Snoboltl

e s - o

P -

A Computer Programming Language

for the Humanities

Rotert Gaskins, Jr.

Laura Gould

University of California

Spring, 1972

Coovriqgqht 1972 by Fobert Gaskins, Jr., and Laura Gould
All Rights Reserved

Nothing amuses more harmlessly than
conputation, and nothing is oftener
applicable to real husiness or
spectilative inquiries. A thousand
stories which the ignorant tell, and
believe, die away at once when the
conputist takes them in his grip.

Samuel Johnson,
Letter to Sophia Thrale
(at Bath), July 24, 1783

CONTFNTS

[Note: the starred sections are not yet available u4/1/72)
Preface .Q.I.Q..I.0'..‘.......OC...0....0.0.0.0....Q'vii

1A. Computer Programming in SnNobol ..eeecececcccoceas 1
Devising a Program 1
Wwriting a Snobol Proqgram Text &
Tnput and Output 5
Execution of a Snobol Program 6

~ *1B. Computer Applications Using Snohol ieeceecoceoscees

23. Assignment % 0 460000000000 0c0s PO OIEOILESIOENINBORIBAEOBSE @8 8
Literal values 8
Variahles O
Assignment Rules 10
The Null Value 11
The Special Variable oUTPU™ 12
"he Special Variable TNPUT 13
Other Forms of Input and Output 14
Procedures 14
The TRTM() Procedure 15
The SIZ®() Procedurc 16
Operators 16
The Concatenation Operator 17
The Arithmetic Oparators 19
M Complete Snobol Program Text 20

*¥2B. FExamples and ApplicationsS ceeecececescscceccccccecs

3A. The FPlow Of CONETrO]l civeecerceccvoccccccacncacesall
Labels 21
Go-to's 22
The Special Transfer ©=ND 23
Failure of the Pule 24
Failure of Iwpgm 240
Fvaluation Rules 25
Test Procedures 26
The Test Procedures IDENT() and DIFFRER() 26
The Test Procedure LAGT() 27
Arithretic T™est Procedures 28
Test Procedures within Assignment Rules 28
Loops 29
Loops Controlled by Data Conditions 30
Loops Controlled by Counts 31

*2B. Examples and AppPlicALioNS cecececcseccconasconeas

GA. Pattern MAtChiNg eeeeecccecscsossccccscccccscaceesll3
‘The Pattern Matching Rule 33
The Replacement Rule 34
The Alternation Operator 135
The Pattern Procedures ANY () and NOTANY() 36
The Conditional Assignment Operator 38
Concatenation of Patterns 39
The Inmediate Assiqnment Operator U0
The Pattern Procedures SPAN() and BREAK () 41
The Pattern Procedure LEN{) 42
The ANCHOR() Procedure 43
The Pattern Procedures TAB() and RTAB() uy
The Pattern Procedures PNS() and RPOS() U6
The Fattern Procedure ARBNO () U6
Assiqgning Patterns to Variables U9
The Deferred Evaluation Operator 50
The Special Pattern Variables ARB and REM 52
A Program to Tllustrate Pattern-Matching 53

*4B, Pxamples and ApplicationNs ccecececsccccscccscccncccs

5

5. Tndirect ReferPNCiNg coecscscccssceaccsscascasased
The Tndirect Peferencing Operator 6%
The Operand of the Indirect Ralerencing
Operator &7
A Proqram to Produce a Character Count 59
Concatenation within the Operand A0
A Program to Produce a Frequency Table 63
A Program to Produce a Word Count 65
Indirect Referencing within the Go-to 67

*5B, Fxamples ani Applications cccececececcccccccnccce

fA. Programmer-defined Procedures cecevscscsssscnscesall
Defining a Procedure 70
The DEFINR{) Procedure 72
Procedure Bodies 74
The Returns RETHRN, NPETURN, and FRETURN 75
Procedure Calls 76
~The Passing of Arguments 77
ndditional Internal Variables 78
References to Txternal Variables 80
Sside-effects of Procedures 84
Levels of Tnternal Vvariables 87
m"he Use of NRETHRN to Return a Variable 90
The APPLY() Procedure 92
fIsing a Library of Procedures 20

*6B. Fxamples and Applications ceeccecececceccccccancs

The ALLAYS ceeececcecaccoscnccssosscccncnsasnncasacaseal00
Creating an Array 100
Array Items and Ttem References 101
Compariscen with Indirect Referencing 102
Multi-dimensional Arrays 103
The ARRAY() Procedure 104
Selectors 106
Failure of an Item Reference 106
Special Prohlems Concerning Item References 107
The ITFM() Procedure 108
The PROTOTYPFE () Procedure 110
The TYPE() Procedure 111
Procedure to Return a Selector 113
Procedure to Tnterchange Two Arrays 114
The Name Operator 116
Forming all Selectors of an Array 118
Procedure to Return the "Next" Selector 120
Procedure to Return a Copy of any Array 122

*7B. Examples and ApPpPlicationsS ceceecececececocceccocee s
*AA. Programmer-defined Data StruCtUreS teecececeooe ..

#8B. Txamples and APPlicCAtioNS cececceceacccocsceseonas

Appendixes

A. summary of Predefined Procedures .e.eecececcceseeee 121
I. Program Procedures 127
A. Test Procedures 127
B. Result Procedures 12P
C. Data Procedures 130
TI. System Procedures 1135
A. Declarations 135
R. Access to System Tnformation 116
C. Requests for System Actions 143
D. Input/Output Procedures 146

B. Summary of Predefined Pattern VariablesS ...ceeee..150
ARB and REM 150
BAL 150
FATL 150
ABNART 151
FENCE 151

C. SumnAry Of OpPETratorS ceecececscececcecceasscncscncel53
D. Summary of Procedure TXecCUtion e.eeececcocescocscess 15l

*F:- Thp Paff@tn‘MﬁtChinq A].C}O[“ithm I R

*F.

*G.

Summary of Snobol Arithmetic ..cccecoeccccccncance
Summary of Input/Output ProcediresS .eecccacesssess

Program Text Representation .ceccececccscesscsncsasess 1958
Statement Format 155
Continuation Cards 155
Comment Cards 156
listing Control Cards 156
Extended Syntax of Snobol Statements 156

Character Set RepresentabionsS .cececesccssscecsees 158
Syntax cf Program Texts ...;......,.....u.........161
Summary of Compile-time Error MeSSaAgeS eceeacesese. 166
Summary of Fxecution-time Error MeSSageS eesesvees 167

Non-standard Features of Rerkelecy Snobhsl ...eeeae.172
I. Features which are Handled Differently 173
Procedures 173
Nperators 174
Keywords 175
Datatypes 175
System Transfers 175
Outout 175
Program Representation 176
The Program Tisting 177
IT. Features Rbsent from the Yerkeley Version 177
Procedures 177
Operators 179
Keywords 179
Pattern Variables 181
Datatyres 181
Pattern Matching 181
Arithmetic 181
Nutput 1R1
IITY. Peatures not Present in the Bell Version 1R2
Procedures 182

I“dex ..Q!.lo.....o....o..CQQ“...-.tl.o.‘o“.oo..‘.o183

PREFACE

Edmund Fuller has described hearing an interview 1in
vhich Edward R. Murrow asked Mickey Spillane how he could
bring himself to pander to the public taste by writing the
kind of bhooks he d4id; Spillane's luminous reply, according
to Fuller, wvas: "I write the kind of bhooks T want to read
and can't find."

We, with much the same motivation, have written ¢this
description of Snobolli, a computer programming lanyuage for
the humanities. Our own training and interest 1is in the
study of language and literature, and so the examples and
exercises are directed particularly toward the @machine
manipulation of linguistic data and literary texts. Fven so,
the Adescrivtion should be wuseful to students of wany
disciplines, since the first part of each chapter presents
features of the language in a generalized way, and the
particular examples in the second part of each chapter have
heen chosen to exhibit principles and techniques which can
easily be applied to verbal or symbolic data in a wide range
of humanistic and social science applicatioas.

This presentation of Snoboltt is particularly designed
for members of the iiniversity of California community who
have no previous knowledge of computers or conputer
progranming., It describhes a dialz2ct of the lanjnaage for
Control Data Corporation 6000 series machines, inmplemented
at the Berkeley Computer Center by Paul Mciones and Charles
Simonyi; Mr. McJones has reviewed our work as it has
progressed, and has made manv helpful suggestions.

Tt is intended that this manual will be expanded to
provide a confrlete description of the Snobolt lanvuaqge and
of various related facilities available at the Rerkeley
Cemputer Center which are of interest to Snobol users. We
would naturally be pleased to receive sugaqestions for
improvements and additions from readers. We hope that few
mistakes remain, even in this preliminary version, but each
of us blames the other for any that may be found.

1A, COMPUTER PROGRAMMING IN SNOBOL

Snobol is a programming 1language, one of many such
artificial lanaquages which may be used to convey
instructions tc a computer. %Most computers may be instructed
in a wide variety of progranming 1anquaaes' these languaqes

differ from one another, as 4o natur languages, by havin:
different vocabnlaries and svntubtlc structures. More

importantly, however, they differ in the range of concepts
which they are capable of expressing.

Difrerent programming lanquages have been developed for
different kinds of problems or probler areas. Some have heen
devised vprimarily for describhing qoneral numeric or
algehraic problems, others for describing the structure of
business records and files, s*ill others for highly specific
purioses such as controlling machkine tools, simulating
econcric systems, or making computer-generated movies,
Snobol is distinguished by very powerful and geperal
capabilities for manipulating strinas of characters, makinnq
it rparticularly convenient for vorking with data from areas
such as linquistics, liter aturg, verhal bekavior, and the
huwanities in generai, it is also very useful for expressiuaq
sophisticated non-numeric problems in the field of computer
science.

Devising _a_Program. A description of how a comvuter is
to go about solving a problen consists of a list of tasks or
acticns to be performed. A specification in some progranwing
language which describes such a series of tasks coapletely
is called a "program text." Before a program text caa bLe
written, the task which it is to describe must he clearly
understood. If, for exanple, a task has been cxpressed 1in
EFuglish as "find all vowels in a word," the fcllowing
questions must te resolved before the programming of the
task in some programming lanquage can be undertaken:

(@) vhat is a vowel?

(2) what is a word?

(3) what should ke done with the vowels wvwhich are
fourd?

The answers might ke as followus:

(1) one of the characters A,E,7,0, or U

(2) a string of characters to be provided as data to
the prcqgranm

(3) count them and then print the total

1A. Computer Programming in Snobol 2

Given these clarifications, one can then translate the
unrigorous English sentence "find all vowels in a word" into
a rigorous step-by-step description of what must be done;
this step-by-step description can then he translated again
into a series of statements in an appropriate progranming
language. The intermediate translation may exist only in the
nind of the programmer, as is often the case if the task 1is
a simple one, or may be recorded in some fashion so that it
nay be considered for correctness.

One of the bhest ways of recording a step-by-step
description is to write down a series of numbered statements
specifying exactly what is to be done. These statempents are
still in English, but a much more detailed and careful
English than that of the original problem. The statements
differ from the sentences of a natural language paragraph in
that they are nct intended to be processed onPy once or in
the order in which they are presented; hence, the statements
are numbered so that the order in which they are tc be
processed, often repeatedly, may be specified. A set of
numtered statements describing how to count all the vovels
in a series of words and to print the counts might look as
follov¥s:

START

(1) Get the next word; if no more words, STOP.

{2) Print that word. ‘ '

{(3) Set the tally to zero.

{4) Get the next character of this word; if no more
characters remain, go to (7); otherwvise go to the rext
statement.

(5) Determine vhether or not this character is an
A,%,I,0, or U; if it is not, go back to (4); otherwise go to
the next statement,

(6) Add one to the tally which is keeping track of the
number of vowels in this word; go back to (4).

(7) Print the value of the tally, which nowv represents
the total number of vowels in the word. Go back to (1) and
attempt to get another word.

Note that this precgram description has been augmented
to count the vowels in any number of words, one after
another, and to print the counts separately. It would not he
useful to write a program to count the vowels in a single
word only, as the counting could be accomplished by hand
much faster than the program could he written. (However, for
more complicated tasks, a program can often be written much
more «<asily than the task can be performed even once by
hand; that such a program could then be used again might
vell be of seccndary importance.)

1A. Computer Programming in Snobol 3

Another method of recording a step-by-step description
is to use what is called a "flow chart.” In a flow chart the
specification of what is to be done next, or the "flow of
control,"” 1is indicated by means of lines and arrovs rather
than by phrases of the form "go back to (1}." A flow ciart
equivalent to the numbered statements just provided might
look as follows:

A]
get next |Fail
vord }———————> STOP

3

|Succeed

{3)> v
P ——
| set tally

{ to zero
b

o

|
1< 1
1< 1
8) v «s) |Fail 6) 1

~ Al i g 1 \ i 3
| get next |[Succeed | test for |Succeed | add one |
{ character {—————->| A,F,1,0,0 {|— ->} to tally |

3

L 2 L 4 |

{Fail

«r) v

O ——

1 print

value of
tally

o ot D s e e e e e NE e R A R WA L e A o - . VR e S e SR o . e A ~ome e s od

- e -
|
|

|
|
—

1A. Computer Programming in Saobol 4

Writing a_sSnobol Proqram__Text. Now that a detailed
method for solving the problem is clearly understood, it may
be translated into a set of statements in the Snobol
language. Seven Snobol statements are provided below, one
fer each of the numbered ¥nglish sentences, or,
equivalently, cne for each box of the flow chart. These
statements are provided here to illustrate the close
correspondence between the Snobol statements and the step-
by-step description, to give scme indication of the
appearance of a programming language, and to point out some
features of the Snobol language in particular; a ccnplete
discussion of the nmeaning of these statements mnust be
deferred to later chapters of the text. (Comments, beginning
with asterisks, have been inserted for spacing and to
explain the purpose of the statementcs.)

* STEP 1: PREAL IN THE NEXT WORD - IF NO MORE WORDS, STOP
*

* *

REAL WORD = TRIM(INPUT) = F(END)
*
* STEP 2: PRINT THE WOERD JUST READ 1IN
*
QUTPUT = WORD
*
* STEP 3: SET THE TALLY TO ZERO
*
TALLY = 0
*
* STEP 4: CFT THE NEXT CHARACTER CF THIS WORD - IF NO MORF
* CHARACTERS, PRINT THE VOWEL COUNT FOR THIS WGRD
*
GETCHAR WORD LEN(1) . CHAR = NOLL : F (PRINT)
*
* STEP S: SEE IF THIS CHARACTER IS A VOWEL - IF NOT,
* GO BACK AND GET NEXT CHARACTER
*
CHAR ANY('AEXCUY) ¢ F(GETCHAR)
%*
STEP 6: CHARACTER IS A VCWEL - ADD ONE TO THE TALLY
TALLY = TALLY + 1 : (GETCHAR)
*
* STEP 7: PRINT NUMBER OF VOWELS AND RETURN TO
* REAL IN THE NEXT WOED
*
PRINT oUTPUT = TALLY : (READ)
*

END

1A. Computer Programming in Snobol S

Each Snobol statement consists of three basic parts,
any of which may be absent. These parts are called the
label, the rule, and the go-to. The label is the first part
and serves to identify the statement (as did the numbers in
the English description above); the rule is the midile part
and srpecifies some action to be performed; the go-to is the
last part and indicates which statement is to be considered
next by vproviding its label in parenthesis. (The F within
the first three go-to's ahove indicates that the go-to is to
be taken only if the action specified by the rule preceding
it fails; otherwise control is sent to the next statement of
the series.)

Input_and_Cutput. Before the statements of a progranm
text can be used to instruct a computer, they must first he
Fut in what is called "machine-readable form." For instance,
they must be punched on cards to be read into the computer's
memory via a card reader, or typed in on a teletype
connected to the computer. The data to be manipulated, such
as the words whose vowels are to bte counted, are scldom
explicitly provided within a program text, but are preparedq
separately and must also be put in machine-readable forn

before they can be accessed.

The Snobol language provides facilities for reading in
units of data, called *"records," and for writing out the

restlts of manipulating this data. These are called "input"
and "output" facilities. The first statement of the progran
text above 1indicates that some input is needed; in

particular, it specifies that an indefinite number of worAds,
one at a time, are to be read from a "file"® of data which
nust be supplied with the program. The second statement
specifies that some output is to be produced; in particular,
that the word just read in is to be printed at the beginning
of a new line of printer paper. The last statement specifies
that the number of vowels fcund within thkat word is to be
printed on the following line.

If the file of data to be used as input for the program
text aktove were the following list of words

HIPEFOPCTAMUS
HIPFOS
HIPFOSTIDEROS
HIFECSECNGIA
HIEFCTIGRINE
HIPECTCMY
HIEFOTRAGINFE
HIEECTRAGUS

1A. Computer Programming in Snobol 6

then the output produced by the program would be the list

HIPFPOPOTAMUS
]

HIFECS

2
HIPECSIDEROS
5
HIFEQCSECNGIZ
5
HITECTIGRINE
5

HIPEOTCMY

3
HBIPFOTRAGINE
5
HIPECTRAGUS
4 ,

Results from executing a program may be printed on
paper for personal perusal, written on magnetic storage
media, or punched on cards. Since the last two are machine-
readable as well as machine-writeahble, the output may be
used aqain, without modification, as input data to be
further processed by still another progranm.

Bxecution_of_a_Snobol Progranm. It is not enough for a
computer to have available to it both a program text and
scme data in machine-readable form; it must also have
available to it a "translator" or "system" to process the
language in which the fprogram text has been written. A
comfputer nay have available any number of language
processors and hence may be able to wypderstand™ any number
of 1languages. A processor itself consists of a progranm,
written in some programming language (often in a language
that is basic and unique to a particular computer, but
_possibly in Snotol). The data which such a systen will use
is a program text in the 1langquage for which it is the
processor.

The Snobcl system described here consists of two
separate parts called the "compiler"” and the "interpreter.”
The compiler uses a Snotol program text as its data, reading
in the statements one at a time in the sequential order in
which they appear. It prints and numbers each statement to
be inspected later by the programmer and tests the statenment
to determine whether or not it is syntactically correct,
that is, vhether or not it conforms to all the rules
governing the prover structure of a Snobol statement. (This
Frocess is analogous to parsing a natural language sentence
for grammatical correctness.)

1A. Ccnrputer Programming in Snobol 7

If a statement is well-formed, it is converted by the
compiler 1into a representation ("Code") suitable for later
processing by the interpreter; if it is not well-formed, it
is flagged as being syntactically incorrect. Akll statements
of the proqram text are processcd, even if 1incorrect ones
cccer, so that all syntactic errors are found. The
programmer can locate the incorrect statements hy inspecting
the prcgram listing; he can then correct them and once again
subrit his program text as data for the compiler to process.

If no compile-time errors occur, the message SUCCESSFUL
COMEILATION is written at the end of the program listing.
The interpreter then starts processing, using the converted
statements of the program text as its data; the entire set
of converted statements revrresenting a proqgram text 1is
called a “program." The interpreter executes the proqaran,
causing the computer to perform whatever task has been
described. It starts by executing the first statement of the
program andé then proceeds to process the converted
statements in the order specified by the go-to's, reading
inpat from a data £file and producing output vwherever
reguested., Fxecution continues until the task is finishe?
(as signified here by the END scatement) or wuntil an
execution-time error (such as a reguest to nultiply *'CAT' by
'CATALOG®) cccurs. If +his happens, the programmer can
inspect the error rmessage printed by the interpreter and can
attempt to determine his mistake. He «can then modify the
program text and submit it cnce again to the fjoipt processes
cf ccmrpilation and execution.

2A. ASSIGNMENT

A Snobol program text consists of a sequence of
statements in the Snobol 1language. These statements are
cerriled to produce a series of instructions tc the
computer, causing it to store data in its memory, to perform
operaticns on this data, and to preserve the results for
human inspection andy/or for further processing by machine.
The data to be manipulated is usually stored externally to
- the program and is read in by the fprogram as it is needed. A
few data values, however, are often written directly in the
program text itself., These values may be of several
different types, but are most often simply strings of
characters. '

Literal Values. Strings are sequences of characters
which may be of any length and may be composed of any
characters in the computer's character set (see Appendix T).
strings whose characters are written directly in the program
text are called string literals and are designated by beinaq
delimited by either single or double quotes; a string
consisting of the five English vowels may be written in a
sSnotol program text as either

'AETIOU? or “AEIOO"

with exactly the same effect. This permits a string literal
to contain whichever quote mark is not being used as the
deliriter without confusion. For example,

"LADYoCHATTERIEY'SaoLOVER"
is a string of 23 characters, vwhile
tvpAYY"oHEaSAIDBRIEFLY.!

is a string of 22 characters. Notice that spaces
(rerresented here by the symbol o) are treated like any
other characters in string literals.

Strings consisting of nothing but digits with perhaps
an initial plus sign or minus sign are called numeric
strings and are of datatype Integer; all other strings are
of datatype String. Those strings which are of datatype
Integer, and which do not have an initial sign, may be
represented in the program text with or without surrounding
quotes. If quotes are nct used, as in

669 Ju49 0 23

2h. Akssignment 9

then these numeric strings are called integer literals. When
an integer 1literal 1is stored 1in the memory, any leading
zerces it may have had are removed; that is, the inteqger is
stored in a "canonical" form. (The canonical form of zero is
the single character 0.) Thus 00023 and 23 and *23* all have
identical representations in the meusory. Leading zeroes may
be preserved fcr non-nurmeric applications by representing
integers in the program text as string literals containing
leading zeroes., For exarple, '00023* would bhe stored as a
. five-character string, while *23* would be stored as a two-
character string. String literals are always stored within
the ccmputer®s memory exactly as they are represented in the
procram, while integer 1literals are always stored in
cancnical form. In what follows, the term string will bhe
used to include objects of datatype TInteger as well as
objects of datatyme String.

Variables. Once a value of any datatype 1is stored
within the conmputer's memory, some method nust be provided
fcr referring to it so that it may be wused repeatedly
thrcughout the ©program. Fach value 1is stored by being
assigned to a variable, which serves as a reference, or
Foirter, to the value. Fvery variable has a name, and any
non-null string of characters may te used as the name of a
variable. That 1is, the name of a variable way be of any
length and may be «ccmposed of any characters of the
character set. Those names which bhegin with a letter and
consist of an arbitrarily long sequence of letters, digits,
and periods are said to be in "identifier form"™ and may be
written directly in the program text. Thus

RHYMF VOWELS UNSUCCESSFUL.COGNATES P.V.C

are all valid representations of variables in program texts
since they are all identifiers, vwhile

TRHYME «+« VOWELS TEST/3 p-v-C

are not, since the first two don't hegin with a letter, and
the last two contain impermissible characters.

String literals, integer literals, and variables thus
have representations in a program text which allow them to
be easily differentiated from one another: string 1literals
begin with a quote (and must end with a quote as well),
integer literals begin with a diqgit, and names of variables
begin with a letter. (Other ways of representing variables,
and particularly variables whose names are not in the form
of identificers, are discussed in Chapter 5 and Chapter 7.)

2A. Assignment ' 10

Assignment Rules, The most fundamental kind of rule in
the Snobol language is the assignment rule which is used to
assign a value to a variable. The variable is wusually
represented by an identifier and the value can be a String
or an Integer or may be of any other datatype (Real,
Pattern, Array, etc.). For example, the assignment rule

VOWELS = 'AEIOU®

specifies that the five-character string AEIOU 1is %o ha
stored in the memory as the value of the variable named
VOWELS. Similarly

COUNT = 47

specifies that the integer 47 is to be stored as the value
cf the variable named COUNT.

In general, an assignment rule has the meaning: let the
variabtie represented ocn the left side of the equals siqn
refer to the value specified on the right side of the equals
sign. (It is obvious that the equals sign does not have its
usual arithmetic meaning in an assignment rnle; it is being
used as an "assignment sign.™)

An assignment rule may have a variable name on its
right side, rather than a literal. When a variable occurs on
the right, it is used to refer to its value. Thus the
sequence of rules

ALEPH = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ!
ALPHA1 = ALEPH
LETTERS = ALEPH

specifies that the variable ALFPH is to have as its value
the 26-character string of the alphabet, that the variable
ALDPEA1 is to have as its value the current value of ALEPH,
and go forth, In an agasiqgnment rule, when the name of a
variable occurs on the left of the assignment sign it stands
for the variable: when the name of a variable occurs on the
right, it stands for the value of that variable.

The relaticn between a variable and its value need not
be a permanent one. Usually a variable is assiqned a variety
of different values in the course of executing a sinqle
prcgram {hence the term "“variable"). A variable named WORD,
for example, miqght be assigned as its successive values each
new wcrd encountered in a group of data, thus changing its
value 10,000 times for a text 10,000 words in 1length., Each
time a value is assigned to a variable, the previous value

2A. Ascsignment 11

of the variable is lost; thus the value of a variable is
alvays the one most recently assigned.

Ihe_Null Value. All variables, before they have been
assigned any cther value, start cut with the "empty" or null
valune. After a variable has been assigned a non-null value,
it may be qgiven the null value acain by executing an
assignment rule with a null value cn the right side, such as

VOWFLS =

The null value may also Le represented by an "enmpty®"
literal, one with no characters in it, as in

1}

VOWELS

or
"n

VOWELS
or by a variable which has a null value, such as

VOWELS

NULL
or

VOWELS ANYTHING

if the varisbles NULYL and ANYTHTHG have null values when the
rules are executed. (In all exanples which follow, wherever
the variable NULL occurs it is assumed by convention to have
a null valiue.)

The null value is a special entity in Snobol, distinct
from all other values, and has a variety of important uses
in the lanquage. Notice particularly that it is
distinquished from the strings space and zero. Thus

VORELS = pv

VORELS = o
and

VOWELS = 0

are each assignments which give the variable named VOWELS a
non-null value; the first value is of datatype String, while
the last two are of datatype Integor. dlthough the null
value 1is a distinct value, it is not aiven a special
datatype; by convention the null value 1is of datatype
Tnteger, Thns the general terrm string, which includes
objects of Adatatype String as well as of datatype Integer,
includes also the null value unless specified otherwise.

2A. Assignment 12

The Special Variable _OUTPUT. Once values have been
stored within the computer's memory, they may be printed out
by assigning them to the special variabie OUTPUT. This
variable differs from others in having the following special
prorerty: whenever the variable OUTPUT is assigned a string
as its value, that wvalue 1is transmitted to a file to be
printed on a line printer which is attached to the computer.
Each execution of a rule in which OUTPUT is assigned such a
value results in the printing of a nevw line of inforeation
(a record). For example, execution of either

OUTPUT = 'AEIOQU?
or

"

OUTPUT VOWELS

(if the current value of the variable VOWELS is the string
AEICU) would cause the five letters AEIOU to be printed at
the left margin of the next available 1line of the output
paper.

If OUTPUT is assigned a null value, as in

OUTPUT

or
OUTPUT

NULL

the result is a null record, which aprears as a blank 1line
cn the output paper.

OUTPUT may be assigned a string cf any length as 1its
value, but only the €first 132 characters, the numher of
characters available per line on a printer, will be printed.
The entire string, hcowever, remains the value of OUTPUT.and
may thus be assigned as the value of other variables as
well. The variable 0OUTIPUT, like any cther variable, may bhe
used on either side of an assignment rule, as in the
sequence '

OUTPUT = VOWELS
oyTpPO0T = CUTEOT
COPY = OUTPUT

whose execution would result in the two lines of output

AFICO
AEICDO

Note that although the special variable OUTPOT is
invelved in all three rules, no printing is produced by the
third hecause it does not specify that OUTPUT is to be

2A. Assignment 13

assigned a value; rather, the value of OUTPUT, which at the
time the rule is executed is the string AFIOU, is assiqned
to the variable coPYy.

The_Special Variable INPUT. Data may be read into +the
computer's memcry by the use of the special varijiable NreurT,
which differs from other variables in that it has the
fcllcuing property: whenever the value of the variahle TNPHT
is needed for the execution of a statement, INPU™ acquires
for its wvalue the next record of the input file. For
example, in the assignment rule

LINE = 1INPUT

the value of INPUT is needed, so it can be assigned as the
valae of LINE; TLINE receives. as its value the strirg of
characters in the next input record.

It is important to recognize that the value of TNPUT
cannot be saved or used without assigning it to another
variable in the same rule in which it is read. The next use
of INFUT will refer, not to its present value, but to the
next record of the data. Thus the sequence

LINE1
LINERZ2

INPUT
INPUT

1T}

assigns two successive records to the two variables LINT1
and LTNE2,

This exauwple illustrates an important difference
between the variables INPUT and OUTPUT: TINPOT Aisplays its
special property (to acquire the next record of an inpnt
file as value) every time its value is needed, but not when
it is assigned a value; OUTPUT displays its special property
(to write a record on an output file) every time it is
assigned a value, but not when its value is needed. Thus the
last value assigned to OUTPUT is always available for
assignment to another variable.

The special variables INPUT and OQUTPUT may both be used
in a single rule, as in

OUTPUT = TINPUT

Fxecution of this rule will cause the characters of the next
data record to be printed by the line printer. Repeated
execution of such a rule could be used to make a printed
listing of an entire qgroup of data (as will bhe shown in
Chapter 3).

2A. Assignment 14

The value of INPUT is always 80 characters long, a
convention adopted since that is the width of a card and of
lines sent from many remote terminals. If the record being
read actually has more than 80 characters, the excess 1is
ignored; if it has fever than 80 characters, spaces are
added at the end to fill out the full length, Fxecuting the
rule

YOWELS = TINPOUT

where the next data record has the five vowel characters
starting in the first position, causes the variable VOWELS

to be assigaed a string consisting of the 5 characters AEIOU
followed by 75 spaces.

Oother Forms of Input and Output. The input to a Snobol
program may exist in the form of punched cards or it may be
stored on a disk file or on magnetic tape. The output from a
program may be printed on paper, punched on cards, or
written on a disk file or on magnetic tape. sncbol provides
the special variable INPUT for reading cards and the special
variable oUTPUT for producing printed paper, but provides no
other special variables for dealing with the other input and
output devices listed above. If the programmer ¥ishes to use
these other media, he must cause a variable to be associated
with a file for input or output, and then use that variable
much as INPUT and OUTPYT are used within his program.
Methods of associating program variables with input and
output files are described in Appendix A, section IT.D.

Procedures. The small amount of Snobol so far presented
allows one to enter data into the computer's mcmory (either
by writing it directly in the program text in the forn of
string and integer literals or by using the special variable
INPUT) and then to print it out (using the special variable
OUTPUT}. However, it is seldom the case that the output is
to be the same as the input; that is, some manipulation of
the data is usually necessary before the desired results can
be ottained. One way of manipulating the data is to invoke
what is termed a procedure. Many procedures to perform
common tasks are already predefined in the Snobol langquage;
a summary of all the predefined procedures which are
available may be found in Appendix A. BResides using these
predefined procedures, programmers may define their own
procedures and add them to the language within their own
programs (see Chapter 6).

A procedure is invoked, or called, by writing a
procedure reference consisting of the name of the procedure
followed directly by 1its argument list enclosed within

2A. Assignment 15

rarentheses. This means that the Snobol system is to perform
the action of the procedure, using its one or more arguments
as data, and is to return the result of carrying out the
action as the value of the procedure call.

The_TRIM() Procedure. The use of the special variable
INPUT almost always results in strings which have spaces at
the end of them. Since these spaces are often not wanted, a
TRIM() procadure is provided by Snobol which accepts any
- expression whose value is a string as its single arqument;
the procedure returns as its value the same string but with
all trailinc spaces removed, Thus those 75 unwanted spaces
vhich occur in the value of VOWELS when the rule

VOWELS = INPUT
is executed may be trimmed off by using the rule
VOWKELS = TRIM(INPUT)

instead. This would give VOWELS the five-character value
AEICU.

When the rule
VOKELS = TRIM{INPUT)

is executed, the eighty-character value of INPUT (the next
record) is obtained, the trailing spaces are removed from it
by the TRIM() procedure, and the shortened string 1is
returned as the value to be assigned to the variable VOWTLS,

Althouah the TRIM{) procedure is most often used to
trim the value of INPUT, it may be used to return the
trismed value of any string given as its arqument. For
examfle, in the rule

TEXT1 = TRIM(TEXT2)

the call to the TRIM() procedure returns the trimmed version

of the string which is the value of TEXT2, to be assigned to
the variable TEXT1. The value of TFEXT2 remains unchanged;
that 1is, it still contains any trailing spaces it had when
the rule was executed. To trim TEXT2 one could use the rule

TEXT2 = TRIM(TEXT2)
Note that although variables and procedunres may have

the same names, thete 1s no confusion in their use in
program texts, since prccedure names are always followed

2A. MAssignment 16

immediately by an open parenthesis preceding the argument
list. Thus cne may vrite

TRIM = TRIM(TEXT)
to assign to the variable TRINM the trimmed value of TEXT.

The SIZE() Procedure. The length of any string may be
determined by a SIZE() procedure, which accepts any
- expression whose value is a string as its argument; the
procedure returns as its value an integer which is the
number of characters in that string. That is, executing

LENGTH1 = SIZE(VOWELS)
would assign to LENGTH1 the integer value 5, vhile executing
LENGTH2 = SIZE(INPUT)

would assign to LENGTH2 the integer value 80. When the
arqument of SIZE() is a null value, the result is the
integer value zero.

The length of the trimmed value of TINPUT wmay he
determined by using the procedures TRIM() and SIZE()
together. This may be done by using the two procedures in
tvo different assignment rules, such as

SAVE = TRIM(INPUT)
LENGTH = SIZE(SAVE)

or, if the value of INPUT were not to be saved but only its
length, by combining both procedures in a single assignment
rule, such as

LENGTH = SIZE(TRIM(INPUT))

Here the arqument of a procedure reference is still another
procedure reference; clearly, these nested procedure calls
must be processed from the inside out, since the arqument of
SIZF() 1is not known until TRIM() has returned the result of
jts work. As this example shows, an arqument of a procedure
reference may be any expression which produces a value the
procedure is able to accept,

Cperators. Data may also be manipulated by means of a
nunter of different operators frovided within the Snobol
lanquage. Fach operator specifies that sone sort of
operation is to be performed on its operand (s). Operators
having a single operand are termed unary operators;

2A. Assignment 17

operators having two operands are termed binary operators.
Often the same symbol is used in program texts to indicate
both a unary operator and a binary operator with different,
perhaps completely unreclated, meanings. The meanings are
easily differcnticted, however, since a unary operator nust
always directly precede its operand with no intervening
blank; a binary operator must always be bounded by blanks. A
summary of all the orerators available in Snobol may bhe
found in Appendix C.

The_Concatenation_Operator., One of the most frequently
used operators is the concatenation operator. When the
operands of this binary operator are strings, it specifies
that the two strings are to be concatenated together, i.e.,
that the second string is to be appended directly to the
first, The symbol for this binary operator, since it occurs
so often, 1is sinply a single blank (which requires,
therefore, no further blanks to separate it from its
operands). For example, the assignment rule

ALPHA = VOWELS CONSONANTS 'YW!

contains two concatenation operators and specifies that the
variable ALPHA is to be assiqgned a string built up by taking
the value of VOWELS, followed by the value of CONSONANTS,
fcllowed by the two characters YW. If the variables VOWELS
and CONSONANTS have previously been assigned the expected
values, then the variable ALPHA will be assigned the value
of all the characters of the alphabet, in the indicated
order. The values of VOWELS and CONSONANTS are in no way
changed by the execution of this rule; likewise, subsequent
changes 1in their values can in no way affect the value of
ALPHA, which will change only when another rule specifying
an assignment to ALPHA is exccuted.

The variable appearing to the left of the assignment
sign may be wused within a concatenation on the right as
well, as in the rule

VOWELS = VOWELS 'YW

This rule appends the characters YW to the string which is
the current value of VOWELS and then assigns this resultinqg
string as the new value of the variable VOWELS. The old
value of VOWELS is thereby lost,

Rules of this form are often used to collect successive
characters in an increasingly long string. Fxecution of the
rule

2h. Assignment i8

LIST = LIST NEWCHAR

would cause whatever new character is the value of NEWCHAR
to be appended to those already referred to by the variable
LIST, and the re-assignment to the variable LIST of this
longer string. If LIST had a null value, as it easily might
the first time the rule was executed, then it would simply
be assigned the same value as that of NEWCHAR] the
concatenation would indeed take place as specified but there
would be no evidence that it had occurred since the null
value contributes no characters to the string.

Note that no spaces are generated by the concatenation
process itself. That is, the nev characters are appended to
the list in the example above in a contiquous fashion with
no intervening spaces. If spaces are desired in the result
of a concatenation, they must themselves be concatenated
into the string, as in the sequence

ouUTPUT
ouTPUT

'AnROSE"
QUTPUT 'nISm*' ONUTPOUT *alSm' OUTPUT

whose execution will produce the following output:

k RCSE ,
A RCSE IS A ROSE IS A ROSE

More complicated Snobol expressions may be operands of
the concatenation operator; for example, the TRIM()
procedure may be used to produce a heading, as in

OUTPUT = t#k#xxkn? TRIM (INPOT) *okkkkkx?
or
HEAD = TRIM(INEUT) 'n' TRIM(INPUT) 'o' TRIM(INPUT)

This last rule specifies that the next three data records
are to be read, their trailing spaces (if any) trimmed off,
and a single space placed between the trimmed content of
successive records. The resulting string is then assigned to
the variable HEAD by which it may be referenced in other
statements of the progranm.

Tf an integer literal is involved in a concatenation,
it contributes the string of digits representing its numeric
value. Thus

SUBST VOWELS 0046

and

SUBST VOWELS ‘'hég?

i

2A. Assignment 19

produce the same string as the new value of SUBST, namely
AFICU46,

The _Arithrmetic Operators. Four binary operators are
provided witihin Suobol for doing the four basic aritnmetic
operations of addition, subtraction, multiplication, anAd
division. The symbols used to represent these operators in
the program text are as follows:

addition +
subtraction -
multiplication *
division /

Since these are binary operators, they must always be
bourded by blanks.

The assignment rules

ANSWER = 669 + 527
ANSYER = ((A ¢ B) = (C % (=D))) / E
ANSWER = (SUM1 / SUM2) + 3

would all assiqgn an integer value to the variable AKNSHER,
provided the variables to the right of the assignment signs
all refer to values of datatype Integer wvhen the rules are
executed. ‘

Repeated executions of rules of the fornm
COUNT = COUNT + 1

are often used to count the number of times a given event
occurs. Thaese rules are in some vays analogous to ones of
the formn

LIST = LIST NEWCHAR

which cause a new character to be aprended to the value of
LTIST; here a new integer, one larger than its predecessor,
beccmes the value of COUNT. If COUNT had a null value when
the rule was executed, it would acquire the value 1 since
the null value is considered equal to zero when it is an
operand of an arithmetic operator.

The operands of arithmetic operators must always bhe
numeric; that is, they nust be any expressions whose values
are integers, real numbers (numbers containing decimal
points), or iull. Real numbers and intecers, however, may
not cccur together within the same arithmetic expression

2A. Assignuent 20

{(i.e., mixed mode arithmetic is not allowed). Purther
infcrmation on Snobol arithmetic, including facts about real
numters, conversion of integers into real numbers and real
nunbers into strings, truncation on division, etc., mnay he
found in Appcndix *F,

A Complete Snohol Program__Text. Given below is a
complete program text which makes use of only a few of the
features of the Snobol language already described: it
~employs only assignment, concatenation, and the special
variable OUTPUT: since all data is provided within the
program text, the special variable INPUT is not needed.
Comments have been inserted in the program text before some
statenents to indicate their purpose; a comment is
distinguished by having an asterisk (*) as its first
character. Instructions for representing program texts on
punched cards may be found in Appendix H.

* PROGRAM TG PRINT A PARTICULAR DESIGN INVOLVING FISH
* SET UP THE BASIC COMPONENTS
LT = <
GT = ">
BLU = ‘noon!
BL10 = BL4 BL4 ‘*on!
*
* BUTLD FISH WHICH SWIM LEFT, SWIM RIGHT, AND MATE
LPISH = LT GT LT
RPISH = GT LT GT
MPISH = LFISH GT
- :
* BUILD LONGER STRINGS COMPOSED OF DIFFERENT KINDS OF FISH
LSWTM = LFISH BL4 LFISH BL4 LFISH BLU TFISH BLU
RSWIM = RFISH BL4 RFISH BL4 RFISH BL4 RFISH BLY
MSWIM = MPISH BL10 MFISH EL10 MFISH BL10 MFISH
SCHOOL = RSWIM LSWIM
*
* PRODUCE FOUR LINES OF OUTPUT
QUTPUT = RSWIM RSWIMN
OUTPUT = LSWIM LSVWIH
OUTPUT = SCHOQL
OUTPUT = MSWTHM
END
Output from this program is the design shown below.
><> > ><> ><> ><> ><H> ><> ><>
K <>< <L << <>< <>< <>< <><
> ><> > ><> <>< < <L <<

o< <O <O OO

21

3A. THE FLOW OF CCNTROL

The statements which make up a Snobol program are
seldom designed to be executed in the order in which they
are written in the program text. Instead, certain segments
of the program, consisting of one or more statements each,
are intended to be executed repeatedly until some
terrinating condition is encountered. This condition may be
that a certain pattern of characters has occurred in the
data, that the data group is exhausted, that the seqment has
been executed a certain numnber of times, etc. Once the
terrinating condition has been met, then repeated execution
of another such segment, or "loop,% may begin. 7The choice of
the particular sequent to be executed can be made dependent
on certain features of the data being processed, so the uso
of the same program with different data will often result in
the execution of a different set of statements from within
the program., The actual order in which the statements of a
program are executed is called the "flow of control."

Tte flow of control is specified by means of labels
which are given to staterents for purposes of reference, and
Ly rmeans of go-to's which indicate the statement to he
executed next by making reference to its label. The iabel of
a statement is written to the left of its rule, and the go-
to is written to the right, as in

ASSIGN VOWELS = 'AFIOUD?® ¢ (NEXT)

Here the 1label of the statement is ASSIGN, the rulae
specifies an assignment, and the go-to specifies that the
next statement to be executed after this assignment takes
place 1is the one latellcd NEXT. TIf the qo-to part of a
statement is absent, it is understood that control flows by
default to the following statement of the proqgranm.

labels. Any statement may be given a label so that it
may be vreferred to by other statements of the proqram, or
simply by the programmer for his own convenience. A lahel
must always be an identifier and should be chosen so as to
be mnemonically useful. Care nust be taken when givinag
statements labels to see that the same label does not occnr
twice vithin a single program, or a compile-time error will
occur.

Labels are distinguished from the names of variables in
a Snobol statcment by their position. A label, if present,
must always start in the first character position of a
statement and nust be separated fron the rule, if present,

3A. The Plow of Control _ 22

by cne or more blanks; if a statement is not labelled, the
rule must begin with a blank. Because they are distinguished
by position, labels and variable names of the same form may
be used freely together without ccnfusion, as in

VOWFLS VOWELS = VOWELS 'YW'

which is a statement lakelled VOWELS, whose rule specifies
that the variable named VOWELS is to have the characters YW
concatenated to its value.

It is sometimes convenient to write a statenent vhich
concists solely of a label, as in

REAT

since this makes subsections of the program text easy to
locate and makes modifications simpler.

Go-to's. The presence of a go-to within a statement 1is
signalled by the occurrence of a colon which serves as at
explicit separator between the go-to and any other part of
the statement which may have preceded it., Folloving the
colon (which may optionally be bounded by one or more
blanks) the information as to which statement is to be
executed next is provided by writing the label of that

statement within parentheses. For instance, the statement
: (TEST)

consists of a go-to only (it has nc label and no rule) and
specifies that the next statement to be executed is the one
labelled TEST.

Usually a go-to follows a rule, as in the statement
VOWELS = TRIM(INPUOT) H (TEST)

which specifies that after the assiqnment is performed, the
next statement to be executed is the one labelled TPST.

The form of the go-to's Jjust shown is called
unccnditional, because execution of the statement in which
they occur will always cause a transfer of control to the
statement labelled TRST. More commonly, go-to's are
conditional upon the possible failure of the rule which
precedes them 1in the same statement. This causes a choice,
or branch, to occur in the flow of control and allows the
data to determine which path through the program will be

3h. The Flow of Control 23

followed next. (Yays in which rules wmay fail will be
indicated presently.)

Conditional go-to's are written like unconditional qo-
to's, with the addition of a prefixed P (for failure) or S
{for success). The statement

TEST LINE = INPUT ¢ P(WRITE)

specifies that control be transferred to the statement
laktelled WRITE only if the rule LINE = INPUT™ fails.
Similarly, the statement

TEST LINE = TINPUT - ¢ S(READ)

specifies a transfer to the statement labelled READ unicss
the rule fails (i.e., if it succeeds). In either statenent,
if the condition for transfer is not met, control will pass
by default to the next statement of the proqram. Thus a
conditional go-to alwavs enrbodies both a success and a
failure transfer, even though one of “hem may be eXpressoq
implicitly rather than explicitly. Foth a success anil a
failure transfer may be written explicitly in a singlie
statement as in

TEST LINE = JINPUT : F(WRITF) S {READ)

Since both cases are provided for explicitly, control will
rever pass to the following statement bty default, The order
of the success and failure transfers is immaterial and the
space hetveen then is optional; the only important
requirement is that no blank may intervene between an F or
an S and its following open parenthesis.

The_Special Transfer END. A go-to specifying a transfer
to END is used to terminate execution of a program. This
transfer has a special system definition, and constitutes a
request to the Snobol system to stop executina. Apy numrber
of statements in a program may contain go-to's specifying
transfers to FEND, and the first such transfer to be takon
ends execution of the program.

An alternative way of terminating execution 1is to
execute the statement which stands last in the program tert,
without taking a transfer from it back to some other
statement of the progranm.

There is no restriction against using FND as the label
of any statement of the program text, hut if this is done
its special system definition is 1lost. The convention

3A. The Flow of Control 24

adopted here is to terminate every progran text with a
statement consisting solely of the label

END

A transfer to END causes this last statement to be executed
and the flow of control continues on to the next statement;
since there is no next statement, the program terminates and
the effect is the same as if the system definition of END
had not been overridden.

Failure of the_ Rule. Failure of the rule is not an
error and does not cause execution of the program to cease.
Rather, it is used to direct the flow of control and to
prevent the rule which has failed from continuing execution.
When a rule fails, control is sent immediately to the ao-to
part of the statement so no further processing of the rule
is undertaken; in particular, the assignment specified by an
ascignment Tule does not occur. If the statement in which
the failure occurs has no go-to, ccntrol passes by default
to the next statement of the program; if the go-to is
conditional (as would usually be the case) the failure
transfer, expressed explicitly or-implicitly, is taken; if
the go-to is unconditional, this unconditional transfer is
used.

Fajilure of INPUT. There are a variety of ways in which
a rule can fail. Of the rules presented so far, howvever,
only those which call for the reading of data -—— those in
which the value of INFUT is needed —— have any possibility
of failing. Such a rule will fail when an end-of-group
recerd is read, i.e., when there are no more data records in
the group to become the new value cf INPUT. The ability ¢to
test for an end-of-group mark, and to direct the flow of
control if it is encountered, makes it possible to speciiy
that scme process is to be performed on all the records of a
data group without having to specify how many records that
might be. For example, all the records of a data qroup, no
matter how many there are, may be printed by executing the
fcllowing very sinple complete program text.

REAL OUTPUT = INPOT T S (READ)
END

Every time the statement labelled RERD is executed,
INPOT acquires the value of the next data record. Tf that
value is not an end-of-qgroup mark, it is assiqned to the
variable OUTPUT and hence printed. Since the rule has not
failed, control is sent back to RFAD and the process is
performed again. This single statement, A one~statenent

(921

3A. The PFPlow of Control 2

loop, will be executed repeatedly until the end-of-grouvn
mark 1is encountered, causing the rule to fail., In this case
the assignrent will not take place and the value of OUTPUT
will remain unchanged. Control will then flow by default to
the statement labelled END, terminating the program.

More than one data group may be processed by a single
prcgram since the reading of an end-of-group mark does not
prevent further reading of data. The following program text
prints two data groups, the first in single-spaced format
(as above) and the second in double-spaced format (with a
blank 1line following each record). It prints a message at
the end of the first group.

READ 1 OUTPUT = INPUT : S(READY)
OUTPUT = *ENDnOFuGRCUPmONE.*

REAL2 OUTPUT = INDUT : F(END)
OUTPUT = NULL : (READ?2)

END

The one-statement 1oop labelled READ1 fails when INPOT
acquires the value of the first end-of-group mark, but the
next use of INPUT (in the two-statement 1loop stavriing at
READ2) causes it to acquire the value of the first data
record in tue second group. Fventually a failure of THPUT
will occur in this statement as vell, when a second end-of-
group mark 1is read, sending control to END and thus
terrinating the progranm.

Fvaluation Rules. A rule in a program text <consisting
of a single expression only is called an evaluation rule.
The statement

INPOUT : F(DONE)

consists of an evaluation rule and a go-to. When such a
statement 1is executed, the single expression of the rule is
evaluated, often causing success or failure of the runle to
be determined; then the go-to part of the statement, if any,
is rrocessed. The statement above indicates that a record is
to ke read from the input file, and a transfer taken to DONT
if that record is an end-of-qroup mark. No provision is made
for preserving the data which is read, but there are some
aprlications in which the data 1is not needed. The two
complete proqgram texts helow provide examples of suach
applications: the first is a program to count the numher of
records 1in a gqroup and to print the result; the second
prints every cther data record in a group, starting with the
seccnd record.

3A. The Flow of Control 26

* PROGRAM TO COUNT THE NUMBER OF RECORDS IN A GROOP

READ INPUT : F(DONE)
COUNT = COUNT + 1 : (READ)
DONE ouTPUT = CCUNT ‘*'oRECORDS?

END

* PROGRAM TO PRINT EVERY OTHER RECORD STARTING WITH THE 2ND
REATL INPUT F (END)
OUTPUT = INPUT T S (READ)

.8

END

Evaluation rules are commonly used to direct the flow
of control through failure of the rule; they can also be
used to cause a variable to have a special input or output
asscciation attached to it, to define a new procedure, etc.,
in ways to be described later; in these cases failure of the
rule is not involved.

Test Procedures. Failure of the rule may also be caused
by the failure of a procedure call which occurs within the
rule. Snobol provides aine predefined procedures, called
test procedures, which are used primarily to direct the flou
of control. Each test procedure accepts two arqguments and
tests to see whether or not some specified relation, such as
equality, holds between them. If the test succeads, the test
prccedure returns the null value and execution of the rule
continues. If the test fails, the rule of which it is a part
fails as well and control is sent immediately to the qo-to
part of the statement where the failure transfer will be
taken,

The Test Procedures IDENT() and DIFFER(). IDENT() and
DIFFFR() may have arguments cf any datatype; they are used
to determine whether or not the values of their arguments
are identical. In order to he identical, two values nust Le
of the same datatype; if both arquments are of datatype
string or both of datatype Integer, then they are tested for
character for character identity. Note that the null value
is pot identical to =zero, since zero is represented by a
single character, even though the null value 1is considered
equal to zero vwhen used in arithmetic operations. IDENT ()
and DIFFER() perform exactly the same test bhut return
oppesite results: IDENT() fails if its twvo arguments are not
jdentical, while DTYFFER() fails if its two arquments arce
identical. Thus the following statements are equivalent:

IDENT (STRING1, STRING2) : S (SAME)
DIFFER(STKRING1,STRING2) : F(SAME)

3A. The Flow of Control 27

Spaces, of course, must be considered as any other
character in the data, so if the rules

STRINGY

*RKINGaLEAR!?
and

i

STRING2 YKINGOoLEARO!
had just been executed, the rule with TIDENT() above would
fail while the rule with DIFFER() would not.

It is often important, for reasons which will be
indicated presently, to know whether or not a given variable
has a null value. This can be determined by the execution of

IDENT (STRING,' ') : S (EMPTY)
or

DIFPER{STRING,NULL) F(EMPTY)

or something similar. Since any missing arqument of a
procedure reference is assumed to be null, the simplest (if
not perhaps the clearest) way to write the above statement
is in the form

IDENT (STRTNG) : S(EMPTY)

The_Test Procedvre LGT(). LGT() compares two strings to
determine whether or not the first is "Lexicographically
Grecater Than" the second - that 1is, vwhether the first
follows the second in alphabetical order. For example, the
segquence ‘

STR1 = 'ABB!
STR2 = ‘'ABC! ’
LGT(STR2,STR1) ¢ S({WRITE)

will send control to WRITE since AEC alphabetizes after ARR.

The string values being compared may be of any 1length
and may be composed of any characters; the fMalphabetic
order" of non-alphabetic characters is determined by the
order of the computer's character set (see Appendix TI).
Although the character "space" has special significance in
most written languages, it is treated as any other character
by the computer, so its relative position within the
character set rust be taken into account when alphabetizing
material containing spaces.

If either of the values being compared by LGT({) is not
a string, an execution-time error will result.

3A. The Plow of Control 28

Arithmetic Test Procedures. The remaining six
predefined test procedures compare two numeric values for
the following arithmetic relationships:

procedure relationship

EQ(X,Y) X equal to Y

NE (X, Y) X not equal to Y

LT(X,Y) X less than Y

LE (X, Y) X less than or equal to Y

GT (X,Y) X greater than Y

GE(X,Y) X greater than or equal to Y

All these procedures fail if the indicated relationship does
not hcld.

EQ() and NE() are very similar to IDENT() and DIFFER{(),
except that here arithmetic identity, rather than character
for character identity, is required. Thus EN (23, +00023")
%¥ill not Fail since both arguments have the numeric value of
23, while IDENT(23,'+00023') will fail since character for
character identity cannot be found between two strings of
di fferent lengths. The expression EQ(NULL,0) suczeeds since
the null value and zero are arithmetically identical.

If either arqument of an arithmetic test procedure has
a non-numeric value, an execution-time error results.

Test Procedures within Assignment Rules. Any number of
references to test procedures may be embedded within the
right-hand side of an assignment rule where they are used
not only to direct the flow of control but also to determine
whether or not the assignment is to be executed. FOr
exanmgple, the statement

STRING1 = IDENT{STRING1,NULL) STRING2 : F (SKIP)

specifies that STRING1 is to be given the valne of STRING2
only if STRING1 has a null value when the rule is executed.
If it is non-null, then the IDENT() procedure will signal
failure, sending control to SKIP before the assiqgnment takes
rlace, so the value of STRING1 will remain unchanged.

several arithmetic test procedures may be used in
conjunction with one another to specify a vange of
acceptable values. The following rule for example, allovws
the printing of a record having from 2 to 10 characters
only.

3A. The Flow of Control _ 29

OUTPCT = GE(SIZE(REC),2) LE(SIZF(REC),10) REC

If either of the test procedures signals failure, no output
is produced.

The following single statement employs two references
to test procedures to specify that a transfer is to be taken
to LOOP2 if the value of N is either 0 or 1: if 'N has
neither value, then whatever value it has is increased by 1
and control flows by default to the next statement,

N = DIFFER(N,0) DIFFER(N,1) N + 1 : F(LOOP2)

The desired condition here is that the value of N be
either 0 or 1, so there is no need to differentiate the two
cases. However, it is often necessary to know which part of
the rule has signalled failure and to take different
transfers accordinqgly. Consider, for instance, the problenm
of giving STRING, if it is null, the value of the next data
record. The statement

STRING = TIDENT(STRING} TRIM(INPUT) : P (SKIDP)

will send contrcl to the statement labelled SKIP if STRTING
is non-null but also 1if an end-of-qroup record is
enccuntered, makinqg nc differentiation between the two
cases. Different transfers will usually be needed for these
two situations, so in this case it will be necessary to
exrress the process in two statements, each having a failure
transfer, such as the following:

NEXT = TRIM(INPUT) ¢ F(DON®)
STRING = IDENT(STRING) NEXT s P(SKIP)

The placement of a reference to a test procedure within
the right side of an assiqnment rule implies that the value
which the procedure returns is to be concatenated with any
other right-side values before assignment occurs. All test
procedures return null values, so the result of such
concatenation 1is never visible: the null value concatenated
vith any other value leaves that value unchanged.

Lcops. Any useful proqram will contain at 1least one
(and usually many) loops which are to bhe executed repeatedly
until some terminating condition is encountered. These loops
may consist of any number of statements (they are typically
- lcnger than the one and two-statement loops which have been
the only examples presented so far), and may overlap or be
nested within one another. The terminating condition may be
that an end-of-gqroup record is read (as in the earlier

3A. The Flow of Control 30

examples), that some other feature of the data is
encountered, or that the 1loop has been entered a certain
nurter of times. Every time a loop is entered it is
necessary to perform sone test, often with the use of a test
procedure, to determine whether or not the terminating
condition has been nmet; if it has, control is sent out of
the loop to some other part of the program. If the test 1is
accidentally onitted, or set up wrongly, then there may he
no way to leave the loop and the set of statements of which
it is composed will be executed repeatedly until the progranm
is terminated by the computer's operating system. When this
happens, the program is said to be in an "infinite" loop.

lLoops Controlled by Data_ _Conditions. The terminating
condition for a loop may be that a record of a certain form
is encountered in the data., If this record is an end-of-
group mark, then the test for its existence can be made hy
simply providing a failure transfer on a statement in which
the value of INPUT is needed. However, it is often useful to
divide the data into ‘"subgroups," each of which is
terminated by a record having a special pattern of
characters, such as one consisting of asterisks as the first
six characters, followed by spaces. If each subgroup is to
be processed separately, then a test nust be made for this
special signal each time a record is read, and a transfer
taken accordingly.

IDENT () or DYFFER() can be used to make this kind of
test. For example, the following program segment reads ani
prints all data records until one with asterisks as the
first six characters and no other non-space characters 1s
encountered: when that record is read, control 1is sent to
STARS which may be the initial statement of another loop.

READ RECORD = TRIM(INPUT) : F{(ERROR)
IDENT (RECORD, " %% k%) : S(STARS)
OUTPUT = RECORD H (READ)

Note that provision is made for the possibility that a
reccrd consisting of six initial asterisks will not be found
in the group, i.e., that the program is processing the wrong
data. This condition may be treated by transferring to a
statement labelled FRROR when an end-of-group mark is read.
Here an appropriate error message may be written and control
sent either to FND or to some other part of the program,
depending on the sort of tasks which still remain to be
done. I1f such an error exit were nct provided there might be
no indication from the program that anything was wrong, and
it might attempt the processing of marny groups of erronecus
data. In any event, the program has entered an infinite loop

3A. The FPlow of Control 31

since it is persistently seeking a terminating condition
vhich will never be found.

Loops_Controlled by Counts. Arithmetic test procedures
are often used to control the number of times that a loop is
to te entered before control is sent to some other part of a
program; that is, the terminating condition for such a loop
will be that it has been executed a given numher of tines.
Using the FQ(}) procedure, for example, one may write a loop
to print 5 data records, and then go on to the rest of the
program. (If there are 1less than 5 records to be read,
ccntrol is sent to ERROF where an appropriate error messaqe
can te printed.)

LOOP OUTPUT = INPUT : F(ERROR)
COUNT = COCUNT + 1
FQ (COUNT, 5) : F(LOOP)

A similar loop may be written by using the LT()
procedure and emhedding it wvithin the second assiqnment
rule, as follows:

L.OOE OUTPUT = INEOT : F(ERROR)
COUNT = LT(COUNT,U4) COUNT + 1 : S(LOOP)

In this segment it has heen necessary to use 4 as the
test value rather than 5 since the procedure call is
executed before the value of CCUNT 1is incremented, rather
than after as 1in +the earlier example. In both segments,
COUNT is assumed to have the null value when the seqgment is

executed for the first time.

Information as to the number c¢f times that something is
to be done may be found on a data record or computed during
the course of execution, rather than being written directly
into the program text. For example, the following segment
wvould cause the LOCP to be entered as many times as there
were characters in each data record that it was processing.

READ RFCORD = TRIM(INPUT) : F(ENDDATA)
‘ N = SIZE(RECORD)
LoOP N = NE(N,0) N - 1 : F(READ)
[series of statements to process record)
: (Loop)

Here the test has bheen placed at the heginning of the
loop 1instead of at the end, and the counting has heen done
by suttraction rather than by addition. It might seen
clearer and more intuitive to perform the process first and
to test for the terminating condition afterwards (as in the

3h. The Flow of Control 32

two previous examples). Por instance, the program text

REAT RECORD = TRIM(INPUT) ¢ F(ENDDATA)
N = SIZE(RECORD)
LOOP ([series of statements to process record)
N = NE(N,1) N -1 :+ S(LOOP) F (READ)

might seem to te eguivalent to the one given above, in the
sense cf alvays producing the same result. An examination of
the case of a one-character record shows that the progranm
appears to work properly. In this case it would perform the
prdcess once, find that N was equal to 1 and then leave the
loop correctly by transferring to READ and reading in the
next record. .

The difference between the twvwo programs becores
apparent when one attempts to process a record consisting
solely of spaces vhich when trimmed becomes null. The
program which tests before processing will handle records of
size zero appropriately by failing the first time the loop
is entered and returning immediately to read the next
record. The program which processes first and then tests
wijil perrorm the process once (erroneously) and then will
test to see whether the value of ¥ is equal to 1. Since it
is zerc, the value of N will be decrrased by 1 to become -1,
and control will be sent back into the loop so the process
will te performed again. Henceforth the value of N will
never equal 1, but a series of constantly decreasing
negative numbers., The terminating condition will thus never
be ret and the program has entered an infinite loop.

33

Una. PATTERN MATCHING

The process of searching a string of characters to
determine whether or not it contains one of a specified set
of strings is called pattern matching. The pattern bheina
sought may be something very particular, such as a certain
character or a certain number of characters, or it may be
scrething much more general , such as one of a choice of
characters or all characters preceding one of a choice of
characters. Like calls to test procedures, pattern matches
either succeed or fail, causing the rules in which they
occur to succeed or fail as well. Thus pattern matching may
be used to direct the flow of control.

The Pattern-Matching Rule. The pattern-matching rule
consists of two main parts: the string reference, whose
value is to be searched, and the pattern. These two parts
must be separated in the program text by one or more blanks.
The very simple pattern-matching statement

VOWELS ‘'E! : S(YES)

specifies that the current value of VOWELS is to be searched
for an 1instance of the character F, and that a transfer ig
to be taken to the statement labelled YES if the search is
successful., TIf the search fails, then control will flow by
default to the next statement of the program. Whether the
search succeeds or fails, the value of VOWELS is in no way
affected.

The pattern part may be in the form of a variable,
rather than a 1literal, and may have a value consisting of
more than one character. For example, the sequence

PAT = 'IOQU?
VOWELS PAT T S(YES)

specifies a search through the value of VOWRFLS for the
three-character string IOU. This pattern match will succeed
(if VOWELS has the value ARIOU) with the third, fourth, and
fifth characters of the string reference being matched, and
control will be sent to YES.

The search for the pattern always begins with the first
character of the string reference and continues through the
rest of the string from left to riqgnt until either a match
is found or all characters have heen tested. Note that if
the first statement above had read

4UA. Pattern Matching 34

PAT = toUI?

the search would have failed. The characters OUI are indeed
present within the string reference, but not 1in the
indicated order.

The string reference part of a pattern-matching rule
may be any expression which gives a string vhen evaluated.
Thus executing the statement

TRIM(TEXT) 'aTHEa' :+ S(YES)

will cause the expression TRIM(TEXT) to be evaluated, and
its value to be searched for an instance of the word THF,
surrounded by spaces. Similarly, the use of the variable
INPOT within the string reference will cause it to acquire
the value of the next data record, since this value will be
needed for the execution of the statement. A statement of
the form

TRIM(INPUT) YuTHEQ! s S(YES)

however, is not likely to be useful since (1) the value of
INPUT has not been assigned to another variable and hence
will be lost, and {(2) no distinction is made betveen failure
of INPUT and failure of the pattern match.

The Replacement Rule. The replacement rule specifies a
pattern which is to be sought in the string reference, and
alsc a replacement for that part of the string whick 1is
matched by the pattern if the search is successful. For
example, the replacement statement

WORD 'A' = 'Y! :+ S(FOUNDR)

specifies that the character A is to be sought within the
value of WORD and that the first A which is found, if any,
is to be replaced by a Y. This new string, with Y in place
of A, is stored within the memory and assigned to the
variable WORD; the old value cf WORD is lost.

Note that the search succeeds, replacement occurs, and
control is sent to the go-to part of the statement as soon
as the first (leftmost) instance of the pattern is found, so
successive instances of the pattern remain unfound and
unaltered. In order to change, for example, all A's within a
string reference to Y's, one would write a loop of the form

SELF WORD A = 'Y : S(SELF)

4UA. Pattern Matching . 35

When this rule failed, any A's which had been within the
original value of WORD would all have bheen changed to Y's.
If WORD referred to the value SASSAFRAS when the 1loop was
first entered, its new value would be the string SYSSYFRYS.

The replacement for a matched substring may be sho
or longer than the string it replaces. Thus one may wr
rule to replace a double vowel by a single one, as

oy
%

WORD 'EE' = VE!
or a single vowel by a double one, as in
WORD ‘EY = 'TEEe

While it is perfectly safe to write the first of these
replacement statements in a 1loop, so that all double (or
trifle, etc.) E's are reduced to a single &, execution of
the statement

SELF WORD 'E' = 'EE! : S(SELF)

to make all single E's into double ones wili send the
program into an infinite loop if the value of WORD contains
ar E, Care must always te taken when writing replacerant
statements in a lcop to insure that the pattern is not
contained within its replacement, unless some terminatinag
condition other than pattern match failure is used.

Deletion of a matched pattern may be accomplished hy
providing a null value to the right of the assiqnment sign.
Thus one may delete all FE's from a string reference hy
executing a statement of the form

DELETE WORD *E* = NULL ¢+ S(DELETE)

which will fail only when no E's remain within the value of
WORD.

The replacement rule, which is syntactically a
combination of a pattern-matching and an assignment rule, is
the last of the four types of rules in the Snobol lanqguaqe.
If the rule part of a statement is non-null, it must call
for either an assignment, an evaluation, a pattern match, or
a rerlacement.

The Alternation Orerator. The alternation operator, a
binary operator designated by the symbol | , is used to
specify alternatives within a pattern. The pattern-matching
statement

4p. Pattern Matching : 36

WORD 'A! | ‘E! T S(YES)

specifies that the wvalue of WORD is to be searched for
either an A or an E, and if either is fcund a transfer is to
be takcn to YTS.

More than cne alternation operator may be used within a
pattern, as in the statement

WORD 'A' | 'E' | *I' | *O' | ‘'UO' = S(YES)

which will succeed if the value of WORD contains any of the
five vowels. The search for a match proceeds as follows: the
first character of WORD is checked successively for being A,
E, I, 0, or U; if it is none of these the second character
is checked beginning with the A alternative, andi so on, As
soon as any one of the alternatives is found, transfer is
made to YES. The pattern matching €ails only wvwhen all
characters of WORD have been examined and no alternative of
the pattern has been found.

The alternatives may consist of any number of
characters, not Jjust a single character as in the example
above. One may search a line to determine whether or not it
contains one of a number of words, where a word is defined
as a sequence of characters surrounded by spaces, by
employing a statement of the form

LINE 'mAno' } 'o' WORD1 *o' | *n' WORD2 ‘n' : S(YES)

The values of WORD1 and WORD2 may be strings of any length.
An alternative way of writing this pattern is used in the
statement

LINE ‘n' (*A' | WORD1 | WORD2) ‘o : S(YES)

Here, parentheses are necessary since the <concatenation
operator takes precedence over t+he alternation operator; if
the rarentheses vwere missing, the statement would be
equivalent to

LINF ‘gA' | WORD1 | WORL2 'm! : S(YES)

which is not what was intended.

o S A o —— . o i o e o o WP T ——— s o e S o

number of predefined procedures for use solely in
contructing patterns. The pattern procedures ANY () and
NOTANY () provide an efficient way of expressing alternation,
where the alternatives are single characters only. The

LA, Pattern Matching 37

pattern-matching statement
WORD 'A®* § YE' ¢ 'I' } *O' | *UY : S(YES)

which employs four instances of the alternation operator may
be written instead as

WORD ANY('AEIOU') : S(YES)
or

WORD . ANY (VOHELS) : S(YES)
or

WORD ANY (TRIM(INPUT)) ¢ S (YES)

(if both VOWELS and TRIM(INPUT) have the value AERIOU). ANY ()
accepts for its single arqument any expression whose value
is a string, and returns as its value a pattern which will
match any single character of that string. The pattern
returned by ANY{) contains only a single test for each
character of the argqument string, no natter how nmany
instances of that character the striag contains. That is,
the pattern returned by ANY('SAGAS*) is equivalent to that
of 'SY | 'Av | G ,

The companion procedure to ANY() 1is NOTANY() which
returns a pattern to match any single character 1ot
represented in its argqument. Thus

WORD NOTANY(*AEIOU') : S({YES)

will match the first character within the value of WORD
which 1is not a vowel. This match will succeed if any
character of the complete character set, except A, E, I, O,
or U, is found. !

It is always better to use ANY() or HLOTANY() where
single <character alternatives are involved, but it will be
necessary to use the alternation operator for alternatives
of more than one character. Both methods of expressing
alternation may be used together as in the statement

WORD 'YW®' | *YI' | ANY('AEIOU?Y) : S (GOOD)
The alternation operator and pattern procedures may he
used within replacement rules as well as within pattern-
matching rules, For example, the replacement rule

WORD ANY('AETOU'Y = ¢X°

specifics that the first vowel within the value of WORD is
to be replaced bty an ¥X; the rule

4A. Pattern Matching 38

WORD NOTANY('0123456789') = NULL

specifies that the first non-digit is to be deleted. Fither
rule may be written in a loop to specify that all vovels are
to te replaced by Y's

LOOE1 WORD ANY (*AEICU') = X! T S(rLoopP1)
or that all non-digits are to be deleted
LOOE2 WORD NOTANY ('0123456789¢*) = NULL : S (LOOP2)

The Conditional _Assignment__Operator. It is cften
important when using a pattern which will match any one of a
numter of strings to preserve the iniormation as to exactly
what has been matched in the.seavwch. This may be done by
assigning the matched substring as the value of a variable
with +the conditional assiqnment operator, a binary operator
whose symbol is a period. The pattern-matching statement

WORD (*AW' { 'AY' | ANY('AEY¥OU')) . SAVE : F(NO)

specifies that the value of WORD is to be searched for the
alternatives, and that the ©part of the string reference
which satisfies the pattern is to be assigned to the
variable SAVE. If the value of WORD does not contain any of
these alternatives, then the match fails and no assignment
takes place, i.e., the value of SAVE remains unchanged.

(Note that these particular two-character alternatives
must be expressed before the one-character alternatives:
once an A is found the rule succeeds, so a search for AY or
AW would never be undertaken if they were not the first
alternatives to be tried.)

; More than one conditional assignment operator may be
used to assign the same value to more than one variable. The
statement

WORD ANY('AFIOU') . SAVE1 . SAVE2 . SAVES3 : F(NO)

assigns the firét vowel within the value of W®ORD to the
variatles SPVE1, SAVEZ2, and SAVE3,

If the variable OUTPUT is used, as in
LINE (WORD1 § WORD2 | WORD3) . OUTPUT

the successfnl match will be printed. The use of parentheses
is' necessary here since the conditional assignment operator

4UA. Pattern Matching 39

asscciates itgelf with the single pattern element
immediately to its left; if the parentheses were missing,
OUTPUT would be assigned a value only if the value of WORD3
vas the pattern alternative which caused the rule to
succeed. (If that is what is intended, of course, then +the
rarentheses should be omitted.)

The conditional assignment operator is useful within
replacement rules in wvhich the ratched pattern is to form
- part of the replacement. If the first vowel found is to bhe
reduplicated, one may use a statement of the form

WOPD ANY('AEIOU') . SAVE = SAVE SAVE : F(NOVOWEL)

since the value assigned to SAVE is immediately available
for use on the right side of the rules. If the pattern fails,
control is sent directly to the go-to part of the statement,
so no assignment can occur, either to SAVE or to WORD.

Concatenation of Patterns. The concatenation operator
can be wused withk operands which are patterns, as well as
with strings. For example, in the statement

WOED ANY ('AEIOU') 'Yt = 'Y' : F(NOVOWELY)

the operands of the concatenation operator are the pattern
values returned by a call to the ANY() procedure and the
string Y. The result is a pattern which will match any vowe]
which is followed by a Y; if this pattern is found it is to
be replaced by a ¥ alone (i.e., the vowel is to be deleted).
Tf instead the Y were to be deleted, a statement of the fornm

WORD ANY('AETQU') . SAVE 'Y' = SAVE : TF(VOWELY)

could be used. Here only a part of the matched pattern (the
first vovel directly preceding a Y) is to be assigned to the
variable named SAVE. Note, however, that the entire pattern
must be found before such assignment can occur.

It is often useful to assign the different matcheq
rarts of a string reference to different variables. For
examrle, a pattern to search for clusters of three
consonants, and to assign each consonant to a different
variable, is employed in the rule

WORD ANY (CYy . C1 ANYT(C) . C2 ANY(C) . C3
(I£ is assumed here that the value of C is a string of

conscnants.) The pattern in this rule is the concatenation
of three pattern elements, each of which consists of a

4a. Pattern Matching 40

reference to ANY{) and a conditional assigrnment. The three-
consonant string may be assigned to the variable CCC as
well, by placing the entire pattern within parentheses and
usirg one more conditional assignment operator, as follows:

WORD (ANY (C) . C1 ANY(C) . C2 ANY(C) . c3 . CCC

None of the variables will acquire a new value unless the
entire pattern is successfully matched.

The Tmmediate Assignment Operator. The immediate
assignment operator is a binary operator whose symbcl is a
dcllar sign (). Tt is very similar to the conditional
assignment operator except that it causes the immediate
assignment of any matched substring to a variable, whether
the remaining elements of the pattern are matched
successfully or not. Thus if the rule above wvere revwritten
as

WORD (ANY (C) $ C1 ANY(C) $ C2 ANY(C) . C3) . CCC

"then C1 and C2 wonld acquire new values each time partial
matches occurred, but C3 and CCC would acquire new values
only when a substring of three contiguous consonants vas
found. For example, if WORD had the value ADIEU then CH
would acquire the value D vwhen the match was attempted,
while the rest of the variables remained unchanged; if WORD
had the value CHATEAT then C1 would acquire the successive
valves C, H, and T, and C2 would acquire the value H, as
repeated (but unsuccessful) attempts were made to find the
pattern. Thus the immediate assignment operator may be
useful in determining how much of a pattern was successfully
matched before failure cccurred.

Roth the conditional and immediate assignrent operators
may be applied to the same pattern element, as in the rule

WORD ANY (VOWELS) $ SAVE1 . SAVE2 *'T!

which specifies a search for any vowel which 1is followeAd
directly by a T. (The order 1in which the immediate and
conditional assignment operators occur is immaterial.) 1IFf
the pattern match succeeds, then both SAVE1 and SAVE2 will
refer to the same value, that cf the first vowel encountered
which occurred directly before a T. If WORD contained one or
more vowels, bhut not one occurring before a T, then the
match will fail and the value of SAVE2 will be unchanged,
but SAVE1 would acquire as successive values all vowels
within the value of WORD which were encountered in the
attenpts to find the pattern.

4p. Pattern Matching _ 41

The variable OUTPUT may be used in conjunction with the
immediate .assignment operator to produce a printed trace of
the progress of the pattern-matching operation. For example,
if the variable OUTPUT were written in place of SAVE1 above,
producing the rule

WORD ANY(VOWELS) § OUTPUT . SAVE2 'T!

and the value of WORDS was the string ECCLESIASTICAL, then
the fcllowing output would be produced:

S T

When a tranufer was taken to the next statement, the value
‘of OUTPUT would he A and the value of SAVE2 would not have
been changed, since the pattern match did not succeed.

The_Pattern_Procedures SPAN() and BRFAK({). SPAN() and
BREAK () are procedures which mnmatch not just a single
character but a string of characters of indefinite 1length.
SPAN() returns a pattern which matches a string composaq
solely of the characters specified within its arqument. Vor
example, a string consisting of one or more vowels nray he
specified by the pattern

SPAN (*AEIOUY)

BREAK() returns a pattern which matches a string cemposed of
any characters except those specified in its argument. Thus
a string consisting of anything hut vowels may be specificd
by the pattern

BREAK (*AEIOQU')

Both SPAN() and BREAK() must find a <character fron
their arqument strings in crder to succeed. SPAN() will
match that character along with any other acceptable
characters which are contiqucus; BREAK() will match
everything up to sunch a character, 1leaving the '"hreak
character" itself unmatched.

Note that the pattern returned by BREAK() may match the
null value, as in :

4r. Pattern Matching . 42

WORD = ‘'IDLE! ,
WORD EREAK('AEIOU') . SAVE

Here SAVE will be assigned ¢the null value since BREAK ()
matches all characters preceding the first vowel, or in this
case no characters. SPAN() can never match the null value
since it nust match at least one of the characters of its
arqgument.

SPAN() and BREAK() are often used together to break
data into significant units, such as words. If a word is
defined as a string of characters termirated by any numbert
of spaces, periods, or comnas, then the following progranm
segment can be used to assign to the variable WORD each new
wcrd cf the data.

REATD LINE = TRIM({INPUT} ‘'&of : F(DONF)
LooPp LINE BREAK('nm.,') . WORD SPAN('m.,') = NULL
+ : T (READ)
[sequence of statements to process WORD)
: (Loop)
Tn the replacenent statement labelled Loop,

BREAK('n., ") matches all characters until a space, period,
or crmra is encountered. The sequence of characters which
have reen matched 1is assigned to the variable WORD.
SPAN('m.,'} will then match the character which caused
BREAK('n.,') to succeed, and any other spaces, periods, or
ccnras which may be contiguous. This entire pattern is than
replaced by the null value (removed from LINE), the value of
WORL is processed in some way, and control sent back 1into
the lcop again. The replacement rule fails only when no more
words remain to be processed and a new value for LINE 1is
read in. Note that a space has been concatenated to the
trirmed value of each data record to insure that
BREAK('n.,') will be able to find a "break character" at the
end of the last word, and SPAN('m.,') will have at least one
character to match.

The Pattern__Procedure LEN() . The pattern procedure
LEN () accepts any non-negative integer arqument, and returns
a pattern to match as many characters as its arqument
specifies. Thus LEN() matches strings of predictable length
but unpre-dictable content, while BREAK() and SPAN() match
strings of predictable content but unpredictable length.

LEN () is useful between two pattern elements to specify
the exact number of characters which must lie between them
for the match to succeced. Thus the search for four-character
strings within parentheses might Dbe specified by the

UA. Pattern Matching 43

statement
LINE *'{(' LEN(Y4) . INSIDE ¢)? : F(ouT)

Note that the strings matched by the three <concaternated
pattern elements must be conptigquous for the match to
succeed. Thus the akove rule does not mean "at least four
characters between parentheses" but "exactly four.," If this
rule is successful, the first string of four characters
found between parentheses vill bhe assigned to the variable
INSIDE.

LEN() is often used at the beginning of patterns to
match an initial field of the data, such as an
identification number. The statement

LIN¥E LEN(10) . IDNUMBER LEN(40) . DATA : F(SHORT)

assigns the first 10 characters of LINE to the variable
IDNUHBFER, and the next U0 characters to the variable DATA.
The rule will fail only if LINE contains 1less than 590
characters,

Statements of the form
LYINE LEN(10) . IDNUMBER *A? : S({ALINE)

are often erroneously used to specify a search for lines
with A as the eleventh character. While it is true that all
such lines will be found by the above rule, many other lines
may be found as well. The rule will succeed if a string of
10 characters preceding an A can be found anywhere within
the value of LINF, not necessarily in initial position.

The ANCHOR(} Procedure. Thc ANCHOR() procedure may bhe
used to ‘“anchor" all searches so that they succeed only in
initial position. In anchored mode, if a pattern does not
match beginning with the first character of the string
reference, failure is recorded immediately and no further

pattern searching occurs.

The normal, unanchored, mode of pattern matching can bhe
changed to anchored mode by executing an evaluation rule of
the form

ANCHOR('ON ')
or

ANCHOR (*XXX")
or

ANCHOR (VOWELS)

4p. Pattern Matching un

or any other rule in which the ANCHOR () procedure is called
with a non-null argument. Executing the sequence

ANCHOR('ANCHOPITE")
LINE EN{10) . ICNUMBER 'A' 3 S(ALINE)

would cause a transfer to ALINE only when the eleventh
character of LINE was indeed an A.

The anchored mode remains in effect until another rule
is execcuted in which the ANCHOR() procedure is called with
an argument having a null value, such as

ANCFOR ()
or
ANCHOR (NULL)

The original unanchored mode of pattern-matching 1is then
restored.

Tte Pattern _Procedures TAB() and RTAB(). The pattern
procedures TAB() and RTAB() specify pattern matching not in
ternms of character ccntent or of length, but in terms of
position within the string reference. Both TAB() and RTAB()
accept a single argument which must be a non-negative
integer and return a pattern to match all the characters up
to that position within the string reference, matching as
always from the left. The difference between TAB() and
RTAB() is tlLat they use opposite conventions for nuabering
the string positions (and thus for interpreting their
arquments): TAB() works in terms of numbers counted from the
left, RTAB(} in terms of numbers counted from the right, as
shown in the following charts:

ror TAB(),

character: 13 6 7

| ! 1
string_pogition: 011 |3 1617
KRR it

CAMYLOT

For RTLB(),

characterx: 76 3 1

(R i i
string_position: 7161 31 110
RR! [

CLMYLOT

4a. Pattern Matching ‘ 45

Notice that althcugh there 1is no =zero-th character,
there 1is a zero-th string position — djust before the first
character or just after the last one, depending on whether
TAB{) or RTAB() is being used. This prevents confusion when
thinking about characters in terms of their string
Fositicns: TAB(2), ‘"everything up to string position 2,"
matches the first two characters; RTAB(1), "everythina up fto
string position 1 counting from the riqght," matches all the
characters but one. Although the arqument of RTAB{) is an
integer to he used in counting from the right, this does not
imply that pattern-matching is done from the riqht; pattern-
matching always proceeds from the left.

TAB() and RTAB() may be used for breaking wup strings
intc fixed fieldss: the rule

LINE TAB(15) . ID TAB(70) . TEXT

assigns the first 15 characters of LINE to ID, and the next
55 characters (those remaining up to string positior 70) to
TEXT. This is exactly equivalent to the rule

LINE LFEN(15) . ID LFN(55) . TEXT

If the first field were of varying length, terminated
by a srace, then

LINE BREAK(*n') . ID to' TAB(70) . TEXT

would assign everything up to the first space to ID, and all
characters after the space htut before string position 70 to
TEXT. Note that this is not equivalent to

LINE BREAK('a') . ID 'n' LEN{70) . TFEXT

in which all characters np tc the first space are assigned
to the variablie ID (as before) but a full 70 characters
follcwing the space are assiqned tc the variable TFXT, TAB()
may match strings of varying length ending at a definite
string position, while LEN() will alvays match a definite
number of characters ending at varying string positions.

RTAB() can be used like TAB() for patterns in which the
string position terminating the match is bhetter expressed as
a count from the right rather than from the left. PTAB(0) is
particularly useful; it will always nmatch everything fronm
the current position in a pattern search up to the end of
the string — the "remainder" of the string after any other
pattern elements have been matched.

4A. Pattern Matching . 46

Both TAB({) and RTAB() can match the null value; but 1if
either attempts to match up to a string position to the left
of cne which has already been matched by a preceding pattern
element, or a string position which dces not exist (because
the string is too short), the pattern match will fail.

The_Pattern_ Procedures poS ()} and _RPOS(). The pattern
procedures POS() and RPNS () return patterns wvhich match no
characters at all (the null value); they pmatch only the
single string positions specified by their single non-
negative integer arguments. POS() uses the numbering systen
of TAB(), RPOS() of RTABQ. Their use 1is to restrict
successful matches by other rpattern elerments to certain
positicns in string references; this provides a more
flexible form of "anchoring."

A pattern which begins vith P0S(0) is anchored 1in the
usual way. The rule

LINE DOS (0) ! *kkxkx?
will succeed only if the value of LINE contains asterisks as
jts first six characters. (The advantage over turning on the
ANCHOR () procedure is that the restriction applies to this
single rule only.) Similarly, the rule

LINE EOS (7) " %kkdokk?

will succeed only if the value of LINF contains asterisks as
characters 8 through 13.

RPOS() permits the same kind of anchoring, counting
from the right; the rule

LINF t%kxxxx? RPOS (0)

will match only if the value of LINE ends with six
asterisks, and

LINE FOS (0) !#*%*k%%kt¢ RPCS (0)

will succeed only if the value of LINE is precisely a six-
character string of asterisks. That is, the above pattern-
matching rule is equivalent to the evaluation rule

IDENT (LINE, "#%%kkxt)
The_Pattern_Procedure_ RRENO(). ARBNO() 1is the only

pattern procedure which accepts a pattern as its arqument.
Tt returns a pattern which will match zero or more

UrA. Pattern Matching ' 4 47

occurrences ‘of the pattern given in its single arqumpnt
Note that matching zero occurrences is the same as matching
the null value; since this is always the first choice for
the ARBNO() procedure, a call to it always succeeds. ARBNO ()
will npatch as many occurrences of the specified pattern as
will cause the romalnder of the pattern to succeed.

A string is a 31mple form of a pattern, so the arqument
of ARBNO() may be a single character or characters. A
Fattern to match zero or more A's may he specified as

ARBNO (*A')
This differs from
SPAN ('AY)

in that the SPAN() procedure must alway° match at least one
character, so the pattern which is the value of SPAN(*r?)
matches one or wore A's instead.

A pattern vhich will match any number of characters,
including nore, enclosed within parentheses (rather than
exactly 4, or scme other nunmbher) can bhe specified with the
use of ARBNO() as follows:

LINE *(* ARBNC(LEN(1)) . INSIDE ')' : F(NOPAREN)
This pattern will match strings of the fornm

0
(M
(AB)
(XXX)

- The null value or the characters within the parenthesas will
be assigned to the variable INSIDE.

A more compliéated illustratiOn of the use of ARBWO()
is provided by a consideration of the following set’of
sentences: ~ : :

The doq ran,

The old dog ran.

The old, gray dog ran.

The old, gray, barking dog ran.

The similarity among these sentences may be characterized in
terms of somc ttern which would succeed when applied to
any of them. Such a pattern may.be written with the use of

4a., Pattern Matching 48

ARBNC{) as follows:
*THEa' ARBNO (BREAK('n,') LEN (1)) *DOGaRAN.

When this pattern is applied to the first santernce, the
ARBNO () procedure matches zero instances of its arqument, or
the null value, since the literal strings within the pattern
acccunt for the entire sentence. In the second sentence,
ARBNC{) matches one instarnce of its pattern, the string
OLDm. In the third sentence, ARBNO() matches three instances
of its pattern, the string OLD,nGRAYo. This 1is three
instances since BREAK() first matches everything up to the
comma, then up to the srpace following the comma, then up to
the space following GRAY. 1In the last sentence, ARRBNO{()
matches five instances of its pattern, the string
OLD,nGRAY,oBARKINGn. The pattern matching in the 1last
sentence occurs as follows:

(1) the opening literal matches to begin wvith and
ARBNO() matches no instances of its pattern (or the null
value); but then the closing literal canno: be matched, soO
an instance of the ARBNO() pattern is sought with

(2) BRERK () matching everything up to the comma (the
string OLD), and LENI) matching the comma; when the final
literal cannot be matched, successive instances of the
ARBNO() pattern are tried with :

{3) BREAK () matching everything up to the blank (the
null value) and LEN() matching the blank, then

(4) BREAK() matching everything up to the next comma
(the string GRAY) and LEN{() matching the comma, then

(5) BREAK () matching everything up to the following
blark (again the null value) while LEN() matches the blank,
and finally

(6) BREAK () matching everything up to the next blank
{(the string BARKING) and LEN() matching the blank. At this
pcint the final 1literal can be matched and the entire
pattern matching is completed.

These successive attempts by ARBNO() to match the
numher of instances of its arqument which will cause the
remainder of the pattern to succeed could be obscrved by
using the immediate assignment operator in conjunction with
the variable OoUTPUT as described earlier.

4A. Pattern Matching 49

Assigning__Patterns__to__Variables. Patterns nmay be
assigned as the values of variables just as strings are
assigned as the valves of variables. This may be done with
an assignment rule of the usual form, such as

PAT = 'IOU?
oTr

ID.PAT = LEX

«

(1) . IDNUMBER LEN(40) . DATA
or
DOG = *THEa*' RRBNO(BREAK('m,') LEN(1)) 'DOGoRAW.°

The variable which refers to the pattern, rather than
the pattern itself, may then be used within the pattern part
of a rule as in

VOWELS PAT ¢ S(YES)
or

LINE 1ID.PAT 2 F(SHORT)
or .

DOGLINFE DOG : F(NODOG)

#hen these statements are executed, the current values
of PAT, ID.PAT, and DOG are ohtained; thus the pattern
matching and the conditional assignment are perforned
exactly as if the patterns themselves vere expressed.

The value of the variable PAT is of datatype String,
but it may be usel as the pattern rart of a pattern-matchina
rule, as indicated at the very beginning of this chapter,
since a string is a trivial form of a pattern. The values of
ID.IPAT and DOG are of datatype Fattern, ~since they are
concatenations of values of calls to procedures which return
patterns. Any expression containing a reference to a pattern
procedure, an alternation operator, a conditional or
immediate assignment operator, or a deferred evaluation
operator (described below), has a value of datatype Pattern,
The values of such expressions cannot be assigned to the
special variable OUTPUT, since only strings can be printed.
(Vays of printing the value of an expression of datatype
Pattern are indicated 1in Appendixz A, section IT.B, s.v.
"PRCTIOTYPE ()".) The variables ID.PAT and DOG are of course
in no way restricted to having only Patterns as their
values, but may be assigned values of any datatype in other
rarts of the proqranm.

If a pattern occurs within a rule which is to bhe
executed more than c¢nce, or if the same pattern occurs in
more than one rule, a consideraktle increase in progranm
efficiency can bhe oktained by assigning the pattern as the
valne of a variable. The use of a variable within the rule

tA. Pattern Matching ‘ 50

makes it unnecessary to construct the pattern every time the
rule is executed.

when a pattern is assigned to a variable, as 1n the
Tnle

ALTPAT = X | Y

any variables occurring within the pattern (X and Y Aabove)
are evaluated when the assignment rule is executed. Thkus if
Y had as its value the string A and Y the strina B, the
value of ALTPAT after the above rule had been executed would
be equivalent to *A' | *'B' .

There are often applications, however, in which one
wants the variables of the pattern to be evaluated only when
the pattern is used in a pattern-matching rule, not when the
assignment occurs. For example, a loop to search the value
of WORD for one of two substrings, each to be read from fthe
input file, may be written as follows:

LOOP1 X = TRIM(INEUT)
Y = TRIM(INPUT)
WORD X | Y

F (DONE)
F (ERROT)
S(FOUND) F(LOOP1)

e &8 a6

Since the efficiency of the program can be increased by
psing a variable which refers to a pattern, rather than the
pattern itself, one would like to te able to write the 1locop
as

ALTPAT = X t Y

LOOP2 X = TRIM(INPUT) : F{(DONE)
Y = TRIM(TNPUT) + F (ERROR)

WORD ALTPAT S (FOUND) F(LOOP2)
1f this is done, however, the loop will not have the sanme
meaning as before. The new values of X and Y wnich are
acquired from the input file on each iteration of the 1loop
will not affect the value of ALTPAT; rather its value will
remain unchanaged at fA' | 'B* (if A and B were the values of
X and Y when the assignment occurred).

The__Deferred Evaluation Cperator. The deferred
evaluation operator, a unary operator whose symhol is an
asterisk (*), may be used within patterns to take care of
the above situation. It may be written directly bofore the
name of a variable to indicate that its evaluation is to be
deferred until its value is needed during a pattern-matchinaq
operation. For instance, the assignment rule

4a. Pattern Matching] 51

ALTPAT = %X | *y

may be used to indicate that both X and Y are variables
which are to be re-evaluated each time a pattern-matching
rule is executed in which ALTPEAT is used within the pattern
part. Thus the sequence

ALTPAT = %X | *Y
LOCP3 X = TRIM(INEUT) : F(DONE)
Y = TRIM(INPUT) : F(ERROR)

WOLD ALTPAT S (FOUND) F(LOOP3)
¥ill produce the same results as the LOOP1 example above,
bvt more efficiently.

The unary * operator is also wuseful in patterns in
which the value of cne pattern element is dependent on the
successful match of an earlier element of the same pa“tern.
Consider, for wexample, the problem of searching a word to
determine whether or not it contains two identical
contiquous vowels. This pattern may be expressed using the *
operator as

VOW2PAT = ANY(VOWFLS) $ V %y
When this pattern is used, as in the statement
WORD VOW2PAT t S{YES)

it specifies a search through the value of WORD for any of
the five vowels, immediate assiqnment of the vowel founi to
the variable Vv, and then a search of the next character for
another instance of that same vowel.

A more general pattern in the same vein is one which
searches for two identical contiquous characters. This nay
be expressed as

CHARPAT = LEN(1) % CHAR *CHAR

and works as described above. Without the use of deferred
evaluation, these patterns would be cumbersome to define.

The unary * operator may ke nsed only bhefore names of
variahles, ot bLefore references to pattorn procedures. An
expression composed of a deferred evaluation operator and a
variable name is of Adatatype Pattern and so may be used only
where a pattern value 1is apprcpriate: hence such an
exrression may not be used as the aryument of any of the
pattern procedures except ARBNO(). The loop

Ua. Pattern Matching ' 52

ARBPAT = *S' ARBNO{*X) . SAVE 'S?
LOCEU X = TRIM(INEUT) : F(DOXNE)
WORD ARBPAT : S (FOUND) F(LOOPU)

cpecifies a scarch through WORD for zerc or more instances
of whatever string is specified on the next data record,
bounded by an S cn either side, and the assianment of the
substring matched by ARBNO() to the variable SAVE. If the
search fails, another data record 1is read, causing a
~different pattern to be sought.

The Special Pattern_Variables_ARB_and__REM. There are
six variahles which thave predefined patterns as their
values, assigned by the Snobol system; these are the only
six variables in Snobol which do not have the null value
when execution of a program begins. The values of these
variables may be changed in a program by assigning them new
values in the usual way, but then of course the predefined
values are lost. The six special pattern variables are ARB,
REM, BAL, FAIL, FENCE, and ABORT. Only ARB and REM will be
discussed here. (The remaining four pattern variables are
descrited in Appendix B.)

The variable ARB has as its predefined value a pattern
equivalent to ARBNO(LIEN(1)) — that most arbitrary pattern
which will match the null value or any string of characters.
ARB, like ARBNO(LEN(1)), matches the longest string of
characters left for it by surrounding pattern elements; thus
the rattern to match any parenthesized string could have
been written as '

LINE ‘(' ARB . INSIDE ')? : F(NOPAREWN)

Eyecution of this statement would cause the variable INSIDE
to lte assigned the zero or more characters occurring between
a pair of parentheses.

The variable REM has as its predefined value a pattern
which will match tall the remaining (none-or-mnore)
characters." Another pattern equivalent to this is RTAB(0V.
For example, a statement to match all characters after the
sixth may he wvwritten as

LTNE LEN(6) REM . A6 : F(NOTSIX)

Execution of this statement will cause LFN({f) to match the
first six characters in LINE and will cause all remaining
characters to he assigned to the variable Af. If the value
of LINF is exactly six characters lcng, the pattern natch
will succeed and the variable A6 will be assigned the null

4A. Pattern Matching 53

value. If the value of LINE is less than six characters long
the pattern match will fail, A6 will not acquire a new value
and control will be sent to the statement labelled NOTSIX.

Since the predefined pattern values of both ARB and &EFM
are equivalent to patterns which may easily be written in
other ways, ARB and REM may be regarded merely as convenient
predefined ahbreviations for longer pattern specifications.

A_Program_to Tllustrate Pattern-Matching. The program
text provided helow reads an indefinitely long text which
has line numbers in the first six positions of each data
record, and words occurring in free form, but never hroken
acrcss records, in the remaining positions. A word 1is
defined as a string of characters followed by a svace or a
punctuation <character. Any nunktesr of spaces and/or
punctuation characters may occur between words (and bhefore
the first word on a card). The ©program looks for words
within the text which begin and end with the same character
(onec letter words excluded). If such words are found, they
are printed following the line number of the record in which
they occurred. Thus the two records

003001 EFFTCIENCY IS THPORTANT BUT
006002 ELEGARCE TS TO BE DESTRET

vould produce the output

000002 ELEGANCE DESIRED

since the first line contains no words which begin and end
with the same character, but the second line contains two.

All patterns are assigned to variables for the sake of
efficiency.

* FROGRAM TO FIND AND PRINT ALL WCRDS THAT
* BEGIN AND END WITH THE SAME CHARACTERS
*k
¥ SET UP THE PATTERNS NEEDED FOR THE PROGRAM
*
PUNC = ‘'p.,:3!
WORD.PAT = BRFEAK(PUNC) . WORD SPAN(PUNC)
ID.PAT = LEN(6) . ID (SPAN (PUNC) | NWLI)
SAME.PAT = POS(0) LEN(1) $ CH RTAB(1) *CH
*
* READ THE NEXT RFCCRD OF THE DATA - APPEND A SPACE
GETLINE LINE = TRIM(INPUT) 'n!' s F(END)
*

* TREMOVE TD NUMRBER - TGNORE RFCORDS SHORTER THAN 6 CHARS
LINE ID.PAT = NULL . : F(GETLINE)

4A. Pattern Matching 54

* CFT THE NEXT WORD - IF NO MORE WORDS, CONSIDER PRINTINMNG

GETWORD LINE WORD.PAT = NULL : F(PRINT)
*
* SFE IF THIS WORD HAS SAME FIRST AND LAST CHARS - IF NOT,
* THEN GET THE NEXT WORD
WORD SAME.PAT : F(GETWORD)
*
* WORD TO BE PRINTED - APPEND IT TO THE OUTPUT LIKE
OUT = OUT Y'pann' WORD : (GETWORD)
*
* ERINT VALUE OF OUT IF IT CONTATKS ANY WORDS
* PRECEDE THE WORDS EY THF APPROPRTATE LINE NUMBER
PRINT OUTPUT = DIFFER(OUT,NULL} ID OUT : F(GETLINE)
* .
* I1F NECESS5ARY, ASSIGN OUT A NULL VALUE BEFORE PROCEEDING
ouUT = NULL ' : {(GETLINFE)

END

5A. INDIRECT REFERENCING

The fact that a single variable may be used to refer to
a number of .different values during the course of program
execution makes it possible to write a general rule which
can have the effect of many specific ones. For example, the
single rule

OUTPUT = WORD

specifies in general that the current value of the variable
named WORD is to be printed, whatever that value may be. Tf
the above rule is part of a loop in which WORD 1is being
assigqned a new value every time the loop is entered, then
the rule sends different specific characters to the output
file every time it is executed., Without this ability to
express a process in general terms rather than in specific
cnes, no useful programs could be written.

The ability to generalize is further extended in Snobol
by the wuse of indirect referencing. This operation allows
cne to specify a variable without writing its name into the
program text; rather, cne specifies a variable hy writing an
expression whose value is a variable., Just as WORD in the
rule above may refer to a numker cf different values during
the course of program execution, so this expression
inveolving indirect referencing wmay refer to a number of
Gifferent variables during the course of the program, each
variable's value changing independently. In neither case do
the specific values need to be known when the program text
is written. Hence the wuse of indirect referencing allows
ancther level of generality to be introduced.

The _Indirect Referencing Operatcr. Indirect referencing
is accomplished by means of the indirect referencing
operater, a unary operator whose symbol is a dollar sign
($) . This operator takes a single string-valued operand (or
one of datatype Name as described in Chapter 7) and returns
as 1its value the variable named by that string. In the
sicplest case, the operand is a literal as in the rule

OUTPUT = S$'WORD!
wvhich produces the same effect as
OUTPUT = WORD
Both will cause the current value cf the variable WORD to be

prirted since the variable returned by the $ operator above
is the one whose name is WORD. There is no advantage to

5A. Indirect Referencing. 56

using the §$ operator in this wvay, since it is simpler to
write WORD than to write $'WORD'.

However, there are many variables which cannot bhe
referrcd to by writing their names in pregranm texts since
they consist c¢f strings of characters which are not
jdentifiers. As indicated in Chapter 2,

TRHYHE e« VOWELS TEXT/3 p-¥-C

are all the names of variables, tut they are not valid
representations of these variables within a program text.
These variables may be represented with the use of the §
operator, since they are, respectively, the values of the
exfpressions

$*IRHYME?® $'..VOWELS! $¢TEXT/3" $'p-v-C?

Although these expressions are useful in a way that $'WORD®
is not, they introduce no generality into the progranm since
each specifies a single, fixed, variable.

Generality is introduced when the operand of the $
operator is some string-valued expression other then a
literal. Thus the rule

OUTPUT = S$WORD
can cause the values of different variables to he printed
when it is executed at different times, since the variable

whose value is to be printed depends on the current value of
WORL. If the rules

WORD = *SASSAFRAS!
and

SASSAFRAS = *'TREE!
have been executed, then execution of the rule

OUTPUT = $WORD
will cause the characters TREP to ke printed. First WORD is
evaluated tc yield the string SASSAFRAS; then the $ operator
returns the variable named by that string. Thus the effect
is as though

OUTPUT = $'SASSAFRAS!

or, equivalently,

S5A. Indirect Referencing. A 57

OUTPUT = SASSAFRAS
had been executed.
Similarly, the rule
$VOWEL = $VOWEL + 1

can cause the valve of many different variables to be
incremented by 1. If the value of VOWFL is the string A,
then the rule is equivalent to

$AY = $rpr o+ 9
or
A = A+ 1

but if the value of VOREL is a different vowel, say E for
example, then the rule is equivalent to

E = F + 1

instead. Thus executing the same rule at different times in
the program may result in incrementing the value of
different variables. R single rule of this form could be
used to count how many of each vowel occurred in a text.

(Notice that a variable returned by the indirect
referencing operator is treated in the execution of rules
exactly like a variable whose name is written in the progran
text; variables occurring to the right of an assignment
sign, or within a pattern or a string reference, must bhe
evaluated when the rule in which they occur is executed.)

The Operand of the Indirect Referencing__Operator. The
operand of an indirect referencing operator may be an
expression of any complexity; the only restriction is that
this expression yield a non-null string (or a Name) when it
is evaluated. Thus the operand of a $ operator may itself
contain one or more $ operators (as 1in the expression
$$CURRENT), as long as the variable returned by each inner $
operator refers to a value which is a string. These nested §
operators, like nested procedure calls, nust be evaluated
frcm the inside out since the variable returned by an inner
$ is needed to form the operand of an outer $. For example,
if the assignments

CUORRFNT = 'VOWFL?
and
VOWYEL =)¢

5A. Indirect Referencing. 58

have been erecuted, then the rule
$$CURRENT = $$CURRENT + 1
is equivalent to
A = A+ 1

The evaluation of the rule involving double indirect
referencing proceeds as followvs: first the value of CURRENT
is determined, rproviding the string VOWEL as the operand of
the inner § operator and making the expression $$FCURRFNT
equivalent to $$'VOWEL'; when the inner $ is applied to the
string VO%FEL the variable VOWEL - is returned, making
$$'VOWEL' equivalent to $VOWFL; the cuter § is then applied,
giving $'A', in turn equivalent -to R, as abhove. vyxamples of
how multiple indirect referencing can be useful are provided
by two progranm texts given at the end of this chapter.

Similariy, a reference to any procedure which returns a
string as 1its value may be used within the operand. s a
sinple exanple, the rule

$STZE (WORD) = $STZE(WORL) ¢+ 1
could te used in a 1lcop, analogously tc¢ the rule
$VOWRL = $VOWEL + 1

above, to count how many words of each length occurred in a
text. Tf the current value of WORD at some point durina
execution is the nine-character string SASSAFRAS, then the
above rule is equivalent to

g19r = $rar & 1

Thus the variable whose name is 1 would be assigned the
count of the one-character words, the variable named 2 the
count of the two-character words, etc. Although the names of
these variables may not be written in the proqram text, the
variables may be specified by means of indirect referencinq,
since the § operator may be applied to any string of
characters to return the variable named by that string.

The null value may not be used as the operand of the §
operator since the name of a variable must bhe at least one
character long. It is a common mistake, however, to use as
the operand of the $ operator a variable which at some tinme
during the course of execution will have a null value. Such
an error cannot occur in the example above, since there is

S5A. Indirect weferencing. 59

no way for the operand to be null. Tf WORD has a null value,
then SIZE (WCRD) returns the integer zero as its value. Hence
the count of all null values is referred to by the variable
whose name is 0. (Xf WORD has a value which is not a string,
then an execution-time error will result when the SIZF()
procedure 1is called, before an attempt to apply the $
operator can be made.)

A_Program_to Produce_a_Character Count. As an exanmple
-of the power of indirect referencing, consider this simple
character-counting prograr, which prints out a table gqiving
the number of times each letiter occurred within a text.

* PROGRAM TO MAKE A CHARACTER COUNT

* SET UP CHARACTER-FINDING PATTERN
CHAR.BAT = LEN(1) . CHAR

*

* READ IN THE DATA

READ LINE = TRIM(INPUT) : F(OUT)

*

* FIND THE NEXT CHARACTER - ASSIGN IT TO THE VARIABLE CHAR

LOOP1 LINE CHAR.PAT = NULL : F(RFAD)

*

* ADD ONE TO THE COUNT FOR THAT CHARACTER

TNC $CHAR = $CHAR + 1 : (LoOP1)

*

* SPECIFY THE ALPHABET FOR RECOVERTNG COUNTS

ouT ALPHA = *ABCDEFGHIJKLMNOPQRSTUVWXYZ®

*

* GET THE NEXT LETTER WHOSE COUNT IS TO BE RECOVERFED
* ASSIGN IT TC THE VARIARLE CHAR

LOOP2 ALPHA CHAR.PAT = NULL : F(END)

* .

* IF LETTER DID NOT OCCUR, GIVE IT THE VALUE ZFRO, NOT NULL
$CHAR = IDENT($CHAR,NULL) O

*

* PRINT LETTER AND ITS CONNT

‘ OUTPUT = CHAR 'ooon' $CHAR (LOOP2)

END

Output from this program would be a list of the fornm

A 129
B SA
C 32

and so on.

This program uses the pattern which is the value of
CHAR.PAT +to assign cach successive character of the text to

5L. Indirect Referencing. 60

the variable CHAR; indirect referencing is then used to
return the variable named by that character. Depending on
which character has been found, the rule part of the
statement labelled INC might be equivalent to

A = A& 1
or
B = B+ 1
or
g, = $r,v 4+ 1

or vwhatever.

When all the text has been read, printing of the counts
begins. This is done with the use of the variable ALPHA,
whose value is a string containing all the characters for
which counts are to be printed, given in the desired order.
(Tn this case, only letters have bheen chosen.Y These
letters, one by one, are again assigned to the variable CHAR
(althcugh any other varijable would have done as well) by
neans of the CHAR.DPAT pattern. Using indirect referencing,
the variable named by the character is tested to deternine
whether or not it has a null value; if it is nuil, then that
character was never encountered in the text and so the
variatle is given the value zerc for output purposes. The
output statement prints the value of CHAR (the character A
the first time the output loop is entered) and the value of
$CHAR (in this case the value of the variable A, or 129).

This scheme for specifying the printing permits the
programmer to choose the order of the output —-— alphabetical
order, rather than text order — and to be selective; the
program causes counts to be’ stored for all characters
(nurbers, punctuation, spaces, etc.), but only the counts
for the letters are recovered for printing.

z
Concatenation within__the _Operand. The concatenation
operatcr is needed within the operand of the indirect
referencing operator in applications in which variables
having ‘"successive" names are to be used. For exanmple,
execution of a loop of the form

NLCCP N = N+ 1
OUTPUT = TRIM(INPUT) : F(ALLGONE)
$(*LIST' N) = OUTPUT H {NLOOP)

ALLGONFE

will cause an entire group of data to ke read, printed, and
stored, Wwith successive records heing assiqgned as the values
of the variables named LIST1, LIST2,..., $('LTIST' N). When

*

5k. Indirect Referencing. 61

the loop terminates through failure of INPUT, the value of N
is an integer one greater than the number of lines of data
which have been read. Since these lines of data are now
stored in the memory they may bhe prccessed in some way, for
exarple subjected to pattern-matching and replacement, and
eventually printed out again in an altered form. The
fcllowing loop may be used to print out all the lines,
reversing their line numbers in the output, so that the last
reccrd read 1in is numbered 1, the next-to-last numbered 2,
etc., until the first record read in is numbered N=-1,

M = N
MLOOP M = GT(M,1) N - 1 : P (DONFT)
OUTPUT = N - M 'nonag' $('LIST' M) =: (MLOOP)

CONE

In the above example, a single set of successively-
naned variables vere being assigned values (those whose
names all begin with the characters LIST). This process can
be made more general if several sets of successively-named
variables are assigned values by the same program segument.
If, for example, a file <contained intermixed records of
various types, each type distinquished by the first
character of the record, then the following segmeat of
program text would cause each record to bhe assigned to the
variahle named by the concatenation of its first character
(the type~-code) and the number of records of that type
enccuntered so far.

REAL RECORD = TRTM(INPUT) : F(DONE)
x

* CTCETERMINE TYPF-CODE OF RECORD

RECORD LEN(1) . CODE : P(READ)

*®

ADD ONE TO CCUNT FOP THIS TYPE

$CODE = B$CODE + 1

*

* STORE RECORD IN NEXT "SUCCESSYVE" VARTABLE OF ITS TYPE
$(CODE $CODE) = RECORD : (READ)

DONE

The first record found beginning with an E would become
the value of the variable named EF1, for example, and the
tventy-fifth record found beqginning with a colon would
heccme the value of the variable named :25. If the distinct
type-codes are stored by the program as they are
enccuntered, then the records have effectively been sorted
in terms of their first characters, since the records of
fach type can nowv he found as the values of different setn
of successively-named variables.

5h. Indirect Referencing. 62

variables having "successive" names are also useful in
printing data in tabular format, wheve a varying number of
spaces, or other characters such as dots or dashes, will be
needed to make the data line up properly. The variable named
in, for example, could be 2ssigned the valuc of a single
space, while the variable named 2o would have the value of
two spaces, etc. In general, variatles can be given nanes
which indicate their values, vhere the first part of the
name indicates the number of instances of some character,
and the second part indicates the character in question.
Thus the variable named 52Y would have as its value a string
of 52 X's.

The short segment of program text below causes such
variables to be assigned appropriate values. The value of
MAX is the largest number to be used as the first part of
any name and is the maximum leagth of any string to be
assigned as value; the value of CHMAR is the particular
character %o be used as the second part of each name and is
the character of which all string values are to be compocs=24,

FORMLOOP N = LT(N,MAX) N + 1 : F(DONE)
$(¥ CEAR} = $(N - 1 CHAR) CHAR (FORMLOOP)
DONF

Tf MAX has the value 10 and CHAR has the value of a
single dash, then execution of the loop causes the set of
variables named 1-,2-,...,10- to be assigned the respective
values =,~=,eeey~="—=—"==" .

A program may begin by executing the FORMLOOP seqgment
repeatedly for each pair of values of CHAR and MAX needed to
generate the strings which may be required for formatting
within the remainder cf the program. Then whenever, say, a
string of 42 spaces is needed it may be represented by the
_expression $(42 'n'), and whenever 10 periods are needed
they may be represented by the expression &(10 '."),
provided the FORMLOOP segment has been executed when the
value of MAX was at least 42 and the value of CHAR was a
space, and when the value of MAX was at least 10 and the
value cf CHAR was a period. If an expression of this form is
written in which the numeric part lies outside the range
specified (from 1 to the value of M) when the set of
variahles involved was given value, or in which the
character part is not a character which was the value of
CHAR when the FORMLCCP segment was executed, then the null
value is 1likely to rtesult; a variable will always bhe
retuvrned from an expression of this form, bhut not
necessarily one to which a value has been assigned.

5h. Indirect Peferencing. 63

Concatenation within the operand is also useful as a
safequard against conflicts which occur when a variablo
returned by the 3 operator turns out unexpectedly to be the
same as one written directly in the program text as an
identifier, and used for some unrelated purpose. In the
character~counting example above, ¢the writing of any one-
character name within the program text would have produced a
conflict of usage if that character had occurred within the
text heing processed. In that particular case, only
- variables with one-character names could be returned so the
restriction could he made that no one-character names bhe
written in the rprogram text. Often, however, there is no way
of knowing which variables will bte returned by indirect
referencing. Ccnsider the case of counting words, rather
than chkaracters, in a text; if the same scheme is cmployed,
then each word of the text will be used as the name of a
variable, and there is often no restriction on which words
may occur, so a conflict in the use of variables is likely.

Such conflicts may be avoided by using concatenation
within the operand of the 3 operatcr to produce a string
which is not an identifier; then the variabhle raturned by
applying tha $ operator to this string will necessarily he
one whose name can never be written in the ©proqram toxt.
This has been done in the formatting example above by alwavys
usirg a number as the first part of the name, so *these names
are never in identifier form. Sirilarly, if the expression
$('**' CHAR) vwere used 1in place of S$CHAP throughout tho
character-counting program text above, the restriction
against the use of one-character names within the progranm
text could be removed; the numhber of A's in the text would
then be referred to by the variable named *A, the nuimher of
B's by *B, etc. The two complete rrogram texts which follow
in this chapter both rely on concatenation of this form ¢to
insure against the possibility of error due to conflict.

A_Program_to Produce_a_Frequency Table. The usefulness
of multiple indirect referencing 1is illustrated in the
fcllowing program, which 1is similar to the character-
counting proqram but produces instead a frequency table
specifying how many letters failed to occur in the text, how
many occurred once, how many twice, etc. The program begins
in the same way as the character-counting program, by using
a variable narmed by a character to refer to the numher of
times that character occurred within the text, When all the
text has been read in, the character counts themselves are
used as the operands of the $ operator to return variables
vhose names are 0,1,2,...etc.; the values of these
variables are increased by one for each character which
occurred that many times within the text.

5A. Irdirect Referencing. 6U

Concatenation is used in this example to prevent the
conflict of variatle usage which would occur if the text
contained any digits. If concatenation were not used and the
text contained, for example some 3's, then the variable
named 3 would be used in the first part of the oprogram to
refer to the number of 3's occurring in the text;3 in the
seccnd part, when the freguency table was being formed, thne
~variable named 3 would be used to refer to the number of
characters which occurred exactly three times in the text.
. Since the variable named 3 would then already have a value
indicating the numher of 3's in the text, the frequency
tahle for 3 occurrences wonld te incorrect. {The progranm
would appear to run correctly and tne only indication of
error might be an abnormally high count.) Thus concatenation
is used to return a variable whose name is 3* for the first
part cf the program; the frequency table for characters
occurring 3 times can then safely be made with a variable
whose name is simply 3.

* TFROGRAM TO MAKE A FREQUENCY TABLE

*
CHAR.EAT = LEN(1) . CHAR
READ LTNE = TRIM(INPUT) : F(CHARS)
L00P1 LINE CHAR.PAT = NULL : F(READ)
$(CHAR "#') = $(CHAR **') + 1 : (LOOP1)
*
* SPECIFY THF CHARACTERS WHOSE FREQUENCIES ARE TO BE FOUND
CHARS ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVHXYZ'
LOOP2 ALPHA CHAR.PAT = NULL : F(PRINT)
" _

*x GIVE MAX THE VALUE OF THE LARGEST COUNT SO FAR FOUND
MAX = GT($ (CHAR '*?) ,MAX) $(CHAR '*?')

*
* CHANGE ANY NULL VALUE TO ZERO
$ (CHAR ***') = IDENT($(CHAR '*'),NULL) O
*
*x USE DOUBLE INDIRFCT RFFERENCING TO MAKE R COUNT OF COUNTS
FREC $5(CHAR *%*) = $$(CHAR '*') ¢ 1 : (LOOP2)
*
* PRINT THE FREQUENCY TABLE
PRINT COUNT = 0
*
* TF NO LETTERS OCCURRED COUNT TIMES, SKIP IT
LOOE3 IDENT ($COUNT, NULL) : S(SKIP)
OUTPUT = $COUNT 'gLETTERSmOCCURRRDu' COUNT ‘nTIMES?®
*
* INCREASE THE VALUE OF COUNT UNTIL THE MAYIMUM IS REACHED
SKIF COUNT = LT(COUNT,MAX) COUNT ¢ 1 : S(LOOP3)

END

5A. Indirect Refer

Output from t

2 LETTFRS OCCURRED
4 LETTERS OCCURRED
2 LETTERS OCCURRED
7 LETIFRS OCCURRED

and so on. Such a
26 would be pre

encing. 65

his program would te of the form

0 TIMES
1 TIMES
b TIMES
6 TIMES

table would have at most 26 entries; all
sent only if each letter had a different

character count associated with it.

The statement labelled FREQ uses double indirect
referencing to form variables from these character counts,
Tts rule represents assiqgnments of the form

$20Y = 0 + 14
$ri0 = 511 o+ 1
LA = $e20 4+ 1

The value assigned to each of these variables is increascd
by one every time a character is found which occurred that
many times in the text.

(Note that it is necessary to assign the value zero
rather than the null value to variables representina
characters which 1id not appear in the text. If this wero
not done, the rule part of the statement labelled FRFQ would
attempt to represent a rule of the form

$.l $|| 41

if the value of $(CHAR and an execution-time

errcr would result.)

"%') was null,

A_Progranm_to Produce_a ¥ord_Count. As a further example
of the use of both multiple indirect referencing and
concatenation, consider the following word-counting program
vhich works on the same principle as the character-counting
program; it uses each word as the name of a variable anaqd
increases the value of that variable hy one whenever the
word occurs within the text. The process of printing out the
words once the counts have been formed, however, is
necessarily more complicated than that of oprinting a
character count. While it 1is possible to specify all the
characters which may occur in a text, it is seldom possible
to specify all the words. If counts are desired for only
certain words, then a list of those words can be supplicd as
data to the program; but if all words are to be counted, or
all vords except those specified, then some record mrust be
kept by the program of all different words encountered so

a

Sa. Indirect Referencing.

they may be retrieved. In this progranm, concatenation

used to assign each new word to a variable whose name is of
the form W/1, W/2, wW/3, etc., so that all words of the

may be recovered for printing with the use of
"successive" variatles.,
* FPROGRAM TO MAKE A WORD COUNT
* SET UP WORD-FINDING EATTERN
%
PONC = 'n.,:;!
WORD.PAT = PBREAK(PUNC) . WORD SPAN (PUNC)
*
* READ TEXT AND FIND WCRDS
REAL LINE = TRIM{INPUT) ‘o + F(OUT)
1.OOP1 LINE WCRD.PAT = NULL : F(READ)
» .
*# C[SE CONCATENATION TN FORMING THE WORD COUNT
$ (%' WORD) = §$('*' WORD) + 1
*
& TEST TO SEE WHETHER THIS IS A NEW WORD
* IFT NOT, RETURN TC 100P1
FQ($(*** WORD),1) : F(LOODPY)
X
* KEW WORD - ASSIGN IT TO A VARIABLE NAMED Ww/1, wW/2,
N o= N+ 1
$("W/' N) = WORD : (LooP 1)
*
% MLL DATA HAS BEEN RFAD IN - PRINT WORD COUNT TABLE
ouT M = TLIT(M,N) M ¢ 1 : F(FND)
OUTPUT = $('W/' M) ‘'noon’ $('*!' $('W/' W))
: (ouT)
END

The words are printed in the order of their
occurrence in the taxt. oOutput for a well-known six-word

text would be

TC 2
BE 2
OR 1
NOT 1

In the processing of this short text, the rule

$(*** WORD) = $('*' WORD) + 1

at different times is equivalent tc rules of the fornm

text
these

ETC.

first

5A. Tndirect Reterencing. 67

$9%T0" = $IkTO' + 1
$'%*BE' = S$'%RE' + 1
$'*%0ORY = F*RCR' + 1
$TXNOTY = ST*NOT' + 1

and the like, while the rule
$(*W/% N) = WORD

is equivalent to

g1 = O
$'N/2' = 'BE!
$'W/3' = 10R?
$'W/ut = 'NOT!

wWhen the first line of the output is printed, the
output statement

i}

OUTPUT $('W/' M) toonn' $('*' S('W/Y M)

is equivalent to

OUTPUT = $'W/1' ‘'oooo' $('*' $'W/1¢)
or

OUTPNT = $'Wy1' 'poon' $'*TO¢
or

QUTPUT = ‘'TOnoan?!

Indirect Referencing within _the Go-to. The indirect
referencing operator may he used within the go-to part of a
statement as well as within the rule. When the $ operator is
used within the go-to, it takes the string which is its
operand and returns the label which is that string. Thus the
go-to's

: (S*READ')
and
: (READ)

have the identical effect of causing a transfer to be taken
to the statement labelled READ.

(Note that the $ operator must appear inside the
parentheses rather than outside, since the only characters
which may appear between the cclon and the open parenthesis
of the go-to are an S or an F. Thus the go-to : $ (*READ')
is syntactically incorrect. TYnner rparentheses, such as
: ($('READ' N)) are permissible.)

SA. Indirect Referencing. _ 68

As before, the power of indirect referencing becomes
visitle only when the operand consists of something besides
a literal. The stateument

LINE LEN(6) . CODEC : S{3CODE)

illustrates the usefulness of the $ operator within the go-
to. It causes the first six characters in the value of LINF,
if there ar> that many, to be assigned to the variable CODF,
and then, on success, transfers to the label specified by
those six characters. {The value of CODE which was obtained
in the rule part of the statement is immediately available
for use «ithin the go-to.) The single general gec-to
: ($CODE) may thus represent a great many specific go~to's,
one for each possible value of CODE. These values which CODE
may acquire must all be in identifier form, since an
individual label must actually exist within the-program for
every possible transfer which is taken. (The indirect
referencing operator may not be used in the label field, so
there is no way of using a label which is not an
jdentifier.) If an attempt is made to transfer to a non-
existent label, an execution-tine error will result.

If the special variable INPUT occurs within a go-to 1in
which an indirect referencing operator is used, as in

FO(X,Y) + S(S(TRIM(INPUT)))

it is assigned as value the next data record, since this
string value is needed as the operand of the § operator. 1f
the next data record had the characters NOUN as 1its first
four characters, followved by spaces, the go-to shown ahove
would send control to the statement labelled NOUN if the
rule preceding the go-to succeeded. If INPUT fails, or any
other failure occurs in a go-to, then an execution-time
errcr results, since no informaticn will he available as to
which statement is to be executed next.

Concatenation is often used within the go-to to send
control to "successive" labels of the program. For exanmple,
the statement

N = SIZE (WORD) : ($('ROULE' N))

assigns to N the integer length of the value of WORD, and
then transfers control to a label specified by concatenating
the characters RULE and this integer; if WORD has as 1its
value any one-character string, a transfer would be taken to
the statement labelled RULEY; if WCRD has as value a two-
character string, then control would he sent to RULT2, etc.

SA. Indirect Referencing. 69

(The statements starting at RULE1 would presumably specify
some process to be performed on one-character words, which
wvould te different from the process at RULE2 for two-
character words, etc.) The same effect could be achieved by
vriting

: ($(*RULE' SYZE (WORD)))

Ncte that some device such as the concatenation of an
alphabtetic 1literal is necessary in the above example, since
one ray not write simply

(%)
or

($SIZE (WORD))

Thesa go-to's would send control to labels of the form 1, 2,
3, ectc., and such labels do not exist since they may nct he
written in the program. Indirect referencing within the go-
to is often useful, but is more 1limited than indirect
referencing within the rule: the string designating a label
must alwvays be in identifier form and a corresponding label
must exist in the program text in crder for the itransfer to
be taken; on the other hand, the string designating the name
of a variable may bhe conposed of any characters, since any
strirg names a variabkle, and there 1is no need for that
variable to have been used in any vrprior statement of the
program.

70

6A. PRCGRANMER-DFFINED PROCEDURES

In addition to supplying a number of useful predefined
grocedures, Snohol provides a mechanism which allows a
programmer to define any procedurc of hWis own choosing. This
perrits the task which a prograa is to perform to be
expressed as a series of separate processes of varying
degrees of conplexity, each of which 1is defined as a
procedure., The more complex procedures may consist mainly of
calls to siapler procedures which have been defined earlier;
many of these procedures, in turn, 4111 make wuse of the
predefined procedures supplied by the Snobol system. Once
the necessary procedures have been written, the writing of a
progras to perform some task is sinmplified since it can make
reference to the highest-level, mos®t powerful procedures.
program texts written in this. fashion are casier to write
{and incidentally easier to read) Lecause their organization
reilects the structure of +the process enbodied in the
program.

Tefining_a_Procedure. A definition of a new procelure
requires tvo parts: first, the name of the procedure bheing
defined and the form of future references to that procedure
must be declared to the Snohol systen; second, a Adescription
(in Snobol) of what the procedure is to do must he provided,
which will be executed each time the procedure is called.

The declaration of a programmer-defined procedure 1is
accemplished by execuating a predefined procedure, DEFIN® {1,
which in its simplest form has a single argument consisting
of a string which is a sample reference to the procedure.
For instance

DEFINE (*REPEAT (N,OBJFCT) *)

declares a new procedure, REPFAT(), which is defined to have
two arguments, represented by the nanes N and ORJECT. The
description of what the REFEAT () procedure is to do can be
anything expressible in Snobol. Tf its purpose 1is to
concatenate some object to itself n times, this might bhe
expressed as follows.

REPEAT N = GT(N,0) N - 1 : F (RETURN)
REPEAT = REPEAT ORJECT : (REPEAT)

This section of program text, termed a "procedure
body," is written in accordance with a number of conventions
which are the subject vof the following sections of this
chapter, Tt 1is identified as the procedure body for the
REPEAT () procedure by the label REPEAT, which has the same

6A. Pregrammer~-defined Procedures 71

form as the name ¢f the procedure. The names § and OBJECT
are used both in the declaration and in the procedure body
to represent the two arquments with which the REUEAT ()
procedure vill ke called. The value of ¥ indicates how many
times the value <f OBJECT is to be concatenated to itseif to
form the value to be returned by the REPEAT() procedure.

The first statement of the procedure body specifies
that the wvalue of N is to be decremented by one if i1t is
still aqreater than zero; the sccond statement specifies that
the value of OBJECT is to be concatenated to the value of
REPERT, 1initially null, every time N 1is successfully
decremented. When the value of N becomes zero, then the
desired number of concatenations have been performed and the
failure transfer to RETURN is taken; this represents not any
fixed location in the program, but rather a request to +he
Snobel system to return to whatever statement contained the
call to the REPEATY() procecdure, ‘The REPPAT() procedure
returns as its value the current value of the variable named
REPFAT (again uwith the sanre f€form as the name of tho
procedurey when the transfer to RETURY is taken.

Once the RFPEAT () fprocedure has been declared and a
precedure hody previded for it, then it may be invorxed by a
precedure reference anywhere 1in the program text. TFor
instance, onc migh*t write the assignment rule

OUTPUT = REPEAT(10,'X")
to specify that a string of 10 X's is to he printed.

The REPEAT() procedure provides a simpler method of
producing the varying length Strings needed for formatting
than the scheme involving indirect referencing described in
Chapter S. Here it is not necessary to store values with a
set of successively-named variables in advance of their use
in crder to insure that a string of the right length will be
available; rather the needed string 1is generated by the
procedure call. Using REPEAT(), the alternate records of a
data group may bhe printed in a two-colnan format, stch that
the first reccrd of a pair is printed starting in colunmn 1
and the second starting in a column which is the value of N,
with a sufficient number of the formatting character which
is the value of CH printed in Letween. The following proqran
seqrent may he used for that purpose,

LOOP REC1 TRIM(INFUT) F (DONF)

REC? TRIM(TNPUT) P (RRROR)

OUTPIT = RECT REPUAT((Y =~ 1) = STAL(RRCT) ,CH) PRRC2
(LOOP)

s e

"

+
LR

6ih. Programner-defined Proceaures 72

Since patterns may he concatenated to one another as
well as strings, the REPEAT() procedure may take a pattern
as its second arqument and will then return a pattern as its
value. For exanmple, the pattern-matching rule

WORD REPEAT({3,AN7(VCWELS)) s S(YES3)

Will succeed and send controi to YES3 if the value of WORD
contains at least three contiguous vowels.

Procedure names may be defined more than once in a
prcgram and ecven the names of pred2fined procedures may he
redefined (although there is seldom any reascn for doing
so). In each case, it is the most recent definition which
establishes the current meaning of the procedure name, and
any precedirqg definition is lost.

The _DEFINE() _Procedure. The predefined procedure
DEFINE(Y will accept two arguments, hoth strings. The basic
fcrm cf the first argument consists of the name of the
procedure being defined followed 'ty a parenthesized list of
names of "formal variables'" (or "dunny variables™ which are
used in the procedure hody to repraesent the argunents Wwith
which the procedure will be called; in the exauple above,
DEFINE (*REPEAT (N,O0BJECT) "), the nrocedure REDPEAT () i
declared with the two formal variables N and OBJUECT.

procedure names and names of formal variables may he
freely invented by the programmer, subdect to the usual
restriction that they be identifiers. They may be the sanme
as names used elsewhere in the proqgram text for other
purgroses, because all the names in the first argument of the
DEFINE() procedure are used "in a special way: when a
procedure is called, these nauwes are all made to refer to
new variables, "internal" to the procedure call, which are
distinct from the variatles to which the names previonsly
referred; they will continue to refer to these internal
variables until a return from the procedure call 1is made.
(This mechanism will be descrited in detail in following
sections of this chapter.) Tt turns out to he useful to have
other names which are made to refer to internal variakbles
for the duration of each procedure call; these names of
additional internal variables, if wused, are wWritten
inmediately following the closing parenthesis of the formal
variable list. A definition of a PRINT() procedure, which
has three additional internal variables, conld be

DFPINFE (*DPRINT (N, NAME) M, %, P")

The internal variables t#, W, and P could then be used within

6k. Programmer-defined Procedures 73

the procedure body where they might be assigned some values,
such as tallies, needed only during execution of the
procedure <call. Notice that the list of additional internal
variables is an extensicn of the string which is the first
argument; no embadded blanks are permitted in this string.
There is no limit to the number of formal variables and
additional internal variables with which a procedure may bhe
declared.

It is also possible to declare a procedure with no
formal variables, as in

DEFINE {(*RECORDS () ')

if the process which the procedure is to perform is not
dependent on an argument list. The RECORDS () procecdure, for
example, might ke used to count all records in a group of
data read from the input file. GZven though there is no
arqument, the pair of empty parentheses must still appear,
both in the declaration and in every reference to the
procedure in a program text.

The second argument of the DEFPINE() procedure is a
string which 1is the label of a statement in the procedure
hody which is to be executed first whenever the procedure is
called; this label 1is termed the ‘entry label." If the
seccend arqument is null or missing {and thus null by
default), as it has been in all previous examples, the entry
label is taken to have the same form as the procedure nanme.
Thus the declaration

DEFINE (*RECORDS ()', ' FECORDS')

would have precisely the same effect as the preceding
exanrle, of defining the entry label to be RECORDS.

¥More commonly, the second arqument of DEFINE() is used
to insure that the entry 1label for a procedure body is
different from any 1label which may happen to appear
elsevhere in the ©program text, since all the labels of a
program must be unigue. Thus the convention may bhe adopteqd
of forming all entry labels by preceding the name of the
prccedure with the string PR.; the evaluation rule

DEFINE (*RECORDS () ', ' ER. RFCORDS?)

declares that the entry label for RECORDS () is the 1label
PR.RECORDS, and the first statement to bhe exercuted in the
procedure body for the RECORDS() procedure nmust bear that
label. (The 1labels of the other statements of a procedure

6A. Programrer-defined Procedures Tu

body should also be protected fronm conflicts by adopting
scme similar conventions.)

The DEFINF() procedure itself returns the null value
vhen it is exccuted.

procedure Bodies. A DEFINE() procedure declares to the
Snobol system the nrame of a programmer-defined procedure,
the names of its formal variables, addlitional internal
. variables, and 1its entry label, Ekut gives no indication of
jts effect; that information is supplied by a procedure
body, which consists of a series of Snohol statements to be
executed whenever the procedure is invoked. A procedure hody
may consist of any number of snobol statements, one of which
{not necessarily the first) must have the label declared by
the DEFINE() as the entry label for this procedure. The
statenents of a procedare body may he of any ¥ind; they may
include procedure declarations and references to other
procedures, or even to the procelure being defined. A
rrocedure whose bhody contains a reference to itself is
termed a "recursive rprocedure”; exanples of Tecursive
procedurecs may be found in Chapter 8.

The statements of a procedure body should be executed
only in respornse to a procedure call, so proccdure hodies
shculd be iocated within a Snobol program text in such a way
as to be outside the flow of control of the ™rain progran®;
the main program consists of all statements except those of
procedure bodies.

The specification of a procedure's action is made
general rather than specific by using the names of the
formal variahles within the " prccedure hody. In the
definition of the counT() procedure shown below, the formal
variahles PAT and LINE are used tc represent the nany
different arquments with which this procedure may be called
on different occasions.

DEFINE (YCOUNT (PAT,LINE) ', 'PR.COUNT® : (END.COUNT)
PR.CCUNT LINE PAT = NULL F (RETURN)
COUNT = COUNT + 1 (PR.COUNT)

END.CCUNT

The first statement of the procedure body specifies
that the value of the second argument LINE is to he searched
for an instance of the first arqument PAT] the sccond
statement of the procedure body increnents the value of
COUNT each time a pattern is found and sends control back to
the first statement to institute another search. COUNT() is

thus generally defined as a procedure which counts the

6A. Programmer-defined Procedures 75

number of occurrences of some pattern within some string;
infcrmation as to what pattern and what string are to be
used will be supplied to the procedure bodv by the arguments
each time the procedure is called. (Notice hov the procedure
body has been removed from the flow of control of the main
program by the unconditional transfer following its DEFINF ()
statement.)

other variable, 1is assigned +he result because ot
convention which exists for the returning of values: when
success return from a procedure is taken, the last value
assiqgned within the procedure body to the variable whose
name is the same as that of the prccedure is returned as the
value ¢f the procedure call. If that variable, which is
termed the ‘"result variable," is assigned no valune during
the execution of the procedure body, the null value 1i=s
returned. A value of any datatype may be returned as the
value c¢f a procedure call.

The internal variakle named COUNT, vrather ¢than any
a
a

The_ Returns RETURN, NRETHURN, and FRETUFN., The logical
end of » procedure body is signalled by a go-to specifying a
transfer to EETURN (the standarl success return), to NRETURN
(anncther success return, for returning a variable rather
than a value), or to FRETURYN (the failure return). These
transfers have special syster definitions and constitute
regquests to the Snobol system to return control to thn
statement from which the procednre was called. Any numper of
statements in a procedure body may «ccntain transfers to
RETURN, VNRETHURN, or FRETURN; the first such transfer to bhe
executed ends execution of the prccedure call. If either
success return (RETHORN or NRETURKN) is executed, the value of
the result variable 1is returned as the value of the
procedure call and execution of the calling statenment
resumes at the point of the call; if the failure retucn
FRETURN 1is executed, no value is returned but control is
sent directly to the go-to of the <calling statement where
the failure transfer will be taken.

There is no restriction against using RETUPN, NRETURN,
or FRETURN as the label of any statement within the program
text, but if this is done the special system definition of
that return is lost. Hence RETURN, NRETURN, and FRETHURN must
not be used as labels within any proqgram which employs them
to return from a programmer-defined procedure, or else a
trarsfer to RETURM, for example, from a proccdure body will
send control npot to the <calling statement but to the
statement labhelled RETURN.

6A. Prcgrammer-defined Procedures 7¢

The example below presents ancther way to vrite the
COUNT({) procedure, in which the procedure body includes both
RETUEN and FRETOURN transfers. (An example of a procedure
which uses NRETUBN may be found toward the end of this
chkapter.) As before, the procedure is designed to count the
number of occurrences of some pattern within scme string;
here, hawever, if no instances of the pattern are found, the
procedure does an FRETORN, causing failure of the rule fronm
which it was called, rather than returning the null value.

DEFINE ('COUNT (PAT,LINE) ', "PR.COUNT') : (FND.COUNT)
PR.CCUNT LINE PART = NULL : T (OUT.COUNT)
COUNT = CCUNT + 1 : (PR.COUNT)
OUT.COUNT TDENT(COUNT,NULL) : S(FRETURN} F (RETURN)
END.COUNT

As in the earlier definition of COUNT(), the counting
loop is executed until the pattern match fails. Wwhen this
happens, however, control is sent to the statement labclled
OUT.COUNT which tests COUNT to see whether or not it has
heen incremented. If it has not -~ 1if the pattern match
failed on the first attempt —— then COUNT has a null value,
the test vill succeed, and the procedure will do an FREMI2N
causing faiiure of the procedure call: if COUNT is non-null,
then the procedure will do a RETURN, returning the valne of
COUNT as the value of the procedure call. Often, as here, a
success transfer may lead to an FRETURN, and a failure
transfer to a RETURN.

Procedure Calls. When an assignaent statement such as

NUMBERA = COUNT('A',RECORD) 1 F(NONE)

is executed, the procedure call must bhe processed before the
assignrent can take place; hence, execution of the caliing
statement is temporarily suspended while the Snobol systen
executes the procedure call.

To carry out the call, the Snohol system begins by
taking several automatic .actions. First the names in the
first arqument of the DEFINE() statement are made to refer
to new variables which are internal to this call of the
procedure., The procedure name now refers to the internal
result variable, and the fecrmal variable names refor to
internal formal variables. Next the internal variables to
which these naun~s now refer are assigned the values needed
for the execution of this call: the result variable (COMNT
in this case) 1is assigqned the null value, the formal
variables arc assigned the values of their corresponding
arquments (in this example, the formal variable PAT is

6A. Prcgrammer-defined Procedures 77

assigned the character A and the formal variable LINF 1is
assigned the value of the variable RECORD). Since there is
no way to make reference to a variable except by using its
name, this means that the variables formerly referred to by
the names COUNT, PAT, and LINE are inaccessible during the
execution of this procedure call,

After this preparation is completed, control is sent to
the entry label and execution of the procedure body begins.
The action of the procedure is carried out using the values
of the arqguments provided to the procedure call, since these
have Jjust been assiagned as the values of the formal
variatles. The statements of the prccedure body are executed
in the usual way, until a request for the system to do a
return is encountered.

Any return automatically reverses the actions of the
preparatiorn process; the names of the procedure and of the
forral variables are made to refer to the same variables
vhich they named just before the procedure call vwvas
executed, and thus the internal variables, having served
their purpose, become in +turn 1inaccessible. The flow of
control reverts to the calling statement —— on a RFTURN, to
the roint of the procedure call; on an FRETURN, to the qo-
to.

The_Passing_of Arguments. When a procedure is invoked,
the values of the argquments in the procedure reference are
said tc be "passed" to become the values of the fornal
variables., The values of the arguments are assigned to the
correstonding formal variables on a one-to-one, 1left-to-
riaht basis. Any procedure, predefined or proqranner-
defined, may be called with more or fewer arquments then its
definition provides for. Missing arquments are taken to have
the null value; extra arquments are evaluated before the
procedure call is executed, but are otherwise ignored,

Tn Snobol, all arguments are passed "by value"; that
is, the arquments are evaluated and the resulting values are
passed to the procedure hody. (In fact, the mechanism for
passing arguments has the same effect as if a Snobhol
assiqnment rule were executed, with the formal variable on
the left side and the arqument on the right.) This method of
passing arquments assures that the values of variables in
the arquments are not affected by execution of the procecdure
call. For instance, in the call

NUMBERA = COUNT(*A',RECORT) t F(NONE)

it is the value of the variable RECORD which is passed as

6A. Programmer-deiined Procedures 78

the value of the seccnd argument. The procedure will use,
not the variakle RECOPD, tut only the internal formal
variable LINE which has been assigned the value of RECORD at
the time of the call. Thus the value of RECORD is always the
same before and after a call of the COUNT(} procedure 1is
executed.

The arquments used in a procedure reference may be any
expressions having values which the procedure body will
handle properly. A call to COONT() such as in the statement

NUMBERV = COUNT(ANY ("AEIOU'),RECORD) : P (NONE)

would pass the pattern returned as the value of the
procedure call ANY ('AEION') to be the value of the variable
PAT. Since PA™ is used in the pattern part of a statement, a
pattern value is appropriate and the number of vowels within
the value oF RFCORD will be returned as the value of this
call to the COUNT() procedure.

While *he first formal variable, PAT, may acquire
either a string or a pattern value, the second formal
variable, LTNT, may acquire only a string as value, since it
is used within the procedure body as a string reference.
Fxecution of a procedurc call of the fcrnm

NUMBERY = COUNT (RECCRD,ANY ('REICU')) : F (NONE)

{in which the programmer has presumably forgotten the
correct order of the arquments) will pass the formal
variable LINE a pattern value; when the procedure body 1is
entered an execution-time error will result, since the first
field in a replacement rule cannot he a pattern.

Additional Internal_variables. The names of variables
which are to be internal to a procedure call (in addition to
the result variable and any formal variables) are also made
to refer to distinct internal variables at each procedure
call, thus making the variables previously referred to by
those names temporarily inaccessible; the names are restoreq
to their former significance when a return fromn the
procedure call is taken. The internal variables which they
name are initially null at every cali of the procedure just
like the result variable. There are thus two possible
reasons for declaring additional internal variables: to
prevent their names from conflicting with napes used
elsewhere for other purposes, and to *take advantage of the
autcmatic null initialization at each call. Any nunmber of
additicnal internal variables may be declared by writina
their names in the first arqument of a DEFINF{) procedure.

6A. Programmer-defined Procedures 79

As an example of the usefulness of additional 1internal
variables, consider the LONGER() procedure which employs
four of them. This procedure compares the two strings given
as the values of its first twc arguments to determine which
contains the lcnger sequence of the characiers specified by
the value of its third arqument; it returns as its value the
string containing the longer sequence. If the size of the
longest sequence in hoth strings is the same, then by
convention the first string is returned as the value of the
prccedure call; if neither string contains a character given
by the third arqument, a trarsfer to FRETHURN 1is taken
causing failure of the procedure call. Thus execution of the
assignment statement

OUTPUT = LONGER('HTLARIOUS!,'TREACHEROUS?, AETOU?)
+ : T (NOVOWEL)

yvould cause the string HILARIOUS to be printed since 1its
longest vowel sequence is longer than any vowel sequence in
the string TREACHEROUS.

DEFINE (*LONGER (S1,52,SEQ) T1,T2,SAVE,LONGEST®,

+ ' PR.LONGFR") : (END. LONGER)
% MAKE COPTES OF THF THWO STRINGS T0 BE COHPARED
PR.LONGER ™1 = S1
T = S2
* FIND THE LONGRST SEQUENCE TN THE FIRST STRING
* ASSIGN ITS SIZE TO THE INTERNAL YARIABLE NANED LONGREST

T1.LCNGER ™1 SPAN(SEQ) . SAVE = NULL =: F{T2.LOuORR)
LONGFEST™ = GT (SIZE(SAVE) ,LONGFEST) STZE(SAVE)

+ : {(T1.LONGTR)

* SEE IF THERE IS A SECUENCE IN THE SECOND STRTING

* WHICH TS LCNGER THAN THE LONGEST SEQ TN THE 1ST STRING

* IF SO, ASSIGN THE SECOND STRING AS THE VALUFE OF TH?

* RESULT VARTABLE AND RETHRN

T2.LCNGER T2 SPAN(SEQ) . SAVE = NULL : P{0OUT.LONGER)
LONGER = GT(SIZE(SAVE),LONGFST) &2

+ : S (RETURN) F (T2.LONGFR)
IF NO SEQUENCE WAS FOUND IN RITHTR STRTNG, FAIL

* OTHERWISFE RETURN THE FIRST STRING AS VALUE OF THE CALL
OUT.LONGER LONGFR = DIFFER(SAVE,NULL) S1

+ :+ S(RETURN) F(FRETURN)
END.LONGER

This procedure uses four additional internal variables
named T1, T2, SAVFE, and LONGEST. 71 and T2 are needed
because the methodl used for determining the longest vowe)
sequence in S1 and 82?2 deletes each vowel sequence which is
found. Since the original strings must be prescrved to he
returned as the value of the procedure call, the replacement

6A. Programmer-defined Procedures 80

statements T1.TONGER and T2.LONGER use the variables T1 and
T2 rather than S1 and S2, allowing the values of S1 and S2?
to remain unchanged. The internal variable SAVE is assiqgned
each vowel sequence which is found. The fact that SAVE is
given the null value initially allows the test in the
statement labelled OUT.LONGER tc determine whether or not
any vowel sequences have been found; if SAVE still has 1its
null value, then neither string contains a vowel and an
FRETURN is taken. The internal variable LONGEST is wused to
keep track of the size of the currently longest vovel
sequence as each is successively found within the first
string. When the determination of the size of the longest
sequence has been completed, this nuaber is then compared
with ®he size of each vowel sequence as it is found in the
seccend string until either a longer sequence is found {in
which case the second string is returned as the value of the
proccedure call) or until all vowel sequences have becn
considered (in which <case either the first string 1is
retvrned or failure is signalled).

Since in this procedure body the internal variables T1
and T2 are assignced the values of the arquments as soon as
the procedure body is entered, the only reason for declaring
them to be internal is to prevent conflicts with other uses
of the names T1 and T2. The internal variables SAVE and
LONCEST are sirilarly protected, tut also take advantage of
the fact that they are initialized to null each tinme the
LCNGER () procedure is called.

Note that the use of the additional internal variable
LONGEST is not really necessary since the result variable
LCNGER may be substituted for it wherever it occurs. Result
variables have cxactly the propérties of additional internal
variables until a success transfer is taken, so they are
often assiqned temporary values which are needed during the
processing of a procedure call. When the final value of a
call has been determined, it can then be assigned to the
result variable and a return made to the statement in which
the procedure call occurred,

References_to_Fxternal Variables. The principle of a
programmer-defined prccedure is that of a "sub-program,"
independent of the program with which it 1is used; it
receives values through its arquments, performs somo process
using those values, and returns the result. If temporary
values are needed, the procedure assigns them to additional
internal variarles, so that it avoids changing the values of
any variables not internal to itself, i.e., those whose
names do not appear within the first argument of the
DEFINE () statement for the procedure.

6h. Prcgrammer-defined Erocedures 81

Procedures written in such a way as to nmake reference
to no values other than thcse of their internal variables
(or to literals within their own bodies), and which assign
values only to their own internal variables, are desirable
for many reasons. They are easy tc¢ wmove from program to
Frcgram since they will operate correctly regardless of
their environment, and they are easy tc use because they can
influence that environment only through the result which
they return (including, of course, the possible "result" of
failing).

At the same time, there are sometimes qood reasons for
relaxing this discipline, in pursuit of the same goals for
which procedures are written in the first place: to make
programs eacier to write and clearer to read. One example of
such a motivation has already .come up in some of the
eranrles; in the procedure body fcr the LONGER() procedure,
for example, the statement

T1.LCNGFR T1 SPAN('AETOU') . SAVE = NULL : F(T2.LONGRR)

occurs. Here NULL 1s the name <¢f a variable which is
external to the <call of the LONGER() procedure; since thn
name NULL is not included in its declaration, it receives no
special treatment when this procedure is called; it
continues to refer to the same variable before, during, ant
atter a call to LCNGER{), Thus, if LONGER() were to be
called from a program whick had assianed some non-null value
to the variable named NULL, it would not work as intended.

Tn this case there are several ways to restore the
independence of the LONGER{) procedure; the identifier NHULL
can be replaced in its hody by a literal null string (tvwo
adjacent gquotation marks), or by nothing, or the name NILL
can te declared ac narming an additional internal variable
for LONGER(), thus assuring that NULL will refer to a
variable initialized ¢c the null value each tinme LONGRR() is
called. For this procedure such preccautions seem extremne,
but they micht make sense if TLONGER() were a mich nore
complicated procedure, and were intended for use by people
cther than its frogramnmer.

As another motivation for making reference to extoernal
variables, consider a programmer-defined test procedure
which determines whether or not the string given as 1its
arqument is a palindrome, that is, whether it reads the sane
frcm left to right as from right to 1left. The completae
program presented telow uses the PALIN() procedure to
perform this test. The proqgram reads all trimrmed reccrds of
a qroup of data hut prints only those which are palindromes.

6A. Prcgrammer-defined pProcedures R2

* PALINDROME-FIKDING PROGRAM
%*
SET UP PATTFRN NEFDED BY THE PAIIN() PROCEDURE
* ASSIGN IT 70 A MAIN-PROGRAM VARTIABLE
PAL.PAT = POS (DY LER(Y T CH RTAB(7) . CAND *CH
DEFINE (*PALIN(CAND)CH', *PR.PALTN') : (END.PALIN)
*
TF CANDIDATE NONW CONSISTS OF 1 CR O CHARACTERS, SUCCEFD
* OTHERWIS® APPLY THE PATTERN AGAIN
PR.PALIN LE(SIZE(CAND),1) ¢ S (RETURN)
CAND TPAL.PAT : S (PR.PALIN) F (FRETURN)
END.PALIN
*
READ RECORD = TRIM(INPUT) -+ FP(END)
PRINT OUTPUT = PALIN(RECORD) RECORD = (READ)
END :
Ooutput from this program could bhe strings of the form
HANRNAY
T
RCTCR
KOGCN
SAGAS
*
103595301
YREKAEAKERY

> XK O[]

The PALIN() procedure uses virtually the same pattern
as that shown at the end of Chapter ¢ for finding words with
jdentical first and last characters; the pattarn is changed
cnly by the re-assiqgnment of the substring matched by
RTAPR(1) to the variable named CRND. Thus, on each iteration
of the 1loop the string being searched is shortened by the
lcss of its first and last characters; a nev set of first
and last characters is then tested for identity. The loop is
executed until either (1) the end characters being tested
are fotnd to be different, upon which an FRETHRN is taken
signifying that the string is not a palindrome, or (2) the
size of the string is reduced to zero or one, in vhich case
a RETUEN is taken since this indicates that all characters
have Yeen tested and that the string is a palindrope. Note
that the rule in the statement 1lakelled PR.PALTN will
succeed imnediately if the size of the argunment is either
zero or one, meaninqg that strings of one or no characters
are palindromes by definition. The PALIN() procedure retucns
the null value cn success, since the result variable PALIN
is not assigned a value within the procedure body.

6h. Frogrammer-defined Procedures 813

Here the pattern on which PBALTN({) relies is coustructeqd
once, in the statement just above the DEFINF({(), and assigned
to the wvariable PAL.PFAT. The reason for doing this is clear:
since 1internal variables are internal to a singile call of a
procedure and their valucs neover persist botueen calls, if
PAL.PAT were declared to be the nanme of an additicnal
internal variahle of PARALIN{y *hen the pattern assignment
would have to bte moved into the prcecedure hody, and thus the
pattern would have to be caonstructed anew at each call of
the PALIN() procedure —- a suhstantial amount of unnecessarvy
effcrt.

It is treve that PALIN() will ro% work properly if the
program <¢alling it inadvertantily assigons a different value
to the variable PAL,PAT. ¥{ nmight seown that this kind of
error could te aveoided by rewriting PALIN() to accept the
pattern as another arqument, rTather *han nerely using the
value of an external variable; bhut that turns out not to he
truc. A call to such a re-written PALIN{} procedure would bo
scrething like

PALIN (POS(0) LEN(1) $ CH RTAB(1) *. CAND *CH,RECNA?Y)

Apart fren the bother of writing the invariant nattora in
every vaelsorence £o PALTN (Y, the pattern is once agiin heing
cenctructed at cach call of PALTIN() —— in the evaluvation o+
the argument, rathar than within the procedure boiv. The
callina progran can avoid the reneated evaluation of the
pattern by executing the assiagnuent statruent

PAL.PAT = POS{0) LEN(1}) $ CH RTAB(1) . CAND *CH

PRLIN(FAL.PAT, RECORD) : F(NOPALIMW

But now, just as before, the caliing program is roesponsible
for assuring that PAL.EAT has the correct vaiue at the time
of the call. So the original PRLIN() proceduare cannot he
improved upon in this way, and has the additional merit of
requiring only «ne arquaoent instead of two. The conclusion
tc be drawn is that a pattern used by a procedurc must
either he censtructed at each procedure call, or else must
be assigned as the value ot an external variable so that it
will be availalble for use by repeated procoedure calls,

Notice, however, how the pattern which 15 the value ot
the main-progrvam variable FALLPAYT can cause assignuonts to
the internal formal varianle named CAND and to the
additional internal variahle named CH within the PALTH ()

6A. Programmer-defined Procedures sS4

procedure. The pattern PAL.PAT calls tor immediate
assignment to whatever variable is currently referred to by
the name CH, and conditional assignment to whatever variable
is currently referred@ to by the nanme CAND —— it specifies
nothing about which variables those must be. If PAM..PAT 1is
used in a statement of the main progqram, then it will cause
assignwents to the main-program variables named CH and CAND.
At a call of the PALIN() procedure, though, those two names
are made to refer to different variables, 1internal to the
procedure call; so if PAL.PAT is wused (as above) in a
statement within the hody of BALIN(Q, it will cause
assignments to the two variables internal to the call.

side-effects of _Procedures. Just -as there are sometimes
reasons for making reference to the values of external
variables, so are there reasons for altering their values as
well. 1A procedure call which alters the value of a variable
not internal to the call is said to have a “"side-effect.”
This terminology exists because of the presumption that the
pain effect of a procedure is to return a value or to direct
the flow of control; in fact, however, procedures ara often
written solely for the purpose of producing side-effects.

One reason for defining a procedure which produces a
side-effect is to keep some sort of record of occurrences
inside and outside of procedure calls. For instance, the
COUNT () procedure presented earlier could be changed so that
in addition to its former action of returning as its value
the number of instances cf some pattern within some strina,
it also increments an external counter by that number. This
new version of COUNT({(), TCOUNT(), could be written as
follcus. :

DEFINE('TCCUNT(PAT,LINE)',’PR.TCOUNT') :+ (END,TCOUNT)

PR.TCOUNT LINE PAT = NOLL :+ TF(00T,TCOUNT)

TCOUNT = TCCUNT + 1 : (PR, TCOONT)
OUT.TCCUNT TALLY = TALLY + TCOUNT s (RETURN)
END.TICCUNT

Aside from the systematic replacement of COUNT by
TCOUNT, this procedure definition is the same as that of the
first version of COUNT(), except that before returning the
prcecedure increnonts the value of the external variable
TALTY by the value of the result variable. Since TALLY is
not an internal variable, 1its value can be increased
thrcughout a proqram Over repeated calls to TCOUNT(j, and
thus represent a total of the results of many invocations of
that procedure; for that matter, TALLY wmiaht Also he
incremented by other assignments in the main program or by
calls to othar procecdures as wvell.

6A. Prcagrammer-defined Frocedures 85

The inclusion of the side-effeoct involiving TALLY
specializes the COUNT() procedure, and the same record conlAd
be kept without recourse to side-effects by keepina the
tally entirely in the main program, as in the sequent

RESULT = COUNT{*A',RECCRD)
TALLY = TALLY + RESOL™

and so forth. But that requires that the tally-incrementing
statement bhe written once for every reference to the

rccedure; if there are many references to COUNT(Y in A
program, then the whole text can be shortened considerably
hy «riting the statement which increments TLLLY once in tho
TCOHNT ()} procedure body and permitting the side-effect to
occur.

Another reason for changing the value of an external
variable in a procedure body is to takoe advantage of an
output association which that variable may have. A SKIP)
procedure can bte dofined, for ovarple, to "okip"” thoe number
of lines specifiel by its argument Ty assiqgning the null
value repeatedly to the main-proqras variable named OUTP.arp.

DEFTHE (YSKIP(NO{) ', "PRLSKIPY) o (FUD . SKTD)
PR, SKID KOM = GT{HU%,0) nnu - 1 Toor(RETORY
OUTPUT = NULL : (PR, SEY DY

END.SKTP

Tf SKIP() i5 called in the sequence

OUTPUT = HEADA
SKIP (3)
OUTPUT = HEAD2

then the first healding, the three eapty lines, and the
second heading are all written to the sane file, the one
with which the variable OUTPUT 1is associated, since tho
variable referred to by the name OUTPUT is the same hoth
inside and outrside the procedure call., Note Lhat SETP{)
would not work as intended if OUTIU™ were declared o refer
to a variable intornal to the prccedure call, since the
asscciation is with the main-progran variable, not with the
namc OQUTPUT.

Duite a ditferent motivation for side-offects arises
when a procedure does not have a fived name of an oxtornal
vaeriable in its procedure body, but rather can chainge the
valies of diiferent variables when it is called with
different arqurent::,

6A. Programmer-defined Frocedures 86

One way to do this is to define a procedure vhich has a
string as its argument and vwhich uses indirect referencing
within its procedure body to refer to an external variable
named by that strina, or by a string derived from it.
Cornsider the following STORE() procedure, whose purpose 1s
to store the string which is its first arqument as the value
of cne of a set of successively-named variables; the name of
the variable which is to be used is formed by concatenating
the length of the string to be stored, then the value of the
~seccnd arqument of STORE(), then the index numher of the
next availatle successively-named variable of the set. If
the rrccedure reference

STORE('CAT', 'LIST')

is written, for instance, and CAT is the first three-letter
word to be stored, then it will become the value of the
variable named 3LIST1. If STORE(} were called repeatedly
with the string LIST as its second argument, then it wonld
store one-character strings as the values of the variables
115871, 1LIST2, ..., $(1 'LIST' W), two-character strings as
the values of 2LIST1, 2LIST2, .., (2 fLIST' W), etc. The
STORE () procedure further keeps track of the last used inrdex
nember for each 'list® by storing these numbers as the
values of the variables 1LIST, 2LIST, ..., $(N 'LIST'). Note
that all names formed by the STORE(} procedure depend on the
value of its second argqument, but all begin with a number
and o are nacessarily distinct from any names which may be
written in the program text.

The definition of the STORE() procedure could be

DEFINE(*STORE (WORD,NAME)"Y,'ER.STORE") : {END. STORT)

*

£ ADD ONE TO THE INDEX NUMBFR FOR THIS SIZI WORD LIST

PK.STORE & (SIZE(WORD) NAME) = §(SIZE(WORD) NAMF) + 1

.

* STORE THE WORD AS THE VALUE OF THE "NEXT" VARTABLE
$(SIZE (WORD) NAME $(SIZFE(WORD) NAME)) = WORD

+ : (RETURN)

END.STORE

STORE() is thus a procedure which always succeeds,
returning the null value. Tts purfose is alvays to have the
side-offect of changing the value cf one of the great many
external variables whose names are dependent on the various
values of its second argqument.

6A. Prcgrammer-defined Procedures 87

Levels of Internal Variables. When a procedure call is
to use variabtles other than those interral to itself, either
to refer to their values or to assign new values to then,
then the particular relation bhetween names and variables at
any time beccwes irportant. In th= precading secticns the

examples have assumed that a procedure was called fron a

main progrem, and thus all names either referrcd to
variables internal tc¢ the procedure call, or else to
variables @associated with the pain program. Rut the

situation mnay be more complicated than this, because onn
proc2dure mey be called and then it may call another
procedure: if the second procedure makes reference to
variakles «ther than 1its own internal variables, the
possiblity cxists that it may use a name which refers to one
of the intermnal variables of the procedure which called it,
rather thar to a main-program variable external to ho*h of
them. Scmetimes this is what was intended and sometimes not;
care mast he {sken to insure that the npanes used hy
procedures vill always refer to the intended variables.

The nurber of sets of internal variables which have
beccre temporarily accessible at any point in tiwe during
execution is termed the "level" of execution. When a progqranm
kegins executing, it is at ievel Zzero aad the statonents
exccuted at level zero are the technical definition of tho
main proqram. Tf a statement of the main prodgram cails a
procedure, the statements of that procedure's body will he
executed at level one: if that procedure calls a sccond
procedure before returning, then the statements of the
seccnd procedure's bhody will be executed at level two. Whon
the second procedure does a return, the first procelure will
resume execution at level onre; when it returns, the main
proqram will resume execution at level <zero. Tt may then
call another procedure which will execute at level one, and
so forth. Ary number of levels may be attained; there is npo
level 1lower than =zero, however, so any attempt to do a
return from a statement of the npain program (caused by
allcwing contrel to flow into a procedure body by accident
rather than through a procedure call) will cause an
execution-time error. Such an error ean be caused hy
neglecting to write an unconditional transfer followina a
DEFINE () procedure in any of the atove examnples.

At different times a procedure may be executed at
different levels, depending on the length of the chain of
calls by which it was reached. The only change in executing
at different levels 1is in the variables to which names
refer. A procedure executing at level three, for example,
vill be executing in an envircenment in vhich meost names
tefer to main-program variables, but some names rofer to

6A. Programmer-defined Procedures 88

variables internal to whatever procedure call is at level
one, scme names refer to variables internal to whatever
procedure call is at level two, and some names refer to its
own internal variables at level three. If this same
procedure is later called directly from a statement of the
main program, then all names except those of its own
internal variables will refer +to main-program variables.
Thics difference in environment must bhe considered to assure
that a procedure will refer to and assign values to the
intended external variables, no matter from what level it is
called and no matter which procedure (and thus what names of
internal variables) are at levels bhelow it in any particular
chain of calls.

As an illustration of the same name referring in
jifferent environments to variaktles at three different
levels, consider an improved version of the PALIN()
procedure, PALIND(), which would delete all spaces and
punctuation characters from its arqument before testina it
for Dbeing a rfalindrome, thus allowving strings of the form
. pOC, NOTPR. T DISSENT. A FAST NEVER PREVENTS A FATNESS. I
DIET CN COD +to be accepted. In the complete program below
the name CAND is used to refer to the trimmed record read
frcm the input file, to the formal variable of the PALIND()
procedure, and to a formal variable of the DELETR® ()
procedure which 1is «called by “he PALIND() procedure to
perform the deletion. Nevertheless, there is no possibility
of the name CAND referring to a variable at the wrong level;
within the PALIND() procedure (in this example) it alwvays
refers to an internal variable at level one, while within
the DELETE() procedure it always refers to an internal
variable at level +two. The level zero variable named CAND
can thus be referred to only by statements of the main
progranm,

DEFINE('PALIND (CAND)CH','PR.PALIND')

*
* SET UP PATTERN NEEDED BY THE PALIND() PROCEDURE
* ASSIGN IT TO A MAIN-PROGRAM VARIABLE

PAL.PAT = POS(0) LEN(1) $ CH RTAB(1) . CAND *CH
+ : (EVD.PALIND)
*
%« CALL DELETE() TO REMOVE SPACES AND PUNCTUATION FROM ARG
PR.PALIND CAND = DELETE(ANY('o.,:;'),CAND)
*

* PROCFED AS IN THE PALIN() PROCEDURE
LOOP.PALIND LE(SIZE(CAND),1) : S (RETURN)
CAND PAL.PAT + F(FRETURN) S(LOOP.PALIND)

ENC.PALIND
*

6A. Frcgrammer-defined Frocedures 89

DEFINF(‘DELETE(PAT,CRND)','PR.DELETE')

. %

+ : (END.DELETE)

x

* RFMOVE ALL PATTERNS FROM THE CANDIDATE

PR.DELETE CAND PAT = NULL : S (PR.DELETE)
DELFETE = CAND : (RETURN)

FND.DELETE

*

* MAIN PART OF PROGRAM

* READ ALL RECORDS RUT PRINT ONLY THE PALINDROMES

READ CAND = TRIM(INPUT) : F(END)

PRINT OUTPUT = PALIND(CAND) CAND : (READ)

END

In this progqram the two DEFINF() statements, the
assignwent to PAL.PAT, the READ statement, the PRINT
statement, and the END statement constitute the complete
main program. These statements are executed in the order
specified by the go-to's until an attempt is made to perfornm
the assicnment in the PRINT statement; before this
assignment can cccur, the value of the call to the PALIND ()
procedinre must be obtained. This call causes the variable
named CAND, internal to level one, to be assigned the sane
value as the npain-program variable CAND, that 1is, the
candidate to be tested, and a transfer to be taken to
PR.PALIND. Before the assiqgnment specified in this statement
can ke performed, however, a cail to the DELETE() proceduro
must te processed. This causes *he variable named CAND
internal to the level two call of CELETE() to be assigneq
the same value as that of the level one variable CAND, the
string to be tested. This string is searched repeatedly for
spaces and punctuation charatcters and when all have been
deleted the resulting, possibly shortened, string is
returnad to the statement PR.PALIND where it is assigned as
the new values of the level one variable CAND. The value of
this variable is then searched, perhaps repeatedly, for the
PAL.PAT pattern; each time the search is successful, the
value of the 1level one variable CAKD is shortened by the
loss of its first and last characters. If the candidate isg
indeed a palindrome, then the final value of the level one
variable CAND will be a string of one or =zero characters,
the PALIND() procedure will take the success return and
transfer bhack to the statement labelled PRINT. Here the
value of the level zero variable named CAND, the original
string as it was read from the input file, is printod
whenever PALIND () succeeds.

6A. Prcgranmer-defined Procedures 90

Output from this program could be strings such as

CIVIC

SUMS ARE NOT SET AS A TEST ON ERASMUS.
ROTCR

DEIFIED

DENNIS AND EDNA SINNED.
kkkokkk kokkdkok kkkk kkk Kk X

There are two different ways of classifying variables,
which are useful in different descriptions of procedures. On
the one hand, there are main-program variables, at level
zerc, as opposed to the internal variables at higher levels;
jt is the level zero, or main-program, variables wvhich have
the lasting values associated with all names, while internal
variables at all higher 1levels become accessible only
temporarily during procedure calls and are initialized anew
at each call. On the cther hand, from the viewpoint of
discussing any particular procedure call, the distinction is
between names of internal variables which are always its
own, as opposed to external variables vhich may be different
variables when the procedure executes at different levels.

The important special case in which these tvo
descriptions are equivalent is for procedures executing at
level one; at level one, the external variables are all
main-program variables. The fact that external variables
cannot he guaranteed to be main-prcgram variables at level
tvo and ahove without a painstaking check of the names of
all internal variables through all possible chains of calls,
is one reason for avoiding unnecessary references to
external variables in procedure bodies.

The Use of NRETURN_to_Return_a_Variable. Any procedure

call which returns a non-null string (or an object of
datatype Name) may occur to the left of an assignment sign

as the operand of an indirect referencing operator. This was
indicated in Chapter 5 with the rule

$STZR (WORD) = $SIZE(WORD) + 1
and may be further illustrated by the rule
$COUNT (ANY (VOWFLS) ,WORD) = $COUNT (ANY (VOWELS) ,WORD) + 1
which adds one to the value of the variable named by the

number of vowels found within a word. As another example,
the statement

6h. Prcgrammer-defined Procedures 91

$TRIN (INPUT) = LINE1 : F(DONFE)

assigns the value of LINE1 to the variable named by the
characters of the next trimmed data record, or causes an
execution~time error if the trimmed record is null.

Programmer-defined procedures can he written specifi-
cally for the purpcse of returning a string which will be
used as the cperand of the § operater to return a variable.
Consider, for example, the prcblem of determining the first
null-valued variable of the set LIST1, LIST2, ..., S${'LIST!
N}, described in Chapter 5, and then assiqring that variable
the value of the next data recerd. A procedure named
NEXTNULL () might be written to determine the first null-
valued variable as follows.

DEFYNE (*NEXTNULL (NAME) H? ' PR. NEXTNYLLY)

+ : (END,NEYTNULL)
PR.FEXTNULL N = N + 1

NEXTNULL = IDENT ($(NAXE N),NULL) NAME N
+ : S(KETURN) F({PR.NEXTNULL)
END NEXTHULL

The NEXTNULL() procedure cannct fail so it may be useq
in a statement of the form

$NEXTNULL (*LIST*) = TRIM(INPUT) : F{NODATAHA)

The procedure is <called with a string-valuzd argunent
rerresenting that part of the name which is common o all
the variables, This string is concatenated to the value of
the variable N internal to the procedure call, and the §
operator is applied to the result cf this concatenation to
return a variable. Tf the value of this variable is null, a
string representing the name of the variable is formed by
concateration and assigned as the valu¢e oOf the result
variable; this string is returned as the value of the
procedure call where it 1is wused as the operand of the %
operator vwhich returns the variable needed to perform the
assignrent.

Since N is declared as internal, it is assiqned the
null value every time the NEXTNULL() procedure is called,
hence the scarch for the "next" variable always hcqins fron
onc. TIf the search were to beqgin from the value given N the
last time the procedure returned, id.e., from the last
variable located, then N should nct be declared as internal
so that it would retain its value from one procedure call to

the next.

6A. Prcgrammer-defined Procedures Q2

A procedure can be caused to return a variable, rather
than a string which can be used by the $ operator to return
a variable, with the use of the name return NRETURN, This
return may be used only if the value of the result variable
is a string {or a Name); it effectively applies the §
operator to the value of the result variable, causing the
variable named by that value to be returned as the value of
the fprocedure call. Using NRETURN, the NEXTNULL () procedure
may te vritten as follows.

DEFINE (* NEXTNULL (NAME) N', *PR. NEXTNULL')

+ : (END,. NEXTNULL)
PR.NEXTNULL N = N+ 1

NEXTNULL = IDENT($ (NAME 'N),NULL) HNAME N
+ : S (NRETURN) F(PR.NEXTNULL)
END.NEXTNULL : '

This version of NEXTNULL() is exactly the same as its
predecessor except that NRETURN has been written instead of
RETUEN in the last statement of the procedure body, causing
the variable named by the string formed by concatenating the
value of NAME and N to be returned, rather than that string.
A reference to this new NEXTNOULL() procedure would have the
fornm

NEXTNULL (*LIST') = TRIM(INPUT) s F (NODATRA)

The $§ operator is now not wanted before the procedure
reference since NRETURN has effectively applied it already.

NRETURN is provided for convenience only; its effect
may always be obtained by using RETURN within the procedure
body to return the name of a variable, and by placing a ¢
operator directly before the procedure reference. Further
examples of the use of NRETURN may be found in Chapters 7
and 8.

The APPLY() Procedure. A procedure reference in a
program text 1is composed of a procedure name followved
directly by an argument list enclosed within parentheses.
Although these arguments may be represented by arbitrarily
complex expressions, which when evaluated yield appropriate
values, the procedure name may not be so represented but
nust be an identifier.

There are some applications, howvever, in which the
programming would be much simplified if one could indicate
generally, rather than specifically, which procedure 1is to
be called. Consider, for example, a series of procedures
named FIX1, FIX2, FIX3, etc., each one designed to "fix" a

6A. Programrmer-defined Procedures 92

word of the ‘indicated 1length. 1 procedure call somethirqg
like $('FIX' SIZE{WORD)) (WORD} is what is needed in order to
call the appropriate procedure for any given word, but this
expression is syntactically incorrect.

Assigning an expression representing the procedure name
to another variable, as in

TEMP = 'FIX' SIZF (WCRD)

and then applying the $§ operator as in $TEMP(WORD) qgives an
expression which is syntactically correct but does not
produce the desired result; in this case the procedure call
TEME (WORD) is evaluated, and its value uscd as the operanA
of the $ operator. (Of course, if no procedure TIMP (\ were
defined —— the most likely case -- an execution-time error
would result when it was called.)

A way of calling a procedure, in which the name of tho
procedure to be called is determined at execution-tine, is
Frovided by the predefined procedure APPLY () whose firat
arqument may be any expression which yields a string naning
the procedure to he called, and whose remaining arquments
are any expressions representing the arquments to he
surplied to that procedure. APPLY() may be applied to
predefined proccdures as well as to prcgrammer~-defined ones;
thus

WORD = APELY (*TRIN',INPUT)
is equivalent to
WORD = TRIM(INPUT)

and

1}

OUTPUT APPLY('LONGFR',STRING1,STPING2,VOWELS)
is equivalent to

OoUTPUT

LONGER(STRING1,STRING2,VONELS)

More usefully, the designation of the: appropriate
procedure from the set FIX1, FIX2, FIX3, etc., could be made
with the evaluation rule

APPLY (*FIX* STZE (WORD),WORD)

which is equivalent to the rule

6A. Prcgrammer-defined Frocedures qu

FIX3(WORD)

if WCRD has a value three characters long. Similarly,
executing the statement

APPLY (TRIM(INPUT) ,ARG1,ARG?2) : F(ERRCR)

calls the procedure whose name is specified on the next data
record, giving it the two arguments ARGT and ARG2.

The value reoturned by APPLY() is the value returned by
the ©procedure which it «calls, and APPLY() returns with
whatever return (RETURN, NRETURN, or FRETURN) is used by
that procedure.

Note that APPLY({) is defined to have a varying rather
than a fixed number of arquments, always one more than that
of the procedure specified in its first argument, However,
the usual rules about missing and extra argunents pertain:
if the number of arquments beginning with the seccond exceeds
the number of formal variables specified for the procedure
being called, the extra arguments are evaluated but
otherwise ignored; if ihere are fewer arguments than formal
variables, each remaining formal variable is assigned the
null value.

Although the name of the procedure may be represented
by an expression of any complexity, that expression must
yield a string which is an ijdentifier when evaluated. This
restriction comes about because all the names in the first
argument of the DEFINE() procedure nust be identifiers; all
predefined procedures, of course, have names which are in
identifier form.

Using_a_Library of Procedures. Most tasks vhich a
program is to perform divige themselves naturally into a
series of smaller tasks, some of which are so basic as to be
repeated many times during the course of the program. If
ecach . tasic part is written as a procedure, then the
organization of the program can be clearly seen; the body of
each procedure need occur within the progran text only once,
but it may te referred to whenever it is needed. Once a
prccedure has been thoroughly tested, it may form part of
the programmer's "litrary"® to be used, Jjust as the
predefined procedures are used, as a part of many different
programs.

The conplete program text below begins by providing the
library of procedures to which it wvill refer; with the
exception of the PRINT() procedure, these procedures have

6k, Programmer-defined Procedures 95

all occurred earlier 1in this chapter vwith the same
definitions. After the library comes the main program, which
censists largely of references to these procedures. The
purpose of the proqram is to read data from the input file,
isclate the wcrds, and store them in "lists" according to
their size. When all the words have heen read in and stored,
the 1lists are printed, 1in crder of increasing word size,
with the words in each list in the order in which they were
encountered. In addition, each word of a list which is a
palindrome is wunrderlined by prirting a row of hyphens
beneath it on the succeeding line, At the end of each list,
numbers are printed indicating the number of words in the
list and tie number of palindromes; when all the lists have
been printed, the total number of words and of palindrenmes
is also provided.

The main prugram htegins by determining the characters
which are to be considered as punctuation by readina them in
frcm the first record of the input data. It then proceeds to
read each subsequent data record, which consists of words
separated by sraces and punctuation and appearing in no
fixed format, except that no werd is broken across a record.
As each word is found, the STORF() procedure is invokod +o
store the word in the list appropriate to its size. When all
the werds have been processed, the PRINT() procedure is
called to print the 1lists, shortest words first, ard to
underline each word which is a palindrome. The PRINT()
proccedure invokes the PALTN ()} procedvre to determine whethor
or not the word is a palindrome, the REPEAT() procedure to
forr an underline of <the needed 1length, and the SKTP ()
procedure to produce blank 1lines. The PRINT(}) procedura
counts the words and palindremes cccurring in each list hy
incrementing the values of the internal variables W . anrd P,
printing their values Lefcre it returns. It aiso adds to the
total count of words and palindromes by incrementing ihe
values of the main-program variables WORDS and PALINS: thesa
values persist and increase through "successive calls to
PRINT (). : :

* EROCEDURF TO CONCATENATE A STPING OR PATTERN N TIMES
*

DEFINE('REPEAT(N,OBJECT) ', 'PR.REPFAT')

+ : (END.REPEAT)

PR.FEPEAT N = GT(N,0) N - 1 : F(PETIRN)
REPEAT = RFEPEAT ORJECT : (PR.RFEPFAT)

END.RFPEAT

3

* TEST PROCEDURE 70 FTND PALINDROMES (FAILS IF NOT A PALTN)
*

DEFINE('PALIN(CAND) CH', *DR, PALTN')

6A. Erogrammer-defined Procedures 96

* SFT UP PATTERN NFEDED BY THE PAIIN{() PROCEDURE
* ASSIGN IT TO A MAIN-PROGKAM VARIABLE
PAL.PAT = POS(0) LEW(1) ¢ CH RTAB(1) . CAND *CH
: . (END.PALIN)
*# IF CANDTDATE NOW CONSISTS OF 1 CR 0 CHARACTERS, SUCCEED

* OTHFRWISE ADPPLY THE PATTERN AGAIN

PR.EALIN LE(STZE{(CAUD),) + S (RETURN)
CAXD FEAL.PAT :+ S(FR.PALIN) F(FRETURN)

FNCD.PALIN

. o%x

* CSIDF-EFFECT ERCCEDURE TO TO SKIE N LINES ON OUTPUT FTILE
*

DEFINE (*SKIP(KUM) *,*PR.SKIP') = (END. SKIP)

PR.SKIP NUM = GT(NUM,0) NOM - 1 : F(RETURN)
ouTenT = NULL : (PR.SKIP)

EWD.SKIP

*

* SIDE-EFFECT PROCEDURE TO STORE WORDS IN LISTS BY SIZE
*

DEFINE(’STORE(WORD,NAME}','PR.STORE') : (END, STORF)

*
%« ALD ONE TO THE INDEX NUMBER FOR THIS SIZE WORD IIST
PR.STORE $ (SIZE{WORD) NAME) = §(STZE(WORD) NAAE) * 1
*
% STOFE THE WORD AS THE VALUE OF THE "NEXT" VARIABLE

$ (STZE (ORD) WAME §(SIZF (WORD) NAMF)) = WORD
+ : (RETURN)
END.STCRE
*

+ DPROCEDURF TO PRINT WORDS, UNDRRLINE PALINS, KEEP COUNTS
*
DEFINE (*PRINT (N,NAME) M, ¥,E',*PR.PRINT')
+ g :+ (END.PRINT)
PR.PRINT OUTPUT = 'LISToOFn' N ¢-LETTERoWORDS!
SKIP (1)
. ;
* TEST FOR END OF LIST - IF NOT END, PRINT NEXT WORD
UP.DRINT ¥ = LT(N,$(N NAME)) M + 1 : F(DONE.PRINT)
OUTPUT = $(N NAME M)
]
x ADD ONE TO THE WORD CCUNT FOR THIS SIZE
W o= W+

* (UNDERLINF WORD IF IT TS A PALINCROME
OUTPUT = PALIN(OUTPUT) REEEAT(N,'-') : F(UP.PRINT)

% ADD ONE TO THE PALINCROME CCUNT FOR THIS SIZE
P = P+ 1 ~: (UP.PRINT)

% ALL WORDS HAVE BEEN PRINTED - PRINT THE COUNTS

6A. Prcgrammer-defined Procedures 97

DONE.PRINT SKIP(1)
OUTPUT W 'ong' N '-IETTERGWORDS®
OUTPUT IDENT(P,NULL) 'Onom® N *—LETTER!
+ *OEALINDROMES! : S(W.PRINT)

Hou

OUTPUT = P ‘uon' KN S=LETTERaPALINDROMESS
* ,
* ADD THESE TOTALS TO THE COUNTS FOR ALL SIZES
PALINS = PALINS + P
W.EFINT WOPDS = WORDS + W
: SKIP(2) : (RETURN)
END.PRINT
X
* MAIN PART OF ,PROGRAM
*x .
* INITIALTZE PBY DETERMINING THE PUNCUTATION CHARACTFERS
* AND FORMING A WORD-FINDING PATTERN
PUNC = *n' TRIM(INPUT) : F(FRROR)
WOLD.PAT = BREAK(PUNC) . WORD SDAN(PUNC)
*
¥ MAIN REAC LCCP - GET THE NEYXT RECORD
REAT RECORD = TRIM(INPUT) ‘'m' : F(LIST)
*

* REMOVE ANY INTTTAL SPACES OPF PUNCTUMATION
RECORD POS (0) SPAN(PFUNC) = NULL
" .

¥ GET THF KEXT WORD

NEXTWORD R®CORD WORD.PAT = NULL : F(READ)
x
* SAVF LENGTH OF LONGEST WGRD IN MAX

MAX = GT(SIZE(WORD),MAX) SIZE(WORD)
»n
* STORE THE WORD IN THE LIST FOR ITS SIZE

STORE (WORD) S : (NEXTWORD)
* . .
* PRINT THE LISTS, SHORTEST ONRS FIRST :
LIST N = LT(N,MAX) N + 1 t F{FINAL)
*

* IF THERE ARE WORDS CF LFNGTH N, PRINT THFM
(DIFFER(F (¥ *LIST'),NULL) PRINT (N, 'LIST'))

+ : (LIST)

*

* PRTNT SOME FTNAL STATISTICS, PREPARFD BY PRINT()

FINAL ONTPUT = *TOTAIANUMBERAOFAWORNSA——n' WORDS
OUTPUT = 'TOTALANUMBEROOFnPALINDROMESn——n' PALING

+ : (END)

* .

FRROR QUTPUT = *NODATA!

ENC

6A. Prcgrammer-defined Frocedures

Tf the input to this program were the question
DID THE NAME ADA REFER TO A VARIABRLE AT LEVEL 1 OR LEVEL 2
then the ontput wovld be as follows.

LIST CF 1-LETTER WORDS

(I ST R N I

3 1-LETTER WCRDS
3

1-LETTEF PALINDROMES

LIST OF 2-LETTCR WORDS

T0
AT
OR

3 2-LETTER WORDS
0 2-LETTER PALINDROMES

LIST OF 3-LETTEE WORDS

DID

THE
ACA

3 3~-LETTER WORDS

2 3-LETTER PALINDROMES
LIST OF 4-LETTER WORDS
NAME

1 4-LFTTER WORDS
0 ° U-LETTER PALINDROMES

6A. Frcqgrammer-defined Procedures

LIST OF S-LETTER WORDS

- =
oo v -

- o -

3 E~LETTER WORDS

3 S-LETTER PALINDROMES
LIST OF 8-LETTER WORDS
VERTARLYF

1 8-TETTRR WCEDS

0 8-LETTER PALINDROMES

TOTRAL NUMBER CF PORDS —-— 14
TOTAL NUMBFR OF PALINLRUMES —- B

99

100

7A. ARRAYS

The programming of some problems can be greatly
simplified with the use of sets of successively-named
variables, such as thcse described in Chapters 5 and 6.
There, indirect referencing was used to refer to variables
with some set of names such as LIST1,LTST2,e..,3("LIST' N),
The variables «could ke thought of as forming a set because
their names were composed of two parts, where one part was
comnon to all names of the set and the other part varied;
the variables were said to be successively-named because the
varying part wvas an integer which differed by one far each
pemter of the set. The notion that the variables with names
differing in this. way vere 1logically associated was, of
course, simply a convention adopted by the programmer. But
‘the idea of a set of variables associated together, with the
selection of any one of them dependent on the value of an
arithmetic expression, is so useful that data structures of
this sort are predefined in Snotoi, wunder the name of
Arrays. An array is used very much like a set of variables
vith successive names, except that the convention that the
variables constitute a set is nct the programmer's alone,
but is shared by the Snobol system. Thus it is possible to
treat the set of variables as a single aggregate in some
cases, and to make reference to specific variables in the
set on other occasions.

Creating_an_Array. An array is created by executing a
call to the predefined procedure ARRAY(). The ARRAY{)
procedure has a single string-valued arqument, which in its
simplest form is used to specify the number of variables of
vhich the array is to be composed. For example, execution of
the rule

LIST = ARRAY('1000")

causes an array of 1000 variables to be created; this array

is returned as the value of the ARKAY() procedure and the
entire aggregate is assigned as the value of the variable
named LIST.

The variables forming an array are distinct from other
variables in that they do not have names which can be
written directly in prcgram texts. Rather, they are usually
represented in a program text by expressions which are
ccmposed of two parts: the first part consists of the nanme
of a variable whose value is the entire "family" of
variables that make up the array; the second part, called
the T"selector," consists of at least one integer-valued
expression, called an index, enclosed within square brackets

TA. Arrays 101

and 1immediately following the family part of the name.
Consecutive integer selectors are assiqned to each variable
of the array and serve to select a particular variable from
the set. Thus variable number three of the 1000-variable
array which 1is thke value of 1L1IST may be referred to as
LISI[3].

¥hen the rule
LIST = ARRAY('1000")

is cxecuted, the 1000 variables LIST[1], LIST[2], ev.,
LIST{ 1000] kecome availahle for use. Fach of these variables
initially has the null value, like any other variable, when
the array is created. These variables may acquire nev values
by the usual means of assignment, as in the statements

LIST[1] = TRIM(TNPUT) : F(DONF)

LIST{ 1] POS(0) SPAN('m?') = NULL
and
RECORD ANY (VORWELS) . LIST[?] : F(NOVOUWEL)

Although all variables of an array are often assiqned
values of the same datatype, there is no requircment fthat
this be done: some may be assigned Strings as values, and
some Patterns, for instance; such a variable may even have
an Array as its value, including the array of which it 1is
itself a member.

Array Ttems_and Item _References. The variables forninag
an array are called "array items"; references to thege
variables in program texts, exptessicns of the form LIST[N),
are called "item references." It is important to remember
that the variatles referred to by these item references do
not have names in the form of strings. That is, the string
LYST[1] is not the name of variabhle number one of the array
which is the value of LIST. For one thing, such a string
cannot be written in a pruogram text to represent a name
since it 1is not in identifier form. Nevertheless, every
string is the name of a variahle, so the string LIST[1] is
indeed the name of some variable, which may be represented
in a program text as $'LIST[1]'; however, this variable has
no intrinsic connection with any array.

The variables with strings as names are all available
to a programmer when execution of a program begins, and are
called "natural" variables; in contrast, variables which are
array 1items must be explicitly created hy a call to the
ARRAY () procedure, and in consequence are called "createdn

7A. Arrays ‘ 102

variables. They have names which are not strings --
necessarily, since every possible string is the name of a
natural variable. If the name of a variable which is an
array item is needed (so that it may be passed as an
argqument to a procedure, for example), a special kind of
non-string Name must be generated ty the use of the name
operator described toward the end of this chapter.

The family part of an item reference, LIST in the
exarple above, mnust always be an identifier and must refer
to a variable whose value 1is an array. However, natural
variables whose names are not in identifier form, such as
the one represented by $(CHAR **'), and created variables,
such as the «c¢ne represented by LIST[3], may be assigned
arrays as values. Special methods, described later in this
chapter, mnust then be used tc form references to the items
of these arrays. Note that references to all items of an
array are always formed with the use of a single name, that
of a variable whose value is the array to which they belong.

Cemparison _with Indirect _Referencing. A set of
successivelv-named variables formed with the use of indirect
referencirg constitutes a sort of simulated array. These
simulated arrays have some advantages over the predefineiq
array structures provided by Snobol.

When indirect referencing is used, it is not necessary
to specify in advance how many variables will belong to the
set. That is, in the locop

NLOOQOE N = N+ 1
OUTPUT = TRIM(TINPUT) ¢ F(ALLGONF)
$('LIST* N) = OUTPUT : (¥NLOOP)

the maximum value of N is determined only by the number of
data records read, which may vary with each use of the
progranm.

There is also no restriction that N be incremented only
by 1 —— any interval may be used, not necessarily the same
cne cn each iteration of the 1loop. Thus the statement
latelled NLOOP above may read
NLGCP N = N+ 2

or

NLOOP N

N ¢ SIZE($(*LIST* N))

or whatever.

7A. Arrays 103

Further, there is no necessity to use nuneric values at
all 1in forming the varying part of a name. Fcr example, the
“"successively-named" variables LISTa, LTSTHR, ..., LISTZ
could be used by writing the loop

ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ®
CHARPAT = LEN(1) . CHAR

Loop ALPHA CHARPAT = NULL s F(DONF)
$('LIST* CHARy = TRIM(INPUT) T S{LOOP)

For that matter, there is no need for the variahles of a
simulated array to have names which are obviously
"successive." Thus, the varying part of each name <could be
forred from a 1list of words which might have no ohvious
relation to one another. lUsing a word as a "“selactor" of a
simulated array item provides much more information than the
use c¢f an often arbitrary number. Lastly, no difficulties
arise if the "family" part of the names is not in identifier
foru.

On the other hand, there are some advantages (o using
the rredefined array structure. The principal one 1s that
the array items are recognized as bheinqg related hy the
Snokol system, so the whole aggregate can be assiqgned as the
value cf a variable, passed as an araunent to a procedure,
and so forth., Also, the variables which are array items are
distinct from all other variables since they do not have
names 1in the form of strings, sc inadvertant conflicts of
variable usage are easily avoided; and sometimes an 1itemn
reference in A program text gives a more intuitive pictare
of the process being programmed than does an expression
invelving indirect referencing.

An array is a particularly useful data structure to
emplcy when the numeric order of its itews is significant,
e.g., when the n~-th item of sore list is needeld. For data
which does not lend itself well to being processed in terms
of numeric ordering, other types of data structures are
prctably more useful. Ways of creating data structures of
one's own choosing are indicated in the following chapter.

Multi-dimensional _Arrays. It is often intuitively
useful to think of the items of an array as bheing arranged
in rore than the single dimension of the LIST example ahove,
One might want, for examrle, to simulate the moves on a
chesshoard by using an B8x8 array which is the value of a
variable named BOARD. Such a two-dimensional, 64-item array
could be created by executing the rule

TA. Arrays 104

BOARD - = ARRAY('S8,8')

The first row cf the chessboard could then be represented by
giving values to the items referred to as BOARD[1,1],
BOARD[1,2), ..., BOARD[1,8]. The ¢frogrammer 1is of course
free to decide which dimension is to be thought of as
indicating the rows and which as indicating the columns. 1If
he prefers the opposite convention, then the first row woulAd
be the items BOARD[{1,1], BOARD[2,1], ..., BOARD{B,1].

Similarly, a three-dimensional tic-tac-toe board having
a 5x5 square on each of its three planes could be simulated
by using the array created by executing the rule

TIC3 = ARRAY('S5,5,3")

The central cell of this structure 1is the array item
TIC3[3,3,2].

Althoungh it is difficult to symbolize or conceptualize
arrays of moxre than three dimensions, they present no
programming prohtlems. For each new dimension, another nunmber
within the argument of the ARRAY () procedure is needed for
the creation of the array; similarly, another index is
needed within the selector to form an appropriate reference
for any given array item. There are no 1limitations on the
number of dimensions which an array may have, or on the
nunter of items to be associated with each dimension.

Arrays of many dimensions can be used to arrange data
elerents which differ from one another along many numeric
scales. Each "dimension®" is thought of as an "attribute,"
and a data element is assigned to a particular array item
according to the numeric value of all its attributes. The
data elements may then be accessed in an orderly manner
along each "dimension" cf the arrangement.

The ARRAY () Procedure. The predefined procedure ARRAY ()
requires a single string-valued argument which provides a
prototype of the array, specifying (implicitly or
explicitly) the number of dimensions the array is to have
and the range of index numbers which may be used to select
items of +this array in each dimension. Unless othervise
specified, it is assumed that the indexing in each dimension
starts with 1. However, 1if the arrays described above as
being the values of LIST, BOARD, and TIC3 were to be indexed
from zero instead of from one, but were still to have the
same number of items as before, this could be specified by
executing the rules ‘

7A. Arrays 105

LIST = ARRAY('0:599¢)
BOARD = ARRAY('0:7,0:7")
TIC3 = ARRAY('0:4,0:4,0:2")

The cclon within the argument is used to separate the louest
index number from the highest index number for each
dimension; the comma 1is wused to separate the different
dimersions from one another; no embedded blanks are
perritted.

Negative numbers may be used within the prototype of an
array, and consequently within the selectors of its itenms.
Execution of the rule

NEGARR = ARRAY(-50:-5)

creates 2 U6-element array whose items may be referred to as
NEGARR[-50), NEGARR[-U49], ..., NEGARR[-5]. (Note that these
references are arranged, as always, in ascending arithmetic
order.) '

Information about the range of index numbers in each
dimension may be provided in terms of any expressions which
give the desired numbers when evaluated. These indices may
be positive, negative, or zero, but the upper bound ior any
dimension must always be dqreater than or equal to +ho
corresponding lower bound; consequently an array must always
be ccmposed of at least one item. Thus the rules

ARRAY1 = ARRAY (STZE (WORD1) ', ' SIZE(WORD2))
ARRAY2 = ARRAY (M1 *:' N1 ¢, ' M2 ':t xD)
ARRAY3 = ARRAY(A + B ',* C + D)

may each specify the creation of a two-dimensional array, if
the expressions within the argument of each ARRAY{)
procedure have appropriate numeric values at the time the
rules are executed.

Note that the commas and colons are placed within
quotes to 1indicate that they are literal characters to he
concatenated into the string being formed to provide tha
single arqgument. TIf the commas were not placed within
quotes, each comma would indicate the presence of another
argument for the ARRAY() procedure: all arquments after the
first would ke evaluated but ctherwise ignored, since
ARRAY () requires only one arqument. The array procedure
returns as its value an array created to the specifications
of its arqument. Thus the varialtles named ARRAY1, RRRAY2,
and ARRAY3 in the above example would all be assigned valuce
of datatype Array.

7A. Arrays 106

Selectors. Selectors ray also consist of any
expressions which yield the desired index (or indices) wvhen
evaluated. Thus

LIST[1]

LIST[A + B)

LIST[SIZE (TRIM (CARD)))}
LIST[$LIST[2]]

LIST[LIST{LIST[2]]]

are all item references which may be used to refer to
variable number one of the array which is the value of LIST
if the expressions A + B and SIZE(TRIM(CARD)) and S$LIST(2]
and LIST{LIST[2]] -all have the value 1 when the rules in
vhich the above expressions appear are executed.

Although the prototype of the array is expressed as a
string, no*e that the selector of an item reference is not;
rather the expressicns representing the indices are
separated by commas, much like the arguments of a procedure
reference. “hus BOARD[X,Y] is an appropriate item reference
for a two-dimensional array, while BOARD[{X *',' Y], which
specifies a non-integer index, 1is not. An execution-time
errcr will cccur if a non-integer results from the
evaluation of the index for any dimension, or if the number
of dirensions indicated by the selector is not the same as
the nunmber specified by the prototype for that array.

Pailure of _an_JTtem Reference. An attempt to evaluate an
item reference may fail, causing failure of the rule in
which the evaluation occurs. An item reference fails when
its family part refers ¢to a variable whose value is an
array, but its selector yvyields an index for any dimension
which falls outside the range specified by the prototype of
that array. Thus the rule

OUTPUT = LIST{N]) s F(DONE)

will fail and send control to DONE for values of N which are
less than 1 or greater than 1000 for the value of LIST
described at the beginning of this chapter. The simple two-
statement loop

LOCP N = N+ 1
OUTPUT = LIST[N) : S (LOOP) F(DONE)
can therefore te used to print the values of all items of
the array referred to by LIST (provided these values are all
strings). Here the fact that the item reference can cause
failure of the rule eliminates the need for a statement of

7A. hrrays 107

the fcrnm

N LT(N,1000) N + 5 ¢ T (DONE)

to terminate the loop and so somewhat simplifies the
programming. {Note that the values of all the items of an
array cannot be printed by a rule of the form OUTPUT = LTST,
since LIST has an array as its value, and only strings can
be printed.)

Often reliance cn the failure of an item reference
rather thau on the failure of some test procedure does not
simplify the programming and may lead to logical eitors. For
exanrple, the loop :

FILLT N = N+ 1
LIST{N] = TRIM(INPUT) :+ F(FULL) S (FILL1)

will fail and send control to PULL (!} when the value of N
heccres greater than 1000 or (2) when the data is exhausted,
without making the (often necessary) distinction between the
twvo cases. The fact that an item reference can cause failure
of the rule must always be kept in mind to prevent the
writing of rules which may fail for more than one reason.

Special Preblems_ _Concerning Item References. It is
possible to assiqn an array as the vilue of a variable whose
name cannot be represented in identifier form, eithear

because it contains impermissibtle characters, as in

$'A/1%Y = ARRAY('16G00')

or because it is a created.variable, as in
LTIST{ 1] = ARRAY{'1000"')

or because it is urknown, as in
$WORD = ARRAY{*1000")

Although each of the above rules creates an array of
1000 items and assigns it as the value of some variable as
in all previous examples, the iftems of these arrays may not
he referred to in the usual manner, since there is a
restriction that the family part of an item reference must
be a name in identifier form, Thus i€ one attempts, for the
first two cases above, to write rules of the form

$A/1¢[1] = TRIM(INDUT)
and

7A. Arrays 108

LIST{1])[1] = TRIM(INPUT)
then compile-time errors result.
Writing, for the third case, the rule
$WORD[1] = TRIM(INPUT)

dces not result in a compile-time error, but does not give
the desired result either. Here, the operand of the indirect
referencing operator 1is not the variable W®ORD, as 1is
desired, but rather the item reference WORD[1]. The
evaluvation of WORD[1] should cause an execution-time error,
since the variable WORD was intended as the operand of the
indirect referencing operator, and thus its value should be
a string or a Name, not an array. ,

Rll of these cases may be taken care of by simply
assigning each array tc another variable, one whose name may
be represented by an identifier. Each of the erroneous rules
presented before can thus be replaced by a pair of rules,
such as the following:

TEMP1T = $'A/10
TEMBP1[1] = TRIM(INPUT)
TEMP2 = LIST[1)
TEMP2{ 1] = TRIM(INPOUT)
TEMP3 = $WORD
TEMP3[1] = TRIM{INPUT)

Note that assigning an array to a second variable does
not cause a new array to be created, but merely allows two
(or more) variables to have the same array as their values.

The TTEM() Procedure. The ITEM() procedure provides
another method of referring to the items of an array when
the array has been assiqgned to a variable whose name cannot
be written in 1identifier form. The ITEM() procedure, like
the APPLY() procedure descrited in Chapter 6, has a varying
number of argquments, usvally one more than the number of
dimensions of the array involved, The first argument must be
an expression whose value 1is an array; the remaining
arquments may be any integer-valued expressions, usually one
for each dimension cf the array, given in the appropriate
order. ITEM() returns as its value (by NRETURN) the variable
specified by wusing its first argument to indicate a family
and its remaining arquments together to form a selector.
Thus the expression ITEM{LIST,1) 1is equivalent ¢to the

7A. Arrays 1009

expression LIST{1], and TITEM(BOART,8,8) is equivalent to
BEOARLC[8,8]. More usefully, the rules

ITEM($'A/1', 1) = TRIM(INPODT)

ITEM(LIST[(1],1) = TRIM(INEUT)
and

ITEM ($WORD,1) = TRIM(INEUT)

could all be used in place of the rules involving TEMP1,
TEMF?2, and TEMP3, above.

A procedure reference to ITEM() may be written wherever
an item reference may appear. Thus the rule

ouTPUOT = TIC3[X,Y,Z)}
may tre written as
OUTPUT = ITEM(TIC3,X,Y,2)

with the same effect. ITEM() fails, in just the way that an
item reference fails, i{ the index for any dimension within
the =selector which 1is <formed falls ountside the range
specified by the prototype of the array involved.

Although the selector part of an item reference nust
consist of a 1list of 1indices ceparated by commas, as in
TIC3[X,Y,Z], and may not be expressed as a concatenated
string, as in TIC3[X ',* Y ¢,' 7], the ITEM() procedure
allows the selector to he represented by either method ani
even by combinations of the two. Furthermore, ITEM() does
not require that the proper number of index expressions he
present in its arquments. It uses only as many indices a:
are appropriate for the array given as its first arqument;
it assumes the value zero for missing indices, and ~valuates
but ctherwise ignores the expressions for extra indices.
Thus the number of arquments with which ITEM() may be called
can vary not only with the numnber of dimensions of the array
being indexed but also with the chcice of representation for
each index. The four-arqument call

ITEM(TIC3,X,1,2)
has the same effect as either of the three-arqument calls
ITEM(TIC3,X ', Y,7)

or
TTEM(TIC3,X,Y *,' Z)

7A. Arrays 110

or the two-argquuent call
ITEM(TIC3,X *,v Y ', ' 7)

Fach returrs the item TIC3[X,Y,7Z] as its valne. The
importance of this feature is illustrated by an exanple at
the end of this chapter.

The _PROTOTIYPI () _Procedure., The PROTOTYPF() procedure
can accept as its single argument any expression whose value
is cf datatype Array, and returns as 1its value a string
giving the prctotype of that arrayv. This prototyve will bpe
the same as the one specified in *he call to the ARPAY()
procedure which caused the array to be created, ecxcept that
“he lower bound for each dimensicn 1is always explicitly
expressed, and the integers specifying the bounds are in
canonical form {(a sign retained only for negative nunhers,
leading =zerces suppressed, and =zero represented by the
single character 0). Thus if the rules

BOARD = ARRAY('08,0%8')
TICR RRRAY ('5,5,3)

0on

LIST ARPAY (*0:999")
NEGARR = AREAV('-50:¢5")

have been executed, then execution of the rules

QUTPOT = PROTOTYPE (ROARI)
OUTPUT = PROTOTYPE(TIC?3)
oUTPIHT = PROCTOTYPE(LIST)
OUTPUT = PROTOTYPE(KEGARR)

will cause the strings

8
S, 1:3

s oo

Law IS §

Lﬂou e 00
(o> 2Ne IS) B¥e o]

s O =

1
1
g
g

to te printed. Such strings may be investigated with a
pattern-matching rule to determine the structure of the
array; this may be useful in cases where the dimensions have
rot been given as literals within the ARRAY() procedure's
arqument, but have heen specified by more complicated
expressions or supplied from the data. For example, an array
cculd be created by executing the rule

BROXES = AFRAY(DIM1 ',' T[TIN2)

Althcugh the value of BOXFS aprears to be a two-dimensional

7A. krrays 111

array, this is not necessarily the case since the values of
DIM1 and DIM2, perhaps acquired from the 1input file, may
contain any number of commas, each 1indicating another
dimension. The number of dimensions of this array may be
determined by the folliowing simple program segment which
searches the string returned by PROTOTYPE() to determine how
gany commas it contains; the number of dimensions is always
one more than the numher of commas.

: STRING = PROTOTYPE (ROXES)
LOOP STRTNG BREAK(',") *'»* REM . STRING : F(DONE)
COMMA = COMMA + 1 : {LOOP)
DONE DIMENS = COMMA + 1

The PROTOTYPE () procedure may alsc take a pattern or a
Nare or a structure of programmer~-defined datatype as its
arguitent. A description of the use of PROTOTYPE() with an
argument of one of these datatypes may be found in Pppendix
A, section YI.BR.

The TYPE() Procedure. The TYPE() procedure is one which
will accept any expression as its single arqument. If the
value cf its argument 1is of a rpredetined datatvpn, tho
procedure returns as its value a string specifying that
datatype; if the value is of a programmer-defined Jatatype,
the =<ctring DATA is returned. For e¢xample, execution of the

rule
ouUTPUT = TYPE('SASSAFRAS')

will print STRING while execution of the rule
OUTPUT = TYDPE(ARB)

(if ARB still has its predefined wvalue) will produce
PATTERN; the rule

OUTPUT = TYPE(LIST) ‘onon' TYPE(LIST[1))
will print ARRAY followed by INTEGER.

TYPE() is often used to test whether or not some
variable has a value of the expected datatype before some
process is allowed to continue. Tt 1is particunlarly useful
for testing whether values passed to the formal variables of
a proccdure ave of the correct datatype, and for insiriag
that all values assigned to OUTPUT are of datatype String or
datatype Inteqer.

TA. Arrays 112

The short loop presented earlier to print the values of
all items belonging to a specified array may be amended with
the use of the TYPE() procedure to first test the datatype
of each value and then to print only those of datatype
String or TInteger, This anmnended program segment uses
indirect referencing within the go-to to transfer to a label
representing the type cf the value being processed. Tf the
valve 1is of datatype String or Integer then the value is
printed; if it is of any other datatype, a message regarding
. its type 1is printed. Tn either case, the valie of the
selector is printed first so that the particular item whose
value is being printed or descrited may be identified. The
PROTOTYPE() procedure is used in the first statement to
insure that a cne-dimensional array is being processed, and
to determine the lower bound of this array.

* TEST WHETHER ARRAY IS 1-DIMENSIONAL AND FIND LOWER BOUND
PROTOTYPE(LIST) BREAK(':') . N ':!

+ SPAN('-0123456789') RPOS(0) : F(ERROR)
*

* LCOP TO PRINT ALL VALUES WHICH ARE STRINGS

* IF LIST[N] EXISTS, GO TO THF STAT2ZMENT LABELLED BY TH®
* TYPE OF ITS VALUE

*

LGOP LIST{ V] : F(DONE) S($TYPE(LIST[N}
*

STRING

INTFGER OUTPUT = N ‘ool LIST[N] : (INC)

REAL .
PATTERN

ARRAY

NAVE

CODE .

DATA OUTPUT = N *nnTHISaITEMoISnOFaTYPEm' TYPE(LIST[N])
*

* INCEEMENT INDEX TC GET NEXT ITEM

INC N = N+ 1 : (LOOP)

The lahels provided in the program text (with the
exception of I1ICOP and INC) are exactly the strings returned
by the TYPF() procedure. All have been mentioned except
CODE, which 1is described briefly in Appendix A, section
II.C. These latels provide an exhaustive list of the string
values which TYPE() can return.

The program text may appear strange because of the
numter of null rules. Since the statements labelled STRING
and INTEGER both need the same rule, it has been vwritten
cnlv cnce 1in the second of these statements, the one
latelled INTEGER., If control 1is sent to the statement

TA. Arrays 113

lakelled STRING, it is sent on immediately to the statement
latelled INTFGER where the rule which calls for printing is
executed, since the statement labelled STRING has no rule
and no go-to to be processed. Similarly, since the
statements labelled REAL, ATTERN, ARRAY, NA“E, CODE, and
CLATA all need the same rule, it is written only once in the
last of these statements, the one labelled DATA.

The evaluation rule LIST[{N] is needed in order for
failure of the item reference to be detected. If this
evaluation rule were omitted and the statement consisted
solely of the go-to

: (STYPE(LIST[N]))

then there would be no way to terminate the loop gracefully,
and an execution-time error would result when the item
reference failed within the go-to because the value of ¥
became too large.

Procedure_to_Return_a_Selector. There are a numher of
Processes concerning arrays which it would be convenient to
express as programner-defined procedures since they are so
frequently needed. For example, one often wants to know the
selector associated with the first null-valued item of an
array so that this item may he given another value. The
following SFLRCT() procedure fails if there are no nnll-
valued items, or succeeds and returns the selector of the
first null item as its value. Tt works for any one-
dimensional array, and uses PROTOTYPE() as before to test
that the array is one-dimensional and to find its lower
bound. The single arqgument of SELECT () may be any expression
vhecse value is an array.

DEFINE (*SELFCT (ARR1) N*, *PR.SEL') : (END.SELECT)
* TFST WHRTHER FIRST ARGUMFNT HAS AN ARRAY AS ITS VALUE
PR.SEL IDENT (TYPE (ARR1), *ARRAY') : F(SEL.ER1)
*
* TEST WHETHER ARRAY IS 1-DIMENSICNAL AND FIND LOWER BOUND
PROTOTYPE (ARR1) BREAK(':') . N 3¢

+ SPAN('-0123456789') RPOS(0) : F(SEL.ER2)
*

* TEST WHETHER THIS ITFM HAS A NUIL VALUE

* RETURN ITS SELECTGCR IF IT DOES

OUT.SFL. SELECT = IDENT(ARRI[N]) N : §(RETIRN)

*

* ELSE INCREMENT INDEX TO LOOK AT THE NEXT ITEM

N = N+ 1

TA. Arrays 114

* TEST WHETHER THIS SELFCTOR IS ONTSIDE THF BOUNDS OF ARRAY

* IF SO, THIS ARRAY CONTAINS NO NNLL-VALUED ITENS
ARRI[N] : P (FRETURN) S(OUT.SEL)

*

* PRINT FRROR MESSAGES AND STCP

SEL.FR1 OUTPUT = 'ARGUHENTBOFDSELECT()DNOTHRNDARRAY'

. : (END)

SEL.ER2 oOUTPUT = " ARRAYOPASSEDoISaNOTo1-DIMENSIONAL!

+ : (END)

END.SELECT

When this procedure is used, as in the statements

0 = SELECT(LIST) : F(FULL)
LIST[Q] = WOED

or, equivalently,
LIST[SELBCT(LIST)] = WORD : PF(FULL)

the procedure reference SELECT (LIST) causes the value of the
variakle LIST to be assigned as the value of the formal
variabie ARR1 internal to the procedure call. If the value
of LIST is an array, as is intended, this means that the two
variables L”ST and ARR1 have the same array as their values.,
The first statement of the procedure body tests the value of
ARR1 to insure that it is indeed of datatype ~Array before
proceeding; the second statement further tests that this
array is one-dimensional. If either test fails, an
appropriate error message is written and the procedure ends
execution of the program. If ARR1 has as value a one-
dimensional array, then the 1lower bound of this array is
assigned to the internal variable N, Then ¢the evaluation
rule ARRI[N] is executed; this refers to the same array itenm
as LIST[N) since ARR1 and LIST botk have the same array as
value. This rule fails onliy when the value of N exceeds the
upper bound of the array, which occurs only when all items
of the array have already been considered. Hence if the rule
fails the array contains no null-valued itenms and an FRETURN
js taken. 1If the rule ARRI[N] does not fail then the value
of ARRI[N] is tested to see whether or not it is null; if it
is null then the result variable SELECT is assigned the
value of N so that this value is returned as the value of
the procedure call.

Procedure to Interchange Two__Arrays. There are sonme
. procedures which need to be passed the name of the variable
whose value is an array, rather than the array which is the
value of that variable. Consider two variables named X and
Y: the value of X is a one-dimensicral array of 10 itenms,

TA. Arrays . 115

wvhile the wvalue of Y is a one-dimensional array of 100
items. The programmer wishes to cause the value of ¥ to be
the 100-item array, and the value of Y to be the 10-iten
array. Before performing this swap he wants to he sure that
X and Y are both one-dimensicnal arrays. This process may be
performed with the side-effect procedure S¥WAP() which has
three arquments: the names of tne twc variahles whose values
are arrays, and the number of dimensions these arrays are
both to have. Fach name is presented as a string which will
he passed to the procedure body to be used as the operand of
the 1indirect referencing operator to return a variable:; the
number of dimensions may be expressed as any numeric-valued
expression. The SWAP () procedure uses the RIEPEAT()
rrocedure, described at the beginning of Chapter 6, to builAd
a pattern which can be used to determine whether or not the
prototype of each array has the specified number of
dimensions.

DEFINF (*SWAP (A,B,N)DAT1,PAT2, TEMP', *PR.SWAD ')
¢ : (END.SWAP)
*
* TEST WHETHER THE FIRST TWO ARGUMENTS ARE ARRAY-VALUED
PR.SWAP IDENT (TYPE ($A),¢ARRAY?) F(SWAP.EP1)
IDENT (TYPE ($B) , *ARRAY ') F (SWAP.ER2)

*
* TFST WHETHER BOTH ARRAYS AXE OF THE SPECIFIED DIMENSION
* BUILD A PATTERN USING REPEAT() TO LOOK TFOR THE KIGHT
* NUMBER OF COLOKS WITHIN THE PROTOTYPER
PATT = BREAK(':") e
PAT2 = POS{0) REPEAT (PAT1, M)
+ SPAN(*'-0123456789"%) RPOS {0)
PROTOTYPE ($A) PAT?2 ¢ F(SWAP.ER3)
PROTOTYPE ($B) PAT2 ¢ T(SWAP.ERY)
b 3
* FOTH ARE ARRAYS OF THFE SPECIPIED DIMENSION
* SWAP THEM AND RETURN
TEMP = $A
$A = $B
$B = TENMP H (RETURN)
*

* FRINT ERROR MESSAGES AND FAIL
SWAP.ER1 OUTPUT = 'FIRSTnARGUMENTnCFaSWAP () aNOTaANnARRAY!

+ : (FRETURN)
SWAF.FER2 OUTPUT = *SECONDnARGUMENTOOFuSWAP () nNOTHANGARRAY?®
+ : (FRETURN)
SWAP.ER3 OUTPUT = *FIRSTuARRAYNNOTHOFaDTMENSIONM® N

+ : (FRETURN)
SWAP.ER4 OUTPUT = *SECONDOARRAYaNOTnOFnDIMENSTONn® N

+ : (FRETURN)

FND.SWAP

7A. Arrays . 116

A call on this cprocedure to 4o the swapping of the
values of X and Y as described above could have the form

.

SWAP('X','Y"', 1) : P (ERROR)

Since the formal variables A and B never appear within
the procedure body except preceded by a § operator, it would
seem at first that the call SWAP(X,Y,1) <could be used
instead of the call SWAP('X','Y',1) and all the indirect
referencing operators remove3d from the procedure body, since
the expression $'X' is indeed equivalent to X in all cases.
If this were done, however, the value of X would be used
wherever the formal variable A occurred in the procedur=
body. While the expressions TYPE (A) and PROTOTYPE(A), where
A has as its value the same array that is the value of X,
will indeed work as desired, rules of the €form A = B and
B = TEMP, will not produce the desired effect. Execution of
the rule A = B would cause the formal variable A to be
assigned the array which 1is the value of Y, and the rule
B = TEMP would cause the formal variable B to he assiqgned
the .array which is the value of X. Thus the values of A and
B, which are internal to the procednre call only, would be
swapped rather than the values of the external variables X
and Y. In order to change thte value of X, the string which
is its nawme mnust te passed and a rule of the form $A = §8
must be used, since the expression %A, in this case, will
return the external variable X to which an assignment can
then bhe made.

The Name_ Operator. Since array items do not have
strings as names, problems arise when one tries to pass the
name cf an array item to a procedure. If the 100-item array
described above had been assigned to the created variable
LIST[1] instead of to the natural variable Y, and its value
was to be svapped with that of the 10-item array which is

the value of X, then a call of the form

SWAP('X','LIST{1]', 1)

would not produce the desired effect since the string
LIST[1] is the name of a natural variable, and thus cannot
be the name of a created variable.

The problem of passing the name of a created variable
is solved with the use of the name operator, a unary
operator whose symbol is a period. This operator takes any
variatle as its operand and returns as its value a special
object of datatype Name which is a name for that variable.
Thus the name of the created variable LIST[1] nray be
represented as .LIST[{ 1], so a procedure call of the form

7A. Arrays 117

SWAP(*X',.LIST[1],1)
would produce the desired effect.

If the operand of the name operator 1is a natural
variable, which thus has a string name like X for example,
then the Name .X provides still a different name by which to
refer to that variable. The two names alvays rafer to the
same variable, and can be used interchanqgeably. The
aprlication of the § operator to an operand of datatype Name
gives the same effect as its application to a string-valued
operand: the variable named by the operand is returned, Thug
the call

SWAP(.X,.LYIST[1],1)

could be used as well. The only necessity for the use of the
name operator arises when names of created variables must he
passed to and from procedures. Note that objects of datatype
Name cannot be printed.

As an example of an application in which a Narme 1is to
be returned by a procedure, consider an amended version of
the SELECT() procedure, presented earlier in this chaboter,
which would return the Name of the first null-valuved item of
an array rather than its selector. This amended procedure,
called STEP(), is presented below; the entire procedure hody
is the same as that of SELECT() except for the statenent
labelled OUT.STEP in which the result variable is assigned a
value of datatype Namne.

* FFOCFDURE TO RETURN NAME OF PIRST NULL-VALUED ITEM
*

DEFINE (*STFP (ARR1) N', 'PR, STEP') (END.STEPD)
*
* TEST WHETHER FIRST ARGUMENT HAS AN ARRAY AS ITS VALUF
PR.STEP IDENT(TYPE (ARR1),'ARRAY?) : F(STEP.ERT)
*

* TEST WHETHER ARRAY IS 1-DIMENSICNAL AND FIND LOWER BOUND
PROTOTYPE (ARR1) BREAK(':') . N ':

+ SPAN('-0123456789') RPOS(0) : F(STEP.TR2)
*

* TEST WHETHER THTS ITFM HAS A NULL VALUE

* RFTORN THE NAME OF THIS TTEM IF IT DOFES

OUT.STEP STFP = IDENT(ARRI[N],NULL) .ARRI[N] : S (RETURN)
*

* FELSE INCREMENT INDEX TO LOOK AT NEXT ITFM

N = N +1

* TEST WHETHER THIS SELECTOR IS OUTSIDE THE BOUNDS OF ARRAY
* IF SO, THIS ARRAY CONTAINS NO NULT-VALUED ITEM®S

ARRI{ N) : F(FRETURN) S (OUT. STEP)
*

* PRINT FRROR MESSAGES AND STCP

STEE.ER1 OQUTPUT ' ARGUMENTnNOFaFIND () oNOToANoARRAY' : (END)
STEP.ER2 OUTPUT "ARRAYOPASSEDaISaNOTa1-DIMENSIONAL': (END)
END.STEP

The rule
$STEP (LIST) = WORD : F(FULL)

may be used to assign the value of WORD to the first null-
valued item of the array which 1is the value of LIST.
Execution will cease if the value of LIST is not a one-
dimensional array (in which case an error message 1is
printed). The procedure call will fail if there are no nuli-.
valued iters remaining within the array. If the procedure
call succeeds it returns the Name of the first null-valued
iter;s this Wame 1is used as the operand of the §$ operator
which returns the needed variable.

Alternatively, an NRETURN could be used to <cause the
procedure to return a variable rather than an object of
datatype Name, but the name operatcr wculd still be needed
within the procedure body. Tf the statement labelled
CUT.STFEP were written as

OUT.STEP STEP = IDENT(ARRI[N],NULL) .ARRI[N] : S (NRETURN)
then the procedure call would have the form
STFP{LIST) = WORD : F(FULL)

since the value returned by STEP() is the variable needed
for assignment.

Forming_all Selectors_of _an_Array. Whenever the STEP()
procedure is called, it always starts by investigating the
"first" item of a one-dimensional array, that 1is, the one
whose selector is formed by using the lower bound of the
array as its single index. The procedure continues to forn
nev selectors by adding one to the value of this index until
a null value is found, or wuntil an attempt 1is made to
increase the index beyond the upper bound of the array; if
this happens, then every selector of the array has been
used. Since the STEP() procedure has been written to process
one-dimensional arrays only, the method it uses for
determining all selectors of an array is very simple. The

TA. Arrays 1149

gprocess of determining all selectors . becomes more
complicated when an array is multi-dimensional.

A general purpose method which would work for an array
of 2ny number of dirensions could ke described as follows.
Start with a selector formed by using the 1lower bound of
each dimension as its index; this information may he
obtained from the prototype of the array. (For exanple, the
initial selector of . an array vhose prototype is
0:2,1:10,1:10 is 0,1,1.) Subsequent selectors are formed by
adding one to the index of the last (rightmost) dimension
until the upper bound for that dimensicn is reached (just as
for a one-dimensional array), while keeping all other
indices constant. When the upper bound of the last index is
reached, reset that index to its lower bcund and increment
the index of the penultimate dimension by one. For this
value of the next-to-the~last index, run throuqh all values
of the last index again, resetting when the uvpper bound is
reached. Repeat this process for all values of the
penultimate dimension, then reset the this index to its
lower bound and1 ‘tegin incrementing the index of +the
antipenultimate dimension, repeating the previously
descrited processes fur each of its values, etc. Proceed
until the index of the first dimension has reached its upper
bound; then, all selecters of the array have been formed,

If the process just descrihbed is applied to a three-
dimensional array whose prototype 1is 1:3,1:2,1:2, ‘thn
following selectors will be formed in the indicateqd
"aureric" order.

(1.) 1,11 (5.) 2,1,1 (9.) 31,1
(2.) 1,1,2 (6.) 2,1,2 (10.y 3,7,2
(3.) 1,2,1 (7.) 2,2,1 (11.y 3, 2,1
(4.) 1,2,2 (8.) 2,2,2 (12.y 3,2,2

It is easily seen from this display that the rightmost
index does indeed vary most often, while the leftmost index
is never reset but goes through its range of values only
once. The process could be described just as easily with the
leftmost index varying most often, but the order in which
the particular selectors are formed is immaterial since the
same process may be used whenever all items of an array are
to be considered. Thus if all items are assiqgned values hy
the method just described and later the same method is used
to print the wvalues, then ¢the values will he printed in
whatever order thecy were assigned. Since there are muany
applications in which all items of an array must be
considered, it is convenient to express this process in
terms of a procedure.

TA. Arrays 120

Procedure_to _Return__the_ _"Mext" Selector. Presented
below is a programmer-defined rrocedure, NEXT(), which
requires two strings as arquments: the first represents a
current selector and the second the prototype of the array
vhose "next" selector is to be formed; this selector 1is
returned in the form of a string as the value of the NEXT()
procedure, llere "next" is used to mean the selector which
follows in the order described in the preceding section. The
NEYT () procedure fails when there is no next selector, for
exanple, when the current selector passed as its arqument is
the last in the order described above,

* FROCEDURE TO RETURN THE "“NEXT" SELECTOR

*
DEFINE (*NEXT(SEL,PROTQ) INPEX,LB,UB* ,*PR.NEXT")

A

* PATTERN FOR TEARING SELECTOR APART INTO ITS INDICFS

* ASSIGN THIS PATTERN TO THE MAIN-PROGRAM VARIABLE SEL.PAT
SEL.PAT = (',' | NULL) SPAN('-0123456789%) . INDEX

+ RECS (0)

x

* PATTFERN FOR TEARING PROTOTYPE APART TO FIND LOWER AND

* UPPER BOUHNDS

% ASSIGN THIS FATTERN TO THE MAIN-PROGRAM VARIABLE PROT.PAT
PROT.PAT = (',*]| NULL) SPAN({'-0123u456789') . LB

+ ‘st SPAN(*'-0123456789') . UR RPOS{(0) = (END,NEXT)

* .

* PFIND RIGHTMCST INDEY OF THE SELECTOR STRING AND REMOVE

* FATIL IF NO MORFE INDICES TC BE FOUND

PR.NEXT SEL STL.PAT = NULL s F(FRETURN)

*

* FIND LOWER & UPPER BCUNDS FCR THIS LCIMENSION

' PROTO PROT.PAT = NULL

*

* TNCREMENT INDEX IF IT IS LESS THAN THE UPPER BOUXND
INDEX = LT(INDEX,UB) INDEX + 1 : F (RESET. NEXT)

®

% TFCRM NEXT SELECTOR STRING BY CONCATENATION
NEXT = IDENT(SFL,NULL) INLCEX ',' NEXT : S(RET.NEXT)
NEXT = SEL *',' INDEX *',' NEXT

*

* REMOVE SPURIOUS FINAL COMMA FROM SELECTOR STRING

RET.NEXT NEXT ',' RPOS(0) = NULL : (RETURN)

*

* RESET THIS INDEX 10 ITS LOWER BCUOND, CONCATENATE IT TO

* THE SELECTOR STRING BEING FORMED AND PROCEED TO WORK

* ON THE NEXT INDEX

RESET. NEXT
NEXT = LB ',' NEXT : (PR.NEXT)

END.NEXT

7A. Arrays A 121

Note that the NEXT () procedure returns a string as its
value. Thus the selector represented by that string cannot
he used within an item reference, where only a selector list
is appropriate, but may be used as the second argument of
the ITEM{) procedure, as in the rule

OUTPUT = ITEM{LIST,NEXT (SELFCT,PROTOTYPE(LIST)))

vhere the value of SELECT is a string representing the last-
used selector. If the ITEM() procedure were not defined to
accept a string as its second argument, it would not bhe
possible to write a useful, general purpose NEXT() procedure
to wvork on an array with any number of dimensions.

NEXT() was devised for the purpose of returning all
successive selectors of an array, each call to NEXT()
returning the next selector until a failure transfer is
executed. The loop shown below uses the NEXT{) procedure in
this way. The INIT() procedure which precedes the 1loop
provides a string to bke used as the initial value of SELECT:
INIT() takes a prototype as its argument and returns the
"first" selector of an array described by that prototype.

DEFINE {(*INIT (PROTC) LBPAT,LR', *PR.INTT')

%

* SET UP PATTERN TO FIND LOWER BOUND FOR EACH DIMENSION

* ASSIGN THIS PATTERN TC THE MAIN-PROGRAM VARTABLE LB.PAT
LBPAT = BREAK(':') . LB *':* (BREAK(',') ',' | PEM)

+ : (END.INIT)

*

* USE THIS PATTERN TC FIND NEXT LOWER BOUND

PR.INIT PROTO LB.PAT = NULL : F(RET.INIT)

*

* FORM INITIAL SELECTOR STRING BY CONCATENATION
INIT = INIT ',* LB : (PR.INIT)

* REMOVE SPURICUS INITIAL COMMA AND RETURN

RET.INIT INIT ',' = NULL : (RETURN)

END,INIT
*

* LOOP TO PRINT ALL SELECTORS OF IIST

SELECT = INTT(PROTOTYPE (LIST))
LOOP OUTPNT = ITEM(LIST,SELECT)

SELECT = NEXT(SELECT,PRCTOTYPE (LIST))
+ : S(LOOD)

Since NEXT() is meant to be used in this and similar
ways, it has no special provision for dealing with selector
strings passed as the first arqument which fall outside the
range of +the array; such provisicns could be alded to make
the procedure more generally useful.

7h. Arrays 122

Procedure_to_Return a_Copy_2f any Array. It is often
necessary to make a copy of an array, rather than merely
assigning the same array as the value of more than one
variable, so that changes in the values of the copy can be
nade without affecting the original. To make a copy of an
array means to create a new array with the same prototype as
that of the original, and to assign to each of its items the
same valte as that of the corresponding item in the original
array. The following CCPY() procedure returns as its value a
copy cf any array; it requires only one argument, which may
be any expression whose value is the array to be copied —-
this array may have any number of dimensions. The COPY ()
procedure invokes the INIT{) procedure to form the 1initial
selector string, and the NEXT() procedure to insure that all
items are considered and hence copied; both of these
procedures are described in the preceding section. A call to
the COPY() procedure fails, causing an error message to be
prirted, only if its argument is not of datatype Array.

* PROCFDURE TO RETURN A COPY OF ANY ARRAY
%*
DEFINE (*COPY (ARR1) SELECT, B, 'PR.COPY') : (EZND.COPY)
*
* TEST WHFRTHEK ARGUMENT IS AN ARRAY
PR.COPY TIDENT(TYPE(ARR1),'ARRAY') : F(COPY.ERT1)
x
* CREATE A NEW ARRAY WITH PROTOTYEE OF ARGUMENT
* AND ASSIGN IT AS THF VALUE OF THE RESULT VARIABLE
P = PROTOTYPE(ARR1)
CCPY = ARRAY(P)
4
% CALL INIT() TO RETURN THE FIRST SELECTOR OF THIS ARRAY
SELECT = INIT(P)
*

* CCPY VALUE OF NEXT ITEM OF ARRAY, OSING ITEM()
COFY.COPY
+ ITEM(COPY,SELECT) = TITEM(ARRT,SELECT)

*
* CALL NEXT() TO RETURN THE NEXT SEFELFCTOR OF THIS ARRAY
* IF NO NEXT SELECTCR, RETURN

SELECT = NEXT(SELECT,P) : S(COPY.COPY)
+ P (RETURN)
COPY.ER1 OUTPUT = 'ARGUMENTnOFaCOPYaNOToANOARRAY'®

+ + (FRETURN)

END.COPY

Appendix A. SUMMARY OF PREDEFINED PROCEDUPES

I. PRCGRAM PROCEDURES are used by the programmer as
opcrations in censtructing programs.

A. Test Procedures

1.

General Comparison

IDENT ()
DITFER ()

String Comparison
LGT ()
Arithmetic Comparison

EO ()
NE ()
GT ()
GE ()
LT ()
LEQ

B. Result_ Procedures

—— e

TS S i s ey v e e s i e

Pattern Ccnstruction

ANY ()
NCTANY ()
SPAN ()
BRFAK ()
LEN ()
TAB ()
RTAB()
PCS ()
RPOS ()
ARBNO ()

String Operation

TRIM()

123

basic

A. Summary of Predefined Procedures

C. Data_Procedures.

1.

2.

Structure Creation
ARRAY {)
Field Selection

PARAM ()
FIRST ()
REST()
LEFT()
RIGHT ()
FANMILY ()
SELECTOR ()

IT. SYSTEM PROCEDURES are used to communicate
and requests to the Snotol systen.

A. Declarations

1.

2.

Programmer-defined Prccedures
DEFINE ()
Programmer~-defined Datatypes

DATA ()

B. Access to System Informaticn

1.

Attributes of Objects

STZE()
DATATYPE ()
TYPE()
PROTOTYPE ()

Execution Information

ALPHABET ()
DATE ()
CLOCK ()
TIME()
STCOUNT ()
STLINIT ()

instructions

L. Summary of Predeiined Procedures

MAXLNGTH ()
FNCLEVEL ()
NEXTVAR ()

C. Bequests for System_2Actions

1.

D. Inp

vt/Cutput Procedu
F

1.

TTFM()
APPLY ()
IF ()

Set Mode of Pattern-Matching

ANCHOR ()
Datatype Conversion

CCNVERT ()
CODE()

Cutput_Procedures

ile Association

TNPUT ()
OUTPNT ()
DETACH ()

Requests for File Actions
ENDGROUP ()

REWIND ()

REMARK ()
FREEZE ()

Tests of File Position

FEORLEVEL ()
EOI ()

125

A. Summary of Predefined Procedures 126

The foregoing classification scheme is introduced as an
aid to understanding the purpose and use of the various
predefined procedures; the particular classes differentiated
play no part in the definition of Snobol, and other
classifications couid be devised, Notice that most
programmer—-defined grocedures declared by DEPINE ()
constitute extensions of the classes of test procedures an-
result procedures, and that those declared by DATA()
constitute extensions of the classes of structure creation
and field selection procedures.

Tn the descriptions which follow, each predefined
procedure is shcwn along with the kind of value required for
its argument (s) and the kind of value it returns. There are
no syntactic restrictions on tke form of arguments; since
all arguments are passed "by value"® in Snobol procedure
calls, actual arguments may be written as arbitrarily-

complicated exrressions, There are, however, semantic
restrictions on the values resulting from evaluation of
actual arquments, defined in terms of "datatypes.” Every

data cbject known to a Snobol program is of datatype String,
Integer, Pattern, keal, Array, iJame, Code, or a programmer-
defined datatype. Fachk procedure is shown here with the
datatypes it will accept; a call of a procedure using an
argument with a wrong datatype will result in an execution-
time error. Some procedures are described as accepting the
non-datatype '"structure"; these procedures Will accept an
arqument of any programmer-defined datatype. Sone procedures
are described as accepting the non-datatype "any"; these
procedures impose no restricticns cn their arquments. Some
procedures are described with an empty argument list; these
procedures are defined to have no arguments.

There are tvo generalizations not specifically
nentioned in the descriptions: (1) a procedure which accepts
a Pattern will accept a String or an Integer; (2) a
procedure which accepts a String will accept an Integer.

Any predefined procedure may te called with more or
fewer arguments than are shown in its definition. Missing
arguments are assumed to be the null value; extra arquments
are evaluated but otherwise ignored. The evaluation of extra
arquments may have important consequences, however; 1f the
evaluation involves the invocation of procedures «hich
prrcduce side effects, for example, it will cause those side-
effects to occur before the outer procedure call occurs, and
failure during any part of the evaluation of the arguments
will result in failure of the rule before the proceilure call
cccurs. The extra arquments are ignored only in the sense
that they are not passed to the prccedure being called.

A. Summary of Predefined Procedures 127

I. PROGRAM PROCEDURES

I.2 Test_Procedures

IDENT (any,any) Returns: null value, or fails
DIFFER (any,any) Returns: null value, or fails

IDENT () and DIFFER() are used to ccmpare two arquments
of any datatype to see if they are indistinguishable toc the
Snokol system —- equivalent Tf[pattern structures, the sanme
array, equal 1integers, identical character strings, or
whatever. IDENT() succeeds if its arquments are identical;
DIFFER() succeeds if its arquments are not identical.

IDENT (PRU.PAT,TEST.DPAT) H DIFFFR(WORD, NULL)

LGT (String,String) Returns: null value, or fails

LGT() — a mnemonic for Lexiccgraphically Greater Than
-— compares two strings to see if they are "alphabhatically"®
ordered, using as an alphabet the computer's character set
in its standard «collating sequence. (Motice that +the
argunents must be given in the reverse of the aesired ordor:
the test 1is whether the first argument follows the scconid
arqgument.)

LGT (WORD, 'LEMUEL?) : LGT (WORD, TEST)

FQO(Integer,Integer) Returns: null value, or fails
EQ (Real,Real) Returns: noll value, or fails
NE (Integer,Inteqer) Returns: null value, or fails
NE (Real, Real) Returns: null value, or fails
GT (Integer,Integer) Returns: null value, or fails
GT (Real, Real) Returns: null value, or fails
GE (Integer,Inteqger) Returns: null value, or fails
GE (Real,Real) Returns: null value, or fails
LT (Integer, Inteqger) Returns: null value, or fails
LT (Real, Real) Returns: null value, or fails
LE{Integer,Tnteger) Returns: null value, or fails

LE (Real,Real) Returns: null value, or failsz

A. Summary of Predefined Procedures 128

These arithmetic test procedures are used to conmpare
the first argument to the second argument to see if the
relationship symbolized by the procedure name is trne. The
tvo arquments must be of the same datatype.

EQ (ACNT,BCNT) . LT(LINE,S)
X = LE(X,8) X + 1 : P (OUT)

I.B Result Procedures

ANY (String) Returns: Pattern

ANY (} returns a pattern which will match any single
character from its arqument string.

ANY (*ALTIOUY) H ANY (VOWELS)

NOTANY (String) Returns: Pattern

NOTANY () returns a pattern which will match any single
character not appearing in its argument string.

NOTANY (*AEIOU'") H NOTANY (VOVWELS)

SPAN(String) Returns: Pattern
SPAN() returns a pattern which vill match the 1longest

continuous string of one or more characters appearing in its
argument string.

SPAN(*AEICUY) s SPAN(VOWELS) 3 SPAN(*MISSISSIPPTI')

BREAK {(String) Returns: Pattern

BREAK () returns a pattern which will match the 1longest
continuous string of none or more characters not appearing
in ite arqument string; that is, everything up to but not
including any character in its argument.

BREAK (*AEIOU') ; BREAK(VOWELES) ; BREAK(*MISSISSTPPI')

A. Summary of Predefined Procedures 129

LEN (Integer) Returns: Pattern

LEN() returns a pattern which will match any string of
characters of the length given by its arqument.

LEN (5) H LEN('22") H LEN(STZE{VOWELS))

TAB(Integer) Returns: Pattern

TAB{) returns a pattern which will match all the
characters up to the string pcsition specifiei by its
arqument. (The convention for string numbering is that
string position 0 vprecedes the first character, string
position 1 is after the first character, and string position
n is after the n-th character.)

TAB (5) H TAB('22") ; TAB (COUNT)

RTAE {Integer) Returns: Pattern

RTAB() returns a pattern vhich will match all ¢the
characters up to the string position specified by its
arqument, Its action 1is identical to TAB{(), matchinat strinas
cf characters from 1left to right; the only difference
between them 1is the numbering convention used by the
argument. (RTAB()'s numbering convention 1is ‘that strinc
position 0 is after the last charact2r, string position 1 is
before the last character, and string position n is before
the n-th character from the end of the string.)

RTAB(5) H RTAB (*22')y °; RTAB (0)

POS (Integer) ‘ Returns: Pattern

PCS () returns a vpattern which will match only the
string position specified by 1its arqument; it matches no
characters at all. (String positions follow the numbering
convention of TAB().)

PCS (0) : POS (5) : POS ('221)

A. Summary of Predefined Procedures 130

RPOS (Integer) Returns: Pattern

RPOS() returns a pattern which will match only the
string position specified by its argument; it matches no
characters at all, (String positions fcllow the numberiag
convention of RTAB().)

RPOS (5) H RPOS (*22') H RPOS(COUNT)

ARBXOC (Pattern) Returns: Pattern

ARBNO{) retnrns a pattern vhich will match zero or more
occurrences of the pattern which is its argument.

LRBNO (RREAK ('no.,;*) LEN(1)) H ARBNO (ANY (*AEIOU'))

TRIM(String) Returns: String

TRIM() returns a string which is the same as its
argurent, but shorn of trailing blanks.

TRI M (WORD) : TRIN(INPUT) : TRIM(UNCLE.TOBY)

I.C rata_Procedures

ARRAY (String) Returns: Array

ARRAY () accepts as its single argument a prototype
string specifying the number of dimensions wanted and the
epper and lower bounds for the index of each dimension.
ARRAY (*10,15") specifies a two-dimensional array vith
indices fron one to ten and one to fifteen.
ARRAY('0:60,-5:+5') specifies a two-dimensional array with
indices from zero to sixty and fror minus five to plus five
{i.e., a sixty-one by eleven item array). All array items
are initialized to the null value. There is no limit on the
number of dimensions which may be specified for an array.

Since ARRAY() returns an object of datatype Array as
its value, it is used by writing something like

LIST = ARRAY('0:60°%)

which has the effect of c¢reating a family of sixty-one

A. Summary of Predefined Procedures 131

variables, which may then bhe referred to hy the iten
references LIST[0], LIST[1),e..,LIST[60].

PARAM {(Pattern) Returns: Pattern, String, or Integer

PARAM () accepts as its arqument only a pattern returned
by cne of the ten predefined pattern procedures; it returns
the arqument (parameter) with which one of those was called
to construct the pattern., If the rattern is one constructed
by LEN{), POS(}, RPOS{), TAB(), or RTAB(), then PARAM()
returns an integer; if the pattern was constructed by ANY (),
NOTANY (), SPAN{), or BREAK (), then FARAM() returns a string
of characters in their standard collating sequence (the
sequence defined by ALPHABET()). If the pattern vas
constructed by ARBNO(}), then PARAM(}) returns the pattern
that was its arqument, which may of course be of datatype
String or Integer in simple cases.

FIRST (Pattern) Returns: Pattern
FIRST () accepts as an argument a pattern constructed hy
an alternation or <concatenation orperator. It returns the
first element of the pattern. Thus 1if
PAT = XY {| 2
has keen executed, then
FIRST (PAT)

returns the pattern which is the value of the expression
X Y, a concatenation. On the cther hand, if

PAT = X (Y | 2)
has been executed, then
FIRST (PAT)

returns the pattern which is the value of X.

REST (Pattern) Returns: Pattern

REST() is the complement to FIRPST(); it also accents
alternated or concatenated patterns as arquments, and
returns all but the first element. Thus, if

A. Sumrary of Predefined Procedures 132

PAT = XY | 2
has been executed, then

REST (PAT)
returns the pattern which is the valwe of 7. If, however,

" PAT = X (Y | 2)

has been executed, then

REST (PAT)
returns the pattern which is the value of Y | Z, an
alternation. : :
LEFT(Pattern) Returns: Pattern

LEFT() accepts as an argument a pattern constructed by

an immediate assignment or conditional assignment operator;
it returns the pattern which is the left-hand operand of
that operator. Thus if

PAT = ANY(VOWELS) . V
has teen executed, then

LEFT (PAT)
returns the pattern which is the value of the expression
ANY (VOWELS).
RIGHT (Pattern) Returns: Name
RIGET (Name) Returns: String

RIGHT () may have a pattern constructed by an assignment

operatcr, 1in which case it is the complement to LEFT(). For
instance, if

PAT = ANY(VOWELS) $ V
has been executed, then

RIGHT (PAT)

returns the value of the expression .V, the Name of the
variable V. .

A. Summary of Predefined Procedures 133

RIGHT () may also have as arqument a deferred evaluation
pattern, in which case it returns the Name of the operand of
the deferred evaluation operator. If

PAT = *y¥

=
fo’]
n
rr
D
m
=
D
>
1]
@]
[
-
m
Sl
-
ﬁ
o>
D
=

RIGHT (PAT)

returns the value of the expression .V, the Name of tho
variable V.

Finally, RIGHT() may have as its arqument the VName
(datatype Name) of a natural variable, in which case it
returns the String which is the other name of that variable.
(RIGHT () will not accept the Name cf a created variable, nor
the String name of a natural variatle.) Thus, the value of
RIGHT (V) is the String V;:; the statenments

PAT = ANY(VOWELS) $ V
OUTPUT = RIGHT(RIGHT(PAT))

will print the character V. Since ohjects of datafype Name
cannot be printed, it is the RIGHT() procedure which
converts Names of natural variables into a form suitable for

assignment to OUTPUT. (To print Names of created variables,
see FAMILY () and SELECTCR() below.)

FAMILY (Name) , Returns: Array or structure

FAMILY () accepts as arqument the Name of a crealoed
variable (array item, cr field of a programmer-defined data
structure). It returns the object which is the fanily of
variables to which the Named variable belongs. If LIST has
been assigned an array as value as in

LIST = ARRAY ('0:10")

and the rule

ELEMFNT = LLIST[S)

has been executed (notice that the value of ELEMFPNT iz of
datatype Name), then

FAMILY (ELEMFNT)

returns the Array which is the value of LIST. Similarly,

A. Summary of Predefined Procedures 134

after the staterments

DATA ("NODE (LLINK,RLINK, INFO) ')
NEXT = NODE(,,15)
ELEMENT = .INFC(¥FXT)

have becen executed, then
PAMILY (FLEMFNT)

returns the object of datatype Node which is the value of
NEXT.

Since TAMILY() returns the Array or structure rather
than the WName of the variable whose value is the Array or
structure, the value of FAMILY () is suitable for use as the
first arqument of ITE¥%(), or a second arqument of APPLY ().

SELFCTCR (Name) Returns: String

SEIFCTOR() is the other half of FAMILY(). It also
accepts as its argument the Name cf a created variable, and
returns a String which may be used to select that variable
in its famiiv. For Arrays, SELFCTOR() returns a string which
is a list of indices:; for structures, SELECTOR() returns a
string naming a field selection proceiure. The String
returned by SELECTOR() is appropriate for use as the first
argument of APPLY(), or a second argument of ITZM(). (Note
that this last use takes advantage of the fact that TTEM()
will accept such a String of indices; only in the case of
one-dimensional Arrays may the value of a call to SELECTOR()
be used within square hrackets in an item reference.)

A. Summary of Predefined Procecdures 135

IT. SYSTEM PROCEDUREFS

IT.A Declarations

DEFINE(String, String) Returns: null value

The first argument of DFFINE() is a string consisting
of the name of the procedure being defined, followed by a
pair of parentheses ccntaining the names of the formal
variables (if any), which in turn are followed (without a
comma) by the names of internal variables (if any). The
seccni arqument 1s a string naming the "entry label”" for the
procedure; if the second argument is null, the entry label
is assumed to have the same form as the name of the
procedure being defined,. :

DEFINE ("PRYNT (N, NAME) M, W, E')
DEFINE (*RECORDS() ', ' PR.RECOUDS?)

TATA(String) Returns: null value

The DATA() declaration has as its arqument a prototype
string consisting of the name of the datatype being defined,
followed by a parenthesized list of the names of th~ fieldg
which an object of that datatype is to comprise (if any) .
The effect of the DATA() declaraticn is to dAdefine (without
any DEFINE{)'s) a structure creation procedure for tha
datatype, along with a field selecticn procedure for each
field., Thus, after the declaration

DATA (*NODE (LLINK,RLINK,INFO) ')

has been executed, Node's may te created with statements of
the fcrm

NEXT = NODE() ; CNRRENT = NODE(NEXT,,TRIM(INPUT))

Fields of the created structure have values initialized
according to the values of the corresponiing arquments of
the procedure call; null arguments produce null fields.

Tke wvariables which are fields of structures are
referred to by field references, ccnsisting of a reference
to a field selection procedure with an arqgument of the
proper datatype to specify the family; for the example
abcve, by statements of the forn

A. Summary of Predefined Procedures 136

LEFT = LLINK (CURRENT)
NAME = INFO(NEXT)
RLINK (CURRENT) = NEXT

The same field name may be used in definitious of more than
one datatype, since its interpretation is governed by the
datatype of the argument in any field reference. Notice,
however, that the names of structure creation procedures and
field selection procedures are drawn from the same set as
- all cther procedure names, so that (for instance) defining a
structure

DATA('ENTRY (TYPE,SIZE,INFC) ')

will re-define the predefined procedures TYPE() and SIZE ()
as field selection procedures for chjects of datatype Entry.

II.B Access to System Information

SIZE(String) Returns: Integer

SIZE() returns the integer length (the number of
characters) of the string which is its argument.

SIZE (VOWELS) H SIZF(TRIM(INPUT))

DATATYPE (any) " Returns: String

DATATYPE() returns the string of characters which 1is
the name of the datatype of its argument {predefined or
programmer-defined). It is used for controlling branching,
and can be used with TIDENT{) to simulate other test
procedures. To test whether COUNT is an 1integer, vwrite
IDENT(DATATYPE(COUNT),'INTEGER').

DATATYPE (COUNT) : s ($('L'" DATATYPE(VAL)))

TYPE (any) Returns: String

TYPE{) returns the same result as DATATYPE() for
objects of predefined datatypes, and the string DATA for
objects of programmer-defined datatypes. Thus, an exhaustive
listing of the strings returned by TYPE() is:

STRING INTEGER REAL PATTERN
ARRAY NAME CODE ‘ DATA

A. Summary of Predefired Procedures 137

PROTCTYPE (Array) Returns: String
PROTICTYPE (structure) Returns: String
PROTCTYPE(Pattern) Returns: String
PROTOTYPE (Name) Returns: String

PROTOTYPE () returns as its value a String representing
the system definition of the object which is the value of
its arqument. Tts operation is rather different according to
the Jdatatype of its arqument. In each case, the string
returned is intended to be convenient for investigation by

Snotol pattern-matching.

When the argument of PROTOTYPE() is an object createqd
by a call toc the predefined structure creation proceduro
ARR2Y (), the string returned is the list of upper and 1lower
bounds of indices for the dimensions — essentially the sare
as the arqument given to the ARRAY () procedure, except that
lover bounds are always expllcltly nresent, and each integnr
is in canonical form (no signs fcr posxtlve numhers, no
leading zeroes). Thus, if the rule

LIST = ARRAY('00:5,-1:+3,05")
has Lteen executed, then
PROTOTYPE (LIST)
will return the 12-character string 0:5,-1:3,1:5.

When the arqument of PROTOTYPE() is an obhject of a
programmer-defined datatype — one created by a call to a
programmer-defined structure creation procedure —— then the
string returned is that defining the datatype of the obhiject.
This is the same as the string which was the arqument of the
call to the DATA() procedure whichk declared the datatype ——
not the arqument list of the structure creation procedure
vhich created the object (unlike the case for Arrays). Thus
if the two statements

DATA('NODE (LLINK,RLINK,INFO) ")
CURRENT = NODE(LAST,, '*'SCNNETo15")

have heen executed, the value cf CORIENT 1is an object of
datatype Node, with its LLINR() and TINFO() fields
initialized as shown and its RLINK() field null. Then the
rule

PROTOTYPE (CURRENT)

vould return the 22-character strinq NODE(LLINK,RLINX,TNFO).

A. Summary of Predefined Procedures 138

For both arrays and data structures, the arqument of
PROTCTYPE() is an object which is a family of variables, and
the result returned is a string which can be wused to
determine all the valid selectors for members of that family
— items or fields, as the case may be. (The difference is
that for arrays this information is provided in the argunment
to the predefined structure creation procedure, for data
structures +this information is given in the declaration of
the datatype.) In the last example, for instance, one coulad
obtain the values of the fields of the object namedi by
CURRENT by obtaining its PROTOTYPE(), then searching with a
pattern between the parentheses to find the strings
delimited by commas, and using the strings located in this
way as the first argument of APPLY() with CURRENT as the
seccnd argument,

This idea is extended to objects of datatype Pattern
and datatype Name, by observing that although obijects of
these datatypes are not families of variables, nevertheless
‘they may have an internal structure which a Sncbol program.
may wish to investigate. A Pattern may be constructed of
many parts, for instance, and a Rare may indicate a family
plus a selector. For this reason, the different kinds of
Patterns and Names are provided with predefined systenm
prectotypes, strings which contain suabstrings corresponding
to the names of the predefined field selection procedures
(see section T.C of this arpendix). Thus, the "structure of
patterns and MNames may be investigated in the same way as
that of programmer-defined data structures. The twenty-one
predefined prototypes fcr patterns are given in the right-
hand cclumn of the follewing table.

predefined pattern _variables

P = ARB ; PROTCTYPE(P)-> ARB{()
P = REM PROTCTYPE(P)—-> REM()
P = BAL 3 PROTOTYPE (P) —» BAL{()
P = FENCE 3 PROTCTYPE (P)—-> FENCE ()
P = FAIL ; ' PROTCTYPE (P} —> FAIL{()
P = ABORT ; PROTOTYPE (P) —> ABORT ()

A. Summary of Predefined Procedures 139

predefined_pattern procedures'

P = LEN(6) H PROTCTYPE(P) —> LEN(PARAM)

P = ECS(6) H PROTCTYPF (P) => POS (PARAM)

P = FPCS(6) BROTCTYPE (P) —> RPOS (PARAM)

P = TAB(6) H PROTCTYPE (P) > TAB(PARAM)

P = RTAB(6) : PROTCTYPF (P) —=> RTAB(PARAM)

P = ANY('AEION?') 3 PROTOTYPE (P) -> ANY (PARZM)

P = NOTANY (*AEIOQU") : PROTCTYPE(P) —> NOTANY (PARAM)

P = SPAN('AEIOQUY) : PROTOTYPE (P) -> SPAN(PARAM)

P = BREAK('AEIODY) H PROTCTYPE (P)—> BRFEAK (PARAM)

P = ARBRNO(ANY(®AEIOU')) H PROTCTYPF {(P) —> ARBNO(FARAM)
alternation _and concatenation

P = 'AY | 'B' | 'C! : PROTCTYPE (P) —> ALT(FTRST,REST)
P = 'A' ANY('AEIOU') r*C°? : PROTCTYPE (P)-> CAT{FIRST,REST)
assignment operators

P = SPAN(YRETIOU') . VOWFLS s PROTCTYPE(P)-> PRD(LEFT,RIGHT)
P = PREAK(*AEIOUD') § VOWELS ; PROTOTYPE(P)-> DOL(LEFT,RTGHT)

—— e —

—— > — ——— — —ian - ——— — o i —

P = *VOWEL ¢ PROTOTYPE(P) —> STAR(RIGHT)
Similarly, a Name may be the name of a natural variable

(one that 1is also named by a String), or one of the two

types of created variatles —— an Array item, or a field of a

data structure. There is a predefined prototype for each of

these:

VAR = ,VOWELS PROTOTYPF (VAR)-> INDIRRCT (RTIGHT)

VAR = ,LIST[I,J] ; PROTOTYPF(VAR)-> ITEM (FAMILY,SFLECTOR)

VAR = .RLINK(NODE) ; PROTOTYPE (VAR)—> APPLY (SELECTOR,FAMILY)
Notice that the Name of a natural variable, returned by

the name operator, is a suitable a.qument for PROTOTYPE() ;

the String which names the same
above, VOWELS) would cause
arqument of PROTOTYPE().

variable (in the example
an execution-time error as an

A. Summary of Predefined Procedures 140

ALPHABET () Returns: String

ALPHABET() returns the 63-character string which is the
Snotol character set 1in standard collating sequence (see
Aprendix T).

ALPHABET ()

DATE () Returns: String

DATE() returns a nine-character string representing the
current date, in the form 02n0JULn72. The abbreviations used
for the months are the first three letters of their names.

DATE ()

CLCCK () Returns: String

CLOCK () returns an eight-character string representing
the time of day at which the job is being run, in the form
19:03:57. Hours are counted from zero through twenty-three,
minutes and seconds from zero through fifty-nine.

CLOCK ()

TINE(Q) Returns: Integer

TIME() returns the elapsed central processor time €for
the job, expressed as an integer number of milliseconds. BY
subktracting the value of one call to TIME() from the value
of a later call, a programmer 1is able to determine the
amount of central processor time used by a particular part
of his program.

TINE ()

STCCOUNT () Returns: Inteqger

STCOUNT () returns the count kept by the Snobol systenm
of the number of statements on which execution is begun. Its
initial value is, of course, zero vwhen a program starts
executing.

STCOUNT ()

A. Summary of Predefined Procedures 141

STLIMIT(Inteqger) Returns: Tnteger

STLIMIT() is used to set the limit on the number of
statements executed (the value of STCOUNT()). Tts initial
valve is 1,000,000; lower 1limits may be set by the
programmer by calling STLIMIT() with a non-null integer
argument. An execution-time error rtesults if STLIMIT(is
exceeded. If called with a null argument, STLIMIT() returns
its current value and remains unchanged.

STLIMIT('200%) : ‘ STLIMIT (5000) s STLIMIT()

MAYLNGTH (Integer) Returns: TInteger

MAXLNGTH() is used to set the limit on the length of
strings which may be formed, 1in characters. Its initial
value is 131,070; lower limits may he set by a programmer by
calling MAXLWGTH() with a non-null integer arqument. hn
execution-time error will result if an attempt is made to
exceed this npaximum 1length for strings. If called with a
null argument, MAXLNGTY () returns its current value and is
atichanged,

MAXLNGTH ('200") s MAXLNGTH {(5000) s MAXLANGTH()

FNCLEVEL () Returns: Integer

FNCLEVEL () returns an integer value to 1indicate the
level of evaluation of nested or recursive procedure calls.
Its use is to provide a trace of the evaluation for
debugging of rprogram logic, or to preserve a record of the
level cf evaluation causing a failure during execntion. (At
an execution-time error, this information is displayed by
the system's error message.)

REMARK (TIME () '~~' FNCILEVEL() ‘'aDEEP')

NEXTVAR (Name) Returns: Nanme
NEXTVAR(String) Returns: Name

NEXTVAR() accepts as its arqument the Name of a createad
variable, or «ecither the Name or String naming a natural
variable.

For created variables —- array items or fields of data
structures —— NEXTVAR() returns the name of the "pextn
membter of the same family. For Arrays, names of items are

A. Summary of Predefined Procedures 142

returned in the order obtained by varying the rightmost
index most rapidly. For data structures, names of fields are
returned in 1left to right order of their appearance in the
CATA() declaration which defined the datatype. 1In both
cases, the order is cyclical, the name of the "first" member
of a family (under this definiticn) being the value of
NEXTVAR() applied to the name of the "last" member. Thus, if
the rule

LIST = ARRAY('0:2,0:2"

has been executed, the value of NEXTVAR(.LIST[0,0]) is the
name of the array item referred to as LIST[O0,1), and the
value of NEXTVAR(.LIST{2,2)) is the name of the array iten
referred to as LIST[0,0]). Similarly, if the rules

DATA (*NODE (LLINK,RLINK,INFO) ")
CORRENT = NODE()

‘have been executed, the value of NEXTVAR(.LLINK(CGRRENT)) is
the name of the field referred to as RLINK(CURRENT), and the
value of NFITVAR(.INFO{CURRENT)) is the name of the field
referred to as LLINK (CURRENT).

If a statement such as
NEXT = NEXTVAR(NEXT)

is written in a loop, then the names of all the members of
the family to which the value of NEXT belongs will be
returned in order:; but unless the programmer checks to see
wvhen he is back to where he started, the loop will be
jnfinite. A suitable loop for going once through the fields
of a Ncde, then would he

SAVE « LLINK(CURRENT)
NEXT SAVE
LOOP [statcments to process a field]
NEXT = NEXTVAR(NEXT)
IDENT (NEXT,SAVE) s PF(LOOP)

NEXTVAR({) is convenient for referring in turn to all
the variables of an array or a data structure, but its
effect can be programmed in Snobol using PROTOTYPE(),
ITEM(), and APPLY (). (See an example of this in Chapter 7.)

The more important use of NEXTVAR() arises from the
fact that it also treats the set of all natural variables as
a "family," and thus when given a String or a Name which
names a natural variable, NEXTVAR() returns the name of

A. Summary of Predefined Procedures 143

another natural variable. Two important differences of
NEXTVAR() in this use should be noted. First, since there is
no defined order for the natural varialkles, their names are
returned in an order which 1is convenient for NEXTVAR().
Seccnd, NEXTVAR{) cannot cycle through the names of all the
natural variatles, since there are an infinite number of
them., Hence, it returns the names of a subset of the family
of natural variables which is certain to include at least
the names of all variables with ncn-null values, and nmay
also 1include the names of some variables with null values.
What is important is that by the time a full cycle has bheen
completed and the starting place reached again, the name of
every variable with a non-null value will have come up.
(When used with families of created variables, by contrast,
NEXTVAR() is guaranteed to cycle through the names of every
variakle in the family in turn, regardless of their values.)
Observe that the names returned by NEXTVAR() are subject to
the usual interpretation of names. Tn particular, if
NEXTVAR() is called repeatedly in a loop within the bhody of
a rrogrammer-defined procedure, and some process is carried
out on the variables referenced by the names returned, then
the names of variables internal to procedure calls will
refer to those internal variables. The customrary
interpretation of what variable a name refers to at any
point in the execution c¢f a program 1is not affected by
NEXTVAR().

I1.C Requests_for System RActions

ITEM (Array,String,...,Strinqg) Returns: variable, or fails

ITEM() provides a convenient way to write iten
references for arrays chosen at execution-time, for arrays
which are the values of array 1items, or which involve
variable numbers of dimensions., The first argument of ITWTHM ()
is an array, and the following arquments are either integers
or else 1lists of 1integers separated by commas. TTEM ()
constructs an item reference using the array which is its
first argument for the family and the proper number of
indices gathered from the remaining arquments to form the
selector, 1ignocring extra indices and supplying null (zero)
for missing ones. ITEM() NRETURNs the array 1item so
referenced, or FRETURNs if any index of the selector exceeds
the bounds specified by the prctotype for the array. If TIC3
has been assigned the value

TIC3 = ARRAY('1:5,1:5,1:3")

A. Summary of Predefined Procedures 14y

then equivalent ways of referring to its central item are

T1C3[3,3,2)
ITEM(T1C3,3,2,2)
ITEM(TIC3,*3,3,2")
ITEM(TIC3,3,'3,2")

APPLY (String,any,...,any) Returns: any or variable, or fails

APPLY(} rprovides the only way to write procedure
references for procedures chosen at execution-time. The
first arqument of APPLY () must be a string which names a
procedure; the Snobol system calls that procedure, using as
its arquments the remaining arquments of APPLY () and
~observing the usual conventions for extra or missing
arguments. APPLY() returns the value returned by the
procedure it calls, using the same return (RETURN, NRETURN,
or FRETURN) .

Tf APPLY() is used to call a field selection procedure,
then its use 1is analogous to the use of ITEM(} for iten
references; the Snobol system forms a field reference using
the first argqument as the selectcr and the second argument
for the family, and NRETURNs the field so selected.

FLD = T'YRLIRNK!
APPLY(FLD,CURRENT) = TRIM(INPUT)
RLINK (CURRENT) = APPLY('TRIM',INPUT)

IF () Returns: null value

IF() always succeeds. Since it is defined to have no
argurents, any arquments in a reference to IF{() are
evaluated but otherwise ignored. Thus if any part of that
evaluation fails, that failure causes failure of the rule.
If a reference to a procedure returning a non-null value 1is
written as an argument of an IF() procedure, the combination
vill work like a test procedure. The same principle applies
to cther expressions returning values which can similarly be
converted into test procedures.

N = TIP(ARRI[N+¢1]) N + 1 s F(OUT)

A. Summary of Predefined Procedures 145

ANCEOR {any) ' Returns: null value

ANCHOR() works like a switch, distinguishinag between
null and non-null arquments. Calling ANCHOR() with a non-
null arqument «turns on the anchored mode of pattern-
matching; calling it again with a null argument restores the
usual, unanchored mode. ‘

L]

ANCHOR ('ON') H ANCHOR (OFF) H ANCHOR ()

CONVERT (Integer) Returns: Real
CCHNVERT (String) Returns: Real
CCNVFRT (Real) Returns: String

CONVERT () is usefnl for creating and printing real
numbers. If 1ts arqument is of datatype Integer, the value
retvrned 1is the corresponding real number. The only
permissible String-valued arqument is a string of digits,
possibkly including an initial sign and possibly including a
deciral point; the returned value is the corresponiing real
nunber. If the arqument is of Jdatatype Real, the value
returned by CONVERT() is the numeral string representing the
real number to twelve digits. CCNVERT() is defined for
integers and real numbers from abcut 10-300 to about 10300,

CONVERT (45) ; CONVERT('-57.€9") H CONVERT ('.75")
CONVERT (REALNUMB) : CCNVERT (TRIM(INPUT))

CODE(String) Returns: Code

CODE() accepts as its arqument a string which 1is a
Snokol program text; that is, a sequence of syntactically-
correct Snobhol statements (see the definition of the
construct <program text> in the syntax, Rppendix J), and
returns as its value the corresponding compiled Code; 1its
use, then, is to permit a program to extend itself while it
is executing., A1l characters in the Snobol character set,
including space, have their customary significance in the
argument to CODE(). Statement separators are semicolons, but
no final semicolon is required in the string.

NULP = CODE('IOOP BLIWORL "pm = HA
t ! N = LT(N,X) N ¢+ 1 : S(LOOP)Yy F(S("L" X)) ")

A. Summary of Predefined Procedures 146

IID. Input/Output Procedures

INPUT (String,String,String) Returns: null value
INPUT (Name,String,String) Returns: null value

INPUT () is used to associate a variable in a Snobol
program with an input file. The first argument is the name
of a variable to be used in the program; the second argument
specifies a SCOPE fileset; the third argument specifies the
nusber of characters to be read frem each record on the
file. (Excess characters are lost; missing characters are
filled out with spaces.) If the variable |is already
asscciated with a file, it loses its previous association.
It is through INPUT() —— and OUTPUT() — procedures that the
snobcl program establishes contact with the files set up for
it by SCOPE.

INPUT (*READ®, 'INPUT', *50")

INPUT (* LNGREADER', *DISKSRT',600)
INPUT {.LIST[12], 'TAPE1', TRIM (INPUT))
INPUT (. LLINK (NEXT) , *INFILE',80)

OUTPUT (String,String,String) Returns: null value
QUTEUT (Name,String,String) Returns: null value

OUTPUT() is used analogously to INPOT(), "toO associate
variables in Snobol programs with SCOPE filesets which are
to be used for output. The first arqument is the name of a
variable to be used in the Snobol program; the second
arqument specifies a SCOPE fileset; the third arqument 1is
the carriage ccntrol character which will be concatenated at
the head of every record written. (If omitted, none will be
concatenated.) If the variable is already associated with a
file, it loses its previous association.

OUTPUT (*WRITE','OUTPUT','~")
OUTPUT (*PAGE", 'DISKFIL', 1)
OUTPUT(.LIST[13],'TAPE1!,a')
OUTPUT ('PUNCY', 'PTINCH?)

OUTPUT (.RLINK (NEXT), 'CUTFILE")

A. Summary of Predefined Procedures . 147

DETACH (String) Returns: null value
DETACH (Name) Returns: null value

DETACH({) is used to break the association between the
variable named by its argument and any fileset. There is no
need to DETACH() an associated varialble before qgiving it a
new ascsociation. (A variable may be associated with only one
fileset at a time, but a fileset may have many variables
asscciated with it simultaneously.)

DETACH (*OUTPUT?)
DETACH ('WRITE®)
DETACH (.LIST[12])
DETACH (.RLINK (NEXT))

ENLCCFOUP (String,Inteqger) Returns: nuil value

ENDGROUP() writes a SCOPE end-of-group mark on the
SCOFE fileset which is specified by its first arqument. The
"level" associated with the mark is specified by the second
argumrent, which must be an integer between 0 and 15
inclusive. Such a mark of any level will cause failure on
input if later read by a Snobol proqranm.

ENDGROUP (*TAPE20',9) : ENCGROUP('DISKFIL?')

REWIND {Strinrqg) Returns: null value

REWIND() performs a standard SCOPF rewindi on the SCOPE
fileset specified by its arqument. ™he fileset is positioned
at its bheginning; if the last operation on this file was a
write, an end-cf-group mark of level zero is written before
the file is rewound.

REWIND (*TAPE20"') : REWIND (*CISKFIL?')

. REMARK (String) Returns: null value

REMARK () is used to write the string which is its
argument onto the special file which is the job log. Obvions
uses are to preserve messaqges about the course of execntion
asscciated with timing information, and to decorate the
dayfiles,

RFMARK (*ENTFRING FREEZE TG TAFE20.')
RFMARK (*MOTHER TS DEAD.')

A. Summary of Predefined Procedures 148

FRFEZE (String) Returns: String

FREEZE() is a procedure which permits a programmer to
suspend execution of a compiled snohol program, and then to
re-lcad it and re-commence execntion. The argument to
FREEZE() is a string which is the name of a SCOPE fileset.
When FREEZE() is encountered during execution, the Snobol
system writes out a copy of the entire field length of the
job onto the fileset specified by the argument, and
execution is terminated. SCOPE then reads and carries out
the next control card. When SCOPE finally hits a control
card asking that the Snobol program be reloaded, it does so
and execution continues from the point where it was frozen.

‘ Cn a call in a program such. as FREEZE (*TAPE20'), the
program is "frozen" onto SCOPE fileset TAPE20. Execution
bhegins again when a SCCEE control card is encountered of the
form LGO,TEPE20. There is no requirement, naturally, that a
frozen program ke loaded and executed in the same Jjob in
which it was written out; it can perfectly well be saved on
a CCMHMON file, or on tape, Or even punched out on cards.

Tt is a peculiarity of FREEZE() that it returns for its
yaine the string which is its argqument. This could be useqd
to rreserve a record of which of several FREFZE()'s had been
executed, hut FREEZE() 1is customarily written where its
returned value is not preserved.

FREEZF (*DISKFILY)

BOI (String) Returns: nnull value, or fails

EOI (Y tests whether the SCOPE fileset specified by its
arqument 1is positioned at the end-of-information on the
file. If so, the procedure succeeds and returns the null
value. If there 1is more information on the file, the
prccedure fails.

EOI(*'TAPE20") T S(ouT)

EORIEVEL (String) Returns: Integer, or fails

ECRLFVEL () tests to see whether the SCOPE fileset named
by 1its argument is positioned at an end-of-group mark; 1if
so, the level associated with the mark is returned as the
value of the procedure call. (Such a mark is written by the
ENDGEOUP () procedure; the value.returned by EORLEVEL() 1is

A. Summary of Predefined Procedures 149

the second parameter of the ENDGROUP() which wrote the mark,
0 tc 15 inclusive.) If the fileset is positioned at end-of-
infcrmation -—- if the EOT() procedure would succeed — the
value returned by EORLEVEL{() is -1.

As a practical matter, a fileset will only he
ositioned at an end-of-group mark if the last reforence to
a variable associated with that fileset failed; customarily,
then, a call to FEORIEVEL() would only bhe made after a

- failure on input had occurred, to check the 1level of the
end-cf-group mark which caused the failure. If a call to
EORLEVEL {) is executed at any other time —— at any time when
the fileset 1is not at an end-of-group mark —— the call to
EORLEVFL () will itself fail.

FC (EORLEVFL (* TAPE20') , 9) : S(NINE)
LVL = ECRLEVEL('DISKFIL')

Appendix B. SUMMARY OF PREDEFINED PATTERN VARIABLES

There are precisely six variables initialized to a
value other than the null value when execution of a Snohol
program begins: the six natural variables named ARB, REMN,
RAL, FAIL, ABORT and FENCE. Each of these has a pattern as
its initial value, btut except for this initialization
receives no special treatment. Each may be assiqned any
value by a program, upon which its initial value 1is lost.
This makes no great difference fcr ARB, REM, BAL, or FAITL,
but the value of ABORT is a pattern whick cannot be
constructed in any other way bty a Snobol program, and FENCE
can be constructed only with the use of ABORT.

ARB and REM. The patterns which are the initial values
of ARB and REM are eguivalent in effect to two commonly used
patterns which may be constructed by pattern procedures. ARD
is equivalent to the value of the expression ARBNO(LEN(1)):
REM is equivalent to the value of the expression RTAB (0) .
The Snobol system can and does distinguish between APB and
ARBNO (LEN(1)), or between REM and RTAZ(0}; an IDENT ()
comparison of such a pair will fail, and PROTOTYPE() will
return different prototype strings for them. But the
performance of either member of a pair in a pattern-matching
statement is exactly the sane.

BAL. BAL has as its initial value a pattern which
matches any non-null string of characters which is
"balanced" with respect to parentheses —— that is, which has
the same number of left and right parentheses, including
none, where each left parenthesis occurs before its matching
right parenthesis. A pattern equivalent to the initial value
of BAL can be constructed in Snobol, thus providing a
precise definition of its action:

BALEXP = NOTANY(*'()') | ' (' ARBNO{*BALEXP) ')°*
BAL = BALEXF ARENO(BALEXP)

Again, the system distinguishes betvween the predefined BAL
and the pattern constructed by the rules above, but the two
would perform in the same way in a pattern match.

FAIL. FAIL has as its initial value a pattern which
matches no strirgs (not even the null value), and which thus
always fails. This makes it the "empty" pattern alternative
~— cne which may be present in any pattern without altering
the set of strings matched. The exrressions FAIL | LPAT and
LPAT will match ¢the same set cf strings, no matter what
pattern is the value of LPAT. A pattern which would have the

B. Summary of Predefined Pattern Variables 151

same effect could be constructed by the rule
FAIL = ANY(NULL)
One use for the empty pattern alternative is to
construct an alternated pattern from data. For instance,

with the statements

IN.PAT
PATLOOP TIN.PAT

FATL
IN.PAT | TRIM(INPUT) ¢ "S(PATLOOP)

Here the loop statement extends the alternatives of TIN.PAT
by one more each time it is successfully executed. If the
data read were the first three letters of the Greek alphabet
spelled out on cards, followed by failure of INPU™, then the
resulting pattern would be equivalent to

IN.PAT = FAIL | 'ALPHA' | 'BETA' | 'YGAMMA'
which matches the same set of strings as does
IN.PAT = 'ALPHA' | 'BETA' | *'GAMMA?

Note that if IN.PAT had not Lkeen first assigned the value
FAIL, the resulting pattern would have been equivalent to

IN.PAT = NULL | *ALPHA' | 'BETA' | 'GAMMA?

which is rather different —— since it will match the null
value (as its first alternative, in fact), it will always
succeed.

AEORT. ABCRT has as its initial value a pattern which
causes immediate failure of an entire pattern match when it
is encountered. The usefulness of ABORT is that it permits a
pattern match to fail if something is found. For instance,

SH.PAT = LEN(10) ABORT | ':?

is a pattern which will fail by ABORT if it is set to search
a string of ten or more characters; shorter strings it will
search for a colon. It will succeed, then, only on a string
of nine or fewer characters concaining a colon. More
generally, patterns which have characteristics p but not q
can often he written in the form g ABORT | p .

FENCE. The initial value of PENCF is a pattern which
has the folloving interesting property: when encountered in
a pattern match it matches the null value, and then if the
remainder of the pattern cannot he succesfully matched from

B. Ssummary of Predefined Pattern Variables 152

that pcint, the match will fail. A pattern which would have
the same effect could be constructed by the rule

FENCE = NULL | ABORT

When FFNCE is used as the first element of a pattern,
its effect is like writing pPOS(0); it "anchors" the pattern
so that it must match beginning with the first character.
when FENCE is used after other pattern elements, then its
. effect is that of a conditicnal "anchor" applying only to
the remainder of the pattern, and only if the elements to
the 1left of TFENCE within 1its alternative have been
successfully matched.

Operator

unary
unary
unary

binary
binary

binary
binary

unary
unary

binary
binary

binary

binary

e *»

N O* w9 .

I +

Appendix C.

deferred evaluation
name
indirect reference

conditional assignment
immediate assignment

multiplication
divisicn

Plus
minus

additicn
subtraction

concatenation

alternaticn

SUMMARY OF OPERATORS

Precedence

(highest)

(lowest)

154

Appendix D. SUMMARY CF PFOCEDURE EXECUTION

When a call is made to a programmer-defined procedure:
(1) the arguments are evaluated; (2) the variable name which
is the same as the procedure neme is made to refer to an
internal "result variable"; (3) the formal variable names
are made to refer to internal "formal variables"; {4y any
additional names in the first arqument of the DEFINE()
procedure are made to refer to additional internal
variables; (5) the fermal variables are assigned the values
of their corresponding arquments; (6) the result variable
and all additional internal variatles are assigned the null
value; (7) control passes to the statement of the procednure
body whose label is specified by the second argument of the
DEFINE{) procedure (this may be exrressed by default) ; (8)
execution of the statements of the procedure body continues
until a return transfer is executed.

when return is made from a procedure using RETURN: "M
the 1last value assigned to the result variable is returned
as the value of the procedure call; (2) the variables
previously referred to by the formal variable names, the
result variable name, and any additional internal variable
napzes, are restored; (3) execution of the calling statement
continues from the point of the procedure call.

When return is made from a prccedure using NRETURN: the
variable nzmed by the last value assigned to the result
variable (which must be a string or a Name) is returned as
the value of the procedure call; the remaining actions are
the same as for RFETURN.

When return is made from a procedure using FRETURN: (1)
the variables previcusly referred to by the formal variable
names, the result varialle name, and any additional internal
variable names are restored; (2) the call fails, the rule
from which the call was made fails, and control is returned
to the gqo-to of the «calling statement where the failure
transfer will te taken.

155

Appendix H. EROGRAM TEXT REPRESENTATION

Each statement of a Snobol prcgram is usually punched
on a separate 80 column card. Only the first 72 colunmns,
however, may te used for the statement; the remaining
columns may be used for purposes of identification., (For
examprle, sequence numbers may be punched there which would
allcw you to put the deck back in order, either by hand or
. with a mechanical sorter, if the cards should be
- disarranged.) All columns of the card appear in the printeq
listing of the program when it is executed, but 10 spaces
are provided between <coclumns 72 and 73 to Separate any
identification from the statement.

Statement Format. If the 1label of a statement is
present it must be punched starting in colnmn 1. If the
label is absent and the rule is present, then column 1 nmust
be left empty and the rule may be punched beginning in
column 2 or teyond. If the statement consists only of a gqgo-
to, the colen introducing it may be punched in column 1.

Wherever a single blank occurs in a statement, any
nunter of blanks would serve as well: wherever many blanks
cccur, a single blank would serve as well. Since all parts
of a statement may te absent, a totally bhlank card is
treated as a null statement.

The semicclon may be used as a delimiter hetween
statements, making it possitle to punch more than one
statement per card. The semicolon signals the end of a
statement, so0 the column directly after the semicolon is
treated as "column 1" of the following statement. For
example, four assignment statements. may be punched on a
single card as follows:

ONE = 1; THC = 2; THREE = 3;LAST FOUR = 4

Note that the final statement of the sequence has a 1label,
while the others do not. A semicolon is assumed at the ond
of a card which is not followed by a continuation card.

Continuaticn_Cards. More commcnly, a method is needed
for dealing with statements which are too long rather than
too short. Statements which are toc long to fit on a single
card may be continued onto as many cards as necessary. This
is done by means of continuation cards, each of which has
either a plus sign or a period punched in column 1,
indicating that 1its information is a continuation of
vhatever appeared on the foregoing card. Statements may bhe
broken anywhere; a hlank is never assumed at the break.

H. Program Text Representation 156

Ccmment Cards. Comments may be introduced into the
program with the use of ccmment cards, which are
distinquished by having an asterisk in column 1, and any
other information in the remaining columns. Comment cards
may appear anywhere within the program deck except directly
before a contiruation card. Comments themselves may not be
continued by placing a plus sign or a period in column 1.

Listing Control Cards. A card with a minus sign in
-~ column 1 is a 1listing contrcl card, used to specify the
format of the listing which is produced by the compiler. The
word appearing after the minus sign specifies what is to be
done to the listing, as followvs:

-SPACE Leave a blank line in the listing.

-EJECT Print the next statement of the compiler
listing at the top of a new page.

-UNLIST Stop printing the statements of the progranm
text until a 1listing control card specifying LIST is
encountered.

-1LIST Resune printing the program text.

Listing ccntrol cards, like comment cards, may appear
anywhere within the program deck except directly before a
continuation card.

Extended_Syntax_of _Snobol Statements. 1In addition to
the forms used for them in example progran texts, certain
language elements have alternative representations.

Array Prototypes. Instead of colons in the argument of
the RRRAY () procedure, slashes may be used. The rules

LIST ARRAY ('0:2,0:3")

and

LIST ARRAY (*0/2,0/3")

would assign identically-dimensioned arrays as the value of
LIST. The PROTOTYPE() procedure returns colons in its
cancnical version of the prototype string, regardless of
which character was used in the argument of ARRAY().

Item References. Instead of 1left and right brackets
around the selector of an item reference, a combination of
parentheses and adjacent slashes may be used. For example,
LIST[2,3) and LIST(/2,3/) are alternative ways of writing
the same item reference.

H. Program Text Representation 157

Go-to Parts. Rather than a colon to introduce a gqgo-to
part, a slash may be used; but a slash used for this purpose
must not be followed by a blank. Thus,

VOWELS = TRIM(INDPUT) ¢ TF{ERROR)
and
VOWELS = TRIM(INPUT) /F (ERROR)

are equivalent statements.

Instead of left and right brackets in direct go-to's
{used cnly in cennecticon with ohjects of datatype Code), the
rarentheses and adjacent slashes notation may be used, in
the same wvay as for 1item references. Thus, the ¢two
statements

RESULT CCDE (TRIM(INPUT)) : [RESULT)
and

RESULT

CODE (TRIM (INPUT)) : (/RESULT/)
are equivalent, as is
RESULT = CODL {(TRIM(INPUT)) /{/RESULT/)

Pattern Alternations. The alternation operator may he
written as twé adjacent slashes, bounded by blanks, instead
of the usual single character. Thus, X | Y and X // Y may be
written with the same effect.

String Literals, Within string literals, all characters
other than the quotation mark (single or double) being used
as the delimiter of that literal may be useda freely. The
delimiter character may occur within the string only in
rFairs, and each such pair will be taken to represent a
single instance of the <character. For example, the rules
containing a single string literal each

A“w “""ALI.'S[JWELL"""
and

Aww

"UALLY 'SaWELL"!

are equivalent to the rule containing a concatenation of
three string literals

AWW - "‘IALL' "neuw 'SUHELL"'

Any cne of them would assiqgn to AWW the 12-character string
WALL'S WELL'",

158

Appendix I. CHARACTER SET REPRESENTATIONS

The Snobcl character set consists of sixty-three
characters: the capital letters A-7, followed by the digits
0-9, followed by the remaining characters in the order

4+ ~% /() $=08, .50 1"+ A"FC>S2

This ordering of the sixty-three characters is called their
standard collating sequence. Fifty-four of these play a part
in the syntax of the lanquage (see Appendix J), and have
equivalents in the reference symbol set used to construct
program texts; the remaining nine characters may occur only
in string literals or in data read frcm input files.

Program texts in examples are shown in symbols from the
reference set. For input each of these must be represented
by a punched card code produced on a keypunch (either model
026 or model 029): for output each will be represented by a
‘character on a line printer. Fach symbol of the reference
set has a single card code, and a single printer
representation. Fach card code and printer representation
corresponds to a sirgle reference synbol, except for one
special case: the blank used to serarate language elements
and the space character (n) used in literal data have the
same card code and printer representation, although they are
differentiated in the reference symbol set for clarity.

The reference symhol set consists of the tventy-six
capital letters, the ten Aigits, and nineteen special
characters. Codes for the letters and digits are produced by
the keys marked with them on both an 026 or an 029 keypunch,
and all have the expected representation on a line printer.

The special characters in the reference symbol set are
shcwn in the accompanying chart. On an 026 keypunch, codes
for the reference symbols are produced by keys marked with
the same symbols where they exist, but six symbols (:3"I[]
have no keys and so they must te multiple-punched. (In
. Snchol expressions—not, ohviously, in literal data——these
six symbols may be avoided by using the extended syntax
described in Appendix H.) On an 029 keypunch, codes for all
but cne of the reference symbols (|) are produced by some
key, tut most of the keys are marked with different synmnbols.
On a line printer, all but three of the reference symbols
(*"|) look like their counterparts in the reference set. The
final nine characters in the <chart are those without
equivalent reference symbols.

I. Character Set Representations

159

Snotol 026 card line printer Snohol 029
symbol key cede character usage key

= = 8-3 = assignment #
{equal)

. . 12-8-3 . condit., assian., .
(period) name, real lit.

' , 0-8-3 . list ,
(comma) separator

: none 8-2 : go-to's, array :
(cclon) prototypes

: none 12-8~7 : statement |
(semicolon) terminator

. ' 8-u ¢ string literal]
(not equal) delimiter

" none 11-8-5 + string literal)
(up arrow) delinmiter

$ 3 11-8-3 $ indirect ref., $
(dollar) immed. assign.

! none 11-0 \ alternation none
(logical cr)

((0-8-u (arqg. lists, 5,
(left paren) expr. grouping

)) 12-8~4) arg. lists, <
(right paren) expr. grouping

{ none e-7 [itew ref., "
(left bracket) direct go-to's

] none 0-8-2] iten ref., 0-8=-2
(right bracket) direct go-to's

- - 11 - negative, -
(minus) subtraction

+ + 12 + positive, 12

{rlus)

addition

I. Character Set Representations

160

Ssnoktol 026 card line printer Snobol 029
symbol key code character usaqge key
* * 11-8-4 * deferred eval., *

(asterisk) multiplication
/ / 0-1 / division | /
{slash)
blank space blank concatenation, space
bar {space) separator bar
n space blank data only space
bar {space) bar
none 0-8-6 = data only >
(identity)
none 0-8-5 > data only -
(right arrow)
none 0-8-7 A data only ?
(lcgical and)
none 11-8-6 + data only H
{down arrow)
none 12-0 < data only none
(less than)
none 11-8-7 > data only -
(greater than)
noné 8-5 < data only !
{less or egqual)
none 12-8-5 > data only (
(greater cr egual) ‘
none 12-8-6 - data only +

(logical not)

10.

1.

Appendix J. SYNTAX OF PROGRAM

<{string literal> ::=
' <string format 1> ' |
" <string format 2> n

<digit string> 2:=
<digit> {
<digit string> <diqit>

<integer literal> ::=
<digit string>

<real literal> ::=
<digit string> . |
. <digit string> |
<digit string> . <digit string>

<literal> ::=
<{string literal> }
<integer literal> |
<{real literal>

<identifier> ::=
<{letter> |
<identifier> <letter> |
<identifier> <diqit>)
<identifier> .

<simple variable> ::=
<identifier>

<subscript list> ::=
<expression> |
<subscript 1list> <,> <expression>

<array item reference> ::=

<simple variable> <[> <subscript list> <P

<procedure identifier> ::=
<identifier>

<arqument list> ::=
<optional expresion> |

<arqument list> <,> <optional expression>

TEXTS

161

J. Syntax of Program Texts ' 162

12. <procedure reference> ::=
<procedure identifier> <(> <argument list> >

13. <variabled> ::=
<¢simple variable> |
$ <primary> |
<array item reference> |
<procedure reference>

- 14, <primary> ::=

<literal> |
<variable> |

. <variable> |

< (> <expression> <)>

15. <factor> ::=
<primary> |
<factord> <blank> **x <krlank> <primary>

16. <multiplying operator> ::=
<tlank> * <blank> |
<blank> / <blank>

17. <term> :

<factor> |
<term> <multiplying operator> <factor>

18, <adding operator> ::=
<tlank> + <blank> |
<blank> - <blank>

19, <sum> ::=
<term> |
+ <tern> |
- <term> |
<sum> <adding operator> <term>

20. <concatenation> ::=
<sum> |
<concatenation> <blank> <sum>

21. <expression> ::=
<concatenation>

22. <deferred patternd> :
* <variable>

Je

23.

24,

25.

26.

28,

29,

30.

31.

32.

Syntax of Program Texts _ 163

<pattern assignment operator> ::=
<blank> $ <blank> |
<blank> . <blank>

<pattern assignment> ::=

<pattern primary> <pattern assignment operator>
<variable>

<pattern primary> ::=
<literal> |

<variable> |

. <variable> |

<deferred pattern> |

<pattern assignment> |

<{> <pattern expressicn> <)>

<pattern factor> ::=
<pattern primary> |
<pattern factor> <blank> ** <blank> <pattern prinmary>

<{pattern term> ::=
<pattern factor> |
<pattern term> <multiplying operator> <{pattern factor>

<pattern sum> ::=
<{pattern term> |
+ <pattern termd> |
- <pattern term> |
<pattern sum> <adding operator> <pattern term>

<pattern concatenation> ::=
<pattern sum> |
<pattern concatenation> <blank> <pattern sum>

<pattern alternation> ::=
<pattern concatenation> |
<pattern alternation> <blank> {]> <blank>
<{pattern concatenation>

<{pattern expression> ::=
<pattern alternation>

<optional expression> ::=
<nulld> |
<pattern expression>

<label> ::=
<identifier>

J. Syntax of Program Texts 164

4.

35.

36.

37.

38.

39.

uo.
u1.

u2.
u3.

ug,

<label part> ::=
<null> |
<label>

<right side> ::=
<=> <opticnal expressiond>

<rule partd> ::=
<null> |
<blank> <primary> |
<blank> <primary> <blank> <pattern expression> |
¢blank> <variable> <right side> |
<blank> <variable> <blank> <pattern expression>
<right side>

¢loc> ::= <location expression> ::=
< (> <latel> > |
<(> $ <primary> <)> |
<[> <expression> <>

<go-to part> ::=
<null> |
<:> <loc> |
<:> S <loc> |
<:> P <loc> |
¢:> § <loc> <optional blank> F Qoc> |
<:> F <loc> <opticnal blank> S <loc>
{statement> ::=
<label part> <rule part> <go-to part>

<program text> z::=
<{statement> |
<program text> <3> {statement>

{letter> ::=
A | By C | DI E} P11 G| HI T {3} K| L M
N{1O] PlLOIRISITI g}l vVyIwiIXtY\|z
<digit> ::=
0111 21 31 4 S 161 71 81 9
<hlank> ::=
o | <blank> n

<null>
<blank>

<optional blank> ::=
|

J.

45.

ue.

u7v.

53.

Su.

55.
56.
57.

58.

Syntax of Program Texts

<string format 1> ::=
<null> |
<string format 1> <class 1

<class 1 character> ::=
<any character except > |

2> 3=
|

<class 2 characterd s::=
<any character except "> |

<(> ::= (<optional blank>

<)> ::= <optional blank>)

{[> ::={ <optional blank> |
(/ <optional blank>

<]> ::= <optional blank> 7] |

<optional blank>)

<I> ::= <the character |> | //

ing format 2> <class 2

character>

10

character>

<:> ::= <optional klank> : <optional bhlank> |

<optional blank> /

<,> ::= <optional blank> , <optional blank>

<=> ::7 <op£iona1 blank>

]

<:> ::= <optional blank>

-e

<ofgtional blank>

165

166

Appendix K. SUMMARY OF CCMPTILIF-TIME ERROR MESSAGES

Pach statement which 1is syntactically incorrect |is
marked in the program 1listing by an up arrow which is
printed benrath its statement number along with the message
ERRCR. It 1is planned that in the future a specific message
for each particular type of syntactic error will be
provided.

167

Appendix L. SUMMARY OF EXECUTION-TIME ERROR MESSAGES

When an error is detected during the execution of a
Snobol program, the Snobol intergreter writes a message on
the output file and then ceases execution. The messaqge
ccnsists of three parts: (1) the identifying number of the
statement being executed when the error was detected (each
statement of the program text is given a number by the
compiler, and these numbers appear at the left of the
statements in the compiler listing of the program text); (2)
the level of procedure executicn at the time the error was
detected (the same information which would be returned by
the predefined procedure FNCLEVEL ()): (3) one of the error
messages from the list below, specifying which of the fifty-
two possible errors was detected.

Scme of the messages in the fcllowing 1list are self-
exglanatory. Notes have been added to many nmessages
amplifying them, or explaining terminology which differs
from that used in this description of Snobol, or
reccnmnending page numbers and sections where further
information relevant to the interpretation of the message
can be found.

THE LEPT OPERAND FOR A PATTERN MATCH MUST BE A STRING.

TEE RIGHT OPERAND FOR A PATTERN MATCH MUST BE A
PATTFRN.

PATTERN MATCH WITH REPLACEMENT REQUIRES STRING-VALUED
RIGHT HAND SIDE.

TRANSFER TO AN UNDEFTINED LABEI. A go-to specifies a
transfer to a label which 1is not present in the program
text, and which is not RETURN, FRETURN, NRETURN, or END,.

A FAILURE OCCURRED IN THE FVALUATION OF THE GO-TO
PART. Conditions which would cause failure in the rule
part of a statement cause an error in the go-to part (see
page 6R).

TYPE FRROR IN GO~TO PART. Either the operani of an
indirect referencing operator in the qo-to is not a string
or a Name (see page 67), or else the valuc of the expression
in a direct go-to is not an object of datatype Code.

FCRBIDDEN OPERAND TYPE FOR ALTERNATION. Operands of
the alternation operator must be of datatype String,
Integer, or Pattern (see page 35). :

L. Suemmary of Execution-time Error Messages 168

TEE DATA TYPE USED MAY ONLY BE CCNCATENATED WITH THE
NULL STRING., strings, TIntegers, and Patterns may be
concatenated freely. An object of any other datatype may be
concatenated only with the null value.

TEF VALUE OF A VARIABLE 1IN A DEFERRED-EVALUATION
PATTFRN (UNARY *¥) MUST BE A PATTERN OR STRING. See the
description of the deferred evaluation operator, page 50.

LEFT OPERAND FOR RINARY $§ ANLC . MOgsST BE A DPATTERN.
See the descriptions of the immediate and conditional
assignment cperators, rages 38 and u0.

TNDIRFECT RFFERENCE TO THE NULL STRING. The operand of
the indirect referencing operator may not be the null value
(see page 57). :

OPERAND FOR INDIRECTION MUST BE NAME OR STRING. The
operand of the indirect referencing operator must be a
string or a Name (see page 57).

NON-INTFGEER STRING USED 1IN NUMERIC CONTEXT. only
strings of datatype Integer — thcse consisting of an
optiocnal sign followed by an optional string of digits -—-
may te used vhere Integers are expected.

TYPE ERROR IN NUMERIC CONTEXT. An object of either
datatyge Integer or Real was expected, but an object of some
other datatype occurred.

DIVISTON BY ZERO WAS ATTEMPTED.

STRING ARITHMETIC NOT YET IMPLEMENTED. ‘Integers nay
have values of magnitudes as large as 101300002, but the
arithmetic operations are defined only for integers of
magnitudes less than 1010, Tt is intended that the
arithmetic operations should ke extended to 1integers as
large as can be represented, by performing "string
arithmetic" on the digit strings of which they are composed.

REAT ARITHMWTTC OVERFLOW. A real number larger than
can te represented has heen produced {about 10300).

MIXED MODES (INTRGER, REAL) FCR ARITHMETTC OPERATION.
The operands of arithmetic operators (and the arguments of
predefined arithmetic test procedures) nust be of the same
datatype. If operands of Aifferent datatypes are to be
operated upon, one must first be converted (see the
description of CONVERT() in Appendix A, section II.C).

L. Summary of Execution-time Error Messages 169

WRONG PARAMETFR TYPE FOR STANDARD PROCEDURE. An
arqument of a predefined procedure is of an incorrect
datatype. Permissible datatypes of arquments for all
predefined procedures are given in Appendix A.

ARGUMENT FOR LEN, POS, RPCS, TAB, OR RTAB MOST BE IN

THE INTERVAL [O0,2*%*17-1], The integer arguments to these

five predefined pattern procedures must be non-negative, and
nust be less than 131,072.

SYNTAX ERROR IN STRING TO BE COMPILED. An arqument
string for the CODE() procedure is 1incorrect; see the
description of CODE() in Appendix A, section IT.C, and the
Syntax cf Program Texts in Appendix J.

INCORRECT SYNTAX FOR STRING TC BE CONVERTFED TO REAL.
See the description of CONVERT() in Appendix A, section
II.C.

TMPROPFR ARGUMENT POR PSEUDC-FIELD FUNCTTON (FIRST,
REST, LEFT, RIGHT, PARAM, FAMILY, OR SFELECTOR). The
arguments of the predefined field selection procedures
PRRAM(), FIRST(), RFESI(), LEFT(), RIGHT(), FAMTLY(), and
SELECTOR () are quite specialized; see the descriptions of
these procedures in Appendix A, section I.C.

CALL OF AN UWDEFINED PROCEDURE. The DEFINE ()
declaration fcr a preogrammer-defined procedure must be
executed before it can te invoked (see page 72).

SYNTAX ERROR IN PROCEDURE PROTOTYPE. There is an
errcr in the form of the string which is the first arqument
of the DEFINE() procedure (see page 72).

RETURN FROM LEVEL ZERO. A transfer to RETURN,‘
FRETURN, or NRETURN has bheen executed in a main program (see
page 87).

AN -NRETURN- WAS EXPECTED FROF THE PROCEDURE CALLED.
A rprocedure call occurs where a variable is required, but
the procedure does nct return by NRETURN See the
description of NRFTURN, page 90.

M PROCEDURF RETURNING RY -NRETURN- MIUST SUPPLY A NAMR
AS ITS VALUFE, When a proceduroe returns by NRETURN, the
value of the result variable must he a string or an obiect
of. datatype Name; see the description of NRETIIRN, page 90.

VARIABLE TO THE LEFT OF A [DOES NOT CONTAIN AN
ARRAY. The value of the family part of an item reference

L. Summary of Execution-time Error Messages 170

is not of datatype Array. See the description of iten
references, page 101.

TO0 MANY SUBSCRIPTS IN AN ARRAY REFFERENCE. There are
more index expressicns in the selector of an item reference
than there are dimensions defined for the family being
indexed. See pages 106 and 109.

TOO FEW SUBSCRIPTS IN AN ARRAY REFERENCE., There are
fewer index expressions in the selector of an item reference
than there are dimensions defined for the family being
indexed. See pages 106 and 109.

TILLFGAL CHARARCTER IN ARRAY PROTOTYPE. See the
description of the argument for the ARRAY() procedure, page
104, ¢ : '

SYNTAX ERROR IN ARRAY PROTOTYPE. See page 104.

LOWER BOUND GREATER THAN OUPPER BOUND IN ARRAY
PROTOTYPE. See page 104.

AN ARRAY BOUND WAS TOO LAKGE. An expression for an
ugper or lower bound in an Array prototype was greater in
pmagnitude than 131,071,

AN ARR2ZY DIMENSICN W®RAS TOO LARGE. The difference
tetween any pair c¢f upper and lcwer bounds was greater in
magnitude thkan 131,071,

AN ARRAY MUST CCNTAIN FEWER THAN 2%%17 ELEMENTS., A
prototyge string for the ARRAY() ¢procedure specifies an
array containing more than 131,071 itenms.

SYNTAX FERROR TIN SELECTCR FOR ITEM() . See the
~description of the ITEM() procedure, page 108.

SYNTAX FRROR IN DATA PROTOTYPE, See the description
of the arqument of the DATA() procedure in Appendix A,
section II.A.

DUPLICATE NAMES IN DATA PROTOTYPE. Two fields defined
for cbjects of a single Adatatype may not have the same name,
nor may a field name be the same as the datatype —
otherwise all the necessary procedures could not exist
simultaneously. See the descrigtion of DATA() in Appendix A,
section II.R.

CATA CONSTPRUCTOR CANNCT SOUPILY A NAME. Structure
creation procedures, predefined or programmer-def ined, do

L. Summary of Execution-time Error Messages 171

not return Names, but rather otjects of datatype Array or of
a prcgrammer-defined datatype, respectively.

THE PARAMETER FOR A FIELD FUNCTION WAS NOT A DATA
REFERENCE. The argument of a prograrner-defined fielA
selection procedure was not an object of a programmer-
defined datatype.

NO SUCH PIFLD IN THE REFERENCED DATA STRUCTURE. The
structure which is the argqument of a programmer-defined
field selection procedure does not contain a field

identified by that procedure nanme.

FILE SPFCIFIED TO TI/0 PROCEDURE MUST BE CURRENTLY
ATTACHED. = The filesets named by the arguments of
ENDGROUP(),. REWIND(), GEORLEVEL(), and EOI() must be
currently associated with some variable (see Appendix &,
section II.D).

ILLEGAL PILENAME GIVEN TO T/0 ASSOCTIATION PROCFEDIRE.
A legal SCOPE fileset name 1is a string of one to seven
letters and digits, beginning with a letter (see Appendix A,
secticn IT.D).

ATTEMPT TO READ FAST END-OF-~INFORMATION. See the
descriptions of FORLEVEL() and EOI() in Appendix A, section
II.DO '

STRING TO BE DISPLAYED WAS LCNCGCER THAN B0 CHARACTERS.
The string which is the argument to the RFMARK() procedure
must contain 80 or fewer characters.

‘ ONLY STRINGS MAY BE QUTPUT. A value of a datatype
other than String or Integer was assigned to a variable
which currently has an output association.

TH® MAXTMUM FIELD LENGTH HRAS BEEN‘ EXCFEDED. The
program requires more storage to execute than vas requested.

THE MAXIMUM STRING LENGTH HAS BREN EXCEEDED. See the
description of MAXLNGTH() in Appendix A, section II.B.

TEE STATEMENT LIMIT HAS BEFN EXCEEDED. See the
description of STLIMIT() in Appendix A, section IT.R.

COMPILER STACK OVERPLOW, SIMPLIFY THE CONSTRUCTION. A
storage area for intermediate results in the Snobol compiler
has been exhausted. The statement should be rewritten as two
or more statements, since it contains too many levels of
nested parentheses.

172

Appendix M. Non-standard Features of Berkeley Snobol

The initial design and implementation of Snobold4 wvas
done at Bell Telephone Lahoratories for IRM System 260
machines. The 1latsst versicn of this implementation is
descrited in The__SNOROLU4__Proaramming__Language by R. E.
Griswold, J. F. Poage, and I. P. Polonsky (second edition,
Prentice-Hall, 1971). This book contains many interesting
examples and should be of use to all serious Snohol
programmers, even those who are working with non-standard
implementations for different machines.

The implementation described here was produced at the
Computer Center of the University of California at Berkeley
by Paul McJones and Charles Simonyi for CDC 6000 series
machines. The languaqge they implemented, which we shall call
the Berkeley version, is non-standard since it differs from
t+he Bell version in three basic ways: some features of the
lanqguage are handled differently, sone features are absent,
and scme new features not present in the Bell version are
provided. This appendix describes the differences between
the Bell version and the Berkeley version, presenting the
information in terms of these three types of differences. It
is prcvided to make this more comprehensible description of
the Snobol lanquage useful to those writing programs in the
8ell version, and4 to specify which parts of the Bell
documentation are useful for those writing programs in the
Berkeley versicn of the language.

Cuite apart from differences ftetween the two versions
of the Snobol language, there are some differences in
terrinclogy between the documentation of Griswold, Poage,
and Polonsky, and the present description. The pairs of
terms in the following table are equivalent, and represent
Aifferences in the descriptions only, not in the language
vercsicns described.

Bell description this_description
prigitive predefined

defined programmer-defined
functicn procedure

predicate test procedure

value cf function name value of result variable
forral arqument formal variable

local variable internal variable
function procedure procedure bhody

entry point antry label

M. Non-standard Features 173

Bell Aescription this _description
explicit name string nanme

created name Name

implicit nanme Name

generated variable indirect reference
aggregate family

referencing argument selector

array element array item

array reference iten reference

field functicn field selecticn procedure
source program program text
statement component statement part
subject (assignment) left side

subject (pattern match) string reference
cbject right side
compilation error compile~-time error
program error execution-time error

I. Features_which _are Handled Differently

Procedure In the Bell versicn, it is an- execution-
time error call a predefined procedure with nmore
arguments than its definition prescribes:; in the Berkeleny
version, extra arguments to all prccedures are evaluated but
otherwise ignored.

S.
to

Since the character sets of IBM System 360 machirnes and
CDC 6000 series machines are different, the ALPHADRET ()
procedure, which returns a string specifying the character
set in standard collating sequence, necessarily returns a
different string in the two versions. (This procedure exists
as a keyword in the Bell versicn.)

Since the Bell system uses FORTRAN IV I/0, and the
Berkeley system does its own I/0, the INPYT() and OUTPUT ()
prccedures require quite different sorts of arquments.

The ARRAY () procedure has two arquments in the Bell
version, the =second specifying an initial value to be
assigned to all items of an array. In the Berkeley version,
the ARRAY() procedure has one argument only; all items are
initialized to the null value.

Since numeric strings are of datatype TInteqer in the
Berkeley version, IDENT('i1',1) succeeds while in the Bell
version it fails. In the BRell version, pattorns aroe
considered identical only if they are indeed the sanme

M. Ncn-standard Features . 174

rattern. Thus

X {
Y |
IDERT (X,Y)

B
)

>t P o

fails since two different copies of the pattern are being
ccmpared., In the Berkeley version this comparison would
succeed, since patterns vith the sanme structure are
concidered identical. IDENT (. VAR, 'VAR') fails in the
Berkeley version while it succeeds in Bell ovina to the
different implerentations of the Name operator (described in
the secticn on operators below).

The CODE() procedure in the Rerkeley version does not
allcw labels to be redefined; consequently the labels of the
statements which are to Dbe added to the progranm during
execntion nust be dAifferent from any existing labels of the
progranm.

The Bell version provides more datatypes than does the
Berkeley version and much more flexibility about converting
from one datatype to ancther. In the Bell version, the
CONVERT () procedure which is used for this purpose has tvo
arqgurents; the second argument specifies the datatype to
which the first arqument is to be converted. In the Berkeley
version the CONVERT() procedure has only one argument since
only a limited xind of conversion is available. Tf the
single argument of CONVERT{() 1is a nuneral string or an
integer, it is converted into a real number; if the single
arqument is a real number, it is ccnverted into a string.

operators. The interrogation ofperator (?) has been
implemented as the IF() procedure (see Appendix R, section

I1.QC).

The unary operator * is called in the Bell version the
unevaluated expressicn operatot, and expressions introduced
ty it are of datatype Expression. This operator is defined
more narrowly in the Berkeley version. It is called the
deferred evalnation cperator, and may be applied to simple
variables only; thus *EQ (X,Y) causes an execution-time
error. The datatype Fxpression is not defined in the
Berkeley versicn; expressions introduced by the deferred
evaluation operator are of datatype Pattern. Hence LEN{*V)
causes an execution-time error since the argument of LEN()
cannot be a Pattern.

In the Bell version when the name operator is applied
to a natural variable it returns an object of datatype

M. Non-standard Features 175

String, but when applied to a created variable it returns an
object of datatype Name. In the Eerkeley version, the name
operator always returns an object cf datatype Name.

In the Bell version the multiplication operator has
higher precedence than the division operator; in the
Berkeley version the precedence is the sanme.

Keywords. There are no keywords in the Berkeley version
(and hence no keyword operator). Some of the Bell keywords
assume the form of procedures; these are listed in the table

belcw,

Bell version Berkeley version

&EALEHABET ALPHABET ()
EANCHOR ANCHOR ()
EFNCLEVEL FNCLEVEL ()
&§MAXLNGTH MAXLNGTH ()
ESTCOUNT STCOUNT ()
ESTLTMIT STLIMIT()

These procedures are described in Appendix A, section II.

Datatypes. In the Berkeley version, numeric strings are
of datatype TInteqer. Numeric strings may have an initial
sign and hence the single characters *¢' and '-' in
isclation have the datatype Integer and have the value zero
when used in arithmetic contexts. Correspondingly, the null
value is of datatype Tnteger. In the Bell version, the null
value is called the null string and is of datatype String.

system_ Transfers. TIn the PRerkeley version, PFETURN,
FRETORN, NRETURN, and END are treated as system transfers,
having the same predefined meanings as in Bell. They may bhe
used as any other latels in the program text, however, in
which case the special system meaning is lost.

Qutput. Cbjects of datatype other than String or
Integer cannot be printed in the Berkeley version, and an
attempt to print such a value results in an execution-time
error. In the Rell version an attempt to print such a value
results in the printing of a string designating the datatype

of the value.

Assigning the variable OUTPUT a value of more than 132
characters in the Berkeley version results in only the first
132 being printed (a single line): in the Rell version, as
many lines as necessary are printed,

M. YXon-standard Features 176

Program_Representation. There are a number of small
differences 1in the way that prcqrams may be represented;
most ccnsist of extra cptional features which have been
added to the Berkeley version.

In the Berkeley version, the assignment siqgn (=) need
not te bounded by blanks; similarly, the colon introducina a
go-to need not be preceded by a blank.

In the Berkeley version, the quote sigqn used as a
literal delimiter may appear within that literal in pairs:
each pair is then treated as representing a single quote.
Thus 'CON''T' may be used to represent the string DON'T.

In the Berkeley version, statements continued over line
boundaries may be broken anywhere; a blank is never assuned
at the point of the treak. Tn the Rell versioa, statements
may ke broken only where a blank is required.

In the Berkeley version, real literals need not bheqgin

with digits (that is, they may begin with an initial decimal
pcinty .

ITn the Berkeley version it is not necessary to
terminate a program text with a statement labelled END as it
igs in the Bell version. The programn may terminate by taking
a transfer to END, if no END label is present. END may be
used as a label in a progranm text 1in which case it then
loses 1its system significance, and a program containing an
END lalel can terminate only by running out of program text;
this is not an error as it is in Bell (see Chapter 3). TIn
the Berkeley version it is not possible to specify by use of
an FND statement which statement of the program is to he
executed first; execution alwvays begins with the first
statement of the program text.

Alternative characters may be used in the Berkeley
version to represent some of those which must otherwise be
multiple punched on an 026 keypunch. Thus the go-to wmay he
jntrcduced by either a colon (:) or a slash (/). (If the .
clach is used it must not be followed by any blanks as it
might then be indistinguishable from the binary division
operator.) The colon used as a delimiter between the upper
and 1lower bounds of an index in fcrming the prototype of an
array may also ke represented by a slash. The alternation
operator (|) may be represented by two slashes (//) and the
square brackets of an item reference may be represanted by
(# for an open bracket and /) for a close bracket. The Bell
version does not provide any of thase particular options,
but has a different extended syntax to take advantage of

M. Non-standard Features 177

special characters available on the IBM 360: 1lower case
letters are also available.

Tte representation of 1latels is freer in the Bell
version than in the Berkeley version. In the Bell version a
label may consist of a letter or a digit followed by any
numker of other characters from the entire character set
except blank. In the Berkeley version a label must be an
identifier; that is, it must begin with a letter and consist
of nothing but letters, numbers, and periods.

The Proqram Listing. In the Berkeley version, columns
72 and 73 of the program text are separated by ten spaces in
the output listing. The statement numbers always appear ¢to
the left of the statements. TIn the Bell version the
statement numbers norrally appear to the right of the
statements, but it is possible tc specify that they appear
to either the left or the right. This is done bhy writing the
terms LEFT or RIGHT following the listing directive LIST;
the, default option is RIGHT. There is no way to specify that
the statements should be numbered to the right in the
Berkeley version.

In the Berkeley version the listing directive SPACE has
been added tc cause one blank line to appear in the listing.

II. Features_Absent from_the_Berkeley Version

Procedures. The fcllowing procedures are available 1in
the Bell version but not in the Berkeley version. Unless
othervwise indicated, their actions cannot be simulated.

ARG () returns the name of the n-th arqument in the
declaration of a programmer-defined procedure.

BACKSPACE () backspaces a file one logical record.

CLERR () causes all natural variables to be assigned the
null value, This procedure can be written in Berkeley Snobol
using NEXTVAR().

CCLLFCT() forces a storaqe' reqgeneration. {Not. needed
since storage reqeneration occurs automatically.) '

COPY () produces a copy of an array or a data structure.
Tt can be written in PRerkeley Snobcl using ITFM() for arrays
(see Chapter 7), and AEPLY() for data structures.

4. Non-standard Features 178

DUMP () produces an unalphabetized list of all non-null
natural variatles and their values. Tt can be written in
Berkeley Snobol using NEXTVAR().

DUPL() returns a string consisting of n duplications of
one of its arjuments. Tt is virtually the same as the
prcgrammer~defined procedure REPEAT() given in Chapter 6.

BYAL() returns the result of evaluating a string which
is a Snobol expressicn or an chiject of datatype Fxpression.

FIELD () returns the name of the n-th field in the
declaration of a programnmer-defined datatype. It can be
written in Berkeley Snchol, because the Berkeley PROTOTYPT ()
proccedure mnay be applied to structures (see Appendix &},
Section ITI.R).

INTEGER() succeeds if its argument is an integer. It
can be easily written as

IDENT {DATATYPE (ARG) ,*INTEGER')

(In the same way, any other test procedure for testina
datatyres may be written.)

LOAD () causes an external function to be 1loaded from
the litrary during execution.

LOCAL () returns the name of the n-th local (internal)
variakle of a programmer-defined procedure.

OPSYN () allows the programmer to specify synonyms for
procedures or operators. Thus the same procedure may bhe
referred to by more than one name and the sane operator by
more than one symbol. In addition, operators and procedures
may be made synonymous; thus this procedure makes possible
the definition of new operators.

REMDR () returns the integer rerainder of diviling its
first argument by its second. This can be written in Snobol .
as a proqrammer-defined procedure erploying nothing but
arithmetic operators.

REPLACE() returns a string in which every character of
one argument has been replaced by a corresponding character
of another arqument. It can be written as a programmer-
defined procedure in Snobol.

STOPTR() cancels the tracirnq of the variable named by
its argunment.

M. Ncn-standard Features 170

TABLE() creates a family of variables, similar ¢to a
one-dimensional array except that individual variables may
be selected in terms of any data object, not just integers.
This datatype 1is not defined in the Berkeley version, but
table-like structures can ke formed using indirect
referencing if the selector is a string,

TRACE() initiates tracing of the variabhle named by its
arqument.

ONLOAD () causes the unloading of an external 1library
functicn which is no longer needed.

VALUE() has the same effect as the indirect referencing
operatcr when applied to a Strinag or a Name, but if VALUE
has been defined to be a field of a structure, then it may
have an arqument of that datatype as well. :

Operators. The following operators are not available:
negation ()
cursor position (@)
exponentiation (%)

The negation operator fails if 1its operand succeeds,
and succeeds if its operand fails. (Its counterpart, the
interrogation operator (?), which always succeeds, has been
imglemented as the IF() procedure.)

The cursor position operator has a variable as its
operand and 1is used within the pattern part of a rule. The
variable is assigned, by immediate assignment, an integer
representing the position of the cursor when pattern
matching occurs. Thus

*ABC' 'B' Q@PFCINTER

causes POINTER to be assigned successively the values
0 and 1.

Keywords. The Berkeley version of Snobol <contains no
keywords. Some keywords have teen irplemented as predefined
Frocedures, as indicated in Section T of this appendix; the
remaining keywords, listed below, cannot be simulated,
although sometimes a similar effect may be achieved throuqh
other means. Those whose values are protected (i.e., cannot
te changed directly by the programmer) are marked with an

asterisk.

M. Non-standard Features 180

EABEND is used to specify whether or not a system core
dump is to be printed at progran termination.

£ABORT has the same value as that of the predefined
pattern ABORT. (%)

£ARB has the same value as that of the predefined
pattern ARB. (*)

&BAL has the same value as that of the predefined
pattern BAL. (*)

£CODE can be assigned an integer which will be returned
to the operating system as the user conpletion code at
progran termination.

EDUMP is used to specify whether or not a dump of the
natural variables is to be printed at progranm termination.

SFRRLIMIT has a value which ccntrols the handling of
certain projram errors.

EERRTYPE acquires an integer code jdentifying the type
of any program error which may occur. (*)

£FAIL has the same value as that of the predefined
rattern PAIL. (*)

SFENCE has the same value as that of the predefined
pattern FENCE. (*)

EFTRACE is used to specify whether or not diagnostic
tracing information is to be provided on calls to and
returns from all programmer-defined procedures.

EFULLSCAN is used to specify whether or not the
fullscan mode of pattern matching (in which no heuristics
are employed) is to he used.

EINPUT is used to specify whether or not any input 1is
to cccur.

§LASTNO acquires as its value an integer specifying the
statement number of the previous statement executed. (*)

; ECUTPUT is used to specify whether or not any output is
to occur.

M. Ncn-standard Features . 181

&REM has the same value as that of the predefined
pattern REM, (%)

ERTNTYPE acquires as value the string RPETURN, FRETURN,
or NRETURN, depending on the type cf return made by the last
programmer-defined procedure which returned. (%)

ESTFCOUNT acquires as value an integer specifying how
many statements have failed. (%)

&STNO acquires as value an integer specifying the
statement number of the statement currently being executed.

ESOCCFED has the same value as that of the predefined
pattern SUCCFED. (%)

ETRACE is used to specify whether or not tracing is to
cccur.

ETRIM is used to specify vhether or not all trailing
blarks are to be trimmed on input.

Pattern__Variables, The predefined pattecrn variable

SUCCEED, which alvays matches the null value (and which has
very limited practical application) is not available.

Datatypes. The following datatypes do not exist in the
Berkeley version:

Table (see the description of the TABLE() procedure
akove)

Expression (see the. description of deferred
evaluation in section I of this appendix)

External, which refers to external library functions
(see the description of the LOAD () and DUNLOAD() procedures
abcve).

Pattern _matching. There 1is no quickscan mode of
patfern matching (a mode which makes use of heuristics).
This is the norral mode in the Bell version, while fullscan
is the normal mode in the Berkeley version.

rithmetic, Mixed mode arithmetic or comparisons
A p

(involv1nq integers and real numbers) are not permitted.

Outpnt. The variahle PUNCH has a predefined association

with the punch file in the Bell version; this is not true of
the Berkeley version, but the association can bhe made by

M. Yon-standard Features 182

simply executing the rule
OUTPGT (*PINCH' , "PUNCH?')
The Berkeley version currently provides no compile-time
errcr messages and no program statistics. As 1s indicated by

the foregoing, it also provides no tracing facilities and no
dumg.

IIT. Features not Present_in the Bell Version.

Procedares. The fcllowing predefined procediures have

been added to the Rerkeley version; all are described more
fully in Appendix A.

CLOCK {) returns the 24-hour tine of day {e.7.
17:00:%9). (See Appendix A, section IT.B.)

TYPE () returns the same result as DATATYPE() for
objects of predefined datatyres, and the string DATA for all
objects of programmer-defineda datatypes. (See Appendix A,
secticn 1T7.73.)

ITEM() has been made more flexible and more useful in
the EPBerkelay versicn than it is in the Bell version. It is
described in detail in Chapter 7.

PEOTOTYPE () has been significantly extended so that it
may be aprlied to structures, Patterns, and Names, as vell
as tc Arrays. (See Appendix A, section II.B.)

A number of field selecticn procedures have bean added
for use in conjunction with the systens-defined “nrototypes"
of Patterns and Names which are returned by the PROTOTYPE ()
procedure. The procedures PARAM (), FIPST(), REST{(), LEIT(),
and RTGHT() may be wused to decompose Patterns into the
objects from which they were constructed. ? similar service
for Mames is provided by the procedures RIGHT(), FaMILY{(),
and STL®CTOR{(). (See Appendix 1A, section T.C.)

NEXTVAR() returns the names of all members of any
farily cyclically, treating the set of all non-null natural
variables as a "family." (See hppendix 2, section II.B.)

ABORT, 151
Addition, 19
ALPHABET() , 140
Alternation, 35
ANCHOR() , 43, 145

Anchored pattern
matching, 43, 46

ANY (), 36, 128
APPLY(), 92, 144
ARB, 52, 150
ARBNO(), 46, 130

Arithmetic operators, 153
addition, 19
division, 19
multiplication, 19
negative, 8
positive, 8
subtraction, 19

ARRAY (), 104, 130

Array
creation, 100
dimension, 103
index, 105
item reference, 101,
106
prototype, 110

Assignment
assignment rule, 10
conditional assignment,
38
immediate assignment,
40

Assignment rule, 10

|
0
()

BAL, 150

Binary operators, 16, 153
addition, 19
alternation, 35
concatenation, 17
conditional assignment,

38
division, 19
immediate assignment, 40
multiplication, 19
subtraction, 19

BREAK () , 41, 128

Carriage control, 146

Character set representation,
158

CLOCK() , 140
CODE() , 145
Comment card, 156
Compilation
during execution, 145
of program text, 6

Compiler, 6

Compile-time error messages,
166

Concatenation, 17
with indirect referencing,
60
with null value, 29
within patterns, 39

Conditional assignment, 38

Conditional go-to, 23

" Continuation card, 155

Index

CONVERT () , 145

Created varieble, 101
array item, 101
name of, 116
structure field, 135

DATA() , 135
DATATYPE (), 136
" Datatypes, 126

array, 100

code, 145

integer, &

name, 116

pattern, 49

programmer-defined,

135

real, 19

string, 8
DATE () , 140
Declarations, 135

DATA(), 135

DEFINE(), 135
Deferred evaluation, 50
DEFINE(), 72, 135
DETACH () , 147
DIFFER(), 26, 127

Division, 19

-EJECT, 156
END, 23
ENDGROUP () , 147

EOI(), 148

184

EORLEVEL() , 148

Entry label, 73

EQ(), 28, 127

Error messages
compile-time, 166
execution-time, 167

Evaluation rule, 25

Execution of programs, 6

Execution—-time error
messages, 167

Extended syntax, 156

External variable, 80, 9C

FAIL, 150
Failure
in pattern matching, 33
of input, 24
of item reference, 106
of procedure call, 26, 75
of the rule, 24
FAMILY (), 133
Family, 100, 138, 141
FENCE, 151
Field, 135

Field selection procedure,
135

FIRST(), 131

Flow of control, 21

FNCLEVEL() , 141

Index

Formal variable, 72
FREEZE (), 148

FRETURN, 75

GE(), 28, 127
Go-to
conditional, 23
unconditional, 22
with indirect
referencing, 67

GT(), 28, 127

IDENT(), 26, 127
Identifier form, 9

IF(), 144

Immediate assignment, 40
Indirect referencing, 55

Infinite loop. See Loop,
infinite

INPUT, 13
failure of, 24

INPUT() , 146

Input/output procedures,
146

Integer, 8
Integer literal, 9

Internal variable, 72,
76, 78

Interpreter, 6

185

ITEM(), 108, 143
Item, 101

Item reference, 101

Label, 21
LE(), 28, 127
LEFT(), 132
LEN(), 42, 129
LGT() , 27, 127
-LIST, 156
Listing control card, 156
Loop, 29
infinite. See Infinite

loop

LT(), 28, 127

MAXLNGTH() , 141

Multiplication, 19

Name
of created variable, 101,
116
of natural variable, 9,
56, 101, 116

Name operator, 116
NE(), 28, 127
Negative, 8

NEXTVAR() , 141

Index

NOTANY () , 36, 128
NRETURN, 75, 90, 118
Null value, 11

Numeric string, 8

Omitted argument, 77, 126

- Operators, 16
summary of, 153

OUTPUT, 12

OUTPUT () , 146

PARAM() , 131

Passing of arguments, 77
Pattern matching, 33
Pattern-matching rule, 33
POS (), 46, 129

Positive, 8

Precedence, 153

Predefined pattern
variables, 52, 150

Predefined procedures
summary of, 123
ALPHABET () , 140
ANCHOR(), 43, 145
ANY (), 36, 128
APPLY (), 92, 144
ARBNO(), 46, 130
ARRAY (), 104, 130
BREAK (), 41, 128
CLOCK () , 140
CODE(), 145

186

CONVERT () , 145
DATA(), 135
DATATYPE() , 136
DATE () , 140
DEFINE() , 72, 135
DETACH () , 147
DIFFER(), 26, 127
ENDGROUP() , 147
EOI(), 148
EORLEVEL () , 148
EQ(), 28, 127
FAMILY (), 133
FIRST(), 131
FNCLEVEL() , 141
FREEZE (), 148
GE(), 28, 127
GT(), 28, 127
IDENT (), 26, 127
IF(), 144
INPUT() , 146
ITEM(), 108, 143
LE(), 28, 127
LEFT (), 132
LEN(), 42, 129
LGT(), 27, 127
LT(), 28, 127
MAXLNGTH () , 141
NE(), 28, 127
NEXTVAR(), 141
NOTANY () , 36, 128
OUTPUT() , 146
PARAM() , 131

PoOS (), 46, 129
PROTOTYPE() , 110, 137
REMARK () , 147
REST (), 131
REWIND() , 147
RIGHT(), 132
RPOS (), 46, 130
RTAB (), 44, 129
SELECTOR() , 134
SIZE(), 16, 136
SPAN(), 41, 128
STCOUNT(), 140
STLIMIT(), 141
TAB(), 44, 129
TIME(), 140
TRIM(), 15, 130
TYPE(), 111, 136

Index

Procedure call, 14, 76
argument of, 77
failure of, 26, 75
level of, 87
recursive, 74
side effect of, 84
summary of execution

of, 154

Procedure definition, 70
DEFINE(), 72
entry label, 73
formal variable, 72
internal variable,
72, 76, 78
procedure body, 74
procedure name, 72
result variable, 75

Procedure reference, 14

Procedures, 14, 70
predefined, summary
of, 123
programmer-defined,
70

Program execution, 6

Program text
representation, 155

Programmer-defined
datatypes, 135

Programmer-defined
procedures, 70
DEFINE(), 72
entry label, 73
external variable,
80, 90
formal variable, 72
FRETURN, 75
internal variable,
72, 76, 78
NRETURN, 75, 90, 118
procedure body, 74
procedure name, 72
recursive, 74

result variable, 75

RETURN, 75

returning a variable,
90

side-effect, 84

summary of execution
of, 154

PROTOTYPE() , 110, 137

Prototype
of array, 110
of name, 139
of pattern, 138
of structure, 137
predefined, 138

Quotation marks, 157

Real literal, 145
Real number, 19

Recursive procedure call,
74

REM, 52, 150
REMARK () , 147
Replacement rulc, 34
REST () , 131

Result variable, 75
RETURN, 75

REWIND() , 147
RIGHT() , 132

RPOS(), 46, 130

RTAB (), 44, 129

Index

Rule
assignmert, 10
evaluation, 25
pattern-matching, 33
replacement, 34

SELECTOR() , 134
Selector, 106
SIZE(), 16, 136
~SPACE, 156
, 41, 128
Statement terminator, 155
STCOUNT () , 140
STLIMIT(), 141
String, 8
String literal, 8
5tring reference, 33
Subtraction, 19
Syntax

extended, 156

of program texts, 161

System transfers
END, 23

188

FRETURN, 75
NRETURN, 75, 90, 118
RETURN, 75

TAB() , 44, 129

Test procedures, 127
predefined, 26
programmer-defined, 81

TIME() , 140
TRIM(), 15, 130

TYPE(), 111, 136

Unanchored pattern matching,
44, 145

Unary operators, 16, 153
deferred evaluation, 50
indirect referencing, 55
name, 116
negative, 8
positive, 8

-UNLIST, 156

Variable, 9
created, 101, 116
external, 80, 90
internal, 72, 76, 78
natural, 9, 56, 101, 116

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188

