := Getspace(0, Byte_Size(Symbol_Table_Element))

Tutorial Introduction 27

Here, a built-in procedure Byte_Size is used to determine the size of the element to
be allocated. This number is passed to the MTS subroutine Getspace. It allocates the
requested amount of memory and returns a pointer to it, which is then assigned to the
variable New_Elem. (Other methods of allocating list entries might be appropriate in
some situations.)

The memory locations pointed at by New_Elem are referred to with an expression of the
form New_Elem@ That is, the at sign is used to “follow” a pointer to the item it points
to. Then the fields of the new item can be accessed with the usual “dot” syntax:

New_Elem@.Symbol := Elem

would assign the value of the variable Elem to the field Symbol of the variable that
New_Elem points to.

The element could be hooked into the list (at the front), by statements of the form

New_Elem@.Next_Symbol := Symbol_Table;
Symbol_Table := New_Elem

The first of these makes the new element point to the rest of the list, and the second
points the head-of-list to the new element.

Notice the difference between
Symbol_Table := New_Elem
and
Symbol_Table@ := New_Elem@

The first of these is simply an assignment of the current value of the variable New_Elem
to Symbol_Table. That is, it copies the pointer, so afterwards both pointers access the
same memory location. The second, however, assigns the object pointed at by New_
Elem to the location pointed at by Symbol_Table. That is, it copies the record of type
Symbol_Table_Element. It would only be valid if you had previously set Symbol_Table
to point to a suitable variable. (And it doesn’t make much sense in this example!)

The built-in procedure Address can be used to get a pointer to a variable. For example,
if for some reason you wished to make New_Elem point to the variable Item, you could
use

New_Elem := Address(Item)
This would only be valid if Item was a variable of type Symbol_Element_Type, so that
Address(Elem) would be of type pointer to Symbol_Element_Type.
Procedure Types

A procedure type description is used to describe a procedure. The description specifies
the names and types of the parameters and of the result, if any.

The declaration of Print_Result at lines 44-50 illustrates a procedure with four pa-
rameters and no result. When it is called, as at lines 101 and 105, the call must pass
values that are compatible with the specified types of the parameters. Thus the first
parameter must be a Symbol (character(10)), the second a character(l to 10), and

28

Tutorial Introduction

so on. Since the procedure returns no result, its call must appear as a statement in the
program-—you can’t use it as part of an expression.

a.

Call-By-Value

By default, Plus passes parameters from the caller to the called procedure by copying
the value into a local variable within the called procedure. Within Print_Result,
therefore, the parameter names Sym, Method, etc., act just like local variables that
have been preset to the values specified in the procedure call. This copying is a one-
way process. If Print_Result were to assign a new value to one if its parameters,
it would affect only the value of this local variable within Print_Result. It would
not be reflected back to the calling procedure. So if Print_Result were to change
the value of the parameter Sym, it would have no effect on the value of the variable
Test_Elem that is passed in the calls from Main. This type of parameter passing is
known as call-by-value.

Call-By-Reference

Sometimes, of course, you want a procedure to be able to change the value of one of
the variables that is passed to it. This can be accomplished in either of two ways:

ee You can pass a pointer to the variable instead of the actual variable. If Print_
Result needed to be able to change its first parameter, you could change the
procedure declaration to specify

parameter Sym is pointer to Symbol
and the call to
Print_Result (Address(Test_Elem), ...)

Then inside Print_Result, the identifier Sym would be a local variable whose
value was a pointer to Test_Elem, so Print_Result could change Test_Elem
indirectly with a statement such as

Sym@ := ...

ee You can specify in the procedure type that the parameter is to be a reference
parameter. This is really equivalent to the first solution, but causes the
compiler to automatically pass a pointer and dereference it at each use inside
the called procedure. This form of parameter passing is commonly known as
call-by-reference.

The declaration of Linearsearch and Binarysearch at lines 52-57 specifies
that the parameter Accesses is a reference parameter. Thus the calls at lines
100 and 104 pass the address of the variable Accesses (a local variable in Main,
declared at line 94). The statements at lines 163 and 165 in Linearsearch that
change the parameter Accesses follow the pointer and update the variable to
which it points—i.e., the local variable Accesses in Main is what actually gets
changed.

As a rule, using call-by-reference instead of call-by-value results in the procedure
call being somewhat more efficient, because the caller doesn’t have to do the work
of copying the value. The difference may be significant when large data items
(array, records, long character strings) are involved. Call-by-value also requires

Tutorial Introduction 29

extra memory to hold the copy of such objects. On the other hand, call-by-reference
results in the code inside the called procedure being rather less efficient, since it
has to chase an extra level of indirection each time the parameter is used. With
reference parameters, it may also be unclear to somebody reading the program that
when the procedure is called, the parameter passed is subject to change. The use
of explicit pointers and the Address makes this rather more obvious.

Generally, you should probably use call-by-value when the parameter is small (in-
teger, short string, etc.), and there is no requirement for the called procedure to be
able to “pass back” a changed value to the caller. You should use call-by-reference
or explicit pointers when the parameter is large, or s used to pass back information.

Procedure Results
Procedures Linearsearch and Binarysearch also specify a result, with the phrase
result Position is Array_Index

Thus the procedures are used as functions within the caller (lines 100 and 104). They
return a value of type Array_Index and may be used in any context appropriate to
that type. In this case, the value returned is simply assigned to the variable Pos.

Within the procedure Linearsearch, Position acts like a local variable of type
Array_Index. Whatever value was last assigned to this variable is returned as the
result of the function. Alternatively, the return statement may directly specify a
result to pass back, which then overrides the value of the result variable.

Any kind of data type can be returned as the result of a procedure. For example,
Getsym passes back a character string. However, it probably isn’t a very good idea
to return very large data items as function results, because of the extra memory
required, and the overhead of copying the result. Instead, you should use a reference
parameter or explicit pointer parameter if you are writing a procedure that needs
to set the value of a large variable in the caller.

Other Procedure Type Descriptions

Plus programs often need to call procedures that are written in other languages with
different calling conventions. Thus Plus provides quite a few options for procedure
type descriptions to allow accessing such routines. It is possible, for example, to
make sure the call is compatible with the OS Type I (“Fortran”) linkage, to specify
that parameters are to be passed in registers, that some parameters are optional,
to access the “return code” from a procedure and so forth. For all the details, see
Chapter I11.

Procedure Variables

Procedure types are most often used in a procedure declaration, but they are not
limited to such use. You can also have procedure variables, arrays of procedures,
record fields that are procedures, and so on.

The value assigned to a procedure variable must be a procedure name (as declared
in a procedure declaration) or another procedure variable of the same type. You
can also assign the value Null as a special “no value” indicator.

A procedure variable is called just like a procedure value. For example, if you
declared

30

Tutorial Introduction

type Table_Search_Procedure is

procedure

parameter Element is Symbol,

reference parameter Accesses is Integer

result Position is Array_Index

end;
procedures Linearsearch, Binarysearch are Table_Search_Procedure;
variable Search_Routine is Table_Search_Procedure

you could assign the variable a value:
Search_Routine := Linearsearch
and call the procedure assigned to Search_Routine as
Pos := Search_Routine(Test_Elem, Accesses)
Notice the difference between
Pos := Linearsearch(Elem, Accesses)
and
Search_Routine := Linearsearch

Since the first specifies parameters, it is a procedure call. Linearsearch is called and
the result returned is assigned to Pos. The second does not specify parameters, so
it is not a procedure call. It represents the procedure “value” which is then assigned
directly to the variable Search_Routine. To call a procedure with no parameters
you must still specify a parameter list consisting of just the parentheses (), in order
to distinguish the call from an assignment of the procedure value.

It is sometimes useful to be able to pass the name of a procedure as a parameter to
another procedure. If you wanted to generalize Example 2 to implement a procedure
that could be used for testing other “table searching” procedures, you might declare

procedure Test_Search is
procedure
parameter Sym is Symbol,
Search_Routine is Table_Search_Procedure,
Method is character(l to 10)
end

Lines 99-105 of Main could be replaced with

Test_Search(Test_Elem, Linearsearch, "linear");
Test_Search(Test_Elem, Binarysearch, "binary")

and the definition of Test_Search would be simply

definition Test_Search
variable Pos is Array_Index,
Accesses is Integer;
Pos := Search_Routine(Sym, Accesses);

Tutorial Introduction 31

Print_Result(Sym, Method, Pos, Accesses)
end Test_Search

M. Executable Statements

1.

Assignment
A simple Plus assignment statement is of the form
Var := Expr

where Var is a variable to which a value is to be assigned, and Expr is an expression
yielding the value.

You can assign any type of variable, not just simple values, in an assignment statement.
An entire array or record can be copied with one assignment. But the two sides of the
assignment must be of the same type.

The left-hand-side of the assignment may actually be any expression which results in a
“name” —for example, a subscripted array, a field of a record, the location referenced by
a pointer. We’ll say more about names and values soon.

You can assign the same value to more than one variable in a single statement, by writing
the left-hand-sides separated by commas. For example,

Low, High := 0

assigns zero to both variables. The right-hand-side of such a multiple assignment is
evaluated once only.

Plus also lets you specify an operator in conjunction with assignment. The statement
Table_Size +:= 1

(line 68) is a shorthand for
Table_Size := Table_Size + 1

You can use similar notation for any of the binary operators +, =, *, /, mod, |1, |, &, or
xor, and for any left-hand-side expression.

The combination of the operator with the := sometimes allows the compiler to generate
better code. For example, in a statement like

Count(Pos + 1) +:=1
(where Count is an array), the array subscript calculation only has to be done once.
If Str is a varying-length character string, then

Str ||:= " something"
is equivalent to

Str := Str || " something"

However, it appends the right-hand-side directly to the end of Str, without ever needing
to compute the expression Str || " something". As a matter of fact, the form

32

Tutorial Introduction

Str := Str || " something"

is not really correct Plus. For expressions involving character types, you should avoid
using the left-hand-side variable as part of the right-hand-side. This is because the result
is built directly in the left-hand-side variable. It happens to be harmless in this case,
but for a statement like

Varl := Var2 || Varl

the wrong result will occur, since execution will first move the value of Var2 into Vari,
and then access the wrong value when Var1l is concatenated onto it.

At the moment, this situation is not usually detected by the compiler.

Expressions

Expressions in Plus are formed in the usual way, by combining various operands with
appropriate operators and parentheses.

The primitive operands out of which you compose an expression include constants, sym-
bolic constants, variable names and function names. The repertoire of operations you
can use includes:

a. The usual arithmetic, bitstring and logical operators. For details, see Section I in
Chapter III (page 83).

Expressions involving arithmetic operators follow normal precedence rules. That is,
A+Bx*xC

is interpreted as if it were
A+ (B *C)

Rather than introducing a complex precedence hierarchy, several other operators
are given precedence equal to the arithmetic operators. The complete precedence
hierarchy is given on page 84. You can always use parentheses to override the
standard precedence or to clarify an expression.

b. Array subscripting, denoted by a parenthesized expression following the array name,
as in:

Table(Table_Size)

(1))

c. Selection of a field of a record, denoted by the operator “.”. If Elem is of type
record

Symbol is Symbol_Type,

Reference_Count is Integer
end

then Elem.Symbol is the first field and Elem.Reference_Count is the second.

d. Procedure calling, indicated by a parenthesized list of parameters following the
procedure name. For example

Tutorial Introduction 33

Linearsearch(Test_Elem, Accesses)

calls Linearsearch. A procedure with no parameters is called with an empty pa-
rameter list, as in

Getsym()

e. Following a pointer. The @ operator is used to “dereference” a pointer to access the
item that is pointed at. For example, if Sym is of type pointer to Symbol, then

Syma@
is the Symbol that it points to.

Plus strictly controls which operators may be applied to different types of operands. For
example, + can be applied to numeric operands, but not to character ones. In a similar
way, you can only use array subscripts for arrays, field selection for records, and so on.
The result of each operation has a type which is derived from the type of the operand or
operands and the operator used.

Notice that for each composite type there is a corresponding operation that accesses
the element. The structure of a complex expression corresponds quite directly to the
structure of a type. For example, if Ptr is of type

pointer to array (1 to 100) of
record
Field is
procedure
end,

end

then Ptr@ is an object of type

array (1 to 100) of
record
Field is
procedure
end,

end

and Ptr@(I) is of type
record
Field is
procedure

end,

end

and Ptr@(I) .Field is of type

34

Tutorial Introduction

procedure
end

which is a procedure with no result, hence may be called as

PtrQ(I).Field()

This is rather more complicated than the kind of types and expressions you are likely to
use.

Names and Values

A name is an expression which corresponds to a memory location. The results of some
expressions in Plus are names. Certain contexts in Plus (for example the left-hand-side
of an assignment) require name expressions.

A value is a quantity that may be stored in a memory location. All constants are
values, and the result of most expressions is a value. Operands for most operators must
be values. If a name expression occurs in a context that requires a value, the compiler
will always “dename” the expression and use the contents of the specified location as
a value. The converse is not true—that is, if a value expression occurs in a context
requiring a name, the compiler does not automatically generate a name.

The simplest name expressions are variable identifiers. The operations of subscripting
and field selection, when applied to a name result in a name. When these operations
are applied to a value, the result is a value. Similarly, the built-in procedure Substring
results in a name if the first parameter is a name and the length of the substring is
constant, and a value otherwise.

The dereferencing operator @ takes a walue of a pointer type, and converts it to a name
of the resulting object type.

The built-in procedure Address takes a name-expression of any type as an argument
and gives as its result a value which is a pointer to the argument.

The left-hand-side of an assignment must be a name. The parameter of Address must
usually be a name. When a procedure parameter is defined as a reference parameter,
the corresponding argument of a procedure call must be a name.

Plus provides an attribute value (see page 72) which may be specified for a type to
indicate that an expression of the type may only be used in a “value” context. This is
implemented by automatically “denaming” the name any time it is used in the program,
so it won’t be valid if the context requires a name. That means you can’t store into it
by using it on the left-hand-side of an assignment, or pass it to a procedure in such a
way that the procedure could store into it.

If @ is applied to a pointer whose object type has the value attribute (i.e, of type pointer
to value ...), after dereferencing, the resulting name is immediately “denamed”, again
resulting in a value and so guaranteeing it cannnot be stored into.

Address may also be used with a constant as a parameter. This will result in a value
which is a pointer to a walue. (And hence, you can’t use this pointer as an indirect
way of corrupting the constant.) Similarly, a constant may be passed to a reference

Tutorial Introduction 35

parameter, but only if the parameter type specifies value. Currently, Address and
reference parameters cannot be used with any kind of value except constants.

The following examples may help clarify these interactions. Assume these declarations:

type Tl is array (1 to 100) of character(l);
variables Ind is (1 to 100),

Vi is T1,

V2 is character(1l),

Pl is pointer to T1,

P2 is pointer to value character(l);

procedure Subl is
procedure
result R is T1
end;

procedure Sub2 is
procedure
result R is pointer to T1
end;

Then the statement
V2 := V1(5)

the subscripting operation results in a name (of type character(1l)). This is then
denamed automatically to obtain a value which is assigned to the name V2.

In the statement
V1 := Subl()

Subl is a procedure constant, and hence a value. The call results in a value of type T1
which is then assigned to V1.

In
V1l := Subl

the right-hand-side is a constant of a procedure type while the left-hand-side is a name
of an array type; hence a type error message will be given. (The procedure Subl is not
automaticallly called.)

The statement

Subl() := V1
is illegal, since the result of the call is a value.
In the statement

V1 := Sub2()@

the call results in a value of type pointer to T1. The dereferencing operator @ then
produces a name of type T1, which is then automatically denamed to obtain the value
to assign to the name V1.

36

Tutorial Introduction

In this case,
Sub2()@ := V1

would be legal, since the left-hand-side results in a name. (Sub2 returns a pointer to some
memory location, then the value of V1 is assigned to whatever location was returned.)

In
P2 := Address("X")

the call of Address results in a pointer to a value of type character(1). This may then
be assigned to P2, since it is defined as a pointer to a value.

P2 := Address(V2)
would also be legal. (A pointer to a name may be assigned to a pointer to value.)
V2 := P20

would assign the character at which P2 points, to the variable V2. The sequence of
operations involved is: P2 is denamed, resulting in a value of type pointer to value
character(1). This is then dereferenced resulting in a name which is immediately
denamed because of the value attribute. It results in a walue of type character(1l),
which is then assigned to V2.

P2@ := "Z"

would be illegal; after the dereference, the left-hand-side is a value of type character (1),
hence an assignment to it is not allowed.

If Statements and Conditions

If statements allow you test expressions and choose between alternatives. So, in lines
195-204:

if Element < Table(Pos)

then

High := Pos - 1
else

Low := Pos + 1
end if

the value of Element is compared to Table(Pos). If it is “less”, the statements in the
then-part are executed; otherwise the statements in the else-part are executed. After
either alternative, of course, execution continues with the statement following end if.

You can put an arbitrary list of statements (including other if statements, loops, etc.),
in either part of the if statement. The keyword else and following statements may be
omitted entirely if there is nothing to be done in that case. For example, the if statement
at lines 79-83 has no else-part.

A sequence of nested if’s can be abbreviated using elseif, as in the if statement that runs
from line 120 through 129. It is equivalent to the following pair of nested if statements:

Tutorial Introduction 37

if Return_Code —= 0

then
Sym a= nn
else
if Length(Str) > Max_Sym_Length
then
Message (Msg, "Error - symbol too long</>");
Sym := Substring(Str, 0, Max_Sym_Length)
else
Sym := Str
end if
end if
The sequence of ... elseif ... can be repeated many times.? Notice that when the
elseif form is used, there is only one end if to terminate the whole if... then...
elseif... then... else... end if construction.

A long chain of elseif’s can sometimes be replaced by a select statement. In such situ-
ations, the select statement will generally be much more efficient. The select statement
is described in Chapter III, page 89.

The expression in an if statement must be one that evaluates to a numeric value. It
is considered “true” if the value is non-zero and “false” if the value is zero. There is
no built-in type “logical” or “Boolean” in Plus. The identifiers True and False are
predefined as constants with the values 1 and 0 respectively.

Operators like <, <=, =, etc., compare the two operands specified, and result in a value
of 1 if the specified relationship is true, and 0 if it isn’t. So, in executing the above
if statement, the expression Return_Code —= 0, is first evaluated. The result of this
is an integer, either 0 or 1. This result is then tested for 0/non-0, and the if branches
accordingly.

Compound conditions can be built up using and and or. For example, if you write

if I <= Max_Number_Symbols and Table(I) —= Test_Elem
then

end if

the then-part is executed only if both conditions are true. When you use such a compound
condition, the second condition will be evaluated only if necessary. That is, if the first
condition is false, then it doesn’t matter what the value of the second condition is—the
overall effect must be false. So Plus doesn’t bother to evaluate the second condition.
Another way to express this is that the if statement is evaluated as if you had written

if I <= Max_Number_Symbols
then
if Table(I) —= Test_Elem
then

4 The current compilers limit it to a total of about 25.

38

5.

Tutorial Introduction

end if
end if

This form of evaluation is not only more efficient than evaluating both expressions;
it also means you can use compound conditions where the second condition might be
undefined or otherwise invalid if the first was false. In this example, if T is greater than
Max_Number_Symbols, an array subscript error might arise if Plus attempted to evaluate
Table(I).

Analogous considerations apply to compound conditions using or. If the first condition
is true, then the value of the second is irrelevant, so it isn’t evaluated.

More complex compound conditions can be used, but if you mix and’s and or’s in an
expression, you must parenthesize to make the order of evaluation clearer.

Conditions and compound conditions such as these are just expressions which evaluate
to 0 or 1. They most often appear in the context of if statements, but they can be used
in any appropriate context, such as assignment to a numeric variable. The standard Plus
source library includes a definition for type Boolean as (False to True)— i.e, (0 to
1). You might use this for “flag” variables in a program as in

variable Found is Boolean;
Found := I <= Max_Number_Symbols and Table(I) —= Test_Elem;

if Found
then

end if

Looping Statements

Plus provides two looping statements, the cycle statement and the do statement.

a. Cycle Statements

The cycle statement is very general. It just specifies that the statements between
the keyword cycle and the matching end cycle (or just end) are to be be repeated
indefinitely, until an exit statement inside the loop is performed. For example, lines
75—86 are repeated until either the exit at line 78, or the one at line 82 terminates it.
In either case, execution continues after the end of the cycle (at line 88). The exit
at line 78 specifies a condition; this exit terminates the loop only if the condition is
true (non-zero). It is exactly equivalent to

if Length(Elem) = O or Elem = "\end"
then

exit
end if

A cycle may also be terminated by executing a return statement in the loop, since
that terminates the entire procedure containing the loop.

Tutorial Introduction 39

b. Do Statements

Since looping with an increasing or decreasing index is a very common situation, Plus
provides a simple “do loop” to simplify writing such loops. Lines 164-167 provide
an example. The statements between the heading do ... and the matching end
are repeated, with the variable Pos assigned successive values. The loop terminates
after it has been executed with the value of Pos equal to Table_Size. It may
also terminate “early” by executing the return statement inside it. You can also
terminate a do loop before the final value is reached by executing an exit statement.

A do loop of the form

do Index := Start_Value to End_Value
/* statement list */

end do
is exactly equivalent to a cycle statement of the form

if Start_Value <= End_Value

then
Index := Start_Value;
cycle
/* statement list */
exit when Index = End_Value;
Index +:= 1
end cycle
end if

Note that after the loop finishes, the value of Index will be the value that it had
the last time it executed, and that if Start_Value is bigger than End_Value, the
body of the loop is never executed and the value of Index is unchanged.

Plus also allows a loop to “count down” by specifying downto instead of to in the
loop heading.

Do loops always increment or decrement by one. Use the cycle statement if you
require more general loop control.

Return Statements

The return statement is just used to terminate a procedure and go back to the caller.
You can specify a return value as part of the statement, so

return with O

at line 168 is equivalent to

Position := 0;
return

(Position is the identifier declared as the result.) You can also specify a condition, so

40

Tutorial Introduction

return when Table(Pos) = Elem with Pos

at line 166 is equivalent to

if Table(Pos) = Elem
then

return with Pos
end if

If both when and with are used, they can occur in either order, so line 166 could also be
written as

return with Pos when Table(Pos) = Elem

The Message Procedure

Example 2 illustrates simple use of a Plus library routine, Message, which produces formatted
output. Message is not a part of the Plus language. It is a procedure, written entirely in
Plus, that has been put into the standard Plus library because it has proven useful in many
Plus programs.

Before using Message you must initialize it by calling the procedure Message_Initialize,
as at line 67. Message_Initialize returns a pointer to a control block (of type pointer to
Stream_Type) which Message uses to keep track of what it is doing. This pointer is passed as
the first parameter in all calls to Message. You should not attempt to change anything inside
the control block returned by Message_Initialize—it is entirely private to the message
routines.

The second parameter to Message is a string to be emitted as the message. The message
string may specify points at which values are to be substituted via codes surrounded with <
and >. After the message string, there may be zero or more additional parameters, which are
the values to be converted and substituted into the string. For example, at line 139, the call

Message(Msg, "<v> search: <v> ", Method, Sym)

emits the string as a message, with the value of Method substituted for the first <v> and the
value of Sym substituted for the second. Here, <v> is a code for “varying string” and indicates
the corresponding parameter is a Plus varying-length character string to be inserted in the
message.

A message may be built up across a series of calls to the message routine. It is actually
emitted only when the sequence </> is encountered in the string. Procedure Print_Result
therefore prints only a one line message, created by three calls to the procedure (either lines
139, 142, and 146 or lines 139, 144, 146). It is terminated by the </> at line 146.

You can also emit more than one line in a single call to Message—each </> terminates a line
and begins a new one. The two calls at line 70-71 could be replaced with a single call with
one very long string for the second parameter.

The call to Message_Terminate at line 108 emits any incomplete messages, then releases the
control block that was allocated by Message_Initialize.

There are a large number of codes that may be specified between < and >. These may specify
insertion and various conversions to be applied to subsequent parameters, as well as various
other operations such as emitting the line, tabbing to a specified position, padding the next

Tutorial Introduction 41

parameter, and so on. Unfortunately, the message routine has no way of determining the
types and size of the parameters to be substituted, so it is up to you to specify this in the
substitution codes. This may require some intuition as to how Plus allocates variables. For
example, the variable Pos is declared as (0 to 600); this will be allocated as a halfword.
The code <hi> used in line 120 means the corresponding parameter is a halfword integer,
to be converted to an integer string. However, Accesses is declared as as Integer (= (-
2147483648 to 2147483647)) which is allocated as a fullword integer. For this, the code <i>
is used as at line 144. Method is declared as character (1 to 10), which will be allocated as
a one byte length field followed by the characters. For this, the code <v> is used.

There are other codes for one byte integers, varying strings with a halfword or fullword length
field, fixed length strings, floating-point (of various lengths), hexadecimal conversion, and so
on. Each code has a short (one or two character) form, and a longer, more mnemonic form.
<halfwordinteger> and <integer> could have been used in place of <hi> and <i>.

By default, the message routine produces its output on Sprint. However, there are codes
that can be used to direct the output to other output units or specific files and devices. You
can set up an arbitrary number of independent output streams by making repeated calls to
Message_Initialize.

For all the details see the writeup for the Message routine.

About the semicolons

In this section, we’ll explain just when a semicolon is needed in a list of statements, and when
it isn’t. You don’t really need to understand this completely, since the Plus compiler will
usually let you get away with inserting unnecessary ones in “reasonable” places.

Plus follows the Algol tradition of using the semicolon as a separator between statements
in a list of statements. To fully understand this, you must be aware of what constitutes a
statement.

The program fragment

cycle
Table(Table_Size) := Getsym();
Table_Size +:= 1

end

contains a list of two assignment statements in the loop, so they are separated by a semicolon.
end, however, is not a statement—it is just one of the punctuation marks that makes up the
loop—so there’s no need for a semicolon at the end of the second assignment. You may prefer
to always put a semicolon there, however, so you don’t have to remember to add it if you
later add a third statement to the loop.

Similarly, cycle is not a statement by itself, so you don’t follow it with a semicolon. And in
an if statement like

if Rc == 0
then

Sym s= o
else

Sym := Str

end if

42

Tutorial Introduction

you don’t have to separate the keywords (then and else) from the statements in the then-
part or else-part. (But again, when a list of statements appears in either alternative, the
individual statements of the list must be separated by semicolons.)

Now, the entire cycle or if statement is itself a statement, so if this appears as part of a larger
list of statements, it must be separated from its successor. Thus in

cycle
Table(Table_Size) := Getsym();

Table_Size +:=1
end;
Sprint_String("Input Complete")

the semicolon after the end is required to separate the entire cycle ... end statement from
the following Sprint_String procedure call.

The Rest of Plus

This chapter has covered the basic features of Plus in some detail. However, there is more to
Plus that we haven’t mentioned here. There are several additional statements, a large number
of built-in procedures, and lots of additional options for types, declarations and procedure
definitions.

All these are explained in the next chapter.

43

I11. Language Details

This chapter presents a more advanced description of Plus. The description is quite informal, and
relies a lot on examples.! However, it attempts to be accurate and complete. A complete BNF
definition of the current syntax appears as Appendix B.

The Plus compilers are still under development. Some features of the language described herein
are partially or totally unimplemented in some compilers. Restrictions and other properties of
the current implementations of Plus are described throughout this chapter. We've attempted,
however, to distinguish at all times between the design of the language and the status of its
current implementations. Except as otherwise noted, everything in this chapter should apply to
all compilers.

A. Program Format

Programs are completely free-format, with the restriction that a single lexeme cannot be
split across two lines. Comments are surrounded by /* and */ as in PL/I or C, and may
continue across an arbitrary number of lines. The semicolon is required as a separator between
two statements in a list of statements. The syntax is fairly forgiving, and extra semicolons
generally won’t cause any problems.

Keywords of the language are reserved words. A complete list of the keywords appears as
Appendix C.

Case is not significant in input to the compiler.

B. Compiler Input

Input to the compiler consists of a sequence of statements each of which may be a declaration,
a global block, a procedure definition, or a compile-time statement. See Examples 1 and 2 in
the previous chapter.

Declarations which are not contained in a procedure definition define global identifiers which
may be referenced by all subsequent procedure definitions or statements. Declarations which
are contained within a procedure definition are local to that procedure.

A procedure definition contains executable statements and declarations. Executable state-
ments are allowed only within a procedure definition or inside a macro body.

Compile-time statements allow conditional compilation and a variety of other compile-time
actions.

C. Compilation Structures

Plus probably departs furthest from its Pascal heritage in the area of compilation units and
global variables. Pascal provides nested procedure definitions, with variables at one level
accessible by all procedures nested within it. The problem with this approach is that it
does not allow for separate compilation of the individual procedures—separately compilable
procedures generally cannot share variables except via their parameter lists.

The approach taken by Plus is similar to that of C or Fortran. A program consists of a
set of non-nested, separately-compilable procedures. Communication among procedures is by

1 Some day, we’ll add a more precise description of the syntax and semantics!

44

Language Details

means of parameters and global variables. Global variables may be defined either by means
of variable declarations which are external to all procedures, or by inclusion in a sort of
“common area” called a global block. (Global blocks are implemented by the PDP-11 and
System 370 compilers by using pseudo-register vectors. This allows the code to be completely
reentrant and independent of operating system services. The Motorola 68000 compiler uses
the application’s global area on the Macintosh, and “bss” space on the AMIGA.)

1. Procedures

A procedure in Plus consists of two parts, a procedure declaration and a procedure
definition. The procedure declaration specifies the type of the procedure. The type
specifies the names and types of its parameters and return value (if any). The type may
specify that some parameters are optional, and that others may be repeated an arbitrary
number of times. It may also specify that parameters are to be passed in registers, and/or
that the address of the parameter is to be passed rather than its value. The type may
also request (via the keyword system) that calls to the procedure must conform to the
standard linkage used in the operating system. See Section F-8 (page 71) for details of
this attribute. See Section E-13 (page 64) for details of other aspects of the procedure

type.

The procedure definition contains the series of statements to be executed when the
procedure is called. The heading of the definition may specify that non-standard entry
code is to be generated. The end of the definition is indicated by one of end, end
procedure, end definition, or any of these followed by the name of the procedure.

The procedure declaration contains information that must be known to both the defini-
tion part and to any other procedure that wishes to call it.

The definition of a procedure must be preceded by its declaration. Any call of a procedure
must be preceded by a declaration of the procedure called.

The declaration and definition of a procedure may be presented separately. For example:

procedure Print_Result is
procedure
parameter Sym is Symbol,
Method is character(l to 10),
Pos is Array_Index,
Accesses 1is Integer
end;

/* other declarations, globals, definitionms,
etc. */

definition Print_Result

end Print_Result

Alternatively, the declaration and definition may be combined in a single construct of
the form

Language Details 45

procedure Print_Result is
procedure
parameter Sym is Symbol,
Method is character(l to 10),
Pos is Array_Index,
Accesses 1is Integer
end
definition

end Print_Result

When the procedure declaration and definition are combined, the procedure identifier is
not repeated following the keyword definition.

Procedure declarations and definitions may be presented separately either to facilitate
separate compilation or to permit circular calling sequences. In the case of separate
compilation, note that each compilation which contains a call to a procedure must contain
a declaration for that procedure.

Global Variables and Global Blocks

Global variables may be accessed by any procedure provided the appropriate declarations
are present. A variable may be made global in either of two ways:

a. by placing the variable declaration inside a global block. This is the preferred
method when there are a number of global variables, since it reduces the run-time
register requirements;

b. by placing the variable declaration outside of any procedure declaration. Such a
global variable acts exactly as if it were in a (nameless) global block by itself.

A global block may contain any of the declarative statements of the language described
in Section G (see page 73). A global block may appear in the compiler input either
outside of any procedure (in which case the definitions it contains remain for all following
procedures) or internally to a procedure (in which case it is discarded at the end of the
scope block in which it occurs). There is no limit on the number of global blocks in a
program. However, code quality may suffer somewhat if a single procedure references
variables from a large number of separate global blocks.

The heading of a global block may specify an external symbol to be used for the global
area instead of the default symbol generated from the global block’s identifier. The end
of a global block is indicated by end or end global, or either followed by the name of
the global block.

At execution time, all procedures access the same copy of any global variable, regardless
of where the declaration occurs.

On the System 370 and PDP-11 the code is kept fully reentrant by using pseudo-registers
to implement global variables. Each global block will be one pseudo-register; individual
definitions within global blocks will not generate external symbols. A variable that is
neither inside a procedure nor inside a global block is a separate pseudo-register.

On the Macintosh, each global block or global variable is allocated space in the applica-
tion’s global storage area, addressed from A5.

46

Language Details

On the AMIGA, each global block or global variable defines a separate “bss hunk”.

Global Environments

Normally, the global storage accessible consists of all global variables defined in the
program, and remains “fixed” throughout execution of a program.

However, Plus provides a way for a family of procedures to have its own global storage
that is independent of the global storage used in the rest of the program. Switching from
one global storage to another can be performed at the time of a procedure call, either by
the caller, or by the entry sequence of the called procedure. Plus implements the concept
of a global environment to support switching global storage.

Note

Global environments are an “advanced topic”. Most programmers should not
need to be aware of the complications described below.

System 370 Note

This facility in Plus/370 matches that of the MTS “Coding Conventions”, but
implements the additional mechanism of switching during the entry sequence of
the called procedure.

Implementation Restriction (PDP-11)

Plus-11 does not support the mechanisms for switching global storage environ-
ments.

Motorola 68000 Note

Plus/68000 supports the switching of global storage environments, but this is
probably only useful on the AMIGA, when calling “system library” procedures.

Every Plus procedure has an associated environment type. An environment type may
be either a special type global(n), where n is a bit (32) constant, or it may be a pointer
to a record type. It may also be specified as unknown. The environment for a procedure
is specified with the environment attribute; see Section F-2, page 69.

An environment of type global(n) means that the global storage is defined by the usual
method of defining global storage. A value of such a type is just the base address of a
region of storage allocated for the global variables. All global variables declared in an
input file to the compiler are considered to be part of one global environment, of type
global (%Global_Id), where %Global_Id is a settable compiler option (it defaults to
"PLUS").

Implementation Restriction (System 370)

In Plus/370, a pointer to a record type can only be used for an environment if
the initial portion of the record contains certain reserved fields and is initialized
appropriately as required by the MTS “Coding Conventions”. This is described
in Appendix D.

Language Details 47

One procedure may call another only if either a) the caller’s environment type is com-
patible with the environment type of the called procedures, or b) the caller provides a
value of a compatible environment type as part of the procedure call.

Examples:

procedure P1 is environment global("QQSV")

procedure
end,

P2 is environment global("F0O0")
procedure
end,

P3 is environment pointer to Rec_Type
procedure
end,

P4 is
procedure
end,

P5 is environment unknown
procedure

end

Given the above, any of P1, P2, P3 or P4 could call P5 and vice-versa.

P1 could not call P2 (or vice-versa) unless it provided an appropriate environment value
to switch to, since they have different global types for environments. Similarly, P1 or P2
could not call P3 (or vice-versa) unless they provided an appropriate environment value
to switch to. Section K-3, page 87 describes the syntax used to switch environments at
the time of a call.

The environment of P4 is the default, which is global(%Global_Id). Thus, P1 could
call P4 directly if and only if %Global_Id had the value "QQSV".

The entry sequence of a procedure may also switch environments by specifying a new
environment as part of the procedure heading, as described by Section P-2, page 98.
When this is used, the caller must still call with the appropriate environment type. This
environment is in effect for the evaluation of the expression in the entry code which loads
the new environment. The new environment will be in effect for any calls from within
the procedures, so will be used in determining compatibility of subsequent calls.

A Plus procedure can reference Plus global variables only if it is executing with en-
vironment global(%Global_Id); otherwise the global variables are hidden inside the
procedure, since they are part of a different environment. If the environment attribute
is not given, global(%Global_Id) is assumed, so by default all procedures can access
global variables.

Note that all global variables in a given compiler run are part of one global type. You
can specify the name of that environment, but can’t have some parts of the program use

48

Language Details

one and some parts use another. It 7s possible to have separately compiled pieces of the
program use different global types.

Implementation Restriction (System 370)

MTS currently only provides rudimentary support for loading programs that use
more than one independent PRV. Generally, this is only practical with separately
loaded components, so it is mainly used with pre-loaded subroutine packages.

Implementation Restriction (Motorola 68000)

The Macintosh system and application structure effectively prohibit indepen-
dent global storages, and neither the MPW nor MDS linkers have any support
for them. Plus/68000does implement the use of environments which are pointers
to record types.

If the procedure environment is defined by a pointer to a record, Plus global variables
are not accessible inside the procedure. However, in this case the fields of the record
type will be made accessible inside the procedure as if they were global variables; i.e.,
they may be referenced without qualification.

If a procedure also has a special linkage option, the parameters in the prologue that are
passed to the linkage routine include the size of the environment and, for environments
of type global(n), the value of the constant n.

The predefined register variable Environment_Base_Register always has the same type
as the current environment and may be used if necessary to access the environment
value. However, it may be used for setting the environment only in a routine that has
the linkage none option (and then, only by experts). The code generated by the Plus
compiler assumes the environment is changed only as allowed by the procedure call and
entry sequence options, and changes made at other times may not work as “expected”.

External Variables

A variable may be declared external (see page 75). In this case the compiler will access
it through an external symbol reference. It will not allocate storage for the variable,
either as a local or global variable.

External variables must be defined at load-time either by methods outside of the Plus
language (e.g., assembler), or by the use of an entry constant.

System 370 Note

External variables can be used to access data in Fortran common blocks on the
System 370. To do so, the external variable would be declared as a record whose
fields correspond to the variables of the Fortran common block.

Motorola 68000 Note

External variables are currently assumed to be in the global data area. This is
largely so that they can be defined by an entry constant.

Language Details 49

Entry Constants

A constant declaration in Plus may include the specification entry (see page 74), which
causes generation of an object module containing the value of the constant. This is
normally used with constant arrays and records to generate tables etc. The constant may
then be referenced from other components or other languages by means of an appropriate
external declaration.

Implementation Restriction (Motorola 68000)

When YTarget_Operating_System has the value "MAC/MDS", entry constants
are not implemented because the basic MDS linker does not have the mecha-
nisms to initialize data areas.

External Symbols

Each procedure, global block, external variable, each global variable which is not a mem-
ber of a global block, and each entry constant, requires an “external symbol”. Individual
variables within a global block do not require external symbols.

External symbols must obey restrictions imposed by the system linker. In particular, the
MTS loader and *Link11 require that all external symbols be at most eight characters
long. The Macintosh and AMIGA loaders do not impose such a restriction.

The external symbol to be used may be specified by a string constant in the declaration
of a procedure or an external variable, or in the heading of a global block. If an external
symbol is not explicitly given, then the Plus identifier is used. If this is longer than the
system linker allows, the compiler will form an external symbol. Plus/370 and Plus-11
take the first four and last four characters of the identifier. The compilers will check,
within a single run, that any such generated symbols are unique; i.e, do not conflict with
other external symbols. It is unable to check across separately compiled portions of a
program.

Note that the external symbol for a global variable which is not part of a global block
is always obtained from its identifier (if the external specification is used, the variable
becomes an external variable, not a Plus global variable). To specify the external symbol,
the variable must be enclosed in a global block.

Example:

global Global_One
variable V1 is (1 to 100);

end Global_One;
variable External_One is (1 to 100);
variable Caseconv is character(256) external;

procedure Procl;
procedure Proc2 external "P2";

20

Language Details

definition Procl
global Global_Two external "G2"
variable V2 is (1 to 100)
end Global_Two;

end Proci;
definition Proc2
end Proc2;

Using Plus/370 or Plus-11 in the above examples, Global_One is an external global with
the external name GLOB_ONE. The variables declared within it may be referenced within
any procedure that follows. These variables are not external symbols. External_0One is a
global variable, with the external name EXTE_ONE which may be referenced anywhere in
the following procedures. Caseconv is an external variable which must be defined outside
of Plus. Its external name is CASECONV; an alternate external symbol could be specified
by a string constant following the keyword external. Global_Two has external name G2.
The variables declared within it may be referenced only within procedure Procl, unless
the definition of Global_Two is repeated elsewhere. Procl has external name PROC1, and
Proc2 has external name P2.

The only differences using Plus/68000 are that Global_One has the external name
GLOBAL_ONE and External_One has the external name EXTERNAL_ONE.

Macros

Plus currently does not provide “internal procedures” as such. However, macros are
provided to handle some of the situations where internal procedures might be useful.
A macro associates a name with a piece of program text. The text is then substituted
into the program whenever the name of the macro is subsequently encountered in an
executable statement. Macros may have parameters, with the text given as the argument
when the macro is invoked being substituted for the parameter name in the macro body.

Macro substitution is at the “lexeme” level. That is, the macro body or macro argu-
ment is interpreted as a sequence of tokens (keywords, identifiers, symbols), before any
substitution occurs. The sequence of tokens is substituted where the name of the macro
or a macro parameter occurs as an identifier.

The body of the macro may be either of two syntactic constructs—a parenthesized
expression, or a scope block. (Basically, a scope block is a statement or sequence of
statements.) A macro may only be invoked in places where the body is syntactically
valid.

Macros are generally used for one of three reasons. They may be used to avoid the
overhead of a procedure call for small sequences of code required in several places. They
are convenient for defining interface code to non-Plus procedures, which may require
the use of Inline, and/or type cheating of parameters. They are also useful for top-
down programming, to allow a program to use a name for an action that will be defined
separately.

Macros may be defined either inside or outside of a procedure. Each identifier used
within a macro is normally associated with the definition in effect at the point where

Language Details ol

the macro is defined. It is possible, however, for a macro to have “free variables”, which
are associated at expansion time. (Any identifier which is used in a macro, but is not
defined at the point where the macro is defined, is associated at expansion time.)

Further details and examples of macros are given in Section Q, page 99.

Note

Macros as described above may be removed from a future version of Plus in
favour of internal or “inline” procedures. We recommend that macros be used
only in ways that are compatible with procedures.

Identifiers

An identifier in Plus is a sequence of up to 100 characters, which may be letters, digits, or the
characters $, #, or _. The first character may not be a digit. Upper or lower case letters may
be used, but are considered equivalent. Thus the identifier FALSE is the same as the identifier
FaLsE.

1. Uses of Identifiers

Identifiers are used in Plus for the purposes listed below. Each type of identifier is
described in more detail elsewhere.

a. Procedure Names—Procedure names are specified in the procedure declarations
and in the procedure definition if it occurs separately. They are used to invoke the
procedure. See Section C—6, page 49 for restrictions on identifiers used as procedure
names.

b. Global Block Names—Global block names appear only in the heading of the
global block. Again, see restrictions in Section C-6, page 49.

c. Macro Names—Macro names appear in macro definitions and are used to invoke
the macro.

d. Symbolic Constants—Symbolic constants are defined explicitly by means of the
constant declaration, or implicitly by occurrence of the identifier in the list of an
“identifier-list type” definition, described in section E—4, page 57.

e. Type Identifiers—Types may be given names in a type declaration. These names
may then be used in any other situation requiring a type description.

f. Variable Names—Variables are declared with the variable and equate statements.
Each variable is associated with a type by its declaration.

g. Procedure Parameters and Results—Procedure parameters and results are
given names as part of the procedure type. Each parameter and/or the result is
given a type, and is treated as a variable of that type within the procedure defini-
tion.

h. Macro Parameters—Macro parameters are defined in the heading of the macro,
but are not associated with types. Macro parameters may be replaced by expressions
of any type at macro expansion time. The specified expressions must be type-
compatible with whatever context the associated parameters are used in.

92

Language Details

i. Record Fields—The definition of a record type associates an identifier with each
field of the record. The record field name is used to qualify the name of a variable
of the record type, in accessing the particular field.

j- Exit Labels—Certain constructs in Plus may be labelled by preceding and follow-

ing them with an identifier enclosed in the symbols < and >. These labels are used
to designate the points to which “escapes” may be made from within the construct.

k. Compiler Variables—Compiler variables are special predefined identifiers which
are used to set and test various compiler options. They always begin with %.

1. Compiler Procedures—Compiler procedures, like compiler variables, are identi-
fiers beginning with %, and are used to invoke special compile-time actions of the
compiler.

Definition of Identifiers

Every identifier used in a program must be defined, usually by an appropriate declarative
statement. There are a few built-in procedures and constants which are predefined
identifiers.

With one exception, any identifier must be defined before it is first used.

The one exception is that a pointer type description may refer to an undefined identifier
as its object type. This allows for circular definitions in record types—e.g., a record of
type T1 may have a field which points to an object of type T2, which in turn may contain
a pointer to another object of type T1.

The type of the object type identifier must be defined before any executable statement
which accesses the object of the pointer. However, if no statement within the compilation
manipulates the object (i.e., dereferences the pointer), the object type is allowed to
remain undefined. (This provides an aid to separate compilation, since a separately
compiled procedure need only include declarations for those objects which it manipulates,
even if it references structures containing pointers to other objects.)

Examples:
variables V1, V2 are pointer to Undef;

Vi := V2;
Vi@ := 5;

type Undef is (1 to 100);
V20 := 5;

The assignment of V1 to V2 is valid, since it does not access the object of the pointer. The
dereferencing operator @ (at sign) is used to access the object pointed at by its operand;
hence the assignment to V1@ will result in an error message because the object of V1 is
of type Undef which is not yet defined. The assignment to V2@ is valid, since the object
type is defined previously.

Scope of Identifiers

Identifiers obey scope rules like those of Algol or PL/I. Identifiers declared in one scope
can be referenced in any scope nested within it, unless the same identifier is declared in

Language Details 03

a nested scope. Identifiers may not be referenced outside of the scope in which they are
declared. Variables declared within a scope do not exist outside of that scope.

The statement list inside any “bracketed” control structure forms a separate scope in
Plus. Extra begin...end blocks are not required. A scope may contain declarations
and executable statements intermixed.

The use of undefined identifiers as pointer object types interacts with the scope rules in
the following way. If an undefined identifier occurs as the object of a pointer type in one
scope, it is assumed to be implicitly defined in that scope. If it is subsequently used as
the object of a pointer within a nested scope, the second use will be assumed to refer
to the same type. In this situation, it will be invalid to define the identifier within the
nested scope (which would cause the pointer type in the outer scope to refer to a type
defined in the inner scope).

For example, in the sequence

variable V1 is pointer to Undef;
begin

type Undef is ...

variable V2 is pointer to Undef;

end

the definition of Undef within the begin block defines a new type. Therefore, the variables
V1 and V2 are of different types. On the other hand, in the sequence

variable V1 is pointer to Undef;
begin
variable V2 is pointer to Undef;

end

the use of the symbol Undef in the begin block is assumed to be the same as the use
that is implicitly defined in the outer scope, and hence the two variables are of the same
type. If a subsequent statement within the begin block attempts to define Undef (as a
type, or as anything else), an error message will be issued.

Type Descriptions

A type is a description of the values which may be assigned to variables of that type. There
are certain basic scalar types in the language, and rules for constructing more complex types
like arrays and records out of basic types.

Type descriptions may appear in several contexts in the language. The most important
contexts are variable and type declarations and in the descriptions of more complex types.

A type declaration simply associates an identifier with a type description. Thereafter, the
identifier may be used in other type definitions in any context. The ability to give a name
to a type allows you to define a type in one place and then use it elsewhere without further
concern for the details of its representation.

o4 Language Details

For each scalar type, Plus provides a way of expressing constants of the type. For each type,
certain operations are allowed. Every expression has a type, derived from the types of the
operands and the operator involved.

The following sections describe the types provided and applicable operations.

1. Numeric Types

A numeric type is a type whose values may be integers in a given range.

Examples:

type Number is (0 to 32767);

type MTS_Line_Number_Type is (-99999999 to 99999999);
/* False and True are predefined constants. */

type Boolean is (False to True)

The operations defined for this type are
a. arithmetic operators +, -, *, / and mod,?> and unary operations +, - and abs.

b. relational operators <, <=, >, >=, = and —=, which perform an arithmetic compare,
giving a result of 0 (false) or 1 (true).

Any numeric type is compatible, for assignment and for all the above operations, with
any other numeric type or with certain bit types. The compiler will optionally provide
run-time range checking to detect assignments of values out of the declared range.

2. Character Types

A character type is a type whose values may be character strings. There are two kinds of
character types, fixed length types and varying-length types. A varying-length character
type is expressed by giving the range of lengths that assigned strings may be. (This
information may be used for run-time checking, and also sometimes allows the compiler
to generate better code.)

The maximum length of a varying character type is used in allocating storage for a
variable of that type.

Examples:

/* Note Standard_String_Length and Max_Symbol_Length are
constants. */

type Fixed_String is character(Standard_String_Length);

type Symbol is character(0 to Max_Sym_Length)

Operations allowed for character types are concatenation (denoted by |1), and the re-
lational (comparison) operators. There is also a built-in procedure Substring which
selects substrings of character names or values, and a built-in procedure Length which
returns the length of a character value.

2 Note mod is an operator, not a built-in function. Thus it is used in an expression as X mod Y, not as mod (X,Y),
as Fortran programmers might expect.

Language Details 95

Character types are compatible, for the purposes of assignment and the above operations,
with other character types, even of different lengths. Strings are never extended (with
blanks or anything else) during operations. Character types are also compatible with
certain bit types.

The length assigned by an assignment statement is always determined from the source
(right-hand-side). It is an error to attempt to assign a value that is too long for the
destination. The compiler will optionally generate code to test at run-time for invalid
string-lengths that cannot be detected at compile time.

Character comparison is done lexicographically. That is, "A" < "AB" < "B" < "BB".
For strings of the same length, this is exactly what results for the System 370 from a
CLC operation. For strings of different lengths the number of characters of the shorter
are compared first. If these are equal, then the shorter string is considered less than the
longer.

Implementation Restriction (System 370)

The current implementation cheats slightly on this definition by comparing the
strings as if the shorter were padded with (binary) zeros to the required length.
(Thus if one string is longer than the other, but ends in zeros, the strings may
be found equal, although the shorter might be less than the longer according to
the definition.)

Examples:
String := "";
String ||:= Integer_To_Varying(Count,0) || " records"
Note that ||:= has the effect of appending the right-hand-side to the left-hand-side,

provided the destination is a varying length string.

Bit Types

Bit types are a machine-oriented type that allows specifying storage allocation in terms
of a fixed number of bits. For example:

type Machine_Address is bit(24)

Bit types will be coerced when necessary to other scalar types, so that bit values can be
used to express other types in a machine-dependent way.

Plus distinguishes two kinds of bit types, right-justifying (or “index-like”) bit types and
left-justifying (or “string-like”) bit types. The distinction is important when bit-types
of different lengths are mixed in expressions, or when bit-types are mixed in expressions
with other scalar types. The distinction is usually based on the word-size of the object
machine. In the following discussion, Word_Size is 32 for the 370 and 68000 compilers
and 16 for the PDP-11 compiler.

A bit-type is usually interpreted as right-justifying if its length is less than or equal to
Word_Size, and as left-justifying if its length is greater than Word_Size. The attribute
left may be used in a type description to force a short bit-type to be treated as left-
justifying. The current implementations require that a right-justifying bit-type have

26

Language Details

length <= Word_Size. The 370 and 68000 implementations further require that a right-
justifying bit type must be contained within four or fewer bytes. The PDP-11 compiler
requires that it be contained within a word (i.e., it may not cross a word boundary).
A left-justifying bit-type must have a length which is a multiple of 8 bits, and must be
allocated at a byte boundary.

Right-justifying bit-types are compatible with any index-type (defined on page 58), in-
cluding other right-justifying bit-types of different lengths. They are also compatible
with left-justifying bit-types of the same length. Right-justifying bit-type values will be
coerced to other index types if used as operands of operators requiring another type.
Note that in the coercion to an index type, some right-justifying bit-types are treated as
signed and some are not, depending on the actual bit length. It is up to the particular
implementation to determine which bit lengths will be signed and which will not.

A left-justifying bit-type is compatible with any character type, with other left-justifying
bit-types (of any length) and with right-justifying bit-types of the same length. Left-
justifying bit types of length n behave similarly to character-types of length n/8.

The logical operators |, & xor and — are defined for compatible bit-types. (That is,
for types of the same justification or the same length.) Index types will be coerced
to right-justifying bit-types (of length Word_Size), and character types will be coerced
to left-justifying bit-types if they are used as operands of these operators. When the
operators are applied to a pair of left-justifying operands, the bit-strings are aligned at
the left end, and the length of the result is the length of the shorter. When applied to
a pair of right-justifying operands, the right ends are aligned, and the result is always a
bit string of length Word_Size. When one operand is left-justifying and the other right-
justifying (in which case the lengths must be the same), the result is a right-justifying
bit(Word_Size).

When comparison operators <, <=, > and >= are used to compare two bit-types, an
arithmetic comparison will be performed if the types are right-justifying or of opposite
justification and a logical comparison if they are left-justifying. The Left_Justify
built-in function can be used to coerce a right-justifying operand into a left-justifying
expression.

System 370 Note

Word_Size is 32 for Plus/370 and bit(16) and bit(32) are signed. A right-
justifying bit type must be contained within four or fewer bytes.

PDP-11 Note

Word_Size is 16 for Plus-11 and bit (16) is signed. A right-justifying bit type
must be contained within a word (i.e., it may not cross a word boundary). |,
& and — are not implemented for left-justifying bit types (except for constant
expressions).

Motorola 68000 Note

Word_Size is 32 for Plus/68000 and bit (16) and bit(32) are signed. A right-
justifying bit type must be contained within four or fewer bytes.

Language Details o7

Identifier-List Types

The identifier-list type allows you to create new basic types by enumerating a list of
identifiers which are to be the elements of the type.

Example:

type Device_Type is (Printer, Reader, Punch, Tape_Drive, Disk_Drive,
Terminal)

The elements of the identifier list are automatically declared to be symbolic constants of
the given type (and must therefore not be previously declared in the same scope).

The compiler is free to choose an appropriate internal representation for each element of
the type. In fact, the representation used will be successive integers, starting with zero,
but you cannot make use of this fact except by type-cheating.

The relational operators are defined for identifier-list types, with the values considered
ordered as they appear in the identifier list (the first is smallest). Values of an identifier-
list type are compatible only with other values of the same type, or with right-justifying
bit types.

Real Types

Real types are used for floating-point numbers. The type definition specifies the number
of decimal digits of precision wanted.

Examples:

type Short_Real is real(7),
Long_Real is real(16);
variable V1 is real(5),
V2 is Long_Real

Real types are compatible with bit types of appropriate size.
System 370 Note

For the 370 implementation, the precision n in real(n) is interpreted as

1 <=n <= T results in 370 single precision (4 bytes)
8 <= n <= 16 results in 370 double precision (8 bytes)
17 <= n <= 34 results in 370 extended precision (16 bytes)

Currently, real variables of different sizes cannot be mixed, even across assign-
ment, so it is necessary to use type cheating or Inline to assign from a real of
one size to a real of another.

Currently, there are no operations implemented for real types, except assign-
ment. Comparison operations may be used, but will perform a logical compari-
son (string comparison), not a floating point comparison.

Implementation Restriction (PDP-11)

Real types are not implemented for Plus-11.

28

Language Details

Implementation Restriction (Motorola 68000)
Real types are not implemented for Plus/68000.

Index Types

A certain subset of the preceding scalar types are known as index types. Index types
may be used for control variables in do loops, for subscripting arrays, and in certain other
contexts. The index types include all numeric types, identifier-list types, character (1)
types, and right-justifying bit-types.

The built in procedures Low_Value, High_Value, Successor, Predecessor, Min, and
Max are defined for any index type.
Subrange Types

Any subrange of an index type is itself an index type. Subranges are indicated by giving
the lowest and highest values of the type. (In fact, any numeric type is really a subrange
of a predefined, unspecifiable type ‘integer’.)

Subrange types allow the same operations as their “base type”. Any subrange is com-
patible with any other subrange of the same type.

Examples:

/* Following is a subrange of Device_Type */
type Unit_Record_Type is (Reader to Punch);

/* Following is a subrange of type character(l). */
type Digit is ("0" to "9")

Set Types

Implementation Restriction (all compilers)

Set types and all related operations are currently not implemented.

Set types allow defining variables whose values may be arbitrary sets of values from a
given index type. Sets provide a very convenient way of expressing some programming
constructs that in other languages would have to be represented by arrays of Booleans
or bit strings.

Example:

type Mts_Modifiers_Type is (Indexed, Binary, Carriage_Control, Prefix,
Peel, Machine_Cc, Trim, Special, Ic, Case_Conversion);
variables Required, Excluded are set of Mts_Modifiers_Type

A variable of type Mts_Modifiers_Type can be assigned a set of values; e.g.,

Language Details 99

Required := {Indexed, Trim};
Excluded := {Carriage_Control, Case_Conversion}

Theoretically, any index type can be used as the base of a set, although there will be
some implementation restriction on the possible size of the range. Sets are implemented
using bit strings. The presence of an element in the set is indicated by an on-bit.

The set braces { and } (the alternative notation (| and |) may be used for devices which
have no left-brace and right-brace) allow construction of sets. The operators |, & and
- are defined to mean set union, intersection, and difference when applied to set types.
The relational operator subset can be used to test whether one set value is a subset of
another. The relational operator in can be used to test whether a particular value of
the base type is in a given set.

Values of two set types are type-compatible if their “base types” are compatible. That is,
set of (1 to 10) is compatible with set of (5 to 20). The result of a set operation
on these two might be of type set of (1 to 20).

A value of a scalar type will be coerced into a set containing only that value when context
requires it. For example:

Required |:= Ic
is equivalent to
Required |:= {Ic}

which means
Required := Required | {Ic}
This therefore has the effect of adding the value Ic to the set Required.

A type-identifier for an index type may be used in a context requiring a set of that type,
and is equivalent to the set containing all values of the index type.

Sets frequently allow the construction of efficient algorithms which would be difficult to
do in most high-level languages. The above example indicates how a concept similar
to the MTS I/O modifier pairs might be expressed in this language. Instead of using
adjacent pairs of bits for modifiers, two sets are used. The set Required specifies those
options which have been selected (e.g, @Ic results in Ic being placed in set Required).
The set Excluded specifies those modifiers which are specifically not to be applied (e.g,
@—Ic results in Ic being placed in set Excluded). With this sense of modifiers, the
modifier amalgamation algorithm required to combine the Fdname modifiers® with the
operation modifiers can be expressed as:

Combined_Required :
Combined_Excluded :

(Fdname_Required - Op_Excluded) | Op_Required;
(Fdname_Excluded - Op_Required) | Op_Excluded

This will generate code that is very nearly as good as that in the assembler version.

3 Under MTS, I/O modifiers may be specified as part of a “file or device name” to apply to all operations on that
Fdname, and may also specified on each I/O operation. At each level, the modifier may be asserted as “on” or

“off” or defaulted. In case of conflict, the operation modifiers have precedence over the Fdname modifiers.

60

Language Details

As a final example, note the following is allowed:

if Device in {Reader, Printer}
then

end;
This means the same as

if Device = Reader or Device = Printer
then

end
but the first will generate better code, and is probably at least as easily understood.

Array Types

An array type is constructed out of two other types, an index type (which defines the
type and range of the subscripts allowed) and an arbitrary type which defines the type
of the elements. Note that any index type is allowed as the subscript type. It is possible
to have arrays indexed by character, or by identifier-list types, as well as by numbers.

Examples:

variable Translate_Table is array character(l) of character(l);
type Symbol_Array is array (1 to Max_Number_Symbols) of Symbol

The elements of an array may be of any type, including another array type. Thus multi-
dimensional arrays can be constructed out of arrays of arrays. Note that there is no way
to define an array whose size is determined at run-time (but see Chapter VIII, page 140).

The only operations that can be performed on arrays are assignment, subscripting and
comparison. An array of a given type can only be assigned to an array of the same
type. Subscripting is denoted in the usual way, by means of a parenthesized expression
following the array name. The subscript expression must be type-compatible with the
specified index type of the array, e.g.

Translate_Table("a") := "A"

Two arrays of the same type can be compared, using the operators = and —= only.
However, some caution is required when comparing entire arrays. In some cases, the
allocation of an array may require padding elements to maintain alignment requirements.
When arrays are compared with a single comparison, this padding will be included in
the locations compared. The result of the comparison may then be incorrect, since the
padding bytes are likely uninitialized. This situation is not detected by the compiler.

For convenience in accessing elements of arrays of arrays, multiple levels of parenthesized
expressions may be condensed into an expression list. For example, given the declaration

variable Matrix is array (1 to 10) of array (10 to 20) of Number

the I,J’th element may be referred to as either

10.

Language Details 61

Matrix(I) (J)
or
Matrix(I,J)

When a constant subscript is applied to a constant array, the result is a constant which
may be used in any context requiring a constant. A variable subscript applied to a
constant array does not result in a constant, since it requires a run-time calculation.
Hence it cannot be used in contexts requiring a constant.

Pointer Types

Pointers in Plus must usually be defined in terms of the type of object that they point to.
This allows full checking of the types resulting from use of the pointers. Given any type,
pointer to that type is another valid type. The values of the pointer type are addresses
of variables of the object type. It is also possible to have a pointer to a constant. In this
case the value will be the address of a location containing that constant. See Section H,
page 81.

Example:

variables First_Elem, Last_Elem are pointer to Symbol_Table_Element

The suffix operator @ may be used to follow (or “dereference”) a pointer. The result of
applying this operator is a name of an element of the given object type. (If the pointer
is a pointer to a value, @ results in a value, not a name.)

A pointer to a variable is created by means of the built-in procedure Address. The
argument of Address must be a name or a constant of any type. The result is a value
of type pointer to the type of the argument. Thus,

variable Item is Symbol_Table_Element,
First_Elem is pointer to Symbol_Table_Element;
First_Elem := Address(Item)

will cause the variable First_Elem to be assigned a pointer to the variable Item.
The relational operators (=, ==, <, <=, >, >=) are allowed for pointers.

A pointer value is compatible with a pointer name (for assignment or comparison) only if
the object types, and the ranges and attributes of the types are compatible. For example,
given the declarations

variable V1 is pointer to (1 to 100);
variable V2 is pointer to (50 to 200)

assignment of V1 to V2 or vice-versa would not be allowed because the ranges are different.
(This strict type compatibility is necessary to enforce range-checking of assignments.)

In general, pointer assignment is permitted in situations which don’t allow violating
range declarations or “corrupting” values.

More specifically, a pointer to value T cannot be assigned to a pointer to T, but
a pointer to T can be assigned to a pointer to value T. The range restrictions on

62 Language Details

pointer assignments are relaxed slightly in the presence of value. For example a pointer
to (1 to 5) can be assigned to a pointer to value (0 to 10) and a pointer to
character(0 to 10) can be assigned to a pointer to value character(0 to 100).
The range (or length range) of the right-hand-side of the assignment must be within
that of the left-hand-side. The ranges or attributes must still be such that the storage
representations of the object types are the same. Thus a pointer to (1 to 5) cannot
be assigned to a pointer to value (0 to 10000), because the first numeric type uses
one byte while the second uses two bytes.

The predefined constant Null is compatible with any pointer type. It may be used as a
distinguished value to indicate the end of a linked list, etc.

The special type unknown may be used as the object of a pointer type.* The type
pointer to unknown is compatible with any other pointer type, but values of this type
may not be used to access an object. The result of dereferencing a pointer to unknown
is an expression of type unknown. This cannot be assigned to or fetched. It is possible to
specify its type with an open or equate statement however, or to pass it on to a procedure
expecting a reference parameter.

Type pointer to unknown is intended for use in interfacing to external (non-Plus)
subroutines for which it is not convenient or not reasonable to provide a proper type
definition for all parameters. Variables of type pointer to unknown may also be used as
a way of type-cheating, to convert one pointer type to another. (The equate statement
provides a much more direct way of performing such type cheating.)

11. Record Types

A record type is used to group a series of items of other types as one conceptual unit.
Each item of the record is called a field and is named with an identifier. The end of a
record type is specified by end or end record.

Example:

type Symbol_Table_Element is
record
Next_Symbol is pointer to Symbol_Table_Element,
Symbol is Symbol_Type,
Reference_Count is Integer
end

Assignment of record types is allowed. The variables assigned must be the identical
record type (see Section K-3 in Chapter II, page 21). The operation of field selection,

“wom

indicated by “.” is also defined. Thus given
variable Sym is Symbol_Table_Element

the field Reference_Count of variable Sym is accessed as in
Sym.Reference_Count := 0

Field selection may be applied to expressions which result in a record; for example

4 Or, equivalently, as the type of a reference parameter in a procedure type description.

12.

Language Details 63

First_Elem@.Reference_Count

accesses field Reference_Count of whatever record First_Elem points at. If the expres-
sion results in a name, then the result of the field selection is a name; if the expression is
a value the result of field selection is a value. If the expression is a constant display, the
field selection will result in a constant—the value will be determined at compile time.

Note that in order to reference a field of a record, full qualification is normally required.
The open statement, described in Section N, page 94, provides a way of eliminating some
of the qualification.

Comparison operators = and —= are also allowed for records, but with the same caveat
as for array types: there may be padding bytes within the record layout which are not
initialized and hence lead to spurious results when the records are compared.

Variant Fields in Records

A record type description may include a section at the end which may contain different
types of items under different circumstances. Such an area is called a variant part. The
heading of the variant part normally defines a selector field whose value determines
how the remainder of the variant is supposed to be interpreted. It is permissible to omit
the selector field.

Example:

type Symbol_Table_Element is

record
Next_Symbol is pointer to Symbol_Table_Element,
Symbol is Symbol_Type,
Reference_Count is Integer,

variant Device of Device_Type from

case Reader, Printer, Punch:
Record_Length is Integer

case Disk_Drive:
Block_Size is Integer

case Terminal:
Rows, Columns are Integer

end

Device is defined as a field of the record type, which is called the selector field. The
value of this field is supposed to determine which of the cases that follow is in effect.
The cases following may contain arbitrary lists of field definitions. The storage for any
case overlays that of the other cases. The labels on the cases identify the values of the
selector field for which the shared storage area should be interpreted according to the
following field list. There may be more than one value specified as part of a case label.

The selector field is not set automatically when the variant fields are changed. Variant
records provide one way of type-cheating in Plus, since it is possible to store into a
shared area by referencing it with one field name and retrieve from it via another name,
associated with a different type. However, the equate statement provides a much more
direct way of type-cheating.

The compiler may eventually provide optional run-time facilities to check correspondence
of referenced fields and the value of the selector field. The selector field may be omitted

64

13.

Language Details

(by simply not specifying an identifier). In this case, of course, no run-time checking is
possible. Note that a selector type and case labels of that type are still required in the
description of a variant record. For example:

type Symbol_Table_Element is
record
Next_Symbol is pointer to Symbol_Table_Element,
Symbol is Symbol_Type,
Reference_Count is Integer,
variant Device_Type from
case Reader, Printer, Punch:
Record_Length is Integer
case Disk_Drive:
Block_Size is Integer
case Terminal:
Rows, Columns are Integer
end

is similar to the previous example, but there is no field Device in the record. The
application program using such a variant record is assumed to know by context which
variant applies.

A given record type can only contain one variant part which must always be at the end
of the record. However, any field may be a nested record type which itself has a variant
part.

Procedure Types

A procedure type defines the names and types of the parameters and result of a class of
procedures.

The parameters and/or result are specified in a definition similar to a record definition.
Procedures with no parameters and no result are specified as type

procedure
end

The parameters and result names and types are specified similarly to record fields, as in:

type Table_Search_Procedure is
procedure
parameter Element is Symbol,
reference parameter Accesses is Integer
result Position is Array_Index
end;

/* Procedure with result but no parameters. */
procedure Getsym is

procedure

result Sym is Symbol

end

Language Details 65

The keyword reference preceding a parameter specification causes the parameters that
follow to be passed by reference instead of by value. The corresponding arguments of a
call of the procedure must be names or constants of the appropriate types; the addresses
of the arguments are passed. A constant may only be used if the parameter type specifies
the attribute value. The effect is exactly the same as declaring the parameters as type
pointer to ..., using the Address procedure in the call to obtain the pointer to pass,
and then dereferencing the parameter at each use in the called procedure.

The keyword name may be used instead of reference. This is a mostly-obsolete feature.
name acts just like reference from the point of the calling routine (i.e., the address
of a variable is passed). Automatic dereferencing is not done inside the called routine,
however. That is, the parameter will appear as a pointer within the called routine.

Optional parameters may be specified following the keyword optional. Any optional
parameters must follow all required parameters in the parameter declarations.

For example, given

procedure Proc2 is
procedure
parameter P1 is (1 to 100),
optional parameter P2 is character(l),
P3 is (1 to 100),
optional reference parameter P4 is (1 to 100)
end

all the following would be legal calls of this procedure:

Proc2(1l, "A", 10, X);
Proc2(1l, "A", 10);
Proc2(l, "A");
Proc2(1);

Procedures written in Plus may have optional parameters; however, there is currently no
built-in way for them to determine the number of parameters that were passed.

System 370 Note

For compatibility with Fortran or other Type I, S-type linkage routines, if the
last parameter passed is a reference (or name) parameter it will be flagged in
the high-order bit. If it is not a reference-parameter, then the called routine will
have to have some way of determining the number of parameters for itself.

There is currently no built-in method for a procedure written in Plus to test this
high-order bit in order to determine how many parameters were passed (but see
Chapter VIII, page 141).

A group of parameters that may be repeated an arbitrary number of times may be
specified following the keyword repeated. This is only useful in interfacing to non-Plus
routines, since there is currently no way of accessing the parameters from within a Plus
procedure. For example, given

66 Language Details

procedure Proc3 is
procedure
parameter P1 is (1 to 100),
repeated parameter P2 is (1 to 100),
P3 is character(1)
end

All the following would be allowed:

Proc3(X);
Proc3(X, 1, "A");
Proc3(X, 1, "A", 2, "B");

But not:

Proc3(X, 1, "A", 2)

Implementation Restriction (all compilers)

Repeated parameters are not implemented yet.

Parameters may be passed in registers by using the register specification in the param-
eters declaration. Similarly, the result of a procedure may be declared to be returned
in a register or several registers.” See Section G-5, page 75 for details of the register
specification.

The declaration of register parameters or result only controls the way that the parame-
ter/result passing is implemented. Within the body of a procedure, the parameters/result
are not necessarily retained in registers.

The result of a procedure may be declared to be optional. This just means that the pro-
cedure may be used in either an expression context (requiring a result) or in a statement
context (the result is to be ignored).

Example:

procedure Read is

system procedure

reference parameters
Buffer is unknown,
Buffer_Length is Number,
Modifiers is MTS_Modifier_Record_Type,
Line_Number is MTS_Line_Number_Type,
Fdub is Fdub_Type

optional result
Io_Result is Dsri_Return_Types

end

5 Note that the normal System 370 Type I linkage convention (result in register 0) is not currently assumed, even for
procedures with the system attribute or linkage specification. It must be explicitly stated in the type declaration.

14.

Language Details 67

This might be used as in
Notification := Read(Buffer ...)

or (when the result is to be ignored):
Read (Buffer ...)

There is also an “unspecified” procedure type. The syntax is
procedure

unknown
end

An unknown procedure cannot be called, but it can be passed as a parameter or assigned
to a procedure variable. The type procedure unknown end is compatible with any other
procedure type. (It is analogous to the pointer to unknown type). It is intended
for use in defining variables and parameters which take different types of procedure
values, depending on context. Some kind of type cheating is necessary if the procedure
is eventually to be called.

The type attributes system and environment ... may be applied to a procedure type
description. Both affect details of the procedure call. See Section F, pages 69 and 71 for
details.

Procedure type values are compatible only with other values of the identical type, with
the predefined constant Null, or with the “unknown” procedure type. All parameterless
procedures are considered compatible.

The only operations implemented for procedure types are assignment, procedure calling,
and comparison. Comparison of procedure values may specify only = or —=.
Global types

Global types are used only for values to be used as the “global storage environment” of
a procedure.

Example:

variable Psect is global("TEST")
The variable Psect holds a value which may be used to set the global storage for proce-
dures which are defined to require environment global("TEST").

The expression in parentheses following the keyword global is called the global id. It
is a bit(32) constant, or other constant that is compatible with bit (32).

The global id serves only to identify a class of compatible procedure environments. Two
global types are compatible if and only if their global ids are equal. Global types are
also compatible with the predefined constant Null.

The operations of assignment and comparison (<, <=, =, ==, > >=) are defined.

For details of procedure environments see Section C-3, page 46.

68

Language Details

Implementation Restriction (PDP-11)
The type global(...) is not implemented for Plus-11.

Type Attributes

There are a number of attributes that can be applied to a type description. Attributes always
precede the type description and modify its interpretation in some way.

1.

Aligned
The aligned attribute is used to specify alignment of variables of a given type.

For the purposes of this attribute, the object machine is assumed to have a bit-address-
able memory. Aligned specifies an allocation boundary requirement, an optional offset
from that boundary, and whether the left or right end of the variable is to be so aligned.
This attribute can only be used to strengthen the default alignment of a variable. For
bit types, the alignment specification also overrides the default left- or right-justification
of the type.

Examples:

type Aligned_Chars is aligned 64 left character(4);

Variables of this type are 4-byte character fields, aligned such that the left-hand end is
at an address which is a multiple of 64 bits (i.e., doubleword aligned).

type Bit_24 is aligned 8 in 32 left bit(24)

Variables of this type are aligned such that the left-hand end is 8 bits from a fullword
boundary. This is the same as specifying

type Bit_24 is aligned 32 right bit(24)

except that the first would also cause type Bit_24 to be a left-justifying bit type, while
the second would cause it to be right-justifying.

Aligned does not affect the allocated size of a variable. It just inserts or removes “filler”
bytes to ensure the requested alignment.

type Aligned_Byte is aligned 32 right bit(8)

A variable of this type occupies a single byte, allocated such that the right-hand end is
on a fullword boundary.

System 370 Note

For the 370 implementation, the boundary specification may be a number from
1 to 64. The offset may be a number from 0 to the specified boundary. For index
types, the variable must be contained entirely within four or fewer bytes.

PDP-11 Note

Aligned is ignored by the PDP-11 compiler, except for the fields of a record. For
index types, the variable must be contained entirely within a (16-bit) word.

Mot

For Plus/68000, the boundary specification may be a number from 1 to 64. The
offset may be a number from 0 to the specified boundary. Note, however, that
many storage allocation mechanisms only give 16-bit alignment which might
result in variables only being 16-bit aligned during execution.

For index types, the variable must be contained entirely within four or fewer
bytes.

Language Details 69

orola 68000 Note

Environment

The

environment attribute is allowed only for procedure types. It specifies the type of

global storage environment that must be in effect when the procedure is called.

Example:

The

procedure Getfrom is environment Dsr_Psect_Type
procedure

end

attribute keyword environment must be followed by a type description for the

environment of the routine. The environment type must be one of

a.

Implementation Restriction (PDP-11)

environment isn’t implemented for Plus-11.

global(n) where n is a bit(32) or compatible constant. This indicates that the
procedure uses a pseudo-register vector (“PRV?”) for its global storage. The constant
value is required to distinguish distinct PRV environments. The default for the
environment attribute is global(%Global_Id).

unknown. The procedure’s global environment is undefined. It may be called with
any environment, and may make calls to procedures of any environment. You must
ensure all such calls provide a suitable environment.

pointer to r, where r is a record type. This means that the global environment
is defined by the specified record. For the System 370, to be usable as a global
environment the first part of the record must have a specific format, as described in
Appendix D.

See Section C-3, page 46 for further information about procedure environments.

Fast
This

attribute requests the compiler to allocate variables of the type in such a way that

access to them is fast if possible. This may mean using a register, or allocating in a
halfword rather than a byte, etc.

Example:

type Subscript_Type is fast (1 to 100)

70

Language Details

Left

The attribute left may be used to force a type (normally, a bit type), to be left-justifying.

Example:

type Four_Chars is left bit(32)

Packed

The packed attribute is used to request that items of the type be storage packed very
closely. This generally means there will be no slack bits left except as required by
alignment considerations.

Example:

type T1 is packed (0 to 1B);
variable V1, V2 are T1

Without the attribute packed, V1 and V2 would each be allocated in a separate byte.
With the attribute, the two will be packed into one byte.

packed may be specified for the fields of a record type, or the element type of an array,
in order to cause the data structure to be packed.

Examples:

type Flags is
record
Fi, F2, F3, F4, F5, F6, F7, F8 are packed Boolean
end;

type Flag_Array is array (0 to 7) of packed Boolean

Both the above data structures use only a single byte, with each element occupying one
bit.

Note that specifying packed for an overall record type does not cause the elements within
it to be packed. Thus

type Flags is packed
record
F1, F2, F3, F4 are Boolean
end

would occupy four bytes. The attribute in this case only affects the overall allocation
of variables of type Flags. Since they would be byte-aligned anyway, it actually has no
effect.

The object of a pointer type may specify packed only if the type occupies an integral
number of bytes, so that all objects of the type will start at an exact byte address.

System 370 Note

For index types, a variable must be contained in four or fewer bytes.

Language Details 71

PDP-11 Note

packed is ignored by the PDP-11 compiler except when applied to the fields of a
record. Packed fields of a record are allocated starting from the least significant
bits of each word. For index types, a variable must be contained entirely within
a (16-bit) word.

Motorola 68000 Note

For index types, a variable must be contained in four or fewer bytes.

Right

The attribute right may be used to force a type (normally, a bit type), to be right-
justifying.

Example:

type Fullword is right bit(32)

Small

small requests the compiler to optimize the size of the type in preference to the access
time. It does not result in the extreme storage packing forced by the packed attribute. It
is the inverse of the attribute fast. Since small is the default, it is never really needed.

System

The attribute system may be specified only for a procedure type. It indicates that calls
to the procedure must be compatible with the standard linkage used in the operating
system.

The system attribute affects only the code generated for procedure calls and is gener-
ally used for declaring procedures written in another language. It does not affect the
entry/exit code generated as part of the procedure definition if the procedure is written
in Plus. See the linkage option in Section P, page 96 for related information.

System 370 Note

For the 370 version, the system attribute guarantees compatibility with the OS
Type I linkage.

The linkage conventions used internally in Plus are undergoing a change at the
time of this edition of this document. For the older version (%Linkage="0LD"),
the attribute system has no effect. With the newer version, %4Linkage="NEW",
this attribute causes the procedure call to update a stack descriptor, so that it
is later possible for the OS linkage routine to call back to another Plus linkage
routine.

PDP-11 Note
The attribute system is ignored by Plus-11.

72

Language Details

Motorola 68000 Note

For Plus/68000, the effect of the system attribute depends on the %Target_
Operating_System compiler variable.

When %Target_Operating_System has the value "MAC/MPW" or "MAC/MDS",
then the system attribute causes the compiler to generate a special instruc-
tion to call the procedure, usually an “A-line trap”. The actual instruction used
is given by the external name of the procedure, which must be an even num-
ber of bytes (characters) in length, usually specified as a hexadecimal constant.
Note that this implies that there cannot be variables of a system procedure
type, as there is no implemented way to call them.

When %Target_Operating_System has the value "AMIGA", then the system
attribute causes the compiler to call the procedure via an offset from the global
base register (which may first be loaded by any with phrase in the procedure
call). This is used to call “system library” routines.

For example with the Macintosh

procedure Set_Port is system
procedure
parameter Gp is Graf_Ptr
end external ’A873’°

defines the Set_Port routine to be the A-line trap A873. For the AMIGA,

procedure Open_Window_Procedure is

environment pointer to Intuition_Base_Type

system procedure

reference parameter New_Window is value New_Window_Type
in register AO,

result Window is pointer to Window_Type
in register DO,

end external "_LVOOpenWindow"

defines the window opening procedure for the “Intuition” library. When this procedure
is called, the call will be made relative to the Intuition_Base_Type that is supplied on
the call.

See Appendices D, E and F for further information about Plus linkage conventions.

Value

The value attribute specifies that names of the type are to be automatically denamed
into values whenever referenced in the program. Thus, the value attribute prevents
assignment. It is mainly used as an attribute of the object type for a pointer, in order
to allow the pointer to point to a constant.

For example, given
variable P is pointer to value character(10)

the assignment

Language Details 73

PQ@ := "abcdefghij"
would be invalid, since dereferencing P produces a value, which cannot be assigned to.

The compiler knows that the object pointed at by P cannot be changed, so P is allowed
to point to a constant:

P := Address("ABCDEFGHIJ")

would be allowed. The Address function produces a pointer to a value when its argument
is a constant. This can only be assigned to a type with the value attribute. The pointer
variable with the value object may, however, have a pointer to a name assigned to it.

The attribute value may also be useful when an external variable is to be treated as
“read-only” within the program. For example:

variable Caseconv is value character(256) external

guarantees that the compiler will issue an error message if the program contains any
statement that might attempt to store in Caseconv (either directly or indirectly via a
pointer).

G. Declarations

The constant, variable and type declarations have similar syntax. Examples of declarations

are:

constant Max_Sym_Length is 10;
type Symbol is character(0 to Max_Sym_Length);
variable Msg is pointer to Stream_Type;

procedure Getsym is
procedure
result Sym is Symbol
end

A list of identifiers may appear where the single identifier is declared in each of the above (on
the left of the keyword is). It is also permissible to combine a series of declarations with a
single use of the appropriate keyword. Thus:

variables Low, High, Pos are Array_Index,
Str is Varying_String

Constant Declarations

The constant declaration is used to associate an identifier with a constant value of any
type. The value may be expressed as a constant or as an expression all of whose terms are
constants. Once a constant-identifier has been declared it may be used in any situation
requiring a constant.

Examples:

constant Max_Sym_Length is 10;
constant Max_Number_Symbols is 600

74

Language Details

Entry Specification

A constant declaration may specify the keyword entry following the constant expression.
This causes the constant to be generated as a separate csect in the object module.

Example:

type Procedure_Vector_Type is array (Open#, Do_It, Close) of
procedure
end;

constant Procedure_Vector is Procedure_Vector_Type(Open_Procedure,
Do_It_Procedure, Close_Procedure) entry "PROCVECT";

will produce a csect containing the addresses of the three procedures.

The entry keyword may be followed by a string specifying the external symbol to use—
PROCVECT in the above. If the external name is not given, it will be generated from the
constant identifier by taking the first four letters and the last four letters.

Entry-constant declarations are most often used with structure (array and record) con-
stants, so that each routine referencing the constant doesn’t have its own copy of the
constant.

For simple constants, it is possible that a routine may have its own copy of the constant
value, even if an entry constant declaration is used to define it. This is because the
compiler uses various techniques in accessing constants, some of which do not actually
require a value in the literal pool of the program.

Implementation Restriction (Motorola 68000)

When %Target_Operating_System has the value "MAC/MDS", Plus/68000 does
not implement entry constants, due to limitations in the MDS linker.

Type Declarations

The type declaration is used to associate an identifier with a type description. Many
examples have already been given.

It is not necessary to associate an identifier with every type by means of a type decla-
ration. It is perfectly permissible to use the type description directly within a variable
declaration. However, be warned that Plus does absolutely no equivalence calculations
for record, array or procedure types in determining type compatibility. For these types,
a single type description is required, either by using a type declaration, or by declaring
all relevant variables in the same variable declaration. See Section K-3 in Chapter 1I,
page 21.

Variable Declarations

The variable declaration is used to allocate storage for a variable of a specified type.
Allocation for local variables is normally done on a stack, which is pushed and popped
at procedure entry and exit only. The stack-top at different points within a procedure
(i.e., as scopes are begun and ended) is determined at compile time. Global variables are
allocated in global storage at program load time.

Language Details 75

It should perhaps be noted, for those familiar with Algol-W records, that records in Plus
are treated no differently from any other type. They are not dynamically created by
references to them.

An external dynamic-allocation mechanism is easily implemented within the language
by defining a routine to return a pointer to a record of the required type. This routine
could then allocate a record by calling the M'T'S Getspace routine.

Allocation Specifications

There are several additional specifications that may appear in the variable declaration,
following the type. They affect the way the variable is allocated or accessed.

a.

External Allocation

The external phrase may be used in a variable declaration to specify that the
variable is allocated (at load time), externally to the Plus program. This is typically
used to access tables defined by other programs. Plus entry constants may also be
used to define such tables.

The external symbol to be used may also be specified as a string constant following
the keyword external. If the symbol is not specified, one is generated from the
variable name, as described in Section C-6, page 49.

Example:

variable Caseconv is character(256) external;
variable Parsetab is Syntax_Tables_Type external;
variable Ascii_To_Ebcdic is character(256) external "ASCEBC"

Register Allocation

The declaration of a variable may specify that the variable is to be allocated in a
general register or a range of contiguous registers.

This specification may also be applied to the declaration of procedure parameters
and results in a procedure type description. When it is used for parameters or
results, the specification affects only the way that the data is passed between the
caller and called procedure. It does not necessarily cause the variable to remain in
a register inside the called procedure.

Examples:

variable Temp is Integer in register; /* any register may be used.

variable Temp2 is Integer in register 2;

procedure Freespac is
system procedure
parameter Flag is Fullword in register 0
reference parameter Location is unknown in register 1
end;

76

Language Details

procedure Julgrgtm is
system procedure
parameter Jultim is Integer is register 1
result Grgtim is character(16) in registers O to 3
end

The compiler may reserve certain registers for its own use and not allow them
to be used for register variables. Each compiler provides certain predefined register
variables that allow access to any reserved registers that may have to be manipulated
for special linkage applications. See Section R, page 100 for details. An error
message will be issued if you attempt to use a register that is in use by the compiler.
The register specification may be used for efficiency reasons, to assist the compiler in
code-generation. However, we expect the compiler to do a reasonable job of register
allocation (eventually).

The register specification should also be used in conjunction with the Inline proce-
dure, to specify variables for the registers required when generating machine-code.

A variable that is allocated in a register cannot be passed by reference to another
procedure, nor can it be used with the Address built-in procedure.

A parameter or result that specifies register allocation may be passed to another
procedure by reference or used with Address under some circumstances. The reg-
ister specification forces the parameter to be allocated as the size of the register
(32 bits for Plus/370 and Plus/68000, 16 bits for Plus-11). If this is different from
the normal size of the type, it will not be possible to pass it by reference, because
the called procedure would not correctly access the storage area. A compiler error
message will be issued.

Implementation Restriction (System 370)

Currently, register may not be specified for array, record, character, real
or left-justifying bit type variables, but may be used for parameters and
results of any type provided the appropriate number of registers are speci-
fied.

If the register attribute is used for a parameter of type real(n), a general
register, not a floating point register will be used.

A range of registers may be used for parameters and results, but not for
variables.

A procedure which returns more than one result in registers may be defined
by first defining a record-type corresponding to the set of values returned,
then declaring the procedure to return this record type in the appropriate
register range.

Implementation Restriction (PDP-11)

register may not be specified for array, record, character, or left-justifying
bit type variables, parameters or results.

A range of registers may not be specified for the register allocation.

Language Details 77

Implementation Restriction (Motorola 68000)

register may not be specified for array, record, character, or left-justifying
bit type variables, parameters or results.

A range of registers may not be specified for the register allocation.

The register numbers 0 through 7 indicate registers DO through D7, with
8 through 15 used for A0 through AT7.

c. Absolute Allocation

The absolute phrase may be used in a variable declaration to specify that the
variable is located at a specified machine address. This, of course, is mainly useful
in generating highly machine-oriented code. For example:

Examples:

variable Svc_0ld_Psw is Psw_Type at absolute '20';
variable Memory is array bit(24) of bit(8) at absolute 0

The latter declaration allows any byte of memory to be accessed using its address
as an index.

Procedure Declarations

The procedure declaration is used to define an identifier or list of identifiers to be proce-
dure constants. The procedure declaration normally specifies the type of the procedure,
which in turn determines the identifiers and types of the parameters and result. The type
may be omitted from a procedure declaration, in which case the simple type procedure
end is assumed.

A procedure identifier must be declared before the procedure can be defined, called,
or assigned to a procedure variable. Procedure declarations obey the same scope rules
as other declarations. Thus a declaration given inside a procedure or nested scope is
forgotten at the end of that scope while an external declaration remains in effect for the
remainder of the compilation.

A procedure declaration may be combined with the procedure definition. In this case,
the procedure declaration is considered external to the procedure.

Examples:

procedures Read, Write are Io_Parameter_Type;
procedure Parameterless_Procedure

The latter is equivalent to

procedure Parameterless_Procedure is
procedure
end

Note that if a series of procedure declarations are connected together (as with variable
or type declarations), the type may be omitted only from the last list. That is, the
declaration

78

Language Details

procedures Read, Write is Io_Parameter_Type,
Parameterless_Procedure

is equivalent to

procedure Read is Io_Parameter_Type;
procedure Write is Io_Parameter_Type;
procedure Parameterless_Procedure;

Procedure Specifications

There are several additional specifications that may appear in a procedure declaration,
following the procedure type. When more than one is used, they may appear in any
order.

a.

External

A procedure declaration may specify an external symbol to be used instead of the
procedure identifier.

Examples:

procedure Get_From_User is Io_Parameter_Type external "GUSER";

procedure Get_User_Info is
procedure

end external "GUINFO"

Linkage

The linkage specification is used to request a special entry/exit sequence. It is
generally given as part of the heading for a procedure definition, but may appear in
the procedure declaration instead. (For declarations that are to be included from
libraries, it is sometimes more convenient to attach the linkage specification to the
declaration.)

The allowed options are described in Section P, page 96.

Implementation Restriction (Motorola 68000)
linkage is not implemented in Plus/68000.

Example:

procedure Main is Main_Procedure_Type linkage "PLUSENTR"

Stacksize

The stacksize specification indicates the size of the run-time stack that should be
provided when the procedure is called.

Language Details 79

This option is currently used only as part of the entry/exit code of a procedure. It
is ignored by the caller.

The stacksize specification is mainly used by procedures that have special entry/exit
code to initialize the Plus run-time setup. The value is made available to the entry
code, which can use it in allocating a stack.

For Plus/370, if the stacksize specification is given and the compiler option %Stack_
Check is True, the code generated will check the amount of stack available against
the value of stacksize, rather than using the actual requirements of the procedure.

See Appendices D, E and F for details of the entry/exit code and stack setup re-
quired.

Example:

procedure Special is Main_Procedure_Type stacksize 4096

H. Constants

A Plus program may contain constants of various types. For each scalar type, the language
defines a denotation for values of that type. For structured types (arrays and records),
constants are constructed by using a type name, and a list of values for the components of
the structure, as described below.

Certain “constants” have values which are determined at the time the program is loaded, and
hence are unknown at compile time. Such constants are not valid in contexts which require
knowing the value at compile-time, such as array dimensions, constant expressions, etc.

1. Integer constants

Integer constants have the normal decimal representation. The range of values depends
on the object machine; it will always include all integers which the object machine
supports as the basic instruction level.

2. Character constants

Character constants are enclosed in the character quote ("). A quote within a constant
is represented by two quotes.

The character set is machine-dependent. For the System 370 version, EBCDIC is as-
sumed. For the PDP-11 and Motorola 68000 version, character constants are translated
to ASCII.

3. Bit constants

Bit constants are denoted by enclosing a series of digits in apostrophes ('). By default
the digits are considered to be hexadecimal, but a different base may be specified.

Examples:

constant S8_Punch is 'EQ';
constant Bit_Example is '(1)10 (3)707'

80

Language Details

A base is specified by giving a power-of-two radix in parentheses as part of the bit string.
Thus the second example denotes a bit string of 11 bits, consisting of 10 in binary (base
2|1) followed by 707 in octal (base 2|3); i.e, the binary value is 10111000111.

Real constants

Implementation Restriction (PDP-11)

Real constants are not implemented for Plus-11.

Implementation Restriction (Motorola 68000)

Real constants are not implemented for Plus/68000.

Real constants have the same syntax as in Fortran and many other languages, i.e., a
decimal integer and/or fraction followed by an optional signed exponent. Up to 34
significant digits are allowed by the 370 implementation. The following are all legal
examples:

1.0
10.579
.5
2E-60
3.14E20

Exponents are always indicated with E (or e)—the “D” and “Q” forms used in Fortran
are not used.

All real constants in Plus programs are converted to extended precision (16 byte) forms.
A constant can be explicitly coerced to a shorter length by using a constant display as
in the following example:

type Short_Real is real(7);

constant Pi is 3.1415926535879, /#* extended precision */
Short_Pi is Short_Real(Pi) /* single precision */

A real constant will be rounded when it is converted to a shorter length.

Implementation Restriction (System 370)

It is intended that constants should be automatically coerced to shorter forms
as required by context, but this is not implemented yet. Explicit conversion as
described above must be used.

Constants of identifier-list types

The names of the elements of the type form the constants of that type. See Section E—4,
page 57.

Language Details 81

Procedure constants

The name of a procedure is a procedure constant of the specified type. A procedure
constant is always a “load-time” constant; i.e., the value is not known at compile-time.

Pointer constants

Under certain circumstances, the result of the Address(...) function will be a constant.
Currently, this will happen if and only if the argument of Address is a constant or an
external variable. Pointer constants are always load-time constants; i.e., the value is
unknown at compile time.

Implementation Restriction (Motorola 68000)

When %Target_Operating_System is set to "MAC/MDS", then Plus/68000 does
not implement pointer constants, due to limitations in the MDS linker.

Constant Displays

A constant display is a type name followed by a parenthesized list of constants. It is
used to create a constant of the given type. This is most often used for the creation
of structure (array and record) constants. A constant display may be used with scalar
types to control the storage representation of the value (see examples below).

For array types, the constants in the list must be suitable for the elements of the array.
The number of elements must agree with the bounds of the array. For record types,
the constants must be suitable for the fields of the record. If the record has variants, a
constant must be specified for the selector tag, even if the selector is not defined as a
field. The constants which follow the tag are then the ones required for that variant, if
any. With any other type, there will be only one element in the list, and it must be a
constant whose type is compatible with the type-name of the display.

Examples:

type Awry is array (1 to 5) of character(l),
Recl is
record
F1 is character(2),
variant (Red, Green, Blue) from
case Red:
F2 is character(0 to 5)
else
F3 is (-32768 to 32767)
end,
Rec2 is
record
F1 is character(l),
variant F2 is (0 to 10) from
case 1:
F3 is fast bit(6)
end,

82

Language Details

L_Bit_32 is aligned 32 left bit(32),
Short_Real is real(7)

Given the above definitions, the following are valid constant displays:

A.Wry("a", IIBII’ "C", Ildll’ llell);
Awry(lool, IIZII, |40I’ n II, IIOII)

Note that all five elements must be given.

Rec1("ab", Red, "abc");
Rec1('00', Green, 5)

Note that the selector field for the variant is given, although it does not appear in
the actual constant. The selector field determines which case of the variant is used to
interpret the constants that follow it.

Rec2("a", 0);
Rec2("B", 1, '0")

In this case, the selector field forms an element of the constant. When it has the value
0, there are no other fields in the record.

L_Bit_32("ABCD");
L_Bit_32('0001")

This example shows the use of a constant display to force the specified constants to
be treated as fullword-aligned, left-justified, bit(32). Without the display, the first
constant ("ABCD") would be a character(4) (byte aligned), and the second would be a
right-justified bit (32).

Short_Real(10.5)

This example shows the use of a constant display to force 10.5 to be single precision.

Constant displays can be used in any context in which a simple constant is allowed. For
example, a table might be defined in Plus using a constant declaration such as

constant Special_Characters is Awry("+", "='", "x!, o/ n_ouwnnn)

which could then be used as appropriate in the program:

doI :=1+tob
return when Char = Special_Characters(I)
end

etc.

As another example, a record might be initialized using a record constant:

variable V is Recl;

V := Recl("ab", Red, "abc")

Language Details 83

Note

A constant display will be allocated as a separate object module only if it is
declared in a constant declaration with the entry attribute. Otherwise it may
be emitted as part of the “constant pool” for each procedure that references it.

Implementation Restriction (System 370)

Constants which should be doubleword-aligned (i.e, the type is aligned. . .64)
will get the specified alignment only if they are within a record or array.

9. Constant storage representation

A constant may appear as a parameter of Address(...), or as a reference-parameter (in
some situations).

In order that the resulting pointer object can be processed consistently, and type- and
range-checked where necessary, all non-structure constants have associated with them a
default storage representation.® This, in effect, provides a more specific type-definition
for the pointer created.

The default storage representation can be changed by using a constant display.

The default representations used are:

integer fullword (32 bits on 370 and 68000, 16 on PDP-11).

character character(n), where n is the length of the string.

bitstring if the length is less than the word size, then fullword, otherwise the
allocation is character (byte-length).

pointer fullword

procedure fullword

id-list type fullword

real extended precision (16 bytes)

1. Expressions

Expressions in Plus are formed in the usual way, by combining various operands with appro-
priate operators and parentheses.

1. Operands and Operations

The primitive operands out of which an expression is composed include constants, sym-
bolic constants, variable names and procedure names. The repertoire of operations in-
cludes all the usual arithmetic and logical operators, subscripting array names, selecting
fields of records, following pointers, and calling procedures with an appropriate list of
parameters.

6 The storage representation of a structure constant is determined by the type of the constant.

84

Language Details

The language strictly controls which operators may be applied to different types of
operands. Certain operators can be applied to various types of operands, but the seman-
tics may depend on the types of the operands. For example if V1 and V2 are numeric-type
variables, then V1 < V2 denotes the arithmetic comparison of their values, while if V1
and V2 are character types, it denotes a logical comparison.

Plus expressions follow normal precedence rules for the arithmetic operators. Rather than
introducing a complex precedence hierarchy, most other operators are given precedence
equal to the arithmetics. The complete precedence hierarchy is as follows:

1 (highest) unary operators +, -, -, not, abs

2 multiplying operators *, /, mod, &

3 adding operators +, -, ||, |, xor

4 relational operators <, <=, > >= = in, subset, and negation of each.
Negations may be specified with = or not— e.g., not=, ==, not<=, =<=,
etc.

) and

6 (lowest) or

Coercions

Plus will perform a certain set of operations automatically if the operations are required
by the context in order to make operands of other operators type-compatible. In Algol-
68 terminology, such operations are coercions. The coercions that Plus will perform
include fetching the value of a storage location (denaming), converting a value into a
singleton set containing that value, conversion in either direction between bit-types and
other scalar types. Details of the operations and coercions applicable to different types,
together with examples, are given in the sections describing the types.

Logical Expressions

A logical expression is really just an expression whose value may be zero (false) or
one (true). Any numeric value may be used as a logical expression, however, with any
non-zero value treated as true. The main use of logical expressions is in if statements,
although they may be used in other contexts. The comparison operators (<, >, =, ==, etc.)
result in logical expressions. Logical expressions can be combined by using the special
logical operators and and or. These operators are sometimes called the “McCarthy-and”
and “McCarthy-or”. The semantics are such that the second operand is not evaluated if
the outcome of the logical expression can be determined from the first. Thus,

if I <= Max_Number_Symbols and Table(I) —= Test_Elem
then

end if
is executed as if it were:

if I <= Max_Number_Symbols
then

Language Details 85

if Table(I) —= Test_Elem
then
end if
end if
Arbitrarily complex logical expressions can be built up out of and and or; however, to

avoid misunderstandings, the language requires that if the two operators are combined
in an expression, parentheses must be used to indicate the intended order of evaluation.

The logical operator not is defined to give a result of zero or one always. It is zero if and
only if its operand is non-zero.

Warning

The operator — is a bit-string operator whose result is the complement of its
operand. This does not give the same result as the logical operator not.

—false = =0 = '"FFFFFFFF' = -1 = true
—true = =1 = 'FFFFFFFE' = -2 = true

Thus both act as True if used in a logical expression.

Assignment Statements

Simple assignment is denoted by := in Plus. Multiple assignments may be specified by sepa-
rating left-hand-sides by commas. The right-hand-side of a multiple assignment is evaluated
once only.

Example:

Low, High := 0

You can also specify an operator in conjunction with assignment. The statement
Table_Size +:= 1

is a shorthand for
Table_Size := Table_Size + 1

Similar notation can be used for any of the binary operators +, -, *, /, mod, ||, |, & or xor,
and for any left-hand-side expression.

Warning

Certain assignments (mainly of character types) may build the result directly in the
left-hand-side variable. Thus the expression forming the right-hand-side should not
depend on the previous value of the left-hand-side. For example,

Varl := Var2 || Varil

will first move the value of Var2 into Varl, and therefore produce the wrong result
when Varl is concatenated onto it.

At the moment, this situation is not usually detected by the compiler.

86

Language Details

Procedure Calls

Procedures may be called as self-contained statements, or as elements of expressions in other
statements. Procedures with no return value are called by simply specifying the procedure
identifier, with parameter list (possibly null), as a separate statement, as in Algol. Procedures
that are declared to return a value are called in an expression in the usual way, with param-
eters, if any, given as a parenthesized list following the procedure identifier (or expression
resulting in a procedure value). In both cases, if the procedure has no parameters, an empty
parenthesis pair () must appear after the identifier.

Examples:

Elem := Getsym();
Message (Msg, "Error - too many symbols.</>");

Pos := Linearsearch(Test_Elem, Accesses)

1. Parameter Passing

Parameters may be passed by copying the value (this is traditionally known as “call-by-
value”), or by passing a pointer to the argument (known as “call-by-reference”). The
type of the procedure’s type description specifies which kind of parameter passing is
required for each parameter.

The default is call-by-value. This applies to any parameter type, including arrays and

records. In general, if an array or record is to be used as a parameter, it is preferable

to pass a pointer to it, either explicitly (by declaring the parameter type as pointer to
. and passing Address(...)), or implicitly by using a reference parameter.

When call-by-reference is used, there are restrictions on the possible arguments that
may be used. A reference argument must be a name (or in some cases a constant).
Expressions, except those resulting in a name, are not possible. In addition to being
assignment-compatible with the type of the parameter, the type of the argument must
obey the stronger requirements of pointer compatibility, as described in Section E-10,
page 61.

A constant may be passed by reference only if the parameter type has the attribute
value, which guarantees that the pointer object cannot be stored into from the called
routine.

When a constant is passed by reference, the compiler will perform a coercion on the
constant to the form required by the parameter, if possible, before obtaining the address.
This coercion is equivalent to implicitly using a constant display to set the constant type.

For example, given

procedure Test is
procedure
reference parameters Str is value character(l to 10),
Num is value fast (O to 10)
end

then the call

Language Details 87

Test ("abcd", 9)

will result in the passing of a pointer to a varying string consisting of the length 4 (in
a byte) and the characters "abcd" for the parameter Str, and a pointer to a halfword
(System 370) constant 9 for the parameter Num. (Without the implicit coercion, the
constant "abcd" would be of type character(4), and 9 would be a fullword integer.
The pointers to these would then be incompatible with the reference-parameters.)

2. Return Codes

For compatibility with procedures written in other languages, which may return a “return
code”, the value of the return code may be obtained by specifying a return code variable
as part of the call. For example:

variable Rc is Number;

Scards (Buffer, Buflen, Mods, Lnum, return code Rc);
if Rce == 0

then ...

end if

The expression following the phrase return code must be a name expression of any
index type.

There is currently no built-in method for a procedure written in Plus to set a return
code to return to its caller. Generally, function results or reference parameters are used
to return information to the caller.”

System 370 Note

The System 370 return code is assumed to be returned in general register 15.

Implementation Restriction (PDP-11)

return code is not implemented in the PDP-11 version.

Motorola 68000 Note

Plus/68000 assumes the return code is in register DO.

3. Switching Global Storage Environment

If the procedure being called requires a different global storage environment from the
caller, the procedure call must provide the address of the required global storage. This
is done by using the with phrase in the procedure call.

Given the following declarations:

7 However, see Chapter VIII, page 144.

88

Language Details

Examples:

procedure P1 is environment global("QQSV")
procedure

end,
P2 is environment global("F0OO")
procedure

end,
P3 is environment pointer to Rec_Type
procedure

end;

variable V1 is pointer to Rec_Type,
V2 is global("QQsSV"),
V3 is global("F0O")

the following would be legal calls from any environment:

P1(..., with V2);
P2(..., with V3);
P3(..., with V1)

If return code and with are both used, they may occur in either order.

Implementation Restriction (PDP-11)

Plus-11 does not support the mechanisms for switching global storage environ-
ments.

Control Structures

Plus includes control structures for selecting between alternatives (the if statement and the
select statement), for looping (the cycle and do statements), and for exiting and repeating a
block of statements. There is no goto statement.

1. If Statements

The if statement in Plus is a bracketed construct, terminated by end (or end if). The
then-part and else-part are each a scope block. That is, a sequence of declarations and ex-
ecutable statements may appear as the body, without requiring the use of begin. . .end.

The else-part is optional.
Example:

if Element < Table(Pos)

then

High := Pos - 1
else

Low := Pos + 1

end if

Language Details 89

Nested if statements may be abbreviated using the elseif clause. The statement

if Return_Code —= 0

then
Sym := ""
else
if Length(Str) > Max_Sym_Length
then
Message (Msg, "Error - symbol too long</>");
Sym := Substring(Str, O, Max_Sym_Length)
else
Sym := Str
end if
end if

may be replaced by

if Return_Code —= 0
then
Sym .= nn
elseif Length(Str) > Max_Sym_Length
then
Message(Msg, "Error - symbol too long</>");
Sym := Substring(Str, 0, Max_Sym_Length)
else
Sym := Str
end if

This process may, of course, be repeated for further nested if’s. There is only one end
if to terminate an arbitrary if... elseif... elseif... sequence.

Implementation Restriction (all compilers)

Currently, a compiler “parse stack overflow” will occur if an if statement contains
a sequence of more than about 25 elseif’s.

Select Statements

The select statement allows a multiple-way branch according to the value of a given
expression. In effect, it is a generalization of the if statement to types other than Boolean.
(This statement is similar to what is called a case statement in Pascal.)

The heading of the select statement specifies an expression whose value determines the
case to be executed. Note that the range is not restricted to numeric types; any “index
type” (see Section E-6, page 58) is allowed.

The body of a select statement is a series of cases. Each case consists of a scope block,
preceded by a label specifying one or more constants which are the values of the selection
expression for which this case is to be performed. After completion of execution of the
statements in the selected case, execution continues following the select statement. The
end of the select statement is delimited by end or end select.

90

Language Details

Note that a given constant may be used as a label on at most one case. A list of values
may be given for the label on a case. The select statement may specify an else case
which is to be executed for any values that have not been specified.

Example:

select Device from

case Reader, Punch:
Record_Length := 80

case Printer:
Record_Length := 132

case Terminal:

Rows := 25;

Cols := 80
else

Snark()

end select

Select statements are currently implemented in all compilers by using branch tables.
This provides for fast execution, but the branch table may get quite large. The branch
table will contain one entry for every value between the lowest and highest case labels
used. So, for example,

select I from
case 1:

case 1000:
end select

will generate a branch table with 1000 entries (two bytes each), even though there are
only two actual cases specified.

Eventually there may be a “skip-chain” implementation of sparse select statements. At
present, it may be preferable to use if... then... elseif... then... end if in some
situations.

Cycle Statements

The cycle statement is a general looping construct. The body of the cycle (which is again
a scope), is executed repeatedly until terminated by execution of either a return or exit
statement, described below. The end of the cycle statement is marked by end or end
cycle.

Example:

cycle

variable Elem is Symbol;

Elem := Getsym(Q);

exit when Length(Elem) = O or Elem = "/end";

if Table_Size >= Max_Number_Symbols

then
Message(Msg, "Error - too many symbols.</>");
exit

Language Details 91

end if;

Table_Size +:= 1;

Table(Table_Size) := Elem
end cycle

Do Statements
Plus contains two limited forms of do statements.

One form allows for looping with an increasing or decreasing index. It is restricted to an
increment or decrement of one only. An increasing loop is indicated by the keyword to,
while a decreasing loop is indicated by downto.

Example:

do Pos := 1 to Table_Size

Accesses +:= 1;

return when Table(Pos) = Element with Pos
end

The second form of do loop is intended ultimately to allow stepping through the members
of a specified set value. Currently, this is implemented only for a special case in which a
type-identifier is given to specify the set of values to be stepped through.

Example:

type Device_Type is (Printer, Reader, Punch, Tape_Drive, Disk_Drive,
Terminal) ;

variable D is Device_Type;

do D := each Device_Type

end

The order in which the do. . .each form steps through the set is up to the compiler—if
a particular order is required you should use do...to or do...downto to specify it.

The limits of the loop are determined at the time execution of the loop begins; modifi-
cation of the final value of a do...to or do...downto loop within the loop will have no
effect. It is possible (though generally not good practice) to modify the control variable
within the loop.

The body of a do loop is also a scope block. The exit statement can be used to terminate
a do loop before its limit is reached. The end of a do loop is indicated by either end or
end do.

The value of the control variable upon termination of a do loop is always the value that
it had during the last execution of the loop. In the case of a loop that executes zero
times, the value of the control variable will not be changed from the value it had before
execution of the do loop heading.

Implementation Restriction (all compilers)

The control variable of a do loop must currently be a simple variable identifier—
array elements and other name expressions are not allowed.

92

Language Details

Begin Blocks

The begin block consists simply of a scope block surrounded by begin...end. It is
mainly used for one of two reasons:

a. To restrict the scope of local variables, open statements and equate statements to
the series of statements for which they are required.

b. To delimit a series of statements from which it is desired to escape with the exit or
repeat statements.

Example:

begin
variable Temp_Fdub is Fdub_Type;
/* Exchange new and old Fdubs */
Temp_Fdub := New_FdubQ;

New_Fdub@ := 0ld_FdubQ;
01d_Fdub@ := Temp_Fdub
end
Compounds

The term compound refers to cycle statements, do loops, or begin blocks. The state-
ments exit and repeat may be used inside a compound to branch to the end or beginning
(respectively) of that compound.

A compound may be labelled by preceding it with an identifier surrounded by < and
> (such as <Outer> in the example below), and following it with the same identifier.
This label may be used in exit and repeat statements inside the compound to refer to
it. Normally, the exit or repeat statements refer to the closest enclosing compound.
Compound labels allow exiting more than one level.

Note that only the specified statements form compounds; exit and repeat cannot be
used to branch out of if statements or select statements, unless the statements are em-
bedded in begin. . .end or another compound.

With labelled compounds and multi-level exits, it is possible to synthesize complex con-
trol flows that in most languages cause one to resort to the use of goto statements.
However, it should be noted that if they are used indiscriminately, it is possible to pro-
duce programs that are just as entangled as if gotos were used.

Exit Statements

The exit statement is used to branch out of a compound. The statement may specify a
condition under which the exit is to be taken. That is,

exit when Something

is equivalent to

if Something
then

exit
end;

Language Details 93

Exit conditions may also be specified in the form exit unless....

exit normally leaves the closest enclosing compound. More than one level can be escaped
by labelling the compound to be exited and specifying the label in the exit statement.

Example:

<Outer>
cycle

do I :=1 to Max_Symbols
exit <Quter> when Elem = Table(I);
end;
/* inner loop completed normally */
end <Outer>
In this example, the exit statement inside the do loop will exit both the do loop and the
cycle containing it.
Repeat Statements

The repeat statement is similar to the exit statement, except that instead of terminating
the loop, it branches back to the beginning of the compound, and resumes execution of
the compound from that point.

When used in a do loop, repeat “steps” to the next iteration of the loop. That is, the
control variable will be incremented or decremented and compared to the limit to decide
whether to re-enter the body of the loop or terminate the loop.

Conditions and labels are allowed in repeat statements as for exit statements.

Example:
cycle
Scards_Varying(Str, Rc);
exit when Rc —= 0;
repeat when Length(Str) = 0;
/* Process the input record. */
end

In this example, the loop terminates via the exit when Scards_Varying returns a non-
zero return code, but returns to the beginning of the loop and repeats the read if a null
line is read.

Return Statements

The return statement is used to return from the procedure containing it. A return
statement may specify a condition, as in exit and repeat statements. It may also specify
a return value, if the procedure’s type specifies a return value.

94

Language Details

If a procedure is to return a value, its type description specifies an identifier whose value
is returned by default when the procedure returns. If the return statement does not
specify a return value, then the value of this identifier is used.

If a condition (when or unless) and a return value (with) are both specified, they may
appear in either order.

A return is automatically performed at the end of a procedure.

Examples:

return when Table(Pos) = Element with Pos;
return with O

M. Assert

The assert statement can be used to incorporate special run-time checks into a program for
debugging purposes. Code is generated for an assert statement only if the compiler option
%hAssertion_Check has the value true. If this option is false, the assert statement is treated
as a comment.

The assert statement specifies a logical expression which is to be evaluated when the program
is executed. If the expression is true, execution continues normally. If it is false, execution of
the program is terminated (in MTS, in a RESTARTable way) with an error message.

When coding an assert statement, you should take care that there are no side effects of the
statement that might cause the operation of the program to change if assertion checking is
later disabled. That is, the expression in the statement should not change the value of any
variables in the program or otherwise modify its operation.

Example:

assert P1 —= Null;
P1@ := 0

If P1 is Null when the assertion is executed, execution will be terminated with an error
message.

Open Statements

The open statement allows accessing fields of a record without the necessity of specifying the
record name. (It is similar to the “with record” prefix of Pascal.)

The open statement is treated like a declarative statement, but may only occur within a
procedure body—it is not allowed in a global block or external to a procedure. It is in effect
from the point at which it occurs, for the remainder of the scope block. The effect of this
statement is to “redeclare” the fields of the specified record as if they were separate variables,
for the duration of the scope.

The open statement specifies a name expression. It is possible to open elements of arrays of
records or pointers to records.

Language Details 95

Example:

type Symbol_Table_Element is
record
Symbol is Symbol_Type,
Reference_Count is Integer
end;
variable Symbol_Table is array (1 to Max_Number_Symbols) of Symbol_Table_Element;

open Symbol_Table(I);
Reference_Count +:= 1

Following the open statement, for the remainder of the scope block containing it, the identifier
Reference_Count refers to that field of element Symbol_Table (I).

Apart from notational convenience, this can be an efficiency consideration, since addressability
to the required record will be obtained at the time the open is performed.

It should be noted that the name expression in an open statement is evaluated at the time
the open is performed. Subsequent changes to pointers or array subscripts involved will have
no effect on the locations accessed when the field names are used.

The open statement may also specify a record-type, which redefines the type of the name
being opened. For example,

open PtrQ@ as Symbol_Table_Element

specifies that, regardless of the actual type of Ptr@, it is to be treated as if it were Symbol_
Table_Element for the purposes of the open. This provides another form of type cheating in
the language. It is most often useful when processing records pointed at by pointers of type
pointer to unknown, in order to specify the object type of the pointer.

Equate Statements

The equate statement provides a way of associating a new identifier with an existing storage
location, and optionally associating a different type with the location. The statement in
effect declares a new variable, and specifies that it is to be overlayed on a storage area defined
previously. The identifier declared remains defined for the remainder of the scope in which
the statement occurs.

Equate provides an “official” way of type-cheating in Plus. It is also sometimes convenient to
use an equate definition to avoid repeating long name expressions. Equate also contributes
to program efficiency, since addressability to the specified locations is obtained (if necessary)
at the time the equate statement is performed.

Judicious use of this facility can improve program clarity, by removing “clutter”. It should be
used sparingly, however, since overuse may detract from the understandability of the resulting
program by providing multiple names for the same item.

Examples:

equate Elem to Symbol_Table(I);
/* Elem has the same type as Symbol_Table(I). */

96

Language Details

equate String to Buffer@ as character(255);
/* String is of type character(255) regardless of type of Buffer@. x*/

Like the open statement, equate may appear only within a procedure body, and the specified
name expression is evaluated at the time the statement is performed. Subsequent changes to
pointers or subscripts will have no effect.

equate can also be used to associate a type with an object of type unknown (i.e., the result
of dereferencing a pointer of type pointer to unknown).
Procedure Definitions

A procedure definition contains a sequence of declarations and executable statements con-
stituting the body of the procedure. The names of the parameters and result are deter-
mined from the type of the procedure, and are available as local variables within the defini-
tion.

The heading of a procedure definition may be immediately followed by either or both of the
linkage and environment options. They may occur in either order. A semi-colon is required
after the last option.

1. Linkage Option

The linkage option is used when a procedure requires a non-standard entry sequence.

System 370 Note

The entry sequence normally used by Plus/370 is compatible with the MTS
coding conventions standard. This provides efficient procedure entry/exit/call
but requires a stack and global storage to be set up correctly by the caller.
Special linkages can be useful to establish the required set-up when entering a
Plus program from a procedure that does not follow the Plus conventions.

At the time of writing, the MTS conventions are undergoing an incompatible
change. The current version of the Plus compiler can be used with either the
old or new forms, depending on the setting of the %Linkage compiler variable.

Implementation Restriction (Motorola 68000)
Plus/68000 does not implement linkage.

The linkage option is normally specified as part of a procedure definition but may alter-
natively be given with the procedure declaration.

Examples:

/* The following example illustrates the linkage option
as part of the procedure declaration. */
procedure Main is
procedure

end linkage "PLUSENTR";

Language Details 97

definition Main
end Main;

/* The following example illustrates the linkage option as
part of the procedure definition. */
procedure Example is
procedure

end;

definition Example
linkage "PLUSENTR";

end Example
The following are allowed for the linkage option:

a. linkage "extname"

Given a procedure heading such as

definition proc
linkage "extname";

where "eztname" is a 1 to 8 character constant, the compiler generates special entry
code which branches from the entry sequence of proc to a special linkage routine
with the external symbol extname. The code at extname is expected to set up stack
and global storage and then return to the entry code for proc. The requested stack
size of the procedure, the “global id” for the procedure’s environment, the size of
the environment and some other data are provided in the entry sequence of proc
and are accessible by extname.

If the special linkage requires non-standard exit code also, it must set up the registers
in the stack in such a way that when proc returns, the special exit code will gain
control.

The special linkage routine can be written either in Assembler or in Plus by using
linkage none and lots of Inline’s.

The details of the interface between proc and eztname for Plus/370 and Plus-11 are
provided in Appendices D and E.

b. 1linkage system

linkage system requests that the compiler generate entry/exit code that is com-
patible with the standard “system” linkage.

98

System 370 Note

Language Details

For Plus/370, 1linkage system allows the procedure to be called from an
OS Type I (“Fortran”) procedure. It is actually implemented by using
linkage "QSYSENTR"; i.e., the special linkage capability described above.
If a procedure must be called from both Plus and Fortran routines, it
is necessary to use both the linkage system option (to request Fortran-
compatible entry/exit code) and the type attribute system (see Section
F-8, page 71) for the procedure type (to request Fortran-compatible calls
to the procedure). You should not specify linkage system unless Fortran-
callability is really required, since it is much less efficient than the normal
Plus linkage.

PDP-11 Note

For Plus-11, 1inkage system is treated the same as the normal Plus link-
age; i.e., the option is ignored.

c. linkage none

Given a procedure heading such as

the

About the only thing you can do in a linkage none routine is to use Inline and
ster variables to establish the required setup. A great deal of care is required
with such routines, since the compiler will assume that various registers have been
up correctly if any statements in the procedure require them. See Appendices

regi

set
Da

definition proc
linkage none;

compiler will generate no entry code whatsoever. It is intended to make it
possible—though not necessarily easy!'—to write special linkage routines within Plus.

nd E for further details.

Environment Option

The environment option allows a procedure to switch its global storage environment as

part of t

he entry code.

Example:

pro

def

end

cedure Example is
procedure
parameter Rec is pointer to Rec_Type,
end;

inition Example

environment Rec;

Language Details 99

The entry code would establish the value of Rec as the current environment, and the
type of Rec (pointer to Rec_Type) as the environment type in effect throughout the
procedure. Hence Example could refer to fields of Rec_Type directly (without qualifying
the references with the record pointer), and could call other procedures with environment
pointer to Rec_Type without switching environments at the call.

The expression in the entry code may be any kind of expression returning a type allowed
for procedure environments. It will usually be a parameter value (or obtained via a
parameter), but might also be a procedure call, or an element of the environment provided
by the caller.

Note that the caller must still provide an environment compatible with the environ-
ment type of the procedure (from the environment attribute if any, or the default
global(%Global_Id)). This environment is in effect for the evaluation of the expression
in the entry code. When setting up an environment from a parameter, as in this example,
it will often be appropriate to define the procedure to have the attribute environment
unknown, to allow it to be called from any environment.

Implementation Restriction (PDP-11)

Plus-11 does not support the mechanisms for switching global storage environ-
ments.

Macro Definitions

The macro definition defines the name and parameter names of a macro. The body of the
macro may be either a statement list, which becomes a separate scope-block, or a parenthe-
sized expression. The end of a macro is indicated by either end, end macro, or either of these
followed by the name of the macro.

A macro is invoked much like a procedure by use of its name followed by an argument list.
The body of the macro is then substituted for the macro name, with appropriate substitutions
of arguments.

During expansion of the macro, any identifiers used in it (but not declared within it) obtain
the definitions in effect at the time the macro was defined. If an identifier was not defined at
the point of the macro definition then it is a “free variable”, and will assume the definition
in effect at the point of expansion. (If there is no definition in effect when it is expanded, it
is simply an undefined identifier and will result in an error message.)

Example:

constant Svc is 'OA',
Svc_Getelt is 38;

macro Get_Elapsed_Time
parameter is Time;
variable Temp is Fullword in register 2;
Inline(Svc, Svc_Getelt, Temp, O, 1, 3); /* changes rO - r3 */
Time := (10 * Temp) / 3 /* convert to millisecs */
end macro

This macro has one parameter, Time. Temp is a local variable of the macro. The identifiers
Svc, Svc_Getelt etc., refer to the definitions preceding the definition of the macro.

100

Note

Language Details

This macro would be used in a statement like

Get_Elapsed_Time(Elapsed)

Example:

macro Current_Character;
(Substring(Str,I,J))
end Current_Character

This macro has no parameters. Its body is a parenthesized expression, so it is used in the
context of expressions, for example:

Char := Current_Character()

Macros as described above may be removed from a future version of the language in
favour of internal or “inline” procedures. We recommend that macros be used only
in ways that are compatible with procedures.

Built-in Procedures, Constants, and Variables

Plus provides a number of built-in procedures, and a few predefined constants and variables.
The names of these are predefined identifiers. The built-in definitions may be overruled by
explicit declarations of the same identifiers.

Address

The Address procedure is used to create pointers. It takes as an argument a name
expression or a constant of any type. The result is a pointer to the specified location (a
value of type pointer to ... the argument type). When the argument is a constant,
the result type is pointer to value

Alignment

The Alignment procedure is used to return alignment. The first parameter may be a
global block identifier, a name, or a type identifier.

Implementation Restriction (all compilers)

Currently, Alignment is implemented only for global block identifiers.

When the parameter is a global block identifier, it returns the required byte-alignment
factor of the global block as a number from 1 to 8. (1 means byte-aligned, 2 means
halfword-aligned, and so forth).

Bit_Size

The argument of this procedure may be a type identifier, a name or a global block
identifier. If a name is given, the allocated size of that name in bits is returned. If a
global block identifier is given, the size of the global block is returned. If a type identifier

Language Details 101

is given the normal size of that type is returned. (The actual size of a variable of a given
type may be bigger than the size of the type, due to padding that may be provided when
variables of the type are allocated.)

The Bit_Size procedure is always performed at compile time.

Bit_Size may also be used to find the size of a variant of a record. It then has two
parameters. The first is a type identifier, the second a constant of the type of the
variant selector. The second parameter is allowed only when the first parameter is a
type-identifier for a record type with variants.

If the constant specified does not match one of the variant labels, Bit_Size returns the
size of the else variant, if any, or the size of the fixed part preceding the variant if else
wasn’t given.

If the second parameter is not given, it returns the size of the largest variant.

Byte_Size

The arguments and results for this procedure are the same as for Bit_Size (see preceding
item) except that the result represents the number of bytes allocated.

Code_Base_Register

Code_Base_Register is implemented only by Plus/370. It is a predefined register vari-
able of type bit (32), corresponding to the register used for code addressability (normally
R10). This is intended for use in special linkage routines that set up the required execu-
tion environment for Plus.

The compiler makes no attempt to interpret what you do to this register. It should be
used only by experts. See Appendix D for information about Plus register usage and
entry/exit code requirements.

Condition

Condition is implemented only by Plus/370 and Plus/68000. It is used (normally in
conjunction with Inline) to examine the machine condition code. It accepts a single
parameter which specifies which condition code settings to test for, and returns true or
false according to the value of the condition code.

The parameter is currently a numeric or bit constant in the range (0 to 15) and is
interpreted in the same way as a branch mask in an assembler branch instruction. In a
future version of Plus/370, the parameter will be a set of (0 to 3), specifying directly
which values to test for.

Example:

Inline(Ltr,1,1);
if Condition(8)
then /* condition code 0 - reg 1 was zero */

end

102

10.

11.

12.

Language Details

Environment_Base_Register

This is a predefined register variable of type ¢, where t is the environment type of the
procedure referencing it. It corresponds to the register containing environment address-
ability (R11 for Plus/370, not implemented for Plus-11, A4 for the Macintosh and A6 for
the AMIGA). This is intended for use in special linkage routines that set up the required
execution environment for Plus.

The compiler makes no attempt to interpret what you do to this register. It should be
used only by experts. See Appendices D, E and F for information about Plus register
usage and entry/exit code requirements.

External_Name

This procedure may have as a parameter a procedure, global block, external variable or
entry constant identifier. It returns the external (loader) name of the parameter.

False

False is predefined as a numeric constant with value 0.

Frame_Base_Register

Frame_Base_Register is implemented by Plus-11 and Plus/68000. It is a predefined
register variable corresponding to the register used to address the local stack frame. In
Plus-11 this variable has type bit(16) and is normally R5. In Plus/68000 it has type
bit (32) and is A6 for the Macintosh and A5 for the AMIGA. This is intended for use in
special linkage routines that set up the required execution environment for Plus.

The compiler makes no attempt to interpret what you do to this register. It should be
used only by experts. See Appendix E for information about Plus register usage and
entry/exit code requirements.

Global_Base_Register

Global_Base_Register is usually a synonym for Environment_Base_Register but is
of type bit (32) (bit(16) for Plus-11) instead of the environment type of the procedure.
On the Macintosh, it is defined to be A5, the global data base, rather than A4, the
environment base.

Global_Size

Global_Size is a predefined constant whose value is the total size of the globals required
by a program. It is a “load-time” constant (generated as a CXD), and cannot be used
in situations requiring a compile-time constant.

Implementation Restriction (PDP-11)

This constant is not available for the PDP-11 compiler since *LINK11 does not
support the required load-time constants.

13.

14.

Language Details 103

Implementation Restriction (Motorola 68000)

This constant is not implemented in Plus/68000 since none of the linkers support
the required load-time constants.

High_Value

The High_Value function takes as an argument a type identifier for an index type, or a
name of some index type. If a name is given, the type of that name is used. It returns
the highest value of the type.

Inline

The Inline procedure can be used to emit specific machine instructions. It is very
similar to the procedure with the same name in XPL or Sue. However, Plus is aware of
the format of specific machine instructions and checks that the appropriate parameters
are given.

Inline accepts a variable number of parameters. The number and types depend on the
object machine for which code is being generated, and on the specific machine instruction
being emitted. In general, the parameters correspond to the required operands of the
instruction, in the order that they appear in the machine instruction (not the order they
would be specified in an assembler instruction). Some exceptions to this rule may occur,
however.

Note

Using Inline is quite tricky. It is often advisable to turn code listing on and
hand check the generated code.

a. Inline for the System 370

The first parameter of the System 370 Inline is always a numeric or bit-type
constant whose value must be in the range 0 to 255. This parameter gives the
op-code for the instruction to be emitted.

The subsequent parameters depend on the particular machine instruction being
emitted. They may be any of the following:

ee A variable (or other name expression). Such a parameter may be used to
correspond to a base/displacement pair of operands in a machine instruction.
The base/displacement may also be given as two separate parameters, a register
and a displacement.

ee A register local variable. This should be used for an operand that requires a
register.

ee A scalar constant (any type). May be used for an “immediate” operand or for
a displacement. Currently, a constant may also be used for a register operand,
but this will change in a future version. In all cases, the constant must be in
the appropriate range for the operand.

104

Language Details

Note that, when coding operand lengths (for SS format instructions), the “IBM
length” (actual data length—1) must be specified. Inline will not automati-
cally adjust the length.

Examples:

constant L is '58',

Ar is '"1A',
La is '41"',
Sla is '8B';

variable Rl is Integer in register 1,
R2 is Integer in register 2,
Temp is Integer;

Inline(L,R1,0,Temp); /* L 1,Temp(0) - same as Rl := Temp */
Inline(L,R2,R1,Temp); /* L 2,Temp(1) */

Inline(L,R2,0,R1,4); /* L 2,4(0,1) x/

Inline(La,R1,0,0," "); /x LA 1,C'" ' =LA 1,X'40' =LA 1,64 %/
Inline(Ar,R1,R2); /* AR 1,2 - same as R1 +:= R2 x/
Inline(Sla,R1,0,4) /* SLA 1,4 -- note SLA has no index operand.

(Note that the above are examples only. For most of them, it would not be necessary
to use Inline to get the required machine instructions generated, since Plus source
statements would generate the appropriate code when used with register variables.)

Warnings

The current version of the compiler attempts to ensure that the registers
used in Inline are available, but does not currently guarantee this. In
some situations, the compiler may substitute a different register for the
specified one. When it does so, a warning message will be issued. When a
register substitution is necessary, the compiler will make the substitution
consistently though all references to it in a sequence of consecutive Inline
instructions.

The compiler is also currently unaware of registers used by an Inline’d
instruction but not explicitly referenced (e.g., the odd register of even-odd
pairs, the intermediate registers of LM and STM, any registers required
by an SVC). Such registers may be specified by the programmer by ap-
pending them as extra parameters of the Inline instruction, as in the next
example.

Example:

variable Parlist is pointer to unknown in register 1,
R14 is ... in register 14,
R15 is ... in register 15;
Parlist := Address(X);
/* Register 1 is also required for the BALR. */
Inline(Balr,R14,R15,Parlist)

*/

Language Details 105

Inline for the PDP-11

The first parameter of the PDP-11 Inline is always a numeric or bit (16) constant
whose value is used to determine the op-code encoding only for the instruction to
be emitted. Any bits which are not part of the op-code should be zero.

For example, the op-code for Mov should be given as '1000' (although only the
first digit is actually part of the op-code.)

The subsequent parameters depend on the particular machine instruction being
emitted. As for the 370 version, the operands appear in the order that they occur
in the machine instruction, except that the (mode, base, indexword) triplets occur
together. This avoids having to include an index word if it is not specified by the
mode.

For example, a move from register one to offset disp from register 3 would be

variable Rl is Integer in register 1,
R4 is Integer in register 3;
Inline(Mov,0,R1,6,R3, disp)

In this example, 0 specifies the mode of the first operand (register), R1 is the register
variable, 6 is the mode of the second operand (index), R4 is the register and disp is
the offset.

The parameters for the PDP-11 Inline may be any of the following.

ee A variable (or other name expression). Such a parameter may be used to
correspond to a (mode, base, indexword) triple.

If the variable is a register variable, then a mode of zero is assumed. Thus the
above example could also be

Inline (Mov,R1,6,R3,disp)
The triple may also be given as two or three separate parameters, the last being
omitted if index mode was not specified.

ee A register variable. This should be used for an operand that requires a register.

ee A scalar constant (any type). May be used to indicate the mode or indexword
of an operand triple. A constant may also be used to specify a register for an
operand, although the use of a register variable is preferred.

See also the warnings for the System 370 Inline regarding registers.

C.

Inline for the Motorola 68000

The first parameter of the Motorola 68000 Inline is a character string constant
giving the operation code, the size and any specific effective addressing modes. It
has the format:

opcode.size model,mode2

The string must be entirely in lower case. See Appendix G for a list of all the
recognized opcodes, sizes and modes.

106

Language Details

The opcode is generally an operation code as given in the Motorola “Programmer’s
Reference Manual”. For those “instructions” that have more than one form, such
as ADD, the compiler defines a name for each form. Thus the compiler recognizes
"add" as the “ADD <ea>,Dn” form and "addm" as the “ADD Dn,<ea>” form. Those
instructions that include condition codes can be specified with any of the condition
codes defined in the Motorola manual. Most 68000 instructions have one general
effective address mode operand and one specific mode operand. For Plus/68000
Inline, you must always specify the general operand first. Thus the “exclusive or”
operation recognized by Plus/68000 is "eorm" (exclusive or to memory).

The .size can be omitted. If the operation has no size, then it must be omitted. If
the operation has a size and none is specified, then it defaults to the largest allowed
by the operation.

The model and mode2 specify either the exact addressing modes to be used, or,
by their omission, that a Plus storage reference is to be used and the compiler
should provide an appropriate mode. When an exact addressing mode is provided,
the corresponding Inline operands must give exactly the parts of the mode, using
index constants for parts such as displacements and register variables for registers.
The parts are given in the same order as they would be specified to an assembler.
For indexed modes, a constant 1 or O takes the place of the assembler’s .L or .W
(respectively).

Examples:

/* Do an unsigned multiply of the longwords Int_1 and
Int_2, producing the result in Product. */

variables Int_1, Int_2, Product, Temp_1, Temp_2 are

Integer in register;

Temp_1 := Int_1;

Inline("swap", Temp_1);

Inline("mulu.w", Int_2, Temp_1);

Temp_2 := Int_2;

Inline("swap", Temp_2);

Inline("mulu.w", Int_1, Temp_2);

Temp_1 +:= Temp_2;

Inline("swap", Temp_1);

Inline("move.w #", O, Temp_1);

Variable Temp_3 is Integer in register;

Temp_3 := Int_1;

Inline("mulu.w", Int_2, Temp_3);

Temp_3 +:= Temp_1;

Product := Temp_3;

variable Base_Addr is pointer to unknown in register,
Temp_Word is bit(32) in register;

/* Load the (unaligned) 4 bytes pointed to by Base_Addr
into Temp_Word. */

inline("move.b (ar)+,-(ar)'", Base_Addr, Stack_Pointer);

inline("move.w (ar)+,dr", Stack_Pointer, Temp_Word);

inline("move.b (ar)+,dr", Base_Addr, Temp_Word);

inline("swap.w dr", Temp_Word);

15.

16.

17.

18.

19.

20.

21.

22.

Language Details 107

inline("move.b (ar)+,-(ar)'", Base_Addr, Stack_Pointer);

inline("move.w (ar)+,dr", Stack_Pointer, Temp_Word);

inline("move.b (ar)+,dr", Base_Addr, Temp_Word);
Left_Justify

This function coerces its operand to be a left-justifying (character-string-like) expression.

Length

This procedure accepts as a parameter any fixed or varying character expression. Its
result is the length of the value in characters. Length is performed at compile-time if
possible.

Low_Value

The Low_Value procedure takes as an argument a type identifier for an index type, or a
name of some index type. If a name is given, the type of that name is used. It returns
the lowest value of the type.

Max

The Max function takes an arbitrary number of arguments of any index type, and returns
as its result the maximum of the values. The arguments must be type compatible.

Min

The Min procedure takes an arbitrary number of arguments of any index type, and returns
as its result the minimum of the values. The arguments must be type compatible.

Null

Null is a predefined constant that is compatible with any pointer, procedure, or global
type. It is used as a special distinguished value, for example to indicate the end of a
linked list.

The value actually used to represent Null is 0.

Offset

If the first parameter of this procedure is a global block identifier, it returns the offset
(in bytes) of that global within the global area (pseudo-register vector). This is a “load-
time constant” and thus, it acts like a constant but cannot be used as a compile-time
constant expression. It is equivalent to use of Q(eztname) in an assembler program,
where extname is the external symbol for the global.

The first parameter may also be a record type identifier. In this case, a second parameter,
which must be the name of a field of the type, is also required. 0ffset then gives the
offset, in bytes, of the field from the beginning of the record.

Predecessor

The Predecessor procedure takes as its argument a value of any index type, and returns
as its result the next lower value of that type. The result is undefined if the argument is
the lowest value of the index type.

108

23.

24.

25.

26.

27.

28.

Language Details

Program_Counter

Program_Counter is implemented only by Plus-11. It is a predefined register variable
of type bit (16), corresponding to the PDP-11 program counter register (R7). This is
intended for use in special linkage routines that set up the required execution environment
for Plus.

The compiler makes no attempt to interpret what you do to this register. It should be
used only by experts. See Appendix E for information about Plus register usage and
entry/exit code requirements.

Right_Justify

This function coerces its operand to be a right-justifying (number-like) expression.

Size

Size is currently a synonym for Bit_Size. However, at some time in the future it will
become a synonym for Byte_Size instead. It is strongly recommended that you use either
Byte_Size or Bit_Size as appropriate.

Stack_Base_Register

Stack_Base_Register is implemented only by Plus/370. It is a predefined register
variable of type bit(32), corresponding to the register used to access the stack (R12).
This is intended for use in special linkage routines that set up the required execution
environment for Plus.

The compiler makes no attempt to interpret what you do to this register. It should be
used only by experts. See Appendix D for information about Plus register usage and
entry/exit code requirements.

Stack_Pointer

Stack_Pointer is a predefined register variable corresponding to the stack pointer reg-
ister. It is implemented by Plus-11 and Plus/68000. In Plus-11, it is of type bit (16)
and corresponds to the PDP-11 stack pointer register, (R6). In Plus/68000, it is of type
bit (32) and corresponds to A7. This is intended for use in special linkage routines that
set up the required execution environment for Plus.

The compiler makes no attempt to interpret what you do to this register. It should be
used only by experts. See Appendices E and F for information about Plus register usage
and entry/exit code requirements.

Substring

The Substring procedure is used to select a substring from a fixed or varying-length
character expression.

The procedure takes two or three parameters. The first parameter specifies a string
expression. The second parameter specifies a starting position within the string. Starting
positions are zero-relative; i.e., a value of zero selects a substring beginning at the first
character of the string. The third parameter, if given, specifies the length of the string to

29.

30.

31.

Language Details 109

select. If it is omitted, the remainder of the string, from the specified starting position,
is assumed.

The second and third parameters must be such that the selected substring lies within
the string specified by the first parameter. The compiler will optionally generate extra
code to run-time check the values of any substring parameters whose correctness cannot
be determined at compile time.

If the first parameter of Substring is a name expression, and the length of the substring
selected is constant then the result of Substring is also a name, and may be used on
the left-hand-side of an assignment statement.

Examples:

Substring(String@,I,1) := " ";
Hex_Char := Substring("0123456789ABCDEF",I,1)

Successor

The Successor function takes as its argument a value of any index type, and returns
as its result the next value of that type. The result is undefined if the argument is the
highest value of the index type.

True

True is predefined as a numeric constant with value 1.

Version

Version is a predefined integer constant giving the current compiler version number
in the form of 1000 x release + change, where release and change are as described in
Chapter IV, page 121.

Compile-Time Statements

Plus provides compile-time if statements, compiler variables and compiler procedures.

A compiler variable or compiler procedure is a predefined identifier beginning with %. (Normal
identifiers may not contain %, so compiler variables and procedures cannot be confused with
normal ones.) Compile-time if statements are also flagged with %.

Compile-Time If Statements

The compile-time if statement allows conditional compilation of program segments. It is
syntactically just like a regular if statement, except each keyword is preceded by %. The
expression in the %if part must evaluate to a constant at compile time, which is used to
determine whether the statements in the %then part or the jelse part are included in
the program.

The end of the %if statement may be indicated by %end, %end %if or %end if.

110

Language Details

Example:

constant Debugging is True; /* Set False for production use. */

%if Debugging
Jthen
/* Do this only when debugging. */

%end %hif

In this example, the statements between %then and %end %if are included in the pro-
gram, since the constant expression Debugging is true. If the constant declaration is
changed to

constant Debugging is False
then the statements will be skipped.

The %if statement may appear anywhere a statement is allowed in Plus, inside or outside
of procedures or global blocks. The %then part or %else part is included in the enclosing
list of statements and must be appropriate for its context. That is, if the %if statement is
not inside a procedure, then the statement list it contains must consist only of declaration
statements (or other compile-time statements).

The statement list in the %then part or jelse part must be syntactically valid even if it
is skipped. However, skipped statements may include references to undeclared variables
and other “semantic errors” without complaint from the compiler.

Note that procedure definitions and global blocks are syntactically allowed as statements,
so that entire procedures or global blocks may be included or skipped by a %if statement.

A sequence of nested %if’s can be combined using %elseif as with regular if statements.

Example:

%if YInstallation = "UBC"
Jthen

constant Site_Name is "University of B.C."
helseif YInstallation = "UM"
Jthen

constant Site_Name is "University of Michigan"
helseif YInstallation = "SFU"

Jthen

constant Site_Name is "Simon Fraser University"
helse

constant Site_Name is "7"
hend %if

In this example, the declaration of Site_Name is selected according to the value of %In-
stallation.

Note that a normal if statement is quite different:

Language Details 111

if %Installation = "UBC"
then
constant Site_Name is "University of B.C."

end if

is an executable statement and is only allowed inside a procedure, while the %if may go
anywhere. In any case, the body of the if statement is a separate scope block, so the
declarations it contains are discarded at the end of the if statement, while the declarations
in a %if statement become part of the scope containing it.

Compiler Variables

Compiler variables are used to set various compiler options, and to access their values.
A compiler variable may appear on the left-hand-side of an assignment statement. The
right-hand-side must be a constant (or constant expression) of an appropriate type. This
value becomes the new value of the compiler variable while compiling the remainder of
the program (or until changed again).

A compiler variable may also appear in any context where a constant is allowed. It is
always replaced by its value at that point in the compilation.
Example:

%Title := "This is the way the title is set";
%List := True;

Message (M, "Error at coordinate <i> in procedure || %Current_Procedure
Il "</>", YCoordinate)

Some of the options affect code generation (e.g., run-time checking). In general, the code
generated will be determined by the values of the options at the end of the procedure.
You cannot have an option on for parts of the code in a procedure and off for other parts.

The list of available compiler variables is implementation-dependent. The following are
those which are defined by the current compilers. Except as noted, they are implemented
for all compilers.

%Assertion_Check := {True|False} default: True

If %#Assertion_Check is true, then code is generated to check the expressions in any
assert statements. If it is false, assert statements are treated as comments.

%Assign_Check := {True|False} default: False

hAssign_Check is intended to check for assignments in which the destination is used
as part of the source, and is changed before it is referenced. For example:

X:=Y || X

This error is not currently detected except in one or two special cases.

112

Language Details

%Check := {True|False} default: True

When a new value is assigned to %Check, each of %Range_Check, %String_Check,
hAssign_Check, %Assertion_Check and %Stack_Check is automatically reset to the
same value. Thus %Check := False may be used to turn off all run-time checking.

%Compile := {True|False} default: True

If this option is set off, the compiler will perform syntax checking only. It will not
perform any other error checking or compile-time processing and will not generate
object code. Once set to False, the option cannot be reset during the run (since
subsequent assignments to compiler variables are not processed).

The compiler will still produce a paragraphed copy of the source if requested.

%Compiler_Dumps := n default: 1

This option controls the printing of linkage trace-backs and storage dumps if a
program interrupt occurs in the compiler. It is primarily of interest to the compiler
implementors.

%Compiler_Debug := n default: O

This option controls various internal compiler debugging options. It is of interest
only to the compiler implementors.

%Convert := {True|False} default: False

This option requests the compiler to convert the paragraphed copy to adjust for
incompatible changes to Plus that may have occurred.

The exact effect may vary from time to time. Currently, the actions performed are:

1) Any symbol that has been %Unreserve’d will be converted to a valid identifier by
appending a “#” in the copy produced on unit 1. Thus, for example, setting %Con-

vert := True, in conjunction with the compiler procedure %Unreserve ("entry"),
will produce a paragraphed copy in which all occurrences of entry are replaced by
Entry#

2) Any uses of the built-in procedure Size will be converted to use Bit_Size instead.

%Coordinate

Contains the source-coordinate of the current line, as an integer. This may be useful
in producing error messages for debugging purposes.

%Current_Procedure

Contains the name of the procedure currently being compiled. This may be useful
in producing error messages for debugging purposes.

%Date

Contains the date at the start of compilation as a character string in the form "day
mon dd/yy".

Language Details 113

%Dump_Tree := {True|False} default: False

If true at the end of a procedure, the intermediate code tree is printed. This is
primarily of interest to the compiler implementors.

#Entry := "string-constant" default: ""
This option is ignored by Plus-11.

For Plus/370, the specified character string is used as the name of the entry point
of the program and is punched in an ENT record at the end of the compilation. If
it is a null string, "", as it is by default, no ENT record is produced. (However, the
standard Plus/370 library definition of Main sets %Entry to "MAIN".)

For Plus/68000 with %Target_Operating_System of "MAC/MPW", if a procedure
whose external name matches the string specified is defined, then it is marked as
being the entry point of the program.

%Footer := {True|False} default: True

If this is set false, footer lines (using carriage control ‘<’) will not be printed in the
source listing.

%#Installation default: installation dependent

This is intended to assist people writing programs that are used at more than one
MTS installation, but that must contain installation-specific code. The value is
initialized to the CNFGINFO “share code” field (for example, "UBC" at UBC, "UM"
at the University of Michigan, etc.). Note it is a compile-time value—it reflects the
CNFGINFO code at the time a program is compiled, not at the time it is executed.

This may be tested in if statements or compile-time %if statements to select between
installation-dependent alternatives.

%sInstallation may be assigned another value to test out the compilation of alter-
nate versions. For example:

Run *Plus ... Par=YInstallation:="SFU"
would compile the “SFU” version of a program.
%Global_Id := bit(32)-constant default: "PLUS"

%Global_Id is implemented only by Plus/370and Plus/68000. It specifies the
“global-id” for the global storage type containing all global variables in the pro-
gram. See Section C-3, page 46.

%Instruction_Set := "string-constant" default: Plus/370—"STANDARD"
Plus-11—"EXTENDED"
Plus/63000—"STANDARD"

This option may be used to specify the instruction set available on the object ma-
chine. The possible values that may be specified currently are "STANDARD", "BASIC",
or "EXTENDED". Currently it is completely ignored by Plus/370 and Plus/68000.

For Plus-11, the option "STANDARD" may be used to generate code for a machine
that doesn’t have the Mul, Div, and Ash instructions, and the option "BASIC" may
be used if the machine also doesn’t have the Sob instruction.

114 Language Details

%Library := {True|False} default: False

This option is ignored by Plus-11 and Plus/68000. For Plus/370, it controls whether
special loader records are output at the end of the object module. These records
are needed to access the resident system Plus library routines. %4Library defaults to
false (the records are not punched). (However, the standard Plus library definition
of Main also sets this option to True.) See Chapter IV, page 127 for information
about the loader records required to run a Plus/370 program.

%Lines_Per_Page :=n default: 60
This option sets the number of lines that the Plus paragrapher will put onto a page

of the listing.

%Linkage := "string-constant" default: Plus/370—"NEW"
Plus-11—"ALTERNATE"
Plus/68000—"NEW"

This option controls some details of the procedure linkage assumed by the compilers.

The allowed values are currently "OLD" or "STANDARD" (which are synonyms) and
"NEW" or "ALTERNATE" (which are also synonyms).

For Plus/370, "OLD" or "STANDARD" means the old (pre-1986) form of the MTS
coding conventions is to be used. "NEW" means the new (“1986”) conventions are
to be used. The default® is "NEW".

For Plus-11, the use of "ALTERNATE" reverses the compiler’s use of R4 and R5. See
Appendix E.

Plus/68000 ignores this option.

AList := {0l1]2} default: 1

This option controls the source listing. If set to 0, no source listing is produced. If
set to 1, source from Scards is listed, but any input included from a library is not
listed. If set to 2, all input is listed.

The paragraphed source copy on unit 1 is produced (if unit 1 is assigned) indepen-
dently of the setting of %List. The copy will never include input from a library.
%List_Code := {True|False} default: False

If this is true at the end of a procedure a listing of the object code for that procedure
is produced.

%List_Code may also be assigned the value 2 or 3, which cause the intermediate code
representation and associated tables to be dumped. This information is probably
of interest to the compiler implementors only.

8 As of July 1987. This is likely to change to "STANDARD" when the meaning of "STANDARD" is changed to be
synonymous with "NEW".

Language Details 115

%Listing_Character_Set := "string-constant" default: "MIXED"

This compiler variable can be used to indicate to the compiler what characters are
available on the listing device. This is only a hint—the compiler will not necessarily
adhere. The values currently allowed are:

"MIXED" indicates upper and lower case may be used.

"UPPERCASE" indicates only upper case letters are available. The compiler will not
translate everything to uppercase when this option is selected; it just
doesn’t bother converting various things to lower case.

"TN" means the IBM TN character set may be used. Currently, this just
causes use of TN box corners and edges for /*BOX ... comments.
%Lower_Case := {True|False} default: False

If this is set true, the source listing and paragraphed copy will be produced with
all keywords and identifiers converted to a standard upper-and-lower case format.
String constants and comments will be left in their original case.

hLower_Case may also be assigned the value 2, in which case comments will be
converted to all lower-case.

JMerge_Unref := {True|False} default: True

controls whether the cross reference listing of unreferenced identifiers appears as
a separate listing. If it is true at the end of compilation, then the listing of any
unreferenced symbols is merged in with the regular listing. If it is false at the end
of compilation, unreferenced symbols appear as a separate cross reference listing.
Note that in either case, whether an identifier with no references appears or not is
controlled by the setting of %Unref when the identifier was declared.

%0bject_Length := number

The value of %,0bject_Length at the end of a procedure determines the maximum
length of the object module records that will be punched for that procedure.

For Plus/370, by default, number is the same as the maximum output record length
of the file or device assigned to SPUNCH. It may not be set to a value less than 40
or greater than the maximum length of the output device.

This option should not be set bigger than 255 with Plus-11, since *Link11 doesn’t
support long object records.

This option is ignored by Plus/68000.
%0ptimize := {0]1]2]3} default: 0

This option is currently unimplemented. It will be used to select the kind of opti-
mization wanted.

0 indicates no optimization.
1 indicates optimization for a “reasonable combination” of space and speed.
2 means optimize for space.

3 means optimize for speed.

116 Language Details

#Page_Width :=n default: 132

This option sets the page width that the paragrapher uses to produce the listing.

%iPreempt := {True|False} default: True

By default, when the compiler runs out of general registers during code generation,
it will continue by storing out some of the registers in use and restoring them when
necessary. If %4Preempt is set to false, the compiler will not generate this register
preemption code, but will abandon code generation if it can’t compile a procedure
without any register preemptions.

This option is mainly used with 1inkage none routines, for which preemption code
may not be safe (because the stack may not be set up at all times). In such proce-
dures, it may be preferable to detect that the procedure required preemptions via
the resulting error message.

As with other compiler options affecting code generation, the value in effect at the
end of the procedure applies to the whole procedure. You can’t set this option off
for only part of a procedure.

This option isn’t supported by Plus-11 or Plus/68000.

%Productions := {True|False} default: False

If this compiler variable is assigned the value true, then a line will be printed giving
the number of each syntax production as it is applied during the parsing of the
program. This output is primarily of use to the compiler implementors.

%Range_Check := {True|False} default: True

If #Range_Check is true, the compiler will generate extra code for assignments and
array subscripts to check that the value is within the declared range of the variable
or array index. A run-time check will not be generated if the compiler is able to
determine at compile time that the value should be within the declared range. For
example, when assigning a variable to another with the same range, no run-time
check is performed.

The range-checking facilities will sometimes catch uninitialized variables, but cannot
be relied on to do so.

Checking may be disabled by assigning %Range_Check the value false.

%Regression_Test := {True|False} default: False

This option alters the output of the compiler to make it more independent of the
compiler version number and the time of compilation. It is intended to allow com-
parison of the output of different versions of the compiler. This is primarily of
interest to the compiler implementors.

%Segment := "string-constant" default: "Main"

This option is only implemented by Plus/68000 and is ignored unless %Target_
Operating_System is set to "MAC/MPW". This option sets the loader “segment name”
for the following procedures.

Language Details 117

%Source_File

Contains the current source file name as a character string. This may be useful in
producing error messages for debugging purposes.

%Source_Line
Contains the MTS line-number of the current source line, in internal form as an
integer. This may be useful in producing error messages for debugging purposes.
%Stack_Check := {True|False} default: True

This option is only implemented by Plus/370. If %Stack_Check is true, and %Link-
age is "NEW", the compiler will generate code as part of the entry sequence to check
for stack overflow. The option is ignored if %Linkage is "OLD".

%Statistics := {True|False} default: False

If 4Statistics is true at the end of the input to the compiler, a number of messages
will be printed describing the use of various compiler tables, and the values of various
counters.

This information is primarily of interest to the compiler implementors.

%String_Check := {True|False} default: True

If %#String_Check is true, the compiler will generate code to check for string assign-
ments in which the source is longer than the destination, and to check for Substring
functions in which the designated substring does not lie within the string.

#Subtitle := "string-constant" default: none

Sets a subtitle to be printed on the third line of each page.

%Target_Machine default: Plus/370—"IBM/370"
Plus-11—"pPDP-11"
Plus/68000—"MC68000"

This option contains a string describing which compiler is being used. It may be
useful in conditional compilation statements to isolate machine dependent state-
ments.

%Target_Operating_System := string-constant default: Plus/370—"MTS"
Plus-11—"UBCNET"
Plus/68000—"MAC/MPW"

This option specifies the system that the code is to run on. It may affect code
generated, particularly for procedure calls and the implementation of loader objects.
See the Index for more details.

For Plus/370, the possible values are "MTS" and "MVS".
This option is ignored by Plus-11, and may be set to any string.

For Plus/68000, the possible values are "MAC/MPW", "MAC/MDS" and "AMIGA".

118

Language Details

hTest := {0]1]2} default: 1

For Plus/370, if this variable is non-zero, the compiler will generate SYM records
as part of the object deck produced, to assist in debugging the object program. If
the value is 1 (True), the object program can be used with either the “current” or
“new” versions of SDS. If it is 2, it can be used with the “new” version of SDS only.
See Chapter IV, page 127 for details of the debugging information produced.

For Plus-11, it causes some information about variable and record offsets to be
“dumped” in the listing. This information may assist with debugging.

Plus/68000 currently ignores this option.

%Time

Contains the time-of-day at the start of compilation in the form "hh:mm:ss".

%Title := "string-constant" default: compiler version etc.

Sets the title to be printed on the first line of each page.

%Unref := {True|False} default: True

Controls printing of the cross reference for identifiers that are never referenced. If
true when an id is declared, then it appears in the cross reference even if there are
no references. If false when an id is declared, that symbol will appear only if there
is at least one reference.

Note that the effect is determined at the point of the declaration of a symbol. This
means it is possible, for example, to set %Unref := False before including library
declarations, so that included symbols which are not used don’t clutter up the cross
reference.

hXref := {012} default: 2

Controls how much information is entered in the cross reference. If it is set to 0,
then nothing in entered in the cross reference. If it is set to 1, then declarations will
be entered, but references to the declared identifiers will not be reported. If it is set
to 2, then declarations and all references will be reported.

Note that the information collected for a given identifier is determined at the point
of the declaration of the identifier. That is, if the setting is 1 when a variable is
declared, then the declaration will be entered in the cross reference, but references
to the identifier will not be collected, even if %Xref is subsequently changed to 2.

%Xref_Scope := {0]|1]2]3} default: 3

Controls what identifiers are included in the cross-reference. If it is set to 0, no
identifiers are entered. This is the same effect as %Xref := 0. If it is set to 1, only
external symbols (procedures, globals, external variables) are entered. If set to 2,
only global symbols (everything defined in global blocks or external to procedure
definitions) are entered. If set to 3, all identifiers are included.

Language Details 119

Compiler Procedures

Compiler procedures may appear syntactically anywhere a normal statement might ap-
pear. The effect depends on the specific procedure invoked.

Example:
hEject();
%Include(Integer, String_type)

The list of available compiler procedures is implementation-dependent. The following are
those which are defined by the current compilers. Except as noted, they are implemented
for all compilers.

%Double([n])

Causes the next output line to be preceded by a skip to a “double” page. %Double (1)
ejects to a page with an odd page number (a “front” page). %Double(2) ejects to
an even (“back”) page. With no parameter, it currently behaves like %Double(2)
at UBC. This may change, however (and may differ at other installations).

%Dump ()

This procedure dumps the contents of various pass 1 compiler tables as they exist
at the point where %Dump occurs. This information is primarily of interest to the
compiler implementors.

%Eject ()

Causes the next output line to be preceded by a page skip.

%Include (identifier, ...)

%Include is used to conditionally include members of the source libraries, as de-
scribed in Chapter VII, page 135.

%Map (name, . . .)

#Map can be used to obtain a storage layout map for a record type. It requires one
or more parameters, which must be type-identifiers or names of a record type.

This procedure is intended to help in ensuring that a Plus declaration correctly
reflects a corresponding assembler dsect. It produces a listing of all fields of the
record, giving the “access-address” and a hexadecimal mask indicating which bits
are accessed by the field name. It will follow nested record types to a depth of 5
levels.

#Message (" string-constant" , . . .)

iMessage outputs the given string constants to the source listing, and to Sercom if
it is different from Sprint. Each line is flagged with “*** Message”.

%Mts ()

Causes the compiler to return immediately to the operating system, in a RESTART-
able way.

120

Language Details

%Pop (compiler-variable, . . .)

%Pop is used to restore the value of a compiler variable previously saved with JPush.
If there is no stacked value for the specified compiler variable, the initial default
value is restored.

#Print ("string-constant", ...)

#Print outputs the given string constants to the listing file, one line per string. This
is useful for outputting listing control lines. These lines are not examined, altered
or counted by the paragrapher.

#Punch ("string-constant", ...)

%#Punch outputs the given string constants to the object file produced by the compiler
(one string per record). This is useful for outputting $Continue with lines, or
auxiliary loader control records.

#Push (compiler-variable, . . .)

%Push may be used to stack the values of any compiler variables. The compiler
procedure %Pop is used to restore the value. For example:

%Push (%Title); /* save current title */
%Title := ...

#Pop(%ATitle) /#* restore saved title */

A list of compiler variables may be pushed in a single use of ,Push.

%Unreserve ("string", . ..)

This compiler procedure can be used to indicate that the specified strings are not to
be treated as reserved words for the remainder of the compilation. This is intended
to allow programs written before the addition of new reserved words to continue to
compile without other changes. For example,

sUnreserve("value","reference","entry")

would cause these reserved words to still be treated as a identifiers. If this is used,
however, the facilities implemented by the keywords will not be available.

Note that JUnreserve can be used in conjunction with %Convert to produce a
copy of the program in which the reserved words have been converted to harmless
identifiers.

121

IV. Using the System 370 Plus Compiler
Compiler Versions
The current stable version of the Plus/370 compiler is found in the file *Plus.

The file Plus:Plus> contains the latest version for testing. The file Plus:Plus< (when it
exists) will contain a backup version of the compiler. This version will normally exist only
after major changes.

At UBC, the file Plus:Plus# will always contain the most recently distributed version of the
compiler. Any programs to be distributed to other installations should be compiled with this
version to ensure they do not depend on new features or bug fixes.

Each version of Plus has a version number (which appears in the default title, and in the
object module END record). The version number is of the form ‘n-m.” ‘n’ is the release
number; it is incremented by one each time the compiler is completely regenerated. ‘m’ is the
change number, incremented for each change installed.

All compiler changes are described in the *Forum conference “Plus-Internals”. New features
and incompatible changes are also announced in the *Forum conference “Plus”.

Compiling a Program

The compiler is invoked with an MTS Run command of the following form:
Run *Plus [logical-units] [Par=statements]

The following logical units may be specified on the Run command:

Scards Specifies the file or device containing the source program. Input records must not
be longer than 255 characters.

Sprint The paragraphed listing is produced on Sprint. See below.

Sercom Error messages and certain other messages written to Sprint are echoed to Sercom
if Sprint and Sercom do not refer to the same file or device.

Spunch The object module is produced on Spunch. If Spunch is not specified it defaults
to the file -Load.

If Spunch specifies a temporary file, it will be emptied automatically before use.
If Spunch specifies a permanent file, the file must be emptied by the user before
running the compiler.

If a file (either permanent or temporary) is specified with a line-number range,
then the specified range must be empty, but the whole file does not need to be
empty. The compiler will not use the file if it already contains lines in the specified
range.

0 Unit 0 is used to specify a source library or libraries. If it is not specified, the
default library (*Plus.Sourcelib) is assumed. This library contains a number
of useful standard definitions, including declarations of many of the MTS system
subroutines. Documentation of the members of *Plus.Sourcelib appears in the
writeup UBC PLUS LIBRARY.

122

Using the System 370 Plus Compiler

Note if unit 0 is specified, it is used instead of *Plus.Sourcelib. If it is intended
to use both, *Plus.Sourcelib must be concatenated to the private library.

See Chapter VII for details of library format.

If unit 1 is specified, it will be used for a paragraphed copy of the source suitable
for use as input to the compiler. If unit 1 specifies a temporary file, it will be
automatically emptied. If it specifies a permanent file, the file must be emptied
before running the compiler.

If unit 2 is specified, it will be used for a machine-readable log of the errors in the
source.

The Par= field may specify any valid Plus statements. This is passed to the compiler (followed
by a terminating semicolon), as the first input record to be processed. The Par= field is
normally used in this way as a means of specifying the initial settings of compiler options.

The compiler passes back a return-code in R15. This is set as follows:

0—mno errors or warnings detected.
4—warnings but no errors detected.
8—errors detected.

The return code may be tested by M'TS command macros.

Compiler Output

1.

Source Listing

The source listing is produced paragraphed according to precise paragraphing rules,
intended to clearly indicate the control structure of the program. Source listing may be
turned on and off with the %List compiler variable, described on page 114.

To the left of the source listing are two columns of numbers. The first column contains the
input line number corresponding to the text on the line. The second contains a “source
coordinate” which is used in compile-time and run-time error messages to indicate the
point of the error. The source coordinate is reset to 1 for each procedure and global
block and each macro definition. It is incremented for each “paragraphed line”. It is not
incremented when a paragraphed line is split across two printer lines as a result of the
paper width limitation. The source coordinate is also used in the SYM records generated
by Plus for use with SDS (see Section F, page 127).

The input file name appears to the right of the listing each time it changes, and on the
first source line of each page.

A blank line appears in the listing wherever (and only where) one appears in the input.

Comments are normally formatted in the output with one blank between each “word”.
The options frame, box, as_is, and centre may be specified to control the formatting
of the comment—these are described below. If a comment is the first thing on an input
line, or if it is to be framed, it will begin a new line in the output.

Certain annotations appear in the source listing. Each exit, repeat or return is marked
with “...” to indicate the level of the compound being exited. A heading appears at the
beginning of a procedure definition, specifying the names of the parameters and result
of the procedure. (This is because the procedure declaration in which they are specified
may be elsewhere in the listing.)

Using the System 370 Plus Compiler 123

Titles and subtitles in the listing may be set by the %Title and %Subtitle compiler
variables. By default, the title specifies the compiler version and user id.

The compiler produces footer lines indicating the procedures and global blocks defined
on each page. This footer may be turned off (e.g., if output is intended for a printer that
does not support footers), by means of the compiler variable }Footer.

Comment Paragraphing

The comment start symbol /* may be immediately followed (with no intervening blanks)
by one or more of the options frame, box, as_is or centre(or center) (separated by
commas if more than one appears).

If the option frame appears, the listing of the comment will be surrounded by a frame
Of “*”S.

If the option box appears, the listing of the comment will have a line-box drawn around
it. If the 4Listing_Character_Set compiler variable is set to "TN", the box will use the
TN box characters; otherwise it will use characters from the PN character set.

If the option as_is appears, the comment will be output “as-is”, with horizontal spacing
preserved from the compiler input. The entire comment will be moved left or right to
line up the “/*” with the current indentation level, but internal blanks will be preserved,
and successive lines of the comment will be moved left or right as necessary to maintain
the same relative position.

If the option centre (or center) appears, then the lines of the comment will be centred
in the output. Each input line generates one line of centred output. as_is is ignored if
centre is specified.

The words frame, box, as_is, or centre themselves do not appear in the listing.

A new line is started in the listing following any comment. A null comment (“/**/”)
is suppressed in the listing, but still causes a new line. Hence it may be useful in some
situations where the line-breaks determined by the paragrapher are not adequate.

For example, if the input is
if Substring(Symbol, O, Symbol_Length) = Testl /*x/

or Substring(Symbol, O, Symbol_Length) = Test2
then

end if
the paragraphed listing will appear as

if Substring(Symbol, O, Symbol_Length) = Testl

or Substring(Symbol, O, Symbol_Length) = Test2

then

end if
Without the /**/, the parapgrapher would fit some part of the second line onto the first,
and break the expression at a less appropriate place.

124

Using the System 370 Plus Compiler

In a similar way, the sequence “*//*” within a comment is suppressed from the listing,
but still causes a new line. New comment options may follow the “/*”. However, if a
frame or box is in effect, it will continue to the final end-of-comment.

For example,

/*box,centre
Linear and Binary Searching
x/ /%
This example program demonstrates...

*/

The entire comment will be surrounded by a “box” frame, but only the first part of the
comment will be centred.

Paragraphed Copy

If unit 1 is specified on the Run command, a paragraphed copy suitable for use as input
to the compiler is produced. The paragraphed copy is in most respects the same as the
listing; however, it is intended to be a more exact duplicate of the input than the source
listing.

The annotations added to the listing do not appear in the paragraphed copy. Input
which is included from a library (via %Include) does not appear in the paragraphed
copy. (The %Include statement is echoed however.)

The comment options and the sequence /**/ or *//* are copied across to the output.
A frame or box will not appear around the paragraphed copy of a comment.

The maximum length of an output line in the paragraphed copy is 68 (for convenient
full-screen editing), while in the source listing it is 90. There is currently no way to
change these lengths.

Cross-Reference
The source listing is followed by a cross-reference of identifiers used by the program.

The exact contents of the cross-reference are controlled by a number of compiler variables.
The option %Xref controls how much is reported for each identifier. The options %Xref_
Scope controls which identifiers are included in the cross reference. The options %Unref
and %Merge_Unref control printing of identifiers that are defined but never referenced.
See the descriptions of these compiler variables for details.

Entries in the cross reference indicate the general class of identifier (constant, variable,
type, etc.). References are given in the form ‘p : ¢1,ca, ..., ¢,’, where p is a page number
in the listing and ¢y, ¢, ..., ¢, are source coordinates of references on that page. (Since
coordinates start over for each procedure, and there may be more than one procedure on
a page, this is not necessarily a completely precise reference.) Each reference coordinate
may be followed by a one-character code indicating whether the program stores, deref-
erences, the symbol, etc., at that line in the program. A key for the codes used appears
at the beginning of the cross-reference.

Errors

If an error occurs during pass 1 of the compilation, the current line is output immediately,

Using the System 370 Plus Compiler 125

followed by the error message. The line listed will always contain the current input line
number and file name. Errors encountered after pass 1 cause a message to be issued at
the end of the procedure listing.

In all cases, error messages (and the current line if any) are also echoed to Sercom, if
Sprint and Sercom are different. Whenever an error message is issued, the flag **x
errors #*x* is placed in the bottom right-hand corner of the listing for the next two
pages. This helps find the error messages in a large listing.

If unit 2 is specified on the Run command, any errors will also be recorded in the specified
file. This file can be used to automatically step through the errors with an editor.

D. Running A Plus/370 Object Program

If the main procedure for a Plus/370 program is defined by including the library definition for
Main, and the object file is defaulted to -load when the program is compiled, the program
can be executed with a Run command of the form:

Run -load ... [Par=options; user-par]

The library definition of Main specifies the special linkage routine PLUSENTR is to be used and
causes required loader control records to be emitted at the end of the object file.

The special linkage routine PLUSENTR may process certain options from the Par field of the
Run command before it passes control to the main procedure.

If the procedure declaration for the main procedure specifies a stacksize option, or if a
loader record has been added to define the external symbol STAKSIZE, then PLUSENTR ignores
all the options in the Par field.

The following options will be processed by the default linkage routine PLUSENTR when the
stacksize has not been specified.

STACK={n|nBInK|nP} specifies the amount of memory to allocate for a stack. By default,
one page is allocated. Specifying STACK=nK allocates n 1024 byte
blocks, nP or just n specifies the size in 4096 byte pages while nB
is the size in bytes.

HIGH_WATER will cause PLUSENTR to output a message at the end of execution
which gives the amount of stack allocated and the amount changed
during execution.

The procedure Main! may optionally be declared to have a parameter and return-value, as
follows:

procedure Main is
procedure
reference optional parameter Par is character(0 to 256) in
register 0
result Rc is Integer in register 15
end linkage "PLUSENTR"

L It is not required that your main program be called “Main”. You can use any identifier, provided you specify

linkage "PLUSENTR".

126

Using the System 370 Plus Compiler

This is the declaration that will be included from the standard source library if you specify
%Include (Main).

To define the stacksize to allocate as part of the declaration, this should be changed to

procedure Main is
procedure

end linkage "PLUSENTR" stacksize n

where n is an integer constant for the size (in bytes) you want.

When Main is called, it will be passed as a parameter that part of the Par= field following the
semicolon. The value returned by Main will be set in R15 as a return-code from the program.

The stack size is increased to the nearest page (4096 byte) multiple. When %Linkage="0LD"
is in effect, an extra page is also allocated at the end. This extra page is protected so that it
will cause a protection exception if a program attempts to use storage beyond the end of the
stack. Thus a protection exception in a Plus program (especially if at the entry sequence or
a procedure), may be an indication that a larger stack is required. The only time you might
not get a protection exception is if you have a large but unused variable on the stack, and
so “hop over” the stack fence. If }Linkage="NEW", the stack fence is not allocated, since the
compiler option %Stack_Check can then be used to implement stack overflow checking.

The run-time checks performed by Plus are implemented by causing a program interrupt
which is interpreted specially by the program interrupt handler set up by PLUSENTR. This
normally dumps the registers and a limited amount of memory and provides a trace back
following any program interrupt. If the program is being executed under control of SDS,
however, this information will not be given. Instead just a message (for Plus run-time checks)
is displayed, then the interrupt handler returns to SDS for further processing.

It is not necessary to use the run-time support provided by linkage "PLUSENTR", provided
the required stack and global storage environment are set up before an Plus procedure is
executed. See Appendix D for further details of the requirements. Note that if the normal
program interrupt handler is not used, the program must either be prepared to handle for
itself any program interrupts resulting from run-time checks, or must be compiled with all
run-time checks disabled.

Loader Records Required By Plus Programs

In order to load correctly, a Plus object file must contain some special loader records to
interface with procedures and global variables defined in the resident system. These records
should normally be at the end of the object file. The usual loader records are generated
automatically at the end of the object deck if the option %Library is true. (This option
defaults to false, but is set true if Main is included from *Plus.Sourcelib.) However, for
programs compiled in pieces and later combined, it may be necessary to add the records “by
hand”.

1. ’Linkage="0OLD"
If ¥Linkage is "OLD", the following record is normally required:

$Continue With 01d:01dCCLib

Using the System 370 Plus Compiler 127

This record causes the inclusion of the old version of the runtime library. Alternatively
this library could be specified on the M'TS Run command:

Run -load+01d:01dCCLib ... [Par=options; user-par]

2. JLinkage="NEW"

If ¥Linkage is "NEW", the following records are normally required:

column — 2 7 17
RIP QLCSPR
RIP CCSYMBOL
LCS LCSYMBOL
LCS CCSYMBOL
LCSPR QLCSPR

The LCSPR record for QLCSPR is required so that the global (PRV) variables used by the
program being run will extend the global storage used by the normal Plus entry routine
PLUSENTR. The new coding conventions require that the first two words of the global
storage be specially defined. This LCSPR for QLCSPR ensures the required setup. An
LCSPR for QGLOBAL may be substituted to define only the first two words, if the program
does not use PLUSENTR. The program will not execute correctly if neither QGLOBAL nor
QLCSPR is used.

The LCS record for CCSYMBOL is required to tell the loader to search the symbol table
CCSYMBOL, in order to find any Plus library routines used. If the program doesn’t use
any of the Plus library routines, this record may be omitted.

The other records are needed to tell the loader to find the definitions of QLCSPR and
CCSYMBOL.

A copy of these records is in the file Plus:Endjunk, which can be copied to the end of
the object program.

F. Debugging Plus Programs

If the compiler variable %Test has the value 1 (as it does by default), the compiler will generate
SYM records to assist in debugging the Plus program under SDS. If it has the value 2, the
SYM records will be generated for use with a new version of SDS.2

The standard Plus run-time support sets up a program interrupt exit to intercept program
interrupts within the program. When a program is run under control of SDS, this default
interrupt handler will return to SDS with the state at the time of the interrupt intact; thus
SDS commands can be used to explore the problem. Note that run-time errors (range checks,
assertion failures, etc.) in Plus programs are signalled by a program interrupt (an operation
exception with an operation code of zero). For these interrupts, the interrupt handler will
decode the check condition and output an appropriate message before returning to SDS.

If the program is to be restarted following a run-time error intercept, the command
GO $PSW+2

should be used rather than CONTINUE.

2 You may need to issue the MTS command Set Version(Sds)=New to use the new version.

128

Using the System 370 Plus Compiler

The support provided for debugging Plus with SDS is still rather rudimentary, since SDS is
not prepared to cope with many of the basic concepts of Plus (such as programmer defined

types).

Currently, SDS symbolic information is generated as follows:

1.

Source coordinates are emitted for all lines of the source for which there is generated
code. These are referenced with symbols of the form #n (for source coordinate n).

The procedure name (Plus identifier) is emitted as a label at the beginning of the code
csect.

A dsect is generated for each global block. The dsect name is the external name of the
global (first four and last four characters of the name).

SYM information is generated for all variables in the global. In order to reference them,
SDS must be told where the global is based. This requires two steps:

a. Specify the base of the pseudo-register with the SDS command
USING PRAREA $GR11

at any time after the pseudo register vector is allocated.

b. Tell SDS where the dsect is based in the PRV. This is done with the SDS command
USING global global

for the required dsect global.

A dsect is generated for each record type which has a name (i.e., is defined in a type
declaration). Each field of the record will appear as a variable in this dsect. If %Test is 2,
the name of the dsect is the type identifier. If %4Test is 1, the dsect name is generated by
the same rule as for external symbols (first four/last four characters of the type name).
In this case, if the identifier is longer than 8 characters, the full form will be defined as
a label at the beginning of the dsect.

A dsect is generated for the local variables of each procedure. This dsect has the name
#proc where proc is the procedure name. If %4Test is 1, it will be shortened to at most 8
characters by taking the first four/last four.

A USING command must be given to tell SDS where the dsect is based. This is either
R13 at entry to the procedure or R12 after executing the entry sequence.

A dsect is generated for the parameter/result area of each procedure. This dsect has the
name !proc, possibly shortened to 8 characters as above. This dsect is based on R1 at
entry to the procedure. It may be based on another register at other points.

Only the following SDS data types are used for variables and fields of records:

F (with appropriate length) is used for all integer and programmer defined id-list types.

C (with appropriate length) is used for fixed and varying length strings. Note that
for a varying string, the length field is also printed as if it were character, and the
variable is printed as the maximum length.

Using the System 370 Plus Compiler 129

A is used for pointers and procedure variables.
X is used for anything else.

A duplication factor will be included for arrays. Note, however, that SDS always assumes the
lower bound for array subscripts is 1.

130

131

V. Using the PDP-11 Plus Compiler
Compiler Versions

The current stable version of the PDP-11 Plus compiler is contained in the file ¥*P1lus11. The
file Plus:Plus11> contains the latest version for testing. The versions of the Plus-11 compiler
are numbered using the same basic scheme as the Plus/370 compiler.

Compiling a Program

The compiler is invoked with the Run command in a similar way to the 370 compiler. The
use of logical units and the Par= field are identical, with the exception that unit 0 defaults to
the file Plus:Sourcelibill.

The output produced by the compiler is equivalent to that produced by the 370 version (with
the obvious machine-dependent differences).

Running a PDP-11 Program

The PDP-11 version requires that some run-time support routines be provided. These rou-
tines are used in the implementation of procedure entry and exit, run-time error checking,
and certain operations on string types. These routines are independent of the execution
environment of the program.

Other routines are required to set up the stack and global storage and initiate execution of the
main program (which should be called Main). Another group provide primitive I/O support
to the Decwriter console. These routines are system dependent.

At UBC, the object generated by the compiler is combined with the run-time support and
any other required code using *Link11 to generate a binary image which can be loaded into
the PDP-11.

1. Use of Linkl1

The file *Link11 contains a version of Link11 which supports pseudo-registers. This
supports the commands PR BEGIN and PR END.

These commands are used to “surround” the inclusion of all Plus modules which are to
use the same global area. (The complete input to Link11l might include independent
families of procedures to be linked into one memory image.)

2. Building A Test System

This section describes how a Plus program is currently linked to build a binary image for
use with the Test Pdp-11 at UBC. This process will be different at other installations
and when building production systems at UBC.

The file P1lus:0bjlib11l contains the object for the run-time support routines used. The
file Plus:Freecore contains a dummy csect which is linked after all code to give the
run-time support a handle on the beginning of the “free-core” after all code.

Typical input to *Link11 to build a test system is therefore

132

Using the PDP-11 Plus Compiler

SET @,0200 -- load at 200
LINK PLUS:0BJLIB11

PR BEGIN

LINK Plus_objectl

LINK Plus_object2

PR END

LINK FEP:NEWDEBUG* -- include debug support
LINK PLUS:FREECORE -- mark end
SET #,DEBUG -- enter at DEBUG

MAP map_file
WRITE fep_load_file
STOP

Plus:0bjlibll contains routines required by the object code generated for any Plus
program. It also includes object for routines required only for Plus-11 programs compiled
with the "BASIC" or "STANDARD" instruction sets. Other routines implement library
subroutines declared in Plus:Sourcelibll.

Many applications may wish to select only some of these routines, or to provide substi-
tutes for different system or machine environments. The source, which may be useful as
a prototype, is contained in the files Plus:Libl1*sa (*1lasr assembler routines) and
Plus:Libl1*sq (Plus-11 source routines.)

133

VI. Using the Motorola 68000 Plus Compiler
Compiler Versions

The current stable version of the Motorola 68000 Plus compiler is contained in the file
Plus:Plus68. The file Plus:Plus68> contains the latest version for testing. The versions of
the Plus/68000 compiler are numbered using the same basic scheme as the Plus/370 compiler.

Compiling a Program

The compiler is invoked with the Run command in a similar way to the 370 compiler. The
use of logical units and the Par= field are identical, with the exception that unit 0 defaults to
the file Plus:Macsourcelib.

The output produced by the compiler is equivalent to that produced by the 370 version (with
the obvious machine-dependent differences).

Running a Motorola 68000 Program

Plus/68000 requires that some run-time support routines be provided. These routines are
used in the implementation of some operations on string types and long multiplication and
division. These routines do not require any global storage. They are supplied in the files
Plus:0bj68MPW, Plus:0bj68MDS and Plus:0bj68AMI

The object generated by the compiler is combined with the run-time support and any other
required code using the linker corresponding to the %Target_Operating_System compiler
variable. The first step in this process is to transfer the object file from MTS to the target
system, using some binary transmission protocol, such as Kermit. The linking, running and
debugging then proceed on the target system.

134

135

VII. Source Libraries
Library Format

The Plus compilers support a source-library facility which allows segments of source text to
be included from library files.

A library consists of a directory followed by 0 or more library members.

The directory consists of 0 or more lines, terminated by either an end-of-file or /end. A normal
directory record consists of a library member name (which must be a valid Plus identifier)
followed by an unsigned integer line number (separated by one or more blanks).

The directory portion may use implicit concatenation ($Continue with ... or $Continue
with ... return records) to specify other libraries to be used. Blank lines and Plus-style
comments may also be included within the directory portion.

The line-number in a directory record indicates the line in the same file at which the library
member begins. The record at the specified location must be /begin membername, where
membername is the identifier specified in the directory. A library member ends with an
end-of-file or /end. Implicit concatenation may be used within a member.

Specifying Libraries to the Compiler

Unit 0 on the Run command is used to specify the library or libraries to be searched. Multiple
libraries may be specified by concatenation either explicitly or implicitly within a library
directory.

In effect, the Fdname specified for unit 0 defines the directory to be searched. A library
member is always obtained from the file in which its defining directory entry is found. If an
identifier appears more than once in the libraries to be searched, the first occurrence will be
used, without complaint.

Including Source From a Library

The %Include compiler procedure is used to conditionally include library members within a
source program.

It appears in the form
%Include (idy ,ido, . . . ,idy)

An arbitrary number of id;’s may be specified. Each id in the list is considered for inclusion
in turn. If the id is not defined at the point where it is considered for inclusion, then the
library member with that name is included. If the id has been previously defined (as any kind
of Plus identifier: type, variable, constant, etc.) then the member is not read in. An error
message will be issued if the id is not defined and is not in the directory of any library.

%Include(...) may be arbitrarily nested within library members.

Source Library Utilities

There are two utility programs under ccid Plus that may be of interest to Plus programmers.

1. Plus Library Generator

The program Plus:Libgen is a simple program to generate or recreate a Plus library.

136

Source Libraries

It is invoked with an MTS command of the form
Run Plus:Libgen [logical-units] [Par=options]
The following logical units may be specified on the Run command:

0 specifies a file containing an existing Plus source library, or a sequence of
library members.

1 specifies a file in which a new Plus library is to be built.
Sercom is used to display messages issued by the program.
The Par field may specify either or both of the options

BUILDdir indicates that the input from unit 0 has no directory, so one should be built
from the information on the /begin lines in the input.

SORTdir means that the members in the output library should be sorted alphabeti-
cally, rather than preserving the order from the input directory.

(Uppercase letters in the options above indicate allowed abbreviations.)

The input on unit 0 is intended to be an existing Plus library, possibly with extra
members that aren’t in the directory. The program finds all /begin lines in the input
file, and uses the names from these to build the output library.

Line numbers in the input file are ignored completely. Comments and blank lines from
the input directory, and the order of all members in the input directory, will be preserved
in the output library (unless SORTDIR is specified).

Library Listing Program

The file Plus:Liblist contains a simple program that can be used to produce a listing
of a Plus source library, with suitable headings etc.

It is invoked with a Run command of the form
Run Plus:Liblist [logical-units] [Par=options]
The following logical units may be specified:
Scards specifies the library file to be listed.
Sprint specifies a file or device on which the listing is to be produced.

The default output is intended to be suitable for the Xerox 9700 in two-sided, portrait
mode. The page numbers and titles are alternated for front/back pages.

The following options may be specified in the Par field to modify the output produced.
Uppercase letters in the following indicate allowed abbreviations.

FORMat=format-name where format-name may be one of LANDSCAPE, PORTRAIT, UNI-
VERS_LF, TITAN_PF, or PLUSLIST. This specifies the Xerox 9700
format to be used for printing the listing.

LANDscape The listing will be suitable for printing in “landscape” mode, using
an output width of 132.

ONEsided

PAGELENgth=n

PAGEWidth=n

PORTrait

SPLit

TWOsided

Source Libraries 137

The output will be produced for printing onesided. In this case
page numbers and titles will not be alternated for front/back

pages.

where n is at least 8, specifies the number of lines to be printed
per page. The default is 60.

where n is between 76 and 254, specifies the width of the page.
The default is 76, which is suitable for “portrait” listings.

The output will be suitable for printing in “portrait” mode, using
an output width of 76. This is the default.

If this option is specified, output lines longer than the page width
will be split across multiple lines. By default, they are just trun-
cated.

The output will be produced for printing twosided. Page numbers
and titles alternate between front page and back page formats.
This is the default.

138

139

VIII. Helpful Hints and Dirty Tricks

This chapter contains a mixed bag of suggestions that should help you to use Plus more efficiently
and more effectively. It includes ways of circumventing some of Plus’s limitations. These aren’t
always pretty, but they do work.

Most of these points apply to Plus/370 under MTS, but similar concerns and approaches are often
applicable to other environments.

A.

Using Equate to Improve Code Generation

When you use an equate statement, the expression being equated to is evaluated once only,
at the point where the equate statement occurs. Thus equate is sometimes useful as a way of
improving code generation by, in effect, removing common subexpressions. For example, to
interchange two elements of an array, something of the following form can be used:

equate Source to Arr(I),
Dest to Arr(I+1);

variable Temp is ... in register;
Temp := Dest;

Dest := Source;

Source := Temp

Each of the two subscript calculations has to be performed only once, instead of twice.

In this case, the saving is relatively small, and using the equate may make the program a
bit harder to read, so it might not really be an improvement unless the efficiency of these
statements was critical. However, if a complex expression is used many times in a procedure,
the performance improvement could be substantial, and the use of equate might even make
reading the program easier.

A somewhat obscure special case of this is to improve the code generation required to access
a reference parameter. If a procedure has a parameter Par which is passed by reference,
every use of Par in the procedure is implicitly an expression dereferencing a pointer; hence a
seemingly useless equate like

equate Par# to Par

(with Par# used through the rest of the procedure in place of Par), can actually improve the
code generation by eliminating this common expression. This is probably only worth doing
if performance is critical and the parameter is referenced a lot of times.

You shouldn’t try to use equate in this way too much, however, because it uses up registers
and may cause worse code to be generated elsewhere, as described in the next section.

Plus/370 Register Use

The compiler allocates the general registers for many purposes. Some registers are allocated
permanently throughout a procedure, some have a fairly long-term use (across many state-
ments) and some are used during expression calculations. If a procedure needs more registers
than are available, the compiler will generate “preemption” code to save and restore registers
so the same register can be used for more than one purpose. If this happens a lot, the quality
of the code may suffer considerably. Thus it’s a good idea to gain some understanding of how
the source code for your program affects the register allocation.

140

Helpful Hints and Dirty Tricks

One register is allocated for each page of object code and for each page of “stack frame” (local
variables, temporaries, etc.) used by the procedure. Up to three registers may be used for
each. These registers are allocated for the entire procedure. By keeping procedures small and
avoiding using the stack for large variables, you can reduce the number of registers committed
for these purposes.

If the procedure has any “storage” parameters, one register is allocated to hold the pointer
to the parameter list. This is allocated for the entire procedure.

Up to four registers may be allocated for addressing the most-often referenced global blocks.
This number will be reduced if the procedure has more than one code or stack base register,
to avoid crowding the rest of the register allocation too much. These registers are allocated
at the beginning of the procedure and remain allocated until the last reference to a variable
in the global block. For global blocks whose addresses aren’t preloaded in the entry code,
extra instructions are needed at each reference. If you group your global variable declarations
so that each procedure references only a fairly small number of global blocks, the generated
code will usually be better. Note that each global variable that isn’t in a global block acts as
if it were in a global block by itself and so requires separate addressability.

Each open statement and equate statement that involves any expression calculation (including
the “implicit” expression involved in using a reference parameter) will require one register to
hold the result of the address calculation. (Opens and equates of simple variables don’t use
up registers, since the resulting variables can be addressed from the same base as the original
variable.) These registers are in use from the point of the open or equate statement through
to the last reference to the identifier or record fields defined by the statement. Similarly, each
register variable requires a register from the point of the declaration through to the point
where it is last used.

Overcommitment of registers to equates, opens, and register variables is the most common
cause of the compiler generating large numbers of register preemptions. You can minimize
the problem by making all such statements as local as possible. That is, don’t just put them
at the beginning of each procedure, but move them as close as possible to the point where
they are really needed.

If compiling a procedure resulted in any register preemptions, a message is printed at the end
saying how many were required. Fach preemption means one store instruction and at least
one load instruction. From this you can make some guesses at how the register preemptions
have affected code generation for the procedure. Note that a smallish number of preemptions
isn’t necessarily bad—the performance gains from using register variables, opens, and equates
can often be much greater than the losses from any extra preemptions that might result.

Execution-time Array Dimensions

Plus does not have any built-in way to define an array whose size is determined at execution
time. In practice, however, it is possible to cheat by declaring an array type whose dimensions
are the largest that might be required, then defining a pointer variable which points to the
array type. The system storage allocation subroutines can then be used to allocate storage
for an array of any required size and store its address in the pointer. All references to the
array must then be indirectly through the pointer.

For example

type Dynamic_Array_Type is array(l to 9999999) of Integer;
variable Array_Base is pointer to Dynamic_Array_Type;

Helpful Hints and Dirty Tricks 141

/* Allocate array of N integers: */
Array_Base := Getspace(0, N * Byte_Size(Integer));

/* Initialize the array: */

doI :=1¢toN
Array_Base@(I) := 0

end

Note that the compiler will be unable to do any useful subscript checking when an array is
defined and allocated in this way, since it believes that any number from 1 to 9999999 is a
valid subscript.

In this example, Byte_Size is used to determine the size of the array element, which is
multiplied by the number of elements required to determine the number of bytes to allocate.
Some care is needed when using Byte_Size in this way, since the size may not include any
slack bytes required by alignment considerations if it is allocated as part of an array. To be
absolutely safe, the size of each element of an array of elements of type ¢t could be computed
as:

/* Dummy array to get element size: */
type Tl is array(l to 2) of ¢;
constant Element_Size is Byte_Size(T1) - Byte_Size(?)

Checking For Optional Parameters

Plus doesn’t currently provide any built-in way that a procedure can determine whether
an optional parameter was supplied by the caller. However, when there are any optional
parameters in the declaration, and the last one supplied by the caller is passed by reference,
Plus does flag it in the high bit as required by the S Type linkage conventions. With a little
ingenuity and a lot of cheating it is possible to test for this flag.

The easiest way to accomplish this is to define the parameters as name parameters rather than
reference parameters in the procedure declaration. This doesn’t make any difference to the
caller, but means that the called procedure can access the pointer passed directly; that is,
the implicit dereference is suppressed. (Which means you must ezplicitly dereference it when
you want to access that parameter passed.)

You can then equate to the pointer in order to test the high-order bit. For example, given a
declaration like

procedure Example is
procedure
name parameter P1 is ...
optional name parameter P2 is ...
end

to determine if the caller provided the second parameter, you can test the high-order bit of
the pointer to the first:

142 Helpful Hints and Dirty Tricks

equate Test_Bit to P1 as packed Boolean;

if Test_Bit
then
/* P1 is last parameter so P2 wasn't supplied. */

else
/* P2 isn't last parameter. */

end if

If all parameters are optional, there is no way to detect the situation in which the caller
provided none. (This isn’t supported by the S-Type linkage.)

More generally, if there are a number of optional parameters and you need to determine
which was the last one supplied, you can equate an array to the parameter list in order to
step through the pointers:

procedure Example2 is
procedure
name parameter Pl is
optional name parameters P2, P3, P4, P5, P6 are
end;

definition Example2

equate Pararray to Pl as array (1 to 6) of
record
V_Bit is packed Boolean,
Rest is packed bit(31)

end;
do Number_0f_Parameters := 1 to 6
exit when Pararray(Number_Of Parameters).V_Bit

end;
/* At this point Number_Of Parameters specifies
the total number provided. */

end Example_2

E. Checking Addresses

In Assembler programs under MTS the BPI instruction® is often used following a reference
to a “questionable” address to catch the program interrupt that will result if the address is
invalid. This is much more convenient than setting up a program interrupt exit to field such
problems.

There is no direct way to do this in Plus. However, *Plus.Sourcelib contains a pair of

1 BPI is not a real 370 machine instruction but is simulated by the MTS supervisor.

Helpful Hints and Dirty Tricks 143

macros, Fetch_Check and Store_Check which use Inline to test whether the locations ref-
erenced by a pointer can be fetched or stored into without a program interrupt occurring.

For example,
Fetch_Check(Ptr, Fetch_0k)

will set Fetch_0k to True if Ptr@ can be referenced and to False if referencing it causes a
program interrupt. Store_Check similarly checks if it can be stored into.

These macros can only be used if the type of Ptr@ has a size of less than 256 bytes. They
will check the entire object can be fetched or stored, not just the first byte.

Since the macros inline a BPI instruction, they will only function for programs running under
MTS.

To see how the macros handle the Inline’d branch, look at the source in *Plus.Sourcelib.

Moving Arbitrary Data

Sometimes it may be necessary to move a specified number of bytes from one memory location
to another. If it isn’t convenient to use normal Plus types and assignment statements, the
easiest way to do this in Plus is to “type cheat” the locations as string variables and use
assignment of a Substring.

For example, to move N bytes from the location specified by pointer Source to the location
specified by pointer Dest, whatever the types of Source and Dest, you can use something of
the form:

equate S to Source@ as character(Maximum_Address),
D to Dest@ as character(Maximum_Address);

D := Substring(S, 0, N)

where Maximum_Address is define e *Plus.Sourcelib member Machine_Storage_
here Maximum_Add is defined by the *Plus.S 1ib ber Machine_Storag
Types).

Pointer Arithmetic

It is easy to add or subtract from a pointer by “type cheating” the pointer as an integer, and
then operating on the integer.

This is most tidily done by hiding it inside a macro. For example, a macro to add an arbitrary
numeric value to an arbitrary pointer is:

macro Increment_Pointer
parameters are Ptr, Incr;
equate Cheat_Ptr to Ptr as (0 to Maximum_Address);
Cheat_Ptr +:= Incr

end macro

A useful variation is a macro to increment a pointer by the size of the item it points to:

144

Helpful Hints and Dirty Tricks

macro Increment_By_Size
parameter is Ptr;
equate Cheat_Ptr to Ptr as (0 to Maximum_Address);
Cheat_Ptr +:= Byte_Size(PtrQ)

end macro

Return Codes from Plus Procedures

There isn’t currently a built-in way for a procedure written in Plus to return a Type I linkage
return code. However, there is a procedure Return_Code in *Plus.Sourcelib which can be
used to fake it.

If a procedure contains
Return_Code (value)

then when the procedure returns, value will be passed back as the return code. (The procedure
accomplishes this by storing the value in the R15 location in the savearea.)

Multilevel Procedure Returns

When a procedure detects an error, it is sometimes useful for it to be able to force a return
through more than one level of procedure call. This avoids the necessity of passing back error
indications and testing them at all levels.

There are procedures in *Plus.Sourcelib that implement a simple form of multilevel return.
To use them, the procedure that is to be returned from must call Setup_Return_From to
save necessary information, and the procedure forcing the return calls Return_From to effect
it. The state information needed is saved in a variable of type Return_Control_Block_Type.
This must be accessible to both procedures, so global storage is usually used (although it
could be passed down as a parameter).

For example:

%Include (Return_Control_Block_Type, Setup_Return_From, Return_From);
global Foo

variable Rcb is Return_Control_Block_Type;
end Foo;
procedure Levell;

procedure Level2 is
procedure
result Success is Boolean
end;

procedure Level3;

procedure Level4;

Helpful Hints and Dirty Tricks 145

definition Levell

if Level2()

then
/* It worked OK */
else
/* Some error occurred. */
end if;
end Levell;

definition Level2
/* Returns with False is anything goes wrong. */
Setup_Return_From(Rcb, Success);

Level3();

return with True
end Level2;

definition Level3

if ...

then
/* Something wrong. Return all the way. */
Return_From(Rcb, False)

end if;

Leveld();
end Level3;
definition Level4d

if ...
then
/* Something wrong. Return all the way. */
Return_From(Rcb, False)
end if;
end Level4d

In this example, Level2 sets things up so that any of the procedures it calls (or any procedures
called from procedures it calls...) can cause a return as if Level2 has returned itself. The
call to Setup_Return_From specifies a variable which is to be set to a return value. Usually,
this will be the result value of the procedure calling Setup_Return_From. Each of the calls
to Return_From specify a value to be assigned to this variable before the return occurs. Thus
when Level3 or Level4 executes the Return_From, the effect will be as if Level2 has assigned
the second parameter to Success and then returned.

A call to Return_From is only valid as long as the procedure which called Setup_Return_From
is still active; i.e., it hasn’t yet returned itself. It 4s possible to call Return_From from another

146 Helpful Hints and Dirty Tricks

routine which gains control asynchronously, such as an attention interrupt routine. In this
situation, considerable care is needed to ensure that the Return_From is not attempted after
the setup routine has returned.

J. Special Linkage Routines

The best advice on special linkage routines is “don’t write them if you can possibly avoid it”.
The process is very tedious and error-prone.

There are a number of predefined linkage routines in the resident Plus library which should
handle many of the more common situations requiring special linkage. Some documentation
for the existing routines can be found in the *Forum conference “Plus”. For more information,
examine the source in the file Plus:Newccs21>sq.?

Special linkage routines can be written in Plus by using linkage none. That is, in the
following example, the routine Special_Linkage contains the entry code required to enter
routine Special.

procedure Special;
procedure Special_Linkage external "SPECLINK";
definition Special
linkage "SPECLINK";
/* This routine requires special entry/exit code. It is
performed by Special_Linkage. */
end Special;
definition Special_Linkage
linkage none;
/* Linkage routine used to enter routine Special. */
end Special_Linkage
If you must write your own linkage routines, there are a number of macros in *Plus.Source-

lib member Linkage_Macros which may make it a bit easier. The source for the standard
linkage routines, in Plus:Newccs21>sq may also be useful as a model.

2 This contains versions for use with %Linkage="NEW"

147
APPENDIX A - Implementation Notes and Current Status

The compilers have the same overall organization. They are multi-pass compilers.

The first pass performs all declaration processing, storage allocation and type checking and com-
piles a tree-representation of the object code. The tree contains a representation of all code-
generation semantic actions required. Pass 1 also builds tables describing the variables used by
the program.

The next pass tours the tree and produces a stream of pseudo-code. This is very close to the actual
machine code that will be produced, but has not yet bound any register usage or determined actual
branch addresses. It assumes a slightly idealized machine instruction set.

The register usage is next examined to combine registers where possible. Following this, register
allocation is performed.

The pseudo-code is then translated to object machine code, and the object module is written.
At least the following language features are not implemented currently in any compiler:
Anything to do with sets.
Any operations involving reals.
The following additional restrictions of the 370 compiler should also be noted:
The local storage of any procedure may not be bigger than three pages.
The code for any procedure may not be bigger than three pages.
The following additional restrictions apply to the PDP-11 version.
Total size of all procedures must not be bigger than 64K bytes.
Total size of the global pseudo-register area must not be bigger than 64K bytes.
packed is only implemented for fields of records.
Variables and constants of type real are not implemented.
The following are the additional restrictions of the 68000 compiler:
The local storage of any procedure may not be bigger than 32767 bytes.
The code for any procedure may not be bigger than 32767 bytes.

For the Macintosh, the entire global data area may not be bigger than 32767 bytes. (For the
MPW linker, this includes all entry constants and constants which contain pointers.)

For the MDS linker, entry constants and constants which contain pointers are not imple-
mented.

Variables and constants of type real are not implemented.

148

149
APPENDIX B - BNF Syntax

The grammar that follows is a slightly simplified version of the LALR(1) grammar used by the
compiler. The actual grammar contains rules required by the compiler to perform semantic actions
at the appropriate points, rules used by the paragrapher to generate paragraphed listings, and
additional rules to make the language accept redundant semicolons and commas in a variety of
contexts.

<program> ::= <statement_list> end_of_file

<statement_list> ::= <statement>
| <statement_list> ; <statement>

<statement> ::= <type_declaration>

| <variable_declaration>
| <constant_declaration>
| <procedure_declaration>
| <macro_declaration>

| <open_declaration>

| <equate_declaration>
| <escape>

| <return>

| <if_statement>

| <%if_statement>

| <select_statement>

| <assertion>

| <assignment>

| <compound>

| <storage_reference>

| <procedure_definition>
| <global_pack>

<global_pack> ::= global identifier <external_name> <statement_list> <global_end>

<global_end> ::= end <optional_id>
| end global <optional_id>

<optional_id> ::= uidentifier
| empty

<external_name> ::= external <constant_expression>
| empty

<type_declaration> ::= type <id_list> is <type>
| <type_declaration> , <id_list> is <type>

<variable_declaration> ::= variable <declaration_element>
| <variable_declaration> , <declaration_element>

<declaration_element> ::= <id_list> is <type> <allocation>

150 BNF Syntax

<allocation> ::= in register
| in register <constant_expression>
| in register <constant_expression> to <constant_expression>
| in storage
| at absolute <constant_expression>
| external
| external <constant_expression>
| entry
| entry <constant_expression>
| empty
<constant_declaration> ::= constant <id_list> is <constant_expression> <allocation>
| <constant_declaration> , <id_list> is <constant_expression> <allocation>
<macro_declaration> ::= <macro_head> <macro_body> <macro_end>
<macro_end> ::= end <optional_id>
| end macro <optional_id>
<macro_head> ::= macro identifier <macro_parameters> ;
<macro_parameters> ::= parameter is <id_list>
| empty
<macro_body> ::= <statement_list>
| <parenthesized_expression>
<open_declaration> ::= open <open_element>
| <open_declaration> , <open_element>
<open_element> ::= <storage_reference> <equate_type>
<equate_declaration> ::= equate <equate_element>
| <equate_declaration> , <equate_element>
<equate_element> ::= identifier to <storage_reference> <equate_type>
<equate_type> ::= as <type>
| empty
<procedure_declaration> ::= <procedure_head> <id_list> <proc_specifications>
| <procedure_decl>
<procedure_decl> ::= procedure <id_list> is <type> <proc_specifications>

| <procedure_decl> , <id_list> is <type> <proc_specifications>

<proc_specifications> external <constant_expression>
<proc_specifications> <linkage>

<proc_specifications> stacksize <constant_expression>
empty

<proc_specifications>

BNF Syntax 151

<linkage> ::= linkage <counstant_expression>
| linkage system
| linkage none
<procedure_definition> ::= <definition_head> <statement_list> <procedure_end>

<definition_head> ::= definition identifier

| definition identifier <entry_options> ;
| <procedure_declaration> definition
|

<procedure_declaration> definition <entry_options> ;

<entry_options> ::= <entry_option>
| <entry_options> <entry_option>

<entry_option> ::= <linkage>

| environment <storage_reference>
<procedure_end> ::= end <optional_id>
| end procedure <optional_id>
| end definition <optional_id>

<id_list> ::= identifier
| <id_list> , identifier

<type> ::= <attribute> <type>
| <basic_type>

<basic_type> ::= (<id_list>)

| bit (<constant_expression>)

| real (<constant_expression>)

| character (<constant_expression>)

| character (<constant_expression> to <constant_expression>)

| (<constant_expression> to <constant_expression>)

| <record_type>

| pointer to <type>

| set of <type>

| array <type> of <type>

| <procedure_type>

| unknown

| global (<constant_expression>)

| identifier

<attribute> ::= packed

| aligned <alignment> left

| aligned <alignment> right

| fast

| small

|

|

|

152 BNF Syntax

| environment <type>
| system

<alignment> ::= <constant_expression>
| <constant_expression> in <constant_expression>

<record_type> ::= record <field_list> <variant_part> <end_record>

<end_record> ::= end

| end record
<field_list> ::= <declaration_element>
<field_list> , <declaration_element>
empty

<variant_part> ::= <variant_list>
| <variant_list> <variant_else>
[

empty

<variant_list> ::= <variant_list> <variant_element>
| <variant_head>

<variant_head> ::= variant identifier of <type> from
| variant <type> from

<variant_element> ::= <variant_label_list> : <field_list>

<variant_label_list> ::= case <constant_expression>
| <variant_label_list> , <expression>

<variant_else> ::= else <field_list>
<procedure_type> ::= procedure <parameter_list> <result_part> end
<parameter_list> ::= <parameter_list> <parameter_part>

| empty

<parameter_part> ::= <parameter_kind> <declaration_element>

<parameter_part> , <declaration_element>

<parameter_kind> <optional> <reference> parameter

<optional> ::= optional
| repeated
| empty

<reference> name

| reference
| empty

<result_part>

BNF Syntax

result <declaration_element>
optional result <declaration_element>
empty

<escape> ::= <escape_type> <optional_label> <when_unless>
<escape_type> ::= exit
| repeat
<optional_label> ::= <label>
| empty

<label> ::=

< identifier >

<when_unless>

<return>

<with_part>

<if_statement>

<if_then_else>

<end_if> ::=
|

<then_part>

<else_part>

= when <expression>
| unless <expression>
| empty

return <when_unless> <with_part>
return <with_part> <when_unless>
return <when_unless>

with <expression>

::= 1if <if_then_else> <end_if>

end
end if

<%if_statement>

<%if_then_else> :

<fend_if> ::

<%then_part>

<Jelse_part>

= %
| %
| %

e
e

::= <expression> <then_part> <else_part>

then <statement_list>

else <statement_list>
elseif <if_then_else>
empty

i:= hif <%if_then_else> <Y%end_if>

:= <constant_expression> <Ythen_part> <Yelse_part>

nd
nd %if
end if

::= Jthen <statement_list>

%else <statement_list>
%elseif <%if_then_else>
empty

153

154 BNF Syntax

<select_statement> ::= <select_start> <select_alternatives> <end_select>
<select_start> ::= select <expression> from
<end_select> ::= end

| end select

<select_alternatives> ::= <select_alternatives_list>
| <select_alternatives_list> else <statement_list>

<select_alternatives_list> ::= <select_alternatives_list> <select_alternative>
| empty

<select_alternative> ::= <select_label_list> : <statement_list>

<select_label_list> ::= case <constant_expression>

| <select_label_list> , <expression>
<assertion> ::= assert <expression>

<assignment> ::= <storage_reference> <assign_op> <expression>
| <storage_reference> , <assignment>

<assign_op> ::=
| <adding_op> :=
|

<multiplying_op> :=

<compound> ::= <label> <unlabelled_compound> <label>
| <unlabelled_compound>

<unlabelled _compound> ::= begin <statement_list> end
| cycle <statement_list> <end_cycle>
|

<do_head> <statement_list> <end_do>

<end_cycle> ::= end
| end cycle
<end_do> ::= end
| end do
<do_head> ::= do <storage_reference> := <expression> <direction> <expression>
| do <storage_reference> := each <expression>
<direction> ::= to
| downto

<storage_reference> ::= identifier

| % identifier

| <procedure_or_array_reference>)

| <storage_reference> (<return_code>)
| <storage_reference> . identifier

|

<storage_reference> @

BNF Syntax 155

<procedure_or_array_reference> ::= <subscripted_reference>
| <subscripted_reference_head>
|

<subscripted_with_return_code>
<subscripted_reference> ::= <subscripted_reference_head> <expression>

<subscripted_reference_head> ::= <storage_reference> (
| <subscripted_reference> ,

<subscripted_with_return_code> ::= <with_return_code_head> return code <storage_reference>
| <with_return_code_head> with <storage_reference>

<with_return_code_head> ::= <subscripted_reference>

| <subscripted_reference_head>

| <subscripted_with_return_code> ,

| <subscripted_with_return_code>

<constant_expression> ::= <expression>
<expression> ::= <logical_formula>
| <conjunction>
| <disjunction>
<disjunction> ::= <logical_formula> or <logical_formula>

| <disjunction> or <logical_formula>

<conjunction> ::= <logical_formula> and <logical_formula>
| <conjunction> and <logical_formula>

<logical_formula> ::= <arithmetic_expression> <relation> <arithmetic_expression>
| <arithmetic_expression>

<relation> = <relation_op>

| — <relation_op>

| not <relation_op>

<relation_op> ::= <

| <=

| <<

| <<=

| >

| > =

| > >

| > > =

| =

| in

| subset
<arithmetic_expression> ::= <term>

| <arithmetic_expression> <adding_op> <term>

156 BNF Syntax

<adding_op> ::= +
| -
11
(I
| xor
<term> ::= <primary>

| <term> <multiplying_op> <primary>
<multiplying_op> ::

od

=]

= %
|/
I
I

&

<primary> ::= <unary_op> <primary>
| <storage_reference>
| number

| bit_string
| string

| <parenthesized_expression>
| <set> }

I {2

<parenthesized_expression> ::= (<expression>)

<set> ::= { <expression>
| <set> , <expression>

<unary_op> ::= +

4
not
abs

APPENDIX C - Plus Reserved Words

157

The following keywords are reserved in the current versions of Plus, and cannot be used as
programmer-defined identifiers.

abs

are

at
character
cycle
each
entry
external
if
linkage
none
optional
parameters
real
registers
return
stacksize
then
unknown
variable
with

absolute
array
begin
code
definition
else
environment
fast

in

macro

not

or
pointer
record
repeat
right
storage
to

unless
variables
Xor

aligned
as

bit
constant
do

elseif
equate
from

is

mod

of

packed
procedure
reference
repeated
select
subset
type

use
variant

and
assert
case
constants
downto
end

exit
global
left

name

open
parameter
procedures
register
result
small
system
types
value
when

The following words will be reserved in a future version and should also be avoided.

descriptor

set

signed

unsigned

158

159

APPENDIX D - Plus/370 Linkage Conventions and Run-time Organization

This appendix describes linkage conventions used by Plus/370 and the associated run-time orga-
nization required.

A.

Register Usage

The entry sequence of a Plus procedure loads the stack bases and then the code bases. These
are allocated from register 12 down, skipping register 11, using as many registers as required.
Register 11 contains the address of the global environment, normally set up before entry.
Thus if a procedure requires one stack base and one code base (the normal case), register 12
will be the stack base and register 10 the code base.

R13 is loaded with the “next stack frame” as part of the entry sequence, if the procedure
contains any calls to other procedures.

Other global addressability may be set up using registers below those needed for the code
bases.

Stack and Global Organization

The old version of the Coding Conventions linkage (%Linkage="0LD" or %Linkage="STAN-
DARD") places no requirements on the organization of the stack and global storage. At entry
to a Plus procedure, R11 should contain the address of the global storage if the procedure
uses any globals, and R13 should contain the address of an area that can be used as a stack.

These requirements are also present with %Linkage="NEW", but there are additional require-
ments on the way global storage and the stack must be initialized at the time it is allocated.

The bottom six words of the space allocated as a stack must now be initialized to contain a
stack descriptor. The stack descriptor contains pointers to the first word of the stack space,
the last word of the stack space (used for checking for stack overflow), and a word in which
the current top-of-stack is saved if a call is done to a procedure with the system attribute.
It also contains forward and backward links to other stacks that may be used for attention
and program interrupt routines etc. The exact format of this stack descriptor is described by
Long_Stack_Descriptor_Type in the library *Plus.Sourcelib.

It is also required that R11 be set to point to a global storage area, whether or not the pro-
cedure actually uses global variables. The first two words of global storage are now reserved.
The first is reserved for a pointer to the “CLS transfer vector” for internal system use. This
should normally be initialized to the value Address(Stdtv). The second word must contain a
pointer to a short stack descriptor. The short stack descriptor is a four word area that con-
tains a copy of the first three words from the stack being used and a pointer to the long stack
descriptor. Its format is described by Short_Stack_Descriptor_Type in *Plus.Sourcelib.
The LCSPR’s QLCSPR and QGLOBAL both define symbols CLSTVPTR and STK_DESC for these
two words.

The short stack descriptor is used to provide a level of indirection in retrieving the stack
from global storage. An application will only ever allocate one short stack descriptor. If the
application is using more than one global storage environment, all environments must point
to the same short stack descriptor, which will in turn point to the stack currently in use.

When initializing a stack descriptor, the stack end pointer should actually be set to 72 bytes

160 Plus/370 Linkage Conventions and Run-time Organization

before the true end, to allow room for registers to be saved in either a coding conventions or
OS linkage entry sequence before any limit checking is done.

Note that when the environment is defined as pointer to ..., the specified record type must
conform to the above requirements. That is, the first two words of the record must be reserved
for the pointer to the CLS transfer vector and the pointer to the short stack descriptor, and
must be appropriately initialized.

C. Plus Procedure Linkage

The normal procedure linkage used is the MTS coding conventions linkage, except that all
(non-result) registers are restored on return from a call (and are presumed to be restored by
any procedures called).!

The linkage code consists of:

1. Prelude (performed by caller)
Load register parameters, and assign storage parameters.
Load R1 with address of storage parameters/result if any.

For linkage none routines only, load R13 with the next stack frame address
(in all other cases it is loaded in caller’s entry sequence).

If called procedure has the system attribute, and if %Linkage="NEW", update
the stack descriptor to indicate the top-of-stack at the point of the call.

Load R15 with address of called procedure.
If the call specifies with ..., load R11 with the specified environment.
Call procedure via

BALR R14,R15

2. Entry (performed by called procedure)

a. normal Plus linkage:
Save all 16 general registers on the stack via
STM RO,R15,0(R13)
Save any register parameters as local variables on the stack.
Load code base(s).
Load stack base(s).
If YLinkage="NEW" and %Stack_Check is true, perform stack overflow check.

If the procedure contains any calls to other procedures, load the next stack
frame.

If the procedure has storage parameters, copy R1 to another register.

If the definition specifies the environment option, load R11 with the new en-
vironment.

1 The new (1986) version of the coding conventions also assume this.

Plus/370 Linkage Conventions and Run-time Organization 161

Load “permanently assigned” global base registers.

Note the register parameters are re-saved separately from the entry save-area, so
that the caller can assume all non-result registers are restored.

Register results are allocated in the save-area so that no special action is required
by the return.

linkage "extname":

For a “special linkage” routine, in place of the first step (storing all registers on the
stack), the compiler generates code which transfers to the external symbol eztname
from the entry sequence of the routine being entered (SUB1 in the following).

The exact sequence generated is

SUB1 L R15,LINKADDR Get address of linkage code
BALR R15,R15 And go there
BALR R15,0 Reestablish addressability
B SUB1CONT Skip "parameters"
DC F'stacksize'
DC F'framesize'
CXD
LINKADDR DC V(extname) Address of linkage code
SELFADDR DC V(SUB1) Address of routine being entered
GLOBALID DC XL4' global-id " Global id
STAKOFF DC Q(STK_DESC) Offset of stack descriptor
SUB1CONT L R10,SELFADDR Set code addressability

Thus the linkage code is entered with R15 containing the return address, and with
a number of “parameters” accessible via offsets from R15.

The requested stacksize is at 6(R15). If this was not specified in the procedure
declaration, then it will be compiled as a weak external reference to the symbol
STAKSIZE. This allows specifying the stack size at load time by including an absolute
DEF loader record in the object deck.

The word at 10(R15) contains the actual stack space requirements of SUB1, which
may be of interest to some linkage routines.

The word at 14(R15) is the total global area size of the loaded program containing
SUBL. (Note that in general, a linkage routine should use this as the global size,
rather than including a CXD or use of Global_Size within the linkage code itself.
This is because under some circumstances, is is possible that the linkage routines
might be part of an earlier load.) If the procedure’s environment is specified as
pointer to record-type, this word will contain the size of the record.

If the procedure’s environment is of type global(global-id), the word at 18(R15)
contains the value of global-id. Otherwise this word is 0. This value may be useful
as a code to the Gpsect subroutine for allocating or retrieving the global storage.

The word at 22(R15) contains the offset of STK_DESC within the pseudo-register
vector. When JLinkage="NEW", this value must be 4. It is just used for error-
checking purposes by linkage routines to test whether the required loader records
(see Chapter IV, page 127) were present when the program was loaded.

162

Plus/370 Linkage Conventions and Run-time Organization

The linkage code is required to set the address of a stack in R13 (not Stack_Base_
Register). The register values to be restored at return should be stored out into
the bottom of the stack. It should also load R11 (Global_Base_Register) with the
address of the global environment. (R11 must be loaded when %Linkage="NEW".)

The linkage routine returns to the called procedure at the address in R15. If Subl
was called with any register parameters, these must be in the original registers on
return to Subl, and if it has storage parameters, R1 must be preserved.

The called procedure will then continue the entry sequence as for a normal Plus
program, as described above.

When the called procedure (Subl) returns, it will load all 16 registers from the
bottom of the stack, then branch on R14. Thus the linkage routine may intercept the
return by leaving an appropriate value in the 15th word of the savearea. Ultimately,
of course, the linkage routine must ensure that the registers on return to the caller
of Subl are consistent with the environment expected by the caller.

The exact steps to be performed in the linkage code will vary depending on the
situation. The following are the most common situations (with %Linkage="NEW"
assumed):

ee If initializing the entire application, allocate one or more stacks and initialize
the long stack descriptor at the bottom of each. Allocate the short stack
descriptor, and set it up to correspond to the first stack to be used. Allocate
the global storage for the routine being actually entered, and make it point to
the short stack descriptor.

ee If initializing a subroutine that uses its own global storage, allocate the global
storage and make it point to the existing short stack descriptor.

ee If reentering the Plus world from a Fortran-type routine that was previously
called from a Plus routine, retrieve the global storage (somehow), and from it,
obtain the short stack descriptor, and thence the top of stack at the point that
the Plus routine called the Fortran one.

ee If entering a routine asynchronously (e.g., an attention interrupt handler),
switch to a new stack. This is done by retrieving the global storage, from
it the short stack descriptor, and then the current stack. The short stack de-
scriptor information is then copied to the long stack descriptor for the current
stack. The next stack is then obtained, from the links in the current stack,
or by allocating and initializing a new one, and the short stack descriptor is
reinitialized from the new stack.

In general, on returning from a procedure with special linkage code, the exit code
used should undo whatever was done in the entry code. However, in some situations
it is more desirable to allocate space the first time (via Gpsect), and to not free it
on return, so that subsequent calls will be cheaper.

linkage system:

linkage system is implemented by the compiler as if 1inkage "QSYSENTR" had
been specified. That is, entry code is as described above, branching to a special
entry routine in the resident system.

3.

4.

Plus/370 Linkage Conventions and Run-time Organization 163

The following comments assume }Linkage="NEW". The operation of QSYSENTR is
somewhat different (and much less efficient) for the older linkage.

The linkage routine uses the MTS subroutine Gpsect to allocate (the first time)
or retrieve (subsequently) the global storage, using the global-id from the linkage
parameters. It retrieves the stack from global storage, or allocates it the first time
by using Getspace. The stack size specified will be determined from the linkage
parameters. A one page stack will be allocated if 0 is specified.

On return from the linkage system routine, the stack and global storage are not
released.

This linkage code does not set up a program interrupt handler to intercept run-time
error conditions within the Plus code.

linkage none:

For linkage none, no entry code is generated. The procedure must use Inline and
register variables to “bootstrap” to the point where Plus code can execute correctly.
The predefined register variables Code_Base_Register, Stack_Base_Register and
Environment_Base_Register can be used in setting up the Plus entry requirements.

A great deal of care is required since the compiler will assume the code/stack/global
bases etc. have been set up correctly if any statements in the procedure require
them. It is advisable to turn code listing on to see if all is as planned. It may also
be prudent to set %Preempt to false, to prevent the compiler for doing unexpected
register preemptions, which might interfere with the expected code.

In particular, note that the Code_Base_Register must be loaded with the address of
the entry point of the routine before any branches, (including run-time checking), or
references to the constant pool. The Stack_Base_Register must be loaded with the
address of a stack before any instructions requiring temporaries, or referencing local
variables. The Environment_Base_Register must be loaded before any references
to global variables.

A linkage none routine returns by doing just a BR R14; you must make sure any
other required register restoration is done before returning.

The exact details of how all this should be accomplished depend, of course, on the
environment from which the routine is being called.

Exit (performed by called procedure)

Restore all registers:

LM RO,R15,0(R12)
Return to caller

BR R14

For linkage none, only the BR is generated; the registers are not restored.

Postlude (performed by caller)

Restore R11 to the caller’s environment if it was changed before the call.

Store the return code (R15) if the return-code phrase occurs in the call.

164 Plus/370 Linkage Conventions and Run-time Organization

D. Stack Frame Layout

The usage of the stack by the Plus/370 compiler is as follows:

called
procedure

T

calling
procedure

local variables
register parameter area
register savearea (R0O-R15)

... (possible temporaries)

result (if any)
storage parameters

high address

+— R13 at call, R12 inside procedure

+— R1 at call points here

low address

165

APPENDIX E - Plus-11 Linkage Conventions and Run-time Organization

This appendix describes linkage conventions used by Plus-11 and the associated run-time organi-
zation required.

A.

Object Modules

Plus-11 generates object modules in the form expected by *Link11, which is essentially the
same as the IBM object module format used by M'TS. The code generated depends on auxiliary
routines, provided by Plus:Objlib11 to perform procedure entry and exit sequences, certain
Plus operations (character handling), and for run-time check processing.

Register Usage

By default, the code generated by Plus-11 uses R5 to point to the local stack frame of the
current procedure, and R4 points to the base of the pseudo-register (global storage). If the
option %Linkage:="ALTERNATE" is specified, the use of R4 and R5 is reversed.

Parameter Passing

Parameters and results of Plus-11 procedures are normally passed through the stack. Space
for the result (if any) is allocated on the stack by the calling procedure, and the values of
parameters are then pushed on the stack.

The called procedure accesses parameters and result locations by positive offsets from the
local stack frame pointer (R5) and local variables by negative offsets from the frame pointer.

Procedure Linkage

Procedure linkage in Plus-11 programs is performed by the following sequence:

1. Prelude (performed by caller)
Adjust SP to leave space for result if any.
Push parameters on the stack.
Call procedure via

JSR PC, procname

2. Entry (performed by called procedure)

a. normal Plus linkage:
Save old stack frame pointer on the stack.
Save registers RO - R4 on the stack.
Adjust SP to point above register save area.
Adjust R5 to point to the new stack frame.

Allocate space for local variables by adjusting the stack pointer.

All but the last step is accomplished by a run-time routine PLUSENTR. The first
instruction of each Plus-linkage procedure is

JSR R5,PLUSENTR

166

Plus-11 Linkage Conventions and Run-time Organization

linkage "extname":

For a “special linkage” routine, in place of the call to PLUSENTR, the compiler gener-
ates code to branch to the external symbol extname from the entry sequence. The
exact sequence generated is:

SUB1 JSR R5,extname Go to linkage code

BR SUB1CONT Skip "parameters"

DC F'stacksize'

DC F' framesize"

DC F'o! Reserved for global size someday
SUB1CONT ...

The code at extname should save the registers on the stack, set up global storage,
etc., as required. It should return with R5 set to point to the new stack frame. Fol-
lowing the return from eztname the entry code will allocate space for local variables
as with the normal Plus linkage.

linkage system:

Plus-11 compiles 1inkage system the same as for the normal Plus linkage.

linkage none:

For linkage none, no entry code is generated. The procedure must use Inline and
register variables to “bootstrap” to the point where Plus code can execute correctly.
The predefined register variables Program_Counter, Stack_Pointer, Frame_Base_
Register and Global_Base_Register can be used in setting up the Plus entry
requirements.

A great deal of care is required since the compiler will assume the code/stack/global
bases etc. have been set up correctly if any statements in the procedure require them.
It is advisable to turn code listing on to see if all is as planned.

In particular, note that Frame_Base_Register must be set up before any references
to local variables, and Global_Base_Register must be set before any references to
global variables.

The exact details of how all this should be accomplished depend on the environment
from which the routine is being called.

Exit (performed by called procedure)

For all linkage kinds except linkage none, a Plus return is just compiled into

JMP PLUSEXIT

This undoes the entry sequence, leaving SP pointing to the top of the parameter area.
A linkage none routine returns by doing just an RTS PC; you must make sure any other

required register restoration is done before returning.

Postlude (performed by calling procedure)

Collapses the space for parameters (if any), leaving SP pointing to the result variable (if
there is one).

Plus-11 Linkage Conventions and Run-time Organization 167

Stack Frame Layout

As a result of the above linkage conventions, the usage of the stack by a Plusll procedure is
as follows. (Note this illustration is the opposite way up from the preceding Plus/370 version,
since Plus-11 stacks grow downwards in memory.)

.. high address
calling result (if any)
procedure parameters (if any)
old PC (return address)
| old stack frame (R5) +— new R5 points here
register save area (RO-R4)
called local variables
procedure
low address

Note local variables are accessed by negative offsets from R5, parameters and results are
accessed by positive offsets.

168

169

APPENDIX F - Plus/68000 Linkage Conventions and Run-time Organization

This appendix describes linkage conventions used by Plus/68000 and the associated run-time
organization required. The details of this vary depending on whether the code is generated for the
AMIGA or the Macintosh, as specified by the %Target_Operating_System compiler variable.

A. Macintosh System Support

The Macintosh system provides a basic application runtime environment with a global data
area addressed by register A5 and a series of independently loaded segments of code. The
system uses the global data area with positive offsets from A5, while the area with negative
offsets is for the global storage of the program. This fits fairly well with Plus’s notion of
global storage, but it does not encourage the switching of environments. For this reason
Plus/68000 implements environments which are pointers to record types by using register A4
as the environment base register. One of the system data structures in the positive offset area
is the jump table. This is used to do procedure calls from one segment to another. Such
calls can cause a segment to be implicitly loaded. When a segment is loaded, only the jump
table is relocated. No other relocation is done. This makes it difficult to implement Plus
constants which contain pointers.

1. Macintosh Programmer’s Workshop (MPW)

When the %Target_Operating_System compiler variable has the value "MAC/MPW",
Plus/68000 generates object modules in the form expected by the Macintosh Program-
mer’s Workshop (MPW) Linker. The MPW linker provides for the initialization of
the global data area, including pointers which point to other global data areas. Thus
with MPW, Plus/68000 uses the global data area for all “entry” constants and for any
constants which contain pointers. This does have the drawbacks of requiring all such
constant data to be copied from the initialization segment (%A5_Init) to the global data
area, and enlarging the global data area.

The code generated depends on auxiliary routines, provided by Plus:Obj68MPW, to
perform some string operations, longword multiply and divide, and array of packed
operations.

2. Macintosh Development System (MDS)

When the %Target_Operating_System compiler variable has the value "MAC/MDS",
Plus/68000 generates object modules in the form expected by the Macintosh Devel-
opment System (MDS) Linker. The MDS linker does not provide for the initialization of
the global data area. Thus with MDS, Plus/68000 does not implement “entry” constants
or constants which contain pointers.

The code generated depends on auxiliary routines, provided by Plus:Obj68MDS, to per-
form some string operations, longword multiply and divide, and array of packed opera-
tions.

B. AMIGA System Support

When the %Target_Operating_System compiler variable has the value "AMIGA", Plus/68000
generates object modules in the form expected by the AMIGA linkers. The code gener-
ated depends on auxiliary routines, provided by Plus:Obj68AMIGA, to perform some string
operations, longword multiply and divide, and array of packed operations.

170

Plus/68000 Linkage Conventions and Run-time Organization

Register Usage

The code generated by Plus/68000 for the Macintosh uses register A5 to point to the global
data for the program, and A6 to point to the local stack frame of the current procedure. For
the AMIGA, the use of these two registers is reversed.

Parameter Passing

Parameters and results of Plus/68000 procedures are normally passed through the stack.
Space for the result (if any) is allocated on the stack by the calling procedure, and the values
of parameters are then pushed on the stack.

The called procedure accesses parameters and result locations by positive offsets from the
local stack frame pointer and local variables by negative offsets from the frame pointer.

Macintosh Procedure Linkage

Procedure linkage in Plus/68000 Macintosh programs is performed by the following sequence:

1. Prelude (performed by caller)
Adjust SP to leave space for result, if any.
Push parameters on the stack, in left to right order.
Push space on the stack for any omitted optional parameters.
If the call specifies with ..., load A4 with the specified environment.
Call procedure via
JSR PC, procname

or, for system procedures, the instruction supplied as the external name of the
procedure.

2. Entry (performed by called procedure)

If there are any local variables, save the old stack frame pointer on the stack, adjust
stack frame pointer to point to this saved value, and adjust stack pointer to allocate
space for the local variables via

link A6, local-stack-size

Save any registers in D3-D7 or A2-A5 which are modified by the called procedure,
usually with

movem.1l -(SP),register-mask

If the definition specifies the environment option, load A4 with the new environ-
ment.

3. Exit (performed by called procedure)
Any saved registers are restored, usually with
movemfm.l (SP)+,register-mask

If there are any local variables, the stack pointer is restored from the stack frame
pointer, then the stack frame pointer is restored by popping it off the stack, via

Plus/68000 Linkage Conventions and Run-time Organization 171

unlk A6

If there are no parameters, the procedure returns via
rts

If there are parameters, the called procedure has to pop the saved PC via
movea.l (SP)+,A0Q

remove the parameters via
addq.l SP,#n

or
lea n(SP),SP

then return by
jmp (AO)

4. Postlude (performed by calling procedure)

If the call specifies with ..., restore the calling procedure’s environment base reg-
ister (A4).

The result, if any, is popped after it has been used.

F. AMIGA Procedure Linkage

Procedure linkage in Plus/68000 AMIGA programs is performed by the following sequence:

1. Prelude (performed by caller)
Adjust SP to leave space for result, if any.
Push parameters on the stack, in right to left order.
If the call specifies with ..., load A6 with the specified environment.
Call procedure via
JSR PC, procname
or, for system procedures

JSR PC, procname (A6)

2. Entry (performed by called procedure)

If there are any local variables, save the old stack frame pointer on the stack, adjust
stack frame pointer to point to this saved value, and adjust stack pointer to allocate
space for the local variables via

link A6, local-stack-size

Save any registers in D2-D7 or A2-A4 or A6 which are modified by the called proce-
dure, usually with

movem.1l -(SP),register-mask

If the definition specifies the environment option, load A5 with the new environ-
ment.

172 Plus/68000 Linkage Conventions and Run-time Organization

3. Exit (performed by called procedure)
Any saved registers are restored, usually with
movemfm.1l (SP)+,register-mask

If there are any local variables, the stack pointer is restored from the stack frame
pointer, then the stack frame pointer is restored by popping it off the stack, via

unlk A6
The procedure returns via

rts

4. Postlude (performed by calling procedure)
The parameters are popped from the stack.

If the call specifies with ..., restore the calling procedure’s environment base reg-
ister (A6).

The result, if any, is popped after it has been used.

G. Stack Frame Layout

As a result of the above linkage conventions, the usage of the stack by a Plus/68000 procedure
is as follows. (Note this illustration is the opposite way up from the Plus/370 version, since
Plus/68000 stacks grow downwards in memory.)

- high address
calling result (if any)
procedure parameters (if any)
old PC (return address)
l old stack frame base <— new stack frame base points here
local variables
called register save area
procedure
low address

Note local variables are accessed by negative offsets from the stack frame base, parameters
and results are accessed by positive offsets.

173
APPENDIX G - Plus/68000 Inline Codes

This appendix gives the strings that Plus/68000 recognizes for the first operand of inline.

The recognized opcodes are:

abcd add addm adda addi
addq addx and andm andi
andicc andis asl asr aslm
asrm atrap bCC bchgd bchg
bclrd bclr bsetd bset bsr
btstd btst chk clr cmp
cmpa cmpi cmpm dbCC divs
divu eorm eori eoricc eoris
exg ext illegal jmp jsr
lea link 1sl lsr 1slm
lsrm move movefcc movecc movesr
movefsr moveusp movefusp movea movec
movefc movem movemfm movep movepfm
moveq moves muls mulu nbcd
neg negx nop not or
orm ori oricc oris pea
reset rol ror rolm rorm
roxl TOXT roxlm roxrm rtd
rte rtr rts sbcd sCC
stop sub subm suba subi
subq subx swap tas trap
trapv tst unlk

The codes for the size part are the usual b for byte, w for word (two bytes), and 1 for long (four
bytes).

Those opcodes above that end in CC are formed by replacing the CC with one of the following
condition codes:

t f hi 1s hs
lo ne eq ve Vs
pl mi ge 1t gt
le

As well, cc is accepted for hs, cs for 1o, bra for bt and dbra for dbf.

The addressing mode specifications are:

dr ar (ar) (ar)+ -(ar)
d(ar) d(ar,xr) abs.w abs.1l d(pc)
d(pc,xr) # =

The = mode is used to indicate a PC relative reference to a constant in the literal pool.

174

abs (keyword), 54, 84
absolute allocation, 77
absolute (keyword), 77
absolute variable, 77
address, 61, 77
Address, 27, 34, 61, 73, 81, 100
addressability, 101, 102, 140, 159
global block, 140
Algol, 52, 86
Algol-W, 74
Algol-68, 84
aligned attribute, 68
aligned (keyword), 68
alignment,
global, 100
offset, 68
Alignment, 100
allocation,
absolute, 77
dynamic, 75
external, 75
packed, 70
record, 74
register, 3, 75, 139
size, 100
storage, 22, 48, 55
variable, 74
"AMIGA",
libraries, 72
hTarget_Operating_System, 72, 169
and (keyword), 37, 84
annotation,
listing, 122
append operator, 31, 55
Apple,
Macintosh, 1
apple pie,
see motherhood
are (keyword), 73
arithmetic,
with pointers, 143
arithmetic operator, 54, 83
array, 60
as parameter, 86
constant, 61, 74, 81
dynamic, 140
execution-time, 140
multi-dimensional, 25, 60
packed, 70
run-time, 140

INDEX

subscript, 32

type, 25, 60
array (keyword), 60
ASCII, 79
as_is, 123
as (keyword), 95, 96
assembler, 3

listing, 114
%Assertion_Check, 94, 111, 112
assert (keyword), 94
assert statement, 94, 111
%Assign_Check, 111, 112
assignment, 34

array, 60

multiple, 31, 85

nested, 2

operator, 5, 85

operator with, 7, 31

pointer, 27, 61

prevention of, 72

record, 62

statement, 5, 31, 85, 111

string, 55, 117
at (keyword), 77
at-sign operator,

see dereference operator
attribute, 68

aligned, 68

environment, 46, 69, 99

fast, 69

left, 55, 70

packed, 70

right, 71

small, 71

system, 71

value, 34, 72, 86

background, 1

base register, 103, 108, 159
basic instruction set, 113
/begin, 135

begin block, 92

begin (keyword), 92
binary operator, 85
binary search, 11

bit constant, 79

bit (keyword), 55

bit operator, 56
Bit_Size, 100

bit type, 23, 55

175

176 INDEX

coercion, 84 case (keyword), 63, 90
comparison, 56 case label, 63, 89
blank line, case statement,
in listing, 122 see select statement
block, CCSYMBOL, 127
begin, 92 center, 123
global, 17, 18, 43, 45, 128 centre, 123
scope, 20, 22, 52 character,
BNF syntax, 149 comparison, 55
Boolean, 38, 54 constant, 79
Boolean, 37 type, 10, 54
box, 123 see also string
BPI, 142 character (keyword), 54
branching, 89 character string,
built-in, length, 107
see built-in procedure cheating,
see also predefined type, 50, 62, 63, 95
built-in procedure, 52, 100 %Check, 112
Address, 27, 34, 61, 73, 81, 100 checking,
Alignment, 100 compile-time, 2
Bit_Size, 100 external symbol, 49
Byte_Size, 27, 101, 141 parameter, 141
Condition, 101 pointer, 61, 142
External_Name, 102 range, 3, 10, 54, 61
High_Value, 58, 103 run-time, 2, 10, 54, 94, 109, 116, 117, 126, 127
Inline, 50, 76, 103, 143 stack overflow, 117, 126, 160
Left_Justify, 107 string length, 55
Length, 54, 107 subscript, 3
Low_Value, 58, 107 Substring, 117
Max, 58, 107 type, 2
Min, 58, 107 circular calling sequence, 45
Offset, 107 circular definition, 52
Predecessor, 58, 107 Clparser (command language parser), 11
Right_Justify, 108 CLS transfer vector, 159
Size, 108 CLSTVPTR, 159
Substring, 34, 54, 108, 143 code,
Successor, 58, 109 efficiency, 3
Byte_Size, 27, 101, 141 linkage, 160
listing, 114
C, 1,43 reentrant, 43, 45
call, 47, 86 size, 90
macro, 99 Code_Base_Register, 101, 163
procedure, 6, 28, 32, 86 code generation, 76
call-by-reference, 28, 86 code (keyword), 87
call-by-value, 28, 86 coding conventions, 46, 160
calling sequence, coercion, 84
circular, 45 bit type, 55, 56
see also linkage constant, 86
capitalization, 8 denaming, 34

case, 8, 43, 51, 115 parameter, 86

real, 80

set, 59
command,

Run, 7,9, 121, 125, 131, 133
comment, 5, 17, 43, 122

option, 17, 122

paragrapher, 122, 123
comment option,

as_is, 123

box, 123

center, 123

centre, 123

frame, 123
Commodore AMIGA,

see "AMIGA"
commor,

Fortran, 18, 48
comparison,

arithmetic, 54

array, 60

bit type, 56

character, 55

lexical, 55

operator, 54, 63, 84

string, 55
compatibility,

bit type, 56

character, 54

environment, 47

global type, 67

identifier-list, 57

macro, ol

name—value, 35

numeric, 54

parameter, 86

pointer, 61

procedure, 67

real, 57

set, 59

subrange, 58

type, 21, 84
compilation,

conditional, 109

error, 124

separate, 3, 9, 17, 52

structure, 43
%Compile, 112
compiler, 7, 121, 131, 133

efficiency, 3

implementation status, 147

INDEX

input, 121

listing, 121

logical units, 121

message, 121

option, 52

return code, 122

version, 131, 133

version number, 109, 121
%Compiler_Debug, 112
%Compiler_Dumps, 112
compiler input, 43
compiler option,

see compiler procedure

see also compiler variable
compiler procedure, 5, 52, 109, 119

%Double, 119

%Dump, 119

%Eject, 119

%Include, 8, 18, 119, 124, 135

hLinkage, 72

#Map, 119

hMessage, 119

WMts, 119

%Pop, 120

%Print, 120

%#Punch, 120

%Push, 120

#Unreserve, 112, 120
compiler variable, 5, 52, 109, 111

%Assertion_Check, 94, 111, 112

%Assign_Check, 111, 112

%Check, 112

%Compile, 112

%Compiler_Debug, 112

%Compiler_Dumps, 112

%#Convert, 112, 120

%Coordinate, 112

%Current_Procedure, 112

%Date, 112

%Dump_Tree, 113

JEntry, 113

%Footer, 113, 123

%#Global_Id, 46, 69, 113

%Installation, 113

%Instruction_Set, 113

%Library, 114, 126

%Lines_Per_Page, 114

%Linkage, 114, 126

%List, 114, 122

#List_Code, 114

177

178

sListing_Character_Set, 115, 123

sLower_Case, 8, 115
WMerge_Unref, 115, 124
%0bject_Length, 115
%0Optimize, 115
%Page_Width, 116
#Preempt, 116, 163
%Productions, 116
%Range_Check, 112, 116
#Regression_Test, 116
hSegment, 116
hSource_File, 117
hSource_Line, 117
hStack_Check, 79, 112, 117, 126
hStatistics, 117
%»String_Check, 112, 117
hSubtitle, 117, 122
%Target_Machine, 117
hTarget_Operating_System, 117
%hTest, 118, 127
%Time, 118
hTitle, 17, 118, 122
hUnref, 115, 118, 124
JXref, 118, 124
%Xref_Scope, 118, 124
compiler version, 121
compile-time,
checking, 2
if statement, 109
statement, 5, 43, 109
compiling,
program, 121, 131, 133
complement, 85
compound, 92
exit, 93
label, 92
scope, 93
compound condition, 37
compound statement, 7
concatenation, 7, 32, 54, 55
condition,
compound, 37
exit, 92
repeat, 93
return, 93
Condition, 101
conditional compilation, 109
condition code, 101
conference, 121
constant, 34, 79

INDEX

array, 61, 74, 81

as parameter, 64, 86

base, 79

bit, 79

character, 79

coercion, 86

compiler variable as, 111

declaration, 9, 21, 73

default storage representation, 83

display, 81

entry, 48, 49, 83

expression, 2, 10

False, 102

hexadecimal, 79

identifier, 73

identifier-list, 80

integer, 79

load-time, 79

numeric, 79

pointer, 81

pointer to, 72

precision, 80

predefined, 100

procedure, 77, 81

real, 80

record, 74, 81

storage representation, 81, 83

string, 79

structure, 81

subscript, 61

symbolic, 2, 51, 57

True, 109

Version, 109

see also predefined constant
constant (keyword), 73
constants,

entry, 169

pointer, 169
constants (keyword),

see constant
control section,

see csect
control structure, 1, 88
control variable,

do statement, 91
convention,

assembler coding, 46, 160

capitalization, 8
conversion,

input, 11

output, 11, 40

see also coercion
%#Convert, 112, 120
coordinate,

source, 112, 122
%Coordinate, 112
Copy7

paragraphed, 112, 114, 115, 122, 124

source program, 8
copy program example, 5
cross-reference, 115, 118, 124
csect, 49, 74, 83
#Current_Procedure, 112
CXD, 102
cycle (keyword), 90
cycle statement, 38, 90

data structure, 1
%Date, 112
debugging, 118, 122, 127
DEC, 1
declaration, 18, 43, 73
constant, 9, 21, 73
global, 17
identifier, 8
MTS system subroutines, 121
open, 94
procedure, 17, 18, 22, 44, 77
scope, 19
type, 10, 21, 53, 74
variable, 5, 22, 45, 74
default storage representation,
constant, 83
definition,
identifier, 8
macro, 99
procedure, 5, 18, 44, 77, 96
definition (keyword), 44
denaming, 34, 72, 84
dereference operator, 33, 34, 52, 61
description,
type, 23, 53
descriptor,
stack, 159
descriptor (keyword), 157
difference (set operator), 59
Digital Equipment Corporation,
see DEC
directory,
library, 135

INDEX

dirty tricks, 139
display,
constant, 81
do (keyword), 91
do loop,
see do statement
do statement, 39, 91
repeat statement in, 93
dot operator, 25, 32
%#Double, 119
downto (keyword), 91
dsect, 21, 128
map, 119
%Dump, 119
%Dump_Tree, 113
dynamic allocation, 75
dynamic array, 140

each (keyword), 91
EBCDIC, 79
efficiency, 3
assignment, 7, 31, 85
compiler, 3
equate, 95, 139
expression, 10, 38, 54
global block, 45
linkage, 98
open, 95
parameter passing, 28
register, 76
select, 37, 90
set, 59
storage allocation, 22
%Eject, 119
element,
array, 60
elseif (keyword), 89
helseif (keyword), 110
else (keyword), 88
helse (keyword), 110
/end, 135
endjunk, 114, 126
end (keyword), 62, 64, 88, 90, 91, 92, 96, 99
%end (keyword), 110
ENT record, 113, 126
entry, 169
JEntry, 113
entry code,
procedure, 97
entry constant, 48, 49, 83

179

180

entry (keyword), 49, 74, 75
entry point, 113
entry specification, 74
enumerated type,
see identifier-list type
environment, 67, 98
attribute, 46, 69, 99
compatibility, 47
global, 46, 69, 87, 113
null, 107
pointer as, 69
record, 46, 48
switching, 47, 87, 98
type, 46, 113
unknown, 69
Environment_Base_Register, 48, 102, 163
environment (keyword), 47, 67, 69, 98
equate (keyword), 96
equate statement, 95, 139, 140
equivalence,
type, 21
error,
compilation, 124
error file, 122
error message, 121, 124
escape, b2
example program, 5, 11
exception, 126
executable statement, 43
execution, 125
execution-time array, 140
exit, 88
from cycle, 90
from do statement, 91
label, 52, 92
multilevel, 93
statement, 5, 7, 38, 92
exit code,
procedure, 97
exit (keyword), 92
expansion,
macro, 50, 99
exponent,
constant, 80
expression, 32, 83
bit, 55
constant, 2, 10
in open statement, 95
logical, 84
pointer in, 26

INDEX

precedence, 84
string, 32
subscript, 60
type, 53
unknown, 62
extended instruction set, 113

external,
allocation, 75
name, 49, 102

variable, 43, 48, 73
see also external symbol
external (keyword), 48, 49, 75, 78
External_Name, 102
external symbol, 45, 48, 49, 74, 75, 78, 102
checking, 49
procedure, 78

false, 37, 84
False, 37, 102
fast attribute, 69
fast (keyword), 69
Fetch_Check, 143
field, 25
access, 94
identifier, 52
name, 52
offset, 107
record, 62
selection, 25, 32, 62
selector, 63
variant, 63
field selection, 34
file, 17
Fixed_String, 10, 54
floating point,
see real
following pointer,
see dereference operator
#Footer, 113, 123
format,
library, 135
listing, 8
program, 7, 43
formatted output, 40
formatter,
see paragrapher
Fortran, 43, 80
common, 18, 48
linkage, 98, 162
*Forum, 121

INDEX 181

frame, 123 in macro, 99
Frame_Base_Register, 102, 166 local, 19
free variable, 50, 99 macro, 50
from (keyword), 63, 90 predefined, 8, 100
function, 7, 18, 29 procedure, 51, 77, 86
see also procedure scope, H2
type, 53
generation, undefined, 52, 53
code, 76 use of, 51
generator, variable, 34
library, 135 identifier-list,
Getspace, 75 compatibility, 57
global, constant, 80
alignment, 100 type, 23, 51, 57
declaration, 17 idiosyncrasies,
environment, 46, 69, 87, 113 machine, 3
environment id, 67 if (keyword), 88
identifier, 19, 43 %if (keyword), 110
storage, 69, 159 if statement, 6, 36, 84
type, 46, 67 compile-time, 109
variable, 43, 45, 74 nested, 36
see also global block %if statement, 109
Global_Base_Register, 102, 166 implementation status,
global block, 17, 18, 43, 45, 128 compiler, 147
addressability, 140 #Include, 8, 18, 119, 124, 135

identifier, 51

Increment_Pointer, 143

name, 51 indentation, 2

nested, 17 index,
%Global_Id, 46, 69, 113 array, 60
global (keyword), 46, 49, 67, 69 do statement, 91
Global_Size, 102 type, 58

goals, initialization, 159

language, 1 in (keyword), 59, 68, 75, 84
goto, 88, 92 Inline, 50, 76, 103, 143
Gpsect, 161 Motorola 68000, 105

grammar, 19, 149

helpful hints, 139
hexadecimal constant, 79
High_Value, 58, 103
HIGH_WATER, 125

PDP-11, 105

System 370, 103

Plus/68000 codes, 173
input, 11

compiler, 43, 121

conversion, 11

hints, in (set operator), 59
helpful, 139 %Installation, 113
history, 1 instructions,
machine, 103
IBM, 1 instruction set, 113
identifier, 8, 21, 51 %Instruction_Set, 113
constant, 73 integer,
definition, 8, 52 constant, 79
global, 19, 43 type, 54

182

Integer, 9
Integer_To_Varying, 7
interfacing, 3, 50, 62, 65
internal procedure,
see MACro
internal representation, 57
International Business Machines,
see IBM
intersection, 59
invocation,
macro, 99
I/0, 11
is (keyword), 73

keywords, 2, 8, 43, 120, 157

see also specific index entries

label,
case, 63, 89
compound, 92
exit, 52, 92
select, 89
<label>, 92
LALR grammar, 149
language goals, 1
LCSPR, 127
left attribute, 55, 70
Left_Justify, 107
left-justifying bit type, 55
left (keyword), 55, 68, 70
Length, 54, 107
lexeme, 7, 50
lexical comparison, 55
libraries,
"AMIGA", 72
library,
default, 8
format, 135
generator, 135
lister, 136
listing, 114
object module, 9
private, 9, 18
procedure, 9
run-time, 9
source, 9, §, 119, 121, 135
utility program, 135
hLibrary, 114, 126
library member,
Fetch_Check, 143

INDEX

Linkage_Macros, 146
Long_Stack_Descriptor_Type, 159
Main, 5, 113, 114
Numeric_Types, 9
Return_Code, 144

Short_Stack_Descriptor_Type, 159

Store_Check, 143

String_Types, 10
limits,

do statement, 91
linear search, 11
%Lines_Per_Page, 114
linkage, 44, 78

code, 160

Fortran, 98, 162

none, 98

option, 96, 114

procedure, 160, 165, 170, 171

routine, 146

special, 97, 146, 161, 166

standard, 44

S-Type, 65, 162

system, 44, 97, 162, 166

Type I, 29, 71, 98
%Linkage, 72, 114, 126
linkage (keyword), 71, 78, 96, 125
Linkage_Macros, 146
linkage none, 146, 163, 166
linked list, 26, 62, 107

linking,

Plus-11, 131
xLink11, 49, 131, 165
list,

linked, 26, 62, 107

statement, 53
%List, 114, 122
#List_Code, 114
lister,

library, 136
listing, 114, 116

annotation, 122

assembler, 114

code, 114

compiler, 121

format, 8

source, 2, 114, 115, 122, 124
%Listing_Character_Set, 115, 123
loader records, 114, 126
load-time constant, 79
local identifier, 19

INDEX

local variable, 22, 74
location, 34
logical, 37
logical expression, 84
logical operator, 56, 83, 84
logical units,

compiler, 121
longjump,

see multilevel return
Long_Stack_Descriptor_Type, 159
loop, 5, 38
looping, 88, 90, 91
lowercase, 8, 43, 51, 115
%Lower_Case, 8, 115
Low_Value, 58, 107

machine, 117
machine address, 26
machine idiosyncrasies, 3
machine instructions, 103
Macintosh, 1, 169
Macintosh Development Systerm,
see "MAC/MDS"
Macintosh Programmer’s Workshop,
see "MAC/MPW"
"MAC/MDS",
restrictions, 147
hTarget_Operating_System, 49, 72, 74, 81,
169
traps, 72
"MAC/MPW",
restrictions, 147
%Target_Operating_System, 72, 113, 116,
169
traps, 72
macro, 50
call, 99
compatibility, 51
definition, 99
expansion, 99
identifier, 50, 51
invocation, 99
name, 51
parameter, 50, 51, 99
use of, 50
macro (keyword), 99
magic number, 2
Main, 5, 113, 114, 125
main procedure, 113
map,

dsect, 119
record, 119
storage, 119
%Map, 119
matrix, 25, 60
Max, 58, 107
Maximum_Integer, 10
McCarthy and, 84
McCarthy or, 84
MDS,
see "MAC/MDS"
memory, 34
see also storage
WMerge_Unref, 115, 124
message,
compiler, 121
error, 124
Message, 11, 40
hMessage, 119
message building, 7
Michigan Terminal System,
see MTS
Min, 58, 107
Minimum_Integer, 10
mod (keyword), 54, 84
module, 17
motherhood, 1
Motorola, 1
Motorola 68000,
Inline, 105
Motorola 68000 support,
run-time, 133
mouthwash, 20
moving arbitrary data, 143
MPW,
see "MAC/MPW"
WMts, 119
MTS, 1, 3, 49, 113, 119, 126
system subroutines, 8, 121
MTS system subroutines, 1
multi-dimensional array, 25, 60
multilevel exit, 93
multilevel return, 144
multiple assignment, 31, 85
multiple result, 76
MVS, 1
M68000, 1

name, 34, 61, 63
external, 49, 102

183

184 INDEX

parameter, 65, 141 comparison, 54, 63, 84
see also identifier concatenation, 7, 32, 54, 55
name (keyword), 65 dereference, 33, 34, 52, 61
nested assignment, 2 dot, 25, 32
nested global block, 17 field selection, 25, 32, 34, 62
nested if statement, 36 logical, 56, 83, 84
nested procedure, 43 not, 85
news, 121 numeric, 54
none (keyword), 98 or, 84
non-local variable, 45 precedence, 84
not (keyword), 84, 85 relational, 54, 57, 61
not operator, 85 set, 59
Null, 26, 29, 62, 67, 107 string, 54
numeric, subscript, 32, 34
compatibility, 54 unary, 54
constant, 79 with assignment, 7, 31, 85
operator, 54 optimization, 3
type, 54 see also efficiency
Numeric_Types, 9 %0ptimize, 115
option,
object code description, 159, 165, 169 comment, 17, 122
%#0bject_Length, 115 compiler, 52
object machine, 113 see also compiler procedure
word-size, 55 see also compiler variable
object module, 49, 115, 120, 121 optional (keyword), 65
library, 9 optional parameter, 44, 65, 141
PDP-11, 165 optional result, 66
structure, 159, 165, 169 order, 17, 18, 44, 52, 57
offset, statement, 8
alignment, 68 or (keyword), 37, 84
record, 107 output, 11
Offset, 107 conversion, 11
of (keyword), 58, 60, 63 formatted, 40
01d:01dCCLib, 126 overlay, 63
open (keyword), 95 storage, 95
open statement, 63, 94, 140
expression in, 95 packed,
scope of, 94 array, 70
operand, 34, 83 attribute, 70
Operating System, 117 record, 70
operation, with pointer object, 70
see operator packed (keyword), 70
operation exception, 127 page skip, 119
operator, 83 %Page_Width, 116
and, 84 paragraphed copy, 112, 114, 115, 122, 124
append, 31, 55 paragrapher, 2, 8, 122
arithmetic, 54, 83 comment, 122, 123
assignment, 5, 85 line breaks, 123
binary, 85 parameter, 18, 43, 44

bit, 56 call-by-reference, 86

call-by-value, 86
checking, 141
coercion, 86
compatibility, 86
constant as, 64, 86
identifier, 51

macro, 50, 51, 99
name, 51, 141
optional, 44, 141
passing, 28, 86, 165, 170
reference, 28, 34, 139
register, 44, 66, 75
repeated, 44

value, 64

parameter (keyword), 44, 64, 99
parameterless procedure, 23, 64

parameter list, 30, 140
parameters,

of Inline, 103
parameters (keyword),

see parameter
parser, 11
parse stack overflow, 89
Par string,

compiler, 122

for execution, 125
Pascal, 1, 43, 89, 94
PDP-11, 1

Inline, 105

object module, 165

run-time support, 131
percent (%), 5
philosophy, 2
PL/I, 43, 52
*Plus, 7, 121
Plus:Endjunk, 127
PLUSENTR, 125, 126, 165
Plus:Libgen, 135
Plus:Liblist, 136
Plus:Macsourcelib, 133
Plus:0bjlibi1l, 131
Plus:0bj68AMIGA, 133
Plus:0bj68MDS, 133
Plus:0bj68MPW, 133
Plus:Plus#, 121
Plus:Plus68, 133
*Plus.Sourcelib, 8§, 121
Plus:Sourcelibll, 131
*Plusil, 131
pointer, 169

INDEX

arithmetic with, 143
as environment, 69
assignment, 27
checking, 142
compatibility, 61
constant, 81

in expression, 26
null, 107

to constant, 72
type, 26, 61

pointer (keyword), 61
pointer to unknown, 62

in equate statement, 96
in open statement, 95

%Pop, 120
precedence, 32, 84
precision, 23, 80

real, 57
real constant, 80

Predecessor, 58, 107
predefined constant,

False, 37, 102
Global_Size, 102
Null, 26, 29, 62, 67, 107
True, 37, 109

Version, 109

predefined identifier, 8, 52, 100
predefined register variable,
Code_Base_Register, 101, 163

185

Environment_Base_Register, 48, 102, 163

Frame_Base_Register, 102, 166
Global_Base_Register, 102, 166
Program_Counter, 108, 166

Stack_Base_Register, 108, 163

Stack_Pointer, 108, 166

#Preempt, 116, 163
preemption,

register, 139

prevention of assignment, 72
%Print, 120
private declaration,

see local identifier

private library, 9, 18
procedure, 44, 49

built-in, 100

call, 6, 28, 32, 47, 86
compatibility, 67
compiler, 5, 52, 119
constant, 77, 81
declaration, 17, 18, 22, 77

186

definition, 5, 18, 77, 96

environment, 46

external symbol, 78

identifier, 77, 86

library, 9

linkage, 78, 160, 165, 170, 171

main, 113

Main, 5, 125

multiple result, 76

nested, 43

null, 107

parameterless, 23, 64

result, 29

resultess, 64

return, 7

return code, 87

return value, 93

stacksize specification, 78

system, 44

type, 18, 22, 27, 64

unknown, 67

variable, 29
procedure (keyword), 44, 64, 77, 96
procedures (keyword),

see procedure
#Productions, 116

program,
example, 5, 11
format, 7, 43

how to compile, 7, 121, 131, 133
how to run, 7, 125, 131, 133
main, 5
source, 121
structure, 1
Program_Counter, 108, 166
program interrupt, 112, 126, 127
protection exception, 126
PRV,
see pseudo-register vector
pseudo-register, 45, 107
pseudo-register vector, 43, 45, 48, 69, 159
with SDS, 128
%Punch, 120
%Push, 120

Q-con, 107
QGLOBAL, 127
QLCSPR, 127
QQsy, 47
QSYSENTR, 98, 162

INDEX

radix,

bit-constant, 80
%#Range_Check, 112, 116
range checking, 3, 10, 54, 61
readability, 2, 21, 24, 95
read-only variable, 73
real,

coercion, 80

constant, 80

precision, 57

type, 23, 57
real (keyword), 57, 80
recompilation, 18
record,

allocation, 74

as environment, 160

as parameter, 86

assignment, 62

circular definition, 52

constant, 74, 81

environment, 46, 48

map, 119

offset, 107

packed, 70

SYM (for SDS), 122, 128

type, 24, 62

variant, 63
record (keyword), 62
reentrancy, 18
reentrant code, 43, 45
reference (keyword), 64
reference parameter, 28, 34, 64, 139
register,

allocation, 3, 75, 139

base, 159

parameter, 44, 66, 75

preemption, 139

result, 66, 75

usage, 159, 165, 170

use, 116, 139

variable, 3, 75, 103, 105, 140

see also predefined register variable
register (keyword), 66, 75
registers (keyword),

see register
/Regression_Test, 116
relational operator, 54, 57, 61
repeated (keyword), 65
repeated parameter, 44, 65
repeat (keyword), 92, 93

INDEX 187

repeat statement, 93 in begin block, 92
in do statement, 93 in cycle, 90
reserved words, in do statement, 91
see keywords in if statement, 88
restrictions, in macro, 50, 99
"MAC/MDS", 147 in select, 89
"MAC/MPW", 147 of open statement, 94
result, 18, 44, 93 rules, 52
identifier, 51 SDS, 118, 122, 126, 127
multiple, 76 search program example, 11
name, 51 %Segment, 116
optional, 66 select,
procedure, 29 label, 89
register, 66, 75 statement, 37, 89
resultess procedure, 64 select (keyword), 90
result (keyword), 64 selector field, 63
return, semicolon, 41, 43
multilevel, 144 use of, 7
procedure, 7 separate compilation, 3, 9, 17, 52
statement, 29, 39, 93 set,
value, 44, 86, 93 coercion, 59
return code, 29, 144 compatibility, 59
compiler, 122 operator, 59
from execution, 126 type, 58
return code, 87 set (keyword), 58
Return_Code, 144 Setup_Return_From,
Return_From, library member, 144
library member, 144 Short_Stack_Descriptor_Type, 159
return (keyword), 87, 94 signed (keyword), 157
right attribute, 71 size, 100
Right_Justify, 108 Size, 108
right-justifying bit type, 55 small attribute, 71
right (keyword), 68, 71 small (keyword), 71
Run command, 7, 9, 121, 125, 131, 133 source,
run-time, library, 5, 8, 119, 121, 135
array, 140 listing, 2, 114, 115, 122, 124
checking, 2, 10, 54, 94, 109, 116, 117, 126, 127 program, 121
library, 9 source coordinate, 112, 122, 128
Motorola 68000 support, 133 #Source_File, 117
PDP-11 support, 131 %Source_Line, 117
support, 126 special linkage, 97, 146, 161, 166
run-time option, spelling, 17
HIGH_WATER, 125 stack, 74, 108, 131, 159
STACK_SIZE, 125 descriptor, 159
frame, 102, 140, 164, 167, 172
scalar constant, 79 overflow checking, 117, 126, 160
scalar type, 53, 58 size, 78, 125, 161
Scards_Varying, 6 use, 125
scope, 20, 22, 45, 52 Stack_Base_Register, 108, 163

declaration, 19 #Stack_Check, 79, 112, 117, 126

188

Stack_Pointer, 108, 166
STACK_SIZE, 125
stacksize (keyword), 78, 126
STAKSIZE, 161
standard instruction set, 113
standard linkage, 44
statement, 43

assert, 94, 111

assignment, 5, 31, 85, 111

compile-time, 109

compile-time if, 109

compound, 7

constant, 73

cycle, 38, 90

do, 39, 91

equate, 95, 139, 140

exit, 5, 7, 38, 92

if, 6, 36, 84

hif, 109

list, 53

open, 63, 94, 140

order, 8

repeat, 93

return, 29, 39, 93

select, 37, 89
hStatistics, 117
STDTV, 159
STK_DESC, 159, 161
storage,

allocation, 22, 48, 55, 70

global, 67, 69, 159

map, 119

overlay, 95

value, 34
storage (keyword), 157
storage representation,

constant, 81, 83
Store_Check, 143
string,

assignment, 55

comparison, 59

constant, 79

expression, 32

length, 107

length checking, 55

operator, 54

type, 10

see also character
%»String_Check, 112, 117
String_Types, 10

INDEX

structure,
compilation, 43
constant, 81
control, 1, 88
data, 1
object module, 159, 165, 169
program, 1
see also record
style, 2, 21, 24
S-Type linkage, 65, 162
subrange type, 58
base type, 58
subroutine, 18
system, 8
see also procedure
subscript, 25, 32, 34, 60
checking, 3
subset (keyword), 59, 84
subset (set operator), 59
substitution,
macro, 50
Substring, 34, 54, 108, 143
checking, 117
%Subtitle, 117, 122
Successor, 58, 109
Sue, 1, 94, 103
support,
run-time, 126

switching environment, 47, 87, 98

symbol,

external, 45, 48, 49, 74, 75, 78, 102

SDS, 128

see also identifier
symbolic constant, 2, 51, 57
SYM record, 118, 122, 128
syntax,

BNF, 149
system,

attribute, 71

linkage, 44, 97, 162, 166

procedure, 44
system (keyword), 67, 71, 97
system subroutines,

declarations, 121

MTS, 1, 8
System 370, 1

Inline, 103

%Target_Machine, 117

hTarget_Operating_System, 117, 133

"AMIGA", 72, 169
"MAC/MDS", 49, 72, 74, 81, 169
"MAC/MPW", 72, 113, 116, 169
temporary variable, 20, 22
terseness, 2
%hTest, 118, 127
test system,
Plus-11, 131
then (keyword), 88
%then (keyword), 110
%Time, 118
title, 17
hTitle, 17, 118, 122
TN character set, 115
token, 7, 50
to (keyword), 61, 91, 96
top-down programming, 50
traps,
"MAC/MDS", 72
"MAC/MPW", 72
tricks,
dirty, 139
true, 37, 84
True, 37, 109
tutorial, 5
type, 53
array, 25, 60
attribute, 68
bit, 23, 55
Boolean, 37
character, 10, 54
cheating, 50, 62, 63, 95
checking, 2
compatibility, 21, 84
declaration, 10, 21, 53, 74
description, 23, 53
environment, 46
equivalence, 21
expression, 53
global, 46, 67
identifier, 51, 53
identifier-list, 23, 51, 57
index, 58
integer, 54
Integer, 9
logical, 37
name, 51
numeric, 54
pointer, 26, 61
procedure, 18, 22, 27, 44, 64

INDEX 189

real, 23, 57
record, 24, 62
scalar, 53, 58
SDS, 128
set, 58
string, 10
subrange, 58
undefined, 52
unknown, 62
varying-length character, 54
varying-length string, 54
varying string, 54
Type I linkage, 29, 71, 98
type (keyword), 73
types (keyword),
see type

unary operator, 54
undefined identifier, 52, 53
understandability, 2
union (set operator), 59
unknown environment, 69
unknown (keyword), 62, 67, 69
unknown procedure, 67
unknown type, 62
in equate statement, 96
unless (keyword), 93
yUnref, 115, 118, 124
#Unreserve, 112, 120
unsigned (keyword), 157
unspecified procedure, 67
uppercase, 8, 43, 51, 115
use (keyword), 157
use of identifier, 51
use of macro, 50
use of registers, 116
use of SDS, 127
use of semicolon, 41
utility program, 135
Plus:Libgen, 135
Plus:Liblist, 136

value, 34
attribute, 72
constant, 49
parameter, 64, 86
pointer, 61
procedure, 86, 93
return, 44, 93
value (keyword), 34, 72, 86

190

variable,

absolute, 77

allocation, 74

compiler, 5, 52, 111

declaration, 5, 22, 45, 74

external, 43, 48, 73

free, 50, 99

global, 43, 45

identifier, 34, 51

local, 22

name, 51

non-local, 45

predefined, 100

procedure, 29

read-ounly, 73

real, 57

register, 3, 75, 103, 105, 140

storage allocation, 48

temporary, 20, 22
variable (keyword), 73
variables (keyword),

see variable
variant field, 63
variant (keyword), 63
variant record, 63

size of, 101
varying-length character type, 54
varying-length string, 11
varying-length string type, 54
varying string,

type, 54
Varying_String, 11
V-bit, 65, 141
verbosity, 2
version,

compiler, 121, 131, 133
Version, 109
version number,

compiler, 109, 121
virtual memory, 4

VS-1, 1

when (keyword), 92
with (keyword), 87, 94
word-size,

object machine, 55

xor (keyword), 84
XPL, 103
Plus-11,

INDEX

test system, 131
Plus/68000 codes,

Inline, 173
xref,

see cross-reference
yXref, 118, 124
%#Xref_Scope, 118, 124

