ICSD CMINI=1ICRD COMPUTER) PRSCAL
RELERSE UERSION 14k JANLARY 1378

Institute for Information Systens
LUESD Nailcode C-62

Lz Jallay [R 92653

(744) Lh2-lie] (744) LE2-L5dG

36 363 35 46 36 36 23630 1 3030 M0 JE RS0 H B R H IR B H R HRH
UCSD (MINI-MICRO COMPUTER) PASCAL *
REVISED VERSIDN I.4b APRIL 1978 *
Institute for Information Systems ¥
UCSh Mailcode C-021 *
lLLa Jolla, CA 92093 ¥*
(714) 452-4723 (714) 4524524 #
36363095 3630 96 635 3 6B 3 20 3030 S 20 0 23 2 K I H I BB HR

#* % % %k ok &

3 36 30 36 A 35 35 24 36 30 35 30 35 26 3030 03 IR 30 30 30 3 303030 33 3 3 S 200 IR IE IR H A I AP0 ILFS I 0 H

Copyright (c) 1978 Regents of the University of California, #*
* San Diego Campus. This sof.ware, its source, object, and *
* all cther forms, is the property of the Institute for #
* Information Systems and may be used or copied by others *
* only with written authorization from the Institute for ¥*
* Infaormation Sustems. ' #

3363 203 3 45 30 30 3 3 B S H A A A N H R H RN RN R LR AR

NEW IMPLEMENTORS: See "THE FIRST TIME THROUGH"

DISCLAIMER: These documents and/or the software they describe
are subject to change and/or correction without
notice.

ACKNOWLEDGEMENTS:

-

The work described in these notes has been supported
significantly by the following organizations:

United States Navy Personnel Research and Development
Center, Sperry Univac Minicomputer Operations, EDUCOM,
Digital Equipment Corporation, Processor Technology Inc..
Springer—Verlag, Terak Corp.. General Auvtomation Corp..,
The UCSD Computer Center, grants from the University of
California Instructional Improvement Program, Tektronix
Corp.. Micropolis Inc., Computer Power and Light.

The work described in these notes has been made possible
by the drive and direction of the Director of the IIS:

Kenneth L. Bowles

Documentation Authors:

S. Dale Ander, Lucia A. Bennett, Charles “Chip" Chapin,
Gary R. Dismukes, Julie E. Erwin, Shawn M. Fanning,

Joel J. McCormack, Mark D. Overgaard, Keith A. Shillington,
Roger T. Sumner, Dennis J. Valper

Software Authors:

S. Dale Ander, Charles "Chip" Chapin, J. Greg Davidson,
C. Richard Grunsky, Robert J. Hofkin, Richard S. Kaufmann,
Peter A. Lawrence, Joel J. McCormack, Mark D. Overgaard,
Keith A. Shillington, Roger T. Sumner, David B. Wollner.

Collected and Edited by:

Keith Allan Snillington

SECTION

0o

WR =

N Ccuh

QPR =

636 36 3 3 3 3 35 2 36 36 3 36 38 36 3 34 3L 3 M 5

TABLE OF CONTENTS #%
A 3630 3330 I 33 303 SO

Version I.4b April 1978

PREFACING NOTES

INTRODUCTORY NOTES . . .

BRINGING UP THE PASCAL SYSTEM

1 ON PDP-11

2 ON B8080/280 SYSTEM NITH CP/M AND 3740 DISKS e
3 ON COMPAL-80 WITH MICROPOLIS MINI-FLOPPY DRIVES .

DIFFERENCES AMONG IMPLEMENTATIONS FOR DIFFERENT PRDCESéDhS:
CHANGES MADE IN RECENT RELEASES (1.4, I.4b) OF THE SYSTEM .

THE SYSTEM

INTRODUCTION AND OVERVIEW .
FILE HANDLER . . .

SCREEN ORIENTED EDITOR

i INTRODUCTION .

2 GETTING STARTED . .

3 DETAILED DESCRIPTIDN DF CDMMANDS

4 REFERENCE . . .
YET ANOTHER LINE ORIENTED EDITGR - YALDE
DEBUGGER . . .o . . . e e
PASCAL CDMPILER .

1 COMPILE TIME OPTIONS

BASIC COMPILER .o

UCSD PASCAL

INTRINSICS

1 STRING . .

2 INPUT/DUTPUT Co

3 TURTLE GRAPHICS . .

4 LOW LEVEL GRAPHICS . . e e e e e e e e e e
5 CHARACTER ARRAY MANIPULATION e e e e e e e e e e
b MISCELLANEQUS . . .
DIFFERENCES BETWEEN UCSD S PASCAL AND STANDARD PASCAL .

IMPLEMENTORS’ GUIDES

DRAWLINE .

FILE FORMATS .

SEGMENT PRUCEDURES

INTERPRETER NOTES . . .
INTRODUCTION TO THE PAJCAL PSEUDD MACHINE .

PAGE

133
137
139
141
157

GONTUHUMN -

LU AR

NG DN~

UTILITY PROGRAMS

CALCULATOR

THE LINKER . .

SETUP ~ SYSTEM RECONFIGURATION
BOOTSTRAP COPIER e
PATCH
REMOTE PORT TRANSCEIVER KIT.
DEMONSTRATION PROGRAMS . .
RT11 TO PASCAL CONVERSION KIT .o
HEX—-OCTAL-DECIMAL CONVERSION KIT
CHARACTER SET EDITOR e
FOTOFILE DEVELOPER

CROSS REFERENCER .

SOURCE COMPARATOR

GOTOXY PROCEDURE BINDER . .o
CRASHED DISK RECOVERY PROGRAM .

INSTRUCTIONAL SYSTEM

INSTRUCTIONAL SUPPORT (OVERVIEW)
STRUCTURE GF A UNIT . . e .
DESCRIPTION OF AUTHOR PROCEDURE

DESIGNING (AND DOCUMENTING) A LE&SON FRAME
A PROCTOR’S GUIDE TO USING THE BOOKKEEPER

TABLES

EXECUTION ERRORS

IORESULTS . |

UNITNUMBERS .

PENSTATES . . |

SYNTAX ERRORS LOCAL TD UCSD S PAGCAL

AMERICAN STANDARD CODE for INFDRMATION.INTERCHANGE'

UCSD PASCAL SYNTAX DIAGRAMS .

179
i81
185
195
197
199
201
205
207
209
211
213
215
217
219

221
223
225
231
233

241
243
245
247
249
251
253

3036 A I IS IR I IR E RN

INTRODUCTORY NOTES #* % Section O.1
L S R L L e L R e

Version 1I.4b April 1978

1.4b is the first UCSD PASCAL release which actually supports multiple
types of processors (in particular the PDP-11 and the 80B0O/Z80). (There are
implementations on several other processors, but none of them are directly
supported by the PASCAL Project.)

As later portions of this document will detail, the great bulk of the
system software is written in PASCAL and tuns on a relatively simple pseudo—
machine. If this pseudo-machine is emulated by a machine language program on
a new real machine, all the PASCAL software will also run on that new real
‘machine.

So one class of differences amang versions of the system is due to
aspects of the pseudo-machine that are not identically emulated by the
implementations for different types of processors. Section 0.3 lists the
differences between the PDP—-11 and 8080/180 interpreters. Most of these are
sophisticated and/or relatively unused features that have not yet been
implemented for the BO0B0/180.

Another class of differences stems from variations in the system 1/0
environments rather than in the host processor. Included here are differences
in system console terminal types (eg. hard-copy vs CRT vs storage tube) or
command conventions and capabilities (eg. "intelligent" vs “dumb® CRT’s). The
system is intended to be able to cope with this sort of variation. The
vutility program "SETUP" (see Section 4.3) is provided to adapt the PASCAL
system to the idiosyncrasies of the available terminal. Differences in mass
storage medium (eg. floppy disk vs cartridge disk ve mini-floppy) and
interface/controller (eg. programmed 1/0 vs DMA) are harder to deal with,

In the PDP-11 world these mass storage variations are not too serious,
primarily because there is considerable motivation to be compatible with DEC
devices and media. We have written and support drivers for a few DEC
incompatibile devices but make no claim to support users who want to develop
their own such drivers. Section 0.2.1 describes the process of bringing up
a PDP-11 version of the syst' »~ and some of the difficulties that may arise.

The situation in the 80B0/Z80 world is much more chaotic. It would
just not be practical for the Project to write and support drivers for the
vast multitude of E080/Z80 1/0 environments that exist. Therefore we have
chosen to take advantage of the widespread implementation of Digital
Research’‘s CP/M ocperating system by structuring the pseudo-machine’s 1/0
operations as calls on CP/M’s Rasic I/0 Subsystem (BIOS) primitives.
Therefore, any 1/0 configuration on which CP/M has been implemented should
also be able to support the PASCAL sycstedm.

Our dominant mode of distribution for BO0BO/ZI8B0 systems will be on 3740
compatible floppy disks. One of the distributed disks will be CP/M

oriented. This disk will be used, vis a somewhat awkward twe-step process, to
bring up UCSD PASCAL on a particular CP/M configuration. Section 0.2.2
detaile this process. It also describes the configuration of a modified BIOS,

which will better support the needs of the PASCAL system. Finally, directions

Page 1

are given for making it possible to boot directly to PASCAL rather than
indirectly through a CP/M program.

Currently the only specialized B0S0/Z80 environment that we support is
the COMPAL 80 with Micropaolis mini-floppy drives. Section 0.2.3 describes the
idigsyncrasies of that environment.

The final subsection (0.4) summarizes differences among the most
recent releases of the PASCAL system.

Page 2

SR I A IR AN H W NI R U WA A

THE FIRST TIME THROUGH % # Section 0.2.1
L L L R R e L X 2 T R e

Version 1.4 January 1978

Welcome to UCSD PASCAL. I# you put the disk labelled "PASCAL:"
in your booting drive, went through your normal boot-strapping

procedure,

and were greeted in a similar fashion, you do not need to

read this document

I# this is not the case then here are a few of the problems we
have encountered with I.3 coming up in strange and foreign lands:

1.9

Some revisions of the LSI-11 refuse to boot with the clock
running. If you have a switchable clock, turn it off to
bootstrap; if and when the system greets you with the
welcome message and the date, turn the clock back on.

You have Andromeda floppy—disk drives. Currently you
will be able to use only drive #0 unless the other drives
have disks in them at bootstrap time. Drives that do not
meet this condition will appear permanently off-line.

You do not have enough memory. The minimum requirement for
memory is 24K 16-bit words.

You have a system configured for RK-05 hard-disk and you
have an unformatted disk on line. The «ystem will hang
waiting for a reply from the disk whir. cannot be generated
if the disk is unformatted. Take the cisk off-line and try
again.

We haven’t encountered your problem before. Call:

Institute for Information Systems (714) 452-4723.

Page 3

-~ Notes -

Page 4

M3 A 38 3B S B BRI A ISR
8080/280 WITH CP/M & 3740 DISKS # # Secticm 0.2.2
463363 3 3R B BRI R IR SIS RN

Version I4.b April 1978

A discussion of the CP/M implementation of UCSD Pascal follows.

Booting Pascal

To first get Pascal running under your version of CP/M, a two-
disk bootstrap is used. The first step is to boot CP/M in your usuval
manner. On the CP/M disk distributed with the Pascal system is a file
called PASCAL.COM. PIP this file over to the booted disk, then execute
it. .

When the program asks for a Pascal disk, put the disk labeled
PASCAL: in drive A and any disk in drive B. The suystem mau not bpoot
if _there is no disk in drive B, or if you have a i-drive system and
your CP/M drivers wait on a request to drive B. Then hit {returnl. In
about 15 seconds the Pascal welcoming message should appear. (Note: we
have discovered that some drives, possibly as a result of being double-
buffered, cannot keep up with a 2 to 1 interleaving and hence are
extremely slow. The bootstrap then may take about 30 or 40 seconds.
We intend to alleviate this problem in the next release, but persons
with such drives will have to bear with slow disk accesses for the

present.)

I# all has gone well, Welcome to the Wonderful World of Pascal
I# not, please call to notify us of your problem.

pdifications to CP/M

The Pascal system will operate under an unmodified CP/M system,
but it is advised that you create a special CP/M for use with Pascal in
order to have Pascal running in the environment it was designed for.

1. If there is no disk in a drive and an access is made from
that disk, the driver should not wait to perform that access until a
disk is inserted, as the Pascal system often attempts to read from
empty drives when searching for a particular disk. Instead, simply
-vreturn a | to indicate a bad 1/0 operation.

2. If you have a keyboard intervupt handler, it should
recognize the character [cntrl-f1 as a “flush-output” togqgle and signal
the character-out routine to gobble any characters until signaled
again. When it receives another C(cntrl—-f1 the keyboard handler should
signal the output handler causing the output handler to resume -
outputting characters sent to it.

The keyboard intervupt handler should also recognize the
character [cntrl-s] as a "stop output" toggle and wait until it
receives another [entrl-s) before allowing program execution to

continue.

If your keyboard has no alphalock, the input driver can use any
character not used for some other purpose as an alphalock toggle.
ECntrl-pl, [returnl, [cntri-il, L[cntrl-s), CLecntrl—-£1, L[cntrl-cd or any
character in SYSCOM™. CRTINFO should be excluded from consideration. We
suggest Lcntrl-al.

Pascal expects the tab character (Lcntrl-il) to cause the
terminal cursor to advance to the nearest eight column. If the
terminal does not do this itself, then the driver in the BIOS should

Creating a bootstrap on_a Pascal disk

Note: These instructions are for a standard BIOS with 512—bgte>ﬂ
blocks. For instructions for a non-standard BIOS, reference file
READ. ME on the CP/M disk in the distribution packet

On the CP/M disk are two programs, PGEN. COM and PINIT. ASM. The
program PGEN.COM is a program used to write out a bufter (which will be
filled by boot cade and BIDS) to track O. PINIT.ASM is the boot code
that reads SYSTEM. MICRO #rom a Pascal disk, loads the BIDS into the
correct place, and starts the interpreter’s boot routine.

¥You must create .a file PBOOT.HEX, which will require a slight
modification of your curremt BOOUT program. PBOOT will reside an treck
0, sector i and, when executed, will load track O, sectors 2 thru 13
into memory starting at location (MSIZE-48)#1024 + OBAOOM, then Jump to
that location.

You then need to edit PINIT. ASM, changing MSIZE to match your
system. Assemble the file, creating PINIT. HEX.

The next step is to stitch together the one~sector boot, the
Pascal interpreter loader, BIOS, and the praogram to write this
information out to sector O. The following is a session with DDT that
performs all this. This session was used to create a 48K system. User
input is in lowercase, and comments are off to the right.

A>ddt pgen. com load PGEN. COM into memory. PBOOY, PINIT,

[
i and BIOS will be overlayed into PGEN'’s
i data area, after which a memory image will
i be saved.

DDT VERS 1.3

MEXT PC

0400 0100

~ipboot48. hex 1 set PBOOT48.HEX as input file

~-h%00 O i PBOOT starts at location 0, and we want to
i read it in at location 9OOH

0900 0900

~-r900 i read in PBOOT

MEXT PC

0780 0000

Page 6

—-ipinit48. hex set ‘PINIT48. . HEX' as input file

i
=h980 BAOO i PINIT starts at location BAOOH in a 48K system
i {in general (MSIZE-48)#1024 + BAOOH), and we
i want it at location 980H
C380 4F80
-r4+80 i read it in
NEXT P
0A7d DBAOO
< 77
—-ibios48. hex i and lastly read BIOS into location\DBOH\j -
—hd80 be0O T
C380 4FB80
-r4+80
NEXT PC
OF76 0000
=fentrl-cl i leave DDT...
A>save 16 pgen4dB. com i ...and save the program.
A>pgend48 i sample execution of the program...
PGEN VI. O

PUT BOOTER?{(Y/N)y
WRITING BOOTER TO DRIVE A, TYPE RETURN ; put a Pascal disk (preferably a

} copy of the master) in drive A
i before hitting L[returnl.
AGAIN?(Y/N)n
€ET BOOTER?(Y/N)n
REBOOTING CP/M, TYPE RETURN i put the CP/M disk back in drive A
. H before hitting [returnl.
A>

Page 7

— Notes -

Page 8

SEH e S A I RN IS I He I

COMPAL-80 # # Section 0.2.3 %
6464 I I H I I H R

Versian 1. 4b April 1978

The COMPAL-B0O implementation of the Pascal system.

Booting:

Put the disk labeled PASCAL into drive O, push the RESET
button, and type F400G. In about 15 seconds the Pascal system should
greet you.

Copying a booter:

The Pascal system uses a slightly different data layout within
a sector than the standard Micropolis format. For this reason creating
a booter and formatting a new disk are done at the same time. Simply
vuse the DISKCOPY program supplied with BASIC to copy the disk labeled
PASCAL ontc another mini-floppy. The new disk is now a valid Pascal
disk with & booter and can be Z(eroed in the filer

General:

1. fCntrl—-al is used as an alphalock on keyboards without such
a key.

2. The size of a Micropolis Mod II disk is 600 Pascal blocks.

3. Up to four disk drives can be supported and are equated to
Pascal units 9..12.

4. The screen appears as a small Datamedia screen to the
Pascal system, which means it has erase-eol, erase-eos.
cursor positioning, etc.

9. [Cntrl-+f] and [cntrl-s] work.

&, Size of the typeahead buffer is 31 characters.

7. Output to screen truncates after 64 characters. If WIDTH is

set to O in SETUP, wrap-around occurs.

Page 9

- Notes ~

Page 10

336 3 36 3 38 35 38 3 35 36 4 3 35 36 3 36 3 34 30 3 3 H 2 38 I3 3 3 34 36 303 3048 6 3 3635 3 30 34 I8 33 303 3 I 30 SE I I IE I SEH I I I ISR H P

DIFFERENCES AMONG IMPLEMENTATIONS FOR DIFFERENT PROCESSORS # # Section 0.3
62636 35 2596 36 36 36 38 230 40 40 3030 6 4 3000 90 35 0 303030 3 30 230 33 33 I AR I 3B I I SIS S

Version I4.b April 1978

Differences between PDP11 Pascal and 8080/Z80 Pascal.

1.

The definition of div is different (thereby changing the values
returned by mod):
a div b = floor(a/b)
amod b = a — b¥(a div b)

The following floating point routines are not implemented:
sin, cos, atan, exp., ln, log, sqt

The 1/0 drivers are all written for synchronous operation. This
means that [breakl has no effect. ([Cntrl-s] and Lentrl-f]1 will
not perform as described unless

a. you have a keyboard interrupt handler, and
this handler is modified as specified below in
Modifications to CPM. or

b. you have a COMPAL-80 system.

This also means that UNITBUSY, UNITCLEAR, and UNITWAIT are
meaningless. (In the future it may be possible to use the
UNITBUSY and UNITCLEAR operations on the keyboard, but this is
currently infeasible.)

The interpreter is called SYSTEM. MICRO instead of SYSTEM. INTERP.

Neither the CP/M nor the COMPAL-B0 implementations have bootstraps
that are accessible to Pascal, hence the program BOOTER. CODE
will not work. See the appropriate section of this document
‘for instructions on copying and/or creating a bootstrap.

There are no turtle graphics procedures in the interpreter. Users

with bit-mapped graphics devices are advised to see section
3.1 of the documenta’ ‘an for a Pascal version of DRAWLINE.

Page 11

=~ Notes -

Page 12

63034 36 36 36 36 36 SEH 36 36 3536 I B30 I I 36 30 I 3636363036 I 4 I

CHANGES MADE IN RECENT RELEASES #* #* Section 0.4
46963630 30 36 3 30 6B 3306 30 H 03303 K RN SN R

Version I4.b April 1978

SUMMARY_OF DIFFERENCES BETWEEN UCSD PASCAL RELEASES 1.3 AND 1. 4

The following additions, improvements and/or corrections apply

to Version 1. 4.

Reference the (section #) preceeding each entry for a

more detailed description.

EILE _HANDLER
(2. 1)

(1.2)

(1. 2)

(1. 2)
(1.2)

(1.2)

(1. 6) &
(2.1.2)

(1.2) &
(6, TAB 3)
(1.2

(===}

(=)

T(ransfers of large files are supported for single—drive
systems. XFER program is no longer available for this
purpose,

T(ransfers endangering the directory of the destination
volume are prefaced with the warning:
"Risk dir of <VOLID>7?"

Similarly the Z(ero command asks for verification:
“Destroy <VOLID>: ? " (if disk to be zeroed is named).

Z(ero command offers "duplicate directory” option.

“Zero what unit?" has been replaced with "Zero dir of
what volume?" in the Z(ero command.

‘#’ followed by <hardware unit number> is interchangeable
with VOLID throughout the system.

RESET and REWRITE are intended to replace OPENOLD and

DPENNEW respectively, which are being “phased out" of

the system RESET has an optional second parameter of
type STRING.

RK—-05s are supported as Units #9-12.

Date is stored on system disk and remains as set until
changed by D(ate command.

Screen is no longer automatically cleared between svc-—
cessive commands in the Filer. Screen erase is ac—
complished by typing <sp> or <crd. Suggestion: type
<sp> before T(ransferring to CONBOLE device.

Files are no longer extended by the system if an attempt
is made to write beyond end-of-file.

Page 13

(=) Blocks O and 1 of .TEXY files are not transferred to
non—block—-structured devices.

(1. 2) <cr> no longer indicates default volume. Instead <cr>
simply returns user to Filer command level. Mote (in
particular for L,B,E,X,K and Z Filer commands):

‘#’ denotes system disk
1/ (implying empty VOLID) denotes default disk.

(1.2 When opening files for output with the [<H of blocks>]
option, ‘#‘ substituted for <# of blocks> causes the
second largest or hal$ the largest area available
(whichever is bigger) to be allocated

EDITORS (Sections 1.3 and f.4)

Two different editors are currently provided with the UCSD PASCAL
system: YALOE and "EDITOR"Y. EDITOR is a substantially more powerful
(and even easier to use) editor, but it makes some assumptions about the
run-time environment.

EDITOR requires a reasonably powerful CRT terminal with the following
features:

ERASEEQS — tae capability to erase from the cursor to the end
of the screen

ERASEEDOL = erase from the cursor to the end of the line

XYADRESSING - go directly to a given row and column on the screen

NDFS = non-destructive forward space (the inverse of back-
space)

HOME -~ goes to vpper left-hand corner

LF — down one line (and if at the bottom of the screen
scrolls wp)

RLF = reverse line feed (up one line; not required to

Treverse scroll)

Typing "E" at the main command level will execute the file
SYSTEM. EDITOR. Selection of either YALOE or EDITOR as the system editor
is made in the Filer by C¢hanging the selecteg file’s name to SYSTEM. EDITOR.

Notes: Currently YALOE can handle larger filec than EDITOR. In
future teleases EDITOR may handle arbitrarily large files
Proper use of EDITOR requires that the system disk be left
on—line while editing

PPage 14

=]

EBUGGER

l

(1.9

PASCAL COMPILER

(1. 6)

(2.2.6)
(=—=)

(2.1.2)

(2.2 2)

(2.2.2)

(—=-)

(2.2.14)
& (3.5)

(2.2. 1)
(2.2.16)

(1.1.2)

BASIC COMPILER

(1.7)

W(alk, C(rawl and B(reakpoint facilities have been
implemented.

COMPILE-TIME OPTION changes:

(1. 6) '+’ is assumed if neither ‘+’ nor ‘-’ appears
after the option letter in a compiler—-aoption
) comment.
(1. 6) "L"ist may specify a <file named
(1. 6) "Q"viet option is provided to suppress output

to the CONSOLE device during compilation.
Standard type INTERACTIVE (vs TEXT) is introduced.
Standard constant MAXINT = 32,747 is provided.
READ(STRING) will read up to the end-of-line character
and set EOLN(FILEID) true. Subsequent READs of STRING
variables will return the null string until a READLN ov
READ(CH) is executed
Pecuvlarities of . TEXT format (ie. blank compression
codes and special first page) will be transparent to
READS and WRITES on files with logical records of type
CHAR and titles with the . TEXT suffix.

‘{’ and ‘Y’ are accepted as comment delimeters in addition
to ‘(#‘ and ‘%),

‘@’ notation for pointers is no longer valid. Use ’'~’ only.

Segment procedures may be declared forward succesfully.
Semicolon before the "END" in a CASE statement is optional.

String comparison is lexicographic, eg.
‘ABCD’ < ‘XYZ’ despite comparitive lengths of strings.

Typing "E" when an error is found during compilation
invokes the system editor, whereas previously typing

<sp> to continue or <esc> to abort were the only
alternatives.

A BASIC compiler is now provided.

Page 15

INTRINSICS

(2. 1. 6)
&(4. 14)

(2.1.2)
(2.1.2)

(2.1.2)
& (2. 2)

GOTOXY intrinsic is provided for screen cursor addreésing

. SEEK instrinsic allows random access to a logical record.

Optional #ifth parameter to UNITREAD and UNITWRITE is
now of type INTEGER not BOOLEAN.

RESET and REWRITE are intended to replace synonomous
intrinsics OPENOLD and OPENNEW respectively, which are
being “phased out" of the system. RESET has an optional
second parameter of type STRING.

IMPLEMENTORS ¢ GUIDE

(3. 4)

(3. 6)

UTILITY PROCRAMS

(4) 2%
(1. 1)

NOTES on the Pascal INTERPRETER are provided.

Files with the reserved suffix . TEXT may include
blank compression codes.

Many new UTILITY PROGRAMS have been added. Reference also
the INTRODUCTION and OVERVIEW document (Section 1.1) for a
brief description.

INSTRUCTIONAL SYSTEM

(5)
TABLES

(6. 6)
MISC

(——=—)

Page 14

An INSTRUCTIONAL SYSTEM is now provided.

An ASCII-HEX~OCTAL-DECIMAL table is nouw provided

Textual run—time errors are written to CONSOLE device
provided the system disk is accessible during execution.

SUMMARY OF DIFFEREMCES BETWEEN UCSD PASCAL RELEASES 1.4 AND I.4b

1. The ZIB0/8080 FASCAL system has been released.

2. A new system file, SYSTEM.MISCINFD, must be present at boot
time. This file contains information about the terminal attached
to the system and is the file now written into when the P(ermanent

command in SETUP is executed.

3. The compiler is now a separate file, SYSTEM. COMPILER, and has

had a few modifications made to it:

a. It will allow the compilation of small programs in 48K
bytes, as previously claimed.

b. Formfeeds immediately following & [returnl are accepted
in the input file.

€. A semi-~colon immediately before the END in a record
declaration is allowed.

d. The pre~defined function MEMAVAIL: INTEGER is implemented;
it returns the number of words available for use
between the stack and the heap

e. The pre-defined procedure EXIT has been extended to
allow the name of the program as its parameter.

The old syntax, EXIT(PROGRAM), is still valid.

4. Formatting of real numbers to ASCII characters has been changed
{(substantially improved). .o ‘

Page 17

Page 18

R R LIRS IR RN R SR

INTRODUCTION AND OVERVIEW # % Section 1.1 %
I I R S E T SR A A A R e

Version 1.4 Janvary 1978

1. INTRODUCTION

The U.C.S.D. PASCAL system described in the following set of
documents is a system intended to run on stand alone micro and mini-
computers. This system is highly machine independent since it Tuns on a
psevdo—machine interpreter commonly referred to as the "P-machine”.
Software maintenance and enhancement is made relatively straightforward
by the fact that, except for the P-machine interpreter (and a few vun-—
time support routines for efficiency), 211 of the system software is
written in Pascal.

The current system now runs on the Digital Equipment
Corporation PDP 11 series. Implementations for the Zilog 280 and the
8080 microprocessor are currently being developed, expected early this
year. The system is designed to be used primarily with a CRT terminal
acting as the CONSOLE device; the system is flexible enough, however,
to be reconfigured for slower hard-copy terminals as well. For further
information regarding compatability between various types of equipment
and this system see the “"SETUP" document in Sectian 4.3. These
documents are intended for programmers who are familiar with the PASCAL
programming language and have some experience in writing computer
programs.

The following is a tutorial book on PASCAL:

Kenneth L. Bowles,
(Microcomputer) Problem Solving Using PASCAL
Springer—-Verlag, New Yovrk, (c)1977

We suggest the following book as a PASCAL reference guide:

Kathleen Jensen and Niklaus Wirth,
PASCAL User Manual and Report
Gpringer—Verlag, New York, (c)i975

For documentation concerning the differences between U.C.S.D.
Pascal and Standard Pascal see Section 2.2,

Page 19

2. U.C.S8.D. PASCAL SYSTEM: AN OVERVIEW

The structure of the U.C.S.D. Pascal system is best
conceptualized in terms of the "tree-—like" structure diagram figure 0.1
at the end of this sub-sectiion.

The diagram in figure 0.1 depicts the outermost level of the
system. In terms of a "tree" or structure diagram, the "voot"
corresponds to the outermost level, while the "leaves” (i.e. the boxes
with no branches to lower levels) correspond to the lower levels of the
system. While a user is in a particular level, the system displays a
list of available commands called the "prompt—line”. If the system is
running on a CRT screen type terminal, then the prompt—line will
usvally appear at the top of the screen. Commands are usually invoked
by typing a single character from the CONSOLE device. For example, the
prompt-line for the outermost level of the system is:

Command: E(dit, R(un, F(ile, Clompile, X(ecute, DCebug, I(nit, H(olt

If the user types “F" he will "descend" a level within th:
structure diagram into a level called the “Filer". Upon entering . =
Filer, the vuser will receive another prompt—line detailing the set orf
commands which are available to him at the Filer level of the system.
One of the Filer level commands is Q(uit. This command causes the user
to exit from the Filer level and "ascend" back to the outermost command
level of the system. At this point in time, the user is back to the
level in the system from where he started after bootstrapping the
machine. Some commarids within the system prompt the user for the name
of some disk file. In the case of these commands, the user enters the
name of the file followed by a carriage return. If an erraor is made in
typing a portion of the file name, then the backspace key (or equiv—
valent key depending upon the present system configuration) may be used
to “"back over" and erase the erroneous part, The delete key (rubout
key) may be used to erase the entire file name, thereby allowing the
user to completely start over. If the user decides that he does not
wish the system to accept any file name whatsoever, then he may
"escape"” from this command by entering a file name of zero characters;
i.e. type <cr>.

Note that due to a limited amount of room on the prompt—line,
some of the infrequently used commands may not appear on the prompt-
line. For example, in the current release this is particularly true at
the Filer level of the system. (A complete list of commands at the
Filer level may be found in the Section 1.2).

A concept central to the design of the entire U.C.S. D. Pascal
system command structure is the concept of the "workfile”. A workfile
can be thought of as a “scratch-pad" area used for development of
programs. The worktile is not necessarily just one file on the user’s
disk, but tan be a number of files (usually source % code) which
together comprise the "workfile". A user is allowed only one workfile
at any one time. Therefore if a user wishes to work with a new
workfile (i.e. go on to greener pastures) while at the same time
preserving the contents of his current workfile, he must "save" the
contents of the workfile under a separate file name on his disk by
using the S(ave command in the Filer level of the system, Likewise,
old workfiles may be retrieved from the disk and loaded into the

Page 20

workfile using the G(et éommand in the Filer level.

3. OUTERMOST LEVEL COMMANDS: AN OQVERVIEW

A, E(dit

This command is invoked by typing "E" while at the outermost
command level of the system. This command causes the editor program to
be brought into memory from disk. The user may, while in the editor,
insert or delete text inside his workfile, along with many other
powerful commands. (See Section 1.3 for details.) The workfile text (if
present) is read into the editor buffer.

B. F(iler

This command places the user in a level af the system called
the Filer. This section of the system contains commands used primarily
for maintenance of the files stored on the floppy disk. Some typical
commands are the L(dir and T(ransfer commands. The L(dir command
allows the user to list the titles and the last modification date, as
well as determine the number of blocks occupied by each file on the
disk. The T(ransfer command is used to copy from either one disk to
another, or from one area on a particular disk to another area on the
same disk. Also, as mentioned in the OVERVIEW section, there are
commands associated with the "getting"”, "saving"”, and "clearing” of the
user'’s workfile. (For more documentation on the Filer level of the
system see Section 1.2 below).

C. Clompile

This command calls the Pascal compiler into memory and causes
the contents of the current workfile to be compiled. I+ an error in
the program within the workfile is detected, the compiler will stop and
display the error and the surrounding text of the program. By typing a
space, the user can cause the compiler to resume the compilatian.
Typing an <esc> will cause the compiler to abort % return to C(ommand
level. Typing ‘E’ will call in the editor, and if the system editor is
the screen editor, the cursor will be placed near the offending

symbol. I# the compilation is successful, (i.e. no syntax errors were
encountered) a codefile called SYSTEM. WRK. CODE is written out onto the
user’s disk and becomes part of the workfile. (For more documentation

on the use of the U €. S.D. Pascal compiler see Section 1.6.)

D. R(un

This command causes the codefile associated with the current
workfile to be executed. If no such file currently exists, the
compiler is called in the same manner as described in C above. -After a
successful compilation, the program is executed. s

Page 21

E. X(ecute

This command prompts the user for the filename of a previously
compiled codefile. If the file exists, the codefile is executed;
otherwise the message “can’t find file" is returned. (Note: the
“.CODE" suffix on such a file is implicit.) It is convenient to X(ecute
other programs which have already been compiled because otherwise the
user would have to enter the Filer, G(et the +ile, Q(uit the Filer, and
then R(un the program.

F. D(ebug

This command causes the current workfile to be executed. I
the program in the workfile has not been compiled, the compiler will be
called yust as in the case of the R(un command. However if a run—time
érror occurs:; or a user-defined break-point or halt is encountered, the
Debugger program is called. The Debugger is a program which allows the
user to examine the contents of variables within the program. (Further
documentation on the interactive Debugger can be found in the Section
1.5 below.)

6. I(nit and H(alt

The I(nit command causes the system to re—initialize,

The H(alt command causes the computer to halt.

4. UTILITY PROGRAMS INCLUDED IN THIS RELEASE: AN OVERVIEW

Included in this release of the U.C.S5.D. Pascal system is the
following set of utility programs:

A. Calculator) X
Disk file title: CALC. CODE
This is a Pascal program which allows a user to use the

computer as a calculator to make quick mathematical computations. See
Section 4.1 below for further details. '

B. Linker
Disk file title: LINKER. CODE
This is a program used to link together segment procedures

anc/or functions which have been compiled separately. See Section 4.2
for further details.

Page 22

C. Setup
Disk file title: SETUP.CODE

This is a Pascal program which can be used to reconfigure the
system for use on different terminals or devices. See Section 4.3 for
further details.

D. Booter
Disk file title: BOOTER. CODE

This is a Pascal program which copies the bootstrap from any
one floppy disk to another. This pragram is designed to be used with
one disk drive. See Section 4.4 for further details.

Note: BOOTER. CODE will not work on Z80 or 8080 microprocessors
because the bootstrap area on those systems is not accessible in

Pascal.

The number of utility programs has grown past the scope of this
sub—section. For a complete list of the utility programs now available
with your UCSD PASCAL system, reference Section 4 in the Table of
Contents. Any programs which you write and feel would be a useful
addition to our library of utilities will be welcomed contributions. A
separate paper by K. Bowles on Software/Courseware exchange is
available vpon request. This paper proposes a mechanisim for the
exchange of software and courseware.

Page 23

PASZAL
X

SYST?

REPEAT UNTIL)
Q:nnm‘a} = H{alt

COnMy

ATy

T

COMMAND

/ “\\

REPEAT UNTIL
INITIALIZE CIRTMAND = H(a'(t)
READCCIMMAND) <(EASE CIMiiaND ﬁ?:}
|
gt I lFa' e ! 1521 l ‘I'——,
EDITDRE FILER COMPILER IE.'}{ECUTE INITIALIZE
IRI. lnl
uork;ne

yes

EXECUTE

conptled

COrPILER

Page 24

.__SV

Figure 0,

ERECUTE

Saperumireamie.

1

3+ 3¢ 35 36 3 3¢ 3 36 3 3¢ 36 33 36 34 3¢ 36 3¢ 3 36 3 9 3 36 36 3 I 363

FILE HANDLER # # Section 1.2 *
3633 I I IR H NIRRT

Version 1.4 Januvary 1978

File Names and Structure

Files are maintained in 5i2-byte physical blocks similar to .
those used with the PDPP11 line of computers. Initially, the layout of
these blocks on a floppy disk will use alternate 128-byte sectors to
retain compatibility with PDP11 files. However, we anticipate using
the system with high performance floppy disk drives on which adjacent
sectors may be used; the system will provide this capability as an
option. Media other than flexible diskettes will be made available as
the system evolves, such as the RK-09 disk, which the system is capable
of dealing with in a somewhat limited capacity.

Each file is stored in a contiguous area of the disk and is
pointed to by the disk directory. Each file is identified by a unique
string of up to 15 characters containing letters of the alphabet,
digits, and the special charvacter period ("."). Following are examples
of legal file names:

WHOPPER

ONE. TEXT (8 characters long)
ONE. CODE

ONE. 1. CODE (10 characters long)

LONG. FILE. NAME

The system will translate lower case letters to upper case and
will remove blanks and non—-printing characters for storage of a
directory title. The user may employ the period character to indicate
hierarchic relationships among files and/or to distinguish several
related files of different types. I+ the last identifier following a
period in a file title is one of several reserved words, the file will
be assumed to be formatted a--ording to the named file type. For
example, OME. A.CODE might be the compiled object code file associated
with a source program in ONE. A. TEXT. The #ile types currently defined
are CRAF, FOTO, BAD, TEXT, and CODE.

The reserved suffixes for filenames are:

. TEXT Editor files. Editable, compilable, listable.
. CODE Code files. Runnable. eXecutable.

. FOTO Screen image file. Bit data.

. GRAF Editable vector lists.

. BAD Nonreadable files. Cannot be moved.

Page 25

Each disk has a Volume Name associated with it. A volume name
consists of up to 7 alphanumeric characters. The disk from which the
system is initialized is called the "System Disk", and its volume name
may be abbreviated ",

Non-file structured devices (line printers, terminals, etc.)
also have volume names. Thus all I/D occurs to or from ‘volumes’
(which may or may not have individual files). Throughout the system
(in the file handler as well as user programs) files may be associated
with actual areas on a disk or with other physical devices. The
reserved volume names used to refer to these devices are as follows:

CONSOLE: screen % keyboard with echo

SYSTERM: screen & keyboard without echo -

GRAPHIC: the graphic ‘side’ of the screen (for 8510a“‘s
PRINTER: the line printer

REMOTE: for future expansion

One may define a particular volume to be the ‘default volume”’.
The P(refix command at the FILE level is used for this purpose. It
allows the user to set the default volume name which is attached to
filenames. The System Disk is assumed to be the default volume
immediately after bootloading. The default volume is the volume
assumed in all file titles where no explicit volume is given. The
syntax for a file name is as follows:

FILE TITLE

L)

v\ J
wm.{ii) .

B
"*"‘ﬂ//;{\ithumbﬁr‘ l

Page 24

This syntax diagram is just like those published with the
documentation on the PASCAL language. The use of "#" or "#: "
preceding a file name refers to the system disk. A volume name., if
given, must be separated from the file name with a “:".

When specifying file titles for output you may put the #£ile in
the first area of adequate size by adding [<# of blocks>] after the
file name. <# of blocks> is the area size you would like the file to
#it into. This number can be equal to or larger than the file length.
I# it is zero or omitted then the file will be put into the largest
empty place available. I# <# of blocks> is the character "#", either
the second largest or half of the largest area available is allocated.,
whichever is lavger. (RT-11 users are familiar with this scheme.)

All devices that may be on-line have built—in Unit Numbers
predesignated by the system. Reference Table 3. (
page. 245)

File Level Command

Many of the following commands prompt the user for one or two
file titles. Responding to any request for a file title by typing jJust
a carriage return causes the command to return the user to the F{iler
level. In the case of commands that permanently alter the state of a
file, the user may be praompted to verify that the requested action is
really wanted. I# "Y" (for "yes") is typed, the Filer will proceed to
do the specified action. Any other response to this prompt will resuvult
in a return to the main File level, with the action not occuring. When
a volume name is requested, ‘:’ implies the default prefix volume, ‘%’
implies the booted volume, ‘#n’ implies the volume unit-number n.

G(et) Opens the requested file with an implicit ". TEXT" suffix as the
work file. The file with an implicit ". CODE" suffix is also
gotten if one exists.

Stave Removes old file by that name, renames SYSTEM. WRK files to that
name.

N(ew) Clears Wdarkspace.

L¢(dir) Lists the directory of the volume specified after the prompt.
‘#’ infers the root, or booted device, ‘:’ infers the default
device, null exits to F(iler.

C(hange) Changes the title of a file or volume name of a disk to a new
name.

R(emove) Removes the indicated file from the directory on the volume.
NOTE: To vemove SYSTEM. WRK. TEXT and/or SYSTEM. WRK. CODE the N(ew
command should be used, or the system may get confused.
R(emoving a volume name causes it to go off-line.

Page 27

T(ransfer) Copies the contents of the first specified file to the
second specified file. The second specified file is created as
a new file. Note: Files may be transfered to volumes that are
not directory structured, such as CONSOLE and PRINTER, by jJust
specifying the volume name followed by a colon “:". If you
transfer to a volume with a directory on it by specifying only
its volume name, i.e. "“T VOLA:,VOLB:<crd%, you will be asked if
youv wish to risk the directory of VOLB. This is to ensure that
you indeed want to transfer the specified source to VOLB:, a
process which wipes out the current directory of VOLB. Single—-
drive transfers may be accomplished by the following sequence:

Type ‘T’ for transfer.

Ensure that source disk is in drive.

Type source filename <crD.

Wait for prompt "to what file?".

Ensure that destination disk is in drive.

Type destination filename <crdD.

Follow prompting messages until F(iler prompt returns.

Nrasrwu~
N Nt N et N N NP

D(ate) Displays current date and enables you to change it. The format
for the date is given in the prompt line. This date will be
associated with any files saved in the current session and will
show up by those files when using the L(dir) or E(xtended list)
commands. The date is stored on the system (#) disk and
remains the same until changed with the D(ate command.

- WChat) Informs the user if his workfile exists, is saved or not., and what
its name is.

Q(uit) Returns the user to the main command level.

The following commands will not appear on the promptline due
to lack of space, and it is assumed that they will be used only by
experienced users:

P¢(refix) Changes the current default to the volume epecified after the
prompt.

M(ake) Allows the user to create a new file under the name given after
the prompt, followed by the number of blocks wanted within
square brackets, e.g. MYFILEL20). This command is useful for
filling unpleasant gaps in the directory, if you are being
selective as to where files go.

.V(olumes) Displays the names and associated unit numbers of volumes
currently on-line. The name of the system volume will be
preceded by a ’#’, the default volume by a ‘P’, and ény other
volume which is directory structured by a ‘4.

B(ad blocks) Checks each block on the indicated volume for
unrecoverable errors and lists the number agf each bad block.

Page 28

E(xtended list) Lists directory in more detail than the L command. All
files and unused areas are listed along with {(in this order)
their block length, last modification date, the starting block
address, the number of bytes in the last block of the file, and
the filekind.

X(amine) First asks the name of the volume then the black range to be
examined, (eg. 35-63 or just 18). If any files are in danger
of being removed by this process, it will inform you of such an
event and ask if you want to risk losing these files. An
ensving scan process reports located bad areas which it wants
to "mark bad". A Y(es response from the user will initiate
M{aking & .BAD file over those areas.

K(runch) Crunches or compresses the files on the specified volume so
that free blocks are combined into one area. WARNING: It is
advisable to do a B(ad block scan, and then if necessary an
X(amine, prior to K(runching because K(runch will try to move
unmarked bad blocks and/or put good files into bad areas. Do
not disturb the disk until K(runch tells you it has completed
its task. HK{runching the system volume may require
rebootstrapping.

Z(ero) Re—initializes the indicated volume by zeroing out the directory
and giving the disk a new name. You will be prompted for the
volume to zero; reply with a volume name or equivalent unit
number (type “#n") of the disk to be zeroed. I# it has a name,
tegardless of how you specified it, you will be asked "Destroy
dir?", verifying that you indeed want to zero this disk.

You will also be asked "Duplicate Dir?". This is an option
available for disks upon which you want to keep a redundant
copy of the directory. Specifying yes (fyping "Y") at this
time will cause the directory of this disk to be written in two
locations every time the directory is written out. This option
makes recovery from directory failure an easier task. The
consequence of this is a slight slowing of the system at
directory writing time. You will be asked to enter the size of
the volume (you will be given a clue as to what number to
enter). Then you will be asked for the new name of the disk
and asked to confirm it one more time. Finally the new directory
gets written onto the disk.

Page 29

- Notes -

Page 30

43636 3 330 3 30 3430 I I I 34 H I I I U I3 IR I I I N

SCREEN ORIENTED EDITOR # # Section 1.3.1 *
B O LT T X R R R T 2

Version 1.4 January 1978

Introduction

The Scope of This Document

.This document describes the Screen Oriented Editor (Version
LE. 41). The purpose of the document is to provide for the user of the
Editor an introduction and a reference. The document itself is divided
into four sections. The first is this introductory section which
describes the philosphy behind what the Editor does. The second is a
tutorial section for the novice. While the Editor is designed to handle
any files, the tutorial section uses a sample program to demonstrate
how to use the most basic commands to modify a file. The third section
contains a detailed description of each command with examples. The
fourth section is a quick reference section.

The Concept of a ‘Window’ on the Proqram

The Screen Oriented Editor is specifically designed for use
with Video Display Terminals. Two of the chief properties of those
terminals are: 1) that they display a fixed amount of material at a
time, that is, one screenful; and 2) that they are readily updated. The
Editor is designed to take as much advantage of those display
properties as is possible and in particular to use the updating
property to keep in frant of the user the current status of the portion
of the program near which he is working. On entering any file the
Editor displays the start of the file in the upper left corner of the
screen. If the file is so long that it will not all fit onto the screen
only the first portion appears. The whole file is there but you can
only see a portion of it through the ‘window’ of the screen. Indeed the
whole file is accessible by the Editor commands and when any Editor
command takes the user to a position in the file which is not
displayed, the "window"” is updated to show a2 portion of the file near
the place to which the user has moved

Thé Concept of a Cursor

——— A R

Maving around in the file is done with the use of the cursor. -
The cursor represents your exact position in the file. The window you
are able to see is a portion of the file which is near the cursor. To
see another portion of the file you merely move the cursor. Action
always takes place at the cursor. Some of the commands permit
additions, changes or deletione of such length that the screen cannot
hold the whole portion of the text which you have changed. In those
cases the portion of the screen where the cursor stopped is displayed.
In no editing case is it necessary for the user to operate on portions
of the text he cannot see on the screen, but in some cases it is
optional.

Page 31

The Concept of a Prompt Line

The Editor, consistant with the rest of the Pascal System,
displays a prompt line as the top line of the screen. The purpose of
the prompt line is to remind the user of the current mode and the
options available for that mode. Only the most commonly used options
appear on the prompt line. The entry or Command level of the Editor
displays the following prompt line:

>Edit: A(dyust C(py D(lete F(ind I{nsrtt J{mp Rplace Q(uit X(chng Z(ap [E. 41

Page 32

Fe 3636 3 30 B3I 33 I SRR I 36 336 34 36 3 36 46 35 3 3 3034 363

GETTING STARTED # # Section 1.3.2
L R e L T O LT L)

e r— S ————rn S s e S e e

Entering the Workfile and Getting a Proqram

When you first come into the Editor you may be asked

No workfile is present. File? (<ret> for no file)
You may answer this question two ways: »
1) With a name (like "STRINGi<{ret>"). This means that you wish
to get a file from your disk so you can modify (edit) it.
What you see on the screen after typing the name is a copy of
the text of the first part of the file. For example if your disk had a
file called STRING1 which contained a program called STRING1 and after
the "No workfile..." prompt line you typed "STRINGI<ret>", the program
shown in Figure 2.1 could appear on the screen.

Figure 2.1

PROGRAM STRING1;
BEGIN ‘
WRITE(‘TOO WISE‘);
WRITE(’YOU ARE’);
WRITELNC?, 7);
WRITELN(/TOO WISE');
WRITELNC(’'YOU BE‘)
END.

2) With a <return> (this is called <ret> on the prompt line).
This means that you wish to start an entirely new file from scratch.

The only thing visible on the screen after doing this is the
editor prompt line. VYou have started a new workfile and currently have
nothing in it. VYou will probably wish to type "I" and start inserting a
program or text of your own design.

Workfiles: If a workfile already exists then no questions are
asked. The workfile is displ yed and can be modified. The workfile can
be cleared so that you can start a file by using the N)ew command in
the Filer.

Moving the Cursar

As mentioned above: the cursor is the center for all editing
activity. Therefore in order to edit, it is necessary to move the
cursor. There are many commands that move the cursori we will start
with the simplest. On your keyboard are four keys with arrows (they
look may like triangles) on them. These four keys will move the cursor.
The <up-arrow> will move the cursor up one line, the <right-arrow>
will move the cursor right one space and so forth.

Page 33

. If you try experimenting with the cursor in a program such as
STRING1 you will notice that the cursor does not like to be outside of
the text of the program. For example if you are after the "N" in
"BEGIN" (see Figure 2.2 below) and push the <{right-arrow>, you will
notice the cursor moves to the "W" in "WRITE". Similarly if you are at
the "W" in "WRITE('TO0 WISE ‘); " and use {left-arrow> you will move to
after the “N" in "BEGIN".

Figure 2.2

BEGIN_
WRITE(‘TOD WISE “);

BEGIN
wRITEC/TOO WISE ‘);

Let us go through the cursor moves needed to get ready to
modify STRING1 to write SMART instead of WISE. You will want to change
the "WRITE(’'TO0 WISE ‘); " found in the third line to a "WRITE(‘TOO
SMART “);". To do this you must get the cursor to the right spot.

For example: if the cursor is at the "P" in "PROGRAM STRINGL; “.
You need to go down two lines, so. press the down arrow 2 times. To
mark the positions the cursor occupies they are labeled a.b,c in Figure
2.3, “a" is the initial position of the cursor; "b" is where the cursor
is after the first <down—arrowd>; “c" is after the second <down-arrouw>.

Figure 2.3

aROGRAM STRING1
bEGIN
€ WRITE('TOO WISE “);

Similarly you can move it to the right until it sits at the "W"
of "WISE". Note that with the use of <down—arrow> the cursor appears to
be outside the text. Actually it is at the “W" in "WRITE", so do not be
surprised when on typing the first <left—arrowd the cursor jumps to the
"R" in "WRITE".

Using I(nsert

The next thing you wish to be able to do is to insert something
into the text. The Command level prompt line reminds you that to I(nsrt
(insert) an item you need to type “I". Let’s go through the process of
insertion using the STRINGI program which you saw above. In order to
insert it is first necessarty to move the cursor to the place you wish
to make the insertion. Earlier, you have moved the cursor to the "W" in
"TOO WISE"; now, if you type "1" you will make an insertion befaore the
W, (If the cursor was at the "S* you would be making the insertion in
front of the "S".) To help to remind you of the context of the
insertion, the Editor displays the last part of the line on the Tight
side of the screen. After you type "I" the following prompt line should
appear on the screen:

Page 34

>Insert: text {<bs> a char, a line} [<etx> accepts, <esc> excapesl

It that prompt line did not appear at the top of your screen
you are NOT in insert mode and cannot insert. You may have typed a
wrong key.

Assuming you were at the "W", did properly type "I" and got the
insert prompt line now you may insert "SMART" by typing the five
letters "SMART". They will appear on the screen as you type them.

Mow there remains one more important step. You have the choice
indicated at the end of the prompt line: you can push the <etx> key and
accept the insertion, or you can push the <esc> key and the insertion
will disappear.

Figure 2.4 (Screen after typing “SMART")

BEGIN WRITE('TOO0 SMART WISE)i

Figure 2.5 (Screen after <etx>)

BEGIN
WRITE(‘TOO SMARTWISE ‘)i

Figure 2.6 (Screen after <esc>)

BEGIN
WRITE(‘TOD WISE ‘)i

It is legal to insert a carriage return. This is done by typing
<return> while in the INSERT mode. It causes the Editor to start a new
line.

Using D(elete

The DELETE mode works like the INSERT mode. Having inserted the
SMART into the STRING1 program and having pushed <etx> you now wish to
delete the WISE. Step 1 is “o move the cursor to the first of the items
you wish to delete. Step 2 is to type a "D" to put the Editor into
DELETE mode. The following prompt line should appear:

>Delete: < > <Moving commands> {<{etx> to delete, <esc> to abortl

Now every time you type <space> a letter will disappear. So in
our example typing 4 spaces will cause the "WISE" to disappear. Then
you have the same choice as in insert. You can type <etx> and the
proposed deletion is made or you can type <esc> and the proposed
deletion reappears and remains part of the text.

As in insert it is legal to delete a carriage return. Go to the
end of the line, enter DELETE mode, and <space> until the cursor moves
to the beginning of the next line

At this point you have learned sufficient commands to edit any
file you desire. There are many more commands in the Editor which make
editing easier. These are described in the next section of this

Page 395

document.

Leaving the Editor and Updating the Workfile

When you have finally finished making all the changes and
additions you desire you will wish to exit the Editor and "save" a copy
of the modified pragram,. The Editor prompt line shown above reminds us
that one of the options is "Q" for Qluit.

Typing "Q" will cavuse the prompting display shown in Figure 2. 7.

Figure 2.7

>0uit:
U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
Wirite to a file name and return

The most elementary way to save a copy of your modified file on
your disk is to type “U" for U(pdate. This will cause a workfile to be
saved. With the workfile thus saved it is possible to use the R(un
command (provided of course your file is a program). It is also
possible to use the S(ave option in the Filer to save your moditied
file in your library before Yyou.use the Editor to modify or create
another file.

Page 36

SE3E 463 3 35 36 36 3 4 36 35 35 30 3 30 3 3430 33 I S0 S H I SIS I3 303 I 303

DETAILED DESCRIPTION OF COMMANDS # # Section 1.3.3
S35 26 3 3 35 36 2646 36 9 96 33530 F 36 38 300033 S H 30 H H I HH I HH AT NA RN

A Detailed Description of Each Command with Examples

INTRODUCTION

Command level: The cuter or entrance level of the Editor is
called the Command level. From this level each of the Editor commands
can be reached. Whenever you enter or return to the Command level the
Editor redisplays the "Edit:" prompt line shown in section 1.

Certain options affect many commands. For conciseness these are
grouped together in this introduction. Detailed descriptions of the
commands follow this introduction. These are grouped in the following
scheme: First the moving commands (cursor moving commands, Jump, FPage,
Equals), second the text changing commands (Insert, Delete, Zap, Copuy.,
eXchange), third the Find and Replace commands, fourth the formatting
commands (Adjust, Margin), and fifth the miscellaneous commands (Set,
Verify and Quit).

Command and Mode: At the Command level there are many options.
For convenience we will refer to some of these options as commands and
some of them as modes depending upon the appearance of a prompt . If an
option executes a task and returns control to the Command level we will
call that option a command. If an option issues a prompt and gives the
user another level of options we will call that option a mode.

Repeat—factors: Many of the commands allow repeat—-factors. A
repeat—factor is applied to a command by typing a number immediately
before issuing the command. The execution of the command is repeated
for the number of times indicated by the repeat—factor. For example:
typing "2 <down-arrow>" will cause the <{down-arrow> commmand to be
executed twice moving the cursor down two lines. Commands which allow a
repeat—-factor assume the repeat—factor to be 1 if no number is typed
before the command.

The cursor: It should be remarked that the cursor is never
really "at® a character. The cursor is only allowed to be "between"
characters. When we say the cursor is at the letter "R" it is actually
between the letter "R™ and the letter in front of it. You can notice
this most clearly on the insert command when it inserts in front of the
character the cursor was "at". On the screen the cursor is placed "at"
“R" when it is really before "R" to make it easier to display. '

The <arrow> keys: The four keys which this document refers to
as <up-arrow>, <down—arrow>,<left-arrouw> and <right—-arrow> are
implementation dependent. The implementor of the PASCAL system has the
option using the utility program SETUP, which is described in the User
Documents, to redefine the keys of his choice as the keys the Editor
takes to be the <arrow> keys. Consult local documentation in case of
such a redefinition,

Page 37

Direction: Certain commands are affected by direction. If the
direction is forward then they operate forward through the file.
Forward is the standard direction of reading English. If the direction
is backward then they operate in the opposite direction through the
file. When direction affects the command it is specifically noted. The
user may change the direction by typing the appraopriate commands.

MOVING COMMANDS

Basic moving commands:

<down—-arrow> Moves down

<up-arrow> Moves up

<right-arrouw> Moves right

<left—-arrow> Moves left

Y or ", " oy M- Changes the direction to backward

">" or "% opr "4 Changes the direction to forward

<space> Moves direction

<back-space> Moves left

<tab> Moves direction to the next position which is a multiple
of B spaces from the left side of the screen

<return> Moves to the beginning of the next line

The arrow ("<" or ">") in front of the prompt line always
indicates the direction. “<" indicates backward and ">" indicates
forward. On entering the Editor the direction is forward. The direction
can be changed whenever you type the appropriate command and the
“"Edit:" prompt line is present. The period and the comma are allowed to
change direction because on many standard keyboards, "." is lower-case
for ">" and ", " is the lower-case for “<v,

Repeat—factors can be used with any of the above commands.

The Editor, for user convenience, maintains the column position
of the cursor while you are using <up-arrow> and <down-arrowd, however,
when the cursor is outside the text, the Editor treats the cursor as
though it were immediately after the last character (ar before the
first) in the line.

slump

JUMP mode is reached by typing "J" while at the Command level.
This is indicated on the prompt line by “J(mp". On entering JUMP mode
the following prompt line appears:

>JUMP: Bleginning E(nd M(arker <esc>

You may jump to the beginning of a file.by typing "B", to the
end of a file by typing "E" or to a marker in the file by typing "M".
“B" (or “E") Jumps you to the beginning (or end) of the file and
displays the edit prompt line. Typing "M" causes the Editor to display
the prompt line:

Page 38

Jump to what marker?

You must enter the name of the marker followed by a <returnd.
The Editor will then move the cursor to the place in . the file with that
name. If the marker is not in the file the Editor will display:

ERROR: Marker not there. Please press <space bar> to continve.

Of course to be able to jump to a marker you first must Set the
marker. See the SET mode for how to do this.

Eage

PAGE command is executed by typing "P" while at the Command level.

PAGCE command moves the cursor one whole screenful up or down
depending on the direction of the arrow at the beginning of the prompt
line. The curTsor moves to the start of the line. A <repeat-factor> may
be used before this command to go several pages.

Equals

EQUALS command is executed by typing "=" while at the Command level.

EQUALS command causes the cursar to jump to the beginning of
the last string which was inserted, found or replaced. An INSERT, FIND
or REPLACE cause the absolute position of the beginning of the
insertion, find or replacement to be saved. Typing "=" causes the
cursor to yump to that position.

TEXT CHANGING COMMANDS

Insert

INSERT mode is reached by typing "I" while at the Command
level. This is indicated on the prompt line by "I(nsrt". On entering
INSERT mode the following prompt line appears:

SInsert: Text {<bs> a char, a line} [<etx> accepts, <esc> escapesl

As described in section 1.3.2 one of the options here is to type in
text followed by <esc> or <etx> If you have inserted a character which
you didn’t want, it is possible to get rid of it without leaving the
INSERT mode by back—spacing over it. The INSERT prompt line indicates
this by "<bs> a char". If you want to get rid of the entire line which
you gust typed, type <deld>. The INSERT prompt line indicates this by
"{del> a line". ’

When you type <return> INSERT starts a new line at the level of
indentation specified by the options you have turned on in Environment
section of the SET mode. See the section on the SET mode for to how set .
these options. ‘

Page 39

Avto—-indent:

I# Auto-indent is True a3 <return> causes the cursor to start
the next line with an indentation equal to the indentation of the line
above. If Auto-indent is False a <return> returns the cursor to the
next line at the first position. Note: if Filling is True the first
position is what you set as the Left—margin

Filling:

If Filling is True then the Editor will insist that all your
insertions are between the right and left margins by automatically
inserting <return>’s between "words" whenever you would have otherwise
exceeded the right margin and by indenting teo the Left-margin whenever
@ new line is started. The Editor considers anything between two spaces
or between a space and a hyphen to be a word.

I# both Auto-indent and Filling are True then Auto-indent
cantrols the Left-margin while Filling controls the Right-margin. In
any case you can directly change the level of indentation by using the
<space> and <backspace> keys immediately after a <return>. Important:
yYyou can do this only immediantly after a <return.

Example 1: With Auto-indent on the following sequence creates
the indentation shown in Figure 3. 1.
"ONE", <return>,<spaced,<{space>, "TWO",
<return>, "THREE", <return>,<backspace>, "FOUR".

'Figure 3.1
ONE Original indentation
TWO Indentation changed by <space> <space>
THREE <return> cauvses auto—indentation to level of line above
FOUR <backspace> changes indentation from level of line above

Example 2: With Filling True (and Auto-indent False) the
following sequence creates the indentation shown in Figure 3.2: "ONCE
UPON A TIME THERE- WERE". (Very narrow margins have been used for
simplicity.)

Figure 3.2

ONCE UPON A Auto—returned when next word would exceed margin
TIME THERE- Avto-veturned at hyphen
WERE

~

Level of left margin

Page 40

Filling also causes the Editor to adjust the margins on the
portion of the paragraph following the insertion. Any line beginning
with the Command character (see SET mode) is not touched when filling
does this adjustment and that line is considered to terminate the
paragraph.

The direction does not affect the INSERT mode, but is indicated
by the direction of the arrow on the prompt line

I# you make an insertion and accept it that insertion is
available for use in the COPY mode. If you enter the INSERT mode and
<esc> there is no string available for COPY.

Delete

DELETE mode is reached by typing "D" while at the Command
level. This is indicated on the prompt line by "D(lete". On entering
DELETE mode the following prompt line appears:

S>Delete: < > <Moving commandsd> {<etx> to delete, ,<esc> to abort}

When you enter DELETE, the Editor remembers where the cursor
is. That position is called the anchor. The object for you is to
bracket the text you want to delete between the cursor and the anchor
using the normal moving commands. As you bracket text it will disappear
from the screen. To accept the deletion, type <etx>; to escape, type
<esc>.

I# you type <etx> the Editor saves everything which was
deleted for COPY to use; if you type <esc> the copy buffer is empty.

Example:
In Figure 3. 3:

1) Move the cursor to the "E" in END.

2) Type "<" (This changes the direction to backward)

3) Type "D" to enter DELETE mode.

4) Type <ret> <ret>. After the first return the cursor moves to
before the "W" in WRITELN. The line WRITELN(’TO BE. ’); disappears.
After the second return the cursor is before the W in WRITE and that
line has disappeared.

S) Now press <etx> The prc,ram after deletion appears as is shown in

Figure 3. 4.

The two deleted lines have been stored in the copy buffer and
the cursor has returned to the anchor poasition, Now we may use the CUPY
routine to copy the two deleted lines at any place to which we move the
cursor. :

Figure 3.3

PROGRAM STRINGZ2;
BEGIN
WRITEC(/TO0 WISE “);
WRITELNC'TO BE. 7)
END.

Page 41

Figure 3.4

PROGRAM STRING2:
BEGIN
END.

Zap

The ZAP command is executed by typing "Z" while at the Command
level. This is indicated on the praompt line by “Ztap".

This command deletes all text between the start of what was
previously found, replaced or inserted and the current position of the
cursor. This command is designed to be used immediately after one of
the FIND, REPLACE or INSERT commands. If you are zapping more than 80
characters you are asked to verify.

Repeat—-factors and Zap: If you do a FIND or a REPLACE with a
repeat factor and then ZAP, only the last find or replacement will be
zapped. All others will be left as found or replaced

Whatever you have deleted by using the ZAP command is available
for use with the COPY command.

Copy

The COPY command is executed by typing "C" while at the Command
level. This is indicated on the prompt line by "C(py".

On executing the COPY command the Editor immediately copies the
tontents of the copy buffer into the file at the location of the cursor
when “C" was typed. On the completion of the copying the cursor returns
to immediately before the text which was copied. Use of the COPY
command does not change the contents of the copy buffer.

The copy buffer is affected by the following commands:

1)DELETE: If you have accepted a deletion the buffer is loaded
with what you have deleted; if you have escaped from a deletion the
buffer is loaded with what would have been deleted if you had accepted.

2)INSERT: If you have accepted an insertion the buffer is
loaded with what you have inserted. I¢ you have escaped from an
insertion the copy buffer is empty.

3)ZAP: If you have used the ZAP command the buffer is loaded
with what you have deleted.)

The copy buffer is of limited size. Whenever you have deleted so much

text that the buffer will not hold all of it. The Cditor will warn you
upon your typing <etx> with the line:

There is no room to copy the deletion. Do you wish to delete anyway? (y/n)

Page 42

Exchange

EXCHANGE mode is reached by typing “X" while at the Command
level. This is indicated on the prompt line by “X(chng". On entering
EXCHANGE mode the following prompt line appears:

>eXchange: TEXT {<bs> a char) [<esc> escapes; <etx> acceptsl

EXCHANGE mode replaces one character in the file for each
character of Text you type. For example in the file in Figure 3.5 with
the cursor at the "W" in WISE, typing "X" to put you in EXCHANGE mode,
followed by typing “SM" will replace the "W" with the "S" and then the
wiv with the "M" leaving the line as shown in Figure 3.6 with the
cursor before the second "8".

Figure 3.5 Figure 3.6

WRITE(’/TOO WISE ‘); WRITE(’TOO SMSE ‘)i

Typing a <back-space> (<bs>) will back the cursor one character
and cause the original character in that position to reappear. As with
most other commands, when in EXCHANGE mode, <esc> leaves the mode
without making any of the changes indicated since entering the mode,
while <etx> makes your changes part of the file.

NMote: You may not type past the end of the line or tupe in 2
carriage rveturn,

FIND AND REPLACE

In both modes the use of a <{repeat—factor> is valid. The
<repeat—factor> appears in brackets on the prompt line.

Strings: Both modes operate on delimited strings. The Editor
has two string storage variables. One, called <targ> by the prompt
lines, is the target string and is referred to by both commands and the
other, called <sub> by the prompt line, is the substitute and is used
only by REPLACE. The following rules apply to both these strings. 1)
The terminating delimiter of the string will be the second occurance ot
the delimiter used as the st —~ting delimiter. For example: when in
REPLACE mode the following command is valid and will replace the first
occurance of the character "[" with the character "1": "<L)1) M. Here
""" and ")" are the delimiters.

Delimiters: The Editor considers. any character which is not a
jetter or a number to be a delimiter. <space> is a particularly common
delimiter.

Direction: If the direction is forward, both modes will operate
from the point at which the cursor is toward the end of the file. If
the direction is backward both will operate from the point at which the
cursor is toward the beginning of the file. If the direction is
backward the target pattern will be found if the beginning of the
pattern is at or in front of the cursor.

.

Page 43

Literal and Token mode: I¢ you are in Literal mode the Editar
will look for occurances of the target string. If you are in Token made
the Editor will look for isolated occurances of the target string. The
Editor considers a string isolated if it is surrounded by any
combination of delimiters. For example, in the expression below the
string "HEIGTH" is isolated by the delimiters "=" agnd “uv,

AREA: =HEIGCTH*WIDTH/

If you wish token mode you type "T" after the prompt line and before
the target string. It you wish Literal mode yoau type "L" in the same
place. If you do not type either value the mode will be set to the
default value found in the Environment. I# the default value is Literal
the prompt line will remind you that if youv wish Token you must type
"T" by displaying "T(ok". I+ the default value is Token the prompt line
will remind you that you must type "L" if you wish Literal mode by
displaying "L(it". Token made ignores spaces within strings. In token
mode both "¢ 7,/)" and “(‘, ’)" are considered to be the same string.

The Same option: In both commands you may %type “S" instead of
any of the delimited strings. The "S" indicates to the Editor that it
is to use the same string as previously used. For example, typing
"RS/<any-~string>/" causes the REPLACE mode to use the previous target
string, while typing "R/<any-string>/S" causes the previous substitute
string to be used.

Find

FIND mode is reached by typing “F" while at the Command level.
This is indicated on the prompt linme by "F(ind". On entering Find mode
one of the prompt lines in Figure 3.7 appears

Figure 3.7

o e e et e e e Gt St e s S S

SFindL11: L(it <target> =>

DFind[1]: T(ok <targetd> =>

The FIND mode finds the n~th occurance of the <target> string
starting with the current position and going in the current direction.
The number "n" is the <repeat-factor> and is shown on the prompt line
in the brackets "[1". The arrow at the beginning of the prompt line
always gives the current set direction,

Example 1: In the STRINGI program with the cursor at the first
"P" in PROGRAM STRIMGI Type "F", Then when the preompt appears type

“"YWRITE‘". YOU must type the single quote marks. The prompt line should
now appear as:

>Findl[11: L)it <target> =>‘WRITE’

Page 44

When you type the last quote mark the cursor will jump to immediately
after the "E" in the first WRITE.

Example 2: In the STRING!1 program with the cursor at the "E" ot
“END. " type: "<" "3" “F". This will find the 3rd (“3") pattern in the

reverse ("<") direction. When the prompt line appears type /WRITELN/.
The prompt line should read:

<Findf31: L)it <target> =>/WRITELN/
The cursor will move to immediately after the "N" in WRITELN.

Figure 3.8

PROGRAM STRING1;
BEGIN
WRITE(/TOC WISE ‘);
WRITE(’YDU ARE‘);
" WRITELNCY,)i (#CURSOR FINISHES IN THIS LINE#*)
WRITELN('TOO WISE “);
WRITELN(‘YOU BE.) : :
END. (#CURSOR STARTS IN THIS LINE#)

Example 3: On the first find we type "F/WRITE/". This locates
the first “WRITE". Now typing “FS" will make the prompt line #£lash:

O>Find[1]1: L)it <target> =D§

and the cursor will appear at the second WRITE.

Replace
REPLACE mode is reached by typing "R" while at the Command

level. This is indicated on the prompt line by "R)place". On entering
REPLACE mode one of the two prompt lines in Figure 3. 11 appears. In
this example we have assumed that a <repeat—factor> of four was
entered.)

Figure 3.9

>Replacel4l: L(it V(fy <targ> <sub> =>

>Replacel4]: Tl(ok V(fy <targ> <sub> =>

Example 1: Type "RL/QX//YZ/" which make the prompt line appear as:
>Replacell1]: L)it V)fy <targ> <sub> =>L/QX//YZ/
This command will change: “"VAR SIZEQX: INTEGER; " to "VAR
SIZEYZ: INTECGER: *. I+ we had not been in a literal mode it would not

have found the string QX because it is not @ token. It was part of the
token SIZEQX. '

Page 45

Example 2: In Token mode REPLACE ignores spaces between tokens
when looking for patterns to replace. For example if you had the lines
on the left hand side of Figure 3.9 and you typed: “2RT/(’, ‘}/.LN. "
The prompt line should appear as:

JReplace: L)it V)fy <targ> <sub> =>/(4, ')/ LN.

and immediately after you typed the last period it would change those
two lines to those on the right hand side of Figure 3. 10.

Figure 3. 10

WRITEC() *); WRITELN;
WRITEC “, ') © WRITELN;

V¥fy: The verify option permits you to examine each occurance
of the <targ> string (up to the limit set by the repeat factor) and
decide if that occurance is to be replaced. The following prompt line
appears whenever REPLACE mode has found the <targ> pattern in the file
and verification has been requested:

7Replace: <esc> ahorts, ‘R’ veplaces, ’ ‘ doesn’t

Typing an "R" at this point will cause a replacement; typing a
space will cause the REPLACE mode to search for the next occurance
provided the repeat factor has not been reached. The repeat factor
counts the number of timee an occurance is found, not the number of
times you actually type "R".

FORMATTING COMMANDS

Ad just

ADJUST mode is reached by typing "A" while at the Command
level. This is indicated on the prompt line by "A(dyst". On entering
ADJUUST mode the following prompt line appears:

>Adjust: L(just R(just Clenter <left,right, up, down—arrows> {Letx> to leave)

The ADJUST mode is designed to make it easy to adjust the
indentation. On any line you may use the <right-arrow> and <left—arrouwd
commands to move the whole line. Each time you type a <right-arrouw> the
whole line moves one space to the right. Each <left—-arrow> moves it one
to the left. When you have the line adjusted to the desired indentation
press <etx> VYou cannot <esc> from this mode

In writing a PASCAL program you may find yourself with a whole
sequence of lines to adjust. For example when you find you nerd an
additional BEGIN -END sequence you will want to adjust all the lines
in between two speces to the right. This is done easily. Adjust one
line, then use <up-arrow’> ({down-—arrow’>) commands and the line abave
(below) will be automatically adjusted by the amount of adjustment on
the line from which you came. :

Page 464

Repeat—factors are valid when used before any .of the <arrow>
commands while in ADJUST mode.

Example: Starting with the cursor anywhere in the line
"WRITE('TOD WISE “);i" of the program shown in Figure 3. 11, type the
series of cammands: "A",<right—-arrow>>, {down-arrow>, {down—-arrow>,
"3"<right~arrow>, "2", <down-arrow>, <etx>». The adjusted text is shown in
Figure 3.12.

Figure 3.11

- -

PROGRAM STRINGZ2;

BEGIN
WRITE(’TQO WISE ")
WRITE('YOU ARE ‘)i
WRITELNCY, 7);
WRITELNC(‘TOO WISE)i
WRITELN(‘YOU BE’)

END.

Figure 3. 12

PROGRAM STRINGZi

BEGIN
WRITE(‘TOO WISE ’); A <right-arrow> adjusts this line right one
WRITE(’YQU ARE’)i Ad yjusted by amount of the above line an <{down-arrow>
WRITELNC’, *); Ad justed one by line above and 3 by "3",<right-arrow>
WRITELN(’/TOO WISE ‘) Adjusted four by line above on "2", <{down—-arrow>
WRITELNC(’YDOU BE’) Also adgjusted four by "2",<down—arrow>>
END.

ADJUST mode can also center or Jyustify text., Typing "L" while
in ADJUST mode will cause the line to be left—justified to the margin
set in the Environment. Similarly typing "R" right—justifies to the set
margin and typing "C" will cause the line toc be centered between the
set margins. Typing <up—-arrow> (or <down-arrow>) will cause the line
above (below) to be adjusted to the same specification (left-justified,
right-justified or centered) as the previously adjusted line

Margin

MARCGIN command is executed by tuyping "M" while at the Command
level. MARGIN is an Environment dependent command, that is, it may only
be execulted when Filling 3¢ ~et to True and Auto-intent is set to
False. The prompt for the MARGIN coummand does not appear on the
“SEdit: " line.

There ave three parameters used hy the command: Right-margin,
Left—-margin and Paragraeph—margin. MARGIN deals with one paragraph and
realigns the text to compress it as much as possible without vielating
the above three margins. See the Environment option under the SET mode
for how to set the margin values,

~ Page 47

Example: The paragraph in Figure 3.13 has been MARGINed with
the parameters on the left while the same paragraph in Figure 3. 14 has
been MARGINed with the parameters on the right.

Left-margin © Left—margin 10
Right-margin 72 Right—-margin 70
Paragraph—-margin 8 Paragraph—-margin O

Figure 3. 13

This quarter, the equipment is different, the course materials
are substantially different, snd the course organization is different
from previous quarters. You will be misled if you depend upon a friend
who took the course previously to orient you to the course.

Figure 3. 14

This quarter, the equipment is different, the course materials are
substantially different, and the course organization is
different from previous quarters. You will be misled if you
depend upon a friend who took the course previously to
orient you to the course.

A paragraph is defined to be something occuring between two
blank lines. to MARGIN a paragraph move the cursor to anywhere in that
paragraph and type "M". If you are doing an exceptionally long
paragraph it may take several seconds before the routine is ready to
vredisplay the screen.

Command Characters: Portions of the text can be protected from
being MARGINed by the use of the Command character. If the Command
character appears as the first non-blank character in a line then that
line is protected from the MARGIN command. The MARGIN command treats a
line beginning with the command character as though it were a blank
line, that is, it will consider that line to terminate (begin) the
paragraph. MWarning: Do not use the MARGIN command when in a line
beginning with the Command character.

MISCELLANEQUS COMMANDS

Set

—

SET mode is entered by typing "S" while at the Command level.
The prompt for the SET command dogs not appear on the “DEdit:" prompt
line due to space limitations. On entering the SET mode the following
prompt line appears:

Page 48

>Set: M(arker E(nvironment <esc>

M(arker:

When you are editing it is particularly convenient to be able
to Jump directly to certain places in a long file. The Editor enables
you to set markers into your file at places of your choosing. Once you
have set these markers it is possible to yump to them wsing the Mlarker
option in the JUMP mode. When in the SET mode you type “M" for M(arker,
the following prompt line appears:

Name of marker?

At this point you will wish to enter the name of the marker.
You may enter any string followed by a <return> The marker will be
entered at the position of the cursor in the text; therefore, first
move the cursor to the desired position then set the marker. (I+ the
marker already existed, it will be reset.)

Figure 3. 15

PROGRAM STRING1
BEGIN

wRITE(/TOO WISE ‘)i
END.

Example: With the cursor at the position shown in Figure 3. 15
and with the Editor at the Command level, the following commands
jllustrate the setting of a marker. The lower case character
represents the position of the cursor.

You type: Prompt line displays:
DEdit: A(djst......
ngy >Set: M(arker E(nvironment <escd>
v Name of Marker?
“# GOLret>" >Edit: Aldyst......

After the <returnd> the cursor goes back to its original place
in the text and the marker has been set. Having set the marker, you may
JUMP from any place in the f.le to the marker named "# GD" and the
cursor will move directly to the "W" in "WRITE".

E(nvironment:

There are several different uses for editing on the computer.
Text editing and program editing are the two chief ones. Certain
options make it more convenient to write programs while other options
make it more convenient to edit text. The Editor enables the user to
set the environment which the user determines to be most convenient for
him. When in the SET mode you type "E" for E(nvironment, the screen
display is replaced with the following prompt shown in Figure 3. 16.

Page 49

Figure 3. 164

SEnvironment: {options} <etx> or <sp> to leave

A(uto indent True

F¢illing False

L(eft margin O

Right margin 79

Plara margin 5

C(ommand ch ~

T(oken det True

7436 bytes used, 12020 available

Patterns:
<targetd>= ‘xyz-‘, <subst>= ‘abe’

By typing the appropriate letter you may change any or all of
the options. The options shown are the default options which you have
upon entering the Editor on the Terak 8510A. Implementations for other
machines may have different defaults.

The Options:

A(uto indent:

Auto-indent affects only the INSERT mode of the Editor. Auto-
indent may be set to True (turned on) by typing “A","T", Auto-indent
may be set to False (turned off) by typing "aAv, "fFn,

F(illing:

Filling affects the INSERT mode and allows the MARGIN command
to function. Filling is set to True (turned on) by typing “F%,uTv, 14
is set to False by typing "F", “Fw,

Lieft margin
R(ight margin
P(ara margin:

When Filling is True the margins set in the Environment are the
margins which affect the INSERT mode and the MARGIN command. They also
affect the Center and Justifying commands in the ADJUST mode. To set
the Left-margin type "L" followed by a positive integer. End the
positive integer with a <space>. The positive integer you typed should
replace the old value for the L(eft margin in the prompt shown in
Figure 3. 16, Setting new values for the other margins is done similarly
using the letters "R" and "p", All positive integers with less than
four digits are valid margin values.

As an example you could set the options to the following
values:

Page 50

L(eft margin 10
Rtight margin &0
P(ara margin O

Cl{ommand ch:

The Command character affects the MARGIN command and the
Filling option in the INSERT mode as described in those sections. You
may change Command characters by typing "C" followed by any character.
For example typing “C","#" will change the Command character to "#".
This change will be reflected in the prompt.

T(oken def:

This option affects FIND and REPLACE. Token is set to True by
typing “T", "T" and to False by typing "T","F". If Token is True then
Token is the default. If Token is False then Literal is the defavlt

Verify

The VERIFY command is executed by typing "V" while at the
command level. Verify permits you to verify the status of the Editor by
causing the screen display to be updated. The Editor attempts to adyu-t
the window so that the cursor is at the center of the screen.

Quit

QUIT mode is reached by typing “Q" while at the Command level.
This is indicated on the prompt line by “Q(uit". On entering QUIT mode
the screen display is replaced by the following prompt:

Figure 3.17

>Quit:
U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

You must select one of the four options by typing U E,R or W

U(pdate:

This causes you to leave the Editor after writing the file you
have just modified into the workfile. The file is stored as
SYSTEM. WRK. TEXT and is available for either the Compile or Run options
or for the Save option in the Filer., The Filer treats SYSTEM. WRK. TEXT

as text file.

E(xit:

Page 51

This causes you to leave the Editor without making any changes
in SYSTEM. WRK. TEXT. This means that any modifications you have made
since entering the Editor are not recorded in the permanent workfile.

R(eturn:

This option returns you to the Editor without updating. The
cursor is returned to the exact place in the file it occupied when you
typed "@". Usvally this command is used after unintentionally typing
IIGM.)

Wirite:
This option puts up a further prompt:

Figure 3. 18

>Quit:
Name of output file (<cr> to return) -—->

You are able to cause the Editor %o write the modified file to
any file name of your choosing. If you cause it to write to the name of
an existing file the modified file will replace the old file. After the
file has been written to the disk: the EDITOR will ask you to enter
E(xit or R(eturn. If you R(eturn the cursor is returned to the exact
place of typing "@". This command can be aborted by typing a carriage
return instead aof a file name. Aborting will return you to the Editor,

Page 52

3636 3 36 330 3 M3 30333 AR 303 S H IR

REFERENCE SECTION 3 # Section 1.3.4 ¥
BRI R R F I H IR H RN

Reference Section

{down—-arrow> moves <repeat—factor> lines down

<up-—arrouw>> " " lines up

<right-arvouw> " " , spaces right

<left—arrouw> " v spaces left

{space> " " spaces in directian

<back—space> " " spaces left

<tab> moves <repeat—factor> tab positions in direction

{return> moves to the beginning of line <repeat—factor’> lines in directio
g on, non_n change direction to backward

e L change direction to forward)

= moves to the beginning of what was just found/replaced/inserted/

exchanged

Ald just: Adjusts the indentation of the line that the cursor is on. Use
the arrow keys to move. Moving up (down) adjust line above
(below) by same amount of adjustment on the line you were on.
Repeat—-factors are valid,

C(opy: Copies what was last inserted/deleted/zapped into the file at
the position of the cursor.

D(elete: Treats the starting position of the cursor as the anchor. Use
any moving commands to move the cursor. <etx> deletes
everything between the cursor and the anchor.

Flind: Operates in L)iteral or T)oken mode. Finds the <{targ> string.
Repeat—-factors are valid, direction is applied. "S8" = use same
string as before.

I(nsert: Inserts text. Can use <backspace> and to reject part of
your insertion.

J(ump: Jumps to the beginning, end or previously set marker.

M(argin: Adjusts anything between two blank lines to the margins which
have been set. Command characters protect text from being
margined. Ilnvalidates the copy buffer.

P{age: Moves the cursor one page in direction. Repeat-factors are
valid, direction is applied

Q(uit: Leaves the editor. You may Ulpdate, Elxit:, W)rite, or Rleturn.

R(eplace: Operates in L(iteral or Tloken mode. Replaces the <{targ>
string with the <subs> string. V(erify option asks you to
verify before it replaces. "8" option uses the Same string as
before. Repeat—factors replace the target several times
Direction is wvalid.

Page 53

S(et: Sets M(arkers by assigning a string name to them. Sets
E(nvironment for A(uto—indent, F(illing, margins, T(oken, and
C(ommand characters. S)

V(erify: Redisplays the screen with the cursor centered.

eX(change: Exchanges the current text for the text you type in while in
this mode. You can only do one line. <back-space> cause the.
original character to re—appear.

Z)ap: Treats the starting position of the last thing
found/replaced/inserted as an anchor and deletes everything
between the anchar and the current cursor position.

<repeat-factor> is any number typed before a command. Typing a /7 is the
infinite number. .

Page 54

LR LR R R R R R R R SR R R T X R R X G AR e Sy
* YET ANOTHER LINE ORIENTED EDITOR — YALOE # # Section 1.4 #
i g T e s T

Version 1.4 Janvary 1978

This text editor is intended for use on systems that do not
have powerful screen terminals. It is designed to be very similar to
the text-editor which accompanies DEC’s RT-11 system.

The editor assumes, but is not dependent on, the existence of
the workfile text. Upoan reading it YALOE will proclaim ‘workfile STUFF
read in’. If it does not find such a file, it will proclaim ‘No work
file read in-’. This means that you entered YALUOE with an empty
workfile. From this point you may create a file in YALOE; and when you
exit by typing ‘QU’., your workfile will no longer be empty.

The editor operates in one of two modes: Command Mode or Text
Mode. In command mode all keyboard input is interpretted as commands
instructing the editor to perform some operatian. When you first enter
the editor you will be in the Command Mode. The Text Mode is entered
whenever the user types a command which must be follouwed by a text
string. After the command F{ind, G(et, I(nsert, M(acro define, R(ead
file, W(rite to file. or eX(change has been typed, all succeeding
characters are considered part of the text string until an <esc> is
typed. Note: when typed <esc> echoes a ’$’. The <esc> terminates the
text string and causes the editor to reenter the Command Mode, at which
point all characters are again considered commands.

NOTE: Follow command strings in YALOE with <esc><esc> to
execute them. (This is unlike the rest of the systems ‘immediate’
commands.)

SPECIAL. KEY COMMANDS

Various characters have special meanings, as described below.
Some of these apply only in YALOE. Many have similar effects in the
rest of the systemi for these the ASCII code to which the system
responds as indicated can be changed using the program SETUP, described
in Section 4. 3. (<esc> is the most particular anomaly to YALDE.)

<esc Echoes a ‘%°’. A single {esc> terminates a text string.
A double <esc> executes the command string.

RUBOUT Deletes current line. On hard~-copy terminals echoes
<linedel> ‘<ZAF’ and a carriage veturn. On others, it clears
the current line on the screen. In both cases the

contents of that line are discarded by the editor.

CTRL H Deletes character from the current line. ©On hard-
<chardel> copy terminals it echoes a percent sign followed by
the character deleted. Each succeeding CTRL H the

by the user deletes and echoes another character.

An enclosing percent sign is printed when a key other
than CTRL H is typed. This erasure is done right to
left up to the beginning of the command string.

Page 595

CTRL H may be used in both Command and Text mode.

CTRL . X ' Causes the editor to ignore the entire command
string currently being entered. The editor
responds with a <cr> and an asterisk to
indicate that the user may enter another
command., For example:

#IDALE AND

KEITHLCTIRL X>

*
A <{chardel> would cause deletion of only KEITH; CTRL X
would erase the entire command.

CTRL O Will switch you to the optional character set
(i.e. bit 7 turned on). This works only on the
TERAK B8510A. The CTRL 0 is used as a toggle
between the character sets. NOTE: You may find
while in the editor that weird characters are
showing up on the terminal instead of normal

ones. It could be because you accidentally

typed CTRL O. To get back just type CTRL O

again.
CTRL F All output to the terminal is discarded by the system
<flush> until the next CTRL F is typed.
CTRL © All output to the terminal is held until another
Cstop> CTRL 8§ is typed.

All other control characters are ignored and discarded by YALOE.

COMMAND ARGUMENTS

A commmand argument precedes a command letter and is used
either to indicate the number of times the command should be performed
or to specify the particular portion of text to be affected by the
command. With some commands this specification is implicit and no
argument is needed; other commands, however, require an argument,

Command arguments are as follows:
N n stands for any integer. It may be preceded by a + or -,
I# no sign precedes n, it is assumed to be a positive number.
Whenever an argument is acceptable in a command, ite absence
implies an argument of 1 (or ~1 if only the - jis present).
m m is a number O..9,

0 ‘O’ refers to the beginning of the current line.

/ '/’ means 32700. ‘~/' means --32700. It is used for a large
repeat factor.

Page S6

= ‘=’ is uvsed only with the J, D and C commands and
represents -n, where n is equal to the length of the
last text argument used, for example #GTHIS$=D$$
finds and removes THIS.

COMMAND STRINGS

All EDIT command strings are terminated by two suvccessive <escls.
Spaces: carriage returns and tabs (CTRL I) within a command string are ignored
unless they appear in a text string.

Several commands can be strung together and executed in
sequence. For example:

*B GTHE INSERTED% ~3CINGS SK GSTRINGS%

As a rule, ctommands are separated from one another by a single
<esc>. This separating <esc> is not needed, however, if the command
requires no text. Commands are terminated by a single <esc>; a second
<esc> signals the end of a command string, which will then be
executed. When the execution of the command string is complete, the
editor prompts for the next command with ‘#’.

I# at any point in executing the command, an error is
encountered, the command will be terminated, leaving the command
executed only up to that point. .

THE TEXT BUFFER

The Text Buffer is where the current version of your text is
stored. This buffer’s area is dynamically allocated; its size and the
room left for expansion may be found out by using the ? command.

The editor can only wrrk on files that fit entirely within the
Text Buffer. The Screen Oriented Editor in the next major release will
not have this limitation.

THE CURSOR

The "cursor" is a logical entity which is where, in your text,
the next command will happen. In other words it is the current
“pointer" into the Text Buffer. Most edit commands function with
respect to the cursor:

A,B,F, G, J: Moves it.

D,K: Remove text from where it is.

U, I,R: Add text to where it is.

C, X: Remove and then add text at it.

L:V: Print the text on the terminal from it.

Page 57

INPUT/0UTPUT COMMANDS

L{ist, Vierify, Wirite, R(ead;'G(uitx E(rase, and O

The L(ist command prints the specified number of lines on the
console terminal without moving the cursor.

*#-2L %4 Prints all characters starting at the second
preceding line and ending at the cursor.

*#4} %% Prints all characters beginning at the cursor
and terminating at the 4th <erd.

*OL $% Prints from the beginning of the current line up
to the cursor.

The V(erify command prints the current text line on the
terminal. The position of the cursor within the line has no effect and
the cursor is not moved. No arguments are used. The V(erify command
is equivalent to a OLL (list) command.

The W(rite command is of the form
#W<File titleds
File title is any legal file title as decribed in Section 1.2
less the file type. The editor will auvtomatically append a ‘. TEXT"’ .
suffix to the file title given unless the file title ends with ‘L

‘1 or ‘. TEXT’. 1If the filename ends in a ‘. 'y the dot will be
stripped from the filename

The W(rite command will write the entire Text Buffer to a file
by the given file title. It will not move the cursor nor alter the
contents of the Text Buffer.

If there is no room for the Text Buffer on the.volume specified
in the file title given, the message:

OUTPUT ERROR. HELP!
will be printed. It is still possible to write the Text Buffer out by writing
it to another volume.
The R(ead command is of the form
#R<File title>s

The editor will attempt to read the file title as given. If it
can’t find it it appends a ‘. TEXT’ and tries again

Page 58

The R(ead command inserts the specified file into the Text
Buffer at the cursor. The cursor remains in the Text Buffer before the
text inserted. If the file read in does not fit into core buffer, the
entire Text Buffer will be undefined in content, i.e. this is an
unrecoverable error.

The G(uit command has several forms

QU Quit and update by writing out a new SYSTEM. WRK. TEXT

QE Quit and escape session;- do not alter SYSTEM. WRK. TEXT
QR Don‘t quiti return to the editor
Q A prompt will be sent to the terminal giving all the

above choices; enter option mnemonic (U, E, or R) only

Executing the QU command is a special case of the write
command, and the attempt to write out SYSTEM. WRK. TEXT may fail. In
this case use the W command to write out your file and then GE to exit
the editor.

The GR command is used on the occasions when a Q@ is accidentally
typed, and you wish to return to the editor rather than leave it.

+

The E(rase command (intended for CRT terminals) erases the
screen,

The O command (also intended for CRT terminals) can be used to
have the context around the cursor displayed on the screen each time
the cursor is moved. The argument of the O command determines the size
(# of lines) in that context. This option is initially disabled when
the editor is entered and can be enabled by issuing an O command. A
second O command disables the option; succeeding ‘0O’s successively
enable, disable etc. The cursor is denoted as a split in the line.

CURSOR RELOCATION COMMANDS

Jlump:, Aldvance, B(eginning, G&(et, F(ind

When using character and line oriented commands, a positive (n or +n)
argument specifies the number of characters or lines in a forward direction,
and a negative argument the number of characters or lines in a backward
direction. The editor recognizes a line of text as a unit when it detects a
<cr> in the text.

Carriage return characters are treated the same as any other

character. For example assume the cursor is positioned as indicated in the
following text (~ represents the current position of the cursor and does not
appear in actual use. It is present here only for clarification):

Page 59

THERE WAS A CROOKED MAN~<CR>’
AND HUMPTY DUMPTY FELL ON HIM<CR>

The J(ump command moves the cursor over the specified number of
charzcters in the Text Buffer. The edit command -4J moves the cursor back 4

characters

THERE WAS A CRODKED™~ MAN<KCR>
AND HUMPTY DUMPTY FELL ON HIM<CRY>

The command 10J moves the cursor forward 10 characters and places it
between the ‘H’ and the ‘U’.

THERE WAS A CROOKED MAN<CR>
AND H*UMPTY DUMPTY FELL ON HIMCCR>

The A(dvance command moves the cursor a specified number of lines
The cursor is left positioned at the beginning of the line.

Hence the command OA moves the cursor to the beginning of the current
line.

THERE WAS A CROOKED MAN<CRD
“AND HUMPTY DUMPTY FELL ON HIM<KCR>

The command —~1A (or —A) moves the cursor back one line.

~“THERE WAS A CROOKED MAN<CR>

AND HUMPTY DUMPTY FELL ON HIMCCR> .
The Bleginning command moves the cursor to the beginning of the Text

Buffer.

Search commands are used to locate specific characters gr strings of
characters within the Text Buffer.

The G(et and F(ind commands are synonymous. Starting at the position
of the cursor, they search the current Text Buffer for the nth occurrence of a
specified text string. A successful search leaves the cursor immediately
after the nth occurrence of the text string if n is positive and immediately
before the text string if n is negative. An unsuccessful search generates an
eérror message and leaves the cursor at the end of the Text Buffer for n
positive and at the beginning for n negative.

*BCSTRING$=J$$ This command string will look for the string
STRING starting at the beginning of the Text
Buffer; and if found it will leave the cursor
immediately before it.

Page 40

TEXT MODIFICATION COMMANDS

I(nsert._D(elete..K(ill, C(hange, eX{change

The I(nsert command causes the editor to enter the TEXT mode.
Characters are inserted immediately following the cursor until an <esc> is
typed. The cursor is positioned immediately after the last character of the
insert. Dccasionally with large insertions the temporary insert buffer
becomes full. Before this happens a message will be printed on the console
terminal, ‘Please finish’. VYou should then or as soon as possible type two
successive <esc>s. To continue, type I to go back into the Text mode.

NOTE: Forgetting to type the I command will cause the text entered to
be executed as commands.

The D(elete command removes a specified number of characters from the
Text Buffer, starting at the position of the cursor., Upon completion of the
command, the cursor is left at the first character following the deleted text

#-2D¢$ Deletes the two characters immediately preccding
the cursor.

#B$FHOSE $=D$% Deletes the first string 'HOSE ' in the iext
Buffer, since =D used in combination with
a search command will delete the indicated
text string.

The K(ill command deletes n lines from the Text Buffer, starting at
the position of the cursor. Upon completion of the command. the cursor is
left at the beginning of the line following the deleted text.

#2K%% Deletes characters startiﬁg at the current
cursor position and ending at (and including)
the second <CR>.

*/K$% Deletes all lines in the Text Buffer after the
cursor.

The C(hange command replaces n characters, starting at the cursor,
with the specified text string. Upon completion of the command, the cursor is
left immediately following the changed text.

#0CAPPLESSS Replaces the characters from the beginning of
the line up to the cursor with ‘APPLES’,
(equivalent to using OX).

#BOHOSE$=CLIZARDS$ Searches for the first occurrence of ‘HOBE’ in
the Text Buffer and replace it with ‘LIZARD’.

The eX(change command exchanges n lines, starting at the cursor, with

the indicated text string. The cursor is left positioned after the changed
text.

Page 61

*¥-OXTEXT%$ Exchanges all characters beginning with the
first character on the Sth line back and ending
at the cursor with the string ‘TEXT’.

#OXTEXT$$ Exzhanges the current line from the beginning to
the cursor with the string ‘TEXT’, (equivalent
to using 0C).

*/XTEXTS$ Exchanges the lines from the cursor to the end
of the Text Buffer with the text ‘TEXT,
(equivalent to using /C). -

OTHER COMMANDS

S{ave, U(nsave, M(acrao, N (macro execution) and ‘7?7

The S(ave command copies the specified number of limes into the Save
Buffer starting at the cursor. The cursor position does not change, and the
contents of the Text Buffer are not altered. Each time a Stave is executed,
the previous contents of the Save Buffer, if any, are destroyed. If executing
the S(ave command would have overflowed the Text Buffer, the editor will
generate a message to this effect and not perform the save.

The U(nsave command inserts the entire contents of the Save Buffer
into the Text Buffer at the cursor. The cursor is left positioned before the

inserted text. If there is not enaugh room in Text Buffer for the Savq
Buffer, the editor will generate a message to this effect and not execute the
unsave. .

The Save Buffer may be removed with the command OU.

The M{acro command is used to define macros. A maximum of ten macros,
identified by the integer (0..9) preceding the ‘M’‘, are allowed. The defavlt
number is 1. The M{acro command is of the form:

mMYicommand string%

This says to sture the command string into Macro Buffer number m,
where m is the optional integer 0..9. The delimiter, ‘%’ in this example, is
always the first character following the M command and may be any character
which does not appear in the macro command string itself. The second
occurrence of the delimiter terminates the macro.

All characters except the delimiter are legal Macrto command
string characters, including single <esc>s. All commands are legal in a
macro command string. Example of a macro definition:
#OMUGBEGINS=CEND BEGINSV$Yt%

Page 62

This defines macrtro number S. When macro number 5 is executed, it will
look for the string ‘BEGIN’, change it to END BEGIN’i, and then display the
change. ‘

If an error occurs when defining a macro, the message
‘Evror in macro definition’

will be printed, and the macro will have to be redefined.

The execute macro command, N, executes a specfied macro command
string. The form of the command is:

nNm$

Here n is simply any command argument as previously defined; m is the
macTo number (an integer O..%9) to be executed. I# m is omitted, 1 is
assumed. DBecause the digit m is technically a command text string, the N
command must be terminated by an <esc>.

Attempts to execute undefined macros cause the error message ‘Unhappy
macnum’. Errors encountered during macro execution cause the message ‘Error
in macro’. Errors encountered in macro command syntax cause the message
‘Error in macro definition’.

The ? command prints a list of all the commands and the sizes of the
Text Buffer. Save Buffer, and available memory left for expansion.

Page &3

SUMMARY OF ALL COMMANDS

Page 64

n -
nA:

B:
nC:

nD:
E:
nF:

ni.:
mM:
niNm:
no:

an argument m — macro number

Advance the cursor to the beginning of the n th line from the
current position,
Go to the Beginning of the file.
Change by deleting n characters and inserting the following
text. Terminate text with <escl.
Delete n characters.
Erase the screen.
Find the n th occurrence From the current cursor position of
the following string. Terminate target string with <esc.
GCet - ditto -

-~ invalid -
Insert the following text. Terminate text with <esc>.
Jump cursor n characters.
Kill n lines of text. If current cursor position is not
at the start of the line, the first part of the line remains.
List n lines of text.
Define macro number m.

Perform macro number m n times.

On, off toggle. If on, n lines of text will be d;splaged
above and below the cursor each time the cursor is moved.
I# the cursor is in the middle of a line then the line will
be split into two parts.
The default is whatever £ills the screen. Type O to turn off.

-~ invalid -
Quit this session, followed by:
U: (pdate Write out a new SYSTEM. WRK. TEXT
E: (scape Escape from session
R: (eturn Return to editor .

Read this file into buffer (insert at cursor);
‘R’ must be followed by <file name> <esc>;
WARNING: If the file will not f£it into the buffer, the
content of the buffer becaomes undefined!
Put the next n lines of text from the cursor position 1nto the
Save Buffer,
- invalid -
Insert (Unsave) the contents of the Save Buffer into the text
at the cursor; does not destroy the Save Buffer.
Verify: display the current line
Write this file (from start of buffer);
‘W’ must be followed by <filename> <escd.
Delete n lines of text, and insert the following text;
terminate with <esc>.
- invalid -~
- invalid -

F690 96 330 36 36 $6 3030 3034 3 HE I I I I GE 0 I I H MW

INTERACTIVE DEBUGGER * % Section 1.5
A I 33 ISR ISR

Version I.4 January 1978

To facilitate the debugging of Pascal programs, an interactive
debugger is included in the system. In order to use it is recommended
that two compiler options be turned on in your program.

The first is "D+" which causes conditional halts to be
generated. These halts are necessary for use of the Crawl, Walk or
Breakpoint commands. The other is “L+", which causes a compiled source
listing of your program to be written to your disk. The debugger uses
this file, SYSTEM. LST. TEXT, while in the CRAWL and WALK mode or when a
breakpoint is executed. "D+" causes a slightly larger codefile to bhe
created, "L+" requires space on disk, but these options can be turned
on and off repeatedly, allowing one to surround troublesome pieces of
code, without generating extremely large code or listing files.

Sample program to be debugged:

1 1 1:D 1 (#$D+, L+%)

2 1 1:D 1 PROGRAM BUG:

3 1 1:D 3 VAR 1: INTEGER;

4 i 1:D 4

S 1 2:D 1 PROCEDURE DIVO;

é 1 2:D 1 VAR J: REAL;

7 1 2:C 0 BEGIN

8 1 2%C 0 J:=95/7 1

9 1 2#C 11 END (¢ DIVO #);
10 1 2:C 26

i1 1 1:C 0 BEGIN .
12 1 1xC o I :=0;

13 1 1#C 7 DIVO; :

14 1 1%C 11 END (% BUG #),

The source listing abcve of program BUG is interpreted as
follows: The first number of each line is the line number, the second
is the segment number and the third is the procedure number. The letter
after the colon or star indicates whether the offset represents a code
(’C’) or data (‘D’) offset. When a star ‘%’ appears after the procedure
number it means that that line has at least one conditional halt

associated with iti otherwise a ‘:’ appears. I+ the offset is a code
offset, it represents the offset in the code segment for that procedure
of the first instruction generated for that line. If the offset is a

data offset the rumber represents the word offset in the data ares
where storage for that line of the procedure begins. '

Page &5

To use the debugger type D(ebug instead of R(un at the sgstem'
command level. The program will be compiled if necessary, and the
debugger will print a message with the release number and date of

release.

PASCAL INTERACTIVE DEBUGGER -Janvary 1978

You will be in the EXAMINE mode and its prompt will bhe
displayed. In EXAMINE mode you can peruse portions of memory, set or
clear breakpoints, rTesume execution or exit your program. You may also
enter WALK or CRAWL mode in which your program will be executed one
statement at a time. To begin execution you have three options:

1) R{esume ~runs program normally until a BREAK or breakpoints
are encountered or a non—fatal run time eTTOT OCCUTS.

2) C(rawl —executes program on a one statement at a time basis,
waiting for input from you between steps.

3) W(alk —executes program one statement at a time at an
adjustable rate.

CRAWL MODE

Prior to executiorn of a statement, information about that
statement is displayed. I# SYSTEM.LST. TEXT exists, the compiled
listing line containing that statement is displayed, otherwise the line
#, the segment and procedure # the statement is in, and the code offset
of the first instruction of the statement is printed. You then have
two options:

1) type [spaceld if you wish to execute the line and continue

2) type ‘G’ to leave the CRAWL mode and enter the EXAMINE mode

WALK MODE

This mode is similar to CRAWL in that information about each
statement is displayed Just prior to execution of that statement. When
you type ‘W’ to go inte WALK mode a prompt will appear on the top line
of the screen.

DELAY:

An integer should then be entered, and the debugger will use
this as the number of seconds (on an LSI-11) to delay between executing
each statement in the program. Use the BREAK key (sometimes unreliable
in PDP-11 systems) to get back to the EXAMINE mode.

Page &6

EXAMINE MODE

NOTE: To use this mode and to aid in debugging a program with
the debugger it is almost a necessity to have a compiled source listing
of the ‘bugged’ program in order to find names of variables with their
offsets, the numbers belonging to procedures and the code offsets for
each line in the program.

In EXAMINE the following will be displayed when the divide by zero occurs
in the program BUG. (Dne way to get to this point is to use the R(esume
command and then type [spacel when prompted to do so.)

SEXAMINE: 1..9 (links, M(ove, < > Llink, D(ata, S{tack, H(eap
E(rase, U(pdate, <ctrl-U(p>, <ctrl-D(ownd>, C(rawl, W(alk, R{esume, <esc>

Proc 2 Calier 1 Parent 1 Param 0 Data 2
Seg i Seg 1 Seg 1 Stack 10 IPC 9 Depth O
Brkpnts: Defaultlink = Dynamic
TYPE ID PROC# OFFSET ADDR INTEGER OCTAL HEX L0 HI CHAR
Data 2 1 11465460 -25228 1145464 9D74 164 235 t?
Data 2 2 116562 0 000000 0000 000 000 ?e

*

Floating point overflow/underflow

The cause of entering the EXAMINE mode is displayed on the
bottom line of the screen. It is either some type cf execution errovr, a
user break, termination of CRAWLING or WALKING mode, or execution of a
breakpointed statement. In this case it was a floating point error (a
divide by zero to be specific)

Page &7

The procedure in which the error occcurred is given by PROC and -
the SEGH# below it. Here there are 2 and 1 respectively. This can be
seen from looking at the source listing. to be procedure DIVO. The
caller of DIVO and its parent are the same: the main body of BUG. In
BUG, as in most user programs, the main body is procedure #1, in seq#l.
When you are moving up and down the dynamic or static chains PROC and
SEG refer to the procedure you’re at in the dynamic chain (the current
procedure) and CALLER and PARENT are in reference to this procedure.

The amount of memory (in words) allocated for this procedure’s
PARAMeters is O, the STACK size is 10 words (The current release may be
inaccurate) and the DATA seqgment is 2 words. The STACK portion is the
evaluation stack where values are put during expression calculations by
the compiler. The DATA area is used for storage of declared variables
and any temporary variables generated. For more detailed explanations
refer to section 3.5 in the documentation, INTRODUCTION TO THE PASCAL
PSEUDO-MACHINE. The procedure DIVO has one local variable, R: REAL
declared which takes two words in memary because it is REAL. By looking
at the source listing you can see that J is stored starting at offset
1, and then by looking at offsets 1 and 2 in the memory display area of
the screen you can see the value of J. To determine Jjust where the
value of a variable is stored (i.e. its offset) one must understand the -
‘algorithm the compiler uses. Consider, for example the following
declaration:

VAR I, J. K: INTEGER:;

Variable K would be stored at offset I (not 3), J would be at
“offset 2 and I at offset 3.

For this declaration
VAR A: ARRAYLO.. 2] OF INTEGER;

ALOJ would be at offset 1, AL1] at offset 2 and AL3] at 3.

Parameters are always stored directly from left to right.
Functions values always occupy offsets { and 2.

IPC is the interpreter program counter and by looking at this
number and searching for it (or the number that’s closest to it but
still smaller) in the source listing you will have the line in which
the error occurred. In this case the IPC is 11 which corresponds to
line 8 in program BUG.

DEPTH tells you where the current procedure is. in the ‘call’
chain with respect to the procedure in error (which is always at the
bottom of the call chain and therefore at depth 0). In other words,
DEPTH is the number of dynamic links above the halted procedure.

Page 68

DEFAULTLINK is the type of LINK you will traverse when using
the traversal commands. A DYNAMIC link points to a procedure’s caller
and a STATIC link to its parent. '

The ‘#’ shows where the D{(ata, S(tack, or H(eap command will
write when used.

COMMANDS IN EXAMINE MODE

1) # links —entering a number between O and 9 will move you
that many links up or down the dynamic er static chain. The direction
in which you will go is determined by the first character of the
EXAMINE prompt. ‘>’ indicates traversal will be in the direction of
older calls (if dynamic) or ancestors (it static); ‘<’ indicates
traversal towards more recent calls. Note: Traversal towards
descendants is disallowed. The type of links you will traverse, STATIC
or DYNAMIC, is specified to the right of DEFAULTLINK,

2) <esc> —typing this will return you to the system command
level,

3) L(ink —this command toggles the DEFAULTLINK from DYNAMIC to
STATIC and vice-versa.

4) D(ata —used for examining the DATA and parameter segment of
a procedure. This command has 4 parameters that can be specified if you
don’‘t want to use their default values. The debugger will prompt you
#or them. Typing a Lcrl at any point tells the debugger to use the
default values for the rest of the parameters. Typing a Lspacel
delimits a parameter and lets the debugger prompt you for the next one.

a) OFFSET: default value is last offset displayed plus 1.
Beginning value is 1. You change the offset by entering an
integer. N
b) LENGTH: beginning default value is the minimum of the
Buffer size for the memory display (iS5 for 24 line screens) and
DATA plus PARAM. After that it is the last length specified in a
D(ata or S(tack command. LENGTH determines the number of words to
be displayed.

c) PROC: the number of the current procedure is the
default value. Any procedure that is up the call chain from PROC
may be specified.

d) SEG: default value ic the segment the current procedure
belongs to. Enter the value of the segment you want if it’s not
the default.

Page &9

If the debugger finds the specified procedure it will display
the data, wrapping around to the tap and erasing information in the
memory display buffer if necessary. When an offset displayed is larger
than PARAM plus DATA for a procedure the message : .

Warning - offset too large

will appear on the bottom line of the screen and the invalid data will
not be displayed.

S) STACK —this command is used for examining the stack area
belaonging to a specified procedure. Parameters are specified in the
same manner as in the D(ata command, but the first offset is O not 1.

é) MOVE -a command used to find a specified procedure and
make it the current procedure. This command has two parameters:

a) PROC-procedure number of the desired procedure. Default
is the number of the bombed procedure (the one at the bottom of
the call chain). To use the default just type [retl, and the
normal search described below will be by—passed. Otherwise enter
an integer. Type [retl now to use the default segment number SEG,
otherwise type Lspacel].

b) SEG-segment number where desired procedure resides.
Default segment number is that of the current procedure.

Once the parameters have been set the debugger will then search
up the dynamic links starting at the caller of the current procedure.
(This implies Yyou can never move to the current procedure since the
debugger won‘t find it.) I+ the specified procedure is found it becomes
the current procedure and the information in the prompt line will be
vpdated, otherwise the current procedure remains unchanged

7) RESUME -resume normal execution of the program where the
debugger was invoked. '

8) CRAWL -resume execution of the program in CRAWL mode at the
point in the program where the debugger was invoked

?) WALK ~resume execution of program in WALK mode starting
where the debugger was invoked.

10) UPDATE -rafreshes the memory display buffer, S(tack, D(ata
and H(eap commands save the procedure numbers and offsets displayed in
the memory buffer. When ‘U’ is typed the buffer is erased and the saved
numbers are used to look up the information belonging there. I¢ any of
the information belcngs to Procedures that are below the current
procedure in the call chain then UPDATE will not be able to refresh
that part and will say :

Proc not found

Page 70

11) ERASE -clears the memory display buffer on the screen.

NOTE: neither the UPDATE nor ERASE commands affect‘main'memoru but simply the
memory display buffer. . '

12) /<’ or ‘, ' —changes the direction of link traversal to be
down the call chain, i.e. go towards the callees

13) ‘>’ or ‘. —changes the direction of link traversal to be
up the call chain, i.e. go towards callers

14) HEAP —asks for an octal address, and a length. That portion
of memory will then be displayed.

15) <CR> —clears the line with the ‘%' and moves down one line.
16) <CTRL-U> —~moves the ‘#’ up one line.
17) <CTRL-D> —moves the ‘#’ down one line.

18) BREAKPOINT -asks if you want to S(et or C(lear a
breakpoint.

SET: asks for a line number. Enter a line that has a ‘#'
in the compiled listing. Whenever a statement in that line is
about to be executed, the debugger is called.

CLEAR: asks for a line number. Enter <cr> to clear all
breakpoints, or the line number of an active breakpoint.

This final section of the document will describe how one could
vee the commands described above to diagnose the fault (floating point
error) that occurred in program BUG.

We know that the error occurred on line 8
J:=957 L

and the cause was a floating point error. With the debugger we might
want to look and see jJust what the value of I is. From the source
listing one can see that I is stored in procedure #1, segment #1 at
offset 3. Let us use the M(ove command to go to procedure 1 and then
the D(ata command to look at the value of I.

Page 71

1) type ‘M’ for move, then a 1 for procedure 1 and then Cret]
since the default segment # is 1 which is what we want.

Proc: 1lretl

2) the three line description of the current procedure will be updated
as shown below, the memory display buffer is unchanged so far.

3) type [ret]. This will enter a blank line in the memory display
buffer. This step is not necessary

4) type ‘D’ for data, enter 3 for OFFSET then [spacel, 1 for LENGTH
and then (retl.

Offset: 3 Length: 1lretl

The screen will look as follows:

JEXAMINE: 1..9 (links, Ml{ove, <, >, L(ink, D(ata, S(tack, H{eap,
E(rase, U(pdate, <ctrl-U(p>, <ctrl-D(ownd>, C(rawl, W(alk, R(esume, <esc>

Proc i Caller i Parent 1 Param 2 Data i

Seg 1 Seg & Seg o Stack 4 IpC 2 Depth 1

Brkpnts: Defaultlink = Static

TYPE ID PROC# OFFSET ADDR INTEGER 0CTAL HEX LLO HI CHAR

Data 2 i 116560 -25228 116544 9D74 1464 235 t?

Data 2 2 116562 0 000000 0000 000 000 ?7?

Data b 3 116614 O 000000 0000 000 000 ?7?
*

Page 72

An alternate way to loock at the value of I would have been to
Just use the D(ata command and specify 1 for the procedure number
rather than using the default value. Note that this would not change
the value of the current procedure as the above method does.

Offset: 3 Length: 1 Proc: 1lretl

Things to note:

PARAM is equal to two. This is because the system predeclares
the two parameters INPUT and QUTPUT for you.

The integer value of I is zero Just as it should be.

Page 73

- Notes -

Page 74

3636 36 36 JE 36 3 30 5 336 3040 JE I B B 36 334 B0 H I HH K

PASCAL COMPILER # % Section 1.6
R T T R R R S LN Ll R

Version I. 4 Januvary 1978

The U.C.S.D. Pascal compiler is invoked by using the C(ompile
command of the outermost level of the U.C.S.D. Pascal system. It
assumes you have a workfile, either created by the editor, or G(otten
in the Fliler.

The U.C.S.D. Pascal complier is 8 one—pass recursive descent
compiler. It generates codefiles to run directly on the Pascal
interpretive machine. The compiler is based on the P2 portable compiler
from Zurich.

Unless the SLOWTERM Boolean inside of the system communication
record SYSCOM~ is true, the compiler during the course of compilation
will display on the CONSQLE device output detailing the progress of the

compilation. (This output can be suppressed with the G+ compiler
option, which is dicussed in the section of this document entitled
"Compile Time Options” which appears below). Below is an example of

the output which appears on the CONSOLE device:

PASCAL compiler [I.43]
< &

The identifiers appearing on the screen are the identifiers of
the program and its procedures. The identifier for a procedure is
displayed at the moment when compilation of the procedure body is
started. The numbers enclosed within < > are the current line
numbers. Each dot on the screen represents 1 source line compiled.

I¢# the compilation is successful, that is, no syntax errors were.
detected, the the compiler will write a codefile onto the disk called
#SYSTEM. WRK. CODE. This is the codefile which is executed if the user then
types the R(un command. (For further details on the system commands, see
INTRODUCTION AND QVERVIEW Sec. 1.1.) -

Should the compiler detect a syntax error, the text surrounding
the error and an error number together with the marker ‘<4< 7 will
point at the symbol in the source where the error was detected (unless
both the Q and L options are set, in this case the compilation will
continue, with the syntax error going to the listing file, and the
console Temaining undisturbed). The compiler will the give the user
the option of typing a space, an <esc> or ‘B Typing a space
instructs the compiler to attempt to ceontinue the compilation, while
escape causes the termination of the compilation, and “E" results in a
call to the editor:, which automatically places the cursor at the symbol
where the error was detected.

Page 795

There are a few syntax errors added to the U.C.8.D. compiler
which are not listed on pages 119-121 in Jensen and Wirth. A list af
these additional syntax errors appears in TABLE S. All error numbers
will be accompanied by a textual message upon entry to the editor.

Page 76

303036 S04 A 3 T340 3 333 IS0 3 IR

COMPILE TIME OPTIONS # # SECTION 1.6.1
3630 30346 30 3546 30 303 0 3 3 243 S0 330 I I H IR

Compile timn options in the U.C.8.D Pascal compiler are set
according to a convention described on pages 100-102 of Jensen and
Wirth, where compile time options are set by means of special "dollar
sign® comments inside the Pascal program text. The syntax used in
U.C.S.D. ‘s compiler control comments is essentially as described in
Jensen and Wirth., However the actual options and the letters associated
with those options bear anly occasional resemblance to the options

listed on pages 101 and 102 of Jensen and Wirth. Also, if a '+ or '~7
didn’t appear after an option letter, ‘+/ is assumed. The following

sections describe the various options currently available to the user
of the U.C.S.D. Pascal compiler.

D:

This option is used to cause the compiler to issue breakpoint
instructions into the codefile during the course of the compilation in
order that the interactive Debugger can be used more effectively. (See
Gection 3.2 of this documentation entitled “DEBUGGER" far details)

Default value: D-—

D-: causes the compiler to not emit breakpoint instructions
during the course of the compilation.

D+: causes the compiler to emit breakpoint instructions.

G:

Affects the boolean variable GDVTODK in the compiler., This
boolean is used by the compiler to determine whether it should allow
the use of the Pascal GOTO statement within the program.

Default value: G-

G+: allows the use of the GDTO statement.

G—: causes the compiler to generate a syntax error upon encount-
ering a GOTO statement.

The G-option has been used at U.C.S5.D to restrict novice
programmers from excessive uses of the €070 statement in situations
where more structured constructs such as FOR, WHILE., or REPEAT
ctatements would be more appropriate.

Page 77

When an ‘1‘ is followed immediately by a ‘+‘ or ‘=’ then the
control comment will affect the boolean variable IOCHECK within the
compiler. The alternative use of ‘I’ in a compiler control comment is
to cause the compiler to include a different source file into the
compilation at this point. The syntax of this include~file mechanism
will be discussed after the discussion of the IOCHECK option.

(IOCHECK OPTION)
Default value: I+

I+: instructs the compiler to generate code after each
statement which performs any I/0, which checks to see if
the I/0 operation was accomplished successfully. In the
case of an unsuccessful I/0 operation the program will be
terminated with a run time error.

I-: instructs the compiler not to generate any I/0D checking
code. In the case of an unsuccessful I1/0 aperation the
program is not terminated with a run time error,

The I-option is useful for system level Programs which do many 1/0
operations and also check the IORESULT function after each 1/0 operation. The
system program can then detect and Teport the I/0 errors, without being
terminated abnormally with a run time error. However this option is set at the
expense of the increased pussibility that IAD_ernnns.vaand‘posstblg severe
program bugs), will go undetected.

(INCLUDE FILE MECHANISM)

The syntax for instructing the compiler to include another
source file into the compilation is as follows:

(#$IF ILENAME®) ,

The characters between ‘I’ and ‘#)’ are taken as the filename of the

source file to be included. The comment must be closed at the end af the
#ilename, therefore na cther options, such as G+, or L+, etc. can follow the
filename. Note that if you have a file name which starts with ‘+’ or ‘=’ as
the first character of the filename, you must insert a blank between ‘(#$1°
and ‘FILENAME’. For example, the comment:

(#$ITURTLE. TEXT*)

wouvld cause the file TURTLE. TEXT to be compiled into the program at
that point in the compilation.

(%61 +FARKLE. STUFF#)

would cause the source file +FARKLE. STUFF to be included into the
compilation.

I# the initial attempt at opening the include file fails, the compiler
will concatenate a ". TEXT" onto the file—name and try again. If this second
attempt fails, or some 1/0 error occurs at some point while reading the
include file, the compiler will respond with a fatal syntax error.

The compiler will also relax the requirements of the order in
which declarations must be made for included files, so that it is
possible to include files which contain CONST, TYPE, VAR, PROCEDURE,
and FUNCTION declarations even though the original program has
previously completed its declarations. To do so the include compiler
control comment must appear between the original program‘s last VAR
declaration and the first of the original program’s PROCEDURE or
FUNCTION declarations. Note that an include file may be inserted into
the original program at any point desired, provided the rules
governing the normal ordering of Pascal declarations will -not be
violated. Only when these Trules are violated does the above procedure

apply.

The compiler cannot keep track of nested include comments, i.e.
an include file may not have an include file control comment. This
will also result in a fatal syntax errvor.

The include file option was added to the compiler at U.C.8.D in
order to make it easier to compile large programs without having to
have the entire source in one very large file which in many cases would
be too large to edit in the existing editors’ buffer,

L:

Controls whether the compiler will generate a program listing
of the source text to a given file. The default value of this option is
L—-, which implies that no compiled listing will be made. If the character
following "L" is "+", then the compiled listing will be sent to a
diskfile with the title ‘#SYSTEM. LST. TEXT'. The vser may override this
default destination for the »Hmpiled listing by specifying a filename
following "L". For example the following control comment will cause the
compiled listing to be sent to a dicskfile called "DEMOL. TEXT":

(#$L. DEMOL1, TEXT#*)
See the section of this document describing the include file mechanism

for a complete description of the syntax for specifying a file-name inside of
a control comment.

Page 79

Note that listing files which are sent to the disk may be edited as
any other text file provided the filename which is specified contains the
suffix ". TEXT". MWithout the “.TEXT" suffix the file will be treated by the
system as a datafile rather than as a text file.

The compiler outputs next to each source line the line number, segment
procedure number, procedure number, and the number of bytes or words (bytes
for code, words for data) required by that procedure’s declarations or code to
that point. The compiler also indicates whether the line lies within the
actual code to be executed or is a part of the declarations for that procedure
by outputing a "C" for code and a "D" for declaration. If the D+ option is
set then the listing file will include an asterisk on each line where it is
appropriate for a user to specify & breakpoint while in the interactive
Debugger. This information can be very valuable for debugging a large program
since a run time error message will tell you the procedure number, and the
offset where the error occurred.

Q:

The G compiler option is the "quiet compile" option which can
‘be used to suppress the output to the CONSOLE device of procedure names
and line numbers detailing the progress of the compilation.

Default value: is set equal to current value of the SLOWTERM
attribute of the system communication record
SYSCOM~. tactually SYSCOM™~. MISCINFQO. SLOWTERM)

G+: causes the compiler to suppress output to CONSOLE device.

Q-: causes the compiler to send procedure name and line number
output to the CONSOLE device.

This option affects the value of the boolean variable
RANGECHECK in the compiler. If RANGECHECK is true then the compiler
will output addtitional code to perform checking on array subscripts
and assignments to variables of subrange types.

Default value: R+

R+. turns range checking on.

R-~: turns range checking of#

Note that programs compiled with the R-option set will run
slightly faster; however if an invalid index occurs or a invalid
assignment is made, the program will not be terminated with a run time

error. Until a program has been completely tested and known to be
correct, it is vsvally best to compile with the R« option set.

Page 80

U:

This option sets the boolean variable SYSCOMP in the compiler.
This boolean variable is used by the compiler to determine whether
this compilation is a user program compilation, or a compilation of a
system program.

Default value: U+

U+: informs the compiler that this compilation is to take place on the
user program lex level.

U-: informs the compiler to compile the program at the system lex level.
This setting of the U compile time option also causes the following
options to be set: R~ G+ 1I-.

NOTE: This option will generate programs that will not behave
as you might expect them to. Not recommended for non—systems work
without knowing why it does what it does.

Page 81

= Notes -

Page 82

R T T R S T R T L AR A R R e

% UCSD BASIC COMPILER % % Section 1.7 #

e T ST LR S TN 8 2 LS S L LS S
Version I.4 Januvary 1978

Introduction

This document has been designed for programmers who are already
familiar with Basic. The intent of this document is to describe to
those experienced users the details of UCSD Basic in a manner
sufficiently detailed so as to enable the writing or madification of
programs in a manner compatible with the UCSD Basic Compiler.

This document is divided into three sections. The first
contains a brief description of the features included in UCSD Basic.
The second contains the descriptions of the features unique to UCSD
Basic. The third contains a list of those features which we intend UCSD
Basic to allow, but which are not yet implemented.

The UCSD Basic Compiler has been written in the Pascal
language. Some of the intrinsics of the Pascal language. which are not
found in standard Basic, are found within the UCSD version of Basic
Many of these are noted in the first section of this document, all of
them are noted or recapped in the second section.

The UCSD BASIC Compiler is invoked like a user program (with the
eXecute command: X BASIC.COM). It immediately prompts for the name
of the source file to be compiled. If no file is given (ie. an immediate
carriage return response to the prompt), the current workfile is used as
the source. Next the compiler prompts for a codefile name. This #file
will contain the results of the compilation and can be executed like any
other user program, when the compiler has completed its translaion.

A Basic Description of Features Included

The Basic compiler has only real and string variables. When
applying a real to indexing -v other integer purposes the rounded value
of the number is used. In th. functions below x and y can be real
variables or expressions which evaluate to real values. SBimilarly sl
and s2 can be string variables or expressions which evaluate to a
string.

Variabhle Names

Real variables: letter{digit).
String variables: letter(digit)s. The digit is optional.

Page 83

Intrinsic Arithmetic Functions

ATN(x) Returns the angle in radians whose tangenf is «x.

EXP(x) Returns the base of the natural logarithms raised to the power x.
INT(x) Returns the value of x rounded to the nearest integer.

LOG(x) Returns the log (base 10) of «x.

LNC(x) Returns the natural log of «x.

MOD(x,y) Returns x modulo y.

SIN(x) Returns the sine of the angle x. Where x is in radians.

COs(x) Returns. the cosine of an angle x. Where x is in radians

Intrinsic String Functions

CAT$(s1,82,...) Returns a string which is equal to the concatenation of
all the strings in the parameter list.

COP$(s1,x,y) Returns a copy of the portion of the string si, y
consecutive characters, starting with the character at position «x.

DEL#%(s1, x,4y) Returns the caontents of the string s1 with y consaecutive
characters deleted. The deletion starts with the character at
position x-

INS$(s1,s2, x) Returns the contents of string s2 with string sl inserted
immediately before the character which is at position x.

LEN(s1) Returns the length of the string si.
POS(s1,s2) Returns an integer which is equal to the position of the
first character in the first occurance of the string si in_the

string s2,

Other Functions

ORD(s) Returns the ASCII value of the first character of the string s.

STR$(x) Returns the string containing the character associated with the ASCII
value x.

GETS$ Reads a single character from the keyboard without prompt or echoing,
and returns it as a string. GET$ requires no arguments.

OL.D(c, 5)

NEW'c,s) ¢ is a numeric constant without a fraction part, which becomes
associated with the disk file whose name is in s. OLD expects
that file to already exist:. new creates a new one with the name-
s, rTemoving anu previous file of that name: These functions
must occur before associated print or input:statements. The
numbers may not be reassigned and must be in the range 1..16. For
best results, use only at the top. of a program. If you wish to
have a file created by new to be editable with either of the
system editors, you must append ‘. text’ to the file title.

Page B84

These functions return IDORESULT as described in section 2. 1.

Programming Statements

Arithmetic statements and operations

-, + subtracts add
/ . ¥ divide,multiply
A~y BE exponentiation

Relational operators

INPUT

INPUT

PRINT

PRINT

= equals

<> . X not equals

> greater than

< less than

>= , => greater than or equal

<=, =< less than or equal .
list)

or

#c list

Inputs from the main system device, usually the keyboard. If
the optional #c is present, INPUT inputs from the disk file
number c¢. The input list may contain any combination of real
variables and string variables. When a program expects input the
prompt "?" is printed. Input of real numbers may be terminated
with any non-numeric character. Input of strings must be
terminated with a return.

list
or
#c list

Writes to the main output device the list following the PRINT
command. I# the optional #c is present, PRINT outputs to the
diskfile number c. The autput list may contain any variable,
subscripted array variable, any arithmetic or string expression,
or any literal text. The list may be separated by commas or semi-
colons. If the list ends in a semi-calon the carriage return is
suppressed. Literals men be enclosed in either type of quatation
marks. Double occurance:. of the enclosing quotation mark prints a
single mark of that type.

FOR var = expl TO exp2 STEP exp3

ﬁEXT var

Each execution of the loop increments the loop counter "var" by
the amount of expression three. If the STEP is omitted it is
assumed to be 1. Only increasing STEP values are allowed.
Evaluation of limits and increments is done at the beginning of
the loop. Note that RETURN‘s into or GOTO‘s into a FOR loop may
cause the loop to be undefined.

Page 85

IF exptl

(relation operator) exp2 THEN (line number)
GOTOo

Either the reserved word THEN or GOTO can be used in this
statement. If the relation between the expl and exp2 is found
to be true the branch oeccurs. A string is considered to be less
than another string if it is lexicographically smaller.

ON exp GOTO(1ni, 1n2..)

If the expression, when rounded. evaluates to i it goes to the
first line number (Inil) if it evaluates tg 2 it goes to 1n2,
etc. This is the only form of the computed GOTO which is
available. If the expression is out of Tange an error occurs.

DEF FNname(list)=expression or DEF FNname(list)

FNEND

Single line and multi-line functions are allowable. The
function name must be a legal variable name for the type of
value returned. Functions may be defined recursively. The
parameter list is called by value, that is, changes inside the
function don’t affect the value of the external parameters.

LET var=exp

or
var=gxp

DIM var

This command assigns a new value to the variable. If the
variable is a string, the expression must evaluate to a string;
if the variable is a real, the expression must evaluate to a
real.

(ni,n2,...)

A single or multidimensional array may be declared with this
command. The wvariable name determines the type of the array.
The array indices are 0..n1,0..n2,... Both real and string
multidimensional arrays can be used. If no dimensions are
declared the dimensions are essumed to be 0..10, 0..10, 0..1,
0..1 ... The number of dimensions avtomatically declared
depends on the number of dimensions which are vused in the
program. but must be consistant over all uses of any given
array.

GOSUB linenumber

Page 86

Executes a subroutine call. The calling address is placed on
the subroutine stack. Subroutine calls may be recursive.

RETURN
Returns to the line after the last GOSUB which is still
pending. It pops the top address off the stack and uses it as

the return address. A return when no GOSUB’s are pending is an
error.

6070 linenumber
Program execution jumps to the given line number.
REM text

This line is a remark.

Unigue Features of UCSD Basic
Arithmetic

For loops: Note that var=expl is done before exp2 or exp3 are evaluated.

Continvation of statements is allowed. Any line not beginning with a
line number is assumed to be the continuation of the line above.

Functions: All parameters of functions are call by valve. You are not
allowed to use the parameters to return values from a function.
Function calls are allowed to be recursive.

Strings: The string functions and procedures are those found in the
UCSD Pascal language.

Arrays: Arrays of more than two dimensions are allowed.

Print: Tab stops are not allowed. All list elements are printed without

spaces between them. The carriage return can be suppressed by "
as the last symbol in the line.

Subroutines: Subroutines may be recursive.

Comments: In line comments may be inserted. The portion of any line
following the @ symbol is ignored by the compiler.

PASCAL FUNCTIONs: The code of PASCAL FUNCTIONs may be added to the
BASIC compiler as new standard BASIC functions. This is
accomplished by a straight—forward addition to the BASIC

compiler.

Intended Features

Page 87

Certain features of the UCSD Basic compiler are still in the process of
being implemented. The most important of these are listed below.

Déta and Read: The standard initialization statements.
Matrix statement for standard matrix operations.
Integer variables.

More standard functions.

Yo vun_a BASIC program

Create the BASIC program using one of the system text editors
Execute the file BASIC.COM, you will be asked for an input file, typing
carriage return with no file name will cause the BASIC compiler to
assume the workfile. VYou will also be asked to specify an output #ile,
typing carriage return with no filename will cause the BASIC compiler
to generate its output to the filename B. If your program compiles
with no syntax errors, you can run it by eXecuting the code file
generated by the basic compiler. 1f there are syntax errors in your
program the ensuing steps should be obvious.

Page 88

I BT S AE FIEIH H
*# SYSTEM INTRINSICS % # Section 2.1 %
A I H T RS H R AN R IR SH

Version 1.4 Januvary 1978

WARNING:

Most of the UCSD intrinsics assume that users are fluent in the
use of PASCAL and are experienced in the use of the system. Any
necessary range or validity checks are the responsibility of the user.
Since saome of these intrinsics do no checking for range validity, they
may easily cause the system to die a horrible death. Those intrinsics
which are particularily dangerous are noted as such in their
descriptions.

PARAMETERS:

Required parameters are listed along with the function/procedure
identifier. Optional parameters are in [square bracketsl. The default
values for these are in {metabrackets) on the line below them.

NOTE:

Following are some definitions of terms used in these
documents. They tend to take the place of formal parameters in the
dummy declaration headers that preface each description of a particular
routine, or set of routines.

ARRAY : a PACKED ARRAY OF CHARacters
BLOCK : one disk block, {512 bytesl
BLOCKS : an INTEGER number of blocks
BLOCKNUMBER : an absolute disk block address
BOOLEAN : any BOOLEAN value
CHARACTER . any expreSa'on which evaluates to a character
DESTINATION : a PACKED ARRAY OF CHARacters to write into or
a STRING, context dependent
EXPRESSION : part or all of an expression, to be specified
FILEID : a file identifier, must be
VAR fileid: FILE OF <type>;

or TEXT;

or INTERACTIVE:

or FILE:

Page 89

 p——
s
RNy

INDEX : an index into a STRING or PACKED ARRAY OF CHARacters,
context dependent or as specified.

NUMBER ~: a literal or identifier whose type is either INTEGER
or REAL.
RELBLOCK : a relative disk block address, relative to the start

of the file in context, the first block being
block zero.

SIMPLVARIABLE : any declared PASCAL variable which is of one of the
following TYPEs:
BOOLEAN CHAR REAL STRING
or PACKED ARRAYL.. 1 OF CHAR

SI1ZE : an INTEGER number of bytes or characters; any integer
value

S0URCE : a STRING ar PACKED ARRAY OF CHARacters to be used as a
read-only array, context dependent or as specifiad

8CREEN { an array 9600 bytes long: or as needed.

STRING i any 8TRING, call-by-value unless otherwise specified,

i.e. may be a quoted string, or string variable
or function which evaluates to a STRING

TITLE : a STRING consisting of a file name

UNITNUMBER ¢ physical device number used to determine device handler
used by the interpreter

voLip : @ volume identifier, STRINGL73]

Page 90

363636 3 363 I 36 3 3436 3 4 3 3 34 H 3 363 36336 33 303 30 3 R R R

STRING INTRINSICS # % Section 2.1.1
P L T L I s e

Version 1.4 January 1978

FUNCTION LENGTH (STRING) : INTEGER
Returns the integer value of the length of the STRING.

Example:

GEESTRING := ‘1234567 i .
WRITELN(LENGTH(GEESTRING), * “/LENGTH(’’))i

Will print:
7 0O

FUNCTION POS (STRING , SOURCE) : INTEGER

This function returns the position of the first occurrence of
the pattern in SOURCE to be scanned. The INTEGER value of the position
of the first character in the matched pattern will be returned; or if
the pattern was not found, zero will be returned. Example:

STUFF := ‘TAKE THE BOTTLE WITH A METAL CAP’;
PATTORN := ‘TAL’i

WRITELN(POS(PATTORN, STUFF));

Will print:

26

FUNCTION CONCAT (SOURCEs) STRING

There may be any number of source strings separated by commas.

Thie function returns a string which is the concaténation of
all the strings passed to it. Example:

SHORTSTRING := ‘THIS IS A STRING';

LONGSTRING := ‘THIS IS A VERY LONG STRING. i

LONGSTRING := CONCAT(’/START 4, GHORTSTRING, ‘=, LONGSTRING),
WRITELN(LONGSTRING):

-

Page 91

Will print:
START THIS IS A STRING-THIS IS A VERY LONG STRING.

FUNCTION COPY (SOURCE , INDEX , SIZE) STRING

This function returns a string containing SIZE characters
copied from SOURCE starting at the INDEXth position in SOURCE.

Example:

TL := ‘KEEP SOMETHING HERE‘; KEPT := COPY(TL,POS(’S’, TL), 9);
WRITELN(KEPT);
Will print:
SOMETHING

PROCEDURE DELETE (DESTINATION , INDEX , SIZE)

This procedure removes SIZE characters from DESTINATION
starting at the INDEX specified. Example:

OVERSTUFFED := ‘THIS STRING HAS FAR TOO MANY CHARACTERS IN IT. “;
DELETE(OVERSTUFFED;PDS(’HAS’;OVERSTUFFED)+3,8);
WRITELN(OVERSTUFFED);

Will print:

THIS STRING HAS MANY CHARACTERS IN IT.

PROCEDURE INSERT (SOURCE , DESTINATION , INDEX)

This inserts SOURCE into DESTINATION at the INDEXth position in

DESTINATION.
Example:

ID := ‘“INSERTIONS’;
MDRE := ‘ DEMONSTRATE’;
DELETE(MORE, LENGTH(MORE), 1);
INSERT(MORE, ID, POSC IO, ID));
WRITELN(ID);

Hill print:

INSERT DEMONSTRATIONS

Page 92

Note about using strings and string functions:

In order to maintain the integrity of the LENGTH of a string,
only string functions or full string assignments should be used to
alter strings. Moves and/or single character assignments do not affect
the length of a string which means it probahly becomes wrong. The
individual elements of STRING are of type CHAR and may be indexed
1. . LENGTH(STRING). Accessing the string outside this range will have
unpredictable results if range-checking is off or cause a run—time
error (1) if range checking is on.

Page 93

- Noteé -

Page 94

3636 JE A 33 I F0 I 6 I AN I RN

INPUT AND QUTPUT INTRINSICS # # Section 2.1.2 =
SR AR 2 AR R LR L LR e I T e e

Version 1.4 January 1978

PROCEDURE RESET (FILEID, [TITLEY)i
PROCEDURE REWRITE (FILEID, TITLE);

These procedures open files for reading and writing. They mark
the file as open. The FILEID may be any PASCAL structured file. and
the TITLE is a string containing any legal file title.

The difference between them is that REWRITE creates a new file
on disk for output filesi RESET simply marks an already existing file
open for 1/0. (Note: if the device specified in the title is a non-
directory structured device, e.g. PRINTER: , then the file is opened
for input, output, or both in either case.) If the file was already
open, and another RESET or REWRITE is attempted to it, an error will be
returned in IORESULT. The file‘s state will remain unchanged.

RESET (FILEID) without optional string parameter "rewinds” the
file by setting the file pointers back to the beginning (zero th
record) of the file. The boolean functions EOF and EOLN will now be
set by the implied GET in RESET.

These procedures behave differently with files of type
INTERACTIVE. RESET on files of types other than INTERACTIVE will do an
initial GET to the file, setting the window variable to the first
record in the file (as described in Jensen & Wirth). RESET on a file
of type INTERACTIVE will not do en initiel GET

PROCEDURE UNITREAD (UNITNUMBER, ARRAY, LENGTH, [BLOCKNUMBER1, C[INTEGER1);
PROCEDURE UNITWRITE (UNITNUMBER, ARRAY, LENGTH, [BLOCKNUMBER], C[INTEGER]);
{ sequential » { O >

JHESE ARE DANGCERQUS IMTRINSICS

These procedures are the low-level procedures which do 1/0s to
various devices. The UNITNUMBER is the integer name of an I/0 device
The ARRAY is any declared packed array, which may be subscripted to
indicate a starting position. This is used as the starting address to
do the transfers from/to. The LENGTH is an integer value designating
the number of bytes toc transfer. The BLOCKNUMBER is required only when
using a block—structured device (i.e. a disk) and is the absolute
blocknumber at which the transfer will start from/to. I# the
BLOCKNUMBER is left out, O is assumed. The INTEGER value is optional
(assumed O) and indicates (if 1) that the transfer is to be done
asynchronously. The blocknumber is not necessary. A ‘,, ' will be
sufficient. (See UNITBUSY and UNITWAIT.)

Page 95

FUNCTION UNITBUSY (UNITNUMBER) : BOOLEAN;

This function returns a BDOLEAN value, indicating if TRUE that
the device specified is waiting for an 1/0 transfer to complete

Example:
UNITREAD(2{non—echoing keyboard}, CHLO],
1{for one character}, {no block no. ¥, 1{asynchronous});
WHILE UNITBUSY(2){While the READ has not been completed} DO
WRITELN(OQUTPUT, ‘1 am waiting for you to type something’);
WRITELN(OUTPUT, ‘Thank you for typing a ‘,CHLO1);

Execution of this example will continuously type out the line
‘I am waiting for you to type something’ until a character is struck on
the keyboard. Suppose a ‘!’ were typed. The message ‘Thank you for
typing a !’ will then appear, and program execution will proceed
normally.

PROCEDURE UNITWAIT (UNITNUMBER);

This waits for the specified device to complete the I/0 in
progress. It can be simulated by:

WHILE UNITBUSY(n) DO {waste a small amount of timel;

PROCEDURE UNITCLEAR (UNITNUMBER J;

UNITCLEAR cancels all 1/0s to the specified unit and resets the
hardware to its power-up state.

FUNCTION BLOCKREAD (FILEID, ARRAY, BLOCKS, CRELBLOCK]) : INTEGER:;
FUNCTION BLOCKWRITE (FILEID, ARRAY, DLOCKS, CRELBLOCK]) : INTEGER;
{ sequential 3

These functions return an INTEGER value equal to the number of
blocks of deta actually transferred. The FILE must be an untyped file
(i.e. F: FILE;). The length of ARRAY should be an integer multiple of
bytes—per~disk~block. BLOCKS is the number of blocks you want
transferred. RELBLOCK is the blocknumber relative to the start of the
file, the zeroeth block being the first block in the file. If no
RELBLOCK is specified, the reads/writes will be done sequentially. A
_random access I1/0 moves the file pointers. CAUTIOM should be exercised
when vsing these, as the array bounds are not heeded. EOF(FILEID)
becomes true when the last block in a file is read.

Page 96

PROCEDURE CLOSE (FILEID OPTION)i

OPTION may be null or “, LOCK’, or ‘, NORMAL’, or 7, PURGE‘, or
’, CRUNCH’. (Note the commas!)

I1f OPTION is null then a NORMAL close is done, i.e. CLOSE
simply sets the file state to closed. If the file was opened using
REWRITE and is a disk file, it is deleted from the directory.

The LOCK option will cause the disk file associated with the
FILEID to be made permanent in the dirvectory if the file is on a
directory—-structured device and the file was opened with a REWRITE;
otherwise a NORMAL close is done.

The PURGE option will delete the TITLE associated with the
FILEID from the directory. The unit will go off-line if the device is
not block structured.

The CRUNCH option for now is undefined as to what it will
do..... The intent is to lock a file with the minimun number of blocks
of useful information.

All CLOSEs regardless of the option will mark the file closed
and will make the implicit variable FILEID® undefined. CLOSE on a
CLOSEed file causes no action.

FUNCTION EOF (FILEID) : BOOLEAN;
FUNCTION EOLN (FILEID) : BOOLEAN;

1 (FILEID) is not present, the fileid INPUT is assumed (e.g.
IF EOF THEN...). EOLN and EDOF return false after the file specified is
RESET. They both return true on a closed file. When EQF (FILEID) is
true, FILEID” is undefined. When GET (FILEID) sets FILEID™ to the EOLN
character or the EOF character, EOLN (FILEID) will return true, and
FILEID~ (in a FILE OF CHAR) will be seat to a blank. While doing puts
or writes at the end of a file, if the file cannot be expanded to
accomodate the PUT or WRITE, . JF(FILEID) will return true.

FUNCTION IORESULT : INTEGER:

After any 1/0 operation, IORESULT contains an INTEGER value
corresponding to the values given in Table 2.

PROCEDURE GET (FILEID);
PROCEDURE PUT (FILEID);

Page 97

These procedures are used for operations on typed files. A
typed file is any file for which a type is specified in the variable
declaration, ie. ‘FILEID : FILE OF <typed>". This is as opposed to
untyped files which are simply declared as: - FILEID: FILE; ‘. ‘F: FILE
OF CHAR’ is equivalent to ‘F: TEXT”. In a typed file each logical
record is a memory image fitting the description of a variable of the
associated <typed.

GET (FILEID) will leave the contents of the current logical
record pointed at by the file pointers in the implicitly declared
"window” variable FILEID™ and increment the file pointers.

PUT (FILEID) puts the contents of FILEID™ into the file at the
location of the current file pointers and then vpdates those pointers

PROCEDURE READ{LN} (FILEID, SQURCE ;
PROCEDURE WRITE{LN} (FILEID, SOURCE)i

These procedures may be used only on TEXT (FILE OF CHAR) or
INTERACTIVE files for I/O. If ‘FILEID, * is omitted, INPUT or OUTPUT
(whichever is appropriate) is assumed. A READ(STRING) will read up to
and not including the end-of-line character (<a carriage rveturn>) and
leave EOLN(FILEID) true. This means that any subsequent READs of
STRING variables will return the null string until a READLN or
READ(chararacter) is executed.

There are three files of tupe INTERACTIVE which are predeclared
for you: INPUT, OUTPUT, and KEYBOARD. INPUT results in echoing of
characters typed to the tonsole device. KEYBOARD does no echoing and
allows the programmer complete control of the Tesponse to user typing.
OUTPUT allows the user to halt or flush his output

PROCEDURE PAGE (FILEID);

This procedure, as described in Jensen % Wirth (ibid.), sends a
top-of-form (ASCII FF) to the file.

PRODEDURE SEEK (FILEID, INTEGER);

This procedure changes the file pointers sa that the next GET
or PUT from/to the file will happen to the INTEGERth record of FILEID.
Records in files are numbered from O. A GET or PUT must be executed
between SEEK calls since two SEEKs in a rouw may cause unexpected,
unpredictable junk to be held in the window and associated buffers.

Page 98

63636 3 36 3 36 30 3 46 3636 3336 363 3636363 3 36 3 36 3436 36 3 36 R

TURTLE GRAPHICS * # Section 2.1.3 %
S R T e S A S LT U R £ L T e X

Versicon 1.4 January 1978

Section 2. 1.3 is intentionally missing from the 1.4 set of
documents. Turtle Graphics are not ready for general release as of
Version I.4; however, we do have a Turtle Graphics package for Terak
8210a users, which may be obtained vupon special request. We plan in
some future release to have a Turtle Graphics package which will be
modifiable for any graphics screen.

Thank you for your patience.

Page 99

-~ Notes -

Page 107

333 3 35 336 3035 36 30 06 3 300 I 636 3 303 I 33 IS I R 30 IR HR

LOW LEVEL GRAPHICS INTRINSICS # * Section 2.1.4 *
3546 3696 36 3% M6 3 3430 I 336 I SE I I IS F IR

CAUTION:
These routines do no range checking of the param:ters they are
passed. If any of the paramters are "out of range”, these routines

will happily move bit patterns throughout main memory, much to the
dismay of the operating system and your program.

See Table 4 for modes and penstates for these intrinsics.

The DRAW intrinsics are available only for the Terak 8510a in
this release. Additional display units will be supported in later
releases, but no details are currently available. Probable implementa-
tion(s): Tektronix 4006.

PROCEDURE DRAWBL.OCK (SOURCE, SCREEN, ROWSIZE, STARTX, STARTY,
SIZEX, SIZEY, COPYX, MODE),
(# none of these are optional #*)

This procedure is written for the Terak 8510a graphic display
mode. The TERAK screen displays words consecutively with the most
significant bit of the word on the right. DRAWBLOCK will work only on
screens whose graphics aperates in this manner. WARNING: No range
checking is performed.

DRAWBLOCK transfers a bit matrix SOURCE, which starts on an
word boundary, to a specified point (STARTY, STARTX) in the bit matrix
SCREEN. All parameters are integers except SCREEN, which is a bit
matrix of width ROWSIZE (i.e. BITMAP: PACKED ARRAYLO..MAXROW) OF PACKED
ARRAYLO. . ROWSIZE-11 OF BOOLEAN;). The SOURCE is SIZEX bits wide by
SIZEY bits high. The first COPYX bits of each row are copied into the
destination. MODE is defined in TABLE 4.

PROCEDURE DRAWLINE (RANGE, SCREEN, ROWWIDTH, XSTART., YSTART,
PELTAX, DELTAY, PENSTATE)i
(# none of these are optional *)

In arder the parameters are: INTEGER IDENTIFIER, ARRAY
IDENTIFIER, and (the remaining six) INTEGER EXPRESSION. RANGE will
contain the results of a Radar scan. This parameter is untouched
unless PENSTATE is sent as 4. The value returned is the number of dots
that would have been drawn before encountering an obstacle. SCREEN may
be subscripted to determine a starting position in the array. ROWWIDTH
i the width of SCREEN in number of words; this determines how DRAWLINE
will consider the rectangularity of the array. XSTART is the starting
horizontal coordinate; YSTART is the starting vertical coordinate.
DELTAX is the distance to move in the horizontal plane. DELTAY is the
distance to move in the vertical plane. PENSTATE controls the action
taken; see TABLE 4.

Page 101

Page 102

*********************************%********** 363644 34 3 36 38 363 3 30 303 30 3 3

CHARACTER ARRAY MANIPULATIONS INTRINSICS # # Section 2.1.5
6903646 3 3636 36 3690 344046 000 090 S E R RS0 S RIS SRR 0 I ISR

Version 1.4 January 1978

CAUTION:

These intrinsics are all byte oriented. Use them with carei
read the descriptions carefully before trying them out. No range
checking of any sort is performed on the parameters passed to these
routines. Therefore the programmer should know exactly what he is
doing before he does it since the system does not protect itself from
these operations.

FUNCTION SCAN (LENGTH, PARTIAL EXPRESSION. ARRAY) : INTEGER;

This function returns the number of characters from the
starting position to where it terminated. 1t terminates on either
matching the specified LENGTH or satisfying the EXPRESSION. The ARRAY
should be a PACKED ARRAY OF CHARACTERS and may be subscripted to denote
the starting point. If the expression is satisfied on the character at
which ARRAY is pointed, the valve returned will be zero. If the length
passed was negative, the number returned will also be negative, and the
function will have scanned backward. The PARTIAL EXPRESSION must be of
the form:

w¢3" or “=" followed by <character expression>
Examples:
Using the array:
DEM (= “..... THE TERAK IS A MEMBER OF THE PTERADOCTYLE FAMILY. ’

SCAN(-24, =7: /, DEML301);

will return —-26
S8CAN(100, <>’. ', DEM);

will return S
SCAN(15,=* ‘', DEMLO]);

will return B8

PROCEDURE MOVELEFT (SOURCE, DESTINATION, LENGTH J;
PROCEDURE MOVERIGHT (SOURCE, DESTINATION, LENGTH)i

These functions do mass moves of bytes for the length
specified. MOVELEFT starts from the left end of the specified source
and moves bytes to the left end of the destination. MOVERIGHT starts
from the right ends of both arrays.

Page 1G3

These procedures will optimize to word moves (in the 11
version) if at all possible. MOVERIGHT never attempts this
optimization; MOVELEFT will optimize only if the destination is at an
address below the I/0 page. (The reason for not doing word moves to
the I/0 page is that some hardware relies on byte addressing in this
address space.) _

In short: MOVELEFT starts at the left end of both arrays and
copies bytes traveling right. MOVERIGHT starts at the right end of
both arrays and copies bytes traveling left. The reason for having
both of these is if you are working in a single array and the order in
which characters are moved is critical. The following chart is an
attempt to show what happens. if you use the procedure which moves in
the wrong direction for your purposes.

VAR ARAY: PACKED ARRAY [1..301 OF CHAR;

(#12345678%a12345678%b1234546789c#)
ARAY: (THIS IS THE TEXT IN THIS ARRAY!
MOVERIGHT(ARAYL101, ARAYL 13, 10);
ARAY: INE TEXT INE TEXT IN THIS ARRAY!
MOVELEFT (ARAYL 11, ARAYL31, 10)
ARAY: INENENENENENETEXT IN THIS ARRAY!
MOVELEFT (ARAYL 231, ARAYL 21, 8);
ARAY: INIS ARRAYENETEXT IN THIS ARRAY!

PROCEDURE FILLCHAR (DESTINATION, LENGTH, CHARACTER 3;
This procedure takes a (subscripted) PACKED ARRAY OF CHARACTERS
and fills it with the number (LENGTH) of CHARACTERSs spec1F1ed This

can be done by:

ALO]l := <character expressiond;
MOVELEFT(ALO1, AL1], n—1);

but FILLCHAR is twice as fast, as no memory reference is needed
for a source.

See the note about word move optimization in the section on
MOVELEFT. The notes about MOVELEFT also apply to FILLCHAR.

The intrinsic SIZEOF (Section 2.1.6) is meant for.use with
these intrinsics; it is convenient not to have to figure out or
remember the number of bytes in a particular data structure.

Page)d4

3438 3 36 096 31 36 3 36 35 36 3 338 036 30 4030 30 30 30 20 36 38 4630 03 3 0 2030 36 303 3 3634 M A3 35 3636 36 563 3 3 3 3 36 3 3t H

INTRINSICS MISCELLANEOUS USEFUL ROUTINES # # Section 2.1.6
3363538 30 938 36 36 3 33033 3 30 264 F TS0 3303 I I HH I SIS IR AR

Version 1.4 Janvary 1978

FUNCTION SIZEOF (VARIABLE OR TYPE IDENTIFIER) : INT%’ER;

This function returns the number of bytes that the "item"
passed as a parameter occupies in the stack. SIZEOF is particularly
useful for FILLCHAR and MOVExxxx intrinsics.

FUNCTION LOG ¢ NUMBER) : REAL;

This function returns the log base ten of the NUMBER passéd as
a parameter.

PROCEDURE TIME (VAR HIWORD, LOWORD: INTEGER);

This procedure rTeturns the current value of the system clock.
It is in 60ths of a second. {This is somewhat hardware—dependent; we
assume a 16-bit integer size and 32-bit clock word. The HIWORD
contains the most significant portion. WARNING! The sign of the LOWORD
may be negative since the time is represented as a 32-bit unsigned
number.) Both HIWORD and LOWORD must be VARiables of type INTEGER.

FUNCTION PWROFTEN (EXPONENT: INTEGER) : REALJ

This function returns the value of 10 to the EXPONENT power.
EXPONENT must be an integer in the range 0..37.

PROCEDURE MARK (VAR HEAPPTR: ~INTEGER)
PROCEDURE RELEASE (VAR HEAPPTR: ~INTEGER);

These procedures are used for returning dynamic memory
allocations to the system. HEAPPTR is of type ~INTEGER. MARK sets
HEAPPTR to the current top-of-heap. RELEASE sets top-of-heap pointer
to HEAPPTR.

PROCEDURE HALT;

This procedure generates a HALT opcode that, when executed,
causes a non—fatal run—time error to occur. At this point in
execution, the Debugger is invoked; if the Debugger is not in core when
this occurs, therefore, a fatal run—time error, #14, will occur.

Page'd95

PROCEDURE GOTOXY(XCOORD , YCOORD);

This procedure sends the cursor to the coordinates specified by
(XCOORD, YCOORD). The upper left corner of the screen is assumed to be
(0,0). This procedure is written to default to a Datamedia-type
terminal. If your system uses other than a Datamedia or Terak 8510a,
you will need to bind in a new GOTOXY using the GOTOXY package
described in Section 4. 10.

PageiQb

*********************************#************************ 36 3636 36 36 36 38 3 34330 3

DIFFERENCES BETWEEN U.C.S.D. PASCAL AND STANDARD PASCAL# % Section 2.2 *
63636 3646 45 3696 36 3040 34 35 3036 34 38 356 36 35 30 364046 3 3 SEIE 320 340 I 30T S AR RN R R

Version 1.4 January 1978

This document is a description of the various differences
between Standard Pascal and U.C.S8.D. Pascal. The Standard Pascal
referred to by this document is defined in PASCAL USER MANUAL. AND
REPORT (2nd edition) by Kathleen Jensen and Niklaus Wirth (Springer-—
Verlag, 1979).

This document is intended to act as a summary and quick
referance guide which mentions the areas in which U.C.S.D. Pascal
differs from the Standard Pascal, and refers the user to the
appropriate documents which explain various aspects of U.C.S5.D. Pascal.

Many of the differences mentioned above lie in the area of
FILES and I/0 in general. It is recommended that the reader first
concentrate upon the sections of this document which describe the
differences associated with the standard procedures EOF, EOLN., READ,
WRITE, RESET, and REWRITE.

363045 35 36 3 36 3 35 3 35 36 303036 363034 6 35 303 0 00 I 4 30 I MR

#SUMMARY OF TOPICS IN THIS DOCUMENT#
3636 3 23036 36 30696 56 36 35 46 30 34 30 3 0 9030 38 2 3 3030 00 I B3 B0 IR H

1. CASE STATEMENTS

2. COMMENTS

3. DYNAMIC MEMORY ALLOCATION
4. EOF

5. EOLN

6. FILES

A. INTERACTIVE FILES
B. UNTYPED FILES
C. RANDDM ACCESS OF FILES

7. GOTO AND EXIT STATEMENTS
8. PACKED VARIABLES
PACKED ARRAYS
PACKED RECORDS

USING PACKED VARIABLES AS PARAMETERS
PACK AND UNPACK STANDARD PROCEDURES

som>

Page Q7

9. PARAMETRIC PROCEDURES AND FUNCTIONS
10. PROGRAM HEADINGS
11. READ AND READLN
12. RESET
13. REWRITE
14. SEGMENT PROCEDURES
15. SETS
16. STRINGS
17. WRITE AND WRITELN
17.5 EXTENDED COMPARISONS
18. MISC. IMPLEMENTATION SIZE LIMITS

19. SUMMARY OF U.C.8.D. INTRINSICS

1. CASE STATEMENTS

Jensen and Wirth on page 31 state that if there is no label
equal to the value of the case statement selector, then the result of
the case statement is undefined. U.C.S.D. Pascal defines that if there
is no label matching the value of the case selector then the next
statement executed is the statement following the case statement. For
example, the following sample program will only output the line “THAT'S
ALL FOLKS" since the case statement will "fall through" to the WRITELN
statement following the case statement:

PROGRAM FALLTHROUGH:
VAR CH: CHAR;
BEGIN
CH:=’A";
CASE CH OF
‘B’: WRITELN(QUTPUT, ‘HI THERE’);
‘C’: WRITELN(QUTPUT, ‘THE CHARACTER IS A ‘’C’?’’)
END;
WRITELNC(OUTRPUT, ‘THAT ‘5 ALL FOLKS’);
END.

Contrary to the syntax diagrams for <field list> on pages 116~
114 of Jensen and Wirth, the U.C. 8. D. Pascal compiler will not permit a
semicclon before the "END" of a case variant field declaration within a
RECORD declaration. See Table & for revised syntax diagrams for <field
listd>,

PagelQB

2. COMMENTS

The U.C.S.D. Pascal compiler recognizes any text appearing
between either the symbols "(#" and “g)" por the symbols *{" and "2" as
a comment. Text appearing between these symbols is ignored by the
compiler unless the first character of the comment is a dollarsign, in
which case the comment is interpreted as a compiler contrul comment.
(See section 1.4 of this documentation entitled "Pascal Compiler” for
. details on compiler control comments.)

Note that if the beginning of the comment is delimited by the
(%" symbol, then the end of the comment must be delimited by the
matching "#)" symbol, rather than an occurance of the ">" symbol. In
the case where the reverse is true, (i.e. when the comment begins with
the "{" symbol) the comment continues until the matching "}" symbol
appears. This feature allows a user to "comment out" a section of a
program which itself contains comments. For example:

{ XCP := XCP + 1 (# ADJUST FOR SPECIAL CASE... #) ¥

Note that the compiler does not keep track of nested comments,
when it encounters a comment symbol, it scans the text for the matching
comment symbol. i.e. the following text will result in a syntax errov:

(# THIS IS A COMMENT (% NESTED COMMENT #) END OF FIRST COMMENT #)
~evrror here.

3. DYNAMIC MEMORY ALLOCATION

The standard procedure DISPOSE defined on page 158 of Jensen
and Wirth is not implemented in U.C.S.D. Pascal. However, the function
of DISPOSE can be approximated by a combined use of the U.C.8.D.
intrinsics MARK and RELEASE. The process of recovering memory space 8s
described below is only an approximation to the function of DISPOSE
in that one cannot explicitly ask that the storage occupied by one
particular variable be released by the system for other uses

The current U.C.S.D. implementation allocates storage for
variables created by use of the standard procedure NEW in a stack—-like
structure called the "heap". The following program is a simple
demonstration of how MARK and RELEASE can be used to cause changes in
the size of the heap.

PROGRAM SMALLHEAP;

TYPE PERSON=
RECORD
NAME: PACKED ARRAYLO.. 151 OF CHAR;
ID: INTEGER
END;

Page i09

VAR P: ~PERSON; (# "~" means “pointer to" as defined in J&W #)

HEAP: ~INTEGER;
BEGIN
MARK (HEAP) ;
NEW(P);
P~. NAME: = ‘FARKLE,
P~ ID: = 999;
RELEASE (HEAP);
END.

HENRY J. “;

The above program first calls MARK to place the address of the

current top of heap into the variable HEAP.
pointer to an INTEGER is not really important. In

declared to be a

The fact that HEAP was

tact HEAP could have been declared as pointing to almost anything. The

parameter supplied to MARK must be a pointer variable,

but need not be

a pointer that is declared to be a pointer to an INTEGER as is

traditional.

(Declaring a pointer variable to be a pointer to an

INTEGER proves to be a particularly handy construct for deliberately
interferring with the contents of memory which is otherwise

inaccessable).
point in the program‘’s execution:

TOP OF HEAP ——>

Below is a pictorial description of the heap at this

<--- HEAP

contents of heap at
start of program

e wn e en wn on .-

Next the program calls the standard procedure NEW and this
results in a new variable P~ which is located in the heap as shown in

the diagram below:

TOP OF HEAP ——->

pA

<--- HEAP

H
{
¢
13
3
t
1
i
H
¢

contents of heap at
start of program

- an wa 4w wn . wn -

Once the program no longer needs the variable P~ and wishes to

"release” this memory space to the system for other uses,

RELEASE which resets the top of heap to the

variable HEAP.

Page 110

it calls
address contained in the

I# the above sample program had done a series of calls to the
standard procedure NEW between the calls to MARK and RELEASE, then the
effect would have been that the storage occupied by several variables
would be released at once. Also note that due to the stack nature of
the heap it is not possible to release the memory space used by a
single item in the middle of the heap. 1t is because of this that the
use of MARK and RELEASE can only approximate the function of DISPOSE as
described in Jensen and Wirth

Furthermore, it should be noted. that careless use of the
intrinsics MARK and RELEASE can lead to "dangling pointers" which point
to areas of memovy which are no longer a part of the defined heap
space. o

4. EOF(F)

To set EOF to TRUE for a textfile F which is being used as an
input file from the CONSOLE device, the user must type the EOF
character. The system default EOF character is the control-C
character. The EOF character can be altered by a suitable
reconfiguration of the system variable SYSCOM~. CRTINFO. EQOF using
SETUP. (Fo» further information concerning system configuration and
the SETUP program see Section 4.3 of this documentation)

For any FILE F, if F is closed, then EOF(F) will return the
value TRUE. If EOF(F) is TRUE , and F is a FILE of type TEXT, then
EOLN(F) is also TRUE. After a RESET(F), EOF(F) is FALSE. If EOF(F)
becomes TRUE during a GET(F) or a READ(F,...) then the data thereby
obtained is not valid.

When a user program starts execution, the system performs a
RESET on the predeclared files INPUT, QUTPUT, and KEYBOARD. (See
section of this document on the procedure READ for further details
concerning the predeclared file KEYBOARD)

As defined in Jensen and Wirth, EOF and EOLN by defavlt will
refer to the file INPUT if no file identifier is specified.

5. EOLN(F)

EOLN(F) is defined only if F is a textfile. F is a textfile if
the <type> of the window variabhle, F~, is of type CHAR. EOLN becomes
TRUE only after reading the end of line character. The end of line
character is a carriage return. In the example program below, care
must be taken in regard to when the carrviage return is typed while
inputting data:

PROGRAM ADDLINES;
VAR K, SUM: INTEGER:

Page 111

BEGIN
WHILE NDT EDF(INPUT) DO
BEGIN :
BUM: =0;
READ (INPUT, K);
WHILE NOT ECLNC(INPUT) DO
BECIN
BUM: =SUM+K;
READ(INPUT., K);
END;)
WRITELN(DUTPUT);
WRITELN(DUTPUT, ‘THE SUM FOR THIS LINE IS “, SUM);

’

END.

In order to tause EDLN(F) to become TRUE in the above program,
the carriage return must be typed immediately after the last digit of
the last integer on that line. If instead you type a space, followed
by the carriage Teturn, then EOLN will remain FALSE and another READ

will take place.

b6. FILES

In regard to the subject of files, the I.4 release contains
several changes from the I.3 release. These changes were made in order
to bring U.C.S.D. Pascal closer to the standard definition of the
“language. These changes include the addition of a new file {type>
called INTERACTIVE (described in section A below) and the introduction
of the use of the standard predeclared identifiers RESET and REWRITE as
synonyms for the U.C.S.D. intrinsics OPENOLD and OPENNEW.

As mentioned in the above paragraph, the I.4 Pascal compiler
will continue to support the use of OPENOLD and OPENNEW by treating
OPENOLD as being sauivalent to RESET and OPENNEW as being equivalent to
REWRITE. In later veleases the predeclared identifiers OPENOLD and
OPENNEW will be “"phased— out" and RESET and REWRITE used in their
place. (See the sections of this document entitled "RESET" and
"REWRITE" for further details)

A. INTERACTIVE FILES

As of the 1.4 release of the system: a new predeclared file
kind INTERACTIVE has been added. Files of <tupe> INTERACTIVE behave
exactly as files of <tupe> TEXT were defined in previous releases of
the system. The standard predeclared files INPUT and OUTPUT will
@llusys be defined to be of <type> INTERACTIVE. All files of any
{type> other than IMIERACTIVE are defined to operate exactly as
described in Jensen and Wirth. Additionally, for files which are not
of {tupe> INTERACTIVE, the definitions of EOF(F), EDLN(F), and
RESET(F) are eractly ss presented in Jensen and Wirth. (For a more
detailed discussicn of files of <type> INTERACTIVE see the section of
this document entitied "READ AND READLN" and "RESET".)

Page 112

B. UNTYPED FILES

U.C.S.D. Pascal has one type of file declaration which in not
found in the syntax of Jensen and Wirth. This type of file declaration
and its use is demonstrated in the sample program below:

(x$I—%)
PROGRAM FILEDEMO,

VAR G, F: FILE:
BUFFER: PACKED ARRAYLO..S5111 OF CHAR:
BLOCKNUMBER, BLOCKSTRANSFERRED: INTEGER;
BADIO: BOOLEAN;

(# This program reads a diskfile called ‘SOURCE. DATA’ and
copies the file into another diskfile called ‘DESTINATION’
using untyped files and the intrinsics BLOCKREAD and
BLOCKWRITE)

BEGIN
BADIOD: =FALSE;
RESET(G, ‘SOURCE. DATA);
REWRITE(F, ‘DESTINATION');
BLOCKNUMBER: =0i
BLOCKSTRANSFERRED: =BLOCKREAD (G, BUFFER, 1, BLOCKNUMBER)
WHILE (NOT EOF(&)) AND (IORESULT=0) AND (NOT BADIO) AND

(BLOCKSTRANSFERRED=1) DO

BEGIN
BLOCKSTRANSFERRED: =BLOCKWRITE(F, BUFFER, 1, BLOCKNUMBER)

BADIO: =({BLOCKSTRANSFERRED<1) OR (IORESULT<>0});
BLOCKNUMBER : =BLOCKNUMBER+1;
BLOCKSTRANSFERRED:=BLDCKREAD(G:BUFFER.1.BLOCKNUMBER):
END;
CLOSE(F, LOCK);
END.

The two files which are declared and used in the above sample
program are both untyped files. An untyped file F can be thought of as
a file without a window vari “le F~ to which all I/0 must be
accomplished by using the functions BLOCKREAD and BLOCKWRITE. Note that
any number of blocks can be transferred using either BLOCKREAD or
BLOCKWRITE. The functions return the actual number of blocks read. A
somewhat sneaky approach to doing & quick transfer would be:

WHILE BLDCKNRITE(F.BUFFER.BLOCKRéAD(G;BUFFER;BUFBLDCKS)))O DO (#IT#);

This is:, however considered unclean. The program above has been
compiled using the I-Compile Time Option, thereby requiring that the
function IORESULT and the number of blocks transferred be checked after
each BLOCKREAD or BLOCKWRITE in order to detect any I1/0 errors that
might have occured.

Page 113

C. RANDOM ACCESS OF FILES

The U.C. 8. D. implementation of structured files supports the
ability to randomly access individual records within a file by means of
the intrinsic SEEK. SEEK expects two parameters, the first parameter
being the file identifier, and the second parameter is an integer
specifying the record number to which the window should be moved. The
first record of a structured file is numbered rtecord O. The following
sample program demonstrates the use of SEEK to randomly access and
update records in a file:

PROGRAM RANDOMACCESS;
VAR DISK: FILE OF
RECORD
NAME: STRINGL201;
DAY, MONTH, YEAR: INTEGER;
ADDRESS: PACKED ARRAYLO.. 491 OF CHAR;
ALIVE: BOOLEAN

END;
RECNUMBER: INTEGER;
CH: CHAR;

BEGIN
RESET(DISK, ‘RECORDS. DATA');
WHILE NOT EOF(INPUT) DO
BEGIN
WRITE(OUTPUT, ‘Enter record number ——=27);
READ (INPUT, RECNUMBER);
SEEK (DISK, RECNUMBER);
GET(DISK);
WITH DISK~ DO
BEGIN
WRITELN(OUTPUT, NAME, DAY, MONTH, YEAR, ADDRESS };
WRITE(OUTPUT, ‘Enter correct name ——=37);
READLN (INPUT, NAME);

END;

SEEK(DISK, RECNUMBER); (% Must rTepoint the window
back to the record since
GET(DISK) advances the
window to the next record
after loading DISK™ #)

PUT(DISK);
END;
END.

Attempts to PUT records beyond the physical end of file will
set EOF to the value TRUE. (The physical end of file is the point where
the next record in the file will overwrite another file on the disk.)
SEEK always sets EOF and EOLN to FALSE. The subsequent GET or PUT will
set these conditions as is appropriate

Page 114

D. READ AND WRITE FROM ARBITRARILY TYPED FILES

It is not currently possible to READ or WRITE to files of type
other than TEXT or FILE OF CHAR.

7. ©GOTO AND EXIT STATEMENTS

U.C.S.D. has a more limited form of GOTD statement than is
defined as the standard in Jensen and Wirth. U.C.5.D. ‘s GDTO statement
prohibits a GOTO statement to a label which is not within the same
block as the GOTO statement itself. The examples presented on pages 31—
32 of Jensen and Wirth are not legal in U.C.S.D. Pascal.

EXIT is a U.C.S.D. extension which accepts as its single
parameter the identifier of a procedure to be exited. Note that the vuse
of an EXIT statement to exit a FUNCTION can result in the FUNCTION
returning undefined values if no assignment to the FUNCTION identifier
is executed prior to the execution of the EXIT statement. Below is an
example of the use of the EXIT statement:

PROGRAM EXITDEMO;
VAR T: STRING;
CN: INTEGER;

PROCEDURE @; FORWARD;

PROCEDURE Pi
BEGIN
READLN(T);
WRITELN(T);
IF TE131=‘#‘ THEN EXIT(Q);
WRITELN(‘LEAVE P)i
END;

PROCEDURE Q;
BEGIN

P

WRITELN(‘LEAVE Q‘);
END;

PROCEDURE Ri
BEGIN
IF CN <= 10 THEN Qi
WRITELNC/LEAVE R)
END;

BEGIN
CN: =0;
WHILE NOT EOF DO
BEGIN
CN: =CN+1;
Ri
WRITELN;
ENDi
END. i

Page 115

I# the above program were supplied the following input
THIS IS THE FIRST STRING
3AST STRING
then the following output will result:

THIS IS THE FIRST STRING
LEAVE P
LEAVE @
LEAVE R

#
LEAVE R

LAST STRING
LEAVE P
LEAVE @
LEAVE R

The EXIT(G) statement causes the PROCEDURE P to be terminated
followed by the PROCEDURE Q. Processing continues following the call to
Q@ inside PROCEDURE R. Thus the only line of output following “#" is
“"LEAVE R" at the end of PROCEDURE R. In the two cases where the EXIT(Q)
statement is not executed processing proceeds normally through the
terminations of procedures P and Q.

I+ the procedure. identifier passed to EXIT is a recursive
procedure then the most tecent invocation of that procedure will be
exited. Also, if in the above example program, one or both of the
procedures P and Q had declared and opened some local files, then an
implicit CLOSE(F) is donme when the EXIT(Q) statement was executed., Just
as if the procedures P and QG had terminated normally.

The creation of the EXIT statement at U.C.S.D. was inspired by
the occasional need for a straightforward means to abort a complicated
and possibly deeply nested series of procedure calls upon encountering
an error. An example of such a use of the EXIT statement can be found
in the recursive descent U.C.S.D. Pascal compiler. However, the
ravtine use of the EXIT statement is discouraged.

Page 116

8. PACKED VARIABLES

A PACKED ARRAYS

The U.C.S.D. compiler will perform packing of arrays and
records if the ARRAY or RECORD declaration is preceded by the word
PACKED. For example, consider the following declarations:

A: ARRAYILO..91 OF CHAR;
B: PACKED ARRAYLO..91 OF CHAR;

The array A will occupy ten 16 bit words of memory, with each
element of the array occupying 1 word. The PACKED ARRAY B on the other
hand will accupy a total of only 5 words, since each i6 bit word
contains two B bit characters. In this manner each element of the
PACKED ARRAY B is 8 bits long.

PACKED ARRAYs need not be restricted to arrays of type CHAR,
for example: :

C: PACKED ARRAYLO..11 OF O..3i
D: PACKED ARRAYL1..93 OF SET OF O..15;
D2: PACKED ARRAYLO..23%9,0..3191 OF BOOLEAN;

Each element of the PACKED ARRAY C is only 2 bits long, since
only 2 bits are needed to represent the values in the range O..3.
Therefore C occupies only one 16 bit word of memory, and 12 of the bits
in that word are unused. The PACKED ARRAY D is a 9 word array, since
each element of D is a SET which can be represented in a minimum of 16
bits. Each element of a PACKED ARRAY OF BOOLEAN, as in the case of D2
in the above example, occupies only one bit

The following 2 declarations are not equivalent due ta the
recursive nature of the compiler:

E: PACKED ARRAYILO..91 OF ARRAY[O..31 OF CHARi

F: PACKED ARRAYLO..9,0..31 OF CHAR;

The second occurrence of the reserved word ARRAY in the
declaration of E causes the packing option in the compiler to be turned
off. The net result is that E becomes an unpacked array of 40 words. On
the otherhand, the PACKED ARRAY F is an array occupying 20 total words

because the reserved word ARRAY occurs only once in the declaration. If
E had been declared as

E: PACKED ARRAYILO.. 9] OF PACKED ARRAYLO. .31 OF CHAR;

or as

Page 117

E: ARRAYEO.. 9] OF PACKED ARRAY[O.. 3] .OF -CHAR;

then F and E would have had identical configurations.

In short, the reserved word PACKED only has true significence
before the last .appearance of the reserved word ARRAY in a declaration
of a PACKED ARRAY. When in doubt a good rule of thumb when declaring a
multidimensionall PACKED ARRAY is to place the reserved word PACKED
before every appearance of the reserved word ARRAY to insure that the
resuvltant array will in fact be PACKED.

The resultant array will only be packed if the final type ot
the array is scalar, or subrange, or a set which can be represented in
‘8 bits or less. (The final type of can also be BOOLEAN .or CHAR). The
following declaration will ‘result in no packing whatsoever because the
tinal type of ‘the array cannot be represented in a field of 8 bits:

‘e: PACKED ARRAYLO.. 31 OF 0.. 1000;
6 will be an array which occupies 4 146 bit words.

Packing never occurs across word boundaries. This means that it
the type of the element to be packed requires a number of bits which
does not divide evenly into 1&, then there will be some unused bits at
the ‘high order end of each of the words which comprise the array.

Note that .a «string constant may e .assigned to 8 PACKED ARRAY
BF CGHAR but not o .an unpacked -ARRAY OF ‘CHAR. Likewise, comparisons
‘between an ARRAY DOF CHAR and a string constant are illegal. (These are
temporary implementation restrictions which will be removed in the next
major release.) Because of their different sizes, PACKED ARRAYs cannat
be compared %o ordinary unpacked ARRAYs. For further information
regarding PACKED ARRAYs OF CHARacters see section 16 STRINGS in this
document.

A PACKED ARRAY OF CHAR may be output with a single write statement:

PROGRAM VERYSL.ICKi
VAR T: PACKED ARRAY[O..10] OF CHAR;
BEGIN
T:='HELLDO THERE’;
WRITELN(T);
END,

Initialization of a PACKED ARRAY OF CHAR can be accomplicshed
very efficiently by using the U.C.S.D. intrinsics FILLCHAR and SIZEDF:

PROGRAM FILLFAST;
VAR A: PACKED ARRAYLO.. 101 OF CHAR;
BEGIN

FILLCHARCALOL, SIZEOF(A), ¢ *);
END,

Page 118

The above sample program f£ills the entire PACKED ARRAY A with
blanks. (For further documentation on FILLCHAR, SIZEOF, and the other
U.C.S. D. intrinsics see section 2. 1.5 of this documentation entitled
"CHARACTER ARRAY MANIPULATION INTRINSICS).

B. PACKED RECORDS

The following RECORD declaration declares a RECORD with 4
fields. The entire RECORD occupies one 1é6 bit word as a result of
declaring it to be a PACKED RECORD. :

VAR R: PACKED RECORD
I, K 0..31;
B: BOOLEAN
END;
The variables I, J, K each take up S bits in the word. The
boolean variable B is allocated in the i6°th bit of the same word.

In much the same manner that PACKED ARRAYs can be
multidimensional PACKED ARRAYs, PACKED RECORDS may contain fields which
themselves are PACKED RECORDS or PACKED ARRAYS. Again, slight
differenceec in the way in which declarations are made will affect the
degree of packing achieved. For example, note that the following two
declarations are not equivalent:

VAR A: PACKED RECORD VAR B: PACKED RECORD
C: INTEGER: C: INTEGER: ‘
F: PACKED RECORD F: RECORD
R: CHAR; R: CHAR:;
K: BOOLEAN ' K: BOOLEAN
END; END; ,
H: PACKED ARRAYLO..31 OF CHAR H: PACKED ARRAYLO. .31 OF CHAR
END; END; ‘

As with the reserved word ARRAY, the reserved word PACKED must
appear with every occurance of the reserved word RECORD in order for
the PACKED RECORD to retain its packed qualities throughout all fields
of the RECORD. In the above example, only the RECORD A is as completely
packed as possible. In B, the F field is not packed and therefore
occupies two 14 bit words. In contrast A.F has all of its fields packed
into one word. However, it is important to note that a packed or
vnpacked ARRAY or RECORD which is a field of a PACKED RECORD will
aluays start at the beginning of the next word boundary. This means
that in the case of A in the above example, even though the F field
does not completely fill one word: the H field starts at the beginning
of the next word boundary.

A case variant may be used as the last field of a PACKED
RECORD, and the amount of space allocated to it will be the size of the
largest variant amoung the various cases. The actual nature of the
packing is far beyond the scope of this document.

Page 119

VAR K: PACKED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF
TRUE: (Z: INTEGER);
FALSE: (M: PACKED ARRAY[O..231 OF CHAR)
. END
END;

In the above example the B and F fields are stored in two bits
of the first 146 bit word of the record. The remaining 14 bits are not
used. The size of the case variant field is always the size of the
largest variant, so in the above example, the case variant field will
occupy two words. Thus the entire PACKED RECORD will occupy 3 words.

C. USING PACKED VARIABLES AS PARAMETERS

No element of a PACKED ARRAY or field of a PACKED RECORD may be
passed as a variable (call-by-reference) parameter to a PROCEDURE or
FUNCTION. Packed variables may, however, be passed as call by value
parameters. (as stated in Jensen and Wirth.)

D. PACK AND UNPACK STANDARD PROCEDURES

U.C.8.D. Pascal does not support the standard procedures PACK
and UNPACK as defined in Jensen and Wirth on page 106.

9. PARAMETRIC PROCEDURES AND FUNCTIONS

U.C.8.D. Pascal does not support the construct in which
PROCEDURES and FUNCTIONS may be declared as formal parameters in the
parameter list of a PROCEDURE or FUNCTION.

See Section 6.6 for a revised syntax diagram of <parameter~—
listd>.

10. PROGRAM HEADINGS

Although the U.C.8.D. Pascal compiler will permit a list of
file parameters to be present following the program identifier, these
parameters are ignored by the compiler and will have no affect on the

program being compiled. As a result the following two program headings
- are equivalent:

PROGRAM DEMOCINPUT, DUTPUT): and PROGRAM DEMO;

Page 120

With either of the above program headings, a user program will
have three files predeclared and opened by the system. These
predeclared files are: INPUT, OUTPUT, and KEYBOARD and are defined to
be of <type> INTERACTIVE. If the program wishes to declare any
additional files, then these file declarations must be declared
together with the program’s other VAR declarations.

11. READ AND READLN
Given the following declarations:

VAR CH: CHAR:
F: TEXT: (# TYPE TEXT = FILE OF CHAR *)

then the statement READ(F,CH) is defined by Jensen and Wirth on page 85"
to be equivalent to the two statement sequence:

CH: =F~;
GET(F);

In other words, the standard definition of the standard
procedure READ requires that the process of opening a file load the
"window variable" F~ with the first character of the file. However, in
an interactive programming environment, it is not convenient to require
a user to type in the first character of the input file at the time
when the file is opened. If this were the case, every pragram would
“hang" until a character was typed whether or not the program performed
any input cperations at all. In order to overcome this problem,
U.C.S.D. Pascal defines an additional file <type> called INTERACTIVE.
Declaring a file F to be of <type> INTERACTIVE is equivalent to
declaring F to be of type TEXT, with the difference being that the
definition of the statement READ(F,CH) is the following two statement
sequence which is the reverse of the sequence specified by the standard
definition far files of <type> TEXT:

GET(F)i
CH: =F";

The difference mentioned above affects the way in which EOLN
must be used within a prograa which is reading from a textfile of type
INTERACTIVE. As mentioned in Section 5 of this document, EOLN becomes
true only after reading the end of line character which is a carriage
return. When this end of line character is read, EOLN is set to true
and the character returned as a result of the READ will be a blank. In
the example program fragments below the.left fragment is an example
program taken from Jensen and Wirth in which only the RESET and REWRITE
statements have been altered. The program on the left will correctly
copy the textfile represented by the file X to the file V. The program
fragment on the right performes a similiar task, except that the
source file being copied is declared to be a file of {type>
INTERACTIVE, thereby forcing a slight change in the program in order to
produce the desired result.

Page 121

PROGRAM JANDW;
VAR X, Y TEXT:
CH: CHAR;
BEGIN-
RESET(X, ‘SOURCE. TEXT’);
REWRITE(Y, ‘SOMETHING. TEXT*);
WHILE NOT EOF(X) DO
BEGIN
WHILE NOT EOLN(X) DO
BEGIN
READ(X, CH);
WRITE(Y, CH);

END;
READLN(X);
WRITELN(Y);

END;
CLOSE (Y, LOCK);
END.

PROGRAM UCSDVERSION;
VAR X, Y: INTERACTIVE;
CH: CHAR;
BEGIN
RESET(X, “CONSOLE: *);
REWRITE(Y, ‘SOMETHING. TEXT’);
WHILE NOT EODF(X) DO
BEGIN
WHILE NOT EOLN{X) DO
BEGIN
READC(X, CH);
IF NOT EOLN(X) THEN .
WRITE(Y, CH);
END;
READLN(X?);
WRITELN(Y);
END;
CLOSE(Y, LOCK);
END.

Note that the textfiles X and Y in the above two programs had
to be opened by using the U.C.S.D. extended form of the standard
procedures RESET and REWRITE. (In previous releases, this function was
performed by the U.C.S.D. intrinsics OPENOLD and OPENNEW. The I.4
Pascal compiler still supports the use of OPENOLD and OPENNEW by
treating these predeclared identifiers as synonomous with RESET and
REWRITE respectively. Eventually OPENDOLD and OPENNEW will be "phased-
out" and no longer supported by the Pascal compiler.)

The IF statement in the interactive version of the program
fragment on the left is needed in order for the file Y to become an
exact copy of the textfile X. Without the IF statement, an extra blank
character is appended to the end of each line of the file Y. This extra
blank corresponds to the end of line character which is returned as a
blank according to the standard definition in Jensen and Wirth. Note
that the CLOSE intrinsic was applied to the file Y in both versions of
the program in order to make it a permanent file in the disk directory
called "SOMETHING. TEXT". The textfile X could likewise have been a
diskfile instead of coming from the CONSOLE device in the right hand
version of the program.

There are three predeclared textfiles which are automatically
opened by the system for a user program. These files are INPUT, OQUTPUT,
and KEYBOARD. The file INPUT defaults to the CONSOLE device and is
defined to allways be of <type> INTERACTIVE. The statement
READ(INPUT, CH) where CH is a character varieble, will echo the
character typed from the CONSOLE back to the CONSOLE device. WRITE
statements to the file OUTPUT will by default cause the output to
appar on the CONSOLE device. The file KEYBOARD is the non—echoing
equivalent to INPUT. For example, the two statements

READ (KEYBOARD, CH);
WRITE(OUTPUT, CH);

Page 122

are equivalent to the single statement READ(INPUT., CH).

For more documentation regarding the use of files see the other
sections of this document describing FILES, EOF, EOLN, WRITE AND
WRITELN, and RESET. Additonal documentation on the U.C.5.D. intrinsics
can be found in Section 2.1.2 of this documentation entitled
s INPUT/0OUTPUT INTRINSICS".

12. RESET(F)

The standard procedure RESET as defined on page 9 of Jensen and
Wirth resets the file window to the beginning of the file F. The next
GET(F) or PUT(F) will affect record number O of the file. In addition,
the standard definition of RESET(F) states that the window variable F™
be loaded with the first record in the file. The U.C.S.D.)
implementation of RESET(F) operates exactly as defined by the standard
definition:, unless the file F is declared to be of <type> INTERACTIVE
in which case the statement RESET(F) points the file window to the
start of the file, but does not load the window variable F~. Thus for
files of <type> INTERACTIVE the U.C.S.D. equivalent to the standard
definition of RESET(F) is the two statement sequence:

RESET(F);
GET(F)i

U.C.8.D. Pascal defines an alternative form of the standard
procedure RESET which is used to open a pre~existing file. In this
alternative form, RESET has two parameters, the first parameter is the
file identifier, the second parameter is either a STRING constant or
variable which corresponds to the directory filename of the file being
opened. For further documentation regarding the use of RESET to open a
file see section 2.1.1 of this documentation entitled "INPUT/0OUTPUT
INTRINSICS".

13. REWRITE(F)

The standard procedure REWRITE is used to open and create a new
file. REWRITE has two parameters, the first parameter being the file
jdentifier, the second parame.er corresponds to the directory filename
of the file being opened, and must be either a STRING constant or
variable. For example the statement REWRITE(F, ‘SOMEINFO. TEXT’) causes
the file F to be opened for output, and if the file is locked onto the
disk:. the filename of the file in the directory will be
"SOMEINFO. TEXT". REWRITE performs the equivalent action as performed
by the U.C.S.D. OPENNEW intrinsic and will eventually replace OPENNEW
as the intrinsic used to open a previously nan—existent file. For
further documentation regarding the use of REWRITE to open a file. see
section 2.1.1 of this documentation entitled *INPUT/0UTPUT INTRINSICS".

14. SEGMENT PROCEDURES

Page 123

The concept of the SEGMENT PROCEDURE is a U.C.S.D. extension to
Pascal, the primary purpose of which is to allow a programmer the
ability to explicitly partition a large program into segments, of which
only a few need be resident in memory at any one time. The U.C.S.D.
Pascal system is necessarily partitioned in this manner because it is
too large to fit into the memory of most small interactive computers
all at once.

The Fdllowing program is an example of the use of SEGMENT PROCEDURES:
PROGRAM SEGMENTDEMOD:
(# CGLOBAL DECLARATIONS GO HERE %)

PROCEDURE PRINT(T:STRING);

FORWARD:;
SEGMENT PROCEDURE ONE;
BEGIN
PRINT(‘SEGMENT NUMBER DNE’);
END;

SEGMENT PROCEDURE TWO;
SEGMENT PROCEDURE THREE;
BEGIN
ONE;
PRINT(‘SEGMENT NUMBER THREE‘);
END;
BEGIN (# SEGMENT NUMBER TWO)
THREE;
PRINT (‘SEGMENT NUMBER TWO’);
END;

PROCEDURE PRINT:;
BECGIN

WRITELN(OUTPUT, T); .
END;

BEGIN

THO:

WRITELN(’I’’M DONE"’);
END.

The above program will give the following output:

SEGMENT NUMBER ONE
SEGMENT NUMBER THREE
SEGMENT NUNBER TWO
1‘M DONE

For further documentation on SEGMENT PROCEDURES, their use and
the syntax governing their declaration see Section 3.3 of this :
documentation entitled “SEGMENT PROCEDURES".

Page 124

15. SETS

"U.C.8.D. Pascal supportsvall of the constructs defined for sets
on pages 50-51 of Jensen and Wirth. A set can be at most 255 words in
size, and have at most 4080 elements.

Comparisons and operations on sets are allowed only between
sets which are either of the same base type or subranges of the same
undetrlying type. For example, in the sample program below, the base
type of the set S is the subrange type O..49, while the base type of
the set R is the subrange type 1..100. However, the underlying type of
both sets is the type INTEGER, which by the above definition of
compatability, implies that the comparisons and operations on the sets
§ and R in the following program are legal:

PROGRAM SETCOMPARE;
VAR 8§: SET OF 0..4%9;
R: SET OF 1..100;

BEGIN
S:= [0, 5,10, 15, 20, 25, 30, 35, 40, 451;
R:= [10, 20, 30, 40, 50, 60, 70, B0, ?01;
IF 8 = R THEN

WRITELN(’... oops ... ")
ELSE

WRITELN(’sets work’);
g := 8 + R;

END.

Howaver, in the following example the construct
1 =J
is not legal since the two sets are sets of tuwo distinct underlying types.

PROGRAM ILLEGALSETS;
TYPE STUFF=(ZERO, ONE. TWO);
VAR I: SET OF STUFF;

J: SET OF 0..2;

BEGIN

I:= LZEROD1;

J:= [1,21

IF I = J THEN ... €{<<{ error here
END.

16. STRING3

U.C.8.D. Pascal has an additional predeclared type STRING.
Variables of type STRING are essentially PACKED ARRAYs OF CHAR that
have a dynamic LENGTH attribute, the value of which is returned by the
STRING intrinsic LENGTH. The default maximum LENGTH of a STRING
variable is 80 characters. This default maximum LENGTH can be
overridden in the declaration of a STRING variable by appending the
desired LENGTH of the STRING variable within [3} after the reserved
type identifier STRING. Examples of declarations of STRING variables
appear belouw:

Page 1295

TITLE: STRING; (# defaults to a maximum length of BO characters *)

NAME: STRINGL201; (# allows the STRING to be a maximum of 20
characters#)

Note that a STRING variable has an absolute maximum length of
255 characters. Assignments to string variables can be performed using
the assignment statement, the U.C.8.D. STRING intrinsics, or by means
of a READ statement:

TITLE: =" THIS IS A TITLE '3
or

READLN(TITLE);
0T

NAME: = COPY(TITLE, 1, 20);

The individual characters within a STRING are indexed from 1 to
the LENGTH of the STRING, for example:

TITLEC11:= ‘A’;
TITLELD LENGTH(TITLE)Y 1:= 72+;

] A variable of type STRING may not be indexed beyond its current
@unamicsLENGTH,»%or:etample, the following sequence will result in an
invalid index run time error:

TITLE:= ‘1234/;
TITLEL5]:= /5¢;

A variable of type STRING may be compared to any other variable
of type STRING or a string constant no matter what its current dynamic
LENGTH. Unlike comparisons involving variables of other types, STRING
variables may be compared to items of a different LENGTH. The
resulting comparison is lexicographical. The following pregram is a
demonstration of legal comparisons involving variables of type STRING:

PROGRAM COMPARESTRINGS;
VAR 8: STRING;
T. STRINGL401:;

BEGIN
S:= ‘SOMETHING’;
T:= ‘SOMETHING BIGGER;
IF 8 = T THEN
WRITELN(‘Strings don’’t work too well’)
ELLGE
IF 8 > T THEN
WRITELN(S, ’ is greater than VT
ELSE
IF 8§ < T THEN
WRITELN(S, * is less than 0T
IF 8 = ‘SOMETHING’ THEN
WRITELN(S, ' equals “,8);

Page 126

IF 8§ > ‘SAMETHING’ THEN
WRITELN(S, / is greater than SAMETHING');
. IF 8 = ‘SOMETHING ’ THEN
WRITELN(‘BLANKS DON‘‘T COUNT’)
ELSE
WRITELN(/BLANKS APPEAR TO MAKE A DIFFERENCE ‘)i
S:=XXX";
T:=’ABCDEF’;
IF 8 > T THEN :
WRITELN(S, / is greater than ‘., T)
ELSE ' ’
WRITELN(S, * is less than *,T)i
END. '

The above program should produce the following output:

SOMETHING is less than SOMETHING BIGGER
SOMETHING equals SOMETHING

SOMETHING is greater than SAMETHING
BLANKS APPEAR TO MAKE A DIFFERENCE

XXX is greater than ABCDEF

Dne of the most common uses of STRING variables in the U.C.S. D.
Pascal system is reading file names from the CONSOLE device:

PROGRAM LISTER;

VAR BUFFER: PACKED ARRAYLO.. 5111 OF CHAR;
FILENAME: STRING;
F: FILE; '

BEGIN
WRITE(’Enter filename of the file to be listed ——->');

READLN(FILENAME);

RESET(F, FILENAME);

WHILE NOT EOF(F) DO
BEGIN

END;
END.

When a variable of type STRING is a parameter to the standard
procedue READ and READLN, all characters up to the end of line charater
(a carriage return) in the source file will be assigned to the STRING
variable. Note that care must be taken when reading STRING variables,
for example, the single statement READLN(S1,82) is equivalent to the
two statement sequence READ(S1); READLN(32). In both cases the STRING
variable S2 will be assigned the empty string.

For further information concerning the predeclared type STRING
and a description of the U.C.S5.D. STRING intrinsics see Section 2. 1.1
of this documeritation entitled "STRING INTRINSICS".

Page 127

17. WRITE AND WRITELN

The standard procedures WRITE and WRITELN are compatible with
Standard Pascal, except with respect to a WRITE or a WRITELN of a
variable of type BOOLEAN. U.C.S.D. Pascal does not support the output
of the words TRUE or FALSE as the result of writing out the value of a
BOOLEAN variable.

For a description of WRITE statements of variables of type
STRING see Section 2.1.1 of this documentation entitled "STRING
INTRINSICS".

U.C.8.D. ‘s WRITE and WRITELN do support the writing of entire
PACKED ARRAYs OF CHAR in a single WRITE statement:

VAR BUFFER: PACKED ARRAYLO.. 101 OF CHAR;

BEGIN
BUFFER: = ‘HELLO THERE’; (% contains exactly 11 characters %)
WRITELN(OUTPUT, BUFFER);

END.

The above construct will only work if the ARRAY is a PACKED
ARRAY OF CHAR. See the section of this document on PACKED VARIABLES for
further information about packing

The following program demonstrates the effects of a field width
specification within a WRITE statement for a variable of type STRING:

PROGRAM. WRITESTRINGS;
VAR 8:S8TRING;

BEGIN

8:='THE BIG BROWN FOX JUMPED... %;

WRITELN(S);

WRITELN(S: 30);

WRITELN(S: 10); .
END.

The above program will produce the following output:

THE BIG BROWN FOX JUMPED. ..
THE BIG BROWN FOX JUMPED. ..
THE BIG BR

Note that when a string variable is written without specifying
a field width, the actual number of characters written is equal to the
dynamic length of the string. If the field width specified is longer
than the dynamic length of the string, then leading blanks are written.
I# the field width is smaller than the dynamic length of the string
then the excess characters will be truncated on the vight.

Page 128

17.5 EXTENDED COMPARISONS.

U.C.S.D. Pascal allows = and <> comparisons of any array or
record structure.

18. MISC.

IMPLEMENTATION SIZE LIMITS

The following is a list of maximum size limitations imposed
upon the user by the current implementation of U.C.8.D. Pascal:

1.

Maximum number of bytes of object code in a PROCEDURE or
FUNCTION is 1200. Local variables in a PROCEDURE or FUNCTION

can occupy a

maximum of 16383 words of memoTy.

Maximum number of characters in a STRING variable is 255.

Maximum number of elements in a SET is 250 # 16=4080.

Maximum number of SEGMENT PROCEDUREs and SEGMENT FUNCTIONs

is 16.

(9 are reserved for the Pascal system, 7 are

available for use by the user program)

Maximum number of PROCEDUREs or FUNCTIONs within a segment
is 127.

19. SUMMARY OF U.C.S.D. INTRINSICS

INTRINSIC

BLOCKREAD

BLOCKWRITE

CLOSE
CONCAT

DELETE

DRAWLINE
DRAWBL.OCK
EXIT

GO0TOXY

"SECTION #

2.

S U VI ¥

1.

2

n

e N P »

DESCRIPTION
Function which reads a variable number of blocks
from an untyped file.

Function which writes a variable number of blecks
from an untyped file.

Procedure to close files.
STRING intrinsic used to concatenate strings together.

STRING intrinsic used to delete characters from
STRING variables. ‘

Graphics intrinsic for use on the Terak 8510a.
Graphics intrinsic for use on the Terak 8510a.
Intrinsic used to exit PROCEDURES cleanly.

Précedura vused for cursor addressing whose two

parameters X and 'Y are the column and line numbers
on the screen where the cursor is to be placed.

* Page 129

FILLCHAR
HALT

IDSEARCH

INSERT

IORESULT

LENGTH

MARK

MOVELEFT
MOVERIGHT
REWRITE
RESET

‘POS

PWROFTEN

RELEASE

SEEK

SIZEOF

TIME

TREESEARCH

UNT TBUSY

UNITCLEAR

Page 130

2.1.5

2.1.6

S U CR VI ¥
(S
N B au

Fast procedure for initializing PACKED ARRAYs OF CHAR.

Results in a halt in a user program which may
result in a call to the interactive Debugger.

Routine used by the Pascal compiler, and the PDP-11
assembler.

STRING intrinsic used to insert characters in STRING
variables.

Function returning the result of the previous 1/0
operation. (See Table 2 for a list of values)

STRING intrinsic which returns the dynamic length
of a STRING variable.

Used to mark the current top of the heap in dynamic
memoary allocation.

Low level intrinsic for moving mass amounts of bytes.
Low level intrinsic for moving mass amounts of bytes.
Procedure for opening a new file

Procedure for opening an existing file.

STRING intrinsic returning thenpasition of a
pattern in a STRING variable.

Function which returns as a REAL result the number
10 raised to the power of the integer parameter
supplied.

Intrinsic used to release memory occupied by
variables dynamically allocated in the heap.

Used for random accessing of records withing a file.

Function returning the number of bytes allacated
to a variable.

Function returning the time since last bootstrap
of system. (returns zero if microcomputer has
no real time clock)

Routine used solely by the Pascal compiler.

Low level intrinsic for determining the status of
a peripheral device.

Low level intrinsic to cancel I/0 from a peripheral
device.

UNITREAD 2.1.2 Low level intrinsic for reading from a peripheral

device.
UNITWAIT 2.1.2 Low level intrinsic for waiting until a peripheral
device has completed an I/0D operation.
UNITWRITE 2.1.2 Low level intrinsic used for writing to a peripheral
device.

Page 131

Page 132

*********************************%*% 36 363636 3636 3 31 36 I3

DRAWLINE AN IMPLEMENTOR'S GUIDE # # Section 3.1
6363048 364020 26 364046 26 3030 3340 3320 30 H B0 S AR H RS0 SRR R R

Version 1.4 Januvary 1278

The DRAWLINE intrinsic uses an incremental technique to plot
line segments on a point—addressable matrix. The algorithm guarantees a
best (least squares) approximation tao the desired line. In general this
approximation is not unique. DRAWLINE may pick different representations
for a line depending on the starting point. (This could be corrected by
always starting at the same end of the line.) No range checking is
performed on parameters passed to this intrinsic.

The algorithm is essentially the one described in [Newman and

Sproul, Principles of Interactive Computer Graphicsl as the Digital
Differential Analyzer. It has been modified to perform only integer
arithmetic. Pascal source code is included below. The procedure first
determined whether the line will be more horizontal or vertical. In the
discussion below, we assume the horizontal case; vertical is similar.

There will be DELTAX points plotted with horizontal increment
of 1 each. The vertical increment will be ABS (DELTAY / DELTAX) <= 1.
The Y coordinate arithmetic is scaled by DELTAX to eliminate fractions.
An additional savings in execution time has been gained by maintaining
the address of the previous point, and doing only addition and
gubtraction to veach the next point to be plotted.

The RADAR function is complicated as two intersecting lines may
have no plotted points in comman. The detection condition is either
(1) the computed point is TRUE, or (2) both the next horizontal and
the next vertical points are TRUE. Condition (2) could be weakened:
when the line is more horizontal, only +the next vertical point need be

checked.

Refer to Section 2.1.4 for a description of the parameter calling sequence

A PASCAL implementation follows:

Page 133

PROCEDURE DRAWLINE (VAR RANGE: INTEGER: VAR SCREEN: SCREENTYPE;
ROWSIZE, XSTART, YSTART, DELTAX, DELTAY, INK: INTEGER);

VAR X, Y, XINC, YINC, COUNT: INTEGER;
PROCEDURE DRAWDOT;

PROCEDURE RADAR;
VAR GOTIT: BOOLEAN;

BEGIN
GOTIT := FALSE;
COUNT := COUNT + 1,

IF SCREEN [Y, X1 THEN GOTIT := TRUE (#LANDED ON THE POINT#)
ELSE (*WE MIGHT GO THROUGH A LINE#)
IF SCREEN L[Y+1, X1 THEN
GOTIT := SCREEN LY, X+11;
IF GOTIT THEN

BEGIN
RANGE := COUNT;
EXIT(DRAWLINE)
END;

END (#RADAR#);

BEGIN (#DRAWDOT#*)
CASE INK OF

O (#NONE#): EXIT (DRAWLINE); (*THEY HAD NO BUSINESS HERE#*)
1 (#WHITE#*): SCREEN LY, X1 := TRUE;

2 (#BLACK#): SCREEN LY, X1 := FALSE;

3 (#REVERSE#*): SCREEN LY, X1 := NOT SCREEN [Y, X1;

4 (#RADAR%#*): RADAR
END (#CASE#*)
END (#DRAWDOT#);

PROCEDURE DOFORX; (#MORE HORIZONTAL#*)
VAR ERROR, I: INTEGER;
BEGIN

IF DELTAX = O THEN EXIT (DRAWLINE); (®%THEY'RE GOING NOWHERE 3)
ERROR := DELTAX DIV 2;
I := DELTAX;
REPEAT
ERROR := ERROR + DELTAY:;
IF ERROR >= DELTAX
THEN BEGIN ERROR := ERROR - DELTAX: Y := Y + YINC END;
X := X + XINC;
DRAWDOT;
1 :=1-1;
UNTIL I = 0;
END (#DOFORX#);

Page 134

PROCEDURE DOFORY: (#MOQRE VERTICAL*)
VAR ERROR, I: INTEGER;

BEGIN
ERROR := DELTAY DIV 2;
1 := DELTAY;
REPEAT

ERROR := ERROR + DELTAX:
IF ERROR >= DELTAY
THEN BEGIN ERROR := ERROR - DELTAY;
Y := Y + YINC;)
DRAWDOT:
I :=1 - 1;
UNTIL I = O
END (#DOFORY#);

BEGIN (#DRAWLINE#)
X := XSTART;
IF DELTAX < O

THEN BEGIN XINC := —1; DELTAX :=
ELSE XINC := 1;

Y := YSTART;

IF DELTAY £ O
THEN BEGIN YINC := -1; DELTAY :=
ELSE YINC := {1;

COUNT := 0;

X := X + XINC

-DELTAX END

-DELTAY END

IF DELTAX >= DELTAY THEN DOFORX ELSE DOFORY:
(#HIT THE LIMIT GIVEN®)

IF INK = 4 (#RADAR#*) THEN RANGE := COUNT;

END (#DRAWLINE#);

END;

Page 135

-~ Notes —

Page 1364

$h 33630 336 36 3630 33 33 3 FEEIE I3 3343303 3 3030 03

FILE FORMATS # # Section 3.2 %
FRE A B IR SRR AR
Version I.4 Janvary 1978

Code files are documented in Sections 3.4 and 3. 5.
Text files are of the format:

<1024 bytes> header page, information for editors.
€1024 byte pages> where 3 page is defined:
([DLE]CindentJ[text][CR]EDLEJtindent)ttext]ECRJ...CnullsJ)

Data Link Escapes are followed by an indent-code. which is a
byte containing the value 32+(# %o indent). The nulls at the end af
the page follow a [CR] in all cases, they are a pad to the end of a
page. The reason for the nulls is that the compiler wants integral
numbers of lines on a page. The Data Link Escape and carresponding
indentation code are optional. In a given text file some lines will
have the codes: and some won’'t.

Foto files are declared in PASCAL as follows:

TYPE GSCREEN = PACKED ARRAYLO..23%,0..3191 OF BOOLEAN;
VAR FOTOFILE: PACKED FILE OF SCREEN;

or something similar, which takes up the same dimensional
space.

Data files are up to the user.

Page 137

-~ Notes -

Page 138

B4 353 36 3636 36 3 36 36 3H 0 M 4TI L I3 RN R

SEGMENT PROCEDURE NOTES # # Section 3.3
Iy R T I s]

Version 1.4 Januvary 1978

Declarations of SEGMENT procedures and functions are identical
to standard Pascal procedures and functions except they are preceded by
the reserved word ‘SEGMENT’, for example:

SEGMENT PROCEDURE INITIALIZE;
BEGIN

{# PASCAL code #}
END;

Program behavior differs, however, in that code and data for a
SEGMENT procedure (function) are in memory only while there is an
active invocation of that procedure. .

Advantages and benefits:

The user may now put large pieces of one-~time code, eg.
initialization code, into a SEGMENT procedure. After performing the
initialization, for example, the now-useless code is taken out of
memory thus increasing the available memory space.

Furthermore the user may now compile his/her program in chunks,
specifically in SEGMENTS. The LINKER program {described in Section
4.2) can be used to link together the separate segments to produce one
large code file.

Requirements and limitations:

The disk which holds the codefile for the program must be on-
line (and in the same drive as when the program was started) whenever
one of SEGMENT procedures is to be called. Otherwise the system will
attempt to retrieve and execute whatever information now occupies that
particular location on the disk, usually with very displeasing and
certainly unexpected results.

A maximum of six (&) SEGMENT procedures are ordinarily
available to the user.

SEGMENT procedures must be the first procedure declarations
containing code—generating statements.

Reference Section 3.5, INTRODUCTION TO THE PASCAL PSEUDO
MACHINE, for further details and examples.

Page 139

Page 140

3 3 3630 3 3B 36 33 36 3646 303 3 36 36 30 3 3 3 F I H L 3430 3 5E 303350 338 3303

PSUEDO-MACHINE ARCHITECTURE # # Section 3.4
3635 33 336 3636 3035 2 36 33 330 H I HF A H R RN R RN

Version I.4 January 1978

The UCSD Pascal P-machine, designed specifically for the
execution of Pascal programs on small machines, is an extensively
modified descendant of the P-2 pseudo—machine from Zurich. It supports
variable addressing, including strings, byte arrays, packed fields, and
dynamic variables; logical, integer, real, and set top-of-stack
arithmetic and comparisons; multi—element structure comparisonsi,
several types of branches; procedure/function calls and returns,
including overlayable procedures; miscellaneous procedures used by
systems programs; and an I1/0 system.

This Section, to be used in conjunction with Section 3. 5
describes the P-machine "hardware,” communication with the operating
system, exceptional condition handling, the instruction set, the I1/0
system, and the bootloading process.

NOTE: not all of the above will be included in the 1.4 release
and will only be available sometime later.

I. HARDWARE

There exists no physical P-machine (yet!). The P-machine
exists only as interpreters written in assembly languages of actual
computers. However, this can and will be ignored in the following
description.

The P—machine uses 16-bit words: with two 8-bit bytes per
word. It has several registers and a user memory, in which are kept a
stack and a heap. All registers are pointers to word-aligned
structures, except IPC, which is a pointer to byte—-aligned
instructions. The registers are: .
SP: Stack Pointer is a pointer to the top of the execution stack. The
stack starts in high memory and grows toward low memory. It
contains code segments and activation records, and is used to pass
parameters, return funct’-n values, and as an operand source for
many instructions. The stack is extended by loads and procedure
calls, and is cut back by stores, procedure returns, and arithmetic

operations.
NP New Pointer is a pointer to the top of the dynamic heap. The heap
starts in low memory and grows uvpward toward the stack. It

contains all dynamic variables (see Jensen and Wirth, Chapter 10).
It is extended by the standard procedure ‘new’, and is cut back by
the standard procedure ‘release’.

Page 141

JTAB: Jump TABle pointer is a pointer to the proctedure attribute table
of the currently executing procedure. (See Section 3.5, figure 5.)

SEG: Segment Pointer points to the procedure dictionary of the segment
to which the currently executing procedure belongs. (See Sectian
3.5 figure 6.

MP: Most recent Procedure is a pointer to the activation record of the
currently executing procedure. (See Section 3.5, figure 7.)
Variables local to the current procedure are accessed by indexing
off MP.

s

BASE: BASE Procedure is a pointer to the activation record of the most
recently invoked base procedure (lex level O). Global (lex
level 0) variables are accessed by indexing off BASE.

II. OPERATING SYSTEM/P-MACHINE COMMUNICATION - SYSCOM.

It is sometimes necessary for the operating system and the P-
machine to exchange information. Hence there exists a variable SYSCOM
in the outer block of the operating system. and a corresponding area in
-memory known to the harduware. The fields in SYSCOM actually relevant
to this communication are: '

IORSLT: contains the error code returned by the last activated or
terminated I/0 operations. (See 1/0 section below. and operating
system read and write procedures.)

XEQERR : contains the error code of the last run—-time error. (See
exception handling below.)

SYSUNIT: contains the unit number of the device the operating system
was booted from (usually 4 or 5).

BUGSTATE: contains the current bugstate. (See BPT instruction below.)
GDIRP: contains a pointer to the most recent disk directory read in.
unless dynamic allocation or deallocation has taken place since then.

(See MRK, RLS. and NEW instructions below.)

STKBASE, LASTMP., SEG, JTAB: copies of the BASE, MP, SEG and JTAB
registers.

BOMBP: contains a pointer to the activation record of the operating
system routine EXECERROR when a runtime error occurs. (See
exception handling.)

BOMIPC: contains the value of IPC when a run—time error occurs.

HLTLINE: contains the line number of the last conditional halt executed.
(See BPT instruction.)

Page 142

BRKPTS: contains up to four line numbers of breakpointed statements.
(See BPT instruction.)

CRTINFO. EOF: contains the end*oF—Fiie character (see console input

driver).
CRTINFO. FLUSH: contains the flush—output character (see console input,

output drivers).

CRTINFO. STOP: contains the stop—output character (see console output
and input drivers).

CRTINFQO. BREAK: contains the break—execution character (see console
input driver).

SEGTABLE: contains the segment dictionary for the pascal system

111. EXCEPTION HANDLING - XEGERR.

Whenever a run—time error occurs, the P-machine stops executing the
current instruction (ideally leaving the evaluation stack in as nice a
condition as possible) and transfers control to the XEQERR routine.
This routine

1) enters the error code into SYSCOM~. XEQGERR.

2) calculates what MP will be after step 4, and sets SYSCOM~. BOMBP to
that. (The size of EXECERROR‘s activation record must be known
by the P—machine.)

3) stares the current value of IPC into SYSCOM™~. BOMIPC.

4) points IPC to a CXP 0,2 (call operating system procedure
EXECERROR) instruction.

5) resumes execution of interpreter code, starting with the CXP.

1V. OPERAND FORMATS.

Although an element of a structure may occupy as little as one bit,
as in a PACKED ARRAY OF boolean, variables in the P-machine are
always aligned on word boundavies. All top~of~stack operations expect
their operands to occupy at least one word. even if not all the
information in a word is valid. The least significant bit of a word is
bit O, the most significant is bit 15. .

BOOLEAN: One word. Bit O indicates the value (false=0, true=1), and
this is the only information used by boolean comparisons. However,
the boolean operators LAND, LOR, and LNOT operate on all 16 bits,.

INTEGER: One word, two’s complement, capable of representing values in
the range -32768..32767.

Page 143

SCALAR (user-defined): One word: in range O0..32767.

CHAR: One word, with low byte containing character. The internal
character set is "extended" ASCLI, with O..127 representing the
standard ASCII set, and 128B..255 as a user—defined character set.

REAL: Two words., with format implementation dependent. The system
is arrange so that only the interpreter needs to know the detailed
internal format of REALs (beyond the fact that they occupy two
words) Following are the two detailed formats for the CPUs we now
(as of I.4) support.

PDP11:
15 0]
word 1: H low mantissa !
15 14 7 b6 0
word O: 'g ! expaonent ! high mantissa '
Z80/8080:
15 8 7 o)
word 1: ! low mantissea) middle mantissa '
15 14 8 7 0
word O: 's ¢ high mantissa H exponent !

Both representations have an excess—128 exponent, a fractional
mantissa that is always normalized, exponent base 2, an implicit

24th mantissa bit, and zero represented by a zero exponent. (See
PDP11 processor manual or Z80/8080 interpreter listing for greater
detail.)

POINTER: One or *hree words, depending on type of pointer.

Pascal pointers, internal word pointers: one word, containing a word
address. :

Internal byte pointers: one word, containing a byte address.

Internal packed field pointers: three words.

word 2: word pointer to word field is in.

word 1: field_width (in bits).

word O: right_bit_number of field.

SET: 0..255 words in data segment. 1..254 words on stack. Sets are
implemented as bit vectors, always with a lower index of zero. A
words, When a set is in the data segment, all words allocated
contain valid information.

When a set is on the stack, it is represented by a word
containing the length, and then that many words, all of which
contain valid information. All elements past the last word of a
set are assumed not to be elements of the set. Before being stored
back in the data segment, a set must be forced back to the size
allocated to it, and so an ADJ instruction must be issued

Page 144

RECORDS and ARRAYS: any number of words (up to 146384 words in ane
dimension). Arrays are stored in row-major order, and always have
a lower index of zero. Only fields or elements are loaded onto the
etack — never the structure itself. Packed arrays must have an
integral number of elements in each word, as there is no packing
across word boundaries (it is acceptable to have unused bits in
each word). The first element in each word has bit O as its low—
order bit.

STRINGS: 1..128 words. Strings are a flexible version of packed
arrays of char. A stringlnl accupies (n div 2)+1 words. Byte O
of a string is the current length of the string, and bytes
1..length(string) contain valid characters.

CONSTANTS: constant scalars, sets, and strings may be imbedded in
the instruction stream, in which case they have special formats.
All scalars (excluding reals) not in the range O..127: two bytes,
low byte first. '
Strings: all string literals take length(literal)+1 bytes. and
are byte aligned. The first buyte is the length, the rest are the
actual characters. This format applies even if the literal should
be interpreted as a packed avrvay of char (see SiP and S2P
below).
Reals and sets: word aligned, and in reverse word order.

V. INSTRUCTION SET FORMAT.

Instructions on the P-machine are one or two bytes long, followed
by zero to four parameters. Most parameters specify oane word aof
information, and are one of five basic types

UB unsigned byte: high order byte of parameter is implicitly zero.

SB signed byte: high order byte is sign extension of bit 7.

DB don‘t care byte: can be treated as SB or UB, as value is always in
the range 0..127.

B big: this parameter is one byte long when used to represent values in
the range O..127, and is two bytes long when representing
values in the range 128..32767. I1# the first byte is in
0..127, the high byte of the parameter is implicitly zero.
Otherwise, bit 7 of w.e first byte is cleared and it is used as the
high order byte of the parameter. The second byte is used
as the low order byte

W word: the next two bytes, low byte first, is the parameter value.

Any exceptions to these formats are noted in the instructions where
they occur.

Page 145

VI. ENGLISH INSTRUCTION SET DESCRIPTION.

In the following section, references to an element on the stack are
context-dependent, and can mean anywhere from one word to 2546 words.
Alsa, unless specifically noted to the contrary, operands are popped off
the stack - they are not left around.

Abbreviations are used widely, but use fairly simple conventions.
Parameters are written as X or X_n, where X is UB, SB, DB, B, or W, and
n is an integer indicating the parameter position in the instruction.
Tos means the operand on the top of stack, tos-—1 the next operand,
etc. Mark Stack Control Word is abbreviated to MSCW.

Many instructions refer to the activation record of a procedure, and
this document assumes the reader has a general knowledge of procedure
calling in stack machines, and the concept of stack frames. An
activation record as defined in this document specifically consists o#f:

1) the local data segment of the procedure, and

2) the MSCW, containing addressing information (static links), and

information on the calling procedures environment when the procedure
was called.
(See Section 3.5, figure 7.)

The dynamic chain refers to the calling chain, traversed using the
MSCW. MSDYN 1links. The static chain refers to the lexicsal or anscestor
thain, traversed using the MSCW. MSSTAT links.

Mnemonic Op-code Parameters Full name and operation

(# V.A Variable fetching, indexing, storing., and transfering #)
(# V.A.1 One word loads and staores *)
(# VA 1.a Constant one werd loads ¥*)
SLDC 0..127 Bhort load word constant. Pushes the
opcode, with high byte zero, onto stack.
LDCN 159 toad constant nil. Pushes the
implementation~dependent value of nil.
LDCI 199 W ’ Load constant word. Pushes W,
(# V.A 1.b Local one word loads and store *)
SLDL1 216 Short load local word. SLDLx fetches
. .. the word with offset x in MP activation
SLDL16 231 record and pushes it,

Page 146

LDL

LLA

STL

SLDO1
SLDO16
LDO

LAO

SRO

LOD

LDA

8STR

8T0

SINDO

LDC

(#

(%

(%

(*

202

198

204

V. A,

232
247
167

165

171

V. A,

182

178

184

V. A,

154

248

V. A

179

B Load local word. Fetches the word with
offset B in MP activation record and pushes it.

B Load local address. Fetches address of

the word with offset B in MP activation vrecord
and pushes it.

B ° Gtore local word. Stores tos into wovd

with offset B in MP activation record.
i.c¢ Global ane word loads and store ¥*)
Short load global word. SLDOx fetches
the word with offset x in MP activation
record and pushes it.

B toad global word. Fetches the word with
offset B in BASE activation record and pushes
it.

B Load global address. Pushes the word
address of the word with offset B in BASE
activation record.

B Store global word. Stores tos into the
word with offset B in BASE activation record.

1.d Intermediate one-word loads and store *)

DB, B ~ Load intermediate word. DB indicates the
number of static links to traverse to tind the
activation record to use. B is the offset
within the activation record.

DB, B Load intermediate address.

DB, B Store intermediate word.

1.e Indirect one-word loads and store *)
Store indirect. Tos is stored into the
word pointed to by tos—i.
Load indirect.
.2 Multiple word loads and stores (sets and reals) #)
UB,<block> Load multiple word constant. UB is the

number of words to load, and <block> is a
word aligned block of UB words, in reverse
word order. Load the block onto the stack.

Page 147

LDM

STM

188

189

uB

uB

Load multiple words. Tos is a pointer -
to the beginning af a block of UB words.
Push the block onto the stack.

Store multiple words. Tos is a block of
UB words., tos-1 is a word pointer to a
similiar block. Transfer the block from the
stack to the destination block

(# V.A.3 Byte arrays *)

BYT

LDB

STB

MVB

1XB

(3
LCA

8AS

SipP

Page 148

210

190

191

149

V.A. 4 Strings

208

Byte conversion. Convert word pointer
tos to a byte pointer. (NOP on the PDP11 and
Z80/8080 implementations.)

Load byte. Push the byte (after zeroing
high byte) pointed to by byte pointer tos.

Store byte. Store byte tos into the
location specified by byte pointer tos-1.

Move bytes. Tos is a byte source
pointer to a block of B bytes, tos—1 is a
byte destination pointer to a similiar
block. Transfer the source block to the
destination block. (This instruction is
Tedundant due to word -alignment, and will
be replaced by MOV in the future.)

Index byte array. Push a byte pointer

formed from the integer index tos and the byte
pointer tas—1.

*)

UB, <chars> Load constant string address. Push a

UB

byte pointer to the location UB is contained
in, and skip IPC past <charsd,

String assign. Tas is either a source
byte pointer or a character. (Characters
always have a high byte gf zero, while
pointer never do.) Tos-1 is a destination
byte pointer. UB is the declared size of
the destination string. If the declared
size is less than the current size of the
source string, a run—time erTor occurs;
otherwise all bytes of source containing
valid information are transferred to the
destination string.

String to packed conversion o tos. Tos
is a byte pointer to a string, and is
incremented by one byte so as to point to
the first character of the string.

s2pP 157 String to packed conversion on tos—1i.
Tos and tos—1 are byte pointers, and tos—1 is
incremented by one byte

IXS 155 Index string array. Performs the same
operation as IXB, except before indexing the
index is checked to see if it is in the range
1..current length. I# not, a run—time error
occurs.

(# V.A. S Record and array indexing and assignment *)
MoV 168 B Move words. Tos is a source poxnter to
a block of B words, tos—1 is a destination
pointer to a similiar block. Transfer the
block from the source to the destination.

SINDO 248 Short index and load word. SINDx indexes
.- .. the word pointer tos by x words, and pushes
SIND7 255 the word pointed to by the result.

IND 163 B Static index and load word. Indexes the

word pointer tos by B words, and pushes the
word pointed to.

INC 142 B Increment field pointer. The word
pointer tos is indexed by B words and the
resultant pointer is pushed.

IXA 164 B Index array. Tos is an integer index,
tos—-1 is the array base word pointer, and B
is the size (in words) of an array element.
A word pointer to the indexed element is
pushed.

IXP 192 UB_1,UB_2 Index packed array. Tos is an integer
index, tos—1 is the array base ward pointer.
DB_1 is the number of element_per_word, and
DB_2 is the field_width (in bits). Compute
and push a packed field pointer.

LDpP 186 Load a packed field. Push the field
described by the packed field pointer tos.

8TP 187 Store into a packed field. Tos is the
data, tos—~1 is a packed field pointer. Store
tos into the field described by tos—1.

(#V.A. & Dynamic variable allocation and deallocation ¥*)

NEW 158 1 New variable allocation. Tos is the size
(in words) to allocate the variable, and
tos—-2 is a word pointer to a dynamic
variable. I1f GDIRP is non—-nil, cut NP
back to GDIRP and set GDIRP to nil. Store
NP into word pointed to by tos—1, and
increment NP by tos words.

MRK 158 31 Mark heap. Release GDIRP and set to pil

Page 149

if necessary, then store NP into word pointed
to by tos. .

RLS 158 32 Release heap. Set GDIRP to nil, then
store word pointed to by tas into NP.

(# V.B Top of stack arithmetic and comparisons *)
(# V.B.1 Logical *)
LAND 132) Logical and. And tos into tos-1i.
LOR 141 Logical or. QOr tos into tos—i.
LNOT 147 Logical not. Take one‘s complement of tos
EQUBOOL. 175 & Boolean =,
NEGBOOL 183 6 <,
LEQBOOL 180 &4 <=,
LESBOOL 181 & <
GEGBOOL 176 & >=,
6TRBOOL 177 6 and > comparisons.

Compare bit O of tos—1 to bit_O of tos and push
true or false.

(# V.B.2 Integer *)
ABI 128 Absolute value of integer. Take absolute

value of integer tos. Result is undefined if
tos is initially -32748.

ADI 130 Add integers. Add tos and tos-i.
NGI 145 : Negate integer. Take the two's
complement of tos.
SB1 149 . Subtract integers. Subtract tos from tos-1.
MPI 143 Multiply integers. Multiply tos and tos-1.

This instruction may cause overflow if result
is larger than 164 bits.

8Q1 152 Square integer. Square tos. May cause
overflow.
DVI 134 Divide integers. Divide tos-—1 by tos and

push quotient. (PDP11 quotient defined as in
Jensen and Wirth; 780/8080 quotient defined
by floor(tos-1/tos).)

MODI 142 Modulo integers. Divide tos—1 by tos and
push the remainder (as.defined in Jensen and
Wirth),

" Page 150

CHK 136 Check against subrange bounds. Insure
that tos—1 <= tos—2 <= tos, leaving tos—2 on
the stack. I1f conditions are not satisfied
a run—time error occurs.

EQUI 195 Integer =

NEGI 203 <

LEQI 200 £s=,

LESI 201 <s

GEQI 196 >=,

GTRI 197 and >

comparisons. Compare tos—1 to tos and push
true or false.

(# V.B.3 Reals #)
All over/underflows cause a run—time error.

FLT 138 Float top-of-stack. The integer tos is
converted to a floating point number.

FLO 137 Float next to top—of-stack. Tos is a real,
tos—1 is an integer. Convert tos—1 to a real
number,

TNC 158 22 Truncate real. The real tos is truncated

tas defined in Jensen and Wirth) and
converted to an integer.

RND 158 23 Round real. The real tos is rounded (as
defined in Jensen and Wirth), then truncated
and converted to an integer.

ABR 129 Add reals. Take the absolute value of
the real tos. .

ADR 131 Add reals. Add tos and tos-1i.

NGR 146 Negate real. Negate the real tos.

SBR | 150 Subtract reals. Subtract tos from tos-—1.

MPR 144 Multiply reals. Multiply tos and tos—i.

SQAR - 153 Square real.

DVR 135 Divide reals. Divide tos-1 by tos

POT 158 35 Power of ten. The integer tas is check

for O <= tos <= 38, a run—time error
occurring if the conditions aren’t satisfied.
The implementation dependent value 10 ~ tos
is pushed. This facility allows the rest of
the system to be independent of floating
point format.

Page 151

SIN
cos
ATAN
EXP

LN

Loec

sQT
EQUREAL
NEGREAL
LEQREAL
LESREAL
GEQREAL
GTRREAL

(4.3

ADJ

5G6S

SRS

INN

UNI

INT

DIF

EQUPOWR
NEQPOWR
LEGPOWR
GEQPOWR

Page 152

158
158
158
158
158
158
158
175
183
180
181
174
177

V.B

160

151

148

139

154

140

133

175
183
180
1746

24
25
27
29
28

30

NRORUUN

.4 Sets

DOooo

UB

Sine. Take the sine of the real tos.
Cosine.
Arctangent.
Exponential, e ™ tos
Natural logarithm.
Log base 10,
Square root
Real =,
<,
<=,
<
o=,
and > comparisons.
Push TRUE or FALSE.

#*)

Ad yust set. The set tos is forced to
occupy UB words, either by expansion (putting
zeroes "between" tos and tos-1) or
compression (chopping of high words of set),
and its length word is discarded.

Build a singleton set. The integer tos
is checked to insure that O <= tos <= 4079, a
run—-time error occurring if not. The set
Ltos) is pushed.

Build a subrange set. The integers tos
and tos-1 are checked as in 868, and the set
[tos—1.. tos] is pushed. (The set [] is
pushed if tos—1 > tos.)

Set membership. See if integer tos_1 is
in set tos, pushing TRUE or FALSE. N

Set union. The union of sets tos and
tos—1 is pushed. (Tos or tos-1.)

Set intersection. The intersection of
sets tos and tos-1 is pushed.
(Tos and tos-i.)

Set difference. The difference of sets
tos—1 and tos is pushed
(tos—-1 and not tos.)

Set =,

<>,
<= (subset of),
and >=

(superset of) comparisons.

(# V.B.5 Strings . *)

EQUSTR 175 4 String =

NEGSTR 183 4 <,

LEGSTR 180 4 <=,

LESSTR i81 4 <,

GEQSTR 176 4 >=,

GTRSTR 177 4 and >
comparisons. The string pointed to by word
pointer tos—1 is lexicographically compared
to the string pointed at by tos.

(# V.B.6 Byte arrays *)

EQUBYT 175 10 Byte array = .

NEGBYT 183 10 <,

LEGBYT 180 10 <=,

LESBYT 181 10 <

GEGBYT 176 10 >=,

GTRBYT 177 10 :) and >
comparisons. <=, ¢, >=, and > are anly
emitted for packed arrays aof char.

4 .
(# V.B.7 Array and record comparisons. #*)

EQUWORD 175 12 Word or multiword structure =

NEGWORD 183 12 and <>
comparisons.

(# V.C Jumps #)

Simple (non-case statement) jumps are all two bytes long. The
first byte is the op-code. the second is a SB jump offset. I+ this
offset is non—-negative, it is simply added to IPC. (A value of zero
for the jump offset will make any yump a two—byte nop.) I+ SB is
negative, then SB div 2 is used as a word offset into JTAB, and IPC
is set to the byte address(JTAB~LSB div 21) -~ JTABLSB div 21.

uJp 185 SB Unconditional jump. Jump as described
avove.

FupP 161 SB False jump. Jump if tos is false.

EFJ 211 SB Equal false jump. Jump if integer tos <>
tos~-1. rMNebt—implonented—in—i—a4-—

NFJ 212 SB Not equal false Jump. Jump if integer
tos = tos-1. Not—impiremented—in—ird—

XJP 172 W_1,W_2,W_3, <case table>

Case Jump. W 1 is word—aligned, and is
the minimum index of the table. W _2 is the
maximum index. W_3 is an unconditional
Jump instruction past the table. The case
table is W_2-W_i+1 words long., and contains
self-relative locations.

Page 153

CLP’

CerP -

cIp

CBP

cxp

If tos, the actual index, is not in the
range W_1..W_2, then IPC is pointed at
W_3. Otherwise, tos—W_1 is used as an
index into the tahle, and IPC is set to
bgte_pddress(casetable[index-min_index])—
casetablelindex~min_index].

(# V.D Procedure and function calls and returns. #)
The general scheme used in procedure/function invocation is

1) Calculate the data_size and parameter_size of the called
procedure by using the information in the current procedure
dictionary (pointed to by SEG).

2) Extend stack by data_size bytes.

3) Copy parameter_size bytes from the old top—of-stack to the
beginning of the space just allocated.

4) Build a MSCW, saving SP, IPC, SEG. JTAB, MP, and a pointer
to the most recent activation record of the called procedure’s
immediate parent.

9) Calculate new values for SP, IPC, JTAB: MP, and if necessary,
SEG. Check for stack averflow.

6) If the called procedure has a lex level of -1 or O save BASE
and calculate a new BASE.

206 uB Call local procedure. Call procedure UB,
which is an immediate child of the currently
executing procedure and in the same segment.
Static link of MSCW is set to old MP.

207 UB Call global procedure. Call procedure
UB: which is at lex level 1 and in same
segment. The static link of the MSCW is set
to BASE.

174 UB Call intermediate procedure. Call
procedure UB in same segment as the
currently executing procedure. The static
link of the MSCW is set by looking up the
call chain until an activation record is
found whose caller had a lex level one 1
less than the procedure being called. Use
that activation record‘s static link as the
static link of the new MSCW.

194 UB Call base procedure. Call procedure UB,
which is at lex level -1 or O, The static
link of the MSCW is set to the static link
in BASE’s activation record. The BASE is
save§, after which it is pocinted at the
activation record just created.

205 DB_1,uB_2 Call external procedure. Used to call
any procedure not in the same segment as
the calling procedure, including procedures
at lex level -1 or O. It works as follows:

1) Is desired segment in memovry? This
is determined by traversing up the call

Page 154

chain until an activation record of a
procedure in the desired segment is found.,
or the operating system’s resident '
activation record is encounteved.

2a) no: read in segment from disk using
the information in the segment dictionary.

then build an activation record. However,
extend stack by data_size+paramsize in step
2.

2b) yes: build activation record normally.
3) calculate the dynamic link for the
MSCW: If the called procedure has a lex
level of —1 or O, set as in CBP, otherwise
set as in CIP.

RNP 173 DB Return from non—base procedure. DB is
the number of words that should be returned
as a function (O for procedures, 1 for non-
real functions, and 2 for real functions)
value. DB words are copied from the bottom
of the data segment and “"pushed" onto the
caller’s top—of-stack. The information in
the MSCW is then used to restore the
caller‘s correct environment.

RBP 193 DB Return from base procedure. The saved
hase is moved into BASE, after which things
proceed as in the RNP instruction

EXIT 158 4 Exit from procedure. Tos is the
procedure number, tos-1 is the segment
number. This operator sets IPC to point to
the exit code of the currently executing
procedure, then sees if the current

procedure is the one to exit from. I# it
is, control returns to the instruction
fetch loop.

Otherwise, each MSCW has its saved IPC
changed to point to the exit code of the
procedure that invoked it, until the
desired procedure is found.

I+ at any time the saved IPC of main body
of the operating system is about to be
changed, a Tun—time erToT OCCUTS.

(# V.E Systems programs supporTt procedures %)
See Section 2.1 for description of these procedures.

(# Byte arvay procedures %)
FLC 158 10 Fillchar{(dst., len, chav).

SCN 158 77 Scan{maxdisp, start, forpast, char, mask).
MVL 158 77?7 Moveleft(src, dst, numbytes).

Page 155

MVR 158 2?2 Maveright(src, dst, numbytes).

(% Compiler procedures (still undocumented) ¥*)
TRS 158 Treesearch.

1DS 158 Idsearch.

(¥ Debugger #)
BPT 213 Breakpoint (conditional HALT)

(# Miscellaneous *)
TINM 158 Time.

XIT 214

Payge 156

3646 45 3 36 36 35 35 36 35 8 3596 36 36 3409 2096 306 33 0 S BHE I I NHHEIIHE HHN I W SN

INTRODUCTION TO THE PASCAL PSEUDD-MACHINE # # Section 3.0 *
354636 309646 36 96 36 364636 36 45 36300 42000000 03030 0 R B H MR A IR

Version I.4b April 1978

This document is a medium level description of the UCSD
implementation of Pascal. This implementation is interpreter based.
That is, the compiler emits code for a pseudo—machine which is
emulated at run time by a program written in the machine language of
the host. The compiler, program editor, small stand-alone operating
system, and various utilities are themselves written in Pascal and run
on the same interpreter. Thus, as mentioned in the introduction and
overview document, the entire system can be moved to a new host
machine by rewriting the interpreter for the new host

Figure 10 (the last page of this document) is a skeleton version
of a large Pascal program, here—in-after referred to as "The Program".
This document is a top—down description of the realization of that
program on the UCSD Pascal system. We will make occasional use of a
helpful coincidence: The Program is the framework of the portion o#f
the UCSD Pascal environment that’s written in Pascal.

I1f The Program were fleshed out to a complete Pascal system, it
would consist of at least &000 lines of Pascal and compile to more
than 50,000 bytes of code-—too big to fit all at once into the memory
of a small machine (by our current definition of small). Therefore we
have extended Pascal so that a programmer can explicitly partition a
program intn seqments; only some of these need be resident in main
memory at a time. The syntax of this extension is shoun in figure 1.
(Any syntactic objects not defined explicitly there retain their
standard interpretation as defined by Jensen & Wirth: Pascal User

Manual and Report.)
<program> :.:= <program heading> <segment blockd> .

<segment block> ::= <label declaration part>
<constant declaration part> <{type definition part>
Cvariable declaration part> <segment declaration part>
<segment body> :

<segment declaration part> ::= SEGMENT <procedure heading>
<segment block>; \ SEGMENT <function heading>
Csegment block>;

<segment bodyD>::= <{procedure and function declaration part5
<statement part> .

FIGURE 1. SEGMENT DECLARATION SYNTAX.

Segment declaration syntax (figure 1) requires that all nested
segments be declared before the ordinary procedures or functions of
the segment body. Thus, a code segment can be completely generated
before processing aof code for the next segment starts. This is not a
functional limitation,since forward declarations can be used to allaow
nested segments (COMPILER in The Program) to reference procedures in
an outer segment body (CLEARSCREEN). Similarly, segment procedures

Page 157

and Functions.tan themselves be declared forward.

Segmenting a program doesn’t change its meaning in any
fundamental sense. When a segment is called (e.g. the COMPILER
segment in line A), the interpreter checks if it is present in memory
duve to a previous invocation. If it is, control is transferred and
execution proceeds. If not, the appropriate code segment must be
loaded from disk before the transfer of control takes place. When no
more active invocations of the segment exist, its code is removed from
memory. For instance, in The Program, the code for the COMPINIT
segment is not present in memory either before or after the execution
of line A. Clearly, a program should be segmented in such a way that
(non-recursive) segment calls are infrequent; otherwise, much time
could be lost in unproductive thrashing (particularly on a system with
low performance disk).

high address

{—2> | DEBUGGER i0 H

not |
f—2> 1 FILER 17 H

shown |
H ! EDITOR i2 H

in |
! H COMPINIT 7 H

the |
H H COMPILER 41 H

program !}
=2 | INITIALIZE 3 !
H USER PROGRAM 1 '
! PASCALSYSTEM 17 H

]

SEGMENT DICITONARY 1 H
» low address

figure 2. PASCAL SYSTEM CODE FILE.

The caode file resulting from compilation of The Program is
diagrammed in figure 2% The file is a sequence of code segments
preceded by a segment dictionary. The size of each segment is noted
in blocks, the 512~byte disk allocation quantum used on most PDP-11
operating systems. The sizes indicated are representative of a full
Pascal system. Each code segment begine on a block boundary. The
ordering (from low address to high address) is determined b) the order
that one encounters segment procedure bodies in passing through The
Pvogram.

Page 158

An overview of the relationship among figures 2 through 8 (to be
discussed in the following pages) is given in figure 9 at the end of
this document. 1t is helpful to study figure 9 at this point for a
better understanding of the document

The segment dictionary in the first block of a code file contains
an entry for each code segment in the file. The entry includes the
disk location and size(in bytes) for the segment. The disk location
is given as relative to the beginning of the segment dictionary {(which
is also the beginning of the code file) and is given in number of
blocks. This information is kept in the system communications area
(also called SYSCOM) during the execution of the code #ile, and is
used in the loading of non—-present segments when they are needed.
Figure 3 details the layout of the table and shows representative
contents for the Pascal system code file.

location ! i H
i PASCALSYSTEM
size H 8500 H
§ 18 H
e T USERPROGRAM
{ variable 1
H 22 H
-------------- COMPILER
} 20932 H
H &3 H
U COMPINIT
H 3480 }
H 70 i
. e e e e e = = e - DEBUGGER
$ 5880 {

{ {

FIGURE 3. THE SEGMENT DICTIONARY

A code segment contains the code for the body of each of its
procedures, including the segment procedure,itself. Figure 4 below is
a detailed diagram of the code seqment of The Program (Pascalsystem).
Each of a code segment‘s procedures are assigned a procedure number,
starting at 1 for the segment procedure. and tanging as high as 255
(current temporary limit of 127). All references to a procedure are
made via its number. Iranslation €rom procedure number to location in
the code segment is accomplished with the procedure dictionary at the
end of the segment. TThis dictionary is an array indexed by the
procedure number. Each array element is a self-relative pointer to
the code for the corresponding procedure. $Since zero is not a valid
procedure number, the zero’th entry of the dictionary is used to stare
the segment number (even byte) and number of procedures (odd byte).

Page 159

Observe that CLEARSCREEN is the first procedure for which code is
generated and it appears at the beginning of the segment. The outer
block code is generated and appears last.

high addresses

odd even
| !
! Number of procedures ! Segment Number H
H in dictionary ! !
1 1
A]
{ Procedure #1 PASCALSYSTEM |-—-
L R T i
—===~{ Proctedure #2 CLEARSCREEN |
l === == - = rest of - - = - - - - - =~ !
-={ — = = = procedure dictionary - - - ~ -~

-
_—me wm am - we - - -

PASCALSYSTEM’s outer block code

" e en wh en e ee on oo

other procedures of the Pascal system

—es en cn e e S " en .. e

AV ¥

PROCEDURE #3 code

o . we e e o

PROCEDURE #2 (clearscreen) code

low addresses

FIGURE 4. A CODE SEGMENT

A more detailed diagram of a single procedure code section is
seen in figure 5. It consists of two parts: the procedure code itself
in the lower portion of the section) and a table of attributes of the
procedure. These attributes are:

LEX LEVEL: This odd byte is the depth of absolute lexical nesting
for the procedure. {i.e. Lex Level (LL) Pascalsystem=-1, LL COMPILER
or CLEARSCREEN=0, LL COMPINIT=1, etc.).

PROCEDURE NUMBER:This even byte refers to the number given in the
procedure dictionary of the parent segment procedure. For example,
the Procnum of CLEARSCREEN is 2. (see figure 4).

ENTER IC:This is a self-relative pointer to the first instruction
to be executed for this procedure.

EXIT IC:This is a self-relative pointer to the beginning of the

block of procedure instructions which must be executed to terminate
procedure properly.

Page 1&0

PARAMETER SI1ZE:The param size is the number of bytes of
parameters passed to a procedure from its caller.

and DATA SEGMENT SIZE:The data size is the size of the data
segment (See below) in bytes, excluding the markstack and PARAM SIZE.

Between these attributes and the procedure code there may be an
optional section of memoTy called the "jump table". Its entries are
addresses within the procedure code. JTAB is a term commonly applied
to the six attributes Jjust discussed and the jJump table itself.

high addresses

odd even
{ '
H Lex Level ! Procedure # < H H
H H ! PASCALSYSTEM’s
| Enter IC } -1 ! Procedure {
t I { Dictionary H
=t Exit IC - { Pointer i
LI o H H
i H Parameter Size ' H
| I e
H H Data Segment Gize i
1t e
{f = - - - - Jump Table -= = —- = = = t 1
P! Vo
=>4
H I
H (|
{ CLEARSCREEN P
{ CODE N
§ i<-i
{ H

low addresses

FIGURE 5. PROCEDURE CODE SECTION (OF CLEARSCREEN)

Page 161

high addresses

H
1 System Resident Segment
H
t

-—an em e

System Data Segment

mark stack

'

¢ - .
i Compiler Code Segment
§

{

Compiler Data Segment
‘ ______ toas mwe mm am eee eew @ e

- v ew oo an on e

{
¢
{ Compinit Code Segment
{
H

Compinit Data Segment

P

-
-n am oa o

mark stack

..
1
1

- -

temporaries

e wme mm e Gm e s e am em e e e

-

H E A P

- mw ah Se ee e L an Be e o

Interpreter

e - e oo i wm e e e e |

sYSCOM 1<~ <segment dictionary>

1
!
!
1
|
i
i
[
i
!
i
|
{
|
|
|
|

low addresses

FIGURE 6. SYSTEM MEMORY DURING CLEARSCREEN EXECUTION

Figure & is a snapshot of system memory during the execution of a
call to procedure CLEARSCREEN from line C in COMPINIT. The Pascal

Page 162

interpreter occupies the lowest area in memory. In it is the system
communications arealalso called SYSCOM),which is accessible both to
assembly language routines in the interpreter and (as if it were part
of the heap) to system routines coded in Pascal. It serves as an
important communication link between these two levels of the system.
The Pascal heap is next in the memory layout; it grows toward high
memory. The single stack growing down from high memory is used for 3
types of items: 1) temporary storage needed during expression
evaluation; 2) a data segment containing local variables and
parameters for each procedure activation; and 3) a code segment for
each active segment procedure. (See figure 6)

Consider the status of operations just before COMPINIT is called
jn line B. Conceptually, there are six pseudo-variables which point
to locations in memory:

a STACK POINTER(SP):which points to the current top of the stack,

a MARK STACK POINTER(MP):which points to the "topmost" markstack
in the stack, (remember that the the stack grows douwn!), ‘

a SEGMENT(SEG) variable:which points to the base of the procedure
dictionary for the currently active segment procedure. For example,
Just before COMPINIT is called, SEG points to the COMPILER segment’s
procedure dictionary.

an INTERPRETER PROGRAM COUNTER(IPC):which contains the address of
the next instruction to be executed in the code segment of the current
procedure,

a JTAB pointer:which pointe to the collection of procedure
attributes and Jjump table entries in the body of the current procedure
code section,

and a NEW POINTER(NP):which points to the current top of the
heap.

When segment prodedure COMPINIT is called in line B, its code
segment (including all compiler initialization procedures) is loaded
on the stack. Then the COMPINIT data segment is built on top of that.
Figure 7 is a diagram of the data segment for COMPINIT.

Page 163

high addresses

Dther COMPINIT variables

BOOL.

I

J

Al
1
H

¢
{
H
!
t
{
¢
H
H
¢ MSSP
P
H
H
¢
H
{
H
¢
$
H
H

. - B Be Be Se e BE EE B B N WS WS e e eS e e we W

MSIPC

1
i
!
[
!
1
I

MSSEE

-=> markstack
MSJTAB

1
t
|
|
I
[
]

MSDYN

-a am ewew s e emes eewms wm wmew o=

MSSTAT

—— tan emen wm e Getews e aw S o

- . e BN B . w® W e GR Bm e ae

~
1
1

low addresses

FIGURE 7. A DATA SEGMENT

In the upper portion of the data segment, space is allocated for
variables local to the new procedure. For example,COMPINIT's data
segment allocates space for integer variables I and J, as well as
boolean BOOL.

In the lower portion of the data segment is a "markstack". When
a call to any procedure is made, the current values of the
pseudo—-variables, which characterize the operating envirvonment of the
calling pracedure, are stored in the markstack of the called
procedure. This is so that the psevdo-variables may be restored to
pre-call conditions when control is returned to the calling procedure.

For example, the call to COMPINIT causes conditions in COMPILER
Just before the call to be stored in COMPINIT’s markstack in the
following manner:

MarkStack DYNamic link (MSDYN) <-—— MP
" " IPC(MSIPC)Y <—— IC

" " SEGment Pointer (MSSEG) <-— SEG
» b Jump TABle (MSJTAB) <~- JTAB
" " Stack Pointer (SP) <-- 8P

Page 164

In addition a Static Link field becomes a pointer to the data
segment of the lexical parent of the called procedure, In particular,
it points to the Static Link field of parent’s markstack. After the
building of the data segment new values for IC, SEG, 8P, MP, JTAB, and
NP are established for the new procedure.

When the call to CLEARSCREEN is made on line C, another data
segment is added to the stack and again the pseudo-variables are
stored in the new markstack, as well as the appropriate Static Link,
and updated. Note that now the SEG no longer points to the COMPINIT
procedure dictionary, but to the Pascalsystem dictionary.

No code segment for CLEARSCREEN is added to the stack before the
data segment since the code for CLEARSCREEN is already present in
segment Pascalsystem. So its invocation causes only a data segment to
be added to the stack. When CLEARSCREEN and INIT are completed, the
COMPILER data segment will again be the top element on the stack.

Figure 8 is a detailed diagram of the stack during execution of
an instruction in CLEARSCREEN, including appropriate pointers for
static, dynamic, etc. links of CLEARSCREEN’s markstack. Note where
the pseudo—-variables point in the stack. In particular, JTAB points
inside CLEARSCREEN code section which is in the Pascalsystem code
segment, IC points inside that CLEARSCREEN code, and SEG points to the
base of the Pascalsystem code segment.

Page 1465

to PASCALSYSTEM resident code segment
~

to PASCALSYSTEM resident data segment
~

high addresses

H

} H

H H

{ H COMPILER code segment
H H

H H COMPILER data segment
= :- hd - - - Gm Gm we W R W e W e e e A
H H markstack

{ {

H jm————— >4 20 H 4

! H H

i H f Pointer to COMPINIT code
H H H

H H H Pointer to Procedure #2
H H H

i =+ > .

P =D COMPINIT code

I I H

I I I H Procedures of COMPINIT
LI S H

LI I f COMPINIT variables
b §

I I I H MSSP

t {

I I H MSIPC

[H

I T I i MSSEG

I H

L H MSJUTAB

LI I H

LI I H MSDYN

I I H

LI H MSSTAT

[S O B $

I T B H evaluation stack

L B I B B Rttt ——

LI I A H CLEARSCREEN variables
(N T R {

U A R e MSSP

LI A H —— ————
I I H MSIPC

L H ——

ol emm——— H MSSEG

P i~ -

I H MSJTAB

! H —_—

i H MSDYN

' § ————

' ———————————

Page 166

{ MSSTAT

evaluation stack

! S8E6 i<~ in
{ JTAB 1<-PASCALSYSTEM
{ IPC i<-code segment

. e - w. - =

o e um -
|
i
|
{
|
{
I
!
-

H code

H segment
H ot

H COMPINIT

————— - 200 2ot o do

D

data
segment
of
COMPINIT

- S e e ee ewm e wm . G e S m- -

A
1
i

e e o s s e

data
segment
of
CLEARSCREEN

D e T pp——

- - .. e .k m- w. wr ww wn wE . -

{
|
!

S A e wh w6 R e Se en e TR G G0 GE Gn *e me S B wE e B @® ae B e we

low addresses

FIGURE 8. The stack during clearscreen

The introduction promised a top—down description of the Pascal
pseudo-machine. Figure 9 reflects that top—down process by showing
the relationships among diagrams 2 through 7.

code file

——21 figure 3 !
| segment dictionary detail !

dictionarvy

figure 2

! '

{ PASCALSYSTEM (--=>! figure 4 '

1 i H H

i § { CLEARSCREEN {--->! figure 5 H
{ H ! code detail | { proc. code
H ! { detail '
! segment H

1 H

H i

system memory

figure 8

! code segment i{-—->1 ¢igure 4 {

COMPINIT

H
H
H
H
} data segment

figure 7 H
(]

]
{ data segment detail

FIGURE 9. RELATIONSHIP OF DOCUMENT FIGURES

E FIGURE 10. The Program

PROGRAM PASCALSYSTEM;
VAR
SYSCOM: SYSCOMREC:
CH: CHAR:

Page 167

PROCEDURE CLEARSCREEN: FORWARD;

SEGMENT PROCEDURE USERPROGRAM;

BEGIN

END;

SEGMENT PROCEDURE COMPILER;

VAR
8Y, OP: INTEGER;
SYMCURSOR: INTEGER:

PROCEDURE INSYMBOL; FORWARD;

SEGMENT PROCEDURE COMPINIT;

VAR
1, J: INTECER;
BOOL : BOOLEAN;
BEGIN

I:=1

LINE C

CLEARSCREEN;
INSYMBOL;
END;
PROCEDURE INSYMBOL;
'BEGINEND;

PROCEDURE BLOCK;
BEGIN ... END;
BEGIN (#COMPILER#)

LINE B

COMPINIT;
INSYMBOL;

END; (%COMP ILER®)

SEGMENT PROCEDURE EDITOR;
BEGIN ... END;

PROCEDURE CLEARSCREEN
BEGIN

WRITE(
END;
BEGIN (#PASCALSYSTEM#)
REPEAT

READ(CH);
CASE CH OF

Yi

LINE A

C: COMPILER; -
E:EDITOR;
U: USERPROGRAM

END (#CASE#®)

UNTIL CH = ‘H’
END.

Page 168

-rh

N_G"‘ 7 2.4 -3an -9

b3 30 B SIS I I I I3

THE CALCULATDR # # Section 4.1
FRE I NN IR

Version 1.4 January 1978

CALCULATOR is a program written by Dale Ander to utilize the
computer as a calculator.

When the program is tunning the following prompt comes up ‘->’
and you are expected to enter a one line expression in algebraic form.

You may have up to 25 different variables, each with different
values assigned by you using the syntax of the given grammer. Only the
girst 8 letters are used to distinguish between variables. Once
variables have a value they may be used like constants. There are two
built—in variables: PI (3.141593) and E (2.718282), however these
values may be changed by the user.

There is no distinction made between upper and lower case
letters.

The MOD function is the backslash ‘\‘: the PASCAL MOD function
is used and the operands are rounded to make them integers. WARNING:
Since this uses the PASCAL defn. of MOD (see Jensen & Wirths'’ Pascal
User Manual and Report Second Edition page 108) the results obtained
may not be as expected.

The operand of the factorial function ‘FAC’ is also rounded to
make it an integer and it must be between zero and thirty~three
inclusive or else the expression will be rejected.

The uparrow ‘~’ is used for exponentiation. The operand must be
positive or the expression will be rejected as e ~ Y LN (X') is used
¢o calculate the answer.

'LASTX’ is a constant which is assigned the value of the
previous correct expression by the calculator and may be used in the
following expression instead of inserting the same expression again.

Angles for the TRIG functions must be in RADIANS. Degree to
Radisn conversion is accomplished by RADANGLE = (PI / 180) % DEGANGLE.

This program will bomb on an execution error it an over or
underflow occurs. If this happens all user assigned variables and their
values will be lost.

To leave the calculator mode simply type a RETURN immediately
following the prompt.

p
2
t
4
\

Page 179

EXAMPLE OF CALCULATOR SESSION:

-> PI
3. 141592
~> LASTX
3. 141592
-> HALFPI = PI / 2
1. 570796
-> SIN (HALFPI)

->A=B=C=D=F=(FAC (3) /7 2)

3.0
->3+7 7 4
4.75
—2> SART(2%2+3#3)
3. 605551

Page 180

D S s T TR L2 it s SRk o
THE LINKER # # Section 4.2
e S LTI 2 S LS Rt

Version 1.4 January 1978

The linker is a program which "stitches" the separately
compiled segments of a very large program together. When executing, it
will ask for

Output Code File?
Reply with the name of the file you wish it to create. Next it will ask
Link Code File?

Reply with any one of the code files you want linked into the
output file. It will ask about each of the segments within the code
#ile individually. To link them into the ouvtput file reply with a
‘y’(es; any other character will make the LINKER go on to the next
segment. Note that it will not ask about segments containing no code.
After exhausting all segments within one code file, the LINKER will ask
for another. Continue to reply in a like manner until all your files
are linked together. Terminate execution with a carriage return. This
will lock the output file onto your disk and exit the LINKER.

In many cases it will be beneficial for the output file to be
named the same as one of the to-be linked files. This duplicate naming
will cause the new output file to replace the old file. (It is
advisable to re—bootstrap after such a Erocedure when working with the
sgstem.) If you ask the linker to link in the same segment procedure t:]
twice (i.e. two segment procedures with the same segment number) while
running LINKER, it will ask you to reconfirm that link. It does so
because linking that segment in twice will resuvlt in wasted blocks on
disk within the code file since the segment, as was previously read in,
is still there.

To replace a segment, re—execute LINKER and link the new
segment in place of the ald one. LINKER will inform you of any
input/output errors that it incurs while running.

- Creating a new system:

In order to create a new system, or to change part of it, you
will need %o compile that segment of the system. In order to do this
so that all parts of the system will be talking to each other
correctly, it is imperative that they all be compiled with the same
globals. Dummy declarations of the segments that precede the segment
you are working on are necessary in order to ensure that your segment
gets the appropriate segment number. Having successfully compiled your
segment, follow the procedure described above.

You may name the output file whatever you wish. The input
"1ink" file(s) nced to be those code files which the compilation(s) of
your segment{s) has(have) generated and the system. An example of
stitching three code files follows: . :

Page 181

Example:

This is one file (A. TEXT) containing one segment procedure of a
small system, which is to be linked later with other segment
procedures.

PROGRAM L INKDEMO;
VAR 1. INTEGER;

PROCEDURE XIT:; FORWARD;

SECMENT PROCEDURE A;

BEGIN
WRITELNC(’ I HAVE ENTERED A’);
XIT;

END;

PROCEDURE XIT;
BEGIN
END; (3 A DUMMY XIT #)

BEGIN
(% DUMMY MAIN BLOCK #)
END.

This is a second file (B. TEXT) containing another segement of
this sample ssystem. Note the forward declarations of A and XIT.

‘PROGRAM ‘L INKDEMO;
VAR I: INTEGER;

PROCEDURE XIT:; FORWARD;:

SEGMENT PROCEDURE A;
BEGIN

(# DUMMY BLOCK #)
END;

SEGMENT PROCEDURE B
BEGIN

XIT;

WRITELN(‘THIS IS IN B’);
END;

PROCEDURE XIT: BEGIN END; (# ANODTHER DUMMY XIT #)

BEGIN
(* DUMMY MAIN BLOCK #)

END.

This is the outer block of the system. It is the file which
contains the actual declarations for the global routines as well as the
outer block of the system. Note that all segment procedures are ’
declared with dummy blocks.

Page 182

PROGRAM LINKDEMQ:
VAR 1: INTEGER:

PROCEDURE XIT:
FORWARD:;

SEGMENT PROCEDURE A;
BEGIN

(% DUMMY BLOCK #)
END;

SEGMENT PROCEDURE B
BEGIN

(% DUMMY BLOCK #)
END;

PROCEDURE XIT;
BEGIN

WRITELN(’ THIS IS THE CODE FOR XIT’);
END;

BEGIN

WRITE(’ THIS IS THE MAIN PROGRAM‘);
. Bi

“Ai
END.

I1f each of these files (A. TEXT, B.TEXT, and 0. TEXT) is compiled
separately and saved as A, B and O respectively, the session with the
linker would look as follows:

Dutput code file? MYPRDG. CODE

Link cade file? A. CODE

Linking LINKDEMO. Please Confirm(y/n) N
Linking A . Please Confirm{y/n) Y
A Seg # 10, Block 1, 5& Bytes
L.ink code file? B. CODE

Linking LINKDEMO. Please Confirm(y/n) N
Linking B . Please Co. 'irm(y/n) Y
B SEG # 11, BLOCK 2, 50 BYTES
Link code file? 0. CODE

Linking LINKDEMO. Please Confirm(y/n) Y
LINKDEMO SEG # 1, BLOCK 3, 116 BYTES
{.ink code file?

String to be added to file? Copyright (c) 1978, Regents of Univ. Cal.

This session will create the file MYPROG. The string, which is
added to the header page of the code file, is useful for making code
files distinguishable from other files during disk recovery or for
adding copyright notices to object files.

Page 183

Page 184

636 36 34 36 3 34 3t 2 46 3 3636 35 36 34 3 3030 36 35 F M I 3 I3 36 I3 33 R

SETUP ~SYSTEM RECONFIGURATION # # Section 4.3
6443636 303 33 3 4630 H A I F IR I AR N

Version: I.4 Janvary 1978

- I. INTRODUCTION

The SETUP program enables the user to reconfigure the UCSD
PASCAL Operating System to suit his equipment or taste. It
arcomplishes this remarkable feat by altering the contents of system
global variables. Most modifications are related to adapting the
system for use with different terminals, while others adapt the system
¢tp differences in machine configuration (eg. Whether or not it is
egquipped with a real time clock.). SETUP enables the user to make
these changes at any time, quickly and easily, either permanently or
temporarily.

The UCSD PASCAL Operating System has certain features making it
especially well suited to high speed CRT devices. It is easily
adaptable to other terminal units as well, including storage tube and
slpow impact printing devices. The PASCAL system must be adapted to
differences between the hardware designs of these terminals as well as
4o the fact that control characters are not standardized at this time.

11. .USING THE SETUP PROGRAM

A. DEFAULT CONFIGURATION

The UCSD PASCAL system assumes that all terminals respond to
the standard ASCII <line feed> (decimal 10, octal 12) and <carriage
returnd> (decimal 13, octal 15) characters. With the configuration in
which it is supplied, the system uses these two control codes and no
other cursor addressing schemes. The system also assumes that the NUL
(D) character does nothing o. serious consequence to the terminal. The
ASCII underline character (decimal 95 octal 137) is interpreted as the
single character delete key (CHARDEL). Thus, all terminals "look like"
Tele—~types to the suystem in its default configuration. This has been
done to make the system immediately compatible with as many different
terminals as possible. By using SETUP to modify this Teletype-ish
response, the user can take full advantage of the screen—oriented
display features of UCSD PASCAL. As noted above, there are other
relevant differences between installations, however the display options
are the most "visible" to the user.

Page 185

B. HOW TO DO IT, STEP BY STEP

SETUP is tun like any other compiled PABCAL program, by
entering the “"Command:" level of the UCSD PASCAL system and typing ‘X’
(for eXecute), followed by the filename ‘SETUP’ (Don’‘t use the quote
marks) and a <carriage returnd. If the system is working correctly,
you will then see the prompt line for the command level of SETUP:

SETUP. N(ew, S(ingle, L(ist, RCadix, P(ermanent, Q(uit, <ESCY>

First, type ‘L’ for ‘List’. This should cause SETUP to list
each of the variables with which it deals and their current values.
Note that the output generated may exceed the display capacity of your
screen and the first lines will be lost. To avaid this, type ‘L’ again
and use CTRL § to freeze the display before the top linas get away.
Typing CTRL 8 again will unfreeze the display so that it can continue —-
no output will be lost. Next, tuype ‘R’ for ‘Radix’. The prompt line
informs you that you may now type ‘0’ ‘D’ or ‘H’ to change the “"default
radix" to Octal, Decimal or Hexadecimal, respectively. Try typing
these characters in any order and note that the new default radix is
displayed each time. See section F below for more on Radix Default
Setting. Leave the default radix set the way you like it and type
<carriage return> to return to the command level of SETUP. Now type ‘N’
for the ‘New Configuration Mode’. VYou will see a prompt that looks
like this:

New Configuration CHANGE:
[O(ct) D(ec) HCex)1 <New Value>, <Space>, <CR>, <ESC>

These commands are explained in greater depth under section D
below. Note that the first variable is displayed beneath the prompt
line, along with the current default radix. The variable display
should look like this:

(STUPID) STUdent Program ID? [FALSE]J: -

The characters in parentheses are the identifier associated
with this variable. This identifier is printed on the left when ‘List’
is called. The stuff between the square brackets is the current value
of this variable, either Boolean (True, False), ASCII Character Code
(Octal, Decimal or Hex) or Integer (Decimal only). STUPID is a Boolean
variable, as noted in section III.A of this document. Press ‘T’ and
STUPID will be set TRUE and the next variable will be displayed. Now
press <spacebar>; the value of the current variable will be unchanged
and the next variable will be displayed. Press <spacebar> several
times and several variables will be displayed. Press <carriage return>
to return to the command level of SETUP. Use ‘L(ist)’ (ie. type ‘L‘)
to display the variables once again and note that STUPID has been
thanged. Finally, type <ESCAPE> (CTALTMODE>) to exit from SETUP,
returning to the command level of the PASCAL system. Sections 11.1 and
I1.H below explain the difference between the <ESCAPE> and ‘Q(uit)”
commands for exiting SETUP. The above is a simple walk—through of
SETUP, showing only a few of its many wonderful features.

Page 184

€. SETUP COMMAND SUMMARY

‘N’ —-New configuration mode. Each of the variables
accessible with SETUP is displayed in turn. The user may change
any or all of them and exit at any time.

‘G’ ——Single change mode. The user must specify the
variable(s) he wishes to change by name.

‘L - List.
Displays a list of all the accessible variables and their
current value

‘R’ ~— Radix defauvlt setter.
The user may change character variables in either octal,
decimal or hexadecimal radices. This routine sets the
default radix. ’

‘P’ —— Permanent.
Updates the disk file ‘SYSTEM. INTERP’ to incorporate the
changes made using SETUP (Otherwise, the next time you
bootstrap, the changes won‘t be there). This does not
cause an exit from SETUP.

‘@’ —— Quit.

Exit SETUP and incorporate the changes that have been
made into the currently vunning PASCAL system.

<ESC> -— Escape.
Exit SETUP and cancel all changes that have been made

(except Permanent changes).

D. NEW CONFIGURATION MODE

In New Configuration mode, each variable is displayed in turn
for the user to change if desired. There are several options for the
user for each variable displayed: (1) He may press <spacebar> to
proceed to the next item. (2) He may press <{carriage return> to exit
from New Configuration mode, accepting the changes he has made. (3) He
may press <Escape> to exit from New Configuration mode without
atcepting any of the changes, or (4) he may make a change by typing in
the new value, followed by a <spacebar> to proceed, a <carriage return>
accept and exit or an <escape> to abort and exit. Exiting from New
Configuration mode will return program control to the outer level of

SETUP.

Changing a Boolean variable is accomplished by entering a T or
Y for True, or an F or N for False when prompted by the program. Other
answers will generate an error message, leaving the current value of
the variable unchanged.

Page 187

Changing character variables may be done in either octal,
decimal radices. The default vadix is displayed with the prompt for
the variable and a new value may be entered immediatly in that radizx.
To use one of the other radices, simply type ‘O’ for octal, ‘D’ for
decimal, or ‘H’ for hexadecimal and the entry radix will be changed for
this particular variable,. The radix may be swapped around as much as
you want until another character is typed after which the Tadix is
fixed at its last setting. Note that the default radix remains
unchanged until changed using the Radix default setting procedure.

Integer variables are most easily changed in decimal, thus the
working radix for Integer variables is temporarily changed to decimal.
The user may use the ‘0O’, ‘D’ and ‘H’ cammands as before, however.

E. SINGLE CHANGE MODE

8ingle Change mode is similar to New Configuration mode in that
the prompts and responses are identical for each individual variable.
See New Configuration mode for further information on how to change a
variable once it is displayed. The two modes differ in that Single
thange mode requires the user to enter the name of the variable he
wishes to change. The program then displays only that variable. If
the user types <spacebar> before or after entering the new value, the
program will ask him for another identifier, I# the user types a
<carriage return> instead, the new value will be accepted and he will
be back in the outer SETUP level. If he types <Escape>, all the
changes he has made since entering Single Change mode will be aborted
and he will return to the command mode. -

F. RADIX DEFAULT SETTING

The Radix Default Setting procedure displays the current
default radix (initialized as decimal) and accepts changes as
follows: ‘O’ changes it to octal, ‘H°’ changes it to hexadecimal and ‘D’
changes it to derimal. A <carriage return> will return the user to the
outer SETUP leve:. Unless otherwise specified when changing a
variable, the prompt display and the changes to all character variables
(ASCII) will be made in the default radix.

6. PERMANENT

The Permanent procedure allows the user to preserve his
maodifications as permanent changes in the disk file ‘SYSTEM. INTERP ‘.
These changes may be updated at any time through use of this
procedure, The program requests the user to specify a volume name
followed by a {carriage return>; if no volume is given, the system
default volume is assumed, and entering & ‘#‘ implies the bootstrap
disk (see document UD2, the File Handler). The program will respond
‘Are you sure?’ to request the user to confirm the change. Typing a
‘'Y’ will cause the cthange to be carried out; any other response will
leave ‘SYSTEM. INTERP unchanged. The user will not exit from SETUP but
return to the outer SETUP level. '

Page 188

H. QUIT

Quit causes all changes that have been accepted from the New
and Single modes to be incorporated into the currently running
operating system. Quit terminates the SETUP program and returns the
useT to the PASCAL system command level. At that time, the user will
discover that all changes he has made using SETUP are now in
effect,except FILLCOUNT, which will not take effect until the system is
reinitialized. .

I. <ESCAPE>

Typing <Escape> (or <ALTMODE> on some terminals) causes the
SETUP program to terminate without incorporating any changes into the
currently running PASCAL system. Any changes that may have been made
are now discarded and the user returns to the PASCAL system command
level.

J. STRATEGIES FOR USING SETUP

We strongly recommend that no Permanent changes be made until
the vesults have been thoroughly tested by simply using the ‘G’uit
command. It should be noted that, if the changes are found to be
satisfactory, they may be made permanent by simply executing SETUP and
typing ‘P‘. Even though the modifications may have been made on a
previous run of SETUP, the Permanent mode will incorporate those
changes into the disk file, UNLESS the system has been rebootstrapped
since they were made, in which case they are gone.

I11. ODPTIONS PROVIDED
A, Miscellaneous

B. Terminal Control .odes
€. User Command Codes

A. MISCELLANEOUS
STUPID (True, False): STUdent Program ID, Not yet implemented

Cuggested setting: False. Do not set to True at this
time.

Page 189

SLOWTERM (True, False): Slow Terminal, When SLOWTERM is true,
the system issues abbreviated promptlines and messages.

Suggested setting: 600 baud and under —— True, otherwise
False. Default is False.
HASXYCRT (True, False): X-Y cursor addressing is available.
When HASXYCRT is true, the system assumes that the cursor may
be addressed using an X-Y addressing scheme. This variable is
used only by the screen—oriented editor.

Suggested setting: Consult terminal manual to see if
this feature is available on your terminal.
Default is False.
HASLCCRT (Boolean): Lower case letters are available.
HASLCCRT informs the system whether or not lower case
letters may be input. This variable is used only by
the screen-oriented editor.

Suggested setting: Set true if lower case letters are
on terminal, otherwise set false. Default is
False.
WIDTH (Integer): Screen Width.
The WIDTH setting affects the screen-oriented editor,

Suggested setting: Set to number of characters per
line. Default is 72.

HEIGHT (Integer): Screen Height. HEIGHT is used by several
system routines to govern the page length of the
display.

Suggested setting: Set to number of lines displayable
at one time on your terminal. On non-paging
devices (ie. those which scroll, eg
hardcopy or “glass teletypes"), set to zero,
Default is zero

HASCLOCK (True, False): A real time clock is available. A real
time clock module:, such as the DEC KWiti, may be found
on many processors. 1f available it is used by the
PASCAL system to optimize disk directory updates. See
the TIME intrinsic in the Intrinsics document

Suggested setting: If a real time clock is available,
set true, otherwise set false. Default is
False.

BADCH (Chavacter): Symhol for unprintable character. When a
code is to be printed which does not denote a printable
character in the ASCII code, the BADCH character is
printed.

Page 190

Suggested setting: Default is question mark (?),
(Decimal &3, Octal 77).

B. TERMINAL CONTROL CODES

The Terminal Control Codes are ASCII character codes defined by
the manufacturer of the individual terminal to contraol certain terminal
functions such as erasing the screen or doing a line feed. Many
control codes are now standardized, however there are also some that
vary a great deal. To enable the PASCAL system to adapt to these
variances, it is possible for the user to redefine the following values
to conform to his terminal. Note that the Terminal Control Codes are
not subject to the whim of the user, as are the User Command Codes
which follow. Rather, they must conform to the terminal manufacturer’s
specifications. Note also that by setting all the Terminal Control
Codes except HOME to zero, a terminal will look like a Teletype to the
system. This is the configuration in which the system is supplied.

ESCAPE (Character): Escape—-Mode character. Some terminal
devices require an "escape sequence" for certain func-
tions. In these circumstances, there is a
distinguished character which sends the terminal into
the "escape mode" (the ESCAPE character). It is then
followed by another control character, such as

ERASEEQS.

Suggested setting: Consult manufacturer’s specs; if
escape sequences are not used, set to zero,
otherwise set to specs. Default is zero.

HOME (Character): Move cursor Home. Another screen terminal
feature, the HOME command is used to move the cursor to
the upper left ("home") corner of the screen.

Suggested setting: Set to manufacturer’s specs;
IMPORTANT —— if not available, set to
<carriage return> character. Default is
or “al 15, decimal 13, hex OD.

ERASEEDS (Character): Erase to End of Screen. On screen
terminals, usually there is available a command for
erasing either the entire screen or from the cursor to

the end of the screen.

Suggested setting: Set to manufacturer’s specs; if not
available, set to zevo. Default is zero.

ERASEEOL (Character): Erase to End of Line. Screen terminals
frequently offer the user the option of erasing from
the cursor position to the end of the current line,
without disturbing the rest of the screen. ERASEEOL is
the control character which causes this function.

Page 191

Suggested setting: Set to manufacturer ‘s specs; if not
available, set to 1ero. Default is zero.

BACKSPACE (Character): The BACKSPACE control character causes
the terminal to move the cursor LEFT one position.

Suggested setting: Set to code emitted by backspace key
on terminal, if such exists (usvally
decimal 8, octal 10). Default is zero.
NDFS (Character): Non-Destructive Forward Space. NDFS is the
control character which causes the cursor to be moved
RIGHT one position, without obliterating displayed
data.

Svggested setting: Set of manufacturer’s specs; if not
available, set to zero. Default is zero.

RLF (Character): Reverse Line Feed. The RLF character is the
control character causing the cursor to move UP one
line.

Suggested setting: Set to manufacturer’s specs; if not
available, set to zero. Detfault is zero.

FILLCOUNT (Integer): :Number of nulls to send after Y-axis
Cursor mowve. Many types of terminals require a delay
after certain cursor movements which enables the
terminal to complete the movement before the next
character is sent. FILLCOUNT number of nulls will be
sent after carriage returns, ERASEEOL, ERASEEOS and
RLF.

Suggested setting: If a delay is required by your
terminal, set FILLCOUNT to the longest delay
needed for the baud rate at which you plan
to run. If# no delay is needed, set
FILLCOUNT to zero. Default is 10.

C. USER COMMAND CODES

The following are user—-selectable command codes. The PASCAL
system responds tn certain keyboard commands for special functions.
The exact key which actuates these functions is sometimes subject to
users’ whims by changing the ASCII code to which the system will
respond. Note that these are codes which are INPUT to the system, not
the output control codes to which the terminal Tesponds.

UP'DDHN;LEFT.RICHT(Character): Vector keys. These keys cause
the cursor to move according to their name, either
Tight or left one space, or up or down one line at a
t: me. The screen— oriented editor responds to these
commands.

Page 192

Suggested setting: If vector keys are available, set to
the codes emitted by each key (consult
terminal manual), otherwise, set to some
canvenient codes such as CTRL W, Z, A/ S or
CTRL E. S, X, D. Default is zero.

CHARDEL (Character): Single character delete key. The CHARDEL
key will cauvse a single character to be removed from
the end of the user’s text buffer when entering an
input string (eg. while editing).

Buggested setting: Set to code emitted by Backspace key
(Decimal 8, Octal 10). Default is octal
137, decimal 95 (ASCII underline).
LINEDEL (Character): Line delete character. Depressing LINEDEL
will cause the current line of input to be erased.
LINEDEL is similaer in function to CHARDEL differing in
that CHARDEL does only single characters at a time.
Successive actuvations of LINEDEL will not erase
successive lines of text, unlike CHARDEL which will
erase suvccessive characters.

Suggested setting: Rubout or Delete key (usually
Decimal 127, Octal 177, which is the

default).

STOP (Character): Console output stop character. The STOP
character is a toggle; when pressed, the key will cause
output to the file ‘OUTPUT’ to cease. When the key is
depressed again, the write to file ‘OUTPUT’ will resume
where it left off. This function is very useful for
reading data which is being displayed faster than one
can read.

Suggested setting: CTRL S (Decimal 19, Octal 23) is the
default.

FLUSH (Character): Console output cancel character. Similar in
concept and usage to the STOP key, the FLUSH key will
cause output to the file ‘OUTRPUT’ to go undisplayed
until FLUSH is pressed again or the system writes to
file ‘KEYBOARD‘. Note that, unlike the STOP key,
processing continues uninterrupted while output goes

undisplayed.

Suggested setting: CTRL F (&) is the default.

BREAK (Character): BREAK will cause the program currently
executing to be terminated with a run—time error

immediately.

Page 193

Suggested setting: Code emitted by Break key on
terminal, (usually null-—-0). You may wish
to set BREAK to something difficult to type
accidentally. Default is zero.

EOF (Character): Consale end of file character. When reading
from the files KEYBOARD or INPUT or the unit
‘CONSOLE: ‘, this key sets the Boolean function EOF to
TRUE. See the distussion of the EOF intrinsic in

another document.

Suggested setting: CTRL Z (Decimal 26, Octal 32) is the
default.

ALTMODE (Character): Altmode or Escape key. The ALTMODE or
ESCAPE key is used as a command in various levels of
the PASCAL system. Consult specific documentation for
its meaning in each context

Suggested setting: Consult terminal manual and set to
the code generated by the appropriate key on
your terminal (Usually octal 33, decimal
27). Detault is zero.

‘Page 194

SRR R S Rl I L Y R Y RN R

% BOOTSTRAP COPIER % # Section 4.4 #

AR SR S T R L L T T Ry
Version I. 4 January 1978

The bootstrap copier BOOTER. CODE is a friendly handshaking
program. It will ask you for the unitnumber of the volume you wish it
to write the hootstrap on. Refer to Table S5 for a list of volume
numbers. It will then ask you for a file name to write as the
bootstrap. It writes the first two blocks of that file, so if you want
to copy the bootstrap from an existing disk, gjyust give it the diskname.
and it will copy the bootstrap from the disk you have named to the unit
you have numbered.

) To execute the BOOTER program, type X BOOTER to C(ommand level
(assuming that you indeed have a copy of BOOTER. CODE on your disk).

In some future release the bootstrap copier will be moved into
the zero command of the F(iler, but, that is some future release.....

Page 195

-~ Notes -

Page 194

e X A s T T 222 L L)
PATCH # % Section 4.5 ¥
NI SN
Version 1.4 Janvary 1978
The PATCH program is written for those programmers who simply
must see it in HEX. It is screen oriented, and requires a correct
version of the system procedure GOTOXY to be bound in. It vses the
vector keys, like the screen oriented editor, to position the cursor
over the hex digit in question. Typing the correct hex digit will
update the in-memory version of the block you G(ot. Then you must type
‘P’ top the P(atch: level to write the block back to disk.
The commands PATCH understands are as follows:
Flile: will ask for a filename (or <return for unit-number>).
G(uit: leaves PATCH.
Clet: will ask for a block number (and expects <cr>).

M(ixed: Displays the block in mixed ascii and hex, ascii for
those things that it can print, hex for the rest.

H(ex: Displays the block all in hex.

P(ut: Writes the block out.

While in display mdde:

any hex character: goes into the block.

any vector key: moves one that direction.

U:Z,L.R: Up, Douwn, Left, Right. (Z because D is a hex char)
S(tuff: Stuffs the display for however many bytes you tell it

Q(uit: Goes back to P(atch.

Page 197

= Notes - .

Page 198

363 36 3 3 38 35 36 36 36 35 36 36 6 236 6 36 30 I B 30 36 AW A I I RN N

SERIAL LINE INTERFACE DRIVER KIT # # Section 4.6
B30 345 36 38 36 3650 B 40 206 24 3 E HE 2RS4 SIS B0 R B B SIS

Version 1.4 January 1978
This utility program designed for interactive use between

the TERAK B8510A and other caomputer systems.
The program allows the user to interface the TERAK with other systems

by emulating a terminal. File transfer is accomplished by having the
program type the correct sequence of characters that would cause the
host system to generate a listing stream to the terminal. It swallows

these characters as they arrive, and ships them off to whatever file
you have specified.

In order to make use of the interface between the two machines
it is necessary to type <esc>, which then responds with a program prompt
of the form:

Filexfer: G(et), S(end), P(ascal), H(ost)
Following is a description of each of the available commands.

Glet) : This command prompts the user for a host file title
by asking for a ‘Host input file?’ and then prompts
with ‘Pascal output file?’ . Assuming that a legal
B&6700 file title was entered the program will proceed
to transfer the requested file to a TERAK file(assum—
ing no I/0 errors occur). Once the transfer is com-—
plete the user will be notified and the above prompt
line will appear again.

G(end) : The program will prompt with ‘Pascal input file?’ and
following the user’s response will then ask for the
'Host output file?’. If the named Pascal file exists
it will be transferred to a host file(and to a cor-—
responding ARCHIVE file) under the title given in re-
sponse to the second prompt.

P(ascal): This simply returns control to the Pascal Operating
System. To return to the program host it is neces—
sary to re—execute the program. .

H(ost) : This command will return control to the host system.
Another <esc> will respond with the ‘File- xfer’ prompt

You will need to modify the source of this program in four
places to make it behave properly with your host machine. .The first
two are at the very top of the program, there are two constants:
HALFDUPLEX, and UPPERCASE. These need to be appropriately equated to
either TRUE or FALSE as the case may be. The third is at the beginning
of procedure SENDFILE. The line that reads:

Page 199

§ = CONCAT(’ = = = *,TITLE, ’ -~ — = ¥

needs to be modified as to create the string that will cause your host
machine to accept the following stream of characters as something that
will be sent to some other destination. The fourth is at the beginning
of procedure GETFTP. 7The first line of this procedure reads:

B := CONCAT(’ = = = /,TITLE, * = ~ ~ +y,

you need to modify it so that when it is typed to your host computer,
it will start sending the file specified in TITLE as a continuous
stream of characters.

The author of this document suggests that you study the pragram
to see what other little quitrks it expects from your ‘host system, and
modify it appropriately. We have it talking to CANDE on our B&700, and
to a number of UNIX installations. Good luck. and happy transferring.

Page 200

The
SYSTEM are
a difficult
responsible
programs is
specific to

CYCLE :

TURTLE :

SINEX

DERIVATIV

CHEDIT :

CHDEMO :

3635 3696 3 46 3 63 36 3636 63 SRS I I U IR HNEH

DEMONSTRATION PROGRAMS # # Section 4.7
R T IR TR 2 L U N 2 LS S L Lt

Version I.4 Januvary 1978

demonstration programs available with the UCSD PASCAL
constantly changing, and, as documenting a moving target is
proposition, an extra disclaimer that we are not

for any discrepancies between the documents and the actual
in order. All demonstratiaon programs listed here are

the TERAK 8510a.

A potpourri of graphics to keep the machine busy. Turtle
‘gquirals’ and other ‘pretty’ pictures keep the screen moving.
CYCLE demonstrates some of the capabilities of the turtle
graphics package as well as displays generated with more
‘primitive’ low level graphics techniques such as DRAWLINE
and recursively based algerithms. CYCLE also gives a deman-
stration of the panning capabilities of the screen graphics.
The program may be terminated by typing a carriage return
whereupon it will finish the current cycle and exit.

This program is a useful introduction to the use of UCSD
PASCAL turtle graphics procedures and functions. It emu—
lates the turtle in an interactive mode allowing the user

to type in turtle commands(e.g. MOVE(50)) which are activated
(assuming that they are syntactically correct) by typing

a carriage return following the input string. Commands

not displayed on the prompt line include MOVETO(x, y) and
TURNTO(angle).

Demonstrates the panning/and double buffering capabilities
of graphics mode of screen. Calculates and plots Y=SIN(X)/X.
Program and panning may be terminated by typing return.

E .

This demonstrates mathematical prowess by calculating suc-—
cessive derivatives of Y=SIN(X)/X via the difference method
1t will continue until deverivative ‘blows up’(i.e. exceeds
screen boundaries.) Program waits for a carriage return.

The character set editor. (See document UD%)

An interactive demonstration of the character editing facilities

of the CHEDIT program. Commands of the form <esc> followed by

a digit will enable use of various character sets available on

the disk. The user may type in the alloted workspace to see

the format of any specific characters. (This program is self-prompt—
ing). End by typing <esci<escd.

Page 2D\

LIFE :
This is John Horton Conway’s mathematical auvtomata game. Patterns
of dots may be created and then set into ‘motion’ after which they
will ‘reproduce’ and ‘terminate’ until either a static state or
death of all dots results. Dots maybe set with ‘I°. Moving commands
are: up='U’, down=<linefeed>, right=<{spaced>, left=<backspace>,
homecursor=‘H’, centercursor=‘C’. Typing ‘S’ will start the game.

LIFEDEMO:
An automatic demonstration of LIFE. The game will shoot a ‘glider’
pattern at a ‘pulsar’,

RATMAZE:
This is an entertaining graphics demonstration that randomly
generates a maze based upon a three digit input ‘code’. (Initials
are a good idea.) Upon completing the maze(which, incidentally,
has one and only one solution path) it sends a ‘rat’ through
the maze to solve it in a relatively unintelligent fashion. (The
busy rat leaves ‘droppings’ over all paths that he runs.) Pro-
gram awaits a carriage return once the maze has been solved.

DOODLE :

. A ‘creative’ computer graphic artist program that creates
aestheticallyi{?) pleasing works of art composed of squiggles,
dots, circles, spiders and various other patterns.

CAl
Demonstrates I(nstuctional S(upport package for a mathematics
quiz. (Self-prompting)

DEVELOPER:
A utility program that formats FOTOFILES for the PRINTRONIX
printer. (See document elsewhere.)

PATT1
Dynamic pattern generation using DRAWLINE intrinsic with
XOR-mode demonstrating interference patterns.

PATT2 : Similar to PATTIL.

SURFACE :
Demonstrates some of the 3-D graphics potential on the
TERAK 8510a. First generates necessary data for plotting
surface(line of periods written on screen). Then the
program plots the surface by contour lines utilizing a
simple hidden line algorithm(implemented with DRAWLINE).

U.C.8.D. ‘PENNY ARCADE’

BLOCKADE
A game of competition for two players. Put the keyboard in
shift-lock mode(i.e. get the red light on the "lock" button
lit). Player on the right has the vector pad 1,5,3,0 to turn
his wall. Player on the left uses E.S,F,C to turn his wall.
The obyect is to block off your opponents path so as to leave

Page 282

WWII

him as little space as possible. First player to ’‘crash’ into
a path or wall loses the point. Game is continuous and winning
score is 4. Score will auvtomatically reset to zero at end of
match. (To stop the program re—boot the system.) No TEXTFILE
is available on this program.

A start on the development of an anti—aircraft game. A rTandom
number of planes are displayed and subsequently shot down by
the computer. Game terminates itself upon wiping out all planes.

HANDBALL :

Handball is a fast-moving two player game using paddles and a
ball that speeds up and heads off at unexpected angles. Instructions
are provided. (Game plays to 11 points and <return> terminates it.)

BREAKOQUT :

A challenging game for one player. The computer sets up a ‘brick’
wall and it is up to the player to break down as many bricks as

he can by successfully aiming the ball at the wall so as to break
through. Balls are served by typing carriage return. Learning .o
use the paddle will require some practice. The ‘<’ and ‘>’ keys
move the paddle left or right(with a single press) and hitting

the space bar (or any other key) will stop it. For taster paddle
speed press the direction keys twice. Once the ball has broken
through behind the wall paddle will shorten for an extra chal-
lenge. ‘Q‘<retd> will terminate game.

TANKGAME

CHASE

A game of skill and strategy for two players. Game offers a
selection of terrain for tank battle. Players maneuver around
playing field and fire shells at opposing player’s tank. Game
is self-prompting and includes a number of variations.

A stimulating cat—and-mouse pursuit game offering a number of
playing variations. Players alternately chase and pursue for
30-second periods. Movement is provided in 8 directions. Player
on the tight uses vector pad keys(7,.8.9,4,6,1,2,3) and player
on the left uses keys Q. W,E;AD: 2, X, C to move their respective
fighter ships. Typing ‘H’ will end the game.

Page 203

~ Notes -

Page 204

B30 3335 36 34 25 30 35 38 30 36 35 3 35 34 3 36 3 3 90 30 3 IF IS 3E 363 3343830 30 H 3 30 33

% RT11 to PASCAL CONVERSION KIT # # Section 4.8 #
36648 36 3046 3 3036 23 3 40 3030 30020 30T I SIS IE B SN

Version I.4 Januvary 1978

The utility file labeled RT11.LIST.CODE is intended for use with
the RT-11 directory. It assumes the presence of an RT-11 divrectory spen-
ning blocks &~7. When the file is executed it inquires for the user to
‘respond with either a 4 or 5 depending on the appropriate volume o which
the vuser wants to view the directory. Once a legal on~line unit has been
specified, RT11.LIST. CODE proceeds to rtead up each entry on blocks &-7.
The program uses the UNITREAD intrinsic to read the directory and does
not open the file in the usual manner. 1t proceeds to list on the screen
the entire contents of the directory. For each entry it specifies the
file title with appended file kind, the size of the file in blocks, and
the starting block location of the file (in base 10). All unused portions
are appropriately identified as such.

The vtility program called RTIITOEDIT is for transferring data
from a RT1) disk to a PASCAL disk. The program requires a two-drive
machine and is self-prompting.

Page 2p5

-~ Notes -

Page 266

3635 35 35 35 3 34 35 36 3 35 3 9 3 36 3 90 36 330 3 30 33 34 3 3 36 330 I I

HEX-DECIMAL-DCTAL CONVERSIDN # # Section 4.9 *
3635 36 396 36 363 36 36 39 353 36 3 3 HFEAHIE I3 H S H I IOH IR RIS F

Version 1.4 January 1978

This text file contains the declarations necessary for the
PASCAL programmer to do these common conversions. A quick lack at the
code involved in this should explain how to use them. It should also
point out some of the neat, powerful things that can be done with UCSD
PAGCAL data structures

The code file, when run, will prompt you for input in any one

of the bases, and upon your request return it to you, converted to any
other of the bases. The program is self-prompting.

Page 2%

Page

-

~ Notes -

3636 3536 36 3 35360 36 36 36 36 FE3E 30 3030 3666 30 W I W3 36363 6 30 I3 Fe 363

CHEDIT - THE CHARACTER EDITOR # # Section 4.10 =
SEH 333N I I A R IR RN N

Version I.4 Januvary 1978

CHEDIT is a utility program intended only for use on the TERAK

8510a system. It converses directly with the character generator
buffer and enables the user to edit the 192 characters in the 8510a’s
soft character set.

When executing, CHEDIT displays a 10 X 8 rectangular matrix which
represents the workspace in which the user is editing a particular char-

acter.

A blinking cursor is used to signify location within the matrix.

Following is a description of the
available keyboard commands:

G Get a character. (The character typed following the ‘G’
will be displayed.)

A : Add this bit. (i.e. turn on the bit at present cursor location}

z : Zap this bit. (i.e. turn off the bit at current cursor location)

0O : Oppose(complement) bit at current cursor position.

Cc : Clear entire character.

I: Invert(complement) entire character.

H : Home the cursor. (upper left corner)

X eXchange or switch to other half of character set. (X is a
toggle between STANDARD and OPTIONAL character sets.)

M : Move into. This is a multiple character command:
Next character must be ‘X’ or ‘G‘(‘X’ makes change only tempor-—
ary). When the ‘G’ is finally typed the next character to be
keyed in will be ‘moved into’ the character currently being
displayed. (e.g. if ‘A’ is current character, then "M G a’
will duplicate ‘a’ in the space belonging to the ASCII char-—
acter ‘A’.)

8 : Suwitches{copies) the alternate character set into the current
set (STANDARD or OPTIONAL) and inverts(complements) the set.
(This is useful for creating a ’‘reverse video’ set with min-
imum effort.)

a : Quit CHEDIT (no ovwtput results, but leaves character generator
buffer as you have altered it.)

K : HKeep updated character set (write set to disk as NEWSET. CHARSET
and exit program.)

Vector keys : Move cursor in direction specified.

Numeric pad : Vector pad defined in standard format:

9: up; 1: left; 3: vright;, O: douwn;
7: bit off; B: bit swapi 9: bit ani
2: Alphs lock system wide

Page 299

It is only possible to edit one half of the complete character set
at a time(i.e. either the STANDARD or OPTIONAL set). The X command
switches the character set indicator between the twa sets

In running CHEDIT it is important to have the file titled CHEDIT. PROMPT
resident on the same disk. CHEDIT. PROMPT is a display file ysed by CHEDIT
to clarify the operation of CHEDIT to the user (displays most commands,
status of character set indicator, plus display of current character being
edited in several locations for convenient view of the effect of thanges

being made.)

When the PASCAL SYSTEM bootstraps(or Itnits) it looks for a file
named SYSTEM. CHARSET which is then read into the character generator
buffer. Changes made to the character set in CHEDIT are oanlyy saved
permanently if ‘K’ command is typed. The effect of this is to write out
a file called NEWSET. CHARSET to the disk(SYSTEM. CHARSET is vetained).
In order to use NEWSET. CHARSET it is necessary to change its name to

SYSTEM. CHARSET.

Page 210

363 36 36 36 36 36 36 36 3 3644 3¢ 364545 36 340 B S S

% DEVELOPER 3 % Gection 4.11 #
44 26230 3B SR 3636336 263636 3 2 30 26 34369

Version 1.4 Janvary 1978

The file entitled DEVELOPER. CODE is a utility program designed
for converting FOTOFILES into a form compatible for printing on the
PRINTRONIX PRINTER. In essence, DEVELOPER acts upon a data file
treating it a seq— uence of bits only. 1t converts the input FOTOFILE
and writes out a file called PRINTER. DATA which can then be transferred
directly to the PRINTRONIX PRINTER. DEVELOPER assumes that the input
file has been edited on the TERAK B8510a screen and will format any
input file as being 320 bits across. Thus the printed file will be
printed out as 320 printer bits wide regardless of the printer file.

To further generalize the DEVELOPER program it is only necessary to
. change the 2 occurences of ‘319’ in DEVELOPER. TEXT to whatever Tow
size is wished according to the nature of the way in which the original
FOTOFILE has been edited. For the most part, developer will produce
an output file (i.e., PRINTER.DATA) which contains approximately twice
as many blocks as the original SNAPSHOT file or FOTOFILE. The user
should be careful with using larger files as DEVELOPER (if left
unmodified) only checks to see if 64 blocks of free space exist on the
disk and any output file exceeding this length will be incomplete if
not enough space is available.

Page 211

= Notes -

Page 212

3436 9 I 36 36 38 3 36 36 36 35 F 36 36 3146 36 36 36 36 3636 36 3 30 3 I S H I H PR N R 33 36 3 36 36 3 3 3 3 3 36 36 3 363

XREF: PASCAL TEXTFILE CROSS-REFERENCING #* # Section 4.12
35964 3546 36 35 36 36 3530 36 36 36 4 0303030 3636 3030 36 3030 36 35 3 I AR R H IR R HEH

Version I.4 January 1978

The utility program entitled XREF.CODE is useful for creating a
listing of a Pascal TEXTFILE with an extensive cross~referenced index
XREF writes out a file called XREF.LISTING which is a TEXTFILE that
may be transferred to the printer for easy reference. Basically, the
crocs—referencing catalogs any TEXTFILE by listing, in alphabetic
order, all recognizable, non-reserved word identifiers. Alongside each
reference there appears a list of the line numbers on which the
pertinent identifier occurs.

In running XREF it is only necessary to specify a legal on-line
TEXT- FILE followed by the specification of whether a line~numbered
listing is wanted along with the cross-referencing(i.e., responding to
the prompt: ‘LISTING?’ with a ‘Y’ will include a line-numbered listing
and ‘N’ will not). While XREF is executing the only indication the
user has of the program’s operation is by sounds of the disk—-drive and
the occasional appear—- ance of ‘Running...’ on the screen to signify
that another page(55 lines) has been processed

We thank SPERRY-UNIVAC for their contribution of XREF.

Page 213

= Notes -

Fage 214

************************-ﬁ-*** FE 436 3 S0 36 3 36 3 36 3 36 3 34 I I 33

COMP2: TEXTFILE SOURCE COMPARE # % Section 4.13
64635 3 3546 36304836 30309 3036 3030 3846 3630 S 20 H A H A R IR RN

Version 1.4 January 1978

The utility program entitled COMP2.CODE is useful for comparing
any two textfiles that need to be checked for differences(that may be
time~ consuming to find). COMP2 does character—by—character compares
and notes any and all differences between two (preferably similar)
textfiles. If there exist no differences(i.e., the files are identical)
then the user is notified with a message stating such. Otherwise, if a
mismatch occurs then the user is prompted in one of two basic ways.

Any small internal differences between lines in a file will be
signalled with a ‘MISMATCH’ followed by a listing of the line(s) in
each file that were found to dif— fer in any way. If extra text is
found present in either file then the user is notified with ‘EXTRA
LINES OF TEXT’ and is shown what excess text occurred where in the
pertinent file. Also, empty files and premature end-of~-files are
signalled by the program.

¢+ NOTE: IT IS RECOMMENDED THAT THIS PROGRAM BE USED ONLY FOR #)
(# FILES THAT ARE KNOWN TO BE EXTREMELY SIMILAR IN CONTENT. #)

We thank SPERRY-UNIVAC for their contribution of COMP2.

Page 215

-~ Notes -

Page 216

FE3E 36353 I I M IE I H I3 BT 363303034 30 303630 3H 38 343

QOTOXY BINDER # # Section 4.14
PERETE TS0 T R 3 2T 2L L L L o

Version 1.4 Januvary 1978

This program alters the SYSTEM. PASCAL on your default P(refix
disk. It prompts you for ‘local GOTOXY’, a procedure which must be
ereated and bound into the system (only once) in order to make your
system communicate correctly with your screen.

Look at the file GOTOXY. TEXT on your release disk. This
file contains a few procedures for doing €OTOXY cursor addressing on a
few different CRT-type terminals. If the procedure you need is one of
those, rTemove it from comments, comment out any others, recompile it,
and run BINDER on it. BINDER is a self—instructing program.

If the GOTOXY cursor—addressing scheme for your terminal is not
there, create one. Your procedure may not be named GOTOXY because
this identifier is predeclared at the "$U-" level of compilation.

Possible errvor: Fix:

Nil memory reference at Remove the program heading
compile time and try again

Value range error when executing (#$U—#) should be the first
BINDER thing in your GOTOXY file
Assumptions:

1.) You have a screen terminal
2.) You have a PASCAL system

3.) The upper left-hand corner of the screen is X=0, Y=0.

Page 217

-~ Notes -

FPage 218

363535 3 3 36 636 B 3035 30 4 30338 3 36 36 380336 30 23 I G RIS I I3

DISK DIRECTORY RECOVERY UTILITY # # Section 4.15
3036 96 3 36 36 36 30036 3636 T 363 3 363010 340 I 3T I WA SN H N

February 1978

The utility program RECOVER optimally restores the contents of
damaged disk directories, including most of those with "hard" errors
such as CRC errors. At present, only textfiles and codefiles are
restored, but not systems files or non-editable data files. Undamaged
parts of the directory are identified and re—used when possible; the
recovery operation only looks at damaged parts of the directory. Since
normal damage is only to a few words within the directory, most of the
directory is returned to the user in exactly its original condition.
When the directory entry of a file is found to be damaged. the file is
located on the disk, and its directory entry is restored with the
program name serving as the filename. I1f no program name can be found,
the filename used is DUMMYnnX, where nn is a two-digit integer

In operation, RECOVER first reads the directory using a
modified UNITREAD which ignores CRC and other disk errors. The
modified UNITREAD temporarily alters the interpreter, so if RECOVER is
interrupted during this period, the system will have to be rTe-
bootstrapped. Errors found in the directory read are displayed on the
screen.

Next, RECOVER checks the validity of each entry in the
directory:, by range-checking several different items in the entry. For
this, the number of entries is found in the header entry; if invalid,
the last valid entry in the directory is the last entry.

For each bad entry, RECOVER first looks at the (possibly still ~
valid) disk address pointed to by the entry. If no file is present
there, RECOVER gets the disk addresses from the next previous valid

-entry and the next following valid entry and uses these as limits in
jts search for the file. It searches backwards from the higher limit to
the lower limit in order to find the most recent update of the file ——
this is because, due to the Editor’s updating procedure, several’
obsolete copies of a textfile may precede the most up—-to-date copy on
the disk.

I+ the file is found, the directory entry is restored, using
the program name as a filename (if none is found., the name DUMMYnnX is
used). If the name was previocusly encountered, then “.nn" is appended
where nn is a unique number. If the file is not found, the entry is
eliminated. All restored (or originally valid) entries cause the
message “"FILE filename INSERTED" to be displayed whereas eliminated
entries display the message "FILE filename NOT FOUND" followed by
“ENTRY n ZAPPED". RECOVER then goes back and processes the next invalid
entry.

At the end of the above nrocess, RECOVER will aptionally locate
additional files on the disk for which an (invalid or valid) directory
entry did not exist. NMormally the user will wish to bypass this
processing, since the additional files in question are probably
previously deleted files, which are not wanted back in the directory.
The two occasions for which this option will be useful are (1) when the
entire directory has been wiped out or zeroed,such that normal

Page 219

processing (described above) is not effective; or (2) when the end of
the directory has been damaged and normal processing does not pick up
important files which were located at the end of the directory. RECOVER
displays the cue, "Are there still IMPORTANT files missing?" for which
the response "Y" executes the option and the response "N" does not. If
the option is executed, RECOVER finds the last file currently in the
directory, goes to that file, and, beginning at the point after the
file, scans to the end of the disk, putting each additional file found
into the directory.

After the above processing, a reconstructed directory exists in
memory. RECOVER displays the cue, "GO AHEAD AND UPDATE DIRECTORY?" and
must receive the response "Y" before actuvally writing anything on the
object disk. I# a "Y" is received, the write takes place, and if an
I/0 ervor occurs, then it is assumed that a sector address has been
wiped out on the object disk and that reformatting will be necessavyi
otherwise, the message "WRITE OK" is displayed.

The method of detecting a textfile is as follows. A null block
signifies the possible beginning of a textfile. A block is null if at
least the first 20 bytes of the block are nulls. .The next non-null
block is found. In this block either (1) the word PROGRAM must be
-found, or (2) 320 editable characters must be found, before 12
noneditable characters are found. (the numbers here can be changed and
probably will be.) The beginning of the file is two blocks before the
first non-null block.

The method of detecting a codefile is as follows. A codefile
- must begin with a blaock containing blanks in bytes &4 to 190, except
containing a program name (possibly empty) starting at byte 72.

The end of a textfile is found by searching for a null in the
file, either preceded within the previous 10 characters by the string
"END. " or in a block followed by a complete block of nulls. Textfiles
are always rounded up to the next even number of blocks.

The end of 2 codefile is determined merely by looking for a
null block or the beginning of the next file (as determined in the

directory). Al Hoffman.

Page 220

363645 I 3 36 3 I 90 96 F64E 36 3035 H 3 031 IS IR H R

* INSTRUCTIONAL SUPPORT # # Section 5.1 #*
6369363 30353 36 3 330 BB SEH I IR H

This document describes instructional support facilities for
UCSD Pascal. The package is designed for avtomated testing or
programmed instruction applications. There are two editions of the
package: student self-test and formal, graded, quiz. The formal quiz
version communicates with the student record—keeping system fdescribed
elsewherel through a hardware dependent interface (for security).
Until further notice, the formal quiz system will only be available for
Terak 8510a configurations. The self-test edition relies on features
of the I.5 release. Information regarding it is included for planning
purposes only. For the curious, a preliminary self-test edition is
available for the I.4 release. It is similar to the official version
described, but a large number of annoying conversions will be necessary
in any source written for the preliminary system.

Both editions require a CRT terminal with selective erase and X-
Y cursor addressing. Optional supported features include vector or
raster graphics and writable character set. Minor adjustments to the
support system may be necessary. depending on the terminal
characteristics; these will generally invelve replacement of some
constants. The two editions are compatable with each other, and a unit
need only be compiled once to be used under both packages,

The instructional "courseware" applications are programmed in
Pascal. The authoring environment is enriched by groups of procedures
made available by the support package. These procedures format text,
analyze input, produce graphics, make random selections, and track
student performance. The graphic and text functions afford a large
measure of display independence for courseware, as all coordinates are
expressed in logical, author~defined units

Page 221

- Notes -

Page 222

6363636 B 364 H 30 S0 A6 I 30 A F I A WA

STRUCTURE OF A UNIT % # Section 5.2
62640 I B R SR I IR SR R

A single instructional program is known as a "ppit. " It is
implemented as a SEGMENT PROCEDURE [see Section 3. 31. (Fur the self-—
test, this must be linked into a quiz-running program. The formal quiz
system dynamically links the unit at run time). A compiler include
file [see Section 1.67 supplies the applicable declarations for use by
the author. This file must be included as the first line of the
program. It includes pragram constant, type, and procedure
declarations. (The actual procedure bodies are compiled separately, and
either linked or included from a library.) The first author—supplied
line is a SEGMENT PROCEDURE declaration for the outer block of the unit

quiz.

The unit consists of up to 25 "concept pools, " Each pool is
implemented as a major procedure within the unit. The outer block of
the unit should contain only initialization and pool selection
ctatements. The support package tracks student performance on each
pool, including which pools may still be selected. It is also aware of
conditions for terminating the unit with overall passing or failing
grades. It is up to the author, however, to determine when a concept
pool has been passed or failed. and to report this fact.

A concept pool may contain a number of repeatable and
nonrepeatable variants, Again, the support package can select from
these variants at random.

Common input and output requirements may be simplified by ¢the
supporting procedures. Reading and evaluation of numeric rTesponses
(optionally including algebraic computation) is provided, as is
solicitation of a yes/no answer. The author may pause for a student-
determined period (system waits for a space orv carriage return to be
typed). The usuval Pascal output formatting is available, extended
somewhat by pseudo—files called viewports. A viewport is a rectangular
screen region, onto which text and graphics may be displayed.
Viewports auvtomatically “wrap around” to the next line for text (both
input and output). 1¢ the hardware is equipped with a readable text
display buffer, tex%t lines me. also be scrolled within the viewport.
Graphics going outside the viewport will be clipped at its boundries.
A current position is maintained for each open viewport, so that
several different screen regions can be accessed concurrently.

Page 223

—~ Notes -~

Page 224

2695 35 36 36 36 36 3 36 35 34 36 6 336 3 38 36369 33 S 0 I M I He N 6 3636 303 33 36 033

DESCRIPTION OF AUTHOR PROCEDURES # # Section 5.3 ¥
B4 3 363636 436 2090 36 45 638 S 3 43 30 IS0 RS S AR IR 3

Conventions for this document

Variables named XLO, YLO, XHI, YHI, X. and Y may be either
INTEGER or REAL. XTEXT, YTEXT, XSCREEN., and YSCREEN must be
integers.

The INKCOLOR may be NONE (which will not affect the
display), WHITE (make points visible "even on a green screen”),
BLACK (make points invisible), or REVERSE (change the dot
color). BLACK and REVERSE are available only on screens with
selective erase capability.

PICTURE is a string identifying a graphic display segment
in the GRAFFILE for the unit. Until the graphic editor is
released, this information is for planning purposes anly.

STREAM is in the subrange 1..25. Each value represents an
independent random selector. Each stream may contain
nonrepeating integers between 1 and 99.

V indicates a VIEWPORT name. All input or output for the
procedure will then use that viewport, which must have been
opened. The author may also do normal READs and WRITEs using
any viewport.

Viewport text and graphics

OPENPORT _parameters to be described in later release opens viewport
V. This feature will be documented when incorporated with the next
standard release.

LINETO (V, X, Y, INK) draws a line from the previous screen position to
(X, Y). Lines which extend beyond the viewport boundary will be clipped

POLARLINE (V, SIZE, ANGLE, INK) draws a line from the previous screen
position using polar coordinates. The line is drawn at ANGLE degrees for
S1ZE units. Lines which extend beyond the viewport boundary will be
clipped.

Page 225

AXES (V, XLABEL, YLABEL, XSPACING, XHEIGHT, YSPACING, YHEIGHT, LIMITS)
draws coordinate axes for the indicated viewport. The LABELs are strings
to be displayed; for no labels specify null strings. The X and Y SPACING
are the distance between tic (or grid) marks on each axis; the HEIGHTs are
the length of the tics (units of the other coordinates!!). Zero (or
negative) height supresses the tics; maximum coordinates will give a full
grid. LIMITS is a boolean. If TRUE, the lower and upper limiting values
will be displayed for each axis

DISPLAY (PICTURE) locates the PICTURE and displays it

NOTE: A graphics—-based editor is now in the design stage. 1t
will create GRAFFILEs for this procedure

CLEARSCREEN erases the screen. Both text and graphics are erased.
ERASEPORT (V) erases text and graphics from the specified viewport

WRITEREAL (VALUE, NORMAL) is & specialized version of the real number
output routine. It will not use scientific notation, and prints only two
decimal places (rounded). NORMAL is a boolean, which, when true, will
tause output in the standard character face. Otherwise, superscript
ctharacters will be used to display the number.

NOTE: There are tuwo purposes for this routine. The real number
formatter in the system daes not always print numbers in the
expected standard notation, and real-valued exponents are
sometimes useful. The first problem should be cleared up
shortly, and this procedure may be eliminated.

Solicitation of Student Responses

YESNO (V. CONFIRM) is a boolean function which accepts a yes or no
Tesponse. CONFIRM is a boolean; if TRUE, the response will not be accepted
until a carriage return is typed. It returns TRUE if the TesSpOnNse was
YES.

CHOICE (V, CANDIDATE, CORRECT) is a boolean function for concealed
multiple choice questions. The CANDIDATE (type string) is displayed in
the current screen viewport, ano the student is given a yes/no choice
CORRECT is a boolean with the value TRUE if the candidate is a correct
answer, CHOICE will be TRUE if the student response agrees with
CORRECT.

Page 226

EXPRESSION (V, OPTIONS, SOURCE) is a real function which evaluates the
algebraic expression in the SOURCE string. It returns the value of the
input expression. The student may use variables and functions which have
been defined for the session. The permitted operations are

addition
subtraction
multiplication
division
raise to pouwer
) group
mod (arguments rounded to nearest integer)

AN E L+

The built—in functions are

sin, cos, tan
standard trigonometric functions — RADIAN measurement

log log (base 10)
In natural log
sqrt square root
abs absolute value

Predefined constants:

pi 3. 14593
e 2. 781828

OPTIONS is a set of (NOTRIG, NOPOWERS, NOCOMPLICATED, NOCONFIRM). NOTRIG
disallows sin, cos, and tan. NOPOWERS prohibits use of log., 1n, sqrt, and
~. NOCOMPLICATED requires a simple numerical response (no operations). I+
NOCONFIRM is specified, the student will not be asked to verify a
camplicated expression.

NUMERIC (V, DPTIONS, ANSWER, RANGE) is a boolean function for soliciting
and evaluating numeric responses. 1t calls on EXPRESSION to evaluate an
expression. If the student’s answer is within RANGE of ANSWER, the
function returns true. A negative RANGE indicates no numerical answer for
the question. In this case, a correct answer must contain NO, N’T, NIL,
NULL., or EMPTY. If the student does not respond correctly, the answer
will be displayed, and NUMER.™ returns false. OPTIONS is as defined for
EXPRESSION.

PRESSRETURN (V) is a boaolean function. It waits for the student to press
the RETURN (or space or escape) key, then it clears the indicated
viewport. PRESSRETURN is TRUE if the student pressed escape.

READSTRING (V, DOPTIONS, DELIMITERS, DATA) allows a line of input to be
captured under control of the quiz system. The input is returned in the
string DATA.

Page 227

NOTE: This procedure has been totally replaced by ported READs
this documentation is obsolete and nearly useless.

OPTIONS is a set of (NOECHO, NOSHIFT, ONECHAR, NODELIMITER, NOTAHEAD,
NOCOMMANDS, NOBLANKS). If NOECHO is set, the student’s input will not be
automatically displayed. NOSHIFT leaves input in its original case;
otherwise all letters will he made upper-—case. ONECHAR specifies that
only a single character is to be read; otherwise a delimiter character
will terminate input. NODELIMITER removes the terminating character
(except ONECHAR mode). If NOTAHEAD is specified, any queued input
characters will be discarded. NOCOMMANDS disables the system directive
made. If NOBLANKS is set, leading and trailing blanks will be removed
from the input.

DELIMITERS is a set of characters used to signal the end of input (if not
ONECHAR mode).

If NOCOMMANDS is not specified: a number of system directives may be
invoked by the student. These are all armed by the ‘#’ character. The
command will be processed automatically, and only expected input will be
returned to the calling program. These commands are available from YESNG,
NUMERIC, and PRESSRETURN. The following are recognized:

" 8TOP the student wishes to terminate the session. Quizzes
are marked stopped (not passed).

COUNT a summary of right and wrong responses is presented

NOTE the remainder of the line is captured as a comment for
the instructor.

HELP the HELLO picture (from STARTQUIZ) will be displayed
again to remind the student of special notation and
restrictions.

MORE! (mostly a debugging function) allows the student to
continue with the quiz until all the questions are
exhausted. Once selected, this option may not be

N revoked.

Pseudo-randam Selections

RANDOM (LO, HI) is an integer function returning a value LO <= RANDOM <=
HI.

DEAL. (STREAM) This integer function returns an unselected entry from the
indicated STREAM. The value will be between 1 and the stream size (set in
MAKEPOOL). Maximum value is 99

Page 228

SELECT (POOL) is an integer~valued function used to select question pools.
POOL will be selected if it is non-zero, otherwise a random choice will be
made from the available pools. This function also displays the question
number and title on SCOREBOARD.

RESETLAST (STREAM) makes the last choice in STREAM eligible to be re-
selected.

Reporting and Control Functions

LOGIT (DIFFICULTY, GOTIT) records the response to a given question. GOTIT
is a BOOLEAN: TRUE indicates a correct response. I1f GOTIT, a message will
be generated equivalent to "good." The DIFFICULTY is an integer between O
and 3, which determines how strong the message should be (3 is the
strongest). If DIFFICULTY=0:, no message will be displayed. The message
is written to PROMPTLINE.

©DOD (V, DIFFICULTY) displays “good" messages to the specified viewport.
DIFFICULTY is an integer between 1 and 3, with 3 giving the strongest
encouragement.

MAKEPOOL (PDOL, SIZE. RETRIES, DESCRIPTION) associates the string
DESCRIPTION with the indicated question POOL. The title may not be longer
than 20 characters. SIZE is the number of entries to be made for DEALs
from the associated random stream. Streams are limited to 99 entries

The pool selection mechanism permits a question to be missed and re—
tried. RETRIES is the number of retries permitted before the question is
eliminated. MAKEPDOL allows the question pool to be SELECTed. Should a
random stream be rTequired without a question pool, the DESCRIPTION must be
an empty string. All MAKEPOOLs for actual question pools shouwld appear
before the STARTGUIZ call. This ensures that the student will be told the
correct maximum number of questions to be presented.

STARTQUIZ (MAXWRONG, ALLWRONG, MAXMINUTES, DDALL) initiates the quiz
session and performs the necessary student handshaking procedures.
MAXWRONG is the number of incorrect responses to fail. MAXMINUTES is
the quiz time limit. The quiz will automatically terminate after the
specified period. DDALL selects the quiz ending strategy. With DOALL
false, the quiz may be terminated after MAXWRUNG incorrect answers.
DOALL true continues the quiz until all questions have been eliminated
A future version will open the graphics file associated with the unit,
and display the HELLO picture, if any.

Page 229

QUIZDONE is a boolean function. It determines (from the STARTQUIZ
parameters) when a quiz is concluded. It will either return FALSE (not
done) or report the quiz result and stop the program. Before returning
to the author pragram, QUIZDONE perfarms a PRESSRETURN using
PROMPTLINE:, and a CLEARSCREEN. The quiz will abort if the student
escapes at this time.

Page 230

3036 3645 35 35 36 3696 36 36 3 36 3040 3 35 36 30 36 36 2 30363 H 36 36 36 35 3 33030 S0 B 00303030 A I3 038 30 BRI

DESIGNING ,(AND DOCUMENTING) A LESSON FRAME # # Section 5.4
3646 9636 38 36 36 3036 36 303046 3040 353 3 30403 00 30 30020 300 0T R B ISR I SRR W

(1) Educational Goal and Method

First, you should decide the general goal or topic of the frame. State
this goal in the context of the unit. Next, find an approach to achieve
the goal. This should indicate the type of question, kind of response
required, and feedback for the student. Non-obvious scoring should be
explained. Notice that so far you haven’t said anything about automation.

(2) Programming Analysis

Now you want to describe a stategy for generating the questions and
feedback. When necessary, this may be partially in terms of the
implementation. Only the major mechanisms should be covered here.

(3) Animation

Lay out the screen format. Block out a number of viewports. Show their
relative position, size, and contents. Spend some time on this; make it
attractive and convenient to watch. Consider using lines and boxes to
dramatize the spatial design.

(4) Coding

Now you have develaped a functional spec. The coding will be a relatively
direct matter in most cases. The specification will also serve as the
main documentation for the frame. Add notes to explain coding tricks and

funny variables.

In testing situations, think in terms of "question generators. " These are
procedures which can create many variations of the same basic problem. The
question generator may have some options, set via parameter, to allow one
generator to serve in more t.an one frame. The generator itself should
rely on random numbers and pools. Question generators should return the
correct answer(s) to their caller.

As usual, the frame main procedure should be short. Call on local
procedures for lengthy calculations or screen formatting.

Sections 1 through 4 indicate successive job steps. Work may be delegated
after any step.

Page 231

SAMPLE DOCUMENT

<< any similarity to existing programs, living or dead, is purely incidental >

UNIT 1 - QUESTION 1

TITLE: Cidentifier>s

APPROACH: .
The student states whgther or not various character strings are
identifierD>s. If the student answers incorrectly, the right answer

will be given.

Remarks., such as "spelling is irrelevant," “lower case prohibited, "
"must start with a letter," "spaces not permitted," etc., should be
displayed as appraopriate.

SCORING:
Question pass = 10 in a row correct Question fail = total of 5 wrong.
May be repeated once.

8TRATEGY:

A selection of one from a group of 50 pre-determined strings will be
made. A remark and correctness is associated with each string.

SCREEN FORMAT:
right and wrong (SCOREBDARD)

question/
answer

instructions

remarks

NOTES:
Two lists of 25 strings are kept. One contains only valid
identifier>s, the other, only invalid. COMMENTLIJ corresponds to
both VALIDCLIIJ and INVALIDLIZ.

Page 232

#PROCTOR‘S GUIDE TO BOOKKEEPERS##
*******************#**************

This document is an introductory guide to BOOKKEEFPER, which is
a special version of the Pascal system used to perfarm the record
keeping for the self#—~ paced computer science courses taught at UCSD.
This document is currently not & comprehensive'description of this
bookkeeping system but is instead, as the above title suggests, an
introductory user guide to proctors. In its current form this
document is organized as a collection of sections each of which covers
a particular aspect of the bookkeeping system. These sections describe
the basic aspects af the bookkeeping system which new practors would
need to understand as part of the process of becoming familiar with the
role of a proctor. Therefore this document does not include any
disscussion of the internal opevation of the bookkeeping system, noT
any information on maintenance of the system.

The software described by this document is not included in the
1.4 release of the U.C.S.D. Pascal System although it is currently
being used at U.C.S.D. We hope to have this software in a releaseable
condition by the time of the next release of the system.

>5>55>>> ATTENTION WINTER 1978 PROCTORS LKL

YOU SHOULD TAKE THE TIME TO READ SECTIONS 7. 8 % 10, AND
11 OF THIS DOCUMENT. SUBSTANTIAL ADDITIONS AND REVISIONS
HAVE BEEN MADE TO THESE SECTIONS.

#TOPICS DISCUSSED IN THIS DOCUMENT #
2503 6 3 B 3 339 B 30 RS R R T S

1. BOOTSTRAP PROCEDURE -
2. CARE OF BOOKKEEPING DISKS
! 3. SECURITY
4. TRANSACTIONS UPON AND UDPDATING OF STUDENT RECORDS
5. MESSAGES FOR PwOCTORS IN A STUDENT‘S RECORD
&, SELECT COMMAND
7. ZAP CDMMAND
8. ADMINISTRATION AND RECORDING OF FACTUAL (AUTOMATED) AND
PROCRAMING QUIZZES
9. SETTING THE COURSE EVALUATION (CAPE) ENTRY
10. COMMENTS ON PAPER GRADE RECIEPTS ,
11. UTILITY PROGRAMS IN THE BODKKEEPING SYSTEM

1. BOOTSTRAP PROCEDURE
The bootstrap procedure is jdentical for both of the
bookkeeping machines, with the exception that different disks are
used. On the main bookkeeping machine(the machine with the two disk

drives) use the disk called BOOKER:. The disk should do its vsual
amount of clicking. and then the following-lines should appear:
U.C.S.D. Bookeeping System Master System I3

Page 233

Enter today‘s date: <1..31>-<JUAN. . DECD>-<00. . 99>

=D ' .

Once you have the machine to this state, you should enter the
correct date and time in the manner indicated. Note that bookkeeper
asks you to verify that the date and time are correct immediately after
they are entered just in case you make a typographical error.

The date and the time are vital to the correct operation of the

bookkeeping process, and therefore we ask that you be very
concientious about entering them correctly.

After the date and the time have been successfully entered the
screen should clear and the following prompt should appear:

Bookkeeper: T(transact, A(uto. M(aintain, O(ption, UCtility, Q(uit
You will notice that the disk will perform a substantial '
number of “clicking" aperations as the master bookkeeping files are
opened. Once you have the machine at this stage, you will have to
"unlock" its “front panel"” as described in the section called SECURITY
below.
2. CARE OF BOOKKEEPING DISKS

The disks which will reside in the lab for bookkeeping purposes
are not to be used for any other purpose, and should be used anly in
the machines which are designated as bookkeeping machines. You as a
proctor are the only person who should be handling these disks.

Please keep these disks inside their floppy envelopes when not
in wuse. Also don’t leave these disks lying around on desk tops where
someone can either sit on them or place something heavy on them. In
short, keep these disks in the drawer where they belong.

THE FOLLOWING ARE TWO IMPORTANT INSTRUCTIONS CONCERMING THE MAIN
BOOMKEEP ING MACHINE:

1. DO NOT REMOVE THE DISK FROM THE BOTTOM DRIVE ON THIS MACHINE
UNLESS IT IS A DIRE EMERGENCY THAT YOU DO SO !! WE DONT WANT
TO RISK GETTING BAD BLOCKS ON THAT DISK.
2. WHEN SHUTTING THE SYSTEM DOWN FOR THE NIGHT, DO NOT JUST POWER
OFF THE MACHINE. USE BDOKKEEPER‘S G(uit COMMAND FIRST.
(This saves the transaction logfile which is lost if the Q(uit
command is not used)

3. SECURITY

To prevent unauthorized persons from entering bookkeeping
transactions, bookkeeper has a security system which requires that a
person type in a password to “unlack" the front panel, before certain
commands will work.

Just after being boatstrapped, bookkeeper’s frant panel is
locked: When the panel is locked, recards may be examined, but not
altered. To unlack the frant panel, a proctor must use a hidden
command called S(ec. S(ec responds with the following promptline:

Sec: NCew, Clurrent, Quit

Clurrent displays the current security level number. N(ew is
usz2d to enter the password far 4 new security level. N(ew Tesponds
with the following pramptline;

Enter new sec followed by CRET]

) Bookkeeper is now waiting for you to type in YyouTr password
Note that the characters that you type will not be echoed back to the
screen. When you have completely typed in your password press the
RETURN key. You will know whether or not your password was accepted or
not by the following line:

Sec changed to 1

Page 234

You should see a "1" instead of a zero. 1# you don’t succeede
the first time you may try again as many times as you like.

Once you have accomplished your task of unlocking the front
panel you may use the G(uit command to exit the security changer and
return to the main part of bookkeeper.

NOTE: Even after the front panel has been unlocked in the manner
described above, there will be certain commands iisted on the
promptlines of bookkeeper which will not be allowed to you.
These particular commands are reserved for persons who are
maintaining the bookkeeping system, ovT who have a thorough
understanding of how the program operates.

4. TRANSACTIDNS UPON AND UPDATING OF STUDENT RECORDS
Changes to a students record can be made by entering T(ransact

mode. You must then identify the student whose record you wish to

update. To do so you may either type in the name or you may type in
the student’s bookkeeping number. I# the name you type is not the name
of a person in the file, then bookkeeper will display a short list of
names which are closest to the name entered. The F(orward command
will cavse successive groups of names which are progressively higher in
the alphabetic sequence. In a similiar manner, the B(ack command
allows you to examine the student roster in the opposite direction.

Once you have successfully identified which student record you
wish to update bookkeeper will display the contents of the record and
then display the following promptline:

(unit #), C(hange, Stelect, A(uto, Z(ap, F(orfeit, E(xam, G(rd, M(essage, G(uit
Most often you will want to record a homework taken, or the

passing of a quiz. To do so, you first enter the unit number followed

by the items that you wish to add to the student record. Once you

enter the first digit of the unit number the following promptline will

appear:
Unit # & A-J(quiz) or W(hmwk) or Plass), LSP] to accept, [ESC] to abort

As the above promptline suggests, the letters A—-J will be used
to record quiz versions taken. We will adopt the convention that the
letter A will be used to record a student as having passed an automated
v"factual" quiz, while the letiters B-J will be used to record versions
of the programming quiz taken by the student. The letter W will as in
past quarters signify that the student has completed the homework for
the unit. " p v uyill be used to indicate that the student has passed
one of the programming quizzes for that unit. In the case where a
particular unit does not have either a factual quiz ar a programming
quiz, the proctor should jus’ £i11 in the "A" and "P" fields of that
unit as necessary in order to convince bookkeeper that the unit has in
fact been completed. (Note that the units requiring this special
treatment tend to change from quarter to quarter).

As you will probably notice when you start to use this system,
the bookkeeper software displays warning "flags" next to units that it
believes have not been completed by the student prior to advancing to
later units. (The “flag" is the appearance of "C—-—=lWarning !" to the
right of the display for the unit) These warning flags are intended to
catch the eye of the proctor so he/she can investigate the reasons for
the “holes" in the students record.

Page 235

Below are some example bookkeeping entries and explanations of
what they instruct the bookkeeping system to do: .

SAWP4ADWP instructs bookkeeper to record that the student has passed
“the automated quiz, the homework, and the written quiz
for unit 3. The rest of the command string indicates
that the student has passed the automated quiz, the
homework, and written quiz D for unit 4,

Once you have entered a command string similiar to the one in
the example above, you may cause the students record to be updated by
typing either spacebar or RETURN. If you make an errar you may
backspace over your errors, and try again, or you may hit ESC to throuw
away the comnand sequence and start all over again.

5. MESSAGES FOR PROCTORS IN A STUDENT'S RECORD

Associated with each student record is an optional 50 character
message which can be used by proctors to communicate to one another any
unusval circumstances concerning any particular student. If a message
is already present then the flag " ### MESSAGE ### " will appear in
the upper right hand corner of the display of the student’s record. You
may view this message using the M(essage command. Tao change the
message, or remove a message, you must enter the change mode by using
the C(hange command. Once in the change mode, you request to change the
contents of the message by using the M(essage command.

6. S(elect COMMAND

The S(elect command is a means whereby the proctor can ask the
bookkeeping system to randomly pick & version of a quiz for a
particular unit.
7. Ztap COMMAND

Zap allows you to selectively erase mistakes that have been
made in the process of making transactions vpon a students record. Zap
allows you to enter the items which you want erased in exactly the same
manner as items are made part of the student’s record.

To erase the "Automated Quiz Taken" and "Programming Quiz
Taken" messages from a particular unit, first indicate the unitnumber
and then type "A"“ opr wpv respectively. One can think of this twa
messages as “covers" which cover-up portions of the display for that
unit. When one aof these messages is present, a zap command which
includes the corresponding letter (i.e. "A" gr "p") will cause the
cavering message tc be removed, leaving the underlying information
intact.

8. ADMINISTRATION AND RECORDING OF FACTUAL (AUTOMATED) AND PROGRAMMING GUIZZES

To give a student an automated quiz, first go into T(ransact
and bring the student‘s record onta the screen. Then use the Aluto
command, which will respond with the following prompts at the taoap of
the screen:

Automated Quiz Administration:

Enter unitnumber for quiz —-—-=>

Once you are at this stage, enter the number of the uiit
desitred followed by a carriage return. (If you Just type RETURN then
you will return to the normal transaction level.) Once you type in the
unitnumber, the following prompt will appear:

Page 236

Enter quiz version desired ——>

Quiz version "A" has been designated to record the taking of a
“factual” or Auvtomated quiz, while quiz versions "B" thru "J" are used
to indicate the taking of one of the programming quizes for thaft unit

Once you type in the version letter, the quiz disk in the tap
drive will be "armed" or enabled, and the students record number is
written onto the quiz disk, along with the unitnumber and quiz version
to be administrated. If an I/0 error occurs during the transfer of this
information onto the quiz disk, then the following message will appear:

Evror: No Quiz Disk In Drive !

In addition, the students record is updated to show that he/she
has been given a quiz disk. On the display of a students record, this
shows up in the form of one of the following messages:

“Auvtomated Quiz Taken" or "Programming Quiz Taken"

Note that the above message appears on the display in the ares
normally used either for quizzes or other purposes . When the student
brings the quiz disk back, this message will disappear. If the disk is
not returned, then the message will remain in the display of th
student’s record until the zap command is used to erase this message.
(See the section of this document describing the Zap command for
details)

When the student returns from the quiz room with the disk, you
should place the disk into the top drive, return the bookkeeper system
to the Bookkeeper: level, and then use the A(uto command at that level.
The A(uto command should give you the following prompts:

Automated Quiz Record Retreival: (type ESC to escape)

Place quiz disk into top drive and press RETURN

As before, ESC will cause you to return to the Bookkeeper:
level, whereas RETURN instructs bookkeeper to attempt to read a quiz
report from whatever disk in the top drive. If you type RETURN the
bookkeeping system first checks to see that you have in fact placed a
disk into the tap drive. If it discovers that there is no disk in the
top drive then the followina error message should appear on the screen:

Ev.or: No Quiz Disk In Drive !

However, please note that whatever disk you put into the top
drive will top drive will be interpreted as a quiz disk! If you place
any other disk than a quiz disk into the top drive you will probably
see the screen £ill with garbage characters, which typically kills the
system, thus requiring that you bootstrap the system again.

If you do in fact have a quiz disk in the top drive, then you
will receive a quiz rTeport on the screen which gives you information as
to what occurred in the quiz room. (Further discussion of the contents
of this report is beyond the scope of this document)

When you are finished looking at the quiz report, hit the
spacebar. Bookkeeper will then enter the T(ransaction level and display
the updated student record. This allows you to irepect the record and
verify that the bookkeeping system has updated the record correctly.
Please note that the recording of the passing of automated quizzes is
done automatically by bookkeeper.

Page 237

IMPORTANT: EVEN IF A STUDENT FAILS A QUIZ, YOU SHOULD STILL
TAKE THE TIME TO GO THROUGH THE ABOVE PROCEDURE 1IN
ORDER THAT THE BOOKKEEP ING SYSETEM CAN RECORD THE
FACT THAT THE QUIZ DISK WAS RETURNED BY THE STUDENT.
OTHERWISE, THE STUDENTS RECORD WILL STILL CONTAIN
EITHER THE "Automated Quiz Taken" OR THE
"Programming Quiz Taken" MESSAGE, WHICH IS MEANT TO
INDICATE THAT THE STUDENTHAS A QUIZ DISK IN HIS
POSSESSION. :

7. SETTING THE COURSE EVALUATION (CAPE) ENTRY

Every student record has one bit which indicates whether or not
the student has filled out a CAPE (Course And Professor Evaluation)
card. If this bit is not set then the message “"CAPE CARD NOT COMPLETED"
will appear as part of the display of the student record. Note that a
student is not required to fill out one of these cards. This CAPE card
indicator is primarily intended to promote a larger response by
attracting the proctor’s attention to the fact that the student has not
yet filled one out. (The proctor can then ask the student if he/she
would mind filling out one of these cards.)

To turn off the “CAPE CARD NOT COMPLETED" message you must
enter the C(hange level by typing "C" from the T{(ransaction level. Once
inside of C(hange, you use the E(val (short for “evaluation") command,
which simply asks the proctor whether or not the student has completed
the CAPE survey. (One responds to this question by typing “Y" for yes,
and "N" for no.

@ﬁhﬂ&“&heﬁﬁﬁﬁﬁfsﬂﬁMEgfﬁﬁaﬂﬁﬁﬁﬂﬁﬂﬂﬂﬁdﬂ?&ﬂgfﬁhﬁ;iastﬁ?QMaweeks aof
“the :quarter the "CAFE CARD 'NOT COMPLETED" prompt will not appear until
the maintainer of the bookkeeping system sets an option which informs
the bookkeeping system that CAPE is in season.

10. COMMENTS ON PAPER GRADE RECIEPTS

It is important that all of the proctor’s realize that the
paper reciepts whirh are filled out by the proctor when passing a
student on the qui: or homework for a unit serve as the uvltimate means
of backing up the bookkeeping system. Also if any dispute arises over
the legitimacy of the records maintained on the bookkeeping machine,
these reciepts must be used to verify the records in the computer.
Therefore, due to the important role assigned to these grade receipts,
it is essential that they be filled out completely, neatly, and
accuratly,

When filling out these reciepts, please sign the receipt using
at least your last name, don‘t Just use your initails as your signature
since initials are easily forged. Also make sure that the information
on the receipt is complete, especially important are the student’s name
and bookkeeping isentification number

'

‘Page 238

11. UTILITY PROGRAMS IN THE BOOKKEEPING SYSTEM

Included within the bookkeeping system is a set of utility

programs which allow proctors to do non—bhookkeeping activities on the
same machine on which the bookkeeping system is rTunning

version

The following is a list of utilities not provided in the current

of the system:

S(cheduler ~(not enough space inside master bookkeeping
machine)

Wlaiting —(not yet fully developed)

P{rinter —(currently a utility program running on the Terak
connected to the printer. See document "How To Get
Listings" for details)

F(iler —a modified version of the standard system
filer. Does not allow one to remove or create
files on the bookkeeping disks. Also does not have
a T(ransfer command, due to lack of space. Z(evro
command is more intelligent, and won’t allow you to
zero the bookkeeping disks.

T(ransfer —program which accomplishes the same result as the
T(ransfer command in the standard system filer.
Note that this Transfer pragram is oriented for
operation on a single drive machine, and therefore
prompts you to place either the source or
destination disk into the drive, depending on what
disk it requires. The reason for the disk swapping
is again due to a lack of memory space. If you
accidentally place the wrong disk into the drive,
an error message is written and the transfer is
aborted. If there i3 insufficient room on
the destination volume, then a
warning message is written and the transfer is
aborted.

Current version of T(ransfer will cause the entire
bookkeeping system to go out to lunch if you
attempt to use PRINTER: as the destination file.
Also, T(ransfer insists that you provide the volume
name when entering the filename.

You exit the T(ransfer program by jJust typing
RETURN in recponse to the "Transfer what file ?"
prompt.

C(alculator -—-Dale Ander‘s calculator program. This is
generally & very useful program, but it is a
potential hazard to the bookkeeping system.
Particularly troublesome are the floating point
math errors which occur when you attempt to use the
exponentiation operator in a careless manner.

Page 23%

Page 240

303 I I3 I I I I RN

#EXECUTION ERRORS# #TABLE 1#
L2 Y P L T

Version 1.4 Januvary 1978

0 System error FATAL

1 Invalid index, value out of range (XINVNDX)

2 No segment., ba& code file (XNOPROC)

3 Procedure not present at exit time (XNDEXIT)

4 Stack averflow (XSTKOVR)

S Integer overflow (XINTOVR)

b Divide by zero (XDIVZER)

7 Invalid memory reference <bus timed out> (XBADMEM)

8 User break (XUBREAK)

? System I/0 error (XSYIOER) FATAL
10 User I/0 error (XUIDERR)
i1 Unimplemented instruction (XNOTIMP)
12 Floating point math error (XFPIERR) -
13, String too long (XS2LONEG) ,
i4 Halt, Breakpoint (without debugger in core) (XHLTBPT)

i5 Bad Block

All fatal errors either cause the system to rebootstrap, or if
the error was totally lethal to the system, the user will have to
reboot. All errors cause the system to re~1n1t1alxze itself (call

system procedure INITIALIZE).

Page 241

-~ Notes -

‘Page 242

-t

n

C 9 0o N - o » W

13

i4

AR IR BH
#IDRESULTS # # TABLE 2
B4 H NI R NRHRH RN

Version 1.4 January 1978

No error

Bad Block, Parity error (CRC)

Bad Unit Number

Bad fode, Illegal operation

Undefined hardware error

Lost unit, Unit is no longer on-—line
Lost file, File is no longer in directory
Bad Title, Illegal file name

No room, insufficient space

No unit, No such volume on line

No file:; No such file on volume
Duplicate file

Not closed, attempt to open an open file
Not open, attempt to access a closed file

Bad format, error in reading real or integer

Page 243

- Notes -

Page 244

BRI H NI HIH RN
UNITNUMBERS % # TABLE 3
A0 I IR

Version 1.4 January 1978

NUMBER VOLUME NAME
(o] <empty>

CONSOLE

L

SYSTERM
GRAPHIC
floppyo
floppyl
PRINTER
available — <unimplemented>

REMOTE <reserved for future use>

S O N O U & WN

blockli

block2

-
o]

block3

[
(573

blocké4

-
N

Devices 9 — 12 are block—structured devices, in most cases (RK-05).

Page 245

-~ Notes -

Page 246

DRAWL INE:
0

> N

DRAWBLOCK:

4]

FE30 03 3430 I I 33 HIE RN F R R

* PENSTATES % # TABLE 4 #
AR RN RN R R

Version 1.4 Janvary 1978

PENUP (picture will not change)
PENDOWN (force bits on)

ERASER (force bits off)
COMPLEMENT (XOR bits)

RADAR (scan for obstacle)

OR <paint source onto destination>

COPY <source goes to destination>>

COMPLEMENT <inverted source goes to destination>
EXCLUSIVE-OR <source exclusive—or destination goes

to desination>

Page 247

- Notes -

Page 248

63633

#TABLE 0%
IR H R

: ERROR #
398, 399
400
401
402
403

404

4034 36 3F 3 363 396 36 3 336 330230 396 33030 303030 309 S 3030 230 S 3003 M B0
#*SYNTAX ERRORS NOT FOUND IN JENSEN AND WIRTH#

36 36 35 3496 336 36 3 3 3 36 36 3 3636 36 3303 36 I 3 3 3638 3 36 36 T 46 36 3 36 36 34 36 363 3 I

Version 1.4 January 1978

MEANING
Implementation restriction.
Illegal character in the source text.
Unexpected end of input file.
Error in writing code file.
Error in reading an include file.

Evrror in opening info.list or code file

The syntax errors this compiler gives are not the best it can

do. When time comes available to do so.

compiler is going to be seriously re-vamped.

the error generation of the

Page 249

- Notes -~

‘age 2%0

VoOoONCUDdDWN=O

354646 35 3636 6 3646 3636 46 45 38 36 635 36 0 3036 36 3046 304096 IR0 30H I I IS HAH SIS RN H I RN
TABLE & American Standard Code for Information Interchange
2463646 36 3 3536 56 3646 3536 $96 36 3 35 3098 36 30 365 36 380 3 2030 33130 A IS0 SHIE I S B R

000
001
002
003
004
005
006
007
010
011
o012
013
014
015
016
017
020
o221
o022
023
024
025
026
027
030
031
032
033
034
035
036
037

NUL

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

z .= (N
o

|~ + ke~ NEF

COONCUMPUWRNONT

W AT

100
101
102
103
104
105
106
107
110
i11
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

PU AN XECCAHNITEOVOZINrRXROL-IGTIMUORD>A

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

-

140 60
141 61
142 62
143 63
144 &4
145 &5
146 66
147 &7
150 &8
151 69
152 6A -
153 6B
154 6C
155 4D
156 &E
157 6&F
160 70
161 71
162 72
163 73
164 74
165 75
166 76
167 77
170 78
171 79
172 7A
173 7B
174 7C
175 7D

WardhNE X ECC N 30T I3 =xw »ITahdan [~ 1}

176 7E

177 7F DEL

Page 251

Page 252

Table 7 - SYNTAX DJAGRAMS

{tdentlfler)
\letter) 4 >

diglt

{unslgned integer>

)

digit
 ~"]

<unslgned number)>

—+ unslgned integer dtg::\~1‘ } Al

L-—w(E>, unsigned lnteger {7

Page 2388

{urslgned constant)

constant Ldentifter

unslgned number

)

{constant)

constant ldentifler

unsldned number

O e -

Page %Y

{stmple typed

tupe ldentifier

tdentifler

<fleld tlst>

constant~—-—*<:)——~—ﬂconstqntu——————J

. N

oN
(=2
ldentifler| H type f
@ ldentifier :j“

conslant |

tupe ldent l
@

~—((O

fleld 1lst -@J
L]

Page 98

<type>

simple type

type Ldentilfler

RECORD —H fleld ist|

(.
ARRAY [stmple type| type
FILE
SET @ stmple type f—oH"

Page 2586

. o unsigned N
Integer
—(rer) _

{vartehle)

g

varlable ldentifier (g . : : R

fleld ldentifier > ’<:)—-74'expresslon

| NI
»@4 fleld ldentlfler
- U‘T\ W,

{sbmple cypresslond

~@-

- ——dterm . =

term

<termd

factor 1 ' f
(Ei:) (;;:) Q%%E> ndE) ANED

Page 287

{factor>

Fage B8

unsligned constant

varlable

functlon Ldentifler

.

¢ expression

. r(E)———«vexpPessLon‘

NOT

factor}-

expresslon-]—J

> expresston Fh@.
()
N

<expresslond

~— simplc expresslion -ww~~‘——?r-r

229Pe1

simple expresslon

{parameter ilst)

type ldenthLer;l*<:>J¥+

5o

ldentlrter}

Page 259

Page 60

unsldned Lnteger }“*@

.r T F;'.m

—-rivarlable

funcﬁlor;w_f

procedure

-

Ldentifler | L

Ceteotemontly

—-

e
expres-

slon

expresston

b
s |statement | END o
.,
,C) o EXpres— - stqle~ state-
slon THEN nent nent
expres—| const- y o
CASE slon S ant (END)
H
stote~
ment
>
WHILE lexpresston [3]») statenent
REOFAT statepment | UNTIL M expresston
) poWNTo
vartoble o -
FoR Ldentlfler [PU R expression Ta

expresslon

varluble

statement oo A

statlement p——u-A

unstigned lnteger

S

I
&
0

unslgned

\nteger p———-—a——

Y
(O

E
(DD~

CEHST tdentifier ~—-—°'®-——' constant e
TYPE tdenttfler (= }——ltype X
(O J
b s
vm)—,r—- Ldentifler J_O type
:). J
(P

h@&cmuz&%—a \dentlfier

rarameter \lst p—>"

'@WCTI@-—* Ldentifter — parameter

~—-@-:‘GIN -— statement

{program>

Lo—

\ist ———-—J

type ldentlfler |—

END /

A——

@QGR&M ——s Ldentlfler

[

— @ o —0O

Page P 6%

l:Error in simple type
Z:1dentifier expected
3: 'PRCGRAM' expected
4:')"' expected
5:':' expected ' ,
6:I1legel symbol (maybe missing ';' on the line above)
7:Error in parameter list
€:'OF' expected
9:' (' expected
- 1@:Error in type
11:'[' expected
2:']"' expected
13: '"END' expected
14:':"' expected
15:Integer expected
16:'="' expected
17: 'BEGIN' expected
18:Error in declaration part
19:error in <field-list>
20:'."' expected
21:'*' expected
‘5¢:Error in constant
51:':="' expected
52:'"THEN' expected
53: '"UNTIL' expected
54:'DO' expected
55:'TC' or 'DOWNIQ' expected in for statement
56:'IF' expected
57:'FILE' expected
58:Error in <factor> (bad expression)
59:Error in variable
181:Identifier declared twice
'1¢2:Low bound exceeds high bound
1¢3:1dentifier is not of the approprlate class
104:Undeclared identifier
165:sign not allowed
106 :Number expected
167:Incompatible subrange types
108:File not allowed here
169:Type must not be real
110:<tagfield> type must be scalar or subrange
- 111l:Incompatible with <tagfield> part
112:Index type must not be real
113:Index type must be a scalar or a subrange
114:Base type must not be real
115:Base type must be a scalar or a subrange
1l6:Error in type of standard procedure parameter
117:Unsatisified forward reference
118:Forwaré reference type identifier in variable declaration
119:Re-specified params not OK for a forward declared procedure
12¢:Function result type must be scalar, subrange or p01nter
121:File value parameter not allowed
122:2 forward declared function's result type can't be re—spec1f1ed
123:Missing result type in function declaratlon
124:F-format for reals only
125:Error in type of standard procedure parameter
126:Number of parameters does not agree with declaration
127:11legal parameter substitution
128:Result type does not agree with declaration
12%:Type conflict of operands
13¢:Expressicn is not of set type
131:Tests on equality allowed only
132:5trict inclusion not allowed

TA9.F2T A mmmrnmwd amnm mad AT T merm A

135:Type of operandé must be boclean

- 136:Set element type must be scalar or subrange
137:5et element types must be compatible
138:Type of veriable is not array

139:Index type is not compatible with the declaration
14¢:Type of variable is not record

- 141:Type of variable must be file or p01nter
142:111legal parameter solution

143:I1legal type of loop-.control variable
144:1I1legal type of express1on

" 145:Type conflict

146:Assignment of files not allowed

147:Label type incompatible with selecting expreg51on
- 148:Subrange bounds must be scalar

149:1Index type must be integer

-15@:Assignment to standard function is not allowed
151:Assignment to formal function is not allowed
152:No such field in this record

153:Type error in read

-~ 154:2Actual parameter must be a variable
155:Control variable cannot be formal or non-local
156:Multidefined case label

- 157:Too many cases in case statement

158:No such variant in this record.

159:Real or string tagfields not allowed
l6¢:Previous declaration was not forward
l6l:Again forward declared)
162:Parameter size must be constant

163:Missing variant in declaration ‘
l64:Substition of standard proc/func not allowed
165:Multidefined label

166:Multideclared label

167:Undeclared label

168:Undefined label

l169:Error in base set

17¢:Value parameter exgected

171:8tandard file was re-declared

172:Undeclared external file

173:Fortran procedure or function expected!
174:Pascal function or procedure expected
201:Error in real number - digit expected
202:8tring constant must not exceed source line
263:Integer constant exceeds range. :
204:8 or 9 in octal number o
25¢:Too many scopes of nested identifiers
251:Too many nested procedures or functions
252:Too many forward references of procedure entrles
253:Procedure too long

254:Too many long constants in thls procedure
256:Too many external references

257:Too many externals

258:Too many local files

259:Expression too complicated

3@@:Division by zero ,

361:No case provided for this value

3@2:Index expression out of bounds

383:Value to be assinged is out of bounds
304:Element expression out of range
398:Implementation restriction
399:Implementation restriction

460:1I1legal character in text

4@1l:Unexpected end cf input :
4¢G2:Error in writing code file, not enough room
~4p3:Error in reading include file

AA e Tvvmar im ravikdinmm~ liedbk F£i1A wak msranAsakh rasm

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	_01
	_02

